
U
n

iv
er

s i
tä

tK
a

is
e

f s
l a

m
e

rn

M
75

0
K

a ‘
is

e r
ä l

-a
u

te
m

1 ,

w
G

am
m

a;

M
u

m
m

m
am

m

F
ac

h
b

gr
e i

gh
I n

fo
rm

at
ik

M
ifi

éi
al

.
ln

te
llig

en
se

L
am

m
ü

m
$„

F

S
E

H
F

H
E

P
I

Stepiiae software development:
Combining axiomatic and'algorithnic

approaches in algebraic specifications

Ch rji'stoph Beier le , Angelika Voß;

August 1986; SEKI—REPORT 3132-86—15

Stepwise software development:
Combining axiomatic and algorithmic approaches

in algebraic specifications

Christoph Beierle. Angelika Voß
Fachbereich Informatik

Universität Kaiserslautern
Postfach 30 49

6750 Kaiserslautern
West Germany

UUCP= mcvaxlunido!uklirblbeierle

Much of the software development activity can be carried out using formal
specifications that have a precise and well defined semantics. making it
possible to formally verify the correctness of the development steps. in
order to support this claim we present an algebraic specification method
that provides both axiomatic and algorithmic techniques and illustrate it by
working through an example development. Our method is realized in the
specification development language ASPIK, which is a core component of an
integrated software development and verification system. The semantics of
ASPIK is based on the new notion of canonical term f unctor which
generalizes the notion of canonical term algebra. and we show how this

notion allows a uniform integration of axiomatic and algorithmic

approaches by using the concept of algorithmic constraints.

Km

Algebraic specification. algorithmic constraint. axiomatic and algorithmic
def initions, canonical term f unctor. software development. verification.

1. Introduction l

2. Preliminaries: Algebraic specifications 2
3. Software develop ment using loose algebraic specifications 3'

4. How to build a tower 4

4.1 Informal problem description 7

4.2 The signature specification 7

4.3 A first axiomatic specification '8

4.4 A partially algorithmic specification 1:0

4.5 A fully algorithmic specification 15

4.6 Alternatives 17

5. The specification development language ASPIK 18.

6 . Semantics: Canonical term f unctors and algorithmic constraints 23-

6.1 Canonical term algebras and functors 23

6.2 Algorithmic definitions of canonical term functors . 28

6.3 Algorithmic constraints 29

6.4 Integration of axiomatic and algorithmic techniques 30

7. Conclusions .30

References . 32

I I I I l'

Many software development models view the software development

process to consist of a sequence of succesive phases where each subsequent

phase refines (models, implements, etc.) the result of the previous phasei
for a survey see e. g. [Hun 80]. In most of the models the first phases

usually deal with informal descriptions consisting of e.g. texts in natural
language and graphical representations. Often. the first phase dealing with
formalized objects and having a rigorous semantics is the coding phase, i.e.
the first formalized problem description is the problem solution itself .
namely the program. Obviously, this makes it impossible to check in some
mathematically precise way the consistency of the problem solution with
the preceding problem descriptions or specifications since the latter must
be given in a formal language as well.

During the last decade a lot of work in formal semantics of programming
languages has been done and the development of rigorous specification
methods laid the basis for a study of the relationship between a program
and its specification. In this paper we argue that much of the software
development activity can be carried out using formal specifications that
have a well defined semantics, making it possible to verify formally the
correctness of the development steps. I n particular. we show how the

paradigms of "stepwise-refinement" and "verify-while-develop" are
realized in this approach.

Our work is based on the algebraic specification method which was first
suggested by Zilles ([Zil 74 1), Guttag (I Gut 75]). and the AD] group (IGTW
78 I). We use a so-called loose approaCh where each specification has
many non—isomorphic models in general. examples of loose approaches are
the canon specifications of I HKR 80 I. or Clear I BG 77, 80], CIP—L I CIP 85
I and Look I ZLT 82]. On the other hand we combine loose axiomatic
specifications with an algorithmic definition technique as suggested e.g. by
Cartwright I Cart 80 I. Klaeren [KI 80, 84], and Loeckx I Lo 81. 84] and
integrate both in a uniform way.

Our approach was developed for the Integrated Software Development and
Verification (ISDV) project and is employed in SPESY, a prototype system
resulting from the ISDV project (I BGGORV 83 I, I BV 85 l. I BOV 86 I).

This paper is organized as follows:

In section 2 we state some algebraic preliminaries used in the sequel and
fix our notation. In section 3 we describe the development scenario of our
approach, which is illustrated in section 4 by working through an example.
In section 5 we show how this scenario is realized in the ISDV system by
our specification development language ASPIK and its suppport
environment SPESY. In section 6 the formal semantics based on the new
notion of canonical term f unctor is outlined, and section 7 contains a
summary and an outlook.

As suggested by Morris [Mor 73] "types are not sets", but a collection of
data together with operations that can be performed on these data, and
according to Liskov and Zilles [LZ 74] "an abstract data type defines a
class of abstract objects which is completely characterized by the
operations available in these objects". This led to the questions of how to
specify the behaviour of the operations without referring in any way to the
representation of the ob jects. The algebraic approach to abstract data type
specifications that has been accepted as the most promising one was first
carried out by Zilles (l Zil74 l). Guttag ([Cut 75 D and the ADJ group
([GTWW 75 a 1).

The formalization given by the AD] group defines the notions of "signature"
as name space. "algebra" as representing a concrete data type. and
"specification" as defining an abstract data type by a class of isomorphic
algebras.

A signature 2 = < 5, Op > consists of a set S of sorts or types and an S" x S -
sorted set Op of typed operation names. For op 6 Op the notation op: 31 sn

» 5 means that op has argument sorts s1 3n and target sort 3;

A 2~algebra A .. < { As I s e S }, {opAz Asl x x Asn —+ As lopzs1 ...sn «a s 6

Op } > provides a data set or carrier As for each sort 3 and an operation op A

for each operation symbol op in Op.

A specification SP - < E. E > consists of a signature 2 and a set E of sentences
over 2. This defines the class of < E, E >-algebras which are all Z-algebras

2

satisfying the sentences B. The isomorphism class of the initial

<E,E>—algebra is the abstract data type specified by SP.

The initial approach of the ADJ-group is an example of a so.—called fixed

approach where a specification has only isomorphic models.

Fixed approaches were generalized to so—called loose approaches where a

specification SP == <Z,E> may also have non—isomorphic models; for example,

the class of all £~algebras satisfying E is considered, not just the initial

ones. Whereas the initial as well as the terminal approach (eg . [Wa 79]. [
Kam 80]) have to restrict the types of admissible sentences in order to

guarantee the existence of an initial (resp. terminal) model, there is no such

need in a loose approach. Only equations are considered in [GTW 78],
positive conditional equations in [TWW 78]. and universal Horn sentences
in [EKTWW 80]. whereas in the loose approach of [CIP 85] arbritrary first
order formulas are allowed. Other loose approaches are e.g. [BG 77, 80, 81].
[HKR 80]. [SW 82], [ZLT 82]. and [BWT 82] .

There are several reasons in favour of a loose approach as a basis for

formalized software development. Firstly, in the early phases of design and

specification one would like to have a rather rich language with enough

expressive power so that the properties and characteristics of the

operations and functions under consideration can be specified directly

without having to take into account any particular restrictions on the types

of admissible sentences. Secondly. from the controversy about whether the

initial or the terminal approach is "best"(c. f. [MG 85 1). it seems apparent
that both should be complemented by a technique without such a

universial initial or terminal constraint. Thirdly, whereas in a fixed

approach a complete set of axioms is required right from the beginning (c.

f. the sufficient completeness problem in e.g. [EKP 78], [Pad 83]). in the
loose approach a specification can be gradually refined by making more

design decisions and thereby restricting the class of models.

This can he done by elaborating the signature and adding sentences. More

formally, a ref inement q): SPI -> SP2 between the specifications SP! and SP2

is a type preserving translation cp: 21 + 22 of the signature of SP1 to that

of SP2 which respects the sentences EI of SP1 in the sense that for every p

e El the translation (9 (9) is contained in the sentences EZ of SP2. Our model

of specification development via refinements is sketched in figure 3.1. It
proceeds from an abstract specification which has a small signature, few

sentences bu t many models over intermediate specifications with a more
elaborated signature, more sentences and fewer models down to a rather

concrete specification which has a completely elaborated signature and a

sufficient set of sentences in order to obtain only isomorphic models. Every

model of this concrete specification may be used as a prototype.

l n order to support such a specification development process which

gradually proceeds from the abstract to the concrete level, there should be

types of sentences supporting a very high level of abstraction. like

axiomatic predicate calculus formulas. On the other hand there should also

be more concrete types of sentences like constructive definitions and
algorithms. Moreover. both types of sentences should be arbitrarily
combinable such that the intermediate specifications may have both
axiomatic and algorithmic sentences.

While there are fixed approaches providing constructive and algorithmic
techniques (“(1 841. [Lo 84]) and loose approaches providing axiomatic
techniques ([36 80]. [GP 85]) but none integrating both. we propose a
loose approach providing both axiomatic and algorithmic techniques as
required above. The key ideas are:

l . Parameterize a constructive technique so that loose axiomatic specifi—
cations may be used as formal parameter descriptions.

2. Define the semantics of a parameterized constructive description as a
function from parameter algebras to constructively extended algebras.

3. Consider parameterized constructive descriptions as algorithmic senten—
ces.

4. Allow both axiomatic and algorithmic sentences to occur in the set 13 of

a specification SP - <):, B >.

Before going into more formal details, we will illustrate our approach by
working through an example development.

The problem of building under certain constraints a tower as high as
possible is described informally in section 4.1 and stepwise formalized and

4

first Specification:
abstract

1

refine

t
II

Ü

inter mediate
specification:
mixed

“0
Q

.

_ refine

i i

final specification:
concrete.
if constructive
then executable
prototype

small signature
few sentences

extend signature
add sentences

ill

extended signature
more sentences

0

V

elaborated signature
many sentences

many models

extend individual
models. restrict
number of models

.

Ü

.

fewer models

O

5

W

one model

M: The refinement process supported by loose approaches

an

TOWER-AS-RESTRICTED—STACK

/
TOWERAXI

TOWER.AX\
/ \ \
_ \ \

TOWERSIG \ \ 9.2
\ \

\ 91 \
\ \.
\ \
\ TOWER-AS-LIS—TALG
\
&

TOWER-AS-LIST.AX&ALG

/

NAT-LIST

BM: The specifications for the highe st-tower problem and their
refinement relations

refined in the the following subsections. An overview of the resulting

specifications and their refinement relations is given in figure 4.1. In

section 4.2 we develop the specification TOWERSIG of the signature in

which to express our problem. In section 4.3 we add first order predicate

formulas in order to obtain the axiomatic specification TOWERAX. Using

lists of natural numbers as specified in NAT-LIST. the axiomatic description

is algorithmically refined in two steps in sections 4.4 and 4.5. respectively.

yielding the specifications TOWER—AS—LIST.AX&ALG and

TOWBR-AS-LIST.ALG. For each refinement step we give the verification

conditions that have to be proven in order to ensure the correctness of the

refinements. In section 4.6 we discuss alternative development steps where

e.g. TOWERAX is refined successively first to an axiomatic specification

TOWERAXI and finally to an algorithmic specification

TOWER~AS-RBSTRICTED-STACK.

In a room some blocks are lying around. They shall be used to build as high

a tower as possible. Naturally, the size of the tower is limited by the ceiling.

All blocks are cUbes and, for simplification, we may assume the lengths of

the blocks and the height of the room to be integer valued. The solution

must fix neither the size or number of the blocks nor the height of the

room.

In order to formalize the problem we may abstract from the notions of

room and block. All we need is a natural number constant Qfiiling for the

height of the room and a function blocks (n) giving the number of blocks

of length n for each natural number n .

A tower is either flat for else constructed by successively putting a block on

10p of another tower. I t may be destructed similarly by repeatedly

removing the block on the top. Since the only relevant property of blocks is

their length we may represent the blocks of the tower by their lengths.

Thus, e.g. put-on is a function taking a tower and a natural number and

yielding again a tower: put-on: tower nat —-> nat.

«.
..;

Every tower t has a height and uses a certain number inland. (m) of blocks
of length n. With these two predicates we may characterize admissible
towers. Finally we are asked to build the highest admissible M.

We will not start from scratch but assume a specification BOOL of the
booleans (for the predicates) and a specification NAT of the natural
numbers for measuring to be already available. Letting BOOL u NAT denote.
their componentwise union we may specify our vocabulary as follows:

sass: TOWERSIG =- BOOL u NAT u
sous tower
ops #blocks: nat —> nat

ceiling: nat
flat: tower
put-on: tower nat + tower
re move: tower a tower
top: tower -+ nat
height: tower —> nat
ilu sed: tower nat -> nat
admissible: tower —-> bool
highe st—tower: —> tower

endings

Our notation of the specification should be self -explanatory. However.
beside the explicitly declared operation names we have an error constant
error—s for each sort 3, i.e. error-tower in the example above, which may be
used to specify undefined operation calls.

l3 „. | . l' ‚[. |_.0

According to the informal description we do not make any assumptions
about the ceiling or the number and size of the blocks given by #blocks.
Hence we may directly proceed to characterize the height of a tower t as
the sum of its elements, and the number #used(t. n) of blocks of length n
used for t as the number of occurrences of "n" in t. Then we may describe t
as admissible exactly if its height does not exceed the ceiling and if it does
not use more blocks than available according to #blocks. The operation top
shall return the topmost element of a non-flat tower and put-off shall
remove that element.

Since we are only interested in admissble towers. we should restrict these

conditions on the operations to admissible towers only in order to avoid

over-specification (see (2) below). The inductive description starts with the

"flat" tower which is evidently admissible (1).

Finally, the highest tower must be admissible and it must be of maximal

height w. r . t . all admissible towers (3).

We specify these conditions by adding them as axioms to the signature-
specification TOWERSIG:

399.9 TOWERAX = TOWERSIG u
enigma

{ admissible (flat) = true
(1) . height (flat) == 0

V n : nat. tiused (flat, n) = 0

(V t : tower. V n = nat.
‘ admissible (put-on (t. n)) == true

=> admissable (t) =- true &
height (t) s ceiling &
#used (t. n) s iiblocks (n)

V t: tower. V n, m = nat.
(2)4 admissible (put-on (t, n)) = true & n «= m

=> height (put—on (t. n)) = height (t) + n &
#used (put-on (t, n). n) s i t u sed (t. n) + l &
#used (put-on (t. n). m) =- iiused (t, m) &
remove (put-on (t. n)) - t &

L ' top (put-on (t. n)) - n

V t = tower. admissible (t) = true
{dmissible (highest-tower) = true

(3)
=> height (t) $ height (highest-tower) = true

e rsc

As in the signature specification in section 4.1, error-constants are

implicitly declared in order to support a concise and convenient notation.

For the same reason we also have implicit axioms for error propagation.

such as top (error-stack) == error-nat.

Moreover, all axioms are interpreted such that quantified variables are not
bound to errors: For example, under our interpretation. the second axiom of
(l) is equivalent to the standard interpretation of=

V n: nat. n=I= error—nut ==; #used(flat, n) = 0

Since the specification TOWERAX includes the specification TOWERS IG, the
inclusion map

TOWERSIG a TOWER.AX
x H x for all x

describes a refinement relation. I t restricts the models of TOWERSIG to
those algebras that satisfy the axioms of TOWERAX. The latter still contain
non-isomorphic models since we have not yet specified top and remove for
flat towers. top, remove. height, and #used for non-admissible tower, nor
have we excluded elements of sort tower that cannot be constructed with
the given operations.

Looking at the argument and target sorts of operations flat, put-on. remove.
and top there is a close similarity to the basic Operations of data type list.
In fact, when translating tower to list, flat to nil. put-on to cons. remove to
cdr, and top to car we observe that the standard lists over natural numbers
satisfy all axioms in TOWERAX concerning these operations. That means,
given a specification NAT-LIST of such lists we should be able to extend it
to a refinement of TOWERAX by supplying axiomatic or algorithmic
definitions for the remaining tower-operations in TOWERAX. For that
purpose we first discuss the algorithmic specification NAT—LIST:

spec NAT—LIST == BOOL u NAT“ u
sorts list
ops nil = a list

cons : list nat —> list
car = list -) nat
cdr = list + list
nil? = list a bool

@@ nil. cons

10

W
nil - mil

cons (l, n). = scene (1. n)

delinegns
car (l) = m! is mil: error-nal

#0011801. n1) = n l

.esag
cdr (l) == easel ._i__s, mil: error-list

moons (ll, nl): i1

nil?(l)=-= caselis mil: true

91mm: false
gear;

I

Like TOWER. SIG, NAT- LIST includes BOOL u NAT adding the list-specific

signature part. Following the key word Wilma these new

components are defined constructively. first the data sets and then the

operations.

The list data set (or list carrier) is defined by declaring nil and cons as

mamma generating the Herbrand-Universe (mil. wonslnil. nl) , moons

(consinil. n1). n2), I ni e N} u {error-list} of all terms built from nil. cons

and the natural numbers. and adding the error constant separately. Note

that the prefix s is used to distinguish data objects from operation

applications.

Our specification method allows to restrict this term-generated set by

supplying an algorithmically defined characteristic predicate is-list: list »

bool. i t is required to respect subterms so that the restricted carrier is still

closed under subter ms (subterm property). This restriction guarantees that

structural recursive definitions are well-defined and that structural

induction is available as a proof method.

In the NAT—LIST specification a definmuim clause with such a

characteristic predicate is omitted since we are interested in all terms

generated from nii and cons. In 4.6 we will give an example of a non-trivial

characteristic predicate.

H

The operations are defined in two steps. starting with the constructor
operations. Their definition following the keyword W
is constrained so that

coplxl, In) - mc0p(xl, xn)

whenever xc0p(x1, .xn) is in the carrier. This constructor property

establishes the special meaning of the constructors and guarantees that the
constructor operations are well-defined. In the NAT-LIST specification the
constructor property completely determines nil and cons as operations
since the list carrier is unrestricted. The definition of the constructor

operation is non-trivial whenever the carrier is restricted.

Following the keyword w the remaining Operations are defined
using if ~then-else schemes. case-schemes which distinguish between the
possible constructors, and recursion. Previously defined operations.
constructor operations and error-constants may be used as basic
operations. these restrictions guaranteeing that the remaining operations
are also well-defined.

As an example; consider the definition of carll) in the NAT—LIST
specification. The case—scheme distinguishes whether I is mil or composed

by "cons"ing a natural number n l to a list l l . I n the first case car is defined
to yield an error, in the second case it returns the element n l .

In [BV 85] we have elaborated purely syntactic conditions guaranteeing the
semantic subterm— and constructor—properties and the well—definedness of
all operations. These conditions are checked by the SPESY system. Even
more. as far as possible. these conditions are exploited to generate parts of
the specification automatically.

Our algorithmic definitions with their explicit definitions constitute a
particular restriction on the models: Every model must have a carrier that
is isomorphic to the term carrier given in the algorithmic definition.
Moreover, all operations on that carrier must be functionally equivalent to
the algorithmic operation definitions which are interpreted with a least
fix-point semantics. Thus, the algorithmic definitions constitute a constraint
mechanism as it is needed in every approach considering all models of a
specification (c. f. [HKR 80] and [BG 801). Details of the semantical

12

interpretation of algorithmic definitions by canonical term functors are

given in section 6.

In order to extend NAT—LIST to a specification TOWER-AS-LIST.AX&ALG as

refinement of TOWERAX we have to add names for the missing operations.

Again no assumptions are made about ilblocks and ceiling: The operations

sum (corresponding to height in TOWERAX), ilused, and admissible are

algorithmically defined for arbitrary lists so as to satisfy the corresponding

axioms of TOWERAX. The problem of devising an algorithm to compute the

maximal-list (corresponding to the highest tower) is deferred until a later

stage. therefore. the corresponding axioms (3) from TOWERAX are simply

translated:

512%; TOWER-AS—LIST.AX&ALG == NAT—LIST u
ens ilblocks= nat _» nat

ceiling: -+ nat
sum: list » nat
iiused: list nat e nat
admissible: list -+ boo!

maximal-list: —> list

I ‚_ | . I [. . .

mm
sum(l) =11 nil?(l)

than 0
elee carll) + sumlcdrfl”

#usedfl. n) = i[nil?(l)
than 0
elee it cdrll) - n

then I + #used (cdrll). 11)
else #used (cdrll). n)

admissible“) = ill nil?(l)
then true
elee it: sum“) 5 ceiling and

itusedll, car(l)) s #blockslcarlli)
then admissible(cdr(l))
elsefalse

l 3

admissible (maximal-list) == true
(4) V 1: list. admissible“) =— true

=> sum(l) s sum(maximal-list) =- true
engages

Since TOWER-AS-LIST.AX&ALG includes NAT-LIST, it obviously refines this
specification. In contrast the refinement relation to TOWBR.AX is non-trivial
and is described by the following signature translation 91:

91: TOWERAX —> TOWER- AX—LIST.AX&ALG

tower H list
flat H nil
put-on H cons
remove H cdr
top H car
height H sum
highest-tower H maximal-list

x H it otherwise

In order to establish 91 as a correct refinement relation we have to

translate the axioms of TOWERAX via 91 to formulas over the signature of

TOWER-AS-LIST.AX&ALG and prove their validity in the latter specifi-
cation: '

axioms
admissible (nil) = true

(1) sum (nil) =0
V n : nat. =Il‘used (nil, n) = 0

FV t: list. v n : nat.
admissible (cons (t. n)) - true

H admissible (t) = true &
sum (t) s ceiling &
ilused (t. n) s itblocks (n)

V t : list. V n , m = nat.

(2) - admissible (cons (t, n)) = true & n + m
= sum (eons (t. n)) = sum (t) + n &

. I4

#used (cons (t, n). n) = itused (t, n) + l &
itused (cons (t. n). m) == #used (t, m) &
cdr (cons (t. n)) == t &
car (cons (t. n))“ - n

' admissible (maximal—list) - true
(3) ' V t = list. admissible (t) «true

=> sum (t) s sum (maximal-list) - true

From the algorithmic definitions of TOWER—AS—LIST.AX&ALG we can prove

(l) - (3) by induction on the list carrier set, thus ensuring the correctness of
the refinement relation 91.

i i l i l l l . ! . “[.- . ,

in order to give a fully algorithmic solution to our problem we are left to

devise an algorithm to compute the maximal admissible list. This algorithm

will then be added to the W of

TOWER-AS-LISTAXScALG, yielding the specification TOWER-AS—LIST.ALG.

The idea behind the algorithm is to generate all relevant admissible towers

and to remember the highest one constrticted so far. On termination the
latter will be the highest admissible tower at all. Since the height of a tower

does not change when permuting its components we need to consider only

towers with decreasing block—size as relevant towers. In order to generate

them we extend a current admissible tower by a new block - called

gapfiller -— which is the largest block not yet used for the current tower and

still fitting in the gap between tower and ceiling. Since we need to consider

only relevant towers. blocks that are larger than the topmost block of the

current tower need not be considered as gapfillers. If there are no more

gapfillers available we backtrack by repeatedly removing the topmost

block from the current tower until a new gapl‘iller is found to be put on the
cut-off tower.

Realizing this idea we have four operations:

gapfillerfl. gap) determines the size of the largest block. not yet used in 1
that fits into "gap“.

15

try(l. maxi) and backtrack“, maxi) cooperate by extending resp. destroying
the current list 1 so that all relevant admissible lists
are generated. The maximal list encountered so far
is remembered as "maxl".

maximal-list starts the search by calling try with a current list containing
only the size of the largest block 1‘illing the gap
between floor and ceiling.

All but the last operation are declared as ELM because they shall not
be visible outside the speCification TOWER-AS-LIST.ALG:

m TOWBR-AS-LIST.ALG = TOWER-AS-LIST.AX&ALG u
| . I . ! [. . .

am gapfiller: list nat -+ nat
try: list list =.— list
backtrack: list list a list

maximal—list - 1:1 base - gafiller (nil. ceiling) in
it; base =- 0
men nil
else try (cons (nil, base). nil)

gapl‘illerU, gap) = if_gap = 0
then 0 .
£1.59. i_l‘_ #blocks(gap) - #usedfl, gap) > 0

then gap

else gapfillerfl. gap -1)

try(l. maxl) - let ontop - gapfillerfl. min (car(l). ceiling - sum(l))) in
ilontop - 0 .
Ihm it sum(l) > sum(maxl)

men backtrack“. 1)
else backtrack“, maxi)

gie try(cons(l, ontop), maxl)
backtrack“. maxi) = Let destroyed = cdr(l) in

191 ontop = gapfiller(destroyed, car(l) - 1) in
jLontop =- 0
then i sum(destroyed) - 0

then!

16

else backtrackldestroyed. marl)
else trylcons(destroyed. ontop), maxl).

“l _

Since TOWER—AS-LIST.ALG includes TOWER-AS—LIST.AX&ALG it is

obviously a refinement of the latter specification. The only question is
whether TOWER-AS—LIST.ALG is still consistent, which means that the

algorithmic definition of maximal-list satisfies the two axioms (4) for that
operation. To answer this question we can rephrase the axioms as

ad missible(maximal list) = true
ad missible(nil) = true =>

sum(nil) s sumlmaximal—list) =- true
V 1: list. V n=nat.

(admissiblefl) = true ==.»
sum(l) s sum-(maximal-list) = true)
=>

(admissible(cons(l,n)) =- true =>
sum(cons(l‚n)) :; sum(maximal-—list) - true)

for a proof by induction on the structure of the lists.

Refinement relations are closed under composition. Therefore, we can
compose 91 with the inclusion from TOWER-AS-LISTAXßcALG to

TOWER—ÄS—LISTALG to obtain the refinement relation

92: TOWERAX _, TOWER-AS-LIST‘.ALG
X H 91(1) for all I:

Since the operations ceiling and liused are left unrestricted according to our
informal problem statement, the specification TOWER-AS-LIST.ALG still has
non-isomorphic models. However. for every fixed interpretation of these
two operations, there are only isomorphic models due to the interpretation
of the algorithmic definitions. Therefore, TOWER-AS-LIST.ALG is a complete
algorithmic specification with respect to the problem statement.

i i 9 I .

As already mentioned, the. first axiomatic specification TOWER.AX is not

i ?

complete for the following reasons:

- the data set of sort tower may contain unreachable objects

- it may contain non—ad missible towers
- the behaviour of the operations top and remove applied to the flat

tower is not specified
- except for admissible, the behaviour of all operations w. r. t. non.-

admissible towers is not specified.

We may answer these open questions except for the first one by adding

axioms to TOWERAX that

— determine the tower data. set to consist of all admissible towers only

- specify that top and remove result in errors when applied to the flat

tower

yielding a more precise axiomatic specification TOWER.AX1. In order to

exclude unreachable elements first order formulas are in general not

powerful enough. Instead, second order formulas or a constraint

mechanism as mentioned in section 4.4 must be used.

It is interesting to see that the algorithmic specification

TOWER-AS-LIST.ALG, which was naturally developed from our first but

still incomplete axiomatic specification TOWER.AX. is not a refinement of

the refined axiomatic specification TOWERAXI since the list data set

includes non-admissible lists. In order to obtain an algorithmic refinement

TOWER—AS—RESTRICTED—STACK of TOWERAXI we could specifiy a type of

restricted stacks that exactly correspond to the admissible towers by taking

the admissible operation as characteristic predicate. Since these restricted

stacks are isomorphic to the subset of admissible lists we can use an

analogous algorithm to compute the highest restricted stack.

i I l 'f' . l | l €519“:

The specification method presented in section 4 is not immediately suited

for practical use since it lacks any structuring, parameterization, and

instantiation facilities. Such mechanisms are provided in our specification

development language ASPIK which allows to define hierarchically

structured. loose axiomatic and algorithmic specifications as well as

hierarchically structured maps defining refinement and implementation

18

relations between hierarchical specifications.

As an example we show in figure 5.1 how the specification
TOWER-AS-LIST.AX&ALG of section 4.4 could be hierarchically composed of
several ASPIK specifications which are sketched in figure 5.2.

TOWER— AS-LIST.AX&ALG

l
TOWER-AS-LIST

/ i \ .
BLOCKS NAT-LIST CEILING

NAT /

BOOL

W: Hierarchical structure of the tower specifications in ASPIK

19

sag; BOOL M

5939 NAT
us; BOOL

im BLOCKS
use; NAT
gas ilblocks =na t amt

e

m CEILING
m NAT
gas ceiling = a nat
"3

me NAT-LIST
us; NAT
1% list
m nil = 4 list

cons : list nat -> list
car : list -> nat
cdr : list «> list
nil? list -> boo!

MM! < 313W part of NAT—LIST in section 4.4;»
gm

meg TOWER—AS-LIST
mBLOCKS, CEILING. NAT—LIST
gas sum = list —> nat

#used = list nat -‘> nat
admissible : list _, bool

mm
“W part of TOWER-AS—LIST.AX&ALG in

section 4.4>

2-0

mg TOWER-AS-LIST.AX&ALG
3159 TOWER-AS-LIST
Qui maximal-list = -> list
m <m-part of TOWER-AS—LIST.AX&ALG in section. 4.4:—

mam;

W: Specifications for the highest-tower problem in ASPIK

2 ?“

A hierarchical ASPIK specification can be instantiated by substituting

arbitrary sub specifications in its hierarchy by other hierarchical

specifications via refinement maps describing the replacements to be

performed. This concept disposes entirely of the notion of formal

parameters since the specifications to be substituted need only to be

identified at instantiation time, together with the actual parameters. In

contrast to usual parameterization concepts Where the formal parameters

must be statically declared, this concept of ASPIK is called dynamic

parameterization.

As an example consider the term

TOWER-AS—LIST.AX&ALG { CEILING + NAT }

defining a particular instance of the specification TOWER-AS-LIST.AX&ALG

where "CEILING » NAT" is the ASPIK object

map CEILING -> NAT
base NAT
ops ceiling =15

mama

describing a refinement relation from the specification CEILING to the NAT

specification.

22

I ‘31 :] - : gef. ." Ä! t‘. 1‘ H ' I ' . : ! " i f !) . .! " "JJ! ‘. I

In this section we describe the concepts underlying the semantics of our

approach to algebraic specifications. In section 6.1 we recall the definition

of canonical term algebra introduced by the AD] group in [GTW 78] and

show how this notion can be generalized to canonical term f unctors.

providing suitable models for a parameterized constructive definition. In

section 6.2 we explain the meaning of our algorithmic specifications in

terms of canonical term f unctors. In section 6.3 we show how canonical

term functors can be interpreted as algorithmic constraints on the specified

models. and in section 6.4 we discuss how the integration of axiomatic and

alorithmic techniques in the semantics of specifications is achieved.

Term algebras have played an important role in abstract data type theory.

They allow to define a particular algebra by explicitly introducing its

carrier sets and by defining its operations on these carrier sets still in a

very abstract way and without having to invent some fancy representation:

the carriers are just syntactic items, i.e. well-formed terms over the

algebra’s signature. and the operations act on these terms by composing or

decomposing them.

Term algebras are used for the quotient term algebra construction in the

initial approach of [GTW 78]. In the quotient term algebra one has to deal

with equivalence classes while in a canonical term algebra (cta) a

representative is chosen for each equivalence class. By imposing a certain

discipiine on the choice of the representatives the structure of the terms

can be exploited. For example. proofs can be done by structural induction as

in the cited paper of the AD] group or in [Pad 79].

The power of the cta concept is demonstrated in [GTW 78] by showing that

for every equational specification an initial cta exists. However. the proof is

non-constructive, and in general there is no algorithm which generates an

initial cta from an equational specification.

This is the reason why we devised a constructive definition method based

on the notion of cta.

23

W [canonical term algebra. cta]

Let: = <S‚Op> be a signature and A e Alam) an algebra. A is a canonical
Z—term algebra (Z—cta, or just cta) iff

(l) V s e S . AS 9 T 2,3 (term property)
(2) V op: 31...sn + s 6 Op.

op(t1‚.„,tn) e AS
t l e As! & & tn e Asn (subterm property)

& op Aal ,tn) - op(t1....‚'tn)' (constructor property)

Since the models underlying our overall approach are strict algebras we

specialize the definition to strict canonical term algebras:

A strict algebra has carriers with a minimal element. called the error

element, and strict operations, propagating the error elements. Whereas

Alg(2) denotes the class of all Z-algebras. we use EAlg(Z) to denote the class
of all strict algebras.

To make the error elements adressable in our specifications we introduce
error constants error-s for each sort 3 in a signature Z yielding the
signature EMS). Thus, a strict Z~algebra in particular is an ordinary
Brr(Z)-algebra.

Now we can replace Z by BMX) and Aln) by EAlg(Z) in the definition of
cta. Additionally we require that in every carrier the error—element is

represented by the error-constant. The latter requirement is not necessary,

but convenient, since it allows to define the error -oonstant implicitly.

W [strict cta]

Let E = <S,0p> be a signature and A e BAln) a strict Z -algebra. A is a
strict X—cta iff

(1) A is an (ordinary) Brr(2)-—cta
(2) V s e S . error-s e As.

For practical purposes. the concept of cta is not adequate enough: Instead of

defining an entire cta from scratch we would like to compose them from

24

reusable "eta-pieces". some of which may have been defined previously and

stored in a library. Except for some elementary ctas such "eta—pieces"

correspond to instances of "parameterized ctas”. To write parameterized

ctas we would like to start with a class of "parameter algebras" for which

we do not assume any term structure. They are extended by new carriers

and operations obeying the cta—requirements (Le. term, subterm. and

constructor properties) relative to the parameter algebras. Obviously. this

extension should not change the old sorts and operations in the parameter

algebras. By defining the extension not only on the parameter algebras but

also on the homomorphisms between them we get a strongly persistent

functor from the parameter algebras to the extended algebras.

In order to ease the precise definition of these ideas we first introduce

some auxiliary notions for expressing the cta-requirements relative to a

parameter algebra A.

W [term-. subterm-. constructor property]

Let Z, Z ' be signatures such that Z ; >: ' .

Let A e Alg(£) and A' e Alg(2').

(1) A’ has the (2?- Z)-term property w.r.t. A
iff

VseZ’ -Z .AS’ST2 '_2(A)s

(2) A' has the (Z '-— 2)—subterm property w.r.t.. A
iff

VseZ '—-Z .Vop : s l . . . sn—aseZ ' -Z

op(11‚....tn)e As'

=> t 1 e As] , & & tn E Asn '

(3) A’ has the (Z '- Z)-constructor property w.r.t. A
iff

VseZ’ -Z . Vop : 31 „ snesezflä ‘ .

op(t1,...,tn) € A8,

=} opA ' l t i , . . . , tn) ' op(t1 ‚ . . . , tn)

25;

W [canonical term functor. ctf]

Let t: 2 + 2’ be a signature inclusion, and let C c Alam and C“ ; Algüi’)
be subcategories closed under isomorphisms.
A f unctor

8 : C €! C ,

is a canonical (E, 2‘)-term functor ((E. Z')-ctf. or just ctf‘)
iff

(l) g is strongly persistent:
Algh.) ° 8 = (dc

(2) For every A e C. (2.1) - (2.3) hold:
(2.1) 3(A) has the (Z ‘- E)-term property w.r.t. A
(2.2) g(A) has the (Z ' - Z)-subterm property w.r.t. A
(2.3) 3(A) has the Z ' - Eli-constructor property w.r.t. A

The requirement in Definition 6.4 that C and C’ are closed under

isomorphisms is not essentials it corresponds to the concept of abstract data

type theory that isomorphic algebras are considered to be 'equal‘.

Just as we obtained the definition of a strict cta from the definition of cta

by adding the implicit error constants and the error requirement (2) in
Definition 6.2, we define a strict ctf to be a ctf between two categories of

strict algebras which satisfies the error requirement w.r.t. the new carriers.

W [strict ctf]

Let t: Z -> 2’ be a signature inclusion, and let C c EAlgOZ) and, C' ; EAlfg(£‘)
be subcategories closed. under isomorphisms. A functor

g: C a C'
is a strict (ES)-ct!“

iff
(l) g is an (En-(E), Err(£'))-ctf
(-2) V s 2-2 ‚V A e C. error-s e g(A)s

As an example for a strict ctf let C be the category of one-sorted algebras,

and C' the category of lists over arbitrary elements where the list

operations have the usual names: nil. cons, car, and cdr. Now let 3 be a

f unctor g: C -> C’ whose object part is defined by extending every one—sorted

algebra A with carrier set {ei l i e I} by the list carrier set

26

{-nil, cons(nil,e1), cons(cons(nil,e1),e2),... l i e i}

and by the usual list Operations such that e.g.

consg(A)(cons(nil,e1),e2) == cons(cons(nil,e1).e2).

Then g is a ctf for the following reasons:

i . g is strongly persistent since the parameter algebra A is net
modified.

2. g(A) has the term preperty because the list objects are term
generated by the new operations nil and cons over the elements
of A.

3. g(A) has the subterm property since for every list carrier
element cons(t‚ei) t is also in the list carrier.

4. g(A) has the constructor property since for the constructor
operations nil and cons we have nilgm) - nil and consg(A)(t.ei)

=- cons(t,ei) for every term cons(t,ei) in the list carrier.

The concept of ctf was motivated by the idea to compose ctas piecewise.
Hence, a constant ctf should yield a cta, a ctl‘ applied to a cta should yield a
cta, and a ctf applied to a ctf should yield again a ctf. These properties are
verified in the following three facts both for the ordinary and the strict
version.

m [constant ctfs are ctas]

Let 2 be a signature, A e Alg(2) [resp. A e EAlg(Z)] and
1A: Alg(<fi,fi>) _, Alg(Z)

[re8p. 1A: EAlg(<ßß>) _) EAlg(2)l
be the constant f unctor yielding A. Then we have:

A is a [strictIE-cta => 1A is a [strict] (49,9>,£)-ctf;

The next two facts state that ctfs are closed under composition and that a
ctf applied to a cta yields again a cta.

27

Emil [ctfs can be composed]

Let g1: C1 —> C2 be a [strict] (£1.22)-ctf
and 32: C2 » C3 be a [strict] (22,23)~ctf.
Then

32 0 g l : C1 _) C3

is a [strict] (21,23)—ctf.

Fact 9,5 [application of ctfs to ctas]

Let g: C —> C’ be a [strict] (Sin-cm and A a [strict] Z~cta with A
e C. Then

g(A)

is a [Strict] Z’~cta.

We now turn to the question of how to define ctf s constructively. Because
of the results in the previous subsection this will also give us a definition
method for ctas. I t consists essentially of three components:

(1) definition of the class of parameter algebras
(2) definition of the new carriers
(3) definition of the new operations

An obvious choice for (1) is to take a loose algebraic specification {2.13) and
to let EAlg(<2,E>) denote the class of parameter algebras. For (2) and (3) we
can direcly adapt the respective parts of the algorithmic-definitions
construct described in section 4.

For example, the loose specification ELEM = «(elemw >‚6 > with the single
sort elem denotes the class of arbitrary one—sorted algebras.
By simply replacing ELEM for NAT in the specification NAT—LIST in section
4.4 we obtain a parameterized constructive specification ELEM-LIST of lists
over arbitrary elements.

28

Mamma

in section 4.4 we explained for the specification NAT-LIST how its list

carrier is explicitly constructed as a set of terms, how its operations are

alorithmically defined, and we pointed out how the subterm and

constructor properties are satisfied.

According to this description the formal meaning of our algorithmic

definitions is a ctf. More precisely, let SP be an algorithmic specification

(like NAT—LIST or ELEM-LIST) with parameter specification part <Z,E> (like

NAT or ELEM) and new signature part
znew = (Snew'opnew’ (like <{list}‚{nil,cons‚car,cdr,nil?}>).

Then SP denotes a strict canonical term f unctor
ctfsp: EAlg(Z,E) + EAlg(<Z U znew'E’)

(like our construction of lists over the NAT-algebra or over an

ELEM-algebra).

An arbitrary (2 U Znew)-algebra A (like the algebra of standard lists over

the natural numbers) satisfies the algorithmic specification SP exactly if A

i s generated — up to isomorphisms - from its Z—reduct - (in our example the

N AT-algebra) by the f unctor ctfsp.

A. little more formally, let 1.: Z -—> Z u znew be the signature inclusion and let

EAlg(t): BAlg(Z U znew) —-> BAlg(E) be the corresponding forgetful functor,

which forgets the new sorts and operations of EMV Then

A satisfies SP
@

A “ ctf3p(EAlg(t)(A))

in our example the algebra A of standard lists over the natural numbers

satisfies tNAT-LIST' But an algebra A' obtained by adding terms like

"default-list" or ”cons(nil, overflow)" as new elements to the list carrier of

A does not satisfy tNAT—LIST' Such elements are called unreachable. and

constructs that allow to exclude unreachable elements are called

constraints.

For example. [HKR 80], [BG 80] and [BWT 83] use a constraint mechanism

29.

involving a free f unctor which is specified by equational theories. The

hierarchy constraints proposed in [SW 82] are weaker in the sense that
apart from requiring true # false they only exclude unreachable elements

("no-junk" condition) whereas the other approaches also require that

generated elements must be distinct ("no-confusion” condition).

Due to the term property of ctfs our algorithmic definitions exclude

unreachable elements and therefore serve as a constraint mechanism in our

specification method. This is the reason why we use the term ”algorithmic
constraints" for our algorithmic definitions.

Usually, a specification is a pair <Z‚E> consisting of a signature 2! and a set E

of sentences. Often. sentences are equations or other logical formulas. But,

more generally. any item p may be viewed as a sentence provided we have
a satisfaction condition telling us whether a Z-algebra A satisfies p.

Taking again the specification NAT-LIST from section 4.4, 2 is the complete
signature of NAT—LIST and contains e.g. sorts bool, nat, and list. The

‚ axiomatic components of NAT-LIST are first—order formulas. They can
obviously be put into the set E of sentences. The algorithmic components of
NAT-LIST are algorithmic constraints (for the natural numbers and the lists
over natural numbers). So far, no algorithmic approach like [Kl 84] or [L0
84] has considered algorithmic definitions as sentences. But since we have a
satisfaction condition for algorithmic constraints. namely the condition in
section 6.3 about whether an algebra A satisfies an algorithmic constraint
ctfsp, we may add our algorithmic constraints to the set E of sentences.

Thus B may contain an arbitrary mixture of axiomatic first order formulas
and algorithmic constraints representing a uniform integration of axiomatic
and algorithmic techniques.

M

We presented a specification method that allows to formalize much of the
software development process so that the individual development steps can

be proved to be correct by formal verification methods. We demonstrated
why loose algebraic specifications are particularly suited for this purpose.
Whereas previous approaches provide either axiomatic or algorithmic

30

definitions our approach integrates both techniques in a uniform way. using

the new notions of canonical term f unctor and algorithmic constraints. All

ideas presented here are realized in the specification development language

ASPIK which has been implemented as a core component of an integrated

software development and verification system ([BV 85]. [BOV 86bl).

3 i

Refe rences

[BG 77]

[BG 80]

[BG 81]

B u r s t a i d q R . M . , G o g u e n , QLA.: P u t t i n g T h e o r i e s

t o g e t h e r tm) M a k e S p e c i f i c a t i o n s . P r o c . 5 t h I J C A I ,

1977, p p . 1045—1058.

B u r s t a l l , R J W ” G o g u e n , . I J L : T h e s e m a n t i c s o f C l e a r ,

a specification language. Proc. of Advanced Course on

A b s t r a c t S o f t w a r e S p e c i f i c a t i o n s , Copen
hagen. L N C S

Vol.86, pp. 292—332.

Burstall, R.M., Goguen, J3A.: An informal introduction

to specifications using Clear. in: The Co
rrectness

p r o b l e m i11(hnnputer S c i e n c e (E d s . R.S.
B o yer, J.S.

Moore). Academic Press 1981.

Untoav 83] Beierle, c., Ger l ach , M., Göbe l , R., Olthoff, w.,

[BOV 86}

[BOV 86b]

[Bov 36c]

LEV 85]

[Cart 80]

[CIP 85]

[EKMP 82]

[EXP 78]

[EKTWW 80]

R a u l e f s , P „ . V 0 ß ‚ A u I n t e g r a t e d P r O g r a m D e v e
l o p m e n t

and Verification. In: Hal“ Ebusen (e d J : Symposium on

S o f t w a r e Validation. North Holland Publ. Co. ,
Amste rdam, 1983.

Beie r1e ‚ (L , O l t h o f f , W „ ‚ V 0 ß , A n S o f t w a r e d e v e l o p -

m e n t e n v i r o n m e n t s i n t e g r a t i n g s p e c i f i c a
t i o n a n d

programming languages. In.:}L~W. Wippermann
 (ed):

Software Architektur und modulare Programmi
erung.

'Proceedings German Chapter o f the ACM, Teub
ner Verlag,

Stuttgart, 1986.

B e i e r l e , C U O l t h o f f , ‘ W ” . V o B , A u A u t o m a t i
c t h e o r e m

proving in the ISDV system. Proc. 8th Conferen
ce on

Automated Deduction, LNCS 230, 1986.

B e i e r l e , (L , O l t h o f f , n Voß , A u T o w a r d s a f o r m a l i -

z a t i o n o f t h e s o f t w a r e d e v e l o p m e n t proces
s. P r o c .

Software Engineering ’86, Southampton, U.K., 1986.

B e i e r l e , C., Voß , A.: A l g e b r a i c S p e c i f i c a t i o n s and

Implementations in an Integrated Software Development

and Verification System. M e m o SEKI-85—l2, F B

Informatik, Univ. Kaiserslautern, (joint SEKI
-Memo

c o n t a i n i n g t h e Ph.D. t h e s i s b y Ch. B e i e r l e and t h e

PhJL thesis by.A.VoB),IDec.1985.

Cartwright, R.: A constructive alternative t o abstract

data type definitions. Proc. 1980 LISP Conf., Stanford

University, pp. ”6—55, 1980.

C I P Language Group: The M u n i c h P r o j e c t C I P , V o l . I :

Thg Wide Spectrum Language CIP-L. LNCS, Vol.
 183,

19 5 .

E h r i g , H., K r e o w s k i , H.—J., M a h r , B., P a d a w i t z , P.:

Algebraic Ihnplementation cfi‘ Abstract D a t a T y p e s .

Theoretical Computer Science Vol.20, 1982,InL
 209—

2 5 “ , (a l s o :) B e r i c h t Nr. 8 0 - 3 2 , F a c h b e r e i c h

Informatik, Techn. Univ. Berlin 1980.

E h r i g , I L , K r e o w s k i , 1 L J . , P a d a w i t z , P.
: S t e p w i s e

s p e c i f i c a t i o n and i m p l e m e n t a t i o n o f abstract d a t a

ty es. Proc. 5th ICALP, LNCS Vol. 62, 1978 , pp. 203—
20 .

E h r i g , 1 L , K r e o w s k i , j H a ¢ L , T h a t c h e r , ; L ,
 W a g n e r , E ”

32

[EM 851

[BWT 82]

[BWT 83]

[as 831

LGTW 78]

Wright, J.: Parameterized data types in algebraic

s p e c i f i c a t i o n l a n g u a g e s , Proc. 7 t h I C A L P , L
N C S V o l .

85, 1980,;nn 157-168.

E h r i g , H . , M a h r , B.: f u n d a m e n t a l s o f A l g e b r a i c

Specificiations l -Enuations and Initial Semantics,

Springer Verlag, 1985.

E h r i g , H . , W a g n e r , E., T h a t c h e r , J.: A l g e b r a i c

C o n s t r a i n t s f o r s p e c i f i c a t i o n s and c a n o n i c a l f o r m

results. Draft version, TU Berlin, June 1982.

E h r i g , H., W a g n e r , E., T h a t c h e r , J.: A l g e b r a i c

s p e c i f i c a t i o n s w i t h g e n e r a t i n constraints, P r o c .

ICALP 8 3 , LNCS 154, 1 9 , p p. 1 8 —202.

G O g u e n , J3A., B u r s t a l l , R J W ; Institutions: Abstract

Model Theory f o r Program Specification. Draft version
.

SRä International and University of Edinburgh, January

1 9 3 .

G o g u e n , J.A., T h a t c h e r , J.w., W a g n e r , 13.0.: A n i n i t i a l

a l g e b r a a p p r o a c h t o t h e s p e c i f i c a t i o n , correctne
ss,

and implementation of abstract data types, in: Current

Trends i n P r o g r a m m i n g Methodology, Vol.4, D a t a

Structuring (ed. R. Yeh), Prentice—Hall, 19678, pp. 80—

144. also: IBM Research Report RC 6487, 197 .

[GTWW 75a] Goguen, JxA., Thatcher, J.W., Wagner, EhG.,
'Wright,

J

[Gut 75}

LHKR 80]

[Hün 80]

[Kam 80]

[K1 80]

[K1 Bu]

[Lo 81]

[Lo 84]

. B u A b s t r a c t d a t a t y p e s a s i n i t i a l a l g e b r a s and t h e

correctness o f data representations. Proc. of Conf. on

C o m p u t e r G r a p h i c s , P a t t e r n R e c o g n i t i o n and D a t a

Structures, 1975.

Guttag, J3V.: The specification and application to

p r o g r a m m i n g o f a b s t r a c t d a t a types. Ph.D. thesis,

Univ. o f Toronto, 1975.

H u p b a c h , [LL., K a p h e n g s t , H., R e i c h e l , H.: I n i t i a l

algebraic Specifications of data types, parameterized

data types, and algorithms. VEB Robotron, Zentrum für

Forschung und Techn ik , Dresden, 1980.

Hünke , H. (ed.):ääyftware Engineerin Environments.

North Holland Publ. Co. , Amsterdam, 1 9 O .

K a m i n S.: F i n a l d a t a t y p e specifications: a n e w d a t a

type Specification method. 7 t h POPL, Las Vegas, 197
9.

Klaeren, H.: A simple class of algorithmic specifica-

t i o n s o f a b s t r a c t s o f t w a r e m o d u l e s . P r o c . 9 t h M F C S

1 9 8 0 , LNCS V o l . 8 8 , pp 3 6 2 ~ 3 7 4 .

K l a e r e n , H.: A c o n s t r u c t i v e m e t h o d f o r a b s t r a c t

a l g e b r a i c s o f t w a r e S p e c i f i c a t i o n . fi x fi h V o l . 3 0 , b k L
 2 ,

pp. 139 - 204, Aug. 1984.

Loeckx, J.: Algorithmic specification o f abstract data

t $ 8 8 . P r o c . 8 t h I C A L P , L N C S 1 1 5 , J u l y 1 9 8 1 , 1 n L 129—

l .

Loeckx, J.: Algorithmic specifications: A constructive

specification method for abstract data types. Beri
cht

A 84/03, Fachrichtung Informatik, Universität des

33

[Lz 7a}

[MG 85]

[Mor 73]

[Pad 79]

[Pad 83]

[sw :2]

LTWW 78]

[www 82]

[Wa 79]

[211 7 A]

LzLT'sej

Saa r l andes , April 1984. (to appear in TOPLAS)

L i s k o v , B.H., Z i l l e s , S.N.: Programming. w i t h Abstract

Data Types. SIGPLAN Notices Vol. 9 , 1979,1ML A, pp.

50-59—

M e s e g u e r , .] „ G o g u e n , . J u I n i t i a l i t y , induction, a n d

computability. I n n WL Nivat, J . Reynolds (eds):

Algebraic Methods in Semantics. Cambridge University

Press,1985, pp.u60 - 591.

M o r r i s , FML.: T y p e s a r e n o t s e t s . Proc. A C M P O P L ,

1973, pp. 120 — 124.

P a d a w i t z , P . : P r o v i n g t h e c o r r e c t n e s s o f

i m p l e m e n t a t i o n s b y e x c l u s i v e u s e of t e r m a l g e b r a s .

Bericht Nr. 79—8, TU Berlin, Fachbereich Informatik,

1979.

P a d a w i t z , P.: C o r r e c t n e s s , C o m p l e t e n e s s , a n d

C o n s i s t e n c y o f E q u a t i o n a l Data Type Specifications.

D i s s e r t a t i o n , 5N1 Berlin, Fechbereich I n f o r m a t i k ,

Bericht Nr. 83—15, 1983.

S a n n e l l a , [LT., W i r s i n g , M.: I m p l e m e n t a t i o n o f

parameterized specifications, Proc. 9th ICALP 1982,
LNCS Vol. lho, pp 473 — H88.

T h a t c h e r , J.W., W a g n e r , E.G., W r i g h t , J.B.: Data T y p e

S p e c i f i c a t i o n : P a r a m e t e r i z a t i o n éuui t h e P o w e r o f

S p e c i f i c a t i o n T e c h n i q u e s . P r o c . 1 0 t h A n n u a l A C M

Symposium on Theory of Computing. 1978, pp. 119-132.

T h a t c h e r , . J J L , W a g n e r , E J L , W r i g h t , JJLJ D a t a T y p e .

S p e c i f i c a t i o n : P a r a m e t e r i z a t i o n zuui t h e P o w e r o f

Specification Techniques. ACM TOPLAS Vol. H, No. 4,
Oct. 1982 , pp. 711—732.

W a n d , M.: F i n a l a l g e b r a s e m a n t i c s a n d d a t a t y p e

extensions.‘ J . C o m p . S y s t . S c i . 1 9 , 1979.

Zilles, ELN.:.A1gebraic specifications o f data types,

Project MAC Prog. Rep. 11, MIT pp. 52—58, 197H.

Zilles, S.N,, Lucas, P., Thatcher, J.W.: A Look at
Algebraic Specifications. RJ 3568 (A1985), IBM
Research Division Yorktown Heights, New York, 1982 .

34

