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Abstract 

The background of this paper is the area of case-based 
reasoning. This is a reasoning technique where one 
tries to use the solution of some problem which has 
been solved earlier in order to obtain a solution of a 
given problem. As example of types of problems where 
this kind of reasoning occurs very often is the diagnosis 
of diseases or faults in technical systems. In abstract 
terms this reduces to a classification task. A difficulty 
arises when one has not just one solved problem but 
when there are very many. These are called "cases" 
and they are stored in the case-base. Then one has 
to select an appropriate case which means to find one 
which is "similar" to the actual problem. The notion 
of similarity has raised much interest in this context. 
We will first introduce a mathematical framework and 
define some basic concepts. Then we will study some 
abstract phenomena in this area and finally present 
some methods developed and realized in a system at 
the University of Kaiserslautern. 

Introduction 

We consider a universe U which is partitioned into a 
disjoint union of subsets called classes and we refer to 
the elements of U as objects. Each object has a struc
ture; for simplicity we take this as a fixed number of n 
attribute-value pairs. This allows a twofold description 
of objects: 

a)	 The objects are coded as vectors oflength n of real 
numbers, each coordinate represents an attribute; 

b)	 the objects are described as conjunctions of unary 
predicates P(a) where P stands for an attribute 
and a for a value. 

We call a) an analytic and b) a logical representation 
of the objects. 

-This work was published in: Proceeding. tier J4Are.to.gung 
tier Ge.elilscha/t fir K1Q.$.ijil:4tion. Opitz, Lausen, Klar (ed.), 
Studiu in CI4uijiC4ti;>n, Dat4 An41,.i. and Knowledge Organ
i'4tion, Springer Verlag, 1992 

The task is to determine for a given object its class. 
The available information may be, however, incomplete 
in two respects: 

1.	 The object itself is only partially known; 

2.	 only for a restricted number of objects the class 
where its belongs to is known. 

In order to predict the class of an object one assumes 
an underlying regularity in the formation of the classes 
which has to be determined or at least approximated 
on the basis of the available information. In machine 
learning one considers mainly two basic ways to achieve 
this: 

a)	 The logical approach: Classes are described by 
formulas in predicate logic using the attributes. 
These may e.g. be rules which have conjunctions 
of attribute formulas or their negations as premises 
and class names as conclusions. 

b)	 The analytic approach: There is a distance func
tion din IRn and the class of s<?me presented vector 
a is the class of that particular vector b from the 
already classified vectors for which the distance 
d(a, b) is minimal. 

With both approaches a number of concepts are con
nected. In order to discuss the interrelations between 
them from a mathematical point of view we make use 
of a number of results in economics, in particular utility 
theory. This stems from the fact that the notion ofsim
ilarity shares some mathematical properties with the 
notion of a preference order. In utility theory one stud
ies objects which may be more or less preferrable; we 
will employ the mathematical analogy between the par
tial orderings coming from similarity and preference. 
Both, the classifying rule system and the distance func
tion have to be built up in the training phase. The 
algorithms for this task have'some (sometimes hidden) 
common properties. A fundamental problem is to ex
hibit the the cO:ilnections between the distance function 
and the classification problem. In a nutshell this reads 
as follows: 
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The task is to determine for a given object its class.
The available information may be, however, incomplete
in  two respects:

1. The object itself is only partially known;

2. only for a restricted number of objects the class
where its belongs to is known.

In  order to predict the class of an object one assumes
an underlying regularity in the formation of the classes
which has to be  determined or at least approximated
on the basis of the available information. In machine
learning one considers mainly two basic ways to  achieve
th is :

a.) The logical approach: Classes are described by
formulas in predicate logic using the attributes.
These may e.g. be rules which have conjunctions
of attribute formulas or their negations as premises
and class names as conclusions.

b)  The analytic approach: There is a distance func-
tion d in  IR" and the class of some presented vector
a is the class of that particular vector 6 from the
already classified vectors for which the distance
d(a,  b) is minimal.

With both approaches a number of concepts are con—
nected. In order to discuss the interrelations between
them from a mathematical point of view we make use
of a number of results in  economics, in particular utility
theory. This stems from the fact that the notion of sim-
ilarity shares some mathematical properties with the
notion of a preference order. In utility theory one stud-
ies objects which may be more or less preferrable; we
will employ the mathematical analogy between the par.
tial orderings coming from similarity and preference.
Both, the classifying rule system and the distance func-
tion have to be built up  in the training phase. The
algorithms for this task have‘some (sometimes hidden)
common properties. A fundamental problem is to ex.
hibit the the connections between the distance function
and the classification problem. In a nutshell this reads
as follows:
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How to construct a distance function d such that for 
sufficiently small d( a, b) the ol-jeets a and b are in the 
same class? 

This is essentially an a posteriori problem which can 
principally only be answered after the class of the ob
jects is known. From this principal point of view this 
asks for an adaptive approach. Nevertheless one has 
first to explore the basic aspects and concepts of dis
tance functions and the related similarity measures. 
This attempt focusses the attention on problems which 
should also be approached (at least presently) in an em
pirical way. The PATDEx-system discussed in section 
6 realizes a number of essential tasks from a practical 
point of view. 

Basic concepts 

Eacy. object is given by the values of a fixed number of 
attributes. If A. is such an attribute with value a then 
this is denoted by A.(a). We describe objects alterna
tively as vectors where each coordinate corresponds to 
an attribute and the entry to its value. An object de
scription is like an object except that instead of the 
value of an attribute a variable may occur (indicating 
that the value is unknown). The universe of our object 
descriptions is U. In general we do not distinguish be
tween objects and object descriptions. 
There are different ways to represent similarity which 
we will introduce now. 

1.	 A binary predicate SIM (x, y) ~ U2 meaning "x 
and y are similar"; 

2.	 a binary predicate DISSIM(x, y) ~ U 2 meaning 
"x and y are not similar" ; 

3.	 a ternary relation S(x, y, z) ~ U 3 meaning "y is 
at least as similar to x than z is to x"; 

4.	 a quaternary relation R(x, y, u, v) ~ U4 meaning 
"y is at least as similar to x than v is to u"; 

5.	 a function sim(x, y) : U2 
---> [0,1] measuring the 

degree of similarity between x and y; 

6.	 a function d(x, y) : U 2 
---> IR measuring the dis

tance between i: and y. 

The obvious questions which arise here are: 

(i)	 How to axiomatize these concepts, i.e. which laws 
govern them? 

(ii) How	 are the concepts correlated, which are the 
basic ones and which can be defined in terms of 
others? 

(iii) How useful	 are the concepts for the classification 
task? 

There are split opinions about the properties of tpe 
various concepts. It is certainly agreed that SIM is 
reflexive. There are arguments that SIM should nei
ther be symmetric nor transitive. A typical example 
to support the first claim is that one could say 'my 
neighbar looks similar to the president' but one would 
not use the reverse phrase. This argument, however, 
says nothing about the truth or falsity of the similarity 
relation; it is only concerned with its pragmatics. For 
this reason we will accept that SIM is symmetric. In 
order to reject the transitivity of SIM one gives exam
ples like 'a small circle is similar to a large circle and a 
large circle is similar to large square but a small circle 
is not similar to a large square'. The reason for this ef
fect is that one deals here with two different similarity 
relations, one concerning size and another concerning 
form. A basic problem is how one can amalgamate two 
different similarity relations into one. A second type of 
counter argument arises when the objects are partially 
unknown. Suppose we have three such objects a, x and 
b where SIM (a, b) does not hold and x is partially un
known. An opportunistic view could then assume both 
5 I M (a, x) and SIM (x, b), violating transitivity. As a 
consequence, we will not accept transitivity for SIM. 

A next observation tells us that we should distin
guish DISSIM(x,y) from -.SIM(x,y). The latter 
means simply that there is not enough evidence for 
establishing SIM(x, y) but that may not be sufficient 
to claim DISSIM(x, y); we have here the same dis
tinction as one has between the negation in classical 
and intuitionistic logic. The deeper reason for this is 
that similarity between objects is not given as a re
lation with truth values 0 and 1 but as something to 
which the terms 'more or less' apply. We will there
fore not consider SIM and DISSIM anymore but the 
arguments given above do also apply to the remaining 
concepts. 

In the sequel we will encounter several preorderings. 
A preordering ~ on a set U is a reflexive and transitive 
binary relation. ~ is called complete if y 2: z V z 2: y 
holds. Such a relation can always be decomposed into 
two parts: 

(i)	 y > Z ...... y 2: z /\ -.(z 2: y), this called the strict 
part of the relation; 

(ii)	 y'" z ...... y 2: z /\ (z 2: y) (indifference). 

'>' is always asymmetric and transitive and '-' is an 
equivalence relation. 

The relation S(x, y, z) induces for each x a binary re
lation y ~r z. We assume: 
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How to  construct a distance function d such that for
sufliciently small d(a‚ b) the objects a and b are in the
same class?

This is  essentially an a posteriori problem which can
principally only be answered after the class of the ob-
jects is known. From this principal point of view this
asks for an adaptive approach. Nevertheless one has
first t o  explore the basic aspects and concepts of dis-
tance functions and the  related similarity measures.
This  a t tempt  focusses the  at tent ion on problems which
should also be  approached (at least presently) in an em-
pirical way. The PATDEx—system discussed in section
6 realizes a number of essential tasks from a practical
point of view.
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Each object is given by the values of a fixed number of
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this is denoted by A(a). We describe objects alterna-
tively as vectors where each coordinate corresponds to
an at t r ibute  and the  entry  to i t s  value.  An  object de-
scription is like an object except that instead of the
value of an attribute a variable may occur (indicating
that the value is unknown). The universe of our object
descriptions is U .  In general we do not distinguish be
tween objects and ob jec t  descriptions.
There are different ways to represent similarity which
we will introduce now.

1. A binary predicate SIM(:c,y) ; U2 meaning “:c
and y are similar”;

2. a binary predicate DISSIM(:r,y)  g U2 meaning
“: and y are not similar";

3. a ternary relation S(:c,y,z) 9 U3 meaning “y is
at least as similar to  .7: than 2 is  t o  a:”;

‚A . a quaternary relation R(x,y,u, v) g U 4 meaning
“y is at least as similar to  .1: than v is to u”;

U
1 . a function sim(a:‚y) : U2 _— [0,1] measuring the

degree of s imilari ty  between :: and y;

05 . a function d(z,y) : U2 —' IR measuring the dis-
tance between .i' and y.

The obvious questions which arise here are:

(i) How to axiomatize these concepts, i.e. which laws
govern them?

(ii) How are the concepts correlated, which are the
basic ones and which can be defined in terms of
others?

(iii) How useful are the concepts for the classification
task?

There are split opinions about the properties of the
various concepts. It is certainly agreed that SIM is
reflexive. There are arguments that SIM should nei-
ther be  symmetric nor transitive. A typical example
to support the first claim is that one could say ‘my
neighbor looks similar to the president’ but one would
not use the reverse phrase. This argument, however,
says nothing about  the  t ruth  or falsity of the similarity
relation; it is only concerned with its pragmatics. For
this reason we will accept that SIM is symmetric. In
order to reject the transitivity of SIM one gives exam-
ples like ‘a  small circle is similar to a large circle and a
large circle is similar to large square but a small circle '
is not similar to a large square’. The reason for this ef-
fect is that  one deals here with two different similarity
relations, one concerning size and another concerning
form. A basic problem is how one can amalgamate two
different similarity relations into one. A second type of
counter argument arises when the objects are partially
unknown. Suppose we have three such objects a,  1: and
b where SI  M (a ,  1)) does not hold and :: is partially un—
known.  An opportunist ic  view could then assume both
.S'IM(a, 3 )  and SIM(z ‚  b), violating transitivity. As a
consequence, we will not  accept transi t ivi ty  for SIM.

A next  observation tells us that  we should distin-
guish DISSIM(:c‚y)  from -vSIM(z,y) .  The latter
means simply that there is not enough evidence for
establishing SIM (::, y) but that may not be sufficient
to claim DISSIM(:c,y); we have here the same dis—
tinction as one has between the negation in classical
and intuitionistic logic. The deeper reason for this is
that similarity between objects is not given as a re-
lation with truth values 0 and 1 but as something to
which the terms ‘more or less’ apply. We will there-
fore not consider SIM and DI SSI M anymore bu t  the
arguments given above do also apply to the remaining
concepts.

In the sequel we will encounter several preorderings.
A preordering 2 on a set U is a reflexive and transitive
binary relation. 2 is called complete if y 2 2 V 2 2 y
holds. Such a relation can always be decomposed into
two parts:

(i)  3) > 2 H y _>_ z A -1(z _>_ y), this called the strict
part of the relation;

(ii) 3/ ~ z «_» y 2 z A (z  Z y) (indifierence).

‘> ’  is  always asymmetric and transitive and ‘~ ’  is an
equivalence relation.

The relation 3(2, 3;, z )  induces for each z a binary re-
lation y 2,. z .  We assume:



(i)	 ~r is a complete preorder (with >r as its strict 
part and ""r as the indifference relation); 

(ii)	 Y >r z implies Y >" u or u >r z; 

(iii) z ~r z. 

(iii) refers to the reflexivity of S/M; the symmetry of 
S/M has no counterpart here. A further axiom is often 
required where the structure of the objects is involved: 

Monotonicity Law: If y' agrees at least on one more 
attribute with x than y does, then y' ~r Y holds. 

We will not require this law in general because it in
cludes a kind of independence between the values of the 
attributes. If the attributes depend on each other then 
the same value can have a different meaning in differ
ent contexts so that more agreement on the attribute 
values can mean less similarity. 

The relation S allows to define the concept 'y is most 
similar to x' : For some set M <; U some y E M is 
called most similar to x with respect to M iff 

(V: E M)S(x, y, z) 

This notion is essential in case-based reasoning. 
For the relation R we assume the axioms 

(i)	 R(x, x, u, v); 

(ii)	 R(x,y,u,v) ....... R(y,x,u,v).-. R(x,y,v,u).
 

(i) and (ii) are the counterparts of the reflexivity and 
of symmetry of SIM, resp. 

The relation R(x, y, u, v) induces a partial ordering 
~ on pairs of objects by (z, y) ~ (u, v) ....... R(x, y, u, v). 
~ can be decomposed as above and we assume the 
same axioms as for >r. R also induces a relation SR 
by SR(X, y, z) ....... R(x, y, x, z). 

The basic axioms for a similarity measure sim are: 

(i)	 sim(z, x) = 1 (reflexivity); 

(ii)	 sim(x,y) = sim(y, x) (symmetry). 

The dual notion is that of a distance measure d(x, y) 
which may attain arbitrary nonnegative values. In the 
corresponding axioms reflexivity reads as d(x, x) = o. 
One does not require, however, the triangle inequality 
and allows d(z, y) = 0 for x =/; y which means that d 
is neither a metric nor even a pseudo-metric. The ar
gument for skipping the triangle inequality is the same 
as the one for not requiring transitivity for S/M. 

One says that d and sim correspond to each other 
iff there is an order reversing one-one mapping 

I: range(d) - range(sim) 

3 

such that 1(0) == 1 and sim(x, y) = I(d(x, y»; we
 
denote this by d =/ sim.
 
Popular candidates for I are:
 
fez) = 1 - l~' for unbounded d or fez) =1 - m:" if
 
d attains a greatest element max.
 

Some interrelations between the introduced concepts 
are immediate. If d is a distance measure and sim a 
similarity measure then we define 

Rd(X, y, u, v) ; {:::::::> d(x,y) ~ d(u,v) 

R.im(X, y, U, v) : {:::::::> sim(x,y) ~ sim(u,v) 

and 

Sd(X,y,Z): {:::::::> Rd(X,y,x,z) 

S.im(X,y,z): {:::::::> R.im(X,y,x,z) 

We say that d and sim are compatible, iff 

Rd(X,y,u,V) {:::::::> R.im(X,y,u,v); 

compatibility is ensured by d =/ sim for some I. 
As usual in topology the measures also define a neigh
borhood concept. For E > 0 we put 

Vdx) := Vd,dx) :== {yld(x, y) ~E}, 

and analogously V'im,E(X) is defined; if d is a met
ric then these sets are ordinary closed neighborhoods. 
Sd(X, y, z) expresses the fact that each neighborhood 
of x which contains z also contains y. In order to be 
useful for the classification task the neighborhood sys
tem has to be compatible with the partition into classes 
in the sense that the neighborhood should group the 
elements of the classes 'closely together' 

3 Ordinals and cardinals 

The concepts presented in (1) to (6) of Section 2 con
tain in an increasing order more and more information 
about the similarity of object descriptions. Least in
formative are S/M and DISSIM and most informa
tive are the measures and distance functions. The lat 
ter ones define the relations Rd and R.im as indicated 
above in such a way that their axioms are satisfied. 
From R we obtain the relation S; again the axioms for 
S follow from those for R. S finally can, using some 
threshold, define relations SIM and D/SS/M. 

Comparing first y ~r Z and sim(z, y), sim(or, z) the 
additional information provided by sim is that it tells 
us how more similar y is to or than z is to x. S con
tains only an ordinal information while sim has also a 
cardinal aspect. 

In the application to classification the main use 0 

this cardinal aspect is that one forms differences like 
Isim(x, y) - sim(x, z)l. Such a difference is of interest 

(i) 2,  is a complete preorder (with >,  as its strict
part and ~z  as the indifference relation);

(ii) y >, z impl iesy  > ,  uo ru  > ,  z;

(iii) a: 2 ,  2 .

(iii) refers to the reflexivity of SIM; the symmetry of
SIM has no counterpart here. A further axiom is often
required where the structure of the objects is involved:

Monotonicity Law: If _x/ agrees at least on one more
attribute with 3 than y does, then 3/ 2 ,  y holds.

We will not require this law in general because it in-
cludes a kind of independence between the  values of the
attributes. If the attributes depend on each other then
the same value can have a different meaning in  differ-
ent  contexts so tha t  more agreement on  t he  at t r ibute
values can mean less similarity.’

The relat ion 5 allows to  define the  concept  ‘y i s  most
similar to z’  : For some set M _C_: U some y E M is
called most similar to :: with respect to M iii"

(VZ € M)S(1:, y, 2 )

This notion is essential in case-based reasoning.
For the relation R we assume the  axioms

(i) R($‚z ‚u ‚v ) ;

(i i)  R( . r ,y ,  u ,  v) <—» R(y , . t ,  u ,  v )  _. R(z , y ‚  v, u ) .

(i) and (ii) are the counterparts of the reflexivity and
of symmetry of SIM, resp.

The relation R(z‚ 3}, u, v) induces a partial ordering
2 on pairs of objects by (x,  y) Z (u,  v) +—> R(;t, y ,u‚  v).
_>_ can be  decomposed as above and we assume the
same axioms as for > ‚ .  R also induces a relation 53
by SR(::,y,z) <—-> R(:r,y,1:, z).

The basic axioms for a. similarity measure s im are:

(i) sim(z,:c) = l (reflexivity);

(ii) sim(:c,y) : sim(y, : )  (symmetry).

The dual notion is that of a distance measure d(z ,  g)
which may attain arbitrary nonnegative values. In the
corresponding axioms reflexivity reads as d(z ,  z )  = 0.
One does not  require, however, the triangle inequality
and allows d(:r, y) = 0 for a: 96 g which means that d
is neither a metric nor even a pseudo-metric. The ar—
gument for skipping the triangle inequality is the same
as the one for not requiring transitivity for SIM.

One says that d and sim correspond to each other
iff there is an order reversing oneone mapping

f : range(d) _» range(sim)

such that f(O) = 1 and sim(:r, y) = f (d(z ,y) ) ;  we
denote this by d E, s im.
Popular candidates for f are:
f(z) = l — fiz- for unbounded d or f(z)
d attains a greatest element'maz.

Some interrelations between the introduced concepts
are immediate. If d is a distance measure and aim a
similarity measure then we define

=1—;n—f;;if

4:? d(z ‚y )  S (“u ," )

(=> s im(z ,y )  2 s im(u ,v )

Rd(z i  ya  "1  U) :

Rl im(z1  ya  u)  U) :

and

<=> Hakim-133)

<= R,.-,,.(a:,y,:r,z)
Sd(x ,y , z )  :

Sa im(zy  11 ,2 )  :

We say that d and sim are compatible , iff

Rd( t !  yr  u ,  0 )  €:? R,;‘mGL'. .71, l l ,  U)  i

compatibility is ensured by d E ,  sim for some f .
As usual in topology the measures also define a neigh-
borhood concept. For € > 0 we put

Veh)  :=  Va‚e($) == {yld(2‚y) SE}.
and analogously V„'m‚e(a:) is defined; if d is 3 met-
ric then these sets are ordinary closed neighborhoods.
Sd(:i:, y, z) expresses the fact that each neighborhood
of a: which contains z also contains y .  In order to  be
useful for the classification task the neighborhood sys-
tem has to be  compatible wi th  the  parti t ion in to  classes
in the sense that the neighborhood should group the
elements of  the  classes ‘closely together’

3 Ordinals and cardinals

The concepts presented in (1) to (6) of Section 2 con—
tain in an increasing order more and more information
about the similarity of object descriptions. Least in—
formative are SIM and DISSIM and most informa-
tive are the measures and distance functions. The lat—
ter ones define the  relations Rd and Ram as indicated
above in such a way that their axioms are satisfied.
From R we obtain the relation S; again the axioms for
S follow from those for R .  S finally can, using some
threshold, define relations SIM and DISSI M .

Comparing first 3; Z„  z and sim(.1:, y), sim(z,  z)  the
additional information provided by sim i s  that i t  tells
us how more similar y is to :: than z is to a:. S con-
tains only an ordinal information while sim has also a
cardinal aspect.

In the application to classification the main use of
this cardinal aspect is that one forms differences like
|s im(z,  y) — s im(z,  2)]. Such a difl'erence is of interest



when one searches the object y most similar to :e. If 
Isim(:e, y) - sim(:e, z)1 is small, then one could choose 
z instead of y with a small error only; for the classi
fication task this may be sufficient. From this point 
o~ '/iew R(:e, y, u, v) contains some cardinality informa
tion. Another type of implicit cardinality information 
is contained in the sensibility potential, cf. Wagener 
(1983). 

The reverse way from the ordinal to the cardinal 
view is more involved. First, the relations SI M and 
D ISSI M carry very little information about the rela
tion S. Given 5, one has for every object description 
x the preorder ~r. In order to obtain R from 5 we 
proceed in several steps: 

1.	 define: R,(x, y, x, z) ........ S(x, y, z);
 

2.	 obtain R 2 from RI by adding the tuples (x, x, y, z); 

3.	 define ~3 as the transitive closure of ~2; 

4.	 obtain ~ from ~3 by extending it to a complete 
preorder in s\lch a way that y >3 Z implies y > z 
(this is always possible). 

5.	 Define R(x, y, u, v) - (x, y) > (u, v). 

If we define from this R as above the relation SR the 
strict parts of the preorders may, however, be different. 
This is due to the fact that in step 1) where essentially 
the join u ~r of the preorders ~r was formed some 
cycles in the strict parts of the join may occur which 
means that elements are now indifferent which were 
strictly ordered before. Therefore we require that this 
cannot happen and call it the compatibility condition 
on S. 

The step from R (or ~ ) to a measure or distance 
function is done by embedding ~ into IR2

. This is 
possible because our universe is finite. 

We emphasize again. that for our classification task 
the relation S is the one which is used. To be of in
terest the compatibility condition has to be satisfied. 
This is essentially the step to the relation R which, as 
remarked above, has additional benefits. In our learn
ing process below we will learn the measure directly 
but will essentially use information about relation S. 

4	 The amalgamation of similar
ity measures 

Suppose we are given different experts E; who are con
fronted with a fixed object :e and a number of objects 
which may be more or less similar to x. The task for 
these experts is to' arrange the objects according to 
their similarity to a, i.e. to establish an ordering ~~. 

Each expert is supposed to represent a certain aspect 
and will come up with his individual arrangement. Fur
thermore, there is a general manager who takes these 
individual ratings and whose task is to amalgamate the 
different ratings into a general ordering of the objects 
under consideration. 

A very simple method for integrating such orderings 
is to use a number assignment according to the or
d~rings and sum up these numbers. This is Borda's 
method which he invented in 1781. We give an exam
ple with 5 participating objects t, y, z, u and v and 5 
experts (representing 5 aspects) : 

t Y z u v 

1 4 3 2 1 0 
2 2 4 3 0 1 
3 3 2 1 0 4 
4 4 3 0 2 1 
5 1 4 2 3 0 
Sum 14 16 8 6 6 

T:le winner, i.e. the object most similar to :e is y, 
followed by t, z etc. Suppose now that we want to 
remove the objects z and u from the database because 
they are perhaps not of great interest anyway. Then 
we are left with three objects and we apply the same 
method to rank them. We get the following table: 

1 2 1 0 
2 1 2 0 
3. 1 0 2 
4 2 1 0 
5 1 2 0 

ISum~ 

The result is that the final ordering of the remaining 
objects is changed and that now t is the winner. This 
effect is very undesirable because the elimination of un
interesting objects leads to a change of the ordering of 
the remaining objects; the whole data base is subject 
to a global analysis in order to recompute the similar
ity relation. We will explain now that this is not an 
accident which is due to the special method but that 
there is an underlying deeper phenomenon. 

We start with a set U of object descriptions S.t. 
\U I ~ 3 and an index set M :f. 0. We consider par
tial orderings as introduced in section 2. Let 5 be the 
set of such orders on U and F = {fll : M -. S}. 
M represents the different aspects and F the orderings 
(i.e. the strict part) with respect to similarity to the 
reference object according to these aspects. What one 
looks for is a mapping er : F -. S which amalgamates 
the individual orderings into a universal one. The func
tion (J" has to satisfy certain very plausible conditions: 
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when one searches the  object  y most s imilar  to  1:. If
Isim(:r, y) — sim(:c, z) |  is small, then one could choose
:: instead of y wi th ' a  small error only; for the  classi—
fication task this may be sufficient. From this point
of view R(:c‚ y, u, v) contains some cardinality informa—
tion. Another type of implicit cardinality information
is contained in the sensibility potential, cf. Wagener
(1983).

The reverse way from the  ordinal  t o  the  cardinal
view is more involved. F i r s t .  t he  relat ions S IM and
DISSIM carry  very  l i t t l e  information about  the  rela-
t ion  5 .  Given 5, one  has for every objec t  description
2: the  preorder 2 , .  I n  order to  ob ta in  R from S we
proceed in  several s teps :

1. define: R1(:L-,y,1:,z) H S(1;,y, z);

obtain R3 from R1 by adding the tuples (x, :::, y, 2);

define 23  as t he  t r ans i t ive  closure of  22 ;

e9
99

. ob ta in  2 from 23  by ex tend ing  i t  to  a comple te
preorder in  such  a way tha t  y >3  2 implies  g > z
(this is always possible).

5 .  Define R(z ,y ,  u ,  v) —- (x ‚y )  > (u ,  v) .

If we define from th i s  R as above the relat ion Sn the
strict parts of the preorders may, however, be different.
Thi s  is  due  t o  the  fact tha t  in  step 1 )  where essentially
the join U 23  of the preorders 2 :  was formed some
cycles in the strict parts of the join may occur which
means that elements are now indifferent which were
str ic t ly  ordered before. Therefore we require that  this
cannot happen and call  i t  t he  compatibility condition
on S.

The step from R (or 2 ) to  a measure or distance
function is done by embedding 2 into 1R2. This is
possible because our  universe is finite.

We emphasize againthat  for ou r  classification task
the relation -S is the one which is used. To be of in-
terest the compatibility condition has t o  be satisfied.
This is essentially the step to the relation R which, as
remarked above, has additional benefi ts .  In our learn-
ing  process below we will learn the  measure directly
bu t  will essentially use information about relation S.

4 The amalgamation of similar-
ity measures

Suppose we are given different experts E.- who are con—
fronted with a fixed object .1: and a number of objects
which may be  more or less similar to : .  The task for
these experts is to-arrange the objects according to
their similarity to a ,  i.e. to establish an ordering 2 : .

Each expert is supposed to represent a certain aspect
and will come up  with his individual arrangement. Fur-
thermore, there is a general manager who takes these
individual ratings and whose task is to amalgamate the
different ratings into a general ordering of the objects
under consideration.

A very simple method for integrating such orderings
is to use a number assignment according to the or-
derings and sum. up these numbers. This is Borda’s
method which he invented in 1781. We give an exam-
ple with 5 participating objects t ,  y, 2,11 and 1) and 5
experts (representing 5 aspects) :

I J lflYIZIu lVl
1 4 3210]
2 2 4 3 03
3 3 210  @
4 4 30  2g
5 14  2 3 oj

[Sumj l i lmgfl
The  winner ,  i.e. t he  objec t  most s imilar  to  a: is y,
followed by t ,  2 etc. Suppose now that  we want to
remove the objects z and u from the database because
they  are perhaps not  of great interest anyway. Then
we are left w i th  three objects and we apply the same
method to  rank them.  We get t he  following table:

t yv

um

The result is that the final ordering of the remaining
objects is changed and that now t is thewinner. This
effect is very undesirable because the elimination of un-
interesting objects leads to  a change of the ordering of
the remaining objects; the whole data base is subject
to a global analysis in order to recompute the similar-
ity relation. We will explain now that this is not an
accident which is due to the special method but that
there is an  underlying deeper phenomenon.

We start with a set U of object descriptions s.t .
IU | 2 3 and an index set M 96 @. We consider par-
tial orderings as introduced in section 2. Let S be the
set of such orders on U and F = { f | f  : M —+ S}.
M represents the different aspects and F the orderings
(i.e. the strict part) with respect to similarity to the
reference object according to these aspects. What one
looks for is a mapping a : F —> S which amalgamates
the individual orderings into a universal one. The func-
tion a has to satisfy certain very plausible conditions:



(a)	 ICy I(m)z for all m E M, then y s(f)z; 

(b)	 if I and g coincide on y and z, then u(f) and u(g) 
coincide on y and z too. 

(c)	 There is no m E M such that for all y and z in U 
we have: 
If y I(m)z , then yu(f)z. 

These conditions have a clear motivation. (a) says that 
the universal ordering should not contradict all aspects. 
(b) was discussed above and (c) says that one cannot 
reduce the problem to one aspect. 

Theorem: There is no function I satisfying (a), (b) and 
(c). 

This theorem is due to Arrow (cf. Arrow (1963» and 
well known in the area of social choice functions. There 
the partial orderings are preference orderings, M is the 
set of voters, (a) is the principle of democracy and (c) 
excludes dictatorship. The function a combines the 
individual votes. Arrow's impossibility theorem is also 
called the theorem of the dictator and was considered 
as somewhat paradoxical. Slight variations of the con
dition do not change the validity of the theorem. The 
crucial and most discussed condition is (b). It is also 
important for our situation; according to the theorem 
changes in the data base have other consequences. The 
most we can hope for is that these consequences have 
a local character. 

5 General forms of distance 
functions and similarity mea
sures 

We consider objects which are defined in terms of 
boolean valued attributes and study their relations us
ing distance functions only. There is a great variety 
of distance functions and an enormous amount of lit 
erature. When distance functions are used for classifi
cation purposes they cluster the objects in such a way 
that the cluster coincide with the given classes as much 
as possible. If this is the case then one can say that the 
function contains some knowledge about the classes. 
Different applications lead to different types of classes 
and therefore to different kinds of distance functions; 
this explains mainly the richness of this area. In our 
approach we are not so much interested in our introduc
ing a particular clever distance function but rather in 
showing how some general knowledge can be improved 
by an adaptive process. The type of functions we in
troduce is general enough to study these techniques 
but many other distance functions would have worked 

as well. We will restrict ourselves here to Boolean at
tributes, i.e. we have values 0 and 1 only. The most 
simple distance measure is the Hamming distance. A 
generalization of the H~.mming distance is given by the 
Tversky-Contrast model (cf. Tversky (1977». For two 
objects x and y we put 
A := The set of all attributes which have equal values 
for x and y ; 
B := the set of all attributes which have value 1 for x 
and 0 for y ; 
C := the set of all attributes which have value 1 for y 
and 0 for x ; 
The general form of a Tversky distance is 

T(x, y) = Cl" f(A) - (3. f(8) - r' f(C) 

where Cl', {3 and r are positive real numbers. Most of the 
other possible distance functions are located between 
the Hamming and the Tversky measure with respect 
to the information which they can contain. In PATDEX 

(see below) we start out with a measure for which we 
need some notation. An object description from the 
case base is denoted by x and an arbitrary one by Xact 

(indicating that this is the actual description for which 
we want a similar one from the base). We put 
Xact = (Wi" ... , Wik)' x = (vr " ... , vrJ; here we list only 
the coordinates with a known value. 

H = {i1, ,ik}, 

K={rl, ,rj}; 

E = {ili E H n K, Wi = vd,
 
the set of attributes where the values agree;
 

C = {ili EH n K, Wi # Vi},
 

the set of attributes with conflicting values;
 

U = H \ K, 
the set of attributes with a known value for x but 
unknown value lor the actual object; 

R = K \ H, 
the set of attributes with a redundant value for 
Xact· 

The measure used is of the form: 

• ( ) _ i ex ·IEI 
SlmpAT Xact, X - ex .IEI + /3 . ICI + "Y ·IDI + '1' IRI 

The parameters Q, {3, "y and 6 can be chosen; presently 
we use: 

Cl' = 1, (3 = 2, Tf = 1/2, r = 1/2; 

which gives: 

. ()	 IEI 
ac

SlmpAT X ., X = IEI + 2· ICI + 1/2 . IUI + 1/2 ·IRI 
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(a) If'y f (m)z for all m € M, then y s(_f)z;

(b)  i f f  and g coincide on y and 2, then o(f) and 6(9)
coincide on y and z too.

(c) There is no 711 e M such that  for all y and z in U
we have:
If y f(rn)z , then yo(f)z .

These conditions have a clear motivation. (a )  says that
the universal ordering should not contradict all aspects.
(b) was discussed above and (c) says that  one cannot
reduce the problem to one aspect.

Theorem: There is no function f satisfying (a), (b)  and
(c).

This theorem is due to  Arrow (cf. Arrow (1963)) and
well known in the area of social choice functions. There
the partial orderings are preference orderings, M is the
set of voters, (a) is the principle of democracy and (c)
excludes dictatorship.  The function a' combines the
individual votes. Arrow’s impossibility theorem is also
called the  theorem of the dictator and was considered
as somewhat paradoxical. Slight variations of the con—
dition do  not change the validity of the theorem. The
crucial and most discussed condition is (b). It  is also
important for our situation; according to the theorem
changes in  the data  base have other consequences. The
most we can hope for is  that  these consequences have
a local character.

5 General forms of distance
functions and similarity mea-
sures

We consider objects which are defined in  terms of
boolean valued attributes and study their relations us-
ing distance functions only. There is a great variety
of distance functions and an enormous amount of lit—
erature. When distance functions are used for classifi-
cation purposes they cluster the  objects i n  such a way
that the cluster coincide with the  given classes as much
as possible. If this  is  the case then one can say that the
function contains some knowledge about the classes.
Different applications lead to different types of classes
and therefore to different kinds of distance functions;
this explains mainly the richness of this area. In our
approach we are not so much interested in our introduc-
ing a particular clever distance function but rather in
showing how some general knowledge can be improved
by an adaptive process. The type of functions we in-
troduce is general enough to study these techniques
but many other distance functions would have worked

as well. We will restrict ourselves here to Boolean at—
tributes, i.e. we have values 0 and 1 Only. The most
simple distance measure is the Hamming distance. A
generalization of the Hamming distance is given by the
Tversky-Contrast model (cf. Tversky (1977)). For two
objects 1: and y we put
A :=  The set of all attributes which have equal values
for :n and 31 ;
B :: the set of all attributes which have value 1 for ::
and 0 for y ;
C :: the set of all attributes which have value 1 for y
and 0 for z ;
The general form of a Tversky distance is

T(z ‚y )  = a- f (A)  - ß 'flß)  - 1 ' f(C)
where a ,  ‚8 and 7 are positive real numbers. Most of  the
other possible distance functions are located between
the  Hamming and the Tversky measure with respect
to the information which they can contain. In  PATDEX
(see below) we start out with a measure for which we
need some notation. An object description from the
case base is denoted by z and an arbitrary one by zu;
(indicating that this is the actual description for which
we want a similar one from the base). We put
z“,  = (w,-„ ..., zu.-‚‘), :c = (v,-„ ..., ”ml; here-we list only
the  coordinates wi th  a known value.

H = { i1 , . . . , i k} ,

K = {r1, . . . ,rj};

E :  { i l i e  HnK,w‚- = vg},
the set of attributes where the values agree;

C = {iliE Hr‘lK,w,- #05},
t he  s e t  of at tr ibutes with conflicting values;

U = H \ K,
the set of attributes with a known value for :: but
unknown value for the  actual  object;

R = K \ H,
the set of attributes with a redundant value for
In“ .

The measure used is of the form:

; ° ' IEI
a I ' lE |+ t9 - |C |+ ‘Y- lUl+’7 - lR l

The parameters a ,  ß, 7 and 6 can be chosen; presently
we use:

simrAT (Km,  x) =

a=1‚  ß=2‚ n=1/2‚ 7=1/2 ;
which gives:

IEI
|El+ 2_- |C|+ 1/2 - |U| + 1/2 . [RI

SimPAT(Xach x) =
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This measure pays special attention to attributes with 
missing values. On the other hand, it abstracts from 
the Tversky measure in so far that it sees only the 
cardinality of sets instead the sets themselves. 

The Patdex system 

The difficulty with the similarity measure is that its 
quality is related to the final success of the whole rea
soning procedure; thIs is an a posteriori criterion. A 
priori it is not clear what the criteria for similarity of 
objects should be; they do not only depend on the ob
jects themselves but also on the pragmatics of reason
ing. In case-based reasoning it is usually clear whether 
a solution for a given problem (in our situation a clas
sification problem) is correct but is far from clear what 
it means that two problems are similar enough so that 
the solution for one problem also works for the other 
one. Looking at the object descriptions only one nei
ther knows a suitable general form of the measure nor 
has one an indication how the parameters should be de
termined. An even more serious difficulty arises when 
the world of problems is continuously changing. This 
suggests that the similarity should not be defined in' 
some fixed way but instead be the result of an adap
tive learning process. This will be carried out in the 
PATDEx-System. 

PATDEX is a part of the MOLTKE-System (cf. Althoff 
(1992» which was developed in the past years at the 
University of Kaiserslautern. Its domain is the fault 
diagnosis of technical systems. Here we are only con
cerned with the aspect that diagnosis can be regarded 
as a classification task and we will suppress the other 
aspects. For this reason we modify the present termi
nology of PATDEX. The system accepts a description 
of an Qbject as an input; this description may be par
tial, some attribute values may be unknown. The basic 
instrument for the classification is the case base; a case 
is a pair (Object x, class(x» where class(x) is the class 
to which x belongs. 

The first version of PATDEX is PATDEX/l. It con
tains the basic structures which have b~n extended 
later on. It is convenient to describe it first. As ba
sic techniques, PATDEX/l applies learning by memory 
adaptation and analogical reasoning. The toplevel al
gorithm of PATDEX reads as follows: 

Input: The actual object description x 
Output: a class C or failure ' 

1.	 Find a case in the case base with an object x' most 
similar to x. If there is no case with an object 
at least 'minimally similar' to x then stop with 
failure. 

2.	 If x and :r:' are 'sufficiently similar' then accept 
the class C of x' also for :r: and goto 4). 
3) Otherwise select an attribute with unknown 
value and determine its value in order to obtain 
an improved situation and goto 1). 

3.	 If the class is correct then add the case (:r:, C) to 
the case base and stop with success. 

4.	 If the class is not correct then cancel temporarily. 
(i.e. for the actual problem) all cases with class C 
and goto 3). . 

Here we need an external teacher who says whether a 
class is correctly chosen or not. We also have to explain 
'minimally similar' and 'su.fficiently similar'. For this 
we need a partition of the case base which is given after 
the introduction of the similarity measure. 

For object descriptions PATDEX we introduced as a 
first proposal the similarity measure simpAT in sec
tion 5 with parameters Q = 1, j3 = -2, 'Y =11 = -1/2. 
This special choice of the parameters is at the moment 
mainly motivated by experimental results. It has a de
fensive, pessimistic character. A high negative contri
bution to the measure is given for conflicting attribute 
values, i.e. we strongly wish to avoid false classifica
tion. 

For the partition of the case base we choose real num
bers E and 6 such that 0 <E< 6 < 1 and define: 

Def.: The object descriptions XI and :r:2 are called: 

(i)	 indistinguishable
 
~ sim(xl' X2) = 1;
 

(ii)	 sufficiently similar
 
~ 6 ~ sim(xl, X2) < 1;
 

(iii)	 at least minimally similar 
~E~ sim(xl,x2) < 6; 

(iv)	 not minimally similar 
~ 0 ~ sim(xl' X2) <Ej 

The lower bound E is called the hypothesis threshold, 
a case succeeding here is said to be qualified for further 
processing. If the value exceeds an upper bound 8 it is 
even qualified as providing the classification (classifica
tion threshold). If, for a given case, the similarity value 
equals 1 this case is said to be proven. The thresholds 
are locally defined for each case of the case base, i.e. 
we have the possibility to make the numbers E and 8 
dependent on the respective cases. 

It is an important feature of PATDEX t.hat it supports 
for an object description the selection of an attribute 
with an unknown value. An optimal or at least good 
choice of such an attribute is crucial for an efficient 
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This measure pays special attention to attributes with
missing values On the other hand, it abstracts from
the Tversky measure in  so far that  i t  sees only the
cardinality of  sets instead the sets themselves.

6 The Patdex system

The difficulty with the similarity measure is that its
quality i s  related to  the final success of the whole rea-
soning procedure; this  i s  an a posteriori criterion. A
priori it is not clear what the criteria for similarity of
objects should be; they do not only depend on the ob—
jects themselves but also on the pragmatics of reason-
ing. In case-based reasoning it  is usually clear whether
a solution for a given problem ( in  our situation a clas-
sification problem) i s  correct but i s  far from clear what
it means that two problems are similar enough so that
the solution for one problem also works for the other
one. Looking at the object descriptions only one nei-
ther knows a suitable general form of the measure nor
has one an indication how the parameters should be  de-
termined. An even more serious difficulty arises‘when
the world of problems i s  continuously changing. This
suggests that the similarity should not be defined in‘
some fixed way but instead be  the  result of an adap-
tive learning process. This will be carried out in the
PATDEX-System.

PATDEX is a part of the MOLTKE-System (cf. Althoff
(1992)) which was developed in the past years at the
University of Kaiserslautern. Its domain is the fault
diagnosis of technical systems. Here we are only con-
cerned with the aspect that diagnosis can be regarded
as a classification task and we will suppress the other
aspects. For this  reason we modify the present termi-
nology of PATDEX. The system accepts a description
of an object as an input; this  description may be  par.
tial, some attribute values may be unknown. The basic
instrument for the classification is the  case base; a case
is a pair (Object 21, class(:r)) where class(a:) is the class
to which 1: belongs.

The first version of PATDEX is PATDEX/ 1. It con-
tains the basic structures which have been extended
later on. It is convenient to describe it first. As ba—
sic techniques, PATDEX/ 1 applies learning by memory
adaptation and analogical reasoning. The toplevel al-
gorithm of PATDEX reads as follows:

Input: The actual object description 1:
Output: a class C or failure ‘

] .  Find a case in the case base with an object z ’  most
similar to  z .  If there is no case with an object
at least ‘minimally similar’ to :: then stop with
failure.

2. If : and 2’ are ‘sujficiently similar’ then accept
the class C of z '  also for z and goto 4).
3) Otherwise select an attribute with unknown
value and determine its value in  order to obtain
an improved situation and goto l ) .

3. If the class is correct then add the case (z‚C) to
the case base and stop with success.

4. If the class is not correct then cancel temporarily.
(i.e. for the actual problem) all cases with class C
and goto 3).

Here we need an external teacher who says whether a
class is correctly chosen or not. We also have to explain
‘minimally similar’ and ‘sufl‘iciently similar’. For this
we need a partition of the case base which is given after
the introduction of the similarity measure.

For object descriptions PATDEX we introduced as a
first proposal the similarity measure simpAT in sec-
tion 5 with parameters a = 1, H = -2 ,  7 = n = —1/2.
This special choice of the parameters is at the moment
mainly  motivated by experimental results. It has a de-
fensive, pessimistic character. A high negative contri-
bution to the measure is given for conflicting attribute
values, i.e. we strongly wish to  avoid false classifica-
tion.

For the partition of the case base we choose real num-
bers & and 6 such that 0 <E< 6 < l and define:

Def.: The object descriptions 2:1 and 32 are called:

(i) indistinguishable
© s im(z ; ,  1:2) = 1;

(ii) sufliciently similar
er 6 5 sim(1'1,zz) < 1;

(ii) at least minimally similar
96$  sim(2:1,1:2) < 6;

(iv) not minimally similar
© 0 5 s im(z l , z2 )  <6 ;

The lower bound 6 is called the hypothesis threshold,
a case succeeding here is said to be qualified for further
processing. If the value exceeds an upper bound 6 it is
even qualified as providing the classification (classifica—
tion threshold). If, for a given case, the similarity value
equals 1 this case is said to be  proven. The thresholds
are locally defined for each case of the case base, i.e.
we have the possibility to make the numbers E and 6
dependent on the respective cases.

It is an important feature of PATDEX that i t  supports
for an object description the selection of an attribute
with an unknown value. An optimal or at least good
choice of such an attribute is crucial for an efficient



classification procedure. We will, however, not deal 
with this question. 

The use and analysis of PATDEX has lead to the con
clusion that its performance concerning the classifica
tion problem showed some weaknesses. Ultimately this 
was a problem of the similarity measure in two respects 
as already indicated. First 1 the type of the measure (as 
an abstraction of the Tversky measure) was too sim
ple in order to reflect information of the objects which 
are necessary for the classification. Secondly, even if 
the type of the measure would have been optimal one 
would still face the problem of chosing the parameters 
of the measure. To overcome this probleJ:Il.a learning 
process will be introduced. 

We will first describe the structural improvements of 
the measure. They get their motivation from the actual 
use of the system for diagnostic purposes rather than 
from purely mathematical considerations. The infor
mation reflected by the improvements is usually avail
able in the intended applications. The improvements 
are contained in the system PATDEX/2 (cC. Wess 91). 

The underlying pattern of the new features in PAT

DEX/2 is that not all attributes are equally important 
for determining the class of an object description. This 
leads to the notion of relevance. The relevances are 
numbers Wij E [0, 1]; where the index i points to an 
attribute Ai resp. its value and the index j refers to 
a class Cj. The Wij- should indicate the degree with 
which ai points at Cj. The relevances give rise to the 
relevance matrix R[Wij]. The main problem is now to 
determine the entries (also called weights) of the rele
vance matrix. These weights are exactly the elements 
which will be learned later on. 

lt is convenient to normalize the mattix such that 

(i) For all i and j O::S Wij ::s 1 holds; 

(ii) For all j we have E~=l Wij = l. 

We will now discuss the possibilities for the weights. 
This leads to some changes in the computation of 
simpAT. 

Local and global weights: Global weights satisfy 
Wij = Wit for all j and k; otherwise weights are 
called local. Global weights are less precise but 
easier to determine. 

Conflicting attribute values: If two objects have 
different values for an attribute A with domain 
D then the form of the difference should play a 
role. This can be achieved by introducing a func
tion W : D2 -. [0,1] which has to represent the 
similarities of the attribute values. ,If oQ.e of the 
values is unknown then the similarity Wi evaluates 
to zero. 
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Redundant attribute values: Redundant attribute 
values for the actual object descripticn ("ount neg
ative in the measure. This has the undesired effect 
of decreasing the similarity by the acquisition of 
more and e.g. completely uninteresting attribute 
values. This leads to the notion of classifying and 
not classifying attributes for redundant attributes, 
depending on their values. ,This division of the 
attributes has to be made by the user; in appli
cations to diagnosis this is usually not so difficult 
because classifying attributes there correspond to 
attributes with an abnormal value. The impact 
on the measure is that only classifying attributes 
enter the computation of R in simpAT. 

Unknown attribute values: Unknown values for 
the actual object description also count negatively 
in the computation of the measure. This may 
not be justified because the known values may 
determine, at least with some probability, the 
missing ones. Hence for such unknown values a 
value should be substituted which has a probabil
ity above some (user defined) threshold B. The 
probability can be estimated by the frequencies in 
the base of object descriptions. 

These remarks lead to a redefinition of the similarity 
measure. For the similarity between values the user 
chooses a threshold A. We put: 

Xact =(Wi 1 , ... , Wi.), x =(v r1 , ... , vr ,); here we list only 
the coordinates with a known value or where the value 
in xact can be predicted with probability? O. 

E' = {i Iw(Wi , Vi) ? A},
 
the set of attributes with sufficiently similar values;
 

C' = {ilw(Wi, Vi) < A},
 
the set of attributes with not sufficiently similar
 
values;
 

V' = H \ K,
 
the set of attributes with a known or estimated
 
value for x but unknown value for Xact.
 

R' = K \ H,
 
the set of attributes with a redundant and classify

ing value for Zact.
 

Using this we define: 

~ w .. . w(w· v')'Eo = ~ I, ,IJ 1 

iEE' 

classification procedure. We will, however, not deal
with this question.

The use and analysis of PATDEX has lead to the con—
clusion that its performance concerning the classifica-
tion problem showed some weaknesses. Ultimately this
was a problem of the similarity measure in twa respects
as already indicated. First, the type of the measure (as
an abstraction of the Tversky measure) was too sim-
ple in order to reflect information of the objects which
are necessary for the classification. Secondly, even if
the type of the  measure would have been optimal one
would still face the problem of chosing the parameters
of the measure. To overcome this problem _a learning
process will be introduced.

We will first describe the structural improvements of
the measure. They get their motivation from the actual
use of  the system for diagnostic purposes rather than
from purely mathematical considerations. The infor-
mation reflected by the improvements is usually avail-
able in the intended applications. The improvements
are contained in the system PATDEx/2 (cf. Wess 91).

The underlying pattern of  the new features in PAT-
DEX/ 2 is that not all attributes are equally important
for determining the class of an object description. This
leads to  the notion of relevance. The relevances are
numbers wg,- € [0,1]; where the index 1" points to an
attribute A,- resp. i ts  value and the  index j refers to
a class C,: The wij. should indicate  the  degree w i th
which a,- points at Cj. The relevances give rise to the
relevance matrix R[.w,-j]. The main problem is now to
determine the entries (also called weights) of the rele-
vance matrix. These weights are exactly the elements
which will be learned later on.

It is convenient to normalize the matrix such that

(i) For all i and j 0 S to,-,— S 1 holds;

(ii) For all j we have 22;, wg]- : 1.

We will now discuss the possibilities for the weights.
This leads to some changes in the computation of
simpAT .

Local und global weights: Global weights satisfy
to.-‚' : w“, for all j and k; otherwise weights are
called local. Global weights are less precise but
easier to determine.

Conflicting attribute values: If two objects have
different values for an attribute A with domain
D then the form of the difference should play a
role. This can be achieved by introducing a func-
tion a) : D2 -> [0,1] which has to represent the
similarities of the attribute values. _If one of the
values is unknown then the similarity w.- evaluates
to  zero.

Redundant attribute values: Redundant attribute
values for the actual object description count neg-
ative in the measure. This has the undesired effect
of decreasing the similarity by the acquisition of
more and e.-g. completely uninteresting attribute
values. This  leads to the  notion of classifying and
not classifying attributes for redundant attributes,
depending on their values. ‘This  division of the
attributes has to be made by the user; in appli-
cations to diagnosis this is usually not so difficult
because classifying attributes there correspond to
attributes with an abnormal value. The impact
on the measure is that only classifying attributes
enter the computation of R in simpu- .

Unknown attribute values: Unknown values for
the actual object description also count negatively
in the computation of the measure. This may
not be justified because the known values may
determine, at  least with some probability, the
missing ones. Hence for such unknown values a
value should be substituted which has a probabil-
ity above some (user defined) threshold 6. The
probability can be estimated by the frequencies in
the base of object descriptions.

These remarks lead to a redefinition of the similarity
measure. For the similarity between values the  user
chooses a threshold A. We put:

.2“, = (wil,...,wik),13 : (v,„...,v‚j); here we list only
the coordinates with a known value or where the value
in zact can be predicted with probability Z 0.

H = {£1 , . . . , ik } ,

K = {r1,.. . ,rj};

El = { i |w(w,- ,v , - )  Z Ä} ,
the set of attributes with suflicicntly similar values;

C, = { i |w(w,- ,v , - )  < Ä} ,
the se t  of attributes with not sufiiciently similar
values;

U' = H \ K,
the set of attributes with a known or estimated
value for a: but unknown value for zw .

R' = K \ H,
the se t  of attributes with a redundant and classify-
ing value for tug .

Using this we define:

Eu = Eu la -“ (womb
iEE'



Co E Wij . (1 - W(Wi, Vi»; 
iEC' 

Ro IR/I; 

Uo L Wij 

iEU' 

This leads finally to the measure of PATDEX/2: 

.	 a ·IEol
Slm(xa.c., x) =	 I 

a . IEol + {j . ICol + l' . IUol + '1' R.o I 

a, 13, I and TJ can be chosen as before. The partially 
user defined parameters are a step towards the idea of 
the Tversky measure. The approach takes into account 
that the precise form of the measure is a priori (i.e. 
when the problem is given) not available; the user can 
fill in as much knowledge as he has about the problem. 
Given a base of correctly classified object descriptions 
experiments with PATDEX/2 showed that the similar
ity measure did not even classify the cas('s from the 
base correctly. This was expected and here a learning 
process starts. What is learned are the weights, i.e. 
the entries of the relevance matrix. This process has 
an initial phase and a learning phase; the training set 
is the case base. 

Initial phase: The initial weights Wij are determined 
according to the observed frequencies in the base. 

Learning phase: The cases (xact,C) are taken from 
the case base. The system selects the most similar 
case (x,D) from the case base (similarity of cases 
means similarity of their object descriptions). If 
C = D, then nothing will be changed. 

For C f:. D we distinguish two possibilities: 

(1)	 x contains less known attribute values than Xact. 

Here the class D was obviously only correct by 
accident and the case (x,D) is eliminated from the 
case base. 

(2) In all	 other situations (x,D) remains in the case 
base but the weights are updated. 

The numerical form of the learning rule is not of inter
est; the leading principles are: 

•	 simpAT/2(Xact, x) < fJ should be achieved, they 
are not anymore sufficiently similar; 

•	 weights for attributes in C' and U' are increased; 

•	 weights for attributes in E' are decreased; 

•	 weights for attributes in R' remain invariant; 

•	 the weights Wij are still normalized according to 
E?=l Wij = 1 for each j. 

Rules of this type are known in unsupervised neu
ral networks; an example is the Grossberg rule resp. 
the rule in competive learning, cf. Rumelhart, Zipser 
(1985). 

After each erroneous diagnosis the weights of the rel
evance matrix are changed. In summary, the measure 
sim (and therefore the relation S(x, y, z) has been built 
up in two steps: 

a)	 The first approximation is done by modifying the 
measure simpAT using knowledge about the clas
sification task. 

b)	 The result of a) is the starting point for an adap
tive learning process where only the success in the 
classification task plays a role. 
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Co = z wij ' (1 - w(wi .  ”ill;
i eC '

Ro = lR'l;
UO = E w„-

iEU’

This leads finally to the measure of PATDEx/2:
a- IEoI

a - |Eo |+ß» | co1+7» |Uo |+n - lRo l

a ,  ‚ß, 7 and 17 can be  chosen as before. The partially
user defined parameters are a step towards the idea of
the Tversky measure. The approach takes into account
that the precise form of the measure is a priori (i.e.
when the problem is given) not available; the user can
fill in as much knowledge as he has about the problem.
Given a base of correctly classified object descriptions
experiments with PATDEx/2 showed that the similar-
ity measure did not even classify the cases from the
base correctly. This  was expected and here a learning
process starts. What  i s  learned are the  weights, i.e.
the entries of the relevance matrix. This process has
an initial phase and a learning phase; the training set
is the case base.

sim(x.¢g , x )  =

Initial phase: The ini t ial  weights zu,-‚- are determined
according to the observed frequencies in the base.

Learning phase: The cases ( cm ‚C) are taken from
the case base. The system selects the most similar
case (z ,D) from the case base (similarity of cases
means similarity of their object descriptions). If
C = D, then nothing will be changed.

For C # D we distinguish two possibilities:

(I) :: contains less known attribute values than rm.
Here the class D was obviously only correct by
accident and the case (z,-‚D) is eliminated from the
case base.

(2) In all other situations (:|:,D) remains in the case
base but the weights are updated.

The numerical form of the learning rule is not of inter-
est; the leading principles are:

e s impAT/2(z„„a: )  < 6 should be achieved, they
are not anymore sufficiently similar;

e weights for attributes in C’ and U’ are increased;

e weights for attributes in E’ are decreased;

0 weights for attributes in R’ remain invariant;

e the weights w„- are still normalized according to
ZL,  w,; = 1 for each j.

Rules of this type are known in unsupervised neu-
ral networks; an example is the Grossberg rule resp.
the rule in competive learning, cf. Rumelhart, Zipser
(1985).

After each erroneous diagnosis the weights of the rel-
evance matrix are changed. In  summary, the measure
sim (and therefore the relation S(:r‚ y, 2) has been built
up in two steps:

a)  The first approximation is done by modifying the
measure SimpAT using knowledge about the clas-
sification task.

b) The result of a) is the starting point for an adap-
tive learning process where only the success in the
classification task plays a role.
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