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Abstract 

The goal of this work is to develop a formal logical foundation of the representation 
and the retrieval of cases in case-based reasoning. An adequate basis therefor provides the 
default logic with priorities. We present transformations which construct defaults from the 
memory of cases such that the retrieval of knowledge in case-based reasoning corresponds 
roughly to the preferred subtheory obtained by the defaults. 

Introduction 

Case-Based Reasoning(CBR) is one of the current issues in expert system research. An 
overview is given in [RisslandKolodnerWaltz89] and [Slade91]. The underlying principle of 
CBR is to memorize cases and organize them efficiently to retrieve knowledge when new prob
lems a.rise. .These information guide solving similar problems adopting the recorded known 
solutions. CBR consists of three main tasks: (1) organizing the memory structure, (2) retriev
ing information from memory and (3) using this information for problem solving. Our paper 
is focused on the second step, the information retrieval task. 

A commonly used model for an efficient organization of cases in CBR is the dynamic memory 
approach developed by [Schank82]. This approach was further sophisticated by [Kolodner83a, 
Kolodner83b, Kolodner84]. It will be the basis for the following sections. Cases are inserted in 
a hierarchical graph structure, called case memory. The nodes of the graph contain generalized 
information about the subsumed cases and the links between the nodes control the retrieval of 
information. 

The problem of such a generalization is the correctness: in order to achieve an efficient and 
compact representation it is necessary to subsume many cases under one generalization rather 
than considering every special case. The effect is that increasing knowledge about new cases 
during the retrieval process does not imply monotonic growing of information derived .from the 
case memory. 

-The work presented herein was partially supported by "Deutsche Forschungsgemeinschaft (DFG}". Sonder
forschungsbereich 314: "Artificial Intelligence - Knowledge-Based Systems". project X9. It was developed at 
the university of Kaiserslautern. 
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Abstract

The goal of this work is to develop a formal logical foundation of the representation
and the retrieval of cases in case—based reasoning. An adequate basis therefor provides the
default logic with priorities. We present transformations which construct defaults from the
memory of cases such that the retrieval of knowledge in case—based reasoning corresponds
roughly to the preferred subtheory obtained by the defaults.

1 Introduction

Case—Based Reasoning(CBR) is one of the current issues i n  expert system research. An
overview is given in [RisslandKolodnerWaltz89] and [Slade91]. The underlying principle of
CBR, is to memorize cases and organize them efficiently to retrieve knowledge when new prob.
lems arise. 'These information guide solving similar problems adopting the recorded known
solutions. CBR consists of three main tasks: (1) organizing the memory structure, (2) retriev-
ing information from memory and (3) using this information for problem solving. Our paper
is focused on the second step, the information retrieval task.

A commonly used model for an efficient organization of cases in CBR is the dynamic memory
approach developed by [Schank82]. This approach was further sophisticated by [Kolodner83a,
Kolodner83b, Kolodner84]. It will be the basis for the following sections. Cases are inserted in
a hierarchical graph structure, called case memory. The nodes of the graph contain generalized
information about the subsumed cases and the links between the nodes control the retrieval of
information. ‘

The problem of such a generalization is the correctness: in order to  achieve an efficient and
compact representation i t  is necessary to subsume many cases under one generalization rather
than considering every special case. The effect is that increasing knowledge about new cases
during the retrieval process does not imply monotonic growing of information derived from the
case memory.

'The work presented herein was partially supported by “Deutsche Forschungsgemeinschaft (DFG)”, Sonder-
forschungsbereich 314: “Artificial Intelligence - Knowledge-Based Systems”, project X9. It was developed at
the  university of Kaiserslautern.
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Because the hierarchical structure of the case memory contains knowledge about the preferences 
of information in nodes it is desirable to argue about preferences among formulas in the logic. 
A further requirement is that the logic is well understood and easy to apply. Both wishes are 
fulfilled. by the default logic [Reiter80] and the extension to prioritized defaults [Brewka89]. 
The main advantage of prioritized defaults is their possibility to solve conflicts in the case 
of competing defaults and to reduce the number of extensions. Extensions are the possible 
theories supported by the given defaults. 

2 Formal framework 

Now a formal definition of the case memory and the prioritized default theory is presented to 
lay the foundations for the combination of both. 

2.1 The case memory 

The case memory provides an efficient model for the storage and organization of cases for 
case-based reasoning. The main goal is to extract knowledge from a case base that guides the 
solution of new problems represented also by (possibly incompletely specified) cases. The case 
memory is a self organizing memory in the sense of dynamically reorganizing its structure if 
new cases are inserted. This adaptation process is not the topic of this work. Hereinafter an 
already constructed, complete case memory constitutes the basis for further examination of 
the retrieval process. 

Cases are described by features and in general contain further information, especially solutions 
for problems, e.g. in diagnosis the cases are descr~l,ed by observed symptoms and contain 
the reasons for the recognized errors. The meaning of cases herein is more general because 
no differences between the features and the additional information associated with a case are 
made. All the information about the case is thus represented in an uniform way. 

The simple model for a case is that it is a set of attribute-value pairs, called features. Any 
subset can perhaps (definitely) characterize a case. 

Definition 2.1 (Case) 
Let A be a finite set of attributes, V a finite set of values. 
F ~ A x V is a case iffVa EA. Vv, v' E V 

(a, v) E F 1\ (a, v') E F => v = v' (F can be seen as a partial function) 

A set of cases :F is called a case base. 

This definition means for a case F: if (a, v) E F, then F has the value v for the attribute a. 
If the set of attributes A contains an a such that Vv E V . (a, v) ~ F, then the attribute a is 
undefined, unknown or irrelevant for the case F. 

In the case memory the cases with common features are organized together in so called gen
eralizations or GENS. GENS include attribute-value pairs, so called NORMS, which describe 
features for the most cases subsumed by the GEN. In GENS the cases are indexed by discrim
inating features, called DIFFS. These DIFFS index not only the cases beneath a GEN, but 
also more specialized GENS. The case memory represents an acyclic directed graph, in which 
the cases are the leafs and GENS are inner nodes. The connections between nodes are marked 
with the DIFFS. 
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The main advantage of prioritized defaults is their possibility to solve conflicts in the case
of competing defaults and to  reduce the  number of extensions. Extensions are the possible
theories supported by the  given defaults. '

2 Formal framework

Now a formal definition of the case memory and the prioritized default theory is presented to
lay the foundations for the combination of both.

2 .1  The  case memory

The case memory provides an efficient model for the storage and organization of cases for
case—based reasoning. The main goal is to  extract knowledge from a case base that  guides the
solution of new problems represented also by (possibly incompletely specified) cases. The case
memory is a self organizing memory in the sense of dynamically reorganizing its structure if
new cases are inserted. This adaptation process is not the topic of this work. Hereinafter an
already constructed, complete case memory constitutes the basis for further examination of
the retrieval process.

Cases are described by features and in  general contain further information, especially solutions
for problems, e.g. in diagnosis the cases are described by observed symptoms and contain
the reasons for the recognized errors. The meaning of cases herein is more general because
no differences between the  features and the  additional information associated wi th  a case are
made. All the information about the case is thus represented in an uniform way.
The simple model for a case is that it is a set of attribute—value pairs, called features. Any
subset can perhaps (definitely) characterize a case.

Definition 2.1 (Case)
Let A be a finite set of attributes, V a finite set of values.
FQAXV i s acase ifiVaeA.Vv ,v ’€V

(11,0) € FA  (a,v’) € F => v = v’ (F can be seen as a partial function)
A set of cases ‚77 is called a case base.

This definition means for a case F: if (am) 6 F,  then F has the value v for the attribute a.
If the set of attributes A contains an a such that Vv € V . (a ,v )  € F ,  then the attribute a is
undefined, unknown or irrelevant for the case F .
In the case memory the cases with common features are organized together in so called gen-
eralizations or GENS. GENS include attribute-value pairs, so called NORMS, which describe
features for the most cases subsumed by the GEN. In GEN  S the cases are indexed by discrim-
inating features, called DIFFS. These DIF  FS  index not only the cases beneath a GEN, but
also more specialized GENS. The case memory represents an acyclic directed graph, in which
the cases are the leafs and GENS are inner nodes. The connections between nodes are marked
with the DIFFS.



2.1 The case memory 3 

Before defining the case memory we need some functions for the exploration of the graph 
structure, namely the successor and. predecessor functions. 

Definition 2.2 (Successors and Predecessors)
 
Let M be a finite set of nodes (GENS); A a finite set of attributes; V a finite set of values;
 
DI F F ~ M x A x V x M a discrimination function.
 

The successor function A is defined as follows: 
A : M ---+ P(M) 1
 

A(M) = {M' E M I 3a E A,v E V . (M,a,v,M') E DIFF}
 
AO(M) = {M} and A(n+l)(M) =U{A(M') I M' E An(M)}
 

00 . 

A+(M) = U AI(M) (tmnsitive closure) 
i=1 
00 . 

A·CM) = U A'CM) (reflexive and tmnsitive closure) 
i=O 

In the same way the predecessor function V' is defined: 
V : M ---+ P(M)
 
V(M) = {M' E M I 3a E A,v E V . (M',a,v, M) E DIFF}
 
VO(M) = {M} and v(n+I)(M) = U{V'(M') I M' E vn(M)}
 

00 . 00 . 

V·(M) = U V"(M) and V+(M) = U V'(M) 
i=O i=1 

Definition 2.3 (Case-Memory)
 
Let M, A, V, DIFF be as above; Mo E M a special node, the root of the case memory;
 
NORM ~ M x A x V a generalization relation.
 

The 6-tuple CM = (M,Mo,A, V,NORM,DIFF) is named case memory,
 
ifVM,M', M" EM. Va EA. Vv E V
 

1. (M, a, v, M') E DJFF 1\ (M, a, v, M") E DIF F => M' = M" (DIFF is functional) 

2. (M,a,v,M') E DIFF => (M',a,v) E NORM 1\ (M,a,v) (j. NORM 

3. (M,a, v) E NORM 1\ (M,a, v') E NORM => v = v' 

4. M (j. ~+(M) (the graph is acyclic) 

S. ME A*(Mo) (Mo is the root of the gmph) 

For short spelling (projections):
 
NORMM = {(a,v) I (M,a,v) E NORM}
 
DIFFM = {(a, v, M') I (M,a,v,M') E DIFF}
 

If CM, a, v, M') E DIF F, then (a, v) is called index for M' in M. 

If (M, a, v) E NORM, then most, but not all, successors of M, and M itself, have the value 
v for attribute a. Further details concerning the construction of the case memory and the 
insertion of new cases can be found in [Kolodner83a]. 

If (M,a,v,M') E DIFF, then M' is a successor of M and the link from M to M' is marked 
with the label (a, v). This means M and M' differ in the value of the attribute a. 

If A(M) = 0, then the node M is a case, otherwise the node is a GEN. 

Ip(M) denotes the set of all subsets of M 
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2.1  The  case memory 3

Before defining the case memory we need some functions for the exploration of the graph
s t ruc tu re ,  namely the  successor and ,  predecessor functions.
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A(M)  = {M’  € M | 3 a  € A‚v € V . (M‚a,v,M’)  € DIFF}
A"(M)  = {M} and A(””0” )  = U{A(M') I M’ € A"(M)}

A+(M) = Ü ATM) (tmnsitive closure)
i=1

A' (M)  = Ü A‘(M) (reflexive and transitive closure)
i=0

In the same way the predecessor function V is defined:
V : M —-> ‘P(M)
V(M) = {M’ e M | 3a 6 A,v e V . (M',a,v, M) e DIFF}
V°(M) = {M} and V("+1)(M) = U{V(M' )  I M’ € V" (M) }

coV-(M) = ;Üovfw) and V+(M) = g V‘(M)

Definition 2 .3  (Case—Memory)
Let M,  A, V, DIFF be as above; Mo € M a special node, the root of the case memory;
NORM g M X A X V a. generalization relation.

The 6-tuple CM = (M‚M0,A‚  V, NORM, DIFF) is named case memory,
i fVM,M’ ,M”e  M . Va e A . v1: 6 V

N . (M‚a', v,M') € DIFF/\  (M,a ,v ,M")  € DIFF => M' = M” (DIFF isfunctional)

2. (M,a ,v ,  M’) € DIFF => (M’ , a ,v )  € NORM A (M,a ,v )  € NORM

3. (M,a ,  v) € NORM A (M,a ,v’)  € NORM => 1; = v’

4. M ;! A+(M  ) (the graph is acyclic)

5. M € A“(Mo) (M0 is the root of the graph)

For short spelling (projections):
NORMM = {(m) l (M, a‚v) e NORM}
DIFFM = {(a, u, M’) | (M, a, v, M') e DIFF}
If(M, a ,  0,  M’) € DIFF, then (a.,v) is called index for M’  in M.

If (M,a ,  9) € NORM,  then most, but not all, successors of M,  and M itself, have the value
1) for attribute a .  Further details concerning the construction of the case memory and the
insertion of new cases can be found in [Kolodner83a].
If (M,  a ,  v, M’) e DIFF, then M’ is a successor of M and the link from M to M’ is marked
with the label ( a ,  v). This means M and M’ differ in the value of the attribute a .
If A(M)  = @, then the node M is a case, otherwise the node is a. GEN.

l 'P(M) denotes the set of all subsets of M



2.1 The case memory	 4 

After this definition of the case memory, it is now possible to say what a generalization really 
means, especially what information it contains. The closure of a node corresponds to the 
information we have about it and is defined as the collection of NORMS on a path from 
the root of CM to this node. NORMS of specialized nodes are preferred over NORMS of 
generalized nodes. This closure is in general not uniquely determined because there may be 
several different paths from the root to a node. 

We need a function to combine attribute-value pairs. This function builds the union of the set 
of features with a conflict resolution strategy in the case of common attributes with different 
values. 

Definition 2.4 (Efl) 
Efl : (A x V) x (A X V) -l- (A x V) is defined as: 

F[;0= F 
, { F [; F' ,if (a, v') E F for some v' E V 

F [; (F u Ha, v)}) = (F Efl F') u {(a, v)} ,if (a, v') f/. F for all v' E V 

To see what the output of the retrieval process is, we need to know the following notions: path, 
closure and retrieval. A path is easily defined as a sequence of nodes, while a closure is the 
collection of information from nodes on such apath. 

Definition 2.5 (Path and Closure) 
Let CM = (M, Mo, A, V, NORM, DlFF).
 
A path P from M to M' in CM is a sequence of nodes (Ml , •.. , M n ) with M l = M and M n = M'
 
and 'VI S; is; n - 1 . Mi+l E a(Md
 
For short spelling:
 
P(M, M') = {P I P is a path from M to M'}
 

The closure I(P) <;;; A X V of a path P = (M1 , ••• , M n ) is recursively defined:
 
n = 0 . I(P) =0
 
n > 0 • I(P) = NORM(Mn) EB I(P') with P' = (M!, ... , Mn-d
 

The closure of a node M is the collection of the closures of all paths from the root node Mo to
 
M:
 
I(M) = °{I(P) I PE P(Mo, M)}
 

Now we will see how information is retrieved from the case memory. For a new case it is 
necessary to choose the nodes subsuming it (Rail) and then to restrict these nodes to the most 
specialized ones (R). 

Definition 2.6 (Retrieval)
 
Let CM be as above, :F a case base, F E :F a t::ase.
 
Rail <;;; :F X M is named full retrieval relation iff
 

1.	 'VF E :F . (F, Mo) E Rail 

2.	 'VF,F' E:F . 'Va EA. 'VV E V . 'VM,M' E M
 
(F, M) E Ral/ /\ (M, a, v, M') E DlFF /\ F' = F u {(a, uH =} (F', M') E Rail
 

R <;;; Rail is the retrieval relation iff'V(F, M), (F, M') E R 
M' E ~·(M) =} M = M' 

The minimal closure I(F) of a case F is defined as follows: 
I(F) = {F EB I(M)I(F, M) E R /\ I(M) E I(M)} 

4
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After this definition of the case memory, it is now possible to say what a generalization really
means,  especially wha t  information i t  contains.  The  closure of a node corresponds to  the
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generalized nodes. This closure is in general not uniquely determined because there may be
several different paths from the root to  a node.
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of features with a conflict resolution strategy in the case of common attributes with different
values.

Definition 2 .4  (69)
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To see what the  output of the retrieval process is, we need to  know the following notions: path,
closure and retrieval. A path is easily defined as a sequence of nodes, while a closure is the
collection of information from nodes on such a path.

Definition 2.5 (Path and Closure)
Let CM = (M,  Mo, A, V, NORM,  DIFF) .
A path P from M to M’  in CM is a sequence of nodes (M1, ..., Mn) with M1 = M and Mn = M'
andVl  S iSn— 1 . Mi.“ €A(M‚ ' )

For short spelling:
‘P(M,M’) = {P  [ P is a path from M to M’}
The closure I (P)  g A X V of a path P : (M1, ..., Mn) is recursively defined:
a = 0 . I (P)  = @
n > 0 . I(P)  : NORM(M„) 69 I(P’) with P’ = (M1, ..., M„_1.)
The closure of a node M is the collection of the closures of all paths from the root node Mo to
M:  _
I (M)  = {I(P) I P € P(Mo‚M)}

Now we will see how information i s  retrieved from the case memory. For a new case i t  is
necessary to  choose the nodes subsuming it (Rau) and then to restrict these nodes to  the most
specialized ones (R) .

Definition 2.6 (Retrieval)
Le tCM beasabove, ‚Facase  base, Fe fa  case.
Rau Q f X M is named full retrieval relation ifi’

1. VF € J: . (F, Mo) 6 Rau

2. VF‚F'€f.Va€A.Vv€V.VM‚M’€M .
(F,M) e 12.." A (M,a, v, M’) e DIFFA F’ = FU {(a‚v)}=> (F’, M’) e R.,”

R ; Rau is the retrieval relation ifi’ V(F,M),  (F, M') 6 R
M’ e A'(M) =» M = M’

The minimal closure I (F  ) of a case F is defined as  follows:
I(F) = {F®I(M) | (F ,M)  E RAI(M)  E I(M)}

4



2.2 Prioritized Defaults 5 

Nor-Uon:

D=GEN 
o =INDEX 

o =CASE. 

Figure I: A small case mem~ry 

Two indeterminisms are included in the definition of the minimal closure of F: (I) the classi
fication: of the case into the case memory and (2) the computing of the closure from different 
paths. 

A small example may help understanding the definitions of cases, case memory and mini
mal closure: F = {(a,I),(b,2),(c,2)} is a typical case. In figure I we present a small case 
memory. For a case F = {(b, I)} the retrieval relation Rail contains the tuples (F, Mo) and 
(F, M2 ) and R contains (F, M2 ) because M2 is a successor of Mo. Some minimal closures are: 
l(Mo) = {(a, I)} and I(M6 ) = {{(a,1),(b,2),(c,2),(d,2)},{(a, 1),(b,2),(c,2))}, Le. M6 has 
two different minimal closures. 

2.2 Prioritized Defaults 

With the help of defaults we achieve the possibility to represent incomplete and inconsistent 
knowledge. Default information can be read as "until no more detailed information is available 
assume that ..." or "if it is consistent to assume that ...". 

[Brewka89] orders the defaults into different levels of reliability and computes maximal subsets 
preferring high and safety levels. These subsets must be consistent, so that defaults at lower 
levels are eliminated if they lead to inconsistencies. 

The ordering of the defaults in levels of reliability can be generalized to partial ordered defaults 
to model different chains of reliability. 

Definition 2.7 (Prioritized default theory) 
A prioritized default theory (T, <I) consists of a set of formula sets T = {Ti liE I ~ NA1} 2 

with a partial strict well-founded ordering <I on T and the condition Vi f::. j . T1 n Tj = 0 
(T, <I) is a leveled default theory I if <J is a total ordering. 

2NAT stands for the natural numbers 
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Figure 1: A small case memory

Two indeterminisms are included in the definition of the minimal closure of F :  (1) the classi-
fication of the case into the  case memory and (2) the computing of the closure from different
paths .  '

A small example may help understanding the definitions of cases, case memory and mini-
mal closure: F = {(a ,  1),(6,2),(c,  2)} is a typical case. In figure 1 we present a small case
memory. For a case F = {(b,1)} the retrieval relation Ral l  contains the tuples (F, Mo) and
(F, M2) and R contains (F, M2) because M2 is a successor of Mo. Some minimal closures are:
[ (M0)  = {(a,  1)}  and 1(M6) = {{(a,1),(b,2),(c,2),(d,2)},{(a,1.),(b,2),(c,2)}}, i ' e -  M6 has
two‘difl'erent minimal closures. _

2 .2  Prioritized Defaults

With the help of defaults we achieve the possibility to  represent incomplete and inconsistent
knowledge. Default information can be read as “until no’ more detailed information is available
assume that . . .” or “if i t  is  consistent t o  assume that . . . ” .

[Brewka89] orders the defaults into different levels of reliability and computes maximal subsets
preferring high and safety levels. These subsets must be consistent, so that defaults at lower
levels are eliminated if they lead to inconsistencies.

The ordering of the defaults in levels of reliability can be  generalized to partial ordered defaults
to  model different chains of reliability. \

Definition 2 .7  (Prioritized default theory)
A prioritized default theory (T ,  <1) consists of a set of formula sets T = {T‚ | i € I _C_ NAT} 2
with a partial strict well-founded ordering <l on T und the condition Vi # j . T,- n TJ- = @

(T ,  4 )  is a leveled default theory, if <! is a total ordering.

2NAT stands for the natural numbers
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Intuitively T; < Tj means that the formulas in Ti are more reliable than these in Tj. There are 
no preferences among the formulas in one set Tj. 

Definition 2.8	 (Preferred subtheory) 
Let ~ == (T, <l) be a prioritized default theory with T == {Ti liE I}. 
S ~ (, is a preferred subtheory of T wrt <l, if the following holds: 

(Bl) It exists a sequence(tj I j E J ~ NAT) with 

1. Vi El. Vt E Ti • 3j E J . t == tj 

2. Vi E J . 3i El. tj ET; 

3. Vit,12 E J . tjl 1= tj2 

4· Vtj E T i . Vtj' E Tjl . Tj <l T;I ::} j ~ j' 

(B2) S = U Sj mit Sj <;; G(tj) 3 
jEJ 

(B3) Vk E J.	 U Sj is a maximal, consistent set. 
"<kJ_ 

These preferred subtheories are the basis for reasoning. S is a consistent set of formulas that 
constitute the current beliefs. 

An extension E of a prioritized default theory .6. is defined as the set of all formulas that may 
be derived from a preferred subtheory S. The set of all extensions is denoted by £(.6.). 

3 Foundation of the case memory using prioritized defaults 

With the formal framework from section 2 it is now possible to formulate the main result of 
the work namely the transformation from the case memory to prioritized defaults. 

First we will present an first order language for the description of the case memory. 

With the help of prioritized defaults we define a preferred subtheory, such that the extension 
contains the closure of solution paths encoded in some predicates. 

3.1 First order language 

A typical scenario for the usage of our new first order language consists of two parts. We have 
to describe the case memory with formulas and defaults. Furthermore we must encode the 
input cases into formulas. '{'hen an extension is constructed from which the solutions can be 
obtained. 

The first order language contains the well known logical symbols V, 1\, '" and some function 
and predicate symbols. The nodes, attributes and values are represented as objects in the 
language. That means for every object the language contains a function symbol with arity zero 
(a constant). 

Beside the function symbols there are predicate symbols which we need to express connections 
among the objects. A predicate symbol norm with arity three is used for the coding of the 
NORM-relation. In the same manner the DIFF-relation is coded into a predicate diffwith 

3G(t) denotes the set of all ground instances of the formula t 

6 

Intuitively T,- < TJ- means that  the formulas in T.- are more reliable than these in Tj. There are
no preferences among the  formulas i n  one set T‚-.

Definition 2 .8  (Preferred subtheory)
Let A = (T ,  <1) be a prioritized default theory with T = {T; | i € I} .
S (_; £ is (: preferred subtheory of T wrt <l, if the following holds:

(B1) It exists a sequence (t j  I j € J Q NAT)  with

I .V iEI .V t€Tg .3 j€J . i= t j

2 .V j€J .3 i€ I . t j €T ;

3. ‘v ' j1 , j26J . t , -1  ;“,-2
4 . tEfi . t l €fi l .T idn l=> i l

(BZ) 5 = U Sj mit Sj g C( t j )  3
.76.]

(B3)  WC € J . U 5," is a maximal, consistent set.
jSk

These preferred su‘btheories are the basis for reasoning. S is a consistent set of formulas that
constitute the current beliefs.
An extension E of a prioritized default theory A is defined as the set of all formulas that may
be derived from a preferred subtheory S .  The set of all extensions is denoted by £ ( A) .

3 Foundation of the case memory using prioritized defaults

With the formal framework from section 2 it  is now possible t o  formulate the main result of
the work namely the transformation from the case memory to prioritized defaults.

First we will present an first order language for the description of the case memory.

With the help of prioritized defaults we define a preferred subtheory, such that the extension
contains the closure of solutibn paths encoded in some predicates.

3.1 First order language

A typical scenario for the usage of our new first order language consists of two parts. We have
to describe the case memory with formulas and defaults. Furthermore we must encode the
input cases into formulas. Then an extension is  constructed from which the solutions can be
obtained.

The first order language contains the well known logical symbols V, A, and some function
and predicate symbols. The nodes, attributes and values are represented as objects in the
language. That means for every object the language contains a function symbol with arity zero
(a  constant).

Beside the function symbols there are predicate symbols which we need to  express connections
among the objects. A predicate symbol norm with arity three is used for the coding of the
N ORM -relation. In the  same manner the DI FF~relation is coded into a predicate difi‘ with

3G(-t)  denotes the set of all ground instances of the formula 1
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arity four. Furthermore there is a subsumption predicate sub, which connects the input cases 
with the nodes under which they are subsumed. The subsumption will be detailed later. For 
now the intuitive meaning of substimption as coding of the solution path is sufficient. 

Definition 3.1 (First order language for the case memory)
 
Let CM = CM, Mo, A, V, NORM, DIFF) be a case memory and Q ~ peA x V) a set of input
 
cases.
 

LCM is a first order language for CM, if 

1.	 LcM is a first order language. 

2.	 'Va E A it exists a constant in LCM named a. 

3.	 'Vv E V it exists a constant in LCM named v. 

4.	 'VM E M it exists a constant in LCM, named m. 

S.	 'VQ E Q it exists a constant in LCM, named q. 

6.	 All constant symbols are unique. 

7.	 LCM contains a predicate symbol norm,. witharity three, a predicate symbol dijJ, with 
arity four, and a predicate symbol sub with arity two. 

A little example should show how the language is used. 

Example 3.1 
Let Q = {(a,I),(b,2)} be an incomplete case which is identified with the function symbol q. 
a, b, 1,2 are further constants of our language LcM . 

norm(q, a, 1) 1\ norm(q, b, 2) is an example of a correct formula. The intuitive meaning is that 
the case Q has the value 1 for the attribute a and 2 as value of b. 

Let M.!le a node of the case memory. More examples of formulas are: 

norm(m, a, 2) : the attribute a has in node M the value v. 

diJJ( m, b, 1, m') : the node M has the successor M' with the index (b, 1). 

sub(m, q) : the case Q is subsumed by the node M. 

3.2 The partial ordered default theory 

Now we present how it is possible to use the language LCM from section 3.1 for the transforma
tion of the case memory and of the input cases into defaults and facts. Additionally priorities 
for the defaults are given to obtain a partial. ordered default theory. 

We presuppose a case memory CM = (M, Mo, A, V, NORM, DIFF) and set of incomplete cases 
Q.	 The necessary formulas resp. defaults are introduced one after one. They are collected into 
a transformation at the end of the section. T is the name of the set of formulas for describing 
the case memory. 
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arity four. Furthermore there is a subsumption predicate sub,  which connects the input cases
with the nodes under which they are subsumed. The subsumption will be detailed later. For
now the  intuit ive meaning of subsu‘mption as coding of the solution path  is sufficient.

Definition 3.1 (First order language for the case memory)
Let CM = (M,  Mo, A, V, NORM, DIFF) be a case memory and Q (_: 'P(A X V) a set of input
cases.
COM is a first order language for CM,  if

1. CCM is a first onder language.

Va € A it exists a constant in LCM named a .

V1) € V it exists a constant in LCM named v .

VM € M it  exists a constant in ECM,  named m.

VQ € Q it exists a constant in  ßcM,  named q.

All  constant symbols are unique.

>
z .
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COM contains a predicate symbol norm,/with ‘arity three, a predicate symbol difl“, with
arity four, and a predicate symbol sub  with arity two.

A little example should show how the language is  used.

Example 3.1
Let Q = {(a,1),(b,2)} be an incomplete case which is identified with the function symbol q.
a ,  b, 1 ,2  are further constants of our language ECM.

norm(q‚ a ,  1)  A norm(q, b, 2) is an  example of a correct formula. The intuitive meaning is that
the case Q has the value 1 for the attribute a and 2 as value of b.

Let M __be a node of the case memory. More examples of formulas are:

norm(m,a, 2) : the attribute a has in node M the value v.

diflm, b, 1,m’) : the node M has the successor M’ with the index (b, 1).
sub(m, q) : the case Q is subsumed by the node M.

3.2 The partial ordered default theory

Now we present how it  is possible to  use the language LCM from section 3.1 for the transforma-
tion of the case memory and of the input cases into defaults and facts. Additionally priorities
for the defaults are given to obtain a partial ordered default theory.

We presuppose a case memory CM = (M,  Mo, A,  V, NORM, DIFF) and set of incomplete cases
Q .  The necessary formulas resp. defaults are introduced one after one. They are collected into
a transformation at the end of the section. T is the name of the set of formulas for describing
the case memory.
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3.2.1 Formulas and defaults 

First we look at the information stored in the nodes. For every node and every attribute value 
pair in the NORM relation of the node there is an atomic formula containing exactly the triple 
of node, attribute and value. 

(Fl) '1(M,a,v) E NORM. norm(m,a,v) ET 

The second step, the transformation of the indices, works exactly in the same manner. 

(F2) '1(M, a, v, M') E DIFF. difJ(m, a, v, m') E T 

The language LCM contains a constant symbol for every input case to identify it. The identifica
tion is especially necessary for the specification of the input cases. To prevent the introduction 
of unnecessary predicate symbols, the combination of attribute value pairs with the input cases 
is also realized with the norm predicate. 

(F3) "IQ E Q . V(a, v) E Q . norm(q, a, v) E T 

The identification of the input cases is also necessary for the definition of the subsUI:,nption 
relation. We \}Till describe a solution path with the set of nodes subsuming an incomplete case. 
Because every' path starts at the r~ot, every case must be subsumed from it. 

(F4) "IQ E Q . sub(mo,q) ET 

To build the subsumption relation it is necessary to traverse indices and to generate new nodes 
that subsume the input cases. Primary the default rule spec(xm,xa.,xv,xq) is given, which is 
explained below. 

(D5)VMEM. 

SpeCM(Xm,Xa.,xv,xq): di11(m,xa.,xv,xm)l\sub(m,xq)l\norm(xq,xa.,xv) => sub(xm,xq) E T 

The rule tells in principle: if we know there is ~ link between a node M and some successor 
node X m with the index (xa.,xv) (dijj(m,xa.,xv,x m »and a case xq, which has the value Xv 
for the attribute Xa. (norm(x q, Xa., xv», is subsumed by M (sub(m,xq», then the case is also 
subsumed by Xm (sub(xm, xq). 

Now we describe what it means that a case is subsumed by a node. The intuitive meaning is 
that the .information stored in the NORM relation of a node is transferred to the case, that is 
subsumed by the node. 

(D6) VM EM. soIM(xq,xa.,xv): sub(m,xq) 1\ norm(m,x,uxv) => norm(xq,xa,xv) E T 

Two formulas are still missing. They guarantee the existence of exactly one solution path 
and at most one value for every attribute in the solution. These two formulas are especially 
interesting, because they may lead to inconsistencies among the defaults, which we have studied 
until now. 

The following formula means that it is impossible that there are two values for one attribute 
in a case. 

(F7) norm(xq, xa,xv) 1\ norm(xq, xa, xw ) => Xv =Xw E T 4 

Another demand is that two nodes cannot subsume an input case if they are not on a common 
path: 

(F8) V.M, M' E M with M' fi ~'"(M) UV'"(M) . ..,sub(m, xq) V ..,sub(m', xq) E T 

The formulation of the conditions seems a little bit tricky, but this condition is necessary to 
avoid that nodes from different paths subsume the input case. The condition M' fi A'"(M) U 

4 = denotes the syntactical equality 
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3 .2 .1  Formulas and defaults

First we look at the information stored in the nodes. For every node and every attribute value
pair in the NORM relation of the node there is an atomic formula containing exactly the triple
of node, attribute and value.

(F1) V(M,a,v) € NORM . norm(m,a, v) 6 T
The second step, the transformation of the indices, works exactly in the same manner.

(F2) V(M,a,v,M') E DIFF . diflm,a,v ,m’)  E T
The language ECM contains a constant symbol for every input case to  identify it. The identifica-
tion is especially necessary for the  specification of the input cases. To prevent the introduction
of unnecessary predicate symbols, the  combination of attribute value pairs with the input cases .
is also realized with the  norm predicate.

(F3) VQ E Q . V(a., v) E Q . norm(q, a,  v) € T

The identification of the  input cases is also necessary for the definition of the subsumption
relation. We will describe a solution path with the set of nodes subsuming an incomplete case.
Because every" path starts at the root, every case must be subsumed from it.

(F4) VQ 6 Q . sub(mo,q)  € T
To build the subsumption relation it is necessary to traverse indices and to generate new nodes
that subsume the  input cases. Primary the  default rule spec (zm,za ,rv ,zq)  is  given, which is
explained below.

(D5) VM 6 M .
specM(zm,z¢,:r.,, xq) : (hmm,:ca, zu, zm)/\.sub(m‚ aa)/\ norm(zq,xu‚z„) => sub(zm,zq) e T

The rule tells in principle: if we know there is a link between a node M and some successor
node rm with the index (mmzu) (d iflm,za,z„ ,zm))  and a case zq, which has the value z.,
for the attribute x„ (norm(zq,:ca,a:„)), is subsumed by M (sub(m,xq))‚ then the case is also
subsumed by mm (sub(a:m,xq)).
Now we describe what it means that a case is subsumed by a node. The intuitive meaning is
that the information stored in the NORM relation of a node is transferred to the case, that is
subsumed by the node.

(D6)  VM E M . solM(zq,:ca,z„) : sub(m,zq)  A nonn(m‚a:„‚:c„) => norm(a:q,a:„,z„) e T

Two formulas are still missing. They guarantee the existence of exactly one solution path
and at most one value for every attribute in the solution. These two formulas are especially
interesting, because they may lead to inconsistencies among the defaults, which we have studied
until now.
The following formula. means that it is impossible that there are two values for One attribute
in a case.

(F7) norm(zq,z„‚:c„) A norm(zq,za,zw) => z., = zu, € T 4
Another demand is that two nodes cannot subsume an input ease if they are not on a common
path:

(F8) VM, M' E M with M’ € A"(M) UV"’(M) . fi sub(m,zq)  V -sub(m',z'q) € T
The formulation of the conditions seems a little bit tricky, but this condition is necessary to
avoid that nodes from different paths subsume the input case. The condition M’ ;! A*(M  ) U

'=  denotes the syntactical equality

//,a,/’/



3.2 The partial ordered default theory 9 

'V"'(M) means that two nodes which are not in a predecessor or successor relation, cannot 
subsu'me a case together. 

Thefollowing problem is not covered with the rule (F8): 

Let CM be a case memory with M 1 , M 2 E 6( Mo) and Mz E 6( Md according to figure 2. 

MO 

Ml 

Figure 2: Example for the necessity of default (09) 

Possible solution paths might be (Mo, Ml, M 2 ) and (Mo, M 2 ). Because the extension of the 
default theory computes the maximal set of formulas, '!'e obtain only one of the two possible 
solutions with the defaults and facts mentioned so far. 

To get the second solution we need a default that makes. M 1 and M2 in our example in a 
common solution path inconsistent. 

(D9) VM EM. VM',M" E 6(M) . M' 1- M" 
excM,M',MII(Xq ): -,sub(m',xq ) V -,sub(m",xq ) E T 

In connection with default (D5) there may be three possible solutions: the two defaults 

speoMo(ml, a, v, q), SpeCMo( m2, b, w, q) and exCMo,M1.M2(q) 

are inconsistent and one of them should not be in the extension. So we obtain the following 
solution paths: (Mo, M 2 ), (Mo, M1), (Mo, Ml, M 2 ). With the correct priorities, we can exclude 
the path (Mo, Md from the solutions. 

We call the formulas (F7), (F8) and the default (D9) exclusion conditions. 

3.2.2 Priorities 

The next step towards a partial ordered default theory according to section 2.2 requires the
 
.determination of priorities.
 

We construct sets Ti(O ~ i S 2n) of formulas and define a partial ordering on these Ti.
 

The highest priorities are assigned to the formulas (Fl) - (F4) and (F7) - (F8) which we call
 
facts. These formulas constitute the set To of sure formulas.
 

We can show that To is consistent. That is the reason why non of the formulas contained in
 
To must be retracted in the construction of a preferred subtheory.
 

The priorities among the defaults (D5),(D6) and (D9) will be extracted from the algorithm
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3.2 The partial ordered default theory 9

V ' (M)  means that two nodes which are not in a predecessor or successor relation, cannot
subsume a case together.

The‘following problem is not covered wi th  the  rule (F8 ) :

Let CM be a case memory with M1,M2 € A(Mo) and M2 € A(M1) according to figure 2.

M0

M1

M2

Figure 2: Example for the necessity of default (D9)

Possible .solution paths might be (M0,  M1, M2) and (M0,  M2). Because the extension of the
default theory computes the maximal set of formulas, we obtain only one of the two possible
solutions with the defaults and facts mentioned so far.

To get the second solution we need a default that makesM; and M2 in our example in a.
common solution path inconsistent.

(D9)  VM E M . VM' ‚M"  € A(M)  . M'  75 M”
emcM‚M:,Mn(:tq) : fisub(m’‚zq)  V fl sub (m” ,xq )  € T

In connection with default (D5) there may be three possible solutions: the two defaults
speGMo(ml  7 a ,  ”a  41) ,  specMo(m2 ,  b!  w,  9 )  and  ezéM0:Ml  1M2(q)

are inconsistent and one of them should not be in the extension. So we obtain the following
solution paths: (Mo, M2),(Mo, M1), (M0, M1, M2). With the correct priorities, we can exclude
the path (Mo, M1) from the solutions.

We call the formulas (F7), (F8) and the default (D9) exclusion conditions.

3 .2 .2  Priorities

The next step towards a partial ordered default theory according to section 2.2 requires the
determination of priorities.
We construct sets T‚-(0 S i S 2n) of formulas and define a partial ordering on these T‚-.

The highest priorities are assigned to the formulas (F1) — (F4) and (F7) — (F8) which we call
facts. These formulas constitute the set To of sure formulas.

We can show that To is  consistent- That is the reason why non of the formulas contained in
To must be retracted in the construction of a preferred subtheory.

The priorities among the defaults (D5),(D6) and (D9) will be extracted from the algorithm
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for the retrieval. The retrieval process computes in the first step a solution path. During this 
computation the case memory is explored beginning at the root node. Corresponding to this 
behavior the defaults (D5) and (D9) have a higher priority than the defaults (D6). 

Not all defaults of the form specM(Xm,Xa,xv,xq) wrt. excM,M',M"(Xq) have assigned the same 
priority, but the priority decreases from the root node to the leafs. 

Let n be the number of nodes in the case memory and M = {Mt , ... , M n } a numbering of the 
nodes. The sets T1, ... ,Tn are defined as Ti = {specM,(Xm,Xa,Xv,xq),eXCMj,M',M"(Xq)}(1 :S 
i :S n).
 

The partial order among the sets Ti is defined according to the successor relation.
 

VI :S i,j :S n . Ti <J Tj iff Mj E ~+(Mi) 

This means: Ti has a higher priority as Tj if the node M i is above Mj in the case memory. The 
partial order is well defined because the successor relation ,:l+ is transitive. It is furthermore 
anti-symmetrical, because the case memory has no cycles. 

To has a higher priority than all Ti(i ~ 1): 

VI :S i :S n . To <J Ti 

The last part of the retrieval algorithm is concerned with the computation of the closure of 
the solution path. Roughly speaking this is also the idea behind the default (D6). That is the 
reason why the priorities for the defaults soIM(xq,xa, xv) are at the lowest level. 

Each of the sets Tn+l' ... , Tn+n contains one defaults Tn+i = {soIM.(xq, Xa, xv)} with the same 
numbering of the. nodes as above. 

The ordering on the sets Tn+t , ... , Tn+n is reverse to the partial order on Tb ... , Tn , because the 
information in leaf nodes has precedence over information stored in inner nodes 

VI:S i,j :S n. Tn+i <J Tn+j iff Mi E ,:l+(Mj) 

Because we want to assign the lowest priorities to the sets defined last, we complete our partial 
order with the following condition: 

V1 :S i,j :S n . Ti <J Tn+j 

A little example seen in figure 3, gives some illustration of the priorities. 

3.2.3 Connection between solutions and extensions 

Before we present the whole transformation of a case memory into a partial ordered default 
theory completely some remarks about the extraction of the solution from extensions should 
be made. The formal connection between solutions computed by the retrieval process and 
extensions will be given later on in the correctness and completeness theorems. 

To obtain a solution for an input case Q, we look at the set of formulas that can be deduced 
from the facts and defaults of a preferred subtheory. This set of formulas is called the extension. 
The solution can be found in a subset of the extension containing atomic formulas of the form 
norm(q, -, -), which have the constant q for the identification of the case Q as first argument. 
The conjunction of these formulas describes exactly a solution. 

Many extensions can be computed, because many different subtheories are possible. We show 
below that the different extensions exactly match the different solutions of the retrieval process. 
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for t he  retrieval. The  retrieval process computes in the  firs t  s tep  a solution pa th .  During this
computa t ion  the  case memory is explored beginning at t he  root node.  Corresponding to  this
behavior the  defaults (D5) and (D9) have a higher priority than the defaults (D6).

Not all defaults of the form specM(rm, za,  xv, zq) wrt. esMI‘aq)  have assigned the same
priority, but the  priority decreases from the root node to  the  leafs.

Let n be the  number of nodes i n  the  case memory and M = {M1, . . . ,  Mn} a numbering of the
nodes. The sets T1,...,T,I are defined as T‘- = {specMJz-mwa,mmzq),esi_Mr,Mu(zq)}(l _<_
i S n).

The partial order among the sets T,:is defined according to the successor relation.

V1$i ‚ j$n .T ‚*<Tj ifi 'M‚ '  €A+(M‚ ' )

This  means: Ti has a higher priority as Tj if the  node M.- is above M j in the  case memory. The
partial order is  well defined because the  successor relation A+  is transitive. I t  is furthermore
anti-symmetrical, because the case memory has no cycles.

To has a higher priority than all T;(i 2 1):

v1 3 i _<_ n . T0 <1 T,- ' ,
The last part of the retrieval algorithm is concerned with the computation of the closure of
the solution path.  Roughly speaking this is also the idea behind the default (D6). That is the
reason why the priorities for the  defaults .solM(zq,za, 2:”) are at the lowest level.

Each of the  sets Tn“,  . . . ,T„+„  contains one defaults Tn.“- = {sol Mi(zq ,  xml-W)} with the  same
numbering of thenodes as above.

The ordering on the  sets  Tn“ , . . . ,  TM." is  reverse to  the partial order on T1, . . . ,  Tm because the
information in leaf nodes has precedence over information stored in inner nodes

V1 5 i , j  g n.. T„+‚- 4 TW» iff M,— e A+(M,-)
Because we want to  assign the lowest priorities to the sets defined last, we complete our partial
order with the following condition: ‘

V1$i,j_<_n.T‚-<1T„+j _
A little example seen in figure 3, gives some illustration of the priorities.

3 .2 .3  Connection between solutions and extensions

Before we present the whole transformation of a case memory into a partial ordered default
theory completely some remarks about the extraction of the solution from extensions should
be made. The formal connection between solutions computed by the retrieval process and
extensions will be given later on in the correctness and completeness theorems.

To obtain a solution for an input case Q ,  we look at  the set  of formulas that can be deduced
from the facts and defaults of a preferred subtheory. This set of formulas is called the extension.
The solution can be found in a subset of the extension containing atomic formulas of the form
norm(q, —‚ ——), which have the constant q for the identification of the case Q as first argument.
The conjunction of these formulas describes exactly a solution.
Many extensions can be computed, because many different subtheories are possible. We show
below that the  different extensions exactly match the different solutions of the  retrieval process.

/M/
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Case Memory Tbe partial ordering 
(n = 5) 
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Figure 3: Priorities 

3.2.4 The complete transformation 

The transformation of the case memory into a default theory A = (T, <I) consists of the 
definition of a set of formula sets T = {To, ... , Tn+n } and a strict partial ordering <I on T. 

Transformation 3.1 (Partial ordered default theory for a case memory)
 
Let CM = (M, Mo, A, V, NORM, DIFF) be a case memory, Q ~ peA x V) a set of incomplete
 
cases, i.e. "IQ E Q . Q is a partial function: A ---+ V, £'CM a first order language and n the
 
numbers of nodes in M.
 

A = (T, <J) is a partial ordered default theory of the case memory CM wrt. Q, if 

1. 1 == {To, ... , Tn +n } 

2. To contains the following formulas 

(a) (Fl) 'V(M, a, v) E NORM. norm(m,a, v) E To 

(b) (F2) 'V(M,a,v,M') E DIFF. diJJ(m,a,v,m') E To 

(e) (F3) "IQ E Q. 'V(a,v) E Q . norm(q,a,v)E To 

(d) (F-l) "IQ E Q . sub(mo,q) E To 

(e) (F7) norm(Xq,Xa, xv) 1\ norm(xq,xa,xw ) =} Xv = Xw E To 

(f) (F8) 'VM,M' E M with M' ~ A-(M) U V-CM) . -,sub(m,xq) V ...,sub(m',xq) E To 

3. The sets. of defaults Ti (1 S i S n) are defined as 

(D5),(D9) Ti ={ 
SpeCMi(Xm , Xli' Xv, x q) : dijJ(rni, X~, xv, x",,) 1\ sub(m., x q ) 1\ norm(x'q, x .. , xv) 

=} sub(Xm , x q), 
excM;,M',M"(Xq): ...,sub(m',xq) V ...,sub(m",xq)} 

4. The sets of defaults Ti (n + 1 si S n + n) are defined as 
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Case Memory The partial ordering
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3 .2 .4  The complete transformation

The transformation of the case memory into a. default theory A = (T ,  <1) consists of the
definition of a. set of formula-. sets T = {T0, ...,Tn+„} and a. strict partial ordering <] on T.

Transformation 3 .1  (Partial ordered default theory for a‘ case memory)
Let CM = (M,  Mo, A, V, NORM, DIFF) be a case memory, Q Q P(A x V)  a set of incomplete
cases, i.e. VQ € Q . Q is a partial function: A —> V, ECM a first order language and n the
numbers of nodes in M.

A = ('I', <!) is a partial ordered default theory of the case memory CM wrt. Q, if

1. T' = {To,...,T„+„}
2. To contains the following formulas

(a) (F1) V(M,a, v) € NORM. norm(m,\a, v) € To
(b) (F2) V(M,a‚v, M’) € DIFF. diflm,a,v‚m') € To
(c) (F3) VQ € Q . V(a,v) € Q . norm(q‚a,v)€ To

(4) (F4) VQ € Q . sub(mo.q) € To

(e) (F7) nonn(a:q,z‚„z„) A norm(a:q,za‚z„‚) => ::., = %, € To
(f) (F8) VM‚M' € M with M’ € A*(M)U V' (M) . -sub(m,zq) V -vsub(m’,zq) € To

3. The sets of default; T.- (1 $ i g n) are defined as

(D5)‚(D9) T.- = {
spc i ( zm,za , zu ,a -q )  : d iflm;,z„x„ , z„ ‚ )  A sub(m.-,m.‚) A norm(a;„‚z.„z.‚)

=> sub(z„„a:q),
€$CM5‚M'‚M"(zq) = rsubfin'a %) V ”Mm", %)}

4. The sets of defaults T.- (n + 1 S i S n + n) are defined as
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3.3 Propositions for the transformation i2 

(D6) Ti = {solM.(xq,xa,x v): sub(mi,xq) 1\ norm(mi,Xa,Xv) =? norm(xq,xa,xvH 

S. The strict partial order <l of the Ti is defined as 

(aJ VI :$ i :$ n . To <J Ti 

(b) Vi ::; i,j ~ n . Ti <l Tn+j 

(e) Vi ::; i,j ::; n . Ti <l Tj iff Mj E ~+(M;) 

(d) Vi::; i,j ~ n . Tn+i <l Tn+j iff M i E ~+(Mj) 

3.3 Propositions for the transformation 

This section contains some theorems about the transformation 3.1. Fundamental results are 
the theorems about correctness and completeness of the partial ordered default theory wrt. the 
case memory. 

The first proposition shows the consistency of the ground terms constructed from the facts. 

Lemma 3.1 (Consistency of G(To» 
Let ~ be as in transformation 3.1. 

G(To) is consistent 

This proposition has a nice conclusi.on: every preferred subtheory of the partial ordered sub
theory ~ contains G(To). The reason therefor is the consistency and the priority of the defaults 
in To. 

Conclusion 3.1
 
Let CM, Q, ~ be as in transformation 3.1.
 

For all extensions E of 6. . G(To) E E. 

For a nice formulation of the following theorems we need two more notations: compatibility of 
a solution path with an extension and compatibility of a solution with an extension. 

Compatibility of a solution path with an extension means that the solution path can be found in 
the subsumptionrelation (sub) of the extension. Compatibility of a solution with an. extension 
has the analogous meaning that the solution can he found in the norm-relation. 

Definition 3.2 (Compatibility) 
Let CM, Q, ~ be as in transformation 9.1. 

We call a solution path LP(Q) and an eztension E compatible if: 

VM EM. M E LP(Q) iff sub(m,q) E E 

We call a solution L(Q) and an extension E compa.tible, if: 

\:la EA. \:Iv E V . (a, v) E L(Q) iff norm(q,a, v) E E 

These compatibility definitions show how the retrieval in the case memory and the computation 
of extensions can be brought together. 

The following theorem of correctness states tha.t every extension is compatible with some 
solution of the retrieval in the case memory. 
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theory A contains G(To). The reason therefor is the consistency and the priority of the defaults
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For all extensions E of A . G(To) E E.

For a nice formulation of the following theorems we need two more notations: compatibility of
a solution path with an  extension and compatibility of a solution with an  extension.

Compatibility of a. solution path with an extension means that the solution path can be found in
the subsumption-relation (sub) of the extension. Compatibility of a solution with anextension
has the analogous meaning that the solution can be found in the norm-relation.

Definition 3.2 (Compatibility)
Let CM, Q ,A  be as in transformation 8.1.

We calla solution path LP(Q) and an extension E compatible if:
VM E M . M e LP(Q) ifl'sub(m,q) E E

We call a solution L(Q) and an  extension E compatible, if:

Va € A . Vv € V . (um) € L(Q) ijf norm(q,a, v) € E

These compatibility definitions show how the retrieval in the case memory and the  computation
of extensions can be brought together.
The following theorem of correctness states that every extension is compatible with some
solution of the retrieval in the case memory.
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13 

4 

Theorem 3.1 (Correctness)
 
Let CM, Q, ~ be as in transformation 3.1.
 

'iQ E Q . 'iE E £(~) . 3L(Q) E £(Q) 

\la EA. 'iv E V . norm(q,a,v) E E iff(a,v) E L(Q). 

Analogously we see the completeness of our transformation: every solution of the retrieval 
process has an compatible extension. 

Theorem 3.2 (Completeness)
 
Let CM, Q, ~ be as in Transformation 3.1.
 

\IQ E Q . VL(Q) E .c(Q) . 3E E £(~) 

\la EA. \Iv E V . (a,v) E L(Q) iffnorm(q, a, v) E E 

To show this two strong results we use the following two weaker lemmata about solution paths. 

Lemma 3.2 (Completeness of solution paths) 
Let CM, Q, ~ be as in transformation 3.1. 

\IQ E Q . 'iLP(Q) E .cP(Q) . 3E E £(~) with 

1. \lM EM. ME LP(Q) ~ sub(m,q) E E 

2. \lM EM. M rt LP(Q) ~ sub(m,q) rt E 

Lemma 3.3 (Correctness of solution path) 
Let.~ 00 as in transformation 3.1. 

\IQ E Q . \lE E £(~) . 3LP(Q) E .cP(Q) with 

1. \lsub(m,q) E LCM . sub(m,q) E E ~ M E LP(Q) 

2. V-sub(m,q) E £CM . sub(m,q) rt E ~ M rt LP(Q) 

Discussion 

The current work in the field of CBR research lacks the exploration of the logical basis. Non
monontonic reasoning provides especially for CBR an adequate foundation, because additional 
information about cases leads to revision of inferred knowledge. 

This work supplies a first formal definition and foundation of the case memory using prioritized 
defaults. Using these defaults is obvious because there are already preference relations between 
the nodes encoded in the representation of the case memory as directed acyclic graph. 

The first attempt to model the case memory with defaults is the work [KotonChase89]. But 
in several aspects this paper is inadequate and incomplete. It lacks the exact definition of 
the structure' of the case memory because the defaults mentioned cannot represent the case 
memory in general. Another problem is the absence of theorems about the usefulness of the 
defaults. One major point of criticism is that the complexity of the defaults is very high, if the 
case memory has a large number of indices. Our work provides smaller defaults, because we 
need to encode only local information, while the global control is encoded into priorities. 
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This work supplies a first formal definition and foundation of the case memory using prioritized
defaults. Using these defaults is obvious because there are already preference relations between
the nodes encoded in the representation of the case memory as directed acyclic graph.
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in several aspects this paper is inadequate and incomplete. It lacks the exact definition of
the structure of the case memory because the defaults mentioned cannot represent the case
memory in general. Another problem is the absence of theorems about the usefulness of the
defaults. One major point of criticism is that the complexity of the defaults is very high, if the
case memory has a large number of indices. Our work provides smaller defaults, because we
need to encode only local information, while the global control is encoded into priorities.
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