UlejNDISIes|IOY 0S/9-A
6v0€ YODYSOd
UJeND[SISS|DY JDHSIOAIUN
MIHOULIOU| YDleieqyon

1]

Bernhard Gramlich
SEKI Report SR-92-01 (SFB)

ey
Q
Q
=
A
Q
=
e
=

&0
g &
I.w
=R
o S
80 “Bp
- g
v &
R
=
foeid
wn
o
ot
]
3
=

Odd - IAS

Towards Intelligent Inductive Proof Engineering

Bernhard Gramlich
Fachbereich Informatik
Universitat Kaiserslautern
D-6750 Kaierslautern
Germany
gramlichQinformatik.uni-kl.de

Abstract

This paper deals with inductive theorem proving (I'TP for short). It does not provide
new theoretical results but analyses existing TP methods from an Al point of view.
The presentation is based on the implicil I'TP approach, i.e. ITP using the well-
"developed framework of rewriting and completion techniques for systems of equations
and rewrite rules. We think that the relevant practical problems for successful (par-
tially) automated ITP are essentially the same as or at least closely related to those
occurring in the more conventional framework of ezplicit ITP using schemas. The
theoretical foundations of implicit ITP are briefly reviewed focussing on the central
ideas as well as on important operationalization issues. Moreover, a brief comparison
of explicit and implicit ITP approaches is included. In particular, we clarify some
criticisms raised against the implicit ITP approach. The main part of the paper is de-
voted to a thorough discussion of central ITP problems from the viewpoint of system
designers and users. We point out and exemplify the necessity of linking together the
whole process of formalizing, modelling and structuring abstract (equational) specifi-
cations of algorithms and corresponding (inductive) properties to be verified. Crucial
aspects of the whole specification and proof engineering process are isolated and dis-
cussed, in particular conceptual and proof-technical ones. We argue that such an
analysis (which of course has to be continued and deepened) is necessary for an ade-
quate integration and combination of intelligent user-guided and machine-supported
automated inductive reasoning. Finally the main theoretical and practical problems
as well as promising perspectives for future work are sketched, in particular concerning
architectural and design principles for future generation inductive theorem provers.

Key words: inductive theorem proving, proof engineering, equational reasoning, term
rewriting, completion.

1 Introduction

Equational reasoning is fundamental for many fields of computer science like functional
programming, abstract data type specifications, program synthesis and verification. Within
these applications one is usually interested in a standard initial model of a given equa-
tional axiom system and not in all its models. Proof methods for this initial model, i.e.
for inductive theorem proving (abbreviated as ITP in the sequel), are usually based on
induction schemas, e.g. for structural induction (cf. [BM79]).

Within the last decade an alternative approach based on rewriting and completion tech-
niques has been developed (cf. e.g. [HH80]) and refined in many ways in the meanwhile
(cf. e.g. [JK86], [Fri86], [G6b87], [Bac88], [Red90], [Gra90b}). Based on this theoret-
ical framework which is briefly reviewed we shall focus on crucial aspects of the whole
specification and proof engineering process occurring in practical applications.

Indeed, our extensive practical experiments with an elaborated implementation of the
method (cf. [Gra90a], [GL91]) have shown that such a comprehensive point of view of
the problem is really necessary for successfully tackling non-trivial proof problems as they
naturally occur when verifying non-trivial*inductive properties of (equationally defined)
functional programs or abstract data type specifications, for instance.

The rest of this paper is organized as follows. In section 2 we briefly recall the main
theoretical results for completion and rewriting based inductive theorem proving. Im-
portant operationalization and control aspects are summarized in a systematic manner.
Furthermore, an overview of UNZCOM. an implementation of the method, is provided. A
brief comparison with other (classical) approaches is given in section 3. The viewpoint of
inductive theorem proving as a challenging engineering task is developed and exemplified
in section 4. Finally, before concluding, open problems and promising perspectives for
future research are discussed in section 5.

2 Theoretical Foundations and Operationalization Aspects

2.1 Theoretical Foundations

We shall omit most definitions and assume familiarity with the basic notions, definitions
and results about (first order) terms, rewriting systems and equational logic (cf. e.g.
[HO80], [Bac87]).

The inductive theory induced by a set E of equations is given by ITh(E):={s=1 |
os &g ot for all ground substitutions ¢}. Equations from ITh(E) are called inductive
theorems of E. These notions generalize easily to the case where we consider a term
rewriting system (TRS for short) R instead of a set E of equations.

A TRS R is terminating if —} is a well-founded (strict partial) ordering. A reduction
ordering > is a well-founded ordering on terms which is monotonic w.r.t. replacement
(s >t => u[s] > u[t]) and substitution (s > t => o0s > ot). A TRS R is said to be
>-ordered (and thus terminating) if / > r holds for every rule l — r € R. R is confluent
if R—~0 =% C —% o Z—. It is ground confluent if it is confluent on ground terms. R is
(ground) convergent if it is terminating and (ground) confluent. By C P(R, R') we denote
the set of critical pairs obtained from overlapping the rules of R into those of R'. If pis a
non-variable position of a term ! then CP(R,p,l — r) stands for the set of critical pairs

obtained by overlapping R into [— r at position p. Accordingly C P(R, P,l — r) denotes
the set of critical pairs obtained by overlapping R into { — r at all non-variable positions
p € P from [. We speak of a critical peak (al[or’]y—, — ol[ol'] =i~ or) when taking
into account the corresponding superposition term ol[ol’] belonging to the critical pair
(ollor'],or), too. For some set C of equations we write C~ for {{ - r,r — |l =1 € C}.

For a given TRS R a term s is inductively (R-) reducible iff all its ground instances
are (R-) reducible. An equation s = t is inductively (R-) reducible iff os or ot is (R-)
reducible for every ground instance os = ot of s = t with os # ot (= means syntactical
equality). For a given ground convergent TRS R which is >-ordered by some reduction
ordering > we say that a set C of equations (inductive conjectures) is provably inconsistent
iff C' contains an equation s = t with s > t and s not inductively reducible or an equation
s =t with s # ¢t and s = t not inductively reducible.

A proof in EU R consists of proof steps of the form t; —g t;41,t =R t;y1 or tp— ;1.
Two proofs of the form s <~ g_g t and u g g v are said to be eqiivalent if s = » and
t = v. Proofs of the form —J o J— are called rewrite proofs. A proof ordering is a
(strict partial) ordering > on proofs. It is said to be a proof reduction ordering if it is
well-founded and monotonic w.r.t. replacement, substitution and embedding. A proof P
(in EU R) of the form s &gyr t is said to be (equivalently) simplifiable into a proof P’
(in E"U R') if P’ is of the form s — giyps t with P > P’ (see [Bac87] for a more detailed
introduction of equational proofs).

Using these notations inductive validity can be characterized as follows (cf. [Gra89],
[Gra90b)):

Theorem 2.1 Let > be a reduction ordering, R a >-ordered ground convergent TRS, L
a set of inductive theorems, i.e. L C ITh(R), and C a set of inductive conjectures. Then:
C C ITh(R) iff

(1) C s not provably inconsistent, and

(2) all ground instances of critical peaks corresponding to C P(R,C*") are equivalently
simplifiable with RUC UL (w.rt. >P).

Here >P is a proof reduction ordering which compares complexities of proofs using
R U C U L by comparing the corresponding multisets of the complexities of all occurring
C-steps using essentially the double multiset extension >>>» of the reduction ordering >!
(cf. [Gra89]).? Condition (1) is decidable and can be easily tested in canonical theories
with free constructors (Fp C F is a set of free constructors w.r.t. R iff every ground
term s € T(F) is R-reducible to a unique ground constructor term s’ € 7(Fp)). A
sufficient operational criterion for condition (2) is to verify simplifiability of the critical
peaks corresponding to C P(R,C*) instead of ground simplifiability. For base systems R
which are only terminating but not necessarily ground confluent a slight modification of

!More precisely, >” may be constructed in a more refined way by taking a lexicographic combination
of several different well-founded orderings which are partially based on the underlying reduction ordering
>.

2 A slightly more general version consists in taking the transitive closure of the union of the reduction
relation —= and the proper subterm ordering >,., i.e. »g= (—= U >,:)t (the "decreasing ordering
generated by R”, cf. [Red90]) instead of >.

the above theorem still provides a sufficient criterion for inductive validity. This is detailed
in [Gra89]. [Gra90b].

The general idea underlying the above theorem and the whole approach is to consider
the problem of proving inductive validity of a conjecture s = ¢ w.r.t. a base system
R as a proof simplification task. Namely, for every ground instance os = ot of s = ¢,
considered as a proof consisting of one conjecture step, find an equivalent proof consisting
of R-steps only. This positive point of view of the problem motivates the notion positive
proof reduction ordering >?°° mentioned above. Essentially it is the main difference to the
negative approach for proofs by consistency as developed in [Bac88]. In the latter approach
potentially existing inconsistency witnesses, i.e. invalid ground instances of conjectures
are tried to be simplified until the inconsistency becomes obvious (in the sense of provable)
or it is clear that there is no inconsistency, i.e. inductive validity is given. Within our
positive framework we have to provide an appropriate noetherian ordering on proofs using
base and conjecture steps such that (ground) proofs using only base steps are minimal.
Then the aspired goal may be achieved gradually by finding equivalent but smaller proofs
. for every ground instance os = ot of s = {. The noetherian property of the proof ordering
assures that such a proof simplification process cannot be performed ad infinitum. In fact,
it is responsible for the inductive character of the whole method by allowing a conjecture
to be applied in its own proof, but in smaller version. For the purpose of enabling proof
simplification it may (seem to) be necessary to add new equations (conjectures) which are
recursively processed in the same way and which are obtained essentially by simplification
steps or the critical pair superposition mechanism. Such sets of deduced equations which
suffice for assuring ground simplifiability of a given conjecture are called covering sets in
[Bac88]. Indeed, processing a conjecture means covering it, either by simplification or by
critical pair construction.

Completion and rewriting based inductive theorem proving roughly spoken proceeds
as follows: Given a ground convergent base system R and a set C of inductive conjectures,
C is first tested on provable inconsistency. If it is not provably inconsistent (and not
directly simplifiable by base rules or lemmas) then (ground) simplifiability of critical peaks
obtained by overlapping R into C is tried to be established. Intuitively, the superposition
of base rules into a given conjecture s = t provides a case analysis whose completeness is
guaranteed because the conjecture is not provably inconsistent. The resulting critical pairs
(called a covering set in [Bac88] and [Gra90b]) are in a sense new candidate conjectures
which are recursively processed in the same -way and which assure the desired property
that every ground instance of s = t is simplifiable. This process may stop successfully
(all original and deduced conjectures are inductive theorems), detect a contradiction, i.e.
provable inconsistency (at least one conjecture in C is not inductively valid) or run forever.

In order to obtain a better and precise comprehension of the theoretical basis as well as
to derive concrete proof procedures one can make a clear distinction between logical and
operational (control) aspects. The logical component can be formalized by an inference
system as it has been done e.g. in [Bac88]. Given a base specification together with
a corresponding reduction ordering such a system of inference rules describes possible
transformation steps for pairs (C, L) or triples (C,H,L). Here, C,’H and L denote sets
of actual conjectures, already processed conjectures and inductive lemmas, respectively.3

3The distinction between processed and not yet processed conjectures may be considered to be an
abstract implementation of a marking concept for treating inductive conjectures.

We shall not deepen this point here. Instead we shall focus more on operational aspects
concerning refinements, optimizations and the control structure used for inference rule
application.

2.2 Refinements and Optimizations

Essentially there are three main sources for refining and optimizing this implicit* ITP
approach.

1. In order to minimize covering sets it is useful to restrict the number of critical pairs
to be considered to so-called inductively complete (sets of) positions (cf. [Fri86],
[Kiic87]). Moreover, since ground subconnectedness (cf. e.g. [Kic87]) of these
critical pairs is the main property to be established, it is worth-while refining the
techniques for verifying this property. This can be done e.g. by weakening the goal
of finding (ground) rewrite proofs for critical pairs (cf. [G6b87], [Kiic87], [Gra89],
[Gra90b]). Particularly important for practical success are very powerful simplifica-
tion mechanisms because they partially reflect the degree of possible automation of
the whole technique.

2. Instead of proceeding as economically as possible in deducing new equations (by
simplification or critical pair construction) it is sometimes advantageous to perform
additional potentially useful computations and exploit extra (inductive) knowledge
of the domain of interest. Such refinements and optimizations may result in a con-
siderable speed up of the proof process or even enable a successful proof whereas
the spare technique fails due to non-termination. So-called inessential critical pairs
(cf. [Kiic87]) as well as generalization techniques (cf. [BM79]) fall into this category.
Of course, these refinements also entail some disadvantages. Namely, a much more
complicated management and book-keeping mechanism is required and moreover,
some guessing mechanism or intelligent heuristic has to be provided for restricting
the search space when producing new conjectures.

3. Finally, the combination and integration of the basic techniques for completion based
inductive theorem proving and the corresponding refinements and optimizations into
a concrete flexible and powerful implementation is a challenging tusk. In particular,
the incorporation of good strategies and heuristics as well as the right mixture of
automated and user-controlled reasoning are difficult problems.

Some of these points will be discussed in more detail in section 4.

2.3 UNICOM: A Refined Completion Based Inductive Theorem Prover

Based on the above sketched theoretical framework we have implemented UNZICOM,
a system for refined UNfailing Inductive COMpletion® which is described in [Gra90c],

*The reason for using the terminology implicit and erplicit ITP is explained later on in subsection 4.2.

*Here, unfailing indicates two aspects, namely, that the method can ‘treat arbitrary possibly non-
orientable conjectures, and secondly, that it is refutationally complete. The term inductive completion
stands for completion procedures which are especially adapted for the purpose of ITP problems. Other
similar notions used in literature are inductionless induction or proof by consistency. For our presentation
we prefer the more general (and hopefully less confusing) notion of implicit ITP.

[GL91]. UNICOM is able to treat hierarchically structured many-sorted and constructor-
based specifications of functions (rewrite programs) and inductive conjectures (equational
properties to be proved). Input specifications have to satisfy the following conditions.
Constructors must be declared and are required to be free. The left hand sides of the
definition rules for a (n-ary) non-constructor symbol f have to be of the form f(t1,.... fu),
where all ¢; are constructor terms. The system comprises the following tools:

The PARSER checks the syntax of input specifications, imports used subspecifications
and produces an internal representation.

The CHECKER tests the function definitions for completeness and consistency using
the syntactical restrictions mentioned above. In particular, termination of the definition
rules is established by automatically generating a suitable recursive path ordering with
status which is also used for subsequent inductive proofs. Ground convergence is estab-
lished by investigating critical pairs. A special feature of the implemented completeness
test allows to identify minimal complete sets of defining rules for the same function symbol,
i.e. alternative but equivalent function definitions.

The COMPILER provides a means for rapid prototyping by translating correct spec-
ifications {only the definition part) into executable LISP code.

The central part of the system is the PROVER which tries to prove or disprove the
inductive conjectures of the current specification. UNICOM admits arbitrary possibly
non-orientable (equational) conjectures. The following are some characteristic features of

UNICOM:

¢ Parallel independent inductive proofs can be performed according to the different
possibilities of choosing complete positions in conjectures together with correspond-
ing minimal complete function definitions.

o Inessential critical pairs may be computed as potentially useful auxiliary conjectures.

e Simplification (reduction) may be performed modulo the AC-properties of some op-
erators.

¢ A simple generalization technique (via minimal non-variable common subterms) is
available.

¢ Elimination of subsumed non-orientable conjectures is integrated.

e Non-equational inductive knowledge about free constructors is used for speeding up
the proof or disproof of conjectures.

e Various user interface parameters allow for switching on/off optional features (e.g.
generalization, computation of inessential critical pairs) and enable a fully automatic
or more or less strongly user-controlled running mode.

¢ A couple of different trace levels are available in order to enable a more or less
detailed inspection of the running proof process.

e A general navigation mechanism allows arbitrary navigation in the current proof
tree which is useful for backtracking and (manually) focussing on certain interesting
subproblems to be dealt with next.

¢ All logically relevant steps and actions of the proof process may be (automatically)
recorded. This information provides the basis for (automatically) obtaining various
more or less detailed and flexibly structured descriptions of a succuessfully finished,
interrupted or failed proof attempt. In particular, for the analysis of failed proof
attempts this information facility has turned out to be very valuable.

Numerous experiments with UNZICOM involving a couple of non-trivial examples,
e.g. various sorting algorithms, have been performed and evaluated which led to some
substantial modifications and improvements of the system (cf. [Gra90a], [GL91]).

3 Comparison with Explicit ITP

The purpose of the following considerations is twofold. First we want to try to relate
various versions of rewriting and completion based techniques for ITP to each other as
well as to more classical approaches using some kind of (e.g. structural) schemas. We shall
only sketch some of the most important aspects. We think that a substantial amount of
work still seems to be necessary in order to obtain a convincing and comprehensive —
perhaps uniform - framework for ITP techniques, at least for some restricted cases like
equational logic. Such a uniform framework could be very useful, not only for isolating
and understanding the central issues and notions used in different approaches, but also for
clarifying their interrelations, advantages and disadvantages from a practical/operational
point of view.

The second point we want to address here is to discuss some wide-spread misunder-
standings converning the rewriting and completion based approach to ITP as presented in
chapter 2. In particular, we claim that a couple of critical arguments raised against this
approach (e.g. in [GG88]) do not persist to a thorough and precise analysis.

Perhaps the best-known and most successful ITP system up to now still is the Boyer/-
Moore theorem prover (cf. [BM79], [BM88]). An alternative approach was initiated in
[Mus80], [Gog80], [HH80] which was termed inductionless induction in [Lan80], [Lan81].
Since then a lot of progress in this direction has been achieved. For instance, abstract-
ing from the special and (computationally) very convenient case of free constructors (cf.
[HH80]) the method has ben generalized to arbitrary (convergent) base specifications (cf.
[Pau84], [JK86]).

Optimizations concerning the minimization of covering sets have been developed in
[Frig86), [Gob87], [Kiic87]. This was done on the one hand side by restricting the critical
pairs to be considered to inductively complete (sets of) positions, thus leading to a kind
- of linear proof procedure. On the other hand side the fact that only ground reasoning is
relevant for inductive validity could be exploited for designing refined ground simplifiability
(subconnectedness) criteria. Moreover, using the general framework of proof orderings (cf.
[Bac87]) and unfailing completion techniques the restriction that conjectures have to be
orientable w.r.t. the underlying reduction ordering could be removed (cf. [Bac88], [Gra89],
[Gra90b)). .

Finally the general paradigm of proof by consistency was thoroughly analyzed and de-
veloped in [KM87], [ZKK88], [Zha88]. This work was coupled with an investigation on
the kind of possible model semantics underlying any intended notion of inductive valid-
ity. Indeed, one of the main drawbacks of the common initial semantics approach is the

-~

treatment of partiality, i.e. of partially defined functions. There is a certain lack of in-
cremental behaviour which - roughly spoken — prevents the initial algebra approach from
being monotonic w.r.t. consistent extensions. In [Zha88] this disadvantage has led to the
fruitful notion of constructor models which — considered {rom an algebraic model-theoretic
point of view — are not proper models because they allow partial functions on concrete
domains. But it should be noted that these kinds of difficulties and drawbacks are not
specific to the rewriting and completion based approach but are in general problematic
for any kind of ITP approach.

Interesting variations of proof by consistency techniques have further been explored in
[Pla85] and [KNZ86].

Within the framework of equational reasoning and rewriting techniques the classical
approach to ITP using induction schemas has been discussed e.g. in [GG88].

Keeping close to rewriting and completion techniques the positive approach as sketched
in chapter 2 and its relations to classical ITP have been worked out in [Red90] and [Gra89],
[Gra90b). In [Red90] the resulting method called term rcwriting induction essentially
performs inductive proofs w.r.t. the underlying noetherian reduction ordering > (or more
precisely for readers familiar with the approach: the decreasing order generated by >).
In [Gra89], [Gra90b] a similar positive approach was developed exploiting the general,
very powerful and flexible framework of proof orderings which of course heavily rely on
the underlying reduction orderings. Both in [Red90] and [Gra89], [Gra90b] the inductive
nature of the discussed methods as well as the close relationship to classical ITP approaches
are pointed out. Hence the term inductionless induction for this class of approaches does
not seem to be adequate any more, at least for the positive variants of rewriting and
completion based ITP. Perhaps a better notion for distinguishing these aproaches would be
to speak of explicit ITP (using schemas) and implicit ITP (using rewriting and completion
techniques). This terminology will be used below.

Let us now turn briefly to the criticisms raised against the latter one. In particular,
we want to address some wide-spread misunderstandings concerning the implicit ITP
approach as sketched in section 2. We claim that some critical arguments raised again
this approach (e.g. in [GG88|) do not persist when submitted to a thorough and precise
analysis. We only pick out the most important points in [GGS8|:

e The argument that explicit ITP has a simpler theoretical basis tuan implicit ITP
may be partially true but is due to the fact that the latter provides a very general
framework. In particular, it owns the great advantages that a powerful, precise
and well-understood notion of simplification is available. In classical approaches the
lack of a well-understood and practically applicable theoretical basis (in particular
concerning a precise notion of simplification) is one of the main drawbacks concerning
operationalization and automation issues.®

e Some important arguments against implicit ITP concerning its restricted applicabil-
ity are not justified. For instance, neither (sufficient) completeness nor convergence
of base specifications is really necessary for the approach to be applicable. Even non-
termination is not a principle obstacle. Often it can be dealt with by using unfailing
completion techniques and reasoning modulo some subtheory encapsulating the rea-
son for non-termination. But clearly things are much more easier provided "nice”

®However, substantial progress in this direction seems to be possible (cf. [Wal92]).

properties like confluence and termination are given. Moreover. these problems have
to be dealt with as well (and are by no means casier) in the classical explicit ITP
approach.

e The argument that within explicit ITP proofs are easier to follow and failures easier
to analyse does not hold either but of course the ability to understand precisely and
interpret adequately what is going on presumes a certain amount of familiarity with
and intuition about the basic concepts and mechanisms involved in implicit ITP.
Instead we think that both approaches can profit quite a lot from each other in the
future.

e Finally, a last point we would like to mention is an important advantage of im-
plicit ITP. Namely, as shown in [Bac88], the implicit ITP approach is — in contrast
to explicit ITP - refutationally complete (under some reasonable assumptions), i.e.
invalid conjectures are eventually detected. This is not only a nice theoretical prop-
erty, but may also be practically relevant because it can be exploited for finding out
wrong conjectures, hopefully very early.

4 Inductive Theorem Proving as a Challenging Engineer-
ing Task

Very often ITP tasks are not given as isolated fixed problems but occur in a more general
setting. For instance, in the field of abstract data type specifications usually a lot of
basic knowledge (definitions and inductive lemmas), e.g. about data types like boolean
algebra, natural numbers, lists etc. is available. When specifying non-trivial algorithms
in an elegant and compact manner auxiliary functions usually play an important role. On
the other hand the formalization of desired (inductive) properties of such algorithms - for
instance partial correctness — also relies on the basic knowledge as well as on possibly newly
introduced auxiliary functions and/or predicates. As we shall point out, exemplify and
discuss, the ease or difficulty of successfully tackling the resulting verification problems is
initimately tied not only to the technical details and features of the applied ITP technique
but also to the above mentioned formalization and specification process. To this end, let
us consider a non-trivial practical example taken from the case study in [Gra90a], namely
the specification and verification of various sorting algorithms with UNZCOM.

Assume that enough basic knowledge about boolean algebra, natural numbers with
the usual ordering relation < and lists of natural numbers is available. Moreover, since
sorting algorithms inherently require some kind of conditional reasoning, we have to pro-
vide means for specifying conditional operations and properties. Within this example
we restrict ourselves to purely equational reasoning by encoding conditional constructs
into unconditional ones using ternary if-then-else operations. Equations specifying de-
fined functions and inductive conjectures will always be interpreted as directed from left
to right, i.e. as rewrite rules. Furthermore we tacitly assume (sufficient) completeness
and consistency of the considered specifications. In particular, we assume the existence of
appropriate reduction orderings for the corresponding rewrite rule systems.’

"For the sake of readability we shall make free use of a mixed prefix and infix notation with usual
priority rules for interpreting missing brackets.

4.1 Conceptual Aspects of Intelligent Specification and Proof Engineer-
ing

Let us now consider the problem of specifying and verifying (partial®) correctness of sort-
ing algorithms. To this end let us assume that a sufficiently complete and consistent
equational specification of a function sort: list — list for sorting lists of natural numbers
(in ascending order) is given. Then we may ask for a formal specification of correctness of
sort. Intuitively it is clear that correctness is characterized by the following two properties
which must hold for every concrete list [of natural numbers:

(I) sort(!) is ordered (ascendingly).
(I1) I and sort(l) have the same multiset of elements

These two properties may be formalized in quite different ways as we shall point out and
discuss now. For property (I} it seems natural to introduce an ordered-predicate which is
modelled by a boolean valued function ord : list — bool and to require

ord(sort(l)) = true.

A first specification of being an ordered list is obtained by defining recursively®

(Ia) ord(e) = true
ord(c(n,e)) = true
ord(c(m,c(n,l))) = m<nAord(c(n,l)).

But other specifications may also be conceivable and - concerning proof-technical aspects
- even more advantageous. For instance we may — in some sense redundantly - require
that the first element of a given list is not only less than or equal to the next element
(provided there exists one) but less than or equal to all remaining list elements. This leads
to the following specification with an auxiliary operation <,;: nat X list — bool.

(Ib) ord(e) = lrue
ord{c(n,l)) = n<ylnord(l)
m<y, € = true
m<pe(n,d) = m<nAam<yl.

Still another less explicit and not constructor-based definition using the auxiliary opera-
tions <,; (as above) and < (for comparing two lists) would be

(Ie) ord(app(h.l2)) ord(ly) Aord(l2) N1y <y ly
e <yl = true
c(n, i) <uly = n<planhh <uls .

It is rather straightforward to prove that the definitions (la}, (Ib) and (Ic) are indeed
equivalent.

The second correctness property (II) of sorting algorithims may be formalized in quite
different ways. A first possibility is to introduce the property that a list is a permutation
of another list via the operation perm : list x list — bool which uses auxiliary functions

8For our purpose we assume totality of the function definitions, i.e. we do not treat here the problem
of verifying termination of the corresponding rewrite programs.
®Here, the constructors e and c¢ stand for the empty list and the usual cons-operation.

10

del : nat x list — list and €: nat x list — bool for deleting one occurrence of an element -
in a given list and for membership test, respectively:!°

(Ila) perm(e,e) = true
perm(e,c(n,l)) = false
perm(c(m,ly),la) = m € ly Aperm(ly,del(m,ly))
mEeEe = false
m € ¢(n,l) = Mz=punVmel
del(m,e) = €
del(m, c(n,!)) = ifust(m =pa¢ 0,1 c(n,del(m,l))) .

The correctness property (II) for sorting algorithms may then be formalized by
perm(l,sort(l)) = true.

The above definition of perm is in a sense a strongly algorithmic one since the compu-
tation of perm(ly,[,) for concrete lists [;,{, of natural numbers proceeds by successively
considering the first element m of [, testing for membership of m in [, and deleting (the
first occurrence of) m in {; and /3. Moreover, the structure of the definition does not
reflect the symmetrical aspect of permutative equivalence, i.e. the property that two lists
are the same up to a permutation of their arguments. This symmetry stated by

perm(ly,ly) = perm(lz, 1)

does indeed hold for the above definition, but a formal proof of it is non-trivial (cf.
[Gra90c]).

As an alternative where symmetry becomes obvious consider the following definition
using a function oc : nat x list — nat which counts the number of occurrences of some
natural number in a givén list.

(IIb) oc(m,e) = 0
oc(m,c(n, 1)) = ifnae(m =ne n,8(0),0)+ oc(m,l) .

Then permutative equivalence of two lists [;,/; is formalized by
oc(n,ly) = oc(n,ly) .

To ensure that this definition is indeed equivalent to the former version using perm we
have to verify that

(L) perm(l1,l;)=t <= Vn:oc(n, 1) = oc(n,ly)

is an inductive theorem of £ with E consisting of the defining equations for all function
symbols involved. Note that (L) is non-trivial, too. Moreover. it does not have equational
form.!! From (L) it can easily be deduced now that perm (considered as a binary relation)
is reflexive, symmetric and transitive.

19 Additional auxiliary functions used here are =,,. for the test of equality on natural numbers as well
as i fise which stands for the ternary if-then-else operation with boolean-valued condition and list-valued
alternatives.

" For a proof of it see {Gra90c].

11

Comparing the definitions (Ila) and (IIb) concerning proof-technical aspects the first
one seems to be better for such cases where we know something about the first elements
of the two lists to be compared. This is the case for instance for insertion_sort and
min_sort. Definition (IIb) however is better suited for verifying quick_sort and merge_sort
(see below), where the first element of a sorted list is not directly visible from the definition
of sorting.

Finally, let us mention that the property of permutative equivalence could also be
specified by explicitly computing the multiset of list elements and defining inclusion and
equality for multisets (of elements).

Let us now consider for illustration merge_sort. The idea of sorting by merging is
to partition every list with more than one element into two parts containing approxi-
mately the same number of elements. For that purpose we use two auxiliary functions
splitl, split2: list — list. Splitl collects the elements occurring at odd positions and
split2 those which occur at even positions. We shall make use of (Ia) and exploit (Ic)
for an appropriate decomposition of the verification problem for merge_sort. The algo-
rithm and the correctness predicates for sorting by merging, modelled by merge_sort:
list — list, are specified as follows:

(1) merge_sort(e) = €

(2) merge_sort(c(n,e)) = c¢(n,e)

(3) merge_sort(c(m,c(n,l))) = merge(merge_sort(c(m,split1{l))),
merge_sort(c(n,split2(1))))

(4) merge(e,l) =

{
fiig(m < n, c(m, merge(ly, c(n,l2))),
c(n, merge(c(m,l),12)))

(5) merge(l,e)
(6) merge(c(m,ly),c(n,lz))

(7) splitl(e) = e

(8) splitl(c(m,e)) = c¢(m,e)

(9) splitl(c(m,c(n,1))) = c¢(m,splitl(l))

(10) split2(e) = e

(11) split2(c(m,e)) = e

(12) split2(e(m, c(n,1))) = ¢(n,split2(l))

(13) ord(e) = true

(14) ord(c(m,l)) = m<ylAord(l)

(15) m<,e = true

(16) m <, c(n,i) = m<nAam<yl

(17) oc(m,e) = 0

(18) oc(m,c(n,l)) = oc(m,)+ i fnar(m =pe n,5(0),0) .

The correctness properties to be established are

(L) ord(merge_sort(l)) = true
(Lg) oc{n,merge_sort(l)) = oc(n.l).

For verifying (L1) we have to exploit the fact that the function merge is indeed defined such
that merging two ordered lists yields an ordered list which - again in slightly generalized
form - is caught by the auxiliary lemma

(Lz) ord(merge(ly,l2)) = ord(ly) Aord(ly) .

12

This property in turn needs some more subsidiary lemmas to be proved. (L3) corresponds
closely to the intuition behind sorting by merging, namely that merging two ordered lists
again produces an ordered list. (L3) indeed contains more information because, it also
states that whenever a list [which is constructed by merging {; and /; is not ordeced
then [, or [y is not ordered, either. For successfully verifying (L3) we additionally have
to exploit the second correctness property, namely permutative equivalence of a list and
its sorted version. Moreover, we must use the knowledge that the result of comparisons
like m <,; | does not depend on the order of the elements in [. Note that this knowl-
edge is implicitly visible within the definitions of < and <,,;, due to the AC-property of
boolean conjunction. The combination of these issues clearly motivates and justifies the
introduction of subsidiary lemmas like

m <y mergesort(i,l'y = m<ylam<y!l.

The situation concerning the verification of the permutative equivalence property is
quite similar. In an analogous style most auxiliary lemmas used can be explained and
motivated. In particular, the design decision to model permutative equivalence via a
counting function oc for element occurrences is closely related to the nature of the problem
to be solved. This connection is due to the presence of the AC-operator + within the
definition of oc which corresponds to the fact that the order of elements is irrelevant when
counting occurrences.

The proof of (L;) requires two more natural lemmas, namely the decomposition prop-
erty

(L4) oc(n,merge(ly,l3)) = oc(n.ly)+ oc(n,ly)
and the combination property
(Ls) oc(n,splitl(l))+ oc(n,split2(l)) = oc(n,l) .

In fact, what has been presented above is the top-level reasoning of an intelligent
specification and proof engineering process. Many fruitless efforts and impasses have not
been mentioned.

The problems that had to be tackled are essentially twofold. On the one hand the
specification of the involved algorithms as well as of their corresponding correctness prop-
erties has to be carefully designed. Moreover, the resulting proof problems have to be
adequately structured and prepared. On the other hand the actual mechanically sup-
ported proof process for specific conjectures may be technically quite challenging, even in
the case that the available inductive knowledge (auxiliary lemmas) in principle suffices.
This problem is due to various proof-technical degrees of freedom of the underlying proof
method discussed below.

Summarizing we can say the following: Whenever we want to prove some property
of an algorithm whose specification involves supplementary functions we usually have to
expolit auxiliary knowledge about these underlying functions. This becomes true in an
even stronger sense when we proceed mainly in a top-down design and verification style.!?
Then the supplementary functions are constructed such that certain intended properties

21n practice a purely top-down approach is is not realistic because we mostly need some basic knowledge,
e.g. about the underlying basic data types.

13

are indeed satisfied. Of course these properties have to be kept in mind and may be used
when trying to establish some verification condition of the main algorithm.

Whether an automation of such meta-level reasoning steps is possible (at least par-
tially) is one of the most challenging Al problems in inductive theorem proving. The
preceding discussion should render it obvious that a very demanding kind of specifiation
and proof engineering seems indeed to be necessary for preprocessing, structuring and
preparing inductive proof problems in such a way that they are "tractable by machine”.

4.2 Technical Aspects of Intelligent Proof Engineering

Even in the case that a specification and verification problem has been carefully mod-
elled and structured the remaining proof tasks may be quite challenging. In fact, some
proof-technical aspects and details have turned out to be crucial for practically successful
verification with a system like UNZCOM. These issues are discussed now.

4.2.1 Improving Simplification by Using AC-Rewriting

Originally simplification in UNICOM was implemented essentially by ordinary rewrit-
ing. As a consequence, the mechanical proofs of even simple inductive lemmas were
often quite tedious and complicated, if not impossible, in particular for lemmas involv-
ing boolean and natural number reasoning. This problem was mainly due to the fact
that the AC-properties of operators like A, V and + could not be mechanically exploited
for simplification. The integration of AC-rewriting into UNZCOM did indeed solve this
problem.!® An important practical aspect when incorporating AC-rewriting into the sim-
plication mechanism concerns so-called extension rules which are necessary to obtain an
AC-simplification mechanism which is sufficiently general for practical applications.

4.2.2 Non-Reducing Proof Simplification Steps

According to the main theorem underlying completion based ITP (cf. section 2) the essence
of the method consists in assuring (ground) simplifiability of critical proofs obtained by
overlapping definition rules into conjectures. The easiest way to establish this simplifiabil-
ity property clearly is to find rewrite proofs for the corresponding critical pairs by means
of ordinary reduction to normal forms that coincide. A significant practical improvement
resulting in an increase of simplification power is obtained by using AC-rewriting which
can still be performed automatically. But even this enhanced technique does not solve
the problem in all cases. The reason is that it is sometimes necessary to transform an
intermediate result by applying a rewrite rule in the inverse direction in order to enable
a next reducing simplification step. Currently such a kind of reasoning with non-reducing
simplification steps cannot be performed mechanically by UNZCOM. In fact the diffi-
culties involved are quite obvious. From a theoretical point of view it has to be verified
that the overall complexity of the constructed proof is smaller than that of the critical
peak itself. And practically, the question arises when and how such non-reducing guessing

3[n fact, our practical experience with UNICOM based on numerous non-trivial examples has shown
that in most cases more than 90 % of run time is used for reduction (including matching which is the central
operation performed during reduction). This was the main motivation for designing and implementing a
new and efficient AC-matching algorithm (cf. [GD88]) which is based on constraint propagation techniques.

14

steps should be performed. To be precise it must be noted that the problem of verifying
proof complexities already occurs when using AC-rewriting. Here we need AC-compatible
reduction orderings!* for ensuring theoretical correctness. Such orderings are currently
not available in UNICOM. Nevertheless by inspecting the proofs produced it can often
be verified by hand that the relevant conditions are indeed satisfied.

Summarizing one can say that in order to obtain simplified proofs (for critical instances
of the main conjecture derived by the critical pair mechanism) the simple variant of al-
lowing only reducing, i.e. complexity decreasing, computation steps is a sound one. But
as soon as some steps are allowed to be non-reducing or even complexity increasing, the
problem becomes much more difficult and requires intelligent heuristics because otherwise
the search space grows dramatically. A careful analysis of the ordering restrictions easily
shows that the only crucial steps for which a decreasing complexity has to be verified are
the "inductive” ones, i.e. those where already processed conjectures are applied. This
fact corresponds nicely to the explicit ITP approach where (sound) induction schemas
and appropiately instantiated versions (induction bases and induction steps) of the con-
crete conjectures are computed and tried to be verified. Within this explicit induction
framework the ordering conditions are in a sense compiled into sound induction schemas
which also provide the available induction hypotheses ezplicitly.!® Verifying the base and
induction steps is usually done in a purely deductive fashion!® and no ordering restrictions
have to be obeyed any more.

4.2.3 Exploiting Simplification Indeterminism

Another practically very important and subtle point concerning completion based induc-
tive theorem proving is the question of how to control the simplification process. Some-
times it may be the case that some conjecture can in principle be simplified to a trivial
equation with an appropriate sequence of simplification steps (using definition rules, lem-
mas and already processed conjectures). But the given (explicit or implicit) simplification
strategy returns with a non-trivial normalized conjecture. This phenomenon is due to the
fact that the rules which are used for simplification do not constitute a confluent system
in general. Whereas the confluence property usually holds for the set of definition rules
(in most cases it is not only ground confluent but even confluent) it is in general violated
if additional inductive lemmas and conjectures are taken into account. Hence it is very
important to perform the simplification steps in an intelligent goal-directed way. One
general heuristic which has turned out to be very useful in many examples and which is
implemented in UN'ZCOM roughly proceeds as follows. The rules available for simplifica-
tion are partitioned into definition rules, inductive lemmas and the actual conjecture. The

"C1. e.g. [Ste90).

15Note that this fact is closely related to a subtle, but important difference between explicit and implicit
ITP. In the latter approach induction hypotheses are not provided explicitly but are available (after the
corresponding conjecture has been processed, i.e. "covered”) in a more general (compared to classical
explicit ITP) generic form. This means that they may be applied as rewrite rules (or equations), i.e.
in arbitrarily instantiated version, provided that the required ordering restrictions are satisfied. Note
moreover, that this phenomenon is the main technical reason why we prefer the terms ezplicit and implicit
induction. Clearly implicit ITP also performs an induction - and hence is not tnductionless (!) - but
w.r.t. a different well-founded ordering. This aspect has been clarified in [Red90] and [Gra90a].

'80f course, one may again use inductive reasoning in this deductive proof process if it turns out that
there is no hope of success. From a more abstract point of view this case corresponds to nested induction.

15

highest priority for simplification is assigned to the conjecture itself which corresponds
to the intuition that an induction hypothesis should be applied as early and as often as
possible. Next it is checked whether a lemma can be used for simplification. If this is
not possible, either, then it is attempted to apply a definition rule for one of the function
symbols involved. Moreover, the available lemmas are ordered decreasingly with respect to
their estimated importance. Of course, this heuristic which in a sense is still rather crude,
might be refined in various ways, e.g. by allowing nested priorities or, more generally, by
means of a dynamic and context-dependent priority mechanism. But it is obvious that it
would become much more complicated and moreover, it is by no means clear how to do
this in a non-trivial and adequate fashion.

4.2.4 How to Choose Inductively Complete Positions

For a given inductive conjecture UNICOM computes all positions which are inductively
complete, i.e. suffice for constructing critical pairs. Depending on a system parameter
either all corresponding proof attempts are then automatically developed in parallel or the
user is asked to choose one for continuing. Whereas the fully automatic variant proceeding
in parallel and performing conceptually independent proof attempts is theoretically quite
elegant, it usually causes severe efficiency problems in practice. In many cases certain
inductively complete positions are completely inappropriate for the intended goal whereas
other choices seem to be more promising.

Within the framework of classical inductive theorem proving a lot of work has been de-
voted to recursion analysis for finding appropriate induction terms and induction schemas
for a given conjecture (cf. [BM79], [Bun88]). We are convinced that such a sophisti-
cated analysis can be carried over to the completion based approach and provide useful
heuristics for supporting or even automating crucial steps like an intelligent selection pro-
cess for inductively complete positions. But the details concerning this transfer of results
and techniques from classical inductive theorem proving into our context still have to be
worked out.!?

4.2.5 Handling Conditional Reasoning

Wichin the presented example of sorting by merging conditionzal reasoning is clearly im-
portant. Our decision to model conditional properties and actions by encoding via ternary
if-then-else operations was mainly motivated by pragmatic reasons. First of all there still
exist various severe theoretical and practical problems concerning rewriting and comple-
tion techniques for proper conditional systems. And secondly, we actually wanted to find
out what can be achieved within the purely equational approach when using a powerful
implementation incorporating various refinements and optimizations of the basic method.
And indeed, by making extensive use of numerous basic schematic properties of if-then-
else operations encouraging experimental results have been obtained. Nevertheless there
seems to be a growing consensus nowadays that for many problems a properly conditional
approach separating the condition from the conclusion part would be more adequate and

""In order to gain more insight into the problem and practical experience we are currently implementing
(and integrating into UNICOM) a first prototype version for handling this problem which is partially
based or the analysis described in [BM79] for the explicit ITP approach.

i

16

natural. Further research is needed to developed a theoretically well-founded and practi-
cally applicable extension of the underlying rewriting, simplification and completion tech-
niques for properly conditional systems which is specialized to inductive theorem proving.
Some encouraging progress along this line of research has already been achieved, e.g. in
[Gan87], [KR90], [BG90], [Wir91], [WG92] and [GS92]. But successful and widely appli-
cable running systems are still lacking.

5 Problems and Perspectives

In the following we shall summarize some of those problems arising in (rewriting and
completion based) ITP which seem to be the most important ones for future work, both
from a theoretical and a practical point of view. Moreover, we discuss existing approaches
or at least ideas for tackling these problems. The main problems to be solved include

among others the following topics:!®

(1) Non-Terminating Base Systems and Non-Free Constructors

The theoretical foundations of the approach presented in section 2 rely on the as-
sumption that the base system with respect to which one wants to prove inductive
theorems is terminating (and ground confluent). This assumption is indeed very of-
ten sat\isﬁed in practical examples. But there are also interesting applications where
this property does not necessarily hold, e.g. for some natural specification of sets.
As already mentioned one possibility in such cases often is to reason modulo the non-
terminating part of the specification (e.g. AC-axioms). First encouraging results in
this direction have been obtained in [JK86]. One severe problem here is the fact
that the accordingly generalized property of inductive reducibility modulo some set
of equations becomes undecidable in general. And even for decidable subcases the
efficiency of decision algorithms is still a problem. Concerning decidability and effi-
ciency questions the problem of non-terminating base systems also exists for classical
explicit ITP methods (when trying to compute and verify soundness of induction
schemes).

Another very difficult problem arising in both implicit and explicit ITP approaches
has to do with the type of constructors used. In almost all running systems the
constructors are assumed to be free, i.e. there are no relations between constructor
terms. Even stronger, a rather restrictive form of constructor discipline is usually
required for defining new functions (cf. e.g. [BM79|, [Gra89]). The main reason for
such strong (syntactical) requirements are essentially twofold. Firstly, the problem
of verifying well-definedness (in particular consistency, termination and complete-
ness) of newly introduced defined functions becomes much simpler.!® Secondly, the
computation of sound and operationally feasible induction schemas (in explicit ITP)
or inductively complete positions (in implicit ITP) is greatly simplified, too.

18We omit here the more technical but nevertheless important problem of when and how additional
inductive knowledge should be (automatically) generated. For more details concerning this problem of
lemma generation and generalization techniques the interested reader is referred to e.g. [BM79], [TJ89],
[Lan89], [Gra89] and [Ave9l).

9But note that even under such strong restrictions as mentioned these problems are still very hard or
even undecidable.

17

(2) Incorporating Domain Specific Knowledge and Methods

In some applications the general approach of pure equational reasoning may be too
crude. For instance, boolean or logical reasoning should not be performed by means
of equational encoding but by appropiate built-in mechanisms or by using a more
general formal language like first order logic with equality (cf. (3) below). More-
over, it may be the case that depending on the domain of interest and the type of
application additional domain specific knowledge and methods, e.g. special decision
procedures, are available. Although this specific knowledge and the corresponding
methods can in principle be formulated equationally this may be inadequate or ineffi-
cient. Consider for instance polynomial arithmetic or systems of (linear) inequalities.
Various specific techniques and algorithms for these fields are well-known and should
be used. Thus, a combination of the general equational approach with other tech-
niques better suited for particular cases seems to be useful and promising.2° For the
theoretical foundation and practical realization of this combination and integration
of different methods a lot of work still has to be done.

(3) Enriching Expressive Power

A natural formalization of many specification and verification problems often re-
quires more than pure equations. In most cases this is not a principal problem but
rather a question of adequacy. For example one may consider order-sorted or condi-
tional equation systems or even full first-order logic for that purpose. Although some
substantial progress within these fields has been achieved in the last years (cf. e.g.
[BGI1], [GS92], [Wir91], [WG92]) many theoretical and practical problems remain
open, in particular concerning verification tasks, e.g. inductive theorem proving.
Another kind of enriching expressive power consists in allowing parameterized spec-
ifications which should permit to perform a kind of parametrized verification. Thus
one might be able to prove correctness of generic specifications and algorithms pro-
vided the actual parameters satisfy certain restrictions. Some considerable progress
in this direction has been achieved but mainly concerning the specification and pro-
gramming language aspects and not so much with respect to verification methods
(but see [Kir91], [Bec92]). This is reflected in practice by the lack of corresponding
running systems with powerful and (at least partially) automated TP components.
A severe obstacle may also consist in the fact that a precise theoretical understand-
ing of the kind of model’semantics underlying the intended notion of inductive proof
is not yet clear enough (cf. e.g. [Zha88], [KMS87]).

(4) Proof Organisation and Control
From a practical point of view we think that the most important problem consists
in improving the whole specification and proof engineering process. The theo-
retical foundations, the technical possibilities (e.g. inference rules) and the degrees
of freedom in rewriting and completion based ITP have been well-understood and
clearly worked out. The remaining practical problem is to exploit this knowledge
for constructing powerful, flexible and widely applicable software environments for
specification and verification. We consider UNICOM as well as some other sys-
tems as a first promising step towards this challenging goal. Possible and necessary

#0See e.g. [BM88], where the authors discuss the integration of a decision procedure for a fragment of
linear arithmetic into their ITP system.

18

improvements include better means for organizing, structuring and controlling the
whole proof process. For instance meta-levels and concepts for formalizing strategies
and heuristics are necessary (cf. e.g. [Bun88], [BvHSI90]. [1{ut90], [Nip89]). This
is a very challenging task, since looking at the literature, a widely shared consensus
about an adequate and sufficiently precise terminology in this field currently does
not exist. Notions like heuristics, strategies, tactics, plans and methods are used in a
rather informal and vague style. But probably this is not very surprising because the
problems involved are very hard. Summarizing, we think that a lot of conceptual
research and clarification concerning the adequate notions and levels of reasoning
still has to be done here.

(5) System Support

Further important practical and lower-level aspects concern refined techniques for
constructing, managing and using large knowledge-bases. Moreover, a comfortable
user-interface and refined techniques for extracting and representing human- oriented
relevant information would considerably support the overall engineering process.?!
In particular, this includes a well-designed control and interaction language together
with a flexible and realistic conceptual model of interaction between a more or less
competent human user (as specification and proof engineer) and the machine assis-
tant providing as much mechanical support as possible.

The general concept underlying such a system should ideally take into account a
couple of facilities/features which — for human oriented reasoning - are very useful,
in particular:

e Logging features: e.g. a flexible trace facility, script files for batch mode and
reproducing proofs, filters for specifying Liow detailed a log should be.

¢ Navigation facilities: Using an abstract proof search tree as underlying abstract
data structure, means for backtracking, undo facilities, arbitrary navigation
within proof search trees and focussing mechanisms should be available in order
to facilitate proof management. In particular, the user should be enabled to
obtain complete control over any single step if (s)he really wants to have it.??

¢ Relative proofs: Adequate abstraction and structuring mechanisms for verifica-
tion tasks should be provided allowing e.g. high-level reasoning w.r.t. (not yet
proved) assumptions. Such features constitute a necessary step in the direction
of intelligent knowledge-based proof planning techniques. Of course, any step in
this direction would entail a couple of theoretical and practical complications,
e.g. a much more complicated data and knowledge-base management and the
related question of how and when to guarantee or obtain consistency again.

o Comfortable user-interface: Clearly better means for communication and I/O
including e.g. graphical representations as well as other useful interface features
should be provided.

*!For instance, one might think of designing and using specially adapted forms of hypertext systems as
it has been tried e.g. in [KMNGS1].

*2This would mean that the corresponding ITP system exhibits a (more or less) complete transparency
of its internal behaviour.

19

In recently implemented modifications of UAZCOM some of these aspects, in par-
ticular concerning better log and trace features, navigation facilities as well as user-
interface improvements, have been taken into account. But a lot of conceptual and
practical problems remain open.

6 Conclusion

We have given a brief summary of implicit (rewriting and completion based) inductive
theorem proving. The central ideas and some of the most important operationalization
issues have been pointed out and discussed. Moreover, a brief comparison of explicit and
implicit ITP techniques has been presented. In particular, some arguments against and
advantages of the implicit ITP approach have been clarified.

Concerning practical applications central conceptual and proof-technical aspects have
been pointed out and exemplified. Moreover, the viewpoint of inductive theorem proving as
a challenging specification and proof engineering task has been developed and discussed.
Resulting and remaining problems and some perspectives which we think are the most
important and promising ones have been sketched.

Clearly, the nature of this discussion has been rather abstract. But nevertheless we
hope that these considerations may contribute to a better understanding of what future
generation systems for inductive theorem proving should and could look like.

Acknowledgement: I would like to thank Ulrich Kiihler for useful hints and detailed
criticisms on a draft version of this paper.

References

[Ave91] J. Avenhaus. Proving equational and inductive theorems by completion and
embedding techniques. In R.V. Book, editor, Proc. of the 4th Int. Conf. on
Rewriting Techniques and Applications, volume 488 of Lecture Notes in Com-
puter Science, pages 361-373. Springer Verlag, 1991. ‘

[Bac87] L. Bachmair. Proof Methods for Fquational Theories. PhD thesis, University
of Hlinois, Urbana Champaign, 1987.

[Bac88] L. Bachmair. Proof by consistency in equational theories. In Proc. 3rd IEEE
Symposium on Logic in Computer Science, pages 228-233, 1988.

[Bec92] K. Becker. Inductive proofs in specifications parameterized by a built-in theory.
SEKI Report SR-92-02, Dept. of Comp. Science, Univ. of Kaiserslautern, 1992.

[BG90] L. Bachmair and H. Ganzinger. On restrictions of ordered paramodulation
with simplification. In M. Stickel, editor, Proc. of the loth Int. Conf. on
Automated Deduction, volume 449 of Lecture Notes in Artificial Intelligence,
pages 427-441. Springer, 1990.

20

(BGY1)

(BM79]
[BM88]

[Bun88]

[BvHSI90]

[Frig6)

[Gan87]

[GDSS]

[GG8S]

(GL91]

(G8bS7]

[Gog80]

L. Bachmair and H. Ganzinger. Rewrite-based equational theorem proving
with selection and simplification. Technical Report MPI-1-91-208, Max-Planck-
Institut fir Informatik, Saarbriicken, 1991.

R.S. Boyer and J.S. Moore. A Computational Logic. Academic Press, 1979.

R.S. Boyer and J.S. Moore. A Computational Logic Handbook, volume 23
of Perspectives in Computing. Academic Press, 1988. Formerly: Notes and
Reports in Computer Science and Applied Mathematics.

A. Bundy. The use of explicit proof plans to guide inductive proofs. In E. Lusk
and R. Overbeek, editors, Proc. of the 9th Int. Conf. on Automated Deduction,
volume 310 of Lecture Notes in Computer Science, pages 111-120. Springer,
1988.

A. Bundy, F. van Haremelen, A. Smaill, and A. Ireland. Extensions to the
rippling-out tactic for guiding inductive proofs. In M.E. Stickel, editor, Proc.
of the loth Int. Conf. on Automated Deduction, volume 449 of Lecture Notes
in Artificial Intelligence, pages 132-146. Springer- Verlag, 1990.

L. Fribourg. A strong restriction of the inductive completion procedure. In
E. Kott, editor, Proc. of the 13th Int. Conf. on Automata, Languages and
Programming, volume 226 of Lecture Notes in Computer Science, pages 105—
116. Springer, 1986.

H. Ganzinger. Ground term confluence in parametric conditional equational
specifications. In F.J. Brandenburg, G. Vidal-Naquet, and M. Wirsing, editors,
Proc. of the 4th Int. Symp. on Theoretical Aspects of Computer Science, volume
247 of Lecture Notes in Computer Science, pages 286-298. Springer, 1987.
LNCS 247.

B. Gramlich and J. Denzinger. Efficient AC-matching using constraint propaga-
tion. SEKI Report SR-88-15, Dept. of Comp. Science, Univ. of Kaiserslautern,
1988.

S.J. Garland and J.V. Guttag. Inductive methods for reasoning about abstract
data types. In Proc. of ACM Symp. on Principles of Programming Languages,
pages 219-228. acm press, 1988.

B. Gramlich and W. Lindner. A guide to UNICOM, an inductive theorem
prover based on rewriting and completion techniques. SEKI Report SR-91-17,
Dept. of Comp. Science, Univ. of Kaiserslautern, 1991.

R. Gobel. Ground confluence. In P. Lescanne, editor, Proc. of the 2nd Int.
Conf. on Rewriting Techniques and Applications, volume 256 of Lecture Notes
in Computer Science, pages 156-167. Springer, 1987.

J.A. Goguen. How to prove algebraic inductive hypotheses without induction.
In W. Bibel and R. Kowalski, editors, Proc. of the 5th Int. Conf. on Automated
Deduction, volume 87 of Lecture Notes in Computer Science, pages 356-373,
1980.

21

[Grag9]

[Gra90al

[Gra90b]

[Gra90c]

[GS92]

[HHS0]

[HOS0)

[Hut90]

|JK86]

[Kir91]

[KM87]

[KMN91]

B. Gramlich. Inductive theorem proving using refined unfailing completion
techniques. SEKI Report SR-89-14, Dept. of Comp. Science, Univ. of Kaiser-
slautern, 1989.

B. Gramlich. Completion based inductive theorem proving: A case study in
verifying sorting algorithms. SEKI Report SR-90-04, Dept. of Comp. Science,
Univ. of Kaiserslautern, 1990.

B. Gramlich. Completion based inductive theorem proving: An abstract frame-
work and its applications. In L.C. Aiello, editor, Proc. of the 9th Furopean
Conf. on Artificial Intelligence, pages 314-319. Pitman Publishing, London,
1990.

B. Gramlich. Unicom: A refined completion based inductive theorem prover.
In M.E. Stickel, editor, Proc. of the 1oth Int. Conf. on Automated Deduction,
volume 449 of Lecture Notes in Artificial Intelligence, pages 655-656. Springer-
Verlag, 1990.

H. Ganzinger and J. Stuber. Inductive theorem proving by consistency for
first-order clauses. In Informatik - Festschrift zurmn 60. Geburtstag von Ginter
Hotz. Teubner Verlag, 1992.

G. Huet and J.-M. Hullot. Proofs by induction in equational theories with
constructors. In Proc. of the 21st Conf. on Foundations of Computer Science,
pages 96-107, 1980. also in JCSS 25(2), pp. 239-266, 1982.

G. Huet and D.C. Oppen. Equations and rewrite rules: A survey. In Ronald V.
Book, editor, Formal Languages, Perspectives And Open Problems, pages 349~
405. Academic Press, 1980.

D. Hutter. Guiding induction proofs. In M.E. Stickel, editor, Proc. of the loth
Int. Conf. on Automated Deduction, volume 449 of Lecture Notes in Artificial
Intelligence, pages 147-161. Springer-Verlag, 1990.

J.-P. Jouannaud and E. Kounalis. Automatic proofs by induction in equational
theories without constructors. In Proc. Symposium on Logic in Computer
Science, pages 358-366. IEEE, 1986. also in Information and Computation,
vol. 82(1}, pp. 1-33, 1989.

H. Kirchner. Proofs in parameterized specifications. In R.V. Book, editor,
Proc. of the th Int. Conf. on Rewriting Techniques and Applications, volume
488 of Lecture Notes in Computer Science, pages 174-187. Springer-Verlag,
1991.

D. Kapur and D.R. Musser. Proof by consistency. Artifial Intelligence, 31:125-
157, 1987.

D. Kapur, D.R. Musser, and X. Nie. The TECTON proof system and its
programmed hypertext interface. draft version, 1991.

22

[KNZ86]

[KR90]

[Kiic87]

[Lan80]

[Lan81]

[Lan89]

[Mus80]

[Nip89]

[Pau84]

[P1a85]

[Red90]

[Ste90]

[TJ8Y]

D. Kapur, P. Narendran, and H. Zhang. Proof by induction using test sets.
In proc. 8th CADE, volume 230 of Lecture Notes in Computer Science, pages
99-117. Springer, 1986. LNCS 230. '

E. Kounalis and M. Rusinowitch. Mechanizing inductive reasoning. In Proc.
8th National Conference on Artificial Intelligence, pages 240-245. American
Association For Artificial Intelligence, MIT Press, 1990.

W. Kiichlin. Inductive completion by ground proof transformation. In Proc.
of Coll. on the Resolution of Fquations in Algebraic Structures, 1987.

D. Lankford. Some remarks on inductionless induction. Technical Report
MTP-11, Math. Dept., Louisiana Tech. Univ., Ruston, 1980.

D. Lankford. A simple explanation of inductionless induction. Technical report,
Math. Dept., Louisiana Tech. University, Ruston, 1981.

S. Lange. Towards a set of inference rules for solving divergence in Knuth-
Bendix completion. In K.P. Jantke, editor, Proc. of the 2nd Int. Workshop
on Analogical and Inductive Inference, volume 397 of Lecture Notes in Artifi-
cial Intelligence, pages 304-316, Reinhardsbrunn Castle, GDR, 1989. Springer-
Verlag.

D.R. Musser. On proving properties of abstract data types. In Proc. of the 7th
ACM Symposium on Principles of Programming Languages, pages 154-162,
1980.

T. Nipkow. Equational reasoning in ISABELLE. Science of Computer Pro-
gramming, 12:123-149, 1989.

E. Paul. Proof by induction in equational theories with relations between con-
structors. In B. Courcelle, editor, Proc. of the 13th Coll. on Trees in Algebras
and Programming. Cambridge University Press, 1984.

D. Plaisted. Semantic confluence tests and compietion methods. Information
and Control, 65:182-215, 1985.

U.S. Reddy. Term rewriting induction. In M.E. Stickel, editor, Proc. of the loth
Int. Conf. on Automated Deduction, volume 449 of Lecture Notes in Artificial
Intelligence, pages 162-177. Springer, 1990.

J. Steinbach. Improving associative path orderings. In M.E. Stickel, editor,
Proc. of the loth Int. Conf. on Automated Deduction, volume 449 of Lecture
Notes in Artificial Intelligence, pages 411-425. Springer- Verlag, 1990.

M. Thomas and K.P. Jantke. Inductive inference for solving divergence in
Knuth-Bendix completion. In K.P. Jantke, editor, Proc. of the 2nd Int. Work-
shop on Analogical and Inductive Inference, volume 397 of Lecture Notes in
Artificial Intelligence, pages 288-303, Reinhardsbrunn Castle, GDR, 1989.
Springer-Verlag.

23

[Wal92)

[WG92)

[Wir91]

[Zha88)

[ZKK8S]

C. Walther. Computing induction axioms. In Proc. of the Conference on
Logic Programming and Automated Reasoning, St. Petersburg, Lecture Notes
in Artificial Intelligence. Springer-Verlag, 1992. to appear.

C.-P. Wirth and B. Gramlich. A constructor-based approach for posi-
tive/negative conditional equational specifications. SEKI Report SR-92-10,
Dept. of Comp. Science, Univ. of Kaiserslautern, 1992.

C.-P. Wirth. Inductive theorem proving in theories specified by positi-e /
negative conditional equations. Master’s thesis, Dept. of Comp. Science, Univ.
of Kaiserslautern, 1991.

H. Zhang. Reduction, Superposition and Induction: Automated Reasoning in
an Equational Logic. PhD thesis, Rensselaer Polytech. Inst., Dept. of Comp.
Sci., Troy, NY, 1988.

H. Zhang, D. Kapur, and M.S. Krishnamoorthy. A mechanizable induction
principle for equational specifications. In E. Lusk and R. Overbeek, editors,
Proc. of the 9th Int. Conf. on Automated Deduction, volume 310 of Lecture
Notes in Computer Science, pages 162-181. Springer, 1988.

24

