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Abstract :

The team work method is a way to distribute deduction processes that are
based on the generation of new facts. The key point to achieve the
distribution is the use of various kinds of knowledge that is not well
expressible as facts. In analogy to human project teams team work uses
tactical control knowledge in form of experts, assessment knowledge in form
of referees and strategic control knowledge in form of the supervisor of the
team. The supervisor chooses experts that generate new facts. After a certain
period of time the referees judge the generated facts and the supervisor uses
the best facts to generate a better problem state for the experts.

A system using the team work method has the ability to focus on the proper
problems by abstraction of results and the possibility of self-tuning of the
system by reflective analysis of the computed results. The general concept of
team work is instantiated to the team work completion method for equational
deduction. Possible experts, referees and supervisors are discussed and their
usefulness for completion is demonstrated by examples. The examples will
show that super-linear speed-ups have been achieved, even for challenging
problems. Implementational aspects of this approach, concerning the problem
of idle times of processors, are also discussed and solutions are given.
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1. The idea : knowledge and distribution-

In the last years many efforts were made on the one hand side in building
specialized theorem provers for special purposes and on the other hand side
to investigate the usage of distributed sytems in theorem proving. Both
directions should result in more efficient theorem provers. Examples for the
first type of improvements are reported in [BuB5] and [KZ89] and examples
for the second type can be found in [SLe90] and [SL9O].

The general idea of specialized theorem provers is the availability of more
knowledge in special domains of interest which leads to adjusted and more
powerful methods for proving theorems in these domains. So the use of
knowledge which is not expressible within the formalism of the known
proving methods and the use of distributed and therefore more eificient

methods offer great improvements in the area of deduction systems.

We will show in section 2 that both forms of improvements are inspired by
the human way of theorem proving. And this human way shows also that the
combination of both features is necessary in order to develop efficient and
strong theorem provers.

The main problem in dealing with distributed systems is to find a well suited
model for communication and control. In our case this model must also
include the ability to use various kinds of (special) knowledge. We find such
a model in the problem solving behaviour of teams in business companies,
This leads to the team work method for distributed theorem proving
described in section 3. In section 4 we use this method in the field of
equational deduction based on completion getting a team work completion
system. '

In section 5 we give solutions to the problems which arise when our
distributed system is implemented. The main point here is the question to
which extend processors are idle because of the need to synchronize with
other processors. We are able to show that our team work completion can

overcome most of the known difficulties.

In section 6 we discuss the solutions of some examples with our system. For
the well known challengé% problem that a ring with x3 = x is commutative a
team of just two experts could gain a speed-up factor of 11 compared to the
best expert alone. Finally we sketch further improvements of our method

involving the usage of results in other Al disciplines than deduction.




2. The human way of theorem proving

In contrast to other Al disciplines, like natural language understanding or
intelligent tutoring systems, which are éentered on understanding and
simulating human methods, the most successful methods in automated
deduction are normally not used by human experts in theorem proving. No
mathematician would, for example, use resolution as basic inference s';.ep in
his proofs. As a result of this phenomenon it was necessary to develop proof
transformation techniques to get better understandable proofs out of computer
generated ones ([Li90]).

Two characteristics of human proofs, namely

- the generation of a hierachy of subproblems and

- the consideration of only important steps in the proof

give us hints, why nearly all interesting proof problems can only be solved
be some human beings and not by (general purpose} theorem provers.

In the following, we will give some observations about the way human
experts, i.e. mathematicians, solve proof problems. Certainly this list is not
complete, but characterize the use of knowledge and distribution by human
beings.

1) Human experts use various kinds of knowledge for drawing conclusions.

They do not restict to the facts that are used to formulate the problem,
but they apply also some background knowledge about methods, plans, or

consequences of some given facts.

2) Human experts learn from old proofs and proof attempts. They learn not
only how to do something, but also when to do it. So beside learning new
facts they also learn how to apply these facts. This results in the human
ability to use analogy in proofs. The two characteristics of human proofs
given above are very important to achieve this ability.

3) Human experts try to break big problems into smaller ones, which are

hopefully easier to solve. Many special methods consist just in breaking
down big problems into smaller ones and in combining the solutions of
the smaller problems to get a sblution for the entire problem.

4] Due to 1] and 2) human experts are able to detect whether the currently

used method leads to a dead end or is not as good as expected. During a

proof attempt all new results are critically reviewed. Note that this



ability is also for human experts not easy to achieve.

5) Different human experts have different knowledge and therefore they

solve the same problem often in different ways. This means also that
many proof problems can not be solved by everyone who tries it.

6) If a human expert fails in finding a proof for a (sub-] problem, because
his knowledge and his methods can not help him anymore (see 4] and 5))

or if a problem is too big then he takes advise from other experts.

All these points are well known. Every mathematician is trained in wusing
them during his education (see [Po45]).
For our goal of developing a method for knowledge based, distributed theorem

proving we can formulate the following questions :

- How can different kinds of knowledge, i.e. /
* facts
* control knowledge
* assessment knowledge
be represented in a system ?
- How can ‘interaction of these kinds of knowledge can efficiently take
place?
- How can distribution of the proof finding process take place, especially if

it is not known a priori which subproblems have to be solved ?

The answers to the last two questions are not only important for computer
systems, but also for groups of human experts who must work together to
find a solution [in our case a proof] for a given problern. We have seen that
human experts have the ability to work together, but how can the

cooperation be enforced ?

Business companies which relay on their ability to find solutions to problems
very fast and with limited resources have developed an organisational

structure, the (project] team ([Ye86]), which is an answer to our questions.

A team consists of a supervisor, many experts, and some staff members, which
we will later refer to as referees. The team is just put together to solve a given
problem. For another problem another team would be created. The team has a
limited budget, so that there can only be a limited number of team
members. Normally there are more experts than places in the team, so there

is a competition between the experts. Because every team member gets



a reward if the problem could be solved, it is the interest of all members to
cooperate.

The team works as follows : The problem is given to the supervisor who puts
together a (hopefully) well suited team for this problem. Then every expert
gets the problem description and tries to solve the problem alone. As stated
in point 5 of our observations every expert has different methods and ideas to
tackle the problem. The supervisor has to take care that the experts differ
enough in their background so that not two of them use nearly the same

methods.

The cooperation of the experts is enforced by the institution of team
meetings. During such a meeting the results of all experts should be
presented in a short form, so that these results are available for the others.
Therefore not the experts give these reports, but the referees. Out of the
presented results a new, more precise problem description is formed by the
supervisor, so that the team can focus on the remaining problems. Note that
for an expert it is not necessary to know how one of his (sub-) problem is
solved, but only that this problem is solved so that he can attack other (sub-)
problems. Due to the shortness of the reports only results considered by the

referees and not the way they are achieved by the expert are given to the team.

The referees’ task is not only to give reports about the results of experts but
also to inform the supervisor about experts that are unable to contribute to
the solution of the problem. Then the supervisor can exchange these experts
in order to give experts with a different knowledge a chance to work on the
problem. This way the limited resources are always used in a nearly optimal
way.

So far, the experts are free to work on any part of the problem they think
they can solve. But there are often tasks in the problem solving process
which are not directly aimed at solving the problem but to detect ways the
problem can definitly not be solved. Then no one other in the team should do
any work on these ways. Consider for example the work of a controlling
specialist in a development team who cancels ideas and solutions which are

too expensive.

Other special tasks are, for example, problems for which there is only one
method to solve them and the method always succeeds. In order to prevent
other experts from doing this work, which would definitly result in

redundancy, one special expert is selected to do the computation until the



next team meeting. We will call experts doing these special tasks specialists.

The human team described above on the one hand gives the individual team
members the freedom to work on problems in their individual way and on the
other hand a. distribution of the problem solving process is achieved. Note
that the communication between the team members is regulated to have
a maximum of information exchange with a minimum of time used for it. So

the team is a very good model for a distributed theorem proving system.

~

3. The team work method for automated theorem proving

Many models for diétributeci problem solving, not only in Al stem from
examinations of the behaviour of groups of human beings. The general idea is
always the use of processors to simulate experts [[Sm81]]. But the tasks of
these experts differ from system to system. One possibility is to have
"allround” experts which are able to do every task in the system, so that the
remaining problem is to get a balanced distribution of subtasks among them.
A possible solution to this design problem is to use blackboard systems
((EHLR80]). On the other hand in some systems experts are only capable of
doing very special tasks. Then the problem of "bottleneck” experts, i.e.
experts whose special abilities have to be used too often, arises.

Such systems can only be used, if the subtasks to do and the subgoals to
solve are known a priori or can easily be determined. But, as stated before, in
theorem proving the detection of subgoals is difficult. Often a creative
process is needed to find subgoals or better to find possible subgoals [[Po45]].
For such tasks human beings use teams. We will now simulate the behaviour
of teams to develop a model for a distributed theorem proving system. Note
that the implementation of the system will differ from this model in some
parts in order to maintain efficiency [see section 5 for details].

The components of a system based on team work are the same as in the case

of human teams : a supervisor, referees, and experts (specialists).



Experts

The task of the experts is to produce new facts and so to solve the proof
problem. Because the important facts have to be shared with the other
experts, all experts must use the same representation for them, for example
clauses, equations, or polynomials. Although it is not necessary for the
experts to use the same calculus, ie. resolution, completion, type theory, or
Gentzen calculus, we would recommend it, because then the implementation

of experts is much easier.

Then the differences between the experts are established by different
heuristics in choosing the next inference step. Every expert has the whole
problem description, so that one expert alone works like a theorem prover
controled by a heuristic. Note that the heuristic of an expert does not have to
be complete, because completeness has only to be a property of the whole
team. So there is a wide variety of criteria which can be used to form
heuristics for experts. In section 4.2. we will present many heuristics and also

some general criteria for completion a la Knuth-Bendix.

As stated in section 2, sometimes human teams use "specialists” for special
purposes. In theorem proving there are such purposes, too. First, for special
subproblems there can be used special solvers, eventually using different
representations. An example for such a method is the simplex method
([Da63]), which can be used to find optimal solutions for systems of
inequations. But the use of such special methods is very limited because the
type of subproblem to solve must be known and, as stated before, in most

proof problems this can not be determined easily.

Nevertheless there is a special task, which is important in nearly all theorem
proving methods : The elimination of redundancies. This means to detect
unnecessary inference steps before they are really performed and to detect

facts which are not needed in the proof (before the proof is found).

Referees

In opposition to human teams every expert in our team theorem prover has
his own referee. The tasks of our referees are the same as in human teams :
First they have to judge the progress and the quality of results of an expert
which results in a measure for the expert. Then they have to pick up the

best results of an expert in order to transfer them to the supervisor.



So a report of a referee consists of a number [the measure of the expert] and
some facts. Certainly, the main problem is how to determine this number and
how to find important facts. Similar to the heuristics used by experts to
determine their next inference step, heuristics using the same criteria can be
built for referees. But the referees can also take into account the effects a
found tfact have had for an expert. This means, for example : Has the fact
been used in many later inference steps, has the fact been used to remove
other facts, are there any similarities of fact and a goal or has the fact only
led to an immense greater search space ? In the last case the fact should

certainly not be reported to the supervisor.

In order to compare experts all referees have to use the same criteria to
calculate the measure of their expert. But the criteria¢ they use to find
important facts have to vary from referee to referee, because the experts can
concentrate on different parts of the problem. This difference between the

experts must be taken into account.

Again realisations of referees in the case of equational deduction by

completion can be found in section 4.2.

Supervisor

In contrast to the supervisor of a human team, the supervisor of a system
using the team work method works only during the team meetings. The
supervisor receives the reports of the referees and constructs from this reports

a new problem description.

Base for this description is the system of facts of the expert with the best
measure. We will call this expert in the following winner. Then the facts
reported by the referees of the other, loosing, experts are added to the
winner’'s system and possible necessary operations to obtain a valid problem
description are performed [In the case of completion these operations are

interreduction and computing critical pairs with the new facts, see 4.2].

Before the new problem description is passed to all experts the supervisor
selects the appropriate expert/referee pairs and possibly some specialists for
the next computation cycle. Again, he uses the measures of the experts to
find some with bad performance and replaces them by experts from the
expert database. In this database not only the expert programs are stored but
they are also grouped together. So "bad” experts can be replaced by experts

out of the group of experts with good performance on the current problem.



But in order to have experts with different knowledge as members of the team,
all experts of the database should get periodically the chance to become a
member of the team. Also in the database are informations concerning the best
referees for an expert. If the supervisor selects an expert he also selects one of
the possible referees for him. The supervisor controls the database and adds the

measures of an expert for the current proof problem to its records.

When the supervisor has attached to each processor an expert it sends them
the new problem description and gives them the time of the next team

meeting. Then the new computing cycle begins.

Related work

Nearly all concepts in distributed Al [DAI) are explained by the use of
analogies to human 1ife. Very early the concept of groups of experts has been
formed as foundation of DAI problem solving systems (see for example [SD81]).
Later works emphasize even more on analogies to human beings [[He91]] in
various situations up to modelling parts of human society, —for example the
scientific community [[KH81]). Also researchers in the area of social sciences
have developed computer systems that simulate ways of human interaction.
The TEAMWORK system [[Do85]) of Doran was designed to model the
behaviour of human teams. In contrast to our approach, TEAMWORK models
how human beings constitute teams in various ways. So structure and control
of cooperation is not given, as in our case, but has to be established by the

team members themselves.

Although there exist thany approaches to DAI in general and many
applications of DAI, there are only a few applications in the area of
automated theorem proving. Ertel [[Er90]] examined the behaviour of systems
where many identiéal provers work on the same problem, each prover
receiving a permutation of the input facts. Compared to the use of different
selection heuristics for the next inference steps [as in our team work method)
these permutations are only a slight modification, but Ertel showed that the
provers differed in their runtime behaviour. Ertel’s approach does not contain
any interaction between the provers, but emphasize, like team work, the
competition aspect.

Slaney and Lusk ([SL90]} developed a general method to distribute theorem
proving methods that are based on processing the closure of a set of facts

under inference rules. Their main idea is to distribute the possible inference



steps among the processors, which share a common memory. Each processor
concentrates on the inferences of one fact with all others, and every processor
uses a different fact. Although each processor makes a partial subsumption test
for all facts it generates, a general subsumption test, performed by one processor
for the results of all processors, is needed before new facts are added to the
common memory. This apbroach does not take into account any further knowledge
to avoid the computation of the whole closure, when only a certain goal has to
be proved. Further, it is not well suited for parallelizing completion procedures,
because often rules in the shared memory have to be reduced.

Finally, the DARES system [[CMM90]) does not only distribute the process of
generating new facts, but also the initial facts are distributed among the
processors. Then requests have to be started to get new facts ffom other processors.
For starting and answering such requests DARES uses heuristics and no central
control is needed. In DARES the different behaviour of the problem solving nodes
is only achieved by different facts. No further control knowledge, like in our

team work method, is used.

4. Team work completion

In this section we instantiate the general concept of section 3 to get a distributed,
knowledge-based theorem prover for equational logic. The method used is the
completion method of Knuth and Bendix [[KB70]) which has proven to be
useful for equational deduction. We use an extension: unfailing completion.
We will discuss various experts and referees for choosing critical pairs and

measuring rules and equations.

First of all, we will give a brief introduction to sequential unfailing completion.

41. Unfailing completion

In the following we will sketch an implementation of the inference rules for
unfailing completion of [BDP89] The components of an unfailing completion
algorithm are a reduction ordering, a function to generate critical pairs and a

function to compute the normalform of a term with respect to a rule system.

The reduction ordering > [see [De87] for definitions and examples of such

orderings] is used to orient the equations in E into the set R of rules.
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Equations which can not be ordered stay in E.

Equational consequences of E and R are generated by computing critical pairs.
A critical pair of two rules or equations 1 = r; and l5, = r, is defined as
follows : Let p be a position in 1; which is not a variable and o the mgu of
1,/p and 1. If o[r;] * ofl4) and ofry) 2 ofl,) then <olry), ollilp«r3])> is a critical
pair between l; = r; and 1, = 1. Here l4{p«r,] denotes the term generated by
replacing the term at position p in l; by r,.

Rules are used to reduce [or simplify] terms in other rules or equations. Let 1
- 1r be a rule, t a term and p a position in t such that there is a substitution
o with ofl] = t/p. Then t can be replaced by t; = t[p<od(r]}. We say t is
reduced to ty. This is doné for all terms in all equations and rules whenever
possible. If ‘there is no rule in R which reduces t then t is called in
normalform (with respect to the set of rules R, denoted by normalformg(t])). If

all terms in R and E are in normalform then R and E are called interreduced.

For all given sets R and E interreduced sets R’ and E’ can be computed.
A completion procedure then performs the following steps with sets E and R,
a reduction ordering > and a [Skolemized] goal s = t to prove :
(1) Compute all critical pairs of rules and equations in E and R. This forms
the set CP.
(2) Repeat until CP = {} or normalform(s]g = normalform(t]y :
choose <{u,v)> € CP;
compare u and v with respect to > and add u->v, if uw>v or v->u, if
v>u to R or u = v to E, if u and v are uncomparable;
add all critical pairs of a new rule or equation with all members of E
and R to CP;
interreduce E and R.
(3] If normalform(s)g = normalform(t]g then answer YES else NO.
A more precise procedure is later given with the procedure "expert”.
The efficiency of such an algorithm is determined by the choice of the
critical pairs from the set CP and the used ordering. If we look at completion
runs, we detect that many of the generated critical pairs, rules, and equations
are unnecessary and useless. When some very good, important rules are
generated these rules, equations, and critical pairs and their consequences

will be thrown away. For many examples no heuristic can generate all

important rules early, but different heuristics may generate different

n -



important rules early. As we will see in the examples of section 6, the
combination of heuristics, i.e. experts, by starting them in parallel and
exchanging important rules can generate all important rules early. So a
cooperating team of experts using these synergetic effects can be more

powerful than any of the experts working alone.

There are many ways to create possibly useful experts. One expert may try to
infer from the database axioms of well known structures (e.g. groups or rings)
and then replace the axioms by an equivalent confluent rewrite system. But
in the following we will concentrate on experts which use different heuristics

for choosing critical pairs.

4.2. Distributed unfailing completion

We will now instantiate all components of the team work method for the case
of equational deduction using unfailing completion. Figure 1 shows the actions

of this components in a cycle between two team meetings.

Experts :

Every expert executes.the following procedure :

procedure expert :
input : R, E, Goal s=t, CP, > choose-CP-function
output : YES, NO, a system (R, E, s-t, CP) with statistical information
begin K
while CP * {} do
(1,.r,) = choose-CP-function{CP);
CP = CP \ {(I, r,)}
1; = normalformg(l,):
r, = normalformpg (r, )i
it I, ¥ r; then
if 1; and r; are comparable with > (let | = max{l;.r;} r = min{l;r,})
then R = R U {I=>r}
CP = CP U {crit. pairs between R and |>r and E and 1-3rk
interreduce R and E;
else E = E U {I>r}
CP:= CP U {crit. pairs between R and 1-r, R and r>1 E and !=>r and
E and r>1}
if normalformg (s) = normalform g (t)
then answer-to-supervisor "YES™;
if interrupt-by-supervisor
then answer-to-referee {REs:t,CP) - statistical information:
endwhile;
answer-to-supervisor "NO”;
end.
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Figure 1 : data flow in a cycle between two team meetings

Team meeting k

Supervisor
problem description data :
R e = - s s (R. E. S=t. CP)
working phase -
X, X, X,
choose-CP- * st choose-CP- " * ° ] choose-CP-
function, function; function
>1 >i >n
| « e . | » e . | problem state data
review phase
referee, L referee; o referee

abstracted data :
measure for expert,

good rules and equations

Team meeting k-1

Supervisor

The statistical information [how often a rule was successfully applied, how
many rules, equations, and critical pairs are in the system, how often the
goal could be reduced, etc.]) is given to the referees and is used to measure

the progress of the expert.

Note that, if we only have one expert in our system, then this expert performs
a normal (sequential] unfailing completion with the choose-CP-function as

a heuristic.

Because the experts should share their results, an expert process can not only
end with the answers YES (the goal is a consequence of the initial set E] or
NO, but it can also terminate when the supervisor asks for a team meeting.
Of course, if one expert finds the answer YES or NO, it will interrupt all
other processes because then the problem is solved or it is shown that there
is no solution.

For tearﬁ work completion we need many different experts. In addition to
some experts that can be used for nearly every problem we must have
experts with special knowledge for special problems and experts that focus
on parts of the problem and phases in a proof. We have divided the experts

into three groups according to the general idea used by them :

- use of syntactic arguments, -

- 13 -



- focusing on some function symbols, thus realizing a modularization of the

search space,

- focusing on special knowledge, for example aspects of the method or the

goal.

For each group we will describe the currently implemented experts, but it is

obvious that many more [especially in the third group] exist.

Syntactic arguments

The general idea is to weigh a critical pair by the number of symbols in its
terms, a pure syntactical criterion. 1f we simply add the numbers of both
terms and choose a critical pair with the lowest sum we get the so-called
smallest-component-strategy of Huet [[HuB80]). In our system the expert using
this strategy is called ADD-WEIGHT. But there are also 6ther possible
combinations of the two numbers, as for example, using the maximum of
them as weight for the critical pair. We call this expert MAX-WEIGHT and,
indeed, these two experts behave very differently, as documented by the
examples in 6. The experts in this group only count symbols and do not give
them any interpretation. So they do not use knowledge of the problem to
solve. Therefore they provide a gdod choice for problems where no or not

much (special] knowledge is available.

Focus on function symbols for modularization

Experts of this group can be used to focus on parts of the search space of a
given problem. They depend .on the problem and its signature. They map
every symbol to a function over numbers. Then the weight of a term is the
evaluation of the functions associated with the symbols in the term. If this
functions are all the constant function 1, we have experts of the first group,

again, without any focus.

We have implemented experts using two kinds of functions as interpretations.
The first, called FWEIGHT, allows only functions f of the form f(xy,...X,) = ¥, +
. * Xn *+ ;. The other expert, called POLYNOM-WEIGHT, allows to associate
polynomial functions with symbols. To achieve a focus on some symbols an
expert assigns a small c¢;-value or polynomial to them and large ones to all
others. Since the critical pair with lowest weight is processed at any time

this, indeed, realizes a focusing on the part of the search space, that is
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characterized by the selected symbols. The weights for FWEIGHT are easier to
find than appropriate polynomials, but polynomials are better adjustable to
certain parts of the problem.

An example for this kind of choose-CP-functions is reported by Stickel
([st84]], who used such a method for the completion of a ring with x3 = x. In
this case mathematical knowledge in ring theory determined which functional

interpretation for the symbols was chosen.

Focus on special knowledge

The experts of this group focus on observations concerning the completion
method, special knowledge about the given problem and its domain,,or
critical pairs that are similar to the goal. The focus is achieved by coding it
into a weight function, as in the second group of experts. In the examples of
section 6, we use three experts of this group, the FORCED-DIV expert, the
PREFER-RULE expert and the GOAL-SIM expert.

The expert FORCED-DIV concentrate on a phenomenon in éompletion called
divergence. The completion of a rule system diverges, if the final rule system
is infinite. This means that the completion process will never stop. It is
undecidable, wheather a given rule system will diverge or not, when
completed ([He89]], but there are many approaches to avoid divergence
([He88]). In our case, we do not want to avoid divergence, but to force it, if
the goal gives hints that divergence must occur to prove it. We will discuss

this expert more in section 6 in combination with example 4.

The PREFER—/RULE expert also stems from knowlegde about the completion
mechanism. Although we are using an unfailing completion and can therefore
deal with equations, rules are preferable. So PREFER-RULE only uses
equations that are éxplicitly give‘h to it by the supervisor. If PREFER-RULE
chooses a critical pair that is not orientable, it puts this pair back into the
list of the critical pairs with a higher weight. For choosing critical pairs
PREFER-RULE uses the similar criterion to ADD-WEIGHT, with the difference
given above.

The expert GOAL-SIM chooses critical pairs that are "similar” to the goal. We
test this similarity by using the operations unification and matching with
subterms of the critical pair and subterms of the goal. We define three layers
of similarity each of which contains four [sub)cases. In the foilowing, let s = t

be the goal and u = v a critical pair to measure.
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The best critical pairs for proving a goal are certainly those which already
represent a solution of the goal. This means, the goal is an instance of them,
so there is a match o with ofu] = s and o[v] = t [or vice versa]. The next best
is a critical pair, such that there is a unifier ¢ with p(u) = y(s] and u(v) = plt).
If a criticdl pair is not similiar to both sides of the goal, then it could be
similiar to one side of it, i.e. there is a match o with ofu) = s or ofu) = t [or
the same for v] or there is a unifier g with p(u) = y(s] or ylu) = plt). Note if the
goal is skolemized, then the match and the unifier are the same, so that we
have only two cases in this layer.

The four cases of the first layer measure only very few critical pairs.
Therefore we define a second and third layer. The second Layer measures such
critical pairs with a part, i.e. one or two subterms, that matches or unifies

with the goal. Analogously to the first layer we get the following four cases :

In the first case there is a match o and non-variable positions p, p° with o(s]
= u/p and oft]) = v/p'. In the second case there is a unifier g such that p(s]) =
wlu/p) and p(t) = y{v/p’). The remaining two cases use just one side of the
goal, i.e. os) = u/p or ofs) = v/p’ or with unifiers p(s) = p{u/p) or uls) = ulv/p’l.
Note that for Skolemized goals there are no sensible matching cases. To
compare the critical pairs of one class in this layer we count all symbols in
the critical pair that are not in the subterms which are instances of the goal
The bigger the subterms the greater is the similarity to the goal.
In the third layer we want to measure critical pairs that can, when ordered
to rules, reduce parts of the goal. Analogously to the first two layers we get

these four cases :

There is 'a match ¢ and non-variable positions p, p’ (in the goal] such that
s/p = o(u) and t/p’ = o[v). The same with a unifier u : p[s/p) = plu] and
u(t/p’) = ulv]. In these two cases a reduction with the ordered critical pair
leads to a new goal with sides that are not so different as before,
because both sides of the critical pair are similar with the goal. Finally
we have the two one-sided cases : s/p = o(u) or t/p’ = o[u) and ys/p) =
u(u] or p{t/p’) = plul.
To compare critical pairs in on of the classes of this layer we now count the
number of symbols in the goal except the number of symbols of the subterms
that are used to establish the similarfty. Critical pairs that are in no layer
will get such a weight that they are only chosen when there is no critical

pair that is in one of the layers.
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The expert GOAL-SIM uses knowledge that is very important towards the end
of a proof. If we look at human proofs for equalities we can normally detect
that the size of the derived terms increases at first and then has to be
reduced back (after some changes). Our expert is very good in reducing back,
but the big terms [critical pairs] have to be generated by an other expert of
the team. GOAL-SIM can play a similar role for equational deduction by
completion as the terminator for connection graphs does for resolution (see
[Ko75] for a description of the connection graph and [AO83] for the

description of the terminator).

There is a wide variety for other pure knowledge-based experts. Especially
the works of Suttner [[Su89]) and a group of students of Ultsch [[Ul90]) give
hints how successful proofs can be used to learn experts (i.e. heuristics] for
other analogous problems. Like the expert GOAL-SIM such experts need thé
assistance of other experts to solve [sub]problerns that are not similiar to the

learned ones. Team work provides an ideal base for the use of such experts.

We also mentioned a special kind of experts, called specialists, which perform
specialized tasks for the problem solving process. The main difference .
between experts and specialists is that specialists can not solve the whole
problem alone. There is a task in unfailihg completion, which is perfectly

1"

suited for such specialists. This is the detection of "uncritical” critical pairs.
Before a critical pair is transformed into a rule or equation, it is checked if
the normalforms, with respect to the current system, of both terms of the
critical pair are identical. If this is the case, the critical pair is of no use and

deleted.

If we look at the algorithm "expert”, then we see that already the experts
detect "uncritical” critical pairs by generatioq of normalforms. In addition, the
current rule and equation systems of the experts change. However, if we
consider challenging problems with huge numbers of critical pairs then all
experts only examine a small part of the set of critical pairs between two
team meetings. A specialist searching for unnecessary critical pairs can
examine much more critical pairs. than an expert whose main task is to
generate new knowledge, ie. new rules and equations.

In the presence of equations, especially the commutativity f{u,v] = f{v,u), very
often a critical pair is generated several times. So a check for identical

critical pairs can reduce the use of the expensive [in terms of time]
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normalform generation.

These two tasks, i.e. testing critical pairs for identity and equal normalforms,
are performed by our REDUCE-CP specialist, which reports the unnecessary
critical pairs directly to the supervisor. Again, the usefulness of such a
specialist is reported in section 6.

There are some criteria, that define another kind of unuseful critical pairs, for
example the criterion in [KMN88]. These criteria can also be used by

specialists.

As stated before, referees have to fullfil two tasks. First they have to judge
the behaviour of their experts on the current problem since the last team
meeting. Second they have to extract "good” results, i.e. rules and equations,

from the loosing experts for the next computation round.

For the first task all referees use the same method. They compute a weighted

sum of the following components :
- the number of rules,
- the number of equations,
- the number of critical pairs,
- the number of reductions of the goal(s),
- the number of reductions made in the last computing period,

- the average weight of all chosen critical pairs in relation to the average

weight of the last critical pairs chosen by the expert.

The higher the last result the better is the expert performing at the
measuring time (Remember that the experts always choose a critical pair
with minimal weight 1). Additionally, a high reduction rate indicates a good
performance of an expert. In opposition to this the more rules, equations, and
especially critical pairs are in the current system of an expert the worse
should this expert be rated. But there are also examples, where it is
necessary to get many new equations and rules, so that the last statement is
relative. For such examples the last result alone (relation latest critical pairs

to all chosen critical pairs] is well suited for judgements of the experts.

For the second task we have developed various methods to be used by our
referees. The first, simply called LAST, chooses the last n rules and equations

generated by an expert. If the performance of this expert is not bad, and it
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can thus be expected that the expert will be in the tea}n for further
computation periods, these last rules and equations enable the expert to
continue his work in the next period. This is very important for the expert
FORCED-DIV.

Referees can also use the same methods for choosing rules and equations as
those that experts use to choose critical pairs. But they can also take the
consequences of the rule or equation for the whole system into account.
Therefore we have referees GOAL-TEST and STATISTIC. GOAL-TEST uses the
same method as the expert GOAL-SIM. This referee should certainly not be
used for the expert GOAL-SIM, but for other experts it is well suited.

The referee STATISTIC judges rules and equations by their effects on the

other rules and equations. These effects of a rule or equation are :
- the total number of reductions made with it,
- the number of reductions of left hand sides of rules made with it,
- the number of reductions of equations made with it,
- the number of generated critical pairs with it.

For some examples, when many equations are generated, rules that reduce
equations are more important than rules that can only be used to throw away
critical pairs by reduction. Note that equations generate more critical pairs
than a rule, because both sides of it are used. Also, if one is not so interested
in theorem proving, but in pure completion, rules that reduce other rules [i.e.

left hand sides} are important.

In thé examples of section 6 we only used some of these referees. In additic;n,
there are many more methods referees can use to judge rules and equations.
They can combine some of the previously mentioned methods, for example. If
subgoals that are needed to prove a goal are known a priori, the GOAL-TEST
referee can also rﬁeasure the similarity to these subgoals. The same ideas to
learn expert heuristics can be used to learn referee heuristics.

Note that different referees should judge the overall behaviour of an expert
the same thus giving an objective judgement, but that they will not choose
the same rules and equations, becaﬁse this is dbne in a very subjective way.

So choosing the right referees is important for the performance of the whole

team.
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Supervisor :

The supervisor is responsible for the team meetings. Using the reports of the
referees he

- determines the best expert,

- collects the rules and equations from all other experts,

- forms the new problem to prove,

- chooses experts and referees for the next computation period and

- determines, when the next team meeting will take place.
The first two tasks are easily performed, because the referees give the
supervisor all the necessary information. In order to form the new problem to
be proved the supervisor takes the current system of the 'best expert (i.e. the
set of rules, the set of equations and the set of critical pairs] and adds the
rules and equations chosen by the referees of the other experts. When adding
these new rules and equations, ordered by the reduction ordering used by the
best expert, it must interreduce the rule system and the equations. Then it
has to add all critical pairs of the new rules and equations with the old ones
and with themselves. In addition, the results of the specialists have to be
used to remove the unnecessary critical pairs. The resulting system must be
transfered to all experts. In section 5 we demonstrate, how these operations
can be done efficiently by an interleaving technique.
There are three possible criteria for the supervisor, when he wants to replace
experts. First, at least every n; cycles, there should be a specialist in the
team. The supervisor exchanges the expert with the worst current result. with
this specialist. Second, every n, cycles, a new expert should get the chance
to participate in the team. Again, for the new expert, the expert with the
worst current result will be fired. Finally, the supervisor must have the
ability for fast reaction. Therefore experts, who have had the nz last cycles a
result, which is less then k percent of the result of the winning expert, have
to be replaced.
The parameters n;, np ngz and k are given to the supervisor by the user. At
the moment, in our implementation the next chosen expert or specialist is the
next in the expert database. If the supervisor is at the end of the database he
continues at the beginning, again. This way all experts have a chance to be
chosen. The more knowledge about the experts is accessible to the supervisor

the better heuristics for choosing an appropriate expert for the current
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problem can be used.

Finally, the supervisor determines the length of the periods between team
meetings. Again, there are three possibilities in our team work completion
system. First, the supervisor always uses periods of the same length. As the
time needed to generate a new rule or equation grows with growing number
of rules and equations (remember that all critical pairs with this new rule
have to be generated), this first method is only well suited for small
examples. A second possibility are linearly growing periods. Then the length
of the n-th period is n times the length of the first period. The last method,
which should be used for large examples, is to choose exponentially growing
time periods between the team meetings.

For future versions of our system we plan to use variable time periods
according to the reports of the referees. If the supervisor thinks he has a good
team then he should give them more time for computing new facts than for a
bad or unexperienced team. But the time period must be long enough for
every expert to get some results. Otherwise a judgement of the experts is

impossible.

6. The implementation : Comments on communication and control

The main problem arising from distributed systems is the effort to install a
control in order to solve the given problem by interaction between all
processors. Centralized as well as distributed control approaches need a
certain amount of communication between the different processes. While a
process, that is in our approach an expert, referee or the supervisor, sends
information to or waits for information from other processes, it can not
contribute to the solution . of the problem. So one goal in developing
distributed systems is to reduce the amount of communication and hence the

idle times of the processors.

The structure of our team work completion approach supports this goal,
because communication between processes is restricted to certain periods.
During its work an expert process needs no communication. After an iteration
of the while-loop [in procedure "expert’] the expert checks, whether a team

meeting will happen soon. If not, it immediately starts another iteration.

So the important point is the communication (1] between supervisor and

experts while sending the new problem description after a team meeting,
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[2) between an expert and its referee and, finally, [3] between the referees
and the supervisor. Also when the supervisor is preparing a new computation

cycle all the other processors are idle.

We will now discuss implementational and structural issues which reduce the

loss of efficiency by processor idle times.

First of all, the idea to place referees between the experts and the supervisor
in order to achieve abstracted reports of the results of the experts drastically
reduces the one-to-one communication between processes, if we let experts
and their referees be realized on the same processor. This means that on a
structural level we distinguish between an expert and a referee, but in the
implementation there is one process with two functions as arguments. The’
choose-CP-function realizes the expert's behaviour and a referee-function,
which works on the same memory as the expert, realizes the referee. By this
way we achieve an overlap of these logical processes without any

communication between processors.

In order to send the system of the winning expert of the last period to all
experts the supervisor process has to get this system from this best expert.
As we want to solve big problems the transfer df this data would take a long
time which results in idle times of all other processors. So we decided to
install a floating control and therefore to let the winning expert process

become the new supervisor.

This means we bnly have one type of process working in three modes

expert, referee, and supervisor. If the old supervisor process decides which
expert will be the new supervisor, i.e. the winner, it passes the best rules
and equations of all loosers to the new supervisor. Also the statistic
information about the experts will be sent to the new supervisor. Note that
for big problems the size of all this data is much smaller than the size of a

whole system consisting of many rules, equations, and critical pairs.

There remains the problem to transmit the new system to all experts. The
trick to solve this problem is inspired by experiences with the
implementation of sequential completion procedures. If someone always has to
take the smallest element out of a set, he will implement the set as an
ordered list in which the first element is the smallest. So every expert
realizes the set CP as an ordered list where the order is determined by the
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choose-CP-function. When the supervisor transmits the new system of rules,
equations, and critical pairs via broadcast [i.e. to all processors in parallel),
the experts can insert every transmitted critical pair in their CP-list
according to the measures with respect to their own choose-CP-functions.
That clearly results in more efficiency. Because the supervisor has to send the
critical pairs one by one, it can use the information generated by the
specialists to cancel unnecessary critical pairs. Every critical pair that is
considered unnecessary will simply not be sent by the supervisor.

If we use whole computers instead of processors as nodes in our system,
then, with the use of large buffers, the supervisor can transmit the critical
pairs faster than the other nodes can receive and insert them. This time can
be used by the computer representing the supervisor to interreduce rules and
equations of its own system with the result rules and equations reported by

the referees. If the data is transmitted in the following order :
critical pairs of the supervisor,
interreduced set of rules and equations,
new critical pairs generated with added rules and equations,

then we nearly have no idle times of any processor during the communication
time.

In addition, since the main part of the supervisor's work is exactly to
compute the new system and to send this system to the experts, the idle
time of the nodes, on which the supervisor process is not running, is reduced
to the time the supervisor needs to choose its successor and to send the

necessary informations to it.

Considering these issues our implementation sﬁould show a behaviour of the
nodes of our team work completion system in a cycle between two team
meetings as outlined in figure 2. Unfortunately, in our current implementation
the operating system does not allow to use broadcasting for sending the new
problem system to all processors. Therefore the data has to be sent to all
processors one by one. This has to be taken into account when judging the
computation times for the examples presented in section 6. Using

broadcasting we hope to get better times.
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Figure 2 : processor engagement before, during and after a team meeting
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B. Experiments

As stated in chapter 1, a main research goal in automated deduction is to

improve the efficiency of automated theorem provers. But what is the
efficiency of a prover? As we want to prove more and harder problems, one
aspect of efficiency is the time a prover needs to find a solution. If the
prover needs plenty of time to solve small examples we can not expect it to
solve the challenging problems. Because human beings use the prover, not the
processor time used to find the solution, but the time he waits for the
solution, i.e. real time, has to be clocked. Therefore table 1 compares the real
time results of each expert solving our examples alone [or not] with the
results of a user chosen good team. When we describe the examples we will

also describe the chosen team and its behaviour while solving the example.



Example| team|ADD-WEIGHT MAX-WEIGHT FWEIGHT|GOAL-SIM FORCED-DIV
1 95 29.93 40.18 17.14 - -
2 10.6 115.08 58.41 89.57 - -
3 16.84 - 167.62 - 63.89 -
4 9.0 94.75 29.0 19.16 - - |

Table 1 : Comparison of a selected team with single experts, runtime in sec

But there is another aspect of efficiency. Todays automated theorem provers
offer the user many ways to influence their problem solving behaviour (see
for example the Otter system [Mc88]). Many examples only can be solved,
when special heuristics and parameter adjustments are provided by the user.
An experienced user is able to find the right heuristics and adjustments with
just a few tries. We made such an adjustment by starting the team work
completion with given experts to get the times of table 1.

Unexperienced users or users with no background in the method used by the
prover have nearly no chance to use these provers for their problems. Its
potential efficiency in terms of runtime is of no use. In our team work
completion system the supervisor enables such users to solve their problems.
Starting each example with a fixed team the supervisor adjusts the team with
every team meeting more and more to the given problem. In table 2 we see
that this kind of self-tuning sometimes results in needing more time to find a
solution even compared to the best expert. But the important point here is
that the system automatically finds for each example a solution. We remark
that no expert alone is able to solve all our examples in an appropriate time,
say within 10 min for examples 1-4, and within 5 h for example 6, but both

teams have solved them within this time.

Example best team standard team best expert
1 9.5 95 1714
2 10.6 16.02 58.41
3 15.84 29.52 63.89
4 9.0 25.04 19.16

Table 2 : Comparison best team / standard team / best expert, times in sec
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We implemented team work completion in C under Unix. Our results were

achieved on a cluster of Sun 4 computers.

We now comment the examples in detail : The first four of our examples
origin from the domain of monadic function symbols. This means, we only
have function symbols with arity 1 and (in goals] Skolem constants. For this
domain of interest we were able to include special knowledge in some of our
experts, namely in the expert FWEIGHT. We used a cluster of 2 processors. In
the following we use a™(x) as abbreviation for afa[..[x]..), ie. n times the
function a is applied.

Note that the expert PREFER-RULE is identical to ADD-WEIGHT for examples
1-4, because during the completion of these examples all 'critical pairs are

orientable.

Example 1: The group Z22, i.e. the cyclic group with 22 elements
Completion of

albc(x])) = d(x] ble{d(x])] = e(x] cld(e(x]])] = a(x]

dle(alx])} = b[x] ela{b(x])) = c(x) alA(x)) = x
Alax]) = x b[B(x]] = x B[b[x]) = x
clClx]] = x Clelx)] = x d(D(x)] = x
D(d[x])] = x e(E(x])) = x Ele(x])) = x

using an LPO [[KL80]] with precedence
E>e>D>d>C>¢>B>b>A>a.

The completed rule system is

E(x) » al7(x) e(x) » a°(x] D(x] » a'¥(x]

dlx) > a3(x) c(x) » a’(x} clx) > a'®(x]

Blx) > a®x) blx) > a°(x) Alx) > a%(x]
a®?(x) » x.

Our team of table 1 consists of the ADD-WEIGHT and the MAX-WEIGHT
expert. The referees of both are STATISTIC ones. This is also the starting team
for table 2, which was able to solve all examples. .

For example 1 the team needed 3 cycles. The best expert of the first cycle
was MAX-WEIGHT, of the second ADD-WEIGHT and in the third the solution
was found by ADD-WEIGHT. After the first cycle the referees of both experts
have chosen a rule that eleminates the function ¢, but on different ways.
Starting with the system of MAX-WEIGHT after the first team meeting

- 26 -




ADD-WEIGHT needed only 1563 rules to complete the system. Without this
help by MAX-WEIGHT it needed 187 rules. The reason for the speed-up lies in
the change of the heuristic for choosing critical pairs after a certain time
period, which results in fewer steps.

Note that the good result of expert FWEIGHT is based on the knowledge, that
all functions can be expressed in terms of the function a. Therefore FWEIGHT
used a c,-value of 1 and a c¢g-value of 4 for all other function symbols. The
use of FWEIGHT in the team leads to nearly the same time as the added time

of the processors of the team reported above.

Example 2 :
Completion of
a'®(x) = b(a(bla(b(x]]))) a%(bla(b3(x)))] = bla[b?(x)))
b(a®(b(x]]) = bla(bla(bla(bZ(x))))))) b[a®(b(x]]] = bla[bla(b3(x]]}))
b®(x) = b(a(b(x)]] b*(a®(bla(b(x]))]] = bla[b*(x)])
b%(a(b(x))) = bla(b®(x])) b>(a(b(x)]) = bla(b3(x)))
b%(x) = a®(bla(b(x)])) b*(a(b(x)])) = bla(b*(x]))
a®(b%(x]) = b(x] aZ(bla(bla®(bla(b[x))))))]] = bla3(blalb[x]))])]
b(a(b(x))) = bla®(bla(b(x]]))] b3(a®(b(a(b[x))))) = bla[b3(x))]
b3(a(b(x]]) = bla[b?(x])) bZ(a®(bla(b(x]))]) = bla(b3(x)))
b*(x) = a*(bla(b(x]))) a®(b{a®(blalb(x])))])] = bla(b*(x)))
a®(bla(b?*(x)])) = bla[b3(x))) bla(bla(b*(x]]))) = b(a®(b(x)]]
bla(b(x))) = a®(bla[b?(x))]) b(a®(bla(b(x))]]]) = a®(b(a(bla(b(x)))]))
bZ(a®(b(a(b(x])]])] = bla(bla[b(x]]])) bla(b(a[bla(b3(x)))))]) = bla?(b(x)))
b3[a®(bla(b(x))))) = a*(bla(b*(x)])) a®(b(a®*(bla(b(x))))]] = a®(bla(b(x))))
b*(a®(b(a(b(x))))) = bla(bla(b3(x))))) b3(a3(b(a(b(x))]]) = bla(bla(b3(x)))])
b*(a2(b(a(b(x))]]) = aZ(bla3(bla(b(x]1)))] a2(blalbla(b?(x)]))]) = bla(bla(b(x]]))]
b2(a?(bla(b(x))))) = a*(bla[b3(x]])) aZ(b(albla(b*(x)))))) = blalbla[b3(x))))]
bla®(b(a(b(x)]])) = a%(bla(b?(x]])) a%(bla[bla(b3(x)))))] = bla(bla(b(x))))

b(a[b(a [bla(b(x]]))))]] = a (bla(bla[bla(b(x]]}]])])
a?(bla(bla(bla(bla(bZ(x]1))N]] = bla(bla(bla(blalb(x)))]))))]
a®(bla(bla(bla(b3(x]))))] = bla(bla(blalb?(x)])))])]
a®(b(a(b(a®(bla(b(x)])))))) = bla[bla(b*(x]))

using an LPO with precedence

b > a.
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The completed rule system consists of the following rules :

b3(x) = a*®(b(x]) bla(b(x]])) = a®°(b(x))  bla®(b[x)]] = b[x)
b(a®(b(x])] = a%3(b(x]) bla?(b(x]]] = a%(b[x)) b(a®(b(x]]] = a%*(p[x))
b(a®(b(x]]) = a*(b(x)) bla”(b(x]]) = a%®(b(x]) b(a®(b(x))} = a®(b(x])
b(a®(b(x))) = a®3(b(x]] bla'®(x)) = a'®(b(x]) a%°(b(x]) = b(x]

Our team consists of the experts ADD-WEIGHT and FWEIGHT. FWEIGHT
centers on the symbol a, i.e. ¢, =1, ¢ = 4. Again both referees are STATISTIC
ones.

This team solved the example in 2 cycles. The winning expert of the first
cycle was ADD-WEIGHT. As in example 1 the loosing expert, i.e. FWEIGHT,
was then able to finish the completion. |

The bad results of the single experts are due to the generation of rules with
big left hand sides, which can only be reduced lately. So all their critical

pairs have to be generated and later thrown away.

Example 3 :
Proof .of the goal

E[i) =i
with the equations

b(a(x]} = a[b[c(x])) cla(x])) = alcld(x]]] c(b(x) = blc(e(x])])

da(x]] = ald(x]] d(b(x]] = bld(x]] d(c(x]] = cld(x])
efa(x]] = a(e(x]) e(b(x]] = ble(x]] elc(x]) = cle(x])
eld(x)) = dle(x]) b7(x) = c[x) c®(x) = d(x]
d5(x) = e[x]) Ala[x]) = x a(A(x)) = x
B(b(x]] = x b(B(x]) = x Cle[x]) = x
clclx)) = x D(d(x]) = x d{D(x]] = x
Ele(x])] = x e(E(x])) = %

using an LPO with precedence

E>D>C>B>A>e>d>c¢c>b >a
The team of table 1 consists of the experts GOAL-SIM and MAX-WEIGHT with
STATISTIC referees. It solved the problem in 2 cycles. The best expert of the
first cycle was MAX-WEIGHT and it received 3 rules from GOAL-SIM. One of
these rules was a[b®(x)) > b[a(x])), which it used to generate the necessary

rule E(x] > x at once. In contrast to example 1, where the change of the
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heuristic is responsible for the speed-up, here the results of the loosing

expert improve the system.

Example 4 :
Proof of the goal
a®C(ble)) = n(C°(t(e))
with the equations
alx) = g°%(x) Hgl#(x)))
b(a'®(x]) = bla[bla(b(x])))] b°(x)

using a LPO with precedence

glf{x]] h(f{g(x]]]
b(a(b[x])) a?(p?(x))

ble)
b(x)

G>h>f>g>b>a>e
Our team consists of the experts FORCED-DIV and FWEIGHT with referees
LAST and STATISTIC. In fact, this example combines two subproblems. The
first, represented by the first three equations is to show that n(a®(#e)) is
equal to b(e]. To prove this, expert FORCED-DIV was appropriate. The second
subproblem is to prove a>°[b(x]] is equal to b(x]). To quickly solve this
problem, we have to fade out all critical pairs with G, h, f or g in it
Therefore we used expert FWEIGHT with cq = ¢y = ¢; = ¢g = 100 and ¢y = ¢,
= Ce = 2. After the first computation period the referees of both experts
reported the solution of the subproblems to the supervisor. It found the

solution of the whole problem while generating the new problem description.

Note that the good result of expert FWEIGHT alone is due to the fact that
with the solution of the second subproblem the system resulting out of
equations 4 to 6 is completed and therefore there are no critical pairs
without G, h, f or g. So FWEIGHT solves subproblem for subproblem without
any interference between them. Our standard team has to deal with such

interferences and therefore performs so bad.

Finally, we have tested team work completion on a challenge problem, the proof
of the commutativity of a ring with added axiom x> = x [[St84], [LO85]).

Example 5 :
Proof of the goal

f(a,b] = f[b,a]
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with the equations

jlo.x] = x jilx.0) = x ilglx)x) = 0
jilx.glx]) = 0 ililx.y).2) = jlx.jly.2]) ilxy) = jly.x)
f{f(x.y).2] = f(x.1(y.z]) flxjly.z)] = jli{x.y)t(x2]) f(j(x,y).2) = j(f(x,z].i(y.2]]
f(x f(x,x])] = x

using a KBO ([KB70]] with weights

f:5,j:4,g:3 0:1,b:1 a:1
and a precedence

f>j>g>0>b > a.
Qur team consists of the experts ADD-WEIGHT and PREFER-RULE and the
specialist REDUCE-CP which was member in the team every forth cycle. The
results of this team, the standard team and the experts are collected in table
3. The proof was found in the sixXth cycle by expert ADD-WEIGHT. But the
winning expert was always PREFER-RULE. REDUCE-CP was able to detect 142
“uncritical” critical pairs that were, at this time, not detected by the experts.
This example also shows that it is not necessary to use the "expensive’

theory completion method, as Stickel, to find a proof.

Example best team standard team ADD-WEIGHT

5 702.12 11212.38 8310.11

Table 3 : Comparison best team / standard team / best expert, times in sec
for the ring example

These experiments show the usefulness of the team work method. For all
examples a linear speed-up has been achieved, at least. The method is well
suited for both completion {examples 1-2) and equational theorem proving
(examples 3-5]). Although the time used by the expert ADD-WEIGHT to prove
example 5 is not acceptable, the time used by our team without the usage of
build-in theory AC or other improvements (see [KZ89]) is acceptable for a
general purpose prover.

Due to their strategy for choosing critical ©pairs the  experts
POLYNOM-WEIGHT, GOAL-SIM, FORCED-DIV, and some versions of FWEIGHT
can only be successfully used in a team. The referee STATISTIC was able to
solve the difficult problem of choosing good results of the experts. Especially

in example 5 the concept of regularly judging generated facts by a referee,
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has cut down the number of unnecessary commutative versions of rules and

equations.

The idea of some experts dgenerating a wide variety of new facts and other
experts only concentrating on the consequences of a few facts, shows its
usefulness n all examples. The best experts during the first meetings did not
solve the problems, but the loosing ones, using the system of the winning

expert.

7. The conclusion : A beginning and the future

We have presented a distributed approach to equational reasoning by team
work completion. Based on the problem solving behaviour of project teams we
have developed the team work method as a system with three classes of
components : experts, referees and a supervisor. Every component in the
system realizes a different view on the problem to solve or on a subproblem.
The cooperation of all components is realized by the éoncept of team

meetings.

Each class of components uses knowledge to fulfill its tasks. Experts use
knowledge to generate new facts and to focus on parts of all the facts.
Referees use knowledge to judge the work of experts and therefore provide
an abstracted view on their work. Due to this abstraction the whole system
has the ability to forget wuseless and unnecessary r1esults and facts. The
supervisor leads the search of the experts into interesting directions
according to the results of the referees. Further, it has the ability to
re-configurate the system in a reflective way, so that parts of the

accumulated knowledge of the system can temporaly be faded out.

Our system includes aspects of the areas learning, reflective systems, planing,
knowledge representation, and deduction in a natural way. We feel the need
of .combining aspects of all these areas, because we believe that the human
ability td solve very different problems in all parts of human interest is based
on an interaction of all these methods [and perhaps more than these].

As an instantiation of this general concept we mainly focus on equational
reasoning. There the influence of the mentioned areas is not very strong up to
now. That means we only use as many of the results in these fields as can

easily be added or follow from our concept. So there is a wide variety of
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improvements of our systems according to results of these areas, such as
- learning expert heuristics from successful proofs

- learning referee heuristics for special domains of interest

representing knowledge about experts/referees

choosing appropriate experts or expert sequences by planning
etc. ‘

Further, the team work completion approach allows, as the team work method
in general, the use of knowledge or better enforces it. As there are many
domains of interest with different knowledge where equational deduction is
needed there has to be a huge number of new experts dealing with this
knowledge. Note that our system provides a way to deal with huge numbers
of experts of general interest and for special domains. So we do not have to
generate specialized versions of it or specialized control structures for

different domains.

For the area of equational deduction by completion team work overcomes the
often heard opinion, that a forward chaining process like completion can in
no way be goal oriented. The expert GOAL-SIM enables our teams to work
goal directed and contributes to fasier proofs (see example 3).

Our experiments have shown the usefulness of team work in an impressive
manner. In our examples, our teams have always been faster than the best
expert working alone. A team using two processors has needed only 54%
downto 8% of the time of the best expert.

Nevertheless the system presented here is only the starting point for many
more experiments and improvements in distributed completion. However,
other deduction mechanisms can be distributed in the presented manner as

well, if they can be placed in the team work szenario.
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