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Abstract 

Work on similarity can be shown to follow either a system view or a processing 
view with the former paying more attention to architectures. of similiarity assessing 
systems and the latter concentrating on similarity metrics. As similarity depends on 
a number of characteristics (e.g. goals, knowledge, context, common features) both 
view have their own merits when assessing similarity. In this paper, we present a 
framework of multistage similarity assessment that provides a linkage for a modeling 
of similarity according to the system and processing view. In so doing, the stages of 
the system can be evaluated according to both the characteristics of similarity being 
modeled and the errors possibly made. 

Introduction 

During the past several years, a flurry of interest in similarity has been touched off by re­
search done in information retrieval (IR), analogical (AR) and case-based reasoning (eRR) 
(e.g. Vosniadou & Ortony, 1989). While puzzling out principles of similarity assessment 
in cognitive science and artificial intelligence two different approaches have been pursued: 
Investigations of similarity adopting the processing view strive at developing a condensed 
formal account of similarity intended to he used independently of the pecularities of a 
system's architecture. To put it another way, the core idea of the processing view has 
been to uncover principles of similarity as basic as possible to obtain a coverage as broad 
as possible. A well-known proponent of the processing view is (Tversky 1977) and his 

contrast model. 
Conversely, research indebted to the system view concentrates on specifying architec­

tural constraints on similarity assessment. That is, according to the credo of the system 
view charcteristics of similarity may be captured by choosing an appropriate architecture 
of a system. Following this line, in case-based reasoning a number of models of computing 
similarity start with a great number of computational cheap similarity assessments; only 

-This research was supported by the "Oeutsche Forschungsgemeinschaft" (OFG), "Sonderforschungs­
bereich" (SFB) 314: "Artificial Intelligence and Knorledge-Based Systems", projects X9 and 03. 
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Abstract

Work on similarity can be  shown to  follow either a system view or a processing
view with the former paying more attention t o  architecturesof similiarity assessing
systems and the  la t ter  cencentrating on  similarity metr ics .  As  similarity depends on
a number  of  charac te r i s t ics  ( e .g .  goals ,  knowledge,  context ,  common features) bo th
view have their own meri ts  when assessing similarity. In this  paper ,  we“ present a
framework of multistage similarity assessment that provides a linkage for a modeling
of similarity according to the system and processing view. In so doing, the stages of
the system can be evaluated according to both the characteristics of similarity being
modeled and the  errors possibly made.

1 Introduction

During the past several years, a flurry of interest in similarity has been touched off by re—
search done in information retrieval (IR}, analogical (AR) and case-based reasoning (CBR)
(e.g. Vosniadou & Ortony, 1989). While puzzling out principles of similarity assessment
in cognitive science and artificial intelligence two different approaches have been pursued:
Investigations of similarity adopting the processing view strive at developing a condensed
formal account of similarity intended to be used independently of the pecularities of a
system’s architecture. To put i t  another way, the core idea of the processing view has
been to uncover principles of similarity as basic as possible to obtain a coverage as broad
as possible. A well-known proponent of the processing view is (Tversky 1977) and his
contrast model.

Conversely, research indebted to  the system view concentrates on  specifying architec-
tural constraints on similarity assessment. That is, according to the credo of the system
view charcteristics of similarity may be captured by choosing an apprOpriate architecture
of a system. Following this line, in case-based reasoning a number of models of computing
similarity start with a great number of computational cheap similarity assessments; only
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cases that yield a high score are taken over to the second stage to be assessed again with 
computationally expensive methods used to select the best scoring cases (e.g. Gentner & 
Forbus, 1991). 
Pointing out to differences between a processing and system view is flot supposed to pass 
unchallenged. At least when it comes down to actually building a system, so a possible 
caveat might go, the distinction between the two views seems to be more a difference in 
emphasis than in substance. Our objection to this argument is that there is quite a variety 
of characteristics of similarity assessment (Janetzko, Wess & Melis 1992), some of which 
are best modeled either according to the system view as to the processing view. 

For example, the dependency of similarity assessment on the number of common and 
distinguishing attributes is probably best captured by the processing view. In contrast, the 
dependency of similarity assessment on goals, knowledge, context, resources invested like 
time or memory are issues covered best by the system view. Thus, differentiating between 
these two views is more but a funny curiosity in the zoo of models of similarity as it can be 
used to guide modeling of characteristics of similarity according to the appropriate view. 

The present paper is devoted to an analysis of the costs and benefits of similarity 
assessment according to the processing and the system view. First, the notion of process 
and system view is stepwisely fleshed out to gain further understanding of the possibilities 
given by each of both views. Second, we discuss errors that may occur within multistage 
similarity assessment that links the processing and the system view. Third, we introduce a 
three-stage model of similarity assessment and present an evaluation along with the criteria 
established before. Finally, we discuss relationships towards other models of similarity 
assessment. 

2	 Linking the processing and the system view on 
similarity 

As foreshadowed by the preceeding discussion, distinguishing between the processing and 
the system view and differentiating among various characteristics of similarity leads to 
a desirable goal when building models of similarity assessment: Similarity may be best 
modeled in accordance to the possibilities of the two different views, i.e. on different levels. 
This first tenet may be called "The principle of preferred levels of modeling". 

Linked to that principle is another one that has to be fulfilled to make similarity assess­
ment flexible. This second principle is referred to as "The pinciple of graceful degradation" 
(Norman & Bobrow, 1975). By this, we mean that similarity assessment should show a 
smooth decline rather than an all-or-none behavior when faced with difficulties, e.g. low­
quality data or the like. This is deemed important if resources (e.g. time, memory) are 
limited or if the system itself does intend to limit resources (e.g. to perform a preselection) 
in order to invest resources in an economical fashion. 

Finally, the principle just mentioned implies a third one. This is called "The principle 
of continually available output" (Norman & Bobrow, 1975; Russell & Zilberstein, 1991). 
To spell out this principle is to specify the principle of graceful degradation. As a conse­
quence, it should be possible to stop processes of similarity assessment, e.g. by retracting 
resources needed, ;Lnd obtain results that are usable by the system although suboptimal 
when compared to the results acquired without stopping similarity assessment. 

The ideas in this paper rely on the conjecture that modeling of similarity assessments 
according to the three principles mentioned above is only possible by linking the processing 
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and the system view. When put into practice, the principle-guided linkage of the two views 
amounts to a multistage similarity assessment with characteristics of similarity brought into 
focus by each view distributed on different stages. The framework of such an architecture 
provides :i number of advantages: Modelling of characteristics of similarity can and should 
be done on different stages according to the principle of preferred levels of modeling. 
Depending on the stage of processing reached there is a smooth decline in the quality 
of the system's output, which obeys to the principle of graceful degradation. Finally, 
an architecture of multistage similarity assessment allows for a good approximation to the 
principle of continually available output as each stage is a kind of exit-point. The quality of 
the similarity assessment reached at each exit-point is a function of the resources invested. 

3 Demands on the assessment of similarity 

In what follows, we characterize two basic requirements to be fulfilled when assessing 
similarity. This is done along with a discussion of how to put tIle ideas of this paper 
into practice when building a system and an eye towards related work in information 
retrieval, analogical and case- based reasoning. In so doing, we will find further evidence 
for a multistage similarity assessment, which is spelled out in subsequent sections. 

3.1 Efficiency 

Analysing the process of similarity assessment from a efficiency point of view results in the 
demand of low computational costs of the retrieval. Since all items of the knowledge base 
are involved in the first step of the process, it is reasonable to require the first step to work 
very quickly on each item. The next step which works already on a set of preselected cases 
may have higher relative costs. 

A similar goal is aimed at by open hashing in databases: The hash function makes it 
possible to access - a list of items very fast; the search within this list, being as short as 
possible, has higher relative costs. 

In database research a lot of other retrieval approaches has been developed that are com­
putationally cheap e.g. multidimensional associative binary trees, called k-d Trees (Bently, 
1978), close match retrieval (Friedman, Bently & Finkel, 1977), incremental nearest­
neigbour search (Broder, 1990), best-match retrieval based on Voronoi-Diagramms (c.f. 
Mehlhorn, 1984) or hypercubes (Stolter, Henke & King, 1989). 

These techniques are able to retrieve a .best-match based on a set of surface features in 
logarithmic expected time Q( [og( n)) where n is the number of stored items in the database. 

The now commercial available case-based reasoning shell REMIND (Cognitive Systems, 
1991) developed by Cognitive Systems an enterprise founded by R.C. Schank uses this kind 
of rapid retrieval algorithms for case-based reasoning. 

Other approaches to a computC;l.tionally cheap. search of similar cases use the assess­
ment of similarity on the basis of the dot product over feature vectors (Medin & Schaffer, 
1978), connectionist models of learning (Rummelhart & McClelland, 1986), the PATDEX­

approach (Wess, 1991; Richter & Wess, 1991) or the memory-based reasoning approach 
(Stanfil & Waltz, 1986), which relies on a massive parallel search on a connection machine. 
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3.2 Reliability 

The analysis of the process from a reliability point of view yields characteristics of the 
kind of errors occuring at the consecutive steps of the process. These types of errors are 
well known in statistics as they give an account of the errors that can be made whenever 
a hypothesis is accepted or rejected (e.g. Bock, 1975). We use the notion of a-error and 
f3-error to classify possible errors to be made when assessing the similarity between two 
cases. 

Definition 1 (a-Error) If a previous case being useful to solve a problem at hand is part 

of the case base but not selected, the error is called a-error. 

Definition 2 (f3-Error) If a previous case not being useful to solve the current problem 
is part of the case base but selected, the error is called beta-error. 

Each model of selecting cases has to account for both kinds of errors. The selection of 
similar items (e.g. cases, concepts, entries in a database) is guided by selection criteria. 
a- and f3-errors depend on the selection criteria applied to find similar items. Selection 
criteria causing no a-error are necessary criteria, and selection criteria causing no f3-error 
are sufficient criteria. 

As well known (Mitchell, Keller & Kedar-Cabelli, 1986), explanation-based general­
ization (EBG) provides sufficient descriptions. The goal-driven similarity assessment in 
(Janetzko, Wess & Melis, 1992) using the EBG-method provides sufficient criteria and 
tends to keep the f3-error low. 

The ideas that form the basis of a- and f3-errors are closely related to the version space 
method introduced by (Mitchell, 1982). The description to follow shows how the version 
space technique can be applied to find a selection criteria that keep a- and f3-error at the 
lowest level possible. 
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3.2 Reliability
The analysis of the  process from a reliability point of view yields characteristics of the
kind of errors occuring at  the consecutive steps of the process. These types of errors are
well known in statistics as they give an account of the errors, that can be made whenever
a hypothesis is accepted or rejected (e.g. Bock, 1975). We use the notion of a—error and
ß-error to  classify possible errors to  be  made when assessing the  similarity between two
cases.

Defini t ion 1 (Oz-Error) [fa previous case being useful to solve a problem at  hand is part
of the case base but not  selected, the error is called a-error.

Defini t ion ’2  (ß-Error)  If a previous case not  being useful to solve the current problem
is part of the case base but selected, the error is called beta-error.

Each model of selecting cases has to account for both kinds of errors. The selection of
similar items (e.g. cases, concepts, entries in a database) is guided by selection criteria.
a- and ß-errors depend on the  selection cri teria applied to find similar i tems.  Selection
criteria causing no  a-error  are necessary criteria,  and selection criteria causing no ‚ß-error
are sufficient criteria.

As well known (Mitchell, Keller & Kedar-Cabelli, 1986), explanation-based general-
ization (EBG) provides sufficient descriptions. The goal—driven similarity assessment in
(Janetzko, Wess & Melis, 1992) using the BBG—method provides sufl‘icient criteria and
tends t o  keep the  ß-error low.

The ideas that  form the  basis of a— and ß-errors are closely related to the version space
method introduced by (Mitchell, 1982). The description to follow shows how the version
space technique can be applied to find a selection criteria that keep a— and ß—error at the
lowest level possible.
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Let the example space be a set of pairs of items. The criteria space C RIT is taken to 
mean a space of formulae representing selection criteria, i.e. the analogue to Mitchell's 
concept space. The partial order on C RIT (more specific, more genera~ ca.n be defined 
analogously to the hierarchy of generalizations in the version space. In agreement with 
the version space method the search space C RIT is reduced from top and from bottom 
introducing G (as the set of most general criteria selecting all known positive examples and 
rejecting all known negative examples) and 5 (as the set of most specific criteria selecting 
all known positive examples and rejecting all known negative examples). 

The criteria from G keep the a- and the criteria from 5 keep the j3-errors at the lowest 
level possible. Following Mitchell's model, if G = 5 the concept is learned and no 0- or 
j3-errors occurs. 

It is desirable that in the first step of case selection no (or almost no) a-error occurs, 
that is, no useful previous case is excluded from further processing. It is also desirable that 
in the last step cases being not useful are excluded. 

There are several possibilities to meet this demand: If during the first step of the process 
no a-error occurs, and there are useful items in the database then there remains anonempty 
set C of items. During the next steps from C items may be selected the computational costs 
of adaptation are lowest for. Items with computational costs of adaptation that exceed 
those to be expected can be eliminated. 

There are several approaches including such a usability assessment. For example, the 
goal-driven similarity assessment (Janetzko, Wess & Melis, 1992), similarity conserving 
transformations (SeT's Koton, 1988) evaluate certain similarities and dissimilarities as 
relevant or irrelevant. . 

Stages of similarity assessment 

As noted earlier, a multistage similarity model has been deemed necessary to cover a num­
ber of issues involved in similarity assessment. Among the most important of those issues 
are the possibility to combine various models of similarity assessments according to differ­
ent characteristics of similarity. In this way, it is feasible to control the impact of each of 
those characteristics. Additionally, multistage similarity assessment allows for specifying 
constraints on errors such that the a-error should be low in the first and the j3-error should 
be low in the last stage. During the stages the number of items considered decreases and 
the computational costs per item increase. 

Stage I - Syntactic features: Multistage similarity assessment begins by using a syn­
tactic measure of similarity which is based on features that form an explicit part of the 
representation of the items being compared. Measures deriving similarity from the number 
of common and different features that mayor may not be combined with weigths can be 
used at this stage (Tversky, 1977). Alternatively, models of similarity assessment men­
tioned in 3.1 like k-d trees may be employed for that purpose. At this stage, similarity 
assessment is not dependent on the representation of the domain theory. No knowledge 
but that encoded in the items (cases, entries of database) is used explicitly. As this stage 
usually is computational cheap it is well suited to be used as preselecting items. 

Stage 11 - Pragmatic relevance: A pure syntactic approach is not sufficient for similar­
ityassessment. First, a difference with regard to only one feature results in a high statistical 

Let the example space be a set of pairs of items. The. criteria space CR1 T is taken to
mean a space of formulae representing selection criteria, i.e. the analogue to Mitchell’s
concept space. The partial order on C RI T ( more specific, more general) can be defined
analogously t o  the  hierarchy of generalizations in  the  version space. In agreement with
the  version space method the search space CR]  T is reduced from top and from bottom
introducing G (as the set of most general criteria selecting all known positive examples and
rejecting all known negative examples) and S (as the set of most specific criteria selecting
all known positive examples and rejecting all known negative examples).

The criteria from 0’ keep the a— and the criteria from S keep the ß-errors at the lowest
level possible. Following Mitchell’s model,  if G = S the  concept is learned and no 0— or
ß—errors occurs.

It is desirable that in the first step of case selection no (or almost no) a-error occurs,
that is, no useful previous case is excluded from further processing. It is also desirable that
in the last step cases being not useful are excluded.

There are several possibilities to  meet this demand: If during the first step of the process
no a-error occurs, and there are useful i tems in  the  database then  there remains a‘nonempty
set C of i tems. During the  next s teps  from C i tems may be selected t he  computational costs
of adaptation are lowest for. I tems with computational  costs of adaptation that  exceed
those t o  be expected can be  el iminated.

There are several approaches including such a usability assessment. For example, the
goal-driven similarity assessment (Janetzko, Wess & Melis, 1992), similarity conserving
transformations (SCT’s Koton, 1988) evaluate certain similarities and dissimilarities as
relevant or irrelevant. '

4 Stages of similarity assessment

As noted earlier, a multistage similarity model has been deemed necessary to  cover a num—
ber of issues involved in similarity assessment. Among the most important of those issues
are the possibility to  combine various models of similarity assessments according to differ-
ent characteristics of similarity. In  this  way, i t  is feasible to  control the impact of each of
those characteristics. Additionally, multistage similarity assessment allows for specifying
constraints on  errors such tha t  the a—error should be  low in  the first and the ß—error should \
be low in the last stage. During the stages the number of items considered decreases and
the computational costs per  i tem increase.

Stage I - Syntactic features: Multistage similarity assessment begins by using a syn-
tactic measure of similarity which is based on features that form an explicit part of the
representation of the  i tems being compared. Measures deriving similarity from the number
of common and different features that may or may not be combined with weigths can be
used at this stage (Tversky, 1977). Alternatively, models of similarity assessment men-
tioned in 3.1 like k-d trees may be employed for that purpose. At this stage, similarity
assessment is not dependent on the  representation of the domain theory. No knowledge
but that encoded in the items (cases, entries of database) is used explicitly. As this stage
usually is computational cheap i t  is well suited to  be used as preselecting items.

Stage II  - Pragmatic relevance: A pure syntactic approach is not sufficient for similar-
ity assessment. First, a difference with regard to only one feature results in a high statistical
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similarity score but may be based only on a high agreement with regard to unimportant 
features. Vice versa, a great number of differences between two cases leads to a poor statis­
tical similarity score but may camouflage an agreement with regard to important features. 
For that matter, the next stage proceeds by allowing for the influence of pragmatic de­
terminants (e.g. goals and knowledge) on similarity assessment. !n go(J-driven similarity 
assessment (Janetzko, Wess, & Melis, 1992), for example, a set of features is computed by 
using EBG to single out those features that are of pragmatic relevance according to a goal 
and a domain theory. At this stage, similarity assessment makes use of the representation 
of the domain theory and pragmatic determinants like goals or purposes. This stage is 
computationally more expensive than the first one. 

Stage III - Consistency: For economical reasons, the kind of knowledge used in multi­
stage similarity assessment is distributed on three stages. Knowledge that can be used as 
a test to rule out similarity of items has not been employed in the preceeding stages. This 
kind of knowledge is taken to reject items that are definitely dissimilar when compared 
to the input item. This stage is extremely dependent on the domain theory and on the 
application. As a result, there are various possibilities to perform consistency tests. For 
example a diagnostic application consistency may be definend by a model-based diagnosis 
approach c.f. (Koton, 1988). Depending on the respective application this consistency 
check may be very expensive. Hence, this procedure is left for the last stage of similarity 
assessment. 

5 Conclusions 

Although up to now there is not a clear division into demands for knowledge-based steps of 
retrieval of cases and others, empirical results show a correspondence of knowledge-based 
and not-knowledge-based preselections respectively with the selection of cases by experts 
and novices respectively. Novick (1988) has found differences betweeen the retrieval cues 
available for the retrieval process by experts and novices: Novices almost exclusive rely on 
salient surface features of the target. Experts, however, will be able to use both surface 
and structural features. For common domains Holyoak and Koh (1987) established that 
retrieval of analogues relies more on surface similarity and less on structural similarity (than 
mapping). This might be simulated in the retrie~al included in eBR by a pure statistical 
preselection followed up by a more knowledge-based final selection step. An attempt to 
capture the novice pheneomenon is done by Gentner and Forbus (1991). They use as a first 
stage a matcher that works as follows: Each case is stored with a content vector (vector of 
number of occurences of predicates, functions, and connecti'ves) The content vector of each 
case is compared with the computed content vector of an entered probe. Hence, this stage 
consists of a purely statistical syntactic comparison. Afterwards a matcher calculating 
literal similarity is applied to the output of the first stage. 

This does not mean that knowledge-based similarity assessment in general provides 
only sufficient selection criteria. On the contrary, the domain theory can provide necessary 
criteria, too. 

Depending on the pecularities of the domain there is the possibility to introduce knowledge­
based modifications, e.g. of a pure statistic preselection by the contrast rule (Tversky & 
Gati 1982). This may be reasonable if the domain under study provides features or com­

similarity score but may be based only on a high agreement with regard to unimportant
features. Vice versa, a great number of differences between two cases leads to a poor statis-
tical similarity score but may camouflage an agreement with regard to important features.
For that  matter ,  the  next stage proceeds by allowing for the  influence of pragmatic de-
terminants (e.g. goals and knowledge) on similarity assessment. In goal-driven similarity
assessment (Janetzko, Wess, & Melis, 1992), for example, a set of features is  computed by
using BBC to  single out those features that are of pragmatic relevance according to a goal
and a domain theory. A t  th is  stage,  similarity assessment makes use of the representation
of the domain theory and pragmatic determinants like goals or  purposes. This stage is
computationally more expensive than the first  one.

Stage III - Consistency:  For economical reasons, the kind of knowledge used in multi-
stage similarity assessment is distributed on three stages. Knowledge that can be used as
a test  to  rule ou t  similarity of i tems has not been employed in  the preceeding stages. This
kind of knowledge is taken to reject items that are definitely dissimilar when compared
to the input item. This stage is extremely dependent on the domain theory and on the
application. As a result,  there are various possibilities to  perform consistency tests.  For
example a diagnostic application consistency may be definend by a model—based diagnosis
approach c.f. (Koton, 1988). Depending on the respective application this consistency
check may be very expensive. Hence, this  procedure is left for t he  last stage of similarity
assessment.

5 Conclusions

Although up to  now there is not a clear division into demands for knowledge-based steps of
retrieval of cases and others, empirical results show a correspondence of knowledge—based
and not-knowledge—based preselections respectively with the selection of cases by experts
and novices respectively. Novick (1988) has found differences betweeen the retrieval cues
available for the retrieval process by experts and novices: Novices almost exclusive rely on
salient surface features of the target. Experts, however, will be able to use both surface
and structural features. For common domains Holyoak and Koh (1987) established that
retrieval of analogues relies more on surface similarity and less on structural similarity (than
mapping). This might be simulated in the retrieval included in CBR by a pure statistical
preselection followed up by a more knowledge-based final selection step. An attempt to
capture the novice pheneomenon is done by Gentner and Forbus (1991). They use as a first
stage a matcher that works as follows: Each case is stored with a content vector (vector of
number of occurences of predicates, functions, and connectives) The  content vector of each
case is compared with the computed content vector of an entered probe. Hence, this stage
consists of a purely statistical syntactic comparison. Afterwards a matcher calculating
literal similarity is applied to  the output of the first stage.

This does not mean that knowledge—based similarity assessment in general provides
only sufficient selection criteria. On  the contrary, the domain theory can provide necessary
criteria, too.

Depending on the pecularities of the domain there is the possibility to introduce knowledge-
based modifications, e.g. of a pure statistic preselection by the contrast rule (Tversky &
Gati 1982). This may be reasonable if the domain under study provides features or com-

.
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binations of features which make usability probable or which rule out useability. 
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