UJBNDISIeSION 0S29-d
6V0E UODLSOd
UISJNDISISS|DY IDLISIOAIUN
MIOWIO)U| Yoleiaqyon

Alvaro de la Ossa
SEKI Report SR-91-11 (SFB)

e
o
w
Z.
<
(A
= 2
< &
<2
> 5
£ 3
)
MA
& 5
< ]
Qo
N
[£3)]
o O
22
@ .
LI
=2
Qo
z
K

1JOdd - A4S






Knowledge Adaptation:
a Means of Knowledge Acquisition®*

Alvaro de la Ossa

Research Group on Artificial Intelligence (Expert Systems)
Dept. of Computer Science
University of Kaiserslautern
PO Box 3049
D-6750 Kaiserslautern
Federal Republic of Germany

e-mail: delaossa@informatik.uni-kl.de

ABSTRACT

Knowledge Adaptation is an alternative means of knowledge acquisition from previous experience
in similar application domains. Adapting knowledge from an old expert system in some domain
means transforming rules into rules useful for problem solving in a new, similar domain. The
_transformation follows from an analogical mapping of the situation described in a rule to
situations in the new domain. This paper describes. the Knowledge Adaptation . approach to
knowledge acquisition. We use diagnosis as the exemplar domain task, MoLTKE! as the
computational testbed, and CNC-machines? as the exemplar application domain.

1. INTRODUCTION

Our research group has developed*MOLTKE. a workbench for the construction of expert
systems for technical domains. The main domain tasks have been diagnosis and
configuration, and components for our workbench on other tasks as process planning,
configuration, hypermedia, etc., are being developed. In the domain of diagnosis,
exemplar application domains have been CNC-machines, 3D-CNC measurement
machines, and heterogenoues computer networks. In this work we use the first
application domain for illustration.

The CNC-machine producer configures different machine versions using parts from a

¢ Also appeared in: Proc. of the 6th Banff Knowledge Acquisition for Knowledge-Based
Systems Workshop 1991, Banff, Canada, October, 1991.

+ This work is being developed within project X9 (Learning and Analogy in Technical Expert
Systems) of the special research area SFB-314 (Artificial Intelligence — Knowledge-Based
Systems) under supervision of Prof. Dr. M. M. Richter. The author is a graduate student
holding a fellowship from the German Service for Academical Exchange (DAAD, Deutscher
Akademischer Austauschdienst) and support from the University of Costa Rica.

1 For MOdels, Learning, and Temporal Knowledge in Expert systems for technical domains

2 For Computerized Numerical Control; see, e.g., (Althoff, Maurer, and Rehbold, 1990)
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common library. The knowlédge adaptation problem consists in transforming
knowledge from an old machine's expert system to be used within the same domain task
on a newer, similar machine. Adapting knowledge involves reasoning about differences
and similarities between both machines and using knowledge adaptation strategies
accordingly.

The knowledge adaptation scenario arises from the need of reducing the effort invested in
the knowledge acquisition task during the early stages of expert system development..
Knowledge adaptation can be seen as a means of making knowledge reusable for solving
similar situations within the same domain task.

The paper is organized as follows. Chapter 2 discusses the knowledge adaptation problem.
Chaptér 3 gives a brief description of a MOLTKE diagnostic expert system and of the CNC- .
machines domain. Chapter 4 deeply discusses each step of the knowledge adaptation
process. For each step, the expected role of the human experts during knowledge
adaptation, as well as the strategic knowledge acquisition techniques used, are described.
Chapter 5 presents the acquisition and refinement of strategies for improving the
knowledge adaptatlon' process. Finally, chapter 6 discusses the relations of this with
other work, and describes the siate of our research and our next future plans.

2. THE KNOWLEDGE ADAPTATION PROBLEM

A typical flaw of expert systems, due in part to the intimate dependency on the
application domain, is the difficulty to make knowledge reusable in other similar
domains. An expert system might solve problems in a particular application domain, but
when this is modified, even lightly, the system may fail to solve problems with acceptable
reliability3.

Sometimes, totally new knowledge bases must be developed for a new domain. Others, the
human expert and the knowledge engineer work hard and long together in the task of
extracting from the old expert system knowledge that can be useful for the new domain,
adapting it accordingly, and incorporating it into a new knowledge base.

But no solution towards (he automatization of this process can be found explicit in the
lterature. There are attempts to define means of making the domain modeling task more
flexible (Morik, 1987, 1988; Schreiber, Wielinga, and Breuker, 1991). In our oppinion, the
enormous costs due to knowledge acquisition, normal during early stages of system
development, cannot be drastically reduced by means only of flexibility in modeling. A
learning system must be able of explicitly adapting its knowledge to a changing domain.
Without this ability, learning is limited to a static view of the domain.

In technical domains in particular, the application domain is mostly described by a
model of the physical world, adequate for a particular domain task, e.g., diagnosis
(Struss, 1988). The model allows for causal reasoning about structure and behavior. But
models alone lack of means of associating experience in the domain task with céusalily

3 Reliability is used here to mean empirical acceptability criteria set by the human expert



relationships in the model itself. Moreover, models are normally incomplete and too
simplifying. Modifying the physical world requires of modifying the model accordingly.
The lack of association from experience to causality leads, after a modification, to the
loss of experience gained on problem solving for the previous state of the physical world.

On the other side, the empirical acquisition of knowledge in the domain is mostly
justified by the human expert's advice, due to the inability of most empirical approaches
to provide by themselves, using background knowledge, for well-founded explanations of
the acquired knowledge.

Thus, a bridge from the model of the physical world to the experience implicit in
empirical knowledge and viceversa must be made available, that can allow for justifying
the automatic adaptation of knowledge from the old expert system to cope with the
domain task on the new physical world.

2.1. Overview of the Knowledge Adaptation Approach

Given an already developed diagnostic expert system for some machine and a new,
functionally similar but structurally different machine, we wish to adapt the old system's
knowledge to be (rejused for diagnosis on the new machine.

Our approach to knowledge adaptation identifies knowledge suitable for adaptation by
. using a similarity-based approach. Two machine parts are considered similar if they

belong to a same parts class and their functionality descriptions are similar. A part's

functionality and the similarity metric used are described later in section 4.3.1.

A simple model-based reasoning mechanism is used to analogically map a diagnostic
situation from the old machine into a new, plausible situation for the new machige. The
analogical mapping is approached on two levels. First, following domain-independent
mechanisms, a situation is explained on the domain model. Then, domain-dependent
features are used to complete the analogical mapping. The plausibility of the new
situation is -verified through simulation automatically guided by background
knowledge#4.

The knowledge adaptation component communicates with the performance element of
the expert system to generate a hypothesis for the new, plausible situation. If such a
hypothesis is found, the resulting rule (i.e., diagnosticSituation — hypothesis) must be
incorporated into the new expert system. The rule can be incorporated if it results
consistent with the current state of the new expert system.

The whole process, from the identification of similar parts in the old machine to the
incorporation of an adapted rule in the new expert system is called an adaptation case.
Adaptation cases are generalized to adaptation rules, that represent strategic knowledge
for adaptating groups of diagnostic rules sharing a common general diagnostic situation
and the same particular hypothesis.

4 See (Dutta, 1988) for a deeper discussion on justifying analogical transformation through
the intensive use of background knowledge. Other approaches to verification use
experimentation, as in (Carbonell and Gil, 1990; and Shen and Simon, 1989)




3. THE MOLTKE DIAGNOSTIC EXPERT SYSTEM

The workbench MOLTKE plays the role of computational testbed for our research. In this
chapter, a brief description of the basic terminology and of the diagnostic task in
MOLTKE is given, including some details relevant for our knowledge adaptation
component. We {llustrate with our exemplar application domain. Further details about
the conceptual approach to diagnosis and methodological development of our workbench,
are found in the references mentioned through the description.

3.1. The Development of a MOLTKE Diagnostic Expert' System

The diagnostic task is seen in MOLTKE as the combination of classification and test
selection. Classifying means determining a rough or intermediate diagnosis for a given
fault. Test selection is used to refine the current diagnosis until a final diagnosis is found.
Diagnoses are organized in a context graph, where a node, called context, represents a
diagnosis, and the links, refinements between contexts.

For knowledge adaptation purposes, the generation of the context graph is incremental,
i.e., new contexts are generated only when they are needed for diagnosis or for knowledge
adaptation. This has the advantage of reducing the time required for knowledge base
generation for a new machine; it also allows the easy changing of the knowledge base in
response to light modifications in the structure of the new machine®.

In our expert system, diagnostic knowledge is structured vertically—in a heterarchy of
contexts, and horizontally—separated in ordering and shortcut knowledge. Contexts
represent knowledge about failures (classification), and ordering and shortcut
knowledge, knowledge about the diagnostic process (test selection).

A context has a precondition (conjuntion or disjunction of conjunctions of symptom
values) which, when satisfied under the current situation, causes the associated diagnosis
to become proven. To every context a set of ordering rules and a set of shortcut rules are
associated, as well as a context interpreter. The locality of ordering rules and the presence
of a (local) interpreter allow for specialized strategy for test selection.

Definitions

Symptom Class — relates a name with a list of possible values (e.g., vaive and
(open,closed))

Symptom instance — (or symptomvalue, or symptom) describes the state of a machine
part {e.g., (valve27Y1 closad))

Situation — set of all symptoms; (partially) describes the actual state of the machine

Formula —— stores the current binding of a symptom (a variable in the predicate
calculus with a three-valued logic—true, false, unknown—used to evaluate
the formulas in a_formula language)

Test — determines the current value of one or more symptom instances

Ordering Rules — determine which test to execute next; the order of these rules
determines the (potential) execution order of tests .

5 For instance, after replacement of defectuous parts



Shortcut Rules — represent a relation between symptom values, and shorten the
diagnostic process by deriving one or more (still unknown) symptom values
from one or more (known) symptom values, thus eliminating the need of

gathering their values through tests
Figure 1 below shows the overall process of expert system construction in MOLTKE.
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— Figure 1 — The Construction of the Expert System —

3.1.1. Expert System Generation : Modeling and Simulation

Diagnostic knowledge stored in contexts is extracted automatically and directly from the
machine's design plans. The automatic model and diagnostic knowledge compiler MAKE®
{Rehbold, 1991) builds up a static, deep model of the machine's structure and behavior. The
model is checked for consistenEy and the context heterarchy is built through a
simulation précess. For each context, its precondition and shortcut rules are generated.
MAKE's output is a basic expert system, which may be later refined and extended”.

A new version of MAKE, called MAKE, is currently being implemented in the context of
this research, which allows the incremental extension and modification of the context
graph. (MAKE reduces the effort required for context graph generation by creating a
library of subgraphs associated to machine parts according to their functionality.

In the machine's model, specific parts are described by classes of parts, which store
mainly its name, ports, behavioral description (input-output rules relating ports), and
typical faulty behavior8. Primitive parts cannot be decomposed. Complex parts store
additionally their subparts and connectivity {physical connections between subparts).
The structure is represented hierarchically. The behavior of complex parts is elaborated

6 For Model-based Automatic Knowledge Extractor
7 By, e.g., a service technician or a machine's engineer, in the case of CNC-machines
8 For simplicity, only the model slots relevant for this discussion have been described




on the basis of their component parts.

{MAKE extends a part instance's description with its functionality. This is defined as the
subset of behavioral rules that describe the actual part's behavior in the particular
configuration in which it is placed. That is, a part's behavior describes all possible
outputs from the part for all possible inputs (what is the part designed to do?), while
functionality describes the outputs that are expected from the particular connections of
the part in a particular machine (what does the part do in this machine?).

Once the model is built, ](MAKE simulates it in search for diagnostic information that can
be made explicit in MOLTKE's representation formalism. Two tasks are included in this
process: definition of symptom and tests, and generation of contexts® and their rules. A
symptom class is generated for each port of every primitive part instance in the machine.
A test is generated for each symptom class. Later in MOLTKE, a symptom will be
represented by a symptorm instance and the actual value measured on the respective port.

During simulation, for each port on which a deviation from an expected output value can
be found, a context is generated, and its name, precondition, and correction are defined.
Intermediate diagnostic contexts (those that are not leaves in the graph) additionally
contain shortcut rules, refinement links (to other contexts), and ordering rules.

The context heterarchy reflects the diagnostic expert's proceeding during diagnosis1©. The
search space is shortened by considering only those behavioral rules relevant for
describing the intended behavior of the machine part!!, A context class is generated for
every relevant faulty output value (from the faulty behavior description of the part).

In our new conception of this process, MAKE does not need to genei'ate all the contexts for
a given machine part if that task was solved before for other part (even from other
machine) of the same class and with the same functionality conditions. {MAKE stores a
newly generated part's context subgraph and associates it to the part's class and its
particular functionality. Context subgraphs are later used as patterns for other parts of
the same class and with the same functionality conditions, which only need to be
consistently inserted in the whole context heterarchy.

3.1.2. Refinement and Extension of the Expert System's Knowledge

The basic MOLTKE-expert system can be refined, e.g., by modification of shortcut rules,
inclusion of new ordering rules, etc. This task is carried out in joint work by the expert
and the knowledge engineer. The expert elaborates flow diagrams of test execution order,
which are traduced by the knowledge engineer into ordering rules and input into the
corresponding contexts. The expert can edit the machine model as well, as the context
graph, using graphical tools developed specially for that purpose (based on Smalltalk's
Browser interfacel2),

9 Additionally, corrections (to the faults) must be also generated, but this is not relevant here
10 We found this to be true for all technical domains modeled so far

11  This is MAkE's terminology. which agrees with our definition of functionaltiy

12 Smalltalk is the implementation language of MoLTKE




Moreover, the system acquires, organizes, and refines diagnostic experience through its
learmning component. Experiential knowledge is case-based modeled. An ordered set of
symptoms associated to a hypothesis defines a diagnostic case. Two subsystems cooperate
to enhance the diagnostic task. PATDEX/213 (Althoff, De la Ossa, Maurer, Stadler, and
Wesg, 1989; Althoff and We8, 1991a) is a case-based reasoning system that retrieves the
most similar case to the current situation. Similarity is defined in terms of the
symptoms in the situation. The hypothesis to the retrieved case is mapped to the current
situation. PATDEX/2 acts interactively on-line to enhance the diagnostic process. The
other subsystem, GENRULE!4 (Althoff and Traphdner, 1990; Althoff, 1991), acts off-line
by compiling heuristic generalization rules from diagnostic cases. Those rules, which
describe partial shortcut rules, are given a statistically-determined certainty factor.

3.2. A Sample Application Domain : CNC Machine Centers

A CNC machine center is a production tool machine that gives some raw material a
desired form and precise measure through controlled relative movement; it has a
magazine of tools from where it can choose and seize one to work with on a piece of
material. Some of its operations on the material are drilling, milling, rubbing, tap
sharpening and cutting, sawing, etc. The basic components of a machine center are rack,
sliding carriage, guides, and drive or propulsion. Attached are other facilities for control,
.regulation, changing, etc.. of tools and material. A large knowledge base for fault
diagnosis of a machine center has been developed by our research group!S.

Examples of different configurations leading to functionally similar machines can be
drawn ranging from very high abstraction levels in the machine's structure, e.g., using a
tool claw arm with finger elements instead of a claw arm with plier claw and rotation, to
very low levels, e.g., using one of two different valves in a hydraulic or electrical element.
Figure 2 shows a sample machine part design plan. We show its model of structure and
behavior and a sample diagnostic context from our knowledge base.

v27Y2

— Figure 2 — Sample Design Plan of a Complex Machine Part —

13 For PATtern-Directed EXpert system

14 For GENerator of empirical MOLTKE RULEs

15  Some parts (e.g., the tool changer, etc.) have been modeled, not the whole CNC machine, but
the modeled domain is complex enough for our purposes; knowledge bases from other
technical domains have also been developed, and the results of experiments with them
have given fruitful feedback during the development of our workbench




Instance v2s27Y1-2 of class valve2Selection is entered to the system using a graphic
model editor. After modeling, the resulting description for the instance and its subparts
looks like follows:

ComplexPart Class $Valve2Selection
ports: #((lever mechanical in low) (currentIn ac in medium)
(currentOut ac in medium) (slidel mechanical out low)
(slide2 mechanical out low))

subparts: #((Switch+ s low) (MeasuringPoint m low)
(Valve vl low) (Valve vZ low))
connections: #((self currentIn currentIn s) (s currentOut currentIn m)

(m currentOut currentIn vl) (m currentOut currentIn v2)

(vl currentOut currentIn self) (vl slide slidel self)

(v2 currentOut currentIn self) (v2 slide slide2 self)).
ValveZSelection Instance #v2s27Y1-2

location: ‘toolChanger'*
subparts: #((s s27Kla 214) (m m317 214) (vl v27Y1 275) (v2 v27Y2 276)).
PrimitivePart Class #Switch+
ports: #((currentl dc inOut medium) (current2 dc inOut medium)
(lever mechanical in low))
behavior: #((lever = unshifted) (currentl = X) -> (current2 = 0))

(lever = shifted) (currentl = X) -> (current2 = X))
(lever unshifted) (currentZ = X) -> (currentl = 0))
(lever = shifted) (current2 = X) -> (currentl = X))}
failures: # ((noContact (((currentl = X) -> (current2 = 0))
((current2 X) -> (currentl on)).

I

During simulation, the context graph is generated. Following is a sample context for
spindle, a part containing v2s27y1-2 as one of its subparts:

#SpindleStopNotReached

precondition:
(= SpindleStop SpindleStop SpindleStopNotReached)

shortcutRules:
(if (and (IsPreconditionOf SpindleStopNotReached) (= Valve Valve27Y1l Closed) )
then 10SstatusOUT32 logicl factor "total")

(if (and (IsPreconditionOf SpindleStopNotReached) (= I0Status IOStatusOUT32 1) )
then I0StatusIN1112 logicl fator "total")
orderingRules:

(if (true) then Valve27Y test)

(if (= Valve27Y1l closed) then OilConductsOrientedSpindleStop test)
(1f (= Valve27Y1l open) then IOStatusOUT32 test)

(1f (= IOStatus IOStatusOUT32 0) then IOStatusIN1112 test)

(1f (= IOStatus IOStatusIN1112 0} then VoltagePotentiall61362 test)

3.2.1. CNC-Machines Diagnosis

A failure in the CNC-machine is reported by the CNC Input/Output Card , which sends a
machine failure code, directly associated to machine parts normally on very high
abstraction levels in the machine's structure. A diagnostic situation is initiated when a
machine failure code is received from the CNC card. This code has the advantage of
restricting the search for a diagnosis on a particular machine part and its subparts. Then,
during diagnosis, the expert system enters a establish-and-refine cycle of testing for
symptoms and refining to more particular diagnostic contexts.



4. KNOWLEDGE ADAPTATION

The knowledge adaptation task is seen as an incremental process in which diagnostic
rules and cases from the old expert system are transformed into rules for the new system.
A rule has in its left-hand side a diagnostic situation (an ordered set of symptom values)
and in its right-hand side a hypothesis!6 .

The transformation of rules leads to rules whose situations are plausible in the new
machinel7 and whose hypotheses shall be proved by the new expert system. The main
adaptation strategy in our approach builds an analogy of the situation of a rule from the
old machine onto the new machine. The hypothesis for the new situation is obtained by
simulating the new situation in the new expert system.

The approach foresees the acquisition, extension, and refinement of adaptation
strategies by exploiting the results of successful rule adaptation to improve later
performance. Knowledge adaptation is seen as a process of proposing new diagnostic rules
and leaming" from their verification. A case memory for adaptation cases is currently
being implemented in the context of this research. Adaptation rules (strategies) are stored
associated to particular machine part classes and their faults. A memory architecture
inspired in Kolodner's is being used as a model (Kolodner 1983a, 1983b, 1989).

Besides the feedback from the human expert upon accepting or rejecting adapted rules, the
- expert can also play the role of a tutor by entering manually prepared adaptation cases,
considered as positive examples of a particular adaptation strategy. In this case, the
expert must provide the system with an indication of how the aha]ogy that leads to the
adaptation is originated, in the form of a causal explanation on the model of the
machine. This advice can be used later as an alternative strategy to analogy recognition if
this is not possible on the machine's model level. A detailed description of the generation
of causal explations of a rule is given later.

In the next sections we analyze the kinds of knowledge in our expert system, compel the
use of the terms case and rule, and describe the knowledge acquisition process.

4.1. Causal and Empirical Knowledge in our Expert System

- Causal or background knowledge describes the application domain (the machine and its
diagnosis], while empirical knowledge describes experience acquired during diagnosis or
directly from the expert. Causal knowledge is acquired directly from the design plans of
the machine. This knowledge is stored initially by MAKE in a static knowledge base
containing the machine's model (knowledge about the particular domain) and the context
graph (diagnostic knowledge in the particular domain).

Empirical knowledge can be acquired either directly from the domain expert, through

16  The use of the terms rule and case is made clear later in section 4.2.

17 The term plausibility is here used to mean that the situation may physically occur in the
machine, or in other words, that the symptoms in the situation are not inconsistent with
the machine's model
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actual experience during diagnosis (MOLTKE and PATDEX), or by automatic generation
starting from diagnostic cases (GENRULE). Four kinds of empirical knowledge are
identified:

Diagnostic cases : successful diagnoses, either actual, or known to the expert and
given directly to the system. They are represented as follows:
S8z ... Sy > Dh
where Sk (k= 1,...,n) are known symptom values, and
Dh is a diagnostic hypothesis (the name of a certain context).

Test selection cases : selection of tests, given a particular diagnostic situation,
leading to gathering useful symptom values during actual diagnosis. They are
represented as follows:

51/52/...,5,; - ‘Iﬁ
where Sk (k= 1,... ,n) are known symptom values, and
Th is a test hypothesis (the name of a certain test).

Ordering rules : empirical determination of the order in which tests must be

executed in order to refine the diagnostic hypothesis for a given context. They

. are represented the same as test selection cases with the difference that test

selection cases are stored in a case memory and ordering rules in the particular
expert-given order within a diagnostic context.

Shortcut rules : empirical determination of one or more (still unknown) symptom
values given a particular diagnostic situation. This rules can be either directly
given by the expert, or generated off-line by GENRULE, and are represented as
follows!8:

S1:82 00188 = Snelr Sni oo -r S
where Sg (k= 1,...,n) are known symptom values, and
St ([=n+1,... , m) are (still unknown) symptom values.

4.2. Cases and Rules : What Should Be Adapted?

It is important to note the difference between cases and rules!9. Cases are examples of real
diagnostic situations and their solution. They contain a problem description (the
situation), a solution (the hypothesis), and a justification for the solution, which should
contain an explanation of how the solution was found, in terms of the situation.

In MOLTKE, the justification for the solution of a diagnostic or test selection case is the
temporal order (sequence) in which symptom values were gathered through test
execution. A case's situation Si, S2 ..., Sn is actually given in this order: symptom S¢ was
gathered before symptom S, ;. A more grounded justification is still missing in MOLTKE.
Thus, for knowledge adaptation, we extend a case's justification to a more complete
explanation, by abstracting the symptom values in the situation, in their order, on the

18  Shortcut rules are also generated byMAKE. But these rules are justified on the machine's
model (they are called total); they do not reflect empirical knowledge
19 A more extense discussion on cases and rules can be found in (Althoff and Weg, 1991b)
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machine's model. This is done through a simulation process in which parts of the
machine involved in the situation and their causal (structural and behavioral)
relationships are identified.

Rules, on the other side, differ from cases in that they do not have a justification. Their
interpretation is unique, while a case's interpretation depends on the purpose, the
similarity with other cases, and so on. Ordering and shortcut rules in MOLTKE have no
justification, or in other words, the justification is indeed empirical. Ordering rules are
entered into the knowledge base (into particular contexts) by the knowledge engineer,
traduced from flow diagrams of test execution order prepared by the human expert. The
generation of a model-based justification of ordering rules, and furthermore, of their
order, is, for the moment, still not considered, although this will imply a great reduction
in knowledge acquisition effort.

We have so far tested the approach only with diagnostic and test selection cases. What
makes ordering rules more complex is the fact that their justification must not only take
into account each of a context's rules, but also identifying equivalent contexts in the new
machine, as well as considering their sequence or order.

Finally, empirical shortcut rules’ justification rests on the diagnostic cases from which
they were abstracted by GENRULE. We still do not consider shortcut rule adaptation for
one reason: after adapting diagnostic and test selection cases, GENRULE can be applied on

‘the new expert system to generate new shortcut rules. It would be however interesting to
approach their adaptation and compare the results with GENRULE's.

In the rest of the discussion we refer to diagnostic and test selection cases using the terms
rules and cases without distinction. Following, we describe KALES20, which is how we
have named our knowledge adaptation approach. Along the discussion we describe the
intervention of the experts. In chapter § we discuss the means of acquisition and
refinement of knowledge to improve the adaptation strategy. Due to space limitations,
representation and implementation detalls (particularly algorithms] are left out except
where required for the discussion.

4.3. The Knowledge Adaptation Task

Knowledge adaptation is a source of knowledge acquisition for the new expert system. 1t is
based in the main assumption that knowledge from the expert system for an old machine
can be reused for diagnosis on a new machine if it is possible to find a correspondnce
between both machines.

We assume that both machines are functionally similar, in the sense that they both serve
a similar purpose, e.g., drilling, sawing, etc. But they are structurally different, that is, the
internal structure, connections among subparts, and intermal behavior of the new
machine can be seen as a modification of the old machine. Finally, we assume that both
machines' subparts are taken from a common library of components.

20 For Knowledge Adaptation in Learning Expert Systems
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Knowledge adaptation is incremental. First, the process is normally carried out off-line,
although on-line, interactive sessions of adapting rules for specific faults can be set with
the experts. Second, a step in learning of knowledge adaptation strategies is done from
one rule rather than from a set of them, although an incremental definition from sets of
rules is possible. Figure 4 below gives a synopsis of the knowledge adaptation task.

Target: New Machine i Source: Old Machine
Part Similarity > Part
P Metric D P’
* Verlfication Retrieval #
New Case ( Case C'
Model-Based
. . Analogical .
Situation | <= Transfor Explanation

— Figure 4 — The Knowledge Adaptation Task —

4.3.1. The First Step : Identification of Knowledge for Adaptation

Every time MAKE generates the diagnostic contexts for parts of the new machine, KALES
tries to adapt empirical knowledge for similar machine parts from the old machine.

Thus, the first subtask of KALES is identifying those machine parts. This follows from a
similarity-based approach. Recall that the functionality of a machine part 2 is defined as

the subset of behavioral rules actually used in the particular location of ? in the machine.
Two machine parts ?; and P; are functionally similar if they
(1) belong to the same parts class,

{u) have the same number of input and output ports, and
1ii)
Ciz - N2z
D(P;,P) = —4m ——— > € ,where
Ciz + Naz

Ci2 is the number of corresponding and A7z the number of noncorresponding
rules in the functionality description of parts P; and P, and € is some threshold
value in [-1,1] (most likely close to 1), that can be interpreted as the minimum
(empirically) acceptable similarity.

This is a still simple similarity metric. It can be extended, for instance, by weighting the
relevance of rules in the functionality descriptions of both parts. We do not deepen the
discussion on similary metrics here, we just propose a metric that can be later improved.

I
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KALES searches for functionally similar parts of the old machine. The search is
shortened by restriction (i) in our definition. This avoids the exponential nature of the
search in the machine's structure hierarchy. With the list of retrieved old-machine parts,
KALES accesses the case memory in search of cases in which the failure code or the
diagnostic hypothesis refers to the parts in the list. The retrieved set of cases is called the
adaptation candidates set. KALES tries to adapt each case in the set for the new machine.

Note that restricting to the machine failure code or the hypothesis is a (domain-
dependent) heuristic. The idea behind this is that we try to retrieve from the case memory
empirical knowledge relevant for diagnosis on the parts for which (MAKE just generated
the diagnostic contexts. The experience implicit in a case is described by the symptoms
that lead to a fault's recognltfon. The criterion for case retrieval cannot be the sole
appearance of a particular symptom in the case's situation. This would lead to retrieving
cases that express the relevance of a machine part for the diagnosis of some other, rather
that for the diagnosis of that part itself.

4.3.2. The Second Step : Elaboration of an Adaptation Candidate

Elaborating a candidate means preparing a candidate case for its actual adaptation into
the new expert system. This involves mainly producing a justification for the case and
analogically transferring the justification to the new machine.

4.3.2.1, Justifying an Adaptation Candidate

Justifying a case means producing an explanation of its situation, that is, of how the
diagnosed fault was detected and why it occurred. Determining how a fault is detected
means following the diagnostic situation in the temporal order of symtom gathering and
producing in doing this a causal explanation. Detecting why a fault occurred is more
complex and we do not intend to provide a conclusive answer to this point now. The cause
of a fault might need of the extension of our machine's model with dynamic and
geometrical {design) features, which, unfortunately, are still not being modeled.

On the representatiohal level, the explanation of the rule's situation is described by a set
of relations between machine parts. The relations can be structural {e.g., part P; is part of
part Py, or part P; is connected to part Py, functional (part ¥;s output is part P¢'s input
through port ik), or empirical (denoting that no causal relation—in a strict sense— could
be found and that it is the expert who must decide whether a causal relation exists, or is
relevant, or none). We record all relations found in the explanation.

On the implementational level, the explanation is a causal graph whose nodes are
machine parts and whose links are the structural, functional, or empirical relations
identified. Identifying the parts invoived in the explanation is simple. Each symptom in
the situation refers to a machine part (a state) or part's port (an input or output value). For
" each part referenced by a symptom in the situation, a node is created in the graph.

The creation of the graph follows the order of symptoms in the case's situation. That is,
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the graph is first created for the first symptom and the transition to the second one. This
is a causal explanation of why a test for the second symptom was chosen. The answer may
be, for example, that P; is a subpart of Py, or that a functional relation between P; and P; is
identified in the faulty behavior description of one of those parts, and so on.

The identification of relations between parts in each step of this process follows from a
simulation of the (partial) situation on the machine’s model and is guided by the context
graph. Let 53,52 ..., S, be the diagnostic situation, and P the machine part referenced by.
symptom Sg¢. For each pair of symptoms Sg, S¢,; in the situation, all possible relations
between Z¢ and P, are searched, and a link is created between nodes ¢ and %%, for each
relation found. The link's type is that of the relation. For functional relations, the link is
additionally marked with the output value from %%

Example;

iIMAKE generated the diagnostic contexts for machine part NewTightenRelease. Machine
part oldrightenRelease was found to be similar to the former. This is a part of
OldToolChanger. Its class is TightenReleaseDevice. '

Consider the following diagnostic case for 01dTightenRelease:

Name: #Examplel
Situation: °(and (= FailureCode Code I159)
(= Valve Valve5Y1l closed)
(= Valve Valveb5Y2 open)
(= OilConducts 0OilConductTightenRelease tight)
(= Gear AbsorbtionGear clean)
(= IoStatus IoStatusIN32 logic-0) )
Diagnosis: EndController5S2atI59Defectuous

The causal graph for the situation depicted in this case might look like in figure 4. Once
the graph is constructed, KALES proceeds to define an analogical map from the rule's
situation to the new machine.

! n u

The analogical map of the case’s explanation (the causal graph) should lead to producing a
new rule (case) for the new system. KALES tries to construct on the new machine a similar
explanation graph to that generated in the preceding step.

Up to this point, the knowledge adaptation process has been defined independently of the
application domain. The same procedure could be applied in other domains provided that
they can be modeled and simulated by {MAKE, e.g., other kinds of technical devices.
However, completing the analogical process, that is, constructing the situation map, is
domain-dependent. To complete the analogical bridge from the old to the new machine we
need to search for a graph similar to the explanation graph generated in the preceding
step, that can lead to an analogous diagnostic situation.

Deep knowledge from the domain is needed to search for the analogous explanation. We
have seen how the machine fatlure code from the CNC helps constraining the search
space to those machine parts referenced by the code. We assume that at least one symptom
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in a diagnostic situation contains the failure code received from the CNC. The service
technician prepares an association table of machine failure codes of both machines. For
instance, if code 159 in the old machine means ToolChanger, then that code is
associated with, e.g., code 195 corresponding to the tool changer in the new machine.

It is then possible to focus the search for the analogous situation by starting with the first
symptom of the new situation being the corresponding machine failure code and its
value. The procedure for completing the new situation is an establish-and-refine '
searching cycle in which the old rule's situation is followed step by step and for each step
a new symptom for the new situation is determined.

This determination is guided by the links in the explanation graph. For each symptom
processed, the algorithmn determines in the new machine's model a corresponding
symptom. Finally, a corresponding diagnostic hypothesis must be determined.

—p isPartOf
functional

\ isConnectedTo

— Figure 4 — A Possible Explanation Graph for an Adaptation Candidate —

4.3.3. The Third Step : Incorporation of the New Case in the New Expert System

To complete the generation of the new case, a diagnostic hypothesis must be searched for
the produced situation. Furthermore, the hypothesis must then be tested before the case
can be accepted and incorporated in the new expert system.

To find an hypothesis for the situation, this is simulated through the context graph of the
new expert system, by simply letting the expert system search for an appropriate context.
This context's name is the new case's solution.

A failure to find an appropriate context may lead to reporting the failure to the service
technician, who can either correct the situation, determine the correct context, or reject
the situation. A correction of the situation causes KALES to redraw the preceding step's

reasoning, by modifying the explanation graph consequently.

The consistent incorporation of the new case in the new system's case memory rests on
MOLTKE's Knowledge Base Maintenance and Consistency Checking component (Maurer,
1991). Maurer's component allows the specification of knowledge dependencies on the
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definitional level, that is, an object depends on another if its creation, modification, or
removal depends on the existence of other objects in the knowledge base.

For knowledge adaptation, dependencies are defined on a different level, namely, on the
Justification of knowledge for its existence. The links on this level, called justification
links, represent dependencies on a conceptual level. A diagnostic case acquired through
adaptation has a justification link poiting to the explanation generated by KALES. The
idea behind justification links is to give KALES a means of tracing the knowledge base to.
the knowledge sources of adapted rules. Thus, knowledge is naturally integrated in a
dependency network in which consistency is guaranteed in a TMS-alike fashion?21.

5. STRATEGY ACQUISITION

An adaptation case is defined as the procedure through which an old expert system's rule
is adapted for the new expert system. It is represented by a triple

(P, R, A), where

Pis a pair of parts (P.old, P.new), P.oldis an old machine's part and ?Z.new a new machine's
part; Ris a pair of rules (R.0ld, Rnew) R.0ld1is an old expert system's rule and K.new a new
expert system's rule, and A4 is the analogy drawn between R.0/d and R.new.

During the process of drawing 4, paths in the context graph are derived. This means, that
for each symptom in R,0fd, a symptom from the new machine is identified and added to
the situation in ®.new. This becomes a sequence of symptom determinations, that can be
traced on the context graph for the new machine.

KALES abstracts, from a set of adaptation cases relating the same pair of parts P.old and
P.new, and for the same pair of diagnostic hypotheses in R,0fd and R.new, an adaptation
strategy, and associates it to the corresponding diagnostic context.

Adaptation strategies can be compared to shortcut rules in MOLTKE. An empirical
shortcut rule determines, with some certainty, some symptom value(s) given a set of
known symptoms. An adaptation strategy determines some symptom for the new
situation (during analogical transformation) given a set of already determined
symptoms. The difference rests on the nature and utility of the determination. Symptom
value determination by shortcut rules shortens (thereby improving) the diagnostic
process. Determinations reflect the relevance of a certain symptom for detecting a given
fault. Symptom determination by adaptation stxategies is used to shorten the analogical
transformation process. Determinations reflect here the relevance of a certain symptom
for building an analogy with another diagnostic situation. An adaptation strategy is a
rule that determines the next relevant symptom to include in a situation?2.

21 A deeper discussion on the relation between (AJTMS and the knowledge base maintenance
component in MoLTKE can be found in (Maurer, 1991)

22  See (Davies and Russel, 1987) for a forrnal discussion on determinations, and (Dutta, 1988)
for an extension of Davies and Russel's approach
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6. DISCUSSION

6.1. Causation, Functionality, and Explanation

(Shoham, 1988) points out a very important property of causation, namely, its context-
senslitiveness. The context in which a cause-effect relation occurs is important for
reasoning about the differences and similarities in behavior between two structurally
different, functionaly similar mechanisms. Our knowledge adaptation approach allows
for expressing differences in structure and behavior between two machines through an
analogical transfer of diagnostic knowledge guided by background {causal) knowledge.

However, we must restrict our view of causation to a static analysis. Our formalism still
does not allow for dynamical and geometrical modelling of the domain. The analysis of a
diagnosis is thus reduced to an isolated sequence of test gathering and contex refinement
steps. We analyze causation in the structural and behavioral differences between two
machines for isolated machine parts. We traduce dependency associations between
machine parts features into causal relationships?3. Causal relations in KALES's
explanation can be seen as feature correlations of the parts invoived in an adaptation
case.

Using similarity in functionality is, from our view, an appropriate shortcut for the
retrieval of adaptation candidates. In the next future we plan the creation of a deep
classification of machine parts. {MMAKE classifies parts by the expert-given class name
(unfortunatelly, still a very shallow schema) and by its functionality (a part's context
subgraph stored with functionality as the differentiating key). We will- extend this
classification in a deeper structure from which it can be possible to assign knowledge
adaptation strategies (seeing this as generalization of the analogical mapping
constructed by KALES) to a class or to a class's instance.

6.2. Analogy and Case-Based Reasoning for Improving Adaptation

The analogies drawn by KALES are indeed identification of ccrrespondences on three
levels. First, on the machine's structure and behavior: parts retrieved for producing an
analogy satisfy some (functional) similarity criteria. Second, on the context graph of
both expert systems: an analogous case can be generated only if the analogous situation
can be simulated on the context graph for the new machine. Third, on empirical
knowledge: the analogy describes how a fault in the new machine can be detected, based
on the proceeding on a similar device. The first two levels support (explain) the latter.

Very inspiring work has been that of (Carbonell, 1986) and (Hanson, 1990). Our approach
uses a kind of derivational analogy through the transfer of decision sequences (test
selection) and their justifications (on the causal graph) to build a new diagnostic

23 See, e.g., (Geiger, Paz, and Pearl, 1990) for a discussion on the interpretation of
dependencies as causal relationships
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situation. Carbonell points out several relevant aspects of analogy that can be exploited
by the derivation of old solution steps. The most important here is the acquisition of
strategical knowledge for knowledge adaptation, discussed in chapter 5. On the other side,
Hanson describes an approach to describing feature correlations as a means of
supporting induction. Our approach is rather more domain-specific.

6.3. Knowledge Acquisition and Expertise Modeling

We see our workbench as an expertise modeling environment, and analyze this within
our CNC-machines scenario. From the point of view of (MAKE, the machine's model
represents a model of the design expert's expertise on the machine's structure and
behavior; the context heterarchy represents a model of the service technician and
machine operator's theoretical knowledge about the diagnostic task for that machine.
From the point of view of PATDEX, empirical knowledge models the diagnostic experience
of a service technician or of a machine operator. From the point of view of GENRULE,
empirical knowledge is a source for modeling diagnostic heuristics that can be shared by
the design expert and the service technician of the machine. All of them interact and
cooperate through MOLTKE with the goal of reflecting the diagnostic expertise of several
experts in a CNC-machine center.

From the point of view of KALES, knowledge adaptation strategies model the expertise of a
.design expert, a service technician, and the knowledge engineer together in the task of
knowledge adaptation. Most important, knowledge adaptation becomes an alternative
source for knowledge acquisition and refinement for the new expert system.

Several approaches to expertise modeling can be found in the literature. The modeling of
a domain theory guided by interaction of the theory with a domain expert is discussed in
(Morik, 1987, 1988). Morik presents a system named BLIP designed to compel with the
modeling task defined in a three-step cycle: domain model layout, theory extension, and
evaluation. This approach presents the interesting advantage of allowing for evaluation
and reversability, although evaluation itself is not deeply addressed. A similar approach
to ours is Murray's Knowledge Integration (Murray, 1991). Murray defines the integration
process in three steps: identification, -elaboration, and adaptation. Identification is
somewhat similar to ours. A fix knowledge representation is used, in which rules
associated to a concept are separated into clusters representing its different roles. The
elaboration is then carried as an expansion of values through a dependency network
until conflicts between old and new information in the knowledge base are identified.
After conflicts are resolved, with intervention of the domain expert, the elaboration is
incorporated in the knowlede base. This last step is called adaptation. Our use of the
knowledge maintenance component in MOLTKE is seen as equivalent of Murray's
elaboration and incorporation steps if the justification links defined in the dependency
network are complete enough to express all possible sources of inconsistency that might
emerge from the insertion of a new rule in the knowledge base.

Another example is (Bardzil and Torgo, 1990). They propose integrating independent
knowledge bases by selecting rules using a characterization of the competing theories
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under an experimental approach: rules are tested against training case sets generated
from available domain data. This is a plausible evaluation strategy for knowledge
adaptation. An approach to acquiring strategic knowledge, directed specifically to
diagnosis, is described in (Gruber, 1988). Gruber describes an integration of
representations to allow for flexible presentation of knowledge to the domain expert and
operationalization of the strategic knowledge in the expert system. The aim is giving
strategic knowledge a more important role in the knowledge acquisition task. Similarly
to our work, Gruber's ASK methodology uses justifications of actions to construct strateic
rules.

6.3. Conclusion

Knowledge adaptation by classifying knowledge about structural and behavioral
differences and defining a transformation function for rules on the basis of causal
dependencies represents an innovative view on (derivational) analogical reasoning. Our
approach to knowledge adaptation as a means of knowledge acquisition from past
experience intensively exploits background knowledge to justify the acquired knowledge.
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