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ABSTRACT 

Krwwledge Adaptation Is an alternative means of knowledge acquisition from previous experience
 

10 similar application domains. Adapting knowledge from an old expert system In some domain
 

means transforming rules Into rules useful for problem solving In a new. similar domain. The
 

. transfonnatlon follows from an analogical mapping of the situation described in a rule to
 

situations in the new domain. This paper describes· the Knowledge ·Adaptatlon. approach to
 

knowledge acquisition. We use diagnosis as the exemplar domain task. MOLTKE 1 as the
 

computational testbed. and CNC-machines2 as the exemplar application domain. 

1. INTRODUCTION 

Our research group has developed. MOL1KE. a workbench for the construction of expert 
systems for technical domains. The main domain tasks have been diagnosis and 
configuration, and components for our workbench on other tasks as process planning. 
configuration, hypermedia, etc., are being developed. In the domain of diagnosis, 
exemplar application domains have been CNC-machlnes, 3D-CNC measurement 
machines, and heterogenoues computer networks. In this work we use the first 
application domain for lllustration. 

The CNC-machine producer configures different machine versions using parts from a 

e Also appeared In: Proc. of the 6th Banff Knowledge Acquisition for Knowledge-Based 
Systems Workshop 1991. Banff. Canada. OCtober. 1991. 

+	 This work Is being developed within project X9 (Leamlngand Analogy in Technical Expert 
Systems) of the special research area SFB-314 (Artlftclal Intelligence - Knowledge-Based 
Systems) under supervision of Prof. Dr. M. M. Richter. The author is a graduate student 
holding a fellowship from the German Service for Academical Exchange (DAAD, Deutscher 
Akademlscher Austauschdienst) and support from the University of Costa Rica. 

1 For MOdels, Learning. and Temporal Knowledge 10 Expert systems for technical domains 
2 For Computerized Numerical Control: see. e.g.. (Althoff, Maurer. and Rehbold. 1990) 
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common library. The knowledge adaptation problem consists in transforming 
knowledge from an old machine's expert system to be used within the same domain task 
on a newer. stmUar machine. Adapting knowledge involves reasoning about differences 
and simUarities between both machines and using knowledge adaptation strategies 
accordingly. 

The knowledge adaptation scenario arises from the need of reducing the effort invested in 

the knowledge acquisition task dUring the early stages of expert system development.. 
Knowledge adaptation can be seen as a means of making knowledge reusable for solving 

stmUar situations within the same domain task. 

The paper is organized as follows. Chapter 2 discusses the knowledge adaptation problem. 
Chapter 3 gives a brief description of a MOLlKE diagnostic expert system and of the CNC- / 
machines domain. Chapter 4 deeply discusses each step of the knowledge adaptation 
process. For each step. the expected role of the human experts dUring knowledge 
adaptation. as well as the strategic knowledge acquisition techniques used. are described. 
Chapter 5 presents the acquisition and refinement of strategies for improving the 
knowledge adaptation process. Finally. chapter 6 discusses the relations of this with 
other work, and describes the state of our research and our next future plans. 

2. THE KNOWLEDGE ADAPTATION PROBLEM 

A typical flaw of expert systems. due in part to the intimate (iependency on the 
application domain. is the difficulty to make knowledge reusable in other simUar 
domains. An expert system might solve problems in a particular application domain. but 
when this is modified. even lightly. the system may faU to solve problems with acceptable 
reliability3. 

Sometimes. totally new knowledge bases must be developed for a new domain. Others. the 
human expert and the knowledge engineer work hard and long together in the task of 
extracting from the old expert system knowledge that can be useful for the new domain. 
adapting it accordingly. and incorporating it into a new knowledge base. 

But no solution towards the automatization of this process can be found explicit in the 
literature. There are attempts to define means of making the domain modeling task more 
flexible (Morik. 1987. 1988; Schreiber. Wielinga. and Breuker. 1991). In our oppinion. the 
enormous costs due to knowledge acquisition. normal dUring early stages of system 
development, cannot be drastically reduced by means only of flexibUity in modeling. A 
learning system must be able of explicitly adapting its knoWledge to a changing domain. 

Without this ability. learning is limited to a static view of the domain. 

In technical domains in particular. the application domain is mostly desc~bed by a 
model of the physical world. adequate for a particular domain task. e.g.• <Uagnosis 
(Struss. 1988). The model allows for causal reasoning about structure and beha~or. But 
models alone lack of means of associating experience in the domain task with causality 

3 ReltabUtty is used here to mean empirical acceptabUity crtterta set by the human expert 

common library. The knowledge adaptation problem consists in transforming
knowledge from an old machine's expert system to be used within the same domain task
on a newer. similar machine. Adapting knowledge involves reasoning about differences
and similarities between both machines and using knowledge adaptation strategies
accordingly.

The knowledge adaptation scenario arises from the need of reducing the effort invested in
the knowledge acquisition task during the early stages of expert system development.
Knowledge adaptation can be seen as a means of making knowledge reusable for solving
similar situations within the same domain task.

The paper is organized as follows. Chapter 2 discusses the knowledge adaptation problem.
Chapter 3 gives a brief description of a MOLTKE diagnostic expert system and of the CNC- ,
machines domain. Chapter 4 deeply discusses each step of the knowledge adaptation
process. For each step. the expected role of the human experts during knowledge
adaptation. as well as the strategic knowledge acquisition techniques used. are described.
Chapter 5 presents the acquisition and refinement of strategies for improving the
knowledge adaptation. process. Finally. chapter 6 discusses the relations of this with
other work. and describes the state of our research and Our next future plans.

2.  THE KNOWLEDGE ADAPTATION PROBLEM

A typical flaw of expert systems, due in part to  the intimate dependency on the
application domain. is the difficulty to make knowledge reusable in other similar
domains. An expert system might solve problems in a particular application domain. but
when this is modified. even lightly. the system may fail to solve problems with acceptable
reliability3.

Sometimes. totally new knowledge bases must be developed for a new domain. Others. the
human expert and the knowledge engineer work hard and long together in the task of
extracting from the old expert system knowledge that can be useful for the new domain,
adapting it accordingly. and incorporating it into a new knowledge base.

But no solution towards the automatization of this process can be found explicit in the
literature. There are attempts to define means of making the domain modeling task more
flexible (Morik. 1987,  1988; Schreiber, Wielinga. and Breuker. 1991). In our oppinion. the
enormous costs due to knowledge acquisition. normal during early stages of system
development. cannot be drastically reduced by means only of flexibility in modeling. A
learning system must be able of explicitly adapting its knowledge to a changing domain.
Without this ability. learning is limited to a static view of the domain.

In technical domains in particular. the application domain is  mostly described by a
model of the physical world. adequate for a particular domain task. e .g . .  diagnosis
(Struss. 1988). The model allows for causal reasoning about structure and behavior. But
models alone lack of means of associating experience in the domain task with causality

3 Reliability is used here to mean empirical acceptability criteria set by the human expert
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relationships in the model itself. Moreover, models are normally incomplete and too 
simplifying. MocUfytng the physical world requires of mod1fy1ng the model accordingly. 
The lack of association from experience to causal1ty leads, after a modification, to the 
loss of experience gained on problem solving for the previous state of the physical world. 

On the other side, the empirical acquisition of knowledge in the domain is mostly 
justified by the human expert's advice, due to the Inability of most empirical approaches 
to provide by themselves,· using background knowledge, for well-founded explanations of 
the acquired knowledge. 

Thus, a bridge from the model of the physical world to the experience impl1cit in 
emp1r1cal knowledge and viceversa must be made ava1lable, that can allow for just1fy1ng 
the automatic adaptation of knowledge from the old expert system to cope with the 
domain task on the new physical world. 

2.1. Overview of the Knowledge Adaptation Approach 

Given an already developed diagnostic expert system for some machine and a new, 
functionally stmtlar but structurally different machine, we wish to adapt the old system's 
knowledge to be (re)used for diagnosis on the new machine. 

Our approach to knowledge adaptation Identifies knowledge SUitable for adaptation by
 
. uSing a similarity-based approach. Two machine parts are considered similar If they
 
belong to a same parts class and their funCtionality descriptions are similar. A part's
 
functionality and the similarity metric used are descrtbed later In section 4.3.1. 

A simple model-based reasoning mechanism is used to analogically map a diagnostic 
situation from the old machine Into a new, plausible situation for the new machiVe. The 
analogical mapping is approached on two levels. First, follOWing domain-independent 
mechanisms, a situation is explained on the domain model. Then, domain-dependent 
features are used to complete tile analogical mapping. The plausibUtty of the new 
situation is ··verified through simulation automatically gUided by background 
knowledge4• 

The knowledge adaptation component communicates with the performance element of 
the expert system to generate a hypothesis for the new, plausible situation. If such a 
hypothesis is found, the resulting rule (i.e., dlagnosticSituatlon ~ hypothesis) must be 
incorporated into the new expert system. The rule can be incorporated if It results 
consistent with the current state of the new expert system. 

The whole process, from the Identification of similar parts In the old machine to the 
incorporation of an adapted rule in the new expert system is called an adaptation case. 

Adaptation cases are generalized to adaptation rules, that represent strategic knowledge 
for adaptating groups of diagnostic rules sharing a common general diagnostic situation 
and the same particular hypothesis. 

4	 see (Dutta, 1988) for a deeper discussion on JustifYing analogical transfonnatlon through
the Intensive use of background knowledge. Other approaches to verification use 
expertmentatton, as In (Carbonell and GU, 1990; and Shen and Slmon, 1989) 

relationships in the model itself. Moreover. models are normally incomplete and too
simplifying. Modifying the physical world requires of modifying the model accordingly.
The lack of association from experience to causality leads. after a modification. to the
loss of experience gained on problem solving for the previous state of the physical world.

On the other side. the empirical acquisition of knowledge in the domain is mostly
justified by the human expert's advice. due to the inability of most empirical approaches
to provide by themselves. using background knowledge. for well-founded explanations of
the acquired knowledge.

Thus. a bridge from the model of the physical world to the experience implicit in
empirical knowledge and viceversa must be made available. that can allow for justifying
the automatic adaptation of knowledge from the old expert system to cope with the
domain task on the new physical world.

2 .1 .  Overview of the Knowledge Adaptation Approach

Given an already developed diagnostic expert system for some machine and a new.
functionally similar but structurally different machine. we wish to adapt the old system's
knowledge to be (re)used for diagnosis on the new machine.

Our approach to knowledge adaptation identifies knowledge suitable for adaptation by
, using a similarity-based approach. Two machine parts are considered similar if they

belong to a same parts class and their functionality descriptions are similar. A part's
functionality and the similarity metric used are described later in" Section 4 .3 .  1 .

A simple model-based reasoning mechanism is used to analogically map a diagnostic
situation from the old machine into a new. plausible situation for the new machine. The
analogical mapping is approached on two levels. First. following domain-independent
mechanisms. a situation is explained on the domain model. Then. domain-dependent
features are used to complete the analogical mapping. The plausibility of the new
situation is -verified through simulation automatically guided by background
knowledge“.

The knowledge adaptation component communicates with the performance element of
the expert system to generate a hypothesis for the new. plausible situation. If such a
hypothesis is found. the resulting rule (i.e.. diagnosticSituation —> hypothesis) must be
incorporated into the new expert system. The rule can be incorporated if it results
consistent with the current state of the new arpert system.

The whole process. from the identification of similar parts in the old machine to the
incorporation of an adapted rule in the new expert system is called an adaptation case.
Adaptation cases are generalized to adaptation rules. that represent strategic knowledge
for adaptating groups of diagnostic rules sharing a common general diagnostic situation
and the same particular hypothesis.

4 See (Dutta. 1988) for a deeper discussion on justifying analogical transformation through
the intensive use of background knowledge. Other approaches to verification use
wma-hinterm as in (Carbonell and Gil. 1990: and Shen and Simon. 1989)
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3. THE MOLTKE DIAGNOSTIC ExPERT SYSTEM 

The workbench MOLTKE plays the role of computational testbed for our research. In this
 
chapter. a brief description of the basic teInlinology and of the diagnostic task in
 
MOLTKE is given. including some deta1ls relevant for our knowledge adaptation
 
component. We Ulustrate with our exemplar application domain. Further deta1ls about
 
the conceptual approach to diagnosis and methodological development of our workbench.
 
are found in the references mentioned through the description.
 

3.1. The Development of a MOLTKE DIagnostic Expert System 

The diagnostic task is seen in MOLTKE as the combination of classification and test
 
selection. Classifying means determining a rough or intermediate diagnosis for a given
 
fault. Test selection is used to refine the current diagnosis until a final diagnosis is found.
 
Diagnoses are organized in a context graph. where a node. called context. represents a
 
diagnosis. and the links. refinements between contexts.
 

For knowledge adaptation purposes. the generation of the context graph is incremental,
 
Le.. new contexts are generated only when they are needed for diagnosis or for knowledge
 
adaptation. This has the advantage of reducing the time reqUired for knowledge base
 
generation for a new machine; it also allows the easy changing of the knowledge base in
 
-response to light modifications in the structure of the new machine5 .
 

:."-'" 

In our expert system. diagnostic knowledge is structured vertically-in a heterarchy of
 
contexts. and hortzontally--separated in ordering and shortcut knowledge. Contexts
 
represent knowledge about failures (classification). and ordering and shortcut
 
knowledge. knowledge about the diagnostic process (test selection).
 

A context has a precondlUon (conJuntion or diSjunction of conjunctions of symptom
 
values) which. when satisfied under. the current situation. causes the associated diagnosis
 

to become proven. To eveIy context a set of ordering rules and a set of shortcut rules are
 
associated. as well as a context interpreter. The locality of ordertng rules and the presence
 
ofa (local)- interpreter allow for specialized strategy for test selection.
 

Definitions 

Symptom Class - relates a name With a list of possible values (e.g.• Valve and
 
(open, clo••d»
 

Symptom instance - (or symptomvalue. or symptom) describes the state of a machine
 
part (e.g.• (Valve27Y1 clo.ed»
 

Situation - set of all symptoms; (partially) describes the actual state of the machine
 
Formula - stores the current binding of a symptom (a variable in the predicate
 

calculus with a three-valued logie-true. fal.e. unknown-used to evaluate 
the formulas in aformula language)
 

Test - determines the current value of one or more symptom instances
 
Ordering Rules - determine which test to execute next; the order of these rules
 

determines the (potential) execution order of tests 

For instance. after replacement of defectuous parts 5 

3. THE MOLTKE DIAGNOSTIC EXPERT SYSTEM

The workbench MOLTKE plays the role of computational testbed for our research. In this
chapter. a brief description of the basic terminology and of  the diagnostic task in
M 0LTKE is given. including some details relevant for our knowledge adaptation
component. We illustrate with our exemplar application domain. Further details about
the conceptual approach to diagnosis and methodological development of our workbench.
are found in the references mentioned through the description. .

3 .1 .  The Development of a MOLTKE Diagnostic Expert. System

The diagnostic task is seen in MOLTKE as the combination of classification and test
selection. Classifying means determining a rough or intermediate diagnosis for a given
fault. Test selection is used to refine the current diagnosis until a final diagnosis is found.
Diagnoses are organized in a context graph. where a node. called context. represents a
diagnosis. and the links. refinements between contexts.

For knowledge adaptation purposes. the generation of the context graph is incremental.
i.e.. new contexts are generated only when they are needed for diagnosis or for knowledge
adaptation. This has the advantage of reducing the time required for knowledge base
generation for a new machine: it also allows the easy changing of the knowledge base in
response to light modifications in the structure of the new machines.

In our expert system. diagnostic knowledge is structured vertically—in a heterarchy of
contexts. and horizontally~separated in ordering and shortcut knowledge. Contexts
represent knowledge about failures (classification). and ordering and shortcut
knowledge. knowledge about the diagnostic process (test selection).

A context has a precondition (conjuntion or disjunction of conjunctions of symptom
values) which. when satisfied under the current situation. causes the associated diagnosis
to become proven. To every context a set of ordering rules and a set of shortCut rules are
associated. as well as a context interpreter. The locality of ordering rules and the presence
of .a (local) interpreter allow for specialized strategy for test selection.

Definitions
Symptom Class -— relates a name with a list of possible values (e.g..  Valve and

(open ,  c lo sed) !
Symptom instance -— (or symptomvalue. or symptom) describes the state of a machine

part (e.g.. (ValveZ'lYl ala-aa))
Situation — set of all symptoms: (partially) describes the actual state of the machine
Formula — stores the current binding of a symptom (a variable in the predicate

calculus with a three-valued logic—emu. rain. unknown—used to evaluate
the formulas in a formula language)

Test — determines the current value of one or more symptom instances
Ordering Rules — determine which test to execute next; the order of these rules

determines the (potential) execution order of tests .

5 For instance. after replacement of defectuous parts
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Shortcut Rules - represent a relation between symptom values, and shorten the 
diagnostic process by deriving one or more (stlll unknown) symptom values 
from one or more (known) symptom values, thus eliminating the need of 
gathering their values through tests 

Figure 1 below shows the overall process of expert system construction in MOLTKE. 
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- Figure 1 - The ConstNction of the Expert System ­

3.1.1. Ezpert System Generation: Mode1lDg and Simulation 

Diagnostic knowledge stored in contexts is extracted automatically and directly from the 
machine's deSign plans. The automatic model and diagnostic knowledge compiler MAKE6 

(Rehbold, 1991) builds up a static, deep model of the machine's structure and behavior. The 
model is checked for consistency and the context heterarchy is built through a 
simulation process. For each context. its precondition and shortcut rules are generated. 
MAKE's output is a basic expert system. \Vhich may be later refined and extended7 . 

A new version of MAKE. called tMAKE. is currently being mplemented in the context of 
this research. which allows the incremental ,extension and modification of the context 
graph. tMAKE reduces the effort reqUired for context graph generation by creating a 
library of subgraphs aSSOCiated to machine parts according to their functionality. 

In the machine's model. specific parts are described by classes of parts. which store 
mainly its name. ports. behavtoral description (input-output rules relating ports), and 
typical faulty behavt.0r8. Primitive parts cannot be decomposed. Complex parts store 
additionally their subparts and connectivity (physical connections between subparts). 
The structure is represented hierarchically. The behavior of complex piuts is elaborated 

6 For Model-based Automatic Knowledge Extractor
 
7 By, e.g., a serolce technicfan or a machine's engineer, In the case of CNC-rnachlnes
 
8 For simplicity, only the model slots relevant for this discussion have been described
 

Shortcut Rules — represent a relation between symptom values. and shorten the
diagnostic process by deriving one or more (still unknown) symptom values
from one or more (known) symptom values. thus eliminating the need of
gathering their values through tests

Figure 1 below shows the overall process of expert system construction in MOLTKE.
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3.1.1. Expert System Generation: Modeling and Simulation

Diagnostic knowledge stored in contexts is extracted automatically and directly from the
machine's design plans. The automatic model and diagnostic knowledge compiler MAKE6
(Reinhold. 1991) builds up a static, deep model of the machine's structure and behavior. The
model is checked for consistency and the context heterarchy is built through a
simulation process. For each context. its precondition and shortcut rules are generated.
MAKE's output is a basic expert system. which may be later refined and extended".

A new version of MAKE. called MAKE. is currently being implemented in the context of
this research. which allows the incremental extension and modification of the context
graph. MAKE reduces the effort required for context graph generation by creating a
library of subgraphs associated to machine parts according to their functionality.

In the machine's model, specific parts are described by classes of parts. which store
mainly its name. ports. behavioral description (input-output rules relating ports). and
typical faulty behaviors. Primitive parts cannot be decomposed. Complex parts store
additionally their subparts and connectivity (physical connections between subparts).
The structure is represented hierarchically. The behavior of complex parts is elaborated

'6 For Model-based Automatic Knowledge Extractor
7 By. e.g.. a service technician or a machine's engineer. in the case of CNC-machines
8 For simplicity. only the model slots relevant for this discussion have been described
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on the basis of their component parts. 

{MAKE extends a part instance's description with its functionality. This is defined as the 
subset of behavioral rules that describe the actual part's behavior in the particular 
configuration in which it is placed. That is. a part's behavtor describes all possible 
outputs from the part for all possible inputs (what is the part designed to do?).whlle 
functionality describes the outputs that are expected from the particular connections of 
the part in a particular machine (what does the part do in this machine?). 

Once the model is bullt. tMAKE simulates it in search for diagnostic infonnation that can 
be made explicit in MOLTKE's representation formalism. Two tasks are included in this 
process: definition of symptom and tests. and generation of contexts9 and their rules. A 

symptom class is generated for each port of every primitive part instance in the machine. 
A test is generated for each symptom class. Later in MOLTKE, a symptom will be 
represented by a symptom instance and the actual value measured on the respective port. 

DUI1ng simulation, for each port on which a deviation from an expected output value can 
be found, a context is generated. and its name, precondition, and correction are defined. 
Intermediate diagnostic contexts (those that are not leaves in the graph) additionally 

contain shortcut rules, refinement links (to other contexts), and ordeI1ng rules. 

The context heterarchy reflects the diagnostic expert's proceeding dUring diagnoSis10. The 
search space is shortened by considering only those behavioral rules relevant for 
describing the intended behaviDr of the machine partll . A context class is generated for 
eVery relevant faulty output value (from the faulty behavtor description of the part). 

In our new conception of this process, iMAKE does not need to generate all the contexts for 
a given machine part if that task was solved before for other part (even from other 
machine) of the same class and with the same functionality conditions. tMAKE stores a 
newly generated part's context subgraph and associates it to the part's class and its 
particular functionality. Context subgraphs are later used as patterns for other parts of 
the same class and with the same functionality conditions, which only need to be 
consistently inserted in the whole context heterarchy. 

3.1.2. Re8nement aDd EzteDSloD. of the Ezpert s,stem's KDowIe<Ige 

The basic MOLTKE-expert system can be refined. e.g.. by modification of shortcut rules, 
inclusion of new ordering rules. etc. This task is carried out in joint work by the expert 

and the knowledge engtneer. The expert elaborates flow diagrams of test execution order. 
which are traduced by the knowledge engineer into ordering rules and input into the 

corresponding contexts. The expert can edit the machine model as well. as the context 
graph. using graphical tools developed spectally for that purpose (based on Smalltalk's 
Browser interface12). 

9 Additionally. corrections (to the faults) must be also generated. but this is not relevant here 
10 We found this to be true for all technical domains modeled so far 
11 This Is MAKE's tennlnology. which agrees with our definition offtmcttonaltty 
12 Smalltalk Is the implementation language of MOLlKE 

on the basis of their component parts.

MAKE extends a part instance‘s description with its functionality. This is defined as the
subset of  behavioral rules that describe the actual part's behavior in the particular
configuration in which it is  placed. That is. a part's behavior describes all possible
outputs from the part for all possible inputs [what is the part designed to do?). 'while
functionality describes the outputs that are expected from the particular connections of
the part in a particular machine (what does the part do in this machine?).

Once the model is built. MAKE simulates it in search for diagnostic information that can
be made explicit in MOLTKE's representation formalism. Two tasks are included in this
process: definition of symptom and tests. and generation of contexts9 and their rules. A
symptom class is generated for each port of every primitive part instance in the machine.
A test is generated for each symptom class. Later in MOLTKE. a symptom will be
represented by a symptom instance and the actual value measured on the respective port.

During simulation. for each port on which a deviation from an expected output value can
be found. a Context is generated. and its name. precondition, and correction are defined.
Intermediate diagnostic contexts (those that are not leaves in the graph) additionally
contain shortcut rules. refinement links (to other contexts). and ordering rules.

The context heterarchy reflects the diagnostic expert's proceeding during diagnosis 1° .  The
search space is shortened by considering only those behavioral rules relevant for
describing the intended behavior of the machine part“. A context class is generated for
every relevant faulty output value (from the faulty behavior description of the part).

In our new conception of this process. MAKE does not need to generate all the contexts for
a given machine part if that task was solved before for other part (even from other
machine) of the same class and with the same functionality conditions. iMAKE stores a
newly generated part's context subgraph and associates it to the part's class and its
particular functionality. Context subgraphs are later used as patterns for other parts of
the same class and with the same functionality conditions. which only need to be
consistently inserted in the whole context heterarchy.

3.1.2. RefluementandMensionoftheExpertSyetem‘e Knowledge

The basic MOLTKE-expert system can be refined. e .g. .  by modification of shortcut rules
inclusion of new ordering rules. etc. This task is carried out in joint work by the expert
and the knowledge engineer. The expert elaborates flow diagrams of test execution order.
which are traduced by the knowledge engineer into ordering rules and input into the
corresponding contexts. The expert can edit the machine model as well. as the context
graph. using graphical tools developed specially for that purpose [based on Smalltalk's
Browser interface”).

9 Additionally. oorrectims (to the faults) must be also generated. but this is not relevant here
10 We found this to be true for all technical domains modeled so far
11 This is Mum's terminology. which agrees with our definition of functionality
12 Smalltalk is the implementation language of Mount;

H
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Moreover. the system acquires. organizes. and refines diagn~tlc experience through its 
learning component. Experiential knowledge Is case-based modeled. An ordered set oJ 
symptoms aSSOCiated to a hypothesis defines a diagnostic case. Two subsystems cooperate 
to enhance the diagnostic task. PATDEX/2 13 (Althoff. De la Ossa. Maurer. Stadler. and 
We~. 1989: Althoff and We~. 1991a) is a case-based reasoning system that retrieves the 
most similar case to the current situation. Simllarity is defined in terms of the 
symptoms in the situation. The hypothesis to the retrieved case is mapped to the current 
situation. PAIDEX/2 acts interactively on-line to enhance the diagnostic process. The 
other subsystem. GENRULE14 (Althoff and TraphOner. 1990: Althoff. 1991). acts off-line 
by complling heuristic generalization rules from diagnostic cases. Those rules. which 
describe partial shortcut rules. are given a statlstically-detenntned certainty factor. 

3.2. A Sample AppUcation Domain: CNC Machine Centers 

A CNC machine center is a production tool machine that gives some raw material a 
desired form and precise measure through controlled relative movement: it has a 
magazine of tools from where it can choose and seize one to work with on a piece of 
material. Some of its operations on the material are drilling. m1lling. rubbing. tap 
sharpening and cutting. sawing. etc. The basic components of a machine center are rack. 
sliding carriage. guides. and drive or propulsion. Attached are other facilities for control• 

.. r:egulation. changing. etc.. of tools and material. A large knowledge base for fault 
diagnosis of a machine center has been developed by our research group15. 

Examples of different configurations leading to functionally similar machines can be 
drawn ranging from very high abstraction levels in the machine's structure. e.g.• using a 
tool claw arm with finger elements instead of a claw arm with pUer claw and rotation. to 
very low levels. e.g.• using one of two different valves in a hydraulic or electrical element. 
Figure 2 shows a sample machine part design plan. We show its model of structure and 
behavior and a sample diagnostic context from our knowledge base. 

v27Y2 

- Figure 2 - Sample Design Plan of a Complex Machine Part ­

13 For PATtern-Directed EXpert system 
14	 For GENerator of empirical MOLTKE RULEs 
15	 Some parts (e.g.• the tool changer. etc.) have been modeled. not the whole CNC machine. but 

the modeled domain Is complex: enough for our purposes: knowledge bases from other 
technIcal domains have also been developed. and the results of experiments with them 
have given fruitful feedback dUring the development of our workbench 

,", '" 

Moreover. the system acquires. organizes. and refines diagnostic experience through its
learning component. Experiential knOWIedge is case-based modeled. An ordered set of
symptoms associated to a hypothesis defines a diagnostic case. Two Subsystems cooperate
to enhance the diagnostic task. PA‘IDEX/g13 (Althofl‘. De la Ossa. Maurer. Stadler, and
Weß. 1989; Althoff and Weß. 1991a) is a case—based reasoning system that retrieves the
most similar case to the current situation. Similarity is defined in terms of the
symptoms in the situation. The hypothesis to the retrieved case is mapped to the current
situation. PA'IDEX/g acts interactively on-line to enhance the diagnostic process. The
other subsystem. GENRULE” (Althoff and 'l‘raphbner. 1990; Althofl‘. 1991). acts oil-line
by compiling heuristic generalization rules from diagnostic cases. Those rules. which
describe partial shortcut rules. are given a statistically-determined certainty factor.

3.2. A Sample Application Domain : CNC Machine Centers

A CNC machine center is a production tool machine that gives some raw material a
desired form and precise measure through controlled relative movement; it has a
magazine of tools from where it can choose and seize one to work with on a piece of
material. Some of its operations on the material are drilling. milling. rubbing. tap
sharpening and cutting. sawing. etc. The basic components of a machine center are rack.
sliding carriage. guides. and drive or propulsion. Attached are other facilities for control.

.. regulation. changing. etc.. of tools and material. A large knowledge base for fault
diagnosis of a machine center has been developed by our research group15.

Examples of different configurations leading to functionally similar machines can be
drawn ranging from very high abstraction levels in the machine's structure, e.g.. using a
tool claw arm with finger elements instead of a claw arm with plier claw and rotation. to
very low levels. e.g.. using one of two different valves in a hydraulic or electrical element.
Figure 2 shows a sample machine part design plan. We show its model of structure and
behavior and a sample diagnostic contezd from our knowledge base.

— Figire 2 — Sample Design Plan of a Complex Machine Part —

13 For PATtem-Directed EXpert system
14 For GENerator of empirical Mourns RULEs
15 Some parts (e.g.. the tool changer. etc.) have been modeled. not the whole CNC machine. but

the modeled domain is complex enough for our purposes: knowledge bases from other
technical domains have also been developed. and the results of experiments with them
have given fruitful feedback during the development of our workbench
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Instance v2a27Y1-2 of class Valve2Selection is entered to the system using a graphic 
model editor. After modeling. the resulting description for the instance and its subparts 
looks like follows: 

ComplexPart Class tValve2Selection 
ports: t«lever mechanical in low) (currentIn ac in medium)
 

(currentOut ac in medium) (slidel mechanical out low)
 
(slide2 mechanical out low»
 

subparts: t«Switch+ slow) (MeasuringPoint m low)
 
(Valve vI low) (Valve v2 low)
 

connections: t«(self current In currentIn s) (s currentOut current In m)
 
(m currentOut currentIn vI) (m currentOut current In v2)
 
(vI currentOut currentIn self) (vI slide slidel self)
 
(v2 currentOut currentIn self) (v2 slide slide2 self»).
 

Valve2Selection Instance 'v2s27Yl-2 
location: 'toolChanger' 
subparts: t (s s27Kla 214) (m m317 214) (vI v27Yl 275) (v2 v27Y2 276»). 

PrimitivePart Class tSwitch+ 
ports: t((currentl dc inOut medium) (current2 dc inOut medium) 

(lever mechanical in low») 
behavior: t((lever unshifted) (currentl = X) -> (current2 = 0)
 

(lever shifted) (currentl = X) -> (current2 = X) )
 

(lever un shifted) (current2 = X) -> (currentl = 0»
 
(lever shifted) (current2 X) -> (currentl = XII)
 

failures: t«noContact «((currentl = X) -> (current2 = 0»)
 
«current2 = X) -> (current! = 0»») .
 

During simulation. the context graph is generated. Following is a sample context for 
Spindle. a part contaJnIng v2a27Y1-2 as one of its subparts: 

'.tSpindleStopNotReached 
precondition: 

(= SpindleStop SpindleStop SpindleStopNotReached) 
shortcutRules: 

(if (and (IsPreconditionOf SpindleStopNotReached) (= Valve Valve27YI Closed) ) 
then IOSstatusOUT32 logicl factor "total") 
(if (and (IsPreconditionOf SpindleStopNotReached) (= IOStatus IOStatusOUT32 1) 
then IOStatusINll12 logicl fator "total") 

orderingRules: 
(if (true) then Valve27Yl test) 
(if (= Valve27Yl closed) thenOilConductsOrientedSpindleStop test) 
(if (= Valve27Yl open) then IOStatusOUT32 test) 
(if (= IOStatus IOStatusOUT32 0) then IOStatusINll12 test) 
(if (= IOStatus IOStatusINll12 0) then VoltagePotentia1361362 test) 

3.2.1. CNC-Machln~DIagnosis 

A failure in the CNC-machine is reported by the CNC Input/Output Card . which sends a 
machine JaUure code. directly associated to machine parts normally on very high 
abstraction levels in the machine's structure. A diagnostic situation is initiated when a 
machine failure code is received from the CNC card. This code has the advantage of 
restricting the search for a diagnosis on a particular machine part and its subparts. Then. 
dUring diagnosis. the expert system enters a establish-and-reJme cycle of testing for 
symptoms and refining to more particular diagnostic contexts. 

Instance v2o21¥1~2 of class Vaivozsoioeeion is entered to the system using a graphic
model editor. After modeling. the resulting description for the instance and its subparts
looks like follows:

ComplexPart  Class #ValveZSelec t ion
port s :  # ( ( l ever  mechan ica l  in  low) ( current In  ac  in  med ium)

( currentOut  ac  in  medium) (slidel mechanical out  low)
(slidez mechanical out  l ow) )

subpar t s :  # ( (Swi tch+  s low) (MeasuringPoint m l ow)
(Va lve  v1  low)  (Va lve  v2 low) )

connections: i((self current In  current In  s )  ( s  currentOut  currentIn m)
(m currentOut  current In  vl) (m currentOut  current In  v2 )
(v l  currencOut  current In  se l f )  ( v l  slide s l ide l  s e l f )
(v2  currentOut  current In  self) (v2  s l ide  s l ideZ  se l f ) ) .

Valvezselection Ins tance  9v2327Y1-2
loca t ion:  ' too lChanger '
subpar t s :  # ( ( s  s27K1a  214)  (m m317 214) (v1  v27Yl 275) (v2  v27Y2  276)).

Pr imi t ivePar t  C las s  #Swi tch+
port s :  # ( ( current1  dc  inOut medium) (current2 dc inOut medium)

( l ever  mechanical in  low))
behav ior :  # ( ( l ever  = unsh i f t ed )  ( current l  = X) —> (currentZ  = 0) )

( l ever  sh i f t ed )  ( current l  = X )  —> (current2 = x) )
( l ever  = unsh i f t ed )  (currentz = X) —> (current l  = 0 ) )
( l ever  = sh i f t ed )  ( currentz  = X) ->  ( current l  = X)) )

fa i lures :  # ( (noContac t  ( ( ( current l  X) ->  ( current2  0 ) )
( ( currentz  X) ->  (currentl O))))).

During simulation. the context graph is generated. Following is a sample context for
spindle. a part containing vzezvn-z as one of its Subparts:

#SpindlestopuotReached
precond i t ion:

(=  SpindleStop SpindleStop SpindleStopNotReached)
shor tcutRules :

( i f  ( and  ( I sPrecond i t ionOf  SpindleStopNotReached)  (=  Valve Va lvez7¥1  Closed)  )
then IOSstatusOUT32 log i c l  f ac tor  " to ta1")

( i f  ( and  ( I sPrecond i t ionOf  Sp ind leStopNotReached)  (=  IOSta tus  IOSta tusOUT32  1 )  )
then IOSta tusINl l lZ  log i c l  f a tor  " to ta l" )

order ingRules :
( i f  ( t rue )  then  Va lve27¥1  t e s t )
( i f  (= ValveZ'IYl c losed)  thenOilConductsOrientedSpindleStop t e s t )
( i f  (=  Valve27Y1 open) then IOStatusOUT32 t e s t )
( i f  (=  IOSta tus  IOSta tusOUT32  O) then  IOSta tusIN1112  t e s t )
( i f  (=  IOStatus IOStatusINlllZ 0) then Vol tagePotent ia1361362  t e s t )

3.2.1. CNC-Machines Diagnosis

A failure in the CNC-machine is reported by the CNC Input/Output Card . which sends a
machine failure code. directly associated to machine parts normally on very high
abstraction levels in the machine's structure. A diagnostic situation is initiated when a
machine failure code is received from the CNC card. This code has the advantage of
restricting the search for a diagnosis on a particular machine part and its subparts. Then,
during diagnosis. the expert system enters a establish-and-refine cycle of testing for
symptoms and refining to more particular diagnostic contexts.



9 

4. KNOWLEDGE ADAPTATION 

The knowledge adaptation task Is seen as an incremental process in which diagnostic 
rules and cases from the old expert system are transformed into rules for the new system. 
A rule has in its left-hand side a diagnostic situation (an ordered set of symptom values) 
and in its right-hand side a hypothesis l6 . 

The transformation of rules leads to rules whose situations are plausible in the new 
machine 17 and whose hypotheses shall be proved by the new expert system. The main 
adaptation strategy in our approach builds an analogy of the situation of a rule from the 
old machine onto the new machine. The hypothesis for the new situation is obtained by 

simulating the new situation in the new expert system. 

The approach foresees the acquisition. extension. and refinement of adaptation 
strategies by exploiting the results of successful rule adaptation to improve later 
perfonnance. Knowledge adaptation is seen as a process of proposing new diagnostic rules 
and learning from their verification. A case memory for adaptation cases is currently 
being implemented in the context of this research. Adaptation rules (strategies) are stored 
associated to particular machine part classes and their faults. A memory architecture 
inspired in Kolodner's is being used as a model (Kolodner 1983a. 1983b. 1989). 

Besides the feedback from the human expert upon accepting or rejecting adapted rules. the 
. expert 

\ 
can also play the role of a tutor by entertng manually prepared adaptation cases. 

considered as positive examples of a particular adaptation s~tegy. In this case. the 
expert must provide the system with an indication of how the analogy that leads to the 
adaptation is originated. in the form of a causal explanation on the model of the 
machine. This advice can be used later as an alternative strategy to analogyrecognttlon If 
this is not poSsible on the machine's model level. A detailed description of the generation 
of causal explations of a rule is given later. 

In the next sections we analyze the' kinds of knowledge in our expert system. compel the 
use of the ternis case and rule. and describe the knowledge acquisition process. 

4.1. causal and Empirical Knowledge in our Expert System 

Causal or background knowledge describes the application domain (the machine and its 
diagnosis). whUe empirical knowledge describes experience acqUired dUring diagnosis or 
directly from the expert. Causal knowledge is acqUired directly from the design plans of 
the machine. This knowledge is stored initially by tMAKE in a static knowledge base 
containing the machine's model (knowledge about the particular domain) and the context 
graph (diagnostic knowledge in the particular domain). 

Empirical knowledge can be acqUired either directly from the domain expert. through 

16	 The use of the tenns rule and case Is made clear later in section 4.2. 
17	 The term plausfbatty 18 here used to mean that the situation may physically occur in the 

machine. or In other words. that the symptoms In the situation are not inconsistent with 
the machine's model 

4. KNOWLEDGE ADAPTATION

The knowledge adaptation task is seen as an incremental process in which diagnostic
rules and cases from the old expert system are transformed into rules for the new system.
A rule has in its len-hand side a diagnostic situation (an ordered set of symptom values)
and in its right-hand side a hypothesis16 .

The transformation of rules leads to rules whose situations are plausible in the new
machine 17 and whose hypotheses shall be proved by the new expert system. The main
adaptation strategy in our approach builds an analogy of the situation of a rule from the
old machine onto the new machine. The hypothesis for the new situation is obtained by
simulating the new situation in the new expert system.

The approach foresees the acquisition. extension. and refinement of adaptation
strategies by exploiting the results of  successful rule adaptation to improve later
performance. Knowledge adaptation is seen as a process of proposing new diagnostic rules
and learning from their verification. A case memory for adaptation cases is currently
being implemented in the context of this research. Adaptation rules (strategies) are stored
associated to particular machine part classes and their faults. A memory architecture
inspired in Kolodner‘s is being used as a model (Kolodner 1983a. 1983b. 1989].

Besides the feedback from the human expert upon accepting or relecting adapted rules. the
:. expert can also play the role of a tutor by entering manually prepared adaptation cases.

considered as positive examples of a particular adaptation strategy. In this case. the
expert must provide the system with an indication of how the analogy that leads to the
adaptation is originated. in the form of a causal explanation on the model of the
machine. This advice can be used later as an alternative strategy to analogy'recognition if
this is not possible on the machine's model level. A detailed description of the generation
of causal explations of a rule is given later.

In the next sections we analyze the‘kinds of knowledge in our expert system. compel the
use of the terms case and rule, and describe the knowledge acquisition process.

4 .1 .  Causal and Empirical Knowledge in our Expert System

' Causal or background knowledge describes the application domain [the machine and its
diagnosis). while empirical knowledge describes experience acquired during diagnosis or
directly from the expert. Causal knowledge is acquired directly from the design plans of
the machine. This knowledge is stored initially by MAKE in a static knowledge base
containing the machine's model [knowledge about the particular domain) and the context
graph (diagnostic knowledge in the particular domain).

Empirical knowledge can be acquired either directly from the domain expert. through

16 Theuseoftheterms rule andcaseismadeclearlaterinsection 4.2.
17 The term plausibility is here used to mean that the situation may physically occur in the

machine. or in other words. that the symptoms in the situation are not inconsistent with
the machine's model
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actual experience dUring diagnosis (MOLTKE and PATDEX), or by automatic generation 
starting from diagnostic cases (GENRULE). Four kinds of empirical knowledge are 
identified: 

Diagnostk: cases: successful diagnoses, either actual, or known to the expert and 
given directly to the system. They are represented as follows: 

SvS2,J ""Sn	 ~ fJ)/i. 
where	 St (t= I,... ,11) are known symptom values, and 

fJ)/i. is a diagnostic hypothesis (the name of a certain context). 

Test selection cases: selection of tests, given a particular diagnostic situation, 
leading to gathering useful symptom values dUring actual diagnosis. They are 
represented as follows: 

SvSz"",Sn ~ qTi 

where	 St (t= I,... ,11) are known symptom values, and 
'J1i is a test hypothesis (the name of a certain test). 

Ordertrig rules: empirical determination of the order in which tests must be 
executed in order to refine the diagnostic hypothesis for a given context. They 
are represented the same as test selection cases with the difference that test 
selection cases are stored in a case memory and ordertng rules in the particular 
expert-given order within a diagnostic context. 

Shortcut rules: empirical determination of one or more (still unknown) symptom 
values given a particular diagnostic situation. This rules can be either directly 
given by the expert, or generated off-line by GENRULE; and are represented as 
follows 1B: 

Sl,SZ, ... ,S", ~ S",+vSn+z, ""Sm 
where	 St (t= 1, ,11) are known symptom values, and 

S{ ({=n+l, ,m) are (still unknown) symptom values. 

4.2. cases and Rules: What Shou1cl Be Adapted? 

IUs important to note the difference between cases and rules19. Cases are examples of real 
diagnostic situations and their solution. They contain a problem description (the 
situation), a solution (the hypothesis), and a justification for the solution, which should 
contain an explanation of how the solution was found, in terms of the situation. 

In MOLTKE, the justification for the solution of a diagnostic or test selection case is the 
temporal order (sequence) in which symptom values were gathered through test 
execution. A case's situation S1l Sz, ... , S", is actually given in this order: symptom Stwas 
gathered before symptom St+l. A more grounded justification is still missing in MOLTKE. 

Thus, for knowledge adaptation. we extend a case's justification to a more complete 
explanation, by abstracting the symptom values in the situation, in their order, on the 

18 Shortcut rules are also generated by{MAKE. But these rules are justified on the machine's 
model (they are called total); they do not reflect empbical knowledge 

19 Amore extense discussion on cases and rules can be found in (Althoffand We~, 1991b) 
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actual experience during diagnosis (MOLTKE and PATDEx). or by automatic generation
starting from diagnostic cases (GENRULE). Four kinds of empirical knowledge are
identified:

Diagnostic cases : successful diagnoses. either actual. or known to the expert and
given directly to the system. They are represented as follows:

51,52, ”-151: —) QR
where SQ (K= 1,. . . , n) are known symptom values. and

% is a diagnostic hypothesis [the name of a certain context).

Test selection oases : selection of tests. given a particular diagnostic situation.
leading to gathering useful symptom values during actual diagnosis. They are
represented as follows:

51152!”-15n ——> ‘Ifi
where 5g (E= 1,. . .  , n) are known symptom values. and

‘Ifi is a test hypothesis [the name of a certain test).

Ordering rules : empirical determination of the order in which tests must be
executed in order to refine the diagnostic hypothesis for a given context. They

., are represented the same as test selection cases with the difi‘erence that test
selection cases are stored in a case memory and ordering rules in the particular
expert-given order within a diagnostic context.

Shortcut rules : empirical determination of one or  more (still unknown) symptom
values given a particular diagnostic situation. This rules can be either directly
given by the expert. or generated oil-line by GENRULE.‘ 'and are represented as
follows”:

511 52! - ‚ . ,  n _) Stu—1151112! ...‚Sm

where 5g [fc= 1,. . .  , n) are known symptom values. and
St ([  = n+1‚.. . , m) are (still unknown) symptom values.

4.2. Cases and Rules : What Should Be Adapted?
It'is important to note the difi‘erence between cases and rules”. Cases are examples of real
diagnostic situations and their solution. They contain a problem description [the
situation). a solution [the hypothesis). and a justification for the solution. which should
contain an explanation of how the solution was found. in terms of the situation.

In Mamma. the justification for the solution of a diagnostic or test selection case is the
temporal order (sequence) in which symptom values were gathered through test
execution. A case's situation 51, 52, . . . ,  S,. is actually given in this order: symptom Sgwas
gathered before symptom 551. A more grounded justification is still missing in MOLTKE.
Thus. for knowledge adaptation. we extend a case's justification to a more complete
explanation. by abstracting the symptom values in the situation. in their order. on the

18 Shortcut rules are also generated byMAKE. But these rules are justified on the machine's
model [they are called total); they do not reflect empiriml knowledge

19 A more extensc discussion on oases and rules can be found in (Althofl' and Weß. 1991b)
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machine's model. This Is done through a simulation process In which parts of the 
machine involved in the situation and their causal (structural and behavioral) 
relationships are Identlfted. 

Rules. on the other side. differ from cases in that they do not have a justification. Their 
Interpretation Is unique. whlle a case's Interpretation depends on the purpose. the 
s1m1lartty with other cases. and so on. OrdeI1ng and shortcut rules in MOLTKE have no 
justification. or In other words. the justlflcation is indeed emp1r1cal. Ordering rules ar-e 
entered into the knowledge base (Into particular contexts) by the knowledge engtneer. 
traduced from flow diagrams of test execution order prepared by the human expert. The 
generation of a model-based Justlftcation of ordeI1ng rules. and furthermore. of their 
order. Is. for the moment. still not considered. although this wt1l Imply a great reduction 
in knowledge acquisition effort. 

We have so far tested the approach only with diagnostic and test selection cases. What 
makes ordering rules more complex Is the fact that their JusUffcation must not only take 
into account each of a context's rules. but also identiCy1ng equivalent contexts in the new 
machine. as well as constdeI1ng their sequence or order. 

Finally. emp1r1cal shortcut rules' justification rests on the diagnostic cases from which 
they were abstracted by GENRULE. We st1ll do not consider shortcut rule adaptation for 
one reason: after adapting diagnostic and test selection cases. GENRULE can be applied on 

. the new expert system to generate new shortcut rules. It would be however Interesting to 
approach their adaptation and compare the results with GENRULE's. 

In the rest of the discussion we refer to diagnostic and test selection cases using the terms 
rules and cases without distinction. Following. we describe KALES20. which is how we 
have named our knowledge adaptation approach. Along the discussion we describe the 
Intervention of the experts. In chapter 5 we discuss the means of acquisition and 
refinement of knowledge to Improve the adaptation strategy. Due to space ltmftations. 
representation and Implementation details (particularly algorithms) are left out except 
where required for the discussion. 

4.3. The Knowledge Adaptation Task 

Knowledge adaptation is a source of knowledge acquisition for the new expert system. It is 

based In the main assumption that knowledge from the expert system for an old machine 
can be reused for diagnosis on a new machine if It Is possible to find a correspondnce 
between both machines. 

We assume that both machineS are functionally sfmflar. in the sense that they both seIVe 
a s1m1lar purpose. e.g.• drUl1ng. sawing. etc. But they are structurally different. that is. the 
Internal structure. connections among subparts. and internal behavtor of the new 
machine can be seen as a modification of the old machine. Finally. we assume that both 
machines' subparts are taken from a common library of components. 

20 For Knowledge Adaptation in Learning Expert Systems 
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machine's model. This is done through a simulation process in which parts of the
machine involved in the situation and their causal (structural and behavioral)
relationships are identified.

Rules. on the other side. differ from cases in that they do not have a justification. Their
interpretation is unique. while a cas‘e's interpretation depends on the purpose. the
similarity with other cases. and so on. Ordering and shortcut rules in MOLTKE have no
justification. or in other words. the justification is indeed empirical. Ordering rules are
entered into the knowledge base (into particular contexts] by the knowledge engineer.
traduced from flow diagrams of test execution order prepared by the human expert. The
generation of a model-based justification of ordering rules. and furthermore. of their
order. is. for the moment. still not considered. although this will imply a great reduction
in knowledge acquisition effort.

We have so far tested the approach only with diagnostic and test selection cases. What
makes ordering rules more complex is the fact that their justification must not only take
into account each of a context's rules. but also identifying equivalent contexts in the new
machine. as well as considering their sequence or order.

Finally. empirical shortcut rules’ justification rests on the diagnostic cases from which
they were abstracted by GENRULE. We still do not consider shortcut rule adaptation for
one reason: afier adapting diagnostic and test selection cases. GENRULE can be applied on

_ the new expert system to generate new shortcut rules. It would be however interesting to
approach their adaptation and compare the results with GENRULE's.

In the rest of the discussion we refer to diagnostic and test selection cases using the terms
rules and cases without distinction. Following. we describe KALES20. which is how we
have named our knowledge adaptation approach. Along the discussion we describe the
intervention of  the experts. In chapter 5 we discuss the means of acquisition and
refinement of knowledge to improve the adaptation strategy. Due to space limitations.
representation and implementation details (particularly algorithms] are lefi out except
where required for the discussion.

4.3. The Knowledge Adaptation Task

Knowledge adaptation is a source of knowledge acquisition for the new expert system. It is
based in the main assumption that knowledge from the expert system for an old machine
can be reused for diagnosis on a new machine if it is possible to find a correspondnce
between both machines.

We assume that both machines are functionally similar. in the sense that they both serve
a similar purpose. e.g..  drilling. sawing. etc. But they are structurally difi‘erent. that is. the
internal structure. connections among subparts. and internal behavior of the new
machine can be seen as a modification of the old machine. Finally. we assume that both
machines' subparts are taken from a common library of components.

20 For Knowledge Adaptation in Learning Expert Systems
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Knowledge adaptation is Incremental. First. the process is normally carned out off-line. 
although on-line. interactive sessions of adapting rules for specific faults can be set with 
the experts. Second. a step In learning of knowledge adaptation strategies is done from 
one rule rather than from a set of them. although an incremental definition from sets of 
rules is possible. Figure 4 below gives a synopsis of the lmowledge adaptation task. 

1Part I Similarity .1 Pip~ I 
p Metric '1J 

t Verification Retrieval t 
l~wcaseCl ~
 

MOdel.Bas~ 
Simulation Explanation Tt 

,--S-t-·tuQ.-t-io-n,-....,I ..Analoglcal_Ir--'4p--ea-na-t-iO-n,-'" 
. Transfer . 

- Figure 4 - The KnoWledge Adaptation Task ­

4.3.1. nae FIrst Step: Identl6catloo ofKnowledge for Adaptation 

Every time MAKE generates the diagnostic contexts for parts of the new machine. KALES 

tries to adapt empirical lmowledge for similar machine parts from the old machine. 
Thus. the first subtask of KALES is identifying those machine parts. This follows from a 
similarity-based approach. Recall that the functionality of a machine part P is defined as 
the subset of behavioral rules actually used in the particular location of P in the machine. 
Two machine parts PI and Pz areftmctiDnaUy stmUar if they· 

(1) belong to the same parts class. 
(H) have the same number of input and output ports. and
 
(Ui)
 

CIZ 
> E ,where 

cIZ + ?6.z 
C12 is the number of corresponding and 902 the number of noncorresponding 
rules in the functionality description ofparts PI and Pz. and E is some threshold 
value in (-1.1) (most likely close to 1). that can be interpreted as the minJmum 
(empirically) acceptable similartty. 

This is a still simple similarity metric. It can be extended. for instance. by weighting the 
relevance of rules in the functionality descriptions of both parts. We do not deepen the 
discussion on stmilary metrics here. we just propose a metric that can be later improved. 
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Knowledge adaptation is incremental. First. the process is normally carried out oil-line.
although on-line, interactive sessions of  adapting rules for specific faults can be set with
the experts. Second. a step in learning of knowledge adaptation strategies is done from
one rule rather than from a set of them. although an incremental definition from sets of
rules is possible. Figure 4 below gives a synopsis oi' the knowledge adaptation task.

Tar et: N w Ma hi So :Ol  Ma hin

Tart ___SImIlarlty . fart
9 Metric 1) a”

* Verl i lcat lon Reir leval  +

Nm) Case C Case C '
Model-Basar

. . Analog lca l  .Situation <- Transfer _ Bahamian

-— Figure 4 — The Knowledge Adaptation Task —

4.3.1. The First Step: Identification “We forAdnptatlon

Every time MAKE generates the diagnostic contexts for parts of the new machine. KALES
tries to adapt empirical knowledge for similar machine parts from the old machine.
Thus. the first subtask of KALES is identifying those machine parts. This follows fmm a
similarity-based approach. Recall that the functionality of a machine part 5? is defined as
the subset of behavioral rules actually used in the particular location of ‘P in the machine.
Two machine parts {P, and ?; are fimcttonally similar if they

(i) belong to the same parts class.
{iii have the same number of input and output ports. and
i l l)

C12 — N12
1) (1 ’1 ‚1 ’2 ) :=  ————— >e  ‚where

C12 + N12
Cm is the number of corresponding and M2 the number of noncorresponding
rules in the functionality description of parts 1’; and 1’2, and e is some threshold
value in [-1.1] (most likely close to l ) .  that can be interpreted as the minimum
(empirically) acceptable similarity.

This is a still simple similarity metric. It can be extended. for instance. by weighting the
relevance of rules in the functionality descriptions of both parts. We do not deepen the
discussion on similary metrics here. we just propose a metric that can be later improved.
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KALES searches for functionally s1m1lar parts of the old machine. The search is 
shortened by restriction (1) in our definition. This avoids the exponential nature of the 
search in the machine's structure hierarchy. With the list of retrieved old-machine parts. 
KALES accesses the case memory in search of cases in which the fallure code or the 
diagnostic hypothesiS refers to the parts in the list. The retrieved set of cases is called the 
adaptation candidates set. KA1ES tries to adapt each case in the set for the new machine. 

Note that restricting to the machine failure code or the hypothesis is a (domain~ 

dependent) heuristic. The idea behind this is that we try to retrieve from the case memory 
empirical knowledge relevant for diagnosis on the parts for which tMAKE Just generated 
the diagnostic contexts. The experience implicit in a case is described by the symptoms 
that lead to a fault's recognition. The criterion for case retrieval cannot be the sole 
appearance of a particular symptom in the case's situation. This would lead to retrieving 
cases that express the relevance of a machine part for the diagnosis of some other. rather 
that for the diagnosis of that part itself. 

4.3.2. The Second Step: Elaboration ofan AdaptaUon Candidate 

Elaborating a candidate means preparing a candidate case for its actual adaptation in~o 

the new expert system. This involves mainly producing a justification for the case and 
analogically transferring the justification to the new machine. 

4.3.2,1. Just~ an Adaptation Candidate 

Justifying a case means producing an explanation of its situation. that is. of how the 
diagnosed fault was detected and why it occurred. Determining how a' fault is detected 
means following the diagnostic situation in the temporal order of symtom gathering and 
producing in doing this a causal explanation. Detecting why a fault occurred is more 
complex and we do not intend to prOvide a conclusive answer to this point now. The cause 
of a fault uught need of the extension of our machine's model with dynamic and 
geometrical (design) features. which. unfortunately. are sUll not being modeled. 

On the representational level. the explanation of the rule's situation is described by a set 
of relations between machine parts. The relations can be structural (e.g.• part Pi is part of 
part P~ or part Pi is connected to part P~.JWlctional(part Pi's output is part P(s input 
through port ~. or empfrlt:a1 (denoting that no causal relation-in a strict sense- could 

be found and that it is the expert who must decide whether a causal relation exists. or is 
relevant. or none). We record all relations found in the explanation. 

On the implementational level. the explanation is a causal graph whose nodes are 
machine parts and whose links are the structural. functional. or empirical relations 
identffted. Identifying the parts involved in the explanation is simple. Each symptom in 
the situation refers to a machine part (a state) or part's port (an input or output value). For 
each part referenced by a symptom in the situation. a node is created in the graph. 

The creation of the graph follows the order of symptoms in the case's situation. That is. 
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KALES searches for functionally similar parts of the old machine. The search is
shortened by restriction (i) in our definition. This avoids the exponential nature of the
search in the machine's structure hierarchy. With the list of retrieved old—machine parts.
KALES accesses the case memory in search of cases in which the failure code or the
diagnostic hypothesis refers to the parts in the list. The retrieved set of cases is called the
adaptation candidates set. KALES tries to adapt each case in the set for the new machine.

Note that restricting to the machine failure code or the hypothesis is a (domain;
dependent) heuristic. The idea behind this is that we try to retrieve from the case memory
empirical knowledge relevant for diagnosis on the parts for which MAKE just generated
the diagnostic contexts. The experience implicit in a case is described by the symptoms
that lead to .a  fault's recognition. The criterion for case retrieval cannot be  the sole
appearance of a particular symptom in the case's situation. This would lead to retrieving
cases that express the relevance of a machine part for the diagnosis of some other. rather
that for the diagnosis of that part itself.

4.3.2. 'rheSeeondStep: EhborationofanAdaptationCandidate

Elaborating a candidate means preparing a candidate case for its actual adaptation into
the new expert system. This involves mainly producing a justification for the case and
analogically transferring the justification to the new machine.

W
Justifying a case means producing an explanation of its situation, that is. of how the
diagnosed fault was detected and why it occurred. Determining how a‘fault is detected
means following the diagnostic situation in the temporal order of symtom gathering and
producing in doing this a causal explanation. Detecting why a fault occurred is more
complex and we do not intend to provide a conclusive answer to this point now. The cause
of a fault might need of the extension of our machine's model with dynamic and
geometrical (design) features. which. unfortunately. are still not being modeled.

On the representational level. the explanation of the rule's situation is described by a set
of relations between machine parts. The relations can be structural (e.g.. part 1’: is part of
part {Pg or part 1’,- is connected to part TQ. functional [part '.Pis output is part !Pg's input
through port ik]. or empirical (denoting that no causal relation—in a strict sense— could
be found and that it is the expert who must decide whether a causal relation eidsts, or is
relevant. or none). We record all relations found in the explanation.

On the implementational level. the explanation is a causal graph Whose nodes are
machine parts and whose links are the structural, functional. or empirical relations
identified. Identifying the parts involved in the explanation is simple. Each symptom in
the situation refers to a machine part (a state) or part's port (an input or output value). For

‘ each part referenced by a symptom in the situation. a node is created in the graph.

The creation of the graph follows the order of symptoms in the case's situation. That is.
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the graph is first created for the first symptom and the transition to the second one. This 
is a causal explanation ofwhy a test for the second symptom was chosen. The answer may 
be. for example, that Pz is a subpart of PI, or that a functional relation between PI and Pzis 

identified in the faulty behavior description of one of those parts, and so on. 

The identification of relations between parts in each step of this process follows from a 
simulation of the (partial) situation on the machiile's model and is gUided by the context 
graph. Let SI,S2I ... ,S,. be the diagnostic situation, and P{the machine part referenced by, 
symptom S~ For each pair of symptoms Sk S{+1 in the situation, all possible relations 
between Ptand P{+l are searched, and a Unk Is created between nodes p{and P{+l for each 
relation found. The link's type is that of the relation. For functional relations, the link is 
additionally marked with the output value from Pk. 

Example: 

tMAKE generated the diagnostic contexts for machine part Ne"TiqhtenReleue. Machine 
part OldTiqhtenRele... was found to be similar to the fanner. This is a part of 
OldToolCh.nqer. Its class is TiqhtenRele••eDevice. 

Consider the following diagnostic case for OldUqhtenRele...: 

Name: fExamplel 
Situation: '(and (= FailureCode Code 159) 

(= Valve Valve5Yl closed) 
(= Valve Valve5Y2 open) 
(= OilConducts OilConductTightenRelease tight) 
(= Gear AbsorbtionGear clean) 
(= 10Status 1oStatus1N32 logic-O) ) 

;­

Diagnosis: EndController5S2atI59Defectuous 

The causal graph for the situation depicted in this case mJght look like in figure 4. Once 
the graph is constructed, KALES proceeds to define an analogical map from the rule's 
situation to the new machine. 

4.3.2.2. An3lO2JCal MapPIDe of the Candidate's Diaenostic Situation 

The analogical map of the case's explanation (the causaIgraph) should lead to producing a 
new rule (case) for the new system. KALES tries to construct on the new machine a similar 
explanation graph to that generated in the preceding step. 

Up to this point, the knowledge adaptation process has been defined independently of the 
application domain. The same procedure could be applied in other domains provided that 
they can be modeled and simulated by tMAKE, e.g., other kinds of technical devices. 
However, completing the analogical process. that is, constructing the situation map, is 
domain-dependent. To complete the analogical bridge from the old to the new machine we 
need to search for a graph similar to the explanation graph generated in the preceding 
step. that can lead to an analogous diagnostic situation. 

Deep knowledge from the domain is needed to search for the analogous explanation. We 
have seen how the machine failure code from the CNC helps constraining the search 
space to those machine parts referenced by the code. We assume that at least one symptom 
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the graph is first created for the first symptom and the transition to the second one. This
is a causal explanation of why a test for the second symptom was chosen. The answer may
be. for example. that T2 is a subpart of T1. or that a functional relation between T1 and 1’2 is
identified in the faulty behavior description of one of those parts. and so on.

The identification of  relations between parts in each step of this process follows from a
simulation of the (partial) situation on the machine's model and is guided by the context
graph. Let 51,52. . . . ,  S„ be the diagnostic situation. and Tgthe machine part referenced by
symptom Si. For each pair of symptoms Sri, 55.1 in the situation. all possible relations
between {Pgand TK“ are searched. and a link is created between nodes Tkand fh! for each
relation found. The link's type is that of the relation. For functional relations. the link is
additionally marked with the output value from ?g

Emule;

MAKE generated the diagnostic contexts for machine part Nowrightennaloane. Machine
part Oldr ightonko loa lo  was found to be similar to the former. This is a part of
Old!oolChangor. Its class is I ightonnoloa-obovico.  '

Consider the following diagnostic case for Oldrightonnoloaooi
Name:  #Example l
Si tua t ion:  ' (and  (= Fai lureCode Code 159)

( -  Va lve  Va lveSXl  c lo sed)
(=  Va lve  Va lve5Y2  open)
(=  Oi lConduct s  o i lConductTightenRe lease  t i gh t )
(=  Gear  Absorbt ionGear  c l ean)
(=  IoSta tus  IoSta tusIN32  log i c -O)  )

Diagnos i s :  EndContro l l erSSZat159Defec tuous

The causal graph for the situation depicted in this case might look like in figure 4 .  Once
the graph is constructed. KALES proceeds to define an analogical map from the rule's
situation to the new machine.

The analogical map of the case's explanation [the causal, graph) should lead to producing a
new rule (case) for the new system. KALES tries to construct on the new machine a similar
explanation graph to that generated in the preceding step.

Up to this point. the knowledge adaptation process has been defined independently of the
application domain. The same procedure could be applied in other domains provided that
they can be modeled and sirnuiated by (MAKE. e.g.. other kinds of technical devices.
However. completing the analogical process. that is, constructing the situation map. is
domain-dependent. To complete the analogical bridge from the old to the new machine we
need to search for a graph similar to the explanation graph generated in the preceding
step. that can lead to an analogous diagnostic situation.

Deep knowledge from the domain is needed to search for the analogous explanation. We
have seen how the machine failure code from the CNC helps constraining the search
space to those machine parts referenced by the code. We assume that at least one symptom
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in a diagnostic situation contains the failure code receIVed from the CNC. The service 
technician prepares an association table of machine failure codes of both machines. For 
instance. If code I59 In the old machine means ToolChanqer. then that code Is 
associated with. e.g., code IllS corresponding to the tool changer in the new machine. 

It is then possible to focus the search for the analogous situation by starting with the first 
symptom of the new situation being the corresponding machine failure code and Its 
value. The procedure for completing the new situation Is an establlsh-and-reflne 
searching cyCle in which the old rule's situation Is followed step by step and for each step 
a new symptom for the new situation Is detennined. 

This determination Is gUided by the links In the explanation graph. For each symptom 
processed. the algOrithm determines in the new machine's model a corresponding 
symptom. Finally. a corresponding diagnostic hypothesis must be detennlned. 

1-------t~~isPartcn 

functional 
~ isConnectedTo 

- Figure 4 - A Possible Explanation Graph for an Adaptation Candidate ­

4.3.3. The ~ Step: IDcorporatlGo ofthe Ne_Cue ID the NewExpert System 

To complete the generation of the new case. a diagnostic hypothesis must be searched for 
the produced situation. Furthermore. the hypothesis must then be tested before the case 
can be accepted and Incorporated In the new expert system. 

To find an hypothesis for the situation, this Is simulated through the context graph of the 
new expert system, by Simply letting the expert system search for an appropriate context. 
This context's name Is the new case's solution. 

A failure to find an appropriate context may lead to reporting the failure to the service 
technician. who can either correct the situation. determine the correct context, or reject 
the situation. A correction of the situation causes KALES to redraw the preceding step's 
reasoning. by mod1fy1ng the explanation graph consequently. 

The consistent Incorporation of the new case In the new system's case memoxy ·rests on 
MOLTKE's Knowledge Base Maintenance and Consistency Checking component (Maurer. 
1991). Maurer's component allows the specification of knowledge dependencies on the 
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in a diagnostic situation contains the failure code received from the CNC. The service
technician prepares an associationtable of machine failure codes of both machines. For
instance. if code 159 in the old machine means TooJLChangor. then that code is
associated with. e.g.,  code 195 corresponding to the tool changer in the new machine.

It is then possible to focus the search for the analogous situation by starting with the first
symptom of the new situation being the corresponding machine failure code and its
value. The procedure for completing the new situation is an establish-and-refine '
searching cycle in which the old rule's situation is followed step by step and for each step
a new symptom for the new situation is determined.

This determination is guided by the links in the explanation graph. For each symptom
processed. the algorithm determines in the new machine's model a corresponding
symptom. Finally. a corresponding diagnostic hypothesis must be determined.

tunctional
\ isConnectedTo

— Figure 4 — A Possible Explanation Graph for an Adaptation Candidate -—

4.3.3. mmsup:  IncorporationoftheNewCaseintheNewExpeItSystem

To complete the generation of the new case. a diagnostic hypothesis must be searched for
the produced situation. Furthermore. the hypothesis must then be tested before the case
can be accepted and incorporated in the new expert system.

To find an hypothesis for the situation. this is simulated through the context graph of the
new expert system. by simply letting the expert system search for an appropriate context.
This context's name is the new case's Solution.

A failure to find an appropriate context may lead to reporting the failure to the service
technician. who can either correct the situation. determine the correct context. or reject
the situation. A correction of the situation causes KALES to redraw the preceding step's
reasoning. by modifying the explanation graph consequently.

The consistent incorporation of the new case in the new system's case memory rests on
MOLTKE's Knowledge Base Maintenance and Consistency Checking component (Maurer.
1991).  Maurer's component allows the specification of knowledge dependencies on the
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definitional level. that is. an object depends o~ another if its creation. modification. or 
removal depends on the existence of other objects in the lmowledge base. 

For knowledge adaptation. dependencies are defined on a different level. namely. on the 
Just(ftcation of knowledge for its existence. The links on this level. called Justification 

links. represent dependencies on a conceptual level. A diagnostic case acquired through 
adaptation has a justification link poiting to the explanation generated by KALES. The 
idea behind justification links is to give KALES a means of tracing the knowledge base to. 
the knowledge sources of adapted rules. Thus. knowledge is naturally integrated in a 
dependency network in which consistency is guaranteed in a mS-alike fashion21 . 

5. STRATEGY AcQUISmON 

An adaptation case is defined as the procedure through which an old expert system's rule 
is adapted for the new expert system. It is represented by a triple 

(PI ~ ~). where 

Pis a pair of parts {P.oUP.new~ P.oUis an old machine's part and P.newa new machine's 
part: ~is a pair of rules ('.1{,oftf, '.1{,new~ 1{.&is an old expert system's rule and 1{.newa new 
expert system's rule. and ;<l is the analogy drawn between 1(..&and 1{.new. 

During the process of drawing ~ paths in the context graph are derived. This means. that 
for each symptom in 1{,oU£. a symptom from the new machine is identified and added to 
the situation in 1{,new. This becomes a sequence of symptom deteml1nations. that can be 
traced on the context graph for the new machine. 

KALES abstracts. from a set of adaptation cases relating the same pair of parts P.oU and 
P.new. and for the same pair of diagnostic hypotheses in '.1{,oU and 1(.ruw. an adaptation 

strategy. and associates it to the corresponding diagnostic context. 

Adaptation strategies can be compared to shortcut rules in MOLTKE. An empirical 
shortcut rule detennines. with some certainty. some symptom value(s) given a set of 
known symptoms. An adaptation strategy determines some symptom for the new 
situation (dUring analogical transformation) given a set of already determined 
symptoms. The difference rests on the nature and utility of the determination. Symptom 
value determination by shortcut rules shortens (thereby improving) the diagnostic 
process. Determinations reflect the relevance of a certain symptom for detecting a given 
fault. Symptom detenntnation by adaptation strategies is used to shorten the analogical 
transfonnation process. Determtnations refleCt here the relevance of a certain symptom 
for building an analogy with another diagnostic situation. An adaptation strategy is a 
rule that determines the next relevant symptom to include in a situation22. 

21 A deeper discussion on the relation between (A)TMS and the knowledge base maintenance 
component 10 MOLTKE can be found 10 (Maurer. 1991) 

22 See (Davies and Russel. 1987) for a fonnal discussion on determlnatlons. and (Dutta. 1988) 
for an extension of Davtes and Russel's approach 
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definitional level. that is, an object depends on another if its creation. modification. or
removal depends on the existence of other objects in the knowledge base.

For knowledge adaptation. dependencies are defined on a different level, namely. on the
Justification of knowledge for its existence. The links on this level. called justification
links. represent dependencies on a conceptual level. A diagnostic case acquired through
adaptation has a justification link poiting to the explanation generated by KALES. The
idea behind justification links is to give KALES a means of tracing the knowledge base to
the knowledge sources of adapted rules. Thus. knowledge is naturally integrated in a
dependency network in which consistency is guaranteed in a TMS-alike fashion“.

5. STRATEGY ACQUISITION
An adaptation case is defined as the procedure through which an old expert system's rule
is adapted for the new expert system. It is represented by a triple

(EP, R, fl). where

?is a pair of parts (Thai, Thaw). moldis an old machine's part and T.;uwa new machine's
part: als a pair of rules (2,0% Knew). Ro“ is an old expert system's rule and !(,nzw a new
expert system's rule. and fl is the analogy drawn between xoüfand knew.

During the process of drawing 2. paths in the contact graph are derived. This means. that
for each symptom in Rabi a symptom from the new machine is identified and added to
the situation in Raum This becomes a sequence of symptom determinations. that can be
traced on the context graph for the new machine.

KALES abstracts. from a set of adaptation cases relating the same pair of parts 11011! and
mum. and for the same pair of diagnostic hypotheses in Rafa! and knew. an adaptation
strategy. and associates it to the corresponding diagnostic context.

Adaptation strategies can be  compared to  shortcut rules in MOLTKE. An empirical
shortcut rule determines. with some certainty. some symptom valuels) given a set of
known symptoms. An adaptation strategy determines some symptom for the new
situation (during analogical transformation) given a set of already determined
symptoms. The difl'erence rests on the nature and utility of the determination. Symptom
value determination by shortcut rules shortens (thereby improving) the diagnostic
process. Determinations reflect the relevance of a certain symptom for detecting a given
fault. Symptom determination by adaptation strategies is used to shorten the analogical '
transformation process. Determinations refle'ct here the relevance of a certain symptom
for building an analogy with another diagnostic situation. An adaptation strategy is a
rule that determines the next relevant symptom to include in a situation”.

21  A deeper discussion on the relation between (A)TMS and the knowledge base maintenance
component in Momma can be found in (Mamet. 1991)

22 See (Davies and Russel. 1987] for a formal discussion on determinations. and (Dutta. 1988)
for an extension of Davies and Russel's approach
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6. DISCUSSION 

6.1. causation. Functl.cmalIty. &Dd Ezp1aDatlon 

(Shoham, 1988) points out a very Important property of causation, namely, its context­
sensitiveness. The context in which a cause-effect relation occurs is Important fot 
reasoning about the differences and similarities in behavtor between two structurally 
different, functionaly stmilar mechanisms. Our knowledge adaptation approach allows 
for expressing dtfferences in structure and behavtor between two machines through an 
analogical transfer of dJagnostic knowledge guided by background (causal) knowledge. 

However, we must restrict our view of causation to a static analysis. Our formalism still 
does not allow for dynamical and geometrical modelltng of the domain. The analysis of a 
diagnosis is thus reduced to an isolated sequence of test gathering and contex: refinement 
steps. We analyze causation in the structural and behavtoral dtfferences between two 
machines for isolated machine parts. We traduce dependency associations between 
machine parts features into causal relationships23. Causal relations in KALES's 
explanation can be seen as feature correlations of the parts involved in an adaptation 
case. 

Using similarity in functionality is, from our view, an appropriate shortcut for the 
retrieval of adaptation candidates. In the next future we plan the creation of a deep 
classification of machine parts. fMAKE classifies parts by the eXpert-given class name 
(unfortunatelly, still a very shallow schema) and by its functionality (a part's context 
subgraph stored with functionality as the differentiating key). We wul' extend this 
classification in a deeper structure from which it can be possible to assign knowledge 
adaptation strategies (seeing this as generalization of the analoglcal mapping 
constructed by KALES) to a class or to a class's instance. 

6.2. Analogy &Dd C8se-Basecl Reasoning for ImproviDg Adaptation 

The analogies drawn by KALES are indeed identification of ccrrespondences on three 
levels. First, on the machine's structure and behavior: parts retrieved for prodUCing an 
analogy satisfy some (functional) similarity criteria. Second, on the context graph of 
both expert systems: an analogous case can be generated only if the analogous situation 
can be simulated on the context graph for the new machine. Third, on empirical 
knowledge: the analogy describes how a fault in the new machine can be detected, based 
on the proceeding on a similar device. The first two levels support (ex:plafu) the latter. 

Very inspiring work has been that of (CarboneU. 1986) and (Hanson, 1990). Our approach 
uses a kind of derivational analogy through the transfer of decision sequences (test 
selection) and their Justifications (on the causal graph) to build a new diagnostic 

23	 See, e.g., (Geiger, Paz, and Pearl, 1990) for a discussion on the interpretation of 
dependencies as causal relationships 
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6. DISCUSSION

6.1. Causation. Functionality. and Explanation

(Shoham. 1988) points out a very important property of causation. namely. its context-
sensitiveness. The context in which a cause-effect relation occurs is important for
reasoning about the differences and similarities in behavior between two structurally
different. functionaly similar mechanisms. Our knowledge adaptation approach allows
for expressing differences in structure and behavior between two machines through an
analogical transfer of diagnostic knowledge guided by background (causal) knowledge.

However. we must restrict our view of causation to a static analysis. Our formalism still
does not allow for dynamical and geometrical modelling of the domain. The analysis of a
diagnosis is thus reduced to an isolated sequence of test gathering and contex refinement
steps. We analyze causation in the structural and behavioral differences between two
machines for isolated machine parts. We traduce dependency associations between
machine parts features into causal relationships”. Causal relations in KALES‘s
explanation can be  seen as feature correlations of the parts involved in an adaptation
case.

Using similarity in functionality is. from our view. an appropriate shortcut for the
retrieval of adaptation candidates. In the next future we plan the creation of a deep
classification of machine parts. MAKE classifies parts by the expert-given class name
(unfortunatelly. still a very shallow schema) and by its functionality (a part's context
subgraph stored with functionality as the differentiating key). We will- extend this
classification in a deeper structure from which it can be possible to assign knowledge
adaptation strategies (seeing this as generalization of the analogical mapping
constructedbyKALES)toaclassortoaclass'smstame.

6.2. Analogy and Case-Based Reasoning for Improving Adaptation
The analogies drawn by KALES are indeed identification of correspondences on three
levels. First. on the machine's structure and behavior: parts retrieved for producing an
analog satisfy some (functional) similarity criteria. Second. on the context graph of
both expert systems: an analogous case can be generated only if the analogous situation
can be simulated on the context graph for the new machine. Third. on empirical
knowledge: the analogy describes how a fault in the new machine can be detected. based
on the proceeding on a similar device. The first two levels support (explain) the latter.

Very inspiring work has been that of (Carbonell. 1986) and (Hanson. 1990). Our approach
uses a kind of derivational analogy through the transfer of decision sequences (test
selection) and their justifications (on the causal graph) to build a new diagnostic

23 See. e.g.. (Geiger. Paz, and Pearl. 1990) for a discussion on the interpretation of
dependencies as causal relationships
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situation. Carbonell points out several relevant aspects of analogy that can be exploited 
by the derivation of old solution steps. The most important here is the acquisiUon of 
strategical knowledge for knowledge adaptation. discussed in chapter 5. On the other side, 
Hanson describes an approach to describing feature correlations as a means of 
supporting induction. Our approach is rather more domain-specific. 

6.3. Knowledge Acquisition and Expertise ModeUng 

We see our workbench as an expertise modeUng environment. and analyze this within 

our CNC-machines scenario. From the point of view of iMAKE. the machine's model 
represents a model of the design expert's expertise on the machine's structure and 
behavior; the context heterarchy represents a model of the service technician and 
machine operator's theoretical knowledge about the diagnostic task for that machine. 
From the point of view of PAIDEX. empirical knowledge models the diagnostic experience 
of a service technician or of a machine operator. From the point of view of GENRULE. 
empirical knowledge is a source for modeIing diagnostic heuristics that can be shared by 
the design expert and the service technician of the machine. All of them interact and 
cooperate through MOLTKE with the goal of reflecting the diagnostic expertise of several 
experts in a CNC-machine center. 

From the point of view of KALES, knowledge adaptation strategies model the expertise of a 
.ciesign expert. a service technician, and the knowledge engineer together in the task of 
knowledge adaptation. Most important. knowledge adaptation becomes an alternative 
source for knowledge acquisition and refinement for the new expert system. 

Several approaches to expertise modeIing can be found in the literature. The modeling of 
a domain theorY guided by interaction of the theory with a domain expert is discussed in 

(Morik. 1987. 1988). Morik presents a system named BLIP designed to compel with the 
modeUng task defined in a three-step cycle: domain model layout. theory extension. and 

evaluation. This approach presents the interesting advantage of allowing for evaluation 
and reversability. although evaluation itself is not deeply addressed. A similar approach 
to ours is Murray's Krwwledge Integration (MulTay. 1991). Murray defines the integration 
process in three steps: identification. ·elaboration. and adaptation. Identification is 
somewhat similar to ours. A fix knowledge representation is used. in which rules 
associated to a concept are separated into clusters representing its different roles. The 
elaboration is then carried as an expansion of values through a dependency network 
until conflicts between old and new information in the knowledge base are identified. 
After conflicts are resolved. with intervention of the domain expert. the elaboration is 
incorporated in the knowlede base. This last step is called adaptation. Our use of the 
knowledge maintenance component in MOI..TKE is seen as equivalent of MUlTay's 

elaboration and incorporation steps if the Justiftcatton links defined in the" dependency 
network are complete enough to express all possible sources of inconsistency that might 
emerge from the insertion of a new rule in the knowledge base. 

Another example is (Bardzil and Torgo. 1990). They propose integrating independent 
knowledge bases by selecting rules using a characterization of the competing theories 
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situation. Carbonell points out several relevant aspects of analogy that can be exploited
by the derivation of old solution steps. The most important here is the acquisition of
strategical knowledge for knowledge adaptation. discussed in chapter 5. On the other side.
Hanson describes an approach to describing feature correlations as a means of
supporting induction. Our approach is rather more domain-specific.

6.3. Knowledge Acquisition and Expertise Modeling

We see Our workbench as an expertise modeling environment. and analyze this within
our CNC-macmnes scenario. From the point of view of MAKE. the machine's model
represents a model of the design expert's expertise on the machine's structure and
behavior; the context heterarchy represents a model of the service technician and
machine operator's theoretical knowledge about the diagnostic task for that machine.
From the point of view of PATDEX. empirical knowledge models the diagiostic experience
of a service technician or of a machine operator. From the point of view of GENRULE.
empirical knowledge is a source for modeling diagnostic heuristics that can be shared by
the design expert and the service technician of the machine. All of them interact and
cooperate through MOLTKE with the goal of reflecting the diagnostic expertise of several
experts in a CNC-machine center.

horn the point of view of KALES, knowledge adaptation strategies model the expertise of a
design expert. a service technician. and the knowledge engineer together in the task of
knowledge adaptation. Most important. knowledge adaptation becomes an alternative
source for knowledge acquisition and refinement for the new expert system.

Several approaches to expertise modeling can be found in the literature. The modeling of
a domain theory guided by interaction of the theory with a domain expert is discussed in
(Morik. 1987.  1988).  Morik presents a system named BLIP designed to compel with the
modeling task defined in a three-step cycle: domain model layout. theory extension. and
evaluation. This approach presents. the interesting advantage of allowing for evaluation
and reversability. although evaluation itself is not deeply addressed. A similar approach
to ours is Murray's Knowledge Integration (Murray. 1991). Murray defines the integration
process in threesteps: identification. elaboration. and adaptation. Identification is
somewhat similar to ours. A fix knowledge representation is used. in which rules
associated to a concept are separated into clusters representing its different roles. The
elaboration is then carried as an expansion of values through a dependency network
until conflicts between old and new information in the knowledge base are identified.
Alter conflicts are resolved. with intervention of the domain expert. the elaboration is
incorporated in the knowlede base. This last step is called adaptation. Our use of the
knowledge maintenance component in MOLTKE is seen as equivalent of Murray's
elaboration and incorporation steps if the justification links defined in the”. dependency
network are complete enough to express all possible sources of inconsistency that might
emerge from the insertion of a new rule in the knowledge base.

Another example is (Bardzil and Torgo. 1990). They propose integrating independent
knowledge bases by selecting rules using a characterization of the competing theories
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under an experimental approach: rules are tested against tratntng case sets generated 
from available domain data. This is a plausible evaluation strategy for knowledge 
adaptation. An approach to acquiring strategic knowledge. directed specifically to 
diagnosis. is descnbed in (Gruber. 1988). Gruber descnbes an integration of 
representations to allow for flexible presentation of knowledge to the domain expert and 
operationalization of the strategic knowledge in the expert system. The aim is giving 
strategic knowledge a more important role in the knowledge acquisition task.. S1m1larly 
to our work. Grubers ASK methodology uses justifications of actions to construct stratetc 
rules. 

6.3. Conc1ustOD 

Knowledge adaptation by classifying knowledge about structural and behavioral 
differences and defining a transformation function for rules on the basis of causal 
dependencies represents an innovative view on (derivational) analogical reasoning. Our 
approach to knowledge adaptation as a means of knowledge acquisition from past 
experience intensively exploits background knowledge to Justify the acquired lmowledge. 
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