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1 Introduction 

Solving mathematical problems with resolution based theorem proving systems requires in 
most cases intelligence and ingenuity on the part of the user, because the final formulation 
of the problem is of essential importance for the problem-solving behaviour of the system. 
Often the main job is to formulate the task in a machine-friendly form and once this is done, 
the system easily finds a proof. Of course this situation is far from being satisfactory not 
least, because not the original task is solved but a transformed one. The user modifies the 
problem until it can be solved, however, this reformulation efforts are never documented. 
The consequence could be to forbid changes of the problem representation and to compute 
the solution for the original formulation (whatever that might be). But this would only 
be reasonable to check special features of a theorem prover but not its problem-solving 
facility in general. When comparing the situation to that of a human mathematician it 
seems obvious that he also rephrases the problem. Often the process terminates when the 
question is transformed into a form similar to a known problem. 

In fact this procedure was suggested by GEORGE POLYA in his course on human math
ematical problem solving [21, vol.2, p.80]: "Of course you want to restate the problem 
(transform it into an equivalent problem) so that it becomes more familiar, more attractive, 
more accessible, more promising." ALAN BUNDY [4, p.91] also pleads for modifications of 
the problems in order to get adequate formulations for computers: "... we should look at 
alternative axiomatizations of mathematical theories, which utilize a language closer to the 
one with which we ourselves describe the problem." We do not agree with BUNDY's hy
pothesis to restate problems in a human oriented language, but we share his opinion that 
the representation is very important for the solution. BUNDY also gives practical hints 
how reformulations can be done to make problems more digestible for theorem proving 
programs [4, section 4.3]. Especially he elaborates on the advantage of avoiding all func
tion symbols. One of our focal points is to examine classes of problems well-suited to the 
method of avoiding some function symbols. BUNDY cites an example where the function 
symbols are eliminated. But using a completion-based equality theorem prover it is better 
to state it with function symbols. The main concern of this paper is to make explicit some 
informal methods like those which are elaborated by LARRY WOS et al. [26, chapter 4] to 
represent various exercises for automated reasoning programs. 

In order to by-pass the cheat mentioned above, it is necessary to have two different formu
lations of the problem: one original (user-friendly) formulation, which is transformed to a 
second logically sufficient formulation, to be given to the theorem proving system in order 
to be proved. This transformation is of course a process that requires intelligence. Hence 
it is an object of study in artificial intelligence. The best known methods to describe the 
human behaviour in mathematical problem solving are meta-reasoning and writing tactics 
as those used in LCF [11], Nuprl [8], and proof-planning [5,6]. The transformation process 
presented here fits well into this framework. 

2 Example for Different N ormalizations 

Our first example is presented in order to show that a simple preprocessing step on an 
original formulation can result in a significantly less difficult initial clause set to be given to 
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4 Example for Different Normalizations 

the resolution theorem prover. The considered theorem is, that the composition operation 
for relations is associative, in other words, for all binary relations p, a, T over a fixed set: 
(p 00") 0 r = po (a 0 r) (the example is taken from [9, p.34]). 

Vie write relations as subsets of the binary Cartesian product of the object level domain. 
The composition of two relations is defined by 

Vx,y (x,y) E poa ~ 3z (x,z) E pI\. (z,y) Ea. 

We translate the problem by a standard method into first-order logic using "apply" and a 
so-called extensionality axiom as introduced in section 3. We continue our considerations 
with the translated formulation, because we use a first-order theorem prover (Markgraf Karl 
Refutation Procedure [18]) and the reformulation can be described in first-order, although 
higher-order is more adequate as starting point. For the second example we introduce some 
basic concept of higher-order logic, which are also necessary for investigations about the 
soundness of the procedure (compare section 5). 

2.1 The Initial First-Order Formulation 

The "apply"-predicate is written as APPLY. IXITO is the type of binary relations (I stands for 
t, the type of individuals, 0 for 0, the type of truth values, compare section 3). Instead of 
(x,y) E p we use the notion p(x,y), which is translated into the first-order atom APPLY(RHO 

x v). 

Formulae given to the editor 

Axioms: * Sorts * 
SORT I,IXITO:ANY 
TYPE APPLY(IXITO I I) 
* Definition of Composition * 
TYPE COMP(IXITO IXITO):IXITO 
ALL RHO,SIGMA:IXITO ALL X,Y:I 

(EX Z:I APPLY(RHO X Z) AND APPLY(SIGMA Z V»~ EQV APPLY(COMP(RHO SIGMA) X Y) 
* Extensionality Axiom * 
ALL RHO,SIGMA:IXITO (ALL'X,Y:I APPLY(RHO X Y) EQV APPLY(SIGMA X V»~ IMPL RHO = SIGMA 

Theorems: ALL RHO,SIGMA,TAU:IXITO COMP(COMP(RHO SIGMA) TAU) = COMP(RHO COMP(SIGMA TAU» 

2.2 Normalization of the Original Formulation 

If we input this formulation into the Markgraf Karl Refutation Procedure (MKRP) (for the 
language see [25, 22]) we get: 

A1: All x:Any + =(x x) 
* A2: All x,y:Ixito z,u:I + APPLY(y u f_1(y z u x» - APPLY(comp(y x) u z) 
* A3: All x,y:I z,u:lxito + APPLY(u f_l(z y x u) y) - APPLY(comp(z u) x y) 
* A4: All x,y,z:I u,v:Ixito - APPLY(v z y) - APPLY(u y x) + APPLY(comp(v u) z x) 
* AS: All x,y:lxito - APPLY(y f_2(y x) f_3(y x» - APPLY(x f_2(y x) f_3(y x» + =(y x) 
* A6: All x,y:Ixito + APPLY(y f_2(y x) f_3(y x» + APPLY(x f_2(y x) f_3(y x» + =(y x)
* T7: - =(comp(comp(c_l c_2) c_3) comp(c_l comp(c_2 c_3») 

4 Example for Different Normalizations

the  resolution theorem prover. The considered theorem is, that the composition operation
for relations is associative, in other words, for all binary relations p, 0', T over a fixed set:
(p o a)  o 7- = p 0 (cr o 'r) (the example is taken from [9, p.34]).

We wri te  relations as subsets of the binary Cartesian product of the object level domain.
The composition of two relations is defined by
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We translate the problem by a standard method into first-order logic using “apply” and a
so—called extensionality axiom as introduced in section 3. We continue our considerations
with the translated formulation, because we use a first-order theorem prover (Markgraf Karl
Refutation Procedure [18]) and the reformulation can be  described in first-order, although
higher—order is more adequate as starting point. For the second example we introduce some
basic concept of higher-order logic, which are also necessary for investigations about the
soundness of the procedure (compare section 5).

2 .1  The  Initial  F i rs t -Order  Formulation

The “apply”-predicate is written as APPLY. Ixn'o is the type of binary relations (I  stands for
L, the type of individuals, 0 for o, the type of truth values, compare section 3). Instead of
(36,31) € p we use the notion p(:c, g), which is translated into the first-order atom APPLY(RHO
X Y).

Formulae given to  the edi tor

Axioms:  * Sor t s  *
SDRT I,IXITO:ANY
TYPE APPLY(IXITO I I )
* Definition of  Composit ion *
TYPE CDHP(IXITO IX ITD)  : IXITO
ALL RHO,SIGMA:IXITD ALL X,Y:I

(EX Z : I  APPLYGIHO x Z)  AND APPLY(SIGHA Z Y))  EQV APPLY(COMP(RHO SIGMA) X Y)
* Extensionali ty Axiom *
ALL RHO,SIGHA:IXITO (ALL‘X,Y:I APPLYGIHD X Y) EQV APPLYCSIGHA x Y))  IMPL RHO = SIGMA

Theorems:  ALL RHU,SIGHA,TAU:IXITD COMP(COHP(RHO SIGMA) TAU) = COHP(RHO CUMP(SIGMA TAU»

2.2 Normalization of t he  Original Formulation

If we input this formulation into the Markgraf Karl Refutation Procedure (MKRP) (for the
language see [25, 22]) we get:

A1: Al l  x:Any + =(x  x )
A2: A11 x ,y : Ix i t o  z ,u : I  + APPLY(y u f_1 (y  z u x) )  - APPLY(comp(y x)  u 2 )
A3: A11 x ,y : I  z,u:Ixito + APPLY(u f_1(z y x u)  y )  - APPLY(comp(z u )  x y )
A4: Al l  x ,y , z : I  u‚v : Ix i1 :o  - APPLY(V z y)  — APPLY(u y x )  + APPLY(comp(v u )  z 3:)
A5: A11 x‚y:Ixito — APPLY(y f_2 (y  x)  f_3(y x) )  - APPLY(x f_2 (y  x)  f_3 (y  x ) )  + =(y x )
A6: Al l  x ,y : Ix i t o  + APPLY(y f_2 (y  x )  f_3 (y  x) )  + APPLY(x f_2 (y  x )  f_3 (y  X) )  + =(y  1:)
T7: - =(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3 ) ) )

**
*-

**
*





5 Better Normalization 

The system needs 1115 seconds to generate a proof with very complicated clauses. One of 
the last deduced clauses is depicted belowl : 

* Rl52: - APPLY(c_2 
f_l(c_l 

f_3(comp(comp(c_l c_2) c_3) comp(c_l comp(c_2 c_3») 
f_2(comp(comp(c_l c_2) c_3) comp(c_l comp(c_2 c_3») 
comp(c_2 c_3» 

f_Hc_2 
f_3(comp(comp(c_l c_2) c_3) comp(c_l comp(c_2 c_3») 
CHc_l 

f_3(comp(comp(c_l c_2) c_3) comp(c_l comp(c_2 c_3») 
f_2(comp(comp(c_l c_2) c_3) comp(c_l comp(c_2 c_3») 
comp(c_2 c_3» 

c_3) )
 
- APPLY(c_3
 

f_l(c_2 
f_3(comp(comp(c_l c_2) c_3) comp(c_l comp(c_2 c_3») 
f_Hc_l 

f_3(comp(comp(c_l c_2) c_3) comp(c_l comp(c_2 c_3») 
f_2(comp(comp(c_l c_2) c_3) comp(c_l comp(c_2 c_3») 
comp(c_2 c_3» 

c_3) 
f_3(comp(comp(c_l c_2) c_3) comp(c_l comp(c_2 c_3»» 

2.3 Better Normalization 

Looking on the input formulae and on the result of the normalization we see that it will 
be very useful to do. a preprocessing step. The structure of the last axiom formula is 
(A +-t B) ---7 C where C matches the theorem C'. Hence we can construct a new theorem 
A' ~ B' according to this match. Starting with this "resolvent" as theorem we can avoid 
the unfolding during normalization and can additionally split the theorem into the two 
parts A' ---7 B' and B ' ---7 A' with computation times for the splitparts of 18 and 13 
seconds, respectively. 

But this splitting does not contribute the main change in performance (time without split
ting: 114 seconds). The problem with the first formulation is the unfolding during nor
malization: 

[Y] ( [Y] A ~ B) ---7 C 

"'-* [Y] -,( [Y] A ~ B) V C 

"'-* [Y] -,(( [Y] A ---7 B) !\ ( [Y] B ---7 A)) V C 

"'-* [] -,( [Y] -,A V B) V -,( [2] -,B V A) V C 

"'-* [] ([i] -,(-,A V B)) V (~-,(-,B V A)) V C 

"'-* [] ( [i] A!\ -,B) V ( [i] B !\ -,A) V C 

"'-* [] (-,A V -,B V C)!\ (A V B V C) 

IThe asterisk means that the clause is really used in the proof. - indicates negative and + positive literals. 

Better Normalization 5

The system needs 1115 seconds to  generate a proof with very complicated clauses. One of
the last deduced clauses is depicted belowlz
* R152: — APPLY(C_2

f_1(C_1
f_3(comp(comp(c_1 c_2) c_3)  comp(c_l comp(c_2 c_3 ) ) )
f_2(comp(comp(c_1 c_2) c_3) comp(c_l comp(c_2 c_3 ) ) )
comp(c_2 c_3 ) )

f_1 (c_2
f_3 (comp(comp(c_1  c_2 )  c_3 )  comp(c_ l  comp(c_2  c_3 ) ) )
f_1 (c_1

f_3 (comp(comp(c_1  c_2 )  c_3 )  comp(c_1  comp(c_2  c_3 ) ) )
f_2(comp(comp(c_1 c_2)  c_3)  comp(c_1 comp(c_2 c_3 ) ) )
comp(c_2 c_3 ) )

c_3 ) )
- APPLY(C_3

f_1(c_2
f_3(comp(comp(c_1 c_2) c_3) comp(c_l comp(c_2 c_3)))
f_1 (c_1

f_3(comp(comp(c_1 c_2) c_3)  comp(c_1 comp(c_2 c_3 ) ) )
f_2(comp(comp(c_1 c_2)  c_3) comp(c_l comp(c_2 c_3)))
comp(c_2 c_3))

c_3)
f_3(comp(comp(c_1 c_2) c_3) comp(c_i comp(c_2 c_3) ) ) )

2 .3  Be t t e r  Normalization

Looking on the input formulae and on the result of the normalization we see that it will
be  very useful to do. a preprocessing step. The structure of the last axiom formula is
(A H B)  —> C where C matches the theorem 0’. Hence we can construct a new theorem
A’ 4—) 3’ according to  this match. Starting with this “resolvent” as theorem we can avoid
the unfolding during normalization and can additionally split the theorem into the two
parts A’ —> B’ and B’ ——> A’ with computation times for the splitparts of 18 and 13
seconds, respectively.

But this splitting does not contribute the main change in performance (time Without split-
ting: 114 seconds). The problem with the first formulation is the unfolding during nor-
malization:

" (Mm—+0
M “ (AHB)VC

«» III~((A—+B)A(B—>A))v0
M “ I ( - :AVB)V - | ( -wBVA)VC ’

«» lll(fi(flAvB))v(fl(flBvA>)vo
«» " . (AA- IB )V (B / \ - IA )VC

«» ' (fiAvfiBvC)A(AvBVC)
1The  asterisk means that the  clause is really used in the proof. - indicates negative and + positive literals.





6 Example for Different Normalizations 

The last formula corresponds to AS and A6 in section 2.2. We have two clauses, where the 
As and Bs contain troublesome Skolem functions introduced in the last step because of 
quantifiers in the theorem and must be resolved in a difficult manner. By the preprocessing 
step we replace the three-literal clauses A5 and A6 as well as the theorem clause T7 by the 
simple unit clauses T5 through TB in the proof below and hence avoid the Skolem functions 
L2 and £-3. They are replaced by Skolem constants. In the formulation below one can see 
immediately the five variables that are Skolemized. The general explicit formulation of 
the extensionality axiom is replaced by a special implicit one. The alternative formulation 
together with a complete proof of one of the splitparts follows. 

Formulae given to the editor 
============================ 

Axioms:	 * Sorts * 
SORT I,IXITO:ANY 
TYPE APPLY(IXITO I I) 
* Definition of Composition * 
TYPE COMP(IXITO IXITO):IXITO 
ALL RHO,SIGMA:IXITO ALL X,Y:I 

(EX Z:I APPLY(RHO X Z) AND APPLY(SIGMA Z V»~ EQV APPLY(COMP(RHO SIGMA) X Y) 

Theorems:	 ALL RHO,SIGMA,TAU:IXITO ALL X,Y:I 
APPLY(COMP(COMP(RHO SIGMA) TAU) X Y) EQV APPLY(COMP(RHO COMP(SIGMA TAU» X Y) 

Set of Axiom Clauses Resulting from Normalization 
==============================================-== 

A1: All x:Any + =(x x) 
* A2: All	 x,y:Ixito z,u:I + APPLY(y u f_1(y z u x» - APPLY(comp(y x) u z)
* A3: All	 x,y:I z,u:Ixito + APPLY(u f_1(z y x u) y) - APPLY(comp(z u) x y) 

* A4: All	 x,y,z:I u,v:Ixito - APPLY(v z y) - APPLY(u y x) + APPLY(comp(v u) z x) 

Set of Theorem Clauses Resulting from Normalization and Splitting 
================================================================= 

Splitpart	 1 * T5: - APPLY(comp(comp(c_4 c_1) c_2) c_3 c_5) 
* T6: + APPLY(comp(c_4 comp(c_1 c_2» c_3 c_5) 

Splitpart	 2 * T7: + APPLY(comp(comp(c_9 c_6) c_7) c_8 c_10) 
* T8: - APPLY(comp(c_9 comp(c_6 c_7» c_B c_10) 

Refutation of Splitpart 1: 

Initial Clauses: A1: All x:Any + =(x x) 
* A2: All x,y:lxito z,u:I + APPLY(y u f_1(y z u x»
 

- APPLY(comp(y x) u z)

* A3: All x,y:I z,u:lxito + APPLY(u f_1(z y x u) y)
 

- APPLY(comp(z u) x y)

* A4: All x,y,z:I u,v:Ixito
 

- APPLY(v z y) - APPLY(u y x)
 
+ APPLY(comp(v u) z x)

* T5: - APPLY(comp(comp(c_4 c_1) c_2) c_3 c_5) 
* T6: + APPLY(comp(c_4 comp(c_l c_2» c_3 c_S) 

6 Example for Different Normalizations

The last formula corresponds to  A5 and A6 in section 2.2. We have two clauses, where the
As and Bs contain troublesome Skolem functions introduced in the last step because of
quantifiers in the  theorem and must be  resolved in a. difficult manner. By the preprocessing
step we replace the three—literal clauses A5 and A6 as well as the theorem clause T7 by the
simple unit clauses TS through T8 in the proof below and hence avoid the Skolem functions
f_2 and 2f..3. They are replaced by Skolem constants. In the formulation below one can see
immediately the five variables that are Skolemized. The general explicit formulation of
the  extensionality axiom is replaced by a special implicit one. The alternative formulation
together with a complete proof of one of the splitparts follows.

Formulae g iven  to  the ed i to r

Axioms:  * So r t s  *
SORT I,IXITO:ANY
TYPE APPLY(IXITD I I )
* Defin i t ion  o f  Cofiposition *
TYPE CUMP(IXITO IXITO):IXITD
ALL RHO,SIGHA:IXITO ALL X,Y:I

(EX Z : I  APPLY(RHO x Z)  AND APPLY(SIGHA Z ? ) )  EQV APPLY(COHP(RBO SIGMA) X Y)

Theorems:  ALL RHO,SIGHA,TAU:IXITO ALL X,Y:I
APPLY(COMP(CDMP(RHO SIGMA) TAU) X Y) EQV APPLY(COHP(RHD COHP(SIGHA TAU)) X Y)

Se t  o f  Axiom Clauses Resulting from Normalization

A1: A11 x:Any + =(x  x )
* A2: A11 x ,y : Ix i t o  z ,u : I  + APPLY(y u f_1 (y  z u x ) )  - APPLY(comp(y x )  u z )
* A3: A11 x ,y : I  z , u : Ix i t o  + APPLY(u f_1 (z  y x u)  y )  - APPLY(conp(z u)  x y)
* A4: A11 x ,y , z : I  u ,v : Ix i t o  - APPLY(v z y)  - APPLY(u y x )  + APPLY(comp(v u )  z x)

Se t  o f  Theorem Clauses  Resulting from Normalization and Splitt ing

Splitpart 1 * T5: APPLY(comp(comp(c_4 c_1) c_2) c_3 c_5)
* T6: + APPLY(comp(c_4 comp(c_1 c_2) )  c_3 c_5)

Sp l i t pa r t  2 * T7:  + APPLY(comp(comp(c_9  c_6 )  c_7 )  c_8  c_10 )
* T8: APPLY(comp(c_9 comp(c_6 c_7) )  c_8 c_10)

Refu ta t i on  o f  Spl i tpar t  1 :

Initial Clauses :  A1: A11 x :Any  + =(x  x )
* A2: A11 x ,y : Ix i t o  z ,u : I  + APPLY(y u f_1 (y  z u x ) )

- APPLY(comp(y x )  u z )
* A3: A11 x ,y : I  z ,u : Ix i to  + APPLY(u f_1 (z  y x u)  y )

- APPLY(comp(z u )  x y)
* A4:  A11 x ,y , z : I  u ,v : Ix i t o  '

- APPLY(V z y)  - APPLY(u y x )
+ APPLY(comp(v u)  z x)

* T5: - APPLY(comp(comp(c_4 c_1) c_2) c_3 c_5)
* T6:  + APPLY(comp(c_4 comp(c_1  c_2) )  c_3  c_5)

T6,1  & A3,2 - ->  * R1: + APPLY(comp(c_1 c_2) f_1(c_4 c_5 c_3  comp(c_1 c_2) )  c_5)





7 Better Normalization 

T6,1 &: A2,2 --> * R2: + APPLY(c_4 c_3 f_1(c_4 c_5 c_3 comp(c_1 c_2») 
R1,1 &: A2,2 --> * R3: + APPLY(c_1 

f_1(c_4 c_5 c_3 comp(c_1 c_2» 
f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_1 c_2» c_2» 

R1,1 &: A3,2 --> * R4: + APPLY(c_2 f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_1 c_2» c_2) c_5) 
A4,3 &: T5,1 --> * R5: All x:I - APPLY(comp(c_4 c_1) c_3 x) - APPLY(c_2 x c_5) 
R4,1 &: R5,2 --> * R6: - APPLY(comp(c_4 c_1) 

c_3 
f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_1 c_2» c_2» 

R2,1 &: A4, 1 --> * R15:AII x:I y:Ixito - APPLY(y f_1(c_4 c_5 c_3 comp(c_1 c_2» x) 
+ APPLY(comp(c_4 y) c_3 x) 

R15,1 &: R3,1 --> * R16:+ APPLY(comp(c_4 c_1) 
c_3 
f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_1 c_2» c_2» 

R16,1 &: R6,1 --> * R17: [] 

Time Used for Refutation of Splitpart 1: 18 seconds 

Refutation of Splitpart 2: 

Initial Clauses: 
A1: All x:Any + =(x x) 

* A2: All x,y:Ixito z,u:I + APPLY(y u f_1(y z u x» - APPLY(comp(y x) u z) 
* A3: All x,y:I z,u:Ixito + APPLY(u f_1(z y x u) y) - APPLY(comp(z u) x y) 
* A4: All x,y,z:I u,v:Ixito - APPLY(v z y) 

- APPLY(u y x) + APPLY(comp(v u) z x) 
* T7: + APPLY(comp(comp(c_9 c_6) c_7) c_8 c_10) 
* T8: - APPLY(comp(c_9 comp(c_6 c_7» c_8 c_10) 

T7,1 &: A3,2 --> * R18:+ APPLY(c_7 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_10) 
T7,1 &: A2,2 --> * R19:+ APPLY(comp(c_9 c_6) c_8 f_1(comp(c_9 c_6) c_10 c_8 c_7» 
R19,1 &: A3,2 --> * R20:+ APPLY(c_6 

f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6) 
f_1(comp(c_9 c_6) c_10 c_8 c_7» 

R19,1 &: A2,2 --> * R21:+ APPLY(c_9 
c_8 
f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6» 

A4,3 &: T8,1 --> * R22:AIl x:I - APPLY(c_9 c_8 x) 
- APPLY(comp(c_6 c_7) x c_10) 

R18,1 &: A4,2 --> * R29:AII x:I y:Ixito - APPLY(y x f_1(comp(c_9 c_6) c_10 c_8 c_7» 
+ APPLY(comp(y c_7) x c_10) 

R29,2 &: R22,2 --> * R30:- APPLY(c_6 
f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6) 
f_1(comp(c_9 c_6) c_10 c_8 c_7» 

- APPLY(c_9 
c_8 
f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6» 

R30,1 &: R20,1 --> * R31:- APPLY(c_9 
c_8 
f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6» 

R31,1&:R21,1 -->*R32:[] 

Time Used for Refutation of Splitpart 2: 13 seconds 

Better Normalization

T6 ,1  & A2 ,2  - ->  * R2: + APPLY(C_4 c_3 f_1 (c_4  c_5 c_3 comp(c_1 c_2) ) )
R1,1  & A2‚2  - ->  * R3:  + APPLY(C_1

f_1(c_4 c_5 c_3 comp(c_1 c_2))
f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_1 c_2)) c_2))

R1,1  & A3,2  - ->  * R4:  + APPLY(c_2  f _1 (c_1  c_5  f_1 (c_4  c_5  c_3  comp(c_1  c_2 ) )  c_2 )  c_5 )
A4,3  & T5 ,1  - ->  * R5:  A11 x : I  - APPLY(comp(c_4 c_1)  c_3 x )  - APPLY(c_2 x c_5 )
R4‚1  & R5 ,2  - ->  * RS:  - APPLY(comp(c_4  c_1 )

c_3
f _1 (c_1  c_5 f_1 (c_4  c_5 c_3 comp(c_1 c_2 ) )  c_2 ) )

R2,1 & A4,1 - ->  * R15:A11 x : I  y: Ix i to  - APPLY(y f_1(c_4 c_5 c_3 comp(c_1 c_2)) x )
+ APPLY(comp(c_4 y )  c_3 x )

R15 ,1  & R3‚1  ——> * R16:+ APPLY(comp(c_4 c_1)
c_3
f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_1 c_2)) c_2))

R16 ,1  & R6,1  - ->  * R17: [ ]

Time Used  fo r

Refu ta t i on  of

Refutat ion of  Spl i tpar t  1 :  18 seconds

Splitpart 2 :

Initial Clauses:

A1:
* A2:

A3:
* A4:

*

A11 x:Any + =(x  x )
Al l  x ‚y : I x i to  z ,u : I  + APPLY(y u f_1(y z u x ) )
All x ,y : I  z ‚u : I x i to  + APPLY(u f_1(z y x u) y )
All x ,y , z : I  u ‚v : I x i to  - APPLY(V z y )

- APPLY(u y x)  + APPLY(comp(v u) z x)

- APPLY(comp(y x) u z )
- APPLY(comp(z u)  x y)

* T7: + APPLY(comp(comp(c_9 c_6) c_7) c_8 c_10)
* T8: - APPLY(comp(c_9 conp(c_6 c_7)) c_8 c_10)

T7 ,1  & A3 ‚2  - ->  * R18:+ APPLY(c_7 f_1(comp(c_9 c_6)  c_10 c_8 c_7)  c_10)
T7,1 & A2,2 - ->  * R19:+ APPLY(comp(c_9 c_6) c_8 f_1(conp(c_9 c_6) c_10 c_8 c_7))
R19‚1  & A3 ,2

R19,1  & A2 ,2

A4‚3  & T8 ‚1

R18‚1  & A4 ,2

R29,2 & R22 ,2

R30‚1  & R20,1

R31,1  & R21,1

- ->  * R20:+  APPLY(C_6
f_1 (c_9  f_1(comp(c_9 c_6)  c_10 c_8 c_7) c_8 c_6)
f_1(comp(c_9 c_6) c_10 c_8 c_7 ) )

- ->  * R21:+  APPLY(C_9
c_8
f_1 (c_9  f_1(comp(c_9 c_6)  c_10 c_8 c_7) c_8 c_6 ) )

* 322 :A11  x : I  - APPLY(C_9 c_8  x )
- APPLY(comp(c_6 c_7) x c_10)

—-> * R29:A11 x : I  sxi to  - APPLY(y x f_1(comp(c_9 c_6) c_10 c_8 c_7))
+ APPLY(comp(y c_7) x c_10)

- ->  * R30: -  APPLY(C_6
f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6)
f_1(comp(c_9 c_6) c_10 c_8 c_7 ) )

- APPLY(C_9
c_8
f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6))

-—> * R31:- APPLY(c_9
c_8
f_1 (c_9  f_1(comp(c_9 c_6)  c_10 c_8 c_7) c_8 c_6 ) )

* R32: [ ]

Time Used fo r  Refuta t ion  of  Spli tpart  2 :  13 seconds





8 Lo~c 

3 Logic 

In this section we introduce higher-order logic, because it is a more adequate language to 
formulate mathematical problems than first-order logic. Then we define the notion of a 
sound logic morphism in order to give a formal transformation from higher-order to first
order logic. In the example above the transformation is just a preparatory application of a 
calculus rule such that we can stay in first-order logic, even within the same signature. For 
the next example, however, we need a more sophisticated consideration of a higher-order 
representation to construct the transformation. 

3.1 Basic Notions 

We begin with the definition of higher-order logic based on CHURCH's simple theory of 
types [7]. 

Definition (Types): t is the type of the individuals. 0 is the type of the truth values. If 
T1, ... ,7m , and 0" are types not equal to 0 (with m 2: 1) then (71 x '" X 7 m -+ 0") is the 
type of m-ary functions with arguments of types 71, ••• , 7 m , respectively, and value of type 
0". If 71, ... ,7m are types not equal to 0 (with m 2: 1) then (71 x ... X 7 m -+ 0) is the type 
of m-ary predicates with arguments of types 71, ••• , 7 m , respectively. 

Definition (Signature): The signature of a logic in £w is a set S = UT s~on8t U UT s;ar 
where each set s~onst is a (possibly empty) set of constant symbols of type 7 and s;ar a 
countable infinite set of variable symbols of type 7. A logic in £w is defined by its signature 
S and is denoted £W(S). 

Definition (Terms): 

1.	 Every variable or constant of a type 7 is a term. 

2.	 If fh X".XTm--+U) ' t Tl , •.• ,tTm are terms of the types indicated by their subscripts, then 
we get a term of type 0" by fhx",xTm--+U)(tTP "" t Tm ). 

Definition (Formulae): 

1.	 Every term of type 0 is a formula. 

2.	 If c.p and 7/J are formulae and x is a variable of any type, then (-.r.p), (c.p A 7/J), (c.p V 7/J), 
(ep -+ ?!'), (ep ~ 7/J), (:Jxr.p), and (Vxc.p) are formulae. 

The standard semantics is due to ALFRED TARSKI [24] and has been extended by LEON 

HENKIN [12] to the general model semantics used in the sequel: The class of models is 
enlarged so that it is possible to find sound and complete calculi for higher-order logic 
based on this non-standard semantics. In particular every proof found in such a calculus is 

8 Logic

3 Logic

In this section we introduce higher-order logic, because i t  is a more adequate language to
formulate mathematical problems than first-order logic. Then we define the notion of a
sound logic morphism in order t o  give a formal transformation from higher—order to first—
order logic. In the example above the transformation is  just  a preparatory application of a
calculus rule such that we can stay in first—order logic, even Within the same signature. For
the  next example, however, we need a more sophisticated consideration of a higher-order
representation t o  construct the transformation.

3 .1  Basic Not ions

We begin with the definition of higher-order logic based on CHURCH’s simple theory of
types [7].

Defini t ion (Types) :  L is the type of the individuals. o is the type of the truth values. If
T1, . . . ,Tm, and a are types not equal to o (with m Z 1) then (T1 X x Tm —-+ 0)  is the
type of m-ary functions with arguments of types 71, . . . , Tm, respectively, and value of type
0'. If T1, . . . ,‘Tm are types not equal to 0 (with m 2 1) then (7'1 x - . - >< Tm —> o) is the type
of m—ary predicates with arguments of types 7'1, . . . , Tm, respectively.

Definition (Signature):  The signature of a logic in £” is a set S = U., 85““ U U„ 83"
where each set Sim“ is a (possibly empty) set of constant symbols of type T and S,?” a
countable infinite set of variable symbols of type T. A logic in  .C‘” is defined by its signature
S and is denoted £“(S )

Definition (Terms):

1 .  Every variable or constant of a type T is a. term.

2. If f(.,,x...x.rm_,,),t.,, , . . . ,  tq-m are terms of the types indicated by their subscripts, then
we get a term of type a' by f(.,1x...x.,m_,,)(tfi, . . . ‚t,.m).

Defini t ion (Formulae):

1. Every term of type 0 is a formula.

2. If cp and gb are formulae and a: is a variable of any type, then (mp), (90 A gb), (cp V v) ,
(ap ——> 2/2), (ap <—> 'l/J), (3x90), and (Vmgo) are formulae.

The standard semantics is due to  ALFRED TARSKI [24] and has been extended by LEON
HENKIN [12] to the general model semantics used in the sequel: The class of models is
enlarged so that it is possible to find sound and complete calculi for higher—order logic
based on this non-standard semantics. In particular every proof found in such a calculus is
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also a proof with respect to the standard semantics. In order to approximate the possible 
models in general model semantics to those of standard semantics we require that certain 
axioms are fulfilled, the so-called comprehension axioms, which guarantee the existence of 
certain functions and predicates. For these axioms compare [1, p.156]. 

Definition (Comprehension Axioms): The comprehension axioms Y are the following 
formulae: 

Y f	 For every term t of type 7 #- 0 of which the free variables are at most the different 
variables Xl, ... , X m , Yl, ... ,Yk of type 7l, ... ,7m , 0"1, • •• ,O"k: 

VYl ... VYk 3f(TIX"'XTm-+T) VXl.·· VX m (J(Xl, •.. , x m ) =t). 

YP	 For every formula c.p of which the free variables are at most the different variables 
Xl, ,Xm , Yl,·· . ,Yk of type 7l, ... , 7m , 0"1,· •. , O"k: 

VYl VYk 3PhX ... XTm-+o) VXl." VX m (P(Xl,"" X m ) f-+ c.p). 

In addition we need so-called extensionality axioms, which ensure that functions and pred
icates are equal if they agree on all arguments. 

Definition (Extensionality Axioms): The extensionality axioms :=; are the following 
formulae: 

E/	 For all function symbols f, 9 of type 7 equal to (71 X ... X 7m -+ 0"), (J' #- 0: 

Vf	 Vg (VXT1 ••• VXTm f(X T1 ,···, XTm ) = g(XT1 ,··· ,XTm ) -+ f =9 

:=;P	 For all predicate symbols P, q of type 7 equal to (71 X ... X 7m -+ 0):
 
Vp Vq (VXT1 ••• 'v'XTm P(XT1 , •.. , XTm ) H q(xTll .. . , XTm )) -+ P = q
 

3.2 Sorted Logics 

Formulae, which are given to the MKRP-system are written in PLL [25, 22], a language for 
order-sorted first-order logic with equality predicate. PLL is our target language, but in this 
article we just use a flat sort structure. Sorts are introduced by SORT-declarations. Domain 
and range of functions and predicates are related to sorts by so-called TYPE-statements. 

3.3 Logic Morphisms 

Now we shall define those concepts that are necessary to describe the translations between 
formalizations in different logics. 

Definition (Morphism of Logics): Amorphism e is a mapping that maps the signature 
5 of a. logic ;:-1(5) to a signature of a logic ;:-2(0(5» and that maps every formula set in 
FI(S) to a formula set in F 2 (8(S)). 

Sorted Logics 9

also a proof with respect to the standard semantics. In order to  approximate the possible
models in general model semantics to  those of standard semantics we require that certain
axioms are fulfilled, the so—called comprehension axioms, which guarantee the existence of
certain functions and predicates. For these axioms compare [1, p.156].

Definit ion (Comprehension Axioms):  The comprehension axioms T are the following
formulae:

'I‘f For every term t of type T 75 0 of which the free variables are at most the different
variables x l ,  . . . , xm,y1, .  . . ,yk of type 1'1, . . . ,Tm,0'1, . . . , ak:
Vyl . . .‘v’y;c 3f(üx...xfm_„) Vzcl . . .‘v’xm (f(m1, . . . ‚mm) E t ) .

TP For every formula 90 of which the free variables are at most the different variables
$1 , . . . , xm,y1 , . . . , yk  of type T1, . . . ,Tm,0'1, . . . ,0 'k:
Vyl...Vyk 3P(¢1x- . -m—»o)  Vxl...V:cm (p(w1,...,xm) ++ go).

In addition we need so-called extensionality axioms, which ensure that functions and pred-
icates are equal if they agree on all arguments.

Definition (Extensionality Axioms):  The extensionality axioms E are the following
formulae:

Ef For all function symbols f, g of type T equal to  (7-1 x - - - x rm —> a ) ,  a 75 o:
Vf Vg (‘v’zvf1 . .  .‘v’m f(ar:m . . . ‚mm) : g(m‚1,. . .  ‚a:,m) —+ f =g

5” For all predicate symbols p, q of type T equal to (7'1 x - -- >< Tm —+ o):
VP Vq (V9371 “ -V$v'm P($‘rla- - "w‘rm) H q($„ , . .  www.»  " ’P  = q

3 .2  So r t ed  Logics

Formulae, which are given to  the MKRP-system are written in PLL [25, 22], a language for
order-sorted first-order logic with equality predicate. PLL is our target. language, but in this
article we just use a flat sort structure. Sorts are introduced by SORT—declarations. Domain
and range of functions and predicates are related to  sorts by so—called TYPE-statements.

3.3 Logic Morphisms

N ow we shall define those concepts that are necessary to  describe the translations between
formalizations in different logics.

Defini t ion (Morphism of  Log ics ) :  A morphism ® is  a mapping that maps the signature
8 of a. logic .771 (S  ) to  a signature of a logic .7-"2(®(8)) and that maps every formula set in
FIGS) to a formula set in f2(@(8)).





10	 Explicit Versus Predicative Formalization 

Definition (Soundness): Let 8 be a morphism from)="l to )="2. 8 is called sound iff the 
following condition holds for every formula set r in )="1: if r has a weak model in )="1 then 
there is a weak model of 8(r) in )="2. 

The soundness of a morphism means: a proof that the translated problem is unsatisfiable 
entails that the original problem is unsatisfiable. 

Definition (Quasi-Homomorphism): Let )="1(81) and )="2(82) be two logics. A mapping 
8 that maps every formula and every term of )="1(81) to a formula or to a term of P(82 ) 

is called a quasi-homomorphism iff the following conditions are satisfied: 

1.	 For all terms: 

1.1 if x is a variable of )="1(81) then 8(x) is a variable of P(82). 

1.2 if c is a constant of )="1(81) then 8(c) is a constant of )="2(82), 

1.3 if J(tt, . .. , tm ) is a term of )="1(81) then 
8	 (J(t1"'" tm )) = 0 (8(J), 8(t1)"'" 8(tm ))
 

'th O( ) _ {a(at, ... ,am) or
 
Wl a, aI, ... ,am - ( )

0a a,at, ... ,am 
The constants ° have to be chosen appropriately out of 8 2, especially they have 
to be new, that is, there must be no element ex' E 8 1 so that 0a = 8(ex'). The 
case which is chosen can depend only on the type of a, not on the at, ... , am' 
(0 stands for apply.) 

2.	 For all formulae 'PI, 'P2 and for all variables x: 

2.1 8('P1 1\ 'P2) = 8(CP1) 1\ 8(CP2) 

2.2 8(-,'P) = -'8(cp) 

2.3 8(Vx'P) = V8(x)8(cp) 

3.	 All terms that are not formulae of )="1(81) are mapped to terms that are not formulae 
of )="2(82), 

Now we give a sufficient criterion for the soundness of translations of formulae of £w into 
formulae of PLL, which is strong enough to cover most requirements. 

Theorem: If 8 is an injective quasi-homomorphism from £W(8) to PLL, then 8 is sound 
(for a proof see [13]). 

4 Explicit Versus Predicative Formalization 

The second example treats a more fundamental change of a typical explicit representation. 
Again the explicit way to state the problem is more general in nature and can be instan
tiated in the examined case to a very simple formulation. The task is to prove that the 
intersection of two equivalence relations is also an equivalence relation (this example is also 
taken from [9, p.37]). 

10  Explicit Versus Predicative Formalization

Definit ion (Soundness) :  Let 6 be a morphism from .771 to P .  G is called sound ifi' the
following condition holds for every formula set I‘ in .771: if I‘ has a weak model in fl then
there is a weak model of @(I‘) in .72.

The soundness of a morphism means: a proof that the translated problem is unsatisfiable
entails that the original problem is unsatisfiable.

Definit ion (Quasi-Homomorphism): Let .7:1(81 )  and ‚772(82) be  two logics. A mapping
@ that maps every formula and every term of f1(81) to a formula or to a term of $2092)
is called a quasi-homomorphism iff the following conditions are satisfied:

1 .  For all terms:

1.1 if a: is a variable of .71(81) then 6(a:) is a variable of 5:2(82).
1.2 if c is a constant of ‚7:1(81) then 9(0) is a constant of ‚7:2(82).
1.3 if f(t1,  . . . ,tm) is a term of ‚7:1(81) then

® (ml, . . . ,tm» = 0 (am, 9(t1),...,e(tm))
a(a1, . . . , am) or
aa(a,a1,  . . . , am)

The constants a have to be chosen appropriately out of 82, especially they have
to be  new, that is, there must be  no element a' G 81 so that a„  = ®(a'). The
case which is  chosen can depend only on the type of a ,  not on the a1, . . . ‚am.
( a  stands for apply.)

with 0(a,a1, . .  . ‚am) =

2. For all formulae 901, (pa and for all variables a::
2—1 9 ( t  A w) = 90px) A e(soz)

2—2 9(10) = ‘90?)
2.3 (“DO/mp) = V6(x)®(tp)

3. All terms that are not formulae of f1(81) are mapped to terms that are not formulae
Of ‚7:2(82).

Now we give a sufficient criterion for the soundness of translations of formulae of L',” into
formulae of PLL, which is  strong enough to  cover most requirements.

Theorem: If 0 is an injective quasi-homomorphism from [,”(8) to  PLL, then @ is sound
(for a proof see [13]).

4 Explicit Versus Predicative Formalization

The second example treats a more fundamental change of a typical explicit representation.
Again the explicit way to state the problem i s  more general in nature and can be  instan—
tiated in  the examined case to a very simple formulation. The task is to prove that the
intersection of two equivalence relations is also an equivalence relation (this example is also
taken from [9, p.37]).





11 Higher-Order Formulation 

4.1 Higher-Order Formulation 

The problem is easily stated in higher-order logic by the following formulae: 

- Definition of Intersection:
 
Vp(~x~-+o),a(~x~-+o) Va£lb~ (pn a)(a,b) ~ p(a, b) 1\ a(a,b)
 

- Definition of Reflexivity:
 
Vp(~x~-+o) ref(p) +--+ (Va~ p(a,a))
 

- Definition of Symmetry: 
Vp(~x~-+o) sym(p) +--+ (Va~,b~ p(a, b) -+ p(b, a)) 

- Definition of Transitivity:
 
Vp(~x~-+o) trans(p) +--+ (Va~,b~,c~ p(a,b) 1\ p(b, c) -+ p(a, c))
 

- Definition of Equivalence Relation:
 
VP(~x~-+o) eqv(p) +--+ ref(p) 1\ sym(p) 1\ trans(p)
 

- Theorem:
 
VP(~x~-+o), a(~x~-+o) eqv(p) 1\ eqv(a) -+ eqv(p n a)
 

4.2 Generated First-Order Formulation 

These higher-order formulae are translated by a quasi-homomorphism (compare the defi
nition above) into first-order logic and is formulated in PLL [25, 22]. We have to employ 
"apply" in representing relations, which are now object variables. 

Formulae given to the editor 
======================:===== 

Axioms: * Formulation with Variable Relations * 
SORT I,IXITO:ANY 
TYPE APPLY(IXITO I I)
* Definition of Intersection * 
TYPE INTER(IXITO IXITO):IXITO 
ALL RHO,SIGMA:IXITO ALL A,B:I APPLY (INTER (RHO SIGMA) A B) 

EQV APPLY(RHO A B) AND APPLY(SIGMA A B) 
* Definition of Reflexivity * 
TYPE REF(IXITO) 
ALL RHO:IXITO REF(RHO) EQV (ALL A:I APPLY(RHO A A» 
* Definition of Symmetry * 
TYPE SYM(IXITO) 
ALL RHO:IXITO SYM(RHO) EQV (ALL A,B:I APPLY(RHO A B) IMPL APPLY(RHO BA» 
* Definition of Transitivity * 
TYPE TRANS(IXITO) 
ALL RHO: IXITO TRANS(RHO) 

EQV (ALL A,B,C:I APPLY(RHO A B) AND APPLY(RHO B C) IMPL APPLY(RHO A C» 
* Definition of Equivalence Relation * 
TYPE EQU.REL(IXITO) 
ALL RHO:IXITO EQU.REL(RHO) EQV REF(RHO) AND SYM(RHO) AND TRANS(RHO) 

Theorems: ALL RHO,SIGMA:IXITO EQU.REL(RHO) AND EQU.REL(SIGMA) IMPL EQU.REL(INTER(RHO SIGMA» 
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4 .1  Higher-Order Formulation

The problem is  easily stated in higher-order logic by the following formulae:

— Definition of Intersection:
Vp(txi . .»o) ,0 ' ( t—m) VanbL (p  n a)(a‚b) (_) p(a ,  b) A a (a ,  b)

— Definition of Reflexivity:
VPoxo-vo) ref(p) (_) (Va p(a‚a) )

— Definition of Symmetry:
VP(L><t—>o) sym(p) H (vanbb P(aab) “"" Fahd»

— Definition of Transitivity:
VP(t—+o) trans(p) H (Va„b„c„ p(a,b) A p(b‚c) —> p(a,c))

— Definition of Equivalence Relation:
vp(LXL—-)o) eqv(p) H ref(p) /\ sym(p) A trans(p)

— Theorem:
VP(LXL—>o) )a ( ;XL—ro)  q(P)  A q(0 ')  _) q (p  n 0')

4 .2  Genera ted  Firs t -Order  Formulation

These higher-order formulae are translated by a. quasi—homomorphism (compare the defi-
nition above) into first-order logic and is formulated in PLL [25, 22]. We have to employ
“apply” in representing relations, which are now object .variables.

Formulae g iven  to  the ed i to r

Axioms: * Formulation w i th  Variable Relations *
SORT I,IXITO:ANY
TYPE APPLY(IXITO I I )
* Def in i t ion  o f  Intersect ion *
TYPE INTEMIXITO IXITU) :IXITO
ALL RHO,SIGHA:IXITO ALL A,B:I  APPLY(IHTER(RHO SIGMA) A B)

EQV APPLY(RHO A B)  AND APPLY(SIGMA A B)
* Def in i t i on  o f  Ref lex iv i ty  *
TYPE REF(IXITO)
ALL RHO:IXITO REF(RHO)  EQV (ALL A:I  APPLY(RHO A A) )
* Def in i t i on  o f  Symmetry *
TYPE SYH(IXITO)
ALL RHD:IXITO SYM(B.HD) EQV (ALL A,B:I  APPLY(RH[] A B) IHPL APPLY(RHO B A))
* Def in i t i on  o f  Transit ivi ty *
TYPE TRANS(IXITO)
ALL RHO:IXITD TRANS (RHU)

EQV (ALL A‚B‚C:I  APPLY(RHO A B) AND APPLYOIHO B C) IHPL APPLY(RHD A C))
* Def in i t ion  o f  Equivalence Rela t ion  *
TYPE EQU.REL(IXITO)
ALL RHO:IXITO EQU.REL(F.HO) EQV REF(Rl-IO) AND SYMGIHO) AND TRANSCRHO)

Theorems:  ALL RHD,SIGMA:IXITD EQU.REL(RHO) AND EQU.REL(SIGMA) IMPL EQU.REL(INTER(RHO SIGMA»
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4.3 Better First-Order Formulation 

The following variant is expressed with constant predicates. Instead of proving the theorem 
for all p and (J" we show it for arbitrary new constants p and (J" according to the inference 
rule "AE" (All-Einfiihrung, Universal Generalization) of GERHARD GENTZEN's natural 
deduction calculus [10, 15]. After the expansion of the definition we obtain a formula set 
that is first-order except for the intersection function, whose domain consists of predicates. 
In order to eliminate this function symbol we introduce for the term p n (J" a new predicate 
constant RHOSIGMA. Now the definitions are implicit in the formulation. 

Formulae given to the editor 

Axioms:	 * Formulation with Constant Relations * 
SORT 1:ANY 
TYPE RHO (I 1) 

TYPE SIGMA(I 1) 

TYPE RHOSIGMA(1 I) 
ALL A,B:I RHOSIGMA(A B) EQV RHO(A B) AND SIGMA(A B) 

Theorems:	 «ALL A:I RHO(A A» 
AND (ALL A,B:1 RHO(A B) IMPL RHO(B A» 
AND (ALL A,B,C:I RHO(A B) AND RHO(B C) 1MPL RHO(A C» 
AND (ALL A:I SIGMA(A A» 
AND (ALL A,B:I SIGMA(A B) IMPL SIGMA(B A» 
AND (ALL A,B,C:I SIGMA(A B) AND SIGMA(B C) IMPL SIGMA(A C») 

IMPL «ALL A:I RHOSIGMA(A A» 
AND (ALL A,B:I RHOSIGMA(A B) IMPL RHOSIGMA(B A» 
AND (ALL A,B,C:I RHOSIGMA(A B) AND RHOSIGHA(B C) 1MPL RHOSIGMA(A C») 

Set of Theorem Clauses Resulting from Normalization and Splitting 
================================================================= 

Splitpart	 1 Tl: All x:Any + =(x x) Splitpart 5 T24: All x:Any + =(x x)
* T2: All x:I + RHO(x x) T25: All x:1 + RHO(x x) 

T3: All x:1 + SIGMA(x x) T26: All x:I + SIGMA(x x) 
* T4: - RHO(c_l c_l)	 * T27: + RHO(c_6 c_7) 

Splitpart	 2 T5: All x:Any + =(x x) T28: + SIGMA(c_6 c_7) 
T6: All x:1 + RHO(x x) * T29: + RHO(c_7 c_5) 

* T7: All	 x:I + SIGMA(x x) T30: + SIGMA(c_7 c_5)
* T8: - SIGMA(c_2 c_2)	 * T31: - RHO(c_6 c_5) 

Splitpart	 3 T9: All x:Any + =(x x) T32: All x,y:I - RHO(y x) + RHO(x y) 
Tl0: All x:I + RHO(x x) T33: All x,y:I - SIGMA(y x) + SIGMA(x y) 
Tll: All x:I + SIGMA(x x) * T34: All x,y,z:I - RHO(z y) - RHO(y x)

* T12: + RHO(c_4 c_3) + RHO(z x) 
T13: + SIGMA(c_4 c_3) Splitpart 6 T35: All x:Any + =(x x) 

* T14: - RHO(c_3 c_4)	 T36: All x:I + RHO(x x)
* T15: All x,y:1 - RHO(y x)	 T37: All x:1 + SIGMA(x x) 

+ RHO(x y)	 T38: + RHO(c_6 c_7) 
Splitpart 4 T16: All x:Any + =(x x) * T39: + SIGMA(c_6 c_7) 

T17: All x:1 + RHO(x x) T40: + RHO(c_7 c_5) 
T18: All x:I + SIGMA(x x) * T41: + SIGMA(c_7 c_5) 
T19: + RHO(c_4 c_3) * T42: - SIGMA(c_6 c_5)

* T20: + SIGMA(c_4 c_3)	 T43: All x,y:I - RHO(y x) + RHO(x y)
* T21: - S1GMA(c_3 c_4) T44: All x,y:I - SIGMA(y x) + SIGMA(x y) 

T22: All x,y:I - RHO(y x) T45: All x,y,z:I - RHO(z y) - RHO(y x) 
+ RHO(x y)	 + RHO(z x) 

* T23: All x,y:I - SIGMA(y x) * T46: All x,y,z:I - SIGMA(z y) - SIGMA(y x) 
+ SIGMA(x	 y) + SIGMA(z x) 
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4 .3  Bet te r  Fi rs t -Order  Formulation

The following variant is expressed with constant predicates. Instead of proving the theorem
for all p and a we show it for arbitrary new constants p and 0' according to  the inference
rule “AE” (All-Einfiihrung, Universal Generalization) of GERHARD GENTZEN’S natural
deduction calculus [10, 15]. After the expansion of the definition we obtain a formula set
that  is  first-order except for the  intersection function, Whose domain consists of predicates.
In order to  eliminate this function symbol we introduce for the term p n a' a new predicate
constant RHOSIGMA. Now the definitions are implicit in the formulation.
Formulae given to  the  edi tor

Axioms:  * Formulation with Constant Relations *
SORT I:ANY
TYPE RHD(I I )
TYPE SIGMA(I I )
TYPE RHDSIGHA(I I )
ALL A‚B:I  RHOSIGMA<A B) EQV RHO(A B) AND SIGHA(A B)

Theorems:  ((ALL A:I  RHO(A A))
AND (ALL A,B:I  RHU(A B)  IHPL RHO(B A) )
AND (ALL A,B‚C: I  RHO<A B)  AND RHD(B C)  IHPL RHU<A C))
AND (ALL A:I  SIGMA<A A))
AND (ALL A,B:I  SIGMA<A B)  IHPL SIGHA(B A))
AND (ALL A‚B‚C: I  SIGMA(A B)  AND SIGMA(B C)  IHPL SIGHA(A C)) )

IMPL ( (ALL Ai l  RHOSIGMA(A A))
AND (ALL A‚B:I  RHOSIGMA<A B)  IHPL RHOSIGHA<B A))
AND (ALL A‚B,C: I  RHOSIGMA(A B)  AND EHÜSIGHA(B C)  IHPL RHOSIGHA(A C)) )

Se t  of Theorem Clauses Resulting from Normalization and Splitting

Splitpart 1 T1: Al l  xzflny + =(x  x )  Splitpart 5 T24: All x:Any + =(x  x )
* T2:  Al l  x : I  + RHO<x x )  T25:  All  x : I  + BHO(x x)

T3 :  A l l  x : I  + SIGMA<X x)  T26: All  x : I  + SIGHA(x x )
* T4:  - RHU(C_1 c_1 )  * T27:  + RHÜ(C_6 c_7)

Spli tpart  2 T5: Al l  x:Any + =(x  x )  T28: + SIGMA(c_6 c_7)
T6: A l l  x : I  + RHD(x x )  * T29: + RHO(c_7 c_5)

* T7:  A11 x : I  + SIGMA(x x )  T30:  + SIGMA(c_7 c_5 )
* T8:  - SIGHA(C_2 c_2)  * T31: - RHO(C_6 c_5)

Splitpart 3 T9: A l l  xznny + =(x x )  T32: All x ,y : I  - RHO(y x)  + RHO(x y )
T10: Al l  x : I  + BHOCx x )  T33: All  x ,y : I  - SIGHA(y x)  + SIGHA(x y )
T11: Al l  x : I  + SIGMA<x x )  * T34: All x ‚y ‚z : I  - RHD(z y)  - RHD(y x)

* T12:  + RHO(c_4 c_3 )  + RHD(z x)
T13: + SIGHA(c_4 c_3) Splitpart 6 T35: All  sny + =(x x )

* T14 :  - BHO(c_3 c_4 )  T36:  Al l  x : I  + RHfl(x x )
* T15: Al l  x ,y : I  - RHO(y x)  T37:  Al l  x : I  + SIGHA(X x)

+ RHU(x y )  T38:  + RHD(C_6 c_7)
Splitpart  4 T16: Al l  x:Any + =(x  x )  * T39: + SIGMA(c_6 c_7)

T17:  Al l  x : I  + RHD(x x )  T40:  + RHO(c_7 c_5 )
T18:  Al l  x : I  + S IGMA(x  x )  * T41 :  + SIGMA(c_7  c_5)
T19 :  + RHO(C_4 c_3)  * T42:  - SIGMA(C_6 c_5)

* T20: + SIGMA(c_4 c_3) T43: All x ‚y : I  - RHO(y x)  + RHu(x y )
* T21 :  - SIGMA(c_3  c_4)  T44:  Al l  x ,y : I  - SIGHA(y  x)  + S IGMA(x  y )

T22:  Al l  x ‚y : I  - RHO(y x)  T45:  Al l  x ,y , z : I  - RHO(2 y)  - RHO(y x)
+ RHO(x y )  + RHO(z x)

* T23:  Al l  x ,y : I  - SIGMA<y x)  * T46:  Al l  x ,y , z : I  - SIGHA(z y)  - SIGHA(y x)
+ SIGMA(x y )  + SIGHA(z x)
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Initial Operations on Theorems 
============================== 

Splitpart 1	 T4,1 Ht T2, 1 -->* Ri: [] 

Splitpart 2	 T8,1 &; T7,1 -->* R2: [] 

Splitpart 3	 T15,2 Ht T14,1 -->* R3: - RHO(c3 c_3) 
R3,1 Ht T12,1 -->* R4: [] 

Splitpart 4	 T23,2 &; T21, 1 -->* R5: - SIGMA(c_4 c_3) 
R5,1 &; T20,1 -->* R6: [] 

Splitpart 5	 T29,1 Ht T34,2 -->* R7: - RHO(c_6 c_7) + RHO(c_6 c_5) 
R7,1 Ht T27,1 -->* R8: + RHO(c_6 c_5) 
R8,1 &; T31, 1 -->* R9: [] 

Splitpart 6	 T41,1 &; T46,2 -->* RiO: - SIGMA(c_6 c_7) + SIGMA(c_6 c_5) 
R10,1 &; T39,1 -->* R11: + SIGMA(c_6 c_5) 
R11,1 Ht T42,1 -->* R12: [] 

4.4 Proof Statistics 

In the following table we compare the runtime behaviour of Markgraf Karl (measured in 
seconds) computing our example with different option settings. "Depth" is the maximal 
depth of terms in clauses that are allowed to be deduced. "(Split)" means that the theorem 
may be divided into several parts for the proof. The "Terminator" is a special proof tool 
for unit resolution [2]. 

Depth Depth (Split) Terminator 
00 2 1 00 2 1 Standard Splitting 

Variant 1 00 2105 unsolvable 269 65 22 00 10 
Variant 2 46 46 47 5 5 5 23 5 

In all settings the second variant is superior to the first one. The difficulty with the first 
formulation is caused above all by the possibility to nest the intersection function. 

4.5 Universality of Avoiding Functions 

The a.bove example also suggests that it is always a good idea to eliminate function symbols. 
But this need not be the case. Sometimes just this elimination method is used to construct 
sets of test examples with increasing complexity for theorem provers as the pigeonhole 
problem [19, Example 72] shows. 

An informal higher-order representation of the general problem is the following: 

- All pigeons are in holes:
 
Vi:pigeon :Jj:hole In(i,j)
 

- Only one pigeon in a hole:
 
Vi,j:pigeon Vk:hole i =/=j -t -,In(i,k)V-,In(j,k)
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In i t i a l  Operat ions  on Theorems

Splitpart 1 T4,1 & $2.1 -->* R1: []

Splitpart 2 T8 ,1  & T7 ,1  -->* R2: []

Spli tpar t  3 T15 ,2  & T14 ,1  - ->*  R3:  - RHD(C_4  c_3 )
113,1 & T12,1 ——>* R4: []

Sp l i t pa r t  4 T23‚2  & T21 ,1  - ->*  RS:  ' SIGMA(C_4  c_3 )
R5 ,1  & T20 ,1  —->* R6:  [ ]

Sp l i tpa r t  5 T29 ,1  & T34‚2  - -> *  R7:  _ RHU(C_6 C_7 )  + RHO(C_6 c_5)
R7,1  & T27 ,1  - -> *  R8:  + RHO(C_6 c_5)

R8,1  & T31 ,1  —->*  R9:  [ ]

Spli tpar t  6 T41 ,1  & T46‚2  - ->*  R10:  - SIGHA(C_6 c_7 )  + SIGHA(C_6 c_5)
R10 ,1  & T39 ,1  -->* R11: + SIGHA(C_6 c_5 )
311 ,1  & T42 ,1  ——>* R12:  []

4 .4  P ro  o f  Stat ist ics

In the following table we compare the runtime behaviour of Markgraf Karl (measured in
seconds) computing our example with different option settings. “Depth” is the maximal
depth of terms in clauses that are allowed to  be deduced. “(Split)” means that the theorem
may be divided into several parts for the proof. The “Terminator” is a special proof tool
for unit resolution [2].

Depth Depth (Split) Terminator
oo | 2 1 oo 2 1 Standard Splitting

Variant 1 00 2105 unsolvable 269 65 22 00 10
Variant 2 46 46 47 5 5 5 23 5

In all settings the second variant is superior to  the first one. The difficulty With the first
formulation is caused above all by the possibility to  nest the intersection function.

4.5 Universality of Avoiding Functions

The above example also suggests that i t  is always a good idea to  eliminate function symbols.
But  this need not be  the case. Sometimes just this elimination method is used to construct
sets of test  examples with  increasing complexity for theorem provers as the pigeonhole
problem [19, Example 72] shows.

An informal higher-order representation of the general problem is the following:

— All pigeons are in holes:
Vizpigeon Eljzhole In(z',j)

— Only one pigeon in  a hole:
Vi,j:pigeon shole  i gé j  _) —1In(z',k) V -IIn(j ,k)
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- More pigeons than holes:
 
Card(pigeon) = S(Card(hole))
 

- Mathematical background:
 
Vn:N S(n) > n
 

Vp,h:sort Card(p) > Card(h) ---+ -,3ep:map Inj(ep,p,h) 

Vep:map Vp,h:sort Inj(ep,p,h) +-+ Vx,y:p ep(x) = ep(y) ---+ x = y 

This problem can be translated into first-order logic and was solved by MKRP in 17 seconds. 

For each n E IN we can construct from this formulation a propositionallogic problem with 
the number of clauses cubic depending on n. This is done via the substitution of universal 
quantification by finite conjunction and of existential quantification by finite disjunction 
in the first two formulae. The task for n = 2 has the following form with pigeon = {1,2,3} 

and hole = {a,b}: 

In_1a or In_1b not In_1a or not In_2a not In_1b or not In-2b
 

In_2a or In_2b not In_1a or not In-3a not In_1b or not In_3b
 

In_3a or In_3b not In_~a or not In_3a not In_2b or not In-3b
 

The translation to first-order logic is: 

Formulae given to the editor 

Axioms:	 SORT NAT,PRED,THING,MAP : ANY 
TYPE GT (NAT NAT) 
TYPE CARD (PRED) : NAT 
TYPE S (NAT) : NAT 
TYPE P,H : PRED 
TYPE A (PRED THING) 
TYPE IN (THING THING) 
TYPE INJ (MAP PRED PRED) 
TYPE AF (MAP THING) : THING 
TYPE PHI : MAP 
ALL I : THING A (P I) IMPL A (H AF (PHI I» AND IN (I AF (PHI I» 
ALL I,J: THING A (P I) AND A (P J) 

IMPL (ALL	 K : THING A (H K) IMPL (NOT I = J IMPL 
(NOT IN (I K) OR NOT IN (J K»» 

CARD (P) = S (CARD (H» 
ALL N : NAT GT (S (N) N) 
ALL P,H : PRED GT (CARD (P) CARD (H» IMPL (NOT EX PHI MAP INJ (PHI PH» 
ALL PHI: MAP ALL 

P,H : PRED INJ (PHI P H) 
EQV (ALL X,Y : THING A (P X) AND A (P Y) AND AF (PHI X) = AF (PHI Y) 

IMPL X = Y) 

Set of Axiom Clauses Resulting from Normalization 

Ai: All	 x:Any + =(x x) 
* A2: +	 =(card(p) s(card(h»)
* A3: All x:Nat + GT(s(x) x) 
* A4: All x:Thing - A(p x) + A(h af(phi x» 

l 4  Explicit Versus Predicative Formalization

— More pigeons than holes:
Card(pigeon) = S(Card(hole))

— Mathematical background:
Vnl  S'(n) > n

Vp,h:sort Card(p) > Card(h) _) -Elgo:map Inj((p,p, h)

Vso=map Vp,h=so r t  Inj(so‚p‚ h)  H V$,y=P  90(33) = My) —> w = y

This problem can be  translated into first-order logic and was solved by MKRP in 17  seconds.

For each n € N we can construct from this formulation a propositional logic problem with
the number of clauses cubic depending on n .  This is done via the substitution of universal
quantification by finite conjunction and of existential quantification by finite disjunction
in the first two formulae. The task for n = 2 has the following form with pigeon = {1,2,3}
and hole : {a,b}:

In_1a  o r  In_1b  not  In_1a  or  not In_2a no t  In_1b or  not  In_2b

In_2a or  In_2b not  In_1a  o r  no t  In_3a not  In_1b o r  not  In_3b

In_3a  o r  In_3b not  In_2§ o r  not  In_3a not  InJZb o r  not  In_3b

The translation to  first-order logic is:

Formulae given to  the edi tor

Axioms: SORT NAT,PNED,THING,HAP : ANY
TYPE GT (NAT NAT)
TYPE CARD (FRED) : NAT
TYPE s (NAT) : NAT
TYPE P,H : PRED
TYPE A (PHED THING)
TYPE IN (THING THING)
TYPE INJ (HAP PRED FRED)
TYPE AF (HAP THING) : THING
TYPE PHI : NAP
ALL I : THING A (P I )  IHPL A (H AP (PHI I ) )  AND IN (1  AP (PHI I ) )
ALL 1 ,3 :  THING A (P I )  AND A (P J )

IHPL (ALL K : THING A (H K) INPL (Nor I = J INPL
(NOT IN ( I  K) OR NOT IN ( J  K)) ) )

CARD (P)  = s (CARD (H))
ALL N : NAT GT ( s  (N) N)
ALL P,H : PRED GT (CARD (P)  CARD (H)) IHPL (NOT Ex PHI : HAP INJ (PHI P H))
ALL PHI: NAP ALL

P,H : PRED INJ (PHI P H)
EQV (ALL x,Y : THING A (P A) AND A (P Y) AND AF (PHI x)  = AP (PHI Y)

INPL x = Y)

Se t  o f  Axiom Clauses  Result ing from Normalization

A1: A11 sny + =(x  x )
* A2: + =(card(p) s(card(h)) )
* A3: A11 xzflat + GT(s(x) x )
* A4: A11 shing — A(p  x )  + A(h  af(phi  x ) )
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* AS: All x:Thing - A(p x) + IN(x af(phi x» 
* A6: All x:Map y,z:Pred - GT(card(z) card(y» + A(z f_2(x z» 
* A7: All x:Map y,z:Pred - GT(card(z) card(y» + A(z f_l(x z» 
* AS: All x:Map y,z:Pred - GT(card(z) card(y» + =(af(x f_2(x z» af(x f_l(x z») 
* A9: All x:Map y,z:Pred - GT(card(z) card(y» - =(f_2(x z) f_l(x z» 
* Al0: All x,y,z:Thing - A(p z) - A(p y) - A(h x) + =(z y) - IN(z x) - IN(y x) 

Refutation: 

Initial Clauses: Al: All x:Any + =(x x) 
* A2: + =(card(p) s(card(h») 
* A3: All x:Nat + GT(s(x) x) 
* A4: All x:Thing - A(p x) + A(h af(phi x» 
* AS: All x:Thing - A(p x) + IN(x af(phi x» 
* A6: All x:Map y,z:Pred - GT(card(z) card(y» + A(z f_2(x z» 
* A7: All x:Map y,z:Pred - GT(card(z) card(y» + A(z f_l(x z» 
* AS: All x:Map y,z:Pred - GT(card(z) card(y» 

+ =(af(x f_2(x z» af(x f_l(x z») 
* A9: All x:Map y,z:Pred - GT(card(z) card(y» - =(f_2(x z) f_l(x z» 
* Al0: All x,y,z:Thing - A(p z) - A(p y) - A(h x) + =(z y) - IN(z x) 

- IN(y x) 

A2,1 &: A3,1 --> * Pl: + GT(card(p) card(h» 

Pl,l 81; A6,1 --> * R2: All x:Map + A(p f_2(x p» 

Pl,l &: A7,1 --> * R3: All x:Map + A(p f_l(x p»
 
Pl,l &: A8,1 --> * R4: All x:Map + =(af(x f_2(x p» af(x f_l(x p»)
 
Pl,1 &: A9, 1 --> * RS: All x:Map - =(f_2(x p) f_l(x p»
 
R4,1 &: A4,2 --> * P6: + A(h af(phi f_l(phi p») - A(p f_2(phi p»
 
P6,2 &: A6,2 --> * R7: + A(h af(phi f_l(phi p») - GT(card(p) card(h»
 
R7,2 &: Pl,l --> * RS: + A(h af(phi f_l(phi p»)
 
R4,1 &: AS,2 --> * P9: + IN(f_2(phi p) af(phi f_l(phi p») - A(p f_2(phi p»
 
P9,2 &: A6,2 --> * R10: + IN(f_2(phi p) af(phi f_l(phi p») - GT(card(p) card(h»
 
Rl0,2 &: Pl,l --> * RH: + IN(f_2(phi p) af(phi f_l(phi p»)
 
A7,2 &: AS,l --> * R20: All x:Map y:Pred - GT(card(p) card(y»
 

+ IN(f_l(x p) af(phi f_l(x p») 
R20,2 &: UO,6 --> * R2l: All x:Pred - GT(card(p) card(x» - A(p f_2(phi p» - A(p f_l(phi p» 

- A(h af(phi f_l(phi p») + =(f_2(phi p) f_l(phi p» 
- IN(f_2(phi p) af(phi f_l(phi p») 

R2l,2 &: R2,1 --> * R22: All x:Pred - GT(card(p) card(x» - A(p f_l(phi p» 
- A(h af(phi f_l(phi p») + =(f_2(phi p) f_l(phi p» 
- IN(f_2(phi p) af(phi f_l(phi p») 

R22,2 &: R3,1 --> * R23: All x:Pred - GT(card(p) card(x» - A(h af(phi f_l(phi p») 
+ =(f_2(phi p) f_tCphi p» 
- IN(f_2(phi p) af(phi f_l(phi p») 

R23,2 Se RS,l --> * R24: All x:Pred - GT(card(p) card(x» + =(f_2(phi p) f_l(phi p» 
- IN(f_2(phi p) af(phi f_l(phi p») 

R24,2 &: RS,l --> * R2S: All x:Pred - GT(card(p) card(x» - IN(f_2(phi p) af(phi f_l(phi p») 
R2S,2 &: RH,l --> * R26: All x:Pred - GT(card(p) card(x» 
R26,1 &: Pl,l --> * R27: [] 

Time Used for Refutation: 17 seconds 
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* A5:  A11
* A6: A11
* A7:
* A8: A11
* A9: A11
* A10:

Refu ta t ion :

Initial Clauses: A1:
* A2:
* A3:
* A4 :
* A5:
* A6:
* A7:
* A8:

* A9:
* A10:

A2,1  & A3‚1  - -> * P1

P1 ,1  & A6,1  —-> * R2:

P1 ,1  & A7,1  -—> * R3:
P1 ,1  & A8‚1  -—> * R4:
P1 ,1  & A9‚1  - ->  * R5:
R4 ,1  & A4,2 ——> * P6:
P6 ‚2  & A6‚2 - ->  * R7:
R7 ‚2  & P1 ,1  -—> * R8:
R4 ‚1  & A5‚2 —-> * P9:
P9 ,2  & A6,2 - ->  * R10:
R10,2 & P1 ,1  - ->  * R11:
A7‚2 & A5‚1  - ->  * R20:

R20‚2 & A10,6 - ->  * R21:

R21,2 & R2,1  - -> * R22:

R22‚2 & R3,1  - -> * R23:

R23,2 & R8‚1  - ->  * R24:

R24,2 & R5‚1  - ->  * R25:
R25‚2 & R11‚1  - ->  * R26:
R26,1  & P1 ,1  - ->  * R27:

:Map y,z:Pred - GT(card(z) card(y))
:Hap y,z:Pred - GT(card(z) card(y))

x:Thing — A(p x) + IN(x af(phi x ) )
x:Map y . z :Pred  - GT(card(z)  ca rd (y ) )

All x:Hap y,z:Pred — GT(card(z) card(y))
x
x

A(z f_2(x z ) )
A(z f_1(x z ) )
=(a f (x  f _2 (x  z ) )  af (x  f _1 (x  z)))
=(f_2(x z )  f_1(x z ) )

+
+

+

All x‚y‚z:Thing - A(p z) - A(p y) - A(h x) + =(z  y) - IH(z x) - IN(y x)

Time Used  fo r  Re fu ta t ion :

Al l  x:Any + =(x x)
+ =(card(p) s(card(h)))
Al l  x:Nat  + GT(s(x) 1)
Al l  x:Thing - A(p x) + A(h af(phi x ) )
A l l  shing — A(p x) + IN(x af(phi x ) )
Al l  xzuap y,z:Pred - GT(card(z) card(y)) + A(z f_2(x z ) )
All x:Hap y,z:Pred — GT(card(z) card(y)) + A(z f_1(x z ) )
All x:Hap y,z:Pred - GT(card(z) card(y))

+ =(af(x f_2(x z) )  af(x  f_1(x z)))
All xzuap y,z:Pred - GT(card(z) cardCy)) - =(f_2(x z )  f_1(x z ) )
All x,y,z:Thing - A(p z) - A(p y )  - A(h x) + =(z  y)  - IN(z x)

— Ifl (y  x)

+ GT(card(p) card(h))

All x:Hap + A(p f_2 (z  p ) )

All x:Hap + A(p f_1(x p ) )
Al l  xzflap + =(af (x  f_2(x p ) )  af(x f_1(x p)))
Al l  x:Hap - =(f_2(x p )  f_1(x p ) )
+ A(h af(phi f_1(phi p))) — A(p f_2(phi p) )
+ A(h af(phi f_1(phi p))) - GT(card(p) card(h))
+ A(h af(phi f_1(phi p)))
+ Ifl(f_2(phi p)  af(phi f_1(phi p))) - A(p f_2(phi p) )
+ IN(f_2(phi p)  af(phi f_1(phi p))) - GT(card(p) card(h))
+ IN(f_2(phi p)  af(phi f_1(phi p ) ) )
Al l  xzuap y:Pred — GT(card(p) card(y))

+ IH(f_1(x p )  af(phi f_1(x p)))
All x:Pred - GT(card(p) card(x)) - A(p f_2(phi p ) )  - A(p f_1(phi p ) )

A(h af(phi f_1(phi p))) + =(f_2(phi p)  f_1(phi p))
IN(f_2(phi p)  af(phi f_1(phi p)))
GT(card(p) card(x)) - A(p f_1(phi p ) )
A(h af(phi £_1(phi p ) ) )  + =(f_2(phi p)  f_1(phi p ) )
IN(f_2(phi p)  af(phi f_1(phi p)))

Al l  x:Pred - GT(card(p) card(x)) - A(h af(phi f_1(phi p)))
+ =(f_2(phi p) f_1(phi p) )
— IN(f_2(phi p)  af(phi f_1(phi p)))

Al l  sred  — GT(card(p) card(x)) + =(f_2(phi p)  £_1(phi p ) )
- IN(f_2(phi p) af(phi f_1(phi p) ) )

Al l  x:Pred — GT(card(p) card(x)) - IN(f_2(phi p)  af(phi f_1(phi p)))
Al l  x:Pred - GT(card(p) card(x))
|]

Al l  x :Pred

17 seconds
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5 Tactics to Cope with the Presented Situations 

Tactics were explicitly used for the first time in the LCF proof system [11]. The proof
checker Nuprl [8], which is based on Automath [3] and PER MARTIN-LoF's type theory 
[16], incorporates the possibility to write tactics as well as the programming language ML 
of LCF. Tactics can be viewed as mappings from proofs to proofs. Instead of proving 
r f- THEOREM it is sufficient to show several parts f l f- THEOREM!, ... , f n f- THEOREMn 

(soundness of tactics). 

Elementary tactics correspond in Nuprl to the application of calculus rules. In order to get 
powerful tactics there are some possibilities to combine tactics to composed tactics by the 
so-called tacticals: IF Expression THEN Tactic, IF Expression THEN TacticI ELSE Tactic2, 
REPEAT Tactic, WHILE Expression DD Tactic, COMPOSITION TacticI Tactic2' Originally Ex
pression is a boolean expression written in ML. In the sequel we use an informal logical 
language to specify our expressions. 

5.1 Tactics for the Examples 

In a more informal style a tactic to transform our first example from the initial formulation 
into the form more a~propriate for resolution would be: If certain conditions are fulfilled, 
the theorem and an axiom are replaced by a simpler formula. The replacement corresponds 
to the backward application of modus ponens (modulo matcher), where the implication is 
valid. 

ELIM_THM_PRED := 
IF TO_PROVE(f f- THEOREM) 

/\ ATOM(THEOREM) 
/\ 3 AX AX E f /\ AX = (Antecedent ---+ Succedent) 
/\ .., AToM(Antecedent) 
/\ 3a : M atcher THEOREM = a(Succedent) 
/\ .., DOES_OCCUR(PREDICATE(THEOREM), (f-{AX} U {Antecedent}) 

THEN TO_PROVE(f-{AX} f- a(Antecedent)) 

In this description of the tactic we neglect the existence of universal quantifiers. Of course 
the variables in the domain of the matcher must be universally quantified in the corre
sponding formula. 

In the second example several different tactics are used to obtain the final formulation from 
the initial first-order one. 

ELIM_THM_VARS :=
 

IF TO_PROVE(f f- THEOREM)
 
/\ THEOREM = Vx!, ... , xn c.p 
/\ a:= {Xl r- c!, ,Xn r- cn} 
/\ Vi,j i,j E {l, ,n} ACi = Cj ===} i =j 
A Vc c E {Cl, . .. , cn } ===} -, DOES_OCCUR(c, f U {c.p}) 

THEN TO_PROVE(f f- a(ep)) 
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5 Tactics to  Cope with the Presented Situations

Tactics were explicitly used for the first time in the LCF proof system [11]. The proof-
checker Nuprl [8], which is based on Automath [3] and PER MARTIN—LÖF’s type theory
[16], incorporates the possibility to write tactics as well as the programing language ML
of LCF. Tactics can be  viewed as mappings from proofs to proofs. Instead of proving
I‘ +- THEOREM it  is sufficient to  show several parts I‘l l- THEOREM1, . . . ,I‘,l I— THEOREMn
(soundness of tactics).

Elementary tactics correspond in N uprl t o  the application of calculus rules. In order to get
powerful tactics there are some possibilities to combine tactics to composed tactics by the
so—called tacticals: IF  Expression THEN Tactic, IF  Expression THEN Tacticl ELSE Tactical,
REPEAT Tactic, WHILE Expression DO Tactic, COMPOSITION Tacticl Tacticz. Originally Ew-
pression is a boolean expression written in ML. In the sequel we use an informal logical
language to specify our expressions.

5 .1  Tactics for the Examples

In a more informal style a tactic to transform our first example from the initial formulation
into the form more appropriate for resolution would be: If certain conditions are fulfilled,
the theorem and an axiom are replaced by a simpler formula. The replacement corresponds
to the backward application of modus ponens (modulo matcher), where the implication is
valid.

ELIM_THM_PRED :=
IF TO_PROVE(I‘ I- THEOREM)

A ATOM(THEOREM)
A El AX Ax € I‘ A AX = (Antecedent —) Succedent)
A _- ATOM(Antecedent)
A 3a : Matcher THEOREM = a(Succedent)
A -= DOES_OCCUR(PREDICATE(THEOREM), (P—{Ax} U {Antecedent})

THEN TO.PROVE(I‘—{Ax} %- a(Antecedent))

In this description of the tactic we neglect the existence of universal quantifiers. Of course
t he  variables in  the domain of the matcher must be  universally quantified in the corre-
sponding formula.

In the second example several different tactics are used to  obtain the final formulation from
the initial first-order one.

ELIM_THM_VARS :=
IF TO_PROVE(I‘ l— THEOREM)

A THEOREM = Vx1, . . . ,m„  cp
A a :=  {m1 <—c1,...,m„ <—c„}
AVi,j i , j  e{1,...,n}Ac‚-=c‚— =>i= j
A Ve c e {ab .  . . ,c„} => -w DOEs_OCCUR(c,I‘ U {<p})

THEN TO_PROVE(I‘ +- a(<p))





17 Tactics for the Examples 

EXPAND_DEF := 

IF	 TO_PROVE(r I- THEOREM) 

1\ :3 AX AX E r 1\ AX = VX1, ... , Xn P(Xb"" x n) Ho cp 

1\ -, DOES_OCCUR(P, cp) 

THEN	 TO_PROVE(SUBST-A.LL(P, cp, r-{AX} I- THEOREM)) 

with a tactic SUBST-A.LL(pred, formula, in) replacing all occurrences of the predicate P : 
P(i1 , ••• , in) by O'(cp) with the unifier 0' = {Xl ~ i b ···, Xn ~ in}. 

INST_VARS := 

IF TO_PROVE(r I- THEOREM) 

1\ :3t DOES_OCCUR(t,THEOREM) 1\ GROUND(t) 1\ i = f(t b ... , in) 
::=:::;. VS DOES_OCCUR(S,THEOREM) 1\ S = f(sb' .. ,Sn) ::=:::;. S = t 

1\ VAX AXE r ::=:::;. VS DOES_OCCUR(S,AX) 1\ S = f(Sl"'" Sn) 
::=:::;. AX = (VXb' .. ,Xn cp) 1\ SI = Xl 1\ ... 1\ Sn = Xn 

1\ 0' := {Xl ~ tb ... ,Xn ~ in} 
THEN TO_PROVE(SUBST(VX1, ... ,Xn cp, a(cp), f) I- THEOREM) 

where SUBsT(from to in) replaces all occurrences of from by to in in. 

ELIM-APPLY := 

IF TO_PROVE(r I- THEOREM) 

1\ Vcp ATOM(cp) 1\ DOES_OCCUR(cp, r U {THEOREM}) 1\ cp = Apply(s, sb'''' Sn) 
::=:::;. GROUND(s) 

THEN TO_PROVE(SUBST(Apply(s, SI, ... ,Sn), s(SI, . .. ,Sn), r I- THEOREM)) 

with the ground terms converted to new predicate symbols s. Hence after the application 
of this tactic the predicate symbol Apply is completely eliminated. 

Built together this leads to the following composed tactic: 

ELIM:= 

COMPOSITION ELIM_THM_VARS 

REPEAT EXPAND_DEF 

INST_VARS 

ELIM-A.PPLY 

The tactic INST_VARS is rather complicated but very general in nature. When the "Apply"
construct appears only together with universal quantification as described in the tactic it 
seems possible to eliminate it in a similar way. 

An alternative procedure would be to begin with higher-order and to use the following 
compound tactic, thus avoiding the tactics INST_VARS and ELIM-A.PPLY. 

ELIM:= 

COMPOSITION ELIM_THM_VARS 

REPEAT EXPAND_DEF 

TRANSLATE 

This contrasts to the first procedure, where the translation is done at first: 
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EXPAND_DEF :=
IF  TO_PROVE(I‘ t- THEOREM)

/\ El AX AX € F /\ AX =Vx1, . . . ,a :„  P(:1:1,...,a:„) Hgo
A „ DOES_OCCUR(P‚Lp)

THEN TO_PROVE(SUBST_ALL(P,<p,F—{Ax} I- THEOREM»

with a tactic SUBST_ALL(pred, formula, in) replacing all occurrences of the predicate P :
P(t1, . . . , tn)  by 0(90) with the unifier a = {1:1 (— t1, . . . ‚a;„ <— tn}.

INST_VARS :=
IF TO_PROVE(1‘ I— THEOREM)

A 31: DOEs_OccUR(t,THEOREM) A GROUND(t) A t = f (t1, . . . , tn)
=> Vs DOES_OCCUR(5,THEOREM) A s = f(31,. . . ,s„) =>— s = t

A VAX Axe I‘ => Vs DOEs_OCCUR(s,Ax) A s : f(31,. . . ,s„)
=> AX =(Vm1, . . . , xn  <p)/\51 =x1A. . .As„  =3 :n

/\ 0' :=  {£1 <— t1,. . .‚x„<—t„}
THEN TO_PROVE(SUBST(V$1, . . . ,:vn <p,o(<,o),I‘) t- THEOREM)

where SUBST(from to  i n )  replaces all occurrences of from by to in  in .

ELIM_APPLY :=
IF  TO_PROVE(I‘ l- THEOREM)

A c ATOM(<p) A DOEs_OCCUR(¢p,I‘ U {THEOREMD A go = Apply(s,31, . . . ,sn)
=> GROUND(3)

THEN TO_PROVE(SUBST(Apply(s,31, . . .  , s„) ,s(s1, . . .  ,s„) ,I‘  I- THEOREM))

with the ground terms converted to  new predicate symbols s .  Hence after the application
of this tactic the predicate symbol Apply is  completely eliminated.

Built together this leads to  the following composed tactic:

ELIM :=
CDMPOSITIDN ELIM_THM_VARS

REPEAT EXPAND_DEF
INST_VARS
ELIM_APPLY

The tactic INST_VARS is rather complicated but very general in nature. When the “Apply”-
construct appears only together with universal quantification as described in the tactic it
seems possible to  eliminate i t  in a similar way.

An alternative procedure would be to begin with higher-order and to use the following
compound tactic, thus avoiding the tactics INST_VARS and ELIM_APPLY.

ELIM :=
COMPOSITION ELIM_THM_VARS

REPEAT EXPAND_DEF
TRANSLATE

This contrasts to  the first procedure, Where the translation is done at first:
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ELIM := 

COMPOSITION TRANSLATE 

ELIM_THM_VARS 

REPEAT EXPAND-DEF 

INST_VARS 

ELIM-APPLY 

5.2 Soundness of Tactics and Proof Presentation 

Of course the correctness of all involved tactics has to be proved. Normally such a proof 
is obvious, because tactics are iterations of calculus rules: The tactic ELIM_THM_PRED is 
a combination of instantiation and modus ponens, ELIM_THM_VARS is universal general
ization, EXPAND_DEF combines instantiation and substitution, and INST_VARS is just a 
restricted form of instantiation. 

TRANSLATE is a transition between different logics. The correctness is ensured by the 
theorem at the end of section 3. 

For ELIM-APPLY we stay in the same logic but change the signature. This change is not 
essential, because the proof steps can be mapped one-to-one. All Applys appear together 
with constants c in the form Apply(c, ...) and are transformed to c(.. .). This transforma
tion is also possible in all proof steps. 

ELIM-APPLY is just one instance of the variability of representation in a logical language. 
Another example for this variability is constituted by the numerous representations of the 
equality predicate. 

Soundness considerations for transformations between variants of problem descriptions are 
not really important because we take the position of a "Nominalist" [20]: As desirable as 
it is to find a proof as desirable it is to be able to communicate it. Of course it is very 
reasonable to present the proof in the language, which has been input by the user, because 
he is familiar with it. 

In our case we have a first-order proof procedure, and the final proof can be translated 
back into higher-order logic, because the quasi-homomorphisms are all bijective. 

6 Conclusion 

We showed how tactics can be used to reformulate problem descriptions, such that they 
are more appropriately stated for a resolution theorem proveI'. Reformulated this way they 
can be solved much faster. The examples above support our opinion that resolution alone 
is not adequate for a system that can serve as tool in the daily work of a mathematician. 
The presented work will be further developed in the project "f2-MKRP" [23], where among 
other things tactics will be designed for the combination of tactical and resolution theorem 
proving. We hope that hundreds of tactics like those presented previously will be the result 
of some years of experimentation and will lead to a useful system. 

May be one day the automatic generation of tactics from new examples will be possible by 
exploiting the knowledge represented in these rules. As the example of the checkerboard 
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ELIM :=
COMPOSITION TRANSLATE

ELIM_THM_VARS

REPEAT EXPAND_DEF
INST_VARS
ELIM_APPLY

5 .2  Soundness  o f  Tactics and Proof  Presentation

Of course the correctness of all involved tactics has to be  proved. Normally such a proof
is  obvious, because tactics are iterations of calculus rules: The tactic ELIM..THM_PRED is
a combination of instantiation and modus ponens, ELIM_THM_VARS is universal general-
ization, EXPAND_DEF combines instantiation and substitution, and INST_VARS is just a
restricted form of instantiation.

TRANSLATE is a transition between different logics. The correctness is ensured by the
theorem at the end of section 3.

For ELIM_APPLY we stay in the same logic but change the signature. This change is not
essential, because the proof steps can be mapped one-to—one. All Applys appear together
with constants c in the form Apply(c, . . .) and are transformed to  c(. . .) This transforma-
t ion is  also possible in  all proof steps.

ELIM_APPLY is just one instance of the variability of representation in a logical language.
Another example for this variability is constituted by the numerous representations of the
equality predicate.

Soundness considerations for transformations between variants of problem descriptions are
not really important because we take the position of a “Nominalist” [20]: As desirable as
i t  is to  find a proof as desirable i t  is to be able to communicate i t .  Of course i t  is very
reasonable to present the proof in the language, which has been input by the user, because
he is familiar with i t .

In our case we have a first-order proof procedure, and the final proof can be  translated
back into  higher-order logic, because the quasi—homomorphisms are all bijective.

6 Conclus ion

We showed how tactics can be  used to reformulate problem descriptions, such that they
are more appropriately stated for a resolution theorem prover. Reformulated this way they
can be  solved much faster. The examples above support our opinion that resolution alone
is not adequate for a system that can serve as tool in the daily work of a mathematician.
The presented work will be  further developed in the project “Q-MKRP” [23], where among
other things tactics will be  designed for the combination of tactical and resolution theorem
proving. We hope that hundreds of tactics like those presented previously will be  the result
of some years of experimentation and will lead to  a useful system.

May be one day the automatic generation of tactics from new examples will be  possible by
exploiting the knowledge represented in these rules. As the example of the checkerboard
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without two opposite edges [17] shows, the reformulation of problems plays a central role in 
the development of AI right from its roots (for this example see also [26, p.117]). Techniques 
developed in AI [14] may be adaptable to mathematical tasks. 

We think that the explicit formulation of such tactics opens the eye for the structure and 
contents of the coded know-how. 
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