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Abstract 

This paper deals with inductive theorem proving (ITP for short). It does not provide 
new theoretical results but analyses existing ITP methods from an AI point of view. 
The presentation is based on the implicit ITP approach, i.e. ITP using the well­

'developed framework of rewriting and completion techniques for systems of equations 
and rewrite rules. We think that the relevant practical problems for successful (par­
tially) automated ITP are essentially the same as or at least closely related to those 
occurring in the more conventional framework of explicit ITP using schemas. The 
theoretical foundations of implicit ITP are briefly reviewed focussing on the central 
ideas as well as on important operationalization issues. Moreover, a brief comparison 
of explicit and implicit ITP approaches is included. In particular, we clarify some 
criticisms raised against the implicit ITP approach. The main part of the paper is de­
voted to a thorough discussion of central ITP problems from the viewpoint of system 
designers and users. We point out and exemplify the necessity of linking together the 
whole process of formalizing, modelling and structuring abstract (equational) specifi­
cations of algorithms and corresponding (inductive) properties to be verified. Crucial 
aspects of the whole specification and proof engineering process are isolated and dis­
cussed, in particular conceptual and proof-technical ones. We argue that such an 
analysis (which of course has to be continued and deepened) is necessary for an ade­
quate integration and combination of intelligent user-guided and machine-supported 
automated inductive reasoning. Finally the main theoretical and practical problems 
as well as promising perspectives for future work are sketched, in particular concerning 
architectural and design principles for future generation inductive theorem provers. 

Key words: inductive theorem proving, proof engineering, equational reasoning, term 
rewriting, completion. 
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Abs t r ac t

Th i s  paper deals  w i th  induct ive  theorem proving ( ITP  for sho r t ) .  I t  does no t  provide
new theoretical  resul ts  bu t  analyses exis t ing ITP  methods  from an AI point  o f  view.
The presentation is based on the implicit ITP  approach, i.e. ITP using the well-

‘developed framework of rewriting and completion techniques for systems of equations
and rewrite rules, We think that  the relevant practical problems for successful (par—
t ial ly)  automated ITP  are essentially the  same  as or  at least closely related t o  those
occurring in the  more conventional framework of explicit ITP  using schemes. The
theoretical  foundations of implici t  ITP  are briefly reviewed focussing on  the  central
ideas as well as on  impor t an t  operat ional izat ion issues. Moreover, a brief comparison
of explicit and implicit ITP  approaches is included. In particular, we clarify some
criticisms raised against the implicit ITP  approach. The main part of the paper is de-
voted to a thorough discussion of central ITP problems from the viewpoint of system
designers and  users. We poin t  ou t  and  exemplify t he  necessity of  l inking together the
whole process of formalizing, modelling and structuring abstract (equational) specifi-
cat ions  of a lgor i thms and corresponding ( induct ive)  proper t ies  to be  verified. Crucia l
aspects of the  whole specification and  proof engineering process are isolated and  dis-
cussed, in particular conceptual and proof—technical ones. We argue that  such an
analysis (which of course has to be continued and deepened) is necessary for an ade-
quate integrat ion and  combinat ion  o f  intelligent user-guided and  machine-supported
automated induct ive  reasoning. Final ly  the  ma in  theoretical  and pract ical  problems
as well as promis ing  perspectives for future work are  sketched,  in  par t icular  concerning
architectural and design principles for future generation inductive theorem provers.

Key words:  inductive theorem proving, proof engineering, equational reasoning, term
rewrit ing,  completion.



1 Introduction 

Equational reasoning is fundamental for many fields of computer science like functional 
programming, abstract data type specifications, program synthesis and verification. V,'ithin 
these applications one is usually interested in a standard initial model of a given equa­
tional axiom system and not in all its models. Proof methods for this initial model, i.e. 
for inductive theorem proving (abbreviated as ITP in the sequel), are usually based on 
induction schemas, e.g. for structural induction (cf. [BM79]). 

Within the last decade an alternative approach based on rewriting and completion tech­
niques has been developed (cL e.g. [HH80]) and refined in many ways in the meanwhile 
(cf. e.g. [JK86j, [Fri86j, [Gob87j, [Bac88], [Red90j, [Gra90b]). Based on this theoret­
ical framework which is briefly reviewed we shall focus on crucial aspects of the whole 
specification and proof engineering process occurring in practical applications. 

Indeed, our extensive practical experiments with an elaborated implementation of the 
method (cL [Gra90a], [G L91]) have shown that such a comprehensive point of view of 
the problem is really necessary for successfully tackling non-trivial proof problems as they 
naturally occur when verifying non-trivial' inductive properties of (equationally defined) 
functional programs or abstract data type specifications, for instance. 

The rest of this paper is organized as follows. In section 2 we briefly recall the main 
theoretical results for completion and rewriting based inductive theorem proving. Im­
portant operationalization and control aspects are summarized in a systematic manner. 
Fu-rthermore, an overview ofUNICOM. an implementation of the method, is provided. A 
brief comparison with other (classical) approaches is given in section 3. The viewpoint of 
inductive theorem proving as a challenging engineering task is developed and exemplified 
in section 4. Finally, before concluding, open problems and promising perspectives for 
future research are discussed in section 5. 

2 Theoretical Foundations and Operationalization Aspects 

2.1 Theoretical Foundations 

We shall omit most definitions and assume familiarity with the basic notions, definitions 
and results about (first order) terms, rewriting systems and equational logic (cL e.g. 
[H080j, [Bac87]). 

The inductive theory induced by a set E of equations is given by ITh(E):= {s = t I 
as :"'E at for all ground substitutions a}. Equations from ITh(E) are called inductive 
theorems of E. These notions generalize easily to the case where we consider a term 
rewriting system (TRS for short) R instead of a set E of equations. 

A TRS R is terminating if -+:k is a well-founded (strict partial) ordering. A reduction 
ordering> is a well-founded ordering on terms which is monotonic w.r.t. replacement 
(s > t ====> iL[sj > u[t]) and substitution (s > t ====> as > at). A TRS R is said to be 
>-ordered (and thus terminating) if I > r holds for every rule I -+ r E R. R is confluent 
if R"- 0 -+R ~ -+R 0 R<-' It is ground confluent if it is confluent on ground terms. R is 
(ground) convergent if it is terminating and (ground) confluent. By C P( R, R') we denote 
the set of critical pairs obtained from overlapping the rules of R into those of R', If p is a 
non-variable position of a term I then C P( R, p, I - r) stands for the set of critical pairs 
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non-variable position of  a term l t hen  CP(R ,  p , !  —» r )  s t ands  for the  set  of critical pairs



obtained by overlapping R into l - r at position p. Accordingly C P( R, P, l - r) denotes 
the set of critical pairs obtained by overlapping R into l - r at all non-variable positions 
pEP from l. We speak of a critical peak (al[ar']/'_r' ..- al[al'] -I-r ar) when taking 
into account the ~orrespondillg superposition term al[al'] belonging to the critical pair 
(al[ar1, ar), too. For some set C of equations we write C- for {l - r, r - III = r E Cl. 

For a given TRS R a term s is inductively (R-) reducible iff all its ground instances 
are (R-) reducible. An equation s = t is inductively (R-) reducible iff as or at is (R-) 
reducible for every ground instance as = at of s = t with as ~ at (= means syntactical 
equality). For a given ground convergent TRS R which is >-ordered by some reduction 
ordering> we say that a set C of equations (inductive conjectures) is provably inconsistent 
iff C contains an equation 8 = t with s > t and s not induc,tively reducible or an equation 
s = t with 8 t t and 8 = t not inductively reducible. 

A proof in E U R consists of proof steps of the form ti .-. E ti+l, t -R ti+l or tR +- ti+l' 
Two proofs of the form s ..:. EuR t and u ..:. E'uR' v are said to be equivalent if 8 == u and 
t == v. Proofs of the form -R 0 R"- are called re\vrite proofs. A proof ordering is a 
(strict partial) ordering ~ on proofs. It is said to be a proof reduction ordering if it is 
well-founded and monotonic w.r.t. replacement, substitution and embedding. A proof P 
(in E U R) of the form s :""EUR t is said to be (equivalently) simplifiable into a proof P' 
(in E' U R') if P' is of the form 8 :""E'UR' t with P ~ P' (see [BacS7] for a more detailed 
introduction of equational proofs). 

Using these notations inductive validity can be characterized as follows (cf. [Gra89], 
[Gra90b]): 

Theorem 2.1 Let> be a reduction ordering, R a >-ordered ground convergent T RS, L 
a set of inductive theorems, i.e. L ~ ITh(R), and C a set of inductive conjectures. Then: 
C ~ ITh(R) iff 

(J)	 C is not provably inconsistent, and 

/2)	 all ground instances of critical peaks corresponding to C P( R, C-) are equivalently 
simplifiable with Rue u L (w.r.t. >P). 

Here >P is a proof reduction ordering which compares complexities of proofs using 
Rue u L by comparing the corresponding multisets of the complexities of all occurring 
(\steps using essentially the double multiset extension ~~ of the reduction ordering> 1 

(cL [Gra89]).2 Condition (1) is decidable and can be easily tested in canonical theories 
with free constructors (:Fa ~ :F is a set of free constructors w.r.t. R iff every ground 
term s E T(F) is R-reducible to a unique ground constructor term s' E T(:Fo)). A 
sufficient operational criterion for condition (2) is to verify simplifiability of the critical 
peaks corresponding to C peR, C-) instead of ground simplifiability. For base systems R 
which are only terminating but not necessarily ground confluent a slight modification of 

I More precisely, >P may be constructed in a more refined .way by taking a lexicographic combination 
of several different well-founded orderings which are partially based on t.he underlying reduction ordering 
>. 

2 A slightly more general version consists in taking the transitive closure of the union of t.he reduction 
relation -+n and the proper subterm ordering >.t, i.e. >-R:= (-n U >.,j+ (the "decreasing ordering 
generated by R", cL [Red90]) instead of >. 
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the above theorem still provides a sufficient criterion for inducti\"e validity. This is detailed 
in [Gra89]. [Gra90b]. 

The general idea underlying the above theorem and the whole approach is to consider 
the problem of proving inductive validity of a conjecture s = t w.r.t. a base system 
R as a proof simplification task. Namely, for every ground instance (TS = (Tt of S = t, 
considered as a proof consisting of one conjecture step, find an equivalent proof consisting 
of R-steps only. This positive point of view of the problem motivates the notion positive 
proof reduction ordering >pOS mentioned above. Essentially it is the main difference to the 
negative approach for proofs by consistency as developed in [Bac88]. In the latter approach 
potentially existing inconsistency witnesses, Le. invalid ground instances of conjectures 
are tried to be simplified until the inconsistency becomes obvious (in the sense of provable) 
or it is clear that there is no inconsistency, Le. inductive validity is given. Within our 
positive framework we have to provide an appropriate noetherian ordering on proofs using 
base and conjecture steps such that (ground) proofs using only base steps are minimal. 
Then the aspired goal may be achieved gradually by finding equivalent but smaller proofs 

. for every ground instance (T s = (Tt of s = 1. The noetherian property of the proof ordering 
assures that such a proof simplification process cannot be performed ad infinitum. In fact, 
it is responsible for the inductive character of the whole method by allowing a conjecture 
to be applied in its own proof, but in smaller version. For the pu.rpose of enabling proof 
simplification it may (seem to) be necessary to add new equations (conjectures) which are 
recursively processed in the same way and which are obtained essentially by simplification 
steps or the critical pair superposition mechanism. Such sets of deduced equations which 
suffice for assuring ground simplifiability of a given conjecture are called covering sets in 
[Bac88]. Indeed, processing a conjecture means covering it, either by simplification or by 
critical pair construction. 

Completion and rewriting based inductive theorem proving roughly spoken proceeds 
as follows: Given a ground convergent base system R and a set C of inductive conjectures, 
C is first tested on provable inconsistency. If it is not provably inconsistent (and not 
directly simplifiable by base rules or lemmas) then (ground) simplifiability of critical peaks 
obtained by overlapping R into C is tried to be established. Intuitively, the superposition 
of base rules into a given conjecture s = t provides a case analysis whose compl~teness is 
guaranteed because the conjecture is not provably inconsistent. The resulting critical pairs 
(called a covering set in [Bac88] and [Gra90b]) are in a sense new candidate conjectures 
which are recursively processed in the same ·way and which assure the desired property 
that every ground instance of s = t is simplifiable. This process may stop successfully 
(all original and deduced conjectures are inductive theorems), detect a contradiction, Le. 
provable inconsistency (at least one conject ure in C is not inductively valid) or run forever. 

In order to obtain a better and precise comprehension of the theoretical basis as well as 
to derive concrete proof procedures one can make a clear distinction between logical and 
operational (control) aspects. The logical component can be formalized by an inference 
system as it has been done e.g. in [Bac88]. Given a base specification together with 
a corresponding reduction ordering such a system of inference rules describes possible 
transformation steps for pairs (C, £) or triples (C, H, £). Here, C, Hand £ denote sets 
of actual conjectures, already processed conjectures and inductive lemmas, respectively.3 

3The distinction .between processed and not yet processed conjectures may be considered to be an 
abstract implementation of a marking concept for treating inductive conjectures. 
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We shall not deepen this point here. Instead we shall focus more on operational aspects 
concerning refinements, optimizations and the control structure used for inference rule 
application. 

2.2 Refinements and Optimizations 

Essentially there are three main sources for refining and optimizing this implicit 4 ITP 
approach. 

1.	 In order to minimize covering sets it is useful to restrict the number of critical pairs 
to be considered to so-called inductively complete (sets of) positi0ns (cf. [Fri86], 
[K iic87]). Moreover, since ground subconnectedness (cf. e.g. [K iic87]) of these 
critical pairs is the main property to be established, it is worth-while refining the 
techniques for verifying this property. This can be done e.g. by weakening the goal 
of finding (ground) rewrite proofs for critical pairs (er. [Gob87], [Kiic87], [Gra89], 
[Gra90b]). Particularly important for practical success are very powerful simplifica­
tion mechanisms.becaus.e they partially reflect the degree of possible automation of 
the whole technique. 

2.	 Instead of proceeding as economically as possible in deducing new equations (by 
simplification or critical pair construction) it is sometimes advantageous to perform 
additional potentially useful computations and exploit extra (inductive) knowledge 
of the domain of interest. Such refinements and optimizatiolls may result in a con­
siderable speed up of the proof process or even enable a successful proof whereas 
the spare technique fails due to non-termination. So-called inessential critical pairs 
(cf. [K iic87]) as well as generalization techniques (cf. [B M79]) fall into this category. 
Of course, these refinements also entail some disadvantages. Namely, a much more 
complicated management and book-keeping mechanism is required and moreover, 
some guessing mechanism or intelligent heuristic has to be provided for restricting 
the search space when producing new conjectures. 

3.	 Finally, the combination and integration of the basic techniques for completion based 
inductive th00rem proving and the corresponding refinements and optimizations into 
a concrete flexible and powerful implementation is a challenging L1sk. In particular, 
the incorporation of good strategies and heuristics as well as the right mixture of 
automated and user-controlled reasoning are difficult problems. 

Some of these points will be discussed in more detail in section 4. 

2.3 UN"ICOM: A Refined Completion Based Inductive Theorem Prover 

Based on the above sketched theoretical framework we have implemented UNICOM, 
a system for refined UNfailing Inductive COMpletion5 which is described in [Gra90c], 

4The reason for using the terminology implicit and explicit ITP is explained later on in subsection 4.2. 
5 Here, unfailing indicates two aspects, namely, that the method can ··treat arbitrary possibly non­

orientable conjectures, and secondly, that it is refutationally complete. The term inductive completion 
stands for completion procedures which are especially adapted for the purpose of ITP problems. Other 
similar notions used in literature are inductionless induction or proof by consistency. For our presentation 
we prefer the more general (and hopefully less confusing) notion of implicit lTP. 
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[G L91]. U)VIC 0,;\/1 is able to treat hierarchically strllc! ured many-sorted and constructor­
based specifications of functions (rewrite programs) and ind IIctive conject ures (equational 
properties to be proved). Input specifications have to satisfy the following conditions. 
Constructors must be declared and are required to be free. The left hand sides of the 
definition rules for a (n-ary) non-constructor symbol I have to be of the form l(il,.· ., In), 
where all tj are constructor terms. The system comprises the following tools: 

The PARSER checks the syntax of input specifications, imports used subspecifications 
and produces an internal representation. 

The CHECKER tests the function definitions for completeness and consistency using 
the syntactical restrictions mentioned above. In particular, termination of the definition 
rules is established by automatically generating a suitable recursive path ordering with 
status which is also used for subsequent inductive proofs. Ground convergence is estab­
lished by investigating critical pairs. A special feature of the implemented completeness 
test allows to identify minimal complete sets of defining rules for the same function symbol, 
i.e.	 alternative but equivalent function definitions. 

The COMPILER provides a means for rapid prototyping by translating correct spec­
ifications (only the definition part) into executable LISP code. 

The central part of the system is the PROVER which tries to prove or disprove the 
inductive conjectures of the current specification. UNICOM admits arbitrary possibly 
non-orientable (equational) conjectures. The following are some characteristic features of 
U/vICOM: 

•	 Parallel independent inductive proofs can be performed according to the different 
possibilities of choosing complete positions in conjectures together with correspond­
ing minimal complete function definitions. 

•	 Inessential critical pairs may be computed as potentially useful auxiliary conjectures. 

•	 Simplification (reduction) may be performed modulo the AC-properties of some op­
erators. 

•	 A simple generalization technique (via minimal non-variable common subterms) is 
available. 

•	 Elimination of subsumed non-orientable conjectures is integrated. 

•	 Non-equational inductive knowledge about free constructors is used for speeding up 
the proof or disproof of conjectures. 

•	 Various user interface parameters allow for switching on!off optional features (e.g. 
generalization, computation of inessential critical pairs) and enable a fully automatic 
or more or less strongly user-controlled running mode. 

•	 A couple of different trace levels are available in order to enable a more or less 
detailed inspection of the running proof process. 

•	 A general navigation mechanism allows arbitrary navigation in the current proof 
tree which is useful for backtracking and (manually) focussing on certain interesting 
subproblems to be dealt with next. 
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•	 All logically relevant steps and actions of the proof process may be (automatically) 
recorded. This information provides the basis for (automatically) obtaining various 
more or less detailed and flexibly structured descriptions of a succuessfully finished, 
interrupted or failed proof attempt. In particular, for the analysis of failed proof 
attempts this information facility has turned out to be very valuable. 

Numerous experiments with UNICOM involving a couple of non-trivial examples, 
e.g. various sorting algorithms, have been performed and evaluated which led to some 
substantial modifications and improvements of the system (cL [Gra90a], [GL91]). 

Comparison with Explicit ITP 

The purpose of the following considerations is twofold. First we want to try to relate 
various versions of rewriting and completion based techniques for ITP to each other as 
well as to more classical approaches using some kind of (e.g. structural) schemas. We shall 
only sketch some of the most important aspects. We think that a substantial amount of 
work still seems to be necessary in order to obtain a convincing and comprehensive ­
perhaps uniform - framework for ITP techniques, at least for some restricted cases like 
equational logic. Such a uniform framework could be very useful, not only for isolating 
and understanding the central issues and notions used in different approaches, but also for 
clarifying their interrelations, advantages and disadvantages from a practical/operational 
point of view. 

The second point we want to address here is to discuss some wide-spread misunder­
standings converning the rewriting and completion based approach to ITP as presented in 
chapter 2. In particular, we claim that a couple of critical arguments raised against this 
approach (e.g. in [CG88]) do not persist to a thorough and precise analysis. 

Perhaps the best-known and most successful ITP system up to now still is the Boyer/­
Moore theorem prover (cL [BM79], [BM88]). An alternative approach was initiated in 
[Mus80], [Gog80], [HH80] which was termed inductionless induction in [Lan80), [Lan81]. 
Since then a lot of progress in this direction has been achieved. For instance, abstract­
ing from the special and (computationaUy) very convenient case of free constructors (cf. 
[HH80]) the method has ben generalized to arbitrary (c:onvergent) base specifications (cL 
[Pau84]' [JK86]). 

Optimizations concerning the minimization of covering sets have been developed in 
[Fri86], [Gob87], [Kiic87]. This was done on the one hand side by restricting the critical 
pairs to be considered to inductively complete (sets of) positions, thus leading to a kind 
of linear proof procedure. On the other hand side the fact that only ground reasoning is 
relevant for inductive validity could be exploited for designing refined ground simplifiability 
(subconnectedness) criteria. Moreover, using the general framework of proof orderings (cf. 
[Bac87]) and unfailing completion techniques the restriction that conjectures have to be 
orientable w.r.t. the underlying reduction ordering could be removed (cL [Bac88], [Gra89], 
[Gra90b]). 

Finally the general paradigm of proof by consistency was thoroughly ana1yzed and de­
veloped in [KM87], [ZKK88], [Zha88]. This work was coupled with an investigation on 
the kind of possible model semantics underlying any intended notion of inductive valid­
ity. Indeed, one of the main drawbacks of the common initial semantics approach is the 
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the kind of possible model semantics underlying any intended notion of inductive valid-
ity. Indeed,  one  of t he  main  drawbacks of t he  common initial  semantics approach is the

"l



treatment of partiality, i.e. of partially defined functions. There is a certain lack of in­
cremental behaviour which - roughly spoken - prevents the initial algebra approach from 
being monotonic w.r.t. consistent extensions. In [Zha88] this disadvantage has led to the 
fruitful notion of constructor models which - considered from an algebraic model-theoretic 
point of view - are not proper models because they allow partial functions on concrete 
domains. But it should be noted that these kinds of difficulties and drawbacks are not 
specific to the rewriting and completion based approach but are in general problematic 
for any kind of ITP approach. 

Interesting variations of proof by consistency techniques have further been explored in 
[Pla8.5] and [KNZ86]. 

Within the framework of equational reasoning and rewriting techniques the classical 
approach to ITP using induction schemas has been discussed e.g. in [GG88]. 

Keeping close to rewriting and completion techniques the positive approach as sketched 
in chapter 2 and its relations to classical ITP have b~en worked out in [Red90] and [Gra89], 
[Gra90b]. In [Red90] the resulting method called term rewriting induction essentially 
performs inductive proofsw.r.t. the underlying noetherian reduction ordering> (or more 
precisely for readers familiar with the approach: the decreasing order generated by ». 
In [Gra89], [Gra90b] a similar positive approach was developed exploiting the general, 
very powerful and flexible framework of proof orderings which of course heavily rely on 
the underlying reduction orderings. Both in [Red90] and [Gra89], [Gra90b] the inductive 
nature of the discussed methods as well as the close relationship to classical ITP approaches 
are pointed out. Hence the term inductionless induction for this class of approaches does 
not seem to be adequate any more, at least for the positive variants of rewriting and 
completion based ITP. Perhaps a better notion for distinguishing these aproaches would be 
to speak of explicit ITP (using schemas) and implicit ITP (using rewriting and completion 
techniques). This terminology will be used below. 

Let us now turn briefly to the criticisms raised against the latter one. In particular, 
we want to address some wide-spread misunderstandings concerning the implicit ITP 
approach as sketched in section 2. We claim that some critical arguments raised again 
this approach (e.g. in [GG88]) do not persist when su bmitted to a thorough and precise 
analysis. We only pick out the most important points in [GGS81: 

•	 The argument that explicit ITP has a simpler theoretical basis t:lan implicit ITP 
may be partially true but is due to the fact that the latter provides a very general 
framework. In particular, it owns the great advantages that a powerful, precise 
and well-understood notion of simplification is available. In classical approaches the 
lack of a well-understood and practically applicable theoretical basis (in particular 
concerning a precise notion of simplification) jc; one of the main drawbacks concerning 
operationalization and automation issues.6 

•	 Some important arguments against implicit ITP concerning its restricted applicabil­
ity are not justified. For instance, neither (sufficient) completeness nor convergence 
of base specifications is really necessary for the approach to be applicable. Even non­
termination is not a principle obstacle. Often it can be dealt with by using unfailing 
completion techniques and reasoning modulo some subtheory encapsulating the rea­
son for non-termination. But clearly things are much more easier provided "nice" 

6However, substantial progress in this direction seems to be possible (cL [Wal92]). 
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properties like confluence and termination are given. ~loreover, these problems have 
to be dealt with as well (and are by no means easier) in the classical explicit ITP 
approach . 

•	 The argument that within explicit ITP proofs are easier to follow and failures easier 
to analyse does not hold either but of course the ability to understand precisely and 
interpret adequately what is going on presumes a certain amount of familiarity with 
and intuition about the basic concepts and mechanisms involved in implicit ITP. 
Instead we think that both approaches can profit quite a lot from each other in the 
future . 

•	 Finally, a last point we would like to mention is an important advantage of im­
plicit ITP. Namely, as shown in [Bac88], the implicit ITP approach is - in contrast 
to explicit ITP - refutationally complete (under some reasonable assumptions), Le. 
invalid conjectures are eventually detected. This is not only a nice theoretical prop­
erty, but may also be practically relevant because it can be exploited for finding out 
wrong conjectures, hopefully very early. 

Inductive Theorem Proving as a Challenging Engineer­
ing Task 

Very often ITP tasks are not given as isolated fixed problems but occur in a more general 
setting. For instance, in the field of abstract data type specifications usually a lot of 
basic knowledge (definitions and inductive lemmas), e.g. about data types like boolean 
algebra, natural numbers, lists etc. is available. \Vhen specifying non-trivial algorithms 
in an elegant and compact manner auxiliary functions usually play an important role. On 
the other hand the formalization of desired (ind uctive) properties of such algorithms - for 
instance partial correctness - also relies on the basic knowledge as well as on possibly newly 
introduced auxiliary functions and/or predicates. As we shall point out, exemplify and 
discuss, the ease or difficulty of successfully tackling the resulting verification problems is 
initimately tied not only to the technical details and features of the applied ITP technique 
but also to the above mentioned formalization and specification process. To this end, let 
us consider a non-trivial practical example taken from the case study in [Gra90a], namely 
the specification and verification of various sorting algorithms with UNICOM. 

Assume that enough basic knowledge about boolean algebra, natural numbers with 
the usual ordering relation ~ and lists of natural numbers is available. Moreover, since 
sorting algorithms inherently require some kind of conditional reasoning, we have to pro­
vide means for specifying conditional operations and properties. Within this example 
we restrict ourselves to purely equational reasoning by encoding conditional constructs 
into unconditional ones· using ternary if-then-else operations. Equations specifying de­
fined functions and inductive conjectures will always be interpreted as directed from left 
to right, i.e. as rewrite rules. Furthermore we tacitly assume (sufficient) completeness 
and consistency of the considered specifications. In particular, we assume the existence of 
appropriate reduction orderings for the corresponding rewrite rule systems.7 

7For the sake of readability we shall make free use of a mixed prefix and infix notation with usual 
priority rules for interpreting missing brackets. 
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4.1	 Conceptual Aspects of Intelligent Specification and Proof Engineer­
mg 

Let us now consider the problem of specifying and verifying (partiaI8 ) correctness of sort ­
ing algorithms. To this end let us assume that a sufficiently complete and consistent 
equational specification of a function sort: list -+ list for sorting lists of natural numbers 
(in ascending order) is given. Then we may ask for a formal specification of correctness of 
sort. Intuitively it is clear that correctness is characterized by the following two properties 
which must hold for every concrete list 1of natural numbers: 

(1) sort(l) is ordered (ascendingly).
 
(I1) I and sort(/) have the same multiset of elements
 

These two properties may be formalized in quite different ways as we shall point out and 
discuss now. For property (1) it seems natural to introduce an ordered-predicate which is 
modelled by a boolean valued function orc! : list -+ bool and to require 

ord(sort(l)) true. 

A first specification of being an ordered list is obtained by defining recursively9 

(la) ord( e) true 

ord( e( n, e)) true 
ord(c( m, e( n, I))) m S n f\ ord(e(n, l)). 

But other specifications may also be conceivable and - concerning proof-technical aspects 
- even more advantageous. For instance we may - in some sense redundantly - require 
that the first element of a given list is not only less than or equal to the next element 
(provided there exists one) but less than or equal to all remaining list elements. This leads 
to the following specification with an auxiliary operation Snl: nat x list -+ boot. 

(Ib)	 ord( e) true 

ord( e( n, 1)) n Snl I f\ ord(/) 

m Snl e true 

mSnle(n,/) = m S n f\ m Snl I 

Still another less explicit and not constructor- based definition using the auxiliary opera­
tions Snl (as above) and Sa (for comparing two lists) would be 

(Ic)	 ord(app(l1,/2 )) ord(l1) f\ ord( 12 ) f\ 11 Sa 12 

e SlI 1	 true 

e( n, id Sa 12 n Snl 12 f\ 11 SlI .l2 

It is rather straightforward to prove that the definitions (la), (1b) and (le) are indeed 
equivalent. 

The second correctness property (I1) of sorting algorithms may be formalized in quite 
different ways. A first possibility is to introd lice t he property that a list is a permutation 
of another list via the operation perm: list x list -+ bool which uses auxiliary functions 

8 For our purpose we assume totality of the function definitions. i.e. we do not treat here the problem 
of verifying termination of the corresponding rewrite programs. 

9Here, the constructors e and c stand for the empty list and the usual cons-operation. 
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4 .1  Conceptua l  Aspects  of Intel l igent  Specificat ion  and Proof  Engineer-
ing

Let us now consider the problem of specifying and verifying (partials) correctness of sort-
ing algori thms.  To this  end  let us  assume tha t  a sufficiently complete  and  consistent
equational specification of a function sort:  list —-> list for sorting lists of natural numbers
(in ascending order) is given. Then we may ask for a formal specification of correctness of
so r t .  Intuitively i t  is clear t ha t  correctness is characterized by the  following two properties
which mus t  hold for every concrete  list l of natural  numbers :

(I) sort(l)  is ordered (ascendingly).
(II) l and sort(l) have the same multiset of elements

These two properties may be formalized in quite different ways as we shall point out and
discuss now.  For proper ty  ( I )  i t  seems na tura l  t o  in t roduce an ordered-predicate  which is
modelled by a. boolean valued function on! : l i s t  _‚ bool and  to  require

0 rd ( so r t ( l ) )  : t r ue .

A first specification of being an ordered list is obtained by defining recursively9

( I a )  0 rd (e )  = t r ue
0rd (c (n ,  e ) )  = t r ue
o rd (c (m,c (n , l ) ) )  : m S n / \0 r ( l ( c (n , l ) ) .

But other specifications may also be conceivable and — concerning proof-technical aspects
— even more advantageous.  For instance we may — in some  sense redundant ly  — require
that  the first element of a given list is not only: less than or equal to  the next element
(provided there  exists  one )  bu t  less t han  o r  equal  t o  all remaining list e lements .  Th i s  leads
to  the following specification with an auxiliary operation Sn): nat X list _, bool.

( Ib )  o rd (e )  = t r ue
o rd (c (n , l ) )  : n S„ ‚  l / \  or(l( l)
m Su ,  6 = t r ue
m$„1c (n , l )  = mgnAm gu l l  .

Still another less explicit and not constructor—based definition using the auxiliary opera-
t ions Sn ;  (as above)  and in  (for compar ing two lists) would be

(Ic)  o rd(app( l l , lg ) )  = ord(l1)  A or(l(l-2) /\ 11 Su  12
6 SU l = t r ue
C(n , l1 )S1112  = " Sn: l 2  /\ 11 Su 12 -

I t  is rather straightforward t o  prove tha t  t he  definitions ( I a ) ,  ( Ib )  and  ( Ic )  are indeed
equivalent.

The second correctness proper ty  ( I I )  of sor t ing a lgor i thms may  be  formalized in qui te
different ways.  A fi rs t  possibility is to introduce t he  proper ty  t ha t  a list is a permutat ion
of another list via the  operation perm : l ist  X l ist  _» bool which uses auxiliary functions

8For  our  purpose we assume totality of t he  func t ion  defini t ions .  i .e .  we do no t  t rea t  here the  problem
of verifying terminat ion of t he  corresponding rewr i t e  programs.

9Here .  t he  constructors  e and c s t and  for t he  empty  list and the  usual cons-operat ion.
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del: nat X list ...... list and E: nut x list ...... bool for deleting one occurrence of an element 
in a given list and for membership test, respectively:lO 

(Ha) perm(e, e) true 

perm(e,c(n,l)) false 
perm( c( m, ld, l2) mE l2I\perm(l1,del(m,l2)) 

mE e = false 
m E c(n, l) m =nat n V mE l 
del(m,e) e 
del ( m, c( n, l)) if/ist(m =nat n,l,c(n,dcl(m,l))) 

The correctness property (Il) for sorting algorithms may then be formalized by 

perm(l,sort(l)) = ttue. 

The above definition of perm is in a sense a strongly algorithmic one since the compu­
tation of perm(ll, 12) for concrete lists 11,12 of nat ural numbers proceeds by successively 
considering the first element m of 11 , testing for membership of m in l2 and deleting (the 
first occurrence of) m in 11 and 12 • ~foreover, the structure of the definition does not 
reflect the symmetrical aspect of permutative equivalence, i.e. the property that two lists 
are the same up to a permutation of their arguments. This symmetry stated by 

does indeed hold for the above definition, but a formal proof of it IS non-trivial (ef. 

[Gra90c]). 
As an alternative where symmetry becomes obvious consider the following definition 

using a function oc : nat x list ...... nut which counts the number of occurrences of some 
natural number in a given list. 

(lIb )oc( m, e) o 
oc(m,c(n,l)) ifnat( m =nat n, s(O), 0) + oc( m, L) 

Then permutative equivalence of two lists Lt, l2 is formalized by 

oc(n,L1) 

To ensure that this definition is indeed equivalent to the former version using perm we 
have to verify that 

is an inductive theorem of E with E consisting of the defining equations for all function 
symbols involved. Note that (L) is non-trivial, too. Moreover. it does not have equational 
form. ll From (L) it can easily be deduced now that perm (considered as a binary relation) 
is reflexive, symmetric and transitive. 

10 Additional auxiliary functions used here are =na! for the test of equality on natural numbers as well 
as iIlt.! which stands for the ternary if-then-else operation with boolean-valued condition and list-valued 
alternatives. 

11 For a proof of it see [Gra90c]. 
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del  : na t  x l i s t  _» l i s t  and  € :  nal. x l i s t  _. bool for deleting one  occurrence of an element /’

in a given list and  for membership t e s t ,  respectively:lo

( I l a )  pe rm(e , e )  = t r ue
pe rm(e , c (n , l ) )  = fa l se
pe rm(c (m‚ l l ) ‚  12) = m € [2 A pe-rm(11, (lel(m,12))
m E e = fa l se
m€c(n ‚ l )  : m: ,mtme l
del(m,e) = e
de l (m ,c (n , l ) )  = i fusdm =“ ,  n ‚ l . c (n ‚dc l (m‚ l ) ) )  .

The  correctness proper ty  ( I I )  for sor t ing algori thms may then  be  formalized by

pe rm( l , so r t ( l ) )  = t rue .

The  above definition of pe rm is in a sense a strongly algorithmic one  since t he  compu-
ta t ion of perm( l„ lg )  for concrete lists 11,12 of na tura l  numbers  proceeds by successively
considering the first element m of l l ,  testing for membership of m in lg and deleting (the
first occurrence o f )  m in 11 and [2. Moreover, t he  s t ruc tu re  of t he  definition does not
reflect t he  symmetr ical  aspect  of permuta t ive  equivalence, Le. t he  proper ty  t ha t  two lists
are t he  same up  to  a permutat ion of their  a rguments .  Th i s  symmet ry  s ta ted  by

Permlll, 12)  = permuz, 11)

does indeed hold for the above definition, but a formal proof of it is non-trivial (cf.
[Gra90c]).

As an al ternat ive where symmetry  becomes obvious consider t he  following definition
using a function oc : not >< list -—-> nat which counts the number of occurrences of some
natural number in a given list.

( I l b )  ,oc(m,e)  = O
oc (m,c (n , l ) )  = ifna¢(m =na¢n , s (0 ) , 0 )+oc (m, l )  .

Then  permuta t ive  equivalence  of  two l i s t s  11,12 i s  formalized by

oc (n , l l )  = oc(n‚lg) .

To ensure  t ha t  th is  definition is indeed equivalent t o  t he  former version using pe rm we
have to  verify that

(L )  pe rm( l l , l »2 )= t  <=» Vn :oc (n , l , )=oc (n ,12 )

is an inductive theorem of E with E consisting of t he  defining equat ions for all function
symbols involved. Note  t ha t  (L )  is non-trivial,  too .  Moreover.  i t  does not  have equational
form.11 From (L)  it can easily be  deduced now tha t  pe rm (considered as a binary relat ion)
is reflexive, symmetr ic  and transit ive.

l oAdd i t i onaJ  auxiliary funct ions  used here  a re  =“ ;  for t he  t e s t  o f  equa l i ty  on  natura l  numbers  as well
as i f1 . "  which stands for the  ternary if-then-else operation with booiean-valued condition and list-valued
alternatives.

11For  a. proof of it see [Gra90c].
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Corn paring the definitions (lIa) and (lIb) concerning proof- technical aspects the first 
one seems to be better for such cases where we know something about the first elements 
of the two lists to be compared. This is the case for instance for insertion_sort and 
min_sori. Definition (lIb) however is better suited for verifying quick_sort and merge_sort 
(see below), where the first element of a sorted list is not diree: ly visible from the definition 
of sorting. 

Finally, let us mention that the property of permutative equivalence could also be 
specified by explicitly computing the multiset of list elements and defining inclusion and 
equality for multisets (of elements). 

Let us now consider for illustration merge_sort. The idea of sorting by merging is 
to partition every list with more than one element into two parts containing approxi­
mately the same number of elements. For that purpose we use two auxiliary functions 
splitl, split2: list -+ list. Splitl collects the elements occurring at odd po,;itions and 
split2 those which occur at even positions. We shall make use of (la) and exploit (le) 
for an appropriate decomposition of the verification problem for merge...sort. The algo­
rithm and the correctness predicates for sorting by merging, modelled by merge_sort: 
list - list, are specified as follows: 

(1) merge ....5ort( e)	 f 

(2) merge ....5ort( e( n, e)) e( n, e) 
(3)	 merge_sort( e( m, e( n, I))) merge( mergcso/'t( e( In, splitl(l))), 

merge_8ort( e( n, spl it2( I))) ) 
(4) merge(e,/) 
(5) merge(l, e) 
(6)	 merge(e( m, 11 ), e( n, 12 )) iflist( 111, ::;n, e(m,lnerge(lt,e(n,/2 ))), 

e( n, mel'ge( e( m, Id, 12 )) ) 

(7) splitl(e)	 e 
(8) splitl(e(m, e))	 e( m, e) 
(9) splitl( e( m, e( n, I))) e(m,splitl(/)) 
(10) split2(e)	 e 
(11 ) split2(e(m, e))	 e 
(12) spl it2( e( m, e( n, l))) e( n, split2( I)) 
(13) ord( e)	 true 
(14) ord( e( m, I))	 m ::;nl I 1\ ord(l) 
(15) m ::;nl e	 true 

(16) m ::;nl e(n,/)	 m ::; n 1\ m ::;nl I 
(17) oe(m, e)	 0 
(18) oe(m,e(n,/)) oe(m,/)+ ifnllt(m =nat 11,S(O),O) 

The correctness properties to be established are 

ord( merge _sort( I)) fT' ut: , 

oe( n, merge_sort( I)) oc( n, l) . 

For verifying (L 1 ) we have to exploit the fact that the function merge is indeed defined such 
that merging two ordered lists yields an ordered list which - again in slightly generalized 
form - is caught by the auxiliary lemma 
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Compar ing  the  definitions ( I l a )  and  (IIb) concerning proof-technical aspects t he  fi rs t
one  seems to  be  be t t e r  for such cases where we know something  abou t  t he  fi rs t  elements
of t he  two lists t o  be  compared .  Th i s  is t he  case for ins tance for inserl iomsort  and
min_sort. Definition (IIb) however is better suited for verifying quick_sort and merge_sort
( s ee  be low) ,  whe re  t he  fi r s t  e l emen t  o f a  so r t ed  l i s t  i s  no t  d i r ec t l y  v is ib le  from the  defin i t i on
of sorting.

Finally, let us mention that  the property of permutative equivalence could also be
specified by explicitly computing the multiset of list elements and defining inclusion and
equali ty for mult isets  (of elements) .

Let us  now consider for il lustration merge_sort. The  idea. of sor t ing  by merging is
t o  partition every list with more than one element into two parts containing approxi-
mately t he  s ame  number  of elements.  For t ha t  purpose we use two auxil iary functions
sp l i t1 , sp l i t2 :  l i s t  ——> l i s t .  Sp l i t l  collects t he  elements occurr ing at  odd  positions and
spl i t2  those  which occur  at  even positions. We shall make  use of ( I a )  and  exploit (Ic)
for an appropr ia te  decomposition of t he  verification problem for merge_sort. The  algo-
r i thm and  the  correctness predicates for sor t ing  by merging.  modelled by merge_sort :
list —» list,  are specified as follows:

(1 )  mergeso rue )  = e
(2 )  mergeßor t ( c (n ‚  e ) )  = c( 12,6)
(3 )  merge . sor t (c (  m ,  c (n ,  l ) ) )  : merge(  merge_sort(c(  m ,  sp l i t1 ( l ) ) ) ,

merge_so-r!(c(n, sp l i t2 ( l ) ) )  )
(4) merge(e,l)  = l
(5) merge(l ,e) : 1
(6 )  merge (c (m, l l ) , c (n ,12 ) )  = i f lmhn Sn ,  C(m, merge( l ; , c (n ,12) ) ) ,

c( n ,  merge (c (m, l l ) ,  12)))
(7 )  sp l i t1 (e )  = e
(8 )  sp l i t 1 ( c (m,e ) )  = c (m,e )
(9) split1(c(m,c(n,l))) = c(m,splil.1(l))
(10) sp l i t2 (e )  : e
(11) sp l i t 2 ( c (m,e ) )  : e
(12)  sp l i t 2 ( c (m,c (n ‚ l ) ) )  = c(n‚5plz't'2(l))
(13)  ord (e )  = t r ue
(14) ord(c(m‚l)) = m S„ ,  IA  ord(l)
(15) m SM 6 = t rue
(16 )  min!  c (17„ l )  : m SnAmSnl l
(17) oc(m‚e) = 0
(18)  0c (m,c (n , l ) )  = oc (m, l )+ i f ‚ „„ (m =„at  n , s (0 ) , 0 )  .

The correctness properties to  be established are

(LI) ord(merge_sor t ( l ) )  = t r ue  ,
(L2) oc(n‚  merge . so r t ( l ) )  = oc( n..l) .

For verifying (LI) we have to  exploit t he  fact t ha t  t he  function merge is indeed defined such
tha t  merging two ordered lists yields an ordered  list which — again in  slightly generalized
form - is caught by the auxiliary lemma

(L3)  ord(merge(l1,12))  = o rd ( l l ) / \ o rd ( l z ) .
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This property in turn needs some more subsidiary lemmas to be proved. (L 3 ) corresponds 
closely to the intuition behind sorting by merging, namely that merging two ordered lists 
again produces an ordered list. (L3) indeed contains mol'€' information because, it also 
states that whenever a list 1 which is constructed by merging II and l2 is not ordb'ed 
then II or E2 is not ordered, either. For successfully verifying (L 3 ) we additionally have 
to exploit the second correctness property, namely permutative equivalence of a list and 
its sorted version. Moreover, we must use the knowledge that the result of comparisons 
like m :Snl I does not depend on the order of the elements in E. Note that this knowl­
edge is implicitly visible within the definitions of :s and :Snl, due to the AC-property of 
boolean conjunction. The combination of these issues clearly motivates and justifies the. . 
introduction of subsidiary lemmas like 

m :Snl E 1\ m. ~nl [' . 

The situation concerning the verification of the permlltative equivalence property is 
quite similar. In a.n analogous style most auxiliary lemmas used can be explained and 
motivated. In particular, the design decision to model permlltative equivalence via a 
counting function oc for element occurrences is closely related to the nature of the problem 
to be solved. This connection is due to the presence of the AC-operator + within the 
definition of oc which corresponds to the fact that the order of elements is irrelevant when 
counting occurrences. 

The proof of (L 2 ) requires two more natural lemmas, namely the decomposition prop­
erty 

oc( 1/. /[ ) + oc( 1/ , 12 ) 

and the combination property 

(Ls ) oc( n, split1(l)) + oc( n, split2(l)) oc(n,l) . 

In fact, what has been presented above is the top-level reasoning of an intelligent 
specification and proof engineering process. Many fruitless efforts and impasses have not 
been mentioned. 

The problems that had to be tackled are essentially twofold. On tlle one hand the 
specification of the involved algorithms as well as of their corresponding correctness prop­
erties has to be carefully designed. Moreover, the resulting proof problems have to be 
adequately structured and prepared. On the other hand the actual mechanically sup­
ported proof process for specific conjectures may be technically quite challenging, even in 
the case that the available inductive knowledge (auxiliary lemmas) in principle suffices. 
This problem is due to various proof-technical degrees of freedom of the underlying proof 
method discussed below. 

Summarizing we can say the following: \Vhenever we want to prove some property 
of an algorithm whose specification involves supplementary functions we usually have to 
expolit auxiliary knowledge about these underlying fu nctiolls. This becomes true in an 
even stronger sense when we proceed mainly in a top-down design and verification style.12 

Then the supplementary functions are constructed such that certain intended properties 

121n practice a purely top-down approach is is not realistic because we mostly need some basic knowledge, 
e.g. about the underlying basic data types. 
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This  proper ty  in t u rn  needs some more subsidiary lemmas  to  be  proved. (Lg) corresponds
closely to the intuition behind sorting by merging, namely that  merging two ordered lists
again produces an ordered list. (Lg) indeed contains  more  information because it also
states t ha t  whenever a list 1 which is constructed by merging 11 and 12 is not  ordered
then l l  or 12 is not ordered, either. For successfully verifying (L3) we additionally have
to exploit the second correctness property, namely permutative equivalence of a list and
i t s  sor ted version. Moreover,  we mus t  use the  knowledge tha t  t he  result of  comparisons
l ike m S" ,  l does not  depend on  the  order  of t he  e lements  in 1. Note  tha t  th i s  knowl-
edge is implicitly visible within the definitions of S and 5” , ,  due t o  the AC-property of
boolean conjunction. The combination of these issues clearly motivates and justifies the
introduct ion of subsidiary lemmas like

m Sn;  merge_sort(l,l’) = m Sn; IA m Sn! [ '  -

The situation concerning the verification of the permutative equivalence property is
quite similar. In an analogous style most auxiliary lemmas used can be explained and
motivated. In particular, the design decision to model permutative equivalence via a
counting function oc for element occurrences is closely related to the nature of the problem
to  be  solved. This  connection is due  to  the  presence o f  t he  AC-operator  + within t he
definition of oc which corresponds to  the fact that  the order of elements is irrelevant when
count ing occurrences.

The  proof of (Lg) requires two more na tu ra l  lemmas,  namely t he  decomposit ion prop-
e r ty

(L4) oc (n ,merge ( l l , l z ) )  : oc (n . l | )  + oc(n,l-z)

and the  combinat ion property

(L5) oc (n , sp l i t 1 ( l ) )+  oc(n‚split‘2(l)) : oc (n , l )  .

In fact, what has been presented above is the top-level reasoning of an intelligent
specification and proof engineering process. Many fruitless efforts and impasses have not
been mentioned.

The problems that  had to  be tackled are essentially twofold. On the one hand the
specification of the involved algorithms as well as of their corresponding correctness prop-
ert ies  has to  be carefully designed. Moreover, t he  result ing proof problems have t o  be
adequately structured and prepared. On the other hand the  actual mechanically sup-
ported proof process for specific conjectures may be technically quite challenging, even in
the  case that  the  available inductive knowledge (auxiliary lemmas) in principle suffices.
This problem is due t o  various proof-technical degrees of freedom of the underlying proof
method discussed below.

Summar iz ing  we can say t he  following: Whenever  we want  t o  prove some property
of an algorithm whose specification involves supplementary functions we usually have to
expolit auxiliary knowledge about these underlying functions. This becomes true in an
even s t ronger  sense when we proceed mainly in a top-down design and  verification style.12
Then the supplementary functions are constructed such tha t  certain intended properties

12In  practice a purely top—down approach is is not realistic because we mostly need some basic knowledge,
e .g .  about  t he  under lying basic da t a  types .
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are indeed satisfied. Of course these properties have to be kept in mind and may be used 
when trying to establish some verification condition of the main algorithm. 

\Vhether an automation of such meta-Ievel reasoning steps is possible (at least par­
tially) is one of the most challenging AI problems in inductive theorem proving. The 
preceding discussion should render it obvious that a very demanding kind of specifiation 
and proof engineering seems indeed to be necessary for preprocessing, structuring and 
preparing inductive proof problems in such a way that they are "tractable by machine". 

4.2 Technical Aspects of Intelligent Proof Engineering 

Even in the case that a specification and verification problem has been carefully mod­
elled and structured the remaining proof tasks may be quite challenging. In fact, some 
proof-technical aspects and details have turned out to be crucial for practically successful 
verification with a system like UNICOM. These issues are discussed now. 

4.2.1 Improving Simplification by Using AC-Rewriting 

Originally simplification in UJVICO},;f was implemented essentially by ordinary rewrit ­
ing. As a consequence, the mechanical proofs of even simple inductive lemmas were 
often quite tedious and complicated, if not impossible, in particular for lemmas involv­
ing boolean and natural number reasoning. This problem was mainly due to the fact 
that the AC-properties of operators like 1\, V and + could not be mechanically exploited 
for simplification. The integration of AC-rewriting into UNICOM did indeed solve this 
problem. 13 An important practical aspect when incorporating AC-rewriting into the sim­
plication mechanism concerns so-called extension rules which are necessary to obtain an 
AC-simplification mechanism which is sufficiently general for practical applications. 

4.2.2 Non-Reducing Proof Simplification Steps 

According to the main theorem underlying completion based ITP (cL section 2) the essence 
of the method consists in assuring (ground) simplifiability of critical proofs obtained by 
overlapping definition rules into conjectures. The easiest way to establish this simplifiabil­
ity property clearly is to find rewrite proofs for the corresponding critical pairs by means 
of ordinary reduction to normal forms that coincide. A significant practical improvement 
resulting in an increase of simplification power is obtained by using AC-rewriting which 
can still be performed automatically. But even this enhanced technique does not solve 
the problem in all cases. The reason is that it is sometimes necessary to transform an 
intermediate result by applying a rewrite ru~e in the inverse direction in order to enable 
a next reducing simplification step. Currently such a kind of reasoning with non-reducing 
simplification steps cannot be performed mechanically by U/VICOM. In fact the diffi­
culties involved are quite obvious. From a theoretical point of view it has to be verified 
that the overall complexity of the constructed proof is smaller than that of the critical 
peak itself. And practically, the question arises when and how such non-reducing guessing 

l3In fact, our practical experience with UNrCOM based on numerous non-trivial examples has shown 
that in most cases more than 90 % of run time is used for reduction \inciuding matching which is the central 
operation performed during reduction). This was the main motivation for designing and implementing a 
new and efficient AC-matching algorithm (cf. [G088]) which is based on constraint propagation techniques. 

14
 

are indeed satisfied. Of course these properties have to  be kept in mind and may be used
when trying to  establish some verification condition of the main algorithm.

Whether an automation of such meta-level reasoning steps is possible (a t  least par-
tially) is one  of t he  mos t  challenging Al  problems in inductive theorem proving. The
preceding discussion should render i t  obvious t ha t  a very demanding kind of specifiation
and  proof engineering seems indeed to  be  necessary for preprocessing, s t ruc tu r ing  and
preparing inductive proof problems in such a way that  they are ”tractable by machine”.

4 .2  Technical  Aspec ts  of  In te l l igent  P roof  Eng inee r ing

Even in  t he  case that  a specification and verification problem has been carefully mod-
elled and structured the remaining proof tasks may be quite challenging. In fact, some
proof-technical aspects and  details have turned  ou t  t o  be  crucial for practically successful
verification with a system like UNICUM. These issues are discussed now.

4 .2 .1  Improving Simplificat ion by Using  AC-Rewri t ing

Originally simplification in LUVICOAA was implemented essentially by ord inary  rewrit-
ing. As  a consequence, t he  mechanical proofs of even simple induct ive lemmas were
often qui te  tedious and complicated,  if not  impossible, in part icular  for lemmas involv-
ing boolean and natural  number  reasoning. Th i s  problem was mainly due  t o  the  fact
tha t  t he  AC-propert ies of operators like A, V and + could not  be  mechanically exploited
for simplification. The integration of AC-rewriting into UNICOM did indeed solve this
problem.13 An  impor tan t  practical aspect  when incorporat ing AC-rewrit ing in to  t he  sim-
plication mechanism concerns so—called extension rules which are  necessary t o  obtain an
AC-simplification mechanism which is sufficiently general  for practical applicat ions.

4 .2 .2  Non-Reducing Proof Simpl ificat ion  S t eps

According to  the main theorem underlying completion based ITP  (cf. section 2) the  essence
of the method consists in assuring (ground) simplifiability of critical proofs obtained by
overlapping definition rules in to  conjectures.  The  easiest way to  establish th is  simplifiabil-
i ty  property clearly is t o  find  rewrite proofs for t he  corresponding critical pairs  by means
of ordinary reduction to  normal forms tha t  coincide. A significant practical improvement
resulting in an increase of simplification power is obta ined by using AC—rewriting which
can still be  performed automatically.  Bu t  even this  enhanced technique does  not  solve
the  problem in all cases. The reason is t ha t  i t  is somet imes necessary to  transform an
intermediate  result by applying a rewri te  rule in t he  inverse direction in order  t o  enable
a next reducing simplification s tep .  Current ly  such a kind of reasoning wi th  non-reducing
simplification steps cannot be performed mechanically by UNICOM. In fact the  diffi-
culties involved are quite obvious. From a theoretical point of view it has to be verified
that  the overall complexity of the constructed proof is smaller than tha t  of the critical
peak itself. And practically, the question arises when and how such non-reducing guessing

13In  fact, ou r  practical exper ience  w i th  UNZCOM based on  numerous  non- t r iv ia l  examples  has shown
that  in most cases more than 90 % of run time is used for reduction \ i nc lud ing  matching which is the central
operation performed during reduction). This  was the  main motivation for designing and implementing a
new and efficient AC-matching algorithm (cf. [GD88]) which is based on constraint propagation techniques.
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steps should be performed. To be precise it must be noted that the problem of verifying 
proof complexities already occurs when using AC-rewriting. Here we need AC-compatible 
reduction orderings I4 for ensuring theoretical correctness. Such orderings are currently 
not available in UNICO;\1.. Nevertheless by inspecting the proofs produced it can often 
be verified by hand that the relevant conditions are indeed satisfied. 

Summarizing one can say that in order to obtain simplified proofs (for critical instances 
of the main conjecture derived by the critical pair mechanism) the simple variant of al­
lowing only reducing, Le. complexity decreasing, computation steps is a sound one. But 
as soon as some steps are allowed to be non-reducing or even complexity increasing, the 
problem becomes much more difficult and requires intelligent heuristics because otherwise 
the search space grows dramatically. A careful analysis of the ordering restrictions easily 
shows that the only crucial steps for which a decreasing complexity has to be verified are 
the "inductive" ones, Le. those where already processed conjectures are applied. This 
fact corresponds nicely to the explicit ITP appro~ch where (sollnd) induction schemas 
and appropiately instantiated versions (induction bases and induction steps) of the con­
crete conjectures are computed and tried to be verified. Within this explicit induction 
framework the ordering conditions are in a sense compiled into sound induction schemas 
which also provide the available induction hypotheses explicitly. IS Verifying the base and 
induction steps is usually done in a purely deductive fashion 16 and no ordering restrictions 
have to be obeyed any more. 

4.2.3 Exploiting Simplification Indeterminism 

Another practically very important and subtle point concerning completion based induc­
tive theorem proving is the question of how to control the simplification process. Some­
times it may be the case that some conjecture can in principle be simplified to a trivial 
equation with an appropriate sequence of simplification steps (using definition rules, lem­
mas and already processed conjectures). But the given (explicit or implicit) simplification 
strategy returns with a non-trivial normalized conjecture. This phenomenon is due to the 
fact that the rules which are used for simplification do not constitute a confluent system 
in general. Whereas the confluence property usually holds for the set of definition rules 
(in most cases it is not only ground confluent but even confluent) it is in general violated 
if additional inductive lemmas and conjectures are taken into account. Hence it is very 
important to perform the simplification steps in an intelligent goal-directed way. One 
general heuristic which has turned out to be very useful in many examples and which is 
implemented in UNICOM roughly proceeds as follows. The rules available for simplifica­ > 

tion are partitioned into definition rules, inductive lemmas and the actual conjecture. The 

HCr. e.g. [Ste90). 
15 Note that this fact is closely related to a subtle, but important difference between explicit and implicit 

ITP. In the latter approach induction hypotheses are not provided explicitly but are available (after the 
corresponding conjecture has been processed, i.e. "covered") in a more general (compared to classical 
explicit ITP) generic form. This means that they may be applied as rewrite rules (or equations), i.e. 
in arbitrarily instantiated version, provided that the required ordering restrictions are satisfied. Note 
moreover, that this phenomenon is the main technical reason why we prefer the terms explicit and implicit 
induction. Clearly implicit ITP also performs an induction - and hence is not inductionless <!) - but 
w.r.t. a different well-founded ordering. This aspect has been clarified in [Red90] and [Gra90a). 

160f course, one may again use inductive reasoning in this deductive proof process if it turns out that 
there is no hope of success. From a more abstract point of view this case corresponds to nested induction. 

1.') 

steps should be  performed. To be  precise it mus t  be  noted t ha t  t he  problem of verifying
proof complexities already occurs when using AC-rewriting. Here we need AC-compatible
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in general. Whereas the  confluence property usually holds for t he  se t  of definition rules
(in most cases it is not only ground confluent but even confluent) it is in general violated
if additional inductive lemmas and  conjectures are taken in to  account .  Hence i t  is very
important  t o  perform the  simplification s teps  in an intelligent goal-directed way. One
general heuristic which has turned out to be very useful in many examples and which is
implemented in UNICOM roughly proceeds as follows. The rules available for simplifica-
tion are partitioned into definition rules, inductive lemmas and the actual conjecture. The
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highest priority for simplification is assigned to the conjecture itself which corresponds 
to the intuition that an induction hypothesis should bl: applied as early and as often as 
possible. Next it i:, checked whethl:r a lemma can be uSl:d for simplification. If this is 
not possible, either, then it is attempted to apply a definition rule for one of the function 
symbols involved. Moreover, the available lemmas are ordered decreasingly with respect to 
their estimated importance. Of course, this heuristic which in a sense is still rather crude, 
might be refined in various ways, e.g. by allowing nested priorities or, more generally, by 
means of a dynamic and context-dependent priority mechanism. But it is obvious that it 
would become much more complicated and moreover, it is by no means clear how to do 
this in a non-trivial and adequate fashion. 

4.2.4 How to Choose Inductively Complete Positions 

For a given inductive conjecture UNICOM computes all positions which are inductively 
complete. Le. suffice for constructing critical pairs. Depending on a system parameter 
either all corresponding proof attempts are then automatically developed in parallel or the 
user is asked to choose one for continuing. \Vhereas the fully automatic variant proceeding 
in parallel and performing conceptually independent proof attempts is theoretically quite 
elegant, it usually causes severe efficiency problems in practice. In many cases certain 
inductively complete positions are completely inappropriate for the intended goal whereas 
other choices seem to be more promising. 

Within the framework of classical inductive theorem proving a lot of work has been de­
voted to recursion analysis for finding appropriate induction terms and induction schemas 
for a given conjecture (cf. [BM79]. [Bun88]). We are convinced that such a sophisti­
cated analysis can be carried over to the completion based approct.ch and provide useful 
heuristics for supporting or even automating crucial steps li ke an intelligent selection pro­
cess for inductively complete positions. But the details concerning this transfer of results 
and techniques from classical inductive theorem proving into our context still have to be 
worked out.17 

4.2.5 Handling Conditional Reasoning 

\ViLhin the presented example of sorting by merging conditional reasoning is clearly im­
portant. Our decision to model conditional properties and actions by encoding via ternary 
if-then-else operations was mainly motivated by pragmatic reasons. First of all there still 
exist various severe theoretical and practical problems concerning rewriting and comple­
tion techniques for proper conditional systems. And secondly, we actually wanted to find 
out what can be achieved within the purely equatlOnal approach when using a powerful 
implementation incorporating various refinements and optimizations of the basic method. 
And indeed, by making extensive use of numerous basic schematic properties of if-then­
else operations encouraging experimental results have been obtained. Nevertheless there 
seems to be a growing consensus nowadays that for many problems a properly conditional 
approach separating the condition from the conclusion part would be more adequate and 

17 In order to gain more insight into the problem and practical experience we are currently implementing 
(and integrating into UNTCOM) a first prototype version for handling this problem which is partially 
based on the analysis described in [BM79] for the explicit ITP approach. 
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natural. Further research is needed to developed a tlworetically well-founded and practi ­
cally applicable extension of the underlying rewriting, simplification and completion tech­
niques for properly conditional systems which is specialized to inductive theorem proving. 
Some encouraging progress along this line of research has already been achieved, e.g. in 
[Gan87], [KR90], [BG90], [Wir91], [WG92] and [GS92]. But successful and widely appli­
cable running systems are still lacking. 

Problems and Perspectives 

In the following we shall summarize some of those problems ansmg in (rewriting and 
completion based) ITP which seem to be the most important ones for future work, both 
from a theoretical and a practical point of view. Moreover, we discuss existing approaches 
or at least ideas for tackling these problems. The main problems .to be solved include 
among others the following topics: 18 

(1)	 Non-Terminating Base Systems and Non-Free Constructors 
The theoretical foundations of the approach presented in section 2 rely on the as­
sumption that the base system with respect to which olle wants to prove inductive 
theorems is terminating (and ground confluent). This assumption is indeed veryof­
ten satisfied in practical examples. But there are also interesting applications where 

\ 

this property does not necessarily hold, e.g. for some natural specification of sets. 
As already mentioned one possibility in such cases often is to reason modulo the non­
terminating part of the specification (e.g. AC-axioms). First encouraging results in 
this direction have been obtained in [JK86]. One severe problem here is the fact 
that the accordingly generalized property of inductive reducibility modulo some set 
of equations becomes undecidable in general. And e\'en for decidable subcases the 
efficiency of decision algorithms is still a problem. Concerning decidability and effi­
ciency questions the problem of non-terminating base systems also exists for classical 
explicit ITP methods (when trying to compute and verify soundness of induction 
schemes). 

Another very difficult problem arising in both implicit and explicit ITP approaches 
has to do with the tj' pe of constructors used. In almost all running systems the 
constructors are assumed to be free, i.e. there are no relations between constructor 
terms. Even stronger, a rather restrictive form of constructor discipline is usually 
required for defining new functions (cf. e,g. [BM79], [Gra89]). The main reason for 
such strong (syntactical) requirements are essentially twofold. Firstly, the problem 
of verifying well-definedness (in particular consistency, termination and complete­
ness) of newly introduced defined functions becomes much simpler.19 Secondly, the 
computation of sound and operationally feasible iiHluction schemas (in explicit ITP) 
or inductively complete positions (in implicit ITP) is greatly simplified, too. 

18\\'e omit here the more technical but nevertheless important problem of when and how additional 
inductive knowledge should be (automatically) generated. For more details concerning this problem of 
lemma generation and generalization techniques the interested reader is referred to e.g. [BM79], [TJ89], 
[Lan89], [Gra89) and [Ave91). 

19But note that even under such strong restrictions as mentioned these problems are still very hard or 
even undecidable. 
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“Bu t  note tha t  even under such strong restrictions as mentioned these problems are still very hard or
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(2)	 Incorporating Domain Specific Knowledge and Methods 
In some applications the general approach of pure eq uat iOllaJ reasoning may be too 
crude. For instance, boolean or logical reasoning should lIot be performed by means 
of equational encoding but by appropiate built-in mechanisms or by using a mure 
general formal language like first order logic with equality (cL (3) below). More­
over, it may be the case that depending on the domain of interest and the type of 
application additional domain specific knowledge and methods, e.g. special decision 
procedures, are available. Although this specific knowledge and the corresponding 
methods can in principle be formulated equationally this may be inadequate or ineffi­
cient. Consider for instance polynomial arithmetic or systems of (linear) inequalities. 
Various specific techniques and algorithms for these fields are well-known and should 
be used. Thus, a combination of the general equational approach with other tech­
niques better suited for particular cases seems to be useful alld promising. 20 For the 
theoretical foundation and practical realization of this combination and integration 
of different methods a lot of work still has to be done. 

(3)	 Enriching Expressive Power 
A natural formalization of many specification and verification problems often re­
quires more than pure equations. In most cases this is not a principal problem but 
rather a question of adequacy. For example one may consider order-sorted or condi­
tional equation systems or even full first-order logic for that purpose. Although some 
substantial progress within these fields has been achieved in the last years (cf. e.g. 
[BC91], [GS92], [Wir91], [WC92]) many theoretical and practical problems remaih 
open, in particular concerning verification tasks, e.g. inductive theorem proving. 
Another kind of enriching expressive power consists in allowing parameterized spec­
ifications which should permit to perform a kind of parametrized verification. Thus 
one might be able to prove correctness of generic specifications and algorithms pro­
vided the actual parameters satisfy certain restrictions. Some considerable progress 
in this direction has been achieved but mainly concerning the specification and pro­
gramming language aspects and not so much with resp('ct to verification methods 
(but see [Kir91], [Bec92]). This is reflected in practice by the lack of corresponding 
running systems with powerful and (at least partially) automated :TP components. 
A severe obstacle may also consist in the fact that a precise theoretical understand­
ing of the kind of model"semantics underlying the intended notion of inductive proof 
is not yet clear enough (cL e.g. [Zha88]' [KM87]). 

(4)	 Proof Organisation and Control 
From a practical point of view we think that the most important problem consists 
in improving the whole specification and proof engineering process. The theo­
retical foundations, the technical possibilities (e.g. inference rules) and the degrees 
of freedom in rewriting and completion based ITP have been well-understood and 
clearly worked out. The remaining practical problem is to exploit this knowledge 
for constructing powerful, flexible and widely applicable software envirohments for 
specification and verification. \Ve consider U/I/TCO.\1. as well as some other sys­
tems as a first promising step towards this challenging goal. Possible and necessary 

20See e.g. [BM88], where the authors discuss the integration of a decision procedure for a fragment of 
linear arithmetic into their ITP system. 
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improvements include better Illl:'anS for organizing, structuring and controlling the 
whole proof process. For instance meta-levels and conc('pts for formalizing strategies 
and heuristics are necessary (cL e.g. [Bun88], [IJvHSI90]. [IIut90], [Nip89]). This 
is a very challenging task, since looking at the literature, a widely shared consensus 
about an adequate and sufficieutly precise terminology in this field currently does 
not exist. Notions like heuristics, strategies, tactics, plans and methods are used in a 
rather informal and vague style. But probably this is not very surprising because the 
problems involved are very hard. Summarizing, we think that a lot of conceptual 
research and clarification concerning the adequate notions and levels of reasoning 
still has to be done here. 

(5)	 System Support 
Further important practical and lower-level aspects concern refined techniques for 
constructing, managing and using large knowledge-bases. Moreover, a comfortable 
user-interface and refined techniques for extracting and representing human- oriented 
relevant information would considerably support the overall engineering process.21 

In particular, this includes a well-designed control and interaction language together 
with a flexible and realistic conceptual model of interact ion between a more or less 
competent human user (as specification and proof engineer) and the machine assis­
tant providing as much mechanical support as possible. 

The general concept underlying such a system should ideally take into account a 
couple of facilities/features which - for human oriented reasoning - are very useful, 
in particular: 

•	 Logging features: e.g. a flexible trace facility, script files for batch mode and 
reproducing proofs, filters for specifying how detailed a log should be. 

•	 Navigation facilities: Using an abstract proof search tree as underlying abstract 
data structure, means for backtracking, undo facilities, arbitrary navigation 
within proof search trees and focussing mechanisms should be available in order 
to facilitate proof management. In particular, the user should be enabled to 
obtain complete control over any single step if (s)he really wants to have it. 22 

•	 Relative proofs: Adequate abstracti"n and structuring mechani<;ms for verifica­
tion tasks should be provided allowing e.g. high-level reasoning w.r.t. (not yet 
proved) assumptions. Such features constitute a necessary step in the direction 
of intelligent knowledge-based proof planning techniques. Of course, any step in 
this direction would entail a couple of theoretical and practical complications, 
e.g. a much more complicated data and knowledge-base management and the 
related question of how and when to guarantee or obtain consistency again. 

•	 Comfortable user-interface: Clearly better means for communication and I/O 
including e.g. graphical representations as well as other useful interface features 
should be provided. 

21 For instance, one might think of designing and using specially adapted forms of hypertext systems as 
it has been tried e.g. in [KMN91]. 

22This would mean that the corresponding fTP system exhibits a (more or less) complete transparency 
of its internal behaviour. 
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improvements include better means for organizing, structuring and controlling the
whole proof process. For instance meta-levels and  concepts  for formalizing strategies
and heuristics are necessary (cf. e.g. [BunSS], [BvllSlQO]. [llut90], [Nip89]). This
is a very challenging task ,  since looking a t  t he  l i terature ,  a widely shared consensus
abou t  an  adequate  and  sufficiently precise terminology in this  field currently does
not exist. Notions like heuristics, strategies, tactics, plans and methods are used in a
rather informal and vague style. But probably this is not very surprising because the
problems involved are very hard. Summarizing, we think that  a lot of conceptual
research and  clarification concerning the  adequate  notions and levels of reasoning
still has to  be  done here.

(5 )  System Suppor t
Fur ther  impor tan t  practical and  lower~level aspec ts  concern refined techniques for
constructing, managing and using large knowledge-bases. Moreover, a comfortable
user-interface and refined techniques for extracting and representing human- oriented
relevant information would considerably suppor t  t he  overall engineering process.21
In part icular ,  th i s  includes a well-designed control  and  interaction language together
wi th  a flexible and  realistic conceptual  model of interaction between a more o r  less
competent  human  user (as specification and  proof engineer) and  the  machine assis-
tan t  providing as much mechanical suppor t  as  possible.

The  general  concept underlying such a sys tem should ideally take in to  account  a
couple of facilities/features which - for human  oriented reasoning — are very useful,
in part icular:

o Logging features: e.g. a flexible trace facility, script files for batch mode and
reproducing proofs, filters for specifying how detailed a log should be.

0 Navigation facilities: Using an abstract  proof search tree as underlying abstract
da ta  s t ruc tu re ,  means  for back t r ack ing ,  undo  fac i l i t i es ,  a rb i t r a ry  navigation
within proof search trees and focussing mechanisms should be available in order
to  facilitate proof management. In particular, the user should be enabled to
obtain complete control  over any single s t ep  if ( s )he  really wants  t o  have it.22

. Relative proofs: Adequate abstraction and structuring mechanisms for verifica-
tion tasks should be provided allowing e.g. high-level reasoning w.r.t. (not yet
proved) assumptions. Such features constitute a necessary step in the direction
of intelligent knowledge-based proof planning techniques. Of course, any step in
th i s  direction would entail  a couple of theoretical and  practical complications,
e.g. a much more complicated da ta  and knowledge-base management and the
related question of how and when to  guarantee  o r  ob ta in  consistency again.

o Comfortable user-interface: Clearly better means for communication and I /O
including e.g. graphical representations as well as other useful interface features
should be  provided.

21For  ins tance ,  one  might  t h ink  of des igning and  us ing  special ly adapted  fo rms  of hyper tex t  sys tems as
it has been tried e.g. in [KMNQI].

22Th i s  would mean tha t  t he  corresponding ITP sys tem exh ib i t s  a (more  o r  less) complete  transparency
of i ts  internal behaviour.
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6 

In recently implemented modifications of UN"ICOA1. some of these aspects, in par­
ticular concerning better log and trace features, navigation facilities as well as user­
interface improvements, have been taken into account. But a lot of conceptual and 
practical problems remain open. 

Conclusion 

We have given a brief summary of implicit (rewriting and completion based) inductive 
theorem proving. The central ideas and some of the most important operationalization 
issues have been pointed out and discussed. Moreover, a brief comparison of explicit and 
implicit ITP techniques has been presented. In particular, some arguments against and 
advantages of the implicit ITP approach have been clarified. 

Concerning practical applications central conceptual and proof-technical aspects have 
been pointed out and exemplified. Moreover, the viewpoint of inductive theorem proving as 
a challenging specification and proof engineering task has been developed and discussed. 
Resulting and remaining problems and some perspectives which we think are the most 
important and promising ones have been sketched. 

Clearly, the nature of this discussion has been rather abstract. But nevertheless we 
hope that these considerations may contribute to a better understanding of what future 
g<..:neration systems for inductive theorem proving should and could look like. 

Acknowledgement: I would like to thank Ulrich Kiihler for useful hints and detailed 
criticisms on a draft version of this paper. 
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