

Guiding equational proofs by attribute
functions
Technical Report

Jiirgen Cleve* Dieter Hutter t
University of the Saarland German Research Center for

Department of Computer Science Artificial Intelligence (DFKI)
P.O.Box 1150 Stuhlsatzenhausweg 3

D-66041 Saarbriicken D-66123 Saarbriicken
Federal Republic of Germany Federal Republic of Germany

July 1993

Content Areas: Deduction, Automated Reasoning, Equational Reaso
ning, Difference Reduction

Abstract

This report presents a methodology to guide equational reasoning
in a goal directed way. Suggested by rippling methods developed in
the field of inductive theorem proving we use attributes of terms and
heuristics to determine bridge lemmas, i.e. lemmas which have to
be used during the proof of the theorem. Once we have found such
a bridge lemma we use the techniques of difference unification and
rippling to enable its use.

'TeI. (+49681) 3025316, email: cleve@dfki.uni-sb.de
tTeI. (+49681) 302 5317, email: hutter@dfki.uni-sb.de

mailto:hutter@dfki.uni-sb.de
mailto:cleve@dfki.uni-sb.de

1 Introduction

Automated theorem provers suffer from their inability or inefficiency in
solving problems. This effect is especially the case if equality is included.
The most promising approach to mechanize equality reasoning stems from
Knuth and Bendix [KB70] who restricted the application of equations (by
using them as rewrite rules) and formulated their completion calculus which
led to an considerable decrease of the search space. The original completion
procedure of Knuth and Bendix is restricted to directable unit equations.
This strong restriction was weakened by Bachmair, Dershowitz, Plaisted
[BDP87] introducing unfailing completion. Completion was "lifted" to an
complete first-order calculus by Zhang, Kapur, Bachmair and Ganzinger
[ZK88]' [BG90].
One important disadvantage of the completion-based approaches is their
forward reasoning character. A goal-oriented style of completion-based pro
vel'S could only be simulated by cutting off parts of the search space [AA90],
[SA92] or by structuring the search space in dependence of the goal [Den91].
A constructive goal-directed technique to control equational reasoning is the
approach of "difference reduction". The general idea is to find a sketch of
the proof and then, to tackle the resulting subproblems [NSS59]. Now, the
problem arises how to break down a proof in such a hierachical manner. The
existing approaches of RUE-resolution [Dig79] and the calculus of Blasius
[Bla86] do this in a simple syntactical way. In order to equalize two terms
first, the top-level symbols have to be equalized and then, the corresponding
arguments of both terms have to be adapted.
While these two general approaches of difference reduction were no success
another goal-oriented approach called rippling / colouring terms [Bun88],
[Hut90] has been developed in the field of inductive theorem proving. This
technique turned out to be very successful to enable the use of the induction
hypothesis inside tIre induction conclusion. In a first step the syntactical
differences between hypothesis and conclusion are shaded. E.g. we obtain a
formula <I>(I'~x~) as a hypothesis and <I>(x) as a conclusion. Furthermore, the
syntactical differences between both sides of the given equations are shaded.
Depending on the locations of the shaded areas inside the white expressions
we call these (C-)equations context-moving (shaded areas on both sides),
context-creating or context-deleting (shaded areas only on one side). Now,
using these C-equations we are able to move, insert, or delete shaded areas

1

within the conclusion in order to manipulate the conclusion. Basin and
Walsh [B\V92] developed a method to determine syntactical differences of
two arbitrary terms by so-called difference matching or difference unification
which now allows to extend the scope of rippling to general theorem proving.
The aim of this paper is to develop generalisations of the mentioned
difference-reduction techniques in order to find appropriate bridge lemmas
which have to be used during the proof. In other words we search for "in
teresting" equations and try to enable their application. This is done by
introducing properties on terms which are computed by so-called attribute
functions w. Furthermore, we label those axioms which change the w-value
of a term after being applied to it. Suppose, both sides of an equation to
be proved disagree> in their w-va.lue. Thus we have to use one of the labe
led equations during the proof. Selecting appropriate attribute functions
in dependence of the actual problem reduces the set of labeled axioms one
of which has to be used to prove the theorem. In order to enable their
application we use difference unification and rippling which manipulate the
goa.l to apply a dedicated axiom.
Throughout this paper we use paramodu'lation / resolution as the underlying
calculus. Hence, wc prove a theorem by refuting its skolemized negation.
vVe call a negated equation (to be proven) a goal equation.
The techniques presented here are suitable for guiding the equational part of
the deduction process. Of course they have to be combined with strategies
for guiding the resolution process. Thus, handling conditional equations fits
in the presented framework.
We want to emphasize that the presented approach is not restricted to the
paramodulation calculus but we use it as an exemplary one to illustrate our
approach. 1

1 We use the traditional notation for tenus, i.e. T(E, V) is the set of terms w.r.t. the
signature E and the set of variables V, x, y, z, . .. denote variables, a, b, c, ... constant
symbols, and j, g, h, ... function symbols. By s[7l" - r] we denote the replacement of the
term S at the position 7l" by r. We use E(t) to denote the set/multiset of all symbols
occurring in t, V(t) to denote all variables of t and ~(t) = E(t) U V(t). We use
substitutions not only on terms bnt also on symbols of the signature (in which case they
are just the identity for non-variable symbols.)

2

2 An example

As mentioned in the introduction we try to solve equality problems with
the help of difference reduction. Given an equational problem...., S = t (goal
equation) we look for an equation q = T" (as a bridge lemma) out ofthe set of
given formulas which has (likely) to be used during the proof. The selection
of this equation is guided by syntactical properties of the given terms and
several heuristics (for instance, concerning the origin of the axioms). In
this section we shall illustrate this approach by an example. We use a
straightforward equality representation.
Suppose, we want to characterize some aspects of the arithmetic of integers
which results in the following set of axioms:

Example 2.1

Vx: x - x = 0 (1)

Vx: x - 0 = x (2)

Vx: x + 0 = x (3)

Vx,y,z: x - (y + z) = (x - z) - y (4)
V:r,y,z: x+(y+z) = (x+y)+z (5)

Vx, y : x + y = y + x (6)
Vx,y,z: (x + y) - z = x + (y - z) (7)

The task is to prove Vx,y,z: (x + z) - (y + z) = x - y. By negating and
skolemizing we obtain the goal equation (a, b, c skolem constants) :

...., (a + c) - (b + c) = a - b (8)

In a first step we compare the constants of both sides of the goal equation.
Since c occurs only on the left-hand side we have (definitely) to apply an
equation which removes c in order to transform the left-hand side to the
right-hand side. The only way to remove c from the left-hand side of the
goal equation is to use equation (1) from left to right on the left-hand side.
In a second step we try to enable the use of this selected equation (1). Hence,
we look for the syntactical differences between the terms (a + c) - (b + c)
and :r - ;(: and try to minimize these differences. For this purpose we use
t he notions of difference unification and difference matching [BW92]. In

3

contrast to [BW92] we restrict. difference unification to solutions which do
not shade any non-variable symbol of the equation to be applied. I.e. we
obtain an instance of the left-hand side of the equation if we remove the
shaded expressions inside the term to be manipulated.
Using this kind of difference unification we shade the syntactical differences
between (a +c) - (b +c) and x - x and obtain the following coloured version
of the left-hand side of the goal equation:

(9)

In a next step we use rippling techniques in order to move the shaded areas
outside of all white expressions without changing the white expressions.
Using a coloured version of equation (7) results in

(10)

Applying equation (4) we obtain

(11)

Now equation (1) is applicable

a+(O-b) (12)

and we succeeded in removing c from the term (a + c) - (b + c).

Next, the same process is started recursively. Again, we compare the con

stants of a + (0 - b) and a - b and determine 0 to be removed.

Candidates for doing this are equations (1), (2), (3). Now we use heuristics

to select an appropriate equation. Equation (1) would introduce the sub

term x - x which is unifiable with the term c - c of term (11) (which we

just removed) so we won't select equation (1). Difference unification (wrt.

our restriction above) of a + (0 - b) and x - 0 (equation 2) fails, so we use

equation (3) and get via difference unification the shaded term

(a + (13)

Rippling proposes equation (7) and we obtain

!~'(a + (14)

which enables the use of equation (3). Finally, we obtain the new goal

equation ..., a - b = a - b and thus, the theorem is proved.

Sl)mming up the previous example, we controlled the proveI' by :

4

3

•	 selecting appropriate bridge lemmata by syntactical properties of the
goal equation (in combination with heuristics), determining the direc
tion in which the equation has to be applied and determining one term
of the two terms of the goal equation (which has to be manipulated
to enable the application of the bridge lemma)

•	 determining the syntactical differences of the term (which we have to
manipulate to enable the selected equation) and the "left" side of the
equation to be applied,

•	 enabling the application of the equation by rippling techniques con
trolled by the syntactical differences determined by the previous step.

Formal Definitions

As seen in the previous example we are interested in attributes of terms
which allow us to determine so-called bridge lemmas, i.e lemmas which
have to be used during the proof. In general, an attribute is a function
w on terms which satisfy special requirements. In order to refute the goal
equation"'" S = t we have to use equations in the set of axioms to manipulate
the goal until we obtain a formula...., r = r. Now suppose, w(s) :f: w(t) holds.
Thus, there must be a paramodulation step which changes the value of the
left or right side of our goal since obviously w(r) = w(r) holds. We are
interested in that deduction step (and the used equation) which coincides
the w-values of both sides. With the help of the special requirements of the
so-called attribute function w we will be able to trace back this dedicated
step to the use of an equation q = r with w(q) :f: w(r) which we call an
w-changing equation. We call an equation which is not w-changing an w
invariant equation and extend this notion to negated equations.
We use attribute functions in terms of a resolution calculus with paramodu
lation. In order to prove an equation it is negated and skolemized. We call
this resulting negated equation"'" S = t the goal equation. We assume in
the following that the goal equation is ground (i.e. there are no existentially
quantified variables in the theorem).
We now give a formal definition of the special requirements mentioned
above. They ensure that (if the goal equation is w-changing) at least one
w-changillg equation has to be applied.

'vVe have to guarantee tha.t the application of an w-invariant equation to

•	 an w-invariant equation results in an w-invariant equation,

•	 the goal equation (or an antecedent of it) leads to an w-changing
equation.

Using an equation q = r we have to instantiate it by a substitution 0".
Hence, using an w-invariant equation we have to ensure that O"(q) = 0"(1') is
w-invariant too. Precisely, we define:

Definition 3.1 Let W be a set.
A function w : T(~, V) -+ W is substitution-stable iff
for all s, t E T(~, V) and for all substitutions 0" :

w(s) = w(t) implies w(O"(s)) = w(O"(t)).

Using an w-invariant equation q = l' we replace a subterm O"(q) of the goal
by a term O"(r). Thus, we also demand that replacing a subterm by a term
with same w-value does not change the w-value of the whole term:

Definition 3.2 Let W be a set.
A junction w : T(~, V) -+ W is subterm-stable iff

for all q, 1', t E T(~, V) : w(q)=w(r) and tl1r=q implies w(t)=,,-,(t[1r f- 1']).

Both, substitution-stability and subterm-stability form the requirements of
attribute functions:

Definition 3.3 A substitution-stable and subterm-stable function is called
an attribute function.

The next lemma states the soundness of our defined requirements, i.e. pa
ramodulation of an w-invariant goal equation with an w-invariant equation
results again in an w-invariant (negated) equation.

Lemma 3.1 Let w be an attribute function and q=r, -, s=t be w-invariant.
If 0" is a unifier' of sl1r and q then -, O"(s)[1r f- 0"(1')] = O"(t) is again w
invariant.

6

Proof 3.2 Sincew is substitution-stable also a(q) = a(1') and...., a(s) = a(i)

are w-invariant.

Thus, w(a(s)[7I" +- a(1')]) = w(a(s)[7I" +- a(q)]) = w(a(s)) = w(a(i)) 0

The next lemma states the completeness of the requirements, i.e. we have

to apply at least one w-changing equation. Here we have to assume that the

(goal) equation we want to manipulate and all its instances are w-changing.

Assuming the goal equation to be ground this holds trivially if the goal

equation is w-changing. But we could not guarantee that free variables

are not introduced during the proof into the goal equation. So we prove

that applying an w-invariant equation to an equation which is w-changing

(independent of the applied substitution) leads to an equation which is w

changing for all substitutions too.

Lemma 3.3 Letw be an at't1'ibutefunction, q=1' w-inva1'iant and a(s)=a(i)

be w-changing fm' all substitutions a. If p is a unifie1' of s 171" and q then

tp(p(s[7I" +- 1'])) = tp(p(t)) is w-changing for all substitutions tp.

Proof 3.4 Let tp be an arbitrary substitution.

First we note that tp(p(s)) = tp(p(i)) is w-changing.

\Vith the substitution-stability of w we get: w(tp(p(q))) = w(tp(p(1'))).

So we get w(tp(p(s))) = w(tp(p(s[7I" +- q]))) = w(tp(p(S)) [71" +- tp(p(q))]) =

= w(tp(p(s))[7I" +- tp(p(1'))]) (because of the subterm-stability)

= w(tp(p(s[7I" +- r]))). 0

4 Examples of Attribute Functions

In this section we first give examples of attribute functions and then, we
show how to use attribute function.s to guide equational theorem proofs.

4.1	 Attribute functions based on symbol disagree
ment

As seen in the proof of the example in section 2 an obvious idea to get
appropriate properties to guide the proof of an goal equation is to examine
the "symbol differences" of its both sides (which we call symbol disagre
ement). Let us illustrate this idea by another

7

Example 4.1 ([PeI86]' No. 64) Given the axioms

\Ix: 0 + x = x (15)

\Ix : (-x) + x = 0 (16)

\Ix, y, z : (x + y) + z = x + (y + z) (17)

we have to refute (c, bare skolem constants) :

(18)

Goal equation (19)

Comparing the symbols of both sides of (19) we have to remove band c
on the left side in order to equalize them. Obviously we have to apply
(18) or (16) because these are the only equations which are able to delete
occurrences of b or c.
The question arises how to characterize these symbol disagreement with the
help of attribute functions.
The idea is to colied all symbols of a term as a multiset and to characterize
equations by comparing the symbol multisets of the two terms. Obviously W

would not fulfill the restriction of being substitutiori-stable if we only collect
those symbols in which the goal terms differ. Therefore, we have to extend
the definition of w by the collection of variables.
First, we need a notion for the symbol disagreement of the goal terms.

Definition 4.1
Let ~(t) be the multiset of all symbols (incl. variables) occurring in the
term t. Then, the symbol disagreement \[1 of two terms sand t is defined by

\[1(s,t) = (~(s)\~(t)) U (~(t)\~(s)).

U and \ denote the multiset union and difference.

Let....., s = t be a goal equation. Based on the notion of symbol disagreement
we use a subset M c \[1(s, t) to construct an attribute function w.

Definition 4.2 Attribute function WM
Let AI be a' multiset, W be the set of all multisets over I: U V and v E

7(2:" V). The function WM : 7(I:, V) --+ W is defined by
WM(V)={X E ~(v)lthere is a substitutio,,! a and y E M such that a(x)=a(y)}

8

Assume the goal equation"'" s = t is ground. Then the sets ~(s) and ~(t)

are ground too. Thus, the set WM(V) (for nonempty M) is the muItiset of
all constant symbols of 'V occurring in M and of all variables of 'V.

Note that the function WM is independent of M being a multiset or a set,
i.e. we get the same WM for M = {a,a} and M = {a}.

Lemma 4.1 Let ll,f be non-empty. Then WM is an attribute function.

Proof 4.2 Let s, t E T(L:, V), WM(S) = WM(t).

First we note that WM(S) = WM(t) implies that the muItiset V(s) of all

variables of S is equal to the multiset V(t). This makes the substitution

stability obvious.

Let U E T(L:, V) and uI7r = s. We show the subterm-stability by induction.

If 7r = ,\ we have U= sand WM(U) = WM(S) = WM(t) = WM(U['\ f- t)).

If 7r = i.7r' and U = J(t}, ... , tn) we have WM(U) = wM(u[i.7r' f- sD =

WM(J) U WM(t1) U ... U WM(t i- 1) U wM(td7r' f- sD U WM(ti+d U ... U WM(tn)

(where WM denotes the canonical extension of WM to L:).

By the induction hypothesis we have WM(ti[7r' f- sD = WM(ti[7r' f- t]) which

completes the proof. 0

Another attribute function wAft can be defined similar to WM by defining W

using set instead of multiset. To distinguish both versions we denote WM by

WlIyet if Wis defined wrt. multisets.

Definition 4.3
Let ~ set (t) be the set of all symbols of the term t. Then the symbol disagre
ement wset of two terms sand t is defined by

wset(s, t) = (~set(s)\~set(t)) U (~set(t)\~set(s)).

U and \ denote the set union and difference.

The definition of WA,'[t is similar to Definition 4.2. The proof of wMt being
an attribute function is analogue to the proof for WM on multisets.
Note that an equation which changes the wMt-value of a term changes the
wM-value of the term (wrt. a fixed set M) too:

9

4.2 Attribute functions based on relative positions

Both kinds of attribute functions above are based on the comparison of the
(multi-)sets of the symbols of the terms sand t of the goal equation -, s = t.
Because of the property of being attribute functions we can use these criteria
to determine a set of equations where one of these has to be applied at least
once during the proof. But this only works if the symbol disagreement of
the goal terms is non-empty. For instance, in case of the proof of

Example 4.2 ([Pel86]' No.65)

'ix: 0 + x = x (20)

'ix: x + 0 = x (21)

'ix: (-x) + x = 0 (22)

'ix, y, z : (x + y) + z = x + (y + z) (23)

'ix, y, z : x + x = 0 (24)

negated theorem (c, bare skolem constants) :

-,b+c=c+b Goal equation (25)

could not be guided by the attribute functions above because 'lJmset(b+c, c+
b) and 'lJset(b + c, c + b) are empty.
How can we characterize (using an attribute function) what should happen
during the proof? In the example above it is obvious that the relative
position of band c change. So we look at the leaves of the (term) tree and
keep one of the skolem constants fixed, for instance c. Now we see that we
have to apply an equation which removes b on the left-hand side of c.

In the following we will formalize the idea described above. First we define
a function which collects all symbols of the term as a list (we have to save
the relative posi tions of the symbols). Let • denote the concatenation of
lists.

.
Definition 4.4 Symbol collecting function IT
Let t be a term, Then IT(t) is defined as :

fI(t) = {[tLif t E V U ~
[f] • II(td • ...• II(tnL ift = f(t}, ... , tn)

10

Now we define the function which collects all symbols "to the left" of a
given symbol. Because we are not interested in all symbols of the list I1(t)
(in fact we are only interested in one symbol to be removed, in the example
above b wrt. the fixed symbol c) we define the function with respect to a
given set of "interesting" symbols. The fixed symbol will be denotated by
f3 (E .E), the set of "interesting" symbols by W (c .E).
We define the symbol selecting function on lists of symbols (i.e. on (.EUV)*).

Definition 4.5 Symbol selecting function cl> cl>w,,6 is defined by :

cl> W,,6 ([]) []

[t]. cl>w,,6(T) if t # (3 and t E W U V,

<Pw,,6([tJ • T) = [t] if t = (3,

{

cl>w,,6(T) else.

The w-funetion based on the functions defined above is the combination of
cl>w,,6 and IT.

Definition 4.6 Attribute function WW,,6
Let (3 be a symbol (E .E) and Wc.E. The attribute function WW,,6 is defined
by : WW,,6(t) = cl>w,,6(IT(t))

For the proof of WW,,6 being p,n attribute function we need some technical

lemmata.

Given a substitution a on terms we need for technical reasons the correspon

ding equivalent substitution a on lists, i.e. the substitution which replaces

a variable x in a list by IT(O'(x)). Note that for every substitution a and

every term s it holds: 7f(IT(s)) = IT(O'(s)).

a : t O'(t)

1n 1n
a:IT(t)-- IT(O'(t))

Proof 4.4 We prove the assertion by induction on L1 .

For the empty list L1 = [J it holds (3 rf. L1 and cl>w,,6(Ld - [J. With

[J • L2 = L2 the assertion follows.

11

So we have to prove the assertion for L1 = [a] e L assuming the statement

is valid for L1 = L.

Case 1 : a = (3: Then <I>w,{J([a] e L e L2) = [a] = <I>w,{J([a] e L).

Case 2: a =f:. (3 and a E W or a E V: <I>w,{J([a]eLeL2) = [a]e<I>w,{J(LeL 2).

So we could apply the induction hypothesis.

If (3 E L (which implies (3 E [a] e L) we get [a] e <I> W,,6 (L e L 2) = [a] e <I>w,,6(L).

If (3 et L (which implies (3 et [a] e L) we achieve [a] e <I>w,{J(L e L 2) =

= [a] e <I>w,{J(L) • <I>w,{J(L2) = <I>w,{J([a]. L) e <I>w,{J(L2).

Case 3 : a =f:. (3, a et 1-V and a et V: Because of <I>w,{J([a] e L e L 2) =
<I>w,{J(L e L 2) the assertion trivially holds. D

The next lemma states that <I>w,{J is idempotent.

Lemma 4.5 For all L E (~ U V)* it holds: <I>w,{J(<I>w,{J(L)) = <I>w,{J(L).

Proof 4.6 The proof is done similar to the proof of Lemma 4.3 by induction
on the length of the list. D

Proof 4.8 Using Lemmata 4.3 and 4.5 the proof is trivial. D

Lemma 4.9 For all L E (~ U V)* and all substitutions a :
<I>w,{J(a(<I>w,{J(L))) = <I>w,{J(a(L)).

Proof 4.10

\Ve prove Lemma 4.9 by induction on the length of the list L.

For the empty list [] holds <I>w,{J(a(<I>w,{J([]))) = <I>w,{J(a([])) = [].

Thus we have to prove the assertion for [a] • L assuming it is valid for L.

Case 1 : a = (3: Then <I>w,{J([a] e L) = [a]. Since (3 is not a variable it

holds a(a) = a. Thus the assertion is valid.

Case 2 : a=f:.(3 and a E W: Then <I>w,{J([a]eL) = [a] e <I>w,{J(L). Thus we get

<I>w,{J(a(<I>w,{J([a] e L)))=<I>w,{J(a([a] e <I>w,,6(L)))

= <I>w,{J([a] e a(<I>w,{J(L))) = [a] e <I>w,{J(a(<I>w,{J(L)))

= [a] e <I>w,{J(a(L)) (by the induction hypothesis)

= <I>w,e([a] e a(L)) = <I>w,{J(a([a]. L)).

Case 3 : a =f:. (3, a et TV and a et V: Because of <I>w,{J([a] e L) = <I>w,{J(L)

and a(a) = a the assertion trivially holds.

Case 4 : a =f:. (3, a et W, a E V:

12

<PW,o(O'(<PW,i3 ([a] e L))) = <Pw,O(O'([a] e <Pw,,6(L))) = <Pw,,6 (O'([a]) e 0'(<Pw,,6(L)))
= <Pw,,6(O'([a]) e <Pw,,6(O'(<pw,,6(L)))) (Lemma 4.7)
= <Pw,,6(O'([aJ) e <Pw,,6(O'(L))) (induction hypothesis)
= <I>w,,6(O'([aJ) e O'(L)) (Lemma 4.7)
= <Pw,,e(O'([a] e L)) 0

For the proof of the subterm-stability we need the property that replacing
the subterm of a term t at position, by s is compatible with II in the
following sense :

Lemma 4.11
For all t,.5 E T('L" V), L1 , L2 E ('L, U V)* and subterm positions,
3L1 ,L2 E (~UV)*: II(t) = L1 eII(tl,)eL2 andII(t[, t- v]) = L1 eII(v)eL2

Proof 4.12 Proof by induction on the subterm position. o

Using the lemmata we prove Theorem 4.1.

Theorem 4.1
The function WW,,e is an attribute function,
i. e. wW,,e is substitution-stable and subterm-stable.

Proof 4.13

First we prove the substitution-stability of WW,,e.

Assuming ww,,e(s) = WW,i3(t) we have

ww,,e(O"(s)) = <Pw,i3(II(O"(s))) = <Pw,i3(O'(II(s))) (becauseofII(O"(s))=O'(II(s)))

= <I>w,i3(O'(<Pw,i3(II(s)))) (Lemma 4.9)

= <Pw,i3(O'(ww,o(s))) = <Pw,i3(O'(ww,i3(t)))

= <Pw,i3(O'(<Pw,i3(II(t)))) = <pw,o(O'(II(t))) (Lemma 4.9)

= <P W,;3 (II(0" (t))) = Ww,o (0" (t)).

For the proof of the subterm-stability we assume tif = u and ww,o(u) =
wW,;3(v). Then there exist L1 and L2 (Lemma 4.11) such that
ww,o(t) = <Pw,o(II(t)) = <Pw,o(L1 e II(tif) e L2) = <Pw,o(L1 e II(u). L2)

and
wW,i3(tb t- vJ) = <Pw,o(II(tb t- vJ)) = <Pw,o(L1 e II(v). L2) •

From WW,i3(u) = ww,,e(v) it follows that f3 E II(u) if and only if f3 E II(v).
With Lemma 4.3 we achieve <Pw,,e(L1 e II(u) .L2)=<pw,,e(L1 • II(v) e L2). 0

13

Let us return to the example No.65 of [PeI86] of proving

-,b+c=c+b

We use the attribute function Ww,p with W = {b} and f3 = c. The goal
equation is W{b},c-changing (W{b},c(b+c) = [b, cl, W{b},c(c+b) = [cD. Searching
for equations which might be able to equalize the ww,p-value of both sides we
obtain equations (22) and (24) as W{b},c-changing equations. The first goal
to remove b in front of c in the left-hand term of (25) fails since difference
unification and rippling cannot enable the use of both equations (22) and
(24). Hence, we try to generate b to the left of c in the right-hand term of
the goal equation (25). Since W{b},c-changing equations are (of course) the
only equations which are able to generate b to the left of c we have to apply
either (22) or (24) from right to left. Both equations (and one of those has
to be applied during the proof 1) are not applicable since 0 does not occur
in the right-hand side of the goal equation. Using the same techniques as
before we solve this problem with the help of the W{O},c attribute function.
Equations (20), (21), (22) and (24) are W{o},c-changing. Since we want to
enable the use of (22) or (24) only (20) or (21) remains as possible equations.
We use (20) to insert 0 in front of c (because it is directly applicable and
inserts 0 to the left of c). Without further manipulation (20) is applicable
to the goal equation and we obtain:

-, b+ c = (0 + c) +b (26)

Vve return to the initial task of using equation (22) or (24) which both are
now applicable. We choose equation (24) in favour of (22) because otherwise
a new symbol - would be introduced:

-, b+c= ((x+x)+c)+b (27)

The crucial point is now to find the right instantiation of x. The attribute
function W{b},c suggests to instantiate x such that W{b},c(((x +x) +c) + b) =
[b, c]. Hence, x is replaced by the goal term b+ e which results in:

-, b+ c = (((b + c) + (b + c)) + c) + b (28)

At this point the W{b},c-values of both sides coincide and difference unfica
tion identifies the left-hand side of the goal equation inside the right-hand

14

side. Thus, the rest of the proof is done by rippling eliminating the shaded
expressions in the coloured goal equation above:

(29)

which finally results in the trivial goal equation.
-,b+c=b+c (30)

4.3 Strategies Using Attribute Functions

In the previous sections we introduced the notion of attribute functions and
gave two examples of attribute functions to characterize "differences" of
terms. The question arises how do we use the information obtained by an
attribute function to guide a proof.

Looking for a bridge lemma The main application of an attribute
function W is to get an idea which equations have to be used during the
proof. Given a goal equation --, s = t we look for an appropriate attribute
function W such that -, s = t is w-changing. In order to refute -, S = t we
have to deduce -, r = r which is w-invariant. Thus, some application of
an equation has to change the goal equa.tion from an w-changing into an w
invariant equation. Due to section 3 this can only be done by the application
of w-changing equations. Hence, all w-changing equations are potentially
interesting equations. In order to reduce the search space we prefer those
attribute functions with minimal number of w-changing equations. Thus,
the more attribute functions the prover knows the better the system will
be:
Using WMset we can vary over M. Besides the given (class of) attribute
functions wM

set there are other attribute functions, for instance by defining
wMset not as a multiset but as a set (wMt).
The set of all wMset-changing equations behaves monotonic wrt. M, i.e.
adding symbols to a set M results in at least the set of wMset-changing
equations. Thus, using the attribute function WMset we consider wMset for
alllv! which contain exactly one constant of wmset(s, t). If there is an wMset

with exactly one wMset-changing equation q = r we choose this wM
set and

try to prove the goal equation by forcing the application of q = r.

15

The monotonicity Wl't. AI holds for WMt too.
Note that any equation which changes the wMt-value of a term is wMset_
changing (wrt. a fixed set M) too. So we will look for wMt-changing equa
tions first.
The attribute functions WW,,8 are suitable in cases where each symbol of
the left-hand side occurs also on the right-hand side and vice versa. These
attribute functions consider the relative position of symbols with respect to
some fixed symbol.
In general attribute functions determine only sets of w-changing equations
and the question arises which of these equations should be used as a bridge
lemma. Choosing M = {b} in the example of section 4.1 suggests both
equations (16) and (18) as bridge lemmas. We use q,dditional heuristics to
reduce the number of possible bridge lemmata. E.g. a well-known (SOS)
heuristic is to prefer equations which are part of the theorem if they are w

changing. Another heuristic is to classify the equations by a set of attribute
functions wand to select that equation which is w-changing wrt. the largest
set of attribute functions w. In the example of section 4.1 this forces the
application of (18).
If some measure (» for the change of the w-value of a term (resulting
from the application of an equation) is available a third heuristic selects
the "maximal" (wrt. to the measure) equation. An appropriate measure
for q = r (wrt. to the attribute function wMset) is the cardinality of the
multiset difference of wA'/et (q) and wMset (r).
We may also use the measure > to determine the direction in which the
selected equation q = r has to be applied. E.g. if w(s) > w(t) and w(q) >
w(r) we have to apply q = r from left to right on s to decrease the w-value
of s. In order to prove (19) by (18) the equation (18) has to be applied from
left to right to the term c + b.

Enabling the use of a bridge lemma Let -, s = t be the goal equation.
Once, we have selected an equation q = r as a bridge lemma and suppose
we have to apply the equation from left to right on the left-hand side s
of the goal-equation we have to find an appropriate subterm of s which
is unifiable with q. In general, we have to manipulate s with the help of
given equations before we are able to find such a subterm such that the
bridge lemma is applicable. In order to overcome this problem we use

16

5

difference unification between q and the given goal term s to determine
both, an appropriate subterm of the goal equation and those parts of this
subterm which prohibit the application of q = r. With the help of rippling
techniques we try to eliminate these parts in order to enable the use of the
bridge lemma. In doing so we are able to use all the sophisticated heuristics
which have been developed in the context of induction proofs to enable
the use of an induction hypothesis. Furthermore, if rippling gets stuck we
can unblock the situation by recursively initiating the presented difference
reduction technique.
Another heuristic suggests to use attribute functions to manipulate the goal
equation by w-invariant equations. Especially if we succeeded in removing
an w-difference between two terms we forbid the application of w-changing
equations. Suppose, given a goal equation with w(s) i- w(t) we have found
a proof of s = s' where w(s') = wet) holds. Then, we forbid the use of
w-changing equations while proving s' = t.

A Proof of SAM's Lemma

We will illustrate our approach by the well-known example of SAM's lemma
[GOBS69] which is still a challenge equality problem [McC88] although it
has already been solved by some resolution provers (e.g. [BBB+84]) without
paramodulation some years ago.
Given two associative, commutative, and idempotent functions f and 9 and
additionally, the following set of axioms:

Vx,y:f(x,g(x,y)) = x (31) vx, y : 9(x, f (x, y)) = x (34)

Vx : f(O, x) = 0 (32) Vx : f (1, x) = x (35)
Vx : g(O, x) = x (33) Vx: g(l,x) = 1 (36)

Vx,y,z: f(x,z) = x --t f(g(x,y),z) = g(x,f(y,z)) (37)

the task is to refute the following formula:

f(b,f(c, d)) = 0 Premise 1 (38)
f(a,g(c,d)) = 0 Premise 2 (39)

-'f(g(a,f(b,c)),g(a,f(b,d))) = a Goal equation (40)

17

where a, b, c, dare skolem. constants.
As mentioned before the first step in proof planning is to look for bridge
lemmata which have to be used. Comparing the occurring symbols of both
sides of the conclusion we note that we have to manipulat~the left-hand side
in order to delete the occurrences of e.g. b, c, and d since they do not occur
on the right-hand side. Using for instance the attribute function W{b~c,d} we
obtain (31), (34), (32), (36), and both premises as possible bridge lemmata.
Heuristics suggest to use in the first place equations of the theorem which
results in the premises as interesting equations.
The next step is to enable the use of one of the premises in the conclu
sion. Since the symbols b, c, and d have to be removed the premises have
to be applied from left to right. Neither of both premises is applicable
without manipulating the conclusion. In order to guide this transformation
we determine the syntactical differences between the left-hand sides of the
premises and the left-hand side of the conclusion with the help of difference
unification.
Comparing the left-hand side of (39) with the goal equation gives no hint
how to apply it while the left-hand side of (38) difference-unifies (under
ACI) against the left-hand side of (40). Hence, we try to enable its use with
the help of rippling. Shading the syntactical differences between both terms
we obtain the following coloured version of the goal equation:

-'f(II~liU(b, c)~I, IIIU(b, d)l) = a (41)

In a next step we have to move the shaded expressions of the conclu
sion outside without changing the white expressions. Once, the white
expressions will come together the manipulated conclusion has the form
~i~i~!f(J(b, c), f(b, d) and the second premise is applicable. Hence, we look
for a context-moving equation which is able to move the shaded expressions
outside. We obtain the following conditional C-equation of (37):

Vx,y,z: f(x,z) = x -+ f(II~ll;y~l,z) = Illilf(y,z)~1

Using this equation we are able to manipulate (41) to

(42)

since the instantiated condition of (37) f(a, g(a, f(b, d))) = a holds trivially
due to axiom (31). It remains the problem to move the second shaded area

18

outside. Again, the left-hand side of the conditional equation matches the
appropriate subterm under the given theory but in this case the proveI' fails
to establish the instantiated condition f(a,f(b,c)) = a which now prevents
the use of the equation. Also, no context-deleting C-equation is applicable
and the rippling process gets stuck.
In order to get the process back on its feet we have to manipulate the
obstructing shaded expression of the conclusion to enable the use of appro
priate C-equations. Selecting, for instance, the context-deleting C-equation

in order to delete the shaded expression of (42), we have to prove

Again we use attribute functions to guide this subproof. Comparing the
occurring symbols of both sides we have to eliminate 0 in favour of a, i.e. we
use w{g}. Using the heuristic to prefer the premises we use f(a, g(c, d)) = 0
in order to delete the symbol 0 but also in order to involve the symbol a.
Thus, we have to prove that

g(a, f(f(b, c), g(J(a, g(c, d)), f(b, d)))) = g(a, f(f(b, c), g(a, f(b, d))))

which is solved again using rippling: We have to delete the shaded areas in

g(a, f(f(b, c), f(b,d))))

in order to obtain g(a,f(f(b,c),g(a,f(b,d)))). This is done with standard
rippling-techniques: First, the shaded area is moved up by (37) obtaining

and secondly, the shaded expression is deleted by the context-deleting C
equation of (31) which yields the wished term

g(a, f(J(b, c),g(a, f(b, d)))).

Hence, we have finished our subproof and return to the main problem of
enabling the use of the second premise in (42).

19

6

Using the result of our lemma we obtain

-'1;:~~1U(J(b,c), f(b, d))~1 = a

from (42) which already enables the use of the second premise. Applying it
we obtain the trivial task

-,g(a,O) = a

which can be again solved either directly with the help of difference, unifi

cation or by computing interesting equations with the help of W{g}. Both

result in the application of (33) which finishes the proof.

Summing up the previous example, combining rippling techniques and heu

ristics suggesting equations which are (likely) to be used during a proof

states a powerful approach to control equational reasoning.

Conclusion

We presented a methodology to guide equational reasoning in a goal directed
way. A bundle of attribute functions enable the prover to select appropriate
bridge lemmas. To enable their use the syntactical differences which pre
vents them from application are determined and minimized by techniques
of colouring terms and rippling. In cases the rippling process gets stuck
attribute functions are also used to unblock the process. Due to the goal
directed approach additional heuristics to guide equational reasoning can
easily be integrated into this method.
Until now this is only a first step towards a "theory" of equational reasoning
from a somewhat different point of view. The presented approach suggests
two tasks to do :

•	 A major goal is the definition of further attribute functions. The more
attribute functions the prover "knows" the better it can determine the
necessary bridge lemmas.

•	 A second task is to develop further techniques to enable the applica
tion of the selected lemmata.

20

References

[AA90]	 S. Anantharaman and N. Andrianarivelo. Heuristical criteria in
refutational theorem proving. In A. Miola, editor, Design and
Implementation of Symbolic Computation Systems: Proc. of the
International Symposium DISCO'90, pages 184-193. Springer,
Berlin, Heidelberg, 1990.

[BBB+84] Susanne Biundo, Karl Hans Blasius, Hans-Jiirgen Biirckert,
Norbert Eisinger, Alexander Herold, Thomas Kaufl, Christoph
Lingenfelder, Hans Jiirgen Ohlbach, Manfred Schmidt-SchauB,
Jorg H. Siekmann, and Christoph Walther. The Markgraf Karl
Refutation Procedure. SEKI-MEMO MK-84-01, Fachbereich In
formatik, Universitat Kaiserslautern, Postfach 3049, 6750 Kai
serslautern, Germany, Institut fiir Informatik I, Universitat Kar
lsruhe, Postfach 6380, 7500 Karlsruhe 1, Germany, 1984.

[BDP87]	 Leo Bachmair, Nachum Dershowitz, and David Plaisted. Com
pletion without failure. In H. Ait-Kaci and M. Nivat, editors,
Conference on Resolution of Equations in Algebraic Structures
(CREAS) , Lakaway, Texas, USA, 1987.

[BG90]	 Leo Bachmair and Harald Ganzinger. On restrictions of orde
red paramodulation with simplification. In Mark E. Stickel,
editor, Proceedings 10th International Conference on Automa
ted Deduction (CA DE), Lecture Notes in Artificial Intelligence
(LNAI) 449, pages 427-441, Kaiserslautern, Germany, July 1990.
Springer-Verlag, Berlin, Germany.

[Bla86]	 Karl Hans Blasius. Equality Reasoning Based on Graphs. PhD
thesis, Fachbereich Informatik, Universitat Kaiserslautern, Post
fach 3049, 6750 Kaiserslautern, Germany, 1986. Also published
as SEKI-Report SR-87-01, Fachbereich Informatik, Universitat
Kaiserslautern, Postfach 3049, 6750 Kaiserslautern, Germany.

[Bun88]	 Alan Bundy. The use of explicit plans to guide inductive proofs.
In Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings
gth Intenwtional Conference on Automated Deduction (CA DE),

21

Lecture Notes in Computer Science (LNCS) 310, pages 111-120,
Argonne, Illinois, USA, 1988. Springer-Verlag, Berlin, Germany.

[BW92] David Basin and Toby Walsh. Difference matching. In Dee
pak Kapur, editor, Proceedings 11th International Conference on
Automated Deduction (CA DE) , Lecture Notes in Artificial Intel
ligence (LNAI) 607, pages 295-309, Saratoga Springs, New York,
USA, June 1992. Springer-Verlag, Berlin, Germany.

[Den91] Jorg Denzinger. Distributed knowledge-based deduction using
the team work method. SEKI-Report SR-91-12, Fachbereich In
formatik, Universitat Kaiserslautern, Postfach 3049, 6750 Kai
serslautern, Germany, 1991.

[Dig79] Vincent J. Digricoli. Resolution by unification and equality. In
William H. Joyner, editor, Proceedings 4th Workshop on Auto
mated Deduction, pages 43-52, Austin, USA, February 1979.

[GOBS69]	 J. Guard, F. Oglesby, J. Bennett, and L. Settle. Semi-automated
mathematics. Journal of the Association for Computing Machi-:
nery (A CM), A CM, Inc., 1133 Avenue of the Americas, New
York 10036, USA, 16:49-62, 1969.

[Hut90]	 Dieter Hutter. Guiding induction proofs. In Mark E. Stickel,
editor, Pmceedings 10th International Conference on Automa
ted Deduction (CA DE), Lecture Notes in Artificial Intelligence
(LNAI) 449, pages 147-161, Kaiserslautern, Germany, July 1990.
Springer-Verlag, Berlin, Germany.

[KB70]	 DonaJd E. Knuth and Peter B. Bendix. Simple word problems in
universal algebras. In J. Leech, editor, Computational Problems
in Abstract Algebra, pages 263-297. Pergamon Press, 1970.

[McC88]	 William McCune. Challenge equality problems in lattice theory.
In Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings
gth International Conference on Automated Deduction (CA DE) ,
Lecture Notes in Computer Science (LNCS) 310, pages 704-709,
Argonne, Illinois, USA, 1988. Springer-Verlag, Berlin, Germany.

22

[NSS59]	 Allen Newell, J. C. Shaw, and Herbert A. Simon. Report on a
general problem-solving program. In Proceedings of the Inter
national Conference on Information Processing, pages 256-264.
UNESCO, Paris, June 1959.

[Pe186]	 Francis Jeffry Pelletier. Seventy-five problems for testing auto
matic theorem provers. Journal of Automated Reasoning (JAR))
Kluwer Academic Publishers) 3300 AH Dordrecht) The Nether
lands, 2:191-216, 1986.

[SA92]	 Rolf Socher-Ambrosius. A goal oriented strategy based on com
pletion. Report MPI-I-92-206, Max-Planck-Institut fur Informa
tik, Im Stadtwald, 66123 Saarbriicken, Germany, February 1992.

[ZK88] Hantao Zhang and Deepak Kapur. First order theorem pro
ving using conditional rewrite rules. In Ewing L. Lusk and

. Ross A. Overbeek, editors, Proceedings gth International Confe
rence on Automated Deduction (CA DE)) Lecture Notes in Com
puter Science (LNCS) 310, pages 1-20, Argonne, Illinois, USA,
1988. Springer-Verlag, Berlin, Germany.

23

[NSS59]

[Pel86]

[SA92]

[ZK88]

Allen Newell, J. C. Shaw, and Herbert A . Simon. Report on a
general problem-solving program. In Proceedings of the Inter-
national Conference on Information Processing, pages 256-264.
UNESCO, Paris, June 1959.

Francis Jeffry Pelletier. Seventy-five problems for testing auto-
matic theorem provers. Journal of Automated Reasoning (JAR),
Kluwer Academic Publishers, 3300 AH Dordrecht, The Nether-
lands, 2:191-216, 1986.

Rolf Socher-Ambrosius. A goal oriented strategy based on com-
pletion. Report MPI-1-92-206, Max-Planck-Institut für Informa-
t ik , Im Stadtwald, 66123 Saarbriicken, Germany, February 1992.

Hantao Zhang and Deepak Kapur. First order theorem pro-
ving using conditional rewrite rules. In Ewing L. Lusk and

‘Ross A . Overbeek, editors, Proceedings F* International Confe-
rence on Automated Deduction (CADE), Lecture Notes in Com-
puter Science (LNCS) 310, pages 1-20, Argonne, Illinois, USA,
1988. Springer-Verlag, Berlin, Germany.

23

