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Abstract: A many sorted logic is presented, which supports partial functions as well as
potentially empty sorts and the dynamic derivation of sort information. In this so called
DSPF-logic1 (Dynamic Sorts and Partial Functions), the specification of the sort structure
and the declarations for constant and function symbols are part of the formulae themselves.
Therefore sort information needs not necessarily be known from the beginning but can be
deduced from other information. Nevertheless the resolution calculus which is presented is
almost as restrictive as in logics with static sort information.

1 This work was supported by the “Sonderforschungsbereich 314”, Artificial Intelligence, of the German
Science Foundation (DFG)
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1 .  Introduction

Many-sorted logics are becoming more and more important in Artificial Intelligence. The
main reason for this development is the realization that a special treatment of taxonomic
information leads to a more natural encoding of this knowledge and therefore to more
natural deductions. In these logics the taxonomic information is represented by sorts and
declarations. Sorts denote sets of objects with similar properties and declarations describe
the relations between objects and sorts as well as the domain-range relation of functions.

The first logics which solved the problem of dealing with taxonomic information with a
fully developed resolution and paramodulation calculus, e .  g .  [Walther 87,
Schmidt-Schauß 89] integrate the sort information into the signature, thus fully separate it
from the rest of the information. This separation into taxonomic and other knowledge leads
to more compact formulae and, using sorted unification algorithms, to a smaller search
space. Since, however, some sort declarations result in undecidable unification problems,
not every sort information can be represented this way. Furthermore it is not possible to
handle “dynamic” taxonomic information, i.e. information which is not known from the
beginning, but has to be deduced. It turned out that in some application areas of order sorted
logic, for example natural language processing, the taxonomic information is not completely
known from the beginning and for this reason the static approach is not adequate. To
overcome this problem new logics like Cohn’s LLAMA [Cohn 87] or the logic used in the
LILOG project [Beierle et al. 89], have been invented. In addition to the sort part in the
signature, these logics allOw sort predicates to occur in the formulae. Special deduction rules
guarantee consistency between the statically represented and dynamically derived taxonomic
information. But it is still not clear, how the dynamically represented sort information can be
used to reduce the search space.

In our approach we pull down the banier between static and dynamic taxonomic
knowledge and put the whole information into the fromulae by using the special relations 6
(membership) and <: (subset), without loosing the advantages of sort information during
deduction.

In order to give a flavor of DSPF-logic and to distinguish it from unsorted logic as well
as from other sorted logics, consider the following small example. We have rational and real
numbers and all rationals are reals. A function ‘div’ maps two rational numbers to a rational
number, provided that it’s second argument is not zero. Furthermore there are two constants
‘a’ and ‘b’ of type rational and ‘b’ is not zero.

An unsorted formulation looks as follows:
1) Vx Rat(x) => Real(x) 2) Vx,y Rat(x) A Rat(y) A y==0 => Rat(div(x,y))
3) Rat(a) ‘ 4) Rat(b) 5) b¢0

From this axioms we can deduce the infinitely many facts Rat(div(a,b)),
Rat(div(div(a,b),b)),...,Real(div(a,b)),... In most sorted logics, a sorted axiomatization of
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this situation is not possible at all, because the second axiom is a conditioned function
declaration. In DSPF-logic, the corresponding axiomatization is:

1) Vm; ae Real (another formulation for Rateal)
2) VXRmJRa: YRaafiO => diVÜ‘RatsYRaÖE Rat
3) ae Rat ' 4) be Rat 5) b¢0

Here only a single deduction is possible, namely 6) VxRat div(xRat,b)e Rat, which seems
reasonable. Nevertheless we can prove all theorems in the DSPF-logic, for example
div(a,b)e Real. With 1) and the negated theorem div(a,b)e Real we obtain 7) div(a,b)_e Rat,
where unification of xRat and div(a,b) generates the condition div(a,b)e Real whose
negation becomes a residue literal in the result. 7) and 6) now yields ae: Rat and finally using
3) we derive the empty clause. This example shows that the application of sort information
is still driven by unification and therefore very tightly controlled.

The unification mechanism which generates conditions of the form terme sort, supports
the incorporation of two more concepts into DSPF-logic, namely sorts denoting possibly
empty sets and “dynamic” partial functions. For example the following sort hierarchy can be
declared '

honest man politician

honest politician

without knowing that there is a honest politician at all. Since quantification over an empty
set yields a true statement, the usual instantiation rule is not sound. For example from

vxhonest-politician 10Ved(xhonest-politiciampcop13)

we can not deduce loved(Gorbi,peoPIe), because if there is no honest politician at all, the
quantified statement is true, but nevertheless the instantiated formula is false. In DSPF-logic
we would generate the conditioned instance _

Gorbie honest-politician => loved(Gorbi,people)

which is only satisfiable if there is at least one honest politician, namely Gorbi. With exactly
the same mechanism we can handle partial functions. For example an instantiation of the
above formula with leader(GDR) yields

leader(GDR)e honest-politician = loved(leader(GDR),people)

If the function leader would not be defined for ‘GDR’,  the condition would be false and
therefore the implication would be true.

The literals with the negated e —predicate can be seen as an invitation to prove a
membership relation. For example ae S can be proved with a corresponding ae S literal. For
the special sort (2 which denotes all objects, however, a literal f(c)e Q, which is true
when f is not defined for c,  can also be proved using an arbitrary positive literal
P(...f(c)...), where f(c) occurs as a subterm. The reason is that positive literals can only be
satisfied when all their arguments are defined. Thus, f(c)e Q (f(c) is not defined) and
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P(...f(c)...) (f(c) is defined) are contradictionary and can trigger a resolution operation. A
literal of the form ce Q ' i s  contradictionary, because constants denote always existing
objects.

Unification with conditioned instantiation and the special resolution rule between
term—£ Q—literals and positive literals are the only extensions of the resolution calculus in
DSPF-logic. In the subsequent chapters the logic and the calculus will be presented in more
detail.
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2 Syntax
The syntax of the DSPF—Logic is very similar to the syntax of unsorted first order logic,

because terms, atoms and formulae are generated without considering sorts. Only the two
special relations e and ;: are added and variables are indexed with the sort they range over.

2.1 Signature

2.1.1 Definition: Signature
A signature 2 := (S, V, F, P) consists of the following disjoint sets: S is a finite set of

sort symbols, the fixed symbol Q for “any” is always in S. Sort symbols are S, T. V is a
countably infinite set of variable symbols. For variables we write x, y, 2. F is a countably
infinite set of function symbols, F is  divided into the sets of n-place function symbols
Fn.We use the symbols f, g, h for functions and a, b ,  c for constants (0-place function

symbols)— P iS a fimtc Set of Predicate symbols. divided into the sets „of n:pl_ace predicate
symbols Pn, neNo. Predicates are named by P, Q. Additionally 2 consists of a function
S:V—>S such that for every sort Te S, there exist countably infinitely many variables e,
with S(x) = T. We say x has sort T in this case and denote this by xT.

2.1.2 Definition: Special Symbols
The following symbols are available: the logical connectives -1, A, v, =, @, V, 3, the

auxiliary symbols “(”, “ ”, “,” and the special relations <; (subset), e (is-element), which
are used to represent information about sorts. At the meta level, we use italic versions of the
subset and is-element symbol.

2.1.3 Assumption: Non-empty Universe
We always assume that there is at least one constant symbol in E. This assumption

implies that the universe of discourse is not empty and this appears to be natural for us.

2 .2  Terms, Atoms, and Formulae

2 .2 .1  Definition: Terms

The set of all terms T; is inductively constructed by the following two rules:
i) xeTz,  if e
ii) f(t1,. ..,tn)eTz, if fa  and tieTz for every i
Let V(t) denote the variables occurring in a term t, i.e. V(t) := {t}, if t is a variable and

V(t) :=  lgnvai), if t = f(t1,...,tn). We can naturally extend V to atoms, literals, clauses
and other objects. An object t with V(t) = @ is called mm.

2.2.2 Definition: Atoms
If PsPn and t1....,tn are terms then P(t1,...,tn) is an am. If S and T are sort symbols

and t is a term, then te S and S <; T are atoms.
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2 .2 .3  Definition: Literals

Atoms and their negations are Legals. A literal is called noggin if it consists of an atom

and a negation symbol. Otherwise it is called msjnye.

2.2.4 Definition: Clauses
A clause is a finite set of literals. It is interpreted as the disjunction of its literals, where

the whole clause is universally quantified over all variables occurring in it. We use two
notations for clauses, the logical notation, e.g. C = L1 v L2 and the set oriented notation
C = [L1,L2}. The empty clause is denoted by {}.

2.2.5  Definition: Formulae

Every literal is a formula. If 9' and (j are formulae then (-19), (:F A 9), ( fv  g),
(9': 9) and (fa g) are formulae. If 9” is a formula, xT a variable then (Vx-r 9) and (Exp
9‘) are Mae. We omit parenthesis whenever possible using the following precedence

" Starting from the "logical comecti'vo with the hlghestprecedencc to the lowest" one: a, V, 3,
A, v ,  =>, =».

2 .2 .6  Definition: Substitutions

__A substitution 6 is a total function (nV-‚T2, such that the set {eI 6(x) == x] is finite.
Let _DOM(6) := [ e l  6(x) == x}  . Since every substitution 6 is uniquely determined by its
action on the variables of DOM(6), it can be represented as a finite set of variable-term pairs
{xIFt1,...,x,gatn.}, where DOM(6) = {x1,...,xn}.We can extend the application of 6 to T;
by"6(t) := 6(t), if t eV and 6(t) :=  f(0'(t1),...,0'(tn)), if t = f(t1,...,tn). The same way the
application of 6 can be extended to other objects, e.g. literals, clauses or sets of such
objects. Let COD(6) :=  6(DOM(6)) and 1(6) := V(COD(6)). A substitution 6 is called
M if 1(6) = @. '

The composi t ion  of  two subs t i tu t ions  6 = [x1|->t1 ‚ . . . ,xn l -nn}  and
t = {y1I-951,...,ymI-+sm} can be computed by 61 = [y1|—>c(sl),...,yml—>o(sm)] U
{xii—nil xie (DOM(6) - DOM(1:))}. A subsfitution 6 is called idempotent if 66 = 6. Note that
a substitution 6 is idempotent iff DOM(6) n I(O') = @ [Herold 83]. With 6‘\x we denote a
substitution that is equal to 6, except that it maps x to x.

2.2.7 Definition: Subformula, Sc0pe, Positive Component

Let T, (j, flbe formulae. 9? is a subformula of g, if }" is g or a formula that occurs within
(3. T (or a variable x1) is mm of a universal quantifier V (an existential quantifier 3,
a conjunction A, a disjunction v, a negation -I, an implication =>, an equivalence <=) iff ?
is a subformula of g(or5{) in \1xs  n s  g, GAH n -ag ,  (i=9 9-C g:» 90. An
occurrence of a subformula 9‘ of a formula (; is a W of (3 iff (3 contains no
implication or equivalence symbols and the occurrence of }" is not in the scope of a negation
symbol.
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Note that }" is not a positive Component in a(-.g=). This does not seem to be natural, but
we only use this definition for formulae in negation normal form, where all negation
symbols stand directly in front of the predicate symbols.

2.2.8 Definition: free, bound variables

For a formula T, the set FV(fl‘) of fi'ee variables of 9“ is definedby:
i)

ii)

iii)

iv)
V)

vi)

FV (P(t1,. . .,tn)) = V(t1) U UV(tn) for a n-place predicate P
FV(te S) = V(t) and FV(S ; T) = Q for the special relations 5 and ;.
Fvc—m = v
FVU'»: g) = FV(}) U FV(g), where *E{A‚ v, =>, @]
FV(VXT 9‘) = FVU‘) - [XT]
FVGXT 9) = FV(S“) - {XT}

Given a formula T, the set BV(}) of bound variables of }“ is defined by:
i)

ii)

iii)

iv)
V)

vi)

BV(P(t1,...,tn)) = @
BV (te S)  = @ and BV(S ':T) = @ forthe‘specia'l relations sand c.
BVG-19) = v
BV(fxg) = BV(j) U BV_(g), where *eUx ,  v, =>, @}
BV(VXT 7) = BVU‘) U {KT}

BVGXT ?) = BVÜ‘) U {KT}
A variable 1:7 is fg; within a formula ‚‘F if mare-FV(S!) and xT is called Mad within a

formula 9" if x-reBVU‘). This definition is adopted from [Gallier 86].

2.2.9 Assumption: Considering only Sentences
We only consider formulae without free variables. Such formulae are called megs.
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3 Semantics

In order to define the semantics for the DSPF—Logic, we have to assign a set of objects of
the non-empty universe to every sort symbol, a partial function to every function symbol
and we interpret predicates, the special relations and the logical connectives in the usual
way. To get around the problems of partial functions, we use the often applied trick to
introduce a new object “4.”, which denotes “undefined” and extend the functions using this
object such that they become strict and total. If .L occurs at an argument position of an atom,
the atom becomes false, i.e. an atom can never hold if an ill sorted term occurs‘in it. On the
other hand the negation of an atom including an ill-sorted term always becomes true. Thus
our semantics of the negation is like “If the negation of a statement is true, the statement is
wrong or the statement does not make sense because it is ill-sorted”.

3.1 Algebras

3.1.1 Denfidaaigqaasiaiggbgw ..
Let 2 be a signature. A W ‚fl consists of a non-empty carrier set A, a

partial function f ,q:A“->A with domain mfg) for every function symbol fe Fn, a set
S g cA  for every sort S, such that A = SKEJSSJI.

3.1 .2  Definition: Z-algebra'"" '
Let 21 be a signature. Then a E-algebra 51 is defined as a E-quasi-algebra fl with the

following additions:
i) The carrier set A-'- := A U [.L}, where ..LeA.

ii) 9,4 = A
iii) For all constants ce  F0, 051€ A. -
iv) For all fa  (n>0) and all (ab..., a„)e(A-'-)“‚ if (01,...,an)ED(f,q) we extend f‚q to

f„(a1,...,a„) := ..L. That means f1 is assumed to be a strict tun-extension.

3.1.3 Definition: Z-assignment
Let fll be a Z-algebra. A W is a total mapping cp:V-aA-'- with q)(x)e S(x)1 if

soc),l == 0 and q)(x) = .:. otherwise. The hgmg‘mmhig extension (phsaA-L of a :-
assignment (p is defined as follows:

(ph(x) (p(x) for all Z—variables x
(ph( f ( t l r” ! tn ) )  ffi ( (Ph( t1 )9°° ° s (Ph( tn ) )a  fOl' 3-11 fa -

From now on we don’t distinguish between cp and cph. Let (p be a E-assignment, (165,1,
e with S(x)_ = S and teT}; then

(P[{XIa]](t) := a ifteV and t=x
<P[[x/a}](t) (p(t) if tsV and tar-x
«aux/am) can[x/anttl).....<pt[x/ana.» if t = «av-urn).

i.e. (p[[x/a]] is like (p except that it maps x to a..

'll'
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3.1.4 Auxiliary definitions
For s l . . . sn  we use the abbreviation Vi't'g and for yl ,  ..., y,1 we write '57. If we

write fix] for a formula f and a variable x, we want to emphasize that x occurs free in 9'.

3 .2 Structures and Interpretations

3 .2 .1  Definition: Z-structure

Let Z be a signature. A moan-g M is a E—algebra fit which has additional denotations
' PM for every predicate symbol PE Pu and the special symbols 6 and ;, such that: *

i) PM is a relation with PM ;An
ii) e M is the element-of relation, i.e. e M = e

iii) CM is the subset relation, i.e. ;M = ;

3.2.2 Definition: Interpretation
Let M be a E-structurc and (pt-zA-L a Eeassignment. An W is a pair

3 = (M,cp) such that for every 5, teTz, S, T ES and PEPn

so) =<p(t)
s := P(t1,...,tn) iff ((p(t1),...,tp(tn))ePM.
S I= se  T ifi' tp(s)eT,q.
5 l= S (; T iff SgCTg. _

S I= a f  ifi' not3I= 9"
53! :n  iffS_I=9-’andSI=g
Sl=fvg  i f f8r=5for5r=g
5 l= f=>g  ifi 'no tSFforShg
3 |=T=>g _ifi‘Sl:(_T=>g)/ \ (g=>f)
S |= s }" iff for all (1681, (M,(p[{xs/a}]) l= 9‘
3 |= s }" iff there exists an aeSa, such that (M,r,o[[xs/a]]) I: 9'.

3.2.3 Definition: E—model, satisfiable, unsatisfiable

Let }" be a formula. An interpretation M = (M, (p) is a Model for :? if Mi: 9". Note
that (p plays no role for sentences. A set F of formulae has a Z-model M if for every formula
76F M I= ‚T. A formula is called satisfiable if it has a E-model. We call a formula
W if it has no Z-model.

Our interpretation of atoms including ill-sorted terms leads to a semantics which is not
symmetric with respect to the sign of predicates. If 7 is a satisfiable formula and we replace
every occurrence of a predicate P in 7 by it’s negation, the resulting formula T may be
unsatisfiable. For example the formula 9' = (aP(f(a)) A f(a)e Q)  is satisfiable in every '
interpretation with tp(f(a)) = .L. But T = (P(f(a)) A f(a)e Q) is unsatisfiable because
f(a)e Q forces f(a) to be undefined and P(f(a)) is false if f(a) is undefined.

One can argue whether the negation of something undefined should yield a true
statement. Our reason for choosing this meaning was the realization that it leads to a
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resolution calculus very near to the unsorted resolution calculus, allows an easy
transformation to unsorted first order logic and together with the sort mechanism gives
enough expressivity to avoid critical situations in practical applications.

3.3 Examples

3.3.1 Schubert’s Steamroller

We shall use Schubert's Steamroller as an example throughout this paper. In 1978
Schubert raised the following challange problem:

Wolves. foxes. birds. caterpillars. and snails are animals. and there are some of each of
them. Also there are some grains. and grains are plants. Every animal either likes to eat
all plants or all animals much smaller than itself that like to eat some plants.
Caterpillars and snails are much smaller than birds, which are much smaller than foxes.
which in turn are much smaller than wolves. Wolves do not like to eat foxes or grains.
while birds like to eat caterpillars but not snails. Caterpillars and snails like to eat some
plants. Therefore there is ananimal that likes to eat again-eating animal.

Let Z be a signature including the following symbols: A, B ,  C, G,  F, P, S ,  W are all
sorts and the intended meaning for them is animals, birds, caterpillars, grains, foxes, plants,
snails and wolves, respectively. We use two 2-place predicate symbols E(x,y) to express x
likes to eat y and M(x,y) to denote that x i s  much smaller than y. The constants tweety,
swallowtail, muesli, foxy, slimey and lupo are also available. Then the problem can be
formalized as follows (for a discuSsion of the formalization and the two different versions of
the theorem see [Stickel 86]):

1) lupoe W A foxye F A tweetye B A swallowtaile C A slimeye S A mueslie G
2) WCAAFCAABCAACCAASCAAGCP
3) VXA VXP (E(XA.XP) V VYA (M(YAJia) A 3y? E(YA.YP) => E(XA‚YA)))

4) a VXB M(Xc.XB) ' 5) VxS Vxn M(Xs.XB)

6) VXB VXp M(XB.XF) 7) VX]: VXW M(Xp,Xw)
8) w VxF -1E(xw,x1:) 9) w VxG -:E(xw,xG)

10) VXB c E(xB‚xc) 11) VXB VXS —:E(XB,Xs)
12) VXC EXP E(XC,Xp) l3)  s 3X1: E(XS,Xp)
14) fixA ElyA (E(xA.yA) A 3x0 E(yA,xG)) Theorem Version 1
15) BxA EyA (E(xA,yA) A a E(yA.xG)) Theorem Version 2

3 .3 .2  The Lion and the Unicorn

Our second well known example is a puzzle named “The Lion and the Unicorn”, that can
be found in [Smullyan 78]. It reads as follows:

When Alice entered the forest of forgetfulness. she did not forget everything. only
certain things. She often forgot her name. and the most likely thing for her to forget
was the day of the week. Now. the lion and the unicom were frequent visitors to this
forest. These two are strange creatures. The lion lies on Mondays. Tuesdays and
Wednesdays and tells the truth on the other days of the week. The unicorn. on the other
hand. lies on Thursdays. Fridays and Saturdays. but tells the truth on the other days of
the week.
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One day Alice met the lion and the unicorn resting under a tree. They made the following
statements: -

Lian: Yesterday was one of my lying days.
Unicorn: Yesterday was one of my lying days.
From this statements, Alice, who was a bright girl, was able to deduce the day of the
week. What was it ?

In our formalization of the problem we follow mainly the suggestions in
[Ohlbach&Schmidt-SchauB 85]. Thus our signature consists of the sorts MO, TU, WE,
TH, FR, SA and SU which stand for the days of the week, the sorts LL and UL which
denote the lying days of the lion and the unicorn, respectively, a sort D for all days and a
sort C for the two creatures. The constants monday, tuesday, wednesday, thursday, friday,
saturday and sunday, the constants lion and unicorn and a l-place fonction yesterday are
needed. Furthermore we need a 3-place predicate LA(x,y,z) which is true if x says at day y
that he lies at day 2. Now we can give a complete set of formulae for this problem:

1) mondaye MO A tuesdaye TU A wednesdaye WE A thursdaye TH A fiidaye FR A
saturdaye SA A sundaye SU _________

2) MOQLL A TUgLL A WEgLL A View xTHe LL A VxFR xFRG LL A VXSA XSAE LL
A su xsue LL

3) THCUL A FRCUL A SACUL A su  Xsue UL A VXMO xMoe UL A
' VxTU xme UL A VXWE xwge UL

4) MOCD A TUgD A WEgD “A-THCD A FRcD A SACD A SUcD A LLCD A
ULCD

5) . lione C A unicorne C
6) yesterday(monday)e SU A yesterday(tuesday)e MO
7) yesterday(wednesday)e TU A yesterday(thursday)e WE
8) yesterday(friday)e TH A yesterday(saturday)e FR A yesterday(sunday)e SA
9) VXD VYD (KDG! LL A LAOiOmXDJD) => YDE LL)

10) VxD VyD (x1365 LL A fiLA(lion,xD,yD) => yDE LL)
11) VxD VyD (KDE LL A LA(1ion,xD,yD) = yDe LL)
12) VxD VyD (xDe LL A -:LA(1i0n,xD,yD) => yDe LL)
13) VxD VyD (KDE UL A LA(unicom,xD,yD) => yDe UL)
14) VxD VyD (x9e UL A —.LA(unicom,xD,yD) => yDe UL)
15) VxD VyD (KDE UL A LA(unicorn,xD,yD) => ype UL)
16) VxD VyD (xDe UL A —tLA(unicom,xD,yD) => yDe UL)
17) Ex]; (LA(lion,xD,yesterday(xD)) A LA(unicorn,xD,yesterday(xD))) Theorem

Comparing the formalization given so far with the formalization in
[Ohlbach&Schmidt-SchauB 85], we have replaced the MEMBER predicate by the e
relation and we have tried to express as much as possible in terms of sorts. To this end we
have doubled the axioms 9 - 12 and eliminated the relation lying-days. The reason is that in
the DSPF-Logic presented in this paper, it is not possible to use a formula like '

VXD VYD c (KDE lying-daYSOCC) A LA(Xc‚XD‚yD) = VDE lying-day5(xc))
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because only sort constants are allowed On the right hand side of the e relation. Although
the axioms 9 - 16  are necessary to define the LA predicate,.thcy can also be interpreted as a
dynamic description of the sorts UL (the unicorn’s lying days) and LL (the lion’s lying
days) with respect to the statements of the two creatures. In the resolution proof a
dynamically derived inconsistency for the searched day will be obtained using the sort
information above.

3 .4 Relativization

In this paragraph we show how to transform formulae of the DSPF-Logic in unsorted
first order logic. This is useful because if we can prove that the semantic and syntactic
notations of both logics are equivalent, results like for example the compactness theorem,
from the well known first order logic can be applied to our approach. Therefore we prove
the model theoretic part of the sort theorem, which states the equivalence of the logics. The
transformation of the formulae will be done in two steps. First, the sorted formulae are
translated in a form, where they only consist ofvanablesof' sort 0 and then use the standard
method [Oberschelp 62, Walther 87] to provide a unary predicate for every sort symbol to
reach the final unsorted form.

3.4.1 Lemma: Simple Properties
First we list some equivalences, which can be used to eliminate variables of a sort not

equal to 9 and substitute the ; relation by the & relation.

3 !=s  f iff S I=Vxn (xneS => [s—rxnlf) x9 not free in f
Sr=3xs  9’ i f fSl=3xQ (XQESA [xst-exg]})xnnotfreein}'
SI=S:T  iff31=VxQ(xgeS=>xQeT).

(if? 3 I: s xse T)

Prmf;

Can be easily seen by using the semantics for the special relations.-

The f'u'st two equivalences are correct regardless whether xs occurs free within 9' or not.
The first equivalence interpreted as a rewrite rule, gives the possibility to eliminate
universally quantified variables, which do not occur free in the formula as for example s
P(a) -> n (XQe S => P(a)). Using a semantics which allows empty sorts, quantifiers, like
s in the above example, can’t be dropped But to produce clause normal form, we have
to eliminate the universal quantifiers and therefore to apply this equivalence as a rule.

If the three equivalences are applied from left to right to a formula, the resulting formula
is very near to unsorted first order logic. This is because the variables range over the whole
universe (the whole universe is always assigned to sort 9) and there is only one special
relation left.
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3.4.2 Unsorted First Order Logic
We shall give a brief introduction to the syntax and semantics of unsorted first order

logic. The first order signature 2 := (V, IF, IP) consists of the following disjoint sets: V is a
countably infinite set of variable symbols, IF is a countably infinite set of function symbols
and ]P a finite set of predicate symbols. Terms, atoms, literals and formulae are built in the
same way as in the DSPF-Logic, except that the special relations 5 and ; don’t exist. An
interpretation 3 = (Map) consists of a E—structure M and a Z-assignment «mV—>11] which
can be extended as in Definition 3.1.3. The Z-strucmre M consists of a non-empty ufiiverse
U, a total function fU:U“—>U for every n—place function symbol fe Pu and a n-place relation
PMCU“ for every predicate symbol PePn. For every te T; and PEP,l

3©=¢m
s "= P( t1 ’ °“ ! tn )  iff (©( t1 )9°° ° ’ (P ( tn ) )EPM-

5 l= a9? ifi' not5|= ?
S |___ BVA (} . 1&3“?  fandS I: G

5I=fvg  i f fS t l ’SFCj
8|=T=>Cj ifi ' no tßb fo rßhg
81 :n  i£f3 |=( : r=>g)A(g=>y)
s != Vx gr iff for all a,  (M,tp[[x/a}]) != 9r _
3 I= 3x  ? ifi' there exists an a ,  such that (M,q>[{x/a}]) != 9".

3.4.3 Transformation in Unsorted First Order Logic
We now present an algorithm II, which transforms sentences of the DSPF-Logic in

unsorted first order logic. Let 9' be a sentence of the DSPF-Logic.

Step1; Use the rules .
i) VXs (j -—> VXQ (me S =) {xy—mg} 6) Kg not free in 9

ii) Exs g—> Bxg (XQE S A [xy-mg} 9‘) X9 not free in g
ili) S CT-ö  VXQ (XQES = XQET)

to eliminate the <; relation and all variables not having sort Q. The first and second rule are
applied exactly once to every subformula of 9' starting with a quantifier, c.g. the formula
n ? is also changed to n (xge Q => }“). We obtain a formula I'Islepfif) which is
equivalent to 9' and still remains in the DSPF-Logic.

m The signature for the corresponding first order formulae is given by
E :=  (V, IF, ]? U {S IS  is a new 1-p1ace predicate for every sort 558) )

and apply the rule
i) te S —> S (t)

to eliminate the & relation. After this step we can forget about the sorts of variables and have
computed a sentence 113p 95) in unsorted first order logic.

51923; Add the following formulae
i) Vxl...Vxn (P(x1,...,xn) => (.(2(x1) A.../\ .Q(x„))) for every n-place predicate PelP.
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ii) Vxl . . .V  xn (.Q(f(x1,...,xn)) => (.Q(x1) A.../\ Q(xn))) for every n-place function
symbol (n>0)' occurring in 952.

iii) {2(c) for every constant symbol c occurring in I'ISteps), if there is no constant
symbol in l'ISwPZU), choose an arbitrary constant symbol ceFo and add .Q(c).

as a conjunction to US$11.20). The part iii) guarantees that Q is always a non-empty relation
in every unsorted first order interpretation and the parts i) and ii) ensure that predicates and
functions behave strict with respect to Q. We obtain the final first order sentence HU).

3.4.4 Theorem: Sort Theorem

Let }" be a sentence of the DSPF-Logic. Then }" has a 2-model iff 1'I(}) has a E—model.

Emi;
As we have mentioned in the algorithm H, it suffices to show that Hama) has a E—model
iff HC?) has a Z—model, because Emma) is equivalent to ?.

“=>“ Let S = (M,(p) be a Z-model for us iepfifl ,  i.e. 8 != Hsteplw'). Then we
construct a Z-model 5 as follows: U = A-L, functions and predicates are interpreted in M
as they are interpreted in M and the added unary predicates Si are given by ($9M = (891.
Obviously U is net empty and the added formulae of HU) hold in 3 .  Thus we have only to
show by induction on the structure of formulae, that 'S = HSteplw) implies
3' I= Hstepzw‘). We prove only the non-uivial parts. .._...

i) I'Is„p1(9‘) = P(t1,...,tn) for a-n-place predicate symbol Pe Pn, then S != P(t1,...,tn)
implies 3 |= P(t1,...‚t„)‚ because the interpretation for P in 3 is the same as in 3."

ii) Usa-‚1,109 = te S, then 53 != te S implies 3 != S(t) by construction.
iii) H3t3p1(} ' )=  VXQ (Kae S => G), then 5 != VXQ (XQE S => 9 )  implies

3 l= Vx (S(x) => 9), because U and Q;  are both not empty, case ii) holds for
xge S and the induction hypothesis for (} holds.
The case that the topsymbol of Hsa’) is an existential quantifier is similar to this
case.

“<=” Let 3 = (Mg) be a Z—model for HU). Then we construct a 2-model SS as
follows: the E-quasi-algebra fl is defined with canier A = QM. A is not empty because of
3.4.3-Step3-iii). For every n-place function symbol fe Fn, (u1,...‚u„)e A“ we define
f„(u1,...,un) = fM(u1,...,un) if fM(u1,...,un)eA and undefined otherwise. For every sort
symbol SES the set SM is assigned. The condition Sag—A holds because of 3.4.3-Step3-i).
The E-algebra 2 is defined according to Definition 3.1.2. Clearly 91 = A and for every
constant c occurring in HSmplU‘) we have c„e A .  For all other constants an arbitrary
element of A can be assigned. For every n-place predicate symbol PEPn we assign the
relation PM = {(a1,...,an)l (01,. . . ,a, ,)eAn and ((11,...,an)r.-'PM]. Finally we show by
induction on the structure of formulae, that 3 != Ustepzü) implies 3 I: nsteplCT).

i) IIStepzw') = P(t1,...,tn) for a n-place predicate symbol Pe Pn, then 8 I= P(t1,...,tn)
implies 8 != P(t1,...,tn), because 2.4.3-Step3-ii) and the fact that l'Istepzwf) is a
sentence ensure that S (ti)eA for every i and PM is the restriction of PM to A“.
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ii) usiepzm = S(t), then 3 |= S(t) implies SS l= te 8 by construction and the above
argument for the interpretation of t. .

iii) I'I Scep2(9') = V x (S (x) => 5 ) ,  then 3 I= V‘x (S (x) => 9 )  implies
5 != n (xge S = (j), because aeSM implies a693 ,  condition ii) holds for
S (x) and the induction hypothesis holds for (j.
The case that the topsymbol of Haus) is an existential quantifier is similar to this
case.-

3.4.5 Corollary: Compactness Theorem
A set S of DSPF-sentences is satisfiable iff every finite subset T of S is satisfiable.

my:
Follows from the Sort Theorem and the fact that the Compactness Theorem holds for first
order logic.-
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4 Conjunctive Normal Form

4 .1  Basic Definitions

4 .1 .1  Definition: Negation Normal Form, Extended Conjunctive Normal Form

A formula 9' is said to be in nggafimgmaJMif every negation symbol occurring in
9' stands directly in front of a predicate symbol. 9' is in extended conjunctive normal fg, if
9' 1s in negation normal form and 9'= 9'; A.. .A fu, where the 93 :  ((Q1 x1)...(.Qm xm) M),
M'1s a disjunction of literals and Qua-{VS}.

4.1.2 Definition: Clause Normal Form
A formula 9' is in 913W, if 9' is in extended conjunctive normal form and

contains no quantifiers. The variables occurring in 9' are assumed to be universally
quantified.

If a formula 9" IS in clause normal form, we sometimes use the set oriented notation

instead of the logical notation for clauses.

4 .2  Introduction

For many reasons the clause normal from can not be computed using the standard
algorithms, as for instance [Chang&Lee 73, Loveland 78]. First, sets may be empty and
therefore some transformation rules don’t hold, e. g. the rule for extending the scope of a
universal quantifier:

s 9[xs] A 5 is not equivalent to s (9[xs] A 9‘)

(Take an interpretation 3 where S ‚1 - 0  and 8 # 5. Then 3 I: s(9Ixs] A 9) but
3 ht s 9[xs] A (j.) Second, Skolemization doesn’t work in the usual way, because
information about the domain and range sorts of a Skolem function has to be provided. We
have developed an algorithm, which takes the above cases into account.

4.3 The CNF Algorithm

The input of the algorithm is a DSPF-Logic sentence 9', which is transformed in the
clause normal form CSf. We prove that 9' is satisfiable iff the clause set CS9r is satisfiable,
which is a sufficient condition for a refutation calculus.

513120.; Use the rule
i) S ; T-> VXs XseT

to eliminate the; predicate. After this step we have only to consider one special relation e
representing the whole sort information.

51:91; Use the rules
i) F<=>G->(F=>G)A(G=>F)

to eliminate implications and equivalences.
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53992; Use the rules
1) _IVXS f—) BKS Hf

ii) "fixs 9‘9 VXs —-9'
111) “(f/\ (3) _) "19'V fig

iv) “(TV 5) ->-.}'A —\Cj‘
V) „(qm -> T

to move the negation sign inwards.

Step1; Use the rules _
i) s (iv g) -9(s 9) v g(xs not freein 9)

ii) Exs (BF/\ 9) -» (3x5 }) A (j (xs not free in (3)
iii) s (fA g) -> (s f) A (s g) (xs fist: in fand g)
iv) Bxs  (_‘Fv @) -) ( s  f) v (Elxs g) (xs free in fand  (j)
v) s Vy—r (fv g) » VyT s (iv g) (yT free in 9" and g, but xs not free in either

}- 01. G) , .. ,

vi) 3xs 3y1- (9’A g) -> Sy-r Exs (_‘FA @) (xs, y;- as in the rule v))
to move the quantifier inwards. These rules are not necessary for Skolemization, but are
useful to get small Skolem functions.

Siggi; Rename all variables, so that different quantifiers have different variables.

Siggi; From left to right remove all existential quantifiers: let 9' := Bxs g be the formula of
the actual existential quantifier. Let Vysl,...,Vysn be the universal quantifiers which have :F
in their scope. Then replace 9' by [xt—>f(ysl,...,ysn)} (_; A f(ysl,...,ysn)e S ,  where f is a new
n-place Skolem function.

31:16; Use the rules
i) HV (?"/\ g)—>(9{v 95) A (HV g)

ii) VXS (af/\ (;)—>s fA  VXs Q
iii) <s 9) v g» s (TV 9)

and variable renaming to transform the formula in extended conjunctive normal form.

51:21; We obtain a formula like fi A...A in, where every 9} = Vxl. . .m Ci and the Ci
are clauses. Now use the rule s C + Vxn (C U {me S }), where xs£V(C) to ensure that
a variable occurs in a clause C iff it occurs in the universal quantifiers in front of C. This is
correct only together with the assumption that we consider sentences for the transformation.
After the above transformation we can drop the quantifiers and keep in mind that all
variables are universally quantified over their sorts. So we have reached the desired clause
normal form of the input formula.

4.4 Examples

4 .4 .1  Schubert’s Steamroller

We shall only show the transformation of the negated theorem (version 2), because the
transformation of the parts 1) - 13) is simple and straightforward.
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$$
$—

L
$

__,

-'(3XA EVA (E(XA‚YA) A VXG 50AM)» negated theorem
VxA VyA (—nE(xA,yA) v fixe —.E(yA,xG)) using the steps 2-i), 2-ii) and 2-iii)
VYA VXA (mECXAJA) V EKG “‘EÜAJ‘G» using Step 3)-V)

VyA (VXA "‘E(XA»YA) v fixe fiE(yA‚xG)) using step 3)-i)

VyA (VxA —-1E(xA,yA) v (—1E(yA,fA(yA)) A fA(yA)e 6)) using step 5), there fA is a
new l—place Skolem function and stands for the grain eaten by the animal yA
VYA ((VXA _'E(XA:YA) v “"EÜAJAÜA») A (VZA -IE(zA.yA) V fA(YA)E G)) using
step 6)-i) and variable renaming

VYA (VXA —'E(xA:YA) V mE(YA.fA(YA))) A VUA (VZA ‘1E(ZA:UA) V fA(uA)E G)

using step 6)-ii) and variable renaming
VYA VXA (“E(XA‚YA) V fiE(YA‚fA(YA))) A VUA VZA (-IE(ZA.11A) V fA(llA)E G)

using step 6)-iii)
["‘E(XA‚YA)‚"‘E(YA‚fA(YA))}‚ [-IE(ZA.IJA).fA(11A)E G} 118n Step 7)

Finally we present. all clausesobtained-from-the formulae 3.3.1-1) to 3.3.1-15):
1)

3)

5)

7)

9)

11)
13)
14)
16)
18)
20)
22)
24)
26)

26')
27 ')

4.4 .2

1)

3)

5)

7)

9)

11)
13)

[lupoe W]  2) [ foxye F}
{tweetye B}  4) {swallowtaile C}
{slimeye S } 6) [mueslie G]

{xwe A}  8) {XFeA}
{x136 A} _ __ . . 10) {xce A}
[Xse A}  12)  [XoePl
{E(xA‚XP)fiM(YA‚xA)‚-1E(YA‚YP)‚E(XA‚YA) }
{M(xC.XB)} 15)  [M(Xs,xB)l
{M(XB.XF)} 17)  [M(XF.xw)}
[_‘E(XW‚XF)} 19) {I-‘E(Xw,xo)}
[E(XB ‚KG) } 21)  {-15(XB.'Xs)}
{E(XC.fc(XC))} 23) {fc(Yc)E P}

{E(XS‚fs(XS))] 25) [fs(yS)e P}

{ -1E(x A‚YA),fiE(y A,xG)} Theorem version 1
[aE(xA,yA),—1E(yA,fA(yA))} Theorem version 2
[—1E(zA,uA),fA(uA)e G} Theorem version 2

The Lion and the Unicom

Here are the resulting clauses for this example:
[mondaye MO} 2) {tuesdayeTU}
{wednesdaye WE} 4) {thursdaye TH}
{fridaye FR} 6) [saturdaye SA}
{sundaye SU]  8) {xMoe LL}
{xTue LL} 10) {xwge LL} '
{):-me LL} 12) [pe LL}
[xSAe LL] 14) {xsue LL]
[x-me UL} 16) {xFRe UL}15)

17) [XSAEULI 18)  [XSUE UL]
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19) [xMoE UL} 20) [ x-Tue UL}
21)  {Xn UL} 22) {xMoeD}

23) [xTue D}  24) [XWEE D}
25) [xme D}  26) {xFRe D}
27) [XSAE D} 23)  [KsuE D}

29) [xLLe D}  30) {xULe D}
31) [lione C}  32) {unicorne C}
33) [yesterday(monday)e SU} 34) [yesterday(tuesday)e MO]
35) [yesterday(wednesday)e TU] 36) { yesterday(thursday)e WE}
37) {yesterday(friday)e TH} 38) {yesterday(saturday)e FR}
39) [ycsterday(sunday)e SA}
40) [KDE LL—iLAaiOmXDJD) ‚YDE LL}
41) {xpe LL,LA(lion,xD,yD),yDe LL}
42) [xDe LL,-:LA(lion,xD,yD),yDe LL}
43) { xDe LL,LA(1ion‚xD,yD) ,yDeLL} .. _ __ _ __
44) Uwe UL,-:LA(unicom,xD,yD),yDe UL}
45) {xDe UL,LA(unicorn,xD,yD),yDE UL}
46) [x9e UL,-:LA(unicom,xD,yD),yDe UL}
47) {KDE UL,LA(unicom‚xD,yD)‚yDe UL}
48) {-1LA(lion,xD,yesterday(xD)),—:LA(unicom,xD,yesterday(xD))} Theorem

4.5 Properties

We prove, that the usual properties of the GNP-algorithm holds also for the version for
DSPF-Logic.

4.5 .1 Lemma: Correctness of replacing positive Components
If 9' is a positive component of a formula g and Cj’ is obtained from 9‘ by replacing 9' in g

by a formula T and if there is a model M for the set of formulae [g ,  9" => 9’ }, then 9’ has
model M.

Email
The proof is a direct extension of the proof in [Loveland 78] .-

4.5.2 Theorem: Soundness and Completeness of the GNP-algorithm
Let }" be a sentence and T the formula produced by applying the GNP-algorithm to f.

Then fhas a model Mifff’ has a model M.

am;
Except for Step5, both parts of each conversion rule are equivalent. So for these rules there
is nothing to show. It remains to consider the elimination of the existential quantifiers.

. Wlog. we can assume that there is only one Skolemization step. Let g := 3x3 H be the
formula where the existential quantifier is eliminated; Vysl...Vysn be the universal
quan t i f i e r s  wh ich  have  g i n  t he i r  s cope  and
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g ’  :=  [xl ->f(ysl , . . . ,ysn)}9[ / \  f (ys l , . . . , y sn)e  S the formula obtained from (} after
eliminating the existential quantifier.
"=>" Let M = (M‚q>) be a model for _‘F, (Sim at Q for every i and
(M,cp[[y51/a1,...,ysn/an]]) != 3x3 % for an arbitrary Z-assignment <p[[ y31/a1,...,ysn/an}]
with die (Si); for all i. If (M‚(p[{y31/a1‚...,ys„/an}])v: 3x3 H, then there is nothing to
show. We will now extend M to a model M which satisfies T .  If @ holds, there must be
an ae  S „, such that (M, q>[[y31/a1‚...,ys„/an‚x/a}]) l= 911 Now define M like M except that
f‚q(a1,...,an) :=  a and apply Lemma 4.5.1. *

"<=" Let M’= (M',(p) be a ‚model for gr’, ( so„  at @ for every i and
(M’,(p[[yslla1,...‚ys„/a„}]) I= 5’ for a Z—assignment (p[[yslla1,...,ys„/an}] with aie(Si)„
for all i. Then, f; is defined on (a1,...,a„) and f‚q(a1,...,an)eS‚q. Therefore M’ |= Exs %
holds and application of Lemma 4.5. 1 proves the theorem.-
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5 The Resolution Calculus

5.1 The Herbrand Theorem

So far, we are able to transform a DSPF-Logic sentence in clause normal form. We have
proved, that the sentence is unsatisfiable iff the obtained clause set is  unsatisfiable.
Herbrand’s theorem [Herbrand 30] states that for every unsatisfiable clause set. a finite set
of ground instances exists, that is unsatisfiable. We show that this result also applies to the
DSPF-Logic. To this end we first have to show how to instantiate clauses. Instantiation

doesn’t work in the usual way, because the well sortedness of a substitution is not
Odec idab le .  Therefore we have to add some literals, which guarantee correctness of
instantiation if the used substitution was not well sorted. The next step is to define the
Herbrand set of ground clauses. We show that we can restrict the necessary ground
substitutions, which generate the Herbrand clause set, to the so called possibly well sorted
ground substitutions. They are our equivalent to the well sorted substitutions known from
other sorted logics, e. g. [Schmidt-Schauß 89]. Finally we prove the Herbrand theorem for
our Herbrand ground clause set.

As an abbreviation for S t: Vysl.. .Vya for some interpretation 5 and clause C with
V(C) = [ysl,...,ysn] we write 3 l= V(C).

5.1.1 Definition: Conditioned Instantiation of Clauses

Let C=  {L1,.. . ,  Ln} be a clause and o a substitution. Then o iC:  = [6(L1),..  .,o(Ln)} U
[(te T)l there 18 an xeDOM(o) n V(C) with o(x)—- t and S (x )=  T)  is called a conditioned
instance of C

The literals of the form (te T) handle the case that o is not well sorted, i..e in some
interpretation 3 ,  3(t)eT‚q. So either for every variable xeDOM(o),o(x)e(S(x))1 or some
of the added literals become true.

5.1.2 Lemma: Soundness of Conditioned Instantiation

For every interpretation 8 , substitution 0' and clause C, S t: V (C) implies
S |= Wei C).

m;
We prove the Lemma by induction on the number of variables in DOM(o):

|DOM(O)| = 0: then OiC = C and therefore the lemma holds trivially.

IDOM(O')| = n + 1: let xeDOM(o)  with 0(x) = t and 80:) = S.  If x2  V(C) then
olC = (o\x)J.C and the lemma is proven by the induction hypothesis. So assume e(C).
If S ‚q = @ or 8(t)e S ‚. for the interpretation 3 ,  then S != (to! S) and because (te S)eo.LC we
conclude S t: Wei C). If S ‚q at Q and 3(t)e  S „, then S I: V(olC) because x is universally
closed over S in V(olC) and by the induction hypothesis 3 != V((o\x)lC) holds.-
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5.1.3 Lemma: Associativity of Conditioned Instantiation
Let o, 1: be two substitutions, with I(G);V(C), 0' is idempotent and let C=  {L1,.. .‚Lnl

be a clause. Then ti (cl C)=  (1:0)l C.
Prggfio

(to)lC
= [(to)L1,...,(1:o)Ln) u {te Tl there is an xeDOM(1:o) n V(C) with 1:0(x) = t and

S(x) = T}  .
= [(*co)L1‚...,(‘co)L„} U {1065 T)l there is a xeDOM(O') n V(C) with (S(x) = t and

S(x) = T} U {565 SI there is a xe(DOM(1:) — DOM(G)) n V(C) with 1:(x) = s and
S(x) = S}

= {(1:6)L1,...,(1:0')Ln] U {1:(te T)! there is a xeDOM(o) n V(C) with (S(x) = t and
S(x) = T} U [ se  SI there is a xeDOM(1:) n V(0'(C)) with 100 = s and S(x) = S}

- because 6' is idempotent and ‘I(O')CV(C)
= [(TO’)L1,...,(’tO')Ln} u [tats T)! there is a xeDOM(o) n V(C) with o(x) = t and

S(x) = T]  U [ s e  SI there is a xeDOM(1:) (\ V(O'.l‚C) with 1:(x) = s and S(x) = S}
= t i ( [ cL1 , . . . ,GLn}  U [te  TI there is a xeDOM(0')  n V(C) with (S(x) = t and

S(x )  = TD

-=1:l(oLC)l

. _A 5.1.4 Definition: Q-Closed
A clause set CS is called 951mm, if the following two conditions are satisfied:

i) For every constant c occurring in CS, the clause {ce Q} is in CS.
ii) There is at least one clause {ae Q}  in CS, for a constant aeFo.

As we have mentioned in the introduction, the formula ce Q is unsatisfiable for every
constant symbol ceFo.'I'he idea of Q-closed clause sets is to omit a special reduction rule,
which eliminates literals of the form ce (2. If a clause set is Q-closed, this cases can be
refuted with ordinary resolution. Hence from now on we always assume that clause sets are
Q—closed. If a clause set is finite, the corresponding Q—closed clause set can be effectively
computed.

5.1.5 Definition: Possibly Well Sorted Ground Terms
Let CS be a (fl-closed) clause set and let Lcs be the set of all literals occurring in CS.

Then the set of all possibly well sorted ground terms Tgns of sort S is inductively defined as
follows:

i) For all sorts SES  (SatQ) and all literals (te S)eLcs ,  if t is a ground term, then
tETgr‚s.

ii) For all sorts SeS  ($$$!) and all literals (te S )eLcs ,  if V(t) = [ysl,...,ysn} and
there are ground terms tie-Tam, then [yslHt1,...,ysnI—>tn]teTg,.s.

iii) For all positive literals P(t1,...,tn)e Lcs  and every subterm t of the ti, if
V( t )  = [Ys1 ‚m‚YSn}  and there are ground terms s i e  Tans ia  then
{YSIHSIv-nyaSn}tETgrfl-
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As we have mentioned in the introduction, it is not useful to define well sorted terms as
in other approaches for sorted logics. Here the well sortedness of a term depends on the
clause set it occurs in, because the sort information is encoded in the special @ relation.
What we can do is to define a superset of well sorted ground terms, the so called. possibly
Well sorted terms, so that every ground term which is well sorted in every interpretation
satisfying the clause set, is a member of the set of possibly well sorted terms.

5.1.6 Definition: Possibly Well Sorted Substitutions
Let CS be a clause set. A substitution 0' = {yslHt1,...,ysnI—>tn} is called MM

M according to CS, if for every ysieDOM(0') the following conditions hold:
i) If ti is  a variable with 300 = U, then Tau n T315”: @.

ii) If ti = f(sl,...,sn), then there is a possibly well sorted ground substitution 2. with
l t iETgrßi ‘

Especially if c is ground the second condition can be changed to tieTgrsi for every
ys i eDOMw) .  The teSts of condition i5 and ii5 are both undecidable in general
[Schmidt-SchauB 89]. For the decidable subcases (for most “natural” examples both
conditions are decidable in polynomial time), however, restricting the unifiers to possibly
well sorted substitutions significantly decreases the search space. In the sequel‘ ‘possibly
well sorted” is abbreviated with pws.

5 .1 .7  Definition: Herbrand Set of Clauses

Let 9' be a sentence, C89r the clause set obtained by applying the normalization algorithm
to gr. Then the WW csfi is defined as follows:
csär := {am CeCSf, er is ground, pws and DOM(o) = V(C)}
5.1.8 Definition: Herbrand Interpretation

An HL—intgmrgtgg‘gn is a Q—closed set M2 of ground literals satisfying the following
conditions: -

i) There are no complementary literals in ME.
ii) There are no literals L1 and L2 in MZ, such that L1 is positive, contains a term t

and L2 = (IE Q). . -

A HIS-model of a clause set CSÄ, is an PIE-interpretation ME such that for every
clause Cnecsfi: CH n MZ == @. A Hz-model M): of a clause set C83 is called
% if M2 = $$$-(CH n M}: ). Note that a set of ground clauses cs has a HE—
model iff it has a minimal one. If M2  is a PIE—model for a clause set CS, we write
MZ  != CS or MZ  |= C for a- clause Ce  CS.

5.1.9 Lemma: Compatibility of Z-Models and PIE-Models

Let :F be a formula, CS? and CS {; the above defined clause sets. Then CSgr has a E-model
Miff csfi has a HE—modcl MZ.
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Email
"=>" Let M = (M,(p) be a Z-model for csa Then MZ := {Ll Le CH, cnecsfi  and
M != L} .  M): is an PIE-interpretation. Suppose there is a clause CHe CSÄr with
CH n ME = @. We know that CH is an instantiation of a clause Ce CST. That means
C = [L1,...,Ln} and there exists a possibly well sorted ground substitution
6 = [yslHt1,...,ys,,I—>tn} with DOM(0') = V(C) and c = CH. If M(ti)e(Si)‚q for some i
then MI: tie Si and this contradicts CH n MZ = @. So M(ti)e(Si)1 for all i. Therefore if
(p is an arbitrary Z-assignment, then (M,q>[{y51/M(t1),...,ys„/M(tn)]]) beC. But C is
universally closed over the ysi, hence this contradicts the assumption that M is a 2-model
for CS9”. ‘
"<=? Let MZ be a minimal PIE-model for CSÄ. We construct a E-model as follows:
we restrict F0 to the constants occurring in CS9". F0 is not empty because CS—‘F is Q-closed.
The Equals-algebra fl is defined With. „43391? A -_:.= .91 ._:.=_. [t _l there is a positive literal
Le M2 which contains t as a subterm}, for every sort SeS  ($$$!) a set S ‚q := {t I
(te S )eME}  is assigned and for every fa  ffl(t1‚...‚tn) := f(t1,..., tn) if f(t1,...,tn)eA
and is undefined otherwise. A is not empty because because C89r is Q—closed. Additionally
finds“; holds. Now H is extended to a Z-algebra by defining A-‘- := A U {.L ], where
.L e A and for all fe Fn  (n>0) and all (a1 . . . . ,an)e  (AJ-)“ ,  if (t1....,tn)£ 9(f1)
f„(t1,...,t„) :=  _L. Clearly the conditions 91: A and for every constant ceFo,  036A

' hold. Next we define a E.:-structure M by adding PM := {(t1,...,tn) I P(t1,...,tn)eME} for
‘ every PePn. What we have defined so far, is a kind of initial model for CS-"r which is based

on a ground term algebra. So from now on we can drop the differences between terms and
their interpretations. To finish the proof, we show by contradiction that M = (M,(p) is a 2-
model for CS”. Assume M is not a Z-model for CSf. Then there is a clausc Ce CST with M
it: V(C). Let ysl,...,ysn be the variables occurring in C. Because of Mist V(C), (Si), ==
@ for every i and there is a Z-assignment <p[[y51/t1,...,y3n/tn]] with tie(Si)‚q and
(M,(p[{ys  1 / t1 , . . . , y3n / tn} ] )  # C. Assume {ySlHt1,...,ysnl—>tn} is not a pws ground
substitution. Then there is a variable Ysi with tie-‘Tgnsi and we have to distinguish two
cases. If seen, then M): can not be minimal because there must be a literal (tie Si), which
is in ME but not in CSE. If SFG, we have a contradiction against the definition of A.
Thus there is a clause CHecsE with CH = {ysll—>t1,...,ysnl->tn}lC and M2. := CH.
Suppose one of the literals (tie SQeME.  If See!) or tie F0, this contradicts tie(Si)‚q
because ME does not contain complementary literals. If Si=£2, we have a contradiction
against the Definition 5.1.8-ii). Suppose a normal literal Le CH is in M2, but then we
have (M‚q>[[ Ys1/t1‚...‚ysn/tnl]) != L and hence (MM[ys1/t1.....ysn/tn}]) I= C
contradicting the assumption that (M,q>[[ysllt1,...,ys,./tn}]) be C.-

5 .1 .10  Theorem: Herbrand Theorem

Let f be a formula, CS.”r and CSK the above defined clause sets. Then CSf is
unsatisfiable iff there is a finite subset T of cs; which is unsatisfiable.



2 8 A Resolution Calculus with dynamic Sort Structures and Partial Functions

Brunt:
"=>" We show this part by contradiction. Assume CS9r is unsatisfiable and every finite
subset T of csfi is satisfiable. Then because of the Corollary 3.4.5, cs5 is satisfiable and
with Lemma 5.1.9 CS9r is satisfiable, which contradicts our assumption.

"<=" Let T be the unsatisfiable finite subset of csfi. Then csfi has no HE-model and by
Lemma 5.1.9 CSgr has no E—model and is therefore unsatisfiableJ

5.2  Ground Resolution

The next step towards a sound and complete calculus is to define a resolution rule on
ground level. For this rule we have to prove the soundness and completeness, i.e. we prove
that a set of ground clauses is unsatisfiable iff there is a derivation of the empty clause using
ground resolution. The only difference between the resolution rule for the DSPF-Logic and
the resolution rule for unsorted first order logic, is the additional complementarity of two
literals L1 and 1.4, where L1 = (te (2) and-I4—-iS----a----posifive literal containing-t as a subterm.

5.2.1 Definition: Complementarity _
Two literals L1 and L2 are called m if one of the following conditions is

satisfied:
i) L1 and Lg are__equa.l as atoms but L1 is positive and L; is negative or vice versa.

ii) L1 = (te (2) and L2 is a positive literal containing t as a subterm.

5.2 .2  Definition: Ground Resolution

Let C1 and C2 be ground clauses, L1 5 C1 and Lze C2. If L1 and L2 are two
complementary literals, then Rg(C1,C2, L1,L2):= (C1- {L1 } )  u (C2-{L2D is a ground

mohair of C1 and C2. ' '
5 .2.3 Lemma: Ground Resolution is Sound

Let C1 and C2 be ground clauses, L1€C1 and 1,2502, L1 and Lg be complementary
literals, then for every interpretation 3 with 3 != C1 and S |= C2, 3 != Rg(C1,C2,L1,L2)
holds.

We shall prove this Lemma later for the general case, where we deal with arbitrary clauses.-

5 .2.4 Lemma: Unsatisfiability of Ground Unit Clauses
Let CS be an unsatisfiable set of ground unit clauses. Then CS is unsatisfiable iff CS

contains two unit clauses with complementary literals.

mm“:
We will prove the following equivalent conjecture: a set CS of ground unit clauses has a 2'.-
model iff CS does’nt contain complementary literals.

"=>" If CS has a model, then by Lemma 5.1.9 and the fact that CS is Q—closed, CS has
a Hi.-model and therefore CS does’nt contain complementary literals.
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"<=" If CS does’nt contain complementary literals, then CS can be interpreted as a HZ-
model and using Lemma 5.1.9 we conclude that CS has a Z-modelJ

5.2.5 Lemma: Ground Resolution is Complete
Let CS be an unsatisfiable set of ground clauses. Then there exists a derivation of the

empty clause using ground resolution as defined in Definition 5.2.2.

Brant
The theorem is proved by induction on the k-parameter [Anderson&Bledsoe 70], k(CS) :=
Z[(|Cl - 1)l CeCS }, where ICI is the number of literals in the clause C.

If k(CS) = 0, then by Lemma 5.2.4 CS contains two complementary literals. Hence one
resolution step yields the empty clause.

If k(CS) > 0, then there exists a non-unit clause C. Doing a case analysis, we separate C
into two parts C1 and. C2 andobtaintwounsatisfiable clause sets CSI and CS2 by replacing
C by C1 or C2, respectively. Since k(CSi) < k(CS)‚ there are refutations of C81 and CS2 by .
ground resolution. As all clauses are ground, these two resolution proofs can be combined _
to a resolution proof of the empty clause in CS .-

5.3Unification

After proving the sound- and completeness on the ground level, we shall now show how
to. lift this results to the general level, where we also deal with variables. One problem that
arises is that if some terms are syntactically equal on ground level, they need not be equal on
thee-general level. For example the ground literals P(f(a)),—.P(f(a)) are syntactically equal, if
we disregard their sign. Suppose they stem from two literals P(xs),P(f(xT)) using the

' ground substitution 0' = {sf(a),x11—>a]. Clearly P(xs) and P(f(x-r)) are not syntactically
equal and the unification task is now to find a more general substitution, which equals the
literals. Since unification works as in unsorted logic, we give here only a brief introduction
to unification. There are a lot of  efficient unification procedures known, e .  g .

[Paterson&Wegman 78, Martelli&Montanari 79] . For simplicity we will present a rule
based version of the Robinson [Robinson 65] unification procedure following
[Martelli&Montanari 82].

5 .3.1 Definition: Unifiable, Unifier, mgu, Unifcation problem, Solved unification
problem

Two objects (terms, literals) 01 and 02 are called mm, iff there exists a substitution 0'
such that 0'(01) = C(02). In this case the substitution 0' is called a unifigr of 01 and 02. A
unifier 0' of two objects 01 and 02 is called an mgn (most general unifier), iff for every
unifier 2. of 01 and 02 there exists a substitution 1:, such that 10' = Z.. If L1 = P(t1‚...,t„)
and l4 = P(s1,...,sn) are two literals with no variables in common, which are to be unified,
then I‘ = {t1=sl&...&tn=sn} is called the W for LI and L2. A substitution
0' sglvgs a unification problem I‘ = {t1=s1&...&tn=sn], iff 0(t1)=0'(s1),...,0'(tn)=o(sn). A
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unification problem I‘ is called solved, iff 1" = {x1=u1&...&xm=um} where the xi are all
variables, xi£V(uJ-) and xiaexj for all i and j and the corresponding substitution

= {x1I—>u1,...,m—>um} solves I‘.

5.3 .2 A Unification Algorithm for Free Terms
If we speak of free terms, we mean that no equational theories are known for the function

symbols. An overview for unification with non-free terms can be found in [Siekmann 89].
The input of the algorithm rs a unification problem I‘, which IS changed by the following six
rules until rt is solved or the problem'rs found to be unsolvable:

(1) (x=x&l") -> (T)
(2) (f(t1,...,t„)= f(s1,...,s,,)&I‘) » (t1=s1&...&tn=s„&1")
(3) (x=t&l‘) —> (x=t&{x1—>t}I‘) if x is a variable, t a non-variable term and xEV(t),

e(l")
(4) (t=x&I') —> (x=t&I') if x is a variable and t a non-variable term
(5) (f(-t1-,-.-..,-tfi)=» g(sl-—,...,sn—)&I’) -+ STORFAIL if f¢g *
(6) (x=t&I‘) —> STOP.FA]L if xe V(t)

If I" = {t1=sl&...&tn=sn] is a unification problem, then the unification algorithm always
terminates on 1". If the algorithm stops with failure, then there is no substitution 0 solving
I‘. If the algorithm stops without failure, then I‘ is solved and the corresponding substitution
0' is an mgu of the pairs (t1,sl),...,(tn,sn).

' 5.3.3 Remark: Properties of Unificrs
Note that every substitution 0 corresponding to a unification problem 1" solved by our

unification algorithm is idempotent and introduces no new variables. So from now on we
always assume that unifiers are idempotent substitutions in the variables of the unified
terms.

5 .3 .4  Lemma

Let L1,..., Ll1 be some atoms, 0' a ground substitution with 0'(L1) =...= 0'(L„) and Ä. an
mgu of the Li. Then 0'}. = 6.

mm:; _
As Ä. is an mgu, we know the existence of a ground substitution 1: with 1:}. = 0’. Now we
have 67L = full. = 19L = 0', where the second equation holds because I. is idempotent.-

5.4 General Resolution

The idea of the general resolution rule is to simulate every ground resolution step on the
general level using unification. Thus the general resolution rule is similar to the ground rule,
except that the syntactically equality of literals is not a priori given, but has to be produced
by unification. Another problem is that applying a ground substitution to a clause may cause
some mergings of literals, e.  g. applying the ground substitution 0' = [s—ra,x11->a} to the
clause [xse T,x1-e T)  results in the ground clause [ae  T,ae S} ,  where the literals
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1:59! T,x1-e T and the instantiation literal ae T have merged. This merging has also to be
simulated on the general level and is called factorization.

5.4.1  Definition: Factor

If C = {L1,...,Ln} i s  a clause and o is a possibly well sorted substitution with
0(Li1) =...= 0(Lik) (1 S ik S n), then F(C) :=  (NC is called a factor of C.

5 .4 .2  Lemma: Factorization is Sound

C = [L1,...,Ln} is a clause, F(C) a factor of C, then for every interpretation S with
3 != V(C),  3 |= V(F(C)) holds.

mm;
Follows from Lemma 5 .1 .2 . -

5.4.3 Lemma: Factor Lifting
C = [L1,...,Ln} is gemüse,“ Gapwsground substitution with o(L,,) =...= c(L,,)

(1 S ij S n) , then there exists a factor F(C) with (LLC = oiF(C).

Prggf;

Choose the mgu 2. of the Li„..., Lik as a factor substitution and apply Lemma 5.1.3 and
Lemma 5.3.4. Note that 2. is pws, because O is pws.-

5.4. 4 Definition: General ReSolution Rule

Let C1 and C2 be two clauses with no variables m common,F(C1) and F(Cz) two factors
of. C1 and C2, respectively, and L1€F(C1),L26F(C2). If there exists a pws mgu O of L1
and Lg such that O'(L1) and 0(L2) are two complementary literals, then R(C1,C2,L1,L2): =
(aiF(C1)-{G(L1)}) U (olF(C2)- {6(L2n)'13 a regolvgn; of C1 and C2.

Our resolution rule can be viewed as a special instantiation of Stickel’s theory resolution
[Stickel 85].

5 .4 .5  Lemma: Resolution is Sound

Let C1 = [L1,...,Ln} and C2 = {K1,...,Km} be two clauses with no variables in
common, HQ) and F(Cz) the corresponding factors and LeF(C1), KeF(C2). If resolution
using the literals L and K is possible, then for every interpretation 8 with S 1: C1 and
S != C2, S l= R(C1,C2,L,K) holds.

hoof;
Let 0' be the pws mgu, such that 6(L) and 0(K) are complementary. Clearly for every
interpretation 3 ,  5 l= 6(L) and 3 I: 000 do not hold both. Thus together with
Lemma 5.4.2 and Lemma 5.1.2 now yield the desired result.-

5 .4.  6 Lemma: Distributivity of Conditioned Instantiation

Let C1 = [L1,... ,Ln] and C2 = [K1,...,Km] be two clauses with no variables in
common, let 0' be a ground substitution such that for two literals Li and K3, o(L,-) and 0(Kj)
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are complementary and let 8 be the mgu of Li and Kj. If for every Le c1, 6(L) = o(Li)
implies L = Li and the corresponding condition for C2 holds (we call this the “distinct literal
condition”), then
oi((5iCi-[8(Lr)}) u (SiCz-{ö(K‚-)})) = (oi(5iC1)—{08(Ls)}) u (ol(8iC2)-{68(Kj)})
mm
Let cm := ol((ölC1-[8(Li)}) u (mcz-{ömjnn and Rt, :=(O'l(8lC1)-[68(Li)}) u
(6i(öiCz)-loö(K‚-)}).
"(;" Let Le GLR. We have to distinguish two cases: "
i) L = (te S) is stemming from a binding [xs l—> t} ; o. This implies that xseDOM(ö) and '
therefore xse  V(8lC1) or xseV(ö.L C2) and its is not eliminated by computing the set
difference of (8¢C1-{5(Li)]) and (8iC2-[5(Kj)}). Together with the “distinct literal
condition” follows LeRw .
ii) L = 65(L') and wlog. L'e C1. For the reason that Le  olR, LaeLi, the “distinct literal
condition” again leads to Le(oi (& C1")a"{ 68(L;)'}')"and therefore Let.

":2" Let LeRw and wlog. Le(0'l (& C1)-[05(Li)}). Now we have to distinguish three
cases: " _
i) L=  (te S) is stemming from a binding [ml—n}; 0'. This case is analogous to the first
case above. '

“ ii) L—- 6(tiE S ) ’18 stemming from a binding [xslet}g:8. Then clearly Le GlR.
iii) L=. 65(L') and L'e C1 Then LatLi and the “distinct literal condition” leads to LeclRJ

5 .  4 .  7 Lemma: Resolvent Lifting

If C1=  [L1‚...  ,Ln} and C2 = {K1,...,Km} are two clauses with no variables in
common, 0' is a pws- ground substitution such that for two literals Li and Kj‚ 6(Li) and
Ö'(Kj) are complementary, then there exists a resolvent R(C1,C2,Li,KJ-) such that
Rg(OlC1,OlC2,O'(Li),O(Kj))=—O’lR(C1,C2,Li,Kj).

mm;
Let {L41,...,Lik];C1be a set of literals with Li stemming from Lil, 6(Li,) =...= 0(Lik) and
{Kj1,...,t]the corresponding set for C2. Let 2.1 be the mgu of [Lip-«Luk 2,2 the mgu
of the {Kj1,...,t] and 1. = 2.1 L) 1.2, KG) = MCI,  F(C2) = 75.n and 8 the mgu of MLi)
and ).(Kj). The unifiers M, 12, 8 are possibly well sorted because 0' is possibly well sorted.

G~LR(C1,C2,Li,Kj)

= 6l( (5 iF(C1)-{5(Li)})  U (3lF(C2)-{5(Kj)}))
= Gl((5 i (MC1)-[57L(Ln)})  U (5i(MC2)-{31(Kjl)}))
= (ol(6i(MC1))-[0(Li)]) U (oi(öi(MC2))-{0'(Kj)}) by Lemma 5.4.6
—_- (((aö)i(MC1))-{6(Li)}) U (((cö).L(MC2))-[G(Kj)}) by Lemma 5.1.3
= ((6i(MC1))-{6(Li)}) U «c C2))'{5(Kj)}) by Lemma 5-3-4

= (O'iC1-[O'(Li)]) u (alCz-[GOCJ—H) by Lemma 5.4.3
= Rg(olC1,olC2,o(Li),o(KJ-))I
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The statement of Lemma 5.4.7 is not strong enough to lift every ground resolution proof
to a non— ground resolution proof, because one of the premises of the lemma, that both
literals stem from a non-ground clause is not satisfied in general. The following example
demonstrates this fact. Let

CS = [[aeS}. {P(xs)}. {-IP(a)]}
be an unsatisfiable clause set and let

CS; = {late 8) .  [P(a).ae S} .  {4(a)}.  {ae 52} }
be the corresponding unsatisfiable, Q-closed set of ground clauses. On ground level, we
can generate a resolvent using the clauses [ae  S}  and {P(a),ae S } ,  but there is no
corresponding resolution step using two clauses in CS. If we resolve first between {P(xs)]
and {-1P(a)} we get the missing literal [ae S} .  Thus the conclusion is that lifting works, but
that the ordering of the resolution steps is not arbitrary. Therefore not all, but only special
ordered ground refstations Gabe. lifted»
5.4.8 Lemma: Rearrangement of Ground Derivations

Let C be a clause derived from the ground clauses C1,...,Cn using ground resolution. If
we mark some of the literals in the clauses C1,...,Cn we can always rearrange the derivation
of C to a derivation of a clause C’, such that the resolution steps using a marked literal all
come after the steps eliminating unmarked literals and C’ CC.

Email
For the proof we use a special representation of derivations. Every ground derivation using
resolution can be represented as a binary tree, where the vertices are labelled with the used
clauses and the edges denote the resolution steps. The root of the tree is labelled with the
derived clause. In terms of the derivation tree, the Lemma states that all resolution steps
using marked literals are nearer to the root than steps using unmarked literals. We prove the
Lemma by induction on the number n of vertices in the tree.

n=1 If there is only one vertex, then no resolution step is done and the Lemma
trivially holds.

n=3 Then we have the following situation,

QRl  aQRZ

[R1112]

where Q is a literal R1, R2 are sets of literals and Q R1 is an abbreviation for the disjoint
union ({Q} U R1). The two clauses ({Q} U R1) and ([-.Q} U R2), where Q and —1Q
denote complementary literals, are used to build the resolvent C = R1 U R2. For this
situation the lemma also holds, because there is only one resolution step.
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n>3 Then the root of the derivation looks as follows,
o o
0 o
O o

PQRl —-.QR2
o
o

7 o
|PR1R2.1]

R1 R2.l R3

where the three circles at top of a clause stand for the subtree deriving-the clause. Clause
parts with additional numbers, e.g. R2.l, indicate that these parts may have changed
because a literal may have been merged after the resolution step with one of the separately
mentioned literals. But we will return to this problem later. If P or _IP is marked or the
derivation of (P R1 R2.1). and (—-‚P R3) doesnotcontainmarked literals, we have finished
the proof by induction hypothesis. Thus P and -.P are‘both nor marked and wlog. Q is
marked. Now the idea is to rearrange the tree, such that the resolution step using Q is the
closest step to the root. Assume that there was no merging between a separately mentioned
literal and a clause rest during the last two resolution steps. Then we can alter the tree as
follows

°
O
O

|R1R2R3.1|

with R3 = R3.1, R2 = R2.1 and we have finished the proof by induction hypothesis. So let
us have a closer look at the two critical mergings. First, if QER3 then Qe (R1 R2.1 R3)
but Qe (R1 R2 R3. l ) .  Then the lemma holds because (R1 R2 R3.1);(R1 R2 . l  R3).
Second, if PeR2 then PE (R1 R2.l R3) but PE  (R1 R2 R3.1). In this case we have to
add one more resolution step which is shown by the following diagram
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° .
o0

Q

|R1 R2.1 R3.1

and the proof is again completed by induction hypothesis.-

5.4.9 Theorem: completeness Of the Remlution Rule

Let CS be an unsatisfiable set of clauses. Then there exists a derivation of the empty clause
using resolution.

that
If CS is unsatisfiable, Theorem 5.1.10 guarantees the existence of a finite and unsatisfiable
se'f-‘CSH of ground clauses. With Lemma 5.2.5 we know that it is possible to derive the
empty clause from €83 using ground resolution. We can transform this proof in a tree
representation of Lemma 5.4.8 marking all literals of the form (te S), which are used in the
ground derivation, introduced by instantiation and have never merged with a literal not
introduced by instantiation. Now we show by Noetherian induction that the ground proof
can be lifted to a proof using resolution as defined in 5.4.4. As a measure we use pairs p of
the form (n‚m) with a lexicographical ordering, where n is the number of marked literals and
m the number of vertices in the derivation tree.

p=(0,0)  Then the empty clause is still in CS.

p=(n,m) We know that there is at least one step at the leaves of the derivation tree,
such that the two ground literals used for resolution are direct instances of literals of
clauses in CS. This step can be lifted using Lemma 5.4.7. Now we have to distinguish
two cases. First, if this step doesn’t affect the number of literals stemming only from
instantiation, the derivation tree is still sorted after the resolution step, the new measure is
(n,m—1) with (n,m)>1ex(n,m-1) and the statement is proved by the induction hypothesis.
Second, if the step decreases the number of literals stemming only from instantiation, we
obtain the measure (n-k,m-1) with k>0. Hence we can rearrange the tree according to
Lemma 5.4.8 obtaining a tree of size (n-k,m’) with m’<2m-1, because the rearrangement
does not affect the number of the special literals, but the number of vertices in the
refutation tree may grow exponentially. Nevertheless we have (n,m)>lex(n-k,m’) and we
can again finish the proof by applying the induction hypothesis.-
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5 . 4 .  10  Definition: e -Resolution

Let R = R(C‚D‚L‚K) be a resolvent using the clauses C, D and the literals. LEF(C) and
Ke F(D). Then R is a resolvent generated by QM if L does not contain e as
predicate symbol, or all literals in C, D have the e symbol as predicate symbol.

5.4.11 Theorem: & —Resolution is Sound and Complete
Let CS be an unsatisfiable set of clauses. Then there exists a correct derivation of the

empty clause using e —resolution.

hoof:
Follows from the fact that resolution is correct and the proof of Theorem 5.4.9.-

5.5 Examples

As we have not yet implemented the DSPF-calculus, all proofs are made by han_d,_b1_1t
discussed in a way which takes the be1iaviour of a pure resolution theorem prover into
consideration.

5 .5 .1  Schubert’s Steamroller

Here is a proof of the theorem using the DSPF-calculus. We can omit the clauses
stemming from the Q—closing of the clause set, because they play no role in the proof. The
sets of pws ground terms and the clauses are given as follows:

Tsr.A = [lupo, foxy, tweety, swallowtail. slimey}
Tgr.B = {tweety}

Tsr.C = {swallowtail}
Tgr‚F = {foxy}

Tanw = [MPC]
Tgr.S = {SH-may}

Tag = {muesli}
TSI-,p = {muesli, fdswallowtail), fs(slimey)}

1) {lupoeW} 2) [foxyeF]
3) {tweetyeB} 4) [swallowtaile C}
5) {slimeyeS} 6) {mueslieG}
7)  [wAl  8)  {XFEA}
9)  {xueA} 10)  [KceA}

11) [XsEA} 12) {xGePl
13)  [E(XA,XP) s_‘M(YAax-A) rfiE (YA’YP)9E (XA:YA.) }
14) {M(XC.XB)} 15)  {M(XS.XB)}

16)  {M(XB.XF)} 17)  {M(XF.xw)}
13)  {fiE(Xw‚xF)} 19)  {"‘E(XW»XG)}
20) {E(xB‚xC)} 21)  [-1E(XB.xS)}
22) [E(xC‚fc(xC))} 23) {fc(yC)EP}
24) {E(Xs.fs(xs))}  25) {fs(Ys)€P}
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26) {—:E(xA,yA),—:E(yA,xG)} Theorem version 1

For the clauses we use the above numbering and we prove the first version of the
theorem. Here is an example for the notation used to describe the derivation:

13,4&18,1 R [xAw,yAl—>xlz}
27:  {E(XW.XP).-IM(XF.xw)flE(XF.YP).xwé A‚X1=e A}

The notation l3,4&18,1 R means that the fourth literal of clause 13 and the first literal of
clause 18  are used to generate a resolvent with pws mgu {xAmyAI-mp]. If we have
generated a factor before resolution, we write R&F instead of R. The new resolvent
E(xw,x1:) v —.M(x1:,xw) v fiE(XF,YP) v xwe A v xpe A gets the number 27.

13,4&18,1 R {xAw,yAl->XF} '
27: {E(xW9xP)‚HM(XF9XW)9_1E(XF!yP)!xWe A’xFe A}

27,4&7,l R [ywwl
28: [EÖ‘WJ‘P)‚“MÜEXWLHEÜFJPLXW‘! wixFé A)  -

where we have renamed clause 7 with {wyw}

28,4&1,1 R [wlupo]
29: {Baum.XP).-:M(X1=.IUP0).-1E(xi=.YP).x::e A l

Note that we have required two steps to eliminate the literal xwe A. To shorten the proof,
3 ‘ for reasons of readability and because these steps are unique, we shall omit them from now
' on, but we shall mention the used clauses.

29,4&8,1&2,1 R {xFHfoxy}
30: [E(lupo‚xP),—.M(foxy,lupo),—.E(foxy,yp)}

30,2&17,1&l,1&2,1 R [xp—»foxy‚xw!—>lupo}
31: {E(lupo,Xp),-1E(foxy,yp)] .

31,1&19,1&1,1&12,1&6,1 R {xp->muesli,xwl—»lupo,xal->muesli}
32: [-1E(foxy,yp)]

32,1&13,1&8,1&2,1 R [xPIeyp,xAHfoxy]
33: I-'M(YA:f0xY):‘iE(YA,YP)9E(f°xY:YA)aYP£ P}

33,1&16,l&2,1&9,l&3,1 R {xBI—>tweety,x1:I—>foxy,yAI—9tweety}
34: {-1E(tweety,yp)‚E(foxy,twcety)‚ype P]

13‚4&21‚1&9,1&3,1&11,1&5,1 R {sslimey,xBHtweety,yAl—>slimey,xAHtweety]
35: iE(tweety,xP),-.M(slimey,tweety),—|E(slimey,yp)}

35,3&24,1&5,1&25,l R {sslimey,ypI-9fs(slimey)}
36: [E(tweety‚xp),—uM(slimcy‚twcety)}

36,2&15,1&5,1&3,1 R [s->slimey,xBI—>tweety]
37: {E(tweety,xP)}

34,2&26,1&8,1&2,1&9,1&3,1 R [xAHfoxy,yAl->tweety}
38: {“WE(tWCCIYJVp)‚_!EÜWCCWJCGLYPE P}
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38,1&37,1&12,1&6,1R&F [xp—>muesli,yy—>muesli,xd—>muesli}
39: [} —

For this example we can draw two conclusions. First, the derivation process is restricted
as in Walther’s logic, e. g._there are 12 possible initial resolution steps in both logics. This is
the fact because every literal of the form te S occurs in a unit clause. Therefore the set of
possible well sorted ground terms is exactly the set of well sorted ground terms, i.e. for
every interpretation 3 satisfying the clause set, if te Tgr‚S then 8(t)eS‚q. Thus there is no
difference in the restriction imposed on the resolution steps between our and Walther’s
formalization. So we have nothing lost in deduction power by putting the term and sort
declarations in the formulae itself. Second, the proof becomes much longer because the
additional literals stemming from instantiation have to be eliminated too. But the increased
proof length has no effect on the search space, because the additional elimination steps are
unique.

5.5.2 _ The Lion and the Unicorn " '
The clause set of the problem, the sets of pws ground terms and a refutation looks as

follows: '
1) [mondaye MO} 2) {tuesdaye TU} 3) [wednesdaye WE}
4) [thursdaye TH] __ ___H __ _ 5) {fridaye FR} 6) [saturdaye SA]
7) [sundaye SU} ' 8) [xMoe LL} 9) {xTueLL}

10) {XWEE LL} 11) {KTI-IG LL} 12) [xFRe LL}
l 3 )  {XSAE LL} ' 14) {XSUeLL} 15)  {rt-me UL}
16) {XFRE UL} 17) [XSAE UL} 18) {Xsue UL}
19) {Xmoé UL} 20) [xme UL} 21) {XWEE UL}
22) [XMQE D}  23) [xme D}  24) [XWEE D}
25) [Kn-[E D}  26) {pe  D}  27) {XSAE D}
28) { xsue D} 29) {XLLE D} 30) {ml}; D}
31) {lione C} 32) [unicome C}
33) {yesterday(monday)e SU}  34) { yesterday (ruesday)e MO}
35) {yesrerday(wednesday)e TU} 36) { yesterday(thursday)€-: WE}
37) [yesterday(fi'iday)e TH} 38) [yesterday(saturday)e FR}
39) {yesterday(sunday)e SA}  40) [me LL,—.LA(lion,xD,yD),yDe LL}
41) {xDe LL,LA(1ion,xD,yD),yDe LL}
42) {xDe LL,—.LA(lion,xD,yD),yDe LL}
43) [xDe LL‚LA(1ion‚xD,yD),yDe LL]
44) {xDe UL,—:LA(unicorn,xD,yD),yDe UL}
45) {xDe UL,LA(unicom,xD,yD),yDe UL}
46) [x96 UL,—.LA(unicorn,xD,yD),yDE UL} .
47) [xDe UL,LA(unicom‚xD,yD),yDe UL}
48) [—‘LA(1ion,xD,yesterday(KB)),fiLA(unicom,xD,yesterday(xD)) } Theorem

Tn0 = {monday‚ yesterday(tuesday)}
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Tgr‚'rU = {tuesday, yesterday(wednesday)}
Tar.“ = [wednesday, yesterday(thursday)}

{thursday, yesterday(fiiday)}
— {friday, yesterday(saturday)}

Tgr.SA = [saturday, yesterday(sunday)}

“ i
i -

l
??

?ä
ä

Ill

T3,,su = {sunday, yesterday(monday)}
Typ = {monday, yesterday(tuesday), tuesday, yesterday(wcdnesday),

wednesday, yesterday(thursday), ..., sunday, yesterday(monday)}
Tgr,l..L = Tgr‚UL = T8121) *
Tgr,C = [lion, unicorn}

The sets of pws ground terms Tgr.LL and Tgrm, include all days of the week because of
the positive literals yDe LL and yDe UL in the clauses 40) to 47). Comparing the number of
initial resolution possibilities, in our formulation there are 12, in the sorted formulation of
[Ohlbach&Schmidt—SchauB 85] using 127 function declarations there are more than 40 and
using the unsorted formulation _ there are more than 200 possible steps. The refutation is as
follows:

48,1&41,2 R [zu—‚>xD,yu-+yestcrday(xD)}
49: [-wLA(unicorn,xD,yesterday(xD)), xDe LL, yesterday(xp)e LL, KDE D,

‘ yesterdaflxme D}

where 48 has been renamed with [xv—>213}

49,1&47,2 R [zu—>xp,yD|->yesterday(xD)]
_ 50: [xDe LL, yesterday(xn)£ LL, x1345 UL, yesterday(xn)e UL, me D,

yesterday(xD)a5 D]
where 49 has been renamed with {xy—>29]

At this point, the clause 50 denotes the day thursday. For example the first literal xDe LL
can only be resolved against the clauses 11) to 14), because the resolution steps using one
of the clauses 49) to 47) are forbidden by e -resolution. Every resolution step using one of
the clauses 12) to 14) leads to a resolvent with pure literals and thus the following step is
unique.

50,1&11,1 R {Kai—mm}
51: [yesterday(xm)e LL, x-me UL, yesterday(x-m)e UL, xme D, yesterday(xm)e D,

lime D}

\ From now all steps are deterministic because there is always only one possible resolution
step for every literal. For example the first literal can only be resolved against clause 10)

' because the unifiers which are needed to generate a resolvent with one of the clauses 8) or 9)
are not possibly well sorted. '

51,1&10,1&4,1&25,1&36,1&24,1 R {xwwyesterdayahursdayxxmhthursday}
52: [thursdaye UL, yesterday(thursday)e UL}

52,l&15,1&4,1 R {xTHcursdayl
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53: [yesterday(thursday)e UL}

53,1&21,1&36,1 R {xwg—‚yesterdaycthursdayn'
54: {}

To sum up the behaviour of our calculus for this example, the derivation process is more '
restrictive than in the order sorted logics of [Walther 87, Schmidt-SchauB 89], because we
can express more information in terms of sorts. The proof becomes much longer, because
the additional literals introduced by instantiation have to be eliminated too. Since the
additional elimination steps are unique, the increased proof length has no effect—pn the
search space. '
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6 Conclusions and Future Work

We have presented a sound and complete resolution calculus for the DSPF-logic, a very
expressive sorted logic which supports empty sorts, partial functions and arbitrary sort and
term declarations. By putting all information about sorts into the formulae, we have gained a
high degree of fi'eedom for handling sort information. The restrictiveness of the calculus is
not fully investigated so far, but if we transform the sort declarations of
[Walther 87, Schmidt-SchauB 89] in our special relations, we obtain a formalization where
the possibly well sorted ground terms of the DSPF-calculus correspond exactly to the well

' sorted ground terms in their logics. Therefore the question whether a substitution is possibly
well sorted corresponds to the unification problem under sort declarations in their calculi and
hence the DSPF-calculus is as restrictive as these calculi. Nevertheless the DSPF-calculus
presented in this paper should be viewed as a theoretical basis for more hybrid and dynamic
order sorted calculi.

Extensions för the DS'ISF-calculus are posSible along two different lines. One possibility
is to extend the expressiveness by allowing functions on sorts, special relations which are
not handled as predicates (see the Lion and the Unicorn example), equality on sorts and
terms, term rewriting or special declarations for finite sets. The other way is to improve the
calculus in it’s actual form by incorporating a dynamic translation of 6 unit clauses into
special declarations which can be used directly byflsorted unification algorithms.

AcknoWledgments: I would like to thank Hans Jürgen Ohlbach for his intensive support
in preparing this paper. Christoph Lingenfelder, Axel Priicklein and Rosa Ruggeri
. contributed a lot of good ideas and suggestions concerning the approach.



42

7 References

Anderson&Bledsoe 70

Chang&I.ce 73

Cohn 87

Gallier 86

Herbrand 30

' Herold 83M" '

Loveland 78  .

MartelfiäcMontanari 79

Martelli&Montanari 82

Oberschelp 62

Ohlbach&
Schmidt-Schauß 85

Paterson&Wegman 78

Robinson 65

A Resolution Calculus with dynamic Sort Structures and Partial Functions

Anderson, R., Bledsoe, W.W., A linear format for resolution
with merging and a new technique for establishing completeness.
Journal of the ACM, vol. 17, July 1970, PP. 525-534
Chang, C.-L., Lee, R.C.-T.,
Symbolic Logic and Mechanical Theorem Proving.
Computer Science and Applied Mathematics Series (Editor
Werner Rheinboldt), Academic Press, New York, 1973.
Cohn, A., A More Expressive Formulation of Many Sorted
Logic.
Journal of Automated Reasoning, vol. 3, No. '2, pp. 113-200,
1987.
Gallier, J.H., Logic for Computer Science,
Harper & Row, Publishers, New York, 1986.

Herbrand. J» Recherche: SW14 IhQQTTiQQQ la demonstration
Travaux de la Societe des Sciences et des lettres dc Varsovie,
Classe III . -
Science mathematiquc et physique, No 33, 1930.
Also in "Logical Writings" (W.D. Goldfarb ed.), D. Reidel
Publishing Company, 1971.
Herold, A., Some Basic Notions of F irst-Order Unification
Theory.
Interner Bericht 15/83, Inst. fiir Informatik I, Universität
Kaiserslautern, 1983.
Loveland, D., Automated Theorem Proving: A Logical Basis.
Fundamental Studies in Computer Science, Vol. 6, North-
Holland, New York, 1978.
Martelli, A., Montanari, U., An Eflicient Unification Algorithm.
Univ. of Pisa, Techn. report, 1979.
Martelli, A., Montanari, U., An Efiicient Unification Algorithm.
ACM Trans. Programming Languages and Systems 4, 2, pp.
258-282, 1982.
Oberschelp, A., Untersuchungen zur mehrsortigen
Quantorenlogik.
Mathematische Annalen 145, 1962.

Ohlbach, H.J., Schmidt-SchauB, M., The Lion and the Unicorn.
Journal of Automated Reasoning, Vol. 1, No. 3, pp. 327-332,
1985
Paterson, M., Wegman, M., Linear Unification.
Journal of Comp. and Syst., 16, 1978.
Robinson, J .A., A Machine-Oriented Logic Based on the
Resolution Principle. LACM, Vol. 12, No. 1, pp. 23-41, 1965.



A Resolution Calculus with dynamic Sort Structures and Partial Functions 4 3

Schmidt-SchauB 89 Schmidt-SchauB, M., Computational aspects of an order sorted
logic with term declarations.
Lecture Notes in Artificial Intelligence, J. Siekmann(ed.),
Springer Verlag, 1989.

Siekmann 89 Siekmann, J., Unification Theory.
Journal of Symbolic Computation, Special Issue on Unification,
C. Kirchner(ed.), vol 7 ,  pp. 207-274, 1989.

Smullyan 78  Smullyan, R.,What is the name of this book ?.
Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

Stickel 85 Stickel, M..,E Automated Deduction by Theory Resblution,
Journal of Automated Reasoning, Vol. 1, No. 4, pp. 333-356,
1985.

Stickel 86 Stickel, M.E., Schubert’ s Steamroller Problem: Formulation and
Solutions,
Journal of Automated Reasoning, Vol. 2, No. 1, pp. 89- 101,
1986.

Walther 87 Walther, Ch., A Many-sorted Calculus based on Resolution and
Paramodtdation.
Research Notes in Artificial Intelligence, Pitman Ltd., London
1987.





REPRESENTING AND ANALYZING '

CAUSAL, TEMPORAL, AND HIERARCHICAL

RELATIONS OF DEVICES

Vom Fachbereich Informatik

der Universität Kaiserslautern

zur Verleihung desakademischen Grades

Doktor der Natumissenschaften (Dr. rer. nat.)

genehmigte Dissertation

' von

Dipl.-lnform. Hans Voss

Ber ichterstat ter :  _ Prof. Dr.  Michael M ‚  Richter
Dr. habil. Werner Dilger

Dekan: Prof. Dr. Otto Mayer

Tag der wissenschaftlichen Aussprache: 18. Dezember 1986

D 386



ABSTRACT: HIQUAL i s  a deep  mode l i ng  l anguage  f o r  t he  rep resen -
ta t i on  and  ana l ys i s  o f  t echno—phys i ca l  sys tems .  I t  p rov ides  f o r
ob jec t  o r i en ted  mode l i ngs  w i t h  h i gh l y  i ndependen t  mode l s  t o  be
cons t ruc ted  acco rd ing  t o  t he  message  pass ing  pa rad igm.  The  same
rea l  wo r l d  sys tem may be  rep resen ted  a t  d i f f e ren t  l eve l s  o f
abs t rac t i on  w i t h  exp l i c i t  spec i f i ca t i ons  o f  s t r uc tu ra l  r e l a t i ons
be tween  ne ighbo r i ng  Leve l s .  A l l  mode l s  a t  a l l  abs t rac t i on  l eve l s
can  be  ana l yzed  w i t hou t  t he  need  t o  cons ide r  t he  deepe r  l eve l s ,
t ha t  means  abs t rac t i on  h i e ra r ch ies  i n  HIQUAL a re  no t  de f i n i -
t i ona l  h i e ra r ch ies  as  usua l l y  f ound  i n  o rd i na ry  p rog ramming  l an -
guages .  “

Communica t ion  be tween  d i f fe ren t  mode l s  i s  i n t e rp re ted  as  f l ow  o f
mate r i a l ,  f o r ces ,  o r  i n f o rma t i on .  Quan t i t i es  cap tu r i ng  t hese
changes  may be  con t i nuous ,  t hus  on l y  a l l ow ing  f o r  smoo th  t r ans i—
t i ons  o f  success i ve  va lues ,  o r  t hey -may  be  d i g i t a l  w i t h  no  such
r es t r i c t i ons  o f  va lue  t r ans i t i ons .

We desc r i be  t he  seman t i cs  o f  a sys tem o f  mode l s  as  a se t  o f
t empo ra l l y  and  causa l l y  r e l a ted  t empora l  i n t e r va l s  t ha t  a re
deno ted  by  dynam ic  s ta tes  and  even ts  o f  t he  mode l s .  Us ing  t h i s
app roach  we ob ta i n  a un i f o rm  seman t i cs  f o r  s i ng le  mode l s ,  f o r  a
sys tem o f  ho r i zon ta l l y  connec ted  mode l s  a t  t he  same l eve l  o f
abs t rac t i on ,  and  f o r  a sys tem o f  ve r t i ca l l y  connec ted  mode l s  o f
d i f f e ren t  l eve l s .  We demons t ra te  t ha t  ou r  t empora l  app roach  i s
supe r i o r  t o  o the r  t echn iques  i nvo l v i ng  g l oba l  s t a te  seman t i cs ,
because  pa ra l l e l i sm  and  o the r  t empora l  aspec t s  i nc l ud ing
t empo ra l  unce r ta i n t y  a re  more  na tu ra l l y  r ep resen ted .

S ince  deep  mode l i ng  as  a sub f i e l d  o f  A r t i f i c i a l  I n t e l l i gence  i s
qu i t e  new ,  t he  t hes i s  p resen ts  a r a the r  ex tended  su rvey  o f  t he
who le  f i e l d .




