
593055n
83-0

%
8

60a
E

m
äoäm

gox
ätam

zc:
xzorEoE.

50650500”.

Rolf Socher-Ambrosius
SEKI Report SR-89-04

SmetSV
,.Sg

n
:1

nOSaeR

D
I.0nn

.m
m

m
w

‚3
el

D
C

em
m

mgn
nu

oldm
e

dReR

E.n_m
_w

_
..

_xm—
m

1

1

Reducing the Derivation of Redundant Clauses
in Reasoning Systems

ROLF SOCHER-AMBROSIUS

Fachbereich Informatik, Universitiit Kaiserslautern

Postjach 3049, D-6750 Kaiserslautern, w.-Germany

Abstract: This paper addresses two problems concerning the issue of redundant infonnation in

resolution bas~d reasoning systems. The first one deals with the question how the derivation of
redundant clauses. such as duplicates or instances of already retained clauses, can be SUbstantially

reduced. The second one asks for a criterion to decide, which clauses need not be tested for redun­
cancy.
In this paper we consider a particular kind ofreduncancy, which we call ancestor subsumption.
that is the subsumption of a resolvent by one of its ancestors. We give a complete syntactic

characterization of clause sets producing ancestor subsumed clauses. This characterization
partially answers the two questions. First, if a clause set is known to exclude ancestor sub­
sumption, linear resolution turns out to be a preferable strategy in order to reduce the generation
of subsumed clauses. Concerning the second question, this result allows a suitable restriction of
the (usually very expensive) sUbsumption test.
Finally, we show that in particular cases those clauses that account for the occurrence of ancestor
subsumption can be excluded from the resolution process. SAM's lemma will serve as an
example for demonstrating various possibilities to remove reduncancy-generating clauses.

Introduction

The derivation of redundant infonnation is one of the greatest obstacles to the efficiency of

reasoning programs. Wos (1988) reports an attempt to prove SAM's lemma (see Guard 1969)

using hyperresolution, where 6000 clauses identical to retained clauses and 5000 clauses being

proper instances of retained clauses were generated. Even if these redundant clauses can be

removed after their generation, they must be processed with demodulation, subsumption, and

other procedures. Moreover, the test on subsumption, being a very useful means for removing

reduncancies, is rather expensive as Chang & Lee (1973), Eisinger (1981), and some others

remark. A strategy to prevent the generation of redundant clauses, or at least to reduce the

amount of newly generated unneeded clauses, would thus prove very useful for increasing the

power of reasoning systems.

On closer inspection of the proof of SAM's lemma it turns out that many of the 6000 dup­

licates are generated by double resolution with a clause of the fonn Pxy v -.Pyx. Such a dup­

licate is identical to its own "grandfather" in this resolution derivation. More general, we will

deal with the situation that a resolvent is subsumed by one of its own ancestors, which we will

call ancestor subswnption. Ancestor subsumption is a particular kind of[orward subsumption
(Overbeek 1975), that is the subsurnption of a newly deduced clause by a given clause. One of

the paper's objectives is to characterize clause sets that admit ancestor subsumption. This

approach is based on the following observation: A resolvent of two ground clauses cannot be

Reducing the Derivation of Redundant Clauses
in Reasoning Systems

ROLF SOCHER-AMBROSIUS
Fachbereich hy‘onnatik, Universität Kaiserslautern

Posgfach 3049, D—6750 Kaiserslautern, W.-Germany

Abstract: This paper addresses two. problems concerning the issue of redundant information in
resolution based reasoning systems. The first one deals with the question how the derivation of
redundant clauses, such as duplicates or instances of already retained clauses, can be substantially
reduced. The second one asks for a criterion to decide, which clauses need not be tested for redun-
cancy.
In this paper we consider a particular kind of reduncancy. which we call ancestor subsumption.
that is the subsumption of a resolvent by one of its ancestors. We give a complete syntactic
characterization of clause sets producing ancestor subsumed clauses. This characterization
partially answers the two questions. First, if a clause set is known to exclude ancestor sub-
sumption. linear resolution turns out to be a preferable strategy in order to reduce the generation
of subsumed clauses. Concerning the second question, this result allows a suitable restriction of
the (usually very expensive) subsumption test.
Finally, we show that in particular cases those clauses that account for the occurrence of ancestor
subsumption can be excluded from the resolution process. SAM’s lemma will serve as an
example for demonstrating various possibilities to remove reduncancy-generating clauses.

1 Introduction

The derivation of redundant information is one of the greatest obstacles to the efficiency of
reasoning programs. Wos (1988) reports an attempt to prove SAM ’s lemma (see Guard 1969)
using hyperresolution, where 6000 clauses identical to retained clauses and 5000 clauses being
proper instances of retained clauses were generated. Even if these redundant clauses can be
removed after their generation, they must be processed with demodulation, subsumption. and
other procedures. Moreover, the test on subsumption. being a very useful means for removing
reduncancies, is rather expensive as Chang & Lee (1973), Eisinger (1981), and some others
remark. A strategy to prevent the generation of redundant clauses, or at least to reduce the
amount of newly generated unneeded clauses, would thus prove very useful for increasing the
power of reasoning systems.

On closer inspection of the proof of SAM’s lemma it turns out that many of the 6000 dup-
licates are generated by double resolution with a clause of the form n v —tx. Such a dup-
licate is identical to its own “grandfather” in this resolution derivation. More general, we will
deal with the situation that a resolvent is subsumed by one of its own ancestors, which we will
call ancestor subswnption. Ancestor subsumption is a particular kind offorward subsumption
(Overbeek 1975), that i s the subsumption of a newly deduced clause by a given clause. One of

the paper’s objectives is to characterize clause sets that admit ancestor subsumption. This
approach is based on the following observation: A resolvent of two ground clauses cannot be

2

subsumed by one of its parent clauses (a situation, which could be called parent subswnption),

unless the other parent is self-resolving. This can be easily seen: let C={L} ,L2,.. ,Ln l and

D={ -.Ll,K2, .. ,Kn } be ground clauses and assume, C subsumes the resolvent

R={K2, .. .Kn,L2,.. ,Ln l. Then L}E R must hold and from L}rl {L2, .. ,Ln l now follows

L}E {K2, .. ,Knl. Hence D is a tautology. We will generalize this observation in the following

way: A resolvent R cannot be subsumed by an ancestor C, unless the set of ancestors of R

contains a cycle (the notion of a cycle was introduced by Shostak (1976)). Noncyclic clause

sets thus have the nice property of excluding ancestor subsumption. A prominent example for

this class of clause sets is Schubert's Steamroller (see Stickel 1986).

Another question addressed by this paper is closely related to the first problem. The charac­

terization mentioned above provides a means to avoid the generation of subsumed clauses only

for noncyclic clause sets. But for other clause sets we can at least give a criterion to decide,

which clauses have to be considered as potential subsumers in the subsumption test. A non­

self-resolving clause, for example, can always be excluded from being subsumer of its own

"child".

As cycles in clause sets are heavily responsible for the generation of redundant information,

a technique to remove such cycles would prove very useful. Two approaches are considered in

this paper, both of which are based on the observation that cycles correspond to equivalences

and thus equality reasoning methods apply to cycles. To some extent cycles can be made

harmless by using them only as demodulators. Consider for example a clause set containing the

two clauses -PvQ and -QvP, which form a cycle. These two clauses express that P and Q are

equivalent literals, which therefore can be substituted for each other without changing the truth

value of the whole clause set. Replacing for instance each occurrence ofP in the clause set by Q

yields an equivalent clause set, where the two cycle clauses have become tautologies. This

approach in fact amounts to a demodulation on literals instead of terms. The well-known prob­

lems with 'term rewriting, however, arise with literal demodulation, too. Directing equations to

rewrite rules requires the existence of a well founded ordering on terms. Thus, according to ,the

same reason why the equationfxy = fyx cannot be directed to a rewrite rule, the equivalence

Pxy =.Pyx cannot be used as a demodulator. The second approach, which overcomes the

problem with directing equivalences, consists in using cycles as the basic theory for performing

theory resolution. The cyclic clauses, for instance the symmetry clause Pxy v -J'yx, disappear

in a theory box, enabling in this case resolution between the clauses Pab and -J'ba.

2 Basic Notions

In the following we assume the reader to be familiar with the standard terminology of First

Order Logic. The few basic notions of clause graphs used in this paper can be found for inst­

ance in Eisinger's (1988) thesis. Clauses are always considered as sets of literals, but written

without set braces. We do not distinguish between a unit clause and its single literal. The empty

clause is denoted by 0.

Let 0/00 a denumerable set of variables. A substitution 0' is an endomorphism on the term

algebra, which is identical almost everywhere on o/and thus can be represented as a finite set 0'

subsumed by one of its parent clauses (a situation, which could be called parent subswnption),
unless the other parent is self-resolving. This can be easily seen: let C=[L1‚L2‚..‚L„} and
D={ —‚L 1 ‚K 2 , . . ,K „] be ground clauses and assume, C subsumes the resolvent
R={K2‚ . . ‚K„ ,L2 ‚ „ ‚L „ } . Then LJER must hold and from Lne {L2,..‚L„} now follows
Lye {K2 , . . ‚K„ } . Hence D is a tautology. We will generalize this observation in the following
way: A resolvent R cannot be subsumed by an ancestor C, unless the set of ancestors of R
contains a cycle (the notion of a cycle was introduced by Shostak (1976)) . Noncyclic clause

sets thus have the nice property of excluding ancestor subsumption. A prominent example for
this class of clause sets is Schubert’s Steamroller (see Stickel 1986).

Another question addressed by this paper is closely related to the first problem. The charac-
terization mentioned above provides a means to avoid the generation of subsumed clauses only
for noncyclic clause sets. But for other clause sets we can at least give a criterion to decide,
which clauses have to be considered as potential subsumers in the subsumption test. A non-
self—resolving clause, for example, can always be excluded from being subsumer of its own
“child”.

As cycles in clause sets are heavily responsible for the generation of redundant information,
a technique to remove such cycles would prove very useful. Two approaches are considered in
this paper, both of which are based on the observation that cycles correspond to equivalences
and thus equality reasoning methods apply to cycles. To some extent cycles can be made
harmless by using them only as demodulators. Consider for example a clause set containing the
two clauses —.PvQ and —QvP, which form a cycle. These two clauses express that P and Q are
equivalent literals, which therefore can be substituted for each other without changing the truth
value of the whole clause set. Replacing for instance each occurrence of P in the clause set by Q

yields an equivalent clause set, where the two cycle clauses have become tautologies. This
approach in fact amounts to a demodulation on literals instead of terms. The well-known prob-
lems with 'term rewriting, however, arise with literal demodulation, too. Directing equations to
rewrite rules requires the existence of a well founded ordering on terms. Thus, according to the
same reason why the equation fxy = fyx cannot be directed to a rewrite rule, the equivalence
n EPyx cannot be used as a demodulator. The second approach, which overcomes the
problem with directing equivalences, consists in using cycles as the basic theory for performing
theory resolution. The cyclic clauses, for instance the symmetry clause n v —.Pyx‚ disappear
in a theory box, enabling in this case resolution between the clauses Pab and —:Pba.

2 Basic Notions

In the following we assume the reader to be familiar with the standard terminology of First
Order Logic. The few basic notions of clause graphs used in this paper can be found for inst-

ance in Eisinger’s (1988) thesis. Clauses are always considered as sets of literals, but written

without set braces. We do not distinguish between a unit clause and its single literal. The empty
clause is denoted by Q.

Let ‘V be a denumerable set of variables. A substitution 0 is an endomorphism on the term
algebra, which is identical almost everywhere on 'V and thus can be represented as a finite set 6

3

= {Xl~tl, ... ,xn~tn}. A substitution p is called a renaming (substitution), iff pis injective on

its domain and ~!;:fJl. A literal or clause L is called a variant (or a copy) of the literal or clause

K, if there exists a renaming substitution p, such that Lp=K. Two literals Land K are weakly

unifiable, if L and a copy of K are unifiable. Two substitutions a;r are compatible, if there

exists some substitution A. with aA. = 'tA..

3 Cycles in Clause Sets

This chapter provides a syntactic characterization of clause sets admitting ancestor sub­

sumption. Our main result is as follows: Clause sets admitting ancestor subsumption possess

cycles, whose elements are the far parents of the subsumed clause. First, we establish some

results for the particular case ofparent subsumption.

3.1 Definition:

A clause is self-resolving, if it resolves with a copy of itself.

The following lemma detennines those clauses that possibly produce subsumed resolvents.

For any clause D we define the deduction relation ~D between clauses C and R by C ~DR,

iffR is a resolvent of C and D.

3.2 Lemma:

Let C be a unit clause and D ,R be clauses with C~D R.

a) If R is a variant of C, then D is self-resolving.

b) If R is an instance of C, that is, Cp=R for some substitution j.L, then D = LKj...Kn, and

L, Ki have the same predicate symbol, but different polarity for all i E { l ..n}.

c)	 IfC subsumes R, that is, Cp~R for some substitution j.L, then D = LKj ...KmMj ...Mn,

and L, Ki have the same predicate symbol, but different polarity for all i E {l..n}.

Proof: a) Let C = M and D = LKj ...Kn and let Gbe a unifier of M and -.L. Then

(Kj .. .Kn)Gp = M, hence (Kj ...Kn)GpG = MO', Le. KGpG = MO' = -,LG for each

KE {Kj, .. ,Kn }. Let KE {Kj,oo.Kn} and q> = GpO'. We show that there is a renaming

substitution p' and a substitution \jI, such that Kp'\jI =-,L\jI. Let p' be a renaming substitution

with dom(PJ = dom(a) n dom(cp) and cod(pJ n IJ{L,K)=0. Define the substitution \jI with

dom('I') =dom(a)udom(cp)ucod(PJ by 'IfIdom(O') = a and \jIldom(<jl)'dom(O') = cp and (xPJ\jI=xcp

for XP'E cod(p'). Then we have x\jI=xa for XE IJ{L) and yp'\jI=YCP for yE IJ{K), hence L\jI=La

=Kcp = Kp'\jI.

b) and c) are obvious. •

The next lemma shows that clauses, which only produce parent subsumed clauses, are

tautologies.

3.3 Lemma:

Let D be a clause.

a)	 Suppose for all clauses C the following holds: C~D R implies that C and R are variants.

Then D is a tautology, IDI = 2, and D is function and constant free.

= {x1 ->t1,... ‚n.—91,1}. A substitution p is called a renaming (substitution), iff p is injective on
its domain and %;‘V. A literal or clause L is called a variant (or a copy) of the literal or clause
K, if there exists a renaming substitution p , such that Lp=K. Two literals L and K are weakly
umfiable, i f L and a copy of K are unifiable. Two substitutions 0,1: are compatible, if there

exists some substitution R, with Cl = 12..

3 Cycles in Clause Sets

This chapter provides a syntactic characterization of clause sets admitting ancestor sub-
sumption. Our main result is as follows: Clause sets admitting ancestor subsumption possess
cycles, whose elements are the far parents of the subsumed clause. First, we establish some
results for the particular case of parent subsumption.

M
A clause is self-resolving, if it resolves with a copy of itself.

The following lemma determines those clauses that possibly produce subsumed resolvents.
For any clause D we define the deduction relation -—>D between clauses C and R by C ")0 R,
iff R is a resolvent of C and D.

3.2 Lemma:

Let C be a unit clause and D , R be clauses with C—m R.
a) If R i s a variant of C, then D is self-resolving.
b) If R is an instance of C, that is, Cp=R for some substitution u, then D = LK}...K„, and

L, Kg have the same predicate symbol, but different polarity for all i e {1..n}.
c) If C subsumes R , that is , Cn for some substitution u , then D = LK}...K„‚M1„.M„,

and L, K ‚- have the same predicate symbol, but different polarity for all i e {1..n}.

Proof: a) Let C = M and D = LK;. . .K„ and let abe a unifier of M and —.L. Then
(K}...K„)0'p = M, hence (K1. . .Kn)0 'p0 ' = MO’, i.e. Kapo = M0" = ‘fiLO- for each

Ke {K1‚..,K„}. Let Ke {K1‚..‚K„} and (p == apa. We show that there i s a renaming
substitution p ' and a substitution w, such that Kp'tt! =—1L\ll. Let p ' be a renaming substitution
with dom(p') = dom(o) n d0m(<p) and cod(p') (\ ‘I/(L‚K)=Q. Define the substitution w with
d0m(\|l) =dom(0)ud0m(qp)ucod(p') by \Ifldom(o) = 6 and WldonßpMomw) = cp and (xp')\y=x(p
for xp'e cod(p'). Then we have x\|l=xo for xe ML) and yp'v=ytp for ye “l/(K), hence LtyzLo
=K<p = Kp 'w.
b) and c) are obvious. I

The next lemma shows that clauses, which only produce parent subsumed clauses, are
tautologies.

3.3 Lemma:

Let D be a clause.
a) Suppose for all clauses C the following holds: C—m R implies that C and R are variants.

Then D is a tautology, lDl = 2, and D is function and constant free.

4

b)	 Suppose for all clauses C the following holds: C~D R implies that R is an instance of

C. Then D is a tautology and IDI =2.

c)	 Suppose for all clauses C the following holds: C~D R implies that C subsumes R. Then

D is a tautology.

Proof' a) Let L =Ptj ...tn be an arbitrary literal of D. Let C be the unit clause consisting of

the literal M=-.Lp, for some variable renaming substitution p. Then there is a resolvent R of C

and D and R is a subset ofD. From the assumption follows that C is a variant of the resolvent

R, that is, there is a renaming substitution G, such that R=MG=-.LpG. Thus C is the binary

clause LR. Let J1. be the renaming substitution pG. If J1. is not the identity, then there is some

XE 'V(L) such that xjJ.=x' with X;tX'. Let a be an arbitrary constant not occurring in C nor D and

let C' be the clause consisting of the literal M' = -.L{x~a}. Let R' be the resolvent of C' and

D. Then, as a occurs in M', but not in R'=-,LJ1.{x~a}=-,LJ1., we obtain R':4f', which is a

contradiction. Hence J1. is the identity and R=-.L. If D contains a constant or function symbol

g, then g occurs in both literals of D, hence also in any resolvent of D. Let Cl be the unit

clause consisting of the literal PXl ..Xn, with Xi'l. 'l{D) for all iE {l..n}. Then Cl has a resolvent

R1 with D, however, as g occurs in R l, but not in Cl, the clauses R1 and Cl cannot be

variants, which is a contradiction to the assumption. Thus D cannot contain function nor

constant symbols.

b) The same argumentation as for the first part of a) holds, except that J1. is now an arbitrary

substitution, and x' must be replaced by a term t.

c) If C is any clause resolving with D to some resolvent R, then C subsumes R, that is, there

exists some subset R' of R, which is an instance of C. The assertion now follows from part b).

•
In the following we will generalize lemmata 3.2 and 3.3 to ancestor subsumption instead of

parent subsumption, that is, we want to determine those clause sets '1), which - possibly or

only - produce (ancestor) subsumed clauses. It will turn out that the appropriate generalization

of self-resolving and tautologous clauses are cyclic clause sets.

We generalize the deduction relation to clause sets '.D, by C~q;R, iff there is a sequence

C ~Dl Cl ~D2 ...~Dn R such that {Dl, .. ,Dn } = '.D.

In the following we deal with fmite directed graphs G=('lI(.A), whose nodes are labelled

with clauses and whose links are R-Iinks (i.e. links joining resolvable literals) labelled with

substitutions. We do not distinguish between a node and its label.

A path from nodeNl toNn in a directed graph is an alternating sequence (Nb h,Nn-l,

In-l, Nn) of nodes and links, such that each node Ni is of the following form (figure 1), and

there is a common instance 0' of all substitutions.

b) Suppose for all clauses C the following holds: C—>D R implies that R is an instance of
C. Then D is a tautology and IDI = 2.

c) Suppose for all clauses C the following holds: C—>D R implies that C subsumes R. Then
D is a tautology.

Proof: a) Let L = Pumtn be an arbitrary literal of D . Let C be the unit clause consisting of
the literal M=—.Lp, for some variable renaming substitution p. Then there is a resolvent R of C
and D and R is a subset of D. From the assumption follows that C is a variant of the resolvent
R, that is, there is a renaming substitution 0', such that R=MO'= —.Lp0'. Thus C is the binary
clause LR. Let u be the renaming substitution pa. If p is not the identity, then there is some
xe ML) such that xu=x’ with x¢x'. Let a be an arbitrary constant not occurring in C nor D and

let C ' be the clause consisting of the literal M' = —L{x—>a}. Let R ' be the resolvent of C ' and
D. Then, as a occurs in M ', but not in R'=—:L/,t{x—+a}=-1L,u, we obtain R'¢M', which is a
contradiction. Hence u is the identity and R=—.L. If D contains a constant or function symbol
g , then g occurs in both literals of D , hence also in any resolvent of D . Let C1 be the unit
clause consisting of the literal i..x„‚ with xge ’l/(D) for all ie {1..n}. Then C] has a resolvent
R ; with D , however, as g occurs in R] , but not in C1, the clauses R1 and C1 cannot be
variants, which is a contradiction to the assumption. Thus D cannot contain function nor
constant symbols.
b) The same argumentation as for the first part of a) holds, except that # is now an arbitrary
substitution, and x ' must be replaced by a term t.
c) If C is any clause resolving with D to some resolvent R, then C subsumes R, that is, there
exists some subset R ' of R, which is an instance of C. The assertion now follows from part b).

I

In the following we will generalize lernmata 3.2 and 3.3 to ancestor subsumption instead of
parent subsumption, that is, we want to determine those clause sets 1), which - possibly or
only - produce (ancestor) subsumed clauses. It will turn out that the appropriate generalization
of self-resolving and tautologous clauses are cyclic clause sets.

We generalize the deduction relation to clause sets 2), by C—agR, iff there is a sequence
C —>Dl C1 402 ...—m“ R such that {D1, . . ,D„} = D.

In the following we deal with finite directed graphs G=(9\£A), whose nodes are labelled
with clauses and whose links are R-links (Le. links joining resolvable literals) labelled with

substitutions. We do not distinguish between a node and its label.

A path from node N1 to N,1 in a directed graph is an alternating sequence (N1, [1,,Nn- 1,

1”,], N") of nodes and links, such that each node N; i s of the following form (figure 1) , and

there i s a common instance 6 of all substitutions.

5

fig. 1

The path from Nj to Nn is called weakly cyclic, if there is also a link from Nn to Ni with

substitution "C, a weakly cyclic path is called cyclic, if cr is compatible with "C. A directed graph

is called cyclic, if it contains a cyclic path.

A branching node in a directed graph is a node N = LKj ..Kn with n~ of the following

form (figure 2)

'-------
O(N)

---_.-/­
fig. 2

Each literal Kj possesses exactly one outgoing link. The outdegree O(N) of a branching

node N is the number of outgoing links, the indegree I(N) is the number of incoming links

and I(N)~ and O(N)~ hold. L is called the I-literal, each Kj is an O-Iiteral ofN.

A semicycle G is a directed graph, which satisfies the following conditions.

a) Each node N of G is a branching node with I(N)>o and O(N)~.

b) There is a node No such that each cyclic path of G passes No.

c) All occurring substitutions are compatible, with common instance X. The substitution X is

called the cycle substitution of G.

The fact that each node N of a semicycle has an incoming link guarantees the existence of a

cyclic path in a semicycle. Let V be a semicycle consisting of only one clause C. Then cr is the

identity substitution and C is self-resolving. V is called a cycle, if each node has exactly one

successor.

Usually, clause graphs are undirected graphs. We have chosen the representation with

directed graphs because this representation allows a much more concise definition of

semicycles than the undirected version. It should be noted, however, that the orientation of the .

links can be chosen arbitrarily. Any assertion "There is a semicycle (V,A)..." should be read as

''There is a clause set V, and a set A of R-links between clauses of V which can be directed in a

way, such that (V,A) is a semicycle..."

A cycle is just what Shostak (1976) and (1979) calls a loop. This notion also corresponds to

the notion of recursive predicates in the terminology ofdeductive databases (Vieille 1987, Ohl­

bach 1988) and logic programming.

Ni
lm l i

Ma
fig- I

The path from N; to N" is called weakly cyclic, if there is also a link from N„ to N1 with
substitution 1:, a weakly cyclic path is called cyclic, if 0' is compatible with "€. A directed graph
is called cyclic, if it contains a cyclic path.

A branching node in a directed graph is a node N = LK 1. .K„ with 2220 of the following

form (figure 2)

I(N)

\l/
L KI Kn

l l. \
0(N)

fig. 2
Each literal Kj possesses exactly one outgoing link. The outdegree 0(N) of a branching

node N is the number of outgoing links, the indegree [(N) i s the number of incoming links

and I(N)ZO and 0(N)20 hold. L is called the I-literal, each Kj is an 0-literal of N.
A semicycle G is a directed graph, which satisfies the following conditions.
a) Each node N of G is a branching node with I(N)>0 and 0(N)20.
b) There is a node No such that each cyclic path of G passes No.
c) All occurring substitutions are compatible, with common instance x. The substitution x is

called the cycle substitution of G.

The fact that each node N of a semicycle has an incoming link guarantees the existence of a
cyclic path in a semicycle. Let D be a semicycle consisting of only one clause C. Then 0 is the
identity substitution and C is self-resolving. 1) is called a cycle, if each node has exactly one
successor.

Usually, clause graphs are undirected graphs. We have chosen the representation with
directed graphs because this representation allows a much more concise definition of
semicycles than the undirected version. It should be noted, however, that the orientation of the ,
links can be chosen arbitrarily. Any assertion “There is a semicycle MIA)...” should be read as
“There is a clause set 1), and a set A of R—links between clauses of 9) which can be directed in a
way, such that (D,/\) is a semicycle...”

A cycle is just what Shostak (1976) and (1979) calls a loop. This notion also corresponds to
the notion of recursive predicates in the terminology of deductive databases (Vieille- 1987, Ohl-

bach 1988) and logic programming.

6

3.4 Example:

The clause sets '1)1' '1)2' and 1>.3, which are shown in figure 3, are semicycles; 'DI is a cycle. It

can be seen that each node of a cycle may be chosen to be the special clause No. As to semi­

cycles, still several, but in general not all nodes have this property. For instance the clauses

..rw and sw cannot be chosen to be No.

'1)1

fig. 3

The previous examples illustrated that in general there are several possibilities to choose a

clause of a semicycle to be the special clause NO.

Next we define the projection of a derivation onto some literal. This notion is a purely

technical one, it is needed for the proof of our main result.

3.5 Definition:

Let r= Cl ~Dl ... ~Dn Cn and let LEC1• The sequence (OL =(C1)L ~ ... ~ (Cn)L defined

by

(Clh= L

(Cih =(Ci-lh, if (Ci-lh does not resolve with D i-b

the resolvent of (Ci-lh with Di_l otherwise

is called the projection of r onto L. A step (CiJL ~(Ci+JJL is called trivial, iff (Ci)L =

(Ci+J)L.

A deduction (Clh ~ ... ~ (CnJL is obtained in a canonical way from (OL by omitting those

elements ~Di (Ci)L which satisfy (Ci)L = (Ci-J)L.

3.6 Example:

Let r =PQ ~-'pR QR~-Qs RS. Projecting r on the literals P and Q , respectively, yields the

sequences

3.7 Lemma:

Let r= C ~ Cl ~... ~ Cn and let LEC. Then

UL€c (C)L = Ci

holds for each iE {l ,.. ,n}.

3.4 Example:

The clause sets 91, 92, and 93, which are shown in figure 3, are semicycles; 131 is a cycle. It
can be seen that each node of a cycle may be chosen to be the special clause No. As to semi-
cycles, still several. but in general not all nodes have this property. For instance the clauses
-.rw and sw cannot be chosen to be No.

fig- 3
The previous examples illustrated that in general there are several possibilities to choose a

clause of a semicycle to be the special clause No.

Next we define the projection of a derivation onto some literal. This notion is a purely
technical one, it is needed for the proof of our main result.

3.5 Definition;

Let F: Cl “’Dl —>D„ C„ and let LeCI . The sequence (UL = (C1)L-> -—) (C„)L defined
by

(CI)L= L

(Cl-)1, = (C,-_1)L‚ i f (Ci-1)L does not resolve with D“ ,
the resolvent of (Ci-1)]. with DH otherwise

is called the projection of F onto L. A step (Cm, —)(C,-+1)L is called trivial, iff (Cm, =
(Cz+1)L.
A deduction (C1)L —> —> (C„)L is obtained in a canonical way from (I“)L by omitting those
elements —>D‚- (C,-);, which satisfy (C,-);, = (CM);

3.6 Example:

Let I‘ = PQ '—)_‘pR QR—>_QS RS. Projecting F on the literals P and Q , respectively, yields the
sequences

(r)P=P'—’—|PRR-—)—QSR and (F)Q=Q‘—)_PR Q—->_QSS

3,7 Lemma;

Let F: C —> C1 —9... _) C„ and let LeC. Then

ULec (cih, = Ci

holds for each ie {}‚..‚n}.

7

Proof: The lemma is proved easily by induction on n. •

3.8 Lemma:

Let C = {P} and R = {Q} be ground unit clauses. let tJJ = {D 1....Dn} be a set of ground

clauses such that r = C~Dl lO.~DnR holds. Let Dn+1:=--,Rand 11 = fu{Dn+J}.

Then there is an acyclic directed graph G =('1J.A). which satisfies:

(i) Each element of 11 is a branching node.

(ii) I(D1)=O, O(Dl)>O, O(Dn+1)=O and I(Dn+1)>O holds.

(iii) I(Di)>O holds for iE {2 ... ,n}.

Proof: By induction on n. Let DJ = -.PQl ..Qm and let Ll = Q1 ..Qm~D2 ...~DnR. Take

any iE {Im} and consider the projection (Ll)Qi =Qi~ ~S. Then, according to lemma lO'

3.7, either S=R or S is the empty clause. If S is the empty clause, then the last not empty

clause in the sequence must be a unit. In either case, we obtain a deduction Qi~ D'
I,

1

...~D· Si with unit clauses Qi and Si and {DJ'....Dm'} ~ {V2Vn}. This deductionI,m

satisfies the conditions of the lemma and has length smaller than n. Hence there is a acyclic

directed graph Gi = (tJJi.Ai) which satisfies (i) to (iii). Then we obtain a directed acyclic graph

G from the union of the Gj's by adding the node V 1 and the links from the literal Qi in the

clause VI to the literal---.Qi in the clause Vi.1. This implies I(Vi,l)>O and O(DJ»O, which

shows that (iii) and the first half of (ii) holds for G. The assertion (i) holds trivially for G.

According to lemma 3.7, there is at least one j such that (Ll)Qj = Qj~ .oo ~R holds. Hence the

induction hypothesis implies O(R)=O and I(R)>O. which implies the second half of (ii). •

3.9 Lemma:

Let C be a ground unit clause and tJJ= {V 1V n} be a set of ground clauses with

C~D1Cl~D2...~DP. Then there is a graph G=(tJJ,A) that contains a path from V1 to Vn.

Proof: By induction on n. Let Q be any literal of VI with Q:f:.---.C. Consider the projection

(r)Q = Q ~ ...~ (V)Q of the deduction r = C1~D2oo.~DnV, Then by the induction

hypothesis there is a graph G' = ({D2'lO,Dn), A') containing a path from V2 to Vn. By adding

the node D1 and the link from the literal Q in VI to the literal ---.Q in V2 we obtain a path from

VI toVn.•

The following theorem provides the characterization of ancestor subsumption for the ground

case.

3.10 Theorem:

Let C be a ground unit clause, let tJJ= (D 1•..•Dn) be a set of ground clauses such that

C ~Dl Cl -4 D2'" -4Dn R holds.

a) If R =C. then there is a semicycle G = (tJJ,A) and D1 can be chosen to be the special node

No ofG.

b) If R is subsumed by C, then there is a cyclic directed graph G = (tJJ.A).

Proof: a) By adding the node Dn+1 = --,R to tJJ, we obtain an acyclic directed graph G'

satisfying conditions (i) to (iii) of lemma 3.8. In particular. VI is the only node N of G' with

I(N)=O. Moreover. the nodes VI and V n+1 have the same I-literal ---.C=---.R. By taking all the

Proof: The lemma is proved easily by induction on n. I

3.8 Lemma;

Let C = {P} and R = {Q} be ground unit clauses, let Q) = {Dl‚..,D„} be a set of ground
clauses such that l" = C—ml ...—>DnR holds. Let Dn+1:=—R'and 17 = %{DMI} .
Then there is an acyclic directed graph G = (D,/\), which satisfies:
(i) Each element of 17 is a branching node.
(ii) [(Dl)=0, 0(Dl)>0, 0(Dn+1)=0 and I(D„+1)>0 holds.

(iii) I(D‚°)>O holds for ie [2,..‚n}.

Proof: By induction on n. Let D 1 = —.PQ1..Q‚„ and let A = Q1..Q„.—>D2 ...—>a. Take
any ie {1 , . . ,m] and consider the projection (A)Qi = Q‚-—> —)S. Then, according to lemma

3.7, either S=R or S is the empty clause. If S is the empty clause, then the last not empty
clause in the sequence must be a unit. In either case, we obtain a deduction Q ;—-> 131,1

. . .—mins; with unit clauses Q ; and S; and {D}',..,Dm'} (; {D2‚..,D„}. This deduction
satisfies the conditions of the lemma and has length smaller than n. Hence there is a acyclic
directed graph G;=(D1,Ai) which satisfies (i) to (iii). Then we obtain a directed acyclic graph
G from the union of the Gg’s by adding the node D1 and the links from the literal Q ; in the
clause D 1 to the literal fiQi in the clause 0,3. This implies [(D;,1)>0 and 0(D1)>0, which
shows that (iii) and the first half of (ii) holds for G. The assertion (i) holds trivially for G .
According to lemma 3.7, there is at least one j such that (MQ!- = Qj—> —->R holds. Hence the

induction hypothesis implies O(R)=0 and I(R)>0, which implies the second half of (ii). I

3.2 !;mma;

Let C be a ground unit clause and D=[D 1,. . ,D„} be a set of ground clauses with
C—)D1C1—>Dz...—)DnD. Then there is a graph G=(1),A) that contains a path from D1 to Dn.

Proof: By induction on n. Let Q be any literal of 01 with Qat—uC. Consider the projection
(I‘)Q = Q -—>...—-> (D)Q of the deduction I‘ = C1-—>Dz„.—>D„D. Then by the induction
hypothesis there is a graph G' = ({D2‚..,D„] , A') containing a path from Dz to Du. By adding
the node D1 and the link from the literal Q in D1 to the literal —1Q in D2 we obtain a path from
D1 to Dn. l

The following theorem provides the characterization of ancestor subsumption for the ground
case.

3.1!) Theorem;

Let C be a ground unit clause, let ‘D={D1 ‚ . . ,D„ } be a set of ground clauses such that

C _)D, C1 —>D2-—- “’Dn R holds.
a) If R =C, then there is a semicycle G = (DA) and 01 can be chosen to be the special node

No of G .

b) If R is subsumed by C, then there is a cyclic directed graph G = (DA).

Proof: a) By adding the node D„“ = —\R to 1), we obtain an acyclic directed graph G '
satisfying conditions (i) to (iii) of lemma 3.8. In particular, D1 is the only node N of G ' with
I(N)=0. Moreover, the nodes D1 and Dn+1 have the same l—literal fiC=—.R. By taking all the

8

links that go into V n+l and directing them instead to VI, we obtain a cyclic directed graph

G=(1J,A), with /(V)>O for all VE 1J. Obviously, each cyclic path of G passes the node VI.

Therefore conditions a) to c) of the definition of a semicycle are satisfied (with identity

substitutions).

b) There is a deduction C~DIC1~D2...~DnCn = R, and C is a literal of R. Let V = -,C,

then there is a deduction C~DIC1~D2...~DnCn ~DR' and according to lemma 3.9 there is a

graph G' containing a path from VI to V. By taking the link that goes to the literal-,C in the

clause V and directing it to the literal-,C in VI we obtain a graph G with a cyclic path. •

The following theorems 3.12 and 3.13 provide the appropriate generalizations of theorem

3.10 to the non-ground case. It turns out that those clause sets have a "cyclic" structure,

varying from the weakest form for clause sets producing some ancestor subsumed resolvent to

the strongest form of a cycle for clause sets producing only copies as resolvents.

Let G=(1J,A) be a semicycle with special node No and let n be the length (Le. the number of

nodes) of the longest cyclic path in G. Let the clauses Co,.. ,Cn-l be defmed as follows: Let Co

=No and for iE {1,..,n-l} let Ci be the clause resulting from resolving on all the links outgoing

from Ci-l except those links going into No. Let L be the I-literal ofNo and let Kl,..,Km be the

O-literals of the predecessors of No. ThenV:=Cn_l can be written as (LKl ..Km)a where a is a

common instance of the substitutions that were used in the resolution steps (see fig. 4).

Obviously, the clause V resulting from this construction depends on the choice of the special

node. We call V the Co-reduct of G.

fig. 4

3.11 Lemma:

Let L and K be literals and a be a substitution.

a)	 If La and Ka are weakly unifiable, then also Land K. Moreover, there is a substitution e
and a renaming p, such that LaB = KpaB and dom(a) n o/(cod(p» =

dom(p) n 1{cod(a» = 0.
b)	 If there is a substitution cp and a renaming p, such that Lpcp = Kcp holds, then Lp'cp =

Kp'cp for some renaming p'.

Proof: a) see (Herold 1983), lemma 11I.9.

b) see (Herold 1983), lemma 11I.8.	 •

links that go into Dn+1 and directing them instead to 01 , we obtain a cyclic directed graph
G=(DA), with I(D)>0 for all De 9). Obviously, each cyclic path of G passes the node D1.
Therefore conditions a) to c) of the definition of a semicycle are satisfied (with identity

substitutions).

b) There is a deduction C—->DIC1—»Dz...—>DnCn = R, and C is a literal of R. Let D = "“1C,
then there is a deduction C—m1C1—>Dz--o—>D,,Cn

_)D R' and according to lemma 3.9 there i s a
graph 6 ' containing a path from D1 to D . By taking the link that goes to the literal —-C in the
clause D and directing it to the literal --.C in D1 we obtain a graph G with a cyclic path. I

The following theorems 3.12 and 3.13 provide the appropriate generalizations of theorem
3.10 to the non-ground case. It turns out that those clause sets have a “cyclic” structure,
varying from the weakest form for clause sets producing some ancestor subsumed resolvent to
the strongest form of a cycle for clause sets producing only c0pies as resolvents.

Let G=(11A) be a semicycle with special node No and let n be the length (i.e. the number of

nodes) of the longest cyclic path in G. Let the clauses C0,..,Cn-1 be defined as follows: Let Co

= No and for ie { 1,..,n-1} let C; be the clause resulting from resolving on all the links outgoing
from C121 except those links going into No. Let L be the I-liter-al of No and let K1,..‚Km be the

O-literals of the predecessors of M). Then D:=C„_1 can be written as (LK1..K‚„)G where o is a
common instance of the substitutions that were used in the resolution steps (see fig. 4).
Obviously, the clause D resulting from this construction depends on the choice of the special
node. We call D the Co-reduct of G.

_) LOKO' D

3.11 Lemma;

Let L and K be literals and o be a substitution.
a) If LG and Ko are weakly unifiable, then also L and K. Moreover, there is a substitution 9

and a renaming p , such that L68 = KpoB and dom(6) m ‘V(cod(p)) =
dom(p) n ’V(cod(o)) = 0.

b) If there is a substitution (p and a renaming p, such that Lptp = Ktp holds, then Lp'tp =
Kp'<p for some renaming p'.

Proof: a) see (Herold 1983), lemma 111.9.
b) see (Herold 1983) , lemma 111.8. I

9

3.12 Theorem:

Let C be a unit clause and let V= {DI, .. ,D n } be a set of clauses such that

C ~Dl Cl ~D2 ... ~Dn R holds.

a) If R is a variant of C, then there is a semicycle G = (V,A).

b) If R is subsumed by C, then there is a weakly cyclic graph G =(V,A).

Proof" a) Let C' be a common ground instance of C and R, '1J a set of ground instances of

the clauses in V such that C'~'1J C' holds. Then theorem 3.10 determines the "cyclic" structure

of V, and the clause DI represents the special node No. What remains to show is the compati­

bility of the substitutions.

Let the unifier <Jj belong to the step Ci-l ~Dj Ci. Then {<Jl,<J2,oo,<Jn } is a set of compatible

substitutions (see Herald 1983). In particular, the substitutions <J2,oo,<Jn are compatible, with

some common instance <J. Let D be the D l-reduct of G. As the result of a sequence of

resolution steps does not depend on their order, the relation C ~D R must hold (see figure 5).

Thus, according to lemma 3.2, D is a self-resolving clause of the form L'Kj'..Kn ', with a

renaming p and a substitution 't, such that L''t = -,K(p't for each iE {l, .. ,n} holds. Moreover,

we have L'=La and K(=Kia, where L is the I-literal ofDl and the Ki are the O-literals of the

predecessors of Dl. Take any KE {K}, ..,Kn }. We have L<J't = -,K<Jp't and from lemma 3.11

a) follows that there is some substitution e with L<Je = -,Kp'<Je for some renaming p', and

from part b) of the same lemma follows that Lp"<Je = -J(p"<Je for some renaming p". Let A

= p"<Je, then Ais a unifier of Land -.K, hence A is an instance of the most general unifier <p

of Land -,K. We show that A. and <p are compatible substitutions. Let A = <pA'. The renaming

p" can be chosen, such that dom(o) ("\ 'l{cOd(p"» =dom(p") ("\ 'l{cod(<J» =0, that is,

<Jp = p<J.This implies <JA = A= <pA.', hence <p and 0 have a common instance, that is, they are

compatible. We have shown that <J is compatible with each unifier of a link going into D}, that

is, all occurring unifiers are compatible and condition c) of the definition of a semicycle is

satisfied.

b) is proved analogously to a) •

·••
•.

Cn-1 ./ D Il."r n-

R

C~1)R C~DR

fig. 5

3.13 Theorem;

Let V be a set of ground clauses.

3.12 Theorem:

Let C be a uni t clause and l e t 1): [D 1 , . . ,D „] be a se t o f c lauses such that

C _>D1C1 '_>Dz ->Dn R holds.

a) If R i s a variant of C, then there i s a semicycle G = (DA).

b) If R is subsumed by C, then there is a weakly cyclic graph G =(1),A).

Praofl a) Let C ' be a common ground instance of C and R, Q) a set of ground instances of
the clauses in @ such that C '—>g C ' holds. Then theorem 3.10 determines the “cyclic” structure
of D, and the clause DI represents the special node No. What remains to show is the compati-

bility of the substitutions.
Let the unifier d i belong to the step CH —>D,- Cg. Then {61,02,..‚0'„} i s a set of compatible

substitutions (see Herold 1983) . In particular, the substitutions 02...,on are compatible, with

some common instance 0‘. Let D be the Dl-reduct of G . As the result of a sequence of
resolution steps does not depend on their order, the relation C —>D R must hold (see figure 5).
Thus, according to lemma 3 .2 , D i s a self—resolving clause of the form L'K1 '..K,,', with a

renaming p and a substitution 1:, such that L": = fiKi'p‘c for each ie { 1,..,n} holds. Moreover,

we have L’=LO' and K;'=K‚°O'‚ where L is the I-literal of D1 and the K,- are the O-literals of the
predecessors of D1. Take any [(6 {K 1,..,K„}. We have Lo"! = —J(Gp1: and from lemma 3 .11

a) follows that there is some substitution 9 with LGB = —-.Kp'0’9 for some renaming p', and
from part b) of the same lemma follows that Lp"oe = —-t"ce for some renaming p". Let X
= p"09, then X is a unifier of L and ——.K, hence). is an instance of the most general unifier (p
of L and —.K. We show that JL and (p are compatible substitutions. Let X = (923. The renaming
p" can be chosen, such that d0m(0') (\ 'V(cod(p")) = dam(p") (\ ’l/(cod(6)) = @, that is ,

op = po.This implies 07L = A. = (9N, hence (p and 6 have a common instance, that is, they are
compatible. We have shown that 0’ is compatible with each unifier of a link going into 01, that
is, all occurring unifiers are compatible and condition c) of the definition of a semicycle is
satisfied.

b) is proved analogously to a) I

c D1 D
l /D1 / 2

C1 D :
2 I

DCn-l D I| “'1 R
R

C—ögR C-—)DR

fig- 5

3 ,13 flhggrem;

Let Dbe a set of ground clauses.

10

Suppose for all clauses C the following holds: C~'J)R implies that C = R. Then there is a cycle

G =(fJ),A).

Proof We proceed by induction on the length of fJ). As a tautology is a particular cycle, the

case I~=l follows from lemma 3.3. Let I~>l. Theorem 3.10 implies that there is a semicycle

G = (fJ),A). We show that G is a cycle. Let D,D'e '1J such that D' is a successor of D.

According to the definition of a semicycle, the clauses D and D' are resolvable. Let R be their

resolvent and let tJ) = fJJ\(D,D'}u(R}, which is illustrated by figure 6.

D

R
~ ":.. -­

D' ~ ';.~. -----~
----:,.

=­"": ~.

fig. 6

Since C~'1J R implies C~'J)R, the set tJ) satisfies the assumptions of the theorem and from the

induction hypothesis follows that tJY is the set of nodes of a cycle. This implies that ICI=2 for

each Ce tJ), hence also D and D' are clauses oflength two, which implies that fJ)is a cycle.•

The proof of theorem 3.12 showed that semicycles are structures that can be "reduced" to

self-resolving clauses. Those particular semicycles that can be reduced to tautologies, are

characterized by

3.14 Definition:

Let G=(fJ),A) be a semicycle with special node Co. Let 't be the most general common instance

of all the substitutions of the R-links going into Co and let 0' be a common substitution for all

other links of A. The semicycle G is called complete, if 0' is an instance of't, that is La = KO'

for all literals Land K joined by a link going into Co.

Let G be a complete semicycle as in definition 3.14. Let D := (LKj ..Km)a be the Co-reduct

of G. As for each ie (l, .. ,m), Kj and L are complementary unifiable under 't, and 0' is an

instance of 't, D must be a tautology.

3.15 Theorem:

Let fJ)bc a set of clauses.

a)	 Suppose for all clauses C the following holds: C~'J)R implies that C and R are variants.

Then there is a complete cycle G = (fJ),A), all clauses of which are function and constant

free.

b) Suppose for all clauses C the following holds: C~'J)R implies that R is an instance of C.

Then there is a complete cycle G = (fJ),A).

c) Suppose for all clauses C the following holds: C~'1JR implies that C subsumes R. Then

there is a complete semicycle G = (fJ),A).

10

Suppose for all clauses C the following holds: C—mR implies that C = R. Then there is a cycle
G = (DA).

Proof: We proceed by induction on the length of D. As a tautology is a particular cycle, the
case IQJI=1 follows from lemma 3.3. Let IQJI>1. Theorem 3.10 implies that there is a semicycle
G = (DA) . We show that G is a cycle. Let D ,D’e CD such that D' i s a successor of D .
According to the definition of a semicycle, the clauses D and D ' are resolvable. Let R be their
resolvent and let D = Q{D,D'}U{R}‚ which is illustrated by figure 6.

fig- 6
Since C—m R implies C—ig R, the set 17 satisfies the assumptions of the theorem and from the
induction hypothesis follows that D is the set of nodes of a cycle. This implies that |C|=2 for
each Ce Q), hence also D and D ' are clauses of length two, which implies that D i s a cycle. I

The proof of theorem 3.12 showed that semicycles are structures that can be “reduced” to
self-resolving clauses. Those particular semicycles that can be reduced to tautologies, are
characterized by

3,14 Definition;

Let G=(1),A) be a semicycle with special node Co. Let 1: be the most general common instance
of all the substitutions of the R-links going into Co and let 0 be a common substitution for all

other links of A. The semicycle G is called complete, if 0 is an instance of 12, that is L6 = Kc
for all literals L and Kjoined by a link going into Co.

Let G be a complete semicycle as in definition 3.14. Let D := (LK 1..Km)o be the Co-reduct

of G. As for each ie {1,..‚m}, K; and L are complementary unifiable under "c, and o is an
instance of T, D must be a tautology.

3.15 Theorem;

Let Dbe a set of clauses.
a) Suppose for all clauses C the following holds: C—mR implies that C and R are variants.

Then there is a complete cycle G = (11A), all clauses of which are function and constant
free.

b) Suppose for all clauses C the following holds: C->g;R implies that R is an instance of C.
Then there is a complete cycle G = (CD,/\).

c) Suppose for all clauses C the following holds: C—mR implies that C subsumes R. Then
there is a complete semicycle G = (DA).

11

Proof' a) The cyclic structure ofG=('D.A) is provided by theorem 3.13. Let '1J={Dl •..•Dn }

and choose any Die to be the special node of G. As in the proof of theorem 3.12. let D =

(LleKIe-l)CJ be the Dk-reduct of G. Then the relation C-';vC must hold for each clause C that

resolves with D. From theorem 3.3 follows that D is function and constant free. which shows

that the same holds for Lie and KIe-l. As k was chosen arbitrary. all elements of D are function

and constant free. As D is a tautology. CJ is a unifier of Lie and Kk-l. The link from KIe-l to Lie

has most general unifier 'to hence CJ is an instance of't. that is. the cycle G is complete.

b) and c) are proved analogously. _

Note that the defmition of the deduction relation -';'D does not capture ancestor resolution.

which is part of complete linear strategies.

3.16 Example:

Let 'D be the clause set that is shown in figure 7.

fig. 7

'D allows a linear deduction with ancestor resolution as follows:

where the last step is an ancestor resolution step. This is an ancestor resolution situation.

however. 'Dis not a semicycle.

The following lemma shows that it is sufficient to look for cycles in an initial clause set

during a resolution deduction. as "new" cycles cannot be generated by resolution. For any

clause set S. 9\(.5) denotes the resolution closure of S. that is the smallest clause set containing

S and closed under the resolution operation.

3.17 Lemma:

Let S be a set ofclauses. Then S contains a semicycle. iff 9\(.5) contains a semicycle.

Proof Let R be a resolvent of clauses C and D with C. De S and assume that R is a node of

a semicycle G=('D.A). We show that C and D are also nodes of a semicycle.

11

Proof: a) The cyclic structure of G=(1),A) is provided by theorem 3.13. Let D={D1,..,D„}
and choose any D}; to be the special node of G . As in the proof of Lheorem 3.12, let D =
(LkKk-1)o be the Dk-reduct of G. Then the relation C-—>DC must hold for each clause C that
resolves with D . From theorem 3.3 follows that D is function and constant free, which shows
that the same holds for Lk and KH. As k was chosen arbitrary, all elements of D are function
and constant free. As D i s a tautology, o i s a unifier of L:; and K k-l- The link from KH to Lk
has most general unifier ‘c, hence o is an instance of fc, that is, the cycle G is complete.
b) and c) are proved analogously. l

Note that the definition of the deduction relation ag) does not capture ancestor resolution,
which is part of complete linear strategies.

1 Ex 1 ‘

Let @be the clause set that is shown in figure 7.

—.PRS —:SR

-uRT —.—. ' r -1RP

fig. 7
1) allows a linear deduction with ancestor resolution as follows:

P _)fiPRS RS -—>—.SR R —>fiRT T —>——.T-.RP —-.RP —->R P

where the last step i s an ancestor resolution step. This is an ancestor resolution situation,

however, D i s not a semicycle.

The following lemma shows that i t is sufficient to look for cycles in an initial clause set
during a resolution deduction, as “new” cycles cannot be generated by resolution. For any
clause set 5, EMS) denotes the resolution closure of .5. that is the smallest clause set containing

5 and closed under the resolution operation.

3,112 Lemma;

Let 5 be a set of clauses. Then .5' contains a semicycle, iff 9K3 contains a semicycle.

Proof: Let R be a resolvent of clauses C and D with C, De 5 and assume that R is a node of
a semicycle G=(’D,A). We show that C and D are also nodes of a semicycle.

12

c

D

fig. 8

Each link ki and lj of G going into or coming from the node R must be inherited from some

link k/ and l/, respectively, as shown in figure 8. The diagram illustrates that these links are

links of a semicycle G', which contains nodes C and D. •

4 Removing cycles from clause sets

Besides of being the very reason for the undecidability of first order logic, cycles in clause

sets also turned out to be a main source of reduncancy for clause set resolution. The question

thus arises as to what extent cycles can be excluded from producing lots of unneeded clauses. ,
A first approach to this question is due to Bibel (1981). He showed that under certain

conditions, similar to those allowing the deletion of tautologies in clause graphs, cycles can be

removed from clause sets. We will consider here two approaches, both restricted to cycles.

However, we will also show by means of SAM's lemma, that in particular cases there exists

also an appropriate treatment of semicycles. Both approaches are based on the observation, that

a cycle {-,LIL2, -,L2L3,... ,-,LnLd represents a set {Ll~L2, L2~L3,..,Ln~Ld of

implications, and thus expresses that the literals Li are pairwise logically equivalent. Logical

equivalence can be treated in a very similar way to equality, hence the well-known methods of

equational reasoning, like demodulation, paramodulation or theory resolution apply to cycles.

The first idea in order to shut down this source of reduncancy is to use cycles not directly

for resolving. Instead, they are taken as literal demodulators (Wos 1967): Cycles, expressing

the equivalence of literals, can be transformed into rules, in the same way as equations can be

directed yielding rules. Consider for example a clause set containing among others the two

clauses -,PvQ and -,QvP. These two clauses represent the formula P=Q, which can be

directed yielding for instance the rule P~Q. Application of this rule means substituting Q for

each occurrenL:e of P and -,Q for each occurrence of -.P. (Note that this effect can be achieved

also with an ordering restriction (Loveland 1978), which precludes resolution with the Q and

-,Q literal in the two clauses.)

However, the method of literal demodulators applies only for cycle clauses that can be

directed, such as ground clauses or clauses with different predicate symbols. Thus, a lot of

relevant clause sets does not allow this approach. For instance, the (cyclic) clause -.PxyvPyx,

expressing the symmetry of P, cannot be directed. The following example shows how literal

demodulation accounts for an improvement of resolution's efficiency.

12

k l kn

1 l 1 r]

fig- 8
Each link k; and [j of G going into or coming from the node R must be inherited from some

link k," and lj', respectively, as shown in figure 8. The diagram illustrates that these links are
links of a semicycle G', which contains nodes C and D. l

4 Removing cycles from clause sets

Besides of being the very reason for the undecidability of first order logic, cycles in clause
sets also turned out to be a main source of reduncancy for clause set resolution. The question
thus arises as to what extent cycles can be excluded from producing lots of unneeded clauses.
A first approach to this question is due to Bibel (1981). He showed that under certain
conditions, similar to those allowing the deletion of tautologies in clause graphs, cycles can be
removed from clause sets. We will consider here two approaches, both restricted to cycles.
However, we will also show by means of SAM’s lemma, that in particular cases there exists
also an apprOpriate treatment of semicycles. Both approaches are based on the observation, that
a cycle {—uL1L2, -1L2L3,...‚—.L„L1} represents a set {L1=>L2, L2=>L3,..,L„=>L1 } of
implications, and thus expresses that the literals L,- are pairwise logically equivalent. Logical
equivalence can be treated in a very similar way to equality, hence the well-known methods of
equational reasoning, like demodulation, paramodulation or theory resolution apply to cycles.

The first idea in order to shut down this source of reduncancy is to use cycles not directly
for resolving. Instead, they are taken as literal demodulators (Wos 1967): Cycles, expressing
the equivalence of literals, can be transformed into rules, in the same way as equations can be
directed yielding rules. Consider for example a clause set containing among others the two
clauses _.PvQ and 'fiQVP. These two clauses represent the formula PEQ, which can be
directed yielding for instance the rule P—>Q. Application of this rule means substituting Q for
each occurrence of P and fiQ for each occurrence of —.P. (Note that this effect can be achieved

also with an ordering restriction (Loveland 1978), which precludes resolution with the Q and

—:Q literal in the two clauses.)

However, the method of literal demodulators applies only for cycle clauses that can be
directed, such as ground clauses or clauses with different predicate symbols. Thus, a lot of
relevant clause sets does not allow this approach. For instance, the (cyclic) clause —\nvx,
expressing the symmetry of P , cannot be directed. The following example shows how literal
demodulation accounts for an improvement of resolution’s efficiency.

13

Another approach. which overcomes the problem with directing equivalences. is based on

the idea of "compiling" cycles into a theory serving as the basis for theory resolution. Theory

resolution, first proposed by Stickel (1985), is a generalization of ordinary resolution. The

literals resolved upon need not be syntactically complementary, it is sufficient for them to be

complementary under some theory. If S is any set of clauses, then the theory of S is the set

f1S={C I C is a clause with S 1= Cl. A clause set S' is complementary under some theory tI, if

'IuS' is unsatisfiable. In particular, each clause C = Ll ...Ln defines a theory 'Ic in which, for

instance, the set of literals {......Lj, .. ,......Ln } is complementary. Taking clauses (or clause sets) as

a particular theory to perform theory resolution is essentially the same idea as Ohlbach's (1988)

link resolution. For an arbitrary clause set S, the set 'Is is not in general computable. Yet, in

order to perform theory resolution on a clause set S, it is sufficient to compute the resolution

closure 9\(.5) of S.

4.1 Lemma:

Let S be a set of clauses and DE 'Is be a clause, which is not a tautology. Then there is some

clause CE 9\(.5), such that C subsumes D. •

In order to find the substitutions u, which make a set {Lj, ...Ln } of literals complementary

under the theory 'Is, or, equivalently, which map the clause D:={-.L},..,......Ln } onto an element

of 'IS, it is sufficient, according to the previous lemma, to fmd some u and a clause CE ~(.5),

such that C subsumes Du. Thus, having a finite resolution closure ~(.5), the set S guarantees

the number of 'IS -resolvents of two clauses to be finite. In particular, this is the case for

cycles that produce only copies as resolvents, since these cycles are function free. The next

lemma shows that the theory of a complete, function free cycle tfJwith cycle substitution 0' can

be completely described by the pairwise equivalence of all I-literals of fu.

4.2 Lemma:

Let tfJbe a complete, function free cycle with cycle substitution 0'. Then ~(2)) = {--.LO'KO' I L

and K are I-literals occurring in 1J}. •

4.3 Examples:

a) Let tfJ = {-.Pxy Qxy, -.Quv Puv}. tfJ is a complete and function free cycle with cycle

substitution O'={x~u, y~v}. The theory of tfJconsists of the formula Puv == Quv.

b) Let 'D= {-.Pxy Pyx}. tfJ is function free, but not complete. By adding a copy of the clause

-.Pxy Pyx, a complete cycle '1J is obtained.

Then ~(1J) = ~(tfJ') = {-.Pxy Pyx, -.Pxy Pxy} is finite and thus the number of 'I'D­

resolvents of any two clauses is fmite, too.

c) Let 'D={-.Pf(f(x,y), z)Pf(x!(y,z))}.

Then ~(1J)= 1Ju {-.Pf(f(f(x,y),z),u) Pj(x!(y!(z,u))), ... } is infinite and also the number of

'Iq)-resolvents of two clauses is infinite in general.

Taking into account the tight connection between ~unification (see Btirckert, Herold &
Schmidt-SchauB 1987) and theory resolution for equational theories, the previous examples'

13°

Another approach, which overcomes the problem with directing equivalences, is based on
the idea of “compiling” cycles into a theory serving as the basis for theory resolution. Theory
resolution, first proposed by Stickel (1985), is a generalization of ordinary resolution. The
literals resolved upon need not be syntactically complementary, it is sufficient for them to be
complementary under some theory. If. S is any set of clauses, then the theory of S is the set
(Ea-{C l C is a clause with S I: C}. A clause set S' is complementary under some theory ‘]: if
TUS' is unsatisfiable. In particular, each clause C = L1...L„ defines a theory ‘Tc in which, for

instance, the set of literals {—.L1,..,—\L„} is complementary. Taking clauses (or clause sets) as
a particular theory to perform theory resolution is essentially the same idea as Ohlbach’s (1988)
link resolution. For an arbitrary clause set .S', the set ’13 is not in general computable. Yet, in
order to perform theory resolution on a clause set .5, it is sufficient to compute the resolution
closure 9i(5) of 5.

M
Let 5 be a set of clauses and De ‘13 be a clause“, which is not a tautology. Then there is some
clause C e EMS), such that C subsumes D. I

In order to find the substitutions 0, which make a set {L 1,...Ln} of literals complementary
under the theory ’13, or, equivalently, which map the clause D:={—1L1,..,—\L„} onto an element
of Is, i t is sufficient, according to the previous lemma, to find some (rant! a clause Ce SRG),
such that C subsumes Do: Thus, having a finite resolution closure c3(5), the set 5 guarantees
the number of ‘1‘5-resolvents of two clauses to be finite. In particular, this is the case for
cycles that produce only c0pies as resolvents, since these cycles are function free. The next
lemma shows that the theory of a complete, function free cycle Dwith cycle substitution 6 can
be completely described by the pairwise equivalence of all I-literals of 90.

4.2 Lemma:

Let .’D be a complete, function free cycle with cycle substitution 0. Then SRG?) = {_1LOKO I L
and K are I-literals occurring in D}. I

4,3 Examples;

3) Let 1) = {—J’xy Qxy, -.q Puv}. @ is a complete and function free cycle with cycle
substitution a={x—->u, y—w}. The theory of consists of the formula Puv E q.
b) Let D=[-—1n Pyx}. !) is function free, but not complete. By adding a copy of the clause
-1n Pyx, a complete cycle 27 is obtained.
Then %(D) = EBM?) = {—.n Pyx, _.n Pry} is finite and thus the number of T1) -
resolvents of any two clauses is finite, too.
C) Let Dr—{fimxJ}, z) Pf(xf(y‚z))}.

Then 93(1)): 1) U {—.Pf(f(f{x,y)‚z)‚u) Pf(x‚f(y‚f(z,u))), ...} is infinite and also the number of
Tyresolvents of two clauses is infinite in general.

Taking into account the tight connection between EI—unification (see Biirckert, Herold &
Schmidt-SchauB 1987) and theory resolution for equational theories, the previous exaniples’

14

behaviour is not surprising, as the number of most general unifiers under the theory of com­

mutativity is finite, whereas it is infinite under associativity (see Herold & Siekmann 1985).

5 Conclusion

In this chapter we want to show by means of two examples, how the information about

cycles in clause graphs can be used to reduce the search space in resolution theorem proving. In

the first example literal demodulation is used to reduce the generation of redundant clauses.

5.1 Example:

Let n be any even natural number and let S be the clause set {Cl, C2} with

Cl =Px v Plx,

C2 =-,Px v -,Pfhx.

Except from the rather trivial cases n=2 and n=4, this clause set is not easy to refute. For

instance, the Markgraph Karl theorem prover (Karl 1984) failed for numbers n>lO. However,

the problem has a straightforward solution based on literal demodulation: First, the following

four resolvents are deduced:

C3 = Plx v-,Pfhx

C4 =-,Px v Pfh-Ix

Cs = -,Px v Pfh+lx

C6 = Px v-,Pfh+lx

Cs and C6 form a (complete) cycle, expressing the equivalence Px == P?+lx, which can be

directed resulting in the rule RI =Pjh+lx ~ Px. In the same way C3 and the instance -,Plx v

P?x of C4 can be transformed into a rule R2 =P?x ~ Plx. Using R2, clause C2 can be

rewritten into C2' =oPx v -,Plx. Interreducing RI with R2 yields the rule R3 =pf2x ~ Px,

and finally we obtain Pfx ~ Px by repeatedly applying R3 to RI (note that n is even). This rule

reduces C2' to -,Px and Clto Px, which concludes the refutation. The length of this refutation

has order O(n/2).

The next example illustrates the application of theory resolution to problems containing

cyclic structures.

5.2 Example

Translating SAM's lemma into a clause set, avoiding the use of the equality predicate (see Wos

1988), results in a clause set S that consists of the following 11 units

{min(O x 0), max (x 0 x), max(a b dl), mined! Cl 0), min(a b d2), min(d2 C2 0),

min(c2 be), min(c2 af), max(Cl e g), max(cl/h), -,min(g h Cl)}

and 6 non unit clauses:

(Cl) -min(x y z) min(y x z)

(C2) -,max(x y z) max(y x z)

(C3) -,min(x y u) -,min(y z v) -,min(x v w) min(u z w)

(C4) -,min(x y u) -,min(y z v) -,min(u z w) min(x v w)

(Cs) -,max(x y z) min(x z x)

(C6) -,min(x z x) -,max(x Y Xl) omin(y z YJ) -,max(x YI Zl) min(z Xl Zl)

14

behaviour is not surprising, as the number of most general unifiers under the theory of com—
mutativity is finite, whereas it i s infinite under associativity (see Herold & Siekmann 1985).

5 Conclusion

In this chapter we want to show by means of two examples. how the information about
cycles in clause graphs can be used to reduce the search space in resolution theorem proving. In
the first example literal demodulation is used to reduce the generation of redundant clauses.

5.1 Example:

Let n be any even natural number and let S be the clause set {C1, C2} with
C 1 = Px v Pfx,
C 2 =w v —.Pj"x.

Except from the rather trivial cases n=2 and n=4, this clause set i s not easy to refute. For
instance, the Markgraph Karl theorem prover (Karl 1984) failed for numbers n>10. However,
the problem has a straightforward solution based on literal demodulation: First, the following
four resolvents are deduced:

C3 = Pfx vfiPf'lx
C4 = —.Px v a'lx
C5 = —q v Pf’Hx
C 5 = Px v—'Pf"+1x

C5 and C6 form a (complete) cycle, expressing the equivalence Px =—.: Pj"+1x, which can be
directed resulting in the rule R1 = m'lx —> Px. In the same way C3 and the instance —.Pfx v
Pfllx of C4 can be transformed into a rule R2 = Pfi’x —) Pfx. Using R2, clause C 2 can be

rewritten into C2’ = —.Px v —.Pfx. Interreducing R1 with R2 yields the rule R3 = Pflx -—-> Px,

and finally we obtain Pfx —-> Px by repeatedly applying R3 to R1 (note that n is even). This rule
reduces Cz' to —.Px and C1to Px, which concludes the refutation. The length of this refutation

has order 0(n/2).

The next example illustrates the application of theory resolution to problems containing
cyclic structures.

5.2 Example

Translating SAM’s lemma into a clause set, avoiding the use of the equality predicate (see Wos
1988), results in a clause set S that consists of the following 11 units

{min(0 x 0). max (x 0 x), max(a b d1), min(d_1 C1 0), min(a !) d2), min(d2 cz 0),

min(c2 b e), min(c2 af) , max(c1 e g), max(cl fh) , «min(g h c1)}

and 6 non unit clauses:
(C1) ——.min(x y z) min(y x 2)

(C2) fimwdx y 2) maxO’ x Z)

(C3) —-:min(x y u) -~min(y 2 v) "1””.a v w) min(u z w)
(C4) ——1min(x y u) —1min(y z v) —1min(u z w) min(x v w)

(C5) amax(x y z) min(x z x)

(C5) -—.mz'n(x z x) —.max(x y x1) —\min(y z y!) -max(x y} 21) min(z xl 2!)

15

In the following we describe a refutation of this clause set using positive hyperresolution

together with theory resolution, as in chapter 4. The cyclic clauses Cl and C2, describing the

symmetry of the min and max predicates, can be used for theory resolution, as in example

4.3.b). The same holds for the clause Cs. which is neither self-resolving nor a member of a

cycle. The clauses C3 and C4, describing the associativity of the min predicate, form a semi­

cycle, which produces copies in the following way: Let DI, D2, D3 be clauses that resolve with

C3 to the unit clause D4. Then (DJ, D2, D4) resolves with C4 to a copy of D3. The resolution

closure of the semicycle V={ C3. C4} is not fmite, this cycle thus cannot be used directly for

theory resolution. But C3, C4 can be used to produce instances of 'Iv in the way, as shown in

figure 9:

I-mill (d2 e w) I min (0 b w) I

I -mill (0 b w) Imin (d2 e w) I

fig. 9

Only the relevant links are shown in this figure. The dotted links belong to the cycle. The

result of resolving {C3,C4} with the two units is a complete cycle, which is added to the theory

box. A resolution step of this particular kind will be abbreviated by the following diagram

(figure 10), where a cycle is represented by an equivalence within a bold faced box.

min (x v w) ;: min (u zw) ~ I min(c2d2w);: min(fbw) I

fig. 10

Diagram 10 shows that such a resolution step in fact is a way to obtain a rewrite rule from a

conditional rewrite rule.

Proceeding this way, only the clause C6 is needed to produce "ordinary" resolvents. Of

course, there is also the possibility to produce copies of already retained cycles. Taking into

account these reduncancies, a total 660 copies or instances of already present clauses are

generated in the proof.

The proof of SAM's lemma, as illustrated below, consists of 8 steps. The bold faced links

denote theory links, the used theories are denoted by their clauses. For instance, a link num­

bered with Cl denotes a theory link under the theory of Cl, that is the commutativity of min.

15

In the following we describe a refutation of this clause set using positive hyperresolution
together with theory resolution, as in chapter 4. The cyclic clauses C1 and C2, describing the
symmetry of the min and max predicates, can be used for theory resolution, as in example
4.3.b). The same holds for the clause C5, which is neither self-resolving nor a member of a
cycle. The clauses C3 and C4. describing the associativity of the min predicate, form a semi-
cycle, which produces copies in the following way: Let D1. 02, D3 be clauses that resolve with
C3 to the unit clause D4. Then (D1, D2, D4) resolves with C4 to a copy of D3. The resolution

closure of the semicycle D={C3, C4] is not finite, this cycle thus cannot be used directly for
theory resolution. But C3, C4 can be used to produce instances of Ta) in the way, as shown in

figure9:

[min(d2c20) lmnzs i l

Fmin(xyu) —~min(yzv)l-min(w1 nfin(uzwfl --min(d2ew) rnin(0bw)

I . n
" ' "'11.-

—-min(xyu) -min (yzv) min (uzw) min(w)

Imin (d2 c2 0) I I min (c2 be)

| finin(0bw) min(d2ew)

& 9
Only the relevant links are shown in this figure. The dotted links belong to the cycle. The

result of resolving {C3 ,C4} with the two units is a complete cycle, which is added to the theory
box. A resolution step of this particular kind will be abbreviated by the following diagram
(figure 10), where a cycle is represented by an equivalence within a bold faced box.

m' (0231') | |m in (abd2) I
| I

FaminOtyu) T—minwzvd min(w) Emin(uzw) I '_> I min(c2d2w) E min(fbw)

fig. IO

Diagram 10 shows that such a resolution step in fact is a way to obtain a rewrite rule from a
conditional rewrite rule.

Proceeding this way, only the clause C5 is needed to produce “ordinary” resolvents. Of
course, there is also the possibility to produce copies of already retained cycles. Taking into
account these reduncancies, a total 660 copies or instances of already present clauses are
generated in the proof.

The proof of SAM’s lemma, as illustrated below, consists of 8 steps. The bold faced links
denote theory links, the used theories are denoted by their clauses. For instance, a link num-
bered with C1 denotes a theory link under the theory of C1. that is the commutativity of min.

16

[x -> c2, Y-> b, U -> e. z -> a, v -> dl} El

==_mID_·_(_u_z_w_).... ~ I min (c2 b w) == min (e dl w) I"--­­

{x -> e, y -> cl, Z -> dl, yl -> 0, zl -> e}

I min (dl e g) I

[x -> c2. Y -> a, U -> f. Z -> dl, v -> a} E2

min (x vw) == min (u zw) ~ Imin (c2 a w) == min (f dl w)

(x -> c2. Y-> a, U -> f, Z -> b, v -> d2} E3

min (x v w) == min (u z w) Imin(c2d2w) == min(fbw)

[x -> f, Y -> b, U -> 0, Z -> c2, v -> e} E4

min (x v w) == min (u Z w) ~ Imin (f e w) == min (0 c2 w)

1....- .1....-__---'

(x -> f, Y-> dl, Z -> g. U -> f, v -> e} E5

min (x vw) == min (u zw) ~ Imin (fe w) == min (0 c2 w)
 ---..

[x->cl,y->f,z->g,xl->h,yl->O,zl->cl}

~ lmin (g h cl)

Imin (g h cl) r----i-rnin (g h cl) o

Acknowledgement

I would like to thank my colleague Norbert Eisinger for thoroughly reading this manuscript.

His comprehensive knowledge of the field, particularly about many examples and counter­

examples that arise in theorem proving, resulted in improvements of the paper.

References

Bibel, W. (1981). On Matrices with connections. Journal of the ACM 28/4, 633 - 645.

Biirckert, H.-I., HeroIc!, A. & Schmidt-SchauB, M. (1987). On Equational Theories, Unification and Decidability.
in: Lescanne, P. (00): Proc. of2nd Conference on Rewriting Techniques and Applications. Bordeaux,
France. Springer LNCS 256, 204 - 215.

Chang, C.L. & Lee, R.C. (1973). Symbolic Logic and Mechanical Theorem Proving. Academic Press. New
York.

16

Imin(c|2be)] Imaxfbam [x->c2,y-—>b,u—>e.z—>a,v—>dl] El

|lnin(xyu) -:min(yzv) Imin(w) 5min(uzw) I —> Imin(c2bw)amin(edlw)l

Imin(c2be) I Imax(c l eg) I Imin(d lc10) I Imax(x0x) I {x ->e ,y ->c l , z ->d l ,y l ->0 , z l ->e}

I C1 I C2 B1 I __)

L—anin (xzx) l-wmax (xyx l) I—umin (yzy l) I —max(xy1z l) min (l z l) I

|min(c2‚af) I I_max(abdl) I {x->c2,y—>a,u->f ,z->d1,v->a} EZ
c5 _

--min(xyu) W O W ") I HfinCXVW)Emin(uzw) I _) |min(c2aw) a min(fd1 w) I

[x->c2.y->a,u->f,z->b,v->d2} E3

Twat”) I —min(yzv)I min(w) Emin(uzw) | —) Imin(c2d2w) smin (fbw) |

E3 C1
Ifimin(xyu)—Ifinin(yzv)I min(w) E min(uzw) I __) |min(few) E min(0c2w) I

IniMCzlafl ”@011n I {x—>f‚y->d1,z->g,u—>f‚v->e} E5
E3

I —:min(xyu) Im1in(yzv) I min(w) E min(uzw) I _) I_min(few) min(002w)]

max (Cl f h) min (0 c2 0) max (x O x)
C5 154,55 {x -> c l , y -> f, z -> 3. x l -> 11, y l -> 0, Z] -> c l }

l—nmin(xzx)l quantum) |—.min(yzy1)|_—.max(xy1z1)Lmin(zx1z1)] -->

_) El

Acknowledgement

I would like to thank my colleague Norbert Eisinger for thoroughly reading this manuscript.
His comprehensive knowledge of the field, particularly about many examples and counter-
examples that arise in theorem proving, resulted in improvements of the paper.

References

Bibel, W. (1981). On Matrices with connections. Journal of the ACM 28/4, 633 - 645.

Bfirckert, H.-J., Herold, A . & Schmidt-SchauB, M. (1987). On Equational Theories, Unification and Decidability.
in: Lescanne, P. (ed): Proc. of 2nd Conference on Rewriting Techniques and Applications, Bordeaux,
France. Springer LNCS 256, 204 - 215.

Chang, C.L. & Lee, R.C. (1973). Symbolic Logic and Mechanical Theorem Proving. Academic Press. New
York.

17

Eisinger. N. (1981). Subsumption and Connection Graphs. Proceedings of the 7th IJCAI. Vancouver. 480 - 486.

Eisinger. N. (1988). Completeness. Confluence. and Related Properties of Clause Graph Resolution. PhD thesis
and SEKI-Report SR-88-07. Universitat Kaiserslautern.

Guard, J. et al (1969). Semi-Automated Mathematics. Journal ofthe ACM. 16,49 - 62.

Herold, A. (1983). Some Basic Notions of First Order Unification Theory. Internal Report, Universitat
Kaiserslautem.

Herold. A. & Siekmann. J. (1985). Unification in Abelian Semigroups. Memo-SEKI-85-ill. Universitat
Kaiserslautem.

Loveland, D.W. (1978). Automated Theorem Proving: A Logical Basis. North-Holland.

Markgraph. K. (1984). The Markgraph Karl Refutation Procedure. SEKI Memo MK-84-01, Universitat
Kaiserslautem.

Ohlbach. H.J. (1988). Using Automated Reasoning Techniques for Deductive Databases. SEKI-Report SR-88-06,
Universitat Kaiserslautern.

Overbeek. R. (1975). An Implementation of Hyper-Resolution. Computational Mathematics with Applications
1,201 - 214.

Shostak. R.E. (1976). Refutation Graphs. Artificial Intelligence. 7/1, 51 - 64.

Shostak. R.E. (1979). A Graph-Theoretic View of Resolution Theorem-Proving. Report SRI International.
Menlo Park.

Stickel, M. E. (1985). Automated Deduction by Theory Resolution. Journal ofAutomated Reasoning. 1/4, 333
- 356.

Stickel, M. E. (1986). Schubert's steamroller problem: Formulations and Solutions. Journal ofAutomated
Reasoning. 211, 89 - 102.

Vieille. L. (1987). Recursive Query Processing: The Power of Logic. ECRC Munich. Technical Report TR-KB­
17.

Wos, L. et.al. (1967). The Concept of Demodulation in Theorem Proving. Journal of the ACM, 14. 698 - 709.

Wos. L. (1988). Automated Reasoning: 33 Basic Research Problems. Prentice Hall. Englewood Cliffs.

17

Eisinger. N. (1981). Subsumption and Connection Graphs. Proceedings of the 7th IJCAI, Vancouver, 480 - 486.

Eisinger, N. (1988). Completeness, Confluence, and Related Properties of Clause Graph Resolution. PhD thesis
and SEKI-Report SR-88-07, Universität Kaiserslautem.

Guard, J. et al (1969). Semi-Automated Mathematics. Journal of the ACM. 16, 49 - 62-

Herold, A. (1983). Some Basic Notions of First Order Unification Theory. Internal Report, Universität
Kaiserslautern.

Herold, A. & Siekmann, J. (1985). Unification in Abelian Semigroups. Memo-SEKI-SS-IH. Universität
Kaiserslautern.

Loveland, DW. (1978). Automated Theorem Proving: A Logical Basis. North-Holland.

Markgraph, K. (1984). The Markgraph Karl Refutation Procedure. SEKI Memo MK-84-01, Universität
Kaiserslautern.

Ohlbach, HJ. (1988). Using Automated Reasoning Techniques for Deductive Databases. SEKI-Report SR-88—06.
Universität Kaiserslautern.

Overbeek. R. (1975). An Implementation of Hyper-Resolution. Computational Mathematics with Applications
1, 201 - 214.

Shostak. RE. (1976). Refutation Graphs. Artificial [Melligenca 7/1, 51 - 64.

Shostak. RE. (1979). A Graph-Theoretic View of Resolution Theorem-Proving. Report SRI International,
Menlo Park.

Stickel, M. E. (1985). Automated Deduction by Theory Resolution. Journal of Automated Reasoning. 1/4, 333
- 356.

Stickel. M. E. (1986). Schubert's steamroller problem: Formulations and Solutions. Journal of A utomated
Reasoning. 2/1, 89 - 102.

Vieille. L. (1987). Recursive Query Processing: The Power of Logic. ECRC Munich. Technical Report TR-KB-
17.

Wos, L. et.a1. (1967). The Concept of Demodulation in Theorem Proving. Journal of the ACM, 14, 698 - 709.

Wos, L. (1988). Automated Reasoning: 33 Basic Research Problems. Prentice Hall, Englewood Cliffs.

