A Resolution Calculus with
Dynamic Sort Structures
and Partial Functions

Christoph Weidenbach
SEK| Report SR-89-23

A Resolution Calculus with
Dynamic Sort Structures
and Partial Functions

Christoph Weidenbach
FB Informatik
Universitidt Kaiserslautern
email: weidenb@informatik.uni-kl.de

Abstract: A many sorted logic is presented, which supports partial functions as well as
potentially empty sorts and the dynamic derivation of sort information. In this so called
DSPF-logicl (Dynamic Sorts and Partial Functions), the specification of the sort structure
and the declarations for constant and function symbols are part of the formulae themselves.
Therefore sort information needs not necessarily be known from the beginning but can be
deduced from other information. Nevertheless the resolution calculus which is presented is
almost as restrictive as in logics with static sort information.

1 This work was supported by the “Sonderforschungsbereich 314”, Artificial Intelligence, of the German
Science Foundation (DFG)

A Resolution Calculus with dynamic Sort Structures and Partial Functions

1. INTRODUCTION 5
2 SYNTAX S
P8 B3 T2 L1} | (TP 8
2.1.1 Definition: SIgnatureccoiiieiiuiineiiiieiieiiiiiietiecietneeceecines 8
2.1.2 Definition: Special SymbolS ... iusuuess sasvunss sumanves momensas s ssnsmmns sows 8
2.1.3 Assumption: Non-empty Universe......ccccvceveiniiniiniinininneiieneanne. 8

2.2 Terms, Atoms, and FOrmulae.........ccoieiiiiiiiineiieiiiiiiiieniiiiineiiecneennes 8
2.2.1 Delniton: TermiiS . .o sassesss sssomnes sonummss s auass.s s s Guss b 55 amms s 1 8
2.2.2 Definition: AfOmMIS. ...uueuureieeeeieeeaseeeseennesonsessscassseessansesasannns 8
2.2.3 Definition: LiteralS. ...cciieiiueiiiieieieenneeaeeacireneeenaceneesconecanes 9
2.2/4 DefiMton: CLAUSES .oes osssisisssonions oo emsms sosseminss wEsmi is Sossmess s b5 9
2.2.5 Definition: Formulaeccccciiiiiiieiiiiiiiiiiiiiiiiiiiiiiiiiieieenaes 9
2.2.6 Definition: SUbSHtUHONSeeiieieiniienerenereaereanteeenreseesneennssnnes 9
2.2.7 Definition: Subformula, Scope, Positive Component.........cccccuuene.. 9
2.2.8 Definition: free, bound variables......ccccoeieiiuieiiiiiiiiiiecencanenens 10
2.2.9 Assumption: Considering only Sentences.........ccoceeeeiiieiiinnenenns 10

3 SEMANTICS 11
CI0 V-V -2-15) o 1SN 11
3.1.1 Definition: Z-quasi-algebra.....c.cccceieierierieineriiiniieriiienacnennnees 11
3.1.2 Definition: Z-algebra........... RS § SRS SRS SRS § A SRS 11
3.1.3 Definition: Z-asSIENMIEIL wusq - suanuns s buswsns suesmsns sesmpss seassmes s s 11
314 Auxilisry defifitions....ccice.imssissssammsenssissssmvunsssssseesss s 12

3.2 Structures and INterPretationscoeeeeeieineereceaeeiieeeietiiactoannenncrnecenns 12
3.2.1 Definitions Z-SITICIRITE w. o smumas s somsns & s suis s shoamem s 5550558 546 5655555 45 12
3.2.2 Definition: Interpretation.......ocveveeiuiiiiiniiitiiiiiiiiiiivenieeneenees 12
3.2.3 Definition: Z-model, satisfiable, unsatisfiableccccceeeenenn. 12

3.3 EXamplescmsnnsss s s 555 saumesmmss o5 b5 Snoes R ss - o amaEEsasaans ¢ § 5658 13
3.3.1 Schubert’s Steamroller.ccciiiiiiiiiiiiiiiiiieiieeiaaeeraeearannnes 13
3.3.2 TheLionand the UniCOMMcouviuiiineiiieiiiiiiiiiiiieeneneeneananns 13

3.4 RelatViZAtON ...oiueiiiiieieeieereeaseeeeseaeeeasseeanesaneeencessesennnssnseansanness 15
3.4.1 Lemma: Simple Properties.......ccccioiiieiiimiiiniieicienieeeneenanenns 15
3.4.2 TInsorted First Order LOgiC....cuussssvessovemsanseosassssssnonnsasssssns 16
3.4.3 Transformation in Unsorted First Order Logic.....ccccceeveeerrenneeee 16
3.4.4 Theorem: Sort Theorem.......cccccoiiiuiieireiieieiincenrneencseonenes 17
3.4.5 Corollary: Compactness Theorem.........coceeiuiuiniiiinienenininennenes 18

A Resolution Calculus with dynamic Sort Structures and Partial Functions

4 CONJUNCTIVE NORMAL FORM 19
4.1 BasiC Do iNItiONS . . uuueeieeieiiiiianeeeeeeeeeeeeeeesesenssssecesecssscseeesessnsseseanne 19
4.1.1 Definition: Negation Normal Form, Extended Conjunctive
J\V0Y 0o F: 1 B 213 o o « DN 19
4.1.2 Definition: Clause Normal Form.......cccceieiiiiiiireiinieereieensennens 19
020 2 605 o0 Yo A1 Uo3 5 1o) s DN N 19
4.3 The CNF AlgOTithmcouviuiniiiiniieiiiiiiiiiiie it eaeen 19
B4 EXAMPIES. . einnnns voomnniamismasion as sinonmsasns s 45 5 Suausmsmanss § § SHESHRASIESHIANS § 8 68,5505 20
4.4.1 Schubert’s Steamroller......ccuiviiiiieiiiieiinneioeeeerseeeeecanennseennns 20
4.4.2 TheLion and the UnICOIM ..covviiieireeeeereneeeenienneeeereeeeearesesannns 21
A5 PrOPEIIIES mess vemus 5 sssnsnes s s ssssss suame -vssmms « Ssayoes PEssesyrr ey | £ 22
4.5.1 Lemma: Correctness of replacing positive Components................ 22
4.5.2 Theorem: Soundness and Completeness of the CNF-algorithm....... 22
5 THE RESOLUTION CALCULUS 24
5.1 The Herbrand Theorem ..ccovviiieiiiiireeteeeeeseeenessesssssssssssesssescassessonnnns 24
5.1.1 Definition: Conditioned Instantiation of Clauses........cccceuuuvevnnnnes 24
5.1.2 Lemma: Soundness of Conditioned Instantiation.........cccoeevveeeeenn. 24
5.1.3 Lemma: Associativity of Conditioned Instantiation.........cceeeueernee 25
5.1.4 Definition: Q-Closeducvuuiiuuiiiiiiiiiiiietiiirieaessreeeesetecesanns 25
5.1.5 Definition: Possibly Well Sorted Ground Termsccceeevneenn.. 25
5.1.6 Definition: Possibly Well Sorted Substitutionsc.cccecevuenennnnn. 26
5.1.7 Definition: Herbrand Set of ClausSeS..ccceevevreiiienieeneieerencernneennes 26
5.1.8 Definition: Herbrand Interpretation........cccceveeureeiniieenenneaeanennnn. 26
5.1.9 Lemma: Compatibility of Z-Models and HE-Modéels................... 26
5.1.10 Theorem: Herbrand Theorem ..o iiiiiiiiiiieitieeriiieininrnnnernnneeees 27
5.2 Ground ReSOIUHON o .uuiieetirtetiieiiietteesnsnsesseassassesssassessessessesssssssanes 28
5.2.1 Definition: Complementarity cusms « swswss s soswsws s sssmann o s smumaws s 53555 28
5.2.2 Definition: Ground ReSOIUHOM . c.cciiiiiiiiriiiieieeiiiiiiiiiirnnnreraeeeen 28
5.2.3 Lemma: Ground Resolution is Sound.......ccccoeeirieiinieiiniennenns 28
5.2.4 Lemma: Unsatisfiability of Ground Unit Clausesc.cccceuu.. 28
5.2.5 Lemma: Ground Resolution is Complete........ccoviiiiiiieeneennnnnn. 29
I T 04315 o 10 7o) + DR 29
5.3.1 Definition: Unifiable, Unifier, mgu, Unifcation problem, Solved
unification problem........ccoiiiiiuiieiiiiiiiiiiiiii it 29
5.3.2 A Unification Algorithm for Free Terms......ccccceecreeicericencrennn. 30
5.3.3 Remark: Properties of Unifiersccoceiiiiiiieiiiiinniiiiiiienenen, 30

4 A Resolution Calculus with dynamic Sort Structures and Partial Functions

5.4 General ReSOIUHON «..ueiiniitiiiiiitiintiaieiateiteeseneeeseneesessscssnnsaneannenn 30
5.4.1 Definition: Factor.....ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeenaanns 31
5.4.2 Lemma: Factorization is Sound.........ccceeviiiiiiniiinienerennrenneenns 31
5.4.3 Lemma: Factor LIBNE co s sussmsnssmsnns sosmnmss sonsimnios ormumsms ssomsans 31
5.4.4 Definition: General Resolution Rule........cccoveeiirireniiiiieiiceennnans 31
5.4.5 Lemma: Resolution is Sound........cccccceerueereiiiniinnicrennneennnne. 31
5.4.6 Lemma: Distributivity of Conditioned Instantiationcccceeeenn.. 31
54.7 Lemmas Resolvent Liffing ... seusss sasmes.s o smmes s s s o5 5 sammmnns s s 32
5.4.8 Lemma: Rearrangement of Ground Derivationscccoceveeennnn. 33
5.4.9 Theorem: Completeness of the Resolution Rule............ rereeereens ~.35
5.4.10 Definition: € -Resolution......ccccceuveeinieniniannnns eereeenerneneannansas 36
5.4.11 Theorem: € -Resolution is Sound and Complete..........cccceeeuueeenee 36

RIRT 25 €111 0) L1 300N 36
5:5.) Schubert's STEAmMOIIEr. . o ssunsnn sommens.s swasses s somwm s s s o 36
5.5.2 The Lion and the UnRICOII cue.s cansmess s sssmes s sammns s sasmess o oo e oo 38

6 CONCLUSIONS AND FUTURE WORK 41

7 REFERENCES 42

A Resolution Calculus with dynamic Sort Structures and Partial Functions 5

1. Introduction

Many-sorted logics are becoming more and more important in Artificial Intelligence. The
main reason for this development is the realization that a special treatment of taxonomic
information leads to a more natural encoding of this knowledge and therefore to more
natural deductions. In these logics the taxonomic information is represented by sorts and
declarations. Sorts denote sets of objects with similar properties and declarations describe
the relations between objects and sorts as well as the domain-range relation of functions.

The first logics which solved the problem of dealing with taxonomic information with a
fully developed resolution and paramodulation calculus, e.g. [Walther 87,
Schmidt-SchauB8 89] integrate the sort information into the signature, thus fully separate it
from the rest of the information. This separation into taxonomic and other knowledge leads
to more compact formulae and, using sorted unification algorithms, to a smaller search
space. Since, however, some sort declarations result in undecidable unification problems,
not every sort information can be represented this way. Furthermore it is not possible to
handle “dynamic” taxonomic information, i.e. information which is not known from the
beginning, but has to be deduced. It turned out that in some application areas of order sorted
logic, for example natural language processing, the taxonomic information is not completely
known from the beginning and for this reason the static approach is not adequate. To
overcome this problem new logics like Cohn’s LLAMA [Cohn 87] or the logic used in the
LILOG project [Beierle ez al. 89], have been invented. In addition to the sort part in the
signature, these logics allow sort predicates to occur in the formulae. Special deduction rules
guarantee consistency between the statically represented and dynamically derived taxonomic
information. But it is still not clear, how the dynamically represented sort information can be
used to reduce the search space.

In our approach we pull down the barrier between static and dynamic taxonomic
knowledge and put the whole information into the fromulae by using the special relations €
(membership) and < (subset), without loosing the advantages of sort information during
deduction.

In order to give a flavor of DSPF-logic and to distinguish it from unsorted logic as well
as from other sorted logics, consider the following small example. We have rational and real
numbers and all rationals are reals. A function ‘div’ maps two rational numbers to a rational
number, provided that it’s second argument is not zero. Furthermore there are two constants
‘a’ and ‘b’ of type rational and ‘b’ is not zero.

An unsorted formulation looks as follows:

1) Vx Rat(x) = Real(x) 2) Vx,y Rat(x) A Rat(y) A y=0 = Rat(div(x,y))
3) Rat(a) 4) Rat(b) 5) b0

From this axioms we can deduce the infinitely many facts Rat(div(a,b)),
Rat(div(div(a,b),b)),...,Real(div(a,b)),... In most sorted logics, a sorted axiomatization of

6 A Resolution Calculus with dynamic Sort Structures and Partial Functions

this situation is not possible at all, because the second axiom is a conditioned function
declaration. In DSPF-logic, the corresponding axiomatization is:

1) VXRat XRat€ Real (another formulation for RatcReal)
2) VXRat.YRat YRa#0 = div(XRat,YRat)€ Rat
3) aeRat - 4) beRat 5) bz0

Here only a single deduction is possible, namely 6) VxRra: div(XRat,b)e Rat, which seems
reasonable. Nevertheless we can prove all theorems in the DSPF-logic, for example
div(a,b)e Real. With 1) and the negated theorem div(a,b)e Real we obtain 7) div(a,b)¢ Rat,
where unification of xR, and div(a,b) generates the condition div(a,b)e Real whose
negation becomes a residue literal in the result. 7) and 6) now yields ag Rat and finally using
3) we derive the empty clause. This example shows that the application of sort information
is still driven by unification and therefore very tightly controlled.

The unification mechanism which generates conditions of the form terme sort, supports
the incorporation of two more concepts into DSPF-logic, namely sorts denoting possibly
empty sets and “dynamic” partial functions. For example the following sort hierarchy can be
declared '

honest man politician

honest politician

without knowing that there is a honest politician at all. Since quantification over an empty
set yields a true statement, the usual instantiation rule is not sound. For example from
Vxhonest-politician loved(Xnonest-politician,P€Ople)
we can not deduce loved(Gorbi,people), because if there is no honest politician at all, the
quantified statement is true, but nevertheless the instantiated formula is false. In DSPF-logic
we would generate the conditioned instance
Gorbie honest-politician = loved(Gorbi,people)

which is only satisfiable if there is at least one honest politician, namely Gorbi. With exactly
the same mechanism we can handle partial functions. For example an instantiation of the
above formula with leader(GDR) yields

leader(GDR)€ honest-politician = loved(leader(GDR),people)

If the function leader would not be defined for ‘GDR’, the conditon would be false and
therefore the implication would be true.

The literals with the negated € -predicate can be seen as an invitation to prove a
membership relation. For example a¢ S can be proved with a corresponding a€ S literal. For
the special sort Q which denotes all objects, however, a literal f(c)e 2, which is true
when f is not defined for ¢, can also be proved using an arbitrary positive literal
P(...f(c)...), where f(c) occurs as a subterm. The reason is that positive literals can only be
satisfied when all their arguments are defined. Thus, f(c)e Q (f(c) is not defined) and

A Resolution Calculus with dynamic Sort Structures and Partial Functions 7

P(...f(c)...) (f(c) is defined) are contradictionary and can trigger a resolution operation. A
literal of the form ce Q is contradictionary, because constants denote always existing
objects.

Unification with conditioned instantiation and the special resolution rule between
terme Q-literals and positive literals are the only extensions of the resolution calculus in
DSPF-logic. In the subsequent chapters the logic and the calculus will be presented in more
detail.

8 A Resolution Calculus with dynamic Sort Structures and Partial Functions

2 Syntax

The syntax of the DSPF-Logic is very similar to the syntax of unsorted first order logic,
because terms, atoms and formulae are generated without considering sorts. Only the two
special relations € and ¢ are added and variables are indexed with the sort they range over.

2.1 Signature

2.1.1 Definition: Signature

A signature X := (S, V, F, P) consists of the following disjoint sets: S is a finite set of
sort symbols, the fixed symbol Q for “any” is always in S. Sort symbols are S, T. Vis a
countably infinite set of variable symbols. For variables we write X, y, z. F is a countably
infinite set of function symbols, F is divided into the sets of n-place function symbols
F,.We use the symbols f, g, h for functions and a, b, ¢ for constants (0-place function
symbols). P is a finite set of predicate symbols divided into the sets of n-place predicate
symbols P, neNj. Predicates are named by P, Q. Additionally X consists of a function
S:V-S such that for every sort TeS, there exist countably infinitely many variables xe 'V,
with S(x) = T. We say x has sort T in this case and denote this by xr.

2.1.2 Definition: Special Symbols
The following symbols are available: the logical connectives —, A, v, =, <, V, 3, the

t2d €6\9% &6

auxiliary symbols “(”, , .7 and the special relations < (subset), € (is-element), which
are used to represent information about sorts. At the meta level, we use italic versions of the
subset and is-element symbol.

2.1.3 Assumption: Non-empty Universe

We always assume that there is at least one constant symbol in . This assumption
implies that the universe of discourse is not empty and this appears to be natural for us.

2.2 Terms, Atoms, and Formulae

2.2.1 Definition: Terms

The set of all terms Ty is inductively constructed by the following two rules:
i) xeTyg,if xeV
i) f(ty,....ty))e Ty, if feF, and ;€T3 for every i
Let V(t) denote the variables occurring in a term t, i.e. V(t) := {t}, if t is a variable and
V(@) := 1gnV(ti), if t = f(ty,...,t;). We can naturally extend V to atoms, literals, clauses
and other objects. An object t with V(t) = @ is called ground.

2.2.2 Definition: Atoms

If PeP, and t;,...,t, are terms then P(t,,...,t,) is an atom. If S and T are sort symbols
and tis a term, then te S and S < T are atoms.

A Resolution Calculus with dynamic Sort Structures and Partial Functions 9

2.2.3 Definition: Literals

Atoms and their negations are literals. A literal is called negative if it consists of an atom
and a negation symbol. Otherwise it is called positive.

2.2.4 Definition: Clauses

A clause is a finite set of literals. It is interpreted as the disjunction of its literals, where
the whole clause is universally quantified over all variables occurring in it. We use two
notations for clauses, the logical notation, e.g. C = L; v L3 and the set oriented notation
C = {L1,L2}. The empty clause is denoted by {].

2.2.5 Definition: Formulae

Every literal is a formula. If ¥ and G are formulae then (=%), (FA G), (FV 6),
(F=> G) and (F < G) are formulae. If Fis a formula, x7 a variable then (Vxr ¥) and (3xt
¥) are formulae. We omit parenthesis whenever possible using the following precedence
starting from the logical connective with the highest precedence to the lowest one: —, V, 3,
AV, D, .

2.2.6 Definition: Substitutions

A substitution G is a total function 6:V-Tg, such that the set {xe V] 6(x) # x} is finite.
Let DOM(o) := {xe VI o(x) # x}. Since every substitution G is uniquely determined by its
action on the variables of DOM(0), it can be represented as a finite set of variable-term pairs
{x1Pt1,e... XnPty), where DOM(G) = {X1,...,Xn}.We can extend the application of 6 to Ty
by o(t) := o(t), if te V and o(t) := f(o(t,),...,0(ty)), if t =1£(t),....t;). The same way the
application of ¢ can be extended to other objects, e.g. literals, clauses or sets of such
objects. Let COD(o) := 6(DOM(0)) and I(c) := V(COD(0c)). A substitution ¢ is called
ground if I(c) = @. '

The composition of two substitutions o = {xjl=t;,...,Xq1=ty} and
T = {y12S1,....Yym~Sm} can be computed by ot = {y1=0(s1),...,ym=0(Sm)} LU
{xi~t;l x;€ (DOM(0) - DOM(T))}. A substitution © is called idempotent if 6o = G. Note that

a substitution ¢ is idempotent iff DOM(c) N I(c) = @ [Herold 83]. With o\x we denote a
substitution that is equal to G, except that it maps x to x.

2.2.7 Definition: Subformula, Scope, Positive Component

Let 7, G, Hbe formulae. ¥ is a subformula of G, if Fis G or a formula that occurs within
G. ¥ (or a variable xT) is in the scope of a universal quantifier V (an existential quantifier 3,
a conjunction A, a disjunction v, a negation —, an implication =, an equivalence) iff F
is a subformula of G (or #) in Vxs G 3Axs G, GA H, GV H, =G, G= H, G & H). An
occurrence of a subformula ¥ of a formula G is a positive component of G iff G contains no
implication or equivalence symbols and the occurrence of ¥ is not in the scope of a negation
symbol.

10 A Resolution Calculus with dynamic Sort Structures and Partial Functions

Note that Fis not a positive component in —(—4%). This does not seem to be natural, but
we only use this definition for formulae in negation normal form, where all negation
symbols stand directly in front of the predicate symbols.

2.2.8 Definition: free, bound variables

For a formula ¥, the set FV(¥) of free variables of ¥is defined by:
i) FV(P(ty,...,t)) = V(t)) U ... UV(t,) for a n-place predicate P
i) FV(teS) = V(t) and FV(S ¢ T) = @ for the special relations € and <.
iil) FV(=$ =FV(P
iv) FV(FxG) =FV(H UFV(G), where xe (A, v, =, &}
v) FV(Vxr H=FV(P - {x1}
vi) FV(@3xt 5 =FV(P - {x7}
Given a formula 7, the set BV(¥) of bound variables of Fis defined by:
i) BV(P(ty,....t)) =D
ii) BV(teS) =@ and BV(S < T) = @ for the special relations € .and <.
iiiy BV(=%) =BV(®»
iv) BV(FxG) =BV(H) UBV(G), where xe {A, v, =, &}
v) BV(Vxr 5 =BV(H L {xr}
vi) BV(@xt 5 =BV(H LU {xT}
A variable xT is free within a formula ¥ if xeFV(¥) and xr is called bound within a
formula Fif xre BV (%). This definition is adopted from [Gallier 86].

2.2.9 Assumption: Considering only Sentences
We only consider formulae without free variables. Such formulae are called sentences.

A Resolution Calculus with dynamic Sort Structures and Partial Functions 11

3 Semantics

In order to define the semantics for the DSPF-Logic, we have to assign a set of objects of
the non-empty universe to every sort symbol, a partial function to every function symbol
and we interpret predicates, the special relations and the logical connectives in the usual
way. To get around the problems of partial functions, we use the often applied trick to
introduce a new object “.L”, which denotes “undefined” and extend the functions using this
object such that they become strict and total. If L. occurs at an argument position of an atom,
the atom becomes false, i.e. an atom can never hold if an ill sorted term occursin it. On the
other hand the negation of an atom including an ill-sorted term always becomes true. Thus
our semantics of the negation is like “If the negation of a statement is true, the statement is
wrong or the statement does not make sense because it is ill-sorted”.

3.1 Algebras

3.1.1 Definition: 2-quasi-algebra
Let X be a signature. A X-quasi-algebra A consists of a non-empty carrier set A, a

partial function fz:A"»A with domain D(f4) for every function symbol fe Fy, a set
Sa < A for every sort S, such that A = $&sS 4.

3.1.2 Definition: Z-algebra™

Let X be a signature. Then a Z-algebra A is defined as a Z-quasi-algebra 4 with the
following additions:
i) The carrier set A+ := AU (L}, where L&A.
li) Q a= A
ili) For all constants ce Fy, ca€A.
iv) For all feF; (n>0) and all (ay,..., ap) € (A+), if (ay,...,an) € (f2) we extend f4to
fa(ay,...,an) = L. That means f is assumed to be a strict w-extension.

3.1.3 Definition: X-assignment

Let 4 be a X-algebra. A Z-assignment is a total mapping ¢:V->A+ with @¢(x)eS(x) 4 if
S(x)2# @ and @(x) = L otherwise. The homg'mg;phic extension @p:Tz>A+ of a Z-
assignment ¢ is defined as follows:

¢n(x) = @(x) for all Z-variables x

On(E(t1,eeerty)) = £a(@n(tp)s....Pn(ty)), for all feFy.
From now on we don’t distinguish between ¢ and ¢y. Let ¢ be a Z-assignment, aeS 4,
xeV with S(x) =S and teTg then

o[{x/a}J() := a ifteV andt=x
ol(x/a}l(®) = o(t)if teV and t=x
ol{x/a}I(t) = fa(e[{x/a}I(ty),....p[{x/a}](ty)) if t=£(t},...,t)),

i.e. @[{x/a}] is like ¢ except that it maps x to a..

12 A Resolution Calculus with dynamic Sort Structures and Partial Functions

3.1.4 Auxiliary definitions

For Vxs;...Vxs, we use the abbreviation VX3 and for y,, ..., y, we write y. If we
write F(x] for a formula ¥ and a variable x, we want to emphasize that x occurs free in 7.

3.2 Structures and Interpretations

3.2.1 Definition: Z-structure
Let Z be a signature. A Z-structure M is a Z-algebra 2 which has additional denotations
Py for every predicate symbol Pe P, and the special symbols € and <, such that: .
i) Py is a relation with Py € A
il) e is the element-of relation,i.e.epm=€
ili) <M is the subset relation, i.e.Cm=<

3.2.2 Definition: Interpretation

Let M be a Z-structure and @:Tz—»A+ a Z-assignment. An interpretation is a pair
S = (M,) such that for every s, te Ty, S, T €S and PeP,

() = (1)

SE P(tl""’tn) iff ((P(tl)’"-’q)(tn))EPM-

SEseT iff @(s)eTa

S3=ScT iff SaCTa.

SE-F iff not3 = F

SEFAG iff 3 Fand 3 = G

SEFVG iff 3 For3 k= G

SEF=6 iff not3 £ For3 = G

SEFa 6 iff SE (F=2AG=>H

S =Vxs F iff for all aeS4, M,@[{xs/a}) = F
SEedxs F iff there exists an @€ S 4, such that M, @[{xs/a}]) E .

3.2.3 Definition: X-model, satisfiable, unsatisfiable

Let Fbe a formula. An interpretation M = (M, @) is a Z-model for Fif M= F. Note
that @ plays no role for sentences. A set F of formulae has a Z-model A if for every formula
FeF M= F. A formula is called satisfiable if it has a £-model. We call a formula
unsatisfiable, if it has no X-model.

Our interpretation of atoms including ill-sorted terms leads to a semantics which is not
symmetric with respect to the sign of predicates. If Fis a satisfiable formula and we replace
every occurrence of a predicate P in by it’s negation, the resulting formula ¥ may be

unsatisfiable. For example the formula F = (—P(f(a)) A f(a)e Q) is satisfiable in every

interpretation with @(f(a)) = L. But F = (P(f(a)) A f(a)e¢ Q) is unsatisfiable because
f(a)e Q forces f(a) to be undefined and P(f(a)) is false if f(a) is undefined.

One can argue whether the negation of something undefined should yield a true
statement. Our reason for choosing this meaning was the realization that it leads to a

A Resolution Calculus with dynamic Sort Structures and Partial Functions 13

resolution calculus very near to the unsorted resolution calculus, allows an easy
transformation to unsorted first order logic and together with the sort mechanism gives
enough expressivity to avoid critical situations in practical applications.

3.3 Examples

3.3.1 Schubert’s Steamroller

We shall use Schubert's Steamroller as an example throughout this paper. In 1978
Schubert raised the following challange problem:

Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of each of
them. Also there are some grains, and grains are plants. Every animal either likes to eat
all plants or all animals much smaller than itself that like to eat some plants.
Caterpillars and snails are much smaller than birds, which are much smaller than foxes,
which in tum are much smaller than wolves. Wolves do not like to eat foxes or grains,
while birds like to eat caterpillars but not snails. Caterpillars and snails like to eat some
plants. Therefore there is an animal that likes to eat a grain-eating animal.

Let X be a signature including the following symbols: A, B, C, G, F, P, S, W are all
sorts and the intended meaning for them is animals, birds, caterpillars, grains, foxes, plants,
snails and wolves, respectively. We use two 2-place predicate symbols E(x,y) to express x
likes to eat y and M(x,y) to denote that x is much smaller than y. The constants tweety,
swallowtail, muesli, foxy, slimey and lupo are also available. Then the problem can be
formalized as follows (for a discussion of the formalization and the two different versions of
the theorem see [Stickel 86]):

1) lupoe W A foxyeF A tweetye B A swallowtaile C A slimeye S A mueslie G
2) WcA AFCA ABgA A CcA A ScA A GcP
3) Vxa Vxp (E(xa,xp) v Vya (M(ya.Xa) A Iyp E(ya,yP) = E(XaYA))

4) Vxc Vxg M(Xc,XB) 5) Vxs Vxg M(xs,XB)

6) Vxp Vxg M(XB,Xp) 7) Vxg Vxw M(Xg,xw)

8) Vxw Vxg —E(Xw,XF) 9) Vxw Vxg—-EXw,Xxg)
10) Vxp Vxc E(xg,xc) 11) Vxg Vxs —E(xB,Xs)
12) Vxc 3xp E(xc,xp) 13) Vxgs Ixp E(xs,xp)

14) 3xa dya (E(xa,ya) A 3xg E(ya,xg)) Theorem Version 1
15) 3xa dya (E(xa,ya) A Vxg E(ya,xg)) Theorem Version 2

3.3.2 The Lion and the Unicorn

Our second well known example is a puzzle named “The Lion and the Unicorn”, that can
be found in [Smullyan 78]. It reads as follows:

When Alice entered the forest of forgetfulness, she did not forget everything, only
certain things. She often forgot her name, and the most likely thing for her to forget
was the day of the week. Now, the lion and the unicon were frequent visitors to this
forest. These two are strange creatures. The lion lies on Mondays, Tuesdays and
Wednesdays and tells the truth on the other days of the week. The unicomn, on the other
hand, lies on Thursdays, Fridays and Saturdays, but tells the truth on the other days of
the week.

14 A Resolution Calculus with dynamic Sort Structures and Partial Functions

One day Alice met the lion and the unicorn resting under a tree. They made the following
statements:

Lion: Yesterday was one of my lying days.

Unicorn: Yesterday was one of my lying days.

From this statements, Alice, who was a bright girl, was able to deduce the day of the
week. What was it ?

In our formalization of the problem we follow mainly the suggestions in
[Ohlbach&Schmidt-SchauBl 85]. Thus our signature consists of the sorts MO, TU, WE,
TH, FR, SA and SU which stand for the days of the week, the sorts LL and UL which
denote the lying days of the lion and the unicorn, respectively, a sort D for all days and a
sort C for the two creatures. The constants monday, tuesday, wednesday, thursday, friday,
saturday and sunday, the constants lion and unicorn and a 1-place function yesterday are
needed. Furthermore we need a 3-place predicate LA(x,y,z) which is true if x says atday y
that he lies at day z. Now we can give a complete set of formulae for this problem:

1) mondaye MO A tuesdaye TU A wednesdaye WE A thursdaye TH A fridaye FR A
saturdaye SA A sundaye SU

2) MOcLL A TUCLL A WECLL A VxTy XTHZ LL A VXFR XFRE LL A VX5A Xsa2 LL
A Vxsu xsug LL

3) THgUL A FRCUL A SACUL A Vxsy xsy2 UL A Vxmo xmo€ UL A
Vxtu xTu2g UL A Vxwg xwge UL _

4) MOgD A TUCD A WECD A-THcD A FRED A SAcD A SUCD A LLCD A
ULcD

5) . lione C A unicorne C

6) yesterday(monday)e SU A yesterday(tuesday)e MO

7) yesterday(wednesday)e TU A yesterday(thursday)e WE

8) yesterday(friday)e TH A yesterday(saturday)e FR A yesterday(sunday)e SA

9) Vxp Vyp (xpg LL A LA(lion,xp,yp) = ypeLL)

10) Vxp Vyp (xpgLL A =mLA(lion,xp,yp) = ype LL)

11) Vxp Vyp (xpeLL A LA(lion,xp,yp) = ype LL)

12) Vxp Vyp (xpe LL A =LA(lion,xp,yp) = ype LL)

13) Vxp Vyp (xpe UL A LA(unicorn,xp,yp) = ype UL)

14) Vxp Vyp (xpe UL A —LA(unicorn,xp,yp) = ype UL)

15) Vxp Vyp (xpe UL A LA(unicorn,xp,yp) = yp€ UL)

16) Vxp Vyp (xpe UL A =LA(unicorn,xp,yp) = ype UL)

17) 3xp (LA(lion,xp,yesterday(xp)) A LA (unicorn,xp,yesterday(xp))) Theorem

Comparing the formalization given so far with the formalization in
[Ohlbach&Schmidt-SchauBl 85], we have replaced the MEMBER predicate by the e
relation and we have tried to express as much as possible in terms of sorts. To this end we
have doubled the axioms 9 - 12 and eliminated the relation lying-days. The reason is that in
the DSPF-Logic presented in this paper, it is not possible to use a formula like

Vxp Vyp Vxc (xpe lying-days(xc) A LA(xc,xp,yp) = ype lying-days(xc))

A Resolution Calculus with dynamic Sort Structures and Partial Functions 15

because only sort constants are allowed on the right hand side of the € relation. Although
the axioms 9 - 16 are necessary to define the LA predicate, they can also be interpreted as a
dynamic description of the sorts UL (the unicorn’s lying days) and LL (the lion’s lying
days) with respect to the statements of the two creatures. In the resolution proof a
dynamically derived inconsistency for the searched day will be obtained using the sort
information above.

3.4 Relativization

In this paragraph we show how to transform formulae of the DSPF-Logic in unsorted
first order logic. This is useful because if we can prove that the semantic and syntactic
notations of both logics are equivalent, results like for example the compactness theorem,
from the well known first order logic can be applied to our approach. Therefore we prove
the model theoretic part of the sort theorem, which states the equivalence of the logics. The
transformation of the formulae will be done in two steps. First, the sorted formulae are
translated in a form, where they only consist of variables of sort Q and then use the standard
method [Oberschelp 62, Walther 87] to provide a unary predicate for every sort symbol to
reach the final unsorted form.

3.4.1 Lemma: Simple Properties

First we list some equivalences, which can be used to eliminate variables of a sort not
equal to Q and substitute the < relation by the € relation.

S=Vxs F iff 3 =Vxq (xqeS = {xsPxq)}F) xq not free in F
Sedxs F iff S =Ixq (xge S A {xsxq} P xq not free in F
S=ScT iff S EVxq (xqgeS = xqeT) -

Gff 3 & Vxg xse T)
Proof:

Can be easily seen by using the semantics for the special relations.m

The first two equivalences are correct regardless whether xg occurs free within # or not.
The first equivalence interpreted as a rewrite rule, gives the possibility to eliminate
universally quantified variables, which do not occur free in the formula as for example Vxs
P(a) » Vxq (xqe S = P(a)). Using a semantics which allows empty sorts, quantifiers, like
Vxs in the above example, can’t be dropped. But to produce clause normal form, we have
to eliminate the universal quantifiers and therefore to apply this equivalence as a rule.

If the three equivalences are applied from left to right to a formula, the resulting formula
is very near to unsorted first order logic. This is because the variables range over the whole
universe (the whole universe is always assigned to sort Q) and there is only one special
relation left.

16 A Resolution Calculus with dynamic Sort Structures and Partial Functions

3.4.2 Unsorted First Order Logic

We shall give a brief introduction to the syntax and semantics of unsorted first order
logic. The first order signature £ := (V, F, P) consists of the following disjoint sets: V is a
countably infinite set of variable symbols, F is a countably infinite set of function symbols
and P a finite set of predicate symbols. Terms, atoms, literals and formulae are built in the
same way as in the DSPF-Logic, except that the special relations € and < don’t exist. An
interpretation S = (M,) consists of a Z-structure M and a E-assignment @:V-U which
can be extended as in Definition 3.1.3. The Z-structure M consists of a non-empty universe
U, a total function fyy:U™-U for every n-place function symbol feF, and a n-place relation
PmcU™ for every predicate symbol PeP,,. For every te Ty and PelP,',

3® =)

8 = P(ty,....ty) iff (@(ty),...,9(t,)ePym.

S =-F iff not S F

SEFAG iff 3 = Fand S £ G

SEFvG iff S E For3 = G

SEF= 6 iff notS = ForS = G

SEFe G iff SE(F=2)AGE=>P

S=Vx¥F iff for all ae U, M,p[{x/a}]) = F

S=3x7F iff there exists an ae U, such that M,[{x/a}]) = F.

3.4.3 Transformation in Unsorted First Order Logic

We now present an algorithm IT, which transforms sentences of the DSPF-Logic in
unsorted first order logic. Let Fbe a sentence of the DSPF-Logic.

Stepl: Use the rules
i) Vxs G- Vxq (xqeS = (xs=xq}G) xq not free in G

i) dxs G- Ixq (xqeS A {xs-xq}G) xqnot free in G

i) SCT-Vxqg xqeS =xqeT)
to eliminate the ¢ relation and all variables not having sort Q. The first and second rule are
applied exactly once to every subformula of ¥ starting with a quantifier, e.g. the formula
Vxq ¥ is also changed to Vxq (xqe Q = F). We obtain a formula Ilsep1(F) which is
equivalent to ¥ and still remains in the DSPF-Logic.

Step2: The signature for the corresponding first order formulae is given by
Z:=V,F,PuU{SI|Sisanew l-place predicate for every sort SeS})
and apply the rule
i) teS->S()
to eliminate the € relation. After this step we can forget about the sorts of variables and have
computed a sentence ITsw.p2(#) in unsorted first order logic.

Step3: Add the following formulae
1) Vx1...Vxp (P(X1,...Xn) = (£2(x1) A...A £2(Xp))) for every n-place predicate PeP.

A Resolution Calculus with dynamic Sort Structures and Partial Functions 17

i) Vxi..Vxy (2(f(x1,...,Xn)) = (£2(x1) A...A £2(Xy))) for every n-place function
symbol (n>0) occurring in .
iii) £2(c) for every constant symbol ¢ occurring in IIs.ep2(F), if there is no constant
symbol in ITsiep2(%#), choose an arbitrary constant symbol ceFg and add £X(c).
as a conjunction to ITs;p2(#). The part iii) guarantees that £ is always a non-empty relation
in every unsorted first order interpretation and the parts i) and ii) ensure that predicates and
functions behave strict with respect to 2. We obtain the final first order sentence II(%).

3.4.4 Theorem: Sort Theorem
Let Fbe a sentence of the DSPF-Logic. Then Fhas a X-model iff II(#) has a Z-model.

Proof:
As we have mentioned in the algorithm I1, it suffices to show that ITs;ep1(#) has a Z-model
iff IT(#) has a Z-model, because IIsip1(¥) is equivalent to F.

— Let 3 = (M,) be a Z-model for IIsiep1(F), ie. S = Isiep1(F). Then we
construct a Z-model S as follows: U = A+, functions and predicates are interpreted in M
as they are interpreted in M and the added unary predicates S; are given by (S)m = (S) 4.
Obviously U is not empty and the added formulae of IT() hold in S. Thus we have only to
show by induction on the structure of formulae, that 3 = IIstep1 (F) implies
8 & IIseep2(F). We prove only the non-trivial parts.
i) Ilsep1(F) = P(ty,...,tn) for a n-place predicate symbol PPy, then 3 = P(ty,....tn)
implies 3 & P(ty,...,tn), because the interpretation for P in 8 is the same as in 3.
ii) ITsiep1(F) =teS, then S = te S implies S = S(t) by construction.
iii) ITseep1(F) = Vxq (xqe S = G), then 3 =Vxq (xqe S = G) implies
S EVx (S(x) = G), because U and Q4 are both not empty, case ii) holds for
xq€ S and the induction hypothesis for G holds.
The case that the topsymbol of ITsp1 () is an existential quantifier is similar to this
case.

“=" Let 3 = (M,9) be a Z-model for II(F). Then we construct 2 Z-model J as
follows: the Z-quasi-algebra 4 is defined with carrier A =). A is not empty because of
3.4.3-Step3-iii). For every n-place function symbol feF,, (41,...,un)€ A™ we define
fa(ui,....un) = fm(uy,...,un) if fm(u1,...,un)€ A and undefined otherwise. For every sort
symbol SeS the set S\ is assigned. The condition Sz A holds because of 3.4.3-Step3-i).
The Z-algebra A is defined according to Definition 3.1.2. Clearly Q4= A and for every
constant ¢ occurring in Ilsep1(F) we have cze A. For all other constants an arbitrary
element of A can be assigned. For every n-place predicate symbol Pe P, we assign the
relation Py = {(ay,....an)l (@1,....an)€ A™ and (a,,...,a,)e Py }. Finally we show by
induction on the structure of formulae, that S = Mstep2(F) implies S & Isep1(F).
i) ITstep2(F) = P(ty,...,tn) for a n-place predicate symbol Pe Py, then S = P(ty,...,t,)
implies 3 & P(ty,...,ty), because 2.4.3-Step3-ii) and the fact that Msep2(F) is a
sentence ensure that 3(t))€ A for every i and Py is the restriction of Py to A™.

18 A Resolution Calculus with dynamic Sort Structures and Partial Functions

i) ITsiep2(F) = S(t), then S = S(t) implies S =te S by construction and the above
argument for the interpretation of t.

iii) Mstep2(F) =Vx (Sx) = G), then S =Vx (Sx) = G) implies
3 EVxq (xqe S = §G), because ae Sy implies ae Q 4, condition ii) holds for
S(x) and the induction hypothesis holds for G.

The case that the topsymbol of ITsep2(#) is an existential quantifier is similar to this
case.n

3.4.5 Corollary: Compactness Theorem
A set S of DSPF-sentences is satisfiable iff every finite subset T of S is satisfiable.
Proof:

Follows from the Sort Theorem and the fact that the Compactness Theorem holds for first
order logic.m

A Resolution Calculus with dynamic Sort Structures and Partial Functions 19

4 Conjunctive Normal Form

4.1 Basic Definitions

4.1.1 Definition: Negation Normal Form, Extended Conjunctive Normal Form

A formula Fis said to be in pegation normal form, if every negation symbol occurring in
¥ stands directly in front of a predicate symbol. Fis in extended conjunctive normal form, if
¥ is in negation normal form and F = F; A...A F,, where the }'1 = ((Q1 x1)...(Qm xm) M),
M is a disjunction of literals and Q;e{V 3}.

4.1.2 Definition: Clause Normal Form

A formula ¥ is in ¢lause normal form, if #is in extended conjunctive normal form and
contains no quantifiers. The variables occurring in ¥ are assumed to be universally
quantified.

If a formula ¥ is in clause normal form, we sometimes use the set oriented notation
instead of the logical notation for clauses.

4.2 Introduction

For many reasons the clause normal from can not be computed using the standard
algorithms, as for instance [Chang&Lee 73, Loveland 78]. First, sets may be empty and
therefore some transformation rules don’t hold, e.g. the rule for extending the scope of a
universal quantifier:

Vxs Fxs] A Gis not equivalent to Vxg (Flxs] A G)

(Take an interpretation 3 where Sgq =@ and S & G. Then 3 = Vxs(Fxs] A G) but
3 & Vxs Flxs] A G.) Second, Skolemization doesn’t work in the usual way, because
information about the domain and range sorts of a Skolem function has to be provided. We
have developed an algorithm, which takes the above cases into account.

4.3 The CNF Algorithm

The input of the algorithm is a DSPF-Logic sentence ¥, which is transformed in the
clause normal form CSZ. We prove that ¥ is satisfiable iff the clause set CS¥ is satisfiable,
which is a sufficient condition for a refutation calculus.

StepQ: Use the rule

i) SgT-> VxsxseT
to eliminate the < predicate. After this step we have only to consider one special relation €
representing the whole sort information.

Stepl: Use the rules
i) F&GoF=>0GAG=F
i) F=25G->-FvG

to eliminate implications and equivalences.

20 A Resolution Calculus with dynamic Sort Structures and Partial Functions

Step2 : Use the rules
i) aVxg F- 3xs =F
11) —|3Xs F- VXS —-F
i) =(FA g) ->FVv G
iv) =(Fv @ ->-FAG
V) a(=H->F
to move the negation sign inwards.
Step3 : Usetherules
1) Vxs(Fv G - (Vxs H Vv G(xsnot free in G)
i) Ixs (FA @ - 3xs F) A G (xs not free in G)
iii) Vxs (FA @ - (Vxs) A (Vxs G) (xs free in Fand G)
iv) Ixs (Fv §) -» (3xs F) v 3xs G) (xs free in F and G)
v) Vxs Vyr (Fv @) - Vyr Vxs (Fv @ (yr free in Fand G, but xg not free in either
For G)
vi) 3xs3yr (FA) -yt 3Ixs (FA G) (xs, yr as in the rule v))
to move the quantifier inwards. These rules are not necessary for Skolemization, but are
useful to get small Skolem functions.

Step4 . Rename all variables, so that different quantifiers have different variables.

Step5 : From left to right remove all existential quantifiers: let := 3xgs G be the formula of
the actual existential quantifier. Let Vys;,...,Vys, be the universal quantifiers which have ¥
in their scope. Then replace F by {x—f(ys;,....¥Ysp)} G A f(¥s15--sYsn)E S, Where f is a new
n-place Skolem function.

Step6: Use the rules
D HVY(FAGQ>HVYPHAHYV G

i) Vxs (FA G- Vxs FAVXs G

i) (VxsHvV G=>Vxs(Fv G
and variable renaming to transform the formula in extended conjunctive normal form.
Step7 . We obtain a formula like F; A...A F,, where every F = VX1...Vxn C; and the C;
are clauses. Now use the rule Vxgs C -» Vxq (C U {xqe S}), where xs& V(C) to ensure that
a variable occurs in a clause C iff it occurs in the universal quantifiers in front of C. This is
correct only together with the assumption that we consider sentences for the transformation.
After the above transformation we can drop the quantifiers and keep in mind that all
variables are universally quantified over their sorts. So we have reached the desired clause
normal form of the input formula.

4.4 Examples

4.4.1 Schubert’s Steamroller

We shall only show the transformation of the negated theorem (version 2), because the
transformation of the parts 1) - 13) is simple and straightforward.

A Resolution Calculus with dynamic Sort Structures and Partial Functions 21

R

{

b d

—(3xa dya Exa,ya) A Vxg E(ya,xg))) negated theorem

Vxa Vya (mE(Xa,ya) Vv 3xg —E(ya,XG)) using the steps 2-i), 2-ii) and 2-iii)

Vya Vxa (mE(xa,yA) v 3xg —E(ya,XG)) using step 3)-v)

Vya (Vxa —E(xa,yA) Vv 3xG —E(ya,Xg)) using step 3)-i)

Vya (Vxa —E(xa,ya) vV (mE(ya,fa(¥a) A fa(ya)e G)) using step 5), there f, is a
new 1-place Skolem function and stands for the grain eaten by the animal ya

Vya ((Vxa —E(xa,yA) vV =E(ya.fa(yA))) A (Vza —E(za,yA) V fa(ya)€ G)) using
step 6)-i) and variable renaming

Vya (Vxa —E(xa,ya) vV mE(ya,fa(ya))) A Vua (Vza —E(za,ua) Vv fA(uA)E G)
using step 6)-ii) and variable renaming

Vya Vxa (mE(xa,ya) vV mE(ya.fa(ya))) A Vua VZA (=E(za,ua) v fa(ua)e G)
using step 6)-iii)

{=E(xa,yaA),—mE(ya,fa(ya))}, {—E(za,ua),fa(ua)e G} using step 7)

Finally we present all clauses obtained from the formulae 3.3.1-1) to 3.3.1-15):

1) {lupoe W} 2) ({foxyeF}
3) {tweetyeB} 4) {swallowtaile C}
5) {slimeyeS} 6) {mueslieG}
7 {xweA} 8) {xreA}
9) {xgeA} o 10) {xceA}
11) {xseA} 12) {xgeP}

1 3) { B(XA,XP) 9—'M(YA,XA) »—E (YA,YP) ’E(xA’YA) }

14) {M(xc.xB)} 15) {M(xs,xB)}
16) {M(xs.xp)} 17) {(M(xp.xw)}
18) {—E(xw,xp)} 19) {—E@xw.xg)}
20) (E(xp.xc)} 21) {—E(xB,xs)}
22) (E(xcfc(xo)} 23) {fc(yc)eP}
24) {E(xs,fs(xs)} 25) ({fs(ys)eP}

26) {—E(xa,yaA)—E(Fa.xc)}

26') { —lE(XA,YA),'ﬁE(YA:fA(YA)) }

27") {—E(za,ua).fa(upa)eG}
4.4.2 The Lion and the Unicorn

Theorem version 1
Theorem version 2
Theorem version 2

Here are the resulting clauses for this example:

1) {mondaye MO} 2) {tuesdaye TU}
3) {wednesdaye WE} 4) ({thursdaye TH}
5) {fridayeFR} 6) (saturdayeSA}
7) {sundaye SU} 8) {xmoeLL}
9) {xtueLL} 10) {xwgeLL}

11) {xTyeLL} 12) (xpreLL}

13) {xsaeLL} 14) {xsygLL)}

15) {xTtyeUL} 16) {xfreUL}

17) {xsaeUL} 18) {xsug UL}

22 A Resolution Calculus with dynamic Sort Structures and Partial Functions

19) {xmoe UL} 20) {xTygUL}
21) {xwgg UL} 22) {xmoeD}
23) {xtueD]} 24) {xwgeD}
25) {xTtueD} 26) {xrreD}

27) {xsaeD} 28) {xsyeD}

29) {xpLeD} 30) {xuLeD}

31) {lioneC} 32) {unicorneC}

33) ({yesterday(monday)e SU} 34) ({yesterday(tuesday)e MO}
35) ({yesterday(wednesday)e TU}36) ({yesterday(thursday)e WE}
37) ({yesterday(friday)e TH} 38) (yesterday(saturday)e FR}
39) ({yesterday(sunday)e SA}

40) {xpeLL,-LA(lionxp,yp),ypeLL}

41) {xpeLL,LA(lion,xp,yp),yp€LL}

42) {xpeLL,-LA(lionxp,yp),ypeLL}

43) {xpeLL,LA(lion,xp,yp),ypeLL}

44) {xpeUL,-LA(unicorn,xp,yp),yp€ UL}

45) {xpeUL,LA(unicorn,Xxp,yp),yp€ UL}

46) {xpe& UL,-LA(unicorn,xp,yp),yp€ UL}

47) {xpg UL,LA(unicorn,xp,yp),yp€ UL}

48) {—LA(lion,xp,yesterday(xp)),—LA (unicorn,xp,yesterday(xp))} Theorem

4.5 Properties

We prove, that the usual properties of the CNF-algorithm holds also for the version for
DSPF-Logic.
4.5.1 Lemma: Correctness of replacing positive Components

If Fis a positive component of a formula Gand & is obtained from G by replacing Fin G
by a formula ¥ and if there is a model M for the set of formulae { G, F= '}, then G has
model M.

Proof:
The proof is a direct extension of the proof in [Loveland 78].m
4.5.2 Theorem: Soundness and Completeness of the CNF-algorithm

Let Fbe a sentence and ¥ the formula produced by applying the CNF-algorithm to #.
Then Fhas a model Miff # has a model M.
Proof:
Except for Step$5, both parts of each conversion rule are equivalent. So for these rules there
is nothing to show. It remains to consider the elimination of the existential quantifiers.
Wlog. we can assume that there is only one Skolemization step. Let G := 3xs % be the

formula where the existential quantifier is eliminated; Vys;...Vys, be the universal
quantifiers which have G in their scope and

A Resolution Calculus with dynamic Sort Structures and Partial Functions 23

G = {x>f(ysyse-sYsn) JH A £(¥s15.-,¥sn)€ S the formula obtained from G after
eliminating the existential quantifier.

"=" Let M = (M,p) be a model for F, (Si)g = @ for every i and
M,0[{ys1/a1,---sYsn/@n}]) E 3xs H for an arbitrary Z-assignment @[{ys;/ay,....ysy/a,}]
with a;e(S;) 4 for all i. If M,@[{ys;/ay,...,ysn/a@n}]) ¥ Ixs #, then there is nothing to
show. We will now extend M to a model M’ which satisfies F. If G holds, there must be
an a€ S 4, such that M, @[{ys /ay,....ysy/an.x/a}]) = H Now define M’ like M except that
fa(ay,....a;) := a and apply Lemma 4.5.1. -

&" Let M’= (M,p) be a model for F’, (Si)a = @ for every i and

M, 0[{ys1/ay,.--sysn/an}]) = G’ for a Z-assignment @[{ys,/ay,...,ys/a,}] with a;€(S;) 4
for all i. Then, f4 is defined on (a;,...,a,) and fa(a;,....a,)€ S 4. Therefore M & Ixs H
holds and application of Lemma 4.5.1 proves the theorem.m

24 A Resolution Calculus with dynamic Sort Structures and Partial Functions

5 The Resolution Calculus

5.1 The Herbrand Theorem

So far, we are able to transform a DSPF-Logic sentence in clause normal form. We have
proved, that the sentence is unsatisfiable iff the obtained clause set is unsatisfiable.
Herbrand’s theorem [Herbrand 30] states that for every unsatisfiable clause set, a finite set
of ground instances exists, that is unsatisfiable. We show that this result also applies to the
DSPF-Logic. To this end we first have to show how to instantiate clauses. Instantiation
‘doesn’t work in the usual way, because the well sortedness of a substitution is not
_decidable. Therefore we have to add some literals, which guarantee correctness of
instantiation if the used substitution was not well sorted. The next step is to define the
Herbrand set of ground clauses. We show that we can restrict the necessary ground
substitutions, which generate the Herbrand clause set, to the so called possibly well sorted
ground substitutions. They are our equivalent to the well sorted substitutions known from
other sorted logics, e.g. [Schmidt-SchauBl 89]. Finally we prove the Herbrand theorem for
our Herbrand ground clause set.

As an abbreviation for 3 k& Vys;...Vys, C for some interpretation 3 and clause C with
V(C) = {ys}5---»¥sn} We write 3 & V(C).

5.1.1 Definition: Conditioned Instantiation of Clauses

Let C = {Ly,..., Ly} be a clause and o a substitution. Then ol C := {o(L}),...,0(Ly)} U
{(tg T)l there is an xe DOM(c) N V(C) with o(x) =t and S(x) = T} is called a conditioned
instance of C. :

The literals of the form (t¢ T) handle the case that ¢ is not well sorted, i.e. in some
interpretation 3, 3(t)2T 4. So either for every variable xe DOM(G), 6(x)e(S(X))4 or some
of the added literals become true.

5.1.2 Lemma: Soundness of Conditioned Instantiation
For every interpretation 3, substitution ¢ and clause C, 3 =V (C) implies
S =V(6l0).
Proof:
We prove the Lemma by induction on the number of variables in DOM(o):
IDOM(0)I = 0: then 6! C = C and therefore the lemma holds trivially.

IDOM(0G)l = n + 1: let xe DOM(0) with 6(x) =t and S(x) = S. If x¢ V(C) then
6l C = (6\x){C and the lemma is proven by the induction hypothesis. So assume xe V(C).
If Sqa =0 or 3(t)e S 4 for the interpretation 3, then 3 = (t& S) and because (tz S)e ol C we
conclude 3 = V(clC). If S5 = @ and 3(t)e S 4, then S = V (ol C) because x is universally
closed over S in V(o1 C) and by the induction hypothesis 3 = V((c\x){ C) holds.m

A Resolution Calculus with dynamic Sort Structures and Partial Functions 25

5.1.3 Lemma: Associativity of Conditioned Instantiation
Let 0, T be two substitutions, with I(6)cV(C), ¢ is idempotent and let C = {L,,...,L,}
be a clause. Then tl (5l C) = (to)lC.

Proof:;
(to)iC
= {(to)L1,...,(TO)L,} U {te Tl there is an xe DOM(tc) N V(C) with To(x) =t and
Sx) =T} -

= {(to)Ly,...,(to)Ly} U {t(te T)l there is a xe DOM (o) N V(C) with o(x) =t and
S(x) = T} U {se Sl there is a xe (DOM(1) - DOM(0)) N V(C) with t(x) = s and
Sx) =S}

= {(to)Li,...,(to)Ly} U {t(te T)l there is a xe DOM(0) N V(C) with 6¢x) =t and
S(x) = T} U {se Sl there is a xe DOM(t) N V(6(C)) with t(x) = s and S(x) = S}
because ¢ is idempotent and I(c)cV(C)

= {(to)Ly,...,(t0)Ly} U {t(te T)l there is a xe DOM(0) N V(C) with 6(x) =t and
S(x) =T} U {s& Sl there is a xe DOM(t) N V(6! C) with t(x) =s and S(x) = S}

=1l ({oLy,...,0L,} U {te Tl there is a xe DOM(0) N V(C) with o(x) =t and
S(x) =T})

=1l (ciC)m

- 5.1.4 Definition: Q-Closed

A clause set CS is called Q-closed, if the following two conditions are satisfied:
i) For every constant ¢ occurring in CS, the clause {ce Q} is in CS.
il) There is at least one clause {ae Q} in CS, for a constant acFy,.

As we have mentioned in the introduction, the formula ce Q is unsatisfiable for every
constant symbol ceFo.The idea of Q-closed clause sets is to omit a special reduction rule,
which eliminates literals of the form ce Q. If a clause set is Q-closed, this cases can be
refuted with ordinary resolution. Hence from now on we always assume that clause sets are
Q-closed. If a clause set is finite, the corresponding Q-closed clause set can be effectively
computed.

5.1.5 Definition: Possibly Well Sorted Ground Terms

Let CS be a (Q2-closed) clause set and let L be the set of all literals occurring in CS.
Then the set of all possibly well sorted ground terms Tg s of sort S is inductively defined as
follows:

i) For all sorts SeS (S#Q) and all literals (te S)eLcs, if t is a ground term, then
teTgrs.
ii) For all sorts SeS (S#£2) and all literals (te S)eLcs, if V(t) = (ys,....ys,} and
there are ground terms t;€ T s;, then {ysiPtesYsiota }te Ty s.
iii) For all positive literals P(t,...,t;)é Lcs and every subterm t of the t;, if
V(t) = {ysi1,.--»¥sn) and there are ground terms s;e T gr,si, then
{ys1PS15-.,¥sasn}te Ty q.

26 A Resolution Calculus with dynamic Sort Structures and Partial Functions

As we have mentioned in the introduction, it is not useful to define well sorted terms as
in other approaches for sorted logics. Here the well sortedness of a term depends on the
clause set it occurs in, because the sort information is encoded in the special € relation.
What we can do is to define a superset of well sorted ground terms, the so called possibly
well sorted terms, so that every ground term which is well sorted in every interpretation
satisfying the clause set, is a member of the set of possibly well sorted terms.

5.1.6 Definition: Possibly Well Sorted Substitutions
Let CS be a clause set. A substitution ¢ = {ys;Pty,...,ys4tn} is called pgssibli well
sorted according to CS, if for every ys;€ DOM(0) the following conditions hold:
i) Ift;is a variable with S(t)) = U, then Tgry N Ty 5; # D.
ii) If t; = £(s1,...,Sn), then there is a possibly well sorted ground substitution A with
Xtie T gr.Sis
Especially if o is ground the second condition can be changed to t;€ Ty s; for every
ys;i€ DOM(0). The tests of condition i) and ii) are both undecidable in general
[Schmidt-SchauB 89]. For the decidable subcases (for most “natural” examples both
conditions are decidable in polynomial time), however, restricting the unifiers to possibly
well sorted substitutions significantly decreases the search space. In the sequel “possibly
well sorted” is abbreviated with pws.

5.1.7 Definition: Herbrand Set of Clauses

Let Fbe a sentence, CS¥ the clause set obtained by applying the normalization algorithm
to F. Then the Herbrand clause set CSﬁ is defined as follows:

CSf; := {6LCl CeCS¥, & is ground, pws and DOM(0) = V(C))

5.1.8 Definition: Herbrand Interpretation

An HX-interpretation is a Q-closed set MZ of ground htcrals satisfying the followmg
conditions:
i) There are no complementary literals in MZ.
ii) There are no literals L; and L; in MZ, such that L, is positive, contains a term t
and L, = (t¢ Q).

A HZ-model of a clause set CSE, is an HZ-interpretation MZ such that for every
clause CyeCSfi: Cy N MZ = @. A HE-model ME of a clause set CS{ is called
minimal, if MZ = c,,%és,{(cﬂ N MZX). Note that a set of ground clauses CS has a HX-
model iff it has a minimal one. If MX is a HX-model for a clause set CS, we write
MZ =CS or MZ = C for a clause CeCS.

5.1.9 Lemma: Compatibility of Z-Models and HZ-Models

Let Fbe a formula, CS¥ and CSﬁ the above defined clause sets. Then CS¥has a Z-model
M iff CS| has a HE-model MZ.

A Resolution Calculus with dynamic Sort Structures and Partial Functions 27

Proof:

"=" Let M = (M,9) be a =-model for CS¥. Then MX := {LI Le Cy, Cye CS{; and
Me=L}. MZ is an HZ-interpretation. Suppose there is a clause Cye CS{ with
Cg N MZ = @. We know that Cy is an instantiation of a clause Ce CS¥. That means
C = {Ly,...,Ln} and there exists a possibly well sorted ground substitution
o = {ys1Pt1,..-s¥sata} With DOM(0) = V(C) and 6lC = Cq. If M(t;)&(S;) 4 for some i
then M t;¢ S; and this contradicts Cy N MZ = @. So M(t;)e (S;) 4 for all i. Therefore if
@ is an arbitrary Z-assignment, then (M,@[{ys/M(t1),...,ysa/M(tn)}]) # C. But C is
universally closed over the ys;, hence this contradicts the assumption that M is a Z-model
for CS¥. '

"<=" Let MX be a minimal HX-model for CSﬁ. We construct a Z-model as follows:
we restrict Fy to the constants occurring in CSZ. Fy is not empty because CS¥ is Q-closed.
The Z-quasi-algebra A4 is defined with carrier A := Qg4 := {t | there is a positive literal
Le MX which contains t as a subterm}, for every sort SeS (S#Q) a set Sz:={t |
(te S)eMZX} is assigned and for every feFj f4(t1,....tn) = £(ty,..., tp) if f(t1,...,tn)EA
and is undefined otherwise. A is not empty because because CS¥ is Q-closed. Additionally
QaCTg q holds. Now 4 is extended to a Z-algebra by defining A+ := A U {L}, where
LeA and for all fe F, (n>0) and all (aj,...,ap)e (AL)n, if (t1,...,tn) &€ D(fq)
fa(ty,...,tn) := L. Clearly the conditions Q4 = A and for every ‘constant ce Fy, cze A
hold. Next we define a Z-structure M by adding Py := {(ty,...,tn) | P(ts,...,ta) eMZ} for
every PeP,. What we have defined so far, is a kind of initial model for CS¥ which is based
~ on a ground term algebra. So from now on we can drop the differences between terms and
their interpretations. To finish the proof, we show by contradiction that M = (M,) is a =-
model for CSZ. Assume M is not a X-model for CSZ. Then there is a clause Ce CS¥ with M
¥ V(C). Let ysy,...,Ysp be the variables occurring in C. Because of M V(C), (Sp) 4 #
@ for every i and there is a Z-assignment @[{ysi/t1,...,ysn/tn}] With t;e (S;)4 and
M,o[{ysi/t1,---»¥sn/tn}]) # C. Assume {ys;—t1,...,ysa>ta} is not a pws ground
substitution. Then there is a variable ys; with ;& T s5; and we have to distinguish two
cases. If S;#Q, then MZX can not be minimal because there must be a literal (t;e S;), which
is in MZ but not in CS;?{. If S;=Q, we have a contradiction against the definition of A.
Thus there is a clause Cye CS§ with Cy = {ys;Pt1,....ysnPta} 4 C and M = Cy.
Suppose one of the literals (tje S;)e MZ. If S;#Q or tje Fy, this contradicts tje(S;j)a
because MX does not contain complementary literals. If S;=Q, we have a contradiction
against the Definition 5.1.8-ii). Suppose a normal literal Le Cy is in MZ, but then we
have (M,@[{ysi/t1,...,¥sn/ta}]) =L and hence (M,@[{ys;/t1,...,ysn/ta}]) = C
contradicting the assumption that (M,Q[{ysi/t1s---,¥sn/tn}]) & C.m

5.1.10 Theorem: Herbrand Theorem

Let F be a formula, CS¥ and CSf'f the above defined clause sets. Then CS¥ is
unsatisfiable iff there is a finite subset T of ng which is unsatisfiable.

28 A Resolution Calculus with dynamic Sort Structures and Partial Functions

Proof;

"=" We show this part by contradiction. Assume CS¥ is unsatisfiable and every finite
subset T of CSf.'xr is satisfiable. Then because of the Corollary 3.4.5, CSE is satisfiable and
with Lemma 5.1.9 CS¥ is satisfiable, which contradicts our assumption.

"<=" LetT be the unsatisfiable finite subset of CS?;. Then CSﬁ- has no HX-model and by
Lemma 5.1.9 CS¥ has no Z-model and is therefore unsatisfiable.m

5.2 Ground Resolution

The next step towards a sound and complete calculus is to define a resolution rule on
ground level. For this rule we have to prove the soundness and completeness, i.e. we prove
that a set of ground clauses is unsatisfiable iff there is a derivation of the empty clause using
ground resolution. The only difference between the resolution rule for the DSPF-Logic and
the resolution rule for unsorted first order logic, is the additional complementarity of two
literals L; and L,, where L; = (t¢ Q2) and L, is a positive literal containing t as a subterm.

5.2.1 Definition: Complementarity
Two literals L; and L are called complementary, if one of the following conditions is
satisfied:
i) L; and L are equal as atoms but L; is positive and L, is negative or vice versa.
i) L) =(t¢Q) and L, is a positive literal containing t as a subterm.
5.2.2 Definition: Ground Resolution
Let C; and C; be ground clauses, L;jeC; and LeC,. If L; and L, are two
complementary literals, then Ry(C;,Ca, Ly,La):= (Ci-{L;1}) U (C2-{L;}) is a ground
resolvent of C; and C;. '
5.2.3 Lemma: Ground Resolution is Sound

Let C; and C; be ground clauses, L;eC; and LeC;, L; and L; be complementary
literals, then for every interpretation 3 with 3 = C; and 3 = C3, 3 = Rg(C1,C2,L1,L2)
holds.

We shall prove this Lemma later for the general case, where we deal with arbitrary clauses.®

5.2.4 Lemma: Unsatisfiability of Ground Unit Clauses

Let CS be an unsatisfiable set of ground unit clauses. Then CS is unsatisfiable iff CS
contains two unit clauses with complementary literals.

Proof:
We will prove the following equivalent conjecture: a set CS of ground unit clauses has a =~
model iff CS does’nt contain complementary literals.

"=" If CS has a model, then by Lemma 5.1.9 and the fact that CS is Q-closed, CS has
a HX-model and therefore CS does’nt contain complementary literals.

A Resolution Calculus with dynamic Sort Structures and Partial Functions 29

"&<" If CS does’nt contain complementary literals, then CS can be interpreted as a HZ-
model and using Lemma 5.1.9 we conclude that CS has a Z-model.m

5.2.5 Lemma: Ground Resolution is Complete

Let CS be an unsatisfiable set of ground clauses. Then there exists a derivation of the
empty clause using ground resolution as defined in Definition 5.2.2.

Proof:
The theorem is proved by induction on the k-parameter [Anderson&Bledsoe 70], k(CS) :=
Y {(ICl - 1)l CeCS}, where ICl is the number of literals in the clause C.

If k(CS) = 0, then by Lemma 5.2.4 CS contains two complementary literals. Hence one
resolution step yields the empty clause.

If k(CS) > 0, then there exists a non-unit clause C. Doing a case analysis, we separate C
into two parts C; and C; and obtain two unsatisfiable clause sets CS; and CS; by replacing
C by C; or C,, respectively. Since k(CS;) < k(CS), there are refutations of CS; and CS; by
ground resolution. As all clauses are ground, these two resolution proofs can be combined
to a resolution proof of the empty clause in CS.m

5.3 Unification

After proving the sound- and completeness on the ground level, we shall now show how
to lift this results to the general level, where we also deal with variables. One problem that
arises is that if some terms are syntactically equal on ground level, they need not be equal on
the general level. For example the ground literals P(f(a)),—P(f(a)) are syntactically equal, if
we disregard their sign. Suppose they stem from two literals P(xs),P(f(xT)) using the
ground substitution ¢ = {xs—f(a),x1~a}. Clearly P(xs) and P(f(x)) are not syntactically
equal and the unification task is now to find a more general substitution, which equals the
literals. Since unification works as in unsorted logic, we give here only a brief introduction
to unification. There are a lot of efficient unification procedures known, e.g.
[Paterson&Wegman 78, Martelli&Montanari 79]. For simplicity we will present a rule
based version of the Robinson [Robinson 65] unification procedure following
[Martelli&Montanari 82].

5.3.1 Definition: Unifiable, Unifier, mgu, Unifcation problem, Solved unification
problem

Two objects (terms, literals) o; and o5 are called unifiable, iff there exists a substitution ¢
such that 6(01) = 6(02). In this case the substitution o© is called a unifier of 0; and 0;. A
unifier ¢ of two objects 0; and o3 is called an mgu (most general unifier), iff for every
unifier A of 0; and o, there exists a substitution T, such that T¢ = A. If L; = P(ty,...,ty)
and L, = P(sy,...,8q) are two literals with no variables in common, which are to be unified,
then I = {t1=s1&...&t,=s,} is called the unification problem for L; and L. A substitution
o solves a unification problem I' = {t;=s;&...&ty=s,}, iff 6(t;)=6(51)....,6(t))=0(sp). A

30 A Resolution Calculus with dynamic Sort Structures and Partial Functions

unification problem I is called solved, iff I" = {x1=u;&...&xm=un} where the x; are all
variables, x;€ V(u;) and x;#x;for all i and j and the corresponding substitution
o = {X1PU1,...,XmF Uy } solves I'.

5.3.2 A Unification Algorithm for Free Terms

If we speak of free terms, we mean that no equational theories are known for the function
symbols. An overview for unification with non-free terms can be found in [Sickmann 89].
The input of the algorithm is a unification problem I', which is changed by the following six
rules until it is solved or the problem is found to be unsolvable: -

(1) (x=x&I)- (D) |

2) (f(ty,eeestn)= f(s1,e..,sp)&I) = (t1=s1&...&t,=s,&I)

3) (x=t&I') » (x=t&{xt}I) if x is a variable, t a non-variable term and x& V(t),

xeV({@)

(4) (t=x&I") » (x=t&I) if x is a variable and t a non-variable term

(5) (f(ty,e.ertn)= g(s1,...,sn) &) » STOP.FAIL if f#g

(6) (x=t&I') » STOP.FAIL if xe V(t)

If T = {t;=s1&...&t,=S,} is a unification problem, then the unification algorithm always
terminates on I'. If the algorithm stops with failure, then there is no substitution ¢ solving
I. If the algorithm stops without failure, then I is solved and the corresponding substitution
G is an mgu of the pairs (t1,51)s.--,(tn,Sn)-

5.3.3 Remark: Properties of Unifiers

Note that every substitution ¢ corresponding to a unification problem I" solved by our
unification algorithm is idempotent and introduces no new variables. So from now on we
always assume that unifiers are idempotent substitutions in the variables of the unified
terms.

534 Lemma

Let Ly,..., Ly be some atoms, ¢ a ground substitution with 6(L;) =...= 6(Ly) and A an
mgu of the L;. Then A =G.
Proof;

As A is an mgu, we know the existence of a ground substitution t with TA = 6. Now we
have 6\ = TAA = TA = 0, where the second equation holds because A is idempotent.m

5.4 General Resolution

The idea of the general resolution rule is to simulate every ground resolution step on the
general level using unification. Thus the general resolution rule is similar to the ground rule,
except that the syntactically equality of literals is not a priori given, but has to be produced
by unification. Another problem is that applying a ground substitution to a clause may cause
some mergings of literals, e.g. applying the ground substitution o = {xs—a,x7a} to the
clause {xse T,xTe¢ T} results in the ground clause {a¢ T,ae S}, where the literals

A Resolution Calculus with dynamic Sort Structures and Partial Functions 31

xse¢ T,xTe¢ T and the instantiation literal a¢ T have merged. This merging has also to be
simulated on the general level and is called factorization.
5.4.1 Definition: Factor

If C = {L,,...,Ly} is a clause and ¢ is a possibly well sorted substitution with
o(L;) =...= o(Ly) (1 <ig <n), then F(C) := ol C is called a factor of C.

5.4.2 Lemma: Factorization is Sound

If C = {L;,...,Ln} is a clause, F(C) a factor of C, then for every interpretation 3 with
3 =V (C), S = V(F(C)) holds.

Proof:
Follows from Lemma 5.1.2.m

5.4.3 Lemma: Factor Lifting

If C = {Ly,...,Lp} is a clause, 6 a pws ground substitution with 6(L;,) =...= 6(Lj)
(1 £i;<n), then there exists a factor F(C) with clC = olF(C).
Proof:
Choose the mgu A of the Lj,,..., Ly, as a factor substitution and apply Lemma 5.1.3 and
Lemma 5.3.4. Note that A is pws, because G is pws.m
5.4.4 Definition: General Resolution Rule

.Let C; and C; be two clauses with no variables in common, F(C;) and F(Cy) two factors
of C; and C,, respectively, and L; eF(C;), L,eF(C,). If there exists a pws mgu 6 of L;
and L, such that 6(L;) and o(L) are two complementary literals, then R(C;,Cp,L1,L3) :=
(6lF(Cy)-{o(L1)}) U (6lF(Cy)-{o(Ly))) is a resolvent of C; and C,.

Our resolution rule can be viewed as a special instantiation of Stickel’s theory resolution
[Stickel 85].
5.4.5 Lemma: Resolution is Sound

Let C; = {Ly,...,Ln} and C; = {K;,...,Kn} be two clauses with no variables in
common, F(C;) and F(C,) the corresponding factors and LeF(C;), KeF(C,). If resolution
using the literals L and K is possible, then for every interpretation S with S = C; and
S e Cy, S ER(Cy,Cy,L,K) holds.

Proof:

Let ¢ be the pws mgu, such that 6(L) and o6(K) are complementary. Clearly for every
interpretation 3, S = o(L) and 3 = 6(K) do not hold both. Thus together with
Lemma 5.4.2 and Lemma 5.1.2 now yield the desired result.m

5.4.6 Lemma: Distributivity of Conditioned Instantiation

Let C; = {Ly,...,Lp} and C; = {K;,...,Kn} be two clauses with no variables in
common, let G be a ground substitution such that for two literals L; and K;, o(L;) and 6(K;)

32 A Resolution Calculus with dynamic Sort Structures and Partial Functions

are complementary and let 8 be the mgu of L; and K;. If for every Le Cy, o(L) = o(Ly)
implies L = L; and the corresponding condition for C; holds (we call this the “distinct literal
condition”), then

ol(BLC-{3(@LD}) L (BLCo-{3(Kp})) = (ad (BLC1)-{0d(Ly)}) L (ol (8L C2)-{08(K)})
Proof:

Let olR := ol ((3LC1-{3(L)}) U (BIC2-{3(K})})) and Ry := (01 (31Cy)-{0d(L)}) v
(GUBLC)-(aB(K)))-

et Let LeclR. We have to distinguish two cases: -

i) L = (te¢ S) is stemming from a binding {xs b t}< ©. This implies that xg¢ DOM(J) and
therefore xse V(81 Cy) or xse V(81 C>) and xg is not eliminated by computing the set
difference of (8! C1-{8(L;)}) and (8! C2-{d(K;)}). Together with the “distinct literal
conditon” follows LeR;q -

il) L = 63(L'") and wlog. L'e C;. For the reason that Le 6lR, L#L;, the “distinct literal
condition” again leads to Le (ol (8! C;)-{cd(L)}) and therefore LeR .

o 1 Let LeR 5 and wlog. Le (ol (8L C;)-{c8(Ly}). Now we have to distinguish three
cases:
i) L = (te S) is stemming from a binding {xst}< ©. This case is analogous to the first
case above.

i) L = o(te S) is stemming from a binding {xst} < 8. Then clearly Le GlR.
iii) L = 6d(L") and L'e C;. Then L#L; and the “distinct literal condition” leads to Le6!R.m

5.4.7 Lemma: Resolvent Lifting

If C; = {Ly,...,Ln} and C; = {Kj,...,Kn]} are two clauses with no variables in
common, © is a pws ground substitution such that for two literals L; and K;, o(L;) and
o(K;) are complementary, then there exists a resolvent R(C;,C»,L;,K;) such that
Rg(01C1,61C2,0(Ly),6(K;)) = 0lR(C1,C2,Li.K).

Proof:

Let {L;,,...,Li } <Cibe a set of literals with L; stemming from L;,, (L;,) =...= o(L;,) and
{Kj;»..-.Kj, }the corresponding set for Cy. Let A; be the mgu of {Lj,...,Ly,}, A2 the mgu
of the {Kj,.,....Kj,} and A =A; U A, F(Cy) = AlCy, F(C2) = Al C; and 3 the mgu of A(Ly)
and A(K;). The unifiers A1, A2, d are possibly well sorted because ¢ is possibly well sorted.

GlR(Cl,Cz,Li,Kj)
= 6l((BLF(Cy)-(3(Ly)}) W (BLF(Co)- (3K}
= oL ((BLALC)-{OA(Liy) W (BL(ALC)-{OMK;))
= (ol (GL(ALC))-{oL)}) v (Gl(ﬁl(llcz))-{G(Kj)}) by Lemma 5.4.6
= (6L C)-{o@) D W (6L AL C))-{0(K})}) by Lemma 5.1.3
= ((6LALC))-{o(L)}) U (el AL C))-{co(K))) by Lemma 5.3.4
= (ol Ci-{o(L)}) U (6lCr-{a(K)))) by Lemma 5.4.3
= Rg(0! Cy,01 Ca,0(Ly),0(K;j))m

A Resolution Calculus with dynamic Sort Structures and Partial Functions 33

The statement of Lemma 5.4.7 is not strong enough to lift every ground resolution proof
to a non-ground resolution proof, because one of the premises of the lemma, that both
literals stem from a non-ground clause is not satisfied in general. The following example
demonstrates this fact. Let

CS = {{ae S}, {P(xs)}, {—P(a)}}

be an unsatisfiable clause set and let
CSg = {{ae S}, {P(a),ae S}, {—P(a)}, {ac Q}}

be the corresponding unsatisfiable, Q-closed set of ground clauses. On grouﬁd level, we
can generate a resolvent using the clauses {ae S} and {P(a),ag S}, but there is no
corresponding resolution step using two clauses in CS. If we resolve first between {P(xs)}
and {—P(a)} we get the missing literal {a¢ S}. Thus the conclusion is that lifting works, but
that the ordering of the resolution steps is not arbitrary. Therefore not all, but only special
ordered ground refutations can be lifted.

5.4.8 Lemma: Rearrangement of Ground Derivations

Let C be a clause derived from the ground clauses C;,...,C, using ground resolution. If
we mark some of the literals in the clauses Cy,...,C, we can always rearrange the derivation
of C to a derivation of a clause C’, such that the resolution steps using a marked literal all
come after the steps eliminating unmarked literals and C’cC.

Proof:

For the proof we use a special representation of derivations. Every ground derivation using
resolution can be represented as a binary tree, where the vertices are labelled with the used
clauses and the edges denote the resolution steps. The root of the tree is labelled with the
derived clause. In terms of the derivation tree, the Lemma states that all resolution steps
using marked literals are nearer to the root than steps using unmarked literals. We prove the
Lemma by induction on the number n of vertices in the tree.

n=1 If there is only one vertex, then no resolution step is done and the Lemma

trivially holds.

n=3 Then we have the following situation,

QRl1 -QR2

R1 R2

where Q is a literal R1, R2 are sets of literals and Q R1 is an abbreviation for the disjoint
union ({Q} U R1). The two clauses ({Q} U R1) and ({—Q} v R2), where Q and —Q
denote complementary literals, are used to build the resolvent C =R1 U R2. For this
situation the lemma also holds, because there is only one resolution step.

34 A Resolution Calculus with dynamic Sort Structures and Partial Functions

n>3 Then the root of the derivation looks as follows,

o o

o o

(o] (o]

P Q Rl -Q R2

\/ o
o
(o]

P R1 R2.1 -P R3

R1 R2.1 R3

where the three circles at top of a clause stand for the subtree deriving the clause. Clause
parts with additional numbers, e.g. R2.1, indicate that these parts may have changed
because a literal may have been merged after the resolution step with one of the separately
mentioned literals. But we will return to this problem later. If P or —P is marked or the
‘derivation of (P R1 R2.1) and (=P R3) does not contain marked literals, we have finished
the proof by induction hypothesis. Thus P and —P are ‘both nor marked and wlog. Q is
marked. Now the idea is to rearrange the tree, such that the resolution step using Q is the
closest step to the root. Assume that there was no merging between a separately mentioned
literal and a clause rest during the last two resolution steps. Then we can alter the tree as
follows

o [+]
o o
o o
P Q Rl -P R3
\/ o
o
o
Q R1 R3.1 -Q R2
R1 R2 R3.1

with R3 =R3.1, R2 =R2.1 and we have finished the proof by induction hypothesis. So let
us have a closer look at the two critical mergings. First, if QeR3 then Qe (R1 R2.1 R3)
but Q& (R1 R2 R3.1). Then the lemma holds because (R1 R2 R3.1)c(R1 R2.1 R3).
Second, if PeR2 then P& (R1 R2.1 R3) but Pe(R1 R2 R3.1). In this case we have to
add one more resolution step which is shown by the following diagram

A Resolution Calculus with dynamic Sort Structures and Partial Functions 35

o o o o
(o] (o] (o] (o]
‘ (o] (o] (o] (o]
P Q RI ~P R3 —P R3 P —Q R2.1
Q R1 R3.1 —Q R2.1 R32
Rl R2.1 R3.1

and the proof is again completed by induction hypothesis.m

5.4.9 Theorem: Completeness of the Resolution Rule

Let CS be an unsatisfiable set of clauses. Then there exists a derivation of the empty clause
using resolution.

Proof:

If CS is unsatisfiable, Theorem 5.1.10 guarantees the existence of a finite and unsatisfiable
set CSy of ground clauses. With Lemma 5.2.5 we know that it is possible to derive the
empty clause from CSy using ground resolution. We can transform this proof in a tree
representation of Lemma 5.4.8 marking all literals of the form (t¢ S), which are used in the
ground derivation, introduced by instantiation and have never merged with a literal not
introduced by instantiation. Now we show by Noetherian induction that the ground proof
can be lifted to a proof using resolution as defined in 5.4.4. As a measure we use pairs p of
the form (n,m) with a lexicographical ordering, where n is the number of marked literals and
m the number of vertices in the derivation tree.

p=(0,0) Then the empty clause is still in CS.

p=(n,m) We know that there is at least one step at the leaves of the derivation tree,
such that the two ground literals used for resolution are direct instances of literals of
clauses in CS. This step can be lifted using Lemma 5.4.7. Now we have to distinguish
two cases. First, if this step doesn’t affect the number of literals stemming only from
instantiation, the derivation tree is still sorted after the resolution step, the new measure is
(n,m-1) with (n,m)>ex(n,m-1) and the statement is proved by the induction hypothesis.
Second, if the step decreases the number of literals stemming only from instantiation, we
obtain the measure (n-k,m-1) with k>0. Hence we can rearrange the tree according to
Lemma 5.4.8 obtaining a tree of size (n-k,m’) with m’<2m-1, because the rearrangement
does not affect the number of the special literals, but the number of vertices in the
refutation tree may grow exponentially. Nevertheless we have (n,m)>jex(n-k,m’) and we
can again finish the proof by applying the induction hypothesis.®m

36 A Resolution Calculus with dynamic Sort Structures and Partial Functions

5.4.10 Definition: € -Resolution

Let R = R(C,D,L,K) be a resolvent using the clauses C, D and the literals Le F(C) and
KeF(D). Then R is a resolvent generated by € -Resolution if L does not contain € as
predicate symbol, or all literals in C, D have the € symbol as predicate symbol.

5.4.11 Theorem: € -Resolution is Sound and Complete

Let CS be an unsatisfiable set of clauses. Then there exists a correct derivation of the
empty clause using € -resolution.

Proof:
Follows from the fact that resolution is correct and the proof of Theorem 5.4.9.m

5.5 Examples

As we have not yet implemented the DSPF-calculus, all proofs are made by hand, but
discussed in a way which takes the behaviour of a pure resolution theorem prover into
consideration.

5.5.1 Schubert’s Steamroller

Here is a proof of the theorem using the DSPF-calculus. We can omit the clauses
stemming from the Q-closing of the clause set, because they play no role in the proof. The
sets of pws ground terms and the clauses are given as follows:

Tga = {lupo, foxy, tweety, swallowtail, slimey}
Tgn = {tweety}

Tgrc = {swallowtail}

Ter = (foxy)

Tgw = {lupo)

Tgrs = ({slimey}

Tgc = {muesli}

Tgrp = (muesli, fc(swallowtail), fs(slimey)}

1) {lupoe W} 2) ({foxyeF}
3) {tweetyeB} 4) ({swallowtaile C}
5) ({slimeyeS} 6) {mueslieG}
7) {xweA} 8) ({xpeA}

9) {xgeA} 10) {xceA}
11) {xseA} 12) {xgeP}
13) {E(xa.Xxp),mM(ya.xa),—E(ya,yp).E(xa,ya)}
14) {M(xc.xB)} 15) {M(xs,xp)}
16) {M(xg.xp)} 17) {M(xg.xw)}
18) {—E(xw,xp)} 19) {—E(xw:xc)}
20) {E(xp,xc)} 21) {—E(xp.xs)}
22) {E(xcfe(xc))) 23) {fc(yc)eP}

24) {E(xs.fs(xs)} 25) {fs(ys)eP}

A Resolution Calculus with dynamic Sort Structures and Partial Functions 37

26) {—E(xa,ya)—E(ya.xg)} Theorem version 1

For the clauses we use the above numbering and we prove the first version of the
theorem. Here is an example for the notation used to describe the derivation:

13,4&18,1 R {xaPXw,yAPXF}
27: {E(Xw,Xp),—M(Xp,xw),—E(XF,yp),xwe A,xpe A }

The notation 13,4&18,1 R means that the fourth literal of clause 13 and the first literal of
clause 18 are used to generate a resolvent with pws mgu {xaPxw,yaPxr}. If we have
generated a factor before resolution, we write R&F instead of R. The new resolvent
E(xw,xp) V "M(xg,xw) V —E(xg,yp) v xwe A v xpg A gets the number 27.
13,4&18,1 R {xaPxXw,yAPXE] '

27: {E(xw,xp),—M(Xxg,xw),—E(XF,yp),xwe A, xpe A }
27,4&7,1 R {ywrxw]
28: {E(xw,xp),~M(XF,xw),~E(Xp,yp),xw& W, xpe A}
where we have renamed clause 7 with {xwyw}
28,4&1,1 R {xwilupo}
29: {E(lupo,xp),~M(xg,lupo),—E(xp.yp),xp& A}
Note that we have required two steps to eliminate the literal xwg A. To shorten the proof,

for reasons of readability and because these steps are unique, we shall omiit them from now
on, but we shall mention the used clauses.

29,4&8,1&2,1 R {xp~foxy}
30: {E(lupo,xp),~M(foxy,lupo),—~E(foxy,yp)}
30,2&17,1&1,1&2,1 R {xp~>foxy,xw+lupo}
31: {E(lupo,xp),—E(foxy,yp)}
31,1&19,1&1,1&12,1&6,1 R {xp~muesli,xwlupo,xg-muesli}
32: {—=E(foxy,yp)}
32,1&13,1&8,1&2,1 R {xpyp,xatfoxy}
33: {-ﬁM(YA:fOXY)1-‘E(yA’yp)vE(fOXY9YA) ,YPG P}
33,1&16,1&2,1&9,1&3,1 R {xp-tweety,xp->foxy,yabtweety }
34: {—E(tweety,yp),E(foxy,tweety),ype P}
13,4&21,1&9,1&3,1&11,1&5,1 R {xgbslimey,xgPtweety,ya-slimey,x s tweety }
35: {E(tweety,xp),~M(slimey,tweety),—E(slimey,yp) }
35,3&24,1&5,1&25,1 R {xgpslimey,ypfs(slimey)}
36: {E(tweety,xp),~M(slimey,tweety)}
36,2&15,1&5,1&3,1 R {xg-slimey,xg-tweety }
37: (E(tweety,xp)}

34,2&26,1&8,1&2,1&9,1&3,1 R {xaPfoxy,yaPtweety}
38: {—E(tweety,yp),—E(tweety,xg),ype P}

38 A Resolution Calculus with dynamic Sort Structures and Partial Functions

38,1&37,1&12,1&6,1 R&F {xp-muesli,yp~muesli,xg~muesli}
39: {}

For this example we can draw two conclusions. First, the derivation process is restricted
as in Walther’s logic, e.g. there are 12 possible initial resolution steps in both logics. This is
the fact because every literal of the form te S occurs in a unit clause. Therefore the set of
possible well sorted ground terms is exactly the set of well sorted ground terms, i.e. for
every interpretation J satisfying the clause set, if te Tgy,s then 3(t)€ S 4. Thus there is no
difference in the restriction imposed on the resolution steps between our and Walther’s
formalization. So we have nothing lost in deduction power by putting the term and sort
declarations in the formulae itself. Second, the proof becomes much longer because the
additional literals stemming from instantiation have to be eliminated too. But the increased
proof length has no effect on the search space, because the additional elimination steps are
unique.

5.5.2 The Lion and the Unicom

The clause set of the problem, the sets of pws ground terms and a refutation looks as
follows:

1) {mondaye MO} 2) {tuesdaye TU} 3) {wednesdaye WE}
4) (thursdaye TH} ~_5) ({fridayeFR) 6) ({saturdayeSA}
7) {sundaye SU} 8) {xmoelLL} 9) {xtuelL}

10) {xwgeLL} 11) {xTyeLL} 12) {xpreLL)}

13) {xsaeLL} - 14) {xsygLL)} 15) {xtye UL}

16) {xgre UL} 17) {xsaeUL} 18) ({xsye UL}

19) {xmoe UL} 20) {xtueUL} 21) {xwge UL}

22) {xmoeD} 23) {xTyeD} 24) {xwgeD}

25) {xtyeD} 26) {xpreD} 27) {xsaeD}

28) {xsyeD} 29) {xpLeD} 30) ({xyLeD}

31) {lioneC} 32) {unicorne C}

33) {yesterday(monday)e SU} 34) ({yesterday(tuesday)e MO}

35) ({yesterday(wednesday)e TU}36) ({yesterday(thursday)e WE}

37) ({yesterday(friday)e TH} 38) ({yesterday(saturday)e FR}

39) ({yesterday(sunday)e SA} 40) {xpeLL,-LA(lion,xp,yp),ype LL}

41) {xpeLL,LA(lion,xp,yp),ypeLL}

42) {xpeLL,-~LA(lionxp,yp),ypeLL}

43) {xpeLL,LA(lion,xp,yp),ypeLL}

44) {xpe UL,-=LA(unicorn,xp,yp),ype UL}

45) {xpe UL,LA(unicorn,xp,yp),ype UL}

46) {xpe UL,—~LA(unicorn,xp,yp),yp& UL}

47) {xpe UL,LA(unicorn,xp,yp),ype UL}

48) {—=LA(lion,xp,yesterday(xp)),—LA (unicorn,xp,yesterday(xp))} Theorem
Tg Mo = {monday, yesterday(tuesday)}

A Resolution Calculus with dynamic Sort Structures and Partial Functions 39

Tgru = {tuesday, yesterday(wednesday)}
Ter,WE {wednesday, yesterday(thursday)}
TgtH = {thursday, yesterday(friday)}
Tgrrr = (friday, yesterday(saturday)}

Tgrsa = {saturday, yesterday(sunday)}

Tgsu = (sunday, yesterday(monday)}

Tgp = (monday, yesterday(tuesday), tuesday, yesterday(wednesday),
wednesday, yesterday(thursday), ..., sunday, yesterday(monday)}

TelL = TguL=Tgp .

Tgr,c = (lion, unicorn}

The sets of pws ground terms Tgr, 11 and Ty, uL include all days of the week because of
the positive literals ype LL and ype UL in the clauses 40) to 47). Comparing the number of
initial resolution possibilities, in our formulation there are 12, in the sorted formulation of
[Ohlbach&Schmidt-Schaul 85] using 127 function declarations there are more than 40 and
using the unsorted formulation there are more than 200 possible steps. The refutation is as
follows:

48,1&41,2 R {zp—xp,yp~yesterday(xp)}
49: {—LA(unicorn,xp,yesterday(xp)), xp€ LL, yesterday(xp)e LL, xpe D,
yesterday(xp)e D}
where 48 has been renamed with {xp—zp}

49,1&47,2 R {zp—xp,ypryesterday(xp)}
50: {xpeLL, yesterday(xp)e LL, xpe UL, yesterday(xp)e UL, xpe D,
yesterday(xp)e D}
where 49 has been renamed with {xp~zp}

At this point, the clause 50 denotes the day thursday. For example the first literal xpe LL
can only be resolved against the clauses 11) to 14), because the resolution steps using one
of the clauses 49) to 47) are forbidden by e -resolution. Every resolution step using one of
the clauses 12) to 14) leads to a resolvent with pure literals and thus the following step is
unique.
50,1&11,1 R {xprxTH])

51: {yesterday(xty)€ LL, xTye UL, yesterday(xty)e UL, xTy€ D, yesterday(xty)€ D,
xtue D}

From now all steps are deterministic because there is always only one possible resolution
step for every literal. For example the first literal can only be resolved against clause 10)
because the unifiers which are needed to generate a resolvent with one of the clauses 8) or 9)
are not possibly well sorted.

51,1&10,1&4,1&25,1&36,1&24,1 R {xwp—yesterday(thursday),xyt>thursday }
52: {thursdaye UL, yesterday(thursday)e UL}

52,1&15,1&4,1 R {xythursday}

40 A Resolution Calculus with dynamic Sort Structures and Partial Functions

53: {yesterday(thursday)e UL}

53,1&21,1&36,1 R {xwg—yesterday(thursday)}
54: {}

To sum up the behaviour of our calculus for this example, the derivation process is more
restrictive than in the order sorted logics of [Walther 87, Schmidt-SchauB3 89], because we
can express more information in terms of sorts. The proof becomes much longer, because
the additional literals introduced by instantiation have to be eliminated too. Since the
additional elimination steps are unique, the increased proof length has no effect-on the
search space. '

A Resolution Calculus with dynamic Sort Structures and Partial Functions 41

6 Conclusions and Future Work

We have presented a sound and complete resolution calculus for the DSPF-logic, a very
expressive sorted logic which supports empty sorts, partial functions and arbitrary sort and
term declarations. By putting all information about sorts into the formulae, we have gained a
high degree of freedom for handling sort information. The restrictiveness of the calculus is
not fully investigated so far, but if we transform the sort declarations of
[Walther 87, Schmidt-SchauB 89] in our special relations, we obtain a formalization where
the possibly well sorted ground terms of the DSPF-calculus correspond exactly to the well
sorted ground terms in their logics. Therefore the question whether a substitution is possibly
well sorted corresponds to the unification problem under sort declarations in their calculi and
hence the DSPF-calculus is as restrictive as these calculi. Nevertheless the DSPF-calculus
presented in this paper should be viewed as a theoretical basis for more hybrid and dynamic
order sorted calculi.

Extensions for the DSPF-calculus are possible along two different lines. One possibility
is to extend the expressiveness by allowing functions on sorts, special relations which are
not handled as predicates (see the Lion and the Unicorn example), equality on sorts and
terms, term rewriting or special declarations for finite sets. The other way is to improve the
calculus in it’s actual form by incorporating a dynamic translation of € unit clauses into
special declarations which can be used directly by sorted unification algorithms.

Acknowledgments: I would like to thank Hans Jiirgen Ohlbach for his intensive support
in preparing this paper. Christoph Lingenfelder, Axel Pricklein and Rosa Ruggeri
contributed a lot of good ideas and suggestions concerning the approach.

42

A Resolution Calculus with dynamic Sort Structures and Partial Functions

7 References
Anderson&Bledsoe 70

Chang&Lee 73
Cohn 87

Gallier 86

Herbrand 30

Herold 83—

Loveland 78

Martelli&Montanari 79

Martelli&Montanari 82
Oberschelp 62

Ohlbach&
Schmidt-SchauB 85

Paterson&Wegman 78

Robinson 65

Anderson, R., Bledsoe, W.W., A linear format for resolution
with merging and a new technique for establishing completeness.
Journal of the ACM, vol. 17, July 1970, pp. 525-534

Chang, C.-L., Lee, R.C.-T.,

Symbolic Logic and Mechanical Theorem Proving.

Computer Science and Applied Mathematics Series (Editor
Werner Rheinboldt), Academic Press, New York, 1973.
Cohn, A., A More Expressive Formulation of Many Sorted
Logic.

Journal of Automated Reasoning, vol. 3, No. 2, pp. 113-200,
1987.

Gallier, J.H., Logic for Computer Science,

Harper & Row, Publishers, New York, 1986.

Herbrand, J., Recherches sur la theorie de la demonstration
Travaux de la Societe des Sciences et des lettres de Varsovie,
Classe IlI. :
Science mathematique et physique, No 33, 1930.

Also in "Logical Writings" (W.D. Goldfarb ed.), D. Reidel
Publishing Company, 1971.

Herold, A., Some Basic Notions of First-Order Unification
Theory.

Interner Bericht 15/83, Inst. fiir Informatik I, Universitit
Kaiserslautern, 1983.

Loveland, D., Automated Theorem Proving: A Logical Basis.
Fundamental Studies in Computer Science, Vol. 6, North-
Holland, New York, 1978.

Martelli, A., Montanari, U., An Efficient Unification Algorithm.
Univ. of Pisa, Techn. report, 1979.

Martelli, A., Montanari, U., An Efficient Unification Algorithm.
ACM Trans. Programming Languages and Systems 4, 2, pp.
258-282, 1982.

Oberschelp, A., Untersuchungen zur mehrsortigen

Quantorenlogik.
Mathematische Annalen 145, 1962.

Ohlbach, H.J., Schmidt-SchauB, M., The Lion and the Unicorn.
Journal of Automated Reasoning, Vol. 1, No. 3, pp. 327-332,
1985

Paterson, M., Wegman, M., Linear Unification.

Journal of Comp. and Syst., 16, 1978.

Robinson, J.A., A Machine-Oriented Logic Based on the
Resolution Principle. JJACM, Vol. 12, No. 1, pp. 23-41, 1965.

A Resolution Calculus with dynamic Sort Structures and Partial Functions 43

Schmidt-SchauB3 89 Schmidt-Schau, M., Computational aspects of an order sorted
logic with term declarations.
Lecture Notes in Artificial Intelligence, J. Siekmann(ed.),
Springer Verlag, 1989.

Siekmann 89 Siekmann, J., Unification Theory.
Journal of Symbolic Computation, Special Issue on Unification,
C. Kirchner(ed.), vol 7, pp. 207-274, 1989.

Smullyan 78 Smullyan, R.,What is the name of this book ?.
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

Stickel 85 Stickel, M.E., Automated Deduction by Theory Resolution,
Journal of Automated Reasoning, Vpl. 1, No. 4, pp. 333-356,

_ 1985.

Stickel 86 Stickel, M.E., Schubert’s Steamroller Problem: Formulation and
Solutions,
Journal of Automated Reasoning, Vol. 2, No. 1, pp. 89-101,
1986.

Walther 87 Walther, Ch., A Many-sorted Calculus based on Resolution and
Paramodulation.
Research Notes in Artificial Intelligence, Pitman Ltd., London
1987.

REPRESENTING AND ANALYZING
CAUSAL, TEMPORAL, AND HIERARCHICAL
RELATIONS OF DEVICES

Vom Fachbereich Informatik
der Universitat Kaiserslautern
zur Verleihung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

genehmigte Dissertation

von

Dipl.-Inform. Hans Voss

Berichterstatter: Prof. Dr. Michael M. Richter
Dr. habil. Werner Dilger

Dekan: Prof. Dr. Otto Mayer

Tag der wissenschaftlichen Aussprache: 18. Dezember 1986

D 386

ABSTRACT: HIQUAL is a deep modeling language for the represen-
tation and analysis of techno-physical systems. It provides for
object oriented modelings with highly independent models to be
constructed according to the message passing paradigm. The same
real world system may be represented at different levels of
abstraction with explicit specifications of structural relations
between neighboring levels. ALl models at all abstraction levels
can he analyzed without the need to consider the deeper levels,
that means abstraction hierarchies in HIQUAL are not defini-
tional nierarchies as usually found in ordinary programming lan-
guages.

Communication between different models is interpreted as flow of
material, forces, or information. Quantities capturing these
changes may be continuous, thus only allowing for smooth transi-
tions of successive values, or they may be digital with no such
restrictions of value transitions.

We describe the semantics of a system of models as a set of
temporally and causally related temporal intervals that are
denoted by dynamic states and events of the models. Using this
approach we obtain a uniform semantics for single models, for a
system of horizontally connected models at the same level of
abstraction, and for a system of vertically connected models of
different Levels. We demonstrate that our temporal approach is
superior to other techniques involving global state semantics,
because parallelism and other temporal aspects including
temporal uncertainty are more naturally represented.

Since deep modeling as a subfield of Artificial Intelligence is
quite new, the thesis presents a rather extended survey of the

whole field.

