
3 .55 .5 :
__

say—
”5 .53am

acco
u

n
—

nv „ : :—
m

am
a

E
o

n
—

=
5;

E
.

xficzm
auz.

sew—
m

m
m

zucm
.m

m
:z=

._=
c=

m
m

m
:

h
c t—

E
Z

:

Manfred Kerber

SEKI Report SR—92—08

f0n0
c l

tatneSerPeRehtn‚O

P
C

0101
eg

h
o

tL

„„
“M

N
o

ea

m
.“

O
F

cm
1

n

‚m
m

m
m

m
a,

6 .1

h
m

t

m
m

h
m

cm
m

m
l_¥m

m

On the Representation

of Mathen1atical Concepts and

their Translation into First-Order Logic

Manfred Kerber*

Fachbereich Informatik

Universitat des Saarlandes

Im Stadtwald Gebaude 43

6600 Saarbriicken 11

Germany

*This work has been supported by SFB 314 (D3) and has been written at Fachbereich

Informatik, UniversWit Kaiserslautern, 6750 Kaiserslautern, Germany

On the Representation
of Mathematical Concepts and

their Translation into First-Order Logic

Manfred Kerber*
Fachbereich Informatik

Universität des Saarlandes
Im Stadtwald Gebäude 43

6600 Saarbrücken 11
Germany

*This work has been supported by SFB 314 (D3) and has been written at Fachbereich
Informatik, Universität Kaiserslautern, 6750 Kaiserslautern, Germany

Contents

Abstract 3

1 Introduction 5

2 A Short Historical Overview 9

2.1 Logic and Foundations of Mathematics 9

2.2 Computer Systems for Mathematics. 12

2.3 Representation Formalisms 16

3 Logic 19

3.1 Higher-Order Logic 20

3.2 Sorted Higher-Order Logics 27

3.3 Extensions . 33

4 Representation of Mathematical Knowledge 37

4.1 The Representation Language 40

4.2 Formal Treatment . 48

4.3 Building up a Knowledge Base. 53

4.4 Critique of the Frame Approach 57

5 Translations 59

5.1 Logic Morphisms . 61

5.2 Translations of Unsorted Higher-Order Logic 64

5.2.1 Soundness . 64

5.2.2 The Standard Translation 69

5.2.3 Equality.......... 77

5.3 Translations of Higher-Order Sorted Logic 81

5.3.1 Relativizations and Partial Relativizations 82

5.3.2 Soundness......... 85

5.3.3 The Standard Translation 87

1

Contents

Abstract 3

1 Introduction 5

2 A Short Historical Overview 9

2.1 Logic and Foundations of Mathematics
2.2 Computer Systems for Mathematics 12

2.3 Representation Formalisms . 16

3 Logic 19
3.1 Higher-Order Logic . 20

3.2 Sorted Higher-Order Logics . 27
3.3 Extensions . 33

4 Representation of Mathematical‘Knowledge 37
4.1 The Representation Language . 40

4.2 Formal Treatment . 48

4.3 Building up a Knowledge Base . 53
4.4 Critique of the Frame Approach 57

5 Translations 59

5.1 Logic Morphisms . 61
5.2 Translations of Unsorted Hi gher-Order Logic 64

5.2.1 Soundness . 64

5.2.2 The Standard Translation 69

5.2.3 Equality . 77

5.3 Translations of Higher-Order Sorted Logic 81
5.3.1 Relativizations and Partial Relativizations 82

5.3.2 Sounclness . 85
5.3.3 The Standard Translation 87

2 Contents

5.4 Relationship to Higher-Order Theorem Proving .

6 Examples and Practical Considerations on Translations

6.1 An Essentially First-Order Theorem.

6.2 A Truly Higher-Order Theorem .

6.3 A Sorted Higher-Order Theorem.

7 Summary and Open Problems

Acknowledgement

References

Notation

Index of Subjects

Index of Names

92

93

93

99

102

107

110

111

125

127

129

2 Contents

5.4 Relationship to Higher-Order Theorem Proving 92

6 Examples and Practical Considerations on Translations 93

6.1 An Essentially First-Order Theorem 93

6.2 A Truly Higher-Order Theorem _ 99

6.3 A Sorted Higher-Order Theorem 102

7 Summary and Open Problems ' 107

Acknowledgement 110

References 111

Notation 125

Index of Subjects , 127

Index o f Names 129

Abstract

To prove difficult theorems in a mathematical field requires substantial knowl­

edge of that field. In this thesis a frame-based knowledge representation formal­

ism including higher-order sorted logic is presented, which supports a conceptual

representation and to a large extent guarantees the consistency of the built-up

knowledge bases. In order to operationalize this knowledge, for instance, in an

automated theorem proving system, a class of sound morphisms from higher-order

into first-order logic is given, in addition a sound and complete translation is pre­

sented. The translations are bijeetive and hence compatible with a later proof

presentation.

In order to prove certain theorems the comprehension axioms are necessary,

(but difficult to handle in an automated system); such theorems are called truly

higher-order. Many apparently higher-order theorems (i.e. theorems that are

stated in higher-order syntax) however are essentially first-order in the sense that

they can be proved without the comprehension axioms: for proving these theorems

the translation technique as presented in this thesis is well-suited.

3

Abstract

To prove difficult theorems in a mathematical field requires substantial knowl—
edge of that field. In this thesis a frame—based knowledge representation formal—
ism including higher-order sorted logic is presented, which supports a conceptual
representation and to a large extent guarantees the consistency of the built-up
knowledge bases. In order to operationalize this knowledge, for instance, in an
automated theorem proving system, a class of sound morphisms from higher-order
into first—order logic is given, in addition a sound and complete translation is pre—
sented. The translations are bijective and hence compatible with a later proof
presentation.

In order to prove certain theorems the comprehension axioms are necessary,
(but difficult to handle i n an automated system); such theorems are called truly
higher—order. Many apparently higher—order theorems (i.e. theorems that are
stated in higher-order syntax) however are essentially first—order in the sense that
they can be proved without the comprehension axioms: for proving these theorems
the translation technique as presented in this thesis is well—suited.

CHAPTER 1

Introduction

Alles, was im bisherigen Sinne die Mathematik
ausmacht, wird streng formalisiert, so daB die
eigentliche Mathematik oder die Mathematik in
engerem Sinne zu einem Bestande an Formeln
wird.

David Hilbert

This work is about the representation of mathematical factual knowledge (by ap­

plying representation techniques of artificial intelligence) and the operationaliza­

tion of this knowledge for automated theorem proving (by translating it into first­

order logic). The starting point was JORG H. SIEKMANN'S idea of proving a whole

mathematical text book by the Markgraf Karl Refutation Procedure (MKRP), a

first-order resolution-based autom'ated theorem prover [93, 41]. In order to prove a

theorem the MKRP system requires that the axioms (that are certain hypotheses)

and a theorem are entered in an order-sorted first-order language. The system

tries to show that the conjunction of these axioms entails the theorem. In 1984­

1986 about a third of the theorems in a textbook on semi-groups and automata

[40] was proved by the system. So far theorem provers have been used primarily

to prove single theorems, that is, the formalization is input for one single prob­

lem only. This problem is solved and then everything is forgotten before the next

problem is attempted. If we try to prove several theorems in the same domain, we

expect a certain coherence of the representation in the problems. A primary goal

of this research - in addition to testing the strengths arid drawbacks of MKRP ­

h~s been to get an intuition for the new problems that may occur when proving

a large set of interdependent problems. In this sense proving the textbook [40]

was an important testbed and source of ideas and the following is a listing of the

.problems that occurred most often: .

The representation of the mathematical concepts 111 the sorted first-order

input language of MKRP was ad hoc. Since the constructs in [40] are mostly

higher-order, they had to be translated into the MKRP first-order input lan­

5

CHAPTER 1

Introduction

Alles, was im bisherigen Sinne die Mathematik
ausmacht, wird. streng formalisiert, so daß die
eigentliche Mathematik oder die Mathematik in
engerem Sinne zu einem Bestande an Formeln
wird.
David Hilbert

This work is about the representation of mathematical factual knowledge (by ap-
plying representation techniques of artificial intelligence) and the operationaliza—
tion of this knowledge for automated theorem proving (by translating it into first-
order logic). The starting point was JÖRG H. SIEKMANN’S idea of proving a whole
mathematical text book by the Markgraf Karl Refutation Procedure (MKRP), a
first—order resolution-based automated theorem prover [93, 41]. In order to prove a
theorem the MKRP system requires that the axioms (that are certain hypotheses)
and a theorem are entered in an order-sorted first—order language. The system
tries to show that the conjunction of these axioms entails the theorem. In 1984-
1986 about a third of the theorems in a textbook on semi—groups and automata
[40] was proved by the system. So far theorem provers have been used primarily
to prove single theorems, that is, the formalization is input for one single prob—
lem only. This problem is solved and then everything is forgotten before the next
problem is attempted. If we try to prove several theorems in the same domain, we
expect a certain coherence of the representation in the problems. A primary goal
of this research — in addition to testing the strengths and drawbacks of MKRP —
has been to get an intuition for the new problems that may occur when proving
a large set of interdependent problems. In this sense proving the textbook [40]
was an important testbed and source of ideas and the following is a listing of the

problems that occurred most often: .

— The representation of the mathematical concepts in the sorted first-order
input language of MKRP was ad hoc. Since the constructs in [40] are mostly
higher-order, they had to be translated into the MKRP first—order input lan—

, 6 Chapter 1

guage. This was done for each problem anew. Moreover this representation

was neither based on an axiomatic set theory nor on a systematic translation

of higher-order constructs into first-order logic. So it was not always obvious

what the MKRP-proved theorems had to do with the textbook theorems and

hence what was proved, even in the case of a positive session.

- Definitions and already proved theorems had to be duplicated, because the

theorem prover can only prove first-order tautologies. This means, the defi­

nitions and theorems that are used as preconditions for the actual theorem

have to be entered again. Not only is this rather boring, it is also a source

of error. The user is responsible for the correctness of the preconditions.

He might use (slightly) different formulations in different contexts, with the

result that the correctness of the whole procedure is no longer ensured. This

faulty procedure is known in logic as ignoratio elenchi. Furthermore the user

can use lemmata that have not been proved. This is comparable to the pro­

cedure of ignotum per ignotum. Discipline may be helpful, but as practice

shows, system support is imperative.,

- The preconditions had to be selected by the user. But even if this important

job was doneoptimally, that is the user entered only a minimal set of pre­

conditions, normally the proofs were too difficult to be found without any

lemmata. The user had to split the proof into different parts, prove certain

lemmata with MKRP and enter them later on as preconditions for the actual

theorem. The system did not provide any support for such a procedure.

- There was no way of explicitly reasoning about proofs. All structuring and

every proof plan is hand-crafted and hence only subconsciously in the head of

the user. So it requires a lot of practice in proving theorems and automation

is not possible at this level.

These and other problems indicate that considerable additional support from

a system is necessary in order to have a usable tool for developing and finding

proofs.

Although automated theorem provers have solved even difficult mathematical

problems (see e.g. [132, Chapter 9]), these problems are relatively non-standard

and not of general interest. In particular the difficulty of the t.heorems, which can

be solved fully automatically, is limited. We believe the future is with systems that

strongly interact with the user. The user can guide the system as he wants, but the

system can show essential parts by its own. Neither proof checkers, where the user

has to input the proof at calculus level, nor automated theorem provers, which have

. 6 Chapter 1

iguage. This was done for each problem anew. Moreover this representation
was neither based on an axiomatic set theory nor on a systematic translation
of higher-order constructs into first-order logic. So it was not always obvious
What the MKRP—proved theorems had to do with the textbook theorems and
hence what was proved, even in the case of a positive session.

— Definitions and already proved theorems had to be duplicated, because the
theorem prover can only prove first—order tautologies. This means, the defi-
nitions and theorems that are used as preconditions for the actual theorem
have to be entered again. Not only is this rather boring, i t is also a source
of error. The user is responsible for the correctness of the preconditions.
He might use (slightly) different formulations in different contexts, with the
result that the correctness of the whole procedure is no longer ensured. This
faulty procedure is known in logic as ignoratz'o elenchz'. Furthermore the user
can use lemmata that have not been proved. This is comparable to the pro-
cedure of ignotum per ignotum. Discipline may be helpful, but as practice
shows, system support is imperative.~

— The preconditions had to be selected by the user. But even if this important

job was done-optimally, that is the user entered only a minimal set of pre-
conditions, normally the proofs were too difficult to be found without any
lemmata. The user had to split the proof into different parts , prove certain
lemmata with MKRP and enter them later on as preconditions for the actual
theorem. The system did not provide any support for such a procedure.

— There was no way of explicitly reasoning about proofs. All structuring and
every proof plan is hand-crafted and hence only subconsciously in the head of
the user. So i t requires a lot of practice in proving theorems and automation
is not possible at this level.

These and other problems indicate that considerable additional support from
a system is necessary in order to have a usable tool for developing and finding
proofs. .

Although automated theorem provers have solved even difficult mathematical
problems (see e.g. [132, Chapter 9]), these problems are relatively non-standard
and not of general interest. In particular the difficulty of the theorems, which can
be solved fully automatically, is l imited. We believe the future is with systems that
strongly interact with the user. The user can guide the system as he wants, but the
system can show essential parts by its own. Neither proof checkers, where the user
has t o input the proof at calculus level, nor automated theorem provers, which have

7 Introduction

limited abilities, will become general accepted tools. Instead a proof development

system like Automath or Nuprl should be combined with an automatic theorem

prover. This is the aim of a project in which the MKRP is to be extended to a new

system, called 0-MKRP [HH]. In this context it is particularly important to know

how to represent mathematical concepts (in an enriched higher-order language) and

how to translate the formulae from higher-order into first-order logic in a sound

and complete way so that a first-order theorem prover like the MKRP system can

be integrated as one tool in a larger system. This work is concerned with these two.
questions. Unfortunately such a translation will not make higher-order theorem

proving obsolete, because additional particularly awkward axioms are necessary in

order to prove really higher-order theorems by first-order proof procedures. But

for many problems a first-order theorem prover will show better results than a

higher-order one.

Overview

In the next chapter we will give a short historical overview of the development

of mathematical logic and its mechanization and we will introduce some related

works. In chapter 3 we will pres.~nt the logical systems that are the heart of the

representation, namely unsorted higher-order logic, many-sorted first-order logic,

and sorted higher-order logic. We do not use any 'x-expressions. In chapter 4 we

present a frame-based approach for the representation of axioms, definitions and

theorems. Up to this point we are dealing with the representation of mathematical

knowledge. In chapter 5 we will show how this information can be translated into

first-order logic and hence can be made available for the reasoning of theorem

provers based on first-order logic like the MKRP prover. In chapter 6 we give

some examples of how theorems can be translated and proved with the help of the

MKRP prover, and provide some intuition for whether such a translation is good

or bad.

Introduction 7

limited abilities, will become general accepted tools. Instead a proof development
system like Automath or Nuprl should be combined with an automatic theorem
prover. This is the aim of a project in which the MKRP is to be extended to a new
system, called fl-MKRP [121]. In this context it is particularly important to know
how to represent mathematical concepts (in an enriched higher-order language) and
how to translate the formulae from higher-order into first—order logic in a sound
and complete way so that a first-order theorem prover like the MKRP system can
be integrated as one tool in a larger system. This work is concerned with these two
questions. Unfortunately such a translation will not make higher-order theorem
proving obsolete, because additional particularly awkward axioms are necessary in
order to prove really higher—order theorems by first-order proof procedures. But
for many problems a first-order theorem prover will show better results than a
higher-order one.

Overview

In the next chapter we will give a short historical overview of the development
of mathematical logic and its mechanization and we will introduce some related
works. In chapter 3 we will present the logical systems that are the heart of the
representation, namely unsorted higher-order logic, many-sorted first-order logic,
and sorted higher-order logic. We do not use any A—expressions. In chapter 4 we
present a frame—based approach for the representation of axioms, definitions and
theorems. Up to this point we are dealing with the representation of mathematical
knowledge. In chapter 5 we will show how this information can be translated into
first-order logic and hence can be made available for the reasoning of theorem
provers based on first-order logic like the MKRP prover. In chapter 6 we give
some examples of how theorems can be translated and proved with the help of the
MKRP prover, and provide some intuition for whether such a translation is good
or bad.

CHAPTER 2

A Short Historical Overview

Und immer sind da Spuren, und immer ist einer
dagewesen, und immer ist einer noch hoher ge­
klettert als du es je gekonnt hast, noch viel
hoher. Das darf dich nicht entmutigen. Klettere,
steige, steige. Aber es gibt keine Spitze. Und es
gibt keinen Neuschnee.

K urt Tucholsky

We shall now present a short overview of the history of the representation and

formalization of mathematical concepts in logic and set theory, on how computer

systems are used for mathematics, and on knowledge representation facilities in

artificial intelligence. Of course many an important work must be omitted here.

2.1 Logic and Foundations of Mathematics

Logic has a long tradition. The Ancient Greeks formalized already parts of it by

introducing calculation rules. ARISTOTLE (384-322 BC) developed the theory of

syllogisms and created the first comprehensive system of logic in his Organon (es­

pecially in the "Analytica priora" and "Analytica posteriora") [5]. RAIMUNDUS

LULLUS (1"V1233-1316) developed ideas of the mechanization of logic in the "Ars

magna" (compare [21]). In "Regulae ad direetionem ingenii" RENE DESCARTES

(1596-1650) introduced a notion by which all problems should be translated into

mathematical problems. These problems are transformed into a system of equa­

tions, the system into one equation, and this is then solved [39]. (A discussion of

the relevance of this procedure for nowadays problem solving is given by GEORGE

POLYA in [115].)

Taking up these works, GOTTFRIED WILHELM LEIBNIZ (1646-1716) formu­

lated with a new accuracy the idea of a lingua characteristica universalis in which

everything should be expressible and should be mechanized by a universal calculus,

the calculus ratiocinator based on numbers. Thus every dispute between people

9

CHAPTER 2

A Short Historical Overview

Und immer sind da Spuren, und immer ist einer
dagewesen, und immer ist einer noch höher ge-
klettert als du es j e gekonnt has t , noch viel
höher. Das darf dich nicht entmutigen. Klettere,
steige, steige. Aber es gibt keine Spitze. Und es
gibt keinen Neuschnee.

Kurt Tucholsky

We shall now present a short overview of the history of the representation and
formalization of mathematical concepts in logic and set theory, on how computer
systems are used for mathematics, and on knowledge representation facilities in
artificial intelligence. Of course many an important work must be omitted here.

2 .1 Logic and Foundations of Mathematics

Logic has a long tradition. The Ancient Greeks formalized already parts of it by
introducing calculation rules. ARISTOTLE (384—322 BC) developed the theory of
syllogisms and created the first comprehensive system of logic in his Organon (es-
pecially in the “Analytica priora” and “Analytica posteriora”) [5]. RAIMUNDUS
LULLUS (~1233—l316) developed ideas of the mechanization of logic in the “Ars
magna” (compare [21]). In “Regulae ad directionem ingenii” RENE DESCARTES
(1596—1650) introduced a notion by which all problems should be translated into
mathematical problems. These problems are transformed into a system of equa—
tions, the system into one equation, and this is then solved [39]. (A discussion of
the relevance of this procedure for nowadays problem solving is given by GEORGE
PÖLYA in [115].)

Taking up these works, GOTTFRIED WILHELM LEIBNIZ (1646—1716) formu-
lated with a new accuracy the idea of a lingua characteristica universalis in Which
everything should be expressible and should be mechanized by a universal calculus,
the c'alculus mtiocinator based on numbers. Thus every dispute between people

10 Chapter 2

should be settled by some sort of calculation ("calculemus") [81, 80]. Thereby

LEIBNIZ anticipated the idea of the mechanization of human thought, a dream

that has now - three hundred years later - been revived with a new twist in the

field of artificial intelligence.

In "The Mathematical Analysis of Logic" (1847) GEORGE BOOLE (1815-1864)

developed a first usable calculus for propositional logic [14]. In his famous "Be­

griffsschrift" [45] of 1879 GOTTLOB FREGE (1848-1925) restricted LEIBNIZ'S uni­

versal approach by comparing the relationship of his formal language to everyday

language with the relationship of a microscope to the eye: the first is very accu­

rate and the latter universally applicable. For the restricted area of mathematics,

he wanted to build LEIBNIZ'S lingua characteristica and a calculus ratiocinator.

In the "Begriffsschrift" FREGE developed the first predicate logic by analyzing

quantified assertions. He clearly understood the distinction between syntax and

semantics. GEORG CANTOR (1845-1918) invented (naive) set theory around the

same time. In the beginning of our century antinomies were found which could be

expressed in these formal systems. This lead to the development of the ramified

theory of types by ALFRED NORTH WHITEHEAD (1861-1947) and BERTRAND

RUSSELL (1872-1970). They used their formalism to found much of mathematics

logically in "Principia Mathematica" [131]. On the other hand set theory was ax­

iomatically founded - in order to avoid RUSSELL'S antinomies - in the set theories

of ERNST ZERMELO (1871-1953) [133] and ADOLF ABRAHAM FRAENKEL (1891­

1965) [44] or JOHN VON NEUMANN (1903-1957) [102], KURT GODEL (1906-1978)

[53], and PAUL BERNAYS (1888-1977) [8,9]. The set theory of ZERMELO was not

yet based on first-order logic, but relied on higher-order constructs. Later on in

long discussions about what mathematics requires it has become the general cus­

tom to restrict the underlying logic to first-order. For a discussion of the interplay

between mathematical logic and set theory see [98].

DAVID HILBERT (1862-1943) articulated the idea of formalizing mathematics

in what is now called HILBERT program [62]. He had the idea ofaxiomatizing

all classical mathematics. Every theorem should be derived in finitely many steps

from the axioms. For the field of geometry he had already worked out these ideas

by 1899 [61]. GODEL'S completeness result for the first-order predicate calculus

(1930) [51] was positive in this sense and seemed to amplify this direction. But then

different negative results have been discovered: GODEL proved in 1931 [52] that

every system that formalizes arithmetic cannot have a complete calculus. In 1936

ALONZO CHURCH (1903-) [32] and ALAN TURING (1912-1954) [125] proved that

first-order predicate calculus is undecidable and the whole enterprise of HILBERT'S

program seemed to be in jeopardy. This bad result is relativized by the theorem

10 Chapter 2

should be settled by some sort of calculation (“calculemus”) [81, 80]. Thereby
LEIBNIZ anticipated the idea of the mechanization of human thought, a dream
that has now — three hundred years later — been revived with a new twist in the
field of artificial intelligence.

In “The Mathematical Analysis of Logic” (1847) GEORGE BOOLE (1815—1864)
developed a first usable calculus for propositional logic [14]. In his famous “Be-
griffsschrift” [45] of 1879 GOTTLOB FREGE (1848—1925) restricted LEIBNIZ’S uni-
versal approach by comparing the relationship of his formal language to everyday
language with the relationship of a microscope to the eye: the first is very accu-
rate and the latter universally applicable. For the restricted area of mathematics,
he wanted to build LEIBNIZ’S lingua characteristica and a calculus ratiocinator.
In the “Begriffsschrift” FREGE developed the first predicate logic by analyzing
quantified assertions. He clearly understood the distinction between syntax and
semantics. GEORG CANTOR (1845—1918) invented (naive) set theory around the
same time. In the beginning of our century antinomies were found which could be
expressed in these formal systems. This lead to the development of the ramified
theory of types by ALFRED NORTH WHITEHEAD (1861—1947) and BERTRAND
RUSSELL (1872—1970). They used their formalism to found much of mathematics
logically in “Principia Mathematica” [131]. On the other hand set theory was ax—
iomatically founded — in order to avoid RUSSELL’S antinomies — in the set theories
of ERNST ZERMELO (1871—1953) [133] and ADOLF ABRAHAM FRAENKEL (1891—
1965) [44] or JOHN VON NEUMANN (1903—1957) [102], KURT GÖDEL (1906—1978)
[53], and PAUL BERNAYS (1888—1977) [8, 9]. The set theory of ZERMELO was not
yet based on first-order logic, but relied on higher—order constructs. Later on in
long discussions about what mathematics requires i t has become the general cus—
tom to restrict the underlying logic to first-order. For a discussion of the interplay
between mathematical logic and set theory see [98].

DAVID HILBERT (1862—1943) articulated the idea of formalizing mathematics
in what is now called HILBERT program [62]. He had the idea of axiomatizing
all classical mathematics. Every theorem should be derived in finitely many steps
from the axioms. For the field of geometry he had already worked out these ideas
by 1899 [61]. GÖDEL’S completeness result for the first—order predicate calculus
(1930) [51] was positive in this sense and seemed to amplify this direction. But then
different negative results have been discovered: GÖDEL proved in 1931 [52] that
every system that formalizes arithmetic cannot have a complete calculus. In 1936
ALONZO CHURCH (1903—) [32] and ALAN TURING (1912—1954) [125] proved that
first-order predicate calculus is undecidable and the whole enterprise of HILBERT’S
program seemed to be in jeopardy. This bad result is relativized by the theorem

11 A Short Historical Overview

of JACQUES HERB RAND (1908-1931) [59], that for every predicate logical formula

holds: it is a tautology if and only if it is possible to construct a propositional

formula out of the original one, which can be shown to be a tautology. Therefore

it is possible to give a enumeration of the first-order tautologies. In other words

first-order logic is semi-decidable. HERBRAND'S theorem is of essential importance

for the whole field of automated reasoning, because all proof procedures rely on it.

Another approach to mathematics, in which the axiomatic approach is strictly

rejected is constructive mathematics, which is closely related to intuitionistic

mathematics. The main difference from classical mathematics can be seen in their

rejection of the principle of the excluded middle. Every mathematical object must

be constructed explicitly. For instance an existentially quantified formula can be

proved only by giving a witness for the variable. The position of constructivism

was propagated by LUITZEN EGBERTUS JAN BROUWER (1881-1966) [22,23] and

AREND HEYTING (1898-1980) [60].

Until the beginning of this century there was no distinction between first-order

and higher-order logic, only in 1915 LEOPOLD LOWENHEIM (1878-1957) was the

first to distinguish between them [91]. First-order logic is not categorical, that

is, it is not possible to characterize infinite models up to isomorphy as stated in

the theorem of LOWENHEIM-SKOLEM [91, 122]. In mathematics first-order logic

dominates the foundations whereas in mathematical practice higher-order logic is

used without a second thought. In 1940 CHURCH formulated higher-order logic

basing it on his simple theory of types and the A-calculus [33]. Ten years later

LEON HENKIN (1921-) extended the semantic notion of ALFRED TARSKI (1901-)

[124] to the concept of general models, in which he could give a complete calculus

for CHURCH'S logic [57].

ANDRZEJ MOSTOWSKI (1913-1975) coulq. prove the isomorphy of higher-order

formulations to set-theoretical formulations based on first-order logic relative to a

general model semantics [100]. HERBERT B. ENDERTON introduced in [42, p.281­

289] a sound and complete translation of second-order logic into many-sorted first­

order logic. LAWRENCE J. HENSCHEN describes extensions of first-order theorem

provers for handling arbitrary higher-order theorems [58] by introducing sorts and

a special treatment for the so-called comprehension axioms. In [6] JOHAN VAN

BENTHEM and KEES DOETS give a translation for higher-order logic into first­

order logic that is sound and complete relative to HENKIN'S semantics.

Through these developments a new rigour of proof (unfortunately along with

a "loss of certainty", about the relationship between mathematics and reality;

see [74]) was achieved. But these advances in logic have not had great influence

on the daily practice of mathematicians when proving theorems, so that until

A Short Historical Overview 11

of JACQUES HERBRAND (1908—1931) [59], that for every predicate logical formula
holds: i t is a tautology if and only if it is possible to construct a propositional
formula out of the original one, which can be shown to be a tautology. Therefore
it is possible to give a enumeration of the first-order tautologies. In other words
first—order logic is semi-decidable. HERBRAND’S theorem is of essential importance
for the whole field of automated reasoning, because all proof procedures rely on it.

Another approach to mathematics, in which the axiomatic approach is strictly
rejected is constructive mathematics, which is closely related to intuitionistic
mathematics. The main difference from classical mathematics can be seen in their
rejection of the principle of the excluded middle. Every mathematical object must
be constructed explicitly. For instance an existentially quantified formula can be
proved only by giving a witness for the variable. The position of constructivism
was propagated by LUITZEN EGBERTUS JAN BROUWER (1881—1966) [22, 23] and
AREND HEYTING (1898—1980) [60].

Until the beginning of this century there was no distinction between first-order
and higher-order logic, only in 1915 LEOPOLD LÖWENHEIM (1878—1957) was the
first to distinguish between them [91]. First-order logic is not categorical, that
is, it is not possible to characterize infinite models up to isomorphy as stated in
the theorem of LÖWENHEIM-SKOLEM [91, 122]. In mathematics first-order logic
dominates the foundations whereas in mathematical practice higher—order logic is
used without a second thought. In 1940 CHURCH formulated higher-order logic
basing i t on his simple theory of types and the A—calculus [33]. Ten years later
LEON HENKIN (1921—) extended the semantic notion of ALFRED TARSKI (1901—)
[124] to the concept of general models, in which he could give a complete calculus
for CHURCH’S logic [57].

ANDRZEJ MOSTOWSKI (1913—1975) could prove the isomorphy of higher-order
formulations to set-theoretical formulations based on first-order logic relative to a
general model semantics [100]. HERBERT B. ENDERTON introduced in [42, p.281—
289] a sound and complete translation of second-order logic into many-sorted first-
order logic. LAWRENCE J . HENSCHEN describes extensions of first-order theorem
provers for handling arbitrary higher-order theorems [58] by introducing sorts and
a special treatment for the so-called comprehension axioms. In [6] J CHAN VAN
BENTHEM and KEES DOETS give a translation for higher-order logic into first-
order logic that is sound and complete relative to HENKIN ’s semantics.

Through these developments a new rigour of proof (unfortunately along with
a “loss of certainty”, about the relationship between mathematics and reality;
see [74]) was achieved. But these advances in logic have not had great influence
on the daily practice of mathematicians when proving theorems, so that until

12 Chapter 2

today for (human) theorem. proving one can often say "paper won't blush": The

formalization of reasoning in mathematics was more than ripe for a mechanization

on computers. In the next section we describe the corresponding systems briefly.

2.2 Computer Systems for Mathematics

There are different areas for the application of computers in proving theorems:

there are general theorem proving systems, for example based on resolution and

paramodulation which can find certain proofs automatically. In another area the

computer is used to check given proofs or the user develops proofs with the aid of

such a system.

Automated Theorem Proving Systems /

The focus of research in the field of automated reasoning has changed considerably

since the early days of the formation of artificial intelligence. At the beginning, the

main interest was devoted to "theorem proving" , which at that time was concerned

with showing that certain logical formulae are tautologies. So it is not surprising

that the Logic Theorist of ALLEN NEWELL, CLIFF SHAW and HERBERT SIMON

[104], which was used for proving parts of Principia Mathematica, was among the

earliest AI-Systems. In 1954 MARTIN DAVIS implemented a decision procedure

for PRESBURGER arithmetic [37]. For an historical overview of these early days of

automated theorem proving see [38, 120, 118].

Current deduction systems rely on different basic techniques. A very important

one is resolution, which was invented in 1965 by JOHN ALAN ROBINSON [116]. In

a normalization process, the whole problem, formulated in a first-order language,

is transformed into a conjunction of disjunetions, where all existentially quanti­

fied variables are eliminated (SKOLEMIZATION). The disjunctions consist only of

atomic formulae or negated atomic formulae, so-called literals. The disjunction is

called a clause and represented as a set of the contained literals. This transfor­

mation is refutation correct and complete, that is, the clause form is unsatisfiable

if and only if the original problem i~. Proving is done by generating new clauses

(resolvents) out of two (binary resolution or factorization) or more parent clauses.

If the empty clause is obtained a contradiction is found and the problem is solved.

LARRY Wos, Ross OVERBEEK, EWING LUSK, and JIM BOYLE [132] have

built a succession of resolution-based theorem provers that have been the strongest

systems of the field and that finally resulted in the Otter system [96]. Otter has

12 Chapter 2

today for (human) theorem‘proving one can often say “paper won’t blush”: The
formalization of reasoning in mathematics was more than ripe for a mechanization
on computers. In the next section we describe the corresponding systems briefly.

2 .2 Computer Systems for Mathematics

There are different areas for the application of computers in proving theorems:
there are general theorem proving systems, for example based on resolution and
paramodulation which can find certain proofs automatically. In another area the
computer is used to check given proofs or the user develops proofs with the aid of
such a system.

Automated Theorem Proving Systems

The focus of research in the field of automated reasoning has changed considerably
since the early days of the formation of artificial intelligence. At the beginning, the
main interest was devoted to “theorem proving”, which at that time was concerned
with showing that certain logical formulae are tautologies. So it is not surprising
that the Logic Theorist of ALLEN NEWELL, CLIFF SHAW and HERBERT SIMON
[104], which was used for proving parts of Principia Mathematica, was among the
earliest AI-Systems. In 1954 MARTIN DAVIS implemented a decision procedure
for PRESBURGER arithmetic [37]. For an historical overview of these early days of
automated theorem proving see [38, 120, 118].

Current deduction systems rely on different basic techniques. A very important
one is resolution, which was invented in 1965 by JOHN ALAN ROBINSON [116]. In
a normalization process, the whole problem, formulated i n a first-order language,
is transformed into a conjunction of disjunctions, where all existentially quanti-
fied variables are eliminated (SKOLEMIZATION). The disjunctions consist only of
atomic formulae or negated atomic formulae, so-called literals. The disjunction is
called a clause and represented as a set of the contained literals. This transfor—
mation is refutation correct and complete, that is, the clause form is unsatisfiable
if and only if the original problem is. Proving is done by generating new clauses
(resolvents) out of two (binary resolution or factorization) or more parent clauses.
If the empty clause is obtained a contradiction is found and the problem is solved.

LARRY Wos, Ross OVERBEEK, EWING LUSK, and JIM BOYLE [132] have
built a. succession of resolution—based theorem provers that have been the strongest
systems of the field and that finally resulted in the Otter system [96]. Otter has

13 A Short Historical Overview

a strong equality handling component using demodulation and paramodulation.

Integer arithmetic is built-in.

In the Markgraf Karl Refutation Procedure (MKRP) [93, 41], JORG

H. SIEKMANN and his group realized a clause graph based resolution theorem

prover. Graph based resolution was invented by ROBERT KOWALSKI [77], and

the idea is that literals, on which a (binary) resolution step may be executed, are

connected by a link that is labeled by the corresponding unifier. The links of

the resolvents can be computed by the links of the literals of the parent clauses.

Clauses with a pure literal, that is, a literal without any link, can be removed from

the graph because they can never have the empty clause among their descendants.

The input language incorporates equality which is treated by paramodulation. The

input language is order-sorted first-order logic. For examples see chapter 6.

Further developments for strengthening the deductive power of resolution-based

theorem provers consist of building-in syntactic heuristics and incorporating ad­

ditional features such as theory unification (for an overview of unification theory

see [119]), and theory resolution [123].

ROBERT S. BOX,ER and J STROTHER MOORE [17] built the Computational
Logic Theorem Prover which relies on mathematical induction. Many heuristics

concerned with induction schemata are incorporated into this system. In the Inka­
system [11] the handling of existentially quantified formulae and the generalization

of the induction hypothesis is automatized also.

The matrix method is based on the representation of the formula set in a so­

called matrix. The proof is done by showing that on all paths of this matrix there

are contradictory formulae. The main difference from resolution is, that no new

formulae are generated, but that the problem is solved by searching the initial

set of formulae (albeit some duplication of the original matrix may be necessary).

WOLFGANG BIBEL worked out this idea in [10]; PETER B. ANDREWS and his

group developed a higher-order theorem prover, TPS [2,4] based on matrices with

connections.

While the above systems are essentially general purpose theorem provers, prob­

lem specific systems for example for geometry [46], set theory [24, 108], or analysis

[20] have been built and used successfully. The idea of building and using a gen­

eral purpose theorem prover is nevertheless still a vital and exciting task. Today

it however generally agreed upon that special, domain specific knowledge is neces­

sary in order to employ such a system successfully. In [28] and [13] such proposals

are described. Many approaches have been advocated to overcome problems in

automated theorem proving by using heuristic knowledge of the kind described by

A Short Historical Overview 13

a strong equality handling component using demodulation and paramodulation.
Integer arithmetic is built-in.

In the Markgraf Karl Refutation Procedure (MKRP) [93, 41], JÖRG
H. SIEKMANN and his group realized a clause graph based resolution theorem
prover. Graph based resolution was invented by ROBERT KOWALSKI [77], and
the idea is that literals, on which a (binary) resolution step may be executed, are
connected by a link that is labeled by the corresponding unifier. The links of
the resolvents can be computed by the links of the literals of the parent clauses.
Clauses with a pure literal, that is, a literal without any link, can be removed from
the graph because they can never have the empty clause among their descendants.
The input language incorporates equality which is treated by paramodulation. The
input language is order-sorted first-order logic. For examples see chapter 6.

Further developments for strengthening the deductive power of resolution-based
theorem provers consist of building—in syntactic heuristics and incorporating ad-
ditional features such as theory unification (for an overview of unification theory
see [119]), and theory resolution [123].

ROBERT S. BOSCER and J STROTHER MOORE [17] built the Computational
Logic Theorem Prover which relies on mathematical induction. ‘Many heuristics
concerned with induction schemata are incorporated into this system. In the Inka-
system [11] the handling of existentially quantified formulae and the generalization
of the induction hypothesis is automatized also.

The matrix method is based on the representation of the formula set in a so-
called matrix. The proof is done by showing that on all paths of this matrix there
are contradictory formulae. The main difference from resolution is, that no new
formulae are generated, but that the problem is solved by searching the initial
set of formulae (albeit some duplication of the original matrix may be necessary).
WOLFGANG BIBEL worked out this idea in [10]; PETER B. ANDREWS and his
group developed a higher—order theorem prover, TPS [2, 4] based on matrices with
connections.

While the above systems are essentially general purpose theorem provers, prob-
lem specific systems for example for geometry [46], set theory [24, 108], or analysis
[20] have been built and used successfully. The idea of building and using a gen-
eral purpose theorem prover is nevertheless still a vital and exciting task. Today
it however generally agreed upon that special, domain specific knowledge is neces-
sary in order to employ such a system successfully. In [28] and [13] such proposals
are described. Many approaches have been advocated to overcome problems in
automated theorem proving by using heuristic knowledge of the kind described by

14 Chapter 2

GEORGE POLYA [113, 114, 115] in order to teach mathematics. ALLEN NEWELL

gives an extended summary of POLYA'S ideas and their relationship to AI in [103].

He argues that there is still a non-trivial gap between POLYA'S ideas and the repre­

sentational possibilities of todays AI-formalisms, but that this gap can and should

be filled one day.

Proof Checkers

The Automath system of NICOLAAS GOVERT DE BRUIJN [25, 26, 27] was one

of the first proof checking systems, in the sense that a human user could develop

his proof of a theorem with the help of the system and it would then guarantee

that the proofs were actually correct. It was built in the late sixties and based

on natural deduction and (different) richly typed languages, some incorporating

typed A-calculus. Its philosophy is to write "books" in the system, so that the

user has almost as much flexibility as if he were writing on paper except that

he cannot write down anything that is false. The books are written line by line

and checked by the system. The empty book is correct and whenever a new

line is written it must be an admissible expression with respect to the previous

ones. The system as a very general tool is not expected to find anything in itself,

but to improve publication standards, for instance. In 1975 L.S. VAN BENTHEM

JUTTING [70] was able to completely formulate and check EDMUND LANDAU'S

book on the "Grundlagen der Analysis" [79] in the Automath system. The system

- like all other comparable systems so far - did not reach any broad acceptance

as a working instrument for mathematicians. One reason may be that there was a

loss factor of 10 to 20 when using Automath. The loss factor expresses what one

loses in shortness when translating ordinary mathematics into Automath. It is an

important observation however that this loss factor is constant over the range of a

book, that is, it does not increase if one goes further into the book [27, p.603]. So

there is legitimate hope of cutting this factor down (for instance to one} by some

automated theorem proving techniques ("gap filling").

Whereas in Automath every proof step must be encoded by hand, the Nuprl

system of ROBERT L. CONSTABLE and his group [34] actually supports the user

in finding proofs, because he can write so-called tactics. Elementary tactics cor­

respond to the application of calculus rules. They can be combined using tacti­

cals like tac} THEN tac2 and REPEAT tac. Tactics are written in a meta-language,

the functional polymorphic programming language ML from the LCF system [54]

(LCF stands for "Logic for Computable Functions"), which strongly influenced the

meta-component of Nuprl. The logic is based on the constructive typed lambda

14 Chapter 2

GEORGE PÖLYA [113, 114, 115] in order to teach mathematics. ALLEN NEWELL
gives an extended summary of POLYA’S ideas and their relationship to AI in [103].
He argues that there is still a non—trivial gap between PÖLYA’S ideas and the repre-
sentational possibilities of todays AI—formalisms, but that this gap can and should
be filled one day.

Proof Checkers

The Automath system of NICOLAAS GOVERT DE BRUIJN [25, 26, 27] was one
of the first proof checking systems, in the sense that a human user could develop
his proof of a theorem with the help of the system and it would then guarantee
that the proofs were actually correct. It was built in the late sixties and based
on natural deduction and (different) richly typed languages, some incorporating
typed A—calculus. I ts philosophy is to write “books” in the system, so that the
user has almost as much flexibility as if he were writing on paper except that
he cannot write down anything that is false. The books are written line by line
and checked by the system. The empty book is correct and whenever a new
line is written i t must be an admissible expression with respect to the previous
ones. The system as a very general tool is not expected to find anything in itself,
but to improve publication standards, for instance. In 1975 LS . VAN BENTHEM
J UTTING [70] was able to completely formulate and check EDMUND LANDAU’S
book on the “Grundlagen der Analysis” [79] in the Automath system. The system
— like all other comparable systems so far —- did not reach any broad acceptance
as a working instrument for mathematicians. One reason may be that there was a
loss factor of 10 to 20 when using Automath. The loss factor expresses What one
loses in shortness when translating ordinary mathematics into Automath. It is an
important observation however that this loss factor is constant over the range of a
book, that is, it does not increase if one goes further into the book [27, p.603]. So
there is legitimate hope of cutting this factor down (for instance to one) by some
automated theorem proving techniques (“gap filling”).

Whereas in Automath every proof step must be encoded by hand, the Nuprl
system of ROBERT L. CONSTABLE and his group [34] actually supports the user
in finding proofs, because he can write so—called tactics. Elementary tactics cor-
respond to the application of calculus rules. They can be combined using tacti—
cals like tacl THEN tacz and REPEAT tac . Tactics are written in a meta-language,
the functional polymorphic programming language ML from the LCF system [54]
(LCF stands for “Logic for Computable Functions”), which strongly influenced the
meta-component of Nuprl. The logic is based on the constructive typed lambda

A Short Historical Overview

calculus of PER MARTIN-LoF [94], in the tradition of constructive mathematics.

Definitions and theorems can be stored in libraries; proofs follow the proposition­

as-type paradigm [36, 68]. If a constructive proof for the inhabitation of a proposi­

tion type is given, this proof has a computational content which realizes a program.

For instance, the computational content of the Nuprl-proof that every natural num­

ber has a prime factorization can be used to prime factorize an arbitrary natural

number. Different proofs correspond to different algorithms. Therefore Nuprl is

especially interesting for constructive mathematics and the development of func­

tional programs.

LAWRENCE C. PAULSON'S system Isabelle is a generic proof development

environment for different formal systems [109]. It provides a framework for devel­

oping proof checkers for different logics, initiatecl by the need for different logics

in artificial intelligence. In a fixed higher-order meta-logic, which is a fragment

of CHURCH'S typed .A-calculus, it is possible to specify an object logic and a cal­

culus for this logic. Isabelle then behaves like a proof checker for this special

logic without any further adaptation. As in Nuprl it is possible to write tactics in

Isabelle.

The Ontic system of DAVID A. McALLESTER [95] is a semi-automated veri­

fication system based on classical ZERMELO-FRAENKEL set theory. The language

contains a rich vocabulary of types including type constructors like (OR-TYPE T1 72),

(AND-TYPE 71 72), or (LAMBDA ((x Td) <I>(x)). Predicates are eliminated in favour

of these types and type generators. The inference process is guided by a user­

specified set of focus objects by which Ontic finds and applies the information in a

large lemma library. The implementation of this focus method relies on semantic

network style inheritance.

Meta-Reasoning

Another aspect of theorem proving is considered in the FOL system of RICHARD

WEYHRAUCH [130] and further developments such as those of FAUSTO GIUNCHI­

GLIA [50]. They are interested in a logical meta-Ievel representation, so that they

can use an amalgamated form of reasoning, where some parts of the argumenta­

tion take place at the meta-level and some parts at the object level. Meta-level

and object level must be closely related, that is, they must observe the reflection

principle: If 'P is a theorem of the object theory, then THEORENI("'P") must hold

on the meta-level and vice versa. Of course one wants to reflect only certain parts

of the object level at the meta-level, because then proof planning can be done at

the meta-level.

A Short Historical Overview 15

calculus of PER MARTIN-LÖF [94], in the tradition of constructive mathematics.
Definitions and theorems can be stored in libraries; proofs follow the proposition-
as-type paradigm [36, 68]. If a constructive proof for the inhabitation of a proposi-
tion type is given, this proof has a computational content which realizes a program.
For instance, the computational content of the Nuprl—proof that every natural num-
ber has a prime factorization can be used to prime factorize an arbitrary natural
number. Different proofs correspond to different algorithms. Therefore Nuprl is
especially interesting for constructive mathematics and the development of func-
tional programs.

LAWRENCE C. PAULSON’S system Isabelle is a generic proof development
environment for different formal systems [109]. It provides a framework for devel—
oping proof checkers for different logics, initiated by the need for different logics
in artificial intelligence. In a fixed higher-order meta—logic, which is a fragment
of CHURCH’S typed A—calculus,lit is possible to specify an object logic and a cal-
culus for this logic. Isabelle then behaves like a proof checker for this special
logic without any further adaptation. As in Nuprl i t is possible t o write tactics in
Isabelle.

The Ontic system of DAVID A. MCALLESTER [95] is a semi-automated veri-
fication system based on classical ZERMELO—FRAENKEL set theory. The language
contains a rich vocabulary of types including type constructors like (OR-TYPE ‘rl 7'2),
(AND—TYPE 7'1 7'2), or (LAMBDA ((x n)) (Min)) . Predicates are eliminated in favour
of these types and type generators. The inference process is guided by a user-
specified set of focus objects by which Ontic finds and applies the information in a
large lemma library. The implementation of this focus method relies on semantic
network style inheritance.

Meta-Reasoning

Another aspect of theorem proving is considered in the FOL system of RICHARD
WEYHRAUCH [130] and further developments such as those of FAUSTO GI—UNCHI-
GLIA [50]. They are interested in a logical meta-level representation, so that they
can use an amalgamated form of reasoning, where some parts of the argumenta—
tion take place at the meta-level and some parts at the object level. Meta-level
and object level must be closely related, that is, they must observe the reflection
principle: If (p is a theorem of the object theory, then THEOREIl/I("<p") must hold
on the meta-level and vice versa. Of course one wants to reflect only certain parts
of the object level at the meta-level, because then proof planning can be done at
the meta-level.

16 Chapter 2

ALAN BUNDY [29, 30] and his group are working on the integration of heuristics

into proof development environments like Nuprl by the use of proof plans. They

are using a reimplementation of the Nuprl system, called Oyster [63], and want

to build proof plans out of certain tactics. Because the tactics written in ML

are not particularly well suited for reasoning about them, they are extended in

the Clam-system [30] to so-called methods. These incorporate a high-level meta­

logical description of the tactics including precondition, postcondition, and the

effects of a tactic. On this high level a planning system develops a plan for solving

the problem. So far the examples are such that most of the proof is already found

when a plan is found. Probably the planning will become more powerful, when

an automated theorem prover is connected to the Clam-system instead of a proof

checker.

2.3 Representation Formalisms

In all sciences there is a tradition on how to represent its technical knowledge,

in mathematics as one of the oldest sciences this tradition is distinct. So mathe­

maticians generally spend a lot of energy on a precise and elegant nomenclature,

the form of the theorems, the presentation of the proofs, and last but not least

the structure of the final text books. These forms of knowledge and their repre­

sentation are in general not objects of the investigation. Above all they are not

the subject of publications in the field of mathematics. They have, to an extent,

become an object of study in HILBERT'S program [62], but many questions are left

open in a mere logical description, which for instance does not distinguish between

the importance of statements, whereas mathematicians distinguish between lem­

mata, theorems, main theorems, corollaries, auxiliary propositions, remarks, and

so on.

The formal representation of the knowledge of a scientific discipline is normally

not a research object of the discipline itself, however, it is a main research topic

in the field of artificial intelligence, where many different forms of representing

knowledge have been developed. Frames, first introduced by MARVIN MINSKY

[97]. are very popular 'among others, because of their clarity and expressive power.

MINSKY proposed them in order to represent and structure common-sense knowl­

edge. "Attached to each frame are several kinds of information. Some of this

information is about how to use the frame.... Some is about what one can expect

to happen next." Every frame consists of different slots, which are filled by the

so-called slot-fillers. An advantage of frames is the possibility to fix the slots and

16- Chapter 2

ALAN BUNDY [29, 30] and his group are working on the integration of heuristics
into proof development environments like Nuprl by the use of proof plans. They
are using a reimplementation of the Nuprl system, called Oyster [63], and want
to build proof plans out of certain tactics. Because the tactics written in ML
are not particularly well suited for reasoning about them, they are extended in
the Clam-system [30] to so-called methods. These incorporate a high—level meta-
logical description of the tactics including precondition, postcondition, and the
effects of a tactic. On this high level a planning system develops a plan for solving
the problem. So far the examples are such that most of the proof is already found
when a plan is found. Probably the planning will become more powerful, when
an automated theorem prover is connected to the Clam-system instead of a proof
checker.

2 .3 Representation Formalisms

In all sciences there is a tradition on how to represent i ts technical knowledge,
in mathematics as one of the oldest sciences this tradition is distinct. So mathe—
maticians generally spend a lot of energy on a precise and elegant nomenclature,
the form of the theorems, the presentation of the proofs, and last but not least
the structure of the final text books. These forms of knowledge and their repre-
sentation are in general not objects of the investigation. Above all they are not
the subject of publications i n the field of mathematics. They have, to an extent,
become an object of study in HILBERT’S program [62], but many questions are left
open in a mere logical description, which for instance does not distinguish between
the importance of statements, whereas mathematicians distinguish between lem-
mata , theorems, main theorems, corollaries, auxiliary propositions, remarks, and
SO on .

The formal representation of the knowledge of a scientific discipline is normally
, not a research object of the discipline itself, however, it is a main research topic

in the field of artificial intelligence, where many different forms of representing
knowledge have been developed. Frames, first introduced by MARVIN MINSKY
[97]. are very popular among others, because of their clarity and expressive power.
MINSKY proposed them in order to represent and structure common-sense knowl-
edge. “Attached to each frame are several kinds of information. Some of this
information is about how to use the frame. . . . Some is about what one can expect
to happen next.” Every frame consists of different slots, which are filled by the
so-called slot-fillers. An advantage of frames is the possibility to fix the slots and

A Short Historical Overview

the types of the admissible slot fillers in advance, that is, to define the semantic

primitives for a certain field of application in this way. These primitives are essen­

tial for the use of frames and when applying such a system they have to be made

explicit; this is to establish an epistemological level of knowledge representation

(compare RONALD J. BRACHMAN [18]). As with KL-ONE systems [19] one may

also have a network of inheritance. Frames are for example successfully applied to

the representation of large knowledge bases in the CYC-project of DOUGLAS B.

LENAT [85].

For all different forms of knowledge representation there has been a discussion

of their semantics. So for a long time the semantics of semantic nets has been

quite obscure. In order to avoid the procedural semantics of a system, it is usual to

give a translation into some logic with a clearly understood declarative semantics.

Especially in a mathematical context it is essential to give a clear semantics of the

represented knowledge.

A Short. Historical Overview 17

the types of theadmissible slot fillers i n advance, that is, t o define the semantic
primitives for a certain field of application in this way. These primitives are essen—

tial for the use of frames and when applying such a system they have to be made
explicit; this is to establish an epistemological level of knowledge representation
(compare RONALD J . BRACHMAN [18]). As with KL—ONE systems [19] one may
also have a network of inheritance. Frames are for example successfully applied t o
the representation of large knowledge bases in the CYC—project of DOUGLAS B.
LENAT [85].

For all different forms of knowledge representation there has been a discussion
of their semantics. So for a long time the semantics of semantic nets has been
quite obscure. In order to avoid the procedural semantics of a system, i t is usual t o
give a translation into some logic with a clearly understood declarative semantics.
Especially in a mathematical context it is essential to give a clear semantics of the
represented knowledge.

CHAPTER 3

Logic

Die Grenzen meiner Spache bedeuten
die Grenzen meiner Welt.

Ludwig Wittgenstein,

Tractatus logico-philosophicus 5.6

First-order logic is a powerful tool for expressing and proving mathematical facts.

Nevertheless higher-order expressions are often better suited for the representation

of mathematics and in fact almost all mathematical text books rely on some higher­

order fragments for expressiveness. This fragment can be obtained by a higher­

order logic or by "implementing" parts of it in first-order logic and building it

up by a strong set theory. Throughout this dissertation we will follow the first

approach and use a higher-order logic, which is introduced in the current chapter.

Mathematicians use a technical language, which is relatively informal com­

pared to the formal approaches of logic or set theory. It is however much closer

to higher-order logic augmented by "naive" set theory than to first-order logic.

Mathematicians know about the antinomies and avoid them, for example by omis­

sion of expressions like "{xlx tf. x}". They also know that there is (hopefully)

a clean foundation of set theory, but how this is done in detail is in general not

of much interest to a working mathematician (if he is not working on one of the

aspects of the foundations of mathematics of course, e.g. on logic or set theory).

Formal set theory is of course a very strong tool, especially when higher con­

cepts are introduced by abbreviations. Beginning with the binary relation "E"

one can (and this has actually been achieved by N. BOURBAKI [15]) define the

concepts subset, intersection, union, function, relation, power-set, and so on; then

all of mathematics can be built up on these constructs. The definition of a func­

tion as a left-total, right-unique relation is rather complex and remote from the

construct of a function symbol that is provided originally in logic in order to ex­
press functions. If the whole of mathematics is based on set theory it will probably

be better to build special theorem provers for set theory rather than relying on

general purpose theorem provers (as done in [16]).

CHAPTER 3

Logic

Die Grenzen meiner Spache bedeuten
die Grenzen meiner Welt.
Ludwig Wittgenstein,
Il-actatus logico-philosophicus 5.6

First—order logic is a powerful tool for expressing and proving mathematical facts.
Nevertheless higher-order expressions are often better suited for the representation
of mathematics and in fact almost all mathematical text books rely on some higher-
order fragments for expressiveness. This fragment can be obtained by a higher-
order logic or by “implementing” parts of it in first-order logic and building it
up by a strong set theory. Throughout this dissertation we will follow the first
approach and use a higher-order logic, which is introduced in the current chapter.

Mathematicians use a technical language, which is relatively informal com-
pared to the formal approaches of logic or set theory. It is however much closer
to higher-order logic augmented by “naive” set theory than to first-order logic.
Mathematicians know about the antinomies and avoid them, for example by omis-
sion of expressions like “{xla: $ w}”. They also know that there is (hopefully)
a clean foundation of set theory, but how this is done in detail is in general not
of much interest to a working mathematician (if he‘is not working on one of the
aspects of the foundations of mathematics of course, e. g. on logic or set theory).

Formal set theory is of course a very strong tool, especially when higher con-
cepts'are introduced by abbreviations. Beginning with the binary relation “6”
one can (and this has actually been achieved by N. BOURBAKI [15]) define the
concepts subset, intersection, union, function, relation, power-set, and so on; then
all of mathematics can be built up on these constructs. The definition of a func—
tion as a left-total, right-unique relation is rather complex and remote from the
construct of a function symbol that is provided originally in logic in order to ex-
press functions. If the whole of mathematics is based on set theory it will probably
be better to build special theorem provers for set theory rather than relying on
general purpose theorem provers (as done in [16]).

19

20 Chapter 3

The representation of concepts using functions can be more adequately done in

a higher-order language. For instance in higher-order logic it is possible to write:

V+ associative(+) ~ Vx,y,z (x + y) + z'= x + (y + z).

Here + is a function variable, and associative is a predicate constant, which ex­

pects a function term as its argument. This cannot be written immediately in

first-order logic, because we quantify over +, so + would have to be a variable.

On the other hand it must be a function because of the term x+y, hence a function

variable, and this is not allowed in first-order logic. Nevertheless this definition is

expressible in first-order logic whereas many other concepts cannot be axiomatized

in first-order logic at all, for example the set IN of natural numbers is not first-order

characterizable. GIUSEPPE PEANO (1858-1932) used the following induction ax­

iom in his axiomatization of the natural numbers [110], it is second-order:
, I;'·

VP P(O) /\ (vnnat pen) ~ P(s(n)~ ~ (vnnat pen))

Another example of the inadequacy of first-order logic comes from the theorem of

LOWENHEIM-SKOLEM [91, 122]: Every (countable) axiomatization of a set which

has an infinite model also has a countable model. Therefore every first-order ax­

iomatization of the real numbers It has a countable model.

Using higher-order logic it is possible to characterize these models up to iso­

morphy. For a discussion on categoricity see [35]. Unfortunately one has to pay a

price, namely that the notions of truth and provability no longer coincide [52].

In the next section we formally define a higher-order logic and then we extend

this to higher-order sorted logic.

3.1 Higher-Order Logic

Our higher-order logic is based on CHURCH'S simple theory of types [33], but

unlike CHURCH we use no A-expressions and no types of the form (0 --+ 0).* Much

of the notation is taken from [3]. However, we shall write the types in a different
way.**

The Syntax

vVe will introduce type symbols, terms and formulae for the logics LW. The n-th

order predicate logics £n are then defined as subsets of £w. First of all we define

*These restrictions will be motivated in remarks 3.3, 3.8, and 5.19.
**For example if P is a binary predicate symbol 011 individuals, we write its type as (t x t ~ 0)

instead of (ou) for better readability. Apologies to all who are familiar with CHURCH'S original
notation.

20 Chapter 3

The representation of concepts using functions can be more adequately done in
a higher-order language. For instance in higher-order logic it is possible to write:
V+ associative(+) (=> Vm,y,z (a: + y) + 2 .5 a: + (y + z).
Here + is a function variable, and associative is a predicate constant, which ex-
pects a function term as i t s argument. This cannot be written immediately in
first-order logic, because we quantify over + , so + would have to be a variable.
On the other hand i t must be a function because of the term :c+y, hence a function
variable, and this is not allowed in first-order logic. Nevertheless this definition is
expressible in first—order logic whereas many other concepts cannot be axiomatized
in first-order logic at all,- for example the set IN of natural numbers is not first-order
characterizable. GIUSEPPE PEANO (18584932) used the following induction ax-
iom in his axiomatization of the natural numbers [110], i t is second- order.
VP P(0) A (Vn’w‘ P (n) => P(s(n))‘) => (Vn’m‘ P (n))
Another example of the inadequacy of first—order logic comes from the theorem of
LÖWENHEIM—SKOLEM [91, 122]: Every (countable) axiomatization of a set which
has an infinite model also has a countable model. Therefore every first—order ax-
iomatization of the real numbers R has a countable model.

Using higher—order logic i t is possible to characterize these models up to iso-
morphy. For a discussion on categoricity see [35]. Unfortunately one has to pay a
price, namely that the notions of truth and provabilz'ty no longer coincide [52].

In the next section we formally define a higher-order logic and then we extend
this to higher-order sorted logic.

3 . 1 Higher-Order Logic

Our higher-order logic is based on CHURCH’S simple theory of types [33], but
unlike CHURCH we use no A-expressions and no types of the form (o —+ o).* Much
of the notation is taken from [3]. However, we shall write the types in a different

**way.

The Syntax

We will introduce type symbols, terms and formulae for the logics D”. The n - th
order predicate logics £" are then defined. as subsets of £“ . First of all we define

*These restrictions will be motivated in remarks 3.3, 3.8, and 5.19.
"For example if P is a binary predicate symbol on individuals, we write its type as (L x I, —> 0)

instead of (ou) for better readability. Apologies to all who are familiar with CHURCH’S original
nota t ion .

Logic	 21

types. Every expression in higher-order logic must have a type; this is one of the

known devices to avoid the notorious paradoxes.

3.1 Definition (Types of ,eW):

1.	 t is a type of order 0 that denotes the type of the individuals.

2.	 0 is a type of order..!. It denotes the type of the truth values.

3.	 If 7"t, ••• ,7"m, and 0" are types not equal to 0 (with m ~ 1)' then (7"1 x .. , x

7"m -+ 0") is a type of order 1 + maximum of the orders of 7"1, ••. , 7"m, 0".

It denotes the type of m-ary functions with arguments 6f type 7"t, ••• ,7"m,

respectively, and value of type 0".

4.	 If 7"1, ••• , 7"m are types not equal to 0 (with m ~ 1), then (7"1 X ••• x 7"m -+ 0)
is a type of order 1 + maximum of the orders of 7"1, ••• , 7"m' It denotes the

type of m-ary predicates with arguments of type 7"1, ••• ,7"m, respectively.

3.2 Remark: We distinguish types like (7"1 -+ (72 -+ 7"3» from (7"1 X 72 -+ 73)'

that is, we do not assume CURRY-equality of types, although most of the following

definitions can be done assuming that these types are equal. We do that, because

otherwise we have to change our translations in chapter 5 in so far as additional

axioms become necessary to identify the corresponding sorts in the target logic.

3.3 Remark: By definition 3.1 we exclude - unlike CHURCH and ANDREWS [33,3]

- types such as (0 -+ 0). These types give rise to special problems in the translation

into first-order logic (see alsp remark 5.19), because they are essentially on the

level of connectives. Therefore in our restricted language it is not possible to

define the connectives -. and /\ and the quantifier V, and hence they must be

introduced as primitives. In the same way it is not possible to define an "IF-THEN­

ELSE" construct in the restricted languages. Nevertheless we conjecture that ~he

languages ,en - defined below - are adequate for expressing most mathematical

facts. For instance we can have predicates like ordered_group(G, +, S) of type

(t -+ 0) X (t X t -+ t) X (t X t -+ 0) -+ 0). In fact in all our examples from

mathematical textbooks, this was no serious restriction.

3.4 Definition (Signature of ,eW): The signature of a logic in ,ew is a set S =

UT s;onst U UT s~ar where each set s;.onst is a (possibly empty) set of constant

symbols of type 7" and s~ar a countable infinite set of variable symbols of type 7.

We assume that the sets ST are all disjoint, in addition we sometimes mark the

Logic 21

types. Every expression in higher-order logic must have a type; this is one of the

known devices to avoid the notorious paradoxes.

3.1 Definition (Types of £”):

1. L is a type of order 0 that denotes the type of the individuals.

2. o is a type of order. 1. It denotes the type of the truth values.

3. If T1,...,Tm‚ and a are types not equal to o (with m 2 1), then (1‘1 x ><

Tm ——> a) is a type of order 1 + maximum of the orders of T1,...,Tm,0'.
It denotes the type of m-ary functions with arguments of type n , . . . ,Tm,

respectively, and value of type 0 .

4. If 1'1, . . . , Tm are types not equal to 0 (with m Z 1), then (1'1 X - - - x Tm ——> 0)
is a type of order 1 + maximum of the orders of T1, . . . ‚'rm. It denotes the

type of m-ary predicates with arguments of type 71, . . . ‚rm, respectively.

3.2 Remark: We distinguish types like (7'1 _» (T2 —> 73)) from ("rl x 7'2 —+ T3),
that is, We do not assume CURRY-equality of types, although most of the following
definitions can be done assuming that these types are equal. We do that, because
otherwise we have to change our translations in chapter 5 in so far as additional
axioms become necessary to identify the corresponding sorts in the target logic.

3.3 Remark: By definition 3.1 we exclude — unlike CHURCH and ANDREWS [33, 3]
— types such as (o —> 0). These types give rise to special problems in the translation
into first—order logic (see also remark 5.19), because they are essentially on the
level of connectives. Therefore in our restricted language it is not possible to
define the connectives —. and A and the quantifier V, and hence they must be
introduced as primitives. In the same way it is not possible to define an “IF-THEN-
ELSE” construct in the restricted languages. Nevertheless we conjecture that the
languages ß" — defined below — are adequate for expressing most mathematical
facts. For instance we can have predicates like ordered_group(G,+,S) of type
((L ——> 0) x (1. x L —+ 1.) x (L x L ——> a) —+ o). In fact in all our examples from
mathematical textbooks, this was no serious restriction.

3 .4 Definition (Signature of ß”): The signature of a logic in £” is a set 8 =
U, Sim" U U183” where each set Sion“ is a. (possibly empty) set of constant
symbols of type T and 8:” a countable infinite set of variable symbols of type T.
We assume that the sets S., are all disjoint, in addition we sometimes mark the

22 Chapter 3

elements of a set ST by its type T as index. A logic in .Lw is defined by its signature

S and is denoted £W(S). If there is only one signature and no danger of confusion

we shall also write £w instead of £W(S).

3.5 Definition (Terms of LW):

1.	 Every variable or constant of a type T is a term of type T.

2.	 If f(T1 X"'XTm-+q), tT1 , . .. ,tTm are terms of the type indicated by their sub­

scripts, then f(T1X"'XTm-+q)(tTll'" ,tTm) is a term of type lJ.

3.6 Definition (Formulae of LW):

1.	 Every term of type o.is a formula.

2.	 If I.p and 'lj; are formulae and x is a variable of any type, then (-'I.p), (I.p 1\ 'lj;),

and (VXl.p) are formulae. As long as there is no danger of confusion we often

omit parentheses.

3.7 Definition (Formulae of .L~):

1.	 Every term of type 0 is a formula.

2.	 If i l and t2 are terms of type T with T =I- 0 then (t l =(rxT-+o) t2) is a formula.

3.	 If I.p and 'lj; are formulae and x is a variable of any type, then (-,~), (<p 1\ 'lj;),

and (Vxl.p) are formulae.

Of course we have to add =CTXT-+O) to S(:~~-+o)' We use the symbol "=" for

syntactic equality and for equality in sets. It has the usual semantics. "=" is used

as the equality symbol at the meta-level. Since the type of "=(TXT-+O)" is normally

fixed by the context, we often shorten "=(TXT-+O)" to "_".

3.8 Remark: As usual one can define (on a meta-Ievel) v, ====?, ~,and.'3 in

terms of -', 1\, and V and use formulae containing these symbols as abbreviations.

We have excluded all).-expressions in our logics. If they are included. translations

into first-order logic end up in higher-order theorem proving with undecidable

unification and related problems. They are not necessary for formulating mathe­

matics, but are important for eleminating the so-called comprehension axioms in

proving theorems (compare section 5.4).

3.9. Definition (£n, for n ~ 1): £2n (£~n) is that subset of £w (£~) such that

every variable and every constant is of order less then or equal to n, £2n-l (£~n-l)

is that subset of £2n (£~n) such that no variable of order n is quantified.

22 Chapter 3

elements of a set ST by its type T as index. A logic in £” is defined by its signature
S and is denoted £”(8) If there is only one signature and no danger of confusion
we shall also write C” instead of £”(S)

3 .5 Definition (Terms of £“) :

1. Every variable or constant of a type T is a term of type T.

2. If f(„x...xf‚„_‚„)‚tn‚...,tTm are terms of the type' indicated by their sub-
scripts, then f(.‚1x...x„m__.„)(t„, . . . ,tTm) is a term of type a .

3.6 Definition (Formulae of .C‘”):

1. Every term of type o.is a formula.

2. If cp and 11) are formulae and a: is a variable of any type, then (-up), (90 A d)),
and (n0) are formulae. As long as there is no danger of confusion we often
omit parentheses.

3 .7 Definition (Formulae of Lg) :

1. Every term of type 0 is a formula.

2. If t l and t2 are terms of type T with T 76 0 then (t1 E(.,x.,_.,a) tz) is a formula.

3. If so and 11; are formulae and as is a variable of any type, then (”‘94), (cp A zb),
and (Vzcap) are formulae.

Of course we have to add Ema...» to SÜQ’TLO). We use the symbol “5” for
“=” i s usedsyntactic equality and for equality in sets. It has the usual semantics.

as the equality symbol at the meta—level. Since the type of “Eh“. .o)” is normally
fixed by the context, we often shorten “E(.‚X.‚__‚o)” to “5” .

3 .8 Remark: As usual one can define (on a meta—level) V, =>, #1) , and El in
terms of -1, A, and V and use formulae containing these symbols as abbreviations.
We have excluded all Ä-expressions in our logics. If they are included. translations
into first-order logic end up in higher-order theorem proving with undecidable
unification and related problems. They are not necessary for formulating mathe-
matics, but are important for eleminating the so—called comprehension axioms in
proving theorems (compare section 5.4).

3.9, Definition (L", for n 2 1): £2" (£?) is that subset of £“ (Lg) such that
every variable and every constant is of order less then or equal to n, £2"‘1 (‚CLP—1)
is that subset of L‘?" (C?) such that no variable of order n is quantified.

Logic 23

The Semantics

In this section we introduce a set-theoretical semantics for our higher-order logic

which is due to TARSKI [124] and has been extended by HEN KIN [57] to general

model semantics.

We use the following notation: Let At, . .. ,Am, and B be sets, then we denote

by F(At, ... , Am; B) the set of all functions from Al x ... x Am to B.

3.10 Definition (Frame): A frame* (set of universes) is a collection {1)T}T
of non-empty sets 1)n one for each type symbol T, such that V o = {T,F} and

1)hx"'XTm-+l1) ~ F(VT1 , ... ,1)Tm;1)I1)' The members of 1)0 are called truth values

and the members of 1)t are called individuals.

3.11 Definition (Interpretation): An interpretation ({VT }T'..1) of £w consists

of a frame and a function ..1 that maps each constant of type T of [,w to an element

of 1)T'

3.12 Definition (Assignment): An assignment into a frame {VT}T is a function

ethat maps each variable of type T of [,w to an element of V T • An assignment

into an interpretation is an assignment into the frame of the interpretation. In

contexts where a particular interpretation is under discussion, it will be. assumed

that all assignments are into that interpretation unless otherwise indicated. Given

an assignment e, a variable X n and an element d E 1)n e[xT r- d] is defined as e
except for X T where it is d.

3.13 Definition (Weak Interpretation): An interpretation M = ({1)T}n..1) is

a weak interpretation (weak model, general model) for £w ([,~) iff there is a binary

function VM so that for every assignment eand term t of type T, Vr(t) E 1)T and

the following conditions hold:

3. for composed terms VruhX"'XTm-+(1)(tTll"" tTm ») =

VtU(TIX"'XTm-+<T)(Vf1(tT1\···, Vf1(tTm »

4. Vf(ep A 1/;) = Vf(ep) A Vf(1/;)

*The notion of frame,. has here nothing to do with the notion of frame in knowledge

represen tation.

Logic 23

The Semantics

In this section we introduce a set-theoretical semantics for our higher-order logic
which is due to TARSKI [124] and has been extended by HEN KIN [57] to general
model semantics.

We use the following notation: Let A1, . . . , Am, and B be sets, then we denote
by f (Ah . . . ‚Am; B) the set of all functions from A1 X x Am to B .

3.10 Definition (Frame): A frame'“ (set of universes) is a collection {’DT},
of non—empty sets DT, one for each type symbol 7', such that Da = {T,F } and
D(„x...x.„„_„) g f (Dü , . . . ,D„„;'D„). The members of D0 are called truth values
and the members of ’D, are called individuals.

3.11 Definition (Interpretation): An interpretation ({DT}T‚J) of £“ consists
of a frame and a function .7 that maps each constant of type T of If” to an element
of D, .

3.12 Definition (Assignment): An assignment into a frame {B,} , is a function
£ that maps each variable of type T of ‚CW to an element of DT. An assignment
into an interpretation is an assignment into the frame of the interpretation. In
contexts where a. particular interpretation is under discussion, it will be. assumed
that all assignments are into that interpretation unless otherwise indicated. Given
an assignment £, a variable zur, and an element d € TDT, { [x , <— d] is defined as €
except for :::T where i t is d .

3.13 Definition (Weak Interpretation): An interpretation M = ({D‚}T,._7) is
a weak interpretation (weak model, general model) for £” (Lg) iff there is a binary
function VM so that for every assignment £ and term t of type T, vg“ (t) E D, and
the following conditions hold:

1 . for all variables 1:7, V505,) = f(xT)

2. for all constants cf, VéM(cT) = J(c.‚)

3. for composed terms V5M(f(¢1x---x¢m—w)(tm---,t1-m)) =
véwwfünX° ' °XTm—'0)) (v€ jw(t71)z ‘ ' ° a ve!“ (tTm))

4. vgmp A w) = Vg"'(<‚o) A vä‘üb)

*The notion of frames has here nothing to do with the notion of frame in knowledge
represen tation .

24 Chapter 3

5.	 vt(-,cp) = -,vt(cp)

6.	 vt(''7XTCP) = Vd E 1)TV~T+-d](CP)

7.	 for a model of £~ we have additionally for all terms tt, t 2 0f type T i- 0,

vt(t 1 · t2) = (vt(t 1) =VT vt(t 2))*

3.14 Remark: We use the connectives "/\" and "-," and the quantifier "V" in a

naive way at the meta-Ievel. We do that extensively when we prove that certain

morphisms between two different logics are sound. Then we have connectives in

the different logics and connectives at the meta-level. Because we use the same

symbol for three different ones we get nice homomorphic properties (see page 67)

and avoid a mess of symbols. So the reader has to identify by the context which

one is meant.

3.15 Definition (Strong Interpretation): Aninterpretation M = (fDT}T"J)
is a strong interpretation (strong model, standard model) iff it is a weak interpreta­

tion and for all occurring types T = (Tl x· .. X Tm --+ 0-), 1)T ~ F(1)Tll •.• , 1)Tm; 1)q).

3.16 Remark:

-	 Every strong interpretation is by definition also a weak interpretation.

-	 In order to fix a strong interpretation we only have to fix 1)t and .:l.

3.17 Remark: Of course equality at level n (for odd n) can be defined at level

n + 1 by LEIBNIZ'S identitas indiscernibilium, that is, by the formula

VXTVYr(x =(TXT->O) y) : {::::::> (VP(T->O) P(x) {::::::> P(y)).
But if the underlying semantics is weak by this definition we would get a non­

standard semantics for the equality predicate: Suppose we have two constants

at and bt and the equality predicate =(tXt->o) is defined by LEIBNIZ'S identitas

indiscernibilium in the signature of a logic. Now suppose further we have the

equality a = b as an axiom, we could interpret the formula by 'Dt = {I, 2}, .:l(a) =

1, .:J(b) = 2, and 1)(t->o) = {PIP(l) = P(2) = T}. Then we have vt(a = b) = T

although a and b are interpreted by different elements. In other words writing

a =b does not force a and b to be equal in all models. In the logics £=. we

want the predicate constants _ to be interpreted strongly. That is, if we have an

equality like a - b, then a and b must be mapped onto the same element in the

corresponding universe. ,
• Here and in the following we use for all sets A, =A as equality for elements in the set A.

24 Chapter 3

5- VE“("‘P) = WNW

6. vg“(v:c‚c‚o) = Vd e DTVg‘dlgp)

7. for a model of C; we have additionally for all terms t1,t2 'of type 1' # 0,
VM“ E tz) = (vgwul) sp, vg“(t2))* '

3 .14 Remark: We use the connectives “A” and “-w” and the quantifier “V” in a
naive way at the meta-level. We do that extensively when we prove that certain
morphisms between two different logics are sound. Then we have connectives in
the different logics and connectives at the meta-level. Because we use the same
symbol for three different ones we get nice homomorphic properties (see page 67)
and avoid a mess of symbols. So the reader has to identify by the context which
one i s meant.

3.15 Definition (Strong Interpretation): Aninterpretation M = ({D‚}T,J)
is a strong interpretation (strong model, standard model) iii it is a weak interpreta—
tion and for all occurring types 7' = (7'1 x - - . x Tm —+ a) , D., & f(DTI, . . . , Dfm; D ,) .

3 .16 Remark:

— Every strong interpretation is by definition also a weak interpretation.

— In order to fix a strong interpretation we only have to fix D, and J.

3.17 Remark: Of course equality at level n (for odd n) can be defined at level
n + 1 by LEIBNIZ’S identitas indiscernibilium, that is, by the formula
Vw,Vy,(m Emu...” y) : (=> (VP(,_.0) P(:c) (=> P(y)).
But if the underlying semantics is weak by this definition we would get a non-
standard semantics for the equality predicate: Suppose we have two constants
a , and b, and the equality predicate E(,x,_,o) is defined by LEIBNIZ’S identitas
indiscernibilium in the signature of a logic. Now suppose further we have the
equality a E b as an axiom, we could interpret the formula by D, = {1, 2}, J (a) =

' 1, J(b) = 2, and D010) = {P|P(1) = P(2) = T}. Then we have vg‘4(a = b) = T
although a and b are interpreted by different elements. In other words writing
a 5 b does not force a and b to be equal in all models. In the logics ‚CE we
want the predicate constants E to be interpreted strongly. That is, if we have an
equality like a E b, then a and b must be mapped onto the same element in the
corresponding universe.

#
*Here and in the following we use for all sets A, EA as equality for elements in the set A.

Logic	 25

3.18 Definition:

1.	 Let r.p be a formula and M be a weak (strong) interpretation. M is a weak

(. strong) model of r.p if for every assignment einto M, Vr (r.p) = T

2.	 A model for a set r of formulae is a model of each formula of r.

3.	 If every weak (strong) model of a formula set r is also a weak (strong) model

of a formula r.p, we write r p= r.p (r ~ r.p, respectively).

3.19 Theorem: In [} ([,~) for every weak model of a formula set there is a strong

model with the same interpretation function :I.

Proof: Let r be a set of formulae in [,1 and M = ({VT}T,:I) be a weak model

of r. If we define Vi as V" V o as Vo, and for all occurring types 7 with 7 =

(71 x··· X 7m ---+ 0"), V T := F(VTp ... ,VTm;VO')' then M = ({VT}T,:I) is a strong

model of r. We have V T ~ V T for all types T. With VM = VM the definition

3.13 is fulfilled automatically (because the interpretation function :I is the same)

except for 3.13.6. But 3.13.6 is satisfied, since in [,1 we can quantify only over

variables of type t and V, = Vi' Therefore M is a strong model of r. •

3.20 Remark: By the introduced semantics we implicitly assume that so-called

extensionality axioms 3 are valid, that is, that the following formulae hold:

3 1	 For all function symbols f, g of type 7 = (71 X .•. X 7m ---+ 0"), 0" =I 0:

Vf Vg (VXT!",VX Tm /(XTP""XTm)=g(.XTll""XTm))===::}/=g

'3P	 For all predicate symbols p, q of type 7 = (71 X ••. X 7m ---+ 0):

'lip Vq (Vx T! ... VX Tm p(XTp ... ,XT",) {::::::} q(.xTP '" ,XTm)) ===::} P == q

When we introduce a calculus for our logics by translating them into first-order

logic, we have to add corresponding axioms (. compare definition 5.18) in order to

obtain completeness.

The following example shows that the weak semantics can be very remote from

the intuition matherllaticians have about their models.

3.21 Example: Let P be a constant of type (t ---+ 0) and a be an individual

constant, that is, it constant of type l. Then the formula r.p := (VJ(i->i) P(J(a))) 1\

-'P(a) is unsatisfiable in the standard interpretation, because it is possible to

choose the identity function for .f. But we can find a weak model M. For instance

Logic 25

3 .18 Defin i t ion :

1. Let (‚o be a formula and M be a weak (strong) interpretation. M is a weak
(strong) model of cp if for every assignment 5 into M, Véwüp) = T

2 . A model for a set I‘ of formulae i s a model of each formula of I‘ .

3. If every weak (strong) model of a formula set I‘ is also a weak (strong) model
of a formula cp, we write [‘ I: go (I‘ E 90, respectively).

3.19 Theorem: In ‚Cl (UE) for every weak model ofa formula set there is a strong
model with the same interpretation function J.

Proof: Let F be a set of formulae in ‚Cl and M = ({DT}. , , J) be a weak model
of F . I f we define f, as D„ 50 as Do, and for all occurring types T with T =

(7-1 >< u-x Tm —> a), 1—7, := 73(5,“ . . . {57,572}, then 'M: ({Ö—T}„J) is a strong
model of r . We have 1), g 5. for all types T. With W = vM the definition
3 .13 i s fulfilled automatically (because the interpretation function J i s the same)

except for 3.13.6. But 3.13.6 is satisfied, since in ‚Cl we can quantify only over
variables of type L and Ü : DL. Therefore M is a strong model of I‘. I

3 .20 Remark: By the introduced semantics we implicitly assume that so-called
extensionalz'ty axioms 3 are valid, that is, that the following formulae hold:

S f For all function symbols f , g of type T = (n x . . - x rm —> a) , a 7‘- o:
Vf Vg (Vm,,...\7’x,m f(a:,l,...,:z:,m) Eg(:cn,.. . ,a:,m)) => f Eg

E” For all predicate symbols p, q of type 'r = (1’1 x - ' ' >< Tm _» o):
Vp Vq(VxT1.. .V:I:.,m p(:r,,,. . . ‚mm) (=) q(a:,.1,. . . am)) = p E q

When we introduce a calculus for our logics by translating them into first-order
logic, we have to add corresponding axioms (compare definition 5.18) in order to
obtain completeness.

The following example shows that the weak semantics can be very remote from
the intuition mathematicians have about their models.

3 .21 Example: Let P be a constant of type (t -—> o) and a be an individual
constant, that is, a constant of type („ Then the formula 90 := (Vf(,_.,,)P(f(a))) /\
-P (a) is unsatisfiable in the standard interpretation, because it is possible to
choose the identity function for f . But we can find a weak model M. For instance

26 Chapter 3

with V£ = {1,2}, V(£->£) = {gjg(x) = 2}, .J(P)(l) F, .J(P)(2) T, and

.J (a) = 1, we get vtt(<p) = T for all assignments e.
This is a reason to restrict the possible models by requiring that certain ax­

ioms are fulfilled, namely the so-called comprehension axioms, which rule out the

previous example by guaranteeing the existence of certain objects. They are the

mealiS in the approach to approximate the strong semantics by a weak one. For

the axioms compare [3, p.156].

3.22 Definition (Comprehension Axioms): The compr~hen8ion axioms Tare

the following formulae:

T f	 For every term t of type T i= 0 of which the free variables are at most the

different variables x}, ... , X m , yl, ... ,Yk of type Th .•. , Tm , 0"1, •.. ,O"k:

VY1'" VYk 3fhx'.. XTm ->T) VX1 .. ' VXm (I(Xl, ... , X m) = t).

TP	 For every formula <p of which the free variables are at most the different

variables X},, .. , X m , Yl, ... , Yk of type Tl, . .. ,Tm , O"l," .• O"k:

VY1 ... VYk 3P(T1X".XTm->o) VX1".VXm (p(Xl1""xm) <==? <p).

3.23 Remark: In practice the user of an automated theorem proveI' has to decide

very carefully whether such a comprehension axiom (and which, if any) is necessary

for a proof. We hope that for most theorems no comprehension axiom is necessary

at all. This motivates the following definition. Compare also seetion5.4.

3.24 Definition: Let r be a formula set in ,en and <p be an ,en-formula that

follows semantically from r. We say <p is an essentially first-m'der theorem of r iff

r F= rp. We say <p is a truly higher-order the01'em of r iff r ~ <p but ruT F= <p.

3.25 Remark: The distinction between essentially first-order and truly higher­

order theorems is essential, when choosing an appropriate system for proving a

theorem. Since in general it is hard to find the corresponding comprehension

axiom, we conjecture that for truly higher-order theorems, a higher-order theorem

proveI' is preferable, because it does not need the corresponding axiom. In the

case of essentially first-order theorems first-order theorem proving systems should

be 1:wtter, because the higher-order overhead is not necessary. Of course there

can be exceptions in both directions. There might be cases where it is easy to see

which comprehension axiom is necessary and so this problem might be appropriate

for a first-order theorem proveI'. On the other hand there Illight be cases where

a higher-order theorem prover is preferable, because it is not known whether a

comprehension axiom is necessary or not.. Some further discussion of proving

theorems by a first-order proof procedure can be found in chapter 6.

26 Chapter 3

with v. = {1.2}. n.-., = {glam = 2}. J<P><1> = F, J(P)(2) = T. and
J (a) = 1, we get Väwüp) = T for all assignments { .

This is a reason to restrict the possible models by requiring that certain ax-
ioms are fulfilled, namely the so—called comprehension axioms, which rule out the
previous example by guaranteeing the existence of certain objects. They are the
means in the approach to approximate the strong semantics by a weak one. For
the axioms compare [3, p.156].

3.22 Defini t ion (Comprehension Axioms): The comprehension axioms T are
the following formulae:

T i For every term t of type T 75 o of which the free variables are at most the
different variables :31, . . . ‚mm, g l , . . . ,yk of type T1, . . . ‚71mm, . . . ,a‘k:
Vyl . . . Vyk 3f(‚1x...‚„m_„) l . . .m (f(:r1, . . . , mm) E t) .

T” For every formula 90 of Which the free variables are at most the different
variables ml, . . . ‚ ccm,y1, . . . ,yk of type 7'1, . . . ,Tm, 0'1, . . . , ak:
Vyl . . . Vyk Elm,1 x . . . x , .m_ ,a) Vxl . . . m (p(:c1, . . . , zum) (=> 4,0).

3 .23 Remark: In practice the user of an automated theorem prover has to decide
very carefully Whether such a comprehension axiom (and which, if any) is necessary
for a proof. We hope that for most theorems no comprehension axiom is necessary
at all. This motivates the following definition. Compare also section~5.4.

3 .24 Defini t ion : Let P be a formula set in E" and (,9 be an Lin-formula that
follows semantically from 1“. We say cp is an essentially first-order theorem of I‘ iff
I‘ l: up. We say (p is a truly higher-order theorem of I‘ iff I‘ [# ga but I‘ U T |: cp.

3 .25 Remark: The distinction between essentially first—order and truly higher-
orcler theorems is essential. when choosing an appropriate system for proving a
theorem. Since in general it is hard to find the corresponding comprehension
axiom, we conjecture that for truly higher-order theorems, a higher—order theorem
prover is preferable, because i t does not need t he corresponding axiom. In the
case of essentially first—order theorems first—order theorem proving systems should
be bet ter , because the higher-order overhead is not necessary. Of course there
can be exceptions in both directions. There might be cases where i t is easy to see
which comprehension axiom is necessary and so this problem might be appropriate
for a first—order theorem prover. On the other hand there might be cases where
a higher-order theorem prover is preferable, because it is not known whether a
comprehension axiom is necessary or not. Some further discussion of proving
theorems by a first-order proof procedure can be found in chapter 6.

Logic 27

3.2 Sorted Higher-Otder Logics

Now we extend the logics introduced so far to sorted higher-order logics .q~.

To that end, we adopt the notion of sorts for the first-order case of MANFRED

SCHMIDT-SCHAUSS [117]. Many of the following definitions are analogous to those

in [117]. The logics are similar to those in [43]. We will follow the concepts de­

veloped by MICHAEt KOHLHASE [7.5] in order to extend higher-order theorem

proving to the sorted case.

The Syntax

The syntax is similar to the syntax of the logics without sorts, but now each type
'­

may have a substructure. Therefore we will introduce the notion of a sort and

motivate the definition by an example.

3.26 Example: We want to structure our domain of discourse l by subsorts IN,

lR, even, odd, human, male, female, animal, bird, man, woman with the subsort

relation ~ as denoted by the following diagram:
£

~
IR

I ~

IN bird human male female

/\ ~/

e"Jcn odd man woman

All these relations are introduced by subsort declarations of the form lR~l.

Let us say that this are all sorts of type to Let ~ be the transitive and reflexive

closure of~. Now we want to state the subsort relations between the sorts of

type (l --+ l)., First we state those relations that cannot be declared but are

consequences of the corresponding relation of type to

We have relations (R --+ IN)~(R --+ R)~(R --+ t). Nota bene: A function from

(IN --+ IN) is not a special function from (R --+ IN) or vice versa. Hence we do not

have relations like (IN --+ IN)~(lR --+ IN) and (lR --+ IN)r;(lN --+ IN). The relation

(K --+ p,)r;(K' --+ Il') is fulfilled iff 11, = K' and p,r;p,'.

There is no sort bigger than OR --+ t) with respect to ~. Hence we call this sort a

top sort of type (t --+ t).

In addition to these relations it is possible to declare new subsort relations like

C~(lR --+ R), where C denotes for instance the sort of unary real continuous

Logic 27

3 .2 Sorted Higher-Order Logics

Now we extend the logics introduced so far to sorted higher-order logics 05.
To that end, we adopt the notion of sorts for the first-order case of MANFRED
SCHMIDT—SCHAUSS [117]. Many of the following definitions are analogous to those
in [117]. The logics are similar to those in [43]. We will follow the concepts de—
veloped by MICHAEL KO'I-ILHASE [75] in order to extend higher—order theorem
proving to the sorted case.

The Syntax

The syntax is similar t o the syntax of the logics without sorts, but now each type
may have a substructure. Therefore we will introduce the notion of a sort and
motivate the definition by an example.

3.26 Example: We want to structure our domain of discourse L by subsorts 1N,
]R, even, odd, human, male, female, animal, bird, man, woman with the subsort
relation E as denoted by the following diagram:

L

T, an ' a l

IN “7%“

/\
wen odd man woman

All these relations are introduced by subsort declarations of the form BEL.

Let us say that this are all sorts of type L. Let @ be the transitive and reflexive
closure of E. Now we want to state the subsort relations between the sorts of
type (L —> L)._ First we state those relations that cannot be declared but are
consequences of t he corresponding relation of type L.

We have relations (R —> lN)l:(lR ———> R)fi(lR —> L). Nota bene: A function from
(IN —> IN) is not a special function from (]R ——> IN) or vice versa. Hence we do not
have relations like (IN _» 1N):(1R —+]N) and (R —> N)é(1N —>]N). The relation
(K. ———> ;L)C(K‚’ —> n’) is fulfilled iff It = K.’ and ‚(Li/L’.
There is no sort bigger than (R —> L) with respect to @. Hence we call this sort a
top sort of type (L ——> L).

In addition to these relations it is possible to declare new subsort relations like
CEOR ——'> R) , where C denotes for instance the sort of unary real continuous

Chapter 3

functions. C is called a simple sort, because it is Hot composed by an -7. In any

subsort declaration /\,I;fl, /\, has to be a simple sort. In the following definitions we

introduce these concepts formally.

3.27 Definition (Sort): ~ is the set of sorts. ~ contains the type symbols I and

o. Whenever /\'1,"" /\'m, and fl are in ~ then (/\,1 x ... X /\,m -7 Il) is in 1:. We

denote sorts by /\', fl, and v.

3.28 Definition (Simple Sort): A simple sort is a sort that does not contain

an arrow "-7". All other sorts are called composed.

3.29 Definition (Subsort Declaration): Between any sorts fl and v it is possi­

ble to make a subsort declaration flf;.v. The subsort relation ~ is the reflexive, tran­

sitive closure of the relation f;., in addition, we have the covariance in the range sort,

that is, for all composed sorts the relations: (/\,1 x· .. X/\,m -7 Jt)~(/\,~ x· .. x /\,~ -7 fl')

iff /\'1 = /\'~, ... , /\,m = /\,~ and fl~J.l"

3.30 Definition (Top Sort): A sort 1.1 is called a top sort iff for all ·sorts v with

J.l~v, v is equal to J.l.

3.31 Definition (Type of a Sort): The type of a sort is defined inductively by:

- type(l) := I and type(o) := 0

- for J.l~v, type(fl) := type(v)

- for v = (/\,1 x·· 'X/\'m -7 fl), type(v):= (type(/\'dx" ·xtype(/\'m) -7 type(fl))

3.32 Definition (Admissible Subsort Declaration): A subsort declaration is

called admissible iff the following conditions are fulfilled:

if Jlf;.v then Jl is not equal to I or 0 and v is not equal to 0,

- for every simple sort fl (not equal to I or 0) there is at least one subsort

declaration jlf;.ll, so that fl is subsort of a composed sort or of a type symbol

(i.e. of I or 0),

in every subsort declaration flf;.v, fl must be a simple sort and type(fl)

type(1/), and

- there are only finitely many subsort declarations.

28 Chapter 3

functions. C is called a simple sort, because i t is not composed by an —>. In any
subsort declaration nE/L, fc has to be a simple sort. In the following definitions we
introduce these concepts formally.

3.27 Definition (Sor t) : 2 is the set of sorts. E contains the type symbols L and
0 . Whenever n1 , . . . , nm, and a are in 2 then (n l X - - - X Km ——> [1.) i s i n Z . We

denote sorts by Is, a , and 1/.

3.28 Definition (Simple Sor t) : A simple sort is a sort that does not contain
an arrow “—>”. All other sorts are called composed.

3.29] Definition (Subsort Declaration): Between any sorts a and 1/ it is possi—
ble t o make a subsort declaration ,LLEV. The subsort relation I: is the reflexive, tran—
sitive closure of the relation E, in addition, we have the covariance in the range sort,
that is, for all composed sorts the relations: (rel x- - - xrcm —+ will“: X- - - X/cjn —+ a’)
- _‚ l _ I ' Iifffcl -—n1,...,nm—nm and ‚UE/‚t.

3.30 Definition (Top Sor t) : A sort [L is called a top sort iff for all “sorts 1/ with
pill, 1/ is equal to ;L.

3.31 Definition (Type of a Sor t) : The type of a sort is defined inductively by:

— type(L) := L and type(o) := o

— for ;Lév, type(,u) := type(1/)

— for V =(K1 ><- ' 'Xnm —> fl), type(V) == (type(K1)><---><type(fim') —» t ype (u))

3.32 Definit ion (Admissible Subsort Declaration): A subsort declaration is
called admissible iff the following conditions are fulfilled:

if ‚(LE-11 then [L is not equal to L or o and V is not equal to 0,

— for every simple sort ;L (not equal to L or 0) there is at least one subsort
declaration aEu , so that ;L is subsort of a composed sort or of a type symbol
(i.e. of L or 0),

~— in every subsort declaration „E:/, ;L must be a simple sort and type(/L) =
type(1/), and

— there are only finitely many subsort declarations.

Logic

3.33 Remark: In the following we assume that all subsort declarations are ad­

missible. Therefore we have in particular that every sort has a type and that this

type is unique. Furthermore we have that every top sort is either t or 0 or it is a

composed sort (K1 X ... X Km ---7 j.l) with top sort. j.l.

3.34 Example: The next concept we want to introduce is that of a term declara­

tion. For instance, we want to declare that a binary function constant -+ is of sort

(IN x IN ---7 IN). In addition we might want to express that the sum of two equal

numbers is even. We can do it by the term declaration: -+(XlN' XlN) : even.

3.35 Remark: For the following we use the definitions of the previous section,

especially the definition of types and well-typed terms.

3.36 Definition (Term Declaration): A term declaration is a pair (t, K) usually

denoted as (t : K), where t is a well-typed term that is not a variable and K a sort

symbol of the same type as t. We denote term declarations by 8. If 8 is of the form

(c : K) it is called a constant declaration and otherwise a proper term declaration.

For every constant we allow at most one constant declaration. If there is no term

declaration for a constant, we implicitly assume that its sort is equal to its type.

Variables have fixed sorts, so they cannot be declared.

3.37 Remark: By this definition we exclude polymorphism, that is, we cannot

declare N!;1R and then make the constant declarations (-+ : (N x IN ---7 N)) and

(-+ : (lR x lR ---7 lR)). But it is possible to make the one constant declaration

(-+: (lR x lR ---7lR)) and the term declaration (+(XlN,YlN): N), what is almost

the same, with the exception that -+ is not an instance for a function of sort

(IN x IN ---7 N) (quasi-polymorphisln).

3.38 Definition (Terms of £~):

1.	 Every variable x of sort K is a term of sort K.

2.	 Every term t with term declaration (t : K) and every instantiation of t is a

term of sort K.

3.	 If 1 is a term of sort K = (K1 X ... X Km ---7 j.l) and t , • •• ,t are terms of K1 Km

the sorts indicated by their subscripts, then 1K(t , ••• , t) is a term of sort K1 Km

f.L.

4.	 If t is a term of sort v and vf;;j.l, then t is a term of sort j.l.

Logic 29

3 .33 Remark: In the following we assume that all subsort declarations are ad-
missible. Therefore we have in particular that every sort has a type and that this
type is unique. Furthermore we have that every top sort is either L or 0 or it is a
composed sort (151 x x [cm —> p) with top sort a.

3.34 Example: The next concept we want to introduce is that of a term declara-
tion. For instance, we want to declare that a binary function constant + is of sort
(1N X]N —+]N). In addition we might want to_ express that the sum of two equal
numbers is even. We can do it by the term declaration: +(rvN, wm) : even.

3.35 Remark: For the following we use the definitions of the previous section,
especially the definition of types and well-typed terms.

3.36 Definition (Term Declaration): A term declaration is a pair (t, n) usually
denoted as (t : n), where t is a well-typed term that is not a variable and Is a sort
symbol of the same type as t. We denote term declarations by 6. If 5 is of the form
(c : IC) i t is called a constant declaration and otherwise a proper term declaration.
For every constant we allow at most one constant declaration. If there is no term
declaration for a constant, we implicitly assume that its sort is equal to its type.
Variables have fixed sorts, so they cannot be declared.

3 .37 Remark: By this definition we exclude polymorphism, that is, we cannot
declare lNElR and then make the constant declarations (+ : (IN X IN ——> IN)) and
(+ : (R x]R —> R)). But it is possible to make the one constant declaration
(+ : (lR x]R —+ R)) and the term declaration (+(1:N,yN) : IN), what is almost
the same, with the exception that + is not an instance for a function of sort
(]N x N _)]N) (quasi-polymorphism).

3.38 Definition (Terms of 05):

1. Every variable a: of sort K: is a term of sort n.

2. Every term t with term declaration (t : n) and every instantiation of t is a
term of sort K.

3. If f is a term of sort & = (1:1 X x mm ——> „) and tK1,...,t,,m are terms of
the sorts indicated by their subscripts, then f,‘(t,,,, . . . , tm) is a term of sort
‚u.

4. I f t is a term of sort 1/ and Via, then t is a term of sort ,u.

Chapter 3 3°

3.39 Remark: The sort of a term need not be unique in general, only the top

sort of a term is unique. For instance if we have in example 3.26 a function of sort

(:IR -7 IN), then it has also the sorts (R -7 R) and (R -7 t). The top sort (R -7 t)

IS	 umque.

3.40 Definition (Signature of £I;): A sorted signature SE = (S,E,s,l;,h) of a

logic in £I; consist of

1.	 an unsorted signature S,

2.	 a set E of sorts,

3.	 a function s : svar -7 E, such that for every sort /'i, E E, there exist countably

infinitely many variables x E svar with sex) = /'i,*,

4.	 a (finite) set of subsort declarations, and

5.	 a set of term declarations 6.

3.41 Definition (Admissible Sorted Signature): A sorted signature SE is

admissible, iff each subterm ti of every well-sorted term f(tt, ... , t m) is also a

well-sorted term. Proper term declarations can only restrict the domain sort of a

term in the sort hierarchy. In the following we will assume that all signatures are

admissible.

3.42 Definition (Formulae of £I;): Formulae are defined analogously to 3.6.

1.	 Every term of type 0 is a forTftula.

2.	 If tp and 'l/J are formulae and x is a variable of an arbitrary sort /'i" then (-,tp),

(tp 1\ 'l/J), and (Vx K tp) are formulae.

3.43 Definition (Formulae of £I;,:=J:

1.	 Every term of type 0 is a formula.

2.	 If t l and t 2 are terms of sort /'i,J, /'i,2 with the same top sort f.l not equal to 0

then (tt =(J,lXJ,I-+o) t2) is a formula. As usual we drop the subscript of -.

•To indicate that s(x) = K we often write the variable x in the form x,;, we say x has sort K.

Instead of "Ix,; we often write "Ix : K.

30 Chapter 3

3 .39 Remark: The sort of a term need not be unique in general, only the top
sort of a term is unique. For instance if we have in example 3.26 a function of sort
(R —>]N), then it has also the sorts (R ——> B) and (R —> L). The top sort (]R ——> I,)
is unique.

3.40 Definition (Signature of Lg): A sorted signature 82; = (S , E,5,E,6) of a
logic in 05 consist of

1. an unsorted signature S ,

2. a set 2 of sorts,

3. a function 5 : 8"” —+)3, such that for every sort ra E E , there exist countably
infinitely many variables a: E 8"” with 5(a) = ‚€*,

4. a. (finite) set of subsort declarations, and

5 . a set of term declarations 6 .

3.41 Definition (Admissible Sorted Signature): A sorted signature 82 is
admissible, iff each subterrn t,- of every well—sorted term f(t1, . . . ,tm) is also a
well-sorted term. Proper term declarations can only restrict the domain sort of a
term in the sort hierarchy. In the following we will assume that all signatures are
admissible.

3.42 Definition (Formulae of Lg): Formulae are defined analogously to 3.6.

1 . Every term of type 0 is a formula.

2. If go and 1/) are formulae and a: is a variable of an arbitrary sort li, then (10),
(cp A 1/2), and (Van 90) are formulae.

3 .43 Definit ion (Formulae of Lg,-£):

1. Every term of type 0 is a formula.

2. If t l and tz are terms of sort n l , It; with the same top sort u not equal t o 0
then (tl 5(uxu—vo) tz) is a formula. As usual we drop the subscript of E .

*To indicate that 5(a) = K. we often write the variable a: in the form a:,“ we say a: has sort K.
Instead of Va; we often write Vm : n..

Logic

3.	 If 'P and 1/J are formulae and x", is a variable of an arbitrary sort K, then

(-''P), ('P /\ 1/J), and (Vx", 'P) are formulae.

3.44 Definition (L~, for n ~ 1): L~n (Lt:J is the subset of LE (LE,:,) such

that every variable, every constant and every sort declaration is of order less or

equal to n, L 2n- 1 (£~n-l) is the subset of £2n (£~n) s,uch that no variable of or~er

n is quantified on.

3.45 Definition: A signature S'E is called unsorted iff ~ consists of just the type

symbols, it is called many-sorted iff it has more sorts and the subsort relations are

all of the form J.l~v with top sort v. Otherwise it is called order-sorted. We denote

many-sorted logics by LA, order-sorted logics are written as £~.

3.46 Remark: An unsorted logic £~(S'E) can easily be mapped to a logic £n(s),
because in the unsorted case S'E has the form (S,{rlr type}, x 1-+ type(x),0,0),

that means, it does not contain any further information than that of S.

The Semantics

As in section 3.1 we define a set-theoretical semantics for the formulae.

3.47 Definition (Frame): Let S'E be the sorted signature of a logic L'E' A frame

corresponding to S'E = (S,~,s,l;;;:,c) is a collection {V",}", of nonempty sets V""

one for each sort symbol K E ~, such that V o = {T, F} and V("'1 X"'X"'m-+J.') ~

F(V",!" .. ,V"'m; DJ.L) for all sorts Ki, J.l as well as V", ~ DJ.' for all sorts K, J.l with

K~J.l' The members of V o are called truth values and the members of V t are called

individuals.

The definitions of assignment, and interpretation are analogous to the corre­

sponding definitions of the unsorted case, that is, definitions 3.11 and 3.12:

3.48 Definition (Interpretation): An interpretation ({V",}""..7) of LE consists

of a frame and a function ..7 that maps each constant of sort K of LE (S'E) to an

element of V"" that is, for every constant declaration (c: K) we have ..7(c) E'DK ,

3.49 Definition (Assignment): An assignment into a frame {'DK }", is a function

ethat maps each variable of sort K, that is, each variable x with s(x) = K of LE
to an element of 'D",.

3.50 Definition (Weak Interpretation): An interpretation M = ({'DK }""..7) is

a weak interpretation (weak model, general model) for LE(S'E) (or LE,::(S'E» with

Logic 31

3. If so and 1!) are formulae and x5 is a variable of an arbitrary sort K„ then
(-up), (cp /\ tb), and (Var,€ 50) are formulae.

3.44 Definition (Lg, for n 2 1): ‚6%? (532) is the subset of [1% (Dia) such
that every variable, every constant and every sort declaration is of order less or
equal to n, ‚Ch—1 (cg-1) is the subset of C?" (C?) such that no variable of order
n is quantified on.

3.45 Definition: A signature 8}: is called unsorted iff 2 consists of just the type
symbols, i t is called many-sorted iff i t has more sorts and the subsort relations are
all of the form pill with top sort v . Otherwise it is called order-sorted. We denote
many—sorted logics by ‚CX, order—sorted logics are written as Lg.

3.46 Remark: An unsorted logic [35(82) can easily be mapped to a logic £" (8),
because in the unsorted case 53 has the form (8, {TIT type},:r |-—) type(x),(0,@),
that means, it does not contain any further information than that of S .

The Semantics
I

As in section 3 .1 we define a set-theoretical semantics for the formulae.

3.47 Definition (Frame): Let 8;; be the sorted signature of a logic Liz. A frame
corresponding to 82; = (S ,2 ,5 ,E ,6) is a collection {D„}„ of nonempty sets DE,
one for each sort symbol It 6 E, such that D, = {T, F} and D(„1x...x„m_‚„) Q
.7:(D,,,,. . . ,DKm;D„) for all sorts is,-,p as well as ?),€ 9 D„ for all sorts te,/r with
‚ein. The members of D„ are called truth values and the members of ’D, are called
individuals.

The definitions of assignment, and interpretation are analogous t o the corre-
sponding definitions of the unsorted case, that is, definitions 3.11 and 3.12:

3.48 Definition (Interpretation): An interpretation ({DAM J) of Lg consists
of a frame and a function J that maps each constant of sort I»; of 05 (SE) to an
element of DM that is, for every constant declaration (c : &) we have J(c) € DE.

3.49 Definition (Assignment): An assignment into a frame {D„}„ is a function
{ that maps each variable of sort n, that is, each variable a: with 5(a) = a of Lg
to an element of D”.

3.50 Definition (Weak Interpretation): An interpretation M = ({D„}„, J) is
a weak interpretation (weak model, general model) for Lg (82) (or £w‚5(82)) with

32 Chapter 3

SE = (S, 2.:,5,~, h) iff there is a binary function VM so that for every assignment

eand for every term t of sort K, vt(t) E V It , that is, in particular for every term

declaration (t : K) in h, vt(t : K) = (vt(t) EDit) and the following conditions

hold:

3. for composed terms VtU(KIX"' XK m--+J.L)(t Kll ... ,tl<m)) =

Vf1U(ltlX'''Xl<m--+J.L))(Vt(tl<l)'···' Vf1(tl<m))

4.	 vt(<p 1\ 1/J) = vt(<p) 1\ Vf1(1/J)

5.	 Vf1(-'<p) = -'Vf1(<p)

6.	 vt(VxK<P) = Vd E VI<V~I<.-d](<P)

7.	 for a model of £¥:,,: we have in addition for all terms t 1 and t 2 that are terms

of sort K1, K2 with the same top sort /1 unequal to 0:

Vt(t1 =(J.LXJ.L--+o) t2) = (Vf1(t1) =v,. Vt(t2))

3.51 Definition (Strong Interpretation): An interpretation M = ({DK }I<'..7)
is a strong interpretation (strong model, standard model) iff it is a weak inter­

pretation and for all occurring sorts, K with K = (K1 X ••• X Km -+ /1), V K =

F(D"'l' ... ,V ltm ;DJ.L)'

3.52 Definition: Let <p be a formula of £E(SE), and M be a weak interpretation

of £E(SE). M is a weak model of <p iff for every assignment einto M, vt(<p) = T.

We write M F <po (Analogously for strong models.)

3.53 Remark: In chapter 5 we will give translations of the unsorted higher-order

logics £n into the many-sorted first-order logics £1 and of the general order-sorted

higher-order logics £E into the order-sorted logics £~. That is, in all cases the

order-sorted logics of ARNOLD OBERSCHELP [106], which have been operational­

ized by CHRISTOPH WALTHER [129] and MANFRED SCHMIDT-SCHAUSS [117],

serve as target logics. Hence in all cases we can use theorem provers like the

Markgraf Karl Refutation Procedure [93] for proving theorems in these logics.

3.54 Remark: The extensionality axioms 3 E now have the following form:

32 Chapter 3

82 = (8 , 23,5, E, 6) ifl" there is a binary function VM so that for every assignment
£ and for every term t of sort n, V?” (t) E D,“, that is, in particular for every term
declaration (t : fc) in 6, Vä“(t : n) = (VEM (t) € DE) and the following conditions
hold:

1. for all variables at”, V£M(m,,) = £(mn)

. 2 . for all constants c“, VgM(c„) = .7(c,,)

3. for composed terms VE“ (f(‚cl ‚<...‚<„‚„_.„)(t„1 , . . . , tn,")) =
WU“,x...xK,,.~u))(Vé“(t~1)a---,Vé"(t~m))

4. vg‘4(<p A «p) = vg"'(90) A VaMÜb)

5- WWW) = five/"(w)

6. WWW) = Vd e D„va;‘„„._d](so)

7. for a model of ‚05,5. we have in addition for all terms t l and tz that are terms
of sort K1,K‚2 with the same top sort ‚u unequalto o:
V3401 E(uXu—>0)t2)=(VéM(t1)EDp V¢M(t2))

3.51 Definit ion (Strong Interpretation): An interpretation M = ({D„}‚„.7)
is a strong interpretation (strong model, standard model) iff i t is a weak inter-
pretation and for all occurring sorts. It with K: = (m x - - - X mm —-—> p), D” =
.7:(D,,1, . . . ‚D,;m;D„).

3.52 Definit ion: Let cp be a formula of ßg (82), and M be a weak interpretation
of 113(8):). M is a weak model of cp ifi" for every assignment { into M, Vg“(<p) = T.
We write M I: cp. (Analogously for strong models.)

3.53 Remark: In chapter 5 we will give translations of the unsorted higher-order
logics £" into the many-sorted first-order logics L}, and of the general order-sorted
higher—order logics cg into the order-sorted logics ‚Cä. That is, in all cases the
order-sorted logics of ARNOLD OBERSCHELP [106], which have been operational-
ized by CHRISTOPH WALTHER [129] and MANFRED SCHMIDT—SCHAUSS [117],
serve as target logics. Hence in all cases we can use theorem provers like the
Markgraf Karl Refutation Procedure [93] for proving theorems in these logics.

3 .54 Remark: The extensionality axioms Es now have the following form:

Logic	 33

=.f	 For all function symbols f, 9 of sort K, K' of the same top sort

(K1 x ... X Km --+ 11), 11 =I- 0:

"If Vg (VXKl",VX Km f(xKl'""XKm)=g(XKl'""xKm))==*f=g

For all predicate symbols p, q of sort K, K' of the same top sort

(K1	 X .•. X Km --+ 0):

Vp	 "Iq (VX Kl •• • VX Km P(X K1 ,···, XKm) ~ q(XKl ,···, XKm)) ==* P =q

The	 comprehension axioms T r: ~ow are the set of formulae:

Tf	 For every term t of sort K =I- 0 of which the free variables are at most the

different variables Xl, ,Xm, Yl, ... ,Yk of sort Kl, ... , Km, Ill, ... ,Ilk:

VYl ... VYk 3f(Kl X.··XKm K) VX1'" VXm (J(Xl'"'' Xm) =t).

Tt For every formula c.p of which the free variables are at most the different

variables Xl, ... ,Xm, Yl, ,Yk of sort Kl, ... , Km, Ill,· ., ,Ilk:

VY1 ... VYk 3P(KI X... XKm VXl ... VXm (p(Xl,""Xm) ~ c.p).O)

3.3 Extensions

Later on we shall need three extensions of the logics as introduced above. One

concerns the arity, which we do not like to be fixed, so as to let room for optional

parameters, the second concerns the variability of sorts and types, and the last is

a special treatment for inductively defined concepts.

Optional Parameters

Let us have a look at optional parameters by considering the definition of a group.

Mathematicians often use the following formulation "Let (G, +) be a group then

..." or "Let (G, +) be a group with neutral element 0 and inverse function - then

...". In order to transfer these informal parlor into the presented formal language

we introduce optional parameters.

In order to define a group we need indeed only two parameters: a set and a

binary operation on that set. If these two parameters are given, it is well defined

whether or not the pair (G, +) is a group, provided we have the corresponding

definitions. We do not need to know the name of the neutral element or the name

of the inverse function. But these names may become important later on. For

example, if we define the set of rational numbers <Q and the common operations

on <Q and if we want to check that (Q, +, .) is a field with additive neutral element

Logic 33

3% For all function symbols f , 9 of sort K:, 5’ of the same top sort

(K1X'-'><I€m—*#),It¢0=
Vf Vg (Var:N1 „ .m f(a:,,1,...,:c,.m) Eg(x,,1,...,x,,m)) => f ag

E; For all predicate symbols p, q of sort n , K.’ of the same top sort
(nl x >< ram—>0):
Vp Vq (Van, . . . am p(:c‚„‚. ..‚a:„„_) (=> q(a‚'„1,...‚a:„„,)) = p E q

The comprehension axioms T2 now are the set of formulae:

“fg For every term t of sort I: # 0 of which the free variables are at most the
different variables $1 , . . . , xm,y1 , . . . ,yk‘of sort n1 , ” . ‚15mm, . . . „uk:

Vgl...\7’yk 3f(„1x...x„„,_.„) Var] . . .m (f (x1 , . . . , xm)5 t) .

I"; For every formula (‚0 of which the free variables are at most the different
variables 11:1, . . . ‚xmyl , . . . ,yk of sort n l , . . . ‚19mm, . . . , pk:

‘v’_1,/1...\7’y‚c 3p(„1x...x„‚„_.o) Vxl...Vzm (p(x1,...‚:c,„) (==> cp).

3 .3 Extensions

Later on we shall need three extensions of the logics as introduced above. One
concerns the arity, which we do not like to be fixed, so as t o let room for optional
parameters, the second concerns the variability of sorts and types, and the last is
a special treatment for inductively defined concepts.

Optional Parameters

Let us have a look at optional parameters by considering the definition of a group.
Mathematicians often use the following formulation “Let (G, +) be a group then
. . .” or “Let (G, +) be a group with neutral element 0 and inverse function - then
. . .”. In order to transfer these informal parlor into the presented formal language
we introduce optional parameters.

In order to define a group we need indeed only two parameters: a set and a
binary operation on that set . If these two parameters are given, i t is well defined
whether or not the pair (G, +) is a group, provided we have the corresponding
definitions. We do not need to know the name of the neutral element or the name
of the inverse function. But these names may become important later on. For
example, if we define the set of rational numbers Q and the common operations
on Q and if we want to check that (Q, + ,) is a field with additive neutral element

34 Chapter 3

"0" and multiplicative neutral element "1", we must be able to express that the

already defined "0" of <Q is the neutral element in the group (<Q, +), and that the

already defined "I" is the neutral element in the group (<Q\{O}, J \Ve can do that

by writing group(~, +,0) 1\ group(<Q\{O}", 1). So optional parameters are used

not only to give names to objects, but also to formulate stronger properties. If we

did not allow optional parameters, in the example we would have to define three

different predicates group2, group3, and group4 and thereby we would introduce

unnecessary redundancies.

Optional parameters are allowed only in predicate constants. We allow them

by an explicit declaration of the arity of a predicate symbol I :::; arity(P) :::; m

(with I, m explicit natural numbers). For instance: 2 :::; arity(group) :::; 4 or

2 :::; arity(ex_IefLneutraLelement) :::; 3.

For the definition of a predicate constant P with arity 1:::; arity(P) :::; m every

formula c.p containing P(tll . .. , tk) with I :::; k :::; m is an abbreviation for c.p with

P(tl, ... ,tk) replaced by (.:Jzk+ll ... ,zm P(tll ... ,tk,Zk+ll ... ,zm))'

Variable Sorts

For the representation of certain concepts it is useful to have variable sorts.

For instance if we want to define the concept group, we want to say "VG:

(l --+ 0) V+: (G x G --+ G) group(G,+) {:=:::} •••", that is, we want

to use the predicate variable G as a sort symbol. The general treatment of

these sorts is difficult, especially it may be difficult to give a clear semantics

for it (as in parametrized types for programming languages). We allow these

expressions only as an abbreviation for the corresponding relativization, that is,

VG: (l --+ 0) V+: (G x G --+ G) group(G, +) {::=} ••. is the abbreviation for

VG:(l--+ 0) V+:(lXl--+ l) funetion(+,GxG --+ G) =} (group(G,+) {:=:::} ...).

We write \:Ix:C P(x) as abbreviation for Vx C(x) ==> P(x). In general we write

unary predicates in a sort like manner, but we always use them only as abbrevia­

tion for the corresponding relativization. For a general discussion of relativization

see section 5.3.1. Nevertheless it would be interesting to have a general theory

for variable sorts and to treat t.hem in a special manner and not to translate via

re1ativization. By function we mean the following predicate:

function(J, Xl X ... X X m --+ Y) {:=:::}

(\:IXl Xl(xd =} (···\lxm Xm(x m) ==> Y(J(Xll""x m))",)),

In the example above, function(f, G x G --+ G) means

\Ix: [, G(x) =} (\ly: l G(y) ==> G(x + y)).

Term declarations (0 : G) are synonymous to G(O).

34 Chapter 3

“0” and multiplicative neutral element “1”, we must be able to express that the
already defined “0” of Q is the neutral element in the group (Q , +) , and that the
already defined “1” is the neutral element in the group (Q\{0},). We can do that
by writing group(Q,+,0) /\ group(Q\{0}, -,1). So optional parameters are used
not only to give names t o objects, but also t o formulate stronger properties. If we
did not allow optional parameters, in the example we would have to define three
different predicates group2, group3, and gro'up4 and thereby we would introduce
unnecessary redundancies.

Optional. parameters are allowed only in predicate constants. We allow them
by an explicit declaration of the arity of a predicate symbol l S arity(P) S m
(with l ,m explicit natural numbers). For instance: 2 S arity(group) S 4 or
2 S ar i ty(exJeaeutraLelement) S3 .

For the definition of a predicate constant P with arity l S ar i ty(P) S m every
formula cp containing P(t1‚ . . . , tk) with 1 S k _<_ m is an abbreviation for cp with
P(t1 , . . . , t k) replaced by (32k+1, . . . ,zm P(t1 , . . . , t k , zk+1 , . . . , zm)) .

Variable Sorts

For the representation of certain concepts i t is useful to have variable sorts.
For instance if we want to define the concept group, we want to say “VG \:

(L —> o) V+ : (G x G -—+ G) group(G‚+) <=) . . .”, that is, we”want
t o use the predicate variable G as a sort symbol. The general treatment of
these sorts is difficult, especially i t may be difficult to give a clear semantics
for it (as in parametrized types for programming languages). We allow these
expressions only as an abbreviation for the corresponding relativization, that is,
VG: (L _) o) V+ : (G X G —> G) group(G, +) (=> is the abbreviation for
VG:(L —> o) V+:(LXL —> l,) function(+‚GxG —+ G) =? (group(G, +) ¢=>)
We write Vcc P(:I:) as abbreviation for Vx C(zc) => P(a:). In general we write
unary predicates i n a sort like manner, but we always use them only as abbrevia—
tion for the correSponding relativization. For a general discussion of relativization
see section 5.3.1. Nevertheless i t would be interesting to have a general theory
for variable sorts and to treat them in a special manner and not to translate via
relativization. By function we mean the following predicate:

function(f,X1 x . . - x Xm _» Y) (=>
(l X1(m1) => (- -V:cm Xm(xm) => Y(f(x1,. . . ,xm)) - -)).

In the example above, function(f‚ G x G —> G) means ,
Vatzz, G(x) => (V‘yn G(y) =:> G(a: + y)).

Term declarations (O : G) are synonymous to G(0).

Logic 35

Constructors

A common way of introducing concepts is via an inductive definition. Our higher­

order logics are rich enough to cover this situation, but because of the particular

importance ~f this, we will provide special facilities for defining concepts by math­

, ematical induction. Let us give a standard example, namely that of the natural

numbers: The PEANO axioms are [110] (written in our sorted higher-order lan­

guage):

1. JNr;;"

2. (0: IN)

3. (s : (~ ~ ~))

4. -.3n:~ O=s(n)

5. \in,m:~ s(n)=s(m)===?n=m

6. VP:(~ ~ 0) P(O) /\ (Vn:~ P(n) ===? P(s(n))) ===? (Vn:~ P(n))

In the field of inductive theorem proving (compare e.g. [69]) this is often abbrevi­

ated to the data structure ~:

data structure ~

constructors base (O:~)

step (s: (IN ~ N)),

where the semantics of this data structure is given by the formula set above.'

In general we can introduce a data structure by:

- P : (I\: ~ 0) (or Pf;;.I\:) with I\: =1= 0

(Cj : P) for 1 ~ j ~ n, the Cj are called constructor constants.

--- Ui : (P X I\:~ X ... x I\:t ~ P)) for 1 ~ i ~ m, the fi are called constructor

functions.

This data structure abbreviates the following set of higher-order formulae:

-- there is a constant P : (t;, ~ 0) (or a sort Pf;;.I\:).

- for all constructor constants cj, there are constants of sort P and for all

constructor fUIlctions fi, there are constants of sort (P x I\:~ x··· x I\:t ~ P)).

Logic 35

Constructors

A common way of introducing concepts is via an inductive definition. Our higher—
order logics are rich enough to cover this situation, but because of the particular
importance of this, we will provide special facilities for defining concepts by math—

ematical induction. Let us give a standard example, namely that of the natural
numbers: The PEANO axioms are [110] (written in‘ our sorted higher-order lan-
guage):

1. lNEt

2. (0:1N)

3. (s : (lN „+]N))

4. -v3n:]N 0 : s(n)

5. Vn,m:]N s(n) : s(m) => n = m

6. VP:(]N —> 0) P(O) A (Vn:]N P(n) => P(s(n))) => (Vn‘:]N P(n))

In the field of inductive theorem proving (compare e.g. [69]) this is often abbrevi-
ated to the data structure N :

data s tructure lN
constructors base (0 : IN)

step (s : (]N _»]N)),
where the semantics of this data structure is given by the formula set above:
In general we can introduce a data structure by:

— P : (n ——> o) (01' PER) with n75 0

—» (cj : P) for 1 5 j S n , t he Cj are called constructor constants.

(fi : (P x mi x x sf“ —> P)) for 1 S i S m, the f,- are called constructor
functions.

This data structure ab breviates the following set of higher-order formulae:

—- there is a constant P : (It —> 0) (or a sort PEn).

- for all constructor constants cj , there are constants of sort P and for all
constructor functions fi, there are constants of sort (P x ‚€; x - - - X ”i,- ——> P)).

Chapter 3

- for all constructors Cj and all constructors Ji, there is a formula V:r: P VXl :

Ki ... VXki : Kt Cj t= Ji(X, Xl, ... , Xk;), that is, no constructor constant is in

the range of any constructor function.

- for all constructors Ji Vx,x':P VXI'X~: Ki·· ,VXki,X~i :/\,i,
!i(X,XI, ... ,XkJ == !i(X',X~, ... ,x~J ===> X =x' /\ Xl = ;t~ /\ ... /\ Xki = X~i'

that is, all constructor functions are injective.

- for all constructors 1;,!1 i i= l, "Ix : P, VXI : K~ .•• VXk, : Kt "Ix': P, Vx~ :

Ki",vX~1 :Kil !i(X,XI, ... ,Xk;) t= !J(x',x~"",X~I)' that is, the ranges of

the constructor functions are disjoint.

- VQ:(P -7 0)

(Q(Cl) /\ ... /\ Q(Cn) /\

("IX: P VXI : Kt ... VXk1 : Kt Q(X) ===> Q(ft(X, Xl,· .. ,:tI.J)) /\

/\

(VX:P "IX!: Kj",VXkm:Kkm Q(X) ===> Q(fm(;1:'XI, Xkm))))

===> VX:P Q(x)

that is, the induction principle holds.

The intention of this definition is not only to abbreviate certain formulae, but

above all, if we formulate a concept with the help of such a data. structure, a system

can know that it is likely that certain properties have to be shown by complete

induction. Although in principle the general framework is sufficient, in practice a

system may only be successful if the induction hypothesis is given explicitly or a

special proof procedure is used.

36 Chapter 3

for all constructors Cj and all constructors fl , there is a formula Vm:P l :

Ki . . .Vwki : ni; cj $ fi(:z:,a:1, . . . ,wki), that is, no constructor constant is in
the range of any constructor function.

for all constructors f,- Vw,w' :P V931, a:; : ni . . .‘v’xké, 32.- : rc
_ I I I — I ..— I -— If;(a:,:c1,...‚mk‚.) = f,(:c ‚31 ’ - - - a3k .)=> :1: :::: Axl :: m1 /\.../\:1:;ci : m,“,

that is, all constructor functions are injective.

for all constructors fi,f1 z' 75 l, Vac : P,Va:1 : n11 . . . k I zu?“ Vic’ : P,Vx§ :
Kill . . .‘v’xfw ”if” f;(a:,a:1,.. .,mki) $ f1(w',z;,. . . ‚a:;q), that is, the ranges of
the constructor functions are disjoint.

VQ:(P ——+ o)

(Q(c1)/\.../\ Q(Cn) A
(Va-:P l :Itci...‘v’:z'k1uc}c1 Q(a:) => Q(f1(:v,a:1,...,:zrk1))) A
: /\
(VsczP V331 : m;” . . .mmznZ‘m Q(a:) => Q(fm($‚$1‚--u$km))))
==> sP Q(a:)
that is, the induction principle holds.

The intention of this definition is not only to abbreviate certain formulae, but
above all, if we formulate a concept with the help of such a data. structure, a system
can know that it is likely that certain properties have to be shown by complete
induction. Although in principle the general framework is sufficient, in practice a
system may only be successful if the induction hypothesis is given explicitly or a
special proof procedure is used.

CHAPTER 4

Representation of

Mathematical Knowledge

Das wird nachstens schon besser gehen,

Wenn Ihr lernt alles reduzieren

Und gehorig klassifizieren.

Johann Wolfgang Goethe, Faust I

In this chapter we are going to describe how to represent mathematical "factual"

knowledge for automated theorem proving. Guideline is knowledge like that of

a mathematical dictionary. In particular we are (in this chapter) not interested

in heuristic knowledge as described in [113, 114, 115, 55, 126]. The main means

for our representation is the logic introduced in the previous chapter. Indeed one

may ask why logic is not sufficient for the description of the factual knowledge

of mathematics, because it has been developed in the last hundred years for that

purpose. The answer is that it is possible to find many extra-logical features in the

presentation of mathematics, in mathematical text books for instance, and that

these features are essential for mathematical activities like theorem proving.

What are the shortcomings of logic that make a mathematical knowledge rep­

resentation necessary? One main point is, that the basic notion of logic is that of

a formula, but that in mathematics different kinds of formulae are distinguished,

namely axioms, definitions, and theorems and we will subdivide these kinds even

more. Furthermore in mere logic a knowledge base consists of an unstructured

set of formulae, whereas text books are well-structured and mathematicians spend

a lot of time in the final presentation of the mathematical content. In addition

there are constraints - which are not present in logic - in the procedure of stat ­

ing theorems or defining concepts. The most important constraint for definitions

is, that all concepts which are used in the definition - with the exception of the

definiendum of course - must already be known. Analogously all concepts in theo­

rems must be known. But even if all concepts are known, a definition has to fulfil

further extra-logical requirements, for example, it is normally given in a form as

37

CHAPTER 4

Representation of
Mathematical Knowledge

Das wird nächstens schon besser gehen,
Wenn Ihr lernt alles reduzieren
Und gehörig klassifizieren.

Johann Wolfgang Goethe, Faust I

In this chapter we are going to describe how to represent mathematical “factual”
knowledge for automated theorem proving. Guideline is knowledge like that of
a mathematical dictionary. In particular we are (in this chapter) not interested
in heuristic knowledge as described in [113, 114, 115, 55, 126]. The main means
for our representation is the logic introduced in the previous chapter. Indeed one
may ask why logic is not sufficient for the description of the factual knowledge
of mathematics, because i t has been developed in the last hundred years for that
purpose. The answer is that i t is possible to find many extra—logical features i n the
presentation of mathematics, in mathematical text books for instance, and that
these features are essential for mathematical activities like theorem proving.

What are the shortcomings of logic that make a mathematical knowledge rep-
resentation necessary? One main point is, that the basic notion of logic is that of
a formula, but that in mathematics different kinds of formulae are distinguished,
namely axioms, definitions, and theorems and we will subdivide these kinds even
more. Furthermore in mere logic a knowledge base consists of an unstructured
set of formulae, whereas text books are well-structured and mathematicians spend
a lot of time in the final presentation of the mathematical content. In addition
there are constraints — which are not present in logic — in the procedure of stat-
ing theorems or defining concepts. The most important constraint for definitions
is, that all concepts which are used in the definition — with the exception of the
definiendum of course —— must already be known. Analogously all concepts in theo-
rems must be known. But even if all concepts are known, a definition has to fulfil
further extra~logical requirements, for example, it is normally given in a form as

37

Chapter 4

abstract as possible.

Perhaps the main difference between logic and mathematics can be seen in the

conceptual representation in mathematics. The standard schema of this proce­

dure in mathematical text books is: "definition", "example", "theorem", "proof".

When we look closer at this procedure, we see that the introduction of a concept

is not terminated by giving a definition, but that examples, counter-e~amples,and

lemmata about the introduced concept immediately belong to the concept. They

do that in such an extent that it is possible to say: you have not understood the

concept if you know only the definition, but you have not seen any examples and

you do not know the simple properties of it.

Another great difference between logic and mathematics is that in mathemat­

ics it is always assumed - even if it cannot be proved - that a knowledge base is

consistent, whereas by logic certain formulae are related, but it does not matter

whether the preconditions are fulfilled or not. (This mathematical assumption is

also the main reason for the completeness of the set-of-support strategy in resolu­

tion theorem proving.)

Which requirements should a knowledge representation formalism for mathe­

matics satisfy? There are the following properties we would like to see:

- The knowledge base should be consistent and the representation formalism

should support to keep it consistent.
I

- The representation formalism should reflect the different types of knowledge,

that is, axioms, definitions, and theorems should be distinguished.

- The knowledge base should be redundancy free.

- It should not be possible to use unknown concepts.

- It should be possible that the knowledge can be represented in a conceptual,

structured way.

- The representation formalism should be powerful enough in order to repre­

sent the knowledge easily.

- The formalism should have a clear semantics.

Now we discuss to what extent we can realize the requirements above.

The consistency of a knowledge base is of particular interest, because otherwise

it is possible to derive anything of it. Unfortunately it cannot be shown in general

because of GODEL'S incompleteness result, when a representation language such as

38 Chapter 4

abstract as possible.

Perhaps the main difference between logic and mathematics can be seen in the
conceptual representation in mathematics. The standard schema of this proce-
dure in mathematical text books is: “definition”, “example”, “theorem”, “proof”.
When we look closer at this procedure, we see that the introduction of a concept
is not terminated by giving a definition, but that examples, counter—examples, and
lemmata. about the introduced concept immediately belong to the concept. They
do that in such an extent that it is possible to say: you have not understood the
concept if you know only the definition, but you have not seen any examples and
you do not know the simple properties of i t .

Another great difference between logic and mathematics is that in mathemat-
ics i t is always assumed — even if it cannot be proved — that a knowledge base is
consistent, whereas by logic certain formulae are related, but i t does not matter
Whether the preconditions are fulfilled or not. (This mathematical assumption is
also the main reason for the completeness of the set—of-support strategy in resolu-
tion theorem proving.)

Which requirements should a. knowledge representation formalism for mathe—
matics satisfy? There are the following properties we would like to see:

— The knowledge base should be consistent and the representation formalism
should support to keep i t consistent.

— The representation formalism should reflect the different types of knowledge,
that is, axioms, definitions, and theorems should be distinguished.

— The knowledge base should be redundancy free.

— It should not be possible to use unknown concepts.

— I t should be possible that the knowledge can be represented in a conceptual,
structured way.

— The representation formalism should be powerful enough in order to repre—
sent the knowledge easily.

The formalism should have a clear semantics.

Now we discuss to what extent we can realize the requirements above.

The consistency of a knowledge base is of particular interest, because otherwise
it is possible to derive anything of it. Unfortunately it cannot be shown in general
because of GÖDEL’S incompleteness result, when a representation language such as

39 Representation of Mathematical Knowledge

first-order or higher-order logic is used. But we can restrict the possibilities where

inconsistencies may be imported: definitions and theorems should not lead to any

inconsistencies, because definitions form conservative extensions and theorems are

proved to be consequences. So only axioms can cause any trouble.

Of course we cannot guarantee that the definitibns of concepts are correct, that

is, in accordance with the general use of them. We can define the concept "group"

as something quite different from the general use, but because we cannot import

contradictions by a definition, other parts of the knowledge base not using this

concept cannot be concerned with such a non-standard definition. (The impor­

tance of this fact for automated theorem proving is already noted by ROBERT S.

BOYER and J STROTHER MOORE in [17, p.13].)

The distinction of the three different kinds of knowledge is very important

for consistency: If we guarantee that definitions are really definitions and that

theorems are proved, we have to be careful only with the axioms. Therefore we

will use in the following three different basic knowledge units, one for axioms, one

for definitions, and one for theorems.

The redundancy freeness can partially be guaranteed by preventing that con­

cepts are defined twice, but to some extent it will be left to the user of a system.

In particular we do not exclude that the user can define the same concept twice

by giving different names to it.

If we have a knowledge base ~ and we want to add a new knowledge unit {), a

check of the signatures of the knowledge base and the newly introduced unit can

guarantee that all concepts used in {), with the exception of a newly defined one,

are already in ~.

When introducing concepts we do not want to spread the kriowledge about

these concepts all over the whole knowledge base. Hence a concept should not

just consist of its actual logical definition, but simple consequences, examples, or

alternative definitions should immediately be associated with this concept. There­

fore we introduce in the following a formalism to represent mathematical concepts,

such that the knowledge associated with an object is representationally attached

to that object.

Now we present a frame-based representation of mathematical knowledge ­

using the higher-order logics introduced in chapter 3. We introduce the frame

approach by examples as we go along. Then we -give a formal definition of the

frame language and its semantics, discuss the properties of corresponding knowl­

edge bases and finish this chapter by some considerations on the advantages and

disadvantages of the chosen formalism.

Representation of Mathematical Knowledge 39

first-order or higher—order logic is used. But we can restrict the possibilities where
inconsistencies may be imported: definitions and theorems should not lead to any
inconsistencies, because definitions form conservative extensions and theorems are
proved to be consequences. So only axioms can cause any trouble.

Of course we cannot guarantee that the definitiOns of concepts are correct, that
is, in accordance with the general use of them. We can define the concept “group”
as something quite different from the general use, but because we cannot import
contradictions by a definition, other parts of the knowledge base not using this
concept cannot be concerned with such a non-standard definition. (The impor-
tance of this fact for automated theorem proving is already noted by ROBERT S .
BOYER and J STROTHER MOORE in [17, p .13] .)

The distinction of the three different kinds of knowledge is very important
for consistency: If we guarantee that definitions are really definitions and that
theorems are proved, we have to be careful only with the axioms. Therefore we
will use in the following three different basic knowledge units, one for axioms, one
for definitions, and one for theorems.

The redundancy freeness can partially be guaranteed by preventing that con—
cepts are defined twice, but to some extent it will be left to the user of a system.
In particular we do not exclude that the user can define the same concept twice
by giving different names to it.

If we have a knowledge base A and we want to add a new knowledge unit 19, a
check of the signatures of the knowledge base and the newly introduced unit can
guarantee that all concepts used in 19, with the exception of a newly defined one,
are already in A.

When introducing concepts we do not want to spread the knowledge about
these concepts all over the whole knowledge base. Hence a concept should not
just consist of i t s actual logical definition, but simple consequences, examples, or
alternative definitions should immediately be associated with this concept. There-
fore we introduce in the following a formalism to represent mathematical concepts,
such that the knowledge associated with an object is representationally attached
to that object.

Now we present a frame—based representation of mathematical knowledge —
using the higher-order logics introduced in chapter 3. We introduce the frame
approach by examples as we go along. Then we ~give a formal definition of the
frame language and i t s semantics, discuss the properties of corresponding knowl-
edge bases and finish this chapter by some considerations on the advantages and
disadvantages of the chosen formalism.

l

40 Chapter 4

4.1 The Representation Language

In this section we introduce our representational formalism. We use the frame rep­

resentation of MARVIN MINSKY [97]. The original idea is to represent knowledge

in an object-oriented way and to simulate thereby the knowledge organisation as

it is presumably organized in the mind (of a mathematician). The frames should

structure the knowledge and contain in particular the information how to use this

knowledge. Although introduced in opposition to the logicistic wing of the AI

community, a frame can (more or less) be viewed as a certain way of arranging

predicate logical facts [56], [105, chap.7]. Since our facts are predicate logical ex­

pressions, in our case this corresponds to meta-Iogical facts. A frame consists of a

name, slots, and fillers. Slots correspond to certain meta-predicates and the fillers

are arguments of these predicates. The syntactical surface is that of a box, as in

figure 4.1.

We begin our examples with the definition of the concept "associative". This

definition could be given in our extended sorted higher-order logic as:

VC:(t -t 0) Vf:(C XC -t C) associative(C,J) ~

Vx,y,z:C f(J(x,y),z) =f(x,f(y,z)).
and this is now represented in a frame in figure 4.1 below. Every frame belongs to

one of the three kinds: definition, axiom, or theorem. The kind is here indicated

by the keyword "Definition:" The name of the introduced concept follows after a

colon. In this case it is "associative". In the upper right corner we give the type

of the definition. The entry "property" means that the whole concept models a

property; a standard translation of a "property definition" into predicate logic can

be done by mapping it into a predicate symbol. A "property definition" represents

the relationship between its parameters. (The other type of a concept definition

is that of a "mapping concept". In this case a new object is created, of which an

example is given in figure 4.4 below.)

Now the slots and the slot-fillers of the frames are introduced:
,--------------------------------------,

Definition: associative property

parameters: C :(t-> 0)

f :(CxC->C)

definition: 'r/x,y,z:C fU(x,y),z) == f(x,J(y,z»

context: basic algebra

Figure 4.1

The argument of the binary property associative is given in the slot "parame­

ters". The number of parameters corresponds to the arity of the predicate symbol

40 Chapter 4

4 .1 The Representation Language

In this section we introduce our representational formalism. We use the frame rep-
resentation of MARVIN MINSKY [97]. The original idea is to represent knowledge
in an object-oriented way and to simulate thereby the knowledge organisation as
it is presumably organized in the mind (of a mathematician). The frames should
structure the knowledge and contain in particular the information how to use this
knowledge. Although introduced in opposition to the logicistic wing of the AI
Community, a frame can (more or less) be viewed as a certain way of arranging
predicate logical facts [56], [105, chap.7]. Since our facts are predicate logical ex—
pressions, in our case this corresponds to meta-logical facts. A frame consists of a
name, slots, and fillers. Slots correspond to certain meta—predicates and the fillers
are arguments of these predicates. The syntactical surface is that of a box, as in
figure 4.1.

We begin our examples with the definition of the concept “associative”. This
definition could be given in our extended sorted higher-order logic as:
VC:(1‚ _» o)' Vf : (C X C —> C) associative(C, f) (=)

Vx,y, zzC f(f(a:,.y),z) E f ($‚ f (y ,z)) .
and this is now represented in a frame in figure 4.1 below. Every frame belongs to
one of .the three kinds: definition, axiom, or theorem. The kind is here indicated
by the keyword “Definition:” The name of the introduced concept follows after a
colon. In this case it is “associative”. In the upper right corner we give the type
of the definition. The entry “property” means that the whole concept models a
property; a standard translation of a “property definition” into predicate logic can
be done by mapping i t into a predicate symbol. A “property definition” represents
the relationship between i t s parameters. (The other type of a concept definition
is that of a “mapping concept”. In this case a new object is created, of which an
example is given in figure 4.4 below.)

Now the s lots and the slot-fi l lers of the frames are introduced:

Definition: associative property

parameters: C :(L —> o)
f : (C X C —> C)

definition: Vx‚y‚z:c Mas/m s f(z‚f(y‚z))
context: basic algebra

Figure 4.1

The argument of the binary property associative is given in the slot “parame—
ters”. The number of parameters corresponds to the arity of the predicate symbol

Representation of Mathematical Knowledge

defined in the frame. In the slot "parameters" the formal parameters and their

sorts are written and when using the defined object elsewhere they are then bound

to the actual parameters.

In the slot "definition" we find a (higher-order) logical definition of the concept.

In the case of a property definition, the entry consists of the part of the definition

that follows the equivalence sign "{=}".

The slot "context" is provided for structuring the whole knowledge base into

different modules. If we introduce a partial order among these contexts, we have

the usual taxonomical hierarchy. (Here more details may become necessary, for

example, which information may be used by other modules.) For instance we

might structure a large knowledge base as in figure 4.2. This example is taken

from the algebra text-book of BARTEL L. VAN DER WAERDEN [127, p.xi]. Such

a structure is standard in all fields of mathematics, therefore we have to provide

a possibility for representing it. How this information can be used is discussed

below.

Figure 4.2

Now we shall introduce the second kind of frame, namely that of an aXIOm

frame. In order to do so we take the first four axioms of GODEL'S set axioms [53].

Representation of Mathematical Knowledge 41

defined in the frame. In the slot “parameters” the formal parameters and their
sorts are written and when using the defined object elsewhere they are then bound
to the actual parameters.

In the slot “definition” we find a (higher-order) logical definition of the concept.
In the case of a property definition, the entry consists of the part of the definition
that follows the equivalence sign “<==>”.

The slot “context” is provided for structuring the whole knowledge base into
different modules. If we introduce a partial order among these contexts, we have
the usual taxonomical hierarchy. (Here more details may become necessary, for
example, which information may be used by other modules.) For instance we
might structure a large knowledge base as in figure 4.2. This example is taken
from the algebra text—book of BARTEL L. VAN DER WAERDEN [127, p .x i] . Such
a structure is standard in all fields of mathematics, therefore we have to provide
a possibility for representing it. How this information can be used is discussed
below.

se ts

groups

rings

1
vectors

groups polynomiald infinite
(cont.) l sets

galois . fields infinite
theory fields

real
fields

r_ '—j
linear al ebras ideal valued

algebra. g theory fields

represent. int . als. polynomial algebraic topological
theory quantities ideals functions algebra

Figure 4.2

Now we shall introduce the second kind of frame, namely that of an axiom
frame. In order to do so we take the first four axioms of GÖDEL’S set axioms [53].

42 Chapter 4

Axiom: set

axioms:

consequences:
signature_ext:

context:

Vx :Set Class(x)
VX, Y :Class X E Y ==> Set(X)
VX,Y:Class (Vu:Set uEX {:=::::} uEY)==>X::=Y
Vx,y:Set 3z:Set (Vu:Set uEz {:=::::} (u::=xVu::=y))*

1) Vx,y:Set yE {x} {:=::::} x::= y <proof-set-cons-1>
Classl;t
Setl;Class
E: (Set x Class --t 0)
{.,.} : (Set x Set --t Set)
sets

Figure 4.3

\Vhile definitions are always of the form "Vparameters definiendum(parameters)

~ formula", the slot "axioms" in contrast can contain arbitrary formulae, stat­

ing the properties of one or more function and/or predicate constants. If these

constants are newly introduced by the frame, they have to be explicitly sum­

marized in the slot "signature_ext". The slot "consequences" contains lemmata

about the concepts introduced by the axioms. Such consequences must be proved;

in <proof-set-cons-l> a pointer to such a proof is stored.

The logics .c are expressible enough to give any of the standard axiomatizations

of set theory such as ZFC, but for most cases it is sufficient to use sets of a certain

sort", as an abbreviation for a predicate of the sort ('" -+ 0). If one follows this

simple notion of a set, it is not possible to have elements of different types in one

single set.

Now we give an example for a "mapping concept" and define a "pair".

Definition: pair mapping

parameters:

definition:
sort:
main_property:
context:

x
y
{x, {x, yn
Set
Vx, y, u, v:Set
sets

:Set
:Set

< proof-pair-sort>
(x. y) ::= (u, v) {:=::::} x::= u A y ::= v <proof-pair-main_prop>

Figure 4.4

\Ve write (x,y) instead of pair(x,y). The concept "pair" is an example where

the entry in the definition slot itself is less important and indeed it is never used

*The existence of the variable z of sort Set can be written by the Skolem function {x, y}. As

usual {x, x} is abbreviated to {x}.

42 Chapter 4

Axiom: se t

axioms: Vzc:.5'et Class(:c)
VX‚Y:Class X € Y : Set(X)
VX‚Y:CIass (Vu:Set uEX (=> uEY)=>XEY
Vz,y:Set EzzSet (Vu:Set uE ' z => (uEzVuEy)) *

consequences: 1) Vx,y:Set y e {z} (=! z E y <proof-set-cons—l>
signature_ext: ClassEL

SetECIass
6 : (Set x Class —> o)
{.,.} : (Set x Set _» Set)

context: sets

Figure 4 .3

While definitions are always of the form “Vpammeters definiendum(parameters)
(=> formula”, the slot “axioms” in contrast can contain arbitrary formulae, stat-
ing the properties of one or more function and/or predicate constants. If these
constants are newly introduced by the frame, they have to be explicitly sum-
marized in the slot “signature_ext”. The slot “consequences” contains lemmata
about the concepts introduced by the axioms. Such consequences must be proved;
in <proof-set-cons—1> a pointer to such a proof is stored.

The logics 5 are expressible enough to give any of the standard axiomatizations
of set theory such as ZFC, but for most cases it is sufficient to use sets of a certain
sort Iii as an abbreviation for a predicate of the sort (m «> o). If one follows this.
simple notion of a set, i t is not possible t o have elements of different types in one
single set .

Now we give an example for a “mapping concept” and define a “pair”.

Definition: pair mapping

parameters: :n :S'et
y :Set

definition: {z , {x , y}}
sor t : — Set <proof—pair-sort>
main.property: Vat, y, u, v :Set (a:. y) E (u, v) €:) :1: E u /\ y E v <proof-pair—main.prop>
context : sets

Figure 4.4

We write (a:, 3/) instead of pair(a:,y). The concept “pair” is an example where
the entry in the definition slot itself is less important and indeed it is never used

*The existence of the variable z of sort Set can be written by the Skolem function {:c, y}. As
usual {2,x} is abbreviated to {:c}

43 Representation of Mathematical Knowledge

again. The definition is only given III order to have a set theoretical founda­

tion of the concept as (a,b) := {a,{a,b}}. The concept is closely related to a

"main_property"; almost the only thing one has to know about the concept "pair"

is: they are equal if and only if they agree on all arguments. In order to model

main properties we introduce a corresponding new slot with this statement as

filler. Another view of a main property is that this is the intrinsic meaning of the

concept and that the definition is only an implementation of the concept in logic.

In the slot "sort" the sort of a "mapping"-concept is stored. Because we use

sorts in a very general way, this sort information must be proved and hence in the

slot we have to add a pointer to this proof.

In the next concept we use an "optional" parameter, which corresponds to the

optional parameters of predicates in section 3.3. The name "neutral-element" is

a selector of the tuple (C, j, 0).

Definition: ex..lefLneutraLelement property

parameters: c :(t-+o)
f :(CxC-+C)

(optional) ° :C (called neutraLelement)
definition: Vx:C f(O,x) == x
context: basic algebra

Figure 4.5

Together with similarly definable concepts "ex-IleutraLelement" and "exinverse"

it is now possible to introduce the concept "group".

Definition: group property

parameters: G :(t-+o) (called carrier)

+ :(G x G -+ G) (called operation)
(optional) ° :G (called neutraLelement)
(optional) :(G -+ G) (called inverse)

definition: TRUE
superconcepts: 1) associative(G, +)

2) ex_neutraLelement(G, +, 0)
3) ex_inverse(G,+,O,-)

equivalences: 1) associative(G,+)/\
ex_lefLneutraLelement(G, +,0) /\
ex_IefUnverse(G, +,0, -) <proof-group-equ-1 >

2) associative(G, +) /\
ex_righLneutraLelement(G, +,0) /\
ex_righLinverse(G, +, 0, -) <proof-group-equ-2>

examples: 1) (Int, +, 0, -) model Integers
2) (Rat, +, 0, -) model Rationals
3) (Rat\{O},·, 1,-1) model Rationals

context: basic algebra

Figure 4.6

Representation of Mathematical Knowledge 43

again. The definition is only given in order to have a set theoretical founda-
tion of the concept as (a,b) : 5 {a,{a,b}}. The concept is closely related to a
“main_property”; almost the only thing one has to know about the concept “pair”
is: they are equal if and only if they agree on all arguments. In order to model
main properties we introduce a corresponding new slot with this statement as
filler. Another view of a main property is that this is the intrinsic meaning of the
concept and that the definition is only an implementation of the concept in logic.

In the slot “sort” the sort of a “mapping”-concept is stored. Because we use
sorts in a very general way, this sort information must be proved and hence in the
slot we have to add a pointer t o this proof.

In the next concept we use an “optiona ” parameter, which corresponds to the
optional parameters of predicates in section 3.3. The name “neutraLelement” is
a selector of the tuple (C, f, 0).

Definition: ex.]eftmeutralslement property

parameters: C :(L -—» o)
f :(C X C —> C)

(optional) 0 :C (called neutraLeIement)
definition: sC f(0,1:) E 1:
context: basic algebra

Figure 4.5

Together with similarly definable concepts “ex_neutral_element” and “ex_inverse”
i t is now possible to introduce the concept “group”.

Definition: group ~ property

parameters: G 2(L --> o) (called carrier)
+ :(G x G —> G) (called operation)

(optional) 0 :G (called neutralxlement)
(optional) — :(G' —+ G) (called inverse)

definition: TR UE
superconcepts: 1) associative(G, +)

2) e$_neutral_element(G, + , 0)
3) ea:_inverse(G‚ + ‚0 , -—)

equivalences: 1) associative(G‚ +) A
ezJeft.neutral_eIement(G, + , 0) A
emule f i_inverse(G , + , 0, —) (proof—group—equ-l >

2) associative(G, +) A
“might-neutraLelemenKG, + , 0) A
ez_right_inverse(G, + , O, —) <proof—group-equ—2>

examples: 1) (In t , + , 0, —) model Integers
2) (Rat , + , 0, —) model Rationals
3) (Rat\{0}, -, 1,"1) model Rationals

context: basic algebra

Figure 4.6

44 Chapter 4

The slot "superconcepts" expects slot-fillers that are generalizations of the

actual concept. For instance every group is especially an associative structure.

TRUE in the definition slot means that the concept is fully defined by the con­

junction of its superconcepts.

The slot "equivalences" contains logical expressions that are necessary and

sufficient to define the concept, that is, they are logically equivalent to the con­

junction of the "definition" slot-filler and the "superconcepts" slot-fillers and form

an alternative definition of the concept. In order to guarantee that the filler is

really equivalent to the definition of the concept there must be a proof, which can

be found in <proof-group-equ-l>. Although the different definitions of a concept

are equivalent, they can be of different uses under different circumstances. For

example, if one wants to prove that a certain object is a group, it is easier to use

one of the two equivalent formulations, because then one has less to prove (e.g.

ex_lefLneutraLelement(G, +, 0) instead of ex_neutraLelement(G, +, 0)). The

definition itself may be preferable if it is used as a premis, because then one can

immediately use the property ex_righLneutraLelement(G, +, 0) without proving

it first. In principle the frame approach is flexible enough to store such meta

knowledge. But that is not integrated,' in particular it is necessary to have a

formal language to express meta knowledge. We can see an important difference

between our epistemological term "property" and the logical term "predicate":

The conceptual representation allows to make some assertions about the concepts

,	 (as for instance to use a certain variant of the definition in some situation). This

would be difficult if we had mere predicates and distributed the knowledge in a

whole set of formulae. Whether and how this can be used for actually guiding a

theorem proveI' is a difficult question and not yet investigated deeply.

In the slot "examples" we can find a reference to a model of the corresponding

concept. How examples can be represented and how it can be proved that an

example is really an example is not investigated in this thesis. (See also the

summary, chapter 7.)

Vie could have also given another definition for the concept "group" by writing

the following formulae into the "definition" slot:

Vx,y,z:G (x+y)+z=x+(y+z) /\

3x:G Vy:G x + y =y =y + x (/\ x - 0) /\

Vx: G 3y: G x + y _ 0 == y + x (/\ Y =- x)

But this is not as appropriate as the above formulation, because it is less

structured. We want to formulate the concepts as abstract as possible for several

44 ~ Chapter 4

The slot “superconcepts” expects slot-fillers that are generalizations of the
actual concept. For instance every group is especially an associative structure.
TRUE in the definition slot means that the concept is fully defined by the con-
junction of its superconcepts.

The «slot “equivalences” contains logical expressions that are necessary and
sufficient to define the concept, that is, they are logically equivalent to the con—
junction of the “definition” slot-filler and the “superconcepts” slot-fillers and form
an alternative definition of the concept. In order to guarantee that the filler is
really equivalent to the definition of the concept there must be a proof, which can
be found in <proof—group—equ—1>. Although the different definitions of a concept
are equivalent, they can be of different uses under different circumstances. For
example, if one wants to prove that a certain object is a group, it is easier to use
one of the two equivalent formulations, because then one has less to prove (e.g.
ezt:_left_neutral_element(G,+,0) instead of ex_neutral-element(G‚+‚O)). The
definition itself may be preferable if it is used as a premis, because then one can
immediately use the property exJz'gteutraLelemen“ G, + , 0) without proving
it first. In principle the frame approach is flexible enough to store such meta
knowledge. But that is not integrated,'in particular it is necessary to have a
formal language to express meta knowledge. We can see an important difference
between our epistemological term “property” and the logical term “predicate”:
The conceptual representation allows to make some assertions about the concepts
(as for instance to use a certain variant of the definition in some situation). This
would be difficult if we had mere predicates and distributed the knowledge in a
Whole set of formulae. Whether and how this can be used for actually guiding a
theorem prover is a difficult question and not yet investigated deeply.

In the slot “examples” we can find a reference to a model of the corresponding
concept. How examples can be represented and how it can be proved that an
example is really an example is not investigated in this thesis. (See also the
summary, chapter 7.)

We could have also given another definition for the concept “group” by writing
the following formulae into the “definition” slot:

Vm,y,z:G (w+y)+zErc+(y+z) / \
5]s VyzG x+yEyEy+x(AmEO)A
sG ByzG x+yEOEy+x(/ \yE—-x)

But this is not as appropriate as the above formulation, because it is less
structured. We want to formulate the concepts as abstract as possible for several

45 Representation of Mathematical Knowledge

reasons. If we formulate abstractly, we have the chance to find proofs also at a

more high, abstract level. There is also the chance to find analogies or to use some

special purpose algorithms that are defined for a special concept. For instance

when the concept "group" is given, one might want to have a special treatment

for the "+" as an associative operation. That could be done by not expanding the

definition of associativity but by using a special equality reasoning procedure for

associative function symbols, for instance, an A-unification algorithm.

So far we have given only examples for simply defined or axiomatized concepts.

The next example is about inductively defined concepts. To this end we use the

constructors introduced in the last part of section 3.3. We show how 'one can

axiomatize the natural numbers with the constructors 0 and s.

Axiom: Nat

axIOm: base (0 : IN)
step (s: (IN -+ IN»

signature..ext: IN!;;L
0: IN
s : (IN -+ IN)

context: numbers

Figure 4.7

The key words "base" and "step" correspond to the induction base and the

induction step, respectively. In this example the induction base says that 0 is a

natural number. The step case means that all natural numbers are constructed

from 0 by the constructor function s.

Of course we could give second-order formulae in order to introduce the natural

numbers, but because of its particular importance, we provide special facilities for

inductively defined or axiomatized concepts.

Now we can define the function + for natural numbers.

Definition: +IN

parameters: n :IN
m :IN

sort: IN
definition: base 'v'n: IN n +IN 0 := n

step 'v'n,m:IN n+lNs(m):=s(n+lNm)
context: numbers

mapping

<proof-+N-sort>

<proof-+IN-def>

Figure 4.8

In this definition frame "base" and "step" correspond as in the axiom frame

to the induction base and the induction step. For an inductive definition it must

Representation of Mathematical Knowledge 45

reasons. If we formulate abstractly, we have the chance to find proofs also at a
more high, abstract level. There is also the chance to find analogies or to use some
special purpose algorithms that are defined for a special concept. For instance

when the concept “group” is given, one might want to have a special treatment
for the “+” as an associative operation. That could be done by not expanding the
definition of associativity but by using a special equality reasoning procedure for
associative function symbols, for instance, an A-unification algorithm.

So far we have given only examples for simply defined or axiomatized concepts.
The next example is about inductively defined concepts. To this end we use the
constructors introduced in the last part of section 3.3. We show how "one can
axiomatize the natural numbers with the constructors 0 and s .

Axiom: Nat

axiom: base (0 :]N)
step (s : (IN ——> 1N))

signatureßxt: lNEL
0 : IN
5 : (]N —> W)

context: numbers

Figure 4.7

The key words “base” and “step” correspond to the induction base and the
induction step, respectively. In this example the induction base says that 0 is a
natural number. The step case means that all natural numbers are constructed
from 0 by the constructor function s.

Of course we could give second-order formulae in order to introduce the natural
numbers, but because of its particular importance, we provide special facilities for
inductively defined or axiomatized concepts.

Now we can define the function + for natural numbers.

Definition: +1N mapping

parameters: n :lN
m :lN

sort: lN <proof-+N-sort>
definit ion: base Vnl n +IN 0 ._=_ n

step Vn, m:]N n +“ s (m) E s (n +1N m) <proof-+N-def>
context: numbers

Figure 4.8

In this definition frame “base” and “step” correspond as in the axiom frame
to the induction base and the induction step. For an inductive definition it must

Chapter 4

be shown that it is a definition indeed, that is, that all cases are covered and that

the step case is well-founded (see e.g. [69]).

The next example shows an implicit definition. It is the general case of a

definition and subsumes all previous cases as special cases. An implicit definition

consists of an arbitrary formula set that uniquely characterizes the concept.

Definition: exp mapping

parameters: x :Ht
sort: Ht < proof-exp-sort>
definition: \Ix, y:Ht exp(x + y) == exp(x) . exp(y)

exp(l) == e .
continous(exp, Ht) < proof-exp-def>

context: real functions

Figure 4.9

In order to make sure that it is a valid definition, the existence and uniqueness

of the concept must be proved in <proof-exp-def>.

Partial functions can be defined in the following form:

Definition: reciprocal mapping

parameters: x :Ht
preconditions: x~O
sort: Ht <proof-reciprocal-sort>
definition: reciprocal(x) . x == 1 <proof-reciprocal-def>
context: real functions

Figure 4.10

The slot "preconditions" contains formulae, which must be satisfied, for the

definition to make sense. A correct treatment of the preconditions requires partial

functions. However we do not consider them in the following, because they require

an essential extension of the logics £n, as for instance a transition from two-valued

to three-valued logics. In particular we cannot translate them adequately into

first-order (two-valued) logic as we do it with the other logics in chapter 5. For an

overview of partial logics see [12, 78].

The concepts introduced so far are ordered by the fillers of the slot "super­

concepts", which induce a transitive network of concepts with inheritance. That

is, every concept inherits all definitions, consequences, equivalences, and counter­

examples of its superconcepts. A superconcept itself inherits all examples of its

subconcepts. A small section of this net can be seen in the following figure:

46 Chapter 4

be shown that i t is a definition indeed, that is, that all cases are covered and that
the step case is well-founded (see e.g. [69]).

The next example shows an implicit definition. _It is the general case of a
definition and subsumes all previous cases as special cases. An implicit definition
consists of an arbitrary formula set that uniquely characterizes the concept.

Definition: exp _ mapping

parameters: «: :lR
sor t : R <proof-exp—sort)
definition: Vat, y l exp(z + y) E exp(.1:) - exp(y)

exp(1) E e
continous(eXp, IR.) <proof-exp-def>

context: real functions

Figure 4.9

In order to make sure that it is a valid definition, the existence and uniqueness
of the concept must be proved in <proof-exp—def>.

Partial functions can be defined in the following form:

Definition: reciprocal mapping

parameters: .1: 21R.
preconditions: :n $ 0
sort: IR, <proof-reciprocal—sort>
definition: reciprocal(:c) -:c E 1 ' <proof-reciprocal-def>
context: real functions

Figure 4.10

The slot “preconditions” contains formulae, which must be satisfied, for the
definition to make sense. A correct treatment of the preconditions requires partial
functions. However we do not consider them in the following, because they require
an essential extension of the logics £" , as for instance a transition from two-valued
t o three-valued logics. In particular we cannot translate them adequately into
first-order (two-valued) logic as we do it with the other logics in chapter 5. For an
overview of partial logics see [12, 78].

The concepts introduced so far are ordered by the fillers of the slot “super—
concepts”, which induce a transitive network of concepts with inheritance. That
is, every concept inherits all definitions, consequences, equivalences, and counter—
examples of its superconcepts. A superconcept itself inherits all examples of its
subconcepts. A small section of this net can be seen in the following figure:

Def: associative

pa.rameters: . , .

47 Representation of Mathematical Knowledge

Def: ex-inverseDef: eX--Ileut....elem

pa.ra.meter;:;:parameters:

Def: groupDef: commutative

pa.rameters:pa.rameters:
.,

~/
Def: abelian-group Def: distributive

pa.rameters:parameters:

/~
Def: field

pa.rameters:...

Figure 4.11

The edges in the network are labeled with the corresponding parameters in the

"superconcepts" slot. In figure 4.11 we have omitted the labels for simplicity

reasons. For instance, the edge from "field" to "abelian_group" expresses that a

field (F, +,0, -",1, -1) is an abelian group with respect to the addition, that is,

(F, +,0, -) is an abelian group; whereas it is only a group with respect to the

multiplication, that is, (F\{O},', 1, -1) is a group.

Finally we give an example for a theorem frame. We use CANTOR'S theo­

rem that the power-set of a set has greater cardinality than the set itself in the

formulation of ANDREWS [3, p.184].

Theorem: Cantor theorem

theorem: Vs : (L ~ 0) ..,3g: (L -+ (L -+ 0)) Vf :(L -+ 0)
f ~ s ==> (3j : L s(j) /I. g(j) = J)

status: "proved"
proof: <proof-Cantor>
context: sets

Figure 4.12

Representation of Mathematical Knowledge

Def: associative Def: ex.neut.elem Def: exJnverse

parameters : pa ramete r s :
.

pa rame te r s :
.

\ /

47

Def: commutative Def: group

pa rame te r s :
. . .

pa rame te r s :
.

\ /
Def: abeliamgroup Def: distributive

paramete r s : pa rame te r s :

\ /
Def: field

pa rame te r s :
. . .

Figure 4.11

The edges in the network are labeled with the corresponding parameters in the
“superconcepts” slot. In figure 4.11 we have omitted the labels for simplicity
reasons. For instance, the edge from “field” to “abelian_group” expresses that a
field (F, + ,0 , —, -, 1 , 4) is an abelian group with respect t o the addition, that is,
(F, +,\0, —) is an abelian group; whereas it is only a group with respect to the
multiplication, that is, (F\{0}, -, 1, “ l) is a group.

Finally we give an example for a theorem frame. We use CANTOR’S theo-
rem that the power-set of a set has greater cardinality than the set itself in the
formulation of ANDREWS [3, p.184].

Theorem: Cantor , theorem

theorem: Vs:(L _» o) flflgzu -+ (a —> 0)) Vf:(L —-> o)
f ; 8 : (Hin S(J ') / \9(J ') = f)

status: “proved”
proof: <proof~Cantor>
context: sets

Figure 4.12

Chapter 4

The filler of the slot "theorem" is an arbitrary closed formula of .en or .e~.

The "status"-slot records whether the theorem is "proved", "conjectured", or

"rejected" .

In "proof" a pointer to a proof is given, if the status of the theorem is "proved"

or "rejected".

After this informal introduction to our frame-based representation language,

we shall now give a formal definition in the next section.

4.2 Formal Treatment

Now we define a general syntax of the three different kinds of frames. Their

semantics is then given via translations into the underlying higher-order logic.

The following frame shows all the different slots and possible fillers in a definition

frame.

Definition: <Name> property I mapping

<proof-<Name>-def>
<proof-<Name>-def>

[parameters:
[{ (optional)
[preconditions:
definition:

base
step

[defined...symbols:
[superconcepts: {#)
[sort:
[main_property:
[consequences:· {#)
[equivalences: {#)
[examples: { #)
[counter _ex: { #)
[used in:
[subconcepts:
context:

{ <variable...symbol> :<sort...symbol> [(called <name»] }
<variable...symbol> :<sort...symbol> [(called <name»] }]]
{ <formula> }]
{ <formula> } I
{ <term>} I
{ <formula> }
{ <formula> }
{ <formula> }
{ <Name> }]
<concept>({ <variable...symbol> }) }]
<sort...symbol> <proof-<Name>-sort>]
<formula> <proof-<Name>-main_prop>]
<formula> <proof-<Name>-cons-#> }]
<formula> <proof-<Name>-equ-#> }]
<pointer_to..model> <proof-<Name>-ex-#> }]
<pointer_to..model> <proof-<Name>-counter_ex-#> }]
{ <Name> }]
{ <concept> }]
<ContextName>

Figure 4.13

We use the extended BACKUS-NAUR form (EBNF) in the following way:

[.] stands for no or one occurrence, { . } for one or more repetitions, <.> for

non-terminal symbols, and I for "or".

4.1 Definition (Definition Frame): A definition frame (written 19) is a list of

the following elements:

48 Chapter 4

The filler of the slot “theorem” is an arbitrary closed formula of £" or cg .
The “status”-slot records whether the theorem is “proved”, “conjectured”, or

“rejected”.

In “proof” a pointer to a proof is given, if the status of the theorem is “proved”
or “rejected”.

After this informal introduction to our frame-based representation language,
we shall now give a formal definition in the next section.

4 .2 Formal Treatment

Now we define a general syntax of the three different kinds of frames. Their
semantics is then given via translations into the underlying higher-order logic.
The following frame shows all the different slots and possible fillers in a definition
frame.

Definition: <Name> property Imapping

[parameters: { <variable.symbol> :<sort.symbol> [(called <name>)] }
[{ (optional) <variable.symbol> :<sort.symbol> [(called <name>)] }]]
[preconditions: { <formula> }]
definition: { <formula> } I

{ <term> } I
base { <formula> }
step { <formula> } <proof-<Name>—def> I
_ { <formula> } <proof-<Name>—def>

[definedsymbols: { <Name> }] ,
[superconceptsz { #) <concept>({ <variable_symbol> }) }]
[sort: <sort..symbol> <proof-<Name>-sort>] ,
[main_property: <formula> <proof-<Name>-main_prop>]
[consequenceszi { #) <formula> <proof-<Name>-cons-#> }]
[equivalencesz { #) <formula> <proof-<Name>—equ-#> }]
[examplesz { #) <pointer_to_model> <proof-<Name>—ex—#> }]
[countenexz { #) <pointer.to.model> <proof-<Name>-counter_ex-#> }]
[usedJn: { <Name> }]
[subconceptsz _ { <concept> }]
context: <ContextName>

Figure 4.13

We use the extended BACKUS—NAUR form (EBNF) in the following way:
[.] stands for no or one occurrence, { . } for one or more repetitions, < .> for
non-terminal symbols, and I for “or”.

4 .1 Definit ion (Definit ion Frame): A definition frame (written 19) is a list of
the following elements:

49 Representation of Mathematical Knowledge

1.	 "parameters" is of a list of variable-symbols with sorts and optionally selector

names.

2.	 "preconditions" is a list of £-formulae.

3.	 "definition" is either a simple definition, an inductive definition, or an im­

plicit definition. If it is a simple definition it consists of an £-formula or an

£-term corresponding to the type of the frame (property or mapping). The

defined concept must not occur in that formula or term.

In case of an inductive definition two slots must be filled, one for the base case

and another for the step case, both with £-formulae. For every constructor

constant Cj the base case contains a formula of the form:

VXt, ... , X m <Name> (Cj, xI, ... , x m) <===} 'l/Jj, where the defined concept

must not occur in 'l/J.
For every constructor function fi the step case contains a formula of the

form VXt, ... ,XmVy,Yl, ... ,Yki <Name>(Ji(y,YI, ... ,Yk.),Xl, ... ,xm) ~

'l/Ji	 where in 'l/Ji no constructor function occurs. (In the case of a mapping

concept "<===} 'l/J" is replaced by "= i".) Inductive definitions must be

shown to be definitions, that is, that all cases are covered and that the step'

case is well-founded. A pointer to a proof is stored in the slot.

Implicit definitions consist of sets of formulae and a proof that the defined

object exists and is unique.

4.	 "defined_symbols" is the list of symbols that are defined in an implicit defi­

nition, if more than one symbol is defined. In all other cases just the symbol

<Name> is defined.

5.	 "superconcepts" is a list of atomic £-formulae.

6.	 "sort" is a sort symbol that shows the sort of a concept of type "mapping".

This slot must be filled when a definition of type "mapping" is given. The

sort information has to be proved. A pointer to a prove is stored in the slot.

7.	 "main_property" is an £-formula. The proof must show that the formula in

this slot follows from the definition.

8.	 "consequences" and "equivalences" are lists of £-formulae. The proofs show

that the formulae are consequences or equivalences of the definition, respec­

tively.

Representation of Mathematical Knowledge 49

1. “parameters” is of a list of variablesyrnbols with sorts and optionally selector
names.

2. “preconditions” is a list of £—formulae.

3. “definition” is either a simple definition, an inductive definition, or an im-

plicit definition. If it is a simple definition it consists of an L—formula or an
‚(I-term corresponding to the type of the frame (property or mapping). The
defined concept must not occur in that formula or term.

In case of an inductive definition two slots must be filled, one for the base case
and another for the step case, both with £-formu1ae. For every constructor
constant Cj the base case contains a formula of the form:
V321,” . ‚ccm <Name>(cj,:c1,.. . ‚mm) (:> ab,-, where the defined concept
must not occur in 2/).
For every constructor function f,- the step case contains a formula of the
form V931, . . . ,my ,y1 , . . . ,yki <Name>(f.-(y,y1, . . . ‚%) , x l , . . . ‚mm) (=)
ib; where in tb; no constructor function occurs. (In the case of a mapping
concept “ (=> 1b” is replaced by “E t”.) Inductive definitions must be
shown to be definitions, that is, that all cases are covered and that the step '
case is well-founded. A pointer to a proof is stored in the slot.

Implicit definitions consist of sets of formulae and a proof that the defined
object exists and is unique.

4. “defined_symbols” is the list of symbols that are defined in an implicit defi-
nition, if more than one symbol is defined. In all other cases just the symbol
<Name> is defined.

5. “superconcepts” i s a list of atomic L-formulae.

6. “sort” is a sort symbol that shows the sort of a concept of type “mapping”.
This slot must be filled when a definition of type “mapping” is given. The
sort information has to be proved. A pointer to a prove is stored in the slot.

7. “main_property” is an £—formula. The proof must show that the formula in
this slot follows from the definition.

8. “consequences” and “equivalences” are lists of £—formulae. The proofs show
that the formulae are consequences or equivalences of the definition, respec—
tively.

Chapter 45°

9.	 "examples" and "counter-ex" are lists of £-structures, which are models or

no models of the concept, respectively.

10.	 "usedin" is a list of axioms, definitions, and theorems. "subconcepts" is

a list of axioms and definitions. These slots can be filled automatically,

since the "usedin" slot is only a book-keeping slot and "subconcepts" is the

inverse slot to the "superconcept" slot.

11.	 "context" is a name for a theory.

The frame must not contain any free variable except the variables of the slot

"parameters". <Name> is a constant symbol of sort (KI x ... X Km -+ K), where

Ki is the sort of the i-th parameter and K is the entry of the "sort" slot for a

mapping frame and equal to 0 for a property frame.

4.2 Definition (Semantics of a Definition Frame): We fix the semantics of

a definition frame by giving a logical translation. We begin with the translation

of the parts 1 through 5 of definition 4.1. Let XI, ••• , X m be the variables of

the parameter slot, PI, , PI be the list of preconditions,. 'P be the entry of the

definition slot and sI, ,Sk be the entries of the superconcepts slot. The logical

translation of a simple definition of type property is then:

YXI, ... , X m PI /\ ... /\ PI ====} «Name>(xI, ... , X m) {:::::::} (SI /\ ... /\ Sm /\ 'P))'

The Xl, ..• , X m are the only free variable symbols in Pi, Si, and 'P. Optional param­

eters are treated in the same manner as in section 3.3. If the slot "preconditions"

or "superconcepts" is unfilled it is translated by the same formula. Recall that an

empty conjunction evaluates to TRUE.

In the case of a mapping frame the translation is:

YXI," . ,Xm PI /\ ... /\ PI ====} «Name>(xI,. " ,Xm) s),

where 8 is an £-term. The "sort" slot entry K is translated as (8: K) or K(S).

In	 the case of an inductive or an implicit definition the translation is equivalent

to:

'IXI, ... ,Xm PI /\ ... /\ PI >- 'PI /\ ... /\ 'Pm,

where the 'Pi are the entries of the definition slot.

The other slots contain theorems, models, or structuring information.

The slot "consequences" contains theorems Ci that belong to the concept. The

proved theorems are translated by the formulae itself, that is, by Ci for all i.*

*For instance if the union of sets is defined, we should write into this slot, that the union is
associative, commutative, and idempotent.

50 Chapter 4

9. “examples” and “counter_ex” are lists of ‚(:-structures, which are models or
no models of the concept, respectively.

10. “used_in” is a list of axioms, definitions, and theorems. “subconcepts” is
a list of axioms and definitions. These slots can be filled automatically,

. since the “used_in” slot is only a book-keeping slot and “subconcepts” is the
inverse slot to the “superconcept” slot.

11. “context” is a name for a theory.

The frame must not contain any free variable except the variables of the slot
“parameters”. <Name> is a constant symbol of sort (nl >< - - - >< Km —> R), where
fc,- is the sort of the i-th parameter and n is the entry of the “sort” slot for a
mapping frame and equal t o 0 for a property frame.

4.2 Definit ion (Semantics of a Definition E'ame): We fix the semantics of
a definition frame by giving a logical translation. -We begin with the translation
of the parts 1 through 5 of definition 4.1. Let $1 , . . . , a :m be the variables of
the parameter slot, p l , . . . , p; be the list of preconditions,.<p be the entry of the
definition slot and s l , . . . , sk be the entries Of the superconcepts slot. The logical
translation of a simple definition of type property is then:
Vx1,. . . ,mm pl A . . . / \ pz => (<Name>(a:1,.. . ,:z:m) (=> (31 A. . . Asm Acp)).

The x1, . . . , wm are the only free variable symbols in p‚-, s;, and cp. Optional param—
eters are treated in the same manner as in section 3.3. If the slot “preconditions”
or “superconcepts” is unfilled i t is translated by the same formula. Recall that an
empty conjunction evaluates to TRUE.

In the case of a mapping frame the translation is:
V331,... ‚zum p1 /\ Ap1=>(<Name>(a :1 , . . . ,xm)E s) ,
Where 3 is an ß- term. The “sort” slot entry K. is translated as (s : fi) or ‚;(s).

In the case of an inductive or an implicit definition the translation is equivalent
t o :

Vm1,...,xm pl /\ . . . / \p1:=>c,01/\. . . / \<pm,
where the go, are the entries of the definition slot.

The other slots contain theorems, models, or structuring information.

The slot “consequences” contains theorems c,- that belong to the concept. The
proved theorems are translated by the formulae itself, that is, by c, for all if“

*For instance if the union of sets i s defined, we should wr i te into th i s s lot , that the union is
associative, commutative, and idempotent .

51 Representation of Mathematical Knowledge

The semantic status of an entry of the slot "main_property" is the same as that

of an entry of the "consequences" slot.

Entries 'IjJ of the slot "equivalences" are translated to:

VXI, ... , X m PI /\ ... /\ PI ==? «Name>(XI, ... , X m) {:::::::} 'IjJ).

"subconcepts" is the inverse slot of "superconcepts". That means, whenever we

make an entry in the "superconcepts" slot of concept A, that B is a superconcept of

A, the slot "subconcepts" of B is automatically filled by the filler A. (Parameters

are neglected in the "subconcepts" slot.) This slot - as well as the "usedjn" and

"context" slot - is not translated into logic, that is, it has no semantics and is only

for pragmatic use.

The semantics of the slots "examples" and "counter-ex" is defined by the logical

model relation, that is, M is an example iff M I=<Name>(xI, ... , xm), and M is

a counter-example iff M ~<Name>(xI,"" x m).

4.3 Remark: Superconcepts provide an inheritance relation, for instance "asso­

ciative" is a superconcept for "group". So every consequence in the "associative"­

frame is also a consequence for the "group"-frame. On the other hand "group" is

a subconcept of "associative". So every example for a group is in particular an

example for an associative structure.

Analogously one can define axiom frames and theorem frames. All frame types

have a "consequence" and a "context" slot.

In the next figure all different slots of an axiom frame are shown:

Axiom: <Name>

axIOms: { <formula>} I
base {<term_declaration> }
step {<term_declaration>}

[signature..ext: [{<constant..symbol> : <sort..symbol> }]
[{ <subsort-declaration> }]]

[consequences: { #) <formula> <proof-<Name>-cons-#> }]
[examples: { #) <pointer-toJIlodel> <proof-<Name>-ex-#> }]
[counter..ex: {#) <pointer_toJIlodel> <proof-<Name>-counter..ex-#> }]
[usedjn: { <name> }]
context: <ContextName>

Figure 4.14

4.4 Definition (Axiom frame): An axiom frame (also written as 'l?) is a list of

the following elements: "axioms", "signature_ext", "consequences", "examples",

"counter_ex", "usedjn", and "context" with:

Representation of Mathematical Knowledge 51

The semantic status of an entry of the slot “main_property” is the same as that
of an entry of the “consequences” slot.

Entries «b of the slot “equivalences” are translated to:
V$1‚...,mm 111 A . . . / \ p l => (<Name>(a:1,...‚mm) (=> $) .

“subconcepts” is the inverse slot of “superconcepts”. That means, whenever we
make an entry in the “superconcepts” slot of concept A , that B is a superconcept of
A, the slot “subconcepts” of B is automatically filled by the filler A. (Parameters
are neglected in the “subconcepts” slot.) This slot — as well as the “used—_in” and
“context” slot — is not translated into logic, that is, i t has no semantics and is only
for pragmatic use.

The semantics of the slots “examples” and “counter_ex” is defined by the logical
model relation, that is, M is an example ifi' M }=<Name>(ml, . . . , zum), and M is
a counter-example iff M bé<Name>(w1, . . . ‚mm).

4 .3 Remark: Superconcepts provide an inheritance relation, for instance “asso—
ciative” is a superconcept for “group”. So every consequence in the “associative”-
frame is also a consequence for the “group”-frame. On the other hand “group” is
a subconcept of “associative”. So every example for a group is in particular an
example for an associative structure.

Analogously one can define axiom frames and theorem frames. All frame types
have a “consequence” and a “context” slot.

In the next figure all different slots of an axiom frame are shown:

Axiom: <Name>

axioms: { <formula> } I
base { <term-d'eclaration> }
step { <term_declaration> }

[signaturexxtz [{ <constant.symbol> : <sort_symbol> }] I
[{ <subsort.declaration> }]]

[consequences: { #) <formula> <proof—<Name>-cons-#> }]
[examplesz { #) <pointer_to_model> <proof—<Name>—ex-#> }]
[counteuex: { #) <pointer_to.model> <proof-<Name>—counter.ex—#> }]
[usedJn: { <name> }]
context: <ContextName>

Figure 4.14

4.4 Definit ion (Axiom frame): An axiom frame (also written as 19) is a list of
the following elements: “axioms”, “signature.ext”, “consequences”, “examples”,
“counter_ex”, “useddn”, and “context” with:

52 Chapter 4

1.	 The slot "axioms" contains either a set of formulae as simple axioms or new

constructor symbols (compare page 35) are introduced. In the latter case

the name of the axiom is a new predicate symbol (or sort symbol). In the

"base" -subslot the constructor constants of this new sort are declared in the

form of term declarations. In the "step"-subslot the constructor functions

are declared in the same manner. These symbols have to occur also in the

slot "signature_ext".

2.	 "signature_ext" contains the axiomatized constants, if they are new.

3.	 All other slots are similar to the corresponding slots of a definition frame.

4.5 Definition (Semantics of an Axiom Frame): The semantics of an axiom

frame is also given by the translation to 1:-. In the case of simple axioms it is

translated into the conjunction of the formulae itself. In the case of inductive

axioms they are translated into the corresponding data structure, which in turn

can be translated as shown on pages 35 and following.

Finally we show what a theorem frame looks like in general:

Theorem: <Name> [< theoremtype>]

[assumptions:
theorem:
status:
[proof:
[consequences:
context:

<closed formula>]
<closed formula>
"proved" I "conjectured" I "rejected"
<proof>]

{#) <formula> <proof-<Name>-cons-#> }]
<ContextName>

Figure 4.15

4.6 Definition (Theorem Frame): A theorem frame (also written as '19) is a list

of: "assumptions", "theorem", "status", "proof", "consequences", and "context"

with:

1.	 "assumptions" is a list of formulae, which are preconditions for the theorem.

2.	 "theorem" is a formula.

3.	 "status" is either "proved", "conjectured", or "rejected".

4.	 "proof" is a pointer to a proof* in the case that the status of the frame is

"proved". It is a pointer to a counterexample in the case that the status is

"rejected" .

'So far we have not considered proofs at all. See chapter 5.

52 Chapter 4

1 . The slot “axioms” contains either a set of formulae as simple axioms or new
constructor symbols (compare page 35) are introduced. In the latter case
the name of the axiom is a new predicate symbol (or sort symbol). In the
“base”-subslot the constructor constants of this new sort are declared in the
form of term declarations. In the “step”-subslot the constructor functions
are declared in the same manner. These symbols have to occur also in the
slot “signature_ext”.

2. “signature_ext” contains the axiomatized constants, if they are new.

3. All other slots are similar to the corresponding slots of a definition frame.

4 .5 Definition (Semantics of an Axiom Frame): The semantics of an axiom
frame is also given by the translation to ß . In the case of simple axioms i t is
translated into the conjunction of the formulae itself. In the case of inductive
axioms they are translated into the corresponding data structure, which in turn
can be translated as shown on pages 35 and following.

Finally we show what a theorem frame looks like in general:

Theorem: <Name> [<theoremtype>]

[assumptions: <closed formula>]
theorem: <closed formula>
status: “proved” | “conjectured” | “rejected”
[proof: <proof>]
[consequences: { #) <formula> <proof-<Name>—cons-#> }]
context: <ContextName>

Figure 4.15

4.6 Definition (Theorem Frame): A theorem frame (also written as 29) is a list
of: “assumptions”, “theorem”, “status”, “proof”, “consequences”, and “context”
wi th :

1. “assumptions” is a list of formulae, which are preconditions for the theorem.

2 . “theorem” i s a formula.

3 . “status” i s either “ roved”, “con 'ectured” or “ re 'ec ted” .’

4. “proo ” is a pointer to a proof“ in the case that the status of the frame is
“proved”. It is a pointer to a counterexample in the case that the status is
“rejected” .

*So far we have not considered proofs at all. See chapter 5.

53 Representation of Mathematical Knowledge

5. the other slots are just as above.

The <theoremtype> is used for the classification of the theorem as "lemma",

"theorem", "main theorem" , or "corollary".

4.7 Definition (Semantics of a Theorem Frame): The semantics of a theorem

frame with entries 'PI, ... ,'Pm as assumptions and 'ljJ as theorem is again given by a

translation. In the case of the status "proved" it is: 'PI/\"'/\ 'Pm ===? 'ljJ, otherwise,

it is: TRUE.

4.8 Definition (Signature of a Frame): The signature of a frame f) is the set

of all constants in the terms and formulae in f). (Recall that we have no free

variables in the frames, except the variables introduced in the "parameters"-slot.)

4.9 Definition (Extension of a Frame): A frame-extension f)' of a frame f) is

a frame with the same name and classification, where all slot-fillers but the slots

mentioned below are identical. The fillers of the slots consequences, equivalences,

examples, counter_ex, and usedjn can differ in the form, that the fillers of f) are

sublists of the corresponding fillers of f)'; the slot main_property can differ, if it is

not filled in f). The status of a theorem frame may be changed from "conjectured"

to "proved" or "rejected". In both cases the proof slot must be filled.

So far we have considered single frames, in the next section we discuss when

many such frames form a knowledge base.

4.3 Building up a Knowledge Base

In this section we define the notion "knowledge base" and consider the consistency

of knowledge bases. In particular we discuss the conditions when a definition forms

a conservative extension and therefore does not endanger the consistency of a

knowledge base. A knowledge base is defined inductively: to the empty knowledge

base we can add frames under certain conditions.

4.10 Definition (Knowledge Base):. A knowledge base ~ over [, IS defined

inductively:

- as the empty knowledge base Dol/l ::::; 0, or

- an immediate extension of a knowledge base.

Do is called an immediate extension of a knowledge base ~' iff

Representation of Mathematical Knowledge 53

5. the other slots are just as above.

The <theorerntype> is used for the classification of the theorem as “lemma”,
“theorem”, “main theorem”, or “corollary”.

4 .7 Definition (Semantics of a Theorem Frame): The semantics of a theorem
frame with entries (pl, . . . ‚(pm as assumptions and zb as theorem is again given by a
translation. In the case of the status “proved” it is: 4,01 A. . .Acpm = 2/), otherwise,
it is: TRUE.

4 .8 Definit ion (Signature of a Frame): The signatnre of a frame 19 is the set
of all constants in the terms and formulae in 19. (Recall that we have no free
variables in the frames, except the variables introduced in the “parameters”-slot.)

4 .9 Definition (Extension of a Frame): A frame-extension 19’ of a frame 19 is
a frame with the same name and classification, where all slot-fillers but the slots
mentioned below are identical. The fillers of the slots consequences, equivalences,
examples, counter_ex, and used_in can differ in the form, that the fillers of 19 are
sublists of the corresponding fillers of 19’; the slot main_property can differ, if i t is
not filled in i9. The status of a theorem frame may be changed from “conjectured”
to “proved” or “rejected”. In both cases the proof slot must be filled.

So far we have considered single frames, in the next section we discuss when
many such frames form a knowledge base.

4 .3 Building up a Knowledge Base

In this section we define the notion “knowledge base” and consider the consistency
of knowledge bases. In particular we discuss the conditions when a definition forms
a conservative extension and therefore does not endanger the consistency of a
knowledge base. A knowledge base is defined inductively: to the empty knowledge
base we can add frames under certain conditions.

4.10 Definit ion (Knowledge Base):_A knowledge base A over [2 is defined
inductively:

— as the empty knowledge base Ag = ill, or

— an immediate extension of a knowledge base.

A is called an immediate extension of a knowledge base A’ iff

54 Chapter 4

- ~ = ~' u {t9} with axiom frame, definition frame, or theorem frame t9 rela­

tive to the knowledge base ~', Or

- it is equal to a knowledge base ~' for a.ll but one entry and this entry is a

frame-extension of the other. Formally ~ \ {t9} = ~'\ {t9'} and t9 is a frame­

extension of t9'.

The transitive closure of this relation is called an extension.

The signature of a knowledge base ~ is the union of all signatures of the frames

contained in ~. The logic with this signature is denoted by .c(~).

Now we define frame relative to a knowledge base:

- A theorem frame t9 is called a theorem frame relative to a knowledge base ~

if it is a theorem frame, its signature is a subset of the signature of ~. Fur­

thermore if the status is "proved" or "rejected", the slot proof must contain

a proof for "~ F (assumptions ===? theorem)", respectively a counterex­

ample for this relation. (For "proofs" see chapter 5.) The entries in the

"consequences" slot must be proved too.

- An axiom frame t9 is called an axiom frame relative to a knowledge base ~

if it is an axiom frame and all occurring constants in the frame are either in

the signature of ~ or in the slot "signature_ext" of t9. The signature of ~

must be disjoint from the elements in "signature_ext". All lemmata in the

frame - that is, all slots that must contain proofs - must fulfill the condition

for a theorem frame above.

- A frame t9 is a definition frame relative to a knowledge base ~ if it is a

definition frame, the defined concept name(s) is (are) not in the signature

of ~, but all other constant symbols are. Lemmata in the frame must fulfill

the condition for a theorem frame above.

For the following we need the notion of semantic consequence. A formula

cp follows semantically (weakly/strongly) from a knowledge base ~ (~ F cp or

~ ~ cp), iff the translation of ~ into logic entails cp (weakly/strongly).

4.11 Definition (Consistency): A knowledge base ~ is called (weakly/strongly)

consistent iff there is no formula cp so that ~ p cp and ~ F -,cp (or ~ ~ cp and

~ ~ -'Cp, respectively).

4.12 Definition (Conservativity): An extension ~ of a knowledge base ~' is

called (weakly/strongly) conservative iff for all formulae cp holds: If cp E £ (~')

then ~' F cp iff ~ p cp (or with ~ instead of p, respectively).

54 Chapter 4 '

— A = A’ U {19} with axiom frame, definition frame, or theorem frame 19 rela—
tive "to the knowledge base A’, Or

— it is equal to a knowledge base A’ for all but one entry and this entry is a
frame—extension of the other. Formally A\{19} = A’ \{19’} and 19 is a frame-
extension of 19' .

The transitive closure of this relation is called an extension.
The signature of a knowledge base A is the union of all signatures of the frames
contained in A. The logic with this signature is denoted by £ (A) .
Now we define frame relative to a knowledge base:

— A theorem frame 19 is called a theorem frame relative to a knowledge base A
if it is a theorem frame, its signature is a subset of the signature of A . Fur—
thermore if the status is “proved” or “rejected”, the slot proof must contain
a proof for “A I: (assumptions => theorem)”, respectively a counterex-
ample for this relation. (For “proofs” see chapter 5.) The entries in the
“consequences” slot must be proved too.

— An axiom frame 19 is called an axiom frame relative to a knowledge base A
if i t is an axiom frame and all occurring constants in the frame are either in
the signature of A or in the slot “signature.ext” of 19. The signature of A
must be disjoint from the elements in “signature.ext”. All lemmata in the
frame — that is, all slots that must contain proofs — must fulfill the condition
for a theorem frame above.

— A frame 19 is a definition frame relative to a knowledge base A if it is a
definition frame, the defined concept name(s) is (are) not in the signature
of A , but all other constant symbols are. Lemmata in the frame must fulfill
the condition for a theorem frame above.

For the following we need the notion of semantic consequence. A formula
cp follows semantically (weakly/strongly) from a knowledge base A (A I: cp or
A E (,0), iff the translation of A into logic entails cp (weakly/strongly).

‘ 4.11 Defini t ion (Consistency): A knowledge base A is called (weakly/strongly)
consistent iff there is no formula cp so that A l: cp and A |= —-<p (or A E cp and
A E mp, respectively).

4.12 Definit ion (Conservativity): An extension A of a knowledge base A’ is
called (weakly/strongly) conservative iff for all formulae cp holds: If cp E £(A’)
then A’ }: go iff A }: go (or with E instead of }=, respectively).

55 Representation of Mathematical Knowledge

4.13 Remark: In particular by a conservative extension we cannot import any

contradiction. If the knowledge base !:i' is consistent and !:i is a conservative

extension of !:i', then !:i is also consistent, because otherwise we could deduce from

!:i a formula rp and its negation -'rp and by this any formula in £(!:i), and hence

any in £(!:i'), so we would have !:J. 1= rp and !:J. 1= -'rp.

4.14 Definition (Definition-Conservativity): A knowledge base is called def­

inition-conservative iff every definition is a conservative extension.

4.15 Remark: We would expect now that the logics £n are definition-conserva­

tive. Unfortunately due to our definition of higher-order logics and their semantics

this is not the case in general as can be seen in the next example.

4.16 Example: Let !:J. consist of the following axioms:

- a : t, b: t, R : (t ~ 0)

- VP:(t x t ~ 0) Vx,y:t P(x,y) ~ P(y,x)

- R(a) A -,R(b)

These axioms are consistent since we can give a weak model: V£ = {I, 2}, V(£Xt-.o)

consists only of the binary relations that map everything to T. 3(a) = 1, 3(b) = 2

.J(R)(l) = T, .J(R)(2) = F. This is of course no longer a model if we "define" a

new binary predicate Q by Vx, y Q(x, y) : ~ R(x) A -'R(y) and add this to our

knowledge base. We have Q(a,b) since R(a) and -'R(b). On the other hand by the

commutativity axiom we get Q(b,a), hence -'R(a) and R(b). That is, now we have

a contradiction in our knowledge base. Hence £n is not definition-conservative for

n > 1. This cannot happen if we have all comprehension axioms in the knowledge

base (compare definition 3.22). :'

4.17 Lemma: Every knowledge base !:J. is definition-conservative for implicit def­

initions.

Proof: This lemma holds trivially because we have required for implicit definitions

that they must contain a proof that the defined objects exist and are unique. •

4.18 Lemma: £1 is definition-conservative.

Proof: Inductive definitions a.re not possible in ,Cl, hence we have to show the

property only for simple definitions. Let !:i be given and "J, the extending frame of

!:J., may be equivalent to Vx}, . .. , X m <Name> (XI, . " ,xm) ~ SI A ... A Sm 1\ rp

Representation of Mathematical Knowledge 55

4.13 Remark: In particular by a conservative extension we cannot import any
contradiction. If the knowledge base A’ is consistent and A is a conservative
extension of A’, then A is also consistent, because otherwise we could deduce from

A a formula go and its negation ego and by this any formula in [,(A), and hence
any in £(A’), so we would have A l: (p and A I: mp.

4.14 Definition (Definition-Conservativity): A knowledge base is called def-
inition-conservative iii every definition is a conservative extension.

4.15 Remark: We would expect now that the logics [" are definition-conserva-
tive. Unfortunately due to our definition of higher-order logics and their semantics
this is not the case in general as can be seen in the next example.

4.16 Example: Let A consist of the following axioms:

— a :L ,b : l „R : (L—ro)

— VP:(I, x L _) o) Vx,yti P(:r,y) (==> P(y ,x)

- R(a) /\ fiR(b)

These axioms are consistent since we can give a weak model: DL -_—- {1 ,2} , Dun—m)

consists only of the binary relations that map everything to T. J (a) = 1, JU») : 2
J(R)(1) = T, J(R)(2) = F. This is of course no longer a model if we “define” a
new binary predicate Q by Vm,y Q(:1:, y) : (=> R(a:) /\ fiR(y) and add this to our
knowledge base. We have Q(a, 17) since R(a) and nR(b) . On the other hand by the
commutativity axiom we get Q(b, a) , hence - 'R(a) and R(b). That is, now we have
a contradiction in our knowledge base. Hence £" is not definition-conservative for
n > 1. This cannot happen if we have all comprehension axioms in the knowledge
base (compare definition 3.22). ‚«

4 .17 Lemma: Every knowledge base A is definition-conservative for implicit def-
in i t ions .

Proof: This lemma holds trivially because we have required for implicit definitions
that they must contain a proof that the defined objects exist and are unique. I

4.18 Lemma: ‚Cl is definition-conservative.

Proof: Inductive definitions are not possible in ‚Cl, hence we have to show the
property only for simple definitions. Let A be given and 19, the extending frame of
A, may be equivalent t o VIE], . . . , xm<Name>(x1‚ . . . , wm) (=> s l /\ . . . A sm A 4,9

Chapter 4

where 'P is the formula in the definition slot of the frame and the Si are the entries

of the superconcepts slot. So we can replace any instance of <Name>(xI, ... , x m)

by the corresponding instance of SI t, ... /\ Sm /\ 'P. Since the two formulations are

equivalent, the extension is conservative. In the case of a mapping definition the

defined term is substituted instead of the formula. Of course we can make this

replacement also, when preconditions are present. ­
4.19 Lemma: If ~ contains the comprehension axioms 1, then it is dejinition­

conservative for simple dejinitions.*

Proof: Let S' be the signature of ~' and S = S' U {<Name>} be the signature of

~'U {-a}. () is equivalent to VXI, ... ,xm <Name> (Xl, ... ,xm) ~ SI/\" ./\sm/\'P

where 'P is the formula in the definition slot of the frame and the Si are the entries

of the superconcepts slot. By a comprehension axiom we get a predicate P so that

VXb" . , XmP(Xl,' .. , x m) ~ SI /\ .,. /\ Sm /\ 'P. So we can replace any instance

of <Name>(xl, ... , Xm) by the corresponding instance of P(Xl, . .. , xm).

For definitions of the type "mapping" we can proceed analogously. ­

4.20 Lemma: If ~ contains the comprehension axioms 1, then it is dejinition­

conservative for inductive dejinitions.

Proof: Let ~ be given and () be an inductive definition. Let Q be the m+ I-place

predicate (m ?:: 0) of sort (K X Kl X ••• X Km ~ 0) that is defined per induction on

the first argument, then the inductive definition is of the form:

base:	 VXI, ... ,xm Q(Cj,XI, ... ,xm) ~ 'ljJj for j = 1, ... ,n where Cj are all

constructor symbols of sort K for the inductively introduced concept K.

step:	 VXl, ... ,xmVy,YI, ... ,Yki Q(Ji(y,YI, ... ,Yk,),Xl,""Xm) ~ 'ljJi for all

constructor functions Ji where in the 'ljJi no constructor function can occur.

Now we have to show that there is exactly one predicate Q that satisfies this

definition. By inductively applying the defining equivalences we get that for all

constants d of sort K, we can equivalently replace Q(d, XI, ... , x m) by an expression

not containing Q. Consequently for all elements d of sort K there is a simple

definition of Q for this element as argument. Hence we can conclude that the.

general definition of Q forms a conservative extension. _

* We do not need such axioms if we use for our higher-order logic the A-calculus, since we get the

corresponding constant simply by A-abstraction. The comprehension axioms cannot explicitly be

in our knowledge base, because we have not provided facilities for introducing axiom schemata,

but it can be easily tested whether a formula is a comprehension axiom or not.

56 _ Chapter 4

Where (‚0 is the formula in the definition slot of the frame and the 3,- are the entries
of the superconcepts slot. So we can replace any instance of <Name>(:r1, . . . , wm)
by the corresponding instance of 31 A . . . /\ sm A cp. Since the two formulations are
equivalent, the extension is conservative. In the case of a mapping definition the
defined term is substituted instead of the formula. Of course we can make this
replacement also, when preconditions are present. I

4 .19 Lemma: If A contains the comprehension axioms '1‘, then it is definition-
conservati've for simple definitions.*

Proof: Let 8’ be the signature of A' and S = 8’ U {<Name>} be the signature of
A’ U {19}. 19 is equivalent to V131, . . . ‚wm <Name>(:l:1, . . . ‚mm) (=) 51A. . .AsmNp
where cp is the formula in the definition slot of the frame and the s,- are the entries
of the superconcepts slot. By a comprehension axiom we get a predicate P so that
VIE], . . . , m(:v1, . . . ‚mm) (=) 31 A . . . /\ sm /\ (p. So we can replace any instance
of <Name>(:l:1, . . . ,:cm) by the corresponding instance of P(.1:1, . . . ,zm).

For definitions of the type “mapping” we can proceed analogously. I

4 .20 Lemma: If A contains the comprehension axioms T , then it is definition-
conservative for inductive definitions.

Proof: Let A be given and 19 be an inductive'definition. Let Q be the m+ l-place
predicate (m Z 0) of sort (K, x n1 x - - - >< mm ——> 0) that is defined per induction on
the first argument, then the inductive definition is of the form:

base: Vx1,...,mm Q(cj,a:1,...,a:m) (=> gb,- f o r j = 1 , . . . , n where cj are all
constructor symbols of sort I: for the inductively introduced concept rc.

step: l ‚ . . . , $mVy ,y1 ‚ . . . , y k_ . Q(f,-(y,y1,...,yk,),x1,...,zm) (=> 1/).- for all
constructor functions f,— where i n the tl); no constructor function can occur.

Now we have t o show that there is exactly one predicate Q that satisfies this
definition. By inductively applying the defining equivalences we get that for all
constants d of sort K„ we can equivalently replace Q(d, 2:1, . . . , mm) by an expression
not containing Q. Consequently for all elements cl of sort A”. there is a simple
definition of Q for this element as argument. Hence we can conclude that the
general definition of Q forms a conservative extension. I

*We do not need such axioms if we use for our higher—order logic the A—calculus, since we get the
corresponding constant simply by A-abstraction. The comprehension axioms cannot explicitly be
in our knowledge base, because we have not provided facilities for introducing axiom schemata,
but i t can be easily tested whether a formula is a comprehension axiom or not.

57 Representation of Mathematical Knowledge

Summarizing we have:

4.21 Lemma: If.6. contains the comprehension axioms 1', then it is definition­

conservative.

4.22 Lemma: If.6. is a consistent knowledge base and {J a theorem relative to .6.,

then .6. U {{J} is consistent.

Proof: Because the deductive closures of.6. and .6. U {{J} are the same, the theorem

holds trivially. ­

4.23 Lemma: The empty knowledge base .6.0 is consistent.

Proof: Since for all formulae 'P with .6.0 F 'P, 'P is a tautology and 'P and -''P

cannot be tautologies at once, .6.0 must be consistent. _

4.24 Theorem: If.6. is a consistent knowledge base that contains the comprehen­

sion axioms l' and {J is a concept definition relative to .6. or a theorem relative to

.6., then .6. U {{J} is consistent.

Proof: This follows immediately from the fact that concept definitions form con­

servative extensions and by conservative extension no contradiction can be im­

ported, and by lemma 4.22. _

4.25 Remark: In our considerations we have neglected the "context" slot. It

could be integrated by defining a partial order on the contexts and by sharpening

the definition of a frame relative to a knowledge base (compare definition 4.10) in

that way that the required properties have not to hold only for the whole knowledge

base .6. and {J, but even for that subpart of the knowledge base that consists of

those modules, which are in the reflexive, transitive closure. of the module, to which

{J belongs.

4.4 Critique of the Frame Approach

In this section we summarize the advantages of frames for the representation of

mathematical concepts and state the main disadvantage.

The first reason why we use frames is the concept oriented way of representa­

tion. Frames enable us to represent the knowledge in such a way that all properties

that belong immedia.tely to a concept are represented together. In other words we

can take into account that a concept does not only consist of its definition, but of

Representation of Mathematical Knowledge 57

Summarizing we have:

4 .21 Lemma: If A contains the comprehension axioms T , then i t is definition-

conservative.

4 .22 Lemma: IfA is a consistent knowledge base and 19 a theorem relative to A ,
then A U {19} is consistent.

Proof: Because the deductive closures of A and A U {19} are the same, the theorem
holds trivially. I

4.23 Lemma: The empty knowledge base A95 is consistent.

Proof: Since for all formulae cp with A¢ I: cp, (p is a tautology and cp and flnp

cannot be tautologies at once, A¢ must be consistent. I

4.24 Theorem: If A is a consistent knowledge base that contains the comprehen-
sion axioms T and 19 is a concept definition relative to A or a theorem relative to
A, then A U {19} is consistent.

Proof: This follows immediately from the fact that concept" definitions form con-
servative extensions and by conservative extension no contradiction can be im—
ported, and by lemma 4.22. l

4.25 Remark: In our considerations we have neglected the “context” slot. It
could be integrated by defining a partial order on the contexts and by sharpening
the definition of a frame relative to a knowledge base (compare definition 4.10) in

' \ is

that way that the required properties have not to hold only for the whole knowledge
base A and 19, but even for that subpart of the knowledge base that consists of
those modules, which are i n the reflexive, transitive closure, of the module, to which
19 belongs.

4 .4 Critique of the Frame Approach

In this section we summarize the advantages of frames for the representation of
mathematical concepts and state the main disadvantage.

The first reason why we use frames is the concept oriented way of representa-
tion. Frames enable us to represent t he knowledge in such a way that all properties
that belong immediately to a concept are represented together. In other words we
can take into account that a concept does not only consist of i t s definition, but of

Chapter 4

a definition plus a set of important properties. So we can structure the definitions

and some theorems and need not to distribute them over the whole knowledge

base. These structuring facilities are not given in mere logic, but are provided by

the frame language.

By the frame approach we can distinguish so-called primitives, that are, ax­

ioms, definitions, and theorems. Every primitive has its own status, in logic we

only have formulae and do not distinguish between axioms, definitions, and theo­

rems. These are meta-Iogical features of formulae. Here we have the possibility to

require a special form for definitions, so that they are really definitions and can­

not import any contradictions into a knowledge base. Theorems can be arbitrary

formulae, but in contrast to axioms, they must be proved in order to be used in

the proofs of other theorems. Furthermore we can guarantee that we use only

defined concepts and exclude the case of "ignotum per ignotum". The consistency

of knowledge bases is widely ensured.

Frames have the necessary strength to represent the required properties. For

instance KL-ONE is not strong enough to represent a concept hierarchy, where

an "abelian_group" is a superconcept of "field", since it is necessary to specify

parameters, relative to which the hierarchic relation holds. Furthermore we can

choose our slots, that is, primitives for describing concepts in an adequate way.

We can give (and have given) to the frames a clear semantics, what is important

if one compares it to the situation of semantic networks, where years after building

up large knowledge bases the untenability of the approach had to be stated, because

it was impossible to give a clear semantics for the is-a hierarchy as long as "is-a"

was used for E and ~.

Another advantage compared to most other representation formalisms is the

flexibility of frames, that is, it is easily ,possible to add new features to the frames.

In particular it will be necessary to add meta-knowledge how to use all this knowl­

edge. The usage of the knowledge in the frames is of course a very difficult problem,

which will be left to the user for the beginning. Some heuristic information about

the usage belongs to the concept. How this knowledge can be represented has to

be cleared in the context of higher problem solving methods like proof planning

and tactical theorem proving.

The main disadvantage of the proposed representation formalism is, that struc­

turing, modularization, and classifications must be done by the user. Almost no

automation can be expected in such a general approach.

58 Chapter 4

a definition plus a set of important properties. So we can structure the definitions
and some theorems and need not to distribute them over the whole knowledge
base. These structuring facilities are not given in mere logic, but are provided by
the frame language.

By the frame approach we can distinguish so—called primitives, that are, ax—
ioms, definitions, and theorems. Everyprimitive has i t s own s ta tus , in logic we
only have formulae and do not distinguish between axioms, definitions, and theo~
rems. These are meta-logical features of formulae. Here we have the possibility to
require a special form for definitions, so that they are really definitions and can—
not import any contradictions into a knowledge base. Theorems can be arbitrary
formulae, but in contrast to axioms, they must be proved in order to be used in
the proofs of other theorems. Furthermore we can guarantee that we use only
defined concepts and exclude the case of “ignotum per ignotum”. The consistency
of knowledge bases is widely ensured.

Frames have the necessary strength t o represent the required properties. For
instance KL—ONE is not strong enough to represent a concept hierarchy, where
an “abelian_group” is a superconcept of “field”, since it is necessary to specify
parameters, relative to which the hierarchic relation holds. Furthermore we can
choose our slots, that is, primitives for describing concepts in an adequate way.

We can give (and have given) to the frames a clear Semantics, what is important
if one compares i t to the situation of semantic networks, where years after building
up large knowledge bases the untenability of the approach had to be stated, because
it was impossible to give a clear semantics for the is-a hierarchy as long as “is—a”
was used for E and ; .

Another advantage compared to most other representation formalisms is the
flexibility of frames, that is, it is easily ‚possible to add new features to the frames.
In particular i t will be necessary to add meta-knowledge how to use all this knowl—
edge. The usage of the knowledge in the frames is of course a very difficult problem,
which will be left to the user for the beginning. Some heuristic information about
the usage belongs to the concept. How this knowledge can be represented has to
be cleared in the- context of higher problem solving methods like proof planning
and tactical theorem proving.

The main disadvantage of the proposed representation formalism is, that struc—
turing, modularization, and classifications must be done by the user. Almost no
automation can be expected i n such a general approach.

CHAPTER 5

Translations

Die Mathematik ist nicht nach ihrem Gegen­
stand (etwa: Raum und Zeit, Formen del' inne­
ren Anschauung, Lehre vom Ziihlen und Mes­
sen u. dergl.) zu charakterisieren, sondern, wenn
man ihren ganzen Umfang erschopfen will, allein
durch ihr eigentiimliches Verfahren, den Beweis.

Ernst Zermelo

So far we presented the means to represent mathematical knowledge and the ar­

gumentation was essentially semantical. Now we want to introduce a calculus for

theorem proving. In order to prove higher-order theorems mechanically there are

two options: either to have a theorem proveI' for higher-order logic such as TPS

(of PETER B. ANDREWS [4]) or to translate the higher-order constructs into cor­

responding first-order expressions and to use a first-order theorem proveI'. Even

though the first approach is very important and may be the way of the future, we

follow the second approach because strong first-order theorem provers are available

today. For that purpose we present translations from different higher-order logics

to sorted first-order logics, for which strong calculi and theorem provers exist. We

begin with some general notions for these translations, then we present transla­

tions from the unsorted higher-order logic into many-sorted first-order logics with

equality and give a sufficient criterion for the soundness of these translations. In

addition, translations are introduced that are sound and complete with respect

to HENKIN'8 general model semantics. Finally we generalize these results to the

sorted case.

5.1 Example: A common translation of the associativity formula (of page 20)

into a first-order logic with equality is:

V+ associative(+) {::=::} Vx, y, z apply (+, apply (+, x, y), z) =

apply (+, x, apply (+, y, z))

Here apply is a new function constant and + an object variable. Although apply is

interpreted freely it is intended that the interpretation of apply(+,.x,y) is exactly

the same as the interpretation of the higher-order term x + y.

59

‚m
.-

au
.

‚.
..

„
_

».
)

;w
v»

w
g .

o„
- i

- ‚
. v

„u
f -

q
sw

w
m

es
oa

CHAPTER 5

Translations

Die Mathematik ist nicht nach ihrem Gegen-
stand (etwa: Raum und Zeit, Formen der inne—
ren Anschauung, Lehre vom Zählen und Mes-
sen u . dergl.) zu charakterisieren, sondern, wenn
man ihren ganzen Umfang erschöpfen will, allein
durch ihr eigentiimliches Verfahren, den Beweis.

Ernst Zermelo

So far we presented the means to represent mathematical knowledge and the ar—
gumentation was essentially semantical. Now we want to introduce a calculus for
theorem proving. In order to prove higher-order theorems mechanically there are
two options: either to have a theorem prover for higher-order logic such as TPS
(of PETER B . ANDREWS [4]) or to translate the higher-order constructs into cor-
responding first-order expressions and to use a first-order theorem prover. Even
though the first approach is very important and may be the way of the future, we
follow the second approach because strong first-order theorem provers are available
today. For that purpose we present translations from different higher-order logics
to sorted first-order logics, for which strong calculi and theorem provers exist. We
begin with some general notions for these translations, then we present transla-
tions from the unsorted higher-order logic into many-sorted first-order logics with
equality and give a sufficient criterion for the soundness of these translations. In
addition, translations are introduced that are sound and complete with respect
to HENKIN ’S general model semantics. Finally we generalize these results to the
sorted case.

5.1 Example: A common translation of the associativity formula (of page 20)
into a first-order logic with equality is:
V+ associative(+) <=) Vaz,y,z apply(+‚apply(+,x,y),z) =_=

app1y(+‚w‚app ly (+ ‚y ‚ 2))

Here apply is a new function constant and + an object variable. Although apply is
interpreted freely it is intended that the interpretation of apply(+,;c, y) is exactly
the same as the interpretation of the higher-order term a: + y.

59

60 Chapter 5

Another translation, without equality is:

'v'+ associative(+) {:::=:} 'v'x,y,z,u,v,w apply(+,x,y,u) /\ apply(+,u,z,w) /\

apply (+, y, z, v) ==? apply(+, x, v, w)

Here apply is a predicate; again it is interpreted freely, although it is intended that

z is the sum of x and y in apply(+,x,y,z). In other words, different translations

from higher-order to first-order logic are possible.

We have the following problems:

-- What are the conditions that such a translation is correct? That is, if we

translate a formula and we obtain a tautology, is the original formula a

tautology too?

In what sense can such a translation be called complete? That IS, if we

translate a tautology, do we always obtain a tautology?

5.2 Example: Consider the following tautology:

'v'P, Q (('v'x P(x) ==? Q(x)) /\ 'v'x P(x) ====? 'v'x Q(x))

This can be translated into the first-order formula

'v'P,Q (('v'x apply(P,x) ==? apply(Q, x)) /\ 'v'x apply(P,x) ==? 'v'x apply(Q,x))

This is obviously a tautology again, hence in this case the translation is sound and

complete.

5.3 Example: Consider the following tautology with function constants f and 'g:

'v'x f(x) =g(x) ==? f =9

This is a tautology because functions which have the same results for all arguments

are equal (extensionality). It is translated to

'v':1' apply(J, x) =apply(g, x) ==? f =9

But this is not a tautology: by interpreting apply as the projection to the second

component and f and 9 as different elements we obtain a counterexample. This

translation is obviously not complete.

Since the expressiveness of higher-order logic is principally stronger than that

of first-order, it is clear that if we find a translation from higher-order into first­

order logic, it cannot be complete in general (especially because of the theorem of

LOWENHEIM-SKOLEM and of GODEL'S incompleteness result). In principle such

a translation must be equivalent to some set theoretical formulation as stated in

MOSTOWSKI'S isomorphism theorem [100].*

*1 would like to thank Heinrich Herre for introducing me to this work of Mostowski.

60 Chapter 5

Another translation, without equality is:
V + associative(+) (=> Vx,y,z,u,v,w apply(+,x,y,u) A apply(+,u,z,w) /\

apply(+‚ % 2, v) =? apply(+‚ w, v, w)

Here apply is a predicate; again it is interpreted freely, although it is intended that
z is the sum of a: and y in apply(+,a:,y, 2). In other words, different translations
from higher—order to first-order logic are possible.

We have the following problems:

—- What are the conditions that such a translation is correct? That is, if we
translate a formula and we obtain a tautology, is the original formula a
tautology too?

— In what sense can such a translation be called complete? That. is, if we
translate a tautology, do we always obtain a tautology?

5.2 Example: Consider the following tautolo'gy:
VP,Q ((Va: P(:z:) => Q(x))/\V.1: P(m) => Var: Q(:r))
This can be translated into the first-order formula
VP, Q ((Vx arm’s/(P, 91) = amok/(Q, x)) A Viv üppig/(P, 3) => Va: apply(Q‚ w))

This is obviously a tautology again, hence in this case the translation is sound and
complete.

5 .3 Example: Consider the following tautology with function constants f and vg:

Va: f(x) Eg(x) => f ag
This is a tautology because functions which have the same results for all arguments
are equal (extensionality). It is translated to
Vrf (mph/(f, w) E mal!/(g, w) ==> f 5 9
But this is not a tautology: by interpreting apply as the projection to the second
component and f and g as different elements we obtain a counterexample. This
translation is obviously not complete.

Since the expressiveness of higher—order logic is principally stronger than that
of first—order, i t is clear that if we find a translation from higher-order into first-
order logic, it cannot be complete in general (especially because of the theorem of
LÖWENHEIM-SKOLEM and of GÖDEL’S incompleteness result). In principle such
a translation must be equivalent to some set theoretical formulation as stated in
MOSTOWSKI’S isomorphism theorem [100].*

"I would like to thank Heinrich Herre for introducing me to this work of Mostowski.

61 Translations

Related Work

ENDERTON [42] presented a sound and complete translation of unsorted second­

order logic into many-sorted first-order logic. The types of the second-order ex­

pressions are translated to sorts of a many-sorted first-order logic. This will be

generalized in this thesis to arbitrary higher-order logics. The completeness proof

for second-order is easier than for the general case, because in second-order logic no

extensionality axioms are necessary. Furthermore we will extend these translations

to sorted higher-order logics.

HENSCHEN [58] developped a method to translate arbitrary higher-order (.\-)

expressions into a many-sorted first-order logic. He presents a method to modify

first-order theorem provers so that the comprehension axioms can be handled. His

translation is not complete. In opposition to this, the translations in this thesis

treat existing theorem provers as black boxes with the advantage that these can

be used as they are, but with the drawback that the translation method is only

well-suited for essentially first-order theorems.

VAN BENTHEM and DOETS [6] give a translation of a restricted higher-order

logic without function symbols and without higher-order constants and identities

into a standard first-order logic. They use the general idea of a translation, and

show its soundness and completeness. The translation into an unsorted first-order

logic leads to more complicated formulae than the translation into a sorted version,

because of the need to relativize quantification with respect to the corresponding

type.
I

The work of HANS JURGEN OHLBACH [107] has had a great influence on our

translation techniques. He translates modal logics and other non-classical logics

into a context logic, where contexts are restricted higher-order expressions. These

contexts in turn are then translated into an order-sorted first-order logic.

Whereas in all these works one single translation from a source logic into a tar­

get logic is given, we will present in the following a whole class of sound translations

from a higher-order logic ,en into first-order logic.

5.1 Logic Morphisms

Now we shall define the concepts that are necessary to describe the relationships

between formalizations in different logics. The important concepts are: morphism,

quasi-homomorphism, and soundness and completeness of amorphism.

Translations 61

Related Work

ENDERTON [42] presented a sound and complete translation of unsorted second—
order logic into many—sorted first—order logic. The types of the second-order ex-
pressions are translated to sorts of a many-sorted first-order logic. This will be
generalized in this thesis to arbitrary higher-order logics. The completeness proof
for second—order is easier than for the general case, because in second—order logic no
extensionality axioms are necessary. Furthermore we will extend these translations
to sorted higher-order logics.

HENSCHEN [58] developped a method to translate arbitrary higher-order (X)
expressions into a many—sorted first-order logic. He presents a method to modify

first-order theorem provers so that the comprehension axioms can be handled. His
translation is not complete. In opposition to this, the translations in this thesis
treat existing theorem provers as black boxes with the advantage that these can
be used as they are, but with the drawback that the translation method is only
well—suited for essentially first-order theorems. ‘

VAN BENTHEM and DOETS [6] give a translation of a restricted higher—order
logic without function symbols and without higher-order constants and identities
into a standard first-order logic. They use the general idea of a translation, and
show i ts soundness and completeness. The translation into an unsorted first-order
logic leads to more complicated formulae than the translation into a sorted version,
because of the need to relativize quantification with respect to the corresponding
type.

The work of HANS JÜRGEN OHLBACH [107] has had a great influence on ouir
translation techniques. He translates modal logics and other non-classical logics
into a context logic, where contexts are restricted higher—order expressions. These
contexts in turn are then translated into an order—sorted first-order logic.

Whereas in all these works one single translation from a source logic into a tar-
get logic is given, we will present in the following a whole class of sound translations
from a higher—order logic £" into first—order logic.

5 .1 Logic Morphisms

Now we shall define the concepts that are necessary t o describe the relationships
between formalizations in different logics. The important concepts are: morphism,
quasi-homomorphism, and soundness and completeness of a morphism.

Chapter 5

5.4 Definition (Morphism of Logics): Let Fl and F2 be tWb logical systems

(£W, £~, £n, £~, £E' £/I.l £E,;:, or .cA.;:), then amorphism 8 is a mapping that

maps the signature Sz:,* of a logic in Fl to a signature of a logic 8(Sz:,) in F2 and

that maps every formula set in Ft(SE) to a formula set in F 2 (0(SE))'**

5.5 Definition (Soundness): Let 0 be a morphism from :Fl to F 2 . e is called

strongly (weakly) sound iff the following condition holds for every formula set f

in F l :

if f has a strong (weak) model in :Fl then there is a strong (weak) model of 0(f)

in F2 •

5.6 Definition (Completeness): Let 8 be a morphism from F l to :F2 • 8 is

called strongly (weakly) complete iff the following condition holds for every formula

set r in F l :

if 8(f) has a strong (weak) model in F 2 then there is a strong (weak) model of f

in F l .

5.7 Definition (Quasi-Homomorphism): Let F l (S£;) and F 2(SfJ be two log­

ics. Amorphism 8 from F l to Fi is called a quasi-homomorphism from :Fl (St)
to Fz(S'fJ iff the following conditions are satisfied:

1.	 The sorted signature St = (St, ~t, 511 I;t, c5t} is mapped to a signature Sf =
(S2,~2,52,1;2,c52) so that,

1.1	 8(SI) ~ S2, variables are mapped on variables and constants on con­

stants by 8,

1.2	 8(~1) ~ ~2, sort symbols are mapped on sort symbols by 8,

1.3	 8(51(X» = e(5t}(8(x» =52(X) for all variables x in Star,

1.4	 if 1\;r;,IP, then 8(1\;)r;,28(ll), that is, 8(r;,t} ~ r;,2, and

1.5	 for every term declaration (t : 1\;) in c51 we have that 8(t) and every in­

stantiation of 8(t) has sort 8(K). Especially we have for every constant

c of sort I\; in SI that 8(c) has sort 8(1\;) in S2'

2.	 For a.ll composed terms: if J(tt, .. . ,tm) is a term of F] (SI) of sort K, then

8 (J(t l , ... , tm » = 0 (8(J), G(tl)"'" 8(tm » is a term of sort 8(K) with

_.{a(at, ... ,am) orO(a, at, ... , am) ­
aa(a,al, ... ,am)

*As seen in remark 3.46 we obtain unsorted logics as special cases of sorted logics.
** A formula is considered as a formula set with one element. Especially we write e(<p) instead

of e({<p}).

62 Chapter 5

5.4 Definition (Morphism of Logics): Let .71 and fg be two logical systems
(C”, ‚C‘g, £" , Lg, %, X, LEE, or 57,15), then a morphism G) is a mapping that
maps the signature 52* of a logic in .771 to a signature of a logic 9(52) in fg and
that maps every formula set i n f1(82) to a formula set i n F2(9(52)).**

5.5 Definition (Soundness) : Let @ be a morphism from fl to ‚7:2. @ is called
strongly (weakly) sound iff the following condition holds for every formula set I‘
in fl :

if I‘ has a strong (weak) model in ‚7:1 then there is a strong (weak) model of @(I‘)
in .772.

5.6 Definition (Completeness): Let @ be a morphism from ‚7:1 to .772. ® is
called strongly (weakly) complete iff the following condition holds for every formula
set I‘ in fl:

if ®(T‘) has a strong (weak) model in fg then there is a strong (weak) model of P
in f} . .

5.7 Definition (Quasi-Homomorphism): Let f1(8§) and f2(8§) be two log—
ics. A morphism 0 from f} to ‚7:2 is called a quasi-homomorphism from .71(5§)
to $2059 ifi‘ the following conditions are satisfied:

1 ' The sorted signature 5:1: = (81, 21 ,51 , L31, 51) is mapped to a signature 8% =

(82; 22 ,52 , E2, 62) so that ,

1.1 9 (81) g 52, variables are mapped on variables and constants on con—
stants by (“),

1.2 (')(El) 9 22, sort symbols are mapped on sort symbols by @,

1.3 6(51(a:)) =_ @(51)(®($)) = 52(m) for all variables a; in Sf",

1.4 if n i l p, then @(n) C2 (")(”), that is, 00:1) _C_ Q2, and
1.5 for every term declaration (t : K,) in 51 we have that @(t) and every in—

stantiation of 9 (t) has sort (9(a). Especially we have for every constant
c of sort K: in 81 that O(c) has sort @(Is) in 82.

2. For all composed terms: if f(t1, . . . ‚tm) is a term of 371(81) of sort It, then
®(f(t1, . . . ‚tm)) = 0 (@(f), ®(t1), . . . , ®(tm)) is a term of sort 9(5) with

- a(a1, . . . ‚am) or
0(a,a1,...,am) : a“(a a1 am)a 7°“ ,

*As seen in remark 3.46 we obtain unsorted logics as special cases of sorted logics.
**A formula is considered as a formula set with one element. Especially we write ®(cp) instead

of 9({¢}) -

Translations

The a have to be chosen appropriately out of S2: they have to be new,

that is, there is no element e of S/: with aa = 8(e). The choice of the above

depends only on the type of a, the symbol aa must respect the corresponding

sorts of a,a!, ... ,am' (a stands for apply.)

3.	 For all formulae 'fJI, <.p2 and for all variables x:

3.1 8(<.p1/\ <.p2) = 8(<.p1) /\ 8(<.p2)

3.2 8(-.cp) = -.8(<.p)

3.3 8(Vx<.p) = V8(x)8(<.p)

5.8 Remark: The choice in () provides a flexibility in translating from one into

another logic. In particular we can choose different apply-functions although it

would be possible to take the same. Thereby we can exclude certain instantiations

in the target logic, but loose completeness in general. Which case we choose in ()

depends on the type of the first element, not on the element itself.

5.9 Definition (Injeetivity): A quasi-homomorphism 8 from F 1(S/:) to F 2 (S'f,)

S~ = (Si,~i,5i,~i,6d (i = 1,2) is called injeciive iff

1. for all elements et, e2 of the signature S1 holds: if 8(e1)

.
2.	 for all sort symbols /\', fJ in ~1 holds: if 8(/\,) = 8(fJ), then /\, = fJ,

3.	 for all x in Srr holds: if 52(8(x)) = 8(/\'), then 51(X) = /\',*

4. for all sorts /\', fJ in F 1 holds: if 8(/\') ~2 8(fJ), then /\, ~1 fJ, and

5.	 for all terms t and all sorts /\, in F 1 holds: if 8(t) is of sort 8(/\'), then t is of

sort /\'.

5.10 Remarks:

- We have excluded as quasi-homomorphism those mappings that map a for­

mula like P(a) on a formula P(a,a). That is, arguments cannot be doubled.

We could allow this without losing anything essential in the sequel, but

the proofs would become more tedious, without gaining really in expressive

power.

*This holds trivially by the definition of a quasi-homomorphism.

Translations 63

The a have to be chosen appropriately out of 82: they have to be new,
that is, there is no element 8 of 8%; with a“ = @(e). The choice of the above
depends only on the type of a , the symbol a“ must respect the corresponding
sorts of a,a1, . . . ‚am. (a stands for apply.)

3. For all formulae (php; and for all variables x:

3-1 9(901 /\ (.02) = 90/91) A 9(902)

3-2 ®(“‘P) = “®(‘P)
3.3 9(Vmgo) = VG(:1:)®(90)

5 .8 Remark: The choice in 0 provides a flexibility in translating from one into
another logic. In particular we can choose different apply-functions although it
would be possible to take the same. Thereby we can exclude certain instantiations
in the target logic, but loose completeness in general. Which case we choose in 0
depends on the type of the first element, not on the element itself.

5.9 Definition (Injectivity): A quasi-homomorphism G from f1(8§) to .772(8§)
S}; = (852.355, Ehöi) (i = 1,2) is called injective iff

1. for all elements 61 ,62 of the signature 81 holds: if 6 (e1) = 6(62), then
el = 82,

2. for all sort symbols 19,1» in 21 holds: if @(K) = @(p), then K, = ‚u,

3. for alla: in Sf“ holds: if 52(®(x)) = 9(19), then „($) = „:
4. for all sorts- re,” in .71 holds: if 90:) i z ®(p), then mil ‚1, and

5. for all terms t and all sorts K! in }] holds: if ®(t) is of sort (“)(/€), then t is of
sort n .

5 .10 Remarks:

— We have excluded as quasi-homomorphism those mappings that map a for—
mula like P (a) on a formula P(a ,a) . That is, arguments cannot be doubled.
We could allow this without losing anything essential in the sequel, but
the proofs would become more tedious, Without gaining really i n expressive
power.

"This holds trivially by the definition of a quasi—homomorphism.

•
Chapter 5

- If we translate into a first-order logic, the first c~se for O(a, al, ... , am) can

only be chosen if there is no quantifier on a.

In the following we presuppose the existence of a sound and complete calculus

for order-sorted first-order logics as it has been developed for example by MAN­

FRED SCHMIDT-SCHAUSS [117].

The following theorem elucidates our special interest in sound quasi-homomor­

phisms. It states the basic idea of the whole translation approach.

5.11 Theorem: If 8 is a strongly (weakly) sound quasi-homomorphism from .cn

to .cL f- the derivability relation induced by a sound calculus of .cL r a formula

set and <p a formula in.cn with 8(r) f- 8(<p), then r t= <p (resp. r 1= <p).

Proof: Because of 8(r) f- 8(<p) we have that 8(r) U { -,e(<p)} is unsatisfiable.

Because of homomorphy in -, there is no model of 8(ru{ -'<p}). Hence by soundness

there is no model of r u { -'<p}. In other words every model of r is a model of <po

Because of theorem 3.19 this conclusion holds for both strong and weak models .

•

5.2 Translations of Unsorted Higher-Order Logic

In the following we are interested in translations into .cl or ..cl, because there are

well-known complete calculi and strong theorem provers for these calculi. If we

find a sound translation the theorem above guarantees that proofs of a translated

problem in ..cl or .cl are also proofs for the original problem. Strong completeness

of such a translation is not obtainable because of GODEL'S incompleteness result,

but a priori nothing speaks against weak completeness, that is, there might be

r	 amorphism e from ..cn to ..cl such that, if r 1= <p then 8(r) f- 8(<p) in ..cl .
.cl is not really appropriate as the target logic for a translation, but a sorted

version .cl is preferable, because in .cl it is not necessary to relativize the type

information; hence these translations are structure conserving and the proofs can

easily be mapped back. For a direct translation into £1 see BENTHEM and DOETS

[6, p.316-320].

5.2.1 A Sufficient Criterion for Soundness

In this section we give a sufficient critei"ion for the soundness of translations of

formulae of .cn into formulae of .cl, which is strong enough to cover most require­

ments. In addition we give an example for such a sound translation.

64 Chapter 5

— If we translate into a first-order logic, the first case for 0(a,a1, . . . ‚am) can
only be chosen if there is no quantifier on a .

In the following we presuppose the existence of a sound and complete calculus
for order—sorted first—order logics as i t has been developed for example by MAN-
FRED SCHMIDT—SCHAUSS [117].

The following theorem elucidates our special interest in sound quasi—homomor—
phisms. It states the basic idea of the whole translation approach.

5.11 Theorem: If 6) is a strongly (weakly) sound quasi-homomorphism from £"
to L i , l- the derivability relation induced by a sound calculus‘of ‚Ci, I‘ a formula
set and (,0 aformula in £" with ®(I‘) l- ®(<p), then I‘ E cp (resp. I‘ [= cp}.

Proof: Because of ®(I‘) l- 9(<p) we have that 9(1‘) U {-19((,o)} is unsatisfiable.
Because of homomorphy in “1 there is no model of 9(I‘U {—Igo}). Hence by soundness
there is no model of I‘ U {-190}. In other words every model of I‘ is a model of cp.
Because of theorem 3.19 this conclusion holds for both strong and weak models.

.

5.2 Translations of Unsorted Higher-Order Logic

In the following we are interested in translations into L‘ or £}, because there are
well-known complete calculi and strong theorem provers for these calculi. If we
find a sound translation the theorem above guarantees that proofs of a translated
problem in LI or EX are also proofs for the original problem. Strong completeness
of such a translation is not obtainable because of GÖDEL’S intompleteness result,
but a priori nothing speaks against weak completeness, that is, there might be
a morphism G) from C” to E l such that, if I‘ I: cp then ®(I‘) l- O(<p) in Cl .
£1 is not really appropriate as the target logic for a translation, but a sorted
version Ck is preferable, because in EX it is not necessary to relativize the type
information; hence these translations are structure conserving and the proofs can
easily be mapped back. For a direct translation into C l see BENTHEM and DOETS
[6, p.316—320].

5 .2 .1 A Sufficient Criterion for Soundness

In this section we give a sufficient criterion for the soundness of translations of
formulae of £" into formulae of ‚CK, which is strong enough to cover most require—
ments. In addition we give an example for such a sound translation.

Translations

5.12 Theorem: lfe is an injeetivequasi-homomorphismfrom £n(s) to £1(S'),

then e is weakly sound.

Proof: The proof consists of five steps. In the first step we introduce the basic

notions, in particular a formula set r in £n(s) and an arbitrary model M =

({l'-r}n.1) of r. In the second step we construct out of the frame fDr}r a new

one. The individuals of this frame consist of the sets VE>(r) for T =J. o. We complete

these sets to a frame by closing it as in theorem 3.19. The proper idea is to view the

elements of 1Jr even for higher-order T as individuals with additional properties.-In the third step we define an interpretation function .1. For all constants c in

S we define .1(8(c)) := .1(c). For ,the new constants aa we define .1(aa) as

the application of the first argument to the rest. In the fourth step we show by

induction on the construction of terms, that the quasi-homomorphism property is-compatible with the model property. Formally we show Vr 0 e = V(l. In the

fifth and last step we use this property to show that M is a model of 8(r).

S t e p 1:

Let M be a weak model of a formula set r in £n(s), then M is equal to ({1Jr}r,.1)

for a frame {1Jr }r and an interpretation function .1. M is a weak model for any

r.p out of r, that is, Vt' (r.p) = T for every assignment e. We are going to construct

a model M out of M and show that M is a model of e(r.p). In the sequel we

abbreviate 8(T) to T for all types T.

S t e p 2:

\Ve define the sets Vr := 1Jr for all types T in £n(s). Note that the T are types

and hence in particular they are sorts, which are mapped on sorts in £1. All the

T are sorts of type t. For all sorts of £1, which are not in the image of 8 (if there

are any), we can define the corresponding universe in an arbitrary way, since the

corresponding symbols do not occur in 0(r), for instance we can choose them all

as V"" = {e}, the same singleton set.

The function universes and predicate universes are defined for all K, = (K,1 X ... X

K,m -+ Jl) by V"" = F(V""l' ... ,V""m; V/L), where the K,i are arbitrary sorts of type

t and Jl is a sort of type t or o. All these V"" form our frame. Since we map

to first-order, we have no sorts of s~cond or higher order, so we have defined the

frame {V""}",, completely.

S t e p 3:

In this step we define the interpretation function :r - in order to complete the

definition of an interpretation ({V""}",,, .1).

Translations 65

5.12 Theorem: If ® is an injective quasi-homomorphism from £"(8) to EMS'),
then 6) is weakly sound.

Proof: The proof consists of five steps. In the first step we introduce the basic
notions, in particular a formula set I‘ in £"(S) and an arbitrary model M =
({D‚}„ , J) of I". In the second step we construct out of the frame {DT}T a new
one. The individuals of this frame consist of the sets fie”) for 7' % 0. We complete
these sets to a frame by closing it as in theorem 3.19. The proper idea is to view the
elements of D, even for higher-order T as individuals With additional properties.
In the third step we define an interpretation function ff For all constants c in
8 we define (‚f(®(c)) :: J (c) . For the new constants a“ we define f(a“) as
the application of the first‘ argument' to the rest. In the fourth step we show by
induction on the construction of terms, that the quasi-homomorphism property is
compatible with the model property. Formally we show V2]? 0 C") = V5“. In the

fifth and last step we use this property to show that M is a model of ®(I‘)

Step L

Let M be a weak model of a formula set I‘ in £"(S), then M is equal to ({D,}, J)
fOr a frame {D,}T and an interpretation function J. M is a weak model for any
go out of P, that is, VeMOp) = T for every assignment E . We are going to construct
a model M out of M and show that M is a model of ®(<p). In the sequel we
abbreviate 0(7‘) to i" for all types T.

S t e p 2:
We define the sets 73; := D, for all types 7' in £" (8) . Note that the 7' are types
and hence in particular they are sorts, which are mapped on sorts in Eh. All the
7"- are sorts of type [„ For all sorts of 5%, which are not in the image of G (if there
are any), we can define the corresponding universe in an arbitrary way, since the
corresponding symbols do not occur in 90"), for instance we can choose them all
as fin = {6}, the same singleton set. ,
The function universes and predicate universes are defined for all n = (m x - - - x
mm —> p) by 5,; = f (fiq, . . . ‚73%; 15“), where the Is.- are arbitrary sorts of type
1. and ‚u is a sort of type L or o. All these 13K form our frame. Since we map
to first—order, we have no sorts of second or higher order, so we have defined the
frame {13,35 completely.

Step 3:

In this step we define the interpretation function if in order to complete the
definition of an interpretation ({Ödmff).

66 Chapter 5

For all constants e of type 7 in S we define .l(8 (e)) := .:J(e). This mapping is

well-defined, because 8 is injective. In addition, we have that 8(e) is of sort T,

so th?-t J(8(e)) must be an element of i>r, which is so, because :l(c) E V r and

Vi = Vr.

:F(V

Then we define the interpretation function !i for the new constants oa. Let

a = 8(J) and f be of type 7 = (71 X ... X 7 m -t 0-), then oa must have the

sort I\, = (T X Tl x ... x Tm -t u). Hence we must map it to an element of

V", = :F(Vi ,V il , .. . ,Vim; Vii)' We do that by defining j(oa)(x, Xl,'" ,xm) =

x(Xl, ... ,xm) for all X E Vi and all Xi E Vf ;. This is well-defined since Vf =V r ~

Tl , ••• ,Drm ;Du) = :F(Vfl , .•. , Vfm;Vu), hence X is a function of the required

sort and the range sort is the range sort of oa.

For all other constants e of sort I\, we choose !iCe) as an arbitrary element out of

V",. Since these elements do not occur in 8(f), it does not matter how they are

interpreted.

S t e p 4:

In this step we show that for every assignment [in M there is an assignment ~ in

M, so that for all terms (and hence all formulae) t we have: V.:f 0 8(t) =Vt'(t).

Let [be.:n arbitrary assignment in M. We define ~ as ~(x) = [(8(x)). Now we ­

prove Vr 0 8 = Vf by induction on the construction of terms and formulae.

For terms we have:

Tl	 For all variables Xn VF(8(xr)) = [(0(xr)) d~ ~ ~(xr) = Vf(xr).

T2	 For all constants C Vf(8(cr)) = !i(8(cr)) de:t/ :l(cr) = Vt'(cr).n

1':3	 For all composed terms that start with an m-ary function term f with a =
ey) so that D(a, e(td, .. '.2-8(tm)) is defined as a(0(tl), ... , 0(tm)) we have:

Vt'(8(J(t l , ... , tm))) = V.:f CD (8(J), 8(td,· .. , 0(tm))) =

V?(8(J)(0(it), ... , 8(tm))) ~ V~(8(J))(VF8(tl)"'" V~e(tm)) In~yp
~ ~ e e

Vt'(J)(Vt' (t l), ... ,Vt'(tm)) =

Vt'(J(tl, ... , tm)).

T4	 For all composed terms that start with an m-ary function term f with a =

8(J) so that D(a, e(tl), ... , 8(tm)) is defined as oa(a, 8(td, ... , 0(tm)) we

have:

Vf(8(f(t ll ... , tm))) = Vf(D(8(f), 8(td,···, 8(tm))) =

VF(Qa(8(J), 8(td,· .. ,8(tm))) ~

66 Chapter 5

For all constants c of type T in 8 we define f(6(c)) := J (c) . This mapping is
well-defined, because ® is injective. In addition, we have that (-)(c) is of sort 7‘,
so that j(®(c)) must be an element of @, which is so, because ‚_7(c) € D, and
13. = D..
Then we define the interpretation function .? for the new constants a“ . Let
a = ®(f) and f be of type T = (7-1 x x rm —-> a) , then a“ must have the
sort & = (? x 7‘1 x >< 7",n —-> &). Hence we must map it to an element of
13,.z = f (ÖT- ‚Ö ; „ . . . ‚fi ;m ;fiä) . We do that by defining f (a °) (m‚w1 , . . . ,mm) =
x(x1‚ . . . ‚mm) for all x 6 ’13; and all 2:,- E 13;... This is well—defined since 13; = D, (_:

f(D„ , . . . ‚DM; D.,) = .7-‘(1’21 , . . . ,fifm; 5 ;) , hence x is a function of the required
sort and the range sort is the range sort of a“ .

For all other constants c of sort fs: we choose f(c) as an arbitrary element out of
Ö... Since these elements do not occur in @(F), it does not matter how they are
interpreted.

S t e p 4:

In this step we show that for every assignment 5 in fi there is an assignment € in
M, so that for all terms (and hence all formulae) t we have: V?" o 9 (t) =))?“ (t)

Let Ebe an arbitrary assignment in A7. We define £ as {(w) = E(G)(:c)). Now we
prove V244 0 G) = VCM by induction on the construction of terms and formulae.

For terms we have:

T1 For all variables w„ Vg(9(x,)) = g(®(:c.‚.)) d i e {(567) = iii/“(%).

T2 For all constants c., vg4\(e(c.)) = f(®(c.)) “=3 .7(cf) = V3367)-

T3 For all composed terms that start with an m—ary function term f with a :
eg) so that 0(a, 0(t1), . . 390m» is defined as a(6(t1), . . . , ®(tm)) we have:
V£A(®(f (t1 ‚ - - - ‚tm))) = V£‘ (9 (@(f) ‚ 901) , - - -,9(tm))) =
v?(®(f)(e(t1>.... .eumm“ä V?(e(f))(vg%(t1>‚....vg’feumn“‘?”
V€‘(f) (Vé“(t1) ‚ - - - ‚Vé“(tm)) =
Vg“(f(t1, . . . ,tm)).

T4 For all composed terms that start with an m—ary function term f with a =
@(f) so that 9(a,@(t1), . . . , 6(tm)) is defined as a“(a,®(t1), . . .‚®(tm)) we
have:

imma. . . . ,tm») = 1257mm, em), . . . , @(tmm =
Véw(aa (e (f) ‚ @(t l) , . . . ‚ () (tmD) (i—if

Translations

VF(aa)(V~8U), V~8(h), ... ,Vf'8(tm)) In~YP
e e e <" ~

J(aa)(vttu), vtt(t1), ..• , Vtt(tm)) dei...7 vttU)(Vt(h), ... ,vtt(tm)) =

vtU(tI, ... ,tm)).

For formulae we get:

Fl	 An atomic formula is a special term, hence we have already proved the

required property above.

F2 For a conjunction we have:
- - - - Indh

Vt'(8(ipl/\ ip2)) = Vt'(8(ipl) /\ 8(ip2)) = Vt'(8(ipl)) /\ Vt'(8(ip2)) =YP

Vtt(ipl) /\ Vt(ip2) = Vt(ipl /\ ip2)'

F3	 For a negation we have:

Vf(E>(-,r.p)) = Vf(-,8(ip)) = ,,-'Vf(E>(ip)) In~yp -,Vr (ip) = Vr (-'r.p).

F4	 For a quantification we have:

Vf(8(VxTip)) = Vf(VxrE>(ip)) = Vd E VfV~T<-d)(E>(ip)) =

Vd E 'DTV~(XT)d)(E>(ip)) IndJYPVd E 'DTVXTdj(ip) = Vr(VXip).

Here we use that foE> = ~. for all assignments and hence f[8(x T) - d] 08 =
~[XT - d].

Hence we have shown that Vf 0 E> = Vr holds for all formulae.

S t e p 5:

Now we use this property to show that M is a model of 8(f). Let ip be an

arbitrary formula in r. We have to show that M is a model of 8(r.p). Let f be

an arbitrary assignment in M and e be defined as f 0 8, then we can conclude

if vtt (ip) = T for all assignments ein M, then this relation holds especially for

e= e, so we get VF(E>(r.p)) = T for all assignments f in M, hence M is a mode;

of 8(r.p). •

5.13 Theorem: If 8 is an injeetive quasi-homomorphism from .en(S) to .el(S'),
then 8 is strongly sound.

Proof: If there is a strong model of a formula set r in .en(S) then this model is

also a weak model. By the previous theorem there is hence a weak model of 8(r)

in .cl(S'). By a sorted version of theorem 3.19 there is also a strong model of

8(f). •

Translations 67

V§<a“><V§6(f>.v§e(m, . . . , vga‘eum» he”

?WW?” ” W501), - - „Wann “!=” V?‘(f)(V<M(t1)‚.„‚Vé“(tm)) :
V§M(f (t1a ° - - , im» .

For formulae we get:

F l An atomic formula is a special term, hence we have already proved the
required property above.

F2 For a conjunction we have: A A

metal A 992» = mew A atom = vgwawm A weeps) "“?”
VEM(901)/ \ WWW) = VeMWI /\ 902)-

F3 For a negation we have:
A A " Ind. .vg‘mw» = alfa—‘em) = ?Vf‘(@(so)) =“? www) = mw).

F4 For a quantification we have:
vswww» = vgflvßew» = Vol 6 fifvgjwwwn =

A Ind.)!Vd € DTV£)($T)_Q(®(QD)) =“) Vd € DTV£T_d](<p) = Vg“(Vmcp).

Here we use that go G = € for all assignments and hence €[e(z.‚) <— d] o @ =
{[zur (— d].

Hence we have shown that V? o (") = VéM holds for all formulae.

S t e p 5:
Now we use this property to show that fix? is a model of @(I‘). Let cp be an
arbitrary formula in I‘. We have to show that KZ is a model of @(cp). Let E be
an arbitrary assignment in A7 and {’ be defined as E 0 ®, then we can conclude
if V3480) = T for all assignments { in M, then this relation holds especially for
{ = E', so we get V§(G(<p)) = T for all assignments E in KZ, hence Ü is a model
of @(cp). I

5.13 Theorem: IfO is an injective quasi-homomorphism from E"(S) to CMS"),
then G) is strongly sound.

Proof: If there is a strong model of a formula set I‘ in £"(5) then this model is
also a weak model. By the previous theorem there is hence a weak model of (-)(l‘)
in EMS’). By a sorted version of theorem 3.19 there is also a strong model of
@(I‘). I

68 Chapter 5

5.14 Example: Let us see how to translate the predicative definition of a group

into first-order logic. We drop the type information for readability, group is of

type (~ X (t X t X l -+ 0) -+ 0), G of ty£e t, + of type (t X t X t -+ 0), - of

type (l X t -+ 0), and so on. (In the translation to first-order logic these types are

transformed into the sorts ("l", "(l x l X l -+ 0)") for group, and so on.) A group

can be defined as follows*:

1. VG, + group(G, +) ~ associative(G, +)	 1\

30	 (0 E G 1\ neutraLelement(G,+,O) 1\

:3- inverse(G,+,O,-))

2. VG, + associative(G, +) ~

Vu,v,w,x,y,z	 u,v,w,x,y,z E G 1\ +(x,y,u) 1\ +(u,z,w) 1\

+(y,z,v) ==} +(x,v,w)

3. VG, +, ° neutraLelement(G, +,0) {::::::} "'Ix x E G ===?

+(X,OlX) 1\ +(O,x,x)

4.	 VG,+,O,-"inverse(G,+,O,-) ~ Vx,y x,yEG 1\ -(x,y)==}

+(x, y, 0) 1\ +(y, x, 0)

This formula set is a subset of £3. Now we give a translation into a formula set of

'cl. The signatures are obvious, hence omitted. The translation is sound, because

it is an injective quasi-homomorphism. We choose the aa so that they depend

only on the type of their arguments and write the sort of the first argument as a

string of the corresponding type, that is, 8(l X l -+ 0) is written as ,,(l x l -+ 0)".

1. VG, + group(G, +) ~ associative(G, +)	 1\

:30	 (0 E G 1\ neutraLelement(G, +, 0) 1\

:3 - inverse(G, +, 0, -))

2. VG,+ associative(G,+) {:::::? Vu,v,w,x,y,z u,v,w,x,y,z E G 1\

a"(tXtXt-+o)"(+,x,y,u) 1\

a"(tXtXt-+o)" (+, u, z, w) 1\

O! "(tX tX t-+o) 11 (+, y, z, v) ==}

o:"(tXtXt-+o)" (+, x, v, w)

3. VG,+,O neutraLelement(G,+,O) ~ "'Ix	 x E G ==}

a" (t X tX t-+o)" (+, x, 0, x) 1\

a"(tXtXt-+o)" (+,0, x, x)

*We write in this example simply x, yE G instead of x E G 1\ yE G.

68 Chapter 5

5.14 Example: Let us see how to translate the predicative definition of a group
into first—order logic. We drop the type information for readability, group is of
type(Lx(L><L><L—)o)—->o) ,Gof tyEeL‚+of type(LXL><L—+o)‚—of
type (L x L —+ 0), and so on. (In the translation to first-order logic these types are
transformed into the sorts ("L", "(L x L x L _» a)") for group, and so on.) A group
can be defined as follows":

1. VG, + group(G, +) (==> associative(G, +) A
30 (0 E G A neutral_element(G,+,0) A

3 — inverse('G‚+,0, ——))

2. VG,+ associative(G,+) (=>
Vu,v ,w ,a : , y , z u ,v ,w ,w ,y , zEG A +(x ,y ’u) A +(u , z , 'w) A

+(y,z ,v) => +(a:,v‚'w)

3. VG,+,0 neutral_element(G,+,0) <=} Va: :1: € G==>
+(z,0,a:) A +(0,$,$)

4. VG,+,0,—‘»'in'verse(G,+,O,—) (=> Vw,y a:,y GG A —(a:‚y)==>
‘+(:c,y,0) A +(y,:z:,0)

This formula set is a subset of £3 . Now we give a translation into a formula set of
Ck. The signatures are obvious, hence omitted. The translation is sound, because
i t is an injective quasi-homomorphism. We choose the a“ so that they depend
only on the type of their arguments and write the sort of the first argument as a
string of the corresponding type, that is, ®(L X L —+ o) is written as "(L x L —-+ o)".

1. VG,+ group(G,+) <=ä associative(G, +) A
30 (0 E G A neutral-element(G,+‚0) A

3— inverse(G,+,0,—))

2. VG,+ associative(G,+) (=>Vu‚v‚w,a:‚y,z u,v ,w,m,y ,z E G A
a" (l ‚XL—r0)" (+ ,$ ‚y ’u) A

a"(‘x"‘""°)"(+,u,z,w) A
a"(LXLXL-*0)"(+,y’ 2 , v) :::}

a" (LXLXL—+o)" (+ ,x ,v ,w)

31 VG,+,0 neutral_element(G‚+,Ö) (=> Vac a: € G ==>
a"(°’“"‘“’°)"(+,x,0,z) A
a"(‘x‘x‘"’°)" (+, 0, :v, m)

*We write in this example simply a:, g E G instead of a: E G A y e G.

69 Translations

4. VG,+,O,- inverse(G,+,O,-) ~Vx,y x,y E G /\
l(tXtO)" () ----' ­a -,x,y ---T

a" (tXtXt	 o) 11 (+,x,y,O) /\

a" (tXtXt	 o) 11 (+, y, x, 0)

This translation is clumsy, because we do not use equality; a translation with

equality can be found under example 5.29 below.

5.15 Remark: Note that the formulae that are obtained by these translations are

not essentially more complex than the original, as the structure of the formulae

(number and position of quantifiers and junctors) is respected. In the image the

terms are never more nested than in the original. The only thing that can change, is

that the number of arguments in a term is increased by one. The following theorem

is important for lifting back a the proof of a translated first-order theorem to a

proof in higher-order logic.

5.16 Theorem: If8 is a quasi-homomorphismfrom£n(s) to£l(8(S)U{aa}),

then 8 is surjeetive.

Proof: This follows immediately from the quasi-homomorphism property. •

5.17 Remark: As important as it is to find a proof as important it is to be

able to communicate it. Of course it is very desirable to present the proof in the

language, which has been input by the user, because he is familiar with it. If

we have a first-order proof procedure, which produces a proof, for instance as a

sequence of formulae, the final proof can be translated back into higher-order logic,

because the mappings e are all bijective. In other words if we have a first-order

calculus then this calculus provides a calculus for £n by 8-1 . Sureiy this cannot

solve all problems of proof presentation (for some literature on proof presentation

see page 108), but it shows that the translation method is well compatible with

these methods.

5.2.2	 The Standard Translation From Unsorted Higher­

Order Logic to Sorted First-Order Logic

Now we want to define morphisms <I>n from.e n to £t: which are not only sound but

also complete. We define the morphisms for odd n, for even n they are obtained as .

the restriction of the next higher odd n, that is <I>2n := <I>2n+l 1.c2n. The morphisms

<I> are defined for fOlmulae as <I>(cp) = w(cp)U3a , where W is a quasi-homomorphism

Translations 69

4. VG,+,O, — inverse(G,+,0, _) (==> V$,y m,y E G /\

a" (LXL_’O)„ (—’$’ y) =>

a"(‘x‘x‘_’°)"(+,x,y,0) A
a"(‘x‘x" ' °)" (+ ,y ,a : ,0)

This translation is clumsy, because we do not use equality; a translation with

equality can be found under example 5.29 below.

5.15 Remark: Note that the formulae that are obtained by these translations are
not essentially more complex than the original, as the structure of the formulae
(number and position of quantifiers and junctors) is respected. In the image the
terms are never more nested than in the original. The only thing that can change, is
that the number of arguments in a term is increased by one. The following theorem
is important for lifting back a the proof of a translated first-order theorem to a
proof in higher-order logic.

5.16 Theorem: IfG is a quasi-homomorphism from £"(8) to £},(9(8) U {a°}),
then @ is surjective.

Proof: This follows immediately from the quasi—homomorphism property. I

5 .17 Remark: As important as i t is t o find a proof as important i t is t o be
able to communicate it. Of course i t is very desirable to present the proof in the
language, which has been input by the user, because he is familiar with it. If
we have a first-order proof procedure, which produces a proof, for instance as a
sequence of formulae, the final proof can be translated back into higher-order logic,
because the mappings G) are all bijective. In other words if we have a first-order
calculus then this calculus provides a calculus for C” by 9 ' 1 . Surely this cannot
solve all problems of proof presentation (for some literature on proof presentation
see page 108), but it shows that the translation method is well compatible with
these methods.

5.2 .2 The Standard Translation From Unsorted Higher-
Order Logic to Sorted First-Order Logic

Now we want to define morphisms <I>n from £" to £115 which are not only sound but
also complete. We define the morphisms for odd n , for even n they are obtained as '
the restriction of the next higher odd n , that is (D2,, := <I>2n+1 |L2n. The morphisms
<I> are defined for formulae as <I>(cp) = \Il(<p)UEo„ where @ is a quasi-homomorphism

Chapter 5 7°

and 2 a are special extensionality axioms for the a (compare remark 3.20). In the

following we drop the index- n. Again we abbreviate apply as a.

5.18 Definition (Standard Translation <P2n-d: Let S2n-1 = UT ST = UT s~onst

UUT s~ar be the signature of a logic in £2n-1. In order to define a morphism <I>

to £t=, we have to define the signature SE of the target logic and we have to fix

how formulae are mapped.

Let SE be equal to (S,"E, 5, l;, 6)

1.	 At first we define S. Let S = UT s~onst U UT S~ar. S is the union of the

following sets:

(a) s~onst = U s~onst
ord(T)<n

(b) S(tO;'~~Xt->t) = {aT Iord(r) < n 1\ r = (r1 X •. , X rm -+ 0"),0" f= o}--...-.-­
m

sconst - U sconst U() (tx ... Xt->o)­C	 T
'-...-.' ord(T)=n

m aritY(T)=m

{aT Iord(r) < n 1\ r = (r1 x ... x rm -+ o)}

with elements aT which are new, that is, which do not occur in S. In

addition, for m = 2 we have in S(tO;:':""o) the equality sign =.
(d) s~ar = Us~ar,

T

2.	 "E is defined as the set

{T I ord(r) < n} U

{(T X T1 X .•. x Tm -+ er) I r = (r1 X .•• x rm -+ 0") 1\ ord(r) < n} U

{(Tt x ... X Tm -+ 0) I r = (r1 X ... X rm -+ 0) 1\ ord(r) = n}

The function - must map r injectively to new names. We can realize this

funct.ion for instance by mapping the type to the string consisting of the

type, that means, (l X l -+ l) is mapped to 11 (l X l -+ l) ", what is viewed as a

primitive and not as a composed object. Instead of 0 we often shortly write

o.

3.	 5 is defined for variables <I>(x T) with T = (T1 X .•. X Tm -+ 0") as

s(<I>(x)) =	 for ord(r) < n
T

{T
(Tt	 x ... x Tm -+ er) for ord(T) = n

4.	 ~ is defined as

(a) T~l for all r with ord(T) < n.

(b) (Tt x ... x Tm -+ er) ~(l X •.• X l -+ l) for 0" f= o.

70 Chapter 5

and Ea are special extensionality axioms for the (1 (compare remark 3.20). In the
following we drop the index-n. Again we abbreviate apply as a .

5.18 Definition (Standard Translation <I>2„_1): Let 5271-1 = UT 8, = U, Sim"
UUT 8:” be the signature of a logic in [?"—1. In order to define a morphism (I)

to [kg , we have to define the signature 32 of the target logic and we have to fix
how formulae are mapped.

Let 32‘ be equal to (§ ,2 ,5 ,E ,5)

1. At first we define 3 . Let 3 = U, 35m" U U, 33”. 3 is the union of the
following sets:

(a) gfonst = U sponst
ord(1')<n

(b) äffgffw) = {of |ord(7) < n A T = (7'1 x . . . x Tm —> a) , a # o}

(c) 35:;3fm, = U 82““ U
T a::tc;'((:)):':n

{of |ord(T) <n /\ T : (7'; x XT". —>o)}
with elements of which are new, that is, which do not occur in S . In
addition, for m = 2 we have in $803510) the equality sign E .

(d) 3?” = US$“?
2. E is defined as the set

{i‘- | ord(T) < n} U
{(7‘xfl><~-xfm—+&) |T=(n X-°~XTm—)O') /\ ord(1 ')<n}U
{(7‘1x---X7"m«—>6)|T=(Tl ><—-—><Tm——>o) /\ ord(T)=n}
The function " must map T injectively to new names. We can realize this
function for instance by mapping the type to the string consisting of the
type, that means, (L x L _» (‚) is mapped to "(L x L —+ L)", what is viewed as a
primitive and not as a composed object . Instead of 5 we often shortly write
0 .

3. 5 is defined for variables @(mf) with T = (71 x - ~ ° x Tm —> a) as

s (q>($ f)) = '7' for ord(‘r) < n
("F1 X- - -><?m—->6) fo ro rd (- r)=n

4 . E i s defined as

(a) 7‘21. for all 7' with ord(T) < n.

(b) (7‘1x---X7”-m—>&)E(L><---><L-—>t)for03£o.

Translations

(c)	 (Tl X ••• x Tm -+ 0)[;(1.. X ••• X I.. -+ 0)

5. h is defined as the set of all term declarations

(a)	 (af : (T x Tl x ... x Tm -+ a) for all 7 = (71 X ••• X 7m -+ 0"» with

ord(7) < n,

(b) for all constants c of type 7 of order less than n, (e(c) : T),

(c) for all constants e of type 7 = (71 X •.. X 7m -+ 0") of order equal to n,

(G(e) : (Tl x '" x Tm -+ a», and

(d)	 (=: (T x T -+ 0» for all 7 with ord(7) < nand 7 of. o.

Now we are going to define how terms and formulae are mapped by the morphism

W, which behaves on the signature exactly like cI>, with the only exception that =
is not in the image of W.

For terms it is defined inductively by:

Tl	 For a term with an m-ary function term f of type 7 as top expression we

define

W(J(tl, ... , tm » = af('I!(J), w(t 1), ••. , w(tm »

For formulae we define W inductively by:

Fl For an atomic formula with predicate constant p of order n as top expression

we define

F2 For a term with an m-ary predicate term p of type 7 and order less than n

as top expression we define

w(p(tl, . .. , tm »= af(w(p), w(td, . .. , w(tm »

F3 For a conjunction we define

W(<PI /\ <P2) = W(<PI) /\ W(<P2)

F4	 For a negation we define

w(-,<p) = -,w(<p)

F5	 For a quantified formula we define

w(Vx<p) = V'l1.(x)'l1(<p)

3 a	 is the set consisting of the following' formulae of £1.::::

Translations ‚71

(c)(1"'1 X-- - Xi‘m ——>0)E(l,x --~><I,—>o)

5. 5 is defined as the set of all term declarations

(a) (of : (TX‘FI x - - -m —-> 6') for allT = (T1 x - - - XTm —>a)) with
ord(T) < n ,

(13) for all constants c of type T of order less than n , (®(c) : '7'),

(c) for all constants c of type T = (T1 x ° - - >< Tm ——+ 0) of order equal to n,
, (®(c) : (T1 x . . . >< 7"",n —-+ 5)) , and

(d) (E : (7"- x 7" -—> ö)) for all T with ord(T) < n and T :;é o.

Now we are going to define how terms and formulae are mapped by the morphism
‘11, which behaves on the signature exactly like (I), with the only exception that E
is not in the image of \II.

For terms it is defined inductively by:

T1 For a term with an m-ary function term f of type T as top expression we
define

wm, . . . ,tm» = a*(w(f)‚w(t1>‚. . .,w(tm))

For formulae we define \II inductively by:

F1 For an atomic formula with predicate constant p of order n as top expression
we define

‘I’(p(t1‚-——‚tm)) = ‘I’(P)(‘I’(t1)w-a‘1’(tm))
F2 For a term with an m-ary predicate term p of type T and order less than n

as top expression we define

‘I'(p(t1‚-„‚tm)) = 01*(‘I’(P), \P(t1)‚ - - - , \I'(tm))

F3 For a conjunction we define

‘I’(901 A 802) = \I’(<p1) A ‘I’(<P2)

F4 For a negation we define
‘I’("‘P) = “‘I’üp)

F5 For a quantified formula we define
WWW) = V‘I’.($)‘1’(<P)

Ea is the set consisting of the following'formulae of ‚61,5:

72 Chapter 5

3~	 For every function constant a f with T = (Ti x .. , X Tm -+ 0"),0" =1= 0:

Vf:rV9:r(Vxt, ... ,VXfm

af(J, Xl, ... , xm) == af(g, Xl, •.. , xm)) :::=} f =9

3~ For every predicate constant a:r with T = (TI X ... X Tm -+ 0):

VP:rVq:r(VX~l" .. ,Vxfm

af(p,x\ ... ,xm) ~ af(q,x\ ... ,xm))~p q

We define <p(<p) = W(<p) U 3Q" Analogously for formula sets <p(r) = W(f) U 3Q"

5.19 Remark: It should become apparent, why we excluded types like (0 -+ 0):
Let P be a predicate of this type, Q be a predicate of type (t -+ 0), and e be a con­
stant of type t. Then W(P(Q(e))AQ(e)) would be"' a"(O->O)"(P,a"(t->O)"(Q,e)) A

et I/(HO) 1/ (Q, e) or P(et "(t->o)" (Q, e)) A a "('->0)" (Q, e) which is not well-formed, be­

cause al/(t->o)" (Q, e) has to be a formula and a term at once. Even worse in general

a uniform (quasi-homomorphic) translation is not possible, because Q(e) must be

translated in the first case to a term and in the second to a formula. That is not

allowed in first-order logic. This example is also a counterexample for the correct­

ness of the translation given by BENTHEM and DOETS [6] for a language without

function symbols.

A possible translation of the unrestricted typed higher-order logic also has to pro­

vide a translation of formulae of the kind P(Q(c)) A Q(c). This is possible by

having only function symbols a f and translating all other symbols into object

variables or object constants. Especially the junctor "A" has also to be translated

to a constant. A possible translation would be:
et 1/(0-+0)"(1\, et "(o->o)I/(P, a I~(t-+O)"(Q, e)), a 11 (t->o) 1/(Q, e)) = TRUE. That is, the

problem is completely encoded into an equality problem. In order to gain com­

pleteness it would be necessary to add axioms for the junctor "A".

We have not define~ translations of arbitrary formula sets of £w. For instance with

the unary predicate symbols p(:->o)' p«t-+o)-+o)l p«((t-+o)-+O)-+O) , ... , the formula set
r = Un;:: I {pn+l (pn)} is not translatable. Of course our mappings <Pn could be

extended to a mapping <Pw in such a way that we have as predicates only the a:r.

\Ve have not done this, because in all practical cases only finitely many formulae

are involved and so we can have a translation <P n . This gives a translation that

preserves the property of being a predicate for as many symbols as possible.

5.20 Lemma: W is an injeetive quasi-homomorphism from £2n-I(S) to £l(w(S)).

*We write here for all types T the corresponding sort f as "T".

72 Chapter 5

35 For every function constant cnz'F with T = (Ti x - . . x Tm ——> a) , a 75 o:
Vf;Vg;(V$§1, . . . ,Vrcg;

aT(f ,x1, . . . , : r '”) E a’(g,a:1,...,mm)) ==> f Eg

E: For every predicate constant a? with T = (7'1 x - - . x rm —-> 0):
Vp;Vq;(Vm,1.1,. . . ,Vm’gn

a7(p,w1,.. . ,w’") (=> aT(q,a:1‚. ..,.1:'”)) => p E q

We define @(go) = \Il(<p) U Ea. Analogously for formula sets <I>(I‘) = \Il(1") U Ea.

5.19 Remark: It should become apparent, why we excluded types like (0 —> 0):
Let P be a predicate of this type, Q be a predicate of type (I, —+ o), and c be a con—
stant of type L. Then \ I I (P(Q(c)) A Q(c)) would be“ a"(°"’°)"(P,a"("'°)"(Q,c)) A
a"(“*°)"(Q, c) or P(a"(“’°)"(Q,c)) A a"(“’°)"(Q, c) which is not well-formed, be-
cause a"(‘—’°)" (Q, c) has to be a formula and a term at once. Even worse in general
a uniform (quasi-homoinorphic) translation is not possible, because Q(c) must be
translated in the first case to a term and in the second to a formula. That is not
allowed in first—order logic. This example is also a counterexample for the correct-
ness of the translation given by BENTHEM and DOETS [6] for a language without
function symbols.

A possible translation of the unrestricted typed higher-order logic also has to pro-
vide a translation of formulae of the kind P(Q(c)) A Q(c). This is possible by
having only function symbols a:i and translating all other symbols into object
variables or object constants. Especially the junctor “A” has also to be translated
to a constant. A possible translation would be:
a"(°_’°)"(A,a"(°"°)"(P,a'i(‘—’°)"(Q,c)),a"(“’°)"(Q,c)) E TRUE. That is, the
problem is completely encoded into an equality problem. In order to gain com-
pleteness i t would be necessary to add axioms for the junctor “A ” .

We have not defined translations of arbitrary formula sets of L‘”. For instance with
the unary predicate symbols P(1L—+o)v P(2(L->o)—>o)’ P(:ä(l‚—->a)—ro)—+o)’ . . ., the formula set
F : U„21{P"+1(P")} is not translatable. Of course our mappings <I>n could be
extended to a mapping <I>„‚ in such a way that we have as predicates “only the of.
We have not done this, because in all practical cases only finitely many formulae
are involved and so we can have a translation CI)". This gives a translation that
preserves the property of being a predicate for as many symbols as possible.

5.20 Lemma: \11 is an injective quasi-homomorphism from £2n‘1(8) to £},(‘Il(8)).

*We write here for all types 1' the corresponding sort 1" as " r " .

73 Translations

Proof: In order to show that W is a quasi-homomorphism, we can check the

definition step by step. The required properties for the signatures hold by definition

of W(S). For terms and formulae, we have defined the relation in such a way that

it holds immediately. The injectivity follows from the fact, that different types are

mapped on different sorts in .cl. •

5.21 Theorem: <I> is weakly sound.

Proof: Let M = ({V'T }'T'.7) be a weak model of a formula set r, hence M is a

weak model for any ep out of r, that is, Vt' (ep) = T for every assignment e. We

are going to show that the M in the proof of theorem 5.12 is a model of <.p(ep). By

theorem 5.12 and lemma 5.20 we have that Wis sound.

So it remains to be shown that the extensionality property holds for the a­

functions. Formally:

VM' (Vf::;Vgf(VxL· " ,Vx~m) _
e af(J, Xl, . .. , xm) af(g, Xl, . .• , xm)) ===} f 9 - T.=	 =

Therefore it is necessary to prove that for all F, G in f>f holds: if for all Xl E
~ ~ M' ­
V f1 ,···,Xm E V fm , Vaf.9.X1,. ..,xm....F,G,Xlt ...'Xm](a'T(f,x1, ... 'Xm)) =

vF[G x x](aT(g, Xl,'''' xm)), then VeF[f FG](J) = Vf![f.9F,G](g),ef,g.Xll···,xmF. , 1.·.. , m .g- , ..
that is, F = G.

By the definition of V~9,XlxmF.G,X1,Xm] and the interpretation of aT the pre­
condition is equivalent to F(X1 , ••• , X m) = G(X1 , .•• , X m). Because two functions

are the same, if they have the same values on all arguments, we get F = G.

The axioms for the predicates can be proved to be true analogously. •
5.22	 Remark: <.P is strongly sound, analogously to theorem 5.13.

We shall now show that <.P js weakly complete in the sense of definition 5.6.

5.23 Theorem: <I> is weakly complete.

Proof: The proof consists again of five steps. In the first step we introduce the

basic notion, in particular a formula set r in .cn(S) and an arbitrary model M of

<.p(r). In the second step we define a frame with the help of which we will define a

model for r. This model is defined inductively with the induction base V, := Vi

and Vo := Vo. For composed types 7 = (71 x··· X 7m --+ 0') we define b'T as a subset

of F(b'T1'" . ,D'Tm; Du). We cannot take the whole set, because then we would try
to obtain strong completeness, which cannot be achieved in general. In order to

construct V'T we make use of the interpretations of the a~functions, especially we

construct injective functions ~, which map V f to b'T' In a third step we define an

Translations 73

Proof: In order to show that \II is a quasi-homomorphism, we can check the
definition step by step. The required properties for the signatures hold by definition
of \I!(S) For terms and formulae, we have defined the relation in such a way that
it holds immediately. The injectivity follows from the fact, that different types are
mapped on different sorts in ‚Ch. l

5.21 Theorem: (I) is weakly sound.

Proof: Let M = ({DT}‚. ,J) be a weak model of a formula set I‘, hence M is a
weak model for any cp out of I‘, that is, V£M(<p) = T for every assignment € . We
are going to show that the Ü in the proof of theorem 5.12 is a model of <I>((,o). By
theorem 5.12 and lemma 5 .20 we have that W i s sound.

So it remains to be shown that the extensionality property holds for the a-
functions. Formally:
VF VfTVgT(V:c.7.1,. . , n - = T.

& f (f , $1 , "xm) -—: 7(95 (171, - , $m)) => f—= g

Theréfore i t is necessary to prove that for all F, G in D— holds: if for all X16

Dr” . ,Xm € D1,", vgttfygizlv- ‚ t—FG X11 -1Xm](a1 (f , x l , HMM)) VA

M T M
va t fb '] , . . . ‚mFyGyX11- - -1Xm](a (g , $17 - . . ’ $m)) ‚ then vdfg " ' ,=FG] (f) v£[f MgHFG](g)7

that is, F = G
u . c , ‚T- _By the definition of V£[139.31, „.z-md—FG X1... . ,Xm] and the interpretation of a the pre

condition is equivalent t o F (X1 , . . X) : G'(X1 , . . ,Xm) . Because two functions
are the same, if they have the same values on all arguments, we get F = G.

The axioms for the predicates can be proved to be true analogously. I

5 .22 Remark: {> is strongly sound, analogously t o theorem 5.13.

We shall now show that (Dis weakly complete in the sense of definition 5.6.

5 .23 Theorem: tI> is weakly complete.

Proof: The proof consists again of five steps. In the first s tep we introduce the
basic notion, in particular a formula set I‘ in ß"($) and an arbitrary model M of
@(I‘). In the second step we define a frame with the help of which we will define a
model for I‘. This model i s defined inductively wi th the induction base 15. 2 : ’D;

and @, := D5. For composed types 7' = (1'1 x - - - x Tm —-> 0') we define Ö, as a subset
of .7-"(1571 , . . . , fir“; ’15,). We cannot take the whole set , because then we would try
to obtain strong completeness, which cannot be achieved in general. In order to
construct T), we make use of the interpretations of the a-functions, especially we
construct injective functions h, which map D,; to 15,. In a third step we define an

74 Chapter 5

interpretation function j for [,n. In a fourth step we show by induction on the

construction of terms and formulae that the quasi-homomorphism \]! is compatible

with the model relation. Formally we show Q0 Vr 0 W= vt. ,In a fifth and last

step we use this property to show that j~ = ({i\ }T, j) is a model of r.

S t e p 1:

Let r be a formula set in [,2n-1(S). Let M be a weak model of q>(r). Then M
is a model of q>(cp) for every formula cp in r. Let M be ({V,,JII:,J) and ~ be

an arbitrary assignment. Then we have Vf(q>(cp)) = T. We want to construct a

model M of cp, so that for all assignments ewe have vt (cp) = T.

S t e p 2:

In this step we define a frame for [,2n-1(S). Therefore we define D. := Vi and

Do := VD. For a:ll other types T with T = (T1 X .•• X Tm - a) we have to define

D.., ~ F(D"", ... ,V"'m; Vd)' We do this by inductively defining injective functions

~.., from Vi to F(V"", ... ,V"'m; Vd) and setting V.., := ~",(Vi)' Hence Q.., is a bijective

function from Vi to D..,. * We define Q.., as bijective functions inductively:

1.	 q. : Vi - t>. and Qo : VD - Do as the identity mappings (These functions

are obviously bijective).

2.	 Let ~"'i and ~d be defined for ViI" .. ,Vim' and Vu. We are going to define

a function Q.., with T = (T1 X ••. X Tm - a), a =1= 0, for Vi. For all x E Vi
Q"'(x) is defined as Q..,(x)(X1, .. . , xm) := Qd(Vf(ai)(x, Q;/(xd, . .. , Q;~(xm)))

for all Xl E V"", ... , Xm E V..,m

The following diagram may help to see the involved mappings at a glance:

Vf(ai) :Vi x ViI X .. , XVim~Vu

! lQT jQ;' jQ;:-';' lQ(T

V..,'--4 F(V"'l , ... , V"'m ; Vd)

In order to show the injectivity of q.., we use that we have in =.~ the formula
mVfrVgiCVx~" ... ,Vx":'m ai(J,x\ ,x) ==

ai(g, x\ , xm
)) ==:} f == 9

Therefore we have in a model for all x, x' in Vi

VY1 E V ill ... ,VYm E Vim Vf(ai)(x,YI, ,Ym) =Vu

V(1(a i)(X" Yl, ,Ym) ==:} x ==Vt X'

*Since we cannot achieve bijectivity from Vi to F(VT1 , ••• ,VTm ; Vq) we do not get strong
bij	 - inj - - ­completeness. We have Vj --+ V T --+ F(VT1 , ••• , V Tm ; Vd)'

74 Chapter 5

interpretation function (? for £” . In a fourth step we show by induction on the
construction of terms and formulae that the quasi-homomorphism \I! is compatible _
with the model relation. Formally we show h o 11g” 0 \II = VgM. ‘In a fifth and last
step we use this property to show that M = ({D;};, j) is a model of I‘.

S t ep h
Let I‘ be a formula set in [?"—IGS). Let M be a weak model of <I>(I‘). Then M
is a model of <I>(<p) for every formula (,0 in F. Let M be ({Dn},¢,.7) and { be
an arbitrary assignment. Then we have Vg”(¢I>(gp)) = T. We want to construct a
model M of go, so that for all assignments £ we have vg“ (50) = T.

S t ep 2
In this step we define a frame for £2n‘1(8). Therefore we define Db := D; and
Do := D5. For all other types T with 1' = (7'1 x . . — >< Tm —> 0) we have to define
D; g 5"(Dn, . . . ,D;m;D,). We do this by inductively defining injective functions
h; from D; to f(D;,, . . . ,D;m; b,) and setting D; := h;(D;). Hence h; is a bijective
function from D; to D;.* We define h; as bijective functions inductively:

1 . h. : Dz —+ 15. and ho : D5 _» Do as the identity mappings (These functions

are obviously bijective).

2. Let h.” and h, be defined for D; , , . . . ,D;m) and Da. We are going to define
a function h; with T = (71 x x Tm —+ a) , a 76 0, for D;. For all a: € D;

Mm) is defined as wm . . . ‚am) == ha(Vä“(a*)(w‚h:f(i1)‚---‚h:;(a'cmD)
for all 531 e D;1,...,:i:m e hm

The following diagram may help to see the involved mappings at a glance:

Vg‘4(af) 21);- X Dh X ' ' ' XD;m——> D5

l in . Th.": Th.-,}. in.
D;‘—>.7"(D.,1 , . . . , D ; D0)Tm

In order to show the injectivity of h., we use that we have in Et); the formula
Vf;Vg;(Vx§1,...,VmZ; a*(f,x1,...,xm) E

a+(g,w1,...,:cm)) => f Eg
Therefore we have in a model for all a:, :1:' in D;
V311 E Da, . . . ,‘v’ym E D;m VéM(oz+)(2:,y1,...,ym) E195,

Vä’1(a*)(x',y1‚.„‚ym)=> :1: Ep* :c’ (*)

*Since we cannot achieve bijectivity from D; to T (D; l , . . . ,D ;m;Da) we do not get strong
completeness. We have D; —by—> D; & .7-"(D;1 , . . . , D;m;D,) .

75 Translations

Let ~'T(x) =v
r

~'T (x') for arbitrary x and x' in Vi. Then we have by definition

for all Xl E V'TI' ... ,XmE V'Tm

~q vt(ai)(x, ~;/(X1)"'" ~;~(Xm)) =vu ~q vt(af)(x' , ~;/(xd,···, ~;~(Xm))'

Since the mappings ~'TI'" • '~'Tm' ~q are all bijective, we get for all Y1 E Vfl ,· •• ,

Ym E Vfm: vt(af)(x, YI,· .. ,Ym) =7)1; Vt'(af)(x' ,YI,· .. ,Ym)' Because of

the relation (*) X =7)1' x', hence the injectivity is shown. Since the surjectiv­

ity is given by definition, we have proved that ~'T is bijective.

3.	 Let ~'Ti be defined for Vfll ... ,Vim' We are going to define a function ~'T (for

order of 7 is less than n) with 7 = (71 x··· X 7m -t 0) for Vf. For all x E Vi

~'T(x) is defined as ~'T(x)(XI, ... ,Xm) := ~ovt(af)(x,~;/(X1)"'" ~;~(xm))

for all Xl E V'TI" .. ,Xm E V'Tm' Analogously to case 2 we get the bijectivity

of ~'T by the corresponding formula in =:~.

4. Let ~'Ti be defined for Vfl , ••• , Vim' We define a function ~'T (for order of 7 is

equal to n) with 7 == (71 x· .. X 7m -t 0) for Vi. For all p E Vi ~'T(p) is defined

as ~'T(P)(X1"",Xm):= ~op(~;/(X1)"",~;~(Xm)) for all Xl E V'TI"",Xm E

V'Tm' The bijectivity of ~'T follows trivially.

Hence we have defined a frame {1\}'T for all types 7.

In the following we use ~ as the polymorphic mapping defined by all the individual

~'T'

S t e p 3:

In this step we define an interpretation mapping j in order to complete the def­

inition of an interpretation ({V'T }'T,j). For all constants c we define j(c) :=

~ o.:J 0 W(c).

S t e p 4:

In this step we show that for every assignment ~ in M there is an assignment ein

M, so that for all terms (and hence all formulae) t we have: vt (t) = ~ 0 vt 0 W(t).

Let ~ be an arbitrary assignment in M. We define eas e= ~-1 0 ~ 0 W- 1 • Now we

prove vt = ~ 0 Vt' 0 W by induction on the construction of terms and formulae.

Let ebe an arbitrary assignment in M, we get:

Tl	 For all variables X'T' vt(X'T) = ~(X'T) = ~(e(W(X'T))) = ~vtW(X'T)'

T2	 For all constants C'T' vt(C'T) = j(C'T) = ~(.:J(W(C'T))) = ~VfW(C'T)'

T3	 For all composed terms beginning with an m-ary function term f we have:

vtU'T(tI, ... , tm)) = vtU)(Vt(t1)"'" vt(tm)) In~yp

Translations 75

Let h.‚(x) 5.57 h,.(w’) for arbitrary rc and m’ in 19;. Then we have by definition
for all 531 € Ö„,. . . , :Z‘m € bf",

uvmaw, lama), . . . , mom» "in, havg‘4(a*)(x'‚h;‚1<az1)‚ . . . mam».
Since the mappings h„ , . . . , hm, h„ are all bijective, we get for all yl € Da , . . . ,
ym € Dim: Vg”(af)(:c,y1, . . . ,ym) Eva, V£M(a’-')(x’,y1, . . . ,ym). Because of
the relation (*) a: Ep, 3’, hence the injectivity is shown. Since the surjectiv-
ity is given by definition, we have proved that hT is bijective.

3. Let h,... be defined for D.,—.1 , . . . , D.;m. We are going to define a function h, (for
order of T is less than n) with T = (7'1 x - « - x Tm —> o) for 2);. For all x € ’D;
h,(x) is defined as h.,(x)(:i:1,...,:im) := hovg“(af)(x,h;1(zil),...,h;:(5vm))
for all 5'61 € ’Öfl, . . . ‚ im € 15%. Analogously t o case 2 we get the bijectivity
of h, by the corresponding formula in sg .

4. Let h„ be defined for D.,-.„ . . . ‚Dr-‚„. We define a function h., (for order of 7' is
equal to n) with 1' =' (rl x - . - XTm —> o) for Da For all p € ”D; h,(p) is defined
as h,(p)(¢1,...,:i;m) := h„p(h;11(5;1)‚...,h;‚;(ém)) for all 531 e 15,1,...,92m e
DTM. The bijectivity of h, follows trivially.

Hence we have defined a frame {15,-},- for all types T.

In the following we use h as the polymorphic mapping defined by all the individual
it.
Step &

In this step we define an interpretation mapping „7 in order to complete the def-
inition of an interpretation ({ÖT}T,j). For all constants c we define j (c) :=
ho joq l (c) .

S t ep 4:
In this step we show that for every assignment € in M there is an assignment € in
M, so that for all terms (and hence all formulae) t we have: V3205) = [10115% 0 \Il(t).

Let £ be an" arbitrary assignment in M We define { as € = [1’1 o € o \Il‘l. Now we
prove VEM = h 0 VE“ 0 \II by induction on the construction of terms and formulae.
Let { be an arbitrary assignment in M, we get:

T1 For all variables x„ vg'4(x,) = am,) = h(f(\I/(x,))) = uvgv'xp(x,).

T2 For all constants c„ Väz(c,) = j(c.,) = h(_7(@(c,))) : hVEM-Wßf).

T3 For all composed terms beginning with an m-ary function term f we have:
vg"4(ff(t1,...,t‚„)) = vg'4(f)(vg“(t1), . ..,vgwtmn “déi”

Chapter 5

~Vf\lJ(f)(QVf\ll(h), ... ,QVf\lJ(tm)) def Q-=.ase 2.

_ def V M

q[V(f(aT)(V(fW(J), ~-lqVrW(tl), ... , q-lqVr\lJ(tm))] =e

~[Vr(aT(\lJ(f),\lJ(tt} , ... , \lJ(tm)))] deb~

qVr\lJ(f(tl, ... , tm)).

For formulae we get:

Fl	 For an atomic formula that starts with a predicate term p of order less than

n we have:

Vf(PT(t1, ... , tm)) = Vf (p)(Vf (tl), ... , Vf(tm)) In~yp

qVr\lJ(p)(qVr\lJ(t1), ... ,QVr\lJ(tm)) def Q~ase 3.

M T M -1 M -1 M def V[4
q[Ve (a)(V~ \lJ(p), Q qVe \lJ(tt}, ... , q QVe \lJ(tm))] =

q[Vr(aT(\lJ(p), \lJ(tl),' .. , \lJ(tm)))] deJ:: ~

QVf\lJ(p(t1 , •.. , tm)).

F2 For an atomic formula that starts with a predicate constant p of order n we

have:

Vf(PT(t1, ... , tm)) = vt(p)(vt(t1), .•• , Vf(tm)) In~yp

QVf\lJ(p)(qVf\lJ(t1), •.. , qVf\lJ(tm)) def Q~ase 4.

M -1 M -1 M def Vt'q[Ve \lJ(p)(q QVe W(t 1), ... , q qVe W(tm))] =

q[Vr(\lJ(p)(W(t1), ... , \lJ(tm)))] deb~

qVrW(p(tl, ... , tm)).

F3 For a conjunction we have:

vt (if'1 1\ if'2) = vt (tpI) 1\ vt (if'2) In~yp qvt \lJ (tpl) 1\ qVr \lJ (if'2) =

qVr \lJ (tpl 1\ if'z),

F4 For a negation we have:

vt (-'if') = -,Vf(tp) In~yp -'qVr \lJ(if') = QVr \lJ(-'if').

F5 For a quantification we have:

V M 'W) wd Y M '() Ind.hyp wd ~ M ,T, (€ (v xTif' = v E V TV([x<-d] tp = v E VY

T ~ Ve[W(x)<-Q-l(d)] 'J.' if') =

Vd E V j qV~(x)<-d]W(tp) = QV[1\lJ(Vxtp).
Here we use that l = Q 0 .~ 0 \lJ for all assignments and hence l[xT +- d] =

q0 ~ [\lJ (X T) t- Q-1 (d)] 0 \lJ. '

S t e p 5:

Now we show that if M is a model of CP(tp) , then 1\;1 is a model of tp. If M is model

of CP(tp), then M is a model of \lJ(tp). Let ebe an arbitrary assignment and ebe

76 . Chapter 5

Wf‘I’UXWgWIIUI), . . . ’hVEAAII’(tm)) def héase 2. M

h[VéM(ofi)(Vä"'\Il(f)7 h—lhvéMimtl‘), _ _ _ ’h"‘hvé“‘1’(tm))] dag.)£

hlVä‘m, Mu), . . . , wm») deg
hn‘I ' (f(t1,„_‚tm))_

For formulae we get:

F1 For an atomic formula that starts with a predicate term 1) of order less than
n we have:
vg*(p1(t1, . - . ,tm» = vflvg‘hul), _ „ _ ‚Vfl tmn mg»
hvé‘W(p)(hvg“\Ir(t1),...,hvg4\1:(tm)) d“ “28° 3 M

“VWWWWPL h‘lhvm<t1),...,h-t(tm))1 “=3"
Wä" (0501417), \I'(t1),. . . , \Il(tm)))] mi"

hvéw(p (t1a ' ' - a tm)) -

F2 For an atomic formula that starts with a predicate constant p of order n we
have:

M M M M Ind-h”vi (p7(t1‚...‚tm)>=vg (no;é (m,...‚V— um» =
def case .hvm<p)<hvm(to‚„.‚uvmumn “= 4

def VM
h[Vé“‘If(p)(h"hVä“‘P(t1)‚-..‚h'1hVé“\I'(tm))] =‘
u[vg“(\1f(p)(w(t1)‚...‚wmml“&“
hvg“\II(p(t1,...,tm)).

F3 For a conjunction we have:

man A m = 123%» A vg‘uoz) “€” WWWJ A www =
Wéwq’ÜPI /\ 902)-

F4 For a negation we have:
“ * In .h _mm) = WW) ?:Whvmw) = WWW)- .

F5 For a quantification we have:
° v - - Ind.h .

Vii/WWW = W e DTVäfc—dlw : ” W e DT “VIfifI'w—u—IWHW‘P) =
Vd e D; hväfy(z)_4_‘l’(so) =; t‘A‘I'Ww) „
Here we use that € = h o £ 0 @ for all assignments and hence {[wT 4— d] =
ho 5mm «— wm o w..

S t e B 5:
Now we show that if M is a model of @(cp), then NI is a model of go. If M is model
of <I>(<,o), then M is a model of @(cp). Let 5 be an arbitrary assignment and { be

77 Translations

defined as above, then we have Vr (w(<p)) = T, because M is a model of W(<p).
Hence we have vt(<p) = ~(Vr(W(<p») = T. Recall that for truth values ~ is the

identity function. ­

5.24 Remark: For n > 1 there is no sound morphism e from £n to .el = which,­
is strongly complete. If there were such a morphism, it would prO"\Tide a complete

calculus for £n which is impossible because of GODEL'S incompleteness theorem.

5.25 Remark: As already noticed in remark 5.17, '11-1 provides a calculus for

£n. If we add rules that enforce that function symbols and predicate symbols are

equal if they agree in all arguments, we can transform every sound and complete

first-order calculus of .el,:::: by Cl> to a sound and weakly complete calculus for .en.
We can execute the proof in .et:::: and then lift it to a proof in £n.

5.26 Remark: One might wonder why we proposed a sufficient criterion for the

soundness of translations, when we have a translation that is sound and complete

and hence could always be used. The reason is, that in a concrete situation it may

be better not to translate into the full sound and complete formulae, because the

search space for an automated theorem prover may become too big. In general it

is not a good idea to add the extensionality axioms if they are not really needed.

Furthermore we prevent instantiation if we translate certain constants not by an

apply; also we may use different apply functions or predicates although we could

use the same. The completeness result guarantees that we can find a translation;

however, which one we choose may be very important for the actual performance

of a (first-order) theorem prover. That is, the flexibility in translating is very

important for practical purpose, although in theory it does not enlarge the power

of the method.

5.2.3 Equality

In this section we discuss a possible extension of the soundness criterion and of

the morphisms <I>n to morphisms <I>::::,n, which are mappings form .e~ to .et::::. As

usual we fix n and drop the corresponding index. We show that Cl>:::: is sound and

weakly complete. In the following we write <; for (T x r --t 0).

5.27 Definition (Equality Quasi-Homomorphism): We replace the part for

composed terms in definition 5.7 by: if f(tI, ... , t m) is a term of F1(SI), then

o (J(tI, ... , t m)) = 0 (0(J), 0(tt}, ... , 8(tm » with

Ll()_{a(aI, ... ,am) or
ua,al,···,am ­

a:a(a,al, ... ,am)

I

Translations 77

defined as above, then we have V5M(\Il(go)) = T, because M is a model of WW).
Hence we have Vgfiflp) = h(V£M(\II(<p))) = T. Recall that for truth values [1 is the
identity function. .

5.24 Remark: For n > 1 there is no sound morphism G) from £" to £15 which
is strongly complete. If there were such a morphism, it would provide a complete
calculus for £" which is impossible because of GÖDEL’S incompleteness theorem.

5 .25 Remark: As already noticed i n remark 5.17, W“1 provides a calculus for
£" . If we add rules that enforce that function symbols and predicate symbols are

equal if they agree in all arguments, we can transform every sound and complete
first—order calculus of £15 by (I) to a sound and weakly complete calculus for £ " .

We can execute the proof in £15 and then lift it to a proof in ß".

5 .26 Remark: One might wonder why we proposed a sufficient criterion for the
soundness of translations, when we have a translation that is sound and complete
and hence could always be used. The reason is, that in a concrete situation it may
be better not to translate into the full sound and complete formulae, because the
search space for an automated theorem prover may become too big. In. general it
is not a good idea to add the extensionality axioins if they are not really needed.
Furthermore we prevent instantiation if we translate certain constants not by an
apply; also we may use different apply functions or predicates although we could
use the same. The completeness result guarantees that we can find a translation;
however, which one we choose may be very important for the actual performance
of a (first-order) theorem prover. That is, the flexibility in translating is very
important for practical purpose, although in theory it does not enlarge the power
of the method.

5.2 .3 Equality

In this section we discuss a possible extension of the soundness criterion and of
the morphisms (1),, to morphisms (Pan, which are mappings form U.;. t o £15 . As
usual we fix n and drop the corresponding index. We show that (D.:. is sound and
weakly complete. In the following we write (for (1' x T —> 0).

5 .27 Definition (Equality Quasi-Homomorphism): We replace the part for
composed terms in definition 5.7 by: if f (t 1 , . . . ‚ tm) is a term of .771(51), then
® (f(t1 , . . . , tm)) = 9(®(f),®(t1), . . . ,®(tm)) with

a(a1, . . . ,am) or0(a’“1""’“m)= a“(aa1 ‚am)

Chapter 5

The a have to be chosen appropriately, they have to be new, that is, there must

be no element e such that aa = 0(e). The choice of the above depends only on the

type of a. The symbols aa must respect the corresponding sorts. If the first case

is chosen for equality, this must be mapped on equality. Furthermore we require

that only equality is mapped on equality.

5.28 Theorem: If 0 is an injeciive equality quasi-homomorphism from L:~(5) to

'L:l,= (5'), then 0 is weakly sound.

Proof: The proof is analogous to the proof of theorem 5.12. We only add the

following cases to the proof in step 4 (analogously to the cases T3, T4):

- For an atomic formula with the equality symbol as top symbol that is mapped

on the equality predicate:

Vr(0(t1 = t2» := Vr(0(t 1) == 0(t2)) =

(Vr(0(t1) =vf Vr(0(t2)) In<!:E-yp (vt(t 1) =v,. Vt(t2) = vt(t1 =t2)

- For an atomic formula with an equality symbol as top symbol that is not

mapped on the equality predicate we have:

Vf(0(t 1 = t2» := VF(a((0(=), 0(td, 0(t2») =

VF(a';)(VF(0(=), VF(0(t 1 », V~(0(t2») Ind.hyp

~ e e ~

Vf(a~)(Vt(=), Vt(tl), vt(t2») ~ (vt(td =v,. vt(t2») =

Vt(tl == t 2) •

5.29 Example: vVe shall use example 5.14, however in a formulation with equality

and translate it then in the usual way. (In order to show that both representations

are equivalent it would be necessary to show that there is a sound and complete

morphism that maps them to one another.) We drop the type information for

readability, group is oftype (t x (t X t ---7 t) ---7 0), G of type t, + of type (t X t ---7 t),

- of type (t ---7 t), and so on. Also for readability we sometimes use infix notation.

In the target the sorts are (IIt ll , lI(t X t ---7 t)lI) for group, and so on. A group can

be defined as follows:

1. VG,+ group(G,+) ~associative(G,+)/\

30	 (0 E G /\ neutraLelement(G, +, 0) /\

3- inverse(G,+,O,-))

2.	 VG,+ associative(G,+) {:=::} Vx,y,z x,y,z E G ===? (x + y) + z =
x + (y + z)

3. VG,+,O neutraLelement(G,+,O) ~ Vx x E G ===?	 x+O =x /\ O+x == x

78 Chapter 5

The a have to be chosen appropriately, they have to be new, that is, there must
be no element e such that a“ = 6(a) . The choice of the above depends only on the
type of a . The symbols a“ must respect the corresponding sorts. If the first case
is chosen for equality, this must be mapped on equality. Furthermore we require
that gnlq equality is mapped on equality.

5.28 Theorem: If ® is an injectiue equality quasi-homomorphism from 52 (8) to
£k5(8’), then ® is weakly sound.

Proof: The proof is analogous to the proof of theorem 5.12. We only add the
following cases to the proof in step 4 (analogously to the cases T3, T4):

-— For anatomic formula with the equality symbol as top symbol that is mapped
on the equality predicate:

V§4(G(t1 E t 2)) := VEMÜBUI) E G(t2)) =

(wean) 2». was») "‘dé‘” (we) 2». mt») = vw ; t2)

— For an atomic formula with an equality symbol as top symbol that is not

mapped on the equality predicate we have:
VM(9(t1 = t z)) = VM(a° (9 (=") ®(t1) 9032)» =
vflwxvflee» ,1257mm».g Fteuz)» ‘““4-3“
v§<a€>(v24(s).vg4(tamt») dä (man) =D, mt») =
VEM(t1 E tz) .

5 .29 Example: We shall use example 5.14, however in a formulation with equality
and translate i t then in the usual way. (In order to show that both representations
are equivalent i t would be necessary to show that there is a sound and complete
morphism that maps them to one another.) We drop the type information for
readability, group is of type (L x (t X L -—> L) _» 0), G of type („ + of type (L x l, —+ L),
— of type (L —> 1,), and so on. Also for readability we sometimes use infix notation.
In the target the sorts are ("/‚", "(L x L ——> L)") for group, and so on. A group can
be defined as follows:

1. VG,+ group(G,+) (==> associative(G,+) /\
30 (0 E G /\ neutral_element(G,+,0) A

3 — inverse(G, + ,0 , —))

2. VG,+ associatiue(G,+) <=? Vx,y,z $,y , z E G => (a: + y) + z E
rc + (y + Z)

3. VG,+,0 neutral-element(G,+,0) (==> Va: a: E G => m+0 E a: A 0+3: E a:

79 Translations

4. VG, +, 0, - inverse(C, +,0, -) <===? 'Ix x E G ===} x + (-x) =°/\

(-x) + x =°

This formula set is a subset of £~.	 Now we give a translation into a formula set

of £1.=.::' The signatures are obvious, hence omitted. The translation is sound,

because it is an injeetive equality quasi-homomorphism.

1. VG, + group(G, +) <===? associative(G, +) /\
:30	 (0 E G /\ neutraLelement(G, +, 0) /\

:3- inverse(G,+,O,-))

2. VG, + associative(G, +) <===? 'Ix, y, z x, y, z E G ===}

a "(LXL-+L)" (+,a"(LXL-+L)"(+ ,x,y,z)) _
"(LXL-+L)" (+ ,x,a"(LXL-+L)" (+ ,y,z))a

3. '1G,+,O neutraLelement(G,+,O) <===? 'Ix x E G ===}

a"(LXL-+L)"(+,x,O) _ x /\

a"(LXL-+L)"(+,O,x) = x

4.	 VG, +, 0, - inverse(G, +,0, -) <===? 'Ix x E G ===}

"(LXL-+L)"(+ "(L-+L)" (_))
a ,x,a ,x 0/\
"(LXL-+L)" (+ 11 (L-+L) " (_))a ,a ,x,x	 o

5.30 Definition (Standard 'franslation <P=.::):

- At first we define the mapping on the signature. We proceed as in definition

5.18, but add for each =e; in Se; of order less than n an object-constant

symbol ~ f to S~. We cannot name it =(fxf-+c5) because this is already defined

as a binary predicate symbol. In addition we have the term declarations

(=~: (f X f -+ 0)) for every T with order of <; is equal to nand (~ f : ~) for

every T with order of <; less than n.

- The inductive definition of W=.::(f) is the definition of W(f) in definition 5.18

plus

W=.::(=e;) == for order of <; equal to nand w=.::(=e;) = ~ ~ for order of <; less

than n. In addition we have:

If t 1	 and t 2 are terms of type T with T =I- 0 and order of <; is equal to n, then

W=.::(tl =t2) = (w=.::(t1) - W=.::(t2))' This term is well-sorted, because W=.::(ti)
are both of sort f.

If t1 and t2 are terms of type T with T i- 0 and order of <; less than n,

then w=.::(t 1 = t2) = a~(~~, w=.::(tt}, W=.::(t2)). This term is again well-sorted,

because W=.::(ti) are both of sort f and ~ (is of type ~.

Translations 79

4. VG,+ ,0 , —— inverse(G,+,0, —) (=> Va: :1: 6 G => $ + (—x) E 0 /\
(—:1:) + a: E 0

This formula set is a subset of ‚C:; Now we give a translation into a. formula set

of ‚Chi. The signatures are obvious, hence omitted. The translation is sound,

because it is an injective equality quasi—homomorphism.

1. VG,+ group(G, +) (=> associative(G,+) A
30 (0 € G A neutral_element(G,+,0) /\

3 — inverse(G, +, 0, ——))

2. VG,+ assöciative(G,+) => Va:,y,z $,y , z E G =>
a"(LXL—>L)" (+ , a" (LXl ‚—>L)"- (+ ’ $, y) , z) E

a"“"‘*""(+,x,a"("“r""(+,y, 2))

3. VG,+ ,0 neutralfilement(G,+,0) (=>Va: (1: € G =>
a"<°>“**)"(+,$,0) =

" a"(‘x"“)"(+,0,x) E a:

| & >

4. VG,+,0,—— inveTse(G,+,0, _) (=> Va: in € G =>
a"(l‚Xl‚—+L)"(+, $, a"(L—H.)"(___’x)) E 0 A

a"(LXL—>L)"(+ , a"(l‚—+l‚)"(_’ $) ’x) : | o

5.30 Definition (Standard Translation (DE) :

— At first we define the mapping on the signature. We proceed as in definition
5.18, but add for each EC in $< of order less than n an object-constant
symbol E; to 85. We cannot name it E(.;x;_,5) because this is already defined
as a binary predicate symbol. In addition we have the term declarations
(E5: (T x T _» ö)) for every T with order of (is equal to n and (E; : c") for
every T with order of (less than n .

— The inductive definition of \IIE(I‘) is the definition of \Il(l") in definition 5.18
plus
\IIE(__=.<) =E for order of (equal to n and ‘I’E(Ec) = Eg for order of g less
than n. In addition we have:
If t1 and tz are terms of type T with T # 0 and order of ; is equal to n, then
\IIE(t1 E tz) : (\IIE(t1) E Eli-(132)). This term is well-sorted, because \IIE(t1-)

are both of sort T.
If t1 and tz are terms of type T with T 76 0 and order of (less than n,
then \IIE(t1 E t2) = 05"(E5, \IIE(t1) , \IIE(t2)) . This term is again well-sorted,
because \IIE(t‚-) are both of sort 7"- and 25 is of type €.

80 Chapter 5

- 3= is defined as 3e\' plus the set of all formulae (with order of" less than n):
Vx::;-Vy::;- OC;(~ c;, x, y) ==} x = y.

- Like above on formula sets we define <1>=(r) := w=(r) u 3=.

5.31 Theorem: <1>= is weakly sound.

Proof: As above we have that w= is sound, because it is an injective equality

quasi-homomorphism. We still have to show that every formula in 3:= is satisfied,

that is, it remains to be shown:
.-...

Vr(Vx::;-Vy::;-aC;(~ c;,x,y) ==} x =y) = T

Therefore it is sufficient to show that for all X, Y E V:;­
.-...

V~,y+-xIYj(OC;(~ c;,x,y) ==} x =y) = T.

By the definitions of OC; and vF[Yj that is equivalent toex,y+-X,
X =1)r Y ==} X =1)r Y, which is obviously true. •

5.32 Theorem: <1>:= is weakly complete.

Proof: In the completeness theorem 5.23 we have to add to the proof in step 4:

- For equalities of order equal to n:

Vt(tl = t2) := (Vt(tl) =vrvt(t2)) In~yp OVrw(it) =Vr~VrW(t2)) =

(~Vr(lJf(tl) =~1Jf(t2)) = ~VrlJf(tl =t2).

- For the equalities of order less than n we use at first the additional axioms

in 3=:

Vx::;-Vy::;-OC;(~ C;, x, y) ==} x =y.

Hence we have in a model for all X, Y in V:;-:

VX:,y+-x,Yj(a((~ C;, x, y)) ==} X =1),. Y

Since the direction ~ is trivially satisfied, we have:

vtr;,y+-x,Yj(a:;-C~c:,x,y)) = (X =1),. Y) (*)

Now we can prove:

Vt{tl =t2) = (vt(tt} -1)r Vt(t2)) In~1YP

(QVtW:=(tl) =1)r ~VtW:=(t2)) b~ij (vtlJf:={tt} =1),. VrW:=(t2)) ~
V~,Y+-Vt1J!=<tl),Vt1J!=<t2)l(0C;(~ ;;,x,y)) = vt (aC:C C;, w:= (tt} ,W:=(t2))) =

Mc; _ bbij M _
Ve (0 (W:=(=<J, 1Jf=(t1), W:=(t2))) = ~V{ lJf:=(tl = t 2) •

5.33 Remark: We do not translate =, immediately to =Ci',f), because then it

could not become the argument of a higher-order predicate and we would also lose

80 Chapter 5

-— EE is defined as E. plus the set of all formulae (with order of ; less than n):
WWW}? a€(ä<—,x,y) => a: E y. '

— Like above on formula sets we define <I>__—=(I‘) :: \IIEU‘) U 35 .

5 .31 Theorem: (I); is weakly sound.

Proof: As above we have that @; is sound, because it is an injective equality
quasi-homomorphism. We still have to show that every formula in E; is satisfied,
that is, it remains to be shown:
V?“ (Vx;Vy;a‘.(é<~,m,y) ==> a: -_'=. y) = T
Therefore i t i s sufficient to show that for all X , Y E D;

V$,y+—X,Y] (a€ (é3 ,$7y) => m 5/31) = T '

By the definitions of a:E and V31: w—X n that is equivalent to
X 59, Y :> X E1), Y, which is obviously true. . I

5.32 Theorem: (DE is weakly “complete.

Proof: In the completeness theorem 5.23 we have to add to the proof in step 4:

— For equalities of order equal to _n :

123% = tz) ==(vg"<t1) =1>‚vg4<tz)) “=” (wma) =„‚hvm(t2)) =
(We/"(WM E W02» = hVéV'Wti E t2)-

— For the equalities of order less than n we use at first the additional axioms
1n :5:
Vx;Vy;a5(§g, m,y) => 3: E 3/.
Hence we have in a model for all X, Y in 9;:
V$‚y._x,n(af(äg‚w,y)) => X E1)i Y
Since the direction <= is trivially satisfied, we have:
v 'EA[1: ‚y<—X‚Y](af (ä€7$’y)) : (X ED? Y) (*)

Now we can prove:
van = tz) = (mm ==, mt») "=”
(Winn) Ea, human») “=“ (vmam) ED; waist») ‘2
nhvg‘wgtnyfiwauzn(“ago “", y)) : VEM(a‘.(ä€-, ‘I’E(t1)7‘115(t2))) :

'vgf'<a<'(w5(=<)‚ r am) , alga-m) " =“ Wise-1 = tz) .

5 .33 Remark: We do not translate E< immediately to 595) , because then it
could not become the argument of a higher-order predicate and we would also lose

Translations

completeness. Consider the case of the following induction schema:

Vp(tXt-+o) (P(O, 0)/\

(Vn P(n,O) ~ P(s(n),O)) /\ (Vn,m P(n,m) ==> P(n,s(m))) ==>
Vn,m P(n,m)),

where in addition we have the formulae °= 0, Vn n = °==> s(n) - 0, and

Vn,m n =m ==> n =s(m). If we want to prove Vn,m n =m we have

to instantiate the predicate variable P in the induction schema by the equality

predicate. But if we translate P by an object variable and =by a predicate

constant we cannot instantiate P by = in the first-order target formulation.

5.34 Example: We translate the examples 5.14 and 5.29 from above. Using '11=,3

this is translated to:

1. VG, + gr01tp(G, +) {=9 associative(G, +) /\
30	 (0 E G /\ neutraLelement(G,+,O) /\

3 - inverse(G, +, 0, -))

2. VG, + associative(G, +) {=9

\..Ivx,y,z a "(tXt-+o)" (E,x, G) /\ a "(tXt-+o)" (E,y, G) /\ a "(tXt-+o)" (E,z, G)
"(tXt-+o)" (2. "(tXt-+t)" (+ "(tXt-+t)" (+))==> et _,a ,a ,x,y ,z ,

"(tXt-+t)" ("(tXt-+t)" (+)))a +,x,a ,y,z

3.	 VG,+,O neutraLelement(G,+,O) {=9

Vx "(x t-+O)"(==>
et t E, x, G)

"(tXt-+o)" (~ "(tXt-+t)" (+ 0))/\a _,a ,x, ,x
"(tXt-+o)" (.::::. "(tXt-+t)" (+ 0))a	 _,a , ,x,x

4. VG, +, 0, - inverse(G, +,0, -) {=9

VX	 a "(tXt-+o)II(E, x, G) ==>
a "(tXt-+o)" (2._,a"(tXt-+t)" (+ ,x,a"(t-+t)" (- ,x)) ,0) /\

a "(tXt-+o)" (=_, a l(tXt-+t)" (+ , a "(t-+t)" (_ , x) , x) , 0)

Of course this translation is more complicated than that of example 5.29.

5.3 Translations of Higher-Order Sorted Logic

In this section we sketch how to extend the results of the previous section to

sorted higher-order logics. This could be done by essentially copying the proofs

of the unsorted case. But instead we are going to reduce the soundness theorems

to the corresponding unsorted theorems by using relativizations, which can be

Translations 81

completeness. Consider the case of the following induction schema:
VP(„„_„‚)(P(0, 0)/\

(Vn P(n.0) ”:> P(s(n).0)) A (m P(n.m> => P(n‚s(m)>> =
Vn,m P(n,m)) ,

where in addition we have the formulae 0 E 0, Vn n E 0 => s(n) E 0, and
Vn,m n E m => n E s(m). If we want to prove Vn,m n E m we have
t o instantiate the predicate variable P i n the induction schema by the equality
predicate. But if we translate P by an object variable and E by a predicate
constant we cannot instantiate P by E in the first—order target formulation.

5 .34 Example: We translate the examples 5.14 and 5.29 from above. Using 1153
this is translated to :

1. VG,+ grdup(G,+) (=> associative(G,'+) A
30 (0 e G A neutral_element(G,+‚0) A

3 ? inverse(G‚ + , 0, —))

2. VG,+ associative(G, +) (=>
Vx,y , z a"(‘x‘“’°)"(€,z,G) A a"(‘x“'°)"(6,y,G) A a"(‘x°"°)"(€,z, G)

=> a" (LXL—>0)" (ä - ’ a " (c><1 .——u.) " (+ ’ a " (bXL—+L)" (+ , (L', y) , 2) ,

a"("‘“")"(+,x,a"(‘x“”)"(+,y,z)))

3. VG,+,0 neutralxlement(G‚+,0) (=)
V:): a"("‘"’°)"(€,x,G) =>

a"(‘x"'*°)"(ä,a"(‘x‘_")"(+,x,0),aa)/\
a"(”“"°)" (é , a"(‘x“*‘)" (+, 0, as), x)

4. VG,+,0,— inverse(G‚+‚0’—) *:
Vac a"(‘>““’°)"(€‚$‚G) =>

a"(»><o—»°)"(_£:,a"("‘"“)"(+‚w‚a"(‘—")"(—,$))v0) Ad'un-+0)"(ä‚a"(m"‘)"(+‚a"“"‘)"(—‚w)‚w)‚0)
Of course this translation is more complicated than that of example 5.29.

5 .3 Translations of Higher-Order Sorted Logic

In this section we sketch how to extend the results of the previous section to
sorted higher-order logics. This could be done by essentially copying the proofs
of the unsorted case. But instead we are going to reduce the soundness theorems
to the corresponding unsorted theorems by using relativizations, which can be

Chapter 5

done since the translations are structure conserving. The advantage of the proofs

via relativizations is that they can be used for other kinds of sort structures too,
especially they are easy to transfer to sorted logics where'the semantics is defined

by the relativization. At first we define relativizations and show them to be sound

and complete morphisms. The completeness proof for the standard translation is

not lifted, but worked out directly.

5.3.1 Relativizations and Partial Relativizations

For a formula set of sorted logics it is in general possible to state an equivalent

formula set of an unsorted logic. In this section we will introduce relativizations

and partial relativizations for the logics £¥; to £n and £b to £1.

5.35 Definition (Relativization): The relativization ~ from £¥; to £n is a mor­

phism of the form that:

1.	 the signature SE = (S,I;,s,b;,c5) is mapped to

(S U I;\{rlr is type}, {rlr is type}, x 1--+ type(x), 0, 0), where the sort sym­

bols K, of type r are mapped onto unary predicate constants of type (r -4 0).

2.	 A formula c.p is mapped to the for~ula set ~(c.p) consisting of:

{~(c.pH U

{\1x r K,(x) =:} /-l(x) I K,r;./-l with type(K,) = type(/-l) = r} U

{K,(~(t)) I (t : K,) E c5}, where

~.is defined as:

(a) For terms ~(t) = t and for atomic formulae: ~(c.p) = c.p

(b)	 For conjunctions and negations: ~(c.p 1\ 'ljJ) = ~(c.p) /\ ~('ljJ) and

~(-'c.p) = -,~(c.p).

(c) For	 a quantification over a variable x of sort K, with type(K,) r,

~(\lXK c.p) = \1xr K,(X) ===} ~(c.p).

For formula sets r we have as usual ~(r) = U ~(c.p).
'PEr

5.36 Definition (Partial Relativization): The partial relativization 8~ from

£b where every sort (except t) has a unique upper sort (shortly called "uus")

immediately below l, to £1 is a morphism defined in the following form. We have

for all sorts K" K,~uus(K,) (we define uus(t) = l).

82 Chapter 5

done since the translations are structure conserving. The advantage of the proofs
Via relativizations is that they can be used for other kinds of sort structures too,
especially they are easy to transfer to sorted logics Where‘the semantics is defined
by the relativization. At first we define relativizations and show them to be sound
and complete morphisms. The completeness proof for the standard translation is
not lifted, but worked out directly.

5 .3 .1 Relativizations and Partial Relativizations

For a formula set of sorted logics it is in general possible to state an equivalent
formula set of an unsorted logic. In this section we will introduce relativizations
and partial relativizations for the logics ‚8% to L“ and B}; to DÄ.

5.35 Definit ion (Relativization): The relativizatz'on ER from ‚C'f; to £“ is a mor-
phism of the form that:

1. the signature 8; = (S, 2,5‚E‚6) is mapped to
(S U E\{T|T is type}, {TIT is type},a: H type(a:),(ll,0), where the sort sym-
bols K. of type T are mapped onto unary predicate constants of type (T —-> 0).

2. A formula 90 is mapped to the forriiula set 33(cp) consisting of:

{WW} U
{‘s/a:, ‚f(x) == „(w) | tdi/1 with type(fc) = type(‚u) = T} U
mica» | (t ; n) e 6}, where

51} ‚is defined as:

(a) For terms 528) = t and for atomic formulae: ???(cp) = cp

(b) For conjunctions and negations: imp A gb) = gimp) A @@) and
ge(w) = nit/9)-

(c) For a quantification over a variable :c of sort n with type(;c) = 7",
team cp) = vx, 4.7;) => imp).

For formula sets I" we have as usual §R(l‘) = U %(cp).
(PGP

5.36 Definit ion (Partial Relativization): The partial relativizat-ion 833 from
‚Cä, where every sort (except L) has a unique upper sort (shortly called “uus”)
immediately below 6, to ‚CR is a morphism defined in the following form. We have
for all sorts n, méuusüc) (we define uus(L) = L).

Translations

- the signature SE = (S,E,s,i;,h) is mapped to

(8?R(S), 8?R(E), 8?R(s), 8?R(i;), 8?R(h)) with:

1.	 8?R(S) = S U E\{r I r = uus(r)} where these sort symbols are now new

unary predicate constants of sort (t --t 0).

2.	 8?R(E) = {r I r = uus(r)}

3.	 8?R(s) = x f--+ uus(s(x))

4.	 8?R(i;) = {uus(K)i;t I K}

5.	 8?R(h) = {(8?R(t) : UUS(K)) I (t: K) Eh}

-	 A formula I.p is mapped to the formula set 8?R(I.p) consisting of

{8~(1.p)} U

{VXUUS(K2) KI(X) ===} K2(X) I KI~K2 with KI 1= uus(Kd = UUS(K2)} U
{K(8~(t)) I (t: K) Eh}, where

8~ is defined as:

1.	 For terms 8iR(t) = t and for atomic formulae: 8iR(I.p) = e.p

2.	 For conjunctions and negations:

oiR(I.p 1\ tP) = 8iR('P) 1\ 8iR(tP) and

8~(-'I.p) = -,8iR('P)'

3.	 For a quantification over a variable x of sort K:

8iR(V'xKI.p) = (V'xuus(K)K(X) ===? 8iR('P)).

5.37 Theorem: The relativizations ?R form £E to £n are sound and complete.

Proof: Let r be a formula set in £E' Analogously to the proofs above we can

show that if there is a model of r we can construct a model of ?R(f) and vice versa.

1. Soundness: Let us assume that there is a model M = ({VK}K'..7) of r. We

define an interpretation M = ({DT}T' j) of ?R(f) by:

-	 TJT := U 'OK'
type(K)=T

-	 j(iR(c)) := ..7(c)

- For the "new" constants iR(K) of £n we define the predicate j (iR(K)) by

j(iR(K))(X) := (x E 'OK) for all x in D •T

'5‘,

‘:‚.,‚„
?:

t

Translations 83

— the signature 8; = (S , 2 ,5 , 2,6) is mapped to
(833(8), 833(2), 833(5), 833(2), 833(6)) with:

1. 833(5) = SU2 \ {T | T : uus(T)} where these sort symbols are now new
unary predicate constants of sort (L -+ o).

833(2) = {7- | T = uus(7')}

833(5) = x H uus(5(x))

833(2) = {uus(n)|;L | m}

833(6) = {(833(t) : uus(rc)) | (t : n) € 6}??
?-

°P

— A formula (‚0 is mapped to the formula set 833(90) consisting of

{5380)} U .
{qgsw fc1(w) => 14,2(50) | NIE-Kg with 51 76 uus(fc1) = uus(n2)} U
{It(833(t)) | (t : fc) E 5}, where

833 is defined as:

1. For terms 833(t) = t and for atomic formulae: 833(90) = 99

2. For conjunctions and negations:
8330p /\ «p) = 09%;) A aim/‚) and
333690) = “33(90)-

3. For a quantification over a variable .1: of sort fc:
asiewmäp) = (vw„„(„,n(z) => awe».

5.37 Theorem: The relativizations 33 form Lg to ß" are sound and complete.

Proof: Let F be a formula set in ßg . Analogously to the proofs above we can
show that if there is a model of P we can construct a model of 33(l‘) and vice versa.

1. Soundness: Let us assume that there is a model M = ({DJMJ) of I‘. We
define an interpretation M = ({D‚}„ J) of 33(I‘) by:

— 15¢ := U D„
type(n)=-r

_ 303(0)) == —7(C)

— For the “new” constants 33(5) of ß" we define the predicate j(33(rc)) by
,7(33(Ic))($) := (z E 'D„) for all a: in D,.

Chapter 5

The proof that Ni is a model of ~(f) can be done by showing inductively on the

construction of formulae that vt 0 ~ = Vr. The only interesting part is that of

quantifications:

vt(~(VX"ip)) = vt(Vxr K(X) ===;> ~(ip)) =

Vd E Vr V~,.+-d](K(X) ===;> ~(cp)) =

Vd E Vr jUR(K))(d) ===? Vtr:,.+-d](~(ip)) =

. .. . M

Vd E V,. dE V" ===? Ve[x,.<-dj(CP) =

Vd E 'OK V~,.<-dl(cp) =

vt(VxK'P).

Furthermore we have to show that for all sorts K, J1 of type T with Kf;;J1:

vt(Vxr K(X) ===? f1(x)) = T. This holds since:

vt(Vxr K(X) ===? f.l(x)) = (Vd E V,. V~<-d](K(X) ===? f1(x))) =

(Vd E n r j(~(K))(d) ===? j(~(J1))(d)) =

(Vd E V,. dE V" ===? d E '0/1-) and this holds since 'OK. ~ VII-"

At last we have to show that for all term declarations (t : K) E 6: Vf(K(~(t))) = T.

This holds since:

Vt(K(~(t))) = Vf(K)(Vf 0 ~(t)) =

j(~(K))(Vt(t)) = (vt(t) E VK.), and this holds since (t : K).

2. Completeness: Let us assume that there is a model M = ({ D,.},.,.J) of ~(r).

vVe define a model Ni = ({V"}K.' j) of r by:

- V,,:= {d·E V,.IJ(~(K))(d)}

- j(c) := .J(~(c))

The proof that Ni is a model of r can be done by showing inductively on the

construction of formulae that vt = Vr 0 R. Again, the only interesting part is

that of quantification:

vt (Vx,,<p) = Vd E V" vtr:<-d] (ip) =
Vd E 'Or J(3}(K))(d) ===? V:r;<-d](~(CP)) =
Vd E 1)r V:r;+-d](3}(K)(X) ===? j?(cp)) =

vtt (VXr~(K)(X) ===? ~('P)) =

vtt (j?(Vx,,<p)). .

Furthermore we have to show that for all sorts K, f1 of type T with /''/;;f1: V" ~ Vw

This holds since it is equivalent to:

(Vd E 1),. :T(~(K))(d) ===? .J(~(Il))(d)) =

Vtt(VXrK(X) ~ p(x)), what holds by definition of ~(f).

84 Chapter 5

The proof that M is a model of §R(I‘) can be done byshowing inductively on the
construction of formulae that vg“ o 53 : vg“. The only interesting part is that of
quantifications:

VM ((asoD = VM(V$T ”($) ==> gt((P)) —
Vd € D VM _d](fc(x) => ERGO»:
Vd E D (7(52 (K))((d) = vgrhflmap» =
Vd e D, d e D„ ==> vggwdlap) =
Vd E D,€ Vfifcnt‘P) =
V?”(\7’x„c‚0).

Furthermore we have to show that for all sorts n , p of type 'r with ‚ein:
VEMCv’xT 19(x) => p($)) = T. This holds since:
VEMWxT n(z) ===> ‚u(a:)) : (Vd € DT V£_Jj(n(x) == Mac)» =
(Vd e DT .7'(9A?(fi))(d) ==> —7'(ä(‚u))(d)) =
(Vd E D,. d 6 D,; ==> d E Du) and this holds since D,€ g D„.

At last we have to show that for all term declarations (t : fc) E 6: Vé“(rc(§t(t))) = T.
This holds since:

@@«äunr=wßwxwéoäan=
.7(?R(/<))(V5M(t)) = (lira) € DH), and this holds since (t : A:).
2. completeness: Let us assume that there is a model M = ({DT}, , J) of Ra‘).
We define a model M = ({D„}„, j) of I‘ by:

_ fin ;: {de D,|J(?7?(fc))(d)}
v

—fld=J@@)

The proof that M is a model of F can be done by showing inductively on the
construction of formulae that VCM = V5“ 0 fit} Again, the only interesting part is
that of quantification:

vg'avnso): w e D VM „(w) =
W E DT JG}? ('€ Md) => VéfltdflvSRWD =
W E D Väwqfiüfiflw) == 39W» =
VMWtr3TB (NW) ==> W?» =
VM(§R(V$,¢90))
Furthermore we have to show that for all sorts It, u of type T with ‚ein: D„ g D„.
This holds since it is equivalent to:

(W € D, «7(3R('€))(d) => J(éR(„))(d)) =
VEMWDTMD) => ‚u(w))‚ what holds by definition of §R(F).

Translations

Analogously we can show that for all term declarations (t : 1\:) E h: Vf(t) E VI'<:
Let (t : 1\:) E h, then since M is a model of ~(r) we have Vt'(1\:(~(t))), what is

equal to J(~(1\:))(Vt'(~(i))). Hence we have by definition of DI'<: Vr(~(i)) E DI'<
and so finally Vf(i) E DJ(' •

5.38 Theorem: The partial relativizations a~ from .et to .el are sound and

complete.

Proof: The proof is analogous to the proof of theorem 5.37. •
5.39 Remark: The relativizations ~ are injective.

5.3.2 A Sufficient Criterion for Soundness

In this section we give a sufficient criterion for the soundness of translations of

formulae of .e~ onto formulae of .eb which is strong enough to cover most require­

ments.

5.40 Theorem: If8 is an injeciive quasi-homomorphismfrom .eE(SI;) to .et(SI;),
then 8 is weakly sound.

Proof: We show that there is a commutative diagram:

~
.eE I .en

le # le
a~

.e1I;) .el

with an injective quasi-homomorphism 0 from.en to .el. Since a~ is complete, ~

is sound and 0 is sound by theorem 5.12, we can conclude that 0 is sound. We

construct 0 out of 8 by:

1. For all terms:

(a) if x is a variable (or constant) of .en then 0(x) = a~ 0 0 0 ~-l(X) is a

variable (or constant) of .el.

(b) if f(i}, ,tm) is a term of .en then

0(f(t}, , tm)) = ()(8(f), 0(t1), ••• , 0(tm)) with

Translations 85

Analogously we can show that for all term declarations (t : m) € 6: Vgfla) € 13,4:
Let (t : m) € 5, then since M is a model of 32(I‘) we have VéM(l—z(5}}(t))), what is
equal to J(§?(/€))(Vg”(§l\t(t))). Hence we have by definition of 15,1: V€A(§t(t)) E 15‘
and so finally light) € fin. l

5.38 Theorem: The partial relativizations BER from ‚€;; to LIX are sound and
complete.

Proof: The proof is analogous to the proof of theorem 5.37. l

5 .39 Remark: The relativizations QR are injective.

5 .3 .2 A Sufficient Criterion for Soundness

In this section we give a sufficient criterion for the soundness of translations of
formulae of .05 onto formulae of Q:, which is strong enough to cover most require-
ments.

5 .40 Theorem: If ® is an injective quasi—homomorphism from £§ (Sg) to £§;(S’E),
then 9 is weakly sound.

Proof: We show that there is a commutative diagram:

32‚C’E‘ ———-————>£"

@ # Ö

8%£12 __». ‚ex
with an injective quasi-homomorphism @ from £" to ‚CX. Since 8% is complete, ER
is sound and ® is sound by theorem 5.12, we can conclude that ® is sound. We
construct 6 out of G by:

1 . For all t e rms :

(a) if rc is a variable (or constant) of L'," then @@) = 353 0 G o ?R’1($) is a
variable (or constant) of C}.

(b) if f (t1 , . . . , tm) is a term of ß" then
@(f(t1, . . . ‚tm)) = 9(O(f), @(t1)‚ . . . ‚®(tm)) with

86 Chapter 5

_	 {a(a l "'" am) or()(a, aI, ... ,am) -	 The a have to be chosen ap­
aa(a, al, ... , am)

propriately, especially they have to be new, that is, there must be no

element e so that aa = 8(e). The case which is chosen depends on the

case that is chosen for the translation of 8 0 ?R-I
.

2.	 All predicates ~(II:) in.en are translated to O?R00(K). Every formula resulting

of a term declaration or a subsort relation is translated in the same manner.

3.	 8 is the homomorphic closure of the above relation.

Obviously 8 is a quasi-homomorphism. •
5.41 Example: Let us take an example from [40, pAO], theorem (4.11) (for an

MKRP proof using this translation see chapter 6). The different (constant) sets,

especially a set 5, are introduced. The interest is in considering binary relations

on S, especially the subset relation between two such relations is defined. In our

sorted higher-order logic this definition can be given by:

Vf:(L XL 0) "(S x S --+ 0)"(1)·~

"If: (5 x 5 --+ 0) Vg:(5 x 5 --+ 0) (Vg.(L X t -+ 0) "(5 x S --+ o)"(g) ===>
(sllbset(1, g) {::::::} (sllbset(1, g) {:::=:}

(Vx:5 Vy:S f(x,y)~g(x,y») (\lx:t "S"(x) ~ (Vy:t "S"(y) =?'

(f(x,y) ===> g(x,y))))))

le

"If:" (L X t --+ 0)" " (5 x 5 --+ 0)" (1) ===>
(Vg. "(t X t --+ 0)" "(S x S --+ 0)" (g) ===>"If: "(5 x 5 0)" Vg: "(5 x 5 0)"

8?R (subset (f, g) {:::=:}
(subset(f, g) {:::::::}

(VX:"L" "5"(x) ===>
(Vx:"S" Vy:"5" ex"(tXt-.o")(f,x,y)

(Vy: lit" "5"(y) ===>===> ex"(tx£->o)"(g,x,y)))
(ex"('Xt-.O)" (f ,x,y)

~ ex"(tX,-'o)" (g, x, y))))))

5.42 Theorem: If 8 is a7J injective quasi-homomorphism from £~(S) to £b(S'),

then 0 is strongly sound.

Proof: If there is a strong model of a formula set r in .eHS) then this model is

also a weak model. By the previous theorem there is hence a weak model of 8(f)

in .cb (S'). By a sorted version of theorem 3.19 there is also a strong model of

8(f).	 •

86 Chapter 5

a(a1, . . . ,am) or
9(a,a1, . . . ‚am) : The a have to be chosen ap-

a°(a, a1, . . . ‚am)
propriately, especially they have to be new, that is, there must be no
element er so that a“ = 9(a) . The case which is chosen depends on the
case that is chosen for the translation of ® 0 93—1.

2. All predicates $309) in £" are translated to (moon). Every formula resulting
of a term declaration or a subsort relation i s translated i n the same manner.

3. @ is the homomorphic closure of the above relation.

Obviously (i) is a quasi-homomorphism. I

5.41 Example: Let us take an example from [40, p.40], theorem (4.11) (for an
MKRP proof using this translation see chapter 6). The different (constant) sets,
especially a. set S , are introduced. The interest is in considering binary relations
on S ‚ especially the subset relation between two such relations is defined. In our
sorted higher—order logic this definition can be given by:

Vf:(t x L —-> 0) " (S x 5—» o) " (f)=$
Vf=(SXS—>o) Vg:(SxS—>o) & (Vg.(L><L-—>o) "(SxS—+o)"(g)=>

(subset(_f‚g) => ___—> (subset(f,g) {=> '
(vw : 5 n s flay) => g(w‚y))) (vim "5-13) => _(VyzL "S"(y) =>

(flaw) => g(r ‚y))))))

@ (i)

Vf:"(L x l. —r o)" " (S x S —+ o)"(f) =>

Vf:"(S x s _» o)" Vg:"(S x s _» o)" (WW X ‘ * °)" "(3 x S —' ”(g) :?bse i (f ‚y) «=><subset<f‚g) «=» 553 (5“(W:;"S" vyz-«su drama-aw,” ———+ (W » S (m):
“ " V : " I I "S"

:> ‘1 (nu—>0) (l b - r ay») (Zia'f(rxL—vo)('?()f=:y)

=> a" ("““°" ' (y ‚$ ‚y))))))

5.42 Theorem: If 6 is an injective quasi-homomorphism from £§(5) to £};(S’),
then @ is strongly sound.

Proof: If there is a strong model of a formula set 1" in [33(5) then this model is
also a weak model. By the previous theorem there is hence a weak model of @(I‘)
in @: (S’). By a sorted version of theorem 3.19 there is also a strong model of
@@). I

Translations

5.43 Remark: In the sorted case we note again that the formulae that are ob­

tained by these translations are not essentially more difficult then the original ones

and that the proofs can easily be translated back, because the mappings e are

injective.

5.3.3	 The Standard Translation From Sorted Higher­

Order Logic to Sorted First-Order Logic

Now we want to define morphisms <I>E from LE to L~ which are not only sound

but also complete. As in section 5.2.2 we define the morphisms for odd n, for

even n they are obtained as the restriction of the next higher odd n, that is

<I>~n := <I>~n+l 1.c2n • The morphisms <I> are defined as <I>(ep) = weep) u 3~, where
E

Weep)	 is a quasi-homomorphism and 3~ are special extensionality axioms for the

a.	 In the following we drop the index n. Again we abbreviate apply as a.

5.44 Definition (Standard Translation <I>~n-l): Let s~n-l be the signature of

a logic in .c~n-l. In order to define a morphism <I> to .c~,=, we have to define the

signature S'E of the target logic and we have to fix how formulae are mapped.

Let S'E be equal to (S, ~,s,!;, 6)

1.	 S is defined as in the unsorted case (compare definition 5.18).

2.	 ~ is defined as the set

{~ I ord(K) < n} U

{(~ X ~1 X ••• X ~m - it) I K= (Kl X ..• X Km - /-l) /\ ord(K) < n} U

{(~l X ... X ~m - 0) I K= (Kl X ... X Km - 0) /\ ord(K) = n}
The function - must map K injectively to new names. Again we can realize

this function by taking the strings. Often we abbreviate 0 to o.

3.	 .5 is defined for variables <I> (x r), where Xr is mapped to K = (Kl x· .. X Km - /-l)

by the corresponding s-function in higher-order logic, as

s(<I>(x	 » = {~ for ord(K) <n

r

(~l x ... X ~m - it) for ord(K) = n

4.	 !; is defined as

(a) ~!;it for all K, /-l with K!;/-l.

(b) ~!;~ for all K top sort with ord(K) < n.

5.	 6 is defined as the set of all term declarations

Translations ' 87

5 .43 Remark: In the sorted case we note again that the formulae that are ob—
tained by these translations are not essentially more difficult then the original ones
and that the proofs can easily be translated back, because the mappings 0 are
injective.

5 .3 .3 The Standard Translation From Sorted Higher-

Order Logic to Sorted First-Order Logic

Now we want to define morphisms (I); from LE to £}; which are not only sound
but also complete. As in section 5.2.2 we define the morphisms for odd n, for
even n they are obtained as the restriction of the next higher odd n , that is
(1%” := (I)?“ '51."- The morphisms (I) are defined as {)(cp) : \Il(cp) U EE whereO.’ ’

\Il(<p) is a quasi—homomorphism and 33 are special extensionality axioms for the
a . In the following we drop the index n . Again we abbreviate apply as a .

5.44 Definition (Standard Translation (158,14): Let Sin—1 be the signature of
a logic in Lin—1. In order to define a morphism (I) to £52 , we have to define the
signature 32 of the target logic and we have to fix how formulae are mapped.

Let gg be equal to (3, 2 ,5 , 5,6)

1. 3 is defined as in the unsorted case (compare definition 5.18).

2. 2 is defined as the set
{E | ord(;c) < n} U
{ (kxk lx - - -k—>fi) | n= (n lx - - -xnm——>‚u) A ord(Ic)<n} U
{(121 x---xfsm——>ö)|lc=(nl x - - -xnm—>o) A ord(l~z)=n}
The function ~must map n injectively to new names. Again we can realize
this function by taking the strings. Often we abbreviate 6 to 0.

3. 5 is defined for variables <I>(:I:T)‚ where z, is mapped to K. = (n1 x - - - xnm —> ‚a)
by the corresponding 5—function in higher-order logic, as
sew,» = {fc for 01‘d(l€) < .n

(k1 x x Fem —> 11) for ord(/s:) 2n

4 . E i s defined as

(a) 799,11 for all n, ‚u with ICE/L.

(b) REL for all Ii: top sort with ord(I~z) < n.

5 . 6 i s defined as the set of all term declarations

88 Chapter 5

(a)	 (aT(XK,XKl'""XKm): ji) for all K. = (K.IX ••• XK.m ~ fL))withtype(l\.) =

rand order) < n ,*

(b) for all term declaration (t : K.) of order less than n 1 (e(t) : k) 1

(c) for all constant declarations (c :	 K.) with I\. = (1\.1 X ••. X I\.m ~ fL) of

order equal to n , (H(c) : (k1 x .. , x km ~ ji)), and

(d)	 ((x K =xK) : 0) for all I\. with ord(1\.) < n and I\. i= o.

Now we are going to define how terms and formulae are mapped by the morphism

W1 which behaves on the signature exactly like cl> 1 with the only exception that ==
is not in the image of W.

For	 terms it is defined inductively by:

Tl	 For a term with an m-ary function term f of sort I\. of type r as top expression

we define

W(f(tl, ... , tm)) = aT(w(f), W(td,··· 1 w(tm))

For formulae we define Winductively by:

Fl	 For an atomic formula with predicate constant p of order n as top expression

we define

F2 For a term with an m-ar'y predicate term p of sort I\. of type r and order less

than n as top expression we define

\I1(p(tl,"" tm)) = a T (1Jr(p), W(t l), ••• , 1Jr(tm))

F3 For a conjunction we define

\I1(epl f\ ',02) = 1Jr('Pl) f\ lJ1(epz)

F4 For a negation we define

W(--'<p) = -'W(<p)

F5 For a quantified formula we define

W('ix<p) = 'i1If(x)1Jr(cp)

::::~	 is the set consisting of tbe following formulae of Lt:::

*That is, we use the functions and predicates et quasi-polymorphic in the sense of remark

3.37.

88 Chapter 5

(a) (drück, ne,-„ ‚ . . . , zu,—gm) _: ft) for all Ic = (Ic! ><- - - ><nm _» p)) with-type(rc) =
T and ord(*r) < n,*

(b) for all term declaration (t : Ic) of order less than n , (9(t) :72),

(c) for all constant declarations (c : It) with It = (m x - ~ - x m,. -—> „) of
order equal to n , (0(c) : (E21 >< - - ‚- >< km ——> m) , and

(d) (($; E 33;) : 5) for all 15 with ord.(n) < n and It 96 0.

Now we are going to define how terms and formulae are mapped by the morphism
\II, which behaves on the signature exactly like <I>, with the only exception that E
is not in the image of \II.

For terms it is defined inductively by:

T1 For a term with an m-ary function term f of sort K of type 1' as top expression
we define

‘I'(f(t1, . . M) = a*(‘1'(f)‚‘1'(t1)‚. - . ‚‘I'(tm))

For formulae we define \I’ inductively by:

F1

F2

F3

F4

F5

For an atomic formula with predicate constant p of order n as top expression
we define

‘1’(p(t1‚-.—‚tm)) = ‘1’(p)(‘1’(t1),---,‘I’(tm))
For a term with an m-ary predicate term p of sort & of type T and order less
than n as top expression we define

‘1’(P(t1‚- . - M)) = 0501100). ‘I’(t1), - . - ‚‘I'(tm))
For a conjunction we define

W991 A 902) : ‘I’(‘Pl) A W992)

For a negation we define

WW) = WW)

For a quantified formula we define
www) = V‘If(w)‘1'(<p)

32 is the set consisting of the following formulae of ‚Cl ‚.:.:

*That is, we use the functions and predicates a quasi-polymorphic in the sense of remark
3.37.

89 Translations

'2.~,j	 For every function constant a f with T = (Tl X •.• X Tm -7 a), a =I- 0 and for

all sorts /\, = (/\,1 X .•• X /\,m -7 f-l) of type T we have:

Vj;.VgK(VXt,···, VX~m

af(f, Xl, ... ,Xm) = af(g, XI, ... ,Xm)) ===} f - 9

'2.~,p	 For every predicate constant a l' with T = (T1 X ..• X Tm -7 0) and for all

sorts /\, = (/\,1 X •.. X /\,m -7 0) of type T we have:

VpKVqh(Vxt,···, VX~m

af(p, XI, ... , xm) {::::=} af(q, XI, ... , x m)) ===} P - q

We define q>(cp) = \lI(cp) U '2.~. Analogously for formula sets q>(f) = \lI(r) U '2.~.

5.45 Remark: Analogously to 5.20 we have that \lI2n-1 is an injective quasi­

homomorphism from ..c~n-1(s) to ..ct(\lI(S)), analogously to 5.21 and 5.42 q> is

weakly and strongly sound.

5.46	 Theorem: q> is weakly complete.

Proof: The proof is a reproduction of the proof of theorem 5.23. In the first step

we introduce the basic notion, in particular a formula set f in ..c~ (SE) and an

arbitrary model M of q>(r). In the second step we define a frame with the help

of which we will define a model for f. This model is defined inductively with the

induction base V", := 'OK for all /\, of type t and Vo := '00 ' For top sorts /\, =

(/\,1 X ... X /\,m -7 f-l) we define V", as a subset of F(V"'1"'" V"'m; Vj.L)' We cannot

take the whole set, because then we would try to obtain strong completeness,

which cannot be achieved in general. In order to construct V", we make use of

the interpretations of the a-functions, especially we construct injective functions

~, which maps Vi<:- to V",. For the other sorts /\, we define V", := ~top sort("')(VK). In a

third step we define an interpretation function j for ..c~ and show that the inclusion

relations induced by the subsort relations hold. In a fourth step we show by

induction on the construction of terms and formulae that the quasi-homomorphism

\lI is compatible with the model relation. Formally we show ~ 0 V[4 0 \lI = vt. In

a fifth and last step we use this property to show that M = ({V",}"" j) is a model

of f.

S t e p 1:

Let f be a formula set in ..c~n-1(SE). Let M be a weak model of q>(f). Then

M is a model of <p('P) for every formula 'P -in r. Let M be ({D",}"".:I) and ebe

an arbitrary assignment. Then we have vt(q>(cp)) = T. We want to construct a

model M of 'P, so that for all assignments ewe have vt ('P) = T.

Translations 89

n For every function constant orf with T = (T1 x - - - x Tm ——> a) , a 96 0 and for
all sorts rc = (m x - - - x mm —+ ‚a) of type T we have:
kvgg (VIII 1 VainR1”" ’ “in

a I (f , x1 , . . . , xm) Ea; (g ,x1‚ . . . ‚wm)) =>n

52’? For every predicate constant of with T = (T1 X - - - x Tm —+ o) and for all

sorts n = (n1 X - - - x nm ——> 0) of type T we have:
Vnqx! Vltm”17"" km

a’.’(p,a:1,...,a:m) (=> a'?(q,a:1,. . . ,a:m)) =>pE q

We define <I>(<p) = \Il(<,9) U EE. Analogously for formula sets <I>(I‘) = \II(I‘) U EE.

5 .45 Remark: Analogously to 5.20 we have that $211-1 is an injective quasi-
homomorphism from £§"—1(S) to £§;(‘Il(8)), analogously to 5.21 and 5.42 (I) is
weakly and strongly sound.

5 .46 Theorem: (I) is weakly complete.

Proof: The proof is a reproduction of the proof of theorem 5.23. In the first s tep
we introduce the basic notion, in particular a formula set I‘ in £382) and an
arbitrary model M of @(I‘). In the second step we define a frame with the help
of which we will define a model for I‘. This model is defined inductively with the
induction base fin := D,; for all K: of type I. and b„ := D5. For top sorts li? =
(n1 x - - - x lim _) ,u) we define ’5‘ as a subset of JTD,“ , . ,Önm; fig) . We cannot
take the whole set , because then we would try to obtain strong completeness,
which cannot be achieved in general. In order to construct b,; we make use of
the interpretations of the oz—functions, especially we construct injective functions
'n, which maps D,; to fin. For the other sorts K. we define b,; := htop „ (MDR) . In a
third step we define an interpretation function ‚_7 for Lg and show that the inclusion
relations induced by the subsort relations hold. In a fourth step we show by
induction on the construction of terms and formulae that the quasi—homomorphism
\II is compatible with the model relation. Formally we Show [1 o VEM 0 \II = VéM. In
a fifth and last step we use this property to show that M = ({‘15„}„, j) is a model
of I‘.

S t ep L

Let F be a formula set in £%"_1(82). Let M be a weak model of <I>(I‘). Then
M is a model of @(9-9) for every formula cp in I‘. Let M be ({Dnh , J) and { be
an arbitrary assignment. Then we have Vg”(<l>(<p)) = T. We want to construct a
model M of cp, so that for all assignments 5 we have Vé—Mflp) = T.

go	 Chapter 5

S t e p 2:

In this step we define a frame for .c~n-l(SI:). Therefore we define b. := Vi: and

Do := Vij. For all other top sorts K, with K = (K,l X ••• X K,m -+ f.L) we have to

define V" ~ F(V"l"'" V"m; VJL)' We do this by inductively defining injective

functions Q", from V;:;. to F(V"l" .. ,V"m; VJL) and setting V;.. := QI«V;o), Hence QI<

is a bijective function from V" to DK • For the other sorts K, with top sort f.L we

define: D", := QAV;:;.).

We define Q" as bijective functions inductively:

1.	 Q. : Vi: -+ iJ. and Qo : V o -+ Do as the identity mappings (These functions

are obviously bijective).

2.	 Let Q"i and QJL be defined for V;:q , ... , Vi<m' and Vii' We are going to define

a function Q" with K, = (Kl X ..• X K,m -+ f.L), f.L -I- 0, for Vi<. For all x E V;:;.

Q,,(x) is defined as Q,,(X)(Xl""'Xm):= QiVr(01')(x,Q;:;"/(Xl)'' .. ,Q;;~(xm)))

for all Xl E b"'1"" ,Xm E D"m

The following diagram may help to see the involved mappings at a glance:

Vf1(Of):Vi< X D"1x",xD"m~VjJ.

! 1b.. ib;~} fb;~.~ 1nl-'

V",-+ F(D"1 , ... , Dl<m ; DJL)

In order to show the injectivity of Q", we use that we have in 3~,j the formula

VI"Vg",(Vxt, . .. ,vxrm af(f, Xl, , xm) ==
a1'(g,xl , ,Xm)) ~ I =9

Therefore we have in a model for all x, x' in Vy"

VYl E V;:;'1"" , VYm E D;;m Vr(O1')(X, YI,· .. ,Ym) ==Vji.

Vf(aT)(x"Yl, ... ,Ym) ==?- x =v" x'
Let Q,,(x) =t>.. Q,,(x') for arbitrary x and x' in Vi<. Then we have by definition

for all Xl E D"1' ... , Xm E Vl<m
QiLVr (of)(x, Q;;1l (Xl)' '" ,Q;;.~ (xm)) VI-' QJLVf(01')(x', Q;ll(xd,· .. , Q;;~ (xm)).
Since the mappings Ql<l"'" Q"m' QJL are all bijeetive, we get for all Yl E

DKll .. ·,Ym E Vi<m: Vf1(a 1')(X'Yl, ... ,Ym) ==Dji. vt(01')(x',Yl, ... ,Ym)' Be­

cause of the relation (*) x =7)" x', hence the injeetivity is shown. Since the

surjectivity is given by definition, we have proved that Q", is bijeetive.

3.	 Let Q"i be defined for V"1" .. ,V"m' We are going to define a function Q" (for

order of K is less than n) with K, = (Kl X ••. X K,m -+ 0) for V". For all x E Vi'>

QI«x) is defined as Q,,(X)(£1,'" , Xm) := Qo vt(OT)(X, Q;/ (Xd, ... ,Q;:;~ (Xm))

90 „ Chapter 5

S t e p 2:

In this step we define a frame for £§"“1(Sg). Therefore we define ’DL := D; and
Öo : : D5. For all other top sorts K, with n, : (n l X X mm —+ p) we have to
define fin g 13(7)“, . . . ‚'Ünm;f3„). We do this by inductively defining injective
functions ll»: from D,; to f (Ö„„. . . ‚ am; fin) and setting ’15,; := finale). Hence I:],€
is a bijective function from 'Dg to fin . For the other sorts fc wi th top sort [1 we

define: ÖN := h„(D‚;‚).
We define h,; as bijective functions inductively:

1. h. : D; —-> f). and ho : 135 ——> 150 as the identity mappings (These functions
are obviously bijective).

2. Let h,“ and h„ be defined for 'DR, , . . . ‚Dam, and D,;. We are going to define
a function [q,€ with K: = (191 X X lem ——» p), ‚u # 0, for D.;. For all :1: E D,;
h„(:v) is defined as h„(a:)(:i1, . . . ,äcm) := h,‘(V&M(a+)(a:, fifth), . . . , h;i(:im)))
for all i l e D„„...‚:im e 15m...

The following diagram may help to see the involved mappings at a glance:

1J‚s{"'(ofi'):’D‚-° X DRIX nm—>Dfi

! in.. Thal Thai, in»
T359 71,5,“ , . . . , b,. ; 15,1)m

In order to show the injectivity of h" we use that we have in Ef'f the formula
Vnnxf—ü, . . . ,m-Qm af(f,:z:1, . . . ‚mm) E

a*(g,x1,...,w"‘)) => f E 9
Therefore we have in a model for all a:, .r’ in ’D;
Vyl E Die“ - ° ° svym E Diem VCM(aT) (a : ‚y1 , - ° - , ym) ED; (*)

VéM(aT) ($ Iay l a ° ' ' vym) => 12 E’Dg {I},

Let h„(.r) Em b„(x') for arbitrary x and x ' in D,}. Then we have by definition
for all :31 E ihm. . .,.firm E TPM"
mvgwxauzsel)....‚u;‚1(azm>> am n,.vg“(a*)(x'‚ hmm . . . ‚hmm.
Since the mappings h,.1 , . . . , hm, h„ are all bijective, we get for all 311 €
Dkl 7 ' ' ' ’ ym E Dam! väMÜIq—‚Xx’y l ’ ‘ ' ' , ym) EDI; vgw(a+) ($ lvy1> ' - ' v gm)" Be-

cause of the relation (*) 3: EUR :r' , hence the injectivity is shown. Since the
surjectivity is given by definition, we have proved that h“ is bijective.

3. Let hm. be defined for 1331 , . . . ‚D,-gm . We are going to define a function ll» (for
order of R is less than n) with & = (n l X - » - X mm —-> o) for DE. For all a; E D,;
h„(x) is defined as b„(x)(ä:1‘,...,:im) := hn"(a?)($,h;11(:E1),...,h;':(.i:m))

Translations

for all Xl E 1JK1 , ••• ,Xrn E 1JKm . Analogously to case 2 we get the bijectivity

of ~K by the corresponding formula in 3~'p.

4. Let	 ~Ki be defined for Vfi,l' ... , Vfi,m. We define a function ~K (for order of ~

I'\, is equal to n) with I'\, = (1'\,1 X ••. X I'\,rn ---+ 0) for Vfi,. For all p E Vfi,

~K(P) is defined as ~K(P)(Xl' ... , xrn) :::;= ~op(~;~-;(Xl)' ... ' ~~~ (x rn)) for all Xl E

VK1 , ... ,Xrn E VKm . The bijectivity of ~K follows trivially.

Hence we have defined a frame {VK}K for all sorts 1'\,.

S t e p 3:

In this step we define an interpretation mapping 3 in order to complete the def­

inition of an interpretation ({DK}K,3). For all constants c we define 3(c) :=

~ 0 .:r 0 llf(c). For all subsort relations I'\,f;;/1 (with same top sort 1/) we have

VK ~ V/t, because we have 'K,[;,p" thereby we get Vfi, ~ Vjl and can conclude

VK = ~AVfi,) ~ ~1I(Vjl) = Vw

S t e p 4:

In this step we have to show that for every assignment ein M there is an as­

signment ~ in M, so that for all terms (and hence all formulae) t we have:

vt(t) = ~ 0 Vr 0 llf(t). Since the proof is analogous to the corresponding palt or

the proof of theorem 5.21 it is omitted here.

S t e p 5:

At first we notice that the term declarations are correctly interpreted. That is the

case, because the corresponding term declarations hold in the translated case.

Now we are going to show that if M is a model of <I>(<p), then 1\1 is a model of

<po If M is model of <I>(<p), then M is a model of w(<p). Let ebe an arbitrary

assignment and ebe defined as ~-l 0 e0 W-\ then we have Vr(w(<p)) = T, because

M is a model of w(<p). Hence we have vt(<p) = ~(Vr(w(<p))) = T. Recall that

for truth values ~ is the identity function. _

5.47 Remark: Analogously to the unsorted case (see 5.25) w- l provides a calculus

for LE. If we add rules that enforce that function symbols and predicate symbols

are equal if they agree in all arguments, we can transform every sound and complete

first-order calculus of Lt by <I> to a sound and weakly complete calculus for LE.
We can execute the proof in Lt and then lift it to a proof in LE.

Translations 91

for all i1 6 Ö,“ , . . . , 53m 6 ’55,". Analogously to case 2 we get the bijectivity
of h,s by the corresponding formula in 53”.

4. Let h,“. be defined for DE“... ‚D,-„m. We define a function h“ (for order of

It is equal to n) with It =(n1 >< X ‚cm —> 0) for DR. For a l l p € D,;
h„(p) is defined as h„(p)(:i;1‚. . . ,zim) := hop(h;11(§:1), . . . , I]; (:Z'm)) for all in 6
Ö“, . . . , film 6 Ö„„_. The bijectivity of h” follows trivially.

Hence we have defined a frame {fin},s for all sorts rs.

S t e p 3: .

In this step we define an interpretation mapping j in order to complete the def-
inition of an interpretation ({fidmj) . For all constants c we define j (c) :=
h o J o \Il(c). For all subsort relations 1:2}; (with same top sort v) we have
TZ; (; bw because we have 7991, thereby we get D,; 9 D,; and can conclude

255 : l i n / (DE) g til/(Dit) : Du-

Step 4:

In this step we have to show that for every assignment € in M there is an as-
signment € in M, so that for all terms (and hence all formulae) t we have:
VEM (t) = h 0 V5!" 0 \P(t) . Since the proof is analogous to the corresponding part or
the proof of theorem 5.21 it is omitted here.

Step 5:

At first we notice that the term declarations are correctly interpreted. That is the
case, because the corresponding term declarations hold in the translated c‘ase.

Now we are going to show that if M is a model of @(cp), then M is a model of
go. If M is model of <I>(<p), then M is a model of \I/(cp). Let { be an arbitrary
assignment and 6 be defined as h ' l o f o W“ , then we have V£M(\I!(go)) = T, because
M is a model of \Il(t,9). Hence we have Vé—Üüp) = h(V£M(\Il(<p))) = T. Recall that
for truth values h is the identity function. l

5.47 Remark: Analogously to the unsorted case (see 5.25) \II“1 provides a calculus
for CE. If we add rules that enforce that function symbols and predicate symbols
are equal if they agree in all arguments, we can transform every sound and complete
first-order calculus of Q}: by (I) to a sound and weakly complete calculus for ß’z‘.
We can execute the proof in ‚6%; and then lift it to a proof in Lg.

92 Chapter 5

5.4	 Relationship to Higher-Order

Theorem Proving

An alternative approach to the translation techniques is to build a higher-order

theorem provers in the first place. These systems are usuaily based on CHURCH '8

>--calculus [33] and the main advantage of this approach is that the additional

axioms (namely the comprehension axioms Y) are obsolete. The price one has to

pay is that unification becomes undecidable and far more complex in general [67].

In TPS such a theorem proveI' for unsorted logic is realized. A sorted calculus

based on the >--calculus can be found in [75].

The following example should show the differences between the two approaches.

5.48 Example: Let us consider the formula set r = {'r://(t_t)'r:/xtP(.f(x)); -'P(a)}

with object constant a of type t and predicate constant P of type (t -+ 0). In order

to show that the formula set r is unsatisfiable, we have to add a comprehension

axiom of the form 3fVx f(x) =a or 3fVx f(x) = x to r. Doing so we can show

in our higher-order logic £2 that the set is unsatisfiable. In the >--calculus one can

find immediately some unifiers that make the two formulae of r complementary.

For instance:

{f f- >-y.y; X f- a} and {f f- Ay.a}. That is, in the A-calculus the functions Ay.y

and).y.a are available as primitives without giving them names and introducing

them explicitly as objects by some axioms.

The question which of these two methods is better, remains open, but there

is evidence that for essentially first-order theorems (compare definition 3.24) the

translation techniques are r>referential, whereas for truly higher-order theorems it

is better to search for the proof in the A-calculus.

92 2 , Chapter 5

5 .4 Relationship t o Higher-Order
Theorem Proving

An alternative approach to the translation techniques is to build a higher-order
theorem provers in the first place. These systems are usually based on CHURCH’S
Ä-calculus [33] and the main advantage of this approach is that the additional
axioms (namely the comprehension axioms T) are obsolete. The price one has to
pay is that unification becomes undecidable and far more complex in general [67].
In TPS such a theorem prover for unsorted logic is realized. A sorted calculus
based on the Ä-calculus can be found in [75].

The following example should show the differences between the two approaches.

5.48 Example: Let us consider the formula set I‘ = {Vf(,_,,)Va:,P(f(a:)); -P (a)}
with object constant a of type 1, and predicate constant P of type (L —> 0). In order
to show that the formula set 1" is unsatisfiable, we have to add a comprehension
axiom of the form ElfVm f (x) E a or ElfVa: f (x) E a: to I‘. Doing so we can show
in our higher-order logic L2 that the set is unsatisfiable. In the A-calculus one can
find immediately some unifiers that make the two formulae of I‘ complementary.
For instance:
{ f (— Ay.y; a: 4—— a} and { f +— /\y.a}. That is, in the A-calculus the functions Ay.y
and Ayn are available as primitives without giving them names and introducing
them explicitly as objects by some axioms.

The question which of these two methods is better, remains open, but there
is evidence that for essentially first-order theorems (compare definition 3.24) the
translation techniques are preferential, whereas for truly higher—order theorems it
is better to search for the proof i n the A-calculus.

CHAPTER 6

Examples and Practical

Considerations on Translations

Begriffe ohne Anschauungen sind leer und
Anschauungen ohne Begriffe blind.

Immanuel Kant

In this chapter we present examples for the translation of theorems from higher­

order logic into first-order logic and their proofs by the Markgraf Karl Refutation

Procedure [93]. In the first section we present a proof of an essentially first-order

theorem, in the second a proof of a truly higher-order theorem. In the third section

the advantage of higher-order sorted language is shown by an example.

6.1 An Essentially First-Order Theorem

As an example for an essentially first-order theorem (for the definition of essentially

first-order compare definition 3.24) we give a proof of theorem 4.3 of [40, p.34],

that the composition of binary relations is associative. We will formulate the

theorem in our higher-order logic.

Let (] and u be two (binary) relations over a (fixed) set S. (Since this set S
is fixed and no other is under consideration, we will take it as the universe of

individuals.) The relation (] 0 u is defined by:

(s,t) E (]O u: {::::::::} 31' (s,r) E (] 1\ (r,t) E u.

The theorem is:

V(], u, T ((] 0 u) 0 T = (} 0 (u 0 T).

Formally we get:

- Definition of Composition:

V(}(tXt->o)VU(tXt->o)VxtVYt ((} 0 u)(x,y) {::::::::} (3zt (}(x,z)!\ u(z,y))

- Extensionality Axiom:

V(](tXt->o)VU(tXt->o) (VxtVYt (](x, y) {::::::::} u(x, y)) ===} (] = U

93

CHAPTER 6

Examples and Practical
Considerations on Translations

Begriffe ohne Anschauungen sind leer und
Anschauungen ohne Begriffe blind.

Immanuel Kant

In this chapter we present examples for the translation of theorems from higher—
order logic into first—order logic and their proofs by the Markgraf Karl Refutation
Procedure [93]. In the first section we present a proof of an essentially first—order
theorem, in the second a proof of a truly higher-order theorem. In the third section
the advantage of higher-order sorted language is shown by an example.

6 .1 An Essentially First-Order Theorem

As an example for an essentially first—order theorem (for the definition of essentially
first-order compare definition 3.24) we give a proof of theorem 4.3 of [40, p.34],
that the composition of binary relations is associative. We will formulate the
theorem in our higher-order logic.

Let 9 and 0" be two (binary) relations over a (fixed) set S . (Since this set S
is fixed and no other is under consideration, we will take it as the universe of
individuals.) The relation 9 o a is defined by:
(s , t) € 900 : (=> 3r (s , r) € g /\ (r , t) € 0.
The theorem is:
Vg,a , ' r (goq)o ' r = 90 (007 ') .
Formally we get:

- Definition of Composition:
V9(LXL—oo)VU(LXL—+o)vxLVya (9 O 0) ($, y) © (32 , 9037 Z) A 0 ' (Z , y))

— Extensionality Axiom:
VQ(LX,_‚0)VG'(„XL_,0) (VmNy, g (x ,y) (=> 0'(m,y)) => g E a

93

94 Chapter 6

Theorem:

'rIf}(tXt-+o)'rIo-(tXt-+o)'rIT(tXt-+o) (f} 00-) 0 r = (! 0 (0- 0 r).

This will. be translated into first-order logic by a quasi-homomorphism. The

altXt-+o"	 predicate is written as A[IXITO] and so on. The type of binary relations

is translated to the sort IXITO, where I stands for /, and 0 for o. For example, (!(x, y)
is translated into the first-order atom A[IXITO] (rho x y). The representation in

Markgraf Karl syntax is:

Formulae given to the editor

Axioms:
* SORTS *
SORT I,ITD,IXITO:ANY
* TERM DECLARATIONS *
TYPE A[IXITO] (IXITO I I)
TYPE A[ITO] (ITO I)
* DEFINITION OF COMPOSITION *
TYPE COMP(IXITO 1XITO):1XITO
ALL RHO:IXITO ALL SIGMA:IXITO (ALL X:1 ALL Y:I

A[1XITO] (COMP(RHO SIGMA) X Y) EQV
(EX 2:1 A[IXITO] (RHO X 2) AND A[1X1TO] (SIGMA Z V»~)

* EXTENSIONALITY *
ALL RHO: IXITO ALL S1GMA:1X1TO

(ALL X:I ALL Y:I A[IXITO] (RHO X Y) EQV A[IXITO] (SIGMA X V»~

IMPL RHO = SIGHA

Theorems:
ALL RHO: IXITO ALL SIGHA:IXITO ALL TAU:1X1TO

COMP(COHP(RHO SIGHA) TAU) = COHP(RHO COMP(SIGHA TAU»

Refutation:

Initial Clauses:
A1:All x:Any + =(x x)

* A2: All x,y:1 z,u:1xito - A[1X1TO] (comp(u z) y x) + A[1X1TO](u y f_l(u x y z»
* A3: All x,y:I z,u:lxito - A[IX1TO] (comp(u z) y x) + A[1X1TO](z f_1(u x y z) x)
* A4: All x,y,z:1 u,v:1xito + A[1X1TO] (comp(v u) z y) - A[1X1TO](v z x)

- A[IXITO](u x y)
* A5: All x,y:1xito - A[1XITO]Cy f_2(y x) f_3(y x» - A[IX1TO](x f_2Cy x) f_3(y x»

+ =(y x)
* A6: All x,y:Ixito + A[IX1TO](y f_2Cy x) f_3(y x» + A[IX1TO](x f_2Cy x) f_3Cy x»

+ =Cy x)
* T7: - =(comp(compCc_1 c_2) c_3) compCc_1 comp(c_2 c_3»)

A6,3 & T7,1 --> * R1:
+	 A[IX1TO] (comp(comp(c_1 c_2) c_3)

f_2Ccomp(compCc_1 c_2) c_3) compCc_1 comp(c_2 c_3»)

f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»»

+	 A[IXITO]CcompCc_1 compCc_2 c_3»

f_2Ccomp(comp(c_1 c_2) c_3) comp(c_1 compCc_2 c_3»)

f_3(comp(compCc_1 c_2) c_3) compCc_1 compCc_2 c_3»»

94 Chapter 6

—— Theorem:
VQUXL—>0)VU(LXo—>0)VT(LXL—vo) (@ O 0') 0 T E 9 O (0‘ O T)‘

This willbe translated into first-order logic by a quasi—homomorphism. The
a"””"’°" predicate is written as A[IXITO] and so on. The type of binary relations
is translated to the sort IXITO, where I stands for L and O for o. For example, 9(x, y)
is translated into the first—order atom A [IXITO] (rho x y) . The representation in
Markgraf Karl syntax is:

Formulae g iven to the edi tor

Axioms:
* SORTS *
SORT I,ITO,IXITO:ANY
* TERM DECLARATIONS t
TYPE AEIXITO](IXITO I I)
TYPE A[ITO](ITO I)
* DEFINITION OF COMPOSITION *
TYPE COMP(IXITO IXITO):IXITO
ALL BHO:IXITO ALL SIGHA:IXITO (ALL X:I ALL Y:I

AEIXITO](COMP(BHO SIGMA) X Y) EQV
(EX 2 :1 AEIXITO](RHO X 2) AND AEIXITO](SIGHA Z Y)))

* EXTENSIDNALITY *
ALL RHO:IXITO ALL SIGMA:IXITO '

(ALL X:I ALL Y:I A[IXITO](RHO x Y) EQV A[IXITO](SIGHA x Y))
IMPL RHO = SIGMA

Theorems :
ALL RHO:IXITO ALL SIGHA:IXITO ALL TAU:IXITO

COMP(COHP(RHO SIGMA) TAU) = COHP(RBO COHP(SIGMA TAU))

Refu ta t i on :

In i t i a l C lauses :
A1: A11 x:Any + =(x x)

* A2: A11 x ,y : I z ,u : Ix i t o - A[IXITO](comp(u z) y x) + A[IXITO](u y f_1 (u x y z))
* A3: A11 x ,y : I z ,u : Ix i t o - A[IXITO](comp(u z) y x) + AEIXITO](z f_1 (u x y z) x)
* A4: A11 x ,y , z : I u ,v : Ix i to + A[IXITD](conp(v u) z y) - AEIXITO](V z x)

- A[IXITO](u x y)
* A5: A11 x ,y : Ix i t o - AEIXITO](Y f_2 (y x) f_3 (y x)) * A[IXITO](x f_2 (y x) f_3 (y x))

+ =(y x)
* A6: A11 x‚y:Ixito + A[Ix1'rü](y f_2(y x) f_3(y x)) + AEIXITU](x f_2(y x) f_3(y x))

+ =(y x)
* T7: — =(comp(comp(c_1 c_2) c_3) comp(c_1 conp(c_2 c_3)))

A6,3 & T7 ,1 - -> * R1:
+ AEIXITO](comp(comp(c_1 c_2) c_3)

f_2 (comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3)))
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3))))

+ AEIXITO](coup(c_1 comp(c_2 c_3))
f_2(comp(conp(c_1 c_2) c„3) comp(c_1 comp(c_2 c_3)))
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3))))

95 Examples and Practical Considerations on Translations

R143,1 & R136,1 --> * R152:
- A[IXITO] (c_2

f_Hc_1
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»)
f_2(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»)
comp(c_2 c_3»

f_Hc_2
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»)
CHc_1

f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»)
f_2(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»)
comp(c_2 c_3»

c_3))

- A[IXITO] (c_3

f_1(c_2
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»)
f_Hc_1

f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»)
f_2(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»)
comp(c_2 c_3»

c_3)
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»»

R152,1 & R149,1 --> * R153:
- A[IXITO] (c_3

f_Hc_2
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»)
CHc_1

f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»)
f_2(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»)
comp(c_2 c_3»

c_3)
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3»»

R153,1 & R148,1 --> * R154:
[]

q.e.d.

Time Used for Refutation: 3893 seconds

The MKRP needs 3893 seconds (more than an hour) to prove this simple

theorem. The system produces 154 clauses, many of them rather difficult (the last

three can be seen above). Although we have translated the theorem such that the

preconditions are minimal and the initial clause set is relatively simple, we get an

unfolding of the following axiom during normalization*:

*This is an observation of AXEL PRACKLEIN. In a joint work [73] we propose to introduce

tactics that reformulate problem formulations in order to get a more adequate formulation.

Examples and Practical Considerations on Translations 95

R143 ,1 & R136 ,1 - -> * R152 :
- A[IXITU](C_2

f_1 (c_1
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3)))
f_2(comp(comp(c_1 c_2) c_3) conp(c_1 comp(c_2 c_3)))
comp(c_2 c_3))

f_1 (c_2
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3)))
f_1(c_1

f_3 (comp(comp(c_1 c_2) c_3) comp(c_ l comp(c_2 c_3)))
f_2 (comp(conp(c_1 c_2) c_3) comp(c_ i comp(c_2 c_3)))
comp(c_2 c_3))

c_3))
- A[IXITO](C_3

f_1 (c_2
f_3(comp(comp(c_1 c_2) c_3) comp(c_l comp(c_2 c_3)))
f_1(c_1

f_3(comp(comp(c_1 c_2) c_3) comp(c_l comp(c_2 c_3)))
f_2(comp(comp(c_1 c_2) c_3) conp(c_1 comp(c_2 c_3)))
comp(c_2 c_3))

c_3)
f_3 (comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3))))

R152 ,1 & R149 ,1 - -> * R153:
- AEIX ITO] (C_3

f_1(C_2 *
f_3(comp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3)))
f_1(c_1

f_3(comp(comp(c_1 c_2) c_3) comp(c_i comp(c_2 c_3)))
f_2(comp(comp(c_l c_2) c_3) comp(c_1 comp(c_2 c_3)))
co -p (c_2 c_3)) o

c_3)
f_3(conp(comp(c_1 c_2) c_3) comp(c_1 comp(c_2 c_3))))

v.

n153‚1 a R148,1 --> * 11154:
[]

q .e .d .

Time Used fo r Refutat ion: 3893 seconds

The MKRP needs 3893 seconds (more than an hour) to prove this simple
theorem. The system produces 154 clauses, many of them rather difficult (the last
three can be seen above). Although we have translated the theorem such that the
preconditions are minimal and the initial clause set is relatively simple, we get an
unfolding of the following axiom during normalization“:

*This is an observation of AXEL PRÄCKLEIN. In a joint work [73] we propose to introduce
tactics that reformulate problem formulations in order to get a more adequate formulation.

96 Chapter 6

~ (~ A {=} B) ===:;. C

~ ~ -,([2] A {=} B) v C

~ [2J -,(([2] A ~ B)!\([Y] B ~ A))VC

~ [Y] -,(~ -,A. v B) v -,(~ -.B v A) v C

~ [Y] ([~ -.(-.A v B))V(@)-.(-.BV A))VC

~ [2J (~ A!\ -.B) v ([] B !\ -.A) v C

~ [2] (-.A v -.B v C) !\ (A V B V C)

The last formula corresponds to A5 and A6 in the normalization above. We have

two clauses, where the As and Bs contain complicated SKOLEM functions because

of quantifiers in the theorem and they must be resolved in a difficult manner.

Looking at the input formulae and at the result of the normalization we see

that it is very useful to first perform a preprocessing step. The structure of the ex­

tensionality axiom is (A {::::::9 B) ===:;. C where C matches the theorem C'. Hence

we can construct a new theorem A' {=} B' according to this match. Starting

with this "resolvent" as theorem we can avoid the unfolding during normalization.

By the preprocessing step one can replace the three-literal clauses A5 and A6

as well as the theorem clause T7 by the simple clauses T5 and T6 in the proof

below and hence avoid the SKOLEM functions f _2 and f _3. The general explicit

formulation of the extensionality a.xiom is replaced by a. special implicit one. The

alternative formulation is:

Formulae given to the editor

Axioms:

* SORTS *
SORT 1,1TO,IXITO:ANY

* TERM DECLARATIONS *

TYPE A[1XITO] (IXITO I I)

TYPE A[ITO] (ITO I)

* DEFINITION OF COMPOSITION *

TYPE COMP(IXITO IXITO):IXITO

ALL RHO:IXITO ALL SIGMA:IXITO (ALL X:I ALL Y:I

A[IXITO] (COMP(RHO SIGMA) X Y) EQV

(EX Z:1 A[IX1TO] (RHO X Z) AND A[IX1TO] (SIGMA Z V»~)

Theorems:
ALL RHO:IXITO ALL SIGMA:IXITO ALL TAU:IXITO ALL X:I ALL Y:I ,

A[IXITO] (COMP (COMP (RHO SIGMA) TAU) X y) EQV A[IXITO] (COMP(RHO COMP(SIGMA TAU» X Y)

96 1 Chapter 6

"(A <=> B)=>C

«» “(A =» B)VC

M“((A==>B)A(.B==>A))VC
«» " (aAvB)vfi (IfiBvA)vC

«» lll(——<fiAvB>>v(fi(fiBvA>>vo
M (' .AA—=B)V(.B/ \—'A)VC

«» '(fiAV-uBVC)/\(AVBVC)
The last formula corresponds t o A5 and A6 in the normalization above. We have

two clauses, Where the As and Bs contain complicated SKOLEM functions because
of quantifiers in the theorem and they must be resolved in a difficult manner.

Looking at the input formulae and at the result of the normalization we see
that it is very useful to first perform a preprocessing step. The structure of the ex—
tensionality axiom is (A <=» B) =? C where C matches the theorem 0". Hence
we can construct a new theorem A’ <:=> B’ according to this match. Starting
with this “resolvent” as theorem we can avoid the unfolding during normalization.

By the preprocessing step one can replace the three-literal clauses A5 and A6
as well as the theorem clause T7 by the simple clauses T5 and T6 in the proof
below and hence avoid the SKOLEM functions 13.2 and f_3. The general explicit
formulation of the extensionality axiom is replaced by a special implicit one. The
alternative formulation is :

Formulae given to the ed i to r

Axioms :
* SORTS *
SORT I , ITO,IXITO:ANY
* TERM DECLARATIONS I
TYPE AEIXITO](IXITO I I)
TYPE AEITO](ITO I)
* DEFINITION OF COMPOSITION *
TYPE COMP(IXITO IX ITO) : IX ITO
ALL RHO:IXITO ALL SIGMA:IXITO (ALL X:I ALL Y: I

A[IXITO](COMP(RHO SIGMA) X Y) EQV
(EX Z : I A[IXITO](RHO X Z) AND A[IXITO](SIGHA Z Y)))

Theorems :
ALL RHO:IXITO ALL SIGMA:IXITO ALL TAU:IXITO ALL X: I ALL Y: I L

AEIXITO](COMP(COHP(RHO SIGMA) TAU) X Y) EQV A[IXITO](COMP(BHO COHP(SIGMA TAU)) X Y)

97 Examples and Practical Considerations on Translations

Refutation:
==========

Initial Clauses:
Ai: All x:Any + =(x x)

* A2:	 All x,y:I z,u:Ixito - A[IXITO] (comp(u z) y x) + A[IXITO](u y f_i(u.x y z»
* A3:	 All x,y:I z,u;Ixito - A[IXITO] (comp(u z) y x) + A[IXITO](z f_i(u x y z) x)
* A4: All x,y,z:I u,v:Ixito + A[IXITO] (comp(v u) z y) - A[IXITO](v z x)

- A[IXITO](u x y)
*	 T5: - A[IXI TO] (comp(comp(c_i c_2) c_3) c_4 c_5)

- A[IXITO] (comp(c_i comp(c_2 c_3» c_4 c_5)
* T6:	 + A[IXITO] (comp(comp(c_i c_2) c_3) c_4 c_5)

+ A[IXITO] (comp(c_i comp(c_2 c_3» c_4 c_5)

T6,2 & A3,i --> * Ri:
+ A[IXITO] (comp(comp(c_i c_2) c_3) c_4 c_5)
+ A[IXITO] (comp(c_2 c_3) f_i(c_i c_5 c_4 comp(c_2 c_3» c_5)

R5,2 & R37,3 --> * R38:
+ A[IXITO] (comp(comp(c_i c_2) c_3) c_4 c_5)
+ A[IXITO] (comp(comp(c_i c_2) c_3) c_4 c_5)
+ A[IXITO] (comp(c_i c_2) c_4 f_i(c_2 c_5 f_l(c_l c_5 c_4 comp(c_2 c_3» c_3»

R77,1 & R61,1 --> * R78:
- A[IXITO] (c_3 f_i(c_2 c_5 f_i(c_l c_5 c_4 comp(c_2 c_3» c_3) c_5)

R78,i & R76,i --> * R79:
[J

q.e.d.

Time Used for Refutation: 326 seconds

R38 is one of the most difficult clauses in the whole proof. The proof is found

in .326 seconds - compared to 3893- seconds a drastical improvement.

In addition, it is now possible to split the theorem automatically into the two

parts A' ===? B' and B ' ===? A' with computation times for the splitparts of 20

seconds each, that means, total refutation time of 40 seconds. In this formulation

the original theorem clause T7 is replaced by the unit clauses T5 through T8.

Set of Axiom Clauses Resulting from Normalization

Ai: All x:Any + =(x x)
* A2:	 All x,y:I z,u:Ixito - A[IXITO] (comp(u z) y x) + A[IXITO](u y f_i(u x y z»
* A3:	 All x,y:I z,u:Ixito - A[IXITO] (comp(u z) y x) + A[IXITO](z f_i(u x y z) x)
* A4: All x,y,z:I u,v:lxito + A[IXITD] (comp(v u) z y) - A[IXITO](v z x)

- A[IXITO](u x y)

Examples and Practical Considerations on Translations 97

Refu ta t ion :

In i t i a l C lauses :
A1: A11 sny + =(x x)

A2: A11 x ,y : I z ‚u : Ix i t o — AEIXITO](co-p(u z) y x) + AEIXITD](u y f_1 (u .x y z))
A3: A11 x ,y : I z ,u : Ix i t o - AEIXITO](conp(u z) y x) + AEIXITD](2 f_1 (u x y z) x)

* A4: A11 x ,y , z : I u‚v : Ix i t o + A[IXITO](comp(v u) z y) - A[IXITO](V z x)
- A[IXITO](u x y)

*

* T5: — A[IXITO](comp(comp(c_1 c_2) c_3) c_4 c_5)
- A[IXITO](comp(c_1 comp(c_2 c_3)) c_4 c_5)

* T6: + A[IXITO](comp(comp(c_1 c_2) c_3) c_4 c_5)
+ AEIXITO](comp(c_1 comp(c_2 c_3)) c_4 c_5)

T6‚2 & A3 ,1 - -> # R1:
+ A[IXITO](comp(comp(c_1 c_2) c_3) c_4 c_5)
+ A[IXITD](comp(c_2 c_3) f_1 (c_1 c_5 c_4 comp(c_2 c_3)) c_5)

R5‚2 & R37‚3 ——> * R38 :
+ A[IXITD](comp(comp(c_1 c_2) c_3) c_4 c_5)
+ A[IXITO](comp(comp(c_1 c_2) c_3) c_4 c_5)
+ A[IXITO](comp(c_1 c_2) c_4 f_1 (c_2 c_5 f_1 (c_1 c_5 c_4 conp(c_2 c_3)) c_3))

R77‚1 & R61‚1 - -> * R78:
- A[IXITO](c_3 f_1(c_2 c_5 f_1 (c_1 c_5 c_4 comp(c_2 c_3)) c_3) c_5)

R7B‚1 t 376 ,1 - -> * R79:
[]

q‚e .d .

Time Used fo r Re fu t a t i on : 326 seconds

R38 is one of the most difficult clauses in the whole proof. The proof is found
in _326 seconds — compared to 3893 seconds a drastical improvement.

In addition, it is now possible to split the theorem automatically into the two
parts A’ => B’ and B’ => A’ with computation times for the splitparts of 20~
seconds each, that means, total refutation time of 40 seconds. In this formulation
the original theorem clause T7 is replaced by the unit clauses T5 through T8.

Se t o f Axiom Clauses Resul t ing f rom Normal izat ion

A1: A11 x:Any + =(x x)
* A2: A11 x ,y : I z ,u : Ix i t o - AEIXITO](comp(u z) y x) + ACIXITO](u y f_1 (u x y z))
* A3: A11 x ,y : I z , u : Ix i t o - A[IXITO](comp(u z) y x) + A[IXITO](z f_1 (u x y z) x)
* A4: Al l x ,y , z : I u ,v : Ix i t o + A[IXITD](comp(v u) z y) - A[IXITO](V z x)

- A[IXITD](u x y)

98 Chapter 6

Set of Theorem Clauses Resulting from Normalization and Splitting
===

Splitpart 1
* T5: - A[IXITO] (comp(comp(c_4 c_1) c_2) c_3 c_5)
* T6: + A[IXITO] (comp(c_4 comp(c_l c_2» c_3 c_5)

Splitpart 2
* T7: + A[IXITO] (comp(comp(c_9 c_6) c_7) c_8 c_l0)
* TB: - A[IXITO] (comp(c_9 comp(c_6 c_7» c_B c_l0)

Refutation of Splitpart 1:

T6,l & A3,1 --> * Ri:
+ A[IXITO] (comp(c_1 c_2) f_l(c_4 c_5 c_3 comp(c_l c_2» c_5)

T6,l & A2,1 --> * R2:
+ A[IXITD] (c_4 c_3 f_1(c_4 c_5 c_3 comp(c_l c_2»)

Rl,l & A2,1 --> * R3:
+	 A[IXITD] (c_1

f_1(c_4 c_5 c_3 comp(c_1 c_2»

f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_l c_2» c_2»

Rl,l & A3,1 --> * R4:
+ A[IXITO] (c_2 f_1(c_1 c_5 f_l(c_4 c_5 c_3 comp(c_l c_2» c_2) c_5)

A4,l & T5,1 --> * R5:
All xlI - A[IXITO] (comp(c_4 c_1) c_3 x) - A[IXITO] (c_2 x c_5)

R4,l & R5,2 --> * R6:
- A[IXITO] (comp(c_4 c_l) c_3 f_1(c_l c_5 f_l(c_4 c_5 c_3 comp(c_l c_2» c_2»

R3,1 & A4,3 --> * R7:
+ A[IXITD] (comp(c_4 c_1) c_3 f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_l c_2» c_2»
- A[IXITD] (c_4 c_3 f_1(c_4 c_5 c_3 comp(c_1 c_2»)

R7,2 & R2,1 --> * R8:
+ A[IXITO] (comp(c_4 c_1) c_3 f_1(c_l c_5 f_l(c_4 c_5 c_3 comp(c_l c_2» c_2»

RB,1 & R6,1 --> * R9:
[]

Refutation of Splitpart 2:
==========================

T7,1 & A3,1 --> * RiO:
+ A[IXITD] (c_7 f_l(comp(c_9 c_6) c_l0 c_B c_7) c_l0)

T7,1 & A2,1 --> * Rl1:
+ A[IXITD] (comp(c_9 c_6) c_B f_l(comp(c_9 c_6) c_l0 c_8 c_7»

Rl1,1 & A3,1 --> * R12:
+	 A[IXITD] (c_6

f_l(c_9 f_l(comp(c_9 c_6) c_10 c_8 c_7) c_S c_6)

f_l(comp(c_9 c_6) c_10 c_8 c_7»

98 Chapter 6

Set of Theorem Clauses Result ing from Normalization and Spl i t t ing

Splitpart 1
* T5: - A[IXITO](comp(comp(c_4 c_1) c_2) c_3 c_5)
* T6: + AEIXITO](comp(c_4 comp(c_1 c_2)) c_3 c_5)

Splitpart 2
* T7: + AEIXITO](comp(comp(c_9 c_6) c_7) c_8 c_10)
* T8: - AEIXITD](comp(c_9 comp(c_6 c_7)) c_8 c_10)

Refu ta t ion of Splitpart 1 :

T6‚1 & A3‚1 -—> * R1:
+ AEIXITO](cbmp(c_1 c_2) f_1 (c_4 c_5 c_3 comp(c_1 c_2)) c_5)

T6‚1 & A2,1 ——> * R2:
+ AEIXITO](c_4 c_3 i _1 (c_4 c_S c_3 comp(c_1 c_2)))

31,1 & 12,1 --> * as:
+ A[IXITO](C_1

f_1 (c_4 c_5 c_3 comp(c_1 c_2))
f_1(c_1 c_5 f-1(c_4 c_5 c_3 conp(c_1 c_2)) c_2))

R1,1 & A3,1 —-> * R4:
+ AEIXITO](c_2 f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_1 c_2)) c_2) c_5)

A4‚1 & T5 ,1 - -> * RS:
Al l x : I - A[IXITO](comp(c_4 c_1) c_3 x) - AEIXITO](C_2 x c_5)

R4‚1 & R5,2 —-> * R6:
- AEIXITO](comp(c_4 c_1) c_3 f_1 (c_1 c_5 f_1 (c_4 c_5 c_3 comp(c_1 c_2)) c_2))

33 ,1 & A4 ,3 - -> * R7:
+ A[IXITO](comp(c_4 c_1) c_3 f_1 (c_1 c_5 f_1 (c_4 c_5 c_3 comp(c_1 c_2)) c_2))
- A[IXITD](c_4 c_3 f_1(c_4 c_5 c_3 comp(c_1 c_2)))

R7‚2 1 32,1 ——> * as:
+ AEIXITO](conp(c_4 c_1) c_3 f_1(c_1 c_5 f_1(c_4 c_5 c_3 comp(c_1 c_2)) c_2))

R8,1 & R6‚1 - -> * R9:
[]

Refuta t ion of Splitpart 2 :

T7 ,1 & A3‚1 -—> * R10: „
+ AEIXITO](C_7 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_10)

T7 ,1 & A2,1 ——> * R11:
+ A[IXITO](comp(c_9 c_6) c_8 f_1 (comp(c_9 c_6) c_10 c_8 c_7))

R11‚1 & A3‚1 —-> * R12:
+ AEIXITD](C_6

f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6)
f_1(comp(c_9 c_6) c_10 c_8 c_7))

99 Examples and Practical Considerations on Translations

R11,1 & A2,1 --) * R13:
+ A[IXITO] (c_9 c_8 f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6»

A4,1 & T8,1 --) * Ri4:
All x:I - A[IXITO] (c_9 c_8 x) - A[IXITO] (comp(c_6 c_7) x c_10)

R13,1 & R14,1 --) * R1S:
- A[IXITO] (comp(c_6 c_7) CHc_9 CHcomp(c_9 c_6) c_10 c_8 c_7), c_8 c_6) c_10)

RiO,1 & A4,3 --) * R16:
+ A[IXITO] (comp(c_6 c_7) f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6) c_10)
-	 A[IXITO] (c_6

f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_S c_6)

f_1(comp(c_9 c_6) c_10 c_S c_7»

R16,2 & R12,1 --) * R17:
+ A[IXITO] (comp(c_6 c_7) f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_S c_6) c_10)

R17,1 & R1S,1 --) * R18:
[]

q.e.d.

Time Used for Refutation of Splitpart 1: 20 seconds
Time Used for Refutation of Splitpart 2: 20 seconds

Summarizing it is possible to say that the problem representation is crucial for

automated theorem proving. An automated theorem proveI' is very sensitive to

the problem formulation. Therefore even for essentially first-order theorems the

question of how to prove it by a first-order theorem proveI' is not answered by

simply translating them from higher-order into into first-order. The problem, how

to translate and what kind of problem presentation should be chosen, is largely

uninvestigated. In [73] some ideas in this direction can be found. Perhaps the

most important question - but as seen in the example not the only one - is hmv

to find a minimal set of preconditions for proving the theorem, because otherwise

the search space for a proof is too big. In order to find such a minimal or almost

minimal set analogy will play an important role. Some examples in this direction

can be found in [71].

6.2 A Truly Higher-Order Theorem

As an example for a truly higher-order theorem (for the definition of truly higher­

order compare definition 3.24) we present a proof of CANTOR'S theorem that the

power-set of a set has greater cardinality than the set itself. We use the formulation

of ANDREWS [3, p.184, X5304] (compare figure 4.12).

A formulation in our higher-order logic is - sets are encoded as predicates of

the type (t ---+ 0):

Examples and Practical Considerations on Translations 99

311 ,1 & A2 ,1 - -> * R13:
+ A[IXITO](c_9 c_8 f_1(c_9 f_1(conp(c_9 c_6) c_10 c_8 c_7) c_8 c_6))

A4,1 & T8‚1 ") * R14:
Al l x : I — A[IXITU](C_9 c_8 x) - A[IXITO](comp(c_6 c_7) x c_10)

R13 ,1 & R14 ,1 —-> * R15:
— A[IXITO](comp(c_6 c_7) f_1(c_9 f_1(conp(c_9 c_6) c_10 c_8 c_7) c_8 c_6) c_10)

R10 ,1 & A4‚3 - -> * R16:
+ A[IXITO](comp(c_6 c_7) f_1(c_9 f_1(comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6) c_10)
- A[IXITO](C_6

f_1 (c_9 f_1 (comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6)
f_1(comp(c_9 c_6) c_10 c_8 c_7))

R16 ,2 & R12 ,1 ——> * R17:
+ A[IXITO] (comp(c_6 c_7) f_1 (c_9 f_1 (comp(c_9 c_6) c_10 c_8 c_7) c_8 c_6) c_10)

317.1 a 315.1 —-> * R18:
[]

q .e .d .

Time Used fo r Refutat ion o f Splitpart 1 : 20 seconds
Time Used fo r Refutat ion o f Splitpart 2 : 20 seconds

Summarizing i t is possible to say that the problem representation is crucial for
automated theorem proving. An automated theorem prover is very sensitive to
the problem formulation. Therefore even for essentially first—order theorems the
question of how to prove it by a first—order theorem prover is not answered by
simply translating them from higher-order into into first-order. The problem, how
to translate and what kind of problem presentation should be chosen, is largely
uninvestigated. In [73] some ideas in this direction can be found. Perhaps the
most important question — but as seen in the example not the only one — is how
to find a minimal set of preconditions for proving the theorem, because otherwise
the search space for a proof is too big. In order to find such a minimal or almost
minimal set analogy will play an important role. Some examples i n this direction
can be found in [71].

6 .2 A Truly Higher-Order Theorem

As an example for a truly higher—order theorem (for the definition of truly higher-
orde-r compare definition 3.24) we present a proof of CANTOR’S theorem that the
power—set of a set has greater cardinality than the set itself. We use the formulation
of ANDREWS [3, p.184, X5304] (compare figure 4.12).

A formulation in our higher-order logic is — sets are encoded as predicates of
the type (i. —> o):

100 Chapter 6

- Definition of subset:

VA(t-+o)VB(HO) A ~ B {::::::::} (Vx, A(x) =? B(x)).

- Theorem:

V8(,0) ,3g(,.....(''''''0»\1/(''''''0) f ~ s ==} (3j, s(j) A g(j) =J)

- In order to prove this theorem by a translation to first-order logic, we need

the following comprehension axiom, which incorporates the idea of diagonal­

ization:

Now we show a quasi-homomorphic translation into first-order logic (in MKRP­

syntax) and a proof by the MKRP system:

Formulae given to the editor
============================

Axioms:
* SORTS *
SORT I,ITO,IT[ITO]:ANY
* TERM DECLARATIONS *
TYPE A[ITO] (ITO I)
TYPE A[IT[ITO]] (IT[ITO] 1):ITO
TYPE SUBSET (ITO ITO)
* DEFINITION SUBSET *
ALL A,B:ITO SUBSET(A B) EQV (ALL X:I A[ITO](A X) IMPL A[ITO](B X»
* COMPREHENSION AXIOM *
ALL S:ITO ALL G:IT[ITO] EX P:ITO ALL X:I

A[ITO](P X) EQV (A [ITO](5 X) AND (NOT A[ITO](A[IT[ITO]](G X) X»)

Theorems:
ALL S:ITO (NOT EX G:IT[ITO] ALL F:ITO

SUBSET(F S) IMPL (EX J:I A[ITO](S J) AND A[IT[ITO]](G J) = F»

Refutation:

Initial Clauses:
A1: All x:Any + =(x x)

* A2: All x:I y:It[ito] z:Ito - A[ITO] (f_1(z y) x) + A[ITO](z x)
* A3: All x:I y:It[ito] z:Ito - A[ITO] (f_1(z y) x) - A[ITO](a[it[it~]](y x) x)
* A4: All x:I y:lt[ito] z:Ito + A[ITO] (f_1(z y) x) - A[ITO](z x)

+ A[ITO] (a[it[ito]](y x) x)
* T5: All x:lto + A[ITO](x f_2(x» + A[ITO] (c_1 f_3(x»
* T6: All x:lto + A[ITO](x f_2(x» + =(a[it[ito]] (c_2 f_3(x» x)
* T7: All x:lto - A[ITO] (c_1 f_2(x» + A[ITO] (c_1 f_3(x»
* T8: All x:lto - A[ITO] (c_1 f_2(x» + =(a[it[ito]](c_2 f_3(x» x)

T5,1 & A2,1 --> * RS:
All x:lt[itoJ y:lto + A[ITOJ(c_1 f_3(f_1(y x») + A[ITOJ(y f_2(f_1(y x»)

100 \ Chapter 6

— Definition of subset: .

VA(L_„)VB(L_.O) A Q B (=> (VxL A(m) => B(:c)).

— Theorem:
V5(L_+o)“aan-*(L—‚oaÜ—m) f S 8 => (3)? SU) A _QU) E f)

— In order t o prove this theorem by a translation to first-order logic, we need
the following comprehension axiom, which incorporates the idea of diagonal-
ization:
V3(L-+o)Vg(»-»<¢—»o))3p(~o)Vim (190?) (=> 3(w) /\ WWW)

Now we show a quasi—homomorphic translation into first-order logic (in MKRP-
syntax) and a proof by the MKRP system:

Formulae g iven to the ed i to r

Axioms :
* SORTS *
SORT I,ITO,IT[ITO]:ANY
TERM DECLARATIONS
TYPE A[ITO](ITO I)
TYPE A[ITEITO]](IT[ITO] I) : ITD
TYPE SUBSET (ITO ITO)
* DEFINITION SUBSET *
ALL A‚B:ITD SUBSET(A B) EQV (ALL X:I A[ITO](A x) IHPL A[ITO](B X))
* COMFREHENSION AXIOM *
ALL S:ITO ALL G: IT [ITD] EX lTD ALL X: I

A[ITO](P X) EQV (A[ITO](S X) AND (NOT A[ITO](A[IT[ITO]](G X) X)))

Theorems :
ALL S:ITO (NOT EX G:IT[ITO] ALL F:ITO

SUBSET(F S) IHPL (Ex J : I A[ITO](S J) AND A[IT[ITO]](G J) = P))

Refu ta t i on :

Initial Clauses :
A1: Al l x:Any + =(x x)

* A2: A11 x : I y : I t [i t o] zzlto
* A3: A11 x : I y : I t [i t o] zz l t o

A4: Al l x

A[ITO](f_1(z y) x) + A[ITO](z x) ,
A[ITO](t_1(z y) x) - A[ITO](a [i t [i to]] (y x) x)

: I y : I t [i t o] zz l t o + A[ITO](f_1(z y) x) — A[ITO](z x)*

+ A[ITO](a [i t [i to]] (y x) x)
* T5: A l l x : I t o + A[ITO](x f _2 (x)) + A[ITO](c_1 f _3 (x))
* T6: A l l l t o + A[ITO](X f_2 (x)) + =(a [i t [i t o]] (c_2 f _3 (x)) x)
* T7: A11 x t I to — A[ITO](c_1 f_2(x)) + A[ITO] (c_1 f_3 (x))
* T8: A11 s to — A[ITO](c_1 f_2 (x)) + =(a [i t [i t o]] (c_2 f_3 (x)) x)

T5 ,1 & A2 ,1 - -> * R8:
Al l x : I t [i t o] yz l t o + A[ITO](c_1 f_3 (f_1 (y x))) + A[ITO](y f_2 (f_1 (y x)))

101 Examples and Practical Considerations on Translations

R8,2 k T7,l --) * R9:
All x:lt[ito] + A[ITO] (c_l f_3(f_l(c_l x») + A[ITO] (c_l f_3(f_l(c_l x»)

R9 1=2 --) * 010:
All x:lt[ito] + A[ITO] (c_l f_3(f_l(c_l x»)

T6,l k A2,l --) * R12:
All x:lt[ito] y:lto + =(a[it[ito]] (c_2 f_3(f_l(y x») f_l(y x»

+ A[ITO](y f_2(f_l(y x»)

R12,2 k T8,l --) * R13:
All x:lt[ito] + =(a[it[ito]] (c_2 f_3(f_l(c_l x») f_l(c_l x»

+ =(a[it[ito]] (c_2 f_3(f_l(c_l x») f_l(c_l x»

R13 1=2 --) * 014:
All x:lt[ito] + =(a[it[ito]] (c_2 f_3(f_l(c_l x») f_l(c_l x»

014,1 k A3,2 --) * P1S:
All x:lto y:lt[ito] - A[ITO] (f_l(c_l y) f_3(f_l(c_l y»)

- A[ITO] (f_l(x c_2) f_3(f_l(c_l y»)

P1S (factor) --) * F16:
- A[ITO] (f_l(c_l c_2) f_3(f_l(c_l c_2»)

A4,l k F16,l --) * R17:
- A[ITO] (c_l f_3(f_l(c_l c_2»)
+ A[ITO] (a[it[ito]] (c_2 f_3(f_l(c_l c_2») f_3(f_l(c_l c_2»)

R17,2 k 014 --) * RW18:
- A[ITO] (c_l f_3(f_l(c_l c_2») + A[ITO] (f_1(c_l c_2) f_3(f_l(c_l c_2»)

RW18,2 k P1S,2 --) * R19:
- A[ITO] (c_l f_3(f_l(c_l c_2») - A[ITO] (f_l(c_l c_2) f_3(f_l(c_l c_2»)

R19,2 k RW18,2 --) * R20:
- A[ITO] (c_l f_3(f_l(c_l c_2») - A[ITO] (c_l f_3(f_l(c_l c_2»)

R20 1=2 --) * D21:
- A[ITO] (c_l f_3(f_l(c_l c_2»)

021,1 k 010,1 --) * R22:
[]

q.e.d.

Time Used for Refutation: 44 seconds

The main problem with this formulation is to find the corresponding compre­

hension axiom. Indeed the whole proof idea - the diagonalization - is formulated

in this axiom. If the theorem is proved by a higher-order theorem proveI' such an

axiom is not necessary, because the higher-order unification algorithm produces a

corresponding unifier. Therefore higher-order theorem provers are usually better

suited for proving truly higher-order theorems. However, as in this example so in

the general case, even for these theorems a first-order theorem proveI' can be used,

albeit not always with advantage.

Examples and Practical Considerations on Translations 101

38 ,2 & T7 ,1 - -> * E9:
Al l x: I t [i to] + AEITO](c_1 f_3 (f_1 (c_1 x))) + AEITO](e_1 f_3 (f_1 (c_1 x)))

R9 1=2 - -> * D10:

Al l x : I t [i t o] + A[ITO](C_1 f_3(f_1(c_1 x)))

T6,1 & A2‚1 --> * R12:
A11 x : I t [i t o] yz l t o + = (a [i t [i t o]] (c_2 f_3(f_1(y x))) f_1(y x))

+ AEITO](y f_2 (f_1 (y x)))

312 ,2 & T8 ,1 -—> * H13:
Al l x: I t [i to] + =(a [i t [i t o]] (c_2 f_3 (f_1 (c_1 x))) f _1 (c_1 x))

+ =(a [i t [i t o]] (c_2 f_3(f_1(c_1 x))) f_1(c_1 x))

R13 132 - -> * D14:
‘All x : I t [i t o] + =(a [i t [i t o]] (c_2 f_3 (f_1 (c_1 x))) f_1 (c_1 x))

D14‚1 & A3,2 - -> * P15:
Al l x : I to yz l tE i to] - A[ITO](f_1(c_1 y) f_3(f_1(c_1 y)))

- A[ITO] (f_1 (x c_2) f_3 (f_1 (c_1 y)))

P15 (fac tor) - -> * F16:
- A[ITO](f_1(C_1 c_2) f _3 (f_1 (c_1 c_2)))

A4,1 & F16‚1 - -> * R17:
- A[ITO](C_1 f_3(f_1(c_1 c_2)))
+ AEITD](a[it[ito]](c_2 f_3(f_1(c_1 c_2))) f_3(f_1(c_1 c_2)))

B17,2 & 014 -—> * RWIS:
- AEITU](C_1 f_3(f_1(c_1 c_2))) + A[ITO] (f_1 (c_1 c_2) f_3 (f_1 (c_1 c_2)))

RH18,2 & 915,2 - -> * R19:
— AEITO](c_1 f_3(f_1(c_1 c_2>)) - A[ITU](f_1(c_1 c_2) f_3(f_1(c_1 c_2)))

319 ,2 & RH18{2 - -> * R20:
— A[ITD] (c_1 f_3 (f_1 (c_1 c_2))) - AEITO](C_1 f_3 (f_1 (c_1 c_2)))

R20 1=2 - -> * D21:
- AEITO](c_1 f_3 (f_1 (c_1 c_2)))

021 ,1 & D10,1 -—> * R22:
[]

q .e .d .

Time Used fo r Refu ta t ion : 44 seconds

The main problem with this formulation is to find the corresponding compre—
hension axiom. Indeed the whole proof idea — the diagonalization —— is formulated
in this axiom. If the theorem is proved by a higher-order theorem prover such an
axiom is not necessary, because the higher-order unification algorithm produces a
corresponding unifier. Therefore higher-order theorem provers are usually bet ter
suited for proving truly higher-order theorems. However, as in this example so in
the general case, even for these theorems a first-order theorem prover can be used,
albeit not always with advantage.

102 Chapter 6

6.3 A Sorted Higher-Order Theorem

Now we give a comparison of the behaviour of a theorem prover when we use a

sorted and an unsorted formulation of the same problem. The example is theorem

(4.11.1) of [40, pAO]: For the formulation of the theorem we need the notion of an

induced equivalence relation:

Let y: S ~ U be a map, then <p induces an equivalence relation (! on S by setting

(!(s,t) iff yes) = <pet).

The theorem is:

Let y1: S ~ U and <P2: S ~ V be mappings and let (!1 and (12/ be the induced

equivalence relations. If there exists a map cP: U ~ V with <]> 0 r.p1 = r.p2, then we

have (!1 ~ (!2·

This can be axiomatized in sorted higher-order logic by:

- Subsort Declarations:

S'!;.t, U'!;.t, V'!;.t

- Definition of Subset:

Vf(sxs_o)Vg(sxs-+o) f ~ 9 ~ (VxsVys I(x,y) ===} g(x,y)).

- Definition of Composition:

Vf(U-+v)Vg(S_U)(Vxs (J 0 g)(x) = f(g(x)))

- Definition of Induced Equivalence Relation:

VY(S_t)(VxsVys IND(<p)(x,y) ~ r.p(x) == r.p(y))

- Theorem:

VI.,.,l Vt.,.,2 V 1)1 V 1)2 1)1 =IND(t/')l) 1\ 1)2 == IND(I()2) ===}r(S_U) r(S-+V) I:;:"(SXS-+o) I:;:"(SXS_o) r I:;:" rI:;:"

(=J<p(u-+V) <]> 0 <pI =r.p2 ===} (!1 ~ (12)

Formulae given to the editor
============================

Axioms:
* SORTS *
SORT I,O,ITO,IXITO, [SXSTO]X[SXSrO]TO, [ITI]X[ITI]T[ITI], [ITI]T[IXITO],ITI:ANY
SORT S,U,V:I
SORT STO:ITO
SORr SX8TO:IXITO
SORT [UTY.]X [STU]T[8TV] : [ITI]X[ITI]T[ITI]
80RT [STIJT[8X8TO]:[ITI]T[IXITO]
SORT STI,UTV:ITI
SORT STU,STV:STI
* TERM DECLARATIONS *
TYPE A[IXITO] (IXITO I I)
TYPE A[[ITI]X[ITI]T[ITI]] ([ITI]X[ITI]T[ITI] ITI ITI):ITI

102 . Chapter 6

6 .3 A Sorted Higher-Order Theorem

Now we give a comparison of the behaviour of a theorem prover when we use a
sorted and an unsorted formulation of the same problem. The example is theorem
(4.11.1) of [40, p.40]: For the formulation of the theorem we need the notion of an
induced equivalence relation: '
Let cp: S —> U be a map, then (‚a induces an equivalence relation 9 on S by setting

9(s‚t) iff 90(8) = 90(15)-
The theorem is:
Let 501:5 —-> U and 902:5 _» V be mappings and let 91 and 92/ be the induced
equivalence relations. If there exists a map (F: U ——> V with (I) o (p1 = 902, then we
have 91 _C_ 92-

This can be axiomatized in sorted higher—order logic by:

— Subsort Declarations:

SQL, U EL, VIEL

— Definition of Subset :
Vf(s_.a)Vg(s_‚o) f§9 => (sVys flaw) ==>9($‚y))-

— Definition of Composition:
Vf(U—>V)V9(S-+U)(V$S (f 0 SIX—T) E f (9($)))

— Definition of Induced Equivalence Relation:
VWs—MsVz/s IND(s0) (x ,y) <= We) E (PM)

— Theorem:
V‘Pisasois—WWé’isxs_.o)V9%sxs—.o) E] E I N D (W1) A 92 E I N DWZ) =>
(Elihu—m) <I> 0 w] E 902 => 91 S 92)

Formulae g iven . to the ed i to r

Ax ioms :
* soars *
SORT I ,O‚ITO‚IXITO‚[SXSTDJXESXSTOJTU‚[ITI]X[ITI]T[ITI] . [ITI]T[IXITO]‚ ITI :ANY
soar S,U,V:I
soar STO:ITO
SDRT SXSTU:IXITO
SORT [UTu]x[STU]T[STv]:[ITI]X[ITI]T[ITI]
soar [s r r1 r [sxs ro] : [IT I]T[IXIT0]
SORT STI,UTV:ITI
SORT STU‚STV:STI
* TERM DECLARATIONS *
TYPE AEIXITO](IXITD I 1)
TYPE AEEITIJXEITIJTEITIJJ([ITI]X[1TI]T[ITI] ITI ITI):ITI

103 Examples and Practical Considerations on Translations

TYPE A[[ITI]T[IXITO]] ([ITI]T[IXITO] ITI):IXITO
TYPE A[ITI] (ITI 1):1
* DEFINITION OF SUBSET	 *
TYPE SUBSET(SXSTO SXSTO)
ALL F,G:SXSTO SUBSET(F G) EQV (ALL X,Y:S A[IXITO](F X Y) IMPL A[IXITO](G X Y»
* DEFINITION OF THE COMPOSITION	 *
TYPE COMP:[UTV]X[STU]T[STV]
ALL F:UTV ALL G:STU (ALL X:S A[ITI] (A[[ITI]X[ITI]T[ITI]] (COMP F G) X)

A[ITI](F A[ITI](G X»)
* DEFINITION OF INDUCED EQUIVALENCE RELATION *
TYPE IND:[STI]T[SXSTO]
ALL PHI:STI (ALL X,Y:S	 A[IXITO] (A[[ITI]T[IXITO]] (IND PHI) X Y) EQV

A[ITI] (PHI X) - A[ITI] (PHI Y»

Theorems:
ALL PHI1:STU ALL PHI2:STV ALL RH01,RH02:SXSTO

RHOl = A[[ITI]T[IXITO]] (IND PHI1) AND RH02 = A[[ITI]T[IXITO]] (IND PHI2) IMPL
«EX PPHI:UTV A[[ITI]X[ITI]T[ITI]] (COMP PPHI PHI1) = PHI2) IMPL
SUBSET (RHOl RH02»

Refutation:
==========

Initial Clauses:
Al: All x:Any + =(x x)

*	 A2: All x:S y:Stu z:Utv + =(a[iti] (a[[iti]x[iti]t[iti]] (comp z y) x)
a[iti](z a[iti](y x»)

* A3: All x,y:S z:Sti + A[IXITO] (a[[iti]t[ixito]] (ind z) y x)
- -(a[iti](z y) a[iti](z x»

* A4: All x,y:S z:Sti - A[IXITO] (a[[iti]t[ixito]] (ind z) y x)
+ =(a[iti](z y) a[iti](z x»

* T5: + =(c_4 a[[iti]t[ixito]] (ind c_l»
* T6: + =(c_3 a[[iti]t[ixito]] (ind c_2»
* T7: + =(a[[iti]x[iti]t[iti]] (comp c_5 c_l) c_2)
* T8: + A[IXITO] (c_4 c_7 c_6)
* T9: - A[IXITO] (c_3 c_7 c_6)

T7,l k A2,l --> * P1:
All x:S + =(a[iti] (c_2 x) a[iti] (c_S a[iti] (c_l x»)

TS,l & A4,l --> * P2:
All x,y:S - A[IXITO] (c_4 y x) + =(a[iti] (c_l y) a[iti] (c_l x»

T8,l & P2,l --> * R3:
+ =(a[iti] (c_l c_7) a[iti] (c_l c_6»

R3,l k Pl,l --> * P4:
+ =(a[iti] (c_2 c_6) a[iti] (c_5 a[iti] (c_l c_7»)

P4,l t Pl --> * RW5:
+ =(a[iti] (c_2 c_6) a[iti] (c_2 c_7»

T6,l & A3,l --> * P8:
All x,y:S + A[IXITO] (c_3 y x) - =(a[iti] (c_2 y) a[iti] (c_2 x»

P8,2 & RW5,1 --> * R9:
+ A[IXITO] (c_3 c_7 c_6)

Examples and Practical Considerations on Translations 103

TYPE A[[ITI]T[IXITO]]([ITI]T[IXITO] ITI):IXITO
TYPE AEITI](ITI I) : I
* DEFINITION OF SUBSET *
TYPE SUBSET(SXSTD 3x310)
ALL F,G:SXSTO SUBSET(F G) EQV (ALL x,Y:s A[IXITO](F x Y) IHPL A[IXITO](G x Y>)
* DEFINITION OF THE COMPOSITION *
TYPE cONP:[UTv]x[STu]T[3TVJ
ALL F:UTV ALL G:STU (ALL x : s A[ITI](A[[ITI]x[ITI]T[ITI]](COMP F c) x) =

AEITI](F A[ITI](G x)))
* DEFINITION OF INDUCED EQUIVALENCE RELATION *
TYPE IND:[STI]T[SXST0]
ALL PHI:STI (ALL X,Y:S A[Ix1TO](A[[ITI]T[IXITO]](IND PHI) x Y) Eqv

AEITI](PHI x) = A[ITI]<PHI Y>)

Theorems:
ALL PH11:STU ALL PHI2:STV ALL RN01,RH02:SXSTO

RHOI = AEEITI]T[IXITO]](IND PHIl) AND RH02 = AEEITI]T[IXIT0]](IND PHI2) IHPL
((Ex PPHI:UTV AEEITI]X[ITI]T[ITI]](COMP PPHI PHII) = PHI2) IMPL
SUBSET (nn01 RHO2))

Refuta t ion:
===========

In i t i a l Clauses:
A1: Al l sny + =(x x)

* A2: Al l xz s y :Stu z:Utv + =(a [i t i] (a [[i t i]x [i t i] t [i t i]] (comp z y) x)
a [i t i] (z a [i t i] (y x)))

* A3: A11 x ,y :S z :S t i + A[IXITO] (a [[i t i] t [iX i t0]] (i nd z) y X)
l= (a [i1 : i] (z y) aEi t i] (z x))
A[IXITO](a [[i t i] t [i x i to]] (ind z) y x)

+ =(a [i t i] (z y) aE i t i] (z x))
* A4: A11 x ,y :S z :S t i

* T5: + =(c_4 a [[i t i] t [i x i t o]] (i nd c_1))
=- T6: + =(c_3 aEEi t tE ix i toH (ind c_2))
* T7: + = (a [[i t i]x [i t i] t [i t i]] (co -p c_S c_1) c_2)
* T8: + A[IXITO] (C_4 c_7 c_6)
* T9: - AEIXITO](C_3 c_7 c_6)

T7,1 & A2 ,1 - -> * P1 :
Al l xz s + =(a [i t i] (c_2 x) a [i t i] (c_5 a [i t i] (c_1 x)))

T5‚1 l A4,1 - -> * P2 :
Al l x ,y :S - A[IXITO](c_4 y x) + =(a [i t i] (c_1 y) a [i t i] (c_1 x))

T8‚1 & P2 ,1 - -> * R3:
+ =(a [i t i] (c_1 c_7) a [i t i] (c_1 c_6))

R3‚1 l P1 ,1 - -> * P4 :
+ =(a [i t i] (c_2 c_6) a [i t i] (c_5 a [i t i] (c_1 c_7)))

P4 ,1 & P1 - -> * BUS:
+ =(a [i t i] (c_2 c_6) a[iti](c_2 c_7))

T6,1 & A3,1 --> * P8:
Al l x ,y :S + AEIXITO] (c_S y x) - =(a [i t i] (c_2 y) a[iti] (c_2 x))

P8 ,2 & RH5,1 - -> * R9:
+ AEIXITO](C_3 c_7 c_6)

104 Chapter 6

R9,1 ~ T9,l --> * Rl0:
[J

q.e.d.

Time Used for Refutation: 22 seconds

Now we prove the same theorem in an unsorted version. We translate it by

a~ (compare definition 5.36) into a many-sorted first-order formulation. The sub­

sort declarations SORT STU, STV: STI are translated to the formulae ALL PHI: ITI

STV(PHI) IMPL STI(PHI) and ALL PHI:ITI STU(PHI) IMPL sTICPHI).Allother

subsort relations are omitted, because they are not necessary for the proof. We

present the formulation in the MKRP syntax and a proof fragment:

Formulae given to the editor

Axioms:
* SORTS *

SORT I,O,ITO,IXITO,[ITIJX[ITIJT[ITIJ,[ITIJT[IXITOJ,ITI:ANY

* TERM DECLARATIONS *

TYPE A[IXITO] (IXITO I I)

TYPE A[[ITI] X[ITI] T[ITIJ]([ITIJ X[ITIJ TnTI] ITI IT!): ITI

TYPE A[[ITIJT[IXITOJJ([ITIJT[IXITOJ ITI):IXITO

TYPE A[ITI] (111 1):1

TYPE STI (ITI)

TYPE STV(ITI)

TYPE STU(IT!)

* TRANSLATED SUBSORT RELATIONS *

ALL PHI:ITI STV(PHI) IMPL STI(PHI)

ALL PHI:ITI STU(PHI) IMPL STI(PHI)

* DEFINITION OF SUBSET *

TYPE SUBSET(IXITO IXITO)

ALL F:IXITO SXSTO(F) IMPL (ALL G:IXITO 5X5TO (G) IMPL

(SUBSET(F G) EQV (ALL X:I Sex) IMPL (ALL Y:I S(Y) IMPL
(A[IXITOJ(F X Y) IMPL A[IXITOJ(G X Y»»»

* DEFINITION OF THE COMPOSITION *
TYPE COMP:[ITIJX[ITI]T[ITI]
ALL F:ITI UTV(F) I~PL (ALL G:ITI STU(G) IMPL

(ALL X:I sex) IMPL A[ITI] (A[[ITI]X[ITI]T[ITI]] (COMP F G) X)
A[ITI] (F A[ITI] (G X»»

* DEFINITION OF INDUCED EQUIVALENCE RELATION *
TYPE IND:[ITI]T[IXITO]
ALL PHI: ITI STI (PHI) IMPL (ALL X: I S(X) IMPL (ALL Y: I S(Y) IMPL

(A[IXITO] (A[[ITI]T[IXITO]] (IND PHI) X Y) EQV

A[ITI] (PHI X) = A[ITI] (PHI V»~)

Theorems:

ALL PHll:ITI STU(PHI1) IMPL (ALL PHI2:ITI STV(PHI2) IMPL

(ALL RH01:IXITO SXSTO(RH01) IMPL (ALL RH02:IXITO SXSTO(RH02) IMPL

(RH01 = A[[ITI]T[IXITO]] (IND PHI1) AND RH02 = A[[ITI]T[IXITO]J(IND PHI2) IMPL

«EX PPHI:ITI UTV(PPHI) AND (A[[ITI]X[ITI]T[ITI]] (COMP PPHI PHI1) = PHI2) IMPL

SUBSET (RHOl RH02»»»)

104 ' Chapter 6

R9‚1 & T9‚1 - -> * R10:
[]

q .e .d .

Time Used for Refu ta t i on : 22 seconds

Now we prove the same theorem in an unsorted version. We translate it by
6§R (compare definition 5.36) into a many—sorted first—order formulation. The sub-
sort declarations SORT STU,STV:STI are translated to the formulae ALL PHI :ITI
STV(PHI) IMPL STI(PHI)andALL PHIzITI STU(PHI) IMPL STI (PHI) .AH(fihe r

subsort relations are omitted, because they are not necessary for the proof. We
present the formulation in the MKRP syntax and a proof fragment:

Formulae g iven to the ed i to r

Axioms :
* SDRTS *
SORT I,O,ITO,IXITO,[ITIJXEITIJTEITI],[ITI]T[IXITO],ITI:ANY
* TERM DECLARATIONS *
TYPE A[IXITU] (IXITO I I)
TYPE AEEITI]X[ITI]T[ITI]] ([ITIJXEITIJTLITI] ITI ITI) : ITI
TYPE A[[ITI]T[IXITU]]([ITI]T[IXITO] ITI):IXITO
TYPE A[ITI] (ITI I) : I
TYPE STI(ITI)
TYPE STVCITI)
TYPE STU(ITI)
* TRANSLATED SUBSDRT RELATIONS *
ALL PHI:ITI STV(PHI) iHPL STI(PHI)
ALL PHI:ITI STU(PHI) INPL STI(PHI)
* DEFINITION OF SUBSET *
TYPE SUBSET(IXITO IXITD)
ALL F:IXITO SXSTO(F) IMPL (ALL G:IXITO SXSTO (G) IMPL

(SUBSET(F G) EQV (ALL X:I S(X) IMPL (ALL Y:I S (Y) IMPL
(A[Ix1T0](F x Y) IMPL AEIXITO](G x Y))))))

* DEFINITION OF THE COMPOSITION *
TYPE CDMP:[ITI]X[ITI]T[ITI]
ALL F:ITI UTV(F) IMPL (ALL G:ITI STU(G) INPL

(ALL x : I S(X) IMPL AEITI](AtEITI]x[ITI]T[ITI]](COMP F G) x) =
AEITI](F AEITIJ(G x))))

* DEFINITION OF INDUCED EQUIVALENCE RELATION *
TYPE IND:[ITI]T[IXITO]
ALL PHI:ITI STI(PHI) IMPL (ALL X:I s(X) IHPL (ALL e S(Y) IMPL

(AEIXITOJ(A[[ITI]T[IXITO]](IND PHI) x Y) EQV
AEITI](PHI x) = AEITI](PHI Y)))

Theorems :
ALL PH11:ITI STU(PH11) IMPL (ALL PHI2 : IT I STVCPHIZ) IMPL

(ALL RH012IXITO SXSTO(EH01) IMPL (ALL RH02:IXITU SXSTO(RH02) IMPL
(RH01 = AEEITI]T[IXITO]](IND PHI1) AND RHU2 = AEEITI]T[IXITO]] (IND PH12) IMPL
((EX PPHI:ITI UTV(PPHI) AND (A[[ITI]X[ITI]T[ITI]] (COMP PPHI PHI l) = PHIZ) IMPL
SUBSET (RHOI RHO2)))))))

Examples and Practical Considerations on Translations	 1°5

Refutation:
==========

Initial Clauses:
U: All x:Any + =(x	 x)

* A2: All x:Iti - 8TV(x) + 8TI(x)
* A3: All x:Iti - 8TU(x) + 8TI(x)
* A4: All x,y:Ixito	 - 8X8TO(y) - 8X8TO(x) + 8UB8ET(y x) + S(f_1(x y»
* A5: All x,y:Ixito	 - 8X8TO(y) - SXSTO(x) + SUBSET(y x) + S(f_2(x y»
* A6: All x,y:Ixito - 8XSTO(y) - SXSTO(x) + SUBSET(y x)

+ A[IXITO](y f_1(x y)	 f_2(x y»
*	 A7: All x,y:Ixito - SXSTO(y) - SXSTO(x) + SUBSET(y x)

- A[IXITO](x f_1(x y) f_2(x y»
* A8: All x:I y,z:Iti -	 UTV(z) - STU(y) - S(x)

+ =(a[iti] (a[[iti]x[iti]t[iti]] (comp z y) x)
a[iti](z a[iti](y x»)

A9: All x,y:I z:Iti - STI(z) - 8(y) + S(x) + =(a[iti](z y) a[iti](z x»

* Al0: All x,y:I z:Iti -	 STI(z) - S(y) - A[IXITO] (a[[iti]t[ixito]] (ind z) y x)

+ =(a[iti](z y) a[iti](z x»
* A11: All x,y:I z:Iti -	 STI(z) - S(y) - S(x)

+ A[IXITO] (a[[iti]t[ixito]] (ind z) y x)
- =(a[iti](z y) a[iti](z x»

A12:	 All x,y:I z,u:Ixito - SXSTO(u) - SXSTO(z) - SUBSET(u z) - S(y) - S(x)

- A[IXITO](u y x) + A[IXITO](z y x)

* T13: + STU(c_1)
* T14: + STV(c_2)
* T15: + SXSTO(c_3)
* Ti6: + SXSTO(c_4)
* T17: + =(c_3 a[[iti]t[ixito]] (ind c_1»
* T18: + =(c_4 a[[iti]t[ixito]] (ind c_2»
* T19: All x:Iti + UTV(x)
* T20: All x:lti + =(a[[iti]x[iti]t[iti]] (comp x c_l) c_2)
* T21: - SUBSET(c_3 c_4)

A8,1 ~ T19,1 --> * R1:
All x:I y,z:Iti - STU(y) - S(x)

+ =(a[iti](a[[iti]x[iti]t[iti]](comp z y) x) a[iti] (z a[iti](y x»)

R119,1 ~ A2,2 --> * R120:
- STV(c_2)

R120,1 & T14,1 --> * R121:
[]

q.e.d.

Time Used for Refutation:	 343 seconds

We see that the sorted	 representation is not only much easier to understand

and to formulate, but - at least in this example - the MKRP system found the

proof much faster than in the unsorted formulation (22 seconds compared to 343

seconds).

Examples and Practical Considerations on Translations 105

Refutation:
‚I...-'..-

In i t ia l Clauses:
A1: Al l sny + - (x x)

* A2: Al l s t i - STV(x) + STI(x)
AB: Al l s t i — STU(x) + STI(x)
* A4: A11 x ,y : Ix i t o - SXSTO(y) - SXSTO(x) + SUBSET(y x) + S(f_1(x y))
* A5: Al l x ,y : Ix i to - SXSTO(y) - SXSTO(X) + SUBSET(y x) + S(f_2(x y))
* A6: A11 x ,y : Ix i t o - SXSTO(y) - SXSTD(x) + SUBSET(y x)

+ A[IXITO](y f_1 (x y) f_2 (x y))
* A7: Al l x ,y : Ix1 to — SXSTO(y) - SXSTO(x) + SUBSET(y x)

- AEIXITO](X f_1 (x y) f_2 (x y))
* A8: A11 x : I y , z : I t i - UTV(z) - STU(y) - 3(1)

_ + =(a [i t i] (a [[i t i] x [i t i] t [i t i]] (comp z y) x)
aE i t i] (z a [i t i] (y x)))

A9: All x ,y : I zz l t i - STI(z) - 8(y) + S(x) + =(a [i t i] (z y) a [i t 1] (z x))
* A10: All x ,y : I z : I t i - STI(z) - S(y) - AEIXITD](a[[iti]t[ixito]](ind z) y x)

+ = (a [i t i] (z y) a [i t i] (z x))
* A11: All x,y:1 z : I t i - STI(z) - s(y) — S(x)

+ A[IXITD] (a[[i t i] t [ix i to]] (ind z) y x)
- = (a [i t i] (z y) a [i t i] (z x))

A12: All x ,y : I z ,u : Ix i to - SXSTO(u) - SXSTO(z) — SUBSET(u z) - 3 (y) - 5(1)
- A[IXITD](u y x) + A[IXITOJ(2 y x)

* T13: * STU(C_1)

* T14: + STV(C_2)
* T15: + SXSTO(C_3)
* T16: + SXSTO(c_4)
* T17: + =(c_3 a[[i t i] t [i x i to]] (ind c_1))
* T18: + =(c_4 a [[i t i] t [i x i t o]] (i nd c_2))
* T19: A11 x : I t i + UTV(x)
* T20: All x: I t i + =(a [[i t i] x [i t i] t [i t i]] (comp x c_1) c_2)
* T21: - SUBSET(c_3 c_4)

58 ,1 3 T19‚1 - -> * RI :
All 1 :1 y , z : I t i - STU(y) - S(x) '

+ - (a [i t i] (a [[i t i]x [i t i] t [i t i]] (conp z y) x) a [i t i J (z a [i t i] (y x)))

o
o
.

R119 ,1 & 12 ,2 -—> * R120:
- STV(c_2)

11120.1 1': T14,1 --> . 3121:
E]

q .e .d .

Tine Used t o r Retutat ion: 343 seconds

We see that the sorted representation is not only much easier to understand
and to formulate, but - at least in this example —— the MKRP system found the
proof much faster than in the unsorted formulation (22 seconds compared to 343
seconds).

CHAPTER 7

Summary and Open Problems

Wenn eine Aufgabe in ihrer vollen Allgemein­
heit unlosbar scheint, so beschranke man sie
vorlaufig; dann wird vielleicht durch allmahliche
Erweiterung ihre Bewaltigung gelingen.

Gottlob Frege, Begriffsschrift

One priority of this dissertation is the representation of mathematical knowl­

edge. In chapter 3 we introduced a notion of higher-order logic - not based on

the ,x-calculus, but using CHURCH'S simple theory of types - and extended this

logic to higher-order sorted logic by following notions of SCHMIDT-SCHAUSS and

KOHLHASE.

Some mathematical construct are not easily expressed in our higher-order lan­

guages. For instance, we have not included specialized quantifiers such as 3! (there

exists exactly one). (Such quantifiers are introduced by MOSTOWSKI in [101].)

Another problem is that of incorporating meta-level descriptions into the object

level. For example, in reasoning about linear equations, one may want to express

that "a· x = b" is a linear equation. This whole object is viewed then as a purely

syntactic object, and in particular, it is not semantically evaluated, but only "spo­

ken about". The realization of meta aspects in logic is of lifely interest in artificial

intelligence, but most approaches separate the meta-level and the object level

strictly. For further discussion see [31, 1, 130, 92, 111, 112,99, 90,47,48,49,50].

We have had to omit these problems in this dissertation, but it is currently one of

our research topics.

In chapter 4 we have used these logics to introduce a frame-based knowledge

representation formalism, which allows for a conceptual representation of the fac­

tual knowledge of mathematics. We distinguish three different knowledge primi­

tives, namely, "axiom", "definition", and "theorem". A frame should consist of all

the knowledge that belongs to one concept. Thereby we obtain a conceptual de­

scription of axioms and definitions. It remains an open problem how to structure

the theorems, because they generally interrelate many different concepts and so

1°7

CHAPTER 7

Summary and Open Problems

Wenn eine Aufgabe in ihrer vollen Allgemein—
heit unlösbar scheint, so beschränke man sie
vorläufig; dann wird vielleicht durch allmähliche
Erweiterung ihre Bewältigung gelingen.

Gottlob I'l‘ege, Begriffsschrift

One priority of this dissertation is the representation of mathematical knowl—
edge. In chapter 3 we introduced a notion of higher-order logic — not based on
the A-calculus, but using CHURCH’S simple theory of types — and extended this
logic to higher-order sorted logic by following notions of SCHMIDT-SCHAUSS and
KOHLHASE.

Some mathematical construct are not easily expressed in our higher—order lan-
guages. For instance, we have not included specialized quantifiers such as 3! (there
exists exactly one). (Such quantifiers are introduced by MOSTOWSKI in [101].)
Another problem is that of incorporating meta-level descriptions into the object
level. For example, in reasoning about linear equations, one may want to express
that “a - a: = b” is a linear equation. This whole object is viewed then as a purely
syntactic object, and in particular, it is not semantically evaluated, but only “spo—
ken about”. The realization of meta aspects in logic is of lifely interest in artificial
intelligence, but most approaches separate the meta-level and the object level
strictly. For further discussion see [31, 1, 130, 92, 111, 112, 99, 90, 47, 48, 49, 50].
We have had to omit these problems in this dissertation, but i t is currently one of
our research topics.

In chapter 4 we have used these logics to introduce a frame-based knowledge
representation formalism, which allows for a conceptual representation of the fac-
tual knowledge of mathematics. We distinguish three different knowledge primi-
tives, namely, “axiom”, “definition”, and “theorem”. A frame should consist of all
the knowledge that belongs to one concept. Thereby we obtain a conceptual de-
scription of axioms and definitions. I t remains an open problem how to structure
the theorems, because they generally interrelate many different concepts and so

107

108 Chapter 7

they do not belong to just one. A preliminary attempt of such a structure can be

found in [71]. (Further efforts in this direction will be necessary finding proofs by

analogy.) In order to have a clear semantics for the frame language we presented

translations of the encoded knowledge into the underlaying higher-order logic. The

main properties of this representation are:

- Definition 4.10 guarantees that concepts are introduced in a controlled way,

that is, unknown concepts must not be used in the definiens of a definition

or in a theorem.

- Theorem 4.24 states that definitions and theorems cannot hurt the consis­

tency of a knowledge base, if the comprehension axioms (compare definition

3.22) are assumed.

- The frame approach is flexible for adding further informations like control

information.

Other kinds of knowledge are not represented so far, a very important omission

is the representation of proofs. If we want to reason about proofs, for instance, in

order to find an analogous proof, we have to represent them in an adequate way,

which goes beyond the usual first-order conception of a sequence of well-formed

formulae. A representation and methods like those used in the field of proof

presentation will be more adequate for such purposes [64, 65, 66, 86, 87, 88, 89].

Another important kind of knowledge that is not possible to represent right now,

is that of examples, in particular "typical examples". Human mathematicians

often reason on the model level. A model can often be given as a structute in a

programming language. For instance, Common Lisp has the type "integer", which

can be used directly as a model for the set 7l. LENAT chose a similar form of

representation in his AM-system [82, 83, 84] to represent his concepts. A model

can be used to find counterexamples of a hypothesis as it was done by GELERNTER

in his geometry theorem prover [46]: if a theorem is false in some model it cannot

be true in the general case. In some cases it might be possible to find a proof

for the model and this proof can then be used to guide the search for a proof at

the general level (compare [55]), but little is known of how to automatize this.

RALF KOERSTEIN currently implements the frame representation of this thesis

in et standard SQL data base. (For applying data base techniques to AI system

compare also [128].)

In chapter 5 we investigated the operationalization of our knowledge. The

ma.in goal was to use existing first-order theorem provers likt> the MKRP system.

108 Chapter 7

they do not belong to just one. A preliminary attempt of such a structure can be
found in [71]. (Further efforts in this direction will be necessary finding proofs by
analogy.) In order to have a clear semantics for the frame language we presented
translations of the encoded knowledge into the underlaying higher-order logic. The
main properties of this representation are:

— Definition 4.10 guarantees that concepts are introduced in a controlled way,
that is, unknown concepts must not be used in the definiens of a definition
or in a theorem.

— Theorem 4.24 states that definitions and theorems cannot hurt the consis-
tency of a knowledge base, if the comprehension axioms (compare definition
3.22) are assumed.

— The frame. approach is flexible for adding further informations like control
information.

Other kinds of knowledge are not represented so far, a very important omission
is the representation of proofs. If we want to reason about proofs, for instance, in
order to find an analogous proof, we have to represent them in an adequate way,
which goes beyond the usual first-order conception of a sequence of well-formed
formulae. A representation and methods like those used in the field of proof
presentation will be more adequate for such purposes [64, 65, 66, 86, 87, 88, 89].
Another important kind of knowledge that is not possible to represent right now,
is that of examples, in particular “typical examples”. Human mathematicians
often reason on the model level. A model can often be given as a structure in a
programming language. For instance, Common Lisp has the type “integer”, which
can be used directly as a model for the set E . LENAT chose a similar form of
representation in his AM-systern [82, 83, 84] to represent his concepts. A model
can be used to find counterexamples of a hypothesis as it was done by GELERNTER
in his geometry theorem prover [46]: if a theorem is false in some model i t cannot
be true in the general case. In some cases it might be possible to find a proof
for the model and this proof can then be used to guide the search for a proof at
the general level (compare [55]), but little is known of how to automatize this.
RALF KOERSTEIN currently implements the frame representation of this thesis
in a standard SQL data base. (For applying data base techniques to AI system
compare also [128].)

In chapter 5 we investigated the operationalization of our knowledge. The
main goal was to use existing first—order theorem provers like the MKRP system.

109 Summary and Open Problems

Therefore we presented a whole class of translations from higher-order into first­

order logic, which are sound (compare theorem 5.12). As stated in remark 5.17

these translations are bidirectional, that is, we can map the first-order proofs back

to higher-order logic. In theorem 5.23 we showed that a particular translation is not

only sound, but also complete with respect to a weak semantics. In consequence

we can prove in principle everything that is provable in higher-order logic via

translations into first-order logic. The main drawback is however the need for

the so-called comprehension axioms (compare definition 3.22) for truly higher­

order theorems (compare definition 3.24). The distinction between "truly higher­

order theorems" and "essentially first-order theorems" made explicit the difference

between theorems, which are difficult, because they are higher-order, and theorems,

which are formulated in a higher-order syntax, but are essentially first-order. There

is some support for the opinion that this is also the borderline between theorems

that should be proved using a higher-order theorem prover and those that should

be proved using a translation and a first-order theorem prover. The results stated

for unsorted higher-order logic are generalized to sorted higher-order logic.

In chapter 6 we presented some examples for translations and gave some intu­

ition for the sensitivity of the behaviour of a theorem prover to the actual presen­

tation of theorems.

A further open problem is to find a characterization of sound morphisms from

higher-order into first-order logic in order to have the greatest possible flexibility

in formulating problems, that is, to know the version space of sound morphisms.

There are some results, but no general theory [72]. Furthermore we need good

heuristics for finding an adequate translation [73]. A prototypical realization of the

translations presented in this thesis has been implemented by DIRK SCHRODER;

,a revised version will be integrated into the n-MKRP system [121].

This work contributes to tools that are indispensable in a computer-based

system supporting mathematicians in finding proofs. The most exciting problem in

the field of automated theorem proving is in my opinion how to combine human~like

reasoning and machine-oriented theorem proving by finding and operationalizing

high-level heuristics like for instance those proposed by POLYA. I hope that the

methods developed in this thesis will be fruitful in attacking this long term goal.

Summary and Open Problems 109

Therefore we presented a whole class of translations from higher-order into first-
order logic, which are sound (compare theorem 5.12). As stated in remark 5.17
these translations are bidirectional, that is, we can map the first-order proofs back
to higher-order logic. In theorem 5.23 we showed that a particular translation is not
only sound, but also complete with respect to a. weak semantics. In consequence
we can prove in principle everything that is provable in higher-order logic via
translations into first-order logic. The main drawback is however the need for
the so—called comprehension axioms (compare definition 3.22) for truly higher-
order theorems (compare definition 3.24). The distinction between “truly higher-
order theorems” and “essentially first—order theorems” made explicit the difference
between theorems, which are difficult, because they are higher—order, and theorems,
which are formulated in a hi gher-order syntax, but are essentially first-order. There
is some support for the opinion that this is also the borderline between theorems
that should be proved using a. higher-order theorem prover and those that should
be proved using a translation and a first-order theorem prover. The results stated
for unsorted higher-order logic are generalized to sorted higher-order logic.

In chapter 6 we presented some examples for translations and gave some intu—
ition :for the sensitivity of the behaviour of a theorem prover to the actual presen-
ta t ion of theorems.

A further open problem is to find a characterization of sound morphisms from
higher-order into first-order logic in order to have the greatest possible flexibility
in formulating problems, that is, to know the version space of sound morphisms.
There are some results, but no general theory [72]. Furthermore we need good
heuristics for finding an adequate translation [73]. A prototypical realization of the
translations presented in this thesis has been implemented by DIRK SCHRÖDER;

, a revised version will be integrated into the Q-MKRP system [121].

This work contributes t o tools that are indispensable in a computer-based
systemsupporting mathematicians in finding proofs. The most exciting problem in
the field of automated theorem proving is in my opinion how to combine human-like
reasoning and machine-oriented theorem proving by finding and operationalizing
high—level heuristics like for instance those proposed by PÖLYA. I hope that the
methods developed in this thesis will be fruitful in attacking this long term goal.

Acknowledgement

Above all I like to thank Prof. JORG H. SIEKMANN for inspiring this work,

for teaching me AI, for many motivating talks, for giving generously of his time,

and last but not least for providing a grant and then a job, which made this work

possi ble. Many improvements of this thesis are due to his suggestions.

I like to thank Prof. KLAUS MADLENER for his constructive critique and the

suggestion to present more of the practical experience, what lead to chapter 6.

Of great influence to this work has been a higher-order study group comprised

of FRANZ BAADER, MICHAEL KOHLHASE, JORG H. SIEKMANN, and myself. In

particular we read PETER B. ANDREWS' book on higher-order logic [3], of which

I learned most about higher-order logic.

I also like to thank all my colleagues of the MKRP group for clarifying and

inspiring talks. Especially I like to thank NORBERT EISINGER for explaining

numerous details of automated theorem proving and for acquainting me with the

MKRP system. For practical support and for many discussions, also on rather

vague ideas, I want to thani< AXEL PRACKLEIN. Many unclear ideas could already

be eliminated in these discussions. For many clarifying talks upon sorted higher­

order logic I thank MICHAEL KOHLHASE, they resulted in particular in a more

readable form of the corresponding parts of this thesis. For the strenuous work

of reading drafts of this thesis I have to thank MICHAEL KOHLHASE, DAVID

POWERS, SUSAN POWERS, and AXEL PRACKLEIN. Their suggestions lead to

several improvements. Of course, all remaining errors are mine.

DIRK SCHRODER and RALF KOERSTEIN worked on building up a knowledge

base and used this knowledge for proving theorems with the MKRP system. Since

at that time the theory was not yet dear this work was not always easy, but helped

much in developing our theory.

During this work I learned to appreciate the value of libraries in the depart­

ments of mathematics and computer science. Thanks to all who have built them

up.

For more than one year this research was financed by a grant of the Land

RheinlandjPfalz. I greatfully acknowledge this support.

110

Acknowledgement

Above all I like to thank Prof. JÖRG H. SIEKMANN for inspiring this work,
for teaching me A1, for many motivating talks, for giving generously of his time,
and last but not least for providing a grant and then a job, which made this work
possible. Many improvements of this thesis are due to his suggestions.

I like to thank Prof. KLAUS MADLENER for his constructive critique and the
suggestion t o present more of the practical experience, what lead to chapter 6.

Of great influence to this work has been a. higher-order study group comprised
of FRANZ BAADER, MICHAEL KOHLHASE, JÖRG H. SIEKMANN, and myself. In
particular we read PETER B. ANDREWS’ book on higher—order logic [3], of which
I learned most about higher-order logic.

I also like to thank all my colleagues of the MKRP group for clarifying and
inspiring talks. Especially I like to thank NORBERT EISINGER for explaining
numerous details of automated theorem proving and for acquainting me with the
MKRP system. For practical support and for many discussions, also on rather
vague ideas, I want to thank AXEL PRÄCKLEIN. Many unclear ideas could already
be eliminated in these discussions. For many clarifying talks upon sorted higher-
order logic I thank MICHAEL KOHLHASE, they resulted in particular in a more
readable form of the corresponding parts of this thesis. For the strenuous work
of reading drafts of this thesis I have to thank MICHAEL KOHLHASE, DAVID
POWERS, SUSAN POWERS, and :AXEL PrrA'CKLEIN. Their suggestions lead to
several improvements. Of course, all remaining errors are mine.

DIRK SCHRÖDER and RALF KOERSTEIN worked on building up a knowledge
base and used this knowledge for proving theorems with the MKRP system. Since
at t ha t t ime the theory was not yet clear this work was not always easy, but helped
much in developing our theory.

During this work I learned to appreciate the value of libraries in the depart-
ments of mathematics and computer science. Thanks to all who have built them
up.

For more than one year this research was'financed by a grant of the Land
Rheinland/Pfalz. I greatfully acknowledge this support.

110

References

[1]	 LUlGIA AIELLO and RICHARD W. WEYHRAUCH. Using meta-theoretic

reasoning to do algebra. In Wolfgang Bibel and Robert Kowalski, editors,

Proceedings of the 5th CA DE, pages 1-13, Les Arcs, France, 1980. Springer

Verlag, Berlin, Germany. LNCS 87.
J

[2]	 PETER B. ANDREWS. Theorem proving via general matings. Journal of

the ACM, 28:193-214, 1981.

[3]	 PETER B. ANDREWS. An Introduction to Mathematical Logic and Type

Theory: To Truth through Proof Academic Press, Orlando, Florida, USA,

1986.

[4]	 PETER B. ANDREWS, SUNIL ISSAR, DAN NESMITH, and FRANK PFEN­

NING. The TPS theorem proving system. In Mark E. Stickel, editor, Pro­

ceedings of the 10th CA DE, pages 641-642, Kaiserslautern, Germany, July

1990. Springer Verlag, Berlin, Germany. LNAI449.

[5]	 ARISTOTLE. Organon. Eugen RoHes, Hamburg.

[6]	 .lOHAN VAN BENTHEM and KEES DOETS. Higher order logic. In D. Gabbay

and F. Guenthner, editors, Handbook of Philosophical Logic, chapter 1.4,

pages 275-329. D.Reidel Publishing Company, Dodrecht, Netherlands, 1983.

Volume I: Elements of Classical Logic.

[7]	 KAREL BERKA and LOTHAR KREISER. Logik- Texte, volume 1. Akademie

Verlag, Berlin, Germany, 1983.

[8]	 PAUL BERNAYS. A system of axiomatic set-theory. Journal of Symbolic

Logic, 2:65-77, 1937.

[9]	 PAUL BERNAYS. A system of axiomatic set-theory. Journal of Symbolic

Logic, 6:1-17, 1941.

[10]	 WOLFGANG BIBEL. Automated Theorem Proving. Vieweg, Wiesbaden, Ger­

many, 1982.

111

References

[1] LUIGIA Mum and RICHARD W. WEYHRAUCH. Using meta-theoretic
reasoning to do algebra. In Wolfgang Bibel and Robert Kowalski, editors,
Proceedings of the 5th CADE, pages 1—13, Les Arcs, France, 1980. Springer
Verlag, Berlin, Germany. LNCS 87.

[2] PETER B. ANDREWS. Theorem proving via general matings. Journal of
the ACM, 28:193—214, 1981.

[3] PETER B. ANDREWS. An Introduction to Mathematical Logic and Type
Theory: To Truth through Proof. Academic Press, Orlando, Florida, USA,
1986.

[4] PETER B. ANDREWS, SUNIL ISSAR, DAN NESMITH, and FRANK PFEN-
NING. The TPS theorem proving system. In Mark E. Stickel, editor, Pro-
ceedings of the 10th CADE, pages 641—642, Kaiserslautern, Germany, July
1990. Springer Verlag, Berlin, Germany. LNAI 449.

[5] ARISTOTLE. Organen. Eugen Rolfes, Hamburg.

[6] JOHAN VAN BENTHEM and KEES DOETS. Higher order logic. In D. Gabbay
and F. Guenthner, editors, Handbook of Philosophical Logic, chapter 1.4,
pages 275—329. D.Reidel Publishing Company, Dodrecht, Netherlands, 1983.
Volume I: Elements of Classical Logic.

[7] KAREL BERKA and LOTHAR KREISER. Logik-Texte, volume I. Akademie
Verlag, Berlin, Germany, 1983.

[8] PAUL BERNAYS. A system of axiomatic set—theory. Journal of Symbolic
Logic, 2:65—77, 1937.

[9] PAUL BERNAYS. A system of axiomatic set-theory. Journal of Symbolic
Logic, 6:1—17, 1941.

[10] WOLFGANG BIBEL. Automated Theorem Proving. Vieweg, Wiesbaden, Ger-
many, 1982.

111

112	 References

[11 J SUSANNE BIUNDO, BIRGIT HUMMEL, DIETER HUTTER, and CHRISTOPH

WALTHER. The Karlsruhe induction theorem proving system. In Jorg H.

Siekmann, editor, Proceedings of the 8th CA DE, pages 672-674, Oxford,

United Kingdom, July 1986. Springer Verlag, Berlin, Germany.

[12J	 STEPHEN BLAMEY. Partial logic. In D. Gabbay and F. Guenthner, editors,

Handbook of Philosophical Logic, chapter 111.1, pages 1-70. D.Reidel Pub­

lishing Company, Dodrecht, Netherlands, 1986. Volume Ill: Alternatives to

Classical Logic.

[13J	 W. W. BLEDSOE. Some thoughts on proof discovery. In Robert Keller,

editor, Proceedings of the IEEE Symposium on Logic Programming, pages

2-10, Salt Lake City, Utah, USA, September 1986. IEEE Computer Society.

[14J	 GEORGE BOOLE. The Mathematical Analysis of Logic. Macmillan, Barclay,

& Macmillan, Cambridge, United Kingdom; reprinted by Basil Blackwell,

Oxford, United Kingdom, 1965, 1847.

[15]	 NICOLAS BOURBAKI. Theorie des ensembles. Elements de mathematique,

Fascicule 1. Hermann, Paris, France, 1954.

[16J	 ROBERT BOYER, EWING LUSK, WILLIAM MCCUNE, Ross OVERBEEK,

MARK STICKEL, and LAWRENCE WOS. Set theory in first-order logic:

Clauses for Godel's axioms. Journal of Automated Reasoning, 2:287-327,

1986.

[17]	 ROBERT S. BOYER and J STROTHER MOORE. A Computational Logic.

Academic Press, New York, USA, 1979.

[18]	 RONALD J. BRACHMAN. On the epistemological status of semantic net­

works. In Ronald J. Brachman and Hector J. Levesque, editors, Readings in

Knowledge Representation, chapter 10, pages 191-215. Morgan Kaufmann,

1985, San Mateo, California, USA, 1979. also in: Associative Networks:

Representation and Use of Knowledge by Computers, p.3-50, N. V. Findler,

editor, New York, USA, Academic Press.

[19]	 RONALD J. BRACHMAN and JAMES G. SCHMOLZE. An overview of the

KL-ONE knowledge representation system. Cognitive Science, 9:171-216,

1985.

[20]	 BISHOP BROCK, SHAUN COOPER, and WILLIAM PIERCE. Analogical rea­

soning and proof discovery. In Ewing Lusk and Ross overbeek, editors,

112

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[191

[-201

References

SUSANNE BIUNDO, BIRGIT HUMMEL, DIETER HUTTER, and CHRISTOPH
WALTHER. The Karlsruhe induction theorem proving system. In Jörg H.
Siekmann, editor, Proceedings of the 8th CADE, pages 672-674, Oxford,
United Kingdom, July 1986. Springer Verlag, Berlin, Germany.

STEPHEN BLAMEY. Partial logic. In D. Gabbay and F. Guenthner, editors,
Handbook of Philosophical Logic, chapter III.1, pages 1—70. D.Reidel Pub-
lishing Company, Dodrecht, Netherlands, 1986. Volume III: Alternatives to
Classical Logic.

W. W. BLEDSOE. Some thoughts on proof discovery. In Robert Keller,
editor, Proceedings of the IEEE Symposium on Logic Programming, pages
2—10, Salt Lake City, Utah, USA, September 1986. IEEE Computer Society.

GEORGE BOOLE. The Mathematical Analysis of Logic. Macmillan, Barclay,
& Macmillan, Cambridge, United Kingdom; reprinted by Basil Blackwell,
Oxford, United Kingdom, 1965, 1847.

NICOLAS BOURBAKI. Theorie dcs ensembles. Elements de mathématique,
Fascicule 1 . Hermann, Paris, France, 1954.

ROBERT BOYER, EWING LUSK, WILLIAM MCCUNE, Ross OVERBEEK,
MARK STICKEL, and LAWRENCE Wos. Set theory in first-order logic:
Clauses for'Gödel’s axioms. Journal of Automated Reasoning, 2:287—327,
1986.

ROBERT S . BOYER and J STROTHER MOORE. A Computational Logic.
Academic Press, New York, USA, 1979.

RONALD J . BRACHMAN. On the epistemological status of semantic net-
works. In Ronald J . Brachman and Hector J . Levesque, editors, Readings in
Knowledge Representation, chapter 10, pages 191—215. Morgan Kaufmann,
1985, San Mateo, California, USA, 1979. also in: Associative Networks:
Representation and Use of Knowledge by Computers, p.3—50, N. V . Findler,
editor, New York, USA, Academic Press.

RONALD J . BRACHMAN and JAMES G. SCHMOLZE. An overview of the}
KL-ONE knowledge representation system. Cognitive Science, 9:171—216,
1985.

BISHOP BROCK, SHAUN COOPER, and WILLIAM PIERCE. Analogical rea-
soning and proof discovery. In Ewing Lusk and Ross Overbeek, editors,

References	 113

Proceedings of the 9th CADE1 pages 454-468, Argonne, Illinois, USA, 1988.

Springer Verlag, Berlin, Germany. LNCS 310.

[21]	 BROCKHAUS ENZYKLOPADIE. 19.Auflage. F.A. Brockhaus, Mannheim,

Germany, 1986.

[22]	 LUITZEN EGBERTUS JAN BROUWER. Intuitionism and formalism. Bull.

Amer. Math. Soc., 20:81-96, 1914.

[23]	 LUITZEN EGBERTUS JAN BROUWER. Zur Begriindung der intuitionisti­

schen Mathematik. Mathematische Annalen, 93:244-257, 1925.

[24]	 FRANK MALLOY BROWN. Towards the automation of set theory and its

logic. Artificial Intelligence, 10:281-316, 1978.

[25]	 NICOLAAS GOVERT DE BRUIJN. AUTOMATH, a language for mathemat­

ics. Seminaire de Mathematiques Superieures 52, Departement de Mathe­

matiques, Universite de Montreal, Montreal, Canada, 1973.

[26]	 NICOLAAS GOVERT DE BRUIJN. AUTOMATH - ein Projekt zur Kon­

trolle von Mathematik. Talk given at Innsbrucker Mathematikertag, 1974.

German translation of "The AUTOMATH Mathematics Checking Project",

Proceedings Symp. APLASM, Vol. I, P. Braffort, editor, Orsay, France, 1973.

[27]	 NICOLAAS GOVERT DE BRUIJN. A survey of the project AUTOMATH.

In J .P. Seldin and J .R. Hindley, editors, To H.B. Curry - Essays on Com­

binatory Logic, Lambda Calculus and Formalism, pages 579-606. Academic

Press, London, United Kingdom, 1980.

[28]	 ALAN BUNDY. Discovery and reasoning in mathematics. In Aravind Joshi,

editor, Proceedings of the 9th flCAf, pages 1221-1230, Los Angeles, Califor­

nia, USA, May 1985. Morgan Kaufmann, San Mateo, California, USA.

[29]	 ALAN BUNDY. The use of explicit plans to guide inductive proofs. In

Proceedings of the 9th CADE, Argonne, Illinois, USA, 1988. Springer Verlag,

Berlin, Germany. LNCS 310.

[30]	 ALAN BUNDY, FRANK VAN HARMELEN, CHRISTIAN HORN, and ALAN

SMAILL. The OYSTER-CLAM system. In Mark E. Stickel, editor, Pro­

ceedings of the 10th CA DE, pages 647-648, Kaiserslautern, Germany, 1990.

Springer Verlag, Berlin, Germany. LNAI449.

References 1 13

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

Proceedings of the 9th CADE, pages 454—468, Argonne, Illinois, USA, 1988.
Springer Verlag, Berlin, Germany. LNCS 310.

BROCKHAUS ENZYKLOPADIE. 19.Auflage. F .A. Brockhaus, Mannheim,
Germany, 1986.

LUITZEN EGBERTUS JAN BROUWER. Intuitionism and formalism. Bul l .

Amer. Math. Soc., 20:81—96, 1914.

LUITZEN EGBERTUS JAN BROUWER. Zur Begründung der intuitionisti-
schen Mathematik. Mathematische Annalen, 93:244—257, 1925.

FRANK MALLOY BROWN. Towards the automation of set theory and i ts
logic. Artificial Intelligence, 10:281—316, 1978.

NICOLAAS GOVERT DE BRUIJN. AUTOMATH, a language for mathemat—
ics. Séminaire de Mathématiques Supérieures 52, Département de Mathé-
matiques, Université de Montréal, Montréal, Canada, 1973.

NICOLAAS GOVERT DE BRUIJN. AUTOMATH — ein Projekt zur Kon-
trolle von Mathematik. Talk given at Innsbrucker Mathematikertag, 1974.
German translation of “The AUTOMATH Mathematics Checking Project”,
Proceedings Symp. APLASM, Vol. I, P. Brafi'ort, editor, Orsay, France, 1973.

NICOLAAS GOVERT DE BRUIJN. A survey of the project AUTOMATH.
In J .P . Seldin and J ‚R. Hindley, editors, To H.B. Curry - Essays on Com-
binatory Logic, Lambda Calculus and Formalism, pages 579—606. Academic
Press, London, United Kingdom, 1980. '

ALAN BUNDY. Discovery and reasoning in mathematics. In Aravind Joshi,
editor, Proceedings of the 9th IJCAI, pages 1221—1230, Los Angeles, Califor-
nia, USA, May 1985. Morgan Kaufmann, San Mateo, California, USA.

ALAN BUNDY. The use of explicit plans to guide inductive proofs. In
Proceedings of the 9th CADE, Argonne, Illinois, USA, 1988. Springer Verlag,
Berlin, Germany. LNCS 310.

ALAN BUNDY, FRANK VAN HARMELEN, CHRISTIAN HORN, and ALAN
SMAILL. The OYSTER-CLAM system. In Mark E . Stickel, editor, Pro-
ceedings of the 10th CADE, pages 647—648, Kaiserslautern, Germany, 1990.
Springer Verlag, Berlin, Germany. LNAI 449.

114	 References

[31]	 ALAN BUNDYand BOB WELHAM. Using meta-level inference for selective

application of multiple rewrite rules in algebraic manipulation. In Wolfgang

Bibel and Robert Kowalski, editors, Proceedings of the 5th CA DE, pages

25-38, Les Arcs, France, 1980. Springer Verlag, Berlin, Germany. LNCS 87.

[32]	 ALONZO CHURCH. An unsolvable problem of elementary number theory.

American Jounal of Mathematics, 58:345-363, 1936.

[33]	 ALONZO CHURCH. A formulation of the simple theory of types. Journal of

Symbolic Logic, 5:56-68, 1940.

[34]	 R.L. CONSTABLE, S.F. ALLEN, H.M. BROMLEY, W.R. CLEAVELAND,

J.F. CREMER, R.W. HARPER, D.J. ROWE, T.B. KNOBLOCK, N.P.

MENDLER, P PANANGADEN, J.T. SASAKI, and S.F. SMITH. Implement­

ing Mathematics with the Nuprl Proof Development System. Prentice Hall,

Englewood Cliffs, New Jersey, USA, 1986.

[35]	 JOHN CORCORAN. Categoricity. History and Philosophy of Logic, 1:187­

207, 1980.

[36]	 HASKELL B. CURRY, R. FEYS, and W. CRAIG. Combinatory Logic, vol­

ume 1. North-Holland, Amsterdam, The Netherlands, 1958.

[37]	 MARTIN DAVIS. A computer program for Presburger's algorithm. In Jorg H.

Siekmann and Graham Wrightson, editors, Automation of Reasoning - Clas­

sical Papers on Computational Logic, Volume 1, 1957-1966, pages 41-48.

Springer Verlag, Berlin, Germany, 1983, 1957. reprint.

[38]	 MARTIN DAVIS. The prehistory and early history of automated deduction.

In Jorg H. Siekmann and Graham Wrightson, editors, Automation of Rea­

soning - Classical Papers on Computational Logic, Volume 1, 1957-1966,

pages 1-28. Springer Verlag, Berlin, Germany, 1983.

[:39]	 RENt DESCARTES. Regulae ad Direetionem Ingenii. first published 1701;

Latin original with French translation, Bovin et Cie., Paris, France, 1933;

German translation in: Rene Descartes - Ausgewahlte Schriften, Fischer,

1986, l'J:ankfurt, Germany, 1628/29.

[40J	 PETER DEUSSEN. Halbgruppen und Automaten, volume 99 of Heidelberger

Taschenbiicher. Springer Verlag, Berlin, Germany, 1971.

[41]	 NORBERT EISINGER and HANS JURGEN OHLBACH. The Markgraf Karl

Refutation Procedure (MKRP). In Jorg H. Siekmann, editor, Proceedings of

114 References

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[40]

[41]

ALAN BUNDY and BOB WELHAM. Using meta-level inference for selective
application of multiple rewrite rules in algebraic manipulation. In Wolfgang
Bibel and Robert Kowalski, editors, Proceedings of the 5th CADE, pages
25—38, Les Arcs, France, 1980. Springer Verlag, Berlin, Germany. LNCS 87.

ALONZO CHURCH. An unsolvable problem of elementary number theory.
American Jounal of >Mathe-mat ics , 58:345—363, 1936.

ALONZO CHURCH. A formulation of the simple theory of types. Journal of
Symbolic Logic, 5:56—68, 1940.

R .L . CONSTABLE, S .F . ALLEN, H .M. BROMLEY, W.R . CLEAVELAND,
J .F . CREMER, R .W. HARPER, D . J . HOWE, T .B . KNOBLOCK, N .P .
MENDLER, P PANANGADEN, J .T . SASAKI, and S .F . SMITH. Implement-
ing Mathematics with the Nuprl Proof Development System. Prentice Hall,
Englewood Cliffs, New Jersey, USA, 1986.

JOHN CORCORAN. Categoricity. History and Philosophy of Logic, 1:187—
207, 1980.

HASKELL B. CURRY, R . FEYS, and W. CRAIG. Combinatory Logic, vol—
ume 1. North—Holland, Amsterdam, The Netherlands, 1958.

MARTIN DAVIS. A computer program for Presburger’s algorithm. In Jörg H.
Siekmann and Graham Wrightson, editors, Automation of Reasoning — Clas-
sical Papers on Computational Logic, Volume 1, 1957—1966, pages 41—48.
Springer Verlag, Berlin, Germany, 1983, 1957. reprint.

MARTIN DAVIS. The prehistory and early history of automated deduction.
In Jörg H . Siekmann and Graham Wrightson, editors, Automation of Rea-
soning — Classical Papers on Computational Logic, Volume I, 1957—1966,
pages 1—28. Springer Verlag, Berlin, Germany, 1983.

RENE DESCARTES. Regulae ad Directionem lngenii. first published 1701;
Latin original with French translation, Bovin et Cie., Paris , France, 1933;
German translation in: René Descartes — Ausgewählte Schriften, Fischer,
1986,. Frankfurt, Germany, 1628/29.

PETER DEUSSEN. Halbgruppen und Automaten, volume 99 of Heidelberger
Taschenbücher. Springer Verlag, Berlin, Germany, 1971.

NORBERT EISINGER and HANS JÜRGEN OHLBACH. The Markgraf Karl
Refutation Procedure (MKRP) . In Jörg H. Siekmann, editor, Proceedings of

References

the 8th CADE, pages 681-682, Oxford, United Kingdom, July 1986. Springer

Verlag, Berlin, Germany.

[42]	 HERBERT B. ENDERTON. A Mathematical Introduction to Logic. Academic

Press, San Diego, California, USA, 1972.

[43]	 WILLIAM M. FARMER. A partial functions version of Church's simple theory

of types. Technical Report M88-52, Revision 1, The MITRE Corporation,

Bedford, Massachusetts, USA, February 1990.

[44]	 ADOLF ABRAHAM FRAENKEL. Zu den Grundlagen der Cantor-Zermelo­

schen Mengenlehre. Mathematische Annalen, 86:230-237, 1922.

[45]	 GOTTLIEB FREGE. Begriffsschrift, eine der arithmetischen nachgebildete

Formelsprache des reinen Denkens. Halle, 1879. reprint in: Begriffsschrift

und andere Aufsatze, J. Angelelli, editor, Hildesheim. See also in Logiktexte,

Karel Berka, Lothar Kreiser, editors, pages 82-112.

(46]	 H. GELERNTER. Realization of a geometry theorem-proving machine. In

Proceedings of the International Conference on Information Processing, UN­

ESCO, 1959.

[47]	 FAUSTO GIUNCHIGLIA and LUCIANO SERAFINI. Multilanguage first order

theories of propositional attitudes. IRST-Technical Report 9001-02, Istituto

per la Ricerca Scientifica e Tecnologica, Trento, Italy, 1990.

[48]	 FAUSTO GIUNCHIGLIA and PAOLO TRAVERSO. Plan formation and execu­

tion in an uniform architecture of declarative metatheories. IRST-Technical

Report 9003-12, Istituto per la Ricerca Scientifica e Tecnologica, Trento,

Italy, 1990.

[49]	 FAUSTO GIUNCHIGLIA and PAOLO TRAVERSO. Reflective reasoning with

and between a declarative metatheory and the implementation code. IRST­

Technical Report 9012-03, Istituto per la Ricerca Scientifica e Tecnologica,

Trento, Italy, 1990.

[50]	 FAUSTO GIUNCHIGLIA and PAOLO TRAVERSO. A system for multi-level

mathematical reasoning. IRST-Technical Report 9011-12, Istituto per la

Ricerca Scientifica e Tecnologica, Trento, Italy, 1990.

[51]	 KURT GODEL. Die Vollstandigkeit der Axiome des logischen Funktio­

nenkalkiils. Monatshefte fur Mathematik und Physik, 37:349-360, 1930.

References . 115

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

the 8th CADE, pages 681—682, Oxford, United Kingdom, July 1986. Springer
Verlag, Berlin, Germany.

HERBERT B. ENDERTON. A Mathematical Introduction to Logic. Academic
Press, San Diego, California, USA, 1972.

WILLIAM M. FARMER. A partial functions version of Church’s simple theory
of types. Technical Report M88—52, Revision 1 , The MITRE Corporation,
Bedford, Massachusetts, USA, February 1990.

ADOLF ABRAHAM FRAENKEL. Zu den Grundlagen der Cantor—Zermelo—
schen Mengenlehre. Mathematische Annalen, 86:230—237, 1922.

GOTTLIEB FREGE. Begriflsschrift, eine der arithmetischen nachgebildete
Formelsprache des reinen Denkens. Halle, 1879. reprint in: Begriffsschrift
und andere Aufsätze, J . Angelelli, editor, Hildesheim. See also in Logiktexte,
Karel Berka, Lothar Kreiser, editors, pages 82—112.

H. GELERNTER. Realization of a geometry theorem—proving machine. In
Proceedings of the International Conference on Information Processing, UN-
ESCO, 1959.

FAUSTO GIUNCHIGLIA and LUCIANO SERAFINI. Multilanguage first order
theories of propositional attitudes. IRST-Technical Report 9001-02, Isti tuto
per la Ricerca Scientifica e Tecnologica, Trento, Italy, 1990.

FAUSTO GIUNCHIGLIA and PAOLO TRAVERSO. Plan formation and execu-
tion in an uniform architecture of declarative metatheories. IRST-Technical
Report 9003—12, Istituto per l a Ricerca Scientifica e Tecnologica, Trento,
Italy, 1990.

FAUSTO GIUNCHIGLIA and PAOLO TRAVERSO. Reflective reasoning with
and between a declarative metatheory and the implementation code. IRST—
Technical Report 9012—03, Istituto per la Ricerca Scientifica e Tecnologica,
Trento, Italy, 1990.

FAUSTO GIUNCHIGLIA and PAOLO TRAVERSO. A system for multi-level
mathematical reasoning. IRST-Technical Report 9011-12, Istituto per la
Ricerca Scientifica e Tecnologica, Trento, Italy, 1990.

KURT GÖDEL. Die Vollständigkeit der Axiome des logischen Funktio-
nenkalküls. Monatshefte für Mathematik und Physik, 37:349—360, 1930.

116	 References

[52]	 KURT GODEL. Uber formal unentscheidbare Satze der Principia Mathe­

matica und verwandter Systeme I. Monatshefte fur Mathematik und Physik,

38:173-198, 1931.

[53]	 KURT GODEL. The Consistency of the Axiom of Choice and of the Gen­

eralized Continuum-Hypothesis with the Axioms of Set Theory, volume 3 of

Annals of Mathematics Studies. Princeton University Press, Princeton, New

Jersey; eighth printing 1970, 1940.

[54]	 MICHAEL GORDON, ROBIN MILNER, and CHRISTOPHER WADSWORTH.

Edinburgh LCF: A Mechanized Logic of Computation. LNCS 78. Springer

Verlag, Berlin, Germany, 1979.

[55]	 JACQUES HADAMARD. The Psychology of Invention in the Mathematical

Field. Dover Publications, New York, USA; edition 1949, 1944.

[56]	 PATRICK J. HAYES. The logic of frames. In Ronald J. Brachman and Hec­

tor J. Levesque, editors, Readings in J(nowledge Representation, chapter 14,

pages 287-295. Morgan Kaufmann, 1985, San Mateo, California, USA, 1979.

also in: Frame Conceptions and Text Understanding, p.46-61, D. Metzing,

editor, Berlin, Germany, Waiter de Gruyter.

[57]	 LEON HENKIN. Completeness in the theory of types. Journal of Symbolic

Logic, 15:81-91, 1950.

[58]	 LAWRENCE J. HENSCHEN. N-sorted logic for automatic theorem-proving

in higher-order logic. In P1'Oceedings of the Annual Conference of the AGM,

pages 71-81, Boston, Massachusetts, USA, 1972. Association for Computing

Machinery, Washington, DC, USA, ACM Press, New York, USA.

[59]	 JACQUES HERBRAND. Recherches sur la theorie de la demonstration. Sci.

Lett. Varsovie,. C/asse III sci. math. phys., 33, 1930.

[60]	 AREND HEYTING. Intuitionism. North-Holland Publishing Company, third

edition 1971, Amsterdam, Netherlands, 1956.

[61]	 DAVID HILBERT. Grundlagen der Geometrie. Teubner, 10th ed., 1968,

Stuttga.rt, Germany, 1899.

[62]	 DAVID HILBERT. Probleme der Grundlegung der Mathematik. Mathemati­

sche Annalen, 102:1-9, 1930.

1 16 References

[52] KURT GÖDEL. Über formal unentscheidbare Sätze der Principia Mathe-
matica und verwandter Systeme I. Monatshefte für Mathematik und Physik,
38:173—198, 1931.

[53] KURT GÖDEL. The Consistency of the Axiom of Choice and of the Gen-
eralized Continuum—Hypothesis with the Axioms of Set Theory, volume 3 of
Annals of Mathematics Studies. Princeton University Press, Princeton, New
Jersey; eighth printing 1970, 1940.

[54] MICHAEL GORDON, ROBIN MILNER, and CHRISTOPHER WADSWORTH.
Edinburgh LCF: A Mechanized Logic of Computation. LNCS 78. Springer
Verlag, Berlin, Germany, 1979.

[55] JACQUES HADAMARD. The Psychology of Invention in the Mathematical
Field. Dover Publications, New York, USA; edition 1949, 1944.

[56] PATRICK J . HAYES. The logic of frames. In Ronald J. Brachman and Hec-
tor J. Levesque, editors, Readings in Knowledge Representation, chapter 14,
pages 287—295. Morgan Kaufmann, 1985, San Mateo, California, USA, 1979.
also in: Frame Conceptions and Text Understanding, p.46—61, D. Metzing,
editor, Berlin, Germany, Walter de Gruyter.

[57] LEON HENKIN. Completeness in the theory of types. Journal of Symbolic
Logic,.15:81—91, 1950.

[58] LAWRENCE J. HENSCH'EN . N-sorted logic for automatic theorem—proving
in higher-order logic. In Proceedings of the Annual Conference of the ACM,
pages 71—81, Boston, Massachusetts, USA, 1972. Association for Computing
Machinery, Washington, DC, USA, ACM Press, New York, USA.

[59] JACQUES HERBRAN D. Recherches sur la théorie de la démonstration. Sci.
Lett. Varsovie, Classe HI sci. math. phys, 33, 1930.

[60] AREND HEYTING. Intuitionism. North-Holland Publishing Company, third
edition 1971, Amsterdam, Netherlands, 1956.

[61] DAVID HILBERT. Grundlagen der Geometrie. Teubner, 10th ed., 1968,
Stuttgart, Germany, 1899.

[62] DAVID HILBERT. Probleme der Grundlegung der Mathematik. Mathemati-
sche Annalen, 102:1-—9, 1930.

References	 117

[63]	 CHRISTIAN HORN. Deduktive Programmierung. Seminarbericht 100, Sek­

tion Mathematik, Humboldt-Universitat zu Berlin, Berlin, Germany, 1988.

[64]	 XIAORONG HUANG. A human oriented proof presentation model. SEKI

Report SR-89-11, Fachbereich Informatik, Universitat Kaiserslautern, Kai­

serslautern, Germany, 1989.

[65]	 XIAORONG HUANG. Proof transformation towards human reasoning style.

In B. Metzing, editor, Proceedings of the 13th GWAI, pages 37-42, Eringer­

feld, Germany, 18-22nd SepteII1;ber 1989. Springer Verlag, Berlin, Germany.

[66]	 XIAORONG HUANG. Reference choices in mathematical proofs. In Luigia

Carlucci Aiello, editor, Proceedings of the 9th ECAI, pages 720-725, Stock­

holm, Sweden, 6-10th August 1990. Pitman, London, Great Britain.

[67]	 GERARD HUET. A unification algorithm for the typed A-calculus. Theoret­

ical Computer Science, 1:27-57, 1975.

[68]	 GERARD HUET, editor. Logical Foundations of Functional Programming.

Addison-Wesley, Reading, Massachusetts, USA, 1990.

[69]	 DIETER HUTTER. Vollstandige Induktion. In Karl Hans BIasius and Hans­

Jiirgen Biirckert, editors, Dedukionssysteme - A utomatisierung des logischen

Denkens, chapter V, pages 153-172. Oldenbourg, Miinchen, Germany, 1987.

[70]	 L.S. VAN BENTHEM JUTTING. Checking Landau's "Grundlagen" in the A U­

TOMATH System, volume 83 of Mathematical Centre Tracts. Mathematisch

Centrum, Amsterdam, Netherlands, 1979.

[71]	 MANFRED KERBER. Some aspects of analogy in mathematical reasoning.

In Klaus P. Jantke, editor, Analogical and Inductive Inference; International

Workshop All '89, Reinhardsbrunn Castle, GDR, pages 231-242. Springer

Verlag, Berlin, Germany, October 1989. LNAI397.

[72]	 MANFRED KERBER. Towards a classification of sound morphisms from

higher-order to first-order logic. SEKI Report, Universitat des Saarlandes,

Saarbriicken, Germany (in preparation), 1992.

[73]	 MANFRED KERBER and AXEL PRACKLEIN. Using tactics to reformulate

formulae for resolution theorem proving. Presented on the 2nd International

Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale,

Florida, USA, also as SEKI Report, forthcoming, Universitat des Saarlandes,

Saarbriicken, Germany, January 1992.

References 1 17

[63] CHRISTIAN HORN. Deduktive Programmierung. Seminarbericht 100, Sek-
tion Mathematik, Humboldt-Universität zu Berlin, Berlin, Germany, 1988.

[64] XIAORONG HUANG. A human oriented proof presentation model. SEKI
Report SR—89-11, Fachbereich Informatik, Universität Kaiserslautern, Kai-
serslautern, Germany, 1989.

[65] XIAORONG HUANG. Proof transformation towards human reasoning style.
In B . Metzing, editor, Proceedings of the 13th G WAI, pages 37—42, Eringer-
feld, Germany, 18-22nd September 1989. Springer Verlag, Berlin, Germany.

[66] XIAORON G HUANG. Reference choices in mathematical proofs. In Luigia
Carlucci Aiello, editor, Proceedings of the 9th ECAI, pages 720—725, Stock—
holm, Sweden, 6-10th August 1990. Pitman, London, Great Britain.

[67] GERARD HUET. A unification algorithm for the typed Ä—calculus. Theoret-
ical Computer Science, 1:27—57, 1975.

[68] GERARD HUET, editor. Logical Foundations of Functional Programming.
Addison-Wesley, Reading, Massachusetts, USA, 1990.

[69] DIETER HUTTER. Vollständige Induktion. In Karl Hans Bläsius and Hans-
Jürgen Bürckert, editors, Dedukionssysteme — Automatisierung des logischen
Denkens, chapter V , pages 153—172. Oldenbourg, München, Germany, 1987.

[70] L.S. VAN BENTHEM J UTTING. Checking Landau’s “Grundlagen” in the AU-
TOMA TH System, volume 83 of Mathematical Centre Tracts. Mathematisch
Centrum, Amsterdam, Netherlands, 1979.

[71] MANFRED KERBER. Some aspects of analogy in mathematical reasoning.
In Klaus P. Jantke, editor, Analogical and Inductive Inference; International
Workshop AH ’89, Reinhardsbrunn Castle, GDR, pages 231—242. Springer
Verlag, Berlin, Germany, October 1989. LNAI 397.

[72] MANFRED KERBER. Towards a classification of sound morphisms from
higher—order to first-order logic. SEKI Report, Universität des Saarlandes,
Saarbrücken, Germany (in preparation), 1992.

[73] MANFRED KERBER and AXEL PRÄCKLEIN. Using tactics to reformulate
formulae for resolution theorem proving. Presented on the 2nd International
Symposium on Artificial Intelligence and Mathematics, Fort Lauderdale,
Florida, USA, also as SEKI Report, forthcoming, Universität des Saarlandes,
Saarbrücken, Germany, January 1992.

u8	 References

[74]	 MORRIS KLINE. Mathematics - The Loss of Certainty. Oxford University

Press, New York, USA, 1980.

[75]	 MICHAEL KOHLHASE. Order-sorted type theory I: Unification. SEKI Re­

port SR-91-18 (SFB), Fachbereich Informatik, Universitat des Saarlandes,

Saarbriicken, Germany, 1991.

[76]	 N.1. KONDAKOW. Warterbuch der Logik. VEB Bibliographisches Institut,

Leipzig, Germany; german edition, Erhard Albrecht, Giinter Asser, editors,

1983.

[77]	 ROBERT KOWALSKI. A proof procedure using connection graphs. Journal

of the ACM, 22, 1975.

[78]	 LOTHAR KREISER, SIEGFRIED GOTTWALD, and WERNER STELZNER, ed~

itors. Nichtklassische Logik, volume I. Akademie Verlag, Berlin, Germany,

1990.

[79]	 EDMUND LANDAU. Grundlagen der Analysis. Wissenschaftliche Buchge­

sellschaft, Darmstadt, Germany; second edition, 1930. Reprint of the edi­

tion, Leipzig, 1970.

[80]	 GOTTFRIED WILHELM LEIBNIZ. Projet et essais pour arriver et quelque

certitude pour finir une bonne partie des disputes et pour avancer l'art

d'inventer. In Karel Berka and Lothar Kreiser, editors, Logiktexte, chap­

ter 1.2, pages 16-18. Akademie-Verlag, german translation, 1983, Berlin,

Germany, 1686.

[81]	 GOTTFRIED WILHELM LEIBNIZ. Historia et commendatio linguae char­

acteristicae universalis quae simul sit aI'S inveniendi et judicandi. German

translation in Gottfried Wilhelm Leibniz: Gott - Geist - Giite: Eine Auswahl

aus seinen Werken, pages 163-173, Bertelsmann Verlag, Giitersloh, Germany,

1947, not dated.

[82]	 DOUGLAS B. LENAT. Ai\-1: An Artificial Intelligence Approach to Discovery

in Mathematics as Heuristic Search. PhD thesis, AI Lab, Stanford Uni­

versity, Stanford, California, USA, 1976. AIM-286, STAN-CS-76-570, and

Heuristic Programming Project Report HPP-76-8.

[83]	 DOUGLAS B. LENAT. The nature of heuristics. Artificial Intelligence,

19:189-249, 1982.

118 References

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[8‘2]

[83]

MORRIS KLINE. Mathematics — The Loss of Certainty. Oxford University
Press, New York, USA, 1980.

MICHAEL KOHLHASE. Order-sorted type theory I: Unification. SEKI Re-
port SR—91-18 (SFB), Fachbereich Informatik, Universität des Saarlandes,
Saarbrücken, Germany, 1991.

N.I. KONDAKOW. Wörterbuch der Logik. VEB Bibliographisches Institut,
Leipzig, Germany; german edition, Erhard Albrecht, Günter Asser, editors,

1983.

ROBERT KOWALSKI. A proof procedure using connection graphs. Journal
of the ACM, 22 , 1975.

LOTHAR KREISER, SIEGFRIED GOTTWALD, and WERNER STELZNER, ed.-
itors. Nichtklassische Logik, volume I . Akademie Verlag, Berlin, Germany,
1990.

EDMUND LANDAU. Grundlagen der Analysis. Wissenschaftliche Buchge-
sellschaft, Darmstadt, Germany; second edition, 1930. Reprint of the edi-
tion, Leipzig, 1970.

GOTTFRIED WILHELM LEIBNIZ. Projet et essais pour arriver ä quelque
certitude pour finir une bonne partie des disputes et pour avancer l’art
d’inventer. In Karel Berka and Lothar Kreiser, editors, Logiktexte, Chap—
ter I.2, pages 16—18. Akademie—Verlag, german translation, 1983, Berlin,
Germany, 1686.

GOTTFRIED WILHELM LEIBNIZ. Historia et commendatio linguae char-
acteristicae universalis quae simul sit ars inveniendi et judicandi. German
translation in Gottfried Wilhelm Leibniz: Gott — Geist — Güte: Eine Auswahl
aus seinen Werken, pages 163—173, Bertelsmann Verlag, Gütersloh, Germany,
1947, not dated.

DOUGLAS B. LENAT. AM: An Artificial Intelligence Approach to Discovery
in Mathematics as Heuristic Search. PhD‘ thesis, AI Lab, Stanford Uni-
versity, Stanford, California, USA, 1976. AIM-286, STAN-CS-76-570, and
Heuristic Programming Project Report HPP—76-8.

DOUGLAS B . LENAT. The nature of heuristics. Artificial Intelligence,
19:189—249, 1982.

References	 119

[84]	 DOUGLAS B. LENAT. Eurisko: A program that learns new heuristics and

domain concepts. Artificial Intelligence, 21:61-98, 1983.

[85]	 DOUGLAS B. LENAT and RAMANATHAN V. GUHA. Building Large

Knowledge-Based Systems - Representation and Inference in the CYC

Project. Addison-Wesley Publishing Company, Readings, Massachusetts,

USA, 1990.

[86]	 CHRISTOPH LINGENFELDER. Structuring computer generated proofs. In

N.S. Sridharan, editor, Proceedings of the 11th IlCAI, pages 378-383, De­

troit, Michigan, USA, 1989. Morgan Kaufman, San Mateo, California, USA.

[87]	 CHRISTOPH LINGENFELDER. Transformation and Structuring of Computer

Generated Proofs. PhD thesis, Fachbereich Informatik, Universitat Kaisers­

lautern, Kaiserslautern, Germany, 1990.

[88]	 CHRISTOPH LINGENFELDER and AXEL PRACKLEIN. Presentation of proofs

in an equational calculus. In Michel De Glas and Dov Gabbay, editors, WOC­

FAI '91 - Proceedings of the First World Conference on the Fundamentals

of Artificial Intelligence, pages 313-321, Paris, France, 1991. Angkor.

[89]	 CHRISTOPH LINGENFELDER and AXEL PRACKLEIN. Proof transformation

with built-in equality predicate. In John Mylopoulos and Ray Reiter, edi­

tors, Proceedings of the 12th IlCAI, pages 165-170, Sydney, 1991. Morgan

Kaufman, San Mateo, California, USA.

[90]	 J.W. LLOYD. Directions for meta-programming. In Proceedings of the Inter­

national Conference on Fifth Generation Computer Systems, pages 609-617.

ICOT, 1988.

[91]	 LEOPOLD LOWENHEIM. Uber Moglichkeiten im Relativkalkiil. Mathemati­

sche Annalen, 76:447-470, 1915.

[92]	 PATTIE MAEs. Introspection in knowledge representation. In Benedict

du Boulay, editor, Proceedings of the 7th ECAI, pages 256-269, Brighton,

United Kingdom, July 1986. Volume 1.

[93]	 KARL MARK GRAPH. The Markgraf Karl Refutation Procedure. Techni­

cal Report Memo-SEKI-MK-84-0l, Fachbereich Informatik, Universitat Kai­

serslautern, Kaiserslautern, Germany, January 1984.

References 119

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

DOUGLAS B. LENAT. Eurisko: A program that learns new heuristics and
domain concepts. Artificial Intelligence, 21:61—98, 1983.

DOUGLAS B. LENAT and RAMANATHAN V. GUHA. Building Large
Knowledge-Based Systems — Representation and Inference in the CYC
Project. Addison-Wesley Publishing Company, Readings, Massachusetts,
USA, 1990.

CHRISTOPH LINGENFELDER. Structuring computer generated proofs. In
N.S. Sridharan, editor, Proceedings of the 11th IJCAI, pages 378—383, De—
troit, Michigan, USA, 1989. Morgan Kaufman, San Mateo, California, USA.

CHRISTOPI—I LINGENFELDER. Transformation and Structuring of Computer
Generated Proofs. PhD thesis, Fachbereich Informatik, Universität Kaisers-
lautern, Kaiserslautern, Germany, 1990.

CHRISTOPH LINGENFELDER and AXEL PRÄCKLEIN. Presentation of proofs

in an equational calculus. In Michel De Glas and Dov Gabbay, editors, WOC-
FAI ’91 — Proceedings of the First World Conference on the Fundamentals
of Artificial Intelligence, pages 313—321, Paris, France, 1991. Angkor.

CHRISTOPH LINGENFELDER and AXEL PRÄCKLEIN. Proof transformation
with built-in equality predicate. In John Mylopoulos and Ray Reiter, edi-
tors, Proceedings of the 12th IJCAI, pages 165—170, Sydney, 1991. Morgan
Kaufman, San Mateo, California, USA.

J .W. LLOYD. Directions for meta-programming. In Proceedings of the Inter-
national Conference on Fifth Generation Computer Systems, pages 609—617.
ICOT, 1988.

LEOPOLD LÖWENHEIM. Über Möglichkeiten im Relativkalkfil. Mathemati-
sche Annalen, 76:447—470‚ 1915.

PATTIE MAES. Introspection i n knowledge representation. In Benedict
du Boulay, editor, Proceedings of the 7th ECAI, pages 256—269, Brighton,
United Kingdom, July 1986. Volume 1 .

KARL MARK G RAPH. The Markgraf Karl Refutation Procedure. Techni-
cal Report Memo-SEKI—MK-84—01, Fachbereich Informatik, Universität Kai-
serslautern, Kaiserslautern, Germany, January 1984.

120	 References

[94]	 PER MARTIN-LoF. Constructive mathematics and computer programming.

In 6th Inte1'national Congress for Logic, Methodology, and Philosophy of

Science, pages 153-175. North Holland, Amsterdam, Netherlands, 1982.

[95]	 DAVID A. McALLESTER. ONTIC - A Knowledge Representation System

for Mathematics. The MIT Press, Cambridge, Massachusetts, USA, 1989.

[96]	 WILLIAM MCCUNE. Otter 2.0. In Mark E. Stickel, editor, Proceedings of

the 10th CA DE, pages 663-664, Kaiserslautern, Germany, 1990. Springer

Verlag, Berlin, Germany. LNAI449.

[97]	 MARVIN MINSKY. A framework for representing knowledge. In Patrick

Henry Winston, editor, The Psychology of Computer Vision. McGraw-Hill,

New York, USA, 1975. also in: Mind Design, pages 95-128, J. Haugeland,

editor, Cambridge, Massachusetts, USA, MIT-Press, 1981, and Readings in

Knowledge Representation, pages 245-262, chapter 12, Ronald J. Brachman

and Hector J. Levesque, editors, San Mateo, California, USA, Morgan Kauf­

mann, 1985.

[98]	 GREGORY H. MOORE. Beyond first-order logic: The historical interplay be­

tween mathetnaticallogic and axiomatic set theory. History and Philosophy

of Logic, 1:95-137, 1980.

[99]	 KATHARINA MORIK. Anything you can do - I can do meta. KIT-Report 40,

Fachbereich Informatik, Technische Universitat Berlin, Berlin, Germany,
\

November 1986.

[100]	 ANDRZEJ MOSTOWSKI. An undecidable arithmetical statement. Funda­

menta Mathematicae, 36:143-164, 1949.

[101]	 ANDRZEJ MOSTOWSKI. On a generalization of quantifiers. Fundamenta

1\1athematicae, 44:12-36, 1957.

[102]	 JOHN VON NEUMANN. Die Axiomatisierung del' Mengenlehre. Mathemati­

sche Zeitschnjt, 27:669--752, 1928.

[103]	 ALLEN NEWELL. The heuristic of George Polya and its relation to artificial

intelligence. Technical Report CMU-CS-81-133, Department of Computer

Science, Carnegie-Mellon University, Pittsburgh, Pennsylvania, USA, July

1981. also in Rudolf Groner, Marina Groner and Waiter F Bishoof, editors,

Methods of Heuristics, Lawrence Erlbaum, Hillsda.le, New Jersey, USA, 195­

243.

120 References

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

PER MARTIN—LÖF. Constructive mathematics and computer programming.
In 6th International Congress for Logic, Methodology, and Philosophy of
Science, pages 153—175. North Holland, Amsterdam, Netherlands, 1982.

DAVID A . MCALLESTER. ONTIC — A Knowledge Representation System
for Mathematics. The MIT Press, Cambridge, Massachusetts, USA, 1989.

WILLIAM MCCUNE. Otter 2.0. In Mark E . Stickel, editor, Proceedings of
the 10th CADE, pages 663—664, Kaiserslautern, Germany, 1990. Springer
Verlag, Berlin, Germany. LNAI 449.

MARVIN MINSKY. A frarrmwork for representing knowledge. In Patrick
Henry Winston, editor, The Psychology of Computer Vision. McGraw—Hill,
New York, USA, 1975. also in: Mind Design, pages 95—128, J . Haugeland,
editor, Cambridge, Massachusetts, USA, MIT-Press, 1981, and Readings i n
Knowledge Representation, pages 245—262, chapter 12, Ronald J . Brachman
and Hector J . Levesque, editors, San Mateo, California, USA, Morgan Kauf-
mann, 1985.

GREGORY H. MOORE. Beyond first-order logic: The historical interplay be—
tween mathematical logic and axiomatic set theory. History and Philosophy
of Logic, 1:95—137, 1980.

KATHARINA MORIK. Anything you can do — I can do meta. KIT—Report 40,
Fachbereich Informatik, Technische Universität Berlin, Berlin, Germany,
November 1986. '

ANDRZEJ MOSTOWSKI. An undecidable arithmetical statement. Funda-

menta Mathematicae, 36:143—164, 1949.

ANDRZEJ MOSTOWSKI. On a generalization of quantifiers, Fundamenta
Mathematicae, 44:12—36, 1957.

JOHN VON NEUMANN. Die Axiomatisierung der Mengenlehre. Mathemati-
sche Zeitschrift, 27:669-—752, 1928.

ALLEN N EWELL. The heuristic of George Polya and its relation to artificial
intelligence. Technical Report CMU-CS-81-133, Department of Computer
Science, Carnegie-Mellon University, Pit tsburgh, Pennsylvania, USA, July
1981. also in Rudolf Groner, Marina Groner and Walter F Bishoof, editors,
Methods of Heuristics, Lawrence Erlbaum, Hillsdale, New Jersey, USA, 195—
243.

References	 121

[104]	 ALLEN NEWELL, CLIFF SHAW, and HERBERT SIMON. Empirical explo­

rations with the logic theory machine: A case study in heuristics. In Pro­

ceedings of the 1957 Western Joint Computer Conference, New York, USA,

1957. McGraw-Hill. reprinted in Computers and Thougt, Edward A. Feigen­

baum, Julian Feldman, editors, New York, USA, 1963.

[105]	 NILS J. NILSSON. Principles of Artificial Intelligence. Morgan Kaufman,

San Mateo, California, USA, 1980.

[106]	 ARNOLD OBERSCHELP. Untersuchungen zur mehrsortigen Quantorenlogik.

Mathematische Annalen, 145:297-333, 1962.

[107]	 HANS JURGEN OHLBACH. Context logic. SEKI Report SR-89-08, Fachbe­

reich Informatik, Universitat Kaiserslautern, Kaiserslautern, Germany, 1989.

[108]	 DOMINIQUE PASTRE. Automatic theorem proving in set theory. Artificial

Intelligence, 10:1-27, 1978.

[109]	 LAWRENCE C. PAULSON. Isabelle: The next 700 fheorem provers. Logic

and Computer Science, pages 361-386, 1990.

[110]	 GUISEPPE PEANO. SuI concetto di numero. Rivista di Mat, 1:87-102, 1891.

[Ill]	 DONALD PERLIS. Languages with self-reference I: Foundations (or: We

can have everything in first-order logic!). Artificial Intelligence, 25:301-322,

1985.

[112]	 DONALD PERLIS. Languages with self-reference 11: Knowledge, belief, and

modality. Artificial Intelligence, 34:179-212, 1988.

[113]	 GEORGE POLYA. How to Solve It. Princeton University Press, Princeton,

New Jersey, USA, also as Penguin ,Book, 1990, London, United Kingdom,

1945.

[114]	 GEORGE POLYA. Mathematics and Plausible Reasoning. Princeton Univer­

sity Press, Princeton, New Jersey, USA, 1954. Two volumes, Vol.l: Induc­

tion and Analogy in Mathematics, Vol.2: Patterns of Plausible Inference.

[115]	 GEORGE POLYA. Mathematical Discovery - On understanding! learning!

and teaching problem solving. Princeton University Press, Princeton, New

Jersey, USA, 1962/1965. Two volumes, also as combined edition, 1981, John

Wileyand Sons, New York, USA.

References 121

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

ALLEN NEWELL, CLIFF SHAW, and HERBERT SIMON. Empirical explo-
rations with the logic theory machine: A case study in heuristics. In Pro-
ceedings of the 1957 Western Joint Computer Conference, New York, USA,
1957. McGraw—Hill. reprinted in Computers and Thougt, Edward A. Feigen—
baum, Julian Feldman, editors, New York, USA, 1963.

NILS J . NILSSON. Principles of Artificial Intelligence. Morgan Kaufman,
San Mateo, California, USA, 1980.

ARNOLD OBERSCHELP. Untersuchungen zur mehrsortigeri Quantorenlogik.
Mathematische Annalen, 145:297—333, 1962.

HANS JÜRGEN OHLBACH. Context logic. SEKI Report SR—89—08, Fachbe-
reich Informatik, Universität Kaiserslautern, Kaiserslautern, Germany, 1989.

DOMINIQUE PASTRE. Automatic theorem proving in set theory. Artificial
Intelligence, 10:1—27, 1978.

LAWRENCE C . PAULSON. Isabelle: The next 700 theorem provers. Logic
and Computer Science, pages 361—386, 1990.

GUISEPPE PEANO. Sul concetto di numero. Rivista di Mat, 1:87—102, 1891.

DONALD PERLIS. Languages with self—reference I: Foundations (or: We
can have everything in first—order logicl). Artificial Intelligence, 25:301—322,
1985.

DONALD PERLIS. Languages with self-reference II : Knowledge, belief, and
modality. Artificial Intelligence, 34:179—212, 1988.

GEORGE PÖLYA. How to Solve It. Princeton University Press, Princeton,
New Jersey, USA, also as Penguin .Book, 1990, London, United Kingdom,
1945.

GEORGE PÖLYA. Mathematics and Plausible Reasoning. Princeton Univer-
sity Press, Princeton, New Jersey, USA, 1954. Two volumes, Vol.1: Induc-
tion and Analogy in Mathematics, Vol.2: Patterns of Plausible Inference.

GEORGE PÖLYA. Mathematical Discovery — On understanding, learning,
and teaching problem solving. Princeton University Press , Princeton, New
Jersey, USA, 1962/1965. Two volumes, also as combined edition, 1981, John
Wiley and Sons, New York, USA.

1.22	 References

[116]	 JOHN ALAN ROBINSON. A machine oriented logic based on the resolution

principle. Journal of the ACM, 12:23-41, 1965.

[117]	 MANFRED SCHMIDT-SCHAUSS. Computational Aspects of an Order-Sorted

Logic with Term Declarations. LNAI 395. Springer Verlag, Berlin, Germany,

1989.

[118]	 JORG H. SIEKMANN. Geschichte und Anwendungen. In Karl Hans Blasius

and Hans-Jiirgen Burckert, editors, Dedukionssysteme - Automatisierung des

logischen Denkens, chapter I, pages 3-21. Oldenbourg, Munchen, Germany,

1987.

[119]	 JORG H. SIEKMANN. Unification theory. Journal of Symbolic Computation,

1987.

[120]	 JORG H. SIEKMANN and GRAHAM WRIGHTSON. Automation of Reasoning

- 1. Classical Papers on Computational Logic 1957-1966, volume 1. Springer

Verlag, Berlin, Germany, 1983.

[121]	 JORG H. SIEKMANN et al. O-MKRP. SEKI Report, forthcoming, Fachbe­

reich Informatik, UniversWit des Saarlandes, Saarbrucken, Germany, 1992.

[122]	 ALBERT THORALF SKOLEM. Logisch-kombinatorische Untersuchungen

iiber die Erfiillbarkeit oder Beweisbarkeit mathematischer Siitze. Skrifter­

Vip,ensk, 1:1-36, 1919.

[123]	 MARK E. STICKEL. Automated deduction by theory resolution. Journal of

Automated Reasoning, 1:333-356, 1985.

[124]	 ALFRED TARSKI. Der vVahrheitsbegriff in den formalisierten Sprachen. Stu­

dia philosophia, 1:261-405, 1936.

[125]	 ALAN TURING. On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society,

Second Series, 42:230-265; 43:544-546, 1937.

[126]	 BARTEL L. VAN DER WAERDEN. Wie der Beweis der Vermutung von

Baudet gefunden wurde. Abh. Math. Sem. Univ. Hamburg, 28:6-15, 1964.

[127]	 BARTEL L. VAN DER WAERDEN. Algebra I, volume 12 of Heidelberger Ta­

schenbuche1'. Springer Verlag, Berlin, Germany, eighth edition, 1971.

1,22 References

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

JOHN ALAN ROBINSON. A machine oriented logic based on the resolution
principle. Journal of the ACM, 12:23—41, 1965.

MANFRED SCHMIDT-SCHAUSS. Computational Aspects of an Order-Sorted
Logic with Term Declarations. LNAI 395. Springer Verlag, Berlin, Germany,
1989.

JÖRG H. SIEKMANN. Geschichte und Anwendungen. In Karl Hans Bläsius
and Hans—Jürgen Biirckert, editors, Dedukionssysteme — Automatisierung des
logischen Denkens, chapter I , pages 3—21. Oldenbourg, München, Germany,
1987.

JÖRG H. SIEKMANN. Unification theory. Journal of Symbolic Computation,

1987.

JÖRG H. SIEKMANN and GRAHAM WRIGHTSON. Automation of Reasoning
— 1. Classical Papers on Computational Logic 1957—1966, volume 1. Springer
Verlag, Berlin, Germany, 1983.

JÖRG H. SIEKMANN et al. Q-MKRP. SEKI Report, forthcoming, Fachbe-
reich Informatik, Universität des Saarlandes, Saarbrücken, Germany, 1992.

ALBERT THORALF SKQLEM. Logisch—kombinatorische Untersuchungen
fiber die Erfiillbarkeit oder Beweisbarkeit mathematischer Sätze. Skrifter—
Vidensk, 1:136, 1919.

MARK E. STICKEL. Automated deduction by theory resolution. Journal of
Automated Reasoning, 1:333—356, 1985. '

ALFRED TARSKI. Der VVahrheitsbegriff in den formalisierten Sprachen. Stu-
dia philosophia, 1:261—405, 1936.

ALAN TURING. On computable numbers, with an application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
Second Series, 422230-265; 43:544—546, 1937.

BARTEL L. VAN DER WAERDEN. Wie der Beweis der Vermutung von
Baudet gefunden wurde. Abh. Math. Sem. Univ. Hamburg, 28:6—15, 1964.

BARTEL L. VAN DER WAERDEN. Algebra I, volume 12 of Heidelberger Ta-
schenbücher. Springer Verlag, “Berlin, Germany, eighth edition, 1971.

References	 123

[128]	 INGRID WALTER. Datenbankgestiitzte Repriisentation und Extraktion von

Episodenbeschreibungen aus Bildfolgen, volume 213 of Informatik Fach­

berichte KI. Springer Verlag, Berlin, Germany, 1989.

[129]	 CHRISTOPH WALTHER. Ein mehrsortiger Resolutionskalkiil mit Paramodu­

lation. Interner Bericht 35/82, Fakultat fiir Informatik, Universitat Karls­

ruhe, Karlsruhe, Germany, 1982.

[130]	 RICHARD W. WEYHRAUCH. Prolegomena to a theory of mechanized formal

reasoning. Artificial Intelligence, 13:133-170, 1980.

[131]	 ALFRED NORTH WHITEHEAD and BERTRAND RussELL. Principia Math­

errtatica, volume I. Cambridge University Press, Cambridge, Great Britain;

second edition, 1910.

[132]	 LARRY Wos, Ross OVERBEEK, EWING LUSK, and JIM BOYLE. Automated

Reasoning - Introduction and Applications. Prentice Hall, Englewood Cliffs,

New Jersey, USA, 1984.

[133]	 ERNST ZERMELO. Untersuchungen iiber die Grundlagen der Mengenlehre.

I. Mathematische Annalen, 65:261-281, 1908.

\

References 123

[128] INGRID WALTER. Datenbankgestiitzte Repräsentation und Extraktion von
Episodenbeschreibangen aus Bildfolgen, volume 213 of Informatik Fach-
berichte KI. Springer Verlag, Berlin, Germany, 1989.

[129] CHRISTOPH WALTHER. Ein mehrsortiger Resolutionskalkül mit Paramodu—
lation. Interner Bericht 35/82, Fakultät für Informatik, Universität Karls-
ruhe, Karlsruhe, Germany, 1982.

[130] RICHARD W. WEYHRAUCH. Prolegomena. to a theory of mechanized formal
reasoning. Artificial Intelligence, 13:133—170, 1980.

[131] ALFRED NORTH WHITEHEAD and BERTRAND RUSSELL. Principia Math-
ematica, volume I. Cambridge University Press, Cambridge, Great Britain;
second edition, 1910.

[132] LARRY Wos, Ross OVERBEEK, EWING LUSK, and JIM BOYLE. Automated
Reasoning — Introduction and Applications. Prentice Hall, Englewood Cliffs,
New Jersey, USA, 1984.

[133] ERNST ZERMELO. Untersuchungen über die Grundlagen der Mengenlehre.
I . Mathematische Annalen, 65:261—281, 1908.

Notation

.e, .ew,.en••.. logic

l ••••....•.•..•••.•..••...•.• type of individuals

o type of truth values

T, U•....•.•.••......... type symbol

(Tt x X Tm -+ u) composed type

..." /\, V, ===>, <===} ••••••••••• connectives

\/, :J quantifier

S, s;.onst, s~ar signature

'P, 'ljJ ••..••......••....•....•• formula

.e~ " logic with equality

=, =('TX'T-+o)' object equality

= meta-Ievel equality

F set of functions

D'T' DK universe

{D'T }'T' {DK}K semantic frame

({D'T }n.1), ({DK}K' .1), M .. interpretation, modeL

.1 interpretation mapping

e, e[X'T f- d] , assignmentVr interpretation function

1=, ~ weak and strong model relation

3, 31:, 3 a , 3= extensionality axioms

T, T I: comprehension axioms :

~ set of sorts

[; subsort declaration

~ subsort relation

(t : ",), {) term declaration

.5 •.•.•.•••••••••••••.•••••••• sort indicator for variables

£1... many-sorted logic

.eE order-sorted logic

arity arity of a predicate symbol

7J .••..•....•...• "••... frame

~ knowledge base

20,22

21

21

21

21

21,22

21,22

21

22,30,31

22

22

22

23

23,31

23,31

23,31

23,31

23,31

23, 32

25,54

25,32,69,80

26, 33

28

28

28

29

30

31

31

34

48,51,52

53

125

Notation

C, L‘", C“ logic 20, 22
L type of individuals . 21
o type of truth values . 21
T, a . type symbol 21
(7'1 x - - - x Tm —+ 0“) composed type . 21

—\, A, V, =>, <==> connectives . 21, 22
V, El . quantifier . 21,22
S , Sion“, 83” signature . 21
cp, 1/) . formula . 22, 30, 31
‚€; ’. logic with equality . 22

E , E(TX'r——>o) object equality . 22
= meta—level equality 22
J: . set of functions 23
DT, D„ universe . 23, 31

{D.,}, {DAN semantic frame . 23, 31
({‘DT }, J) , ({D„}„, ‚_7), M . . interpretation, model . 23,31
J . interpretation mapping . 23, 31
£ , {[mT <— d] assignment . 23, 31
VE“ . interpretation function 23, 32
‚=, L=. weak and strong model relation 25, 54
E, EE, Ea , EE extensionality axioms 25, 32, 69, 80
T , T2; . comprehension axioms ' 2 6, 33
E . set of sorts . 28
E subsort declaration . 28
C . subsort relation . 28
(t : Is), 5 . term declaration . 29
5 . sort indicator for variables . 30
‚CX . many-sorted logic . 31
[3% . order-sorted logic 31
ar i ty . arity of a predicate symbol 34
19 frame . 48, 51, 52
A . knowledge base . 53

125

http:��..�....�
http:��..��......��....�
http:�....�.�.��
http:����....�.�..���.�..��...�

I

I 126 Notation

~0 empty knowledge base

I £ (~) logic of a knowledge base

F, 1= semantic consequence

F 1 , F 2 •••••••••••••••••••••• • logIC

e morphism

lB quasi-identity
a

I n .•••••••••••••••••••••••••• apply

<I>, W, <I>=, W=, <I>~ standard translation

q........•........•.......... immersion of model

<; •••••••••••••••••••••••••••• (T X T --+ 0)
(f image of equality

\R relativization

laR partial relativizatioll

uus unique upper sort

53

54

54

62

62

62

62,86

69,80,87

74, 90

77

79

82

82

82

126 Notation

Ag . empty knowledge base . 53
£(A) . logic of a knowledge base . 54
l:, E semantic consequence . 54
.771, .772 . logic . 62
@ . morphism . 62
9 . quasi-identity . 62
a“ . apply . 62, 86
(I), III, (1);, \IIE, @@ standard translation‘..................... 69, 80 ,87
h . immersion of model 74, 90
g . (T X T ———> o) . 77
%.; . image of equality . 79

ER relativization . 82
393 . partial relativization . 82
vuus . unique upper sort . 82

http:q........�........�

Index of Subjects

admissible 30

admissible subsort declaration 28

assignment 23, 31

axiom frame 51

complete morphism 62

composed sort 28

comprehension axioms 33

conservative extension 54

consistent 54

constant declaration 29

definition frame 48

definition-conservative 55

empty knowledge base 53

equality quasi-homomorphism 77

essentially first-order 26

extension 54

extensionality axioms 25, 32

formula 22, 30

frame 23, 31

frame relative to 54

frame-extension 53

function 21

immediate extension 53

implicit definition 46, 49

individuals 21

inductive definition 45, 49

injective 63

interpretation 23, 31

knowledge base 53

many-sorted 31

Markgraf Karl Refutation Procedure 5

MKRP 5

model 25, 32

morphism 62

n-th order logic 22,31

optional parameter 33

order of a type 21

order-sorted 31

partial definition 46

partial relativization 82

predicate 21

proper term declaration 29

quasi-homomorphism 62

relativization 82

semantics of a definition frame 50

semantics of a theorem frame 53

semantics of an axiom frame 52

signature 21

signature of a frame 53

signature of a knowledge base 54

simple definition 45, 49

simpIe sort 28

sort 28

sorted higher-order logic 27

sorted signature 30

sound morphism 62

standard translation 69, 79

strong interpretation 24, 32

subsort declaration 28

127

Index of Subjects

admissible 30

admissible subsort declaration 28
assignment 23, 31

axiom frame 51

complete morphism 62
composed sort 28
comprehension axioms 33
conservative extension 54

consistent 54
constant declaration 29

definition frame 48

definition-conservative 55

empty knowledge base 53

equality quasi-homomorphism 77
essentially first—order 26
extension 54
extensionality axioms 25, 32

formula 22, 30
frame 23, 31

frame relative to 54
frame-extension 53

function 21

immediate extension 53
implicit definition 46, 49
individuals 21
inductive definition 45, 49
injective 63

interpretation 23, 31

knowledge base 53

many-sorted 31

Markgraf Karl Refutation' Procedure 5
MKRP 5
model 25, 32
morphism 62

n-th order logic 22, 31

optional parameter 33
order of a type 21
order-sorted 31

partial definition 46
partial relativization 82
predicate 21
proper term declaration 29

quasi-homomorphism 62

relativization 82

semantics of a definition frame 50
semantics of a theorem frame 53
semantics of an axiom frame 52
signature 21
signature of a frame 53
signature of a knowledge base 54
simple definition 45, 49
simple sort 28
sort 28
sorted higher-order logic 27
sorted signature 30
sound morphism 62
standard translation 69, 79
strong interpretation 24, 32
subsort declaration 28

127

128

subsort relation 28

term 22, 29

term declaration 29
theorem frame 52
top, sort 28
truly higher-order 26
t ruth values 21 .
type of a. sort 28

unique upper sort 82
universe 23
unsorted 31

variable sorts 34

weak interpretation 23, 31

Index of Subjects

Index Of- Names

ANDREWS, PETER B. 13 , 21 , 47 , 59 ,
99 , 110

ARISTOTLE 9

/ BAADER, FRANz 110
BACKUS 48
VAN BENTIIEM JOIIAN, 11 , 61 , 64 , 72
BERNAYS, PAUL 10
BIBEL, WOLFGANG 13

BOOLE, GEORGE 10
BOURBAKI, N . 19
BOYER, ROBERT S. 13, 39
BOYLE, JIM, 12
BRACIIMAN, RONALD J . 17
BROUWER, LUITZEN EGBERTUS JAN 11
DE BRUIJN, NICOLAAS GOVERT 14
BUNDY, ALAN 16

CANTOR, GEORG 10 , 47 , 99
CHURCH, ALONzo 10 , 11 , 15 , 20 ,21 ,

92, 107
CONSTABLE, ROBERT L. 14
CURRY, HAKELL B . 21

DAVIS, MARTIN 12
DESCARTES, RENE 9
Doms, KEES 11, 61, 64, 72

EISINGER, NORBERT 110
ENDERTON, HERBERT B . 11 , 61

FRAENKEL, ADOLF ABRAHAM '10, 15
FREGE, GOTTLOB 10 , 107»

'GELERNTER, HERBERT 108-
GIUNCHIGLIA, FAUSTO 15

GODEL, KURT 10, 38, 41, 60, 64, 77
GOETIIE, JOIIANN WOLFGANG 37

HENKIN, LEON 11 , 23 , 59

HENSCHEN, LAWRENCE J . 11 , 61

HERBRAND, JACQUES 11
HEYTING, AREND 11
HILBERT, DAVID 5 , 10 , 16

JUTTING, L.S. VAN BENTHEM 14

KANT, IMMANUEL 93
KOERSTEIN, RALF 108 , 110
KOHLHASE, MICHAEL 27 , 107 , 110
KOWALSKI, ROBERT 13

. LANDAU, EDMUND 14
LEIBNIZ, GOTTFRIED WILHELM 9 , 10, 24
LENAT, DOUGLAS B . 17 , 108
LÖWENHEIM, LEOPOLD 11, 20, 60
LULLUS, RAIMUNDUS 9
LUSK, EWING 12

MADLENER, KLAUS 110
MARTIN-LOB, PER 15
MCALLESTER, DAVID A. 15

MINSKY, MARVIN 16 , 40

MOORE, J STROTIIER 13 , 39
MOSTOWSKI, ANDRZEJ 11, 60, 107

NAUR 48
VON NEUMANN JOHN, 10
NEWELL, ALLEN 12 , 14

OBERSCHELP, ARNOLD 32
OHLBACH, HANS JÜRGEN 61

129

Index of Names

OVERBEEK, Ross 12

PAULSON, LAWRENCE C. 15

PEANO, GruSEPPE 20, 35

POLYA, GEORGE 9, 14, 109

POWERS, DAVID 110

POWERS, SUSAN 110

PRACKLEIN, AXEL 95

PRESBURGER 12

ROBINSON, JOHN ALAN 12

RUSSELL, BERTRAND 10

SCHMIDT-SCHAUSS, MANFRED 27, 32,

64, 107

SCHRODER, DIRK 109, 110

SHAW, CLIFF 12

SIEKMANN, JORG H. 5, 13

\ .

SIMON, HERBERT 12

SKOLEM, ALBERT THORALF 11, 20,

·60, 96

TARSKI, ALFRED 11, 23

TUCHOLSKY, KURT 9

TURING, ALAN 10

VAN DER WAERDEN, BARTEL L. 41

WALTHER, CHRISTOPH 32

WEYHRAUCH, RICHARD 15

WHITEHEAD, ALFRED NORTH 10

WITTGENSTEIN, LUDWIG 19

Wos, LARRY 12

ZERMELO, ERNST 10, 15, 59

130 Index of Names

OVERBEEK, Ross 12

PAULSON, LAWRENCE C. 15
PEANO, GIUSEPPE 20 , 35
POLYA, GEORGE 9, 14, 109
POWERS, DAVID 110
POWERS, SUSAN 110
PRACKLEIN, AXEL 95
PRESBURGER 12

ROBINSON, JOHN ALAN 12
RUSSELL, BERTRAND 10

SCHMIDT—SCHAUSS, MANFRED 27, 32,
64 , 107

SCHRODER, DIRK 109, 110
SHAW, CLIFF 12
SIEKMANN, JÖRG H. 5, 13
SIMON, HERBERT 12
SKOLEM, ALBERT THORALF 11, 20,

—60, 96

TARSKI, ALFRED 11 , 23
TUCHOLSKY, KURT 9
TURING, ALAN 10

VAN DER WAERDEN, BARTEL L. 41
WALTHER, CHRISTOPH 32
WEYHRAUCH, RICHARD 15
WHITEHEAD, ALFRED NORTH 10
WITTGENSTEIN, LUDWIG 19
Wos , LARRY 12

ZERMELO, ERNST 10 , 15 , 59

	1992.pdf
	1992-1

