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Abstract

Constructing an analogy between a known and already proven theorem
(the base case) and another yet to be proven theorem (the target case) often
amounts to finding the appropriate representation at which the base and the
target are similar. This is a well—known fact in mathematics, and it was cor—
roborated by our empirical study of a mathematical textbook, which showed
that a reformulation of the representation of a theorem and its proof is in-
deed more often than not a necessary prerequisite for an analogical inference.
Thus machine supported reformulation becomes an important component of
automated analogy-driven theorem proving too.

The reformulation component proposed in this paper is embedded into a
proof plan methodology based on methods and meta-methods, where the latter
are used to change and appropriately adapt the methods. A theorem and its
proof are both represented as a method and then reformulated by the set of
metamethods presented in this paper.

Our approach supports analogy-driven theorem proving at various levels of
abstraction and in principle makes it independent of the given and often acci—
dental representation of the given theorems. Different methods can represent
fully instantiated proofs, subproofs, or general proof methods, and hence our
approach also supports these three kinds of analogy respectively. By attaching
apprOpriate justifications to  meta-methods the analogical inference can often
be justified in the sense of Russell.

This paper presents a model of analogy~driven proof plan construction and
focuses on empirically extracted meta-methods. It classifies and formally de—
scribes these meta—methods and shows how to  use them for an appropriate
reformulation in automated analogy-driven theorem proving.

"This work was supported by a research scholarship of the Deutsche Forschungsgemeinschaft
(DFG)
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1 Introduction 

Automated theorem proving systems have attained a remarkable strength when it 
comes to pure deductive search. They are, however, still weak with respect to long 
range planning or any other such global search and control issues. Therefore methods 
and techniques have been suggested that more closely follow the reasoning patterns 
observed in humans, e.g., by AlIen Newell [26] and, more recently, by Alan Bundy [5], 
who proposed a framework for proof planning to improve the automation of theorem 
provmg. 

As evidenc~ for a mathematicians' strong reliance on proof planning we quote 
Gert Faltings, who discovered the seminal proof for Mordell's Conjecture: 

"Man hat Erfahrungen, dajJ bestimmte Schliisse unter bestimmten Voraussetzun
gen funktionieren. Als erstes iiberlegt man sich daher, wie der Weg aussehen kiinnte. 
Man iiberlegt sich also im Groben: Wenn ich das habe, kiinnte ich das zeigen und 
dann das niichste. Hinterher mujJ man die Details einfiigen und sieht, ob man es 
auch wirklich so machen kann. Es kommt aber auch durchaus vor, dajJ man mal do, 
sitzt, nicht mehr weiter weijJ und dann probiert, wohin der Weg fiihrt" [14]1. 

Another important problem solving strategy that can actually be combined with 
proof planning is the construction of proofs by analogy (see, e.g., Polya [28]), where 
the known proof of a theorem is often used to guide the proof of an unknown ana
logous theorem. Gert Faltings reported on his use of analogy during his discovery 
of the proof for Mordell's Conjecture [14] "Ich mujJ sagen, dajJ ein wesentlicher Teil 
des Beweises im Prinzip schon do, war, den ich nur entsprechend iibertragen habe"2. 

The human use of analogy in reasoning is commonplace, but ill-understood. In 
particular, the role and the use of reformulating the base and the target problem 
for the analogy formation have found little attention although Indurkhya [20] and 
Russell [29] established the importance of of reformulation in analogical reasoning in 
general. 

Within mathematics, however, it is well known that constructing an analogy often 
involves finding the right representation of the theorem, e.g., the right concepts or the 
right level of abstraction, such that the base and the target problem become similar. 
Thus, not surprisingly, our empirical study of a mathematical textbook [23] provided 
ample evidence that an appropriate reformulation of the theorem and its proof is 
often an important component of human theorem proving by analogy. Consequently, 
there is a need for a similar but machine supported technique in analogy-driven 
automated theorem proving that incorporates (heuristically justified) reformulations 

1translated: We know from experience that certain inferences are usually successful under certain 
prerequisites. So first we ponder about a reasonable way to proceed to prove the theorem. In other 
words, we roughly plan: If I would have got a certain result the next result would follow and then 
the next etc. Afterwards we have to fill in the details, and to check whether the plan really works. 
But of course, it may happen that you do not see anything and then there is no other way than 
trial and error. 

2translated: I should say that basically an important part of the proof was there already, and I 
only transferred this part appropriately. 
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1 Introduction

Automated theorem proving systems have attained a remarkable strength when i t
comes to pure deductive search. They are, however, still weak with respect to long
range planning or any other such global search and control issues. Therefore methods
and techniques have been suggested that more closely follow the reasoning patterns
observed in humans, e.  g., by Allen Newell [26] and, more recently, by Alan Bundy [5],
who proposed a framework for proof planning to improve the automation of theorem
proving.

As evidence for a mathematicians’ strong reliance on proof planning we quote
Gert Faltings, who discovered the seminal proof for Mordell’s Conjecture:

“Man hat Erfahrungen, daß bestimmte Schlüsse unter bestimmten Voraussetzun—
gen funktionieren. Als erstes überlegt man sich daher, wie der Weg aussehen könnte..
Man überlegt sich also im Graben: Wenn ich das habe, könnte ich das zeigen und
dann das nächste. Hinterher muß man die Details einfügen und sieht, ob man es
auch wirklich so machen kann. Es kommt aber auch durchaus vor, daß man mal da
sitzt, nicht mehr weiter weiß und dann probiert, wohin der Weg führt” [14]1.

Another important problem solving strategy that can actually be combined with
proof planning is the construction of proofs ,by analogy (see, e.g., Polya [28]), where
the known proof of a theorem is often used to guide the proof of an unknown ana-
logous theorem. Gert Faltings reported on his use of analogy during his discovery
of the proof for Mordell’s Conjecture [14] “Ich muß sagen, daß ein wesentlicher Teil
des Beweises im Prinzip schon da war, den ich nur entsprechend übertragen habe”.

The human use of analogy in reasoning is commonplace, but ill-understood. In
particular, the role and the use of reformulating the base and the target problem
for the analogy formation have found little attention although Indurkhya [20] and
Russell [29] established the importance of of reformulation in analogical reasoning in
general.

Within mathematics, however, it  is well known that constructing an analogy often
involves finding the right representation of the theorem, e. g., the right concepts or the
right level of abstraction, such that the base and the target problem become-similar.
Thus, not surprisingly, our empirical study of a mathematical textbook [23] provided
ample evidence that an appropriate reformulation of the theorem and its proof is
often an important component of human theorem proving by analogy. Consequently,
there is a need for a similar but machine supported technique in analogy-driven
automated theorem proving that incorporates (heuristically justified) reformulations

1translated:  We know from experience that certain inferences are usually successful under certain
prerequisites. So  first we ponder about a reasonable way to proceed to prove the theorem. In other
words, we roughly plan: If I would have got a certain result the next result would follow and then
the next etc. Afterwards we have to fill in the details, and to check whether the plan really works.
But of course, it may happen that you do not see anything and then there is no other way than
trial and error. .

2translated:  I should say that basically an important part of the proof was there already, and I
only transferred this part appropriately.
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of problems and proofs that go beyond the usual symbol mapping techniques of 
established approaches to analogy (see, e.g., [21, 25, 4, 27]. 

In this paper we develop a methodology that, in contrast to former approaches 
to theorem proving by analogy, considers two problems to be analogous if there 
exists a chain of justified reformulations of one problem into the other. Thus in 
principle we become independent of the actual and often accidental representation 
of the given theorems. In particular we shall show how the proof plan framework of 
Alan Bundy (see, e.g., [6]) and the use of reformulations support analogy-driven proof 
construction. This paper focuses mainly on the formal description of meta-methods 
that reformulate problems and proofs that are represented as methods. 

In the following chapter we develop a methodological framework for our approach 
to analogy-driven theorem proving. We then summarize briefly the state of the art 
of analogy in theorem proving and present a model for analogy-driven proof plan 
construction. The next section presents a set of meta-methods that were actually 
lIsed for the necessary reformulations in the analogy-driven construction of proofs in 
an empirical case study (23]. Some examples from a mathematical textbook "Halb
gruppen und Automaten" (13] (abbreviated as HUA) and an example of Terry Boy 
de la Tour and Christoph Kreitz are given in section five. More proofs by analogy 
are investigated and presented in detail in the case study [23]. 

Notions.and Notation 

We assume the reader to be familiar with plan-based problem-solving (see e.g., [8]) 
as well as the main notions of automated theorem proving (see e.g., (22]). 

Analogy-driven theorem proving as outlined below presupposes a proof planning 
process that constructs a proof plan out of a reformulated originally given proof. 
Hence, our framework is essentially based on the concepts of proof planning from 
[19] and [6] which are, however, modified. The basic concepts in this framework are 
problems, methods, and metamethods. 

Problems consist of a theorem and the assumptions the theorem follows from. In 
the following we shall refer to a proof o(a problem, which is to say that this is the 
proof of a theorem thm from the assumptions ass. Of course we could just write. 
(ass ~ thm) and treat this as a theorem to be shown, but it is often advantageous 
to handle the assumptions and the theorem separately such as in Natural Deduction. 
:Moreover not all assumptions are initially given in every-day mathematical theorem 
proving; quite to the contrary most axioms and definitions have to be added as we 
go along in the proof. In fact this is often the most difficult part of proving, namely 
to state and find the right assumptions. In our case this will happen in particular 
for the target problem, when not all relevant assumptions are initially given. 

The objective of the proof planning methodology is to find proofs for problems 
by planning. The result of this planning process is a tree of discrete proof chunks. 
Nlethods encode these chunks of proofs. They are similar to tactics in proof checking 
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of problems and proofs that go beyond the usual symbol mapping techniques of
established approaches to analogy (see, e.g., [21, 25, 4, 27].

In th i s  paper we develop a methodology that,  in contrast to former approaches
to theorem proving by analogy, considers two problems to be analogous if there
exists a chain of justified reformulations of one problem into the other. Thus in
principle we become independent of the actual and often accidental representation
of the given theorems. In particular we shall show how the proof plan framework of
Alan Bundy (see, e.g., [6]) and the use of reformulations support analogy-driven proof
construction. This paper focuses mainly on the formal description of meta-methods
that reformulate problems and proofs that are represented as methods.

In the following chapter we develop a. methodological framework for our approach
to analogy-driven theorem proving. We then summarize briefly the state of the art
of analogy in theorem proving and present a model for analogy-driven proof plan
construction. The next section presents a set of meta-methods that were actually
used for the necessary reformulations in the analogy-driven construction of proofs in
an empirical case study [23]. Some examples from a mathematical textbook “Halb—
gruppen und Automaten” [13] (abbreviated as HUA) and an example of Terry Boy
de la Tour and Christoph Kreitz are given in section five. More proofs by analogy
are investigated and presented in detail in the case study [23].

2 Not ions .and Notation

We assume the reader to be familiar with plan—based problem-solving (see e.g., [8])
as well as the main notions of automated theorem proving (see e.g., [22]).

Analogy-driven theorem proving as outlined below presupposes a proof planning
process that constructs a proof plan out of a reformulated originally given proof.-
Ilence, our framework is essentially based on the concepts of proof planning from
[19] and [6] which are, however, modified. The basic concepts in this framework are
problems, methods, arid metamethods.

Problems consist of a theorem and the assumptions the theorem follows from. In
the  following we shall refer to  a proof of a problem, which is to say that this lS the
proof of a theorem thm from the assumptions ass.  Of course we could just write _
(ass —-> ihm) and treat this as a theorem to be shown, but it is often advantageous
t o  handle the assumptions and the theorem separately such as in  Natural Deduction.
Moreover not all assumptions are initially given in every-day mathematical theorem
proving; quite to the contrary most axioms and definitions have to be added as we
go along in the proof. In fact this is often the most difficult part of proving, namely
t o  state and find the right assumptions. In our case this will happen in particular _
for the target problem, when not all relevant assumptions are initially given.

The objective of the proof planning methodology is to find proofs for problems
by planning. The result of this planning process is  a tree of discrete proof chu‘nks.
Methods encode these chunks of proofs. They are similar to tactics in‘ proof checking



systems as Nuprl [10]. Essentially they are situated between two extremes: As one 
extreme they may contain fully instantiated and complete proof schemas. The other 
extreme is that they encode an empty proof schema, i.e., they just consist of a plan 
line with the theorem to be proved. In between there. are those more interesting 
methods that meet the intuition of a proof idea rather than a full proof. 

Meta-methods are then applied to met~ods in order to reformulate them within 
the analogy-driven proof plan construction. 

More precisely let us take a sorted higher order language which is extended by 
metavariables for formulae and terms as our object language3 • In this paper Natural 
Deduction (ND) [16] is used as the proof calculus. Rules of this calculus are, for 
instance (-+ I), (V1), (1\1), and (-+ D) for the introduction of -4, V, 1\, and for the 
deletion of -+ respectively. 
~,E are used for a set of object language formulae. [XI, ... , xn ] denotes the list of 
elements Xl, ••• ,Xn , KB is the knowledge base containing axioms, definitions, and 
already proven theorems. We write </>1 = </>2 for formulae </>1, </>2 if they are equal 
up to a renaming of their free variables. Sort declarations are written as (symbol: 
sort), for instance, 3: nat or P: problem. </>[a/b] denotes the formula which results 
from replacing a by b in the formula </>. The methods that originate from a method 
M1 or M2 by some reformulation are denoted as Mh-methods or as M2*-methods 
respectively. . 

We say that the postconditions of a method M1 match the postconditions of a 
method M2, if ass(Md ~ ass(M2)U KB and concl(M1)=concl(M2). 

We now define the following notions: 

•	 A problem P is a pair that consists of a set of object language formulae, the 
assumptions ass, and of one object language formula, the conclusion thm. A 
problem is written as (ass; thm). 

•	 Methods play the role of plan operators , and they operate on proof trees the 
nodes of which are sets of problems. They are represented as frame-like data 
structures where the rows are slots, with slot name and slot filler that look like 
this: 

3Throughout this document sans serif font is used for problems and mathematical font is used for 
object level terms and formulae; typevriter font indicates metavariables for object level symbols, 
formulae, and terms and for names of meta-methods. CAPITALIZED font is used for methods 
except for those methods that have numerical names. PLAN, with and without an index, denotes 
variables for methods and roman text indicates metalanguage stuff. 
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systems as Nuprl [10]. Essentially they are situated between two extremes: As one
extreme they may contain fully instantiated and complete proof schemas. The other
extreme is that they encode an empty proof schema, i.e., they just consist of a plan
line with the theorem to be proved. In between there are those more interesting
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metavariables for formulae and terms as our object languages. In this paper Natural
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Method: Name 

parameter 

of the method 

pre 

post 

det-cont 

procedure 

history 

- The parameter slot contains all free variables4 that occur elsewhere in this 
method, their instantiation yields a instantiated method. 

- Preconditions are sets of problems and postconditions are problems (with 
the parameters as the only free variables). 
For a method M, ass(M) (the assumptions of M) and concl(M) (the 
conclusion of M) denote the first and the second entry of post(M). M 
is called a method for a problem (and vice versa, P a problem of M), if 

\ 

post(M)=P. 

- dec-cont contains a proof schema that consists of proof lines which are 
represented as 
f(labek asSi r condi (METHODi lil ... lim». 
label, is the name of the line. (assi; concli) is a problem called the ,core 
problem, corei, where assi is a set of object level formulae and concli is an 
object level formula with the parameters of M as the only free variables. 
l'l, ... ,lim are the labels of lines, called support lines, to the cores of 
which METHODi is applied. This application should yield the problem 
(assi; concli ). 

dec-cont(M) can also contain so-called LEMMA-lines the cores of which 
are elements of pre(M), and METHODi = LEMMA. 

- procedure provides a program by interpreting dec-cont (see [19] for further 
details). (For correct methods, this program yields as output the post
condition when the preconditions were input.) In [5] methods contain this 
program itself. Here and in [19] the declarative description and its inter
preter are separated, such that one can reason about and reformulate the 
declarative content without having to change the interpreting procedure. 

- History contains a trace of changes by certain meta-methods. 

Since the dec-cont of a method may contain names of methods, they are to be 
defined recursively. 

4for functions, relations, formulae, and terms 
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Method:  Name of  the  method

parameter parameters which can be instantiated
preconditions that—Have to be true for the method to be
applicable
postconditions tlfit are fillfilled after the method apflica—
tion, eg ,  a derived problem

pre

post

deck-cont ' a declarative proof schema
a schema-interpreting procedure fl1at caITbe applied to dec-procedure
cont

' contains a trace of certain changes of the method done
history before for theJurpose of their revision

- The parameter slot contains all free variables4 that occur elsewhere in this
method, their instantiation yields a instantiated method.

-- Preconditions are sets of problems and postconditions are problems (with
the parameters as the only free variables).
For a method M, ass(M) (the assumptions of M) and concl(M) (the
conclusion of M) denote the first and the second entry of post(M). M
is called a method for a problem (and vice versa, P a problem of M), if
post(M).—1.P.

— dec—cont contains a proof schema that consists of proof lines which are
{represented as
(labelg. ass.- I— conch (METHOD; 1.1.. ‚l.-m)).
label; is the name of the line. (assi; conch) is a problem called the .core
problem, coreg, where ass,- is a set of object level formulae and canal,- is an
object level formula with the parameters of M as the only free variables.
1,1,. „J,-m are the labels of lines, called support lines, to the cores of
which METHOD.- is applied. This application should yield the problem
((153,; conch).
dec-cont(M) can also contain so-called LEMMA-lines the cores of which
are elements of pre(M),_ and METHOD,- = LEMMA.

-- procedure provides a program by interpreting dec-cont (see [19] for further
details). (For correct methods, this program yields as output the post-
condition when the preconditions were input.) In [5] methods contain this
program itself. Here and in [19] the declarative description and its inter-
preter are separated, such that one can reason about and reformulate the
declarative content without having to change the interpreting procedure.

—- History contains a trace of changes by certain meta-methods.

Since the dec—cont of a method may contain names of methods, they are to. be
defined recursively.

4for functions, relations, formulae, and terms



- The basic methods M correspond to the rules of the proof calculus (here: 
Natural Deduction rules). Their declarative content contains just one 
line which is not a LEMMA-line, and the method name is the name of a 
calculus rule such as for example, 

(~I;HI ),(~2;H2) 
(~IU~2;HIAH2). 

For later reference, the general form of such a rule is 
(~I;HI), ...,(~n;Hn) 

(~;H). 

This rule is applied to the preconditions of M.
 

- For Methods M are basic methods or methods such that
 

1.	 several method names Mi occur in the lines of dec-cont(M) that were 
defined before, or 

2. dec-cont(M) contains variables for methods (denoted by PLANi). This 
indicates that the method which should yield corei is still unknown. 

The occurrence of a method name Mi in a line 
(li. aSSi f- concli (Mi lit ... lim)) of dec-cont(M) means that Mi is ap
plied to the cores of the lines lil ... lim (and the result is aS8i f- concli for 
verified methods). 

A basic method M is called verified, if the application of the corresponding 
calculus rule to its preconditions correctly yields its postcondition. That is, if 
there exists an instance 0-(R) of the calculus rule R such that 
pre(M)={o-(~l; HI), . .. , O-(~n; Hn)} and 
post(M)=o-(~;H). 

A non-basic method M is called verified if 

- no method variable occurs in M,
 

- all methods, the name of which occur in dec-cont(M), are verified,
 

- for every non-LEMMA-line
 
(li. aSSi f- concli (Mi lil.' .lim)) there exists a substitution 0- of para

meters of Mi such that o-(ass(Mi)) ~ aSSi,
 
0-(cond(Mi)) = concli , and
 
o-(pre(Mi )) = {coreiI,.'" coreim} for lines lil ... lim preceding li in dec

cont(M), and
 

-	 the method's application is guaranteed to yield its postcondition when its 
preconditions are fulfilled, i.e., post(M)=corel for the final line 1/. 

Methods may somehow represent proof ideas as they can have PLAN-lines and 
need not be fully instantiated. Let us, for example, look at an instance of the 
method hom1 [19]: 
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— The basic methods M correspond to the rules of the proof calculus (here:
Natural Deduction rules). Their declarative content contains just one
line which is not a LEMMA—line, and the method name is  the name of a
calculus rule such as for example,

(A1;H1)‚(A2;H2)
(A1UA2;H1/ \H2) .

For later reference, the general form of such a rule is
(A1;H12.---.§An;Hnl

(A;H).
This rule is applied to the preconditions of M.

— For Methods M are basic methods or methods such that

1. several method names M,- occur in the lines of dec-cont(M) that were
defined before, or

2. dec-cont(M) contains variables for methods (denoted by PLANg). This
indicates that the method which should yield core.- is still unknown.

The occurrence of a method name M.- in a line
(l,-. ass.- I- conch (M.- lü . . . km)) of dec-cont(M) means that M; is ap-
plied to the cores of the lines In . . . lim (and the result is ass,- I- conch for
verified methods).

A basic method M is called verified, if the application of the corresponding
calculus rule to its preconditions correctly yields its postcondition. That is,.if
there exists an instance 0(R) of the calculus rule R such that
pre (M)={o(A1 ;  H1) ,  ° - ' a 0(An i  1111)} and
post(M)=a(A; H).
A non-basic method M is called verified if

— no methodvariable occurs in M,
— all methods, the name of which occur in dec-cont(M), are verified,
— for every non-LEMMA-line

(l,-. ass,- l- conclg (M,- In . . . km)) there exists a substitution 0 of para—
meters of M.- such that a(ass(M,-)) g (133;,
0'(concl(M‚-)) = conch, and
a(pre(M;)) = {core,-1, . . . ,  cafe,-m} for lines In . . ‚lim preceding l,- in dec-
cont(M), and

-- the method’s application is guaranteed to yield its postcondition when its
preconditions are fulfilled, i.e., post(M)=coreg for the final line 1;.

Methods may somehow represent proof ideas as they can have PLAN-lines and
need not be fully instantiated. Let us, for example, look at, an instance of the
method hom1 [19]:



Method: homl 

parameter formulaj, f: function 

{ass(l), ass(2), ass(3)}; symmetric(f(p)) 
1. ; 1 I 'r/x formula, 
2. ; 2 I 'r/l1(symmetric(l1) ~ 'r/x, y«x, y) E l1 -+ 

(y,x) E (1» 
3. ;3 I symmetric(p) 
4. ; 1,3 I 'r/x,y«x,y) E f(p) -+ (y,x) E t(p» 
5. ; 1,2,3 I symmetric(t(p» 

. schema-interpreter 

(HYP) 
(HYP) 

(PLAN1) 

(PLAN2) 

(METHODs 
2 4) 

pre 

post 

dec-cont 

procedure 

history 

The proof idea of this method is to prove symmetric(f(c)) from certain as
sumptions and from the definition of f in line 1 in the following manner: 

- First prove that symmetric(p) by some method. 

- Then show that Vx,y«x,y) E f(p) ~ (y,x) E f(p)) is provable from the 
definition of f, symmetric(p), and possibly other assumptions. 

- Finally prove the conclusion symmetric(f(p)) from lines 4 and 2 by the 
application of METHODs. 

Of course, this method is not as complicated as Falting's proof idea for Mordell's
 
Conjecture, but it is quite similar in kind.
 

Methods can also explicitly represent the structure of a proof by combining
 
several simple methods to more complex methods.
 

Methods have not to be fully instantiated (although most of our base methods
 
are). and therefore they can be used to represent method~ in the u.sual math

ematical sense, as for example, Cantor's diagonalization method. The very
 
same method can represent several analogical proofs or proof parts.
 

•	 Proof plans correspond to the usual plans in plan-based problem solving, and 
they are built from finitely many methods and a substitution u of the methods' 
parameters. Let Mi and Mj be methods that occur in a proof plan 
Mj succeeds Mi , if u(post(M j )) ~ u(pre(M i )) (see figure 1). 
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sumptions and from the definition of f in line 1 in the following "manner;

—— First prove that symmetric(p) by some method.
-— Then show that Vx,y((a:, y) € f(p) —> (y,:v) € f(p)) is provable from the

definition of f ,  symmetric(p), and possibly other assumptions.
-— Finally prove the conclusion symmetric(f(p)) from lines 4 and 2 by the

application of METHODs.

Of course, this method is not as complicated as Faltin'g’s proof idea for Mordell’s
Conjecture, but it  is quite similar in kind.
Methods can also explicitly represent the structure of a proof by combining
several simple methods to more complex methods.
Methods have not to be fully instantiated (although most pf our base methods
are). and therefore they can be used to represent methods in the usual math-
ematical sense, as for example, Cantor’s diagonalization method. The very
same method can represent several analogical proofs or proof parts.

Proof plans correspond to the usual plans in plan-based problem solving, and
they are built from finitely many methods and a substitution 0 of the methods’
parameters. Let M,- and M, be methods that occur in a proof plan
Mj succeeds Mg, if a(post(M,-)) g a(pre(M,-)) (see figure 1).



Figure 1: Method Mj succeeds method Mi 

For finally proving a problem, the goal is to construct a plan of a problem as 
complete as possible. 

A complete plan of a problem P 

-	 contains verified methods only, 

- has only one root method M and we have u(post(M))=P. For the leaf 
methods M1i we have pre(M1i)=0, and 

- for each method Mmof the proof plan which is not a leaf there exist suc
ceeding methods Mmb ..., Mmk in the proof plan such that 
u(pre(Mm)) = Uf=l (u(post(Mmi)). 
Hence a complete proof plan is a tree. 

Methods and proof plans are used for different purposes: Methods represent 
the proof parts to be reformulated. Proof plans are used to combine methods 
via pre- and postconditions finally to a complete proof. 

•	 Meta-methods map sets of methods to other sets of methods, for example 
by splitting one method into several new methods, or by combining methods 
to a new method. If a meta-method maps a set of just one method to another 
singleton we simply say that the meta-method maps a method to a method. 

Meta-methods are frame-like data structures containing the following slots: 

Metarnethod: Name 

parameter to be specified for a particular application 

pre preconditions for the application 

post result of the application 

procedure procedure for the application 

rating rating procedure 
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Figure 1: Method M,- succeeds method M,-

For finally proving a problem, the goal is to construct a plan of a problem as
complete as possible.
A complete plan of a problem P

— contains verified methods only,

—- has only one root method M and we have a‘(post(M))=P. For the leaf
methods M1,- we have pre(M1,-)=(0, and

- for each method Mmof the proof plan which is not a leaf there exist suc-
ceeding methods Mm,  . . ., Mm}, in the proof plan such that
0(pre(Mm)) = U§=1(0(Post(Mms))-
Hence a complete proof plan is a tree.

“.

Methods and proof plans are used for different purposes: Methods represent
the proof parts to be reformulated. Proof plans are used to combine methods
via pre— and postconditions finally to a complete proof.

o Meta-methods map sets of methods to other sets of methods, for example
by splitting one method into several new methods, or“ by combining methods
to a new method. If a meta-method maps a set of just one method to another
singleton we simply say that the meta-method maps a method to a method.

Meta-methods are frame-like data structures containing the following slots:

Metamethod: Name
parameter to be specified for a particular application

pre preconditions for the application

post result of the application

procedure procedure for the application

rating rating procedure



- Problems, terms, symbols, and history slots of methods may occur as 
parameters of a meta-method. 

- If the preconditions are fulfilled the meta-method is applicable. The pre
conditions are formulated in a metalanguage that describes methods. 

- The postcon~itions describe the resulting method in the same metalan-' 
guage as the preconditions. 

- Rating is a procedure that computes an actual rating. Reformulations 
should be justified at least heuristically. The rating procedure takes the 
justification and situation information as an input and computes a rating 
for the application of the meta-method in the current situation. Rating as 
a procedure located in the meta-methods, has been favoured above pure 
justification, as an information to be used by the planner, since the set 
of meta-methods can be extended without changing the planner. There 
are several kinds of justification e.g., the mathematical theory in which 
the meta-method should work, dualities of theories, semantics of the used 
concepts such as homomorphism etc. The actual ratings are not properly 
developed currently. 

3	 A Model for Analogy-Driven Proof Plan Con
struction 

3.1 Theorem Proving by Analogy 

Problem solving by analogy (see e.g. [7, 18, 11]) means to find a solution for a target 
problem on the basis of a given solution of a given base problem which is somehow 
similar - or analogous - to the target problem. ' , 

The specific subject of theorem proving by analogy is a more formal instance of 
this general pattern of reasoning. As before let a problem (ass; thm) be a pair of 
'assumptions and a theorem and a proof of a problem is a proof of ass I- thm. Then 
the task is to find a proof for a given target problem P2 based on a given proof of a 
given base problem PI which is supposed to be similar to P2. 

Robert Kling's work [21] on theorem proving by analogy was one of the first 
attempts in the field. His system ZORBA essentially produced mappings between 
predicate symbols (and variables). The mapping was applied to the assumptions 
of the base proof in order to find analogous assumptions for the target case. Thus 
the set of formulae that could serve as assumptions in the analogous proof was very 
limited in this approach. 

J.C. Munyer's [25] focus is on the formulae derived in each proof step. He applied 
a symbol mapping to these formulae in order to obtain the corresponding formulae 
in the desired analogous proo~. The symbol mapping was obtained from the given 
theorems. 
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should be justified at least heuristically. The rating procedure takes the
justification and situation information as an input and computes a rating
for the application of the meta-method in the current situation. Rating as
a procedure located in the meta-methods, has been favoured above pure
justification, as an information to be used by the planner, since the set
of meta-methods can be extended without changing the planner. There
are several kinds of justification e.g., the mathematical theory in which
the meta-method should work, dualities of theories, semantics of the used
concepts such as homomorphism etc. The actual ratings are not properly
developed currently.

3 A Model for Analogy-Driven Proof Plan Con-
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similar —— or analogous —— to the target problem.

The specific subject of theorem proving by analogy is a more formal instance of
this general pattern of reasoning. As before let a problem (ass; thm) be a pair of
assumptions and a theorem and a proof of a problem is a proof of ass [- thm. Then
the task is to find a proof for a given target problem P2 based on a given proof of a
given base problem P1 which is supposed to be similar to P2.

Robert Kling’s work [21] on theorem proving by analogy was one of the first
attempts in the field. His system ZORBA essentially produced mappings between
predicate symbols (and variables). The mapping was applied to the assumptions
of the base proof in order to find analogous assumptions for the target case. Thus
the set of formulae that could serve as assumptions in the analogous proof was very
limited 1n this approach.

J .  C. Munyer’ s [25] focus 1s on the formulae derived 1n each proof step. He applied
a symbol mapping to these formulae m order to obtain the corresponding formulae
in the desired analogous proof. The symbol mapping was obtained from the given
theorems. '



A very elaborate work on analogy in theorem proving is that of Stephen Owen 
[27] ,who thoroughly analyzed and advanced the approaches of R.E. Kling and J.C. Mun
yer and showed that Kling's and Munyer's accounts were inadequate even for simple 
analogies. 

His emphasis is placed on a matcher that recursively constructs symbol mappi£Lgs 
and argument pairings. This mapping makes the terms of the base and the target 
theorems equal. "As matching proceeds, symbolic associations will be made between 
the head symbols of subterms which are assoclated. This association is added to the 
existing mappings." His system is based on two inference rules, binary resolution and 
paramodulation. To construct an analogue to the given proof, his system constructs 
the formulae in the target proof from the inferred formulae in each calculus step of 
the base proof. It also generates the assumptions for the target proof steps from 
the assumptions of the base proof steps by extending the above symbol mapping. 
This extension is achieved by six rules of different strength based on heuristics and 
justifications for these rules. His system can cope to some extend with mappings 
which do not generate a correct target proof, e.g., by a special means end analysis 
that guide the search for missing proof steps. 

Another computational simulation of theorem proving by analogy has been car
ried out by Woody Bledsoe and his students Bishop Brock, Shaun Cooper, and 
William Pierce [4]. Their examples were mainly taken from the theory of real ana
lysis. An initial symbol mapping and a pairing of definitions, lemmata and already 
proven theorems have to be provided by the user. Their work then focuses on failed 
constructions of analogous proofs where heuristics fill the gaps in the transformed 
proof and recognize subproofs. For example, B. Brock et al. [4] suggest a "Double 
Entry Fetching" operator that attempts the application of the next inference rule of 
the base proof by finding a bridge lemma which links the current clause and the rule 
to be applied. 

In summary, computational accounts of theorem proving by analogy have been 
more or less dominated by the idea to map symbols of the base problem (and its 
proof) to the symbols of the target and then to construct the desired proof from the 
given proof at the calculus level (e.g., resolution) by a translation of each single proof 
step. 

3.2 The Model 

The following model encapsulates our experience of proving all theorems in the text
book HUA that used analogy. This book on Automata Theory is well-known and 
used as a standard text for undergraduates in many computer science departments 
in Germany. It contains several proofs by analogy based on reformulation rather 
than just symbol mapping. The model enables to cope with analogies based on the 
transfer of proof methods and proof ideas as well. 

The model for our analogy-driven proof plan construction consist of the follow
ing procedures: Initialize, Reformulation, Match, Reversion, Verification, and Proof 
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Planning, to be explained below. 
Starting with the method M1 made up from the base problem PI and its proof, 

and method M2 made up from the target problem P2 without a proof (i.e., dec
cont(M2 ) is just a single PLAN-line), the goal is to reformulate MI to a method Mu: 
in k steps, such that the postcondition of Mu matches P2. Figure 2 outlines the 
process of reformulation of a method MI into a method Mlk whose postcondition 
matches P2 of method M2 • 

direct 
reformulatiOl 

M 1j 

on 

M li 

a1ization 

M 1 

abstracti 

norm 

M 1m 

reversion 

GJ match ~ 
~~ 

Figure 2: Outline of the reformulation 

In addition to the process as sketched in figure 2 there is a preparation procedure 
for the verification of methods, which removes the method variables from Mu and 
yields the method Mlr. This method Mlr is then checked by a verifier and if the 
verification succeeds, M2 is replaced by Mlr, which finally contains a verified proof 
schema. 

If the verification fails, the same process is tried again but with all the sub
methods, sub-suhmethods etc. of M1 and M2 • These sub-methods are obtained from 
the structuring reformulations presented below. 

When all methods and sub-methods have been dealt with, there is a set {Mtrh of 
methods that were obtained from M1 by some reformulations, such that their post
conditions match P2 or some subproblems of P2. From these M;r we try to build 
a proof plan for P2. The plan should be as complete as possible, hence additional 
methods are often necessary to fill the gaps between the preconditions and the post
conditions of the different M;r. Figure 3 shows the idea of this analogy-driven proof 
plan construction: Several sub-methods of M1 can be reformulated such that their 
postconditions match a subproblem of P2. These reformulated methods are then the 
elements of a new proof plan for P2. 

11 

Planning, to be explained below.
Starting with the method M1 made up from the base problem P l  and its proof,

and method M2 made up from the target problem P2 without a proof (i.e., dec-
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in k steps, such that the postcondition of M1;c matches P2. Figure 2 outlines the
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In addition to the process as sketched in figure 2 there is a preparation procedure
for the verification of methods, which removes the method variables from M1;‘ and
yields the method M1... This method M1,. is then checked by a verifier and if the
verification succeeds, M2 is replaced by M1,, which finally contains a verified proof
schema. .

If the verification fails, the same process is tried again but with all the sub-
methods, sub-su‘bmethods etc.  of M1 and M2. These Sub-methods are obtained from
the structuring reformulations presented below.

When all methods and sub-methods have been dealt with, there is a set {Mi.,},- of
methods that were obtained from M1 by some reformulations, such that their post-
conditions match P2 or some subproblems of P2. From these Mi, we try to build
a proof plan for P2. The plan should be as complete as possible, hence additional
methods are often necessary to fill the gaps between the preconditions and the post-

- conditions of the different Mi,.  Figure 3 shows the idea of this analogy-driven proof
plan construction: Several sub-methods of M1 can be reformulated such that their
postconditions match a subproblem of P2. These reformulated methods are then the
elements of a new proof plan for P2.
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The individual steps in the analogy-driven proof plan construction are carried out 
by the following procedures: 

1.	 INITIALIZE 
For provIng a target problem P2=(ass2j thm2) by analogy to the proof of a 
given base problem Pl=(asslj thml), INITIALIZE sets up the method MI, 
that contains the known proof in its dec-cont slot, and the initial method M2 

for P2. An initial method M for a problem P=(ass; thm) is .a method whose 
declarative content contains for all A E ass a line (... A I- A (HYP)), and a 
PLAN-line (... ass I- thm (PLAN)). It-represents the general goal "prove thm 
under the assumption of ass." The following sketches such an initial method 
in general: 

Method: INITIAL (P) 

parameter 

(ass; thm) 
1. ; 1 f- A 
2. , f ... 

3. ; 1 f thm 

schema-interpreter 

(HYP) 
(HYP) 

(PLAN) 

pre 

post 

dec-cont 

procedure 

history 

The procedure INITIALIZE also sets up several parameters of the algorithm 
CONSTRUCT.J>ROOF-.BY.ANALOGY of analogy-driven proof plan construc
tion which is given below: the methods that have to be treated as current..methods, 
the activeJeformulation class (active-ref), the set of methods already treated 
by	 the active reformulation class (treated..methods), the set of submethods 
which result from the last structuring sub-methods, and the set of revised 
matched methods (matched.lllethods). 

2.	 MATCH 
This procedure tries to match the postcondition of a current Mh-method M1i 

with the postcondition of a current M2...-method M2i such that 
asS(M1i) ~ asS(M2i )U KB and concl(M1i)=concl(M2i). As the definition shows, 
the matching is tolerant for missing axioms that may be stored in a given 
knowledge base KB. 

3.	 REFORMULATION 
If no match"can yet be obtained for the current Mh-methods they are subjected 
to REFORMULATION, which is achieved by the application of meta-methods. 
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Although these reformulations could in principle be limited to PI-methods, 
such that Pl=(assl; thml) is reformulated to a: problem (assl'; thml') with 
thml' = thm2 and assl' ~ ass2U KB, it is more convenient to apply normal
izing and abstracting meta-methods to both Mt.- and M2.-methods. Such 
reformulations are advantageous since they are more purpose directed: It. i.s. 
easier to abstract two methods and then to find an additional reformulation 
that yields a problem that matches the abstracted problem, than to find an 
abstraction, a reformulation, and a reverse abstraction that provide a problem 
matching the original P2. In the former case it is easy to find out which reverse 
abstraction to use. Also the reformulation of M1j to M1m is more goal directed 
(see figure 4). 
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Figure 4: Outline of the more goal directed reformulation 

If the postcondition of some M2.-methods are not matched by the postcondition 
9f a verified Mt.-method, then structuring meta-methods are applied that split 
the current Mt.- or M2.-methods. The goal of structuring is to produce sub
methods which are treated by the algorithm then in the same way as the original 
methods. 

4.	 REVERSION 
Once an Mh-method is successfully matched, it is reformulated to a new M1.

method by the reversion of all entries stored in the history slot of the matched 
M2.-method during REFORMULATION. Thus abstraction and normalization 
steps which were applied to the original M2*-method are made undone by RE
VERSION. The postconditions of the revised Mt.-methods should then match 
the original problem P2 or a subproblem of it. 
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Although these reformulations could in principle be limited to Pl-methods, _
such that P1=(assl;thm1) is reformulated to a problem (assl';thm1’) with
thml’  = thm2 and ass l ’  ; ass2U KB,  i t  is more convenient to apply normal-
izing and abstracting meta-methods to both M1,;- and Mgr-methods. Such
reformulations are advantageous since they are more purpose directed: It, is
easier to abstract two methods and then to find an additional reformulation
that yields a problem that matches the abstracted problem, than to find an
abstraction, a reformulation, and a reverse abstraction that provide a problem
matching the original P2. In the former case it  is easy to find out which reverse
abstraction to use. Also the reformulation of MU to Mlm is more goal directed
(see figure 4).

M lj M 2n
'.

abstraction reversion ‚Kahn-action

M li M21

‘
‘.

normalization "‘normalization

match
Ml Mn |___} M2

Figure 4: Outline of the more goal directed reformulation

If the postcondition of some Mgr-methods are not matched by the postcondition
of a verified Mpg-method, then structuring meta-methods are applied that split
the current M1..- or Mgr-methods. The goal of structuring is to produce sub—
methods which are treated by the algorithm then in the same way as the original
methods.

. REVERSION
Once an M1,..-method is successfully matched, it is reformulated to a new M1,..—
method by the reversion of all entries stored in the history slot of the matched
M2.—method during REFORMULATION. Thus abstraction and normalization
steps which were applied to the original M2...~method are made undone by RE—
VERSION. The postconditions of the revised e—methods should then match
the original problem P2 or a subproblem of i t .
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5.	 VERIFICATION 
Redundant lines in the declarative content ofthe current (revised) Mh-methods 
are deleted, PLAN-lines are changed and method variables are removed, thus 
preparing methods for their actual verification. The deletion of method vari
ables produces additional preconditions in some methods ~nd later, during 
proof planning, these preconditions cause a change of the proof plan by the 
insertion of additional methods. 

It is then checked whether the method M at hand is verified. If it is, then all 
those M2.-methods M' are replaced by M and removed from current.methods, 
whose postconditions match post(M). All M2.-methods that descended from 
M' are removed from current.methods as well. If M is not verified, then 
the corresponding M' is further processed but M is a candidate to be used in 
PROOF PLANNING nevertheless. 

6.	 PROOF PLANNING 
This process is not treated in this paper. It is a usual proof planning procedure 
[5]. It operates mainly on the set of methods which have passed VERIFIC
ATION and takes them as preferred candidate elements for the proof plan. 
Verified methods are favoured candidates, compared to methods that have the 
same postcondition but are not verified. (Alternatively we think about a step
wise Proof Planning that is carried out after each succesful match.) Proof 
Planning tries to partially order these methods by comparing instances of their 
pre- and postconditions respectively. It can use information from the structur
ing of the Mh - and M2.-methods. Proof Planning starts with a method M that 
has the desired problem P2 as its postcondition. Then it looks for methods 
that have problems of pre(M) (maybe less instantiated) as its postcondition 
etc. The process stops when the J)reconditions of the new methods are empty 
or there are no new methods. It may provide several proof plans. 

Often there will still be gaps between the elements of the proof plan. That is, 
not all preconditions of a method are found in the succeeding methods. Hence, 
to obtain a plan as complete as possible, additional methods have to be inserted 
which can be found, for instance, by searching bridge lemmas or by difference 
matching, see [9, 1]. 

The following gives the basic algorithm 
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M’ are removed from currentJnethods as well. If M is not verified, then
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CONSTRUCT-PROOF...BY-ANALOGY 

Input: problems Pi. P2. and proof of Pi 
Output: proof plan for P2 

i.	 INITIALIZE 
2.	 MATCH 

if (M1i. M2( do not match)
 
then go to 5a
 

update matchedJmethods 
3.	 REVERSION 
4.	 VERIFICATION 

update currentJmethods 
5.a	 if (treatedJmethods = currentJnethods) 

then go to 5e 
b	 choose M1i and M2i of currentJnethods not treated by active..ref 

add these methods to treatedJnethods 
if (active..ref of the chosen methods possible) 

then go to 5d
 
else go to 5a
 

c if (active..ref = structuring)
 
then
 

if (sub-methods = empty) 
then go to 6 
e~e sub-methods:= empty 

else	 active..ref := NEXT(active..ref)·
 
treatedJnethods:= empty
 
go to	 5b 

d update currentJmethods
 
REFORMULATION
 
if (active..ref = structuring)
 

then add the new methods to sub-methods
 
update currentJmethods
 
go to	 2 

6.	 PROOF PLANNING 
Stop 

• 

Figure 5:	 algorithm of analogy-driven proof plan construction 
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CONSTRUCT.PRO-DF.BY_ANALOGY

Input:  problems P1 ,  P2 ,  and. proof of  P1
Output: proof plan for  P2

1 .  INITIALIZE
2 .  MATCH

if (M“ ,  M2," (10 no t  match)

then go to 50
update matchednethods

3 .  _REVERSION
VERIFICATION
update currentJnethods ,

5.51 if (treatedmethods = currentmethods)
then go to 50

b choose  M1; and M2,- o f  currentJnethods not t reated by act iveJef
add these  methods t o  t reatednethods
if (ac t ive lef  of the chosen  methods pos s ib l e )

then go to 5d
else go to 5a

c if (activexef = structuring)
then

if (sub-methods " empty)
then go to  6
else sub-methods:= empty

else activexef := NEXT(active.ref)'
t reated_methods:= empty
go to 5b

d update currentJnethods
REFORMULATION
if (activexef == structuring)

then add the new methods t o  sub-methods
update currentmetho-ds
go to 2

6 .  PROOF PLANNING
Stop

‚p

Figure 5: algorithm of analogy-driven proof plan construction
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An Example 

As an illustration of the previous algorithm consider the following example, which is 
presented in more technical detail later on in section 5. This example was used by 
de la Tour and Kreitz [12], who tried to prove Theorem2 by analogy to the proof of 
Theoreml, where: 
Theorem1: Vx, y«Qxy ~ Yz(Pxz ~ Pyz)) /\ Qab /\ (Paa V Pbb) ~ 3xPbx) and 
Theorem2: Vx,y«Qxy ~ Vz(Pxz ~ Pyz» /\ Qab/\ Qbc/\ (Paa V Pee) ~ 3xPex). 

All transformations of the proof of Theorem1 to the proof of Theorem2 are 
explicitly given in [12] by the instruction of the following kind "rename constant b to 
constant c and repeat a certain given proof step twice." The proof of Theorem1 and 
this instruetio~ were both represented as typed formulae using the Curry-Howard
Isomorphism. Let us look at this example within our framework of analogy-driven 
proof plan construction. The transformation steps are as follows. 

1.	 INITIALIZE 
The Mh-method MI, which is built from Theorem1 and its proof, is verified 
and has the known ND-proof as dec-contM1). Its postcondition is 
Pl=(0; Theoreml), i.e., ass(M1 )=0 and concl(M1)=Theoreml. 
The preconditions are empty. The history slot is empty. 

The first M2*-method M2=INITIAL(P2) for P2=(0; Theorem2) is built up with 
post(M2)=P2 and a declarative content consisting of the line 
(I.	 0 f- Theorem2 (PLAN)). 

2.	 MATCH 
First time there is no match of the current methods. Hence, no reversion and 
verification is possible. 

3.	 REFORMULATION
 
The reformulation steps are:
 

•	 The normalization process, corresponding to the application of the deduc
tion theorem, reformulates M1 to Mu with concl(Mu )=3xPbx and 
ass(Mu)={Vx, y(Qxy ~ Vz(Pxz ~ Pyz)), Qab, (Paa V Pbb)}. 
dec-cont(Mu ) differs from dec-cont(M1) in that the last line 
(... 0 /- 'Ix, y«Qxy ~ Vz(Pxz ~ Pyz» A Qab A (Paa V Pbb) ~ 3xPbx)(~ 1) . .. 
IS mIssmg. 
The history slot now gets an entry for this normalization. 

A similar normalization reformulates M~ to M21 with 
ass(M:n)={Vx, y(Qxy ~ Vz(Pxz -+ Pyz», Qab, Qbe, (Paa V Pee)} and 
conc1(M21 )=3xPcx.	 . 
The only line of dec-cont(M2)
 

(... 01- Vx,y(Q:r;y -+ Vz(Pxz -+ Pyz»AQabAQbeA(PaaV Pee) -+ 3xPex ...)
 
is changed to a line
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An Example

As an illustration of the previous algorithm consider the following example, which is
presented in more technical detail later on in section 5. This example was used by
de la Tour and Kreitz [12], who tried to prove TheoremQ by analogy to the proof of
Theoreml ,  where: '
Theoreml: Var, “ (w  -—-> Vz(Pa:z -—+ Pyz))  A Qab A (Paa V Pbb) -—-> 3bx) and
TheoremQ: Vx, y((Qxy —> Vz(P:vz ——> Pyz)) A Qab A cA (Paa V Pcc) _) Hcz).

All transformations of the proof of Theoreml to the proof of TheoremZ are
explicitly given in [12] by the instruction of the following kind “rename constant b to
constant c and repeat a certain given proof step twice.” The proof of Theoreml and
this instruction were both represented as typed formulae using the Curry-Howard—
Isomorphism. Let us look at this example within our framework of analogy-driven
proof plan construction. The transformation steps are as follows.

1. INITIALIZE ..
The M1,..-method M1, which is built from Theoreml and its proof, is verified
and has the known ND—proof as dec-contMl). Its postcondition is
P1=(fl;Theoreml), i.e., ass(M1)=@ and concl(M1)=Theoreml.
The preconditions are empty. The history slot is empty.

The first Mgr-method M2=INITIAL(P2) for P2=(Ü; Theorem2) is built up with
post(M2)f-—- P2 and a declarative content consisting of the line
(l. 0 I- TheoremZ (PLAND.

2. MATCH
First time there is no match of the current methods. Hence, no reversion and
verification is possible.

3. REFORMULATION
The reformulation steps are:

. The normalization process, corresponding to the application of the deduc-
tion theorem, reformulates M1 to M11 with concl(M11)=3bx and
ass(M11)={Va:, y(Q:cy —-> Vz(s —-—+ Pyz)),  Qab, (Paa V Pbb)}.
dec—cont(M11) differs from dec-cont(M1) in that the last line
(. . . 0  t- Vz, 3;“s -—> V2(Pa:z -—-> Pyz)) A Qab A (Paa _V Pbb) —+ 3bz)(—> I))
is missing.
The history slot now gets an entry for this normalization.
A similar normalization reformulates M2 to M21 with
ass(M21)={Vx,y(Q:cy —-> V2(P.zz ——-+ Pyz)) ,Qab,c‚  (Paa V Pcc)} and
concl(M21).=Ela:Pc:r.
The only line of dec-cont(M2)
(. . ‚@ l- Vm, y(Qa;y -—-> Vz(P:vz -—> Pyz)) AQabAcA (Paav Pcc) —-> HxPcm . . .)
is changed to a line
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(... rv'x, y(Qxy -+ 'v'z(Pxz -+ Pyz», Qab, Qbe, (PaaVPee)} r 3xPex (PLAN». 
The history slot gets an entry for this normalization. 
The postconditions of the methods M1 or Mu still do not match the 
postconditions of M2 or M21 • 

•	 So first it is tried to match the conclusions. The symbol mapping 
{b 1-----+ e} applied to Mu yields Ml2 with 
asS(MI2)=f'ix, y(Qxy -+ 'v'z(Pxz -+ Pyz)), Qae, (Paa V Peen and 
concl(M I2 )=3xPex. Then concl(M12) = concl(M21 ) • 

•	 Now there are still differences concerning the assumptions of Ml2 and M21 : 

They differ in the subsets {Qae} and {Qab, Qbe}. Now the preconditions 
of one of our meta-methods are met. It reformulates M12 to M13 with 
asS(MI3)={'v'X, y(Qxy -+ \/z(Pxz -+ Pyz)) , Qab, Qbe, (Paa V Peen and 
concl(MI3)=3xPex. 
This meta-method replaces the line 
(... ~ U {Qae} r \/z(Paz -+ Pez) (\/D, -+ D, .. .)) 
of dec-cont(M12) by the line 
(... ~ U {Qab, Qbe} I- 'v'z(Paz -+ Pez) (PLAN)) in dec-cont(MI3). 

4.	 MATCH 
The postcondition of M13 now matches the postcondition of M21 . 

5. REVERSION 
Reverse-normalization with respect to the history slot of M21 applied to M13 

yields M14 with ass(MI4)=0 and 
concl(MI4)='v'X, y(Qxy -+ 'v'z(Pxz -+ Pyz» A Qab A Qbe A (Paa V Pee) -+ 3xPex. 
dec-cont(M14) has the last line: 
(... 01- 'v'x, y(Qxy -+ 'v'z(Pxz -+ Pyz»AQabAQbeA(PaaV Pee) -+ 3xPex (-+ I .. .). 

6.	 VERIFICATION" 
To obtain a verified method, the method variable (PLAN) is to be removed: A 
meta-method applied to M14 yields MI5 . It provides additional preconditions. 
MI5 can be verified. 

M2 is replaced by MI5 • Figure 6 shows this process of reformulation. 

7.	 PROOF PLANNING 
In completing the proof plan, an additional method has to be inserted which 
has pre(M1S) as postcondition. 

Knowing the postcondition (~U {Qab, Qbe} I- 'v'z(Paz -+ Pcz)) , the proof 
becomes (slightly abbreviated) 
~,Qab I- \/z(Paz -+ Pbz) 
~,Qbc I- \/z(Pbz -+ Pcz) 
~,Qab, Qbe I- 'v'z(Paz -+ Pcz) 
is a candidate for the declarative content of the additional method. 
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(. . . {V3, y(Q:vy —+ Vz(Pa:z —> Pyz)), Qab, c,  (PaaVPcc)} |- Elca: (PLAN)).
The history slot gets an entry for this normalization.
The postconditions of the methods M1 or M11 still do not match the
postconditions of M2 or M21.

. So first it is tried to match the conclusions. The symbol mapping
{b I—> c} applied to M11 yields M12 with
ass(M12)={Va:, 31(m —-> Vz(P:rz ——-+ Pyz)), Qac, (Paa V Pcc)} and
concl(M12)=—-=3a:c. Then concl(-M12) = concl(M21).

. Now there are still differences concerning the assumptions of M12 and M21:
They differ in the subsets {Qac} and { Qab, c}. Now the preconditions
of one of our meta-methods are met.  It reformulates M12 to M13 with
ass(M13)={Vx,y(Qxy -—> Vz(P:cz —-—+ Py2)) ,Qab,c‚ (Paa  V Pcc)} and
concl(M13)=3:rPca:.
This meta-method replaces the line
( . .  . A U {Qac} l- Vz(Paz ———> Pcz) (VD, -—-> D, . . .))
of dec-cont(M12) by the line
(. . . A U {Qab, c} l- Vz(Paz --> Pcz) (PLAND in dec—cont(M13).

. MATCH
The postcondition of- M13 now matches the postcondition of M21.

. REVERSION
Reverse-normalization with respect to the history slot of M21 applied to M13
yields M14 with ass(M14)-—=0 and
concl(M14)=V:c, y(Qa:y —-> Vz(P:cz —-> Pyz)) A Qab A c A (Paa. V Pcc) —-> Elasc.
dec-cont(M14) has the last line:
(.  . . 0  l- Vzr,y(m —-> Vz(Pa:z -+ Pyz))AQabAcA(Paa.VPcc) -—> 513c (—-+ I . . ).

. VERIFICATION,
To obtain a verified method, the method variable (PLAN) is to be removed: A
meta—method applied to M14 yields M15. It provides additional preconditions.
M15 can be verified.

M2 is replaced by M15. Figure 6 shows this process of reformulation.

. PROOF PLANNING
In completing the proof plan, an additional method has to be inserted which
has pre(M15) as postcondition.

Knowing the postcondition (A U {Qab,c}  t- Vz(Paz -——> Pcz)), the proof
becomes (slightly abbreviated)
A, Qab l- Vz(Paz ~——> s)
A, c l- Vz(s ——+ Pcz)
A, Qab, c l— Vz(Paz ——> Pcz)
i s  a candidate for the declarative content of the additional method.
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Figure 6: The reformulation ofM1 and M2 

This plan transformation is pretty similar to human attempts to prove T heorem2 
by analogy, and it is inter~sting to note that this example can be handled in exactly 
the same way as for example the proof of theorem 17.6 in HUA. 

4 Meta-methods 

The following selection of meta-methods is the result of an empirical study of the 
mathematical textbook [13], where we isolated all those proofs that are explicitly 
mentioned as proofs by analogy. These examples are presented in a case study [23], 
that contains the Natural Deduction proofs. The following set of meta-methods is 
sufficient for an automated construction of these proofs by analogy, however, it is, of 
course, not complete in general. 

The presented meta-methods turned out to be also useful for the manipulation 
of methods as part of the proof planning paradigm, e.g., for the generation of new 
abstracted or generalized methods and for structuring of methods. Some of them 
correspond to standard techniques in automated theorem proving. Note that some 
metamethodscorrespond to methods with a similar purpose, e.g., conjunction split
ting. But the fundamental difference between these methods and meta-methods is 
that methods operate on a partial proof tree (or forest) and meta-methods operate 
OIl methods. 

Some meta-methods are described only informally rather than representing them 
fully by the appropriate frame schemata. 

4.1 Meta-methods in REFORMULATION 

We distinguish several classes of meta-methods ; they are classified with respect to 
their different usage and effect: 
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Figure 6: The reformulation of’ M1 and M2

This plan transformation is  pretty similar to human attempts to prove Theorem2
by analogy, and it is interesting to note that this example can be handled in exactly
the same way as for example the proof of theorem 17.6 in HUA.

4 Meta-methods

The following selection of meta-methods is the result of an empirical study of the
mathematical textbook [13], where we isolated all those proofs that are explicitly
mentioned as proofs by analogy. These examples are presented in a case study [23],
that contains the Natural Deduction proofs. The following set of meta-methods is
sufficient for an automated construction of these proofs by analogy, however, it is, of
course, not complete in general.

The presented meta-methods turned out to be also useful for the manipulation
of methods as part of the proof planning paradigm, e.g., for the generation of new
abstracted or generalized methods and for structuring of methods. Some of them
correspond to standard techniques in automated theorem proving. Note that some

' metamethods correspond to methods with a similar purpose, e.g., conjunction split—
ting. But the fundamental difference between these methods and meta-methods is
that methods operate on a partial proof tree (or forest) and meta-methods Operate
on methods.

Some meta-methods are described only informally rather than representing them
fully by the appropriate frame schemata.

4 .1  Meta-methods in  REFORMULATION

We distinguish several classes of meta—methods ; they are classified with respect to
their different usage and effect:
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., meta-methods for normalization 

•	 meta-methods for direct reformulation 

• meta-methods for abstraction 

• meta-methods for restructuring 

We shall give some examples ~f the application of these meta-methods. Sorp.e 
treatments (subproblems of 7.5.7, 5.7, and 17.6 of HUA, and the de la Tour and 
Kreitz' example) are given in full detail in section 5. 

In the following the method a meta-method is applied to is denoted by M and 
the ~esulting method is denoted by' M'. 

4.1.1 Meta-methods for Normalization 

The purpose of these meta-methods is to make the postconditions of methods com
parable in that they produce normal forms which are often used (but seldom men
tioned) in mathematics. Meta-methods from this class are generally applicable to 
Mh - and M2.-methods. They fill the history slot of methods. They do not provide 
new parameters for the methods and they do not delete any information from the 
methods. 

Most of the meta-methods for normalization are based on well-known facts and 
they are rather trivial in comparison to some of the later meta-methods. 

Among the most important normalizing meta-methods that we have used are the 
following: 

Decompose Assumptions 

This meta-method changes the assumptions ass(M) of a method. 

•	 It replaces the formula (<Pl/\ ... /\ <Pn) by <PI, .•. , <Pn in ass(M), i.e. it just brakes 
up the conjunctions, if there are any. Furthermore it also changes the slot filler 
of dec-cont(M) by the following rules: 

• Remove the line (I. 0 f-<Pl /\ ... /\ <Pn (HYP)) from dec-cont(M). 

• Replace the lines (Ii• {(<PI /\ •.. /\ <Pn)} f- <Pi (/\D .. .)) of dec-cont(M) by lines 
(Ii. {<Pi} f- <Pi (HYP)). 
Replace {lij. {(<PI /\ •.• /\ <Pn)} f- <Pi /\ <pj (AD ... )) by 
{lij. {<Pi, <Pj} f- <Pi /\ <Pj (/\Ili, Ij)). (The same for more than two conjunets.) 

• Replace the assumption (<PI /\ •.• /\ <Pn) in all lines of dec-cont(M) by the as
sumptions <PI, ... , <Pn. 
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" meta—methods for normalization

o meta-methods for direct reformulation

o meta-methods for abstraction

o meta—methods for restructuring

We shall give some examples of the application of these meta-methods. Some
treatments (subproblems of 7.5.7, 5.7, and 17.6 of HUA, and the de la Tour and
Kreitz’ example) are given in full detail in section 5.

In the following the method a meta—method is applied to is denoted by M and
the resulting method is denoted by“ M’.

4 .1 .1  Meta-methods for Normalization

The purpose of these'meta-methods is to make the postconditions of methods com-
parable in that they produce normal forms which are often used (but seldom men-
tioned) in mathematics. Meta—methods from this class are generally applicable to
M“.- and M2...—methods. They fill the history slot of methods. They do not provide
new parameters for the methods and they do not delete any information from the
methods.

Most of the meta-methods for normalization are based on well-known facts and
they are rather trivial in  comparison to some of the later meta-methods.

Among the most important normalizing meta-methods that we have used are the
following:

Decompose Assumptions

This meta-method changes the assumptions ass(M) of a method.

0’ It replaces the formula (Q51 A. . . A 96“) by Q51, . . . , % in ass(M), i.e. it just brakes
up the conjunctions, if there are any. Furthermore it also changes the slot filler
of dec-cont(M) by the following rules:

. Remove the line (l. (D F5151 A . . . A %, (HYP)) from dec-cont(M).

o Replace the lines (l.-. {(451 A . .  . A %)}  |- 45,- (AD . . .)) of dec—cont(M) by lines
(l.-. {46,-} I- 96.- (HYP)).
Replace (z,-‚„ ms, A . . . A an)} F 45,- A es,. (AD...)) by
(I,-‚v. {$.-, 45,-} |- o.- A (‚bj (AIlg, [i)]. (The same for more than two conjuncts.)

o Replace the assumption (Q51 A . . -. A %) in all lines of de‘c-cont(M) by the as—
sumptions 451, . . . , qbn.
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Handle Definitions
 

Definitions of a predicate P or a function f are formulae of the form
 
VXI, , Xn(P(XI Xn) H formulap(xt ... xn)) and
 
VXI, , xny(f(Xt Xn) = Y H Y = term(xI, . .. , xn)), where formulap is an object
 
level formulae that defines P and terml is an object level term that defines f.
 
For example:
 
VXI, x2(symm(R) H ([Xl, X2] E R ~ [X2, xl] E R)) is the definition of symmetry for
 
the relation R.
 
Expanding a definition then amounts to rewriting the occurrence of, say
 
P(CI, ... ,Cn ) by formulap(cl""'cn) and f(Ct, ... ,cn) by term(ct, ... ,cn) respect

ively.
 

The assumptions of a problem and its analogue may differ in the form of defini
tions, if one contains an expanded definition for a certain predicate P and the other 
contains a' corresponding formula P(Ct, . .. , cn ). To remove these superficial differ
ences, Handle Definitions enlarges ass(M) by the definitions of the predicate and 
function symbols occurring in the postconditions of M. 

Furthermore the meta-method changes M2.-methods by adding the expanded 
definition that corresponds to the formula P(Cl, •.• , en) or f( Ct, ..• , cn) to ass(M) 
if this formula belongs to ass(M) and adds the formula if the expanded definitions 
belong to ass(M). The content of the slots pre(M)and dec-cont(M), and concl(M) are 
not changed. 

The expansion could lead to the well-known explosion of expanding the expansion 
of a definition (and so on), but note, that we only expand up to the heuristic limit 
of a recursion depth of two. 

Deduction Normal Form 

Deduction Normal Form reformulates a method in order to obtain conclusions that 
are comparable. This meta-method corresponds to and is justified by the deduction 
theorem. 

Deduction Normal Form is applied to Mh - and M2.-methodsM if 
a) concl(M) is of the form A ~ B or 
b) concl(M) is of the form Vx(A(x) ~ B(x)). 
For ass(M)=~ the resulting method M' asserts A and concludes B, i.e., ass(M')=~U 

{A} and concl(M')=B or ass(M')=~ U {A(c)} and concl(M')=B(c). 
'For instance, in the example of de la Tour and Kreitz, the method MI with 

concl(Mr)=Vx, y(Qxy -t Vz(Pxz -t Pyz)) /\ Qab /\ (Paa V Pbb) -t 3xPbx 
and ass(Md=0 is reformulated by Deduction Normal Form to the method Mu with 
concl(Mu )=3xPbx and 
ass(Mu)={Vx,y(Qxy -t Vz(Pxz ~ Pyz», Qab, (Paa V Pbb)}. 

Let ass(M)=~ and let C be a constant. The reformulation of the method M 
proceeds as follows: 
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Handle Definitions

Definitions of a predicate P or a function f are formulae of the form
V501, . . . ‚a:„(P(a:1 . . . as”) H formulap($1 . . . x„)) and
V331, . . . , :cny(f(:r:1 . . . aan) = y H y = term(a:1, . . . , an»,  where formula}: is an object
level formulae that defines P and term ‚« is an object level term that defines f .
For example:
V$1,xg(symm(R) H ([31, x2] 6 R ——> [1132‚ £1] E R)) 1s the definition of symmetry for
the relation R.
Expanding a definition then amounts to rewriting the occurrence of, say
P(c1, . . . , c„) by formulap(c1, . . . , cn) and f(c1,. . . , cn) by term(c1‚ . . . ‚an) respect-
ively.

The assumptions of a problem and its analogue may differ in the form of defini—
tions, if one contains an expanded definition for a certain predicate P and the other
contains a'corresponding formula P(c1,. . . ‚an). To remove these superficial differ-
ences, Handle Def in i t ions  enlarges ass(M) by the definitions of the predicate and
function symbols occurring in  the postconditions of M.

Furthermore the meta—method changes M2...-methods by adding the expanded
definition that corresPonds to the formula P(c1, . . .,cn) or f (c l ‚  . . . , cn) to ass(M)
if this formula belongs to ass(M) and adds the formula .if the expanded definitions
belong to ass(M). The content of the slots pre(M)and dec-cont(M), and concl(M) are
net changed.

The expansion could lead to the well-known explosion of expanding the expansion
of a definition (and so on), but note, that we only expand up to the heuristic limit
of a recursion depth of two.

Deduct ion Normal Form

Deduction Normal Form reformulates a method in order to obtain conclusions that
are comparable. This meta-method corresponds to and is justified by the deduction
theorem.

Deduction Normal Form is applied to M1..- and M2..-methods M if
a) concl(M) is of the form A _» B or
b) concl(M) is of the form Vx(A(:z:) -——> B(a:)).
For ass(M):”-A the resulting method M’ asserts A and concludes B, i. e. ,’ass(M ) :*AU
{A} and concl(M.’ )=  B or ass(M’ ) zA U {A(c)} and concl(M’ ) 2  B(c).

For instance, in  the example of de la Tour and Kreitz, the method M1 with
concl(Ml')=Va:, y(Qxy -—> Vz(Pa:z —+ Pyz)) A Qab /\ (Paa V Pbb) —-> Elasa:
and ass(M1)=0 is reformulated by Deduction Normal Form to the method M11 with
concl(Mu):E|:ex and
ass(Mn):{Va:, y(Qa:y —-+ Vz(P:L'z ——+ Pyz))‚ Qab, (Paa V Pbb)}.

Let ass(M)=A and let c be a constant. The reformulation of the method M
proceeds as follows:
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1.	 Change lines of dec-cont(M) 

. (a)	 If there are lines
 
a) (I. ~ f- A -+ B (-+ /la)) or
 
b) (It. ~ I- A(e) -+ B(e) (-+ Ila)) and
 
(/. ~ I- 'v'x(A(x) -+ B(x))('v'Ilt ))
 

in dec-cont(M), then delete these lines. 

(b)	 If there is a line 
a) (I. ~ I- A -+ B(PLANt}) or 
b) (I. ~ I- A(e) -+ B(e)(PLANt}) in dec-cont(M), then replace it by 
a) (l. ~ U {A} I- B(PLAN2 )) 

b) (l. ~ U {A(e)} I- B(e)(PLAN2 )) with a new method variable PLAN2 

and add the line 
a) (lr' {A} I- A (HYP)) 
b) Ir {A(e)} I- A(e) (HYP). 

(c) Else, insert the two lines 
a) (In+!' {A} I- A (HYP)) and 
(In+2' ~ U {A} I- B (-+ DI,ln+1 )) or 
b) (In+!' {A(e)} I- A(e) (HYP)) and 
(In+2' ~U {A(e)} I- B(e) (-+ DI,ln+d) with a new constant e. 

2.	 Rewrite ass(M) and concl(M) to
 
a) ass(M')=~ U {A} and concl(M')=B
 
b) ass(M')=~ U {A(e)} and concl(M')=B(e).
 

3.	 If the antecedens of concl(M) is a conjunction A = (AI /\ . .". /\ Am) , then set 
ass(M')=~ U {At, ... , Am} and in addition change the declarative content as 
in Decompose Assumptions. 

4.	 (Ded: labeljA -+ B) is stored in the history slot with some of the labels a), b), 
lea), l(b), l(c), and Conj which indicate the kind of treatment of dec-cont(M). 
This information makes the reversion of Deduct ion Normal Form possible later 
on. 

4.1.2 Meta-methods for Direct Reformulation 

The meta-methods of this class reformulate Mh-methods only. They have a problem 
P as a parameter which is the postcondition of the M2..-method the reformulation of 
the method M is directed to andthey do not change the history slot of M. 

One problem that is still unsolved is that these reformulations are directed towards 
a problem P as above. In our context of theorem proving by analogy this problem is 
the target problem P2 or normalizations and abstractions thereof. That means that 
at most one direct reformulation can be applied and this may be insufficient in many 
cases. 

22 

1. Change lines of dec-cont(M)

.(a) If there are lines
a) (1. Al— A —+ B (—> 1(3)) or
b) (lt. A l- A(c) —-> B(c) (_) 113)) and
(I. A I- Vx(A(a:) —-—-> B(:c))(VIlt))
in dec-cont(M), then delete these lines.

(b) If there is a line
a) (I. A l- A ——> B(PLAN1)) or
b) (l. A l- A(c) --> B(c)(PLAN1)) in dec—cont(M), then replace it by
a) (1. A U {A} I- B(PLAN2))
b) (l. A U {A(c)} I- B(c)(PLAN2)) with a new method variable PLAN;
and add the line
a) (l,. {A} l- A (HYP))
b) I, {A(c)} !- A(c) (HYP).

(c) Else, insert the two lines
a) (In“. {A} l- A (HYP)) and
( ln+2 .  A U {A}  l— B (_) DI ,  l n+1) )  01'

b) (In“. {A(c)} I'- A(c) (HYP)) and
(In“. A U {A(c)} I- B(c) (—-> DI, ln+1)) with a new constant c.

2. Rewrite ass(M) and concl(M) to
a) ass(M’)=A U {A}  and concl(M’)=B
b) ass(M’)=A U {A(c)} and concl(M’)=B(c).

3. If the antecedens of concl(M) is a conjunction A = (A1 A . A Am) , then set
ass(M’)=A U {A1, . . . , Am} and in addition change the declarative content as
in Decompose Assumptions.

4. (Ded: label;A -——> B) is stored in the history slot with some of the labels a), b),
1(a), 1(b), 1(0), and Conj which indicate the kind of treatment of dec-cont(M).
This information makes the reversion of Deduct ion Normal Form possible later
on.

4 .1 .2  Meta-methods for Direct Reformulation

The meta-methods of this class reformulate M1...—methods only. They have a problem
P as a parameter which i s  the postcondition of the M2...-method the reformulation of
the method M is directed to and they do not change the history slot of M.

One problem that is still unsolved is that these reformulations are directed toward-s
a problem P as above. In our context of theorem proving by analogy this problem is
the target problem P2 or normalizations and abstractibns thereof. That means that
at most one direct reformulation can be applied and this may be insufficient in many
cases.
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Symbol Mapping 

The mapping of symbols from the base case to the target has been the standard 
approach in theorem proving by analogy, where this mapping establishes the analogy 
between two proofs. The representation of a symbol mapping as a meta-method 
allows us to integrate this into our framework. The meta-method Symbol Mapping 
tries to make the conclusions of two methods equal5

• 

Metamethod: Symbol Mapping 

parameter symbols, P: problem 

pre 
P :(ass, thm) and there exists a mappmg 
f: {symbols} 1-+ {symbols} such that fot symbols symboli 
concl(M) [symbol;/f(symboh)]iJ = thm 

post concl(M')=thm 

procedure PROCSYMBOL (see below) 

rating SYMBOL-rating 

The mapping f is selected according to heuristics that are encoded in SYMBOL
rating. We require that the mapping f is in fact a function, Le., if f( x) = y and 
f(x) = z, then y = z. Some authors call this consistency and they also sometimes 
explicitly drop this requirement (see e.g., [27]). Furthermore, f should be minimal in 
that it maps only symbols occurring in concl(M). If more than one symbol mapping is 
applicable, then the heuristic measure of the justifications rate the different mappings. 
Several such heuristics were proposed by Owen in [27], e.g., the identical symbols 
heuristic and .the syntactic type heuristic. A good justification of Symbol Mapping 
is given by the so-called theory interpretations that are employed in IMPS [15]. 

PROCSYMBOL modifies M: 

• Replace all occurrences of the symbol s by f( s ). 

• Change, if necessary, the corresponding sort declarations. 

Examples 
Examples for an application of Symbol Mapping are the reformulation of the method 
for theorem 3.3. in HUA to the method for theorem 6.3. in HUA (see [23]) and the 
reformulation presented in chapter 3 that includes the symbol mapping {b 1-+ c}. 

Theory Term Mapping 

The meta-method Theory Term Mapping replaces certain reference terms at all oc
currences within a method M. The intended goal is to change the actually given 

5An Extended Symbol Mapping can try to equalize the assumptions as well. 
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Symbol  Mapping

The mapping of symbols from the base case to  the target has been the standard
approach in theorem proving by analogy, where this mapping establishes the analogy
between two proofs. The representation of a symbol mapping as a meta—method
allows us to integrate this into our framework. The meta-method Symbol Mapping
tries to make the conclusions of two methods equal5.

Metamethod: Symbol Mapping

parameter symbols, P: problem
P=(ass, ihm) afil there exists a mapping

pre f:{symbols} H {symbols} such that for symbols symbol,-
corflMflsymbrn/ilsymbOL-Hgl = thm

post concl(M’)=thm

procedure PROCSYMBOL (see below)
rating SYMBOL-rating

The mapping f is selected according to heuristics that are encoded in SYMBOL-
rating. We require that the mapping f is in fact a function, i.e., if f(x) = y and
f(zr) = z, then y = z. Some authors call this consistency and they also sometimes
explicitly drop this requirement (see e.g., [27]). Furthermore, f should be minimal in
that it maps only symbols occurring in concl(M). If more than one symbol mapping is
applicable, then the heuristic measure of the justifications rate the different mappings.
Several such heuristics were proposed by Owen in [27], e.g., the identical symbols
heuristic and .the syntactic type heuristic. A good justification of Symbol Mapping
is given by the so~called theory interpretations that are employed in IMPS [15].

PROCSYMBOL modifies M:

o Replace all occurrences of the symbol 3 by f(s).

o Change, if necessary, the corresponding sort declarations.

Examples
Examples for an application of Symbol Mapping are the reformulation of the method
for theorem 3.3. in HUA to the method for theorem 6.3. in HUA (see [23]) and the
reformulation presented in chapter 3 that includes the symbol mapping {b |——> 0}.

Theory Term Mapping

The meta-method Theory Term Mapping replaces certain reference terms at all oc-
currences within a method M. The intended goal is to  change the actually given

5An  Extended Symbol flapping can try to equalize the assumptions as well.
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representation such that concl(M') becomes equal to the conclusion thm of the given 
problem (ass; thm )6. 

The meta-method is as follows: 

Metamethod: Theory Term Mapping 

parameter P: problem 

pre 

P :(ass;thm) 
and there exists a mapping f: {terms} H { terms} such that 
concl(M)[termdf(termi)]i=thm, where termi are the ref
erence terms, and for a given background theory T we have 
T I- termi=f(termi) for all i 

post M'=M[termi/f(termi)]i 

procedure PROCTERM-TH (see below) 

rating TERM-rating 

Here termi(Xl, ... , xn) are the reference terms mapped by f. We also assume 
that we have heuristics that select a minimal f out of the possible ones. Theory 
Term Mapping can be justified by equations termi=f(termi) in the theory T. The 
e~istence of a theory that justifies the replacement influences TERM-rating. Of 
course the problem is to find a mapping f: {terms} H {terms} as stated above and 
also to control the potential proliferation of such mappings. This problem is solved, 
e.g., by term rewriting systems. 

The meta-method Theory Term Mapping modifies the preconditions, the post
conditions, and the declarative content of a method M by 
PROCTERM-TH: 

• Replace all occurrences of the reference terms termi(it, ... , tn» in M by the 
image terms f(termi(tl, ','" tn)), where termi(tl,.'" tn) is an instance of termi. 

•	 Modify the corresponding quantification and sort declarations if necessary, i.e., 
if affected by the term replacement. 

Term Mapping 

The meta-method Term Mapping also replaces certain reference terms termi and 
their instances respectively by other terms f(termi) and their instances at all oc
currences in M. The purpose is to change the actually given method to M' such 
that concl(M')=thm for a given problem (ass; thm). As a heuristic restriction, that 
avoids search explosion, the reference terms have to be maximal terms of concl(M). 
That means that concl(M) and thm should have the same logical structure. Another 
constraint which at the same time serves as a justification for Term Mapping requires 

6Theory Term Mapping could be complemented by an Extended Term Mapping whose goal is 
to match the assumptions of the methods as well. 
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representation such that concl(M’) becomes equal to the conclusion thm of the given
problem (ass; thm)6.

The meta-method is as follows:

Metamethod: Theory Term Mapping
parameter P: problem

P=(ass; thm)
- and there exists a mapping f:{terms}I—+{terms} such that

pre concl(M)[termg/f(term,~)],-=thm, where term.- are the ref-
erence terms, and for a given background theory T we have
T l- term;=f(termg) for all i

post M’=M[term‚-/f(term.-)],-

procedure PRO CTERM—TH (see below)

rating TERM-rating

‘ Here term,-(3:1, . . . ,xn) are the reference terms mapped by f. We also assume
that we have heuristics that select a minimal f out of the possible ones. Theory
Term Mapping can be justified by equations term,=f(term,-) in the theory T .  The
ekistence of a theory that justifies the replacement influences TERM-rating. Of
course the problem is to find a mapping f: {terms} H {terms} as stated above and
also to control the potential proliferation of such mappings. This problem is solved,
e.g., by term rewriting systems.

The meta-method Theory Term Mapping modifies the preconditions, the post-
conditions, and the declarative content of a method M by
PROCTERM-TH:

0 Replace all occurrences of the reference terms termin, . . . ,t„‚)) in M by the
image terms f(term,-(t1, . , t„)), where term;(t1, . . . , in) is an instance of ter-m;.

. Modify the corresponding quantification and sort declarations if necessary, i.e.,
if affected by the term replacement.

Term Mapping

The meta-method Term Mapping also replaces certain reference terms term,- and
their instances, respectively by other terms f(term;) and their instances at .a l l  oc-
currences in" M. The purpose is to change the actually given method to M’ such
that concl(M’)=thm for a given problem (ass; thm). As a heuristic restriction, that
avoids search explosion, the reference terms have to be maximal terms of concl(M).
That means that concl(M) and Ham should have the same logical structure. Another
constraint which at the same time serves as a justification for Term Mapping requires

6Theory Tenn Mapping could be complemented by an Extended Term Mapping whose goal is
to match the assumptions of the methods as well.
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that ass(M)[termdf(termd]i ~ assU KB. 

Examples 
The transformation of the proof of 6.9. in HUA to a proof.of 13.7. in HUA by Term 
Mapping is successfully established with the mapping 

f(term) _ { A(X, yz)· A(Y, z) : term = ~(x(~(y, z))) 
- Ao(X, yz)· A(Y, z) : term = ~o(x, ~(y, z)) 

The transformation of the proof of theorem 17.6. in HVA to an analogous proof 
was based on the mapping f: f(xl . X2) = (X2 . Xl). 

Dualities 

Dualities are common in mathematics, e.g., the Stone Duality between (objects in) 
topological spaces and (maximal ideals in) Boolean Algebras. They are good justi
fications for a meta-method that replaces a formula occurring in a method M by its 
dual. This correspondence shows how an interpretation of a theory Tl - by mapping 
the formulae in Tl to formulae in T2 - provides another theory T2, some axioms or 

. theorems of which are images of the axioms of Tl. This concept is applied in IMPS 
[15] where the interpretations (i.e., the mappings that establish the duality) are given 
by the user. 

Add Argument 

This meta-method changes a unary function to a binary one. It should be applied 
if concl(M) of the Mt.-method M equals the conclusion of an M2...-method after 
replacing the unary function symbol f by a binary function symbol f'. Add Argument 
is applicable if the unary function symbol f occurs in the conclusion of M. 

Metamethod: Add Argument 

parameter P: problem 
p: :(ass; thm) and term f(x) occurs In concl(M) and 
thm=concl(M)rf(x )/f'(x, y)1 

M'=M[f(t l )/f'(t1J t 2 )], where tt, t 2 , are terms 

PROCADD (see below) 

ADD-rating 

pre 

post 

procedure 

rating 

The symbols f. f I are the function variables to be instantiated. 
Terms of the form f(terml) that occur in M, where terml is a term, are the 

reference terms. PROCADD replaces f by f I in the parameter slot and modifies the 
preconditions, the postconditions, and dec-cont(M) as follows: 
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that ass(M)[term.-/f(term,~)],- ; assU KB.

Examples
The transformation of the proof of 6.9. in  HUA to a proof. of 13.7. in HUA by Term
Mapping is successfully established with the mapping

__ M12, 3/2) - ‚\(y, z )  : term = <I>(a:(<I>(y, z))-)
f(term) _ { Ao(w‚y2) ° M352) = term = ‘I>o(w‚‘1>(y‚Z))

The transformation of the proof of theorem 17.6. in HUA to an analogous proof
was based on the mapping f: f(a:1 - x2) : (x2 - 3:1).

Dualities

Dualities are common in mathematics, e.g., the Stone Duality between (objects in)
topological spaces and (maximal ideals in) Boolean Algebras. They are good justi-
fications for a meta—method that replaces a formula occurring in a method M by its
dual. This correspondence shows how an interpretation of a theory T1 — by mapping
the formulae in T1 to formulae in T2 — provides another theory T2, some axioms or

. theorems of which are images of the axioms of T1. This concept is applied in IMPS
[15] where the interpretations (i.e., the mappings that establish the duality) are given
by the user.

Add Argument

This meta—method changes a unary function to a binary one. It should be applied
if concl(M) of the M1,..-method M equals the conclusion of an Mgr-method after
replacing the unary function symbol f by a binary function symbol f’ . Add Argument
is applicable if the unary function symbol f occurs in the conclusion of M.

Metamethod: Add Argument
parameter P: problem

P=(ass;thm) and term f(x) occurs in concl(M) and
P” thm=concl(M)[f(x)/f’(x, y)]
post M’=M[f(t1)/f’(t1,t2)], where t1,t2, are terms

_ procedure PROCADD (see below)

rating ADD-rating

The symbols 1? , f ’ are the function variables to be instantiated.
Terms of the form f(terml)  that occur in M,  where terml is a term, are the

reference terms. PROCADD replaces 15 by f ’ in the parameter slot and modifies the
preconditions, the postconditions, and dec-cont(M) as follows:
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•	 Replace in M all occurrences of reference terms f(terml) by f'(terml, term2) 
where term2 is obtained from term! by a syntactic replacement of all variables 
Xij and constants Cjk by new variables Yij and new constants djk of the same 
sorts respectively. Also modify the quantification accordingly. 
Example: Replace l(x) in a formula 
<P1(f(X)) = f(<Pl(X)) by f'(x,y) and f(<Pl(X)) by f'(4)I(X),4>l(Y)) with the result 
<PI (f'( x, y))= f'( 4>1 (x), <PI (y)). 

•	 Replace in all those formulae which were affected by the previous replacement 
the occurrences of subformulae 
(V)4>(Xi1l" ., Xik, CjI, .•• , Cjl), which are maximal with respect to not f (i.e., 
the maximal term not containing f), by 
(V)(4>(XiI, ... , Xik, CjI, ••• , Cjl) /\ 4>(YiI, ... , Yik, dj1 , ... , djl )), where Xij and Cjk are 
variables and constants of the reference terms and Yij and djk are the replacing 
variables and constants of above. 

For instance, VX(<P1(eo) = x /\ f(<P1(eo)) = f(x)) is replaced by
 
Vx, y( <PI (eo) = x /\ <PI (do) = Y /\ f' (<PI (eo), 4>1 (do)) = f' (x, y))
 

•	 If some of the constants c, which occur ina reference term, also occur in a 
line le of dec-cont(M), but no reference term is in this line, a copy Id of le has 
to be inserted into dec-cont(M). This copy. Id is obtained from le by the same 
renaming of the constants occurring in the reference terms as above. 

, Then insert a line led that .contains the conjunctions of the formulae in le and 
Id, the method (/\ I), and support lines le, Id. Also, replace in all dec-cont lines 
the support line name le by led. 

For instance: (le'" f- Vx(eo E S /\ <PI (eo) = x /\ <p(eo) EH) .. .), insert Id and led 
(id f- Vy(do E S /\ <P1(do) = Y /\ <p(do) E H) .. .), and 
(led f- Vx(eo E S /\ 4>l(eo) = X /\ 4>(eo) E H) /\ 

Vy(do E S /\ 4>l(do) = y /\ 4>(do) E H)(/\Ile , Id)). 

Add-Argument can be generalized to n-ary functions f or applied recursively. 

Example 
Add-Argument is, for example, used for the reformulation of theorem 7.5.7. to theorem 
5.7. in RVA where this application of Add Argument essentially maps the function 
variable Op from Op(x) to Op(XI,X2)' For more details see chapter 5. 

Replace Assumptions 

This meta-method reformulates the assumptions of an Mh-method M, if its con
clusion already equals the conclusion of an M2.-method and the assumptions of 
M and the M2.-method differ in few elements only. The postcondition of M2• is 
P=(ass; thm). 
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o Replace in M all occurrences of reference terms f(term1) by f’( terml,  term2)
where term2 is obtained from terml  by a syntactic replacement of all variables
a,- and constants c5), by new variables 31,-,- and new constants djk of the same
sorts respectively. Also modify the- quantification accordingly.
Example: Replace f (x) in a. formula
¢1(f($))  : f ( é l ($ ) )  by Jaw, y)  and f (¢1($) )  by f’(¢1($),  ¢1(y)) with the result
¢1(f’($,y)) = f'(451(x)‚ ¢1(y))-

o Replace in all those formulae which were affected by the previous replacement
the occurrences of subformulae
(V)¢>(:c.-1,. ..,x,-k,c,-1,. . . ,c,;), which are maximal with respect to not f (i.e-.,
the maximal term not containing f ) ,  by
(V)(¢t(x;1, . . . , 33.1,, 651, . . . , cjz)Aqb(y,-1, . . . , ‚y,-k, dj1,. . . , da”), where zu,-,- and «c,—k are
variables and constants of the reference terms and 3/5 and djk are the replacing
variables and constants of above.

For instance, Va:(¢1(c0) = a: A f(¢>1(co)) = f(x)) is replaced by
V$a31(<?51(co)  = 17 A $510310) = y A f’(¢1(00), ¢1(do)) : f ' ( $ay ) )

. If some of the constants c ,  which occur in a reference term, also occur in a
line Ic of dec-cont(M), but no reference term is in this line, a copy 1,; of Ic has
to be inserted into dec-cont(M). This copy. 1,; is obtained from Ic by the same
renaming of the constants occurring in the reference terms as above.

‘ Then insert a line Icd that contains the conjunctions of the formulae in [C and
Id, the method (A I) ,  and support lines 16,14. Also, replace m all dec- cont lines
the support line name l by lcd.

For instance: (lc . . .  |- Va:(c0 € SA  ¢1(co) = a: /\ (6(a)) E H) .  . .) ,  insert ld and lcd
(ld . .. + Vy(do e S A ¢1(d0) 2 y A Wo) e H) .. .), and
(lcd... l- s :(co€ SA¢1(co) = :::/\ (flag) 6 H) / \

we. 6 s A w.) = y A w.) e H)(/\Il.-, a)).
Add-Argument can be generalized to n-ary functions f or applied recursively.

Example.
Add-Argument is, for example, used for the reformulation of theorem 7.5.7. to theorem
5.7. in HUA where this application of Add Argument essentially maps the function
variable Op from 019(3) to Op(a:1, :32). For more details see chapter 5.

Replace Assumptions

This meta-method reformulates the assumptions of an M1...-method M, if its con-
clusion already equals the conclusion of an M2...-method and the assumptions of
M and the Mgr-method differ in few elements only. The postcondition of M2... is
P=(ass;thm).
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Replace Assumptions is presented here for the case 
ass(M)=~ U {<Pt} and ass = ~ U {<P2, <P3}' 
(It can be extended to other cases such as ass(M)=~ U {<PI, <P2} and' ass = ~ U {4>3} 
or ass(M)=~ U {4>d and ass = ~ U {4>2}') 

As this meta-method changes ~ U {4>1} to ~ U {4>2, 4>3}, it has to change all the 
lines of dec-cont(M) that refer in any way to 4>1. 

The scheme of Replace Assumptions looks as follows: 

Metamethod: Repiace Assumptions 

parameter P: problem 

pre 
P-:(assj thm)/\ concl(M)=thm/\ for some ~, <PI, <P2, <P3 
ass(M)=~ u{<PI} /\ ass = ~ U {<P2 <P3} /\ <PI e~ 

post ass(M')=~ U {4>2' 4>3} 

procedure PROCRA (see below) 

rating RA-rating 

The procedure PROCRA modifies ass(M) and dec-cont(M) as follows: 

•	 Replace in ass(M) 4>1 by <P2' <P3. 

•	 Replace the line (In' {<pd f- <PI (HYP)) by lines
 
(In1' {4>2} f- <P2 (HYP)) and
 
(ln2' {<P3} f- 4>3 (HYP)) and (In l • {4>2, 4>3} f-4>2 /\ <P3 (/\1 1nl, 1n2))'
 

•	 Replace each line of the form (1;. E U {<PI} f- <.I> (M; 1n •.. )) by a line
 
(I;I.E U {<P2, <P3} f- <.I> (PLAN; 1nl • ..)).
 

Tautological Equivalence 

This meta-method makes the postconditions of two methods compatible by a proposi
tional reformulation. More specifically, for a method M and a problem P=(ass; thm) 
the formulae from ass(M) and concl(M) are replaced by tautologically equivalent 
formulae from ass and thm. 

Adjust Definitions 

I(Handle Definitions has been applied, concl(M) has not been affected. Therefore 
superficial differences of the conclusion of an Mh - and an M2..-method still exist which 
are differences between expanded definitions and corresponding formulae. Handle 
Definitions applied to a method M and a problem P tries to make these differences 
disappear in that it generates conclusions of M and P which are either both expanded 
definitions or both formulae are of the form P(Cl, ••• , en). 
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Replace Assumptions is presented here for the case
ass(M)=A U {(131} and ass  = A U {%,  Q53}.
(It can be extended to other cases such as ass(M):A U {9151, 962} and' ass = A U {(153}
or ass(M)=A U {a1} and ass  = A U {962}.)

As this meta-method changes A U {all} to A U {$2, (153}, it has to change all the
lines of dec-cont(M) that refer in any Way to (:51.

The scheme of Replace Assumptions looks as follows:

Metamethod: Replace Assumptions

parameter P:  problem
P=(ass;  t t  concKMT=thmA for some A,  951, 452, 453pre aßfiM)=A U {951} A ass == A U {%, 953} MJ  A

post ass(M’)=A U {652, ($53}

procedure PROCRA (see below)

rating RA—rating

The procedure PROCRA modifies ass(M) and dec-cont(M) as follows:

o Replace in ass('M) gel by 452, 9%.

o Replace the line (In. {451} I- d)] (HYP)) by lines
(11,1. {€132} I- 962 (HYP)) and _
(Inz-  {Ö3}  f- 453 (HYPD and ( In“  {4523 953} |_ 932 A (153 (AI  l n l a  ln2 ) ) '

. Replace each line of the form (l.-. 2 U {051} l- ‘I’ (M,- In . . . ) )  by a line
(l,-‚. .2 U {452,gé3} l- ‘I’ (PLAN.— ln: . . . ) ) .

Tautological Equivalence

This meta—method makes the postconditions of two methods compatible by a proposi—
tional reformulation. More specifically, for a method M and a problem P=(ass;  thm)
the formulae from ass(M) and concl.(M) are replaced by tautologically equivalent
formulae from ass  and thm.

Adjust Definitions

If/Handle Def in i t ions  has been applied, concl(M) has not been affected . Therefore
superficial differences of the conclusion of an M1,; and an Mgi-method still exist which
are differences between expanded definitions and corresponding formulae. Handle
Def in i t i ons  applied to a method M and a problem P tries to  make these differences
disappear in that it generates conclusions of M and P which are either both expanded
definitions or both formulae are of the form P(c_1, . . . , en).
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4.1.3 Meta-methods for Abstraction 

Some of the most important reformulation technrques in theorem proving are gen
eralization and abstraction. According to Kodratoff and Michalski generalizations 
are reformulations along the subset dimension, i.e., every model of a formula is a 
model of the generalized formula. Abstractions are reformulations that eliminate the 
information which is not relevant for the goal [24]. According to this view of ab
straction, our abstracting meta-methods should preserve the important proof steps 
and the important parts of the formulae and eliminate others. In practice, however, 
many of the known reformulations are generalizations as well as abstractions. 

For analogy-driven theorem proving, only those abstractions are of interest which 
are restricted by the requirement7: 

If abstraction(probleml)=abstraction(problem2)' 
then reverse..abstraction(abstraction(proof(probleml))) 
is an outline for a proof of problem2' 

ab8tmction 

outline(proof(P2» P2 

Figure 7: Abstraction for analogy 

All abstractions presented in this paper are essentially term mappings. They have, 
, however, different preconditions which must be fulfilled. Characteristics of meta
•methods for abstraction are: They are applied to Mt.-methods and Mh-methods, 
. they fill the history slot of M, and they delete information from dec-cont(M). 

Abstraction of Homomorphism 

! A homomorphism F is a mapping S :::} T that is characterized essentially by a 
formula of the form ' 

''r/XI, ••• , xn(F(Js(xt, ... , xn)) = IT(F(XI), . .. , F(xn))), where Is, IT are functions in 
Sand T respectively. However, the defining formulae may differ from this standard 
case, e.g., if Sand Tare H-semimoduls as in many cases of HUA. Then the defining 
formula becomes 

7Giunchiglia and Walsh [17] speak of a different kind of abstraction (PI) if a proof of the ab
stracted problem exists and provides an outline of the proofs of the un-abstracted problems. Our 
abstracted proofs need not be proofs of the abstracted problem. 
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' 4 .1 .3  Meta-methods for Abstraction

Some of the most important reformulation techniques in  theorem proving are gen-
eralization and abstraction. According to Kodratoff and Michalski generalizations
are reformulations along the subset dimension, i.e., every model of a formula is a
model of the generalized formula. Abstractions are reformulations that eliminate‘the
information which is not relevant for the goal [24]. According to this view of ab-
straction, our abstracting meta»methods should preserve the important proof steps
and the important parts of the formulae and eliminate others. In practice, however,
many of the known reformulations are generalizations as well as abstractions.

For analogy-driven theorem proving, only those abstractions are of interest which
are restricted by the requirement":
If abstraction(problem1)=a.bstra.ction(problem2),
then reverseabstraction(abstraction(proof(problem1 )))
is an outline for a proof of problemg.

= abstraction (Pl)  abstraction (proofl) MATCH l abstraction (P2)

1: _abmclion abstraction

In  outline(proof(P2)) l | P2

Figure 7: Abstraction for analogy

All abstractions presented in this paper are essentially term mappings. They have,
however, different preconditions which must be fulfilled. Characteristics of meta-
;methods for abstraction are: They are applied to M1,..-methods and M2,.-methods,
they fill the history slot of M, and' they delete information from dec-cont(M).

: Abstraction of Homomorphism

jA homomorphism F is a mapping 5' => T that is characterized essentially by a
formula of the form ‘

: Vx1,. . . , $„(F(fs(:v1, . . . , x„)) = fT(F(a:1), . . . , F(x„))), where fg, fT are functions in
S and T respectively. However, the defining formulae may differ- from this standard
case, e.g., if S and T are H -semimoduls as in many cases of HUA. Then the defining
formula becomes

7Giunchiglia and Walsh [17] speak of a different kind of abstraction (PI) if a proof of the ab-
stracted problem exists and provides an outline of the proofs of the un-abstracted problems. Our
abstracted proofs need not be proofs of the abstracted problem.
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Vx,y(x E S 1\ Y E H -+ F(Js(y,x)) = fT(Y,F(x)), i.e., y is not mapped by the 
homomorphism F. 

The abstraction of such a defining formula describes a homomorphism as a map
ping respecting any operation on the structure S. This is achieved by the meta
method Hom-Abstr that replaces concrete function symbols by variables, abstracts 
certain terms in the defining formula and drops variables which are not mapped by 
the homomorphism. 

This meta-method can be applied to a method M if ass(M) contains the definition 
~ of a homomorphism F, which has the general form 
hom-from_S(F) H VXt, ... , xn , Yll , Ym(Xll . .. ,Xn E S 1\ t/J(Yl, ... ,Ym) -+ 

F(term(xl' ... ' xn )) = term'(F(xl)' ,F(xn ))), 

where the XI, •• • , X n are exactly the variables in S, i.e., the variables which are 
affected by the mapping F. t/J(yI, ... , Ym) is a conjunction of formulae that contain 
the variables Yi only. These conjunctive parts of t/J are called the superfluous formulae. 

The reference terms term, term' occurring in the defining formula ~ are abstrac
ted throughout M. 

The abstraction affects all instances of the reference terms term and term) in that 
it replaces them everywhere in the method M. The superfluous formulae are omitted 
by the abstraction. For instance, a quantifier and the formula (I E F) becomes 
superfluous if 
hom_from_S(</» H Vx,f(x E S 1\ f E F -+ </>(1. x) = f· </>(x)) 
is abstracted to 
hom_from_S(</» H Vx(x E S -+ </>(Op(x)) = Op'(</>(x))). 

Metamethod: Hom-Abstr
 

parameter
 

pre 

post
 

procedure PROCHOM (see below)
 

rating HOM-rating 

F is a function variable, S a variable for a structure, and term, term' are terms 
where the instances of term and term) differ in their function symbols only. 

(Horn: hom-from_S(F) H VXI, , xn , Yll ... , Ym(Xl, . .. , Xn E SI\t/J(yI, ... ,Ym) -+ 

F(term(xI, ... , xn )) = term'(F(xI), ,F(xn )))) is stored in the history slot of M; in 
order to make a later reversion of the abstraction possible. 

The procedure PROCHOM modifies the slots of M by executing the following: 
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Va: ,y(x € S A y 6 H ——> F(fs(y,a:))—_- fT(y,F(a:)), i..e ‚3; is not mapped by the
homomorphism F .

The abstraction of such a defining formula describes a homomorphism as a map-
ping respecting any operation on the structure 5'. This is achieved by the meta-
method Hom-Abstr that replaces concrete function symbols by variables, abstracts
certain terms in the defining formula and drops variables which are not mapped by
the homomorphism.

This meta-method can be applied to a method M if ass(M) contains the definition
(I) of a homomorphism F,  which has the general form
hom_from_S(F) H V931,. . .,:rn,y1,..,...,ym(:z:1, ,:cn E S A ¢(y1, . .  .,ym) -+
F(term(:c1, . . . , x„)) = term’(F(:r1),.. .„F(:z:„)))

where the x1, . . . ‚ zn  are exactly the variables m S , i.e., the variables which are
affected by the mapping'F.  1/)(y1, . . . , ym) is a conjunction of formulae that contain
the variables y,- only. These conjunctive parts of 1,1: are called the superfluous formuiae.

The reference terms term, term' occurring in the defining formula (I) are abstrac-
ted throughout M.

The abstraction affects all instances of the reference terms term and term ’ in that
i t  replaces them everywhere in  the method M.  The superfluous formulae are omitted
by the abstraction. For instance, a quantifier and the formula ( f  € F)  becomes
superfluous if
hom_from_5(¢) H Vx,f(a: € S / \  f € F —> ¢(f - a:) = f - ¢(a:))
is abstracted toham-from—S(¢) ... we e s —+ nope» = op'ue)».

Metamethod: Hom-Abstr

parameter P: problem
_ P='(ass; thm) and there exists a formula (5 =
hom_from_S(F) H V311,. . . , asn, yl, . . . , ym(x1, . . . , sen 6 S A

pre ¢(91,---aym) "+
F(term(a:1, . . . , x„)) : term'(F(a:1), . . . , F(a:„))) and
45 € ass(M) and 95 € ass, where te rm,  term’ are terms.
M’=M[term(t1 . .  . t„)/0p(t1 . . . tn),

post term’(t1...t£)/Op'jt1„.t—„)]
procedure PROCHOM' (see below)
rating HOM-rating

F is a function variable, S a variable for a structure, and t e rm,  t e rm"  are terms
where the instances of term and term’ differ in their function symbols only.

(Hom: hom_from_S(F) H V331, . . . , ann, yl, . . . ,ym(a:1, . . . , m„ € SA¢(y1,. . . , ym) ___-+

F(term(a:1‚ . . . , x„)) = term'(F(:c1)‚ . . . , F(m„)))) is stored in the history slot of M’ in
order to make a later reversion of the abstraction possible.

The procedure PROCHOM modifies the slots of M by executing the following:
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•	 Check ass(M) for defining formulae of a homomorphism, such as, for instance, 
hom-from_S(4)l) +-+ Vx,f(x E S 1\ f E F -t 4>l(l·S x) = f·T 4>l(X» 

•	 Replace all occurrences of the instances of the reference terms term(tl ... tn) in 
M by Op(tl , . .. , tn) and term' (tl ... tn) in M by Op'(tll ... , tn) (where tl, . .. , tn 
are terms) with the new function variables Gp, Op'. 

•	 Drop the superfluous formulae and superfluous quantifiers of variables that 
occurred within term(tl ... tn), but do not occur in Op(tl , ... , tn), where term 
is a reference term. 

•	 Add (Hom:hom-from_S(F) +-+ VXl, ... , Xn, Yl, ... ,Ym(Xl, . .. , Xn E S 1\ 

'I/J(Yl,.'.,Ym) -t F(term(Xl, ... ,Xn » = term'(F(Xl), ... ,F(xn»» to the his
tory slot. 

•	 Add the function variables Op, Op' to the parameter slot. 

Example 
Hom-Abstr was successfully applied to submethods within the treatment of theorems 
5.7. and 7.5.7. in HUA (see chapter 5). 

Functional Abstraction 

Under certain conditions this meta-method abstracts a term (the reference term) with 
a free variable x to a term fa(x), where fa is a new function variable. It also drops 
quantifiers and membership declarations of variables Yi that are no longer relevant, 
where conjunctions of formulae of the form Xi E Si for some set Si are denoted as 
membership declarations. The preconditions for the application of Functional 
Abstraction is that there is a formula cl> in post(M) that has the form 
VXl, ... , Xn, Yl ... Yk (membership decl. -t 4>(Xl ... , Xn) -t 4>(term(Xl)' ... , term(xn»), 
where the variables Yi occur in term only. This formula should not occur in problem 
P. 

An example of such a formula is 
Vy, Xl, X2(X E F 1\ Xll X2 E F -t (R(Xl, X2) -t R(y . Xl, Y . X2»» 
which is abstracted to 
VXll X2(Xl, X2 E F -t (R(xl, X2) -t R(la(xl)' fa(X2»»' 
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. Check ass(M) for defining formulae of a homomorphism, such as, for instance,
hom.from_S(¢1) <-> Vm',f(x E S A f € F —-> qbl(f -S x) = f -T ¢1(:c))

o Replace all occurrences of the instances of the reference terms term(t1 . . . tn) in
M by 0p(t1, . . . , tn)  and term’  (tl . . .t„) in M by Op'(t1, . . . , tn) (where t l ,  . . . , tn
are terms) with the new function variables Op, Op'.

. Drop the superfluous formulae and superfluous quantifiers of variables that
occurred within term(t1 . . .tn), but do not occur in Op(t1, . . . , in), where term
is a reference term.

0 Add (Homzhom_fr0m..S(F) H V331, . . . , ccm yl, . . . , ym(:z:1, . . . , x„ € S A
1/)(3/1, .. . . ,  %) —> F(term(x1, . . . , x„)) = term’(F(a:1), . . . , F(x„)))) to the his-
tory slot.

0 Add the function variables Op, Op' to the parameter slot.

Example
Hom-Abstr was successfully applied to submethods within the treatment'of theorems
5.7. and 7.5.7. in HUA (see chapter 5).

Functional Abstraction

Under certain conditions this meta-method abstracts a term (the reference term) with
a free variable 3: to a term fa(:€), where fa is a new function variable. It also drops
quantifiers and membership declarations of variables y; that are no longer relevant,
where conjunctions of formulae of the form a:,— 6 S.- for some set S.- are denoted as
membership declarations. The preconditions for the application of Functional
Abstraction is that there is a formula @ in post(M) that has the form
Vx1,. . . , mu, yl . . .yk (membership decl. _; qb(a:1 . . . , run) —+ ¢(term(a:1), . . . ,term(:c.,,))),
where the variables 3;.- occur in term only. This formula should not occur in problem
P.

An example of such a formula is
Vy,a:1,:1:2(a: € F /\ $1 ,132  € F -+ (R($1 ‚$2 )  —" RO} ' 331,31 ' 532)» )

which is abstracted to
V$1‚$2($1 ‚$2  € F "* (Rhona)  "* R(fa ($1 )a fa ($2 ) ) ) ) °
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MetaInethod: Functional-Abstr 

parameter P: problem 
there eXl~ts a tormufa cP ot the torm 
VX1, ... , Xn , Yl ... Yk (membership declaration -+ 

4>{Xl ... 'Xn ) -+ 4>{term{xt}, ... , term{xn ))) and Cl> III 

post(M) and Cl> not in P 

M'=M[term(xi)/ fa{xi)]i 

PROCFUNC{see below) 

FUNC-rating 

pre 

post 

procedure 

rating 

The Xi are the maximal terms in 4>{Xl ... ' x n ). term is a metavariable for the 
reference term that contains only one variable. 
Functional-Abstr reformulates a method M to a method M' by executing the pro
cedure PROCFUNC: 

•	 Replace in M all occurrences of instances of the reference term term{ti) by 
faCti) , where fa is a new function variable. 

•	 Delete membership dec~arations that became superfluous by the introduction 
of fa, and delete the corresponding quantifiers. 

For example, if Functional-Abst replaces the reference term (h· x) by Ia{x), 
then the quantifier and membership declaration of h, (h E F) become superflu
ous 

•	 Add (Functional-Abst: VX1' ... ' X n , Yl ... Yk(membership decl. -+ 4>(Xl .. "x n ) 

-+ 4>{term(xl)' ... ; term(xn )))) to the history slot of M. 

•	 Add the new parameter fa to the par~met~r slot of M. 

Example 
Functional-Abstraction can be applied among others to a method that encodes a 
subproblem of 5.2. of HUA and its proof. The assumptions of the method contain 
the formulae 
cl> = Vh,ft,h{h,fI,h E F -+ R{ft, h) -+ R(h. ft,h· 12))· 
Hence, h . t is replaced by faCt) for terms t. 

The assumptions of the analogue of subproblem 5.2.1. of HUA contain the formula 
cl> = Vh, fl, h(h E F /\ ft, 12 E S -+ R(fl' h) -+ R(h . ft, h ·12))· 
Hence, h . t is replaced by faCt) for terms t. 

List Abstraction 

Under certain conditions this meta-method abstracts a list (the reference list) to 
a term fl([xI, . .. ,xnD, where f l is a new function variable, and drops membership 
declarations of variables which do no longer occur in the postconditions. 
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Metamethod: Functional-Abstr

parameter P: problem
there exists a formula <5 of the form
l ,  . . . , mm yl . . . yk (membership declaration ——>

pre ¢(:1:1 . . . , %) —+ ¢(term(:r1), . . . , term(:c„))) and (I) in
ost(M) and (P not in P

post M’=M[term(x‚-)/fa(a:.-)]g

procedure PROCFUNC(see below)
rating FUNC-rating

The x,- are the maximal terms in (“3:1 . . . ,mn). term is a metavariable for the
reference term that contains only one variable.
Functional-Abstr reformulates a method M to a method M’ by executing the pro-
cedure PROCFUNC:

0 Replace in M all occurrences of instances of the reference term term(t.-) by
fa( t ; )  , Where fa, is a new function variable.

‚. Delete membership declarations that became superfluous by the introduction
of fa, and delete the corresponding quantifiers.

For example, if Functional-Abst replaces the reference term (h » a:) by fats),
then the quantifier and membership declaration of h,  (h € F) become superflu—
ous,

0 Add (Functional-Abst: Vx1,. . . , xn, yl . . . “(membership decl. -——> ¢(x1 . . .— , as”)
—+ ¢(term(:r1), . . . ‚term(a:„)))) to the history slot of M.

. Add the new parameter fa to the parameter slot of M.

Example
Funct ional-Abstract ion can be applied among others to a method that encodes a
subproblem of 5.2. of HUA and its proof. The assumptions of the method contain
the formulae
@ = WI, f1‚f2(h‚ fhfz € F "* R(f1 ‚ f2 )  "’ RU‘ ‘ fhh ' f2))-
Hence, h - t is replaced by f.,(t) for terms t .

The assumptions of the analogue of subproblem 5.2.1. of HUA contain the formula .
@ = W», f1.f2(h e F A f1,f2 e s —> R(f1,f2)-+ R(h-f1,,h-f2))-
Hence, h - t  is replaced by fa(t) for terms t .

Lis t  Abstraction

Under certain conditions this meta-method abstracts a list (the reference. list) to
a term f;([a:1, . . . ,x„]),  where f; is a new function variable, and drops membership
declarations of variables which do no longer occur in the postconditions.
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The preconditions for the application of List Abstraction assert that a formula 
~ should occur in post(M) but not in P, where ~ is of the form 
VXt, , x.. , Yt. ... , Ym(membership decl.-+ <Pt ([xt, ... , x..]) -+ <P2(list(xt, ... , xn )))). 

[XI, , xn] denotes the list which is the maximal term in <PI ([XI, ... , x n ]) and 
list(Xl, ... , x n ) denotes the reference list that is the maximal term in 
cP2(list(XI"'" xn )) the elements of which are terms that are dependent on some of 
the XI, .. . , xn. An example for such a formula ~ is the definition of symmetric(R): 
VXI,X2([XI,X2] E R -+ [X2,XI]E R), where list(XI,X2) = [X2,XI] .The terms, i.e. 
here just the two variables, X2 and Xl are dependent on {X2' Xl}' 

The meta-method looks schematically as follows: 

Metamethod: List-Abstr 

parameter . P: problem 

pre 

P :(ass, concl) 1\ et> = 'VXt, ... , Xn , Yt ... Yk(membership de
clarations 
-+ cPI([XI, ... ,xn]) -+ cP2(list(xt, .... , xn)) 1\ 
~ f/. ass 1\ ~ E ass(M) 

post M'=M(list(tt, ... , tn)/f/([xI, ... , x n ])) 

procedure PROCLIST (see below) 

. rating LIST-rating 

The denotations are explained above. The variables Yi of ~ may occur in the part 
list(XI" .. , x n ) only. PROLIST modifies the slots of M by executing: 

•	 Replace list(xI, ... , x n ) by f/([xI, ... , xn ]) with the new function variable f/ 
and delete the quantifiers and membership declarations which became super
fluous. 

•	 Replace list(tI, ... , tn) by fl([tt, ... , tn]) in any instantiation of ~ where the 
Xi are instantiated by terms ti. Drop the superflous quantifiers and the mem
bership declarations which became superfluous. 

• Replace the instances of reference lists ev:erywhere in M and drop the superflu
ous quantifiers andmembership declarations. 

• Add (List-Abstr: VXI,.'" X n , YI ... Yk(membershipdecl.-+ cPI([Xt, ... , x n ]) -+ 
cP2(list(xt, ... , x n ))) to the history slot of M. 

•	 Add a new parameter fl to the parameter slot. 

Example
 
The meta-method List-Abstr was applied in the transformation of a subproof of
 
theorem 4.8. to a subproof of theorem 5.3. of HUA with the reference lists [X2' Xl]
 
and [gXI, gX2] respectively. The respective theorems are:
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The preconditions for the application of L i s t  Abstraction assert that a formula
Q should occur in post(M) but not in P, where Q is of the form
Van, . . . , %,  yl ,  . . . , ym(membership decl.———> qöl([a:1, . . . , a:.„]) —-> 432(list(:rl,  . . . , :::„))))
[x1,. . . , %] denotes the list which is the maximal term in ¢1([x1,. .  . , x„]) and
list(_a:1, . . . , zn) denotes the reference list that is the maximal term in
¢2( l is t (x1, .  . . , (en)) the elements of which are terms that are dependent on some of
the 3:1, . . . ‚x,... An example for such a formula Q is the definition of symmetric(R):
V$1,$2([$1,$2] € R —> [$2,3311'E R) ,  where l i s t ( : r l ,x2)  = [322,31] .The terms, i.e.
here just the two variables, :32 and 3:1 are dependent on {1:2, 2:1}.

The meta—method looks schematically as follows:

Metamethod: L is t -Abs t r

parameter ' P: problem
P=(ass, concl) A Q == l ,  . . . , 18m 3/1 - . -yk(membership de- I
clarations
"" 431([$1‚ - - - ‚.:BnD —+ _¢2(list(x1, . ‚$„))' /\ ‘
Q & ass A Q E ass(M)

post M’=M(list(t1, . . . , t„)/f;([:n1, . . . , x„]))
procedure PROCLIST (see below)

‘ rating LIST-rating

pre

The denotations are explained above. The variables y.- of Q may occur in the part
1ist(a:1, . . . , :cn) only. PROLIST modifies the slots of M by executing:

o Replace list-‚(ml, . . . ,:rn) by f;([:1:1, . . . , %]) with the new function variable f ,
and delete the quantifiers and membership declarations which became super-
fiuous.

o Replace 1.ist(t1, . . . ,tn) by f‚([t1, . . . , tnl) in any instantiation of Q Where. the
a:,- are instantiated by terms ti. Drop the superflous quantifiers and the mem-
bership declarations which became superfluous.

‘. Replace the instances of reference lists everywhere in M and drop the superflu-
ous quantifiers andmembership declarations.

0 Add (List—Abstr : Vxl, . . . , sun, y} . . . “(membership decl.--> ¢1([:c1, . . . , x„]) -->
¢2(l is t( :r l ,  . . . ,xn))) to the history slot of M.

0. Add a new parameter f; to the parameter slot.

Example
The meta—method List-Abstr was applied in the transformation of a subproof of
theorem 4.8. to a subproof of theorem 5.3. of HUA with the reference lists [$2,331]
and [9271,9132] respectively. The respective theorems are:
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Theorem 4.8 Let p and u be two equivalence relations, then 
1. (p nu) is an equivalence relation and. 
2. (pu u)t is the smallest equivalence relation, containing p and u. 

Theorem 5.3 Let p and u be two equivalence relations, then 
1. (p nu) is a leftcongruence and 
2. (p U u)t is the smallest leftcongruence containing p and u. 

By structuring the method (4.8.1.2) for the problem (... f- symm((p nu» and 
the method (5.3.1.b) for the problem 
(... f- (x, y) E (p nu) -+ (Jx, gy) E (p nu)) arise, respectively. After normalization 
ass(4.8.1.2) contains the expanded definition of symm 
VXI,X2«XI,X2) E p -+ (X2,Xt} E p)) which is not in ass(5.3.1.b), and ass(5.3.1.b) 
contains the expanded definition of leftcongruence 
Vg,XI,X2(g E H -+ (XI,X2) E p -+E P(gXl,gX2) E p)) which is not in ass(4.8.1.2). 
Hence, List-Abstr is applicable to both normalized methods and the postconditions 
of the resulting new method match. 

Please note that the usual symbol mapping in work on analogy would be 
symm 1-+ leftcongruence, and this would results in concl(4.8.1.2) = concl(5.3.i.b). 
However it does not provide a match of the respective method assumptions since they 
contain the definitions of symm and leftcongruence respectively. Even an additional 
term mapping would still not yield the required matching. 

4.1.4 Meta-methods for Restructuring 

In this subsection we present some changes of representation obtained by restructur
ing. Some of the meta-methods correspond to well-known methods (e.g., conjunctive 
decomposition). However, the meta-methods have another (meta-theoretic) purpose, 
namely to expose the structure of a proof/a method. 

Although the presented meta-methods were sufficient for our examples, more 
elaborated meta-methods have to be developed for this class (see below). 

The structuring meta-methods eventually change the proof plan structure by 
splitting a method into several new methods or they combine existing methods to a 
new method. Structuring meta-methods can be applied to Mt-- and M2.-methods. 
They do not change the history slot. Their purpose is to create methods for sub
problems, i.e., they are necessary for establishing analogies of subproblems. 

Conjunctive Decomposition 

This meta-method is applied in order to split a conjunctive conclusion into two 
conclusi9ns. Conjunctiv,e Decomposition is applicable to an argument method M 
if concl(M) has the form (V)(A /\ B). It changes M to M' and generates two new 
methods M1, M2 with 
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1. (p fi a") is an equivalence relation and.
2. (p'U a)t is the smallest equivalence relation, containing p and 0 .

Theorem 5 .3  Let p and 0‘ be two equivalence relations, then
1. (p fi a)  is a leftcongruence and
2. (p U a)t is the smallest leftcongruence containing p and cr.

By structuring the method (4.8.1.2) for the problem (. . .  l- symm((p n a)) and
the method (5.3.1.b) for the problem
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Hence, L i s t -  Abstr is applicable to both normalized methods and the postconditions
of the resulting new method match.

Please note that the usual symbol mapping in work on analogy would be
symm l-——> le ftcongruence and this would results 1n concl.(4.8.1. 2) = concl(5. 3.l.b).
However i t  does not provide a match of the respective method assumptions since they
contain the definitions of symm and leftcongruence respectively. Even an additional
term mapping would still not yield the required matching.

4.1.4 Meta-methods for Restructuring

In this subsection we present some changes of representation obtained by restructur-
ing. Some of the meta-methods correspond to well-known methods (e.g., conjunctive
decomposition). However, the meta-methods have another (meta-theoretic) purpose,
namely to expose the structure of a proof/ a method.

Although the presented meta-methods were sufficient for our examples, more
elaborated meta-methods have to be developed for this class (see below).

The structuring meta-methods eventually change the proof plan structure by
splitting a method into several new methods or they combine existing methods to a
new method. Structuring meta—methods can be applied to M1,; and M2...-methods.
They do not change the history slot. Their purpose is to create methods for sub-
problems, i.e., they are necessary for establishing analogies of subproblems.

Conjunctive Decomposition

This meta-method is applied in order to split a conjunctive conclusion into two
conclusions. Conjunctive Decomposition is applicable to an argument method M
if concl(M) has the form (V)(A /\ B). It changes M to M’ and generates two new
methods M1, M2 with
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• concl(Ml)=(V)A and concl(M2)=(V)B respectively, and
 
pre(M = pre(Ml) = pre(M2) .
 

•. Depending on the methodo~curringin the line 
(I. ass I- AAB(METHOD ... ) ), dec-cont(Ml) and dec-cont(M2) are construc
ted. 

- If METHOD equals PLAN, then generate Ml with 
ass(Ml)=(ass(M)UA) or if there is a dec-cont(M)-line 
(... assl I- A ... ) for some assl ~ ass then ass(Ml)=(assl U A); with 
pre(Ml)=pre(M). 

Take the lines of dec-cont(M) for dec-cont(Ml ) except for the lines 
(I. ass I- A A B)(PLAN) and ( 12 , A I- B ...) where A ~ ass.
 
Add the line (/1 , ass I- A (PLAN1)) to dec-cont(Ml) if dec-cont(M) does
 
not contain a line (... A I- A ...) with A ~ ass. Handle M2 analogously.
 

- If METHOD equals (A1), that is, there are lines It, 12 

(11' assll- A (Mi , •.• )) and 
(12' ass21- B (Mj •• •)), then generate a method Ml with ass(Ml)=assl 
and concl(Ml)=A, pre(Ml)=pre(M). In dec-cont(Ml) delete the lines 
(I. ass I- A A B (AI, 11 , 12)) and 12, Proceed analogously for M2. 

• dec-cont(M) is changed to
 
(11' ass I- A (LEMMA))
 
(12 , ass I- B (LEMMA))
 
(13 , ass I- (A A B) (AI, 11 , 12)),
 

pre(M) is augmented by (ass I- A) and (ass l- B). 

Equivalence Decomposition 

If concl(M)=(V)(A ~ B), then the meta-method splits M into submethods M1 and
 
M2 with
 
concl(M1)=(V)(A ~ B) and for concl(M2)=(V)(B ~ A).
 
This meta-method was applied to the method of theorem 5.2. in HUA.
 

Other suggestions for structuring 

Additional structuring heuristics have been investigated, inter alia by: 

• Bishop Brock	 et al. [3] propose to introduce so-called motivations for proof 
parts such that the range of one motivation represents a subproof. 

• Bishop Brock et al. [3] and Stephen Owen [27] suggest heuristics for identifying 
the key steps in proofs. Then the proof parts leading from one key step to 
another can be proposed as subproofs. The application of certain assumptions, 
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. concl(M1)m(V)A and concl(M2)m(V)B respectively, and
pre(‘M = pre(M1) = pre(M2).

o- Depending on the method occurring in the line
(1. ass l- AAB(METHOD . . .) ), dec-cont(M1) and dec—cont(M2) are construc-
ted. '

— If METHOD equals PLAN, then generate M1 with
ass(M1)=(ass(M)UA) or if there is a dec—cont(M)-line
(. . .assl  I- A .  . .) for some assl Q ass then ass(M1)=(assl U A); with
pre(M1)=pre(M).

““ Take the lines of dec-cont(M) for dec-cont(M1) except for the lines
(I. ass I— A A B)(PLAN) and ( 12. A l- B . . .) Where A Q ass.
Add the line (ll. ass I- A (PLAN1)) to dec—cont(M1) if dec-cont(M) does
not contain a line (. . . A i- A . . .) with A Q ass. Handle M2 analogously.

- If METHOD equals (AI), that is, there are lines [1,12
(Il. ass l  |- A (M.-, . . .)) and
(lg. ass2 I'- B (M5 . . .)), then generate a method M1 with ass(Ml)=assl
and concl(M1)=A, pre(M1)=pre(M). In dec—cont(M1) delete the lines
(I. ass I- A A B (AI,11,12)) and 12. Proceed analogously for M2.

. dec-cont(M) is changed to
(Il. ass t- A (LEMMA))
([2. ass |" B (LEMMA))
(13 .  as s  " (A  A B)  (AI ,11 ,12 ) ) .

pre(M) is augmented by (ass t- A) and (ass i- B).

Equivalence Decomposition

If concl(M)=(V)(A H B), then the meta-method splits M into submethods M1 and
M2 With .

concl(M1)=(V)(A —-+ B) and for concl(M )=(V)(B ——> A).
This meta—method was applied to the method of theorem 5.2. in HUA.

Other suggestions for structuring

Additional structuring heuristics have been investigated, inter alia by:

. Bishop Brock et a1. [3] propose to introduce so—called motivations for proof
parts such that the range of one motivation represents a subproof.

. Bishop Brock et a1. [3] and Stephen Owen [27] suggest heuristics for identifying
the key steps in proofs. Then the proof parts leading from one key step to
another can be proposed as subproofs. The application of certain assumptions,

34



such as definitions, were identified as key steps of a proof. A step where tem
porarily introduced symbols are removed, often represents the completion of a 
part of a proof. Hence, the step immediately following the removal is usually a 
key step. 

•	 If a problem is used several times in a proof, the derivation of this problem 
could be considered as a subproof. 

• Proofs incorporating an application of the Deduction Theorem can be split into 
one kernel part and another part that consists of the actual application of the 
Deduction Theorem. (Its precondition is concl(M) = ((V)A -+ B); if A /- B 
occurs in dec-cont(M) or M is an initial method, then M is split; else a new 
method is created by adding a line with A/- B to dec-cont(M).) 

•	 An obvious strategy is to split a method M according to the occurrence of 
names of non-basic methods in dec-cont(M). This meta-method is important 
in particular if the base method is structured already. 

4.2 Other Meta-methods
 

Now we collect some additional meta-methods which we have used.
 

Plan Realization 

This meta-method is applied in VERIFICATION (see chapter 3). Plan Realization 
removes method variables from dec-cont(M), which is a condition for a verification 
ofM. 

More specifically, if an intermediate (i.e., not the last line) PLAN-line 
(... ~ /- </>(PLAN)) occurs in dec-cont(M) , then Plan Realization creates a method 
M' differing from M by the additional precondition (~; </». It changes the PLAN
line. to a LEMMA-line in dec-cont(M). During the completion of the proof plan this 
new precondition causes an additional method Mi to be inserted, preceding M', with 
post(Mi ) = (~; </». 

Change Plan 

This meta-method should be applied before Plan Realization. The purpose is to 
change or to simplify PLAN-lines of dec-cont(M), if one knows that if </>2 could be 
proved then </> is provable. Change Plan finds a precondition </>1 for the proof of a 
formula r/> which is to be proved by a PLAN-line. Then the actual proof of </> is no 
longer unknown but it is derived from the formula </>1, the proof of which is unknown. 
More specifically, the meta-method looks as follows: 
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such _as definitions, were identified as key steps of a proof. A step Where tem—
porarily introduced symbols are removed, often represents the completion of a
part of a proof. Hence, the step immediately following the removal is usually a
key step.

0 If a problem is used several times in a proof, the derivation of this problem
could be considered as a subproof.

. Proofs incorporating an application of the Deduction Theorem can be split into
one kernel part and another part that consists of the actual application of the
Deduction Theorem. (Its precondition is concl(M) = ((V)/& -——> B); if A l- B
occurs in dec—cont(M) or M is an initial method, then M is split; else a new
method is created by adding a line with A l- B to dec-cont(M).)

. An obvious strategy is to split a method M according to the occurrence of
names of non-basic 'methods in dec-cont(M). This meta—method is important
in particular if the base method is structured already.

4 .2  Other  Meta-methods

N 0w we collect some additional meta-methods which we'have used.

Plan Realization '

This meta-method is applied in VERIFICATION (see chapter 3). Plan Realization
removes method variables from dec-cont(M), which is a condition for a verification
of M.

More specifically, if an intermediate (i.e., not the last line) PLAN-line
(. . . A |— “PLAN )) occurs in dec-cont(M), then Plan Realization creates a method
M’ differing from M by the additional precondition (A;  46). It changes the PLAN-
line. to a LEMMA-line in dec—cont(M). During the completion of the proof plan this
new precondition causes an additional method M.- to be inserted, preceding M’, with
post(Ma) = (A; <i>)-

Change Plan

This meta—method should be applied before Plan Realization. The purpose is to
change or to simplify PLAN—lines of dec-cont(M), if one knows that if 452 could be
proved then 45 is provable. Change Plan finds a precondition 451 for the proof of a
formula QS which is to be proved by a PLAN—line. Then the actual proof of 45 is no
longer unknown but it is derived from the formula 9131, the proof of which is unknown.
More specifically, the meta-method looks as follows:
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Metamethod: Change-Plan 

parameter 

pre 
There exist lines (li .. .. r <p (PLAN)) and 
(Ik• ••• r <P1 •••) and there is a formula () = <P1 A<P2 -r.<pand 
() E (ass(M) U KB) and (<P1 -r <!» e (ass(M) U KB) 

post ass(M') = ass(M) U{()}, new PLAN-line (see below) 

procedure PROCCH (see below) 

rating CH-rating 

PROCCH modifies the slots of M in that it 

• adds ~ = <P1 A <P2 -r 4> to ass(M), 

•	 adds the lines (lrn' {()} r () (HYP)), 
(lo' asso r <P2 (PLAN)), and 
(In' assoU aSSk r <P1 A <P2 (AI, h, 10 )) to dec-cont(M), 

• replaces the line (li ... . r if> (PLAN)) by (li .... r if> (-r D, Irn , In)). 

The resulting method M' looks schematicallyas follows: 

Method: M' 

parameter same as in M 

same as in M 

ass(M')=ass(M) U{concl(3)} 
1. , ~ tP2 
2. ; ~ tPl 

3. 3' ~ tPl A tP2 - tP, 
4. 1,3; ~ tPl A tP2 
5. 3,4; .~ tP 

6. ; ~ the remaining lines of dec-cont(

schema interpreter 

same as in M 

(PLAN) 
(same as in 
M) 
(HYP) 
(AI3 1) 
(- D 3 4) 

M) (same as in 
M) 

pre 

post 

dec-cont 

procedure 

history 

Change-Plan is our version of Bledsoe's precondition prover PC [2]. However, 
Bledsoe's procedure is more complicated and has additional features. 

This meta-method has been used to prove theorem 13.7. of HUA, analogously to 
the proof of theorem 6.9. in HUA. 
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Metamethod: Change-Plan

parameter

pre

post

procedure

rating

There exist lines (l,-. . . . l- QS (PLAN)) and
(he. . . . |" 451 . . .) and there is a formula (I) = 451 Aqßg a'cßa-n-d
(I) E (ass(M) U KB) ancflgbl -—-> 95) € (ass(M) U KB)
ass(M’) = ass(M) U{¢I>}, new PLAN—line (see below)
PROCCH (see below)
CH-rating

PROCCH modifies the slots of M in that i t

o adds (I) = 451 A (:32 —> & to ass.(M),

o adds the lines (lm. {(I)} |- ¢I> (HYP)) ,
(la. (1330 l- qßg (PLAN)), and
(In. asso U assk l- 451 /\ gb; (AI, lk, 10)) to dec-cont(M),

o replaces the line (l,-. . . . |— d) (PLAN)) by (l,-... . . l- g!) (——+ D,  lm, l„)).

The resulting method M’ looks schematically as follows:

Method: M ’

parameter same as in M
_ pre same as in M

post ass(M’)=as
1 .  ; I-
2 .  ; l-

3. 3; l-
dec-cont 4. 1, 3; I-

5 .  3 ,4 ;  +-

6 .  ' l"

s(M) U{concl(3)}
952
451

¢1A¢2—>¢
(Öl/“52
(5

the remaining lines of dec-cont(M)

procedure schema interpreter

history same as in  M

(PLAN)
(sameas in
M)
(HYP)
(AI3  1)
(__-> D 3 4)

(same as in
M)

Change-Plan is our version of Bledsoe’s precondition prover PC [2]. However,
Bledsoe’s procedure is more complicated and has additional features.

This meta-method has been used to prove theorem 13.7. of HUA, analogously to
the proof of theorem 6.9. in  HUA.
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Reversion 

There are several variants of Revers ion because different history slot fillers may occur 
L ' 

as parameters of the meta-method. During the analogy-driven plan construction 
meta-methods from the Reversion class reformulate Mt.-methods, the postcondition 
of which has matched the postcondition of an abstracted or normalized M2.-method 
in such a way that the new postcondition matches with the original P2. 

The parameters are the entries of the history slot of the M2.-method. 

4.3 Control Strategies 

An analogy between two theorems and their proofs can be established in many differ
ent ways. Our process of analogy-establishing REFORMULATION starts first with 
the current methods M1 and M2 , constructed in INITIALIZE, the postconditions of 
which do not yet match. Several Mh - and M2.-methods are computed by REFOR
MULATION and added to the set of current methods which are tried for matching 
or for further reformulation. The goal of the reformulation is then to obtain post
conditions of the Mh-method and M2.-method that match. If that is impossible we 
try to find subproblems that match. 

At any point in time during the reformulation process there may be several meta
methods applicable to more than one method, hence the need for control strategies. 

A first and important control strategy fixes the right choice of the class of refor
mulations and these classes are to be activated in a fixed sequence; afterwards we 
have to pick the heuristically best choice within each class. 

The general sequence of these classes that turned out to be most u~eful is: 

1. Normalization 

2. Abstraction 

3. Direct Reformulation 

4. Restructuring 

If the meta-rriethods in Structuring generate new methods, then the reformulation 
cycle starts again with Normalization. The above sequence is realized in the algorithm 
CONSTRUCT-PROOF..BY-.ANALOGY by the function NEXT. 

• NORMALIZATION 
Try to apply meta-methods from the normalization class to the current Mh 

nad M2.-methods as long as possible. This produces new current Mh - and 
M2.-methods. 

Characterization:
 
Normalizing meta-methods try to make the postconditions of methods com

patible. They are applicable to Mh - and M2.-methods. They fill the history
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Reversion

There are several yariants of Revers ion  because different history slot fillers may occur
as parameters of the meta—method. During the analogy-driven plan construction
meta-methods from the Reversion class reformulate Mud-methods, the postcondition
of which has matched the postcondition of an abstracted or normalized M2...—method
in such a way that the new postcondition matches with the original P2.

The parameters are the entries of the history slot of the Mgrmethod.

4 .3  Control Strategies
An analogy between two theorems and their proofs can be established in many differ-
ent ways. Our process of analogy-establishing REFORMULATION starts first with
the current methods M1 and M2, constructed in INITIALIZE, the postconditions of
which do not yet match. Several M1,..- and Man.—methods are computed by REFOR-
MULATION and added to the set of current methods which are tried for matching
or for further reformulation. The goal of the reformulation is then to obtain post-
conditions of the M1,..-method and M2,..—method that match. If that is impossible we
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slot of methods. They do not provide new parameters for the method. They 
do not delete information from the method. 

• ABSTRACTION 
Apply abstracting meta-methods to the current Mt-- and M2*-methods as long
 
as possible.
 

Characterization:
 
These meta-methods fill the history slot of the argument methods. They intro

duce new parameters, and they delete information from the declarative content.
 

• DIRECT REFORMULATION 
Try to apply directly reformulating meta-methods to the current Mh-methods
 
as long as possible with the aim to match the conclusions of corresponding Mh 

and M2 ...-methods. This is dependent on the conclusion of the M2...-method the
 
reformulation is directed to.
 

Characterization:
 
These meta-methods only change Mh-methods. They do not change the history
 
slot.
 

• RESTRUCTURING 
Finally, try to apply meta-methods that restructure the current Mh - and M2*

methods. In particular, the splitting meta-methods are of interest. The result

ing submethods (together with the included subproblems) are the new methods
 
to be treated by the analogy-driven plan construction. Restructuring serves the
 
special purpose to reveal the structure of a proofja method within the refor

mulation process.
 

Characterization:
 
Structuring meta-methods can be applied to Mh - and M2...-methods. They
 
change the number of methods to be considered for a plan.
 

Within each of these classes there are many meta-methods that could be applied 
and their choice is taken by a planning procedure that uses information from the 
rating slot of meta-methods and heuristics. This planner, in a simple case the user, 
decides which of the meta-methods from the active class of meta-methods is to be 
applied in the current situation. The actual design of the planner is outside the scope 
of this paper. 

A control strategy for the right choice of methods to be considered for a reformu
lation is needed as well. There is often little reason to prefer one method over another 
initially. Therefore an agenda-based control as proposed in [27] and [3] turned out to 
be helpful. The methods organized in the agenda are ordered by' a heuristic measure 
of their promise. One of the heuristics to be employed is: Less abstract methods 
should be chosen reformulation before more abstract methods. 
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slot of methods. They do not provide new parameters for the method. They
do not delete information from the method.

ABSTRA‘CTION
Apply abstracting meta-methods to the current M1..- and Mgrmethods as long
as possible.

Characterization:
These meta-methods fill the history slot of the argument methods. They intro—
duce new parameters, and they delete information from the declarative content.

‚DIRECT REFORMULATION
Try to apply directly reformulating meta—methods to the current e-methods
as long as possible with the aim to match the conclusions of corresponding M1...—
and Mgr—methods. This is dependent on the conclusion of the M2,..-method the
reformulation is directed to.
Characterization:
These meta-methods only change M1,..—methods. They do not change the history
slot.

RESTRUCTURING
Finally, try to apply meta—methods that restructure the'current M1,,— and M2...—
methods. In particular, the splitting meta-methods are of interest. The result-
ing submethods (together with the included subproblems) are the new methods
' to be treated by the analogy~driven plan construction. Restructuring serves the
special purpose to reveal the structure of a proof/ a method within the refor—
mulation process. ‘ '
Characterization:
Structuring meta-methods can be applied to M1,.- and M2..-me,thods. They
change the number of methods to be considered for a plan.

Within each of these classes there are many meta-methods that could be applied
and their choice is taken by a planning procedure that uses information from the
rating slot of meta—methods and heuristics. This planner, in a simple case the user,
decides which of the meta-methods from the active class of meta—methods is to be
applied in the current situation. The actual design of the planner is outside the scope
of this paper.

A control strategy for the right choice of methods to be considered for a. reformu-
lation is needed as well. There is often little reason to prefer one method over another
initially. Therefore an agenda—based control as proposed in [27] and [3] turned out to
be helpful. The methods organized in the agenda are ordered by' a heuristic measure
of their promise. One of the heuristics to be employed is: Less abstract methods
should be chosen reformulation before more abstract methods.
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5 Examples 

5.1 The Extended Example of de la Tour and Kreitz 

This example was already discussed in chapter 3, we now repeat it in more technical
 
detail.
 
VvTe start with method M} that looks as follows:
 

Met~od: M} 

parameter 

VJj'ilx,y(((Jxy -t 'ilz(Pxz -t Pyz» I\. (Jab I\. (PaaV Pbb»-t 
3xPbx) 
1. ; 1 I Vx,y(Qxy  Vz(Pxz (HYP) 

Pyz» t\ Qab t\ (Paa V Pbb) . 
2. ; 1 I Vx,y(Qxy  Vz(Pxz - Pyz» (AD 1) 
3. ; 1 I (Paa V Pbb) (AD 1) 

the proof, case 1 
4. 4' I- Pbb (HYP), 
5. 4' I 3xPbx (314), 

case 2 
6. 6' I- Paa (HYP), 
7. ; 1 I- Qab (AD 1) 
8. ; 1 I Vz(Paz - Pbz) (VD, D 

1 7) 
9. 6; 1 I- Pba (VD, D 

8 6) 
10.6; 1 I 3xPbx (319) 
11.; 1 I 3xPbx (VD 10 5 

, 3) 
12. ; I- Vx, y((Qxy  Vz(Pxz (- I 11) 

PlIz)) t\ Qab A (Paa V Pbb)  3xPbx) 

schema-interpreter 

pre 

post 

dec-cont 

procedure 

history 

The method M2 is: 

Method: M2 

parameter 

VJj 'ix, y((Qxy -t 'Vz(Pxz -t Pyz)) I\. Qab I\. Q
(Paa V Pee) -t 3xPex) 

be I\. 
. 

pre 

post 

dec-cont 1.; I- Vx, y((Qxy  Vz(Pxz -
PlIz)) t\ Qab t\ Qbe t\ (Paa V Pee) 

schema-interpreter 

(PLAN) 
3xPex) 

procedure 

history 
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5 Examples

5 .1  The Extended Example of  de la Tour and Kreitz

This example was already discussed in chapter 3, we now repeat it in more technical

We start with method M1 that looks as follows:
detail.

Method: M1
ipa ramete r

pre

post 3:12PM)
1 .  ; l

2 .  ; l
3. ; 1

4.  4;
5 .  4 ;

. 6;
doc-cont 7. ; 1

8 .  ; 1

9 .  6 ;  1

10.6; 1
11.; 1

12 . ;

I... V3, y(Q:cy 34s —-—>
Pyz)) A Qab A (Paa V Pbb)
Var, _“s —-+ Vz(s —-> Pyz))
(Paa V Pbb)

the proof, case 1
Pbb
Bbx

case 2
Paa
Qab
Vz(Paz —-—> s )

Pba

3:1:s
Eba:

Var, y((Q:cy -—> Vz(P:cz —->
Pyz))_/\Qab Micra V Pbb)_—+ €!s

procedure schema—interpreter

history

The method M2 is:

Method: M2

parameter

pre

post

dec-cont ‘!
|_

(0; V93,WQa:y ——> ‘v’zÖxz —-a> PyzW Qab A 6260 A
(Paa V Pg _» Ecaz)
1 .  ' Vac, y((Qa:y --+ Vz(P:cz -—>

s ) )  A Qab A c A_{Paa V Pcc) —> Elcx)

procedure schema-interpreter

history

39

;V:c, y((Q:cy —-——> Vzmzz ——> Pyz)) A QaBA (Paa V Pb5)) ——+

(HYP)
(AD 1)
(AD 1)

(HYP)
(31 4)
(HYP)
(AD 1)
(VD,—> D
1 7)
(VD,-—> D
8 6)
(3L9)
(VD 10 5
3)

(...> I 11)

(PLAN)



M1 is normalized by the meta-method Deduction Normal-Form to Mu: 

Method: Mu 

parameter 

{'v'x, y(Qxy ~ 'v'z(Pxz ~ Pyz», Qab, (Paa V Pbb)}; 
4rPhr 
1. ; 1 I "Ix, y(Qxy -+ Vz(Pxz -+ Pyz» (HYP) 
2. ; 2 I (Paa V Pbb) (HYP) 

the proof,case 1 
3. 3' I- Pbb (HYP), 
4. 3' I 3xPbx (313), 

case 2 
5. 5' I- Paa (HYP), 
6. ;6 I- Qab (HYP) 
7. ; 1.,6,2 I Vz(Paz -+ Pbz) (VD, -+ D 

1 6) 
8. 5; 1,6,2 I- Pba (VD,-+ D 

7 5) 
9. 5; 1,6,2 I 3xPbx (318) 
10.;1,6,2 I 3xPbx (VD 2 4 

9) 

schema-interpreter 
Ded: l(a), a. and Conj; 'v'x,y((Qxy ~ 'v'z(Pxz ~ Pyz» 1\ 
Qab /\ (Paa V Pbb)) ~ 3xPbx 

pre 

post 

dec-cont 

procedure 

history 

Note that the hypotheses introduced in lines 1, 2, and 6 are assumptions. The 
hypotheses introduced in lines 3 and 5 actually are hypotheses which have to be 
removed later on in the proof. 

M2 is normalized to M21 by the meta-method: Deduction Normal-Form to: 

Method: M21 

parameter 

{'v'x, y(Qxy ~ 'v'z(Pxz ~ Pyz», Qab, Qbe, (Paa V Pee)}; 
4rPrr 
1. ; 1 I Vx,y(Qxy -+ Vz(Pxz -+ Pyz» (HYP) 
2. ; 2 I- Qab (HYP) 
3. ; 3 I- Qbe (HYP) 
4. ; 4 I (Paa V Pee) (HYP) 
5. ; 1, 2, 3, 41 3xPex (PLAN) 

schema-interpreter 
Ded: l(b), a, and Con]: 'v'x, y((Qxy ~ 'v'z(Pxz ~ Pyz» 1\ 
Qab /\ Qbe/\ (Paa V Pee)) ~ 3xPex 

pre 

post 

dec-cont 

procedure 

history 

Then Mu is reformulated by Symbol Mapping (b ~ e) to M 12 : 

40 

M1 is normalized by the meta-method Deduction Normal—Form to M11:

Method: M11
parameter

pre
post {V513, 31(w —-> V2(P:cz ——> Pyz)),  QabKPaa V Pbb)};

:lmm

l .  ; l l- Vx,y(Q:cy —+V2(Pa:z —-> Pyz)) (HYP)
2. ;2 !- (PaaVPbb) (HYP)

the proof,case 1
3. 3; l- Pbb (HYP)
4.. 3; l- Hbzc (313)

case 2
5. 5; l- Paa (HYP)

deC-cont 6. ;6 +- Qab (HYP)
7. ; L., 6, 2 l- Vz(Paz ——> s )  (VD,——-> D

1 6
8. 5; 1,6,2 I— Pba (%),—+ D

7 5)
9. 5; 1,6,  2 l- 3:1:s (HI 8)
10.; 1 ,6 ,2  |— Hba: (VD 2 4

9L

procedure schema-interpreter
Ded: 1(a), a. and Conj;Va:,—y((0:ry ——> Vz(Pa:z —-+ Pyzj) A

history Qab A (foo V PbblL—r 3:13PM:

Note that the hypotheses introduced in lines 1 ,  2, and 6 are assumptions. The
hypotheses introduced in lines 3 and 5 actually are hypotheses which have to be
removed later on in the proof.

M2 is  normalized to M21 by the meta-method: Deduct ion Normal-Form to:

MethOd:  M21

parameter

pre
post {V:c, y(Qa:y —-> Vz(Pa:z —-—> Pyz) ) ,  Qab,  c, (Paa V Pcc)};

33:c
l .  ; 1 l- Vx, y(Q:cy —+ Vz(s -—> Pyz)) (HYP)
2. ; 2 I'- Qab (HYP)

dec—cont 3. ; 3 l- c (HYP)
4. ;4 |— (PaaVPcc) (HYP)
5. ; 1, 2, 3, 4|- Elcx @ANL

procedure schema—interpreter
Ded: 1(b), a, andConj: V33, 3Ä(Qxy -——> Vz(Pa:z _» Pym A

history Qab /\ cA  (Paa V Pc  -——+ 3:1:c

Then M11 is reformulated by Symbol Mapping (b H c) to M12:
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Method: M12 

parameter 

{'v'x, y( Qxy -+ 'v'z(Pxz -+ Pyz», Qae, (Paa V Pee)}; 
=IT Pr,.,. . 
1. ; 1 I-- Vx, y(Qxy -+ Vz(Pzz -+ Pyz» (HYP) 
2. ; 2 I- (Paa V Pcc) (HYP) 

the proof,case 1 
3. 3; I- Pee (HYP) 
4. 3; I- 3xPcx (313) 

case 2 
5. 5' I-- Paa (HYP), 
6. ;6 I-- Qae (HYP) 
7. , 1,6,2 I Vz(Paz - Pcz) (VD, D 

6 1) 
8. 5; 1, 6, 2 I- Pea (VD, D 

5 7) 
9. 5; 1,6, 2 I 3xPcx (318) 
10.; 1, 6, 2 I- 3xPex (VD 2 4 

9) 

schema-interpreter 
Ded: 1(a), a, and Conj; 'v'x, y«Qxy -+ 'v'z(Pxz -+ Pyz» A 
QabA (Paa V Pbb)) -+ 3xPbx 

pre 

post 

dec-cont 

procedure 

history 

M12 is reformulated by Replace Assumptions to M13: 
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Method: M12

parameter

pre
post {‘s/a:, y(Qa:y —--> Vz(s ——> Pyzfl ,  Qacflfiaa V Pcc)};

3:1: Pca: '
1. ; 1 l- Vz, y(Qa‚°y ——> V::(Pzz —-> Pyz)) (HYP)
2. ; 2 !- (Paa V Pcc) (HYP)

the proof,case 1
3. 3; |- Pcc (HYP)
4. 3; }- flxc (EI 3)

case 2
5. 5; F Paa (HYP)

dee—cent 6. ; 6 !- Qac (HYP)
7. , 1, 6, 2 !— Vz(Paz ——+ Pcz) (VD,-+ D

6 1
8.  5; 1,  6, 2 I- Pca (VD),—-> D

5 7)
9 .  5 ;  1 ,  6 ,  2 l- Elca: (SI 8)
10.; 1 ,6 ,  2 F 32:c (VD 2 4

9)
procedure schema—interpreter
h '  t Ded: 1 ( a ) ‚  a ,  and Conj; V$‚y( (Qxy  _, Vz(P33z _) PyzD A
13 ory Qab AiPaa v Pbb)) —-> 331353,

M12 is reformulated by Replace Assumptions to M13:
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Method: M13 

parameter 

pre 
fv'x, y(Qxy --+ Vz(Pxz --+ Pyz)), Qab, Qbe, (Paa V Pee)};

post 
:3xPex) 
1. ; 1 I-- "Ix, y(Qxy ~ Vz(Pxz ~ Pyz»	 (HYP) 
2.	 ; 2 I-- (Paa V Pee) (HYP) 

the proof,case 1 
3. 3·, I- Pee	 (HYP) 
4.	 3·, I-- 3xPex (313) 

case 2 
5. 5·, I-- Paa	 (HYP) 
6. ;6 I-- Qab	 (HYP) 
7. ;7 I-- Qbe	 (HYP)dec-cont 
8. ; 6, 7 I- QabAQbe	 (AI6 7) 
9.	 ; 1, 6, 2, 71- Vz(Paz ~ Pez) (PLAN 1. 

8) 
10.5; 1, 6, 2, I-- Pea (VD,~ D 

7 9 5) 
11. 5; 1, 6, 2, I-- 3xPex (31 10) 

7 
12. ; 1, 6, 2, 71-- 3xPex	 (VD 2 4 

In 
schema-interpreter
 
Ded: lea), a, and Con]: Vx,y((Qxy --+ Vz(Pxz --+ Pyz» /\
 

procedure 

history 
Qab/\ (Paa V Pbb)) --+ :3xPbx 

The assumptions and conclusions of M13 match those of Mu. Hence, REVER
SION and VERIFICATION can be applied to this method. Reversion reformulates 
M 13 to M 14 on the basis of the information in the history slot of Mu: 
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Method: M13

parameter

pre

past 3xc)
1 .  ; 1  I-
2 .  ; 2  l-

3 .  3 ;  I-
4 .  3 ;  l-

5 .  5 ;  I-
6 .  ; 6  l-

dec—cont 7- ; 7 "
8. ; 6, 7 I-
9. ; 1, 6, 2, 7F

10.5; 1, 6, 2, I-
7

11.5; 1, 6, 2, I-
7

12 . ;  1 ,  6 ,  2 ,  7}—

Vrc, y(Qa:y --> Vz(P:cz —-> Pyz))
(Paa V Pcc)

the proof,case 1
Pcc
Elca:

case 2
Paa
Qab
c
Qab A c
Vz(Paz —+ Pcz)

Pca

HxPcz

Elcz

procedure schema—interpreter

history

{V3, y(Qa:y —> Vz(Pa:z —+ Pyz)),  Qab, c, (Paa V Pcc)};

(HYP)
(HYP)

(HYP)
(31 3)

(HYP)
(HYP)
(HYP)
(A16 7)
(PLAN 1.
8)

(w,—+ D
9 5)
(3110)
(VD 2 4
11)

Ded: 1(a), a, and Conj: V$,y((Q:cy ——> Vz(Pa:z —+ Pyz)) /\
QabA (Paa V Pbb)) —> Elba:

The assumptions and conclusions of M13 match those of M21. Hence, REVER-
SION and VERIFICATION can be applied to this method. Reversion reformulates
M13 to M14 on the basis of the information in the history slot of M21:
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11ethod: MI4 

parameter 

pre 
0;Vx,y(Qxy ~ Vz(Pxz ~ PyiJ /\ Qab/\ Qbc/\

post 
(Paa V Pbb) ~ 3xPcx 
1. ; 1 I-	 Vx, y(Qxy - Vz(Pxz - Pyz» (HYP) 
2.	 ; 2 I- (Paa V Pee) (HYP) 

the proof,case 1 
3. 3; I-	 Pee (HYP) 
4.	 3', I- 3xPex (313) 

case 2 
5. 5', I-	 Paa (HYP) 
6. ;6 I-	 Qab (HYP) 
7. ; 7 I-	 Qbe (HYP)

dec-cont 8. ; 6,7 I-	 Qab A Qbe (AI 6 7) 
9. ; 1, 6, 2, 71-	 Vz(Paz - Pez) (PLAN) 
10.5; 1, 6, 2, I- Pea (VD,- D 

7 5 9) 
11. 5; 1,6,2, I- 3xPex (3I10) 

7 
12. ; 1, 6, 2, 71- '3xPex (VD 2 4 

11) 
13. ;	 I- Vx,y(Qxy - Vz(Pxz- (- I 12) 

Puz) 1\ Oab 1\ Obe 1\ (Paa V Pbb) - 3xPex 

schema-interpreter procedure 

history 

In order to obtain a verifiable method, the method variable PLAN is removed by 
PlaIl Realization. It reformulates MI4 to MI5 , which can now be verified. 
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Method:  M14

parameter

pre

post

1 .  ; 1  I-
2 .  ; 2  l-

3.  3 ;  }-
4 .  3 ;  l-

5. 5; '}—
6 .  ; 6  l-
7 .  ; 7  I'-

dec—cont  8 .  ; 6 ,  7 |_

9 .  ; 1 ,6 ,  2 ,  7}—
10.5;  1 ,  6 ,  2, I-

7
11.5;  1 ,  6 ,  2 ,  l-

7
12  , 1 ,6 ,  2 ,  7}-

13 . ;  l—

U; Vac, y(Öxy ——> Vzmrz -—> Pyz) A Qab A c A
(Paa V PIE) —> 3:1:c '

Var, y(Q:cy ———> Vz(Pa:z -—+ Pyz))
(Paa V Pcc)

the proof,case 1
Pcc
31c:

-case 2
Paa
Qab
c
Qab A c
Vz(Paz -+ Pcz)
Pca

3:1:Pcz:

3:1:c

V12, y(m ——+ Vz(P:cz -->
13112) A Qab  A c A (Paa V PLZ)) —+ 3:1:c

procedure schema-interpreter

history

(HYP)
(HYP)
(HYP)
(31 3)

(HYP)
- (HYP)

(HYP)
(AI  6 7)
(PLAN)
(VD‚—-> D
5 9)
(31 10)

(VD 2 4
11)
(„> I 12)

In order to  obtain a verifiable method, the method variable PLAN is  removed by
Plan Real izat ion.  It reformulates M14 to M15, which can now be verified.
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IMethod: MI5	 
i 

parameter 

pre {concl(l), concl(2) , concl(6), concl(7)} ,Vz(Paz ~ Pcz) 

0iVx,y(Qxy ~ Vz(Pxz ~ Pyz)) /\ Qab/\ Qbc/\
post 

(Paa V Pbb) ~ 3xPcx 
1. ; 1 r-	 "Ix, y(Qxy -+ "Iz(Pxz -+ Pyz» (HYP) 
2.	 ; 2 r- (Paa V Pee) (HYP) 

the proof,case 1 
3. 3', r-	 Pee (HYP) 
4.	 3-, I- 3xPex (313) 

case 2 
5. 5', I-	 Paa (HYP) 
6. ; 6 I-	 Qab (HYP) 
7. ;7 I-	 Qbe (HYP)

dec-cont 8. ; 6, 7 I-	 Qab 1\ Qbe (1\1 6 7) 
9. ; 1, 6, 2, 7r-	 "Iz(Paz -+ Pez) (LEMMA) 
10.5; 1, 6, 2, r- Pea (VD, -+ D 

7 9 5) 
11. 5; 1, 6, 2, r- 3xPex (31 10) 

7 
12. ; 1, 6, 2, 71- 3xPex (VD 2 4 

11) 
13. ;	 I- "Ix, y(Qxy -+ "Iz(Pxz-+ (-+ I 12) 

Pu;\) 1\ Oab 1\ Obe 1\ (Paa V Pbb) -+ 3xPbx 

procedure schema-interpreter 

history 

M2 is now replaced by MI5 • 

In order to obtain a proof plan for P2 as complete as possible that incorporates 
MI5 , a new method M 2a ha.s to be introduced tha.t succeeds MI5 in the plan. Its 
postcondition has to be equal to pre(MI5) and its precondition has to be empty. 
Such a method to fill the gap between pre(MI5 ) and 0 can be, for instance, 
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MethOd:  M15

parameter

pre {concl(1), concl(2), conc1(6), c0ncl(7)},Vz(Paz —-—> Pcz)
ost @; Vx, y(Q:cy ——+ Vz(P:cz ——+ Pyz)) A Qab A c A

P (Paa V PbbL—r ElmPca:
_1. ; 1 l- Vx, y(Q:cy —-> Vz(P:cz —-> Pyz)) (HYP)
2. ; 2 l- (Paa V Pcc) (HYP)

the proof,case 1
3. 3; l- Pcc (HYP)
4. 3; I- 33:c (Ell 3)

case 2
5. 5; |- Paa (HYP)
6. ; 6 |— Qab (HYP)
7. ; 7 I- c (HYP)

dee-001113 s. ; 6, 7 |—_ Qab A am (AI 6 7)
9. ; 1, 6, 2, 7|- Vz(Paz —-+ Pcz) (LEMMA)
10.5; 1, 6, 2, +— Pca „ (m,—> D '

7 9 5)
11.5; 1, 6, 2, |" 33:c (31 10)

12.31, 6, 2, 7|- 3:1:c (VD 2 4
l l

13.; l- V—x, 31(m —+ Vz(P:rz —-> (—2 I 12)
PyzD A Q05 A c A (for: V Pbb] ——-> 31:s

procedure schema-interpreter

history

M2 is now replaced by M15.
In order to obtain a proof plan for P2 as complete as possible that incorporates

M15, a new method M2,1 has to  be introduced that succeeds M15 in  the plan. Its
postcondition has to  be equal to pre(M15) and i ts  precondition has to be  empty.
Such a method to fill the gap between pre(M15) and @ can be, for instance,
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Method: M2a 

parameter 

{concl(1), concl(2) , concl(3)}; Vz(Paz -+ Pcz) 
1. ; 1 ~ Vx, y(Qxy --+ Vz(Pxz --+ Pyz» 
2. ; 2 ~ Qab 
3. ; 3 ~ Qbe 
4. ; 1, 2 ~ (Pad --+ Pbd) 

5. ; 1,3 ~ (Pbd -+ Ped) 

6. 6· ~ Pad, 
7. 6; 1,2 ~ Pbd 

8. 6; 1,2,3 ~ Ped 
9. ; 1,2,3 ~ Pad --+ Ped 

schema-interpreter 

(HYP) 
(HYP) 
(HYP) 
(VD, --+ 

D,VD12) 
(VD,--+ 
D,VD13) 
(HYP) 
(VD, --+ D 
4 6) 
(--+D75) 
(--+ I 8) 

pre 

post 

dec-cont 

procedure 

history 

To summarize, the analogy-driven proof plan construction consists of the following 
sequence of steps: 

1.	 (a) Applying Deduction Normal-Form to M1 yields Mu and applying Deduction 
Normal-Form to M2 yields M21 • 

(b) Symbol Mapping{yo t-+ xo, Xo t-+ Yo} applied to Mu provides M12 • 

(c)	 Replace Assumptions reformulates M12 to M13 and introduces a PLAN
line in dec-cont(MI3). The postcondition of M13 equals the postcondition 
of Mu. 

(d) M13 is reformulated to Mu by Reversion. 

(e)	 Plan Realization applied to Ml4 yields MI5 • 

2. MI5	 can be verified, and M2 is replaced by MI5 . 

3.	 Plan Planning inserts an additional method M2a with
 
concl(M2a)= Vz(Paz -+ Pcz) and ass(M2a ) ~ ass(M2 ).
 

5.2	 Examples from HUA 

Essentially the same reformulation steps as before can be applied to the first part. 
of a subproof of theorem 17.6. of HUA such that we get an analogous second part 
of this subproof. These two parts of the subproof arise by unfolding definitions and 
subsequent structuring. The subtheorem at hand is of the form (A +-+ B) and the 
second part (~) is to be proven analogously to the first part (-+) of the subproof. 
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Metho d :  Mga

parameter

pre

post {concl(1), concl(2), concl(3)}; V2(Paz —+ Pcz)
1. ; 1 t- Vx, y(Q:‘cy ——+ Vz(Pzz ——> Pyz)) (HYP)
2. ; 2 l- Qab (HYP)
3. ; 3 l- c (HYP)
4 ; 1, 2 |— (Pad —+ Pbd) (VD, _»

‘ D,VD1 2)
_ . 5. ; 1, 3 l- (PM—+ Pcd) (m,—>dec cont D, VD1 3)

6. 6; I— Pad (HYP)
7 .  6 ;  1 ,2  I" Pbd (VD‚ ->  D

4 5)
8. 6 ;1 ,2 ,3 | -  Pcd (—->D7 5)
9. ;1,2,3 !- Pad—+Pcd (—-—>18)

procedure schema-interpreter

history

To summarize, the analogy-driven proof plan construction consists of the following
sequence of steps:

1.  (a)  Applying Deduct ion Normal-Form to M1 yields M11 and applying Deduction
Normal-Form to M2  yields M21.

(b)  Symbol Mapping '{yo H 3:0, 2:0 H yo} applied to M11 provides M12.

(0) Replace Assumptions reformulates M12 to M13 and introduces a PLAN-
line in dec—cont(M13). The postcondition of M13 equals the postcondition

‘ 0f M21.

((1) M13 is reformulated to M14 by Reversion.

(e) Plan Real izat ion applied to M14 yields M15.

2. M15 can be verified, and M2 is replaced by M15.

3. Plan Planning inserts an additional method M20, with
concl(M2a)= Vz(Paz —> Pcz)  and ass(M2,,) (_; ass(M2)‘.

5 .2  Examples from HUA
Essentially the same reformulation steps as before can be applied to the first part.
of a subproof of theorem 17.6. of HUA such that we get an analogous second part
of this subproof. These two parts of the subproof arise by unfolding definitions and
subsequent structuring. The subtheorem at hand is of the form (A H B) and the
second part (4—) is to be proven analogously to the first part (—+) of the subproof.

45



Such a structure of a proof is typical for certain analogies in mathematical theorem 
proving: • 

The first subproblem is: 
{leftcongr(R),agreeable(R,E)}jYR,x,y«x,y) ER -+ Yh(h E F 1\ hx E E -+ hy E E)). 

The second subproblem is: 
{leftcongr(R),agreeable(R,E)}jYx,y«x,y) ER -+ Yh(h E F 1\ hy E E -+ hx E E)). 

Now let us look at another example from HUA:
 
The task is to prove subtheorem 5.7.2.c of 5.7. of HUA by analogy to theorem 7.5.7.2.
 
The actual theorems are,(translated into English):
 

Theorem 5.7.2.c:
 
If S', HI, H2 are semigroups and </>1 : S' =? HI, </>2 : S' =? H2 are two homomorphisms
 
into the semigroups HI and H2 , respectively, and PI, P2 are the induced congruences
 
respectively, and PI C P2, and </>1 is surjective, and there is a cl> : HI =? H2 with
 
cl></>I = </>2, then
 I 

Vx,y(x E HI AyE HI -+ cl>(x· y) = cI>(x)· cl>(y)). 

Theorem 7.5.7.2.c: 
Let S, TI, T2 be F-semimoduls, and let </>1 : S =? TI and</>2 : S =? T2 be two 
homomorphisms into the F-semimoduls TI and T2 , respectively, and let PI, P2 be the 
induced leftcongruences respectively. If PI C P2 and </>1 is surjective, and there is a 
cI> : HI =? H2 with cI></>1 = </>2, then 
Vj,x(x E TI A j E F -+ cI>(J. x) = j. cI>(x)). 

At an abstract level, both theor~ms say that cI> is a homomorphism. However the 
actual definitions of homomorphy differ and, hence, the assumptions, the theorems, 
and the proofs differ. These differences do not disappear by a symbol map. Hence 
known analogy approaches fail. Even if one could find a match of the theorems based 
on tricks such as mapping symbols dependent of their position or argument pairings, 
one still cannot produce certain lines of the proof of 5.7.2.c. from lines of the proof 
of 7.5.7.2.c. For instance, in former approaches the two lines 
( 3y: S(</>I(Y) = b) ) and 
( 3z : S(</>I(Y) = c) ) of the proof of 5.7.2.c are not obtained from the corres
ponding line . 
(.. .3y: S(</>I(Y) = b) ...) of the proof of 7.5.7.2.c.(There are more lines of the proof 
that one cannot obtain by symbol mapping (see [23]). 

As the two theorems are subtheorems of 5.7. and 7.5.7 in HUA (see [23]), a struc
turing has taken place before and is not included in this presentation for simplicity. 
The proof plan for the theorem 5.7. as a whole is not constructed either. 

Besides, a formulation of the theorems (e.g., of the definitions) has been chosen 
that actually not requires normalization. Therefore we left out the normalizations 
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Such a structure of a proof is typical for certain analogies in  mathematical theorem
proving: ‘

The first subproblem is:
{leftcongr(R),agreeable(R,E)};VR,z,y((x,y) 6 R —+ Vh(h E F A has € E -—-> by G E)).

The second subproblem is:
{Ieftcongr(R),agreeable(R, E)};Vm,y((m, y) € R --> Vh(h E F A hy E E -—> ha: E E)) .

Now let us look at another example from HUA:
The task is to prove subtheorem 5.7.2.c of 5.7. of HUA by analogy to theorem 7.5.7.2.
The actual theorems are,(translated into English):

Theorem 5.7.2.c:
If 5", H1, H2 are semigroups and öl : 5' => H1, 952 : 5" => H; are two homomorphisms
into the semigroups H1 and H2, respectively, and pl, p2 are the induced congruences
respectively, and pl C p2, and 9351 is surjective, and there is a ® : H1 => H2 with
q’QSI = ¢2 ,  then '-

Vx,y(a: € H1 A y € H1 —> @(a: - y) = <I>(:I:) - (I)(y)).

Theorem 7.5 .7 .2 .c:
Let S,T1,T2 be F ~semimoduls, and let 951 : S => T1 and “952 : S => T2 be two
homomorphisms into the F -semimoduls T1 and T2, respectively, and let pl, p2 be the
induced leftcongruences respectively. If pl C p2 and ¢1 is surjective, and there is a
<I> : H1 => H2 with (Ml = a2, then ‘
Vf,a:(x€ T1 AfE  F—> @(f-x) = f -  <I>(x)).

At an abstract level, both theorems say that (I) is a homomorphism. However the
actual definitions of homomorphy differ and, hence, the assumptions, the theorems,
and the proofs differ. These differences do not disappear by a symbol map. Hence
known analogy approaches fail. Even if one could find a match of the theorems based
on tricks such as mapping symbols dependent of their position or argument pairings,
one still can not produce certain lines of the proof of 5.7.2.c. from lines of the proof
of 7.5.7.2.c. For instance, in  former approaches the two lines
(. . .33; : S(¢51(y) = b) . .) and
(.  . .Elz : .5'(q$1(y) : c) . . .) of the proof of 5.7.2.0 are not obtained from the corres—
ponding line '
(. . . 3y : S(<fi1(y) = b) . . .) of the proof of 7.5.7.2.c.(There are more lines of the proof
that one cannot obtain by symbol mapping (see [23]).

As the two theorems are subtheorems of 5.7. and 7.5.7 in HUA (see [23]), a struc-
turing has taken place before and is not included in this presentation for simplicity.
The proof plan for the theorem 5.7. as a whole is not constructed either.

Besides, a formulation of the theorems (e.g., of the definitions) has been chosen
that actually not requires normalization. Therefore we left out the normalizations
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(e.g., Handle Definitions) as well as the reversion of normalizations. Note: This 
is done only for clearness. 

The starting method!l are method(5.7.2.c) and method(7.5.7.2.c). For simplicity, 
let the function symbol in term be polymorphic. 

Method: 7.5.7 .2c 

parameter 

{concl( 1), ... , concl(15)}; 
VI, x(f E F A x E Tt -+ ~(f. x) =1· ~(x)) 
1. ; 1 r "Ix, y,f(x, y E T2 A I E F-+ 

x = y -+ I . x = I . y) 
2. ;2 r Vx,f(x E S A lE F -. I· x E S) 
3. ;3 r "Ix, y,f(x, yE T1 A lE F -t (x = y-+ 

I· x = I· y) 
4. ;4 r hom-from-S(4>I) +-+ 

V/,x(f E FA xE S -+ 4>1(f· z) = I· 4>i(x» 
5. ;5 r hom-from-T1(4)) +-+ 

VI, x(f E F A x E T1 -+ 4>(f. x) = I ·4>(x» 
6. ;6 r Vx,f(x E T1 A lE F -+ I· x E Tt} 

15. ;15 r conc/(15) 

Proof 

20.; ... r 3y(y E S A4>1(Y) =b) 

40. ; r lE FA bE T1 -+ 4>(f. b) = I· 4>(b) 

70. ;1-15 r VI, x(f E F A x E T1 -+ 4>(f. x) = I· 4>(x)) 

schema-interpreter 

(KB-HYP) 

(KB-HYP) 
(KB-HYP) 

(DEF 
HYP) 
(DEF 
HYP) 
(KB HYP) 

(HYP) 

(...) 

(...) 

("1135) 

pre 

post 

dec-cont 

procedure 

history 

The declarative content of method 7.5.7.2c is partially omitted, to keep this con
cise, the full proof is presented in [23]. The initial method of theorem 5.7.2.c looks 
as follows. 
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(eng., Handle Definitions) as well as the reversion of normalizations. Note: This
is done only for clearness.

The starting methods are method(5.7.2.c) and method(7.5.7.2.c). For simplicity,
let the function symbol in term he polymorphic.

Method: 7.5.7.2c
parameter

pI'e
ost {concl(1)‚.. .,concl(15)};

P Vf‚x(f€FAx€T1—+‘I>(f ga  %))
. ; 1 Var, y ‚ f ( : c , y  € T; A f e  (KB-HYP)a:—— y—>f ‚.,-.._- foy)2. ;2 I— Vx,f(a:ESAfEF—->f-zES) (KB-HYP)

3. ; 3  l- V$ ,y ‚ f ( z ,yET1Af€F—+(m=y—> (KB-HYP)
f ~ w = f - y)

4. ; 4  l- hom—from—S(¢1) H (DEF
Vf,z(f 6 FA  z. E S —-> ¢1(f-  z ) -_. f ¢1(x)) HYP)

5. ; 5  l- hom—from—T1(<I>) H (DEF
Vf,a:(f € FA &: € T1 —+ <I>(f a: ) :  f <I>(a:)) HYP)

6 . ;6  l -Vx , - f (xET1AfEF—-+f  1 :6  T1) (KBHYP)

dec-cont € 5 E E
15. ;15 l- concl(15) (HYP)

Proof

20: ;. l- 3y(y.6 SA ¢1(y) = b) ( .  . . )

40:} I- fEIi‘AbeT1——><I>(f~b)=f-<I>(b) (.f.)

7031-35 l- Vf,x°(feFAmET1-+gfi)=f.gz)) (vi35)
procedure schema-interpreter

history

The declarative content of method 7.5.7.2c is  partially omitted, to keep this con-
cise, the full proof is presented in [23]. The initial method of theorem 5.7.2.0 looks
as follows.
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Method: 5.7. 2c 

parameter 

pre 
{concl(l), ... , concl(15)}; post 
'v'Xl. X2( Xl. X2	 E HI --+ cI>(xl • X2) = cI>(Xl) . cI>( X2 )) 

1.	 ; 1 /- 'v'Xl,X2,Yl,Y2(XI,X2,Yl,Y2 E lI2 -+ (KB-HYP) 
Xl =X2 1\ Yl =Y2 -+ Xl . Yl = X2 . Y2) 

2. ;2 /-	 'v'XI, X2(X1, X2 E S' -+ Xl . X2 E S') (KB-HYP) 
3.	 ; 3 /- 'v'Xl,X2,Yl,Y2(XI,X2,Yl,Y2 E lIl -+ (KB-HYP) 

Xl = X2 1\ Yl =Y2 -+ xl . Yl = X2 . Y2) 
4.	 ;4 /- hom-from-S'(tPl) +-+ (DEF 

'v'x, y(x, yE Si -+ tPl(X' y) = tPl(X) . tPl(Y)) HYP) 
5. ; 5 /- hom-from-Hl(~) +-+ (DEF 

dec-cont 'v'x, y(z, yE H l -+ ~(z . y) = ~(x) . ~(y)) HYP) 
6. ;6 /-	 'v'x, Y(x, yE H l -+ z . yE lId (KB HYP) 

15. ;15 /-	 concl(15) (HYP) 

Proof 

16.; . /-	 'v'x, y(x, yE H l -+ ~(z . y) =~(z) . ~(y)) (PLAN) 

procedure schema-interpreter 

history 

Since the definition of hom-from-S is in ass(7.5.7.2c), Hom-Abst can be applied 
with the key term term(x) = (J . x). The application of Hom-Abstr to the method 
(7.5.7.2.c) yields the method (7.5.7.2cA) by the transformation 
(J . x) l---+ 0PI (x) and by omitting superfluous set declarations and quantifiers. 

The method(5.7.2c) is abstracted by Hom-Abstr with the key term 
term(x, y) = (x . y) using the transformation (x . y) l---+ 0P2(x, y) for the method 
5.7.2cA. 
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Method: 5 . 7 .  2c_

parameter

pre
{concl(1),.. .,;concl(15)}ost

p V31,332(331L$2 € H1 _) @(xl  $2) :  ‘1>(x1) ‘I’($2))
; 1 " V$1‚$2‚y1 ‚yz ($1 ‚32  311 1/2 € H: -> (KBHYP)

31 :32AM =yz—Hh 3/1 =$z  3/2)2. ; 2 I- V31,32(31,1:2 e s' _» 2:1 - 1-2 6 S’) (KB—HYPj
3-  ; 3 " Vw1.32 ,y1 ,y2 (z1 ,x2 ,y1 ,y2  E H1 ** (KB-HYP)

$1 = 32AM = 92 “* =31 -y1 = 32 '312 )

4 ; 4 I- hom—from—S’(¢1) H (DEF
V3,  31(3: y E S' “+ 45107 ‘ y) = (351(3) ° ¢1(y)) HYP)

5 , 5 l- hom-from—H1(<I>) H (DEF
dee-cent Var, y(:c, y 6 H1 _» <I>(:c y) :  @(z) cm)) HYP)

6. ; 6  I- Va:‚y(:c,yEH1—+:c- yEH1)  (KBHYP)

15. ;15 l- concl(15) (H.YP)

Proof

16- ;  . '- Vz,  may 6 H1 ——+ @(3: - y) = (PC?) ' @@) (PLAN)
procedure schema-interpreter

history

Since the definition of hom-from—S is in ass(7.5.7.20), Hom-Abst can be applied
with the key term term(x) = (f  - :|:). The application of Hom-Abstr to the method
(7.5.7.2.c) yields the method (7.5.7.2cA) by the transformation
( f  - a:) H Op1(:v) and by omitting superfluous set declarations and quantifiers.

The method(5.7.2c) is abstracted by Hom-Abstr with the key term
term(a:,y) : (ar: - y) using the transformation (a: - y) H Op2(:z:,y) for the method
5.7.2cA.
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Method: 5.7. 2cA 

parameter 0P2: function 

pre 
{concl(1), ... ,concl(15)}jVxI,x2(XI, X2 E HI ~ 

post 
~(Op2(X}' X2)) = Op2(~(XI)' ~(X2))) 
1.	 ; 1 f- 'VXl,X2,Yl,Y2(XI,X2,YI,Y2 E H 2 -+ (KB-HYP) 

Xl = X2/\ Yl = Y2 -+ Op2(Xl, Yl) = 
Op2(X2, Y2» 

2. ; 2 f-	 '1xl,X2{Xl,X2 E S'-+ Op2(XI,X2) E S') (KB-HYP) 
3.	 ; 3 f- 'Ix I, X2,Yl,Y2(XI, X2,Yl,Y2 E H l -+ (KB-HYP) 

Xl =X2/\ Yl =Y2 -+ Op2(Xl, Yl) = 
Op2(X2, Y2» 

4.	 ;4 f- hom-from-S'(I/ll) ~ 'Vx,y(x, yE S'-+ (DEF 
I/ll(Op2(X, y» =Op2{l/ll{X), I/ll(Y))) HYP) 

5. ;5 f-	 hom-from-Hl(~) ~'1x, y(x, yE HI -+ {DEFdec-cont 
~(Op2(X, y» =Op2(~{X), ~(y))) HYP) 

6. ;6 f-	 'Ix, y(x, yE HI -+ Op2{X, y) E Ht} (KB HYP) 

15. ;15 f-	 concl(15) (HYP) 

abstracted proof 

16. ;	 f- 'Ix, y(x, yE Hi -+ (PLAN;) 
~(Olh(X,'lJ)) - 01J·:dcl>(x) ~('IJ))) 

procedure schema-interpreter 

history 
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Méthod: 5 . 7 .  2cA

parameter 0192: function

pre
post {concl(1),.. ,;concl(15)} Vm1,x2(:c1,:c2 6 H1 _)

@(0P2($1‚  $211:  0P2(q’ ($1 )  (1)032»)

1-  ; 1  '" V31‚32‚y1 ‚92 ($1 ‚$2 ‚y l  92 € H2 —>
1 '1—" 32  A 311—= ya ** 0192(31, 3h)"—
0P2(32 ,y2 ) )

2.  ; 2 l- V$1,zg.(zl ,zg € S"——+ 0p2($1 ,$2 )  E S')
3-  33 " V$1‚$2‚91 ‚yz ($1 ‚32 ‚y1 ‚yz631“?

an === 232 A 311 = 112 —-> 0p2(1=1‚y1 )  =
0P2(32 ,yz ) )

4. ; 4 l- hom—from—S’(¢1) H Vz,y(:c, y € S’ -+
¢1(0192(3,y)) = -0P2(451(1')‚ (15101»)

dec-cont 5 ; 5 I- hom—from—H1(<I>) H—Vzc, y(z, y € H1 —a-
‘I’(0P2($‚ y))  = 0P2(‘I’($): ‘I’(y)))6-  ; 6 *- Vw‚y(z ‚y  € H1 -> 0p2(z ‚y )  € H1)

15. ;15. l- conci(15)

abstracted proof

16.; l- Vz,y(x,yEH1-—>
@(Opahs ,  y)) = 0pz(<I>(z)‚QLzL)))

procedure schema-interpreter

history
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Method: 7.5.7. 2cA 

parameter 0Pl: function 

pre 
{concl(l), .. . , concf(15)}; V£(x E T l ~ 

post 
Cl> (OPl (x)) = OPl (Cl> (Xn-) 
1. ; 1 ~	 "Ix, y(x, yE T2 -+ X = Y -+ Opl(X) = OP1(Y» (KB-HYP) 
2. ; 2 ~	 'Vx(x E S -+ OP1(X) E S) (KB-HYP) 
3. ; 3 ~	 "Ix, y(x, yE T1 -+ X = Y -+ Opl(X) = OP1(Y» (KB-HYP) 
4.	 ; 4 ~ hom-from-S(iP) +-+ (DEF

'Vx(x E S -+ iP(Opl(X» = Opl(iP(X))) HYP) 
5.	 ; 5 ~ hom-from-T1(<Il) +-+ (DEF

'Vx(x E T1 -+ <Il(OP1(X» = OP1(<Il(X))) HYP) 
6. j6 ~	 'Vx(x E T1 -+ OP1(X) E Tt} (KB-HYP) 

15. ; ~	 concl(15) (HYP;)dec~cont 

abstracted proof 

20.; ... ~	 3y(y E S -+ iPl(Y) = b) (...) 

40. ; ~	 bE T1 -+ <Il(OP1(b» = OP1(<Il(b» (...) 

.. 
70. ;1-15 ~	 'Vx(x E T1 -+ <Il(OP1(X)) = OP1(<Il(X))) ('V1. ..) 

schema-interpreter procedure 

(Hom-Abst:f· x=? OPl(X))history 

The postconditions of the methods (5.7.2.cA) and (7.5.7.2.cA) still do not match. 
Therefore we try a reformulation from the class of direct reformulations. The applica
tion of Add Argument to (7.5.7.2.cA) yields a method (7.5.7.2.cA') the postconditions 
of which match the postconditions of (5.7.2.cA). . 
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Method: 7.5.7.2cA
parameter Opl: function
pre

ostP Maple» =
1. ; 1
2 .  ; 2
3. ; 3
4 ; 4

5 ; 5

dec-cont 15-  ;

20.  ;.  . .

40 . ;

70. ;1_i5

TTT
T

T
'T

'-

{concl(1)‚ . . .,conm15)};VHx € T1 ——>
0P1 ( {)(-TD)

Va), y(a:‚ y 6 T2 —-> :|: = y —-> 0p1(:c) = Op1(y)) (KB-HYP) _
Va:(a: G S -—-* 0p1(:c) E S) (KB—HYP)
Var, y(a:, y 6 T1 --> :1: = y ——> 0191(3) = 0p1(y)) (KB-HYP)
‘hom—from—Sfib) H (DEF-
V3‘30” € S “* 45(0P1($)) = 0P1(45($)))  HYP)

hom-from—T1(<I>) «+ (DEF-
Va:(:c E T1 —-> (I>(0p1(a:)) : Op1((I>[:c))) HYP)
Va:(:c € T1 “+ 0p1(:r)  6 T1) (KB—HYP)

conci(15) (H.YP;)
abstracted proof

aye/e s —» My) = b) (. f.)

b e ia _» <1>(op1(b)) = Op1(<I>(b)) (. ...)

wie T1 _> <I>(0p1(:c)) = 0p1(tI>(a:))) (v i .  . L
procedure schema—interpreter

history (Hom-Abstzf - a: => 0p1(a:))

The postconditions of the methods (5.7.2.cA) and (7.5.7.2.cA) still do not match.
Therefore we try a reformulatioh from the class of direct reformulations. The applica-
tion of Add Argument to (7.5.7.2..cA) yields a method (7.5.7.2.cA’) the postconditions
of which match the postconditions of (5.7.2.cA). '
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Method: 7.5.7 .2cA' 

parameter 0P2: function 

pre 
{concl(1), ... ,concl(15)JjVxt, x2(Xt,X2 E Tt -+ 

post 
cI>(Op2(Xt, X2)) = Op2(cI>(Xt), cI>(x;))) 
1.	 ; 1 I- \lx1,X2,Yl,Y2(X1,X2,Y1,Y2 E T2 -+ Xl = X2 (HYP) 

1\ Y1 =Y2 -+ Op2(Xt, X2) = Op2(Y1, Y2» 
2. ;2 I-	 \lx1,X2(X1,X2 E S -+ Op2(Xt,X2) E S) (HYP) 
3.	 ; 3 I- \lxt, X2, Yt, Y2(X1, X2, Yll Y2 E T1 -+ Xl = X2 (HYP) 

I\Y1 =Y2 -+ Op2(Xt, X2) =Op2(Y1,Y2» 
4.	 ;4 I- hom-from-S(4)) +-+ \lx1, X2(X1, X2 E S-+ (DEF 

4>(Op2(X1, X2» =Op2(4)(Xt), 4>(X2») HYP) 
5.	 ;5 f- hom-from-T1(~) +-+ \lX1,X2(X1,X2 E T1 -+ (DEF 

~(Op2(X1, X2» = Op2(~(Xt}, ~(X2))) HYP) 
6. ;6 I-	 \lx1,X2(X1,X2 E T1 -+ Op2(Xt,X2) E Tt) (KB HYP) 

15. ;15 I-	 concl(15) (HYP)
dec-cont 

Reformulation(abstracted proof) 

20.; ... I- 3y(y E S -+ 4>l(Y) = b) (...) 
21.; ... I- 3z(z E S -+ 4>l(Y) =c) (oo .) 

40.;. oo I- bET1 I\cET1 - (oo .) 
~(Op2(b, c» =Op2(~(b), ~(c» 

88.; I- \lx1,X2(X1,X2 E T1 -+ ~(Op2(Xl,X2» = (\I I ...) 
Ov?(~("x,) C].>( x?)) 

schenaa-interpreterprocedure 

history Hom-Abst:f· x=> OPt (x) 

The postcondition parameter as well as the proof is reformulated by Add Argument 
. For instance, a line 
(..• f-- 3y(y E S/\ <PI (y) = b) ... ) from the main part of the proof schema of (7.5.7.2cA) 
is replaced by two lines 
(..• f-- 3y(y E S /\ <PI(Y) = b) ) and 
(... f-- 3z(z ES /\ <Pt(Y) = c) ), 
and a line 
(.•• f-- bE Tt -+ cI>(OpI(b)) = OPI(cI>(b)) ... ) is replaced by a line 
(... r b E TI /\ e E TI -+ cI>(Op2(b, e)) = Op2(cI>(b), cI>(c)) ...). 

In order to obtain a method whose postconditions match the postconditions of 
(5.7.2.c) the former abstraction of (5.7.2.c) has to be made undone by Reversion. 
This results in (7.5.7.2cA"). Since there is no PLAN-line in the resulting method, 
we try to verify' method (7.5.7.2.cA") without further preparation. The only method 
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Method: 7.5.7.2cA’
parameter Opgz function

pre
post {concl(1),. .,,;concl(15)} Vx1,x2(:c1,:v2 E T1 -—>

“@2031; 502)) - 0P2(‘I’($1) @@n

" V$1‚$2‚  311a 312(31, $2,311,112 € T2 ** $1  = 1'2 (HYP)
A 311"— 3/2 ** 0P2($1 ‚$2 )—-  0p2(y1,y2))

2 ; 2 l- Vzl,a:2(a:1, 2:2 6 S —-> 0p2(a:1‚zg) E S) (HYP)
3 i 3  '— V$1‚$2‚y1 ‚yz (31 ‚32 ‚y l ‚92  6T1  _ } :31  =32  (HYP)

A 311 = 3/2 —> 092081, "32) = 0p2(y1,y2))
4 ; 4 I- hom-from—S(¢) H V31, 222(31, 2:2 € S ——+ (DEF

¢(092(31,-1’2)) = 0P2(¢( - ’81 ) ,¢ (32) ) )  HYP)

5 ; 5 l- hom-from—T1(<I)) H Val, 2:2(271, 2:2 6 T1 --> (DEF
‘I’(0P2(31:32)) = 0P2(‘I’($1):‘1’(32))) HYP)

6 ; Ö i’ V31 ,$2 ($1 ,  1:2 € T1 ** 0p2($1 ,  232) € T1) (KB HYP)

15: ;15  F I 15  H.YP
dec—cont com ( ) ( )

Reformul’ation(abstracted proof)

20. ;. . .  f- 3y(y E S —* (51(9) = b) ( .  . .)
21.;... l- 3z(zES—->¢1(y)=c) (...)

404.... +— öeTlAceTl—n» ( . . . )
‘1’(0p2(b, C)) = 0192690), (Me))

88 . ;  I'- Van, 1:2(31, £2 6 T1 —+ <I>(0p2(a:1, 172) ) :  (V I . . . )
Oßz{<I>(:v1)‚ <I>(a=2))

procedure schema—interpreter

history Hom-Abst: f . 3: => Op1(a:)

The postcondition parameter as well as the proof is reformulated by Add Argument
. For instance, a line
(.  . . I- Ely(y e SA¢1(y) = b)..
is replaced by two lines
(--.F3y(y€SA<fi1(y)=b)——
( . . . l -Hz(zES/ \¢>1(y)=c) . .
and a line

.) and
J,

( .  . .  I— b @ T1 -—+ <I>(0p1(b)) = 0p1(<I>(b)) . . .) is replaced by a line
(... l- !) € T1 A c € T1 -—-> @(Op2(b,c)) = 0p2(<I>(b), @(c)) . . ..)

.) from the main part of the proof schema of (7.5.7.2cA)

In order to obtain a method whose postconditions match the postconditions of
(5.7.2.0) the former abstraction of (5.7.2.0) has to be made undone by Reversion.
This results in (7.5.7.20A”). Since there is no PLAN—line in the resulting method,
we try to verify, method (7.5.7.2.CA”) without further preparation. The only method
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available for constructing a proof plan for the problem 5.7.2.c is (7.5.7.2cA"). We do 
not need to find additional methods for filling gaps as method (7.5.7.2cA") has no 
preconditions. 

Conclusion 

The framework proposed in this paper is based on the described techniques for re
formulation and on the proof plan methodology, such that the construction of proofs 
for analogous problems becomes in principle independent of the actual problem rep
resentation. 

Within this framework several types of analogies can be established: 

•	 Analogies based on direct mapping of proofs onto proofs, as in previous ap
proaches to theorem proving by analogy: 

proof 1 

•	 Analogies based on abstractions of proofs (and subsequent reverse.-abstraction): 

•	 Analogies based on abstracted and in addition reformulated proofs with sub
sequent reverse.-abstraction. 

I abstraction :t----~:Reformulation(abstr) I 

proof 1	 proof 2 I I I I 
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proof 1 proof 2
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To summarize the main points of our approach: 

1.	 Theorems may be given by various representations and this entails that the 
commonality of two problems is often very implicit only. A reformulation of 
the representation is hence necessary to identify the similarity of such problems. 

According to this view of analogous problems, the computer supported refor
mulation becomes an important component of analogy-driven theorem proving. 

2.	 Reformulation includes normalization, structuring, and abstraction. 

•	 Normalization removes some superficial differences between the base and 
the target problem. These changes are hardly ever explicitly mentioned 
by mathematicians, but they have to be explicitly coped with by a com
puter. Such reformulations have not been taken into account in former 
approaches to analogy, which presupposed that there are no such differ
ences between the base and the target problem. 

•	 Structuring is a powerful and important means in mathematical theorem 
proving, in proof planning and in particular in analogy-driven proof plan 
construction: If an appropriate reformulation of a method can not be 
foung., then the reformulation of a submethod which is produced by struc
turing, is often useful. 

•	 Abstraction was not included in previous approaches although it plays an 
important role in proofs by analogy in many cases. 

3.	 The approach is tied into the proof planning methodology by taking methods 
as our basic units too. We take advantage of the following features of methods: 

•	 Methods can represent proof ideas as they may have PLAN-lines and they 
doubt have to be fully instantiated. 

Methods can explicitly represent the structure of a proof by oombining 
several simple methods to. more complex chunks that build the parts of 
the structure. If the base method is structured this way, it represents a 
proof idea for the given theorem, which may be easier to transfer than a 
fully instantiated proof. Thus analogies of proof ideas can be obtained by 
reformulating such methods into other methods. 

Methods need not be 'fully instantiated (although most of our base meth
ods are). Because of this characteristic, methods can represent methods 
in the usual mathematical sense such as, for example, the diagonalization 
method. Hence the very same method can represent several proofs or 
parts of proofs which are analogous to each other. 

•	 Because of the common representation of a problem and its proof in one 
method, the theorem and its proof changes if the I?ethod is reformu
lated. These changes are no longer separated as in previous approaches 
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and much of the subsequent repair of the target proof caused by changing 
the problem can be avoided by an adequate reformulation. 

However many open problems remain: 

•	 Is the set of presented meta-methods complete in ,the sense of covering all 
important reformulations in mathematics?
 

Of course not, and in fact, one cannot expect a complete set of meta-methods.
 
More meta-methods have to be created for other mathematical fields.
 

•	 Have the presented meta-methods been designed specifically to handle the par
ticular examples considered here? 

The suggested meta-methods have been constructed for particular methods 
such that all the problems of a standard textbook could be handled. As noted 
in the previous section, these meta-methods can be used for other purposes 
and other mathematical fields as well. For example, some of the meta-methods 
presented here have played a role in tasks outside of analogy-driven proof con
struction (see e.g., Add Argument in [19]). 

•	 If many more meta-methods will be invented by other researchers, and if all 
then have to be stored for use in a system, how can we cope with the resulting 
large meta-method search space? 

This is of course a problem, however by carefully choosing only those meta
methods relevant for a mathematical subfield, the search space will be reason
ably bounded. Such a classification and additional control information would 
enable the planner to choose meta-methods in a goal-directed manner. 

•	 Is the method language appropriate? 

Basically, the object language of the methods could be extended, although it 
was sufficient for our examples, since at the moment we did not handle less 
instantiated proofs. 

The main incentive for future work, however, will undoubtedly come from the exper
imentation on additional cases from other mathematical fields. 
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