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Abstract

Much of the software development activity can be carried out using formal
specifications that have a precise and well defined semantics, making it
possible to formally verify the correctness of the development sieps. In
order 1o support this claim we present an algebraic specification method
that provides both axiomatic and aigorithmic techniques and illustrate it by
working through an example development. Our method is realized in the
specification development language ASPIK, which is a core component of an
integrated software development and verification sysiem. The semantics of
ASPIK is based on the new notion of canonical term functor which
generalizes the notion of canonical term algebra, and we show how this
notion allows a uniform integration of axiomatic and algorithmic
approaches by using the concept of algorithmic constraints.
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1. Introduction

Many software development models view the software development
process to consist of a sequence of succesive phases where each subsequent
phase refines ( models, implements, etc.) the result of the previous phase;
for a survey see e. g [Hin 80] In most of the models the first phases
usually deal with informal descriptions consisiing of e.g. texts in natural
language and graphical representations. Often, the first phase dealing with
formalized objects and having a rigorous semantics is the coding phase; ie.
the first formalized problem description is the problem solution itself,
namely the program. Obviously, this makes it impossible to check in some
mathematically precise way the consistency of the problem solution with
the preceding problem descriptions or specifications since the latter must
be given in a formal language as well.

During the last decade a lot of work in formal semantics of programming
languages has been done and the development of rigorous specification
methods laid the basis for a study of the relationship between a program
and its specification. In this paper we argue that much of the software
development activity can be carried out using formal specifications that
have a well defined semantics, making it possible to verify formally the
correciness of the development steps. In particular, we show how the

paradigms of “stepwise-refinement” and “verify-while-develop” are
realized in this approach.

Our work is based on the algebraic specification method which was first
suggested by Zilles ([ Zil 74 1), Guttag ([ Gut 75}), and the ADJ group ([GTW
78 ]). We use a so-called loose approach where each specification has
many non-isomorphic models in general, examples of loose approaches are
the canon specifications of [ HKR 80 ], or Clear [ BG 77, 80 ], CIP-L [ CIP 85
1 and Look [ ZLT 82 ]. On the other hand we combine loose axiomatic
specifications with an aigorithmic definition technique as suggesied e.g. by
Cartwright | Cart 80 1, Kiaeren [ Ki 80, 84 ], and Loeckx [ Lo 81, 84 ] and
integraie both in a uniform way.

Our approach was developed for the Integrated Software Development and
Verification ( ISDV ) project and is employed in SPESY, a prototype system
resulting from the ISDV project ([ BGGORY 83 1, { BV 85 ], [ BOV 86 ]).



This paper is organized as follows:

In section 2 we state some algebraic preliminaries used in the sequel and
fix our notation. In section 3 we describe the development scenario of our
approach, which is illustrated in section 4 by working through an example.
In section S we show how this scenario is realized in the ISDV system by
our specification development language ASPIK and its suppport
environment SPESY. In section 6 the formal semantics based on the new

notion of canonical term functor is outlined, and section 7 contains a
summary and an outlook.

2. Preliminaries: Algebraic Specifications

As suggested by Morris [ Mor 73 ] "types are not sets”, but a collection of
data together with operations that can be performed on these data, and
according to Liskov and Zilles [ LZ 74 ] "an abstract data type defines a
class of abstract objects which is completely characterized by the
operations available in these objects”. This led to the guestions of how to
specify the behaviour of the operations without referring in any way to the
representation of the objects. The algebraic approach to abstract data type
specifications that has been accepted as the most promising one was first

carried out by Zilles ([ Zil 74 1), Guttag ({ Gut 75 1) and the AD] group
([GTWW 75a ).

The formalization given by the AD]J group defines the notions of “signature”
as name space, "algebra” as representing a concrete data type, and

“specification” as defining an abstract data type by a class of isomorphic
algebras.

A signature & = ¢S, Op > consists of a set S of sorts or types and an S* x § -
sorted set Op of typed operation names. For op € Op the notation op: Sq - Sp

- s means that op has argument sorts §4 - Sp and target sort s.

AZ-algebra A =<{AglseS ) {opp: Agq X .. X Agp > Aglop: sy .85, 5 €
Op } > provides a data set or carrier A for each sort s and an operation op 5
for each operation symbol op in Op.

A specification SP = < X, E > consists of a signature Z and a set E of sentences
over Z. This defines the class of « £, E >-algebras which are all Z-algebras



satisfying the sentences E. The isomorphism class of the initial
& Er-algebra is the abstract data type specified by SP.

The initial approach of the AD]-group is an example of a so-called fixed
approach where a specification has only isomor phic models.

Fixed approaches were generalized to so-called loose approaches where a
specification SP = <£,B> may also have non-isomorphic models; for example,
the class of ali T-algebras satisfying E is considered, not just the initial
ones. Whereas the initial as well as the terminal approach ( eg. [Wa 791 1
Kam 801) have to restrict the types of admissible sentences in order to
guaraniee the existence of an initial (resp. terminal) model, there is no such
need in a loose approach. Only equations are considered in [GTW 78],
positive conditional equations in [TWW 781, and universal Horn sentences
in [EKTWW 801, whereas in the loose approach of {CIP 85] arbritrary first
order formulas are allowed. Other loose approaches are e.g. [BG 77, 80, 81},
[HKR 801, [SW 821, [ZLT 82], and [EWT 82].

3 Software development using joose algebrzic specilications

There are several reasons in favour of a loose approach as a basis for
formalized software development. Firsily, in the early phases of design and
specification one would like to have a rather rich language with enough
expressive power so that the properties and characteristics of the
operations and functions under consideration can be specified directly
without having to take into account any particular restrictions on the types
of admissible sentences. Secondly, from the controversy about whether the
initial or the terminal approach is "best” ( ¢.f. [ MG 85 1), it seems apparent
ihat both should be complemented by a technique without such a
universiai initial or terminal consiraint. Thirdly, whereas in a fixed
approach a complete set of axioms is required right [rom the beginning ( c.
£ the sufficient completeness problem in eg. [EKP 78], [Pad 83]). in the
loose approach a specification can be gradually refined by making more
design decisions and thereby restricting the class of models.

This can be done by elaborating the signature and adding sentences. More
formaily, a refinement ¢: 5Py - SP, between the specifications SPy and SP4

is a type preserving translation ¢:Z; > 25 of the signature of SPy to that
of SPZ which respects the sentences Ei of Spi in the sense that for every p
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€ Eq the translation ¢(p) is contained in the sentences E, of SP,. Our model

of specification development via refinements is sketched in figure 3.1, It
proceeds from an abstract specification which has a small signature, few
sentences but many models over intermediate specifications with a more
elaborated signature, more sentences and fewer models down to a rather
concrete specification which has a completely elaborated signature and a
sufficient set of sentences in order to obtain only isomorphic models. Every
model of this concrete specification may be used as a prototype.

In order to support such a specification development process which
gradually proceeds from the abstract to the concrete level, there shouid be
types of sentences supporting a very high level of abstraction, like
axiomatic predicate calculus formulas. On the other hand there should also
be more concrete types of sentences like constructive definitions and
algorithms. Moreover, both types of sentences should be arbitrarily

combinable such that the intermediate specifications may have both
axiomatic and algorithmic sentences.

While there are fixed approaches providing constructive and algorithmic
techniques (IK! 84), [Lo 84]) and loose approaches providing axiomatic
techniques ([BG 80], [CIP 85]) but none integrating both, we propose a
loose approach providing both axiomatic and algorithmic techniques as
required above. The key ideas are:

1. Parameterize a constructive technique so that loose axiomatic specifi-
cations may be used as formal parameter descriptions.

2. Define the semantics of a parameterized constructive description as a
function from parameter algebras to constructively extended algebras.

3. Consider parameterized constructive descriptions as algorithmic senten-
ces.

4. Allow both axiomatic and algorithmic sentences to occur in the set E of
a specification SP = < Z, E ».

4. How to build a tower

Before going into more formal details, we will illustrate our approach by
working through an example development.

The problem of building under certain constraints a tower as high as
possible is described informally in section 4.1 and stepwise formalized and

4
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refined in the the following subsections. An overview of the resuliing
specifications and their refinement relations is given in figure 4.1. In
section 4.2 we develop the specification TOWERSIG of the signature in
which to express our problem. In section 4.3 we add first order predicate
formulas in order io obtain the axiomatic specification TOWER.AX. Using
lists of natural numbers as specified in NAT-LIST, the axiomatic description
is algorithmically refined in two steps in sections 4.4 and 4.5, respectively,
yielding the specifications TOWER-AS-LIST.AX&ALG and
TOWER-AS-LIST.ALG. For each refinement step we give the verification
conditions that have to be proven in order (o ensure the correctness of the
refinements. In section 4.6 we discuss alternative development steps where
eg. TOWER.AX is refined successively first to an axiomatic specification
TOWER.AX1 and finally to an algorithmic  specification
TOWER-AS-RESTRICTED-ST ACK.

4.1, Info i problem cription

In a room some blocks are lying around. They shall be used to build as high
a tower as possible. Naturally, the size of the tower is limited by the ceiling.
All blocks are cubes and, for simplification, we may assume the lengths of
the blocks and the height of the room to be integer valued. The solution

must fix neither the size or number of the blocks nor the height of the
fooMm.

4.2 The signature specification

{n order to formalize the problem we may abstract from the notions of
room and block. All we need is a natural number constant ceiling for the
height of the room and a function #blocks (n) giving the nu mber of blocks
of length n for each natural number n.

A tower is either flat for else constructed by successively putting a block on
top of another tower. It may be destructed similarly by repeatedly
removing the block on the top. Since the only relevant property of blocks is
their length we may represent the blocks of the tower by their lengths.
Thus, e.g. put-on is a funciion taking a tower and a natural number and
yielding again a tower: put-on: tower nat - nat.



Every tower t has a height and uses a certain number ftused (t,n) of blocks
of length n. With these two predicates we may characterize admissible
towers. Finally we are asked to build the highest admissible tower.

We will not start from scratch but assume a specification BOOL of the
booleans (for the predicates) and a specification NAT of the natural
numbers for measuring to be already available. Letting BOOL u NAT denote
their componentwise union we may specify our vocabulary as follows:

spec TOWERSIG = BOOL u NAT v

sorts tower

ops #blocks: nat - nat
ceiling: nat
flat: tower
put-on: tower nat - tower
remove: tower - fower
top: tower - nat
height: tower - nat
fused: tower nat - nat

admissible: tower - bool
highest-tower: - tower
endspec

Our notation of the specification should be self-explanatory. However,
beside the explicitly declared operation names we have an error constant

error-s for each sort s, i.e. error-tower in the example above, which may be
used to specify undefined operation calls.

4.3 A first axiomatic specification

According to the informal description we do not make any assumptions
about the ceiling or the number and size of the blocks given by #blocks.
Hence we may directly proceed to characterize the height of a tower t as
the sum of its elements, and the number #used(t, n) of blocks of length n
used for t as the number of occurrences of "n” in t. Then we may describe t
as admissible exactly if its height does not exceed the ceiling and if it does
not use more blocks than available according to #blocks. The operation top

shall return the topmost element of a non-fiat tower and puti-off shall
remove that element.



Since we are only interested in admissble towers, we should restrict these
conditions on the operations to admissible towers only in order to avoid
over-specification (see (2) below). The inductive description starts with the
"flat” tower which is evidently admissible (1).

Finally, the highest tower must be admissible and it must be of maximal
height w. r. t. all admissible towers (3).

We specify these conditions by adding them as axioms (o the signature
specification TOWER.SIG:

spec TOWER.AX = TOWERSIG v
axioms
admissible (flat) = true
(1) height (fiat) = 0

Vv n : nat. fused (flat, n) = 0

/% t: tower. V n : nat.
\ admissible (put-on (, n)) = true
& admissable (1) = true &
height (1) < ceiling &
fused (i, n) s #blocks (n)

¥V i:tfower. V n, m :nat.

{(2)=  admissible (put-on (t, n}) = true & n + m

-  height (put-on (1, n)) = height (t) +n &
$used (put-on (t, n), n) = #used (i, n) + 1 &
¥used (put-on (t,n), m) = #used (t, m) &
remove (put-on (t, n)) =t &
top (put-on (t,n)) ~n

s
s
i‘\--.
{écjmissibie {highest-tower) = true

(3) 4V t : tower. admissible (t) =true
w = height (1) < height (highest-tower) = irue

endspec

As in the signature specification in section 4.1, error-constants are
implicitly declared in order to support a concise and convenient notation.
For ihe same reason we also have implicit axioms for error propagation,
such as top {error-stack) = error-nat.



Moreover, all axioms are interpreted such that quantified variables are not
bound to errors: For example, under our interpretation, the second axiom of
(1) is equivalent to the standard interpretation of:

VY n: nat. n=+ error-nat = #used(flat,n) =0

Since the specification TOWER.AX includes the specification TOWER.SIG, the
inclusion map

TOWERSIG - TOWER.AX
X P X for all x

describes a refinement relation. It restricts the models of TOWERSIG to
those algebras that satisfy the axioms of TOWER.AX. The latter still contain
non-isomorphic models since we have not yet specified top and remove for
flat towers, top, remove, height, and #used for non-admissible tower, nor

have we excluded elements of sort tower that cannot be constructed with
the given operations.

4.4 A partially algorithmic specification

Looking at the argument and target sorts of operations flat, put-on, remove,
and top there is a close similarity to the basic operations of data type list.
In fact, when translating tower to list, flat to nil, put-on to cons, remove to
cdr, and top to car we observe that the standard lists over natural numbers
satisfy all axioms in TOWER.AX concerning these operations. That means,
given a specification NAT-LIST of such lists we should be able to extend it
to a refinement of TOWER.AX by supplying axiomatic or algorithmic
definitions for the remaining tower-operations in TOWER.AX. For that
purpose we first discuss the algorithmic specification NAT-LIST:

spec NAT-LIST = BOOL u NAT u
sorts list
ops nil ¢ - list
cons : list nat - list

car : list - nat

cdr : list - list

nil? : list » boo!
it io Gatini

constructors nil, cons

10



define consirucior ops
nil = «nil

cons (1, n) = =cons (1, n)
jefine o
car (1) = case 1 is «nil: error-nat
«cons (11, ni) - 0t

gsac
cdr (1) = case | is  xnil: error-list

xcons (11, ni): it

€8dcC
nil?(1) = case 1 is xnil: irue
otherwise: false
esac

endspec

lLike TOWER.SIG, NAT-LIST includes BOOL v NAT addmg the list-specific
signature parti. Following the key word glgoril 1 these new
components are defined constructively, first ine data sets and then the
operations.

The list data set (or list carrier) is defined by declaring nil and cons as
constructors generating the Herbrand-Universe {nil, xcons(nil, ny), xcons

{consinil, n}) nz) n ¢ N} u {error-list) of all ierms built from nil, cons

and the natural numbers, and adding the error constant separately. Note
thai the prefix = is used to distinguish data objects from operation

applications.

Qur specification method allows to restrict this term -generated sel by
suwlvmg an algorithmically defined characteristic predicate is-list: list -
bool. It is required to respect subterms so that the restricted carrier is stili
closed under subterms (subterm properiy). This restriction guarantees that
siruciural recursive definitions are weli-defined and that structural
induction is available as a proof method.

in the NAT-LIST specification a define-carriers clause with such a
characteristic predicate is omiited since we are interested in all terms
generated from nii and cons. In 4.6 we will give an example of a non-trivial
characteristic predicate.



The operations are defined in two steps, starting with the constructor

operations. Their definition following the keyword define construciors ops
is constrained so that

cop(X ¢, ... Xy) = xcop(Xy, ..., Xp)

whenever xcop{Xs, .. X,) is in the carrier. This consiructor propert
i n

establishes the special meaning of the constructors and guarantees that the
constructor operations are well-defined. In the NAT-LIST specification the
constructor property completely determines nil and cons as operations
since the list carrier is unrestiricted. The definition of the constructor
operation is non-trivial whenever the carrier is restricted.

Following the keyword define ops the remaining operations are defined
using if-then-else schemes, case-schemes which distinguish between the
possible constiructors, and recursion. Previously defined operations,
constructor operations and error-constanis may be used as basic

operations, these restrictions guaranteeing that the remaining operations
are also well-defined.

As an example, consider the definition of car(l) in the NAT-LIST
specification. The case-scheme distinguishes whether | is xnil or composed

by “cons’ing a natural number n1 to a list [1. In the first case car is defined
to yield an error, in the second case it returns the element ni.

In [BV 85] we have elaborated purely syntactic conditions guaranteeing the
semantic subterm- and constructor-properties and the well-definedness of
all operations. These conditions are checked by the SPESY sysiem. Even

more, as far as possible, these conditions are exploited to generate parts of
the specification automatically.

Our algorithmic definitions with their explicit definitions constitute a
particular restriction on the models: Every model must have a carrier that
is isomorphic to the term carrier given in the algorithmic definition.
Moreover, all operations on that carrier must be functionally equivalent to
the algorithmic operation definitions which are interpreted with a least
fix-point semantics. Thus, the algorithmic definitions constitute a constraint
mechanism as it is needed in every approach considering all models of a
specification (c. . [HKR 80} and [BG 80l). Details of the semantical

12



interpretation of algorithmic definitions by canonical term funciors are
given in section 6.

in order to extend NAT-LIST to a specification TOWER-AS-LIST.AX&ALG as
refinement of TOWER AX we have to add names for the missing operations.
Again no assumptions are made about #blocks and ceiling. The operations
sum (corresponding to height in TOWER.AX), #used, and admissible are
algorithmically defined for arbitrary lists so as 0 satisfy the corresponding
axioms of TOWER.AX. The problem of devising an algorithm to compute the
maximal-list (corresponding to the highest tower) is deferred until a later

stage, therefore, the corresponding axioms (3) from TOWER.AX are simply
translated:

spec TOWER-AS-LIST.AX&ALG = NAT-LIST v
ops #blocks: nat- nat
ceiling: - nat
sum: fist - nat
fused:  list nat -» nat
admissible: list » bool
maximal-list: > list

algorithmic definitions
define ops
sum{l) =if nil?(1)
then 0
else car(l) + sum(cdr(l))
#used(l, n) = if nil?{1)
then 0
else if cdr(i) =n
then 1 + #used (cdr(l), n)
else #used {(cdr(l), n)
admissible(l) = if nil?2(1)
then true
eise if sum(l) < ceiling and
#used(l, car(1)) < #blocks(car(l))
then admissible(cdr(1))
¢lse false



axioms
admissible (maximal-list) = true
(4) { ¥ I: list. admissible(l) = true
= sum(l) s sum(maximal-list) = true
endspec

Since TOWER-AS-LIST.AX&ALG includes NAT-LIST, it obviously refines this
specification. In contrast the refinement relation to TOWER.AX is non-trivial
and is described by the following signature translation 94:

91: TOWER.AX - TOWER-AX-LIST. AX&ALG

tower ~ list

flat o nil

put-on » cons

remove - cdr

top + car

height » sum

highest-tower » maximal-list

IpX otherwise

In order to establish g4 as a correct refinement relation we have to
translate the axioms of TOWER.AX via g to formulas over the signature of

TOWER-AS-LIST.AX&ALG and prove their validity in the latter specifi-
cation: '

axioms
admissible (nil) = true
(1)4 sum (nil) =0
¥ n : nat. #used (nil, n) = 0

f—V t: list. ¥ n: nat.
admissible (cons (t,n)) = true
& admissible (t) = true &
sum (t) < ceiling &
#used (t, n) < #blocks (n)

Y t: list. ¥V n, m: nat.
(2) < admissible (cons {t,n)) =true & n+m
= sum (cons(t,n))=sum(t}+n &

14



! #used {cons (i, n), n) = Hused (i, n)+ 1 &
% fused (cons (t, n), m) = Hused (t, m) &
x. odr (cons {t,n)) =1 &

car {cons (1, n)) = n

admissibie (maximal-list) = true
(3}4 ¥ t : list. admissible (t) = {rue
ssum {t) < sum (maximal-list) = true

From the algorithmic definitions of TOWER-AS-LIST AX&ALG we can prove
(1) - (3) by induction on the list carrier set, thus ensuring the correctness of
the refinement relation 94.

4 f lgorithmi ificati

In order to give a fully algorithmic solution to our problem we are left to
devise an algorithm to compute the maximal admissible list. This algorithm

willi then be added to the algerithmic  definitions of
TOWER-AS-LIST.AX&ALG, yielding the specification TOWER-AS-LIST.ALG.

The idea behind the algorithm is to generate all relevant admissible towers
and to remember the highest one consiructed so far. On termination the
latter will be the highest admissible tower at all. Since the height of a tower
does not change when permuting its components we need to consider only
towers with decreasing block-size as relevant towers. In order to generate
them we extend a current admissible tower by a new block - called
gapfiller - which is the largest block not yet used for the current lower and
stili fitting in the gap between tower and ceiling. Since we need to consider
only relevant towers, blocks that are larger than the topmost block of the
curreni tower need not be considered as gapfillers. If there are no more
gapfillers available we backirack by repeatedly removing the topmost

block from the current tower untii a new gapfiller is found to be put on the
cut-off tower.

Realizing this idea we have four operations:

gapfiller(l, gap) determines ihe size of the largest biock not yet used in !
that fits into "gap”.



iry(l, max!) and backtrack(l, maxl) cooperate by extending resp. destroying
the current list | so that all relevant admissible lists
are generated. The maximal list encountered so far
is remembered as “maxl”.

maximal-list starts the search by calling try with a current list containing
only the size of the largest block filling the gap
between floor and ceiling.

All but the last operation are declared as private ops because they shall not
be visible outside the specification TOWER-AS-LIST ALG:

spec TOWER-AS-LIST.ALG = TOWER-AS-LIST.AX&ALG u
algorithmic definitions
private ops gapfiller: fist nat - nat
try: list list - list
backtrack: list list - list

define ops
maximal-list = et base - gafiller (nil, ceiling) in
if base =0
then nil

else try (cons (nif, base), nil)

gapfiller(l, gap) = if gap = 0
then 0
else if #blocks(gap) - #used(l, gap) > 0
then gap
else gapfiller(l, gap -1)

try(1, max!) - let ontop - gapfiller(l, min (car(1), ceiling - sum(1))) in
if ontop =0
then if sum(l) > sum(maxl!)
then backtrack(l, 1)
else backtrack(l, maxi)
else try(cons(l, ontop), maxl)
backtrack(l, max!) = let destroyed = cdr(l) in
let ontop = gapfiller(destroyed, car(l) - 1) in
if ontop = 0
then if sum(destroyed) =0
then |

16



else backtrack(desiroyed, maxl)

else try(cons(destroyed, ontop), maxl).
endspec

Since TOWER-AS-LIST.ALG includes TOWER-AS-LIST.AX&ALG it s
obviously a refinement of the latter specification. The only question is
whether TOWER-AS-LIST.ALG is still consistent, which means that the
algorithmic definition of maximal-list satisfies the two axioms (4) for that
operation. To answer this question we can rephrase the axioms as

admissible(maximal list) = true
admissible(nil) = true =

sum(nil) < sum(maximal-list) = true
V I: list. ¥V n:nat.
(admissible(l) = true =

sum(l) < sum(maximal-list) = true)
=

(admissible(cons(i,n)) = true =
sum(cons(l,n)) s sum(mazimal-list) = true)

for a proof by induction on the structure of the lists.

Refinement relations are closed under composition. Therefore, we can
compose 9 Wwith the inclusion from TOWER-AS-LIST.AX&ALG to

TOWER-AS-LIST.ALG to obtain the refinement relation

9o: TOWER.AX - TOWER-AS-LIST.ALG
X - 91 (x) for all x

Since the operations ceiling and #used are left unrestiricted according to our
informal problem statement, the specification TOWER-AS-LIST.ALG still has
non-isomorphic models. However, for every fixed interpretation of these
two operations, there are only isomorphic modeis due to the interpretation
of the aigorithmic definitions. Therefore, TOWER-AS-LIST.ALG is a complete
algorithmic specification with respect to the problem statement.

4.6 Alternatives
As aiready mentioned, the first axiomatic specification TOWER.AX is not

i



complete for the following reasons:

~ the data set of sort tower may contain unreachable objects

- it may contain non-admissible towers

_ the behaviour of the operations top and remove applied to the flat
tower is not specified

- except for admissible, the behaviour of all operations w. r. t. non-
admissible towers is not specified.

We may answer these open questions except for the first one by adding
axioms to TOWER.AX that

_ determine the tower data set to consist of all admissible towers only

- specify that top and remove result in errors when applied to the flat
tower

yielding a more precise axiomatic specification TOWER.AX1. In order to
exclude unreachable elements first order formulas are in general not
powerful enough. Instead, second order formulas or a constraint
mechanism as mentioned in section 4.4 must be used.

[t is interesting to see that the algorithmic specification
TOWER-AS-LIST.ALG, which was naturally developed from our first but
still incomplete axiomatic specification TOWER.AX, is not a refinement of
the refined axiomatic specification TOWER.AX1 since the list data set
includes non-admissible lists. In order to obtain an algorithmic refinement
TOWER-AS-RESTRICTED-STACK of TOWER.AX1 we could specifiy a type of
restricted stacks that exactly correspond to the admissible towers by taking
the admissible operation as characteristic predicate. Since these restricted
stacks are isomorphic to the subset of admissible lists we can use an
analogous algorithm to compute the highest restricted stack.

The specification method presented in section 4 is not immediately suited
for practical use since it lacks any structuring, parameterization, and
instantiation facilities. Such mechanisms are provided in our specification
development language ASPIK which allows to define hierarchically
structured, loose axiomatic and algorithmic specifications as well as
hierarchically structured maps defining refinement and implementation
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refations between hierarchical specifications.
As an example we show in figure 5.1 how the specification

TOWER-AS-LIST . AX&ALG of section 4.4 could be hierarchically composed of
several ASPIK specifications which are skeiched in figure 5.2.

TOWER-AS-LIST.AX&ALG

|

TOWER-AS-LIST

BLOCKS NAT-LIST CEILING
NAT
BOOL

Figure 5.1: Hierarchical structure of the tower specifications in ASPIK
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spe¢ BOOL .. endspec

spec NAT
use BOOL

.

spec BLOCKS

use NAT

ops #blocks : nat -» nat
endspec
spec CEILING

use NAT
ops ceiling : -» nat

spec NAT-LIST

use NAT

sorts list

ops nil - list
cons : list nat - list
car : list - nat
cdr : list - list
nil? list - bool

spec body .. <algorithmic definitions part of NAT-LIST in section 4.4
endspec

spec TOWER-AS-LIST
use BLOCKS, CEILING, NAT-LIST
ops sum : list » nat
#used : list nat - nat
admissible : list » bool
spec body
.<algorithmic definitions part of TOWER-AS-LIST.AX&ALG in

section 4.4>
endspec
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spec TOWER-AS-LIST.AX&ALG
use TOWER-AS-LIST

ops maximal-list : - list
props .. <axioms-part of TOWER-AS-LIST. AX&ALG in section 4.4

endspec

Figure 5.2: Specifications for the highesi-lower problem in ASPIK
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A hierarchical ASPIK specification can be instantiated by substituting
arbitrary subspecifications in its hierarchy by other hierarchical
specifications via refinement maps describing the replacements to be
performed. This concept disposes entirely of the notion of formal
parameters since the specifications to be substituted need only to be
identified at instantiation time, together with the actual parameters. In
contrast to usual parameterization concepts where the formal parameters

must be statically declared, this concept of ASPIK is called dynamic
parameterization.

As an example consider the term
TOWER-AS-LIST.AX&ALG { CEILING » NAT }

defining a particular instance of the specification TOWER-AS-LIST.AX&ALG
where "CEILING -» NAT" is the ASPIK object

map CEILING -» NAT
base NAT

ops ceiling =15
endmap

describing a refinement relation from the specification CEILING to the NAT
specification.
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In this section we describe the concepts underlying the semantics of our
approach to algebraic specifications. In section 6.1 we recall the definition
of canonical term algebra introduced by the AD]J group in [GTW 78] and
show how this notion can be generalized 1o canonical term functors,
providing suitable models for a parameterized constiructive definition. In
section 6.2 we explain the meaning of our algorithmic specifications in
terms of canonical term functors. In section 6.3 we show how canonical
term functors can be interpreted as algorithmic constraints on the specified
models, and in section 6.4 we discuss how the integration of axiomatic and
alorithmic techniques in the semantics of specifications is achieved.

6.1 Canonical algeb U

Term algebras have played an imporiant role in abstract data type theory.
They allow to define a particular algebra by explicitly introducing iis
carrier sets and by defining its operations on these carrier sets still in a
very abstract way and without having to invent some fancy representation:
the carriers are just syntactic items, ie. well-formed terms over the

algebra’s signature, and the operations act on these terms by composing or
decomposing them.

Term algebras are used for the quotient term algebra construction in the
initial approach of [GTW 78]. In the quotient term algebra one has to deal
with equivalence classes while in a canonical term algebra (cta) a
representative is chosen for each equivalence class. By imposing a certain
discipiine on the choice of the representatives the structure of the terms
can be exploited. For example, proofs can be done by structural induction as
in ihe cited paper of the AD] group or in [Pad 79].

The power of ihe cta concept is demonstrated in [GTW 78] by showing that
for every equational specification an initial cta exists. However, the proof is
non-consiructive, and in general there is no algorithm which generates an
initial cta from an equational specification.

This is the reason why we devised a construciive definition method based
on the notion of cia.
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Definition 6.1 [canonical term algebra, cta]

Let T = <5,0p> be a signature and A € Alg(Z) an algebra. A is a canonical
T-term algebra ( E-cta, or just cta) iff

(1)VseS. Age Ty (term property)
(2) V op: 81..8, +s€0p.

oplty,..tg) € Ag
2l ehAy & &tyeAy (subterm property)
& op p(ty,..ty) = oplty,..tg) (constructor property)

Since the models underlying our overall approach are strict algebras we
specialize the definition to strict canonical term algebras:

A strict algebra has carriers with a minimal element, called the error
element, and strict operations, propagating the error elements. Whereas

Alg(Z) denotes the class of all £-algebras, we use EAIg(Z) to denote the class
of all strict algebras.

To make the error elements adressable in our specifications we introduce
error constanis error-s for each sort s in a signature X yielding the

signature Err(Z). Thus, a strict Z-algebra in particular is an ordinary
Err(Z)-algebra.

Now we can replace £ by Err(Z) and Alg(Z) by EAIg(Z) in the definition of
cta. Additionally we require that in every carrier the error-element is
represented by the error-copstant. The latter requirement is not necessary,
but convenient, since it allows to define the error-constant implicitly.

Definition 6.2 [strict cta]

Let £ = <50p> be a signature and A € EAIg(Z) a strict £ -algebra. A is a
strict Z-cta iff

(1) A is an (ordinary) Err(Z)-cta
(2)VseS .error-se A,

For practical purposes, the concept of cta is not adequate enough: Instead of
defining an entire cta from scratch we would like to compose them from
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reusable “cta-pieces”, some of which may have been defined previously and
stored in a library. Except for some elementary cias such ‘cta-pieces”
correspond to instances of "parameterized ctas”. To write parameterized
clas we would like to start with a class of "parameter algebras” for which
we do not assume any term structure. They are extended by new carriers
and operations obeying the cia-requirements (ie. term, subterm, and
cofistructor propertics) refative to the parameter algebras. Obviously, this
extension should not change ihe old soris and operations in the parameter
algebras. By defining the extension not only on the parameier algebras but
also on the homomorphisms beiween them we gel a strongiy persistent
functor {rom the parameter aigebras to the extended algebras.

In order to ease the precise definition of these ideas we first introduce

some auxiliacy notions for expressing the cta-requirements relative to a
parameter algebra A.

Definition 6.3 {term-, subterm-, constructor properiy]

Let £. % be signatures such that Z¢ Z .
Let A e Alg(E£) and A" e Alg(Z).

(1) A" has the (Z'- £)-term property w.r.l. A
iff
VseZ'—Z.AS'ETELZ(A)S

(2) A" has the (£ - £)-subterm property w.r.i. A
iff
VseZ -Z.Vop:sy .. sn—+se2‘~2‘.
opty,..lp) € Ag
=¢rt1 € AS] & .. & tnE Asn,

(3) A" has the (£ - %)-constructor property w.r.t. A
iff
Vsel-&Z. Vop:sg..8;~ seEx -Z
op(tq,..ty) € Ag

= opA'(tl ,....tn] - op(t1 ....,in]



Definition 6.4 [canonical ter m functor, ctf 1

Let T - % be a signature inclusion, and let C s Alg(Z) and C & Alg(Z)
be subcategories closed under isomorphisms.
A functor

g:C-C
is a canonical { £, &' )-term functor ((Z, £')-ctf, or just ctf)
iff

(1) g is strongly persistent:
Algy) - g = id¢

(2) For every A e C, (2.1) - (2.3) hold:
(2.1) g(A) has the (£ - £)-term property w.r.t. A
(2.2) g(A) has the (Z "- £)-subterm property w.r.t. A
(2.3) g(A) has the & - £)-constructor property w.r.t. A

The requirement in Definition 6.4 that C and C are closed under
isomorphisms is not essential; it corresponds to the concept of absiract data
type theory that isomorphic algebras are considered to be ‘equal.

Just as we obtained the definition of a strict cta from the definition of cta
by adding the implicit error constants and the error requirement (2) in
Definition 6.2, we define a strict ctf to be a ctf between two categories of
strict algebras which satisfies the error requirement w.r.t. the new carriers.

Definition 6.5 [strict ctf}

Let v: T » & be a signature inclusion, and let C ¢ EAlIg(E) and C" < EARR(E")
be subcategories closed under isomorphisms. A functor
g:C-C
is a strict (£.2")-ctf
iff
(1) g is an (Err(Z), Err(Z7))-ctf
(2)VsZ-%.V AeCerror-seg(A)g

As an example for a strict cif let C be the category of one-sorted algebras,
and C the category of lists over arbitrary elements where the list
operations have the usual names: nil, cons, car, and cdr. Now let g be a

functor g: C » C whose object part is defined by extending every one-soried
algebra A with carrier set {e;|ie I} by the list carrier set
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{sil, coas(nii.ei}, cansiconsinii,ei),ez),... tiel}

and by the usual list operations such that e.g.

cons,y( A)(cons(nii,ei )es) = cons(cons(nile;).ey).

Then g is a cti {or the foliowing reasons:

1. g is strongly persistent since the parameler algebra A is not
modified.

2. g(A) has the term property because the list objects are term
generated by the new operations nil and cons over the elements
of A.

3. g(A) has the subterm property since for every list carrier
element cons(t.e;) t is also in the list carrier.

4. g(A) has the constructor property since for the constructor
operations nil and cons we have nilg( A) ™ nil and consg( A)(t.ei)

- cons(t.e;) for every term cons(ie;) in the list carrier.

The concept of ctf was motivated by the idea to compose cias piecewise.
Hence, a constant cif should yield a cta, a ctf applied to a cta should yield a
cta, and a ctf applied to a ctf should yield again a ctf. These properties are
verified in the following three facts both for the ordinary and the strict
version.

Fact 6.6 [constant cifs are ctas]

Let £ be a signature, A € Alg(Z) [resp. A e EAlg(Z)] and
IA’ Alg(@.9>) » Alg(Z)

[resp. 1: EAlg(«®2,9») » EAl(Z)]

pe the constant functor yielding A. Then we have:
Aisa[strict] Z-cta e 1, is a [strict} (@ &H.Z)-cif.

The next iwo facts state that ctfs are closed under composition and that a
cif applied to a cta yields again a cta.

]
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Fact 6.7 [ctfs can be composed]

Letgqy:Cq»Cypbea [strict] (1,25 )-ctf
and g5: Cy > Cz bea [strict] (22,23)—ctf.
Then

82 °81:C1 (3
is a [strict] (21,23)-c1§.

Fact 6.8 [application of ctfs to ctas]

Let g: C » C be a [strict] (£X)-ctf, and A a [strict] Z-cta with A
€ C. Then

g(A)
is a [strict] Z’-cta.

We now turn to the guestion of how to define ctfs constructively. Because
of the results in the previous subsection this will also give us a definition
method for ctas. It consists essentially of three components:

(1) definition of the class of parameter algebras
(2) definition of the new carriers
(3) definition of the new operations

An obvious choice for (1) is to take a loose algebraic specification < E> and
to let EAI(<Z E>} denote the class of parameter algebras. For (2) and (3) we

can direcly adapt the respective parts of the algorithmic-definitions
construct described in section 4.

For example, the loose specification ELEM = «d{elem},#>,@> with the single
sort elem denotes the class of arbitrary one-sorted algebras.
By simply replacing ELEM for NAT in the specification NAT-LIST in section

4.4 we obtain a parameterized constructive specification ELEM-LIST of lists
over arbitrary elements.
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6.2 Algorithmic constraints

in section 4.4 we explained for the specification NAT-LIST how its list
carrier is explicitly construcied as a set of terms, fiow ils operations are
alorithmically defined, and we pointed out how the subterm and
constructor properties are satisfied.

According to this description the formal meaning of our algorithmic
definitions is a cti. More precisely, let SP be an algorithmic specification
(like NAT-LIST or ELEM-LIST) with parameter specification part <.E> (like
NAT or ELEM) and new signature part

Ziew = SpewOPnew’ (like ({list},{nil.conscarcdrnil?}>).

Then SP denotes a strict canonical term functor
ctfgpr EAlg(ZE) » EAIR(KE U Z o\ B>)

(like our consiruction of lists over the NAT-algebra or over an
ELEM -algebra).

An arbitrary (£ v £ ,,)-algebra A (like the algebra of standard lists over

the natural numbers) satisfies the aigorithmic specification SP exactly if A
is generated - up to isomorphisms - from its T-reduct - {in our example the
NAT -algebra) by the functor cligp.

A little more formally, let 1: Z->X v Z, .o, be the signature inclusion and let
EAlg(y): EAlg(Z v Enew) - EAIg(Z) be the corresponding forgetful functor,
which forgets the new sorts and operations of Z oy Then

A satisfies SP
&

A= thsp(EAig(l)(An

in our example the algebra A of standard lisis over the natural numbers
satisfies CliNAT-LIST But an algebra A" obtained by adding terms like

“defauli-list” or "cons( nil, overfiow)" as new elements to the list carrier of
A does not satisfy ctiyat-11sT- Such elements are called unreachable, and

consiructs that allow to exclude unreachable elements are called
constraints.

For example, [HKR 80], [BG 801 and {EWT 83] use a constraint mechanism
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involving a free functor which is specified by equational theories. The
hierarchy constraints proposed in [SW 82] are weaker in the sense that
apart from requiring true # false they only exclude unreachable elements
("no-junk” condition) whereas the other approaches also require that
generated elements must be distinct ("no-confusion” condition).

Due to the term property of cifs our algorithmic definitions exclude
unreachable elements and therefore serve as a constraint mechanism in our
specification method. This is the reason why we use the term "algorithmic
constraints” for our algorithmic definitions.

Usually, a specification is a pair <Z,E> consisting of a signature Zand asetE
of sentences. Often, sentences are equations or other logical formulas. But,
more generally, any item p may be viewed as a sentence provided we have
a satisfaction condition telling us whether a Z-algebra A satisfies p.

Taking again the specification NAT-LIST from section 4.4, Z is the compiete
signature of NAT-LIST and contains eg. sorts bool, nat, and list. The
axiomatic components of NAT-LIST are first-order formulas. They can
obviously be put into the set E of sentences. The algorithmic components of
NAT-LIST are algorithmic constraints (for the natural numbers and the lists
over natural numbers). So far, no algorithmic approach like [KI 84] or [Lo
84] has considered algorithmic definitions as sentences. But since we have a
satisfaction condition for algorithmic constraints, namely the condition in
section 6.3 about whether an algebra A satisfies an algorithmic constraint
ctigp, we may add our algorithmic constraints to the set E of sentences.

Thus, E may contain an arbitrary mixture of axiomatic first order formulas

and algorithmic constraints representing a uniform integration of axiomatic
and algorithmic techniques.

7. Conclusions

We presented a specification method that allows to formalize much of the
software development process so that the individual development steps can
be proved to be correct by formal verification methods. We demonstrated
why loose algebraic specifications are particularly suited for this purpose.
Whereas previous approaches provide either axiomatic or algorithmic
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definitions our approach integrates both iechniques in a uniform way, using
ihe new notions of canonical term functor and aigorithmic constraints. All
ideas presented here are realized in the specif ication development language
ASPIK which has been implemenied as a core component of an integrated
software development and verification system ([BV 85, [BOV 86b]).
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