The Markgraf Karl
Refutation Procedure

H.]. Ohlbach & J. Siekmann
SEKI Report SR-89-19

The Markgraf Karl
Refutation Procedure

H.J. Ohlbach &]. Siekmann
Fachbereich Informatik, Universitit Kaiserslautern
Postfach 3049, D-6750 Kaiserslautern, W.-Germany

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314.

THE MARKGRAF KARL REFUTATION PROCEDURE

Hans Jiirgen Ohlbach, Jorg H. Siekmann
FB Informatik, University of Kaiserslautern
Postf. 3049
D-6750 Kaiserslautern
West Germany
net: ohlbach(sieckmann)@uklirb.informatik.uni-kl.de

Abstract The goal of the MKRP project is the development of a theorem prover
which can be used as an inference engine in various applications, in particular it
should be capable of proving significant mathematical theorems. Our first
implementation, the Markgraf Karl Refutation Procedure! (MKRP) realizes some
of the ideas we have developed to this end. It is a general purpose resolution
based deduction system that exploits the representation of formulae as a graph
(clause graph). The main features are its well tailored selection components,
heuristics and control mechanisms for guiding the search for a proof.

This paper gives an overview of the system. It summarizes and evaluates our
experience with the system in particular, and the logics we use as well as the
clause graph approach: as 1990 marks the fifteenth birthday of the system, the
time may have come to ask: “Was it worth the effort?”

Key words: automated deduction, resolution, clause graphs, sorted logics.

The project was supported by the German Science Foundation (DFG), in particular by the
Sonderforschungsbereich 314, and by the German Ministry of Research and Technology (BMFT). The
paper was written, while the second author was a visiting professor at Carnegie Mellon University. We
gratefully acknowledge the support of CMU and VW-Stiftung, who made the visit possible.

IMarkgraf Karl was the founder of Karlsruhe where the project started.

1. INTRODUCTION......cccvttierrieeeeeereesrerrssssssseessesssssssssssesssssssssnsssssnessessssasessssssssssessssssasesssssssssnss 4
2. FOUNDATIONS......cctiteeeceereirrettetteeesiessseseeessssaesesssessessssssessessssssssssasesssssssasssssssesssssasassssnnes 6
2.1 Basic Netons and IO ATION s mssiscnveniis sssniom i esmsmsas s meisssss s srsasmes 6
2.2 Theory ReSOIUtION.....ciiiiiiiiiiiiiiiictecteittenete st srae e st s s st et s e st s aeenne 7
2.3 Theory UnifiCation.......cciviiiiicieienieennieiieeesreeeeesesessesssseessssuessssssssssnssssassssssas 11
2% Mang Sortell LBICS cummsssossummmimsossmsmmsanssesen s uomssss cosws s 13
3 CLAUSE GRAPHS......cccctietrnettenteteessesssesssessssseestesesassseessasssssesssasssasssssssassesssessessasssasss 15
3.1 Kowalski’s Connection Graph Procedure...........cccoveeeiiueinnienrenineenieenieenveensennns 15
3.2 General Clause Graphs as a Datastructure and Indexing Mechanism.............. 16
3i3 TFHIKS couonasansosmsns omes.omin iiess o ss 6 050sst Soatonsavenssinnsnsassasss sorts sesasssstssssestssssssnsanssasnas 17
3.3.1 R-Links and T-LiNKS......cccccevreenieneenerniuenreenersenreesesseesesassasssens 18

3312 F-LINKS.coiiiiiniieenieneeerenieeseenaeseeeeseeestes st essesseessassessassessassessessassasean 18

e e T S I 1< S O ——— 18

3:34 Ltk BUliCHES, ccovummms.sosus sossmmvanss e s oo 605 5555550 4605300 65050054 saisi 19

3.3.5 Link Substitutions and Clause Substitutions............ceceeverrurseenrennenee 19

3.4 Clause Graph Inference RUIES........cccceevueriirniicieiincceniecestre e ceeceseessressessseenns 20
3.4.1 BasiC OPETatiONScccccuerreerruerrerrnrerrreeecneeeseeeessessssesssasssessssassasssaanes 20

3.4.1.1 Clause Resolution (CIeS)......cccoevvvrirrnururnerecessessnneeeessrnsanas 20

3.4.1.2 Link Resolution (Ifes).........ccccevvrmreeiiriiirneeninnnecsssneesssnene 22

3.4.1.3 Link Factoring (Ifac).......cccccceeeriiueieniiieeccnnenneccceeesnesennes 25

3.4.1.4 R-Link Resolution (IIres)........ccevvrernereeeeeininsrnnereenssnneeees 25

3.42 Advanced OpPerations.......cccccecieeeerieeeeciereeesecnesesrassessssssssasssssasssaeeses 29

3421 TheLink Cut Rule (Jout)sssssemusmamssssensmnsasmsssi 25

3.4.2.2 Link Resolution with Cut Rule (Irescut).........ccceovuvvveenn. 26

3.42.3 Subsumption Factoring (subfac)..........cceceeeverecenncreciencnennns 26

3.42.4 Subsumption Resolution.........ccceeveerienennrecrenineseenenneennn 27

3.42.5 Generalizing Subsumption Resolution..........cccccevrerrenenes 28

3.5 Clause Graph Reduction RuULEs........cccceveeeeiintiiineenrinieiiieceeseeiaessesaeseesaeessennens 28
3.5.1 Clause Deletion RUIEs.......cccocurereerininnienieeneninnnsenensessessessesssessenns 29

3.5.1.1 Clause Purity (CPUI).....ccceceierericreensrneessanssseesassseessaesseesaes 29

3.5.1.2 Clause Tautology (Ctal)......cccccvueerueeireeceereesreeieessessesessnens 29

3.5.1.3 Clause Subsumption (CSUD)........cccevrveereereereereerieneenenens 30

3.5.2 Link Deletion Rules........ccccevviienininieenreciecieeeeceereneesessesessessesnens 32

3.5.2.1 Link Incompatibility (linC).....c.ccccerrueerrenrrenienruenencenaennnns 32

3.5.2.2 Parallel Link - Link - Subsumption (plsub).........ccc....... 32

3.5.2.3 Link Tautology (Itau).......ccccecevueereeereecreecieerieneesresressaeseens 33

3524 Clause-Link Subsumption (CIsub)........cccceeevenienrenreennnnns 34

3.6 Properties of Clause Graph Resolution.........cccccceeecerernenennenerinneneecresesseveene 34
3.6.1 Logical State Transition SYStEIMS......cccecuerueereerrerrenserrensesressessesseseanes 34

3.6.2 Properties Relevant to the Inference System........ccceveeeenenienirennennens 35

3.6.3 Results for the Inference System.........ccecvieveciieneiineiieneeineienrecieens 36

4 EQUATIONAL REASONING.......cccotteerereerraeeesssreasaesessesssseesssassssssssssssssesssssssssssessssssssesssssnns 37
4.1 Dilference Reduction Methots..cssmmmmmmosmssmsms s sassvcomsssesssase 38

4.2 Paramodulated Clause GIraphsc.ccccoeerieniininieiieinieennienseenseessesesseessessessessas 39

3

4.2.1 Constraints in Paramodulated Clause Graphs.......c.ccccceverrienirernenns 40

4.3 Buality CIrAPIIS, s svessesss s soses o s 5 56 6 505 55k isasni e 41

4.4 Experiments and ReESUILS.....ccccciiiiiiiiiiiiiiienieenieeeenteeereeecesrneseesseessesssssssessssases 43

5 THE MARKGRAF KARL REFUTATION PROCEDURE........ccccettinimertrieeeseesessseerorsssessessesses 44
5.1 The Architecture of the Logic Machine.................... S 55 8 SR A s et 45

5.1.1 The Control MOdUIE.........ccecvrerireeieniieereerieeeerresaeessseessseesseesssesanns 46

5.1.2 The TWo Module.........ccoviiniiiniinrienneniresiaeesieeesseessessssssssessssessasnns 47

5.1.3 The Reduction Module. s ssssmsnssmirssmmssmnsssasmsasns 48

5.1.4 The Terminator MoQUIE..........ccveiirieiueereeieiiierenaeeneeesseeseeesesssaens 50

5.1.5 The Selection MoAUIE.......cccciiiiiiiieenreciecirectie e seee e eseeaesseens 52

6 EXPERIMENTS AND: RESTULTS is.co.ommmsmmmimm oo s s oas s s S it isoi Sobsessiibies 55
6.1 Assessment of Predicate Logic for Representing Mathematical Knowledge...55

6.2 Assessment of the Resolution Calculus as an Inference Mechanism............... 56

6.3 Assessment of the Clause Graph AppraocCh........cccoceieeiueneeneeneeneeneeeseecseens 57

6.4 Assessment of our Way to Manipulate Clause Graphs.........ccccceeeeevverenrenreenen. 57

ACKNOWLEDGEMENTS.....cccciitettetecreeerenessiesesssessesssasssessessassssessassassasssssassasssessassssssessessessens 59

1. INTRODUCTION

The working hypothesis of the MKRP project, first formulated in an early proposal in 1975, reflects the
then dominating themes of artificial intelligence research, namely that deduction systems attained a
certain level of performance, which will not be significantly improved by:

* developing more and more intricate refinements (like set of support, unit preference, linear
resolution, ...), whose purpose is to syntactically filter the search space, nor by

. using different calculi (like natural deduction, sequence calculi, matrix methods etc.),

although this was the main focus in automated deduction research in the past and of course it still has
its merits today. The relative weakness of current deduction systems as compared to human performance
is due to a large extent to their lack of the rich mathematical and extra mathematical knowledge that
human mathematicians have; in particular, knowledge about the subject and knowledge of how to find
proofs in that subject.

Secondly, deduction systems based on a single (or a set of) general purpose inference rule(s) perform
even the most elementary calculations, like numerical evaluation or algebraic simplification, with these
inference rules, wasting time and space on tasks, which can be done more efficiently by special purpose
algorithms. Hence a typical resolution style proof will contain a few important deduction steps, that
represent the essential idea of the proof and that a human mathematician might care to communicate to
his colleagues, and ten times as many trivial steps. Apart from this mixed and generally wrong level of
abstraction in communicating proofs, there is the more important issue, that the amount of search is the
same for “garbage and gold”, as the system has no way of distinguishing between them.

And finally, to a lesser, but still important extent, the relative weakness of deduction systems can often
be attributed to the insufficient emphasis, which in the past has been put onto the software engineering
aspects and - sometimes even minor - design issues that in their combination account more for the
strength of a system than any single refinement or “logical” improvement.

The overall goal of the MKRP project was stated in 1975 by the following three claims: it is possible
to build a deduction system and augment it by appropriate heuristics and domain-specific knowledge
such that

+ it will display an active and directed behaviour in its striving for a proof, rather than the
passive combinatorial search through very large search spaces, which was the characteristic
behaviour of the deduction systems of the past. Consequently

» it will not generate a search space of many thousands of irrelevant clauses, but will find a
proof with comparatively few redundant derivation steps.

* Such a deduction system will establish an unprecedented leap in performance over previous
systems expressed in terms of the difficulty of the theorems it can prove.

With this goal in mind we started different lines of research: the development of methods for
incorporating algorithmically tractable concepts into the deduction process, the development of a
heuristically controlled proof procedure based on Kowalski’s connection graph! procedure [Kowalski 75]
and the investigation of knowledge representation and reasoning in more complex mathematical domains.

The first line of research lead to the development of sorted logics for representing fragments of set
theory and taxonomical hierarchies [Walther 83, 87, Schmidt-Schauss 88], equality reasoning methods
[Blésius 86, Blésius & Siekmann 88, 90], unification theories and algorithms [Siekmann 89], resolution
calculi for “state transition logics” such as modal logics, temporal logics, epistemic logics etc. [Ohlbach

1 We prefer the term “clause graph”.

5

88, 89] and the automation of induction proofs [Biundo et al 86, Walther 88] in the Boyer and Moore
style [Boyer &Moore 79].

For the actual proof search we chose the clause graph approach as the basic paradigm. The advantages
of the clause graphs are the explicit representation of the potential resolution steps as links of a graph. By
selecting an appropriate link, heuristics can determine the most promising step according to many
strategic, logical and topological criteria.

Due to limited resources and other reasons we could not spend as much time as we wanted for the
investigation of global mathematical knowledge and strategies. Although a significant part of an
automata theory textbook [Deussen 71] was encoded and proved automatically and a general
representation formalism for mathematical knowledge has been developed in the meantime, we are still at
the beginning and do not expect significant results in the near future.

Our aim is to integrate all methods into a single albeit large deduction system, which is strong enough
to solve nontrivial mathematical problems. The result of this effort is the MKRP system. As it is always
the case with long lasting software developments, which are continuously modified, earlier design
decisions turn out to be wrong, new programming paradigms arise, the system grows larger and larger
and the maintenance becomes more and more problematic. Eventually is is better to freeze the state of the
system and to start a new development from scratch. This point has come for the MKRP system with the
availability of object oriented programming on the software technology side and the shift from a
“generative calculus” where resolvants are explicitly generated to a pure graph search.

In this report which was solicited to mark the 65th birthday of A. Robinson in a Festschrift, we take
the chance to summarize our experience with clause graph theorem proving in general and the MKRP
system in particular. Due to the lack of space we have to omit our work on induction theorem proving!
and theorem proving in nonclassical logics. Theory unification and many sorted logics can only briefly be
sketched.

We shall present evidence that the first two of our original claims have indeed been achieved and the
system performs (in these terms) substantially better than any other of the currently available deduction
systems. The final, albeit essential claim has not been achieved with the MKRP implementation: after a
decade of racing against the strongest systems, most notably the deduction system of Argonne National
Laboratories, where the pendulum swung sometimes to this side and then to the other side of the Atlantic,
it is presumably fair to say that these systems all perform more or less in the same bracket, irrespective of
what the latest statistics are. As heated (and important) as the discussions about the latest findings may
be, this view “through the microscope” clouds the general fact, that the field as such has advanced
enormously in the last decade - but there was no breakthrough by one single system.

In the last chapter we try to evaluate the system and to propose ways to further develop the field of
automated theorem proving. After having introduced the basic logical concepts used in the MKRP system
in chapter two, we present in chapter three an extended clause graph procedure which goes beyond
Kowalski’s original version. In chapter four some new ways to handle equality reasoning are discussed.
The architecture of the MKRP system is described in more detail in chapter five.

1 After the “emigration” of Jorg Sickmann from Karlsruhe the rest team pursued the automation of induction theorem
proving under the leadership of Peter Deussen and Christoph Walther. They developed the INKA system [Biundo et al 86]
which has as its first-order kernel a modified version of the MKRP system.

2. FOUNDATIONS

In the following we shall fix our notions and notation and summarize some basic techniques of automated
deduction. These are consistent with most standard textbooks [Smullyan 68, Chang & Lee 73, Loveland
78, Wos et al 84, Blisius & Biirckert 89], but take some more recent developments of the field into
account. In section 2.4. we shall introduce several many sorted variants of predicate logic, which we have
developed as a very first approximation to incorporate elementary set theory and taxonomical hierarchies.
They have been used as the basic object languages of the MKRP-System.

2.1 Basic Notions and Notation

The language used in this report is that of first-order predicate logic (PL1) which we assume the reader to
be familiar with. From the primitive symbols of this logic we use: u, X, y, z as individual variables; a, b,
¢, d as individual constants; P, Q, R as predicate constants; f, g, h as function symbols.

Individual constants and variables are terms as well as n-ary functions applied to n terms. As
metasymbols for terms we use 1, s and t. The arity of functions and predicates will be clear from the
context. An n-place predicate letter applied to n terms is an atom. A literal is an atom or the negation
thereof. For literals we use L, K. The absolute value ILI of a literal L is the atom K such that either L is K
or L is =K.

A clause is a finite set of literals for which the metasymbols C, D are used. A clause is interpreted as
the disjunction of its literals, universally quantified (over the entire disjunction) on its individual
variables. The empty clause is denoted as O. A ground clause, ground literal or ground term is one that
has no variables occurring in it. A clause with just one literal is called a unit clause or just a unit.

A substitution 0 is a mapping from variables to terms almost identical everywhere. Substitutions are
extended to mappings from terms to terms by the usual morphism. Substitutions are also used to map
literals (clauses) to literals (clauses) in the obvious way. A substitution is finitely representable and
denoted as a set of pairs d={(v]+ t1) ... (vnPty)} where the vj are variables and the t; are terms. The term
3(t) (the literal (L), the clause 8(C)) is called an instance of t (an instance of L, an instance of C). We use
d, 0, T for substitutions. A substitution G is called a unifier for two terms s and t iff os=ct (two atoms L
and K iff 6(L)=0(K)); o is called a most general unifier (mgu) of L and K, if for any other unifying
substitution J there exists a substitution A such that § = A o G, where o denotes functional composition of
substitutions. A matcher (or one-way unifier) for two literals L and K relative to L is a substitution ¢
such that cL=K.

A substitution p is a variable renaming iff p(x) is a variable for all x and p is injective. A weak unifier
for two terms s and t is a tupel (p,0) such that p is a variable renaming and 6ps=0ct. Example: x and f(x)
are not unifiable, but they are weakly unifiable with a weak unifier ({x » y},{y ~ f(x)}).

A Tarski interpretation of a PL1 formula consists of a universe or domain of discourse and an
assignment of functions to function symbols and relations to predicate symbols. Together with
assignments of domain elements to variable symbols an interpretation can be used to evaluate terms to
domain elements and formulae to truth values. An interpretation which satisfies a formula %, i.e. it
evaluates ¥ to the truth value TRUE is a model for . A formula G is a (semantical) consequence or a
theorem of a formula ¥, written & G, iff G holds in all models of #. This is equivalent to the condition
that the negated theorem together with the axioms are unsatisfiable, i.e. have no model.

In PL1, a satisfiable set 4 of formulas can be uniquely associated with the class M of its models, i.e.,
of the interpretations satisfying all the formulae in 4. This class of interpretations in turn uniquely
corresponds to a maximal (in general infinite) set 7 of formulas that are satisfied by all interpretations in
M. The set Tis maximal in the sense that any additional formula would restrict the class M of models
because it would be falsified by at least one model of 4. By definition, 7T'is just the set of consequences of

7

A. From this perspective, M and 7 contain the same information, and both are often called the theory of 4.
Since different sets of formulae may have the same models, any specific 4 is just one alternative in
defining the theory. Zis also called a presentation or axiomatization of the theory.

For a given theory 7 and a formula %, the T-models of F are simply all those models of 7 that are
models of ¥ as well. The notions Z-consequence, T-satisfiable, T-unsatisfiable, etc. are then defined
correspondingly.

An important theory is the theory of equality. Equality can either be axiomatized with the usual axioms
for equality - reflexivity, symmetry, transitivity and the substitution axioms for function and predicate
symbols - or it can be built into the logic by restricting the interpretations to those interpretations, usually
called E-interpretations, where the equality symbol = is mapped to the identity on the domain.

A clause is a tautology if it is true in every interpretation. It is a Ztautology in a given theory 7if it is
true in every 7Z-interpretation, where a Z-interpretation is an interpretation that is a model for 7.
Syntactically, a tautology contains two complementary equal literals, i.e. the atoms are equal and the
signs are different. The syntactical structure of Z-tautologies is more difficult to recognize. If for instance
T contains the equality theory and additionally an axiom to express the commutativity of the function
symbol f: {f(x,y) = f(y,x)}, then the clause {P(f(a,b)), =P(f(b,a)) } is not a tautology, but a Z-tautology.

A clause C subsumes a clause D if every model of C satisfies D. C Z-subsumes D in a theory 7 if
every Z-model of C satisfies D. For example {P(x)} subsumes {P(a), Q}, {—P(x), P(f(x))} subsumes
{—=P(y), Pf(f(y)))}. {R(f(x a))} F-subsumes {R(f(a b))}, Q} in the theory described above.

Subsumption in this general form, which is in fact an implication, is undecidable [Schmidt-Schauss
86], therefore only restricted notions of subsumption are suitable for an implementation. If for example D
is an instance of C, which can be syntactically recognized, and C has not more literals than D then C
subsumes D.

2.2 Theory Resolution

The syntactical inference rules John Alan Robinson invented for PL1 are resolution and factoring
[Robinson 65]. The resolution rule derives from a clause L v A and a clause L' v B, where the literals L
and L' are complementary unifiable with unifier ¢, a new clause, the resolvent, (A v B). The
factorization rule instantiates a clause such that at least two literals become identical. Both rules operate
on the most general level. That means all possible inferences are always subsumed by a resolvent or
factor respectively. Therefore the branching rate in the search space is always finite, compared to the
usually infinite branching rate of other calculi.

Although this feature of the resolution rule brought a substantial improvement to automated theorem
proving, certain axioms may still lead a resolution system to go astray, a problem that was recognized as
early as the first deduction systems were build. Alan Robinson claimed in 1967 [Robinson 67], that
substantial progress could be achieved - in fact "a new plateau" - if these troublesome axioms would be
taken out of the database and “built into” the rules of inference.

Theory resolution is a general scheme to build axioms into the rules of inference, i.e. to exploit
information about the meaning of predicate symbols and function symbols directly within the calculus by
using specially tailored inference rules instead of axioms for these symbols. It was proposed by Mark
Stickel at SRI [Stickel 85]. It is in fact a generalization of many special cases that were known before by
different names such as E-resolution, T-unification etc. Some of them will be discussed in later
paragraphs.

8

As a motivation for the approach, let us recall the justification for the soundness of the resolution rule:

clause 1: L,K,,...,K,
clause2: —-L,M,,....M,

resolvent: K,,...,K,M,,.... M,

The essential argument for the parent clauses’ entailing the resolvent is that an interpretation satisfying
the literal L falsifies —L. The crucial point is that no interpretation can satisfy both L and —L. This is the
case for two literals whenever they meet the purely syntactic condition of being complementary, i.e., if
they have opposite signs, equal predicate symbols, and equal term lists.

In many cases one can generalize this syntactic notion of complementarity by utilizing the fact that
not arbitrary interpretations need to be considered, but only the interpretations of a certain theory. For
example, a set of formulas might contain axioms for a predicate symbol <, such that interpretations can
be models only if they associate with < a strict ordering on the universe. Due to the properties of strict
ordering relations, no such interpretation can satisfy both a < b and b < a. These two literals are not
syntactically complementary, but, as it were, semantically complementary in the assumed context, where
the following derivation step would also be sound:

clause1: a<b,K
clause2: b<a,M

resolvent: K, M

As a further generalization, we can even abandon the restriction to two parent clauses. No
interpretation of the assumed class can satisfy each of the literals a < b and b < ¢ and ¢ < a. Analogous to
the justification for the simple resolution rule, only with more cases, the following step can also be shown
to be sound:

clause 1: a<b,K
clause2: b<c,M
clause3: c<a,N

resolvent: K,M,N

Thus the idea is to proceed from the special case of two syntactically complementary resolution literals
to an arbitrary set of resolution literals such that no interpretation of a theory can satisfy all of them.

Now the general scheme for total theory 8w
resolution is as follows: let Tbe a theory and g g £
let Cy, ..., C, be clauses, each of them 25 (LA
containing a literal L; such that for a 0,_353 :
substitution G the conjunction of all these fﬁ;ﬁ R i
literals* o-instances is Z-unsatisfiable. The - = ?é T .
instances of the union of these n clauses = Ig)
minus- the resolution literals constitutes a 7- g Z ' I

resolvent. This clause is a T-consequence of
the formula C, A ... A C,.

theory
ol ZZZZ A - .« RN recorvent

Figure 2-1: Total Theory Resolution

The concept of theory resolution allows a much more natural and efficient treatment of specific
interpretations of symbols, than would the usual axiomatization and normal resolution. The knowledge
about the particular theory is essentially encoded in the algorithm for finding the resolution literals and
the substitution ¢, which, however, has to be developed for each theory anew. Since this algorithm is a

9

generalization of the usual unification algorithm, we shall again call it a unification algorithm, although
in general nothing will be unified.

The unification algorithm required for an implementation of theory resolution may, for some theories,
be too expensive or not even known. This holds in particular, when the theory actually consists of several
subtheories that are not independent of each other.

As an example consider the theory 7; whose models associate with the predicate symbol < a reflexive
and transitive relation on the universe and with the predicate symbol = the largest equivalence relation
contained in the former relation. Each of these interpretations satisfies an atom s=t for two terms s and t,
if and only if it satisfies both s<t and t<s. Another theory 7, may be such that its models associate with
the predicate symbol = the equality relation. In the combination of these two theories, the conjunction of
the literals a<b, b<a, P(a), —P(b) is unsatisfiable, so that these are candidates for resolution literals in a
theory resolution step.

However, an appropriate theory unification algorithm would have to be designed for just this
combination of theories. As soon as a third theory was added, the algorithm could no longer be used.
Therefore it would be more convenient to develop algorithms for the individual theories only and to have
available a general mechanism that takes care of the interaction between theories.

Let’s look at the combination of the theories 77 and Z; above and at the clauses:

clause1: a<b,K clause 3: P(a), M
clause2: b<a,L clause 4: —P(b),N

from which we ought to be able to derive the resolvent {K, L, M, N}. We can obtain this clause through a
generalized 7;-step followed by a 7-step. If an interpretation of the theory 47 satisfies a<b as well as

b<a, then by construction it satisfies the literal a=b as well. It is easy to verify that the clause C={a=b,

K, L} is a 7;-consequence of clause 1 and clause 2. The literals a=b, P(a), —=P(b) can now be recognized
by the algorithm for 7, as resolution literals for an “equality theory resolution step” involving the
intermediate clause C and clause 3 and clause 4, which results in the desired clause {K, L, M, N}.

The first step, producing the intermediate clause C, goes beyond theory resolution as presented so far,
because the conjunction of the resolution literals is not 7;-unsatisfiable and moreover a new literal was
added to the resolvent. This so-called residue is characterized by the property that in the theory under
consideration it follows from the resolution literals. If a residue is included, one speaks of partial theory
resolution, otherwise of total theory resolution.

As a residue we may also admit a disjunction of several literals. The empty residue then stands for
FALSE, and hence follows from the resolution literals only if their conjunction is unsatisfiable in the
current theory. This special case corresponds to total theory resolution.

For the most general case, (partial) theory resolution is described by the following schema:

7™

L[y
(2]
R 11
= o
: L]
(@])
S .
=
% [LISSN] oLia ... oLyl=q residue

: — artial theo
[resiand 67777 TSI . Foay Dot theory

Figure 2-2: Partial Theory Resolution

10

Furthermore Stickel distinguished narrow theory resolution where only one resolution literal per
clause participates and wide theory resolution with more than one resolution literal per clause
participating. As in standard resolution, wide theory resolution can be avoided provided there is a
factorization rule.

One of the most important theory resolution rules is paramodulation [Robinson & Wos 69]. It
incorporates the meaning of the equality symbol into the calculus by replacing equals by equals.

Whenever a subterm s of a literal is unifiable with one

L)V~ A s is a subterm of L side of an equation, a paramodulant may be derived
~ where s is replaced by the corresponding instance of
[s' = t JII{EHATE os =05 the other side of the equation.

o[Lios = o1 12277 paramodutant

residue

Figure 2-3: Paramodulation

Special versions of paramodulation are rewriting and demodulation. Rewriting is a restricted version
of paramodulation where the paramodulating clause is a unit clause (consisting of one equality literal
only) and the unifier is a matcher that instantiates the equation only. Demodulation is a “destructive
rewrite” i.e. the original, demodulated, clause is thrown away [Wos et al 67]. It is often used to simplify
terms, for example replace P(+(3, 4)) by P(7), as it seems to be of no advantage to keep both versions in
parallel.

A simple example that illustrates theorem proving by resolution and paramodulation and which was
proven by the MKRP-System without a single unnecessary step is the following:

Theorem : The identity element of a subgroup equals the identity element of the group itself.

Axioms necessary for proving this theorem:
V x,y subset (x y) = (V z member (z, x) = member (z, y))
V' x,y group (x) A member (y x) = f(y -1, y) = id(x)
V x group (x) = member (id(x), x)

Theorem:
V x,y group (x) A group(y) A subset (x y) = id(x) # id(y)

Clause form of the axioms and the negated theorem:
Al: —subset (x y) —member (z, Xx) member (z, y)
A2: —group (x) —member (y, x) f(y-1,y)=id(x)
A3: —group (x) member (id(x), x)

T1: group (a) T3: subset (a b) (a and b are Skolem constants)
T2: group (b) T4: id(a) # id(b)

Proof :
A1,T3 +R1:—member (z,a) member(z, b) (resolution: x—a, y—b)
A3,T1 rR2: member (id(a), a) (resolution: x~id(a))
R1,R2 R3: member (id(a), b) (resolution: z—id(a))
A2 T1 +R4: —member (y,a) f(y-l, y)=id(a) (resolution: x~a)
R2,R4 RS5: f(id(a)!, id(a)) =id(a) (resolution: y—id(a))
A2, T2 +R6: —member (y,b) f(y-l,y)=id(b) (resolution: x-b)
R3,R6 R7: f(id(a)l, id(a)) = id(b) (resolution: y—id(a))
R5,R7 +P1l: id(a)=id(b) (paramodulation: €)

P1,T4 -R8: 0O (resolution: €)

11

2.3 Theory Unification

The paramodulation rule itself cannot produce a contradiction. Its purpose is to manipulate literals by
subterm replacement until they become resolvable. (Even in pure equational problems the negated
theorem is an inequation and the last step must be a resolution with the reflexivity clause.) With respect
to the goal to produce resolvable literals, paramodulation alone is completely blind. In the clause set
{{P(@)}, {—P(b)}, {a = b}, {a = c}}, for example, nothing prevents the paramodulation rule from
producing the irrelevant clause {P(c)} instead of {P(b)} which is necessary for the refutation.

There is no general solution to this problem, because the general equality problem, that means the
problem to prove two terms equal, is undecidable and therefore as hard as theorem proving itself (see
chapter 4). Restricted to special equations, however, there may be efficient algorithms for unifying two
terms, i.e. for finding the substitutions that make them equal under the given equations.

A theory unifier for two terms s and t and an equationally defined theory 7is a substitution ¢ making
the two terms equal under the theory ¢ 0s =g ot, i.e. Gs = ot holds in the theory 7.

Examples: Let 7 be the simple theory of commutativity for f: f(x,y) = f(y,x). The substitution {x a}
is a Z~unifier for the terms f(b,x) and f(a,b), which are not directly unifiable. For the terms f(x,y) and
f(a,b) there are two T-unifiers, namely {x i a, y b} and {y > a, x » b}. Both of them are most

general.

There are theories with at most one (called unitary), finitely many (called finitary), infinitely many
(called infinitary) and non existing (called nullary) most general unifiers. An example for a theory with
infinitely many most general unifiers is the theory of associativity: g(g(x,y)z) = g(x,g(y,z))). The terms
g(a,x) and g(x,a) for example have the following sequence of ‘“associative” unifiers: {x b a}, {x b
g@@,a)}, {x g(g(a,a),a)},{x — an}, .. None of them is an instance of the other.

Suppose now that we have a Z-unification algorithm for a given theory 7'to be used by the resolution
rules in place of Robinsons original unification algorithm, then the axioms in 7'may be removed from
the database provided the set of unifiers has the following property:

- all elements of the set are unifiers (correctness)
- all unifiers are represented by this set (completeness).

Under these conditions a theorem prover based on theory resolution realized by theory unification
algorithms is complete [Plotkin 72]. Based on this result many unification algorithms have been
developed (see [Siekmann 89] for a survey). But two main problems remain, when building these
algorithms into an automated theorem prover.

The first one is that these algorithms are usually designed for a pure theory only, i.e. they accept as
input only terms built from function symbols occurring in the theory axioms, variables and sometimes
free constant symbols. Terms like f(g(a), h(e,y)) for example are not admissible as input to a pure
commutative unification algorithm for the function symbol f. To solve this problem a combination
algorithm is necessary which prepares “mixed terms”, i.e. terms containing subterms from different
theories for submitting them to the corresponding pure unification algorithm and processing their results.
The basic idea is to replace “alien” subterms by new variables, submitting the “purified” terms to the

special unification algorithm and merging their results with the bindings of the new variables.

As an example, assume the terms s = g(f(a,y),g(x,y)) and t = g(g(c,a),y) are to be unified where f is
idempotent and g commutative. The first step is to replace the alien subterms of s and t by new variables.
We get the bindings 6 ={v1 » f(a,y), v2~ g(x,y), v3~ g(c,a)}. Unification of the purified terms g(vi,v2)
and g(v3,y) with a commutative unification algorithm yields the two unifiers 67 ={v;+ v3, va~ y} and
02 ={va v3, vi> y}. Merging of 6 with o1 is not possible because f(a,y) and g(c,a) are not unifiable.
Merging of © with o7 yields the unification problem y = f(a,y) that is solved by the algorithm for

12

idempotency. The unifier, {y ~ a} is applied to the binding of v, such that together with the the solution
{x+ c} of the remaining problem g(x,a) = g(c,a) we obtain the final answer {y~ a, x = c}.

Different combination algorithms have been developed so far, [Stickel 81,87, Herold 87, Yellick 87,
Kirchner 85, 87] there are more efficient ones for restricted classes of theories and less efficient ones for
more general classes. A general, although still quite inefficient algorithm for the combination of arbitrary
theories has been developed by Manfred Schmidt-Schauss [Schmidt-Schauss 88]. Recently Michael Tepp
has improved its efficiency considerably by introducing a more dynamic control structure and by
invoking more efficient special combination algorithms for special classes of theories, i.e. his algorithm is
a combination algorithm for the combination algorithms [Tepp 89].

The second main problem for the incorporation of theory unification algorithms into a theorem prover
is the combination with general purpose equality reasoning. If there is a unification algorithm for, say,
associativity of a function f, this is usually not the only equation for f occurring in the axioms. For the
equations which are not covered by the unification algorithms, rules like paramodulation have to be used.
The following example demonstrates the problem to combine theory unification algorithms with
paramodulation. Suppose we have the unsatisfiable axioms:

P(f(a, f(b,c)))

f(a,b) = f(a,d)

—P(f(a, f(d,c)))
where f is associative and the associativity axiom is replaced by an A-unification algorithm. This
algorithm cannot unify P(f(a, f(b,c))) and P(f(a, f(d,c))) because b and d clash. Since both literals contain
neither f(a,b) nor f(a,d) as subterms, paramodulation is also not applicable. The problem is that there is no
rule for scanning the equivalence class of f(a,f(b,c)) or f(a, f(d,c))) for terms with appropriate subterms.
(see [Peterson &Stickel 81] for this problem in the context of term rewriting systems.)

13

24 Many Sorted Logics

In the two previous paragraphs we discussed ways to incorporate the equality predicate and special
equations into the calculus. In this section we are going to present our means to build fragments of set
theory and taxonomical hierarchies into the inference machinery. The fragments we can handle are
characterized by the fact that there are at most finitely many or at least enumerably many sets involved.
All sets and their subset relationships have to be known from the beginning. Typical examples are
integer, real, mammals, animals etc. In this context these sets are usually called sorts in the literature and
sorted logics are logics which represent sorts by a special mechanism.

The usual axiomatization of sorts in PL1 utilizes unary predicates. For example, the set of all integers
is represented by a predicate ‘integer’ such that integer(t) expresses that the term t denotes an integer.
The explicit representation of sets as unary predicates has many disadvantages. The subset relationship
has to be represented by axioms like Vx integer(x) = real(x) or Vx ape(x) = mammal(x) and Vx
mammal(x) = animal(x) and in realistic applications these taxonomical hierarchies tend to be large.
Reasoning about the sort of an object requires the execution of chains of resolution steps with the sort
axioms. For instance given the clause {ape(cheeta)}, if one needs {animal(cheeta)} one has to perform
two resolution steps with the above axioms. Furthermore resolution steps are possible which do not make
sense in the intended domain of discourse. Suppose for example there are the two clauses {—ape(x),
eats(x, icecream)} and {—dog(y),—eats(y, icecream)}. A resolvent is {—ape(x), ~dog(x)}. In order to use
this clause for a refutation proof an object ‘a’ which satisfies ape(a) and dog(a) has to be found. If the
axioms in fact reflect our intuition about apes and dogs the resolvent {—ape(x), ~dog(x)} expressing that
all apes are no dogs, is a useless tautology.

The standard method for preventing such things is to attach the sort information directly to the
variables, constants and terms, and to allow instantiation only with terms whose sorts fit the sort of the
variable. Instead of Vx ape(x) = eats(x, icecream) one would write Vx:ape eats(x, icecream) where the
variable x is tagged with the sort ‘ape’ and instantiation of x is only allowed with terms of sort ‘ape’ or
smaller.

Many sorted logics represent sorts and subsort relationships in a special datastructure, the sort
structure. In the simplest version, the sort structure is a flat list of sorts representing mutually disjoint
sets. More expressive are sort hierarchies in which case we speak of order sorted logics. They allow to
model subset relationships. Sort hierarchies are the basic datastructures of the sorted logics Christoph
Walther [Walther 87] and Manfred Schmidt-Schauss [Schmidt-Schauss 88] have developed for the
MKRP system.

Making the sort structure more expressive is one dimension along which sorted logics can be
developed. Anthony Cohn has driven this to one extreme by allowing complete sort lattices which model
subset relationships, intersection, union and complement [Cohn 87]. Another extreme is parametric
polymorphism which provides constructor functions for sorts. ‘List-of” for example is a typical sort
constructor function that allows to define sorts List-of(integer), List-of(List-of(integer)) etc. [Milner 77],
[Smolka 89].

The other dimension along which sorted logics can be developed is the modelling of the membership
predicate. The sort of a term is the syntactic notion for the semantic membership relation. The finer the
sort of a term can be determined, the better the membership relation is modelled. In Walther’s ZRP-
calculus the sort of a term depends only on the leading function symbol. If you declare ‘real’ to be the
rangesort of a function symbol + for example then the term +(3,4)! is of sort ‘real’ although its
interpretation is always an integer.

13 and 4 are taken to be constant symbols of sort ‘integer’.

14

In Schmidt-Schauss” ZRP* calculus more detailed information about the domain-rangesort relation of
function symbols can be exploited. In the simpler version the sorts of a term depend on its leading
function symbol and the sorts of the direct subterms. For example the declarations +:real x real — real,
integer x integer — integer are sufficient to compute ‘integer’ as the sort of the term +(3,4). The more
complicated version makes the sort of a term depending of the structure of its subterms. Declarations
v real X real — real, *(x, x~1): integer, yield ‘integer’ as the sort of the term *(a, a-1), regardless whether
the sort of ‘a’ is real or integer.

Both Walther’s and Schmidt-Schauss calculi include resolution and equational reasoning with
paramodulation. For both rules only minimal changes of the original calculus were necessary. First of all
unification of terms is restricted such that instantiation of a variable of sort S is only possible with a term
whose sort is smaller! or equal to S. (Notice that the ‘smaller or equal’ check is the place where the
transitivity of the subset relation is built into the calculus.) For sort structures which are not tree like, i.e.
where two sorts S and S may have a common subsort S3, the unification of two variables has to be
refined by a weakening rule: In order to unify two variables x of sort S; and y of sort Sy, they have to be
weakened to the common subsort S3. The unifier is {x - z, y+ z} where z is of sort S3. If all pairs of
sorts have at most one greatest common subsort, i.e. the sort structure is a semilattice, there is at most one
weakening possibility and therefore the unification is still unitary whereas in the general case the
unification is of type finitary.

In the ZRP* calculus the weakening rule has to be extended to terms. Since the sort of a term may
depend on the sorts of its subterms, weakening of a subterm may weaken the sort of the term itself such
that a well sorted assignment to a variable may become possible. For example the unifier for x:integer
and +(y:integer, z:real) is {x = +(y, '), z+ z'} where Z' is a new variable of sort integer.

As we have seen appropriate changes in the unification algorithm ensure that instantiation does not
destroy well sortedness of terms. A corresponding restriction to the paramodulation rule has to ensure
that subterm replacement does not produce ill sorted terms. It is for example not allowed to
paramodulation into P(f(a)) with a:integer = b:real when f accepts only ‘integer’ as domainsort.

So far the technical modifications necessary for a resolution theorem prover to incorporate sorts are
easy to implement. Unfortunately the fragment of set theory, these simple sorted logics can handle is not
very significant. Minimal extensions, however, already have serious consequences for the calculus. As a
next step the incorporation of complement information into the sort structure is only possible with partial
theory resolution where the residues reintroduce the sorts as unary predicates. To demonstrate this,
assume we have the sort structure 4 e, and a constant ‘a’ of sort integer. The terms x:odd and
a:integer are not unifiable because the sort of ‘a’ is larger than the sort of ‘x’. If, however, we exploit the
fact that the set of odd numbers is the complement of the set of even numbers then every term of sort
‘integer’ is interpreted either as an odd or as an even number. Thus it cannot be excluded that the “real
sort” of ‘a’ is ‘odd’ and ‘x’ and ‘a’ are in fact unifiable. In this case the unifier {x - a} must contain the
condition “provided a is of sort odd” and a corresponding resolvent between P(x) and —P(a) would not be
the empty clause, but the negated condition, —odd(a). To continue the example, a similar resolution might
produce a clause —even(a) and now disjointness of ‘odd’ and ‘even’ produces the contradiction.

Within the framework of theory resolution this extension to sorted logic is quite feasible and we are
currently exploring its possibilities. More complicated however is the combination with equality
reasoning and theory unification.

Although the fragment of set theory sorted logics encode is still quite small, many examples have
already shown its practical advantages in reducing the search space considerably [Walther 87, Ohlbach
&Schmidt-Schauss 85] and it is a common place now to assert that without it no realistic applications of a
deduction system are possible.

1 smaller in the partial ordering of the sort hierarchy. S1 smaller than Sy means semantically S1 < S».

15

3 CLAUSE GRAPHS

We now turn to the representational format for the resolution calculus as used in the MKRP system. It was
originally developed by Robert Kowalski [Kowalski 75] whose connection graph proof procedure was
defined for resolution in Robinson’s original sense. After a brief introduction of Kowalski’s original
version (which is essentially taken from [Eisinger 88]) we shall present it in the more general form we have
developed for theory resolution [Eisinger et al 89], [Ohlbach & Siekmann 88]. Many of the reduction
operations we present in chapter 3.3 have been developed by Ch.Walther [Walther 81], N.Eisinger
[Eisinger 81] and A. Pricklein [Pricklein 85].

3.1 Kowalski’s Connection Graph Procedure

The original idea of a clause graph is to graphically represent some binary relation on the literals of a clause
set by drawing links between the pairs of literal occurrences for which the relation holds. A clause graph
can be regarded as an ordinary graph whose nodes are labelled with literals, but in addition the set of nodes
is partitioned into contiguous clusters corresponding to the clauses. They are called clause nodes.

The reason for the distinction between literals and literal nodes and between clauses and clause nodes is
purely technical. Different nodes may very well be labelled with the same literal, but be linked to entirely
different places. If the literals themselves were regarded as the nodes of the graph, one could not even
formulate a phenomenon like this. However, in the sequel we will not strictly distinguish between nodes
and formulas, as long as there is no confusion possible.

ik~ *~fx) 2 3 xey
[| | |
R Pl @) O} 5= EO) [PEO)]
h]
literal node clause node
Figure 3-1,a: A Clause Graph

In the example of figure 3-1 the relation represented by the links is resolvability, i.e. any two literals
with opposite sign and unifiable atoms are connected by a link. With each link one can associate a most
general unifier for the incident literals. In this example the links, except link 2, represent all resolution
operations possible among the given clauses. Link 2 represents a self resolution possibility, i.e. a
resolution possibility between two renamed copies of the clause {P(x), —P(f(x)), Q(x)}. The
corresponding resolvent would be {P(x), —P(f(f(x)), Q(x), Q(f(x))}.

Turning resolution into a rule operating on clause graphs rather than clause sets is fairly straightforward.
As an illustration assume we want to perform the resolution step represented by link 4 in the above
example. By applying the most general unifier {x - g(y)} and renaming the remaining variables, we obtain
the resolvent {P(g(y")), —P(f(g(y")), P(f(y"))} where the literal P(g(y')) descends from P(x), the literal
—P(f(g(y") descends from —P(f(x)) and P(f(y")) descends from P(f(y)).

Along with new nodes corresponding to the resolvent we have to add to the graph new links
representing the underlying relations s extension to the enlarged set. This can be achieved by checking each
new literal with each of the old ones for resolvability. The resulting graph is as follows:

x - f(x) 2 3 X Py

[Pe(yN]-PEEyM [PEY)]

y'e gy

Figure 3-1,b: The Clause Graph after Resolution upon Link 4.

Now, any node connected to a new node is also connected to the node’s ancestor (but not conversely).
This is generally the case: Since each descendant literal is a renamed instance of its ancestor literal, a
descendant is resolvable with a third literal only if the ancestor is. Thus the links incident with a new node
can be obtained without search by examining the links incident with its ancestor. Technically this process is
usually conceived as an inheritance of the links from the ancestors to the descendants (in section 3.4.3.1 we
shall present the inheritance algorithm.)

Next the inference system can be modified by requiring the removal of each link upon completion of the
respective resolution. At first sight this might seem like a trivial book-keeping affair that amounts to simply
marking the links after operation in order to avoid repetition of the same inference step. But there are deeper
consequences to this link removal, because once a link has been removed, it can no longer be inherited by
literals derived in subsequent operations. Actually there are examples where the non-inheritance of removed
links avoids the generation of the same clause in exponentially many different ways.

Finally the basic connection graph procedure can be modified once more by incorporating an extension
of the purity principle. In [Robinson 65] a literal is defined to be pure, if it does not resolve with any other
literal in the clause set. A clause containing a pure literal may be removed without affecting the clause set’s
unsatisfiability. This removal can result in further purities if all resolution partners of some other literals
belong to the removed clause, thus the purity principle potentially involves a chain reaction of removals. An
obvious way to transfer the purity principle to clause graphs is to define a pure literal to be one not incident
with any link. Were it not for the link removal after each operation, the two concepts of purity would
coincide. With link removal, however, the effect of the purity principle is drastically enhanced.

After removing the resolved link in the example of figure 3-1,b, deleting the two pure parent clauses of
the resolution and following the snowball effect of purity deletions we end up with the empty graph which
indicates satisfiability of the original clause set. Thus after only one resolution the satisfiability of the clause
set has been detected, whereas with clause set resolution infinitely many resolution operations are possible.

3.2 General Clause Graphs as a Datastructure and Indexing Mechanism

The version of clause graphs we have developed for theory resolution requires more complex links
connecting arbitrary many literals and more complex clause nodes representing arbitrary many renamed
copies of clauses. Considering copies of clauses with renamed variables and constructing links between
these copies has only efficiency reasons, but is in principle not necessary for representing ordinary
resolution operations. Clause copies, however, can no longer be neglected in the extension of the clause
graph approach to theory resolution, because a theory resolution operation may involve arbitrarily many
copies of the same clause at once. The second clause, a conditioned equation, in the example

P(g(a))

g(y) = g(f(y)), Q(y)
—P(g(f(f(f(a)))))

Q(a), Q(f(a)), Q(f(f(a)))

17

has to be used in three different instantiations {y ~ a}, {y +~ f(a)} and {y ~ f(f(a))} in order to find out
that P(a), —=P(g(f(f(f(a)))) and g(y) = g(f(y)) are contradictory. Therefore we introduced the notion of a
clause node bunch as a conceptual entity for representing an infinite source of variable disjoint copies of a
clause. A link may then connect different clause nodes in a clause node bunch.

(In an implementation only a finite
- —— number of clause nodes in a clause node
| 2clause node bunch = / -4 literal node bunch is usually generated at a time and

EPYZTZ FaYevy indicated by the corresponding variable
g(y) = gf(y)| Q)) renaming substitution.)
= - Zd /

r aliteral node bunch

Figure 3-2: Clause Node Bunches and Literal Node Bunches

3.3 I-links

Links in the most general version of clause graphs represent partial narrow theory resolution operations.
Therefore the so called “I-links” (Implication links) usually connect two groups of literal nodes, the
“antecedent” and the “succedent”, the first ones serving as resolution literals and the second ones serving as

residue:

[T is a set of “link substitutions”. The notion “unifier” is no lon;
. adequate because in general nothing will be unified.
ik [[[] ® wyy 1 g g

antecedent succedent

Figure 3-3: A General I-link

A general I-link corresponds to a partial theory resolution step in which the instance TKjv ... viKp
of the succedent is the residue. The graphical notation of an I-link is supposed to reflect the semantics of the
antecedent and succedent: The conjunction of the t-instances of the antecedent literals implies the
disjunction of the corresponding instances of the succedent literals. This interpretation of the link type
requires the antecedent literals (joined conjunctively) to be parts of different clauses, and the succedent
literals (joined disjunctively) to be parts of the same clause. Several antecedent literals within the same
clause are taken to mean that they belong to different copies of this clause. If succedent literals are scattered
over several clauses, the I-link represents no executable operation. However, resolution steps may cause
instances of these succedent literals to become part of the same resolvent, so that inheritance creates an
executable I-link.

x=b y'r f(f(a)), y'» f(a), y »a
[a<b][a=x] [a=b] | I I
[P(e(a))] rc(v.\"_;(f{v.“" 0) [PEEEE@)) |
| ()= 8(f»)|Qy) three elements of a
l P(a,b) l I —P(cd)] l ado I b=d ' clause node bunch

Figure 3-4: Examples for I-Links

18

3.3.1 R-Links and T-Links

Two special types of I-links, those with an empty succedent and those with an empty antecedent
respectively are of particular interest. Links of the first type (Resolution links or R-links) indicate total
narrow theory resolution and links of the second type (Tautology links or T-links) indicate actual or
potential (after instantiation) tautologies.

__R-link —5
o a2 ® [PO) [E=bla=bla>1]

Figure 3-5: Examples for R- and T-Links

3.3.2 F-Links

A third special type of I-links is also of particular interest, namely links connected to one clause node only
and with one antecedent literal node and at least one succedent literal node. Links with this structure
represent a generalization of the factoring operation: Since the antecedent literal implies the succedent literal
or the corresponding instances respectively and they are disjunctively connected, one can create an instance
of the clause where the antecedent literal is removed.

[¢ v v
P(x,y) [P(y.X) | [azbla<b[a>b]

Figure 3-6: Examples for F-Links

3.3.3 P-Links

Since paramodulation can be seen as a special case of partial theory resolution, where the paramodulated
literal is the residue, paramodulation operations can also be represented by I-links.

The paramodulated literal is not part of the original graph. It has to be created either when the link is
constructed or when the paramodulation operation is executed. Therefore a more compact representation
avoids the explicit representation of the paramodulated literal as a residue by not attaching the link to the
literal but to the term to be paramodulated and to one side of the equation. With this information the
paramodulated literal can be reconstructed when necessary. In the paramodulated connection graph
procedure [Siekmann & Wrightson 79] we called these links P-links.

paramodulation represented by an I-link paramodulation represented by a P-link
P(f(a)) [a=1] P(f(b)) [QO[PT@) =p

_Fijure 3-7: Paramodulation Represented by I- and P-Links

We should however keep in mind that P-links are only a compact representation of a special kind of I-
links.

19

3.3.4 Link Bunches

Anobvious extension to the link concept that is analog to the concept of clause node bunches is the concept
of “link bunches”. Just as a clause node bunch is an infinite source for variable disjoint copies of a clause, a
link bunch is an infinite source for copies of a link which are connected to the corresponding copies of a
clause in a clause node bunch.

. » L]
link bunc
m

In this chapter no further details of clause node bunches and link bunches need to be explained, because
the main principles of the operations on clause graphs can be described without distinguishing between
clause (literal) nodes and clause (literal) node bunches. Clause node bunches and link bunches come into
play when dealing with non-trivial cases like self resolution, recursion etc., that make life hard and first
order logic undecidable.

Figure 3-8: Examples for Link Bunches

3.3.5 Link Substitutions and Clause Substitutions

To improve conceptual clarity we consider the link substitutions as a - possibly infinite - set of ground
substitutions. For example the substitution {x ~ y} is taken to be a representation of the set of ground
substitutions {{x ~ a,y+ a}, {x b,y b}, {x f(a), y f(a)}...}. This view has the advantage that
operations on substitutions which are necessary in the algorithms described below can be expressed easily
with set operations. The merging of substitutions for example turns out to be the intersection of sets of
ground substitutions. (As an example consider the merging of 6 = {x» y} and T= {x ~ a} yielding
{xa, y~a}. In the ground substitution representation we obtain this substitution by intersecting {{x ~
a,yr a}, {(xpb,ym b}, {x+ f(a),yr f(a)}...} with {{x» a,y» a}, {x» a,yp b}, {xr a3,y
f(a)}...})

As a further advantage we can use the set-difference operation on the sets of ground substitutions for
representing “all o-instances except those which are also t-instances”. The t-instances of a link with link
substitution ¢ might for example represent tautologous resolvents and should therefore be removed.

A clause can be seen as a compact representation of all its ground instances. For example the clause
{P(x,y), =P(y,x)} represents all the clauses {P(a,b), =P(b,a)}, {P(a,f(a)), —=P(f(a),a)},... . Some of the
ground instances, in this case {P(a,a), =P(a,a)}, {P(b,b), —=P(b,b)},... are tautologies and therefore
useless for a refutation proof. In order to represent the fact that not all ground instances of a clause are
required, we shall assume in the sequel that each clause is labelled with a set of ground substitutions, the
clause substitutions. In an actual implementation of course an infinite set of ground substitutions cannot be
represented, but we can represent the contrary, a finite set of substitutions whose ground instances indicate
those instances of the clause which have to be removed. In order to represent that all {x+> y}-instances of
{P(x,y), =P(y,x)} are tautologies, we have to label the clause node just with {xy} as instantiation limit:
B(x,y) | =P(y,x) |_ﬂ{x,_>y}. A consequence is that link substitutions of adjacent links have to be cleaned of
those substitutions which are not present in the clause substitutions. On the conceptual level this can be
done by removing sets of substitutions from the set of ground link substitutions. In an actual
implementation we would label the links with a second set of substitutions, the instantiation limits, which
act as constraints in the unification algorithms.

20

an inconsistent graph a consistent graph

I P(a,a) | | P(a,z) |

{XH a,yHa} {XH a,sz],
connected to an illegal —{y~ a,zw~ a)
instance of the clause

—P(x,y) —P(x,y)
2) —{x> y} b) ={xe y)

Figure 3-9: Clauses and Links with “Instantiation Limits”.

The symmetry clause —P(x,y) P(y,x) in figure 3-9a) is labelled with the intstantiation limit x — y stating
that the x - y instances of the clause are tautologies. The literal P(a,a) is connected to these tautologous
instances only. This is indicated by the fact that the link substitution {x - a, y » a} is an instance of the
instantiation limit. Therefore the graph is “syntactically inconsistent”. The graph in figure 3-9b, however, is
consistent because the critical instance {y ~ a, z+ a} of the link substitution is removed by the link’s
instantiation limit.

3.4 Clause Graph Inference Rules

The clause graph version of resolution and factoring is in principle sufficient for a complete refutation
procedure. Clause graphs, however, support a number of additional operations, which reduce and
reorganize the search space such that good and bad steps can be better distinguished. In the sequel only
simplified versions of the inference and reduction rules are presented. The exact formulations are
technically more complicated, but do not show new principles.

34.1 Basic Operations

3.4.1.1 Clause Resolution (cres)

The “traditional” inference rule for clause graphs is clause resolution as proposed by R. Kowalski. It
consists of two parts, the generation of the resolvent and a mechanism for “inheriting” the links connecting
the new resolvent with the rest of the graph from the links connected to their parent clauses. The inheritance
mechanism avoids searching the whole graph for resolvable literals. The formulation of the algorithms for
partial narrow theory resolution is technically more complicated, but the ideas are the same. A partial
narrow resolution is indicated by an I-link: The antecedent literals are the resolution literals and the
succedent literals are the residue. One of the link substitutions is the resolution substitution (unifier).

Clause graph resolution works as follows:
1. Generation of a partial narrow resolvent from an I-link and one of its link substitutions

- Form a new clause node by joining the remainders of the antecedent clause nodes without the

antecedent literal nodes themselves with the succedent literal nodes and applying the resolution
substitution.

- Make the new clause node variable disjoint with all other clause nodes.

21

resolution R-link resolution I-link

5 x=b [v
: , [22x[2=b[R®)]

\iolution \:solutic:/

resolvent = resolvent= | P |a=b[R(b)

Figure 3-10: Examples for the Generation of Resolvents.

2. Link Inheritance

The idea for the link inheritance mechanism is very simple: In order to connect a link with a literal node
of the resolvent, “grasp” a link connected to its parent literal node and “pull it down” to the resolvent literal
node [Smolka 82]. The link substitution for the new link can be computed from the link substitution of the
old link and the link substitution of the resolved link by substitution merging [Ohlbach 87].

resolved link x~ b,y » b
—P(x,b)|x<c | |a>c]

P(b.y)

= link to be inherited
XHy

resolvent

Figure 3-11: Example for Link Inheritance

Of course only a copy of the original link is manipulated this way. The original link itself remains
untouched.

The next example demonstrates that this idea is powerful enough to get the internal links of the
resolvent, i.e. the links connecting different copies of the same clause, as well as the link connecting the
resolvent with its parent clauses. (Remember that the internal links actually represent link bunches, i.e. all
corresponding links between copies of the clause.)

- 2 3 Link 1 is “dragged” from the literal
P(x) to its instance P(g(y"). Link 2
cannot be inherited because the
\ g = xegly) resolution substitution {x ~ g(y)} is

® 2 substitution merging fails incompatible with the link substitution
{x f(x")}.

[P -PEEE)) [PEY))| resolvent

Figure 3-12,a:
Example: Link Inheritance after Resolution upon Link 4,
Inheritance to the first Literal of the Resolvent.

22

Link 3 can be inherited normally. For
dragging link 2 from the literal
—P(f(x)) to its instance —P(f(g(y"))
we take an element of link 2°s link
bunch that is connected to P(x") and
—P(f(x)), i.e. we take the weak unifier
[P [-PEE) [PEYY)] {x" » f(x)}. This substitution is
compatible with {x~ g(y)}

Figure 3-12,b: Inheritance to the Second Literal of the Resolvent.

2 3 g Link 3 is inherited normally yielding

| 3". The new link 3' which is
% - 1R IPEON | connected to P(f(y)) has also to be
™ inherited yielding the internal link 3",

I
1 PX) PR [Q®)] -

[Pew) | -PEEG) [PEGY)]
36“

Figure 3-12,c: Inheritance to the third Literal of the Resolvent

As a final operation the resolved link can be removed in order to inhibit a repetition of the resolution.

The presented link inheritance mechanism works as long as the new literals in the resolvent are instances
of already existing literals in the graph. Some of the partial theory resolution rules, in particular
paramodulation, which generate new literals as residues need special inheritance mechanisms for
connecting the new literals with the rest of the graph. In chapter 4 we shall discuss these problems for
paramodulation.

Explicit generation of clause graph resolvents is very expensive, because besides the new clause usually
hundreds of new links have to be generated. Since the literals in the resolvent are just instances of literals in
the parent clauses and the links to these literals are essentially copies of the original links, a resolvent
contains mostly redundant information. However, there may be resolvents which trigger some of the
reduction operations explained below and cause the removal of clauses and links.

3.4.1.2 Link Resolution ([res)

Link resolution is a new inference rule on our version of clause graphs. Just as clause resolution derives
anew clause from a set of clauses, link resolution derives a new link from a set of links and a single clause.
The basic idea shall be explained with a few examples. Consider the graph for the symmetry axiom
{=P(x,y), P(y,x)} and the two clauses {—P(a,b)}, {P(b,a)}.

23

[res

The links 1 and 2 have compatible

P(y.x) unifiers {x » a, y » b}. Therefore

it is possible to combine these links
yielding a new link 1-2 between

1:2 P(a,b) and —P(b,a) which contains

)

R o L T [P s P2pamale aren
the information that both Lterals arc

contradictory with respect to the

Figure 3-13: Example: Link Resolution with the Symmetry Clause

symmetry of the predicate P. Thus,
the symmetry clause has been

“compiled” into the theory and is
now contained in the semantics of
the new link 1-2.

In the next example (Figure 3-14) we “compile” the father-grandfather relation into the link structure by
combining the three binary links to one link connecting three literals. The corresponding theory resolvent is
P(jim). This clause could also be deduced by the three binary resolutions indicated by the three links of the

grandfather axiom.

[ofather(x,y) | —father(y,z) | grandfagher(x,z)|

X tom| ye jim X > tom
y»Vv |1 zw john z john

| father(x,y) |father(y,z) Igrandfather(x,z)]

"
res [123 [vo jm

[P(v)] father(tom,v)| | ~grandfather(tom john) |

3
{P(v)] father(tom,v)| {-grandfather(tom,john) |
2

| father(jim, john) |

| father(jim, john) |

Figure 3-14: Link Resolution with a three Literal Clause.

The principle for the general link resolution operation is:

Take a clause node and for each literal node in the clause take just one link which is connected with its
antecedent to the literal node. Compute the new “resolved” link by intersecting all the unifiers attached to
the links joining all parent literals except those in the selected clause.

= resolved link (Of course the original links

A 3 1

trf 111 L1

base clause node

Glnczn... N o,

remain untouched. They can
only be removed when all
possible resolutions with these
links are executed.)

Figure 3-15: the General Link Resolution Scheme

24

Example A sequence of link resolutions that proves the unsatisfiability of the clause set {{P,Q},

{(-Q,P}, {—=P,R}, {—=R,—P} is shown in the next figure.

The links 1, 2 and 4 can be
removed because all possible
combinations are executed in
graph @.

The links 1-2-3 and 1-4-5
contain the information that =P
is false in the theory generated
by the clauses {P, Q} and {—Q,
P}. Note that a resolution of
links connected with the same
literal, as for example 1-2 with
3, includes an implicit factoring
operation.

Finally the “empty link” is
generated in graph ®. The

gay
K
ETT
-ga
8o
(o\} T
Siorm EE ¥ orm
S g
i = A
g~ =]123 14-5 i & 14-
(8 R~ fo EX e
link resolution: L
links 1-2-3-6, 1-4-5
- —12-3-6-1-4-5, % 8 =1-2-3-6-1-4-5
the "empty** link.
’
Figure 3-16: A Refutation with Link Resolutions

empty link states that the empty

set has no model in the theory
generated by the axioms. This is
the elementary contradiction
which indicates that the axioms
are unsatisf{iable.

Some more examples show what happens, when different kinds of links are combined.

|=x<y]lay<z]x<z] |x<yloy<z[x<z]

= [res F-link = VP

[PW)ja<v]-b<cla<c] [PW]a<v|=b<cla<c]

Figure 3-17: Creation of an F-Link with Link Resolution

lox<yl-y<zlx<z] |[ox<y][=-y<z]x<z]

= fres T-link e

[Pv]—a<b[=b<cla<c] [PW] —a<bl]-b<cla<c]

Figure 3-18: Creation of a T-Link with Link Resolution

The resolved link is actually an F-link
stating that a < b implies"b<cora<c.
This information could be used to
generate a shorter instance {P(b), —b <
¢, a < ¢} of the second clause.

The three links in the left graph indicate
that the second clause is subsumed by the
transitivity clause. The corresponding
combined T-link in the right graph states
that the second clause is a tautology in the
theory of the first clause. This example
shows the very tight correlation between
subsumption and tautology.

The two successive link resolutions in the example below generate a link, which represents the
information that b<c implies a<c under the theory a<b and the transitivity of <. Using this link and the
parallel one, it can be recognized that the clause {b<c, P(c)} subsumes {a<c, P(c)}. A further link
resolution would produce a T-link containing the same information.

25

a<b |b<c|P(©)] [a<b] [b < c|P@)] la<b] b<c|P(c
|x<ylay<z]x<z] = |=x<yloy<z]x<z] — [=x<yl-y<z]x<z]
[res [res
[a < c|P@)]

Figure 3-19: Creation of a Subsumption Situation with Link Resolution

(The first operation is a link resolution on the unit clause a<b which simply disconnects the link from the
unit clause. The shortened link contains the information that the corresponding instance —a<b of —x<y is
false in the theory of the unit clause.)

3.4.1.3 Link Factoring (ffac)

The link factoring rule is the analog to the clause factoring rule. It is applicable to a single link which is
connected to two or more renamed copies of the same literal node and generates a new link with fewer
adjacent literals, but a usually stronger instantiating substitution. In the example below the links 1-3 and 2-
4, must be factorized in order to generate the empty link in a subsequent link resolution.

[=P@.x)|=P(y.a)]

[=P(a,x)| =P(y,a)] | =P(a,x)|=P(y,a)|

ch
— 1= 24, v a =
fres UP 2 ~lub a o 8 [—a)cu:a u~ a
v al It oGy B 8 v-4a o a
P(u,v) P(u,v)

resolutions

Figure 3-20: Example for Link Factoring

The factorized links 1-3” and 2-4° are not equivalent with 1-3 and 2-4 respectively because they
instantiate both variables u and v with a, whereas the original links 1-3 and 2-4 leave one variable
uninstantiated.

3.4.1.4 R-Link Resolution (rfres)

R-link resolution is just a special case of link resolution where only R-links are combined. The interesting
thing about R-link resolution is, that this restricted inference rule together with the link factoring rule is
refutation complete, i.e. for each unsatisfiable clause set C there exists a sequence of R-link resolutions and
link factorings on some initial clause graph over C that terminates with the empty link. All other operations
on clause graphs are in principle not necessary, however, they can considerably increase the efficiency of
the deduction system.

3.4.2 Advanced Operations

3.4.2.1 The Link Cut Rule (lcut)

The link cut rule is derived from the cut rule of Gentzen’s sequence calculus, which states that a new
sequence can be derived from two sequences by joining the antecedents and succedents and removing the
common parts of the succedent of the first sequence and the antecedent of the second sequence. In the
clause graph version this operation works similarly: Two I-links with a common succedent and antecedent
literal node may be joined into one new link if the two link substitutions merge. The joined link consists of
the union of both antecedents and both succedents respectively, with the common literal node removed:

26

I-link 1 I-link 2 new I-link

T *| 5 AT
= feut
1 | | [|]

An example for an application of the cut rule:

v -
<t 28 [=b 2@ P& “[E<y 29 =0 BFa Fo
Figure 3-21: The Link Cut Rule

3.4.2.2 Link Resolution with Cut Rule (frescut)

The link cut rule can be combined with the link resolution rule giving a more powerful inference rule,
which contains an implicit clause factoring operation and is as easy to handle as the link resolution rule
itself. As the example below suggests,

1| * 2 1-2 2 1-2|

- —res
[a<bla< b fa> b eut [a<bla < b] [a>b] fa<bla<b] [a> b]

Figure 3-22: Example for Link Resolution with Cut Rule

F-links, i.e. I-links which are connected to one clause node only, can be treated during a link resolution
like R-links, just forgetting their succedent literals!. The justification for this rule is, that the succedent
literal nodes can be removed applying the cut rule to the F-link and the link that is connected to the
succedent literal node used in the link resolution. Another viewpoint of this rule is, that the link resolution
uses instead of the original clause node the instance of the clause where the corresponding antecedent literal
node of the F-link has been removed.

3.4.2.3 Subsumption Factoring (suffac)

There are clauses which are subsumed by one of their own factors. {P(a,x), P(a,a), Q(x), Q(a)} for
instance is subsumed by its factor {P(a,a), Q(a)} which can be generated just by removing the superfluous
literals P(a,x) and Q(x) from the original clause. The removal of superfluous literal nodes together with all
adjacent links may considerably decrease the search space and should be performed as early as possible.
Therefore this operation, called subsumption factoring, has the status of a separate inference rule, although
it could be achieved with a (more expensive) resolution step followed by a clause subsumption operation.
Subsumption factoring is applicable if the clause can be partitioned into two parts L and K such that all
literals in L may be removed by resolution and factoring operations without adding new literals and
instantiating the literals in K. A subsumption factoring possibility is indicated by a group of F-links and
unary R-links with a non empty common link substitution that instantiates only the antecedent literals. A
typical situation of this kind looks as follows:

1 This is not totally true. Two or more F-links participating in a frescut operation are not allowed to form a cycle, i.e. the
following situation for example has to be avoided: % ! |

27

t2
'cll 3 T =1 NT, NT3NT, Ny #0

W %5 ;}‘ 1 4
L1l

HEEEEEEEEN 1 instantiates L only

L can be removed

Eigure 3-23: Subsumption Factoring

The principle we call subsumption factoring seems to have been invented first by William Joyner
[Joyner 73]. He defines a “condensation” of a clause C as an instance that subsumes C; an instantiating
substitution resulting in a condensation he calls a “condenser” of C. He presents an algorithm to compute a
most specific condenser of a clause and shows that any two most specific condensations of the same clause
are variants of each other and variants of a subset of the original clause.

In fact a generalization of subsumption factoring is still possible. As mentioned earlier, all we have to
make sure is that the reduced clause follows from the original clause. A subsumption factor follows from
the original clause because it is, after all, a factor and thus an instance. But from the clause
{=P(x) P(f(x)), =P(y) P(f(f(y)))} there follows the reduced clause {—P(y), P(f(f(y)))}, which is not an
instance. More general, whenever a clause C can be partitioned into two subclauses C; and C; such that C,
semantically entails Cy, it is sound to remove all members of C; from C, leaving just C as the reduced
clause. Subsumption factoring covers the cases where C; subsumes C,. Since subsumption is essentially a
syntactic characterization of entailment between two clauses, one can hardly expect significant but still
efficiently implementable improvements of the subsumption factoring rule.

34.2.4 Subsumption Resolution

The link resolution rule can be combined with subsumption factoring to obtain a more powerful macro
operations for removing superfluous literals from clauses. We give some typical examples which can be
handled by the algorithms implemented in the MKRP s reduction module [Pricklein 85].

—P(a,y)
fres =~ b
[Px.a)[R(x) Q) |R() | [P(x.a)|R(x) [Q(a) [R(@) | R(a)
[x+-a Lx+a
Figure 3-24: Example for Link Resolution enabling Subsumption Factoring

P(a) [P@)] Q] [Q]
- -
[res [res subfac
[(FP@|R®)——-R@ | [=P@|RX)] [CP@IRM| [R@] [ZP@[R®] [R@ |
Figure 3-25: Example for Link Resolutions with Unit Clauses enabling Subsumption Factoring

28

|P(z,c,z)| P(z.d,z)| |P(z.c.z)] P(z,d,z)| |P(z,c,2)] P(z,d,z)|

e T] e ey e
Rlo o N O _ Do ' NI
—P(a,x2)| QY]

Figure 3-26: Example for exploiting the implicitly existing I-Links between Copies of Literals to enable
Subsumption Factoring.

3.4.2.5 Generalizing Subsumption Resolution

The next refinement is called generalizing subsumption resolution. It replaces a resolution literal by a more
general literal from the resolution partner. In the following example, {P(a), Q} will be changed to
{P(x), Q}. Such situations are detected by considering binary I-links between the resolution literal and

affected literals.

generalized = [P(x)[Q|

Figure 3-27: Example for Generalizing Subsumption Resolution

Note that this is also a shortcut for resolution followed by subsumption. The advantage of this rule is the
better ability of the resulting clause to subsume other clauses. In this way a generalization indirectly reduces

the graph.

Strictly speaking, generalizing replacement resolution is not a reduction rule. It does not remove a literal,
but overwrites a literal with another one that is properly smaller with respect to the well-founded
subsumption ordering. It is a matter of taste whether such rules should be regarded as reduction rules or as
anew category of inference rules, beside deduction and reduction rules.

3.5 Clause Graph Reduction Rules

The clause graph inference rules defined above introduce new objects into the graph that represent
information explicitly which was contained implicitly in the previous state of the graph. Previous clauses
and links may therefore become worthless because their information is fully contained in derived links and
clauses. They should be removed as soon as possible. In this section we therefore present a number of
rules for removing redundant objects from the graph. An object - a clause, a link or a link substitution - is
redundant if its removal turns a graph which is refutable by (clause or link) resolution and (clause or link)
factoring into a graph which is still refutable with these two rules.

29

3.5.1 Clause Deletion Rules

3.5.1.1 Clause Purity (cpur)

In the original definition of the clause purity rule, a clause can be removed if one of its literals is not
connected to any R-link. The reason is that this literal would remain part of any further resolvent with this
clause, and could therefore never be used to generate the empty clause.

The clause purity condition can pure clause nodes
be slightly weakened: A clause [BENT_DIXY)] gy)
can be removed if it contains a _‘P(x)) - pure literal nodes
literal that is connected with at k = internal R-links
most some internal R-links.]
(Internal R-links connect different ~ |Eigure 3-28: Pure Clause Nodes.

literal nodes of different copies of
aclause node.)

Pure clause nodes can never be used in a refutation because it can be shown that the link resolution rule
transforms internal links always into internal links, but the last step with a clause node in a refutation must
involve external links only.

3.5.1.2 Clause Tautology (ctaw)

A tautologous clause is true in every interpretation and can therefore be removed from a set of unsatisfiable
clauses. A general clause may be regarded as a representation for a certain set of its ground instances, some
of those may be tautologies, some others may not. For example the ground instances of {P(x),—P(y)},
which instantiate the variables x and y with equal terms are tautologies and can be removed, all others are
not. The whole clause can be removed if only tautologous ground instances remain. The case, where only
some ground instances can be removed, makes not much sense in the basic resolution calculus because the
clause still remains part of the clause set. In the clause graph environment, however, this rule can be used
for further link deletions. Consider the example in figure 3-29:

Xy All substitutions which are instances of x - y generate
XP a tautologous instances of the clause C. If these substitutions
[P0 [=POI] Qe.y)I- v g [-Q@a) | are marked to be illegal, all the link substitutions of the

attached links which are themselves instances of the
Figure 3-29: A Clause Tautology Situation. | removed substitutions become illegal too and can be
removed as well. In the example above, the whole R-link
can be removed because {x ~ a, y - a} is an instance of
the “tautologous substitution” {x ~ y}.

The actual ctau-rule consists of three parts: recognition - completion - deletion.
» Recognition

Tautologous instances of a clause are indicated by internal T-links, i.e. T-links which are connected only
with the corresponding clause node. All link substitutions of such a T-link denote tautologous instances of
the clause which therefore can be removed. The whole clause can be removed if no clause substitution
remains.

30

A typical situation an example (In an actual implementation
the redundant instances of a

T m
. The T instances ; ; ; clause must be stored as a set
LL 1 1T 1 1 1 areredundant [a<bla=bla>Db] R] tautology of “instantiation limits’’)

Figure 3-30: Tautology Recognition

» Completion

A tautologous clause can be removed from an unsatisfiable clause set and it will remain unsatisfiable. As
the following example demonstrates, this does not imply, that a tautologous clause node can be removed
without further provisions from a refutable clause graph without losing its refutability [Bibel 81]:

missing
“bridge link”
[R]
arefutable
clause graph after deletion of the tautology
the clause graph is
no longer refutable

Figure 3-31: Clause Tautology Bridge Link Condition.

The problem is the missing “bridge link™ between R and —R that would allow for another refutation.
(This link might have been removed in previous steps by some link reduction rules.) One could either
renounce on removing tautologies if such links, or the corresponding link substitutions respectively, are
missing, or insert them before the clause node is removed. Since removing a clause node usually shrinks
the search space much more than the insertion of one special link increases it, we decided to formulate the
clause tautology rule in the second way: tautology removal with link insertion. It depends on the structure
of the clause node’s T-links which links have to be actually inserted before a tautology can be removed,

» Deletion:

All “tautologous” instances of the clause are taken to be illegal. If there are no remaining clause
instances, the whole clause node is deleted. Furthermore the link substitutions of all adjacent links which
are instances of the illegal clause instances are also removed. Links with an empty link substitution are

deleted altogether.

T T
oY 2 et
ctau
(0] o\t

Figure 3-32: General Scheme for Clause Tautology Deletion.

3.5.1.3 Clause Subsumption (csub)

A clause of an unsatisfiable clause set C, which is implied by some other clauses in C, can be removed
without losing unsatisfiability. A full application of this deletion rule is not only impossible, because of the
undecidability of this implication problem, but it is also undesirable because derived clauses may be useful
in finding the refutation. Therefore one is interested only in a restricted version, where the implication can
be easily detected (subsumption) and where the removal of the implied clause does not lengthen the
refutation. Similar to the clause tautology rule, we do not only consider the case where a subsumed clause
can be completely removed, but it is also possible to declare some instances of a clause as illegal, which are

31

subsumed by another clause. This rule can trigger further link deletions, as is shown in the following
example:

c: [PEIR@)] All instances of D where x and y become equal are
subsumed by C. The R-link can therefore be removed.
Xe y
remove
p: [FOIRIAGCA——> & 0Ga
-{xry]) yr a

Figure 3-33: Clause Subsumption

The clause subsumption rule consists also of the three parts: recognition - completion - deletion:
» Recognition:

In the environment of clause graphs, a clause subsumption situation can be easily detected using binary
Hinks: There must be a set of binary I-links with compatible link substitutions which map the literal nodes
of the subsumer injectively to the literal nodes of the subsumed clause (however see [Eisinger 81] for a
gneralization of this basic observation):

atypical situation: an example:
subsumer T =T MT,NT3#8
xP b » b
T
The t-instances
subsumed [T T [T T] areredundant 2 <b|R|P(b)| weredundant
Figure 3-34: Clause Subsumption

» Completion:

Again clause nodes which are logically superfluous cannot be removed from a clause graph without
further precautions. Due to certain link deletion rules, the subsumer may have lost some links which are
necessary for a refutation without the subsumed clause node or the removed instances, respectively. These
links, or the corresponding link substitutions respectively, must be reinserted before the subsumed clause
nde can be removed. The example below shows such a situation. Before the subsumed clause node P(a)
«an be removed, a link between —P(a) and P(x) must be inserted into the graph.

a refutable — csub reinsert this link
clause h
Bk subsumed The graph is no longer refutable
® remove unless the link is reinserted.

Figure 3-35: Subsumption Link Condition

» Deletion:

All “subsumed” clause instances are taken to be illegal. If there are no remaining clause instances, the
whole clause node is deleted. Furthermore the link substitutions of all adjacent links, which are instances of
the illegal clause instances are also removed. Links with an empty link substitution are completely deleted.

32

3.5.2 Link Deletion Rules

Alink or at least some of its link substitutions may be removed either if it can be shown that the link cannot
contribute to a refutation or if there is some other link in the graph, which can take its role in a refutation.

3.5.2.1 Link Incompatibility (finc)

The general idea of this deletion rule is to instantiate the link substitutions such that they represent only
those ground substitutions which can actually be used in a link resolution. The example below illustrates
the idea.

The only possible link resolution is 2,3,5 yielding a
—PG) merge substitution {x+b, y » b}. The link substitution
of link 5 may therefore be reduced to {x » b, y~ b}.

Figure 3-36: Example for Link Incompatibility

The rule works as follows: Given a link, select one of its antecedent clause nodes as base clause node.
Compute the merge substitutions of all possible link resolutions with this link and the selected base clause
node. Reduce the link substitutions to the computed set of merge substitutions.

Of course this might be very expensive, but it may be used to start a constraint propagation sequence
which can cause a snowball effect of further deletions, as the following example demonstrates:

PR~ EEDON -~ RA [RE) PROIRGE =PRI~ {RR R
x»a yo y» b zo b fine x»a § ym» y» b ze b
@] Q@] [-Qb) —R(b) @] Q@] [Rb) —Rb)

“Mine
f reduced
PRIRG=2 FPH)[Q PRIRE = PRION] =D [RE)
Y OF “ =aremoved z+ b T X+ a y» removed s s
E@] o) I =0) Eal e B9
Figure 3-37: Example for Constraint Propagation with the Link Incompatibility Rule.

It is noted that clause tautology and clause subsumption deletion may also trigger a constraint
propagation sequence via the link incompatibility rule.

3.5.2.2 Parallel Link - Link - Subsumption (plsub)

Consider the situation in the following figure:

EE‘_Q] two link m

3
P

i 3 —resultions

>
R {R[P->{p[5] Withland2 12
Figure 3-38: Generation of a Parallel Link-Link Subsumption Situation

The combined link 1-2 contains the information that the literal P must be false, whereas the link 3
contains only the information that P and —P are contradictory. Link 3 is subsumed by link 1-2 and can
therefore be removed without losing information. The plsubrule allows the removal of substitutions from

33

any link which is “larger” than another one, i.e. its antecedent and succedent literal nodes are supersets of
the antecedent and succedent literal nodes of a “parallel” link and its link substitution is an instance of the
link substitution of the parallel link.

1E Y 1™ yywy

4
parallel links plsub

YT, Y

Figure 3-39: General Scheme for parallel Link-Link Subsumption

3.5.2.3 Link Tautology (/tau)

The link tautology rule is a consequent extension of the clause tautology rule. Each link with a non empty
atecedent represents a resolvent and if this resolvent has tautologous instances which can be removed,
tiese instances should already be removed from the link substitution. Consider for instance the following

gaph:

Link 1 represents a tautologous resolvent and is therefore
useless. Since resolution need not be the main operation of our
procedure, we need another justification for such a removal.
And in fact, link resolutions involving the corresponding
instance of the link substitution of link 1 and its successors
generate a combined link, which is subsumed by the “bridge

Figure 3-40: Example for Link Tautology| link™ 4:

Xe y Xy

[PR [QX)] —QO) [-RE) [PG[RX) [Q()]

[res y~a 5 [res
- 1-2-3 - 1-2-3

b
@] [R@] 4 R@) &) [R@] 4 subsumes RE]

Figure 3-41: Bridge Link subsumes Tautologous Instances of an R-Link.

This effect is no coincidence and “tautologous” instances can be removed from link substitutions -
provided the graph contains enough “bridge links”.

Link tautologies can easily be recognized using T-links which are parallel to the R-link under
consideration. In contrast to the clause tautology rule, reinsertion of missing bridge links is not a good idea
because the comparatively small effect of the ftau rule does not justify the reinsertion of previously removed
links. A typical situation is shown below.

AR v 'y y
1| | R - S N |]
. | | jow | l I

Figure 3-42: General Scheme for Link Tautology Deletion.

34

3.5.2.4 Clause-Link Subsumption (cfsub)

Again, since links with non empty antecedent represent resolvents where instances may be subsumed by
other clauses, we can remove the subsumed instances already from the link’s substitutions. The actual
algorithm is very similar to the clause subsumption algorithm [Eisinger 81]. A typical situation is shown in

the following figure.
subsumer
c£su5 ;

o I I I O B B L1

T NGN...NG, subsum

Figure 3-43: Typical Clause-link Subsumption Situation

This terminates our list of operations on clause graphs. Inventing further useful operations is subject to
omgoing research. Hopefully, the examples in this chapter convince the reader that the possibilities in clause
gaphs have as yet by no means been exhausted. More ideas can for example be found in [Socher-
Ambrosius 89].

3.6 Properties of Clause Graph Resolution

Norbert Eisinger has investigated the theoretical properties of Kowalski’s original clause graph procedure
with the essential kernel operations clause resolution, purity, clause tautology and clause subsumption
deletion. Since the corresponding deletion operations on links can be seen as extensions of these kernel
operations in the sense that they can be imitated by the successive generation and then the deletion of the
rdundant resolvent and link, his results cover also these extended reduction rules. The generalization to
tlause graphs for theory resolution seems to be possible without further difficulties. We briefly present
Eisinger’s framework and results. Details can be found in [Eisinger 86, 88].

3.6.1 Logical State Transition Systems

Several problems that are either vacuous or trivial for clause set resolution, become considerably hard in the
context of clause graph resolution. Their description requires an adequate level of abstraction going beyond
raditional notions of completeness, and require new notions of the essential properties a “good” deduction
system is required to possess.

A state transition system consists of a set S of states and a binary relation — on S, the transition relation.
Frequently — is the union of some simpler relations conceived as a set of elementary transition rules. There
are two distinguished subsets of S, the initial states and the final states. A sequence of states successively
rflated by —, beginning with S and ending with S', represents a derivation of S' form S. As usual, 5 and
% denote the transitive and reflexive-transitive closure of —. A state S' is reachable if S =5 S' holds for
some initial state S, and unreachable otherwise. With the appropriate restriction of the transition relation the
rachable states define the reachable subsystem of a state transition system.

The selection from among the possible inference steps and the administration of the sequence of steps
already performed and states thereby produced are subject to a separate constituent named the control
strategy. Control strategies come under two major classes: when applying an inference rule, tentative
control strategies make provisions for the later reconsideration of alternatives, whereby irrevocable control
strategies do not. Backtracking and hill-climbing, respectively, are prominent examples of the two types of
control strategies. Tentative control strategies essentially require the storage of more than one state at a time,
which tends to render them unfeasible for state transition systems with complex states.

35

If the states of a state transition system represent logical formulae and the transitions are logical inference
steps, it ranks as a logical state transition system. A logical state transition system together with a control
strategy make up a proof procedure. -

The following property characterizes a commutative state transition system: whenever two transition
nules can be applied to some state, each of them remains applicable after application of the other, and the
resulting state is independent of the order in which the two steps are performed.The advantage of
commutative state transition systems lies in their automatic admittance of irrevocable control strategies,
because the choice of an irrelevant rule only delays, but never prevents the “right” steps.

Most logical state transition systems happen to be commutative. For the first famous example, the
lambda calculus, a weaker property bearing the name of its investigators Church and Rosscr could bc
shown. Equivalently, a state transmon system is conﬂuent if for all states S, S1, Sp with S i Siand S A
§ there exists a state S' with Sj X 8" and Sa 2 S'". In other words, any two derivations from the same
ancestor can be continued to a common successor. A less restrictive requirement than commutativity,
confluence still allows for irrevocable control strategies, especially in Noetherian systems, where no
derivation of infinite length exists.

The states of clause graph resolution are clause graphs. The inference rules Eisinger has considered are
binary resolution and factoring, both including removal of the resolved link as an integral part, further
merging of equal literals, purity removal, tautology removal and subsumption. Let @ denote the empty
graph comprising neither clause nor links (the affirmation state of the logical state transition system) and let
{0} denote the graph composed of just the empty clause (the refutation state of the logical state transition
system). These are the final states of the clause graph resolution system, with the convention making
subsumption compulsory on graphs that contain the empty clause. Only certain states are admissible as
initial, namely clause graphs in which every possible link actually exists. Obviously each clause set S can
be uniquely converted into such a clause graph, called the initial clause graph for S, denoted INIT(S).

3.6.2 Properties Relevant to the Inference System

The basic notions describing qualities of interest for logical state transition systems are soundness and
completeness, further confluence and Noetherianess. For a more concise terminology (and in particular, as
tese traditional concepts do not hold in general for clause graphs)it appears useful to restrict these concepts
o the reachable subsystems and even to subdivide the definitions according to the logical status of the initial
state.

Given a clause graph S, clause graph resolution is called

refutation sound iff INIT(S) Rt (o} =Sis unsatlsﬁable,

refutation complete iff S is unsatisfiable = INIT(S o {a};

refutation complete iff Sis unsﬁgtlsﬁable, INI;}“(S) — Gj and INIT(S) 5 Gy
= G1 = G'and G2 — G' for some G';

affirmation sound iff INIT(S) H@=Sis sausﬁable,

affirmation complete iff S is satisfiable = INIT(S % @,

affirmation complete iff Sis sat1sﬁable INIT(§) — Gj and INIT(S) 5 Gy
=G1 X G'and Gy — G’ for some G'.

The strongest property a deduction system should enjoy, is called the strong completeness property,
which says that a (class of) control strategy(ies) exists that actually finds the refutation, in case one exists.
This distinction is the major one to classical deduction calculi like resolution: completeness, i.e. the notion
that there exists a refutation, suffices as a search can always be arranged (e.g. level saturation) such that
this refutation will eventually be found by a proof procedure. This unfortunately does not hold for clause

graph theorem proving.

36

Refutation soundness means that deriving {0} entails the unsatisfiability of the initial state. The dual
property affirmation soundness says that from reaching an affirmation state the satisfiability of the start state
follows. Refutation completeness expresses the existence of a refutation from each unsatisfiable initial state.
Dually, affirmation completeness guarantees that there exists an affirmation state in the case of satisfiability.
Clause set resolution is refutation complete, but of course affirmation complete only for certain decidable
classes e.g. the ground case, for the Herbrand class where each clause is a unit and for a certain class
S) S of segregated formulae, where no clause contains literals of different sign and either all positive
or all negauve clauses are units.

Confluence, and in most cases even commutativity, is an immediate property of clause set resolution, for
which the distinction between confluence and affirmation confluence is unnecessary. Refutation confluence
carries weight in that it allows for irrevocable control strategies in the most relevant subsystem. Suppose
some unsatisfiable set S is refutable, i.e. INIT(S) Rt {O}, and we perform an arb1trary series of inference
steps leading to a graph G, i.e. INIT(S) % G. Refutation confluence then ensures G — {O}, ie. from G
we can somehow proceed and reach the empty clause. In other words, any derivation can be continued to a
refutation, and there are no dead ends that require a backup to earlier states in order to derive {O0}.Thus
refutation confluence is absolutely indispensable for clause graph resolution to be of any practical value.
The dual property affirmation confluence lacks this significance as long as the system is primarily intended
to refute unsatisfiable clause sets.

3.6.3 Results for the Inference System
This section summarizes, which of the above properties clause graph resolution does or does not enjoy.

Clause graph resolution is

refutation sound,

refutation complete,

refutation confluent,

affirmation sound,

affirmation complete for the ground case, for the Herbrand class and for the class S US,,

not affirmation confluent,

refutation complete, refutation confluent and affirmation sound for the unit refutable class with
unrestricted tautology rule, i.e without the special “bridge link” condition [Smolka 82],

> neither refutation confluent nor affirmation sound with unrestricted tautology rule.

YYYYYYY

No complete and sufficiently simple strategy is known, i.e. the strong completeness problem is still open.
(Of course running an ordinary resolution theorem prover in parallel with the clause graph theorem prover
and using its results to guide the link selection yields a complete strategy.)

Note that the system with an unrestricted tautology rule is the system as defined by Robert Kowalski.
Thus with the original version of clause graph resolution there exists a refutation for each unsatisfiable
formula, but an attempt to find it can lead to dead ends from which it can not recover to find the refutation.
This result clearly overshadows the traditional notion of completeness alone, and in fact caused serious
doubts about the traditional notions and analysis of deduction systems. See [Eisinger 86] for a discussion
of the deep consequences. In the case of subsumption there is an example where @ is derived from an
unsatisfiable unit refutable initial graph, using only resolution, purity removal and forward subsumption
which violates the link condition.

N. Eisinger also investigated the properties of the clause graph versions of several classical control
strategies like set-of-support, linear etc. (with mostly negative results). The traditional control strategies,
however, are not that significant for the clause graph procedure, because heuristics exploiting the
topological properties of the graph are much more important. Furthermore the practical incompleteness
caused by time and memory limitations totally prevail the theoretical problems as is presumably the case for
all deduction calculi.

37

4 EQUATIONAL REASONING

Equality is the most prominent relation to be built into an automated deduction system, as it provides an
important representational basis for the formulation of first order theories [Tarski 68, Taylor 79].
Unfortunately it also posed some of the most formidable obstacles against its computational treatment. In
particular, the explicit and naive use of the standard equality axioms (reflexivity, symmetry, transitivity and
substitution axioms) turned out to be insufficient as a basis for computer oriented equational reasoning.
Hence the last twenty years saw a proliferation of deduction techniques to incorporate the equality relation
somehow directly into the inference machinery. There are currently at least four research communities with
their own international conferences that support active research in equational reasoning: logic programming,
mification theory, term rewriting systems and general automated deduction. Their respective aims are to
develop:

(i) Special purpose unification algorithms for common equational axioms such as as associativity,
commutativity, Boolean rings or Abelian Groups (see [Siekmann 89] for a survey of the field
of unification theory and [Biirckert & Nutt 89] for the most recent workshop of this field)

(if) General purpose unification algorithms based on narrowing [Nutt et al 89] or decomposition
[Kirchner 87] that solve equality problems in a given class of equational theories. They are
mainly developed for logic programming with equality [Smolka et al 89].

(iii) Demodulation and term rewriting systems (see [Huet & Oppen 80] and [Buchberger 87] for a
survey and [Dershowitz 89] for the most recent proceedings of the conference in this field).

(iv) General inference rules to handle equality, usually in combination with a standard inference rule
such as resolution (standard references are: [Wos et al 67] [Morris 69] [Sibert 69] [Anderson
70] [Brand 75] [Shostak 78] [Digricoli 79] [Lim & Henschen 85], the most recent proceedings
of the conference supporting this field is [Lusk & Overbeek 88]).

This section presents a technique that integrates the second and the fourth approach with the essence of
dause graph theorem proving and summarizes our experience in mechanizing equational reasoning: During
itimespan of more than eight years, our original plans of building equality into our connection graph based
deduction system [Siekmann &Wrightson 80] changed considerably in the light of experimental evidence.

Equational axioms - or the equality literals within a clause - have been used to pursue essentially two
goals:

1. The simplification of a given state (i.e. a literal, a clause, a clause graph etc.)
2. Thereduction of the difference between two given states

We like to classify the above techniques and logical calculi that incorporate equality according to these to
criteria.
For example if an equation can be directed such that the right hand side becomes "smaller" or "simpler"

insome sense than the left hand side, this directed equation can advantageously be used in a simplification
task. Demodulation or term rewriting systems are good examples for this first approach.

The second goal rejects the indiscriminate use of equality and claims that no working mathematician
would apply an equationally represented fact, unless used directly for some purpose, i.e. only "if needed".
Inthe context of a resolution based theorem prover this observation could be technically rephrased as using
an equality axiom only for the purpose to remove the difference between two complementary literals. Both
approaches, simplification and difference reduction, have their advantages and are worthy of investigation.
However, whereas most of the current research is based with remarkable success on simplification
techniques, especially on demodulation and term rewriting, difference reduction methods have found less
attention, although they are at least as important for an automated deduction system.

The potential of difference reduction methods will be illustrated in this section.

38

4.1 Difference Reduction Methods

Among the various methods proposed within the fourth paradigm (iv), is paramodulation [Robinson &
Wos 69]: given the solution rule of inference, the equality axioms become superfluous except for the
revlexivity axiom [Rusinowitch 87].

More formally: the equality axioms

(E1) X=X (reflexivity)
(E2) X=y = y=X (symmetry)
(E3) X=y A Yy=Z = X=Z (transitivity)

(E4) Xi=y A P(x1,...,Xj,...Xn) = P(Xx1,...,¥,...Xn)
(substitution for each n-ary predicate symbol)

(ES5) Xi=y A f(X1,0005Xi5eXn) = £(X15..05Y5005Xn)
(substitution for each n-ary function symbol)

can be replaced ("built-in") except for (E1) by one rule of inference, paramodulation, as defined in the
introduction.

Although paramodulation was a substantial improvement compared to the axiomatical formalization of
the equality relation, it still leads to enormous search spaces, as this inference rule can be applied almost
everywhere in the clause space. For example the moderately difficult problem, that in an associative system
with degree two (i.e. x2 = e) we have commutativity, has an estimated space of about 1210 clauses
[Bundy 83]. Hence the application of paramodulation must be tightly controlled.

The problem is:
(1) how to represent the information upon which this control can be based and

(i) how to provide the equational reasoning system with a more goal oriented
behaviour.

The analysis of the second problem led to a technique, E-resolution, that is a particularly good
representative for the "if needed" approach.

The aim of J.B.Morris” E-resolution [Morris 69] is to remove the differences between corresponding
terms of two complementary literals (i.e. the same predicate symbol with opposite sign), such that an
inference step by resolution becomes possible. E-resolution may be viewed as a sequence of
paramodulation steps applied to two potentially resolvable literals until they are unifiable. It is then followed
by the appropriate resolution step, and intermediate clauses are discarded.

This is a generalization of ordinary unification based resolution, and is a specialization of the more
recently developed theory resolution technique of M.Stickel as defined in the introduction. Similar to the
‘'means-end” analysis in GPS [Newell et all 59], the role of equality in E-resolution is that of a "means to
an end" i.e. to produce favorable preconditions for a resolution step. Two potentially resolvable literals
could be selected by some global search strategy, followed by the search for appropriate equations, these
equations are applied if the differences can be completely removed.

E-resolution defines the cooperation between resolution and equality reasoning in general terms, but the
calculus does not actually support the achievement of its goal: there remains the difficult search problem to
find the appropriate equality steps. Since equality of two terms with respect to a given set of equations is
undecidable in general, it is impossible to continue searching for equations until the potentially resolvable
literals under consideration are definitely unifiable or not. Hence the main problem is: How to find the
appropriate E-resolution steps?

39

The search problems of the paramodulation steps necessitated by E-resolution are hard to solve and led
to the conclusion that in most cases an E-resolution step is just too large. Realizing this, V.J. Digricoli
proposed a form of partial E-resolution, which he called RUE-resolution [Digricoli 85]. Essentially his
calculus works similar to “E-resolution”, however, a deduction step is also possible if the differences
between corresponding terms cannot be removed completely. The partial unifier is applied to the literals, the
remaining disagreement pairs are computed and added as negated equations to the derived clause, similar to
D. Brand“s modification method [Brand 75].

Although this is currently the most interesting method to build in equality, there are problems: the major
one is the permissiveness of this inference rule, as now any pair of literals with the same predicate symbol
can be resolved and the burden of the deductive machinery is shifted upon the equality reasoning
component, that handles the inequalities (actually in the most cases the weakest part of a deduction system).

Just as E-resolution has nothing to say on how the particular paramodulation steps are to be found,
RUE-Resolution shifts the burden upon the inequality reasoning part and cannot say much about the
resulting search problems.

Taking this point of view, we extended RUE-Resolution in the sense that graph-based information is
available to guide the search for the appropriate equality units.

4.2 Paramodulated Clause Graphs

Our first attempt to build equality into the clause graph procedure tried to extend its essential idea to
equational reasoning and represented the potential paramodulation steps as special links (we call them "P-
links”) [Siekmann &Wrightson 80]. P-links connect one side of an equation with a unifiable subterm in
another literal. There are two problems with this approach: The first one is inherent in the properties of
equality: there are extremely many possibilities for paramodulation, and therefore extremely many P-links.
Especially equations having variables at one or both sides, as for example the injectivity {f(x)=f(y), x=y},
are connected with each subterm in the whole clause set. The total number of links can be reduced a little by
erasing links from equations into variables. It is a natural restriction because paramodulation into a variable
generates just an instantiation of the parent clause and is therefore unnecessary. The harder problem,
however is the definition of a complete link inheritance mechanism for the paramodulated literal. This literal
is no instance of its parent literal and may therefore be unifiable with a third literal which is itself not
umifiable with the parent literal. Take for instance the three clauses {P(a)}, {a = b} and {—P(b)}. After
paramodulation into P(a) we obtain P(b) which is unifiable with —P(b) and has to be connected with a
resolution link. This link can be generated using the information of the P-link connecting the right hand side
of the equation with —P(b). That means we inherit a P-link as a resolution link. This works. What does not
work 1s the mechanism for the restricted P-link set having no links into variables. As the example in figure
3-44 suggests it is necessary to generate a P-link into terms which are formed by an instantiation during a
resolution, and these links should usually be inherited from links into variables.

PR QYN ==

There are two other possibilities to get this link: Either we

yr a construct links not only into literals, but also info unifiers

wsmligsing k2~ 2 or we generally reconstruct all the 11nk§ after each- step, but

_ then we loose the bookkeeping and purity generating effect

[p=2 resolution of the link removal after an operation. Our current

implementation allows to optionally construct the links into
variables, but forbids paramodulation upon such a link.

Figure 4-1: A Link Inheritance Problem

All these problems with P-links and their inheritance have only technical character. Much deeper,
however is the problem to select a paramodulation step. Our experience with many theorem proving

40

sessions has shown that the information contained in one P-link is far too weak to make a substantiated
proposition for a paramodulation step. Except from simplifying rewrites, which should always be
performed as soon as possible, it is necessary to analyze very long paramodulation chains for getting a
good guess if they are useful or not, which we shall now present.

4.2.1 Constraints in Paramodulated Clause Graphs

Our second attempt to solve general equality problems was still based on paramodulated clause graphs,
however they were only searched for compatible combinations of P-links. A compatible combination of P-
links represents an executable paramodulation sequence, that modifies two literals such that they become
resolvable [Blisius 83]. Such paramodulation sequences can be displayed in a graph, which represents a
solution of the given problem. The following example shows such a graph:

P(f(2)

1
a=>b
(Lz
flb) = ¢
|3

—P(c)

Figure 4-2: An executable Paramodulation Sequence

However not every graph represents an executable, i.e. compatible, sequence of paramodulation steps as
the following example show:

P(a) The combination of P-links 1 and 2 in example 2 is
1 impossible because their unifiers {x - a} and {x ~ b} are
P(g(a)) ieh incompatible. In example 2 the P-links 1 and 2 are
X+ aI 1 2 incompatible, because after paramodulation on link 1, link
g(x) = f(x) f(b) = ¢ 2 cannot be inherited to the paramodulant P(b) since the
X+ b|2 |3 access depths do not coincide. An equality graph that
—P(f(b)) —P(c) cannot be executed is called incompatible, otherwise it is
example 1 example 2 compatible .
Figure 4-3: Incompatible Combinations

The problem is to find compatible graph structures. To this end certain constraints can be stated, which
are necessary but not sufficient for the compatibility of a graph and which are fast and inexpensive to test.

Some of the tested constraints are:
(1) All unifiers of the involved P-links must merge to one most general unifier.

(2) For each maximal chain of P-links in a graph the sum of all access depths must be equal to zero
and each partial sum must be less than or equal to zero.

(3) Each combination of P-links containing an incompatible substructure is incompatible too.

Practical experiments with a procedure based on the above constraint satisfaction method have shown
however, that the set of potential graphs (i.e. combinations of P-links), which have to be created in order to
test for compatibility, is still far too large, even in relatively simple examples. Especially P-links connecting
variables (to everything else) make the procedure extremely inefficient. In most natural examples taken
from mathematics the axioms contain many variables, and only the negated theorem contains Skolem-
constants which may be effectual in constraints. Since variables can be instantiated to any term, many of the
possible combinations of operations involving axioms are compatible. In termini of graph structures: most
subgraphs (combination of P-links) are compatible, only when the subgraphs are combined to the potential

41

final solution graph, is the incompatibility detected. But for subgraphs which are in fact compatible, no
constraints exist to detect an incompatibility.

The observation that such constraint satisfaction methods, albeit of great potential in artificial intelligence
and logic programming, are not particularly valuable tools for equational reasoning tasks, was called the
"Anti-Waltz-Effect” and discussed in [Blésius 86]. The main reason for the failure of this approach is the
lack of strong constraints in this application domain, which consequently do not sufficiently reduce the
search space.

As a consequence the equality procedure was modified several times, and the experimental modifications
finally led to an Equality Graph Construction procedure (EGC-procedure) to be presented in the following
paragraph, which constructs compatible graphs without ever creating the enormous set of incompatible
ones in the first place. The essential idea is this: Starting from some initial state (some graph) a sequence of
transformations is performed on each subsequent state until a compatible graph is constructed.

4.3 Equality Graphs

As it turned out the EGC-procedure incorporates and extends the ideas underlying Digricoli’s RUE-
resolution and Morris’ E-resolution, however it is based on a different form of partial unification. Let us
demonstrate the structure of equality graphs and their construction with the following example: Let E be a
set of equations

E = {g(x x) =h(x b), h(uv) =h(vu), h(ba)=£(b),b=c,c=¢}

and suppose we want to resolve upon two literals, say P(g(a y)z) and —P(f(e)b). While the second
argument of P and —P can be unified directly the first argument presents a problem. Let us concentrate
wpon the first corresponding argument terms by denoting this as our given equality problem:
<glay) =g f(e)>.

The initial equality graph for this problem can be displayed as:

where dotted lines indicate problems to be solved. The only
information in this graph is that the problem <g(a y) =g f(e)> is
yet unsolved. The main discrepancies are the different toplevel
symbols g and f, hence this difference must be removed by some
equations. Two equations in E can be combined to form a chain:
fe) g(x x) = h(x b) - h(b a) = f(b), which can be used for the
removal of this discrepancy and which is therefore inserted into
the graph:

g(a y)

g@y)

g;(x x) = h(xb) Now there are three subproblems to be solved:
<g(a y) =g g(x x)>,<h(x b) =g h(b a)> and < f(b) =g f(e)>.

leb a) = f(b) In all three cases the heads of both terms are equal, but now the
subterm may generate new subproblems, some of which are

f(e) trivially solvable. We obtain the equality graph:

42

The solid links represent solved subproblems and are labelled

Xis a * LY O=x»a with a substitution, empty substitutions are omitted. The
0=y, a Gy=xmy substitutions 61 and o7 for the terms g(a y) and g(x x) must be
g(xx) = h(xb) checked for compatibility, i.e. they must be unifiable themselves.

- il Ty=xm b The result of this unification is represented as a separate link (*)

<2 labelled with the unifier ¢ = 61 N G2, where N is the merge

b a) = 1(b) operation for substitutions (essentially the most general unifier of

two substitutions).
f(e)
Suppose we now select the unsolved subproblem b --- a: This subproblem is unsolvable, since we
cannot build a chain of equations from the given set E to connect b and a. However instead of solving b ---

2 we can create a new subproblem at a higher term level: h(x b) --- h(b a). There exists an appropriate
equation in E: h(u v) = h(v u) which is now inserted into the graph with the result:

g@y)
o= X a * G =x~a
Yo a C& =XmYy
g(xx) =,h(xb)
e
o2 1 f(uv) = h(vu) The substitution within each chain must be checked for
I —— uea compatibility and the result is again represented as a separate link.
v b 2=y 6b In our example the unit chain h(u v) = h(v u) connects the terms
h(ba) = f(b) h(x b) and h(b a), the substitutions t; and T are to be unified and
y the result is represented as the link (**), which is labelled with
%'('e) the unifier 7.

Finally the subproblem b --- ¢ is selected and the chain b = ¢ --- ¢ = € can be inserted with the result:

glay)
_XHa/ O =xma

"y»-»a_ G =XxmYy
g(x x) =,h(x b)
: _uem X
’Cl—va
X a h(uv) = h(vu)
T=uma T =UH3
v b 2%veb
h(b a) = f(b)
X~ a
ZUHa
ve b
yra Since the substitutions ¢ and T can be merged to @ = 6 N 1, the

given equality problem is completely solved.

The transformation rules that transform a given partially solved graph (a partial abstract equality plan)
into a successor graph with fewer unsolved subproblems are actually implemented as production rules, that
fire when a particular situation in the graph is encountered; they constitute a metareasoning calculus, which
can be shown to be sound and complete [Blisius 87].

43

4.4 Experiments and Results

The EGC-procedure has not been integrated in the MKRP system, but a prototype implementation for
handling pure equality problems with unit equations has been realized. We experimented with various
control strategies and implementation techniques like sharing of common subgraphs etc. [Lotz 87].

Since the EGC-procedure is a general purpose inference system whose behaviour critically depends on
control strategies, a final assessment largely depends on the state of the implementation and it is still too
early for that (see [Blédsius & Siekmann 90] for the current discussion). So let us instead collect some
impressions we have from running examples and developing heuristics. '

The method is essentially a backward reasoning procedure. It allows to exploit syntactical and structural
information about the problem to be solved, i.e. the terms to be made equal. On the other hand it has no
built-in mechanism for exploiting structural information about the axioms. Equations can still be applied in
both directions and in particular equations with variables on toplevel can be applied everywhere. Our
experiments with the standard examples from group and ring theory where typical collapsing axioms like
x1 = x occur have shown that the structural information exploited in the ordering of the equations reduces
the search space much stronger. For this kind of examples - and these are usually the examples discussed in
the literature - completion procedures are superior to the EGC-method. We have not yet been able to look at
significant examples from other domains.

Nevertheless, the solution of really hard problems requires to exploit all information available to restrict
the search space. We have found a good way to exploit information about the terms to be made equal. The
next step will be to combine this source of information with information about the structure of the axioms,
ie. to combine ECG with completion techniques and theory unification algorithms. It is here where we
expect significant results as the general representation provides a rich source of information. Furthermore
the equality reasoning method has to be integrated into the resolution calculus. That means to find ways for
handling conditional equations where the conditions may be arbitrary literals.

44

5 THE MARKGRAF KARL REFUTATION PROCEDURE

The actually implemented version of the Markgraf Karl Refutation Procedure [Karl Mark G. Raph 84]
which was finished in 1984 is in the first place a tool for investigating the potential of the clause graph
approach. However, in order to make it a useful and user friendly instrument for general ATP applications,
it contains a number of additional service modules:

Axioms INPUT Interface
Lemmas formulae | Formula Editor Options Editor

formulae || control parameters

formulae

CNF Normalization
Splitting
(] ,
clauses unsorted
T ' clauses
< propositional satisfiability test

Logic Machine

clause graph theorem prover

sorted
clauses

proof || trace

Proof Transformation 200&

OUTPUT Interface
Debug Trace

— Gentzen » NL

Figure 5-1: A Bird’s Eye View of the MKRP System

The user communicates with the system via the INPUT and OUTPUT interface. The numerous input
facilities essentially have the function to feed the system with logical formulae and control information in
form of boolean and numerical parameters which influence the proof search (see the MKRP user manual
[Beetz et al 88] for the many options that govern the search). Input to the system can of course also come
from databanks with axioms and lemmas or from other programs like verification condition generators. The
OUTPUT interface provides functions for tracing the behaviour of the system and for producing better
readable resolution (and paramodulation) proofs. A separate proof transformer which has not been
integrated into the MKRP system itself can read the resolution proofs, it constructs a refutation graph and
uses it to generate a natural deduction proof [Lingenfelder 86, 89]. In a second step this natural deduction
proof is translated into a better structured and more natural proof at a higher level of abstraction, stated at an
intermediate language, with the goal to finally translate this via a third transformation into natural language
[Huang 89].

The NORMALIZATION and SPLITTING module Skolemizes existential quantifications and transforms the
formulae into conjunctive normal form (CNF) using an algorithm which is optimized for the elimination of
equivalence signs [Eisinger & Weigele 83]. Disjunctions ¥V G with no free variables in common, trigger
case analysis. Technically this means splitting the clause set into two sets (and recursively into more), one
containing ¥ and the other one containing G. Simple propositional simplifications like v F— Fand others
are also executed during the CNF normalization. After a propositional satisfiability check (where the

45

predicates” arguments are ignored) with a Davis Putnam procedure, the generated clause sets are finally
submitted to the logic machine.

Since all states of the transformation can be dumped on to files, other programs can manipulate these
files before they are further processed by the MKRP. One such program is a prototype implementation of
Manfred Schmidt-Schauss” sort generation algorithm SOGEN [Schmidt-Schauss 88]. SOGEN takes unsorted
or partly sorted clauses and transforms - if possible - unary predicates into sort relationships of the ZRP*
calculus. Automatic generation of sorts is helpful for proof problems generated by some application
programs or when more sorts have to be introduced than the user is willing to define by himself. A sort
structure representing the powerset of some finite set is an example where the number of sort symbols may

explode.

Conversion of a unary predicate P into a sort Sp is only possible, when for every term t = f(x1,...,Xp) it
isknown whether P(t) or —P(t) holds. If for some term of this kind this information is not available at the
beginning, but can be deduced, monitoring the proof search could enable further sort conversions. At the
time being this is only possible by manually stopping the search, writing the current state on a file and
invoking SOGEN. Automating this kind of metareasoning, however, is only a technical and a manpower

problem.

5.1 The Architecture of the Logic Machine

The kernel of the MKRP system is a clause graph theorem prover. Since the design of the systems was
developed before the theory resolution idea and the corresponding clause graph version came up, the
actually implemented clause graphs admit only binary links (there is currently new implementation under
way, that will eliminate this shortcoming).That means only finitary theory resolution algorithms and
theories generated by two-literal clauses can be incorporated. We distinguish four main types of links, three
of them are direct subtypes of binary I-links, the fourth type are P-links for supporting paramodulation.
The three subtypes of I-links are R-links (Resolution links) connecting contradictory literals, S-links
(Subsumption links) connecting a literal with an implied literal and T-links (Tautology links) connecting
literals whose disjunction is tautologous. (For free literals, i.e. Robinson unifiable literals, R- and T-links
are always parallel in the initial graph.) All links are labelled with sets of unifiers. Each link type is further
divided into an external type connecting literals in different clauses and two internal types, one for
connecting directly unifiable literals and the second one for connecting weakly unifiable literals.

R-Links S-Links T-Links
=Py | [a>Db] =] [a2b]
ya x~ b ym a Xp b

Figure 5-2: Link Types in the current Version of the MKRP System

46

Besides general datastructure modules for representing the elements of clause graphs and a unification
module the logic machine contains 7 active modules:

CONTROL

-

CONSTRUCT Two REDUCTION OPERATION SELECTION

v

TERMINATOR

Datastructures Unification

Figure 5-3: Module Structure of the Logic Machine

The CONSTRUCT module, as the name already suggests, constructs a clause graph from a set of clauses
by inserting the clauses one by one into the graph and creating the links of the various types.

The TWO module realizes the link resolution operation (cf. chapter 3.3.1.4) for clauses with two literals
by turning such clauses directly into link construction algorithms. That means we do not generate links to
these clauses and then resolve them pairwise, but we generate the theory links directly.

The REDUCTION module performs most of the redundancy removing reductions mentioned in chapter
34, in particular purity removal, clause and link tautology, clause and link subsumption, link
incompatibility checks, subsumption factoring, subsumption resolution and generalizing subsumption
resolution.

The OPERATION module actually executes the resolution, factoring and paramodulation steps. It creates
the new clause and inherits the links.

The SELECTION module selects the next deduction and reduction operation to be performed. It may call
the TERMINATOR module for fast unit refutability checks.

The CONTROL module, as the name suggests, controls the interaction of all operations.

In the following sections we take a closer look at the key modules in the system.

5.1.1 The CONTROL Module

The CONTROL module controls the interaction of all operations. We distinguish two phases, the
initialization phase where the graph is constructed, and the deduction phase where the search for the empty
clause is performed.

The initialization phase:

while new input clauses are available:
select among those a clause with smallest number of literals
if it is a non self-resolving clause and the corresponding option is set by the user
then turn it into a link construction algorithm (call the TWO module)
otherwise insert it into the graph (call the CONSTRUCT module) and
reduce as long as possible (call the REDUCE module),
but skip purity and link incompatibility reductions.
After all clauses are inserted, do all possible purity and link incompatibility reductions.

47

Instead of first integrating all input clauses into a clause graph and then reducing this initial graph, we
start from the empty graph and insert new clauses one by one, applying reduction rules after each insertion.
This organization helps to keep the graph smaller: if a literal disappears, so do all its links; if it disappears
before the insertion of later clauses, its links to these later clauses (which would afterwards disappear
anyway) are not computed in the first place. The selection of the next input clause to be inserted is by
increasing number of literals, because shorter clauses are more likely to subsume others. The link
construction and initial reductions of a single clause are split into two subphases. First of all internal links
are created, clause tautology and replacement factoring reductions are performed, and then the remaining
links are constructed and the missing reductions follow. This avoids creating links for clauses or literals

which are removed in the next step anyway.

The deduction phase:

while empty clause not reached (and no other termination condition satisfied)
select an applicable deduction operation (call the SELECTION module),
create the corresponding clause (call the OPERATION module),
select a corresponding reduction operation (call the SELECTION module again) and
execute the reduction operation (call the REDUCTION module).

After creating a clause in the deduction phase, all reduction rules could in principle be applied
atomatically to the graph. It has, however, turned out to be more efficient to control the reduction
operations explicitly by the selection module. The reason is that in some cases whole chains of operations
are precomputed, for example in the TERMINATOR module, and have to be executed before any reduction
should take place. Other strategies, in particular rewriting, require, if not performed destructively, the
explicit deletion of clauses. Therefore the system can tell the REDUCTION module explicitly “delete this
clause or link and follow potential snowball effects” or “apply all reduction rules to this particular clause”
¢ic.

Besides the appearance of an empty clause, other termination criteria for the the deduction phase are
resource limitations, collapse of the graph, the absence of a clause with only negative literals and a clause
with only positive literals. The existence of a positive and a negative clause is a necessary condition for the
unsatisfiability of the clause set.

5.1.2 The TWO Module

The TWO module turns two-literal clauses which are not self resolving, i.e. which have no internal R-
links, into link construction algorithms for the corresponding predicates [Dixon 73, Ohlbach 83,
Weigele 85]. A clause for example is turned into an algorithm: “create R-links between
literals =P (s ") and —Q(t"), create S-links between literals —P(s”) and Q(t") as well as between literals P(s")
and —Q(t") and create T-links between literals P(s') and Q(t), always if s,s” and t,t” are simultaneously
unifiable”. These clauses need not be inserted into the graph because their semantics is completely
represented in the augmented link structure. All resolvents between these two-literal clauses, however, have
to be created and either inserted into the graph or also turned into link construction algorithms. If there are
infinitely many resolvents, they are created up to a certain level and the last level is inserted into the graph
and not turned into link construction algorithms.

Since the theory links for the two-literal clauses are created already in the initialization phase when the
graph is constructed, reduction operations may benefit from them even before the graph is completed.
Carefully applied, i.e. applied only when there are not too many resolvents between these two-literal
clauses themselves, this facility flattens the search space and therefore increases the power of the reduction
algorithms and the look ahead potential of the link selection heuristics considerably. In other cases,
however, it slows down the search by increasing the number of links in the initial graph exponentially.

48

5.1.3 The REDUCTION Module

The Reduction module performs most of the redundancy removing reductions mentioned in chapter 3.4
in particular purity removal, clause and link tautology, clause and link subsumption, link incompatibility
checks, subsumption factoring, subsumption resolution and generalizing subsumption resolution
[Pricklein 85, Eisinger et al 89]. What has not yet been implemented in the current version is the removal
of redundant instances of clauses and links.

The interaction between the various reduction rules is quite complex. The application of one reduction
rule may cause the applicability of another reduction rule that could not be applied before. It may, however,
also destroy the applicability of another reduction rule that could be applied:

replacement
resolution &

"%, subsumption

R |-P] R |-P
P[Q Plo|

Figure 5-4: Non Confluence of the Reduction Operations

Assuming some further clauses that prevent purity but do not enable additional reductions, the
application of either of the two competing reduction rules inhibits the other, and both of the resulting graphs
are irreducible. The system defined by our reduction rules is Noetherian, but not confluent . That is,
regardless of the order in which reduction rules are applied, an irreducible graph will always be reached
after finitely many steps; however, different orders may result in different graphs.

So how do we select the next reduction step if several rules are applicable? In the example it would be
better to select subsumption instead of replacement resolution, because that leads to a smaller irreducible
graph. Unfortunately there are equally straightforward cases where it is just the other way around. There is
no general criterion to find the smallest irreducible graph short of trying all sequences of rule application.
But we have to keep in mind that reduction is a secondary operation taking place after every single
deduction step. Its purpose is to make the graph smaller, and that’s just what it does in any case. It would
not seem wise to spend too much effort after each deduction step, just to avoid the possibility of suboptimal
reductions.

Therefore we define a fixed precedence of the reduction rules based on a means-end-analysis that takes
into account, for each rule, the cost for testing its applicability, the likelihood of its being indeed applicable,
and the potential benefit from applying it [Pricklein 85]. Most of the estimates for these values were
determined empirically (some of the factors are obvious, though: the benefit from removing an entire clause
together with all its links is higher than the benefit from removing a single link.). The resulting precedence
is as follows: '

1. merging of equal literals 6 subsumption factoring

2. purity removal 7. subsumption resolution

3. tautology removal 8. removal of tautology links

4. subsumption 9. removal of incompatible links
5. literal evaluation 10. removal of subsumed links.

49

The whole reduction process is controlled by an agenda with entries of the form (rule, object/s) standing
for the task “test whether the rule is applicable to the object/s, and if so, apply it”. When a task is created, it
is inserted into the agenda according to the precedence of the rule (in fact some more criteria influence the
position of a task in the agenda; also, the precedence is not absolutely fixed but can be changed; see
[Pricklein 85]). It is always the first task in the agenda that is executed. If the test succeeds, the
corresponding rule is applied to the given object/s, and the current task creates new tasks which are inserted
into the agenda before execution of the next task. The new tasks contain the information as to which rule
might be applicable to which objects as a consequence of the current rule application. In order to determine
these new tasks, a matrix is used that encodes the possible chain reactions and has the following

(simplified) shape:

An entry in a cell of the table means that the

= application of the rule in the associated row
%” = may cause the applicability of the rule in the
g 2 corresponding column. An asterisk says that
8| - = | & the rule becomes applicable to objects that
| S % g g were adjacent or incident to the removed
%‘) ElEl .2 g8 one, the circles denote the applicability to the
E1lCIE: ‘g’ 5 e § changed objects themselves. If a rule
Ao | A&l S~ becomes applicable due to replacement
Tautology * resolution, but only with generalization, this
Link Tautology * is indicated by shadmg the circle. The table
- " can be refined to take into account that some
Subsumption rules like subsumption and replacement
Purity * resolution are oriented: only one of the two
Merging Ol * objects ipvolvcd is removed or changed.
- The matrix can also be extended to cover the
Replacement Factoring O * : : 5 ;
various link conditions.
Replacement Resolution O O

Figure 5-5: Potential Chain Reactions

Similar information is required to determine the tasks after a deduction step. Only newly inserted clauses
and links can be tautologous or can be subsumed. The only possible replacement resolutions are those on
the R-links connecting the new clause with the rest of the graph. The analogue holds for replacement
factoring and SI-links. Any new subsumptions from the new clause back into the graph are indicated by

new S-links.

This organization works sufficiently well and is rather flexible, as long as changes to the set of reduction
rules are rare. The disadvantage of the scheme above is that each rule has to know about all other rules. If
reduction rules are added or removed, one has to make sure that the matrix always reflects the actual rule
set. Meanwhile we think that it might be better to trigger the creation of tasks not by rule applications, but
by changes in the graph. For example, a purity can be caused by the removal of a link, regardless of the
reason why this happened to the link. An object oriented approach seems to be most appropriate for such a
new organization of the control.

50

5.1.4 The TERMINATOR Module

Todays logical calculi for mechanical deduction may be classified into those that start with a given set of
logical formula and create new formula by the application of certain rules like resolution, paramodulation or
by natural deduction rules until the theorem (forward reasoning) or a refutation (backward reasoning) has
been derived.

More recently calculi of a different kind, like Andrews’ matrix calculus [Andrews 68] or Bibel’s
connection method [Bibel 81] have been developed, which initially do not deduce any new formula, but
only test certain path conditions ensuring satisfiability or unsatisfiability of the initial formula set. Only if
this test fails, may the need arise to copy some formulas. The clause graph proof procedure in its original
formulation is of the first kind: A deduction is performed by the selection of a link, creating the
corresponding resolvent, inserting it into the graph and deleting the selected link.

This proof procedure can be transformed into a calculus of the second kind using an idea originally
proposed by S.Sickel [Sickel 76]: instead of adding resolvents to the graph, the search for a proof is
essentially done on the initial graph by "walking along" the links until a refutation has been found, thus
"unrolling the graph".

The method realized in the TERMINATOR module is very much in that spirit, but used for a special -
albeit important - case only: If the clause set is unit refutable, i.e. the empty clause can be derived by
successive resolution steps with one parent a unit, the clause graph has to contain a refutation tree or
terminator situation (i.e. a special subtree), which just represents this chain of unit resolutions.

LI 1 Jd 1]

a) one level situation b) two level situatiton c) three level situation

Figure 5-6: “Terminator” Situations

Every box in figure 5-6 represents a literal, a string of boxes is a clause and complementary unifiable
boxes (literals) are connected by a link. If all unifiers attached to the link in figure 5-6,a are compatible, this
represents a one-level terminator situation, since it immediately allows for the derivation of the empty
clause. Similarly figure 5-6,b represents a two-level terminator situation (since its kernel is a one-level
terminator situation). Figure 5-6,c is a three-level terminator situation, since its kernel is a two-level
terminator.

Now every unit refutable clause set is characterized by this topological structure embedded into the
corresponding clause graph. It is a tree with unit clauses as leaf nodes and the other nodes being non unit
clauses. Links 1,2 and 4 in figure 5-7,a represent such a refutation tree. Three successive resolutions with
these links (or rather their descendants by inheritance) will generate the empty clause. Links 1,3 and 4 do
not constitute a refutation tree because the unifiers are not compatible. (Link 1 and 4 require the variable x
to be instantiated with 'a’ whereas link 3 instantiates x with 'b'.) Thus, the compatibility test for the unifiers
has to be an essential part of the refutation tree extraction algorithm. A more complicated situation is shown
in figure 5-7,b, which is particularly hard to detect, as it is usually embedded into the rest of the graph.

51

[=Q®)]

X b
3
@ PO QWREH > =@ |
X a
2
—Q(a)
a) b)

Figure 5-7: More Terminator Situations

The following important result is known about refutation trees [Harrison & Rubin 78]: A unit refutable
clause set is unsatisfiable if there exists a refutation tree for its factored set.

As every successful search for the empty clause must reach a point where the remaining problem is unit
refutable, (at least the very last step must be a resolution step between two unit clauses.), we know the
TERMINATOR will eventually succeed.

Of course the knowledge of the existence of such a refutation tree is of little practical use, unless a fast
method for extracting it from a given graph is known. An exhaustive and unsophisticated search for such a
terminator configuration is prohibitively expensive in large graphs, hence an efficient extraction of a
refutation tree (if it exists) had to be developed.

The first attempt to implement an N-level terminator algorithm used a recursive technique [Blésius et al
81]: A non-unitclause C was selected and examined for a one-level situation. if the first test failed, the
algorithm was called recursively for other non-unitclauses connected to C, trying to find a chain of units to
resolve away all literals except the one connected to C. Now the one-level test for C was performed once
again taking advantage of this new information.

The enormously positive effect of this algorithm came somewhat as a surprise and considerably
enhanced the strength of the system, but unfortunately the algorithm itself was rather inefficient, because no
result of former search steps calls could be reused. Therefore the same part of the clause graph had to be
examined again and again and only the N = 2 case was ever within practical limits.

Whereas the old algorithm worked from inside the refutation tree to the leaf nodes (unit clauses), our
current algorithm works just in the opposite direction and stores every information it once generated for
later use. In particular it exploits some special properties of the unifiers attached to the links and is now
capable to examine millions of resolution steps in a reasonable amount of time.

The TERMINATOR component of the MKRP-system is used in two ways: first it acts like a simple and
fast theorem prover and is activated for clause sets which are known to be unit refutable. Horn clause sets
and Horn renamable sets [Lewis 78] are typical examples. Secondly it is used to overcome the problem that
the selection functions have the very limited horizon of a few steps ahead, since the computation af a further
n-level look ahead for n = 2, is prohibitively expensive and often outweighs the advantage. The
TERMINATOR acts as a bottom-up techniques, which checks at tolerable cost if there is a proof within a
predefined complexity bound. This use is the no-loop-requirement of [Sickel 76] and is akin to the n-level-
look-ahead heuristic proposed by [Kowalski 75] and really constitutes a bidirectional search: the normal
operations on the graph essentially constitute a topdown search, whereas the TERMINATOR is essentially a
bottom-up search routine.

The implementation of the terminator algorithm has considerably increased the performance of the
MKRP-system. Some very difficult examples other systems have not been able to solve until now or have
serious difficulties which could be solved by our system because of this interaction between the top-down

52

and bottom-up approaches [Ohlbach 82], [Ohlbach&Wrightson 84]. A more detailed description of the
TERMINATOR can be found in [Antoniou&Ohlbach 83].

5.1.5 The SELECTION Module

The real “intelligence” of an automated theorem prover is in its control facility for determining the next
deduction step. Pure resolution theorem provers usually do brute force search within the boundaries of
certain strategies, or filters, like set-of-support, unit-resolution, linear resolution etc. The search may
further be ordered by preference operations according to some complexity measures like the size of terms
and clauses. In the clause graph environment traditional filters can very easily be realized by declaring links
active or passive and blocking operations on passive links. By an appropriate setting of the active-passive
switch every traditional filter can be simulated. Seen from this point of view a traditional filter acts like a
cone of light that illuminates certain parts of the graph and shades those that are (hopefully) irrelevant for a
proof - and it is a comforting fact to know that if the filter is complete, the shaded parts are at least
theoretically irrelevant.

On the other hand it is a well known fact that the shaded parts of blocked resolutions represent “garbage
and gold” alike: hence the strategic information of the system overrides the information of every initial
setting of the filter. Only if nothing better is known does it take the filter information into account and acts

like a traditional theorem prover.

In contrast to the global search strategies and global heuristics some heuristic selection criteria are based
on local structural information about the graph and the resolvent (paramodulant) respectively. Initially we
experimented with about 20 different heuristic features, where every feature attaches a certain value to every
link in the graph. The problem is that although each heuristic feature has a certain worth, the cost of its
computation can by far outweigh its potential contribution. Also it may not be independent of the other
heuristic features and there are the problems of finding an appropriate metric for each feature and to decide
upon their relative worth in case of conflict with other features.

Originally the information contained in the heuristic features was entered in two different ways: certain
facts, e.g. decreasing size of the graph, had absolute priority over all other information. Most of the
information of the other features however was expressed as a real number in [0,1], where we experimented
with several linear and nonlinear metrics [Bldsius et al 81]. This information was then entered in a weighted
polynomial and the resulting real number (the priority value) expressed the relative worth of the particular
link and was attached to each link.

The system had been designed such that heuristic features could easily be added and deleted and after
more than two years of experimentation the system stabilized with the following set of features:

1. Complexity of the Graph
- number of added clauses
- number of added links
- number of removed predicate symbols

2. Complexity of the deduced clause
- depth of the clause in the search space
- number of literals in the clause
- term complexity of the clause
- degree of isolation of the clause,
i.e. chance to produce a pure literal after further link deletions

3. Complexity of the parent clauses
- degree of isolation of the parent clauses,
i.e. chance to produce a pure literal after further link deletions.

53

The weights of the polynomial could be determined by the user. Although there was a default setting
which was sufficient for simple examples, the user had to experiment with these parameters quite a lot in
order to solve more complex problems.

Heuristic assessment of links with weighted polynomials seemed to be very natural for the clause graph
procedure. Eventually, however, it turned out that its disadvantages outweigh its advantages. The
disadvantages are:

- The computation of the polynomials is very expensive. Since some of the features depend on
the local structure of the graph, i.e. on the other links connected to the same clauses as the
given link, its heuristic value had to be recomputed each time a new link is attached to the
clause. That means that in general after each step all active links have to be assessed again.

- The isolation features, i.e. resolvent isolation and parent isolation, which are intended to
provoke purity deletions are significant only for graphs with many different predicates and few
links per clause. But these examples are in general trivial anyway. The complex examples,
however, are those with dense graphs, i.e. many links per clause; and in this case purity rarely
occurs.

- The proper choice of the weights was very difficult for an unexperienced user. If you need 10
trials until you have found a successful parameter setting, you cant really say that the proof
was found automatically.

In order to overcome these difficulties we finally came up with a new control structure which does not
need any user intervention at all and shows an even better performance than the old heuristics. This control
structure was implemented in the SELECTION module. It is realized as a production system. The conditions
of the production rules are characteristic patterns in the graph and the actions are sequences of resolution,
factoring and paramodulations followed by applications of reduction operations to particular parts of the
graph. The production rules are applied in a fixed order, but the action part of each rule may contain
applications of other rules.

We describe the production rules in the order they are applied.

UNIT-CONFLICT
Condition: There are two unit clauses connected by an R-link.
Actions: Create the empty clause and stop.

TERMINATOR-1
Condition: There is a one-level terminator situation, i.e. there is a non-unit clause whose literals
are connected to unit clauses via R-links with compatible unifiers.

Actions: Execute the sequence of unit resolutions and stop.

FACTORIZE
Condition: The factoring option is set by the user and there is an active SI-link.
Actions: Create a factor and reduce it immediately.

REDUCTIONS

Condition: One of the following conditions holds for an R-link:
- both parents become pure
- the resolvent subsumes the parent clause
- one parent clause becomes pure and the resolvent is shorter than this
parent clause.
- the resolvent becomes a unit clause by merging.
Actions: Create the resolvent and reduce it immediately

54

ELIMINATE
Condition: An equation f(x1,...Xp) =t where f does not occur in t has been deduced
Actions: Eliminate all occurrences of f by successive paramodulations.
Reduce all modified clauses afterwards.
MERGING
Condition: A resolvent becomes smaller than its smallest parent clause.
Actions: Create and reduce the resolvent.
TERMINATOR
Condition: There is an n-level terminator situation (n is determined by the user).
Actions: Execute the sequence of unit resolutions and stop.

TERMINATOR-UNITS
Condition: The corresponding option is set by the user.
Actions: Create all unit clauses the TERMINATOR module has found during its search for an n-
level terminator situation.
Reduce all created unit clauses.

STRATEGIES
Condition: None
Actions: Select an active R- or P-link with minimum heuristic value according to the following

formula:
2 = depth_in_the_search_space + 3 = length_of_resolvent/paramodulant

The following basic strategies are available:

BASIC All R-links are activated
SET-OF-SUPPORT All R-links connected to clauses in the set of support are activated.
LINEAR All R-links connected to the latest generated clause are activated.

P-links are activated according to the same rules as for R-links. Further restrictions can be imposed on P-
link selection by the following paramodulation strategies:

COMPLETION Knuth Bendix completion is simulated

ONCE ONLY Each unit equation paramodulates only once into another unit equation.

There is a very important feature hidden in the notion “length of the resolvent/paramodulant”. Since
clauses may become shorter by merging of literals, replacement factoring and replacement resolution, it is
almost impossible to anticipate the length of a new clause. A clause C, for example, may be reduced by
itself, it may cause the reduction of a clause C; which may trigger reduction of a clause C, which may
cause reduction of C again, i.e. there may be snowball effects and cycles of literal deletions in the graph.
For the function that computes for a link the length of its resolvent or paramodulant it would be too
expensive to follow all of these snowball effects. A compromise which works quite well is to estimate the
size by considering only literal merging, replacement factoring and replacement resolution with a single unit
clause.

Since the conditions are in general quite complicated and costly to test, it is not possible to check all
conditions at once and then select among the applicable production rules. Only for very few examples this
turned out to be a disadvantage, but it never caused complete failure. It should further be noted that a
monitoring mechanism allows to check the conditions of each rule only for the part of the graph which has
been changed since its last invocation.

55

6 EXPERIMENTS AND RESULTS

Over the many years we worked with the MKRP system we experimented with almost every example
published in the literature as well as with problems generated by verification condition generators for
PASCAL and FORTRAN. Furthermore we made three systematic studies of the performance of the system.
The first one was to compare our system with the eight different proof procedures, Minker and Wilson
have investigated in a comparative study of the the University of Maryland [Minker & Wilson 76]. 66 of
the 87 examples were proved with the MKRP by unexperienced maths students with very little help from
the experts [Biirckert et al 83].

The MKRP system was also used to prove the theorems of some textbooks. As an assignment the book
by R. Smullyan “What’s the name of this book?”” [Smullyan 78], which contains a fair selection of logical
puzzles, was given to a group of students. Within one term they were able to code and prove the whole
book (except for a few cases that were not really intended for a deductive solution.)

The main testbed, however, was a textbook on automata theory: P. Deussen “Halbgruppen und
Automaten” [Deussen 71], which gives a nice algebraic treatment of automata theory. The book is divided
into three sections and we were able to prove every theorem in the first section (a little more than a third of
the book).

From the experiences with these examples, which come from quite different areas, we think we are able
to assess

- predicate logic as a language for representing mathematical and logical knowledge,
- the resolution calculus as an inference mechanism '

- the clause graph approach

- our way for manipulating clause graphs and guiding the search.

6.1 Assessment of Predicate Logic for Representing Mathematical Knowledge.

Except for equality, predicate logic generally has no built-in concepts and no structuring mechanism. That
means for example in order to prove 3+3 = 6 one has to axiomatize natural numbers with the Peano
axioms, axiomatize addition and apply a number of paramodulation steps to transform the term
+(s(s(s(0))), s(s(s(0)))) into s(s(s(s(s(s(0)))))). The argument that frequently occurring axioms and
lemmata like those for numbers or set theory could be kept in a library and automatically loaded when
necessary is not really to the point. The real problem is that with this method all problems, trivial problems
like adding two numbers as well as the problem to find the key idea for proving the theorem at hand, are
on the same level. And that means for the designer of a theorem prover the impossible task to find a
uniform mechanism which solves problems of all degrees of difficulties with the same efficiency. It is,
however, hardly possible to find a single strategy or heuristic which guides a theorem prover in, say,
proving Fermat’s last theorem with the same certainty as adding two numbers.

To overcome these problems, we think two measures are necessary. First of all, frequently occurring
concepts like numbers, lists, sets, but also algebraic properties like associativity, commutativity, symmetry
etc. have to be built into the predicate logic and the resolution calculus in order to free the global search
control from the simple algorithmically solvable problems. Sorted logics as a representation of simple set
relationships and theory unification as an operationalization of algebraic properties of function and predicate
symbols are a first step. Sorts helped in encoding logical puzzles from Smullyan’s book [Ohlbach &
Schauss 87], but for real world examples with more complex statements about sets, sorts are too weak.
Built-in arithmetic is absolutely necessary for solving any nontrivial verification condition, but of course
also for algebraic problems, where numbers are used for example in indices and the like.

56

The second measure is to develop a better input language which allows to represent statements at a much
higher level of abstraction as well as heuristics for choosing the right axiomatization for the problem at hand
and for breaking down complex problems into smaller ones. For making the MKRP system prove the
theorems in the automata book, for example, we had to experiment with various versions of
axiomatizations and in particular we had to break down manually even relatively simple theorems into
several subproblems. The rules for preparing the problems for submitting it to the theorem prover were
sometimes purely syntactical, usually domain dependent and quite often model oriented.

Because of these difficulties we stopped the experiment with the automata book and started the
development of more appropriate tools. As a first step a mathematical knowledge representation language
was developed and the concepts, definitions and the general knowledge that is required to prove the
theorems in R. Artin “Galois theory” [Artin 42] were represented in this language to test its adequacy. The
final evaluation of this new line of enterprise however may have to wait for some time to come, as we need
more experience in how to use this mathematical knowledge in guiding the search.

6.2 Assessment of the Resolution Calculus as an Inference Mechanism

There are at least two objections against the resolution calculus: it needs the unnatural and potentially
explosive conjunctive normal form; and it is a purely syntactical rule and therefore too lowlevel for
reasoning about complex mathematical concepts.

To avoid the potential explosion of literals during the transformation into clause form resolution calculi
for arbitrary formulae have been developed [Murray & Rosenthal 87]. We tend to think that this is in
general not worth the effort (there may be special situations, where it is important), because

- there is a linear transformation algorithm which avoids the duplication of literals by introducing
artificial predicates as abbreviations for complex formulae,

- reduction operations, in particular tautology and subsumption deletions are absolutely essential
for solving any nontrivial problem. In particular subsumption algorithms are already quite
expensive for clauses [Gottlob & Leitsch 85]. They are almost impossible for arbitrarily
structured formulae.

- The real hard problems do not come from the duplication of literals, but from the distribution of
terms in the clauses. There are clause sets with 5 literals in total (typically in the implication
calculus), requiring hundreds of resolvents in the proof. The additional mechanisms in
nonclausal resolution methods do not help at all to solve these problems.

For the removal of redundancies introduced by duplication of literals, the reduction operations we
integrated in the MKRP system turned out to be quite effective. A remarkable case of this kind is the
“challenge problem” suggested by Peter Andrews during the fourth workshop on automated deduction in
1979. The problem is to show the validity of the formula

([IxxVy (PEx) = Py)] < [@xQx) & (VyP(y)])
(=
([I=HVyQx) = Q)] <« [@ExPXx) < (Vy Q) 1)

with a resolution system. Because of the deep nesting of equivalences this formula results in a rather
sizable clause set containing 128 eight-literal clauses (actually a straightforward conversion is more likely to
produce 1024 clauses; Markgraph Karl’s conversion algorithm avoids certain redundancies in handling
equivalences). The total clause graph for these 128 clauses contains about 30,000 links, which does
represent a challenge for any selection component. When we applied the reduction rules right after each
insertion of a clause during the initialization loop, the actual graph never exceeded a size of 20 clauses and

57

1153 links. After insertion of the 125th input clause the empty clause was derived, and the deduction loop
was not even activated.

The objection against the syntactical nature of resolution can partly be invalidated by using theory
resolution, i.e. incorporating the semantics of special symbols into theory unification and special purpose
resolution algorithms. But still, general inference rules like resolution or even theory resolution are too
lowlevel for solving really hard problems. Advanced methods for structuring mathematical knowledge and
manipulating it on a more abstract level as well as model based reasoning are certainly necessary.

6.3 Assessment of the Clause Graph Appraoch

The clause graph datastructure contains valuable explicit information about the structure of the problem to
be solved. The various reduction algorithms and selection heuristics can use this information for removing
redundancies and guiding the search, most of them would be unfeasible without having access to this extra
information.

Maintaining the links however is very expensive, for many examples too expensive. We were never able
to keep more than about 200 clauses and about 20000 links at a time. That means clause sets with little
internal structure, dense graphs and with few obvious redundancies are not very suitable for the treatment
with clause graph resolution. Their search space is unstructured and has to be explored by generating
sometimes thousands or even millions of clauses. This is impossible with clause graph resolution.

The literals in the resolvents and the inherited links are essentially instances of the original ones and
therefore their explicit generation introduces new redundancies which may become predominant to the extra
information they contain. In particular our experience with the TERMINATOR algorithm which does not
generate any resolvents explicitly, but works on the initial graph, has shown that this kind of operation on
clause graphs can speed up the search by many orders of magnitudes compared to cg-resolution with
explicit generation of resolvents.

Therefore our conclusion is: the clause graph datastructure with R- and S-links is an excellent basis for
all kinds of algorithms in the theorem prover. The search for the refutation, however, should avoid the
explicit generation of resolvents as far as possible. (Parallelizing clause graph resolution would not be of
much help either if it only speeds up the process of filling the memory with clauses and links.)

Paramodulated clause graphs with P-links for equality handling on the other hand turned out to be a
blind alley. There are simply too many P-links and the heuristics based on P-links are much too
shortsighted to solve any significant equality problem. It is too early for a final evaluation of our current
developments for equality reasoning.

6.4 Assessment of our Way to Manipulate Clause Graphs

Tests with hundreds of examples have shown the following overall behaviour: The reduction operations are
powerful enough to reduce the given problem very quickly to the hard kernel. Many examples (including all
proposition formula sets) can therefore already be solved during the initial reduction phase. If the remaining
kernel problem is unit refutable it is mostly solved by the TERMINATOR module, if not, there is a class of
examples where a pulsation of the graph can often be observed that is caused by some relatively blind
resolution steps, followed by a sequence of reductions after the “right” clause has been created. It is quite
possible, but scarcely necessary, to make hundreds of deductions without too much growth of the- graph.
Although each step is relatively expensive and hence the LIPS rating (logical inferences per second) is
rather low, the system penetrates deeply into the search space because large parts are pruned very early. For
this class of examples we can say that the system really behaves like a human mathematician. It finds quite
straightforwardly a successful path through the search space, without generating millions of alternatives.

The following table which compares the behaviour of the MKRP system with the results of the Minker
and Wilson study confirms the goal directed behaviour of the system.

58

Maryland Refutation Procedures MKRP
NOC-P NOC-G NOC-P/NOC-G NOC-P | NOC-G|NOC-P/NOC-G

ANCES|] 19 18 62 943 306 .019 7 7 1
BW 3 19 21 63 2585 302 .008 8 16 .5
Prim 21 20 89 221 236 .09 12 27 44
Wos 3 7 17 17 154 412 .045 3 3 1
Wos 7 13 12 241 244 .054 .049 9 10 .9
Wos 8 12 12 210 360 .057 .033 6 9 .67
LS-17 20 14 98 1203 204 .011 4 7 57
LS-21 12 12 252 684 .048 .018 7 12 58
LS-35 14 14 335 1521 .042 .009 6 9 .67
LS-65 17 17 48 880 354 .019 11 58 .19
LS-115}| 13 13 20 227 .65 .057 i 11 .63
LS-121 | 31 536 .058 12 30 4

NOC-P = Number of clauses in the proof

NOC-G = Number of clauses generated

The table is to be understood as follows: the first column gives the name of the set of axioms in [Minker
& Wilson 76]. The next three columns quote the findings of Minker and Wilson, where the figure in
brackets gives the value for the worst proof procedure among the eight tested procedures and the other
figure gives the value of the proof procedure that performed best. The final three columns give the
corresponding values of the MKRP system. To give some more findings for more difficult examples:
Argonne’s new OTTER theorem prover generates 5041 clauses for proving Sam’s lemma (using UR-
resolution) whereas the MKRP system generates only about 190 unit clauses. The proof needs 19 UR-
steps.

These numbers are the statistical corroboration of the first two claims put forward in the introduction: it
is indeed possible to build a theorem proving system, that it will display an active and directed behaviour
and it will not generate a search space of many thousands of irrelevant clauses, but will find a proof with
comparatively few redundant derivation steps.

There is however another class of examples, where the graph explodes after a few steps and there are no
reductions which cause shrinking of the graph to a manageable size. For this class, as already mentioned
earlier, the explicit generation of resolvents and links is a serious disadvantage.

To Summarize our Conclusions:

A “next generation theorem prover” has to consist of two levels. The lowlevel part should be based on a
logic with as many built-in concepts as possible. The calculus should be theory resolution, but with
different cooperating theories. This is a very general scheme which covers all kinds of special purpose
algorithms. Clause graphs (with theory links of course) are the right datastructure, but explicit generation of
resolvents should be avoided.

The highlevel part has to represent mathematical knowledge, factual as well as heuristical, in a more
abstract and domain dependent way. It should be able to break complex problems down into smaller pieces
which can be handled by the lowlevel part. In order to eventually achieve the performance of a human
mathematician, we think that the only way, and therefore the greatest challenge, is the development of
model based guidance for the theorem prover.

59

ACKNOWLEDGEMENTS

The following people were fully employed for a certain period of time in the MKRP-project:
Susanne Biundo, Karl-Hans Blésius, Hans-Jiirgen Biirckert, Norbert Eisinger, Alexander Herold, Thomas
Kdufl, Manfred Kerber, Christoph Lingenfelder, Axel Pricklein, Manfred Schmidt-Schauss, Rolf Socher-
Ambrosius, Peter Szabo, Eva Unvericht, Christoph Walther.

The following students participated in the development of the MKRP-system (by their diploma thesis, as
part time employees or by some software project): Gregor Antoniou, Michael Beetz, Susanne Daniels,
Hartmut Freitag, Dieter Hutter, Birgit Hummel, Jiirgen Klug, Peter Kursawe, Gert Mischke, Gerd
Smolka, Michael Tepp, Volker Umlauf, Ingrid Walter, Martin Weigele.

We like to thank all of them: without their unfailing enthusiasm and complete support that extended more

often than not, till late in the night, a project like this would have been impossible.

References and Bibliography of the MKRP Project

Anderson 70 Anderson, R., Completeness Results for E-Resolution.
Proc Spring Joint Conf., pp. 653-656, 1970.
Andrews 68 Andrews, P., Resolution with Merging.
JACM, Vol 15, No 3, 1968.
Andrews 81 Andrews, P.B., Theorem Proving via General Matings.
JACM 28:2, pp. 193-214, 1981.
Antoniou&Ohlbach 81* Antoniou, G., Ohlbach, H.J., Terminator.
Proc. of 8th IICAI, Karlsruhe 1983.
Artin 42 Artin, E., Galois Theory.
Univ. of Notre Dame Press, Notre Dame, London, 1942,
Beetz et al 88 Beetz, M., Freitag, H., Klug, J., Lingenfelder, C., The MKRP User Manual.
SEKI Working Paper SWP-88-01.
Bibel 81 Bibel, W., On Matrices with Connections.
JACM 28:4, pp. 633-645, 1981.
Biundo et al 86 Biundo, S., Hummel, B., Hutter, D., Walther, C., The Karlsruhe Induction Theorem Proving

Blidsius et al 81*

System. Proc. of 8th CADE, Springer LNCS 230, 1986.

Blisius, K., Eisinger ,N., Siekmann, J., Smolka, G., Herold, A., Walther, C.,
The Markgraph Karl Refutation Procedure. Proc. of IICAI-81, Vancouver, 1981.

Blisius 83* Blédsius, K.H., Equality-Reasoning in clause graphs.
Proc. of IJCAI-83, Karlsruhe, pp. 936-939, 1983.
Blisius 86* Blasius, K.H., Against the ‘Anti Waltz' Effect in Equality Reasoning.
Proc. of German Workshop on Artificial Intelligence, Springer Informatik-Fachberichte 124,
pp- 230-241, 1986.
Blidsius 86a* Blésius, K.H., Construction of equality graphs.
SEKI-REPORT SR-86-01, FB Informatik, Univ. Kaiserslautern, 1986.
Blisius 87* Blasius, K.H., Equality Reasoning Bases on Graphs.
Dissertation, Fachbereich Informatik, Univ. Kaiserslautern, 1987.
Blisius&Biirckert 89* Blisius, K.H., Biirckert, H.-J., Deduction Systems in Artificial Intellicence.
Ellis Horwood Series in Al, 1989.
Blisius&Siekmann 88* Blisius, K.H., Siekmann, J.,
Partial Unification for Graph Based Equational Reasoning.
Proc. of 9th CADE, Springer LNCS 310,pp. 397-414, 1988.
Bldsius&Siekmann 90* Blisius, K.H., Siekmann, J., Equality Reasoning Based on Equality Graphs.

Boyer&Moore 79

forthcoming.
Boyer, R.S., Moore, J.S., A Computational Logic. Academic Press, 1979.

Brand 75

Bruynooghe 75

Buchberger 87

Biirckert et al 83*

Biirckert&Nutt
Bundy 83

Chang&Lee 73

Cohn 87
Davis&Putnam 60
Dershowitz 89

Deussen 71
Digricoli 79

Digricoli 81
Digricoli 85
Dixon 73

Eisinger 81*
Eisinger 86*
Eisinger 88*

Eisinger&Weigele 83*

Eisinger&Ohlbach 86*

Eisinger&Ohlbach 87*

Eisinger et al 89*

Gottlob&Leitsch 85

60

Brand, D., Proving Theorems with the Modification Method.

SIAM Journal of Comp., Vol 4, No 4, 1975.

Bruynooghe, M., The Inheritance of Links in a Connection Graph.

Report CW 2 Applied Mathematics and Programming Division, Katholicke Universiteit
Leuven, 1975.

Buchberger, B., History and Basic Features of the Critical Pair/Completion Procedure.
Journal of Symbolic Computation, Vol 3, Nos 1&2, pp 3-38, 1987.

Biirckert, H.-J., Wang, H., Zheng, R.,

MKRP: A Performance Test by Working Mathematicians.

Interner Bericht 19/83, Fak. f. Informatik, Univ. of Karlsruhe, 1983.

Biirckert, H.-J., Nutt, W., Unif‘89: Extended Abstracts of the third International Workshop on
Unification Theory. SEKI Report , FB. Informatik, Univ. of Kaiserslautern, 1989.
Bundy, A., The Computer Modelling of Mathematical Reasoning.

Academic Press, London 1983.

Chang, C.-L., Lee, R.C.-T., Symbolic Logic and Mechanical Theorem Proving.
Computer Science and Applied Mathematics Series (Editor Werner Rheinboldt), Academic
Press, New York, 1973.

Cohn, A., A More Expressive Formulation of Many Sorted Logic.

Journal of Automated Reasoning, vol. 3, No. 2, pp. 113-200, 1987.

Davis, M., Putnam, H., A computing procedure for quantification theory.

J.LACM 7, pp. 201-215, July 1960.

Dershowitz, N. (ed.), Rewriting Techniques and Applications.

Proc. of 3rd Int. Conference on Rewriting Techniques, RTA-89, Springer LNCS 355, 1989.
Deussen, P., Halbgruppen und Automaten. Springer Verlag, 1971.

Digricoli, V.J., Resolution by Unification and Equality.

Proc. 4th Workshop on Automated Deduction, Texas, 1979.

Digricoli, V.J., The Efficacy of RUE Resolution, Experimental Results and Heuristic Theory.
Proc of IICAI-81, Vancouver, 1981.

Digricoli, V.J., The Management of Heuristic Search in Boolean Experiments with RUE
Resolution. Proc. of IICAI-85, Los Angeles, 1985.

Dixon, J.K., Z-Resolution: Theorem Proving with Compiled Axioms.

J.ACM, 20,1, 1973.

Eisinger, N., Subsumption and Connection Graphs.

Proc. of IICAI-81, pp. 480-486, Vancouver, 1981.

Eisinger, N.,What You always Wanted to Know about Clause Graph Resolution.

Proc. of 8th CADE, Springer LNCS, Vol. 230, pp. 316-336, 1986.

Eisinger, N., Completeness, Confluence, and Related Properties of Clause Graph Resolution.
SEKI Report SR-88-07, FB Informatik, Univ. Kaiserslautern, 1988.

Eisinger, N., Weigele, M.,

A Technical Note on Splitting and Clausal Form Algorithms.

Proc. of GWAI-83, Springer Fachberichte, 1983.

Eisinger, N., Ohlbach, H.J.,

The Markgraf Karl Refutation Procedure (MKRP).

Proc. 8th CADE, Springer LNCS, Vol. 230, pp. 681-682, 1986.

Eisinger, N., Ohlbach, H.J., Deduktionssysteme-Grundlagen und Beispiele.

in Deduktionssysteme: Automatisierung des logischen Denkens, K.H. Blisius/ H.-J. Biirckert
(Hrsg.), Oldenbourg Verlag, Miinchen, pp. 22-833, 1987.

English Translation:

Deduction Systems for Artificial Intelligence, K.H. Blisius/H.-J. Biirckert (editors), Ellis
Horwood Ltd., Chichester, 1989.

Eisinger, N., Ohlbach, H.J., Pricklein, A.,

Elimination of Redundancies in Clause Sets and Clause Graphs.

SEKI Report SR-89-10, FB. Informatik, Univ. of Kaiserslautern.

Gottlob, G., Leitsch, A.,On the Efficiency of Subsumption Algorithms.

JACM, Vol. 32, No. 2, pp. 280-295, 1985.

Gottlob&Leitsch 85
Harrison&Rubin 78
Herold 85*

Herold 87*

Hewitt 72

Joyner 73

Karl Mark G. Raph 84*
King 69

Kirchner 85

Kirchner 87

Knuth&Bendix 70

Kowalski 75

Kowalski 79

Lewis 78
Limé&Henschen 85
Lingenfelder 86*
Lingenfelder 89*
Lotz 87*

Loveland 78
Lusk&Overbeek 80
Lusk&Overbeek 84
Lusk&Overbeek 80

Lusk et al 82

Milner 77
Minker&Wilson 76

Morris 69

61

Gottlob, G., Leitsch, A., Fast Subsumption Algorithms.

Proc. EUROCAL, Springer LNCS, Vol. 204, 1985.

Harrison, M.C., Rubin, N., Another Generalization of Resolution.

JACM, Vol. 25, No. 3, pp. 341.-351,July 1978.

Herold, A., Combination of Unification Algorithms.

SEKI Report SR-85-VIII-KL, FB. Informatik, Univ. of Kaiserslautern.

Herold, A., Combination of Unification Algorithms in Equational Theories.

Thesis, FB. Informatik, Univ. of Kaiserslautern, 1987.

Hewitt, C., Description and Theoretical Analysis of PLANNER.

AI-TR-258, MIT, 1972,

Joyner, W., Automatic Theorem-Proving and the Decision Problem.

Report 7/73, Center Research Comp. Tech., Harvard University, 1973.

Karl Mark G. Raph, The Markgraf Karl Refutation Procedure.

Interner Bericht, Memo-SEKI-MK-84-01, FB Informatik, Universitit Kaiserslautern, 1984.
King, J., A Program Verifier.

PhD thesis, Carnegie Mellon, 1969.

Kirchner, C., Méthodes et outils de conception systématique d algorithmes d tinification dans
les théories équationelles. These d"état de 1 Université de Nancy, 1985.

Kirchner, C., Methods and Tools for Equational Unification.

Proc. of Collog. on Equations in Algebraic Structures, Lakeway, Texas, 1987.

Knuth, D., Bendix, P., Simple Word Problems in Universal Algebras.

in: Computational Problems in Abstract Algebra. Ed. Leech 1., Pergamon Press, pp. 263-
297,1970.

Kowalski, G., A Proof Procedure Using Connection Graphs.

J.LACM, Vol. 22, No. 4, 1975.

Kowalski, R., Logic for Problem Solving.

Artificial Intelligence Series, (Nils J. Nilsson, Editor), Vol. 7, North-Holland, New York,
1979.

Lewis, HR., Renaming a Set of Clauses as Horn Set.

J.ACM 25, 1, 1978.

Lim, Y., Henschen, L.J., A New Hyperparamodulation Strategy for the Equality Relation.
Proc. of IICAI-85, Los Angeles, 1985.

Lingenfelder, C., Transformation of Refutation Graphs into Natural Deduction Proofs.
SEKI-Report, SR-86-10, FB. Informatik, Univ. of Kaiserslautern.

Lingenfelder, C., Structuring Computer Generated Proofs.

Proc. of IJCAI-89, Detroit, pp. 378-383, 1989.

Lotz, V., Heuristische Kontrolle des Aufbaus von Gleichungsgraphen.

Diploma thesis, FB. Informatik, Univ. of Kaiserslautern, 1987.

Loveland, D., Automated Theorem Proving: A Logical Basis.

Fundamental Studies in Computer Science, Vol. 6, North-Holland, New York, 1978.
Lusk, E.L., Overbeek, R.A., Data Structure and Control Architecture for Implementation of
Theorem-Proving Programs. Proc. 5th CADE, Springer LNCS 87, pp. 232-249, 1980.
Lusk, E.L., Overbeek, R.A., A Short Problem Set for Testing Systems That Include Equality
Reasoning. Argonne National Laboratory, Argonne, Illinois 600439, 1984.

Lusk, E.L., Overbeek, R.A. (eds.), 9th International Conference on Automated Deduction.
Springer LNCS 310, 1988.

Lusk, L., McCune, W., Overbeek, R.,

Logic Machine Architecture: Kernel Functions and Inference Rules.

Proc. of CADE-82, Springer LNCS 138, 1982.

Milner, R., A Theory of Type Polymorphism in Programming.

Journal of Computer Systems Sciences, 17, pp. 348-375, 1977.

Minker, J., Wilson, Resolution Refinements and Search Strategies: A Comparative Study.
IEEE Transactions on Computers, vol. C-25, no. 8, 1976.

Morris, J.B., E-Resolution: An Extension of Resolution to include the Equality Relation.
Proc. of IICAI-69, pp. 287-294, 1969.

Munch 88
Murray&Rosenthal 87

Newell et al 59

Nutt et al 89
Ohlbach 82*
Ohlbach 83*

Ohlbach&Wrightson 84*

Ohlbach 87*

62

Munch, K.H., A New Reduction Rule for the Connection Graph Proof Procedure.
Journal of Automated Reasoning, Vol. 43, No. 4, pp. 425-444, 1988.

Murray, N.V., Rosenthal, E., Inference with Path Resolution and Semantic Graphs.
J.ACM, 34/2, 1987.

Newell, A., Shaw, J.C., Simon, H.,

Report on a General Problem Solving Program.

Proc. of Int. Conf. Information Processing (UNESCO). Paris, 1959.

Nutt, W., Rety, P., Smolka, G., Basic Narrowing Revisited.

Journal of Symbolic Computation, vol. 7, pp. 295-317, 1989.

Ohlbach H.J., The Logic Engine.

MEMO-SEKI-82-II, FB Informatik, Univ. of Karlsruhe, 1982.

Ohlbach, H.]., Ein Regelbasiertes Klauselgraphverfahren.

Proc. of GWAI-83, Informatik Fachberichte, Springer Verlag, 1983.

Ohlbach, H.J., Wrightson, G.,

Solving a Problem in Relevance Logic with an Automated Theorem Prover.
Proc. of 7th CADE, Napa, Springer LNCS 170, pp. 496-508, 1984.

Ohlbach, HJ., Link Inheritance in Abstract Clause Graphs.

Journal of Automated Reasoning, Vol. 3, No. 11, pp. 1-34, 1987.

Ohlbach&Schmidt-Schauss 85* Ohlbach, H.J., Schmidt-Schauss, M., The Lion and the Unicorn.

Ohlbaché&Siekmann 88*

Ohlbach 88*

Ohlbach 89*

Peterson & Stickel 81

Plotkin 72

Pricklein 85*

Robinson &Wos 69

Robinson 65

Rusinowitch 87

Schmidt-Schauss 88*

Schmidt-Schauss 88a*

Schmidt-Schauss 88b*

Shostak 76

Shostak 78

Sibert 69

Sickel 76

Journal of Automated Reasoning Vol. 1, 1985, pp. 327-332, 1985.

Ohlbach, H.J., Siekmann, J.,

Using Automated Reasoning Techniques for Deductive Databases.

SEKI Report SR-88-06, FB Informatik, Univ. Kaiserslautern, 1988.

Ohlbach,H.J., A Resolution Calculus for Modal Logics.

Proc. of 9th CADE, Springer LNCS 310, pp. 500-516, 1988.

SEKI Report SR-88-08, FB. Informatik, Univ. of Kaiserslautern, 1988.

Ohlbach, H.J., Context Logic.

SEKI Report SR-89-08, FB. Informatik, Univ. of Kaiserslautern, 1989.

Peterson, G.E., Stickel, M.E: Complete Sets of Reductions for some Equational Theories.
Journal of the ACM, Vol. 28,2 1981.

Plotkin, G., Building in Equational Theories.

Machine Intelligence 7, 1972.

Pricklein, A., Ein Reduktionsmodul fiir einen automatischen Beweiser.

Diploma Thesis, University of Karlsruhe, 1985.

Robinson, G., Wos, L., Paramodulation and TP in first order theories with equality.
Machine Intelligence 4, pp. 135-150, 1969.

Robinson, J.A., A Machine-Oriented Logic Based on the Resolution Principle.].ACM, Vol.
12, No. 1, pp. 23-41, 1965.

Rusinowitch, M., Démonstration Automatique par des Techniques de Réécriture

Theése d“état, CRIN, Centre de Recherche en Informatique de Nancy, 1987.
Schmidt-Schauss, M., Computational aspects of an order sorted logic with term declarations.
Thesis, FB. Informatik, University of Kaiserslautern, 1988.

Schmidt-Schauss, M., Implication of Clauses is Undecidable.

Journal of Theoretical Computer Science, 59, pp. 287-296, 1988.

Schmidt-Schauss, M.,Unification in a Combination of Arbitrary Disjoint Equational Theories.
Proc. of 9th CADE, Springer LNCS 310, pp 378-396, 1988.

SEKI Report SR-87-16, FB. Informatik, Univ. of Kaiserslautern.

Shostak, R.E., Refutation Graphs.

Artificial Intelligence 7, pp. 51-64, 1976.

Shostak, R.E., An Algorithm for Reasoning about Equality.

J.LACM,, Vol. 2211, No. 7, 1978.

Sibert, E.E., A machine-oriented Logic incorporating the Equality Axiom.

Machine Intelligence 4, pp. 103-133, 1969.

Sickel, S., A Search Technique for Clause Interconnectivity Graphs.

IEEE Trans. on Computers C-25(8), pp. 823-835, 1976.

Siekmann 89*

Siekmann& Wrightson 80*
Smullyan 68
Smullyan 78
Smolka 82*

Smolka et al 89

Smolka 89
Socher-Ambrosius 89*
Stickel 81
Stickel 85
Stickel 87
Tarski 68
Taylor 79
Tepp 89*
Walther 81*
Walther 82*
Walther 83*
Walther 87*
Walther 88
Weigele 85*

Wos et al 67

Wos et al 84

Yelick 87

63

Siekmann, J., Unification Theory.

Journal of Symbolic Computation, Special Issue on Unification,

C. Kirchner(ed.), vol 7, pp. 207-274, 1989.

Siekmann, J., Wrightson, G., Paramodulated Connection Graphs.

Acta Informatica, No. 13, pp. 67-86, 1980.

Smullyan, R.M., First-Order Logic.

Springer Verlag, Berlin 1968.

Smullyan, R.M., What is the name of this book?

Prentice-Hall, Englewood Cliffs, New Jersey, 1978.

Smolka, G., Completeness and Confluence Properties of Kowalski’s Clause Graph Calculus.
Univ. Karlsruhe, Techn. Report 31/82, 1982.

Smolka, G., Nutt, W., Goguen J., Meseguer, J.,Order-sorted equational computation.

in M. Nivat, H. Ait-Kace (eds.) Resolution of Equations in Algebraic Structures, vol. 2,
Academic Press, 1989.

Smolka, G., Logic Programming over Polymorphically Order-Sorted Types.

Thesis, FB. Informatik, Univ. of Kaiserslautern, 1989.

Socher-Ambrosius, R., Reducing the Derivation of Redundant Clauses in Reasoning Systems.
SEKI Report SR-89-04, FB Informatik, Univ. Kaiserslautern, 1989.

Stickel, MLE., A unification algorithm for associative-commutative functions.

JACM 28 (3), pp. 423-434, 1981.

Stickel, ML.E., Automated Deduction by Theory Resolution,

Journal of Automated Reasoning, Vol. 1, No. 4, pp. 333-356, 1985.

Stickel, M.E., A comparison of the variable-abstraction and the constant-abstraction method
for the associative-commutative unification. JAR 3, pp. 285-289, 1987.

Tarski, A., Equational Logic and Equational Theories of Algebra.

in Schmidt et al: Contribution to Mathematical Logic, North Holland 1968.

Taylor, W., Equational Logic.

Houston Journal of Mathematics, 5, 1979.

Tepp, M., Kombinationsverfahren fiir Unifikationsalgorithmen.

Diploma thesis, FB. Informatik, Univ. Kaiserslautern, 1989

Walther, Ch., Elimination of Redundant Links in Extended Connection Graphs. Proc. GWAI-
81, Springer Informatik Fachberichte, Vol. 47, pp. 201-213, Springer, 1981.

Walther, Ch., PLL - A First Order Language for an Automated Theorem Prover. Bericht 35/82,
Univ. Karlsruhe, 1982.

Walther, Ch., A Many Sorted Calculus based on Resolution and Paramodulation.

Fak. Informatik, Bericht 34/82, Univ. Karlsruhe, 1983.

Walther, Ch. A Many-sorted Calculus based on Resolution and Paramodulation.

Research Notes in Artificial Intelligence, Pitman Ltd., London 1987.

Walther, Ch. Argument Bounded Algorithms as a Basis for Automation of Termination
Proofs. Proc. of 9th CADE, Springer LNCS 310, pp. 602-621, 1988.

Weigele, M. Ein Regelbasiertes Klauselgraphverfahren.

Diploma Thesis, University of Karlsruhe, 1985.

Wos, L., Carson, D., Robinson, G.,Shallar, L.,

The Concept of Demodulation in Automated Theorem Proving.

JACM, Vol. 14, No. 4, pp. 698-709, 1967.

Wos, L., Overbeek, R., Lusk, E., Boyle, J.,

Automated Reasoning - Introduction and Applications.

Prentice-Hall, Englewood Cliffs, NJ, 1984.

Yelick, K.A., Unification in Combinations of Collapse-free Regular Theories.

J. of Symbolic Computation 3, pp. 153-181, 1987.

* Publications originating from the MKRP project.

	UR_0003.jpg
	UR_0003.jpg

