
528.232
83.0

038
£0050.“—

5932286!
‚55025

v.:o
E

ö
—

c.
599853

Thomas Deiß

Presenting Monoids

SEKI Report SR-92-12

?.
rm8metSv..
Smhm

.
u

lmeSdn0on.ldnOC

E
O

a
m

E

..
_vm

m

_

Conditional semi-Thue Systems for Presenting Monoids1

Thomas DeiB

Fachbereich Informatik, Universitat Kaiserslautern

Erwin Schrodinger StraBe

W-6750 Kaiserslautern

deiss~informatik.uni-kl.de

1 A short version of this paper was presented at STACS'92, [Dei92]

Conditional semi-Thue Systems for Presenting Monoids1

Thomas Deiß
Fachbereich Informatik, Universität Kaiserslautern

Erwin Schrödinger‘ Straße
W-6750 Kaiserslautern

deissQinformatik . uni-kl . de

1A short version of this paper was presented at STACS’92, [Dei92]

Abstract

There are well known examples of monoids in literature which do not admit a finite and
canonical presentation by a semi-Thue system over a fixed alphabet, not even over an arbi
trary alphabet. We introduce conditional Thue and semi-Thue systems similar to conditional
term rewriting systems as defined by Kaplan. Using these conditional semi-Thue systems we
give finite and canonical presentations of the examples mentioned above. Furthermore we
show, that each finitely generated monoid with decidable word problem is embeddable in a
monoid which has a finite canonical conditional presentation.

Abstract

There are well known examples of monoids in literature which do not admit a finite and
canonical presentation by a semi-Thue system over a fixed alphabet, not even over an arbi-
trary alphabet. We introduce conditional Thue and semi-Thue systems similar to conditional
term rewriting systems as defined by Kaplan. Using these conditional semi-Thue systems we
give finite and canonical presentations of the examples mentioned above. Furthermore we
show, that each finitely generated monoid with decidable word problem is embeddable in a
monoid which has a finite canonical conditional presentation.

1 Introduction

Thue and semi-Thue systems [Bo085] can be used to examine questions concerning monoids
and groups. A Thue system R over an alphabet E induces a congruence -R on E*, the
congruence classes modulo -R form the monoid MR. A monoid M is finitely presented by
(E, R) if M is isomorphic to MR and both E and R are finite, it is finitely generated, if
only E is finite. If R viewed as a semi-Thue system induces a canonical, Le. con:O.uent and
noetherian, relation, it can be used to decide the word problem of M: Two strings U and v
are congruent if and only if they have the same common irreducible descendant.

It is easy to see that a monoid with an undecidable word problem cannot admit a finite
and canonical presentation. In addition it has been shown by Narendran and Squier that
there exist finitely presented monoids with decidable word problem which do not have a finite
and canonical presentation using a fixed alphabet, see e.g. [KN85], resp. using an arbitrary
but finite alphabet [Squ87].

To overcome this gap between decidability of the word problem and the existence of finite
and canonical presentations we introduce conditional Thue and semi-Thue systems. They are
defined similar to conditional term rewriting systems, see e.g. [Kap84, Kap87, JW86, Gan87].
We show, that using conditional semi-Thue systems we get finite and canonical presentations
of the examples of Narendran and Squier. Furthermore we are able to strengthen a result of
Bauer [Bau81]: Each finitely generated monoid with decidable word problem can be embedded
in a monoid, presented by a finite, canonical, and conditional semi-Thue system.

Different conditional string rewriting systems have been used already by Siekmann and
Szabo [SS82] to give a finite and canonical presentation of idempotent monoids. They use
variables within their rules and a different system to evaluate the premises of a conditional
rule and therefore are not a conditional semi-Thue system according to our definition.

In section 2 we summarize results about unconditional Thue and semi-Thue systems.
The basic definitions of conditional systems are presented in section 3, followed by results
concerning con:O.uence and equivalence in section 4. The examples of Narendran and Squier
are examined in section 5. The final section 6 contains the embeddability theorem.

2 Uncondition~l 'I hue and semi-Thue systems

We give the basic definitions concerning Thue and semi-Thue systems. Furthermore we state
some previous results about decidability of the word problem and the existence of finite
canonical presentations according to [S087].

A Thue system R over an alphabet E is a set of equations over E*. Throughout this
paper we assume E to be finite. The Thue congruence {:}R is the re:O.exive transitive closure
of the relation {:}R. Thereby, U {:}R v if there exist x, yE E*, such that U = xly, v = xry and
1= r or r = I E R. The congruence class [U]R of a word U E E* is defined as [U]R = {v E E*
Iu {:}R v}. The congruence classes form the monoid MR = E* / {:}R under the operation
o : [U]R 0 [v]n = [UV]R. A monoid is presented by (E, R) if M is isomorphic to MR. M is
finitely generated if E is finite, it is finitely presented if both E and R are finite.

Semi- Thue systems differ from Thue systems in the application of the equations : U -+R v
if there exist x, yE E* such that U = xly, v = xry and I - r E R. The elements of Rare ca.lled
rules. -+Rdenotes the re:O.exive, transitive and - R the re:O.exive, transitive, and symmetric
closure of -R.

A word U E E* is in-educible modulo R if there is no v E E* such tha.t u -1i v. I RR(R) is
the set of a.ll irreducible words modulo R. - R is noetherian if there is no infinite sequence of

1

1 Introduction

Thue and semi-Thue systems [B0085] can be used to examine questions concerning monoids
and groups. A Thue system R over an alphabet E induces a congruence H}; on 5.2“, the
congruence classes modulo ~+R form the monoid MR. A monoid M is finitely presented by
(2,111) if M is isomorphic to M3 and both E and R are finite, it is finitely generated, if
only 2 is finite. If R viewed as a semi-Thue system induces a canonical, i.e. confluent and
noetherian, relation, it can be used to decide the word problem of M: Two strings u and v
are congruent if and only if they have the same common irreducible descendant.

It is easy to see that a. monoid with an undecidable word problem cannot admit a finite
and canonical presentation. In addition it has been shown by Narendran and Squier that
there exist finitely presented monoids with decidable word problem which do not have a finite
and canonical presentation using a fixed alphabet, see e.g. [KN85], resp. using an arbitrary
but finite alphabet [Squ87].

To overcome this gap between decidability of the word problem and the existence of finite
and canonical presentations we introduce conditional Thue and semi-Thue systems. They are
defined similar to conditional term rewriting systems, see e .g. [Kap84, Kap87, JW86, Gan87].
We show, that using conditional semi-Thue systems we get finite and canonical presentations
of the examples of Narendran and Squier. Furthermore we are able to strengthen a result of
Bauer [Bau81]: Each finitely generated monoid with decidable word problem can be embedded
in a monoid, presented by a finite, canonical, and conditional semi-Thue system.

Different conditional string rewriting systems have been used already by Siekmann and
Szabo [8882] to give a finite and canonical presentation of idempotent monoids. They use
variables within their rules and a different system to evaluate the premises of a conditional
rule and therefore are not a. conditional semi-Thue system according to our definition.

In section 2 we summarize results about unconditional Thue and semi-Thue systems.
The basic definitions of conditional systems are presented in section 3 , followed by results
concerning confluence and equivalence in section 4. The examples of Narendran and Squier
are examined in section 5 . The final section 6 contains the embeddability theorem.

l

2 Unconditional lime and semi-Thue systems

We give the basic definitions concerning Thue and semi-Thue systems. Furthermore We state
some previous results about decidability of the word problem and the existence of finite
canonical presentations according to [$087].

A Thue system R over an alphabet 2 is a set of equations over E". Throughout this
paper We assume 2 to be finite. The Thue congruence ©}; is the reflexive transitive closure
of the relation #3 . Thereby, u em 12 if there exist z , y € 2" , such that u = z ly , v = mm and
l = r or r = I € R. The congruence class [11]}; of a word u € 2" is defined as [11]}; = {v € 2"
|u ©}; v}. The congruence classes form the monoid M3 = 2* / @} under the operation
o : [u]R o MR = [uv]R. A monoid is presented by (E,R) if M is isomorphic to M3. M is
finitely generated if E is finite, it is finitely presented if both)3 and R are finite.

Semi- Thue systems differ from Thue systems in the application of the equations : u —>R U
if there exist a:, y € 2' such that u = zly, v = try and l -> r € R. The elements of R are called
rules. @} denotes the reflexive, transitive and H}; the reflexive, transitive, and symmetric
closure of —->3.

A word 11. € 2' is irreducible modulo R if there is no 1) € 2“ such that u. » ; v. I RR(R) is
the set of all irreducible words modulo R. —* R is noetherian if there is no infinite sequence of

words Wt - R W2 - R ..•• Two words Wt, W2 are joinable if they have a common descendant:
Wt ! W2 resp. Wt ~ W2 if we are interested in the common descendant w.

- R is confluent if for all u, Ut, U2, Ut -R U -R U2 implies Ut ! U2, it is locally ...onfluent
if Ut -R U -R U2 implies Ut ! U2. The Church-Rosser property is equivalent to confluence:
for all Ut, U2 E E*, Ut +-+R U2 implies Ut ! U2.

If -R is noetherian and locally confluent, then it is also confluent [New42]. A semi-Thue
system R is canonical if - R is confluent and noetherian, then each word U E E* has an
unique irreducible normalform u.

If we view a system R as a Thue system as well as a semi-Thue system, they define the
same monoid MR, Le. <=>R=+-+R' Therefore the word problem of a monoid, which has a finite
and canonical presentation (E, R) is decidable: for u, v E E*, U <=>R vif and only if u = v.

In general it is undeci9able whether a given semi-Thue system R is (locally) confluent
or noetherian. But is is sufficient to show that for all rules I - r E R, I > r with respect
to a well-founded partial order on E* which is compatible with concatenation. Then R is
noetherian. The simplest example of such an ordering is ordering by length, others can be
found in [Esc86].

Now given a finite, noetherian semi-Thue system it is decidable whether it is locally
confluent, and thereby confluent. Let U - v, u' - v' be two rules in R. If u is a substring of
u', Le. u' = xuy, x, Y E E*, then u' is an overlap and v' = xvy is a critical pair of the rules.
If u and u' overlap, Le. u = xy and u' = yz, x, y, z E E+, then xyz is an overlap and vz = xv'
is a critical pair. We have that R is locally confluent if and only if all critical pairs of Rare
joinable.

Two string rewriting systems RI, R 2 are equivalent if they present the same monoid using
the same alphabet, Le. +-+R =+-+R2' If both systems are finite and canonical, equivalence is

I

decidable. They are equivalent if for all Ut - Vt E R we have Ut +-+R2 Vt and vice versa.
We have seen, that the word problem of a monoid M with a finite and canonical pre

sentation is decidable. Unfortunately, .there are finitely presented monoids with decidable
word problem which do not admit a finite and canonical presentation. Kapur and Narendran
[KN85] showed this for systems over a fixed alphabet, the general result has been proved by
Squier [Squ87, Squ88].

:;:"emma 1 [K~85]. Let E = {a, b}, RI = {aba -+ bab}, R 2 = {aba - ba} and MRI resp. MR2

be the cON'esponding monoids. Then both monoids are finitely presented and have decidable
word problem, but do not admit finite and canonical equivalent presentations.

Lemma 2 [Squ87, Squ88]. There exist finitely presented monoids Sk, k :2: ! with decidable
word problem which have no finite canonical presentation.

In his dissertation [Bau8!] Bauer extended semi-Thue systems to n-Ievel rewriting systems,
see also [Bau85]. A n-Ievel rewriting system Rover E is a n-tuple R = (RI, R 21 • •• , Rn) of
semi-Thue systems over E. Any admissible sequence of applications of rules starting with
wE E* must be the beginning of a sequence W -RI Wt -R2 W2 -R

3
.,. -Rn W nwhere Wi is

irreducible modulo Ri. R is canonical if each W E E* has an unique normalform using finite
admissible reductions. Then Bauer can show

Lemma 3 [Bau8!, Ban85]. Each finitely presented monoid with decidable word problem has
a presentation by a finite canonical 2-level system.

In his dissertation Bauer used yet another approach to dose the gap between decidability of
the word problem and the existence of finite canonical presentations. This approach applies
also to finitely generated monoids.

2

words 101 —> R 102 _» R Two words w l , wg are joinable if they have a common descendant:
w; l w; resp. wl ‚},wz if we are interested in the common descendant 10.

-*R is confluent if for all u , 111,112, a ; «__-ä u _»); ug implies u l l ua, it is locally confluent
if ul ‘—R u "R 112 implies a ; l uz. The Church-Rosser property is equivalent to confluence:
for all uhuz € E",u1 ”it ua implies u l l 11;.

If —>R is noetherian and locally confluent, then it is also confluent [New42]. A semi-Thue
system R is canonical if "'R is confluent and noetherian, then each word a € 2 ' has an
unique irreducible normalform ü. _

If we view a system R as a Thue system as well as a semi-Thue system, they define the
same monoid MR. i.e. «ihm—"R. Therefore the word problem of a monoid, which has a finite
and canonical presentation (2 , R) is decidable: for u ,v € E", u ©} v if and only if i = a.

In general i t is undecidable whether a given semi—Thue system R is (locally) confluent
or noetherian. But is is sufficient to show that for all rules I -+ r € R, l > r with respect
to a well-founded partial order on 2 ‘ which is compatible with concatenation. Then R is
noetherian. The simplest example of such an ordering is ordering by length, others can be
found in [Esc86]. .

Now given a finite, noetherian semi-Thue system i t is decidable whether it is locally
confluent, and thereby confluent. Let u _» v, u’ _» v’ be two rules in R. If u is a substring of
u’, i.e. u' = zug , z , y € E' , then u' is an overlap and v’ = mm is a critical pair of the rules.
If u and u' overlap, i.e. a = my and u’ = yz, a:, y , z € E+‚ then zyz is an overlap and v; : zv’
is a critical pair. We have that R is locally confluent if and only if all critical pairs of R are
joinable.

Two string rewriting systems R1, R2 are equivalent if they present the same monoid using
the same alphabet, i.e. ++}?! = t - If both systems are finite and canonical, equivalence is
decidable. They are equivalent if for all zu -—-> v1 € R we have u l H722 v1 and vice versa.

We have seen, that the word problem of a monoid M with a finite and canonical pre-
sentation is decidable. Unfortunately, ‚ there are finitely presented monoids with decidable
word problem which do not admit a finite and canonical presentation. Kapur and Narendran
[KN85] showed this for systems over a. fixed alphabet, the general result has been proved by
Squier [Squ87, Squ88].

Lemma 1 [KN85]. Let): = {a,b},R1' = {aba -> bab},R2 = {aba _» ba} and MR1 resp. MR2
be the corresponding monoids. Then both monoids are finitely presented and have decidable
word problem, but do not admit finite and canonical equivalent presentations.

Lemma 2 [Squ87, Squ88]. There exist finitely presented monoids Sink 2 1 with decidable
word problem which have no finite canonical presentation.

In his dissertation [Bau81] Bauer extended semi-Thue systems to n—level rewriting systems,
see also [Bau85]. A n-level rewriting system R over 2 is a n-tuple R : (R1‚Rz,. . . ‚R„) of
semi-Thue systems over 2 . Any admissible sequence of applications of rules starting with
w e 2 ‘ must be the beginning of a. sequence w a?“ 101 _»??? w; ah . . . a?!" w„ where w,- is
irreducible modulo R.-. R is canonical if each 11) € 2" has an unique normalform using finite
admissible reductions. Then Bauer can show

Lemma 3 [Bau81, Bau85]. Each finitely presented monoid with decidable word problem has
a presentation by a finite canonical Z-level system.

In his dissertation Bauer used yet another approach to close the gap between‘decidab‘ility of
the word problem and the existence of finite canonical presentations. This approach applies
also to finitely generated monoids.

3

Lemma 4 cf. [Bau8!]. Let (E, S) be a presentation of a finitely genemted monoid M with
decidable word problem. Then M can be embedded identically in a monoid M', which is
finitely presented by (E', S'), such that

• -+S' is noetherian.

• each word W E E* has an unique iTTeducible normalform modulo -+5',

We will generalize this partial result in section 6 such that we have a canonical finitp condi
tional representation of M'.

Conditional systems

We use conditional Thue and semi-Thue systems similar to conditional term rewriting systems
as defined e.g. by Kaplan [Kap84]. Therefore the induced congruences are more difficult to
handle as for unconditional systems. For example, the congruences are not decidable in
general. These problems can be solved by introducing reductive systems analogously to
simplifying and reductive conditional term rewriting systems [Kap87, JW86]. At last we
state a limitation on the expressiveness of conditional semi-Thue systems when regarding
cancellative monoids.

A conditional Thue system R is a set of conditional equations. Each equation consists of
a conclusion Uo == Vo and a finite set {Ui == Vi 11 $ i $ n} of premises, all Ui, Vi are strings
over an alphabet E. We write

n
V Ui == Vi :: Uo == Vo

i=1
The relation {:}R is defined as follows: U {:}R V if and only if there exist x, y E E* and an
equation Vi=1 Ui == Vi :: Uo == Vo in R such that U == xuoy and V == xvoy or U = xvoy and
V = xuoy and for all 1 $ i $ n we have XUiY {:}n XViY. {:}n is the Thue congruence induced
by R. x and Y are the left resp. right contexi of the occurrence of Uo resp. Vo in u. In this
case R is called a left-right conditional Thue system. If only the right context y is used in
evaluating the premises, Le. UiY {:}R ViY, we call R a right conditional system.

A solution of a conditional equation modulo a Thue system R is a context, such that
the premises of the equation within this cor_text are congruent module- R. :!:_Y is a minimal
solution modulo a left-right conditional Thue system if there is no suffix x' of x and no prefix
Y' of Y such that x'_Y' is a solution. For a right conditional system, a right context y is a
minimal solution if it has no prefix Y' which is a solution itself. The set of minimal solutions
of a conditional equation e modulo a conditional Thue system R is denoted by soIR(e).

To define conditional semi- Thue systems we restrict the application of the equations. Let
Vi:1Ui == Vi :: Uo -+ Vo be a rule of a conditional semi-Thue system R. Uo is the left-hand side
ofthis rule, Vo is the right-hand side. Now U -+R V if and only if U = XUoY and v = XVoY, where
x, YE E*, and X'UiY and XViY have a common descendant modulo -+R for 1 $ i $ n. As for
conditional Thue systems we distinguish left-right and right conditional semi-Thue systems.
Solutions modulo a conditional semi-Thue system R are defined in the same manner as for
conditional Thue systems. For a minimal solution X_Y resp. Y we require in addition to the
nonexistence of subsolutions, that x and Y, resp. (y) are irreducible modulo R.

Notice that the premises must have a common descendant in the context of rule application
instead of being congruent as it was in the definition of conditional Thue systems. This
causes the first difference to unconditional systems: The Thue congruence and the symmetric,
transitive, and reflexive closure of the reduction relation need not coincide anymore. To
recover this property we need in addition confluence of R.

3

Lemma 4 cf. [Bau81]. Let (2 ,3) be a presentation of a finitely generated monoid M with
decidable word problem. Then M can be embedded identically in a monoid M’, which is
finitely presented by (E’, S'), such that

o „3 . is noetherian.

. each word m € 2“ has an unique irreducible normalform modulo —+s:.

We will generalize this partial result in section 6 such that we have a. canonical finite condi-
tional representation of M’.

3 Conditional systems

We use conditional Thue and semi-Thue systems similar to conditional term rewriting systems
as defined e.g. by Kaplan [Kap84]. Therefore the induced congruences are more difficult to
handle as for unconditional systems. For example, the congruences are not decidable in
general. These problems can be solved by introducing reductive systems analogously to
simplifying and reductive conditional term rewriting systems [Kap87, JW86] . At last we
state a limitation on the expressiveness of conditional semi-Thue systems when regarding
cancellative monoids.

A conditional Thue system R is a set of conditional equations. Each equation consists of
a conclusion uo = vo and a finite set {u; = v.11 5 i 5 n} of premises, all it.-‚v.- are strings
over an alphabet 2 . We write

‘9 ugzv i z zuozvo
1:1

The relation en; is defined as follows: u #3 1) if and only if there exist any € 2* and an
equation V?=1 u; = v.- :: uo = vo in R such that u = $11.03] and v = away or u = zvoy and
v = smog and for all 1 S i 5 n we have zu.-y ©}; zu.-y. ©}; is the Thue congruence induced
by R . z and y are the left resp. right context of the occurrence of no resp. vo in u . In this
case R is called a left-right conditional Thue system. If only the right context y is used in
evaluating the premises, i.e. my er}? my, we call R a right conditional system.

A solution of a conditional equation modulo a Thue system R is a context, such that
the premises of the equation within this context are congruent modulo R . 3.3; is a minimal
solution modulo 3. left-right conditional Thue system if there is no suffix z' of a: and no prefix
y’ of y such that z’.y’ is a solution. For a right conditional system, a right context y is a
minimal solution if it has no prefix y’ which is a solution itself. The set of minimal solutions
of a. conditional equation e modulo a conditional Thue system R is denoted by solR(e) .

To define conditional semi- Thue systems we restrict the application of the equations. Let
V?___1u,- = v,- :: uo —> vo be a rule of a. conditional semi-Thue system R . 11.0 is the left-hand side
of this rule, vo is the right-hand side. Now u —+ R v if and only if u = «may and v = zvoy, where
3,3} E E“, and am,-y and zu,-y have a. common descendant modulo -+R for 1 $ i 5 n . As for
conditional Thue systems we distinguish left-right and right conditional semi-Thue systems.
Solutions modulo a conditional semi-Thue system R are defined in the same manner as for
conditional Thue systems. For a minimal solution any resp. y we require in addition to the
nonexistence of subsolutions, that a: and y, resp. (y) are irreducible modulo R.

Notice that the premises must have a common descendant in the context of rule application
instead of being congruent as it was in the definition of conditional Thue systems. This-
causes the first difference to unconditional systems: The Thue congruence and the symmetric,
transitive, and reflexive closure of the reduction relation need not coincide anymore. To
recover this property we need in addition confluence of R .

3

Lemma 5 cf. [Kap84, theorem 3.2.]
a) There exists a conditional Thue system R with {:}n -:F -R'
b) If R is confluent, we have {:}R = -R'
proof: The original proofs carry over directly to conditional semi-Thue systems. o

Both {:}R and -R are compatible with concatenation, hence the congruence classes mod
ulo {:}n resp. -R form a monoid. As a direct consequence of the lemma a.bove these monoids
are the same if R is confluent.

For a finite unconditional system R the relations {:}Rand -+Rare decidable. This changes,
too, when considering conditional systems, cf. [Kap84, theorem 3.3.].

Lemma 6 There exists a finite conditional Thue system R such that {:}Rand -+R are un

decidable.
proof: We use an argumentation similar to that one in the original theorem, but instead of
Hilbert's tenth problem we use the encoding of a Turing machine with undecidable halting
problem to evaluate the premises. Then the conditional equation can be applied if the premise
reduces to an encoding of a final configuration of the Turing machine, but this problem is
undecidable. 0

Similar to the case of conditional term rewriting systems there is a sufficient criterion such
that the reduction relation becomes decidable: We call a conditional semi-Thue system re
ductive if for all rules in R the strings in the premises and the right-hand side are smaller than
the left-hand side wrt. to a well-founded ordering which is compatible with concatenation.
In analogy to [Kap87, theorem 1.6.] we have

Lemma 7 Let Rbe a finite reductive conditional semi- Thue system, then -+R is noetherian
and decidable.

The results of the lemmatas 1 and 3 can be combined: If R is finite, confluent, and reductive,
then we have {:}n = -R and {:}R resp. -R are decidable. Hence R can be used to decide
the word problem by means of string rewriting.

We expect that conditional systems have a greater expressiveness than unconditional
ones. But cancellative monoids and groups show a limit of conditional systems. A monoid
presented by (E, R) is cancellative if for all x, y, U~ v E E*, xuy {:}R xvy implies U {:}R v.

Theorem 1 A group or cancellative monoid M has a finite canonical left-right conditional
presentation iJJ it has a finite canonical unconditional one.
proof:

if: If M has a finite canonical unconditional presentation it trivially has a conditional one.
only if: Let (E, R) be a finite canonical left-right conditional presentation of M and let

(r) Vi=l Ui = Vi :: Uo -+ Vo be a conditional rule of R. By definition, T can be applied
on a word XUoY iff x_y isa solution of r modulo R. Since M is cancellative and R is
canonical x_y is a solution if and only if ,\~ is a solution, Le. T can be applied if and
only if Ui ! Vi for 1 ~ i ~ n. Suppose this is true, then we can apply r independent of
its context and we may replace T in R by the unconditional rule Uo -+ vo. If there is at
least one premise, such that Ui ¥Vi, then T cannot be applied to any word and we may
cancel r in R. These replacements and deletions do not alter the property that R is
canonical. Hence we are able to construct a finite canonical unconditional presentation
of M. 0

4

Lemma 5 cf. [Kap84, theorem 3.2.]
a) There exists a conditional Thue system R with ©} # “la-
b) If R is confluent, we have 9;; = H7?-

proof: The original proofs carry over directly to conditional semi-Thue systems. I:

Both at}; and “ä are compatible with concatenation, hence the congruence classes mod-
ulo ©}; resp. H}; form a monoid. As a direct consequence of the lemma above these monoids
are the same if R is confluent.

For a finite unconditional system R the relations {#3 and —>R are decidable. This changes,
too, when considering conditional systems, cf. [Kap84, theorem 3.3.].

Lemma 6 There exists a finite conditional Thue system R such that QR and —>R are un-
decidable.
proof: We use an argumentation similar to that one in the original theorem, but instead of
Hilbert’s tenth problem we use the encoding of a. Turing machine with undecidable halting
problem to evaluate the premises. Then the conditional equation can be applied if the premise
reduces to an encoding of a final configuration of the Turing machine, but this problem is
undecidable. Ü

Similar to the case of conditional term rewriting systems there is a. sufficient "criterion such
that the reduction relation becomes decidable: We call a conditional semi-Thue system re-
ductive if for all rules in R the strings in the premises and the right-hand side are smaller than
the left-hand side wrt. to a well-founded ordering which is compatible with concatenation.
In analogy to [Kap87, theorem 1.6.] we have

Lemma 7 Let R be a finite reductive conditional semi— Thue system, then —+R is noetherian
and decidable.

The results of the lemmatas 1 and 3 can be combined: If R is finite, confluent, and reductive,
then we have #3 = H}; and #} resp. H}; are decidable. Hence R can be used to decide
the word problem by means of string rewriting.

We expect that conditional systems have a greater expressiveness than unconditional
ones. But cancellative monoids and groups show a limit of conditional systems. A monoid
presented by (2 , R) is cancellative if for all a:, y,u', v € E‘ , zuy €}; zum implies a ©}; 11.

Theorem 1 A group or cancellative monoid M has a finite canonical left-right conditional
presentation if it has a finite canonical unconditional one.
proof:
if: If M has a finite canonical unconditional presentation it trivially has a conditional one.
only if: Let (2,12) be a finite canonical left-right conditional presentation of M and let

(1‘) V?=1u.- = v,- :: uo -+ vo be a conditional rule of R. By definition, r can be applied
on a word xuoy ifi' $.31 is _a solution of r modulo R. Since M is cancellative and R is
canonical any is a solution if and only if ‚_‚\ is a solution, i.e. r can be applied if and
only if u,- l 0.- for 1 5 i g n. Suppose this is true, then we can apply r independent of
its context and we may replace r in R by the unconditional rule no -—> vo. If there is at
least one premise, such that u.- y 0;, then r cannot be applied to any Word and we may
cancel r in R . These replacements and deletions do not alter the property that R is
canonical. Hence we are able to construct a finite canonical unconditional presentation
of M. Cl

XUOY

. *
ind.hyp:·

It xVoY

1 ':. ind.hyp.* .*
R~ ~ RI''i R2

xVoY

Figure 1: equivalence

An example of a cancellative monoid is the monoid presented by {aba - bab} [KN85], which
does not have a finite and canonical presentation over the alphabet 1:: = {a, b}, see lemma 1.
An analogous theorem can be proven for right-cancellative monoids and right-conditional
systems.

4 Equivalence and Confluence

We examine sufficient criteria to decide equivalence and local confluence of conditional semi
Thue systems. In general, none of these criteria gives us a finite test to decide these questions:
we have to consider the (infinite) set of minimal solutions. For deciding local confluence of
left-right conditional semi-Thue systems the situation is even worse: we have an infinite
number of critical pairs.

4.1 Equivalence

To decide equivalence of two unconditional systems it suffices to show that the rules of each
system are congruent modulo the other one. For conditional systems we have to take into
account the solutions of the conditional rules. If we compare two finite canonical conditional
semi-Thue systems we may restrict the test to minimal solutions. We state this lemma for
left-right conditional systems, but it is also valid for right conditional ones.

Lemma 8 Let R t , R2 be two finite canonical conditional semi- Thue systems over an alphabet
1::. If we have Jor all rules (r)'If=t Ui = Vi :: Uo - Vo in R lI and minimal solutions x_y E
SOIRI (r) that XUOy ~R2 xVoY and vice versa for all rules in R 21 then Rt and R2 are equivalent.
proof: We show that U ~Rl v implies U ~R2 v, the case u ~R2 v implies U ~RI v is
analogous. Since -RI is canonical, -RI is a well-founded partial ordering on 1::* which is
compatible with concatenation. Let -RI denote the lexicographic extension of -RI to tuples
of words. The proof is by noetherian induction using -RI' It suffices to show that U -RI v
implies u ~R2 v. Let (rt) 'If=Iui = Vi :: Uo - Vo be the rule used to reduce U to v, Le.
U = XUoY, v = xVoY and for all 1 ~ i ~ n, XUiY lRI xViY.

case 1: x, y are irreducible.
Then x has a suffix x', y has a prefix y' such that x'_y' is a minimal solution of rt. By
assumption we have x'uoY' ~R2 x'vov' and we conclude U = XUoY ~R2 xVoY = v.

case 2: at least one of x, Y is reducible.
Let x, y be the normalforms of x resp. y modulo RI' Then v = xVoY -RI xvoy.
Since at least one of X,Y is reducible we have (xuoY,xvoY) -RI (xUoY,xvoY) and
(xUoY, xvoY) -RI (xvoY, xvOy). By using the induction hypothesis twice we conclude
U = xUOy ~R2 xvoy +-+R

2
XVoY = v. This is depicted in figure 1. 0

5

May v——E 2:00.:

' 1* 1.indhyp.

RN R2
5007

indm‘p? . _ .
R2. \ \

Figure 1: equivalence

An example of a cancellative monoid is the monoid presented by {aba —> bab} [KN85], which
does not have a finite and canonical presentation over the alphabet E = {a , b}, see lemma 1.
An analogous theorem can be proven for right—cancellative monoids and right-conditional
systems.

4 Equivalence and Confluence

We examine sufficient criteria to decide equivalence and local confluence of conditional semi-
Thue systems. In general, none of these criteria gives us a finite test to decide these questions:
we have to consider the (infinite) set of minimal solutions. For deciding local confluence of
left-right conditional semi-Thue systems the situation is even worse: we have an infinite
number of critical pairs.

4 . 1 Equivalence

To decide equivalence of two unconditional systems i t suffices to show that the rules of each
system are congruent modulo the other one. For conditional systems we have to take into
account the solutions of the conditional rules. If we compare two finite canonical conditional
semi-Thue systems we may restrict the test to minimal solutions. We state this lemma for
left-right conditional systems, but it is also valid for right conditional ones.

Lemma 8 Let R1, R; be two finite canonical conditional semi- Thue systems over an alphabet
2 . If we have ' for all rules (r)V§‘=1u,- = v; :: no —> va in R1, and minimal solutions 3.3; €
sol RIU) that zuoy H)}! away and vice versa for all rules in R2, then R; and R2 are equivalent.
proof: We show that a HR 1) implies u “Ä; v, the case a ”lie 1) implies 11. «+321 0 is
analogous. Since "‘Rx is canonical, “R1 is a well-founded partial ordering on E“ which is
compatible with concatenation. Let '”R, denote the lexicographic extension of ""R1 to tuples
of words. The proof i s by noetherian induction using —»R‚. It sufiices to show that a ->R, v
implies a «+332 0. Let (r l) Vglug = v.- :: uo —-> vo be the rule used to reduce u to 1), Le.
a = xuoy,v = smog and for all 1 S i 5 n, zu.-y 1R1 zu,-y.
case 1: :r, y are irreducible.

Then a: has a suffix :c' , y has a prefix 3/ such that az’_y’ is a minimal solution of r l . By
assumption we have z'uoy' 4—9;}; z’vov’ and we conclude a = zuoy Hg: :woy = v.

case 2: at least one of z , y is reducible.
Let 5 ,? be the normalforms of a: resp. y modulo R1. Then v = xvoy —>‘Rl 50037.
Since at least one of ::,y is reducible we have (zoomzvoy) #3, (31103155110?) and
(zuoy,zvoy) ""R, (zvoyfifvojj). By using the induction hypothesis twice we conclude
a = amoy ”it; Evo? ”it; zvoy = v . This is depicted in figure 1 . U

u

Figure 2: confluence

4.2 Confluence

Since right conditional semi-Thue systems correspond to conditional term rewriting systems
with unary function symbols, the proof of confluence can be carried over from term rewriting
to semi-Thue systems, see e.g [Kap87, JW86]. To show confluence of a system R we take the
usual approach. We show that R is reductive and thereby noetherian. If all critical pairs are
joinable then R is locally confluent, hence it is confluent [Hue80].

Definition 1 Let (r) Vi:;1 Ui = Vi :: Uo -+ Vo and (r') Vi~1 ui = vi :: u~ -+ v~ be two (not

necessarily different) rules of a right conditional Thue system R.

If u~ is a substring of uo, i.e. Uo = xu~y,

then Vi=1 Ui = Vi A Vi~1 u~y = viy :: Vo =xv~y is a critical pair of rand r'.
If tLo and u~ have an overlap, i.e. tLo = xy, u~ = yz, x, y, Z E E+ I

then Vi=1 UiZ =ViZ A Vi~1 u~ = vi :: voz = xv~ is a critical pair of rand r'.
C P(R) is the set of all critical pairs of R.
A critical pair (p) 'v'i'=1 Ui = Vi :: tLo = Vo is joinable in R if and only if for all y E
SOIR(P), tLoY !R VoY·

Lemma 9 Let R be a finite reductive right-conditional semi- Thue system. If and only if all
critical pairs of R are joinable in R, then R is locally confluent and thereby confluent.
proof: Follows the proof of confluence for conditional term rewriting systems in [JW86].

only if: Let (p) Vi=1 Ui = Vi :: tLo = Vo be a critical pair of two rules r, r' E R, y E SOlR(p)
and let w be the overlap corresponding to p, then wy reduces to tLoY resp. voY. Since R
is confluent we have tLoY ! VoY. We conclude that all critical pairs are joinable within
their minimal solutions.

if: Let P(u) be valid if and only if VU1, U2 with Ul ~1i U -+1i U2 there exists Uo E E* such
that Ul Jo U2. We show that P(u) is valid for all U E E* by noetherian induction on E*,
See e.g. [New42]. Figure 2 turns out the existence of 'lLQ, provided that Wl ~R u -R W2

implies 3w E E* with Wl.t W2.

Let us assume that we used the rules (r) 'v'f=IUi = Vi :: tLo - Vo and (r') 'v'f~lu~ = vi ::
u~ - V~ to reduce u to Wl resp. W2. There are 3 cases according to the positions of Uo
and u~ in u.

6

Figure 2: confluence

4 .2 Confluence

Since right conditional semi-Thue systems correspond to conditional term rewriting systems
with unary function symbols, the proof of confluence can be carried over from term rewriting
to semi-Thue systems, see e.g [Kap87, JW86]. To show confluence of a system R we take the
usual approach. We show that R is reductive and thereby noetherian. If all critical pairs are
joinable then R is locally confluent, hence it is confluent [Hue80].

Definition 1 Let (r) V?=1u,- = v,- :: no —+ vo and (r’) Vila: : v; :: uf) _; of, be two (not
necessarily difl'erent) rules of a right conditional Thue system R.
If uf) is a substring of un, i.e. uo = wußy,

then vp=1u‚- = u,- A Vfllufy = vfy :: v0 = 312631 is a critical pair ofr and r’.
Ifuo and aß have an overlap, i.e. no = $11,116 = yz,:c ,y ,z € E+‚

then V3=1uiz : viz A Välui- : of :: voz = 2:116 is a critical pair ofr and r'.
CP(R) is the set of all critical pairs of R.
A critical pair (p) V?=1u,- = v.- :: uo = vo is joinable in R if and only if for all y E
soln(p)‚ “all in voy- . -

Lemma 9 Let R be a finite reductive right-conditional semi- Thue system. If and only if all
critical pairs of R are joinable in R, then R is locally confluent and thereby confluent.
proof: Follows the proof of confluence for conditional term rewriting systems in [JW86].

only if: Let (p) V?=1 u.- = v.- :: uo = vo be a. critical pair of two rules r, r’ € R, y 6 solR(p)
and let m be the overlap corresponding to p, then wy reduces to any resp. voy. Since R
is confluent we have any 1 my. We conclude that all critical pairs are joinable within
their minimal solutions.

if: Let P(u) be valid if and only if Vuhug with u l (—25 u a; ug there exists no € 2* such
that «1 „10 ua. We show that P(u) is valid for all u E E“ by noetherian induction on 2",
see e .g. [New42]. Figure 2 turns out the existence of no, provided that ml *—12 u —>R w;
implies Bw e 2" with an ‚%,wg
Let us assume that we used the rules (r) V?=1u.- = v,- :: uo —+ vo and (r’) Vila: = v:- ::
us —> 126 to reduce a to 101 resp. m;. There are 3 cases according to the positions of no
and us in u.

case 1: Uo and u~ do not overlap, Le. u = XlUoX2U~X3 and Wl = XlVOX2U~X3 +-r U --'r'

Xl UoX2VOX3 = W2' This corresponds to a variable overlap in conditional term rewriting
systems.
It is easy to see that W1 reduces to Xl VoX2VOX3' Also for all 1 :5 i :5 n, UiX2U~X3 --.il
UiX2VoX3 and ViX2U~X3 --.il ViX2VoX3. Similar to figure 2 we may apply the induction
hypothesis twice to get common descendants of UiX2VOX3 and ViX2VOX3. Hence X2VOX3

is a solution of r and we may reduce W2 = XlUoX2VoX3 to w= X1VOX2VoX3.
,· b' f . , dcase 2: Uo IS a su strmg 0 Uo, I.e. '1.1. = Xl UoX4 = X1X2UoX3X" an Wl = Xl VOX" +-r '1.1. --'r'

XlX2 V:'X3X 4 = W2·

Let us assume nrst that x" is irreducible. Then X4 has a prefix x~ which is a minimal

solution of the critical pair corresponding to the overlap Uo = X2U~X3 of rand r'. This

is joinable by hypothesis and we conclude Xl VOX" ! XlX2VOX3X".

IT X4 is reducible, let x" be its normalform. There are '1.1.' = Xl UoX4 = XlX2U~X3X4' W~ =

Xl VOX" and w2 = x1x2vbx3x". Again as in figure 2 we can show that UiX" ! ViX" for

1 :5 i ~ nand UiX3X" ! vix3x4 for 1 ~ i ~ n'. Hence X4, X3X" are solutions of r resp.
r', and we get wi +- '1.1.' --. w2. This is the case above, wi, w2and thereby Wl and W2

have a common descendant w.
case 3: Uo and u~ have an overlap. Similar to case 2 we show the existence of the common

descendant w.

Hence WI +- W -+ W2 implies WI ! W2 which finishes the proof. o

Though we have a finite number of critical pairs of a finite right conditional semi-Thue
system, this characterization does not give a finite test for confluence. There may be infinitely
many minimal solutions of a critical pair.

For left-right conditional systems the situation is even worse. By extending definition 1
to left-right conditional systems, joinability of critical pairs does not suffice to show local
confluence. Let us have a word u E :EO< reducible by two rules (r) 'V~l Ui = Vi :: Uo -+ VD,

(r') 'Vf~l ui = vi :: u~ -+ vb. x_y and x'_y' are the solutions used by the rules. Let us assume
that the left hand sides do not overlap with themselves but with the solution of the other
rule, e.g.

u=F'X IUoI Y I z21
Z3 I x' Iu~ I yf 1i4

Since Uo a.nd u~ do not overlap, there is no critical pair corresponding to this situation. But
it is possible that the descendants ZlXVoYZ2 and z3x'vby'z" are not joinable, since the rules
disturb mutually their contexts.

To show local confluence we expand R to Re = {xUoY -+ xvoylr is a rule in R, x_y is a
solution of r and no suffix x' of x, no prefix y' of y is a solution of r}. Notice that Re is
unconditional and in general infinite. Now, local confluence of R can be easily deduced from
local confluence of Re.

Lemma 10 Let R be a reductive left-right conditional semi-Thue system, then R is confluent
if and only if Re is confluent.

Thus we have a formal characterization of (local) confluence of left-right conditional systems.
But usually we have to examine an infinite number of critical pairs of Re.

7

case 1: no and u}, do not overlap, i.e. u = 211102215323 and w1 = 311202214333 e—, u —>„
1:1 uozgvéza = 102. This corresponds to a variable overlap in conditional term rewriting
systems.
It is easy to see that wl reduces to 3100320623. Also for all 1 S i 5 n, er.-3214313 __»;1

“.'13‘0623 and vgzzufiz3 @} vgzzvßza. Similar to figure 2 we may apply the induction
hypothesis twice to get common descendants of uam-war;, and 142211633. Hence range-3
is a solution of r and we may reduce 102 = zluozgvgza to w ' : zlvozzvaza.

case 2: 145 is a substring of no, i.e. u = 2111024 = zlzgubzsm and 11:1 = 1:100:34 4—, u —>,:
21321163324 = mg.
Let us assume first that 24 is irreducible. Then 1:4 has a prefix ::,"4 which is a minimal
solution of the critical pair corresponding to the overlap uo = $211633 of r and r’. This
is joinable by hypothesis and we conclude $10014 1 1122143233934.
If 14 is reducible, let H be its normalform. There are u’ = “uni-“Z = 2132149322, w; =
aloof; and w; = zlzgvßzafi . Again as in figure 2 we can show that it,-f; 1 via—4 for
1 S i S n and iii-1:337 1 vfxgfi for l $ i g n’ . Hence "a:-z,:cafz are solutions of r resp.
r’, and we get wi «— u’ «» w’z. This is the case above, Wi,“); and thereby wl and 102
have a common descendant w.

case 3: no and u}, have an overlap. Similar to case 2 we show the existence of the common
descendant w .

Hence w; s— w —> 102 implies w] 1 102 which finishes the proof. El

Though we have a finite number of critical pairs of a finite right conditional semi-Thue
system, this characterization does not give a finite test for confluence. There may be infinitely
many minimal solutions of a critical pair.

For left-right conditional systems the situation is even worse. By extending definition 1
to left-right conditional systems, joinability of critical pairs does not suffice to show local
confluence. Let us have a word u E 2 ' reducible by two rules (r) v?___1u‚- = v,— :: no _» vo ,

(r’) V:“;1 uf : v: :: uf, —-» 126. 3.3; and :r’_y' are the solutions used by the rules. Let us assume
that the left hand sides do not overlap with themselves but with the solution of the other
rule, e.g.

„: l zuo y zu
23 3 “0314

Since uo and uf, do not overlap, there is no critical pair corresponding to this situation. But
i t is possible that the descendants zlzvoyzg and z3z’vay’z4 are not joinable, since the rules
disturb mutually their contexts.

To show local confluence we expand R to Re = {zany —+ azvoylr is a rule in R, 3.31 is a
solution of r and no suffix :c' of z, no prefix y’ of y is a solution of r}. Notice that R, is
unconditional and in general infinite. Now, local confluence of R can be easily deduced from
local confluence of Re.

Lemma 10 Let R be a reductive left—right conditional semi— Thus system, then R is confluent
if and only if Re is confluent.

Thus we have a formal characterization of (local) confluence of left-right conditional systems.
But usually we have to examine an infinite number of critical pairs of R,.

5 Examples

Now we are able to study the examples mentioned in the introduction. We first examine the
example of Narendran. After that we briefly investigate an example due to Kirchner and
Hermann [KH89] and finally we. present the example of Squier.

5.1 A representation with no equivalent finite canonical presentation

We consider the one rule system R = {aba -+ ba} over the alphabet ~ = {a, b}. As already
stated in lemma 1 there is no finite canonical unconditional semi-Thue system equivalent to
R. Using a completion procedure we get the infinite system RKB = {ab"a -+ b"aln ~ I},
which is canonical and equivalent to R. As announced there is a conditional semi-Thue
system which is finite, canonical, and equivalent to R.

Theorem 2 The right conditional system Re = {aba - ba; ab = b :: abb - bb} is a finite
canonical system equivalent to R = {aba - ba}.

We will use r u and re as abbreviations of the unconditional resp. conditional rule of Re. At
first we determine the set of minimal solutions of the premise of r c •

Lemma 11 soIRe(re) = {b"aln ~ O}.
proof: Let S = {b"aln ~ O}

S ~ soIRc(re): Induction on n shows that abb"a 1bb"a.
soIRc(re) ~ S: Let x E sol(re), by definition x is irreducible. We show by induction on

length I of x, that x E S, Le. x = b"a.
1= 0: that means x = A, but no left or right-hand side of r u or r c is a substring of ab

resp. b. Therefore they are the only elements in their equivalence classes and they
are not congruent. This contradicts x E soIRAre).

I = 1: x = a, by definition of S we have x E Sand aba 1ba.
x = b, this again contradicts x E soIRe(rc), since we would have to show abb 1 bb.
Only re could be applied on abb, but the premise of re is not joinable within the
context A.

I> 1: x = ax', this is a contradiction to x E soIRe(re) since a is a prefix of x and
a E SOIRe(re).
x = bx', by assuming x E soIRe(re) we have abx 1 bx, Le. abbx' 1 bbx'. x' is
irreducible a.nd therefore the only possibility to reduce abbx' is abbx' -re bbx'.
This rule may be applied if x' E soIRe(re). By induction hypothesis we have
x' =b'-

2a, hence x =bl-la. 0

Lemma 12 The system Rc is canonical.
proof: Since both rules of Rc are length reducing and the premises are shorter than the
left-hand sides, Rc is reductive. To show confluence we have to consider two overlaps. The
critical pair baba = abba corresponding to the overlap ababa is joinable in bba. The other
overlap ababb results in the critical pair ab = a :: babb = abbb. It has the same premise as
re, hence it has the same set S = {bnaln ~ O} of minimal solutions and we have to show
babbbna ! abbbbna for all n ~ o. These words can be reduced to bbbbna using re. Therefore
all critical pairs are joinable and we conclude that Rc is canonical. 0

Finishing the proof of theorem 2 we show that R and Rc are equivalent.

8

5 Examples

Now we are able to study the examples mentioned in the introduction. We first examine the
example of Narendran. After that we briefly investigate an example due to Kirchner and
Hermann [KH89] and finally we. present the example of Squier.

5 .1 A representation with no equivalent finite canonical presentation

We consider the one rule system R = {aba —v ba} over the alphabet E = {a , b}. As already
stated in lemma 1 there is no finite canonical unconditional semi-Thue system equivalent to
R. Using a completion procedure we get the infinite system RKB = {ab"a —> b“a|n Z 1} ,
which is canonical and equivalent to R. As announced there is a conditional semi—Thue
system which is finite, canonical, and equivalent to R.

Theorem 2 The right conditional system Rc = {aba —> ba; ab = b :: abb —> bb} is a finite
canonical system equivalent to R = {aba -+ ba}.

We will use r„ and rc as abbreviations of the unconditional resp. conditional rule of R‘c. At
first we determine the set of minimal solutions of the premise of rc.

Lemma 11 soc(rc) = {b"a|n 2 0}.
proof: Let S = {b"a|n Z 0}

S g soc(rc):- Induction on n shows that abb"a 1 bb"a.
soc(rc) g S: Let :: € sol(rc), by definition a: is irreducible. We show by induction on

length l o f a:, that a: € 5 , i.e. z = bna.
~ I = 0: that means z = A, but no left or right-hand side of r., or rc is a substring of ab

resp. b. Therefore they are the only elements in their equivalence classes and they
are not congruent. This contradicts a: E solRc(7‘c)-

l = 1: z = a , by definition of S we have m € S and aba 1 ba.
a: = I), this again contradicts 3 € sol R¢(Tc), since we would have to show abbl bb.
Only rc could be applied on abb, but the premise of rc is not joinable within the
context A.

l > 1: a: = ax', this is a contradiction to z € soc(rc) since a is a prefix of a: and
a € soc(rc).
a: = bz’, by assuming 2: € solnc(rc) we have aba: 1 be, i.e. abbz' 1 bbx’. a." is
irreducible and therefore the only possibility to reduce abbz' is abbz’ ——>,c bbx’.
This rule may be applied if :r’ E SOIflc(Tc). By induction hypothesis we have
z’ = (xl-2a, hence :r = b"1a. CJ

Lemma 12 The system Rc is canonical.
proof: Since both rules of R6 are length reducing and the premises are shorter than the
left-hand sides, RC is reductive. To show confluence we have to consider two overlaps. The
critical pair baba = abba corresponding to the overlap ababa is joinable in bba. The other
overlap ababb results in the critical pair ab = a :: babb = abbb. It has the same premise as
rc, hence it has the same set S = {b"a|n 2 0} of minimal solutions and we have to show
babbb”a 1 abbbb"a for all n 2 0 . These words can be reduced to bbbb"a using rc. Therefore
all critical pairs are joinable and we conclude that Rc is canonical. Ü

Finishing the proof of theorem 2 we show that R and Re are equivalent.

Lemma 13 R and Rc are equivalent.
proof: Since R is a subset of Rc it suffices to show for all x E soIRc(rc) that abbx -R bbx.
Rand RKB are equivalent, hence we can use RKB to show this. By Lemma 11 we have
x = bna, n ~ O. But now abbbna -+RKB bbbna, which completes the proof. 0

In [KH89] Kirchner and Hermann presented a term rewriting system which can be con
verted into the semi-Thue system R' = {Igl -+ Ih}. We use the reversed system R =
{Igl -+ hI} (IS an example. Completing R gives the infinite canonical system RKB =
{IghnI -+ hn+l I In ~ O}. Again the monoid MR can be presented by a finite canonical
conditional semi-Thue system, the proof is left to the reader.

Lemma 14 Let R = {Igl -+ hI}, then Rc = {Igl -+ h/j Ig = h :: Igh -+ hh} is a finite
canonical right conditional semi- Thue system equivalent to R.

5.2 A monoid without a finite canonical presentation

Squier [Squ87, Squ88] defined a family of monoids Sk, k ~ 1, which cannot be presented by
finite unconditional semi-Thue systems. We show that each of these monoids can be presented
by a finite canonical right conditional system. We will study the monoid SI in detail, the
results can be easily generalized to Sk, k > 1.

Let El = {a, b, t, x, y}, R~ = {xa -+ atxj xt -+ tXj xb -+ bx; xy -+ A} and RI = R~ u
{atnb -+ Xln ~ O}. SI is the monoid presented by (El, RI), it is finitely presented by the
system Rq = R~ U {ab -+ A}, [Squ87]. Using a syllable or collected ordering as defined in
[Sim87], based on the precedence a > t > b > x > y we can show that RI is noetherian.
Furthermore RI is confluent, hence RI is canonical. Therefore we are able to compute unique
normal forms modulo Rb hence the word problem of SI is decidable. Though we have an
infinite semi-Thue system to solve the word problem of Sb there is no finite system with this
property.

Lemma 15 [Squ88]. SI has no finite canonical unconditional presentation.

To show that SI can be presented by a finite canonical conditional system, we need a canonical
unconditional system RI equivalent to RI. It is similar to Rb except that the rules {atnb -+ A
In ~ O} are replaced by a set of rules {atn+lb -+ atnbln ~ O} u {ab -+ A}. The rules of the
conditional system will resemble the rules in RI. Especially the rules atn+lb -+ atnb will be
replaced by a conditional rule.

Theorem 3 The right conditional system Rc = R~ u {ab -+ Aj atb -+ Aj at = a :: att -+ at}
is a canonical presentation 01 the monoid SI.

The last 3 rules will be abbreviated with rI, r2 and re. Similar to lemma 11 we get solRc (Tc) =
{tnbln ~ O}. Then we can show that Rc is canonical.

Lemma 16 soIRc(rc) = {tnbln ~ O}.
proof: Let S = {tnbln ~ O}.

S ~ soIRc(rc) : Let z E S, Le. z = tnb. Induction on n shows that z is a solution of T c• Since
z is irreducible and the proper prefixes of z are no solutions, z is a minimal solution.

soIRc(rc) ~ S : Let z E soIRc(rc), but z 'I. S, Le. z :f:. tnb, z is of minimal length with this
property. By assuming z E soIRc(rc) we have that z is irreducible and no proper prefix
of z is a solution. We distinguish the following cases by looking at the first letter of z.

z = az' : but ataz' and aaz' are irreducible, hence z cannot be a solution.

9

Lemma 13 R and Rc are equivalent.
proof: Since R is a subset of Ra it suffices to show for all a: e 801R„(fc) that abbz a}! bbz.
R and RKB are equivalent, hence we can use RKB to show this. By Lemma 11 we have
z = b“a,n ? 0. But now abbb"a an,“ bbb”a‚ which completes the proof. D

In [KH89] Kirchner and Hermann presented a term rewriting system which can be con-
verted into the semi-Thue system R’ = { fg] —-> fh} . We use the reversed system R =
{ fg f —> hf} as an example. Completing R gives the infinite canonical system RKB =
{ fgh“ f —-» h“1 f | n Z 0}. Again the monoid M}; can be presented by a finite canonical
conditional semi-Thus system, the proof is left to the reader.

Lemma 14 Let R = {fgf —> h f} , then Rc = {fgf —-> h f ; fg = h :: fgh —+‚hh} is afinite
canonical right conditional semi- Thue system equivalent to R.

5 .2 A monoid without a finite canonical presentation

Squier [Squ87, Squ88] defined a family of monoids Sk, k 2 1, which cannot be presented by
finite unconditional semi-Thue systems. We show that each of these monoids can be presented
by a finite canonical right conditional system. We will study the monoid 31 in detail, the
results can be easily generalized to Sk, k > 1.

Let 21 = {a,b,t,z,y},Ri = {so —+ atz;xt —+ tz";a:b —> bz;zy —-> A} and R1 = R’l U
{at"b _» Xln ? 0}. S; is the monoid presented by (21,R1), it is finitely presented by the
system Ri’ : R'l U {ab —-+ A}, [Squ87]. Using a syllable or collected ordering as defined in
[Sim87], based on the precedence a > t > b > a: > y we can show that R1 is noetherian.
Furthermore R1 is confluent, hence R1 is canonical. Therefore we are able to compute unique
normal forms modulo R1, hence the word problem of 5, is decidable. Though we have an
infinite semi-Thue system to solve the word problem of SI, there is no finite system with this
property.

Lemma 15 [Squ88]. 5; has no finite canonical unconditional presentation.

To show that SI can be presented by a finite canonical conditional system, we need a canonical
unconditional system E equivalent to R1. It is similar to R1, except that the rules {at"b —+ A
In 2 0} are replaced by a set of rules {at"+1b —-> at"b|n Z 0} U {ab _» A}. The rules of the
conditional system will resemble the rules in R1. Especially the rules at’H'lb —> at“b will be
replaced by a conditional rule.

Theorem 3 The right conditional system R". = R'1 U {ab —-> A; atb —+ A;at = a :: att -+ at}
is a canonical presentation of the monoid SI.

The last 3 rules will be abbreviated with rl, 1'2 and rc. Similar to lemma 11 we get solRc(rc) =
{t"b|n 2 0}. Then we can show that Rc is canonical.

Lemma 16 soc(rc) = {t"b|n 2 0}.
proof: Let S = {t”b|n 2 0}.

S Q solR¢(rc) : Let z € 5 , i.e. z = t"b. Induction on it shows that z is a solution of rc. Since
z is irreducible and the proper prefixes of z are no solutions, 2 is a minimal solution.

soc(rc) g S : Let z € .soc(rc)‚ but 2 € S , i.e. z # t"b‚ z is of minimal length with this
property. By assuming 2 € socÜ'c) we have that z is irreducible and no proper prefix
of z is a solution. We distinguish the following cases by looking at the first letter of z.
z = az' : but ataz' and aaz’ are irreducible, hence 2 cannot be a solution.

9

z = bz': Either z' is ~, then z is of the form tRb (n = 0) or z' f. ~, then a proper prefix
of z is a solution which contradicts z E soIRc(re).

z = tz' : attz' is reducible by re if atz' ! az'. z itself is irreducible and no plOper
prefix of z' is a solution of re (Assuming the contrary gives a contradiction to the
property, that no proper prefix of z is a solution). Hence z' E soIRc(re). Since
Iz'l < Izl and z is of minimal length with z f. tRb we get z' = tmb, contradicting
z f. tRb.

z = xz' : atxz' and axz' are irreducible, hence z cannot be a solution of re.

z = yz' : analogous. 0

Lemma 17 Rc is canonical.

pr-oof: Since the rules of Rc can be ordered with the ordering defined above, Rc is reduc

tive and therefore noetherian. To prove that Rc is confluent we have to consider the overlaps

xab, xatb and xatt. It is easy to see that the critical pairs atxb = x and atxtb = x correspond

ing to the first two overlaps are joinable. The overlap xatt gives the critical pair (p) at = a ::

. atxtt = xat. Since p and re have the same premises, SOIRc(re) = sol(p) = {tRbln ~ O}. For
all n ~ 0, atxtttRb and xattRb are joinable in atttRbx, hence Rc is confluent. 0

We have equivalence of Rc and RI, the proof is similar to that of lemma 13. Since RI
and RI are equivalent, Rc and RI are equivalent too. This finishes the proof of theorem 3.

6 Embeddability of monoids

In section 5 we used right conditional systems only and concentrated on single examples. To
achieve a general result we resume to the use of left-right conditional semi-Thue systems.

We are able to strengthen the result of Bauer [BauB1] stated in lemma 3. There is a finite
canonical conditional presentation of the embedding monoid.

Theorem 4 Let M be a monoid with decidable word problem which is finitely generated by
(I;, S). Then M can be embedded in a monoid M' which is finitely presented by a canonical
left-right conditional semi-Thue system C over an alphabet .6..

Throughout the rest of this section we give the proof of the theorem. The basic idea follows
the proof of Bauer. We choose an unique representative ID of each equivalence class [w]s,
w E I;* and we define a function <p : I; -+ .6.* as <p(ai) = (ai),ai E I;. <p can be extended
to a function <p* : I;* -+ .6.* by <p*(>.) = >. and <p*(aiw) = <pe ai)cp*(w). This induces an
homomorphism rp : M -+ M',rp([w]s) = [<p*(w)]e. For w = ail' .. ain the system C is
intended to do the reduction

C has to perform two tasks. First, given a word w within delimiting parentheses, called a
configuration, compute the representative ID of w: (ID). Second, given two configurations
(WI)(W2) which are concatenated as words, concatenate them into one configuration (WIW2).
The main problem is to prevent the rules to apply on words other than (w) resp. (Wl)(W2).
Notice that we must not reduce (w) if w = ID, otherwise we would have an infinite reduction.
Then we can show that C is canonical and we get <p*(u) !e cp*(v) if and only if u +-+8 v.
Hence M is embedded in M'.

10

z = bz’ : Either z’ is A, then 2 is of the form t"b (n = O) or z’ # Ä, then a proper prefix
of z is a solution which contradicts z € 801Re(fc)-

z = tz’ : attz’ is reducible by rc if atz’ 1 az’. z itself is irreducible and no proper
prefix of z‘ is a. solution of r., (Assuming the contrary gives a contradiction to the
property, that no proper prefix of z is a solution). Hence z' € 3013413). Since
|z ' | < | z | and z is of minimal length with z # t"b we get z' = tmb, contradicting
z # t"b.

z = zz' : atzz’ and azz’ are irreducible, hence 2 cannot be a solution of rc.
z = yz’ : analogous. CI

Lemma 17 RC is canonical.
proof: Since the rules of RC can be ordered with the ordering defined above, Re is reduc-
tive and therefore noetherian. To prove that RC is confluent we have to consider the overlaps
zab, zatb and matt. It is easy to see that the critical pairs atxb = z and atztb = z correspond-
ing to the first two overlaps are joinable. The overlap zatt gives the critical pair (p) at = a ::

. atztt = mat. Since p and 7'c have the same premises, soc(rc) = sol(p) = {t"b|n 2 0}. For
all n Z 0 , atxttt"b and xattnb are joinable in atttnbx, hence R.“- is confluent. Cl

We have equivalence of Rc and R1 , the proof is similar to that of lemma 13. Since El,
and R1 are equivalent, Rc and R1 are equivalent too. This finishes the proof of theorem 3.

6 Embeddability of monoids

In section 5 we used right conditional systems only and concentrated on single examples. To
achieve a general result we resume to the use of left-right conditional semi-Thus systems.

We are able to strengthen the result of Bauer [Bau81] stated in lemma 3. There is a finite
" canonical conditional presentation of the embedding monoid.

Theorem 4 Let M be a monoid with decidable word problem which is finitely generated by
(2 ,3) Then M can be embedded in a monoid M ' which is finitely presented by a canonical
left-right conditional semi— Thue system C over an alphabet A .

Throughout the rest of this section we give the proof of the theorem. The basic idea follows
the proof of Bauer. We choose an unique representative u“; of each equivalence class [w]s‚
w E E" and we define a function cp : 2 —-+ A“ as cp(a,-) : (a.-)‚a; € E. (‚0 can be extended
to a function cp“ : E“ —+ A" by ¢p*(A) = A and <p“(a.-w) = ¢(a,-)<p*(w). This induces an
homomorphism cp : M —+ M’, ¢([w]s) = [<p'(w)]c. For w = «z.-„ ...a,-„ the system C is
intended to do the reduction

so'n»): (“i1)---(ai„)—+*C { 5:”) g; I; i i
C has to perform two tasks. First, given a word w within delimiting parentheses, called a
configuration, compute the representative u‘) of w: (a) . Second, given two configurations
(w1)(w2) which are concatenated as words, concatenate them into one configuration (11111112).
The main problem is to prevent the rules to apply on words other than (11)) resp. (w1)(w2).
Notice that we must not reduce (w) if 10 = Ill, otherwise we would have an infinite reduction.
Then we can show that C is canonical and we get <p“'(u) l o <p“(v) if and only if u H‘S' v.
Hence M is embedded in M’.

10

6.1 Construction of the system C

The choice of the representatives of the equivalence c1a.sses modulo S is the most obvious
one. We define a length-lexicographical ordering on ~* and choose the smallest element of an
equiva.lence ela.ss [w]s a.s its representa,tive w. This ordering is well-founded and total, hence
the representative is unique. We also speak of to a.s a representative of the words in [w]s. To
compute the representative of a word we define a function f : E* -+ E'" by

few) = Jl (z +-+5 w)
%~tu

Since the word problem of M is decidable, the function f is computable. Hence there is a
deterministic Turing machine Mf which computes f. According to Davis [Dav56] this ma
chine can be constructed such that it halts when started from an arbitrary configuration. We
simulate MJ by an unconditional semi-Thue system using the method described in [DW83].
This system is noetherian a.s MJ halts when started from an arbitrary configuration and it
is locally confluent since we use two different copies of the input alphabet ~ to the left and
to the right of the letters denoting the state symbols of the Turing machine. Hence there are
no overlaps and no critical pairs.

Before starting the simulation some preprocessing is done using a system R}. Its main
purpose is to prepare a configuration (w), such that M J can be simulated. It uses two copies
E c and ~~ of the alphabet E, [,] a.s copies of (,) and state symbols ql, q2. First it scans to
the right and copies all letters ai E E to Ci E Ec until it reaches a letter not in E. If this is
1it turns to the left and copies all letters in ~c to E~ until it reaches a letter not in Ec • If
this is [the state changes to qo, the starting state ofthe simulation of MJ • This simulation is
encoded in the system RJ. It uses letters qo, ql, . .. , qJ, where qJ is the final state. Changing
to state qf is the la.st action the Turing machine Mf performs. In addition to E e andE~, R}
uses two blank symbols bc, b~. We have
R}: ql ai _ ciql ql) _ q21

ciq2 _ q2c~ [q2 - [qo
where ai E E, Ci EEc, ci E ~~.

J!.} : qicj -+ qkc~
qicjck -+ Cjqlck qicjl -+ cjqlb~l

, " [' [b"Cjqick -+ qlCjCk qick -+ ql eCk
where qi, ql E {qo, q}, . .. , qf}, Cj E Ec U {be}, and cj, ck' c~ E E~ U {b~}.

Started from a correct configuration, i.e. [qow~), w~ E E~*, R} computes the configuration
[b~qfw~b~*]. This computation is continued by a system R} to remove the blanks a.nd to copy
the letters back to the input alphabet, we get (w).
R}: qf _ q3

q3c~ _ ciq3 q3b~ -+ q4 q3] -+ q5)
q4b~ _ q4 q4] -+ q5)
ciq5 _
bcq6 _

q5 ai
q6

beq5 _
[q6 _

q6
(

[q5 _ (

where ai E E, Ci EEc, ci E E~.

Let RJ be R} U R} U R} and Q be the set of states used in RJ. Since R}, R} and R1 are
noetherian and the left-hand sides of each system do not overlap with the right-hand sides of
the other systems, RJ itself is noetherian, see e.g. [Der81]. Furthermore, RJ ha.s no critical
pairs, hence RJ is locally confluent and thereby confluent and canonical.

Let 6 be an alphabet which contains all the letters used in the rules of RI' RI computes
f in the following sense:

11

6 .1 Construction of the system C

The choice of the representatives of the equivalence classes modulo 5 is the most obvious
one. We define a length-lexicographical ordering an E" and choose the smallest element of an
equivalence class [w]s as its representative if). This ordering is well-founded and total, hence
the representative is unique. We also speak of u": as a representative of the words in [w]s. To
compute the representative of a word we define a function f : 2" -» E“ by

M)) = ‚au «+; w)

Since the word problem of M is decidable, the function f is computable. Hence there is a
deterministic Turing machine M f which computes f . According to Davis [Dav56] this ma.
chine can be constructed such that it halts when started from an arbitrary configuration. We
simulate M f by an unconditional semi-Thue system using the method described in [DW83].
This system is noetherian as M f halts when started from an arbitrary configuration and it
is locally confluent since we use two different copies of the input alphabet 2 to the left and
to the right of the letters denoting the state symbols of the Turing machine. Hence there are
no overlaps and no critical pairs.

Before starting the simulation some preprocessing is done using a system R}. Its main
purpose is to prepare a configuration (to), such that M ! can be simulated. It uses two copies
Sc and 2; of the alphabet E, [,] as copies of (,) and state symbols q], q“. First it scans to
the right and copies all letters a; € 2 to c; 6 EC until it reaches a letter not in 2 . If this is
] it turns to the left and copies all letters in 26 to E’c until it reaches a letter not in EC. If
this is [the state changes to go, the starting state of the simulation of M f . This simulation is
encoded in the system R} . It uses letters qo,q1, . . . , q j , where q; is the final state. Changing
to state qf is the last action the Turing machine M f performs. In addition to EC and'EQ, R}
uses two blank symbols bc,b’c. We have
R} : q‘aa -* €q 91) * (121

cs'q’ —+ «1261- [q2 -> [(10
where a; E 2,c,~ e 26 , c:- e E'c.
R} : (].-c; --> cf

(166962 “* 0541102 mcg] -* qzb'c]
wie; ** (116367; [wie " [4115262

where qg,q1 6 {110,111, . . . , q f } , c j 6 Ze U {be}, and c;,c;c,cf € E'c U {bg}.
Started from a correct configuration, i.e. [qowé),w2 6 2f , R} computes the configuration

[bgqmgbg‘] . This computation is continued by a system R:} to remove the blanks and to copy
the letters back to the input alphabet, we get (15).
R3} = 9; —* 413

(13c:- —> ca!“ qab’c -> 9‘ 93] -> '15)
«1“b'c -> «1‘ a“! -> 95)
ciqz5 —> qsaa bcq" —* <16 [a5 —> (
6c —> q6 [96 -> (

where a; € 2,0,- E Sac: € 2;.
Let Rf be R} U R} U R:} and Q be the set of states used in Rf. Since R}, R} and R3. are

noetherian and the left-hand sides of each system do not overlap with the right-hand sides of
the other systems, R j itself is noetherian, see e.g. [Dersl]. Furthermore, Rf. has no critical
pairs, hence R f is locally confluent and thereby confluent and canonical.

Let A be an alphabet which contains all the letters used in the rules of R f . R, computes
f in the following sense:

11

Lemma 18 Let ZI[q1aiz2 E ~*.

Then Z = zl[q1aiz2 -RI ZI(Z3 if and only if Z2 =W)Z4 with wE E*,

giving us zl[q1aiw)z4 -RI Zl(ii'iW)Z...

proof:

if: Zl [qlaiW)Z4 - RI Zl [qoC~W~]Z4
I

"b'*] Z4-R3* Zl [b*eqlciwe e
I

- ~ Zl (ii'iW)Z4
I

only if: All rules in RI contain exactly one letter in QU {(} in their left-hand side as well as
in their right-hand side. Hence a rule can be applied only where such a letter is located
and it does not change the number of these letters. To the left of these symbols all
rules contain only letters in Ee U {bc, [}, to the right letters in E U E~ U {b~,], n. Since
these sets have an empty intersection, each reduction of Z uses a subword which does
not overlap with the part of Z used by another reduction. Therefore we may assume
without loss of generality that q1ai is the only position in Z where a rule can be applied.
Now assume that Z2 rt E*)~*: Z2 E E* or Z2 E E*6~* where 6 rt EU{)} , i.e. Z2 = w6z'.
In the first case Zl [q1aiz2 reduces to Zl [Ciweql which is irreducible. In the second case,
zl[q1aiw6z' -RI ZI[Ci W eqI6z' which is irreducible too. Each word in these reductions

starts with Zl[, hence we cannot reduce zl[q1aiz2 to ZI(Z3, a contradiction.

RI will be started by a conditional rule in C. The premise of this rule tests whether there
is actually a word w with wE E* and w f; w. To test the second property we use a function
p : E* - ~* defined by

w if w f; w
p(w) = { $w if w =w

Thereby $ is a new letter. Since we can compute w using the function f, p is computable

too. Similar to the construction above there is a Turing machine Mp and an unconditional

semi-Thue system Rp = R~ U R~ U R~. It uses two new copies Ed U {$d}, EdU {$d} of E U {$}

and copies {,} of (,). R~ works completely analogous to R}, R~ is the simulation of Mp using

state symbols Po, Pt, ... , Pi and blank symbols bd and bd. R~ finishes the simulation similar

to R}. It gives normalforms lw) resp. I$w) according to the test w = w.

R~: p1ai _ dipl pI) _ p2}

dip2 _ p2d~ {p2 - {Po
where ai E E, di E Ed, d~ E Ed.
R2 . p·d'. - Pkd' p • , J I

Pidjdic - djPldic Pidj} - djPlbd}
djPidk - P1djdic {Pidic - {Plbddk

where Pi, PI E {Po,PI,'. ·,Pi},dj E Ed U {bd,$d}, and dj,dk,d, E EdU {bd,$d}·
R~ : Pi _ p3

p3di _ dip3 p3bd _ p4 p3} _ pS)

p4bd _ p4 p4} _ pS)

dipS _ pSai bdps _ pG {ps _ I

bdp6 _ pG {p6 _ I

where ai E E U {$}, di E Ed U {Id}, di E EdU {Id}'
We now fix the alphabet ~ to be the set of all letters used in Ri and Rp. Notice that
lemma 18 remains vaJ.id using this extended alphabet. Analogously we can show

12

0

Lemma 18 Let zl[qla.-zz € A‘ .
Then 2—— 21 [q 0,13 _»; z1(23 if and only if z; = w)z4 with 10 € 2‘ ,
giving us 21 [q a.w)z4 «ra, zn(a.-w)z4

proof.
if: qI a;w)z4 ...;II 2 [qoc4w;]z4

!
—> R z1[bc [#1032124

“;? zl(a‚-w)z4
only if: All rules in R] contain exactly one letter in Q U { (} in their left-hand side as well as

in their right—t side. HenCe a rule can be applied only where such a letter is located
and it does not change the number of these letters. To the left of these symbols all
rules contain only letters in E.; U {bu [}, to the right letters in)3 U 2; U {b;,],)} . Since
these sets have an empty intersection, each reduction of z uses a subword which does
not overlap with the part of z used by another reduction. Therefore we may assume
without loss of generality that qla; is the only position in z where a rule can be applied.
Now assume that 2; € E")A*: 22 e 2“ or z; € E‘öA' where 6 € EU{)} , i.e. z; : wöz’.
In the first case zl[q1a‚—z2 reduces to 21 [c,-w.,ql which'is irreducible. In the second case,
zl[q1a.-w6z’ “it, zl[c,~wcq16z’ which is irreducible too. Each word in these reductions

I
an

starts with z;[, hence we cannot reduce zl[q1a‚-zg to z1(23, a contradiction. D

R ! will be started by a conditional rule in C . The premise of this rule tests whether there
is actually a word w with 10 E E“ and 11; 75 u“). To test the second property we use a function
p : E" _» A" defined by

_ w ww
“w)—{ 310 ifwzzb

Thereby $ is a new letter. Since we can compute 111 using the function f , p is computable
too. Similar to the construction above there is a Turing machine MI, and an unconditional
semi-Thue system Rp =12:J U R; U R3. It uses two new copies 24 U {SZ}, 2’ U {$' } of 2 U {$}
and copies { , } of (,).pRl works completely analogous to R1 , R2 is the simulation of M„ using
state symbols po,p1,.. . , p; and blank symbols b4 and b'. R3 finishes the simulation similar
to R3. It gives normalforms lw) resp. [$10) according to"the test 10:10 .
Rl i f lpa ifidip l M)—+p

dmg -+ p24!- {102 —> {po
where a.- 6 2,01,- € 24,112 € 23.
R; : pad; --> pkd;

Wig-d}. —* jPldi, Wig} -> djpzbfi}

(i,-md; —> pzdS-di. {Pad}. -> {pzbfidi
Where Php! € {poaplv - ' 1p f } ’d j € 211 U {bdy sd} , and d} ! ind; € 2:1 U {bib :1}'
R: I pf —+ p3

p342 -> «1.113 p362 -* p“ 103} -+ Ps)
11% —> p‘ p‘} —> p5)
dips "> P565 5.1115 _? P6 {P5 “* |
b.1116 —> p6 {p6 —+ |

where a.- 6 EU {$}, d,- E Eau {$4},d’- € 2’ U {$ }
We now fix the alphabet A to be the set of all letters used in R; and R. Notice that
lemma 18 remains valid using this extended alphabet. Analogously we can show

12

As announced, RI is started by a conditional rule. To ensure that the configuration has at
least one letter, the conclusion of the rule has the form (ai - [qtai. There is one such rule
for each letter ai E r:. We use {ptai = lai as premise, thereby achieving that Rp must be
used to evaluate it. That is, we have the conditional rules:

{pIai = lai :: (ai - [qIai (1)

for all ai E r:. We define the conditional semi-Thue system R as R = (1) U RI U Rp. For
W E r:* we are able to reduce (w) -n (to) without getting stuck in infinite loops.

Lemma 20 Let x_y be a solution of {pIai = lai :: (ai - [q1ai,
then x E fi.*,y = W)YI E r:-)fi.- and aiW =F iiiW.
proof: By definition we have X{pI aiy !R xlaiY' The rules in R do not overlap and do
not change the number of the state symbols and 'opening brackets' (, {, [and /. Hence the
reductions in x[plaiY do not interfere with each other, they use disjoint parts of x[plaiY' We
may assume without loss of generality, that there is exactly one rule which can be used to
reduce this word.

Since there is no rule with I in its left-hand side, xlaiY is irreducible and we have
x{pIaiy -R xlaiY. The state symbol pI can only be changed to pl, ... ,p6,Po"'.,Pf or
I, which again are used in Rp only. Therefore x{p1aiY -Rp x!aiY, lemma 19 gives Y = W)Yb
wE .E* and aiw =F iiiW, finishing the proof. 0

As for Rf we have that Rf U Rp is noetherian. The left-hand sides of (1) do not overlap
with the right-hand sides of the rules in RIURp, hence R is noetherian too, see again [Der81].
The rules to concatenate two configurations resemble the rules used in the examples before,
see section 5. Together with a rule to delete empty configurations they form the system T:

- ;\ (2)
(ai)(aj)

0 - (aiaj) (3)
(ai)(ak = (aiak .. (ai)(ajak (aiajak (4)
ai)(ak) = aiak) aiaj)(ak) -- aiajak) (5)

..ai)(a/ = aial .. aiaj)(aka/ - aiajaka/ (6)

where ai, ... ,a/ Er:. Using (ai)(aj) - (aiaj) we get (aiak)(aj) -T (aiakaj),(ai)(akaj)-T
(aiakaj) and (aiak)(a/aj) -T (aiaka/aj). This can be used to get (ai)(atakaj) -T (aia/akaj)
etc. and finally we get (Wt)(W2) -T (WtW2), for all W},W2 E r:*.

T does not introduce new letters, hence we do not need to extend the alphabet fi.. We
use C = RuT to present the monoid M' of theorem 4 by (fi., C). In the next section we
show that the properties of Rand T do not change essentially when using C.

6.2 Properties of C

A central part in concluding properties of C is to determine the sets of solutions of the
conditional rules. Especially for the rules (4) - (6) this is very difficult. Therefore we proceed
indirectly. We examine a restricted relation -...c, then we compare ~c and -c, concluding
properties of -0.

13

Lemma 19 Let z1{pla‚-zg € A‘ .
Then zl{p1a‚—zg ”it, zl|z3 if and only if z; = w)z4 with w € E“, giving us

ala-w).“ if agw # ff.—Tu
zll$a;w)24 if «z,-w = 6.717;

21 {p1a;w)z4 äh, {

As announced, R I is started by a conditional rule. To ensure that the configuration has at
least one letter, the conclusion of the rule has the form (a.- -> [q1a,u There is one such rule
for each letter a,- € 2 . We use {plug = la,- as premise, thereby achieving that R.„ must be
used to evaluate it. That is, we have the conditional rules:

{P‘ai = la.- == (a,- —* [41m (1)
for all a.- € 2 . We define the conditional semi-Thue system R as R = (1)U R] U R,. For
w € 8' we are able to reduce (w) '"?! (zb) without getting stuck in infinite loops.

Lemma 20 Let a:-y be a solution of {plug = la,- :: (a; —-> [q‘a‚',
then :|: € A"‚y = w)y1 € E‘)A' and (z.—w # (T.-Tu.
proof: By definition we have a:{p‘a,~y 13 a:|a‚-y. The rules in R do not overlap and do
not change the number of the state symbols and ’opening brackets’ (, { , [and I. Hence the
reductions in :c:[p1 agy do not interfere with each other, they use disjoint parts of z[p1a.-y. We
may assume without loss of generality, that there is exactly one rule which can be used to
reduce this word.

Since there is no rule with | in its left-hand side, zlagy is irreducible and we have
x{p‘a.~y fl}; :tlagy. The state symbol p1 can only be changed to p1,. ..,p6‚po,...,pf or
| , which again are used in Rp only. Therefore a:{pla,~y a??? z|a,~y, lemma 19 gives 3/ = w)y1,
m € 2“ and aim 76 (T,-Tu, finishing the proof. El

As for R ! we have that R f U R„ is noetherian. The left-hand sides of (1) do not overlap
with the right-hand sides of the rules in Rf URP, hence R is noetherian too, see again [Der81].
The rules to concatenate tw0 configurations resemble the rules used in the examples before,
see section 5. Together with a rule to delete empty configurations they form the system T:

() “> A (2)
(«)(Gj) —> (a,-ai) (3)

(a.-)(a;= = (a.-ak :: (a,-)(aja;c \—+ (a,-ajak (4)
(z.-)(ak) = al.—ak) :: aiaj)(ak) —-> am,-ak) (5)

ag)(a(= am; :: agaj)(aka; —+ Giajaka] (6)

where a,-‚ . . „a; € 8 . Using (a,-)(aj) -+ (a.—ai) we get (aiaaj) "T (a.-akaj),(a‚-)(aka‚-) —>T
(diakaj) and (agak)(a;aj) "'T (a,-ahalaj). This can be used to get (a.-)(alakaj) **T (agagakaj)
etc. and finally we get (w1)(wg) **T (101102), for all 101, wa € 2".

T does not introduce new letters, hence we do not need to extend the alphabet A . We
use C = R U T to present the monoid M’ of theorem 4 by (A ,C) . In the next section we
show that the properties of R and T do not change essentially when using C .

6 .2 Properties of C

A central part in concluding properties of C is to determine the sets of solutions of the
conditional rules. Especially for the rules (4) — (6) this is very difficult. Therefore we proceed
indirectly. We examine a. restrictedrelation —c , then we compare ——c and —'c‚ concluding
properties of —>c.

13

Up to now the premises of a rule had to be joinable within its context if the rule should be
applied. To restrict the application we demand that one part of the premise can be reduced
to the other, each within the current context. That is, let (r) u = v:: I - r be a conditional
rule in C, then

xly ~r xry if and only if xuy ~o xvy

Notice that the premises are no longer symmetrical, the left part should reduce to the right
one. Furthermore:>, this is closer to the intended use of the rules. In fact we have for rule (1)
x{p1aiY -0 xlaiY, see the proof of lemma 20. For the rules (4) - (6) we can show that we
actua.1ly need one reduction step only to evaluate the premises. Therefore we have xly ~ xry
if and only if xuy ~ xvy. Unless stated otherwise, we use the relation ~ in the sequel.

Though we changed the system as well as the reduction relation considerably, the solutions
of the rules (1) do not change:

Lemma 21 solc({p1ai = lai :: (ai - [q1ai) = {.Lw) IW E E* and aiW:f; aiW}.
proof: The rules in T each decrease the number of opening brackets, but both parts of the
premise of (1) contain the same number, counting I as opening brackets. Thus only rules
in R can be used to reduce x{p1aiY to xlaiY. As in the proof of Lemma 20 we conclude
x{p1aiY ~'Rp xlaiY' Since Rp is unconditional we have ~Rp =-Rp and again Lemma 19
finishes the proof. 0

We now determine the solutions of the rules (4) - (6). As indicated above a.1l .Lw) with
wE E* are solutions of (4), the solutions of (5) and (6) have a similar form. But it is difficult
to show that there are no other minimal solution's of (4) resp. (5), (6).

The main part of the proof is to show that we need exactly one reduction to evaluate the
premise, if we want to apply one of the rules (4) - (6).

Lemma 22 uai)(ajV -"0 UaiajV if and only ifuai)(ajv ~h UaiajV

proof: The 'if' direction is trivial, thus let us have a look at the 'only if' direction. We have

Wl = uai)(ajV --"'& UaiajV = Wz. Since Wl :f; Wz n is greater than 0, n = 1 gives the result,

hence it remains to show that n > 1 is not possible.

To prove this is a longish task, hence we only give the main idea here, the complete proof
can be found in the appeIuiix. Wz has one opening parenthesis less than Wl, hence exactly
one of the the rules of T has to be used in this reduction, Le. we have W3, W4 E ~* such
that Wl --"''R W3 ~t W4 ~'R Wz. By exhaustive case analysis we can show that we must have
Wl =W3 and W4 =wz, implying Wl ~h Wz. 0

In the reduction Wl =uai)(ajV ~h UaiajV one pair of parentheses is removed, hence we
use one ofthe rules (3) - (6) in this reduction step. Furthermore, ai)(aj is the occurrence in
Wl where the reduction applies. This can be used to show

Lemma 23 Let Wt = uai)(ajV ~c UaiajV =W2 then u E ~*(E*,v E E*)~*.

proof: by induction on the length I of Wt.

Since there is no rule in (3) - (6) with a left-hand side shorter than 6 letters, I must be at

least 6. If Wl = (ai)(aj) we use (3) to get (aiaj), if Wt :f; (ai)(aj), Wl is irreducible by (3)-(6)

since (3) cannot be applied because of its left-hand side and for (4) - (6) the left part of the

premise cannot be reduced to the right part.

Now let us assume that the lemma is true for a.1l W with 6 ~ Iwl < I. There are 4 cases
according to the rule used in the reduction of Wt ~ Wz.

(3) Le. uai)(ajV =u'(ai)(aj)v' and we are ready.

14

Up to now the premises of a rule had to be joinable within its context if the rule should be
applied. To restrict the application we demand that one part of the premise can be reduced
to the other, each within the current context. That is, let (r) u = v :: I -> r be a conditional
rule in C , then

zly —, zry if and only if muy —"C zvy

Notice that the premises are no longer symmetrical, the left part should reduce to the right
one. Furthermore, this is closer to the intended use of the rules. In fact we have for rule (1)
z{p‘a‚-y #3. zlagy, see the proof of lemma 20. For the rules (4) - (6) we can show that we
actually need one reduction step only to evaluate the premises. Therefore we have zly —~ zry
if and only if muy —-— zvy. Unless stated otherwise, we use the relation —- in the sequel.

Though we changed the system as well as the reduction relation considerably, the solutions
of the rules (1) do not change:

Lemma 21 solc({p1a,- = |a,- :: (a,- —> [(1141,-) : {A.w) | 10 € 2" and am; # (T.-Tv}.
proof: The rules in T each decrease the number of opening brackets, but both parts of the
premise of (1) contain the same number, counting | as opening brackets. Thus only rules
in R can be used to reduce x{p1a.-y to zlaiy. As in the proof of Lemma 20 we conclude
:::{plagy “ä, elm-y. Since R, i s unconditional we have “R, =-+R, and again Lemma 19
finishes the proof. Ü

We now determine the solutions of the rules (4) —- (6). As indicated above all LW) with
w e E" are solutions of (4), the solutions of (5) and (6) have a similar form. But it is difficult
to show that there are no other minimal solutions of (4) resp. (5), (6).

The main part of the proof is to show that we need exactly one reduction to evaluate the
premise, if we want to apply one of the rules (4) - (6).

Lemma 22 ua;)(a,-v ""E‘ ua.-ai» if and only if ua.-)(ajv dä. ua,-ajv
proof: The ’if ’ direction is trivial, thus let us have a look at the ’only if’ direction. We have
wl : ua;)(a‚-v _‘2‘ uagajv = m;. Since w] # wg n is greater than 0, n = 1 gives the result,
hence it remains to show that n > 1 is not possible.

To prove this is a longish task, hence we only give the main idea here, the complete proof
can be found in the appendix. w; has one opening parenthesis less than w„ hence exactly
one of the the rules of T has to be used in this reduction, i.e. we have 103,104 € A" such
that wl "**)! w3 A}. w4 a}; wg. By exhaustive case analysis we can show that we must have
101 = 103 and 104 = 102, implying an d}; 1112. D

In the reduction w; = ua,-)(ajv __}; uagaJ-v one pair of parentheses is removed, hence we
use one of the rules (3) - (6) in this reduction step. Furthermore, (z.-)(aj is the occurrence in
ml where the reduction applies. This can be used to show

Lemma 23 Let w; = ua.-)(ajv do ua.—div : 10; then u € A"(E*‚v € 2*)A*.
proof: by induction on the length ! of wl.
Since there is no rule in (3) - (6) with a. left-hand side shorter than 6 letters, I must be at
least 6. If to; = (a;)(a,-) we use (3) to get (agaj), if w1 # (a,)(a,~), 101 is irreducible by (3)—(6)
since (3) cannot be applied because of its left-hand side and for (4) - (6) the left part of the
premise cannot be reduced to the right part.

Now let us assume that the lemma is true for all w with 6 S M < 1 . There are 4 cases
according to the rule used in the reduction of 101 _- to,.

(3) i.e. ua,-)(ajv = u’(a,-)(a_,-)v’ and we are ready.

14

0

(4) Le. uai)(ajV = u'(ai)(ajakv'. Rule (4) can be applied if u'(ai)(akv' -"0 u'(aiakv'. By
lemma 22 we get u'(ai)(akv' -...b u'(aiakv' and by induction hypothesis v' E E*)a* and
thereby v E E*)a*. Since u = u'(E a*(E* we are finished.

(5) Le. uai)(ajV = u'akai)(aj)v', similar to the case of rule (4).
(6) i.e.	 uai)(ajV = u'akai)(aja/v'. We may apply rule (6) if u'ak)(a,v' -"0 uaka/v'. By

lemma 22 and by induction hypothesis we get v' E E*)a*,u' E a*(E*. Hence v E
E*)a*, u E a*(E*.

Evaluation of the premise does not use the a *-parts in the lemma above and we have
(WI ai)(ajW2) -...c (WI aiajW2) for a.ll W}, W2 E E*. But we may not omit one or both of
the outside parentheses. Since (WI and W2) are irreducible, we thus have determined the
minimal solutions of the rules (4) - (6):

Lemma 24
solc(4) = {A_wr)lwr E E*}
solc(5) = {(w/_Alwl E E*}
solc(6) = {(w/_wr)lw/,wr E E*}.

As the next step we show that -...c is noetherian and decidable. The usual way to prove this
is to show first that -...c is reductive and then to apply lemma 7. But we have not been able
to find an appropriate ordering. Thus we have to show explicitly that -"C is decidable and
noetherian.

Lemma 25 -...c is decidable and noetherian.

proof: There could be two sources of infinite computations using ->-c. It may be non

noetherian as an ordinary unconditional semi-Thue system. Second, in general it is undecid

able whether a conditional rule may be applied, see lemma 6. When evaluating a premise

we might try to apply a conditional rule, the premise of which is evaluated by use of just

another conditional rule and so on.

Now let us assume that there is an infinite computation. There is no rule which increases
the number of opening brackets (, [, neither by replacing the left-hand side by its right-hand
side, nor by evaluating its premise. Hence there must be a word W with a minimal number
of ~,hese brackets which starts an infinite computation.

At first we show that W cannot be reduced ad infinitum. None of the rules in T can be
used to reduce w, since they decrease the number of brackets. Furthermore this number is
sma.ller in the premise of rule (1) than in its left-hand side. Therefore it is decidable whether
we may apply rule (1). It can be applied if and only if we used rules in Rp to evaluate its
premise. Hence there is an infinite reduction using rules in R only, which is a contradiction.

If there is an infinite reduction it results from an infinite evaluation of premises. This
does not concern the application of rule (1), see above. Since W contains a finite number of
opening brackets, at least one of them must be involved infinitely often in this computation.
Let us have a closer look at the left-most of these brackets. We have W = xai)(ajY. x and Y
are split into Xl, X2 resp. YI, Y2 such that X2, YI are of maximal length and in E*.

Using the rules in C there is no possibility to increase ajYI, neither by reduction nor by
evaluation of premises. Regarding X2 the situation is worse, rules in R f and Rp may produce
new letters in E as suffix of Xl' But this cannot happen infinitely often, hence we can split X
into x~ x~ such that x~ is the maximal suffix which is reducible to a word in E*. Again there
is no possibility to increase the length of x~ai.

But each evaluation of a premise of (4) - (6) when reducing xai)(ajY removes one or both
of ai, aj, thus decreasing the length of x~ai or ajYI. We get a new x~ or YI, but this cannot

15

(4) i.e. ua;)(ajv = u’(a.-)(aja;.v’. Rule (4) can be applied if u’(a,~)(akv’ "?) u’(u‚-a„v’. By
lemma 22 we get u’(a.-)(akv’ —-—b u’(a,-akv’ and by induction hypothesis v' € 2 ')A' and
thereby v e E ')A' . Since u = u’(€ A"()3' we are finished.

(5) i.e. ua;)(a_,-v : u’aka;)(aj)v'‚ similar to the case of rule (4).
(6) i.e. ua.-)(ajv .: u’akagxajaw'. We may apply rule (6) if u’ak)(aw’ “& uakaw'. By

lemma. 22 and by induction hypothesis we get v' € E')A*‚u' € A ' (E“ . Hence 1; €
E')A'‚u € A'(E'. D

Evaluation of the premise does not use the A‘-parts in the lemma above and we have
(w,a.-)(a,-w2) —-c (wlagan) for all 101,102 € E‘. But we may not omit one or both of
the outside parentheses. Since (w; and 102) are irreducible, we thus have determined the
minimal solutions of the rules (4) - (6):

Lemma 24
3010(4): {A.w,)|w,. € E'}
solc(5) = {(w1_z\|w‚ E E'}
solc(6) = {(wl_w‚)|w„w‚ 6 E'}.

As the next step we show that ——c is noetherian and decidable. The usual way to prove this
is to show first that —-—0 is reductive and then to apply lemma 7. But we have not been able
to find an appropriate ordering. Thus we have to show explicitly that —-c is decidable and
noetherian.

Lemma 25 __.C is decidable and noetherian.
proof: There could be two sources of infinite computations using ——c. It may be non-
noetherian as an ordinary unconditional semi—Thue system. Second, in general i t is undecid-
able whether a conditional rule may be applied, see lemma 6. When evaluating a premise
we might try to apply a conditional rule, the premise of which i s evaluated by use of just
another conditional rule and so on.

Now let us assume that there is an infinite computation. There is no rule which increases
the number of opening brackets (, [, neither by replacing the left-hand side by its right-hand
side, nor by evaluating its premise. Hence there must be a word m with a minimal number
of these brackets which starts an infinite computation.

At first we show that w cannot be reduced ad infinitum. None of the rules in T can be
used to reduce 10, since they decrease the number of brackets. Furthermore this number is
smaller in the premise of rule (1) than in its left-hand side. Therefore it is decidable whether
we may apply rule (1). It can be applied if and only if we used rules in R1, to evaluate its
premise. Hence there is an infinite reduction using rules in R only, which is a contradiction.

If there is an infinite reduction it results from an infinite evaluation of premises. This
does not concern the application of rule (1), see above. Since w contains a finite number of
opening brackets, at least one of them must be involved infinitely often in this computation.
Let us have a closer look at the left-most of these brackets. We have 11) = ma;)(.a,-y. a: and y
are split into ml, x2 resp. 311,312 such that 22,311 are of maximal length and in E".

Using therule's in C there is no possibility to increase aJ-yl, neither by reduction nor by
evaluation of premises. Regarding 32 the situation is worse, rules in R f and B, may produce
new letters in 2 as suflix of 2:1. But this cannot happen infinitely often, hence we can split :|:
into :r'lx’z such that z’, is the maximal suffix which is reducible to a word in E". Again there
is no possibility to increase the length of z'zag.

But each evaluation of a premise of (4) — (6) when reducing ca.-)(ajy removes one or both
of (z,-‚ai, thus decreasing the length of 23a,- or ajyl . We get a new :r’2 or m, but this cannot

15

(

be repeated ad infinitum. If x~ and YI are empty, we can no longer apply a rule (4) - (6) due
to the form of the left-hand sides. Hence these parentheses cannot be involved in an infinite
computation, contradicting our assumption. 0

To show that0 is confluent and thereby canonical it suffices to show that0 is locally
confluent. We proceed as described in section 4.2. Expanding the rules (1) and (4) - (6) we
get the system Ge , which will be shown to be locally confluent. Then as a direct consequence
......0 is locally confluent too. The expanded rules are

(aiW) - [q1ai w) for ai E I;, wE I;*, aiW # iiiW (le)
(ai)(ajak w) (aiajak w) for ai,aj,ak E I;,w E I;* (4e)-(waiaj)(ak) (waiajak) for ai, aj, ak E I;, wE I;* (5e)-(Wlaiaj)(akalWr) - (WlaiajakalWr) for ai, aj, ak, al E I;, Wl, Wr E I;* (6e)

Lemma 26 The system Ce is locally confluent.
proof: There are only two kinds of overlaps:

1) We have the overlap (WI)(W2),WI,W2 E I;+. (wt} is reducible by (le), (WI)(W2) is
reducible by one of(3),(4e)-(6e). (The case (W2) reducible by (le) is analogous). The
critical pair is [qIWI)(W2) = (WIW2). Since [qIWt}(W2) -Oe (Wi)(W2) -Oe (Wi W2) -Oe
(~2) = (W1W2) and (WIW2) -Oe (W1W2) the critical pair is joinable.

2) We have the overlap (WI)(W2)(W3), WI, W2, W3 E I;+. (wt}(W2) and (W2)(W3) are reducible
by (3),(4e)-(6e). The corresponding critical pair is (WIW2)(W3) = (Wt}(W2W3) and we
have (WIW2)(W3) -Oe (WI W2W3), (wt>(W2W3) -Oe (WI W2W3). Hence this critical pair is
joinable. 0

Lemma 27
a) 0 is locally confluent.
b) 0 is canonical.

We now turn to the determination of properties of -0. It is easy to see thato~-o,

hence all solutions modulo0 of the conditional rules are solutions modulo -0 too. But
there are additional solutions, hence o~-o. Let us give a typical example: We take
Wl c E I;~,W2 E I;+, then [Wlcq1w2ai)(aj) is irreducible modulo0. But [Wlcq1w2aj) -0
(w1W2)(aj) -0 (wiWiaj) and [wlcaiaj) -0 (wiW2aj). Hence we may apply rule (5) to
reduce [Wlcq1w2ai)(aj) to [Wlcq1w2aiaj). Remark that [Wlcq1w2ai)(aj) has the same irre
ducible descendant moduloo as well as modulo -0: [Wlcq1w2ai)(aj)0 (wiWiai)(aj)0

(wiWiaiaj)o (WltD2aiaj) and [Wlcq1w2ai)(aj) -0 [Wlcq1w2aiaj) -0 (WltD2aiaj).
Using the same proof as in lemma 25 we can show

Lemma 28 -0 is decidable and noetherian

To prove confluence we show that0 and -0 are equivalent and both have the same set
of normalforms. Since0 is canonical and -0 is noetherian we can conclude that -0 is
confluent too.

-0 is decidable and noetherian, hence there is a noetherian ordering >, such that ,x > y
if x -0 y or x contains the left-hand side of a conditional rule and y one part of the
corresponding premise.. That is, let U = v :: I - T be a conditional rule, then zl lz2 >
Zl UZ2, ZIVZ2, ZITZ2. By >le:z; we denote the lexicographical extension of > on tuples of words.

Lemma 29 -0 =~o

16

be repeated ad infinitum. If :i:’2 and y1 are empty, we can no longer apply a rule (4) — (6) due
to the form of the left-hand sides. Hence these parentheses cannot be involved in an infinite
computation, contradicting our assumption. C1

To show that -—-c is confluent and thereby canonical it suffices to show that dc is locally
confluent. We proceed as described in section 4.2. Expanding the rules (1) and (4) — (6) we
get the system Ce, which will be shown to be locally confluent. Then as a direct consequence
-——c is locally confluent too. The expanded rules are

(a.-w) —+ [q1a;w) for a.- € 2,10 € 2*,agw ;é (7.17; (l e)
(a.-)(ajakw) —» (agaJ-akw) for a;,aj,ak € E,w € E" (4e)
(«mm,-)(ak) -+ (wagajak) for a;,aj,ak € 8,10 € E“ (5e)

(w,a‚-a‚-)(aka‚w‚.) —+ (wlagajakalwr) fer a;,a,-,ak,a1 € 2,101,111,- €)3" (6e)

Lemma 26 The system CC is locally confluent.
proof: There are only two kinds of overlaps:

1) We have the overlap (w1)(w2),w1,w2 6 2+ . (101) is reducible by (le) , (w1)(w2) is
reducible by one of (3), (4e) — (Ge). (The case (1.02) reducible by (le) is analogous). The
critical pair is [q1w1)(w2) = (wlwz). Since [q1w1)(w2) +2.: (171])(102) ""Ce (fiwg) ">22
(fig) = (1171312) and (101102) ~56 (101522) the critical pair is joinable.

2) We have the overlap (w1)(w2)(w3), wl, wg, w3 € 2+. (w1)(w2) and (w2)(w3) are reducible
by (3), (4e) —- (6c). The corresponding critical pair is (w1w2)(w3) = (w1)(w2w3) and we
have (w1.w2)(w3) **Ce (wlwgwg), (w1)(w2w3) “"Ce (wl'lDz’ID3). Hence this critical pair is
joinable. El

Lemma 27
a) —-c is locally confluent.
b) ._.C is canonical.

We now turn to the determination of properties of —->c. It is easy 'to see that ——Cg—>C,
hence all solutions modulo -——0 of the conditional rules are solutions modulo —>C too. But
there are additional solutions, hence “og -+0 Let us give a typical example: We take
wu € 22,102 € E+, then [wlcq1w2a.-)(aj) is irreducible modulo ——C. But [wlcqlwzafl a5

(wTEgXaj) a?) (wlTv‘zaj) and [wlcagafi é}; (wfiTzaj). Hence we may apply rule (5) to
reduce [wlcq1w2a,-)(aj) to [wlcqlwzagaj). Remark that [wlcqlwga.~)(a,-) has the same irre-
ducible descendant modulo —~c as well as modulo —>C: [101c wza;)(a‚') —-**C (wfiiTgag)(a,-) —~o
(wl’tv‘zaiaa‘) -*c (wifieaj) and [wicqlwzasxafl ->c [wlcqlwwz'afl -+"‘c (1015271;a

Using the same proof as in lemma 25 we can show

Lemma 28 —>C is decidable and noetherian

To prove confluence we show that ““C and “’0 are equivalent and both have the same set
of normalforms. Since —-—c is canonical and ""C is noetherian we can conclude that —->C is
confluent too.

-—>c is decidable and noetherian, hence there is a noetherian ordering > , such that/2: > y
if :: —>C y or z contains the left-hand side of a conditional rule and 3/ one part of the
corresponding premise. ‚That is, let u = v :: l —-> r be a conditional rule, then 21122 >
211122, 211122, 211'22. By > ,“ we denote the lexicographical extension of > on tuples of words.

a: __ _.mLemma 29 HC __ "C

16

proof: Since u -'-c v implies u -c v we only have to show +-+0 ~ ~o. The proof is by
noetherian induction on tuples of words which are equivalent modulo -c. Thereby we use
the lexicographic extension to tuples of -'-c as well-founded ordering. Itsuffices to show that
Wl -c W2 implies Wl ~o W2' For the unconditional ruleS we have -c =-'-c·

Thus let us assume we used a conditional rule u = v :: 1 - r, Le. WI = xly, W2 = xry.
If x or y are reducible by -'-c, then let x resp. y denote the normaJforms of x and y mod
-'-c· We have xly -'-0 zly, xry -'-0 xryand since -'-c ~ -c, xly -0 xly, XTy -0 ZTy. By
transitivity of -c we get xly +-+0 xry. Since (xly,xTy) <lez (xly,xry) we may apply the
induction hypothesis and get xly ~o xryand again by transitivity xly ~o xry.

Now, let x and 11 be irreducible modulo -'-c. We have xly -c xry and by definition
xuy Lc xvy. Again by definition (xuy, xvy) <lez (xly, XTy), hence xuy ~o xvy and since
-'-c is confluent xuy ~c xvy. There are 4 cases according to the rule used in the reduction
xly -c XTy.

(1) Le. 1= (a,
x and y are irreducible, therefore xlaiY is irreducible modulo -'-C too. Hence xuy -'-0
xvy and xly -'-C XTy.

(4) Le. 1= (ai)(ajak
If xuy -'-0 xvy we are finished, thus let us assume xuy -re xvy. This implies that
xvy = x(aiakY is reducible by -'-c. Since x, y are irreducible, this reduction has to
use (aiak as part of a left-hand side or when evaluating a premise. We have to use a
conditional rule, because there is no unconditional rule overlapping with (aiak. Due to
the form of the solutions we have y = yt}Y2' Yl E :E*. Hence xuy = x(ai)(aWl)Y2 and
xuy -'-c xvy, implying xly -'-c xry

(5) Le. 1= aiaj)(ak)
Thereby we have v = aiak). If we use a conditional rule to reduce xvy we may argue as
above. But now the rules plai - dipl and qlai _ ciql may also be applied to xaiak)1I.
Notice that these are the only possibilities to reduce xaiak)y by an unconditional rule.

qlai _ ciql: x can be split into Xl t5x2c, where X2c is the maximal suffix of x in
:E~ and t5 is the letter to the left of X2c, it may be A. We have the reductions
xvy = xlt5x2c~1 "iak)y -'-R, xlt5q2x~ccicklY and xuy = xlbx2cq1ai)(ak)y -'-R,
xlt5q2x~c<](ak)Y' These words should be joinable, but if t5 '# [, the first one is
irreducible and each successor of the second one has xlbq2x~cci] as a prefix. This
is not equal to xlt5q2x~ccic'k]' hence they cannot be joined, contradicting our as
sumption b :F [.
For 6 = [, xly and XTy are joinable:
xly = Xl[x2cq1aiaj)(ak)y-'-0 xl(xitii"aj)(ak)Y -'-'0 Xl(X2tiii.ijak)y and
xry = Xl[x2cql aia j ak)1I -'-0 Xl(X2tiii.ijak)Y.

plai _ dipl: Analogously to the case above we may split x into Xlbx2d, X2d E :Ed.
b :F { gives the same contradiction as above. For b = { we get the successors
xllx2ai)(ak)y and xllx2aiak)y of xuy resp. xvy, again a contradiction. There
may be successors xll$x2ai)(ak)y and xllb2aiak)y, but this does not change the
situation. Hence xvy cannot be reduced by pl ai _ dipl.

(6) Le. 1=aiaj)(akal
Again we will only look at the case xuy -rc xvy. xvy must be reducible and the
reduction must concern v = aia,. Using a conditional rule as in the case of rule (4)
we get xly ~c xry. Assume that we use the rule qlai - ciql. We split x into x 1 t5x'2
and similarly y into Y11112 with 111 E :E*. If 6 = [and 1 =) then we have xly ~o xry,

17

proof: Since a —-c v implies u —*c 9 we only have to show Ha. g =5 . The proof is by
noetherian induction on tuples of words which are equivalent modulo 4c . Thereby we use
the lexicographic extension to tuples of do as well-founded ordering. It‘sufl‘ices to show that
ml “*0 wg implies w; =; w, . For the unconditional rules we have —>c = —~c.

Thus let us assume we used a conditional rule u = v :: I —> r, i.e. w; = zig/‚mg = wry.
If a: or 1; are reducible by ——c, then let E resp. Ü denote the normalforms of a: and 1; mod
—-—0. We have z ly d5 arty, try “a, fir?) and since —»c _C_ —>c‚ z ly a}; 3513], am #5 try. By
transitivity of --»0 we get Elfi Ha fry. Since (Emir?) <,“ (21y, my) we may apply the
induction hypothesis and get 517 =;— fir? and again by transitivity zly =}; cry.

Now, let :: and 3; be irreducible modulo —‘c- We have zly —>c cry and by definition
zuy lo zvy. Again by definition (zuy,a:vy) <1”,- (113/, try) , hence any =5. 2111/ and since
——c is confluent zum [0 zvy. There are 4 cases according to the rule used in the reduction
:13] —>c zry.

(1) i.e. ’ = (a.-
: and y are irreducible, therefore z|a,~y is irreducible modulo _..C too. Hence zug 6}}

2113/ and z ly _»C zry.
(4) i.e. (= (a,-)(ajak

If muy d'a— may we are finished, thus let us assume may 74;. zvy. This implies that
:wy = :::(aiaky is reducible by ——c. Since a:,y are irreducible, this reduction has to
use (agak as part of a left-hand side or when evaluating a premise. We have to use a
conditional rule, because there is no unconditional rule overlapping with (agak. Due to
the form of the solutions we have y = 3/1)y2, y1 € 2“. Hence zuy = :c(a‚°)(aky1)yg and
zuy —-*c zvy, implying zly -*c zry

(5) i.e. l = (i,-a,-)(ak)
Thereby we have v = agar). If we use a conditional rule to reduce any we may argue as
above. But now the rules pla; —-> dgpl and qla, —+ c,-q1 may also be applied to mamfly.
Notice that these are the only possibilities to reduce tawny by an unconditional rule.

qla; _» cgq‘: :: can be split into 2:16:52“ where zu is the maximal suffix of z in
Z; and 6 is the letter to the left of zu , it may be ‚\. We have the reductions
zvy = zlözgcq‘ "gang ——"'R‚ zlöqzz'zccéczh and zuy = z16x2cqlag)(ak)y __}?!
1:16q2z’26cfi](ak)y. These words should be joinable, but if 6 # [, the first one is
irreducible and each successor of the second one has xlöqzz’zccfl as a prefix. This
is not equal to zl6qzz'zccfcz], hence they cannot be joined, contradicting our as—
sumption 6 ;é [.
For 6 = [, :cly and :rry are joinable:
z ly = m1[zclaiaj) (ak)y “‘2' J"1(==2717‘11')(fln=)y “& mares-any and
My = z i [¢2cq‘aaajak)y ‘5 21(zztfijakw.

pla; —+ (l,-pl: Analogously to the case above we may split :: into zläazzdßgd € 2;.
6 # { gives the same contradiction as above. For 6 = { we get the successors
21|x2a,-)(ak)y and zl|z2agak)y of muy resp. zvy, again a contradiction. There
may be successors z l l$z2a;)(ak)y and 11|$zgaiak)y, but this does not change the
situation. Hence zug cannot be reduced by p1 a,- —+ dipl.

(6) i . e . ’ = aga5)(a;,a(

Again we will only look at the case muy f—c zug. :wy must be reducible and the
reduction must concern v = am:. Using a conditional rule as in the case of rule (4)
we get s ly ==}; sry. Assume that we use the rule qla; _» ciql . We split a: into 3162-2
and similarly y into 3117342 with yl e 2 ' . If 6 = [and 7 =) then we have s ly ;? cry ,

17

otherwise we get a contradiction as in the case of rule (5). The rule plai - dipl cannot
be used by an argument similar to those above.

Hence reducibility of xvy implies xly ~o xry or contradicts xuy ~c xvy. xuy -"0 xvy
implies xly -..c xry and therefore we have +-+0 ~ ~o, finishing the proof. 0

Lemma 30 x E L* is irreducible mooulo -c if and only if it is irreducible mooulo -..c.
proof: If x is irreducible modulo -c then it is irreducible modulo -..c too. Let us assume
that x is reducible by -c, but not by -..c, Le. x -c y. By lemma 29 we have x ~o y.
x is irreducible, hence y -"0 x. Since -..c ~-c it follows y -0 x and x -c Y -0 x,
contradicting termination of -c 0

Two words x, y which are equivalent modulo -c are also equivalent modulo -..c and they
have a common irreducible descendant z. Due to the lemmata above we have x -0 z +-0 y,
giving us the confluence of -c.

Lemma 31
a) -c is confluent.
b) -c is canonical.

It remains to show that for u,v E ~*,u +-+5 v if and only if <p([u]s) = <p([v]s), Le. <p*(u) +-+0
<p*(v). Since -c is canonical we have to show u +-+5 v if and only if <p*(u) Lo <p*(v). To
do this we first show that C computes the representative of concatenated configurations
correctly.

Lemma 32 For Ut, ••. , Un E E* we get (ud ... (un) -0 (Ut :::-un).

proof: We have (Ut}(U2)" .(un) -c (UtU2)" .(un) -0 (UI.' .un) -0 (UI:::-Un) 0

The next lemma shows that M is embedded in M', Le. U +-+5 v if and only if <p([u]s) =
<p([v]s).

Lemma 33 For u, v E ~* we get u +-+5 v if and only if <p*(u) Lc <p*(v).
proof:

if.	 Let us assume first that u, v f:. A, Le. U = al'" an, v = bl ... bm, n, m 2: 1. Then
<p*(u) = (ad ... (an) -0 (al :::-an) = ('11) and similarly <p*(v) -0 (v). If '11, v f:. A, then
('11), (v) are irreducible and we conclude ('11) = (v). We have u +-+5 '11 = v +-+5 v.
Ifu = Athen ('11) = 0 -c A, which is irreducible. Hence we have (v) -0 A. Since (v)
cannot be reduced by rule (1), it must be reduced by 0 - A, implying v = A. Again
we have '11 = v and we may conclude u +-+5 v.
Now let us assume that u = A and v f:. A. Then <p*(u) = A, which implies <p*(v) -0
(v) -c A. As above we have v = A and v +-+5 A=u.

only if: We have to distinguish u, v f:. A and u or v = A.
Let us assume that u,v;/; A, Le. u = al" .an,V = bl .•. bm,n,m 2: 1. Then <p*(u) =
(al)" .(an) -0 (ai::-:-an) = (u) and <p*(v) = (bl) ... (bn) -* (b1 ::bn) = (v). Since
u +-+5 v we have u = v and thereby <p*(u) Lc <p*(v).
If both u = v = A then there is nothing to show, thus let us assume u = A, v =
b1 •.• bm f:. A. Since v +-+5 u = A we have v = oX. Hence <p*(v) = (b1) ••• (bn) -*
(bl ::bn) = 0 -c A= <p*(u). 0

C is a finite and canonical presentation of M' and M is embedded in M', finishing the proof
of theorem 4.

18

otherwise we get a contradiction as in the case of rule (5). The rule plug —> (1,111 cannot
be used by an argument similar to those above.

Hence reducibility of zvy implies zly —"‘ cry or contradicts muy l0 zvy. um —C mm
implies z ly —-—c cry and therefore we have HC g =‘C, finishing the proof. D

Lemma 30 a: E A‘ is irreducible modulo “"C if and'only if it is imducible modulo dc .

proof: If 2: is irreducible modulo —>c then it is irreducible modulo do too. Let us assume
that z is reducible by —»c, but not by ——c‚ i.e. :: —>c y. By lemma 29 we have :: =C y.
z is irreducible, hence g —-—C a:. Since dc g—w it follows y —»C z and 2: —>3 y —->C :::,
contradicting termination of —->c Ü

Two words z , 3; which are equivalent modulo —>c are also equivalent modulo _.C and they
have a common irreducible descendant 2 . Due to the lemmata above we have a: +}, z 4—2. 3/,
giving us the confluence of ">0-

Lemma 31
a) —>c is confluent.
b) —+C is canonical.

It remains to show that for u, 11 € 2 ' ,u Hg 1) if and only if ¢([u]s) = ¢([v]s), i.e. <p"(u) H‘C
<p"'(v). Since ->c is canonical we have to show u «_»; 1; if and only if <p*(u) if, <p"(v). To
do this we first show that C computes the representative of concatenated configurations
correctly.

Lemma 32 For u1,.. . , u „ 6 2" we get (u1) . . .(un) —>C (u1. .Ann..)

proof: We have (u1)(u2) . . .(un) -*0 (111112). .(u„) —>C (u1„ ‚an) a}; (11177151) D
The next lemma shows that M is embedded in M’, i.e. 11 HS 0 if and only if ¢([u]s) =

950013)-
Lemma 33 For u ,v €)3' we get u H; v if and only if <p*(u) lC <p"‘(v).
proof:
if . Let us assume first that u, v ;E A, i..e u. = a1. ‚amv = b1.. .b , „ ,n ‚m > 1. Then

m) = (...) (....) —»*c (. . . .
a...—)— (u) and similarly sm) —»z— (v) Im, ., # A then

(u),(13) are irreducible and we conclude (ü)_- (1)). We have u H‘S‘ u—_ v HS 0.
If ü—- A then (ü) : () ”*C A, which is irreducible. Hence we have (Ü) —->'C A. Since (Ü)
cannot be reduced by rule (1), it must be reduced by () —> A, implying v -— A. Again
we have ü -- 11 and we may conclude u ”S 0.
Now let us assume that u—_ A and v 94 A. Then ¢‘(u) = A, which implies ¢p*(v) —+*C
(ii) —->c A. As above we have "3 = A and v H; A = u.

only if : We have to distinguish u , v 76 A and u or v = A.
Let us assume that u, v # A, i.e. u = a1. . .a „ ,v—_ b1.. .b,„,n‚ m >A1. Then ¢ ‘ (u)=

(...) (...) —»a (.../7:1.) (ü) and m) = (m.. (b.) —»' auf.“.',—„>— (ü). Since
u "’s v we have u -— v and thereby lp‘(u) la gp*(v)
If both u = v = A then there is nothing to show, thus let us assume u = A,v =
b1.. .bm 76 A. Since v ”S u = A we have €) = A. Hence cp"(v) = (b1)...(b„) ->'
(In?.b.)=()—+cx= wu) El

C is a finite and canonical presentation of M ' and M is embedded in M’, finishing the proof
of theorem 4.

l8

6.3 Complexity Issues

By lemma 33 it is possible to solve the word problem of the monoid M presented by (~, S)
using the conditional system C. But how does the complexity of the use of C relate to the
complexity of the word problem? We will show, that the complexity of the word problem (if
it is at least exponential) is of the same complexity as the solution of the word problem using
the system C.

To state the results, we use the complexity classes En, n ~ 0, ofthe Grzegorczyk h;erarchy,
see e.g. [Wei74]. Avenhaus and Ma.d1ener showed in [AM77, AM78], that the complexity of
the word problem of a monoid is independent of its representation, therefore we may speak
of the complexity of the word problem of the monoid M. Bauer and Otto [B084J showed,
that this complexity may be arbitrarily large.

Slightly varying a definition in [B084J, a finite conditional semi-Thue system T over an
alphabet r is En-bounded, n ~ 1, if there exists a function k E En{r}, such that for all
u E r*, Ik(u)1 reductions are sufficient to reduce u to its norma.lform. The function k gives
the length of the sequence u -0 t1 as well as the number of reductions which are necessary
to evaluate the premises of conditional rules used in the sequence.

Lemma 34 Let M be a monoid which is finitely generated by (~, S) and the complexity of the
word problem of M is bounded above by a function in ~n, then the corresponding conditional
system C is Em-bounded, with m =max{3, n}.
proof: Let wE L*. To proof the lemma it is sufficient to give a reduction sequence W -0 w
which uses no more than Ik(w)1 reductions with k E Emax{3,n}. To reduce w to to we will
use at first the rules in RI URp as far as possible, then those in T and at last the rules in R.
Finally we use the rule 0 - A again. There may be several cycles of this kind.

The reductions with Rf and Rp do not overlap, hence we have at most Iwl distinct
reduction sequences modulo Rf U Rp. Each of these sequences simulates a Turing machine
computing the functions f resp. p, see page 11. Since the number of words smaller than a
given word u is exponential in the length of u, f is in the complexity class E max{3,n}. As it
is shown in [She65J the 'lUring machines Mf and Mp stop after at most Igf(u)1 resp. Igp(u)1
steps when started from an arbitrary configuration, with gf resp. gp in E max{3,n}. Hence
each of the reduction sequences using R/ U Rp ls oflength of at most 19/("')1 resp. 19p(w)l.

After performing these reductions only the rules (1) - (6) can be applied. That is, we
have substrings of the form (w') or (Wl)(W2) with w', Wl, W2 E ~*. At first we remove
empty configurations using rule (2), at most Iwl reductions with this rule are possible. Then
we concatenate all adjoining configurations using the rules (3) - (6). Again at most Iwl
reductions are possible, but we may have to evaluate the premises of conditional rules. But
Iwl reductions are sufficient to evaluate the premise of one of the rules (4) - (6), hence there
are at most Iw/2 reductions in this phase of reduction, but Iwl2 is a function in E2•

To use rule (1) we have to evaluate its premise using Rp, and to compute the represen
tatives we have to use RI. Following the argumentation above we have at most Iwl distinct
reduction sequences, which are bounded above in length by functions in Ema:Z:{3.n}.

As the representative may be A, it may be possible to use the rule 0 - A again, we get
a word w'. Now, w' may be irreducible, summarizing the number of reductions we see that
this number is bounded by a function k with k E Emax{3,n}.

However it is possible, that w' is reducible again by RfURp, as there may be configurations
which are nested within another. But in w' there is at least one pair of parentheses less than
in w, hence there can be at most Iwl cycles of this kind. The number of reductions in each

19

6 .3 Complexity Issues

By lemma 33 it is possible to solve the word problem of the monoid M presented by (E, S)
using the conditional system C . But how does the complexity of the use of C relate to the
complexity of the word problem? We will show, that the complexity of the word problem (if
it is at least exponential) is of the same complexity as the solution of the word problem using
the system C.

To state the results, we use the complexity classes E,” n 2 0, of the Grzegorczyk hierarchy,
see e.g. [Wei74]. Avenhaus and Madlener showed in [AM77, AM78], that the complexity of
the word problem of a monoid is independent of its representation, therefore we may speak
of the complexity of the word problem of the monoid M. Bauer and Otto [B084] showed,
that this complexity may be arbitrarily large.

Slightly varying a definition in [B084], a finite conditional semi-Thue system T over an
alphabet I‘ is En-bounded, n Z 1, if there exists a function]: € E„{I‘}, such that for all
u € I“, |k(u)| reductions are suflicient to reduce it to its normalform. The function k gives
the length of the sequence u .43. it as well as the number of reductions which are necessary
to evaluate the premises of conditional rules used in the sequence.

Lemma 34 Let M be a monoid which is finitely generated by (2 , S) and the complexity of the
word problem of M is bounded above by a function in 2", then the corresponding conditional
system C is Em-bounded, with m = maz{3, n } .
proof: Let w € A". To proof the lemma it is sufficient to give a reduction sequence w —>‘C‘. 11:
which uses no more than |k(w)| reductions with k e Em„{3‚„}. To reduce 10 to zb we will
use at first the rules in R f U R, as far as possible, then those in T and at last the rules in R.
Finally we use the rule () —-> ‚\ again. There may be several cycles of this kind.

The reductions with R ! and R,p do not overlap, hence we have at most lw| distinct
reduction sequences modulo Rf Li R, . Each of these sequences simulates a Turing machine
computing the functions f resp. 1‘», see page 11. Since the number of words smaller than a
given word u is exponential in the length of u, f is in the complexity class Emas{3 ,n} ' As it
is shown in [She65] the Turing machines M! and M„ stop after at most |gf(u)| resp. |g‚(u)|
steps when started from an arbitrary configuration, with g ; resp. g„ in Emu{3 ,n} - Hence
each of the reduction sequences using R f U Rp is of length of at most | gf(°v)| resp. Igp(w)|.

After performing these reductions only the rules (1) —— (6) can be applied. That is, we
have substrings of the form (w’) or (w1)(wg) with w', 101,102 € 2". At first we remove
empty configurations using rule (2), at most |w| reductions with this rule are possible. Then
we concatenate all adjoining configurations using the rules (3) — (6). Again at most |w|
reductions are possible, but we may have to evaluate the premises of conditional rules. But
l reductions are sufficient to evaluate the premise of one of the rules (4) —— (6), hence there
are at most |w|2 reductions in this phase of reduction, but |w|z is a function in E2.

To use rule (1) we have to evaluate its premise using RP, and to compute the represen-
tatives we have to use Rf . Following the argumentation above we have at most |w | distinct
reduction sequences, which are bounded above in length by functions in Ema:e{3,n}'

As the representative may be A, it may be possible to use the rule () —-> ‚\ again, we get
a word w’ . Now, 10’ may be irreducible, summarizing the number of reductions we see that
this number is bounded by a function k with]: € Emma“.

However it is possible, that w’ is reducible again by R; URP, as there may be configurations
which are nested within another. But in w’ there is at least one pair of parentheses less than
in w, hence there can be at moSt |w| cycles of this kind. The number of reductions in each

19

cycle is bounded above by a function in Em1u:{3,n}, hence the total number is bounded above
by a function k E Emax{3,n}, too. 0

Notice, that if the word problem of M is in Eo, El
"

or E 2 , then C may use an exponential
number of reductions. Furthermore, the use of C to solve the word problem of M is not a
pseudo-natural algorithm in the sense of [M08S]. It does not give us a derivation u +-+; v if
u and v are congruent modulo S.

6.4 Concluding Remarks

Up to now it is an open question whether we can restate the embeddability theorem by
using right conditional systems only. This might be suggested by the systems we used in
the example of section 5, as they are all right conditional. But there was no progress in this
direction, though we used several alternatives instead of Turing machines, especially Post
machines, see e.g. [SS63, Man74], and string rewriting systems as defined in [Sat91].

Notice that we do not have an identical embedding as in the theorem of Bauer. But this
is no serious restriction. We may use a system R<p = {ai --I> (Ai)lai E E, Ai a copy of ail
to simulate the embedding. Now R<p U C has the same properties as C itself, hence M is
identically embeddable in a monoid M", such that M" has a finite, canonical, and conditional
representation.

Acknowledgements

I would like to thank Prof. Madlener for initiating these investigations and Birgit Reinert for
valuable discussion about various versions of the conditional system C.

References

[AM77] Jiirgen Avenhaus and Klaus Madlener. Subrekursive KomplexWit bei Gruppen;
I. Gruppen mit vorgeschriebener Komplexitat. Acta Informatica, 9:87-104, 1977.

[AM78] Jiirgen Avenhaus and Klaus Madlener. Subrekursive Komplexitat bei Gruppen:
11. Der Einbettungssatz von Higman fiir entscheidbare Gruppen. Acta Informatica,
9:183-193,1978.

[Bau81]	 Giinther Bauer. Zur Darstellung von Monoiden durch konfluente Regelsysteme. PhD
thesis, Fachbereich Informatik, Universitat Kaiserslautern, 1981. in German.

[Bau85]	 Giinther Bauer. n-Ievel rewriting systems. Theoretical Computer Science, 40:85-9;:),
1985.

[B084]	 Giinther Bauer and Friedrich Otto. Finite complete rewriting systems and the com
plexity of the word problem. Acta Informatica, 21:521-540, 1984.

[Bo085]	 Ronald V. Book. Thue systems as rewriting systems. In Proc. of 1st Rewriting
Techniques and Applications, pages 63-94. Springer, 1985. LNCS 202.

[Dav56]	 Martin D. Davis. A note on universal turing machines. In C. E. Shannon and
J. McCarthy, editors, Automata Studies, pages 167-175. Princeton Press, 1956.

20

cycle is bounded above by a function in Em¢z{3 .n} ’ hence the total number is bounded above
by a function != € Emugm}, too. Ü

Notice, that if the word problem of M is in EO, E1 or E2, then C may use an exponential
number of reductions. Furthermore, the use of C to solve the word problem of M is not a
pseudo-natural algorithm in the sense of [M085]. It does not give us a derivation u H3— v if
u and 1; are congruent modulo S .

6.4 Concluding Remarks
Up to now it is an open question whether we can restate the embeddability theorem by
using right conditional systems only. This might be suggested by the systems we used in
the example of section 5, as they are all right conditional. But there was no progress in this
direction, though we used several alternatives instead of Turing machines, especially Post
machines, see e.g. [$363, Man74], and string rewriting systems as defined in [Sat91].

Notice that we do not have an identical embedding as in the theorem of Bauer. But this
is no serious restriction. We may use a system R, = {a,- —+ (A.-)Ia; e 2,11,- a copy of ag}
to simulate the embedding. Now R„ U C has the same properties as C itself, hence M is
identically embeddable in a monoid M” , such that M" has a finite, canonical, and conditional
representation.

Acknowledgements
I would like to thank Prof. Madlener for initiating these investigations and Birgit Reinert for
valuable discussion about various versions of the conditional system C.

References

[AM77] Jürgen Avenhaus and Klaus Madlener. Subrekursive Komplexität bei Gruppen;
I. Gruppen mit vorgeschriebener Komplexität. Acta Information, 9:87—104, 1977.

[AM78] Jürgen Avenhaus and Klaus Madlener. Subrekursive Komplexität bei Gruppen:
II. Der Einbettungssatz von Higman für entscheidbare Gruppen. Acta Informatica,
9:183—193, 1978.

[Bau81] Günther Bauer. Zur Darstellung von Monoiden durch konfluente Regelsysteme. PhD
thesis, Fachbereich Informatik, Universität Kaiserslautern, 1981. in German.

[Bau85] Günther Bauer. n-level rewriting systems. Theoretical Computer Science, 40:85—99,
1985.

[B084] Günther Bauer and Friedrich Otto. Finite complete rewriting systems and the com—
plexity of the word problem. Acta Informatica, 21:521—540, 1984.

[30085] Ronald V. Book. Thue systems as rewriting systems. In Proc. of Ist Rewriting
Techniques and Applications, pages 63—94. Springer, 1985. LNCS 202.

[Dav56] Martin D. Davis. A note on universal turing machines. In C. E. Shannon and
J. McCarthy, editors, Automata Studies, pages 167—175. Princeton Press, 1956.

20

[Dei92]	 Thomas Dei6. Conditional semi-Thue systems for presenting monoids. In Alain
Finkel and Matthias Jantzen, editors, Proc. of STACS'92, volume 577 of LNCS,
pages 557-565. Springer, 1992.

[Der81]	 Nachum Dershowitz. Termination of linear rewriting systems. In S. Even and
O. Kariv, editors, Proc. 8th ICALP, pages 448-458. Springer, 1981. LNCS 115.

[DW83]	 Martin D. Davis and Elaine J. Weyuker. Computability, Complexity, and Languages.
Academic Press, 1983.

[Esc86]	 Carola Eschenba.ch. Die Verwendung von Zeichenkettenordnungen im Zusammen
hang mit Semi Thue Systemen. Technical Report 122, Universiti.t Hamburg, Fach
bereich Informatik, 1986. in German.

[Gan87] Harald Ganzinger. A completion procedure for conditional equations. Technical
Report 234, Fachbereich Informatik, Universiti.t Dortmund, 1987.

[Hue80]	 Gerard Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797-821, oct 1980.

[JW86]	 Jean Pierre Jouannaud and Bernard Waldmann. Reductive conditional term rewrit
ing systems. In Proceedings of the 3rd IFIP Working Conference on Formal Descrip
tion of Programming Concepts. North-Holland, 1986.

[Kap84] Stephane Kaplan. Conditional rewrite rules. Theoretical Computer Science, 33:175
193, 1984.

[Kap87] Stephane Kaplan. Simplifying conditional term rewriting systems: Unification, ter
mination and confluence. Journal of Symbolic Computation, 4:295-334,1987.

[KH89]	 HeUme Kirchner and Miki Hermann. Computing meta-rules from crossed rewrite
systems. Technical report, CRIN, Nancy, 1989.

[KN85]	 Deepak Kapur and Pa.liath Narendran. A finite Thue system with decidable word
problem and without equivalent finite canonical system. Theoreti ~al Computer Sci
ence, 35:337-344, 1985.

[Man74] Zohar Manna. Mathematical Theory of Computation. Computer Science Series.
McGraw-Hill, 1974.

[M085]	 Klaus Madlener and Friedrich Otto. Pseudo natural algorithms for the word problem
for finitely presented monoids and groups. Journal of Symbolic Computation, 1:383
418, 1985.

[New42] M. H. A. Newman. On theories with a combinatorial definition of equivalence.
Annals of Mathematics, 43(2):223-243, 1942.

[Sat91]	 Andrea Sattler-Klein. Divergence phenomena during completion. In Ronald V.
Book, editor, Proc. of 4th Rewriting Techniques a'nd Appliootions, pages 374-385.
Springer, 1991. LNCS 488.

[She65]	 J. C. Shepherdson. Machine configuration and word problems of given degree of
unsolvability. Zeitschrift fUr mathematische Logik und Gnmdlagen der Mathematik,
11:149-175,1965.

21

[Dei92] Thomas Deiß. Conditional semi-Thue systems for presenting monoids. In Alain
Finkel and Matthias Jantzen, editors, Proc. of STACS’92, volume 577 of LNCS,
pages 557—565. Springer, 1992.

[Der81] Nachum Dershowitz. Termination of linear rewriting systems. In S. Even and
O. Kariv, editors, Pmc. 8th ICALP, pages 448—458. Springer, 1981. LNCS 115.

[DW83] Martin D. Davis and Elaine J. Weyuker. Computability, Complexity, and Languages.
Academic Press, 1983.

[Esc86] Carola Eschenbach. Die Verwendung von Zeichenkettenordnungen im Zusammen-
hang mit Semi Thue Systemen. Technical Report 122, Universität Hamburg, Fach—
bereich Informatik, 1986. in German.

[Gan87] Harald Ganzinger. A completion procedure for- conditional equations. Technical
Report 234, Fachbereich Informatik, Universität Dortmund, 1987.

[Hue80] Gérard Huet. Confluent reductions: Abstract properties and applications to term
rewriting systems. Journal of the ACM, 27(4):797—821, oct 1980.

[J W86] Jean Pierre Jouannaud and Bernard Waldmann. Reductive conditional term rewrit-
ing systems. In Proceedings of the 3nd IFIP Working Conference on Formal Descrip-
tion of Programming Concepts. North-Holland, 1986.

[Kap84] Stéphane Kaplan. Conditional rewrite rules. Theoretical Computer Science, 33:175-
193, 1984.

[Kap87] Stéphane Kaplan. Simplifying conditional term rewriting systems: Unification, ter-
mination and confluence. Journal of Symbolic Computation, 4:295—334, 1987.

[K1189] Héléne Kirchner and Miki Hermann. Computing meta-rules from crossed rewrite
systems. Technical report, CRIN, Nancy, 1989.

[KN85] Deepak Kapur and Paliath Narendran. A finite Thue system with decidable word
problem and without equivalent finite canonical system. Theoretical Computer Sci-
ence, 35:337—344, 1985.

[Man74] Zohar Manna. Mathematical Theory of Computation. Computer Science Series.
McGraw-Hill, 1974.

[M085] Klaus Madlener and Friedrich Otto. Pseudo natural algorithms for the word problem
for finitely presented monoids and groups. Journal of Symbolic Computation, 1:383-
418, 1985.

[New42] M. H. A. Newman. On theories with a combinatorial definition of equivalence.
Annals of Mathematics, 43(2):223-243, 1942.

[Sat9l] Andrea Sattler-Klein. Divergence phenomena during completion. In Ronald V.
Book, editor, Pine, of 4th Rewriting Techniques and Applications, pages 374—385.
Springer, 1991. LNCS 488.

[She65] J. C. Shepherdson. Machine configuration and word problems of given degree of
unsolvability. Zeitschrift für mathematische Logik und Grundlagen der Mathematik,
11:149—175, 1965.

21

[Sim87]	 C. C. Sims. Verifying nilpotence. Journal of Symbolic Computation, 3:231-247, 1987.

[S087]	 Craig Squier and Friedrich Otto. The word problem in finitely presented monoids
and finite canonical rewriting systems. In Proc. of 2nd Rewriting Techniques and
Applications, pages 74-82. Springer, 1987. LNCS 256.

[Squ87]	 Craig Squier. Word problems and a homological finiteness condition for monoids.
Journal of pure and applied algebra, 49:201-217, 1987.

[Squ88] Craig Squier. A finiteness condition for rewriting systems. Department of Mathe
matical Sciences, SUNY-Binghamton, Binghamton, NY 13901, 1988.

[SS63]	 J. C. Shepherdson and H. E. Sturgis. Computability of recursive functions. Journal
of the ACM, 10:217-255, 1963..

[SS82]	 Jorg Siekmann and P. Szabo. A noetherian and confluent rewrite system for idem
potent semigroups. semigroup forum, 25:83-110, 1982.

[Wei74]	 K. Weihrauch. Teilklassen primitiv-rekursiver Wortfunktionen. Technical Report 91,
GMD Bonn, 1974.

Appendix: Proof of lemma 22

Lemma 22 uod(ajv ~c UaiOjV if and only if uOi)(ajV ~h UOiOjV

. proof: The 'if' direction is trivial, thus let us have a look at the 'only if' direction. We
have Wl = UOi)(OjV ~c UOiOjV = W2 and we show that the case n > 1 cannot occur. Since
Wl ::f. W2, n = 0 cannot occur, n == 1 gives the result.

We construct a partition of Wl into useful parts and garbage. The useful parts correspond
to substrings of Wl which could be used in a reduction, these substrings are separated by
irreducible garbage. An useful part in Wl is the occurrence of a left-hand side of a rule in
R U {O -+ ~}. Remark that each left-hand side of (3) - (6) contains the left-hand side of
(1), hence we do not use the rules (3) - (6) to construct useful parts. This occurrence is
extended to the left and rig:.t by letters which might be useful in a configuration. That is,
we extend to the left by 'left' letters in E c U Ed U {bc, bd, $, $d} up to the first opening bracket
(, {, [or I. This bracket is included to the extension. To the right we extend by letters in
E U E~ U EdU {b~,bd' $d} up to the first closing bracket), },l, again included. Remark, that
for the rules (1) we do not extend to the left, for the rule 0 -+ ~ not at all. This partition is
unique, the useful parts Ui do not overlap. Two useful parts Ui, Ui+l are separated by 'garbage'
9i, which is irreducible: It cannot be reduced by a rule in R U {O -+ ~}, otherwise it would
contain a useful part. It cannot be reduced by (3) - (6) either, since then the left-hand side of
(1) would be part of it. Thus we have Wl = gou191 .•• Un 9n. E. g. Wl = $ (Oi OJ)) Ck pi01 } b~
can be partitioned into Wl == gou191u2g2 with 90 == $,1£1 = (aiaj),91 =),1£2 == Ckploi} and
92 = b~. This example shows that the useful parts may be improper configurations: Ul may
be irreducible, 1£2 does not contain a left bracket.

Since W2 has one opening parenthesis less than Wl, exactly one rule in T has to be used
when reducing Wl -'oc W2, Le. there are W3, W4 such that Wl ~R W3 -'oh W4 -'oR W2. The
reduction W3 ~c W4 uses a rule in T, but if it is a conditional rule we may use all rules
in C to evaluate the premise. The reductions Wl -'oR W3 and W4 -'oR W2 use only rules in
R, as according to lemma 21 only rules in R itself are necessary to evaluate the premises of
conditional rules.

22

[Sim87] C. C. Sims. Verifying nilpotence. Journal of Symbolic Computation, 3:231—247, 1987.

[8087] Craig Squier and Friedrich Otto. The word problem in finitely presented monoids
and finite canonical rewriting systems. In Pmc. of 2nd Rewriting Techniques and
Applications, pages 74—82. Springer, 1987. LNCS 256.

[Squ87] Craig Squier. Word problems and a homological finiteness condition for monoids.
Journal of pure and applied algebra, 49:201-217, 1987.

[Squ88] Craig Squier. A finiteness condition for rewriting systems. Department of Mathe-
matical Sciences, SUN Y—Binghamton, Binghamton, NY 13901, 1988.

[3863] J. C. Shepherdson and H. E. Sturgis. Computability of recursive functions. Journal
of the ACM, 10:217—255, 1963.,

[$382] Jörg Siekmann and P. Szabo. A noetherian and confluent rewrite system for idem-
potent semigroups. semigroup forum, 25:83—110, 1982.

[Wei74] K. Weihrauch. Teilklassen primitiv—rekursiver Wortfunktionen. Technical Report 91,
GMD Bonn, 1974.

Appendix: Proof of lemma 22

Lemma 22 ua,-)(ajv ——“('; ua,-ajv if and only if ua.-)(aJ-v “‘5' uagaju
’ proof: The ’if’ direction is trivial, thus let us have a. look at the ’only i f ’ direction. We-

have 101 = ua.-)(ajv Ag ua,-mju = w; and we show that the case n > 1 cannot occur. Since
101 # 102, n = 0 cannot occur, n = 1 gives the result.

We construct a partition of 101 into useful parts and garbage. The useful parts correspond
to substrings of 101 which could be used in a reduction, these substrings are separated by
irreducible garbage. An useful part in 101 is the occurrence of a left-hand side of a rule in
R U {() —r A}. Remark that each left-hand side of (3) - (6) contains the left-hand side of
(1), hence we do not use the rules (3) -— (6) to construct useful parts. This occurrence is
extended to the left and rig1.t by letters which might be useful in a. configuration. That is,
we extend to the left by ’left’ letters in EC U Ed U {b,„bd, $, S.;} up to the first opening bracket
(, { , [or I. This bracket is included to the extension. To the right we extend by letters in
E U E:: U E; U {b:„ f„ f,} up to the first closing bracket), },], again included. Remark, that
for the rules (1) we do not extend to the left, for the rule () -> A not at all. This partition is
unique, the useful parts u,- do not overlap. Two useful parts ng, ug+1 are separated by ’garbage’
gg, which is irreducible: It cannot be reduced by a rule in R U {() -+ A}, otherwise it would
contain a useful part. It cannot be reduced by (3) — (6) either, since then the left-hand side of
(1) would be part of it. Thus we have 101 = goulgl . . ‚u,.gn. E. g. w] = $ (a; dj)) ck plc; } b’c
can be partitioned into 101 = goulgluzgg with go = $,u1 = (agaj),gl =) ,uz = ckp‘ai} and
92 = b2. This example shows that the useful parts may be improper configurations: ul may
be irreducible, ug does not contain a left bracket.

Since wa has one opening parenthesis less than 201, exactly one rule in T has to be used
when reducing wl "?) 102, Le. there are 203,104 such that 101 "}: 103 a}; 104 a}: 102. The
reduction 103 —‘c 104 uses a rule in T, but if it is a conditional rule we may use all rules
in C to evaluate the premise. The reductions 101 _} 103 and 104 dä wg use only rules in
R, as according to lemma 21 only rules in R itself are necessary to evaluate the premises of
conditional rules.

22

Only the useful parts Ut, ... , Un can be changed when reducing Wl ->.:R W3, no 9j will be
involved in a reduction. Hence W3 = 90Ut91 ... U~9n'

Applying the T-rule to reduce W3 to w" changes at least one useful part, let UIH be
the rightmost of these parts. Due to the form of the rules, either the useful part UI or
the garbage 91 to the left of UI+1 can be involved in this reduction. Notice, that the
garbage 91H will not be changed. Hence, U~91U~H is reduced to a string U', this might
be an useful part as well as garbage, we have W3 = 90Ut91 .. •91-1 U~9IU~H 91+1 ••• U~9n ->'0

90Ut91 .. •91-1 U' 91H ••• U~9n = w".

While reducing w" ->.:R w:h again the u~ and U' are reduced only, no 9j is reducible, hence
W2 = 90uq91 .. ·9/-1 UtI 9IH" ,U~9n'

Since Wl = uai)(ajV we know that (aj is the prefix of some Uk. We now have to show
that k = 1+ 1. Let us assume to the contrary that 1+ 1 < k. Since Wl = uai)(ajV and
W2 = UaiajV we have UA:~l = UkH" .. , Un = u~, the rightmost useful part which is reduced
in the reduction Wl ---"-c W2 is UA:. UA: is reduced by rule (1), hence there is awE E* such
that UA: = (ajw), it has to be reduced to Xaiajw), where x E d *. This reduction uses rules
in R, strictly speaking rules in Rf. Looking at these rules we can see that this reduction
is impossible, contradicting Wl ---"-c W2. Analogously, k < 1+ 1 gives a contradiction, hence
1+1 = k.

As a bove we ave Ul -"Ul"'" U/-l - " - U/+2"'" Un - Un' ence thh - - u'_l' UI+2 -" - "H e 0 nly
possibilities to use the rules of R are the reductions UI:R u~, UI+1 ---"-:R u~H and U' :R U".
We show now that we also have U/ = u" UIH = u~+1' U' = U". Thereby we distinguish the
cases 91 = .x and 9/ i- .x
9/ i- .x :

Then ai) is the suffix of 91, hence it does not overlap with u~ and we have UI = u~ = u~'.

I.e. 9/UIH = v/ad(ajv/H for V/, VI+1 E d *.

Let us assume U/+1 = Ut+1' hence we have Wl = W3. Rule (3) cannot be used to reduce

W3, otherwise (ai) would be suffix of 91, but this is an useful part. Using one of the

rules (4) - (6) gives us U' = uIVlaiajVi+1, but this does not contain a left-hand side of

a rule except in Ut. Since UI == u,' we have U' == U" and w,. == W2, hence Wlh W2.

Let us assume to the contrary that UIH i- u~H' Due to the form of the rules U/H =

(ajv/H must be reduced by (1). Lemma 20 gives us ViH = w), with W E E*, aiW i- iiiW.

Furthermore, u~+1 = (iiiW), this is the unique descendant of UI+l beginning with (.

If a;w = .x then 0 ---"- .x must be used to reduce 9IUt+1' hence U" = 91 and w" =

90Ul ... U1919/HUI+2 ••. Un9n· Since 91 = Vlai), 9191H does not contain the left-hand

side of a rule, hence w" is irreducible.

H a;w i- .x then UI9IU~+1 = UIVlai)(a;w) and U' = U/Vlaii.ij"W). As we have seen above,

U/ is not reduced and Viaia;w) does not contain an useful part, hence U' and w" cannot

be reduced to U" resp. W2.

It is easy to see that in both cases w" i- W2 and therefore we have w,. -F:R W2, contra

dicting our assumption Wl ->.c W2.

91 = .x: i.e. U/UIH = v/ai)(ajVI+1 for VI, VIH E d *.
We show that UI = Ut and UI+1 = UtH' The proof is by contradiction. First, let
us assume UIH i- u~H' To reduce UI+1 = (ajVIH we ha.ve to use rule (1), hence
VI+1 = XIH) with XIH E E*, ajXI+1 i- ajX'i+l. Furthermore, uf+1 has to begin with (,
hence u~+1 = (ajX'i+l)'

If ajX'i+l = .x then U' = u~ and Ul = vlai) ---"-:R U' :R U" = VlaiajXI+1)' Due to the
construction, v/aj must contain a.t most one sta.te symbol ~ or if there is no such symbol

we have one opening parenthesis (and we take 6 =(. Hence VI = v16v? We now show,

23

Only the useful parts u l , . . . , u,. can be changed when reducing w] a}; wa, no 9; will be
involved in a reduction. Hence we. = you’lgl . . . 14,3]...

Applying the T-rule to reduce wa to 104 changes at least one useful part, let «n+1 be
the rightmost of these parts. Due to the form of the rules, either the useful part u; or
the garbage 9; to the left of u,“ can be involved in this reduction. Notice, that the
garbage g,.“ will not be changed. Hence, ufgmfi+1 is reduced to a string U’, this might
be an useful part as well as garbage, we have wa = you’lgl . . ‚gl-; ufgm;+1 g,“ . . ‚tag,. “0
you’lgl - - -gl—1 U' gl+1 - - dd. n = 104-

While reducing w4 a}; wa, again the u; and U’ are reduced only, no g,- is reducible, hence
wz = goui'gi »..gz-i 0" 91+: - - . uflgn .

Since w1 = ua;)(a‚-v we know that (a,- is the prefix of some uk. We now have to show
that k = l + 1. Let us assume to the contrary that l + 1 < k. Since w; = ua.-)(aJ-v and
mg = ua.-air) we have uk.” = u}:+1 , . . . , u,. = ufl, the rightmost useful part which is reduced
in the reduction w; #5 w; is uk. uk is reduced by rule (1) , hence there is a w € E" such
that uk = (11,10), it has to be reduced to sagajw), where a: € A". This reduction uses rules
in R, strictly speaking rules in Rf . Looking at these rules we can see that this reduction
is impossible, contradicting w; _.2, mg. Analogously, Ic < ! + 1 gives a contradiction, hence
l + 1 = k .

As above we have ul = u'l', . . „111-1 = “ll-11"!” = uff”, . . „u, . = ufl. Hence the only
possibilities to use the rules of R are the reductions u; A}; uf, “(+1 dä uf+1 and U’ d}; U ” .
We show now that we also have u; = uf, u,.” = uf+1 , U ' = U " . Thereby we distinguish the
casesgz=AandglaéA

gl # " =
Then (z,-) is the suffix of gl, hence it does not overlap with n; and we have u; = u; = uf’ .
I-e- ginn-1 = vlai)(fljvl+1 for vl ,vt+1 € A‘-

Let us assume ul.” = u;„ , hence we have w1 = w3. Rule (3) cannot be used to reduce
w3, otherwise (ag) would be suflix of g l , but this is an useful part. Using one of the
rules (4) - (6) gives us U’ = "muß,-v,“, but this does not contain a left-hand side of
a rule except in 14;. Since u; = uf' we have U’ = U” and w4 = 102, hence wl ab wz.
Let us assume to the contrary that "(+1 # u.;+1 . Due to the form of the rules um =
(a,-vl.” must be reduced by (1). Lemma 20 gives us v1+1 = m), with m € 2‘,a,-w # «f.-Tv.
Furthermore, uf+1 = («T.-Tu), this is the unique descendant of In.“ beginning with (.
If (f,-Tu = A then () -* A must be used to reduce auf“, hence U” = 9; and 104 =
goal . . &”),nq . . sung". Since g; = mag), g1g1+1 does not contain the left-hand
side of a rule, hence to.; is irreducible.
If a’jTu # A then 1119114“ = 1110111002770) and U’ = wollt.-fin). As we have seen above,
at is not reduced and mega/fin) does not contain an useful part, hence U’ and 11).; cannot
be reduced to U” resp. ")2.
It is easy to see that in both cases w4 # w; and therefore we have w., 71—3} 102, contra-
dicting our assumption wl ...?) 102.

g; = A: i.e. mug.” = v;a;)(a,-v1+1 for 111,111“ € A‘ .
We show that in = n; and ul“ = uf+1 . The proof is by contradiction. First, let
us assume up” # uf“. To reduce WH = (a,-v,“ we have to use rule (1), hence
v,.” = am“) with zu“ € 82:15:21“ # afi'fid. Furthermore, u;+1 has to begin with (,
hence uf+1 = (ajfil).
If 0572?“ = A then U’ = u; and u; = mag) dä U’ ...} U” = ”laiaj$l+1)n Due to the
construction, via; must contain at most one state symbol 8 or if there is no such symbol
we have one opening parenthesis (and we take 6 = (. Hence v; = elldvf. We now show,

23

that the reduction Ul -"R U" is not possible, thus contradicting ajXl+l = '\. According
to 6 we have the following cases.
6 E {pl, .. . ,p6}: The reduction Ut -"-R U" uses only rules in Rp. At least one rule is

applied, shifting the state symbol to one side. Further reductions can only change
6 to another letter or shift it in the same direction again. 6 cannot be inserted
again or shifted to its original position, hence Ul f'-R U".

6 E {Po, ... ,PI}: The reduction has to insert letters from E, but the rules in R~ use
only letters of copies of E. These letters can be inserted only using rules of R:,
but then we have state symbols p3 , ••• , p6 and we cannot return to the original
one which occurs in U" , again Ul f'-R U".

6 = (: Le. we have to use rule (1), this implies vl = ,\ and vl E E" such that

vlai ::fi ~. (vlai) has only one descendant which begins with (: (;;;;i). Since

ajxt+l ::fi ,\ and the length of ;;;;i is less or equal than that of vla, we have

vlai ::fi vlaiaj xl+ll hence Ut f'-R U".
D E {q2, ... , q4, qo, ... , q/}: To insert letters of E, each reduction which uses these

states has to use a closing bracket], but we have Ut = vlai) and Vt contains no
brackets, hence we cannot insert these letters and thereby Ut f'-RU".

D= ql: ql can be shifted only rightward up to the parenthesis), then it is replaced
by q2. To insert it again we have to move q2 to the left and then we change it
to lJo. This implies that vf E [E~ and vl E E". qo starts the computation of
the representative of the corresponding word in E". This final configuration is
irreducible by rule (1), hence we cannot insert qI, and we have Ut f'-R U".

DE {q5,q6}: These state symbols can be moved to the left, then they are deleted.
To insert them again we have to use rule (1), initiating the computation of the
representative of the word in E" corresponding to Ut. Hence, when inserting q5 or
q6 we have a word which is not longer than Ut. But Ut is shorter than U", hence

U/ f'-R U".
We have shown, that ,the case aJXI+I = ,\ cannot occur. Now, the same tedious task
has to be done for aiXi+l ::fi '\. In this case we have to use one of the rules (3) - (6)
to reduce u~u~+l to U', hence Ut has a suffix in E", Le. u~ = Xtxl), xl E E". We have
UtUt+l = vtai)(ajxt+d -"~, xtxl)(ajX/+l) and U' = xtxlajXl+d -"R vtaiajxt+d = U".
Since ajxt+l ::fi ajXl+I we have to reduce XtXI by R. Therefore it contains a state
symbol, or an opening parenthesis (, if there is no state symbol we take, = (. There
are viI, vi2 E d" such that Ut = x/xl) = v;X,vP). Analogously we have U/ = v/ad =
vlDvlai)'
As above we distinguish the following cases according to D
oE {pI, ... , p6}: Each of these symbols is moved to one side using Rp, then it may

be changed or there are no more rUles which can be applied. In the first case we
cannot insert it again, hence no descendant of Ut resp. U' begins with vlo and we
have U' f'-RU".

o E {Po, ... ,PI}: Only rules in Rp can be used to reduce u/ and U'. Therefore we
cannot change the suffix ajXi+l) of U', but ajXl+l ::fi ajXl+t, hence U' f'-R U".

o= (: Le. we have to use rule (1) to reduce Ut, hence vl = >.., vl E E" such that vlai ::fi
;;:j';i. There are only two descendants of UIUI+t beginning with (: (;;:j';iajXl+l)

and (vla;;;;x'+t). The second one is irreducible, both are not equal to U", again
U' f'-R U".

24

that the reduction u; a}, U” is not possible, thus contradicting aß?“ = A. According
to 6 we have the following cases.
6 € {p1,. . . , 6} : The reduction u; A}; U" uses only rules in R,. At least one rule is

applied, shifting the state symbol to one side. Further reductions can only change
6 to another letter or shift it in the same direction again. 6 cannot be inserted
again or shifted to its original position, hence u; 7‘“ U”

6 € {po,.. .:‚pf} The reduction has to insert letters from E, but the rules 1n R2 use
only letters of copies of 2 . These letters can be inserted only using rules of R3,
but then we have state symbols p3 ,” .‚p6 and we cannot return to the original
one which occurs in U” , again u; ‚L' U"

6 = (: i..e we have to use rule (1), this implies v,1 = A and 0,2 € !? such that
v, a.- # v, a.. (0,11,) has only one descendant which begins with (: (u,a.). Since
aim-(+1 # A and the length of vfa, is less or equal than that of v,a‚- we have
vfa; # vfagail, hence m +}, U”.

6 € {q2,. . .‚q‘,qo‚. . .,qf}: To insert letters of 2 , each reduction which uses these
states has to use a closing bracket], but we have u, = mag) and v, contains no
brackets, hence we cannot insert these letters and thereby u; +}, U" .

6 = ql: q1 can be shifted only rightward up to the parenthesis) , then it is replaced
by q”. To insert it again we have to move q2 to the left and then we change it
to qo. This implies that v} € [2; and v,2 € 2 ' . qo starts the computation of
the representative of the corresponding word in)3". This final configuration is
irreducible by rule (1), hence we cannot insert ql, and we have ul +}, U” .

6 € {q5,q6}: These state symbols can be moved to the left, then they are deleted.
To insert them again we have to use rule (1), initiating the computation of the
representative of the word in 2’ corresponding to ul. Hence, when inserting q5 or
q6 we have a word which is not longer than 11;. But in is shorter than U " , hence
u, 71",} U ".

We have shown, that ‚the case aft-T.” = A cannot occur. Now, the sam'e tedious task
has to be done for er,-ETH # A. In this case we have to use one of the rules (3)— (6)
to reduce “!"!“ to U’, hence 11, has a suflix'1n 2", i.e 11,—= 2:12,),3, € 2". We have
mum = via.)(ajzz+1) -I‘, z:$,)(d‚$’T+l) and U’ = zzzfljfiq) R vxa .a , zz+1) -_ U”

Since ajzz+1 # afi-TH we have to reduce zur, by R. Therefore it contains a state
symbol 7 or an opening parenthesis (, if there is no state symbol we take 7 = (. There
are 051,21? € A‘ such that u, = 2:12;) = vfl‘yvfz). Analogously we have u, = mm.-) =
v,‘6v,2a.-).
As above we distinguish the following cases according to 6

6 € {p1‚ . . . , 6} : Each of these symbols i s moved to one side using Rp, then it may
be changed or there are no more miles which can be applied. In the first case we
cannot insert it again, hence no descendant of u; resp. U’ begins with 0,16 and we
have U' 74*}; U".

6 € {po‚. . . ‚pf}: Only rules in R„ can be used to reduce u; and U’. Therefore we
cannot change the suffix ajfil) of U’, but am.” # afar”, hence U’ {*}, U”.

6 = (file. we have to use rule (1) to reduce u., hence v} = A, 11,2 € 2" such that 12,211.,- #
11,3115. There are only two descendants of «zum beginning with (: (vfagafll)
and (”l2aiaj21+l). The second one is irreducible, both are not equal to U”, again
UI * ; U” .

24

6 E {q2, ..• , q4, 110, ... , qJ}: The reductions Ul Rul and utRU" are restricted to
VI since the rules corresponding to these state symbols cannot use the suffix ai) of
Ul resp. the suffix in E+ of x"

6 = ql: This symbol can be only deleted or shifted to the right. Before inserting it
again we have to use rule (1), this must be done in one of the reductions Ul Ru,
or utR U". The word which is reduced by rule (1) must have the form (w)
with w E E* and w i- w. Therefore rule (1) cannot be applied in the reduction
UlRu" because the first descendant of Ul beginning with (is a word ofthe form
(w), but with w = w.
Now, there are only 4 possibilities for 'Y, we have 'Y E {ql, qS, q6, (}.
If 'Y = ql and rule (1) can be applied on a descendant of ut, then ut E [E~qlE*).

Therefore Ul is in [E~ql E*) too, we have Ul = [Ylcq1Y2) with Yl~ E E~, Y2 E E*. Now
the first descendant of U' beginning with (is the word (YIY2(ijXI+t}. This word is
irreducible, thus contradicting that we use rule (1) in the reduction U'RU".
If 'Y = (then again U/ = [Ylcq1Y2) and U' = (YlY2ajXi+d. If it were possible to
reduce U' to U" = [Ylcq1Y2ajXI+t} we would have ajx/+! = ajXl+b a contradiction.
U' can be reduced to (YIY2(ijX/+t}, but this cannot be reduced to U", since other
wise (YIY2(ijXI+d1i [Ylcq 1Y2 ajXl+dR(YIyiUjXl+d, contradicting termination
ofR.

If 'Y = q5 or 'Y = q6, we can shift 'Y to the left and change it to (, we proceed as in

the case 'Y = (.

6 E {qS, q6}: Using the rules in R} we reach the left end of U/ and change the state
symbol to (. To insert 6 again we have to use rule (1). We proceed as in the case
6 = (.

In all cases we have shown that U' -f-RU" and thereby Wl -f-cW2. Hence our assump
tion Ul+! f: ul+! is false. But what about the case Ul i- ul and Ul+! = ul+!? Arguing
as above this case is contradictory too.

Therefore U/ = Ut = vlai), U/+l = ul+1 = (ajv/+! and U' = Vlaiajv/+! = U". But now
Wl = W3, W4 = W2, finishing the proof, we have WlhW2.

25

0

6 € {q7‚.. .,q‘,qo,...,qf}: The reductions u; d}; uf and U’ fl}. U” are restricted to
v; since the rules corresponding to these state symbols cannot use the sufiix ag) of
u; resp. the suffix in 2+ of z}.

6 = q’: This symbol can be only deleted or shifted to the right. Before inserting it
again we have to use rule (1), this must be done in one of the reductions up '"?! u;
or U’ #3.} U” . The word which is reduced by rule (I) must have the form (m)
with w e E” and w # ib. Therefore rule (1) cannot be applied in the reduction
u; é}; uf, because the first descendant of u, beginning with (is a word of the form
(10), but with w = tb.
Now, there are only 4 possibilities for 7, we have 7 € {q1, (15,416, (}.
If 7 = (;1 and rule (1) can be applied on a descendant of U' , then U’ € [EZq12').
Therefore at is in [21:91?) too, we have u; = [ylcqfl with 3/1: E 22, gg € 2". Now
the first descendant of U’ beginning with (is the word (gl 31271721“). This word is
irreducible, thus contradicting that we use rule (1) in the reduction U’ “;: U” .
If 7 = (then again u; = [ylcq‘yg) and U’ = (mgajfil). If it were possible to
reduce U’ to U” = [mal!/gain“) we would have (z,-z,.” : (z,-fin a contradiction.
U’ can be reduced to (mg/271721“), but this cannot be reduced to U", since other-
wise (y1y271731+1) “Ä [mal!/21531“) A}; (ylyzij‘xl+1), contradicting termination
of ——R.
If 7 = q5 or 7 = 416, we can shift 7 to the left and change i t to (, we proceed as in
the case 7 = (.

6 € {q5, 6} : Using the rules in R:} we reach the left end of u; and change the state
symbol to (. To insert 6 again we have to use rule (1). We proceed as in the case
6 = (.

In all cases we have shown that U’ 74-}; U” and thereby wl 74-5 102. Hence our assump-
tion u,.“ 96 u;„ is false. But what about the case m # n; and u,.“ = uf+1'? Arguing
as above this case i s contradictory too.

Therefore u; = uf = um.-) ,ulfl = uf“ = (ai and U’ = vlagajvl.” = U”. But now
101 = 103, w4 : wa, finishing the proof, we have wl "“:? wz. D

25

