uIaINDsIesION 0G/9-a
6v0€ LUODUSOd
UISJNDISISSIDY JDNSIOAIUN
Alouwlojul UdieieqyonS

Thomas Deif§

Presenting Monoids
SEKI Report SR-92-12

ot
&
n
&
@
B
2]
e
wn
Q
-
=
&
o
5
<Y
7]
®
=
2
B~
o e
<
=
e
@)

[IOd3 - IAFS

Conditional semi-Thue Systems for Presenting Monoids!

Thomas Deif3
Fachbereich Informatik, Universitat Kaiserslautern
Erwin Schrodinger Strafle
W-6750 Kaiserslautern

deiss@informatik.uni-~kl .de

1 A short version of this paper was presented at STACS’92, [Dei92)

Abstract

There are well known examples of monoids in literature which do not admit a finite and
canonical presentation by a semi-Thue system over a fixed alphabet, not even over an arbi-
trary alphabet. We introduce conditional Thue and semi-Thue systems similar to conditional
term rewriting systems as defined by Kaplan. Using these conditional semi-Thue systems we
give finite and canonical presentations of the examples mentioned above. Furthermore we
show, that each finitely generated monoid with decidable word problem is embeddable in a
monoid which has a finite canonical conditional presentation.

1 Introduction

Thue and semi-Thue systems [Boo85] can be used to examine questions concerning monoids
and groups. A Thue system R over an alphabet ¥ induces a congruence <% on X*, the
congruence classes modulo —g form the monoid Mgr. A monoid M is finitely presented by
(Z, R) if M is isomorphic to Mg and both ¥ and R are finite, it is finitely generated, if
only ¥ is finite. If R viewed as a semi-Thue system induces a canonical, i.e. confluent and
noetherian, relation, it can be used to decide the word problem of M: Two strings v and v
are congruent if and only if they have the same common irreducible descendant.

It is easy to see that a monoid with an undecidable word problem cannot admit a finite
and canonical presentation. In addition it has been shown by Narendran and Squier that
there exist finitely presented monoids with decidable word problem which do not have a finite
and canonical presentation using a fixed alphabet, see e.g. [KN85], resp. using an arbitrary
but finite alphabet [Squ87].

To overcome this gap between decidability of the word problem and the existence of finite
and canonical presentations we introduce conditional Thue and semi-Thue systems. They are
defined similar to conditional term rewriting systems, see e.g. [Kap84, Kap87, JW86, Gan87].
We show, that using conditional semi-Thue systems we get finite and canonical presentations
of the examples of Narendran and Squier. Furthermore we are able to strengthen a result of
Bauer [Bau81]: Each finitely generated monoid with decidable word problem can be embedded
in a monoid, presented by a finite, canonical, and conditional semi-Thue system.

Different conditional string rewriting systems have been used already by Siekmann and
Szabo [SS82] to give a finite and canonical presentation of idempotent monoids. They use
variables within their rules and a different system to evaluate the premises of a conditional
rule and therefore are not a conditional semi-Thue system according to our definition.

In section 2 we summarize results about unconditional Thue and semi-Thue systems.
The basic definitions of conditional systems are presented in section 3, followed by results
concerning confluence and equivalence in section 4. The examples of Narendran and Squier
are examined in section 5. The final section 6 contains the embeddability theorem.

1

2 Uncondition~l 1 hue and semi-Thue systems

We give the basic definitions concerning Thue and semi-Thue systems. Furthermore we state
some previous results about decidability of the word problem and the existence of finite
canonical presentations according to [SO87].

A Thue system R over an alphabet ¥ is a set of equations over £*. Throughout this
paper we assume X to be finite. The Thue congruence &% is the reflexive transitive closure
of the relation <»r. Thereby, u &g v if there exist z,y € £*, such that v = zly,v = zry and
l=rorr=1¢€ R. The congruence class [u]g of a word u € £* is defined as [u]p = {v € Z*
|u <% v}. The congruence classes form the monoid Mp = X*/ &% under the operation
o : [u]g o [v)Jp = [uv]r. A monoid is presented by (X, R) if M is isomorphic to Mr. M is
finitely generated if ¥ is finite, it is finitely presented if both ¥ and R are finite.

Sems- Thue systems differ from Thue systems in the application of the equations : u —g v
if there exist z,y € X* such that u = zly,v = zryand I — r € R. The elements of R are called
rules. —}% denotes the reflexive, transitive and «% the reflexive, transitive, and symmetric
closure of —p.

A word u € T* is irreducible modulo R if there is no v € £* such that v —} v. TRR(R)is
the set of all irreducible words modulo R. —pg is noetherian if there is no infinite sequence of

words w; —R w2 —R Two words wy, wy are jotnable if they have a common descendant:
wy | wp resp. wy L wy if we are interested in the common descendant w.

— g is confluent if for all u,u,,uz,u; «—§ u —f uz implies u; | u3, it is locally .onfluent
if ¥ —R u — R u; implies u; | u;. The Church-Rosser property is equivalent to confluence:
for all uy,u; € *,uy —} uz implies u; | u,.

If — g is noetherian and locally confluent, then it is also confluent [New42]. A semi-Thue
system R is canonical if —p is confluent and noetherian, then each word u € ¥* has an
unique irreducible normalform %. _

If we view a system R as a Thue system as well as a semi-Thue system, they define the
same monoid MR, i.e. <&p=«%. Therefore the word problem of a monoid, which has a finite
and canonical presentation (I, R) is decidable: for u,v € ¥*,u &% v if and only if 7 = %.

In general it is undecidable whether a given semi-Thue system R is (locally) confluent
or noetherian. But is is sufficient to show that for all rules | — r € R,! > r with respect
to a well-founded partial order on X* which is compatible with concatenation. Then R is
noetherian. The simplest example of such an ordering is ordering by length, others can be
found in [Esc86]. :

Now given a finite, noetherian semi-Thue system it is decidable whether it is locally
confluent, and thereby confluent. Let u — v, 4’ — v’ be two rules in R. If u is a substring of
v, ie. v = ruy,z,y € L*, then u’ is an overlap and v’ = zvy is a critical pair of the rules.
If v and v’ overlap, i.e. v = zy and v’ = yz,z,y,2 € £t, then zyz is an overlap and vz = zv'
is a critical pair. We have that R is locally confluent if and only if all critical pairs of R are
joinable.

Two string rewriting systems R;, R, are equivalent if they present the same monoid using
the same alphabet, i.e. <} =«% . If both systems are finite and canonical, equivalence is
decidable. They are equivalent if for all 4; — v; € R we have u; <%, v1 and vice versa.

We have seen, that the word problem of a monoid M with a finite and canonical pre-
sentation is decidable. Unfortunately, there are finitely presented monoids with decidable
word problem which do not admit a finite and canonical presentation. Kapur and Narendran
[KN85] showed this for systems over a fixed alphabet, the general result has been proved by
Squier [Squ87, Squss).

Lemma 1 [KN85]. Let £ = {a,b}, Ry = {aba — bab}, R; = {aba — ba} and MR, resp. Mg,
be the corresponding monoids. Then both monoids are finitely presented and have decidable
word problem, but do not admit finite and canonical equivalent presentations.

Lemma 2 [Squ87, Squ88]. There ezist finitely presented monoids Sk, k > 1 with decidable
word problem which have no finite canonical presentation.

In his dissertation [Bau81] Bauer extended semi-Thue systems to n-level rewriting systems,
see also [Bau85]. A n-level rewriting system R over L is a n-tuple R = (Rq, Rz,...,Ry) of
semi-Thue systems over ¥. Any admissible sequence of applications of rules starting with
w € ¥* must be the beginning of a sequence w —% w; =g, w2 =%, ... >k, Wn Where w; is
irreducible modulo R;. R is canonical if each w € £* has an unique normalform using finite
admissible reductions. Then Bauer can show

Lemma 3 [Bau81, Bau85]. Fach finitely presented monoid with decidable word problem has
a presentation by a finite canonical 2-level system.

In his dissertation Bauer used yet another approach to close the gap between decidability of
the word problem and the existence of finite canonical presentations. This approach applies
also to finitely generated monoids.

Lemma 4 cf. [Bau8l]. Let (X,S) be a presentation of a finitely generated monoid M with
decidable word problem. Then M can be embedded identically in @ monoid M’', which is
finitely presented by (X', S'), such that

o —% is noetherian.

o each word w € ¥* has an unique irreducible normalform modulo —g:.

We will generalize this partial result in section 6 such that we have a canonical finite condi-
tional representation of M'.

3 Conditional systems

We use conditional Thue and semi-Thue systems similar to conditional term rewriting systems
as defined e.g. by Kaplan [Kap84]. Therefore the induced congruences are more difficult to
handle as for unconditional systems. For example, the congruences are not decidable in
general. These problems can be solved by introducing reductive systems analogously to
simplifying and reductive conditional term rewriting systems [Kap87, JW86]. At last we
state a limitation on the expressiveness of conditional semi-Thue systems when regarding
cancellative monoids.

A conditional Thue system R is a set of conditional equations. Each equation consists of
a conclusion ug = vp and a finite set {u; = v;|1 < ¢ < n} of premises, all u;,v; are strings
over an alphabet £. We write

n

Y u=v U=

i=1
The relation < g is defined as follows: u <>g v if and only if there exist z,y € X* and an
equation Y, u; = v; :: g = vo in R such that u = zupy and v = zvey or ¥ = zvey and
v = zupy and for all 1 < ¢ < n we have ru;y &5 rv;y. &} is the Thue congruence induced
by R. z and y are the left resp. right contezt of the occurrence of up resp. vp in u. In this
case R is called a left-right conditional Thue system. If only the right context y is used in
evaluating the premises, i.e. u;y &% vy, we call R a right conditional system.

A solution of a conditional equation modulo a Thue system R is a context, such that
the premises of the equation within this context are congruent modulc R. x_y is a minimal
solution modulo a left-right conditional Thue system if there is no suffix z’ of z and no prefix
y' of y such that z’_y’ is a solution. For a right conditional system, a right context y is a
minimal solution if it has no prefix y’ which is a solution itself. The set of minimal solutions
of a conditional equation e modulo a conditional Thue system R is denoted by solg(e).

To define conditional semi-Thue systems we restrict the application of the equations. Let
V2. ,u; = v; it ug — vo be a rule of a conditional semi-Thue system R. ug is the left-hand side
of this rule, vp is the right-hand side. Now v —g v if and only if u = zugy and v = zvy, where
z,y € L*, and zu;y and zv;y have a common descendant modulo —g for 1 < ¢ < n. As for
conditional Thue systems we distinguish left-right and right conditional semi-Thue systems.
Solutions modulo a conditional semi-Thue system R are defined in the same manner as for
conditional Thue systems. For a minimal solution z_y resp. y we require in addition to the
nonexistence of subsolutions, that z and y, resp. (y) are irreducible modulo R.

Notice that the premises must have a common descendant in the context of rule application
instead of being congruent as it was in the definition of conditional Thue systems. This.
causes the first difference to unconditional systems: The Thue congruence and the symmetric,
transitive, and reflexive closure of the reduction relation need not coincide anymore. To
recover this property we need in addition confluence of R.

3

Lemma 5 cf. [Kap84, theorem 3.2.]

a) There ezists a conditional Thue system R with &} # «F.

b) If R is confluent, we have & = —§.

proof: The original proofs carry over directly to conditional semi-Thue systems. o

Both &} and «§ are compatible with concatenation, hence the congruence classes mod-
ulo &F resp. —% form a monoid. As a direct consequence of the lemma above these monoids
are the same if R is confluent.

For a finite unconditional system R the relations <& g and — g are decidable. This changes,
too, when considering conditional systems, cf. [Kap84, theorem 3.3.].

Lemma 8 There ezists a finite conditional Thue system R such that <> p and —p are un-
decidable.

proof: We use an argumentation similar to that one in the original theorem, but instead of
Hilbert’s tenth problem we use the encoding of a Turing machine with undecidable halting
problem to evaluate the premises. Then the conditional equation can be applied if the premise
reduces to an encoding of a final configuration of the Turing machine, but this problem is
undecidable. o

Similar to the case of conditional term rewriting systems there is a sufficient criterion such
that the reduction relation becomes decidable: We call a conditional semi-Thue system re-
ductive if for all rules in R the strings in the premises and the right-hand side are smaller than
the left-hand side wrt. to a well-founded ordering which is compatible with concatenation.
In analogy to [Kap87, theorem 1.6.] we have

Lemma 7 Let R be a finite reductive conditional semi- Thue system, then —R is noetherian
and decidable.

The results of the lemmatas 1 and 3 can be combined: If R is finite, confluent, and reductive,
then we have &} = o} and &} resp. —% are decidable. Hence R can be used to decide
the word problem by means of string rewriting.

We expect that conditional systems have a greater expressiveness than unconditional
ones. But cancellative monoids and groups show a limit of conditional systems. A monoid
presented by (X, R) is cancellative if for all z, y, u, v € ¥, zuy & | vy implies u &7 v.

Theorem 1 A group or cancellative monoid M has a finite canonical left-right conditional
presentation iff it has a finite canonical unconditional one.
proof:

if: If M has a finite canonical unconditional presentation it trivially has a conditional one.
only if: Let (£, R) be a finite canonical left-right conditional presentation of M and let
(r) VE,u; = v; it up — vp be a conditional rule of R. By definition, r can be applied
on a word zugy iff z_y is a solution of r modulo R. Since M is cancellative and R is
canonical r_y is a solution if and only if A_) is a solution, i.e. r can be applied if and
only if u; | v; for 1 < ¢ < n. Suppose this is true, then we can apply r independent of
its context and we may replace r in R by the unconditional rule ug — vp. If there is at
least one premise, such that u; J/ v;, then r cannot be applied to any word and we may
cancel r in R. These replacements and deletions do not alter the property that R is
canonical. Hence we are able to construct a finite canonical unconditional presentation
of M. a

iy R, oy
) * Aind.hyp.
ind.hyp. . ;*

Ry YRYR,

ZTvoy

Figure 1: equivalence

An example of a cancellative monoid is the monoid presented by {aba — bab} [KN85], which
does not have a finite and canonical presentation over the alphabet £ = {a, b}, see lemma 1.
An analogous theorem can be proven for right-cancellative monoids and right-conditional
systems.

4 Equivalence and Confluence

We examine sufficient criteria to decide equivalence and local confluence of conditional semi-
Thue systems. In general, none of these criteria gives us a finite test to decide these questions:
we have to consider the (infinite) set of minimal solutions. For deciding local confluence of
left-right conditional semi-Thue systems the situation is even worse: we have an infinite
number of critical pairs.

4.1 Equivalence

To decide equivalence of two unconditional systems it suffices to show that the rules of each
system are congruent modulo the other one. For conditional systems we have to take into
account the solutions of the conditional rules. If we compare two finite canonical conditional
semi-Thue systems we may restrict the test to minimal solutions. We state this lemma for
left-right conditional systems, but it is also valid for right conditional ones.

Lemma 8 Let Ry, R, be two finite canonical conditional semi-Thue systems over an alphabet
L. If we have for all rules (r)V,u; = v; it ug — vg in Ry, and minimal solutions z_y €
solp, (r) that zugy <R, Tvoy and vice versa for all rules in R;, then Ry and R; are equivalent,
proof: We show that 4 <} v implies v -} v, the case u —f v implies u «f v is
analogous. Since — g, is canonical, —p, is a well-founded partial ordering on X* which is
compatible with concatenation. Let -»g, denote the lexicographic extension of —pg, to tuples
of words. The proof is by noetherian induction using —»g,. It suffices to show that u —p, v
implies u &} v. Let (r1) Vi u; = v; it ug — vo be the rule used to reduce u to v, i.e.
= zupy, v = zvoy and for all 1 < i < n,zu;y | R, zviy.

case 1: z,y are irreducible.
Then z has a suffix z’, y has a prefix y' such that z/_y' is a minimal solution of r;. By
assumption we have z'ugy’ <}, z'vov’ and we conclude u = rugy <%, TVy = v.

case 2: at least one of z, y is reducible.
Let T,7 be the normalforms of = resp. y modulo R;. Then v = zwy —R, Tv¥.
Since at least one of z,y is reducible we have (zuoy,zvoy) —*gr, (Zuoy,ZTvey) and
(zuoy, zvoy) —»R, (zvoy,Tve¥). By using the induction hypothesis twice we conclude
u = Tugy <R, TvoY <k, Tvoy = v. This is depicted in figure 1. a

aN
AN

U2 hyp. N
m

\ / hyp

\

Ug

Figure 2: confluence

4.2 Confluence

Since right conditional semi-Thue systems correspond to conditional term rewriting systems
with unary function symbols, the proof of confluence can be carried over from term rewriting
to semi-Thue systems, see e.g [Kap87, JW86]. To show confluence of a system R we take the
usual approach. We show that R is reductive and thereby noetherian. If all critical pairs are
joinable then R is locally confluent, hence it is confluent [Hue80].

Definition 1 Let (7) V2 u; = v; = up — vo and (r') VI, ul = v! :: u) — v} be two (not
necessarily different) rules of a right conditional Thue system R.
If uy is a substring of Uo, i.€. Ug = TUQY,
then Viu; = v; A V" LUy = vy v = :woy is a critical pair of v and r'.
If vg and uj, have an overlap, t.e. uo = zy,uh = yz,z,y,z€ L,
then V2_ u;z = v;z A V,_lu = v} i1 voz = zV} is a critical pair of r and 1'.
CP(R) is the set of all critical pairs of R.
A critical pair (p) Vi, u; = v; = ug = v is joinable in R if and only if for all y €
solp(p), woy LR voy. : :

Lemma 9 Let R be a finite reductive right-conditional semi-Thue system. If and only if all
critical pairs of R are joinable in R, then R is locally confluent and thereby confluent.
proof: Follows the proof of confluence for conditional term rewriting systems in [JW86).

only if: Let (p) Vi, ui = v; :t up = vp be a critical pair of two rules r,»' € R, y € solr(p)
and let w be the overlap corresponding to p, then wy reduces to uoy resp. voy. Since R
is confluent we have ugy | voy. We conclude that all critical pairs are joinable within
their minimal solutions.

if: Let P(u) be valid if and only if Vu;,us with 4 e—} u —»',‘i u; there exists ug € X* such
that u;) u;. We show that P(u) is valid for all u € £* by noetherian induction on ¥*,
see e.g. [New42]. Figure 2 turns out the existence of ug, provided that w; —p u —pg w,
implies 3w € £* with w, { w,.
Let us assume that we used the rules (r) VA u; = v; :: g — vp and (r') VL, u! = v}
uy — vj to reduce u to wy resp. wp. There are 3 cases according to the pasitions of ug
and ug in u.

case 1: up and uj, do not overlap, i.e. v = T upz2ulz3 and w; = TyVoZT2UGT3 ¢y U —rpr
Tyupzavpz3 = wy. This corresponds to a variable overlap in conditional term rewriting
systems.
It is easy to see that w; reduces to z v9z3vyz3. Also for all 1 < i < n,u;zauaz3 —§
u;T9v5Z3 and v;TaUugT3z —p viZ205Z3. Similar to figure 2 we may apply the induction
hypothesis twice to get common descendants of u;zav5z3 and v;zavgz3. Hence zav)z3
is a solution of r and we may reduce w; = z,upz20)Z3 to W = z1vpZ20)Z3.

case 2: ug is a substring of ug, i.e. ¥ = T 1UpT4 = T1T2u(T3T4 and W) = T VT4 —f U >y
T1T2VHT3T4 = W.
Let us assume first that z4 is irreducible. Then z4 has a prefix zj which is a minimal
solution of the critical pair corresponding to the overlap up = zaufz3 of r and r’. This
is joinable by hypothesis and we conclude z,voz4 | z1Z2v(Z324.
If z4 is reducible, let Tg be its normalform. There are v’ = 24Ty = r122u{z3T;, W) =
z,v9%; and w)j = T,72v)T3T4. Again as in figure 2 we can show that u;Z3 | v;Zy for
1 < i< nand ulz3Tg | viz3Tg for 1 < i < n'. Hence T3,z3T5 are solutions of r resp.
', and we get w] — u’ — wj. This is the case above, wj,w) and thereby w; and w,
have a common descendant w.

case 3: ug and uj have an overlap. Similar to case 2 we show the existence of the common
descendant w.

Hence w; — w — wy implies wy | wy which finishes the proof. a

Though we have a finite number of critical pairs of a finite right conditional semi-Thue
system, this characterization does not give a finite test for confluence. There may be infinitely
many minimal solutions of a critical pair.

For left-right conditional systems the situation is even worse. By extending definition 1
to left-right conditional systems, joinability of critical pairs does not suffice to show local
confluence. Let us have a word u € £* reducible by two rules (r) VA, u; = v; :: ug — vp,
(r') VP ul = v} :: uh — v). z_y and z’_y’ are the solutions used by the rules. Let us assume
that the left hand sides do not overlap with themselves but with the solution of the other
rule, e.g.

u=[FL1% %] ¥ | 22]
lzz T 2" Tugly byl

Since up and ug do not overlap, there is no critical pair corresponding to this situation. But
it is possible that the descendants zyzvpy2; and z3z’'v(y’z4 are not joinable, since the rules
disturb mutually their contexts.

To show local confluence we expand R to R, = {zupy — zvoy|ris arulein R, z_y is a
solution of r and no suffix =’ of z, no prefix ¥’ of y is a solution of r}. Notice that R, is
unconditional and in general infinite. Now, local confluence of R can be easily deduced from
local confluence of R..

Lemma 10 Let R be a reductive left-right conditional semi- Thue system, then R is confluent
if and only if R. is confluent.

Thus we have a formal characterization of (local) confluence of left-right conditional systems.
But usually we have to examine an infinite number of critical pairs of R..

5 Examples

Now we are able to study the examples mentioned in the introduction. We first examine the
example of Narendran. After that we briefly investigate an example due to Kirchner and
Hermann [KH89] and finally we present the example of Squier.

5.1 A representation with no equivalent finite canonical presentation

We consider the one rule system R = {aba — ba} over the alphabet ¥ = {a,b}. As already
stated in lemma 1 there is no finite canonical unconditional semi-Thue system equivalent to
R. Using a completion procedure we get the infinite system Rxg = {ab™a — b™a|n > 1},
which is canonical and equivalent to R. As announced there is a conditional semi-Thue
system which is finite, canonical, and equivalent to R.

Theorem 2 The right conditional system R, = {aba — ba;ab = b :: abb — bb} is a finite
canontcal system equivalent to R = {aba — ba}.

We will use r, and r. as abbreviations of the unconditional resp. conditional rule of R.. At
first we determine the set of minimal solutions of the premise of r..

Lemma 11 solg (r.) = {d"a|n > 0}.
proof: Let § = {b™a|n > 0}

S C solp (rc): Induction on n shows that abb™a | bb™a.
solg.(rc) € S: Let z € sol(r.), by definition z is irreducible. We show by induction on
length ! of z, that z € §, i.e. z = b™a.
- 1 = 0: that means z = A, but no left or right-hand side of r, or r. is a substring of ab
resp. b. Therefore they are the only elements in their equivalence classes and they
are not congruent. This contradicts z € solgp (r.).
!l = 1: z = a, by definition of § we have x € § and aba | ba.
z = b, this again contradicts z € solp (r.), since we would have to show abb | bb.
Only 7. could be applied on abb, but the premise of r. is not joinable within the
context A.
I>1: z = az', this is a contradiction to z € solg (r.) since a is a prefix of z and
a € solg (rc).
z = bz', by assuming z € solg (r.) we have abz | bz, i.e. abbz’ | bbz'. 2z’ is
irreducible and therefore the only possibility to reduce abbz’ is abbz’ —, bbz’.
This rule may be applied if ' € solg (r;). By induction hypothesis we have
z' = b'~2a, hence z = b la. o

Lemma 12 The system R. is canonical.

proof: Since both rules of R, are length reducing and the premises are shorter than the
left-hand sides, R, is reductive. To show confluence we have to consider two overlaps. The
critical pair baba = abba corresponding to the overlap ababa is joinable in bba. The other
overlap ababb results in the critical pair ab = a :: babb = abbb. It has the same premise as
Tc, hence it has the same set § = {§"a|n > 0} of minimal solutions and we have to show
babbb™a | abbbb™a for all n > 0. These words can be reduced to bbbb™a using r.. Therefore
all critical pairs are joinable and we conclude that R, is canonical. o

Finishing the proof of theorem 2 we show that R and R, are equivalent.

Lemma 13 R and R, are equivalent.

proof: Since R is a subset of R, it suffices to show for all z € solp (1) that abbz —} bbz.
R and Rxp are equivalent, hence we can use Rxp to show this. By Lemma 11 we have
z = b"a,n > 0. But now abbb™a — g, ,, bbb"a, which completes the proof. m]

In [KH89] Kirchner and Hermann presented a term rewriting system which can be con-
verted into the semi-Thue system R’ = {fgf — fh}. We use the reversed system R =
{fgf — hf} as an example. Completing R gives the infinite canonical system Rkxp =
{fgh™f — h"t1f |n > 0}. Again the monoid Mg can be presented by a finite canonical
conditional semi-Thue system, the proof is left to the reader.

Lemma 14 Let R = {fgf — hf}, then R. = {fgf — hf;fg = h :: fgh — hh} is a finite
canonical right conditional semi- Thue system equivalent to R.

5.2 A monoid without a finite canonical presentation

Squier [Squ87, Squ88] defined a family of monoids S,k > 1, which cannot be presented by
finite unconditional semi-Thue systems. We show that each of these monoids can be presented
by a finite canonical right conditional system. We will study the monoid S; in detail, the
results can be easily generalized to Sk, % > 1.

Let &) = {a,b,t,7,y},R} = {za — atz;zt — tz;zb — bz;zy — A} and Ry = Rj U
{at®b — X|n > 0}. S) is the monoid presented by (X4, R;), it is finitely presented by the
system RY = R} U {ab — A}, [Squ87). Using a syllable or collected ordering as defined in
[Sim87], based on the precedence ¢ >t > b > z > y we can show that R, is noetherian.
Furthermore R; is confluent, hence R, is canonical. Therefore we are able to compute unique
normal forms modulo R;, hence the word problem of S; is decidable. Though we have an
infinite semi-Thue system to solve the word problem of §;, there is no finite system with this

property.
Lemma 15 [Squ88]. S; has nro finite canonical unconditional presentation.

To show that S} can be presented by a finite canonical conditional system, we need a canonical
unconditional system R, equivalent to R;. It is similar to R,, except that the rules {at"b — A
|n > 0} are replaced by a set of rules {at"t'b — at™bjn > 0} U {ab — A}. The rules of the
conditional system will resemble the rules in R;. Especially the rules at*t'b — at™b will be
replaced by a conditional rule.

Theorem 3 The right conditional system R, = R} U {ab — A;atb — X;at = a :: att — at}
i8 a canonical presentation of the monoid S;.

The last 3 rules will be abbreviated with r;, 7, and r.. Similar to lemma 11 we get solp (r.) =
{t"b|n > 0}. Then we can show that R, is canonical.

Lemma 16 solg (r.) = {t"b|n > 0}.
proof: Let § = {t"b|n > 0}.

S C solp (rc) : Let z € S, i.e. z=t"b. Induction on n shows that z is a solution of .. Since
z is irreducible and the proper prefixes of z are no solutions, z is a minimal solution.

solp (r:) C S : Let z € solg.(r.), but z € S, i.e. z # t"b, z is of minimal length with this
property. By assuming z € solg,(r;) we have that z is irreducible and no proper prefix
of z is a solution. We distinguish the following cases by looking at the first letter of z.
z = az' : but ataz’ and aaz’ are irreducible, hence z cannot be a solution.

z = bz’ : Either 2’ is A, then z is of the form t"b (n = 0) or 2’ # A, then a proper prefix
of z is a solution which contradicts z € solg, (r.).

z =tZ': att?’ is reducible by r. if atz’ | az’. =z itself is irreducible and no pioper
prefix of z’ is a solution of r. (Assuming the contrary gives a contradiction to the
property, that no proper prefix of z is a solution). Hence z’ € solg (r.). Since
|2'| < |2| and z is of minimal length with z # t"b we get z/ = t™b, contradicting

z # t"b.
z =1z : atrZ’ and azz’ are irreducible, hence z cannot be a solution of ..
z = yZ' : analogous. a

Lemma 17 R_ is canonical.

proof: Since the rules of R. can be ordered with the ordering defined above, R, is reduc-
tive and therefore noetherian. To prove that R, is confluent we have to consider the overlaps
zab, zath and zatt. It is easy to see that the critical pairs atzb = z and atztb = = correspond-
ing to the first two overlaps are joinable. The overlap zatt gives the critical pair (p) at = a ::
" atztt = zat. Since p and r, have the same premises, solg (r.) = sol(p) = {t"b|n > 0}. For
all n > 0, atzttt™b and zatt™b are joinable in attt™bz, hence R, is confluent. a

We have equivalence of R, and R;, the proof is similar to that of lemma 13. Since R;
and R; are equivalent, R, and R; are equivalent too. This finishes the proof of theorem 3.

6 Embeddability of monoids

In section 5 we used right conditional systems only and concentrated on single examples. To
achieve a general result we resume to the use of left-right conditional semi-Thue systems.

We are able to strengthen the result of Bauer [Bau81] stated in lemma 3. There is a finite
" canonical conditional presentation of the embedding monoid.

Theorem 4 Let M be a monoid with decidable word problem which is finitely generated by
(X,S5). Then M can be embedded in a monoid M' which is finitely presented by a canonical
left-right conditional semi-Thue system C over an alphabet A.

Throughout the rest of this section we give the proof of the theorem. The basic idea follows
the proof of Bauer. We choose an unique representative @ of each equivalence class [w]s,
w € L* and we define a function ¢ : £ — A* as ¢(a;) = (a;),a; € X. ¢ can be extended
to a function ¢* : T* — A* by ¢*(A) = A and ¢*(a;w) = ¢(ai)¢*(w). This induces an
homomorphism ¢ : M — M',H([w]ls) = [¢*(w)]c. For w = aj,...a;, the system C is
intended to do the reduction

" (w) = (a3)..-(ai) =% { (o) Toza

C has to perform two tasks. First, given a word w within delimiting parentheses, called a
configuration, compute the representative @ of w: (w). Second, given two configurations
(w1)(w2) which are concatenated as words, concatenate them into one configuration (w;wz).
The main problem is to prevent the rules to apply on words other than (w) resp. (w;)(wa).
Notice that we must not reduce (w) if w = w, otherwise we would have an infinite reduction.
Then we can show that C is canonical and we get ¢*(u) |¢ ¢*(v) if and only if u &% v.
Hence M is embedded in M’.

10

6.1 Construction of the system C

The choice of the representatives of the equivalence classes modulo S is the most obvious
one. We define a length-lexicographical ordering on £* and choose the smallest element of an
equivalence class [w]s as its representative @. This ordering is well-founded and total, hence
the representative is unique. We also speak of w as a representative of the words in [w]s. To
compute the representative of a word we define a function f: ¥* — X* by

fw)= # (2 055 w)

Since the word problem of M is decidable, the function f is computable. Hence there is a
deterministic Turing machine My which computes f. According to Davis [Dav56] this ma-
chine can be constructed such that it halts when started from an arbitrary configuration. We
simulate My by an unconditional semi-Thue system using the method described in [DW83].
This system is noetherian as My halts when started from an arbitrary configuration and it
is locally confluent since we use two different copies of the input alphabet X to the left and
to the right of the letters denoting the state symbols of the Turing machine. Hence there are
no overlaps and no critical pairs.

Before starting the simulation some preprocessing is done using a system R}. Its main
purpose is to prepare a configuration (w), such that My can be simulated. It uses two copies
L. and L, of the alphabet L, [,] as copies of (,) and state symbols ¢, ¢2. First it scans to
the right and copies all letters a; € ¥ to ¢; € I, until it reaches a letter not in ¥. If this is
] it turns to the left and copies all letters in ¥, to X! until it reaches a letter not in X.. If
this is [the state changes to go, the starting state of the simulation of My. This simulation is
encoded in the system R}. It uses letters qo, q1, . .., gy, where g; is the final state. Changing
to state gy is the last action the Turing machine My performs. In addition to ¥. and £/, R?
uses two blank symbols b, .. We have
RY: ¢'ai — it ¢') — 4

g’ = %, ¢* — (9
where @; € ¥, ¢; € I, ¢} € .
R%: g — qief
gicic, — ciqc, gicy] = ciqby]
cjqicy — qcie, gy — [abch
where gi, @i € {ord1,- > 7}, ¢; € T U {be}, and ¢, ¢4, ¢} € T U {81}

Started from a correct configuration, i.e. [gowl),w’ € %, R} computes the configuration
[b2gswib.*]. This computation is continued by a system R:} to remove the blanks and to copy
the letters back to the input alphabet, we get ().

R}: ¢ —¢
gc; = cg® - Pl-)

g*b, — ¢* q'1 - ¢°)
ciq® — ¢°a; b.q® — ¢° ® —(
beg® — ¢° [¢® — (

where a; € T, ¢; € T, ¢ € EL.

Let Ry be R} U R} U R} and Q be the set of states used in Ry. Since R}, R} and R} are
noetherian and the left-hand sides of each system do not overlap with the right-hand sides of
the other systems, Ry itself is noetherian, see e.g. [Der81]. Furthermore, Ry has no critical
pairs, hence Ry is locally confluent and thereby confluent and canonical.

Let A be an alphabet which contains all the letters used in the rules of Ry. Ry computes
f in the following sense:

11

Lemma 18 Let z[qta;2z; € A*.

Then z = z[q'a;z; —R, z1(23 if and only if z; = w)z4 with w € £*,
giving us z)[qla;w)z, =k, 21 (aiw)z4.

proof:

if: z[q'a;w)zy “’;z} z1[goctwl] 24

'"’;2} 21 [bcqfctw::b::‘]z4
"’;z-} z1(@;W)z4
only if: All rules in R contain exactly one letter in Q U {(} in their left-hand side as well as
in their right-hand side. Hence a rule can be applied only where such a letter is located
and it does not change the number of these letters. To the left of these symbols all
rules contain only letters in X, U {b., [}, to the right letters in ¥ U X’ U {b,],)}. Since
these sets have an empty intersection, each reduction of z uses a subword which does
not overlap with the part of z used by another reduction. Therefore we may assume
without loss of generality that ga; is the only position in z where a rule can be applied.
Now assume that z; &€ L*)A*: 2z, € £* or z; € L*§A” where § € ZU{)}, i.e. zp = wéz'.
In the first case z;[q'a;z2 reduces to z;[c;w.q* which is irreducible. In the second case,
2z [qta;wé2’ —»;2! z1[c;w.q' 62" which is irreducible too. Each word in these reductions

starts with z[, hence we cannot reduce z;[¢'a;2; to z1(23, a contradiction. a

R; will be started by a conditional rule in C. The premise of this rule tests whether there
is actually a word w with w € £* and w # . To test the second property we use a function

p:X* — A™ defined by
(w) = w fw#d
P=1 sw ifw=d

Thereby $ is a new letter. Since we can compute & using the function f, p is computable
too. Similar to the construction above there is a Turing machine M, and an unconditional
semi-Thue system R, = R} U RZU R3. It uses two new copies Zq U {$d}, Tiu{$)} of XU {8}
and copies {, } of (,). Iit1 works completely analogous to R1, R2 is the s1mula.t10n of M,, using
state symbols pg,py,...,ps and blank symbols by and b/,. R3 ﬁmshes the simulation similar
to R3 It gives norma.]forms |w) resp. |$w) according to the test w = 1.
R},':pa,—+d,p p') — p?}
dip® - p*d; {p® > {po

where a; € £,d; € L4,d; € X),.
R?, : o pidi — pid;

pidid; — dipid), pidi} — dipib}

d;pidy — pdidy, {pidi, — {pibyd;
where Pi,P1 € {Poaplv . '1pf},dj € Ed U {bdv $d}7 and d_'p iadi € E:i U {bfb :i}
Rg M pf —_ p3

pPd; —~ dip®> Py —p' P’} —p%)

p*b, — p* p'} — p°)
dip® — pPa; bap® — pb {r° — |
bap® — p° {r® — |

where a; € X U {8},d; € 4 U {84},d} € T, U {8,}.
We now fix the alphabet A to be the set of all letters used in Ry and R,. Notice that
lemma 18 remains valid using this extended alphabet. Analogously we can show

12

Lemma 19 Let zy{p'a;z2 € A*.
Then z;{p'a;z, —»;1’ z1|z3 if and only if z; = w)z4 with w € X, giving us
z1aiw)zy i a;w # G

1,. x
za{plaiw)zy —p, { z1|8aiw)zy if a;w = a;w

As announced, Ry is started by a conditional rule. To ensure that the configuration has at
least one letter, the conclusion of the rule has the form (a; — [¢'a;. There is one such rule
for each letter a; € . We use {p'a; = |a; as premise, thereby achieving that R, must be
used to evaluate it. That is, we have the conditional rules:

{pla; = |a; = (a; — [qta; (1)

for all a; € . We define the conditional semi-Thue system R as R = (1) U Ry U R,. For
w € X* we are able to reduce (w) —} () without getting stuck in infinite loops.

Lemma 20 Let z_y be a solution of {p'a; = |a; :: (a; — [¢ 4,

then z € A*,y = w)y € T*)A” and a;w # a;w.

proof: By definition we have z{p'a;y |p z|a;y. The rules in R do not overlap and do
not change the number of the state symbols and ’opening brackets’ (,{,[and |. Hence the
reductions in z[p'a;y do not interfere with each other, they use disjoint parts of z[p'a;y. We
may assume without loss of generality, that there is exactly one rule which can be used to
reduce this word.

Since there is no rule with | in its left-hand side, z|a;y is irreducible and we have
z{p'a;y —k z|a;y. The state symbol p! can only be changed to p',...,p% po,...,ps or
[, which again are used in R, only. Therefore z{p'a;y —R, z|a;y, lemma 19 gives y = w)y,
w € I* and a;w # @;w, finishing the proof. o

As for Ry we have that Ry U R, is noetherian. The left-hand sides of (1) do not overlap
with the right-hand sides of the rules in RyUR,, hence R is noetherian too, see again [Der81].
The rules to concatenate two configurations resemble the rules used in the examples before,
see section 5. Together with a rule to delete empty configurations they form the system T':

0 - A (2)
(a:)(a;) — (aia;) (3)
(a))(ax = (aiax = (ai)(ajar — (aigjar (4)
a;)(ax) = aiar) = aigj)(ax) — aiajar) (5)
ai)(ai = aiar aaj)(arar — aiajaga; (6)
where a;,...,a; € L. Using (a;)(a;) — (aia;) we get (a;ar)(a;) —1 (aiara;),(a:)(ara;) =1

(aiara;) and (a;ar)(a1a;) =71 (aiara;a;). This can be used to get (a;)(aiara;) —1 (a;aiaka;)
etc. and finally we get (wy)(w2) —7 (wiw.), for all wy, w, € T*.

T does not introduce new letters, hence we do not need to extend the alphabet A. We
use C = RUT to present the monoid M’ of theorem 4 by (A,C). In the next section we
show that the properties of R and T do not change essentially when using C.

6.2 Properties of C

A central part in concluding properties of C is to determine the sets of solutions of the
conditional rules. Especially for the rules (4) — (6) this is very difficult. Therefore we proceed
indirectly. We examine a restricted relation —c, then we compare —¢ and —¢, concluding
properties of —¢.

13

Up to now the premises of a rule had to be joinable within its context if the rule should be
applied. To restrict the application we demand that one part of the premise can be reduced
to the other, each within the current context. That is, let (r) v = v ::{ — r be a conditional
rule in C, then

zly —, zry if and only if zuy —¢ zvy

Notice that the premises are no longer symmetrical, the left part should reduce to the right
one. Furthermore, this is closer to the intended use of the rules. In fact we have for rule (1)
z{p'a;y —% z|a;y, see the proof of lemma 20. For the rules (4) — (6) we can show that we
actually need one reduction step only to evaluate the premises. Therefore we have zly — zry
if and only if zuy — zvy. Unless stated otherwise, we use the relation — in the sequel.

Though we changed the system as well as the reduction relation considerably, the solutions
of the rules (1) do not change:

Lemma 21 solc({p'a; = |a; :: (a; — [¢'a;) = { \w) | w € T* and a;w # a;w}.

proof: The rules in T each decrease the number of opening brackets, but both parts of the
premise of (1) contain the same number, counting | as opening brackets. Thus only rules
in R can be used to reduce r{p'a;y to z|a;y. As in the proof of Lemma 20 we conclude
z{pla;y -'-;'{P z|a;y. Since R, is unconditional we have —pg, = —pg, and again Lemma 19
finishes the proof. a

We now determine the solutions of the rules (4) — (6). As indicated above all A_w) with
w € X* are solutions of (4), the solutions of (5) and (6) have a similar form. But it is difficult
to show that there are no other minimal solutions of (4) resp. (5),(6).

The main. part of the proof is to show that we need exactly one reduction to evaluate the
premise, if we want to apply one of the rules (4) — (6).

Lemma 22 ua;)(ajv —§& ua;a;v if and only if va;)(a;v —} ua;ajv

proof: The ’if’ direction is trivial, thus let us have a look at the ’only if’ direction. We have
wy = ua;)(a;v —3 ua;a;v = wy. Since wy # w; n is greater than 0, n = 1 gives the result,
hence it remains to show that n > 1 is not possible.

To prove this is a longish task, hence we only give the main idea here, the complete proof
can be found in the appendix. w, has one opening parenthesis less than w,, hence exactly
one of the the rules of T has to be used in this reduction, i.e. we have w3, wy € A* such
that wy —% w3 —*} w4 —f wz. By exhaustive case analysis we can show that we must have

wy = w3 and wy = wy, implying w; —} ws. 0

In the reduction wy = ua;)(a;v —% ua;a;v one pair of parentheses is removed, hence we
use one of the rules (3) — (6) in this reduction step. Furthermore, a;)(e; is the occurrence in
w; where the reduction applies. This can be used to show

Lemma 23 Let wy = ua;)(ajv —¢ ua;a;v = w, then u € A*(X*,v € L*)A*.
proof: by induction on the length [of w;.
Since there is no rule in (3) — (6) with a left-hand side shorter than 6 letters, [must be at
least 6. If wy = (a;)(a;) we use (3) to get (a;a;), if wy # (a;)(a;), wy is irreducible by (3)—(6)
since (3) cannot be applied because of its left-hand side and for (4) — (6) the left part of the
premise cannot be reduced to the right part.

Now let us assume that the lemma is true for all w with 6 < |w| < I. There are 4 cases
according to the rule used in the reduction of w; — ws.

(3) i.e. ua;)(ajv = v'(a;)(a;)v' and we are ready.

14

(4) i.e. ua;)(ajv = ¥'(ai)(ajaxv’. Rule (4) can be applied if u'(a;)(arv’ —¢& u'(ajarv’. By
lemma 22 we get u'(a;)(axv' —} u'(a;a¢v’ and by induction hypothesis v’ € £*)A* and
thereby v € Z*)A*. Since u = u'(€ A*(Z* we are finished.

(5) i.e. ua;)(ajv = v'ara;)(a;)v’, similar to the case of rule (4).

(6) i.e. ua;)(ajv = v'axai)(ajarv'. We may apply rule (6) if w'ax)(aiv’ —% uaraiv’. By
lemma 22 and by induction hypothesis we get v’ € £*)A*,u’ € A*(X*. Hence v €
I*)A* u € A%(Z". a

Evaluation of the premise does not use the A*-parts in the lemma above and we have
(wrai)(ajwz) —¢ (wiaiajw;) for all wy, w; € £*. But we may not omit one or both of
the outside parentheses. Since (w; and w;) are irreducible, we thus have determined the
minimal solutions of the rules (4) — (6):

Lemma 24

solc(4) = {Aw,)|w, € X*}
solc(5) = {(wi-A|w; € £*}
solc(6) = {(wi-w,)|wr, w, € £*}.

As the next step we show that —¢ is noetherian and decidable. The usual way to prove this
is to show first that —¢ is reductive and then to apply lemma 7. But we have not been able
to find an appropriate ordering. Thus we have to show explicitly that —¢ is decidable and
noetherian.

Lemma 25 — is decidable and noetherian.

proof: There could be two sources of infinite computations using —¢. It may be non-
noetherian as an ordinary unconditional semi-Thue system. Second, in general it is undecid-
able whether a conditional rule may be applied, see lemma 6. When evaluating a premise
we might try to apply a conditional rule, the premise of which is evaluated by use of just
another conditional rule and so on.

Now let us assume that there is an infinite computation. There is no rule which increases
the number of opening brackets (, [, neither by replacing the left-hand side by its right-hand
side, nor by evaluating its premise. Hence there must be a word w with a minimal number
of these brackets which starts an infinite computation.

At first we show that w cannot be reduced ad infinitum. None of the rules in 7" can be
used to reduce w, since they decrease the number of brackets. Furthermore this number is
smaller in the premise of rule (1) than in its left-hand side. Therefore it is decidable whether
we may apply rule (1). It can be applied if and only if we used rules in R, to evaluate its
premise. Hence there is an infinite reduction using rules in R only, which is a contradiction.

If there is an infinite reduction it results from an infinite evaluation of premises. This
does not concern the application of rule (1), see above. Since w contains a finite number of
opening brackets, at least one of them must be involved infinitely often in this computation.
Let us have a closer look at the left-most of these brackets. We have w = za;)(a;y. z and y
are split into z,z, resp. y1,y2 such that z9,3 are of maximal length and in X*.

Using the rules in C there is no possibility to increase a;y;, neither by reduction nor by
evaluation of premises. Regarding z; the situation is worse, rules in Ry and R, may produce
new letters in X as suffix of z;. But this cannot happen infinitely often, hence we can split «
into z}z% such that z, is the maximal suffix which is reducible to a word in ¥*. Again there
is no possibility to increase the length of z%a;.

But each evaluation of a premise of (4) — (6) when reducing za;)(e;y removes one or both
of a;,a;j, thus decreasing the length of z5a; or a;y;. We get a new zf or y;, but this cannot

15

be repeated ad infinitum. If 2 and y; are empty, we can no longer apply a rule (4) —(6) due
to the form of the left-hand sides. Hence these parentheses cannot be involved in an infinite
computation, contradicting our assumption. a

To show that —¢ is confluent and thereby canonical it suffices to show that —¢ is locally
confluent. We proceed as described in section 4.2. Expanding the rules (1) and (4) — (6) we
get the system C., which will be shown to be locally confluent. Then as a direct consequence
—¢ is locally confluent too. The expanded rules are

(a;w) — [¢'a;w) for a; € X,w € ¥*, a;w # a;w (1e)
(a;)(ajarw) — (aiajarw) for a;,aj,ar € X,we X* (4e)
(waia;)(ax) — (waiajai) for a;,aj,ar € X,we L* (5e)

(wiaiaj)(araiw,) — (wiaia;araqw,) for a;,a;,ar,a; € T, w;, w, € T* (6e)

Lemma 28 The system C. is locally confluent.
proof: There are only two kinds of overlaps:

1) We have the overlap (w;)(w;),w),ws € I*. (w) is reducible by (le), (w1)(ws) is
reducible by one of (3), (4¢) — (6¢). (The case (w2) reducible by (1e) is analogous). The
critical pair is [gyw;)(w2) = (wywz). Since [qyw)(wz) —¢, (W1)(w2) —c. (Wiwz) =,
(@2) = (w1w,) and (wywp) —¢, (Wiwe) the critical pair is joinable.

2) We have the overlap (w;)(w2)(ws), wy, we, w3 € T+, (w;)(w2) and (w2)(w3) are reducible
by (3),(4€) — (6¢e). The corresponding critical pair is (wywz)(w3) = (w1)(wzw3) and we
have (wyw;)(w3) —¢, (wywaws), (w1)(waws) —¢, (wrwews). Hence this critical pair is
joinable. O

Lemma 27
a) —c is locally confluent.
b) —c is canonical.

We now turn to the determination of properties of —¢. It is easy to see that —cC—y¢,
hence all solutions modulo —¢ of the conditional rules are solutions modulo —¢ too. But
there are additional solutions, hence -‘cg—'*c- Let us give a typical example: We take
wyc € T, wy € TF, then [wi.q'waa;)(a;) is irreducible modulo —¢. But [wi.q'wsa;) —¢
(w1w2)(a;) —¢ (wiwza;) and [wiceia;) = (wiwza;). Hence we may apply rule (5) to
reduce [wy.q'waa;)(a;) to [wi.g'waa;a;). Remark that [wy.q'wsa;)(a;) has the same irre-
ducible descendant modulo —¢ as well as modulo —¢: [wy.q'wea;)(a;) —& (wiwza;)(a;) —¢
(wiwzaia;) —c (w128:e;) and [wicq'w2a:)(a;) —c [Wicq' waaia;) —E (w1d2d:ia;).
Using the same proof as in lemma 25 we can show

Lemma 28 — is decidable and noetherian

To prove confluence we show that —¢ and —¢ are equivalent and both have the same set
of normalforms. Since —¢ is canonical and —¢ is noetherian we can conclude that —¢ is
confluent too.

—¢ is decidable and noetherian, hence there is a noetherian ordering >, such that z > y
if £ —-¢ y or z contains the left-hand side of a conditional rule and y one part of the
corresponding premise. - That is, let u = v :: | — r be a conditional rule, then z1lzo >
21u22, 21v23, 21722. By > We denote the lexicographical extension of > on tuples of words.

*
Lemma 29 «7 =27

16

proof: Since ¥ —¢ v implies ¥ —¢ v we only have to show «7 C=g. The proof is by

noetherian induction on tuples of words which are equivalent modulo —¢. Thereby we use

the lexicographic extension to tuples of —¢ as well-founded ordering. It suffices to show that
wy —¢ w; implies wy &% w;. For the unconditional rules we have —¢ = —¢.

Thus let us assume we used a conditional rule u = v :: | — r,i.e. wy = zly,wy = zry.
If z or y are reducible by —¢, then let T resp. ¥ denote the normalforms of z and y mod
—¢c. We have zly —, Zly,zry —{ Zry and since —¢ € —¢, zly =g FF,zry - Try. By
transitivity of —¢ we get Zly < fry Since (?Ely, ZrY) <iez (zly,zry) we may apply the
induction hypothesis and get ZFlj = ¢ Try and again by transitivity zly =¢ zry.

Now, let z and y be 1rreduc1ble modulo —¢. We have zly —¢ zry and by definition
zuy [c zvy. Again by definition (zuy, zvy) <i.r (zly,zTy), hence zuy = zvy and since
—¢ is confluent zuy |c zvy. There are 4 cases according to the rule used i ln the reduction
zly —¢ zry.

(1)ie. Il =(ai
z and y are irreducible, therefore z|a;y is irreducible modulo —¢ too. Hence zuy —¢
zvy and zly —¢ zry.

(4) ie. Il = (a.-)(ajak
If zuy —¢ rvy we are finished, thus let us assume zuy 4f zvy. This implies that
zvy = z(a;ary is reducible by —¢. Since z,y are irreducible, this reduction has to
use (a;ar as part of a left-hand side or when evaluating a premise. We have to use a
conditional rule, because there is no unconditional rule overlapping with (a;ax. Due to
the form of the solutions we have y = y;)y2,y1 € £*. Hence zuy = z(a;)(ery1)y2 and
ruy —c zvy, implying zly —¢ zry

(5)i.e. l = a;a;)(ax)
Thereby we have v = a;a;). If we use a conditional rule to reduce zvy we may argue as
above. But now the rules pla; — d;p! and q'a; — ¢;q! may also be applied to za;a;)y.
Notice that these are the only possibilities to reduce za;ax)y by an unconditional rule.

g'a; — c;q': r can be split into zy6z;., where z,. is the maximal suffix of z in
X% and 4 is the letter to the left of z5., it may be A. We have the reductions
Tvy = 216T2.¢'";ak)y —-‘,‘2, z189%zh cicily and zuy = 21623.¢"ai)(ai)y ——~}‘2I
z18¢%*z}.c!)(ar)y. These words should be joinable, but if § # [, the first one is
irreducible and each successor of the second one has z,6¢?z% c}] as a prefix. This
is not equal to z;8¢%z} cic}], hence they cannot be joined, contradicting our as-
sumption 6 # [.

For 6 = [, zly and zry are joinable:
zly = z1(z2.q"aia;)(ar)y —¢ z1(z30:a;)(ar)y =5 z1(22diGjar)y and
zry = z1[r2cqiaiajar)y =% z1(z26:G5ak)y.

p'a; — d;p': Analogously to the case above we may split z into 216224, 724 € 23
§ # { gives the same contradiction as above. For § = { we get the successors
z1|z2a;)(ax)y and zy|z2a;ax)y of Tuy resp. zvy, again a contradiction. There
may be successors z1|$22a;)(ax)y and z1|8z2a;ar)y, but this does not change the
situation. Hence zvy cannot be reduced by p'a; — d;p'.

(6) ie. l= a,-a,-)(akal
Again we will only look at the case zuy 4¢ zvy. zvy must be reducible and the
reduction must concern v = a;a;. Using a conditional rule as in the case of rule (4)
we get zly ==% zry. Assume that we use the rule gla; — c;q'. We split z into z,6z,
and similarly y into y;7y; with y; € X*. If § = [and v =) then we have zly =7 zry,

17

otherwise we get a contradiction as in the case of rule (5). The rule p'a; — d;p* cannot
be used by an argument similar to those above.

Hence reducibility of zvy implies zly =% zry or contradicts zuy |c zvy. zuy —¢ zvy

implies zly —¢ zry and therefore we have «¢& C =7, finishing the proof. a

Lemma 30 z € A* is irreducible modulo —¢ if and only if it is irreducible modulo —¢.

proof: If z is irreducible modulo —¢ then it is irreducible modulo —¢ too. Let us assume
that z is reducible by —¢, but not by —¢, i.e. z —-¢ y. By lemma 29 we have z ._C .
z is irreducible, hence y —¢ z. Since —¢ C —¢ it follows y —»¢% z and z —¢c y —¢ 7,
contradicting termination of —¢ a

Two words z, y which are equivalent modulo —¢ are also equivalent modulo —¢ and they
have a common irreducible descendant z. Due to the lemmata above we have z -7 z 7, v,
giving us the confluence of —¢.

Lemma 31
a) —c is confluent.
b) —¢ is canonical.

It remains to show that for u,v € £*,u &% v if and only if @([u]s) = &([v]s), i.e. ¢*(u) «F
¢*(v). Since —¢ is canonical we have to show v —% v if and only if *(u) & ¢*(v). To
do this we first show that C computes the representative of concatenated configurations
correctly.

Lemma 32 For u;,...,u, € X* we get (uy)...(un) =5 (w17 un).
proof: We have (u3)(uz)...(un) =c (v1uz)...(Un) =5 (u1...%n) =5 (¥17. 7 up) O

The next lemma shows that M is embedded in M’ i.e. u <% v if and only if @([u]s) =
¢([v]s)-

Lemma 33 For u,v € £* we get u —~3% v if and only if p*(u) l¢ ¢*(v).
proof:

if . Let us assume first that u,v # A, ie. v = ay...a,,v = b;...b,,,n,m > 1. Then
¢*(u) =(a1)...(an) =5 (a1 7" a,.) = (&) and smularly w*(v) —-»C (9). If &, D # A, then
(&), (9) are irreducible and we conclude (%) = (7). We have u &5 4 = 9 «% v.
If & = X then (&) = () —»¢ A, which is irreducible. Hence we have (%) —¢ A. Since (7)
cannot be reduced by rule (1), it must be reduced by () — A, implying ¥ = A Again
we have 4 = ¥ and we may conclude u &% v.
Now let us assume that ¥ = A and v # A. Then ¢*(u) = A, which implies ¢*(v) —¢
(%) —=c A. As above we have 9 = A and v &5 A = u.

only if : We have to distinguish u,v# A and uor v = A.
Let us assume that u,v # A, ie. 4= @1...00,v = b1...bp,n,m > 1. Then ¢*(u) =
(a1)...(an) =% (i Can) = (#) and @*(v) = (by)...(b,) —* (by...by) = (9). Since
u <5 v we have 4 = ¥ and thereby ¢*(u) |c ¢*(v).
If both « = » = A then there is nothing to show, thus let us assume u = A,v =
by...bm # A. Since v &% u = XA we have ¥ = A. Hence ¢*(v) = (b1)...(bs) —*

(b1 bn) = () ¢ A = ¢"(u). o

C is a finite and canonical presentation of M’ and M is embedded in M’, finishing the proof
of theorem 4.

18

6.3 Complexity Issues

By lemma 33 it is possible to solve the word problem of the monoid M presented by (X, 5)
using the conditional system C. But how does the complexity of the use of C relate to the
complexity of the word problem? We will show, that the complexity of the word problem (if
it is at least exponential) is of the same complexity as the solution of the word problem using
the system C.

To state the results, we use the complexity classes E,,n > 0, of the Grzegorczyk hierarchy,
see e.g. [Wei74]. Avenhaus and Madlener showed in [AM77, AM78], that the complexity of
the word problem of a monoid is independent of its representation, therefore we may speak
of the complexity of the word problem of the monoid M. Bauer and Otto [BO84] showed,
that this complexity may be arbitrarily large.

Slightly varying a definition in [BO84), a finite conditional semi-Thue system T over an
alphabet T is E,-bounded, n > 1, if there exists a function k € E,{T}, such that for all
u € I'*, |k(u)| reductions are sufficient to reduce u to its normalform. The function k gives
the length of the sequence u —¢ & as well as the number of reductions which are necessary
to evaluate the premises of conditional rules used in the sequence.

Lemma 34 Let M be a monoid which is finitely generated by (X, S) and the complezity of the
word problem of M is bounded above by a function in X,,, then the corresponding conditional
system C is E,,-bounded, with m = maz{3,n}.

proof: Let w € A*. To proof the lemma it is sufficient to give a reduction sequence w —¢
which uses no more than |k(w)| reductions with k € Ey.z(3)- To reduce w to w we will
use at first the rules in Ry U R, as far as possible, then those in T and at last the rules in R.
Finally we use the rule () — A again. There may be several cycles of this kind.

The reductions with Ry and R, do not overlap, hence we have at most |w| distinct
reduction sequences modulo Ry U R,. Each of these sequences simulates a Turing machine
computing the functions f resp. p, see page 11. Since the number of words smaller than a
given word u is exponential in the length of u, f is in the complexity class E, ,;(3,n}- As it
is shown in [She65)] the Turing machines My and M, stop after at most |gs(u)| resp. |gp(u)|
steps when started from an arbitrary configuration, with g; resp. gp in Epqz(3n). Hence
each of the reduction sequences using Ry U R, is of length of at most |gs(*n)| resp. |gp(w)|.

After performing these reductions only the rules (1) — (6) can be applied. That is, we
have substrings of the form (w') or (w;)(w2) with w',w;,w; € T*. At first we remove
empty configurations using rule (2), at most |w| reductions with this rule are possible. Then
we concatenate all adjoining configurations using the rules (3) — (6). Again at most |w|
reductions are possible, but we may have to evaluate the premises of conditional rules. But
|w| reductions are sufficient to evaluate the premise of one of the rules (4) — (6), hence there
are at most |w|? reductions in this phase of reduction, but |w|? is a function in E,.

To use rule (1) we have to evaluate its premise using R,, and to compute the represen-
tatives we have to use Ry. Following the argumentation above we have at most |w| distinct
reduction sequences, which are bounded above in length by functions in Ep,2(3,0)-

As the representative may be A, it may be possible to use the rule () — A again, we get
a word w’. Now, w' may be irreducible, summarizing the number of reductions we see that
this number is bounded by a function k with k € Ey,.2(3,0)-

However it is possible, that w’ is reducible again by RfUR,, as there may be configurations
which are nested within another. But in w’ there is at least one pair of parentheses less than
in w, hence there can be at most |w| cycles of this kind. The number of reductions in each

19

cycle is bounded above by a function in E,, ;{3), hence the total number is bounded above
by a function k € Epoz(3,n), too. a

Notice, that if the word problem of M is in Ey, Fy or E,, then C may use an exponential
number of reductions. Furthermore, the use of C to solve the word problem of M is not a
pseudo-natural algorithm in the sense of [MO85]. It does not give us a derivation 4 % v if
u and v are congruent modulo S.

6.4 Concluding Remarks

Up to now it is an open question whether we can restate the embeddability theorem by
using right conditional systems only. This might be suggested by the systems we used in
the example of section 5, as they are all right conditional. But there was no progress in this
direction, though we used several alternatives instead of Turing machines, especially Post
machines, see e.g. [SS63, Man74], and string rewriting systems as defined in [Sat91].

Notice that we do not have an identical embedding as in the theorem of Bauer. But this
is no serious restriction. We may use a system R, = {a; — (4;)|a; € £, Ai a copy of a;}
to simulate the embedding. Now R, U C has the same properties as C itself, hence M is
identically embeddable in a monoid M"”, such that M" has a finite, canonical, and conditional
representation.

Acknowledgements

I would like to thank Prof. Madlener for initiating these investigations and Birgit Reinert for
valuable discussion about various versions of the conditional system C.

References

[AM77] Jiirgen Avenhaus and Klaus Madlener. Subrekursive Komplexitit bei Gruppen;
I. Gruppen mit vorgeschriebener Komplexitiat. Acta Informatica, 9:87-104, 1977.

[AM78] Jirgen Avenhaus and Klaus Madlener. Subrekursive Komplexitiat bei Gruppen:
II. Der Einbettungssatz von Higman fiir entscheidbare Gruppen. Acta Informatica,
9:183-193, 1978.

[Bau81] Giinther Bauer. Zur Darstellung von Monoiden durch konfluente Regelsysteme. PhD
thesis, Fachbereich Informatik, Universitat Kaiserslautern, 1981. in German.

[Bau85] Giinther Bauer. n-level rewriting systems. Theoretical Computer Science, 40:85-93,
1985.

[BO84] Giinther Bauer and Friedrich Otto. Finite complete rewriting systems and the com-
plexity of the word problem. Acta Informatica, 21:521-540, 1984.

[Boo85] Ronald V. Book. Thue systems as rewriting systems. In Proc. of 1st Rewriting
Techniques and Applications, pages 63-94. Springer, 1985. LNCS 202.

[Dav56] Martin D. Davis. A note on universal turing machines. In C. E. Shannon and
J. McCarthy, editors, Automata Studies, pages 167-175. Princeton Press, 1956.

20

[Dei92]

[Der81])
[DWs3]

[Esc86]

[Gan87]
[Hue80]

[TW86]

[Kap84]
[Kap87]
[KH89]

[KN85]

Thomas Deiff. Conditional semi-Thue systems for presenting monoids. In Alain
Finkel and Matthias Jantzen, editors, Proc. of STACS’92, volume 577 of LNCS,
pages 557-565. Springer, 1992.

Nachum Dershowitz. Termination of linear rewriting systems. In S. Even and
O. Kariv, editors, Proc. 8th ICALP, pages 448-458. Springer, 1981. LNCS 115.

Martin D. Davis and Elaine J. Weyuker. Computability, Complezity, and Languages.
Academic Press, 1983.

Carola Eschenbach. Die Verwendung von Zeichenkettenordnungen im Zusammen-
hang mit Semi Thue Systemen. Technical Report 122, Universitit Hamburg, Fach-
bereich Informatik, 1986. in German.

Harald Ganzinger. A completion procedure for conditional equations. Technical
Report 234, Fachbereich Informatik, Universitit Dortmund, 1987.

Gérard Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797-821, oct 1980.

Jean Pierre Jouannaud and Bernard Waldmann. Reductive conditional term rewrit-
ing systems. In Proceedings of the 3rd IFIP Working Conference on Formal Descrip-
tion of Programming Concepts. North-Holland, 1986.

Stéphane Kaplan. Conditional rewrite rules. Theoretical Computer Science, 33:175—
193, 1984.

Stéphane Kaplan. Simplifying conditional term rewriting systems: Unification, ter-
mination and confluence. Journal of Symbolic Computation, 4:295-334, 1987.

Hélene Kirchner and Miki Hermann. Computing meta-rules from crossed rewrite
systems. Technical report, CRIN, Nancy, 1989.

Deepak Kapur and Paliath Narendran. A finite Thue system with decidable word
problem and without equivalent finite canonical system. Theoreti-al Computer Sci-
ence, 35:337-344, 1985.

[Man74] Zohar Manna. Mathematical Theory of Computation. Computer Science Series.

[MOS5]

McGraw-Hill, 1974.

Klaus Madlener and Friedrich Otto. Pseudo natural algorithms for the word problem
for finitely presented monoids and groups. Journal of Symbolic Computation, 1:383—
418, 1985.

[New42] M. H. A. Newman. On theories with a combinatorial definition of equivalence.

[Sat91]

[She65]

Annals of Mathematics, 43(2):223-243, 1942.

Andrea Sattler-Klein. Divergence phenomena during completion. In Ronald V.
Book, editor, Proc. of 4th Rewriting Techniques and Applications, pages 374-385.
Springer, 1991. LNCS 488.

J. C. Shepherdson. Machine configuration and word problems of given degree of
unsolvability. Zeitschrift fir mathematische Logik und Grundlagen der Mathematik,
11:149-175, 1965.

21

[Sim87) C. C. Sims. Verifying nilpotence. Journal of Symbolic Computation, 3:231-247, 1987.

[SO87] Craig Squier and Friedrich Otto. The word problem in finitely presented monoids
and finite canonical rewriting systems. In Proc. of 2nd Rewriting Techniques and
Applications, pages 74-82. Springer, 1987. LNCS 256.

[Squ87] Craig Squier. Word problems and a homological finiteness condition for monoids.
Journal of pure and applied algebra, 49:201-217, 1987.

[Squ88] Craig Squier. A finiteness condition for rewriting systems. Department of Mathe-
matical Sciences, SUNY-Binghamton, Binghamton, NY 13901, 1988.

[SS63] J. C. Shepherdson and H. E. Sturgis. Computability of recursive functions. Journal
of the ACM, 10:217-255, 1963.

[SS82] Jorg Siekmann and P. Szabo. A noetherian and confluent rewrite system for idem-
potent semigroups. semigroup forum, 25:83-110, 1982.

[Wei74] K. Weihrauch. Teilklassen primitiv-rekursiver Wortfunktionen. Technical Report 91,
GMD Bonn, 1974.

Appendix: Proof of lemma 22

Lemma 22 ua;)(ajv —% uaia;v if and only if ua;)(ajv —} uag;a;v

- proof: The ’if’ direction is trivial, thus let us have a look at the ’only if’ direction. We
have w, = ua;)(ajv —% ua;ajv = wy; and we show that the case n > 1 cannot occur. Since
w; # we, n = 0 cannot occur, n = 1 gives the result.

We construct a partition of w; into useful parts and garbage. The useful parts correspond
to substrings of w; which could be used in a reduction, these substrings are separated by
irreducible garbage. An useful part in w; is the occurrence of a left-hand side of a rule in
RU {() — A}. Remark that each left-hand side of (3) — (6) contains the left-hand side of
(1), hence we do not use the rules (3) — (6) to construct useful parts. This occurrence is
extended to the left and rigl.t by letters which might be useful in a configuration. That is,
we extend to the left by ’left’ letters in £, UX;U {b., b4, 8, 34} up to the first opening bracket
(,{,[or |. This bracket is included to the extension. To the right we extend by letters in
TUuZ U XU {b,b), 8} up to the first closing bracket), },], again included. Remark, that
for the rules (1) we do not extend to the left, for the rule () — A not at all. This partition is
unique, the useful parts u; do not overlap. Two useful parts u;, u;4) are separated by ’garbage’
gi, which is irreducible: It cannot be reduced by a rule in RU {() — A}, otherwise it would
contain a useful part. It cannot be reduced by (3) — (6) either, since then the left-hand side of
(1) would be part of it. Thus we have w; = gou19) ...%ngn. E. g w1 = $ (aia;)) ckpla;} bl
can be partitioned into w; = gouyg1u292 with go = $,u; = (ai6;),91 =), uz = cxp'a;} and
g2 = b.. This example shows that the useful parts may be improper configurations: u; may
be irreducible, u, does not contain a left bracket.

Since w; has one opening parenthesis less than w,, exactly one rule in T" has to be used
when reducing w; —g ws, i.e. there are wa, w4 such that wy —}% w3 —%L wy —% wy. The
reduction w3 —¢ wy4 uses a rule in T, but if it is a conditional rule we may use all rules
in C to evaluate the premise. The reductions wy —% w3 and wy —} w2 use only rules in
R, as according to lemma 21 only rules in R itself are necessary to evaluate the premises of
conditional rules.

22

Only the useful parts u,,...,u, can be changed when reducing wy —% wa, no g; will be
involved in a reduction. Hence w3 = got19 ... u,gn.

Applying the T-rule to reduce w3 to wy changes at least one useful part, let u4; be
the rightmost of these parts. Due to the form of the rules, either the useful part u; or
the garbage g; to the left of u;4; can be involved in this reduction. Notice, that the
garbage g4y will not be changed. Hence, ujgiuj,, is reduced to a string U’, this might
be an useful part as well as garbage, we have w3 = gouj g1 ...91-1 YjQIU,; Gi41 ... %ngn —C
gou191---91-1 U' g1 .. . upgn = wy.

While reducing wy —% w2, again the u] and U’ are reduced only, no g; is reducible, hence
wy = got1 1. -9i-1 U" gig1 .. .4 gn.

Since wy = ua;)(ajv we know that (a; is the prefix of some ur. We now have to show
that £ = I + 1. Let us assume to the contrary that ! + 1 < k. Since w, = ua;)(a;v and
wz = ua;a;v we have upy) = uj ,,..., 4y = up, the rightmost useful part which is reduced
in the reduction wy; —% w; is ug. ui is reduced by rule (1), hence there is a w € X* such
that u; = (ajw), it has to be reduced to za;a;w), where z € A*. This reduction uses rules
in R, strictly speaking rules in Ry. Looking at these rules we can see that this reduction
is impossible, contradicting w; —¢ w;. Analogously, k < [+ 1 gives a contradiction, hence
l+1=k.

As above we have u; = uf,..., w1 = u]_;, %42 = uji,,...,up = u;. Hence the only
possibilities to use the rules of R are the reductions u; —% uj, w41 =% uj,, and U’ —{ U".
We show now that we also have u; = uj, w41 = yj w0 U ! = U". Thereby we distinguish the
cases g = A and g1 # A

BFEA:

Then a;) is the suffix of g;, hence it does not overlap with u; and we have u; = u} = uJ'.
Le. giuiyr = via;)(ajvi4r for v, vy € A*
Let us assume u;4; = u,,, hence we have w; = w3. Rule (3) cannot be used to reduce
w3, otherwise (a;) would be suffix of g;, but this is an useful part. Using one of the
rules (4) — (6) gives us U’ = wva;ajvi41, but this does not contain a left-hand side of
a rule except in ;. Since u; = u} we have U’ = U” and wq = w3, hence wy —} wz.
Let us assume to the contrary that uiy; # uj, ;. Due to the form of the rules w4y =
(a;vi41 must be reduced by (1). Lemma 20 gives us v+ = w), with w € ¥, a,w # a;w.
Furthermore, u},, = (a;w), this is the unique descendant of u;4; beginning with (.
If @ = A then () — A must be used to reduce giuj ,, hence U” = g; and wy =
JouU1 - . - UIGIGI+1Ui42 - - - Ungn. Since g1 = wa;), gigi41 does not contain the left-hand
side of a rule, hence w, is irreducible.
If @;w # A then wgiuj,, = wva;)(@;w) and U’ = wvia;a;w). As we have seen above,
u; is not reduced and ve;d;w) does not contain an useful part, hence U’ and w4 cannot
be reduced to U” resp. w,.
It is easy to see that in both cases wy # w; and therefore we have wy /% ws, contra-
dicting our assumption w; —¢ w,.

g1 = A: Le. wuyy = va;)(ajvi4 for v, vy € A,
We show that w; = uj and w43 = uj,,. The proof is by contradiction. First, let
us assume w41 # U +1- To reduce w4y = (a;vi41 we have to use rule (1), hence
V41 = Tip) With iy, € T*,¢;2141 # 6;T13,. Furthermore, uj,; has to begin with (|
hence uj,, = (a;Zi31)-
If a;z731 = A then U’ = uj and u; = via;) =) U’ —} U" = vja;a;z141). Due to the
construction, vje; must contain at most one state symbol § or if there is no such symbol

we have one opening parenthesis (and we take § = (. Hence v; = v}é§v}. We now show,

23

that the reduction uw; —% U” is not possible, thus contradicting a;Z;31 = A. According
to § we have the following cases.

6 € {p',...,p%}: The reduction u; —}% U"” uses only rules in R,. At least one rule is
applied, shifting the state symbol to one side. Further reductions can only change
6 to another letter or shift it in the same direction again. § cannot be inserted
again or shifted to its original position, hence u; A% U”.

6 € {po,...,ps}: The reduction has to insert letters from L, but the rules in Rg use
only letters of copies of ¥. These letters can be inserted only using rules of Rg,
but then we have state symbols p3,...,p°% and we cannot return to the original
one which occurs in U” , again w; A{ U". :

6 = (: i.e. we have to use rule (1), this implies v} = X and v} € L such that

via; # 1;;. (v?a;) has only one descendant which begins with (: (v, a;). Since

a;Ti41 # A and the length of v, a; is less or equal than that of v?a; we have
vla; # via;a;z141, hence w £ U”.

6 € {¢%...,4*,90,-..,qs}: To insert letters of X, each reduction which uses these
states has to use a closing bracket], but we have w; = wa;) and v; contains no
brackets, hence we cannot insert these letters and thereby u; /5 U".

8 = q': ¢! can be shifted only rightward up to the parenthesis), then it is replaced
by ¢®. To insert it again we have to move ¢? to the left and then we change it
to go. This implies that v} € [} and v} € T*. go starts the computation of
the representative of the corresponding word in X*. This final configuration is
irreducible by rule (1), hence we cannot insert ¢!, and we have u; 4% U".

6 € {q° ¢°%}: These state symbols can be moved to the left, then they are deleted.
To insert them again we have to use rule (1), initiating the computation of the
representative of the word in ©* corresponding to u;. Hence, when inserting ¢° or
¢® we have a word which is not longer than u;. But u; is shorter than U”, hence
w AR U".

We have shown, that the case a;z;3; = A cannot occur. Now, the same tedious task
has to be done for a;Zi31 # A. In this case we have to use one of the rules (3) — (6)
to reduce ujuj, , to U’, hence uj has a suffix in T*, i.e. v} = 2;7]),z] € &*. We have
wupy = vai)(a;2141) =5, 212])(a;Z041) and U’ = zizja;Ting) —k vieiezi) = U7
Since ajri41 # ajTi31 we have to reduce z;z; by R. Therefore it contains a state
symbol v or an opening parenthesis (, if there is no state symbol we take v = (. There
are vjl,v[? € A” such that u} = z;z]) = vjlyv[?). Analogously we have u; = via;) =

v}évia;)
10V ai).
As above we distinguish the following cases according to §
6 € {p',...,p%}: Each of these symbols is moved to one side using R,, then it may

be changed or there are no more rules which can be applied. In the first case we
cannot insert it again, hence no descendant of u; resp. U’ begins with v}§ and we
have U’ A, U".

6 € {po,...,ps}: Only rules in R, can be used to reduce u; and U’. Therefore we
cannot change the suffix a;7;31) of U’, but ajzi41 ;é aﬁﬂ.l, hence U’ /A& U "
6= (i.e. we have to use rule (1) to reduce uy, hence v} = A, v} € £* such that via; #

via;. There are only two descendants of u;u;4y beginning with (: (v, ai2;T131)

and (v} a,a,:r,H.l) The second one is irreducible, both are not equal to U”, again
U' AR U".

24

6€{g*....q4" 90,...,qs}: The reductions u; —% uj and U’ —% U” are restricted to
vy since the rules corresponding to these state symbols cannot use the suffix a;) of
u; resp. the suffix in £+ of zj.

é = ¢q': This symbol can be only deleted or shifted to the right. Before inserting it
again we have to use rule (1), this must be done in one of the reductions u; —} u}
or U’ —% U”. The word which is reduced by rule (1) must have the form (w)
with w € T* and w # 1. Therefore rule (1) cannot be applied in the reduction
u; —§ uj, because the first descendant of u; beginning with (is a word of the form
(w), but with w = .
Now, there are only 4 possibilities for v, we have v € {¢!, ¢%,4%,(}.
If vy = ¢ and rule (1) can be applied on a descendant of U’, then U’ € [£2¢'E*).
Therefore u; is in [£2g' L*) too, we have u; = [y1.q'y2) with y1. € %, y2 € Z*. Now
the first descendant of U’ beginning with (is the word (y1¥28;z141). This word is
irreducible, thus contradicting that we use rule (1) in the reduction U’ —% U".
If ¥ = (then again w = [y1.q'y:) and U’ = (§1520;Z131). If it were possible to
reduce U’ to U = [y1.4"y2¢;Zi+1) we would have e;z141 = @;Zi31, a contradiction.
U’ can be reduced to (y;yza;zi41), but this cannot be reduced to U”, since other-
wise (y1¥28;%141) — % [¥1c4' ¥20;2141) =% (41958, %i41), contradicting termination

of —pg.
If v = ¢° or ¥ = ¢°, we can shift v to the left and change it to (, we proceed as in
the case v = (.

6 € {¢°,¢°%}: Using the rules in R:} we reach the left end of u; and change the state
symbol to (. To insert § again we have to use rule (1). We proceed as in the case
6= (.

In all cases we have shown that U’ £} U" and thereby w; /¢ w;. Hence our assump-
tion w41 # uj,, is false. But what about the case u; # uj and w4y = uj,,? Arguing
as above this case is contradictory too.

Therefore u; = uj = wa;), w1 = vy, = (a;v4 and U' = va;a;viyy = U”. But now
wy = w3, w4 = wy, finishing the proof, we have wy —} ws. o

25

