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Abstract
 

To prove difficult theorems in a mathematical field requires substantial knowl­

edge of that field. In this thesis a frame-based knowledge representation formal­

ism including higher-order sorted logic is presented, which supports a conceptual 

representation and to a large extent guarantees the consistency of the built-up 

knowledge bases. In order to operationalize this knowledge, for instance, in an 

automated theorem proving system, a class of sound morphisms from higher-order 

into first-order logic is given, in addition a sound and complete translation is pre­

sented. The translations are bijeetive and hence compatible with a later proof 

presentation. 

In order to prove certain theorems the comprehension axioms are necessary, 

(but difficult to handle in an automated system); such theorems are called truly 

higher-order. Many apparently higher-order theorems (i.e. theorems that are 

stated in higher-order syntax) however are essentially first-order in the sense that 

they can be proved without the comprehension axioms: for proving these theorems 

the translation technique as presented in this thesis is well-suited. 
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CHAPTER 1 

Introduction
 

Alles, was im bisherigen Sinne die Mathematik 
ausmacht, wird streng formalisiert, so daB die 
eigentliche Mathematik oder die Mathematik in 
engerem Sinne zu einem Bestande an Formeln 
wird. 

David Hilbert 

This work is about the representation of mathematical factual knowledge (by ap­

plying representation techniques of artificial intelligence) and the operationaliza­

tion of this knowledge for automated theorem proving (by translating it into first­

order logic). The starting point was JORG H. SIEKMANN'S idea of proving a whole 

mathematical text book by the Markgraf Karl Refutation Procedure (MKRP), a 

first-order resolution-based autom'ated theorem prover [93, 41]. In order to prove a 

theorem the MKRP system requires that the axioms (that are certain hypotheses) 

and a theorem are entered in an order-sorted first-order language. The system 

tries to show that the conjunction of these axioms entails the theorem. In 1984­

1986 about a third of the theorems in a textbook on semi-groups and automata 

[40] was proved by the system. So far theorem provers have been used primarily 

to prove single theorems, that is, the formalization is input for one single prob­

lem only. This problem is solved and then everything is forgotten before the next 

problem is attempted. If we try to prove several theorems in the same domain, we 

expect a certain coherence of the representation in the problems. A primary goal 

of this research - in addition to testing the strengths arid drawbacks of MKRP ­

h~s been to get an intuition for the new problems that may occur when proving 

a large set of interdependent problems. In this sense proving the textbook [40] 

was an important testbed and source of ideas and the following is a listing of the 

.problems that occurred most often: . 

The representation of the mathematical concepts 111 the sorted first-order 

input language of MKRP was ad hoc. Since the constructs in [40] are mostly 

higher-order, they had to be translated into the MKRP first-order input lan­
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guage. This was done for each problem anew. Moreover this representation 

was neither based on an axiomatic set theory nor on a systematic translation 

of higher-order constructs into first-order logic. So it was not always obvious 

what the MKRP-proved theorems had to do with the textbook theorems and 

hence what was proved, even in the case of a positive session. 

- Definitions and already proved theorems had to be duplicated, because the 

theorem prover can only prove first-order tautologies. This means, the defi­

nitions and theorems that are used as preconditions for the actual theorem 

have to be entered again. Not only is this rather boring, it is also a source 

of error. The user is responsible for the correctness of the preconditions. 

He might use (slightly) different formulations in different contexts, with the 

result that the correctness of the whole procedure is no longer ensured. This 

faulty procedure is known in logic as ignoratio elenchi. Furthermore the user 

can use lemmata that have not been proved. This is comparable to the pro­

cedure of ignotum per ignotum. Discipline may be helpful, but as practice 

shows, system support is imperative., 

- The preconditions had to be selected by the user. But even if this important 

job was doneoptimally, that is the user entered only a minimal set of pre­

conditions, normally the proofs were too difficult to be found without any 

lemmata. The user had to split the proof into different parts, prove certain 

lemmata with MKRP and enter them later on as preconditions for the actual 

theorem. The system did not provide any support for such a procedure. 

- There was no way of explicitly reasoning about proofs. All structuring and 

every proof plan is hand-crafted and hence only subconsciously in the head of 

the user. So it requires a lot of practice in proving theorems and automation 

is not possible at this level. 

These and other problems indicate that considerable additional support from 

a system is necessary in order to have a usable tool for developing and finding 

proofs. 

Although automated theorem provers have solved even difficult mathematical 

problems (see e.g. [132, Chapter 9]), these problems are relatively non-standard 

and not of general interest. In particular the difficulty of the t.heorems, which can 

be solved fully automatically, is limited. We believe the future is with systems that 

strongly interact with the user. The user can guide the system as he wants, but the 

system can show essential parts by its own. Neither proof checkers, where the user 

has to input the proof at calculus level, nor automated theorem provers, which have 
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limited abilities, will become general accepted tools. Instead a proof development 

system like Automath or Nuprl should be combined with an automatic theorem 

prover. This is the aim of a project in which the MKRP is to be extended to a new 

system, called 0-MKRP [HH]. In this context it is particularly important to know 

how to represent mathematical concepts (in an enriched higher-order language) and 

how to translate the formulae from higher-order into first-order logic in a sound 

and complete way so that a first-order theorem prover like the MKRP system can 

be integrated as one tool in a larger system. This work is concerned with these two. 
questions. Unfortunately such a translation will not make higher-order theorem 

proving obsolete, because additional particularly awkward axioms are necessary in 

order to prove really higher-order theorems by first-order proof procedures. But 

for many problems a first-order theorem prover will show better results than a 

higher-order one. 

Overview 

In the next chapter we will give a short historical overview of the development 

of mathematical logic and its mechanization and we will introduce some related 

works. In chapter 3 we will pres.~nt the logical systems that are the heart of the 

representation, namely unsorted higher-order logic, many-sorted first-order logic, 

and sorted higher-order logic. We do not use any 'x-expressions. In chapter 4 we 

present a frame-based approach for the representation of axioms, definitions and 

theorems. Up to this point we are dealing with the representation of mathematical 

knowledge. In chapter 5 we will show how this information can be translated into 

first-order logic and hence can be made available for the reasoning of theorem 

provers based on first-order logic like the MKRP prover. In chapter 6 we give 

some examples of how theorems can be translated and proved with the help of the 

MKRP prover, and provide some intuition for whether such a translation is good 

or bad. 
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CHAPTER 2 

A Short Historical Overview
 

Und immer sind da Spuren, und immer ist einer 
dagewesen, und immer ist einer noch hoher ge­
klettert als du es je gekonnt hast, noch viel 
hoher. Das darf dich nicht entmutigen. Klettere, 
steige, steige. Aber es gibt keine Spitze. Und es 
gibt keinen Neuschnee. 

K urt Tucholsky 

We shall now present a short overview of the history of the representation and 

formalization of mathematical concepts in logic and set theory, on how computer 

systems are used for mathematics, and on knowledge representation facilities in 

artificial intelligence. Of course many an important work must be omitted here. 

2.1 Logic and Foundations of Mathematics 

Logic has a long tradition. The Ancient Greeks formalized already parts of it by 

introducing calculation rules. ARISTOTLE (384-322 BC) developed the theory of 

syllogisms and created the first comprehensive system of logic in his Organon (es­

pecially in the "Analytica priora" and "Analytica posteriora") [5]. RAIMUNDUS 

LULLUS (1"V1233-1316) developed ideas of the mechanization of logic in the "Ars 

magna" (compare [21]). In "Regulae ad direetionem ingenii" RENE DESCARTES 

(1596-1650) introduced a notion by which all problems should be translated into 

mathematical problems. These problems are transformed into a system of equa­

tions, the system into one equation, and this is then solved [39]. (A discussion of 

the relevance of this procedure for nowadays problem solving is given by GEORGE 

POLYA in [115].) 

Taking up these works, GOTTFRIED WILHELM LEIBNIZ (1646-1716) formu­

lated with a new accuracy the idea of a lingua characteristica universalis in which 

everything should be expressible and should be mechanized by a universal calculus, 

the calculus ratiocinator based on numbers. Thus every dispute between people 
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should be settled by some sort of calculation ("calculemus") [81, 80]. Thereby 

LEIBNIZ anticipated the idea of the mechanization of human thought, a dream 

that has now - three hundred years later - been revived with a new twist in the 

field of artificial intelligence. 

In "The Mathematical Analysis of Logic" (1847) GEORGE BOOLE (1815-1864) 

developed a first usable calculus for propositional logic [14]. In his famous "Be­

griffsschrift" [45] of 1879 GOTTLOB FREGE (1848-1925) restricted LEIBNIZ'S uni­

versal approach by comparing the relationship of his formal language to everyday 

language with the relationship of a microscope to the eye: the first is very accu­

rate and the latter universally applicable. For the restricted area of mathematics, 

he wanted to build LEIBNIZ'S lingua characteristica and a calculus ratiocinator. 

In the "Begriffsschrift" FREGE developed the first predicate logic by analyzing 

quantified assertions. He clearly understood the distinction between syntax and 

semantics. GEORG CANTOR (1845-1918) invented (naive) set theory around the 

same time. In the beginning of our century antinomies were found which could be 

expressed in these formal systems. This lead to the development of the ramified 

theory of types by ALFRED NORTH WHITEHEAD (1861-1947) and BERTRAND 

RUSSELL (1872-1970). They used their formalism to found much of mathematics 

logically in "Principia Mathematica" [131]. On the other hand set theory was ax­

iomatically founded - in order to avoid RUSSELL'S antinomies - in the set theories 

of ERNST ZERMELO (1871-1953) [133] and ADOLF ABRAHAM FRAENKEL (1891­

1965) [44] or JOHN VON NEUMANN (1903-1957) [102], KURT GODEL (1906-1978) 

[53], and PAUL BERNAYS (1888-1977) [8,9]. The set theory of ZERMELO was not 

yet based on first-order logic, but relied on higher-order constructs. Later on in 

long discussions about what mathematics requires it has become the general cus­

tom to restrict the underlying logic to first-order. For a discussion of the interplay 

between mathematical logic and set theory see [98]. 

DAVID HILBERT (1862-1943) articulated the idea of formalizing mathematics 

in what is now called HILBERT program [62]. He had the idea ofaxiomatizing 

all classical mathematics. Every theorem should be derived in finitely many steps 

from the axioms. For the field of geometry he had already worked out these ideas 

by 1899 [61]. GODEL'S completeness result for the first-order predicate calculus 

(1930) [51] was positive in this sense and seemed to amplify this direction. But then 

different negative results have been discovered: GODEL proved in 1931 [52] that 

every system that formalizes arithmetic cannot have a complete calculus. In 1936 

ALONZO CHURCH (1903-) [32] and ALAN TURING (1912-1954) [125] proved that 

first-order predicate calculus is undecidable and the whole enterprise of HILBERT'S 

program seemed to be in jeopardy. This bad result is relativized by the theorem 
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of JACQUES HERB RAND (1908-1931) [59], that for every predicate logical formula 

holds: it is a tautology if and only if it is possible to construct a propositional 

formula out of the original one, which can be shown to be a tautology. Therefore 

it is possible to give a enumeration of the first-order tautologies. In other words 

first-order logic is semi-decidable. HERBRAND'S theorem is of essential importance 

for the whole field of automated reasoning, because all proof procedures rely on it. 

Another approach to mathematics, in which the axiomatic approach is strictly 

rejected is constructive mathematics, which is closely related to intuitionistic 

mathematics. The main difference from classical mathematics can be seen in their 

rejection of the principle of the excluded middle. Every mathematical object must 

be constructed explicitly. For instance an existentially quantified formula can be 

proved only by giving a witness for the variable. The position of constructivism 

was propagated by LUITZEN EGBERTUS JAN BROUWER (1881-1966) [22,23] and 

AREND HEYTING (1898-1980) [60]. 

Until the beginning of this century there was no distinction between first-order 

and higher-order logic, only in 1915 LEOPOLD LOWENHEIM (1878-1957) was the 

first to distinguish between them [91]. First-order logic is not categorical, that 

is, it is not possible to characterize infinite models up to isomorphy as stated in 

the theorem of LOWENHEIM-SKOLEM [91, 122]. In mathematics first-order logic 

dominates the foundations whereas in mathematical practice higher-order logic is 

used without a second thought. In 1940 CHURCH formulated higher-order logic 

basing it on his simple theory of types and the A-calculus [33]. Ten years later 

LEON HENKIN (1921-) extended the semantic notion of ALFRED TARSKI (1901-) 

[124] to the concept of general models, in which he could give a complete calculus 

for CHURCH'S logic [57]. 

ANDRZEJ MOSTOWSKI (1913-1975) coulq. prove the isomorphy of higher-order 

formulations to set-theoretical formulations based on first-order logic relative to a 

general model semantics [100]. HERBERT B. ENDERTON introduced in [42, p.281­

289] a sound and complete translation of second-order logic into many-sorted first­

order logic. LAWRENCE J. HENSCHEN describes extensions of first-order theorem 

provers for handling arbitrary higher-order theorems [58] by introducing sorts and 

a special treatment for the so-called comprehension axioms. In [6] JOHAN VAN 

BENTHEM and KEES DOETS give a translation for higher-order logic into first­

order logic that is sound and complete relative to HENKIN'S semantics. 

Through these developments a new rigour of proof (unfortunately along with 

a "loss of certainty", about the relationship between mathematics and reality; 

see [74]) was achieved. But these advances in logic have not had great influence 

on the daily practice of mathematicians when proving theorems, so that until 
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today for (human) theorem. proving one can often say "paper won't blush": The 

formalization of reasoning in mathematics was more than ripe for a mechanization 

on computers. In the next section we describe the corresponding systems briefly. 

2.2 Computer Systems for Mathematics 

There are different areas for the application of computers in proving theorems: 

there are general theorem proving systems, for example based on resolution and 

paramodulation which can find certain proofs automatically. In another area the 

computer is used to check given proofs or the user develops proofs with the aid of 

such a system. 

Automated Theorem Proving Systems / 

The focus of research in the field of automated reasoning has changed considerably 

since the early days of the formation of artificial intelligence. At the beginning, the 

main interest was devoted to "theorem proving" , which at that time was concerned 

with showing that certain logical formulae are tautologies. So it is not surprising 

that the Logic Theorist of ALLEN NEWELL, CLIFF SHAW and HERBERT SIMON 

[104], which was used for proving parts of Principia Mathematica, was among the 

earliest AI-Systems. In 1954 MARTIN DAVIS implemented a decision procedure 

for PRESBURGER arithmetic [37]. For an historical overview of these early days of 

automated theorem proving see [38, 120, 118]. 

Current deduction systems rely on different basic techniques. A very important 

one is resolution, which was invented in 1965 by JOHN ALAN ROBINSON [116]. In 

a normalization process, the whole problem, formulated in a first-order language, 

is transformed into a conjunction of disjunetions, where all existentially quanti­

fied variables are eliminated (SKOLEMIZATION). The disjunctions consist only of 

atomic formulae or negated atomic formulae, so-called literals. The disjunction is 

called a clause and represented as a set of the contained literals. This transfor­

mation is refutation correct and complete, that is, the clause form is unsatisfiable 

if and only if the original problem i~. Proving is done by generating new clauses 

(resolvents) out of two (binary resolution or factorization) or more parent clauses. 

If the empty clause is obtained a contradiction is found and the problem is solved. 

LARRY Wos, Ross OVERBEEK, EWING LUSK, and JIM BOYLE [132] have 

built a succession of resolution-based theorem provers that have been the strongest 

systems of the field and that finally resulted in the Otter system [96]. Otter has 
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a strong equality handling component using demodulation and paramodulation. 

Integer arithmetic is built-in. 

In the Markgraf Karl Refutation Procedure (MKRP) [93, 41], JORG 

H. SIEKMANN and his group realized a clause graph based resolution theorem 

prover. Graph based resolution was invented by ROBERT KOWALSKI [77], and 

the idea is that literals, on which a (binary) resolution step may be executed, are 

connected by a link that is labeled by the corresponding unifier. The links of 

the resolvents can be computed by the links of the literals of the parent clauses. 

Clauses with a pure literal, that is, a literal without any link, can be removed from 

the graph because they can never have the empty clause among their descendants. 

The input language incorporates equality which is treated by paramodulation. The 

input language is order-sorted first-order logic. For examples see chapter 6. 

Further developments for strengthening the deductive power of resolution-based 

theorem provers consist of building-in syntactic heuristics and incorporating ad­

ditional features such as theory unification (for an overview of unification theory 

see [119]), and theory resolution [123]. 

ROBERT S. BOX,ER and J STROTHER MOORE [17] built the Computational 
Logic Theorem Prover which relies on mathematical induction. Many heuristics 

concerned with induction schemata are incorporated into this system. In the Inka­
system [11] the handling of existentially quantified formulae and the generalization 

of the induction hypothesis is automatized also. 

The matrix method is based on the representation of the formula set in a so­

called matrix. The proof is done by showing that on all paths of this matrix there 

are contradictory formulae. The main difference from resolution is, that no new 

formulae are generated, but that the problem is solved by searching the initial 

set of formulae (albeit some duplication of the original matrix may be necessary). 

WOLFGANG BIBEL worked out this idea in [10]; PETER B. ANDREWS and his 

group developed a higher-order theorem prover, TPS [2,4] based on matrices with 

connections. 

While the above systems are essentially general purpose theorem provers, prob­

lem specific systems for example for geometry [46], set theory [24, 108], or analysis 

[20] have been built and used successfully. The idea of building and using a gen­

eral purpose theorem prover is nevertheless still a vital and exciting task. Today 

it however generally agreed upon that special, domain specific knowledge is neces­

sary in order to employ such a system successfully. In [28] and [13] such proposals 

are described. Many approaches have been advocated to overcome problems in 

automated theorem proving by using heuristic knowledge of the kind described by 
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GEORGE POLYA [113, 114, 115] in order to teach mathematics. ALLEN NEWELL 

gives an extended summary of POLYA'S ideas and their relationship to AI in [103]. 

He argues that there is still a non-trivial gap between POLYA'S ideas and the repre­

sentational possibilities of todays AI-formalisms, but that this gap can and should 

be filled one day. 

Proof Checkers 

The Automath system of NICOLAAS GOVERT DE BRUIJN [25, 26, 27] was one 

of the first proof checking systems, in the sense that a human user could develop 

his proof of a theorem with the help of the system and it would then guarantee 

that the proofs were actually correct. It was built in the late sixties and based 

on natural deduction and (different) richly typed languages, some incorporating 

typed A-calculus. Its philosophy is to write "books" in the system, so that the 

user has almost as much flexibility as if he were writing on paper except that 

he cannot write down anything that is false. The books are written line by line 

and checked by the system. The empty book is correct and whenever a new 

line is written it must be an admissible expression with respect to the previous 

ones. The system as a very general tool is not expected to find anything in itself, 

but to improve publication standards, for instance. In 1975 L.S. VAN BENTHEM 

JUTTING [70] was able to completely formulate and check EDMUND LANDAU'S 

book on the "Grundlagen der Analysis" [79] in the Automath system. The system 

- like all other comparable systems so far - did not reach any broad acceptance 

as a working instrument for mathematicians. One reason may be that there was a 

loss factor of 10 to 20 when using Automath. The loss factor expresses what one 

loses in shortness when translating ordinary mathematics into Automath. It is an 

important observation however that this loss factor is constant over the range of a 

book, that is, it does not increase if one goes further into the book [27, p.603]. So 

there is legitimate hope of cutting this factor down (for instance to one} by some 

automated theorem proving techniques ("gap filling"). 

Whereas in Automath every proof step must be encoded by hand, the Nuprl 

system of ROBERT L. CONSTABLE and his group [34] actually supports the user 

in finding proofs, because he can write so-called tactics. Elementary tactics cor­

respond to the application of calculus rules. They can be combined using tacti­

cals like tac} THEN tac2 and REPEAT tac. Tactics are written in a meta-language, 

the functional polymorphic programming language ML from the LCF system [54] 

(LCF stands for "Logic for Computable Functions"), which strongly influenced the 

meta-component of Nuprl. The logic is based on the constructive typed lambda 
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calculus of PER MARTIN-LoF [94], in the tradition of constructive mathematics. 

Definitions and theorems can be stored in libraries; proofs follow the proposition­

as-type paradigm [36, 68]. If a constructive proof for the inhabitation of a proposi­

tion type is given, this proof has a computational content which realizes a program. 

For instance, the computational content of the Nuprl-proof that every natural num­

ber has a prime factorization can be used to prime factorize an arbitrary natural 

number. Different proofs correspond to different algorithms. Therefore Nuprl is 

especially interesting for constructive mathematics and the development of func­

tional programs. 

LAWRENCE C. PAULSON'S system Isabelle is a generic proof development 

environment for different formal systems [109]. It provides a framework for devel­

oping proof checkers for different logics, initiatecl by the need for different logics 

in artificial intelligence. In a fixed higher-order meta-logic, which is a fragment 

of CHURCH'S typed .A-calculus, it is possible to specify an object logic and a cal­

culus for this logic. Isabelle then behaves like a proof checker for this special 

logic without any further adaptation. As in Nuprl it is possible to write tactics in 

Isabelle. 

The Ontic system of DAVID A. McALLESTER [95] is a semi-automated veri­

fication system based on classical ZERMELO-FRAENKEL set theory. The language 

contains a rich vocabulary of types including type constructors like (OR-TYPE T1 72), 

(AND-TYPE 71 72), or (LAMBDA ((x Td) <I>(x)). Predicates are eliminated in favour 

of these types and type generators. The inference process is guided by a user­

specified set of focus objects by which Ontic finds and applies the information in a 

large lemma library. The implementation of this focus method relies on semantic 

network style inheritance. 

Meta-Reasoning 

Another aspect of theorem proving is considered in the FOL system of RICHARD 

WEYHRAUCH [130] and further developments such as those of FAUSTO GIUNCHI­

GLIA [50]. They are interested in a logical meta-Ievel representation, so that they 

can use an amalgamated form of reasoning, where some parts of the argumenta­

tion take place at the meta-level and some parts at the object level. Meta-level 

and object level must be closely related, that is, they must observe the reflection 

principle: If 'P is a theorem of the object theory, then THEORENI("'P") must hold 

on the meta-level and vice versa. Of course one wants to reflect only certain parts 

of the object level at the meta-level, because then proof planning can be done at 

the meta-level. 
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ALAN BUNDY [29, 30] and his group are working on the integration of heuristics 

into proof development environments like Nuprl by the use of proof plans. They 

are using a reimplementation of the Nuprl system, called Oyster [63], and want 

to build proof plans out of certain tactics. Because the tactics written in ML 

are not particularly well suited for reasoning about them, they are extended in 

the Clam-system [30] to so-called methods. These incorporate a high-level meta­

logical description of the tactics including precondition, postcondition, and the 

effects of a tactic. On this high level a planning system develops a plan for solving 

the problem. So far the examples are such that most of the proof is already found 

when a plan is found. Probably the planning will become more powerful, when 

an automated theorem prover is connected to the Clam-system instead of a proof 

checker. 

2.3 Representation Formalisms 

In all sciences there is a tradition on how to represent its technical knowledge, 

in mathematics as one of the oldest sciences this tradition is distinct. So mathe­

maticians generally spend a lot of energy on a precise and elegant nomenclature, 

the form of the theorems, the presentation of the proofs, and last but not least 

the structure of the final text books. These forms of knowledge and their repre­

sentation are in general not objects of the investigation. Above all they are not 

the subject of publications in the field of mathematics. They have, to an extent, 

become an object of study in HILBERT'S program [62], but many questions are left 

open in a mere logical description, which for instance does not distinguish between 

the importance of statements, whereas mathematicians distinguish between lem­

mata, theorems, main theorems, corollaries, auxiliary propositions, remarks, and 

so on. 

The formal representation of the knowledge of a scientific discipline is normally 

not a research object of the discipline itself, however, it is a main research topic 

in the field of artificial intelligence, where many different forms of representing 

knowledge have been developed. Frames, first introduced by MARVIN MINSKY 

[97]. are very popular 'among others, because of their clarity and expressive power. 

MINSKY proposed them in order to represent and structure common-sense knowl­

edge. "Attached to each frame are several kinds of information. Some of this 

information is about how to use the frame.... Some is about what one can expect 

to happen next." Every frame consists of different slots, which are filled by the 

so-called slot-fillers. An advantage of frames is the possibility to fix the slots and 
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the types of the admissible slot fillers in advance, that is, to define the semantic 

primitives for a certain field of application in this way. These primitives are essen­

tial for the use of frames and when applying such a system they have to be made 

explicit; this is to establish an epistemological level of knowledge representation 

(compare RONALD J. BRACHMAN [18]). As with KL-ONE systems [19] one may 

also have a network of inheritance. Frames are for example successfully applied to 

the representation of large knowledge bases in the CYC-project of DOUGLAS B. 

LENAT [85]. 

For all different forms of knowledge representation there has been a discussion 

of their semantics. So for a long time the semantics of semantic nets has been 

quite obscure. In order to avoid the procedural semantics of a system, it is usual to 

give a translation into some logic with a clearly understood declarative semantics. 

Especially in a mathematical context it is essential to give a clear semantics of the 

represented knowledge. 
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CHAPTER 3 

Logic 

Die Grenzen meiner Spache bedeuten 
die Grenzen meiner Welt. 

Ludwig Wittgenstein,
 
Tractatus logico-philosophicus 5.6
 

First-order logic is a powerful tool for expressing and proving mathematical facts. 

Nevertheless higher-order expressions are often better suited for the representation 

of mathematics and in fact almost all mathematical text books rely on some higher­

order fragments for expressiveness. This fragment can be obtained by a higher­

order logic or by "implementing" parts of it in first-order logic and building it 

up by a strong set theory. Throughout this dissertation we will follow the first 

approach and use a higher-order logic, which is introduced in the current chapter. 

Mathematicians use a technical language, which is relatively informal com­

pared to the formal approaches of logic or set theory. It is however much closer 

to higher-order logic augmented by "naive" set theory than to first-order logic. 

Mathematicians know about the antinomies and avoid them, for example by omis­

sion of expressions like "{xlx tf. x}". They also know that there is (hopefully) 

a clean foundation of set theory, but how this is done in detail is in general not 

of much interest to a working mathematician (if he is not working on one of the 

aspects of the foundations of mathematics of course, e.g. on logic or set theory). 

Formal set theory is of course a very strong tool, especially when higher con­

cepts are introduced by abbreviations. Beginning with the binary relation "E" 

one can (and this has actually been achieved by N. BOURBAKI [15]) define the 

concepts subset, intersection, union, function, relation, power-set, and so on; then 

all of mathematics can be built up on these constructs. The definition of a func­

tion as a left-total, right-unique relation is rather complex and remote from the 

construct of a function symbol that is provided originally in logic in order to ex­
press functions. If the whole of mathematics is based on set theory it will probably 

be better to build special theorem provers for set theory rather than relying on 

general purpose theorem provers (as done in [16]). 
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First—order logic is a powerful tool for expressing and proving mathematical facts.
Nevertheless higher-order expressions are often better suited for the representation
of mathematics and in fact almost all mathematical text books rely on some higher-
order fragments for expressiveness. This fragment can be obtained by a higher-
order logic or by “implementing” parts of it in first-order logic and building it
up by a strong set theory. Throughout this dissertation we will follow the first
approach and use a higher-order logic, which is introduced in the current chapter.

Mathematicians use a technical language, which is relatively informal com-
pared to the formal approaches of logic or set theory. It is however much closer
to higher-order logic augmented by “naive” set theory than to  first-order logic.
Mathematicians know about the  antinomies and avoid them, for example by omis-
sion of expressions like “{xla: $ w}”. They also know that there is (hopefully)
a clean foundation of set theory, but how this is done in detail is in general not
of much interest to  a working mathematician (if he‘is not working on one of the
aspects of the foundations of mathematics of course, e.  g. on logic or set theory).

Formal set theory is of course a very strong tool, especially when higher con-
cepts'are introduced by abbreviations. Beginning with the binary relation “6”
one can (and this has actually been achieved by N.  BOURBAKI [15]) define the
concepts subset,  intersection, union, function, relation, power-set, and so on; then
all of mathematics can be built up on these constructs. The definition of a func—
tion as a left-total, right-unique relation is rather complex and remote from the
construct of a function symbol that is provided originally in logic in order to ex-
press functions. If the whole of mathematics is based on set  theory it  will probably
be  better to  build special theorem provers for set theory rather than relying on
general purpose theorem provers (as done in [16]).
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The representation of concepts using functions can be more adequately done in 

a higher-order language. For instance in higher-order logic it is possible to write: 

V+ associative(+) ~ Vx,y,z (x + y) + z'= x + (y + z). 

Here + is a function variable, and associative is a predicate constant, which ex­

pects a function term as its argument. This cannot be written immediately in 

first-order logic, because we quantify over +, so + would have to be a variable. 

On the other hand it must be a function because of the term x+y, hence a function 

variable, and this is not allowed in first-order logic. Nevertheless this definition is 

expressible in first-order logic whereas many other concepts cannot be axiomatized 

in first-order logic at all, for example the set IN of natural numbers is not first-order 

characterizable. GIUSEPPE PEANO (1858-1932) used the following induction ax­

iom in his axiomatization of the natural numbers [110], it is second-order: 
, I;'· 

VP P(O) /\ (vnnat pen) ~ P(s(n)~ ~ (vnnat pen))
 

Another example of the inadequacy of first-order logic comes from the theorem of
 

LOWENHEIM-SKOLEM [91, 122]: Every (countable) axiomatization of a set which
 

has an infinite model also has a countable model. Therefore every first-order ax­


iomatization of the real numbers It has a countable model.
 

Using higher-order logic it is possible to characterize these models up to iso­

morphy. For a discussion on categoricity see [35]. Unfortunately one has to pay a 

price, namely that the notions of truth and provability no longer coincide [52]. 

In the next section we formally define a higher-order logic and then we extend 

this to higher-order sorted logic. 

3.1 Higher-Order Logic 

Our higher-order logic is based on CHURCH'S simple theory of types [33], but 

unlike CHURCH we use no A-expressions and no types of the form (0 --+ 0).* Much 

of the notation is taken from [3]. However, we shall write the types in a different 
way.** 

The Syntax 

vVe will introduce type symbols, terms and formulae for the logics LW. The n-th 

order predicate logics £n are then defined as subsets of £w. First of all we define 

*These restrictions will be motivated in remarks 3.3, 3.8, and 5.19. 
**For example if P is a binary predicate symbol 011 individuals, we write its type as (t x t ~ 0) 

instead of (ou) for better readability. Apologies to all who are familiar with CHURCH'S original 
notation. 
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The representation of concepts using functions can be  more adequately done in
a higher-order language. For instance in higher-order logic it is possible to write:
V+ associative(+) (=> Vm,y,z (a: + y) + 2 .5  a: + (y + z).
Here + is a function variable, and associative is a predicate constant, which ex-
pects a function term as i t s  argument. This cannot be  written immediately in
first-order logic, because we quantify over + ,  so + would have to  be a variable.
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has an infinite model also has a countable model. Therefore every first—order ax-
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Using higher—order logic i t  is possible to characterize these models up to iso-
morphy. For a discussion on categoricity see [35]. Unfortunately one has to pay a
price, namely that the notions of truth and provabilz'ty no longer coincide [52].

In the next section we formally define a higher-order logic and then we extend
this to  higher-order sorted logic.

3 .  1 Higher-Order Logic

Our higher-order logic is based on CHURCH’S simple theory of types [33], but
unlike CHURCH we use no A-expressions and no types of the form (o —+ o).* Much
of the notation is taken from [3]. However, we shall write the types in a different

**way.

The Syntax

We will introduce type symbols, terms and formulae for the logics D”. The n - th
order predicate logics £" are then defined. as subsets of £“ .  First of all we define

*These restrictions will be motivated in remarks 3.3, 3.8, and 5.19.
"For example if P is a binary predicate symbol on individuals, we write its type as (L x I, —> 0)

instead of (ou) for better readability. Apologies to all who are familiar with CHURCH’S original
nota t ion .
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types. Every expression in higher-order logic must have a type; this is one of the 

known devices to avoid the notorious paradoxes. 

3.1 Definition (Types of ,eW): 

1.	 t is a type of order 0 that denotes the type of the individuals. 

2.	 0 is a type of order..!. It denotes the type of the truth values. 

3.	 If 7"t, ••• ,7"m, and 0" are types not equal to 0 (with m ~ 1)' then (7"1 x .. , x 

7"m -+ 0") is a type of order 1 + maximum of the orders of 7"1, ••. , 7"m, 0". 

It denotes the type of m-ary functions with arguments 6f type 7"t, ••• ,7"m, 

respectively, and value of type 0". 

4.	 If 7"1, ••• , 7"m are types not equal to 0 (with m ~ 1), then (7"1 X ••• x 7"m -+ 0) 
is a type of order 1 + maximum of the orders of 7"1, ••• , 7"m' It denotes the 

type of m-ary predicates with arguments of type 7"1, ••• ,7"m, respectively. 

3.2 Remark: We distinguish types like (7"1 -+ (72 -+ 7"3» from (7"1 X 72 -+ 73)' 

that is, we do not assume CURRY-equality of types, although most of the following 

definitions can be done assuming that these types are equal. We do that, because 

otherwise we have to change our translations in chapter 5 in so far as additional 

axioms become necessary to identify the corresponding sorts in the target logic. 

3.3 Remark: By definition 3.1 we exclude - unlike CHURCH and ANDREWS [33,3] 

- types such as (0 -+ 0). These types give rise to special problems in the translation 

into first-order logic (see alsp remark 5.19), because they are essentially on the 

level of connectives. Therefore in our restricted language it is not possible to 

define the connectives -. and /\ and the quantifier V, and hence they must be 

introduced as primitives. In the same way it is not possible to define an "IF-THEN­

ELSE" construct in the restricted languages. Nevertheless we conjecture that ~he 

languages ,en - defined below - are adequate for expressing most mathematical 

facts. For instance we can have predicates like ordered_group(G, +, S) of type 

(t -+ 0) X (t X t -+ t) X (t X t -+ 0) -+ 0). In fact in all our examples from 

mathematical textbooks, this was no serious restriction. 

3.4 Definition (Signature of ,eW): The signature of a logic in ,ew is a set S = 

UT s;onst U UT s~ar where each set s;.onst is a (possibly empty) set of constant 

symbols of type 7" and s~ar a countable infinite set of variable symbols of type 7. 

We assume that the sets ST are all disjoint, in addition we sometimes mark the 
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types. Every expression in higher-order logic must have a type; this  is one of the

known devices to  avoid the notorious paradoxes.

3.1 Definition (Types of £”):

1. L is a type of order 0 that denotes the type of the individuals.

2. o is a type of order. 1. It denotes the type of the truth values.

3. If T1,...,Tm‚ and a are types not equal to o (with m 2 1), then (1‘1 x ><
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that is, We do not assume CURRY-equality of types, although most of the following
definitions can be done assuming that these types are equal. We do that, because
otherwise we have to change our translations in chapter 5 in so far as additional
axioms become necessary to  identify the corresponding sorts in the target logic.

3.3  Remark: By definition 3.1 we exclude — unlike CHURCH and ANDREWS [33, 3]
— types such as (o —> 0). These types give rise to special problems in the translation
into first—order logic (see also remark 5.19), because they are essentially on the
level of connectives. Therefore in our restricted language it is not possible to
define the connectives —. and A and the quantifier V, and hence they must be
introduced as primitives. In the same way it is not possible to define an “IF-THEN-
ELSE” construct in the restricted languages. Nevertheless we conjecture that the
languages ß" — defined below — are adequate for expressing most mathematical
facts. For instance we can have predicates like ordered_group(G,+,S) of type
((L ——> 0) x (1. x L —+ 1.) x (L x L ——> a) —+ o). In fact in all our examples from
mathematical textbooks, this was no serious restriction.

3 .4  Definition (Signature of ß”): The signature of a logic in £” is a set 8 =
U,  Sim" U U183” where each set Sion“ is a. (possibly empty) set of constant
symbols of type T and 8:” a countable infinite set of variable symbols of type T.
We assume that the sets S., are all disjoint, in addition we sometimes mark the
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elements of a set ST by its type T as index. A logic in .Lw is defined by its signature 

S and is denoted £W(S). If there is only one signature and no danger of confusion 

we shall also write £w instead of £W(S). 

3.5 Definition (Terms of LW): 

1.	 Every variable or constant of a type T is a term of type T. 

2.	 If f(T1 X"'XTm-+q), tT1 , . .. ,tTm are terms of the type indicated by their sub­

scripts, then f(T1X"'XTm-+q)(tTll'" ,tTm ) is a term of type lJ. 

3.6 Definition (Formulae of LW): 

1.	 Every term of type o.is a formula. 

2.	 If I.p and 'lj; are formulae and x is a variable of any type, then (-'I.p), (I.p 1\ 'lj;), 

and (VXl.p) are formulae. As long as there is no danger of confusion we often 

omit parentheses. 

3.7 Definition (Formulae of .L~): 

1.	 Every term of type 0 is a formula. 

2.	 If i l and t2 are terms of type T with T =I- 0 then (t l =(rxT-+o) t2) is a formula. 

3.	 If I.p and 'lj; are formulae and x is a variable of any type, then (-,~), (<p 1\ 'lj;), 

and (Vxl.p) are formulae. 

Of course we have to add =CTXT-+O) to S(:~~-+o)' We use the symbol "=" for 

syntactic equality and for equality in sets. It has the usual semantics. "=" is used 

as the equality symbol at the meta-level. Since the type of "=(TXT-+O)" is normally 

fixed by the context, we often shorten "=(TXT-+O)" to "_". 

3.8 Remark: As usual one can define (on a meta-Ievel) v, ====?, ~,and.'3 in 

terms of -', 1\, and V and use formulae containing these symbols as abbreviations. 

We have excluded all ).-expressions in our logics. If they are included. translations 

into first-order logic end up in higher-order theorem proving with undecidable 

unification and related problems. They are not necessary for formulating mathe­

matics, but are important for eleminating the so-called comprehension axioms in 

proving theorems (compare section 5.4). 

3.9. Definition (£n, for n ~ 1): £2n (£~n) is that subset of £w (£~) such that 

every variable and every constant is of order less then or equal to n, £2n-l (£~n-l) 

is that subset of £2n (£~n) such that no variable of order n is quantified. 
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elements of a set ST by its type T as index. A logic in £” is defined by its signature
S and is denoted £”(8 ) If there is only one signature and no danger of confusion
we shall also write C” instead of £”(S )

3 .5  Definition (Terms of £“ ) :

1. Every variable or constant of a type T is  a term of type T.

2. If f(„x...xf‚„_‚„)‚tn‚...,tTm are terms of the type' indicated by their sub-
scripts, then f(.‚1x...x„m__.„)(t„, . . . ,tTm) is a term of type a .

3.6 Definition (Formulae of .C‘”):

1. Every term of type o.is a formula.

2. If cp and 11) are formulae and a: is a variable of any type, then (-up), (90 A d)),
and (n0) are formulae. As long as there is no danger of confusion we often
omit parentheses.

3 .7  Definition (Formulae of Lg) :

1. Every term of type 0 is a formula.
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Of course we have to  add Ema...» to  SÜQ’TLO). We use the symbol “5”  for
“=”  i s  usedsyntactic equality and for equality in  sets. It  has the usual semantics.

as the equality symbol at the meta—level. Since the type of “Eh“. .o)”  is normally
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3 .8  Remark: As usual one can define (on a meta—level) V, =>, #1) , and El in
terms of -1, A, and V and use formulae containing these symbols as abbreviations.
We have excluded all Ä-expressions in our  logics. If they are included. translations
into first-order logic end up in higher-order theorem proving with undecidable
unification and related problems. They are not necessary for formulating mathe-
matics,  but  are important for eleminating the so—called comprehension axioms in
proving theorems (compare section 5.4).

3.9, Definition (L", for n 2 1): £2" (£? )  is that subset of £“ (Lg) such that
every variable and every constant is of order less then or equal to n, £2"‘1 (‚CLP—1)
is that subset of L‘?" (C?)  such that no variable of order n is quantified.
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The Semantics 

In this section we introduce a set-theoretical semantics for our higher-order logic 

which is due to TARSKI [124] and has been extended by HEN KIN [57] to general 

model semantics. 

We use the following notation: Let At, . .. ,Am, and B be sets, then we denote 

by F(At, ... , Am; B) the set of all functions from Al x ... x Am to B. 

3.10 Definition (Frame): A frame* (set of universes) is a collection {1)T}T 
of non-empty sets 1)n one for each type symbol T, such that V o = {T,F} and 

1)hx"'XTm-+l1) ~ F(VT1 , ... ,1)Tm;1)I1)' The members of 1)0 are called truth values 

and the members of 1)t are called individuals. 

3.11 Definition (Interpretation): An interpretation ({VT }T'..1) of £w consists 

of a frame and a function ..1 that maps each constant of type T of [,w to an element 

of 1)T' 

3.12 Definition (Assignment): An assignment into a frame {VT}T is a function 

ethat maps each variable of type T of [,w to an element of V T • An assignment 

into an interpretation is an assignment into the frame of the interpretation. In 

contexts where a particular interpretation is under discussion, it will be. assumed 

that all assignments are into that interpretation unless otherwise indicated. Given 

an assignment e, a variable X n and an element d E 1)n e[xT r- d] is defined as e 
except for X T where it is d. 

3.13 Definition (Weak Interpretation): An interpretation M = ({1)T}n..1) is 

a weak interpretation (weak model, general model) for £w ([,~) iff there is a binary 

function VM so that for every assignment eand term t of type T, Vr(t) E 1)T and 

the following conditions hold: 

3. for composed terms VruhX"'XTm-+(1)(tTll"" tTm ») =
 

VtU(TIX"'XTm-+<T)(Vf1(tT1\···, Vf1(tTm »
 

4. Vf(ep A 1/;) = Vf(ep) A Vf(1/;) 

*The notion of frame,. has here nothing to do with the notion of frame in knowledge 

represen tation. 
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The Semantics

In this section we introduce a set-theoretical semantics for our higher-order logic
which is due to TARSKI [124] and has been extended by HEN KIN [57] to  general
model semantics.

We use the following notation: Let A1, . . . , Am, and B be  sets, then we denote
by f (Ah .  . . ‚Am; B)  the set of all functions from A1 X x Am to  B .

3.10 Definition (Frame): A frame'“ (set of universes) is a collection {’DT},
of non—empty sets DT, one for each type symbol 7', such that Da = {T,F  } and
D(„x...x.„„_„) g f (Dü ,  . . . ,D„„;'D„). The members of D0 are called truth values
and the members of ’D, are called individuals.

3.11 Definition (Interpretation): An interpretation ({DT}T‚J ) of £“ consists
of a frame and a function .7 that maps each constant of type T of If” to an element
of D, .

3.12 Definition (Assignment):  An assignment into a frame {B,} ,  is a function
£ that maps each variable of type T of ‚CW to  an element of DT. An assignment
into an interpretation is an assignment into the frame of the interpretation. In
contexts where a. particular interpretation is under discussion, it will be. assumed
that all assignments are into that interpretation unless otherwise indicated. Given
an assignment £, a variable zur, and an element d € TDT, { [x ,  <— d] is defined as €
except for :::T where i t  is d .

3.13 Definition (Weak Interpretation): An interpretation M = ({D‚}T,._7 ) is
a weak interpretation (weak model, general model) for £” (Lg) iff there is a binary
function VM so that for every assignment £ and term t of type T, vg“ ( t )  E D, and
the following conditions hold:

1 .  for all variables 1:7, V505,) = f(xT)

2. for all constants cf, VéM(cT) = J(c.‚)

3. for composed terms V5M(f(¢1x---x¢m—w)(tm---,t1-m)) =
véwwfünX° ' °XTm—'0) ) (v€ jw( t71 )z ‘  ' ° a ve!“ ( tTm))

4. vgmp A w) = Vg"'(<‚o) A vä‘üb)

*The notion of frames has here nothing to do with the notion of frame in knowledge
represen tation .
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5.	 vt(-,cp) = -,vt(cp) 

6.	 vt(''7XTCP) = Vd E 1)TV~T+-d](CP) 

7.	 for a model of £~ we have additionally for all terms tt, t 2 0f type T i- 0, 

vt(t 1 · t2 ) = (vt(t 1 ) =VT vt(t 2 ))* 

3.14 Remark: We use the connectives "/\" and "-," and the quantifier "V" in a 

naive way at the meta-Ievel. We do that extensively when we prove that certain 

morphisms between two different logics are sound. Then we have connectives in 

the different logics and connectives at the meta-level. Because we use the same 

symbol for three different ones we get nice homomorphic properties (see page 67) 

and avoid a mess of symbols. So the reader has to identify by the context which 

one is meant. 

3.15 Definition (Strong Interpretation): Aninterpretation M = (fDT}T"J) 
is a strong interpretation (strong model, standard model) iff it is a weak interpreta­

tion and for all occurring types T = (Tl x· .. X Tm --+ 0-), 1)T ~ F(1)Tll •.• , 1)Tm; 1)q). 

3.16 Remark: 

-	 Every strong interpretation is by definition also a weak interpretation. 

-	 In order to fix a strong interpretation we only have to fix 1)t and .:l. 

3.17 Remark: Of course equality at level n (for odd n) can be defined at level 

n + 1 by LEIBNIZ'S identitas indiscernibilium, that is, by the formula 

VXTVYr(x =(TXT->O) y) : {::::::> (VP(T->O) P(x) {::::::> P(y)). 
But if the underlying semantics is weak by this definition we would get a non­

standard semantics for the equality predicate: Suppose we have two constants 

at and bt and the equality predicate =(tXt->o) is defined by LEIBNIZ'S identitas 

indiscernibilium in the signature of a logic. Now suppose further we have the 

equality a = b as an axiom, we could interpret the formula by 'Dt = {I, 2}, .:l(a) = 

1, .:J(b) = 2, and 1)(t->o) = {PIP(l) = P(2) = T}. Then we have vt(a = b) = T 

although a and b are interpreted by different elements. In other words writing 

a =b does not force a and b to be equal in all models. In the logics £=. we 

want the predicate constants _ to be interpreted strongly. That is, if we have an 

equality like a - b, then a and b must be mapped onto the same element in the 

corresponding universe. , 
• Here and in the following we use for all sets A, =A as equality for elements in the set A. 
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5- VE“("‘P) = WNW

6. vg“(v:c‚c‚o) = Vd e DTVg‘dlgp)

7. for a model of C; we have additionally for all terms t1,t2 'of type 1' # 0,
VM“ E tz) = (vgwul)  sp, vg“(t2))* '

3 .14  Remark: We use the connectives “A” and “-w” and the quantifier “V” in  a
naive way at the meta-level. We do that extensively when we prove that certain
morphisms between two different logics are sound. Then we have connectives in
the different logics and connectives at the meta-level. Because we use the same
symbol for three different ones we get nice homomorphic properties (see page 67)
and avoid a mess of symbols. So  the reader has to identify by the context which
one i s  meant.

3.15 Definition (Strong Interpretation): Aninterpretation M = ({D‚}T,J  )
is a strong interpretation (strong model, standard model) iii it is a weak interpreta—
tion and for all occurring types 7' = (7'1 x - - . x Tm —+ a ) ,  D., & f(DTI, . . . , Dfm; D , ) .

3 .16  Remark:

— Every strong interpretation is by definition also a weak interpretation.

— In order to  fix a strong interpretation we only have to fix D, and J.

3.17 Remark: Of course equality at level n (for odd n) can be defined at level
n + 1 by LEIBNIZ’S identitas indiscernibilium, that is, by the formula
Vw,Vy,(m Emu...” y) : (=> (VP(,_.0) P(:c) (=> P(y)).
But  if the underlying semantics is weak by this definition we would get a non-
standard semantics for the equality predicate: Suppose we have two constants
a ,  and b, and the equality predicate E(,x,_,o) is defined by LEIBNIZ’S identitas
indiscernibilium in the signature of a logic. Now suppose further we have the
equality a E b as an axiom, we could interpret the formula by D, = {1, 2}, J (a) =

' 1, J(b) = 2, and D010) = {P|P(1) = P(2) = T}. Then we have vg‘4(a = b) = T
although a and b are interpreted by different elements. In other words writing
a 5 b does not force a and b to be  equal in  all models. In the logics ‚CE we
want the predicate constants E to  be  interpreted strongly. That is, if we have an
equality like a E b, then a and b must be  mapped onto the same element in  the
corresponding universe.

#
*Here and in the following we use for all sets A, EA as equality for elements in the set A.



Logic	 25 

3.18 Definition: 

1.	 Let r.p be a formula and M be a weak (strong) interpretation. M is a weak 

(. strong) model of r.p if for every assignment einto M, Vr (r.p) = T 

2.	 A model for a set r of formulae is a model of each formula of r. 

3.	 If every weak (strong) model of a formula set r is also a weak (strong) model 

of a formula r.p, we write r p= r.p (r ~ r.p, respectively). 

3.19 Theorem: In [} ([,~) for every weak model of a formula set there is a strong 

model with the same interpretation function :I. 

Proof: Let r be a set of formulae in [,1 and M = ({VT}T,:I) be a weak model 

of r. If we define Vi as V" V o as Vo, and for all occurring types 7 with 7 = 

(71 x··· X 7m ---+ 0"), V T := F(VTp ... ,VTm;VO')' then M = ({VT}T,:I) is a strong 

model of r. We have V T ~ V T for all types T. With VM = VM the definition 

3.13 is fulfilled automatically (because the interpretation function :I is the same) 

except for 3.13.6. But 3.13.6 is satisfied, since in [,1 we can quantify only over 

variables of type t and V, = Vi' Therefore M is a strong model of r. • 

3.20 Remark: By the introduced semantics we implicitly assume that so-called 

extensionality axioms 3 are valid, that is, that the following formulae hold: 

3 1	 For all function symbols f, g of type 7 = (71 X .•. X 7m ---+ 0"), 0" =I 0:
 

Vf Vg (VXT!",VX Tm /(XTP""XTm)=g(.XTll""XTm))===::}/=g
 

'3P	 For all predicate symbols p, q of type 7 = (71 X ••. X 7m ---+ 0):
 

'lip Vq (Vx T! ... VX Tm p(XTp ... ,XT",) {::::::} q(.xTP '" ,XTm )) ===::} P == q
 

When we introduce a calculus for our logics by translating them into first-order 

logic, we have to add corresponding axioms (. compare definition 5.18) in order to 

obtain completeness. 

The following example shows that the weak semantics can be very remote from 

the intuition matherllaticians have about their models. 

3.21 Example: Let P be a constant of type (t ---+ 0) and a be an individual 

constant, that is, it constant of type l. Then the formula r.p := (VJ(i->i) P(J( a))) 1\ 

-'P(a) is unsatisfiable in the standard interpretation, because it is possible to 

choose the identity function for .f. But we can find a weak model M. For instance 
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3 .18  Defin i t ion :

1. Let (‚o be a formula and M be a weak (strong) interpretation. M is a weak
(strong) model of cp if for every assignment 5 into M,  Véwüp) = T

2 .  A model for a set I‘ of formulae i s  a model of each formula of I‘ .

3. If every weak (strong) model of a formula set I‘ is also a weak (strong) model
of a formula cp, we write [‘ I: go (I‘ E 90, respectively).

3.19 Theorem: In ‚Cl (UE) for every weak model ofa formula set there is a strong
model with the same interpretation function J.

Proof: Let F be  a set of formulae in ‚Cl and M = ({DT}. , , J )  be  a weak model
of F .  I f  we define f, as D„ 50 as Do,  and for all occurring types T with T =

(7-1 >< u-x  Tm —> a), 1—7, :=  73(5,“ . . . {57,572}, then 'M: ({Ö—T}„J) is a strong
model of r .  We have 1), g 5. for all types T. With W = vM the definition
3 .13  i s  fulfilled automatically (because the  interpretation function J i s  the  same)

except for 3.13.6. But 3.13.6 is satisfied, since in ‚Cl we can quantify only over
variables of type L and Ü : DL. Therefore M is a strong model of I‘. I

3 .20  Remark: By the  introduced semantics we implicitly assume that so-called
extensionalz'ty axioms 3 are valid, that is, that the following formulae hold:

S f  For all function symbols f , g  of type T = (n  x . .  - x rm —> a ) ,  a 7‘- o:
Vf Vg (Vm,,...\7’x,m f(a:,l,...,:z:,m) Eg(:cn,.. . ,a:,m)) => f Eg

E” For all predicate symbols p,  q of type 'r = (1’1 x - ' ' >< Tm _» o):
Vp Vq(VxT1.. .V:I:.,m p(:r,,,. . . ‚mm) (=) q(a:,.1,. . . am) )  = p E q

When we introduce a calculus for our logics by translating them into first-order
logic, we have to add corresponding axioms (compare definition 5.18) in order to
obtain completeness.

The following example shows that  the weak semantics can be  very remote from
the  intuition mathematicians have about their models.

3 .21  Example:  Let P be  a constant of type ( t  -—> o) and a be  an individual
constant,  that  is, a constant of type („ Then the formula 90 :=  (Vf(,_.,,)P(f(a))) /\
-P (a )  is unsatisfiable in the standard interpretation, because it is possible to
choose the  identity function for f .  But  we can find a weak model M.  For instance
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with V£ = {1,2}, V(£->£) = {gjg(x) = 2}, .J(P)(l) F, .J(P)(2) T, and 

.J (a) = 1, we get vtt(<p) = T for all assignments e. 
This is a reason to restrict the possible models by requiring that certain ax­

ioms are fulfilled, namely the so-called comprehension axioms, which rule out the 

previous example by guaranteeing the existence of certain objects. They are the 

mealiS in the approach to approximate the strong semantics by a weak one. For 

the axioms compare [3, p.156]. 

3.22 Definition (Comprehension Axioms): The compr~hen8ion axioms Tare 

the following formulae: 

T f	 For every term t of type T i= 0 of which the free variables are at most the 

different variables x}, ... , X m , yl, ... ,Yk of type Th .•. , Tm , 0"1, •.. ,O"k: 

VY1'" VYk 3fhx'.. XTm ->T) VX1 .. ' VXm (I(Xl, ... , X m ) = t). 

TP	 For every formula <p of which the free variables are at most the different 

variables X},, .. , X m , Yl, ... , Yk of type Tl, . .. ,Tm , O"l," .• O"k: 

VY1 ... VYk 3P(T1X".XTm->o) VX1".VXm (p(Xl1""xm ) <==? <p). 

3.23 Remark: In practice the user of an automated theorem proveI' has to decide 

very carefully whether such a comprehension axiom (and which, if any) is necessary 

for a proof. We hope that for most theorems no comprehension axiom is necessary 

at all. This motivates the following definition. Compare also seetion5.4. 

3.24 Definition: Let r be a formula set in ,en and <p be an ,en-formula that 

follows semantically from r. We say <p is an essentially first-m'der theorem of r iff 

r F= rp. We say <p is a truly higher-order the01'em of r iff r ~ <p but ruT F= <p. 

3.25 Remark: The distinction between essentially first-order and truly higher­

order theorems is essential, when choosing an appropriate system for proving a 

theorem. Since in general it is hard to find the corresponding comprehension 

axiom, we conjecture that for truly higher-order theorems, a higher-order theorem 

proveI' is preferable, because it does not need the corresponding axiom. In the 

case of essentially first-order theorems first-order theorem proving systems should 

be 1:wtter, because the higher-order overhead is not necessary. Of course there 

can be exceptions in both directions. There might be cases where it is easy to see 

which comprehension axiom is necessary and so this problem might be appropriate 

for a first-order theorem proveI'. On the other hand there Illight be cases where 

a higher-order theorem prover is preferable, because it is not known whether a 

comprehension axiom is necessary or not.. Some further discussion of proving 

theorems by a first-order proof procedure can be found in chapter 6. 
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with v. = {1.2}. n.-., = {glam = 2}. J<P><1> = F, J(P)(2) = T. and
J ( a )  = 1, we get Väwüp) = T for all assignments { .

This is a reason to  restrict the possible models by requiring that certain ax-
ioms are fulfilled, namely the so—called comprehension axioms, which rule out the
previous example by guaranteeing the existence of certain objects. They are the
means in the approach to  approximate the  strong semantics by a weak one. For
the axioms compare [3, p.156].

3.22 Defini t ion (Comprehension Axioms):  The comprehension axioms T are
the following formulae:

T i  For every term t of type T 75 o of which the free variables are at most the
different variables :31, . . . ‚mm, g l ,  . . . ,yk of type T1, . . . ‚71mm, . . . ,a‘k:
Vyl . . . Vyk 3f(‚1x...‚„m_„) l . . .m  (f(:r1, . . . , mm) E t ) .

T” For every formula 90 of Which the free variables are at most the different
variables ml, . . . ‚ ccm,y1, . . . ,yk of type 7'1, . . .  ,Tm, 0'1, . . . , ak:
Vyl . . . Vyk Elm,1 x . . . x , .m_ ,a )  Vxl . . . m (p(:c1, . . . , zum) (=> 4,0).

3 .23  Remark:  In  practice the  user of an automated theorem prover has to  decide
very carefully Whether such a comprehension axiom (and which, if any) is necessary
for a proof. We hope that for most theorems no comprehension axiom is necessary
at  all. This motivates the following definition. Compare also section~5.4.

3 .24  Defini t ion :  Let P be  a formula set  in E"  and (,9 be  an Lin-formula that
follows semantically from 1“. We say cp is an essentially first-order theorem of I‘ iff
I‘ l: up. We say (p is a truly higher-order theorem of I‘ iff I‘ [# ga but I‘ U T |: cp.

3 .25  Remark:  The distinction between essentially first—order and truly higher-
orcler theorems is essential. when choosing an appropriate system for proving a
theorem. Since in general it is hard to  find the corresponding comprehension
axiom, we conjecture that for truly higher-order theorems, a higher—order theorem
prover is preferable, because i t  does not need t he  corresponding axiom. In  the
case of essentially first—order theorems first—order theorem proving systems should
be  bet ter ,  because the  higher-order overhead is not necessary. Of course there
can be exceptions in both directions. There might be cases where i t  is easy to see
which comprehension axiom is necessary and so this  problem might be  appropriate
for a first—order theorem prover. On the other hand there might be cases where
a higher-order theorem prover is preferable, because it is not known whether a
comprehension axiom is necessary or not.  Some further discussion of proving
theorems by a first-order proof procedure can be  found in  chapter 6.
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3.2 Sorted Higher-Otder Logics 

Now we extend the logics introduced so far to sorted higher-order logics .q~. 

To that end, we adopt the notion of sorts for the first-order case of MANFRED 

SCHMIDT-SCHAUSS [117]. Many of the following definitions are analogous to those 

in [117]. The logics are similar to those in [43]. We will follow the concepts de­

veloped by MICHAEt KOHLHASE [7.5] in order to extend higher-order theorem 

proving to the sorted case. 

The Syntax 

The syntax is similar to the syntax of the logics without sorts, but now each type 
'­

may have a substructure. Therefore we will introduce the notion of a sort and 

motivate the definition by an example. 

3.26 Example: We want to structure our domain of discourse l by subsorts IN, 

lR, even, odd, human, male, female, animal, bird, man, woman with the subsort 

relation ~ as denoted by the following diagram: 
£ 

~ 
IR 

I ~
 
IN bird human male female 

/\ ~/
 
e"Jcn odd man woman 

All these relations are introduced by subsort declarations of the form lR~l. 

Let us say that this are all sorts of type to Let ~ be the transitive and reflexive 

closure of~. Now we want to state the subsort relations between the sorts of 

type (l --+ l)., First we state those relations that cannot be declared but are 

consequences of the corresponding relation of type to 

We have relations (R --+ IN)~(R --+ R)~(R --+ t). Nota bene: A function from 

(IN --+ IN) is not a special function from (R --+ IN) or vice versa. Hence we do not 

have relations like (IN --+ IN)~(lR --+ IN) and (lR --+ IN)r;(lN --+ IN). The relation 

(K --+ p,)r;(K' --+ Il') is fulfilled iff 11, = K' and p,r;p,'. 

There is no sort bigger than OR --+ t) with respect to ~. Hence we call this sort a 

top sort of type (t --+ t). 

In addition to these relations it is possible to declare new subsort relations like 

C~(lR --+ R), where C denotes for instance the sort of unary real continuous 
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3 .2  Sorted Higher-Order Logics

Now we extend the logics introduced so far to sorted higher-order logics 05.
To that end, we adopt the notion of sorts for the first-order case of MANFRED
SCHMIDT—SCHAUSS [117]. Many of the following definitions are analogous to those
in [117]. The logics are similar to those in [43]. We will follow the concepts de—
veloped by MICHAEL KO'I-ILHASE [75] in order to  extend higher—order theorem
proving to  the sorted case.

The Syntax

The syntax is similar t o  the syntax of the logics without sorts, but now each type
may have a substructure. Therefore we will introduce the notion of a sort and
motivate the definition by an example.

3.26 Example: We want to structure our domain of discourse L by subsorts 1N,
]R, even, odd, human, male, female, animal, bird, man, woman with the subsort
relation E as denoted by the following diagram:

L

T, an  ' a l

IN “7%“

/\
wen  odd man  woman

All these relations are introduced by subsort declarations of the form BEL.

Let us say that this  are all sorts  of type L. Let @ be  the transitive and reflexive
closure of E. Now we want to state the subsort relations between the sorts of
type (L —> L)._ First we state those relations that cannot be declared but are
consequences of t he  corresponding relation of type L.

We have relations (R  —> lN)l:(lR ———> R)fi(lR —> L). Nota bene: A function from
(IN —> IN) is not a special function from (]R ——> IN) or vice versa. Hence we do not
have relations like (IN _» 1N):(1R —+ ]N) and (R —> N)é(1N —> ]N). The relation
(K. ———> ;L)C(K‚’ —> n’) is fulfilled iff It = K.’ and ‚(Li/L’.
There is no sort bigger than (R  —> L) with respect to @. Hence we call this sort a
top sort  of type (L ——> L).

In addition to  these relations it is possible to  declare new subsort relations like
CEOR ——'> R ) ,  where C denotes for instance the sort of unary real continuous
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functions. C is called a simple sort, because it is Hot composed by an -7. In any 

subsort declaration /\,I;fl, /\, has to be a simple sort. In the following definitions we 

introduce these concepts formally. 

3.27 Definition (Sort): ~ is the set of sorts. ~ contains the type symbols I and 

o. Whenever /\'1,"" /\'m, and fl are in ~ then (/\,1 x ... X /\,m -7 Il) is in 1:. We 

denote sorts by /\', fl, and v. 

3.28 Definition (Simple Sort): A simple sort is a sort that does not contain 

an arrow "-7". All other sorts are called composed. 

3.29 Definition (Subsort Declaration): Between any sorts fl and v it is possi­

ble to make a subsort declaration flf;.v. The subsort relation ~ is the reflexive, tran­

sitive closure of the relation f;., in addition, we have the covariance in the range sort, 

that is, for all composed sorts the relations: (/\,1 x· .. X/\,m -7 Jt )~( /\,~ x· .. x /\,~ -7 fl') 

iff /\'1 = /\'~, ... , /\,m = /\,~ and fl~J.l" 

3.30 Definition (Top Sort): A sort 1.1 is called a top sort iff for all ·sorts v with 

J.l~v, v is equal to J.l. 

3.31 Definition (Type of a Sort): The type of a sort is defined inductively by: 

- type(l) := I and type(o) := 0 

- for J.l~v, type(fl) := type(v) 

- for v = (/\,1 x·· 'X/\'m -7 fl), type(v):= (type(/\'dx" ·xtype(/\'m) -7 type(fl)) 

3.32 Definition (Admissible Subsort Declaration): A subsort declaration is 

called admissible iff the following conditions are fulfilled: 

if Jlf;.v then Jl is not equal to I or 0 and v is not equal to 0, 

- for every simple sort fl (not equal to I or 0) there is at least one subsort 

declaration jlf;.ll, so that fl is subsort of a composed sort or of a type symbol 

(i.e. of I or 0), 

in every subsort declaration flf;.v, fl must be a simple sort and type(fl) 

type(1/ ), and 

- there are only finitely many subsort declarations. 
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functions. C is called a simple sort, because i t  is not composed by an —>. In any
subsort declaration nE/L, fc has to  be a simple sort.  In the following definitions we
introduce these concepts formally.

3.27 Definition (Sor t ) :  2 is the set of sorts. E contains the type symbols L and
0 .  Whenever n1 , . . . , nm,  and a are in  2 then (n l  X - -  - X Km ——> [1.) i s  i n  Z .  We

denote sorts by Is, a ,  and 1/.

3.28 Definition (Simple  Sor t ) :  A simple sort is a sort that does not contain
an arrow “—>”. All other sorts are called composed.

3.29] Definition (Subsort Declaration): Between any sorts a and 1/ it is possi—
ble t o  make a subsort declaration ,LLEV. The subsort relation I: is the reflexive, tran—
sitive closure of the relation E, in addition, we have the covariance in  the range sort,
that is, for all composed sorts the relations: (rel x- - - xrcm —+ will“: X- - - X/cjn —+ a’)
- _‚ l  _ I ' Iifffcl -—n1,...,nm—nm and ‚UE/‚t.

3.30 Definition (Top Sor t ) :  A sort [L is called a top sort iff for all “sorts 1/ with
pill,  1/ is equal to  ;L.

3.31 Definition (Type of a Sor t ) :  The type of a sort is defined inductively by:

— type(L) :=  L and type(o) :=  o

— for ;Lév, type(,u) :=  type(1/)

— for V =(K1 ><- ' 'Xnm —> fl), type(V)  == (type(K1)><---><type(fim') —» t ype (u ) )

3.32 Definit ion (Admissible Subsort  Declaration): A subsort declaration is
called admissible iff the following conditions are fulfilled:

if ‚(LE-11 then [L is  not equal to  L or o and V is not equal to 0,

— for every simple sort ;L (not equal to L or 0) there is at least one subsort
declaration aEu ,  so that ;L is subsort of a composed sort or of a type symbol
(i.e. of L or 0),

~— in every subsort declaration „E:/, ;L must be  a simple sort and type(/L) =
type(1/), and

— there are only finitely many subsort declarations.



Logic 

3.33 Remark: In the following we assume that all subsort declarations are ad­

missible. Therefore we have in particular that every sort has a type and that this 

type is unique. Furthermore we have that every top sort is either t or 0 or it is a 

composed sort (K1 X ... X Km ---7 j.l) with top sort. j.l. 

3.34 Example: The next concept we want to introduce is that of a term declara­

tion. For instance, we want to declare that a binary function constant -+ is of sort 

(IN x IN ---7 IN). In addition we might want to express that the sum of two equal 

numbers is even. We can do it by the term declaration: -+(XlN' XlN) : even. 

3.35 Remark: For the following we use the definitions of the previous section, 

especially the definition of types and well-typed terms. 

3.36 Definition (Term Declaration): A term declaration is a pair (t, K) usually 

denoted as (t : K), where t is a well-typed term that is not a variable and K a sort 

symbol of the same type as t. We denote term declarations by 8. If 8 is of the form 

(c : K) it is called a constant declaration and otherwise a proper term declaration. 

For every constant we allow at most one constant declaration. If there is no term 

declaration for a constant, we implicitly assume that its sort is equal to its type. 

Variables have fixed sorts, so they cannot be declared. 

3.37 Remark: By this definition we exclude polymorphism, that is, we cannot 

declare N!;1R and then make the constant declarations (-+ : (N x IN ---7 N)) and 

(-+ : (lR x lR ---7 lR)). But it is possible to make the one constant declaration 

(-+: (lR x lR ---7lR)) and the term declaration (+(XlN,YlN): N), what is almost 

the same, with the exception that -+ is not an instance for a function of sort 

(IN x IN ---7 N) (quasi-polymorphisln). 

3.38 Definition (Terms of £~): 

1.	 Every variable x of sort K is a term of sort K. 

2.	 Every term t with term declaration (t : K) and every instantiation of t is a 

term of sort K. 

3.	 If 1 is a term of sort K = (K1 X ... X Km ---7 j.l) and t , • •• ,t are terms of K1 Km 

the sorts indicated by their subscripts, then 1K(t , ••• , t ) is a term of sort K1 Km 

f.L. 

4.	 If t is a term of sort v and vf;;j.l, then t is a term of sort j.l. 
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3 .33  Remark: In the following we assume that all subsort declarations are ad-
missible. Therefore we have in particular that every sort has a type and that this
type is unique. Furthermore we have that every top sort is either L or 0 or it is a
composed sort (151 x x [cm —> p) with top sort a.

3.34 Example: The next concept we want to introduce is that of a term declara-
tion. For instance, we want to declare that a binary function constant + is of sort
(1N X ]N —+ ]N). In addition we might want to_ express that the sum of two equal
numbers is even. We can do it by the term declaration: +(rvN, wm) : even.

3.35 Remark: For the following we use the definitions of the previous section,
especially the definition of types and well-typed terms.

3.36 Definition (Term Declaration): A term declaration is a pair (t, n) usually
denoted as (t : n), where t is a well-typed term that is not a variable and Is a sort
symbol of the same type as t. We denote term declarations by 6. If 5 is of the form
(c  : IC) i t  is called a constant declaration and otherwise a proper term declaration.
For every constant we allow at most one constant declaration. If there is no term
declaration for a constant, we implicitly assume that its sort is equal to  its type.
Variables have fixed sorts, so they cannot be declared.

3 .37  Remark: By this definition we exclude polymorphism, that is, we cannot
declare lNElR and then make the constant declarations (+  : (IN X IN ——> IN)) and
(+  : (R  x ]R —> R)). But it is possible to make the one constant declaration
(+  : (lR x ]R —+ R))  and the term declaration (+(1:N,yN) : IN), what is almost
the same, with the exception that + is not an instance for a function of sort
(]N x N _) ]N ) (quasi-polymorphism).

3.38 Definition (Terms of 05):

1. Every variable a: of sort K: is a term of sort n.

2. Every term t with term declaration (t : n) and every instantiation of t is a
term of sort K.

3. If f is a term of sort & = (1:1 X x mm ——> „ )  and tK1,...,t,,m are terms of
the sorts indicated by their subscripts, then f,‘(t,,,, . . . , tm)  is a term of sort
‚u.

4. I f t  is a term of sort 1/ and Via, then t is a term of sort ,u.
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3.39 Remark: The sort of a term need not be unique in general, only the top 

sort of a term is unique. For instance if we have in example 3.26 a function of sort 

(:IR -7 IN), then it has also the sorts (R -7 R) and (R -7 t). The top sort (R -7 t) 

IS	 umque. 

3.40 Definition (Signature of £I;): A sorted signature SE = (S,E,s,l;,h) of a 

logic in £I; consist of 

1.	 an unsorted signature S, 

2.	 a set E of sorts, 

3.	 a function s : svar -7 E, such that for every sort /'i, E E, there exist countably 

infinitely many variables x E svar with sex) = /'i,*, 

4.	 a (finite) set of subsort declarations, and 

5.	 a set of term declarations 6. 

3.41 Definition (Admissible Sorted Signature): A sorted signature SE is 

admissible, iff each subterm ti of every well-sorted term f(tt, ... , t m ) is also a 

well-sorted term. Proper term declarations can only restrict the domain sort of a 

term in the sort hierarchy. In the following we will assume that all signatures are 

admissible. 

3.42 Definition (Formulae of £I;): Formulae are defined analogously to 3.6. 

1.	 Every term of type 0 is a forTftula. 

2.	 If tp and 'l/J are formulae and x is a variable of an arbitrary sort /'i" then (-,tp), 

(tp 1\ 'l/J), and (Vx K tp) are formulae. 

3.43 Definition (Formulae of £I;,:=J: 

1.	 Every term of type 0 is a formula. 

2.	 If t l and t 2 are terms of sort /'i,J, /'i,2 with the same top sort f.l not equal to 0 

then (tt =(J,lXJ,I-+o) t2 ) is a formula. As usual we drop the subscript of -. 

•To indicate that s(x) = K we often write the variable x in the form x,;, we say x has sort K. 

Instead of "Ix,; we often write "Ix : K. 

30 Chapter 3

3 .39  Remark: The sort of a term need not be  unique in general, only the top
sort of a term is unique. For instance if we have in example 3.26 a function of sort
(R  —> ]N), then it has also the sorts (R  ——> B) and (R  —> L). The top sort (]R ——> I,)
is unique.

3.40 Definition (Signature of Lg):  A sorted signature 82; = (S ,  E,5,E,6) of a
logic in 05 consist of

1. an unsorted signature S ,

2. a set 2 of sorts,

3. a function 5 : 8"” —+ )3, such that for every sort ra E E ,  there exist countably
infinitely many variables a: E 8"” with 5(a) = ‚€*,

4. a. (finite) set of subsort declarations, and

5 .  a set of term declarations 6 .

3.41 Definition (Admissible Sorted Signature): A sorted signature 82 is
admissible, iff each subterrn t,- of every well—sorted term f(t1, . . . ,tm) is also a
well-sorted term. Proper term declarations can only restrict the domain sort of a
term in the sort hierarchy. In the following we will assume that all signatures are
admissible.

3.42 Definition (Formulae of Lg):  Formulae are defined analogously to 3.6.

1 .  Every term of type 0 is a formula.

2. If go and 1/) are formulae and a: is a variable of an arbitrary sort li, then (10),
(cp A 1/2), and (Van 90) are formulae.

3 .43  Definit ion (Formulae of Lg,-£):

1. Every term of type 0 is a formula.

2. If t l  and tz are terms of sort n l ,  It; with the same top sort u not equal t o  0
then (tl 5(uxu—vo)  tz) is a formula. As usual we drop the subscript of E .

*To indicate that 5(a) = K. we often write the variable a: in the form a:,“ we say a: has sort K.
Instead of Va; we often write Vm : n..
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3.	 If 'P and 1/J are formulae and x", is a variable of an arbitrary sort K, then 

(-''P), ('P /\ 1/J), and (Vx", 'P) are formulae. 

3.44 Definition (L~, for n ~ 1): L~n (Lt:J is the subset of LE (LE,:,) such 

that every variable, every constant and every sort declaration is of order less or 

equal to n, L 2n- 1 (£~n-l) is the subset of £2n (£~n) s,uch that no variable of or~er 

n is quantified on. 

3.45 Definition: A signature S'E is called unsorted iff ~ consists of just the type 

symbols, it is called many-sorted iff it has more sorts and the subsort relations are 

all of the form J.l~v with top sort v. Otherwise it is called order-sorted. We denote 

many-sorted logics by LA, order-sorted logics are written as £~. 

3.46 Remark: An unsorted logic £~(S'E) can easily be mapped to a logic £n(s), 
because in the unsorted case S'E has the form (S,{rlr type}, x 1-+ type(x),0,0), 

that means, it does not contain any further information than that of S. 

The Semantics 

As in section 3.1 we define a set-theoretical semantics for the formulae. 

3.47 Definition (Frame): Let S'E be the sorted signature of a logic L'E' A frame 

corresponding to S'E = (S,~,s,l;;;:,c) is a collection {V",}", of nonempty sets V"" 

one for each sort symbol K E ~, such that V o = {T, F} and V("'1 X"'X"'m-+J.') ~ 

F(V",!" .. ,V"'m; DJ.L) for all sorts Ki, J.l as well as V", ~ DJ.' for all sorts K, J.l with 

K~J.l' The members of V o are called truth values and the members of V t are called 

individuals. 

The definitions of assignment, and interpretation are analogous to the corre­

sponding definitions of the unsorted case, that is, definitions 3.11 and 3.12: 

3.48 Definition (Interpretation): An interpretation ({V",}""..7) of LE consists 

of a frame and a function ..7 that maps each constant of sort K of LE (S'E) to an 

element of V"" that is, for every constant declaration (c: K) we have ..7(c) E'DK , 

3.49 Definition (Assignment): An assignment into a frame {'DK }", is a function 

ethat maps each variable of sort K, that is, each variable x with s(x) = K of LE 
to an element of 'D",. 

3.50 Definition (Weak Interpretation): An interpretation M = ({'DK }""..7) is 

a weak interpretation (weak model, general model) for LE(S'E) (or LE,::(S'E» with 
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3. If so and 1!) are formulae and x5 is a variable of an arbitrary sort K„ then
(-up), (cp /\ tb), and (Var,€ 50) are formulae.

3.44 Definition (Lg, for n 2 1): ‚6%? (532) is the subset of [1% (Dia) such
that every variable, every constant and every sort declaration is of order less or
equal to n, ‚Ch—1 (cg-1) is the subset of C?" (C?) such that no variable of order
n is quantified on.

3.45 Definition: A signature 8}: is called unsorted iff 2 consists of just the type
symbols, i t  is  called many-sorted iff i t  has more sorts and the subsort relations are
all of the form pill with top sort v .  Otherwise it  is called order-sorted. We denote
many—sorted logics by ‚CX, order—sorted logics are written as Lg.

3.46 Remark: An unsorted logic [35(82) can easily be mapped to  a logic £"  (8  ),
because in the unsorted case 53 has the form (8,  {TIT type},:r |-—) type(x),(0,@),
that means, it does not contain any further information than that of S .

The Semantics
I

As  in section 3 .1  we define a set-theoretical semantics for the formulae.

3.47 Definition (Frame): Let 8;; be the sorted signature of a logic Liz. A frame
corresponding to  82; = (S ,2 ,5 ,E ,6)  is a collection {D„}„ of nonempty sets DE,
one for each sort symbol It 6 E, such that D, = {T, F} and D(„1x...x„m_‚„) Q
.7:(D,,,,. . . ,DKm;D„) for all sorts is,-,p as well as ?),€ 9 D„ for all sorts te,/r with
‚ein. The members of D„ are called truth values and the members of ’D, are called
individuals.

The definitions of assignment, and interpretation are analogous t o  the corre-
sponding definitions of the unsorted case, that is, definitions 3.11 and 3.12:

3.48 Definition (Interpretation): An interpretation ( {DAM J )  of Lg consists
of a frame and a function J that maps each constant of sort I»; of 05 (SE) to an
element of DM that is, for every constant declaration (c : &) we have J(c)  € DE.

3.49 Definition (Assignment):  An assignment into a frame {D„}„ is a function
{ that maps each variable of sort n, that is, each variable a: with 5(a) = a of Lg
to  an element of D”.

3.50 Definition (Weak Interpretation): An interpretation M = ({D„}„, J )  is
a weak interpretation (weak model, general model) for Lg (82) (or £w‚5(82)) with
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SE = (S, 2.:,5,~, h) iff there is a binary function VM so that for every assignment 

eand for every term t of sort K, vt(t) E V It , that is, in particular for every term 

declaration (t : K) in h, vt(t : K) = (vt(t) EDit) and the following conditions 

hold: 

3. for composed terms VtU(KIX"' XK m--+J.L)(t Kll ... ,tl<m)) =
 

Vf1U(ltlX'''Xl<m--+J.L))(Vt(tl<l)'···' Vf1(tl<m))
 

4.	 vt(<p 1\ 1/J) = vt(<p) 1\ Vf1(1/J) 

5.	 Vf1(-'<p) = -'Vf1(<p) 

6.	 vt(VxK<P) = Vd E VI<V~I<.-d](<P) 

7.	 for a model of £¥:,,: we have in addition for all terms t 1 and t 2 that are terms 

of sort K1, K2 with the same top sort /1 unequal to 0: 

Vt(t1 =(J.LXJ.L--+o) t2) = (Vf1(t1) =v,. Vt(t2)) 

3.51 Definition (Strong Interpretation): An interpretation M = ({DK }I<'..7) 
is a strong interpretation (strong model, standard model) iff it is a weak inter­

pretation and for all occurring sorts, K with K = (K1 X ••• X Km -+ /1), V K = 

F(D"'l' ... ,V ltm ;DJ.L)' 

3.52 Definition: Let <p be a formula of £E(SE), and M be a weak interpretation 

of £E(SE). M is a weak model of <p iff for every assignment einto M, vt(<p) = T. 

We write M F <po (Analogously for strong models.) 

3.53 Remark: In chapter 5 we will give translations of the unsorted higher-order 

logics £n into the many-sorted first-order logics £1 and of the general order-sorted 

higher-order logics £E into the order-sorted logics £~. That is, in all cases the 

order-sorted logics of ARNOLD OBERSCHELP [106], which have been operational­

ized by CHRISTOPH WALTHER [129] and MANFRED SCHMIDT-SCHAUSS [117], 

serve as target logics. Hence in all cases we can use theorem provers like the 

Markgraf Karl Refutation Procedure [93] for proving theorems in these logics. 

3.54 Remark: The extensionality axioms 3 E now have the following form: 
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82 = (8  , 23,5, E, 6 )  ifl" there is a binary function VM so that for every assignment
£ and for every term t of sort n, V?” (t) E D,“, that is, in particular for every term
declaration (t : fc) in 6, Vä“(t : n) = (VEM (t) € DE) and the following conditions
hold:

1.  for all variables at”, V£M(m,,) = £(mn)

. 2 .  for all constants c“, VgM(c„) = .7(c,,)

3. for composed terms VE“ (f(‚cl ‚<...‚<„‚„_.„)(t„1 , . . . , tn," )) =
WU“,x...xK,,.~u))(Vé“(t~1)a---,Vé"(t~m))

4. vg‘4(<p A «p) = vg"'(90) A VaMÜb)

5- WWW) = five/"(w)

6. WWW) = Vd e D„va;‘„„._d](so)

7. for a model of ‚05,5. we have in addition for all terms t l  and tz that are terms
of sort K1,K‚2 with the same top sort ‚u unequalto o:
V3401 E(uXu—>0)t2)=(VéM(t1)EDp V¢M(t2))

3.51 Definit ion (Strong Interpretation): An interpretation M = ({D„}‚„.7)
is a strong interpretation (strong model, standard model) iff i t  is a weak inter-
pretation and for all occurring sorts. It with K: = (m x - - - X mm —-—> p), D” =
.7:(D,,1, . . . ‚D,;m;D„).

3.52 Definit ion:  Let cp be a formula of ßg  (82), and M be a weak interpretation
of 113(8):). M is a weak model of cp ifi" for every assignment { into M,  Vg“(<p) = T.
We write M I: cp. (Analogously for strong models.)

3.53 Remark: In chapter 5 we will give translations of the unsorted higher-order
logics £" into the many-sorted first-order logics L}, and of the general order-sorted
higher—order logics cg into the order-sorted logics ‚Cä. That is, in all cases the
order-sorted logics of ARNOLD OBERSCHELP [106], which have been operational-
ized by CHRISTOPH WALTHER [129] and MANFRED SCHMIDT—SCHAUSS [117],
serve as target logics. Hence in all cases we can use theorem provers like the
Markgraf Karl Refutation Procedure [93] for proving theorems in these logics.

3 .54  Remark: The extensionality axioms Es  now have the following form:



Logic	 33 

=.f	 For all function symbols f, 9 of sort K, K' of the same top sort
 

(K1 x ... X Km --+ 11), 11 =I- 0:
 

"If Vg (VXKl",VX Km f(xKl'""XKm)=g(XKl'""xKm))==*f=g
 

For all predicate symbols p, q of sort K, K' of the same top sort 

(K1	 X .•. X Km --+ 0): 

Vp	 "Iq (VX Kl •• • VX Km P(X K1 ,···, XKm ) ~ q(XKl ,···, XKm )) ==* P =q 

The	 comprehension axioms T r: ~ow are the set of formulae: 

Tf	 For every term t of sort K =I- 0 of which the free variables are at most the 

different variables Xl, ,Xm, Yl, ... ,Yk of sort Kl, ... , Km, Ill, ... ,Ilk: 

VYl ... VYk 3f(Kl X.··XKm K) VX1'" VXm (J(Xl'"'' Xm) =t). 

Tt For every formula c.p of which the free variables are at most the different 

variables Xl, ... ,Xm, Yl, ,Yk of sort Kl, ... , Km, Ill,· ., ,Ilk: 

VY1 ... VYk 3P(KI X... XKm VXl ... VXm (p(Xl,""Xm) ~ c.p).O) 

3.3 Extensions 

Later on we shall need three extensions of the logics as introduced above. One 

concerns the arity, which we do not like to be fixed, so as to let room for optional 

parameters, the second concerns the variability of sorts and types, and the last is 

a special treatment for inductively defined concepts. 

Optional Parameters 

Let us have a look at optional parameters by considering the definition of a group. 

Mathematicians often use the following formulation "Let (G, +) be a group then 

..." or "Let (G, +) be a group with neutral element 0 and inverse function - then 

...". In order to transfer these informal parlor into the presented formal language 

we introduce optional parameters. 

In order to define a group we need indeed only two parameters: a set and a 

binary operation on that set. If these two parameters are given, it is well defined 

whether or not the pair (G, +) is a group, provided we have the corresponding 

definitions. We do not need to know the name of the neutral element or the name 

of the inverse function. But these names may become important later on. For 

example, if we define the set of rational numbers <Q and the common operations 

on <Q and if we want to check that (Q, +, .) is a field with additive neutral element 
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3% For all function symbols f ,  9 of sort  K:, 5’ of the same top sort

(K1X'-'><I€m—*#),It¢0=
Vf Vg (Var:N1 „ .m  f(a:,,1,...,:c,.m) Eg(x,,1,...,x,,m)) => f ag

E; For all predicate symbols p,  q of sort n ,  K.’ of the same top sort
(nl x >< ram—>0):
Vp Vq (Van, . .  . am  p(:c‚„‚. ..‚a:„„_) (=> q(a‚'„1,...‚a:„„,)) = p E q

The comprehension axioms T2  now are the set of formulae:

“fg For every term t of sort I: # 0 of which the free variables are at most the
different variables $1 , . . . , xm,y1 , . . .  ,yk‘of sort n1 , ”  . ‚15mm,  . . .  „uk:

Vgl...\7’yk 3f(„1x...x„„,_.„) Var ] . . .m  ( f (x1 , . . . , xm)5 t ) .

I"; For every formula (‚0 of which the free variables are at most the different
variables 11:1, . . . ‚xmyl ,  . . . ,yk of sort n l ,  . . . ‚19mm,  . . . , pk:

‘v’_1,/1...\7’y‚c 3p(„1x...x„‚„_.o) Vxl...Vzm (p(x1,...‚:c,„) (==> cp).

3 .3  Extensions

Later on we shall need three extensions of the logics as introduced above. One
concerns the arity, which we do  not like to  be  fixed, so as t o  let room for optional
parameters, the second concerns the variability of sorts and types, and the last is
a special treatment for inductively defined concepts.

Optional Parameters

Let us have a look at optional parameters by considering the definition of a group.
Mathematicians often use the following formulation “Let (G, + )  be a group then
. . .” or “Let (G, + )  be a group with neutral element 0 and inverse function - then
. . .”. In order to transfer these informal parlor into the presented formal language
we introduce optional parameters.

In order to  define a group we need indeed only two parameters: a set and a
binary operation on that  set .  If these two parameters are given, i t  is  well defined
whether or not the pair (G, + )  is a group, provided we have the corresponding
definitions. We do not need to  know the name of the neutral element or the name
of the inverse function. But  these names may become important later on.  For
example, if we define the set of rational numbers Q and the  common operations
on Q and if we want to  check that (Q, + ,  ) is a field with additive neutral element
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"0" and multiplicative neutral element "1", we must be able to express that the 

already defined "0" of <Q is the neutral element in the group (<Q, +), and that the 

already defined "I" is the neutral element in the group (<Q\{O}, J \Ve can do that 

by writing group(~, +,0) 1\ group( <Q\{O}", 1). So optional parameters are used 

not only to give names to objects, but also to formulate stronger properties. If we 

did not allow optional parameters, in the example we would have to define three 

different predicates group2, group3, and group4 and thereby we would introduce 

unnecessary redundancies. 

Optional parameters are allowed only in predicate constants. We allow them 

by an explicit declaration of the arity of a predicate symbol I :::; arity(P) :::; m 

(with I, m explicit natural numbers). For instance: 2 :::; arity(group) :::; 4 or 

2 :::; arity(ex_IefLneutraLelement) :::; 3. 

For the definition of a predicate constant P with arity 1:::; arity(P) :::; m every 

formula c.p containing P(tll . .. , tk) with I :::; k :::; m is an abbreviation for c.p with 

P(tl, ... ,tk) replaced by (.:Jzk+ll ... ,zm P(tll ... ,tk,Zk+ll ... ,zm))' 

Variable Sorts 

For the representation of certain concepts it is useful to have variable sorts. 

For instance if we want to define the concept group, we want to say "VG: 

(l --+ 0) V+: (G x G --+ G) group(G,+) {:=:::} •••", that is, we want 

to use the predicate variable G as a sort symbol. The general treatment of 

these sorts is difficult, especially it may be difficult to give a clear semantics 

for it (as in parametrized types for programming languages). We allow these 

expressions only as an abbreviation for the corresponding relativization, that is, 

VG: (l --+ 0) V+: (G x G --+ G) group(G, +) {::=} ••. is the abbreviation for 

VG:(l--+ 0) V+:(lXl--+ l) funetion(+,GxG --+ G) =} (group(G,+) {:=:::} ...). 

We write \:Ix:C P(x) as abbreviation for Vx C(x) ==> P(x). In general we write 

unary predicates in a sort like manner, but we always use them only as abbrevia­

tion for the corresponding relativization. For a general discussion of relativization 

see section 5.3.1. Nevertheless it would be interesting to have a general theory 

for variable sorts and to treat t.hem in a special manner and not to translate via 

re1ativization. By function we mean the following predicate: 

function(J, Xl X ... X X m --+ Y) {:=:::} 

(\:IXl Xl(xd =} (···\lxm Xm(x m ) ==> Y(J(Xll""x m ))",)), 

In the example above, function(f, G x G --+ G) means 

\Ix: [, G(x) =} (\ly: l G(y) ==> G(x + y)). 

Term declarations (0 : G) are synonymous to G(O). 
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“0” and multiplicative neutral element “1”, we must be  able to  express that the
already defined “0” of Q is  the neutral element in  the group (Q ,  + ) ,  and that the
already defined “1” is the neutral element in the group (Q\{0}, ). We can do that
by writing group(Q,+,0) /\ group(Q\{0}, -,1). So optional parameters are used
not only to  give names t o  objects,  but also t o  formulate stronger properties. If we
did not allow optional parameters, in the example we would have to define three
different predicates group2, group3, and gro'up4 and thereby we would introduce
unnecessary redundancies.

Optional. parameters are allowed only in  predicate constants. We allow them
by an explicit declaration of the arity of a predicate symbol l S arity(P) S m
(with l ,m  explicit natural numbers). For instance: 2 S arity(group) S 4 or
2 S ar i ty(exJeaeutraLelement)  S3 .

For the definition of a predicate constant P with arity l S ar i ty(P)  S m every
formula cp containing P( t1‚  . . . , tk) with 1 S k _<_ m is an abbreviation for cp with
P( t1 , . . . , t k )  replaced by (32k+1, . . . ,zm P( t1 , . . . , t k , zk+1 ,  . . . , zm) ) .

Variable Sorts

For the representation of certain concepts i t  is useful to have variable sorts.
For instance if we want to  define the concept group, we want to say “VG \:

(L —> o) V+ : (G x G -—+ G) group(G‚+) <=) . . .”,  that is, we”want
t o  use the predicate variable G as a sort symbol. The general treatment of
these sorts is  difficult, especially i t  may be  difficult to give a clear semantics
for it (as in parametrized types for programming languages). We allow these
expressions only as an abbreviation for the corresponding relativization, that is,
VG: (L _) o) V+ : (G X G —> G) group(G, + )  (=> is the abbreviation for
VG:(L —> o) V+:(LXL —> l,) function(+‚GxG —+ G) =? (group(G, + )  ¢=> . . . . )
We write Vcc P(:I:) as abbreviation for Vx C(zc) => P(a:). In general we write
unary predicates i n  a sort  like manner, but we always use them only as abbrevia—
tion for the correSponding relativization. For a general discussion of relativization
see section 5.3.1. Nevertheless i t  would be  interesting to  have a general theory
for variable sorts and to  treat them in  a special manner and not to  translate via
relativization. By  function we mean the following predicate:

function(f,X1 x . .  - x Xm _» Y) (=>
(l  X1(m1) => ( - -V:cm Xm(xm) => Y(f(x1,.  . . ,xm)) - - )).

In the example above, function(f‚ G x G —> G) means ,
Vatzz, G(x) => (V‘yn G(y) =:> G(a: + y)).

Term declarations (O : G) are synonymous to G(0).
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Constructors 

A common way of introducing concepts is via an inductive definition. Our higher­

order logics are rich enough to cover this situation, but because of the particular 

importance ~f this, we will provide special facilities for defining concepts by math­

, ematical induction. Let us give a standard example, namely that of the natural 

numbers: The PEANO axioms are [110] (written in our sorted higher-order lan­

guage): 

1. JNr;;" 

2. (0: IN) 

3. (s : (~ ~ ~)) 

4. -.3n:~ O=s(n) 

5. \in,m:~ s(n)=s(m)===?n=m 

6. VP:(~ ~ 0) P(O) /\ (Vn:~ P(n) ===? P(s(n))) ===? (Vn:~ P(n)) 

In the field of inductive theorem proving (compare e.g. [69]) this is often abbrevi­

ated to the data structure ~:
 

data structure ~
 

constructors base (O:~)
 

step (s: (IN ~ N)),
 

where the semantics of this data structure is given by the formula set above.'
 

In general we can introduce a data structure by:
 

- P : (I\: ~ 0) (or Pf;;.I\:) with I\: =1= 0 

(Cj : P) for 1 ~ j ~ n, the Cj are called constructor constants. 

--- Ui : (P X I\:~ X ... x I\:t ~ P)) for 1 ~ i ~ m, the fi are called constructor 

functions. 

This data structure abbreviates the following set of higher-order formulae: 

-- there is a constant P : (t;, ~ 0) (or a sort Pf;;.I\:). 

- for all constructor constants cj, there are constants of sort P and for all 

constructor fUIlctions fi, there are constants of sort (P x I\:~ x··· x I\:t ~ P)). 
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Constructors

A common way of introducing concepts is via an inductive definition. Our higher—
order logics are rich enough to  cover this situation, but because of the particular
importance of this, we will provide special facilities for defining concepts by math—

ematical induction. Let us  give a standard example, namely that of the natural
numbers: The PEANO axioms are [110] (written in‘ our sorted higher-order lan-
guage):

1. lNEt

2. (0:1N)

3. (s  : (lN „+ ]N))

4. -v3n:]N 0 : s(n)

5. Vn,m:]N s(n) : s(m) => n = m

6. VP:(]N —> 0) P(O) A (Vn:]N P(n)  => P(s(n))) => (Vn‘:]N P(n))

In the field of inductive theorem proving (compare e.g. [69]) this is often abbrevi-
ated to the data structure N :

data s tructure lN
constructors base (0 : IN)

step (s : (]N _» ]N)),
where the semantics of this data structure is given by the formula set above:
In general we can introduce a data  structure by:

— P : (n ——> o) (01' PER) with n75 0

—» (cj : P )  for 1 5 j S n ,  t he  Cj are called constructor constants.

(fi  : (P  x mi x x sf“ —> P ) )  for 1 S i S m,  the  f,- are called constructor
functions.

This data structure ab breviates the following set of higher-order formulae:

—- there is a constant P : (It —> 0) (or a sort PEn).

- for all constructor constants cj ,  there are constants of sort P and for all
constructor functions fi, there are constants of sort (P  x ‚€; x - - - X ”i,- ——> P)).
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- for all constructors Cj and all constructors Ji, there is a formula V:r: P VXl : 

Ki ... VXki : Kt Cj t= Ji(X, Xl, ... , Xk;), that is, no constructor constant is in 

the range of any constructor function. 

- for all constructors Ji Vx,x':P VXI'X~: Ki·· ,VXki,X~i :/\,i, 
!i(X,XI, ... ,XkJ == !i(X',X~, ... ,x~J ===> X =x' /\ Xl = ;t~ /\ ... /\ Xki = X~i' 

that is, all constructor functions are injective. 

- for all constructors 1;,!1 i i= l, "Ix : P, VXI : K~ .•• VXk, : Kt "Ix': P, Vx~ : 

Ki",vX~1 :Kil !i(X,XI, ... ,Xk;) t= !J(x',x~"",X~I)' that is, the ranges of 

the constructor functions are disjoint. 

- VQ:(P -7 0) 

(Q(Cl) /\ ... /\ Q(Cn ) /\ 

("IX: P VXI : Kt ... VXk1 : Kt Q(X) ===> Q(ft(X, Xl,· .. ,:tI.J)) /\ 

/\ 

(VX:P "IX!: Kj",VXkm:Kkm Q(X) ===> Q(fm(;1:'XI, .... Xkm)))) 

===> VX:P Q(x)
 
that is, the induction principle holds.
 

The intention of this definition is not only to abbreviate certain formulae, but 

above all, if we formulate a concept with the help of such a data. structure, a system 

can know that it is likely that certain properties have to be shown by complete 

induction. Although in principle the general framework is sufficient, in practice a 

system may only be successful if the induction hypothesis is given explicitly or a 

special proof procedure is used. 
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for all constructors Cj and all constructors fl ,  there is  a formula Vm:P l :

Ki . . .Vwki : ni; cj $ fi(:z:,a:1, . . . ,wki), that is, no constructor constant is in
the range of any constructor function.

for all constructors f,- Vw,w' :P  V931, a:; : ni . . .‘v’xké, 32.- : rc
_ I I I — I ..— I -— If;(a:,:c1,...‚mk‚.) = f,(:c ‚31 ’ - - - a3k . )=>  :1: :::: Axl  :: m1 /\.../\:1:;ci : m,“,

that is, all constructor functions are injective.

for all constructors fi,f1 z' 75 l, Vac : P,Va:1 : n11 . . . k I  zu?“ Vic’ : P,Vx§ :
Kill . .  .‘v’xfw ”if” f;(a:,a:1,.. .,mki) $ f1(w',z;,. . . ‚a:;q), that is, the ranges of
the constructor functions are disjoint.

VQ:(P ——+ o)

(Q(c1)/\.../\ Q(Cn) A
(Va-:P l :Itci...‘v’:z'k1uc}c1 Q(a:) => Q(f1(:v,a:1,...,:zrk1))) A
: /\
(VsczP V331 : m;” . . .mmznZ‘m Q(a:) => Q(fm($‚$1‚--u$km))))
==> sP  Q(a:)
that is, the  induction principle holds.

The intention of this definition is not only to abbreviate certain formulae, but
above all, if we formulate a concept with the  help of such a data. structure,  a system
can know that it is likely that certain properties have to be shown by complete
induction. Although in principle the general framework is sufficient, in practice a
system may only be  successful if the induction hypothesis is given explicitly or  a
special proof procedure is used.



CHAPTER 4 

Representation of 

Mathematical Knowledge 

Das wird nachstens schon besser gehen,
 
Wenn Ihr lernt alles reduzieren
 
Und gehorig klassifizieren.
 

Johann Wolfgang Goethe, Faust I 

In this chapter we are going to describe how to represent mathematical "factual" 

knowledge for automated theorem proving. Guideline is knowledge like that of 

a mathematical dictionary. In particular we are (in this chapter) not interested 

in heuristic knowledge as described in [113, 114, 115, 55, 126]. The main means 

for our representation is the logic introduced in the previous chapter. Indeed one 

may ask why logic is not sufficient for the description of the factual knowledge 

of mathematics, because it has been developed in the last hundred years for that 

purpose. The answer is that it is possible to find many extra-logical features in the 

presentation of mathematics, in mathematical text books for instance, and that 

these features are essential for mathematical activities like theorem proving. 

What are the shortcomings of logic that make a mathematical knowledge rep­

resentation necessary? One main point is, that the basic notion of logic is that of 

a formula, but that in mathematics different kinds of formulae are distinguished, 

namely axioms, definitions, and theorems and we will subdivide these kinds even 

more. Furthermore in mere logic a knowledge base consists of an unstructured 

set of formulae, whereas text books are well-structured and mathematicians spend 

a lot of time in the final presentation of the mathematical content. In addition 

there are constraints - which are not present in logic - in the procedure of stat ­

ing theorems or defining concepts. The most important constraint for definitions 

is, that all concepts which are used in the definition - with the exception of the 

definiendum of course - must already be known. Analogously all concepts in theo­

rems must be known. But even if all concepts are known, a definition has to fulfil 

further extra-logical requirements, for example, it is normally given in a form as 

37
 

CHAPTER 4

Representation of
Mathematical Knowledge

Das wird nächstens schon besser gehen,
Wenn Ihr lernt alles reduzieren
Und gehörig klassifizieren.

Johann Wolfgang Goethe, Faust I

In this chapter we are going to  describe how to  represent mathematical “factual”
knowledge for automated theorem proving. Guideline is knowledge like that of
a mathematical dictionary. In particular we are (in this chapter) not interested
in heuristic knowledge as described in [113, 114, 115, 55, 126]. The main means
for our representation is the  logic introduced in the previous chapter. Indeed one
may ask why logic is not sufficient for the description of the factual knowledge
of mathematics, because i t  has been developed in  the last hundred years for that
purpose. The answer is  that i t  is possible to find many extra—logical features i n  the
presentation of mathematics, in  mathematical text books for instance, and that
these features are essential for mathematical activities like theorem proving.

What are the shortcomings of logic that make a mathematical knowledge rep-
resentation necessary? One main point is, that the basic notion of logic is that of
a formula, but that in mathematics different kinds of formulae are distinguished,
namely axioms, definitions, and theorems and we will subdivide these kinds even
more. Furthermore in mere logic a knowledge base consists of an unstructured
set of formulae, whereas text books are well-structured and mathematicians spend
a lot of time in the final presentation of the mathematical content. In addition
there are constraints — which are not present in logic — in the procedure of stat-
ing theorems or defining concepts. The most important constraint for definitions
is, that all concepts which are used in  the definition — with the  exception of the
definiendum of course —— must already be known. Analogously all concepts in theo-
rems must be known. But even if all concepts are known, a definition has to fulfil
further extra~logical requirements, for example, it is normally given in a form as
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abstract as possible. 

Perhaps the main difference between logic and mathematics can be seen in the 

conceptual representation in mathematics. The standard schema of this proce­

dure in mathematical text books is: "definition", "example", "theorem", "proof". 

When we look closer at this procedure, we see that the introduction of a concept 

is not terminated by giving a definition, but that examples, counter-e~amples,and 

lemmata about the introduced concept immediately belong to the concept. They 

do that in such an extent that it is possible to say: you have not understood the 

concept if you know only the definition, but you have not seen any examples and 

you do not know the simple properties of it. 

Another great difference between logic and mathematics is that in mathemat­

ics it is always assumed - even if it cannot be proved - that a knowledge base is 

consistent, whereas by logic certain formulae are related, but it does not matter 

whether the preconditions are fulfilled or not. (This mathematical assumption is 

also the main reason for the completeness of the set-of-support strategy in resolu­

tion theorem proving.) 

Which requirements should a knowledge representation formalism for mathe­

matics satisfy? There are the following properties we would like to see: 

- The knowledge base should be consistent and the representation formalism 

should support to keep it consistent. 
I 

- The representation formalism should reflect the different types of knowledge, 

that is, axioms, definitions, and theorems should be distinguished. 

- The knowledge base should be redundancy free. 

- It should not be possible to use unknown concepts. 

- It should be possible that the knowledge can be represented in a conceptual, 

structured way. 

- The representation formalism should be powerful enough in order to repre­

sent the knowledge easily. 

- The formalism should have a clear semantics. 

Now we discuss to what extent we can realize the requirements above. 

The consistency of a knowledge base is of particular interest, because otherwise 

it is possible to derive anything of it. Unfortunately it cannot be shown in general 

because of GODEL'S incompleteness result, when a representation language such as 
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abstract as possible.

Perhaps the main difference between logic and mathematics can be  seen in the
conceptual representation in mathematics. The standard schema of this proce-
dure in  mathematical text books is: “definition”, “example”, “theorem”, “proof”.
When we look closer at this  procedure, we see that the introduction of a concept
is not terminated by giving a definition, but that examples, counter—examples, and
lemmata. about the introduced concept immediately belong to  the concept. They
do that in such an extent that it is possible to say: you have not understood the
concept if you know only the definition, but  you have not seen any examples and
you do not know the simple properties of i t .

Another great difference between logic and mathematics is that in mathemat-
ics i t  is always assumed — even if it cannot be proved — that a knowledge base is
consistent, whereas by logic certain formulae are related, but i t  does not matter
Whether the  preconditions are fulfilled or not.  (This mathematical assumption is
also the main reason for the completeness of the set—of-support strategy in resolu-
tion theorem proving.)

Which requirements should a. knowledge representation formalism for mathe—
matics satisfy? There are the following properties we would like to see:

— The knowledge base should be consistent and the representation formalism
should support to  keep i t  consistent.

— The representation formalism should reflect the different types of knowledge,
that is, axioms, definitions, and theorems should be distinguished.

— The knowledge base should be redundancy free.

— It  should not be  possible to  use unknown concepts.

— I t  should be  possible that the knowledge can be  represented in  a conceptual,
structured way.

— The representation formalism should be powerful enough in  order to  repre—
sent the knowledge easily.

The formalism should have a clear semantics.

Now we discuss to what extent we can realize the requirements above.

The consistency of a knowledge base is of particular interest, because otherwise
it is possible to derive anything of it. Unfortunately it cannot be shown in general
because of GÖDEL’S incompleteness result, when a representation language such as
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first-order or higher-order logic is used. But we can restrict the possibilities where 

inconsistencies may be imported: definitions and theorems should not lead to any 

inconsistencies, because definitions form conservative extensions and theorems are 

proved to be consequences. So only axioms can cause any trouble. 

Of course we cannot guarantee that the definitibns of concepts are correct, that 

is, in accordance with the general use of them. We can define the concept "group" 

as something quite different from the general use, but because we cannot import 

contradictions by a definition, other parts of the knowledge base not using this 

concept cannot be concerned with such a non-standard definition. (The impor­

tance of this fact for automated theorem proving is already noted by ROBERT S. 

BOYER and J STROTHER MOORE in [17, p.13].) 

The distinction of the three different kinds of knowledge is very important 

for consistency: If we guarantee that definitions are really definitions and that 

theorems are proved, we have to be careful only with the axioms. Therefore we 

will use in the following three different basic knowledge units, one for axioms, one 

for definitions, and one for theorems. 

The redundancy freeness can partially be guaranteed by preventing that con­

cepts are defined twice, but to some extent it will be left to the user of a system. 

In particular we do not exclude that the user can define the same concept twice 

by giving different names to it. 

If we have a knowledge base ~ and we want to add a new knowledge unit {), a 

check of the signatures of the knowledge base and the newly introduced unit can 

guarantee that all concepts used in {), with the exception of a newly defined one, 

are already in ~. 

When introducing concepts we do not want to spread the kriowledge about 

these concepts all over the whole knowledge base. Hence a concept should not 

just consist of its actual logical definition, but simple consequences, examples, or 

alternative definitions should immediately be associated with this concept. There­

fore we introduce in the following a formalism to represent mathematical concepts, 

such that the knowledge associated with an object is representationally attached 

to that object. 

Now we present a frame-based representation of mathematical knowledge ­

using the higher-order logics introduced in chapter 3. We introduce the frame 

approach by examples as we go along. Then we -give a formal definition of the 

frame language and its semantics, discuss the properties of corresponding knowl­

edge bases and finish this chapter by some considerations on the advantages and 

disadvantages of the chosen formalism. 
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first-order or higher—order logic is used. But we can restrict the possibilities where
inconsistencies may be imported: definitions and theorems should not lead to  any
inconsistencies, because definitions form conservative extensions and theorems are
proved to  be  consequences. So  only axioms can cause any trouble.

Of course we cannot guarantee that the definitiOns of concepts are correct, that
is, in accordance with the general use of them. We can define the concept “group”
as something quite different from the general use, but because we cannot import
contradictions by a definition, other parts of the knowledge base not using this
concept cannot be concerned with such a non-standard definition. (The impor-
tance of this fact for automated theorem proving is already noted by ROBERT S .
BOYER and J STROTHER MOORE in [17, p .13 ] . )

The distinction of the three different kinds of knowledge is very important
for consistency: If we guarantee that definitions are really definitions and that
theorems are proved, we have to be careful only with the axioms. Therefore we
will use in  the following three different basic knowledge units, one for axioms, one
for definitions, and one for theorems.

The redundancy freeness can partially be  guaranteed by preventing that con—
cepts are defined twice, but to  some extent it will be left to the user of a system.
In particular we do not exclude that the user can define the same concept twice
by giving different names to it.

If we have a knowledge base A and we want to  add a new knowledge unit 19, a
check of the signatures of the knowledge base and the newly introduced unit can
guarantee that all concepts used in 19, with the exception of a newly defined one,
are already in A.

When introducing concepts we do not want to spread the knowledge about
these concepts all over the whole knowledge base. Hence a concept should not
just consist of i t s  actual logical definition, but simple consequences, examples, or
alternative definitions should immediately be  associated with this  concept. There-
fore we introduce in  the following a formalism to  represent mathematical concepts,
such that the knowledge associated with an object is representationally attached
to  that object.

Now we present a frame—based representation of mathematical knowledge —
using the higher-order logics introduced in chapter 3. We introduce the frame
approach by examples as we go along. Then we ~give a formal definition of the
frame language and i t s  semantics, discuss the properties of corresponding knowl-
edge bases and finish this chapter by some considerations on the advantages and
disadvantages of the chosen formalism.

l
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4.1 The Representation Language 

In this section we introduce our representational formalism. We use the frame rep­

resentation of MARVIN MINSKY [97]. The original idea is to represent knowledge 

in an object-oriented way and to simulate thereby the knowledge organisation as 

it is presumably organized in the mind (of a mathematician). The frames should 

structure the knowledge and contain in particular the information how to use this 

knowledge. Although introduced in opposition to the logicistic wing of the AI 

community, a frame can (more or less) be viewed as a certain way of arranging 

predicate logical facts [56], [105, chap.7]. Since our facts are predicate logical ex­

pressions, in our case this corresponds to meta-Iogical facts. A frame consists of a 

name, slots, and fillers. Slots correspond to certain meta-predicates and the fillers 

are arguments of these predicates. The syntactical surface is that of a box, as in 

figure 4.1. 

We begin our examples with the definition of the concept "associative". This 

definition could be given in our extended sorted higher-order logic as: 

VC:(t -t 0) Vf:(C XC -t C) associative(C,J) ~ 

Vx,y,z:C f(J(x,y),z) =f(x,f(y,z)). 
and this is now represented in a frame in figure 4.1 below. Every frame belongs to 

one of the three kinds: definition, axiom, or theorem. The kind is here indicated 

by the keyword "Definition:" The name of the introduced concept follows after a 

colon. In this case it is "associative". In the upper right corner we give the type 

of the definition. The entry "property" means that the whole concept models a 

property; a standard translation of a "property definition" into predicate logic can 

be done by mapping it into a predicate symbol. A "property definition" represents 

the relationship between its parameters. (The other type of a concept definition 

is that of a "mapping concept". In this case a new object is created, of which an 

example is given in figure 4.4 below.) 

Now the slots and the slot-fillers of the frames are introduced: 
,--------------------------------------, 

Definition: associative property 

parameters: C :(t-> 0)
 
f :(CxC->C)
 

definition: 'r/x,y,z:C fU(x,y),z) == f(x,J(y,z»
 
context: basic algebra
 

Figure 4.1 

The argument of the binary property associative is given in the slot "parame­

ters". The number of parameters corresponds to the arity of the predicate symbol 
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4 .1  The Representation Language

In this section we introduce our representational formalism. We use the frame rep-
resentation of MARVIN MINSKY [97]. The original idea is to represent knowledge
in an object-oriented way and to  simulate thereby the knowledge organisation as
it  is presumably organized in  the mind (of a mathematician).  The frames should
structure the knowledge and contain in particular the information how to use this
knowledge. Although introduced in opposition to the logicistic wing of the AI
Community, a frame can (more or less) be viewed as a certain way of arranging
predicate logical facts [56], [105, chap.7]. Since our facts are predicate logical ex—
pressions, in our case this  corresponds to  meta-logical facts. A frame consists of a
name,  slots, and fillers. Slots correspond to certain meta—predicates and the fillers
are arguments of these predicates. The syntactical surface is that of a box, as in
figure 4.1.

We begin our examples with the definition of the concept “associative”. This
definition could be given in our extended sorted higher-order logic as:
VC:(1‚ _» o)' Vf : (C  X C —> C)  associative(C, f )  (=)

Vx,y,  zzC f(f(a:,.y),z) E f ($‚ f (y ,z ) ) .
and this is now represented in a frame in  figure 4.1 below. Every frame belongs to
one of .the three kinds: definition, axiom, or  theorem. The kind is here indicated
by the keyword “Definition:” The name of the introduced concept follows after a
colon. In this case it is “associative”. In the upper right corner we give the type
of the definition. The entry “property” means that the whole concept models a
property; a standard translation of a “property definition” into predicate logic can
be  done by mapping i t  into a predicate symbol. A “property definition” represents
the relationship between i t s  parameters. (The other type of a concept definition
is that of a “mapping concept”. In this case a new object is created, of which an
example is given in figure 4.4 below.)

Now the  s lots  and the slot-fi l lers of the frames are introduced:

Definition: associative property

parameters: C :(L —> o)
f : (C  X C —> C)

definition: Vx‚y‚z:c Mas/m s f(z‚f(y‚z))
context: basic algebra

Figure 4.1

The argument of the binary property associative is given in the slot “parame—
ters”. The number of parameters corresponds to  the arity of the predicate symbol
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defined in the frame. In the slot "parameters" the formal parameters and their 

sorts are written and when using the defined object elsewhere they are then bound 

to the actual parameters. 

In the slot "definition" we find a (higher-order) logical definition of the concept. 

In the case of a property definition, the entry consists of the part of the definition 

that follows the equivalence sign "{=}". 

The slot "context" is provided for structuring the whole knowledge base into 

different modules. If we introduce a partial order among these contexts, we have 

the usual taxonomical hierarchy. (Here more details may become necessary, for 

example, which information may be used by other modules.) For instance we 

might structure a large knowledge base as in figure 4.2. This example is taken 

from the algebra text-book of BARTEL L. VAN DER WAERDEN [127, p.xi]. Such 

a structure is standard in all fields of mathematics, therefore we have to provide 

a possibility for representing it. How this information can be used is discussed 

below. 

Figure 4.2 

Now we shall introduce the second kind of frame, namely that of an aXIOm 

frame. In order to do so we take the first four axioms of GODEL'S set axioms [53]. 
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defined in the frame. In the slot “parameters” the formal parameters and their
sorts are written and when using the defined object elsewhere they are then bound
to  the actual parameters.

In the slot “definition” we find a (higher-order) logical definition of the concept.
In the case of a property definition, the entry consists of the part of the definition
that follows the equivalence sign “<==>”.

The slot “context” is provided for structuring the whole knowledge base into
different modules. If we introduce a partial order among these contexts, we have
the usual taxonomical hierarchy. (Here more details may become necessary, for
example, which information may be  used by other modules.) For instance we
might structure a large knowledge base as in  figure 4.2. This example is taken
from the algebra text—book of BARTEL L.  VAN DER WAERDEN [127, p .x i ] .  Such
a structure is standard in  all fields of mathematics, therefore we have to provide
a possibility for representing it. How this information can be used is discussed
below.
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Figure 4.2

Now we shall introduce the second kind of frame, namely that of an axiom
frame. In order to  do so we take the first four axioms of GÖDEL’S set axioms [53].
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Axiom: set 

axioms: 

consequences: 
signature_ext: 

context: 

Vx :Set Class(x) 
VX, Y :Class X E Y ==> Set(X) 
VX,Y:Class (Vu:Set uEX {:=::::} uEY)==>X::=Y 
Vx,y:Set 3z:Set (Vu:Set uEz {:=::::} (u::=xVu::=y))* 

1) Vx,y:Set yE {x} {:=::::} x::= y <proof-set-cons-1> 
Classl;t 
Setl;Class 
E: (Set x Class --t 0) 
{.,.} : (Set x Set --t Set) 
sets 

Figure 4.3 

\Vhile definitions are always of the form "Vparameters definiendum(parameters) 

~ formula", the slot "axioms" in contrast can contain arbitrary formulae, stat­

ing the properties of one or more function and/or predicate constants. If these 

constants are newly introduced by the frame, they have to be explicitly sum­

marized in the slot "signature_ext". The slot "consequences" contains lemmata 

about the concepts introduced by the axioms. Such consequences must be proved; 

in <proof-set-cons-l> a pointer to such a proof is stored. 

The logics .c are expressible enough to give any of the standard axiomatizations 

of set theory such as ZFC, but for most cases it is sufficient to use sets of a certain 

sort", as an abbreviation for a predicate of the sort ('" -+ 0). If one follows this 

simple notion of a set, it is not possible to have elements of different types in one 

single set. 

Now we give an example for a "mapping concept" and define a "pair". 

Definition: pair mapping 

parameters: 

definition: 
sort: 
main_property: 
context: 

x 
y 
{x, {x, yn 
Set 
Vx, y, u, v:Set 
sets 

:Set 
:Set 

< proof-pair-sort> 
(x. y) ::= (u, v) {:=::::} x::= u A y ::= v <proof-pair-main_prop> 

Figure 4.4 

\Ve write (x,y) instead of pair(x,y). The concept "pair" is an example where 

the entry in the definition slot itself is less important and indeed it is never used 

*The existence of the variable z of sort Set can be written by the Skolem function {x, y}. As 

usual {x, x} is abbreviated to {x}. 
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Axiom: se t

axioms: Vzc:.5'et Class(:c)
VX‚Y:Class X € Y : Set(X)
VX‚Y:CIass (Vu:Set uEX (=> uEY)=>XEY
Vz,y:Set EzzSet (Vu:Set uE ' z  => ( uEzVuEy ) ) *

consequences: 1) Vx,y:Set y e {z} (=! z E y <proof-set-cons—l>
signature_ext: ClassEL

SetECIass
6 :  (Set x Class —> o)
{.,.} : (Set x Set _» Set)

context: sets

Figure 4 .3

While definitions are always of the form “Vpammeters definiendum( parameters)
(=> formula”, the slot “axioms” in contrast can contain arbitrary formulae, stat-
ing the  properties of one or more function and/or predicate constants. If these
constants are newly introduced by the frame, they have to  be  explicitly sum-
marized in the slot “signature_ext”. The slot “consequences” contains lemmata
about the concepts introduced by the axioms. Such consequences must be  proved;
in  <proof-set-cons—1> a pointer to such a proof is stored.

The logics 5 are expressible enough to give any of the standard axiomatizations
of set theory such as ZFC, but for most cases it is sufficient to  use sets of a certain
sort Iii as an abbreviation for a predicate of the sort (m «> o). If one follows this.
simple notion of a set,  i t  is not possible t o  have elements of different types in  one
single set .

Now we give an example for a “mapping concept” and define a “pair”.

Definition: pair mapping

parameters: :n :S'et
y :Set

definition: {z ,  {x ,  y}}
sor t :  — Set <proof—pair-sort>
main.property: Vat, y, u, v :Set  (a:. y) E (u, v) €:) :1: E u /\ y E v <proof-pair—main.prop>
context :  sets

Figure 4.4

We write (a:, 3/) instead of pair(a:,y). The concept “pair” is an example where
the entry in  the definition slot itself is less important and indeed it  is never used

*The existence of the variable z of sort Set can be written by the Skolem function {:c, y}. As
usual {2,x} is abbreviated to {:c}
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again. The definition is only given III order to have a set theoretical founda­

tion of the concept as (a,b) := {a,{a,b}}. The concept is closely related to a 

"main_property"; almost the only thing one has to know about the concept "pair" 

is: they are equal if and only if they agree on all arguments. In order to model 

main properties we introduce a corresponding new slot with this statement as 

filler. Another view of a main property is that this is the intrinsic meaning of the 

concept and that the definition is only an implementation of the concept in logic. 

In the slot "sort" the sort of a "mapping"-concept is stored. Because we use 

sorts in a very general way, this sort information must be proved and hence in the 

slot we have to add a pointer to this proof. 

In the next concept we use an "optional" parameter, which corresponds to the 

optional parameters of predicates in section 3.3. The name "neutral-element" is 

a selector of the tuple (C, j, 0). 

Definition: ex..lefLneutraLelement property 

parameters: c :(t-+o) 
f :(CxC-+C) 

(optional) ° :C (called neutraLelement) 
definition: Vx:C f(O,x) == x 
context: basic algebra 

Figure 4.5
 

Together with similarly definable concepts "ex-IleutraLelement" and "exinverse"
 

it is now possible to introduce the concept "group".
 

Definition: group property 

parameters: G :(t-+o) (called carrier) 

+ :(G x G -+ G) (called operation) 
(optional) ° :G (called neutraLelement) 
(optional) :(G -+ G) (called inverse) 

definition: TRUE 
superconcepts: 1) associative(G, +) 

2) ex_neutraLelement(G, +, 0) 
3) ex_inverse(G,+,O,-) 

equivalences: 1) associative(G,+)/\ 
ex_lefLneutraLelement(G, +,0) /\ 
ex_IefUnverse(G, +,0, -) <proof-group-equ-1 > 

2) associative(G, +) /\ 
ex_righLneutraLelement(G, +,0) /\ 
ex_righLinverse(G, +, 0, -) <proof-group-equ-2> 

examples: 1) (Int, +, 0, -) model Integers 
2) (Rat, +, 0, -) model Rationals 
3) (Rat\{O},·, 1,-1) model Rationals 

context: basic algebra 

Figure 4.6 
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again. The definition is only given in order to  have a set theoretical founda-
tion of the concept as (a,b) : 5  {a,{a,b}}. The concept is closely related to a
“main_property”; almost the only thing one has to know about the concept “pair”
is: they are equal if and only if they agree on all arguments. In order to model
main properties we introduce a corresponding new slot with this statement as
filler. Another view of a main property is that this  is  the intrinsic meaning of the
concept and that the definition is only an implementation of the concept in logic.

In the slot “sort” the sort of a “mapping”-concept is stored. Because we use
sorts in  a very general way, this sort information must be  proved and hence in the
slot we have to add a pointer t o  this  proof.

In the next concept we use an “optiona ” parameter, which corresponds to the
optional parameters of predicates in section 3.3. The name “neutraLelement” is
a selector of the tuple (C, f, 0).

Definition: ex.]eftmeutralslement property

parameters: C :(L -—» o)
f :(C X C —> C)

(optional) 0 :C (called neutraLeIement)
definition: sC  f(0,1:) E 1:
context: basic algebra

Figure 4.5

Together with similarly definable concepts “ex_neutral_element” and “ex_inverse”
i t  is  now possible to  introduce the concept “group”.

Definition: group ~ property

parameters: G 2(L --> o) (called carrier)
+ :(G x G —> G) (called operation)

(optional) 0 :G (called neutralxlement)
(optional) — :(G' —+ G) (called inverse)

definition: TR UE
superconcepts: 1) associative(G, + )

2) e$_neutral_element(G, + ,  0)
3) ea:_inverse(G‚ + ‚0 ,  -—)

equivalences: 1)  associative(G‚ + )  A
ezJeft.neutral_eIement(G, + ,  0) A
emule f i_inverse(G , + ,  0, —) (proof—group—equ-l >

2) associative(G, +)  A
“might-neutraLelemenKG, + ,  0) A
ez_right_inverse(G, + ,  O, —) <proof—group-equ—2>

examples: 1) ( In t ,  + ,  0, —) model Integers
2) (Rat ,  + ,  0, —) model Rationals
3) (Rat\{0}, -, 1,"1 ) model Rationals

context: basic algebra

Figure 4.6
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The slot "superconcepts" expects slot-fillers that are generalizations of the 

actual concept. For instance every group is especially an associative structure. 

TRUE in the definition slot means that the concept is fully defined by the con­

junction of its superconcepts. 

The slot "equivalences" contains logical expressions that are necessary and 

sufficient to define the concept, that is, they are logically equivalent to the con­

junction of the "definition" slot-filler and the "superconcepts" slot-fillers and form 

an alternative definition of the concept. In order to guarantee that the filler is 

really equivalent to the definition of the concept there must be a proof, which can 

be found in <proof-group-equ-l>. Although the different definitions of a concept 

are equivalent, they can be of different uses under different circumstances. For 

example, if one wants to prove that a certain object is a group, it is easier to use 

one of the two equivalent formulations, because then one has less to prove (e.g. 

ex_lefLneutraLelement(G, +, 0) instead of ex_neutraLelement(G, +, 0)). The 

definition itself may be preferable if it is used as a premis, because then one can 

immediately use the property ex_righLneutraLelement(G, +, 0) without proving 

it first. In principle the frame approach is flexible enough to store such meta 

knowledge. But that is not integrated,' in particular it is necessary to have a 

formal language to express meta knowledge. We can see an important difference 

between our epistemological term "property" and the logical term "predicate": 

The conceptual representation allows to make some assertions about the concepts 

,	 (as for instance to use a certain variant of the definition in some situation). This 

would be difficult if we had mere predicates and distributed the knowledge in a 

whole set of formulae. Whether and how this can be used for actually guiding a 

theorem proveI' is a difficult question and not yet investigated deeply. 

In the slot "examples" we can find a reference to a model of the corresponding 

concept. How examples can be represented and how it can be proved that an 

example is really an example is not investigated in this thesis. (See also the 

summary, chapter 7.) 

Vie could have also given another definition for the concept "group" by writing 

the following formulae into the "definition" slot: 

Vx,y,z:G (x+y)+z=x+(y+z) /\
 

3x:G Vy:G x + y =y =y + x (/\ x - 0) /\
 

Vx: G 3y: G x + y _ 0 == y + x (/\ Y =- x )
 

But this is not as appropriate as the above formulation, because it is less 

structured. We want to formulate the concepts as abstract as possible for several 
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The slot “superconcepts” expects slot-fillers that are generalizations of the
actual concept. For instance every group is especially an associative structure.
TRUE in the definition slot means that the concept is fully defined by the con-
junction of its superconcepts.

The «slot “equivalences” contains logical expressions that are necessary and
sufficient to define the concept, that is, they are logically equivalent to the con—
junction of the “definition” slot-filler and the “superconcepts” slot-fillers and form
an alternative definition of the concept. In order to guarantee that the filler is
really equivalent to the definition of the concept there must be  a proof, which can
be found in <proof—group—equ—1>. Although the different definitions of a concept
are equivalent, they can be  of different uses under different circumstances. For
example, if one wants to prove that a certain object is a group, it is easier to use
one of the two equivalent formulations, because then one has less to prove (e.g.
ezt:_left_neutral_element(G,+,0) instead of ex_neutral-element(G‚+‚O)). The
definition itself may be preferable if it is used as a premis, because then one can
immediately use the property exJz'gteutraLelemen“ G, + ,  0) without proving
it first. In principle the frame approach is flexible enough to store such meta
knowledge. But that is not integrated,'in particular it is necessary to have a
formal language to express meta knowledge. We can see an important difference
between our epistemological term “property” and the logical term “predicate”:
The conceptual representation allows to  make some assertions about the concepts
(as for instance to use a certain variant of the definition in some situation). This
would be difficult if we had mere predicates and distributed the knowledge in a
Whole set of formulae. Whether and how this can be used for actually guiding a
theorem prover is a difficult question and not yet investigated deeply.

In the slot “examples” we can find a reference to  a model of the corresponding
concept. How examples can be  represented and how it  can be  proved that an
example is really an example is not investigated in this thesis. (See also the
summary, chapter 7.)

We could have also given another definition for the concept “group” by writing
the following formulae into the “definition” slot:

Vm,y,z:G (w+y)+zErc+(y+z ) / \
5]s VyzG x+yEyEy+x(AmEO)A
sG ByzG x+yEOEy+x( / \yE—-x)

But this is not as appropriate as the above formulation, because it is less
structured. We want to formulate the concepts as abstract as possible for several
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reasons. If we formulate abstractly, we have the chance to find proofs also at a 

more high, abstract level. There is also the chance to find analogies or to use some 

special purpose algorithms that are defined for a special concept. For instance 

when the concept "group" is given, one might want to have a special treatment 

for the "+" as an associative operation. That could be done by not expanding the 

definition of associativity but by using a special equality reasoning procedure for 

associative function symbols, for instance, an A-unification algorithm. 

So far we have given only examples for simply defined or axiomatized concepts. 

The next example is about inductively defined concepts. To this end we use the 

constructors introduced in the last part of section 3.3. We show how 'one can 

axiomatize the natural numbers with the constructors 0 and s. 

Axiom: Nat 

axIOm: base (0 : IN) 
step (s: (IN -+ IN» 

signature..ext: IN!;;L 
0: IN 
s : (IN -+ IN) 

context: numbers 

Figure 4.7 

The key words "base" and "step" correspond to the induction base and the 

induction step, respectively. In this example the induction base says that 0 is a 

natural number. The step case means that all natural numbers are constructed 

from 0 by the constructor function s. 

Of course we could give second-order formulae in order to introduce the natural 

numbers, but because of its particular importance, we provide special facilities for 

inductively defined or axiomatized concepts. 

Now we can define the function + for natural numbers. 

Definition: +IN 

parameters: n :IN 
m :IN 

sort: IN 
definition: base 'v'n: IN n +IN 0 := n 

step 'v'n,m:IN n+lNs(m):=s(n+lNm) 
context: numbers 

mapping 

<proof-+N-sort> 

<proof-+IN-def> 

Figure 4.8 

In this definition frame "base" and "step" correspond as in the axiom frame 

to the induction base and the induction step. For an inductive definition it must 
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reasons. If we formulate abstractly, we have the chance to  find proofs also at a
more high, abstract level. There is also the chance to find analogies or to  use some
special purpose algorithms that are defined for a special concept. For instance

when the concept “group” is given, one might want to  have a special treatment
for the “+” as an associative operation. That could be  done by not expanding the
definition of associativity but by using a special equality reasoning procedure for
associative function symbols, for instance, an A-unification algorithm.

So far we have given only examples for simply defined or axiomatized concepts.
The next example is about inductively defined concepts. To this end we use the
constructors introduced in the last part of section 3.3. We show how "one can
axiomatize the natural numbers with the constructors 0 and s .

Axiom: Nat

axiom: base (0 : ]N)
step ( s  : (IN ——> 1N))

signatureßxt: lNEL
0 : IN
5 : (]N —> W)

context: numbers

Figure 4.7

The key words “base” and “step” correspond to the induction base and the
induction step, respectively. In this example the induction base says that 0 is a
natural number. The step case means that all natural numbers are constructed
from 0 by the constructor function s.

Of course we could give second-order formulae in order to introduce the natural
numbers, but because of its particular importance, we provide special facilities for
inductively defined or axiomatized concepts.

Now we can define the function + for natural numbers.

Definition: +1N mapping

parameters: n :lN
m :lN

sort: lN <proof-+N-sort>
definit ion:  base Vnl  n +IN 0 ._=_ n

step Vn, m:]N n +“  s (m)  E s (n  +1N m) <proof-+N-def>
context: numbers

Figure 4.8

In this definition frame “base” and “step” correspond as in the axiom frame
to the induction base and the induction step. For an inductive definition it must
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be shown that it is a definition indeed, that is, that all cases are covered and that 

the step case is well-founded (see e.g. [69]). 

The next example shows an implicit definition. It is the general case of a 

definition and subsumes all previous cases as special cases. An implicit definition 

consists of an arbitrary formula set that uniquely characterizes the concept. 

Definition: exp mapping 

parameters: x :Ht 
sort: Ht < proof-exp-sort> 
definition: \Ix, y:Ht exp(x + y) == exp(x) . exp(y) 

exp(l) == e . 
continous(exp, Ht) < proof-exp-def> 

context: real functions 

Figure 4.9 

In order to make sure that it is a valid definition, the existence and uniqueness 

of the concept must be proved in <proof-exp-def>. 

Partial functions can be defined in the following form: 

Definition: reciprocal mapping 

parameters: x :Ht 
preconditions: x~O 
sort: Ht <proof-reciprocal-sort> 
definition: reciprocal(x) . x == 1 <proof-reciprocal-def> 
context: real functions 

Figure 4.10 

The slot "preconditions" contains formulae, which must be satisfied, for the 

definition to make sense. A correct treatment of the preconditions requires partial 

functions. However we do not consider them in the following, because they require 

an essential extension of the logics £n, as for instance a transition from two-valued 

to three-valued logics. In particular we cannot translate them adequately into 

first-order (two-valued) logic as we do it with the other logics in chapter 5. For an 

overview of partial logics see [12, 78]. 

The concepts introduced so far are ordered by the fillers of the slot "super­

concepts", which induce a transitive network of concepts with inheritance. That 

is, every concept inherits all definitions, consequences, equivalences, and counter­

examples of its superconcepts. A superconcept itself inherits all examples of its 

subconcepts. A small section of this net can be seen in the following figure: 
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be  shown that i t  is a definition indeed, that is, that all cases are covered and that
the step case is well-founded (see e.g. [69]).

The next example shows an implicit definition. _It is the general case of a
definition and subsumes all previous cases as special cases. An implicit definition
consists of an arbitrary formula set that uniquely characterizes the concept.

Definition: exp _ mapping

parameters: «: :lR
sor t :  R <proof-exp—sort)
definition: Vat, y l  exp(z + y) E exp(.1:) - exp(y)

exp(1) E e
continous(eXp, IR.) <proof-exp-def>

context: real functions

Figure 4.9

In order to  make sure that it is a valid definition, the existence and uniqueness
of the concept must be proved in <proof-exp—def>.

Partial functions can be defined in the following form:

Definition: reciprocal mapping

parameters: .1: 21R.
preconditions: :n $ 0
sort: IR, <proof-reciprocal—sort>
definition: reciprocal(:c) -:c E 1 ' <proof-reciprocal-def>
context: real functions

Figure 4.10

The slot “preconditions” contains formulae, which must be satisfied, for the
definition to make sense. A correct treatment of the preconditions requires partial
functions. However we do not consider them in  the following, because they require
an essential extension of the logics £" ,  as for instance a transition from two-valued
t o  three-valued logics. In  particular we cannot translate them adequately into
first-order (two-valued) logic as we do it with the other logics in chapter 5. For an
overview of partial logics see [12, 78].

The concepts introduced so far are ordered by the fillers of the slot “super—
concepts”, which induce a transitive network of concepts with inheritance. That
is, every concept inherits all definitions, consequences, equivalences, and counter—
examples of its superconcepts. A superconcept itself inherits all examples of its
subconcepts. A small section of this  net  can be  seen in  the following figure:



Def: associative 

pa.rameters: . , . 
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Def: ex-inverseDef: eX--Ileut....elem 

pa.ra.meter;:;:parameters: ..... . 

Def: groupDef: commutative 

pa.rameters:pa.rameters: 
., ... . 

~/ 
Def: abelian-group Def: distributive 

pa.rameters:parameters: ..... . 

/~
Def: field 

pa.rameters:... 

Figure 4.11 

The edges in the network are labeled with the corresponding parameters in the 

"superconcepts" slot. In figure 4.11 we have omitted the labels for simplicity 

reasons. For instance, the edge from "field" to "abelian_group" expresses that a 

field (F, +,0, -",1, -1) is an abelian group with respect to the addition, that is, 

(F, +,0, -) is an abelian group; whereas it is only a group with respect to the 

multiplication, that is, (F\{O},', 1, -1) is a group. 

Finally we give an example for a theorem frame. We use CANTOR'S theo­

rem that the power-set of a set has greater cardinality than the set itself in the 

formulation of ANDREWS [3, p.184]. 

Theorem: Cantor theorem 

theorem: Vs : (L ~ 0) ..,3g: (L -+ (L -+ 0)) Vf :(L -+ 0) 
f ~ s ==> (3j : L s(j) /I. g(j) = J) 

status: "proved" 
proof: <proof-Cantor> 
context: sets 

Figure 4.12 
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Def: associative Def: ex.neut.elem Def: exJnverse

parameters :  pa ramete r s :
. . . . .

pa rame te r s :
.

\ /

47

Def: commutative Def: group

pa rame te r s :
. . .

pa rame te r s :
.

\ /
Def: abeliamgroup Def: distributive

paramete r s : pa rame te r s :

\ /
Def: field

pa rame te r s :
. . .

Figure 4.11

The edges in the network are labeled with the corresponding parameters in the
“superconcepts” slot. In figure 4.11 we have omitted the labels for simplicity
reasons. For instance, the edge from “field” to  “abelian_group” expresses that a
field (F, + ,0 ,  —, -, 1 , 4 )  is an abelian group with respect t o  the addition, that is,
(F, +,\0, —) is an abelian group; whereas it is only a group with respect to  the
multiplication, that is, (F\{0},  -, 1, “ l )  is a group.

Finally we give an example for a theorem frame. We use CANTOR’S theo-
rem that the power-set of a set has greater cardinality than the set itself in the
formulation of ANDREWS [3, p.184].

Theorem: Cantor , theorem

theorem: Vs:(L _» o) flflgzu -+ (a —> 0)) Vf:(L —-> o)
f ;  8 :  (Hin S(J ' ) / \9(J ' )  = f)

status: “proved”
proof: <proof~Cantor>
context: sets

Figure 4.12
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The filler of the slot "theorem" is an arbitrary closed formula of .en or .e~. 

The "status"-slot records whether the theorem is "proved", "conjectured", or 

"rejected" . 

In "proof" a pointer to a proof is given, if the status of the theorem is "proved" 

or "rejected". 

After this informal introduction to our frame-based representation language, 

we shall now give a formal definition in the next section. 

4.2 Formal Treatment 

Now we define a general syntax of the three different kinds of frames. Their 

semantics is then given via translations into the underlying higher-order logic. 

The following frame shows all the different slots and possible fillers in a definition 

frame. 

Definition: <Name> property I mapping 

<proof-<Name>-def> 
<proof-<Name>-def> 

[ parameters: 
[ { (optional) 
[ preconditions: 
definition: 

base 
step 

[ defined...symbols: 
[superconcepts: {#) 
[ sort: 
[ main_property: 
[ consequences:· {#) 
[ equivalences: {#) 
[ examples: { #) 
[ counter _ex: { #) 
[ used in: 
[ subconcepts: 
context: 

{ <variable...symbol> :<sort...symbol> [ (called <name» ] } 
<variable...symbol> :<sort...symbol> [ (called <name» ] } ] ] 
{ <formula> } ] 
{ <formula> } I 
{ <term>} I 
{ <formula> } 
{ <formula> } 
{ <formula> } 
{ <Name> } ] 
<concept>({ <variable...symbol> }) } ] 
<sort...symbol> <proof-<Name>-sort> ] 
<formula> <proof-<Name>-main_prop> ] 
<formula> <proof-<Name>-cons-#> } ] 
<formula> <proof-<Name>-equ-#> } ] 
<pointer_to..model> <proof-<Name>-ex-#> } ] 
<pointer_to..model> <proof-<Name>-counter_ex-#> } ] 
{ <Name> } ] 
{ <concept> } ] 
<ContextName> 

Figure 4.13 

We use the extended BACKUS-NAUR form (EBNF) in the following way: 

[ . ] stands for no or one occurrence, { . } for one or more repetitions, <.> for 

non-terminal symbols, and I for "or". 

4.1 Definition (Definition Frame): A definition frame (written 19) is a list of 

the following elements: 
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The filler of the slot “theorem” is an arbitrary closed formula of £"  or cg .
The “status”-slot records whether the theorem is “proved”, “conjectured”, or

“rejected”.

In “proof” a pointer to  a proof is given, if the status of the theorem is “proved”
or “rejected”.

After this  informal introduction to our frame-based representation language,
we shall now give a formal definition in the next section.

4 .2  Formal Treatment

Now we define a general syntax of the three different kinds of frames. Their
semantics is then given via translations into the underlying higher-order logic.
The following frame shows all the different slots and possible fillers in a definition
frame.

Definition: <Name> property Imapping

[parameters: { <variable.symbol> :<sort.symbol> [(called <name>) ] }
[ { (optional) <variable.symbol> :<sort.symbol> [ (called <name>) ] } ] ]
[ preconditions: { <formula> } ]
definition: { <formula> } I

{ <term> } I
base { <formula> }
step { <formula> } <proof-<Name>—def> I
_ { <formula> } <proof-<Name>—def>

[ definedsymbols: { <Name> } ] ,
[superconceptsz { #)  <concept>({ <variable_symbol> }) } ]
[ sort: <sort..symbol> <proof-<Name>-sort> ] ,
[ main_property: <formula> <proof-<Name>-main_prop> ]
[consequenceszi { # )  <formula> <proof-<Name>-cons-#> } ]
[equivalencesz { # )  <formula> <proof-<Name>—equ-#> } ]
[examplesz { # )  <pointer_to_model> <proof-<Name>—ex—#> } ]
[countenexz { #)  <pointer.to.model> <proof-<Name>-counter_ex-#> } ]
[ usedJn: { <Name> } ]
[subconceptsz _ { <concept> } ]
context: <ContextName>

Figure 4.13

We use the extended BACKUS—NAUR form (EBNF) in the following way:
[ . ] stands for no or one occurrence, { . } for one or more repetitions, < .>  for
non-terminal symbols, and I for “or”.

4 .1  Definit ion (Definit ion Frame): A definition frame (written 19) is a list of
the following elements:
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1.	 "parameters" is of a list of variable-symbols with sorts and optionally selector 

names. 

2.	 "preconditions" is a list of £-formulae. 

3.	 "definition" is either a simple definition, an inductive definition, or an im­

plicit definition. If it is a simple definition it consists of an £-formula or an 

£-term corresponding to the type of the frame (property or mapping). The 

defined concept must not occur in that formula or term. 

In case of an inductive definition two slots must be filled, one for the base case 

and another for the step case, both with £-formulae. For every constructor 

constant Cj the base case contains a formula of the form: 

VXt, ... , X m <Name> (Cj, xI, ... , x m ) <===} 'l/Jj, where the defined concept 

must not occur in 'l/J. 
For every constructor function fi the step case contains a formula of the 

form VXt, ... ,XmVy,Yl, ... ,Yki <Name>(Ji(y,YI, ... ,Yk.),Xl, ... ,xm) ~ 

'l/Ji	 where in 'l/Ji no constructor function occurs. (In the case of a mapping 

concept "<===} 'l/J" is replaced by "= i".) Inductive definitions must be 

shown to be definitions, that is, that all cases are covered and that the step' 

case is well-founded. A pointer to a proof is stored in the slot. 

Implicit definitions consist of sets of formulae and a proof that the defined 

object exists and is unique. 

4.	 "defined_symbols" is the list of symbols that are defined in an implicit defi­

nition, if more than one symbol is defined. In all other cases just the symbol 

<Name> is defined. 

5.	 "superconcepts" is a list of atomic £-formulae. 

6.	 "sort" is a sort symbol that shows the sort of a concept of type "mapping". 

This slot must be filled when a definition of type "mapping" is given. The 

sort information has to be proved. A pointer to a prove is stored in the slot. 

7.	 "main_property" is an £-formula. The proof must show that the formula in 

this slot follows from the definition. 

8.	 "consequences" and "equivalences" are lists of £-formulae. The proofs show 

that the formulae are consequences or equivalences of the definition, respec­

tively. 
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1. “parameters” is of a list of variablesyrnbols with sorts and optionally selector
names.

2. “preconditions” is a list of £—formulae.

3. “definition” is either a simple definition, an inductive definition, or an im-

plicit definition. If it is a simple definition it consists of an L—formula or an
‚(I-term corresponding to the type of the frame (property or mapping). The
defined concept must not occur in that formula or term.

In case of an inductive definition two slots must be  filled, one for the base case
and another for the step case, both with £-formu1ae. For every constructor
constant Cj the base case contains a formula of the form:
V321,” . ‚ccm <Name>(cj,:c1,.. . ‚mm) (:> ab,-, where the defined concept
must not occur in 2/).
For every constructor function f,- the step case contains a formula of the
form V931, . . . ,my ,y1 , .  . . ,yki <Name>(f.-(y,y1, . . . ‚%) ,  x l ,  . . . ‚mm) (=)
ib; where in tb; no constructor function occurs. (In the case of a mapping
concept “ (=> 1b” is replaced by “E t”.) Inductive definitions must be
shown to  be definitions, that is, that all cases are covered and that the step '
case is well-founded. A pointer to  a proof is stored in the slot.

Implicit definitions consist of sets of formulae and a proof that the defined
object exists and is unique.

4. “defined_symbols” is the list of symbols that are defined in an implicit defi-
nition, if more than one symbol is defined. In all other cases just the symbol
<Name> is defined.

5. “superconcepts” i s  a list of atomic L-formulae.

6. “sort” is a sort symbol that shows the sort of a concept of type “mapping”.
This slot must be filled when a definition of type “mapping” is given. The
sort information has to be proved. A pointer to a prove is stored in the slot.

7. “main_property” is an £—formula. The proof must show that the formula in
this slot follows from the definition.

8. “consequences” and “equivalences” are lists of £—formulae. The proofs show
that the formulae are consequences or equivalences of the definition, respec—
tively.
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9.	 "examples" and "counter-ex" are lists of £-structures, which are models or 

no models of the concept, respectively. 

10.	 "usedin" is a list of axioms, definitions, and theorems. "subconcepts" is 

a list of axioms and definitions. These slots can be filled automatically, 

since the "usedin" slot is only a book-keeping slot and "subconcepts" is the 

inverse slot to the "superconcept" slot. 

11.	 "context" is a name for a theory. 

The frame must not contain any free variable except the variables of the slot 

"parameters". <Name> is a constant symbol of sort (KI x ... X Km -+ K), where 

Ki is the sort of the i-th parameter and K is the entry of the "sort" slot for a 

mapping frame and equal to 0 for a property frame. 

4.2 Definition (Semantics of a Definition Frame): We fix the semantics of 

a definition frame by giving a logical translation. We begin with the translation 

of the parts 1 through 5 of definition 4.1. Let XI, ••• , X m be the variables of 

the parameter slot, PI, , PI be the list of preconditions,. 'P be the entry of the 

definition slot and sI, ,Sk be the entries of the superconcepts slot. The logical 

translation of a simple definition of type property is then: 

YXI, ... , X m PI /\ ... /\ PI ====} «Name>(xI, ... , X m ) {:::::::} (SI /\ ... /\ Sm /\ 'P))' 

The Xl, ..• , X m are the only free variable symbols in Pi, Si, and 'P. Optional param­


eters are treated in the same manner as in section 3.3. If the slot "preconditions"
 

or "superconcepts" is unfilled it is translated by the same formula. Recall that an
 

empty conjunction evaluates to TRUE.
 

In the case of a mapping frame the translation is:
 

YXI," . ,Xm PI /\ ... /\ PI ====} «Name>(xI,. " ,Xm ) s),
 
where 8 is an £-term. The "sort" slot entry K is translated as (8: K) or K(S).
 

In	 the case of an inductive or an implicit definition the translation is equivalent
 

to:
 

'IXI, ... ,Xm PI /\ ... /\ PI >- 'PI /\ ... /\ 'Pm,
 

where the 'Pi are the entries of the definition slot.
 

The other slots contain theorems, models, or structuring information.
 

The slot "consequences" contains theorems Ci that belong to the concept. The
 

proved theorems are translated by the formulae itself, that is, by Ci for all i.*
 

*For instance if the union of sets is defined, we should write into this slot, that the union is 
associative, commutative, and idempotent. 
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9. “examples” and “counter_ex” are lists of ‚(:-structures, which are models or
no models of the concept, respectively.

10. “used_in” is a list of axioms, definitions, and theorems. “subconcepts” is
a list of axioms and definitions. These slots can be  filled automatically,

. since the “used_in” slot is only a book-keeping slot and “subconcepts” is the
inverse slot to  the “superconcept” slot.

11. “context” is  a name for a theory.

The frame must not contain any free variable except the variables of the slot
“parameters”. <Name> is a constant symbol of sort (nl >< - - - >< Km —> R), where
fc,- is the sort of the i-th parameter and n is the entry of the “sort” slot for a
mapping frame and equal t o  0 for a property frame.

4.2 Definit ion (Semantics of a Definition E'ame): We fix the semantics of
a definition frame by giving a logical translation. -We begin with the translation
of the parts 1 through 5 of definition 4.1. Let $1 , . . . , a :m be the variables of
the  parameter slot, p l ,  . . . , p; be  the list of preconditions,.<p be  the entry of the
definition slot and s l ,  . . . , sk be  the entries Of the superconcepts slot. The logical
translation of a simple definition of type property is then:
Vx1,. . . ,mm pl  A . . . / \ pz  => (<Name>(a:1,.. . ,:z:m) (=> (31 A. . .  Asm Acp)).

The x1, . . . , wm are the only free variable symbols in p‚-, s;, and cp. Optional param—
eters are treated in  the same manner as in  section 3.3. If the slot “preconditions”
or “superconcepts” is unfilled i t  is translated by the same formula. Recall that an
empty conjunction evaluates to  TRUE.

In the case of a mapping frame the translation is:
V331,... ‚zum p1 /\ Ap1=>(<Name>(a :1 , . . . ,xm)E  s) ,
Where 3 is an ß- term.  The “sort” slot entry K. is translated as ( s  : fi) or ‚;(s).

In the case of an inductive or an implicit definition the translation is equivalent
t o :

Vm1,...,xm pl /\ . . . / \p1:=>c,01/\. . . / \<pm,
where the go, are the entries of the definition slot.

The other slots contain theorems, models, or structuring information.

The slot “consequences” contains theorems c,- that belong to  the concept. The
proved theorems are translated by the formulae itself, that is, by c, for all if“

*For instance if the  union of  sets i s  defined, we should wr i te  into th i s  s lot ,  that the union is
associative, commutative, and idempotent .
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The semantic status of an entry of the slot "main_property" is the same as that 

of an entry of the "consequences" slot.
 

Entries 'IjJ of the slot "equivalences" are translated to:
 

VXI, ... , X m PI /\ ... /\ PI ==? «Name>(XI, ... , X m ) {:::::::} 'IjJ).
 

"subconcepts" is the inverse slot of "superconcepts". That means, whenever we 

make an entry in the "superconcepts" slot of concept A, that B is a superconcept of 

A, the slot "subconcepts" of B is automatically filled by the filler A. (Parameters 

are neglected in the "subconcepts" slot.) This slot - as well as the "usedjn" and 

"context" slot - is not translated into logic, that is, it has no semantics and is only 

for pragmatic use. 

The semantics of the slots "examples" and "counter-ex" is defined by the logical 

model relation, that is, M is an example iff M I=<Name>(xI, ... , xm ), and M is 

a counter-example iff M ~<Name>(xI,"" x m ). 

4.3 Remark: Superconcepts provide an inheritance relation, for instance "asso­

ciative" is a superconcept for "group". So every consequence in the "associative"­

frame is also a consequence for the "group"-frame. On the other hand "group" is 

a subconcept of "associative". So every example for a group is in particular an 

example for an associative structure. 

Analogously one can define axiom frames and theorem frames. All frame types 

have a "consequence" and a "context" slot. 

In the next figure all different slots of an axiom frame are shown: 

Axiom: <Name> 

axIOms: { <formula>} I 
base {<term_declaration> } 
step {<term_declaration>} 

[ signature..ext: [ {<constant..symbol> : <sort..symbol> } ] 
[ { <subsort-declaration> } ] ] 

[ consequences: { #) <formula> <proof-<Name>-cons-#> } ] 
[ examples: { #) <pointer-toJIlodel> <proof-<Name>-ex-#> } ] 
[ counter..ex: {#) <pointer_toJIlodel> <proof-<Name>-counter..ex-#> } ] 
[ usedjn: { <name> }] 
context: <ContextName> 

Figure 4.14 

4.4 Definition (Axiom frame): An axiom frame (also written as 'l?) is a list of 

the following elements: "axioms", "signature_ext", "consequences", "examples", 

"counter_ex", "usedjn", and "context" with: 
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The semantic status of an entry of the slot “main_property” is  the same as that
of an entry of the “consequences” slot.

Entries «b of the slot “equivalences” are translated to:
V$1‚...,mm 111 A . . . / \ p l  => (<Name>(a:1,...‚mm) (=> $ ) .

“subconcepts” is the inverse slot of “superconcepts”. That means, whenever we
make an entry in the “superconcepts” slot of concept A ,  that B is a superconcept of
A, the slot “subconcepts” of B is automatically filled by the filler A. (Parameters
are neglected in the “subconcepts” slot.) This slot — as well as the “used—_in” and
“context” slot — is not translated into logic, that is, i t  has no semantics and is only
for pragmatic use.

The semantics of the slots “examples” and “counter_ex” is defined by the logical
model relation, that is, M is an example ifi' M }=<Name>(ml, . . . , zum), and M is
a counter-example iff M bé<Name>(w1, . . . ‚mm).

4 .3  Remark: Superconcepts provide an inheritance relation, for instance “asso—
ciative” is a superconcept for “group”. So every consequence in the “associative”-
frame is also a consequence for the “group”-frame. On the other hand “group” is
a subconcept of “associative”. So every example for a group is in  particular an
example for an associative structure.

Analogously one can define axiom frames and theorem frames. All frame types
have a “consequence” and a “context” slot.

In the next figure all different slots of an axiom frame are shown:

Axiom: <Name>

axioms: { <formula> } I
base { <term-d'eclaration> }
step { <term_declaration> }

[signaturexxtz [ {  <constant.symbol> : <sort_symbol> } ] I
[ {  <subsort.declaration> } ]  ]

[consequences: { # )  <formula> <proof—<Name>-cons-#> } ]
[examplesz { #)  <pointer_to_model> <proof—<Name>—ex-#> } ]
[ counteuex: { #)  <pointer_to.model> <proof-<Name>—counter.ex—#> } ]
[ usedJn: { <name> } ]
context: <ContextName>

Figure 4.14

4.4 Definit ion (Axiom frame): An axiom frame (also written as 19) is a list of
the following elements: “axioms”, “signature.ext”, “consequences”, “examples”,
“counter_ex”, “useddn”, and “context” with:
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1.	 The slot "axioms" contains either a set of formulae as simple axioms or new 

constructor symbols (compare page 35) are introduced. In the latter case 

the name of the axiom is a new predicate symbol (or sort symbol). In the 

"base" -subslot the constructor constants of this new sort are declared in the 

form of term declarations. In the "step"-subslot the constructor functions 

are declared in the same manner. These symbols have to occur also in the 

slot "signature_ext". 

2.	 "signature_ext" contains the axiomatized constants, if they are new. 

3.	 All other slots are similar to the corresponding slots of a definition frame. 

4.5 Definition (Semantics of an Axiom Frame): The semantics of an axiom 

frame is also given by the translation to 1:-. In the case of simple axioms it is 

translated into the conjunction of the formulae itself. In the case of inductive 

axioms they are translated into the corresponding data structure, which in turn 

can be translated as shown on pages 35 and following. 

Finally we show what a theorem frame looks like in general: 

Theorem: <Name> [ < theoremtype> ] 

[ assumptions: 
theorem: 
status: 
[ proof: 
[ consequences: 
context: 

<closed formula> ] 
<closed formula> 
"proved" I "conjectured" I "rejected" 
<proof> ] 

{#) <formula> <proof-<Name>-cons-#> } ] 
<ContextName> 

Figure 4.15 

4.6 Definition (Theorem Frame): A theorem frame (also written as '19) is a list 

of: "assumptions", "theorem", "status", "proof", "consequences", and "context" 

with: 

1.	 "assumptions" is a list of formulae, which are preconditions for the theorem. 

2.	 "theorem" is a formula. 

3.	 "status" is either "proved", "conjectured", or "rejected". 

4.	 "proof" is a pointer to a proof* in the case that the status of the frame is 

"proved". It is a pointer to a counterexample in the case that the status is 

"rejected" . 

'So far we have not considered proofs at all. See chapter 5. 
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1 .  The slot “axioms” contains either a set of formulae as simple axioms or new
constructor symbols (compare page 35) are introduced. In the latter case
the name of the axiom is a new predicate symbol (or sort symbol). In the
“base”-subslot the constructor constants of this  new sort are declared in  the
form of term declarations. In the “step”-subslot the constructor functions
are declared in the same manner. These symbols have to occur also in the
slot “signature_ext”.

2. “signature_ext” contains the axiomatized constants, if they are new.

3. All other slots are similar to  the corresponding slots of a definition frame.

4 .5  Definition (Semantics of an Axiom Frame): The semantics of an axiom
frame is  also given by the translation to  ß .  In the  case of simple axioms i t  is
translated into the conjunction of the formulae itself. In the case of inductive
axioms they are translated into the corresponding data structure, which in  turn
can be translated as shown on pages 35 and following.

Finally we show what a theorem frame looks like in  general:

Theorem: <Name> [ <theoremtype> ]

[ assumptions: <closed formula> ]
theorem: <closed formula>
status:  “proved” | “conjectured” | “rejected”
[ proof: <proof> ]
[consequences: { #)  <formula> <proof-<Name>—cons-#> } ]
context: <ContextName>

Figure 4.15

4.6 Definition (Theorem Frame): A theorem frame (also written as 29) is a list
of: “assumptions”, “theorem”, “status”, “proof”, “consequences”, and “context”
wi th :

1. “assumptions” is a list of formulae, which are preconditions for the theorem.

2 .  “theorem” i s  a formula.

3 .  “status” i s  either “ roved”,  “con 'ectured” or “ re 'ec ted” .’

4. “proo ” is a pointer to a proof“ in the case that the status of the frame is
“proved”. It is a pointer to a counterexample in the case that the status is
“rejected” .

*So far we have not considered proofs at all. See chapter 5.
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5. the other slots are just as above. 

The <theoremtype> is used for the classification of the theorem as "lemma", 

"theorem", "main theorem" , or "corollary". 

4.7 Definition (Semantics of a Theorem Frame): The semantics of a theorem 

frame with entries 'PI, ... ,'Pm as assumptions and 'ljJ as theorem is again given by a 

translation. In the case of the status "proved" it is: 'PI/\"'/\ 'Pm ===? 'ljJ, otherwise, 

it is: TRUE. 

4.8 Definition (Signature of a Frame): The signature of a frame f) is the set 

of all constants in the terms and formulae in f). (Recall that we have no free 

variables in the frames, except the variables introduced in the "parameters"-slot.) 

4.9 Definition (Extension of a Frame): A frame-extension f)' of a frame f) is 

a frame with the same name and classification, where all slot-fillers but the slots 

mentioned below are identical. The fillers of the slots consequences, equivalences, 

examples, counter_ex, and usedjn can differ in the form, that the fillers of f) are 

sublists of the corresponding fillers of f)'; the slot main_property can differ, if it is 

not filled in f). The status of a theorem frame may be changed from "conjectured" 

to "proved" or "rejected". In both cases the proof slot must be filled. 

So far we have considered single frames, in the next section we discuss when 

many such frames form a knowledge base. 

4.3 Building up a Knowledge Base 

In this section we define the notion "knowledge base" and consider the consistency 

of knowledge bases. In particular we discuss the conditions when a definition forms 

a conservative extension and therefore does not endanger the consistency of a 

knowledge base. A knowledge base is defined inductively: to the empty knowledge 

base we can add frames under certain conditions. 

4.10 Definition (Knowledge Base):. A knowledge base ~ over [, IS defined 

inductively: 

- as the empty knowledge base Dol/l ::::; 0, or 

- an immediate extension of a knowledge base. 

Do is called an immediate extension of a knowledge base ~' iff 
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5. the other slots are just as above.

The <theorerntype> is used for the classification of the theorem as “lemma”,
“theorem”, “main theorem”, or “corollary”.

4 .7  Definition (Semantics of  a Theorem Frame): The semantics of a theorem
frame with entries (pl, . . . ‚(pm as assumptions and zb as theorem is again given by a
translation. In the case of the status “proved” it is: 4,01 A. . .Acpm = 2/), otherwise,
it is: TRUE.

4 .8  Definit ion (Signature of a Frame): The signatnre of a frame 19 is the set
of all constants in the terms and formulae in 19. (Recall that we have no free
variables in the frames, except the variables introduced in the “parameters”-slot.)

4 .9  Definition (Extension of a Frame): A frame-extension 19’ of a frame 19 is
a frame with the  same name and classification, where all slot-fillers but  the slots
mentioned below are identical. The fillers of the slots consequences, equivalences,
examples, counter_ex, and used_in can differ in  the form, that the fillers of 19 are
sublists of the corresponding fillers of 19’; the slot main_property can differ, if i t  is
not filled in i9. The status of a theorem frame may be changed from “conjectured”
to “proved” or “rejected”. In both cases the proof slot must be  filled.

So far we have considered single frames, in the next section we discuss when
many such frames form a knowledge base.

4 .3  Building up a Knowledge Base

In this section we define the notion “knowledge base” and consider the consistency
of knowledge bases. In particular we discuss the conditions when a definition forms
a conservative extension and therefore does not endanger the consistency of a
knowledge base. A knowledge base is defined inductively: to the empty knowledge
base we can add frames under certain conditions.

4.10 Definit ion (Knowledge Base):_A knowledge base A over [2 is defined
inductively:

— as the empty knowledge base Ag = ill, or

— an immediate extension of a knowledge base.

A is called an immediate extension of a knowledge base A’ iff
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- ~ = ~' u {t9} with axiom frame, definition frame, or theorem frame t9 rela­

tive to the knowledge base ~', Or 

- it is equal to a knowledge base ~' for a.ll but one entry and this entry is a 

frame-extension of the other. Formally ~ \ {t9} = ~'\ {t9'} and t9 is a frame­

extension of t9'. 

The transitive closure of this relation is called an extension. 

The signature of a knowledge base ~ is the union of all signatures of the frames 

contained in ~. The logic with this signature is denoted by .c(~). 

Now we define frame relative to a knowledge base: 

- A theorem frame t9 is called a theorem frame relative to a knowledge base ~ 

if it is a theorem frame, its signature is a subset of the signature of ~. Fur­

thermore if the status is "proved" or "rejected", the slot proof must contain 

a proof for "~ F (assumptions ===? theorem)", respectively a counterex­

ample for this relation. (For "proofs" see chapter 5.) The entries in the 

"consequences" slot must be proved too. 

- An axiom frame t9 is called an axiom frame relative to a knowledge base ~ 

if it is an axiom frame and all occurring constants in the frame are either in 

the signature of ~ or in the slot "signature_ext" of t9. The signature of ~ 

must be disjoint from the elements in "signature_ext". All lemmata in the 

frame - that is, all slots that must contain proofs - must fulfill the condition 

for a theorem frame above. 

- A frame t9 is a definition frame relative to a knowledge base ~ if it is a 

definition frame, the defined concept name(s) is (are) not in the signature 

of ~, but all other constant symbols are. Lemmata in the frame must fulfill 

the condition for a theorem frame above. 

For the following we need the notion of semantic consequence. A formula 

cp follows semantically (weakly/strongly) from a knowledge base ~ (~ F cp or 

~ ~ cp), iff the translation of ~ into logic entails cp (weakly/strongly). 

4.11 Definition (Consistency): A knowledge base ~ is called (weakly/strongly) 

consistent iff there is no formula cp so that ~ p cp and ~ F -,cp (or ~ ~ cp and 

~ ~ -'Cp, respectively). 

4.12 Definition (Conservativity): An extension ~ of a knowledge base ~' is 

called (weakly/strongly) conservative iff for all formulae cp holds: If cp E £ (~') 

then ~' F cp iff ~ p cp (or with ~ instead of p, respectively). 
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— A = A’ U {19} with axiom frame, definition frame, or theorem frame 19 rela—
tive "to the knowledge base A’, Or

— it is equal to a knowledge base A’ for all but one entry and this entry is a
frame—extension of the other. Formally A\{19} = A’ \{19’} and 19 is a frame-
extension of 19' .

The transitive closure of this relation is called an extension.
The signature of a knowledge base A is the union of all signatures of the frames
contained in A. The logic with this signature is denoted by £ (A) .
Now we define frame relative to a knowledge base:

— A theorem frame 19 is called a theorem frame relative to a knowledge base A
if it is a theorem frame, its signature is a subset of the signature of A .  Fur—
thermore if the status is “proved” or “rejected”, the slot proof must contain
a proof for “A I: (assumptions => theorem)”, respectively a counterex-
ample for this relation. (For “proofs” see chapter 5.) The entries in the
“consequences” slot must be  proved too.

— An axiom frame 19 is called an axiom frame relative to a knowledge base A
if i t  is an axiom frame and all occurring constants in the frame are either in
the signature of A or in the slot “signature.ext” of 19. The signature of A
must be  disjoint from the elements in  “signature.ext”. All lemmata in  the
frame — that is, all slots that must contain proofs — must fulfill the condition
for a theorem frame above.

— A frame 19 is a definition frame relative to a knowledge base A if it is a
definition frame, the defined concept name(s) is (are) not in the signature
of A ,  but  all other constant symbols are. Lemmata in  the frame must fulfill
the condition for a theorem frame above.

For the following we need the notion of semantic consequence. A formula
cp follows semantically (weakly/strongly) from a knowledge base A (A I: cp or
A E (,0), iff the translation of A into logic entails cp (weakly/strongly).

‘ 4.11 Defini t ion (Consistency):  A knowledge base A is called (weakly/strongly)
consistent iff there is no formula cp so that A l: cp and A |= —-<p (or A E cp and
A E mp, respectively).

4.12 Definit ion (Conservativity): An extension A of a knowledge base A’ is
called (weakly/strongly) conservative iff for all formulae cp holds: If cp E £(A’)
then A’ }: go iff A }: go (or with E instead of }=, respectively).
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4.13 Remark: In particular by a conservative extension we cannot import any 

contradiction. If the knowledge base !:i' is consistent and !:i is a conservative 

extension of !:i', then !:i is also consistent, because otherwise we could deduce from 

!:i a formula rp and its negation -'rp and by this any formula in £(!:i), and hence 

any in £(!:i'), so we would have !:J. 1= rp and !:J. 1= -'rp. 

4.14 Definition (Definition-Conservativity): A knowledge base is called def­

inition-conservative iff every definition is a conservative extension. 

4.15 Remark: We would expect now that the logics £n are definition-conserva­

tive. Unfortunately due to our definition of higher-order logics and their semantics 

this is not the case in general as can be seen in the next example. 

4.16 Example: Let !:J. consist of the following axioms: 

- a : t, b: t, R : (t ~ 0) 

- VP:(t x t ~ 0) Vx,y:t P(x,y) ~ P(y,x) 

- R(a) A -,R(b) 

These axioms are consistent since we can give a weak model: V£ = {I, 2}, V(£Xt-.o) 

consists only of the binary relations that map everything to T. 3(a) = 1, 3(b) = 2 

.J(R)(l) = T, .J(R)(2) = F. This is of course no longer a model if we "define" a 

new binary predicate Q by Vx, y Q(x, y) : ~ R(x) A -'R(y) and add this to our 

knowledge base. We have Q(a,b) since R(a) and -'R(b). On the other hand by the 

commutativity axiom we get Q(b,a), hence -'R(a) and R(b). That is, now we have 

a contradiction in our knowledge base. Hence £n is not definition-conservative for 

n > 1. This cannot happen if we have all comprehension axioms in the knowledge 

base (compare definition 3.22). :' 

4.17 Lemma: Every knowledge base !:J. is definition-conservative for implicit def­

initions. 

Proof: This lemma holds trivially because we have required for implicit definitions 

that they must contain a proof that the defined objects exist and are unique. • 

4.18 Lemma: £1 is definition-conservative. 

Proof: Inductive definitions a.re not possible in ,Cl, hence we have to show the 

property only for simple definitions. Let !:i be given and "J, the extending frame of 

!:J., may be equivalent to Vx}, . .. , X m <Name> (XI, . " ,xm ) ~ SI A ... A Sm 1\ rp 
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4.13 Remark: In particular by a conservative extension we cannot import any
contradiction. If the knowledge base A’ is consistent and A is a conservative
extension of A’, then A is also consistent, because otherwise we could deduce from

A a formula go and its negation ego and by this any formula in [,(A), and hence
any in £(A’), so we would have A l: (p and A I: mp.

4.14 Definition (Definition-Conservativity): A knowledge base is called def-
inition-conservative iii every definition is a conservative extension.

4.15 Remark: We would expect now that the logics [" are definition-conserva-
tive. Unfortunately due to our definition of higher-order logics and their semantics
this is not the case in general as can be seen in the next example.

4.16 Example: Let A consist of the following axioms:

— a :L ,b : l „R : (L—ro)

— VP:(I, x L _) o) Vx,yti P(:r,y) (==> P(y ,x)

- R(a) /\ fiR(b)

These axioms are consistent since we can give a weak model: DL -_—- {1 ,2} ,  Dun—m)

consists only of the binary relations that map everything to  T. J (a) = 1, JU») : 2
J(R)(1) = T, J(R)(2) = F. This is of course no longer a model if we “define” a
new binary predicate Q by Vm,y Q(:1:, y) : (=> R(a:) /\ fiR(y)  and add this to our
knowledge base. We have Q(a, 17) since R(a) and nR(b) .  On the other hand by the
commutativity axiom we get Q(b, a) ,  hence - 'R(a) and R(b). That is, now we have
a contradiction in our knowledge base. Hence £" is not definition-conservative for
n > 1. This cannot happen if we have all comprehension axioms in the knowledge
base (compare definition 3.22). ‚«

4 .17  Lemma: Every knowledge base A is definition-conservative for implicit def-
in i t ions .

Proof: This lemma holds trivially because we have required for implicit definitions
that they must contain a proof that the defined objects exist and are unique. I

4.18 Lemma: ‚Cl is definition-conservative.

Proof: Inductive definitions are not possible in  ‚Cl, hence we have to  show the
property only for simple definitions. Let A be given and 19, the extending frame of
A,  may be equivalent t o  VIE], . . . , xm<Name>(x1‚  . . . , wm) (=> s l  /\ . . . A sm A 4,9
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where 'P is the formula in the definition slot of the frame and the Si are the entries 

of the superconcepts slot. So we can replace any instance of <Name>(xI, ... , x m ) 

by the corresponding instance of SI t, ... /\ Sm /\ 'P. Since the two formulations are 

equivalent, the extension is conservative. In the case of a mapping definition the 

defined term is substituted instead of the formula. Of course we can make this 

replacement also, when preconditions are present. ­
4.19 Lemma: If ~ contains the comprehension axioms 1, then it is dejinition­

conservative for simple dejinitions.* 

Proof: Let S' be the signature of ~' and S = S' U {<Name>} be the signature of 

~'U {-a}. () is equivalent to VXI, ... ,xm <Name> (Xl, ... ,xm) ~ SI/\" ./\sm/\'P 

where 'P is the formula in the definition slot of the frame and the Si are the entries 

of the superconcepts slot. By a comprehension axiom we get a predicate P so that 

VXb" . , XmP(Xl,' .. , x m) ~ SI /\ .,. /\ Sm /\ 'P. So we can replace any instance 

of <Name>(xl, ... , Xm) by the corresponding instance of P(Xl, . .. , xm). 

For definitions of the type "mapping" we can proceed analogously. ­

4.20 Lemma: If ~ contains the comprehension axioms 1, then it is dejinition­

conservative for inductive dejinitions. 

Proof: Let ~ be given and () be an inductive definition. Let Q be the m+ I-place 

predicate (m ?:: 0) of sort (K X Kl X ••• X Km ~ 0) that is defined per induction on 

the first argument, then the inductive definition is of the form: 

base:	 VXI, ... ,xm Q(Cj,XI, ... ,xm) ~ 'ljJj for j = 1, ... ,n where Cj are all 

constructor symbols of sort K for the inductively introduced concept K. 

step:	 VXl, ... ,xmVy,YI, ... ,Yki Q(Ji(y,YI, ... ,Yk,),Xl,""Xm) ~ 'ljJi for all 

constructor functions Ji where in the 'ljJi no constructor function can occur. 

Now we have to show that there is exactly one predicate Q that satisfies this 

definition. By inductively applying the defining equivalences we get that for all 

constants d of sort K, we can equivalently replace Q(d, XI, ... , x m ) by an expression 

not containing Q. Consequently for all elements d of sort K there is a simple 

definition of Q for this element as argument. Hence we can conclude that the. 

general definition of Q forms a conservative extension. _ 

* We do not need such axioms if we use for our higher-order logic the A-calculus, since we get the 

corresponding constant simply by A-abstraction. The comprehension axioms cannot explicitly be 

in our knowledge base, because we have not provided facilities for introducing axiom schemata, 

but it can be easily tested whether a formula is a comprehension axiom or not. 
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Where (‚0 is the formula in the definition slot of the frame and the 3,- are the entries
of the superconcepts slot. So  we can replace any instance of <Name>(:r1,  . . . , wm)
by the corresponding instance of 31 A . . . /\ sm A cp. Since the two formulations are
equivalent, the  extension is conservative. In the case of a mapping definition the
defined term is substituted instead of the formula. Of course we can make this
replacement also, when preconditions are present. I

4 .19  Lemma: If A contains the comprehension axioms '1‘, then it  is definition-
conservati've for simple definitions.*

Proof: Let 8’ be the signature of A' and S = 8’ U {<Name>} be the signature of
A’ U {19}. 19 is equivalent to  V131, . . . ‚wm <Name>(:l:1, . . . ‚mm) (=) 51A. . .AsmNp
where cp is the formula in the definition slot of the frame and the s,- are the entries
of the superconcepts slot. By  a comprehension axiom we get a predicate P so that
VIE], . . . , m(:v1, . . . ‚mm) (=) 31 A . . . /\ sm /\ (p. So we can replace any instance
of <Name>(:l:1, . . . ,:cm) by the corresponding instance of P(.1:1, . . . ,zm).

For definitions of the type “mapping” we can proceed analogously. I

4 .20  Lemma: If A contains the comprehension axioms T ,  then it is definition-
conservative for inductive definitions.

Proof: Let A be  given and 19 be an inductive'definition. Let Q be the m+  l-place
predicate (m Z 0) of sort (K, x n1 x - - - >< mm ——> 0) that  is  defined per induction on
the first argument, then the inductive definition is of the form:

base: Vx1,...,mm Q(cj,a:1,...,a:m) (=> gb,- f o r j  = 1 , . . . , n  where cj are all
constructor symbols of sort I: for the inductively introduced concept rc.

step: l ‚ . . . , $mVy ,y1 ‚ . . . , y k_ .  Q(f,-(y,y1,...,yk,),x1,...,zm) (=> 1/).- for all
constructor functions f,— where i n  the tl); no constructor function can occur.

Now we have t o  show that  there is exactly one predicate Q that satisfies this
definition. By  inductively applying the  defining equivalences we get that for all
constants d of sort K„ we can equivalently replace Q(d,  2:1, . . . , mm) by an expression
not containing Q. Consequently for all elements cl of sort A”. there is a simple
definition of Q for this element as argument. Hence we can conclude that the
general definition of Q forms a conservative extension. I

*We do not need such axioms if we use for our higher—order logic the A—calculus, since we get the
corresponding constant simply by A-abstraction. The comprehension axioms cannot explicitly be
in our knowledge base, because we have not provided facilities for introducing axiom schemata,
but i t  can be easily tested whether a formula is a comprehension axiom or not.
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Summarizing we have: 

4.21 Lemma: If.6. contains the comprehension axioms 1', then it is definition­

conservative. 

4.22 Lemma: If.6. is a consistent knowledge base and {J a theorem relative to .6., 

then .6. U {{J} is consistent. 

Proof: Because the deductive closures of.6. and .6. U {{J} are the same, the theorem 

holds trivially. ­

4.23 Lemma: The empty knowledge base .6.0 is consistent. 

Proof: Since for all formulae 'P with .6.0 F 'P, 'P is a tautology and 'P and -''P 

cannot be tautologies at once, .6.0 must be consistent. _ 

4.24 Theorem: If.6. is a consistent knowledge base that contains the comprehen­

sion axioms l' and {J is a concept definition relative to .6. or a theorem relative to 

.6., then .6. U {{J} is consistent. 

Proof: This follows immediately from the fact that concept definitions form con­

servative extensions and by conservative extension no contradiction can be im­

ported, and by lemma 4.22. _ 

4.25 Remark: In our considerations we have neglected the "context" slot. It 

could be integrated by defining a partial order on the contexts and by sharpening 

the definition of a frame relative to a knowledge base (compare definition 4.10) in 

that way that the required properties have not to hold only for the whole knowledge 

base .6. and {J, but even for that subpart of the knowledge base that consists of 

those modules, which are in the reflexive, transitive closure. of the module, to which 

{J belongs. 

4.4 Critique of the Frame Approach 

In this section we summarize the advantages of frames for the representation of 

mathematical concepts and state the main disadvantage. 

The first reason why we use frames is the concept oriented way of representa­

tion. Frames enable us to represent the knowledge in such a way that all properties 

that belong immedia.tely to a concept are represented together. In other words we 

can take into account that a concept does not only consist of its definition, but of 
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Summarizing we have:

4 .21  Lemma: If A contains the comprehension axioms T ,  then i t  is definition-

conservative.

4 .22  Lemma:  IfA is a consistent knowledge base and  19 a theorem relative to A ,
then A U {19} is consistent.

Proof: Because the deductive closures of A and A U {19} are the same, the theorem
holds trivially. I

4.23 Lemma: The empty knowledge base A95 is consistent.

Proof: Since for all formulae cp with A¢ I: cp, (p is a tautology and cp and flnp

cannot be tautologies at once, A¢ must be consistent. I

4.24 Theorem: If A is a consistent knowledge base that contains the comprehen-
sion axioms T and 19 is a concept definition relative to  A or  a theorem relative to
A, then A U {19} is consistent.

Proof: This follows immediately from the fact that concept" definitions form con-
servative extensions and by conservative extension no contradiction can be  im—
ported,  and by lemma 4.22. l

4.25 Remark: In our considerations we have neglected the “context” slot. It
could be integrated by defining a partial order on the contexts and by sharpening
the definition of a frame relative to a knowledge base (compare definition 4.10) in

' \ is

that way that the required properties have not to  hold only for the whole knowledge
base A and 19, but even for that subpart of the knowledge base that consists of
those modules, which are i n  the reflexive, transitive closure, of the module, to  which
19 belongs.

4 .4  Critique of  the  Frame Approach

In this section we summarize the advantages of frames for the representation of
mathematical concepts and state the  main disadvantage.

The first reason why we use frames is the concept oriented way of representa-
tion. Frames enable us  to represent t he  knowledge in  such a way that all properties
that belong immediately to  a concept are represented together. In other words we
can take into account that a concept does not only consist of i t s  definition, but  of
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a definition plus a set of important properties. So we can structure the definitions 

and some theorems and need not to distribute them over the whole knowledge 

base. These structuring facilities are not given in mere logic, but are provided by 

the frame language. 

By the frame approach we can distinguish so-called primitives, that are, ax­

ioms, definitions, and theorems. Every primitive has its own status, in logic we 

only have formulae and do not distinguish between axioms, definitions, and theo­

rems. These are meta-Iogical features of formulae. Here we have the possibility to 

require a special form for definitions, so that they are really definitions and can­

not import any contradictions into a knowledge base. Theorems can be arbitrary 

formulae, but in contrast to axioms, they must be proved in order to be used in 

the proofs of other theorems. Furthermore we can guarantee that we use only 

defined concepts and exclude the case of "ignotum per ignotum". The consistency 

of knowledge bases is widely ensured. 

Frames have the necessary strength to represent the required properties. For 

instance KL-ONE is not strong enough to represent a concept hierarchy, where 

an "abelian_group" is a superconcept of "field", since it is necessary to specify 

parameters, relative to which the hierarchic relation holds. Furthermore we can 

choose our slots, that is, primitives for describing concepts in an adequate way. 

We can give (and have given) to the frames a clear semantics, what is important 

if one compares it to the situation of semantic networks, where years after building 

up large knowledge bases the untenability of the approach had to be stated, because 

it was impossible to give a clear semantics for the is-a hierarchy as long as "is-a" 

was used for E and ~. 

Another advantage compared to most other representation formalisms is the 

flexibility of frames, that is, it is easily ,possible to add new features to the frames. 

In particular it will be necessary to add meta-knowledge how to use all this knowl­

edge. The usage of the knowledge in the frames is of course a very difficult problem, 

which will be left to the user for the beginning. Some heuristic information about 

the usage belongs to the concept. How this knowledge can be represented has to 

be cleared in the context of higher problem solving methods like proof planning 

and tactical theorem proving. 

The main disadvantage of the proposed representation formalism is, that struc­

turing, modularization, and classifications must be done by the user. Almost no 

automation can be expected in such a general approach. 
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a definition plus a set of important properties. So we can structure the definitions
and some theorems and need not to  distribute them over the whole knowledge
base. These structuring facilities are not given in mere logic, but are provided by
the frame language.

By the frame approach we can distinguish so—called primitives, that are, ax—
ioms, definitions, and theorems. Everyprimitive has i t s  own s ta tus ,  in  logic we
only have formulae and do  not distinguish between axioms, definitions, and theo~
rems. These are meta-logical features of formulae. Here we have the possibility to
require a special form for definitions, so that they are really definitions and can—
not import any contradictions into a knowledge base. Theorems can be arbitrary
formulae, but  in  contrast to  axioms, they must be  proved in  order to be  used in
the proofs of other theorems. Furthermore we can guarantee that we use only
defined concepts and exclude the case of “ignotum per ignotum”. The consistency
of knowledge bases is widely ensured.

Frames have the necessary strength t o  represent the required properties. For
instance KL—ONE is not strong enough to represent a concept hierarchy, where
an “abelian_group” is a superconcept of “field”, since it is necessary to specify
parameters, relative to  which the hierarchic relation holds. Furthermore we can
choose our slots, that is, primitives for describing concepts in  an adequate way.

We can give (and have given) to  the frames a clear Semantics, what is important
if one compares i t  to  the situation of semantic networks, where years after building
up large knowledge bases the untenability of the approach had to be stated, because
it was impossible to  give a clear semantics for the is-a hierarchy as long as “is—a”
was used for E and ; .

Another advantage compared to most other representation formalisms is the
flexibility of frames, that is, it is easily ‚possible to add new features to the frames.
In particular i t  will be  necessary to  add meta-knowledge how to  use all this knowl—
edge. The usage of the knowledge in  the frames is of course a very difficult problem,
which will be left to the user for the beginning. Some heuristic information about
the usage belongs to  the concept. How this knowledge can be represented has to
be cleared in the- context of higher problem solving methods like proof planning
and tactical theorem proving.

The main disadvantage of the proposed representation formalism is, that struc—
turing, modularization, and classifications must be  done by the user. Almost no
automation can be  expected i n  such a general approach.
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Translations 

Die Mathematik ist nicht nach ihrem Gegen­
stand (etwa: Raum und Zeit, Formen del' inne­
ren Anschauung, Lehre vom Ziihlen und Mes­
sen u. dergl.) zu charakterisieren, sondern, wenn 
man ihren ganzen Umfang erschopfen will, allein 
durch ihr eigentiimliches Verfahren, den Beweis. 

Ernst Zermelo 

So far we presented the means to represent mathematical knowledge and the ar­

gumentation was essentially semantical. Now we want to introduce a calculus for 

theorem proving. In order to prove higher-order theorems mechanically there are 

two options: either to have a theorem proveI' for higher-order logic such as TPS 

(of PETER B. ANDREWS [4]) or to translate the higher-order constructs into cor­

responding first-order expressions and to use a first-order theorem proveI'. Even 

though the first approach is very important and may be the way of the future, we 

follow the second approach because strong first-order theorem provers are available 

today. For that purpose we present translations from different higher-order logics 

to sorted first-order logics, for which strong calculi and theorem provers exist. We 

begin with some general notions for these translations, then we present transla­

tions from the unsorted higher-order logic into many-sorted first-order logics with 

equality and give a sufficient criterion for the soundness of these translations. In 

addition, translations are introduced that are sound and complete with respect 

to HENKIN'8 general model semantics. Finally we generalize these results to the 

sorted case. 

5.1 Example: A common translation of the associativity formula (of page 20)
 
into a first-order logic with equality is:
 

V+ associative(+) {::=::} Vx, y, z apply (+, apply (+, x, y), z) =
 
apply (+, x, apply (+, y, z)) 

Here apply is a new function constant and + an object variable. Although apply is 

interpreted freely it is intended that the interpretation of apply(+,.x,y) is exactly 

the same as the interpretation of the higher-order term x + y. 
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CHAPTER 5

Translations

Die Mathematik ist nicht nach ihrem Gegen-
stand (etwa: Raum und Zeit, Formen der inne—
ren Anschauung, Lehre vom Zählen und Mes-
sen u .  dergl.) zu charakterisieren, sondern, wenn
man ihren ganzen Umfang erschöpfen will, allein
durch ihr eigentiimliches Verfahren, den Beweis.

Ernst Zermelo

So far we presented the means to  represent mathematical knowledge and the ar—
gumentation was essentially semantical. Now we want to introduce a calculus for
theorem proving. In order to prove higher-order theorems mechanically there are
two options: either to  have a theorem prover for higher-order logic such as TPS
(of PETER B .  ANDREWS [4]) or to translate the higher-order constructs into cor-
responding first-order expressions and to  use a first-order theorem prover. Even
though the  first approach is very important and may be the way of the future, we
follow the second approach because strong first-order theorem provers are available
today. For that purpose we present translations from different higher-order logics
to sorted first-order logics, for which strong calculi and theorem provers exist. We
begin with some general notions for these translations, then we present transla-
tions from the unsorted higher-order logic into many-sorted first-order logics with
equality and give a sufficient criterion for the soundness of these translations. In
addition, translations are introduced that are sound and complete with respect
to HENKIN ’S general model semantics. Finally we generalize these results to the
sorted case.

5.1 Example: A common translation of the associativity formula (of page 20)
into a first-order logic with equality is:
V+ associative(+) <=) Vaz,y,z apply(+‚apply(+,x,y),z) =_=

app1y(+‚w‚app ly (+ ‚y ‚  2 ) )

Here apply is a new function constant and + an object variable. Although apply is
interpreted freely it  is intended that the interpretation of apply(+,;c,  y) is  exactly
the same as the interpretation of the higher-order term a: + y.

59
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Another translation, without equality is:
 

'v'+ associative(+) {:::=:} 'v'x,y,z,u,v,w apply(+,x,y,u) /\ apply(+,u,z,w) /\
 
apply (+, y, z, v) ==? apply(+, x, v, w) 

Here apply is a predicate; again it is interpreted freely, although it is intended that 

z is the sum of x and y in apply(+,x,y,z). In other words, different translations 

from higher-order to first-order logic are possible. 

We have the following problems: 

-- What are the conditions that such a translation is correct? That is, if we 

translate a formula and we obtain a tautology, is the original formula a 

tautology too? 

In what sense can such a translation be called complete? That IS, if we 

translate a tautology, do we always obtain a tautology? 

5.2 Example: Consider the following tautology:
 

'v'P, Q (('v'x P(x) ==? Q(x)) /\ 'v'x P(x) ====? 'v'x Q(x))
 

This can be translated into the first-order formula
 

'v'P,Q (('v'x apply(P,x) ==? apply(Q, x)) /\ 'v'x apply(P,x) ==? 'v'x apply(Q,x))
 

This is obviously a tautology again, hence in this case the translation is sound and
 

complete.
 

5.3 Example: Consider the following tautology with function constants f and 'g:
 

'v'x f(x) =g(x) ==? f =9
 

This is a tautology because functions which have the same results for all arguments 

are equal (extensionality). It is translated to 

'v':1' apply(J, x) =apply(g, x) ==? f =9 

But this is not a tautology: by interpreting apply as the projection to the second 

component and f and 9 as different elements we obtain a counterexample. This 

translation is obviously not complete. 

Since the expressiveness of higher-order logic is principally stronger than that 

of first-order, it is clear that if we find a translation from higher-order into first­

order logic, it cannot be complete in general (especially because of the theorem of 

LOWENHEIM-SKOLEM and of GODEL'S incompleteness result). In principle such 

a translation must be equivalent to some set theoretical formulation as stated in 

MOSTOWSKI'S isomorphism theorem [100].* 

*1 would like to thank Heinrich Herre for introducing me to this work of Mostowski. 
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Another translation, without equality is:
V + associative(+) (=> Vx,y,z,u,v,w apply(+,x,y,u) A apply(+,u,z,w) /\

apply(+‚ % 2, v)  =? apply(+‚ w, v, w)

Here apply is a predicate; again it is interpreted freely, although it is intended that
z is the sum of a: and y in apply(+,a:,y, 2). In other words, different translations
from higher—order to  first-order logic are possible.

We have the following problems:

—- What are the conditions that such a translation is correct? That is, if we
translate a formula and we obtain a tautology, is the original formula a
tautology too?

— In what sense can such a translation be called complete? That. is, if we
translate a tautology, do we always obtain a tautology?

5.2 Example: Consider the following tautolo'gy:
VP,Q ((Va: P(:z:) => Q(x))/\V.1: P(m) => Var: Q(:r))
This can be translated into the first-order formula
VP, Q ((Vx arm’s/(P, 91) = amok/(Q, x ) )  A Viv üppig/(P, 3)  => Va: apply(Q‚ w))

This is obviously a tautology again, hence in  this case the translation is sound and
complete.

5 .3  Example: Consider the following tautology with function constants f and vg:

Va: f(x) Eg(x) => f ag
This is a tautology because functions which have the same results for all arguments
are equal (extensionality). It is translated to
Vrf (mph/(f, w) E mal!/(g, w) ==> f 5 9
But  this is not a tautology: by interpreting apply as the projection to the second
component and f and g as different elements we obtain a counterexample. This
translation is  obviously not  complete.

Since the expressiveness of higher—order logic is principally stronger than that
of first—order, i t  is clear that if we find a translation from higher-order into first-
order logic, it cannot be  complete in general (especially because of the theorem of
LÖWENHEIM-SKOLEM and of GÖDEL’S incompleteness result). In principle such
a translation must be equivalent to some set theoretical formulation as stated in
MOSTOWSKI’S isomorphism theorem [100].*

"I would like to thank Heinrich Herre for introducing me to  this work of Mostowski.
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Related Work 

ENDERTON [42] presented a sound and complete translation of unsorted second­

order logic into many-sorted first-order logic. The types of the second-order ex­

pressions are translated to sorts of a many-sorted first-order logic. This will be 

generalized in this thesis to arbitrary higher-order logics. The completeness proof 

for second-order is easier than for the general case, because in second-order logic no 

extensionality axioms are necessary. Furthermore we will extend these translations 

to sorted higher-order logics. 

HENSCHEN [58] developped a method to translate arbitrary higher-order (.\-) 

expressions into a many-sorted first-order logic. He presents a method to modify 

first-order theorem provers so that the comprehension axioms can be handled. His 

translation is not complete. In opposition to this, the translations in this thesis 

treat existing theorem provers as black boxes with the advantage that these can 

be used as they are, but with the drawback that the translation method is only 

well-suited for essentially first-order theorems. 

VAN BENTHEM and DOETS [6] give a translation of a restricted higher-order 

logic without function symbols and without higher-order constants and identities 

into a standard first-order logic. They use the general idea of a translation, and 

show its soundness and completeness. The translation into an unsorted first-order 

logic leads to more complicated formulae than the translation into a sorted version, 

because of the need to relativize quantification with respect to the corresponding 

type. 
I 

The work of HANS JURGEN OHLBACH [107] has had a great influence on our 

translation techniques. He translates modal logics and other non-classical logics 

into a context logic, where contexts are restricted higher-order expressions. These 

contexts in turn are then translated into an order-sorted first-order logic. 

Whereas in all these works one single translation from a source logic into a tar­

get logic is given, we will present in the following a whole class of sound translations 

from a higher-order logic ,en into first-order logic. 

5.1 Logic Morphisms 

Now we shall define the concepts that are necessary to describe the relationships 

between formalizations in different logics. The important concepts are: morphism, 

quasi-homomorphism, and soundness and completeness of amorphism. 
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Related Work

ENDERTON [42] presented a sound and complete translation of unsorted second—
order logic into many—sorted first—order logic. The types of the second-order ex-
pressions are translated to sorts of a many-sorted first-order logic. This will be
generalized in this thesis to arbitrary higher-order logics. The completeness proof
for second—order is easier than for the general case, because in second—order logic no
extensionality axioms are necessary. Furthermore we will extend these translations
to sorted higher-order logics.

HENSCHEN [58] developped a method to  translate arbitrary higher-order (X)
expressions into a many—sorted first-order logic. He presents a method to modify

first-order theorem provers so that the comprehension axioms can be handled. His
translation is not complete. In opposition to  this, the translations in this thesis
treat existing theorem provers as black boxes with the advantage that these can
be  used as they are, but with the drawback that the translation method is only
well—suited for essentially first-order theorems. ‘

VAN BENTHEM and DOETS [6] give a translation of a restricted higher—order
logic without function symbols and without higher-order constants and identities
into a standard first-order logic. They use the general idea of a translation, and
show i ts  soundness and completeness. The translation into an unsorted first-order
logic leads to more complicated formulae than the translation into a sorted version,
because of the need to relativize quantification with respect to  the  corresponding
type.

The work of HANS JÜRGEN OHLBACH [107] has had a great influence on ouir
translation techniques. He translates modal logics and other non-classical logics
into a context logic, where contexts are restricted higher—order expressions. These
contexts in turn are then translated into an order—sorted first-order logic.

Whereas in all these works one single translation from a source logic into a tar-
get logic is given, we will present in the following a whole class of sound translations
from a higher—order logic £"  into first—order logic.

5 .1  Logic Morphisms

Now we shall define the concepts that are necessary t o  describe the relationships
between formalizations in different logics. The important concepts are: morphism,
quasi-homomorphism, and soundness and completeness of a morphism.
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5.4 Definition (Morphism of Logics): Let Fl and F2 be tWb logical systems 

(£W, £~, £n, £~, £E' £/I.l £E,;:, or .cA.;:), then amorphism 8 is a mapping that 

maps the signature Sz:,* of a logic in Fl to a signature of a logic 8(Sz:,) in F2 and 

that maps every formula set in Ft(SE) to a formula set in F 2 (0(SE))'** 

5.5 Definition (Soundness): Let 0 be a morphism from :Fl to F 2 . e is called 

strongly (weakly) sound iff the following condition holds for every formula set f 

in F l : 

if f has a strong (weak) model in :Fl then there is a strong (weak) model of 0(f) 

in F2 • 

5.6 Definition (Completeness): Let 8 be a morphism from F l to :F2 • 8 is 

called strongly (weakly) complete iff the following condition holds for every formula 

set r in F l : 

if 8(f) has a strong (weak) model in F 2 then there is a strong (weak) model of f 

in F l . 

5.7 Definition (Quasi-Homomorphism): Let F l (S£;) and F 2(SfJ be two log­

ics. Amorphism 8 from F l to Fi is called a quasi-homomorphism from :Fl (St) 
to Fz(S'fJ iff the following conditions are satisfied: 

1.	 The sorted signature St = (St, ~t, 511 I;t, c5t} is mapped to a signature Sf = 
(S2,~2,52,1;2,c52) so that, 

1.1	 8(SI) ~ S2, variables are mapped on variables and constants on con­

stants by 8, 

1.2	 8(~1) ~ ~2, sort symbols are mapped on sort symbols by 8, 

1.3	 8(51(X» = e(5t}(8(x» =52(X) for all variables x in Star, 

1.4	 if 1\;r;,IP, then 8(1\;)r;,28(ll), that is, 8(r;,t} ~ r;,2, and 

1.5	 for every term declaration (t : 1\;) in c51 we have that 8(t) and every in­

stantiation of 8(t) has sort 8(K). Especially we have for every constant 

c of sort I\; in SI that 8(c) has sort 8(1\;) in S2' 

2.	 For a.ll composed terms: if J(tt, .. . ,tm ) is a term of F] (SI) of sort K, then 

8 (J(t l , ... , tm » = 0 (8(J), G(tl)"'" 8(tm » is a term of sort 8(K) with 

_.{a(at, ... ,am) orO( a, at, ... , am ) ­
aa(a,al, ... ,am ) 

*As seen in remark 3.46 we obtain unsorted logics as special cases of sorted logics. 
** A formula is considered as a formula set with one element. Especially we write e(<p) instead 

of e( {<p}). 
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5.4 Definition (Morphism of Logics): Let .71 and fg be two logical systems
(C”, ‚C‘g, £" ,  Lg,  %, X, LEE, or 57,15), then a morphism G) is a mapping that
maps the signature 52* of a logic in .771 to  a signature of a logic 9(52)  in fg and
that maps every formula set i n  f1(82) to  a formula set i n  F2(9(52)).**

5.5 Definition (Soundness) :  Let @ be a morphism from fl to ‚7:2. @ is called
strongly (weakly) sound iff the following condition holds for every formula set I‘
in  fl :

if I‘ has a strong (weak) model in ‚7:1 then there is a strong (weak) model of @(I‘)
in  .772.

5.6 Definition (Completeness):  Let @ be a morphism from ‚7:1 to  .772. ® is
called strongly (weakly) complete iff the following condition holds for every formula
set I‘ in  fl:

if ®(T‘) has a strong (weak) model in fg then there is a strong (weak) model of P
in f} .  .

5.7 Definition (Quasi-Homomorphism): Let f1(8§) and f2(8§) be two log—
ics. A morphism 0 from f} to ‚7:2 is called a quasi-homomorphism from .71(5§)
to  $2059 ifi‘ the following conditions are satisfied:

1 '  The sorted signature 5:1: = (81, 21 ,51 ,  L31, 51 )  is mapped to  a signature 8% =

(82; 22 ,52 ,  E2, 62) so that ,

1.1 9 (81 )  g 52, variables are mapped on variables and constants on con—
stants by (“),

1.2 (')(El) 9 22,  sort symbols are mapped on sort symbols by @,

1.3 6(51(a:)) =_ @(51)(®($)) = 52(m) for all variables a; in Sf",

1.4 if n i l  p, then @(n) C2 (")(”), that is, 00:1) _C_ Q2, and
1.5 for every term declaration (t : K,) in 51 we have that @(t) and every in—

stantiation of 9 ( t )  has sort (9(a). Especially we have for every constant
c of sort K: in 81 that O(c) has sort @(Is) in 82.

2. For all composed terms: if f(t1, . . . ‚tm) is a term of 371(81) of sort It, then
®(f(t1, . . . ‚tm)) = 0 (@(f), ®(t1), . . . , ®(tm)) is a term of sort 9(5) with

- a(a1, . . . ‚am) or
0(a,a1,...,am) : a“(a a1 am)a 7°“ ,

*As seen in remark 3.46 we obtain unsorted logics as special cases of sorted logics.
**A formula is considered as a formula set with one element. Especially we write ®(cp) instead

of 9({¢} ) -



Translations 

The a have to be chosen appropriately out of S2: they have to be new, 

that is, there is no element e of S/: with aa = 8(e). The choice of the above 

depends only on the type of a, the symbol aa must respect the corresponding 

sorts of a,a!, ... ,am' (a stands for apply.) 

3.	 For all formulae 'fJI, <.p2 and for all variables x: 

3.1 8(<.p1/\ <.p2) = 8(<.p1) /\ 8(<.p2) 

3.2 8(-.cp) = -.8(<.p) 

3.3 8(Vx<.p) = V8(x)8(<.p) 

5.8 Remark: The choice in () provides a flexibility in translating from one into 

another logic. In particular we can choose different apply-functions although it 

would be possible to take the same. Thereby we can exclude certain instantiations 

in the target logic, but loose completeness in general. Which case we choose in () 

depends on the type of the first element, not on the element itself. 

5.9 Definition (Injeetivity): A quasi-homomorphism 8 from F 1(S/:) to F 2 (S'f,) 

S~ = (Si,~i,5i,~i,6d (i = 1,2) is called injeciive iff 

1. for all elements et, e2 of the signature S1 holds: if 8(e1) 

. 
2.	 for all sort symbols /\', fJ in ~1 holds: if 8( /\,) = 8(fJ), then /\, = fJ, 

3.	 for all x in Srr holds: if 52(8(x)) = 8(/\'), then 51(X) = /\',* 

4. for all sorts /\', fJ in F 1 holds: if 8(/\') ~2 8(fJ), then /\, ~1 fJ, and 

5.	 for all terms t and all sorts /\, in F 1 holds: if 8(t) is of sort 8(/\'), then t is of 

sort /\'. 

5.10 Remarks: 

- We have excluded as quasi-homomorphism those mappings that map a for­

mula like P(a) on a formula P(a,a). That is, arguments cannot be doubled. 

We could allow this without losing anything essential in the sequel, but 

the proofs would become more tedious, without gaining really in expressive 

power. 

*This holds trivially by the definition of a quasi-homomorphism. 
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The a have to  be chosen appropriately out of 82: they have to  be  new,
that is, there is no element 8 of 8%; with a“  = @(e). The choice of the above
depends only on the type of a ,  the symbol a“  must respect the corresponding
sorts of a,a1, . . . ‚am. ( a  stands for apply.)

3. For all formulae (php; and for all variables x:

3-1  9(901 /\ (.02) = 90/91) A 9(902)

3-2  ®(“‘P) = “®(‘P)
3.3 9(Vmgo) = VG(:1:)®(90)

5 .8  Remark: The choice in 0 provides a flexibility in translating from one into
another logic. In particular we can choose different apply-functions although it
would be  possible to  take the same. Thereby we can exclude certain instantiations
in the target logic, but loose completeness in general. Which case we choose in 0
depends on the type of the first  element, not on the element itself.

5.9 Definition (Injectivity): A quasi-homomorphism G from f1(8§) to .772(8§)
S}; = (852.355, Ehöi) (i = 1,2) is called injective iff

1. for all elements 61 ,62  of the signature 81 holds: if 6 (e1)  = 6(62),  then
el = 82,

2. for all sort symbols 19,1» in 21 holds: if @(K) = @(p), then K, = ‚u,

3. for alla: in Sf“ holds: if 52(®(x)) = 9(19), then „($) = „:
4. for all sorts- re,” in .71 holds: if 90:) i z  ®(p), then mil ‚1, and

5. for all terms t and all sorts K! in }] holds: if ®(t) is of sort (“)(/€), then t is of
sort n .

5 .10  Remarks:

— We have excluded as quasi-homomorphism those mappings that  map a for—
mula like P (a )  on a formula P(a ,a ) .  That is, arguments cannot be doubled.
We could allow this without losing anything essential in the sequel, but
the proofs would become more tedious, Without gaining really i n  expressive
power.

"This holds trivially by the definition of a quasi—homomorphism.
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- If we translate into a first-order logic, the first c~se for O(a, al, ... , am) can 

only be chosen if there is no quantifier on a. 

In the following we presuppose the existence of a sound and complete calculus 

for order-sorted first-order logics as it has been developed for example by MAN­

FRED SCHMIDT-SCHAUSS [117]. 

The following theorem elucidates our special interest in sound quasi-homomor­

phisms. It states the basic idea of the whole translation approach. 

5.11 Theorem: If 8 is a strongly (weakly) sound quasi-homomorphism from .cn 

to .cL f- the derivability relation induced by a sound calculus of .cL r a formula 

set and <p a formula in.cn with 8(r) f- 8(<p), then r t= <p (resp. r 1= <p). 

Proof: Because of 8(r) f- 8(<p) we have that 8(r) U { -,e(<p)} is unsatisfiable. 

Because of homomorphy in -, there is no model of 8(ru{ -'<p} ). Hence by soundness 

there is no model of r u { -'<p}. In other words every model of r is a model of <po 

Because of theorem 3.19 this conclusion holds for both strong and weak models . 

• 

5.2 Translations of Unsorted Higher-Order Logic 

In the following we are interested in translations into .cl or ..cl, because there are 

well-known complete calculi and strong theorem provers for these calculi. If we 

find a sound translation the theorem above guarantees that proofs of a translated 

problem in ..cl or .cl are also proofs for the original problem. Strong completeness 

of such a translation is not obtainable because of GODEL'S incompleteness result, 

but a priori nothing speaks against weak completeness, that is, there might be 

r	 amorphism e from ..cn to ..cl such that, if r 1= <p then 8(r) f- 8(<p) in ..cl . 
.cl is not really appropriate as the target logic for a translation, but a sorted 

version .cl is preferable, because in .cl it is not necessary to relativize the type 

information; hence these translations are structure conserving and the proofs can 

easily be mapped back. For a direct translation into £1 see BENTHEM and DOETS 

[6, p.316-320]. 

5.2.1 A Sufficient Criterion for Soundness 

In this section we give a sufficient critei"ion for the soundness of translations of 

formulae of .cn into formulae of .cl, which is strong enough to cover most require­

ments. In addition we give an example for such a sound translation. 
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— If we translate into a first-order logic, the first case for 0(a,a1, . . . ‚am) can
only be  chosen if there is  no quantifier on a .

In the following we presuppose the existence of a sound and complete calculus
for order—sorted first—order logics as i t  has been developed for example by MAN-
FRED SCHMIDT—SCHAUSS [117].

The following theorem elucidates our special interest in sound quasi—homomor—
phisms. It states the basic idea of the whole translation approach.

5.11 Theorem: If 6) is a strongly (weakly) sound quasi-homomorphism from £"
to L i ,  l- the derivability relation induced by a sound calculus‘of ‚Ci, I‘ a formula
set and (,0 aformula in £" with ®(I‘) l- ®(<p), then I‘ E cp (resp. I‘ [= cp}.

Proof: Because of ®(I‘) l- 9(<p) we have that 9(1‘) U {-19((,o)} is unsatisfiable.
Because of homomorphy in “1 there is no model of 9(I‘U {—Igo}). Hence by soundness
there is no model of I‘ U {-190}. In other words every model of I‘ is a model of cp.
Because of theorem 3.19 this conclusion holds for both strong and weak models.

.

5.2  Translations of  Unsorted Higher-Order Logic

In the following we are interested in translations into L‘ or £}, because there are
well-known complete calculi and strong theorem provers for these calculi. If we
find a sound translation the theorem above guarantees that proofs of a translated
problem in LI or EX are also proofs for the original problem. Strong completeness
of such a translation is not obtainable because of GÖDEL’S intompleteness result,
but a priori nothing speaks against weak completeness, that is, there might be
a morphism G) from C” to  E l  such that, if I‘ I: cp then ®(I‘) l- O(<p) in Cl .
£1 is  not really appropriate as the target logic for a translation, but a sorted
version Ck is preferable, because in EX it  is not necessary to relativize the type
information; hence these translations are structure conserving and the proofs can
easily be  mapped back. For a direct translation into C l  see BENTHEM and DOETS
[6, p.316—320].

5 .2 .1  A Sufficient Criterion for Soundness

In this section we give a sufficient criterion for the soundness of translations of
formulae of £"  into formulae of ‚CK, which is strong enough to cover most require—
ments. In addition we give an example for such a sound translation.
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5.12 Theorem: lfe is an injeetivequasi-homomorphismfrom £n(s) to £1(S'), 

then e is weakly sound. 

Proof: The proof consists of five steps. In the first step we introduce the basic 

notions, in particular a formula set r in £n(s) and an arbitrary model M = 

({l'-r}n.1) of r. In the second step we construct out of the frame fDr}r a new 

one. The individuals of this frame consist of the sets VE>(r) for T =J. o. We complete 

these sets to a frame by closing it as in theorem 3.19. The proper idea is to view the 

elements of 1Jr even for higher-order T as individuals with additional properties.-In the third step we define an interpretation function .1. For all constants c in 

S we define .1(8(c)) := .1(c). For ,the new constants aa we define .1(aa) as 

the application of the first argument to the rest. In the fourth step we show by 

induction on the construction of terms, that the quasi-homomorphism property is-compatible with the model property. Formally we show Vr 0 e = V(l. In the
 

fifth and last step we use this property to show that M is a model of 8(r).
 

S t e p 1:
 

Let M be a weak model of a formula set r in £n(s), then M is equal to ({1Jr}r,.1)
 
for a frame {1Jr }r and an interpretation function .1. M is a weak model for any
 

r.p out of r, that is, Vt' (r.p) = T for every assignment e. We are going to construct 

a model M out of M and show that M is a model of e(r.p). In the sequel we 

abbreviate 8(T) to T for all types T. 

S t e p 2:
 

\Ve define the sets Vr := 1Jr for all types T in £n(s). Note that the T are types
 

and hence in particular they are sorts, which are mapped on sorts in £1. All the
 

T are sorts of type t. For all sorts of £1, which are not in the image of 8 (if there
 

are any), we can define the corresponding universe in an arbitrary way, since the
 

corresponding symbols do not occur in 0(r), for instance we can choose them all
 

as V"" = {e}, the same singleton set.
 

The function universes and predicate universes are defined for all K, = (K,1 X ... X
 

K,m -+ Jl) by V"" = F(V""l' ... ,V""m; V/L), where the K,i are arbitrary sorts of type
 

t and Jl is a sort of type t or o. All these V"" form our frame. Since we map
 

to first-order, we have no sorts of s~cond or higher order, so we have defined the
 

frame {V""}",, completely.
 

S t e p 3:
 

In this step we define the interpretation function :r - in order to complete the
 

definition of an interpretation ({V""}",,, .1).
 

Translations 65

5.12 Theorem: If ® is an injective quasi-homomorphism from £"(8)  to EMS' ),
then 6) is weakly sound.

Proof: The proof consists of five steps. In the first step we introduce the basic
notions, in particular a formula set I‘ in £"(S) and an arbitrary model M =
({D‚}„ , J )  of I". In the second step we construct out of the frame {DT}T a new
one. The individuals of this frame consist of the sets  fie”) for 7' % 0. We complete
these sets to a frame by closing it as in theorem 3.19. The proper idea is to view the
elements of D, even for higher-order T as individuals With additional properties.
In the third step we define an interpretation function ff For all constants c in
8 we define (‚f(®(c)) :: J ( c ) .  For the new constants a“  we define f(a“) as
the application of the first‘ argument' to the rest. In the fourth step we show by
induction on the construction of terms, that the quasi-homomorphism property is
compatible with the model property. Formally we show V2]? 0 C") = V5“. In the

fifth and last step we use this property to show that M is a model of ®(I‘ )

Step  L

Let M be a weak model of a formula set I‘ in £"(S), then M is equal to ( {D,}, J )
fOr a frame {D,}T and an interpretation function J. M is a weak model for any
go out of P, that is, VeMOp) = T for every assignment E . We are going to construct
a model M out of M and show that M is a model of ®(<p). In the sequel we
abbreviate 0(7‘) to i" for all types T.

S t e p 2:
We define the sets 73; := D, for all types 7' in £" (8 ) .  Note that the 7' are types
and hence in particular they are sorts, which are mapped on sorts in Eh. All the
7"- are sorts of type [„ For all sorts of 5%, which are not in the image of G (if there
are any), we can define the corresponding universe in an arbitrary way, since the
corresponding symbols do not occur in 90"), for instance we can choose them all
as fin = {6}, the same singleton set. ,
The function universes and predicate universes are defined for all n = (m  x - - - x
mm —> p) by 5,; = f (fiq,  . . . ‚73%; 15“), where the Is.- are arbitrary sorts of type
1. and ‚u is a sort of type L or o. All these 13K form our frame. Since we map
to  first—order, we have no sorts of second or higher order, so we have defined the
frame {13,35 completely.

Step  3:

In this step we define the interpretation function if in order to  complete the
definition of an interpretation ({Ödmff).
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For all constants e of type 7 in S we define .l(8 (e)) := .:J(e). This mapping is
 

well-defined, because 8 is injective. In addition, we have that 8(e) is of sort T,
 

so th?-t J(8(e)) must be an element of i>r, which is so, because :l(c) E V r and
 

Vi = Vr.
 

:F(V

Then we define the interpretation function !i for the new constants oa. Let
 

a = 8(J) and f be of type 7 = (71 X ... X 7 m -t 0-), then oa must have the
 

sort I\, = (T X Tl x ... x Tm -t u). Hence we must map it to an element of
 

V", = :F(Vi ,V il , .. . ,Vim; Vii)' We do that by defining j(oa)(x, Xl,'" ,xm ) =
 

x( Xl, ... ,xm ) for all X E Vi and all Xi E Vf ;. This is well-defined since Vf =V r ~
 

Tl , ••• ,Drm ;Du) = :F(Vfl , .•. , Vfm;Vu), hence X is a function of the required
 

sort and the range sort is the range sort of oa.
 

For all other constants e of sort I\, we choose !iCe) as an arbitrary element out of
 

V",. Since these elements do not occur in 8(f), it does not matter how they are
 

interpreted.
 

S t e p 4:
 

In this step we show that for every assignment [ in M there is an assignment ~ in
 

M, so that for all terms (and hence all formulae) t we have: V.:f 0 8(t) =Vt'(t).
 

Let [be.:n arbitrary assignment in M. We define ~ as ~(x) = [(8(x)). Now we ­


prove Vr 0 8 = Vf by induction on the construction of terms and formulae.
 

For terms we have:
 

Tl	 For all variables Xn VF(8(xr)) = [(0(xr )) d~ ~ ~(xr) = Vf(xr). 

T2	 For all constants C Vf(8(cr)) = !i(8(cr)) de:t/ :l(cr ) = Vt'(cr ).n 

1':3	 For all composed terms that start with an m-ary function term f with a = 
ey) so that D(a, e(td, .. '.2-8(tm)) is defined as a(0(tl ), ... , 0(tm)) we have: 

Vt'(8(J(t l , ... , tm))) = V.:f CD (8(J), 8(td,· .. , 0(tm))) = 

V?(8(J)(0(it), ... , 8(tm ))) ~ V~(8(J))(VF8(tl)"'" V~e(tm)) In~yp 
~ ~ e e
 

Vt'(J)(Vt' (t l ), ... ,Vt'(tm)) =
 
Vt'(J(tl, ... , tm)). 

T4	 For all composed terms that start with an m-ary function term f with a = 

8(J) so that D(a, e(tl ), ... , 8(tm)) is defined as oa(a, 8(td, ... , 0(tm)) we 

have: 

Vf(8(f(t ll ... , tm))) = Vf(D(8(f), 8(td,···, 8(tm))) =
 
VF( Qa(8(J), 8(td,· .. ,8(tm))) ~
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For all constants c of type T in 8 we define f(6(c))  :=  J (c ) .  This mapping is
well-defined, because ® is injective. In addition, we have that (-)(c) is of sort 7‘,
so that j(®(c)) must be  an element of @,  which is so, because ‚_7(c) € D, and
13. = D..
Then we define the interpretation function .? for the new constants a“ .  Let
a = ®(f )  and f be of type T = (7-1 x x rm —-> a) ,  then a“ must have the
sort & = ( ?  x 7‘1 x >< 7",n —-> &). Hence we must map it to an element of
13,.z = f (ÖT- ‚Ö ; „ . . . ‚fi ;m ;fiä ) .  We do that by defining f ( a ° ) (m‚w1 , . . . ,mm)  =
x(x1‚ . . . ‚mm) for all x 6 ’13; and all 2:,- E 13;... This  is well—defined since 13; = D, (_:

f(D„ , . . . ‚DM; D.,) = .7-‘(1’21 , . . . ,fifm; 5 ; ) ,  hence x is a function of the required
sort and the range sort is the range sort of a“ .

For all other constants c of sort fs: we choose f(c) as an arbitrary element out of
Ö... Since these elements do not occur in @(F), it does not matter how they are
interpreted.

S t e p 4:

In this step we show that for every assignment 5 in fi there is an assignment € in
M,  so that for all terms (and hence all formulae) t we have: V?" o 9 ( t )  =))?“ (t)

Let Ebe  an arbitrary assignment in A7. We define £ as {(w) = E(G)(:c)). Now we
prove V244 0 G) = VCM by induction on the construction of terms and formulae.

For terms we have:

T1 For all variables w„ Vg(9(x,))  = g(®(:c.‚.)) d i e  {(567) = iii/“(%).

T2 For all constants c., vg4\(e(c.)) = f(®(c.)) “=3 .7(cf) = V3367)-

T3  For all  composed terms that start with an m—ary function term f with a :
eg) so that 0(a, 0(t1), . . 390m» is defined as a(6(t1), . . . ,  ®(tm)) we have:
V£A(®( f ( t1 ‚ - -  - ‚tm))) = V£‘ (9 (@(f ) ‚  901 ) ,  - - -,9(tm))) =
v?(®(f)(e(t1>.... .eumm“ä V?(e(f))(vg%(t1>‚....vg’feumn“‘?”
V€‘( f ) (Vé“( t1 ) ‚ - - - ‚Vé“( tm) )  =
Vg“(f(t1, . . . ,tm)).

T4 For all composed terms that start with an m—ary function term f with a =
@(f) so that 9(a,@(t1), . .  . ,  6(tm)) is defined as a“(a,®(t1), . .  .‚®(tm)) we
have:

imma. . . . ,tm») = 1257mm, em), . . . , @(tmm =
Véw(aa (e ( f ) ‚  @( t l ) ,  . . . ‚ ( ) ( tmD)  (i—if
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VF(aa)(V~8U), V~8(h), ... ,Vf'8(tm)) In~YP 
e e e <" ~ 

J(aa)(vttu), vtt(t1 ), ..• , Vtt(tm)) dei...7 vttU)(Vt(h), ... ,vtt(tm)) = 

vtU(tI, ... ,tm )). 

For formulae we get: 

Fl	 An atomic formula is a special term, hence we have already proved the 

required property above. 

F2 For a conjunction we have: 
- - - - Indh

Vt'(8(ipl/\ ip2)) = Vt'(8(ipl) /\ 8(ip2)) = Vt'(8(ipl)) /\ Vt'(8(ip2)) =YP 

Vtt(ipl) /\ Vt(ip2) = Vt(ipl /\ ip2)' 

F3	 For a negation we have:
 

Vf( E>( -,r.p)) = Vf( -,8(ip)) = ,,-'Vf( E>(ip)) In~yp -,Vr (ip) = Vr (-'r.p).
 

F4	 For a quantification we have:
 

Vf(8(VxTip)) = Vf(VxrE>(ip)) = Vd E VfV~T<-d)(E>(ip)) =
 
Vd E 'DTV~(XT) ....d)(E>(ip)) IndJYPVd E 'DTVXT ....dj(ip) = Vr(VXip). 

Here we use that foE> = ~. for all assignments and hence f[8(x T ) - d] 08 = 
~[XT - d]. 

Hence we have shown that Vf 0 E> = Vr holds for all formulae. 

S t e p 5: 

Now we use this property to show that M is a model of 8(f). Let ip be an 

arbitrary formula in r. We have to show that M is a model of 8(r.p). Let f be 

an arbitrary assignment in M and e be defined as f 0 8, then we can conclude 

if vtt (ip) = T for all assignments ein M, then this relation holds especially for 

e= e, so we get VF( E>(r.p)) = T for all assignments f in M, hence M is a mode; 

of 8(r.p). • 

5.13 Theorem: If 8 is an injeetive quasi-homomorphism from .en(S) to .el(S'), 
then 8 is strongly sound. 

Proof: If there is a strong model of a formula set r in .en(S) then this model is 

also a weak model. By the previous theorem there is hence a weak model of 8(r) 

in .cl(S'). By a sorted version of theorem 3.19 there is also a strong model of 

8(f). • 
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V§<a“><V§6(f>.v§e(m, . . . , vga‘eum» he”

?WW?” ” W501), - - „Wann  “!=” V?‘(f)(V<M(t1)‚.„‚Vé“(tm)) :
V§M(f ( t1a  ° - - , im» .

For formulae we get:

F l  An atomic formula is a special term, hence we have already proved the
required property above.

F2 For a conjunction we have: A A

metal A 992» = mew A atom = vgwawm A weeps) "“?”
VEM(901)/ \  WWW) = VeMWI /\ 902)-

F3 For a negation we have:
A A " Ind. .vg‘mw» = alfa—‘em) = ?Vf‘(@(so)) =“? www) = mw).

F4 For a quantification we have:
vswww» = vgflvßew» = Vol 6 fifvgjwwwn =

A Ind.)!Vd € DTV£)($T)_Q(®(QD)) =“) Vd € DTV£T_d](<p) = Vg“(Vmcp).

Here we use that go  G = € for all assignments and hence €[e(z.‚) <— d] o @ =
{[zur (— d].

Hence we have shown that V? o (") = VéM holds for all  formulae.

S t e p 5:
Now we use this  property to  show that  fix? is  a model of @(I‘). Let cp be  an
arbitrary formula in  I‘. We have to show that KZ is a model of @(cp). Let E be
an arbitrary assignment in A7 and {’ be defined as E 0 ®, then we can conclude
if V3480) = T for all assignments { in M,  then this relation holds especially for
{ = E', so we get V§(G(<p)) = T for all assignments E in  KZ, hence Ü is a model
of @(cp). I

5.13 Theorem: IfO is an injective quasi-homomorphism from E"(S) to CMS"),
then G) is strongly sound.

Proof: If there is a strong model of a formula set I‘ in £"(5)  then this model is
also a weak model. By the previous theorem there is hence a weak model of (-)(l‘)
in EMS’). By a sorted version of theorem 3.19 there is also a strong model of
@(I‘). I
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5.14 Example: Let us see how to translate the predicative definition of a group 

into first-order logic. We drop the type information for readability, group is of 

type (~ X (t X t X l -+ 0) -+ 0), G of ty£e t, + of type (t X t X t -+ 0), - of 

type (l X t -+ 0), and so on. (In the translation to first-order logic these types are 

transformed into the sorts ("l", "(l x l X l -+ 0)") for group, and so on.) A group 

can be defined as follows*: 

1. VG, + group(G, +) ~ associative(G, +)	 1\ 

30	 (0 E G 1\ neutraLelement(G,+,O) 1\ 

:3- inverse(G,+,O,-)) 

2. VG, + associative(G, +) ~ 

Vu,v,w,x,y,z	 u,v,w,x,y,z E G 1\ +(x,y,u) 1\ +(u,z,w) 1\ 

+(y,z,v) ==} +(x,v,w) 

3. VG, +, ° neutraLelement(G, +,0) {::::::} "'Ix x E G ===?
 

+(X,OlX) 1\ +(O,x,x)
 

4.	 VG,+,O,-"inverse(G,+,O,-) ~ Vx,y x,yEG 1\ -(x,y)==}
 

+(x, y, 0) 1\ +(y, x, 0)
 

This formula set is a subset of £3. Now we give a translation into a formula set of 

'cl. The signatures are obvious, hence omitted. The translation is sound, because 

it is an injective quasi-homomorphism. We choose the aa so that they depend 

only on the type of their arguments and write the sort of the first argument as a 

string of the corresponding type, that is, 8(l X l -+ 0) is written as ,,( l x l -+ 0)". 

1. VG, + group(G, +) ~ associative(G, +)	 1\ 

:30	 (0 E G 1\ neutraLelement(G, +, 0) 1\ 

:3 - inverse(G, +, 0, -)) 

2. VG,+ associative(G,+) {:::::? Vu,v,w,x,y,z u,v,w,x,y,z E G 1\ 

a"(tXtXt-+o)"(+,x,y,u) 1\ 

a"(tXtXt-+o)" (+, u, z, w) 1\ 

O! "(tX tX t-+o) 11 ( +, y, z, v) ==} 

o:"(tXtXt-+o)" (+, x, v, w) 

3. VG,+,O neutraLelement(G,+,O) ~ "'Ix	 x E G ==} 

a" (t X tX t-+o)" (+, x, 0, x) 1\ 

a"(tXtXt-+o)" (+,0, x, x) 

*We write in this example simply x, yE G instead of x E G 1\ yE G. 
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5.14 Example: Let us see how to translate the predicative definition of a group
into first—order logic. We drop the type information for readability, group is  of
type(Lx(L><L><L—)o)—->o) ,Gof tyEeL‚+of type(LXL><L—+o)‚—of
type (L x L —+ 0), and so on. (In the translation to  first-order logic these types are
transformed into the sorts ("L", "(L x L x L _» a)") for group, and so on.) A group
can be defined as follows":

1. VG, + group(G, +)  (==> associative(G, + )  A
30 (0 E G A neutral_element(G,+,0) A

3 — inverse('G‚+,0, ——))

2. VG,+ associative(G,+) (=>
Vu,v ,w ,a : , y , z  u ,v ,w ,w ,y , zEG A +(x ,y ’u )  A +(u , z , 'w)  A

+(y,z ,v)  => +(a:,v‚'w)

3. VG,+,0 neutral_element(G,+,0) <=} Va: :1: € G==>
+(z,0,a:) A +(0,$,$)

4. VG,+,0,—‘»'in'verse(G,+,O,—) (=> Vw,y a:,y GG A —(a:‚y)==>
‘+(:c,y,0) A +(y,:z:,0)

This formula set is a subset of £3 .  Now we give a translation into a formula set of
Ck. The signatures are obvious, hence omitted. The translation is sound, because
i t  is an injective quasi-homomorphism. We choose the a“  so that they depend
only on the type of their arguments and write the sort of the first argument as a
string of the corresponding type, that is, ®(L X L —+ o) is written as "(L x L —-+ o)".

1. VG,+ group(G,+) <=ä associative(G, + )  A
30 (0 E G A neutral-element(G,+‚0) A

3— inverse(G,+,0,—))

2. VG,+ associative(G,+) (=>Vu‚v‚w,a:‚y,z u,v ,w,m,y ,z  E G A
a" ( l ‚XL—r0)" (+ ,$ ‚y ’u )  A

a"(‘x"‘""°)"(+,u,z,w) A
a"(LXLXL-*0)"(+,y’  2 ,  v )  :::}

a" (LXLXL—+o)" (+ ,x ,v ,w)

31 VG,+,0 neutral_element(G‚+,Ö) (=> Vac a: € G ==>
a"(°’“"‘“’°)"(+,x,0,z) A
a"(‘x‘x‘"’°)" (+,  0, :v, m)

*We write in this example simply a:, g E G instead of a: E G A y e G.
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4. VG,+,O,- inverse(G,+,O,-) ~Vx,y x,y E G /\ 
l(tXt .....O)" ( ) ----' ­a -,x,y ---T 

a" (tXtXt	 o) 11 (+,x,y,O) /\ 

a" (tXtXt	 o) 11 (+, y, x, 0) 

This translation is clumsy, because we do not use equality; a translation with 

equality can be found under example 5.29 below. 

5.15 Remark: Note that the formulae that are obtained by these translations are 

not essentially more complex than the original, as the structure of the formulae 

(number and position of quantifiers and junctors) is respected. In the image the 

terms are never more nested than in the original. The only thing that can change, is 

that the number of arguments in a term is increased by one. The following theorem 

is important for lifting back a the proof of a translated first-order theorem to a 

proof in higher-order logic. 

5.16 Theorem: If8 is a quasi-homomorphismfrom£n(s) to£l(8(S)U{aa}), 

then 8 is surjeetive. 

Proof: This follows immediately from the quasi-homomorphism property. • 

5.17 Remark: As important as it is to find a proof as important it is to be 

able to communicate it. Of course it is very desirable to present the proof in the 

language, which has been input by the user, because he is familiar with it. If 

we have a first-order proof procedure, which produces a proof, for instance as a 

sequence of formulae, the final proof can be translated back into higher-order logic, 

because the mappings e are all bijective. In other words if we have a first-order 

calculus then this calculus provides a calculus for £n by 8-1 . Sureiy this cannot 

solve all problems of proof presentation (for some literature on proof presentation 

see page 108), but it shows that the translation method is well compatible with 

these methods. 

5.2.2	 The Standard Translation From Unsorted Higher­

Order Logic to Sorted First-Order Logic 

Now we want to define morphisms <I>n from.e n to £t: which are not only sound but 

also complete. We define the morphisms for odd n, for even n they are obtained as . 

the restriction of the next higher odd n, that is <I>2n := <I>2n+l 1.c2n. The morphisms 

<I> are defined for fOlmulae as <I>(cp) = w(cp)U3a , where W is a quasi-homomorphism 
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4. VG,+,O, — inverse(G,+,0, _)  (==> V$,y m,y E G /\

a" (LXL_’O)„ (—’$’  y)  =>

a"(‘x‘x‘_’°)"(+,x,y,0) A
a"( ‘x‘x" ' ° )" (+ ,y ,a : ,0 )

This translation is  clumsy, because we do not use equality; a translation with

equality can be found under example 5.29 below.

5.15 Remark: Note that the formulae that are obtained by these translations are
not essentially more complex than the original, as the structure of the formulae
(number and position of quantifiers and junctors) is respected. In the image the
terms are never more nested than in the original. The only thing that can change, is
that the number of arguments in a term is increased by one. The following theorem
is important for lifting back a the proof of a translated first-order theorem to a
proof in higher-order logic.

5.16 Theorem: IfG is a quasi-homomorphism from £"(8) to £},(9(8) U {a°}),
then @ is surjective.

Proof: This follows immediately from the quasi—homomorphism property. I

5 .17  Remark: As important as i t  is t o  find a proof as important i t  is t o  be
able to communicate it. Of course i t  is very desirable to present the proof in the
language, which has been input by the user, because he is familiar with it. If
we have a first-order proof procedure, which produces a proof, for instance as a
sequence of formulae, the final proof can be translated back into higher-order logic,
because the mappings G) are all bijective. In other words if we have a first-order
calculus then this calculus provides a calculus for C” by 9 ' 1 .  Surely this cannot
solve all problems of proof presentation (for some literature on proof presentation
see page 108), but it shows that the translation method is well compatible with
these methods.

5.2 .2  The Standard Translation From Unsorted Higher-
Order Logic to  Sorted First-Order Logic

Now we want to define morphisms <I>n from £"  to  £115 which are not only sound but
also complete. We define the morphisms for odd n ,  for even n they are obtained as '
the restriction of the next higher odd n ,  that is (D2,, :=  <I>2n+1 |L2n. The morphisms
<I> are defined for formulae as <I>(cp) = \Il(<p)UEo„ where @ is a quasi-homomorphism
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and 2 a are special extensionality axioms for the a (compare remark 3.20). In the 

following we drop the index- n. Again we abbreviate apply as a. 

5.18 Definition (Standard Translation <P2n-d: Let S2n-1 = UT ST = UT s~onst 

UUT s~ar be the signature of a logic in £2n-1. In order to define a morphism <I> 

to £t=, we have to define the signature SE of the target logic and we have to fix 

how formulae are mapped. 

Let SE be equal to (S,"E, 5, l;, 6) 

1.	 At first we define S. Let S = UT s~onst U UT S~ar. S is the union of the 

following sets: 

(a) s~onst = U s~onst 
ord(T)<n 

(b) S(tO;'~~Xt->t) = {aT Iord(r) < n 1\ r = (r1 X •. , X rm -+ 0"),0" f= o}--...-.-­
m 

sconst - U sconst U( ) (tx ... Xt->o)­C	 T 
'-...-.' ord(T)=n
 

m aritY(T)=m
 

{aT Iord(r) < n 1\ r = (r1 x ... x rm -+ o)} 

with elements aT which are new, that is, which do not occur in S. In 

addition, for m = 2 we have in S(tO;:':""o) the equality sign =. 
(d) s~ar = Us~ar, 

T 

2.	 "E is defined as the set 

{T I ord(r) < n} U 

{(T X T1 X .•. x Tm -+ er) I r = (r1 X .•• x rm -+ 0") 1\ ord(r) < n} U 

{(Tt x ... X Tm -+ 0) I r = (r1 X ... X rm -+ 0) 1\ ord(r) = n} 

The function - must map r injectively to new names. We can realize this 

funct.ion for instance by mapping the type to the string consisting of the 

type, that means, (l X l -+ l) is mapped to 11 (l X l -+ l) ", what is viewed as a 

primitive and not as a composed object. Instead of 0 we often shortly write 

o. 

3.	 5 is defined for variables <I>(x T ) with T = (T1 X .•. X Tm -+ 0") as 

s(<I>(x )) =	 for ord(r) < n 
T 

{T
(Tt	 x ... x Tm -+ er) for ord(T) = n 

4.	 ~ is defined as 

(a) T~l for all r with ord(T) < n. 

(b) (Tt x ... x Tm -+ er) ~(l X •.• X l -+ l) for 0" f= o. 
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and Ea are special extensionality axioms for the (1 (compare remark 3.20). In the
following we drop the index-n. Again we abbreviate apply as a .

5.18 Definition (Standard Translation <I>2„_1): Let 5271-1 = UT 8, = U, Sim"
UUT 8:” be the signature of a logic in [?"—1. In order to define a morphism (I)

to [kg ,  we have to  define the signature 32 of the target logic and we have to  fix
how formulae are mapped.

Let 32‘ be  equal to  (§ ,2 ,5 ,E ,5 )

1. At first we define 3 . Let 3 = U,  35m" U U, 33”. 3 is the union of the
following sets:

( a )  gfonst = U sponst
ord(1')<n

(b) äffgffw) = {of |ord(7)  < n A T = (7'1 x . . .  x Tm —> a ) , a  # o}

(c) 35:;3fm, = U 82““ U
T a::tc;'((:)):':n

{of |ord(T) <n  /\ T :  (7'; x XT". —>o)}
with elements of which are new, that is, which do not occur in S . In
addition, for m = 2 we have in $803510) the equality sign E .

(d) 3?” = US$“?
2. E is defined as the set

{i‘- | ord(T) < n}  U
{(7‘xfl><~-xfm—+&) |T=(n  X-°~XTm—)O') /\ ord(1 ' )<n}U
{(7‘1x---X7"m«—>6)|T=(Tl ><—-—><Tm——>o) /\ ord(T)=n}
The function " must map T injectively to new names. We can realize this
function for instance by mapping the type to the string consisting of the
type, that means, (L x L _» (‚) is mapped to "(L x L —+ L)", what is viewed as a
primitive and not as a composed object .  Instead of 5 we often shortly write
0 .

3. 5 is defined for variables @(mf) with T = (71 x - ~ ° x Tm —> a )  as

s (q>($ f ) )  = '7' for ord(‘r) < n
("F1 X- - -><?m—->6) fo ro rd ( - r )=n

4 .  E i s  defined as

(a) 7‘21. for all 7' with ord(T) < n.

(b) (7‘1x---X7”-m—>&)E(L><---><L-—>t)for03£o.
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(c)	 (Tl X ••• x Tm -+ 0)[;(1.. X ••• X I.. -+ 0) 

5. h is defined as the set of all term declarations 

(a)	 (af : (T x Tl x ... x Tm -+ a) for all 7 = (71 X ••• X 7m -+ 0"» with 

ord(7) < n, 

(b) for all constants c of type 7 of order less than n, (e(c) : T), 

(c) for all constants e of type 7 = (71 X •.. X 7m -+ 0") of order equal to n, 

(G(e) : (Tl x '" x Tm -+ a», and 

(d)	 (=: (T x T -+ 0» for all 7 with ord(7) < nand 7 of. o. 

Now we are going to define how terms and formulae are mapped by the morphism 

W, which behaves on the signature exactly like cI>, with the only exception that = 
is not in the image of W. 

For terms it is defined inductively by: 

Tl	 For a term with an m-ary function term f of type 7 as top expression we 

define 

W(J(tl, ... , tm » = af('I!(J), w(t 1 ), ••. , w(tm » 

For formulae we define W inductively by: 

Fl For an atomic formula with predicate constant p of order n as top expression 

we define 

F2 For a term with an m-ary predicate term p of type 7 and order less than n 

as top expression we define 

w(p(tl, . .. , tm »= af(w(p), w(td, . .. , w(tm » 

F3 For a conjunction we define
 

W(<PI /\ <P2) = W(<PI) /\ W(<P2)
 

F4	 For a negation we define 

w(-,<p) = -,w(<p) 

F5	 For a quantified formula we define
 

w(Vx<p) = V'l1.(x)'l1(<p)
 

3 a	 is the set consisting of the following' formulae of £1.:::: 
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(c)(1"'1 X-- -  Xi‘m ——>0)E(l,x --~><I,—>o)

5. 5 is defined as the set of all term declarations

(a) (of : (TX‘FI x - - -m  —-> 6') for allT = (T1 x - - -  XTm —>a)) with
ord(T) < n ,

(13) for all constants c of type T of order less than n ,  (®(c) : '7'),

(c) for all constants c of type T = (T1 x ° - - >< Tm ——+ 0)  of order equal to n,
, (®(c) : (T1 x . . .  >< 7"",n —-+ 5 ) ) ,  and

(d) (E :  (7"- x 7" -—> ö)) for all T with ord(T) < n and T :;é o.

Now we are going to  define how terms and formulae are mapped by the morphism
‘11, which behaves on the signature exactly like (I), with the only exception that E
is not in the image of \II.

For terms it is defined inductively by:

T1 For a term with an m-ary function term f of type T as top expression we
define

wm, . . . ,tm» = a*(w(f)‚w(t1>‚. . .,w(tm))

For formulae we define \II inductively by:

F1 For an atomic formula with predicate constant p of order n as top expression
we define

‘I’(p(t1‚-——‚tm)) = ‘I’(P)(‘I’(t1)w-a‘1’(tm))
F2 For a term with an m-ary predicate term p of type T and order less than n

as top expression we define

‘I'(p(t1‚-„‚tm)) = 01*(‘I’(P), \P(t1)‚ - - - , \I'(tm))

F3 For a conjunction we define

‘I’(901 A 802) = \I’(<p1) A ‘I’(<P2)

F4 For a negation we define
‘I’("‘P) = “‘I’üp)

F5 For a quantified formula we define
WWW) = V‘I’.($)‘1’(<P)

Ea is the set consisting of the following'formulae of ‚61,5:
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3~	 For every function constant a f with T = (Ti x .. , X Tm -+ 0"),0" =1= 0:
 

Vf:rV9:r(Vxt, ... ,VXfm
 
af(J, Xl, ... , xm ) == af(g, Xl, •.. , xm )) :::=} f =9 

3~ For every predicate constant a:r with T = (TI X ... X Tm -+ 0):
 

VP:rVq:r(VX~l" .. ,Vxfm
 
af(p,x\ ... ,xm) ~ af(q,x\ ... ,xm))~p q
 

We define <p(<p) = W(<p) U 3Q" Analogously for formula sets <p(r) = W(f) U 3Q" 

5.19 Remark: It should become apparent, why we excluded types like (0 -+ 0): 
Let P be a predicate of this type, Q be a predicate of type (t -+ 0), and e be a con­
stant of type t. Then W(P(Q(e))AQ(e)) would be"' a"(O->O)"(P,a"(t->O)"(Q,e)) A 

et I/(HO) 1/ (Q, e) or P( et "(t->o)" (Q, e)) A a "('->0)" (Q, e) which is not well-formed, be­

cause al/(t->o)" (Q, e) has to be a formula and a term at once. Even worse in general 

a uniform (quasi-homomorphic) translation is not possible, because Q(e) must be 

translated in the first case to a term and in the second to a formula. That is not 

allowed in first-order logic. This example is also a counterexample for the correct­

ness of the translation given by BENTHEM and DOETS [6] for a language without 

function symbols. 

A possible translation of the unrestricted typed higher-order logic also has to pro­

vide a translation of formulae of the kind P(Q(c)) A Q(c). This is possible by 

having only function symbols a f and translating all other symbols into object 

variables or object constants. Especially the junctor "A" has also to be translated 

to a constant. A possible translation would be: 
et 1/(0-+0)"(1\, et "(o->o)I/(P, a I~(t-+O)"( Q, e)), a 11 (t->o) 1/(Q, e)) = TRUE. That is, the 

problem is completely encoded into an equality problem. In order to gain com­

pleteness it would be necessary to add axioms for the junctor "A". 

We have not define~ translations of arbitrary formula sets of £w. For instance with 

the unary predicate symbols p(:->o)' p«t-+o)-+o)l p«((t-+o)-+O)-+O) , ... , the formula set 
r = Un;:: I {pn+l (pn)} is not translatable. Of course our mappings <Pn could be 

extended to a mapping <Pw in such a way that we have as predicates only the a:r. 

\Ve have not done this, because in all practical cases only finitely many formulae 

are involved and so we can have a translation <P n . This gives a translation that 

preserves the property of being a predicate for as many symbols as possible. 

5.20 Lemma: W is an injeetive quasi-homomorphism from £2n-I(S) to £l(w(S)). 

*We write here for all types T the corresponding sort f as "T". 

72 Chapter 5

35 For every function constant cnz'F with T = (Ti x - . .  x Tm ——> a ) ,  a 75 o:
Vf;Vg;(V$§1, . . . ,Vrcg;

aT(f ,x1, . . . , : r '”)  E a’(g,a:1,...,mm)) ==> f Eg

E: For every predicate constant a? with T = (7'1 x - - . x rm —-> 0):
Vp;Vq;(Vm,1.1,. . . ,Vm’gn

a7(p,w1,.. . ,w’") (=> aT(q,a:1‚. ..,.1:'”)) => p E q

We define @(go) = \Il(<p) U Ea. Analogously for formula sets <I>(I‘) = \Il(1") U Ea.

5.19 Remark: It should become apparent, why we excluded types like (0 —> 0):
Let P be a predicate of this type, Q be a predicate of type (I, —+ o), and c be a con—
stant of type L. Then \ I I (P(Q(c))  A Q(c)) would be“ a"(°"’°)"(P,a"("'°)"(Q,c)) A
a"(“*°)"(Q, c) or P(a"(“’°)"(Q,c)) A a"(“’°)"(Q, c) which is not well-formed, be-
cause a"(‘—’°)" (Q, c) has to  be a formula and a term at once. Even worse in general
a uniform (quasi-homoinorphic) translation is not possible, because Q(c) must be
translated in the first case to  a term and in the second to  a formula. That is not
allowed in first—order logic. This example is also a counterexample for the correct-
ness of the translation given by BENTHEM and DOETS [6] for a language without
function symbols.

A possible translation of the unrestricted typed higher-order logic also has to  pro-
vide a translation of formulae of the kind P(Q(c)) A Q(c). This is possible by
having only function symbols a:i and translating all other symbols into object
variables or object constants. Especially the junctor “A” has also to  be  translated
to  a constant. A possible translation would be:
a"(°_’°)"(A,a"(°"°)"(P,a'i(‘—’°)"(Q,c)),a"(“’°)"(Q,c)) E TRUE. That is, the
problem is completely encoded into an equality problem. In order to gain com-
pleteness i t  would be  necessary to add axioms for the junctor “A ” .

We have not defined translations of arbitrary formula sets of L‘”. For instance with
the unary predicate symbols P(1L—+o)v P(2(L->o)—>o)’ P(:ä(l‚—->a)—ro)—+o)’ . . ., the formula set
F : U„21{P"+1(P")} is not translatable. Of course our mappings <I>n could be
extended to a mapping <I>„‚ in such a way that we have as predicates “only the of.
We have not done this, because in all practical cases only finitely many formulae
are involved and so we can have a translation CI)". This gives a translation that
preserves the property of being a predicate for as many symbols as possible.

5.20 Lemma: \11 is an injective quasi-homomorphism from £2n‘1(8) to £},(‘Il(8)).

*We write here for all types 1' the corresponding sort 1" as " r " .
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Proof: In order to show that W is a quasi-homomorphism, we can check the 

definition step by step. The required properties for the signatures hold by definition 

of W(S). For terms and formulae, we have defined the relation in such a way that 

it holds immediately. The injectivity follows from the fact, that different types are 

mapped on different sorts in .cl. • 

5.21 Theorem: <I> is weakly sound. 

Proof: Let M = ({V'T }'T'.7) be a weak model of a formula set r, hence M is a 

weak model for any ep out of r, that is, Vt' (ep) = T for every assignment e. We 

are going to show that the M in the proof of theorem 5.12 is a model of <.p(ep). By 

theorem 5.12 and lemma 5.20 we have that Wis sound. 

So it remains to be shown that the extensionality property holds for the a­

functions. Formally: 

VM' (Vf::;Vgf(VxL· " ,Vx~m ) _ 
e af(J, Xl, . .. , xm ) af(g, Xl, . .• , xm )) ===} f 9 - T.=	 =

Therefore it is necessary to prove that for all F, G in f>f holds: if for all Xl E 
~ ~ M' ­
V f1 ,···,Xm E V fm , Vaf.9.X1,. ..,xm....F,G,Xlt ...'Xm](a'T(f,x1, ... 'Xm)) = 

vF[ G x x ](aT(g, Xl,'''' xm )), then VeF[f FG](J) = Vf![f.9 ....F,G](g),ef,g.Xll···,xm ....F. , 1.·.. , m .g- , .. 
that is, F = G. 

By the definition of V~9,Xl .....xm ....F.G,X1, ....Xm] and the interpretation of aT the pre­
condition is equivalent to F(X1 , ••• , X m ) = G(X1 , .•• , X m ). Because two functions 

are the same, if they have the same values on all arguments, we get F = G. 

The axioms for the predicates can be proved to be true analogously. • 
5.22	 Remark: <.P is strongly sound, analogously to theorem 5.13. 

We shall now show that <.P js weakly complete in the sense of definition 5.6. 

5.23 Theorem: <I> is weakly complete. 

Proof: The proof consists again of five steps. In the first step we introduce the 

basic notion, in particular a formula set r in .cn(S) and an arbitrary model M of 

<.p(r). In the second step we define a frame with the help of which we will define a 

model for r. This model is defined inductively with the induction base V, := Vi 

and Vo := Vo. For composed types 7 = (71 x··· X 7m --+ 0') we define b'T as a subset 

of F(b'T1'" . ,D'Tm; Du). We cannot take the whole set, because then we would try 
to obtain strong completeness, which cannot be achieved in general. In order to 

construct V'T we make use of the interpretations of the a~functions, especially we 

construct injective functions ~, which map V f to b'T' In a third step we define an 
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Proof: In  order to show that \II is a quasi-homomorphism, we can check the
definition step by step. The required properties for the signatures hold by definition
of \I!(S ) For terms and formulae, we have defined the relation in such a way that
it holds immediately. The injectivity follows from the fact, that different types are
mapped on different sorts in ‚Ch. l

5.21 Theorem: (I) is weakly sound.

Proof: Let M = ({DT}‚. ,J)  be  a weak model of a formula set I‘, hence M is a
weak model for any cp out of I‘, that is, V£M(<p) = T for every assignment € . We
are going to show that the Ü in the proof of theorem 5.12 is a model of <I>((,o). By
theorem 5.12 and lemma 5 .20  we have that W i s  sound.

So it remains to  be shown that the extensionality property holds for the a-
functions. Formally:
VF VfTVgT(V:c.7.1,. . , n -  = T.

& f ( f ,  $1 ,  "xm) -—: 7(95  (171, - , $m) )  =>  f—= g

Theréfore i t  is  necessary to prove that for all F, G in  D— holds: if for all X16

Dr”  . ,Xm € D1,", vgttfygizlv- ‚ t—FG X11  -1Xm](a1 ( f ,  x l ,  HMM)) VA

M T M
va t fb ' ] , . . . ‚mFyGyX11- - -1Xm](a  (g ,  $17  - . . ’ $m)) ‚  then  vdfg  " ' ,=FG] ( f )  v£[ f MgHFG](g )7

that is, F = G
u . c , ‚T- _By the definition of V£[139.31, „.z-md—FG X1... . ,Xm] and the interpretation of a the pre

condition is equivalent t o  F (X1 , . .  X) :  G'(X1 , .  . ,Xm  ) .  Because two functions
are the same, if they have the same values on all arguments, we get F = G.

The axioms for the predicates can be  proved to be true analogously. I

5 .22  Remark: {> is strongly sound, analogously t o  theorem 5.13.

We shall now show that (Dis  weakly complete in  the sense of definition 5.6.

5 .23  Theorem: tI> is weakly complete.

Proof:  The proof consists again of five steps.  In the first s tep we introduce the
basic notion, in particular a formula set I‘ in ß"($) and an arbitrary model M of
@(I‘). In the second step we define a frame with the help of which we will define a
model for I‘. This  model i s  defined inductively wi th  the  induction base 15. 2 :  ’D;

and @, :=  D5. For composed types 7' = (1'1 x - - - x Tm —-> 0') we define Ö, as a subset
of .7-"(1571 , . . . , fir“; ’15,). We cannot take the whole set ,  because then we would try
to  obtain strong completeness, which cannot be  achieved in  general. In order to
construct T), we make use of the interpretations of the a-functions, especially we
construct injective functions h, which map D,; to  15,. In a third step we define an
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interpretation function j for [,n. In a fourth step we show by induction on the 

construction of terms and formulae that the quasi-homomorphism \]! is compatible 

with the model relation. Formally we show Q0 Vr 0 W= vt. ,In a fifth and last 

step we use this property to show that j~ = ({i\ }T, j) is a model of r. 

S t e p 1: 

Let r be a formula set in [,2n-1(S). Let M be a weak model of q>(r). Then M 
is a model of q>(cp) for every formula cp in r. Let M be ({V,,JII:,J) and ~ be 

an arbitrary assignment. Then we have Vf(q>(cp)) = T. We want to construct a 

model M of cp, so that for all assignments ewe have vt (cp) = T. 

S t e p 2: 

In this step we define a frame for [,2n-1(S). Therefore we define D. := Vi and 

Do := VD. For a:ll other types T with T = (T1 X .•• X Tm - a) we have to define 

D.., ~ F(D"", ... ,V"'m; Vd)' We do this by inductively defining injective functions 

~.., from Vi to F(V"", ... ,V"'m; Vd) and setting V.., := ~",(Vi)' Hence Q.., is a bijective 

function from Vi to D..,. * We define Q.., as bijective functions inductively: 

1.	 q. : Vi - t>. and Qo : VD - Do as the identity mappings (These functions 

are obviously bijective). 

2.	 Let ~"'i and ~d be defined for ViI" .. ,Vim' and Vu. We are going to define 

a function Q.., with T = (T1 X ••. X Tm - a), a =1= 0, for Vi. For all x E Vi 
Q"'(x) is defined as Q..,(x )(X1, .. . , xm) := Qd(Vf(ai)(x, Q;/(xd, . .. , Q;~(xm))) 

for all Xl E V"", ... , Xm E V..,m 

The following diagram may help to see the involved mappings at a glance: 

Vf(ai ) :Vi x ViI X .. , XVim~Vu 

! lQT jQ;' jQ;:-';' lQ(T 

V..,'--4 F(V"'l , ... , V"'m ; Vd) 

In order to show the injectivity of q.., we use that we have in =.~ the formula 
mVfrVgiCVx~" ... ,Vx":'m ai(J,x\ ,x ) == 

ai(g, x\ , xm 
)) ==:} f == 9
 

Therefore we have in a model for all x, x' in Vi
 
VY1 E V ill ... ,VYm E Vim Vf(ai)(x,YI, ,Ym) =Vu
 

V(1(a i )(X" Yl, ,Ym) ==:} x ==Vt X' 

*Since we cannot achieve bijectivity from Vi to F(VT1 , ••• ,VTm ; Vq ) we do not get strong 
bij	 - inj - - ­completeness. We have Vj --+ V T --+ F(VT1 , ••• , V Tm ; Vd)' 
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interpretation function (? for £” .  In a fourth step we show by induction on the
construction of terms and formulae that the quasi-homomorphism \I! is compatible _
with the model relation. Formally we show h o 11g” 0 \II = VgM. ‘In a fifth and last
step we use this property to show that M = ({D;};, j) is a model of I‘.

S t ep  h
Let I‘ be a formula set in [?"—IGS). Let M be a weak model of <I>(I‘). Then M
is a model of <I>(<p) for every formula (,0 in F. Let M be ({Dn},¢,.7) and { be
an arbitrary assignment. Then we have Vg”(¢I>(gp)) = T. We want to  construct a
model M of go, so that for all assignments £ we have vg“ (50) = T.

S t ep  2
In this step we define a frame for £2n‘1(8). Therefore we define Db :=  D; and
Do :=  D5. For all other types T with 1' = (7'1 x . .  — >< Tm —> 0 )  we have to define
D; g 5"(Dn, . . . ,D;m;D,). We do this by inductively defining injective functions
h; from D; to  f(D;,, . . . ,D;m; b,) and setting D; :=  h;(D;). Hence h; is a bijective
function from D; to  D;.* We define h; as bijective functions inductively:

1 .  h. : Dz —+ 15. and ho : D5 _» Do as the identity mappings (These functions

are obviously bijective).

2. Let h.” and h, be defined for D; , , . . . ,D;m) and Da. We are going to define
a function h; with T = (71 x x Tm —+ a ) ,  a 76 0, for D;. For all a: € D;

Mm) is defined as wm . . . ‚am) == ha(Vä“(a*)(w‚h:f(i1)‚---‚h:;(a'cmD)
for all 531 e D;1,...,:i:m e hm

The following diagram may help to  see the involved mappings at a glance:

Vg‘4(af)  21);- X Dh X ' ' ' XD;m——> D5

l in .  Th.": Th.-,}. in.
D;‘—>.7"(D.,1 , . . . ,  D ; D0)Tm

In order to show the injectivity of h., we use that we have in  Et); the formula
Vf;Vg;(Vx§1,...,VmZ; a*(f,x1,...,xm) E

a+(g,w1,...,:cm)) => f Eg
Therefore we have in  a model for all a:, :1:' in  D;
V311 E Da,  . . . ,‘v’ym E D;m VéM(oz+)(2:,y1,...,ym) E195,

Vä’1(a*)(x',y1‚.„‚ym)=> :1: Ep* :c’ (*)

*Since we cannot achieve bijectivity from D; to T (D; l , . . . ,D ;m;Da)  we do not get strong
completeness. We have D; —by—> D; & .7-"(D;1 , . . . , D;m;D, ) .
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Let ~'T( x) =v
r 

~'T (x') for arbitrary x and x' in Vi. Then we have by definition 

for all Xl E V'TI' ... ,XmE V'Tm 

~q vt(ai)(x, ~;/(X1)"'" ~;~(Xm)) =vu ~q vt(af)(x' , ~;/(xd,···, ~;~(Xm))' 

Since the mappings ~'TI'" • '~'Tm' ~q are all bijective, we get for all Y1 E Vfl ,· •• , 

Ym E Vfm: vt(af)(x, YI,· .. ,Ym) =7)1; Vt'(af)(x' ,YI,· .. ,Ym)' Because of 

the relation (*) X =7)1' x', hence the injectivity is shown. Since the surjectiv­

ity is given by definition, we have proved that ~'T is bijective. 

3.	 Let ~'Ti be defined for Vfll ... ,Vim' We are going to define a function ~'T (for 

order of 7 is less than n) with 7 = (71 x··· X 7m -t 0) for Vf. For all x E Vi 

~'T(x) is defined as ~'T(x)(XI, ... ,Xm) := ~ovt(af)(x,~;/(X1)"'" ~;~(xm)) 

for all Xl E V'TI" .. ,Xm E V'Tm' Analogously to case 2 we get the bijectivity 

of ~'T by the corresponding formula in =:~. 

4. Let ~'Ti be defined for Vfl , ••• , Vim' We define a function ~'T (for order of 7 is 

equal to n) with 7 == (71 x· .. X 7m -t 0) for Vi. For all p E Vi ~'T(p) is defined 

as ~'T(P)(X1"",Xm):= ~op(~;/(X1)"",~;~(Xm)) for all Xl E V'TI"",Xm E 

V'Tm' The bijectivity of ~'T follows trivially. 

Hence we have defined a frame {1\}'T for all types 7.
 

In the following we use ~ as the polymorphic mapping defined by all the individual
 

~'T'
 

S t e p 3:
 

In this step we define an interpretation mapping j in order to complete the def­


inition of an interpretation ({V'T }'T,j). For all constants c we define j(c) :=
 

~ o.:J 0 W(c).
 

S t e p 4: 

In this step we show that for every assignment ~ in M there is an assignment ein 

M, so that for all terms (and hence all formulae) t we have: vt (t) = ~ 0 vt 0 W(t). 

Let ~ be an arbitrary assignment in M. We define eas e= ~-1 0 ~ 0 W- 1 • Now we 

prove vt = ~ 0 Vt' 0 W by induction on the construction of terms and formulae. 

Let ebe an arbitrary assignment in M, we get: 

Tl	 For all variables X'T' vt(X'T) = ~(X'T) = ~(e(W(X'T))) = ~vtW(X'T)' 

T2	 For all constants C'T' vt(C'T) = j(C'T) = ~(.:J(W(C'T))) = ~VfW(C'T)' 

T3	 For all composed terms beginning with an m-ary function term f we have: 

vtU'T(tI, ... , tm)) = vtU)(Vt(t1)"'" vt(tm)) In~yp 

Translations 75

Let h.‚(x) 5.57 h,.(w’ ) for arbitrary rc and m’ in 19;. Then we have by definition
for all 531 € Ö„,. . . , :Z‘m € bf",

uvmaw, lama), . . . , mom» "in, havg‘4(a*)(x'‚h;‚1<az1)‚ . . . mam».
Since the mappings h„ , . . . , hm, h„ are all bijective, we get for all yl € Da , . . . ,
ym € Dim:  Vg”(af)(:c,y1, . . . ,ym) Eva, V£M(a’-')(x’,y1, . . . ,ym). Because of
the relation (*) a: Ep, 3’, hence the injectivity is shown. Since the surjectiv-
ity is given by definition, we have proved that hT is bijective.

3. Let h,... be defined for D.,—.1 , . . . , D.;m. We are going to  define a function h, (for
order of T is less than n )  with T = (7'1 x - « - x Tm —> o) for 2);. For all x € ’D;
h,(x) is defined as h.,(x)(:i:1,...,:im) :=  hovg“(af)(x,h;1(zil),...,h;:(5vm))
for all 5'61 € ’Öfl, . . . ‚ im  € 15%. Analogously t o  case 2 we get the bijectivity
of h, by the corresponding formula in sg .

4. Let h„ be  defined for D.,-.„ . . . ‚Dr-‚„. We define a function h., (for order of 7' is
equal to  n)  with 1' =' (rl x - . - XTm —> o) for Da For all p € ”D; h,(p) is defined
as h,(p)(¢1,...,:i;m) := h„p(h;11(5;1)‚...,h;‚;(ém)) for all 531 e 15,1,...,92m e
DTM. The bijectivity of h, follows trivially.

Hence we have defined a frame {15,-},- for all types T.

In the following we use h as the polymorphic mapping defined by all the individual
it.
Step  &

In this step we define an interpretation mapping „7 in order to complete the def-
inition of an interpretation ({ÖT}T,j). For all constants c we define j (c )  :=
ho joq l ( c ) .

S t ep  4:
In this step we show that for every assignment € in M there is an assignment € in
M,  so that for all terms (and hence all formulae) t we have: V3205) = [10115% 0 \Il(t).

Let £ be an" arbitrary assignment in M We define { as € = [1’1 o € o \Il‘l. Now we
prove VEM = h 0 VE“ 0 \II by induction on the construction of terms and formulae.
Let { be an arbitrary assignment in M,  we get:

T1 For all variables x„ vg'4(x,) = am,) = h(f(\I/(x,))) = uvgv'xp(x,).

T2 For all constants c„ Väz(c,) = j(c.,) = h(_7(@(c,))) : hVEM-Wßf).

T3 For all composed terms beginning with an m-ary function term f we have:
vg"4(ff(t1,...,t‚„)) = vg'4(f)(vg“(t1), . ..,vgwtmn “déi”



Chapter 5 

~Vf\lJ(f)(QVf\ll(h), ... ,QVf\lJ(tm )) def Q-=.ase 2.
 

_ def V M
 

q[V(f(aT)(V(fW(J), ~-lqVrW(tl), ... , q-lqVr\lJ(tm ))] =e
 

~[Vr(aT(\lJ(f),\lJ(tt} , ... , \lJ(tm)))] deb~
 

qVr\lJ(f(tl, ... , tm)).
 

For formulae we get: 

Fl	 For an atomic formula that starts with a predicate term p of order less than 

n we have: 

Vf(PT(t1, ... , tm)) = Vf (p)(Vf (tl), ... , Vf(tm)) In~yp 

qVr\lJ(p)(qVr\lJ(t1), ... ,QVr\lJ(tm )) def Q~ase 3. 

M T M -1 M -1 M def V[4
q[Ve (a )(V~ \lJ(p), Q qVe \lJ(tt}, ... , q QVe \lJ(tm ))] =
 

q[Vr(aT(\lJ(p), \lJ(tl),' .. , \lJ(tm )))] deJ:: ~
 

QVf\lJ(p(t1 , •.. , tm )).
 

F2 For an atomic formula that starts with a predicate constant p of order n we 

have: 

Vf(PT(t1, ... , tm )) = vt(p)(vt(t1 ), .•• , Vf(tm)) In~yp
 

QVf\lJ(p)(qVf\lJ(t1 ), •.. , qVf\lJ(tm)) def Q~ase 4.
 

M -1 M -1 M def Vt'q[Ve \lJ(p)(q QVe W(t 1), ... , q qVe W(tm))] =
 

q[Vr(\lJ(p)(W(t1), ... , \lJ(tm)))] deb~
 

qVrW(p(tl, ... , tm)).
 

F3 For a conjunction we have:
 

vt (if'1 1\ if'2) = vt (tpI) 1\ vt (if'2) In~yp qvt \lJ (tpl) 1\ qVr \lJ (if'2) =
 

qVr \lJ (tpl 1\ if'z),
 

F4 For a negation we have:
 

vt (-'if') = -,Vf(tp) In~yp -'qVr \lJ(if') = QVr \lJ( -'if').
 

F5 For a quantification we have: 

V M 'W ) wd Y M '() Ind.hyp wd ~ M ,T, (€ (v xTif' = v E V TV([x<-d] tp = v E VY 

T ~ Ve[W(x)<-Q-l(d)] 'J.' if' ) = 

Vd E V j qV~(x)<-d]W(tp) = QV[1\lJ(Vxtp). 
Here we use that l = Q 0 .~ 0 \lJ for all assignments and hence l[xT +- d] = 

q0 ~ [\lJ (X T) t- Q-1 (d)] 0 \lJ. ' 

S t e p 5: 

Now we show that if M is a model of CP(tp) , then 1\;1 is a model of tp. If M is model 

of CP( tp), then M is a model of \lJ( tp). Let ebe an arbitrary assignment and ebe 

76 . Chapter 5

Wf‘I’UXWgWIIUI), . . . ’hVEAAII’(tm)) def héase 2. M

h[VéM(ofi)(Vä"'\Il(f)7 h—lhvéMimtl‘), _ _ _ ’h"‘hvé“‘1’(tm))] dag.)£

hlVä‘m, Mu), . . . , wm») deg
hn‘I ' (f( t1,„_‚tm))_

For formulae we get:

F1 For an atomic formula that starts with a predicate term 1) of order less than
n we have:
vg*(p1(t1, . - . ,tm» = vflvg‘hul), _ „ _ ‚Vfl tmn  mg»
hvé‘W(p)(hvg“\Ir(t1),...,hvg4\1:(tm)) d“ “28° 3 M

“VWWWWPL h‘lhvm<t1),...,h-t(tm))1 “=3"
Wä" (0501417), \I'(t1),. . . , \Il(tm)))] mi"

hvéw(p ( t1a  ' ' - a tm) ) -

F2 For an atomic formula that starts with a predicate constant p of order n we
have:

M M M M Ind-h”vi (p7(t1‚...‚tm)>=vg (no;é (m,...‚V— um» =
def case .hvm<p)<hvm(to‚„.‚uvmumn “= 4

def VM
h[Vé“‘If(p)(h"hVä“‘P(t1)‚-..‚h'1hVé“\I'(tm))] =‘
u[vg“(\1f(p)(w(t1)‚...‚wmml“&“
hvg“\II(p(t1,...,tm)).

F3 For a conjunction we have:

man A m = 123%» A vg‘uoz) “€” WWWJ A www =
Wéwq’ÜPI /\ 902)-

F4 For a negation we have:
“ * In .h _mm) = WW) ?:Whvmw) = WWW)- .

F5 For a quantification we have:
° v - - Ind.h .

Vii/WWW = W e DTVäfc—dlw : ”  W e DT “VIfifI'w—u—IWHW‘P) =
Vd e D; hväfy(z)_4_‘l’(so) =; t‘A‘I'Ww) „
Here we use that € = h o £ 0 @ for all assignments and hence {[wT 4— d] =
ho 5mm «— wm o w..

S t e B 5:
Now we show that if M is a model of @(cp), then NI is a model of go. If M is model
of <I>(<,o), then M is a model of @(cp). Let 5 be an arbitrary assignment and { be
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defined as above, then we have Vr (w(<p)) = T, because M is a model of W(<p ). 
Hence we have vt(<p) = ~(Vr(W(<p») = T. Recall that for truth values ~ is the 

identity function. ­

5.24 Remark: For n > 1 there is no sound morphism e from £n to .el = which,­
is strongly complete. If there were such a morphism, it would prO"\Tide a complete 

calculus for £n which is impossible because of GODEL'S incompleteness theorem. 

5.25 Remark: As already noticed in remark 5.17, '11-1 provides a calculus for 

£n. If we add rules that enforce that function symbols and predicate symbols are 

equal if they agree in all arguments, we can transform every sound and complete 

first-order calculus of .el,:::: by Cl> to a sound and weakly complete calculus for .en. 
We can execute the proof in .et:::: and then lift it to a proof in £n. 

5.26 Remark: One might wonder why we proposed a sufficient criterion for the 

soundness of translations, when we have a translation that is sound and complete 

and hence could always be used. The reason is, that in a concrete situation it may 

be better not to translate into the full sound and complete formulae, because the 

search space for an automated theorem prover may become too big. In general it 

is not a good idea to add the extensionality axioms if they are not really needed. 

Furthermore we prevent instantiation if we translate certain constants not by an 

apply; also we may use different apply functions or predicates although we could 

use the same. The completeness result guarantees that we can find a translation; 

however, which one we choose may be very important for the actual performance 

of a (first-order) theorem prover. That is, the flexibility in translating is very 

important for practical purpose, although in theory it does not enlarge the power 

of the method. 

5.2.3 Equality 

In this section we discuss a possible extension of the soundness criterion and of 

the morphisms <I>n to morphisms <I>::::,n, which are mappings form .e~ to .et::::. As 

usual we fix n and drop the corresponding index. We show that Cl>:::: is sound and 

weakly complete. In the following we write <; for (T x r --t 0). 

5.27 Definition (Equality Quasi-Homomorphism): We replace the part for 

composed terms in definition 5.7 by: if f( tI, ... , t m ) is a term of F1(SI), then 

o (J(tI, ... , t m )) = 0 (0(J), 0(tt}, ... , 8(tm » with 

Ll( )_{a(aI, ... ,am ) or
ua,al,···,am ­

a:a(a,al, ... ,am ) 

I 
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defined as above, then we have V5M(\Il(go)) = T, because M is a model of WW).
Hence we have Vgfiflp) = h(V£M(\II(<p))) = T. Recall that for truth values [1 is the
identity function. .

5.24 Remark: For n > 1 there is no sound morphism G) from £" to  £15  which
is strongly complete. If there were such a morphism, it would provide a complete
calculus for £" which is impossible because of GÖDEL’S incompleteness theorem.

5 .25  Remark: As already noticed i n  remark 5.17, W“1 provides a calculus for
£" .  If we add rules that enforce that function symbols and predicate symbols are

equal if they agree in all arguments, we can transform every sound and complete
first—order calculus of £15  by (I) to  a sound and weakly complete calculus for £ " .

We can execute the proof in £15  and then lift it  to a proof in ß".

5 .26  Remark: One might wonder why we proposed a sufficient criterion for the
soundness of translations, when we have a translation that is sound and complete
and hence could always be used. The reason is, that in a concrete situation it may
be  better not to translate into the full sound and complete formulae, because the
search space for an automated theorem prover may become too big. In. general it
is not a good idea to  add the extensionality axioins if they are not really needed.
Furthermore we prevent instantiation if we translate certain constants not by an
apply; also we may use different apply functions or predicates although we could
use the same. The completeness result guarantees that we can find a translation;
however, which one we choose may be very important for the actual performance
of a (first-order) theorem prover. That is, the flexibility in translating is very
important for practical purpose, although in theory it  does not enlarge the power
of the method.

5.2 .3  Equality

In this  section we discuss a possible extension of the soundness criterion and of
the  morphisms (1),, to  morphisms (Pan, which are mappings form U.;. t o  £15 .  As
usual we fix n and drop the corresponding index. We show that (D.:. is  sound and
weakly complete. In the following we write ( for (1' x T —> 0).

5 .27  Definition (Equality Quasi-Homomorphism):  We replace the part for
composed terms in  definition 5.7 by: if f ( t 1 , .  . . ‚ tm) is  a term of .771(51), then
® (f( t1 , . . . , tm))  = 9(®(f),®(t1), . . . ,®(tm)) with

a(a1, . . . ,am) or0(a’“1""’“m)= a“(aa1 ‚am)
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The a have to be chosen appropriately, they have to be new, that is, there must 

be no element e such that aa = 0(e). The choice of the above depends only on the 

type of a. The symbols aa must respect the corresponding sorts. If the first case 

is chosen for equality, this must be mapped on equality. Furthermore we require 

that only equality is mapped on equality. 

5.28 Theorem: If 0 is an injeciive equality quasi-homomorphism from L:~(5) to 

'L:l,= (5'), then 0 is weakly sound. 

Proof: The proof is analogous to the proof of theorem 5.12. We only add the 

following cases to the proof in step 4 (analogously to the cases T3, T4): 

- For an atomic formula with the equality symbol as top symbol that is mapped 

on the equality predicate: 

Vr(0(t1 = t2» := Vr(0(t 1 ) == 0(t2)) =
 

(Vr(0(t1 ) =vf Vr(0(t2)) In<!:E-yp (vt(t 1 ) =v,. Vt(t2) = vt(t1 =t2)
 

- For an atomic formula with an equality symbol as top symbol that is not 

mapped on the equality predicate we have: 

Vf(0(t 1 = t2» := VF(a((0(=), 0(td, 0(t2») =
 
VF(a';)(VF(0(=), VF(0(t 1 », V~(0(t2») Ind.hyp
 

~ e e ~ 

Vf(a~)(Vt(=), Vt(tl), vt(t2») ~ (vt(td =v,. vt(t2») =
 

Vt(tl == t 2 ) •
 

5.29 Example: vVe shall use example 5.14, however in a formulation with equality 

and translate it then in the usual way. (In order to show that both representations 

are equivalent it would be necessary to show that there is a sound and complete 

morphism that maps them to one another.) We drop the type information for 

readability, group is oftype (t x (t X t ---7 t) ---7 0), G of type t, + of type (t X t ---7 t), 

- of type (t ---7 t), and so on. Also for readability we sometimes use infix notation. 

In the target the sorts are (IIt ll , lI(t X t ---7 t)lI) for group, and so on. A group can 

be defined as follows: 

1. VG,+ group(G,+) ~associative(G,+)/\ 

30	 (0 E G /\ neutraLelement(G, +, 0) /\ 

3- inverse(G,+,O,-)) 

2.	 VG,+ associative(G,+) {:=::} Vx,y,z x,y,z E G ===? (x + y) + z = 
x + (y + z) 

3. VG,+,O neutraLelement(G,+,O) ~ Vx x E G ===?	 x+O =x /\ O+x == x 
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The a have to  be chosen appropriately, they have to be new, that is, there must
be no element e such that a“  = 6(a) .  The choice of the above depends only on the
type of a .  The symbols a“  must respect the corresponding sorts. If the first case
is chosen for equality, this must be mapped on equality. Furthermore we require
that gnlq equality is mapped on equality.

5.28 Theorem: If ® is an injectiue equality quasi-homomorphism from 52 (8 )  to
£k5(8’), then ® is weakly sound.

Proof:  The proof is analogous to  the proof of theorem 5.12. We only add the
following cases to  the proof in step 4 (analogously to  the cases T3, T4):

-— For anatomic formula with the  equality symbol as top symbol that is mapped
on the equality predicate:

V§4(G( t1  E t 2 ) )  :=  VEMÜBUI) E G( t2 ) )  =

(wean) 2». was») "‘dé‘” (we) 2». mt») = vw ; t2)

— For an atomic formula with an equality symbol as top symbol that is  not

mapped on the equality predicate we have:
VM(9( t1  = t z ) )  = VM(a° (9 (=" )  ®(t1) 9032)» =
vflwxvflee» ,1257mm».g Fteuz)» ‘““4-3“
v§<a€>(v24(s).vg4(tamt») dä (man) =D, mt») =
VEM(t1 E tz) .

5 .29  Example:  We shall use example 5.14, however in  a formulation with equality
and translate i t  then in the usual way. (In order to  show that both representations
are equivalent i t  would be necessary to show that there is  a sound and complete
morphism that maps them to one another.) We drop the type information for
readability, group is of type (L x (t X L -—> L) _» 0), G of type („ + of type (L x l, —+ L),
— of type (L —> 1,), and so on. Also for readability we sometimes use infix notation.
In the target the sorts are ("/‚", "(L x L ——> L)") for group, and so on. A group can
be  defined as follows:

1. VG,+ group(G,+) (==> associative(G,+) /\
30 (0 E G /\ neutral_element(G,+,0) A

3 — inverse(G, + ,0 ,  —))

2. VG,+ associatiue(G,+) <=? Vx,y,z $ ,y , z  E G => (a: + y) + z E
rc + (y + Z)

3. VG,+,0 neutral-element(G,+,0) (==> Va: a: E G => m+0 E a: A 0+3: E a:
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4. VG, +, 0, - inverse(C, +,0, -) <===? 'Ix x E G ===} x + (-x) =°/\
 
(-x) + x =°
 

This formula set is a subset of £~.	 Now we give a translation into a formula set 

of £1.=.::' The signatures are obvious, hence omitted. The translation is sound, 

because it is an injeetive equality quasi-homomorphism. 

1. VG, + group(G, +) <===? associative(G, +) /\ 
:30	 (0 E G /\ neutraLelement(G, +, 0) /\ 

:3- inverse(G,+,O,-)) 

2. VG, + associative(G, +) <===? 'Ix, y, z x, y, z E G ===} 

a "(LXL-+L)" (+,a"(LXL-+L)"(+ ,x,y,z)) _ 
"(LXL-+L)" (+ ,x,a"(LXL-+L)" (+ ,y,z))a 

3. '1G,+,O neutraLelement(G,+,O) <===? 'Ix x E G ===} 

a"(LXL-+L)"(+,x,O) _ x /\ 

a"(LXL-+L)"(+,O,x) = x 

4.	 VG, +, 0, - inverse(G, +,0, -) <===? 'Ix x E G ===}
 

"(LXL-+L)"(+ "(L-+L)" (_ ))
a ,x,a ,x 0/\ 
"(LXL-+L)" (+ 11 (L-+L) " (_ ) )a ,a ,x,x	 o 

5.30 Definition (Standard 'franslation <P=.::): 

- At first we define the mapping on the signature. We proceed as in definition 

5.18, but add for each =e; in Se; of order less than n an object-constant 

symbol ~ f to S~. We cannot name it =(fxf-+c5) because this is already defined 

as a binary predicate symbol. In addition we have the term declarations 

(=~: (f X f -+ 0)) for every T with order of <; is equal to nand (~ f : ~) for 

every T with order of <; less than n. 

- The inductive definition of W=.::(f) is the definition of W(f) in definition 5.18 

plus 

W=.::(=e;) == for order of <; equal to nand w=.::(=e;) = ~ ~ for order of <; less 

than n. In addition we have: 

If t 1	 and t 2 are terms of type T with T =I- 0 and order of <; is equal to n, then 

W=.::(tl =t2) = (w=.::(t1 ) - W=.::(t2))' This term is well-sorted, because W=.::(ti) 
are both of sort f. 

If t1 and t2 are terms of type T with T i- 0 and order of <; less than n, 

then w=.::(t 1 = t2) = a~( ~~, w=.::(tt}, W=.::(t2)). This term is again well-sorted, 

because W=.::(ti) are both of sort f and ~ ( is of type ~. 
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4. VG,+ ,0 ,  —— inverse(G,+,0, —) (=> Va: :1: 6 G => $ + (—x) E 0 /\
(—:1:) + a: E 0

This formula set is a subset of ‚C:; Now we give a translation into a. formula set

of ‚Chi. The signatures are obvious, hence omitted. The translation is sound,

because it is an injective equality quasi—homomorphism.

1. VG,+  group(G, +)  (=> associative(G,+) A
30 (0 € G A neutral_element(G,+,0) /\

3 — inverse(G, +,  0, ——))

2. VG,+ assöciative(G,+) => Va:,y,z $ ,y , z  E G =>
a"(LXL—>L)" (+ ,  a" (LXl ‚—>L)"- (+ ’  $ ,  y ) ,  z )  E

a"“"‘*""(+,x,a"("“r""(+,y,  2))

3. VG,+ ,0  neutralfilement(G,+,0) (=>Va: (1: € G =>
a"<°>“**)"(+,$,0) =

" a"(‘x"“)"(+,0,x) E a:

| & >

4. VG,+,0,—— inveTse(G,+,0, _)  (=> Va: in € G =>
a"(l‚Xl‚—+L)"(+, $ ,  a"(L—H.)"(___’x)) E 0 A

a"(LXL—>L)"(+ ,  a"(l‚—+l‚)"(_’ $) ’x )  : | o

5.30 Definition (Standard Translation (DE) :

— At first we define the mapping on the signature. We proceed as in definition
5.18, but add for each EC in $< of order less than n an object-constant
symbol E; to 85. We cannot name it E(.;x;_,5) because this is already defined
as a binary predicate symbol. In addition we have the term declarations
(E5: (T x T _» ö)) for every T with order of ( is equal to n and (E;  : c") for
every T with order of ( less than n .

— The inductive definition of \IIE(I‘) is the definition of \Il(l") in definition 5.18
plus
\IIE(__=.<) =E for order of ( equal to n and ‘I’E(Ec) = Eg for order of g less
than n. In addition we have:
If t1 and tz are terms of type T with T # 0 and order of ; is equal to n, then
\IIE(t1 E tz) : (\IIE(t1) E Eli-(132)). This term is well-sorted, because \IIE(t1-)

are both of sort T.
If t1 and tz are terms of type T with T 76 0 and order of ( less than n,
then \IIE(t1 E t2) = 05"(E5, \IIE(t1) ,  \IIE(t2)) .  This term is again well-sorted,
because \IIE(t‚-) are both of sort 7"- and 25 is of type €.
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- 3= is defined as 3e\' plus the set of all formulae (with order of" less than n): 
Vx::;-Vy::;- OC;(~ c;, x, y) ==} x = y. 

- Like above on formula sets we define <1>=(r) := w=(r) u 3=. 

5.31 Theorem: <1>= is weakly sound. 

Proof: As above we have that w= is sound, because it is an injective equality 

quasi-homomorphism. We still have to show that every formula in 3:= is satisfied, 

that is, it remains to be shown: 
.-... 

Vr(Vx::;-Vy::;-aC;(~ c;,x,y) ==} x =y) = T 

Therefore it is sufficient to show that for all X, Y E V:;­
.-... 

V~,y+-xIYj(OC;(~ c;,x,y) ==} x =y) = T. 

By the definitions of OC; and vF[ Yj that is equivalent toex,y+-X, 
X =1)r Y ==} X =1)r Y, which is obviously true. • 

5.32 Theorem: <1>:= is weakly complete. 

Proof: In the completeness theorem 5.23 we have to add to the proof in step 4: 

- For equalities of order equal to n: 

Vt(tl = t2) := (Vt(tl) =vrvt(t2)) In~yp OVrw(it) =Vr~VrW(t2)) = 

(~Vr(lJf(tl) =~1Jf(t2)) = ~VrlJf(tl =t2). 

- For the equalities of order less than n we use at first the additional axioms 

in 3=:
 
Vx::;-Vy::;-OC;( ~ C;, x, y) ==} x =y.
 

Hence we have in a model for all X, Y in V:;-: 

VX:,y+-x,Yj(a((~ C;, x, y)) ==} X =1),. Y
 
Since the direction ~ is trivially satisfied, we have:
 

vtr;,y+-x,Yj(a:;-C~c:,x,y)) = (X =1),. Y) (*) 

Now we can prove: 

Vt{tl =t2) = (vt(tt} -1)r Vt(t2)) In~1YP 

(QVtW:=(tl) =1)r ~VtW:=(t2)) b~ij (vtlJf:={tt} =1),. VrW:=(t2)) ~ 
V~,Y+-Vt1J!=<tl),Vt1J!=<t2)l(0C;(~ ;;,x,y)) = vt (aC:C C;, w:= (tt} ,W:=(t2))) = 

Mc; _ bbij M _
Ve (0 (W:=(=<J, 1Jf=(t1 ), W:=(t2))) = ~V{ lJf:=(tl = t 2) • 

5.33 Remark: We do not translate =, immediately to =Ci',f), because then it 

could not become the argument of a higher-order predicate and we would also lose 
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-— EE is defined as E. plus the set of all formulae (with order of ; less than n):
WWW}? a€(ä<—,x,y) => a: E y. '

— Like above on formula sets we define <I>__—=(I‘) :: \IIEU‘) U 35 .

5 .31  Theorem:  (I); is weakly sound.

Proof: As above we have that @; is  sound, because it  is an injective equality
quasi-homomorphism. We still have to  show that every formula in E; is satisfied,
that is, it remains to  be shown:
V?“ (Vx;Vy;a‘.(é<~,m,y) ==> a: -_'=. y) = T
Therefore i t  i s  sufficient to show that for all X , Y E D;

V$,y+—X,Y] (a€ (é3 ,$7y )  => m 5/31) = T '

By the definitions of a:E and V31: w—X n that is equivalent to
X 59, Y :> X E1), Y, which is obviously true. . I

5.32 Theorem: (DE is weakly “complete.

Proof: In the completeness theorem 5.23 we have to  add to the proof in step 4:

— For equalities of order equal to  _n :

123% = tz) ==(vg"<t1) =1>‚vg4<tz)) “=” (wma) =„‚hvm(t2)) =
(We/"(WM E W02» = hVéV'Wti E t2)-

— For the equalities of order less than n we use at first the additional axioms
1n :5:
Vx;Vy;a5(§g, m,y) => 3: E 3/.
Hence we have in a model for all X, Y in 9;:
V$‚y._x,n(af(äg‚w,y)) => X E1)i Y
Since the direction <= is trivially satisfied, we have:
v 'EA[1: ‚y<—X‚Y](af (ä€7$’y) )  : (X  ED? Y)  (* )

Now we can prove:
van = tz) = (mm ==, mt») "=”
(Winn) Ea, human») “=“ (vmam) ED; waist») ‘2
nhvg‘wgtnyfiwauzn(“ago “", y) )  : VEM(a‘.(ä€-, ‘I’E(t1)7‘115(t2))) :

'vgf'<a<'(w5(=<)‚ r am) ,  alga-m) " =“ Wise-1 = tz) .

5 .33  Remark: We do not translate E< immediately to 595) ,  because then it
could not become the argument of a higher-order predicate and we would also lose
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completeness. Consider the case of the following induction schema: 

Vp(tXt-+o) (P(O, 0)/\ 

(Vn P(n,O) ~ P(s(n),O)) /\ (Vn,m P(n,m) ==> P(n,s(m))) ==> 
Vn,m P(n,m)), 

where in addition we have the formulae °= 0, Vn n = °==> s(n) - 0, and 

Vn,m n =m ==> n =s(m). If we want to prove Vn,m n =m we have 

to instantiate the predicate variable P in the induction schema by the equality 

predicate. But if we translate P by an object variable and =by a predicate 

constant we cannot instantiate P by = in the first-order target formulation. 

5.34 Example: We translate the examples 5.14 and 5.29 from above. Using '11=,3 

this is translated to: 

1. VG, + gr01tp(G, +) {=9 associative(G, +) /\ 
30	 (0 E G /\ neutraLelement(G,+,O) /\ 

3 - inverse(G, +, 0, -)) 

2. VG, + associative(G, +) {=9 

\..Ivx,y,z a "(tXt-+o)" ( E,x, G) /\ a "(tXt-+o)" ( E,y, G) /\ a "(tXt-+o)" ( E,z, G) 
"(tXt-+o)" (2. "(tXt-+t)" (+ "(tXt-+t)" (+ ))==> et _,a ,a ,x,y ,z , 

"(tXt-+t)" ( "(tXt-+t)" (+ )))a +,x,a ,y,z 

3.	 VG,+,O neutraLelement(G,+,O) {=9
 

Vx "(x t-+O)"( ==>
et t E, x, G) 

"(tXt-+o)" (~ "(tXt-+t)" (+ 0) )/\a _,a ,x, ,x 
"(tXt-+o)" (.::::. "(tXt-+t)" (+ 0 ) )a	 _,a , ,x,x 

4. VG, +, 0, - inverse(G, +,0, -) {=9 

VX	 a "(tXt-+o)II( E, x, G) ==> 
a "(tXt-+o)" (2._,a"(tXt-+t)" (+ ,x,a"(t-+t)" (- ,x )) ,0) /\ 

a "(tXt-+o)" (=_, a l(tXt-+t)" (+ , a "(t-+t)" (_ , x ) , x ) , 0) 

Of course this translation is more complicated than that of example 5.29. 

5.3 Translations of Higher-Order Sorted Logic 

In this section we sketch how to extend the results of the previous section to 

sorted higher-order logics. This could be done by essentially copying the proofs 

of the unsorted case. But instead we are going to reduce the soundness theorems 

to the corresponding unsorted theorems by using relativizations, which can be 
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completeness. Consider the case of the following induction schema:
VP(„„_„‚)(P(0, 0)/\

(Vn P(n.0) ”:> P(s(n).0)) A (m P(n.m> => P(n‚s(m)>> =
Vn,m P(n,m)) ,

where in addition we have the formulae 0 E 0, Vn n E 0 => s(n) E 0, and
Vn,m n E m => n E s(m). If we want to prove Vn,m n E m we have
t o  instantiate the predicate variable P i n  the induction schema by the equality
predicate. But  if we translate P by an object variable and E by a predicate
constant we cannot instantiate P by E in the first—order target formulation.

5 .34  Example: We translate the examples 5.14 and 5.29 from above. Using 1153
this  is  translated to :

1. VG,+ grdup(G,+) (=> associative(G,'+) A
30 (0 e G A neutral_element(G,+‚0) A

3 ? inverse(G‚ + ,  0, —))

2. VG,+ associative(G, + )  (=>
Vx,y , z  a"(‘x‘“’°)"(€,z,G) A a"(‘x“'°)"(6,y,G) A a"(‘x°"°)"(€,z, G)

=> a" (LXL—>0)" (ä - ’  a " ( c><1 .——u. ) " (+ ’  a " (bXL—+L)" (+ ,  (L', y ) ,  2 ) ,

a"("‘“")"(+,x,a"(‘x“”)"(+,y,z)))

3. VG,+,0 neutralxlement(G‚+,0) (=)
V:): a"("‘"’°)"(€,x,G) =>

a"(‘x"'*°)"(ä,a"(‘x‘_")"(+,x,0),aa)/\
a"(”“"°)" ( é ,  a"(‘x“*‘)" (+,  0, as), x)

4. VG,+,0,— inverse(G‚+‚0’—) *:
Vac a"(‘>““’°)"(€‚$‚G) =>

a"(»><o—»°)"(_£:,a"("‘"“)"(+‚w‚a"(‘—")"(—,$))v0) Ad'un-+0)"(ä‚a"(m"‘)"(+‚a"“"‘)"(—‚w)‚w)‚0)
Of course this translation is more complicated than that of example 5.29.

5 .3  Translations of Higher-Order Sorted Logic

In  this  section we sketch how to  extend the results of the previous section to
sorted higher-order logics. This could be  done by essentially copying the proofs
of the unsorted case. But  instead we are going to reduce the soundness theorems
to  the corresponding unsorted theorems by using relativizations, which can be
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done since the translations are structure conserving. The advantage of the proofs 

via relativizations is that they can be used for other kinds of sort structures too, 
especially they are easy to transfer to sorted logics where'the semantics is defined 

by the relativization. At first we define relativizations and show them to be sound 

and complete morphisms. The completeness proof for the standard translation is 

not lifted, but worked out directly. 

5.3.1 Relativizations and Partial Relativizations 

For a formula set of sorted logics it is in general possible to state an equivalent 

formula set of an unsorted logic. In this section we will introduce relativizations 

and partial relativizations for the logics £¥; to £n and £b to £1. 

5.35 Definition (Relativization): The relativization ~ from £¥; to £n is a mor­

phism of the form that: 

1.	 the signature SE = (S,I;,s,b;,c5) is mapped to 

(S U I;\{rlr is type}, {rlr is type}, x 1--+ type(x), 0, 0), where the sort sym­

bols K, of type r are mapped onto unary predicate constants of type (r -4 0). 

2.	 A formula c.p is mapped to the for~ula set ~(c.p) consisting of:
 

{~( c.pH U
 

{\1x r K,(x) =:} /-l(x) I K,r;./-l with type(K,) = type(/-l) = r} U
 

{K,(~(t)) I (t : K,) E c5}, where
 

~.is defined as: 

(a) For terms ~(t) = t and for atomic formulae: ~(c.p) = c.p 

(b)	 For conjunctions and negations: ~(c.p 1\ 'ljJ) = ~(c.p) /\ ~('ljJ) and 

~(-'c.p) = -,~( c.p). 

(c) For	 a quantification over a variable x of sort K, with type(K,) r, 

~(\lXK c.p) = \1xr K,(X) ===} ~(c.p). 

For formula sets r we have as usual ~(r) = U ~(c.p). 
'PEr 

5.36 Definition (Partial Relativization): The partial relativization 8~ from 

£b where every sort (except t) has a unique upper sort (shortly called "uus") 

immediately below l, to £1 is a morphism defined in the following form. We have 

for all sorts K" K,~uus(K,) (we define uus(t) = l). 
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done since the translations are structure conserving. The advantage of the proofs
Via relativizations is that they can be  used for other kinds of sort structures too,
especially they are easy to transfer to  sorted logics Where‘the semantics is defined
by the relativization. At first we define relativizations and show them to  be  sound
and complete morphisms. The completeness proof for the standard translation is
not lifted, but worked out directly.

5 .3 .1  Relativizations and Partial Relativizations

For a formula set of sorted logics it is in general possible to state an equivalent
formula set of an unsorted logic. In this section we will introduce relativizations
and partial relativizations for the logics ‚8% to L“ and B}; to  DÄ.

5.35 Definit ion (Relativization): The relativizatz'on ER from ‚C'f; to £“ is a mor-
phism of the form that:

1. the signature 8; = (S,  2,5‚E‚6) is mapped to
(S U E\{T|T is type}, {TIT is type},a: H type(a:),(ll,0), where the sort sym-
bols K. of type T are mapped onto unary predicate constants of type (T —-> 0).

2. A formula 90 is mapped to the forriiula set 33(cp) consisting of:

{WW} U
{‘s/a:, ‚f(x) == „(w) | tdi/1 with type(fc) = type(‚u) = T} U
mica» | (t ; n) e 6}, where

51} ‚is defined as:

(a) For terms 528) = t and for atomic formulae: ???(cp) = cp

(b) For conjunctions and negations: imp A gb) = gimp) A @@) and
ge(w) = nit/9)-

(c) For a quantification over a variable :c of sort n with type(;c) = 7",
team cp) = vx, 4.7;) => imp).

For formula sets I" we have as usual §R(l‘) = U %(cp).
(PGP

5.36 Definit ion (Partial Relativization): The partial relativizat-ion 833 from
‚Cä, where every sort (except L) has a unique upper sort (shortly called “uus”)
immediately below 6, to ‚CR is a morphism defined in the following form. We have
for all sorts n, méuusüc) (we define uus(L) = L).
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- the signature SE = (S,E,s,i;,h) is mapped to
 

(8?R(S), 8?R(E), 8?R(s), 8?R(i;), 8?R(h)) with:
 

1.	 8?R(S) = S U E\{r I r = uus(r)} where these sort symbols are now new 

unary predicate constants of sort (t --t 0). 

2.	 8?R(E) = {r I r = uus(r)} 

3.	 8?R(s) = x f--+ uus(s(x)) 

4.	 8?R(i;) = {uus( K)i;t I K} 

5.	 8?R(h) = {(8?R(t) : UUS(K)) I (t: K) Eh} 

-	 A formula I.p is mapped to the formula set 8?R( I.p) consisting of 

{8~(1.p)} U 

{VXUUS(K2) KI(X) ===} K2(X) I KI~K2 with KI 1= uus(Kd = UUS(K2)} U 
{K(8~(t)) I (t: K) Eh}, where 

8~ is defined as: 

1.	 For terms 8iR(t) = t and for atomic formulae: 8iR( I.p) = e.p 

2.	 For conjunctions and negations:
 

oiR( I.p 1\ tP) = 8iR( 'P) 1\ 8iR( tP) and
 

8~( -'I.p) = -,8iR('P)'
 

3.	 For a quantification over a variable x of sort K:
 

8iR(V'xKI.p) = (V'xuus(K)K(X) ===? 8iR('P)).
 

5.37 Theorem: The relativizations ?R form £E to £n are sound and complete. 

Proof: Let r be a formula set in £E' Analogously to the proofs above we can 

show that if there is a model of r we can construct a model of ?R(f) and vice versa. 

1. Soundness: Let us assume that there is a model M = ({VK}K'..7) of r. We 

define an interpretation M = ({DT}T' j) of ?R(f) by: 

-	 TJT := U 'OK' 
type(K)=T 

-	 j(iR(c)) := ..7(c) 

- For the "new" constants iR( K) of £n we define the predicate j (iR( K)) by 

j(iR(K))(X) := (x E 'OK) for all x in D •T 

'5‘,

‘:‚.,‚„
?:

t
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— the signature 8; = (S  , 2 ,5 ,  2,6) is mapped to
(833(8), 833(2), 833(5), 833(2), 833(6)) with:

1. 833(5) = SU2 \ {T  | T : uus(T)} where these sort symbols are now new
unary predicate constants of sort (L -+ o).

833(2) = {7- | T = uus(7')}

833(5) = x H uus(5(x))

833(2) = {uus(n)|;L | m}

833(6) = {(833(t) : uus(rc)) | (t : n) € 6}??
?-

°P

— A formula (‚0 is mapped to the formula set 833(90) consisting of

{5380)} U .
{qgsw fc1(w) => 14,2(50) | NIE-Kg with 51 76 uus(fc1) = uus(n2)} U
{It(833(t)) | (t : fc) E 5}, where

833 is defined as:

1. For terms 833(t) = t and for atomic formulae: 833(90) = 99

2. For conjunctions and negations:
8330p /\ «p) = 09%;) A aim/‚) and
333690) = “33(90)-

3. For a quantification over a variable .1: of sort fc:
asiewmäp) = (vw„„(„,n(z)  => awe».

5.37 Theorem: The relativizations 33 form Lg to ß" are sound and complete.

Proof: Let F be  a formula set in  ßg .  Analogously to  the proofs above we can
show that if there is a model of P we can construct a model of 33(l‘) and vice versa.

1. Soundness: Let us assume that there is a model M = ( {DJMJ)  of I‘. We
define an interpretation M = ({D‚}„ J )  of 33(I‘) by:

— 15¢ := U D„
type(n)=-r

_ 303(0))  == —7(C)

— For the “new” constants 33(5) of ß"  we define the predicate j(33(rc)) by
,7(33(Ic))($) :=  (z  E 'D„) for all a: in D,.
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The proof that Ni is a model of ~(f) can be done by showing inductively on the 

construction of formulae that vt 0 ~ = Vr. The only interesting part is that of 

quantifications: 

vt(~(VX"ip)) = vt(Vxr K(X) ===;> ~(ip)) =
 

Vd E Vr V~,.+-d](K(X) ===;> ~(cp)) =
 

Vd E Vr jUR(K))(d) ===? Vtr:,.+-d](~(ip)) =
 
. .. . M 

Vd E V,. dE V" ===? Ve[x,.<-dj(CP) =
 

Vd E 'OK V~,.<-dl( cp) =
 

vt(VxK'P).
 

Furthermore we have to show that for all sorts K, J1 of type T with Kf;;J1:
 

vt(Vxr K(X) ===? f1(x)) = T. This holds since:
 

vt(Vxr K(X) ===? f.l(x)) = (Vd E V,. V~<-d](K(X) ===? f1(x))) =
 
(Vd E n r j(~(K))(d) ===? j(~(J1))(d)) =
 
(Vd E V,. dE V" ===? d E '0/1-) and this holds since 'OK. ~ VII-"
 

At last we have to show that for all term declarations (t : K) E 6: Vf(K(~(t))) = T.
 

This holds since:
 

Vt(K(~(t))) = Vf(K)(Vf 0 ~(t)) =
 

j(~(K))(Vt(t)) = (vt(t) E VK.), and this holds since (t : K).
 

2. Completeness: Let us assume that there is a model M = ({ D,.},.,.J) of ~(r). 

vVe define a model Ni = ({V"}K.' j) of r by: 

- V,,:= {d·E V,.IJ(~(K))(d)} 

- j(c) := .J(~(c)) 

The proof that Ni is a model of r can be done by showing inductively on the 

construction of formulae that vt = Vr 0 R. Again, the only interesting part is 

that of quantification: 

vt (Vx,,<p) = Vd E V" vtr:<-d] (ip) = 
Vd E 'Or J(3}(K))(d) ===? V:r;<-d](~(CP)) = 
Vd E 1)r V:r;+-d](3}(K)(X) ===? j?(cp)) = 

vtt (VXr~(K)( X) ===? ~('P)) = 

vtt (j?(Vx,,<p)). . 

Furthermore we have to show that for all sorts K, f1 of type T with /''/;;f1: V" ~ Vw
 
This holds since it is equivalent to:
 

(Vd E 1),. :T(~(K))(d) ===? .J(~(Il))(d)) =
 

Vtt(VXrK(X) ~ p(x)), what holds by definition of ~(f).
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The proof that M is a model of §R(I‘) can be done byshowing inductively on the
construction of formulae that vg“ o 53 : vg“. The only interesting part is that of
quantifications:

VM ( (asoD = VM(V$T ”($) ==> gt((P)) —
Vd € D VM _d](fc(x) => ERGO»:
Vd E D (7(52 (K))((d) = vgrhflmap» =
Vd e D, d e D„ ==> vggwdlap) =
Vd E D,€ Vfifcnt‘P) =
V?”(\7’x„c‚0).

Furthermore we have to show that for all sorts n ,  p of type 'r with ‚ein:
VEMCv’xT 19(x) => p($)) = T. This holds since:
VEMWxT n(z) ===> ‚u(a:)) : (Vd € DT V£_Jj(n(x) == Mac)» =
(Vd e DT .7'(9A?(fi))(d) ==> —7'(ä(‚u))(d)) =
(Vd E D,. d 6 D,; ==> d E Du) and this  holds since D,€ g D„.

At last we have to  show that for all term declarations (t : fc) E 6: Vé“(rc(§t(t))) = T.
This  holds since:

@@«äunr=wßwxwéoäan=
.7(?R(/<))(V5M(t)) = (lira) € DH), and this holds since (t : A:).
2. completeness: Let us assume that there is a model M = ({DT}, , J )  of Ra‘).
We define a model M = ({D„}„, j )  of I‘ by:

_ fin ;: {de  D,|J(?7?(fc))(d)}
v

—fld=J@@)

The proof that M is a model of F can be done by showing inductively on the
construction of formulae that VCM = V5“ 0 fit} Again, the only interesting part is
that of quantification:

vg'avnso): w e D VM „(w) =
W E DT JG}? ('€ Md) => VéfltdflvSRWD =
W E D Väwqfiüfiflw) == 39W» =
VMWtr3TB (NW) ==> W?» =
VM(§R(V$,¢90))
Furthermore we have to  show that for all sorts It, u of type T with ‚ein: D„ g D„.
This holds since it is equivalent to:

(W € D, «7(3R('€))(d) => J(éR(„))(d)) =
VEMWDTMD) => ‚u(w))‚ what holds by definition of §R(F).
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Analogously we can show that for all term declarations (t : 1\:) E h: Vf(t) E VI'<: 
Let (t : 1\:) E h, then since M is a model of ~(r) we have Vt'(1\:(~(t))), what is 

equal to J(~(1\:))(Vt'(~(i))). Hence we have by definition of DI'<: Vr(~(i)) E DI'< 
and so finally Vf(i) E DJ(' • 

5.38 Theorem: The partial relativizations a~ from .et to .el are sound and 

complete. 

Proof: The proof is analogous to the proof of theorem 5.37. • 
5.39 Remark: The relativizations ~ are injective. 

5.3.2 A Sufficient Criterion for Soundness 

In this section we give a sufficient criterion for the soundness of translations of 

formulae of .e~ onto formulae of .eb which is strong enough to cover most require­

ments. 

5.40 Theorem: If8 is an injeciive quasi-homomorphismfrom .eE(SI;) to .et(SI;), 
then 8 is weakly sound. 

Proof: We show that there is a commutative diagram: 

~ 
.eE I .en 

le # le 
a~ 

.e1I; ) .el 

with an injective quasi-homomorphism 0 from.en to .el. Since a~ is complete, ~ 

is sound and 0 is sound by theorem 5.12, we can conclude that 0 is sound. We 

construct 0 out of 8 by: 

1. For all terms: 

(a) if x is a variable (or constant) of .en then 0(x) = a~ 0 0 0 ~-l(X) is a 

variable (or constant) of .el. 

(b) if f( i}, ,tm) is a term of .en then 

0(f(t}, , tm)) = ()(8(f), 0(t1 ), ••• , 0(tm)) with 
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Analogously we can show that for all term declarations (t  : m) € 6: Vgfla) € 13,4:
Let (t : m) € 5,  then since M is a model of 32(I‘) we have VéM(l—z(5}}(t))), what is
equal to J(§?(/€))(Vg”(§l\t(t))). Hence we have by definition of 15,1: V€A(§t(t)) E 15‘
and so finally light) € fin. l

5.38 Theorem: The partial relativizations BER from ‚€;; to LIX are sound and
complete.

Proof:  The proof is analogous to  the proof of theorem 5.37. l

5 .39  Remark: The relativizations QR are injective.

5 .3 .2  A Sufficient Criterion for Soundness

In this section we give a sufficient criterion for the soundness of translations of
formulae of .05 onto formulae of Q:, which is strong enough to  cover most require-
ments.

5 .40  Theorem: If ® is an  injective quasi—homomorphism from £§ (Sg)  to £§;(S’E),
then 9 is weakly sound.

Proof: We show that there is a commutative diagram:

32‚C’E‘ ———-————>£"

@ # Ö

8%£12 __». ‚ex
with an injective quasi-homomorphism @ from £" to ‚CX. Since 8% is complete, ER
is sound and ® is sound by theorem 5.12, we can conclude that ® is sound. We
construct 6 out  of G by:

1 .  For all t e rms :

(a) if rc is a variable (or constant) of L'," then @@) = 353 0 G o ?R’1($) is a
variable (or constant) of C}.

(b) if f ( t1 , . . . , tm)  is a term of ß"  then
@(f(t1, . . . ‚tm)) = 9(O(f), @(t1)‚ . . . ‚®(tm)) with
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_	 {a(a l "'" am) or()(a, aI, ... ,am ) -	 The a have to be chosen ap­
aa(a, al, ... , am) 

propriately, especially they have to be new, that is, there must be no 

element e so that aa = 8(e). The case which is chosen depends on the 

case that is chosen for the translation of 8 0 ?R-I 
. 

2.	 All predicates ~(II:) in.en are translated to O?R00(K). Every formula resulting 

of a term declaration or a subsort relation is translated in the same manner. 

3.	 8 is the homomorphic closure of the above relation. 

Obviously 8 is a quasi-homomorphism. • 
5.41 Example: Let us take an example from [40, pAO], theorem (4.11) (for an 

MKRP proof using this translation see chapter 6). The different (constant) sets, 

especially a set 5, are introduced. The interest is in considering binary relations 

on S, especially the subset relation between two such relations is defined. In our 

sorted higher-order logic this definition can be given by: 

Vf:(L XL ...... 0) "(S x S --+ 0)"(1)·~ 

"If: (5 x 5 --+ 0) Vg:(5 x 5 --+ 0) (Vg.(L X t -+ 0) "(5 x S --+ o)"(g) ===> 
(sllbset(1, g) {::::::} (sllbset(1, g) {:::=:} 

(Vx:5 Vy:S f(x,y)~g(x,y») (\lx:t "S"(x) ~ (Vy:t "S"(y) =?' 

(f(x,y) ===> g(x,y)))))) 

le
 
"If:" (L X t --+ 0)" " (5 x 5 --+ 0)" (1) ===> 
(Vg. "( t X t --+ 0)" "(S x S --+ 0)" (g) ===>"If: "(5 x 5 ...... 0)" Vg: "(5 x 5 ...... 0)" 

8?R (subset (f, g) {:::=:}
(subset(f, g) {:::::::} 

(VX:"L" "5"(x) ===>
(Vx:"S" Vy:"5" ex"(tXt-.o")(f,x,y) 

(Vy: lit" "5"(y) ===>===> ex"(tx£->o)"(g,x,y))) 
(ex"('Xt-.O)" (f ,x,y) 

~ ex"(tX,-'o)" (g, x, y)))))) 

5.42 Theorem: If 8 is a7J injective quasi-homomorphism from £~(S) to £b(S'), 

then 0 is strongly sound. 

Proof: If there is a strong model of a formula set r in .eHS) then this model is 

also a weak model. By the previous theorem there is hence a weak model of 8(f) 

in .cb (S'). By a sorted version of theorem 3.19 there is also a strong model of 

8(f).	 • 
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a(a1, . . . ,am) or
9(a,a1, .  . . ‚am)  : The a have to be  chosen ap-

a°(a,  a1, . . . ‚am)
propriately, especially they have to be new, that is, there must be  no
element er so that a“  = 9(a) .  The case which is chosen depends on the
case that is chosen for the translation of ® 0 93—1.

2. All predicates $309) in £"  are translated to (moon). Every formula resulting
of a term declaration or  a subsort relation i s  translated i n  the  same manner.

3. @ is the homomorphic closure of the above relation.

Obviously (i) is a quasi-homomorphism. I

5.41 Example: Let us take an example from [40, p.40], theorem (4.11) (for an
MKRP proof using this translation see chapter 6). The different (constant) sets,
especially a. set S ,  are introduced. The interest is in considering binary relations
on S ‚ especially the subset relation between two such relations is defined. In our
sorted higher—order logic this  definition can be given by:

Vf:(t x L —-> 0) " (S  x 5—» o ) " ( f )=$
Vf=(SXS—>o)  Vg:(SxS—>o) & (Vg.(L><L-—>o) "(SxS—+o)"(g)=>

(subset(_f‚g) => ___—> (subset(f,g) {=> '
(vw : 5  n s  flay )  => g(w‚y))) (vim "5-13) => _(VyzL "S"(y) =>

(flaw) => g( r ‚y ) ) ) ) ) )

@ (i)

Vf:"(L x l. —r o)" " (S  x S —+ o)"(f )  =>

Vf:"(S x s _» o)" Vg:"(S x s _» o)" (WW X ‘ * °)" "(3 x S —' ”(g) :?bse i ( f ‚y )  «=><subset<f‚g) «=» 553 (5“ .. .. ..(W:;"S" vyz-«su drama-aw,” ———+ (W » S (m):
“ " V : "  I I  "S"

:> ‘1 (nu—>0) ( l b - r ay» )  ( Zia'f(rxL—vo)('?()f=:y)

=> a" ( "““°" ' ( y ‚$ ‚y ) ) ) ) ) )

5.42 Theorem: If 6 is an injective quasi-homomorphism from £§(5) to £};(S’),
then @ is strongly sound.

Proof: If there is a strong model of a formula set 1" in [33(5) then this model is
also a weak model. By the previous theorem there is hence a weak model of @(I‘)
in @: (S’). By a sorted version of theorem 3.19 there is also a strong model of
@@).  I
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5.43 Remark: In the sorted case we note again that the formulae that are ob­

tained by these translations are not essentially more difficult then the original ones 

and that the proofs can easily be translated back, because the mappings e are 

injective. 

5.3.3	 The Standard Translation From Sorted Higher­

Order Logic to Sorted First-Order Logic 

Now we want to define morphisms <I>E from LE to L~ which are not only sound 

but also complete. As in section 5.2.2 we define the morphisms for odd n, for 

even n they are obtained as the restriction of the next higher odd n, that is 

<I>~n := <I>~n+l 1.c2n • The morphisms <I> are defined as <I>(ep) = weep) u 3~, where 
E 

Weep)	 is a quasi-homomorphism and 3~ are special extensionality axioms for the 

a.	 In the following we drop the index n. Again we abbreviate apply as a. 

5.44 Definition (Standard Translation <I>~n-l): Let s~n-l be the signature of 

a logic in .c~n-l. In order to define a morphism <I> to .c~,=, we have to define the 

signature S'E of the target logic and we have to fix how formulae are mapped. 

Let S'E be equal to (S, ~,s,!;, 6) 

1.	 S is defined as in the unsorted case (compare definition 5.18). 

2.	 ~ is defined as the set 

{~ I ord(K) < n} U 

{(~ X ~1 X ••• X ~m - it) I K= (Kl X ..• X Km - /-l) /\ ord(K) < n} U 

{(~l X ... X ~m - 0) I K= (Kl X ... X Km - 0) /\ ord( K) = n} 
The function - must map K injectively to new names. Again we can realize 

this function by taking the strings. Often we abbreviate 0 to o. 

3.	 .5 is defined for variables <I> (x r ), where Xr is mapped to K = (Kl x· .. X Km - /-l) 

by the corresponding s-function in higher-order logic, as 

s(<I>(x	 » = {~ for ord(K) <n
 
r 

(~l x ... X ~m - it) for ord(K) = n
 

4.	 !; is defined as 

(a) ~!;it for all K, /-l with K!;/-l. 

(b) ~!;~ for all K top sort with ord( K) < n. 

5.	 6 is defined as the set of all term declarations 
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5 .43  Remark: In the sorted case we note again that the formulae that are ob—
tained by these translations are not essentially more difficult then the original ones
and that the proofs can easily be translated back, because the mappings 0 are
injective.

5 .3 .3  The Standard Translation From Sorted Higher-

Order Logic to  Sorted First-Order Logic

Now we want to define morphisms (I); from LE to  £}; which are not only sound
but also complete. As in section 5.2.2 we define the morphisms for odd n, for
even n they are obtained as the restriction of the next higher odd n ,  that is
(1%” :=  (I)?“ '51."- The morphisms (I) are defined as {)(cp) : \Il(cp) U EE whereO.’ ’

\Il(<p) is a quasi—homomorphism and 33 are special extensionality axioms for the
a .  In the following we drop the index n .  Again we abbreviate apply as a .

5.44 Definition (Standard Translation (158,14): Let Sin—1 be the signature of
a logic in Lin—1. In order to  define a morphism (I) to £52 ,  we have to  define the
signature 32 of the target logic and we have to  fix how formulae are mapped.

Let gg be equal to  (3, 2 ,5 ,  5,6)

1. 3 is defined as in the unsorted case (compare definition 5.18).

2. 2 is defined as the set
{E | ord(;c) < n}  U
{ (kxk lx - - -k—>fi ) | n= (n lx - - -xnm——>‚u)  A ord(Ic)<n} U
{(121 x---xfsm——>ö)|lc=(nl x - - -xnm—>o)  A ord(l~z)=n}
The function ~must map n injectively to  new names. Again we can realize
this function by taking the strings. Often we abbreviate 6 to  0.

3.  5 is  defined for variables <I>(:I:T)‚ where z,  is mapped to  K. = (n1 x - - - xnm —> ‚a)
by the corresponding 5—function in  higher-order logic, as
sew,» = {fc for 01‘d(l€) < .n

(k1 x x Fem —> 11) for ord(/s:) 2n

4 .  E i s  defined as

(a) 799,11 for all n, ‚u with ICE/L.

(b) REL for all Ii: top sort with ord(I~z) < n.

5 .  6 i s  defined as the set of all term declarations
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(a)	 (aT(XK,XKl'""XKm): ji) for all K. = (K.IX ••• XK.m ~ fL))withtype(l\.) = 

rand order) < n ,* 

(b) for all term declaration (t : K.) of order less than n 1 (e(t) : k) 1 

(c) for all constant declarations (c :	 K.) with I\. = (1\.1 X ••. X I\.m ~ fL) of 

order equal to n , (H(c) : (k1 x .. , x km ~ ji)), and 

(d)	 ((x K =xK) : 0) for all I\. with ord(1\.) < n and I\. i= o. 

Now we are going to define how terms and formulae are mapped by the morphism 

W1 which behaves on the signature exactly like cl> 1 with the only exception that == 
is not in the image of W. 

For	 terms it is defined inductively by: 

Tl	 For a term with an m-ary function term f of sort I\. of type r as top expression 

we define 

W(f(tl, ... , tm)) = aT(w(f), W(td,··· 1 w(tm)) 

For formulae we define Winductively by: 

Fl	 For an atomic formula with predicate constant p of order n as top expression 

we define 

F2 For a term with an m-ar'y predicate term p of sort I\. of type r and order less 

than n as top expression we define 

\I1(p(tl,"" tm)) = a T (1Jr(p), W(t l ), ••• , 1Jr(tm)) 

F3 For a conjunction we define
 

\I1(epl f\ ',02) = 1Jr('Pl) f\ lJ1(epz)
 

F4 For a negation we define 

W(--'<p) = -'W(<p) 

F5 For a quantified formula we define
 

W('ix<p) = 'i1If(x )1Jr(cp)
 

::::~	 is the set consisting of tbe following formulae of Lt::: 

*That is, we use the functions and predicates et quasi-polymorphic in the sense of remark 

3.37. 
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(a) (drück, ne,-„ ‚ .  . . , zu,—gm) _: ft) for all Ic = (Ic! ><- - - ><nm _» p)) with-type(rc) =
T and ord(*r) < n,*

(b) for all term declaration (t : Ic) of order less than n ,  (9( t )  :72),

(c) for all constant declarations (c : It) with It = (m  x - ~ - x m,. -—> „ )  of
order equal to  n ,  (0(c) : (E21 >< - - ‚- >< km ——> m) ,  and

(d) (($; E 33;) : 5) for all 15 with ord.(n) < n and It 96 0.

Now we are going to define how terms and formulae are mapped by the morphism
\II, which behaves on the signature exactly like <I>, with the only exception that E
is not in the image of \II.

For terms it is defined inductively by:

T1 For a term with  an m-ary function term f of sort K of type 1' as top expression
we define

‘I'(f(t1, . . M) = a*(‘1'(f)‚‘1'(t1)‚. - . ‚‘I'(tm))

For formulae we define \I’ inductively by:

F1

F2

F3

F4

F5

For an atomic formula with predicate constant p of order n as top expression
we define

‘1’(p(t1‚-.—‚tm)) = ‘1’(p)(‘1’(t1),---,‘I’(tm))
For a term with an m-ary predicate term p of sort & of type T and order less
than n as top expression we define

‘1’(P(t1‚- . - M)) = 0501100). ‘I’(t1), - . - ‚‘I'(tm))
For a conjunction we define

W991 A 902) : ‘I’(‘Pl) A W992)

For a negation we define

WW) = WW)

For a quantified formula we define
www) = V‘If(w)‘1'(<p)

32  is the set consisting of the  following formulae of ‚Cl ‚.:.:

*That is, we use the functions and predicates a quasi-polymorphic in the sense of remark
3.37.
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'2.~,j	 For every function constant a f with T = (Tl X •.• X Tm -7 a), a =I- 0 and for 

all sorts /\, = (/\,1 X .•• X /\,m -7 f-l) of type T we have: 

Vj;.VgK(VXt,···, VX~m 

af(f, Xl, ... ,Xm ) = af(g, XI, ... ,Xm )) ===} f - 9 

'2.~,p	 For every predicate constant a l' with T = (T1 X ..• X Tm -7 0) and for all 

sorts /\, = (/\,1 X •.. X /\,m -7 0) of type T we have: 

VpKVqh(Vxt,···, VX~m
 
af(p, XI, ... , xm ) {::::=} af(q, XI, ... , x m )) ===} P - q
 

We define q>(cp) = \lI( cp) U '2.~. Analogously for formula sets q>(f) = \lI(r) U '2.~. 

5.45 Remark: Analogously to 5.20 we have that \lI2n-1 is an injective quasi­

homomorphism from ..c~n-1(s) to ..ct(\lI(S)), analogously to 5.21 and 5.42 q> is 

weakly and strongly sound. 

5.46	 Theorem: q> is weakly complete. 

Proof: The proof is a reproduction of the proof of theorem 5.23. In the first step
 

we introduce the basic notion, in particular a formula set f in ..c~ (SE) and an
 

arbitrary model M of q>(r). In the second step we define a frame with the help
 

of which we will define a model for f. This model is defined inductively with the
 

induction base V", := 'OK for all /\, of type t and Vo := '00 ' For top sorts /\, =
 

(/\,1 X ... X /\,m -7 f-l) we define V", as a subset of F(V"'1"'" V"'m; Vj.L)' We cannot
 

take the whole set, because then we would try to obtain strong completeness,
 

which cannot be achieved in general. In order to construct V", we make use of
 

the interpretations of the a-functions, especially we construct injective functions
 

~, which maps Vi<:- to V",. For the other sorts /\, we define V", := ~top sort("')(VK). In a
 

third step we define an interpretation function j for ..c~ and show that the inclusion
 

relations induced by the subsort relations hold. In a fourth step we show by
 

induction on the construction of terms and formulae that the quasi-homomorphism
 

\lI is compatible with the model relation. Formally we show ~ 0 V[4 0 \lI = vt. In
 

a fifth and last step we use this property to show that M = ({V",}"" j) is a model
 

of f.
 

S t e p 1:
 

Let f be a formula set in ..c~n-1(SE). Let M be a weak model of q>(f). Then
 

M is a model of <p('P) for every formula 'P -in r. Let M be ({D",}"".:I) and ebe
 

an arbitrary assignment. Then we have vt(q>(cp)) = T. We want to construct a
 

model M of 'P, so that for all assignments ewe have vt ('P) = T.
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n For every function constant orf with T = (T1 x - - - x Tm ——> a ) ,  a 96 0 and for
all sorts rc = (m x - - - x mm —+ ‚a) of type T we have:
kvgg (VIII 1 VainR1”" ’  “in

a I ( f , x1 , . . . , xm)  Ea; (g ,x1‚ . . . ‚wm))  =>n

52’? For every predicate constant of with T = (T1 X - - - x Tm —+ o) and for all

sorts n = (n1 X - - - x nm ——> 0) of type T we have:
Vnqx!  Vltm”17""  km

a’.’(p,a:1,...,a:m) (=> a'?(q,a:1,. . . ,a:m)) =>pE  q

We define <I>(<p) = \Il(<,9) U EE. Analogously for formula sets <I>(I‘) = \II(I‘) U EE.

5 .45  Remark: Analogously to 5.20 we have that $211-1 is  an injective quasi-
homomorphism from £§"—1(S) to  £§;(‘Il(8)), analogously to 5.21 and 5.42 (I) is
weakly and strongly sound.

5 .46  Theorem: (I) is weakly complete.

Proof: The proof is a reproduction of the proof of theorem 5.23. In the first s tep
we introduce the basic notion, in particular a formula set I‘ in £382) and an
arbitrary model M of @(I‘). In the second step we define a frame with the help
of which we will define a model for I‘. This model is defined inductively with the
induction base fin :=  D,; for all K: of type I. and b„ :=  D5. For top sorts li? =
(n1 x - - - x lim _) ,u) we define ’5‘ as a subset of JTD,“ , . ,Önm; fig) .  We cannot
take the whole set ,  because then we would try to  obtain strong completeness,
which cannot be  achieved in  general. In order to construct b,; we make use of
the interpretations of the oz—functions, especially we construct injective functions
'n, which maps D,; to  fin.  For the other sorts K. we define b,; :=  htop „ (MDR) .  In a
third step we define an interpretation function ‚_7 for Lg and show that the  inclusion
relations induced by the subsort relations hold. In a fourth step we show by
induction on the construction of terms and formulae that the quasi—homomorphism
\II is  compatible with the model relation. Formally we Show [1 o VEM 0 \II = VéM. In
a fifth and last step we use this property to show that M = ({‘15„}„, j )  is a model
of I‘.

S t ep  L

Let F be a formula set in £%"_1(82). Let M be a weak model of <I>(I‘). Then
M is a model of @(9-9) for every formula cp in  I‘. Let M be  ({Dnh ,  J )  and { be
an arbitrary assignment. Then we have Vg”(<l>(<p)) = T. We want to construct a
model M of cp, so that for all assignments 5 we have Vé—Mflp) = T.
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S t e p 2:
 

In this step we define a frame for .c~n-l(SI:). Therefore we define b. := Vi: and
 

Do := Vij. For all other top sorts K, with K = (K,l X ••• X K,m -+ f.L) we have to
 

define V" ~ F(V"l"'" V"m; VJL)' We do this by inductively defining injective
 

functions Q", from V;:;. to F(V"l" .. ,V"m; VJL) and setting V;.. := QI«V;o), Hence QI<
 
is a bijective function from V" to DK • For the other sorts K, with top sort f.L we
 

define: D", := QAV;:;.).
 

We define Q" as bijective functions inductively:
 

1.	 Q. : Vi: -+ iJ. and Qo : V o -+ Do as the identity mappings (These functions 

are obviously bijective). 

2.	 Let Q"i and QJL be defined for V;:q , ... , Vi<m' and Vii' We are going to define 

a function Q" with K, = (Kl X ..• X K,m -+ f.L), f.L -I- 0, for Vi<. For all x E V;:;. 

Q,,(x) is defined as Q,,(X)(Xl""'Xm):= QiVr(01')(x,Q;:;"/(Xl)'' .. ,Q;;~(xm))) 

for all Xl E b"'1"" ,Xm E D"m 

The following diagram may help to see the involved mappings at a glance: 

Vf1(Of):Vi< X D"1x",xD"m~VjJ. 

! 1b.. ib;~} fb;~.~ 1nl-' 

V",-+ F(D"1 , ... , Dl<m ; DJL) 

In order to show the injectivity of Q", we use that we have in 3~,j the formula 

VI"Vg",(Vxt, . .. ,vxrm af(f, Xl, , xm) == 
a1'(g,xl , ,Xm)) ~ I =9
 

Therefore we have in a model for all x, x' in Vy"
 

VYl E V;:;'1"" , VYm E D;;m Vr( O1')(X, YI,· .. ,Ym) ==Vji.
 

Vf(aT)(x"Yl, ... ,Ym) ==?- x =v" x' 
Let Q,,(x) =t>.. Q,,(x' ) for arbitrary x and x' in Vi<. Then we have by definition 

for all Xl E D"1' ... , Xm E Vl<m 
QiLVr (of)(x, Q;;1l (Xl)' '" ,Q;;.~ (xm)) VI-' QJLVf(01')(x', Q;ll(xd,· .. , Q;;~ (xm)). 
Since the mappings Ql<l"'" Q"m' QJL are all bijeetive, we get for all Yl E 

DKll .. ·,Ym E Vi<m: Vf1(a 1' )(X'Yl, ... ,Ym) ==Dji. vt(01')(x',Yl, ... ,Ym)' Be­

cause of the relation (*) x =7)" x', hence the injeetivity is shown. Since the 

surjectivity is given by definition, we have proved that Q", is bijeetive. 

3.	 Let Q"i be defined for V"1" .. ,V"m' We are going to define a function Q" (for 

order of K is less than n) with K, = (Kl X ••. X K,m -+ 0) for V". For all x E Vi'> 

QI«x) is defined as Q,,(X )(£1,'" , Xm) := Qo vt(OT)(X, Q;/ (Xd, ... ,Q;:;~ (Xm)) 
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S t e p 2:

In this step we define a frame for £§"“1(Sg). Therefore we define ’DL :=  D; and
Öo : :  D5. For all other top sorts K, with n, : (n l  X X mm —+ p )  we have to
define fin g 13(7)“, . . . ‚'Ünm;f3„). We do this by inductively defining injective
functions ll»: from D,; to  f (Ö„„. . . ‚ am;  fin) and setting ’15,; :=  finale). Hence I:],€
is  a bijective function from 'Dg to  fin .  For the other sorts fc wi th  top sort [1 we

define: ÖN :=  h„(D‚;‚).
We define h,; as bijective functions inductively:

1. h. : D; —-> f). and ho : 135 ——> 150 as the identity mappings (These functions
are obviously bijective).

2. Let h,“ and h„ be defined for 'DR, , . . . ‚Dam, and D,;. We are going to  define
a function [q,€ with K: = (191 X X lem ——» p), ‚u # 0, for D.;. For all :1: E D,;
h„(:v) is defined as h„(a:)(:i1, . . . ,äcm) :=  h,‘(V&M(a+)(a:, fifth),  . . . , h;i(:im)))
for all i l  e D„„...‚:im e 15m...

The following diagram may help to  see the involved mappings at a glance:

1J‚s{"'(ofi'):’D‚-° X DRIX nm—>Dfi

! in.. Thal Thai, in»
T359 71,5,“ , . . . , b,. ; 15,1)m

In order to show the injectivity of h" we use that we have in Ef'f the formula
Vnnxf—ü, . . . ,m-Qm af(f,:z:1, . . . ‚mm) E

a*(g,x1,...,w"‘)) => f E 9
Therefore we have in  a model for all a:, .r’ in ’D;
Vyl  E Die“ - ° ° svym E Diem VCM(aT) (a : ‚y1 ,  - ° - , ym)  ED;  (* )

VéM(aT) ($ Iay l a  ° ' ' vym)  =>  12 E’Dg {I},

Let h„(.r) Em b„(x' ) for arbitrary x and x '  in D,}. Then we have by definition
for all :31 E ihm. .  .,.firm E TPM"
mvgwxauzsel)....‚u;‚1(azm>> am n,.vg“(a*)(x'‚ hmm . . . ‚hmm.
Since the mappings h,.1 , . . . , hm,  h„ are all bijective, we get for all 311 €
Dkl  7 ' ' ' ’ ym E Dam!  väMÜIq—‚Xx’y l ’  ‘ ' ' , ym)  EDI; vgw(a+) ($ lvy1>  ' - ' v gm)"  Be-

cause of the relation (*) 3: EUR :r' , hence the injectivity is shown. Since the
surjectivity is given by definition, we have proved that h“ is bijective.

3. Let hm. be defined for 1331 , . . . ‚D,-gm . We are going to  define a function ll» (for
order of R is  less than n )  with & = (n l  X - » - X mm —-> o) for DE. For all a; E D,;
h„(x) is defined as b„(x)(ä:1‘,...,:im) :=  hn"(a?)($,h;11(:E1),...,h;':(.i:m))
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for all Xl E 1JK1 , ••• ,Xrn E 1JKm . Analogously to case 2 we get the bijectivity 

of ~K by the corresponding formula in 3~'p. 

4. Let	 ~Ki be defined for Vfi,l' ... , Vfi,m. We define a function ~K (for order of ~ 

I'\, is equal to n) with I'\, = (1'\,1 X ••. X I'\,rn ---+ 0) for Vfi,. For all p E Vfi, 

~K(P) is defined as ~K(P)(Xl' ... , xrn ) :::;= ~op(~;~-;(Xl)' ... ' ~~~ (x rn )) for all Xl E 

VK1 , ... ,Xrn E VKm . The bijectivity of ~K follows trivially. 

Hence we have defined a frame {VK}K for all sorts 1'\,. 

S t e p 3: 

In this step we define an interpretation mapping 3 in order to complete the def­

inition of an interpretation ({DK}K,3). For all constants c we define 3(c) := 

~ 0 .:r 0 llf(c). For all subsort relations I'\,f;;/1 (with same top sort 1/) we have 

VK ~ V/t, because we have 'K,[;,p" thereby we get Vfi, ~ Vjl and can conclude 

VK = ~AVfi,) ~ ~1I(Vjl) = Vw 

S t e p 4: 

In this step we have to show that for every assignment ein M there is an as­

signment ~ in M, so that for all terms (and hence all formulae) t we have: 

vt(t) = ~ 0 Vr 0 llf(t). Since the proof is analogous to the corresponding palt or 

the proof of theorem 5.21 it is omitted here. 

S t e p 5: 

At first we notice that the term declarations are correctly interpreted. That is the 

case, because the corresponding term declarations hold in the translated case. 

Now we are going to show that if M is a model of <I>(<p), then 1\1 is a model of 

<po If M is model of <I>(<p), then M is a model of w(<p). Let ebe an arbitrary 

assignment and ebe defined as ~-l 0 e0 W-\ then we have Vr(w(<p)) = T, because 

M is a model of w(<p). Hence we have vt(<p) = ~(Vr(w(<p))) = T. Recall that 

for truth values ~ is the identity function. _ 

5.47 Remark: Analogously to the unsorted case (see 5.25) w- l provides a calculus 

for LE. If we add rules that enforce that function symbols and predicate symbols 

are equal if they agree in all arguments, we can transform every sound and complete 

first-order calculus of Lt by <I> to a sound and weakly complete calculus for LE. 
We can execute the proof in Lt and then lift it to a proof in LE. 
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for all i1 6 Ö,“ , . . . , 53m 6 ’55,". Analogously to  case 2 we get the bijectivity
of h,s by the corresponding formula in 53”.

4.  Let h,“. be  defined for DE“... ‚D,-„m. We define a function h“ (for order of

It is equal to n )  with It =(n1  >< X ‚cm —> 0) for DR. For a l l p  € D,;
h„(p) is defined as h„(p)(:i;1‚. . . ,zim) :=  hop(h;11(§:1), . . . , I]; (:Z'm)) for all in 6
Ö“,  . . . , film 6 Ö„„_. The bijectivity of h” follows trivially.

Hence we have defined a frame {fin},s for all sorts rs.

S t e p 3: .

In  this step we define an interpretation mapping j in  order to  complete the def-
inition of an interpretation ({fidmj ) .  For all constants c we define j (c)  :=
h o J o \Il(c). For all subsort relations 1:2}; (with same top sort v) we have
TZ; (; bw because we have 7991, thereby we get D,; 9 D,; and can conclude

255 : l i n / (DE)  g til/(Dit) : Du-

Step  4:

In this step we have to  show that for every assignment € in M there is an as-
signment € in  M,  so that for all terms (and hence all formulae) t we have:
VEM (t) = h 0 V5!" 0 \P( t ) .  Since the proof is analogous to  the corresponding part or
the proof of theorem 5.21 it is omitted here.

Step  5:

At first we notice that the term declarations are correctly interpreted. That is the
case, because the corresponding term declarations hold in the translated c‘ase.

Now we are going to show that if M is a model of @(cp), then M is a model of
go. If M is model of <I>(<p), then M is a model of \I/(cp). Let { be an arbitrary
assignment and 6 be defined as h ' l  o f  o W“ ,  then we have V£M(\I!(go)) = T, because
M is a model of \Il(t,9). Hence we have Vé—Üüp) = h(V£M(\Il(<p))) = T. Recall that
for truth values h is the identity function. l

5.47 Remark: Analogously to the unsorted case (see 5.25) \II“1 provides a calculus
for CE. If we add rules that enforce that function symbols and predicate symbols
are equal if they agree in all arguments, we can transform every sound and complete
first-order calculus of Q}: by (I) to  a sound and weakly complete calculus for ß’z‘.
We can execute the proof in ‚6%; and then lift it  to a proof in Lg.
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5.4	 Relationship to Higher-Order 

Theorem Proving 

An alternative approach to the translation techniques is to build a higher-order 

theorem provers in the first place. These systems are usuaily based on CHURCH '8 

>--calculus [33] and the main advantage of this approach is that the additional 

axioms (namely the comprehension axioms Y) are obsolete. The price one has to 

pay is that unification becomes undecidable and far more complex in general [67]. 

In TPS such a theorem proveI' for unsorted logic is realized. A sorted calculus 

based on the >--calculus can be found in [75]. 

The following example should show the differences between the two approaches. 

5.48 Example: Let us consider the formula set r = {'r://(t_t)'r:/xtP(.f(x)); -'P(a)} 

with object constant a of type t and predicate constant P of type (t -+ 0). In order 

to show that the formula set r is unsatisfiable, we have to add a comprehension 

axiom of the form 3fVx f(x) =a or 3fVx f(x) = x to r. Doing so we can show 

in our higher-order logic £2 that the set is unsatisfiable. In the >--calculus one can 

find immediately some unifiers that make the two formulae of r complementary. 

For instance: 

{f f- >-y.y; X f- a} and {f f- Ay.a}. That is, in the A-calculus the functions Ay.y 

and ).y.a are available as primitives without giving them names and introducing 

them explicitly as objects by some axioms. 

The question which of these two methods is better, remains open, but there 

is evidence that for essentially first-order theorems (compare definition 3.24) the 

translation techniques are r>referential, whereas for truly higher-order theorems it 

is better to search for the proof in the A-calculus. 
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5 .4  Relationship t o  Higher-Order
Theorem Proving

An alternative approach to  the translation techniques is to build a higher-order
theorem provers in the first place. These systems are usually based on CHURCH’S
Ä-calculus [33] and the main advantage of this approach is that the additional
axioms (namely the comprehension axioms T)  are obsolete. The price one has to
pay is that unification becomes undecidable and far more complex in general [67].
In TPS such a theorem prover for unsorted logic is realized. A sorted calculus
based on the Ä-calculus can be  found in [75].

The following example should show the differences between the two approaches.

5.48 Example:  Let us consider the formula set I‘ = {Vf(,_,,)Va:,P(f(a:)); -P (a )}
with object constant a of type 1, and predicate constant P of type (L —> 0). In order
to  show that the formula set 1" is unsatisfiable, we have to  add a comprehension
axiom of the form ElfVm f (x )  E a or ElfVa: f (x)  E a: to  I‘. Doing so we can show
in our higher-order logic L2 that the set is unsatisfiable. In the A-calculus one can
find immediately some unifiers that make the two formulae of I‘ complementary.
For instance:
{ f  (— Ay.y; a: 4—— a}  and { f  +— /\y.a}. That is, in the A-calculus the functions Ay.y
and Ayn are available as primitives without giving them names and introducing
them explicitly as objects by some axioms.

The question which of these two methods is better,  remains open,  but there
is evidence that for essentially first-order theorems (compare definition 3.24) the
translation techniques are preferential, whereas for truly higher—order theorems it
is better to  search for the proof i n  the A-calculus.



CHAPTER 6 

Examples and Practical 

Considerations on Translations 

Begriffe ohne Anschauungen sind leer und 
Anschauungen ohne Begriffe blind. 

Immanuel Kant 

In this chapter we present examples for the translation of theorems from higher­

order logic into first-order logic and their proofs by the Markgraf Karl Refutation 

Procedure [93]. In the first section we present a proof of an essentially first-order 

theorem, in the second a proof of a truly higher-order theorem. In the third section 

the advantage of higher-order sorted language is shown by an example. 

6.1 An Essentially First-Order Theorem 

As an example for an essentially first-order theorem (for the definition of essentially 

first-order compare definition 3.24) we give a proof of theorem 4.3 of [40, p.34], 

that the composition of binary relations is associative. We will formulate the 

theorem in our higher-order logic. 

Let (] and u be two (binary) relations over a (fixed) set S. (Since this set S 
is fixed and no other is under consideration, we will take it as the universe of 

individuals.) The relation (] 0 u is defined by: 

(s,t) E (]O u: {::::::::} 31' (s,r) E (] 1\ (r,t) E u. 

The theorem is: 

V(], u, T ((] 0 u) 0 T = (} 0 (u 0 T). 

Formally we get: 

- Definition of Composition:
 

V(}(tXt->o)VU(tXt->o)VxtVYt ((} 0 u)(x,y) {::::::::} (3zt (}(x,z)!\ u(z,y))
 

- Extensionality Axiom: 

V(](tXt->o)VU(tXt->o) (VxtVYt (](x, y) {::::::::} u(x, y)) ===} (] = U 

93 

CHAPTER 6

Examples and Practical
Considerations on Translations

Begriffe ohne Anschauungen sind leer und
Anschauungen ohne Begriffe blind.

Immanuel Kant

In this chapter we present examples for the translation of theorems from higher—
order logic into first—order logic and their proofs by the Markgraf Karl Refutation
Procedure [93]. In the first section we present a proof of an essentially first—order
theorem, in the second a proof of a truly higher-order theorem. In the third section
the advantage of higher-order sorted language is  shown by an example.

6 .1  An Essentially First-Order Theorem

As an example for an essentially first—order theorem (for the  definition of essentially
first-order compare definition 3.24) we give a proof of theorem 4.3 of [40, p.34],
that the composition of binary relations is associative. We will formulate the
theorem in our higher-order logic.

Let 9 and 0" be two (binary) relations over a (fixed) set S .  (Since this set S
is fixed and no other is under consideration, we will take it as the universe of
individuals.) The relation 9 o a is defined by:
(s , t )  € 900  : (=> 3r  ( s , r )  € g /\ ( r , t )  € 0.
The theorem is:
Vg,a , ' r  ( goq )o ' r  = 90 (007 ' ) .
Formally we get:

- Definition of Composition:
V9(LXL—oo)VU(LXL—+o)vxLVya  (9  O 0) ($ ,  y )  © (32 ,  9037 Z )  A 0 ' (Z ,  y) )

— Extensionality Axiom:
VQ(LX,_‚0)VG'(„XL_,0) (VmNy, g (x ,y )  (=> 0'(m,y)) => g E a

93
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Theorem: 

'rIf}(tXt-+o)'rIo-(tXt-+o)'rIT(tXt-+o) (f} 00-) 0 r = (! 0 (0- 0 r). 

This will. be translated into first-order logic by a quasi-homomorphism. The 

altXt-+o"	 predicate is written as A[IXITO] and so on. The type of binary relations 

is translated to the sort IXITO, where I stands for /, and 0 for o. For example, (!( x, y) 
is translated into the first-order atom A[IXITO] (rho x y). The representation in 

Markgraf Karl syntax is: 

Formulae given to the editor 

Axioms: 
* SORTS * 
SORT I,ITD,IXITO:ANY 
* TERM DECLARATIONS * 
TYPE A[IXITO] (IXITO I I) 
TYPE A[ITO] (ITO I) 
* DEFINITION OF COMPOSITION * 
TYPE COMP(IXITO 1XITO):1XITO 
ALL RHO:IXITO ALL SIGMA:IXITO (ALL X:1 ALL Y:I 

A[1XITO] (COMP(RHO SIGMA) X Y) EQV 
(EX 2:1 A[IXITO] (RHO X 2) AND A[1X1TO] (SIGMA Z V»~) 

* EXTENSIONALITY * 
ALL RHO: IXITO ALL S1GMA:1X1TO 

(ALL X:I ALL Y:I A[IXITO] (RHO X Y) EQV A[IXITO] (SIGMA X V»~ 

IMPL RHO = SIGHA 

Theorems: 
ALL RHO: IXITO ALL SIGHA:IXITO ALL TAU:1X1TO 

COMP(COHP(RHO SIGHA) TAU) = COHP(RHO COMP(SIGHA TAU» 

Refutation: 

Initial Clauses: 
A1:All x:Any + =(x x) 

* A2: All x,y:1 z,u:1xito - A[1X1TO] (comp(u z) y x) + A[1X1TO](u y f_l(u x y z» 
* A3: All x,y:I z,u:lxito - A[IX1TO] (comp(u z) y x) + A[1X1TO](z f_1(u x y z) x) 
* A4: All x,y,z:1 u,v:1xito + A[1X1TO] (comp(v u) z y) - A[1X1TO](v z x) 

- A[IXITO](u x y)
* A5: All x,y:1xito - A[1XITO]Cy f_2(y x) f_3(y x» - A[IX1TO](x f_2Cy x) f_3(y x» 

+ =(y x)
* A6: All x,y:Ixito + A[IX1TO](y f_2Cy x) f_3(y x» + A[IX1TO](x f_2Cy x) f_3Cy x» 

+ =Cy x)
* T7: - =(comp(compCc_1 c_2) c_3) compCc_1 comp(c_2 c_3») 

A6,3 & T7,1 --> * R1: 
+	 A[IX1TO] (comp(comp(c_1 c_2) c_3)
 

f_2Ccomp(compCc_1 c_2) c_3) compCc_1 comp(c_2 c_3»)
 
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»»
 

+	 A[IXITO]CcompCc_1 compCc_2 c_3»
 
f_2Ccomp(comp(c_1 c_2) c_3) comp(c_1 compCc_2 c_3»)
 
f_3(comp(compCc_1 c_2) c_3) compCc_1 compCc_2 c_3»»
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—— Theorem:
VQUXL—>0)VU(LXo—>0)VT(LXL—vo)  (@ O 0') 0 T E 9 O (0‘ O T)‘

This willbe translated into first-order logic by a quasi—homomorphism. The
a"””"’°" predicate is written as A[IXITO] and so on. The type of binary relations
is translated to the  sort IXITO, where I stands for L and O for o. For example, 9(x,  y)
is translated into the first—order atom A [IXITO] (rho x y)  . The representation in
Markgraf Karl syntax is:

Formulae g iven to  the  edi tor

Axioms:
* SORTS *
SORT I,ITO,IXITO:ANY
* TERM DECLARATIONS t
TYPE AEIXITO](IXITO I I )
TYPE A[ITO](ITO I )
* DEFINITION OF COMPOSITION *
TYPE COMP(IXITO IXITO):IXITO
ALL BHO:IXITO ALL SIGHA:IXITO (ALL X:I  ALL Y:I

AEIXITO](COMP(BHO SIGMA) X Y) EQV
(EX 2 :1  AEIXITO](RHO X 2)  AND AEIXITO](SIGHA Z Y ) ) )

* EXTENSIDNALITY *
ALL RHO:IXITO ALL SIGMA:IXITO '

(ALL X:I  ALL Y:I  A[IXITO](RHO x Y) EQV A[IXITO](SIGHA x Y))
IMPL RHO = SIGMA

Theorems :
ALL RHO:IXITO ALL SIGHA:IXITO ALL TAU:IXITO

COMP(COHP(RHO SIGMA) TAU) = COHP(RBO COHP(SIGMA TAU))

Refu ta t i on :

In i t i a l  C lauses :
A1: A11 x:Any + =(x x )

* A2: A11 x ,y : I  z ,u : Ix i t o  - A[IXITO](comp(u z )  y x)  + A[IXITO](u y f_1 (u  x y z ) )
* A3: A11 x ,y : I  z ,u : Ix i t o  - A[IXITO](comp(u z )  y x)  + AEIXITO](z f_1 (u  x y z )  x )
* A4: A11 x ,y , z : I  u ,v : Ix i to  + A[IXITD](conp(v u)  z y)  - AEIXITO](V z x)

- A[IXITO](u x y )
* A5: A11 x ,y : Ix i t o  - AEIXITO](Y f_2 (y  x)  f_3 (y  x ) )  * A[IXITO](x f_2 (y  x)  f_3 (y  x) )

+ =(y  x )
* A6: A11 x‚y:Ixito + A[Ix1'rü](y f_2(y x) f_3(y x))  + AEIXITU](x f_2(y x) f_3(y x))

+ =(y x)
* T7: — =(comp(comp(c_1 c_2) c_3) comp(c_1 conp(c_2 c_3)))

A6,3  & T7 ,1  - ->  * R1:
+ AEIXITO](comp(comp(c_1 c_2) c_3)

f_2 (comp(comp(c_1  c_2) c_3) comp(c_1  comp(c_2  c_3 ) ) )
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3) ) ) )

+ AEIXITO](coup(c_1 comp(c_2 c_3))
f_2(comp(conp(c_1 c_2)  c„3)  comp(c_1 comp(c_2 c_3)))
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3) ) ) )
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R143,1 & R136,1 --> * R152: 
- A[IXITO] (c_2 

f_Hc_1 
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3») 
f_2(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3») 
comp(c_2 c_3» 

f_Hc_2 
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3») 
CHc_1 

f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3») 
f_2(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3») 
comp(c_2 c_3» 

c_3) )
 
- A[IXITO] (c_3
 

f_1(c_2 
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3») 
f_Hc_1 

f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3») 
f_2(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3») 
comp(c_2 c_3» 

c_3) 
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»» 

R152,1 & R149,1 --> * R153: 
- A[IXITO] (c_3 

f_Hc_2 
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3») 
CHc_1 

f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3») 
f_2(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3») 
comp(c_2 c_3» 

c_3) 
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»» 

R153,1 & R148,1 --> * R154: 
[] 

q.e.d. 

Time Used for Refutation: 3893 seconds 

The MKRP needs 3893 seconds (more than an hour) to prove this simple 

theorem. The system produces 154 clauses, many of them rather difficult (the last 

three can be seen above). Although we have translated the theorem such that the 

preconditions are minimal and the initial clause set is relatively simple, we get an 

unfolding of the following axiom during normalization*: 

*This is an observation of AXEL PRACKLEIN. In a joint work [73] we propose to introduce 

tactics that reformulate problem formulations in order to get a more adequate formulation. 
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R143 ,1  & R136 ,1  - ->  * R152 :
- A[IXITU](C_2

f_1 (c_1
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3 ) ) )
f_2(comp(comp(c_1 c_2) c_3) conp(c_1 comp(c_2 c_3)))
comp(c_2 c_3))

f_1 (c_2
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3 ) ) )
f_1(c_1

f_3 (comp(comp(c_1  c_2 )  c_3 )  comp(c_ l  comp(c_2  c_3 ) ) )
f_2 (comp(conp(c_1  c_2 )  c_3 )  comp(c_ i  comp(c_2 c_3 ) ) )
comp(c_2 c_3 ) )

c_3) )
- A[IXITO](C_3

f_1 (c_2
f_3(comp(comp(c_1 c_2) c_3) comp(c_l comp(c_2 c_3 ) ) )
f_1(c_1

f_3(comp(comp(c_1 c_2) c_3) comp(c_l comp(c_2 c_3 ) ) )
f_2(comp(comp(c_1 c_2) c_3)  conp(c_1 comp(c_2 c_3 ) ) )
comp(c_2 c_3) )

c_3)
f_3 (comp(comp(c_1  c_2 )  c_3 )  comp(c_1  comp(c_2  c_3 ) ) ) )

R152 ,1  & R149 ,1  - ->  * R153:
- AEIX ITO] (C_3

f_1(C_2 *
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3)))
f_1(c_1

f_3(comp(comp(c_1 c_2)  c_3)  comp(c_i comp(c_2 c_3 ) ) )
f_2(comp(comp(c_l c_2) c_3) comp(c_1 comp(c_2 c_3)))
co -p (c_2  c_3 ) )  o

c_3)
f_3(conp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3) ) ) )

v.

n153‚1 a R148,1 --> * 11154:
[]

q .e .d .

Time Used fo r  Refutat ion:  3893 seconds

The MKRP needs 3893 seconds (more than an hour) to  prove this simple
theorem. The system produces 154 clauses, many of them rather difficult ( the last
three can be seen above). Although we have translated the theorem such that the
preconditions are minimal and the initial clause set is relatively simple, we get an
unfolding of the following axiom during normalization“:

*This is an observation of AXEL PRÄCKLEIN. In a joint work [73] we propose to introduce
tactics that reformulate problem formulations in order to get a more adequate formulation.
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~ ( ~ A {=} B) ===:;. C 

~ ~ -,( [2] A {=} B) v C 

~ [2J -,(( [2] A ~ B)!\( [Y] B ~ A))VC 

~ [Y] -,( ~ -,A. v B) v -,( ~ -.B v A) v C 

~ [Y] ([~ -.(-.A v B))V( @)-.(-.BV A))VC 

~ [2J (~ A!\ -.B) v ( [] B !\ -.A) v C 

~ [2] (-.A v -.B v C) !\ (A V B V C) 

The last formula corresponds to A5 and A6 in the normalization above. We have 

two clauses, where the As and Bs contain complicated SKOLEM functions because 

of quantifiers in the theorem and they must be resolved in a difficult manner. 

Looking at the input formulae and at the result of the normalization we see 

that it is very useful to first perform a preprocessing step. The structure of the ex­

tensionality axiom is (A {::::::9 B) ===:;. C where C matches the theorem C'. Hence 

we can construct a new theorem A' {=} B' according to this match. Starting 

with this "resolvent" as theorem we can avoid the unfolding during normalization. 

By the preprocessing step one can replace the three-literal clauses A5 and A6 

as well as the theorem clause T7 by the simple clauses T5 and T6 in the proof 

below and hence avoid the SKOLEM functions f _2 and f _3. The general explicit 

formulation of the extensionality a.xiom is replaced by a. special implicit one. The 

alternative formulation is: 

Formulae given to the editor 

Axioms: 

* SORTS * 
SORT 1,1TO,IXITO:ANY
 
* TERM DECLARATIONS *
 
TYPE A[1XITO] (IXITO I I)
 
TYPE A[ITO] (ITO I)

* DEFINITION OF COMPOSITION *
 
TYPE COMP(IXITO IXITO):IXITO
 
ALL RHO:IXITO ALL SIGMA:IXITO (ALL X:I ALL Y:I
 

A[IXITO] (COMP(RHO SIGMA) X Y) EQV
 
(EX Z:1 A[IX1TO] (RHO X Z) AND A[IX1TO] (SIGMA Z V»~)
 

Theorems: 
ALL RHO:IXITO ALL SIGMA:IXITO ALL TAU:IXITO ALL X:I ALL Y:I , 

A[IXITO] (COMP (COMP (RHO SIGMA) TAU) X y) EQV A[IXITO] (COMP(RHO COMP(SIGMA TAU» X Y) 
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"(A <=> B)=>C

«» “(A =» B)VC

M“((A==>B)A(.B==>A))VC
«» " ( aAvB)vfi ( IfiBvA)vC

«» lll(——<fiAvB>>v(fi(fiBvA>>vo
M ( ' .AA—=B)V(.B/ \—'A)VC

«» '(fiAV-uBVC)/\(AVBVC)
The last formula corresponds t o  A5 and A6 in  the normalization above. We have

two clauses, Where the As and Bs  contain complicated SKOLEM functions because
of quantifiers in the theorem and they must be resolved in a difficult manner.

Looking at the input formulae and at the result of the normalization we see
that it is very useful to first perform a preprocessing step. The structure of the ex—
tensionality axiom is (A <=» B) =? C where C matches the theorem 0". Hence
we can construct a new theorem A’ <:=> B’ according to this match. Starting
with this “resolvent” as theorem we can avoid the unfolding during normalization.

By the preprocessing step one can replace the three-literal clauses A5 and A6
as well as the theorem clause T7 by the simple clauses T5 and T6 in the proof
below and hence avoid the SKOLEM functions 13.2 and f_3. The general explicit
formulation of the extensionality axiom is replaced by a special implicit one. The
alternative formulation is :

Formulae given to  the  ed i to r

Axioms :
* SORTS *
SORT I , ITO,IXITO:ANY
* TERM DECLARATIONS I
TYPE AEIXITO](IXITO I I )
TYPE AEITO](ITO I )
* DEFINITION OF COMPOSITION *
TYPE COMP(IXITO IX ITO) : IX ITO
ALL RHO:IXITO ALL SIGMA:IXITO (ALL X:I  ALL Y: I

A[IXITO](COMP(RHO SIGMA) X Y) EQV
(EX Z : I  A[IXITO](RHO X Z)  AND A[IXITO](SIGHA Z Y)) )

Theorems :
ALL RHO:IXITO ALL SIGMA:IXITO ALL TAU:IXITO ALL X: I  ALL Y: I  L

AEIXITO](COMP(COHP(RHO SIGMA) TAU) X Y) EQV A[IXITO](COMP(BHO COHP(SIGMA TAU)) X Y)
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Refutation: 
========== 

Initial Clauses: 
Ai: All x:Any + =(x x) 

* A2:	 All x,y:I z,u:Ixito - A[IXITO] (comp(u z) y x) + A[IXITO](u y f_i(u.x y z» 
* A3:	 All x,y:I z,u;Ixito - A[IXITO] (comp(u z) y x) + A[IXITO](z f_i(u x y z) x) 
* A4: All x,y,z:I u,v:Ixito + A[IXITO] (comp(v u) z y) - A[IXITO](v z x) 

- A[IXITO](u x y) 
*	 T5: - A[IXI TO] (comp(comp(c_i c_2) c_3) c_4 c_5) 

- A[IXITO] (comp(c_i comp(c_2 c_3» c_4 c_5) 
* T6:	 + A[IXITO] (comp(comp(c_i c_2) c_3) c_4 c_5) 

+ A[IXITO] (comp(c_i comp(c_2 c_3» c_4 c_5) 

T6,2 & A3,i --> * Ri: 
+ A[IXITO] (comp(comp(c_i c_2) c_3) c_4 c_5) 
+ A[IXITO] (comp(c_2 c_3) f_i(c_i c_5 c_4 comp(c_2 c_3» c_5) 

R5,2 & R37,3 --> * R38: 
+ A[IXITO] (comp(comp(c_i c_2) c_3) c_4 c_5) 
+ A[IXITO] (comp(comp(c_i c_2) c_3) c_4 c_5) 
+ A[IXITO] (comp(c_i c_2) c_4 f_i(c_2 c_5 f_l(c_l c_5 c_4 comp(c_2 c_3» c_3» 

R77,1 & R61,1 --> * R78: 
- A[IXITO] (c_3 f_i(c_2 c_5 f_i(c_l c_5 c_4 comp(c_2 c_3» c_3) c_5) 

R78,i & R76,i --> * R79: 
[J 

q.e.d. 

Time Used for Refutation: 326 seconds 

R38 is one of the most difficult clauses in the whole proof. The proof is found 

in .326 seconds - compared to 3893- seconds a drastical improvement. 

In addition, it is now possible to split the theorem automatically into the two 

parts A' ===? B' and B ' ===? A' with computation times for the splitparts of 20 

seconds each, that means, total refutation time of 40 seconds. In this formulation 

the original theorem clause T7 is replaced by the unit clauses T5 through T8. 

Set of Axiom Clauses Resulting from Normalization 

Ai: All x:Any + =(x x)
* A2:	 All x,y:I z,u:Ixito - A[IXITO] (comp(u z) y x) + A[IXITO](u y f_i(u x y z» 
* A3:	 All x,y:I z,u:Ixito - A[IXITO] (comp(u z) y x) + A[IXITO](z f_i(u x y z) x) 
* A4: All x,y,z:I u,v:lxito + A[IXITD] (comp(v u) z y) - A[IXITO](v z x) 

- A[IXITO](u x y) 
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Refu ta t ion :

In i t i a l  C lauses :
A1: A11 sny + =(x  x )

# A2: A11 x ,y : I  z ‚u : Ix i t o  — AEIXITO](co-p(u z )  y x)  + AEIXITD](u y f_1 (u .x  y z ) )
A3: A11 x ,y : I  z ,u : Ix i t o  - AEIXITO](conp(u z )  y x)  + AEIXITD](2 f_1 (u  x y z )  x )

* A4: A11 x ,y , z : I  u‚v : Ix i t o  + A[IXITO](comp(v u )  z y)  - A[IXITO](V z x)
- A[IXITO](u x y)

*

* T5: — A[IXITO](comp(comp(c_1 c_2) c_3) c_4 c_5)
- A[IXITO](comp(c_1  comp(c_2  c_3 ) )  c_4  c_5 )

* T6: + A[IXITO](comp(comp(c_1 c_2) c_3) c_4 c_5)
+ AEIXITO](comp(c_1 comp(c_2 c_3) )  c_4 c_5)

T6‚2  & A3 ,1  - ->  # R1:
+ A[IXITO](comp(comp(c_1 c_2) c_3) c_4 c_5)
+ A[IXITD](comp(c_2 c_3) f_1 (c_1  c_5 c_4 comp(c_2 c_3) )  c_5)

R5‚2  & R37‚3  ——> * R38 :
+ A[IXITD](comp(comp(c_1 c_2) c_3) c_4 c_5)
+ A[IXITO](comp(comp(c_1 c_2) c_3) c_4 c_5)
+ A[IXITO](comp(c_1  c_2 )  c_4  f_1 (c_2  c_5  f_1 (c_1  c_5  c_4  conp(c_2  c_3 ) )  c_3 ) )

R77‚1  & R61‚1  - ->  * R78:
- A[IXITO](c_3 f_1(c_2  c_5 f_1 (c_1  c_5 c_4 comp(c_2 c_3) )  c_3)  c_5)

R7B‚1 t 376 ,1  - ->  * R79:
[]

q‚e .d .

Time Used fo r  Re fu t a t i on :  326  seconds

R38 is one of the most difficult clauses in the whole proof. The proof is found
in _326 seconds — compared to 3893 seconds a drastical improvement.

In addition, it is now possible to  split the theorem automatically into the two
parts A’ => B’ and B’ => A’ with computation times for the splitparts of 20~
seconds each, that means, total  refutation time of 40 seconds. In this  formulation
the original theorem clause T7 is replaced by the unit clauses T5 through T8.

Se t  o f  Axiom Clauses  Resul t ing f rom Normal izat ion

A1: A11 x:Any + =(x  x )
* A2: A11 x ,y : I  z ,u : Ix i t o  - AEIXITO](comp(u z )  y x)  + ACIXITO](u y f_1 (u  x y z ) )
* A3: A11 x ,y : I  z , u : Ix i t o  - A[IXITO](comp(u z )  y x)  + A[IXITO](z f_1 (u  x y z )  x )
* A4: Al l  x ,y , z : I  u ,v : Ix i t o  + A[IXITD](comp(v u )  z y)  - A[IXITO](V z x)

- A[IXITD](u x y)
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Set of Theorem Clauses Resulting from Normalization and Splitting 
================================================================= 

Splitpart 1 
* T5: - A[IXITO] (comp(comp(c_4 c_1) c_2) c_3 c_5) 
* T6: + A[IXITO] (comp(c_4 comp(c_l c_2» c_3 c_5) 

Splitpart 2 
* T7: + A[IXITO] (comp(comp(c_9 c_6) c_7) c_8 c_l0)
* TB: - A[IXITO] (comp(c_9 comp(c_6 c_7» c_B c_l0) 

Refutation of Splitpart 1: 

T6,l & A3,1 --> * Ri: 
+ A[IXITO] (comp(c_1 c_2) f_l(c_4 c_5 c_3 comp(c_l c_2» c_5) 

T6,l & A2,1 --> * R2: 
+ A[IXITD] (c_4 c_3 f_1(c_4 c_5 c_3 comp(c_l c_2») 

Rl,l & A2,1 --> * R3: 
+	 A[IXITD] (c_1
 

f_1(c_4 c_5 c_3 comp(c_1 c_2»
 
f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_l c_2» c_2»
 

Rl,l & A3,1 --> * R4: 
+ A[IXITO] (c_2 f_1(c_1 c_5 f_l(c_4 c_5 c_3 comp(c_l c_2» c_2) c_5) 

A4,l & T5,1 --> * R5: 
All xlI - A[IXITO] (comp(c_4 c_1) c_3 x) - A[IXITO] (c_2 x c_5) 

R4,l & R5,2 --> * R6: 
- A[IXITO] (comp(c_4 c_l) c_3 f_1(c_l c_5 f_l(c_4 c_5 c_3 comp(c_l c_2» c_2» 

R3,1 & A4,3 --> * R7: 
+ A[IXITD] (comp(c_4 c_1) c_3 f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_l c_2» c_2» 
- A[IXITD] (c_4 c_3 f_1(c_4 c_5 c_3 comp(c_1 c_2») 

R7,2 & R2,1 --> * R8: 
+ A[IXITO] (comp(c_4 c_1) c_3 f_1(c_l c_5 f_l(c_4 c_5 c_3 comp(c_l c_2» c_2» 

RB,1 & R6,1 --> * R9: 
[] 

Refutation of Splitpart 2: 
========================== 

T7,1 & A3,1 --> * RiO: 
+ A[IXITD] (c_7 f_l(comp(c_9 c_6) c_l0 c_B c_7) c_l0) 

T7,1 & A2,1 --> * Rl1: 
+ A[IXITD] (comp(c_9 c_6) c_B f_l(comp(c_9 c_6) c_l0 c_8 c_7» 

Rl1,1 & A3,1 --> * R12: 
+	 A[IXITD] (c_6
 

f_l(c_9 f_l(comp(c_9 c_6) c_10 c_8 c_7) c_S c_6)
 
f_l(comp(c_9 c_6) c_10 c_8 c_7»
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Set of  Theorem Clauses Result ing from Normalization and Spl i t t ing

Splitpart 1
* T5: - A[IXITO](comp(comp(c_4 c_1) c_2) c_3 c_5)
* T6: + AEIXITO](comp(c_4 comp(c_1 c_2)) c_3 c_5)

Splitpart 2
* T7: + AEIXITO](comp(comp(c_9 c_6) c_7) c_8 c_10)
* T8: - AEIXITD](comp(c_9 comp(c_6 c_7)) c_8 c_10)

Refu ta t ion  of  Splitpart 1 :

T6‚1  & A3‚1  -—> * R1:
+ AEIXITO](cbmp(c_1 c_2) f_1 (c_4  c_5 c_3 comp(c_1 c_2)) c_5)

T6‚1  & A2,1  ——> * R2:
+ AEIXITO](c_4 c_3 i _1 (c_4  c_S c_3 comp(c_1 c_2 ) ) )

31,1 & 12,1 --> * as:
+ A[IXITO](C_1

f_1 (c_4  c_5 c_3 comp(c_1 c_2))
f_1(c_1  c_5 f-1(c_4 c_5 c_3 conp(c_1 c_2)) c_2))

R1,1  & A3,1  —-> * R4:
+ AEIXITO](c_2 f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_1 c_2)) c_2) c_5)

A4‚1  & T5 ,1  - ->  * RS:
Al l  x : I  - A[IXITO](comp(c_4 c_1) c_3 x) - AEIXITO](C_2 x c_5)

R4‚1  & R5,2  —-> * R6:
- AEIXITO](comp(c_4 c_1)  c_3 f_1 (c_1  c_5 f_1 (c_4  c_5 c_3 comp(c_1  c_2 ) )  c_2 ) )

33 ,1  & A4 ,3  - ->  * R7:
+ A[IXITO](comp(c_4  c_1 )  c_3 f_1 (c_1  c_5 f_1 (c_4  c_5 c_3 comp(c_1 c_2 ) )  c_2) )
- A[IXITD](c_4 c_3 f_1(c_4  c_5 c_3 comp(c_1 c_2) ) )

R7‚2 1 32,1 ——> * as:
+ AEIXITO](conp(c_4 c_1)  c_3 f_1(c_1  c_5 f_1(c_4 c_5 c_3 comp(c_1 c_2)) c_2))

R8,1  & R6‚1  - ->  * R9:
[]

Refuta t ion  of  Splitpart  2 :

T7 ,1  & A3‚1  -—> * R10:  „
+ AEIXITO](C_7 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_10)

T7 ,1  & A2,1 ——> * R11:
+ A[IXITO](comp(c_9  c_6)  c_8 f_1 (comp(c_9  c_6) c_10 c_8 c_7 ) )

R11‚1  & A3‚1  —-> * R12:
+ AEIXITD](C_6

f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6)
f_1(comp(c_9 c_6) c_10 c_8 c_7))
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R11,1 & A2,1 --) * R13: 
+ A[IXITO] (c_9 c_8 f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6» 

A4,1 & T8,1 --) * Ri4: 
All x:I - A[IXITO] (c_9 c_8 x) - A[IXITO] (comp(c_6 c_7) x c_10) 

R13,1 & R14,1 --) * R1S: 
- A[IXITO] (comp(c_6 c_7) CHc_9 CHcomp(c_9 c_6) c_10 c_8 c_7), c_8 c_6) c_10) 

RiO,1 & A4,3 --) * R16: 
+ A[IXITO] (comp(c_6 c_7) f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6) c_10) 
-	 A[IXITO] (c_6
 

f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_S c_6)
 
f_1(comp(c_9 c_6) c_10 c_S c_7»
 

R16,2 & R12,1 --) * R17: 
+ A[IXITO] (comp(c_6 c_7) f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_S c_6) c_10) 

R17,1 & R1S,1 --) * R18: 
[] 

q.e.d. 

Time Used for Refutation of Splitpart 1: 20 seconds 
Time Used for Refutation of Splitpart 2: 20 seconds 

Summarizing it is possible to say that the problem representation is crucial for 

automated theorem proving. An automated theorem proveI' is very sensitive to 

the problem formulation. Therefore even for essentially first-order theorems the 

question of how to prove it by a first-order theorem proveI' is not answered by 

simply translating them from higher-order into into first-order. The problem, how 

to translate and what kind of problem presentation should be chosen, is largely 

uninvestigated. In [73] some ideas in this direction can be found. Perhaps the 

most important question - but as seen in the example not the only one - is hmv 

to find a minimal set of preconditions for proving the theorem, because otherwise 

the search space for a proof is too big. In order to find such a minimal or almost 

minimal set analogy will play an important role. Some examples in this direction 

can be found in [71]. 

6.2 A Truly Higher-Order Theorem 

As an example for a truly higher-order theorem (for the definition of truly higher­

order compare definition 3.24) we present a proof of CANTOR'S theorem that the 

power-set of a set has greater cardinality than the set itself. We use the formulation 

of ANDREWS [3, p.184, X5304] (compare figure 4.12). 

A formulation in our higher-order logic is - sets are encoded as predicates of 

the type (t ---+ 0): 
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311 ,1  & A2 ,1  - ->  * R13:
+ A[IXITO](c_9 c_8 f_1(c_9 f_1(conp(c_9 c_6)  c_10 c_8 c_7)  c_8 c_6 ) )

A4,1  & T8‚1  " )  * R14:
Al l  x : I  — A[IXITU](C_9 c_8  x )  - A[IXITO](comp(c_6 c_7 )  x c_10)

R13 ,1  & R14 ,1  —-> * R15:
— A[IXITO](comp(c_6 c_7) f_1(c_9  f_1(conp(c_9 c_6) c_10 c_8 c_7 )  c_8 c_6) c_10)

R10 ,1  & A4‚3  - ->  * R16:
+ A[IXITO](comp(c_6 c_7) f_1(c_9  f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6) c_10)
- A[IXITO](C_6

f_1 (c_9  f_1 (comp(c_9  c_6) c_10  c_8  c_7) c_8  c_6)
f_1(comp(c_9 c_6) c_10 c_8 c_7) )

R16 ,2  & R12 ,1  ——> * R17:
+ A[IXITO] (comp(c_6  c_7 )  f_1 (c_9  f_1 (comp(c_9  c_6 )  c_10  c_8  c_7 )  c_8  c_6 )  c_10)

317.1 a 315.1 —-> * R18:
[]

q .e .d .

Time Used fo r  Refutat ion o f  Splitpart 1 :  20  seconds
Time Used fo r  Refutat ion o f  Splitpart 2 :  20  seconds

Summarizing i t  is possible to say that the problem representation is crucial for
automated theorem proving. An automated theorem prover is very sensitive to
the problem formulation. Therefore even for essentially first—order theorems the
question of how to  prove it  by a first—order theorem prover is not answered by
simply translating them from higher-order into into first-order. The problem, how
to translate and what kind of problem presentation should be chosen, is largely
uninvestigated. In [73] some ideas in this direction can be found. Perhaps the
most important question — but as seen in the example not the only one — is how
to  find a minimal set of preconditions for proving the theorem, because otherwise
the search space for a proof is too big. In order to  find such a minimal or almost
minimal set analogy will play an important role. Some examples i n  this direction
can be found in [71].

6 .2  A Truly Higher-Order Theorem

As an example for a truly higher—order theorem (for the definition of truly higher-
orde-r compare definition 3.24) we present a proof of CANTOR’S theorem that the
power—set of a set has greater cardinality than the set itself. We use the formulation
of ANDREWS [3, p.184, X5304] (compare figure 4.12).

A formulation in our higher-order logic is — sets are encoded as predicates of
the type (i. —> o):
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- Definition of subset: 

VA(t-+o)VB(HO) A ~ B {::::::::} (Vx, A(x) =? B(x)). 

- Theorem: 

V8(, .....0) ,3g(,.....(''''''0»\1/(''''''0) f ~ s ==} (3j, s(j) A g(j) =J) 

- In order to prove this theorem by a translation to first-order logic, we need 

the following comprehension axiom, which incorporates the idea of diagonal­

ization: 

Now we show a quasi-homomorphic translation into first-order logic (in MKRP­

syntax) and a proof by the MKRP system: 

Formulae given to the editor 
============================ 

Axioms: 
* SORTS * 
SORT I,ITO,IT[ITO]:ANY 
* TERM DECLARATIONS * 
TYPE A[ITO] (ITO I) 
TYPE A[IT[ITO]] (IT[ITO] 1):ITO 
TYPE SUBSET (ITO ITO) 
* DEFINITION SUBSET * 
ALL A,B:ITO SUBSET(A B) EQV (ALL X:I A[ITO](A X) IMPL A[ITO](B X» 
* COMPREHENSION AXIOM * 
ALL S:ITO ALL G:IT[ITO] EX P:ITO ALL X:I 

A[ITO](P X) EQV (A [ITO](5 X) AND (NOT A[ITO](A[IT[ITO]](G X) X») 

Theorems: 
ALL S:ITO (NOT EX G:IT[ITO] ALL F:ITO 

SUBSET(F S) IMPL (EX J:I A[ITO](S J) AND A[IT[ITO]](G J) = F» 

Refutation: 

Initial Clauses: 
A1: All x:Any + =(x x) 

* A2: All x:I y:It[ito] z:Ito - A[ITO] (f_1(z y) x) + A[ITO](z x) 
* A3: All x:I y:It[ito] z:Ito - A[ITO] (f_1(z y) x) - A[ITO](a[it[it~]](y x) x) 
* A4: All x:I y:lt[ito] z:Ito + A[ITO] (f_1(z y) x) - A[ITO](z x) 

+ A[ITO] (a[it[ito]](y x) x) 
* T5: All x:lto + A[ITO](x f_2(x» + A[ITO] (c_1 f_3(x» 
* T6: All x:lto + A[ITO](x f_2(x» + =(a[it[ito]] (c_2 f_3(x» x) 
* T7: All x:lto - A[ITO] (c_1 f_2(x» + A[ITO] (c_1 f_3(x» 
* T8: All x:lto - A[ITO] (c_1 f_2(x» + =(a[it[ito]](c_2 f_3(x» x) 

T5,1 & A2,1 --> * RS: 
All x:lt[itoJ y:lto + A[ITOJ(c_1 f_3(f_1(y x») + A[ITOJ(y f_2(f_1(y x») 
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— Definition of subset:  .

VA(L_„)VB(L_.O) A Q B (=> (VxL A(m) => B(:c)).

— Theorem:
V5(L_+o)“aan-*(L—‚oaÜ—m) f S 8 => (3)? SU)  A _QU) E f )

— In order t o  prove this theorem by a translation to  first-order logic, we need
the following comprehension axiom, which incorporates the idea of diagonal-
ization:
V3(L-+o)Vg(»-»<¢—»o))3p(~o)Vim (190?) (=> 3(w) /\ WWW)

Now we show a quasi—homomorphic translation into first-order logic (in MKRP-
syntax) and a proof by the MKRP system:

Formulae g iven to  the ed i to r

Axioms :
* SORTS *
SORT I,ITO,IT[ITO]:ANY
# TERM DECLARATIONS #
TYPE A[ITO](ITO I )
TYPE A[ITEITO]](IT[ITO] I ) : ITD
TYPE SUBSET (ITO ITO)
* DEFINITION SUBSET *
ALL A‚B:ITD SUBSET(A B) EQV (ALL X:I  A[ITO](A x)  IHPL A[ITO](B X))
* COMFREHENSION AXIOM *
ALL S:ITO ALL G: IT [ ITD]  EX lTD ALL X: I

A[ITO](P X) EQV (A[ITO](S  X) AND (NOT A[ITO](A[IT[ITO]](G X)  X ) ) )

Theorems :
ALL S:ITO (NOT EX G:IT[ITO] ALL F:ITO

SUBSET(F S)  IHPL (Ex  J : I  A[ITO](S J )  AND A[IT[ITO]](G J )  = P) )

Refu ta t i on :

Initial Clauses :
A1: Al l  x:Any + =(x x )

* A2: A11 x : I  y : I t [ i t o ]  zzlto
* A3: A11 x : I  y : I t [ i t o ]  zz l t o

A4: Al l  x

A[ITO](f_1(z y) x)  + A[ITO](z x) ,
A[ITO](t_1(z y) x)  - A[ITO](a [ i t [ i to ] ] (y  x)  x)

: I  y : I t [ i t o ]  zz l t o  + A[ITO](f_1(z y) x) — A[ITO](z x)*

+ A[ITO](a [ i t [ i to ] ] (y  x)  x )
* T5:  A l l  x : I t o  + A[ITO](x  f _2 (x ) )  + A[ITO](c_1  f _3 (x ) )
* T6:  A l l  l t o  + A[ITO](X f_2 (x ) )  + =(a [ i t [ i t o ] ] ( c_2  f _3 (x ) )  x )
* T7: A11 x t I to  — A[ITO](c_1 f_2(x) )  + A[ITO] (c_1 f_3 (x ) )
* T8:  A11 s to  — A[ITO](c_1  f_2 (x ) )  + =(a [ i t [ i t o ] ] ( c_2  f_3 (x ) )  x)

T5 ,1  & A2 ,1  - ->  * R8:
Al l  x : I t [ i t o ]  yz l t o  + A[ITO](c_1  f_3 ( f_1 (y  x ) ) )  + A[ITO](y  f_2 ( f_1 (y  x ) ) )
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R8,2 k T7,l --) * R9: 
All x:lt[ito] + A[ITO] (c_l f_3(f_l(c_l x») + A[ITO] (c_l f_3(f_l(c_l x») 

R9 1=2 --) * 010: 
All x:lt[ito] + A[ITO] (c_l f_3(f_l(c_l x») 

T6,l k A2,l --) * R12: 
All x:lt[ito] y:lto + =(a[it[ito]] (c_2 f_3(f_l(y x») f_l(y x» 

+ A[ITO](y f_2(f_l(y x») 

R12,2 k T8,l --) * R13: 
All x:lt[ito] + =(a[it[ito]] (c_2 f_3(f_l(c_l x») f_l(c_l x» 

+ =(a[it[ito]] (c_2 f_3(f_l(c_l x») f_l(c_l x» 

R13 1=2 --) * 014: 
All x:lt[ito] + =(a[it[ito]] (c_2 f_3(f_l(c_l x») f_l(c_l x» 

014,1 k A3,2 --) * P1S: 
All x:lto y:lt[ito] - A[ITO] (f_l(c_l y) f_3(f_l(c_l y») 

- A[ITO] (f_l(x c_2) f_3(f_l(c_l y») 

P1S (factor) --) * F16: 
- A[ITO] (f_l(c_l c_2) f_3(f_l(c_l c_2») 

A4,l k F16,l --) * R17: 
- A[ITO] (c_l f_3(f_l(c_l c_2») 
+ A[ITO] (a[it[ito]] (c_2 f_3(f_l(c_l c_2») f_3(f_l(c_l c_2») 

R17,2 k 014 --) * RW18: 
- A[ITO] (c_l f_3(f_l(c_l c_2») + A[ITO] (f_1(c_l c_2) f_3(f_l(c_l c_2») 

RW18,2 k P1S,2 --) * R19: 
- A[ITO] (c_l f_3(f_l(c_l c_2») - A[ITO] (f_l(c_l c_2) f_3(f_l(c_l c_2») 

R19,2 k RW18,2 --) * R20: 
- A[ITO] (c_l f_3(f_l(c_l c_2») - A[ITO] (c_l f_3(f_l(c_l c_2») 

R20 1=2 --) * D21: 
- A[ITO] (c_l f_3(f_l(c_l c_2») 

021,1 k 010,1 --) * R22: 
[] 

q.e.d. 

Time Used for Refutation: 44 seconds 

The main problem with this formulation is to find the corresponding compre­

hension axiom. Indeed the whole proof idea - the diagonalization - is formulated 

in this axiom. If the theorem is proved by a higher-order theorem proveI' such an 

axiom is not necessary, because the higher-order unification algorithm produces a 

corresponding unifier. Therefore higher-order theorem provers are usually better 

suited for proving truly higher-order theorems. However, as in this example so in 

the general case, even for these theorems a first-order theorem proveI' can be used, 

albeit not always with advantage. 
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38 ,2  & T7 ,1  - ->  * E9:
Al l  x: I t [ i to ]  + AEITO](c_1 f_3 ( f_1 (c_1  x ) ) )  + AEITO](e_1 f_3 ( f_1 (c_1  x ) ) )

R9 1=2  - ->  * D10:

Al l  x : I t [ i t o ]  + A[ITO](C_1 f_3(f_1(c_1 x) ) )

T6,1 & A2‚1 --> * R12:
A11 x : I t [ i t o ]  yz l t o  + = (a [ i t [ i t o ] ] ( c_2  f_3(f_1(y x) ) )  f_1(y x) )

+ AEITO](y f_2 ( f_1 (y  x ) ) )

312 ,2  & T8 ,1  -—> * H13:
Al l  x: I t [ i to ]  + =(a [ i t [ i t o ] ] ( c_2  f_3 ( f_1 (c_1  x ) ) )  f _1 (c_1  x) )

+ =(a [ i t [ i t o ] ] ( c_2  f_3( f_1(c_1  x ) ) )  f_1(c_1 x) )

R13  132  - ->  * D14:
‘All x : I t [ i t o ]  + =(a [ i t [ i t o ] ] ( c_2  f_3 ( f_1 (c_1  x ) ) )  f_1 (c_1  x ) )

D14‚1  & A3,2  - ->  * P15:
Al l  x : I to  yz l tE i to ]  - A[ITO](f_1(c_1 y)  f_3(f_1(c_1 y) ) )

- A[ ITO] ( f_1 (x  c_2) f_3 ( f_1 (c_1  y)))

P15  ( fac tor )  - ->  * F16:
- A[ITO]( f_1(C_1 c_2)  f _3 ( f_1 (c_1  c_2 ) ) )

A4,1 & F16‚1 - ->  * R17:
- A[ITO](C_1 f_3( f_1(c_1  c_2)))
+ AEITD](a[it[ito]](c_2 f_3(f_1(c_1 c_2))) f_3(f_1(c_1 c_2)))

B17,2  & 014 -—> * RWIS:
- AEITU](C_1 f_3(f_1(c_1 c_2) ) )  + A[ ITO] ( f_1 (c_1  c_2)  f_3 ( f_1 (c_1  c_2 ) ) )

RH18,2 & 915,2 - ->  * R19:
— AEITO](c_1 f_3(f_1(c_1 c_2>))  - A[ITU](f_1(c_1 c_2) f_3(f_1(c_1 c_2) ) )

319 ,2  & RH18{2 - ->  * R20:
— A[ ITD ] ( c_1  f_3 ( f_1 (c_1  c_2 ) ) )  - AEITO](C_1 f_3 ( f_1 (c_1  c_2 ) ) )

R20 1=2  - ->  * D21:
- AEITO](c_1 f_3 ( f_1 (c_1  c_2) ) )

021 ,1  & D10,1  -—> * R22:
[]

q .e .d .

Time Used fo r  Refu ta t ion :  44  seconds

The main problem with this formulation is to find the corresponding compre—
hension axiom. Indeed the whole proof idea — the diagonalization —— is formulated
in this axiom. If the theorem is proved by a higher-order theorem prover such an
axiom is not necessary, because the higher-order unification algorithm produces a
corresponding unifier. Therefore higher-order theorem provers are usually bet ter
suited for proving truly higher-order theorems. However, as in  this example so in
the general case, even for these theorems a first-order theorem prover can be  used,
albeit not always with advantage.
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6.3 A Sorted Higher-Order Theorem 

Now we give a comparison of the behaviour of a theorem prover when we use a 

sorted and an unsorted formulation of the same problem. The example is theorem 

(4.11.1) of [40, pAO]: For the formulation of the theorem we need the notion of an
 

induced equivalence relation:
 

Let y: S ~ U be a map, then <p induces an equivalence relation (! on S by setting
 

(!(s,t) iff yes) = <pet).
 
The theorem is:
 

Let y1: S ~ U and <P2: S ~ V be mappings and let (!1 and (12/ be the induced
 

equivalence relations. If there exists a map cP: U ~ V with <]> 0 r.p1 = r.p2, then we
 

have (!1 ~ (!2·
 

This can be axiomatized in sorted higher-order logic by: 

- Subsort Declarations: 

S'!;.t, U'!;.t, V'!;.t 

- Definition of Subset: 

Vf(sxs_o)Vg(sxs-+o) f ~ 9 ~ (VxsVys I(x,y) ===} g(x,y)). 

- Definition of Composition: 

Vf(U-+v)Vg(S_U)(Vxs (J 0 g)(x) = f(g(x))) 

- Definition of Induced Equivalence Relation:
 

VY(S_t)(VxsVys IND(<p)(x,y) ~ r.p(x) == r.p(y))
 

- Theorem: 

VI.,.,l Vt.,.,2 V 1)1 V 1)2 1)1 =IND(t/')l) 1\ 1)2 == IND(I()2) ===}r(S_U) r(S-+V) I:;:"(SXS-+o) I:;:"(SXS_o) r I:;:" rI:;:" 

(=J<p(u-+V) <]> 0 <pI =r.p2 ===} (!1 ~ (12) 

Formulae given to the editor 
============================ 

Axioms: 
* SORTS * 
SORT I,O,ITO,IXITO, [SXSTO]X[SXSrO]TO, [ITI]X[ITI]T[ITI], [ITI]T[IXITO],ITI:ANY 
SORT S,U,V:I 
SORT STO:ITO 
SORr SX8TO:IXITO 
SORT [UTY.]X [STU]T[8TV] : [ITI]X[ITI]T[ITI] 
80RT [STIJT[8X8TO]:[ITI]T[IXITO] 
SORT STI,UTV:ITI 
SORT STU,STV:STI 
* TERM DECLARATIONS * 
TYPE A[IXITO] (IXITO I I) 
TYPE A[[ITI]X[ITI]T[ITI]] ([ITI]X[ITI]T[ITI] ITI ITI):ITI 
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6 .3  A Sorted Higher-Order Theorem

Now we give a comparison of the behaviour of a theorem prover when we use a
sorted and an unsorted formulation of the same problem. The example is theorem
(4.11.1) of [40, p.40]: For the formulation of the theorem we need the notion of an
induced equivalence relation: '
Let cp: S —> U be  a map, then (‚a induces an equivalence relation 9 on S by setting

9(s‚t) iff 90(8) = 90(15)-
The theorem is:
Let 501:5 —-> U and 902:5 _» V be mappings and let 91 and 92/ be the induced
equivalence relations. If there exists a map (F: U ——> V with (I) o (p1 = 902, then we
have 91 _C_ 92-

This can be axiomatized in sorted higher—order logic by:

— Subsort Declarations:

SQL, U EL, VIEL

— Definition of Subset :
Vf(s_.a)Vg(s_‚o) f§9  => (sVys flaw) ==>9($‚y))-

— Definition of Composition:
Vf(U—>V)V9(S-+U)(V$S ( f  0 SIX—T) E f (9($)))

— Definition of Induced Equivalence Relation:
VWs—MsVz/s IND(s0 ) (x ,y )  <= We) E (PM)

— Theorem:
V‘Pisasois—WWé’isxs_.o)V9%sxs—.o) E] E I N D (W1) A 92 E I N DWZ)  =>
(Elihu—m) <I> 0 w] E 902 => 91 S 92)

Formulae  g iven . to  the  ed i to r

Ax ioms :
* soars *
SORT I ,O‚ITO‚IXITO‚[SXSTDJXESXSTOJTU‚[ ITI ]X[ITI ]T[ ITI ] . [ ITI ]T[ IXITO]‚ ITI :ANY
soar  S,U,V:I
soar STO:ITO
SDRT SXSTU:IXITO
SORT [UTu]x[STU]T[STv]:[ITI]X[ITI]T[ITI]
soar  [ s r r1 r [ sxs ro ] : [ IT I ]T[ IXIT0]
SORT STI,UTV:ITI
SORT STU‚STV:STI
* TERM DECLARATIONS *
TYPE AEIXITO](IXITD I 1)
TYPE AEEITIJXEITIJTEITIJJ([ITI]X[1TI]T[ITI] ITI  ITI):ITI
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TYPE A[[ITI]T[IXITO]] ([ITI]T[IXITO] ITI):IXITO 
TYPE A[ITI] (ITI 1):1 
* DEFINITION OF SUBSET	 * 
TYPE SUBSET(SXSTO SXSTO) 
ALL F,G:SXSTO SUBSET(F G) EQV (ALL X,Y:S A[IXITO](F X Y) IMPL A[IXITO](G X Y» 
* DEFINITION OF THE COMPOSITION	 * 
TYPE COMP:[UTV]X[STU]T[STV] 
ALL F:UTV ALL G:STU (ALL X:S A[ITI] (A[[ITI]X[ITI]T[ITI]] (COMP F G) X) 

A[ITI](F A[ITI](G X») 
* DEFINITION OF INDUCED EQUIVALENCE RELATION * 
TYPE IND:[STI]T[SXSTO] 
ALL PHI:STI (ALL X,Y:S	 A[IXITO] (A[[ITI]T[IXITO]] (IND PHI) X Y) EQV 

A[ITI] (PHI X) - A[ITI] (PHI Y» 

Theorems: 
ALL PHI1:STU ALL PHI2:STV ALL RH01,RH02:SXSTO 

RHOl = A[[ITI]T[IXITO]] (IND PHI1) AND RH02 = A[[ITI]T[IXITO]] (IND PHI2) IMPL 
«EX PPHI:UTV A[[ITI]X[ITI]T[ITI]] (COMP PPHI PHI1) = PHI2) IMPL 
SUBSET (RHOl RH02» 

Refutation: 
========== 

Initial Clauses: 
Al: All x:Any + =(x x) 

*	 A2: All x:S y:Stu z:Utv + =(a[iti] (a[[iti]x[iti]t[iti]] (comp z y) x) 
a[iti](z a[iti](y x»)

* A3: All x,y:S z:Sti + A[IXITO] (a[[iti]t[ixito]] (ind z) y x) 
- -(a[iti](z y) a[iti](z x» 

* A4: All x,y:S z:Sti - A[IXITO] (a[[iti]t[ixito]] (ind z) y x) 
+ =(a[iti](z y) a[iti](z x» 

* T5: + =(c_4 a[[iti]t[ixito]] (ind c_l» 
* T6: + =(c_3 a[[iti]t[ixito]] (ind c_2» 
* T7: + =(a[[iti]x[iti]t[iti]] (comp c_5 c_l) c_2) 
* T8: + A[IXITO] (c_4 c_7 c_6) 
* T9: - A[IXITO] (c_3 c_7 c_6) 

T7,l k A2,l --> * P1: 
All x:S + =(a[iti] (c_2 x) a[iti] (c_S a[iti] (c_l x») 

TS,l & A4,l --> * P2: 
All x,y:S - A[IXITO] (c_4 y x) + =(a[iti] (c_l y) a[iti] (c_l x» 

T8,l & P2,l --> * R3: 
+ =(a[iti] (c_l c_7) a[iti] (c_l c_6» 

R3,l k Pl,l --> * P4: 
+ =(a[iti] (c_2 c_6) a[iti] (c_5 a[iti] (c_l c_7») 

P4,l t Pl --> * RW5: 
+ =(a[iti] (c_2 c_6) a[iti] (c_2 c_7» 

T6,l & A3,l --> * P8: 
All x,y:S + A[IXITO] (c_3 y x) - =(a[iti] (c_2 y) a[iti] (c_2 x» 

P8,2 & RW5,1 --> * R9: 
+ A[IXITO] (c_3 c_7 c_6) 
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TYPE A[[ITI]T[IXITO]]([ITI]T[IXITO] ITI):IXITO
TYPE AEITI](ITI I ) : I
* DEFINITION OF SUBSET *
TYPE SUBSET(SXSTD 3x310)
ALL F,G:SXSTO SUBSET(F G) EQV (ALL x,Y:s A[IXITO](F x Y) IHPL A[IXITO](G x Y>)
* DEFINITION OF THE COMPOSITION *
TYPE cONP:[UTv]x[STu]T[3TVJ
ALL F:UTV ALL G:STU (ALL x : s  A[ITI](A[[ITI]x[ITI]T[ITI]](COMP F c )  x) =

AEITI](F A[ITI](G x)))
* DEFINITION OF INDUCED EQUIVALENCE RELATION *
TYPE IND:[STI]T[SXST0]
ALL PHI:STI (ALL X,Y:S A[Ix1TO](A[[ITI]T[IXITO]](IND PHI) x Y) Eqv

AEITI](PHI x) = A[ITI]<PHI Y>)

Theorems:
ALL PH11:STU ALL PHI2:STV ALL RN01,RH02:SXSTO

RHOI = AEEITI]T[IXITO]](IND PHIl) AND RH02 = AEEITI]T[IXIT0]](IND PHI2) IHPL
((Ex PPHI:UTV AEEITI]X[ITI]T[ITI]](COMP PPHI PHII) = PHI2) IMPL
SUBSET (nn01 RHO2))

Refuta t ion:
===========

In i t i a l  Clauses:
A1: Al l  sny + =(x x )

* A2: Al l  xz s  y :Stu  z:Utv + =(a [ i t i ] (a [ [ i t i ]x [ i t i ] t [ i t i ] ] ( comp z y)  x )
a [ i t i ] ( z  a [ i t i ] (y  x) ) )

* A3: A11 x ,y :S  z :S t i  + A[IXITO] (a [ [ i t i ] t [ iX i t0 ] ] ( i nd  z )  y X)
l= (a [ i1 : i ] ( z  y) aEi t i ]  (z x) )
A[IXITO](a [ [ i t i ] t [ i x i to ] ] ( ind  z )  y x )

+ =(a [ i t i ]  ( z  y)  aE i t i ]  ( z  x ) )
* A4:  A11  x ,y :S  z :S t i

* T5: + =(c_4 a [ [ i t i ] t [ i x i t o ] ] ( i nd  c_1))
=- T6: + =(c_3 aEEi t tE ix i toH (ind c_2))
* T7: + = (a [ [ i t i ]x [ i t i ] t [ i t i ] ] ( co -p  c_S c_1) c_2)
* T8:  + A[IXITO] (C_4  c_7  c_6 )
* T9:  - AEIXITO](C_3 c_7  c_6)

T7,1  & A2 ,1  - ->  * P1 :
Al l  xz s  + =(a [ i t i ] ( c_2  x)  a [ i t i ] ( c_5  a [ i t i ] ( c_1  x ) ) )

T5‚1  l A4,1  - ->  * P2 :
Al l  x ,y :S  - A[IXITO](c_4 y x )  + =(a [ i t i ] ( c_1  y)  a [ i t i ] ( c_1  x) )

T8‚1  & P2 ,1  - ->  * R3:
+ =(a [ i t i ] ( c_1  c_7 )  a [ i t i ] ( c_1  c_6 ) )

R3‚1  l P1 ,1  - ->  * P4 :
+ =(a [ i t i ] ( c_2  c_6) a [ i t i ] ( c_5  a [ i t i ] ( c_1  c_7) ) )

P4 ,1  & P1  - ->  * BUS:
+ =(a [ i t i ] ( c_2  c_6)  a[iti](c_2 c_7 ) )

T6,1 & A3,1 --> * P8:
Al l  x ,y :S  + AEIXITO] (c_S y x )  - =(a [ i t i ]  (c_2 y) a[iti] (c_2 x) )

P8 ,2  & RH5,1 - ->  * R9:
+ AEIXITO](C_3 c_7  c_6)
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R9,1 ~ T9,l --> * Rl0: 
[J 

q.e.d. 

Time Used for Refutation: 22 seconds 

Now we prove the same theorem in an unsorted version. We translate it by 

a~ (compare definition 5.36) into a many-sorted first-order formulation. The sub­

sort declarations SORT STU, STV: STI are translated to the formulae ALL PHI: ITI 

STV(PHI) IMPL STI(PHI) and ALL PHI:ITI STU(PHI) IMPL sTICPHI).Allother 

subsort relations are omitted, because they are not necessary for the proof. We 

present the formulation in the MKRP syntax and a proof fragment: 

Formulae given to the editor 

Axioms: 
* SORTS *
 
SORT I,O,ITO,IXITO,[ITIJX[ITIJT[ITIJ,[ITIJT[IXITOJ,ITI:ANY
 
* TERM DECLARATIONS *
 
TYPE A[IXITO] (IXITO I I)
 
TYPE A[[ITI] X[ITI] T[ITIJ]( [ITIJ X[ITIJ TnTI] ITI IT!): ITI
 
TYPE A[[ITIJT[IXITOJJ([ITIJT[IXITOJ ITI):IXITO
 
TYPE A[ITI] (111 1):1
 

TYPE STI (ITI)
 
TYPE STV(ITI)
 
TYPE STU(IT!)
 
* TRANSLATED SUBSORT RELATIONS *
 
ALL PHI:ITI STV(PHI) IMPL STI(PHI)
 
ALL PHI:ITI STU(PHI) IMPL STI(PHI)

* DEFINITION OF SUBSET *
 
TYPE SUBSET(IXITO IXITO)
 
ALL F:IXITO SXSTO(F) IMPL (ALL G:IXITO 5X5TO (G) IMPL
 

(SUBSET(F G) EQV (ALL X:I Sex) IMPL (ALL Y:I S(Y) IMPL 
(A[IXITOJ(F X Y) IMPL A[IXITOJ(G X Y»»» 

* DEFINITION OF THE COMPOSITION * 
TYPE COMP:[ITIJX[ITI]T[ITI] 
ALL F:ITI UTV(F) I~PL (ALL G:ITI STU(G) IMPL 

(ALL X:I sex) IMPL A[ITI] (A[[ITI]X[ITI]T[ITI]] (COMP F G) X) 
A[ITI] (F A[ITI] (G X»» 

* DEFINITION OF INDUCED EQUIVALENCE RELATION * 
TYPE IND:[ITI]T[IXITO] 
ALL PHI: ITI STI (PHI) IMPL (ALL X: I S(X) IMPL (ALL Y: I S(Y) IMPL 

(A[IXITO] (A[[ITI]T[IXITO]] (IND PHI) X Y) EQV
 
A[ITI] (PHI X) = A[ITI] (PHI V»~)
 

Theorems:
 
ALL PHll:ITI STU(PHI1) IMPL (ALL PHI2:ITI STV(PHI2) IMPL
 

(ALL RH01:IXITO SXSTO(RH01) IMPL (ALL RH02:IXITO SXSTO(RH02) IMPL
 
(RH01 = A[[ITI]T[IXITO]] (IND PHI1) AND RH02 = A[[ITI]T[IXITO]J(IND PHI2) IMPL
 
«EX PPHI:ITI UTV(PPHI) AND (A[[ITI]X[ITI]T[ITI]] (COMP PPHI PHI1) = PHI2) IMPL
 
SUBSET (RHOl RH02»»») 
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R9‚1  & T9‚1  - ->  * R10:
[]

q .e .d .

Time Used for  Refu ta t i on :  22  seconds

Now we prove the same theorem in  an unsorted version. We translate it by
6§R (compare definition 5.36) into a many—sorted first—order formulation. The sub-
sort declarations SORT STU,STV:STI are translated to  the formulae ALL PHI :ITI
STV(PHI) IMPL STI(PHI)andALL PHIzITI STU(PHI)  IMPL STI (PHI ) .AH(fihe r

subsort relations are omitted, because they are not necessary for the proof. We
present the formulation in the MKRP syntax and a proof fragment:

Formulae g iven  to  the  ed i to r

Axioms :
* SDRTS *
SORT I,O,ITO,IXITO,[ITIJXEITIJTEITI],[ITI]T[IXITO],ITI:ANY
* TERM DECLARATIONS *
TYPE A[ IXITU] ( IXITO I I )
TYPE AEEITI]X[ITI ]T[ITI ] ] ( [ ITIJXEITIJTLITI]  ITI  ITI ) : ITI
TYPE A[[ITI]T[IXITU]]([ITI]T[IXITO] ITI):IXITO
TYPE A[ITI ] ( ITI  I ) : I
TYPE STI(ITI)
TYPE STVCITI)
TYPE STU(ITI )
* TRANSLATED SUBSDRT RELATIONS *
ALL PHI:ITI STV(PHI) iHPL STI(PHI)
ALL PHI:ITI STU(PHI) INPL STI(PHI)
* DEFINITION OF SUBSET *
TYPE SUBSET(IXITO IXITD)
ALL F:IXITO SXSTO(F) IMPL (ALL G:IXITO SXSTO (G) IMPL

(SUBSET(F  G)  EQV (ALL X:I  S(X)  IMPL (ALL Y:I  S (Y)  IMPL
(A[Ix1T0](F x Y) IMPL AEIXITO](G x Y) ) ) ) ) )

* DEFINITION OF THE COMPOSITION *
TYPE CDMP:[ITI]X[ITI]T[ITI]
ALL F:ITI UTV(F) IMPL (ALL G:ITI STU(G) INPL

(ALL x : I  S(X) IMPL AEITI](AtEITI]x[ITI]T[ITI]](COMP F G) x)  =
AEITI](F AEITIJ(G x ) ) ) )

* DEFINITION OF INDUCED EQUIVALENCE RELATION *
TYPE IND:[ITI]T[IXITO]
ALL PHI:ITI STI(PHI) IMPL (ALL X:I s(X) IHPL (ALL e S(Y) IMPL

(AEIXITOJ(A[[ITI]T[IXITO]](IND PHI) x Y) EQV
AEITI](PHI x )  = AEITI](PHI Y) ) )

Theorems :
ALL PH11:ITI STU(PH11) IMPL (ALL PHI2 : IT I  STVCPHIZ) IMPL

(ALL RH012IXITO SXSTO(EH01) IMPL (ALL RH02:IXITU SXSTO(RH02) IMPL
(RH01 = AEEITI]T[IXITO]](IND PHI1) AND RHU2 = AEEITI ]T[ IXITO]] ( IND PH12) IMPL
((EX PPHI:ITI UTV(PPHI) AND (A[ [ ITI ]X[ ITI ]T[ ITI ] ] (COMP PPHI PHI l )  = PHIZ) IMPL
SUBSET (RHOI RHO2) ) ) ) ) ) )
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Refutation: 
========== 

Initial Clauses: 
U: All x:Any + =(x	 x) 

* A2: All x:Iti - 8TV(x) + 8TI(x) 
* A3: All x:Iti - 8TU(x) + 8TI(x) 
* A4: All x,y:Ixito	 - 8X8TO(y) - 8X8TO(x) + 8UB8ET(y x) + S(f_1(x y» 
* A5: All x,y:Ixito	 - 8X8TO(y) - SXSTO(x) + SUBSET(y x) + S(f_2(x y» 
* A6: All x,y:Ixito - 8XSTO(y) - SXSTO(x) + SUBSET(y x) 

+ A[IXITO](y f_1(x y)	 f_2(x y» 
*	 A7: All x,y:Ixito - SXSTO(y) - SXSTO(x) + SUBSET(y x) 

- A[IXITO](x f_1(x y) f_2(x y» 
* A8: All x:I y,z:Iti -	 UTV(z) - STU(y) - S(x) 

+ =(a[iti] (a[[iti]x[iti]t[iti]] (comp z y) x) 
a[iti](z a[iti](y x»)
 

A9: All x,y:I z:Iti - STI(z) - 8(y) + S(x) + =(a[iti](z y) a[iti](z x»
 
* Al0: All x,y:I z:Iti -	 STI(z) - S(y) - A[IXITO] (a[[iti]t[ixito]] (ind z) y x) 

+ =(a[iti](z y) a[iti](z x» 
* A11: All x,y:I z:Iti -	 STI(z) - S(y) - S(x) 

+ A[IXITO] (a[[iti]t[ixito]] (ind z) y x) 
- =(a[iti](z y) a[iti](z x» 

A12:	 All x,y:I z,u:Ixito - SXSTO(u) - SXSTO(z) - SUBSET(u z) - S(y) - S(x)
 
- A[IXITO](u y x) + A[IXITO](z y x)
 

* T13: + STU(c_1) 
* T14: + STV(c_2) 
* T15: + SXSTO(c_3)
* Ti6: + SXSTO(c_4) 
* T17: + =(c_3 a[[iti]t[ixito]] (ind c_1» 
* T18: + =(c_4 a[[iti]t[ixito]] (ind c_2» 
* T19: All x:Iti + UTV(x)
* T20: All x:lti + =(a[[iti]x[iti]t[iti]] (comp x c_l) c_2) 
* T21: - SUBSET(c_3 c_4) 

A8,1 ~ T19,1 --> * R1: 
All x:I y,z:Iti - STU(y) - S(x) 

+ =(a[iti](a[[iti]x[iti]t[iti]](comp z y) x) a[iti] (z a[iti](y x») 

R119,1 ~ A2,2 --> * R120: 
- STV(c_2) 

R120,1 & T14,1 --> * R121: 
[] 

q.e.d. 

Time Used for Refutation:	 343 seconds 

We see that the sorted	 representation is not only much easier to understand 

and to formulate, but - at least in this example - the MKRP system found the 

proof much faster than in the unsorted formulation (22 seconds compared to 343 

seconds). 

Examples and Practical Considerations on Translations 105

Refutation:
‚I...-'..-

In i t ia l  Clauses:
A1: Al l  sny + - (x  x )

* A2: Al l  s t i  - STV(x) + STI(x)
# AB: Al l  s t i  — STU(x) + STI(x)
* A4: A11 x ,y : Ix i t o  - SXSTO(y) - SXSTO(x) + SUBSET(y x)  + S(f_1(x y) )
* A5: Al l  x ,y : Ix i to  - SXSTO(y) - SXSTO(X) + SUBSET(y x)  + S( f_2(x  y) )
* A6: A11 x ,y : Ix i t o  - SXSTO(y) - SXSTD(x) + SUBSET(y x)

+ A[IXITO](y f_1 (x  y)  f_2 (x  y) )
* A7: Al l  x ,y : Ix1 to  — SXSTO(y) - SXSTO(x) + SUBSET(y x)

- AEIXITO](X f_1 (x  y)  f_2 (x  y) )
* A8:  A11 x : I  y , z : I t i  - UTV(z) - STU(y) - 3(1 )

_ + =(a [ i t i ] ( a [ [ i t i ] x [ i t i ] t [ i t i ] ] ( comp  z y) x)
aE i t i ] ( z  a [ i t i ] (y  x ) ) )

A9: All  x ,y : I  zz l t i  - STI(z) - 8(y)  + S(x)  + =(a [ i t i ] ( z  y )  a [ i t 1 ] ( z  x ) )
* A10: All x ,y : I  z : I t i  - STI(z) - S(y) - AEIXITD](a[[iti]t[ixito]](ind z )  y x)

+ = (a [ i t i ] ( z  y )  a [ i t i ] ( z  x ) )
* A11: All x,y:1 z : I t i  - STI(z) - s(y) — S(x)

+ A[IXITD] (a[[ i t i ] t [ ix i to]]  (ind z)  y x)
- = (a [ i t i ] ( z  y) a [ i t i ] ( z  x ) )

A12: All  x ,y : I  z ,u : Ix i to  - SXSTO(u) - SXSTO(z) — SUBSET(u z )  - 3 (y )  - 5(1)
- A[IXITD](u y x)  + A[IXITOJ(2 y x)

* T13:  * STU(C_1)

* T14:  + STV(C_2 )
* T15: + SXSTO(C_3)
* T16: + SXSTO(c_4)
* T17: + =(c_3 a[ [ i t i ] t [ i x i to ] ] ( ind  c_1))
* T18: + =(c_4 a [ [ i t i ] t [ i x i t o ] ] ( i nd  c_2))
* T19: A11 x : I t i  + UTV(x)
* T20: All  x: I t i  + =(a [ [ i t i ] x [ i t i ] t [ i t i ] ] ( comp  x c_1) c_2)
* T21: - SUBSET(c_3 c_4)

58 ,1  3 T19‚1  - ->  * RI :
All  1 :1  y , z : I t i  - STU(y) - S(x) '

+ - (a [ i t i ] (a [ [ i t i ]x [ i t i ] t [ i t i ] ] ( conp  z y)  x )  a [ i t i J ( z  a [ i t i ] (y  x)))

o
o
.

R119 ,1  & 12 ,2  -—> * R120:
- STV(c_2)

11120.1 1': T14,1 --> . 3121:
E]

q .e .d .

Tine Used t o r  Retutat ion:  343 seconds

We see that the sorted representation is  not only much easier to understand
and to formulate, but  - at least in this example —— the MKRP system found the
proof much faster than in the unsorted formulation (22 seconds compared to 343
seconds).





CHAPTER 7 

Summary and Open Problems 

Wenn eine Aufgabe in ihrer vollen Allgemein­
heit unlosbar scheint, so beschranke man sie 
vorlaufig; dann wird vielleicht durch allmahliche 
Erweiterung ihre Bewaltigung gelingen. 

Gottlob Frege, Begriffsschrift 

One priority of this dissertation is the representation of mathematical knowl­

edge. In chapter 3 we introduced a notion of higher-order logic - not based on 

the ,x-calculus, but using CHURCH'S simple theory of types - and extended this 

logic to higher-order sorted logic by following notions of SCHMIDT-SCHAUSS and 

KOHLHASE. 

Some mathematical construct are not easily expressed in our higher-order lan­

guages. For instance, we have not included specialized quantifiers such as 3! (there 

exists exactly one). (Such quantifiers are introduced by MOSTOWSKI in [101].) 

Another problem is that of incorporating meta-level descriptions into the object 

level. For example, in reasoning about linear equations, one may want to express 

that "a· x = b" is a linear equation. This whole object is viewed then as a purely 

syntactic object, and in particular, it is not semantically evaluated, but only "spo­

ken about". The realization of meta aspects in logic is of lifely interest in artificial 

intelligence, but most approaches separate the meta-level and the object level 

strictly. For further discussion see [31, 1, 130, 92, 111, 112,99, 90,47,48,49,50]. 

We have had to omit these problems in this dissertation, but it is currently one of 

our research topics. 

In chapter 4 we have used these logics to introduce a frame-based knowledge 

representation formalism, which allows for a conceptual representation of the fac­

tual knowledge of mathematics. We distinguish three different knowledge primi­

tives, namely, "axiom", "definition", and "theorem". A frame should consist of all 

the knowledge that belongs to one concept. Thereby we obtain a conceptual de­

scription of axioms and definitions. It remains an open problem how to structure 

the theorems, because they generally interrelate many different concepts and so 
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Summary and Open Problems

Wenn eine Aufgabe in ihrer vollen Allgemein—
heit unlösbar scheint, so beschränke man sie
vorläufig; dann wird vielleicht durch allmähliche
Erweiterung ihre Bewältigung gelingen.

Gottlob I'l‘ege, Begriffsschrift

One priority of this dissertation is the representation of mathematical knowl—
edge. In chapter 3 we introduced a notion of higher-order logic — not based on
the A-calculus, but using CHURCH’S simple theory of types — and extended this
logic to  higher-order sorted logic by following notions of SCHMIDT-SCHAUSS and
KOHLHASE.

Some mathematical construct are not easily expressed in  our higher—order lan-
guages. For instance, we have not included specialized quantifiers such as 3! (there
exists exactly one). (Such quantifiers are introduced by MOSTOWSKI in [101].)
Another problem is that of incorporating meta-level descriptions into the object
level. For example, in  reasoning about linear equations, one may want to  express
that “a  - a: = b” is a linear equation. This  whole object is viewed then as a purely
syntactic object, and in particular, it is not semantically evaluated, but only “spo—
ken about”. The realization of meta aspects in logic is of lifely interest in artificial
intelligence, but most approaches separate the meta-level and the  object level
strictly. For further discussion see [31, 1, 130, 92, 111, 112, 99, 90, 47, 48, 49, 50].
We have had to  omit these problems in this  dissertation, but i t  is  currently one of
our  research topics.

In chapter 4 we have used these logics to  introduce a frame-based knowledge
representation formalism, which allows for a conceptual representation of the fac-
tual knowledge of mathematics. We distinguish three different knowledge primi-
tives, namely, “axiom”, “definition”, and “theorem”. A frame should consist of all
the knowledge that belongs to one concept. Thereby we obtain a conceptual de-
scription of axioms and definitions. I t  remains an open problem how to structure
the theorems, because they generally interrelate many different concepts and so
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they do not belong to just one. A preliminary attempt of such a structure can be 

found in [71]. (Further efforts in this direction will be necessary finding proofs by 

analogy.) In order to have a clear semantics for the frame language we presented 

translations of the encoded knowledge into the underlaying higher-order logic. The 

main properties of this representation are: 

- Definition 4.10 guarantees that concepts are introduced in a controlled way, 

that is, unknown concepts must not be used in the definiens of a definition 

or in a theorem. 

- Theorem 4.24 states that definitions and theorems cannot hurt the consis­

tency of a knowledge base, if the comprehension axioms (compare definition 

3.22) are assumed. 

- The frame approach is flexible for adding further informations like control 

information. 

Other kinds of knowledge are not represented so far, a very important omission 

is the representation of proofs. If we want to reason about proofs, for instance, in 

order to find an analogous proof, we have to represent them in an adequate way, 

which goes beyond the usual first-order conception of a sequence of well-formed 

formulae. A representation and methods like those used in the field of proof 

presentation will be more adequate for such purposes [64, 65, 66, 86, 87, 88, 89]. 

Another important kind of knowledge that is not possible to represent right now, 

is that of examples, in particular "typical examples". Human mathematicians 

often reason on the model level. A model can often be given as a structute in a 

programming language. For instance, Common Lisp has the type "integer", which 

can be used directly as a model for the set 7l. LENAT chose a similar form of 

representation in his AM-system [82, 83, 84] to represent his concepts. A model 

can be used to find counterexamples of a hypothesis as it was done by GELERNTER 

in his geometry theorem prover [46]: if a theorem is false in some model it cannot 

be true in the general case. In some cases it might be possible to find a proof 

for the model and this proof can then be used to guide the search for a proof at 

the general level (compare [55]), but little is known of how to automatize this. 

RALF KOERSTEIN currently implements the frame representation of this thesis 

in et standard SQL data base. (For applying data base techniques to AI system 

compare also [128].) 

In chapter 5 we investigated the operationalization of our knowledge. The 

ma.in goal was to use existing first-order theorem provers likt> the MKRP system. 
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Therefore we presented a whole class of translations from higher-order into first­

order logic, which are sound (compare theorem 5.12). As stated in remark 5.17 

these translations are bidirectional, that is, we can map the first-order proofs back 

to higher-order logic. In theorem 5.23 we showed that a particular translation is not 

only sound, but also complete with respect to a weak semantics. In consequence 

we can prove in principle everything that is provable in higher-order logic via 

translations into first-order logic. The main drawback is however the need for 

the so-called comprehension axioms (compare definition 3.22) for truly higher­

order theorems (compare definition 3.24). The distinction between "truly higher­

order theorems" and "essentially first-order theorems" made explicit the difference 

between theorems, which are difficult, because they are higher-order, and theorems, 

which are formulated in a higher-order syntax, but are essentially first-order. There 

is some support for the opinion that this is also the borderline between theorems 

that should be proved using a higher-order theorem prover and those that should 

be proved using a translation and a first-order theorem prover. The results stated 

for unsorted higher-order logic are generalized to sorted higher-order logic. 

In chapter 6 we presented some examples for translations and gave some intu­

ition for the sensitivity of the behaviour of a theorem prover to the actual presen­

tation of theorems. 

A further open problem is to find a characterization of sound morphisms from 

higher-order into first-order logic in order to have the greatest possible flexibility 

in formulating problems, that is, to know the version space of sound morphisms. 

There are some results, but no general theory [72]. Furthermore we need good 

heuristics for finding an adequate translation [73]. A prototypical realization of the 

translations presented in this thesis has been implemented by DIRK SCHRODER; 

,a revised version will be integrated into the n-MKRP system [121]. 

This work contributes to tools that are indispensable in a computer-based 

system supporting mathematicians in finding proofs. The most exciting problem in 

the field of automated theorem proving is in my opinion how to combine human~like 

reasoning and machine-oriented theorem proving by finding and operationalizing 

high-level heuristics like for instance those proposed by POLYA. I hope that the 

methods developed in this thesis will be fruitful in attacking this long term goal. 
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