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Abstract

The Knuth-Bendix Algorithm (KBA) is not able to complete term rewriting
systems with cyclic rules such as the commutativity. This kind of rules
cause cycles in a reduction chain. This problem may be solved by an
extension of the KBA for globally finite term rewriting systems. For a
globally finite term rewriting system, cycies may occur in a reduction
chain, but for each term there is only a finite set of reductions. A
confluent and globally finite term rewriting sytem R provides a decision
procedure for equality induced by R:

Two terms are equal iff there is a common term in their reduction sets.
This extension requires new methods for testing the global finiteness and
a new confluence test, because local confiuence does not imply global
confluence for globally finite relations. In this paper we give a theoretical
framework for this extension. We will show how this theory can be applied
to term rewriting systems, if we are mainly interested in the initial

algebra which is induced by the set of rules.



Notation and Basic Definitions

We assume familiarity of the reader with the basic proofs and results of the Knuth-Bendix
Algorithm (e.g. [HU 771, [HO 80], [KB 70]).

We denate by:

Y
F=C®D

t

T

61

CT

CoT

u,v,w

o(t)

v(t)

xX—B 3 —d

S

b4

R

t—’R t

t—ﬂ-oR t
* ’

t——rRt

"

R
H 6

Definitions

sel of variables

sat of function symbols, which may be splitted into constructors C and
defined functions D

terms constructed by symbols from ¥ and F

set of all terms constructed by symbols from Y and F

set of all ground terms constructed by symbols from F

set of all constructor terms constructed by symbols from ¥ and C
set of all constructor ground terms constructed by symbols from C
occurences in terms

set of all occurences of {

set of all variables of {

rewrite rules
substitutions

set of all substitutions
set of rules

t is reducible in onie step to t" by R

t is reducible in n stepsto t" by R

t is reducible in a finite number of steps tot"by Ror t = t°
symmetric closure of —

transitive closure of i

H4p, restricted to ground terms

tislinear, iff: V xe V(t) :V u,veO(t):t /u=xAt/v=x==du=v
Averiable x is linear insterm t, if: VY u,veO(t):t /u=xAt/v=xmmpu=y
A rule is lineer, §ff the left hand side of the rule is linear.

R is terminating, iff for any term t, there is no infinite reduction chain derivable from t.
R is globally finite, iff for any term t, the reduction set of 1 is finite.

Risconflusnt, iff: ¥ t,t; o t"ap A tSap to = 4, Zap Aty Fap b

R is locally confluent, iff: ¥/ t, 4, 5 t—ap ty A t—p t=b3 1, L’R VA [2_"_,R v

Aterm t is in R-normal form, iff: ¥ t": tL»R {V=pt=1

Aterm t is in R-normal form modulo cycles, iff: V 't -2op t =t 2o t

For this paper we assume further, that no left hand side of a rule consists of 8 single variabla.
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(1) Introduction

During the completion of term rewriting systems, the Knuth-Bendix Algorithm creates
sometimes critical pairs which can not be directed to terminating rules (cyclic rules). For

exampls, if we complste the following set of rules, the commutativity axiom is created &3 a
critical pair:

(R1) 1(1(x.y).2) — f(x,M(y,2))
(R2) (0 x) —x
(R3) 1(x,0) = x
(R4) f(xx)—0

After a few completion steps the Knuth-Bendix Algorithm (KBA) crestes the commutativity
from this set of rules and stops with fallure.

If we want to complete systems with cyclic rules, we have to extend the Knuth-Bendix
Algorithm. There are two ways for this extension:

(i) Sepsrate the cyclic rules from the term rewriting system and perform reduction steps on
equivalence classes which are created by these cyclic rules. This extension preserves the
finite termination property but in general reguires & unification algorithm for the
equational thecry induced by the cyclic rules (e.g [JK 84]).

(ii) Drop the finite termination property and extend the KBA for globally finite term rewriting
systems. This extension requires methods for proving the global finiteness of term
rewriting systems and for proving the confiuence of a globally finite term rewriting
system.

Here we will discuss how the global finiteness of a term rewriting system can be proved by weoek
term orderings. Then we will give confluence properties for arbitrary globslly finite relations
and apply these results to term rewriting systems for proofs in the initial algebra.
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2) Proving t 1 finiteness for term rewriti ms

A giobally finite term rewriting system R defines a breordering on the set of terms 2 where the
set{t' |tz t' }isfinite for all termst:

t2 t «-»:tl»Rt'

Therefore, we may prove tha globsl finiteness of a term rewriting system R by using such 8
preordering 2 : ;

(V {, U t—p U=3 t2't) = Rglobally finite

For a test which bases on comparing left hend sides &nd right hand sides of rules, the ordering
has to satisfy more properties:
(2.1) Definiti
Let 2 be a preordering on terms (2 is reflexive and trensitive). Then > is a week term
ordzring, iff:

-Vt An: |{t[t2t H<n

VLUV Stz t=p8(t) = 6(1)

(2.2) Theorem
Let R be & term rewriting system and 2 a weak term ordering. Then R is globally finite, if for
every rule — f§ from R 2 B holds.

Proof
first we will prove; t—bR e t2

t—pt=s Jx—PeR:t/u=6(c)At =t[ue6(p)]

withaz p:

=»6(x) z 6(P)

m=H t [ue 6(X)] 2 t[ue6(P))
=5t t

with the transitivity of 2 we gst :
(o =t t

and because { t'| t2 t } is finite for any term t then { t| tioR t" } isalso finite
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This kind of orderings can be created by combinig a classical term ordering> anda omgruence

~ on terms, if the relation ~ is compatible with the ordering > . The next defintion gives the
classical axioms for a term ordering:

(2.3) Definition

Let » be a strict ordering on terms ( > is {rreflexive, asymmetric and transitive) with:
(1) > 1s well founded
(VL 2 = tuet] 2t[uet))
(3)VLU: V6 1>t =6(t)>&(t)

Then» is a term ordering

(2.4) Lemma
Let > be a term ordering and ~ 8 congruence on terms with:

(V1 tg: (L vAt>ts) = t> 1,
(2)V t,t,tx: (4> A~ t3) =t >ty
AV, V6t ~t,=>6(t)~e(t,)
(Vv t:IAn:[{]t~t}<n

and we define the relation 2 as :
et~ ¥ 4L,

Then 2 is a weak term ordering.

Proof
~ 2 reflexive

t~t = t2t (~ congruence)

- 2 transitive
hzhLALEY
(1) UybLAty =t >t =t 2ty (1)
() AL~z =t >ty =t 2ty (2)
(Iv) tothaty >ty =t >ty =i, 2ty ( » tronsitive)

-Vt3An: Uitz }<n
(U]tzt) = (| r}u{t]t~t]} (definitionof2)
Sinca{t"|t>t" }and { t'| t~ t" }arefinite, then { t"| t2 "} is finite

-VHLU: tzt=ptuet] 2t[uet]
(1) Ot =ptluet] d>tfuet] mptiuet] 2t{uet] (> term ordering)
(i) t~tsptluet] ~tlue-t]sptluet] 2t[uet] (~ congruencs)

-VLU VSt Umda(t) 2 6(1)
(1) O Ur=»6(t)>6(t)=sa(t)26(t) (>term ordering)
(1)  t~ tU==p6(1) ~ &(1) =p6(t) 2 &) (3)
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Hers are two examples of orderings, that cen be extentad by a congruence:

- Length Ordering
t> U e=d: int" are less symbols than in t and every variable occures fewer {imes in t” than In t

t~ t"ée=»:int andt are the same number of symbols and every variable occurs in both terms
ot the same number of occurences

- Recursive Path Ordering
t> t = t>ppn tas defined in [DE 82)

t~ t" &= weget t from t by the permutation of arguments

For the confluence test in chapter 4 we have to distinguish between cyclic and reduction rules. If
we apply a reduction rule to a term t and get & term t” as the result, then t 1s no longer in the
reduction set of t". After applying a cyclic ruletoaterm t, t is still derivable from the result of
the application. Therefore, 8 reduction rule decreases the size of a term in some term orderir:,
where a cyclic rule preserves the size of a term. The next lemma shows, how 8 glcbally finite
term rewriting system can be splitted into cyclic and reduction rules by using a term ordaring

(2.5) Definition
Let R be a globally finite term rewriting system.

- Arule — B from R is a reduction rule, iff:

VLU VE:t/u=6() At =t[u+6(p)] ==t Tppt
- Arule — B from R is acyclic rule, iff:

VLt V6 t/u=6(x) At =t[ue—6&(p)] =5t =spt

(2.6) Lemma

Let R be a globally finite term rewriting system end a wesk term ordering with:
() Vax—per: x2p
(2) (Ht &=: tzt'A at"2 t)=>)> isaterm ordering

Then:

- X — f €R Isareductionrule, fX 2 Pfand 2«

- — B €R Isacyclic rule, Ifff oy «

Note:

- condition (2) is satisfied, if 2 is crested by combining a term ordering and a congruence

- if these tests cannot be applied for a rule  —» P € R, then we may force this rule to be
cyclic by adding —  to the rule set, if B 2 o holds.

Proof

(1) ~pz holdsfor x — B €R
Assume: 3 t, t*: t—’{a__’ﬁ}rﬁ l"L’Rt
=pt’ 2zt ALZ Y
but with- 8 > ot and (2) weget 1> t':
=21 ¢
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(1) (==sp)
Since we may derive P from < by the rule & — B, this case is obvious
( )
t—’{«__,p} tedJu: t/u=6(x)At =t[ue6(B)]
withp op o :

= 6(p) *p 6(xX)
=t [ue-&(B) ] g t[u+6(x)]
=t Lap t
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(3) Confluence Properties of Glohally Finite Relations

In this chapter we discuss confluence properties for arbitrery relations, which are not
necessarily induced by term rewriting systems.

The local confluence test which doss imply the confluencs of a terminating relation, cennot be
applied for globally finite term rewriting systems. Let us consider Lhe following exemple:

SN

a o]

This globally finite relation is locally confluent but not confluent.

Therefore, we need a stronger property which implies the confluence of globally finite relations.
This stronger property hes {0 prove, whether from all exits of a cycle, we can reach the same
element.

Let R be a globally finite relation. R 1S locally confluent modulo cycles iff:

. 7 & | . -
’ -, * v " | ] .

- e PR MR o e
- - -

Y- ity
/Fﬁ"--. _______ ""Il\
LN LY
~ rd
N /s
N 7/

N\ ’

N A
N v
R 7
83 /

Fig. 3.1 Local Confluence Modulo Cycles

Let R be a globally finite relation. R is globally confluent, iff R is locally confluent modulo
cycles.

Proof

(=) obvious
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(4=) This case can be proven by induction on the number of dsrivable elements from an
glement t.

Since the base case is obvious (no element is derivable from t), we will shortly sketch the
induction step. Assume that t, and t, sre derivable in &n arbitrary number of steps from t. If t

is in the reduction set of t; (1,), then t; (t,) can be reduced to t, (t;). In the other cass there
are terms tyy, tyo, oy, try on the reduction chain to t; and t, , wheret is in the reduction set
of ty,8nd t,, but not in the reduction set of t{, and t,,, thereby ty,, {5, can be derived in one
step from t;, and t,,. Then, less elements are derivsble from t,, and t, then from t, and we

get:

tyqe Y24
4 loc. confl. Y
v mod. cycles 22

N 4 b

’
N /’ N

s < . %
2 S k

& N
ty"  ind. hyp. tg ind. hyp. t2

Unfortunately, the local confluence modulo cycles cannot be proven by a simple test, because the
cycles may be of arbitrary size. In general, the confluence of globally finite term rewriting
systems is not decidable [NM 84]. Therefore, we have to Tind stronger properties, which are
sufficient but not necessary for proving the confluence property.

In[JK 84] the coherence property is introduced for proving the confluence of equational term
rewriting systems. The results of this paper can be carried over io globally finite term
rewriting systems.

Let R be a globally finite and coherent reletion. An exit element e of a cycle in R is an element
where another element e’, which is not member of this cycle, is derivable in one step from e.
Then, all elements of a cycle with at least one exit element have to be also exit elements.

The next definition introduces two coherence properties:

(3.3) Definition
Lst R be a globally finite relation.

- R is coherent iff:
s *
- - > - - x - x ~
=3 AL TR LA S Ay S ot
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- R is locally ceherent iff:
Vit hit—piat— pthaty B ptay St

-
" -b‘

-

VARG

Fig. 3.2 Local Coherence
For confluent relations, these two properties are eguivalent:

(3,4) Lemma
Let R be a globally finite and confluent relation. R is coherent iff it is locally coherent.

The proof of this lemma can be done by induction on the minimal number of steps between two
elements from a cycle. The next diagram sketches the induction step for this proof:

/t ——————————————— »o—> tz\
1ER l loc. coher. t'z
Vs ind. hyp. ty o
\‘\ ,’J ‘\Jk,

s .7 confl. /,1'4
] IL/ ,’I
t'2 //

\xt’kl

Fig. 3.3

(3.8) Theorem
Let R be a globally finite relation. R is confluent, if R is locally coherent and locally confluent.
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Proof
We prove this theorem by induction on the number of derivable elements from an element t

(induction 1). The base case is obvious (no elements are derivable from t). For the induction
step we assume, thet t, and t, are deriveble from t. If t is in the reduction set of t, or t, this

completes the proof. Otherwise there are terms t,,, t;5, t,and b5, where t;;, t,,are in the
same cycle s t, ty, and t,, are not in the cycle of t and ty,, t, are derivable in one step from
ty18nd t, . For the proof of this case, we need another induction on the mininal number n of
derivation steps between t;,and t,:

D At At o Ay L It AL, b
The proof for the base cass, where t ;= t,, is given by the following diagram end ths induction
step by the next diagram:

t
I
[}
b <
tyy =ty
l/](J(Z.\'t
E‘Z\ confl. ,22\
R Nk .
Ve t'o . \\
Sind. (1) - oind (1) Y,
k /, b Y
t' ,, \\ t2
\j ,’ \_v ,/
v ind. (1) o
ﬂt,k
W1 — - eee - - 21
/ Tocal \I \u
,,112\ coherence 10 t22
t “ i : induction 5
k. .0 hypothesis (2) 15
. induction N, o
» hiypothesis (1) 1y -
S T
\\ (2
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A globally finite and confluent relation is not necessarily coherent, therefore we may find
weeker properties for provingthe confluence. A completion procedure with a weaker confluence
test might create less rules than a completion procedure which requires the coherence property.
On the other hend, a completion procedure needs en efficient algorithm for reducing terms. If we
do not went to traverse all elements of a cycle during the reduction of an element, we need the
coherence property for this relation.

In the next defintion, we split a globally finite relation R into a cyclic subrelation C(R) and a
reducing subrelation R(R). Then we will prove, thet for confluent and coherent relations R, it is
sufficient to uss the subrslation R(R) for reducing an slement t.

(3.6) Definition
Let R be a globally finite relation. The reducing subrelation R(R) and the cyclic subrelation
C(R) of R are defined as follows:

t—pry ¥ &3 t—pt A t'—‘th
- - s B

Note:
-R=C(R) VR(R)
- R(R) is terminating

Now we will prove, that it s sufficient to use R(R) instead of R for reducing terms.

(3.7) Lemma
Lat R be a globelly finite, coherent and confluent relation. An element t is in R(R) normal form,
iff t is in R normal form modulo cycles.

Progf

(=) obvious

( =)

proof by contraposition:

t is not in R normal form modulo cycles

= At tB oAy B ptadty iy —pthat, et
(there fs an element t,, below this cycle)

=33t t—p At oot (Rcoherent)

- t—> R(R) tll

== { is not in R(R) normal form

Let R be a globally finite, confluent and coherent relation.
Then:

¥ t,t': t-2ap A tis in R normal form modulo cycles == t4 R(R) —‘-»C(R) t

Proof

td R(R) is in R(R)-normal form

== t$ R(R) i3 in R normal form modulo cycles
with t s an R-normal form modulo cycles of t:
=5 thR(R) Loyt (Reonfluent)



Completion of globally finite term rewriting systems for inductive proofs 1R

Now, we will spply the results of chepter (3) to term rewriting systems. Unfortunately, the
coherence property seems {o be too restrictive for arbitrary term rewriting systems. For
example, if we spply acyclic rule to a subterm which can be matched by a nonlineer variable of
a reduction rule, the reduction rule cennot be epplied to the result of the epplication of the
reduction rule. The cyclic rule can be applied in arbitrary depth of the term, therefore the tarm
rewriting system cannot be made coherent by adding a finite set of rules.

Example
(1) 1(x,I{x)) —0

(2) 1(x,y) = 1(yx)

f(h(f(a,b) ), J(h(f(a,b)))) — f(h(f(b,a) ),I(h(f(a,b)))) with(2)
— 0 with(1)

In fact, rule (2) can be applied in arbitrary depth of a term which can be matched by the left
hand side of rule ( 1):

(W(fCa.b) )IChN((a b)) — f(h(f(b.a) ).I(h"(f(a,b)))) with(2)
— 0 with(1)
forn=1,2,3,...

There are several approaches to solve this problem:

- consider only term rewriting systems with Yinear rules [HUE 80]:
If rule ( 2) were linear, then it can still be applied to f(h(f(b,a) ),I(h(f(a,b)))):

f(h(f(b,a) ).I(h(1(8,b)))) — 0 with: 1(x,I(y)) —0

Problem:
Many interesting problems require nonlinear rules

- Theory matching where the equational theory is generated by the cyclic rules [LB 77],
[PS81],[UK 84]

Problem:

For the computation of critical pairs a unification algorithm for the cyclic rules is
necessary, but currently only few unfication algorithms are known, another problem is,
that theory matching is NP -hard for neerly any interesting theory [KA 85]

- find a weeker property which implies confluence [60 83]

Problem:
A term cannot be reduced only by the subrelation R(R), therfore we have to traverse the

cycles. The length of the cycles depends on the length of the terms and the cyclic rules. For
example: The number of elements in a cycle of a term t containing n commutative
symbols, and where the commutativity is the only cyclic rule, is 2".

in this paper we present another approach, which can be applied for proofs in the initial algebra
(inductive proofs). An equation & = f is inductive derivable from a set of equationsE, if 0 = f§
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holds in the initial algebra of E. This fact is provable by a congistency proof, the equation & = f

holds in the initial algebra of E, if E U & = [ does not identify more ground terms than E
[MU 80], [HH 82]. For this mathod we will split the st of function symbols into defined
functions and constructors. All constructor ground terms represent the elements from the
domain and codomain of the defined functions. Every defined function should be complstely
defined in E, this means for every ground term {, there is a constructor ground term {’, which
is equal 1o t in the theory of E. We call a set of equations E consistent, iff all different
constructor ground terms are not equal 1n the theory of E.

Here, we define a completeness end consistency property for term rewriting systems. A term
rewriting system R is complets, iff every ground term is reducible to a constructor ground term
by R. R i3 consistent, iff all constructor grond terms are in R-normal form. For 8 confluent
term rewriting systsm R, the completeness (consistency) of R is equivalent to the completensss
(consistency) of the equational theory induced by R.

(4.1) Definition
Let R be a term rewriting system.
- R is consisient, iff:
VW t: 1€ COT == { is in R-normal form
- R is complete, iff:
Vi teoT==pIt "0 p At €COT

Nots:
The completeness as defined here is different from the completeness of a term rewr iting system

R after epplying the Knuth-Bendix Algorithm to R. In this paper we will use the meening of
Definition 4.1 for the completeness property.

The consistency test for a term rewriting systems is simple, it only has to be checked whether
no left hand side of a rule is a constructor term. Then, no rule can be epplied to a constructor
ground term. The completeness of a terminating term rewriting system can be praven by the test

of Kounalis [KO 85]. This test checks, whether every term of the form f(t,,... t ), wherefis
adefined functionend ty, . . . ., are constructor ground terms, is reducible.

With these tests and the Knuth-Bendix Algorithm, we may try to prove, that a set of equations E-
holds in the initial algebra of another set of equations E by the following method

(1) Trensform the equations from E into rewrite rules and complete them by the Knuth-Bendix
Algorithm.

(2) Check the consistency and the completeness of the confluent term rewriting system, if it is
inconsistent or incomplete stop with error.

(3) Add the equations from E” as rules to the term rewriting system and complete this extended
set of rulea by the Knuth-Bendix Algorithm

(4) Check the consistency of the extended term rewriting system, if R is consistent, then E
holds in the initial algebra of £, otherwise there are equations in E” which do not hold in the
initial algebraof E.

The completeness test for this method works only for terminating term rewriting systems, but
hers we are interested in globally finite term rewriting systems. In the next lemma ,we will
prove, that under certain conditions, it is sufficient to use the reducing subrelation for the
completeness test. We get this reducing subrelation by splitting the set of rules into cyclic and
reduction rules, as described in chapter 2.
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(4.2) Lemma

Let R be a globally finite term rewriting system with:
- R is confluent and coherent
- R is consistent

- R=CR® RR, CR are cyclic and RR are reduction ruies
Then:
R is complete €= RR is complete.

Proof
()
This direction is obyious, sinca RR is a subset of R

(b))
teOT=mp It : tL»R tAt€CoT (R complete)

== t"isinR - normal form (R consistent)
= t4RREsnt” (R coherent & confluent, Lemma 3.8)

= '3 t4RR  (CRoyclic rules)
= t =tdRR (t is in R - normal form)

Now we will define a weaker relation —» on terms, where the varisbles from the left hand side
of a rule cen only be replaced by constructor terms (Definition 4.3). This restricted relstion
creates the same congruence on ground terms as the clessical relation (Thoerem 4.5). For
consistent term rewriting systems, a rule cannot be applied to a subterm, which can be matched
by a varisble from another rule. Therefore, the coherence property may also hold for term
rewriting systems with nonlinear rules. Theorem 4.7 gives a critcal pair test for the local
confluence and the local coherence of the relation —» .

(4.3) Definition

Let & be a substitution, ¥ & set of Yeriablesand F = C® D a set of functions, which can be

splitted into defined functions D and constructors C. We call 6 a constructor substitution, iff:
VxeV:68(x)€eCT

We denote the set of constructor substitution byzc

(4.4) Definition
Let R be a term rewriting system and F = C @ D the set of function symbols from R. We define
the relation —ep is as follows:

Ju:36eZ;: Ja—PeR:t; /u=6(x) Aty =t [ue—d&(p)]

The —®n relation is sometimes closer to the intended meaning of the rewr ite rules, because we

would like to define our functions on the elements of their domain, but not on arbitrary terms.
The next lemma shows, thet if 8 term rewriting system R is complete, then every ground term
can be reduced to a constructor ground term by—»R.
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Let R bs a globally finile term rewriting system with:
- R=CRW@ RR, CR are cyclic rules and RR are reduction rules
- RR i3 complete

Then:
V1€0T: IV eCOT: t-Smpp

Proof
We will proof, that for every ground term t, which Is not a constructor ground term, a rule
from RR can be applied. Since RR is terminating, RR will reduce t to a contructor ground term.

t is not a constructor ground term
= Ju:(t/u=1(t,,...,t,))Af€D) v(t/u=cAceD)

Let u be the deepest occurence of a defined function in t. Since RR is complete, thera is a rule
from RR, which reduces t / u:

=Jv:36: IXx—PERR:(t/u) /v=6(x) (RRcemplete)

All accurences below u are constructor terms and if we assume, that no left hand side consists of
a single variable we get:

V x€V:6(x) € CoT
==p (1/ u) —wpp (t/u) [y —&(f)]

==} { is reducible by —»pp

The confluence of —»p is sufficient for proving the equality of two ground terms by —op

(4.6) Theorem
Let R be a globally finite term rewriting system with:
- R=CRW RR , CR are cyclic rules and RR are reduction rules
-—# is confluent
~ RR is complatz
Then:
L » o

Progf
We prove this theorem by induction on the length n of the minimal proof between t, and t,, :
* *
tll-n-lth-—) 3t:t|—»Rt A ty—mpt
The base case (n=0) is obvious, since t,is equal to t,. For the proof of the induction step we
assume:

Uy to =3 Ft:t') Fmp t A t,wp t (induction hypothesis)

We have to prove:
- * &
G U F= == Lt —mpt A L —pt
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If ty i 'y, then there has to be a rule —» B or § — & from R and U, is derivable from
ty by — P, or t, isderivable by p — & from t'y:

Ju:36: 1, 7u=6(x) At =1, [ue&(p)]
All subterms in t, and t';, which are matched by variables from o and B can be reduced by

—p to constructor ground terms (R complete), then the rule  —» P or f — o con be
applied to the reduced term of 4, or U'y:

We dafine &
-x€D(6): &(x) =t andtisthe normal form of &(x) m-"-»R
-x¢D(6) &(x)=x
R is complete:
m—pV x€ED(E ) :6(x)€ COT with : Lemma 4.5
—-»6'e>:c .
Then we get:

8(x) —wp 6(X) AS(B) Xnp 6(P)
= t, ap by [ue—67(0)] At [ue—6(P)] <p t, [ue—6&(P))

There are two cases:
(i) x—Pe€R: ) [ue—&(x)] —mpt, [ue—6&1(p)]
() Pp— x€R: ty [u—&(P)] —mpt, [ue—a(00)]

For case (i) we letty = t; [u«—&(B)] end for case (ii) we letty = t, [u«—&(0)] . Then we
get for both cases:

L ’ L
Ub="b 4 ="l
with the induction hypothesis: 'y p t A t, 0, tand the confluence of -y, we et:
At t-Swp U A g2 v
= {, l»Rt’ A t,z—'!-bRt

The following diagram summmarizes the proof of the induction step:

N e Ll L 4ty
B P induction .7
1~ hypothesis .’

0 confl. 5 i
. K
%t,“‘

Inthenmdtheorem,westwmthelocolmﬂwwemdtrwlomlmmof—?—»Rcmbe

checked by critical pair tests. In this theorém, we denote the normal form of & term t with
respect to —»p also by t4R.
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(4.7) Theorem
Let R = CR @ RR be a globally finite and consistent term rewriting system, which can be splitted
into cyclic rules CR and reduction rules RR.

R fs locally confluent if condition ( 1) is satisfied:
(NVax—P,y—0€RRV U N(xX)V S €L, 6(x)/u=6(F)

== 6(0) [u—&(8)]IRR =n - 6(B)IRR

R fs locally coherent if condition (2) end (3) are satisfied

(2)VX—PERR, B ECRYV u€ O(X) V 6 € £ 6() / u = 6(3)
== 3 t': 6(00) [U e~ 6(8)) —mpp ' A 4RR 2w 1 G(B)IRR

(3)VX—PERR, 3—BECRV ue (Y)V E €L, 6(x)=6(}) /u
=3t 6(8) —» po t' A tLRR 2 o (%) [ G(B)IIRR

If R s confluent and coherent, then the conditions (1), (2) and (3) are setisfied.

The details of this proof sre very similar to the proof for the classicsl critical pair test,
therefore we will sketch only the main ideas.

R is locally confluent

Let t; be deriveble from t by & —» 8 € R end t,, be deriveble from tby 3— 8 € R. If Xt — f

€ CR, then U Is derivable from t, and t, is In the reduction set of t,. The same argument holds, If

33— b € CR. Otherwise we gst two cases:

(i) o — P and 3— & are applied at disjoint occurences.

Efa:h :ﬂets;m be applied simultaneously to t and we get a term t’, which is in the reduction set
1 !

(ii) &« — P and §— & are epplied at overlapping occurences.
No rule can be applied 1o a subterm, which can be matched by a variable of another rule (R
consistent), therefore we get a critical overlapping between thess rules. For this critical

overlapping we have to consider all critical pairs between 0 —» f and 3— b.

Risl ent

Let t, be derivable from t by & —» B € RR and 1) be derivable from t by 3—» & € CR.

If & —» P and 3— & are applied at disjoint eccurences, then {5 can be reduced by & —f to
t"and t” is derivable from t,. Otherwise 0t —» P is applied at an occurence below y—» 8 (i) or

3— & is applied below o — P (il). For (1) we have to consider critical pairs as in
condition (3) and for case (11) we consider critical pairs as in condition (2).

_ re satisfied if R is confluent and coheren
Every cmdihon is obvuously satisfied in & confluent snd coherent term rewriting system,
therefore we skip this proof.
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(5) Exiended Knuth-Bendix Procedure
A simple completion procsdure, which bases on the results of this paper may look as follows:
Completion Procadura
Input: - A set of equations E
- Aweak term ordering 2
(1) Creete rules from E:

Re={ax—p|(a=peEvPp-aeE)Aazpapaa)
RRi={ax—fp|(ax=peEvpf=aeE)ax2pa-pa}

Jx=peE:x—P¢RAF— X¢R?
true: stop with failure
false: continue with (2)

(2) Check local coherence and local confluence:

(i) Voa—p,3—0eRRVuUENX)VEEL:6(cx)/u=6(Y)
= 6(0) [u +— 6(8)4RR 2 p 6(B)IRR

(1) Voa—pPeRR, 3 —deRVued(x) V8L :6(x)/u=6(Y)
==t 3 {": 6() [u—6(8)] —» pp ' A VIRR 22 S(B)IRR

(i) Vx—PeRR, 3— € CRV ue 0(¥)V & € £ : 6(x) = 6(3) /u
=3 1:6(8) —» pp U A UIRR 2 0 6(3) [u—6(BILRR

If (1), (i1) or (iii) do not hold then continue with step (3), otherwiss stop with success.

(3) There are thres cases:

-3 — P 3 —d€eRRIueNAxX)IE €L, 6(x) /u=6(3)
—t 6(0) [ &(B)IRR H»  6(B)LRR
— continue with step (3)

-dx-—PeRR, §—beCRIueNxX) IS €, :6(X)/u=6(Y)
=Vt 6(0) [ue—6(8)] —w pp ' ¥ tIRR 4 o S(BIIRR
— 0dd 6(cx) [u +— 6(5)] —> &(B) 4 RR to RR and continue with (2)

-dx—pPeRR, y—beCRIueO(})36€ X 6(x)=6(F) /u
=V t:6(8) —ho pp ' v IRR Fo p 6(3) [u—S(PLRR
— a0d 6(8) — &(¥) [u «— &(P)1LRR to RR and continue with (2)
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(3) There are four cases:

- 6(0) [u e« 6(B)1RR 2 S(B)IRR A 6(B)4RR 2 () [u «— &(B)1IRR
add 6(x) [u « &(8)4RR — 6(B) L RR to CR

80d 6(P) 4 RR — 6(x) [u « S(8)]4RR toCR
continue with (2)

- 6(0) [u 68 YRR 2 §(B)LRR A~ 6(P) YRR 2 6(X) [u e S(8)]4RR

add 6() [u «— &(8)]4RR — 6(B) 4 RR to RR
continue with (2)

- 6(B)LRR 2 6(o) [u «— 6(8)1LRR A = 6(0) [u ¢ 6(5)]4RR 2 S(B)IRR
add 6(B) 4 RR —» 6( ) [u «— 6(8)1 4 RR toRR
continue with (2)

- 6(a) [u «— 6(8)1 L RR and 8(P){ RR ore not compareble
stop with failure

For reasons of efficiency we had to implement an extended version of this completion procedure;

- The completion procedure should be able to remove rules during the completion, if they can be
reduced by new rules. After removing 8 rule from a set R, some critical pairs which were
reducible by R might no longer be reducible by the new system. Then the local coherence or
local confluence for these pairs may not hold. For this purpose, we have proven (hat wesk
versions of the local confluence snd local coherence property still imply the confluence. These
wesker properties are guarenteed for all critical pairs, which have been tested during the
completion, even I some rules have been removed from R.

- The relation —*p {s weaker then the relation.—bR, therefore some critical pairs which are
reducible by —n might not be reducible by —»p. This will cause the completion procedure

to diverge sometimes, when it would converge with the relation —h- In our implementation

we distinguish between declored variables and other variables. A declared varisble can only be
replaced by a constructor term and the other variables may be replaced by arbitrary terms.
This extension works correctly, if all nonlinear variables in left hand sides of rules sre
declered.

For a confluent and globally finite term rewriting system, the completeness ( Definition 4.1) of
the reduction rules can be checked by the test of Kounalis.

In the appendix we give an example, which was completed by our implementation. This example
contains a nonlinear rule and some cyclic rules, for exemple:

if(p,if(qx,y),if(q,u,v)) =if(q,if(px,u),if(pyv))
This kind of equations are often created during the completion of term rewriting systems with

axioms for cenditions. Currently, no untfication algorithm is known for this axfom, therefore an
approach which bases on theory unification, cannot be epplied to this theory.
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(6) Conclusion

There ars two aspects for the results of this paper:

Firstly, it desrcibes a extended completion procedure for induclive proofs. This procedure is
able o complete globally finite term rewriting systems with arbitrary cyclic rules, if these
rules cause finite cycles. No theory unification is required, nor does it restrict the kind of rules
(linear rules, certain cyclic rules, . . .). It works also efficient, since no theory matching is
required for reducing terms and we have 1o traverse the cycles only for comparing normal
forms, which are usually small terms.

Secondly, it describes a theoretical framework for extending the Knuth-Bendix Algorithm to
globally finite term rewriting systems, which differs from former approaches. These former
approaches allowed reductions modulo eguivalence classes (e.g. [UK 84]). This keeps the finite
terminstion property, but requires a theoretical background for this extension, where we have
1o consider two different relations. This complicates semetimes the theory, because we have to
consider both relaetions end their combinations. Another problem is, that all cyclic rules have to
be incorporated into the matcher and unfier of the completion algorithm. In our theoretical
frame, the confluence results are completsly independent from the kind of rules, we may use a
theory matcher, where the theory is generated by an arbitrary subset of the cyclic rules.
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These equations define elementary functions on natural numbers. The naturel numbers ere
represented by ground terms containg the constructors S (successor) and O (zero). The
functions ADD (addition), SUB (subtraction) and MUL (multiplication) are directly defined on

these constructors. The definition of the function DIV (divide) requires axioms for the predicate
LESS, an IF-THEN-ELSE construct and two new constructors TRUE and FALSE:

ADD(0 x) = x
ADD(S(x),y) = S(ADD(x y))

SUB(0Ox) =0
SUB(x,0) = x
SUB(S(x),S(y)) = SUB(x.y)

MUL(Ox) =0
MUL(S(x)y) = ADD(MUL(x y)y)

LESS(x,0) = FALSE
LESS(0 s(x)) = TRUE
LESS(S(x),5(y)) = LESS(x.y)

IF(TRUE xy) = x
IF(FALSE xy) =y

DIV(x,0) =0
DIV(Ox) =0
DIV(S(x),S5(y)) = IF(LESS(x.,y),0,S(DIV(SUB(x.y),5(y))))

We want to prove the following equations:

ADD(x,y) = ADD(y x)

ADD(ADD(x,y),2) = ADD(x ADD(y 2))

SUB(xx) =0

MUL(ADD(x.y).2) = ADD(MUL(x,2),MUL(y,2))
IF(p,IF(gx.y) If(qu,v)) =IF(qIF(px,u) IF(py.v))

The set of axfoms is compiete and consistent and we start the extended completion procedure with
the union of both sets. The varisble x in SUB(x x) is not linear, therefore we have to declare
this variable. In the protocol on the next page, declared variebles are prefixed by ac_.

The completion procedure creates two new ruies and then stops with success.



(1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):
(9):

(16)
(17)
(18)
(19)
(20)
(21)
(22)

ADD(0 X) -—>X
SUB(X,0) -->X
SUB(0,X) -->0
LESS(X,0) --> FALSE
MUL(OX) -->0
DIV(X,0) -->0
DIY(OX) -->0

SUB(c_x.c x)-->0

ADD(Y X) --> ADD(X.Y)

9,1 ==>(10) : ADD(X,0) -->X

(11): ADD(S(X),Y) -->S(ADD(X.Y))

(12) : LESS(0,5(x)) --> TRUE

(13): IF(TRUEX,Y) -->X

(14) : IF(FALSE X,Y) -~>Y

9,11 ==>(15) : ADD(X,S(Y)) --> S(ADD(Y X))

: SUB(S(X),S(Y)) -->SUB(X,Y)

: LESS(S(X),S5(Y)) --> LESS(X.Y)

: MUL(S(X),Y) -->ADD(MUL(X,Y),Y)

: ADD(X ADD(Y,Z)) -->ADD(ADD(X,Y).Z)

- MUL(ADD(X,Y),2) -->ADD(MUL(X,2),MUL(Y 2))

S AFCYIF(X,ZY)JFOGUW)) == IFCXIFCY,Z,0) F(Y Y W)
. DIV(S(X),5(Y)) --> IF(LESS(X,Y),0,5(DIY(SUB(X,Y),5(Y))))

The system is complete |

FINAL RULES

cyclic rule:

(9):

ADD(Y X) -->ADD(Y X)
(19): AD(X ADD(Y,Z)) -->ADD(ADD(X,Y).2)
(21) : IFCYIF(X,ZY)JIF(X,UW)) ==> IF(XIFCY,ZU)IF(Y.Y W)

reduction rules:

{1):
(2):
(3):
(4):
(5):
(6):
(7):
(8):

ADD(0 X) --> X
SUB(X,0) --> X
SUB(0X) -->0
LESS(X,0) --> FALSE
MUL(0X) -->0
DIV(X,0) --> 0
DIV(0X) -->0

SUB(cx,cx)-->0

9,1 ==>(10): ADD(X,0) -->X

(11): ADD(S(X),Y) --> S(ADD(X,Y))

(12): LESS(0,5(x)) --> TRUE

(13): IFCTRUEXY) -—> X

(14): IF(FALSE X ,Y) -->Y

9,11 ==>(15): ADD(X,5(Y)) --> S(ADD(X,Y))

(16) : SUB(S(X),S(Y)) -->SUB(X.Y)

(17): LESS(S(X),5(Y)) --> LESS(X,Y)

(18): MUL(S(X),Y) -->ADD(MUL(X,Y),Y)

(20) : MUL(ADD(X,Y),Z) -->ADD{MUL(X,Z),MUL(Y,Z))
(22) : DIV(S(X),S(Y)) --> IF(LESS(X,Y),0,S(DIV(SUB(X,Y),5(Y))))

(reduction rule)
( reduction rule)
(reduction rule)
( reduction rule)
( reduction rule)
(reduction rule)
(reduction rule)
(reduction rule)
(cyclic rule)

(reduction rule)
(reduction rule)
( reduction rule)
( reduction rule)

(reduction rule)

( reduction rule)
( reduction rule)
( reduction rule)
( reduction rule)
(cycllc rule)

(reduction rule)
(cyclic rule)

( reduction rule)
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