
50522023
83-0

03m

C
O

D
—

tom
59503520!E

teozc :
x iv—

E
O

E
.

20659200“ .

Jürgen Paulokat (Ed.)

SEKI Report SR-92-06 (SFB)

sMETsV
.

SmEPXEmSMW
.;

A

EO
nm

E
-

E
m

m

1

Preface

This report contains a collection of abstracts of talks given during the workshop:

(A)TMS in Expert Systems.

The workshop was hold at University of Kaiserslautern in june, 1991.1 It was the intention
of the workshop to discuss the benefice and problems of integrating reason maintenance
systems to. support problem solving in expert systems.

Reason maintenance systems has been proposed more than a decade before. There is
a lot of theoretical work on complexity, semantic, and efficiency presented on numerous
conferences and workshops. Given the theoretical results reason maintenance seems to have
a great potential for facilitating problem solving. But in practical work a lot of problems
arise trying to integrate reason maintenance systems and problem solver. Some of these
problems are described in this report and. some solutions are presented to them.

Jiirgen Paulokat (ed.)

IThis workshop was partially founded by the Deutsche Forsch'ungsgemeinschaft (DFG), SFB 314 "Ar­
tificial Intelligence - Knowledge Based Systems", project X9

Preface
This report contains a collection of abstracts of talks given during the workshop:

(A)TMS in Expert Systems.

The workshop Was hold at University of Kaiserslautern in june, 1991.1 It was the intention
of the workshop to discuss the benefice and problems of integrating reason maintenance
systems to, support problem solving in expert systems.

Reason maintenance systems has been proposed more than a decade before. There is
a lot of theoretical work on complexity, semantic, and efficiency presented on numerous
conferences and workshops. Given the theoretical results reason maintenance seems to have
a great potential for facilitating problem solving. But in practical work a lot of problems
arise trying t o integrate reason maintenance systems and problem solver. Some of these
problems are described in this report and. some solutions are presented to them.

Jürgen Paulokat (ed.)

1Th i s workshop was par t ia l ly founded‘by the Deutsche Forschungsgemeinschaft (DFG) , SFB 314 “Ar-
tificial Intelligence —— Knowledge Based Sys tems”, project X9

1

3

Contents

Integration of a Reason Maintenance System into a Hybrid Computer Vision Tool
J. Dvorak, H. Bunke

5

Assumption Based Truth Maintenance on Partially Ordered Data
A. Haag

9

Distributed Truth Maintenance
T. C. Horstmann

15

Generating Diagnoses by Prioritized Defaults
U. Junker

19

A Truth Maintenance System for Medical Knowledge-Based Assistance Systems
H. [{indler

25

The Integration of an ATMS and a Constraint System in IDA
J. Paulokat, H. Wache

31

Semantics for Reason Maintenance
C. Petrie

35

Contents ,

Integration of a Reason Maintenance System into a Hybrid Computer Vision Tool
J. Dvorak, H. Bunke

Assumption Based‘Truth Maintenance on Partially Ordered Data
A. Haag

Distr ibuted Truth Maintenance
T. C. Horstmann

Generating Diagnoses by Prioritized Defaults
U. Junker

A Truth Maintenance System for Medical Knowledge—Based Assistance Systems
H. Kindler

The Integration of an ATMS and a Constraint System in IDA
J. Paulokat, H. Wache

Semantics for Reason Maintenance
C. Petr ie

5

15

19

25

31

35

5

Integration of a Reason Maintenance System into a Hybrid
Computer Vision Tool

J. Dvorak, H. Bunke

UniversiUit Bern

Institut fiir Informatik und angewandte Mathe~atik

Langgassstrasse 51, CH-30l2 Bern, Switzerland

Email: dvoraldliam.unibe.ch , bunkelOiam.unibe.ch

extended Abstract

Introduction

There are many classes of problems in computer vision where explicit a priori knowledge
about the possible meaning of the images under consideration is required. Consequently,
many knowledge based approaches to computer vision have been proposed in recent years.
They mainly rely on the artificial intelligence based knowledge representation formalisms
rules, frames, and pre<!icate logic, and on other symbolic methods like structural prototype
m,atching, discrete and continuous relaxation. Recently, reason maintenance has been
proposed as suitable means for the interpretation task in computer vision [BSB89, Pro88,
Pau88]. In the following we present a hybrid knowledge representation and reasoning tool
that offers the possibility to combine rules, frames, relaxation, prototype graph matching
and reason maintenance in a uniform and coherent style. This hybrid shell is particularly
useful for, but not restricted to, applications from computer vision and pattern recognition.
A prototype of the software tool without reason maintenance has been implemented in
Common Lisp and the Common Lisp Object System CLOS [BDG+88, DB91, DB90]. The
focus of this paper is on the ongoing integration of the reason maintenance system, with
only a short overview of the other components of the tool in the next paragraph.

Overview of the Vision Tool

The tool is implemented in an object-oriented style with the frame system as an ex­
tension of the CLOS class/instance system, using the Metaobject Protocol (MOP) of
CLOS [BDG+88]. It supports particularly hybrid approaches, where the knowledge is dis­
tributed among multiple representation methods. The components frames, rules (both
forward and backward chaining), discrete relaxation and prototype matching are the
knowledge representation and reasoning methods offered by our tool, and they can be
instantiated multiple times in one application. To support hybrid applications, the com­
ponents have a coherent" user interface, and there are provivions for interactions among the
components such that every instance of a component can interact with any other instance.
To cope with a large variety of computer vision applications and with future needs, another
important feature of the tool is its flexibility in terms of adaptability and extensibility.

Integration of a Reason Maintenance System into a Hybrid
Computer Vision Tool

J . Dvorak, H . Bunke
Universität Bern

Institut für Informatik und angewandte Mathematik
Länggassstrasse 51, CH-3012 Bern, Switzerland

Email: dvorako iam.un ibe . ch , bunkeQiam.un ibe . ch

extended Abstract

Introduction

There are many classes of problems in computer vision where explicit a priori knowledge
about the possible meaning of the images under consideration is required. Consequently,
many knowledge based approaches to computer vision have been proposed in recent years.
They mainly rely on the artificial intelligence based knowledge representation formalisms
rules, frames, and predicate logic, and on o ther symbolic methods like structural prototype
matching, discrete and continuous relaxation. Recently, reason maintenance has been
proposed as suitable means for the interpretation task in computer vision [BSB89, Pr088,
Pau88]. In the following we present a hybrid knowledge representation and reasoning tool
that offers the possibility t o combine rules, frames, relaxation, prototype graph matching
and reason maintenance in a uniform and coherent style. This hybrid shell is particularly
useful for, but not restricted t o , applications from computer vision and pat tern recognition.
A prototype of the software tool without reason maintenance has been implemented in
Common Lisp and the Common Lisp Object System CLOS [BDG+88, DB91, DB90]. The
focus of this paper is on the ongoing integration of the reason maintenance system, with
only a short overview of the other components of the tool in the next paragraph.

Overview o f the Vision Tool

The tool is implemented in an object-oriented style with the frame system as an ex-
tension of the CLOS class/instance system, using the Metaobject Protocol (MOP) of
CLOS [BDG+88]. It supports particularly hybrid approaches, where the knowledge is dis—
tributed among multiple representation methods. The components frames, rules (bo th
forward and backward chaining), discrete relaxation and prototype match ing are t he
knowledge representation and reasoning methods offered by our tool, and they can be
instantiated multiple times in one application. To support hybrid applications, the com—
ponents have a coherent. user interface, and there are provivions for interactions among the
components such that every instance of a component can interact with any o ther instance.
To cope with a large variety of computer vision applications and with future needs, another
important feature of the tool is its flexibility in terms of adaptability and extensibility.

6

This flexibility is achieved by th,e separation of a programmer and a metalevel interface,
similar to the two interfaces of CLOS.

Integration of aRMS

The integration of a reason maintenance system with the VISIOn tool consists of two
basic tasks: the development of the reason maintenance system itself, in our case an
ATMS [dK86a], and its integration into the existing four components. Two typical appli­
cations of the reason maintenance system are described below:

•	 Handling of multiple contexts, similar to the ART Viewpoints or KEE Worlds sys­
tems, for reasoning under a set of hypotheses. This application is illustrated by
means of an example. A sample scene with three overlapping objects is shown in
the figure below:

In order to identify the objects in the image a possible application might start with
an attempt to separate the objects according to the types of the connections of
lines. In particular, so-called T-connections, where one line meets two lines with
approximately the same slope, are good candidates for object separation. The inter­
pretation of a T-connection, e.g. point 15 in the above image, as a point where two
objects meet is then an assumption, and combinations of these assumptions are the
environments describing the contexts in which a prototype matching can be called
for the identification of one or all separated objects.

Generalizing from this example, there are typically a few critical features in an image
that form the hypotheses, and reasoning then proceeds with various processing steps,
including calls to other components or Lisp functions, within the contexts formed
by the assumptions.

•	 The second type of applications involves an ATMS problem solver in the sense
of [dK86b, Jun89] for more direct interactions with the underlying ATMS. A typical
example of this kind of use is the puppet interpretation system of Provan [Pro88].
In such an application, the tasks are completely solved within the reason mainte­
nance system by consumers (rules) supplying justifications to the system. The image

This flexibility is achieved by the separation of a programmer and a metalevel interface,
similar to the two interfaces of CLOS.

Integration of a RMS

The integration of a reason maintenance system with the vision tool consists of two
basic tasks: the development of the reason maintenance system itself, in our case an
ATMS [dK86a], and its integration into the existing four components. Two typical appli-
cations of the reason maintenance system are described below:

. Handling of multiple contexts, similar to the ART Viewpoints or KEE Worlds sys-
tems, for reasoning under a set of hypotheses. This application is illustrated by
means of an example. A sample scene with three overlapping objects is shown in
the figure below:

In order to identify the objects in the image a possible application might start with
an attempt to separate the objects according to the types of- the connections of
lines. In particular, so—called T—connections, where one line meets two lines with
approximately the same slope, are good candidates for object separation. The inter-
pretation of a. T-cc’mnection, e.g. point 15 in the above image, as a point where two
objects meet is then an assumption, and combinations of these assumptions are the
environments describing the contexts in which a prototype matching can be called
for the identification of one or all separated objects.
Generalizing from this example, there are typically a few critical features in an image
that form the hypotheses, and reasoning then proceeds with various processing steps,
including calls to other components or Lisp functions, within the contexts formed
by the assumptions.

0 The second type of applications involves an ATMS problem solver in the sense
of [dK86b, J un89] for more direct interactions with the underlying ATMS. A typical
example of this kind of use is the puppet interpretation system of Provan [Pro88].
In such an application, the tasks are completely solved within the reason mainte-
nance system by consumers (rules) supplying justifications to the system. The image

7

interpretation proceeds in a purely deductive manner, without any call to another
reasoning component.

There are a number of problems encountered with the integration of sllch a reason main­
tenance facility into our hybrid reasoning tool. With respect to the ATMS algorithm,
there exist various extensions that one may need or not, providing negation, nonmono­
tonic justifications, default reasoning, and others (e.g. [Dre88]). In most cases the problem
solver part as proposed by [dK86b] is not sufficient and has to be extended by attached
expressions [Jun89]. But the mos~ problems arise from the interaction of such a reason
maintenance component with the other four components of the tool. This is due to the fact
that these other components reason in a non-deductive way, with frequent modifications
to the database. This kind of reasoning violates basic properties of the ATMS, and the
ATMS has to be adapted to retain its reason maintenance capabilities. Various versions
of similar multiple context handlers have been implemented (ART,KEE,Except [Jun89]).
All these systems have certain limitations or drawbacks, based on extensions and adap­
tations or performance improvements that are traded in for restrictions in other parts of
the reason maintenance formalism.

For our implementation, we have chosen a basic ATMS with a problem solver extended
by attached expressions and a MCH similar to the KEE Worlds system as described
in [MN86]. The problem solver part is a specialization of the forward chaining rule system
in our tool, with restrictions on conditions and conclusions. The integration with the
other tool components is based on the integration with the frame system. In our tool, all
data is represented in frames, which are extensions of CLOS objects. Thus the task is
to integrate CLOS objects with the ATMS. This is achieved with extensions to the slot
definition and accessor protocol of CLOS. Although it can make sense to create instances
based on an actual context, we have decided that slots are the only data elements that can
be mapped to RMS nodes. The rules, relaxation, and prototype matching components are
invoked with an optional environment parameter and operate in the context of this starting
environment. Additionally, rule systems' can be configured to operate in all extensions of
the starting environment, performing an incremental descent in the context graph during
rule execution.

The scope of this paper is too limited to give more details about the integration of
the reason maintenance system. At the time of writing the integration of the reason
maintenance facility into our hybrid computer vision tool is in its specification phase.

Conclusions

Although there are some existing applications in computer vision where reason mainte­
nance has been successfully used, it is our impression that, regarding its potential, ,reason
maintenance has not received adequate attention in image interpretation and similar do­
mains. One of the reasons for this missing acceptance is certainly the high initial effort
required to add reason maintenance to an application. Thus, our conclusion is basically a
proposition for a framework and a toolkit for reason maintenance. A general framework
for the integration of reason maintenance in tools like ours or in standalone applications
in computer vision or similar artificial intelligence based domains would be very useful.
Apart from hybrid tools, reason maintenance as a utility program should be avaible in
toolkits or software libraries in a modular way such that it can be easily added to various
applications.

interpretation proceeds infia purely deductive manner, without any call to another
reasoning component.

There are a number of problems encountered with the integration of such a reason main-
tenance facility into our hybrid reasoning tool. With respect to the ATMS algorithm,
there exist various extensions that one may need or not , providing negation, nonmono-
tonic justifications, default reasoning, and others (e.g. [Dre88]). In most cases the problem
solver part as proposed by [dK86b] is not sufficient and has to be extended by attached
expressions [Jun89]. But the most problems arise from the interaction of such a reason
maintenance component with the other four components of the tool. This is due to the fact
that these other components reason in a non-deductive way, with frequent modifications
to the database. This kind of reasoning violates basic properties of the ATMS, and the
ATMS has to be adapted to retain its reason maintenance capabilities. Various versions
of similar multiple context handlers have been implemented (ART,KEE,Except [J un89]).
All these systems have certain limitations or drawbacks, based on extensions and adap-
tations or performance improvements that are traded in for restrictions in other parts of
the reason maintenance formalism.

For our implementation, we have chosen a basic ATMS with a problem solver extended
by attached expressions and a MCH similar to the KEE Worlds system as described
in [MN86]. The problem solver part is a specialization of the forward chaining rule system
in our tool, with restrictions on conditions and conclusions. The integration with the
other tool components is based on the integration with the frame system. In our tool, all
data is represented in frames, which are extensions of CLOS objects. Thus the task is
to integrate CLOS objects with the ATMS. This is achieved with extensions to the slot
definition and accessor protocol of CLOS. Although it can make sense to create instances
based on an actual context, we have decided that slots are the only data elements that can
be mapped to RMS nodes. The rules, relaxation, and prototype matching components are
invoked with an optional environment parameter and operate in the context o f this starting
environment. Additionally, rule systems3 can be configured to operate in all extensions of
the starting environment, performing an incremental descent in the context graph during
rule execution. ~

The scope of this paper is too limited to give more details about the integration of
the reason maintenance system. At the time of writing the integration of the reason
maintenance facility into our hybrid computer vision tool is in its specification phase.

Conclusions

Although there are some existing applications in computer vision where reason mainte-
nance has been successfully used, it is our impression that, regarding its potential,.reason
maintenance has not received adequate attention in image interpretation and similar do-
mains. One of the reasons for this missing acceptance is certainly the high initial effort
required to add reason maintenance to an application. Thus, our conclusion is basically a
proposition for a framework and a toolkit for reason maintenance. A general framework
for the integration of reason maintenance in tools like ours or in standalone applications
in computer vision or similar artificial intelligence based domains would \be very useful.
Apart from hybrid tools, reason maintenance as a utility program should be avaible in
toolkits or software libraries in a'modular way such that it can be easily added to various
applications.

8

References

[BDG+88] D.G. Bobrow, L.G. DeMichiel, R.P. Gabriel; S.E. Keene, G. Kiczales, and D.A.
Moon. Common Lisp Object System Specification. X3J13 Document 88-002R,
1988.

[BSB89] R. Bodington, G.D. Sullivan, and K.D. Baker. Consistent labelling of image
features using an assumption-based truth maintenace approach. Image and
Vision Computing, 7(1):43-49, 1989.

[DB90] J. Dvorak and H. Bunke. Using CLOS to implement a hybrid computer vi­
sion tool. In A. Paepcke, editor, Proceedings of the Third CLOS Users and
Implementors Workshop, pages 24-31, 1990.

[DB91] J. Dvorak and H. Bunke. A hybrid expert system shell for computer vision. In
To appear in: Proc. of the First World Congress on Expert Systems, Orlando,
Florida, 1991.

[dK86a] J. de Kleer.
1986.

An assumption-based TMS. Artificial Intelligence, 28:127-162,

[dK86b] J. de Kleer.
224, 1986.

Problem solving with the ATMS. Artificial Intelligence, 28:197­

[Dre88] O. DressIer. An extended basic atms. In M. Reinfrank, J. de Kleer, M.L.
Ginsberg, and E. Sandewall, editors, Non-Monotonic Reasoning, pages 143­
163. 1988.

[Jun89] U. Junker. EXCEPT: A rule-based system for multiple contexts inconsistencies,
and exceptions. Technical Report 371, Arbeitspapiere der GMD, 1989.

[MN86] P.H. Morris and R.A. Nado. Representing actions with an assumption-based
truth maintenance system. In AAAI-86, pages 13-17, 1986.

[Pau88] L.F. Pau. Knowledge representation for three-dimensional sensor fusion with
context truth maintenance. NATO ASI Series, Vol. F42 Real-Time Object
Measurement and Classification. Berlin Springer, pages 391-404, 1988.

[Pro88] G.M. Provan. Model-based object recognition - a truth maintenance approach.
Proc 4th CAIA 88, pages 230-235, 1988.

oo

References

[BDG+88] D.G. Bobrow, LG. DeMichiel, R.P. Gabriel, S.E. Keene, G. Kiczales, and DA.

[Bsnsm

[DB90]

[Dngu

[dK86a]

[dK86b]

[Dre88]

[J un89]

[MN86]

[Pau88]

[Pr088]

Moon. Common Lisp Object System Specification. X3J 13 Document 88-002R,
1988.

R. Bodington, G.D. Sullivan, and KB. Baker. Consistent labelling of image
features using an assumption-based truth maintenace approach. Image and
Vision Computing, 7(1):43—49, 1989.

J. Dvorak and H. Bunke. Using CLOS to implement a hybrid computer vi-
sion tool. In A. Paepcke, editor, Proceedings of the Third CLOS' Users and
Implementors Workshop, pages 24—31, 1990.

J. Dvorak and H. Bunke. A hybrid expert system shell for computer vision. In
To appear in: Proc. of the First World Congress on Expert Systems, Orlando,
Florida, 1991.

J. de Kleer. An assumption-based TMS. Artificial Intelligence, 28:127—162,
1986.

J. de Kleer. Problem solving with the ATMS. Artificial Intelligence, 28:197—
224, 1986.

O. Dressler. An extended basic atms. In M. Reinfrank, J. de Kleer, M.L.
Ginsberg, and E. Sandewall, editors, Non-Monotonic Reasoning, pages 143—
163. 1988.

U. Junker. EXCEPT: A rule-based system for multiple contexts inconsistencies,
and exceptions. Technical Report 371, Arbeitspapiere der GMD, 1989.

RR. Morris and R.A. Nado. Representing actions with an assumption—based
truth maintenance system. In AAAI—86, pages 13—17, 1986.

LP. Pau. Knowledge representation for three—dimensional sensor fusion with
context truth maintenance. NA TO ASI Series, Vol. F42 Real-Time Object
Measurement and Classification. Berlin Springer, pages 391—404, 1988.

G.M. Provan. Model-based object recognition - a truth maintenance approach.
Proc 4th CAIA 88, pages 230—235, 1988.

9

Assumption Based Truth Maintenance on Partially
. Ordered Data '

Albert Haag

BatteUe Institut

Am RlSmerhof 35, D-6000 FrankfUrt a.M. 90

West Gennany

leI. (++49-69-7908-2559)

1 Summary

We describe an ATMSLbased problem solving architecture dedicated to support certain clas­
ses of configuration and planning applications. These applications largely involve solving con­
straint satisfaction problems, with an added optimization aspect introduced implicitly in the form
of weak constraints. Problem solving is a sort of best-first search, mainly controlled (interactive­
ly) by the user. Our architecture supports this setting with several specific features

•	 The backbone of the system is the ATMS*, an Assumption Based Truth Maintenance Sys­
tem (DeKleer [1]), that was extended by us to respect so-called specialization relations. By
specialization relations we mean partial orders on the domain data that express specificity of
meaning of the data (not preference relations). (See section four, below.)

•	 The ATMS* is integrated with a rule based inference engine that provides a pattern matching
capability over the (acts the ATMS* manages. This can be seen as special instance of
DeKleer's class consumer architecture. Both the ATMS* and the rule interpreter are inte­

grated with an object oriented programming system2 (OOP).
•	 Constraints are implemented as pattern matching rules. The rules allow formulating both

hard and soft constraints. It is possible to declare problem variables, and to reason about
domain restrictions for these variables.

•	 The role of problem solver (PS) assumptions is clarified. Justifications derived from soft
~onstraints are in a one to one correspondence with the ATMS* assumptions. Or, conversely,
assumptions are generally interpreted as soft justifications.

•	 The ATMS* can be queried interactively. To support such queries, we introduce the concept
of an ATMS*-universe. An ATMS*- universe is here taken to be the set of all facts
consistent with a given ATMS*-label.

A central result of our work concerns extending the a specialization relation on the domain data
to different sets of logical formula that arise in connection with the ATMS*, particularly to justi­
fications and conjunctions of facts. We can only briefly outline our approach here, a more com­
plete account is given in [2].

I
1 We assume familiarity with basic concepts conn~ted with aD AlMS (Assumption Based Truth Mainten­

ance System) as introduced by DeKleer [1] such as label, environment, assumption, etc.
2 Our system, called IlPLAKON, is currently implemented in Common Lisp; the OOP chosen was CLOS [7].

1

, Assumption Based Truth Maintenance on Partially
Ordered Data

Albert Haag
Battelle Institut

Am Römerhof 35, D-6000 Frankfurt a.M. 90
West Germany \

tel. (++49-69-7908—2559)

mmr

We describe an ATMSl-based problem solving architecture dedicated to support certain clas-
ses of configuration and planning applications. These applications largely involve solving con-
straint satisfaction problems‚ with an added optimization aspect introduced implicitly in the form
of weak constraints. Problem solving i s a sort of best-first search, mainly controlled (interactive-
ly) by the user. Our architecture supports this setting with several specific features

The backbone of the system is the ATMS*, an Assumption Based Truth Maintenance Sys-
tem (DeKleer [l]) , that was extended by us to respect so-called specialization relations. By
specialization relations we mean partial orders on the domain data that express specificity of
meaning of the data (not preference relations). (See section four, below.)
The ATMS* is integratedwith a rule based inference engine that provides a pattern matching
capability “over the facts the ATMS* manages. This can be seen as special instance of
DeKleer’s class consumer architecture. Both the ATMS* and the rule interpreter are inte-
grated with an object oriented programming system2 (OOP).
Constraints are implemented as pattern matching rules. The rules allow formulating both
hard and soft constraints. It is possible to declare problem variables, and to reason about
domain restrictions for these variables.
The role of problem solver (PS) assumptions is clarified. Justifications derived from soft
constraints are in a one to one correspondence with the ATMS* assumptions. Or, conversely,
assumptions are generally interpreted as soft justifications.
The ATMS* can be queried interactively. To support such queries, we introduce the concept
of an ATMS*-universe. An ATMS*- universe i s here taken to be the set of all facts
consistent with a given ATMS*-labe1.

A central result of our work concerns extending the a specialization relation on the domain data
to different sets of logical formula that arise in connection with the ATMS*, particularly to justi-
fications and conjunctions of facts. We can only briefly outline our approach here, a more com-
plete account is given in [2].

1

2

I
We assume familiarity with basic concepts connected with an ATMS (Assumption Based Truth Mainten-
ance System) as introduced by DeKleer [l] such as label, environment, assumption, etc.
Our system, called uPLAKON, is currently implemented in Common Lisp; the OOP chosen was CLOS [7].

l

10

Problem Settin2

From 1986-1990 we were engaged in developing and applying expert system tools for solving
real-world configuration and planning problems within the TEX-K project3. Of all the applicat­
ions considered there, we shall mention two, which we deem to be typical: the derivation of pro­
duction plans for the machining of metal parts (c.f. [3]), and the configuration of micro-computer
hardware (c.f. [2], [4]). It turned out that the basic problems that needed to be solved in these ap­
plications are constraint satisfaction problems (CSPs) with an added optimization aspect [3].

The problem solving process we envision in this setting consists of a sequence of decisions that
successively restrict the domains of the problem variables, until a satisfactory solution has been
found. At each step of this process the problem solver (PS)usually has a choice of several differ­
ent decisions about domain restrictions that can be made, leading to potentially different solutions
that also vary in their degree of optimality. If the PS has a heuristic estimate of the utility (or cost)
that can be attained based on decisions already made, this can be used to guide the solution find­
ing process in a best-first manner. Unfortunately, in our experience, it is sometimes difficult or
impossible to explicitly formulate such a utility (or cost) function. Instead, it turns out that optim­
ality of solutions can also be expressed implicitly, via so-called soft constraints. A soft constraint
states a desirable state of affairs (because good solutions often fulfill these constraints), but it can
be relaxed when in conflict with other constraints. Consider the following two rules taken from
the machining application referred to above.

RI: "For any feature that must be both rough-machined andfine-machined, rough­
machining always precedes fine-machining"

R2: "Any rough-machining should always precede any fine-machining"
RI translates into a hard constraint; there are technical reasons why it is not plausible to do rough
operations (such as milling) after fine ones (such as polishing). R2 corresponds to a soft con­
straint. It often characterizes good process plans, because it reduces the number of necessary re­
toolings, but there is no technical reason why it could not be violated.

Thus, not only must a CSP be solved, but the right set of constraints must be chosen from a po­
tentially very large set. For lack of a better term at present, we shall call such problems extended
CSPs (ECSPs). Whereas the complexity of ECSPs can be exponentiaJ., we found that one means
of achieving successful (commercial) support, here, lies in providing a sort of 'truth maintenance'
functionality. The user (or external PS) guides the search for a satisfactory solution, and the sys­
tem helps juggle alternatives ~hile ensuring the local satisfaction of the hard constraints.

1&mI Satisfaction of Constraints

The approach to CSPs in connection with ATMSs taken most frequently is to encode each'
assignment of a value to a problem variable as a proposition recorded directly by an ATMS-node
(usually as an assumption) (c.f. [5]). This entails reasoning about disjunctions of such nodes,

3 TEX-K was a joint venture sponsored in part by the Gennan Ministry for Research and Technology

(BMFf). The results referred to in this paper reflect only a part of the total effort of the project. (C.f. [10])

10

2 l in

From 1986-1990 we were engaged in developing and applying expert system tools for solving
real-world configuration and planning problems within the TEX—K project3. Of all the applicat-
ions considered there, we shall mention two, which we deem to be typical: the derivation of pro-
duction plans for the machining of metal parts (c.f. [3]), and the configuration of micro-computer
hardware (c.f. [2], [4]). It turned out that the basic problems that needed to be solved in these ap-
plications are constraint satisfaction problems (CSPs) with an added optimization aspect [3].

The problem solving process we envision in this setting consists of a sequence of decisions that
successively restrict the domains of the problem variables, until a satisfactory solution has been
found. .At each step of this process the problem solver (PS)|usu’ally has a choice of several differ-
ent decisions about domain restrictions that can be made, leading to potentially different solutions
that also vary in their degree of optimality. If the PS has a heuristic estimate of the utility (or cost)
that can be attained based on decisions already made, this can be used to guide the solution find—
ing process in a best-first manner. Unfortunately, in our experience, it is sometimes difficult or
impossible to explicitly formulate such a utility (or cost) function. Instead, it turns out that optim-
ality of solutions can also be expressed implicitly, via so-called soft constraints. A soft constraint
states a desirable state of affairs (because good solutions often fulfill these constraints), but it can
be relaxed when in conflict with other constraints. Consider the following two rules taken from
the machining application referred to above.

RI : “For any feature that must be both rough-machined and fine-machined, rough-
machining always precedes fine-machining”

R2: “Any rough-machining should always precede any fine-machining”
R1- translates into a hard constraint; there are technical reasons why it is not plausible to do rough
operations (such as’ milling) after fine ones (such as polishing). R2 corresponds to a soft con—
straint. It often characterizes good process plans, because it reduces the number of necessary re-
toolings, but there is no technical reason why it could not be violated.

Thus, not only must a CSP be solved, but the right set of constraints must be chosen from a po-
tentially very large set. For lack of a better term at present, we shall call such problems extended
CSPs (ECSPs). Whereas the complexity of ECSPs can be exponential, we found that one means
of achieving successful (commercial) support, here, lies in providing a sort of ‘truth maintenance’
functionality. The user (or external PS) guides the search for a satisfactory solution, and the sys-
tem helps juggle alternatives while ensuring the local satisfaction of the hard constraints.

2 I IS I 'E I ' EC I ' l

The approach to CSPs in connection with ATMSs taken most frequently is to encode each '
assignment of a value to a problem variable as a proposition recorded directly by an ATMS-node
(usually as an assumption) (c.f. [5]) . This entails reasoning about disjunctions of such nodes,

3 TEX—K was a joint venture sponsored in part by the German Ministry for Research and Technology

(BMFI'). The results referred to in this paper reflect only a part of the total effort of the project. (c.f. [10])

11

4

which in turn necessitates using an extended ATMSwith hyperresolution. We tried a'different

approach that avoids hyperresolution. The main idea was to represent domain restrictions for the

problem variables as ATMS-nodes and to ensure the local satisfaction of the constraints. A do­
main restriction associates a problem variable x with a set of values S that are candidates for as­

signment and will be denoted as {x E S }. (Note that assigning a value to a problem variable is a

special case of restricting the variables domain.) If the PS knows that both {x E S } and {x ET}

hold in a given state, and SeT, then {x ET} is obviously uninteresting. We call {x E S } a

specialization of {x ET}. These specializations induce a partial ordering on the domain data,
the so-called specialization relation. More generally, given two formulas qJ and 'If, we consider
qJ to be more special than 'If if the PS will never be interested in 'If in the presence of qJ. We feel

specialization relations occur naturally in practical problem solving and provide an important

means for minimizing the problem solving process (c.f. [2]).
Given a domain restriction for each of the problem variables we can apply a local propagation

scheme [7] to achieve local satisfaction of the constraints. In this scheme individual constraints
are used to filter out impossible values from the domain restrictions of the variables constrained
by the constraint (thus further restricting the domain of these variables). Any newly found re­

strictions can be used as input for further filtering at other constraints. Although it can be 'shown
that local propagation is a comparatively weak: problem solving method, it helps to prune the
search space, providing firmer ground for applying the soft constraints (heuristics).

Local propagation can be implemented using inference rules in a straightforward manner. Con­

sider a constraint c that imposes restrictions on the simultaneous value assignments of, say, the

variables x, y, arid z. Let fx, fy, and fz be the local filtering functions induced by c. Then the
following inferences are justified by c.

{x E Sx }, {y E Sy }, {z E Sz } ~ {x E fx(Sx,Sy,Sz) }

{x E Sx }, {y E Sy }, {z E Sz } ~ {y E fy(Sx,Sy,Sz) }
'-,

{x E Sx }, {y E Sy }, {z E Sz } ~ {z E fz(Sx,Sy,Sz) }

Also, we can formulate the following inferences, independent of the problem domain:

{x E S }, {x ET} ~ {x E S nT }

{x E 0 } ~ contradiction.

ATMS·
,

- An ATMS that Handles Specialization .

ATMSs were introduced by DeKleer [1] to help the PS manage dependencies of data on as­
sumptions made during the of problem solving process by focusing attention on the data relevant
to a given situation. An ATMS can be characterizeo by three sets, namely the set of domain data
(denoted by D), the set of assumptions (denoted by A), and the set of justifications (denoted by

1). We require the D to contain a special datum .1 that represents falsity. As noted above, in the
ATMS* 'assumptions always directly refer, to soft constraints. We feel this greatly clarifies and

11

which in turn necessitates using an extended ATMS'with hyperresolution. We tried a'different
approach that avoids hyperresolution. The main idea was to represent domain restrictions for the
problem variables as ATMS-nodes and to ensure the local satisfaction of the constraints. A do-
main restriction associates a problem variable x with a set of values S that are candidates for as—
signment and will be denoted as {x e S }. (None that assigning a value to a problem variable ‘is a
special case of restricting the variables domain.) If the PS knows that both [x e S } and {x e T }
hold in a given state, and S CT , then [x e T } i s obviously uninteresting. We call {x e S } a

specialization of {x e _T }. These specializations induce a partial ordering on the domain data,
the so-called specialization relation. More generally, given two formulas (0 and v, we consider
@ to be more special than I]! if the PS will never be interested in 'I’ in the presence of (p. We feel
specialization relations occur naturally in practical problem solving and provide an important
means for minimizing the problem solving process (c.f. [2]).

Given a domain restriction for each of the problem variables we can apply a local propagation
scheme [7] to achieve local satisfaction of the constraints. In this scheme individual constraints
are used to filter out impossible values from the dOmain restrictions of the variables constrained
by the constraint (thus further restricting the domain of these variables). Any newly found re-
strictions can be used as input for further filtering at other constraints. Although it can be shown
that local propagation is a comparatively weak problem solving method, it helps to prune the
search space, providing firmer ground for applying the soft constraints (heuristics).

Local propagation can be implemented using inference rules in a straightforward manner. Con—
sider a constraint c that imposes restrictions on the simultaneous value assignments of, say, the
variables x , y , and 2. Let fx, f„ and fz be the local filtering functions induced by c . Then the
following inferences are justified by c.

{x e S; l, {y e S, }. {z e sz } —> {x e fx(sx‚s„sz)'}
{x e Sx l . {y e Sy }, {z e Sz } —> {y e fy(Sx‚Sy.Sz)}

{x e s, }, {y e sy }, {z e s: 1 -> {z e fz(sx‚s„s‚)"‘}
Also, we can formulate the following inferences, independent of the problem domain:

{xeS } , [xeT}—)[xeSnT}

{x e Q } —-) contradiction .

4 , ATMS?“ — An ATMS that Handles Specialization _

ATMSs were introduced by DeKleer [1] to help the PS manage dependencies of data on as-
sumptions made during the of problem solving process by focusing attention on the data relevant
to a given situation. An ATMS can be characterized by three sets, namely the set of domain data
(denoted by D), the set of assumptions (denoted by A), and the set of justifications (denoted by
J). We require the D to contain a special datum .L that represents falsity. As noted above, in the
ATMS* assumptions always directly refer. to soft constraints. We feel this greatly clarifies and

12

eases the use of assumptions in problem solving; thus, the sets D and A are considered disjoint.

We interpret a justification as a propositional implication ~ ~d, where ~ is a (possibly empty)
conjunction of domain data and d is a domain datum. Given this interpretation "derivahility

w.r.t. J" is defined, which we denote as usual by - J . A set of assumptions Ee 2A is called an
environment. We interpret an environment as the conjunction of its assumptions.

The major computational task of an ATMS is the computation of a label for each domain

datum deD. The label Ad,J ofa datumdeD will contain exactly the minimal and consistent
environments that allow deriving d, and is defined as follows. (Note that set inclusion defines a

natural partial order on 2A .)

VJ :={E e 2A IE - J.l}

id,.! :={E e 2A IE - Jd}\ VJ

Ad,.! := min Ad,.! ,

It was noted above that clients of the ATMS* (e.g. the user, the PS, and the class consumer arch­
itecture) are always interested in the most specific applicable information. This leads to a modifi­

ed labelling that accounts for specialization relations. Let(D,~} be a specialization relation on the

set of facts. For d ~ e the PS is not interested in e in the presence ofd. Thus, if for any E e 2A

we have both E - J d andE - J e , the latter will no longer be of interest, and the label of e can be
•changed to reflect this, by removing E or any superset. We now define the ATMS* label Ad,] in­

corporating a specialization relation. We take ..1. to be the most special datum: 'Ttde D l.~.

vd,.!:= U {E e 2A lE - Je}
e<d

~~:= {E e 2A IE - Jd }\ v;" . -.
Ad,.! := min Ad,.!

Note that for the trivial partial order defined by

d~e ~ (e=.lvd=e)

the ATMS and ATMS* labels coincide, apart from the technical difference that AJ..J is empty, . ­
whereas Al.,.! = min VJ =: VJ which is just the set of nogoods in the terminology of DeKleer.

References

D]	 DeKleer, J.: "An Assumption Based TMS", Artificial Intelligence 28 (1986), pp. 127-162
[2]	 Haag, A.: "Der regelorientierte Kontrollansatz in PLAKON: Konzepte zur praktischen

Handhabbarkeit einer ATMS-basierten Problemlosung" TEX-K Report No. 26 (1990)4.
[3]	 Haag A., Zetzsche F., Zinser G. "Die Behandlung von Alternativen in der Planung: Erfah­

rongen mit ATMS-basierten Expertensystemarchitekturen" in Hertzberg, Giinther (Hrsg):

4	 An abbreviated version of this report is contained in Cunis, Giinter, Strecker (Hrsg.) "Das PLAKON Buch",

Informatik Fachberichte Band 266. Springer Verlag, 1991, pp. 212-237.

19u

eases the use of assumptions in problem solving; thus, the sets D and A are considered disjoint.
We interpret a justification as a propositional implication & ——>d , where & is a (possibly empty)
conjunction of domain data and d is a domain datum. Given this interpretation “derivability
w.r.t. J” i s defined, which we denote as usual by _} . A set of assumptions Ee 2‘ is called an
environment. We interpret an environment as the conjunction of its assumptions.

The major computational task of an ATMS is the computation of a label for each domain
datum de D. The label Lu of . a datum (160 will contain exactly the‘minimal and consistent
environments that allow deriving d, and is defined as follows. (Note that set inclusion defines a

natural partial order on 2‘.)
V, :={E e 2A|E —, _L}

E41 : = ‘EE ZAIE —‚d}\VJ

Ä.“ := min 1d,] ,
It was noted above that clients of the ATMS“ (e. g . the user, the PS, and the class consumer arch-

itecture) are always interested in the most specific applicable information. This leads to a modifi-
ed labelling that accounts for specialization relations. Let (D5) be a specialization relation on the
set of facts. For d s e the PS is not interested in e in the presence of d. Thus, if for any E e '2‘
we have both E "; d andE _] e , the latter will no longer be of interest, and the label of e can be

changed to reflect this, by removing E or any superset. We now define the ATMS“ label 11,21 in-
corporating a specialization relation. We take .1. to be the most special datum: Vd e D .LSd .

v' := U E 24 | E — 'a,! e (J E J e }

}.‚u := {Be 2%" -‚d }\ v,},
_;-

1.2] := min ÄdJ

Note that for the trivial partial order defined by

JSe <:> (e=J_vd=e)

the ATMS and ATMS* labels coincide, apart from the technical difference that AL; is empty,

whereas 2.1; = min ;] =: v] which is just the set of nogoods in the terminology of DeKleer.

References

[1] DeKleer, J.: “An Assumption Based TMS”, Artificial Intelligence 28 (1986), pp. 127—162
[2] Haag, A.: “Der regelorientierte Kontrollansatz in PLAKON : Konzepte zur praktischen

Handhabbarkeit einer ATMS-basierten Problemlösung” TEX-K Report N o. 26 (1990)4.
[3] Haag A., Zetzsche F., Zinser G. “Die Behandlung von Alternativen in der Planung: Erfah-

rungen mit ATMS-basierten Expertensystemarchitekturen” in Hertzberg, Günther (Hrsg):

4 An abbreviated version of this report is contained in Cunis, Günter, Strecker (Hrsg.) “Das PLAKON Buch”,

Informatik Fachberichte Band 2156, Springer Verlag, 1991, pp. 212-237.

13

Proc. ll. Workshop 'Planen und Konfigurieren', GMD Arbeitspapiere 1988
[4]	 Baginsky W., Philipp L. "MMC-Kon: Ein wissensbasiertes CAE-Werkzeug zur

Projektierung verteilter Leitsysteme" in Cunis, Giinter, Strecker (Hrsg.) "Das PLAKON
Buch", Informatik Fachberichte Band 266, Springer Verlag, 1991, pp. 197-211.

[5]	 DeKleer, J.: "A Comparison of ATMS and CSP Techniques", Proc. IJCAI-89, pp. 290-296
[6]	 Keene S. "Object-Oriented Programming in COMMON LISP - A Programmer's Guide to

CLOS" Addison-Wesley 1989
[7]	 Giisgen H. W. "CONSAT - A System for Constraint Satisfaction" Dissertation

Universitat Kaiserslautem 1988

[4]

[5]
[6]

[7]

Proc. 11. Workshop ‘Planen und Konfigurieren’, GMD Arbeitspapiere 1988
Baginsky W., Philipp L. “MMC-Kon: Ein wissensbasiertes CAE—Werkzeug zur
Pi'ojektierung verteilter Leitsysteme” in Cunis, Günter, Strecker (Hrsg.) “Das PLAKON
Buch”, Informatik Fachberichte Band 266, Springer Verlag, 1991, pp. 197-211.
DeKleer, J.: “A Comparison of ATMS and CSP Techniques”, Proc. UCAI—89, pp. 290—296
Keene S . “Object—Oriented Programming in COMMON LISP —— A Programmer’s Guide to
CLOS” Addison-Wesley 1989
Güsgen H. W. “CONSAT —— A System for Constraint Satisfaction” Dissertation
Universität Kaiserslautern 1988 '

13

1

15

Distributed Truth Maintenance l

EXTENDED ABSTRACT

Thilo C;;. Horstmann

German Research Center for AI (DFKI)

Project KIK

P.O. Box 2080

W-6750 Kaiserslautern

Germany

e-mail: horstman@dfki.uni-k/.de

May 1991

Introduction

Recent research in the field of Distributed Artificial Intelligence (DAI) has led to a broad variety
of applications characterized by autonomous, loosely connected problem solving nodes. Each sin­
gle node, or agent, is capable of individual task processing and able to coordinate its actions in
combination with those of other agents in the.net. DAI applications span a large field ranging
from cooperating expert systems, distributed planning and control, to human computer cooperative
work. In order to establish a domain independent theory of interacting autonomous agents, current
DAI research focuses on defining an abstract agent model, which allow~ formalizing of cooperation
strategies and multi agent reasoning mechanisms. /

The requirements of multi agent reasoning algorithms are manifold. In most cases, it is not desirable
to constrain the autonomy of agents by building a 'superstrate reasoner' managing all inferences or
rules of a set of different agents. The reasons are discussed fully in [DLC89]. Instead, we want the
agents to be able to reason autonomously; in particular, a single 'agent must deal with beliefs, which
have probably been created in a complex cooperation p'rocess.

This requirement is best fulfilled by providing an agent with a Distributed Truth Maintenance System
(DTMS)2. Based on classical TMS theories, distributed truth maintenance extends the conventional
case to make reason maintenance suitable for multi agent scenarios. A DTMS has to represent
and manage inferences and rules of interacting agents in a way that ensures a specified degree of
consistency. The various degrees of consistency will be defined in this paper. Furthermore, other
modules of an agent should be able to use information stored by the DTMS. For instance, a problem
solving unit may avoid recomputation or a cooperation process might be based on the current context
of the consistent knowledge base.

IThis work was done in Project KIK at the German Research Center for Artificial Intelligence (DFKI). Project
KIK is a collaborative effort between the DFKI and Siemens AG.

2We use the term Truth, Maintenance System instead of the perhaps more appropriate term Reason Maintenance
System or Belief Revision System. This is done for historical reasons.

Distr ibuted Truth Maintenancel

EXTENDED ABSTRACT '

Thilo C. Horstmann

German Research Center for AI (DFKI)
Project KIK

PO. Box 2080
W-6750 Kaiserslautern

Germany

e-mail : horstman@dfki.uni-kl.de

May 1991

1 Introduction

Recent research in the field of Distributed Artificial Intelligence (DAI) has led to a broad variety
of applications characterized by autonomous, loosely' connected problem solving nodes. Each sin-
gle node , or agent, i s capable of individual task processing and ab le to coordinate i t s act ions in
combination with those of other agents in the.net. DAI applications span a large field ranging
from cooperating expert systems, d is t r ibuted planning and control , t o human computer cooperative
work. In order to establish a domain independent theory of interact ing autonomous agents, current
DAI research focuses on defining an abstract agent model, which allows formalizing of cooperation
strategies and multi agent reasoning mechanisms. /

The requirements of mul t i agent reasoning algori thms are manifold. I n most cases, i t is no t desirable
to constrain the autonomy of agents by building a ‘superstrate re-asoner’ managing all inferences or
rules of a. set of different agents. The reasons are discussed fully in [DLCSQ]. Instead, we want the
agents to be able to reason autonomously; in part icular , a s ingle agent must deal wi th beliefs, which
have probably been created in a complex cooperation process.

This requirement is best fulfilled by providing an agent with a Distributed Truth Maintenance System
(DTMS)2. Based on classical TMS theories, distributed truth maintenance extends the conventional
case to make reason maintenance suitable for multi agent scenarios. A DTMS has to represent
and manage inferences and rules of interacting agents in a way that ensures a specified degree of
consistency. The various degrees of consistency will be defined in th i s paper . Furthermore, other
modules of an agent should be able to use information stored by the DTMS. For instance, a problem
solving unit may avoid recomputation or a cooperation process might be based on the current context
of the consistent knowledge base.

1This work was done in Project KIK a t the German Research Center for Artificial Intelligence (DFKI) . Project
KIK is a collaborative effort between the DF KI and Siemens AG.

2We use the tern-i TruthMaintenance Sys t em instead of t he perhaps more appropriate term Reason Maintenance
System or Belief Revision Sys t em. This i s done for historical reasons.

15

mailto:horstman@dfki.uni-k/.de

16

We start off by presenting a Truth Maintenance System designed for backward reasoning systems.
We shall show that the properties offered by a TMS for forward reasoning systems, can also be used
by backward reasoning systems. Further, the amalgamation of the incrementa/ity and selectivity
of a justification based TMS with the properties of backward reasoning allows elegant and efficient
programming techniques in a first-order logic representation.

The basic key features of the DTMS are summarized below:

•	 maintenance of a consistent state of beliefs. Because we record data dependencies, checking
consistency involves little recomputation when the knowledge base is modified.

•	 data dependencies are recorded in the Horn subset of first-order predicate .logic instead of
propositional logic.

• explicit representation of proofs allows for easier generation of explanations.

•	 interface for exchanging beliefs, data and proofs among agents.

•	 meta level predicates aiding the design of clearly specified autonomous agents. In addition,
it simplifies the classification of goals into those upon which reason maintenance should be
performed and those which remain static.

•	 the DTMS is designed as a generalization of a TMS. As a result, the application domain is not
restricted to the field of DAI.

In these terms, the results of this work may be· divided into two main sections. Section 2 discusses
TMS techniques tailored for backward chaining resulting in a Backward Reasoning Truth Mainte­
nance System (BRTMS). This section is not specific to the area of DAI. In Section 3, the BRTMS
of Section 2 is extended to the distributed case. We define central terms concerning multi agent
reasoning and illustrate the DTMS algorithm.

2 A JTMS for Backward Reasoning Systems

Former TMSs have been designed for use with incremental forward reasoning systems. In a forward
reasoning system, each inference step produces new conclusions from antecedent data, which can
be passed to the TMS. In contrast, in a backward reasoning system each inference step does not
produce new conclusions, rather new conditions for the goal3 . To make conclusions, we have to wait
until the reasoning process is complete. In these terms, the problem solver would have to keep track
its inferences, in order to transmit appropriate data to a classical TMS.

However, the designer of the problem solver should not have to think about how to represent infer­
ences. Our system relieves the system designer from this task, all inference control is done by meta
logic predicates in the BRTMS. This implies a different BRTMS architecture: The BRTMS Meta
Level embeds the lower level Kernel. The BRTMS Meta Level includes meta logic predicates, user
defined justifications, the current state of beliefs, the BRTMS Kernel system predicates and user
defined static predicates. The meta level controls the evaluation of all goals, performs the book­
keeping of results and defines the BRTMS interface while 'the kernel defines low level predicates:
predicates, which might be evaluated through a meta call, but whose proof is not significant for the
BRTMS bookkeeping mechanism. The meta logic predicate dtms..solve/5 plays a central role in
the meta level. The definition of dtms-solve/5 realizes a modification of a standard Prolog meta

3We use the tenninologyof logic programming as introduced in [Llo84).

16

We start off by presenting a Truth Maintenance System designed for backward reasoning systems.
We shall show that the properties offered by a TMS for forward reasoning systems, can also be used
by backward reasoning systems. Fur ther , t he amalgamation of the incrementali ty and selectivity
of a justification based TMS with the properties of backward reasoning allows elegant and efficient
programming techniques in a first-order logic representation.

The basic key features of the DTMS are summarized below:

. maintenance of a consistent state of beliefs. Because we record data dependencies, checking
consistency involves little recomputation when the knowledge base is modified.

o data dependencies are recorded in the Horn subset of first-order predicatelogic instead of
propositional logic.

o explicit representation of proofs allows for easier generation of explanations.

. interface for exchanging beliefs, data and proofs among agents.

. meta level predicates aiding the design of clearly specified autonomous agents. In addition,
i t simplifies the classification of goals i n to those upon which reason maintenance should be
performed and those which remain s ta t ic .

0 the DTMS is designed as a generalization of a TMS. As a result, the application domain is not
restricted to the field of DAI.

In these terms, the results of th i s work may be divided in to two main sections. Section 2 discusses
TMS techniques tailored for backward chaining resulting in a Backwardfieasoning Truth Mainte—
nance System (BRTMS). This section is not specific to the area of DAI. In Section 3, the BRTMS
of Section 2 is extended to the distributed case. We define central terms concerning multi agent
reasoning and illustrate the DTMS algorithm.

2 A JTMS for Backward Reasoning Systems

Former TMSs have been designed for use with incremental forward reasoning systems. In a forward
reasoning system, each inference step produces new conclusions from antecedent data, which can
be passed to the TMS. In contrast , in a backward reasoning system each inference step does not
produce new conclusions, rather new conditions for the goal3. To make conclusions, we have to wait
until the reasoning process is complete. In these terms, the problem solver would have to keep track
its inferences, in order to transmit appropriate data to a classical TMS.

However, the designer of the problem solver should not have to think about how to represent infer-
ences. Our system relieves the system designer from this task, all inference control is done by meta
logic predicates in the BRTMS. This implies a different BRTMS architecture: The BRTMS Meta
Level embeds the lower level Kernel. The BRTMS Meta Level includes meta logic predicates, user
defined justifications, the current state of beliefs, the BRTMS Kernel system predicates and user
defined static predicates. The meta level controls the evaluation of all goals, performs the book-
keeping of results and defines the BRTMS interface while 'the kernel defines low level predicates:
predicates, which might be evaluated through a meta call, bu t whose proof i s not significant for the
BRTMS bookkeeping mechanism. The meta logic predicate dtms_solve/5 plays a central role in
the meta level. The definition of dtms_solve/5 realizes a modification of a standard Prolog meta

3\lVe use the terminology of logic programming as introduced in [L1084].

3

17

interpreter. At first sight, this interpreter" takes as an argument a Prolog query q and tries to find
a proof for q in accordance with clauses of the kernel, the meta level and with the current set of
beliefs. In the course of doing this, all data dependencies are stored or updated as necessary. One
important feature concerning this meta concept should be mentioned at this point: The designer
of BR,TMS applications is freed from creating data dependencies, all dependencies are implicitly
defined by justifications. '

Justifications are defined in the meta level. These are dyna~ic program clauses defining the atomic
formulas (or atoms), on which truth maintenance will be performed. In former JTMSs, justifications
are -in a different form- the only kind of rules. But we will see when considering BRTMS applications
that the combination of a TMS with a Prolog problem solver increases the TMS functionality
by allowing for system predicates. As mentioned before, these predicates are also evaluated by
dtms...solve/5. Furthermore, we will see that there is a whole class of predicates that should be
evaluated in the same manner as system predicates. These are predicates that are never be altered
such as member/3 or append/3. Obviously, there is no point in performing truth maintenance on
those predicates. Because of these reasons, we define the BRTMS Kernel. In the kernel all predicates
of the meta level are invisible, but the meta level can evaluate predicates defined here. The proof
tree of the result of a kernel call will not be stored. In other words, you may regard the kernel may
be regarded as the 'static true world' and the meta level as the 'dynamic changing world'.

Extension of the BRTMS to Distributed Truth Mainte­
nance

We present a way to establish reasoning among interacting autonomous agents. We define an abstract
terminology th'!-t clearly specifies basic terms of multi agent reasoning. The central term is that of
proof consistency. In contrast to previous attempts, this definition of consistency in multi agent
scenarios is characterized by exchanging beliefs as well as exchanging reasons for the beliefs. We can
See this in everyday life: When debating an issue, we do not want to know what somebody claims,
but, in addition why he claims it. Furthermore, we usually agree with somebody only if we agree
with him in his conclusion and in the foundations of his conclusion. .

In these terms, interacting agents, which exchange beliefs along with the corresponding foundations,
reason much more flexibly than agents which only transmit the results of inferences. If an agent
later invalidates the foundation of an acquired belief, it might reconsult the agent from which the
belief was originally acquired.

But, we do not want to overwhelm an agent with too much information by transmitting complex
traces of inferences between agents. We will show that it is sufficient to transmit only a special
representation of proofs and not the whole proof structure. In addition, the designer of multi agent
scenarios can specify a level of consen~us, which defines the knowledge upon which the agents will
agree all the time. This feature can greatly improve efficiency in multi agent reasoning.

We do not force the agents to agree on all information - our notion of a proof consistent state allows
agents to be partially inconsistent with one another. That is, agents might have different viewpoints
of certain beliefs. If two agents reason together to solve the query "Can Tweety fly?" it is irrelevant
if the agents disagree about matters which have no bearing 'on this question. Allowing certain
inconsistencies can keep the information exchange between agents to a minimum with respect to the
current task .

.In order to formalize a multi agent reasoning process, we introduce the following terms. In that, an
agent is defined by a set of program clauses P, a set of beliefs B and the labeling of beliefs, called
the state Ili.

interpreter. A t first sight, th is interpreter’ takes as an argument a Prolog query q and tries to find
a proof for q in accordance wi th clauses of t he kernel, the meta level and with the current set of
beliefs. In the course of doing this, all data dependencies are stored or updated as necessary. One
important feature concerning this meta concept should be mentioned at this point. The designer
of BRTMS applications is freed from creating data dependencies, all dependencies are implicitly
defined by justifications

J ust1ficat1ons are defined 1n the meta level. These are dynamic program clauses defining the atomic
formulas (or a toms) , on which t ru th maintenance will be performed. In former JTMSs , justifications
are -in a different form— the only kind of rules. But we will see when considering BRTMS applications
that the combination of a TMS with a Prolog problem solver increases the TMS functionality
by allowing for system predicates. As mentioned before, these predicates are also evaluated by
dtmsxolve/ 5. Furthermore, we will see that there is a whole class of predicates that should be
evaluated in the same manner as system predicates. These are predicates that are never be altered
such as member/ 3 or append/ 3. Obviously, there is no point in performing truth maintenance on
those predicates. Because of these reasons, we define the BRTMS Kernel. In the kernel all predicates
of the meta level are invisible, bu t t he meta level can evaluate predicates defined here. The proof
tree of the result of a. kernel call will not be stored. In other words, you may regard the kernel may
be regarded as the ‘static true world’ and the meta level as the ‘dynamic changing world’.

3 Extension of t he BRTMS to Distributed 'Iruth Mainte-
nance

We present a way to establish reasoning among interacting autonomous agents. We define an abstract
terminology tha t clearly specifies basic terms of mul t i agent reasbning. The central term is that of
proof consistency. In contrast to previous a t t emp t s , th is definit ion of consistency in mult i agent
scenarios is characterized by exchanging beliefs as well as exchanging reasons for the beliefs. We can
see this in everyday life: When debating an issue we do not want to know what somebody claims,
but, in addition why he claims it. Furthermore, we usually agree with Somebody only if we agree
with h im in his conclusion and 1n the foundations of his conclusion.

In these terms, interacting agents, which exchange beliefs along with the corresponding foundations,
reason much‘ more flexibly than agents which only transmit the results of inferences. If an agent
later invalidates the foundation of an acquired belief, it might reconsult the agent from which the
belief was originally acquired

But, we do not want to overwhelm an agent with too much information by transmitting complex
traces of inferences between agents. We will show that i t is sufficient to transmit only a special
representation of proofs and not the whole proof structure. In addition, the designer of multi agent
scenarios can specify a level of consensus which defines the knowledge upon which the agents will
agree all the time. This feature can greatly 1mprove efficiency in multi agent reasoning.
We do not force the agents to agree on all information - our notion of a proof consistent state allows
agents to be partially inconsistent wi th one another . That is, agents might have different viewpoints
of certain beliefs. If two agents reason together to solve the query “Can Tweety fly?” i t is irrelevant
if the agents disagree about matters which have no bearing 'on this question. Allowing certain
inconsistencies can keep the information exchange between agents to a minimum with respect to the
current task. '
‚ In order to formalize a multi agent reasoning process, we introduce the following terms. In that, an.
agent is defined by a 'set of program clauses ”P, a set of beliefslB and the labeling of beliefs, called
the s ta te \II.

17

18

Let A = {Ol = (Pl,B1,'ltd,"',on = (Pn,Bn,'lt n)) be a set of agents. We say a beliefbi E Bi,
denoting the atom li, is

(i)	 private to Oi, if there is no belief bj in Bj, such that li can be unified with Ij, (i ::f. j).

(ii)	 common to 0i and 0j, if there is a belief bj in Bj , such that li can be unified with Ij , (i ::f. j).
The status of bi might be different fromthe status of bj .

(iii)	 transmitted to agent 0j, if Pj contains either a positive agent rule of the form li +- 0i or a
negative agent rule of the form li +- -'0i (i ::f. j).

(iv)	 acquired from agent 0j, if Pi contains either a positive agent rule of the form li +- OJ or a
negative agent rule of the form li <- -'0j, (i ::f. j).

(v)	 mutual to oi and OJ, if bi is transmitted to 0j.

Note, that we distinguish transmitted and acquired beliefs. Shared beliefs as introduced in [BH90),
are the union of transmitted and acquired beliefs.

Informally4, the state of beliefs in a multi agent scenario is proof consistent, if

1.	 each agent is locally consistent.

2.	 if a belief is transmitted to another agent, then the foundations of this belief are also trans­
mitted. A transmitted belief and the acquired counterpart is either in or out.

3. An agent cannot transmit a belief that it has already acquired.

4.	 the set of mutual beliefs is well founded.

This concept clearly defines a state of consistency of mutually dependent beliefs across different
agents. This state is characterized by exchanging inferences and their foundations. We showed that
in contrast to previous approaches, our definition of consistency allows agents to reason in a more
complex way. Information, lost in former approaches, will now be propagated to all relevant agents:
Because one agent knows the foundations of an acquired inference of another agent, it can inform
this agent when a foundation becomes invalid. We showed the agents will not be overwhelmed with
information. It is sufficient only to exchange a special, minimal representation of inferences between
agents.

References

[BH90]	 D. M. Bridgeland and M. N. Huhns. Distributed truth maintenance. In Proc. of AAA/-90,
pages 72-77, Boston, MA, 1990.

[DLC89)	 Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Trends in cooperative dis­
tributed problem solving. In Transactions on Knowledge and Data Engineering, 1989.

[Hor91] Thilo C. Horstmann. Distributed truth maintenance.
serslautern, 1991. DFKI-Document D-91-11.

Master's thesis, University of Kai­

[11084] John W. Lloyd. Foundations of Logic Programming. Springer, 1984.

4 A more fonnal definition is presented in [Hor91]

18

Let, A = {a1 : (1’1,Bl,‘Ill),---‚a„ : (7’„‚B„‚\Il„)} be a set of agents. We say a belief b.- € 85,
denoting the atom l i , is

(i) private to (x,-, if there is no belief b,- in Bj , such that I; can be unified with l i , (i # 1').

(ii) common to a.— and of,-, if there is a belief b,— in Bj, such that I; can be unified with l i , (i :;é j) .
The status of I).- might be different fromhthe status of b i -

(iii) transmitted to agent a i , if ?} contains either & positive agent rule of the form l,— «— a.- or a
negative agent rule of the form 1; 4-— —:a‚- (i # j) .

(iv) acquired from agent a i , if ’P.~ contains either a positive agent rule of the form I.- .— aj or a
negative agent rule of the form 1.— «— flag , (i # j) .

(v) mutual to a.- and a i , if b.- is transmitted to a j .

Note, that we distinguish transmitted and acquired beliefs. Shared beliefs as introduced in [BH90],
are the union of transmitted and acquired beliefs.

Informally", t he s ta te of beliefs in a mul t i agent scenario is proof consistent, if

1. each agent is locally consistent

2. if a belief is transmitted to another agent, then the foundations of this belief are also trans-
mitted. A transmitted belief and the acquired counterpart is either i n or out .

3 . An agent cannot t ransmit a belief t ha t i t has already acquired.

4 . the set of mutual beliefs is well founded.

This concept clearly defines a state of consistency of mutual ly dependent beliefs across different
agents. This state is characterized by exchanging inferences and their foundations. We showed that
in contrast to previous approaches, ou r definit ion of consistency allows’ agents to reason in a more
complex way. Information, lost i n former approaches, will now be propagated to all relevant agents:
Because one agent knows the foundations of an acquired inference of another agent, i t can inform
this agent when a foundation becomes invalid. We showed the agents will not be overwhelmed with
information. I t is sufficient only to exchange a special , minimal representation of inferences between
agents.

References

[BH90] D. M. Bridgeland and M. N. Huhns. Distributed truth maintenance. In Proc. of AAAI-90,
pages 72—77, Boston, MA, 1990.

[DLC89] Edmund H. Durfee, Victor R. Lesser, and Daniel D. Corkill. Trends in cooperative dis—
tributed problem solving. In Transactions on Knowledge and Data Engineering, 1989.

[Hor91] Thilo C . Horstmann. Distr ibuted t ru th maintenance. Master’s thesis, University of Kai-
serslautern, 1991. DFKI-Document D-91-11.

[L1084] John W. Lloyd. Foundations of Logic Programming. Springer, 1984.

‘A more formal definition is presented in [Hor91]

19

Generating Diagnoses ,by Prioritized Defaults*

Ulrich Junker
GMD

P 0 Box 1240
5205 St. Augustin 1 .

Fed. Rep. of Germany
++49 - 2241/142671

junker@gmdzi.gmd.de

Abstract

Preferences between diagnostic assumptions allow to control what kinds of assumptions are
retracted in presence of a conflict and help to focus the diagnosis process to candidates that
should be considered first. For example, we want to prefer the correct behaviour to the failure
modes and mechanical faults to electrical ones. We use prioritized default theories to define
preferred diagnoses based on these preferences on assumptions. Preferred diagnoses can easily
be constructed using TMS-networks for prioritized default theories. Hence, generation of all
candidates is avoided.

1 The Need for Preferences

Diagnosis is the process of finding malfunctioning parts or diseases that cause some observed
symptoms. Normally, we obtain several candidates and must acquire further observations to dis­
criminate between them. Hence, diagnosis consists of a cycle of observation, candidate generation,
and selection of further observables.

To generate candidates, different kinds of methods have been developed including model-based
diagnosis, abductive approaches, and heuristic approaches. Integrating them properly is currently
an interesting research topic. A second topic is focussing the diagnosis process to candidates that
should be considered first according to probability, danger, or measurement costs. In this abstract,
we show how preferences between diagnostic assumptions are helpful for the first problems:

control retraction: Preferences allow to control the selection of diagnostic assumptions. They
specify what assumptions may be retracted in presence of conflicts. For example, we want to avoid
that correct modes are retracted by failure modes and that basic diagnostic principles such as the
single-fault hypotheses are retracted by a double fault even when there is also a ~ingle fault.

In this sequel, we discuss how priorities on assumptions help to control the arbitrary interaction
of assumptions in diagnosis. First, we introduce a simple framework for diagnosis.

2 Framework for Diagnosis

We formulate our diagnostic problems and theories in a first-order language [, containing an
unsatisfiable constant 1. and predicates =, +, -, * for equality and arithmetics .

•A long version of this paper has been presented at the Second International Workshop on Principles of Diagnosis,
Milano, 1991.

19

Generating Diagnoses ‚by Prioritized Defaults*

Ulrich Junker
CMD

P 0 Box 1240
5205 St. Augustin 1 ‘

Fed. Rep. of Germany
++49 - 2241/142671

junker@g’mdzi.gmd.de

Abstract

Preferences between diagnostic assumptions allow to control what kinds of assumptions are
retracted in presence of a conflict and help to focus the diagnosis process t o candidates that
should be considered first. For example, we want to prefer the correct behaviour to the failure
modes and mechanical faults to electrical ones. We use prioritized default theories t o define
preferred diagnoses based on these preferences on assumptions. Preferred diagnoses can easily
be constructed using TMS—networks for prioritized default theories. Hence, generation of all
candidates is avoided.

1 The Need for Preferences

Diagnosis is the process of finding malfunctioning 'par ts or diseases that cause some observed
symptoms. Normally, we obtain several candidates and must acquire further observations t o dis-
criminate between them. Hence, diagnosis consists of a cycle of observation, candidate generation,
and selection of further observables.

To generate candidates, different kinds of methods have been developed including model-based
diagnosis, abductive approaches, and heuristic approaches. Integrating them properly is currently
an interesting research topic. A second topic is focussing the diagnosis process to candidates that
should be considered first according to probability, danger, or measurement costs. In this abstract,
we show how preferences between diagnostic assumptions are helpful for the first problems:

control retraction: Preferences allow to control the selection of diagnostic assumptions. They
specify what assumptions may be retracted in presence of conflicts. For example, we want t o avoid
that correct modes are retracted by failure modes and that basic diagnostic principles such "as the
single-fault hypotheses are retracted by a double fault even when there is also a single fault.

In this sequel, we discuss how priorities on assumptions help to control the arbitrary interaction
of assumptions 'in diagnosis. F i rs t , we introduce a simple framework for diagnosis.

2 FrameWork for Diagnosis

We formulate our diagnostic problems and theories i n a first-order language L containing an
unsatisfiable constant _L and predicates = , + , ——, * for equality and arithmetics.

‘A long version of this paper has been presented at the Second International Workshop on Principles of Diagnosis,
Milano, 1991.

mailto:junker@gmdzi.gmd.de

:20

A system for generating diagnoses is :supplied with observations and should find possible faults.
Hence, a diagnostic problem consists of:

1.	 a set 0 ~ .c of observations. It may contain atomic formulas if a single test is performed or
disjunctions of several test results. Sometimes, the observations are divided into those that
are asserted as premises and must not be refuted and those that must explicitly be derived.
Hence, 0 is split into two sets 0-· and 0+. This distinction due to Console and Torasso
[Console and Torasso, 1990].

2.	 a set F of ground literals from .c representing the possible faults. It can contain diseases or
abnormalities of components.

We define a diagnostic problem DP by a tuple (0-,0+, F). To solve it, different methods includ­
ing model-based and heuristic diagnosis, as well as consistency-based and abductive approaches
can be used. In all cases, we can distinguish safe and hypothetical knowledge. The first one is
represented by a set W of first-order formulas that are asserted as premises. Examples are the
system descriptions and general laws of behaviour. Hypothetical knowledge is represented by
assumptions, which are ground atomic formulas, and their definitions that are also asserted as
premises. Examples for assumptions are:

•	 applicability of heuristic rules. For example rl(car1) in a heuristic rule Vx.r1(x) /\ car(x) f\

,starts(x) :J ab(battery(x)) saying that the battery of a car is probably defect if it does not
start.

•	 correctness of the normal behaviour. For example, ok(A1) expresses that adder A1 works
correctly: Vx.adder(x) f\ ok(x) :J inl(x) + in2(x) == out(x).

•	 failure modes. For example, shorted(i1) in Vx.inverter(x) /\ shorted(x) :J in(x) == out(x).

•	 assumptions for subcomponents: e.g. ab(gate2(A1)) should only be considered if ab(A1) has
been selected.

•	 correctness of observations: e.g. out(i1) == 1.

•	 basic diagnostic principles. Examples are the single-fault hypothesis!

single-fault == Vx, y. ,ok(x) /\ x :f Y :::) ok(y)	 (1)

and completeness assumptions for the behavioural modes of a component, e.g.
complete(i1) for the behavioural modes of inverter i1:

Vx.complete(x) /\ inverter(x) :::) ok(x) V shorted(x) V stuck-at-O(x) (2)

Making these assumptions explicit allows to find relationships between them and to control their
interaction and selection.

Conflicts

Integrating different diagnostic strategies leads to systems where several or all of these kinds of
assumptions are used. If no special mechanism is used (as e.g. in Poole's Theorist [Poole, 1988])
these assumptions interact arbitrarily if there are conflicts between them:

lThis explicit representation of the single-fault hypothesis has been suggested to me by Gerd Brewka.

3

A system for generating diagnoses is;supplied with observations and should find possible faults.
Hence, a diagnostic problem consists of:

1. a set (’) g £ of observations. I t may contain atomic formulas if a single test is performed or
disjunctions of several test results. Sometimes, the observations are divided into those that
are asserted as premises and mus t not be refuted and those that must explicitly be derived.
Hence, (9 is split into two sets 0" and 0+ . This distinction due to Console and Torasso
[Console and Torasso, 1990].

2. a set f' of ground literals from £ representing the possible faults. It can contain diseases or
abnormalities of components.

We define a diagnostic problem DP by a tuple (0 ‘ , (9+, .7). To solve i t , different methods includ-
ing model-based and heuristic diagnosis, as well as consistency-based and abductive approaches
can be used. In all cases, we can distinguish safe and hypothetical knowledge. The first one is
represented by a set W of first—order formulas that are asserted as premises. Examples are the
system descriptions and general laws of behaviour. Hypothetical knowledge is represented by
assumptions, which are ground atomic formulas, and their definitions that are also asserted as
premises. Examples for assumptions are:

o applicability of heuristic rules. For example r1(car1) in a heuristic rule Vz.r1(a;) A car(z) A
-vstarts(a:) 3 ab(battery(z)) saying that the battery of a car is probably defect if it dOes not
s ta r t .

o correctness of the normal behaviour. For example, ok(A1) expresses that adder A1 works
correctly: Vx.adder(a:) A ok(z) D in1(a:) + in2(x) = out(a:).

. failure modes. For example, shorted(i1) in Vz.inverte1(z) A shorted(z) D in(x) = out(:r).

o assumptions for subcomponents: e.g. ab(gateZ(A1)) should only be considered if ab(Al) has
been selected.

. correctness of observations: e.g. out(i1) = 1.

o basic diagnostic principles. Examples are the single-fault hypothesis1

single-fault 5 V3, y.-uok(a:) A z # y 2) 010(3)) (1)

and completeness assumptions for the behavioural modes of a component, e.g.
completc(i1) for the behavioural modes of inverter 2' 1:

V:.complete(a:) A invertedz) D ok(:c) V shorted(:r) V stuck-at-0(x) (2)

Making these assumptions explicit allows to find relationships between them and to control their
interaction and selection.

3 . Confl icts

Integrating different diagnostic strategies leads to systems where several or all of these kinds of
assumptions are used. If no special mechanism is used (as e.g. in Poole’s Theorist [Poole, 1988])
these assumptions interact arbitrarily if there are conflicts between them:

ITh i s explicit representation of the single-fault hypothesis has been suggested to me by Gerd Brewka.

21

minimal conflicts
in the original formulation: {ok(Al), ok(Ml), ok(M2)}

{ok(Al), ok(A2), ok(Ml), ok(M3)}
+ single-fault hypothesis
as a premise:

{ ok(AI), ok(M1)}

+ single-fault hypothesis
as an assumption:

{ok(Al), ok(Ml), ok(M2)}
{ok(Al), ok(A2), ok(Ml), ok(M3)}
{single-fault, ok(Al), ok(Ml)}

Figure 1: conflicts in the adder-multiplier example

Example 3.1 We assume that the reader is familiar with the adder-multiplier example of Davis
(c/. [De Kleer and Williams, 19871). Below, we give a brief formulation in predicate logic:

adder(Al) adder(A2) multiplier(Ml) multiplier (M2) multiplier (M3) (3)

where Al -I A2 etc. These components are connected as follows:

inl(Ml) = A inl(M2) = B inl(M3) =, C ' inl(Al) = X inl(A2) = Y
in2(Ml) = C in2(M2) == D in2(M3) = E in2(Al) = Y in2(A2) = Z (4)
out(Ml) = X out(M2) = Y out(M3) = Z out(Al) = F out(A2) = G

The correct behaviour is described by a predicate ok and:

V'x.adder(x) /\ ok(x) J inl(x) + in2(x) = out(x)
(5)

V'x.multiplier(x) /\ ok(x) J inl(x) * in2(x) = out(x)

The supplied 'input and observed output values are:

A = 2 B = 2 C = 3 D = 3 E = 2 F = 10 G = 12 (6)

Originally there are two minimal conflict sets (i.e. assumption sets that are inconsistent with the
premises) consisting of ok-assumptions. Introducing the single-fault hypothesis 1 as an assumption
leads to an additional conflict (cf. figure 1):

W U {single-fault, ok(Al), ok(Ml)} 1= 1.. (7)

This conflict can e.g. be avoided by retracting the single-fault hypothesis itself. In this case, it is
ineffective and double faults can be detected and returned as well.

Example 3.2 Consider a chain of two inverters inverter(il) and inverter(i2) s.t. out(il)
in(i2). Both inverters can work correctly, be shorted, or their outputs are stuck at zero:

V'x.inverter(x) /\ ok(x) J out(x) = 1- in(x)
V'x.iriverter(x) 1\ shorted(x) J out(x) = in(x) (8)

_V'x.inverter(x) /\ stuck-at-O(x) J out(x) = 0

Consider the observations in(il) = 0 and out(i2) = O. Then things seem to be okay. How­
ever, we detect some conflicts if we use assumptions for failure modes in addition to correctness
assumptions: It cannot be the case that one inverter is shorted and the other works correctly:

{shorted(i1), ok(i2)} {shorted(i2), ok(il)} (9)

21

minimal conflicts
in the original formulation: {ok(A1), ok(M1), ok(M2)}

{OHM}, OHM), 07°(M1)‚ 0KM3)}

+ single-fault hypothesis {ok(A1), ok(M1)}
as a premise:
+ single-fault hypothesis {ok(A1), ok(M1), ok(M2)}
as an assumption: {ok(A1), ok(A2), ok(M1), olc(M3)}

{single-fault, olc(A1), ok(M1)}

Figure 1: conflicts in the adder-multiplier example

Example 3 .1 We assume that the reader is familiar with the adder-multiplier example of Davis
(cf. [De Kleer and Williams, 1987]). Below, we give a brief formulation: in predicate logic:

adder(A1) adder(A2) multiplier(M 1) multiplier(M2) multiplier(M 3) (3)

where A1 # A2 etc. These components are connected as follows:

in1(M1) = A in1(M2) = B in1(M3) =; C _ in1(A1) = X in1(A2) = Y
in2(M1) : C in2(M2) =“ D in2(M3) = E in2(A1) ‚=: Y in2(A2) = Z (4)
out(Ml) = X out(M2) : Y out(M3) : Z out(A1) = F out(A2) = G

The correct behaviour is described by a predicate ok and:

Vz.adder(z) A ok(:c) :) in1(z) + in2(a:) = out(:c) (5)
Vx.multiplier(a:) A ok(:v) D in1(:z:) * in2(a:) = out(a:)

The supplied “input and observed output values are:

A=2 B=,2 0 :3 D=3 E=2 F=10 6:12 (6)

Originally there are two minimal conflict sets (Le. assumption sets that are inconsistent with the
premises) consisting of ole-assumptions. Introducing the single-fault hypothesis 1 as an assumption
leads to an additional conflict (cf. figure 1):

W U {single-fault, ole(A1), ok(M1)} |: J. (7)

This conflict can e.g. be avoided by retracting the single-fault hypothesis itself. In this case, it is
ineffective and double faults can be detected and returned as well.

Example 3 .2 Consider a chain of two inverters inverter(i1) and inverter(i2) s.t. out(i1) =
in (i2) . Both inverters can work correctly, be shorted, o r their outputs are stuck a t zero:

Vx.inverter(a:) A ok(1:)) out(:v) : 1 — in(z) \
Vz.in'vertér(z) A shorted(z) D out(a:) = in(z) (8)

_Va:.inverter(':c) A stuck-at-0(a:) I) out(:c) = 0

Consider the observations in(il) = 0 and out(i2) = 0. Then things seem to be okay. How-
ever, we detect some confl icts if we use assumptions for failure modes in addition t o correctness
assumptions: It cannot be the case that one inverter is shorted and the other works correctly:

{shorted(i1), 01432)} {shorted(i2), ok(i1)} (9)

4

Due to these conflict sets we can also retract both correctness assumptions and conclude that
both inverters are shorted.

These examples show that we cannot apply all assumptions and must retract some. A big problem
is the selection of the culprits, Le. the elements of conflicts that are retracted. If every assumption
may be retracted then some of the diagnostic assumptions, e.g. the single-fault hypothesis, loose
their value and others, e.g. failure modes, can be selected even if a correct mode may be considered
as well.

Hence, preferences between diagnostic assumptions are needed to handle them properly. For
example, we want to assign a higher priority to the single-fault assumption in order to avoid its
immediate retraction. The purpose of the single fault assumption is to get rid of multiple faults
in case of conflicts. It should be retracted only if there is no single fault. Furthermore, we want
to prefer the correct behaviour to the faulty behaviour as in [DressIer and Struss, 1990].

Priorities on Assumptions

Prioritized defaults give a satisfactory answer to these problems. They are related to prioritized
circumscription and have been introduced by Brewka [Brewka, 1989] to extend the simple THEO­
RIST framework of Poole [Poole, 1988]. A prioritized default theory consists of a set W of premises,
a set 1) of defaults that are represented as assumptions, and a strict partial order <~ 1) X 1) on
defaults. Hence, it matches our framework above.

A special case is obtained if the order < satisfies the following condition: If dl 1- d2 , d2 1- dl ,

d < dt implies d < d2 for all defaults d, dt, d2 E 1) then uncomparable defaults are put into the
same level. In this important special case, defaults are divided into different levels Li of reliability
where elements dt of Li have higher priority than defaults d2 in Li+k (i.e. dl < d2). We mainly
consider these level-based default theories in this paper.

Definition 4.1 A level-based default theory ~ := (W, L) consists of a set W ~ [, of classical
premises and a tuple L := (Lt, ... , Ln) of disjoint levels Li containing ground atomic formulas
from £.

For example, we can add the single-fault hypothesis into level Ll, the correctness assumptions
into level L 2 , and failure modes to L3 •

To find extensions of these default theories, Le. possible selections of defaults, we start with the
first level Lt, select elements as long as consistency is kept, and then repeat this for the next
levels:

Definition 4.2 Let ~ = (W, (L l , ... , Ln)) be a level-based default theory. T is a preferred sub­
theory of level i iff

1.	 T = 0, for i = 0

2.	 T is the union of a preferred subtheory T' of level i-I and a maximal subset of Li s.t.
TuW ~ 1-, fori = 1, ... ,n.

The preferred subtheories of ~ are the preferred subtheories of level k.

We can extract candidates from level-based default theories as follows:

N
J

h:
)

Due to these confiict sets we can also retract both correctness assumptions and conclude that
both inverters are shorted.

These examples show that we cannot apply all assumptions and must retract some. A big problem
is the selection of the culprits, i .e. the elements of conflicts that are retracted. If every assumption
may be retracted then some of the diagnostic assumptions, e.g. the single-fault hypothesis, loose
their value and others, e.g. failure modes, can be selected even if a correct mode may be considered
as well.

Hence, preferences between diagnostic assumptions are needed to handle them properly. For
example, we want to assign a higher priority to the single-fault assumption in order to avoid its
immediate retraction. The purpose of the single fault assumption is to get rid of multiple faults
in case of conflicts. It should be retracted only if there is no single fault. Furthermore, we want
to prefer the correct behaviour to the faulty behaviour as in [Dressler and Struss, 1990].

4 Priorities on Assumptions

Prioritized defaults give a satisfactory answer to these problems. They are related to prioritized
circumscription and have been introduced by Brewka [Brewka, 1989] to extend the simple THEO-
RIST framework of Poole [Poole, 1988]. Ä prioritized default theory consists of a set W of premises,
a set ’D of defaults that are represented as assumptions, and a strict partial order <g ’D x ’D on
defaults. Hence, it matches our framework above.

A special case is obtained if the order < satisfies the following condition: If dl ‚{ d2, d; 7i dl ,
d < d1 implies d < d2 for all defaults d , d1,d2 € D then uncomparable defaults are put into the
same level. In this important special case, defaults are divided into different levels L,- of reliability
where elements d l of L,- have higher priority than defaults d2 in Li.“c (i.e. d1 < d2). We mainly
consider these level-based default theories in this paper.

Definition 4 .1 A level-based-default theory A := (W, L) consists of a set W ; LI of classical
premises and a tuple L := (L I , . . . ,Ln) of disjoint levels L; containing ground atomic formulas
from £ .

For example, we can add the single-fault hypothesis into level LI, the correctness assumptions
into level L2, and failure modes to L3.

To find extensions of these default theories, i.e. possible selections of defaults, we start with the
first level L1, select elements as long as consistency is kept, and then repeat this for the next
levels:

Definition 4 .2 Let A = (W,(L1, . . . ,L„)) be a level-based default theory. T is a preferred sub-
theory of level i if?

1. T=@‚for i=0

\ 2 . T is the union of a preferred subtheory T’ of level i — 1 and a maximal subset of L; s.t.
TUW [# _L‚ fo r i=1 , . . . , n .

The preferred subtheories of A are the preferred subtheories of level k .

We can extract candidates from level-based default theories as follows:

23

Defini,tion 4.3 Let DP = (0-,0+, F) be a diagnostic problem and ~ = (W u0- , (Lt, ... , L n))

be a level-based default theory to solve it. C is a diagnosis iff there exists a preferred subtheory T
of ~ s.t. Tu W F 0 for all 0 E 0+ and C = {f EFl Tu W F n·
If the single-fault hypothesis is consistent for its own it will be selected in level Lt and cannot be
retracted due to later conflicts. Hence, priorities on defaults give an answer to our culprit selection
problem: If there is a conflict W U {db' .. ,dd F 1. we can retract one of the defaults having the
smallest priority (i.e. are in the highest level). However, such a culprit is not retracted in eveq
case. If elements di with higher priority are retracted due to other conflicts then our conflict is
ineffective anyway and our culprit may be selected.

The exact behaviour is achieved by the implementation of level-based default theories [Junker,
1991] using Doyle's TMS [Doyle, 1979]. Defaults d are handled by a non-monotonic justification:
If their negation cannot be derived they are selected:

(out(-"d) - d) for all dE V := Lt U ... U L n (10)

Conflicts give rise to counterarguments for those of their defaults having the smallest priority. If
W u {di, ... , dk} F 1. then for all i = 1, ... , k we add

(in({d t , ..• , dk}'- {dd) - -,di) if there is no j E {I, ... , k} s.t. di < dj (11)

We can incrementally construct a TMS-network consistin~ of those justifications. First of all, we
add justification 10 for all dE V. Labelling makes all defaults IN. Then we repeat the following
procedure. (1) Check whether the set of IN-labelled defaults is consistent in conjunction with W.
This can be achieved by executing rules or by invoking a classical prover. (2) If an inconsistency
is detected a conflict involving IN-labelled defaults is computed and used to add justifications
according to 11. (3) After that, the network is relabelled as usual [Doyle, 1979]. This procedure
is repeated until no further inconsistency is detected. Then a first preferred subtheory has been
detected. Further preferred subtheories can be computed by choosing another labeling of the
already generated network and repeating the procedure above. Thus, we can every preferred
subtheory straightforwardly.

Indeed, the system in [Petrie, 1987] already us~s a kind of priorities to control the culprit selection
of dependency-directed backtracking as sketched above. Hence, it should be. possible to use this
system for computing preferred substheories.

5 Conclusion

Prioritized defaults [Brewka, 1989] are well-suited to control the retraction of different kinds
of assumptions includJng basic diagnostic principles, c~rrectness assumptions" and fault modes.
Furthermore, pri6ritized defaults specify a preference relation on candidates and thus help to
focus diagnosis. This focusing method is less flexible than statistical assessments of candidates,
but needs less search effort. Our preferred diagnoses can straightforwardly be computed by a TMS­
based system [Junker, 1991]. First proposals how to handle partial orders between assumptions
have been developed in [Junker and Brewka, 1991]. Currently, we investigate how to handle
context-dependent priorities of the form ok(cd < ok(cz) properly. These can b.e derived from the
diagnostic theory and and allow more flexibility in specifying priorities.

23

Definition 4.3 Let DP = (0 ‘ , 013.7) be a diagnostic problem and A = (WUOf,(L1, . , L„))
be a level-based default theory to solve it. C is a diagnosis ifl’ there exists a preferred subtheory T
ofA s.t. TUW|=ofora l lo€0+ andC= { fe f ITUW|=f} .

If the single-fault hypothesis is consistent for its own i t will be selected in level LI and cannot be
retracted due to later conflicts. Hence, priorities on defaults give an answer to our culprit selection
problem: If there is a conflict WU {db . , dk} |: J. we can retract one of the defaults having the
smallest priority (Le. are in the highest level). However, such a culprit is not retracted in every
case. If elements d.- with higher priority are retracted due .to other conflicts then our conflict is
ineffective anyway and our culprit may be selected.

The exact behaviour is achieved by the implementation of level—based default theories [J unker,
1991] using Doyle’s TMS [Doyle, 1979]. Defaults d are handled by a non-monotonic justification:
If their negation cannot be derived they are selected:

(out(-«Id)—>d_) fora l ldEDz=L1U. . .ULn (10)

Conflicts give rise to counterarguments for those of their defaults having the smallest priority. If
WU{d'1, . . . ,dk} l: _L then for a l l i : 1 , . . . , k we add

(in({d1,...,d~k}'— {d,-}) _» ed.) if there is no j e {1‚...,k} s.t. d.- < d,- (11)

We can incrementally construct a TMS-network consisting of those justifications. First of all, we
add justification 10 for all d E ’D. Labelling makes all defaults IN. Then we repeat the following
procedure. (1) Check whether the set of IN-labelled defaults is consistent in conjunction with W.
This can be achieved by executing rules or by invoking a classical prover. (2) If an inconsistency
is detected a conflict involving IN-labelled defaults is computed and used to add justifications
according to 11. (3) After that, the network is relabelled as usual [Doyle, 1979]. This procedure
is repeated until no further inconsistency is detected. Then a first preferred subtheory has been
detected. Further preferred subtheories can be computed by choosing another labeling of the
already generated network and repeating the procedure above. Thus, we can every preferred
subtheory straightforwardly.

Indeed, the system in [Petrie, 1987] already uses a kind of priorities to control the culprit selection
of dependency-directed backtracking as sketched above. Hence, it should be. possible to use this
system for computing preferred substheories.

5 Conclusion
. l

Prioritized defaults [Brewka, 1989] are well-suited to control the retraction of different kinds
of assumptions including basic diagnostic principles, carrectness assumptions, and fault modes.
Furthermore, priöritized defaults specify a preference relation on candidates and thus help to
focus diagnosis. This focusing method is less flexible than statistical assessments of candidates,
but needs less search effort. Our preferred diagnoses can straightforwardly be computed by a TMS-
based system [J unker, 1991]. First proposals how to handle partial orders between assumptions
have been developed in [Junker and Brewka, 1991]. Currently, we investigate how to handle
context-dependent priorities of the form ok(c1) < ole-(c2) properly. These can be derived from the
diagnostic theory and and allow more flexibility in specifying priorities.

24

Acknowledgements

Gerd Brewka, Gerhard Friedrich, Peter Struss, and Hans Voss gave substantial comments to this
work. Markus Junker helped to clarify the problems with de Kleer's lexicographical ordering.

References

[Brewka, 1989] G. Brewka. Preferred subtheories: An extended logical framework for default rea­
soning. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,
pages 1043-1048, Detroit, MI, 1989.

[Console and Torasso, 1990] 1. Console and P. Torasso. Integrating models of the correct behavior
into abductive diagnosis. In Proceedings of the European Conference on Artificial Intelligence,
pages 160-166, Stockholm, 1990.

[De Kleer and Williams, 1987] J. De Kleer and B.C. Williams. Diagnosing multiple faults. Arti­
ficial Intelligence, 32:97-130, 1987.

[Doyle, 1979] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231-272, 1979.

[DressIer and Struss, 1990] O. DressIer and P. Struss. Back to defaults: Computing diagnoses as
coherent assumption sets. Technical report, Siemens AG, 1990.

[Junker and Brewka, 1991] U. Junker and G. Brewka. Handling partially ordered defaults in
TMS. In R. Kruse and P. Siegel, editors, Symbolic and Quantitative Aspects for Uncertainty.
Proceedings of the European Conference ECSQAU, pages 211-218. Springer, LNCS 548, Berlin,
1991.

[Junker, 1991] U. Junker. Prioritized defaults: Implementation by TMS and application to di­
agnosis. In Proceedings of the Twelth International Joint Conference on Artificial Intelligence,
pages 310-315, Sydney, Australia, 1991.

[Petrie, 1987] C. Petrie. Revised dependency-directed backtracking for default reasoning. In
Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI), pages 167-172,
1987.

[Poole, 1988] D. Poole. A logical framework for default reasoning. Artificial Intelligence, 36:27­
47, 1988.

Acknowledgements

Gerd Brewka, Gerhard Friedrich, Peter Struss , and Hans Voss gave substantial comments to this
work. Markus Junker helped to clarify the problems with de Kleer’s lexicographjcal ordering.

References

[Brewka, 1989] G . Brewka. Preferred subtheories: An extended logical framework for default rea-
soning. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,
pages 1043—1048, Detroi t , MI , 1989.

[Console and Torasso, 1990] L. Console and P. Torasso. Integrating models of the correct behavior
_ into abductive diagnosis. In Proceedings of the European Conference on Artificial Intelligence,

pages 160—166, Stockholm, 1990.

[De Kleer and Williams, 1987] J . De Kleer and B.C. Williams. Diagnosing multiple faults. Arti-
ficial Intelligence, 32:97—1'30, 1987.

[Doyle, 1979] J . Doyle. A t ruth maintenance system. Artificial Intelligence, 12:231—272, 1979.

[Dressler and St russ , 1990] O . Dressler and P. Struss . Back to defaults: Computing diagnoses as
coherent assumption sets . Technical report, Siemens AG, 1990.

[Junker and Brewka, 1991] U . Junker and G . Brewka. Handling partially ordered defaults in
TMS. In R . Kruse and P. Siegel, editors, Symbolic and Quantitative Aspects for Uncertainty.
Proceedings of the European Conference ECSQA U, pages 211—218. Springer, LNCS 548, Berlin,
1991 .

[Junker, 1991] U. Junker. Prioritized defaults: Implementation by TMS and application to di-
agnosis. In Proceedings of the Twelth International Joint Conference on Artificial Intelligence,
pages 310—315, Sydney, Australia, 1991.

[Petrie, 1987] C . Petrie. Revised dependency-directed backtracking for default reasoning. In
Proceedings of the Sixth National Conference on Artificial Intelligence (AAAI), pages 167—172,
1987.

[Poole, 1988] D. Poole. A logical framework for default reasoning. Artificial Intelligence, 36:27—
47 , 1988 .

25

A T.ruth Maintenance System for

Medical Knowledge-Based Assistance Systems

Hauke Kindler,

University of Ulm, Institute fur Occupational and Social Medicine,

FAW, Postfach 2060,0-7900 Ulm

Many medical expert systems have already been developed. In contrast to expert systems in
industrial applications they have rarely been used in routine. Legal, ergonomic, and ethical
charges imply special requirements, which have for the most part not been fulfilled, yet.
Physicians are personally responsible for a patient's treatment even when applying complex
technical aids. Thus, using a knowledge-based system the physician has to take the full
responsibility for its application. Therefore, technical decision aids have to be transparent,
fully understandable, explicable, and justifiable for them. We use the term knowledge-based
assistance system instead of expert system due to the role of a system which respects the
above mentioned constraints being a cooperative assistant, who has a staff function, providing
advice like a consultant, and is able to explain and justify its advice.
,In accordance to the hereinbefore named conditions the following design goals for
knowledge-based assistance systems can be defined:
- explicability consisting of the possibillty to give "why"-explanations and "how"­

explanations,
- justifiability meaning that the correctness of the applied knowledge can be justified,
- the possibility for the user to override the conclusions of the system, and
- the possibility to correct wrong input.
A "How"-explanation is the tree of deductions whose father is a certain value of a patient's
property. A TMS [2] will be necessary to give "How"-explanations if the inferences are
performed with rules in first-order predicate calculus due to instantiable knowledge chunks
[3]. The first-order predicate calculus is an essential prerequisite in complex medical
domains, e. g., electromyography [3,4] and acute radiation syndrome [5].
For the structuring of the problem solving a cognitive problem solving model is used [4, 5].
The problem solving task is decomposed hierarchically into subtasks until means are found to
solve the subtasks. This is done by explicitly represented strategic knowledge. The task
hierarchy and its creation by strategic rules are recorded by a TMS. "Why"-explanations to a
question like "Why is a certain subtask executed?" and "Why is a certain question asked?" can
be given by a TMS as the tree of deductions which invoked the action.
Due to the TMS the repetition of all inferences will be avoided if dedl:lctions of .the
knowledge-based assistance system are overridden by the user or the user corrects his input.
Below the answer to the question "How was deduced that the indicator 2 indicates the degree
1 of the acute radiation syndrome?" is depicted. Followed by the response to the question
"Why was the task medical measures of day 4 instantiated?". The examples have been
implemented on KEEl.. using its ATMS [1] and rule-based inference engine. The user
interface has been extended.

A Truth Maintenance System for
Medical Knowledge-Based Assistance Systems

Hauke Kindler,
University of Ulm, Institute for Occupational and Social. Medicine,

FAW, Postfach 2060, D-7900 Ulm

Many medical expert systems have already been developed. In contrast to expert systems in
industrial applications they have rarely been used in routine. Legal, ergonomic, and ethical
charges imply special requirements, which have for the most part not been fulfilled, yet.
Physicians are personally responsible for a patient's treatment even when applying complex
technical aids. Thus, using a knowledge-based system the physician has to take the full
responsibility for its application. Therefore, technical decision aids have to be transparent,
fully understandable, explicable, and justifiable for them. We use the term knowledge-based
assistance system instead of expert system due to the role of a system which respects the
above mentioned constraints being a cooperative assistant, who has a staff function, providing
advice like a consultant, and is able to explain and justify its advice.
ln accordance to the hereinbefore named conditions the following design goals for
knowledge-based assistance systems can be defined:
- explicability consisting of the possibility to give "why"-explanations and "how”-

explanations, ,
- justifiability meaning that the correctness of the applied knowledge can be justified,
- the possibility for the user to override the conclusions of the system, and
- the possibility to correct wrong input.
A "How"-explanation is the tree of deductions whose father is a certain value of a patient‘s
property. A TMS [2] will be necessary to'give "How"-explanations if the inferences are
performed with rules in first-order predicate calculus due to instantiable knowledge chunks
[3]. The first-order predicate calculus is an essential prerequisite in complex medical
domains, e. g., electromyography [3,4] and acute radiation syndrome [5].
For the structuring of the problem solving a cognitive problem solving model is used [4, 5].
The problem solving task is decomposed hierarchically into subtasks until means are found to
solve the subtasks. This is done by explicitly represented strategic knowledge. The task
hierarchy and its creation by strategic rules are recorded by a TMS. "Why"-explanations to a
question like "Why is a certain subtask executed?" and "Why is a certain question asked?" can
be given by a TMS as the tree of deductions which invoked the action.
Due to the TMS the repetition of all inferences will be avoided if deductions of the
knowledge-based assistance system are overridden by the user or the user corrects his input.
Below the answer to the question "How was deduced that the indicator 2 indicates the degree
1 of the acute radiation syndrome?" is depicted. Followed by the response to the question
"Why was the task medical measures of day 4 instantiated?". The examples have been
implemented on KEEm using its ATMS [l] and rule-based inference engine. The user
interface has been extended.

25

26

AN
INOICATOII-FOII-OEOIIEE t

OF PATlENT.CUUlK 15

INOICATOIIZ

~

A

CONCENTIlATlON.OF.lYHPHOCYTES

OF PATlENT.CUUlK IS (t.3 BO)

FIlOH.I\ACKO~OUNO.ONlY

CONCENTIlATlON.OF.lYHPHOCYTES

OF PATlENT.CUUlK IS (t.3 BO)

FIlOH.I\ACKOLOUNO.ONlY

After the "How"-question an explanation window opens and shows the deduction graph computed by
the ATMS. The fact "indicator 2 indicates the degree 1 of the acute radiation syndrome" was deduced
by the rule "rg-I2-of-D1-" which was instantiated with the fact "the concentration of lymphocytes of
patient was 60% of his normal value at the day 1.3". The rectangle around "rg-I2-of-Dl-" denotes that
supplementary information is available. On the right side a menu lists the different types of information.

If
the p&tlent r • concentration of lymphocyte.
wu at I.an one tlma > 60 % of hi. norm&l
value until dAy 3,"
Indicator Z for ut acute radiation syndrome of
d.gr•• I will ... 'ru••

T". Iymp"ocyt mo•• radlosen.i.iv.
eeU. In the p.rlphe,.' blood. Ther.fore, there
I.... Immediate .hUp drop in thel, number
even &t relAtively low radiation do•••. Thus)
higher do••• cannot re.ult In .. further
d.er.... of their concentration.
Neverthel•••, the de.th of the Iymphocyte. Is
...pecific And early pvuneter for rAdiAtion
Injurle•.

The user can look at the textual form of the rule. Hc can get a text which justifies the rule.

The degr•• of the &cut. rAdiAtion syndrDme
must be determined for dIAgno.'. &n~

therapy. Some Ilgn. and symptom••e used
... Indicators. EAch of th••• 'ndlcatore may
hav. diff.r.nt dagr.e. of manifestAtion
indicating dlff.r.n. d.gre•• of .everl'Y. T...
••t of Indicators who•• mAnifestAtions point
to "a,ree on. &re the indicAtor. for degr••
ana.

A description of the signification of "indicator for degree 1" can be given to the user.

I EXls~spiay 'h~ "gn,kc....on 0) is prop~rtM
01' TASK.

IS

,. EXIS[IHO

" IIU~'r.:.t. t

I1 ------~ .--------_

iI DAYAFTE:.ACCIOEHT OEOIIE~.PlANNIHO
I1 01' PATlENT.CI.AIIK IS OF PATlENT.CI.AIIK IS
i 3 3

!fFIlOH.UCKOLoUHO.ONLY HE~IAH I

ti ~
Ii

After the "Why"-question an explanation \vindow opens and shows the deduction graph computed by
the ATMS. The fact "task 4 is existing" was deducc hy the rule "rg-st-1.1" which was instantiated with
the facts "today is the third day aftcr the accident" and "thc estimated degree of the acute radiation
syndrome (for planning) is 3".

AN

monument-remnants: "W'c‘WR'FON'r
or uneven" i s °F ""!“7- c ~ sp y t tut .

mmcatonz INDIGM'O display the “mm:! tom 01 the rule

IO-IZ-LF-IH-

CONBEHTMI’IDM.OF.LVMPMOOVTES
A

CONDEN‘I‘M‘I’IDNJJF.LVHPHOCY‘IES
GF 'A‘I’IEN'I’.CIANK IS (1 .3 . 0)OF PAYIENI’.CI.MK IS (1 .3 . 0)

VIONJABKOLOUNEONLYFIé“.MmLOUNII.0NLV

After the "How"-question an explanation window opens and shows the deduction graph computed by
the ATMS. The fact "indicator 2 indicates the degree 1 of the acute radiation syndrome" was deduced
by the rule "rg-12-of-D1-" which was instantiated with the fact "the concentration of lymphocytes of
patient was 60% of his normal value at the day 1.3". The rectangle around "rg-lZ-of-Dl-" denotes that
supplementary information is available. On the right side a menu lists the different types of information.

Ht i t i t i l - v in i i uu i n k i t I n t—“inflows

t he lymphocytee are t he meet radleeenei t ive
l l ce l l : In the perlpherai Mood. There lore , t he re
the ‚ . '“n 'r . concentra t ion 0 ' iylnphoeytee i e an immediate sharp d rop in t he i r number
wee „ least one t ime , „ % " h i s normal even at relatively l ow railiatien an" . Thun,
„|... um" ‚., ‚‘ higher ann cannot result In a further
then dec rease o f t he i r concen t r a t i on .

Nev-nineteen, the death o f t he lymphocy te : I s
a epeeiflc and ear ly parameter fo r radiation
Injuriee.

Indicator 2 l e r an acute radiation syndrome o f
degree I wil l be t rue .

i-

The user can look at the textual form of the rule. He can get a text which justifies the rule.

ou t i i i -w indow in k i t Tu t -Windov t

t he degree o f t he acute rmla t i on eyndrome
mun lie de te rmined fo r diagnoeie any!
therapy. Seine e lgne and eymptome are used
u indicatore. Each u l t heee lndicuore may
have ‘N'-font degreee o f manileetatlen
Indicating unter-nt degreee o f l eve r i ty . The
ea t o r indie-tore who le manlleetationr point
to degree one are the i nd i cno re Vor deg ree
one .

A description of the signification of "indicator for degree l " can- be given to the user.

u 'hknE x l a imrmn (i t «All Ex l ix lx i i t ' l f (PF ” sk i IS i ' x iS I l l i l i) i n "Hmckurnund"

IIAYAFTEIMGIIIEN'I’ DEBIEEJDLWNII
or PAflENLMK ß 0F PAYIENTM IS

3 3

FROM IacmLouuo. ONLY "Eau"

M
After the "Why"-question an explanation window opens and shows the deduction graph computed by
the ATMS. The fact “task 4 is existing" was deduce by the rule "rg-st-1.1" which was instantiated with
the facts "today is the third day after the accident" and "the estimated degree of the acute radiation
syndrome (for planning) is 3".

27

The dlagnonlc and therapeutic t of a
patient'. treatmont are planned dynamically
depending' on the patient'. medical natu•• If a
tuk e.llt, It. execution '1 planned which .,
required for ItI a.acutlon.

A description, of the signification of "cxistance of task 4" can be given to the user.

If
.. pAtient hu an &Cut. rAdiation Iyndrome of

Tho e"pected course of evenU will "e .0

and the 41th day arter Irr&ollatlon

degree III on one of the day. "etwoon tho 3rd

••ver. that .. regUlar control of the
p&runetar••• required on .. dally bul•.then

plan a t ..k of the type 'dl..gno.I., progno.I.,
 Comparo HeUlor F. A. ot al.: 'Medical
Hanagement of Radiation Accident.'. CRCand therapy' and It••u..t ror the
Pre ••, 1880, pp 17following day.

The user can look at the textual He can get a text which justifies

form of the strategic rule. the rule by referencing to literature.

The texts for the justifications, textual forms and significations are attached to the strategic
rules and patient's properties due to objcct'-oriented methodology of KEE™.
Apart from the adaption of the user interface it has been possible to apply the ATMS of
KEE™ and its inference engine without modifications. The deductive knowledge depicted
above can be represented in the form of deduction· rules, which are a special type of rules with
some limitations compared to normal rules. But, in the domain of application which is the
medical management of irradiated persons both nonmonotonic reasoning and reasoning with
the universal quantifier is required. The knowledge [0 express this, cannot be represented with
deduction rules, because only the premisses part of deduction rules can be extended by Lisp
code.

Normally the rule system of KEE lM provides no possibili'ty for nonmonotonic reasoning and
the use of the universal quantifier. Nevertheless, these two effects can be achieved by
integrating Lisp code into the rules. Some of this Lisp code has to be integrated into the
conclusion part of the rules. The rule syntax becomes complex, but the. advantage is that
every rule is still an autonomous chunk of knowledge, which can be used normally in forward
and backward chaining by the normal inference engine profiting from a Rete rietwork and
providing nonmonotonic reasoning and the use of the universal quantifier.
Nonmonotonic deductions are provided by retracting the values of the object-property-value
triples at the beginning of the conclusion part or the rule.
Reasoning with the. universal quantifier is invoked when one supplementary object-property­
value triple is asserted or retracted. After a geLvalues command all values of the property of
the object can be processed at the same time. This is done in the premisses part of the rule.

Within the KEE™ deduction rules, which arc the rules which trigger the ATMS
automatically, it is not possible to use Lisp code in the conclusion part. Thus, it is not possible
to enhance the deduction rules like normal rules in KEE™ to integrate nonmonotonic
reasoning and the use of the universal quantifier. The possibility to create ATMS
justifications by Lisp code is offered by KEE TM. Using the normal rules with Lisp code and
ATMS operators like "remove.justification" and "create.justification" nonmonotonic
reasoning and reasoning with the universal quantifier is provided. ~wo examples are depicted
below. A mixing of nonmonotonic reasoning and the use of the universal quantifier would be
possible, too.

"be dings-eerie and there,-ale tun o f a
‚unw- treatment are pianned dynamically
depending on the patient'e medlcai “nee. I f a
tank n in - lt- execmlen I: planned which |.
required ter- in execution.

A description of the signification of "existance of task 4" can be given to the user.

l l
a patient hu an acute function ayndrome e !
degree at on one o r the days between the are "to axe -cud coun- o l event : wul I. I n
and the lam day af ter Irradiation eevere that a regular con t ro l o l the

the parameter! I: required on a daily hula.
plan a we o r the type "(quo-ls, prognosis, Compare Nelt ler F . A. " an.: Mode:!
and therapy and In eubtaeiu for ".. Management o i Radiation Accidents . cnc

' Iollewleg day. Freu , “NI, pp e1

The user can look at the textual , He can get a text which justifies
form Of the strategic rule. . the rule by referencing to literature.

The texts for the justifications, textual forms and significations are attached to the strategic
rules and patient's properties due to objectzorientcd methodology of KEE'".
Apart from the adaption of the user interface it has been possible to apply the ATMS of
KEE'" and its inference engine without modifications. The deductive knowledge depicted
above can be represented in the form of ded uction~rules, which are a special type of rules with
some limitations compared to normal rules. But, in the domain of application which is the
medical management of irradiated persons both nonmonotonic reasoning and reasoning with
the universal quantifier is required. The knowledge to express this, cannot be represented with
deduction rules, because only the premisscs part of deduction rules can be extended by Lisp
code. l

Normally the rule system of KEE'" provides no possibility for nonmonotonic reasoning and
the use of the universal quantifier. Nevertheless, these two effects can be achieved by
integrating Lisp code into the rules. Some of this Lisp code has to be integrated into the
conclusion part of the rules. The rule syntax becomes complex, but the‘advantage is that
every rule is still an autonomous chunk of knowledge, which can be used normally in forward
and backward chaining by the normal inference engine profiting from a Rete network and
providing nonmonotonic reasoning and the use of the universal quantifier.
Nonmonotonic deductions are provided by retracting the values of the object-property-value
triples at the beginning of the conclusion part of the rule.
Reasoning with the, universal quantifier is invoked when one supplementary object-property-
value triple is asserted or retracted. After a get.values command all values of the property of
the object can be processed at the same time. This is done in the premisses part of the rule.

Within the KEE'” deduction rules, which are the rules which trigger the ATMS
automatically, it is not possible to use Lisp code in the conclusion part. Thus, it is not possible
to enhance the deduction rules like normal rules in KEE'“ to integrate nonmonotonic
reasoning and the use of the universal quantifier. The possibility to' create ATMS
justifications by Lisp code is offered by KEE'". Using the normal rules with Lisp code and
ATMS operators like "remove.justification" and "create.justifieation" nonmonotonic
reasoning and reasoning with the universal quantifier is provided. Two examples are depicted
below. A mixing of nonmonotonic reasoning and the use of the universal quantifier would be
possible, too.

27

28

~«f~HE SLOT2 OF ?OBJECT IS ?VALUEl
.!	 THEN

(LISP
<IF

(CAR (GET.SUPPORTING.JUSTIFICATIONS (CAR (GET.SLOT.PROPOSITIONS ?OBJECT 'SLOT1»»
(RENOVE.JUSTIFICATION
·(CAR (GET.SUPPORTING.JUSTIFICATIONS (CAR (GET.SLOT.PROPOSITIONS ?OBJECT 'SLOT1»»)T»

(LISP (CREATE.JUSTIFICATION	 (LIST 'THE 'SLOTl 'OF ?OBJECT 'IS ?VALUE)

(LIST (LIST 'THE 'SLOT2 'OF ?OBJECT 'IS ?VALUE»

"RUNEII12"»

(THE SLOTl OF ?OBJECT IS ?VALUEI

(LISP (RETRRCT (LIST 'THE 'SLOTl 'OF ?OBJECT 'IS ?VRLUE»»)

Nonmonotonic deductions and the creation of deductions arc provided by the following actions in the
premisses part:

removing the old justification of the object-property-value triple in the beginning of the conclusion
part of the rule if an old justification exists.
creating the new justification for the property of the object.
asserting conventionally the new value to the property of the object enabling normal triggering of
the rule, and
retracting this value for having only available the object-property-value of the ATMS.

(IF	 \T HE SLOT'! OF OBJECTl IS? I
(?VRLUE z (LISP (EVAL (CONS '. (GET.VALUES 'OBJECTl 'SLOT~)I»)
THEN
(LISP (CREATE.JUSTIFICRTION (LIST 'THE 'SLOT3 'OF 'OBJECTl 'IS ?VALUE)

(DO «HL (GET. VALUES 'OBJECTl ' SLOT 4I (CDR HLl)
(NL NILl)

((NULL HLl NLl
(SETa NL (CONS (LIST	 'THE

'SLOT'!
'OF
'OBJECTl
'IS
(CAR HLl l

NLl))
'RGLE3"»

(THE SLOT3 OF OBJECTl IS ?VALUEI

(LISP (REMOVE.VALUE 'OBJECTl 'SLOT3 ?VALUE»)

Reasoning with the universal quantifier is invoked when one supplementary object-property-value triple
is asserted or retracted. After a "gct.valucs" command all values of the property of the object can be
processed at the same time. This is done in the premisses part of the rule. In the conclusion part the
justification is created. As in the exampll: for the nonmonotonic deductions the value is asserted
normally to enable correct triggenng and retracted thereafter. Thus, only the values justified by the
ATMS remain. .

UD!\: OB.lECTt ID kDowledee ATHS-TESTUD!\: O"'ECTt ID _w1edee"'" ATHS-TEST
er...ted bY haute OD 7-12-91 12:44:20
ModIfIed bY hauke OD 7-24-'1 1l:07:S!

Member or: OB.lECT

0wD I1ot: SLOTt trom OB.lECTt
1w,I_: OVEIlIlIDE.VALUES
Va_: UNKNOWN

0wD slot: SLOTZ tram OB.lECTt
Iw,I*",": OVEIlIlIOE.VALUES
Va_: I, 2

0wD slot: SLOT3 trom ~B.lECT I
IIt1luI_: OVEIIIlIOE.VALUES
Va_: UNKNOWN

0wD .lot: SLOT4 trom OB.lECT1
Iw,I*",", OVEIlIlIOE.VALUES
Va/lu: 4, I, 2, 3

ereated b,. bauke OD 7-12-91 12:44:20
ModIfIed bY bauke OD 7-24-91 11:25:1'

Member or: OB.lECT

0wD .lot: SLOTt tro.. OB.lECT1
Ilt1lultmtc., OVEIlIlIOE.VALUES
Va_: 1

OwD slo\: SLOTZ trom 08.lECT1
Iw,I*",": OVEIlIlIOE.VALUES
Va_: I, 2

\
0wD slot: SLOn trom OB.lECT1

IIt1luI*",", OVEIlIlIOE.VALUES
Va_:IO

0wD I1ot: SLOT4 trom OB.lECTt

Ilt1lultmtc.: OVEIlIlIOE.VALUES

Va_: 4, I, 2, 3 .

The nonmonotonic rule is instantiated two times with the values 1 and 2 of slot2 of object 1. First the
value 2 for slotl of object 1 is deduced. which is then replaced by the value 1. The universal quantifier
rule is instantiated with the values of slot 4 of object 1 to deduce the sum of them, which is written into
slot 3. EXplanations for the values of slot I and slot .3 can be provided by the ATMS.

((IF
\ (THE SLOT2 OF ?DBJECT IS ?URLUE)

THEN
(LI SP

(I F
(ORR (GET . SUPPORT ING . JUSTIFI CRTIOHS (CRR (GET . SLOT . PROPOSI TIONS ?OBJECT
(REMOVE . JUST IFICHT I ON
„(ORR (GET . SUPPORTING . JUST IFICR‘I‘ IONS (CRR (GET . SLOT . PROPOSI T IONS ?OBJECT

T))
(LISP (CRERTEJUSTIFICRTION (LIST 'tHE 'SLOT1 'OF ?OBJECT 'Is ?aUE)

(LIST (LIST 'THE 'swtz 'OF 70mm! '15 7VBLUE))'RUNEHIZ'H _
(ms SLon OF meant IS ?VflLUE)
(LISP (REYRRCT (usr wm: ' smn 'OF TIDBJECT

'SLOTIHH
'SLOT1)))))

’ IS ?VRLUEH)))
f

Nonmonotonic deductions and the creation of deductions are provided by the following actions in the
premisses part:
- removing the old justification of the object-property-value triple in the beginning of the conclusion

part of the rule if an old justification exists.
- creating the new justification for the property of the object.
- asserting conventionally the new value to the property of the object enabling normal triggering of

the rule, and
- retracting this value for having only available the object-property-value of the ATMS.

(IF (THE 5Lor4 DF DBJECTl IS 97"’

(?VHLUE = (LISP (sa (cons ' . (GET.URLUES 'OBJECTI 'SLDT4)))))
THEN
(LISP (ca:ar:.ausr1r1cairau (LIST 'THE 'SLOT3 ' 0 : 'oaJEcri '15 ?auE)

(no ((HL (GET.UHLUES 'OBJECTI 'SLOT4) (can HLl)
(NL NIL))

((NULL HL) NL)
(sarq HL (cons (LIST 'THE

'SLOT4
'OF

' ‘OBJECTI
15

(GER HU)
NLH)

' RGLES'))
(THE SLOT3 OF OBJECT 1 IS ‘?URLUE)
(L ISP (REMOVE . UfiLUE ' OBJECT 1 'SLOTS ?VRLUE)))

Remoning with the universal quantifier is invoked when one supplementary object-property—value triple
is asserted or retracted. After a "get. 'alues“ command all values of the property of the object can be
processed at the same time. This is done in the premisses part of the rule. In the conclusion part the
justification is created. As in the example for the nonmonotonic deductions the value is asserted
normally to enable correct triggering and retracted thereafter. Thus, only the values justified by the
ATMS remain.) ‘

(l lu l , ’ i l l l) Tht ' U l i l l (I l l “or" in AIMS- l l E l Knox- s l ed € 8
| | (“uvm”) I l l » im tH‘ l t l lm ' vn «IHR-„ \ , ! knowlenre Ft

‘ Unit: M671 In mid” N' A'NS-TES'I
can by Mun on 1-12-91 12mm
W hy banks on ‘l-Zl-‚l 1120123!

Manu! OP. 0..)c

Unit: OIJEGT‘ ln MN]. hl” ATNS-‘IEST
Grund by Nun on 1-12-91 12Min
W by bank. on 7-20-91 "22.51"

‘ Of: OIJEC'I'

Own flat: SLO'I"! ff“ (ll-IEC“!
'lmrim.‘ DVEIIIOE.VMJJES
Values: muowu

Own dot: SL012 null OBJECT.
1mm.- OVEIIIIDENALUES
nm.- 1. z

Own sun.- sun: no. äuscn
IWW: OVEnllDENfiLIJES
um: UNKNOWN

Own um SLOT! non OIJEOH
Minimum: 0VEIIIOE.VALUES
Vale”: l , 1. Z, 3ä

Own slot: SL071 non OIJEc'H
Inheritance: OVEMNALIIES
um: l

Own slot: SL012 mm outer .
[Mutant-e: OVEIIIIOENALUES
Val-.9: 1. z

Own slot.- SLO‘I’I flu- OIJEBT‘I
[müßt-“c: OVEWDE.VALUES
Van": lo

Own not: SLOT! non OIJEc
[Minute: DVEIIIDENALIIES .
Wahn: ! . l . 2 , 3

H

The nonmonotonic rule is instantiated two times with the values 1 and 2 of slot2 of object 1. First the
value 2 for slotl of object 1 is deduced. which is then replaced by the value 1. The universal quantifier
rule is instantiated with the values ot“ slot 4 of object 1 to deduce the sum o f them, which is written into
slot 3. Ekplanations for the values ot'slot l and slot 3 can be provided by the ATMS.

\

29

For the purposes of the application mentioned above it would be sufficient to only use a
JTMS [2]. The recalculation of the lahels and nodes of the ATMS when asserting or
retracting justifications while rcasoni~g nonmonotonically hecomes very timeconsuming in
compared to a JTMS.
In the above mentioned application planning is performed. A plan, which is a hierarchy of
tasks, is created. Every task has states of execution, like "instantiated", "active", "executed".
Deducing from the instantiation of a task and some other premisses that it is "active" is
nonmonotonic because its state changes from "instantiated" to "active" and for the TMSa
hard loop occurs. The hard loop means that the value of a property of the object would have
to be justified by the not any more existing previous value of the same property of the object.
This creates a problem for the recording by a TMS for which two solutions 'exist.
The first solution is to have the three properties "instantiation", "activation", and "execution"
for each task, whose value types are Boolean. Thus, the value "yes" of the property activation
of an object would be justified by the value "yes" of the property instantiation of the same
object by the TMS. This solution is only applicable if the set of possible values of the
property is finite. The impleme'ntation is easy.
The second solution is having a stack of values for one property of the object in chronological
order with only the top value readahle. When reasoning nonmonotonically a value is not
physically retractet but only overwritten and still recorded in the stack. The value "active" of
a property of the object would then he justified by its former value "instantiated", which is
not readable but still existing in the stack onc clement below. This solution would be
applicable for infinite value sets of properties. Another advantage of this solution would be'
that an overridden value remains recorded. But the implementation would require
modifications of the trigger-mechanism for the inference engine and the introduction of a
special type of single value property.

[1] DeKleer J.: "An Assumption Ba\cd TMS". Artificial Intelligcncc. Bd. 28. 1986

[2] Doyle: "A Truth Maintenancc System". Artificiallntclligcnce Journal. Bd. 12. North Holland, Amsterdam.
1979 '

[3] Kindler H.: "WissensmodelIierung als Grundlage ei,nes intelligenten Tutors in der Elektromyographie", in
Reuter A.: "20. GI-Jahrestagung". vol. 2. Springer, Heidelberg, 1990

[4] Kindler H.: "Controlling Qualitative Reasoning by a Cognitive PrOblem-Solving Model for Decision
Making in Electromyography". Proceedings of the Workshop of Qualitative Reasoning and Decision
Support Systems 1991, TOUlouse, North Holland. Amsterdam. to appear 1991

[5] Kindler R, Densow. D., F1iedner T. M.: "RADES - Medical Assistance System for the Management of
Irradiated Persons", 2nd International Conference on Database and Expert Systems Applications, 1991,
Berlin, Springer, Vienna, to appear 1991

For the purposes of the application mentioned above it would be sufficient to only use a
JTMS [2]. The recalculation of the labels and nodes of the ATMS when asserting or
retracting justifications while reasoning nonmonotonically becomes very timeconsuming in
compared to a JTMS. _
In the above mentioned application planning is performed. A plan, which is a hierarchy of
tasks, is created. Every task has states o f execution, l ike "instantiated", "active", "executed".
Deducing from the instantiation of a- task and some other premisses that it is "active" is
nonmonotonic because its state changes from "instantiated" to "active" and for the TMS a
hard loop occurs. The hard loop means that the value of a property of the object would have
to be justified by- the not any more existing previous value of the same property of the object.
This creates a problem for the recording by a TMS for which two solutions exist.
The first solution is to have the three properties "instantiation", "activation", and "execution"
for each task, whose value types are Boolean. Thus, the value "yes" of the property activation
of an object would be justified by the value "yes" of the property instantiation of the same
object by the TMS. This solution is only applicable if the set of possible values of the
property is finite. The implementation is easy.
The second solution is having a stack of values for one property of the object in chronological
order with only the top value readable. When reasoning nonmonotonically a value is not
physically retractet but only overwritten and still recorded in the stack. The value "active" of
a property of the object would then be justified by its former value "instantiated", which is

29

not readable but still existing in the stack one element below. This solution would be,
applicable for infinite value sets of properties. Another advantage of this solution would bel
that an overridden value remains recorded. But the implementation would require
modifications of the trigger-mechanism for the inference engine and the introduction of a
special type of single value property. '

\

[1] DeKleer J.: "An Assumption Based TMS". Artificial intelligence. Bd. 28. 1986

[2] Doyle : "A Truth Maintenance System". Artificial intelligence Journal. Bd. 12, North Holland, Amsterdam.
1979 " ‘

[3] Kindler H. : "Wissensmodellierung als Grundlage cines intelligenten Tutors in der Elektromyographie", in
Reuter A. : "20. GI-Jahrestagung". vol. 2. Springer. Heidelberg, 1990 :

[4] Kindler H. : "Controlling Qualitative Reasoning by a Cognitive Problem-Solving Model for Decision
Making in Electromyography". Proceedings of the Workshop of Qualitative Reasoning and Decision
Support Systems 1991, Toulouse, North Holland. Amsterdam, to appear 1991

[5] Kindler H., Densow. D., Fliedner T. M.: "RADES - Medical Assistance System for the Management of
Irradiated Persons", 2nd International Conference on Database and Expert Systems Applications, 1991,
Berlin, Springer, Vienna, to appear 1991

31

1

The Integration of an ATMS and a Constraint-System in IDA*

Jiirgen Paulokat Holger Wache

UniversiHit Kaiserslautern Universitat Dortmund

P 0 Box 3049 P 0 Box 500 500
W-6750. Kaiserslautern W-4600 Dortmund 50
Fed. Rep. of Germany Fed. Rep. of Germany

paulokat@informatik.uni-kLde wache@jake.informatik.uni-dortmund.de

Extended Abstract'

Introduction

We describe the integration of an ATMS and a Constraint-System in lOAl [MPS+90, Kra91] a shell for the
development of expert systems for conception and configuration tasks in technical domains.. The IDA sys­
tem implements a model of design which provides means to describe physical components (e.g. a hydraulic
element) and technical processes (e.g. welding), their possible use in aggregates, and their functional spec­
ification on different levels of abstraction. 2 Functional specifications, called functi?ns, are used to specify
the task or'subtasks of an aggregate to be constructed by the expert system. During the design process a
function can be divided into more specialized subfunctions or realized by a technical realization (i.e. a phys­
ical component or a technical process). Compatibility conditions between the components of aggregates
can be expressed by constraints.

A solution of a design task is an aggregate where every function has been refined by more specialized
subfunctions or realized by a technical realization. If some of these steps remain to be done we have a
partial solution. During the process ofrefinement and realization we must fulfil all compatibility constraints.
Further a more specialized function must fulfil all requirements of the function detailed by it defining new
specifications on a lower level of abstraction. If one or more of these consistency conditions can not
be met this partial solution is inconsistent. In general tasks can be done in alternative ways. Every
alternative found during search defines a (partial) solution of its own. The inference component can change
arbitraryly the alternatives and selects one at a time for further computations. In the following we will not
always distinguish functions and subfunctions or a solution and partial solutions because most of the given
propositons are independent of these differentiations.

In IDA an ATMS is used to represent the alternatives found during search and the uni-directional presuppo­
sitions beween a function and its technical realization or subfunctions. In contrast to the ATMS constraints
describe multi-directional dependencies. They are used to express that combinations of n components are
inconsistent. So, the selection of (n - 1) ~omponents out of such an inconsistent combination results in the
exclusion of the others from further considerations of the inference component. If there is an unsolved task,
but all alternatives solving it are ruled out by constraints this partial solution is inconsistent. In this case
the system must draw. back some decisions to resolve the conflict (dependency directed backtracking). This
problem may even·.be more complicated because constraints can express preferences and can be relaxed or
retracted. The relaxation of constraints is described in [Pau90, Pau91]. In the following we describe only
the modification of an ATMS to fit our computational model underlying the IDA system and its integration
with the constraint system.

°The work presented herein was partially founded by the Deutsche Forschungsgemeinschaft .(DFG), SFB 314 "Artificial
Intelligence - Knowledge Based Systems" , projects X7 and X9

lIDA is an abbrreviation of Intelligent .Q.esign Assistant
2 The examples are taken from an expert system for the construction of fixing elements realized using IDA.

31

\

The Integration of an ATMS and a Constraint—System in IDA*

Jürgen Paulokat _ Holger Wache
Universität Kaiserslautern Universität Dortmund

P O Box'3049 P 0 Box 500 500
W—6750.Kaiserslautern W—4600 Dortmund 50
Fed. Rep. of Germany Fed. Rep. of Germany

paulokat©informatik.uni-kl.de wache©jake.informatik.uni-dortmund.de

Extended Abstract

1 Introduction

We describe the integration of an ATMS and a Constraint-System in IDA1 [MPS+90, Kra91] a shell for the
development of expert systems for conception and configuration tasks in technical domains, The IDA sys—
tem implements a model of design which provides means to describe physical components (e.g. a. hydraulic
element) and technical processes (e.g. welding), their possible use in aggregates, and their functional spec-
ification on different levels of abstraction.2 Functional specifications, called functions, are used to specify
the task or'subtasks of an aggregate to be constructed by the expert system. During the design process a
function can be divided into more specialized subfunctions or realized by a technical realization (i.e. a phys-
ical component or a technical process). Compatibility conditions between the components of aggregates
can be expressed by constraints.

A solution of a. design task is an aggregate where every function has been refined by more specialized
subfunctions or realized by a technical realization. If some of these steps remain to be done we have a
partial solution. During the process of refinement and realization we must fulfil all compatibility constraints.
Further a more specialized function must fulfil all requirements of the function detailed by it defining new
specifications on a lower level of abstraction. If one or more of these consistency conditions can not
be met this partial solution is inconsistent. In general tasks can be done in alternative ways. Every
alternative found during search defines a (partial) solution of its own. The inference component can change
arbitraryly the alternatives and selects one at a time for further computations. In the following we will not
always distinguish functions and subfunctions or a solution and partial solutions because most of the given
propositons are independent of these difl'erentiations.

In IDA an ATMS IS used to represent the alternatives found during search and the uni-directional presuppo-
sitions beween a function and its technical realization or subfunctions. In contrast to the ATMS constraints
describe multi—directional dependencies They are used to express that combinations of n components are
inconsistent. So, the selection of (n — 1) components out of such an inconsistent combination results in the
exclusion of the others from further considerations of the inference component. If there i s an unsolved task,
but all alternatives solving it are ruled out by constraints this partial solution is inconsistent. In this case
the system must draw/back some decisions to resolve the conflict (dependency directed backtracking). This
problem may even—‚be more complicated because constraints can express preferences and can be relaxed or
retracted. The relaxation of constraints is described in [Pau90, Pau91]. In the following we describe only
the modification of an ATMS to fi t our computational model underlying the IDA system and its integration
with the constraint system. \

'The work presented herein was partially founded by the Deutsche Forschungsgemeinscbal’t,(DFG), SF B 314 “Artificial
Intelligence — Knowledge Based Systems". projects X7 and X9

1IDA is an abbrreviation of Intelligent Qesign Assistant
2The examples are taken from an expert system for the construction of fixing elements realized using IDA.

mailto:wache@jake.informatik.uni-dortmund.de
mailto:paulokat@informatik.uni-kLde

32

2 Representation of a (Partial) Solution in the ATMS

In general the search space of a design problem is very large. In most cases however we are only interested in
one "good" solution. This implies that we must focus search. This behavior is supported by the concept of a
control environment for the ATMS introduced by de Kleer [dK86a, dK86b], which we extend to the global
environment. A global environment contains all assumptions currently believed in and defines a global
context which contains all nodes which can be derived from the assumptions in the global environment.
Beside of that we use two special kinds of nodes in our ATMS: an alternative node for every alternative
found during search and a group node representing a disjunction of alternatives. Further, group nodes
serve as connection between the ATMS and the constraint system. The constraint system interprets a
group node as a variable whose possible values are the alternatives of the group. Values of a variable (i.e.
some alternatives of a group) can be removed by constraint propagation and are excluded from further
inferences of the problem solver controlling the ATMS. Allowing a dynamical change of the contents of
a group, i.e. the addition and removal of ATMS nodes by the constraint system we prevent a redundant
representation of incompatibility conditions by both constraints and nogoods of the ATMS. The use of
a constraint system is necessary for propagation and relaxation of multi-directional dependencies which
cannot be handled directly by the justifications of an ATMS.

Given that, the features of our design model lead to three conditions for a consistent (partial) solution which
can be tested on the implementation level of the ATMS. 1.) Every alternative must belong to exactly one
group, 2.) an alternative can only belong to the global context if its group belongs to it, 3.) if a group is
in a global context then there must be one alternative belonging to this group which is contained in the
global context or can be consistently added (i.e. there are no nogoods that deny. the addition).

In [dK86a, dK86b] de Kleer describes the problem that all alternatives of a group are ruled out by nogoods,
which we call the exclusion problem. He generates new nogoods preventing this kind of inconsistency. In
our case the problem is more complex because the set of alternatives can change dynamically.

3 Exclusion Problem

In our computational model of configuration a partial solution is inconsistent if a group G = {Ai, ... , An} is
contained in the global context whose alternatives Ai are ruled out completely by nogoods. In this case for
every Ai exists an assumption ai and every ai is contained in a nogood Ni = NI U {ail. If Ai is ruled out
by the nogood Ni then Ni is active with respect to the global environment, i.e. every assumption nj E Ni
is an element of the global environment.

3.1 The Hyperresolution

Such an inconsistency can only be resolved if we remove at least one assumption n", E NI out of the global
environment. After this removal Ai is no more ruled out by the nogood Ni and can be added to the global
environment if there is no other nogood ruling out Ai, again. But this can be solved by repeatedly removing
assumptions of the offending nogoods out of the global envirenment. To prevent the encounter with this
inconsistency again in future inference steps we generate a new nogood N = U~::;l NI = U~=l Ni \ {ai} =
(U7=1 Nd \ G. In [dK86a, dK86b] this computation rule is called hyperresolution and noted as:

GRUPPE G= {Al, ... ,A",} mitA(G) = {al, ... ,an }

3 NOGOOD Ni = (nil,"" nil) mit ai E Ni und Vj =1= i : aj f/: Ni

NOGOOD Nneu := UNi \ A(G)

In this rule A(G) represents a set of assumptions ai for every alternative Ai E G. To select the alternative
Ai the assumption ai must be added to the global environment. The nogood Nneu guarantees that at least
one Ai of G can be selected with respect to the nogoods Ni.

32

2 Representation o f a (Partial) Solution in the ATMS

In general the search space of a design problem is very large. In most cases however we are only interested in
one “good” solution. This implies that we must focus search. This behavior i s supported by the concept of a
control environment for the ATMS introduced by de Kleer [dK86a, dK86b], which we extend to the global
environment. A global environment contains all assumptions currently believed in and defines a global
context which contains all nodes which can be derived from the assumptions in the global environment.
Beside of that we use two special kinds of nodes in our ATMS: an alternative node for every alternative
found during search and a group node representing a disjunction of alternatives. Further, group nodes
serve as connection between the ATMS and the constraint system. The constraint system interprets a
group node as a variable whose possible values are the alternatives of the group. Values of a variable (i.e.
some alternatives of a group) can be removed by constraint propagation and are excluded from further
inferences of the problem solver controlling the ATMS. Allowing a dynamical change of the contents of
a group, i.e. the addition and removal of ATMS nodes by the constraint system we prevent a redundant
representation of incompatibility conditions by both constraints and nogoods of the ATMS. The use of
a constraint system is necessary for propagation and relaxation of multi—directional dependencies which
cannot be handled directly by the justifications of an ATMS.

Given that, the features of our design model lead to three conditions for a consistent (partial) solution which
can be tested on the implementation level of the ATMS. 1.) Every alternative must belong to exactly one
group, 2.) an alternative can only belong to the global context if its group belongs to it, 3.) if a group is
in a global context then there must be one alternative belonging to this group which is contained in the
global context or can be consistently added (i.e. there are no nogoods that deny. the addition).

In [dK86a, dK86b] de Kleer describes the problem that all alternatives of a group are ruled out by nogoods,
which we call the exclusion problem. He generates new nogoods preventing this kind of inconsistency. In
our case the problem is more complex because the set of alternatives can change dynamically.

1

3 Exclusion Problem

In our computational model of configuration a partial solution is inconsistent if a group G = {A1, ..., A.) is
contained in the global context whose alternatives A,- are ruled out completely by nogoods. In this case for
every A; exists an assumption a,- and every a.- is contained in a nogood N,- = Ni’ U {05}. If A.- is ruled out
by the nogood N,- then N.- is active with respect to the global environment, i .e. every assumption nj E N,-
is an element of the global environment.

3. 1 The Hyperresolution

Such an inconsistency can only be resolved if we remove at least one assumption n„ € N,! out of the global
environment. After this removal A.— is no more ruled out by the nogood N.- and can be added to the global
environment if there is no other nogood ruling out Ag, again. But this can be solved by repeatedly removing
assumptions of the offending nogoods out of the global environment. To prevent the encounter with this
inconsistency again in future inference steps we generate a new nogood N = U?=1 N: = U?=1 N.- \ {a.-} =
(U?=1 Ni) \ G. In [dK86a, dK86b] this computation rule is called hyperresolution and noted as:

GRUPPE G: {A1, ...‚Ak} mit A(G) : { a1 ‚ . . . , a „}
3 NOGOOD N; = (n‚'1‚...,n,-1) mit a.- E N.- und 96 i : a,» % N.-
Noooon NM“ :: UN; \ A(G)

In this rule A(G) represents a set of assumptions a,- for every alternative A.- E G. To select the alternative
A,- the assumption a; must be added to the global environment. The nogood N„eu guarantees that at least
one A.- of G can be selected with respect to the nogoods Ni.

33

3.2 Combining Dynamic Groups and Hyperresolution

The hyperresolution described so far guarantees the selection of an alternative for every group if the sets of
alternatives doesn't change. But if we allow the removal and additon of alternatives (e.g. by the constraint
system) the nogoods generated by the hyperresolution may become incorrect and must be deactivated if
we want guarantee the completeness of search. This causes further problems if we have removed nogoods
subsumed by a deactivated nogood out of the nogood database. To overcome the first problem we modify
the hyperresolution rule to produce conditioned nogoods. A conditioned nogood is of the form NCond =
Cond -> nogood{nl, ... , nm }. Using a condition a nogood becomes dependent of the global environment.
It specifies a conjunction of sets of alternatives whIch exactly must be contained in the referenced groups
so that this nogood is correct. The form of a condition is Cond = /\~=l [A(Gi) = {ail, ... , aim}]. I.e. Cond
reflects the contents of the groups Gi at the moment of resolution. If n = 0 the condition is the empty
conjunction which is interpreted to be always true. So, we can express unconditioned nogoods by an empty
condition. To prevent the second problem we exclude conditioned nogoods from subsumption.

3.3 Modified Hyperresolution

Using conditioned nogoods the hyperresolution can be modified in the following way:

GRUPPE G = {Ai, ... ,Ad mit A(G) ={al,' .. , ak}

3 CONDITIONEDNoGOOD Ni = B; -+ (nil, ... , nil) mit ai E Ni und Vj :/; i : aj ~ Ni

CONDITIONEDNoGOOD Nneu := (/\B;) 1\ [A(G) = {aI, ... ,~d] -+ (UNi \ A(G))

Conditions used in the precondition of the nogoods Ni can be empty. Initially, empty preconditons are
generated by the problem solver. Not empty preconditions can only be generated by the hyperresolution.
If nogoods with a not empty precondition are used in the hyperresolution the conjunction of all of these
preconditions and the expression A(G) = {ai, ... , ak} are used to build up the precondition of the resolved
nogood. A(G) describes the set of alternatives of the group causing the hyperresolution at the moment of
resolution.

To minimize computational efforts conditioned and uncondi9ned nogoods are kept in different -nogood
databases. The database of the conditioned nogoods must be updated after every change of the global
environment. Here a nogood can only be subsumed by another one if their conditions are identical.

3.4 Reduction of Work

Given a design problem there are many nogoods which can be resolved but the situation in which the
resolved nogoods are active are never reached. To reduce the amount of work the hyperresolution is only
activated if there is a group belonging to the global context whose alternatives are ruled out completely,
i.e. an inconsistency has been discovered.

4 Backtracking

Using a global environment to focus on one (partial) solution at a time we must backtrack if an inconsistency
has been detected. Backtracking is started with the nogood causing the. inconsistency and removes at
least one assumtion out of the global environment. If the nogood is unconditioned backtracking works
as described in [dK86a]. If backtracking is started with a conditioned nogood the justification for the
elective must be conditioned, too, i.e. this justification must be removed, when the condition of the nogood
becomes false. This removal of an conditionend justification can be handeled by standard backtracking and
guarantees completeness of search.

33

3 .2 Combining Dynamic Groups and Hyperresolution

The hyperresolution described so far guarantees the selection of an alternative for every group if the sets of
alternatives doesn’t change. But if we allow the removal and additon of alternatives (e.g. by the constraint
system) the nogoods generated by the hyperresolution may become incorrect and must be deactivated if
we want guarantee the completeness of search. This causes further problems if we have removed nogoods
subsumed by a deactivated nogood out of the nogood database. To overcome the first problem we modify
the hyperresolution rule to produce conditioned nogoods. A conditioned nogood is of the form NCO,“ =
Cond ——> nogood{n1‚ ..., nm}. Using a. condition a nogood becomes dependent of the global environment.
It specifies a conjunction of sets of alternatives which exactly must be contained in the referenced groups
so that this nogood is correct. The form of a condition is Cond : AF=I[A(G‚—) = {a.-1, ...,a;m}]. I.e. Cond
reflects the contents of the groups G.- at the moment of resolution. If n = 0 the condition is the empty
conjunction which is interpreted to be always true. So, we can express unconditioned nogoods by an empty
condition. To prevent the second problem we exclude conditioned nogoods from subsumption.

3 .3 Modified Hyperresolution

Using conditioned nogoods the hyperresolution can be modified in the following way:

GRUPPE G = {A1, ...‚Ak} mit A(G) : {a.1‚ . . .‚ak}
3 CONDITIONEDNOGOOD N.- = B,- —-» (n,-1, . . . , n“) mit a,- e N; und Vj ;é i : a,- ¢ N,-
CONDITIONEDNOGOOD N”... := (A B.-) A [A(G) = {d1,...,q,,}] —> (U N.- \ A(G))

Conditions used in the precondition of the nogoods N,- can be empty. Initially, empty preconditons are
generated by the problem solver. Not empty preconditions can only be generated by the hyperresolution.
If nogoods with a not empty precondition are used in the hyperresolution the conjunction of all of these
preconditions and the expression A(G) = {a1, . . . , ak} are used to build up the precondition of the resolved
nogood. A(G) describes the set of alternatives of the group causing the hyperresolution at the moment of
resolution. -
To minimize computational efl'orts conditioned and uncondioned nogoods are kept in different'nogood
databases. The database of the conditioned nogoods must be updated after every change of the global
environment. Here a nogood can only be subsumed by another one if their conditions are identical.

3 .4 Reduction o f Work

Given a design problem there are many nogoods which can be resolved but the situation in which the
resolved nogoods are active are never reached. To reduce the amount of work the hyperresolution i s only
activated if there is a group belonging to the global context whose alternatives are ruled out completely,
i. e an inconsistency has been discovered.

4 Backtracking

Using a global environment to focus on one (partial) solution at a time we must backtrack if an inconsistency
has been detected. Backtracking is started with the nogood causing the inconsistency and removes at
least one assumtion out of the global environment. If the nogood 1s unconditioned backtracking works
as described in [dK86a] If backtracking is started with a conditioned nogood the justification for the
elective must be conditioned, too, i e this justification must be removed, when the condition of the nogood
becomes false. This removal of an conditionend justification can be handeled by standard backtracking and
guarantees completeness of search.

5 Discussion

We described the integration of an ATMS and a constraint system. A typical aspect of integration is the
reduction of redundant information. In our case we don't translate constraints into nogoods and use the
nodes of the ATMS as variables and their possible values in the constraint system. This leads to the problem
that the node data base of the ATMS is modified by the constraint system from outside of the ATMS. This
extended functionality of the ATMS is supported by a modification of the hyperresolution. The explicit
representation of constraints offers a means to r~lax the requirements if the problem is overconstrained, i.e.
there is no consistent solution.

References

[dK86a] J. de Kleer. Back to backtracking: Controlling the atms. In Proc. of AAAI-86, pages 910-917,
Philadelphia, PA, 1986.

[dK86b] Johan de Kleer. Extending the ATMS. Artificial Intelligence, 28:163-196, 1986.

[Kra91] Norbert Kratz. Architektur eines wissensbasierten Systems zur Unterstiitzung der Konzeption­
sphase in der K onstruktion. PhD thesis, Universitat Kaiserslautern, Kaiserslautern, Germany,
1991.

[MPS+90] Michael Mehl, Jiirgen Paulokat, Eric Schaumloffel, Peter Spieker, and Elmar Then. IDA - Ein
Expertensystem zur Konzeption von Vorrichtungselementen. SEKI Working Paper: SWP-90­
06, Universitiit Kaiserslautern, 1990.

[Pau90]	 Jiirgen Paulokat. Ein System zur Verarbeitung und Relaxierung von Constraints. Master's
thesis, Universitat Kaiserslautern, 1990.

[Pau9l]	 Jiirgen Paulokat. Verarbeitung und Relaxierung von Constraints in MOLTKE-P jIDA-III. In
Proceedings 5. Workshop "Planen und Konfigurieren", pages 123-129, Hamburg, Germany, 1991.

34%;;

5 Discussion

We described the integration of an ATMS and a constraint system. A typical aspect of integration is the
reduction of redundant information. In our case we don’t translate constraints into nogoods and use the
nodes of the ATMS as variables and their possible values in the constraint system. This leads to the problem
that the node data base of the ATMS is modified by the constraint system from outside of the ATMS. This
extended functionality of the ATMS is supported by a modification of the hyperresolution. The explicit
representation of constraints offers a. means to relax the requirements if the problem is overconstrained, i.e.
there is no consistent solution.

References

[dK86a] J . de Kleer. Back to backtracking: Controlling the atms. In Prac. of AAAI-86', pages 910—917,
Philadelphia , PA, 1986.

[dK86b] Johan de Kleer. Extending the ATMS. Artificial Intelligence, 28:163—196, 1986.

[Kra91] Norbert Kratz. Architektur eines wissensbasicrten Systems zur Unterstützung der Konzeption-
sphase i n de r Konstruktion. PhD thesis, Universität Kaiserslautern, Kaiserslautern, Germany,
1991. '

[MPS+ 90] Michael Mehl, Jürgen Paulokat, Eric Schaumlofl'el, Peter Spieker, and Elmar Then. IDA _ Ein
Expertensystem zur Konzeption von Vorrichtungselementen. SEKI Working Paper: SWF—90—
06, Universität Kaiserslautern, 1990.

[Pau90] Jürgen Paulokat. E in System zu r Verarbeitung und Relaxierung von Constraints. Master’s
thesis, Universität Kaiserslautern, 1990.

[Pau9].] Jürgen Paulokat. Verarbeitung und Relaxierung von Constraints in MOLTKE—P/IDA—III. In
Proceedings 5. Workshop „Planen und K onflgurieren “, pages 123—129, Hamburg, Germany, 1991.

35

1

Extended Abstract

Semantics for Reason Maintenance
Oharles Petrie

MCC AI Lab

3500 West Balcones Center Drive

Austin, TX 78759

petrie@mcc.com

petrie@informatik. uni-kl. de

Workshop: "(A)TMS in Expertsystemen"

Universitat Kaiserslautern

17. Juni, 1991

Introduction

Truth (or Reason) Maintenance is an AI technique developed originally by Jon Doyle more
than a decade ago. Doyle envisioned that a Truth Maintenance System(TMS) would make
possible planning and design applications in which the rationale for the reasoning would
always be available and would support incremental decision making and revision.

Planning problems in particular require such support.. Not only are there constraints
among the planning decisions, but contingencies may require replanning. More traditional
techniques, such as Constraint Satisfaction and Integer Programming, are inadequate to
support such problems. Even the AI planning work fails to support replanning.

Truth maintenance has long been promising because it provides a general computational
mechanisr:n for tracking dependencies and using them in problem solving. But this potential
has not been realized. Despite much interest in truth maintenance, few design or planning
applications making significant use of a TMS have appeared in the literature.[13] Our hy­
pothesis is that this is because there has not been a model of planning and design. The result
is that the dependencies produced during problem solving are ad hoc and the application
behavior is so difficult to control that large applications are not possible.

We identify crucial shortcomings of classical problem solver/TMS architectures and give
a model, "Constrained Decision Problems" (CDPs), of the abstract computation that char­
acterizes planning' and design. This model introduces a novel search concept,"context main­
tenance", that justifies the dependency directed backtracking mechanism associated with a

35

Extended Abstract

Semantics for Reason Maintenance
Charles Petrie
M CC AI Lab

3500 West Balcones Center Drive
Austin, TX 78759
petrie@mcc.com

petrie@informatik. uni-k1. de

\

' Workshop: “(A)TMS in Expertsystemen”
Universität Kaiserslautern

17. Juni, 1991

1 Introduction

Truth (or Reason) Maintenance is an AI technique developed originally by Jon Doyle more
than a decade ago. Doyle envisioned that a Truth Maintenance System(TMS) would make
possible planning and design applications in which the rationale for the reasoning would
always be available and would support incremental decision making and revision.

Planning problems in particular require such support.. Not only are. there constraints
among the planning decisions, but contingencies may require replanning. More traditional
techniques, such as Constraint. Satisfaction and Integer Programming, are inadequate to
support such problems. Even the AI planning work fails to support replanning.

Truth maintenance has long been promising because i t provides a general computational
mechanism for tracking dependencies and using them in problem solving. But this potential
has not been realized. Despite much interest in truth maintenance, few design or planning
applications making significant use of a TMS have appeared in the literature.[13] Our hy—
pothesis is that this is because there has not been a model of planning and design. The result
is that the dependencies produced during problem solving are ad hoc and the application
behavior is so difficult to control that large applications are not possible.

We identify crucial shortcomings of classical problem solver/TMS architectures and give
a model, “Constrained Decision Problems” (CDPs), of the abstract computation that char-
acterizes planning and design. This model introduces a novel search concept, “‘context main—
tenance”, that justifies the dependency directed backtracking mechanism associated with a

36

TMS. From this model, we have developed and implemented a computational arch!tecture,
called REDUX, that uses a TMS to guide CDP solving. The CDP model provides semantics
for TMS dependencies and removes the need for the application builder or user to understand
a TMS.

The preliminary results indicate that at least some CDP applications are much easier to
build with REDUX than with previous expert system shells using a TMS. The intent is to
develop REDUX into a new class of decision support systems.

2 TMS Problems

Of the several varieties of TMSs, we focus on Doyle's[6] because planning and design appli­
cations typically work toward a single solution using default heuristics. Some other systems
that are fundamentally oriented for reasoning within a single context are [5, 8, 7]. The
Assumption-based TMS (ATMS)[2], best supports problems in which one only wants to
know what set of contexts are consistent with the constraints [3, 10]. Modifying an ATMS
to focus on a single context, perform backtracking, and maintain nonmonotonic justifications
is problematic and the subject of current research. With Doyle's TMS, such functionality is
free.

However, the single-context TMS also has problems shared with other TMSs. A major
source of these problems comes from the mistaken principle of inferential indifference: there
is a problem solver and a TMS that exchange clauses and labels and the content of the
inferences doesn't matter. That this principle can cause problems is particularly evident
if one compares control and domain inferences. The former are generally based upon the
problem solving state which necessarily changes. Justifying control inferences can easily lead
to unsatisfiable circularities, among other problems.

Another major problem is with dependency-directed backtracking. The conditional proof
in [6] and the elective justification of [10] have similar behaviors. Unfortunately, the se­
mantics for this backtracking mechanism are undefined. The behavior of the justifications
generated by backtracking can generate problems similar to those of control inferences.

The third problem we mention is lack of differentiation among assumptions. Morris'
principle of "wishful thinking" [9] points out that some assumptions can be retracted in
order to solve a problem and some cannot. The latter are default expectations about the
plan execution environment that can not be changed just as matter of convenience.

3 A Planning Model

The underlying reason for these problems is lack of a model of default reasoning in planning
and design. Without such a model the dependencies produced by a problem solver are ad
hoc and their labeling will be unpredictable.

Our CDP is a goal/operator model of planning. Its most important feature is that
planning decisions have both validity and optimality. The latter characterizes the local
goodness of the choice from among alternatives to satisfy a goal. Validity and optimality

36

TMS. From this model, we have developed and implemented a computational architecture,
called REDUX, that uses a TMS to guide CDP solving. The CDP model provides semantics
for TMS dependencies and removes the need for the application builder or user to understand
a TMS. , "

The preliminary results indicate that at least some CDP applications are much easier to
build with REDUX than with previous expert system shells using a TMS. The intent is to
develop REDUX into a new class of decision support systems.

2 TMS Problems

Of the several varieties of TMSs, we focus on Doyle’s[6] because planning and design appli-
cations typically work toward a single solution using default heuristics. Some other systems
that are fundamentally oriented for reasoning within a single context are [5, 8 , 7]. The
Assumption-based TMS (ATMS)[2], best supports problems in which one only wants to
know what set of contexts are consistent with the constraints [3, 10]. Modifying an ATMS
t o focus on a single context, perform backtracking, and maintain nonmonotonic justifications
is problematic and the subject of current research. With Doyle’s TMS, such functionality is
free.

However, the single-context TMS also has problems shared with other TMSs. A major
source of these problems comes from the mistaken principle of inferential indiflerence: there
is a problem solver and a TMS that exchange clauses and labels and the content of the
inferences doesn’t matter. That this principle can cause problems is particularly evident
if one compares control and domain inferences. The former are generally based upon the
problem solving state which necessarily changes. J ustifying control inferences can easily lead
to unsatisfiable circularities, among other problems.

Another major problem is with dependency-directed backtracking. The conditional proof
in [6] and the elective justification of [10] have similar behaviors. Unfortunately, the se-
mantics for this backtracking mechanism are undefined. The behavior of the justifications
generated by backtracking can generate problems similar to those of control inferences.

The third problem we mention is lack of differentiation among assumptions. Morris’
principle of “wishful thinking” [9] points out that some assumptions can be retracted in
order t o solve a problem and some cannot. The latter are default expectations about the
plan execution environment that can not be changed just as matter of convenience.

3 A Planning Model
The underlying reason for these problems is lack of a model of default reasoning in planning
and design. Without such a model the dependencies produced by a problem solver are ad
hoc and their labeling will be unpredictable.

Our CDP is a goal/operator model of planning. Its most important feature is that
planning decisions have both validity and optimality. The latter characterizes the local
goodness of the choice from among alternatives to satisfy a goal. Validity and optimality

37

have distinct TMS dependency networks. An example of validity is whether or not a flight
has been canceled. If it is canceled, then the decision to include the flight in the plan becomes
invalid. This change can be syntactically determined and left entirely to the TMS to manage.

The optimality of a flight might depend, say, on its cost relative'to similar flights. If this
relative choice changes, then the decision whether or not to continue to include the flight in
the plan must be reasoned. For instance, we may be too far along in our planning to redo
it to save a few dollars. This is a semantic decision. The TMS can be used to signal the
problem solver that this decision should be made. But by separating it from validity, we
prevent the TMS from changing the current solution context automatically.

Rejection of a decision when backtracking due to a constraint violation is also a decision
with optimality. That ow.imality depends upon the validity of conflicting decisions. The
elective justification of [10] captures this optimality, with a 'slight modification to distinguish
validity and optimality. Collectively, the optimality of decisions and decision rejections
constit~tes the context rationale, which can be used effectively in problem solving. .

Context rationale turns out to capture the economic notion of pareto optimality. A
solution is pareto optimal if no part can be improved without decreasing the goodness of some
other solution element. The goal satisfactions in a CDPare connected only by constraints.
Thus the rejection optimalities reflect their connections. A rejection becomes suboptimal
exactly when it could be improved without changing another decision. The optimality of
decisions will not depend upon other decisions. Thus the context rationale tracks pareto
op.timality. This finally provides semantics for the DDB mechanisms in TMSs.

The CDP model is implemented in REDUX, derived from RAD[l] which was itself based
on Proteus[ll]. Initial application studies indicate that REDUX greatly facilitates applica­
tion building. In particular, the professor/course assignment problem described in [12] and
[4]	 is greatly simplified.

References

[1]	 Natraj Arni, David Murray Bridgeland, James. Christian, Michael N.
Huhns, Charles J. Petrie Jr., Elaine Rich, James Conrad Shea, and Munin­
dar P. Singh, "Overview of RAD: A Hybrid and Distributed Reasoning
Tool," MCC Technical Report Number ACT-RA-098-90, Microelectronics
and Computer Technology Corporation, March 1990.

[2]	 de Kleer, J., "An Assumption-based TMS", Artificial Intelligence 28, pp.
127-162, 1986.

[3]	 de Kleer, J., "Back to Backtracking: Controlling the ATMS," Proc. of the
Fifth National Conference on Artificial Intelligence, AAAI, pp. 910-917,
1986.

[4]	 Dhar V. and Raganathan N., "An Experiment in Integer Programming,"
CommuTl:ications of the ACM, March 1990. Also MCC TR ACT-AI-022-89
Revised.

37

have distinct TMS dependency networks. An example of validity is whether or not a flight
has been canceled. If i t i s canceled, then the decision to include the flight i n the plan becomes
invalid. This change can be syntactically determined and left entirely to the TMS to manage.

The optimality of a flight might depend, say, on its cost relative'to similar flights. If this
relative choice changes, then the decision whether or not to continue to include the flight in
the plan must be reasoned. For instance, we may be too far along in our planning to redo
i t to save a few dollars. This is a semantic decision. The TMS can be used to signal the
problem solver that this decision should be made. But by separating i t from validity, we
prevent the TMS from changing the current solution context automatically.

Rejection of a decision when backtracking due to a constraint violation is also a decision
with optimality. That optimality depends upon the validity of conflicting decisions. The
elective justification of [10] captures this optimality, with a slight modification to distinguish .
validity and optimality. Collectively, the optimality of decisions and decision rejections
constitutes the context rationale, which can be used effectively in problem solving. .

Context rationale turns out to capture the economic notion of pareto optimality. A
solution is pareto optimal if no part can be improved without decreasing the goodness of some
other solution element. The goal satisfactions in a CDP .are connected only by constraints.
Thus the rejection optimalities reflect their connections. A rejection becomes suboptimal
exactly when it could be improved without changing another decision. The optimality of
decisions will not depend upon other decisions. Thus the context rationale tracks pareto
optimality. This finally provides semantics for the DDB mechanisms in TMSs.

The CDP model is implemented in REDUX, derived from RAD[1] which was itself based
on Proteus[11]. Initial application studies, indicate that REDUX greatly facilitates applica-
t ion building. In particular, the professor/ course assignment problem described in [12] and
[4] is greatly simplified.

References

[1] Natraj Arni, David Murray Bridgeland, James.Christian, Michael N.
Hu‘hns, Charles J . Petrie J r . , Elaine Rich, James Conrad Shea, and Munin-
dar P. Singh, “Overview of RAD: A Hybrid and Distributed Reasoning
Tool,” MCC Technical Report Number ACT-RA-098-90, Microelectronics
and Computer Technology" Corporation, March 1990.

[2] de Kleer, J .., “An Assumption-based TMS”, Artificial, Intelligence 28, pp.
127-162, 1986. .

[3] de Kleer, J . , “Back to Backtracking: Controlling the ATMS,” Proc. of the
/ Fifth National Conference on Artificial Intelligence, AAAI, pp. 910—917,

1986. '
[4] Dhar V. and Raganathan N., “An Experiment in'Integer Programming,”

Communications of the ACM, March 1990. Also MCC TR ACT-AI-022-89
Revised.

/

38

[5]	 Dhar V. and Croker A., "A Knowledge Representation for Constraint Sat­
isfaction Problems," Dept. of Info. Systems, NYU, Technical Report 90-9,
January 1990.

[6]	 Doyle J., "A Truth Maintenance System," Artificial Intelligence, 12, No.
3, pp. 231-272, 1979.

[7]	 DressIer O. and A. Farquhar, "Problem Solver Control over the ATMS,"
submitted to AAAI-89.

[8]	 McAllester D., "An Outlook on Truth Maintenance," A.I. Memo 551, Mas­
sachusetts Institute of Technology, AI Lab., 1980.

[9]	 Morris, P. H., Nado, R. A., "Representing Actions with an Assumption­
Based Truth Maintenance System," Proc. Fifth National Conference on
Artificial Intelligence, AAAI, pp. 13-17, 1986.

[10]	 Petrie, C., "Revised Dependency-Directed Backtracking for Default Rea­
soning," Proc. AAAI-87, pp. 167-172, 1987.

[Il]	 Petrie, C., et al., "Proteus 2: System Description," Technical Report, Mi­
croelectronics and Computer Technology Corporation MCC TR AI-136-87,
1987.

[12]	 Petrie, C., R. Causey, D. Steiner, and V. Dhar, "A Planning Problem: Re­
visable Academic Course Scheduling," Technical Report, Microelectronics
and Computer Technology Corporation TR AI-020-89, 1989.

[13]	 Petrie, C., "Reason Maintenance in Expert Systems," Kuenstliche Intelli­
gence, June, 1989. Also, Microelectronics and Computer Technology Cor­
poration TR ACA-AI-021-89.

38

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

Dhar V. and Cr'oker A. , “A Knowledge Representation for Constraint Sat-
isfaction Problems,” Dept . of Info. Systems, NYU, Technical Report 90-9,
January 1990.

Doyle J ., “A Truth Maintenance System,” Artificial Intelligence, 12, No.
3, pp. 231-272, 1979.
Dressler O . and A. Farquhar, “Problem Solver Control over the ATMS,”
submitted t o AAAI—89.

McAllester D., “An Outlook on Truth Maintenance,” A.I. Memo 551, Mas—
sachusetts Institute of Technology, AI Lab., 1980.

Morris, P. H., Nado, R. A., “Representing Actions wi th an Assumption—
Based Truth Maintenance System,” Proc. Fifth National Conference on
Artificial Intelligence, AAAI, pp . 13-17, 1986.

Petrie, C. , “Revised Dependency-Directed Backtracking for Default Rea-
soning,” Proc. AAAI-87, pp . 167-172, 1987.

Petrie, C. , e t al., “Proteus 2: System Description,” Technical Report, Mi-
croelectronics and Computer Technology Corporation MCC TR AI-l36-87,
1987.

Petrie, C. , R . Causey, D . Steiner, and V . Dhar, “A Planning Problem: Re-
visable Academic Course Scheduling,” Technical Report, Microelectronics
and Computer Technology Corporation TR AI—020-89, 1989.

Petrie, C. , “Reason Maintenance in Expert Systems,” Kuenstliche Intelli-
gence, June, 1989. Also, Microelectronics and Computer Technology Cor-
poration TR ACA—AI—021—89.

