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Abstract

Following Buchberger’s approach to computing a Grobner basis of a poly-
nomial ideal in polynomial rings, a completion procedure for finitely generated
right ideals in Z[H] is given, where H is an ordered monoid presented by a finite,
convergent semi-Thue system (X,T). Taking a finite set F C Z[H] we get a
(possibly infinite) basis of the right ideal generated by F, such that using this
basis we have unique normal forms for all p € Z[H] (especially the normal form
is 0 in case p is an element of the right ideal generated by F'). As the ordering
and multiplication on H need not be compatible, reduction has to be defined
carefully in order to make it Noetherian. Further we no longer have p-z —,0
for p € Z[H],z € H. Similar to Buchberger’s s-polynomials, confluence criteria
are developed and a completion procedure is given. In case T =@ or (£,T)is a
convergent, 2-monadic presentation of a group providing inverses of length 1 for
the generators or (X, T') is a convergent presentation of a commutative monoid ,
termination can be shown. So in this cases finitely generated right ideals admit
finite Grobner bases. The connection to the subgroup problem is discussed.
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1 Introduction

The theory of Grobner bases for polynomial ideals in commutative polynomial rings
over fields K{z,,...,r,] was introduced by Buchberger in 1965 [Bu85]. It established
a rewriting approach to the theory of polynomial ideals. A Groébner basis G is a
generating set of a polynomial ideal such that every polynomial has a unique normal
form using the polynomials in G as rules (especially the polynomials in the ideal reduce
tc zero). Buchberger gave a terminating procedure to transform a generating set of
polynomials into a Grobner basis of the same ideal. In case we have a finite Grobner
basis many algebraic questions concerning polynomial ideals become solvable, e.g. the
membership problem or the congruence problem. Authors as Buchberger, Kandri-
Rody, Kapur, Lauer, Stifter and Weispfenning extended this theory to other coefficient
rings as the integers, Euclidean rings or regular rings [Bu83, Bu85, KaKa84, KaKa88,
La76, St85, We87]. Recently there have been some attempts to expand these ideas
to non-commutative polynomial rings, which are in general non-Noetherian. Take for
example Z[H] where H is the free monoid presented by ¥ = {a,b,c},T = 0. Then the -
corresponding (right—, left—) ideals generated by {ab‘c —b' | 2 € N} do not have a finite
basis. Authors as Mora, Baader, Kandri-Rody and Weispfenning have investigated the
situation for special non-commutative polynomial rings, e.g. the ring R (z1,...,z,),
where R denotes a field in [Mo85] or the integers in [Ba89], and algebras of solvable
type as introduced in [KaWe90] or skew polynomial rings as introduced in [We92].
They have shown that in these cases finitely generated right ideals (or even ideals)
admit finite Grobner bases. These approaches have in common that their orderings are
monotone with respect to multiplication on the respective structure: if ¢; > £, then
ty -z >ty - z. The results of Baader and Mora can be described using the ring R[H],
where H is the free monoid presented by ¥ = {z1,...,z.},7 = 0. The main idea
of this paper is to generalize these approaches to monoid rings R[H], where H is an
ordered monoid presented by a finite, convergent semi-Thue system (£,T).

In the next section the basic definitions of monoid rings R[H] and some examples are
given. Section 3 discusses how polynomials can be used as rules. Different definitions of
reduction together with their properties and (dis-)advantages are given. Since ordering
and multiplication on H need not be monotone, one main lack of our reduction is that
p -z, where p € Z[H],z € H, need not be reducible to zero by p. In section 4 the
concept of saturation is introduced, which gives a solution to this problem. Section 5
gives an algorithmic approach to this concept. We end up with (possibly infinite) sets
of polynomials, which allow us to reduce p-z to zero. Saturating sets in general are no
‘Grobner bases, i.e. the reduction induced by them need not be confluent. In section 6
a confluence test is developed using a concept similar to Buchberger’s s—polynomials.
A procedure is provided, which takes a finite set F' C Z[H] and produces a (possibly
infinite) Grobner basis of the right ideal generated by F, such that using this basis
we have unique normal forms for all p € Z[H], and the normal form is 0 in case p
belongs to the right ideal generated by F. The procedure can be shown to terminate
in case T'= 0 or (X,T') is a convergent, 2-monadic presentation of a group providing
inverses of length 1, so in this case finitely generated right ideals admit finite Grébner
bases, even if the monoid ring is non—Noetherian. The class of groups presented by



convergent, 2-monadic presentations providing inverses of length 1 (which is indeed
the same as the class of groups presented by convergent, 2-monadic presentations, as
shown in [AvMaOt86]) is the class of plain groups, i.e. free products of free and finitely
many finite groups [MaQt89]. Further we give a short outline how this approach can
be successfully applied to other special presentations (X, T') of H, where T contains a
commutative system for all letters in ¥. In this case all finitely generated ideals admit
finite Grobner bases. Finally a brief application to the subgroup problem is given, i.e.
given a subgroup S of a group G and an element g € G, decide whether ¢ € S.

2 Basic Definitions

Let R be a ring and let H be a monoid. Then R[H]| denotes the set of all mappings
f :H — R where the set {m € H | f(m) # 0} is finite. Abbreviating f(m) by a, € R
we can express f by the “polynomial” f =3, .cnam - m. Further we define addition
and multiplication in R[H] as follows: Let f = Y ey am-mand ¢ = 3, cp bni-m denote
two elementsof R[H|. Then the sum of f and ¢ is denoted by f+g¢, where (f+g)(m) =
f(m) + g(m) or expressed in terms of polynomials f + g = >, cn(@m + bn) - m. The
product of f and g is denoted by f - g, where (f - g)(m) = T, —mewn f(z) - g(y) or
expressed in terms of polynomials f - g = 3 ey Cm - m With ¢y = 3o yomen @z - by. It
easily can be seen that R[H] indeed is a ring ! and we call R[H] the monoid ring of H
over R, or in case H is a group the group ring of H over R.

Example 1

(a) Let G be a group. Then Z[G] denotes the group ring of G over the integers Z.

(b) Let H = (z) be the free monoid with one generator. Then R[] is isomorphic to
the well-known polynomial ring in one indeterminate R[z].

We will restrict our considerations to right ideals mainly. For a subset F' C R[H]| we call
ideal (F)= {3 " ci-pi-m;|n€N,¢ € R,p; € F,m; € H} the right ideal generated
by F and ideal(F) = {T% ,ci-m;-pi-mi|n € N,¢; € R,p; € F,m;,m! € H} the
ideal generated by F. Two elements f,g € R[H] are said to be congruent modulo the
ideal(F)?, (we write f =ijeai(r) 9) if f = g+h, where h € ideal(F),i.e. f—g € ideal(F).

As we are interested in methods of Grobner basis calculations for right ideals in R[H],
we need a presentation of our monoid H. Every monoid H can be presented by a pair
(£,T), where L is an alphabet and 7" a semi-Thue system over X. One only has to
choose £ = H and T the multiplication table of the monoid. Since this presentation
might be infinite or even non-recursive, we are only interested in monoids, which allow
“nice” presentations. Therefore, we will restrict ourselves to presentations, where X is
finite and T is finite, confluent and Noetherian, i.e. each word in ¥* has a unique normal
form with respect to T. We will call such a confluent and Noetherian presentation

L All operations mainly involve the coefficients in the ring R.
2Gimilar for ideal, (F').




convergent. Then each word in ¥* has a unique normal form and the monoid H is
isomorphic to the set TRR(T'). The empty word A € £* presents the identity of H. If
- denotes the binary operation on H, given z,y € H we define z -y = (zy)|r, where
w|T denotes the normal form of w with respect to T'.

Example 2

(a) Let ¥ = {z1,...,z,} and T. = {zx; — z;2; | ] < 1, t,j € {1,...n}}. Then
‘H is the free commutative monoid generated by £ and R[H] is isomorphic to
R[z,,...z,], the polynomial ring in n indeterminates .

(b) Let £ = {zy,...,25,27"...2;'} and T = {2¥ — 2%2¢ | j < 4, 1,5 €
{1,...n}, 6,8 € {1,=1}} U {z;z7' — A z7lz; - A | € {1,...n}}. Then
G is the free commutative group generated by X.

Remark 1
If H is not cancellative, Z[H] may have zero divisors. Take ¥ = {a,b,c} and T =
{ab— c,ac — b}. Then a® — A, c#0but (a>?-=A)-c=c—c=0.

3 Right Reduction in R[H]

Throughout this section let H be a monoid with a finite convergent presentation (3, 7).
In order to define a reduction in R[H] we have to use polynomials as rules. Therefore, we
introduce an ordering on monomials and, as we are interested in Noetherian reductions,
we need a well-founded ordering on the elements of R[H]. If not stated otherwise our
well-founded ordering on H is the ordering induced by the admissible, i.e. compatible
with concatenation, well-founded total ordering on ¥* used for orienting T, for example
the length-lexicographic ordering in case T is monadic and convergent, in particular
w > A for all w € £* — {A}. We will take R to be Z, the ring of the integers.

Definition 1

Let >~ denote a well-founded total ordering on H and >3 a well-founded ordering on
Z.

(a) Let p € Z[H].
Arranging the w; € H with p(w;) # 0 according to > we get wy, > ... > wy,
where w; # w; for i # j. Using this ordering we write p = 7, a; - w;, where
a; = p(w;). We let HM(p) = a, - w; denote the head monomial, HT(p) = w,
the head term and HC(p) = a, the head coefficient of p. RED(p) = p — HM(p)
stands for the reductum of p. T(p) = {ws,...,w,} is the set of terms occurring
in p.

(b) Let p= Y7, ai-wi,q =72, b; - v; € Z[H].
p is greater than ¢, i.e. p > g, if




(i), HT(p) = HT(q) ot
(1) HT(p) = HT(q) and HC(p) >z HC(q) or
(iti) HM(p) = HM(q) and RED(p) > RED(q).

Now we are able to use a polynomial p € Z[H] as a rewriting rule by splitting it into
HM(p) - —RED(p) and HM(p) > —RED(p).
The following remark shows that in general a monotone ordering > on H or G will not

be well-founded.

Remark 2
Let G # {1} be a group ® with a monctone ordering >.

1. G cannot contain an element of finite order g # 1.
Suppose ¢ € G — {1} is of finite order, i.e. there is n € N minimal such that
g™ = 1. Without loss of generality let us assume ¢ > 1. Then (as > is monotone
and transitive) we get ¢"~' ~ 1 giving us 1 > g, contradicting our assumption.

2. The ordering > is not well-founded.
Without loss of generality let us assume g = 1 for some g € G — {1}. Then (as =
is monotone) we have 1 = ¢g~! and (as > is transitive) g = 1 = g1 = ... = ¢g™"
forallne N 4.

Remark 3
We now will specify a total well-founded ordering on Z °:

a>0and b< 0
a<zbiff { a>0,b>0anda<b
a<0,b<0anda>b

and e <zbiffa=bora<zhb.

Let ¢ € N. We call the positive numbers 0,...,c — 1 the remainders of ¢. Then for
each d € Z there are unique a,b € Z such that d = a- ¢+ b and b is a remainder of
c. We get b < c and in case d > 0 and a # 0 even ¢ < d. Further ¢ does not divide
by — by, if by, b,y are different remainders of c.

In defining appropriate reductions in Z[H] we have to be more cautious than in defining
reductions in the polynomial ring K{zy,...,z,] (compare [Bu85]). We will give four
possible definitions together with their advantages and disadvantages.

Definition 2 (Strong right reduction)
Let p=37, 0, -wi,g =7, b; -v; € Z[H].

We say g strongly right reduces p to q at a; - wy in one step, i.e. p—} g, if

3The second remark is likewise true for any monoid H having elements of infinite order h, A1 €
H — {A} satisfying h - h~! = 1.

*As all g € G — {1} have infinite order.

SIf not stated otherwise < is the usual ordering on Z.
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1. HT(g - ) = wy for some z € H.

2. HC(g-z) >0 and ax = a- HC(g-z)+ b for a,b € Z,a # 0, b a remainder of
HC(g - z).

3.g=p—a-g-z.

We write p—; if there is a polynomial ¢ as defined above.

We can define 5* | 5* | % and strong right reduction by a set F C Z[H] as usual.

Definition 3 (Right reduction)
Let p= Z?:l a; W, g = Z?:l b]‘ © Uy € Z[H]

We say g right reduces p to q at ai - wy in one step, i.e. p—7 g, if

(a) HT(g - z) = v, - ¢ = w;, for some z € H.

(b) HC(g -z) > 0 and ax =a- HC(g-z)+ b for a,b € Z, a # 0, b a remainder of
HC(g - z).

(c)g=p—a-g-z.

We write p—; if there is a polynomial q as defined above.

We can define =", 57 27 and right reduction by a set F C Z[H] as usual.

In order to decide, whether a polynomial g (strongly) right reduces a polynomial p at
a monomial a; - wg, the equation in (a) in the above definitions must be solvable in
(£,T). Note that if this is possible, there can be no, one or even (infinitely) many
solutions depending on H. For example if H is a group there is always ¢ € H such
that -z = v for u,v € H, namely z = u~! - v. In case H is left—cancellative we have
at most one solution. In case H is right—cancellative we know HC(g - z) = HC(g).

Example 3

1. Let & = {a,b,c} witha = b= cand T = {ab — a,cb — a}. Then p = ¥*
is not right reducible by ¢ = a + b —c, as b # a -z for all z € H. On the
other hand p = a + c is right reducible by ¢ = 2¢ —c+ A, as g- b = a + b and
HT(g-b)=a-b=a.

2. The following phenomena can occur: p-r = q and p-y = k - ¢ for some p,q €
Z{H],z,y € H,k € Z. Let £ = {a,b,c,d,e} and T = {ad — a,bd — b*,cd —
a,ae — a,be — b* ce — b%’}. Take p = —2a + b+ c, then p-d = —b*> + a and
p-e=2b? — 2a.

Note that we use HM(g - z) — —RED(g - z) as a rule only in.case HC(g-z) > 0
and additionly HT(g - z) = HT(g) - = when talking of right reduction. We do not
use HM(g) — —RED(g), since then —" would no longer be Noetherian, i.e. infinite
reduction sequences could arise. This is due to the unfortunate fact that our ordering
> on H is not necessarily monotone in the sense that m; > m, does not imply m; -z >
mq - I.



Example 4

Let ¥ = {z,z7'}, 27" > zand T = {zz~! — X,z 'z — A} be a presentation of the
free group generated by {z}. If we use HM(g) — —RED(g) as a rule in definition 3
we can right reduce 2 + 1 by r=! + z in the following manner:

x2+1——+;_l+r;v2+1—(z'1+J:)-z3=—x4+1

and —z*+1 likewise is right reducible by z=! +z causing an infinite reduction sequence.

Definition 4 (Prefix right reduction)
Let p=3%7,0a;, wi,g= Z;nzl bJ' -U; € Z[H]

We say g prefiz right reduces p to g at ax - wi in one step, i.e. p—F g, if
(a) viz = wi for some = € H, i.e. vy is a prefix of w.
(b) by >0 and ax =a-by +bfor a,b € Z, a # 0, b a remainder of b,.
(c)g=p—a-g-z.

We write p—? if there is a polynomial ¢ as defined above.

We can define 5?57 %2 and prefix right reduction by a set F C Z[H] as usual.

Notice that in this case (a) has at most one solution and we always have HC(g - z) =
HC(g).

T =T UT,, where T, = {ab — ba | a > b,a,b € X}, we can define commutative
reduction by using o as the multiplication in the free commutative semigroup generated
by X, i.e. uov = (uv)|r,. Note that commutative reduction is in fact the usual
reduction in polynomial rings (see e.g. [Bu85]).

Definition 5 (Commutative reduction)

Let p=3" ai - w;,,g=37,b;-v; € ZH).

We say g commutatively reduces p to q at ai - wy in one step, i.e. p—g g, if
1. v; 0z = wy for some z € H.
2.0y >0and axy =a-by+bfora,b€Z, a#0, b aremainder of b,.
J.g=p—a-g-z.

We write p —¢ if there is a polynomial g as defined above.

We can define 5, 5 B¢ and commutative reduction by a set F C Z[H] as usual.

As the “multiplication” used for reduction in definition 4 and 5 is compatible with the
ordering on H ® we always have HC(g - z) = HC(g). We now can use HM(g) —

SWe get HM (g -z) = HC(g) - HT(9)z > RED(g) -z = RED(g - z) respectively HM(g - z) =
HC(g)-HT(g)oz > RED(g) -z = RED(g - z).



—RED(g) as a rule in case b; > 0 and wy = HT(g)z respectively wy = HT(g) o .
Without this trick of using a restricted multiplication on H it is very hard to say how
a polynomial will “behave”.

Looking for properties of our reductions we immediately get —2 C —7 C —? and

g g g

c r s

—¢ C — —
g — g 'g g-

Lemma 1
Let F C Z[H]. Then the following statements hold for all four definitions of reduction:

(1) For all p,q € Z[H], p—fq implies p > q.
(2) —p is Noetherian.
(3) p—’q 0 a'nd q _)w 0 implyp—){w‘—w} 0

Proof :

1. This follows from the fact that using a polynomial f together witha € Z,z € H
for reduction we use a- HM(f-z) — —a- RED(f -z) as arule and HM(f -z) >
—RED(f - ).

2. This follows from (1), as the ordering > on Z[H] is well-founded.

3. p—,0 implies p = a - ¢- z for some a € Z,z € H, HC(q-z) > 0, and ¢—, 0
implies g =b-w -y for some b€ Z,y € H, HC(w-y) > 0.
In case we use strong right reduction we immediately get P —w—w) 0, as p =
a-b-w-y-zand HT(w - (y - z)) = HT(p).
In the other cases we have HT(p) = HT(q) - = (respectively HT (p) = HT(q)z
or HT(p) = HT(q) o z) as well as HT(q) = HT(w) - y (respectively HT(q) =
HT (w)y or HT(q) = HT(w) o y). Further HT (w - (y - z)) = HT(w) - (y - z)
(respectively HT (w- (y-z)) = HT (w)yz or HT(w - (y-z)) = HT (w) o yz) gives
us that p is right reducible to zero by w or —w 7, respectively prefix right or
commutative reducible to zero by w. q.e.d.

Unfortunately, reduction as defined above does lack some of the nice properties belong-
ing to reduction in general, as e.g. p - £—,0 or transitivity in the sense that p—_ and

q—, ¢ imply p—,, or p—_ .
Remark 4

1. Looking at strong right reduction as defined in definition 2 we get

(a) We do not have p-z —;0, but p-z—{, ,,0for p€ Z[H],z € H.

In case H is right-cancellative, we can even restrict ourselves to reduction with w.



(b) Strong right reduction is not transitive.
Let ¥ = {a,b,c} witha > b>cand T = {a®? — A, b — \,c® — A} be the
presentation of a group.
Looking at p = ba+b,q = bc+ A and w = ac+bweget p—3 p—q-ca = —ca+b
and¢g—2 ¢g—w-c=—-a+ A =:q.
Further p is neither strongly right reducible at ba by w or ¢;, as w-a = aca+
ba, w-caba = ba+bcaba and q,-aba = —ba+aba, q-ba = —aba+ ba all violate
condition (a) of definition 2, nor at b, as w - cab = b + bcab,qy - ab= ~b+a
and q; - b= —ab+b.

2. Looking at right reduction as defined in definition 3 we get

(a) We no longer have p -z —:v; 0 for p € Z[H|,z € H, not even p - T =7, 0.
Taking H to be the free group generated by ¥ = {z} we find that (¢! +
z) -z = x* + 1 is not right reducible by z~! + z. (Compare example 4)

(b) Right reduction is not transitive.
Let © = {a,b,c} witha > b>=cand T = {a? — X\, »* — X\, ab — c,ac —
b,cb — a} be the presentation of a group.
Looking at p = ba+b,q = a+ A and w = ¢* +b we get p—,p—q-ca=—catb
and g =7, g —w-bc=—c+ A =:q.
Further p is neither right reducible at ba by w or ¢;, as w - bc?a = ba + c*a
and ¢ - bca = —ba + bca both violate condition (a) of definition 3, nor at b,

asw-bc? =b+c?and q, - bc = —b+ be.
3. Looking at prefix right reduction as defined in definition 4 we get

(a) We no longer have p -z —'—‘r’;O for p € Z[H],z € H,not evenp -z —+’Ep,_p} 0.

Taking H to be the free group generated by ¥ = {z} we find that (z~2
A) -z = z7! + z is not prefix right reducible by z=2 + A.

(b) Prefix right reduction is transitive.
Let p—F and ¢ =%, q1. In case HM(q) = HM(q) we immediately get p —?
Otherwise HT (q) = HT (w)y, for some y € H, and 0 < HC(w) < HC(q)
together imply p—?

4. Looking at commutative right reduction as defined in definition 5 we get

(a) We no longer have p-z 520 for p € Z[H],z € H, not even p- ¢ —-»pr,__p} 0.
Taking H to be generated by ¥ = {a,b}, T' = {ab — ba,a’ — A} we find
that (ba + a) - a = b+ A is not commutatively right reducible by ba + a.

(b) Commutative right reduction is transitive.
Let p—¢ and ¢ —5, q1. Incase HM(q) = HM(q;) we 1mmed1ately get p—¢
Otherwise HT(¢) = HT (w) o y, for some y € H, and 0 < HC(w) < HC(q)

together imply p —¢,

The following lemmata are true for all four reductions.




Lemma 2
Let F C Z[H],p,q,h € Z[H]. Then p < q implies p+ h &g q + h.

Proof : Using induction on k we show that p eﬂp q implies p + h < q + h.
In the base case & = 0 there is nothing to show.

Assuming p 45>F pk —rq and p + h &5 pr + h we can distinguish two cases:

l. pr —»;qforsome f € Fand q=py —a- f -z, wherea € Z,z ¢ H.
In case pr + h—;pr + h —a- f - = g+ h there is nothing to show.
Suppose this is not true.
Let HT(f-z) =t, HC(f-z) = ¢ > 0 and a; respectively b; be the coeflicients of ¢
in p; respectively h 8. Further let a; = a-c+ b, where b is a remainder of ¢. Then
b is the coefficient of t in ¢q. We know that a; + b; # a - ¢ + d for all remainders d
of ¢ ?®.
Now we have to distinguish two cases:

(a) a;+ b; is a remainder of c.
Then looking at the coefficient of ¢t in ¢+ h we get b+ b; = a; —a-c+b; and
since @; + b; is a remainder of ¢, we have g+ h —, g+ h—(—a)-f-z = pc + A,
hence p+ h & pq + h.

(b) a;+ b, =a' - c+ ¥, where b’ is a remainder of ¢ and a #d'.
Since a; + b; is the coefficient of £ in py +h we get pr +h—,pr+h—a' - f-z.
Looking at the coefficient of t in g+ h we get b+b; = b+a'-c+b —a; = b+a’
c+b —a-c—b=(a’"—a) c+¥. Since a # o’ and ¥ is a remainder of ¢ we have
q+h —fq+h—(ad'—a) f-z=pi—a fx+h—d f-z4a fro=pt+h—af-z,
hence p+ h S p g+ k.

2. ¢ —; pi can be treated analogously. q.e.d.

Lemma 3

Let F C Z[H|,p,q,h € Z[H]. Let p — q = h, where the reduction takes place at the

monomial d-t and let t ¢ T(h). Then there are p',q' € Z{H] such that p-Spp',q->pq
‘and h=p — ¢’

Proof : let p—g¢q—ph =p—-—q—a-f -z, wherea € Z,f € F,z € H and
HT(f-z)=t. Let HC(f-z) = ¢ > 0 and d be the coefficient of t in p—q. Ast € T'(h)
we know d = a - c. Let ¢; respectively c; be the coefficients of t in p respectively ¢ and
& =ay-c+by,co = ay-c+ by, for some ay,ay, by, b; € Z, where b, b, are remainders
of c.

Then a-c=¢; — c; = (a1 — a3) - ¢+ b; — by, and as b; — b, is no multiple of ¢ we get
bl—b2=0anda1——a2=a.

We have to distinguish two cases:

8Using the different reductions we even get additional information, as HT(f) -z =t ot HT(f)z =t
or HT(f) oz = t, which is not needed, since the proof only uses reduction applying f together with
z. This is likewise true for lemma 3, 4 and 5.

%Otherwise we immediately would get p + h —pe+h—a-f-z=q+h
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1. @y # 0 and a; # 0.
Then p—pp—a;-f-z2=p,q—pq—a; f-z=qdandp' - ¢ =p—a,-f - z—
g+ay-f-z=p—q—a-f -z =h.

2. a); =0 and a, = —a (the case a; = a and a; = 0 is similar).
Then p' :=p,q—pq—ay-f-z=q+a-f-z=:q¢andp —¢ =p—q—a-f-z=h.
q.e.d.
Lemma 4

Let F C Z[H],0 # p € Z[H]. Let 0 be the unique normal form (using the corresponding
reduction) of p with respect to F', and t = HT (p). Then there is a polynomial f € F
such that p—,p' and t € T(p').

Proof : Since p-50, HM(p) = c-t is F-reducible. Let f;,,...,f;, € F be all
polynomials in F, which can be used to reduce c-t. Let a = mini;<x {HC(f;, - ) |
HT(f;,-z) =t,r € H} and f € {fi,,..., fi.} a polynomial corresponding to a, i.e.

there is z € H such that HT(f-z) =t and HC(f - z) = a.

Then p—;p—d-f-z=:p,d € Z and p' 50, as 0 is the unique normal form of p.
Suppose HT(p') = t. Then together with our definitions of reductions we have 0 <
HC(p') < a and, therefore, HM(p') is not F-reducible, contradicting p’ >z 0. q.e.d.

Lemma 5

Let F C Z[H],p,q € Z[H]. Let 0 be the unique normal form (using the corresponding
reduction) of p — q with respect to F. Then there exists a polynomial g € Z[H] such
that p-~pg and ¢ >p g.

Proof : Since 0 is the unique normal form of p — ¢ with respect to F, lemma 4
provides us with the existence of a reduction sequence p — ¢ = hh=p—q—a; -fi -

Tiy =y, hq S T, 0 such that h; = hj_y —a;, - fi -z, and HT(f; - z;) € T(h;).

We show our claim by induction on k, where p — ¢ —k~>F 0 is such a reduction sequence.
In the base case k = 0 there is nothing to show.

Let p — q—»Fh—li»FO.

Then by lemma 3 there are p’, ¢' € Z[H] such that p 5. p',q rq and h =p' — ¢'.
Now the induction hypothesis for p’ — ¢’ —k->FO yields the existence of g € Z[H] such
that p>pp' S pgand ¢5pq¢ Spg. q.e.d.

»
Unfortunately, the reflexive, symmetric and transitive closures of our reductions only
capture the right ideal congruence relation in case we take strong right reduction and

sets F' C Z[H] such that f € F implies —f € F 19,

10This condition is sufficient for the lemma, but not necessary, as we only need —f in case there is
some r € H such that HC(f - z) < 0. Then taking —f into account corresponds to the process of
saturating f, which will be introduced in the next section.
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Lemma 6
Let p,q € Z[H] and F C Z[H].

1. p&Sq if and only if p — q € ideal.(F) (assuming f € F implies —f € F ).

2. p &SP g implies p — q € ideal,(F) but not vice versa.

Proof :

1. (a) Using induction on k& we show that p ‘i’;‘q implies p — q € tdeal,(F).
In the base case k = 0 there is nothing to show, since p—p = 0 € ideal,.(F).
Let us assume that p <f+;~q implies p — ¢ € ideal,.(F).
Looking at p &; Pk % q we can distinguish two cases:

i. px —q with f € F.
Then ¢ = px—a-f-z, wherea € Z,z € ‘H and since p—q = p—pr+a-f -z
and p — px € ideal,(F), we get p — q € ideal.(F).

ii. ¢ —%px with f € F can be treated similarly.

(b) In case p — q € ideal,(F) we get p=q+3_7_; a; - f; - z;, where a; € Z, f; €
F, Z; € H.
We can show p &% ¢ by induction on m.
In the base case m = 0 there is nothing to show.
Let p=q+3X7,a;  f; i+ am41* fms1 Tmy1 and by induction hypothesis
p<:>i~q t ms1 g1 Tt
In case ¢+ @my1  frmt1 - Tma1 ?!m“,—fm“} q we are done.
Now suppose this is not true.
Let HT(fm+1 - Zm+1) = t and without loss of generahty HC(fm+1 - a:m+1) =
c > 0. Let a be the coefficient of t in ¢. Then a is no remainder of ¢ 1% |
ie.a=a -c+¥,d, ¥ € Z, where ¥/ is a remainder of ¢ and a’ # 0. We get
a+amyr-c=(a +ampr)-c+b.
In case @’ + a1 = 0 we get ¢ i 4 a " foi1 Tmi1 =9+ Amg1 - frat1 -
Tm+1 ‘:*%' p implying p ‘:’;7 q 13
In case @' + ami1 # 0 We get p Sp ¢+ @mit * frnt1 - Tmp1 =%, 4+ Gt -
frt1 - Tmi1 = (@' 4 @m41) - frmd1 - Tmpr = ¢ — @' - fropr - Tmyr ©F ¢ since
q—%,,,9— @ fms1 - Ty, giVing us p Sk q.
2. The proof of the ﬁrst claim is similar.

. To show that p — ¢ € tdeal,(F) in general does not imply p e—» q let us look at
the following example:

UNote that this additional information is necessary because of our handling of the coefficients in Z
in our definition of strong right reduction. In case the coefficient domain is a field or the elements of
Z are treated in another way, this is no longer necessary.

12Qtherwise we would immediately get ¢ + am41 - fnt1 - Tmi1 =%, ,, 1

13Note that this cannot always be done in case we use the other reductions since we do not necessarily
have HT(fm+1 - Tm+1) = HT(fm+41) - Tm41 respectively HT(fm41)Zm+1 O HT(fm41) © Tmt1-

12



Let ¥ = {a,b,c} witha>b>cand T = {a? = )\, b* — \,ab — c,ac — b,cb —
a}.

Takingp=a+b+c,gq=b—-dand F={a+b+c}wegetp—qg=a+c+A=
(a+b+c)-beideal,(F)but a+b+chi? b— A

Suppose a + b+ c &R b — A

Since a+b+c —75 0, we get b— A &% 0. Let n € N be minimal such that b— X &3 0.
As b— A A% 0 we know n > 1.

Let b — A =: po o p1 <F ... Oppr1 ©F0, where forall 1 <1 <n—-1,p =
pic1+ci-(at+btc) zi,fore; € Z,z; € Hand HT((a+b+c¢)-z;) = a-z,. Further
let ¢t = maz{HT (p;) |1 <i<n—1},thent >b as HT((a+b+c)-z) > b for
all z € H.

Let p; be the first polynomial, with HT (p;) = t,i.e. HT(p;) < t for all j < I, and
let pi4+« be the next polynomial, where the coeflicient of ¢ differs from HC(p) = ¢
14

Since HT ((a+b+c) - zipx) =a-zype =t =a-z;= HT ((a+b+c) ;) and (X,T)
presents a group, we get z;4x = z;. Substituting p; by p; = pi+ciqx-(a+b+c) -z,
Piv; bY Ply; = paj + - (a+ b+ ¢) -z for 1 <5 < k and deleting piyx we get

a shorter sequence b — A n«—_-};wO contradicting our assumption. q.ed.

The key idea behind weakening reduction is that if —=! C —? and &' = &2 the
confluence of —! implies the confluence of —?. Unfortunately the reflexive, symmetric
and transitive closure of (prefix, commutative) right reduction via a set of polynomials,
which are weaker than strong reduction, need not capture the congruence induced by
the right ideal generated by these polynomials, i.e. do not describe the same congruence
as the reflexive, symmetric and transitive closure of strong reduction. The solution to
this problem will be given by enriching the set of polynomials used for reduction in
order to achieve this property. This will be done in section 4

Next we define Grobner bases.

Definition 6
A set G C Z[H] is called a Grébner basis of a (right, left) ideal generated by a set
F C Z[H)] with respect to a reduction —, if

(i) g = Zideal,y(F)

(i1) S is confluent.

Note that if —»! C —? and &L = &2 =Zidealy y(F)» then a Grobner basis G with

1 2

respect to —" is also a Grobner basis with respect to —*.

14Note that the coefficient of ¢ in piy& is ¢; + ¢4 and can be zero.
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4 Saturation of a Polynomial p € Z[H]

As stated in the previous section, reduction as defined in the definitions 2, 3, 4 and
5 does not have the property p - z—‘»g""P'C)O and the reflexive, symmetric, transitive
closure need not capture the right ideal congruence relation. In the previous section we
saw that by taking the set {p, —p} instead of p alone, we can repair these defects for
strong right reduction. The main purpose of this section is to find sets of polynomials
in Z[H], which do the same for (prefix, commutative) right reduction, e.g. allow us to
(prefix, commutatively) right reduce all p - z to zero, where z € H.

Definition 7

Let p € Z[H] and F C {canon(p-z) | z € H} 5. F is called a saturating set for p,
if for all £ € H, p- z —%0 holds. F is called a prefiz saturating set for p, if for all
z € H, p-z—-%0 holds. F is called a commutatively saturating set for p, if for all
T € H, p-z—%0 holds. SAT(p), SAT,(p) respectively SAT (p) are the families of
saturating, prefix saturating respectively commutatively saturating sets for p.

Remark 5

1. Note that in defining (prefix, commutatively) saturating sets we demand (prefix,
commutative) right reducibility to 0 in one step.

2. To learn more about (prefix, commutatively) saturating sets for polynomials, we
will take a more constructive look at them.
Let p= Zf:l c; - t;, where ¢; € Z,t,' e H.
Let Xy, ={z € H| HT(p-z) = t,- z}, i.e. the set of all elements, which put ¢;
in head position 6. Let Y, = {canon(p - z) |z € X,,}.

(a) Choosing a set B;, C Y, such that for all p; € Y;, we have p; —%g, 0, we get
kB, € SAT(p).

(b) Choosing a set By, C Y;; such that for all p; € Y;, we have p; —->’}’3" 0, we get
UL, B, € SAT,(p).

(c) Choosing a set B;, C Y, such that for all p; € Yy, we have p; —p, 0, we get
Ui, B, € SAT.(p).

3. In 2 we do not specify how to choose the By, and, therefore, (prefix, commuta-
tively) saturating sets need not be unique. Choosing B;, = Y;;, we always get
saturating sets, which are in general infinite.

4. Y;, must at least contain canon(p), but all other Y;, can be empty. In case the
multiplication on H is monotone, we get Y;, = {canon(p-z) |z € H},Y;, = B for
: # 1, and By, = {canon(p)} is a finite saturating set for p.

5canon(p-z) =p -z if HC(p-z) > 0 and canon(p- ) = —p - = otherwise.

16Note that if  is not right—cancellative one z may belong to different sets.
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5. The right ideal generated by p is the same as the right ideal generated by a
(prefix, commutatively) saturating set of p.

6. SAT(p) and SAT ,(p) need not contain finite sets.

Take £ = {a,b,c,d,e, f} witha>=b>c>d>e> fand T = {abc — ba,bad —
e, fbc — bf}. Then (X,T) is a convergent presentation of a cancellative monoid.
Now look at p=a + f:

Then X; = {(bc)'dw | : € N,w € IRR(T)}, and Y; = {b'*! fdw + b'ew | ¢ €
N,w € IRR} has no finite basis in either sense. Since if it had a finite basis
By, we could choose k € N such that ¥**!fd + b*e ¢ B;. But then we get
bE+Y fd 4+ bre 7455;”)0 as bt fdw - ¢ = b*+! fd has no solution in H unless w = A
and : =k V7.

7. SAT (p) always contains finite sets due to Dickson’s lemma (see later).

8. Finite saturating sets always exist in case H is a group. We can even say that
for p = 3%, ¢i - t; there exists a set S € SAT (p) containing at most k elements.

9. If ¢ = p- z then a (prefix, commutatively) saturating set for p is also a (prefix,
commutatively) saturating set for ¢ but not vice versa. Take for instance ¥ =
{a,b,c} with a > b > cand T = {ab — ba,bc — cb,ac — ca,ab — ¢} and
p=a+l,g=p-b=b+c

Definition 8
Let F C Z[H]. We call F (prefiz, commutatively) saturated, if for all f € F, z € H
there is ¢ € F such that f -z — 0 using the corresponding reduction.

Note that saturating sets for a polynomial p are saturated, prefix saturating sets are
prefix saturated and commutatively saturating sets are commutatively saturated. Fur-
ther prefix saturated sets as well as commutatively saturated sets are saturated sets
and unions of (prefix, commutatively) saturated sets are again (prefix, commutatively)
saturated.

However, (prefix, commutatively) saturated sets allow special representations of the
elements belonging to their right ideal and, therefore, enable us to capture their right
ideal congruence.

Lemma 7

1. Let F C Z[H] be a saturated set. Every g € ideal,(F) has a representation
g=Yt,c-fi xi, wherec; € Z,f; € F,z; € H, and HT(fi - ;) = HT(f.) -
:E,‘,HC(f,' . :C,') > 0.

2. Let F C Z[H] be a prefix saturated set. Every g € ideal,(F) has a represen-
tation ¢ = Y%, ¢ - f; - x;, where ¢; € Z,f; € F,z; € H, and HT(f; - z;) =
HT(fi)zi, HC(f:) > 0.

17Every S € SAT (p) or S € SAT ,(p) must (prefix) right reduce the set X; to zero in one step.
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3. Let F C Z[H] be a commutatively saturated set. Every g € tdeal(F) has a

Proof :

representation g = Y.%_. ¢, - f;-z;, wherec; € Z, f; € F,z; € H, and HT(fi-z;) =
HT(f)oz;,HC(f;) > 0.

This follows immediately from definition 8. q.e.d.

Further there is a strong relation between the different reductions and the concept of
saturating polynomials as the following lemma shows.

Lemma 8
Let f,g,p € Z[H],S € SAT (p), S, € SAT ,(p), S. € SAT (p).

1. f —lp—p} 9 if and only if f —%g.

2. f—-5gifand only if f -5, 9

3. f—5g ifand only if f—% g.

4. f—%g if and only if f =% g.

Proof :

1.

(a)

(b)

Suppose f—:g,ie. g=f—c-p-zforsomece€ Z,z € H,HC(p-z)>0.
Since p - £ —50 we have p; € S such that p-z = ¢; - py - z; for some
¢ € Z,r, € H, and hence f—hes9-

Suppose f—7es9,i.e. g = f —c-p -z, for some ¢; € Z,r; € H. Since
p1 € S we have y € H such that p; = cqnon(p +y) and hence f -, 1 9.

2. (a) Suppose f—7 cs9,ie. g = f —~c1-ps -z for some ¢; € Z,z, € H. Since
1241 € S, HC(pl . .’L'l) > 0 and P11 —>§2€SPO we have Pr1- Ty =C2 P2 T2 for
some c; € Z,z2 € H and since -5 C —% weget f— .q 9.

(b) Suppose f—hes, 9. 1.e. g= f—c1-p1 -z, for some ¢; € Z,z1 € H. Since
m € S,, HC(py - 21) > 0 and p; - 2, =50 we have p; - 1 = ¢3 - p2 - 2 for
some c; € Z,z; € H, and hence f —] sg.

3. (a) Suppose f =} cs9,i.e. g = f —c1-p; -z, for some ¢, € Z,z; € H. Since
pp€8S,HC(p;-z;) >0 and p, - 7y —%,cs, 0 we have p; - £y = ¢ pz - 2 for
some ¢; € Z,z; € H, and hence f—+:2€5P g.

(b) Suppose f =7 s g,ie. g=f—c1-p1-2z, for some ¢; € Z,z; € H. Since
p1 € Sp, HC(p1 - z1) >0 and py - —7 es0 we have p; - 1 = ¢3 - p2 - 3 for
some c; € Z,z; € H, and hence f—] c5g.

4. This can be shown analogously. q-e.d.
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Lemma 9
Let p € Z[H] and S, S, € SAT (p). Then (':9%1 = o .

2

Proof : We show &5 C &% by induction on & for ‘f*rsl 18
In the base case k& = 0 there is nothing to show.
Let us assume i»gl C &5, .

Looking at po 45{5-1 Pk %5, Prs1 we distinguish two cases:

1. px = pk+1 With ¢ € Sy.
Then piry1 = pr —a-q-z for a € Z,x € H, and since 5 is a saturating set of p
we have q; € S; with ¢-z—] 0,ie. ¢g-z=c¢ - q -y, wherey € H, ¢; € Z and
Pk+1 = Pr —a - ¢y - q1 - Y. Therefore we get py —7 pri1, 1.e. pr =%, prsa-
Our induction hypothesis yields pg 4:{92 Pk %, Pk+1-

2. pr41 > Pk gives us po &%, Pey1 similarly. q.e.d.

Corollary 1
Let p € Z[H], S € SAT (p), S, € SAT ,(p). Then &5 = & .

Corollary 2

1. Let F C Z[H],p € Z[H] and F be a prefix saturated set. Then p—F}q if and
only if p—¥.q.

2. Let F C Z[H],p € Z[H] and F be a commutatively saturated set. Then p—%} q
if and only if p—%q.

Right now we know that (prefix, commutatively) saturating sets for a polynomial p
(prefix, commutative) right reduce the set {a-p-z | a € Z,z € H} to zero in one step.

Theorem 1
Let F C Z[H] be a saturated set, F, C Z[H] be a prefix saturated set, F, C Z[H] be a
commutatively saturated set, and p,q € Z[H].

1. Then p &% q if and only if p — q € ideal,(F).
2. Then p &% q if and only if p — q € ideal,(Fp).

3. Then p &%, q if and only if p — q € ideal (F,).

Proof : We only prove the first claim, since the other proofs are similar.

. . . ) .
18The case =%, C &% is symmetric.
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= Using induction on k we show that pff»} q implies p — q € ideal.(F).
In the base case k = 0 there is nothing to show since p — p = 0 € ideal,(F).
Let us assume that p ﬁ»} q implies p — q € tdeal,(F).
Looking at p «-‘3} Pk —F q we distinguish two cases:

(a) px =7 q with f € F.
Then g=pr—a-f-zfora€Z,z € Handsincep—qg=p—pi+a-f -z
and p — px € ideal . (F) we get p — q € rdeal (F).

(b) ¢—7 pr with f € F can be treated similarly.

< p—q € ideal(F)impliesp=q+37.,a; f; z;, where a; € Z, f; € F,z; € H.
We show p <% ¢ by induction on m.
In the base case m = 0 there is nothing to show.
Let p=gq+XTuia; fi T; 4 @Gmy1 " frg1 - Tmsr
Our induction hypothesis yields p &% g + @my1 * frms1 - Tma1-
Since F'is a saturated set we know a;,q1° frt1 - Tmt+1 25 0, 1.€. @it frnt1 Tmy1 =
k-f'-z',wherek € Z,f' € F,z’ € H, and HT(f'-2') = HT(f') - «'.
In case ¢ + am41 * fm+1 - Tmy1 —} q we are done. Now suppose this is not true.
Let HT(f' - 2') = t, HC(f' - ') = ¢ > 0 and a be the coeflicient of ¢ in ¢q. Then
a is no remainder of ¢, i.e. a = @’ - ¢ + b, where ¥ is a remainder of ¢ and a’ # 0
9 Wegeta+k-c=(a"+k)-c+¥.
In case @'+ k = 0 we get ¢ =}, q—a'- f'-z' = q+k-f'-2' &% pimplying p &% q.
In case a’+k # 0 we get p &% q+k-f'-z’ —% qt+k-f'-x'—(a'+k) f'-2' = q—a'-f'2,
giving us p ©% g, since ¢ —hg—a - f-z q.e.d.

Corollary 3

1. Let p€ Z[H],S € SAT(p). Then we get

*

OF = Sideal,(5) = Sidealy(p)
2. Let py,...p, € Z[H] and Sy € SAT(p1),...,S5, € SAT (p,). Then

t‘ r - — =
5,0..US, = =ideal (S$1U..US,) = =idealy(p1,...,Pn)

Notice that (prefix, commutatively) saturating sets for a polynomial p satisfy (i) of
definition 6 but in general need not be right Grobner bases of {p}, i.e. the Noetherian
relation —" induced by them need not be confluent, even restricted to {a-p-z | a €
Z,z € H} and so ideal,(p) does not necessarily right reduce to zero.

190therwise we have ¢ + am+1 - frma1 - Tma1 -7 q.
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Example 5

1. Let £ = {a,b,c} witha>=b>cand T = {a® = A,b? — X\,ab — c,ac — b,cb —
aland p=a+b+ec
Then S ={a+b+c,a+c+ A bc+c*+ b} e SAT(p).
Claim: —% is not confluent on {p-z |z € H}.
Wehavea+b+c—>;+p+,\b—)\and a+b+c—y,,, . 0but b—A7Z+'50.

2. Let ¥ = {a,b,c} witha>b>cand T = {a® — A, 6> — )\, ab — c,ac — b,cb —
alandp=a+b+ec
Then S, = {a+b+c,bc+c*+b,a+c+ A, batca+ ), cata+A, c?+b+c} € SAT ,(p).
Claim: —%_ is not confluent on {p-z | z € H}.
We have a + b+ c—,, , b~ Aanda+b+c—),,,  0but b— A5 0.

3. Let & = {a,b} witha=band T = {a® = \,ab— ba} and p=a+ b+ A.
Then S, = {a+ b+ X ba+a+ A} € SAT (p).
Claim: —%_ is not confluent on {p-z | z € H}.
We have ba+a+A -}, .. 0and ba+a+A -], —bP+a—b+A -], —b*—2b
but —b* — 26 A% 0.

Remark 6

1. Prefix Grobner bases and commutative Grobner bases are right Grobner bases
but not vice versa.
Let ¥ = {a,b} with a > band T = {ab — ba}. Then theset FF' = {e + A} is a

right Grobner basis, but not a prefix or commutative Grobner basis.

2. Further right Grobner bases are strong Grobner bases but not vice versa..
Let ¥ = {a,b,c,d,e,f} witha>=b>c>=d=e > fand T = {abc — ba, fbc —
bf,bad — e}. -
Then the set F' = {a + f} is a strong Grobner basis, but not a right Grobner
basis %°.

Note that even (prefix) saturated sets F' do not guarantee that p —%.0 implies p-z —%5 0
for p € Z[H],z € H.

Example 6
Let ¥ = {a,b,c,d} witha > b > ¢> d and T = {abc — ba, dbc — bd}.
Then the set F' = {a — ¢, cbc — ba, c + d} is (prefix) saturated.

Looking at p = a + d we get p—2>};~ 0. But p- bc = ba + bd is F-irreducible.

This example shows that removing elements from a set by interreduction can yield
different normal forms. Just take F' = FU{a+d}. Then ba+ bd >}, 0 but ba+bd 5} 0.

20Remember that F' allows no finite saturating sets.
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5 Taking a Closer Look at Saturation

In this section we investigate saturation with respect to prefix right respectively com-
mutative reduction. If finite prefix saturating sets exist, these are of course saturating
sets and they contain additional structural information. We give a procedure to enu-
merate a prefix saturating set and there are several structures allowing finite prefix
saturating sets, e.g. finite monoids, free monoids, and monoids having a monadic pre-
sentation. In commutative structures finite commutative saturating sets always exist.

5.1 Prefix Saturation in Finite Monoids

Let H be a finite monoid having a finite convergent presentation (X, T).

Procedure Prefix Saturation

input: p=Y% ¢ -t; € Z[H] and (Z,T) a presentation of H.
output: SAT,(p) € SAT ,(p).

SAT,(p) := {canon(p)};
for all z € H do

ifp-z %);,SAT,,(p) 0
then SAT,(p) := SAT,(p) U {canon(p- =)}
endfor

where canon canonizes a polynomial, i.e. multipliesit by —1 in case its head coefficient
is not positive.

Theorem 2
The procedure terminates.

Proof : This is due to the fact that H is finite. q.e.d.

Theorem 3
The procedure is correct, i.e. for all p € Z[H|, = € H the polynomial p - z is prefix
right reducible to zero by SAT,(p).

Proof : This is due to the fact that all p- z,z € H are computed and their canonized
form is added in case they do not prefix right reduce to zero by SAT,(p). g.e.d.
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5.2 Prefix Saturation for Monoids with Convergent Presen-
tations

We will give a procedure, which enumerates a prefix saturating set for a polynomial in

Z[H).

¥
Procedure Prefix Saturation

input: p=3%,¢-t; € Z[H] and (L, T) a finite convergent presentation of H.

1=1

output: SAT,(p) € SAT (p).

SAT, () i= {canon(p)}:
H := {canon(p)};
while H # @ do

q := remove( H);

t:= HT(q);
forallz € C(t) = {z € H | tx = tit,x = tyl,t; # A for some (I,r) € T} do
¢ :=q-z

lf (1' %’gATP(P) O
then SAT,(p) := SAT,(p) U {canon(q’)};
H := H U {canon(¢')}
endfor
endwhile

where remove removes a polynomial from a set and canon canonizes a polynomial, i.e.
multiplies it by —1 in case its head coefficient is not positive.
The procedure is illustrated by the following example.

Example 7

Let £ = {a,b,c} witha = b > cand T = {a® = X\, b® — )\,ab — c,ac — b,cb — a}.
Saturating p = a + b + ¢ we get:

Initialization: H := {a + b + ¢}, SAT,(p) := {a + b+ ¢}.

1. Taking a4+ b+c € H and z € {a,b,c} we get ba+ca+ A, a+c+ A, be+c® +b, which
are all added to H and SAT,(p).

2. Taking ba+ca+ )\ € H and z € {a,b,c} we get a+b+c,bc+c® +b,a+c+ A, which
prefix right reduce to zero by SAT,(p).

3. Takinga+c+ X € H and = € {a,b,c} weget ca+a+ N\,a+b+c,c*+ b+ cand
ca+a+ A+ b+ care added to H and SAT,(p).

4. Taking bc+ c* + b€ H and z € {b} we get ba + ca + A, which prefix right reduces
to zero by SAT,(p) .

5. Taking ca+a+ A € H and z € {a,b,c} weget a+c+ A, c®+b+c,a+ b+ c, which
prefix right reduce to zero by SAT,(p).

6. Taking ¢ + b+ c € H and z € {b} we get ca + a + A, which prefix right reduces to
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zero by SAT,(p). :
7. As H = @ we get SAT,(p) = {a+b+c, bet+c?+b, a+c+ A, batca+A, cata+A, 2 +b+c}.

Now there are situations where finite saturating sets but no finite prefix saturating sets
exist. Take for example ¥ = {a,b,c} with a > b > c and T = {ac — ¢b,bc — ca}.
Then p = a + A has a finite saturating set {p} but no finite prefix saturating set. =
Note that the procedure Prefix Saturation cannot be turned into a procedure to enu-
merate a (not necessarily prefix) saturating set of p by just replacing ¢ ﬁ%AT,(p) 0 with

q/ 7L’TSAT(,,)O' Taking e.g. T = {a,a_l},T — {aa_l —_ ,\’a—la — /\} and p= a3 + A we
would get SAT(p) = {p}, but p-a=® =a"®+a™° 7ATSAT(p)O'

Theorem 4

The procedure enumerates a prefix saturating set of a polynomial p, i.e. for allp € Z[H],
z € H the polynomial p - x is prefix right reducible to zero by SAT,(p). Therefore the
procedure is partially correct.

Proof : We show that for all ¢ € SAT,(p),z € H we have q- z - 0. Suppose

SATy(n)
this is not true. We can choose a minimal counterexample g - z, where HT(q)z is

minimal (according to the ordering = on ¥*) and ¢ - z-ﬁ’éATP(p) 0. Then HT(q)z is
T-reducible, as otherwise g - z _}ZGSATp(p) 0. Let HT(q)z = tit,x1z, where HT'(¢) =
tita,t2 # AT = x125 and | = t,z, for some (I,a) € T. Since ¢ € SAT,(p) we have
z, € C(HT(q)).

1. If canon(q - ;) € SAT,(p) then ¢ -z = (g 1) - T2 oL 0 since HT (¢)x =

SAT.(»)
HT(q)x1z2 = HT(q - 7,)x2, contradicting our assumption.
2. If canon(q - z;) & SAT,(p) then ¢ - =, _’:'eSAT (p)[) and HT(q)z, = HT(q
P
z1) = HT(¢")z for some z € H. Further ¢q-z, € {p-y,—p-y | y € H},
¢ € SAT,(p) C {canon(p-y) | y € H} and HT(q - z:) = HT(q')z gives us
g-z=(q-z1)-z2=c-(q -2) 25, c € Z and HT(q)z > HT(q')zzx;. Therefore
gz=c (¢ 2)z2=1cq (235) _)pSAT ») 0 contradicting our assumption. q.e.d.
P

Theorem 5
The procedure terminates for left—cancellative monoids, having a finite convergent
monadic presentation.

Proof : Let H be a monoid having a finite convergent presentation (X,7'), where
T is monadic including no rules as @ — bor a — A, a,b € ¥. Further we use the
length-lexicographical ordering as our ordering on H.

1. We start our proof with the following technical remark:

Let ¢ € Z[H]. We call a chain z,,z,,...,where z; € H, an irreducible reduction
sequence of q, if for all z:
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(a) ¢g=¢q-z1...7{
(b) HT(q:)xi¢1 = tl, where t is a prefix of HT(q;) and (l,a) € T

(¢) zy...xiTiyq is T-irreducible.

Now we can state our first subclaim: A possible irreducible reduction sequence
of a polynomial ¢ = 3%, ¢; - t; has at most length & - |[HT(q)|- |Z]. We get this
bound by examining the set of possible head terms for the ¢;: HT(q:;) = tibz’,
j € {l,...,k} where t; is a prefix of t;, b € ¥ U {A} and 2’ is a suffix of 2, ... z;
21 This can occur at most |t;]| - |Z| times since T is monadic describing a left-
cancellative monoid and irreducible reductions always affect ¢b. Since ¢ has k
different terms and |¢;| < |¢1] the irreducible sequences of ¢ have at most length
k- |HT(q)|-|Z].

An easy conclusion of this 2 is the fact that for each £ € H looking at p - z we
can split z into = = z; ... x,y where:

2

(a) z1,...,z, describes an irreducible reduction sequence of p
(b) HT(p-z)=HT(p-z1...z4)y, 1.e. (p-x) —#(’p-.rl....rn) 0
(¢) |21 za| < k- |HT(q)| - |- (maz{[l] | (1,a) € T} - 1)

2. If we organize the set H as a first in first out set, we can simulate the proceeding
of the procedure by constructing a tree in the following way:

(a) The root is the polynomial p.

(b) If ¢ is a polynomial at a node then its sons are the ¢ -y 23 | where y €
C(HT(q)), which cannot be prefix right reduced to 0 by any of the polyno-
mials at already constructed nodes.

3. We will show the following useful second subclaim: If a polynomial ¢ appears as
a node at depth j then for any z € H, ¢ - = is prefix right reducible to 0 by a
polynomial appearing as a node at most at depth j + [z|.

Let us suppose this is not true.

Then we can choose z € H with [z| minimal such that there is a polynomial ¢ at a
node at depth j and ¢-z is not prefix right reducible by any polynomial at a node
at depth less or equal to j +|z|. Now by the above conclusion z can be written as
T =1I;...Z,y Where zy,...,z, describe an irreducible reduction sequence of ¢ and
as r is minimal y = A 24, Since such a reduction sequence could describe a path
from ¢ ending with ¢-z, where g-z would be at depth less or equal to j+|z| 2°, this

21This is due to the fact that T is monadic and z; .. .z; is T-irreducible.

22Note that this is no longer true if we drop the condition left—cancellative. Take for example
¥ = {a,b}, T = {ab — a}. Then we get ab" =+ a for all n € N and b" € IRR(T).

Z3Without loss of generality we will assume the polynomials ¢ - y at the nodes to be canonized.

24Qtherwise (p - 7) _"(’p-n..‘:..) 0 immediately gives us a contradiction since |z;...z,| < |21 ...Zpy|
in case y # A.

25As each z; must at least have length 1.
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sequence must have been cut off before reaching q-z. Let ¢-7y ...z p,(m < n—1)2
be the ancestor of q-z where the path stops, i.e. q-z; ...z, 4 prefix right reduces
to 0 by a polynomial ¢, which must occur as a node at depth less or equal to
J+m+1 < g+ |z1.. . zmp|. Now HT(q-zy...Tm41) = HT(¢')w for some w € H
and we know HT(¢')w € IRR(T),Zm42...2, € IRR(T) but HT(¢'Ywzmiz. .. Tx
1s T-reducible as otherwise ¢ - z —% 0 contradicting our assumption. Let w'bz’
be the (not necessarily different) T-normal form of wz, ...z, 27, where w' is
a prefix of w,b € ZU {)A} and ' is a suffix of ;43 ... T, In case HT(¢')w'bz’ is
T-irreducible we get ¢-z —, 0, contradicting our assumption. Now let us assume
HT(¢")w'bz’ = t1t,w'baizy, = t,lz), where t,t; = HT(q'),z\zy = 2/,(l,a) € T
and |z} < |Tm4z...2n]|. Since ¢ € S and w'bzy; € C(HT(q')) this situation is
investigated by our procedure. We have to distinguish two cases:

(a) ¢’ - w'bz| is a node at most at depth 7 + m + 2 and added to S. Since
|25) < |Tmtz - .. Tn| < |T] we get a polynomial ¢” at a node at most at depth

Jtm+2+|z,] < j+|T1.. . Tm|+24 |23
< j+,$1...$m+ll+1+|$m+2...$n|
< j4|z|+1

with ¢ - 2 = ¢' - w'bz}z}, 7. 0 contradicting our assumption.

(b) If ¢’ - w'bz} is no node we have ¢’-w'bzr} —%. 0 for some polynomial ¢“, which
is at a node at most at depth j + m + 2. Again we get HT(¢' - w'bz}) =
HT(¢")w" and |z4| < |Zm42-..2s|. Now this is exactly the same situation
we had before with ¢',w’ and z’ except that |z}| < |z/|. In case z}, = A we
get ¢- z —%, 0 contradicting our assumption. Otherwise we can proceed as
above.

4. Now it remains to show that our procedure terminates, i.e. there are no infinite
branches in our tree. Suppose that there is an infinite branch.
Then we may assume that we have a sequence zj, 23, ..., where z; € H and p - z;
is an ancestor of p- z; on our infinite branch for 7 < j. Now let V be chosen such
that p-zy is at depth N > k- |HT(q)|- |X|- (maz{|!| | (I,2) € T} —1). Then by
the conclusion of our first subclaim we can decompose zy = z; ...zn,y such that
Zy,...ZN, is an irreducible sequence of p, |2y ... 2N, | < k- |[HT(g)|-|Z|- (maz{|!| |
(lLa) e T} —1)and p-z =% .oy, 0- The second subclaim gives us that there
exists a node ¢’ at most at depth m < |z;...zn,| < k- |[HT(q)| - |Z] - (mazx{]l] |
(l,a) €T} —1) with p-z;...z5, =} 0. But then p- zy —%, 0, contradicting the
fact that p- zy4; is a node. g.e.d.

2%m = n -1 would imply ¢ - = —»5, 0 with a polynomial ¢’, which must occur at a node at depth less

or equal to j + |z| contradicting our assumption.
27This is due to the fact that T is monadic.
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5.3 Commutative Saturation in Commutative Monoids

Let H be a commutative monoid having a finite convergent presentation (¥, T'), where
T includes the commutative rules for all letters in . Further let F.(X) denote the
free commutative monoid generated by ¥ with multiplication o. We will use the or-
dering induced by the ordering of T as our ordering on H. The existence of finite
commutatively saturating sets is guaranteed by Dickson’s Lemma.

Lemma 10 (Dickson)
For every infinite sequence of elements m, € F.(X),s € N, there exists an index k € N
such that for all 1 > & we have j < k,z € F.(¥) such that m; = m; o x.

Now we can state:

Lemma 11
Letp=3%",ci-t; € Z[H]|,c; € Z,t; € Hand Y;, = {canon(p-z) | z € X, } as specified
in remark 5. Then each Y;, has a finite basis via commutative reduction.

Proof : Let Z, = {HT(q) | q € Y,,}. Then Z, is a (possibly infinite) subset of
F<(Z) in the sense of Dickson’s Lemma and we can choose a finite basis of Z,,. Since
commutative reduction just requires o as multiplication we are done. q.e.d.

It remains to give a procedure, which actually computes a commutatively saturating
set of a polynomial p.

Procedure Commutative Saturation

input: p=Y"%,ct; € Z[H] and (,T) a presentation of H.
output:  SAT.(p) € SAT [(p).

SAT.(p) i= {canon(p)};
H := {canon(p)};
while H # @ do
g := remove(H);
t .= HT(q);
for all (I,r) € T do
if t o zy = l'o 25 is the least common multiply of ¢t and [ in F.(¥)
then ¢’ :=(q- z;)
if ¢ 7‘+°S AT.(2) 0
then SAT.(p) := SAT.(p) U {canon(¢')},
H := H U {canon(q)}
endfor
endwhile
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where remove removes a polynomial from a set and canon canonizes a polynomial, i.e.
multiplies it by —1 in case its head coefficient is not positive.

Theorem 6
The procedure is correct, i.e. for all p € Z[H], £ € H the polynomial p - = is commu-
tatively reducible to zero by SAT.(p).

Proof : We show that for all ¢ € S,z € H we have ¢-z —% 0. Suppose this is not true.
We can choose a minimal counterexample ¢-z where HT'(¢) oz is minimal (according to
the ordering on H) and ¢-z /% 0. Then HT(q)oz is T-reducible, as otherwise ¢-z —; 0
and ¢ € S. Let ¢ = z, o z5 such that «, is minimal causing HT(q - z,) # HT(gq) o z;.
Then we have HT(q) o z; = l o z for some (l,a) € T and z € H. Therefore q - z; is
considered during the computation of S.

1.Ifg -z, € Sthen g-z = (¢- 1) 2250 since HT(q)ox > HT(q: 1) 0
contradicting our assumption.

2. If q-z, & S then ¢z, 5,50 and HT (g - z1) = HT(q') o z for some z € 'H.
Further -z = (q-21) - z2 =c- (¢ - 2)- T2, c € Z and HT (q) o z1z2 > HT(¢') 0 zz5.
Therefore ¢-x =c-(¢'-2) -z = ¢- ¢’ - (z22) —% 0 contradicting our assumption.

q.e.d.

Theorem 7
The procedure terminates.

Proof : Suppose our procedure does not terminate. Then infinitely many polynomials
q' are added to one set Y;,. Due to lemma 11 this can only happen a finite number
of times until there are enough polynomials in the already computed set S to ensure
g’ —%0forall ¢ € Y,,. q.e.d.

Note that for F C Z{H] we have ideal(F) = ideali(F) = ideal (F).

6 Completion in Z[H)]

As we are interested in Grobner bases of right ideals we are looking for a finite test
for checking, whether the reduction relation induced by a finite set of polynomials is
confluent, using the concepts of superpositions, critical pairs and s-polynomials, as
introduced by Buchberger.

6.1 Completion Using Strong Right Reduction

First we define critical pairs of polynomials via —° and show a criterion that implies
confluence for —°.
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Definition 9 (Strong s—polynomials)

Given two polynomials p;,p, € Z[H]. If there are z,,22 € 71 with HT(p; - ;) =
HT(p; - z2), HC(py-z3) > HC(py - 1) > 0 and HC(p;-z;3) = a- HC(p, - ;) + b, where
a,b € Z, b a remainder of HC(p, - z,), we get the following superposition causing a
critical pair:

HM(p; -z3) =a-HM(py -x1) + b- HT(p1 - 21)

v N
~RED(p; - 12) —a-RED(p, -z1)+b-HT(py - 1)

This gives us the strong s—polynomial

SPOIa(PuPz’ -Thl?z) =a -p1-Ty — P2 T2

Let U, 5, € H? be the set containing all pairs z,,z,; € H as above.

Remark 7

Sometimes two polynomials p;,ps can cause infinitely many critical situations, which
cannot be avoided by taking a suitable “basis” of the set U,, ,,.

Let ¥ = {a,b,¢c,d,e, f},T = {abc — ba, fbc — bf,bad — e} and py = a + f,p, =
bf + a. Then we get the following critical situations f - (bc)'dw = bf - (bc)'~'dw, where
i € N*,w € IRR(T), giving us the strong s-polynomials (a + f) - (bc)'dw — (bf + a) -
(be)~dw.

Note that this phenomena corresponds to the example in remark 5 given to show that
saturation in general does not terminate. This shows how closely related saturation of
a weaker reduction and critical situations of strong reduction are.

Theorem 8
Let F C Z[H] and let f € F imply —f € F. Equivalent are:

1. F is a Grébner basis via —°.
2. ideal,(F) 5%0.
3. For all not necessarily different f, fi € F,(zk,zi) € Uy, 5, we have:
spol,(fi, fi; xr, T1) 5% 0.
Proof :

1 =2 By lemma 6 f € ideal,(F) implies f &% 0 and as F is confluent f 5% 0.

2 = 1 Since —} 1is Noetherian, we only have to prove local confluence.
Suppose f —% fi, f —F f2 and fi # fo. Then fi — f; € ideal,(F) and, therefore,
fi — f2>%0. By lemma 5 there exists g € Z[H] such that f; 5% g, fz D% 9.
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2=3

3=2

Let (z,z1) € Uy, 4, give us a strong s—polynomial of fi, fi. Then by definition 9
we get

spoly(fu, f,xi, i) = a- fi -2k — fi - 21 € tdeal . (F).

and hence we get spol,(fi, fi, Tk, T;) —% 0.

We have to show that every g € ideal,(F) — {0} is —% -reducible to zero. As
—% is Noetherian and h € ideal.(F), h =% k' implies k' € tdeal,(F), it suffices
to show that every g € ideal,(F) — {0} is —} —reducible.

Let g =%, ¢ fi-z;,, wherec; € Z, f; € F,z;, € H.

Depending on this representation of g we define t = max{HT(f; - z;) | 1 €
{1,...m}}M = {{HC(f; - z;) | HT(f; - z;) = t}}. (Note that M is a multiset
with elements in Z).

We call another representation of g with £, M smaller, if { < t or,{ = t and
M< M.

Without loss of generality we can assume HC(f; - z;) > 0, as otherwise we can
substitute f; by —f; and HT(f; - z;) = HT(—f; - z;) together with HC(f;-z;) >z
HC(—f; - z;) gives us a smaller representation of g. Important is that now M is
a multiset with elements in N.

Our intention is to show that if £, M belong to a minimal representation of ¢ 2%,
then |[M| =1,e.g. M = {{HC(fi-zx)}}. This givesus HT(g9) =t = HT(f-z«)
and as HC(fx - z4) > 0, g is —% -reducible by f;.

Let us assume there is a polynomial g € ideal,(F) — {0} with a minimal repre-
sentation ¢ = 3.7, ¢; - f; - z; together with ¢, M and |M| > 1.

Let HC(fx - z&), HC(fi- 7)) € Mk #1 % and a - HC(fx - z) + b= HC(fi - =)
for a,b € Z, b a remainder of HC(fi - z).

Since HT (fx - zx) = HT(f; - 1) by definition 9 we have a strong s—polynomial
spoly(fiy fi, Tr, z1) = a- f - zx — fi - 1. Let us assume spols( fx, fi, Tk, z1) # 0 3.
Now spol,(fk,fl,xk,xl) —*V;:O impliesa - fr -z — fi- 71 = X7, di - hi -wi,d; €
Z,h; € F,w; € 'H, where the h; are due to the reduction of the s—polynomial,
ie. HC(h; - w;) > 0, and all terms occurring in the sum are bounded by
HT (spols(fx, fi,zk, 21)) < .

Now we get:

g = c-ferzita firzm+ Y, 6 firxi
=1

kil

m
= a-frzeta-a fezk—c-a fi-zita-firn+ Y i fira

e

=0 kit

28Such minimal representations of polynomials exist as our ordering on representations as defined
above is well-founded.

2Not necessarily f; # fi.

3In case spol,(fi, fi, zx, 21) = 0 the proof is similar. Substituting 0 for 3", d; - h; - w; in the
equations below immediately gives us a smaller representation of g, contradicting our assumption.
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m
= (+a-a) fe-zk—a-(a fi-ze—fi-x)+ Y ¢ fi-x
=-’P0‘s(7k'uflv1k-$l) lc:i;&l

= (kta-a) fozk—c - (O di-hi-w)+ >, - fi-zi
=1

Kbkl

and depending on this new representation of g we define ¢ = maz{HT(h; -
w;), HT(f: - ;) | hi, f: appearing in the sum }, M = {{HC(h; - w:), HC(f; - z:) |
HT(h;-w;) == HT(f; - z:)}} and we either get { < t or { = ¢ and we have to
distinguish two cases:

(a) ck+c1-a=0.

Then M = (M—{HC(fk'l‘k),HC(f['I[)})U{{HC(h,"w,‘) ’ HT(h,-'w;) = t}}
(b) ek +ci-a#0.

Then M = (M — {HC(f[ . .’L‘()}) U {{HC(I‘L, - w,—) | HT(hI - w,-) = t}}

As the polynomials h; with HT(h; - w;) =t are used to strongly right reduce b-¢
in spoly( fx, fi,zk,z;) we know HC(h; - w;) < b < HC(fy - zx) < HC(f1- z;) and
hence M < M.

However we get a smaller represcntation of g contradicting our assumption. q.e.d.

6.2 Completion Using Right Reduction

Now we define critical pairs of polynomials via —" and show a criterion that implies
confluence for —".

Definition 10
Given two polynomials py, p; € Z[H] with HT (p;) = t;,7 = 1,2. If there are z;,z, € H
with t; -z, = t3- T3 = t, let ¢;, ¢; be the coefficients of t in p, - ; respectively p; - z;. If
c; > ¢y >0and ¢c; =a-c; +b, where a,b € Z,b a remainder of ¢;, we get the following
s—polynomial

SPOI(Pth, Ty, z2) =a-p1-r,—p2-2Z2.

Let UnM(p1). HM(pp) © H? be the set containing all pairs =1, z, € H as above.
Notice that p; = p, is possible. The set Upa(p,),mM(p,) can be empty, finite or even
infinite depending on H, i.e. given a finite set F' C Z[H] the set of critical situations

belonging to the polynomials in F' can be infinite.

Theorem 9
Let F C Z[H], F saturated. Equivalent are:

1. F is a Grobner basis via —" .

2. ideal.(F) —'r;, 0.
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3.

For all not necessarily different fi, fi € F,(zx, 1) € Unnm(s).am(s) We have:

spol( fiy fi, zk, 21) —F 0.

Proof :

1=2

2=1

2=>3

3=2

By theorem 1 f € ideal,(F) implies f «<+% 0 and as G is confluent f 5% 0.

Since —% is Noetherian, we only have to prove local confluence.

Suppose f —% fi1, f —=F f2 and fi # fo. Then fi — f; € ideal,(F) and, therefore,
fi = f22%0. By lemma 5 there exists g € Z[H] such that fi 5% g, f2 =% g, i.e.
—7% is confluent.

Let (z&,z1) € Unmys,y.am(ys) give us a s—polynomial of fi, fi. Then by definition
10 we get

spol(fi, fi,xk,x1) = a- fy -z — fi - 1 € ideal (F).

and hence spol( fi, fi, zk, 1) —% 0.

We have to show that every element g € ideal,(F) — {0} is —% -reducible to
zero. As —} is Noetherian and h € ideal,(F), h —% k' implies k' € ideal,(F),
it suffices to show that every element g € ideal,(F) — {0} is —F -reducible.

Let g=3%" ¢ - fi-z;, wherec; €2, f; € F,z; € H.

Depending on this representation of ¢ we define t = maz{HT(fi - z;) | ¢ €
{1,...m}}, M = {{HC(f; - z;) | HT(f; - z:) = t}}. (Note that M is a multiset
with elements in Z).

We call another representation of g with ¢, M smaller if { < t or £ = t and
M< M.

By lemma 7 we can assume HT(f; - z;) = HT(fi) - z: and HC(f; - z;) > 0, as
if HT(f; - ;) # HT(f:) - z; for some f; in our representation of g, we know
fi - zi—>%0, ie. fi-z; = d;- fl -z} for some d; € Z,f] € F,z; € H and
HT(fi-z;) = HT(f!-z}) = HT(f!)-z} = t together with HC(f!-z!) <z HC(f;-z:)
gives us that the representation is not increased by substituting d;- f - z! for f;- z;.
Note that now M is a multiset with elements in N, since HC(f! - z}) € N .

Our intention is to show that if ¢, M belong to a minimal representation of g 3!,
then (M| =1,eg. M = {{HC(fc-zx)}}. This givesus HT (g) =t = HT(fx)- =&
and as HC(fx - zx) > 0, g is —% —reducible by fi. \
Let us assume there is a polynomial g € ideal,(F) — {0} with a minimal repre-
sentation g = Y%, ¢; - fi - z; together with ¢, M and |M| > 1.

Let HC(fx-z4), HC(fi-z) e Mk #13 and a- HC(fi - zx) + b= HC(fi - =)
for a,b € Z,b a remainder of HC(fi - z¢). Since HT(fi) -z = HT(fi) - 1 by
definition 10 we have an s-polynomial spol( fi, fi, zx,z1) = a- fx - zx — fi - 21, and
let us assume spol( fx, fi, z, i) # 0 3.

31Such minimal representations of polynomials exist as our ordering on representations as defined
above is well-founded. :

32Not necessarily fi # f.

33In case spol(fi, fi, zi,z1) = 0 the proof is similar. Substituting 0 for i di - hi - w; in the
equations below immediately gives us a smaller representation of g, contradicting our assumption.
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Now spol( fi, fi, zx,z1) =5 0 impliesa- fr-zx— firzi = Ll  di-hi-widi € Z,h; €
F w; € H, where the h; are due to the reduction of the s-polynomial to zero, i.e.
all terms occurring in the sum are bounded by HT (spol( fi, fi,zk,z1)) < t and
HC(h;-w;) > 0.

Now we get:

m
g = & ferxtoa-firz+ E ¢ fi-z
kit

= - fimta-a fi-ze—c-a-fi-zta fion+ Y o fiom
=0 e
m
= (k+a-a) fo-azk—c-(a-fo-ze—fi-z)+ D, cifi-x
=3P01(I’ft ETEN) k;lr&:';él
= (x+c-a) fo-zi—a- Zd hi - w;) + Z i+ fir oz
kil

and depending on this new representation of g we define t = maz{HTh;

wi), HT(fi - z:) | hs, fi appearmg in the sum }, M = {{HC(hi - wi), HC(f: - z:) |
HT(h; w;) =t, HT(f; - z;) = t}} and we either get { < t or { = t and we have
to dlstmgmsh two cases:

(a) ck +c-a=0.

Then ;fl = (M—{HC(firzx), HC(fi-x:) DU{{HC (hi-w;) | HT (hi-w;) = t}}.
(b) ck+cl-a3£0.

Then M = (M — {HC(fi - z)}) U {{HC(hi - wi) | HT(hs - wi) = £} }.

As the polynomials h; with HT (h;) - w; = t are used to right reduce b ¢ in
spol(fk,jg,:ck, z;) we know 0 < HC(h; - w;) < b < HC(fi-zx) < HC(fi- ;) and
hence M <« M.

However we get a smaller representation of g contradicting our assumption. q.e.d.

Unfortunately theorem 9 is only of theoretical interest as in general it only provides an
infinite test verifying that a set is a Grobner basis. Trying to localize this test severe
problemns arise, as our reduction relation is not transitive (compare remark 4).

In ordinary polynomial rings as Z[z,...z,] one can select a “smallest” critical pair by
taking the least common multiply of ¢; and ¢; and it is sufficient to examine this case
[KaKa84, KaKa88|. In Z[H] the situation is more complicated. Reviewing definition
10 we see that it is important to solve the equation ¢; -z = t; - y.

Therefore, we are looking for a suitable “basis” of a set

Ui 1, = {(z1,72) € H? |ty -y = t2- z2}.

One idea might be to look at a basis By, i, C Uy, 1, such that for all (zy,z;) € U, ., we
have (b1, b2) € By, 1,, m € H fulfilling z, = &, - m,z, = by - m. But this is not sufficient
as the following example shows:
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Example 8

Let £ = {a,b,c,d,e, f} withd>a>=b»>c>e > fand T = {abc — d?, b*ce — d*f}.
Take F = {a + b,b’c + d?,d%e + d*f,d + A}.

Looking at a + b and d + A we get a critical situation in d* which leads to b%c —d and
b’c —d 5% 0. But d’e gives us d* f — de, which does not right reduce to zero by F. The
clue is that d2 is no “real” critical situation, in the sense that @ + b cannot be applied

to right reduce d?, but d%e can be right reduced by both, a + b and d + A.

Example 8 is due to the fact that we have an s-polynomial spol(p, p2, z1, z2), where
RED(p,) - =1 > HD(p,) - z; or RED(p;) - 23 > HD(p2) - z2, which can be reduced
to zero by saturating sets for p; and p,, while spol(p;, p2, 1, 22) - 2 with z € H is not
trivial according to those sets. Even taking a saturated set of polynomials into account
does not guarantee the Grobner basis property, as the set F' in our example is a (prefix)
saturated set.

Another approach might be to look for a suitable basis of a set

UPth = {(Ihl"z) € H? ' HT(PI : 1‘1) =t - Jlll =t -T2 = HT(Pz : xz),
HC(p, - 1,), HC(p2 - x3) > 0}.

U,, », describes real critical situations in the sense that t; - 1 = t; - z2 is an overlap,
where both p; and p, can be applied for reduction. But even a “basis” for such a set
1s not sufficient.

Example 9

Let ¥ = {a,b,c,d,e, f,g} witha>b>c>d>=e> f > gand T = {ac — d,bc —
e,dg — beg — f}.

Take FF = {a+b,d+e,b+ f; fc+e,d+ N\ b+g,gc+e,e+9g,6°+ f,9+ A}

Looking at a + b and d + A\ we get a real critical situation in d, which leads to e —
A=y —g—A—=7,,0,but (e — X)) - g = f — g is F-irreducible.

As seen in example 9 even (prefix) saturated sets do not guarantee that p =% 0 implies
p-z—%0 for p € Z[H],z € H. Now prefix right reduction is transitive and gives
enough information to cope with this defect. It will enable us to formulate another
characterization of Grobner bases.

6.3 Completion Using Prefix Right Reduction

Prefix saturation enriches a polynomial p by adding a set S € SAT ,(p) such that
we can substitute q—-»l(;") q' by ¢—}esq. Therefore, we have more information on
the reduction step than using (strong) right reduction, enabling a finite confluence
\criterion.

Lemma 12

\Let F C Z[H] and p,q € Z[H). Let p—?0 and ¢ 53 0. From these reduction sequences
we get the representationsp = d-q-z and ¢ = Y%, d;-g;-z;, ford,d; € Z,g; € F,z,z; €
H, where the following statements hold:
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1. HM(p) > d; - g; - z; -z for all i € {1,...k}.

2. IfHT(p) = HT(g;-z,-z) then HT(¢;-z;-z) = HT(g: - z:)r and HC(g; - z;-z) <
|HC(p)].

Proof : Since p—?0 and p = d-q-z we know HT(p) = HT(¢q)z, HC(q) > 0 and
HC(p) = d- HC(g).

In case HT(g;-z;) = HT(q) we get HC(q) > d;- HC(gi- z:), as ¢ then is used to reduce
HM(q). Further HT(q) > HT(g: - x:) > RED(y; - ;) gives us HT(p) = HT (q)z > t,
forall t € T(gi-zi-z), ¢ € {1,...k}. Together this gives us HM(p) =d- HM(q) -z >
di - gi-z;-zforallie{l,...k}. : :

Now let us assume HT(p) = HT(g; - z;- =) # HT(g; - ;) for some : € {1,...k}. Let
HT(g; - z;)=t; and HT(g; - z;- =) = t; - z. Then HT(q) > t; > t; >, but HT(q) > ¢;
implies HT(g)z > t; -  contradicting our assumption that HT(g)z =t; - z.
Therefore, HT(p) = HT (g; - z; - ) implies HT(g; - z;) = HT(q) and HT(g; - z; - =) =
HT(g:-z:)x. As g, is used to right reduce HT(q) we have HC(g;-z;-z) = HC(g:-z:) <
HC(q) < |d|- HC(q) < |HC(p)| **. q-e.d.

We can even restrict ourselves to special s—polynomials to localize our confluence test.

Definition 11 (Prefix s—polynomials)
Given two polynomials py, p2 € Z[H] with HC(pi) = ¢ > 0, HT(p;) = t;, RED(p;) = r;
for : = 1,2. If there is ¢ € H with ¢; = t;2 we have to distinguish:

1. If e 2 ¢2, ¢1 = a-c,+ b, where a,b € Z, b a remainder of c;, we get the following
superposition causing a critical pair:

a-cy bz +b-taxz=c 1

v N

—a-ry-x+ btz -7
This gives us the prefix s-polynomial
spoly(pr,p2) =a-ry-z~b-thaz—r1=a -p;-z~—p1.

2. If e > c1,c2 =a-cy+0b, where a,b € Z, b a remainder of ¢;, we get the following
superposition causing a critical pair:

Cg't2$=a‘61't1+b't1

/ N

—T2- T —a-r1+b-t1
This gives us the prefix s—polynomial

SPOIP(Pl’Pz)=G'T1—T2'$—b't1=‘1'P1—P2‘$-

34As t; = HT(g; - z;) and t; € T(RED(g; - z;))-
35Remember that in this case HC(q) = HC(q - ).
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Notice that as two polynomials at most give us one prefix s—polynomial, a finite set
F C Z[H] only gives us finitely many prefix s—polynormials.

Theorem 10
Let F' C Z[H], F prefix saturated. Equivalent are:

L

2.
3.

F is a Grobner basis via —7 .
ideal,(F) 550

For all fi, fi € F we have spol,( fi, fi) =% 0.

Proof :

1 & 2 Follows from theorem 9.

2=3

3=2

Let HT(fe) = HT(fi)x for z € H, HC(fx) > HC(fi) > 0 and HC(fi) =
a-HC(fi) + b, where a,b € Z and b is a remainder of HC(fi) (the other case is
similar). Then by definition 11 we get

spoly(fu, fi) = a- fi -z — fi € ideal,(F),

and hence spol,( fi, fi) =% 0.

We have to show that every element g € ideal,.(F') is —}% -reducible to zero. As
—7% is Noetherian and k € ideal,(F), h —% k' implies k' € ideal.(F), it suffices
to show that every element ¢ € ideal.(F) — {0} is —% -reducible.

Let g=3"1",¢ci-fi-z; wherec, € Z, fi € F,z; e H.

Depending on this representation of g we define t = maz{HT(f; -z:) | ¢ €
{1,...m}},M = {{HC(f;) | HT(f; - z;) = t}}. (Note that M is a multiset with
elements in Z).

We call another representation of g with ¢, M smaller if { < t or { = t and
M<M.

By lemma 7 we can assume HT(f; - z;) = HT(f))z; and HC(f;) > 0, as
if HT(f; - ;) # HT(fi)z; for some f; in our representation of g, we know
fi - zio%0,1e. fi-z; = d;- f! - z! for some d; € Z,f € F,z. € H and
HT(f;-z:) = HT(f!-z}) = HT(f!)z! = t together with HC(f!) <z HC(f;) gives
us that the representation is not increased by substituting d; - f} - z} for f; - z;.
Important is that now M is a multiset with elements in N, since HC(f;) > 0.
Our intention is to show that if £, M belong to a minimal representation of g 3¢,
then |M| = 1,e.g. M = {{HC(fx)}}. This gives us HT(g) =t = HT(fi)zx and
as HC(fi) > 0, g is —F -reducible by f.

Let us assume there is a polynomial g € ideal,(F) — {0} with a minimal repre-
sentation ¢ = Y}, ¢; - fi - z; together with ¢,M and |[M| > 1.

36Such minimal representations of polynomials exist as our ordering on representations as defined
above is well-founded.
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Let HC(fi), HC(fi) e Mk # 13 and a- HC(fi) + b= HC(f;) fora,b€ Z, ba
remainder of HC( fy).

Since HT (fr)zy = HT(f;)z; we have either HT (fy)z = HT(f;) or HT(fi) =
HT(fi)z for some z € H. Without loss of generality let us assume HT(fx)z =
HT(f;) and hence x4 = zz;. Then by definition 11 we have a prefix s-polynomial
such that

a~fk-xk—f1~;r1=a-fk~le—ﬂ-x,:spolp(fk,ﬂ)-:cl

In case spol,( fx, fi) # 0°® this implies HT (spol,(fi, fi)-z:) < t,as HT (spol,(fx, fi)) <
HT(f;) and t = HT( fi)z.

In case b = 0 we have HT(spol,(fi, fi) - z:) < t and spoly(fi, fi) =50 im-
plies spol,(fx, fi) = Yoy di - hi - wi,di € Z,hi € F,w; € H, where the h;
are due to the reduction of spol,(fi, fi) and all terms occurring in the sum
spoly(fe, fi) -z = Y0y di - hi - w; - x; are bounded by HT (spoly(fe, fi) - 1) < t.
In case b # 0 we get HT(spol (fe, f1) - 1) = HT (spol,(fe, fi))xi = HT(fi)xzi =t
and spol,(f&, fi) -z '_’spolp(fk.fr) 0. Then lemma 12 implies spol,( fi, fi) = 3%, d; -
hi-wi,d; € Z, h; € F,w; € H, where the h; are due to the reduction of spol,( fi, fi)
and all terms occurring in the sum spol,( fi, fi) -1 = 3.7, di-hi-w;-z; are bounded
by t.

In both cases we can substitute h;-w;-z; by h}-w! (without increasing the repre-
sentation) such that HT (k! - w!) = HT (h!)w! and HC(h!) > 0 by lemma 7 since
F is prefix saturated.

Now we get:

9 = - forzta-firm+ Y, o fira
kil

m
= - -fi-mta-a-fi-zk—c-a-fiomete-fi-z+ Y, ¢ fiow

—_

=0 k;él#l
= (a+a-a) fi-ze—a-(a: fk Jck—fl zi) + th fi- =i

= spolp(fk fi)z k#l#l

= (bk+cl' a) fi T — ¢ - Zd - R wi) + Zci'fi‘zi (1)

=1
k#i#l

and depending on this new representation of g we define t = maz{HT(R' -
w;), HT(fi-z:) | i, fi appearing in (1) }, M = {{HC(h), HC(f;) | HT (hj-w}) =
t, HT(f: - z:) = 1}}

and we either get f < t or { = t and we have to distinguish two cases:

37Not necessarily fi # fi.
38In case spoly(fi, fi) = O the proof is similar. Substituting 0 for 3_7_, di - h; - w; in the equations
below immediately gives us a smaller representation of g, contradicting our assumption.
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(a) ek +-a=0.

Then M = (M — {HC(fu), HC(f)}) U {{HC(K) | HT(R}) - w} = t}}.

(b) ¢k +ci-a#0.
Then M = (M — {HC(f)}) U {{HC(K) | HT (k) - wf = t}}.

By lemma 12 we know that if there are polynomials h! with HT(A!) - w} = t, the
corresponding polynomials &; from above are used to right reduce H M (spol,( fx, f1))
and, therefore, HC(h{) < HC(spol,(fi, fi)) = b < HC(fi) < HC(fi), hence
M< M.

However we get a smaller representation of ¢ contradicting our assumption. q.e.d.

In fact we have shown the existence of Grobner basis with respect to a weaker reduction,
namely prefix right reduction.

Corollary 4
Let F C Z[H)], F prefix saturated. Equivalent are:

1. F is a Grobner basis via —7? .
2. tdeal . (F)5%0
3. For all fi, fi € F we have S, 5% 0, where S, € SAT ,(spol,(fx, f1))-

Proof : Let g € tdeal,(F) — {0}. Then for a minimal representation t,M of g as
described in the proof of theorem 10, we have M = {{ HC(fi -zx)}} and t = HT (g) =
HT(fi)zr and HC(fi) > 0, t.e. g is —} -reducible by fi. q.e.d.

Using the localisation given in theorem 10 we can state the following procedure.

Procedure Completion with respect to Prefix Saturation

input: F CZ[H], F={fi,... fa} '
output: GB(F'), a Grobner basis of ideal,(F') with respect to —" (even —?).

G = UL, SAT,(fi);
B:={(g1,92) | 91,92 € G, 1 # @2}
while B # 0 do
(1, ¢2) := remove(B);
if h := spol,(q1,q2) exists then;
h':= hnf(h,G);
if A’ # 0 then ,
B:=BU{(f,h)| f € G,k € SAT,(F)};
G := G U SAT,(h');
endwhile

GB(F):=G

36



where SAT, denotes the output of our prefix saturation procedure, remove removes
an element from a set and hnf(g,G) computes a “canonized normal form” of g with
respect to G, where only right reduction at the head monomial is allowed.
There are two critical points, why this procedure might not terminate: prefix saturation
of a polynomial need not terminate and the set B need not become empty.

Theorem 11
In case the procedure terminates the output is a Grobner basis even with respect to
prefix right reduction.

Proof : This follows immediately from theorem 10 and its corollary. g.e.d.

Note that in general monoid rings are not (right—, left—) Noetherian, i.e. not every
ideal can be finitely generated. Our intention is to show that in special cases finitely
generated right ideals allow finite Grobner bases, even when the corresponding monoid
ring is not right-Noetherian.

Theorem 12
Let F C Z[H] be finite. The procedure terminates when H is a finite-monoid.

Proof :

The procedure stops as soon as all s—polynomials reduce to zero.

Now suppose that our procedure does not terminate.

Then since H is finite there is a term ¢ € H, which occurs infinitely many times among
the head terms of the polynomials A’ as computed in the above procedure and added to
G, i.e. we get an infinite set {a; - | a; € N} of head terms, where the polynomial with
head coefficient a;;, is added later than the polynomial with head coefficient a;. Since

the A’ are in normal form we get a descending sequence ay > aj—; > ...>a; > ... >0
in N contradicting the fact that (N, <) is well-founded. q.e.d.
Theorem 13

Let F C Z[H] be finite. The procedure terminates when H is a free monoid presented

by finite ¥ and T = §.

Proof : ,

Since we have SAT,(p) = {canon(p)} in this case as T = §, we have to take a closer
look at the s—polynomials. Looking at the critical overlaps we see that all polynomials
q added have |HT(q)| < maz{|HT(f)| | f € F}. Further the head of any added
polynomial is in canonized normal form with respect to the already computed set G.
Hence if HT(q) occurs among the head terms of the polynomials in G, it has a smaller
head coefficient as it is not further reducible by G. That is if a; € N is the head
coefficient of the first occurrence of a head term s; then this term can at most occur
a; — 1 times as a head term and since there are only finitely many candidates for head
terms our procedure terminates. q.e.d.

In the following we will take a closer look at monadic presentations of monoids and
groups. We state the following useful lemma.
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Lemma 13
Let (X,T) be a finite convergent interreduced monadic presentation of a cancellative
monoid ‘H. Then no rules of the form xa — a or az — a appear inT for a € L.

Proof : Suppose we have za — a € T. Since H is cancellative za <7 a implies
z S A As T is finite convergent we have x =, A contradicting that T is interreduced.
q.e.d.

This lemma allows us to conclude that arb — c€ T, a,b,c € £,z € £*, implies a # ¢

and b # c.

Theorem 14

Let F' C Z[H) be finite. The procedure terminates when H is a group presented by a
finite convergent interreduced 2-monadic system including inverses of length 1 for the
generators.

Proof :

1. We say a polynomial q has property Pg if and/only if

(o) |HT(q)| £ K, where K = maz{|HT(f)|| f € F} + 1.
(8) If |HT(q)| = K then there is a € & such that

(i) all terms of length K in q have a as a cornmon suffix.

(i) for all s € T'(q) with |s| = K — 1 we either have s = s;a or in case
s=s1d,d € X — {a} thereisaruleea - deT,e€ X.

We will show that all polynomials ¢ computed by our procedure for input F' have
Pr.

By the choice of K all input polynomials have Pp.

Let G be an already computed prefix saturated set of polynomials having Pr, let
q be the next polynomial computed by our procedure.

Showing that ¢ has Pr we have to distinguish three cases:

(a) In case qis due to saturating a polynomial ¢’ with arule ab — c€ T,c € LU
{\} we can show that Pr is preserved. Note that only the case |HT(¢)| = K
is critical.

i. In case |HT(q')| < K and |HT(q)] = K we know HT(q) = tb and for
all s € T(q') with |s - b] = K — 1 either s - b = sb € IRR(T) or s = s;€
and s - b= s,e-b = s;d, where eb —+ d € T. Note that these are the
only possibilities to gain a term of length K — 1 from a term of length
less or equal to K — 1 by multiplication with a letter b.

. Let |[HT(q')| = K with HT(¢') = ta. We can only lose PF in case
we have t,,t; € T(q’) such that |t = K, |t2] = K — 1,¢; = t{a and
ty-b=tle,ty - b = t2b with ¢ # A. Therefore, we examine all s € T(q)
with |s| = K — 1.
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If there are none ¢ must have Pp, since then a term s € T'(¢’) can only
reach length K — 1 by multiplication with b in case |s|] = K — 2 and
sb€ IRR(T). Since ab — ¢ € T and G is a group including inverses of
length 1 for the generators a has an inverse a™! and b <y a~lab<Sra e
gives us the existence of a rule a™’c — b € T as T is confluent *.

Now let s € T(¢') have length K — 1.

In case s = sja there is nothing to show *°.

In case s = s,d,d # a we know that there isa rule ea - d € T as ¢
has Pgp. Then we have db « eab — ec and since ea — d € T gives us

e # d there are rules db — g,ec > g€ T,g € X.

(b) ¢ is due to s—polynomial computation. As we use polynomials having Pr
and prefix overlaps of their head terms to get ¢, in case |[HT(q)| = K, ¢
inherits Pg from the involved polynomials ¢1, ¢z, where HT(q;) = HT(q2)z
for some z € H.

In case z = A there is nothing to show.

Let |HT(qz)z| = K and z # A, i.e. z = 2’a for some a € X. Looking at

s € T(qy - z) we get that

i. |s) < K —1 is not critical.

ii. |s| = K gives us s = s; - z, where s, € T(q2),|s1] < K, and as s;,2z €
IRR(T) and T is monadic, we get s = sybz"a, where s} is a prefix of
s1, be LU {)}, and 2" is a suffix of 2'.

ii. |s| = K — 1 gives us s = s; - 2z, where 57 € T(q2),]s1] < K, and as
s1,2 € IRR(T) and T is monadic either s = s}bz"a as above or s = s}b
and |s;| = K — 1,s; = sie and ez'a =1 fa — b, as T is 2-monadic, i.e.
we have fa - be T.

Since T'(q) € T(q1) UT (g2 - z) we are done.

(c) ¢ is the result of computing the canonized normal form of an s—polynomial
using right reduction with respect to G at head monomials only.
The case |HT(q)| < K is not critical.
Therefore, suppose |HT(q)| = K. We show that using right reduction on the
head monomial of a polynomial ¢’ having Pr, with |[HT(¢')| = K, HT(¢') =
ta,q' —7cc q", gives us that ¢” has Pr.
Let HT(g)=t'andta=t'-zand ¢"=¢'—k-g-z,k € Z,z € H. Since G
is prefix saturated we know g-z —7,.; 0, i.e. HT(g9) -z = HT(g')z for some
z € H, and ¢’ has Pr *!. Further g’-z has Pr *? andas ¢"=¢ ~k-g-z =
¢ —k-g'-zweknow T(q") S T(¢")UT(g'-z), and hence ¢" likewise has Pg.

2. The procedure stops as soon as all s—polynomials reduce to zero. Let us assume
our procedure does not terminate. Then there are infinitely - many s—polynomials
gi,? € N, with heads in canonized normal form added.

39This is no longer true in case a has an inverse u,4 of length |u,| > 1 or no inverse at all.
“OThen 5 - b= s1a-b=s5; -c and either |s - 6| < K — 1 or s-b = s;c.

4n case |[HT(¢')] = K wehavez=Aand g-z = ¢'.

*2Compare the argumentation in (b).
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As |HT(q)| < K there is a term ¢, which occurs infinitely often as a head
term among these polynomials, giving us a subsequence qx € N with HT'(gx) =
t. Since the heads of all ¢, are in canonized normal form with respect to the
already computed set G including the ¢i with lower index, the corresponding
head coeflicients a; € N have to decrease, i.e. axy1 < aj, contradicting the fact
that (N, <) is well-founded. q.e.d.

Theorem 15
The existence of finite Grobner bases for finitely generated right ideals in Z[H] has
been shown in case

1. 'H is finite
2. H is a free finitely generated monoid
3. 'H is a plain group.

Using the appropriate presentation the procedure “Completion with respect to Prefix
Saturation” computes such bases.

As shown by Avenhaus, Madlener and Otto in [AvMaOt86] given a finite convergent,
2-monadic presentation of a group it is possible to get a finite convergent, 2-monadic
presentation including inverses of length one for the generators of the same group.
The same is possible for a finite convergent, monadic presentation including inverses of
length one for the generators. All these presentations give us that our group is a free
product of a finitely generated free group with finitely many finite groups.

6.4 Completion Using Commutative Reduction

In case we have a commutative monoid with a presentation (X,T = T' U T,), com-
mutative saturation, as prefix saturation, enriches a polynomial and provides enough
information to give a finite confluence test.

Definition 12 (Commutative s—polynomials)

Given two polynomials p1,p; € Z[H] with HC(p,) = ¢; 2 HC(p1) = 1 > 0, HT(p;) =
ti, RED(p;) = r; for: = 1,2. If there are ,,z; € H such that't;oz, = tyozy € IRR(T)
is the least common multiple of ¢,,1, in FA(X) and a,b € Z, b a remainder of ¢; with
c; = a-c + b, we get the following superposition causing a critical pair:

C2't20.’1:2:a'Cl't10$1+b't10$1
/ N
—7T9 -T2 —a'T1'$1+b't10$1
This gives us the commutative s—polynomial

spole(pr,p2, 21, 2) =a -1y 1 —ry -T2 —b-t1 -z =a-py -z — P2 - T2

40



Lemma 14
Let F C Z[H] and p,q € Z[H]. Let p—0 and q —7% 0. From these reduction sequences

we get the representationsp = d-q-r and ¢ = Y5, d;-g;-z;, ford,d; € Z,g; € F,z,z; €
H, where the following statements hold:

1. HM(p) > d; - g; - z; -z for all 1 € {1,...k}.

2. If HT(p) = HT(gi-z;-z) then HT (g;-z;-z) = HT(g:-z:)oz and HC(g;-z;-z) <
|HC (p)|.

Proof : Since p—?0 and p=d-q -z we know HT(p) = HT(q) oz, HC(q) > 0 and
HC(p) =d-HC(q).

In case HT(g;-z:) = HT (q) we get HC(q) > d;- HC(g;-z:), as g, then is used to reduce
HM(q). Further HT (q) > HT(g:-zi) > RED(g; - z;) gives us HT(p) = HT(q)oz > t,
forallt € T(g;-z;-x),7 € {1,... k}. Together this gives us HM(p) =d- HM(q) -z >
d;i-g; z; -z forall i€ {1,...k}.

Now let us assume HT(p) = HT(g:-zi-x) # HT(g; x;) oz for some: € {1,...k}. Let
HT(gi-z;) =t and HT(g; - z:-x) =t; - x. Then HT(q) > t; > ¢; *3, but HT(q) > ¢,
implies HT(q) o z > t; - z contradicting our assumption that H7(p) = HT(q) oz =
HT(g; zi-z) =t;-x. Therefore, HT (p) = HT (g; - z; - =) implies HT (g; - z;) = HT (q)
and HT(g; - =i -z) = HT(gi - i) o z. As g; i1s used to right reduce HT (q) we get
HC(gi-zi-z) < HC(g:i-zi) < HC(q) < |d|- HC(q) < [HC(p)]. q.ed.

Theorem 16
Let F C Z[H], F commutatively saturated. Equivalent are:

1. F is a Grobner basis via —" .
2. ideal . (F)>%5.0.

3. For all f, fi € F we have spol( fi, fi) =%0.

Proof :

1 & 2 Follows from theorem 9.

2=3 Let HT(fx) o zx = HT(fi) o z; for z4,z; € H be the least common multiple of
HT(fk),HT(fl), HC(f¢) > HC(fl) > 0 and HC(f[) = a HC(fk) + b, where
a,b € Z and b is a remainder of HC(fi). Then by definition 12 we get

spolo(fe, fi,xr 1) = a - fi -z — fi- 21 € tdeal (F),

and hence spol.(fi, fi, Tk, T1) =% 0.

BAst; = HT(g; - z:) and t; € T(RED(g,' . 1:.')).
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3 = 2 We have to show that every element g € ideal.(F') is —% -reducible to zero. As
—7% is Noetherian and h € ideal,(F), h >% h' implies &' € ideal, (F), it suffices
to show that every element g € ideal,(F') ~ {0} is —% -reducible.

Let g=3",¢c fi z;,, wherec; € Z, f; € F,z; € H.

Depending on this representation of ¢ we define t = maz{HT(f; - z;) | + €
{1,..m}}, M = {{HC(f;) | HT(f; - z:) = t}}. (Note that M is a multiset with
elements in Z).

We call another representation of g with t,M smaller if t < t or t = t and
M<M.

By lemma 7 we can assume HT(f; - z;) = HT(f;) o z; and HC(f;) > 0, as
if HT(f; - z;) # HT(f:) o z; for some f; in our representaticn of g, we know
fi-zi—%0, ie. fi-z; = d;i- fl -z} for some d; € Z,f] € F,z; € H and
HT(fi-z)) = HT(f! - %) = HT(f!) o =} = t together with HC(f]) <z HC(f:)
gives us that the representation is not increased by substituting d;- f -z for f;-x;.
Important is that now M is a multiset with elements in N, since HC(f;) > 0.
Our intention is to show that if ¢, M belong to a minimal representation of g *,
then |M| = 1,e.g. M = {{HC(fi-z+)}}. Thisgivesus HT(g) =t = HT(fx)oz
and as HC(fy) > 0, g is —} -reducible by fi.

Let HC(fi), HC(fi)) e M,k #1*® and a- HC(fi) + b= HC(fi) for a,b € Z, b a
remainder of HC( fi).

Since HT (fx) o zx = HT( fi) o z; we have a commutative s-polynomial such that

a-fe -z — firzi=a- fe-ze-m— fi-z-m = spolc(fi, fi, 2k, 1) - .

In case spol.(fx, fi, 2k, 21) # 0 *¢ this implies HT (spol.(fi, fi, z&,z1) - m) < t as
HT (spol.(fx, fi,zk,21)) < HT(fi) -z and t = HT(fi;) 0 z; om.

In case b = 0 we know HT (spol.( f, fi, zk, z1) -m) < t and spol.( fx, ft, 2k, 21) —'»Z 0
implies spol.(f, fi, zk,21) = Py di - hi - wi,di € Z, h; € F,w; € H, where the h;
are due to the reduction of spol.(fx, fi, zk, z1) and all terms occurring in the sum
spol.(fi, fi, zk, 21)-m = ¥, d; - h; - w; -m are bounded by HT (spol.( fx, fi, 2k, 21) -

m) < t.
In case b # 0 we get HT(spol.(fx, fi,2x,z1) - m) = t and spol.(fk, fi, 2k, 21) -
m_’ipolc(fk.fx,zk.z;) 0. Then lemma 14 implies spol.(fi, fi, zk,21) = Liei di - hi -

wi,d; € Z,h; € F,w; € H, where the h; are due to the reduction of spol.( fk, fi, 2k, 21)
and all terms occurring in the sum spol.(fi, fi, zk,21) - m = Y 1=y di - hi - w; - m are
bounded by HT (spol.( fi, fi, zx,21) - m) < t.

In both cases we can substitute h; - w; - y by A’ - w! (without increasing the rep-
resentation) such that HT (k! - w!) = HT(h!) o w! and HC(k!) > 0 by lemma 7
since F' is commutatively saturated .

“‘Such minimal representations of polynomials exist as our ordering on representations as defined
above is well-founded.

45Not necessarily fi # fi.

46Tn case spol.(fx, fi,zk,zi) = O the proof is similar. Substituting 0 for Z?___l d; - h; - w; In the
equations below immediately gives us a smaller representation of g, contradicting our assumption.
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Now we get:

g = a-fe-zkta fiozm+ D o fiozi

k#igl

= & ferzpta-a-firze—ca-afiozitea- firmi+ Z ¢ firxi
=1

=0 k#iEl

= (a+tc-a) fe-ze—c-(a fe-ze—fi-z)+ Z fi-xi

= -’POIC(fk fuzg,z)-m k#;;&l

= (Ck+cl'a)‘fk'zk“cl'(Zdi'h:"ws)'*' E ci- fix (2)
= e
and depending on this new representation of g we define t = max{HT(h!

wi), HT (f:- x,) | k%, fi appearing in (2) )}, M = {{HC(R),HC(f:) | HT(h}-w!) =
£, HT(f; - z;) = {}}. We either get { < t or { =t and we have to distinguish two
cases:

(a) ek + ¢ -a=0.
Then M = (M — {HC(fi), HC(f)}) U {{HC (ki) | HT(h}) - w} = t}}.

(b) ¢+ ¢ -a # 0.
Then A1 = (M — {HC(f)}) U {{HC(k) | HT(h}) - w! = 8}}.

By lemma 14 we know that if there are polynomials A] with HT'(h)-w} = t the cor-
responding polynomials &, from above are used to right reduce HT (spol.( f, fi, zx, 1)),
and, therefore, we know HC(k]) < HC(spol.(fi, fi, zx,21)) < b < HC(fi) _<_
HC(fi), hence M <« M.

However we get a smaller representation of g contradicting our assumptlon q.e.d.

However we even have a Grobner basis via —°¢,

Corollary 5
Let F' C Z[H], F commutatively saturated. Equivalent are:

1. F is a Grobner basis via —°©.
2. ideal(F) 550
3. For all fi, fi € F we have S. 5% 0, where S, € SAT .(spol.(fx, fi))-

Proof : Let g € ideal.(F) — {0}. Then for a minimal representation ¢, M of g
as described in the proof of theorem 10, we have M = {{HC(fi - zx)}} and t =
HT(g) = HT(fx) o & and HC(fx) > 0, i.e. g is —% -reducible by fi. Further
ideal,(F) = ideal(F). q.e.d.




Procedure Completion via Commutative Saturation

input:  F C Z[M], F = {fi,... fu}
output: GB.(F'), a commutatively saturated Grobner basis of F.

G := SAT (F);
B:={(q1,92) | 91,92 € G, q1 # @2};
while B # @ do
(41,4:) := remove( B);
h = SpOlc(ql’ Q2,171,$2);
h' := enf(h, G);
if A’ # 0 then
B:= BU{(f,h) | f € G, h € Sat.(h")};
G := G U {SAT.(h')};

endwhile

where SAT. denotes the output of our commutative saturation procedure, remove
removes an element from a set and en f(g,G) computes a normal form of g via G and
canonizes it.

Lemma 15
The procedure is correct.

Proof : Follows immediately from theorem 16. q.e.d.

Lemma 16
The procedure terminates.

Proof : The procedure stops as soon as all s-polynomials reduce to zero. Now
suppose that our procedure does not terminate. Then there is a term ¢ among the
terms of our input polynomials, which occurs infinitely many times among the head
terms of the polynomials A’ as computed in the above procedure giving us an infinite
set {a;-t-y; | a; € N,y; € H} of head terms. Since the &' are in normal form, no
a; - t - y; is reducible by any previously added polynomial. But by Dickson’s lemma
there is a N such that for all £k > N thereis a j < N such that -y, = (t-y;) 0z
' for some z € H and as o is monotone we must have ax < a; as otherwise we get a
contradiction to A’ being in normal form. But this leads to the existence of an infinite
set {b;-(t-y;)oz|i€ N,b € N} with b;4; < b; contradicting the fact that (N, <) is
well-founded. q.e.d.

Theorem 17

The existence of finite Grobner bases for ideals in Z[H) has been shown for commutative
monoids. Using the appropriate presentation of H the procedure “Completion with
respect to Commutative Saturation” computes such bases.

44




6.5 Finitely Generated Two Sided Ideals in a Free Monoid
Ring

In the previous section we saw that ideals in commutative monoid rings have finite
Grobner bases. Looking at finitely generated two sided ideals in arbitrary monoid
rings the situation is much harder. In particular we show that for a fixed reduction the
existence of finite Grobner bases for finitely generated ideals in the free monoid ring
Q[Z"] is undecidable, where ¥ = {d,,...,d,} is a finite alphabet with d; = ... = d,

inducing a length-lexicographical ordering on ¥*.

Definition 13
Let p= Z?:l a; - Wi, g = ZT"I bj ‘v € Q[Z‘] and b; > 0.

We say g reduces p to q at a, - wy in one step, i.e. p— g, if

(a) zv;y = wy for some z,y € T™.
(b) g=p—(ar - b7")-z-9-y.

We write p—, if there is a polynomial ¢q as defined above.

g
We can define =, 5, 5 and reduction by a set F' C Q[E*] as usual and Sp ==p.

Theorem 18 It is undecidable, whether a finitely generated ideal has a finite Grobner
basis in Q[X*] .

Proof : Let I' = {a;|i € N} be an alphabet with > a length-lexicographical ordering
on I'*. According to the results in [OD83] for finite Thue systems (£,T), £ C T, we
can state:

If P is a property of finite Thue systems fulfilling

1. If (£,T1), (£, T2) are two equivalent Thue systems, then P(T}) implies P(T3).
2. Every trivial Thue system has P.

3. For each finite Thue system having P the word problem is decidable.

then the following problem is undecidable:

Input: A finite Thue system (L, T').

Question: Does (£,T) have P?

Setting P(T') iff there is an equivalent, finite system T’, which is convergent with
respect to > we get that the following question is undecidable:

Given a finite Thue system (X,T), is there an equivalent, finite system (X, 7") which
is convergent with respect to =7

Our claim is:

(%,T) has an equivalent, finite presentation (X, T’) convergent with respect to > iff
the set Pr = {l —r | (I,7) € T} has a finite Grbner basis in the free monoid ring
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Q[X*] generated by ¥ according to the ordering >.

If there 1s an equivalent, finite presentation (X, 7") convergent with respect to >, then
the set Pr = {l —r | ({,r) € T'} is a finite Grobner basis of Pr in Q[X*], since
possible s-polynomials of Pr: correspond to critical pairs of 7' and reduction in T’ can
be simulated in Q[X*] (compare definition 13).

It remains to show that in case Pr has a finite Grobner basis in Q[X*] there exists a
finite Grobner. basis G such that for all ¢ € G we have ¢ = u — v, where u,v € X*,
and u <rv. Then (X,T) has an equivalent, convergent, finite presentation (X,7"),
where T = {(u,v) | u — v € G} as the reduction — in Q[X"] as defined above can be
compared to the usual reduction in a Thue system.

First we show that in case a finite set F has a finite Grobner basis in Q[2*] the following
procedure also computes a finite Grobner basis of F' (compare [Mo85]).

Procedure Completion in Q[¥*]

input: F C Q[X~] finite
output: GB(F'), a Grobner basis of F'.

G := F;
B := {(q1,92) | @1, 92 € G};
while B # § do
(41,42) := remove(B);
for all h € spols(q,q2) do
k' := cnf(h,G);
if A’ # 0 then ‘
G:=GU{h'} .
B:= BU{(f,k),| f € G};
endfor
endwhile
GB(F) =G

where remove removes an element from a set, cn f(k, G) computes a “canonized normal
form” of h with respect to G, and spols(qi,q;) = {canonize(HC(q:)™* ‘z-q1 -y —
HC(q2)™" ¢z | HT (q1)y = HT(2)} U {canonize(HC(q1) ™ -q1-y — HC(g2) ™" -z - g2 |
HT(q)y = zHT ()} i )
Now let G be a finite Grobner basis of Pr with HT(G) = {HT(9) | ¢ € G} =
{t,...,tx}. Let H, = {ztyy | z,y € £*}, then HT (ideal(Pr)) = UL, H;,, since all
polynomials in tdeal( Pr) reduce to zero by G. Further our procedure is correct and,
therefore, for each t; there has to be at least one ¢g; added to G or already in G such
that t; = zHT(g;)y for some z,y € L*, i.e. HT(g;) divides t;. Note that as soon as
all such g; are added to G, we have HT (ideal(G)) = U, H;, = HT (ideal(Pr)) and as
for all b’ added to G we know A’ € ideal(Pr) and, as A’ is in normal form with respect
to the already computed polynomials, no further polynomials will be added.

It remains to show that in case Pr has a finite Grobner basis the finite output GB(Pr)
of our procedure has the desired structure that for all ¢ € GB(Pr), ¢ = u — v where
u,v € £*, and u Sy v.
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Let us look at the polynomials added to G and in G: In case g € Pr there is nothing
to show. Now let us assume all polynomials in G have the desired structure and
a new polynomial g is added. In case ¢ is due to s—polynomial computation of two
polynomials uy —vy,u; — v, we do not lose our structure. The same is true for computing
the canonized head normal form of a polynomial u — v via a set of polynomials having
the same structure. Further u & v is inherited within these operations. q.e.d.

7 Relations to Grobner Bases in Special Monoid
Rings

In our approach to generalize the concept of Grobner bases to monoid rings, we find
that in order to give a criteria for a set to be a Grobner basis (in our case of a right
ideal), there are two main problems to solve. They arise from the fact that in general
the ordering and multiplication on our monoid are not compatible, i.e. m; > m, need
not imply m; -z > m; - z. Let — be a computable reduction on our monoid ring
R[H] (e.g. as described in definition 3). Trying to characterize a set F' C R[H] as a
Grobner basis of a (right, left) ideal by means of s—polynomials and their reducibility
as in Buchberger’s work, we have to solve the following problems:

1. We have to check our reduction and eventually correct some "defects”.
2. We have to localize our critical situations.

3. We have to guarantee that p—_0 and q 5 0 implies the existence of a represen-
tationof pasp = Z:f-;l d;-gi-zi,d; € Z,g; € F,z; € Hsuchthat HM(p) > d;-g;-x:
for all 1 € {1,...k}. Note that this is weaker than demanding p > 0.

In case these problems are solved we immediately get: F' C R[H] is a Grobner basis for
the (right, left) ideal generated by F if and only if for all f,¢ € F' the “appropriate”
s—polynomials reduce to zero by .

In the previous sections we have solved these problems by introducing prefix right
reduction, prefix saturation and prefix s—polynomials. Unfortunately prefix saturation
need not be finite in general. For example take T' = {ba — ab} and p = b+ A. Then a
prefix saturating set of p must prefix right reduce the set {a™b+ a™|n € N} to zero. It
is obvious that no such finite prefix saturating sets of p exist.

In case T' contains the commutator set of &, T, = {aje; — a;a;| for all a;,a; € E,a; <
a;} the two problems can be solved in a similar way by introducing commutative right
reduction, commutative saturation and commutative s—polynomials. Due to Dickson’s
lemma we always get finite Grobner bases (in this case even of ideals).

Now we want to sketch, how the results of Buchberger [Bu85], Kandri-Rody, Kapur
[KaKa84, KaKa88], Mora [Mo85], Baader [Ba89] and Weispfenning [We92] can be seen
in this context. Note that the approach can easily be modified for K[H], where K is a
field.
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1. Grobner bases for R[zi,...z,], where R is a field or Z, as described in [Bu85,
KaKa84, KaKa88]:
We can view R[z,,...r,] as the monoid ring over the free commutative monoid

H generated by {z,...,z,} and for instance the lexicographic-degree ordering is
monotone on H. Therefore, p itself is (commutatively) saturated and we can take
the usual definition of s—polynomials as a basis for our set of s—polynomials. Such
s—polynomials are for example in case R = Z defined as follows: Given two poly-
nomials py, ps with HC(p3) = c2 > HC(p1) =1 > 0, HT(p;) = t;, RED(p;) = 1;
for : = 1,2. Let z,,x, such that ¢, - z; = ¢; - 1 is the least common multiple of
ti1,t2 and a,b € Z, b a remainder of ¢; with ¢; = a - ¢; + b. We get the following
SPOI(Pl,Pz) =a-py T — P2 T2

Equivalent are:

(a) ideal,(F)5g0
(b) For all fy, fi € F we have: spol(fi, fi) —=p0.

2. Grobner bases for R(z1,...z,), where R is a field or Z, as described in [Mo85,
Ba89]:
We can view R(z,,...z,) as the monoid ring over the free monoid H generated
by {z1,...,z,}. We know that p itself is (prefix) saturated since ' = § and we
can take prefix s-polynomials as described in definition 11.
Equivalent are:

(a) ideal (F) =50
(b) For all fy, fi € F we have: spol,( fi, fi) = 0.

3. Grobner bases for skew polynomials rings K (X,Y’) as described in [We92):

We can view the skew polynomial ring K (X,Y’) as a monoid ring over a monoid
H presented by ¥ = {X,Y},T = {YX — X°Y}, where ¢ € N*. Since the
ordering used by Weispfenning is monotone, p itself is saturated and taking his
s—polynomials as a basis for our set of s—polynomials we are done. Weispfenning’s
s—polynomials are defined as follows: Given two polynomials p;, p, with HC(p;) =
¢i, HT(p;) = t;, RED(p;) = r; for 1 = 1,2. Let xy,z2 such that ¢, -z, =t; - z5 is
the “least common multiple” of ¢, ¢; according to the “modified” multiplication.
We get the following spol(p;,p2) =c2-p1 -1 —¢1 - p2 - Ta.

Equivalent are:

(a) tdeal,(F)>p0
(b) For all fi, fi € F we have: spol(fi, fi) =f0.
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8 Applications

Definition 14
Let G be a group, S € G and (S) denote the subgroup generated by S. The generalized
word problem or subgroup problem for G is to determine, given w € G, whether w € (S).

In [KuMa89] prefix rewritiug is used to solve the generalized word problem for a group
G. A special basis of a subgroup is computed which allows to decide the generalized
word problem for an element in G by prefix reducing it with respect to this basis.
A similar approach can be given using completion with respect to prefix saturation
showing the connection to the ideas used in [KuMa89]. Let (X, T) be a finite convergent
presentation of a group G. Furtherlet S = {u,,...,u,} be a subset of G (we will identify
G and TRR(T) throughout this section) and Ps = {u; — 1 | u; € S}. Before we show
how completion in Z[G] can be used to study the subgroup problem in G we give a
useful lemma on the structure of the right Grobner basis GB(Ps) computed by one of
our procedures.

Lemma 17
For all f € GB(Ps) the following hold:

(o) f=2—y, wherez,y € G.
(B) For f =z —y eitherz,y € (S) or z,y & (5).

(v) For f=1z—y we havez -y~1,y-z71 € (S).
Proof : Qurinputis Ps = {u; — 1| u; € §},5 C G finite.

1. Let f € GB(Ps) be due to the saturation of a polynomial z — y, fulfilling
(a),(B)(7), 1e. f=(r—y) -z =2 —y for some z € G and () is true.
Without loss of generality let us assume 2’ =z -z and ¢y =y - 2.

(a) =,y € (S5)
1. z € (5)
Then z-z,y-z € (S) and f fulfills (3). Furtherz’-y' ' =z-z-271-y~ ' =
z-y landy -z ' =y-z-2z7'-z7! both are in (S), i.e. f fulfills (7).
. z € (S)
Now let us assume z' € (S). Since r € (S) we get z7!' € (S) and
therefore z = z7'-(z-z) = 27! -z’ € (S) contradicting our assumption.
Similarly we can show y’ & (S) and together with z/-y'~!,y’ - 2’~ € (5)
we find that f fulfills (3) and (v).
(b) z,y € (S)
1. z€(5)
Let us assume z’ € (S). Since z € (S) gives us 27! € (§) we get
z=(z-z) 271 € (S) contradicting our assumption. Similarly we can
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show y’' € (S) and together with z': y"~,y' - z'"' € {z-y~ L,y -z} we
find that f fulfills (8) and (7).

i. z ¢ (S)
Let us assume z’ € (S) and ¥y’ ¢ (S). Since y-z~' € (S) we get
Y=y -z=(y-z7") - (z-2) € (S) contradicting our assumption. This
together with o’ - y'~',y'-z'~' € {z -y~ ',y -z} gives us that f fulfills
(8) and (7).

2. Let f € GB(Ps) be due to s-polynomial computation of £; — 1,2 — y2 both
fulfilling (a),(8),(7). Without loss of generality let us assume z; - 2, = z2 - 22
for some 2,,2; € H according to the appropriate definition. This gives us the
s—-polynomial y; : z; — y2 - 25 which clearly fulfills (). It remains to show that it
also fulfills (8) and (v). We know z! -z, =2z, - z; and z;! - 2, = 25 - 27 1.

(a) z1,29,y1,92 € (S)
Then either -2y, 2522, 91+21,¥2-22 € (S) or =121, Ta- 22, Y1 - 21, Y2 22 & (S)
giving us (3). Further we get y; - 21 - (y2-22) ' =y -2y 25 ry; P =y -2yt
z2y; €(SYand Y-z (y1-2) =yr- 2z yr = ype27 o2y oy € (S)
giving us (7).
(b) T1,Z2,Y91,Y2 ¢ <S>

This case goes analogously.

(¢) z1,11 € (S) and z2,y2 & (S)

1. 21 € (5), 1€ 21 21,51 - 21 €(S)
As 71 - z1 = x5 - 2; we know z, ¢ (S) as otherwise z; - z1,23' € (S)
would imply z; € (S). Further z;-z; € (S) implies y,-z2 € (S) 47, i.e.
(B) is fulfilled, and, therefore, y; - z1- (y2- 22) 7Y, y2- 22 - (y1- z1) "' € (S),
i.e. () is fulfilled.

il 21 € (S),1.e. 21 21,41 - 21 € (S)
As 11-21 = 23 z; we know x5 22,2 - 29 € (S) , i.e. () is fulfilled, and
Y1 21 (Y2- 22) L y2- 22 (y1 - 21)~F € (S), i.e. (7) is fulfilled.

3. Let f € GB(Ps) be the canonized normal form of a polynomial z—y, which fulfills
(), (B) and (7). We show that reducing a polynomial z, — y; by a polynomial
T3 — Y2, both fulfilling («), (3) and (), the canonized version of the result again
fulfills (a),(8) and (7). Without loss of generality let us assume z; = z; - z, i.e.
z=1z;1 z, 271 1. z,. Then z1 — 1 = T1— U1 — (T2 —y2) - Z.

(a) 21,2, € (S)
Then z; = z,- 2z € (S) implies y, - z € (S) as in 1. Further y;- (y2-2)~' =
vzl =yea mayy €(S)and gy 2oyt = yaezt oy €(S),
i.e. the canonized version of the result again fulfills (), (3) and (7).

=:1:i—

47To get these results we can apply the same argumentation as in part 2 of this proof.
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(b) z1,72 & (5)
Then z; = z5- 2 € (S) implies y, - z € (S) as in 1. Again y; - (y2- 2)", y2 -
z-y;' € (S) gives us that the canonized version of the result again fulfills

(a),(B) and (7). q.e.d.

Lemma 18
Let S C G. Then the following statements are equivalent:

1. we (S)
2. w—1 €deal,(Ps)

3 w-1 —)TGB(PS)O

Proof :

1 =2 Let w=u;, -...- u;.
We show w — 1 € ideal.(Ps) by induction on &.
In the base case £ = 1 .there is nothing to show.
Suppose w = u;, - ... u;,, and u;, - ... u; — 1 € ideal,(Ps). Then (u;, - ...-
u;, — 1) u;,,, € wdeal.(Ps) and since u;,, — 1 € tdeal,(Ps) we get (u;, ... u; —
1) s i, + (i, — 1) =w — 1 € ideal,(Ps).

2 = 3 This follows immediately from the fact that GB(Ps) is a Grobner basis via —7.

3 = 1 Suppose w — l—k*rGrB(Ps) 0. We show w € (S) by induction on k.
In the base case k = 1 wehavew—1 = (z—y) -z for somez~y € GB(FPs),z € G
andw=z-2,1=y-z Thenw =2z -y € (S) by lemma 17.
Suppose w — IHTGB(Ps)w —l—(z~-y)-z=y-z2-1 LTGB(PS)O' Then our
induction hypothesis yields y - z € (S). By lemma 17 we have to distinguish the
following cases:

(a) z,y € (S)
Then y-z € {S) and y~! € (S) give us z € (S) and therefore w = z-z € (5).
(b) z,y & (S) Then y - z € (S) together with z -y~ € (S) (compare lemma 17)
givesusw=z-z=(z-y7')-(y-2)€(S). q.e.d.

Example 10

Let £ = {a,b,¢},T = {a* = X\, — A ab — c,a3c — b,cb — a} denote a group G and
S = {ca,a’ca® b} a subset of G. Then {b—1,ca — 1,c? — b,a%c — a,a® ~ c} is a right
Grobner basis of Ps via —".

A word of caution: This cannot be generalized to the submonoid problem as the
following example shows:

—



Example 11

Let ¥ = {a,b},T = {ab — A} denote a monoid H. Let U = {a" | n € N} be
the submonoid of H generated by S = {a}. Then we have b — 1 € ideal,(Ps) since
b—1=-1(a=1)-bbutbgU.

In case H is a free monoid or a free commutative monoid the results of this section can

be applied.
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