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Abstract

Modular properties of term rewriting systems, i.e. properties which are preserved
under disjoint unions, have attracted an increasing attention within the last few years.
Whereas confluence is modular this does not hold true in general for termination. By
means of a careful analysis of potential counterexamples we prove the following ab-
stract result. Whenever the disjoint union R; @ R of two (finite) terminating term
rewriting systems R, R2 is non-terminating, then one of the systems, say R, enjoys
an interesting (undecidable) property, namely it is not termination preserving under
non-deterministic collapses, i.e. Ry & {G(z,y) — z,G(z, y) — y} is non-terminating,
and the other system Ra is collapsing, i.e. contains a rule with a variable right hand
side. This result generalizes known sufficient syntactical criteria for modular termina-
tion of rewriting. Then we develop a specialized version of the ‘increasing interpreta-
tion method’ for proving termination of combinations of term rewriting systems. This
method is applied to establish modularity of termination for certain classes of term
rewriting systems. In particular, termination turns out to be modular for the class of
systems, for which termination can be shown by simplification orderings (this result
has recently been obtained by Kurihara & Ohuchi by a similar, but less general proof
technique). Moreover, we show that the weaker property of being non-self-embedding
which also implies termination is not modular. We prove that the finiteness restrictions
in our main results concerning the term rewriting systems involved can be considerably
weakened. Furthermore, we prove that the minimal rank of potential counterexam-
ples in disjoint unions may be arbitrarily high. Hence, a general analysis of arbitrarily
complicated ‘mixed’ term seems to be necessary when modularity of termination is
investigated. Finally, we show that generalizations of our main results are possible for
the cases of conditional term rewriting systems as well as for some restricted form of
non-disjoint combinations of term rewriting systems involving common constructors.

Topics: Term Rewriting Systems, Termination, Modularity.
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1 Introduction

The question whether properties of combinations of term rewriting systems (TRSs for
short) are inherited from the corresponding properties of the constituent TRSs is of great
importance, e.g. in the field of abstract data type specifications. In principle and also for
efficiency reasons it is very useful to know whether a combined TRS has some property
whenever this property already holds for the single ‘modules’. A simple and natural way
of such ‘modular’ constructions is given by the concept of ‘direct sum’ ([24]) or ‘disjoint
union’.! Two TRSs R; and R, over disjoint signatures F; and F,, respectively, are said
to be disjoint if F; and F; are disjoint, i.e. F; N F2 = @ (in that case the rule sets of R,
and R, are necessarily disjoint, too). The (disjoint) union of two disjoint TRSs Ry, R2
is denoted by R; & Ry. We shall also speak of the disjoint union of Ry and R; using the
implicit convention that R; and R, are assumed to be disjoint TRSs. A property P of
TRSs is said to be modular if the following holds for all disjoint TRSs Ry, Ry: Ry ® R2 has
property P iff both R, and R have property P. Toyama [24] has shown that confluence is
modular. The termination property, however, is in general not modular as witnessed by
the following counterexample of [24]: /

Example 1.1 R : fla,b,z) — f(z,z,2) R, : G(z,y)— =z
G(z,y) =y

Clearly, both R; and R, are terminating, but R, ®R2 admits e.g. the following infinite
derivation:

f(avbl’G(avb)) — R, f(G(a’b)vG(a’b)vG(a’b))
R, f(a,G(a,b),G(a,b))
—R» f(avb’ G(avb))

—R,

Note, that in this example R, is not confluent. Other, more complicated examples
by Klop & Barendregt as well as by Toyama gathered in [23] show that R; & R, may be
rion-terminating even if Ry and R; are both terminating, confluent and interreduced. All
these counterexamples have some common feature. Namely, one of the systems contains
a duplicating rule, i.e. a rule [ — r where some variable occurs strictly more often in r
than in 1, and the other system contains a collapsing rule I’ — ¢/, i.e. 7/ is a variable?. '
This observation was exploited by Rusinowitch [22] and Middeldorp [17] (see conditions
(a)-(c) below). The counterexamples in [23], involving only two confluent systems R; and
R4, contained non-left-linear rules which turned out to be essential as shown by Toyama,
Klop and Barendregt [25] (see condition (d) below). These results may be summarized as
follows: ‘ .

Given two disjoint TRSs R;, R,, their disjoint union R; @ R, is terminating, if Ry,
R, are terminating and one of the following conditions is satisfied:

(a) Neither Ry nor R; contains a duplicating rule [22].
(b) Neither R; nor R, contains a collapsing rule [22].
(c¢) One of the system R;. R, contains neither collapsing nor duplicating rules [17].

(d) Both Ry and R, are left-linear and confluent [25].

'Roughly spoken, the concept of ‘direct sum’ as defined in [24] is slightly more general than that of
“disjoint union’ because it allows for renaming function symbols in order to obtain disjointness.
2A system without collapsing rules is said to be collapse-free.



As discussed in [20] conditions (a)-(c) together with example 1.1 provide a complete
analysis for the termination of the disjoint union of two terminating TRSs R, R2 in terms
of the distribution of collapsing and duplicating rules among R, and R;. _

Condition (a) above implies that termination is modular for right-linear TRSs, in
particular for string rewriting systems. Unfortunately, duplicating and collapsing rules
occur quite-often and naturally in many cases. Hence, practical applicability of conditions
(a)-(c) is rather limited.

Some other interesting modularity properties of TRSs related to normal forms are
investigated by Middeldorp in [16]. These results are generalized to (various versions
of) conditional TRSs in [18], [19]). In particular, concerning the termination property it
turns out that-condition (b) above is still sufficient for ensuring termination of the disjoint
union of conditional TRSs, but (a) and (c) are shown to hold only under the additional
requirement that R; and R, are confluent.

Another interesting line of research is pursued by Kurihara & Kaji [13] where modular
properties of TRSs w.r.t. a modified reduction relation are investigated. Essentially,
this so-called ‘modular reduction’ requires that, given a disjoint union of several ‘module’
TRSs, successive reduction steps have to be performed in the same module as long as
possible, i.e. until a normal form w.r.t. this module is obtained. Reduction to a normal
form in one module is considered to be one step of ‘modular reduction’.

Ganzinger & Giegerich [7] consider the termination property in restricted combinations
of heterogeneous, i.e. many-sorted TRSs, where the involved signatures do not have to be
completely disjoint. The disjointness requirement of combinations of TRSs is also relaxed
in recent investigations of Kurihara & Ohuchi [15] and Middeldorp & Toyama [21]. This
will be discussed later on.

Before going into details now, let us motivate and sketch our approach for analyzing
modularity of termination. Having again a closer look on example 1.1 above and the non-
terminating derivation indicated there, it is obvious that the collapsing Rj-steps using
the rules G(z,y) — z,G(z,y) — y play an essential role for enabling the derivation to
be infinite. In fact, this observation can be generalized to arbitrary situations where
we have terminating TRSs R,, Rz over disjoint signatures J and J,, respectively, such
that the direct sum R, @ R is non-terminating. In any infinite (R, @ R2)-derivation
$g — Sy — 83 — 3 — ..., all the s;’s must be ‘mixed’ terms, i.e. involve function symbols
from both signatures F; and F,. We shall show that for any counterexample satisfying a
certain minimality property concerning the ‘layer structure’ of its terms, one can construct
from this counterexample an infinite derivation in R; & {G(z,y) — z,G(z,y) — y} for
¢t = lori= 2 let’s say for ¢ = 1. This is achieved by an appropiate transformation
from terms over F; & F, into terms over F; & {A,G} (here A is a new constant symbol
and G is a new binary function symbol) which abstracts from the concrete form of F,-
layers but retains enough relevant information for the translation of the reduction steps.
This characteristic property of minimal counterexamples provides the basis for a couple of
modularity results derived subsequently. It also corresponds nicely to the intuition that the
existence of counterexamples crucially depends on ‘non-deterministic collapsing’ reduction
steps. Hence, example 1.1 above is in a sense the simplest conceivable counterexample.

In the next section we briefly recall the basic notions, definitions and facts for TRSs
needed later on. In section 3 the main results and their applications will be presented and
discussed. In section 4 possible extensions and generalizations are developed.



2 Preliminaries

2.1 Basic Notations and Definitions

We briefly recall the basic terminology needed for dealing with TRSs (e.g. [12]). Let V be
a countably infinite set of variables and F be a set of function symbols with VN F = (.
Associated to every f € F is a natural number denoting its arity. Function symbols of
arity 0 are called constants. The set T(F,V) of terms over F and V is the smallest
set with (1) V C 7(F,V) and (2) if f € F has arity n and #1,...,t, € 7(F,V) then
f(t1y...,tp) € T(F,V). If some function symbols are allowed to be varyadic then the
definition of T(F,V) is generalized in an obvious way. The set of all ground terms (over
F), i.e. terms with no variables, is denoted by 7(F). In the following we shall always
assume that 7(F) is non-empty, i.e. there is at least one constant in F. Identity of terms
is denoted by =. The set of variables occurring in a term t is denoted by V'(2).

A context C|,...,]is a term with ‘holes’, i.e. aterm in 7(Fw{O},V) where O is a new
special constant symbol. If C[,...,] is a context with n occurrences of O and ty,...,t,
are terms then C[t;,...,1,] is the term obtained from CJ,...,] by replacing from left to
right the occurrences of O by t;,...,t,. A.context containing precisely one occurrence of
O is denoted by C[]. For the set T(F & {0}, V) we also write CON(F,V). A non-empty
context is a term from CON(F,V)\ T(F,V) which is different from O. A term s is a
subterm of a term t if there exists a context C[] with t = C[s]. If in addition C[] # O then
s is a proper subterm of t. A substitution o is a mapping from V to 7(F, V) such that its
domain dom(c) {z € V|oz # z} is finite. Its homomorphic extension to a mapping from
T(F,V)toT(F,V)is also denoted by o.

A term rewriting system (TRS) is a pair (R, F) consisting of a signature F and a
set R C T(F,V)x T(F,V) of (rewrite) rules (/,7) denoted by | — r with [ ¢ V and
V(irycv(. 3

Instead of (R, F) we also write R or simply R when F is clear from the context or
irrelevant. Given a TRS R” the rewrite relation — g for terms s,t € 7(F,V) is defined
as follows: s —pr tif there exists arule/ — r € R, a substitution o and a context C[] such
that s = C[ol] and t = C[or]. We also write —5 or simply — when F or R” is clear from
the context, respectively. The symmetric, transitive and transitive-reflexive closures of —
are denoted by «, —1 and —*, respectively. Two terms s,t are joinable in R, denoted
by s | % t, if there exists a term u with s 5, — u —% t. A term s is irreducible or a normal
form if there is no term ¢ with s — ¢t. A TRS R is terminating or strongly normalizing if
— is noetherian, i.e. if there is no infinite reduction sequence sy — $9 — 83 — - -

A partial ordering > on a set D is a transitive and irreflexive binary relation on D.
A partial ordering > on 7(F,V) is said to be monotonic (w.r.t. the term structure) if it
possesses the replacement property

s>t = Cls]>C[t]
for all s,t,C[]. 1t is stable (w.r.t. substitutions) if
s>t = o0s>ot

for all s,t,0. A term ordering on T(F,V)is a monotonic and stable partial ordering on
T(F.V). A reduction ordering is a well-founded term ordering. A term ordering > is said
to be a simplification ordering if it additionally enjoys the subterm property

Cls] > s ’

*This restriction of excluding variable left-hand sides and right-hand side extra-variables is not a severe
one. In particular, concerning termination of rewriting it only excludes trivial cases.



for any s and any non-empty context C[|.* The homeomorphic embedding relation < on
terms is recursively defined by s = f(s1,...,8m) < g(t1,...,tn) = t if either sJ¢; for some
i€ {l,...,n}or f=gands;dt; forallj € {1,...,m} wherel 1 <t <<ty <10
A TRS R is said to be self-embedding if there exists a self-embedding R—derivation, i.e.
a reduction sequence s; — sz — 83 — --- with s; 9 s; for some i, j with ¢ < j.

A TRS is confluent if * «— o —* C —* o * « and locally confluent if — o — C —*
o *«.% A confluent and terminating TRS is said to be convergent or complete.

2.2 Disjoint Unions

The following notations and definitions for dealing with disjoint unions of TRSs mainly
follow [24] and LQO] -

Let ’R 2 be TRSs with disjoint signatures F;, F,. Their disjoint union Ry ® R,
is the TRS (R1 U Ro, F1 W F2).6 A property P of TRSs is said to be modular if for all
dlS_]Olnt TRSs 'R, , 7?,}-2 the following holds: Ry @ R, has property P iff both ’R'r‘ and
7222 have property P.

Let t = Clty,...,t,] with C[,...,] # O. We write t = C[t1,...,t if C[,...,] €
CON(F,,V) and root(tl), ...,ro0t(t,) € F for some a,b € {1,2} with a # b. In this case
the t;’s are the principal subterms or principal aliens of t. Note that every t € 7(F ¥
Fo, W\ (T(F1,V)U T(F2,V)) has a unique representation of the form ¢t = C[ty,...,¢,].
The set of all principal subterms of t is denoted by PS(t). The set 55(t) of special subterms
or aliens of t is recursively defined by

§81(t) = A{t} . ’
0 ' if rank(t)=1
5Sn+1(1) {Sgn(tl)u...uSSn(tm) if t=Clt,....tn],
SS(y = |JSSi)
i>1

The rank of a term t € T(Fy W F2, V) is defined by

(1 if " te T(F1,V)UT(F3,V)
\rank(t) = { 14+ maz{rank(t;)|]1 <i<n} if t=C[ty,...,t] -

An important basic fact about the rank of terms occurring in a (R, & R3)-derivation is
the following ([24]): If s —~ t then rank(s) > rank(t). Moreover, if s € T(F, ¥ F,,V)
with rank(s) = n then there exists a ground instance os of s with rank(cs) = n, too. 7 A
(finite or infinite) derivation D : s, — s3 — 83 ... is said to have rank n (rank(D) = n)
if n is the minimal rank of all the s;’s, i.e. n = min{rank(s;)|1 < i}.

The topmost homogeneous part of a term ¢t € 7(Fy,V)UT(Fz, V), denoted by top(t),
is obtained from ¢ by replacing all principal subterms by O, i.e.

]t if rank(t)=1
top(t) ‘{ Cl,...,] if t=C[t,--.,t]

Furthermore we shall use the abbreviations GT ¢ for T(F; W Fy), GTg for {t € GTg|
rank(t) = n}, GTS" for {t € GTg|rank(t) < n} and GTg" for {t € GT g|rank(t) < n}.

*For the case that varyadic function symbols are allowed one additionally requires here the so-called
“deletion’-property (cf. Dershowitz [2]). ’

*Here, ‘o’ denotes relation composition.

®The symbol ‘&’ denotes union of disjoint sets.

"This is easily verified by substituting appropriately Fi- or Fa-ground terms for those variables which
occur 'in the ‘deepest layer’ of s.



For the sake of better readability the function symbols from F; are considered to be black
and those of F, to be white. Variables have no colour. A top black (white) term has a
black (white) root symbol.

For s,t E'QT@ the one-step reduction s — t is said to be inner — denoted by s Lt-if
the reduction takes place in one of the principal subterms of s. Otherwise, we speak of an
outer reduction step and write s — t. A rewrite step s — t is destructive at level 1 if the
root symbols of s and ¢ have different colours. The step s — t is destructive at level n +1
(forn > 1)if s = C[[81,..+155,. 4,84 — Cls1,-.,tj,...,8p] =t with s; — t; destructive
at level n. Clearly, if a rewrite step is destructive (at some level) then the applied rewrite
rule is collapsing, i.e. has a variable right-hand side. This is a basic fact which should be
kept in mind subsequently.

For coding principal subterms, e.g. by new variables or constants, and for dealing
with outer rewrite steps involving non-linear rules the following definitions are useful.
For Sp,...,8n,t1,...,ty € Tg we write (s1;...,8,) X (t1,...,tn) if t; = t; whenever
s$;i = sj, forall 1 < ¢ < j < n. The conjunction of (s1,...,8,) « (t1,...,%,) and
(t1y---rtn) X (S1,...,8n) is denoted by (s1,...,8,) 00 (t1,...,ts). The following basic
properties of outer and inner reduction steps will be freely used in the sequel:

o If s > ¢t then s = C[sy,...,84,t = C'[si,,...,si,] for some contexts C[,...,],
C'l,.. s ]st1y- -y im € {1,...,n} and terms sy, ..., s, € Tg. If moreover s > t is not
destructive at level 1 then t = C'[s;,, ..., si,]-

o If s 5t then s = Cl81s---+855---,8:] and .t = C[s1,...,tj,...,8n] for some context
Cl,...,),j€{1,...,n} and terms s1,...5,,t; € Tg with s; — t;. If moreover s = ¢
is not destructive at level 2 then t = C[s1,...,¢j,...,84-

o If C[s1,...s8n) = C'[Siyy---r8:i,]s1 < i; < m, j € {l,...,m}, by application of
some rule then C[t;,...,t,] — C'[t;/,...,t; ] by the same rule for all terms ty,...,1,
with (s1,...,80) & (1,...,tn). '

3 Structural Properties of Minimal Counterexamples

3.1 Characterization of Minimal Counterexamples

Before formally stating and proving the main result we shall now illustrate the essential
ideas and construction steps via an example from Drosten [6] which shows that termination
need not be modular even for confluent TRSs.

Example 3.1 R : fla,b,z) — f(z,z,z) Rq : K(z,y,y) — =
f(z,y,2) = ¢ K(y,y,z) — «

a— ¢

b — ¢

Here, both R, and R, are clearly terminating and confluent, but their disjoint union
is non-terminating. For instance, we have the following infinite derivation:

D: fla,b,K(a,bb)) 2x, f(K(a,b,b),K(a,b,b),K(a,b,b)) (1
tr, fla,K(a,bb), K(a,b,b)) (2
Lr, fla, K(c,b.b), K(a,b,b)) (3
“r, fla.K(c,e,b), K(a,b,b)) (4
L, fla,b,K(a,b,b)) 5

e}

%,

)
)
)
)
)

-1



Obviously, the crucial steps which enable this derivation to be infinite (and even cyclic)
are the inner reductions (2)-(5), in particular the steps (2) and (5) which are destructive
at level 2. They modify substantially the topmost homogeneous black & layer thereby
enabling an outer reduction step previously not possible. The idea now is to abstract
from the concrete form of these inner steps but retain the essential information which
permits subsequent outer steps. For that purpose it is sufficient to consider the principal
top white, i.e. Fj-rooted, aliens and collect those top black, i.e. F;-rooted, terms to which
the former may reduce. In other words, colour changing derivations issued by principal
aliens are essential. The coding of the collected top black successors of some principal top
white alien will be achieved by some new function symbol(s) which in a sense serve(s) for
abstracting from the concrete form of white layers while keeping only the ‘layer separating’
information. Since in general also top black aliens hidden in deeper layers (cf. subsection
3.4 below) may eventually become principal top.black aliens the whole process has to
be performed in a recursive fashion in general (which is not necessary in the example).
After this abstracting transformation process sequences of inner reduction steps like (2)-
(5) above in the original derivation may be simulated by (‘deletion’ and) ‘subterm’ steps
in the transformed derivation. In order to explain this in more detail let us choose H as a
(varyadic) new layer separating function symbol. Then we get the transformed derivation

D' f(a.b, H(a,b,c)) >z, f(H(a,b,¢),H(a,b,c),H(a,b,c)) (1)

—l_*‘ng f(a,H(a,b,c),H(a,b,c)) (2"
—'»72:2 fla,H(b,c),H(a,b,c)) (3")
= f(a, H(b,¢), H(a,b,c)) (4"
'1’72’2 f(a,b,H(a,b,c)) (5,)
2R,
where R; is as above and R} = R¥, U R, with
RHE, = {H(zy,....,zj,...,25) » 2;]1 <j < n},
Rfe, = {H(z1,.... %5,y 2n) = H(zy, ..., Tj1,Tj415-- -, Z0)|1 < § < n}.

The top white principal alien t := K(a,b,b) of the top white starting term s :=
fla,b, K(a,b,b))of D can be reduced (in arbitrarily many steps) to the top black successors
a, b and ¢. Hence, the abstracting transformation of ¢ yields H{(a,b,c) and the whole
starting term s is transformed into f(a.b, H(a,b,c)). Furthermore, any outer step in D
corresponds to an outerstep in D’ using the same rule. Any inner step in D which is not
destructive at level 2, e.g. (3) and (4), corresponds in D’ to a (possibly empty) sequence
of inner R -steps not destructive at level 2 (here (3’) and (4), respectively). Any inner
step in D which is destructive at level 2 (hence collapsing), e.g. (2) and (5), corresponds
in D' to an R, -step (here (2’) and (5’), respectively).

In order to stay within the usual scenario of fixed-arity function symbols we modify
the above transformation by taking a new binary function symbol G and a new constant
A instead of the varyadic symbol H. With the correspondence

A o if n=20
Hlteto) _{ G(t1. Gtz .Gltno1.Gltn, 4)..0) i 1> 0

®Remember that function symbols from R, and R; are considered to be black and white, respectively.



the above construction easily carries over and we obtain the derivation

D" : f(a,b,G(a,G(b,G(c, A))))
>R, f(G(a,G(b,G(c, A))),G(a,G(b,G(c, A))),G(a,G(b,G(c, 4)))) (1")
—ry fa,G(a,G(b,G(c, A))), G(a,G(b,G(¢, 4)))) (2")
~ry  f(a,G(b,G(c, A)),G(a,G(b,G(c, A)))) (3")
= f(a,G(b,G(c, A)),G(a,G(b,G(c, A)))) (4")
“my f(a,b,G(a, G(bGle, ) (5")
r,

Here, RY is to be interpreted as RY = RS, with

Rsub = {G(IE, y) — I, G($7 y) - y},

i.e. deletion rules are not necessary any more. In the following formal presentation we
shall use the latter transformation.

Definition 3.2 A TRS R is said to be termination preserving under non-deterministic
collapses if termination of R implies termination of R @ {G(z,y) — z,G(z,y) — y}.

Lemma 3.3 Let Ry, R2 be two jterminating disjoint TRSs such that

D351—>82—>53—>...

is an infinite derivation in R; ® R, (involving only ground terms) of minimal rank' i.e.
any derivation in Ry & Rq of smaller rank is finite. Then we have:

{a) rank(D) > 3.
(b) Infinitely many steps in D are outer steps.

c) Infinitely man steps in D are inner reductions which are destructive at level 2,
y Y
Proof:

a) Follows from (c) since whenever s; 4 $;11 is destructive at level 2 then rank(s;) > 3.
+

(b) Assume for a proof by contradiction that only finitely many steps in D are outer
ones. W.l.o.g. we may further assume that no step in D is an outer one. Hence,
for s; = C[[t1,...,t,] all reductions in D are inner ones and take place below one of
the positions of the s;’s. Since D is infinite we conclude by the pigeon hole principle
that at least one of the s;’s initiates an infinite derivation whose rank is smaller

than rank(D). But this is a contradiction to the minimality assumption concerning
rank(D).

{c) For a proof by contradiction assume w.l.o.g. that no inner step in D is destructive at
level 2. Then, With &; := top(s;) any outer step s; > s;41 in D yields §; — §;7; using
the same rule from R; & R, and for every inner step s; — s;4; we have 3; = Sit1-
Assuming w.l.o.g. that all the s;'s are top black, i.e. Fj-rooted, we can conclude by
(b) that Ry is non-terminating which yields a contradiction.

Next we formalize the transformation process illustrated above.



Definition 3.4 Let Ry, R, be two terminating disjoint TRSs, R := Ri®d R, and n € N
such that for every s € T(Fy W F3) with rank(s) < n there is no infinite R-derivation
starting with s. Moreover, let <r(r,u{a,G}) be some arbitrary, but fized total ordering on
T(F19{A,G}). Then the F;- (or white) abstraction is defined to be the mapping

®:GT5" w{te GTE ! root(t) € F1} — T(F1u{4,G})

given by
t if te T(.F])
T Cl®(t1),---,®(tn)] if t=C[t1,...otm],m > 1,700t(t) € Fi
CONS(SORT(®*(SUCCT1(t)))) if t=C[tr,...,tm],m > 1,700t(t) € F>
with
SUCCHi(t) = {t € T(Fi¥F)|t =5 t' ,root(t') € F1},
(M) = {®(t)[te M} for M C dom(®),
CONS({()) = A, :
CONS((s1,-.-y8k+1)) = G(81,CONS({s2,...,8k+1))) and
SORT({Sl,...,Sk} = <Sﬂ.(l),...,s,,(k)>,

such that Sn(3) ST(}-IL,J{AYG}) Sr(j+1) for1 <j< k.

Intuitively, for computing ®(t) one proceeds top-down in a recusive fashion. Top
black layers are left invariant whereas (for the case of top black t) the principal top
white subterms are transformed by computing for every such top white subterm the set
of possible top black successors, abstracting the resulting terms recursively, sorting the
resulting set of abstracted terms and finally constructing again an ordinary term by means
of using the new constant symbol A (for empty arguments sets) and the new binary
function symbol G (for non-empty argument sets). The sorting process and the total
ordering involved here are due to some proof-technical subtleties which will become clear
later on. For illustration let us consider again example 3.1.

Example 3.5 (ezample 3.1 continued) Here the white abstraction of the s;’s in the orig-
inal derivation D yields (using alphabetical sorting)

®(f(a,b, K(a,b,b))) = f(a,b,®(K (a,b,b)))
f(a,5,CONS(SORT(®(SUCCTF (K (a,b,b))))))
f(a,b,CONS(SORT(®*({a,b,e})))) = f(a,b,CON S(SORT({a,b,c})))
f(a,b,CONS5((a,b,c)})) = f(a,b,G(a,G(b,G(c, 4)))) ,

®(f(a, K(a,b,b), K(a,b,b))) = f(a,®(K(a,b,b), ®(K(a,b,b))))
f(a,CONS(SORT(®*({a,b,c}))),CONS(SORT(®*({a, b, c}))))
f(a,CONS(SORT({a,b,c})),CONS(SORT({a,b,c})))
f(a,CONS({a,b.c)}),CONS((a,b,c)}))

fla,G(a.G(b,G(c. A))).G(a,G(b,G(c, A)))) and

®(fla, K(c,b.b), K(a,b,b))) = fla, ®(K(c,b,b), (K (a,b,b))))
f(a,CONS(SORT(®*({b.c}))), CONS(SORT{®*({a, b, c}))))
fla,CONS(SORT({b,c})).CONS(SORT({a,b,c})))

= fla,CONS{({b.c)}).CONS((a,b,c)})) = fla,G(b,G(c,A)),G(a,G(b,G(c,A)))).

na i

h
—_
o

w
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n

(sy4)

i

Note that the subterm rewrite step sz — sy reducing G(a,G(b,G(c, A))) to G(b,G(c, A))
would not have been possible if we had sorted {b,c} as (b,c) and {a.b,c} as (c.b,a).
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In the following we shall implicitly use the convention that notions like rank or inner
and outer reduction steps have to be interpreted w.r.t. some specific disjoint union which
is clear from the context.

The next lemmas capture the important properties of the above defined abstracting
transformation.

Lemma 3.6 Let Ry, Rz, R := Ry ® R2, n and ® be given as in definition 3.4. Then,
for any s,t € T(Fy ¥ Fy) with rank(s) < n and root(s) € F, we have:

s—ort =  P(s) _’*72; o(t),

where R} := RS, := {G(z,y) — z,G(z,y) — y}.
Proof: Let s,t be given with rank(s) < n, root(s) € F, and s — t. We distinguish
two cases. For rank(s) = 1 we have s,t € T(F,), hence ®(s) = A = ®(t) by definition
of ®. If rank(s) > 1 then s has the form s = C[[sy,...,s,],n > 1. By the recursive
case of definition 3.4 this implies ®(s) = CONS(SORT(®*(SUCC?1(s)))). From s — t
we obtain SUCC”1(s) D SUCC*1(t), hence ®*(SUCC71(s)) 2 ®*(SUCC*1(t)). By
definition of SORT and CON S, finally, we get ®(1) —3R o(t). ° [

Lemma 3.7 Let Ry, R, and ® be given as in definition 3.4. Then, ® is rank decreasing,
i.e. for any s € dom(®) := Q”Tén W {t € GTg|root(t) € F1} we have rank(®(s)) <
rank(s).

Proof: By an easy induction on rank(s) using the definition of ®. ]

Inner and outer reduction steps in (R @ R2)-derivations can be translated into correspond-
ing (sequences of ) inner and outer steps in the transformed derivation in Ry @ {G(z,y) —
z,G(z,y) — y} as described by '

Lemma 3.8 Let Ry, Ry, R = Ry & Re, Ry = RS, = {G(z,y) — z,G(z,y) — y},
n and the Fp-abstraction ® be given as above. Then, for any s,t € T(F1 ¥ Fp) with -
rank(s) < n + 1, root(s) € F; and s =g t we have:

(a) If s%p,t is not destructive at level 1 then ®(s)>g,®(t) using the same R, -rule,
and moreover this step is also not destructive at level 1.

(b) If s=p,t is destructive at level I then ®(s)>p, ®(t) using the same R,-rule, and
moreover this step is also destructive at level 1.

(c) Ifs —i>R t is not destructive at level 2 then @(s)—i#;z,z(b(t) with all steps not destructive
at level 2.-

i ) . i
(d) If s > t is destructive at level 2 then <I>(s)—>R;2<I>(t) such that exactly one of these
steps is destructive at level 2.

Proof: Under the assumptions of the lemma assume that s,t € 7(F; W F,) are given
with rank(s) <n+ 1, root(s) € F; and s —g t.

(a) If s27,tis not destructive at level 1 then we haves = C[[sy,...,8m],t = C'lsiys-- -5 84,0,
1 <i; <m,1 < j <k for some contexts C,C’. By definition of ® this im-
plies ®(s) = C[®(s1).....®(sn )] and @(t) = C'[®(s;,),...,P(s;, ]|, hence also
®(s)=x, ®(t) using the same R;-rule because of (sq,...,8m) x (®(s1),...,®(sm)).
Clearly, ®(s)-—=xr, ®(t) is not destructive at level 1, too.

°The sorting process involved here is needed for ensuring that ®(¢) is homeomorphically embedded in
®(s), or more precisely, that ®(t) can be obtained from ®{s) by applying subterm rules from RS, .

11



(b) If s2g,t is destructive at level 1 then we have s = C[s1,...,sm], ¢ = s; for
some j with 1 < j < m and some context C. By definition of ® this implies
&(s) = C[®(s1),.-.,8(sm )] and ®(t) = ®(s;), hence also ¥(s)>r, ®(t) using the
same R;-rule because of (s1,...,8m) & (®(s1),...,8(sm)). Clearly, ®(s)->r, ®(t)
is destructive at level 1, too. .

(c) If s - t is not destructive at level 2 then we have s = C[s1,...,85,.-.y5ml,
t = C[si,-- c3 8%y« Sm]], 8j =R 8} for some j with 1 < j < m and some context C.
By definition of ® this implies ®(s) = C[®(s1),...,8(s;),...,B(sm)] and ®(t) =
Cl®(s1)s---, ®(5),. .., B(sm)]. Since s;,s; are top white, i.e. Fy-rooted, we get
®(s;) = A = ®(s)) for the case s; € 7(F2) and
®(s;) = CONS(SORT(‘I)*(SUCCE(sJ))))
®(s;) = CONS(SORT(®* (SUCCTI(S )))), otherwise. Since s; —x s} this lmphes

SUCC”1(s;) 2 SUCC'f‘(s ), hence Q(s]) —7 R, ®(s’) and also Q(s)—»R, ®(t) with .
no step destructive at level 2.

(d) If s —irn t is destructive at level 2 then we have s = C[sy,...,8j,...,8x], t =
C[sl,...,s;,...,sm] with s; —>R'sg colour changing for some j with 1 < 7 < m and

some context C. By definition of ® this implies ®(s) = C[®(s1),..., ®(s;)y- -+, B(sm ]
and ®(t) = C[®(s1),...,P(s}),..., B(sm)]. Moreover, s; € SUCC*1(s;), hence

; +
<I>(s)—‘>72;<1>(t). In this derivation there is exactly one (inner) step which is destruc-
tive at level 2, namely the last one.

Now we are prepared to state and prove the main result of this section.

Theorem 3.9 Let Ry, R: be two disjoint (finite) TRSs which are both terminating such
that their disjoint union Ry @ R, is non-terminating. Then R; is not termination pre-
serving under non-deterministic collapses for some j € {1,2} and the other system Ry,
k € {1,2}\ {j} is collapsing. Moreover, the minimal rank of counterezamples in R; &
{G(z,y) — =z, G(z,y) — y} is less than or equal to the minimal rank of counterezamples
in R, & R,.

Proof: Let Ry,R, with R := R; ® R, be given as stated above. We consider a minimal
counterexample, 1.e..an infinite R-derivation

D: S§1 — 89 — 83 —

of minimal rank, let’s say n + 1. W.l.o.g. we may assume that all the s;’s are top black,
i.e. Fj-rooted ground terms having rank n + 1. Since the preconditions of definition 3.4
are satisfied we may apply the white (F,-) abstraction function ® to the s;’s. As it will
be shown this yields an infinite R'-derivation

D': ®(s1) =" B(s2) =" &(s3) —~

where R’ := Ry & R with R := RS, = {G(z,y) — =, G(z,y) — y}.
Using lemma 3.8 we conclude that for any step s; — s;41 in D we have
SRS = ‘I’(SJ)%RI‘I’(%H)

sp—w Spp1 = B(85) =y B(sj41)-

12



Hence, D’ is indeed an R’-derivation. Since according to lemma 3.3 (b) infinitely many
steps in D are outer ones, the derivation D’ is infinite, too. But this means that R, is
not termination preserving under non-deterministic collapses. Moreover, lemma 3.3 (c)
implies that R is collapsing. This can also be inferred more directly by observing that for
non-collapsing R, the Fy-abstraction of principal subterms of a minimal counterexample
always yields the constant A which implies that the transformed infinite derivation is an
R,-derivation contradicting termination of R;. Lemma 3.7 finally implies rank(D’) <
rank(D) which finishes the proof. [

As an immediate consequence of this result we obtain

Corollary 3.10 Termination (and hence also completeness) is modular for the class of
(finite) TRSs which are termination preserving under non-deterministic collapses.

By observing that Rgtb is termination preserving under non-deterministic collapses we
even get

Corollary 3.11 The disjoint union of two (finite) terminating TRSs is again terminating
whenever one of the systems is termination preserving under non-deterministic collapses
and non-collapsing.

The next result shows that the class of TRSs which are termination preserving under
non-deterministic collapses comprises all non-duplicating TRSs.

Lemma 3.12 Whenever a (finite) TRS is non-duplicating then it is termination preserv-
ing under non-deterministic collapses.

Proof: Let R; be a non-duplicating and terminating TRS. Then consider R := Ry @
Ry with Ry := RS, = {G(z,y) — z,G(z,y) — y}. We define the term ordering
> on T(F1 @ F3,V) by lexicographically combining —% and the ordering > which
counts occurrences of G-as follows: s >g t : <= 0¢(G,$) >nat 0¢(G,1), s X t : <>
0¢(G, s) =nat 0c(G,1)!% and >:= lez(>g, —%,). The form of R, and the fact that Ry is
non-duplicating implies s »r t => s >¢ t and s -, t = s >¢. Since both —»El and
>¢ are well-founded term orderings the lexicographic combination > is well-founded, too.
Moreover, > is monotonic w.r.t. replacement and > N ——»;’21 is stable w.r.t. substitutions.
Hence it suffices to show ! > r for any rule /| — r € R. The case ! —x, r is trivial. For
[ =g, r wehave lxg T, _’;21 r and hence | > r. This shows that R is terminating, i.e.

R, is termination preserving under non-deterministic collapses. [

Theorem 3.9, corollaries 3.10, 3.11 and lemma 3.12 constitute a generalization of the
main results of [22] and [17].

Theorem 3.9 corresponds nicely to the intuition that the existence of counterexamples
crucially dépends on ‘non-deterministic collapsing’ reduction steps. Hence, example 1.1
above is in a sense the simplest conceivable counterexample.

On the one side the general result stated in theorem 3.9 reveals an interesting struc-
tural property of potential counterexamples to modularity of termination. On the other
side it is still rather abstract. The obvious question arising is which TRSs are indeed
termination preserving under non-deterministic collapses. This question will be tackled

1%Here, oc(f,s) yields the number of occurrences of the symbol f in the term s. By >na: and =na: we
mean the usual ordering and equality on natural numbers.
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next. In section 4 we shall show how the finiteness condition concerning the TRSs involved
can be weakened.

Given an arbitrary TRS R it would be desirable to have a method for testing whether
R is termination preserving under non-deterministic collapses. But it turns out that this
is an undecidable property in general.

Theorem 3.13 The property of TRSs to be termination preserving under non-deterministic
collapses is undecidable.

Proof sketch: This result is an implicit consequence of the proof of the fact that
termination is an undecidable property of disjoint unions of terminating TRSs as shown
by Middeldorp and Dershowitz (cf. [20]).!' Roughly spoken the construction proceeds
as follows: Given an arbitrary TRS R, another TRS R, is constructed by appropriately
combining R with the system Ry := {f(a,b,z) — f(z,z,z)} of the introductory example
1.1 in such a way that R, is terminating notwithstanding the fact that R may be nen-
terminating. Moreover, choosing R, := {G(z,y) — z, G(z,y) — y}, it can be shown that
the disjoint union Ry @®R; is terminating if and only if R is terminating. Since for arbitrary
TRSs termination is known to be undecidable (cf. [8)) it folows that the property of TRSs
of being termination preserving under non-deterministic collapses is undecidable, too. m

3.2 The Increasing Interpretation Method

In order to obtain easily verifiable sufficient conditions for the property of being termina-
tion preserving under non-deterministic collapses we shall now use a general method for
termination proofs — namely the well-founded mapping method ([9], [3]) — and adapt it to
the scenario of disjoint unions.

Let R” be a TRS over some signature F. For proving termination of R it suffices to
exhibit a well-founded partial ordering > on T(F) satisfying

(1) Vs,t€eT(F): s—pt = s>t.

The well-founded mapping method suggests to take a well-founded partial ordering >p
on some set D and some termination function 7 :7(F) — D for defining > by

(2) s>t <= 71(8)>p ().

‘This method is specialized to the increasing interpretation method by taking D to be
an F-algebra and 7 to be the unique F-homomorphism from 7(F) to D. Then (1) is
guaranteed by . : -

(3) Vs,teT(F)VNfeF: s>t = f(....8,..)> f(.5.,t,..)

and
(4) VI —r € RVo,0 T(F)-ground substitution : o(l) > o(r).

Let us now consider the scenario where two TRSs R, and R, over signatures F; and F3,
respectively, are given such that R, is terminating. For proving termination of R;UR, we
apply the increasing interpretation method as follows: Choose D to be 7(F,) considered as
F-algebra D with 7 = F;UF,, where F-operations are interpreted as in the term algebra
7(F1) and every Fp-operation is interpreted in some fixed way in terms of F;-operations,
i.e.

_fD = ATy, .., T, flzy,. ., 2,) for feF

"' Middeldorp states in [20] that this result has been independently obtained by Dershowitz.

14

///



and
fD::/\.'l:l,...,xn.tf,t/ET(.TI,{.’EI,...,.’C“}) for f€eFs.

Hence, the unique homomorphism ¢ : T7(F, U F,) — D is given by ¢(f) = fP. As well-
founded partial ordering >p on D = 7(F;) we take >p := ——»'7"21. For this case (3) and
(4) specialize to

(3") Vs,te T(F)VfeF: s ——»;l t = (of)...,8,...) —»El ().t )
and
(4') Vl— 1€ RyVo,0 T(F;)—ground substitution :  ¢(al) —n,"il e(or).

Now, it is easily verified that (3) is satisfied whenever ¢ is a strict interpretation for 73,
i.e. for any f € F, we have V(f(z1,...,2,)) C V(e(f(21,...,25))). For verifying (4) it
suffices to show that R,-rules can be ‘simulated’ by R;-rules. To be more precise, we get

Lemma 3.14 Let RY,RJ be TRSs such that R, is terminating. Moreover, let ¢ be an
interpretation of (F1UJF;)-operations in terms of Fi-operations which is the identity on F,
and which is strict on Fy. Then the union (Ry U R2) Y2 is terminating, too, provided
that for every rule | — r € Rg we have ¢(1) =% ¢(r).

A trivial consequence of this result is the following

Corollary 3.15 Whenever a TRS R” is terminating then RF' is terminating, too, for
any enriched signature F' 2 F.

Proof: Condition (4') above is vacuously satisfied, and condition (3’) can also be easily
fulfilled by interpreting F’-operations in some arbitrary strict way. This is always possible
provided that F; contains at least one function symbol of an arity greater 1. For the
special case that F, contains only constants and unary function symbols an easy direct
proof is possible. n

Of course, the method for proving termination according to the above lemma is rather
restricted, because it requires in a sense that 7y U Rq terminates for the same reason as
TR alone. But in particular for the scenario of disjoint unions it is well-suited as we shall
see now.

3.3 Derived Criteria for Modularity of Termination

Concrete sufficient criteria for modularity of termination are now easily obtained by com-
bining the previous considerations with corollary 3.10. Firstly, we need

Definition 3.16 A TRS R’ is said to be non-deterministically collapsing if there ezists
a term s(z,y] € T(F,V) with z,y € V such that s[z,y] =1 z and s[z,y] —=* y, i.e. if
some term can be reduced to two distinct variables.

Lemma 3.17 Termination is modular for the class of (finite) TRSs which are non-
deterministically collapsing.

Proof: Let ”Rl}-‘ be a terminating and non-deterministically collapsing TRS. According
to theorem 3.9 it suffices to show that the disjoint union Ry @ R, with R2 = {G(z,y) —
z, G{z,y) — y} is terminating. Since Rf‘ is non-deterministically collapsing there exists
some term s(z,y] € T(Fy,V) with z,y € V such that s[z,y] —* z and s[z,y] =7 y.
W.l.o.g. we may further assume that z, y are the only variables appearing in s[z,y]. Now

AN
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we interpret the function symbol G by ¢f = Az,y. s[z,y] and simply apply lemma 3.14
the preconditions of which are satisfied. ]

' Next we consider cases where a terminating TRS R does not necessarily contain col-
lapsing rules but remains terminating when such rules are added.

Definition 3.18 Let RF be a TRS and f € F,F' C F. Then, RT is said to be f-
simply terminating if’R}.U’Rfub with ’Rfub = {f(z1,. ., 25,y Zn) = 2|1 < F < m} s

terminating. R is F-simply terminating if R U |J R7,, is terminating. R” is simply
feF

terminating (Kurihara & Ohuchi [15]) if R is F-simply terminating, i.e. R U Rsfub
feF
ts terminating.

v

Clearly, }f a TRS R” is F'-simply terminating for some F' C F then it is terminating,
i.e. simple termination implies termination.
Using again the specialized increasing interpretation method we obtain

Lemma 3.19 Let R” be f-simply terminating for some f € F of arity greater than 1.
Then RTYF' is ({f} U F')-simply terminating for any F' with F'0 F = 0.

Proof: Let R” be f-simply terminating for some f € F with arity(f) > 1 and let F'
be given with 7' N F = . W.l.o.g. we may assume that f has arity 2 and that F' has
no constants.'> We shall apply lemma 3.14 for proving that R7YF" is ({f} U F’)-simply
terminating. For that purpose we interpret every G € F’ strictly in terms of F-operations
as follows:

- flzr,m) if n=1

Glay,...,zpn) = ]

( ! n) { f(zhf(x%---f(-)‘l‘n—hxn)--')) lf. n>1.

Now the assumptions of lemma 3.14 are clearly satisfied and we can conclude that RFVF
is ({f}U F')-simply terminating. =

Combining this result with lemma 3.17 we obtain

Corollary 3.20 Let le’, 7252 be two (finite) disjoint TRSs with fy € JF1, foa € F2 of
arity greater than 1 such that R; is fi-simply terminating for i = 1,2. Then the disjoint
union Ry @ Rq is (fi- and fr-simply) terminating, too. ’

The intuition behind the notion of F-simple termination is its close relationship to
simplification orderings, an important subclass of reduction orderings which in practice
are very often used for termination proofs. Simplification orderings are well-suited for
that purpose due to the following result from Dershowitz [1] which we present in a slightly
generalized version. 13

Lemma 3.21 A (possibly infinite) TRS R” over some finite signature F terminates if
there exists a simplification ordering = on T(F,V) such that | > r for every rulel — r €
R7.

"*Enriching the signature of a TRS by new constants does not change the termination behaviour (cf.
corollary 3.15).

" The proof is based on Kruskal's tree theorem which roughly spoken states that any infinite sequence-
of terms from 7(F) with F finite is self-embedding. Hence, the requirement that R must be finite can be
weakened.




Kurihara & Ohuchi [14] have shown that for finite TRSs simple termination can be
characterized by means of simplification orderings. This yields in slightly generalized form:

Lemma 3.22 A (possibly infinite) TRS R” over some finite signature F is (F~) simply
terminating if and only if there erists a simplification ordering > with |l > r for every
rulel — r€R”.

By specializing corollary 3.20 we finally obtain the main result from Kurihara & Ohuchi
[14]:

Theorem 3.23 Simple termination is a modular property of (finite) TRSs.

This fact generalizes the well-known observation that common classes of (precedence!*

based) simplification orderings like recursive path orderings or recursive decomposition
orderings exhibit a modular behaviour simply by combining the corresponding disjoint
precedences.

In [14] theorem 3.23 is directly proved by means of a construction which has some
similarity with our approach presented in the last section. Instead of our black (and white)
abstraction function Kurihara & Ohuchi define a mapping called ‘alien-replacement’ which
is tailored to some specific finite reduction sequence. Moreover their construction is in a
sense incremental, but not rank-decreasing. To be more precise, consider some finite
derivation

D: sg—58—>8 — ... Sy

in R := (RyURZLURTY) @ (R, URTL URY?) with all s’ top black and such that every
R-derivation starting from any (top white) principal alien of sg is finite. Then their ‘alien
replacement’ construction for D essentially consists in (recursively) collecting, for any
principal alien occurring in D, all direct descendants occurring in D and abstracting them
via a new varyadic (black) function symbol. Using this transformation the R-derivation D
can be translated in a one-to-one manner into a corresponding (R, URQbURi‘,)-derivation
from which one can easily infer the modularity of simple termination using lemma, 3.22.15

3.4 Minimal Counterexamples of Arbitrary Rank

Besides the features mentioned all counterexamples to modularity of termination presented
above and in the literature (cf. [23]) have some more common property. Namely, the rank
n of minimal counterexamples always equals 3. According to lemma 3.3 (a) we must have
n > 3. So, the question naturally arises whether this is a general phenomenon saying that,
whenever the disjoint union of two terminating TRSs is non-terminating then there is a
counterexamples having rank 3. This question is not only interesting by itself but also
because many proofs concerning results on modular termination have to consider ‘mixed’
terms of arbitrary rank. In particular, the extremely complicated analysis performed in
[25] for proving that completeness is modular for left-linear TRSs could be considerably
simplified if counterexamples of rank 3 were always possible. Surprisingly (at least for the
author) this is not the case as illustrated by

Example 3.24 R flz.g(z),y) — fly,u.y) Ry G(z)—
G(z)— A

"* A precedence is a partial ordering on a set F of function symbols.
cf. (14}, [15] for details: in fact. compared to [14], [15] contains a simplified and clarified version of
‘alien replacement’.



Here, both R, and R, are clearly terminating, but R := R, @ R; is non-terminating.
For instance, we have the following infinite R-derivation

D:  f(G(9(4)),G(g(A)),G(9(A))) —=r, f(A,G(g(A4)),G(9(4)))
R, f(A, g(A)’ G(g(A)))
-r, - f(G(9(4)),G(9(A)),G(g(A))) .

_..)Rz “os

of rank 4. By analyzing for which mixed terms s,t it is possible that s —% ¢t and
s —r g(t) one can show that the minimal rank of a non-terminating R-derivation is
exactly 4. )

Moreover, example.3.24 can be easily generalized in order to show that the rank of
minimal counterexamples may be arbitrarily high.

Example 3.25 = R; : f(z,9(2),...,9™(2),y) — f(y,...,y) Rz : G(z)— =z
G(z) — A

Here, f has arity n + 2 and g"(z) stands for the n-fold application of g to z. Both R,
and R, are clearly terminating, bit Ry @ R, is non-terminating. For instance, we have
the following infinite (R, ® R)-derivation!®

D: f((Gg)y*A,(Gg)"A,...(Gg)"A) —nr, f(A,(Gg)"A,...,(Gg)"A)
— Ry f(Avg(Gg)n_lA""s(Gg)nA)

R, f(Anga’(Gg)nA) e

—*-.122 f(A,gA,g%A, ..., g"A,(Gg)"A)
—r, f((Gg)"A,(Gg)"4,...,(Gg)"A)

_>R2

of rank 2n+2. Again acareful analysis of possible reductions shows that for this exam-
ple 2n + 2 is the minimal rank of any conceivable non-terminating (R @ R;)-derivation.
Moreover, it is straightforward to modify the above examples in such a:way that only
finite signatures with function symbols of (uniformly) bounded arities are involved. For
instance, one may use a binary f’ and the encoding f'(zy, f'(za,..., f(Zn-1,24)...)) for
f(.’L‘l, ceey zn.).

Hence, we can conclude that for terminating disjoint TRSs with non-terminating dis-
joint union minimal counterexamples may have an arbitrarily high rank. This shows that
the interaction in disjoint unions of TRSs may be very subtle, in particular concerning
termination properties.

Having a closer look on examples 3.24 and 3.25 it is obvious that R; is non-left-linear
and R; is non-confluent. On the other side the main result from [25] implies that one of
the systems involved must be non-left-linear or non-confluent. Even stronger, we have the

following

Conjecture: Whenever R, R are two terminating disjoint TRSs such
that their disjoint union R; @ R» is non-terminating with rank(D) >
3 for any infinite (R, ® Ry)-derivation D then one of the systems is
non-left-linear and duplicating and the other one is non-confluent and
collapsing.

1*The notation used here should be self-explanatory. For example, (Gg)?(A) stands for G(g(G(g{A)))).
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Note that there is a close relationship between this conjecture and the main result
of [25] which says that termination (and hence completeness) is modular for left-linear
and confluent TRSs. If we could prove the above conjecture then the very complicated
proof in [25] given for modularity of completeness of left-linear TRSs could be considerably
simplified.

4 Extensions and Generalizations

4.1 Non-Self-Embedding Systems

We have seen that — as a consequence of our main result — simple termination is a modular
property of (finite) TRSs. In other words, termination of a disjoint union R, & R, can be
shown by a simplification ordering if and only if this holds already for R; and R;. Now
simplification orderings are closely connected to the self-embedding property of TRSs.
According to Kruskal’s tree theorem the property of being non-self-embedding implies
termination (for finite TRSs). Furthermore, simple termination is sufficient for being non-
self-embedding. Hence, a natural question is to ask whether termination is also modular
for non-self-embedding systems, or in slightly sharpened form: Is the property of being
non-self-embedding a modular one? Having again a closer look on example 1.1 with
Ry = {f(a,b,2) — f(z,z,2)}, R: = {G(z,y) = ¢ ,G(z,y) — y} it is clear that R, is
terminating, but cannot be simply terminating because it is self-embedding as witnessed
e.g. by the one-step-derivation f(a,b, f(a,b,b)) —x, f(f(a,b,d), f(a,b,b), f(a,b,b)). Now
consider the following modified version of example 1.1:

Example 4.1 R : fla,b,2) — h(z,z,z) Ry G(z,y) —» =
h(a,b,z) — f(z,z,z) G(z,y) =y

Clearly, both R; and R; are terminating and even non-self-embedding as can be eas-
ily shown, but Ry & R, admits e.g. the following infinite (and hence self-embedding)
derivation:

fla,b,G(a,b)) —x, h(G(a,b),G(a,b),G(a,b))
—R: h(a’G(a’b)’G(a’b))
—Rr, h(a,b,G(a,b))
—r, [f(G(a,b),G(a,b),G(a,b))
—Rs f(a,G(a,b),G(a,b))
—x, fla,b,G(a,b))

—Ry vt

Thus, we may conclude that termination is not modular in general for non-self-embedding
TRSs or - slightly stronger — that the property of being non-self-embedding is not a modu-
lar one. Note, that this reveals a gap between simply terminating and non-self-embedding
systems. In fact, every simply terminating TRS is non-self-embedding, but not vice-versa
because we have e.g. in R U Rﬁub with Ry as above:

flab, f{a,b,8)) —  h(f(a,b,b), f(a,b,b), f(a,b,b))
—* h(a,b,f(a,b,b))
- f(f(a,b,b),f(a,b,b),f(a,b,b))
—t

a, b, f(a,b,b))

Hence. both implications
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R simply terminating => R non-self-embedding = 7R terminating

cannot be reversed. This is well-known for the latter one (cf. e.g. Dershowitz [3])
but — as far as we know — it is nowhere mentioned in the literatdre for the first one.
Moreover, the gap between non-self-embedding and simply terminating TRSs exists even
for TRSs which contain only unary function symbols, hence for string rewriting systems.
To this end consider the system R := {g(g{z)) — h(f(h(z))), h(h(z)) — g(f(9(2)))}
over F := {f,g,h}. Here, R is easily shown to be non-self-embedding but it is not ( f-
)simply terminating because we have for instance the following infinite (cyclic), hence
self-embedding derivation in R U Rfub:

9(9(z)) = h(f(h(2))) — h(h(2)) — 9(f(9(2))) — 9(9(z)) = -~ .

4.2 'Weakening the Finiteness Requirement

Most results presented so far which rely on our main theorem 3.9 required that the involved
TRSs have only finitely many rewrite rules. This assumption can be considerably weakened
as it will be shown now. In fact, the reason for this finiteness condition was to ensure
well-definedness of the white (or black) abstraction function ® in definition 3.4. A closer
look at the definition reveals that the essential property needed is that for any mixed
(ground) term s of rank less than or equal n with n as in the definition, the set of possible
successors of s, i.e. SUCC(s):= {s' € T(F, W F2)|s =% s’} with R := Ry & R., is finite.
For that purpose it is sufficient to require that R is finitely branching, i.e. for any term
s € T(F1WF;) the one-step-successor set {s' € T(F, ¥ Fz)|s —r s'} is finite. In that case
one may simply apply Ko6nigs lemma. The following result provides a characterization of
the property of TRSs to be finitely branching. ’

Lemma 4.2 A (possibly infinite) TRS R is finitely branching if and only if for every
rule | — r € R there are only finitely many different rules in R” with the same left hand
side 1. 17

Proof: Consider an arbitrary ground term s and possible R” -reductions. Clearly, there
are only finitely many different left hand sides of rules in R* which can match some
subterm of s. Hence, the set of one-step-successors of s can be infinite only in the case
that there are infinitely many different rules in R* with the same left hand side. The
only-if-direction of the lemma is trivial. L

Corollary 4.3 The property of (possibly infinite) TRSs to be finitely branching is modu-
lar.

Hence, all our results basing on our main theorem 3.9 can be generaliied by requiring
the involved TRSs to be only finitely branching instead of finite. Note that the signature
may still be infinite. This case is only problematic if simplification orderings are used
for trying to prove termination. For infinite signatures the lemmas 3.21 and 3.22 do not
hold any more in general because Kruskal’s tree theorem is no longer valid. Hence, if a
TRS R can be oriented by some simplification ordering this does not necessarily imply
termination of R any more.

The restriction to finitely branching TRSs is essential as can be seen from the following
example involving a non-finitely branching TRS over some infinite signature.

175 : . : . . .
Note that rules which can be obtained from one another by renaming variables are considered to be
equal.
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Example 4.4 Let RfI,R? be given with Ry = {H(z,y,y) — =z, H(y,z,y) — =z},
]:2 = {HaA}: ]:1 = {vaflaf27-~-}U{O,l,?,...}u{u}} and

Rl : fo(o,l,l‘)—’fl(l‘,l,l‘) 0—-2 0—-4 0—6
f1(2,3,z) — fo(z,z,2) 1-3 125 1—7
f2(4’57z)—'} f3($,$,$) 0—’(.0

1l - w
N

Here, Ry and R, are terminating but R := Ry & R2 is non-terminating as can be seen
from the infinite R-derivation:

fo(H(0,1,1), H(0,1,1),H(0,1,1)) —% fo(0,1,H(0,1,1))
—g, H(H(0,1,1),H(0,1,1),H(0,1,1)) —% f(2,3,H(0,1,1))
—r, f2(H(0,1,1),H(0,1,1),H(0,1,1)) —% fa(4,5, H(0,1,1))
—r, f3(H(0,1,1),H(0,1,1),H(0,1,1)) —% f3(6,7,H(0,1,1)) - ...

The infinity of R, is essential for the existence of this counterexample because for every
finite subset R} of R, the disjoint union R} ® R, is again terminating. The abstracting
transformation underlying theorem 3.9 is not applicable here since it would yield infi-
nite terms. For instance, H(0,1,1) has the infinitely many different J;-rooted successors
{0,2,4,...3u{1,3,5,.. }U{w} in R. Hence, the whole transformation process would yield
an infinite derivation consisting of infinite terms. Nevertheless, /%, is not termination pre-
serving under non-deterministic collapses, because for R’ := R ®{G(z,y) — z,G(z,y) —
y} we have e.g.

fo(G(0,1),G(0,1),G(0,1)) —%  fo(0,1,G(0,1))
—Ri fl(G(Ovl)vG(Oal)vG(Ovl)) -’:;-2' ) f1(2?3?G(0’1))
R, f2(G(0’1)’G(0’1)vG(071)) _ﬁ;-z/ f2(4’57G(071))
—r, f3(G(0,1),G(0,1),G(0,1)) —*, f3(6,7,G(0,1))

This means that the conclusion of theorem 3.9 holds for this example although we cannot
apply 3.9 due to the required finiteness conditions.

In fact, it is possible to completely drop any finiteness assumption in theorem 3.9 and
derived results. But for proving this generalization a substantially different approach has
to be taken which will be detailed elsewhere.

4.3 Weakening the Disjointness Requirement

For practical purposes the invariance of properties of TRSs under non-disjoint unions
is very important, too. In general, most interesting properties do not exhibit such an
invariant behaviour under arbitrary non-disjoint unions. But for certain restricted variants
of combinations some results are known (e.g. [7], [21], [15]). We shall now investigate for
which cases our results can be generalized. '

4.3.1 Hierarchical Combinations

v

One natural kind of non-disjoint union of TRSs is a hierarchical combination in the follow-
ing sense. Let some TRS Ry C T(F;,V)xT(Fi,V)over some signature F; and some TRS
R2 C T(F2, V) x T(F, ¥ Fa,V) over the signature F; W F; be given. Since the left hand
sides of R, do not contain F;-symbols. R := R; UR, may be considered as a hierarchical
extension of R;. Now, in general such a hierarchical combination of TRSs clearly does
not preserve termination of its constituents but perhaps under some further restrictions.
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In fact, for well-known classes of simplification orderings like the recursive path order-
ing (RPO) such an invariance result for the termination property may be achieved. To
be more precise, let us assume that R;, R, are given as above such that termination of
both systems can be shown by appropiate RPOs induced by precedences >x, and >x,y7x,,
respectively. Then it is easy to prove (by structural induction according to the definition
of the RPO) that >r,ur, = >rur, |Fxx, may be assumed w.l.o.g., i.e. relations of
>rur, involving an Fi-symbol are not really necessary for ensuring termination of R.
Hence, it follows that the union Ry U R is'terminating, too, simply by taking the RPO
induced bye the union of the two precedences.

This kind of reasoning should also be possible for other classes of precedence based
simplication orderings. An obvious question arising therefrom is whether the termina-
tion property is also preserved under such hierarchical combinations under the weaker
assumption that termination of R; and R can be shown by some simplification ordering.
Unfortunately, this is not the case as shown by the following simple

Example 4.5 Let Ry: a — b and Ry: h(z,z) — h(a,b) be given over signatures Fy =
{a,b}, F = {h}. Then both R, and R, are simply terminating. This is obvious for R,
and easy to show for Ry by considering Ry := Ro URH, = {h(z,2} — h(a,b), h(z,y) -
z,h(z,y) — y}. But R:= R;UR, is non-terminating. For instance we have h(b,b) —x,
h(a,b) —r, h(b,b) —

4.3.2 Non-Disjoint Unions with Common Constructors

In practice the necessity of considering non-disjoint unions of TRSs often comes from the
fact that some class of function symbols naturally occurs in several distinct component
TRSs. This is for instance the case with constructors.

Definition 4.6 (/21]) A constructor system (CS) is @ TRS R” with the property that
F can be partitioned into F = C ¢ D such that every left hand side f(s1,...,5n) of @
rewrite rule from R” satisfies f € D and s1,...,5, € T(C,V).'® Function symbols in D
are called defined symbols and those in C constructors. Slightly abusing notation we also
write T(C,D, V) instead of T(F,V). ,

Middeldorp and Toyama have shown in [21] that completeness is preserved under the
union of constructor systems with" disjoint sets of defined symbols (and common set of
constructor symbols). In fact, a slightly more general result is proved in [21].

Kurihara & Ohuchi ([15]) investigate another notion of combining TRSs with common
constructors.

Definition 4.7 ([15]) A TRS R” with a fized partition of F into F = C ¢ D is said to
be a TRS with constructors provided that for any rule | — r € R* we have root(l) € D.
Given two TRSs Ry, R, with constructors over signatures F; = CW Dy, Fp = C W Dy, the
TRS R := R1 U R over the signature F := C & (D, W D3) is called the combined system
with shared constructors C.

Of course, every union of constructor systems with disjoint sets of defined symbols
(and common set of constructor symbols) is a combined system with shared constructors,
but not vice-versa. For combined systems with shared constructors Kurihara & Ohuchi
[15] have generalized in a straightforward manner their main result from [14], namely
modularity of simple termination.

*®*This definition of constructor system corresponds to what is usually meant when one speaks of a
constructor discipline {for specifying functions).
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In an analogous manner our structural analysis of potential counterexamples presented
in the last section can also be generalized from the disjoint union case to the case of
combined systems with shared constructors. This will be sketched now. Firstly we need
some terminology from [15].

Let us assume in the following that R7?, R3? with F; = CwDy, F, = CwDy, DiND; =
@ are finite!® TRSs with constructors such that R = R, U R is a combined system with
shared constructors C. The defined function symbols from D; and D, are considered to be
black and white, respectively. Constructor symbols (and variables) are painted according
to the context above the actual position. This means that if a constructor symbol appears
at the the root of a term then it is considered to be transparent. Otherwise, its colour is
(recursively) the same as the colour of its predecessor (in tree representation). Analogously,
the notions of being top white, top black and top transparent are defined.

Definition 4.8 A termt is said to be a principal alien or principal subterm of a term s if
t is a non-variable proper subterm of s which is mazimal w.r.t. the subterm relation such
that root(t) and root(s) have different colours. Again we use the notation s = C[[s1,. .., S,]
where all principal aliens s; of s are displayed. The sets PS(s) of principal aliens and the
set SS(s)of all aliens of s are defined analogously as in the disjoint union case. The rank
of a term s is defined by

0 if seT(C)

1 if s€e(T(DywC,VYUT(D2wC,V)\T(C)
maz{rank(s;)|1 < i< n} if s=C[s1,...,8 with C € CON(C,V)

1 4+ maz{rank(s;)|]1 <i<n} if s=C[s1,...,8] with C & CON(C,V)

rank(s) =

The notions of inner, outer and destructive reduction steps are generalized in a straight-
forward manner. A subterm t of s is an inner subterm of s if it is a subterm of some alien
of s. Otherwise, it is an outer subterm of s.

Now we are prepared for generalizing our structural analysis for the disjoint union case
to the scenario of non-disjoint combinations of TRSs with shared constructors.

Lemma 4.9 Let R, Ry be terminating such that

D:sg— 8 — 83— ...
is an infinite derivation in the combined system R (involving only ground terms) of min-
imal rank, i.e. any derivation in R of smaller rank is finite. Then we have:
(a) rank(D) > 3.
(b) Infinitely many steps in D are outer steps.

(c) Infinitely many steps in D are inner reductions which are destructive at level 2.

Definition 4.10 Let Ry, R, be terminating TRSs over signatures F; = C ¥ D; and
Fo = C W Dy, respectively, with F = C ¥ Dy 8Dy and n € N such that for every s €
T(F) with rank(s) < n there is no infinite derivation in the combined system R with
shared constructors starting with s. Moreover, let T(F)S™ := {t € T(F)|rank(t) < n},
T(F"t = {t € T(F)|rank(t) = n+ 1}. Moreover, let <7(Fu{a,G)) be some arbitrary,

"®The finiteness condition required here can be weakened by the same line of reasoning as presented in
subsection 4.2,
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but fized total ordering on T(Fy W {A,G}). Then the D,- (or white ) abstraction zts,deﬁned
‘ to be the mapping
¥:T(F)S"w{t € T(F)*"Froot(t) € FLwC} — T(F1 9 {4,G})
‘ t if teT(Dw()
‘> (1) = A if teT(Dy)

C[¥(t),..., ()] if t=Clts,...,tm]),m > 1,r00t(t) € Dy WC
‘ . CONS(SORT(¥*(SUCCH (1)) if t=C[t1,--. tm],m > 1,700t(t) € Dy

‘ with

‘ SUCCHi(t) = {t' e T(F)|t =%t ,root(t') € F1},
¥ (M) := {¥(t)|te M} for M C dom(¥),
CONS(()) A

0o

CONS({s1,...,8k41))

G(s1,CONS({s2y.--,5k+1))) and
SORT({s1,...y8k} :=

» (‘Sﬂ'(l)’ .. -asw(k)> ’
such that S,,.(]‘) ST(}'lw{A,G}) 37r(j+1) fOf‘l < ] < k.

Lemma 4.11 Let Ry, Ry, R :=R1 D Ra, n and ¥ be given as in definition 4.10. Then,
for any s, t € T(F) with rank(s) < n and root(s) € Dy we have:

s—pt = Y(s) '_’;Z; (i),

where RY := RS, = {G(z,y) — z,G(z,y) — y}.

Lemma 4.12 Let Ry, R, and ¥ be given as in definition 4.10. Then, ¥ is rank de-

creasing, i.e. for any s € dom(¥) := GTZ" W {t € GTE " |root(t) € F1} we have
rank(¥(s)) < rank(s).

Lemma 4.13 Let Ry, Ry, R = R1U Ry, Ry = RS, = {G(z,y) — 2, G(z,¥%) — y}, n
and the Dy-abstraction ¥ be given as above. Then, for any s,t € T(F) with rank(s) <
n+ 1, root(s) € Dy WC and s —x t we have:

(a) If sf»nli is not destructive at level 1 then ¥(s)>x,¥(t) using the same Rq-rule,
and moreover this step is also not destructive at level 1.

(b) If s->g,t is destructive at level 1 then W(s)>x, ¥(t) using the same Ry-rule, and
moreover this step is also destructive at level 1.

(c) If s Yo t is not destructive at level 2 then \Il(s)i»;lglll(t) with all steps not destructive
at level 2.

i : . i+
(d) If s —r t 15 destructive at level 2 then U(s)—r: ¥(t) such that ezactly one of these
steps ts destructive at level 2.

Theorem 4.14 Let R = Ry ¥ Ry be a combined TRS with shared constructors such
that both systems Ry and Rq are terminating and such that R is non-terminating. Then
R; is not termination preserving under non-deterministic collapses for some j € {1,2}
and the other system Ry, k € {1,2}\ {j} is collapsing. Moreover, the minimal rank of

counterezamples in R; & {G(z,y) — z, G(z,y) — y} is less than or eqgual to the minimal
rank of counterezamples in R.




Corollary 4.15 If R = Ri W R, is a combined system with shared constructors such that
R1, R, are terminating TRSs which are termination preserving under non-deterministic
collapses then R is terminating, too.

Lemma 4.16 If R = R, W R, is a combined system with shared constructors such that
both R, and R, are non-deterministically collapsing then R is terminating (and confluent)
if and only if both R, and R, are terminating (and confluent), too.

Corollary 4.17 Let R = R, W Ry be a combined system with shared constructors with
f1 € Dy, fa € Dy of arity greater than 1 such that R; is f;-simply terminating for ¢ = 1,2.
Then R is (fi- and fz-simply) terminating, too.

By specializing this corollary we finally obtain the main result from [15]:

Theorem 4.18 A combined system R = Ry, U R, with shared constructors is simply
terminating (and confluent) if and only if both R1 and R, are simply terminating (and
confluent).

Note that the invariance of confluence (under the termination assumption) is guar-
anteed by the critical pair lemma and the fact that for the set CP(R) of critical pairs
in a combined system with shared constructors R we have: CP(R) = CP(R1 U R;) =
CP(R1)UCP(R>).

4.4 Generalization to Conditional Term Rewriting Systems

We show now how to generalize our structural analysis to conditional term rewriting
systems (CTRSs for short). Firstly, we need some basic terminology.

Definition 4.19 A CTRS is a pair (R, F) consisting of a signature F and a set of con-
ditional rewrite rules of the form

si=th AL..Asp=t, = [l —r

With $1,...,8n,t1, .ty I, € T(F,V). Moreover, we require | ¢ V and V(r) C V(l) as
for unconditional TRSs, i.e. no variable left hand sides and no extra variables on the right
side. For our purposes it will be useful to exclude extra variables in the conditions, too.

This means to require additionally |J {V(s;),V(t;)} C V(1).?° If the condition is empty,
=1

i.e. n =0, we simply write | — r. Instead of (R,F) we also write R* or simply R when
F is clear from the context or irrelevant.

Depending on the interpretation of the equality sign in the conditions of rewrite. rules,
different reduction relations may be associated with a given CTRS.

Definition 4.20

(1) In a join CTRS R the equality sign in the conditions of rewrite rules is interpreted
as joinability. Formally this means: s —g t if there exists a rewrite rule s; =
tt AoooA sy =t = | — 1 € R, a substitution o and a context C[] such that
s =Clol], t = Clor] and os; |r ot; for all i € {1,...,n}. For rewrite rules of a
join CTRS we shall use the notation s; [ty A...A s, | th, = | — 7.

20Extra variables in the conditions may be quite natural in many situations, in particular from a speci-
fication or programming point of view. Later on we will discuss the reason for excluding them here.
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(2) Semi-equational CTRSs are obtamed by interpreting the equality sign in the condi-
tions as convertibility, i.e. as <. ;

Definition 4.21 The reduction relation corresponding to a given CTRS R is inductively
defined as follows (O denotes | or &, respectively):

Ro = {l-rjl-reR},
Riqg1 .= {ol = or|s;0t; A...A 8,08, =1 —>71 ER,
os;0g,otjfor j=1,...,n},
s oRpt <= s-—p, tforsome > 0,i.e. o= |J —=, .
i>0
The depth of a rewrite step s —g t is defined to be the minimal { with s —g, t.

In general, conditional rewriting is much more complicated than unconditional rewrit-
ing. For instance, the rewrite relation may be undecidable even for complete CTRSs
without extra variables in the conditions (cf. [11]).

. Definition 4.22 (/5]) A CTRS R is decreasing if there ezists an extension > of the
reduction relation induced by R which satisfies the following properties:

(1) > is noetherian.

(2) > has the subterm property, i.e. C[s] > s for every term s and every non-empty
contezt C[|.

(3) If sy =ty A...A sp=t, = | —r isa rule in R and o is a substitution then
ol >o0s; andal > ot; fori=1,...,n.

A CTRS R is simplifying?! ([11]) if there ezists a simplification ordering > with (1)-(3)
satisfying additionally

(4) If sy =t1 A...A s, =t, = | —r isaruleinR and o is a substitution then
ol > or.

A CTRS R isreductive ([10]) if there ezists a well-founded monotonic extension > of the
reduction relation induced by R satisfying (3).

Clearly, every decreasing system is terminating. Both simplifying and reductive sys-
tems are special cases.of decreasing ones. In fact, decreasingness exactly captures the
finiteness of recursive evaluation of terms (cf. [4]). For decreasing (join) CTRSs all the
basic notions are decidable, e.g. reducibility and joinability. Moreover, fundamental re-
sults like the critical pair lemma hold for decreasing (join) CTRSs which is not the case
in general for arbitrary (terminating join) CTRSs.

In the following we shall tacitly assume that all CTRSs considered are join CTRSs
(which is the most important case in practice), except for cases where another kind of
CTRSs is explicitly mentioned.

The notions and terminology for disjoint unions of (unconditional) TRSs are general-
ized in a straightforward manner to CTRSs.

But for generalizing results concerning modular properties of TRSs to the conditional
case a careful analysis is necessary. As mentioned by Middeldorp (cf. [20]), the additional
complications mairnly arise from the fact that the fundamental property

$—RaR, It = s—w,t V s—g,t (%)

2 Conditions (1) and (2) are satisfied by any simplification ordering (over some finite signature).
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only holds for unconditional TRSs but not for CTRSs in general. This is due to the
fact that for verifying the applicability of an R,-rule, i.e. for proving the corresponding
instantiated conditions, rules from R; may be crucial. Consider for instance

Example 4.23

Ri={zlbAz|lc = a—a } overF ={a,b,c},
Ra = {G(z,y) — z,G(z,y) — y} over F2 = {G, A}.

Here, we have a —g,gr, @ by applying the Ri-rule (z is substituted by G(b,c)),
but neither a —g, a nor a —x, a. Hence, this is also a very simple counterexample
to modularity of termination for CTRSs, because both R, and R, are terminating (the
reduction relation of R, is empty). Moreover, the infinite (R; @ Rs)-derivation a — a —
a — ... has rank one, a phenomenon which cannot occur in the unconditional case. Note
that the system R, above has the extra variable z in the condition part of its rule.??
Therefore it cannot be decreasing. When we forbid extra variables in the conditions then
the minimal rank of potential counterexamples is at least 3 as we shall see. But the
fundamental property (*) above may still be violated as shown by

Example 4.24 (see [20] for similar counterezamples)

Ri={zlaAnz|b= flz)— f(z)} over F1 = {a,b, f},
Re = {G(z,y) — z,G(z,y) — y} over Fo = {G, A}.

Here, both R; and R, are clearly decreasing (and even reductive), hence terminating, but
R1B R, is non-terminating. This example shows that — as mentioned in the introduction —
the conditions

(a) neither Ry nor R, contains a duplicating rule ([22]), and
(c) one of the system Ry, R, contains neither collapsing nor duplicating rules ([17])

are sufficient for ensuring modularity of termination only for unconditional TRSs, but
not for CTRSs in general. In [18] it-is shown that (a) and (c) are sufficient under the
additional assumption that both systems are confluent. Moreover, confluence turns out to
be a modular property of CTRSs as shown by Middeldorp in [20].

In the following we shall show that the essential features and results of our structural
analysis of modular termination for the unconditional case can be generalized to CTRSs
in a rather straightforward manner. The numbers of corresponding definitions or results
for the unconditional case are given in parentheses.

Let us start with some basic properties of disjoint unions of CTRSs. It is easy to see
that conditional reduction steps are rank decreasing, i.e. s —gr,gr, ¢t implies rank(s) >
rank(t). As shown by Middeldorp {[20]) any non-destructive outer reduction step in a
mixed term can be abstracted into a 'pure’ step using the same rule provided that there
are no collapsing rules. Formally we get

Lemma 4.25 (see Middeldorp [20], p. 74, Proposition {.3.2) Let Rf‘, szz be two
collapse-free disjoint CTRSs and let s,t € T(F; ¥ F2,V) be given. Then s —r t im-
plies top(s) (—gr, U —r, ) top(1).

?2Hence, strictly spoken R is no CTRS in the sense of definition 4.19.
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Note that this result is a technical key lemma which will be important subsequently.
Lemma 3.3 is generalized to

Lemma 4.26 (3.3) Let R1, R, be two terminating disjoint CTRSs such that

DZS] — 89 — 83 — ...

is an infinite derivation in Ry @ R’ (involving only ground terms) of minimal rank, i.e.
any derivation in Ry @ Ry of smaller rank is finite. Then we have:

(a) rank(D) > 3.

(b) Infinitely many steps in D are outer steps.
Proof: The proof of (b) is the same as for lemma 3.3 (b). For proving (a) we first remark
that rank(D) = 1 is impossible.”® For showing by contradiction that rank(D) = 2 is
impossible, too, we consider an infinite (Ry @ R2)-derivation

Dllt1—>t2—>t3—>"'.

where w.l.o.g. all ¢;’s are top black and have rank2. Since there can be no collapsing
step in this derivation (this would contradict the case rank(D’) = 1 above) we may apply
lemma 4.25 in slightly strengthened version yielding for all j: t; >r,gRr, t;+1 using an
R-rule implies top(t;)->r, top(t;+1) using the same R;-rule, and t; —gr,gR, tj+1 implies
top(t;) = top(t;41). Thus we get the derivation

D" : top(ty) —x, top(tz) —%, top(ts) =%, *- -

According to (b) infinitely many steps in D" are outer R;-steps, hence D” is an infinite
Ri-derivation contradicting termination of R;.
|

Note, that lemma 3.3 (c) which says that infinitely many steps in D are inner reductions
which are destructive at level 2 does not hold for CTRSs in general. To wit, consider the
infinite (R, & R2)-derivation

f(G(a,b)) — f(G(a,b)) = f(G(a, b)) —

/

in example 4.24 above where all reductions are outer R;-steps.

The property of being termination preserving under non-deterministic collapses (cf.
definition 3.4) and the central white (and black) abstractlon ma,ppmg V¥ (cf. definition
3.4) are defined as for the unconditional case:

Definition 4.27 (3.2) A CTRS R is said to be termination preserving under non-deter-
ministic collapses if termination of R implies termination of R® {G(z,y) — z,G(z,y) —

y}-

Definition 4.28 (3.4) Let Ry, R, be two terminating disjoint CTRSs, R := R1 ® R,
and n € N such that for every s € T(F; W Fy) with rank(s) < n there is no infinite
R-derivation starting with s. Moreover, let <7(F6{A.G}) be some arbitrary, but fired total

2*Here our general assumption that extra variables in the conditions of rules are forbldden is crucial!
See also example 4.23.
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ordering on T(Fy ¥ {A,G}). Then the .7-'5- (or white) abstraction is defined to be the

mapping
®:GT5" v {t € GT5 ! root(t) € F1} — T(F1W{A,G})

given by
t if teT(F)
&(1) = A if teT(F)
(t):= Cl&(t), ..., B(tn)] if = Clt1,-.ytm], m > 1, root(t) € Fy
CONS(SORT(®*(SUCC* (1)) if t=C[ts,...,tm],m > 1,r00t(t) € F>
with
SUCC*H(t) := {t' e T(FiyF)|t - t',root(t') € Fi},
o (M) = {®(t)[te M} for M C dom(®),
CONS(()) = A,
CONS({(s1y---y8k41)) = G($1,CONS({s2,...s8k+1))) and

SORT({S},...,S‘C} = <S”(]),...,Sﬂ.(k)>,
such that Sx(5) ST(flw{A'G}) Sr(i+1) for1 <j<k.

Now the corresponding results for the unconditional case can be generalized to the
conditional one.

Lemma 4.29 (3.6) Let Ry, Rz, R := Ry & Ra, n and ® be given as in definition 4.28.
Then, for any s,t € T(F1 W F3) with rank(s) < n and root(s) € F, we have:

s—ort = ®(s) —>;2; (1),

where Ry := RE, := {G(z,y) — z,G(z,y) — y}.
Proof: Analogous to the proof of lemma 3.6. [ ]

Lemma 4.30 (3.7) Let Ry, Ro and ® be given as in definition 4.28. Then, @ is rank
decreasing, i.e. for any s € dom(®) := QTG%" W {t € GTgt root(t) € F1} we have
rank(®(s)) < rank(s).

Proof: Analogous to the proof of lemma 3.7. |

Lemma 4.31 (3.8) Let Ry, Ry, R = R1®R2, R} = RS, = {G(z,y) — z, G(z,y) — y},
R = R1 W R, n and the Fa-abstraction ® be given as in lemma {.29. Then, for any
s, t € T(F W Fy) with rank(s) < n+ 1, root(s) € F, and s —r t we have:

(a) If s =r t using an R;-rule is not destructive at level 1 then ®(s) Sx/ ®(t) using
the same Ry -rule, and moreover this step is also not destructive at level 1.

(b) If s —r t using an Ry-rule is destructive at level I then ®(s) Zx: ®(t) using the
same Ry-rule, and moreover this step is also destructive at level 1.

(c) If s —Ln t is not destructive at level 2 then fb(_s)—i»R;@(t) with all steps not destructive
at level 2.

i . . ;
(d) If s —xr t is destructive at level 2 then @(s)i»n;q)(t) such that ezactly one of these
steps ts destructive at level 2.
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Proof sketch: The general proof structure is as follows: We show by induction over the
depth of rewriting steps the implication

s—rpt = ®(s) >k B(s).

The case distinction for inner and outer as well as for destructive and non-destructive
reduction steps proceeds as in lemma 3.8 yielding a proof of (a)-(d).?* n

Finally we obtain the generalized structure theorem for CTRSs.

Theorem 4.32 (3.9) Let Ry, Ry be two disjoint (finite) CTRSs which are both termi-
nating such that their disjoint union R, ® R is non-terminating. Then R; is not ter-
mination preserving under non-deterministic collapses for some j € {1,2} and the other
system Ri, k € {1,2}\ {j}, is collapsing. Moreover, the minimal rank of counterezam-
ples in R; & {G(z,y) — z, G(z,y) — y} is less than or equal to the minimal rank of
counterezamples in Ry @ R,.

Proof: Let R, R, with R := Ry @ R, be given as stated above. We consider a minimal
counterexample, i.e. an infinite R-derivation

D: S§1 — 89 ~—> 83 —

of minimal rank, let’s say n + 1. W.l.o.g. we may assume that all the s;’s are top black,
i.e. Fi-rooted ground terms having rank n + 1. Since the preconditions of definition 4.28
are satisfied we may apply the white (F5-) abstraction function ® to the s;’s. As it will
be shown this yields an’infinite R’-derivation '

D': ®(sy) =" B(s2) =" B(s3) ="

where R’ := R; @ R}, with R} := RS, = {G(z,y) ~ z, G(z,y) — y}. Using lemma 4.31
we conclude that for any step s; — s;41 in D we have ’

S5 —‘372 Sj41 @(S]‘) —?*12! Q(SJ'+1) ,

si—w s = ®(s;) = ®s41)-

Hence, D’ is indeed an R’-derivation. Since according to lemma 4.26 (b) infinitely many
steps in D are outer ones, the derivation D’ is infinite, too. But this means that Rq-is
not termination preserving under non-deterministic collapses. Moreover, under the as-.
sumption that R, is non-collapsing the F,-abstraction of principal subterms of a minimal
counterexample always yields the constant A which implies that the transformed infi-
nite derivation is an R;-derivation contradicting termination of R;. Thus Ry must be
collapsing. Lemma 4.30 finally implies rank(D’) < rank(D) which finishes the proof. =

Corollary 4.33 (3.10) Termination (and hence also completeness) is modular for the
class of (finite) CTRSs which are termination preserving under non-deterministic col-
lapses.

s
**Note that the assumption of having no extra variables in the conditions is important because this
would cause problems with the rank of instantiated condition terms. In that case substitution of the extra
variables in the condition part which are implicitly existentially quantified might yield terms of arbitrarily
high rank which in turn might prevent @ from being well-defined for these instantiated terms.
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As in the unconditional case this general result can now be exploited for deriving a
* couple of sufficient criteria for modular termination of CTRSs.

Definition 4.34 (3.16) A CTRS R” is said to be non-deterministically collapsing if
there erists a term s[z,y] € T(F,V) withz,y € V such that s[z,y] =% z and s[z,y] —} v,
i.e. if some term can be reduced to two distinct variables.

Lemma 4.35 (3.17) Termination is modular for the class of (finite) CTRSs which are
non-deterministically collapsing.

Definition 4.36 (3.18) Let R” be a CTRS and f € F,F' C F. Then, R” is said to be

f-simply terminating if R” U Rfub with Rfub = {f(z1,...,%j,...,,) = 2;]1 < j < n}

is terminating. R¥ is F’-simply terminating if RF U U Rfub is terminating. R” is
fex?

simply terminating if R” is F-simply terminating, i.e. RfoU}_’R;fub is terminating.
€

Clearly, simple termination again implies termination for CTRSs.

Lemma 4.37 (3.19) Let R” be f-simply terminating CTRSs for some f € F of arity
greater than 1. Then RTYF' is ({f} U F')-simply terminating for any F' with F'0NF = §.

Corollary 4.38 (3.20) Let 721}-’, R;—"’ be two (finite) disjoint CTRSs with fy € Fy, f2 € F»
of arity greater than 1 such that R; is f;-simply terminating for 1 = 1,2. Then the disjoint
union Ry @ R2 is (fi- and fp-simply) terminating, too.

A characterization of simple termination of CTRSs analogous to the case of uncondi-
tional TRSs (see lemma 3.22) is not possible in a straightforward manner. Obviously, any
simply terminating CTRS can be shown to be terminating by some simplification ordering,
but not vice-versa in general. To see this, let us have again a look on example 4.24.

Example 4.39 (ezample 4.24 continued)

Consider Ry = {z | a AN z | b = f(z) — f(z) } over the extended signature
F1 = {a,b, f,G}, with G binary. Here the reduction relation induced by R, is empty,
hence any simplification ordering trivially suffices for ensuring termination of Ry. But,
due to the non-termination of Ry U {f(z) — z,G(z,y) — z,G(z,y) — y}, Ry is not
simply terminating .

Note moreover that every simplifying CTRS is clearly simply terminating but not vice-
versa in general. Simple termination even does not imply decreasingness as shown e.g. by
the CTRS consisting of the single rulea [ b =— a — a .

By specializing corollary 4.38 we finally obtain

Theorem 4.40 Simple termination is modular for the class of -(finite) CTRSs R such
that there exists at least one function symbol f € F of arity greater than 1.

Before concluding let us mention some aspects not yet handled. Firstly our results
have only been proved for join CTRS. But it should (at least be partially) possible to
extend them to the semi-equational case. Note that again new subtle effects may occur
in semi-equational CTRSs. For instance. lemma 4.26 (a) does not hold any more. To wit,
consider

Example 4.41 Ry ={b "¢ = a—a }, Ry ={G(z,y) = 2,G(z,y) — y}.
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Both R; and R; are terminating (and decreasing) but R, @ R, is non-terminating. We
even have a counterexample of rank 1, namely ¢ —R,9r, ¢ —R,9R, @... because we
have b — G(b,c) — ¢ in Ry, hence b —%, c. Considered as join CTRS Ry @ R, is
terminating, however!

Secondly, the variable conditions required for CTRSs should be investigated in more
detail. It should be possible to allow extra variables in the conditions. Extra variables in
right hand sides seem to be much more difficult to handle than extra variables only in the
conditions (see the discussion in [20]). ,

Moreover, the relationship between those results in [20] dealing with sufficient condi-
tions for modular termination of CTRSs and our results should be clarified.

5 Conclusion

We have presented a structural analysis of minimal counterexamples to modular termina-
tion of rewriting. It has been shown that the abstract property of TRSs to be termination
preserving under non-deterministic collapses is crucial for the invariance of termination
under disjoint unions. Although this property turns out to be undecidable in general it
provides the basis for a couple of sufficient criteria for ensuring modularity of termination.
For that purpose we have developed a specialized version of the increasing interpretation
method for proving termination of rewriting. Our general approach and the resulting suf-
ficient conditions for modularity of termination generalize known results of [22], {17], [14]
and [15]. In particular, the basic ideas and constructions have been shown to be also appli-
cable to more general situations, namely for (non-disjoint) unions of TRSs with common
constructors as well as for conditional TRSs. Moreover, we have given counterexamples for
some interesting conceivable conjectures, namely the modularity of the non-self-embedding
property as well as the invariance of simple termination under hierarchical combinations of
TRSs. And finally, a very simple class of examples has been presented which proves that
the minimal rank of non-terminating derivations in disjoint unions of terminating TRSs
may be arbitrarily high. This reflects in a sense the very subtle interaction of rewriting in
disjoint unions and shows that arbitrarily complicated layer structures may be essential
w.r.t. the termination behaviour.
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