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Abstract

Term rewriting provides a simple mechanism that can be applied to reasoning
in structures defined by equations. An equation is converted into a directed
rewrite rule by comparing both sides w.r.t. an ordering. However, there exist
equations which are incomparable. The handling of such equations includes, for
example, partitioning the given equational theory into a set R of rules and a
set E of equations. An appropriate reduction relation allows reductions modulo
the equations in E. The effective computation with this relation presumes
E-termination. We will give an overview and a classification of the well-known
methods guaranteeing AC-termination based on the recursive path ordering.
Furthermore, we will show that these techniques (called associative path
orderings) cannot use quasi-orderings on operators. Above all, this report will
deal with some new orderings applicable to AC-theories. We apply a slight
extension (the embedding of status] of the concept of the associative path
ordering of Gnaedig and Lescanne to several path and decomposition orderings.
Since these orderings are stronger than the recursive path ordering, the
corresponding orderings restricted to AC-theories are more powerful than the
associative path ordering. From a practical point of view these new AC-
orderings are more interesting than the associative path ordering because the
automatic detection of an admissible precedence for orienting the rules of a
given system is much easier.
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1 Motivation

Term rewriting systems gain more and more in importance because they are a
useful model for non-deterministic computations: They are based on directed
equations with no explicit control. Various applications in many areas of computer
science and mathematics including automatic theorem proving and program
verification, abstract data type specifications and algebraic simplification have
been developed.

The basic concept of term rewriting systems [see for example [AM89], [HO80])
is that of reducing a given term to an easier one. An equation is converted
into a directed rewrite rule in such a way that the right-hand side of the rule
is easier than the left-hand side. In order to exclude infinite derivations of
terms a rewrite system must terminate. Orderings on terms are able to guarantee
termination. A survey of the most important ones is given in [De871

The basic idea-of using an ordering > is to verify that the rewrite relation =R
(induced by the rule system R) is included in >. Such an ordering must be well-
founded to avoid infinite derivations of terms. To check the inclusion |:><.R c >
all (infinitely many) possible derivations must be tested. In order to restrict this
infinite test to a finite one a reduction ordering is required. A reduction ordering
is a well-founded ordering which has the replacement property [also called
compatibility with the structure of terms) which ensures that a value of a term
will be decreased if any one of its subterms is decreased. The notion of reduction
orderings leads to the following description of termination of rewrite systems
(see [La771):

A rewrite system R terminates if and only if there exists
a reduction ordering > such that ofl] > ofr] for each rule
I —>gp r and for any ground substitution o.

The theorem above reveals another dilemma which is known as the universal
quantification on substitutions or the so-called stability w.r.t. substitutions: s > t
implies o(s) > o(t), for all .

Summarizing, it is to remark that a termination proof of a term rewriting system
requires a reduction ordering stabilized w.r.t. substitutions. In general, it is very
difficult to guarantee the well-foundedness of a reduction ordering. This fact






leads to the basic concept of characterizing classes of orderings for which there
is no need to prove this condition. One possible solution is represented by the
class of simplification orderings which are at least reduction orderings:

An ordering Is a simplification ordering if and only if it has
the replacement property,
the subterm property [any term is greater than any of its
proper subterms] and
the deletion property [deleting subterms reduces the term).

Simplification orderings are discussed in detail in [De87] Well-known
simplification orderings are the recursive path orderings and the Knuth-Bendix
orderings. Unfortunately, the termination of an arbitrary term rewriting system
is an undecidable property, even in the 'one-rule case' ([Da88]).

An additional negative fact derives from the existence of equations of which the
left-hand side and the right-hand side are incomparable in any case. For example,
a rewriting system containing the commutativity axiom x+y = y+x as a rule is
non-terminating. However, if the termination property is not satisfied, the set
of axioms can be split into two parts: Those axioms causing non-termination are
used as equations E while the others are used as rewrite rules R. The appropriate
reduction relation allows reductions modulo the equations in E. The effective
computation with this relation presumes

a complete unification algorithm for the equational theory E,

E-termination, i.e. there is no infinite sequence of terms of the
—_— 1 pr— I
form t, =g t; =g t, =g t, )

The classical Knuth-Bendix completion procedure has first been extended to
rewriting modulo equations by Lankford and Ballantyne (see [LB77al), for example
for the case of equations that consist of associativity and commutativity. A
different approach by Huet [[Hu80al] deals with left-linear rewriting systems.
The method by Peterson and Stickel ([PS81]) may be applied to linear theories
with a finite and complete unification algorithm. These methods have been
unified in a more general framework by Jouannaud and Kirchner ([JK861).

We now adapt the general results on termination from the previous page to the
case of equational term rewriting systems.

An equational term rewriting system terminates if there is an ordering > which
contains the rewrite relation R/E = TE°TOR © =E[where o denotes composition

of relations). Testing this inclusion requires all derivations of the form s =gk t

1
\V]
1






to be checked. This requirement can be refined: If > is E-compatible ([PS811), then
> contains =y if and only if it contains '—*=>m (cf. [BP85]). An ordering > is
E-compatible if and only if

s =g s s'
> implies >
t =g t! t'

If a reduction ordering > is E-compatible and o(l] > o(r), for every rule 1 —; 1
and every ground substitution o, then the equational term rewriting system
R/E terminates.

Jouannaud and Munoz succeeded in weakening the E-compatibility for this
statement (see [JM841]). They introduced a property called E-commutation:

s =g s s'
> ‘ implies Jt' >
t t =g t

Jouannaud and Mufioz reduce the E-termination problem to the ordinary
termination problem, in order to apply well known techniques based on
simplification orderings. E-termination and termination of a rewriting relation
are the same if the used rewriting relation is E-commuting. If this property does
not hold, it can be achieved by systematically adding rules which are generated
by orienting critical pairs between rules and equations.

The following theorem ([St89b]) points out the main importance of E-commutation
for the E-termination problem. The theorem is a modification of a result contained
in [JM841

A rewrite system R is E-terminating if there exists an
E-commuting  simplification ordering > such that

ofl] > ofr] for each rule 1 —4, r and for any
ground substitution o.

Obviously, E-termination strongly depends on the given underlying theory E. For
example, E must satisfy the following two conditions in order to prevent infinite
derivations (see [JM841):

-Ilfs=t €E, then the set of variables of both terms must be identical.
Otherwise there will be loops since we may instantiate the
additional variable by an instance of a left-hand side of a rule of
R, then rewrite the term using the rule and thus arrive at the
'starting term' by applying the 'starting equation' twice.

= 3 =






For example,

R x*x1—->x
E: x*0=0
O=p[x*1)*0—>,x%0=0

- Furthermore, E-termination cannot be satisfied if there is an equation
of the form t = x such that x has more than one occurrence in t. In
this case a left-hand side 1 of a rule of R is E-equal to a term with
several occurrences of 1. Therefore, we can rewrite one of these and
start the process again.

For example,

R --x—=>x
E: xaAax=X
X A X %m X A X =E X A [—|—|X A —1—|X] %m

—aX =

E
X A [x A --x]) =g

In this report we are going to deal with a special theory E: associative-
commutative axioms. An equational theory E is called an associative-commutative
theory if every equation in E is either an associative or commutative axiom:

f(x.f(y.z])
f(x,y)

f(t(x,y).z) : 1t €8, and
fly,x) S S P

In order to describe the fact that f is both associative and commutative we use
't € §oc'- An equational term rewriting system (R.E] will be an associative-
commutative term rewriting system if E is an associative-commutative theory.

There only exist a few orderings for this kind of rewriting systems including
the associative path orderings ([Gn88], [GL86], [BP85] [BP85al, [DHJP83]), the
orderings on special polynomial interpretations ([BL87al, [BL86], [La79], [SZ89])
and the associative-commutative Knuth-Bendix orderings ([St89b]).

Associative path orderings extend the recursive path orderings to AC-congruence
classes. They are based on flattening and transforming the terms by a rewriting
system with rules similar to the distributivity (or the endomorphism] axioms.
Furthermore, the precedence on the operators has to satisfy a special property.

The polynomial interpretation I for an associative (and commutative) operator
must be of the form I(f)(x,y) = axy + b[x+y) + ¢ such that ac+b-b2 = 0. The
fundamental disadvantage of polynomial orderings is the difficulty of choosing
interpretations for operators such that a given rewrite system terminates.






The associative-commutative Knuth-Bendix ordering [ACK, [St839b]] is a
modification of the well-known Knuth-Bendix ordering of [KB70] The
transformation of terms required by the associative path orderings, is reduced
to a minimum. Moreover, the algorithm of [Ma87] for finding an adequate weight
function to prove the termination of a given rewriting system w.r.t. the Knuth-
Bendix ordering, can be applied here. Unfortunately, the applicability of the
ACK is bounded by that of the Knuth-Bendix ordering.

Here, we supply a concept which extends the associative path ordering in two
ways. First of all, a proof will be given to justify the use of status in the
definition of the associative path orderings. Furthermore, we have succeeded
in applying the concepts of the associative path orderings to other stronger
orderings including the path of subterms ordering, the path ordering of Kapur,
Narendran and Sivakumar and several decomposition orderings. Thus, this report
is the extension of [St89al ([St88al) to AC-theories. Another advantage of, for
example, the AC-decomposition orderings is that the precedence can often be
derived from the structure of the reduction rules in an easier way than with
the associative path ordering.

After giving some indispensable definitions in the next chapter, the classical
path and decomposition orderings (see [St89al or [St88al) will briefly be
presented. In chapter 4, we recapitulate, classify and slightly extend (by
incorporating status] the concept of the restriction to AC-theories contained
in [BP85] and [GL86]. Moreover, it will be shown that these techniques cannot
use quasi-orderings on the set of function symbols. Subsequently, the application
of this approach to the definitions of the path and decomposition orderings of
chapter 3 as well as the appropriate lemmas and some examples will be given.






2 Notation

A term rewriting system R over a set of terms I' is a finite or countably infinite
set of rules, each of the form 1 —x r, where 1 and r are terms in I', such that
every variable that occurs in r also occurs in 1. The set T of all terms is
constructed from elements of a set § of operators (or function symbols) and some
denumerably infinite set B of variables. The set of ground terms (terms without
variables) is denoted by I . The leading function symbol and the tuple of the
(direct) arguments of a term t are referred to by top(t] and args(t), respectively.
The size |t| of a term t is the number of operators and variables occurring in t.

A substitution o is defined as an endomorphism on I' with the finite domain
{x lo[x) + x}, i.e. o simultaneously replaces all variables of a term by terms. We
use the formalism of positions of terms which are sequences of non-negative
integers. The set of all positions of a term t is called the set of occurrences and
its abbreviation is O(t). Ot(t) is the set of all terminal occurrences [occurrences
of leaves] of t. We write tlu<—s] to denote the term that results from t by
replacing t/u (the subterm of t at occurrence u € O(t)]) by s.

A [partial] ordering on I‘G is a transitive and irreflexive binary relation >. It is
called well-founded if there are no infinite descending chains. Most of the
orderings on terms are precedence orderings using a special ordering on operators.
More precisely, a precedence is a partially ordered set (§ , b) consisting of the
set § of operators and an irreflexive and transitive binary relation d defined on
elements of §. Obviously, a precedence can also be a quasi-ordering. As usual,
a quasi-ordered set (§ , ») consists of the set § and a transitive and reflexive
binary relation > defined on elements of J§. A quasi-ordering defines an
equivalence relation = as both » and 4 (> n 4 , and a partial ordering » as > but
not ¢ P\ 4J.

Note that a term ordering » is used to compare terms. Since operators have terms
as arguments we define an extension of » called lexicographically greater (»!X],
on tuples of terms as follows:

1
(5555 8.) &% (tt,.t])
if either m >0 A n=20

or 5, * t

or s, =t A [SomaB] 2B [t )






If there is no order of succession among the terms of such tuples, these structures
are called multisets. Multisets differ from sets by allowing multiple occurrences
of identical elements. The multiset difference is represented by \. The extension
of » on multisets of terms is defined as follows. A multiset S is greater than a
multiset T, denoted by

S » T
iff - S+ T &
(Vt € T\S)(3s € S\T) s » t

ie, S» T if T can be obtained from S by replacing one or more terms in S by
any finite number of terms, each of which is smaller (w.r.t. ») than one of the
replaced terms.

To combine these two concepts of tuples and multisets, we assign a status t(f)
to each operator f € § that determines the order according to which the subterms
of f are compared. Formally, a status is a function which maps the set of
operators into the set {mult , left , right}. Thus, a function symbol can have one
of the following three statuses:

mult (the arguments will be compared as multisets]),

left (lexicographical comparison from left to right) and
right (the arguments will lexicographically be compared from right
to left).

The result of an application of the function args to a term t = f[t1,....tn] depends
on the status of f : If t(f] = mult, then args(t) is the multiset {t;,..t )} and
otherwise, args(t) leads to the tuple (t,....t ). Obviously, if the precedence is a
quasi-ordering, two equivalent symbols w.r.t. the precedence are supposed to
have the same status. With this requirement ambiguities will be avoided.

In the remaining parts of this report, by writing s, t and » we will always
assume that s and t are terms over I and » is a (partial or quasi-) precedence
on the set § of operators. Moreover, we synonymously use >orqg With ord to
denote an ordering. The index t(f] of >ord,<(f) MAarks the extension of > . w.rt.
the status of the operator f:

(s; . . ) A (t, . . t)

iff i) =mult A fs; . s gt )
or (f] = left A [85 « — » 85s) 2128 [y ¢ o g 8]
or t(f) = right A (5 + -+ 5y >é‘§§ (i oo t,)






Permitting variables, we have to consider each and every one of them as an
additional constant symbol incomparable (w.r.t. ) to all other operators in §.

All of the following orderings uniquely define a congruence ~ dependent on 3§
and t via:

f(sy..s )] ~ glty..t,)
iff
f=g A m=n a i) «f) = mult A (3In)(Vi) s; ~ treti)

or i) t(f] # mult A (Vi) s; v Y

Most of the orderings are based on the principle of root orderings, i.e. two terms
are compared depending on their leading function symbols. This or other kinds
of case distinctions will be represented as the union of conditions that will be
marked by Roman numerals i), ii), and so on. The lexicographical performance
of conditions will be indicated by hyphens, ie.

s >t iff — s>t

stands for : s > t iff s > t or [s 5; t A s >, t]. Here the equality sign = is the

1
congruence relation induced by the quasi-ordering 2.






3 Path and decomposition orderings

All orderings described in this chapter are recursively defined simplification
orderings and contained in [St89al :

Recursive path ordering with status (RPOS)]
This is an extension of Dershowitz’ RPO introduced by Kamin and
Levy ([KL80], [De82l).

- Recursive decomposition ordering with status (RDOS)]
The original recursive decomposition ordering has been first defined
by Lescanne. We present a version ([St89al]] which is different in
regard to the status. [t is an extension of Lescanne’s ordering.

- Path of subterms ordering with status on decompositions [(PSDS)
The PSDS, based on decompositions, results from the PSO (path of
subterms ordering, [P178al). The corresponding ordering without status
(called PSD in [St89al) is equivalent to the path of subterms ordering
of Plaisted. In contrast to the PSO, the PSD has the advantage that
it can easily be extended by the principle of status [see [St89al).

- Improved recursive decomposition ordering with status (IRDS)
The improved recursive decomposition ordering has been developed
by Rusinowitch ([Ru87]). He has also incorporated status in it.
However, we present another [simpler]) version (of [St89al) which is
similar to it. The power of these two orderings overlap. Moreover,
the path ordering of Kapur, Narendran and Sivakumar ([KNS85]) is
equivalent to the IRDS ([St89al).

The main point of this chapter is a brief description of all these orderings with
status. For a better understanding, the important ideas of these methods of
comparing terms will be demonstrated by an example. Note that it is superfluous
to present the path of subterms ordering of Plaisted and the path ordering of
Kapur, Narendran and Sivakumar since they are equal to the PSD(S) and the
IRDS, respectively (see 3.3).

The orderings described satisfy properties that qualify them for proving
termination of term rewriting systems (the proofs can be found in [St88al):

- B =






Simplification ordering:

- s>t implies f[.s,.]) > f(..t.), for all f € §
(replacement property)

- f(..t,..) > t, for all f € F
(subterm property)

- f(..t,..] > f[.....), for all f € § with t(f)=mult
(deletion property)

Well-foundedness:

Bt >t, > ..
(follows directly from the previous property)

Stability w.r.t. substitutions:

s >t implies os] > oft), for all ground substitutions o

Monotony w.r.t. the precedence »:

b, € b, implies >() < >[>,)

All orderings of this report are precedence orderings denoted by >[p]
where the parameter p stands for the precedence. An ordering is called
monotonous w.r.t b if it is strengthened by increasing the precedence.

- 10 -






3.1 Recursive path ordering

The comparison w.r.t. the recursive path ordering with status (RPOS, for short)
is based on the following idea: A term is decreased by replacing a subterm with
any number of smaller terms which are connected by any structure of operators
smaller (w.r.t.b) than the leading function symbol of the replaced subterm. The
method of comparing two terms depends on the leading function symbols. The
relationship between these operators w.r.t. > and the status t is responsible for
decreasing one of the [or both] terms in the recursive definition of the RPOS. If
one of the terms is 'empty’ (i.e. totally decreased) then the other one is greater.

Definition 3.1.1 ((KL801 , [De82])

S >gppos !

iff i) top(s) » top(t)] a {s} »grpos args(t)

ii) top(s) = top(t)] A t(top(s)) = mult n  args(s) »gpog args(t)

iii) top(s) = top(t) A <(top(s])]) + mult r s} »gpog args(t]
A args(s) >RPOS, (top(s)) args(t)

iv) args(s) »gpog it

Lemma 3.1.2 ([KL80], [St88al)

The RPOS is a simplification ordering, monotonous w.r.t. the precedence
and stable w..t. substitutions.

Example 3.1.3

We want to prove that the distributive law s = x*(y+z] — (x*y)+(x*z) = t
terminates. We use the total precedence * b + and the statuses t(+)=t(*)=left.
Since * > + we must show that {s} »gpg args(t] = { xxy , xxz }. The single
term on the left side has to be greater than both terms on the right side:
s is greater than x*y because we have to remove the leading function
symbols and can show that (x , y+z) SN, (x . y) A {s} N X
because y+z >ppqag ¥ (by using the subterm property of the RPOS, 3.11 iv)
and s >ppng X S >rpos V- S rposg X*Z is proved the same way.

-1 -






Remark 3.1.4

We would like to point out that there exist two different versions of the
RPOS in the publications:

- a somehow non-deterministic one (see definition 3.1.1):

top(s] > top(t) A
or top(s] = top(t) A
or args(s) »ppog {t}

The third alternative can be tested irrespective of the leading function
symbols. For example, if top(s]) » top(t] the first or the third condition
could be checked.

- a deterministic version:
top(s) » top(t) A

or top(s) top(t) .
or -(top(s) » top(t)]] A args(s] »ppog {t

(A4

Note that the three alternatives are disjoint.
In contrast to the RPO without status where both versions are equivalent,
the powers of these approaches w.r.t. the RPOS differ: The non-deterministic
RPOS is a proper extension of the deterministic one. Moreover,

the non-deterministic RPOS is a simplification ordering, whereas

the deterministic RPOS does not have the subterm property
since [x*y)*z +ppog X*y if t(*)=right.

=12 =






3.2 Decomposition orderings

To define the decomposition orderings, we need some kind of formalism.

Definition 3.2.1 (Decomposition)

* Path-decomposition of a term:
dec; ,(f(t,,..t )] = {f(t,....t )} v dec(t,)] with dec(t) = {t}

- Decomposition of a set of terms:
dec({t,,...t }) = { dec,(t;) I'i €1,n) u € Ot(t,] }

= Set of proper subterms of a path-decomposition P wurt. a term t:
sub(P , t]={s € P | (Ju#s) t/u = s }

Example 3.2.2

Suppose t = [x*y)+(x*z], then dec,,(t) = { t, x*y , x } and dec({t}) = { dec,(t),
dec,,(t]) , dec,,(t] , dec,,(t) }. Moreover, sub(decy,(t) , x*y] = {x}.

The recursive decomposition ordering with status [(RDOS, for short] has been
developed from the RPO. One of the important differences to the RPO is the fact
that the RDOS stops a comparison as soon as it has to compare incomparable
operators. A term s is greater than a term t (w.r.t. the RDOS]) if the decomposition
of s is greater than the decomposition of t. The ordering on these multisets
[»»LD] is an extension of the basic ordering on terms [>LD] to multisets of
multisets.

Definition 3.2.3 ([St8%al)

s >ppos t iff  dec({s}) » »  decl{th)

with dec,(s') 3 s> t€ dec,[t')
iff i) top(s) » top(t)
ii) top(s) = top(t) & t(top(s])) = mult A
- sub[dec ,(s').s) ».p subldec,[t']t]

- args(s) »gpos args(t)

iii) top(s) = top(t) & t(top(s])) *+ mult A
{s} »gpos args(t) A args(s) >RDOS. <(top(s)) args(t)

- 13 -






Another ordering based on decompositions results from the path of subterms
ordering. It is remarkable that the PSO is an extremely recursive ordering which
takes three suborderings into account. The next definition (without status) is
equivalent to the PSO providing a much simpler method of using decompositions.

Definition 3.2.4 (tSt89al)

S >PSDS t iff deC[{S}] » » b dec[{t}]

with s > pt
iff i) top(s) b top(t)

ii) top(s) = top(t) A t(top(s])]) = mult A
dec(args(s]] » »; p dec(args(t]]

iii) top(s) = top(t] A t(top(s]) # mult A
{s} »pspg args(t] A args(s) >psps <(rop(s)) aTgs(t]

The essential difference between the PSDS and the improved recursive
decomposition ordering with status (IRDS) concerns the way by which a
comparison is processed. While the PSDS works according to the principle
'breadth-first! the IRDS reveals the use of the principle 'depth-first!: If the
leading function symbols of the terms to be compared are identical, the IRDS
chooses only one subterm. On the other hand, the PSDS proceeds by
simultaneously considering the decomposition multiset of all subterms.
Furthermore, the IRDS is a proper extension of the RDOS, due to a slight change
of the second part (ii] of its definition.

Definition 3.2.5 ((st89al)
8 Froe iff dec({s}) » »; dec({t}]
with decy(s') 3 s > t € dec,[t')
itf i) top(s]) » top(t)
ii) top(s] = top(t) A t(top(s])] = mult A
- sub(dec [s'],s]) »g; subldec,[t')t)
- dec(args(s)) » »;; dec(args(t])
iii) top(s]) = top(t) A t(top(s)) # mult A

{s} »Irps args(t] A args(s] >1gps <(rop(s]) 2195(t)

- 14 -






Concluding, we point out that all orderings presented can be used to prove the
termination of arbitrary term rewriting systems.

Lemma 3.2.6 ([St88a]]
The RDOS, PSDS and the IRDS are simplification orderings, monotonous

w.r.t. to the precedence and stable w.r.t to substitutions.

Vicariously, we will illustrate the definition of the IRDS by an example.

Example 3.2.7 (see example 31.3)

We will prove the termination of the distributive law s = xx*(y+z] —
(x*y)+[x*z) = t. We use the total precedence * > + and the statuses t(+]) = 1(*] =
= left.

We have to prove that dec({s}] » »; dec({t}):

dec({s})
dec({t}]

{ dec,(s) . dec,,(s) ., dec,,[s] } and
{ dec,,(t) ., dec ,(t] , dec,,(t]) , dec,,(t) L

In accordance with the definition of the IRDS, for every decv[t] we have to
find a decy(s] which is greater than dec,[(t] wu.r.t. »gp. Because of the
demand for stability w.rt. substitutions our search for dec,(s) strongly
depends on the leaves s/u and t/v, respectively (it is important to consider
this rule if t/v is a variable, i.e. s/u must be the same variable). We can
verify

i) dec(s] = {s,x} »g; {t.x*y,x} = decy,(t] iff {s} »pp. {t.x*yk

S >pp t
because top(s) = * > + = top(t)

s >EL X*y iff {S} »IRDS {X.Y} A [va+z] >IRDS,1eft [X,Y]Z
This can be verified since y is a proper subterm of y+z, X and y are
proper subterms of s.

ii) decy(s) {s.x} »pr tLx*z,x} = dec,,(t),
dec,y(s) = {s.y+zy} »g {tx*yy}= dec,,(t] and
decy,(s) = {s,y+zz} »g {tx*zz} = dec,,(t):
It is easy to show these statements with the considerations of i).
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3.3 Comparison

In this section we compare the power of the presented orderings in addition
to some well-known path orderings. For the sake of completeness, we include
the basic orderings restricted to multiset status. The power of an ordering is
represented by the set of comparable terms. We examine the relation between
two sets. There are three possible relations:

- Two orderings can be equivalent (> = »],
- one ordering can be properly included in the other [> C ] or
- they overlap (> 1 »).

The orderings > and » overlap if there exist some terms such that s >t as j t
and s' » t' A s' % t\

Note that the orderings described relate to a parameter: the precedence
(>(p) denotes the ordering > with the precedence p as a parameter). This
parameter may be either partial or total. Obviously, the conventional notion of
the comparison of two orderings requires the orderings to be compared w.r.t.
all possible (partial] precedences. This is a very strong condition. From a
practical point of view, it is sufficient to consider the comparison of two
orderings w.r.t. total precedences, only. The following proposition substantiates
these reflections:

Proposition 3.3.1 ([st89al, [St88al)

Let >, » be orderings which are monotonous w.r.t. » and > € » w.r.t. total
precedences. Then,

s>p)t ~> (3q) s »(q)t.

Note that we cannot deduce assertions w.r.t. partial precedences from the
corresponding relations w.r.t. total precedences. But, this is not what we want.
We are only interested in generalizing the comparison of two orderings in the
following manner: Is there any ordering » using any precedence q such that
s »(q) t if s >[p) t where > is another (given) ordering based on a precedence
p ? The traditional request would contain the search for a stronger ordering
» based on the same precedence [p) as > Obviously, the above proposition
generalizes this requirement since we could give some information about the
comparison of orderings independent of the precedence. In order to use the
proposition we have to compare the orderings w.ur.t. total precedences, only.
The relations C, = and # wur.t. total precedences have the following meanings:
Let p (resp. p' and p'') be a total precedence, t (resp. t' and t") a status, s and
t terms.
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- >c iff s>pt ~> s:pit a
(Ip.t)(Bp'"t") s »[p'.t') t Ao s>p".t")t

>z iff s>ptt <> ssp1t

> iff  (3p.)(Bp".t'") s >(p't)t A s s(p"t"]t A
[EIp',t'][Ep”,t"] s >[p',‘t'] t A s >[pu'.[||] t

The following lemma reflects the comparison w.r.t. to total precedences. The
proof of the lemma can be found in [St88al To present the relations in a simple
way, we use a kind of Hasse diagrams. If > C » then we arrange » above > joining

them with an arrow.
LLemma 3.3.2 ([St89a], [St88al)

Assuming arbitrary terms and total precedences. Then, the following
relations are valid:
IRDS = KNSS

PSDS = KNS RDOS

PSO

PSD = RPOS
RPO
with IRD = Improved recursive decomposition ordering ([Ru87])
IRDS = Improved recursive decomposition ordering with status
(CSt89al)
KNS = Path ordering of Kapur, Narendran and Sivakumar [[KNS85])
KNSS = Path ordering with status of Kapur, Narendran and

Sivakumar ([KNS85])
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PSD = Path of subterms ordering on decompositions ([St89a])

PSDS = Path of subterms ordering with status on decompositions
(ISt89al)

PSO = Path of subterms ordering ([P178al]

RDO = Recursive decomposition ordering ([JLR82])

RDOS = Recursive decomposition ordering with status ([St89a])

RPO = Recursive path ordering ([De82])

RPOS = Recursive path ordering with status ([KL80J)

This lemma will be of practical importance if we consider it together with the
proposition 3.3.1: Only one [either the IRDS or the KNSS) of the eleven orderings
collected in the diagram is needed to cover the union of comparable terms of
all the orderings referenced in lemma 3.3.2. In other words, if terms can be
oriented with any ordering of the figure there exists a precedence such that
the terms are also comparable in the same way with the IRDS (= KNSS).
Consequently, if you are implementing a system where the termination of a
rewriting system must be guaranteed, only one of the eleven orderings will
have to made available for the user. The cause of it is that the IRDS (the KNSS,
respectively) is stronger than all other path and decomposition orderings
irrespective of the precedence.
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4 An improved concept of the APO

Termination orderings based on transformation techniques have been first
proposed in [DHJP831 This method is rather complex and it was not possible to
lift the corresponding ordering to terms containing variables.

The associative path ordering (APO, for short] of [BP85] is similar to this
ordering. However, the APO is conceptually simpler since any term is transformed
into a single term whereas in [DHJP83] the transformation of a term leads to a
multiset of terms. The stability w.urt. substitutions can be guaranteed by
checking a finite number of the potentially (infinitely many) ground substitutions.

In [GL86], Gnaedig and Lescanne simplify the APO to the so-called NFLO. The
NFLO generalizes the recursive path ordering and the transformation can be
described by a reduction relation. In contrast to the APO, this ordering makes
a strong difference between the flattening and the distributing (applying
distributivity axioms) processes. First of all, distributivity rules map the terms
to compare in the same class modulo distributivity, in order to insure the
replacement property. Then, for satisfying AC-commutation, these terms will be
flattened along its AC-operators (to represent the associativity axioms]) and
compared w.r.t. the recursive path ordering without status (to represent the
commutativity axioms). Besides the simplicity, Gnaedig and Lescanne gave a
proof for the universal quantification on substitutions based on simple
observations on the substitution mechanism. Obviously, from a practical point
of view, this method is more interesting than that of Bachmair and Plaisted.
However, the root of the NFLO is the APO, and therefore, in the remaining parts
of this paper, we will refer to this ordering by associative path ordering.

The associative path ordering is simple enough to allow implementations, yet it
is applicable to a variety of theories. It may be used to prove termination of a
set of term rewriting rules containing associative, commutative and associative-
commutative operators. Furthermore, the APO could be part of a Knuth-Bendix
completion algorithm for associative-commutative operators. Note that it is
impossible to implement a full Knuth-Bendix procedure for associative but not
commutative operators since there exists no finite unification algorithm for
associative operators (see [P183]).

The basic concept of both methods is that simplification orderings have to be
E-commuting to provide termination proofs for E-rewriting ([JM841], [St839b]):
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Let > be a simplification ordering which is E-commuting and stable w..t.
substitutions:

R is E-terminating
if
l1>r forall 1 -1 €XR

Instead of E-commutation, the approaches described above (APO,NFLO] use the
stronger restriction of E-compatibility.

In this chapter we will try to give a motivation for the use of Gnaedig’s and
Lescanne’s approach. They have presented their method for AC-theories, only.
First of all, we will split AC into the concepts of C- and A-theories. In practice,
this will be an enhancement of the efficiency if either C-theories or A-theories
are used. The reason is that the conditions required of the RPO are not as strict
as those for the combined theories.

Subsequently, the power of the various methods will be compared.

Another main point of this chapter is the introduction of an improvement of the
APO. The extension we will deal with consists of the incorporation of status to
the RPO. It will be shown that the concepts of the APO (based on the RPO)
can be transferred to the RPOS by guaranteeing multiset status of associative
and commutative operators.

Last but not least, we will show that partial [instead of quasi-] precedences
are necessary to guarantee the stability w.r.t. substitutions of the techniques
presented in this chapter.
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41 C-theories

Assume that E contains only commutative axioms such as f[x,y] = f(y.x).
Therefore, an ordering > is needed which is C-compatible:

implies >

It is not very difficult to detect that the RPOS is C-compatible if each
commutative function symbol has multiset status:

Definition 4.1.1

Let » be a precedence and t a status function requiring multiset status of
each C-operator:

IL.emma 4.1.2

>~ is a simplification ordering, C-compatible and stable w.r.t. substitutions.

Obviously, the combination of the C-compatibility with the other important
properties of the RPOS - simplification ordering and stability w.r.t. substitutions
(lemma 3.1.2) - ensures the applicability in practice.

Example 4.1.3 (Dershowitz)

R x+0 - X
X * 0 - 0
x*[(y+1 > [x*y])+x
E: x+y = y+x
X*y = y*X

The RPOS guarantees the termination if t(*] = t(+) = mult and * b «
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4.2 A-theories

In order to restrict the RPOS so that it can prove the A-termination of term
rewriting systems we will pursue the following strategy:

- Establishing exactly one representative of each A-equivalence class
=  Reducing each term to the representative of its A-equivalence class
Comparing the representatives w.r.t. the RPOS

An ordering constructed by these rules is A-compatible since
rep(t') = rep(t) >ppos rep(s] = rep(s') implies rep(t) >pp s repls'). where

t' =, t a» s =, s' and rep denotes the representative of a term.

Obviously, the main problem of the above method is the definition of the
representatives. Usually, terms with A-operators are described by flattened
terms having no nested occurrences of identical associative operators, e.g.
+(+(1,+(2,+(1,3)]).2) = +(1,2,1,3,2). This representation requires the operators to have
variable arity, ie. associative function symbols may possess any positive
number (> 1) of arguments, whereas non-associative operators have a fixed arity.

Definition 4.2.1 (Varyadic terms)

Let I'(3.B) be an algebra of terms and a' the arity function on 3. The
varyadic term algebra I'*(3,B) is the algebra of terms, where the
A-operators have a variable arity a: § = 2N (the set of all subsets of IN)

such that
aff] = {o'(f]} if f €3,
alf) = N \ {0,1} otherwise
| |
Based on this background, the flattening operation = is defined as follows:

Definition 4.2.2 ((BP85al)

Let be t = {(t,,...t )] a term. Then

t if t is a constant or a variable
t =1 ft,..t.) if f€3J,
t' otherwise

with t' results from t by replacing t, by t_l if top[ti] + f, and

replacing t; by s,,..s_ if t; = f(s..8.,).
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Note that the flattened form of a term exists and is unique. Some helpful
assertions about the flattening operator will be enumerated in the following
lemma:

Lemma 4.2.3 ((zeg9])
Let be s, t € F*[%,QS], o a substitution and > a simplification ordering:

top(t) = top(t)

el

=t
o(t) = oft)
§=, t <> §=1
t =2t

{th» {Epeaf }  dE t = digud,)

In order to compare terms (w.r.t. the RPOS) with operators having variable arity,
we do not need to change the definition of the RPOS. However, the deletion
property ( f(...t,...) > f(...,...] ] must be satisfied to preserve the property of being
a simplification ordering. The recursive path ordering without status does have
the deletion property (see [De82]). Unfortunately, the recursive path ordering
with status does not preserve this characteristic. Consider a simple example:
Let be t(f] = left, s = f(x,x,y) and t = f(x,y). Due to the deletion property, s must
be greater than t, but the comparison of the tuples (x,x,y) and (x,y) requires
the orientation of x = y which is impossible.

Thus, in order to guarantee the property of a simplification ordering, the status
function of the RPOS must satisfy the multiset status of each varyadic function
symbol. Consequently, each A-operator has to have multiset status.

Now, an A-compatible ordering could be defined as s >, t iff 5 >;. ¢ T
Unfortunatgly,_>A does not have the replacement property: Let be f € S, and
f>g. Then, f(a,b) >gpos gla,b) but {(f(a,b),c] = f(a,b,c) <rpos flgla.bl.c). Requiring
the A-operators to be minimal wrt. the precedence - (Vi € §,)(Bg€ §) f>g -

the ordering >, can be used for proving the A-termination.
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Definition 4.2.4

Let » be a precedence such that each A-operator is minimal. Furthermore,
T is a status function requiring multiset status of each A-operator:

IL.Lemma 4.2.5

>, is a simplification ordering which is A-compatible and stable wur.t.
substitutions.

The following lemma helps to prove the above one:

IL.ermma 4.2.6

Let » be a precedence such that each A-operator is minimal and t is a
status function requiring multiset status of each A-operator:

S t > s >RPOSt

RPOS

Due to lemma 4.25 and the theorem on page 20, > can be used to prove the
A-termination of term rewriting systems. However, the restriction of the

precedence (each A-operator must be minimal) is very strong:

Example 4.2.7

Let be R: (x+y)*xz — [x*2z)+ [y *z)
f{x] » fly] — f(x *y)
E: (x+y)l+z = x+[y+2)
[x*y]*z:x*[y*z]

The rule system requires * b + (first rule) and * » f (second rule), i.e. the
A-operator * is only sub-minimal. Therefore, we are not able to prove the
E-termination of & with the help of >,.
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4.3 Associative distributivity

In order to permit sub-minimal (w.r.t.?) A-operators, the precedence must satisty
the following condition:

Definition 4.3.1 (Associative pair condition, [BP85])
A precedence b has the associative pair condition if and only if (Vf € &A]
f is minimal or

* (3g € §,) f is minimal wrt F\{g}

Graphical explanation:

f 5\8a

This condition requires that each A-operator must be either minimal or sub-
minimal w.r.t. the precedence. The smaller element of a sub-minimal A-operator
must also be an A-operator. However, as we know [example on page 23], the
replacement property of > is not fulfilled: If * b+, xx(y+z] > (x*y)+(x*z) but
ux(x*(y+z]] <, ux([x*y)+(x*z]). Note that the term ux(x*(y+z])) (which should be
greater) has to be flattened causing a reduction w.r.t. the recursive path ordering.
On the other side, ux((x*y)+(x*z]) (the smaller term) is left unchanged. The trick
consists of reducing ux((x*y])+(x*z])], too. lLe, we will force the replacement
property using the intuitive idea that the smaller term has only to be reduced
when the bigger one is reduced by flattening.

Definition 4.3.2 (Distributivity operation, [GL86])
Let » be a precedence satisfying f » g where f and g are associative

operators. The distributivity operation § : I' = T rewrites a term to an
irreducible form with the system described by the two rules

D: flx.gly.z)) — glilx.y)i(xz))
flalx.y).z) — gli(x.z).i(y,z])
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Obviously, for each pair f,g of AC-operators with f » g such a rule system D
can be found. Note that for each term there exists an irreducible form since
this system terminates using the recursive path ordering with f > g (due to
the associative pair condition). But this normalform is not unique because the
system is not confluent at all. Though, two normalforms of a term are AC-
equivalent ([GL86]). This property is sufficient because the flattening operation
maps two A-equivalent terms to terms being syntactically equal, ie. AC-
equivalent terms will result in C-equivalent terms. Thus, the flattened
S-normalforms of two terms are C-equivalent. Due to the C-compatibility of
the RPOS it is possible to define an A-compatible ordering:

Definition 4.3.3

Let » be a precedence satisfying the associative pair condition and =
requires multiset status of each A-operator:
s>t iff - 3(s] >rpos St)

- s¥pm;,t

The comparison of two terms wur.t. > o requires both terms to be reduced to
normalforms (applying the rules of D), first and then a comparison of the flattened
normalforms w.r.t. the recursive path ordering with status.

The problem of proving the termination of a rule consisting of D-equivalent
terms (their normalforms are syntactically equal) is solved by checking whether

equivalent terms are D-equivalent (s ==p,a t with =D/ S =a® =p° =A]_

Note that the associative pair condition guarantees that the transformation of
distributing and flattening is well-defined and that >,  is in fact a simplification
ordering.

Lemma 4.3.4

>Ap 1s a simplification ordering which is A-compatible and stable wur.t.
substitutions.

Example 4.3.5 (Example 4.2.7 continued)
Let be R [(x+y)*x2z — [(x*2z)+(y*2z)

E (x+yl+z = x+[(y~+2
(x »y) *z = x * [y * z)

- 26 -






With the help of >,p the E-termination of R can be proved since §([x+y)*z)
= (xxz)+(yx*z) = 8((x*z)+[y*z]) and (x+y)*z ==, (x*z)+(y*z).

Remark 4.3.6 ((BP85])

In [BP85] a more general method than >, is presented. If two terms have
the same flattened §-normalforms (i.e. 8(s) - 5(t)) they could be still
compared using some reduction ordering » that is A-compatible and
well-founded on every set [t] = {s | g[-éj = W}. Such an ordering is called
admissible for the transformation 8. For example, comparing terms by the
inverse of their sizes is an admissible ordering for the transformation used
here. More precisely, » can be defined as s » t iff |s| < |t| and no variable
appears more often in s than in t.
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4.4 Associative endomorphism

The generalization > 5 of >, presented in section 4.3 admits precedences
where an A-operator is greater than another A-operator. However, the rule
f(x)*f(y) — f[x*y) (see example 4.2.7 on page 24]) cannot be oriented with the
help of >,  because the A-operator * must be greater than {f which is not

associative.

A solution for this problem consists of applying the basic concept of the former
section’s approach: Instead of using distributivity axioms we take rules similar
to the endomorphism for pre-reducing terms. In order to exactly define this
method, the set of admissible precedences must be established first.

Definition 4.4.1 [Simple pair condition, [Ze89] and [GL86])
A precedence > has the simple pair condition if and only if (Vi € §,)
f is minimal or

* (3 unary g € ) f is minimal w.r.t. §\{g}.

Graphical explanation:

f $\8a

This condition requires that each A-operator must be either minimal or sub-
minimal w.r.t. the precedence. In contrast with the associative pair condition
(definition 4.31 on page 25) the smaller element of a sub-minimal A-operator
must be a unary function symbol. To guarantee the replacement property, the
terms to be compared must be reduced in the following way.

Definition 4.4.2 (Endomorphism operation, [GL86])

Let > be a precedence satisfying f P g where f is an associative operator
and g is a unary function symbol. The endomorphism operation ¢ : T = T
rewrites a term to an irreducible form with the system described by the
two rules
E. flglx)y) = glilxy])

f(x.gly)) = glilx,y])
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As for the approach of 4.3, for each pair f,g with { » g there is such a rule
system E. Note that this rule system (E) is confluent and terminating using
the recursive path ordering with f » g. The normalform of a term t is denoted
by ¢(t). It can be proved that two terms are AE-equivalent if and only if their
flattened e-normalforms are syntactically equal: s =, t iff Tsm = m Based on
this fact, another A-compatible ordering (see [GL861) can be defined.

Analogous with >, o, the comparison of two terms w.r.t. > . requires both terms
to be reduced to normalforms (applying the rules of E) and the flattened
normalforms to be compared w.r.t. the recursive path ordering with status. If the
normalforms are equivalent w.r.t. the RPOS, the test whether one term can be

derived from the other one (w.r.t. —é>E/A] will be performed.

Definition 4.4.3

Let > be a precedence satisfying the simple pair condition, t requires
multiset status of each A-operator:

S5t itf - 5] *ppog clt]

- s==g,t

IL.emma 4.4.4

>»g is a simplification ordering which is A-compatible and stable wu.t.
substitutions.

Example 4.4.5 (Example 4.2.7 continued)

Let be R f(x]) * fly)] = f(x * y)
E: [x*y]lxz = xx*(y*2z)

With the help of >, o the termination of ® can be proved because &(f(x])*f(y]]

= {(f{x*y)) >rpos f[x*y) = elf{x*y)) by using the subterm property of the
RPOS.
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45 AC-theories

This section deals with the extensions [to C-theories) of the orderings presented .
in sections 4.2, 4.3 and 4.4. Thus, we will now demonstrate the contents of
[GL86] extended by the incorporation of status to the recursive path ordering.

Definition 4.5.1

Let © be a status function such that each C-operator and each A-operator
has multiset status.

a)

b)

c)

Let » be a precedence such that each A-operator is minimal:

Guaranteeing the C-compatibility of the A-compatible orderings presented in
the former sections, we only have to require multiset status of commutative
operators. Thus, the union of the approach for C-theories with each method for
A-theories must be considered. Note that the orderings >Acp anhd >, ~p can be
used without the second alternative (s == t], but in this case, it is not possible
to orient the D- or the E-rules.
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ILLemma 4.5.2

>ac Sacp and ) o are simplification orderings which are AC-compatible
and stable w.r.t. substitutions.

In addition to the assertions of [GL86], we can prove that >ACD [>ACE] without
the second condition (s = t) is ACD-compatible (ACE-compatible].

ILLemma 4.5.3

The ordering s >t iff §s] >gpog 8(t) is ACD-compatible.
The ordering s >t iff ¢[s]) >ppog ¢(t] is ACE-compatible.

Example 4.5.4 Associative-commutative rings with unit ([(BP85])

R: x+0 - X
i(x) - ¢ *X
x+[c*xx] — O
1+c¢ - 0
c *C - 1
x*(y+z] = [x*xy)]+(xx*2z]
x *x 0 - 0
X * 1 — X

E [(x+y)+z=x+[y+z]
X +y =y + X
[x*y]*z:x*[y*z]
X*Y :y*x

The classical convergent equational rewriting system for associative-
commutative rings with unit contains the rules x*i(y] — i(x*y) and
i(x+y) — i[x)+i(y). Therefore, the termination cannot be proved with the
help of an ordering presented in this section since * must be greater
(w.r.t. ») than i and i greater than + * > i b + Bachmair and Plaisted
introduce a different system & for the same structure. The idea is to use
a new constant ¢ which represents i(1). Applying AC-completion to @ the
rule system above will be obtained. The termination of this equational
rewriting system can be proved with the help of >, - corresponding to
the precedence i » * > +« i > ¢ P O, ¢ » 1 and the status function
t(+) = t(*) = mult.
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Remark 4.5.5 (tanss])

In [Gn88] the conditions under which the orderings of this section can be
total are investigated.

Assuming total precedence, > o [54og] is total on T(VACD (I(3VACE]
where I(Z)VACD (I(Z)/ACE) is the algebra I(g) quotiented by AC-axioms
and the distributivity (endomorphism) axiom.

Furthermore, Gnaedig found out that there exists no AC-commuting total
ordering on I(J). However, the problem is not yet solved for a total
ordering on I'(§VAC.

All orderings presented in this chapter are based on a precedence b. This
ordering on the operators is not clearly defined anywhere. Note that it could
be a partial ordering as well as a quasi-ordering. Assuming quasi-precedences
we will consider the following example.

Example 4.5.6

xR: false v x — true A x

E: (xvylvz = xv(yvaz)
Xvy = yvX
(xaylaz = xalyaz)
X AY = Yy AX

D v ~ A

false > true

It is obvious that the rule of 8 can be oriented in the desired direction.
However, this orientation is not stable w.r.t. substitutions: Let be
o = {x < false v false}. Then, ofalse v x] = false v (false v false] ¥ true
(false v false) = oftrue A x). > is any of the orderings of lemma 4.5.7.

This example induces that quasi-precedences on AC-operators are prohibited in
order to guarantee the stability w.r.t. substitutions.

IL.emma 4.5.7

>A' PAD' CAE' CAC' CACD and >ACE are not stable w.r.t. substitutions if the
precedence on the A(C]-operators is a quasi-ordering.

It is obvious that quasi-orderings on non AC-operators can still be used.
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4.6 Comparison

Like in section 3.3 we will now compare the power of the orderings presented
in this chapter. Note that we will only examine the relation between (not the
cardinality of) two sets of comparable terms. The following lemma describes
the comparison w.r.t. total precedences (we obtain the same results if partial

orderings are used).

I.emma 4.6.1

Assuming arbitrary terms and total precedences (that are admissible
related to the corresponding orderings), the following relations (cf. page 17)

/\/\

A difference between the orderings presented here and those in other papers
published is the additional status. It is obvious that the orderings without
status are included in the corresponding orderings with status. The following
example hints to this fact (see also example 6.18 on page 45):
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Example 4.6.2 (Padawitz]

R: x*0 - 0
x * s(y) = [x*y)+x
1 — s(0)
fac(0]) - 1
fac(s(x]) —  s(x) * fac(x])
floop(0y] — y
floop(s(x).y)] — floop(x,s(x) * y)
E (x+y)l+vz=x+[(y-~z]
X + y = y + X
[x * y] * Z = X * [y * z]
X *y =y *x X

b: fac b * D +
fac p1ps >0
floop b
t(floop) = left

*

floop is an iterative program for the factorial function. Its first argument
is the argument of fac, while the second argument serves as an accumulator
for the result of fac: floop(x,y) = y * fac(x).
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5 Path and decomposition orderings
modulo AC

This chapter deals with the application of the concepts used in chapter 4 to
the decomposition orderings of chapter 3. We will briefly recall those approaches:

- >~ represents the RPOS with multiset status of C-operators

- >, requires flattening the terms and A-operators to be minimal wur.t. »

- >, p transtorms terms into their flattened D-normalforms by satistying
the associative pair condition

>»g is similiar to 3>, except for using E-normalforms instead of
D-normalforms and the simple instead of the associative pair condition

- >pc is the union of > and >,
" >Acp incorporates multiset status of C-operators to >,
" >rcg extends > p by requiring multiset status of C-operators

Note that an essential precondition must be guaranteed to use any of the
orderings above: each A-operator (C-operator) must have multiset status. Another
fact the presented orderings have in common is that they are based on the
recursive path ordering with status. Our goal consists of extending each strategy
by making the basic ordering stronger. More precisely, the recursive path ordering
with status will be replaced by a more powerful ordering. In chapter 3, the
hierarchy w.r.t. the potency of some well-known path and decomposition orderings
is given. The three decomposition orderings RDOS, PSDS and IRDS cover the
biggest part of the diagram. Therefore, we checked whether they are applicable
to the methods of the former chapter. It turned out that there are no more
restrictions (except those for the RPOS) needed. We once more would like to
point out that quasi-precedences on AC-operators are forbidden.

For a clear-cut representation of the orderings we choose their parameters in
the following way:
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Definition 5.1
Let be > € {3 .% .%c ' AD ' AE ’ AcD » ace/ and
» € Prpos: >psps © “IrDs!
two kinds of orderings.
Then, >[>] denotes the method of > where >, o is replaced by -.

For example, s >, s[>;gpgl t iff § > s t by guaranteeing that each A-operator
is minimal w.r.t. > and each A-/C-operator has multiset status.

The following theorem reflects the correctness of the promising manipulation of
the AC-compatible orderings based on the recursive path ordering with status.
The proof can be found in the appendix.

Theorem 5.2

Let be > E {>RDOS » >PSDS o >IRDS}

- >c[]1 are simplification orderings, C-compatible and stable w.r.t.
substitutions.

>a[>], >Apl»] and >, gl>] are simplification orderings, A-compatible and
stable w.r.t. substitutions.

>acl) >aAcplrland >5cgl>] are simplification orderings, AC-compatible
and stable w.r.t. substitutions.

We will now demonstrate the practical applicability of the presented orderings
by vicariously proving the termination of an AC-rewriting system with

[ 1 (that cannot be done with the help of the APO).

Act’IRDS

Example 5.3

Assuming we have the two boolean constructors ff (false] and - (not).
Furthermore, there is a complete definition of the boolean operator A (and)
in addition to the rule --x — x. Then, the following system is a complete
definition of the boolean implication ().

ftoy — off

x D ff - X
=X D-y = yDO[(xay)
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Consider A to be associative and commutative. Then, the AC-ordering on
the improved recursive decomposition ordering >, ~[>;grpg] is able to prove
the termination using the precedence D b = b a.

Note that the last rule cannot be oriented in this way by the associative
path ordering.

The theorem 5.2 guarantees the correctness of merging the concepts of the
various versions of the associative path orderings with the recursive de-
composition orderings RDOS, PSDS and IRDS. In order to complete this study we
would like to point out that it is possible to apply this method to all other
path and decomposition orderings of chapter 3. This results from the KNSS
being equivalent to the IRDS, and the remaining orderings (not treated) being
simple versions (without status) of the RDOS, PSDS and IRDS, respectively.

Summarizing, it is to remark that the strategy of the APO as well as the
specialized (to A- or C-theories, only] and improved one (to the RPO with
status) can be applied to the path and decomposition orderings presented in
chapter 3. The power of the A-, C- and AC-orderings is induced by the power
of the classical path and decomposition orderings (see lemma 3.3.2 on page 17)
and by the power of the corresponding E-termination methods (see lemma 4.6.1
on page 33). Thus, >pneplPirps! @04 > o> 1rpg! are the most powerful techniques
presented in this report. Note that it is easier to construct a precedence for a
given rule system with the help of a decomposition ordering than with the
recursive path ordering (see [Ch841]).
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6 A digest of examples

This chapter deals with the power as well as the limits of the practical
applicability of the orderings presented. We collected some examples of rewrite
systems (R) together with underlying theories (E). If there exists an associative
path ordering (with status) the appropriate precedence is given (p). The version
(>A . >c . >ac . >AD . AE » acD Of >acg) of the APO which should be used is
determined by the precedence and the equational theory.

For representing the rewriting systems we use x,y,z and u as variables. Function
symbols will be denoted by hk (binary function symbols), f,i,j,L, T (unary
operators) and e (constant symbol). We also employ special operators to point to
certain models. These symbols together with their meanings will be listed below:

multiplication on natural numbers (N])

*

+ addition on N

= unary subtraction on N

/ division on N
sq square function on N
exp exponential function : exp(x) = e¥

binomial function

0,1 the natural numbers O and 1, respectively
s successor : s(x) = x + 1

v boolean or

A boolean and

@ exclusive or

D boolean implication

boolean equivalence
- boolean not
false boolean false

true boolean true

To enhance readability we will often use infix notation.
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Example 6.1 ((Hu80al)

x: X+ 0 - X

x * 1 - X

f(0) - 1

f(x +y) - i(x) * f(y)

(x «+ y) xz = [x *z)+ [y *2]
E: (x+y)l+z = x+[y+72]

X +y = y+X

(x *xy)xz = x*[y* 2]

X *xy =y *X
D: f D *D +

ob»1

[ ]
Example 6.2 Abelian group theory

R: x+0 - X

x + i(x] - 0

i(0] — 0]

i(i(x)) - X

ilx+y)l — ilx)+ily)
E: (x +y)+z = x+[y+2z)

X +y =y +X
D: i>0D +

|
Example 6.3 ([PF861])

R: s(x) +y — x+s(y)

s(x) +y — s(x+y)

O+y - 0
E: X+y = y+X

The first rule cannot be oriented since it is not E-terminating: s(0]+0
=y 0+s(0) =g s(0])+0. For a complete definition of + it is sufficient to
use the second and the last rule. A termination proof of these two rules
is based on the precedence + » s and the orderings including the
transformation with endomorphism [>5 cg).
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Example 6.4 Exponential function ([JM841])

R: X+ 0 - X
X * 1 - X
(x+yl*xz = (xx*2z]+[y*2)
x *[y+2] = [x*y)+[xx*2z]
exp(0) - 1
exp(x + y)] — exp(x]) * exply)
E: (x +y)l+z = x+[y+ 2]
X+y =y+X
[x*y]*z:x*[y*z]
X*y Zy*x
b exp b * b +
on»1
| ]
Example 6.5 Boolean algebra
R: X @ false - X
X ®x — false
X A false — false
X A true - X
X A X —> X
(x@ylaz = (xrz)]o®(y a2z
E: (xay)laz = xalyaz)
X AY = ¥YyAX
(xoyloz = x@ (yo® z)
X®y = yox

The E-termination of the rule system R cannot be proved with the
help of any ordering presented since the second rule requires @ > false
which does not satisfy the associative (or the simple) pair condition.

Example 6.6 Disjunctive normalform ([De821])
R: --X - X
xvy]l] = -x -y
Sx Ayl & x v ooy
X A X —> X
X v X - x
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E: [XAy]Az=XA[y/\Z]

XAY = yAX
[va]vz=Xv[YVZ]
Xvy = yvX

Note that there does not exist an AC-path or decomposition ordering
which guarantees the termination of ® modulo E since even the
classical termination of R cannot be shown with any path or
decomposition ordering. However, the associative-commutative Knuth-
Bendix ordering is able to prove the E-termination [see [St89b]).

Obviously, the system containing the rules

=X —> X
xayl = -xv-y
-(x v y) — =X A -y
Xxalyvz] = [(xay)vi(xaz)

(xvylaz = [(xaz)v(yaz

is terminating modulo the theory where A and v are associative-
commutative (if - > A b v].

Example 6.7 Unary integer addition (Dershowitz)

R: x+0 - X
O+y -y
-0 - 0
-([-x) + y) = x+ [-y]
--x - x
(-1) +1 —> 0
-x+1)+1 - -x
E: (x +y)l+z = x+[(y+2z)
D: - D +
1>0
]
Example 6.8 Group theory
R: (x/x)/(ly/y)/y) — vy
(x/vy)/(z/y) - x/z
X/ X - 1
1/x - i(x]
x/ily) - X *xy
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E [x*y]*z:x*[y*z]
X *y =y * X
b: / b1
/ i
/ b x*
Example 6.9 Group theory ([KB70])
R 1*xy -y
e *y -y
i(x) »x —> 1
ix)*xx — e
E: (x *y) *xz = x *(y * z)
b i 1
jbe
Example 6.10 Square function
R: sq(0) - 0
‘ sq(s(x))] — s((sq(x]) + x] + x]
x +0 - X
x +sly)] — s(x+y)
E: (x+y)+z = x+(y+2)
X + Yy = y+X
b sqb+bs
Example 6.11
R: x * [y + 2) - [x *y)+ (x *2)

(u+(x*xyl)+(xx*xz) = us=+(xx*[y~+z]

E: (x+y)+z = x+[y+2)

-~ 4D =






The second rule of 8 cannot be oriented with the help of any path or
decomposition ordering (with z(+)=mult). However, the ordering on
polynomial interpretations restricted to A-theories suffices using the
following interpretations: I(*)(x,y] = xy and I(+])(x,y) = x + y + 1.

Example 6.12 Milner's theory of nondeterministic machines

([Hu80b]I)
R: X + X - x
x+0 - X
T(x) + x - T(x)
T(x + y) + Tly] = T(x + T(y))
L(x + T(y]] — L(x +y) + L(y]
Tx+yl+x = Tlx+y)
T(T(x)) - T(x]
L(T(x)) — L(x]
E: (x +y)+z = x+(y+2z)
X +y =y +X
D Lb>+D>T
[ ]
Example 6.13 Arithmetic theories ([Hu80b])
R: O+y -y
O *xy —> 0
s(x] +y - s[x +y)
s(x) * y - [(x*xy)+y
x*[y+z] = [x*xy)+(x*2)
E: (x+y)+z = x+[y=+2)
X +y =y +X
[x*y]*z:x*[y*z]
X *y =y * X

It is impossible to guarantee the E-termination of ® with one of the
presented methods since we have to require that + > s (third rule) is
valid together with * > + (last rule]. A combination of the associative
and the simple pair condition (and therefore a fusion of ¢ and 8) could
help.
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Example 6.14 Taussky group

R: 1 =1 - 1
x * i(x]) - 1
hix *y,y] = Kklx*y, x]
k(1,y) > ¥

E: (x*y)*z=xx(y*z)

Example 6.15 Boolean ring

R: -x — X ® true

XDy — [xay)® (x® true)

xvy = [xayle(xoy]

X=y — x@ (y® true)
E: (xay)laz = xalyaaz)

X AY =y AX
b: = D @

- b true

Db @

O b A

D b true

v b @

v D A

= b @

= b true

Example 6.16 Addition on integers modulo 2

R: s(s(0)])] = O
x+0 — x
Xx+x — 0

x + [y + z)
y+X

E: (x+y)+z
X+y
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With the help of the interpretations I(+){x,y) = x + y + 2, I(0])(] = 1 and
I(s)(x) = x + 1, the system R is E-terminating. However, there is no path
or decomposition ordering satisfying the desired property since the
associative-commutative + must be greater than the constant symbol O.

Example 6.17 Binomial coefficients

R: x+0 - X
x + s(y) -  s(x + y)
b(0,s(y]] - 0
b(x,0]) — (0]
b(s(x).sly))] — b[x.sly)) + blx.y]
E (x+vy)+2z = x+[y+2z)
X + y = y + X

P: bD+D> s

Example 6.18 (Jantke & Thomas])

R: x+0 - X
x + s(y) - s(x +vy)
f(glf(x]]) —  f[h(s(0),x]]
flglh(x.y)y)) — f(h(s(x]).y])
f(h(x.h(y.z]))]] — f(h(x + y,z])
E (x+vy)+2z = x+(y=+2)
X + 'y = y + X

b: gbhbd+ds
gbo
t(h) = right

Example 6.19 Vector spaces ([P183])

In [P183] a solution of the problem of handling more than two related
associative-commutative operators is given. For example, vector spaces
have two addition and two multiplication operations: scalar addition
(s-add), vector addition (v-add), scalar-scalar multiplication (s-mult) and
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scalar-vector multiplication (v-mult). It is obvious that rings satisfy the
associative pair condition (mult » add). But, using vector spaces, both
s-add and v-add must be considered less than v-mult since for
example (2 + 3]X — 2X + 3X and 2[X + Y] = 2X + 2Y (where X and Y
are vectors). Plaisted identifies s-add and v-add which causes the
associative pair condition to be satisfied. Note that this technique is
not stable w.r.t. substitutions, in general (lemma 4.5.7 on page 32).

However, it could be possible to extend the associative pair condition
by allowing linear sequences (w.r.t. p) of more than two associative-
commutative operators. In that case a hierarchy (induced by b} of
distributivity axioms must probably be applied to the terms to be
compared.

- 46 -






7 Conclusion

This paper introduces several classes of termination orderings for associative
and (or] commutative term rewriting systems. These orderings extend the well-
known associative path orderings (see for example [BP85], [GL86]) by using a
stronger (than the RPO) underlying ordering. More precisely, we apply the basic
features of the associative path ordering (APO) to a variety of path and
decomposition orderings. The main ideas of the APO as well as those of the new
orderings presented are the following ones:

Applying distributivity [or endomorphism, resp.] axioms to the terms to
be compared by requiring the associative (simple, resp.] pair condition
and then

Flattening the transformed terms and

Comparing the flattened terms w..t. a classical term ordering.

In the case of the APO, the underlying term ordering is represented by the
recursive path ordering. We succeeded in enhancing the APO by substituting
several path and decomposition orderings for the RPO. It is possible to use

the path of subterms ordering of Plaisted (tP178al),

the path ordering of Kapur, Narendran and Sivakumar ([KNS85]),

the recursive decomposition ordering of Jouannaud, Lescanne and
Reinig ([JLR82]) or

the improved recursive decomposition ordering of Rusinowitch ([Ru87],
[St89al)

instead of the recursive path ordering of Dershowitz [[De82]).

Additionally, two different kinds of extensions of the associative path ordering
were presented:

APO for either A-theories or C-theories, only. The restriction to only one
of the two theories results in weakening the preconditions the
precedence must satisfy. Also, the distributing operation is no longer
responsible for the comparison. From a practical point of view, these
restrictions could be a facilitation.

Using the recursive path ordering with status instead of the RPO will
increase the applicability in practice. The demand for multiset status of
associative or commutative function symbols is not too restrictive.
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It must be remarked that these two improvements demonstrated for the APO,
can also be applied to all other path and decomposition orderings mentioned

above.

Another supplement to the papers of Bachmair, Plaisted and Gnaedig, Lescanne
is the fact that the APO including distribution of terms (applying endomorphism,
respectively] is ACD-compatible [ACE-compatible, respectively). Furthermore,
we were able to show that quasi-orderings on AC-operators cannot be used
since they injure the stability w.r.t. substitutions. Concluding, it is to remark
that we have also succeeded in proving the subterm property of all the orderings
presented (including the different versions of the APO]J.

There only exist a few other orderings proving AC-termination: the polynomial
orderings on restricted interpretations of operators ([BL87al) and the associative-
commutative Knuth-Bendix orderings ([St89bl). Comparing them, the following
relations can be detected:

The AC-orderings based on path and decomposition orderings
are more powerful than the APO (see example 5.3 on page 36),

overlap with the polynomial orderings on restricted interpretations
of operators:

(x> y)lvz >q -y a-2)vx and

x D (y v f) . (x>y)vx

with A, v € S5

overlap with the associative-commutative Knuth-Bendix orderings
(see example above)

Note that the APO overlaps with the POL and the ACK, and the POL overlaps
with the ACK (see [St89b]).

The generalization of the presented approach for equational theories other than
associative and commutative ones as well as a new method for AC-termination
which lifts a total order on the AC-equivalence classes to general classes will
be part of future plans.
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Appendix:

Proois

ILLemma 4.1.2 >« is C-compatible.

Proof:

We have to show that s =, s' >ppqg t' =c t implies s >gpog t. It is
sufficient to prove that s = s' >rpqg t' implies s >ppqg t' as well as

]
' >rRPOS

tl

=, t implies s' >ppog t- We will prove the first assertion

by induction on |[s'| + |t'|:

i) top(s') » top(t') a {s't »zpog args(t')

~AD>

S >

top(s) > top(t')
since top(s) = top(s')

{s} »ppos args(t')
by induction hypothesis

!
RPOS t

by definition of the RPOS

ii) top(s') = top(t') A tltop(s')) = mult A args(s'] »gpos args(t')

~nD>

and>

iii) top(s')

args(s) »gpog args(t')

since (3n) s{ = s;; and by induction hypothesis
5 >rpos !
since top(s] = top(s')] and by definition of the RPOS

= top(t'] a t(top(s)] = left A {s't »gppog args(t')

A args(s') %{el;(os args(t')

>

$ >rRPOS

{s} »ppog args(t')
since s =, s' and by induction hypothesis

args(s) >i:1=}'<os args(t')
since top(s] = top(s') €& Jo . s =- s; and by
induction hypthesis

tl

by definition of the RPOS
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Lemma 4.2.5

Proof:

iv) args(s'] »gpos {t"

i) >, is a partial ordering on I'(§) since the RPOS is a partial ordering

(3s{) s 2gpos t

| JR— 1
Si “rpos !

— 1
~> [3sj] S; “rpos t
since 8; =c S and =5 C =ppos
[}
~> S >ppos t
since the RPOS has the subterm property
1 |
i >rRPos !
— I
> [Hsj] S; =¢
i | J——
since s' =5 s
1
~> 85 >rpos t
by induction hypothesis
]
~> S >ppos !

by definition of the RPOS

and stable w.r.t. substitutions.

on T*(g)

ii) >, is A-compatible:

s’=As§\t=At' ~n> s'>At'

since =, I ~> r=1 [(Lemma 4.2.3)

iii] > has the replacement property:

s > t

D>

® *rpos
by definition of >

{..,5,.) >ppos - 1..)
since the RPOS has the replacement property

f(...5...] >rpos flt,.]

with the help of lemma 4.2.6
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iv)

vi)

A MlaaBin) Fnpege Hombued o
with the help of lemma 4.23 (t = t)

~o o f(s,) 5 ot )
by definition of >

>, has the subterm property:

fl...t..)] >rpost
by the subterm property of the RPOS

N | PR S . S t
with the help of lemma 4.2.6

~ fll,t, ) ot

by definition of 3,

>, has the deletion property:

flo..t,.) % f(...,..) if f is a varyadic function symbol: This is valid
since the RPO without status has the deletion property and each
varyadic operator (associative function symbol) has multiset status

>  is stable w.r.t substitutions:

A
S A t
~> S >ppos t

by definition of >

~> (Vo] ofs) >grpos olt]

by the stability of the RPOS
~o (Vo) of8) cmpog oll)

with the help of lemma 4.2.6

~> (Vo] ols) >gpos olt) .
with the help of lemma 4.23 (ot]) = oft])

~> (Vo] ofs] > oft)
by definition of >
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ILLermma 4.2.6

Proof:

We will prove this statement by
and t = g[t,,..t ). We have to consider the following five

ii)

iii)

f=g

~ANnD>

Let » be a precedence such that each A-operator is

minimal and t is a status function requiring multiset

status of each A-operator:

t ~~» s

5 “rpos

o)

g A QESA

{s.} > POS {t1,. ,tn}
since {s} >RPOS {t1 .....
hypothesis

S >rpos !

by definition of the RPOS

g A gE%A

s = f{sy5) . T glt..t
such that t_i = g[q ti,
8] Pppgs Heatl}

since (Vi € [,nl]) s >rpos b [ty >
induction hypothesis

T N

= tlmri] B HEmeE)
since f ¢ J,

RPOS

induction on

args(s] >ppos.n 21oslt) [ (8} »po

since args(s] >RPOS, €] args(t] [a
and by induction hypthesis

S *rpos !
by definition of the RPOS

- BO =

{s}

t

Is| + |t|. Let be

t,} and by using the

args(t)]

RPOS

induction

ij.-ti,) and by

args(t)]






iv])

f=g

D>

Let be S; RPOS t..

-(f »

A FES,

7(f] = mult
since f €4

J

top(s;) + f & top[tj] + f

~> 8 ppos Y

by induction hypothesis
top(s;) + f & t, = f[t—i ..... t)

> {Si} »RPQ§ {t1,..., 2

because S E‘PCE tj

{t_j} e POS {t;,...,t'p} (by the subterm property of the
RPOS]

(by induction hypothesis] and

s, = f(s),..sp) A top(ty) * i

~> 8y “rpos Y

by induction hypothesis

¢

{S_i'---v%} ”RPOS {t_j}
since -(f» top[tj]] and by definition of the RPOS

s, = f[sl',...,s'p] Aty e f[t;,...,t'CI]

~> 8; *rpos Y
by induction hypothesis
> {s;,...,s;)} »rpos (e t'q}
by definition of the RPOS
g)

(3i € 0ml) s; >ppos ¢
since {s,..5,} Zgpos {t} [(by definition of the RPOS])

and by induction hypothesis

top(s;) € §,
8 >RPO_St _
since s = f[..,s;,..)
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- top(s;) € 3o ~ top(s;) * £
analogous with the previous case

g, = f[s{,...,sl'b] A tEFA

> {si,...,s'p} >rpos (t}
since [35}] sJ'. >epos t [(by definition of the RPOS]
and by induction hypothesis

~> S >ppog G

by definition of the RPOS

Lemmma <4.3.4 >,pisasimplification ordering which is A-compatible
and stable w..t substitutions.

Proof: i) >ap is a partial ordering on I(§) since the RPOS and ==, are
partial orderings.

ii) >, 5 is A-compatible:
We have to prove that s' =, s >3pt =, t' implies s'>, t'

Note that

~> §(s) =, §(t)
(see [BP85])

~>  8(s) = (1]
with the help of lemma 4.2.3

e @_:_8[—5]_}?05 @:ﬁ

or 8(s) = 8(t) A 8(s') = 8(s) ==, S(t) = 8t

by using the precondition and the definition of >, 5

~> 8[s']ju»os 8—["_']

or 8(s') =s8(t) A 8s') =, st

since the RPOS is compatible with =

An> s! >AD t'

by definition of >,
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iii] >»p has the replacement property:
analogous with the proof of the same fact w.r.t. the RPO without
status (see [GL861) since any associative operator has multiset

status
iv] >,p has the subterm property:

Note that - >, p is stronger than >,:

%
s >t ~» s >t
This fact can easily be proved by an analysis of

the definitions of >A and >AD (see lemma 4.61).

>, has the subterm property:
see lemma 4.25

Therefors, flout...) =, t implies f..t.] =t

v] >, has the deletion property:
f(...t...) >y fl.....) if f is a varyadic operator: This is valid since
the RPO without status has the deletion property and each
varyadic (associative] operator has multiset status.

vi] >, is stable w.r.t. substitutions:

analogous with the proof contained in [GL86]

Lemma 4.4 .4 >gisasimplification ordering which is A-compatible
and stable w.r.t. substitutions.

Proof: i) >AE is a partial ordering on 1“[8] since the RPOS and %E/A are
partial orderings.

ii) >, g is A-compatible:

We have to prove that s' =, s > gt =, t' implies s'> t'"
Note that
s =5t

v~ els) = elt)
(see [Ze89])

~>  gs'] = s[s]_>1:u:,Os e[i = gft")

or &(s] = e(t)] A els) = els) =, elt] = et)

by using the precondition and the definition of >, o
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iii)

v)

vi)

~>g(s'] ppog £(t')
or g(s') = ¢[t')] A es') ;:>E/A g(t')
since the RPOS is compatible with =

~e st o e t
by definition of >, o

>, has the replacement property:

analogous with the proof of the same fact wr.t. the RPO without
status [(see [Gn88]) since any associative function symbol has
multiset status

>, g has the subterm property:

Note that " AR is stronger than >,:
s > t ~> s > et
This fact can easily be proved by an analysis of
the definitions of >, and >, . [see lemma 4.6.1).

>y has the subterm property:
see lemma 4.25

Therefore, f[..,t,..)] > t implies f[...t,..] t

A AE

>, has the deletion property:

f(...t,..) > g fl..,..) if f is a varyadic function symbol: This is valid
since the RPO without status has the deletion property and each
varyadic (associative]) operator has multiset status.

>, 18 stable w.ur.t. substitutions:
analogous with the proof contained in [Gn88]

Lemma 4.5.2 >,c . >acp and >pcg are simplification orderings

Proof:

which are AC-compatible and stable wur.t.
substitutions.

The references to the proofs of these assertions based on the RPO without

status are given in [GL86]. Together with the lemmata 4.2.5, 4.3.4 and 4.4.4
the corresponding properties about the RPOS are valid.
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Lemma 4.5.3 - >acp* Is ACD-compatible,

Proof:

i)

ii)

>ace* Is ACE-compatible.

— —— [} ] {1
s' =acp S >acp* t =acp t'! > s’ >acpx* th:

The two implications

s' =acp S “acp*t  ~> s' >apcp*t
and s >pcp* t Tacpt' ~> s >acp* t

suffice to prove the assertion. Since the second one is symmetrical
to the first one (the proofs are very similar] we will only show
the latter.

S >aAcp* t

~> (s8] Rpog 3(t)
by definition of >, ~p*

~> 88" >ppog St
since §(s') =5 3(s) [becaus_e s =5 t ~> §[s] =pc i)
([GL86]) and s =, t iff s = t (lemma 4.2.3)) and the RPOS
is C-compatible

~p> s! >Acp* t
by definition of >pcop*

s' =AcE S ace*t Tace t' ~> 8! >pcp* t
The two implications

s' =AcE S >acE* t ~> 8 ' >pcp*t
and s >pAcg* t =pce t' v 5 >pcp* t

are sufficient for proving the assertion. Since the second one is
symmetrical to the first one (the proofs are very similar] we will
only show the first one.

S >aAce* t

> e(s) >ppog elt]
by definition of >5cg*

~o  gs) RPOS (1]

since ¢(s') =, ¢[s] (because s = cg t ~> els) =- ¢(t],
see [Gn88]) and the RPOS is C-compatible
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I
> S >pAcE* t

by definition of >, ~p*

ILLemma 4.5.7 > JAD' TAE’ AC ACD and >Acg are not stable w.r.t.

Proof:

substitutions if the precedence on the A(CJ)-operators
is a quasi-ordering.

The proof of this lemma is performed by giving a counter-example:
see example 4.56.6 on page 32.

Moreover, it is easy (by studying the corresponding proofs) to show
that the restriction "no quasi-ordering on AC-operators” is sufficient
for guaranteeing the stability w.r.t. substitutions. Note that the other
(non AC-) function symbols can be quasi-ordered.

IL.Lemma 4.6.1 Let » be a partial (total) precedence. Then,

Proof:

i)

iii)

iv)

] % < ¢
] A C>%e % S %p %A € g
iii] >,o € >aep + “ap € “acp
ivl] >pc € >acE © aE € acE
It is obvious that > = >, if there are no associative function

AC (]
symbols (flattening is redundant). The proper inclusion is

guaranteed by example 6.1 (page 39).

The definitions of >, , >, 5 and >, - are equivalent if all associative
operators are minimal w.r.t. the precedence. The proper inclusion
is satisfied by the examples 4.35 (page 26) and 4.4.5 (page 29),
respectively.

Note that >, - = >, o if the associative-commutative operators are
minimal w.rt. > (since distributing can be neglected]. Furthermore,
>AD - acp if there are no commutative operators. The proper
inclusion is guaranteed by example 4.4.5 (page 29).

analogous with iii) by substituting E for D (and with the help of
example 6.10 on page 42)].
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Theorem 5.2 Let be:» € Prpos . “psps - DS

>o[>1 are simplification orderings, C-compatible and
stable w.r.t. substitutions.

- > 01, > pr1and >, .[:]1 are simplification orderings,
A-compatible and stable w.r.t. substitutions.

>l 5 oplrl and >, glr]1  are simplification
orderings, AC-compatible and stable wu.t.
substitutions.

Proof: The complexity of the assertions requires the theorem [(and the proof]
to be partitioned into the lemmata 5.2.1 - 5.2.5.

Lemma 5.2.1 Let be » € Pppog - L *rRps)
>al»1 are simplification orderings, C-compatible and
stable w.r.t. substitutions.

Proof: i) >o[>1 are partial orderings since the RDOS, the PSDS and the
IRDS are partial orderings ([St88al] and because of the definition
of >..

o

ii) >,[+1 are C-compatible:
Note that the following fact is valid:

Let be s =g t , decl{s}] = {decy,ls],...decy [s]} and
dec({t}] = {decvl[t],..., decvn[t]}.

D> m-=n
since s =, t (especially, the sets of leaves of both terms
are identical)

~>  (3m) (Vi € [1,n]) decui[s] = = decvn[i][t] (*)
with f{s,...s} = =¢ {t;,...ty } iff (3¢) (Vi € [ m]]
$; =c o)

This is obvious [by constructing © such that s/u; and
t/V,.(i) are the same symbols (leaves].

~>  (vj) (Vs

1

€ decuj[s]] (3x) (3t; € decvk[t]] s, =. t

i C 1
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iii)

iv)

v)

We have to prove that

s' =~ S >ab1 t =4 t! > s >.0] t'

Let be dec({s'l] = {s},..,S)} , dec({s}) = {s;,...S.}
dec({t}]) = {T,,.., T} and dec({t?] = {T;,..., T, L
With (%] the following holds (w.l.o.g. let be n the identity]:
(vi €,ml) S} ==,8; and (Vi €0n]) T} ==, T
~> 8= =, 5 and T, == T
with * € {LD,LP,EL}
because commutative operators have multiset status
and by definition of *

~> dec({s")) == ==, dec({s}) A dec({t}) == ==, dec(it1)
with A € {RDOS,PSDS, IRDS}
by definition of dec({s'}) , dec({s}) , dec({t}) and dec({t"],

respectively

~>  dec({s'l) » », dec({t]
since dec({s}) » », dec({t})] by precondition

> s' > t
by definition of »

> s' >o01 !
since every commutative operator has multiset status

>o[>1 have the replacement property:
This is valid since the RDOS, the PSDS and the IRDS have this

characteristic (see [St88al)

>o[+]1 have the subterm property:
analogous with iii)

>~[>1 have the deletion property:
Note that » have this property:

fl...t,..] >rpos fl.....J if fis a varyadic operator
(see lemma 4.2.5 v])

~>  f(..,t,.) » f[.,.) if fis a varyadic operator
since >ppog € * [see lemma 332 and [St88al)

This fact directly implies the assertion.
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vi)

>C[>] are stable w.r.t. substitutions:
analogous with iii)

Lemma 5.2.2 Let be: € byrag ' >psps + IrDSH

Proof:

i)

ii)

iii)

>,[»] are simplification orderings, A-compatible and
stable w.r.t. substitutions.

>, [>1 are partial orderings on I'(g) since » are partial orderings on
T*(g) [(see proof of lemma 5.21)

>, [>] are A-compatible:

s' =, 8 >0l t =, t' ~> g >, [r] t'

since 1 =, 1 ~> r=ro (lemma 4.2.3)

>,[>1 have the replacement property:
We must prove that s > [1 t ~> fl.,s,.] >0 f(..t, )
This is equivalent to

s » t > fl...,s,..)] » f(...t,.])

Let be dec({r)) = {R,,...R_}.

m

m

- U v, 1L=)1 #(...r,.}} u R,
~> dec({f(..,r,..)}) = q if top[r] +f v f({%A

UV, v U1 {f[ Qb v (Ry \{r}) otherwise
1=

by definition of dec

Note that (vj] (3i) S; =, T, for all * € {LD,LP, EL} (s; and T; are
constructed from s and t llke R from r1). This is vahd since s >t
We have to consider four cases:

- top(s) + f , top(t) # f:

dec({f(..,s,..J}] » >, dec[{f[ L0
by the above constructlon and since f[..,s,.) >, f(...t,..)
(because it is reduced to the comparison of the direct arguments)

- top(s) ¥ f , toplt) = f € §,:
We have to show that

S; v il s, b o>y Gt D o [T\

This is valid since T\{t} ¢ T; and fl...s,..) >, fl..t, )
(cf. previous case)
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v)

vi)

- top(s) = f € F, . top(t) # f:
We have to prove that

U8, 00 v S\ > Ul t, b o T

This is true because f(..,s,..)] »x s (since top(s)

s can be replaced by f[...s,..)

- top(s) = top(t) = f:
We must show that

(IR I AN ) NE SN { R S0 ST 6 AXCH)

This can be proved with the help of the previous case.

>, [>1 have the subterm property:
flossi o) 3 (see lemma 4.2.5)

A { W O BN 65
since > C >[] (see lemma 3.3.2)

>, [>]1 have the deletion property:
fl...t,.] > fl.,.)] if f is a varyadic function
(see lemma 4.2.5)

~>  f[.,t,.) > 01 f(.,.) if fis a varyadic operator

since >, C >,[] (see lemma 3.3.2)

> [>] are stable w.r.t. substitutions:
We must show that

s > 01t ~> os)] >[1 oft)] , for all o
This is equivalent to [(by definition of >,)

s » t ~»> o¢[s] » oft)] , for all o.

f], ie.

symbol

Note that we have to compare path-decompositions of m with

path-decompositions of ofs].

Let be decu[E] = {sy,.,s.} and decV[f] = {t},..,t } such that
dec,(s) »x dec,[t] with » € {LD,LP, EL}. Furthermore, let st (t})

be an argument of sj_; (t/_,].

If s, 'and t, are constants then the assertion directly follows from
the fact that dec,(s] »« dec [t]. Moreover, it is easy to prove the
assertion if s} € B and t, is a constant (since sy, is not needed).
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Therefore, the only crucial case is that of s} =1t = x € B and

Si.q = f(...x,..) > gl...x,..] = t__, (the other cases - s,

can be reduced to this one). For reasons of simplicity, let be

' -
> th

s' = s, and t' =t ;. We have to consider the following two
cases:
o) f=g

~> ofs) » oft)
since the variable x is replaced in s' and t' by the same
structure (~> we have identical subpaths])

B f > g

because associative operators are minimal w.r.t. b

- gEI%A

~> ofs) » olt]
with the help of the considerations of a

gE%A

~> ofs] » oft)
since the paths of o(t') w.r.t. the substituted variable
X are proper parts of the paths of ofs')] wrt x
(because s' cannot be flattened w.r.t. o(x])

Lemma 5.2.3 3> 0] are simplification orderings, A-compatible

Proof:

i)

ii)

and stable w.r.t. substitutions.

. . . + .
>, ol+1 are partial orderings on I(3) since » and =, are partial
orderings.

>yplr] are A-compatible:

We have to prove that s' =, s
Note that s =, t ~> §[s)

t' implies s' >, 01 t'

3(t) (see proof of lemma 4.3.4)

e ) = e] 300 < 0
or 8(s) = 8(t] A 8(s') = 8(s) =, 8(t) = 8[t')

by using the precondition and the definition of [»1]

’AD
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iii)

~> 8] 8(t)

or s(s') = 8(t') A 8(s') ==, S(t)
since » are compatible with =

~> g >AD[>] t!

by definition of >, []
>,pl*] have the replacement property:

We have to prove that s > D01 t ~> f(.,s,.] 501 ..t .)
It is obvious that the relation L—->D/A has the replacement property.
Therefore, from now on, we consider only the case where s >, 01t
implies that @ > ﬁt_]. In this case, the above requirement is
equivalent to

s(s) > 8(t) ~>  s(l..s..)) » (..t .)).

We must consider two cases:

a] fe:%A

f[S_[__s_]] and
f(..., 8(t), ...)

s(f(....t,..))

~> o §(f., s, )] s S(E Lt L))
"iff” [dgending on )

ss) > alt)
by definition of »

~> assertion o
since 8(s] » 38(t] (precondition)

B] fe SA:

W.lo.g. let be s' = (s, ) and t' = {(t, 1) (note that t(f] = mult).
Furthermore, f > g and g € §,. The case of s' and t' starting
with g can be proved similar to the corresponding proof of
> and by using induction on [s'| + [t'].

Note that r is not relevant for the proof since it occurs in
s' as well as in t'. Therefore, independent of the leading
function symbols of r, s and t, it occurs at the same level in
the decompositions of s' and t'. For reasons of simplicity, we
assume that r is an "empty” term (~> an associative operator
can also have only one argument !). It is easy to prove the

following facts about decompositions:
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v)

if top(s(s)) = f

then dec[{Ws]]}] s dec[{g(_s]}] (%)
it top(s(s)) = g (5(s) = gls;....s.,))

then dec({8(f(s))}) =

U __ {s' v iglils,), ... fls )]} | s' € dec (5(s))}
u€eot(s(s))

We have to consider four subcases:

- top(s(s)) = f ., topls(t)) = f
~>  §(f(s)) » 8(f(t])
since (*) is valid
. top(s(s)) = £ . top(s(t)) = g

~>  §(f(s)) » s[f(t))
because f > g

. top(s(s)) = g . top(s(t)] = ¢

~> §(f(s]) » 8(f(t])
since $§(f(t)) < §(f(s])

- top(8(s)) = g = topl3(t)] .

~>  §(f(s)) » 8[f(t))
because in each path-decomposition of §(f(s]) there
exists a term with f as the leading function symbol
(~> this term is greater than g(f(t,], ... {(t_]]]

>apl*] have the subterm property:

Note that >, [>] are stronger than >, [>] and >, [+] have the subterm
property [see iv] of 434 and 5.22). Therefore, f[..t,.] > D[]t
implies  f[...t,..] >, p01 t.

>pl*]1 have the deletion property:

f(...t,..] >p01 f(..,.]) if f is a varyadic operator: This is valid
since » without status possess the deletion property and each
varyadic (associative] operator has multiset status. Now, we will
show that » without status have the deletion property:

Let be dec({f[..,..]}) = {S,,.., S} with S; := {f{..,.]} u S}
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vi)

we doe(lla:tondl] & 1T 00 Tay » Tonuquos Tod
with T; = {f(..,t,..J} v S} if i € ,ml and T; = {f(...t,.]} v T}
otherwise

by definition of dec
~> It suffices to verify that

T. > S,

1 1

for all i € I,m] and for all * € {LD,LP,EL}

~> We have to prove that f[..,t,..] >, f[..,..]
because of the definition of T, and S;, and since the multiset
extension is closed under difference (see [St861])

o) ot =flt,.) > fl,.) =S
itf - sub(dec,(t'),t') »pp subldec,[s') s')
- args(t) »zpos args(s')

Note that subldec,(t'],t') = sub(dec,(s'),s') = s}
(i depends on u] and args(t) >z o args(s')
since args(s'] c args(t')

B) th=f(,t,.) > p £, =8
iff dec(args(t')] » > , dec(args(s'])

This is valid since

dec(args(t']) = {sj,...S, .{t} v T

e T D
{S}....Sp,} = dec[args(s'])

) oott=dlt L) >y M) = s
since - sub(dec(t'],t') sub(dec[s'],s'] [see o))
dec(args(t')]] > »_, dec(args(s')] [(see B))
and by definition of >,

>AD[>] are stable w.r.t. substitutions:
We have to show that

s >pblt ~> ofs] >01 oft] , forallo
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This is equivalent to (by definition of >, ]

s(s) » 8(t) ~> S(o(s)) » S(o(t)) . for all o

Note that we have to compare path-decompositions of §(o(t])) with

path-decompositions of §(o(s]]).

Let bi_giecu[@] = {s},..,sy,) and decv[8~[t~]] = {t;,..,tL.} such that
dec,(5(s])) >« dec,[(8(t]) with » € {LD,LP,EL}. Furthermore, let s; (t}]
be an argument of sj_; (t/_,).

If s, and t_ are constants then the assertion directly follows from
the fact that dec,(8(s]) »« dec[(3(t]). Moreover, it is easy to prove
the assertion if s, € ® and t, is a constant (since s;, is not
needed).

Therefore, the only crucial case is that of s;n = trli = x € ® and
si._q = fl..x,.) > gl...x,.) = tI _, (the other cases - s > bl -

m-i
can be reduced to this one). For reasons of simplicity, let be

s' = s, and t' =t _, We have to consider the following two
cases:
o) f=g

> the substituted arguments of s' and t' w.r.t. x are the same

e the comparison depends on the leading function symbols
of s;,,_, and t__,

~> §a(s)] > 8(a(t))
because the path-decompositions from s' and t' donot
change

B] f > g:

'f.gfISA

~>  §o(s])) » 8lo(t])
because no flattening and distributing of s' and t' is
needed

FE€8, » g€,

~> 8(o(s)) > 8(olt))
since f » g

- 75 -






- 1,9 €340

- o(x) = h(..] with f *h * g:
analogous with the first case of B)

- olx) = f(..]

~>  §(o(s)] » 8(o(t])
since the leading function symbol of o(x) can be
replaced by top(8(o(s')])] = f which has more
arguments than o(x)

- ofx) = glr,. ... rp]

~> o fl,x, ) will be transformed into
= | FOR N I | S . )

~>  3[ols)] » 8[o(t))
because the substituted arguments of §(o(t']]) are
contained in g(f(..,r;,..), ... f[.., Es n)

Lemma 5.2.4 >,[01 are simplification orderings, A-compatible

Proof:

i)

ii)

iii)

and stable w.r.t. substitutions.

>, gl*]1 are partial orderings:
analogous with i) of lemma 5.2.3

>y gl*] are A-compatible:
analogous with ii] of lemma 4.4.4

>y gl*] have the replacement property:

We have to show that s > 01t ~> f(.,s,.]) >0 f(.,t,.])
It is obvious that the relation ‘%E/A has the replacement property.
Therefore, from now on, we consider only the case where s wElrdt
implies that ¢(s) » ¢(t]). Then, the above requirement is equivalent
to

es) » elt) ~>  elfl.s,.) s elfl..t, ..

We must consider two cases:
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o)

B)

RN

~> g(i(.,s,.)) = f[...,s_[__s_—],,..] and
e(f(...,t,..)) = £(....e(t]),..)

~> ¢(f(...,s,..]) » e(f[.... t,..])
"itf" (depending on »)

e(s] > e(t)
by definition of »

~> assertion
since ¢(s] » ¢(t] (precondition]

f€8u:

W.l.og. let be s' = f(s, 1] and t' = f(t, 1] (note that t(f) = mult).
Furthermore, f P g and g is a unary operator. The case that
s' and t' begin with g can be proved similar to the
corresponding proof of > ~and by using induction on
|s'] + It'].

Note that r is not relevant for the proof (see 5.2.3 iii] B)).
Therefore, we assume that r is an "empty” term which induces
that an associative operator can also have one argument, only.
It is easy to prove the following facts about decompositions
(related to €):

if tople(s)) = f

then dec((e(f(s)])) = dec((e(s]] (¥)
it top(e(s)) = g (3(s) = g(hls,....s)])
then if h =t L
then dec({s(f(s))}) = dec({e[s])}) (%)
else dec({e(f(s))}) = Meici {s' u {g[f[h[sl,...,sm]]] ,

f(h(s,....s ) | s' € dec(e(s))\ie[s]h

We have to consider four subcases:

- tople(s)) = f = tople(t))

o sli(s)) » elf(t)]

since (*] is valid
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top(e(s)) = £ , top(s(t)) = g

= ;_[_t—] = g[f[t1""'tn]]

e(f(s)) » e(f(t))

because of [*x*]

§

- elt] = glhlt,....t_ )] with h #t

g(f(s)) » e(i(t))
since f P g and there is a term in s which is
greater than h(t,,...t )

$

top(e(s)) = g , toplslt)) = ¢

- @ = g[f[s1""'sm]]

~>e(f(s)) > elf(t)

because of (%]

- E_[S—] = g(h(s,,...s )] with h #f

~>  g(f[s]] » e(f(t))
since ¢(s] can be replaced by g(f(h(s,, ...s_,)))
which is a superterm

top(e(s)) = g = top(e(t))

- els) = glils,,...s, )} A e(t) = glilt,, ...t )

~>  g(f(s)) » e(f(t))

because of [*x]

- els) = gltls,....s)) & e(t) = glhlt,, ..t ) with h

~>  gf(s)) » e[f(t))
since f P g and there exists a term in s which is
greater than h(t,,..,t_]

- e(s) = glnls,. .5 )] ~ e(t) = glflt,, ...t ))

~> g(f(s]) » e(f(t])
because ¢(s] can be replaced by glf(h(s,,...s,)))
which is a superterm
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- ¢fs) = glhls,,...s)) a e(t) = glhlt,,...t))

~>  g[f(s]) e(f(t))__ -
since - dec(e(s])) v {glf(h(s,, ... s )))\{e(s]}

> dec, (e[t)])\e[t))

e =

- f(h(s;,...s..)) > gli(nlt,, ...t ]])
- f(h(s,,...s )] > f(h(t,, ...t )]

with * € {LD,LP,EL}

iv) >sg[*] have the subterm property:
analogous with iv) of lemma 5.2.3

v) >, g[*]1 have the deletion property:
analogous with v] of lemma 5.2.3

vi] >, p[>] are stable w.r.t. substitutions:
analogous with the proof of 5.2.3 vi)

I.emma 5.2.5 >AC[>], >ACDE>] and >ACE[>] are simplification orderings,
AC-compatible and stable w.r.t. substitutions.

Proof: The proof of these facts follows direc_tly from (i.e., can be done analogous
with) the proofs of the previous (5.21 - 5.2.4) lemmata.
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