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Abstract 
This paper proposes the notion of an extensible natural calculus, within a general setting of 

a computational model for human deductive reasoning. This research is motivated by a problem 
almost any contemporary automated reasoning system has to confront, namely, that these 
systems generate proofs of increasing complexity and length, that are almost incomprehensible 
for a human user. Hence the necessity to transform these machine generated proofs from their 
internal format into a more abstract and more human oriented style. 

Researchers have long been aware of the need for an intermediate representation, to spilt 
the entire transformation process from the machine oriented representation via this intermediate ::,." 

r~presentation finally into natural language. By analyzing the blueprint of the entire 
transformation process we fIrst point out that this intermediate representation should have the 
quality of being the direct product of a human deductive apparatus or, at least an appropriate 
mathematical abstraction thereof. Then, based on our preliminary empirical study, we point out 
the inadequateness of using proofs based on Gentzen' s natural deduction formalism as such an 
intermediate representation and set out our own proposal, called detailed natural proofs 

(DNPs). Here the notion of a proof step is generalized, by associating it to the notion of 
primitive cognitive procedures, rather than restricting it solely to inference rules of natural logic 

or mental logic. The main part of this paper is concerned with a formalism in which the DNPs 

can be encoded, called an extensible natural calculus. This discussion is carried out within the 
general setting of a computational model for human formal deductive reasoning. 
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Chapter 1. Introduction. 

Chapter 1. Introduction. 

This paper proposes a computational model for human formal deductive reasoning. Within 
this general setting, emphasis is laid on the notion of an extensible natural calculus, serving as a 
useful intermediate representation in the transformation of machine generated proofsinto a more 
natural argument presentation. In this introduction, we first give a brief account of traditional 
theories on natural logics and mental reasoning. Then, with the help of a blueprint of the entire 
transformation process, we point out the sort of intermediate representation we need. Since this 
intermediate representation should have to possess the quality of being the direct products of a 
human deductive apparatus, we fmally try to give some rough ideas as to how the traditional 
theories of mental reasoning have to be extended, in order to help to pin down this intermediate 
representation. 

The word "natural" was flISt used by Gerhard Gentzen for his logic motivated by the desire 
"to set up a formal system that came as close as possible to actual reasoning" [Gentzen 1964]. 
More recently, naturaL Logics (also called mentaL Logics) are often studied within the framework 
of cognitive models of deductive reasoning by cognitive psychologists [Braine 78] [Lakoff 70] 

[Rips 81] [Johnson-Laird 83], where they serve as a candidate for an internal structure that is 
responsible for the human reasoning competence. From this point of view, a model of 
deductive reasoning is believed to contain mainly two components: 1) A logical componbnt 
containing a repertoire of deductive vocabularies available to a human being, Le. a natural logic 
in :form of a set of inference schemata, where the patterns of the premises and of the conclusion 
are specified by formula schemata 2) A performance component that contains mainly heuristics 
and programs responsible for putting inference rules together to form arguments or proofs. 

The original incentive for our study on human deductive reasoning lies however in another 
scientific endeavor, namely the transformation of machine generated proofs into readable and 
adequate proofs in natural language (NL), via appropriate intermediate representations. As a 
whole, such a system carries out two different albeit closely related cognitive skills of human 
beings: the ability of performing formal deductions and the ability of presenting a proof in an 
effective and cooperative way. To simulate such a two-stage cognitive process on a computer, 
two computational theories are needed to simulate each of them. Also, there must be at least one 
intermediate rept~s'ei1tation, as illustrated in Fig; '1.1. The transformation between these 
different representations can only be devised if the concept of human oriented proofs is more 
precisely pinned down. The second cognitive skill, on the other hand, is simulated mainly by a 
computational model for human proof presentation [Huang 90]. On the observation, that mainly 
decisions for the inclusion or omission of each reasoning step in a proof are made in the 
presentation process, before other more natural language specific operations take effect, the 
intermediate representation we are looking for must be the pure logic proofs represented as such 
before any operations of arrangement have ever taken effect. We may call proofs serving as our 
intermediate representation detaiLed natural proofs (DNPs). Under this definition, detailed 
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This paper proposes a computational model for human formal deductive reasoning. Within
this general setting, emphasis is laid on the notion of an extensible natural calculus, serving as a
useful intermediate representation in the transformation of machine generated proofsinto a more
natural argument presentation. In this introduction, we first give a brief account of traditional
theories on natural logics and mental reasoning. Then, with the help of a blueprint of the entire
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intermediate representation should have to possess the quality of being the direct products of a
human deductive apparatus, we finally try to give some rough ideas as to how the traditional
theories of mental reasoning have to be extended, in order to help to pin down this intermediate
representation.

The word “natur ” was first used by Gerhard Gentzen for his logic motivated by the desire
“to set up a formal system that came as close as possible to  actual reasoning” [Gentzen 1964].
More recently, natural logics (also called mental logics) are often studied within the framework
of cognitive models of deductive reasoning by cognitive psychologists [Braine 78] [Lakoff 70]
[Rips 81] [Johnson-Laird 83], where they serve as a candidate for an internal structure that is
responsible for the human reasoning competence. From this point of view, a model of
deductive reasoning is believed to contain mainly two components: 1) A logical compon’ent
containing a repertoire of deductive vocabularies available to a human being, i.e. a natural logic
in form of a set of inference schemata, where the patterns of the premises and of the conclusion
are specified by formula schemata. 2) A performance component that contains mainly heuristics
and programs responsible for putting inference rules together to form arguments or  proofs.

The original incentive for our study on human deductive reasoning lies however in another
scientific endeavor, namely the transformation of machine generated proofs into readable and
adequate proofs in natural language (NL), via appropriate intermediate representations. As a
whole, such a system carries out two different albeit closely related cognitive skills of human
beings: the ability of performing formal deductions and the ability of presenting a proof in an
effective and cooperative way. To simulate such a two-stage cognitive process on a computer,
two computational theories are needed to simulate each of them. Also, there must be at least one
intermediate refifé‘sréiitation, as illustrated in Fig. -1.1. The transformation between these
different representations can only be devised if the concept of human oriented proofs is more
precisely pinned down. The second cognitive skill, on the other hand, is simulated mainly by a
computational model for human proof presentation [Huang 90]. On the observation, that mainly
decisions for the inclusion or omission of each reasoning step in a proof are made in the
presentation process, before other more natural language specific operations take effect, the
intermediate representation we are looking for must be the pure logic proofs represented as such
before any operations of arrangement have ever taken effect. We may call proofs serving as our
intermediate representation detailed natural proofs (DNPs) .  Under this  definition, detailed
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natural proofs are nothing more than proofs where all reasoning steps performed by our 

deductive apparatus are still present. 

The Framework of a Computational Reasoner 

Representations Computational Theories Cognitive Skills 

Logic EnCfg of Problems 
Formal Deductive Automated Theorem Proving 
Reasoning 

Machine G nerated Proofs 
~ Logic 

uman Oriented Proofs~ Computational Model for 
(DNPs) Human Deductive Reasoning 

Presentation of LI-- Computational Model for Human Formal 
, Proof Presentation Argumentations
 

Preverbal ~:sLs_ag_e_s _
r- Linguistic Theories 

atural Language Proofs 

Fig. 1.1 

What, however, are the direct products of a human deductive apparatus, and in particular, 
what are the primitive steps of such a proof? This, to the best of our knowledge, has not been 

investigated in any real depth. Though no explicit claims as to these direct products have been 
made in traditional models of human deductive reasoning, it has be taken for granted by many 
AI scientists, that it can be represented by a sequence of reasoning steps each justified by an 
inference rule of a natural (or mental) logic, with Gentzen's natural deduction system as a 
typical example. 

Attempts have been made to transform proofs in machine oriented formalisms to natural 
deduction proofs [Andrews 80] [Miller 83] [Pfenning 90] [Lingenfelder 90]. Also some effort 
has been spent on constructing natural language generators, taking as input a natural deduction 
proof [Chester 76] [McDonald 83]. The experiences with these systems seem to indicate, that 

this is not an appropriate basis for a human oriented presentation. While proofs in various 
machine oriented formalisms have rather smoothly been transformed into natural deduction 
proofs, the latter, as a maner of fact, turn out to be an inappropriate basis for formulating 
pragmatic constraints concerning the presentation of arguments. The length of the natural 
deduction proofs alone, even of the best proofs for some simple problems encoded in this 

formalism, indicates that surely they can not be natural products of the human deductive 
apparatus, even not possibly mathematical approximations thereof [Huang 89]. To summarize, 
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natural proofs are nothing more than proofs where all reasoning steps performed by our
deductive apparatus are still present.

The  Framework of  a Computat ional  Reasoner
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What, however, are the direct products of a human deductive apparatus, and in particular,

what are the primitive steps of such a proof? This, to the best of our knowledge, has not been
investigated in any real depth. Though no explicit claims as to these direct products have been
made in traditional models of human deductive reasoning, it has be taken for granted by many
AI scientists, that it can be represented by a sequence of reasoning steps each justified by an
inference rule o f  a natural (or  mental) logic,  with Gentzen’s natural deduction system as a
typical example.

Attempts have been made to transform proofs in machine oriented formalisms to natural
deduction proofs [Andrews 80] [Miller 83 ]  [Pfenning 90] [Lingenfelder 90] .  Also some effort
has been spent on constructing natural language generators, taking as input a natural deduction
proof [Chester 76 ]  [McDonald 83] .  The experiences with these systems seem to indicate, that
this is  not an appropriate basis for a human oriented presentation. While proofs in various
machine oriented formalisms have rather smoothly been transformed into natural deduction
proofs, the latter, as a matter of fact, turn out to be an inappropriate basis for formulating
pragmatic constraints concerning the presentation of arguments. The length of the natural
deduction proofs alone, even of the best proofs for some simple problems encoded in this
formalism, indicates that surely they can not be natural products of the human deductive
apparatus, even not possibly mathematical approximations thereof [Huang 89]. To summarize,
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we need a computational model of human deductive reasoning, or at least a framework of it, 

that tells us what DNPs are. 

In order to gain more reliable experience with DNPs, in particular to clarify what kind of 
reasoning steps humans being perform, we have conducted some preliminary empirical studies: 
we took a mathematical textbook for undergraduates [Deussen 71] and encoded the theorems of 

the first chapter into predicate logic. Then we tried to make DNPs out of the proofs given in the 

book, by fIlling back all reasoning steps we believe to have been omitted. At the same time, we 

tried to make explicit the justifIcation for each reasoning step. The same procedure was later 
carried out on some non-mathematical examples as well. To our surprise, only a small amount 

of reasoning steps are found to be justifIed by inference rules of Gentzen's natural deduction. 

Most, are either justified by the application of some new rules associated to Gentzen's rules in a 

particular way (they together are called inference rules at the logic level), or are believed to be 

justified by applying an axiom, a defmition, or a theorem. On the account that mathematical 

axioms, definitions and theorems are nothing more than assertions in a logical system, these 

justifications will henceforth be called uniformly the application ofan assertion. Later, it tumed 

out that assenions in non-mathematical reasoning are often applied in a similar way. Hence, to 

summarize, a DNP can be conceived as a sequence of reasoning steps each justified by either 

the application of an inference rule or by the application of an assenion. However the latter, is 
still to be accounted for appropriately in a computational model. 

Although we will show later, that an extensible natural calculus will suffice to suppon a 
mathematical abstraction of DNPs, the DNPs themselves and especially the notion or' an 

extensible calculus goes beyond the scope of the traditional mod~ls of deductive reasoning. The 
central problem is how to account for the notion of a reasoning step, which is the elementary 
unit of a DNP, within a model of human reasoning. We first point out that although we agree 
with the assumption that inference rules of a natural logic are responsible for human deductive 

competence, it does not follow that there is a one-to-one relation between inference rules and 

reasoning steps. Instead, we suggest a one-to-one relation between reasoning steps and the 
notion of a primitive cognitive procedure, which we shall define later on. 

Now let us examine how this change of perspective provides an account for our 

observations on DNPs. What do we mean when we say drawing a conclusion by the 
application of an inference rule? From the viewpoint of a computational model, we mean that a 

primitive cognitive procedure is called that draws a conclusion by matching premises against a 
specific inference rule. From suc1ia procedural point of view, we fmd it plausible to suggest a 
more general structure for the so called logical component: there is some knowledge such as 
the inference rules, and there are some primitive procedures drawing conclusions based on this 
knowledge, such as the matching procedure. From this pOint of view, we only need to add a 

primitive procedure drawing conclusions based on assenions. As the matching procedure, this 
procedure differs from other procedures of the performance component in that it runs according 

to a simple and fixed algorithm, that does not need any heuristic knowledge, and does not have 
a problem space to search in. 
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we need a computational model of human deductive reasoning, or at least a framework of it,
that tells us what DNPs are.

In order to gain more reliable experience with DNPs, in particular to clarify what kind of
reasoning steps humans being perform, we have conducted some preliminary empirical studies:
we took a mathematical textbook for undergraduates [Deussen 71] and encoded the theorems of
the fust chapter into predicate logic. Then we tried to make DNPs out of the proofs given in the
book, by filling back all reasoning steps we believe to have been omitted. At the same time, we
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Most, are either justified by the application of some new rules associated to Gentzen’s rules in a
particular way (they together are called inference rules at the logic level), or  are believed to be
justified by applying an axiom, a definition, or a theorem. On the account that mathematical
axioms, definitions and theorems are nothing more than assertions in a logical system, these
justifications will henceforth be called uniformly the application of an assertion. Later, it turned
out that assertions in non-mathematical reasoning are often applied in a similar way. Hence, to
summarize, a DNP can be conceived as a sequence of reasoning steps each justified by either
the application of an inference rule or by the application of an assertion. However the latter, is
still to be accounted for appropriately in a computational model.

Although we will show later, that an extensible natural calculus will suffice to support a
mathematical abstraction of DNPs, the DNPs themselves and especially the notion of'an
extensible calculus goes beyond the scope of the traditional models of deductive reasoning. The
central problem is how to account for the notion of a reasoning step, which is the elementary
unit of a DNP, within a model of human reasoning. We first point out that although we agree
with the assumption that inference rules of a natural logic are responsible for human deductive
competence, it does not follow that there is a one-to-one relation between inference rules and
reasoning steps. Instead, we suggest a one-to-one relation between reasoning steps and the
notion of a primitive cognitive procedure, which we shall define later on.

Now let us examine how this change of perspective provides an account for our
observations on DNPs. What do  we mean when we say drawing a conclusion by the
application of an inference rule? From the viewpoint of a computational model, we mean that a
primitive cognitive procedure is called that draws a conclusion by matching premises against a
speéific inference rule. From sucl'i‘a procedural point of view, we find it plausible to suggest a
more general structure for the so called logical component: there is some knowledge such as
the inference rules, and there are some primitive procedures drawing conclusions based on this
knowledge, such as the matching procedure. From this point of view, we only need to add a
primitive procedure drawing conclusions based on assertions. As the matching procedure, this
procedure differs from other procedures of the performance component in that it runs according
to a simple and fixed algorithm, that does not need any heuristic knowledge, and does not have
a problem space to  search in.
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Our definition of such a procedure is based on a crucial observation in our empirical studies: 
although these reasoning steps are always considered as atomic steps, people give explanations 
for them, when forced or motivated, and these explanations amount to a proof segment, where 
reasoning steps are justified solely by elementary logic level inference rules. Let us illustrate 
this by the following example: 

Example 1. 

Given the definition of subset as the following assertion 

VF,U U~F<=>Vx XE U=aE F 

a human being will infer al EFl from U1~F 1 and al E U 1 in one step, by applying this 

assertion. However, when he is forced to explain why this reasoning step follows from the 

definition above, (for instance, by a student with no training in logic and mathematics), his 

explanation will usually be something based on the following natural deduction proof, in a 

linearized version of Gentzen's natural deduction, frrst proposed by Andrews [Andrews 80]. 

Most important are the derived formulae in the middle and the inference rules used in the last 

column, with preconditions in parenthesis: 

1. 1 f- Ul~Fl HYP 

2. 2 f- alE Ul HYP 
I, 

3. 3 f- VF,U U~F<=>Vx XEU~XEF HYP 

4. 3 f- Ul~Fl<=>VX XEUl~XEFl VD(3) 
' . 
. 5. 3 f- Ul~Fl~VX XEUl~XEFl <=>D(4) 

6. 1, 3 f- Vx XEUl~XEFl ~D(1, 5) 

7. 1, 3 f- alE Ul~alE Fl VD(6) 

8. 1, 2, 3 f- alE Fl ~D(2,7) 

Of course, it will be given in a much more informal way, and with some steps omitted. 
Based on this observation, we have come up with a defmition suggests that this procedure 
draws conclusions by constructing logic level proofs, which are however, structurally strongly 
restricted. These logic level proofs will henceforth be referred to as the natural expansions (NE) 

of the assertion level reasoning steps. That the reasoning performed by this procedure can 
intuitively be seen as one step in a formal proof, rather than a proof segment, lies on its special 
cognitive characteristics. Namely that it is conceived as being very simple by a mathematician 
with some conpetence. 

Assertion level inference steps may be justified by inference rules as well. These are 
however usually acquired during reasoning task. This leads to the notion of an extensible 
calculus, that corresponds to a learning mechanism of the computational model. This is the 
second divergence from traditional theories, which assume the existence of psychologically 
elementary rules that are fixed once and for all. Let us illustrate the way such a rule may be 

formed and entered into our rule set by continuing with the example above. It is not difficult to 
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Our definition of such a procedure is based on a crucial observation in our empirical studies:
although these reasoning steps are always considered as atomic steps, people give explanations
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assertion. However, when he is forced to explain why this reasoning step follows from the

definition above, (for instance, by a student with no training in logic and mathematics), his
explanation will usually be something based on the following natural deduction proof, in a
linearized version of Gentzen’s natural deduction, first proposed by Andrews [Andrews 80].
Most important are the derived formulae in the middle and the inference rules used in the last
column, with preconditions in parenthesis:

1. 1 F— UlgFl HYP
2 .  2 0—— a le  U1  - HYP ,
3. 3 l— VF,U UgF4=Vx xe U=xe F HYP '

_ 4 .  3 !— UlcF14=Vx xe U1=>xe F1  VD(3)
5. 3 l— U1;F1=>Vx e1=xe F1 =>D(4)
6 .  1,  3 |»— Vx xe  U1=xe  F1 =>D(l‚ 5)
7 .  1 ,  3 l—- a le  U1=>ale F1 VD(6)
8 .  1,  2 ,  3 l— a l e  F1 =>D(2,7)

Of course, it will be given in a much more informal way, and with some steps omitted.
Based on this observation, we have come up with a definition suggests that this procedure
draws conclusions by constructing logic level proofs, which are however, structurally strongly
restricted. These logic level proofs will henceforth be referred to as the natural expansions (NE)
of the assertion level reasoning steps. That the reasoning performed by this procedure can
intuitively be seen as one step in a formal proof, rather than a proof segment, lies on its special
cognitive characteristics. Narnely that it is  conceived as being very simple by a mathematician
with some conpetence.

Assertion level inference steps may be justified by inference rules as well. These are
however usually acquired during reasoning task. This leads to the notion of an extensible
calculus, that corresponds to a learning mechanism of the computational model. This is the
second divergence from traditional theories, which assume the existence of psychologically
elementary rules that are fixed once and for all. Let us illustrate the way such a rule may be
formed and entered into our rule set by continuing with the example above. It is not difficult to
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imagine, after drawing the conclusion ale FI by constructing the proof segment above, an 
inference rule as follows that is acquired, as a side-product: 

UI~FI,aleUi where Ui, Fi and ai are object constant 
aleFi 

This, in turn, may be generalized into another more general inference rule by replacing 

constants UI. Fi and al by meta-variables U, F and a. This, now, may be memorized and 

added to the natural calculus: 

U~F, aeU 
where U, F and a are meta-variables for object constant 

aeF 

The generalization involves only variables that do not originally occur in the assertion. 

According to our model, it is now important to point out that assertion level reasoning steps can 

be carried out in two distinct ways: either by a procedure constructing a logical level proof 

segment, or more efficiently, by matching against an assertion level inference rule, acquired in a 

previous context. 

With the actual form of DNP established, we may now design a mathematical abstraction 
of it, which can be encoded in a extensible natural calculus and which can serve the goal of 
proof transformation as well. For each proof step in DNP, following the tradition, we may also 
write down the knowledge used in the justification process, rather than the procedures. Witl\il' 
the framework described above, the knowledge concerned may in the first place be an inference 
rul:e at the logic level. In the second place, for assertion level steps, it may either be the 
assertion itself, or an inference rule derived from it, depending on context. On the ground that a 
rule is simply more specific, anyway, we have chosen to give a derived rule at the assertion 
level as the justifIcation. To conclude, the mathematical abstraction of DNPs will be encoded in 
an extensible natural calculus including inference rules at the logical level as well as at the 
assertion level. We will talk about DNPs from now on, referring to DNPs themselves and there 
mathematical abstractions interchangeably. 

In the rest of this paper, we proceed gradually to our goal: the notion of an extensible 
natural calculus. The whole discussion is carried out in the framework of a computational 
model of formal deductive reasoning. Although the psychological realness is not our main 
concern, much value is still put on the cognitive-adequateness of the model set up. It should 
shed more light on the internal structure underlying the cognitive skill of formal deductive 
reasoning, besides serving as an environment to discuss the natural calculus. Of course, 
emphasis is put on the procedure applying assertions as well as on the mechanism accounting 
for the formation of new inference rules. The rest of the paper is therefore straightforward as 
follows: Chapter 2 provides an overall structure of the computational model. Chapter 3 to 6 are 
each dedicated to one element related to the building up of the natural calculus. Related works 
and possible applications of the natural calculus are discussed fmally in Chapter 7. 

7
 

Chapter 1. Introduction.

imagine, after drawing the conclusion a l e  F1 by constructing the proof segment above, an
inference rule as follows that is acquired, as a side-product:

UrcF i . a1€Ui
where UI ,  F1 and a l  are object constant

a l e  F1

This, in turn, may be generalized into another more general inference rule by replacing
constants U1, F1 and a l  by meta-variables U, F and a. This, now, may be memorized and
added to the natural calculus:

UcF,  ae  U
F where U, F and a are meta-variables for object constant

ae

The generalization involves only variables that do not originally occur in the assertion.
According to our model, it is now important to point out that assertion level reasoning steps can

be carried out in two distinct ways: either by a procedure constructing a logical level proof
segment, or more efficiently, by matching against an assertion level inference rule, acquired in a
previous context.

With the actual form of DNP established, we may now design a mathematical abstraction
of it, which can be encoded in a extensible natural calculus and which can serve the goal of
proof transformation as well. For each proof step in DNP, following the tradition, we may also
write down the knowledge used in the justification process, rather than the procedures. Within
the framework described above, the knowledge concerned may in the first place be an inference
rule at the logic level. In the second place, for assertion level steps, it may either be the
assertion itself, or an inference rule derived from it, depending on context. On the ground that a
rule is simply more specific, anyway, we have chosen to give a derived rule at the assertion
level as the justification. To conclude, the mathematical abstraction of DNPs will be encoded in
an extensible natural calculus including inference rules at the logical level as well as at" the
assertion level. We will talk about DNPs from now on, referring to DNPs themselves and there
mathematical abstractions interchangeably.

In the rest of this paper, we proceed gradually to  our goal: the notion of an extensible
natural calculus. The whole discussion is carried out in the framework of a computational
model of formal deductive reasoning. Although the psychological realness is not our main
concern, much value is still put on the cognitive~adequateness of the model set up. It should
shed more light on the internal structure underlying the cognitive skill of formal deductive
reasoning, besides serving as an environment to discuss the natural calculus. Of course,
emphasis is  put on the procedure applying assertions as well as on the mechanism accounting
for the formation of new inference rules. The rest of the paper is therefore straightforward as
follows: Chapter 2 provides an overall structure of the computational model. Chapter 3 to 6 are
each dedicated to one element related to the building up of the natural calculus. Related works
and possible applications of the natural calculus are discussed finally in Chapter 7 .
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Chapter 2. General Framework of a Computational Model 

In this chapter, we fIrst set up an overall framework of a computational model for human 
formal deductive reasoning. The structure we are going to propose is very similar to an abstract 
data type. There are in the fIrst place memory spaces holding data, and in the second place, 
operators manipulating the data. Finally, there are effective procedures carrying out the 
cognitive skills concerning formal deductive reasoning. They carry out their tasks either by 
applying some operators or by calling some other procedures. We shall now provide a short 
description of each of them: 

2.1. Memory Spaces: 

As conventionally, we assume the existence of a long term memory (LTM) and a short 
term or working memory (WM), where the latter can be intuitively viewed as the focused part 
of the entire memory space. It contains only objects a human being is attending to at present, 
and is supposed to be limited in space. 

2.2. Data in Memory Spaces 

For the sake of simplification, we assume that the only content stored in both of the 
memory spaces are of the following three sorts: 

f I h . th f f 5[1 f- P1, ... ,)ln I-Pn h PI Pa) m erence ru e sc . emata m e orm 0 , were . ,... , n are 
)l'f-Q 

formula schemata specifying premises, and Q is a formula schema specifying the conclusion. 
)l1 •...• ~, and ;t' are the corresponding assumptions (see below). When no manipulations on 

assumptions are needed, we also use a simplifIed fonn PI. <2" ,Pn. 

Postulate: There is a fIxed set of primitive inference rule schemata, which reside 
permanently in W:M: They possess the cognitive status as of being elementary and innate, as 
apposed to compound and acquired. In terms of the computation model, they are not generated 
by any operators or procedures. 

b) Assertions encoded in fust-order predicate logic. 

c) Detailed natural proofs (DNPs) and the unfInished fragments thereof. Since a proof or 
an argument is generally believed to be a chain of reasoning steps, we have adopted the 
linearized version of natural deduction proofs used in [Andrews 80], slightly modified in order 
to accommodate assertion level inference steps. Formally, every natural deduction proof is a 
finite sequence of proof lines each of the form: 
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Chapter 2.  General Framework of a Computational Model

In this chapter, we first set up an overall framework of a computational model for human
formal deductive reasoning. The structure we are going to propose is very similar to an abstract
data type. There are in the first place memory spaces holding data, and in the second place,
operators manipulating the data. Finally, there are effective procedures carrying out the
cognitive skills concerning formal deductive reasoning. They carry out their tasks either by
applying some operators or by calling some other procedures. We shall now provide a short
description of each of them:

2.1. Memory Spaces:

As conventionally, we assume the existence of a long  term memory (LTM) and a short
term or working memory (WM), where the latter can be intuitively viewed as the focused part
of the entire memory space. It contains only objects a human being is attending to at present,
and is supposed to be limited in space.

2.2. Data in Memory Spaces

I For the sake of simplification, we assume that the only content stored in both of the
memory spaces are of the'following three sorts:

M, 
where Fi,-MP“ arem—Q

formula schemata specifying premises, and Q is a formula schema specifying the conclusion.
A1, an, and R '  are the corresponding assumptions (see below). When no  manipulations on

assumptions are needed, we also use a simplified fo Pl ’  Q ’P".

a) inference rule schemata in the form of

W1 There is  a fixed set o f  primitive inference rule schemata, which reside
permanently in WM; They possess the cognitive status as of being elementary and innate, as
apposed to compound and acquired. In terms of the computation model, they are not generated
by any operators or procedures.

b) Assenions encoded in first-order predicate logic.

c )  Detailed natural proofs (DNPs) and the unfinished fragments thereof. Since a proof or
an argument is generally believed to be a chain of reasoning steps, we have adopted the
linearized version of natural deduction proofs used in [Andrews 80], slightly modified in order
to accommodate assertion level inference steps. Formally, every natural deduction proof is a
finite sequence of proof lines each of the form:
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line-No Jl ~- '.J ~(reason-pointers) 

where line-No is a natural number, Jl is a fmite, possibly empty set of formulas, which are 
called assumptions. And '.Jis the derived formula. The reason pointers, fmally, are a set of 
previous proof lines, which are taken by the primitive procedure ~ustifying this proof line as 

preconditions. The reason pointers and the preconditions are usually replaced by their line 

numbers. Every proof line in a valid proof is justified in one of the following ways: 

a) by a matching procedure that matches against a cognitively elementary inference rule, 

b) by a matching procedure that matches against a cognitively compound inference rule 

generated by one of the rule generating operators, 

c) by a primitive procedure applying an assertion in WM. 

No commitment is made as to the form of unfmished segments of DNPs. 

2.3. Operators and Primitive Procedures: 

a) bookkeeping operators moving objects of various data type out of or into memory spaces, 

and bookkeeping procedures 

b) a procedure drawing conclusions by matching premises against inference rule schemas, 

l:C) a procedure drawing conclusions, by constructing logic level proofs with certain structural 
constraints, 

d) an operator generating associated inference rules from existing rules residing in WM. 

e) an operator generating new inference rules from assertions in WM, hand in hand with the 
assertion application procedure c), in a way illustrated in the introduction. The rules 
generated possess the cognitive status as being compound and acquired. 

Different from autonomous procedures to be introduced below, the primitive procedures all 
follow a fixed algorithm without any heuristic search, and thus can be performed by reasoners 

without undue attention. They correspond to the effective procedures discussed by cognitive 
psychologists f~e.g. John~Laird 83].· .~", 

4. Autonomous Procedures 

Complex cognitive skills, in particular those which are observable by introspection, are 
carried out by the autonomous procedures in our computational model. Some examples are: 

a) an interface procedure 
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line—No A r— T “reason-pointers)

where line-No is a natural number, fit is  a finite, possibly empty set of formulas, which are
called assumptions. And 9’ is the derived formula. The reason pointers. finally, are a set of
previous proof lines, which are taken by the primitive procedure Rjustifying this proof line as
preconditions. The reason pointers and the preconditions are usually replaced by their line
numbers. Every proof line in a valid proof is justified in one of the following ways:

a) by a matching procedure that matches against a cognitively elementary inference rule,

b) by a matching procedure that matches against a cognitively compound inference rule
generated by one of the rule generating operators,

c) by a primitive procedure applying an assertion in WM.

No commitment is made as to the form of unfinished segments of DNPs.

2.3. Operators and Primitive Procedures:

a) bookkeeping operators moving objects of various data type out of or into memory spaces,
and bookkeeping procedures

I

b) a procedure drawing conclusions by matching premises against inference rule schemas,

.~.c) a procedure drawing'conclusions, by constructing logic level proofs with certain structural
constraints,

(1) an operator generating associated inference rules from existing rules residing in WM.

e) an operator generating new inference rules from assertions in WM, hand in hand with the
assertion application procedure c), in a way illustrated in the introduction. The rules
generated possess the cognitive status as being compound and acquired.

Different from autonomous procedures to be introduced below, the primitive procedures all
follow a fixed algorithm without any heuristic search, and thus can be performed by reasoners
without undue attention. They correspond to the effective procedures discussed by cognitive
psychologists {meg J ohn-Laird 83]. ~ f ‘ “"“

4 .  Autonomous Procedures

Complex cognitive skills, in particular those which are observable by introspection, are
carried out by the autonomous procedures in our computational model. Some examples are:

a) an interface procedure
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b) complex reasoning procedures such as: a proof construction procedure and a proof 
checking procedure 

Now where is the place for an extensible natural calculus within such a model? It should 

apparently be the sum total of inference rules which may once be generated and thus be at the 
disposal of the complex autonomous reasoning procedures. In our computational model, an 
assumption is made that the complex reasoning procedures are both able to move each assenion 
or inference rule in LTM into WM, and able to generate every possible inference rule by 

applying the two rule generating operators. Although a natural calculus is by nature a dynamic 

entity,it follows apparently that given a collection of assertions known (in LTM or WM), the 

correspondmg natural calculus is uniquely determined by the following three elements: a fixed 
set of elementary rules and the two rule generating operators. 

Before proceeding to the chapters that elaborate each of these three elements, it is worth 

examining the inference rules from the perspective of their cognitive status: On the ground that 
all assertion level rules are acquired by running a procedure constructing a proof segments 
justified by elementary rules, they can logically be thought of as macros which are compound in 
nature. Thus it is the set of cognitively elementary or innate inference rules that accounts for the 
ultimate logical competence of a human being. To account for the effective competence, 
nevenheless, it has to be enriched by those macros, which can be momenterily at the disposal 

of a reasoner as well. Whether an assertion level reasoning step is drawn by simply matching or 
by a procedure constructing a low level proof segment, depends on whether the corresponding 
assenion level rule is acquired in a previous context. 

10
 

Chapter 2. General Framework of a Computational Model

b) complex reasoning procedures such as: a proof construction procedure and a proof
checking procedure

Now where is the place for an extensible natural calculus within such a model? It should
apparently be the sum total of inference rules which may once be generated and thus be at the
disposal of the complex autonomous reasoning procedures. In our computational model, an
assumption is made that the complex reasoning procedures are both able to move each assertion
or inference rule in LTM into WM, and able to generate every possible inference rule by
applying the two rule generating operators. Although a natural calculus is by nature a dynamic
entity,it follows apparently that given a collection of assertions known (in LTM or WM), the
corresponding natural calculus is uniquely determined by the following three elements: a fixed
set of elementary rules and the two rule generating operators.

Before proceeding to the chapters that elaborate each of these three elements, it is worth
examining the inference rules from the perspective of their cognitive status: On the ground that
all assertion level rules are acquired by running a procedure constructing a proof segments
justified by elementary rules, they can logically be thought of as macros which are compound in
nature. Thus it is the set of cognitively elementary or innate inference rules that accounts for the
ultimate logical competence of a human being. To account for the effective competence,
nevertheless, it has to be enriched by those macros, which can be momenterily at the disposal
of a reasoner as well. Whether an assertion level reasoning step is drawn by simply matching or
by a procedure constructing a low level proof segment, depends on whether the corresponding
assertion level rule is acquired in a previous context.
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Chapter 3. Cognitively Elementary Inference Rules. 

As the foundation of the entire discussion, we first introduce in this chapter the set of 
cognitively elementary inference rules. It was no doubt a significant achievement of Gentzen to 
have identified a group of primitive inference rules in 1930, which comprise his natural 
deduction calculus [Gentzen 30]. His work is supported by our empirical studies once again 
showing that the main part of the cognitively elementary rules with respect to formal deductive 
reasoning are really already suggested by him. The following is a listing of the inference rules 
presented in his calculus NK: 

Structural Gentzen Rules: 

Jt,F I-G Jt/--FvG, JI,F 1- H, JI,G 1- H JlJ-3x Fx, Jt,Fa I--H 

JI,F 1- F JI,F~G Jl/--H %-H 

HYPothesis DEDuction CASE CHOICE 

IP(Indirect Proof) 

Non-Structural Gentzen Rules 

JI 1-- F, JI I--G JI /--F JI 1--0 JI /--Fa JI I--Fa 

JI I-FI\O JI I-FvO JI I-FvG JI I--V x F x Jt 1--3 x Fx 

vI VI 31 

JI I-FI\G JI I-FI\G JI /--F, ;;t I-F~ G 

Jt /--F Jt 1-0 Jt 1--0 

=>D VD
 

JI 1--F, J.'I 1--, F 
-iI~_ ., 

J.'I1--1.. 

-.D 1.. -. -, 

Every figure above shows an inference rule. Formula schemata separated by commas 
above the bar represent preconditions (also called reasons). Meta-variables F, 0 and H can be 
substituted by any formula, Vx Fx, 3x Fx by any formula with V or 3 as the top symbol, 

where x denotes,"the corresponding bound variable. Fa denotes the formula achieved by 
replacing all occurrences of the bound variable "x" in Fx by an individual constant "a". The 
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As the foundation of the entire discussion, we first introduce in this chapter the set of
cognitively elementary inference rules. It was no doubt a significant achievement of Gentzen to
have identified a group of primitive inference rules in 1930, which comprise his natural
deduction calculus [Gentzen 30]. His work is supported by our empirical studies once again
showing that the main part of the cognitively elementary rules with respect to formal deductive
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IP(Indirect Proof)

Non-St ruc tura l  Gentzen Rules

fit :—— F ,  fit l——G 54 »——F z |——G fl |—-Fa fll l—Fa
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AD => D VD
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Every figure above shows an inference rule. Formula schemata separated by commas
above the bar represent preconditions (also called reasons). Meta-variables F,  G and H can be
substituted by any formula, VX Fx, 3x  Fx by any formula with V or 3 as the top symbol,
where x denotes„the corresponding bound variable. Fa denotes the formula achieved by
replacing all occurrences of the bound variable “x” in Fx by an individual constant "a". The
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Meta-variables "a" in 'VD can be substituted by an arbitrary term. For rule 'VI and CHOICE, in 

addition, the following variable conditions must be checked respectively: 

The variable Condition for 'VI: meta-variable "a" (Eigenvariable in [Gentzen 30]) may not 

occur in 'Vx Fx or in any formula in the assumption set >t 

The variable Condition for Choice: meta-variable "a" may not occur in H, or in any formula 
in the assumption set >t 

Only one symmetric pair of additional cognitively elementary rules was identifie~ during 

our empirical studies. They were given the name vD: 

~ l--PvQ, ~ I-...,P ~ l--PvQ, ~ I--,Q 
vD. 

~ l--Q ~ I--P 

We also make an extension to the condition, under which a rule can be applied, to 

enhance the naturalness. In the traditional natural deduction systems, to apply a rule 

Pl, ... ,Pn
 
Q
 

for each precondition Pi, a previous proof line must be found, whose derived formula F is the 
corresponding instance of Pi. Based on our empirical study we have extended it in the 
following two ways: 

i) for each premise Pi, a previous proof line with a derived formula F of the form ... I\P'iA... 

must be found, where P'i is the corresponding instance of Pi. 

ii)';for each premise Pi of the form A~B, a previous proof line with a derived formula F of the 

form 

must be found, where ~ and 1( are the other assumptions involved and the inference rule 

justifying this proof line, respectively. A' and B' are the corresponding instances of A and B. 

One thing that is worth being mentioned is that the naturalness of the natural deduction 

system, with respect to formal reasoning, is largely du~ to the inference rules under the 
category of structural rules, where the usual ways of mathematical reasoning are simulated. For 
example, assumptions are introduced or discharged, problems are divided into cases, etc. The 
non-structural rules, on the contrary, deal mostly with primitive manipulations of logical 

connectives and quantifiers and are rarely found in DNPs. They are used, nearly exclusively as 

building blocks for constructing natural expansions by the procedure applying assertions. 

However, we do not want to make any commitment as to which rules are exclusively used in 

DNPs by human beings and which are, on the contrary, only used in natural expansions. 

Furthermore, it is certainly an oversimplification to claim that all the rules listed in this 

chapter are not only cognitively elementary but also innate. While the non-structural ones are 

similar to those included in natural calculus set up by cognitive psychologists [Braine 78] (see 
also chapter 7) and are therefore more likely to be innate, the structural ones require probably a 
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Meta-variables "a" in VD can be substituted by an arbitrary term. For rule VI and CHOICE, in
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We also make an extension to the condition, under which a rule can be applied, to
enhance the naturalness. In the traditional natural deduction systems, to apply a rule

for each precondition Pi, a previous proof line must be found, whose derived formula F is the
corresponding instance o f  Pi. Based on our empirical study we have extended it in the
following two ways:
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i )  for each premise Pi, a previous proof line with a derived formula F of the form .../\P iA...

must be found, where ?}  is the corresponding instance of PL

ii):;for each premise Pi of the form A=>B, a previous proof line with a derived formula F of the
form
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must be found, where z and Rare the other assumptions involved and the inference rule
justifying this proof line, respectively. A’  and B’  are the corresponding instances of A and B.

One thing that is worth being mentioned is that the naturalness of the natural deduction
system, with reSpect to formal reasoning, is largely due to the inference rules under the
category of  structural rules, where the usual ways of mathematical reasoning are simulated. For
example, assumptions are introduced or discharged, problems are divided into cases, etc. The
non-structural rules, on the contrary, deal mostly with primitive manipulations of logical
connectives and quantifiers and are rarely found in DN Ps. They are used, nearly exclusively as
building blocks for constructing natural expansions by the procedure applying assertions.
However, we do not want to make any commitment as to which rules are exclusively used in
DNPs by human beings and which are, on the contrary, only used in natural expansions.

Furthermore, it is  certainly an oversimplification to claim that all the rules listed in this
chapter are not only cognitively elementary but also innate. While the non—structural ones are
similar to those included in natural calculus set up by cognitive psychologists [Braine 78] (see
also chapter 7)  and are therefore more likely to be innate, the structural ones require probably a
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general training in formal reasoning, such as the training provided in mathematical courses. 
From the perspective of cognition, therefore, these are the rules assumed for everyone with a 
formal training. From the computational perspective, they are elementary in the sense that they 
are not generated by any operators or procedures. 
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Chapter 4. Deriving Associated Rules 

In this chapter, we introduce the fIrst of the two operators generating inference rules, 
responsible for accounting for all the inference rules identifIed in DNPs. apart from those 
elementary ones. We first give a formal defInition and then some examples. The operator is 
specifIed by the following schema: 

if R is a rule in WM and it is of the form 

R =AI-p 1.. ·· .AI-pn 4.1 
Ar-q 

then R' of the form below is a rule associated with R: 

R' = Al-Pl,···.Al-Pi-l.AI-Pi+l.Al-pn.AI-...,q 4.2 
AI-""'Pi 

This implies. intuitively, that the rule r and its associated rules are memorized more or less as 

one unit of the form 

which means that at least one element of the set {Pl,... ,Pn,...,q}must be false. This derivation. 

in ;addition, is carried out in conjunction with the cancellation of negations. This means if Pi is 

of the form ""Pi', then the conclusion schema in 4.2. will be p(, instead of ...,....,Pi'. The same 

holds for formula schema -,q in 4.2. 

Let us now examine some of the rules generated by this operator. The two pairs of rules in 
4.3 and 4.4, as identified in our empirical studies can be derived from ~ D and /\D, 
respectively. 

~D': 
a,...,b a~b•...,b 

4.3 
...,(a~b) ...,a 

JI f--...,F 
4.4 

The elementary inference rules introduced in chapter 3, together with their associated rules, 
are called the rules at the logic level, as apposed to rules generated by the operator to be 
introduced in the next chapter, which we will refer to as being at the assertion level. 

Although not really effecting the final logical power of the natural calculus, we believe it is 
worthwhile to point out the existence of various other ways to account for these rules, and 
compare them with the solution we choose from a cognitive perspective. First, to account for 
the logic level inference rules, for instance those in 2.3 and 2.4, we could simply include them 
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Chapter 4. Deriving Associated Rules

In this chapter, we introduce the first of the two operators generating inference rules,
responsible for accounting for all the inference rules identified in DNPs, apart from those
elementary ones. We first give a formal definition and then some examples. The operator is
specified by the following schema:

i fR i sa ru l e inWMand i t i so f the fo rm

R = Ai—pl,...,At—pn 4.1
AI—q

then R '  of  the form below is a rule associated with R:

: Ai—pl,...‚Af—pi.1'Al—pi+1‚AI—pn‚Al———1q

Af_'_lpi
R’  4.2

This implies, intuitively, that the rule r and its associated rules are memorized more or less as
one unit of the form

{p1!" ° ’pn r_ ‘q . ) l _ J -v

which means that at least one element of the set {p1,... ,pn,fiq}must be false. This derivation,

in addition, is carried out in conjunction with the cancellation of negations. This means if pi is
of the form —.pi'‚ then the conclusion schema in 4.2. will be pi’, instead of —.—.pi’. The same
holds for formula schema -.q in 4.2.

Let us now examine some of the rules generated by this operator. The two pairs of rules in
4.3 and 4.4, as identified in our empirical studies can be derived from =>D and AD,
respectively.

amb a=>b,-1b
=>D': ,

- \ ( a=b)  —1a
4.3

Z l———I(FAG) Ä |——1(FAG)
AD" 5"_ . 4.4 ""““

The elementary inference rules introduced in chapter 3,  together with their associated rules,
are called the rules at the logic level, as apposed to rules generated by the operator to be
introduced in the next chapter, which we will refer to as being at the assertion level.

Although not really effecting the final logical power of the natural calculus, we believe it is
worthwhile to point out the existence of various other ways to account for these rules, and
compare them with the solution we choose from a cognitive perspective. First, to account for
the logic level inference rules, for instance those in 2.3 and 2.4, we could simply include them
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into the set of elementary rules. It is nevertheless quite counter-intuitive to assume a large set of 
interrelated inference rules as cognitive elementary. Another argument against their being 
elementary, we believe more mental effort is needed to carry out deductions justified by the 
associated rules. A second proposal seems more plausible, at least at first sight. We may loosen 
the application condition of inference rules so that an inference rule will already cover all the 
deductions now to be covered by rules associated with it, without assuming their explicit 
existence. This, however, brings two drawbacks: In the first place this implies that the rule 
applications must involve search, before matching, though in a small space. In the second 
place, no distinction can be made between rules which are more central, and rules associated 
with them that play a comparatively secondary role. Second, since less mental effort is needed 
by this operator, (as compared with the operator generating assertion level inference rules 
directly from assertions in WM), it again seems plausible to grant the reasoner this ability. 

The idea of associated rules can be generalized quite straightforwardly by taking variable 
conditions into account. The following is thus an associated rule of VD: 

'VD', which is a associated with 'VD. 

Notice that the derivation operator may be applied on inference rules both at the logic level 
and at the assertion level. And the derived rules will remain at the same level of abstraction. For 
example, given the assertion level inference rule introduced in the example in chapter 1: 

U~F, ae U 
where U, F and a are meta-variables for object constant 

aeF 

there are two associated rules which can be generated: 

U~F, ae F ae U,ae F
 

aeU U$F
 

Before we are going to prove two properties of this operator, some new notation fIrst. If an 
inference rule r can be derived from another rule r', then we call r and r' are associated with 
each other. Now, let R be an arbitrary set of inference rules, and Assoc(R) stand for the set of 
rules associated with at least one rule in R, then: 

Assoc(Rl uR2)=Assoc(Rl )uAssoc(R2) 4.5 

Assoc(Assoc(R))~RuAssoc(R) 4.6 

While 4.5 is quite self-evident, 4.6 can be proved easily by cancelling of negation. Suppose 

r PI "<i.,Pne Assoc(Assoc(R)), 

then without loss of generality, 

r,-q' ,P2,···,Pne Assoc(R)
 
PI'
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into the set of elementary rules. It is nevertheless quite counter-intuitive to assume a large set of
interrelated inference rules as cognitive elementary. Another argument against their being
elementary, we believe more mental effort is needed to carry out deductions justified by the
associated rules. A second proposal seems more plausible, at least at first sight. We may loosen
the application condition of inference rules so that an inference rule will already cover all the
deductions now to be covered by rules associated with it, without assuming their explicit
existence. This, however, brings two drawbacks: In the first place this implies that the rule
applications must involve search, before matching, though in a small space. In the second
place, no distinction can be made between mics which are more central, and rules associated
with them that play a comparatively secondary role. Second, since less mental effort is needed
by this operator, (as compared with the operator generating assertion level inference rules
directly from assertions in WM), it again seems plausible to grant the reasoner this ability.

The idea of associated rules can be generalized quite straightforwardly by taking variable
conditions into account. The following is thus an associated rule of VD:

—.Pa
VD’,  which is a associated with VD.

qPx

Notice that the derivation operator may be applied on inference rules both at the logic level
and at the assertion level. And the derived rules will remain at the same level of abstraction. For
example, given the assertion level inference rule introduced in the example in chapter 1:

UgF,  ae  U

aeF

‘ l

where U, F and a are meta—van'ables for object constant

l

there" are two associated niles which can be generated:

UgF,  ae  F ae U ,ae  F

as  U U¢F

Before we are going to prove two properties of this operator, some new notation first. If an
inference rule r can be derived from another mle r ' ,  then we call r and r ’  are associated with
each other. Now, let R be an arbitrary set of inference rules, and Assoc(R) stand for the set of
rules associated with at least one rule in R,  then:

Assoc(RlUR2)=Assoc(Rl)uAssoc(R2) 4.5

Assoc(Assoc(R));RuAssoc(R) 4.6

While 4.5 is quite self-evident, 4.6 can be proved easily by cancelling of negation. Suppose

pm’Tfie Assoc(Assoc(R)),

then without loss of generality,

r’-——eq‚pp2‚i--‚pn Assoc(R),
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where q' equals q", if q is in fonn of -,q"; otherwise q' equals -,q. The same holds for P'l. 

Now there are two cases: either 

r Pl'q.,PneR 

which proves our goal, or, again without loss of generality, 

r q', Pl,P3.... 'Pne Assoc(R) 
P2 

which as well proves our goal, since P'2 is defmed similarly as q'. 
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where q ’  equals q” ,  if q is in form of —q”; otherwise q '  equals ——.q. The same holds for p’l.
Now there are two cases: either

r_E  1 q ’EnE  R

which proves our goal, or, again without loss of generality,

r--——.—eq’ p1,p3,...‚pn Assoc(R)
P 2

which as well proves our goal, since p’2 is defined similarly as q’.
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Chapter 5. A Primitive Procedure Applying Assertions 

In this chapter, a primitive reasoning procedure central to our model will be introduced, 
i.e., a procedure drawing conclusions by applying assertions. Before going into details, it is 
worthwhile to pause briefly and make clear the actual situation and the simplifications we have 
made. Let's first consider the situations within which the procedure under concern may be 
called. The first case is usually during the active proof construction, as already indicated in the 
introduction. It may as well by called under a more passive circumstance. For instance, during 
the reading of a mathematical text book, if a reader can not follow an assertion level reasoning 
step by resorting to a corresponding inference rule acquired previously, it is nonnal that he 
comes back to the assertion itself and checks this step by reading the assenion again. This 
checking process is always accompanied by a reasoning process at the logic level. This logic 
level proof segment, as already indicated, is called a natural expansion (NE) of the 
corresponding assertion level step. 

Although it is possible that the applications of assenions under the two different 
circumstances are actually carried out by two procedures different from each other in their run
time behavior, a simplification to abstract them into one procedure is still viable, since we can 
not at the moment provide any run-time details anyway. What we can provide in this chapter is 
simply an input-output relation of the procedure because of lack of more precise knowledge. 
This input-output relation is deduced in section 5.1 from properties identified in the natural 
e~ansions, which appear to characterize them. Only a tentative psychologically real run-time 
depiction is attempted in section 5.2. 

5.1. A Characterization of Natural Expansions. 

In this section, structural constraints of syntactic nature on natural expansions will be 
emploied to define the input-output relation of this primitive reasoning procedure. Even 
intuitively it is obvious, that not all logic level proof segments, in which an assertion is in some 
way involved, embody an application of this assertion. A trivial example will illustrate this: 
suppose A is an assertion, B a second arbitrary fonnula, the valid derivation of AvB do not go 
in line with our intuition of applying A, no matter what fonnula A is. 

Along with the reconstruction of DNPs for problems in [Deussen 71], we have also 
expanded the reasoning steps at the assertion level to proof segments at the logic level, as 
natural as possible, with the hope that they will be the natural expansions. We will now in two 
steps introduce the characterizations identified thus far in the following two sub-sections. 
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Chapter 5. A Primitive Procedure Applying Assertions

In this chapter, a primitive reasoning procedure central to our model will be introduced,
i.e., a procedure drawing conclusions by applying assertions. Before going into details, it is
worthwhile to pause briefly and make clear the actual situation and the simplifications we have
made. Let’s first consider the situations within which the procedure under concern may be
called. The first case is usually during the active proof construction, as already indicated in the
introduction. It may as well by called under a more passive circumstance. For instance, during
the reading of a mathematical text book, if a reader can not follow an assertion level reasoning
step by resorting to a corresponding inference rule acquired previously, it is normal that he
comes back to the assertion itself and checks this step by reading the assertion again. This
checking process is  always accompanied by a reasoning process at the logic level. This logic
level proof segment, as already indicated, is called a natural expansion (NE) of the
corresponding assertion level step.

Although it is possible that the applications of assertions under the two different
circumstances are actually carried out by two procedures different from each other in their run-
time behavior, a simplification to abstract them into one procedure is still viable, since we can
not at the moment provide any run-time details anyway. What we can provide in this chapter is
simply an input-output relation of the procedure because of lack of more precise knowledge.
This input-output relation is deduced in section 5.1 from properties identified in the natural
expansions, which appear to characterize them. Only a tentative psychologically real run-time
depiction is attempted in section 5.2.

5.1. A Characterization of Natural Expansions.

In this section, structural constraints of syntactic nature on natural expansions will be
emploied to define the input-output relation of this primitive reasoning procedure. Even
intuitively it is obvious, that not all logic level proof segments, in which an assertion is in some
way involved, embody an application of this assertion. A trivial example will illustrate this:
suppose A is  an assertion, B a second arbitrary formula, the valid derivation of AvB do not go
in line with our intuition of applying A, no matter what formula A is.

Along with the reconstruction of DNPs for problems in [Deussen 71], we have also
expanded the reasoning steps at the assertion level to proof segments at the logic level, as
natural as possible, with the hope that they will be the natural expansions. We will now in two
steps introduce the characterizations identified thus far in the following two sub-sections.
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5.1.1. Composition and Decomposition Constraints. 

Before discussing the characteristics in more formal terms, let us fIrst return to the subset 
example again, used at the outset. 

Example 1. (continued) 

In the introduction, a proof segment at the logic level is given serving as the NE of a 
reasoning step at the assertion level, i.e., inferring alE Fl from U10<1 and alE Ul by applying 

the following assertion: 

V'F,U U~F<=>V'x XE U~XE F 

The NEs are from now on represented in another fonnalism originally used by Gentzen himself 

[Gentzen 35], called proof trees. This, compared with the linearized version we normally use to 

represent proofs, is more suitable for the study of the structure of proofs. For instance, 

structural characteristics can be more conveniently formulated. The NE of our example is 

illustrated in Fig. 5.1. Some informal explanations fIrst: In this formalism, every bar represents 

a reasoning step. The formulas above it, disconnected by commas, and the formula under it are 

the premises and the conclusion of this step, respectively. It can therefore be concluded that the 
" 

leaves and the root of such a proof tree are the preconditions and the conclusion of the entire 

proof. 
~ 

step 1 

step 2 
U1~ 

step 3
 

step 4
 
a1EU1 

step 5 

ale 1Ft 

Fig. 5.1
 

The following properties can be observed in the particular proof above:
 

1. At every step, there is exactly one premise depending on the assertion being applied (the 
subset defmition in this example). This means that there is a certain linear quality in the proof, 
along the shadowed branch in Fig. 5.1. 
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5.1.1. Composition and Decomposition Constraints.

Before discussing the characteristics in more formal terms, let us first return to the subset
example again, used at the outset.

Example 1. (continued)

In the introduction, a proof segment at the logic level is given serving as the NE of a
reasoning step at the assertion level, i.e., inferring a s  F ]  from UlgFl  and a s  U1  by applying
the following assertion:

VF,U UcpVx xe U=>xe F

The NES are from now on represented in another formalism originally used by Gentzen himself
[Gentzen 35], called proof trees. This, compared with the linearized version we normally use to
represent proofs, is more suitable for the study of the structure of proofs. For instance,
structural characteristics can be more conveniently formulated. The NE o f  our example is

illustrated in Fig. 5.1. Some informal explanations first: In this formalism, every bar represents
a reasoning step. The formulas above it, disconnected by commas, and the formula under it are
the premises and the conclusion of this step, respectively. It can therefore be concluded that the
leaves and the root of such a proof tree are the preconditions and the conclusion of the entire
proof.

l

VIFJU UCIFQV x xe U=bxe 1F
step 1

Ulc lQV x :6 Ulaxe  lFl
step 2

Ulc laV  x xe Ul=>xe IFl , [_IICF
step 3

Vx xe Ulaxe  IFl
step 4

a l e  U laa l e  lFl . a l eUl
step 5

a l s  IFl

Fig. 5.1

The following properties can be observed in the particular proof above:

1. At every step, there is exactly one premise depending on the assertion being applied (the
subset definition in this example). This means that there is a certain linear quality in the proof,
along the shadowed branch in Fig. 5.1.
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2. The premise depending on the assertion being applied, in addition, plays a special role at 

each step, in that all other premises (if there is any, such as in step 3 and 5), and the conclusion 

of this step are all either a subformula of it, or an instance thereof. This is henceforth referred to 

as the subformula property. 

So the first observation in our empirical studies are that the NE of the application of an 
assertion is basically a linear sequence of decompositions. This is, however, not the whole 

cake. In other examples, there is also a composition process produces the other premises (if 

there are any) required by the linear decomposition along the shadowed branch. For instance, to 
apply an assertion of the form 'Vx Px 1\ Qx~Rx, a composition of Pa 1\ Qa from the two 
separate premises Pa and Qa has to be performed before deducing Ra. Let us now derme two 
new concepts, that are used in the formulation of the constraints. 

Definition 5.1 

· I: I f th J4-A,5fr---Pl J4-pn. d . . II: .An m1erence TU e 0 e 10TIn ,..., IS a ecomposltlon ru e WIth respect 
~q 

'f all 1" f" J4-A',;t-p'1 .9t-p'n .to formuIa schema A,1 app lcaUons 0 It, wntten as '; .., , sausfy the 
51J---q 

following condition: p'1,..., p'n and q' are all either 

1) a proper subformula of A', or 

2) an instance of A' or one of its proper subformula, or, in the third case 

3):a negation of one of the rlISt two cases. 

Under this defmition, I\D, ::::>D, 'VD are the only elementary decomposition rules (see 
Chapter 3). 

Definition 5.2 

. I: I f th J4-p l, ...,5l-Pn. all d . . I 'thAn In1erenCe TU e 0 e 10TInI: IS C e a compoSltLOn ru e Wl respect to 
51J---q 

J4-p'l '" .*-p'n. " . q if all applications of it, written as ' , , , S~tlsfy the followmg condItIon: 
5lr-q 

1) a proper subfonnu1a of q', or
 

2) an instance of q' or one of its proper subformula,
 

(where Fa is an instance of both "dx Fx and 3xFx) or, in the third case
 

3) a negation of one of the first two. cases.
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2 .  The premise depending on the assertion being applied, in addition, plays a special role at
each step, in that all other premises (if there is any, such as in step 3 and 5), and the conclusion
of this step are all either a subforrnula of it, or an instance thereof. This is henceforth referred to
as the subformula property.

So the first observation in our empirical studies are that the NE of the application of an
assertion is basically a linear sequence of decompositions. This is, however, not the whole
cake. In other examples, there is also a composition process produces the other premises (if
there are any) required by the linear decomposition along the shadowed branch. For instance, to
apply an assertion of the form Vx PX A Qx=9Rx, a composition of Pa A Qa from the two
separate premises Pa and Q8 has to be performed before deducing Ra. Let us now define two
new concepts, that are used in the formulation of the constraints.

Defini t ion 5.1

”"Afl—Pl....,fl—P
fill—qAn inference rule of the funu “ is a decomposition rule with respect

to formula schema A, if all applications of it, writtenas M, satisfy theflF-q

following condition: p’1,..., p’n and q ’  are all either

1) a proper subformula of A’, or
I

2) an instance of A’ or one of its proper subformula, or, in the third case

3):a negation of  one of  the first two cases.

Under this definition, AD, =>D, VD are the only elementary decomposition rules (see
Chapter 3).

Definit ion 5 .2

An inference rule of the f ew  IS called a composztzon rule wrth respect to

fl—p’l ß—p'n

fill—q ’
q if all applications of it, written as , satisfy the following condition:

p’lwp’n are all either?” it:

1)  a proper subformula of q’, or

2) an instance of q ’  or one of its proper subforrnula,

(where Fa is an instance of both VX Fx and Bx) or, in the third case

3)  a negation of  one of  the first two, cases.
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Now we again introduce some new terminologies: in a segment of a natural deduction 
proof serving as a NE of the application of an assertion A, the conclusion formula of the last 
line (the root in the corresponding proof tree) is called the conclusion of the application and all 
premises introduced by the Hyp rule (the leaves of the corresponding proof tree), except for the 
assertion A itself, are called the premises of the application. Now we can state the complete 
constraints observed during our preliminary empirical studies in more formal terms. 

Composition and Decomposition Constraints: 

A logic level proof segment serves as an NE of the application of an assertion A, if its 
proof tree satisfies the following constraints: 

1. (quasi-linearity property) At every proof step, there is at most one precondition depending on 

A. 

It can easily be concluded that all proof lines depending on A together form a branch in the 
proof tree, from the assertion A to the conclusion. The branch is called the main branch. Nodes 
along this branch are now called the main intermediate conclusions. The general structure of a 
proof tree is illustrated in Fig. 5.2, where the main branch is the branch from A to An. The 
formula A, AI, ... ,An denote the main intermediate conclusions, and Pi,I, ... , Pi,mi are the 
main preconditions for the decomposition step from Ai to Ai+1. In other word, the main 
intermediate conclusions are the only intermediate conclusions depending on A. Furthermore, 
exactly one of their preconditions depends on A. We are referring to this linear order when 'We 
later talk about the previous or subsequent main intermediate conclusions. 

2. :(decomposition property) Main intermediate conclusions are justified by decomposition rules 

with respect to the previous main intermediate conclusion. The inference along the main branch 

is therefore a linear process of decomposition of the assertion A. 

3. (composition property) Other intermediate conclusions are justified by composition rules 

with respect to the corresponding intermediate conclusion. 
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Now we again introduce some new terminologies: in a segment of a natural deduction
proof serving as a NE of the application of an assertion A, the conclusion formula of the last
line (the root in the corresponding proof tree) is called the conclusion of the application and all
premises introduced by the Hyp rule (the leaves of the corresponding proof tree), except for the
assertion A itself, are called the premises of the application. Now we can state the complete
constraints observed during our preliminary empirical studies in more formal terms.
C . .  ID  'I' C | . | _

A logic level proof segment serves as an NE of the application of an assertion A. if its
proof tree satisfies the following constraints:

1. (quasi-linearity property) At every proof step, there is at most one precondition depending on
A.

It can easily be concluded that all proof lines depending on A together form a branch in the
proof tree, fiom the assertion A to the conclusion. The branch is called the main branch. Nodes
along this branch are now called the main intermediate conclusions. The general structure of a
proof tree is  illustrated in Fig. 5.2 ,  where the main branch is the branch from A to An. The
formula A ,  A1,... ,An denote the main intermediate conclusions, and Pm,  ..., Pi ‚mi  are the
main preconditions for the decomposition step from Ai  to A i“ .  In other word, the main
intermediate conclusions are the only intermediate conclusions depending on A. Furthermore,
exactly one of their preconditions depends on A. We are referring to this linear order when vwe

later talk about the previous or subsequent main intermediate conclusions.

2. (decomposition property) Main intermediate conclusions are justified by decomposition rules
with respect to the previous main intermediate conclusion. The inference along the main branch
is therefore a linear process of decomposition of the assertion A.

3. (composition property) Other intermediate conclusions are justified by composition rules
with respect to the corresponding intermediate conclusion.
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Fig. 5.2 

Some very desirable properties can be concluded from the constraints above. Firstly, the 

derived formula of all proof lines is a subformula of the assertion being applied, or an instance 
thereof, or, in the third case, the negation of one of the fIrst two cases. We will come back to 

this in Section 5.2. Secondly, if we construct schemata of proof trees by replacing all the 
constant symbols in a proof tree, not originally occurring in the assertion being applied, by 

meta-variables, the total number of the possible tree schemata is finite. This can be proved by 

the definitions of composition and decomposition rules. The constants for objects aI, UI and 
Fl in Fig. 2.1, for instance, can be abstracted to meta-variables a, U and F. 

5.1.2. Rewriting towards more Natural Formulas. 

The composition and decomposition characteristics alone,unfonunately, are still not 

enough to cover all the cases encountered in our empirical studies. An exception is showed in 
the following example: 

Example 2: 

Suppose we have an assertion of the form AvB=>C. Although the rule -,C fits fully our 
-,B 

intuition of its application, the most natural tree we have constructed in Fig. 5.3 does not satisfy 
the composition and decomposition constraints. One of the "main intermediate conclusions", 

namely .......A,,-,B, is justified by a rule -,(AvB), which is neither included as a logic level
 
-,A,,-,B 

inference rule nor a decomposition rule. 
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Some very desirable properties can be concluded from the constraints above. Firstly, the
derived formula of all proof lines is a subforrnula of the assertion being applied, or an instance
thereof, or, in the third case, the negation of one of the first two cases. We will come back to
this in Section 5.2. Secondly, if we construct schemata of proof trees by replacing all the
constant symbols in a proof tree, not originally occurring in the assertion being applied, by
meta-variables, the total number of the possible tree schemata is finite. This can be proved by
the definitions of composition and decomposition rules. The constants for objects a l ,  U1 and
F1 in Fig. 2.1,  for instance, can be abstracted to meta-variables a, U and F .

5.1.2. Rewriting towards more Natural Formulas.

The composition and decomposition characteristics alone,unfortunately, are still not
enough to cover all the cases encountered in our empirical studies. An exception is showed in
the following example:

Example 2: H» -

Suppose we have an assertion of the form AvB=>C. Although the rule ;(; fits fully our
_,

intuition of its application, the most natural tree we have constructed in Fig. 5.3 does not satisfy
the composition and decomposition constraints. One of the “main intermediate conclusions”,

. . . _. A B . . . . .namely qAA—‚B,  IS Jus t ified  by a rule ( V ) ,  which i s  neither mcluded as a logic level
-1 / \—t

inference rule nor a decomposition rule.
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AvB::::>C -e 

-,(AvB) 

-,B 

Fig. 5.3 

The explanation we have come up with for this phenomenon rests upon the following 
observation: for fonnulas of some special patterns there are some other fonnulas that are 
logically equivalent but more natural for a human. Once a less natural one is derived in a proof 
process as an intennediate conclusion, it is often transfonned (especially when motivated by, 
for instance, the need of a further composition or decomposition) automatically and implicitly 
into its more natural equivalent, before the proof proceeds. Therefore, the constraints listed in 
the previous section should be loosened to allow this kind of inferences on intennediate 
conclusions. The following is a list of some such rewriting inference rules we have found. The 
first three of them are quite obvious whereas the last three might be controversial. The criterion 
to test the naturalness is the principle of linguistic parsimony, emploied by cognitive 
psychologist studying human daily casual reasoning [Johnson-Laird 83]. The negation of the 
compound expressions in the fIrst two pairs, for instance, are found diffIcult to translate in, an 
efficient and straightforward manner. Compared with composition and decomposition 
cQnstraints discussed in the last sub-section, more empirical studies are needed to set up a more 
c~mplete set of rewriting inference rules. In addition, from the perspective of a cognitive 
theory, we are also still confronted with the problem whether to characterize the rewriting rules 
as elementary. 

Less Natural More Natural Natural Rewriting Rule 

-,(AvB) 
-,(AvB) 

-,AI\-,B 

-,Av-,B 

-,-,A A 

-,(A::::>B) 

-,Vx Px-,Vx Px 3x -,Px 
3x -,Px 

22
 

Chapter 5 .  A Primitive Procedure Applying Assertions

AVB=C ' —C
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Fig. 5.3

The explanation we have come up with for this phenomenon rests upon the following
observation: for formulas of some special patterns there are some other formulas that are
logically equivalent but more natural for a human. Once a less natural one is derived in a proof
process as an intermediate conclusion, it is often transformed (especially when motivated by,
for instance, the need of a further composition or decomposition) automatically and implicitly
into its more natural equivalent, before the proof proceeds. Therefore, the constraints listed in
the previous section should be loosened to allow this kind of inferences on intermediate
conclusions. The following is a list of some such rewriting inference rules we have found. The
first three of them are quite obvious whereas the last three might be controversial. The criterion
to test the naturalness is the principle of linguistic parsimony, emploied by cognitive
psychologist studying human daily casual reasoning [Johnson-Laird 83]. The negation of the
compound expressions in the first two pairs, for instance, are found difficult to translate man
efficient and straightforward manner. Compared with composition and decomposition
constraints discussed in the last sub-section, more empirical studies are needed to set up a more
complete set of rewriting inference rules. In addition, from the perspective of a cognitive
theory, we are also still confronted with the problem whether to characterize the rewriting rules
as elementary.

Less Natural More Natural Natural Rewriting Rule

“!(AVB) 'fiAA—IB _—
fiAA—1B

fi(A/\B) fiAvfiß fl
‘1AV-‘1B

-I—1A

—-.(A=>B) AME fl
AA—IB

“_v PX 3x  fiPX fl

3 x —.Px
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-.3x Px
....,3x Px 'Vx -.Px 

'Vx -.Px 

Table 5.1 

5.2. A Tentative Description of the Run-time Behavior 

What we have proposed thus far is essentially merely a combination of constraints, which 
appears to characterize the set of deductions usually falling under the intuitive concept of the 
application of a certain assertion. A precise and detailed run time description of the procedures 
is nevertheless still beyond our present knowledge and far beyond the scope of this paper. We 
are going, all the same, to at least provide some rough ideas of the possible run time behavior, 
gained by solely resorting to introspection. 

As indicated at the outset of this chapter, the application of an assertion by resorting to a 
logic level NE may happen during both active proof constructions or passive proof checking. In 

fact, whenever the corresponding assertion level rule does not reside in WM and is therefore be 
at the disposal of the autonomous reasoning procedures, a logic level proof segment is usually 
constructed, with variation in degrees of detail and explicitness. Let us illustrate this by 
Schuben's well known steam-roller problem [Stickel 86], under the circumstance of proof 
checking. ! 

E~arnple 3. 

The entire problem is given in natural language: 

Wolves,foxes, birds, caterpillars, and snails are animals, and there are some of each of 
them. Also there are grains, and grains are plants. Every animal either likes to eat all plants or 
all animals much smaller than itself that like to eat some plants (Axiom). Caterpillar and snails 
are much smaller than birds, which are much smaller than foxes, which in turn are much 
smaller than wolves. Wolves do not like to eat foxes or grains, while birds like to eat 
caterpillars and snails like to eat some plants. Therefore there is an animal that likes to eat a 
grain-eating animal. 

The following is the axiom in our encoding, where "a", "a''', and "p", "p"'are variables of 
sons, animal and plant respectively: 

Axiom 1. a,a' :Animal, p,p':Plant 

Va (Vp Eats(a, p) v 

('Va' a'<a /\ 3p' Eats(a', p') => Eats(a, a'» 5.1 

. Suppose the derivation of Eats(al, pI) from al'<al, Eats(al', pI') and ....,Eats(al, al') is 
claimed to be justified by applying axiom 5.1. And suppose further, that the corresponding 
assertion level inference rule 
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_.Elx Px
-«3x Px  Vx  —t

Vx fiPx
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5.2. A Tentative Description of the Run-time Behavior

What we have proposed thus far is essentially merely a combination of constraints, which
appears to characterize the set of deductions usually falling under the intuitive concept of the
application of a certain assertion. A precise and detailed run time description of the procedures
is nevertheless still beyond our present knowledge and far beyond the scope of this paper. We
are going, all the same, to at least provide some rough ideas of the possible run time behavior,
gained by solely resorting to introspection.

As indicated at the outset of this chapter, the application of an assertion by resorting to a
logic level NE may happen during both active proof constructions or passive proof checking. In
fact, whenever the corresponding assertion level rule does not reside in WM and is therefore be
at the disposal of the autonomous reasoning procedures, a logic level proof segment is usually
constructed, with variation in degrees of detail and explicitness. Let us illustrate this by
Schubert’s well known steam-roller problem [Stickel 86], under the circumstance of proof
checking.

Example  3.

The entire problem is given in natural language:

Wolves, foxes, birds, caterpillars, and snails are animals, and there are some of each of
them. Also there are grains, and grains are plants. Every animal either likes to eat all plants or
all animals much smaller than itself that like to eat some plants (Axiom). Caterpillar and snails
are much smaller than birds, which are much smaller than foxes, which in turn are much
smaller than wolves. Wolves do not like to eat  foxes or grains, while birds like to eat
caterpillars and snails like to eat some plants. Therefore there is an animal that likes to eat a
grain-eating animal.

The following is the axiom in our encoding, where “a”, “a”’, and “p”, “p ”’are variables of
sorts, animal and plant respectively:

Axiom 1. a,a’ :Animal, p,p’:Plant

Va (Vp EatSGl. P) v

(Va' a'<a A Ep' Eats(a', p') => Eats(a, a')) 5 .1

‘ Suppose the derivation of Eats(al, p l )  from a1'<a1, Eats(a1', p1') and —1Eats(al, a l ' )  is
claimed to be justified by applying axiom 5 .1 .  And suppose further, that the corresponding
assertion level inference nrle
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a'<a, Eats(a', p'), -,Eats(a, a')
 
Eats(a, p)
 

where "a", "a"', and "p", "p'''are meta-variables 5.2 

is either not yet acquired at all or not residing in WM. The following logic level proof may then 

be constructed, with the corresponding proof tree shown in Fig. 5.4: 

(1) 1 r-- Va (Vp Eats(a, p) v 

(Va' a'<a /'- 3p' Eats(a', p') => Eats(a, a'» Hyp 

(2) 1 r-- Vp Eats(al, p) v 

(Va' a'<al /'- 3p' Eats(a', p') => Eats(al, a'» VD(l) 

(3) 2 r-- al'<al/'-Eats(al', pI') /\--,Eats(al, al') Hyp 

(4) 2 r-- -,(al'<al /'- 3p' Eats(al', p') => Eats(al, al'» =>D'(3) 

(5) 2 r-- -,(Va' a'<al /'- 3p' Eats(a', p') => Eats(al, a'» VD'(4) 

(6) 1,2 r-- Vp Eats(al, p) v D(2,5) 

(7) 1,2 r-- Eats(al, pI) VI(6) 

3.1/'-3.2 3.3 step 2 
1 4step 1 step 3 
2 5 step 4 

6 
7 step 5 

Fig. 5.4 

Some explanations may be necessary: The rule =>D' and VD' used in step 4 and 5 are 

associated with rule =>D and rule VD respectively. Extended premise conditions are used, too. 

Most importanttj:;by~nomeans do we claim that this logic level NE is actually carried out 
in run-time by literally writing down the proof above. This proof is much often or even 
exclusively followed by reading the assertion being applied by pointing to the corresponding 

subformula, whose instance or negation thereof is the intermediate conclusion at this point. It 

can be easily performed since all the intermediate conclusions of the expanded proof are either 

instances of subformulas of the assertion or negations thereof, as is proved in Section 5.1. The 
process is made still easier, since it can be performed in a quasi-linear way, Le., along the main 
branch, on the ground that in most of the practical cases, proofs to establish main premises in a 

composition manner (represented by subtrees rooted at a main premise) are quite simple. We 

might even predict the order of this implicit reasoning process underlying the check of an 
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a '<a ,  Ea t s ( a ' ,  p ' ) ,  fiEa t s ( a ,  a ' )
Eats(a, p)

where “a”, “a’”, and “p”, “p"‘are meta-variables 5 .2

is either not yet acquired at all or not residing in WM. The following logic level proof may then
be constructed, with the corresponding proof tree shown in Fig. 5.4:

( l )  1 r— Va (Vp Eats(a, p )  v

(Va‘ a '<a A 3p '  Eats(a', p ' )  : Eats(a, a ' ) )  Hyp

(2) l |— Vp Eats(a1, p )  v

(Va' a'<al A Elp' Eats(a'‚ p') => Eats(a1, a')) VD(1)

(3)  2 l— a l '<a lAEats (a1 ' ,  p l ' )  A—uEats(al, a l ' )  Hyp

(4) 2 |— - . ( a1 '<a l  A Bp' Eats(a1', p') => Eats(a l ,  a l ' ) )  =>D’(3)

(5)  2 |— —.(Va' a '<al A 3p '  Eats(a', p ' )  => Eats(a1, a ' ) )  VD’(4)

(6) 1 ,2  l—— Vp Eats(a1, p) v D(2,5)

(7) 1,2 &— Eats(a1‚pl) VI(6) ,

3.1A3.2 ' 3-3 step 2
step 1 _1__ 4 step 3

2 I 5 step 4
6
7 step 5

Fig. 5.4

Some explanations may be necessary: The rule =>D’ and VD’  used in step 4 and 5 are
associated with rule =>D and rule VD respectively. Extended premise conditions are used, too.

Most importantlygby— no means do we claim that this logic level NE is actually cam'ed out
in run-time by literally writing down the proof above. This proof is much often or even
exclusively followed by reading the assertion being applied by pointing to the corresponding
subforrnula, whose instance or  negation thereof is the intermediate conclusion at this point. It
can be easily performed since all the intermediate conclusions of the expanded proof are either
instances of subformulas of the assertion or negations thereof, as is proved in Section 5.1. The
process is made still easier, since it can be performed in a quasi-linear way, i.e., along the main
branch, on the ground that in most of the practical cases, proofs to establish main premises in a
composition manner (represented by subtrees rooted at a main premise) are quite simple. We
might even predict the order of this implicit reasoning process underlying the check of an
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assertion level step. A plausible conjecture is that, given the general schema of proof trees in 
Fig. 5.2, the implicit reasoning proceeds in the following order: the composition of the main 
preconditions P'l,l, , P'l.ml' the decomposition from A to AI; the composition of the 
preconditions P'2,1, , P'2.m2' the decomposition from Al to A2; and so forth. Fig. 5.4 is an 

example. In order to provide a really procedural description, however, we must still first 
resolve problems as to how a reasoner chooses from parallel executable steps (such as step 1 
and step 2 in Fig. 5.4), as well as how he comes to the appropriate preconditions at each step. 

Before leaving this chapter, now there is the question if the procedure defined above 
really all the covers cases a human will intuitively accept as the application of some assertion? 
This, is obviously an empirical issue. What we may claim is only, that all the reasoning carried 
out by this procedure seems to be fully in accord with our intuition. No claims, nonetheless, 
can be made vice versa, since very possibly our intuitive notion is not all-or-none. For instance, 
while one may think the derivation of ae Fvbe F from ae Uvbe U and U~F is an application 

of the subset defmition, we might as well accept this as a reasoning process involving firstly a 
splitting into two cases and then applying the subset defmition twice. Our hope is therefore, that 
we have at least captured the kernel of this notion, although it might have a hazy border. 
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assertion level step. A plausible conjecture is that, given the general schema of proof trees in
Fig. 5.2, the implicit reasoning proceeds in the following order: the composition of the main
preconditions P’1,1, . . . ,  P ’Lml ,  the decomposition from A to A1; the composition o f  the
preconditions P ’u ,  ..., P’2 ,m2’  the decomposition from A1  to A2; and so  forth. Fig. 5 .4  is an

example. In order to provide a really procedural description, however, we must still first
resolve problems as to how a reasoner chooses from parallel executable steps (such as step 1
and step 2 in Fig. 5.4), as well as how he comes to the appropriate preconditions at each step.

Before leaving this chapter, now there is the question if the procedure defined above
really all the covers cases a human will intuitively accept as the application of some assertion?
This, is obviously an empirical issue. What we may claim is only, that all the reasoning carried
out by this procedure seems to be fully in accord with our intuition. No claims, nonetheless,
can be made vice versa, since very possibly our intuitive notion is not all-or—none. For instance,
while one may think the derivation of ae Fvbe F from ae Uvbe U and UgF is an application
of the subset definition, we might as well accept this as a reasoning process involving firstly a
splitting into two cases and then applying the subset definition twice. Our hope is therefore, that
we have at least captured the kernel of this notion, although it might have a hazy border.
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Chapter 6. Compound Inference Rules at the Assertion Level 

In this chapter we introduce a structured collection of assertion level inference rule 
schemata, which on the one hand cover the complete set of inferences carried out by the 
primitive procedure described in the last chapter, and on the other hand, really have the chance 
to enter WM and thus become available to the reasoner. In sec. 6.1,we first set up a compact 
but logically complete structure to organize the rule schemata, and then elaborate on its 
cognitive import in sec. 6.3. Some more examples can be found in sec. 6.2. 

6.1. A Structured Representation 

We shall fIrst try to pin down the set of assertion level inference rules which may enter the 
WM. At the same time we will show that for each assertion, the corresponding sum total of 
inference rule schemata is fmite. From the perspective of our computational model, this set of 
inference rules is exactly the set of possible outputs of the operator generating inference rules 
from assertions. It is of course again a simplifIcation to ascribe the generation of inference rules 
from assertions to a single operator. Apart from the possibility of deriving new rules after 
calling the assertion application procedure, as illustrated in Chapter 1, there are certainly some 
other occasions where inference rules are generated directly from assertions. As will be 
discussed in section 6.3, however, we believe it is reasonable to assume that they are all

" 
logically equivalent. The entire discussion of this chapter is based on this assumption. We will 
also prove, that the operator generating new rules associated to existing rules (see Chapter 4) 

will not generate any really new rules at the assertion level. Let's now examine our subset 
example in more detail. 

Example 1. (continued) 

Suppose that the assertion application procedure has just constructed a proof presented in 
the tree form in Fig. 5.1. Our assumption is that possibly the reasoner learns the following 
inference rule schema as well, apart from merely drawing a concrete conclusion ale FI from 
premises'ale VI and Vl~Fl: 

ae V, U~F 
6.1 

ae F 

where a, U and F are meta-variables for object variables. More generally, hand in hand with 

deductive steps supported by proof trees represented in Fig. 5.2, a corresponding inference rule 

taking the form of 6.2 may be acquired: 

P'l, ... ,P'm 
6.2An 
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Chapter 6. Compound Inference Rules at the Assertion Level

In this chapter we introduce a structured collection of assertion level inference rule
schemata, which on the one hand cover the complete set of inferences carried out by the
primitive procedure described in the last chapter, and on the other hand, really have the chance
to enter WM and thus become available to the reasoner. In sec. 6.1,we first set up a compact
but logically complete structure to organize the rule schemata, and then elaborate on its
cognitive import in sec. 6.3. Some more examples can be found in sec. 6.2.

6.1. A Structured Representation

We shall first try to pin down the set of assertion level inference rules which may enter the
WM. At the same time we will show that for each assertion, the corresponding sum total of
inference rule schemata is finite. From the perspective of our computational model, this set of
inference rules is  exactly the set of possible outputs of the operator generating inference rules
from assertions. It is of course again a simplification to ascribe the generation of inference rules
from assertions to a single operator. Apart from the possibility of deriving new rules after
calling the assertion application procedure, as illustrated in Chapter 1, there are certainly some
other occasions where inference rules are generated directly from assertions. As will be
discussed in section 6.3, however, we believe it is reasonable to assume that they are all
logically equivalent. The entire discussion of this chapter is based on this assumption. We will
also prove, that the operator generating new rules associated to existing rules (see Chapter 4)
will not generate any really new rules at the assertion level. Let’s now examine our subset
example in more detail.

Example 1 .  (continued)

Suppose that the assertion application procedure has just constructed a proof presented in
the tree form in Fig. 5.1. Our assumption is that possibly the reasoner learns the following
inference rule schema as well, apart from merely drawing a concrete conclusion a l e  F1 from
premises‘ale U1 and UlgF lz

ae  U ,  UgF

aeF
6.1

where a,  U and F are meta-variables for object variables. More generally, hand in hand with
deductive steps supported by proof trees represented in Fig. 5.2, a corresponding inference rule
taking the form of 6.2 may be acquired:

P ’1,...,P’m
II

6.2
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where P'l,... ,P'n are formula schemata obtained from Pl,...,Pn (the formulas attached to the 

leaves, except the assertion A itself) and An' is the formula schemata obtained from An, 

attached to the root. The formula schemata are obtained from the corresponding formulas by 

replacing constant symbols not originally occurring in A by new meta-variables. Obviously, 

these constant symbols must occur in formulas serving as premises, such as ae U and U~F in 

our example. This procedure produces schemata of proof trees. And there is obviously a one

to-one correspondence between assertion level inference rules and tree schemata, under the 

above mentioned assumption that all other rule acquiring procedures are equivalent to this 

reasoning-and-abstraction procedure described here, with respect to the input-cutput relation. 

We may henceforth talk about proof trees and proof tree schemata interchangeably. In the 

following, therefore, we are going to establish a more structured organization of inference 

rules, based on this correspondence. 

Let us fIrst introduce some funher terminologies. Let Jl be an assenion and tB a set of logic 
level inference rules. Now let R)L2J designate the set of inference rules acquired by constructing 
NEs using exclusively logical level rules in tB. It is especially interesting to examine the set of 

proof tree schemata designated by Tree;t2J such that for all re R>l,% there is a tree schema 

tE Tree)L'llt such that r can be accounted for by a subtree of t. Rule r is called terminal if it is 

accounted for by a tree tE Tree)L2J, rather than a proper subtree. Apparently Tree;t'B is unique. 
Below is a constructive defmition: 

i) Start with the tree in Fig.6.1.a which corresponds to the rule--, , N-~ 

ii) If there is a tree t in the form of Fig. 6.1.b, and 

) Ar-a, Ar-Pl,... ,Ar-Pn tB' d . . I . h ·fth·a r ~ e IS a ecompoSltlon ru e wIt respect to a, now I ere eXIsts 

a substitution cr, such that A'o=acr, then extend t to a tree t' in form of Fig. 6.1.c. 

b) If ~ is a natural rewriting rule, a similar extension is made (n=O in Fig. 6.1.c) 

iii) If there is a tree t in the form of Fig. 6.1. b, and r Ar-p'1, ... ,N-p'ne tB is a composition 
:'< ~,t" 

rule with respect to Q, now if there exists a substitution cr, such that pcr=Qcr, then extend t to a 

tree t' in form of Fig. 6.1.d. 
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where l>'1,...,P'n are formula schemata obtained from P1‚...,Pn (the formulas attached to the

leaves, except the assertion A itself) and An’ is the formula schemata obtained from An,
attached to the root. The formula schemata are obtained from the corresponding formulas by
replacing constant symbols not originally occurring in A by new meta—variables. Obviously,
these constant symbols must occur in formulas serving as premises, such as as U and UgF in

our example. This procedure produces schemata of proof trees. And there is obviously a one-
to-one correspondence between assertion level inference mles and tree schemata, under the
above mentioned assumption that all other rule acquiring procedures are equivalent to this
reasoning-and-abstraction procedure described here, with respect to the input-output relation.
We may henceforth talk about proof trees and proof tree schemata interchangeably. In the
following, therefore, we are going to establish a more structured organization of inference
rules, based on this correspondence.

Let us first introduce some further terminologies. Let a be an assertion and ß a set of logic
level inference rules. Now let R1,93 designate the set of inference rules acquired by constructing
NEs using exclusively logical level rules in as. It is especially interesting to examine the set of
proof tree schemata designated by Tree im such that for all re R 2/3, there is a tree schema
te  Tree 13, such that r can be accounted for by a subtree of t .  Rule r is called terminal if it is
accounted for by a tree te Tree ‚Lg, rather than a proper subtree. Apparently Tree „3 is unique.
Below is a constructive definition, „

i) Start with the tree in Fig.6.1.a, which corresponds to the rule At—fl'

ii) If there is a tree t in the form of Fig. 6.1.b, and

At—a A|— Al— . . . . . .a)r-——’—m’—’fi‘e 'B rs a decomposrtron rule With respect to a,  now if there exists

a substitution 0, such that A’o=ac, then extend t to a tree t ’  in form of Fig. 6.1.c.

b)IfA'_Pis a natural rewriting rule, a similar extension is made (n=0 in Fig. 6.1.c)

iii) If there is a tree t in the form of Fig. 6.1.b,and rwe  'B is a composition

rule with respect to Q, now if there exists a substitution c, such that pC‘=Q6, then extend t to a
tree t ’  in form of Fig. 6.1.d.
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Jl 

Jl 
I 
I 

I / 
/ 

P 

I 
I 
I 
I I 

/ 
/ 

p 
Jl 
I 
I 
I 

pi' 0' 

p 
/ 

/ 

•..., pn'O' 

I I I I 

I I 
I I 
I .1.' p20',..., pnO' I 
I I 

A' Q A' 

a b c d 

Fig. 6.1 

Some explanations: i) is an initialization, where a tree with only one node is introduced, 

corresponding to the initial inference rule -- ii) and ill) extend existing trees by decomposing 
AI-Jl 

the root or the leaves. 

The informations contained in this set is in fact rather redundant, since many rules 
ac~ounted for by one tree schema are often associated to rules accounted for by another tree , 
schema, in the way described in Chapter 4. This, reflects the fact that a rule can either be 
acquired directly, in a reasoning-and-abstraction manner, or it can be derived as an associated 
rule of another acquired rule. Let us illustrated this in the example below: 

Example 1. (Continued) 

W· h I aIEUI, Ulk;Fl d . d fr h d fO .. dbIt a ru e alrea y acqurre om t e subset e illltlOn, supporte y
ale Fl 

the NE illustrated in Fig. 5.1, it is only natural for a human to be able to apply the following 
associated rule: 

ale UI, al~ FI 

UI$FI 

This, however, has as a matter of fact a corresponding NE of its own: 
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fl
Ij|I I P fill PI'G pn’o

I
P P' I ' ’,... ' I

| l 4—;— I ,
I v , : , l I l , : ’

x I I I
I l I

| Ä p20',..., pna '
I l

A’  Q A'

a b c d

Fig.  6.1

Some explanations: i) is an initialization, where a tree with only one node is introduced,

corresponding to the initial inference rule Ai—flt ii) and iii) extend existing trees by decomposing

the root or the leaves.

The informations contained in this set is in fact rather redundant, since many rules
accounted for by one tree schema are often associated to rules accounted for by another tree
schema, in the way described in Chapter 4. This, reflects the fact that a rule can either be
acquired directly, in a reasoning-and-abstraction manner, or it can be derived as an associated
rule of another acquired rule. Let us illustrated this in the example below:

Example 1. (Continued)

a le  U1, U lgF l
a l e  F1

the NE illustrated in Fig. 5.1, it is only natural for a human to be able to apply the following
associated rule:

With a rul already acquired from the subset definition, supported by

a le  U1 ,  a l eF l

U1¢F1

This, however, has as a matter of fact a corresponding NE of its own:
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aleUl alEFI 

.(aleUI:::}aleFl) 

Uls;;1Fl.¥ x xe Ul.xe 1Ft -I...'Vx xeUl=>xeFl) 

Ul~lFl 

Fig. 6.2 

In general, if Fig 6.3.a is the corresponding tree schema for a rule cl,~~,bl, acquired from 

. . d I bl,--,b2, cl . I beassertion A, the correspondmg tree schema for the assOCiate ru e can certam y 
--,c2 

constructed, using corresponding associated logic level rules, as shown in Fig. 6.3.b. 

A 

I 
I 

A' el,..., 
"" 

cl, c2,... 

Cn 

A 
I 
I 
I 

A' 

bI 

-,Bm 
I 
I 

-.BI 

-,b2 

BI Cl 
I 
I 

Bm bI -,Cn , cl 

b2 

(a) (b) 

Fig. 6.3 

This argument leads exactly to the following property, that makes a more succinct 
representation possible: 

where '13 is an arbitrary set of logic level inference rules. A natural corollary is obtained in 

conjunction with properties 4.5 and 4.6: 

Assoc(R)'LASSOC(1J,l.!1J) ~R5tAssoc(1J,l.!1J 

From a static perspective, this means if all rules associated to elementary rules are already at the 

disposal of the operator generating assertion level inference rules from assertions, the derivation 
of associated rules will not bring rules really new at the assertion level. Now let Rules51 
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a leUl  ' a leF l

—~(aleUl=aleFl)
VIFJU U: IFäV x xe U=exe IF

UlclaV x xe Ulaxe  ]Fl . —-.(Vx xe Ul=>xeF1)

UlfilFl

Fig. 6.2

. . . . c1,c2,b1 .In general, 1f Fig 6.3.a is the corresponding tree schema for a ruleb—Z, acquired from
_. 2 ,  .

assertion A, the corresponding tree schema for the associated mlebL? can certainly be
—IC

constructed, using corresponding associated logic level rules, as shown in Fig. 6.3.b.

A c l ,  €29 . “  ? LIB_—_1—b2

| GT ' I 'n Im

| ’,...
’ | I

A , , C1,...,
A'  , -—\Bl

Bl C1 ‘
I
|

‚ . . .

Bm I bl  _1  Cn ! Cl

b2 —IC2

(a) (b)

Fig. 6.3

This argument leads exactly to the following property, that makes a more succinct
representation possible:

RAAssoc($p$=RanUASSOC(Raw) 6.3

where 23 is an arbitrary set of logic level inference rules. A natural corollary is obtained in
conjunction with properties 4.5 and 4.6:

ASSOC(R1‚Assoc(ßp) QRzAssocflzpm 64

From a static perspective, this means if all rules associated to elementary rules are already at the
disposal of the operator generating assertion level inference rules from assertions, the derivation
of associated rules will not bring rules really new at the assertion level. Now let Rules g
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designate the complete set of inference rules acquirable from an assertion 5l, based exclusively 

on the set of cognitively elementary inference rules Elementary J then 

RulesJ{ =RJ{~lementaryuassOC(Elementary) V Assoc(R~lementaryuassoc(Elementary» 

=R)LElementaryuassoc(Elementary) by 6.4 

=R~.Elementary U Assoc(R)LElementary) by 6.3 

Now we have isolated a subset of the rules which can be represented by Tree)LElementary in 
an very compact way, that also plays an epistemologically more central role. Thanks to the 
compactness of the tree fonn, for almost all examples, Tree)LElementary consists usually of only 
one or two trees. The special cognitive import of these more kernel rules will be discussed in 
section 6.3. It is to be indicated here, that some logical redundancy still remains in this 
representation, since there are elementary rules associated with each other. Within the 
elementary rules we have proposed, for instance, the two vD rules 

j{ I-PvQ, j{ I---,P j{ I--PvQ, j{ I----,Q
 

j{ I--Q j{ I--P
 

are associated with each other. 

Now we finish the discussion of the subset example used throughout this paper by 

showing its Tree~.Elementary and a listing of some of the rules contained in Rules5t 

E~ample 1. (Continued)
'. 

Two trees are needed since the equivalence (<=» is understood as the short hand of the 
conjunction of two implications and therefore can be decomposed in two different ways. The 
subset defmition is repeated below: 

VF,V V~F<=>Vx XE V~XE F 

The following is a list of some of the rules in R~, and their corresponding tree schemata. 

Inference Rule Derivation(Tree or Association) 

AI-alE VI, AI-Vl~Fl
(1) Tree 6.4.a 

At-alE Fl 

At-ale: Fl, AJ-Ul~FI
(2) Associated with (1)

At-ale: E VI 

At-alE VI, AI-ale Fl
(3) Associated with (1) 

At-Vl$Fl 

AI-alE VI~aIE Fl
(4) where al does not occur in A Tree 6.4.b 

AI-Vl~Fl 
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designate the complete set of inference rules acquirable from an assertion fl, based exclusively
on the set of cognitively elementary inference rules Elementary , then

Rules; =Rfl£lementaryuassoc(Elementary) U ASSOdRzElementaryuassocfiementaryD

=Rfl£lemmtaryuassoc(Elememary) by 6 '4

=R1£lementary U AsS03(Rfilfilementary) by  6 -3

Now we have isolated a subset of the rules which can be represented by Tree mammary in
an very compact way, that also plays an epistemologically more central role. Thanks to  the
compactness of the tree form, for almost all examples, Treemalemmmy consists usually of only
one or two trees. The special cognitive import of these more kernel rules will be discussed in
section 6.3. It is to be indicated here, that some logical redundancy still remains in this
representation, since there are elementary rules associated with each other. Within the
elementary rules we have proposed, for instance, the two vD rules

fil I—PvQ, fl l—fiP fil I———PvQ, fi |————1Q
fll I—-Q ' fit |——P

are associated with each other.

Now we finish the discussion of the subset example used throughout this paper by
showing its Tree „hmmm and a listing of some of the rules contained in Rules1

Eitample 1. (Continued)

Two trees are needed since the equivalence (®) is understood as the short hand of the
conjunction of two implications and therefore can be decomposed in two different ways. The
subset definition is repeated below:

VF,U UnVx xe U=>xe F

The following is a list of some of the rules in Ra, and their corresponding tree schemata.

Inference Rule  Derivation(Tree or  Association)

At— 1 U1,  A 1 F1
(1) a € *‘U ‘; Tree 6.4a;

Ar—ale F l

Ai—ale F l ,  Al—Ul F l  . .(2) ———g Assomated With ( l )
At—ale e U l

Al—ale  U1 ,  Al—ale F l3 . .( ) Ar—U1$F1 Assocrated With (1)

At— le  Ul=> 1 F1(4) A where a l  does not occur in A Tree 6.4.b
At—UlgFl
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Af-'r;fx xe Ul=>xe Fl 
(5) Subtree of 6.4.b 

AJ-Ul~Fl 

(6) Af-Ul,*Fl Associated to (5) 
Af--,'r;fx xe Ul=>xe Fl 

W,U U~<:=>'r;fx xeU=>xeF 

Ul~l<:=>'r;fx xeUl=>xeFl 

Ul!,;Fl=>'r;fx xe Ul=>xe Fl Ul!,;Fl 

'r;fx xeUl=>xeFl 

aleUl=>aleA aleUl 

aleFl 

JFig. 6.4.a 

W,U U~<:=>'r;fx xeU=>xeF 

Ulg<'l<:=>'r;fx xeUl=>xeFl aleUl=>aleA 

'r;fx xeUl=>xeFl 

Ul~l 

. Fig. 6.4.b 

Apparently, rules (1),(2),(3) are associated with each other, albeit independently derivable. 
Rule (4) has no associated rules because of its variable condition. Rule 5, the associated rule of 
the terminal rule 6, is non-terminaL Finally, we still want to use this example to illustrate how 

our extended conditions for applications of inference rules enhances the naturalness of the 

rules. Rule (4), for instance, allows an extra class of derivations, namely inferring 
Al--U'I~F'1 from A, a'le U'lf-a'le F'l, as far as a'l,U'l and F'l do not occur in A. 
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(5) M Subtree of 6.4.bAk—UlcFl

(6) AHUI F l  Associatedto(5)
Al——-.Vx xe U1=>xe  F1

VF,U U;F¢=>Vx xe U=>xe F

UlgF 1<=>VX xe  U1=xe F l

UlgFl=>Vx xe U1=xe F l  ' U1<;F1

Vx xe  Ul=>xe F l

a l eUl=a leH  , a l eUl

a l eF l

Fig. 6.4.a „

VF,U UgFmVx xe U=>xeF

UlgFlcb el=>xeF1 aleU1=>aleFl

(Vx xe Ul=>xe F1)=>UICF Vx xe U1=¢xe F1
\

UlgFl

. Fig. 6.4.b

Apparently, rules ( l ) , (2) ,(3)  are associated with each other, albeit independently derivable.
Rule (4) has no  associated rules because of  its variable condition. Rule 5 ,  the associated rule of
the terminal rule 6, is non-terminal. Finally, we still want to use this example to illustrate how
our extended conditions for applications of inference rules enhances the naturalness of the
rules.  Rule (4) ,  for instance, a l lows an extra class o f  derivations, namely inferring
Al—U’lgF’l from A, a’ leU’l l—a’leF’l ,  as far as a’1,U’1 and F’l  do not occur in A.
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6.2. Examples 

Knowledge represented in a logic based language can usually be conceived of a as system 
of assertions. According to the theory proposed in this paper, these assertions should directly 
increase the deductive power of a reasoner. Although in most of the current languages no 
modularity is supported, assertions can usually be grouped together into theories. And theories, 
in turn, form a hierarchical structure reflecting the dependency relations [Kerber 89.b]. We are 
going to provide concrete examples of assertion level inference rules in several different 
theories, to demonstrate the growth of the natural calculus, hand in hand with the growth of a 
knowledge base. 

A. Assertions at the Logic Level. 

The growth of the natural calculus can best be observed in mathematical reasoning. 
Mathematical theories are in general set up hierarchically, and even within a theory, subordinate 
theorems and lemmas are also first proved, thus paving additional routes leading to a main 
theorem. In terms of our computational model, this means that along with the development of a 
mathematical theory, a human being working with it is provided with new, more abstract means 
of drawing conclusions, Le., applying intermediate theorems. To prove a theorem in group 

I 

theory, for instance, a human may use some theorems of set theory. . 

: On the bottom of the hierarchy of mathematical knowledge, we can usually find a layer of 
as~ertions pertaining directly to logic per se. To extend their reasoning repertoire beyond the 
basic inference rules directly supported by the calculus like that of Gentzen, and to provide the 
layers above with more direct routes, logicians first prove some new assertions. 

For example, once the formula 

is proved as a theorem, the following two inference rules may be added to the collection of 

inference rules at our disposal: 

3 x Pxv3xQx 3xPxvQx
 

3 x PxvQx 3xPxv3xQx
 

The following are some more examples: 

Logic Tautologies Inference Rules 

-,Vx Px~ 3x -;i\ .'11 x Px .3x.Px , 
3 x-'Px Vx P x 
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6.2. Examples

Knowledge represented in a logic based language can usually be conceived of a as system
of assertions. According to the theory proposed in this paper, these assertions should directly
increase the deductive power of a reasoner. Although in most of the current languages no
modularity is supported, assertions can usually be grouped together into theories. And theories,
in turn, form a hierarchical structure reflecting the dependency relations [Kerber 89.b]. We are
going to provide concrete examples of assertion level inference rules in several different
theories, to demonstrate the growth of the natural calculus, hand in hand with the growth of a
knowledge base.

A. Assertions at the Logic Level.

The growth of the natural calculus can best be observed in mathematical reasoning.
Mathematical theories are in general set up hierarchically, and even within a theory, subordinate
theorems and lemmas are also first proved, thus paving additional routes leading to a main
theorem. In terms of our computational model, this means that along with the development of a
mathematical theory, a human being working with it is provided with new, more abstract means
of drawing conclusions, 1. e., applying intermediate theorems. To prove a theorem in group
theory, for instance, a human may use some theorems of set theory.

.- On the bottom of the hierarchy of mathematical knowledge, we can usually find a layer of
assertions pertaining directly to logic per se. To extend their reasoning repertoire beyond the
basic inference rules directly supported by the calculus like that of Gentzen, and to provide the
layers above with more direct routes, logicians first prove some new assertions.

For example, once the formula

ax  PxV3 xQxÖax PxVQx

is  proved as a theorem, the following two inference rules may be added to the collection of
inference rules at our disposal:

ax  vaxQx  3xPxVQx

3x  PxVQx , 3xPx\ ’3xQx

The following are some more examples:

Logic Tautologies Inference Rules

"'l PX:  3x  'fiPx  " l  PX flax -1px

3x—1Px  VX PX
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Vx -'Px=>-,Vx Px Vx -'Px Pa 
-,Vx Px 

, 
-,Vx-'Px 

-'Pa 
-,V x Px 

Vx Pxl\Qx 

Vx Px 
,... 

V'x Pxv'v'x Qx 

Vx PxvQx 
. 

Vx V'x PxvVx Qx 

-,Pa=>-,Vx Px 

Vx Pxl\Qx<=>Vx Pxl\Vx Qx 

Vx PxvV'x Qx=>Vx Pxv Qx 

PavQa 

3 x Pxl\Qx 

3 x Px 
,... 

' ... 

3x Pxl\ Qx=>3x Pxl\ 3 x Qx 

This splitting of inference rules pertaining to logic itself resolves a problem troubling 
cognitive psychologists designing natural logics [Braine 78]. To cover their empirical data, their 
natural logics have to be enriched by inference rules which are by nature obviously compound. 
In our model, these data can be explained by assuming a knowledge base containing assertional 
knowledge. It is nevertheless worth noting that it is difficult to set up a criterion to distinguish 
the elementary rules from logic level rules derived from logic theorems, the border between the 
two may again be hazy. 

B. Assertions at the Epistemological Level. 

There is an epistemological level in concept description languages like for example the KL
One family [Brachmann 78], that provides a hopefully adequate basis for the construction of 
conceptual level objects. These, in a logic based representation language are all hidden 

implicitly in the way of encoding concepts as well as the various relations among them into 

logical formulas [Hayes 79]. The usual reasoning inherent to those concept constructing 
primitives can consequently be carried out by applying the corresponding assertions. 

Let us look at some simple examples. If we~ have the full power of higher order logic, and 
two predicates Propeny(A, P) and Subsume(A,B) with the intended meaning that P is a 

property of concept A and concept A subsumes concept B, a possible axiomatization may be: 

V'A, P Property(A P) <=> (V'x Element(x A) => P (x» 

VA, B Subsume(A, B) => (Vx Element(x B) => Element(x A» 

Now the well known inheritance relation can be expressed by the following assertion derivable 

from the two axioms abBve: 

VA, B, P, x (Property(A P) 1\ Subsume(A, B) 1\ Element(x B)) => P (x). 
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VX —1Px=-‘>—\Vx PX VX ' “Px  Pa

" !Vx  PX , '"l "1Px

fiPa=>—IVX PX _lPa

—1Vx PX

Vx PxAQxÖvx PxAvx  Qx Vx PxAQx

vx  Px ’ '
Vx PxVVx Qx=>vx PxV Qx Vx PxVVx Qx

Vx PxVQx ’

Vx Vx vVx  Qx
PaVQa

3x  PxA Qx=>3x PxA ax  Qx ax  PxAQx

51x Px

This splitting of inference rules pertaining to logic itself resolves a problem troubling
cognitive psychologists designing natural logics [Braine 78]. To cover their empirical data, their
natural logics have to be enriched by inference rules which are by nature obviously compound.
In our model, these data can be explained by assuming a knowledge base containing assertional
knowledge. It is nevertheless worth noting that it is difficult to set up a criterion to distinguish
the elementary rules from logic level rules derived from logic theorems, the border between the
two may again be hazy.

B. Assenions at the Epistemological Level.

There is an epistemological level in concept description languages like for example the KL-
One family [Brachmann 78], that provides a hopefully adequate basis for the construction of
conceptual level objects. These, in a logic based representation language are all hidden
implicitly in the way of encoding concepts as well as the various relations among them into
logical formulas [Hayes 79]. The usual reasoning inherent to those concept constructing
primitives can consequently be carried out by applying the corresponding assertions.

Let us look at some simple examples. If we, have the full power of higher order logic, and
two predicates Property(A, P) and Subsume(A,B) with the intended meaning that P is a
property of concept A and concept A subsumes concept B, a possible axiomatization may be:

VA, P Property(A P) @ (Vx Element(x A) => P (x))

VA, B Subsume(A, B) => (Vx Element(x B) => Element(x A))

Now the well known inheritance relation can be expressed by the following assertion derivable
from the two axioms above:

VA,  B ,  P ,  x (Property(A P) A Subsume(A, B)  A Element(x B))  => P (x).
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which enables us to apply a new inference rule: 

Property(A P), Subsume(A, B), Element(x B) 
P(x) 

Another form of inheritance might be well captured by an assertion as well: 

'<:IA, B, P (Property(A P) /\ Subsume(A, B» ~ Propeny(B P) 

which would account for the derivation of "all students are mortar' from "all human beings are 

mortar' and "all students are human beings". 

C. A Puzzle Example 

Thus far, we have discussed examples of logical assenions, fundamental for mathematical 
reasoning, and assenions related to epistemological constructs, fundamental to common sense 
reasoning. And throughout the paper, we have used a subset example considered typical for 
mathematical reasoning. Now we are going to continue with Schuben's steam-roller problem, 
to show that similar observations can be made in deductive common sense reasoning as well. 

Example 3. (continued) 

For the convenience of discussion, the encoding of the axiom is repeated below. 

Axiom 1. a,a' :Animal, p,p':Plant 

'<:la ('<:Ip Eats(a, p) v 

('<:la' a'<a /\ 3p' Eats(a', p') ~ Eats(a, a'» 5.1 

Although Tree51,Elementary consists of two trees, due to the redundancy of the two 
symmetric vD rules, only one is shown in Fig. 6.5. Since the two vD rules are associated with 
each other, this tree is complete by itself, as discussed in the last section. Some inference rules 
are listed below: 

Inference Rules Derivation(Tree or Association) 

(1) ....,Eats(a, p), a'<a, Eats(a', p') 
Eats(a, at) Tree in Fig. 6.5 

(2) at<a, Eats(a', p'), ....,Eats(a, at) 
Eats(a, p) Associated to (1) 

(3) ....,'<:Ip Eats(a, p), a'<a, Eats(a', p') 
Eats(a, a') Subtree of Fig. 6.5 

(4) a'<a, Eats(a', p'), ....,Eats(a, at) 

'<:Ip Eats(a, p) 
Associated to (3) 
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which enables us to apply a new inference rule:

PrgrenflA P) ,  Subsume(A,  B) ,  Element(x  B)
P(x) '

Another form of inheritance might be well captured by an assertion as well:

VA, B ,  P (Property(A P) A Subsume(A, B) )  => Property(B P)

which would account for the derivation of “all students are mortal" fiom “all human beings are
mortal” and “all students are human beings”.

C.  A Puzzle Example

Thus far, we have discussed examples of  logical assertions, fundamental for mathematical
reasoning, and assertions related to epistemological constructs, fundamental to common sense
reasoning. And throughout the paper, we have used a subset example considered typical for
mathematical reasoning. Now we are going to continue with Schubert’s steam-roller problem,
to show that similar observations can be made in deductive common sense reasoning as well.

Example 3. (continued)

For the convenience of discussion, the encoding of the axiom is repeated below.

Axiom ] .  a,a’ :Animal, p,p’:Plant

Va (VP EatS(a. p) v
’ (Va' a‘<a A 3p' Eats(a', p') = Eats(a, a‘)) 5.1

Although Tree  1,Elementary consists of two trees, due to the redundancy of the two
symmetric vD rules, only one is shown in Fig. 6.5. Since the two vD rules are associated with
each other, this tree is complete by itself, as discussed in the last section. Some inference rules
are listed below:

Inference Rules  Derivation(Tree or  Association)

- tEats  a ,  , a '<a ,  Eats  a ' ,  ' . .(1) ( %)ats(a, a ' )  ( p)  Tree m Fig. 6.5

'<  , E ' ,  ‘ , —.E , ' .(2) a a atsgatstzg p)  ats(a a )  Assocratedto ( l )

3 —.Vp Ea t s ( a ,  p ) ,  a '<a ,  Ea t s ( a ' ,  p ' )
( ) Ea t s ( a ,  a ' ) Subtree of Fig. 6.5

a '<a ,  Ea t s ( a ' ,  p ' ) ,  fiEa t s ( a ,  a ' )

Vp Eats(a, p )
(4) Associated to (3)
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'fa ('fp Eats(a. p)v
 

('fa' a'<a /\ 3p' Eats(a'• p') ~ Eats(a. al»
 

..., Eats(al, p2)
 
('ip Eats(al. p)v 

('fa' a'<al /\ 3p' Eats(a', p') ~ Eats(al, al» -,'Vp Eats(al, p) Eats(al', pI) 

'fa' a'<al /\ 3p' Eats(a', pI) ~ Eats(al, a')	 al'<al , 3p' Eats(al'. p) 

al'<al /\ 3p' Eats(al', p') =>Eats(al, al') al'<al /\ 3p' Eats(al', pI) 

Eats(al, al') 

Fig. 6.5 

6.3. Cognitive Status of Assertion Level Inference Rules 

In this section, we are going to discuss briefly the questions as to whether every assertion 
level rules plays the same role. Do some of them possess a more significant cognitive status? 
Are rules stored in reality as an unorganized congregation, or does the tree form structure 
suggested in section 6.1 have a cognitive import? t 

If restricted to the reasoning-and-abstraction view of rule acquisition, most of the answers 
fo~ the above questions are negative. As already indicated, however, there is at least another 
procedure introducing inference rules into WM, the one carrying out the task of comprehending 
assertions. The effect of the understanding of an assenion must include the introduction of at 
least some of the corresponding rules, on the ground that a natural expansion is not always 
involved in assertion level proof steps, even when an assertion is applied for the first time in a 
context. It is therefore a plausible conjecture that what happens in the understanding process of 
assertions is a natural expansion process at the meta-Ievel. involving meta-variables later 
appearing in assertion level inference rules. On the ground that only elementary rules are 
residing permanently in WM, in contrast to rules associated to them, which are not derived 
unless motivated, it can be further concluded that rules accounted for by trees in TreeJL'Efemenuuy 

'",,"'''	 are really learned first @1l'thfs comprehension process, since the elementary rules alone are 
involved in their NEs. Furthermore, since NEs of rules accounted for by subtrees are part of 
the NEs of the terminal rules, there is really a reason to assume a structure similar to 

TreeJL'ECemmtary- Up to now it should be clear that the division of assertion level rules into those 
accounted for by TreeJL'Ekmentaryt and those associated to them is nor entirely arbitrary nor is it 
only for the sake of mathematical clarity. Although no precise prediction is possible in our 
theory, it is very likely that the first group of rules are acquired during the comprehension 
process, while members of the latter are derived form members of the fonner, when motivated 
in a reasoning process. 
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Va (Vp Eats(a, p)v
(Va' a'<a A 3p' Eats(a', p') => Eats(a, a'))

—.Eats a l ,  2(VpEatstal.p)v ( P)
(Va' a'<a1 A flp' Eats(a', p') = Eats(a1, a')) , a Eats(a1, p) Eats(a1', pl)

Va' a'<a1 A 3p' Eats(a', p') = Eats(al, a') al'<al . 3p' Eats(a1', p)

a l ‘<a l  A Elp' Eats(al', p') = Eats(a1, a l ' )  ' al '<a1 A Elp' Eats(a1'‚ p')

Eats(a1, a l ' )

Fig. 6.5

6.3. Cognitive Status of Assertion Level Inference Rules

In this section, we are going to discuss briefly the questions as to whether every assertion
level rules plays the same role. Do some of them possess a more significant cognitive status?
Are rules stored in reality as an unorganized congregation, or does the tree form structure
suggested in section 6.1 have a cognitive import? ’

If restricted to the reasoning-and-abstraction view of rule acquisition, most of the answers
fo? the above questions are negative. As already indicated, however, there is at least another
procedure introducing inference rules into WM, the one carrying out the task of comprehending
assertions. The effect of the understanding of an assertion must include the introduction of at
least some of the corresponding rules, on the ground that a natural expansion is not always
involved in assertion level proof steps, even when an assertion is applied for the first time in a
context. It is therefore a plausible conjecture that what happens in the understanding process of
assertions is a natural expansion process at the meta-level, involving meta-variables later
appearing in assertion level inference rules. On the ground that only elementary rules are
residing permanently in WM, in contrast to rules associated to them, which are not derived
unless motivated, it can be further concluded that rules accounted for by trees in Tree £1,a

are really learned first in@this comprehension process, sin’be the elementary rules alone are
involved in their NEs. Furthermore, since NEs of rules accounted for by subtrees are part of
the NES of the terminal rules, there is really a reason to assume a structure similar to
Tree ”JW“? Up to now it should be clear that the division of assertion level rules into those
accounted for by Tree 1,a and those associated to them is nor entirely arbitrary nor is  it
only for the sake of mathematical clarity. Although no precise prediction is possible in our
theory, it is very likely that the first group of rules are acquired during the comprehension
process, while members of the latter are derived form members of the former, when motivated
in a reasoning process.
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It might be an over-generalization to claim that the comprehension process will always 

result in the memorization of Tree5f:Efementaty> since the situation can be more complicated 

sometimes. Take the Tree5f.,'Efementary of the two assertions in Fig. 6.6 for example, both of 
them consist of two trees. What is special here ist that, the two trees have in both of the cases a 
common subtree. It is possible that these common subtrees have a better chance to be 
memorized, while a derivation of the terminal rules needs to be motivated. 

TJt'Efementary for TJt'Efementary for 

PvQ=>R 

PvQ=>R, 

R 

P 

PvQ 

~Q"R; 

Q"R 

Q 

P 

Q p 

R 

Pv 

R 

Fig. 6.6 
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It might be an over-generalization to claim that the comprehension process will always
result in the memorization o f  Tree 91,5m since the situation can be more complicated
sometimes. Take the Tree ‚q,;[mmmw of  the two assertions in Fig. 6 .6  for example, both of
them consist of two trees. What is special here ist that, the two trees have in both of the cases a
common subtree. It is possible that these common subtrees have a better chance to be
memorized, while a derivation of the terminal rules needs to be motivated.

Taßtementary for Tßflenwntary for

P=> QA R
PvQ =>R

P P=> QA R, P
QAR

PvQ =>R, PvQ
R Q

’:

Q P=>QA R, P

PVQ =>R, PV Q A R

R
R

Fig. 6.6
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Chapter 7. Related Works and Applications 

In the following sections we want to discuss two sorts of related works: theories dealing 
with related issues such as natural logics or mental reasoning, and AI applications where these 

concepts play or will play a major role. 

7.1. Related Works 

Our set of cognitively elementary inference rules originates directly from the long tradition 
of the study on natural logics, carried out both by logicians and later by cognitive 
psychologists. The word "natural" was ftrst used by Gerhard Gentzen [Gentzen 30] to describe 
his logic. He studied the ways in which mathematical inferences are drawn and decided to 
design a calculus containing a relatively large number of inference rules which "came as close 
as possible to actual reasoning", and thus took an important departure from the calculi in the 
Churchean tradition. And more recently, natural logic became an active research topic of 
cognitive scientists, aiming at discovering internal structures that could account for human 
reasoning competence. Granted the problems that arise from the assumption of a mental logic 
[Johnson-Laird 83] [Holland et al86] [Lakoff 87], it remains an appealing proposal. Varieus 
versions of natural logics are consequently developed for this purpose. While Gentzen's logic 
can be seen as aiming at a characterization of human formal reasoning, with mathematics as a 

I 
typical example; the second group of natural logics are either designed to captured the nature of 
casual daily reasoning [John-Laird 72, 83], reasoning with English connectives [Braine 78] or 
to serve as a semantic interpretation of natural languages [Lakoff 70]. Since we are primarily 
interested in formal reasoning, our set of elementary inference rules is essentially adopted from 
Gentzen, in a linearized version ftrst described in Andrews [Andrews 80]. 

Secondly, the central issue of this paper, Le. the characterization of reasoning intuitively 
called the application of assertions, is closely related to one of John-Laird's "effective 
procedure" [John-Laird 83], aimed at accounting for spontaneous daily reasoning. In spite of 
the difference of task domains and the basic theoretical assumptions, both studies are 
confronted with a similar problem and41ave opted for a similar solution. Given a set of 
premises, the problem confronts John-Laird as a cognitive psychologist is how to explain that 
only a small subset of all the valid conclusions are actually drawn by a human being under 
ordinary circumstances. We, on the other hand, are required to delineate the subset of all the 
valid inferences intuitively understood as the application of an assertion, given an assertion and 
some other premises. To this end, both approaches have tried to fmd constraints that appear to 
characterize the subset in concern. The composition and decomposition constraints proposed 
here are of purely syntactical nature, as for a psychological explanation we can only refer to the 
primitiveness of the procedure carrying out this reasoning (see section 5.2). In comparison, 
John-Laird's characterization is more of a semantic nature and it may be more superior as a 
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Chapter 7 .  Related Works and Applications

In the following sections we want to discuss two sorts of related works: theories dealing
with related issues such as natural logics or mental reasoning, and AI applications where these
concepts play or will play a major role.

7 .1 .  Related Works

Our set of cognitively elementary inference rules originates directly from the long tradition
of the study on natural logics, carried out both by logicians and later by cognitive
psychologists. The word “natural” was first used by Gerhard Gentzen [Gentzen 30] to describe
his logic. He studied the ways in which mathematical inferences are drawn and decided to
design a calculus containing a relatively large number of inference rules which “came as close
as possible to actual reasoning”, and thus took an important departure from the calculi in the
Churchean tradition. And more recently, natural logic became an active research topic of
cognitive scientists, aiming at discovering internal structures that could account for human
reasoning competence. Granted the problems that arise from the assumption of a mental logic
[J ohnson-Laird 83] [Holland et al 86] [Lakoff 87], it remains an appealing proposal. Various
versions of natural logics are consequently developed for this purpose. While Gentzen’s logic
can be seen as aiming at a characterization of human formal reasoning, with mathematics as a
typical example; the second group of natural logics are either designed to captured the nature of
casual daily reasoning [John-Laird 72, 83], reasoning with English connectives [Braine 78] or
to serve as a semantic interpretation of natural languages [Lakoff 70]. Since we are primarily
interested in formal reasoning, our set of elementary inference rules is essentially adopted from
Gentzen, in a linearized version first described in Andrews [Andrews 80].

Secondly, the central issue of this paper, i.e. the characterization of reasoning intuitively
called the application of assertions, is  closely related to one of John-Laird’s “effectiVe
procedure” [J ohm-Laird 83], aimed at accounting for spontaneous daily reasoning. In spite of
the difference of task domains and the basic theoretical assumptions, both studies are
confronted with a similar problem mflave opted for a similar solution. Given a set of
premises, the problem confronts John-Laird as a cognitive psychologist is how to  explain that
only a small subset of all the valid conclusions are actually drawn by a human being under
ordinary circumstances. We, on the other hand, are required to delineate the subset of all the
valid inferences intuitively understood as the application of an assertion, given an assertion and
some other premises. To this end, both approaches have tried to find constraints that appear to
characterize the subset in concern. The composition and decomposition constraints proposed
here are of purely syntactical nature, as for a psychological explanation we can only refer to the
primitiveness of the procedure carrying out this reasoning (see section 5.2). In comparison,
John-Laird’s characterization is more of a semantic nature and it may be more superior as a
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psychological explanation. He fIrst proposed a measure of the information content of formulas, 
and then postulates that "no conclusion contains less semantic information than the premises on 
which it is based or fails to express that information more parsimoniously". This, establishes to 
a greater extent the meaningfulness of the conclusions drawn. Unfortunately, neither can his 
measure be extended to predicate logic [John-Laird 83] [Hintika 73], nor can his criterion split 
deductions into units called the applications of single assertions. Comparing the two approaches 
mathematically, within the realm of propositionallogic, the set of meaningful reasoning carried 
out by John-Laird's procedure is in general more complex, i.e., involving more than one 
application of an assertion. Finally, we want to point out our difference with respect to the 
general theoretical assumptions. While our discussion is entirely built on top of the assumption 
of the existence of mental inference rule schemata as an internal structure responsible for 
deductive competence, this assumption is disputed by John-Laird in general. Despite of his 
success in explaining daily casual reasoning by means of other internal representations, we 
believe it remains an appropriate assumption in regards to formal deductive reasoning, where 
the individuals are usually assumed to have received training in formal logic. Furthermore, our 
framework makes possible the accommodation of the compound rules,which help to explain 
some other observations (see section 6.3). 

7.2. Possible Applications in AI 
1; 

Although not directly on the subject of natural logic and mental reasoning, there is enough 
work showing the need of such concepts in various AI applications. We hope that our new 
mOdel of deductive reasoning, particularly the notion of an extensible natural calculus, will give 
some weight to these applications. 

First there is the problem of transforming machine generated proofs or arguments into 
natural language, which in effect set us on the line of this research originally. It has long been a 
problem for natural language generation systems to fmd heuristic strategies capable to make 
decisions on the identification of important argument steps and on the deleting of others 
[Chester 76] [McDonald 83]. And it comes at no suprise that the context dependent strategies 
that are borrowed from traditional discourse theories do not fare well, since the raw data 
(proofs written in Gentzen's natural deduction) is not the product of a human deductive 
apparatus, as was always implicitly taken for granted. In earlier papers, we have shown that 
DNPs encoded in a natural calculus including assertion level inference rules have proved to be 
an appropriate basis for further transformation [Huang 89, 90]. Since many results have 
already been achieved in the transformation of machine generated proofs into well structured 
natural deduction proofs [Lingenfelder 90] [Pfenning 90], we have designed algorithms to 

transform natural deduction proofs into DNPs. Moreover, on the ground of the observation that 
the programs producing natural deduction proofs have all extended the natural deduction 
calculus, by including some assertion level inference rule pertaining to the logic layer, we 
believe it is very likely that we can perform the entire transformation in one step. This, will be 
treated in a separate paper. 
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measure be extended to predicate logic [John-Laird 83] [Hintika 73], nor can his criterion split
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application of an assertion. Finally, we want to point out our difference with respect to the
general theoretical assumptions. While our discussion is entirely built on top of the assumption
of the existence of mental inference rule schemata as an internal structure responsible for
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success in explaining daily casual reasoning by means of other intemal representations, we
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Although not directly on the subject of natural logic and mental reasoning, there is enough
work showing the need of such concepts in various AI applications. We hope that our new
mödel of deductive reasoning, particularly the notion of an extensible natural calculus, will give
some weight to these applications.

First there is the problem of transforming machine generated proofs or arguments into
natural language, which in effect set us on the line of this research originally. It has long been a
problem for natural language generation systems to find heuristic strategies capable to make
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[Chester 76] [McDonald 83] .  And i t  comes at no suprise that the context dependent strategies
that are borrowed from traditional discourse theories do not fare well, since the raw data
(proofs written in Gentzen’s natural deduction) is  not  the product of  a human deductive
apparatus, as was always implicitly taken for granted. In earlier papers, we have shown that
DNPs encoded in a natural calculus including assertion level inference rules have proved to be
an appropriate basis for further transformation [Huang 89, 90]. Since many results have
already been achieved in the transformation of machine generated proofs into well structured
natural deduction proofs [Lingenfelder 90] [Pfenning 90], we have designed algorithms to
transform natural deduction proofs into DNPs. Moreover, on the ground of the observation that
the programs producing natural deduction proofs have all extended the natural deduction
calculus, by including some assertion level inference rule pertaining to the logic layer, we
believe it is very likely that we can perform the entire transformation in one step. This, will be
treated in a separate paper.

38



Chapter 7. Related Wodes and Applications 

A second application area concerns human-machine communication. There is a trend in 
developing knowledge based systems, that are required to support queries of the type 
"Why...". To this end, obviously, a simple answer of the traditional form "Yes" or "No" will 
not suffice. What is needed is exactly an argumentation in a natural calculus. 

Finally, the procedure applying assertions will enable a cognitively more adequate interface 
for inter-active theorem provers or proof checkers along the tradition of Nuprl [Constable et al 

86] [Felty et al88] [Gunman et al 90] [Paulson 89] [Pfenning et al 90]. Apart from matching 
against elementary inference rules, the user should have the choice of drawing new conclusions 

by calling a procedure which applies a known assertion to them in the context (normally an 

axiom, a theorem or a lemma) on some other assertions, serving as premises. 
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developing knowledge based systems, that are required to support queries of the type
“Why...”. To this end, obviously, a simple answer of the traditional form “Yes” or “No” will
not suffice. What is needed is exactly an argumentation in a natural calculus.

Finally, the procedure applying assertions will enable a cognitively more adequate interface
for inter-active theorem provers or proof checkers along the tradition of Nuprl [Constable et al
86] [Felty et al 88] [Gunman et al 90] [Paulson 89] [Pfenning et al 90]. Apart from matching
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Chapter 8. Conclusion and Future Work 

This paper deals with issues concerning natural logic and cognitive models for formal 
deductive reasoning. Different from similar research carried out in cognitive psychology, where 
psychological explanations are the main concern, our study is directly motivated by the practical 

need of presenting proofs or arguments found by machines to a human user in an appropriate 
way. By analyzing the blueprint of the entire transformation process, we have isolated explicitly 
an intermediate representation, called detailed natural proofs (DNP), that possesses the quality 
of a mathematical abstraction of the actual output of the human deductive apparatus. In order to 
find a formalism suitable for the encoding of DNPs, preliminary empirical studies on human 
mathematical proofs are carried out, leading to a new computational model for human deductive 
reasoning. Further sophistication is obtained by adding to the traditional models a primitive 
procedure carrying out the application of assertions. Hand in hand with this procedure, 
secondly, an operator is added to account for the acquisition of logically compound inference 
rules. In this model therefore, the output of a reasoning process is a proof consisting of a 
sequence of proof steps each justified either by an inference rule, or by an assertion. And the 
latter, can be replaced in DNPs by acquired assertion level inference rules, without effecting 
serving as an intermediate representation for further transformation. Now the extensible set of 

inference rule, including cognitively elementary inference rules and acquired compound ~les 

alike, is called the natural calculus. 

:, The topic of human deductive reasoning however is so rich that our study only indicates a 
beginning. Among the issues to be addressed in the future, we want to mention first that we 
need a more semantic explanation for our constraints, probably along the line of Johnson-Laird. 
Secondly, refmements with respect to run-time behavior must be made. In particular, an user 
model has to be constructed for someone reading a proof, that provides predictions about 
whether an assertion level step will be understood by applying the special procedure or by 
matching against an assertion level inference rule schema, acquired in a previous context. This 
information will provide more guidance to the decision making procedures in the text planners 
[Huang 90]. Finally, it would certainly be interesting to integrate results on proof planning into 
such a model [Bundy 87] [Bundy et al 88], and thereby provide new means for structuring 
DNPs. 

Finally, we hope this model may be extended to the sort of reasoning that is beyond the 

realm of first order predicate logic. An important future research topic is therefore to test the 

ideas presented in this paper in domains covered by logics of stronger expressive power, for 
instance modal logics or logics with sort structures [Prior 67] [Rescher 71] [Gabbay 84] 
[Schmidt-SchauB 89], as well as logics of higher order [Andrews 86]. 
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deductive reasoning. Different from similar research carried out in cognitive psychology, where
psychological explanations are the main concern, our study is directly motivated by the practical
need of presenting proofs or arguments found by machines to  a human user in an appropriate
way. By analyzing the blueprint of the entire transformation process, we have isolated explicitly
an intermediate representation, called detailed natural proofs (DNP), that possesses the quality
of a mathematical abstraction of the actual output of the human deductive apparatus. In order to
find a formalism suitable for the encoding of DNPs, preliminary empirical studies on human
mathematical proofs are carried out, leading to a new computational model for human deductive
reasoning. Further sophistication is obtained by adding to the traditional models a primitive
procedure carrying out the application of assertions. Hand in hand with this procedure,
secondly, an operator is  added to account for the acquisition of logically compound inference
rules. In this model therefore, the output of a reasoning process is a proof consisting of a
sequence of proof steps each justified either by an inference rule, or by an assertion. And the
latter, can be replaced in DNPs by acquired assertion level inference rules, without effecting
serving as an intermediate representation for further transformation. Now the extensible set of
inference rule, including cognitively elementary inference rules and acquired compound rules
alike, is called the natural calculus.

„ The topic of human deductive reasoning however is so rich that our study only indicates a
beginning. Among the issues to be addressed in the future. we want to mention first that we
need a more semantic explanation for our constraints, probably along the line of Johnson-Laird.
Secondly, refinements with respect to run-time behavior must be made. In particular, an user
model has to be constructed for someone reading a proof, that provides predictions about
whether an assertion level step will be understood by applying the special procedure or by
matching against an assertion level inference rule schema, acquired in a previous context. This
information will provide more guidance to the decision making procedures in the text planners
[Huang 90]. Finally, it would certainly be interesting to integrate results on proof planning into
such a model [Bundy 87]  [Bundy et  al 88] ,  and thereby provide new means for structuring
DNPs.

Finally, we  hope this model may be extended to the sort of reasoning that is beyond the
realm of first order predicate logic. An important future research topic is therefore to test the
ideas presented in this paper in domains covered by logics of stronger expressive power, for
instance modal logics or  logics with sort structures [Prior 67 ]  [Rescher 71 ]  [Gabbay 84]
[Schmidt-SchauB 89], as well as logics of higher order [Andrews 86].
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