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The Knuth-Bendix Algorithm (KBA) is not able to complete term rewriting
 

systems with cyclic rules such as the commutativity. This kind of rules
 

cause cycles in a reduction chain. This problem may be solved by an
 

extension of the KBA for globally f'lnite term rewriting systems. For a
 

globally finite term rewriting system, cycles may occur in a reduction
 

chain, but for each term there IS only a finite set of reductions. A
 

confluent and globally finite term rewriting sytem R provides a decision
 

procedure for equality induced by R:
 

Two terms are equal iff there is a common term in their reduction sets.
 

This extension requires new methods for testing the global finiteness and
 

a new confluence test, because local confluence does not imply global 

confluence for globally finite relations. In this paper we give a theoretical 

framework for this extension. We will show how this theory can be applied 

to term rewriting systems, if we are mainly interested in the initial 

algebra which is induced by the set of rules. 

am

The Knuth-Bendix Algorithm (KBA) is  not able to complete term rewriting

systems wi th  cyclic rules such as the commutativity. This kind of rules

cause cycles in a reduction chain. This problem may be solved by an

extension of the KBA for globally f ini te term rewrit ing systems. For a

globally f in i te term rewrit ing system, cycles may occur i n  a reduction

chain, but for each term there i s  only a f ini te set of reductions. A

confluent and globally f in i te term rewrit ing sytem R provides a decision

procedure for equality induced by R:

Two terms are equal i f  f there i s  a common term i n  the i r  reduction sets.

This extension requires new methods for testing the global finiteness and

a new confluence test, because local confluence does not imply global

confluence for globally f in i te relations. in this paper we give a theoretical

framework for t h i s  extension. We w i l l  show how th is  theory can be applied

to term rewriting systems, i f  we are mainly interested i n  the init ial

algebra which i s  induced by the set of rules.



No1a.t1OIL alliL Baste Ueftntttons 

We assume familiarity of the r~ with the basic proofs and results of the Knuth-Bendix 
AllJ)fithm (e.g. [HU 77], [HO 80], [KB 70]). 
We denote by: 

V :let of vm-iobles 
F .. C~ D set of function symbols, which mey be sp11tted into constructors Cand 

OOflned functions D 
t terms constructed by symbols from Vand F 
T set of all terms constructed by symbols from Vand f 
01 set of 811 ground terms constructed by symbols from F 
CT set of all constructor terms constructed by symbols from Vand C 
COT set of all constructor ground terms constructed by symbols from C 
u,V,W occurences in terms 
0(0 set of all occurences of t 
V( t) set of all variables of t 
<X ---+ P. ~ ---+ 6 rewrite rules 

IS subst Itutlons 

E set of all substitutions E 
R set Of rules 

t ---+R r t Is reduclb le In one step to r by R 

t..l4Rr t Is roouclble in n steps to t' by R 

t~R t' t is reducible in £I finite number of steps to r by Ror t ::: r 
symmetric closure of---+R 
transitive closure of ~ 

~ restricted to ground terms 

Definitions 

t is linear, iff: 'V x € V( t) : 'V U, 'lE O(t) : t / u ::: X A. tI v::: X"-' U ::: V 

Avarl8blex is ltnear In 8 term t. if1: 'V u, 'lE O(t): t / u::: xII. t / v::: x ..... u::: V
 

Arule Is lInoor, lff the left hand sl00 of the rule Is linear.
 
R Is term'natllUj, Iff for aNy term t, there is no Infinite reduct Ion ch8ln OOrlvftb le from t.
 
R Is globally finite, Iff for aNy term t, the reductlon set of t Is finite. 

R Is CORnuant, iff: V t, t I . t2 : t ~R till. t ~ t2 .... 3 r: t I ~R r A. t2 ...!...tRr 
R Is locally confluent, Iff: 'V t, t 1, t2 : t--+Rt 1At --+R t2 ..... 3 l': t 1~R r A l2 ~R r 
A term t is in R-normul form, iff: V t' : t ~R t' =-+ t ::: r 
A term t is in R-rtOrmal form mooul0 cycles, iff: 'V r: t ~R t' -+ r ~R t 

For this paper we assume further, that no left hand side of a rule consists of a single variable. 

We assume familiarity of the reader with the [mio proofs and results of the Knuth—Bendix
Algorithm (8.9. [HU 77], [H0 80]. [KB 701).
We denote by:

V
F=CUD

tT

GT
CT
CGT
u‚v ,w
0(t)
v(t)
(:( —b@‚ 3 —r 6
6
Z
R
t—-9Rt’

t-n—t’
. :t—-+Rt

HR
cI"R.

.1.”
Definitions

set of variables
set of function symbols, which may be splitted into constructors C and
defined functions D
terms constructed by symbols from v and F
set of all terms constructed by symbols from V and F
set of all ground terms constructed by symbols from F
set of all constructor terms constructed by symbols from V and 0
set of all constructor ground terms constructed by symbols from C
occurences in terms
set of all occurences of t
set of all variables oft
rewrite rules
substitutions
set Ufa" substitutimsz
set of rules
t is reducible in one step to t’ by R

t is reducible in n steps to t’ by R

t is reducible in a finite number of steps to t’ by R or t = t’
symmetric closure of —’R

transitive closure of i—iR
l-iiR restricted to ground terms

t i s l inmr , i f f :Vx€V( t ) :Vu ,v€0 ( t ) : t /u=xa t /v=x—bu=v
Avariablexislinearinaterm t,iff:‘9r u .ve0 ( t ) : t /u=xAt /v=x—bu=v
A rule is linear. iff the left hand side of the rule is linear.
R is terminating, iff for any term t ,  there is no infinite reduction chain derivable from t.
R is globally f inite,  iff for any term t,  the reduction set o i l  is finite
R isconfluent. mw t,t„12;t—"-»Rt‚ A tirt—va m,  im ra t2-3-9R t‘
R 13 "wally conf luent ,  i f f ' V  t ,  t 1  . t2 i t—"R til A t—’R  '.q " :  t '  “"—’R ( *  [2'L’R . ,

Aterm t is in R-norlnal form, iff: v t’: tim run = t’
A term t is in R—normal form modulo cycles, iff: V t’: t-‘-'+R t’—> t’ “L’R t

For this paper we assume further, that no left hand side of a role consists of a single variable.



Completion of globally finite term rewriting systems for inductive proofs 

( 1) 'otrtGJctloo 

Durlno the completion of term rewrlllno systems, the Knuth-Bendlx AJ~lthm creates 
sometimes crltlcel pelrs which cen not be directed to termlnetlno rules (cyclic rules). For 
example, 1f we complete U°tEl foll<1NlflIJ set 01 rules, the COillmutatlvlty axiom Is craated 65 B 
critical peir: 

(R 1) f{f(x,y),z) .... f{x,f(y,z» 
(R2) f{O,x) x 

(R3) f(x,O) x 

(R4) f{x,x) O 

After a few complellon steps the Knuth-Bendix AIlJ)rlthm (KBA) Cre6tes the commutatlvlty
 
from this set of rules and stops with fal lure.
 
If we want to complete systems with cyclic rules, we have to extend the Knuth-Bendix
 
Ah}Jrlthm. There ere two wl!/tfS for this extension:
 

(l)	 separate the cyclic rules from the term rewriting system and perform reduction steps on 
equivalence CI6SS8S which are crEl8ted by these cyclfc rules. This extension preserves the 
finite termlll8t1on property but fn oeneral requires 8 un1f1C6t1on ahJlrithm for the 
9QU&tlonal thecry induced by the cyclic rules (e.g. [JK 84]). 

(ii)	 Drop the finite termination property and extend the KBA for globally finite term rewriting 
systems. This extension requires methods for proving the global finiteness of term 
rewriting systems end for prOVing the confluence of 8 glObally finite term rewrUlng 
system. 

Here we will discuss how the gl~l finiteness of a term rewriting system CNI be proved by weok 
term orderlOlJ). Then we wllJ give confluence properties for arbitrary globally finite rel8tioos 
Bnd apply these results to term rewriting systems for proofs In the Initiel 81~re. 

Completion of globally finiteterm rewriting systems for inductive proofs l

Wm
During the completion of term rewriting systems, the Knuth-Bendix Almrithm creates
sunatimes critical pairs which can not be directed to terminating rules (wclic rules). For
exampte, if we complete the following at of rules, the commutativity axiom is created as a
critical pair:

(RI) f(f(X.Y).2) _! ftx.f(v.z))
(R2) f(0,x)—+x
(R3) f(x‚0)—!x
(R4) [(m)—to

After a few completion steps the Knuth—Bendix Algorithm (KBA) creates the commutativity
from this set of rules and stops with failure.
if we want to complete systems with walls rules, we have to extend the Knuth-Bendix
Almrithm. Thwe are two ways for this extension:

( i )  Search the cyclic rules from the term rewriting system and perform, reduction steps an
equivalence classes which are created by these cyclic rules. This extension preserves the
finite termination property but in game] requires a unification algorithm for the
emotional theory inwced by the cyclic rules (cg [JK 84]).

( i i )  Drop the finite termination property and extend the KBA fer globally finite term rewriting
systems. This extension requires methods for proving the global finiteness of term
rewriting systems and for proving the oonfluenceof a globally finite term rewriting
system.

Here we will discuss how the global finiteness Ufo term rewriting system can be proved by weal:
term ordering. Ihm we will give confluence premrties for arbitrary globally finite relations-
and apply these results to term rewriting systems for proofs in the initial algebra



2 Completion of globelly finite term rewriting systems for Inductive proofs 

(2) prov1no the globol finiteness for term rewritina systems 

Aglobally finite term rewrlt1ng system R ooflnes a preoroor1ng on the set 01 terms ~ where the 

set { t' I t 2' t' } 1s finite for an terms t : 

t~t' +-+:t~t' 

Therefore, we may prove the global finiteness of 8 term rewriting system R by using such 8 

preordering~ : 

('V t, r : t -tR r =+ t ~ n ~ Rglobally finite 

For ft test which boses on comporing left hood 51005 cnd right hood sires of rules, the orrering 
has to satisfy more properties: 

(2.1) DefinitIon 
Let ~ be 8 preorderlng on terms (~ Is refiaxlve and transttlve). Then ~ Is a weal< term 
ordering, iff: 

- 'V t: 3 n: If r I t ~ t' }I <n 

(22) Theorem 
Let R be 8 term rewriting system end 2' 6 weel< term ormrlno. Then R Is IJlobally finite, If for 
every rule <X -t Pfrom R<X 2' Pholds. 

£Dm 
first we wi 11 prove: t -tR r ... t 2' r 

t; r .... 3ex-+PE R:tlu=6(<x),r.,r=t[u4-6(P)] 

with ex ~ P:
 
=+6(<X) ~ 6(P)
 

~t [u4-6(<X)] ~ t [u4-6(P)]
 

.... t~ r 

with the trmsltivlty of 2' we get: 
t~ r-. t2' rR 

.and boc8use { r I t 2' r } Is finite for lSIlY term t then { r I t ~R r} is 81&:1 finite 

Completion of globally finite term rewriting systems for {moon-va. proofs 2

2 rov l i n i  essfor m r  r ' t i  s

A globally finite term rewriting system R Mines 8 preordering en the setef terms 2 where the
set{ t’ | t 2  t’ ] isflnlte for all termst:

t z t ’  H tR t ’

Therefore, we may prove the global finiteness-of a term rewriting system R by using such
precrcbrirqz; .

(v t‚t': t—‚R r=+ tz't’) we Rglcbally finite

For a test which bases on cmnparing left hand sides and right hand sicbs of rules, the cbt‘ing
has to satisfy more properties:

WM
Let 2 be a precrdering on terms (2  is reflexive and transitive). Then 2 is a weak term
ordering, iff:

—v t?!  n:  |{ t ’ l t z  t ’ } |<n

—Vt,t, , t2: t l z t z - tU4—t112 t IUé - t2 ]

~Vt,t’:V 6 : t2  (net t le  sir)

mailman
Let R be a term rewriting system and z a weak term arming Then R is globally finite." for
every ruleOt ——+fl from Ra  2 p holds.

PrgLJi
first we w i l l  prove: t—DR t’aub t z  t‘

t—»R t’-) 30K --tfl€ R : t /u  =6(<X)A t"==t-[u&-6(ß)l
mmazß :
==>6(oc)26(ß)
-l>t [us—6(a)] z t [us-6(9)]
=“; t’

with the transitivity of 2- we wt :
t LR t’ =» ta.— r

and because{ t' | ta: t' } is finite fer any term t then { t' | t-3-9R t’ } isalsc finite



3 Completion of gl0b8l1y finite term rewriting systems for inductive proofs 

This k. iOO Of or(8'lngs C8n be creeted by comblnlg 8 classical term orOOrIIYJ) 8nd 8 congruenal 
.... on terms, If the reletion '" is comp8tlble with the ordering) . The next OOfintlon gives the 
cl8SSiC81 mdorns for a term ordering. 

(2.3) Defln1tlon
 
Let> be 8 strict ordering on terms ( >Is IrreflexIve, asymmetrIc and transItive) with:
 

( 1) >Is well fourOld
 
(2)V't,t t2 : t,~ t2 ..... t[u+-t , ] ~t[u+-t2]
 

( 3) V' t, r :" V' CS ; t >r ..CS( t) >CS(n 
Then> Is 8 term orderlno. 

(2,1) Lemma 
Let> be 8 term orderlll(l end '" 8 congruence on terms with: 

(1)'Vt l ,t2 ,t3 : (t l "'t2 1,t2 >t3) t l >t3 

(2) V' t l , t2 , t3 : (t , >t2A t2 '" t3) t, >t3 

( 3) 'V t1' ~: 'V CS: t 1'" ~.. CS( t1 ) '" CS( t2 ) 

( 4) 'v' t : 3 n : I{ t' It .... r 11 <n 

and we mflne the rel8t1on ~ 6S : 

tl~t2 ... :tl"'t2 V t, >t2 
Then ~ Is 8 week term orderIng. 

~ 
- ~ reflexIve 
t-t .... t~t ( - COfVuence) 

- ~ tr80Sltlve 
t l ~ ~1, ~~ t3 

(I) t l - t2 1, t2 - t3 ... t l - t3 .... t l ~ t3 (- congruence) 

(11) t , .... t2 1, t2>t3 -+t , >t3 -+t , ~ t3 ( I) 

( lit) t I >t2 1, t2 .... t3 -+ t I >t3 -+ t I ~ t3 (2) 

(Iv) t , >t2 " t2 >t3 -.t , >t3 .. t l ~ t3 ( >tron~ltl.,.,) 

- V' t : 3 n : I{ r I t ~ r 11 <n 
{ t' I t ~ t'} = {t'I t> t' }v { r It .... t' } (oofinltlon of ~) 

Since { r It> r } and { t' It'" t' }are finite, then { t' I t ~ t' } is finite 

- 'V t, r: t ~ r -+ t[ u+- t] ~ t [u +- r] 
( I) t >r -+ t [u +- t] >t [u +- r] .. t[ u+- t] ~ t[ u +- r] (> term orOOring) 
( 11) t .... r .. t [u +- tJ .... t [ u +- r] -+ t[ u ... t] ~ t [u ... r] ('" congruence) 

- "f1 t. I' : "f1 6 : t ~ 1'''6( t) ~ 6(r) 
(I) t> 1' ... 60) >6(r) -+6(0 ~ 6(n (> term orderlno) 
(11) t .... r -+6(0'" 6(r) -+6(0 ~ 6(r) (;5) 

Completion of globally finite term rewriting systems for inductive proofs 3

This kind of orderings can be created by ccmbinig a classical term ordering) ends congruence
~ on terms. if the relation ~ is compatible with the ordering > . The next delintion gives the
classical axioms for a term ordering

W
Let > be a strict ordering on terms ( > is irreflexlve, asymmetric md transitive) With:

(U )  iswell founded
(2)vi,t,,t2: (,212-9tlm-tflztIm—t2]
( 3 )V t , t ’ : va  : ! )  t ' -»6(t)>6(r)

Then)lseterm ordering

mm ,
Let > be a term orderlng end~ acongrumceon terms with:

(I)Vt,,t2,t3: (t,-~vt2list2)t3_,)-H,)t3
(2)Vt,.t2,t3: (t|)t2612~t5)-9l,>t3
(3)Vt1,t2:V6:tl~t2-b6(t,)~6(t2)
(4)Vt:3n:|{t’|t~t’}|<n

ondwetbflnethe relationzos:
t ' 2 t2H2 l1 'V t2  V t ' ) t 2

lhenz-iseweaktermordering

em
~zreflexlve

t~ t  _) t a t  (~oongruenoe)

-2lransitive
“255525
(i) t l~t25t2~t5dtl~t3 #tlztgs (~ccngruence)
(ll) t,~t2u2>13 -H,>t3 n t l t t a  ( I )
(m) i, >t2A t2~t3 -n‚>13 qt latä  (2)
(iv) t,>t2u2>t3 -rt,>t3 nip-n3 (Hrmsitlva)

-V t :3n : | { t ’ | t 2 t ’ } | <n
{ t ’ l t z t ’ }  = [ t ’ | t > t ’ }u { t ’ | t ~  t’} (definitionofz)
Sincelt’loi’}end{t’|t~t’}erefinite,then{t’|tzt’lisfinlte

-V t , t ’ :  t z t ’uet lue- t ]  luo- t ’ ]
( i )  i ) t ’  -Dt[u¢-t ]  )tluo—t’] - ) t [uo - t ]  t i Iue - t ’ ]  (> termortbring)
(ii) t~t’->t[u4-t] ~t[u¢-t’]-H[uo—t] tiIuc—t'] ( "mm)

-V t , t ' : va  : t z  t ' -96( t )26( t ' )
( i )  t )  t ' - 56 ( t )  ) 6(t‘) uns“) z 60') (> term armrlng)
(n) &» r-ocfl) ~ ctr) -M(t) z am (3)



4 Completion of globally finite term rewriting systems for inductive proofs 

Here ere two exOOlples of orcEr1ngs, that C8I1 be extentBd by 8 congruence: 

- L6t1Qth Or_111Q 
t> r :In r 6l'e less symbols th8n In tend PNery verlable occures fewer times In r then In t 
t'" \' : In r 8l1d t are the same number of symbols and every variable occurs In both terms 

at the same number of oreurences 

- Recursive Path Orrerlng 
t> r : t )RPO r as refined in [DE 82] 

t '" r :we get r from t by the permutation of erguments 

For the connuence test in chapter 4 we have to dlsUnoulsh between cyclic and reduction rules. If 
we 8Pply 8 reductlon rule to 8 term tend l}rt 8 term r as the result, then t Is no longer In the 
reductfon set of r. After applyIng 8cyclic rule to 8 term t, t Is stlJl OOriveble from the result of 
the 6PPllcetlon. Therefore, 8 reduction rule tB:re8ses the size of 8 term In some term orderlr;J, 
where 8 cyclic rule preserves the size of 0 term. The next lemm8 shows, how a globally flnlte 
term rewrltfng system can be splftted Into cyclic 8Ild reduction rules by using 8 term ordering. 

(2.5) Definition 
Let Rbe 8 globally finite term rewriting system. 
- Arule<x ---. Pfrom RIs 8 rOOuctlon rule, Iff: 
Vt.t': V6:t!u=6(<X) A t'=t[u+-6(P)1 ..... t'~Rt 

- Arule <X --+ ~ from Ris 8 cyclic rule, Iff: 
Vt,\': V6:tlu=6(a) A r=t[u+-6(~)] .... r..!...Rt 

(2.6) lemma
 
Let Rbe aglobally finite term rewriting system end~ 8 week term ordering with:
 

(1)	 'Va--+pER: <x~p 

(2) (t> \' ...... : t ~ r A , r~ t) ~> iS8 term OfOOr'ing 
Then: 
- <X --+ PER Is a reductlon rUle, If <X ~ P and, P~ <X 

- <X --+ PER Is 8 cyclic rule, Iffp ~R <X 

Note: 
- condition (2) Is satisfied, If ~ is creeted by combining 8 term orOOr'lng end 8congruence 
- If these tests cannot be epplied for 8 rule <X --+ ~ E RI then we may force this rule to be 

cyclic by 8Ii:IingP --+ <X to the rule sat, if ~ ~ a holds. 

Proof 
(l)	 , p~ <X holds for <X -+ PER 

Assume: 3 t, r: t ---+{<X --+ Pl r A r..!...R t 

.... t'~tAt~t' 

but with, P~ <X and ( 2) we gBt. t >t' : 

-+,t'~t f 

Completion of globally finite term rewriting systems for inductive proofs 4

Here are two examples of orderings, that an be extented by a congruence:

- Length Ormmng
t )  t ’H :  In t’ are less symbols than In t and every variable occures fewer times in t’ then i n t
t ~  t ’H :  i n  t’ and t are the same number of symbols and every variable occurs In both terms

at the same numMr of occurences

~ Recursive Path Ordering
t) n—v: t>Rpo t’asdefined in [DE 32]
t „., Hue: we get t‘ from t by the wrmutation of arguments

For the confluence test in chapter 4 we have to distimuish between cyclic and reductim rules. i f
we apply a reduction rule to a term t and get a term t’ as the result, tm t is no longer In the
reduction set of t’. After applying a cyclic rule to a term t ,  t is s t i l l  chriveble from the result of
the application. Therefore. a reduction rule Masses the size of a term in mine term wearing},
where a cyclic rule preserves the size of a term. the next lemma shows, how a globally finite
term rewriting wstem can be splitted into cyclic and reduction rum by using a term «daring

M
Let R be a globally finite term rewriting system.
— A rules: _»p  from R isareduction rule, iff:
v t,t’: va  : t /  u=6too A t’= tiu+—6tfl)i —rt’-—‘|-’Rt

- Arulea -—+p from R isacyclic rule, iff:
v t,t’: Va  : t /u  ac to r )  A t’atiut—atpn -9t'—"'—>R_t

(2.6}Lgnmg
Let R be egiobally finite term rewriting system and: a week term ordering with:

( I )  Vor—‚part: «2p
(2)  ( t > t '  an}: t z t ' a  -t 'zt)==-I>> isatermordering

Then:
-a——rfleRIsaraductionruie.Ifazpendwpza
-(x—+fl£RisawclicruIe.ifffl-1»Ra

Note.
- condition (2) is satisfied. i f :  is created by combining a term ordering and a congruence
— i f  these tests cannot be applied for a ruletx ——» p e R, tMn we may force this rule to be

cyclic by addingfl —-r ct to the rule set, i f  p;— (x holds.

Proof
( i) «920!  holdsforOt—vfleR

Assimam': t—»{a__‚ß}t'a float.
d t ’ z t a t z t ’
outwith-:flzaendt'Z) wemtt>t':
-¢1r2 t  $



5 Completion of gl0b8llyflnlte term rewriting systems for Inductive proofs 

(ti) (....) 

Since we mey OOr'lve Pfrom« by the rule« -. P~ th1s C8Se Is obvious 
(.....) 
t--+ (a -'Pl r-+ 3 u: t/ u =6(<<) A r = t[Uf- <HP)]
 
withp ~R a:
 

...6(P) ~R 6(a)
 

.... t[u ... CS(P) ] ~ t[u ... cs(a)]
 

...t'~t
 

Completion of globally'finite term rewriting systems for inductive proefs

(H) ("-D)
Since we may thrivefl from (x by the ruietx _» p, this case is obvious
(4—)
t-—9 {a __,p} t ’ -v3 U :  U U =6 (0 t )h t ’= t [u+—6(fl ) ]

wimp LR oz:
===-Mm) ”"—’R 6(<x)
au...-cup) lémtluc-acan
-9t’—15Rt



---------

6 Completion of globelly finite term rewrIting systems for inductive proofs 

tM Confluence Properties of Oloballv Finita Relations 

In this chepter we discuss confluence properties for 6f'bitr6l"Y reletions, which 8re not 
necesserny inWced by term rewriting systems. 

The local confluence test which 00es imply the confluence of 8 termill8ling relation, cennot be 
applied for globally finite term rewr1t1ng systems. Let us consiOOr the foll(1«ino example: 

This globally finita relation is locally confluent but not confluent. 

Therefore, we need 6 stronger property which implies the confluence of globally finite relations. 
This stronger property hes to prove, whether from all exits of 8 cycle, we can reach the S8fll6 

element. 

( 3. 1) Definitjon
 
Let Rbe 8 globally finIte relat1on. Ris locally oonfluent modulo cycles If(:
 

'V t 1' ~, rI' r 2 : t 1 ...!...R t2 A ~...!...R t 1 A t 1 ; t'l A t2 --+R r 2 

..... 3 t' : t' 1 ~Rr At'2 ~ t' 

'. / 

/ 

/" " /
/ 

" " / 

" / 

Fig. 3.1 local Confluence MrouloCycles 

(3.2) Theorem 
Let R be a globtllly finite relation. R is globolly confluent, iff R is locally confluent mOOulo 
cycles. 

( .....) obvious 
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L3 flmnce Pr tiesoiGl 1 Finite Rel ions

In this chapter we discuss confluence properties for arbitrary relations, which are not
necessarily induced byterm rewriting systems

The local confluence test which does imply the confluence of a terminating relation, cannot be
applied for globally finite term rewriting systems. Let us cmsider the following example:

JON
This globally finite relation is locally ccnfl uent but not confluent.

TMrefore, we need a stronmr property which implies the confluence of globally finite relations.
This stronger property has to prove, whether from all exits of a cycle, we can reach the some
element.

We;
Let R be a globally finite relation. R is locally confluent modulo cycles "f:

I I * . c :V t i - ‘ z - t I - t2= ‘1""”n  t2"" .»" ’ ia '1"“1_ ’ | : z t1""2_ ’R ‘2

=>3t':t'‚—"-»R-t'at'2i»nr

t v"  ‘ n ' " !

IF .,
* ..

/ 
“ IL - "nun- - - "

.r

Fig. 3. 1 Local Confluence Module Cycles

mm
Let R be a globally finite relation. R is globally confluent, iff R is locally confluent modulo-
cycles.

mm

(...,) obvious
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(~) This C8S8 can be proven by induction on the number of deriV8ble elements frOOl 8ft 

element l 

Since the bme C8S6 Is obvious (no element is derivable from 0. we will shortly sketch the 
Induction step. Assume ttl8t t, 8nd ~ Ire lilrlveble In 8fl erbltflrY number of steps fmm t. If t 

is in the reduction set of t 1 (~). then t 1 (t2 ) C8Jl be reduced to ~ (t 1)' In the other C8S8 there 

ere terms t, l' t 12 •~" t22 on the reduction cMln to t1and t2 • where t Is In the reduction set 
of t1,end t21 •but not in the reduction set of t'2 end~. thereby t'2' t22 con be derived in one 

step ffOOl t11 end t21 . Then, less elements are derivable from t 12 and t22 then from t, Md we 

get: 

" " " " "" '\. "­

t 1'; Il. " ':.It;1
 
t ~ loco confl. \" 
/ 12" mod. c~cles , ,122 , 

" " , , " " , , 
", I<:. :lI 

ind. hypo 1'0 i nd. hypo , t2 , , ,, ,, / , 
.>l I<. .>l Il. 

t'1 i nd. hypo r 2
 
,
 , / , 

Unfortunetely. the 10Cft1 confluence modulo cycles C8Jlnol be proven by 8 simple lest, bec8tise the
 
cycles may be of arbitrary size. In general, the confluence of gl0b611y finite term rewr1t1ng
 
systems is not <B;ldable [NM 84]. Therefore, we have to find stronger propert1es, which are
 
sufficient but not necessary for proving the confluence properly.
 
In [JK 84] the coherence property is intrtxllced for proving the confluence of elJI8tional term
 
rewriting systems. The results of this p«IIper C8I1 be arried over to gl0b8lly finite lIlrm
 
rewr1t1ng systems.
 
Let R be e globally flnlte end coherent relet Ion. An exit element e of e cycle In R Is an element
 
where 800ther element e', which Is not member of this cycle. is OOr'lvoble In one step from e.
 
Then. ell elements of 8 cycle with 8t leest me exit element have to be also exit elements.
 
The next mflnltton IntrOOJces two coherence properties:
 

(3,3) Definition
 
let R be 8 globally finite relation.
 

- R is coherent iff: 
'V t, t1• t2 : t ~ Rtilt t -!... R t2 It t2 -!..... R t It t1...!I-+ R t 

~ 3 t-2 : t2 ~ R t-2 It t·2 ...!l-+ R t2 A 3 t-: t·2 ....!....t R t- It t 1....!....t R r 
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(1-) This case can be proven by lmiuctim on the number of derivable elements from an
element t

Since the base case is obvious (no element is derivable from t). we will shortly sketch the
induction step. Assume that t, «id t2 are derivable in an arbitrary number of steps from t. If t
is in the reducttcnset on, (tz). thmt, (tz) cenbe reducedto [20,). lnthe othercese there
are terms t, 1 , (12, [21 , tnon the reduction chain to t, and t2 , whwet is in thereduction set
oftnandtmmut not in the reductionsat oft‘zuflt22,tharebyt12,t22mn bewived inane
step from t "  mit“. Than, less elements are derivable from tuandtmthm from t, and we
mt:

air.-
/ ; \ ‘ \

I ;  \ \

t 11"  l 21

t loc.confl. \12 \  mod.cucles‚f 22 \
" \ I \

" \ I \
" \ .! \

’ at It.is - ”t1‘ ind.hup. Jt'o menus ‚tz

Unfortunately, the local confluence modulo cycles cannot be proven by a simple test, because the
cycles may be of arbitrary size In general, the mniluence of globally finite term rewriting
systems is not decidable [NM 84]. Therefore, we have to find stronger prepertiee, which are
sufficient but not necessary for proving the confluence property.
In [JK 84] the coherence prmerty is introduced for proving the confluence of equations] term
rewriting systems. The results of this paper can be carried over to globally finite term
rewriting systems.
Let R be a globally finite and coherent relation. An exit element a of a cycle in R is an element
where another element e’, which is not member of this cycle, is derivable in one step from a.
Then, all elements of a cycle with at least one exit element have to be also exit elements.
The next definition introduces two coherence pmties

W
Let R be a globally finite relation.

-Riscoherenti f f :
Vt‚t1‚t2:t—oRt 'A t -LoRt2At2—teRtAt1 -4 -ba t

==>3t'2rt2 tuz -fia tsa t :  t'2—»ARtAtI-E-rRt“
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- R is locally coherent lff: 
'V t, t 1J ~ : t -+ Rt 1 A t --+ R t2 A t2 ~ R t A t 1 ~ R t 

.... 3 t'2: t2 -+ R t'2 A t'2 ~ R12 A 3 t': t'2 ~ R t' A 11 ~ R t' 

.- ... 

't.-f " , 

/t~t2~ 

tl" )'2
" /" /
" 

~ I< 
/
 

r
 

fig. 3.2 Local Coherence 

For confiuent relations, these two properties are equivalent: 

(3,4) Lemma
 
Let Rbe 8 globally finite Md confiuent rel8tion, Ris coherent Iff tt is 10C811y cdlerent.
 

The proof of this lemma con be 00ne by Induction on the minimal number of steps between two 
elements from 8 cycle. The next dlogrmn slcetctm the Induction 5lep for this proof: 

t---------------~ro -----7 12 

t 1~ 11oc. coher ~r3 
, fnd.hyp. 

/
rl 

,-
/ 

/' / 
/ , / 

, / .:.11.:: , , / / confl. X 4 , / / 
I / 

.:.I I.:: 

1'2 /

/ 

/ 

Fig. 3.3 

(3,5) Theorem 
Let Rbe 8 gl0b811y fInite rel8tlon. R Is confiuent, If RIs looel1y coherent Md l0C811yoonOuent. 
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- Risk—Hy mherentiff:
Vt‚t„t?:t—->Rt‚ßt—>RtQAtQÄ-rRtAh—fi-vnt

" \
iii- \

_/*""9‘2

Fig. 3.2 Local Coherence

For confluent relations, these two properties are equivalent:

uam _
Let R be a globally finite and confluent relation. R is coherent iff i t  is locally coherent.

The proof of this lemma can be done by induction on the minimal number of steps between two
elements from a cycle. The next diagram sketches the induction step for this proof:

t-—--- ---------  „arg—>12

th  l Ion. coher. f 5
“„  ind. hup. t’l ,

f
I

; ". I"- ul \ ar\ ;x _, all:

t , confl. X4
‚f .!

Fig. 3.3

um _ _
Let R be a globally finite relation. R to confluent. if R is locally Want and locally wnfluent.
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fTgg{ 
We prove th1s theorem bY Induction on the number of def'lveble elements from IYl element t 
(Induction 1). The b8se cese 1s obvious (no elements are derlv8ble from t). For the 10000tlon 
step we assume, thet t l and ~ are def'1vsble frOOl t. If t Is In the reductlon set of t l or t2 this 

completes the proof. otherwise there ere terms tt I' t 12 •t2iand t22 , where t l1 , t218re In the 

SMl8 cycle 8S t, t '2 and ~ are not In the cycle of t and t ,2 , t22 8re derlv8ble In one step from 

t ,I Md t21 . For the proof of thIs cese, we need 800ther lnOOcttonon the miniM! number n of 

derIvation steps between t"and t2 t= 

tll...a.....~' A t21....!..t t" A tll~ t l At2,....!..t t2 .... 3 r: t l ~ r A~-4 r 
The proof for the b8se case, where t 11 '" ~ I' Is given by the following dlqam end the induction 

step by the next dl8IT8m: 

t 
I
 
I
 

'V
 

t 11 = t21 
./ ~ 

t 12 loco t22 
, , confl. , ,

" ,, , , 
~ " , ro ' 

" i od. (1) ,.' ',i nd. (1) ," ,~ 
tl , " " ,tz 

", ' , ' 
~ )/,,' , 
r i od. (1) r ~ 1, , 2 , , , , ,. , ,, , , ,. 

:>I r" 

t 11 --) r 11 - - - - - - - - - ~t21 

/ local ~ \.
 
t 12, coherence t' 0 tzz
 , , , , , I , 

, I 
I

, , induction 
, I 

I 
hypothesis (2) 

induction "::J ~ , 
" hypothesis ( 1) r 1 , , , , ,,, , , ,.,, , ,, ,.,, ,, 

.lI I( 

t'2 

, , 
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am
We prove this theorem by induction on the number of derlvahle elements from an element t
(inmction l ) .  The base case is obvious (no elements are derivable from t). For the induction
Sim we assume, that t l  md t2 are thrlvoble from t. If t is in the reduction set of t |  or t2 this
oompletesthe proof. Otherwise there are terms ti ‘ . t12, t21mtlt22nlttlnretI ‘ , tmene in the
same cycle est, twend more not in thecycle oft snot”. ‘22 are derivable in onestep from
t1 land t“. For the proof of this case, we need another meow 'on the mininel number n or

t„-n-» (‚„A tin-1H” e ‘tH—“Latl e t2‚-*—>t2—>3 t’:tI-"—rt’.\ 5.1+ t’
The proof for the bees ease. wheret, ‚= t2, , is given bythe following ding—un moths induction

step bythe next warum:

l i l———>l 'n -—- - - - ————— 9‘21
1/ local \ \!

2112‘ coherence t'[Il t'22
\

\

\
K a

t ]  "\ “\

I
l

: induction *
: hupothesis (2) ‚ t z

\ \  induction “„ J, .;
\ hupo thes i sh )  t’1

\

I
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A globally finite and confluent relation is not necessarily coherent, therefore we mtt,t find 
weeker properties for proving the confluence. Acompletloo proceWre with It weaker confluence 
test might cre6t.e less rules lh8n 6 completion prmwre which requires the coherence property. 
On the other hend, a completion praeewre needs en efficient 81~lthm for reOJcing terms. If we 
00 not WMt to traverse all elements of a cycle IiIring the reBrlion of lJl element, we need the 
coherence property for this relation. 
In the next defintion, we split a globally finite rel81100 R into a cyclic subrel8110n C(R) and a 
reducing subrehrtion R( R). Then we will prove, t.hBt for confluent 8l1d coherent relm.ions R, it is 
sufficient to use the subrel8tion R( R) for reducing en element t. 

(3.6) Dofinttion 
Let R be 8 globally finite relation. The reducing subrelatlon R( R) Md the cyclic subrelatlon 
C( R) of R are oofined as follows: 

t --t R( R) t'.-.. t --t R t' A t' ~ t 

t --t C( R) r..... t --t Rr A r ~ t 

Note: 
- R =C(R)V R(R)
 
- R( R) is term IMting
 

Now we will prove, that it Is sufficient to use R( R) instMJ af Rfor reducing terms. 

(3.]) Lemma 
Lat Rbe It globally ftnlte, coherent Md confluent relation. An element t Is In R( R) normal form I 

iff t Is in Rnormal form mooulo cycles. 

~ 
(-+) obvious 

(~) 

proof by cootrapositlon: 

t is not in Rnormol form modulo cycles 
-+ 3 t I : t ..!..t R t 1 A t 1 ~ R t A 3 t2 : t I ---t R t2 A t2 -\+ R t I 

(there Is an element t2 below this cycle) 

-+ 3 r 1 : t -t R r I A r 1 4+ R t ( Rcoherent) 

-+ t-t R(R) r l 
-+ t is not In R( R) normal form 

(3.8) lemma
 
Let Rbe 8 globally ftnlte, confluent and coherent relation.
 
Then:
 

'V t, r: t ~R r A r Is in Rnormal form mooulacycles~ tJ.R(R) ..!..tC(R) r 

~ 
t+R(R) is in R(R)-normal form 
.... t+R(R) is in Rnormel form mooulacycles
 
with r IS8n R-normal form modulacyclesoft:
 
~t+R(R)~C(R) t' (Rconfluent)
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A globally finite and confluent relation is not necessarily coherent, therefore we may find
weaker properties for proving-the confluence. A completion procedure with a wmker confluence
test might crmte lees rules then a completion prmedure which requires the coherence property.
On the other hand, a completion {wm-‚we limits on efficient algorithm for raiucing terms. If we
do not want to traverse all elements of a cycle during the reduction of an element, we need the
coherence property for this relation.
In the next defintion, we split a globally finite relation R into a cyclic subrelation C(R) and a
reducing subrelation R( R). Then we will prove, that for wnfluent and coherent relations R, it is
sufficient to use the subrelation R( R) for reducing an element t.

W
Let R be a globally finite relation. The reducing subrelation R( R) and the cyclic subrelation'
C(R) of R are defined as follows:

t—,R(R) t ‚ “3  t—DRFA { IA- ‚nt

, : : Ül—96(R)t  6-H t—rRt  A t -—»Rl

Note:
" R = C(R)  U R( R)
- R( R) is terminating

Now we will prove. that it is sufficient to use R( R) instead of R for reducing terms.

momma
Let R be a globally finite, coherent and confluent relation. An element t is in R(R) normal form,
iff t is in R normal form modulo cycles.

m
(—>) obvious
( 4—)
proof by contraposition:

tisnot in R normal form modulo cycles
—+3t, :t-‘LRnAi,LRtaatzztI-ani2at2—‘l-iRt,

(there is an element t2 below this cycle)
==> ar,  :t——>Rt'‚ A r,  4+Rt (Room—ent)
—>t-—+R(R)t'l
_! tisnot in MR) mrmal form

3.
Let R be a globally finite, confluent and coherent relation.
Than:

V t, t’: t-LR tm t’ is in R normal form module cycles-Iii N.,—NR) i'm!) t'

am
item) is in R(R)-normel form
_» it R( R) is in R normal form modulo cycles
with t' is an R—normel form modulo cycles of t:
mttetni-‘L’um t’ (R confluent)
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L1l.CooDIJIIIlOO of Term Rewriting Systems 

Now, we will ftPply the results of ch8pter (3) to term rewriting systems. Unfortuoolely, the 
coherence property seems to be too restrictive for srbitrary term rewritirrJ systems. For 
8X8mple, if we 8PPly 8 cycltc rule to et subterm which cere be metched by a nonliooar verl8ble af 
a reduction rule, the reduction rule cannot be applied to the result of the application of the 
reduction rule. The cyclic rule can be applied in .rbitrsry depth of the term. therefore the term 
rewriting system C80not be mmE coherent by Uflng 8 finite set of rules. 

Exoomle 
(1) f(x,l(x»-+O 
(2) f(x,y) -.f(y,x) 

f(h(f(a,b) ),I(h(f(e,b»»	 -+ f(h(f(b,a) ),I(h(f(a,b»» with (2)
 

-+ 0 with (I)
 

In f8ct, rule (2) can be 8Pplted In erbltrery depth of a term which C8f1 be matched by the left 
hand sldB of rule ( I): 

f(hn(f(a,b) ),I(hn(f(e,b»» -+ f(hn(f(b,a) ),I(hn(f(e,b»» wtth (2)
 
-+ 0 with (I)
 

for n· 1, 2, 3, ...
 

There ere several opprOGChes to solve this problem: 

- consililr only term rewriting systems with linear rules [HUE 80): 
If rule (2) were linear, then it C8n still be flPplied to f(h( f( b,a) ),I( h(f(e,b»»: 

f(h(f(b.8) ),I(h(f(a,b»» -+0 With: f(x,l(y»-+O 

Problem:
 
Many InterestlntJ problems require nonltnear rules
 

- Theory matchtno where the 8QU8t10fl81 theory Is generated by the L)'Cllc rules [lB 77], 
[PS 81 J. [JK 81] 

Problem:
 
For the computrrtlon of critical ~Irs ~ unification ~llJll""ithm for the cyclic rules is
 
necessary, but currently only few unficetion 81~lthms ere known. another problem Is,
 
tt18t theory m8tchl~ Is HP-herd for neM'1y any Interesttng theory [KA 85]
 

- find a weelcer property which lmpltes conDuence [00 83] 

Problem: 
A term cannot be reduced only by the subreletlon R(R), therfore we have to traverse the 
cycles. The length of the cycles depends on the length of the terms and the cyclic rules. for 
example: The number of elements in 8 cycle of 8 term t containing n commutative 
symbols, and where the commutat1vtty Is the only cyclic rUle, Is 2n. 

In this paper we present another 8Pproach, which can be applied for proofs in the initi61 algebra 
(InductIve proofs). An equation <X = PIs lrOJcttve OOr'lvable from 8 set of equations f I If <X =P 
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Now, we will apply the results of chapter (3) to term rewriting systems. Unfortunately, the
coherence property scans to be too restrictive for arbitrary term rewriting systems For
example, if we wmv a cyclic rule to a subterm which can be matched by a nmlim variable of
a reduction rule, the remction rule cannot be applied to the result of the application of the
reduction rule. The cyclic rule can be applied in arbitrary depth of the term, therefore the term
rewriting system cannot be mine coherent by aching a finite set of rules

Exam]:
( 1) i(x.l(x)) ——»o
(2) f(x‚y) —->f(y‚x)

f(h(f(e‚b))‚|(h(f(a‚b)))) -—» f(h(f(b,a)),I(h(f(o‚b)))) with(2)
_+ 0with(i)

In fact, rule ( 2) can be applied in arbitrary depth of a term which can be matched by the left
hand side of rule( l):

f(h"(f(a.b) ).I(n"(«a.b)m ——» iih"(f(b.a) ).|(h"(f(a.b)))) minim
—-o 0 With( 1)

fo rn -  l , 2 ,3 , . . .

There are several approwhes to solve this problem:

- consicbr only term rewriting systems with "new rules [HUE 80]:
If rule (2)  were linear, then it can still be applied to f(h(f(b,a) ),I(h(f(a,b)))):

t(h(f(b.e) ).i(h(f(a,b)))) —»o with: T(X.|(V)) —>0

Problem:
Many interesting problems require nonlinear rules

- Theory matching where the equational theory is mnerated by the cyclic rules [LB 77],
[PSBI ] .  [JK 84]

Problem:
For the computation of critical pairs a unification algorithm for the cyclic rules is
necessary, but currently only few unfication algorithms are known, another problem is,
that theory matching is NP-hard for nearly any interesting theory [KA 85]

- find a weaker property which implies confluence [so 83]

Problem:
A term cannot be reduced only by the subralatlon R(R), tharfore we have to traverse the”
cycles. The length of the cycles depends on the length of the terms and the cyclic rules. For
example The numw of elements in a cycle of a term t containing n commutative
symbols, and where the commutativity is the only cyclic rule, is 2".

in this paper we prmnt another approach, which can be applied for proofs in the initial almbra
(inductive proofs). An equation a: = fl is inductive derivable from a set of equations E, if (x = p
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holds in the 1n1tial algebra of E. Th1s fact is provable by a consist.enc.y proof. the EQJ8tion <X =P 
holds tn the tniUal algebra of E. if E v <X =P~ not 1(8ltify more around terms than E 
[MU 60], [HH 82]. for thts ffiethOO we wilt spl1t the set of functton symbols into eZfined 
functions end constructors. An constructor ground terms represent the elements from the 
OOmein end coOOm8in of the d8f1ned functions. Every defined function should be completely 
d6f1ned tn E. th1s ffieoM for fll/8ry ground term t, there 15 tl constructor lTound term t', which 
is equel to t tn the theory of E. We cell e set of Bq.J8tions E consistent, 1(f all different 
constructor ground terms are not equtJlin the th8x'y of E. 
Here. we OOfine a completeness end consistency property for term rewriting systems. A term 
rewriting system Ris complete. 1ft every ground term 1s reducible to aconstructor ground term 
by R. R1s consistent, iff e11 constructor (Tond terms are in R-normal form. For 8 confluent 
term rewriting system R, the COillpleteness (consistency) of R is equivalent to the completeness 
(consistluy) of the equati0fl81 theory induced by R. 

~Def1nit1m 

let Rbe Et term rewriting system. 
- Ris consistent, m: 

'V t: t ECOT ...... t is in R-normel form 
- Ris complete, jff: 
'Vt:tEOT-+3t':t~Rt'''t'ECOT 

Note:
 
The completeness 8S cEftned here ts dtfferent from the completeness of e term rewrlttno system
 
Rafter r;pplying the Knuth-Bendix Al~lthm to R. In thts JHIP8f' we will use the m88l'llng of
 
Deflnltlon 4. I for the completeness property.
 

The consistency test for 8 term rewriting systems is simple, It only has to be checJced whether
 
no left hand stde of 8 rule ts e constructor term. Then, no rule can be applied to 6 constructor
 
~nd term. The completeness of a terminating term rewrIting system can be proven by the test
 
of KounaJis [KO 85]. This test checks, whether every term of the form f( t 1•... ,t ), where f is
 n
a ooflned function and t l , ... ,~are constructor ground terms, ts redlclble. 

With t~ tests ood the Knuth-Bendix Ah;prithm, we mtry' try to prove, thGt 6 set of equetlons E' 
hol~ In the Initial al~ra of 800ther set of equations Eby the following methOO: 

( I) Tr8ll8form the ElqU8ttons from E Into rewrIte rules 8nd complete them by the Knuth-Bendix 
Allp'lthm. 

(2) Check the consIstency Md the completeness of the confluent term rewriting system, If It Is 
tnconslstent or Incomplete stop wtth error. 

(3) hi! the equations from E' 8S rules to the term rewrltlno system and complete thts exterxBi 
set of rules by the Knuth-Bendix Altp'ithm 

( 4) Check the consIstency of the extended term rewrttino system, tf R Is cooslstent, then E' 
holds In the Inltlel 6lgebra of E, otherwtse there ere tqJ8t1ons tn [' whtch ID not hold In the 
Initlalalgebra of E. 

The completeness test for thts method worlcsonly for termtnattng term rewriting systems, but 
here we ere interested in globally finite term rewrltino systems. In the next lemma ,we will 
prove. that under certaIn conditions, tt Is sufficient to use the reooclno subrelatlon for the 
completeness test. We get this reducing subrelatlon by splitting the set of rules Into cyclic and 
reductloo rUles, as ooscr!bed in chapter 2. 
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holds in the initial algebra of E. This fact is provable by a consistency proof . the equation 0! = 5
holds in the initial algebra of E, i f  E U cc = 5 class not identify more ground terms than E
[HU 80], [HH 82]. For this method we will split the set of function symbols into Mina
functions and constructors. All constructor ground terms represent the elements from the
domain and codamain of the defined functions. Every defined function should be completely
defined in E, this means for every ground term t ,  there i sa  constructor {round term t’, which
is mus] to t i n  the thea‘y of E. We call a set of equations E consistent, iff all different
constructor ground terms are not equal i n  the theory of E.
Here, we define a completeness and consistency property for term rewriting systems A term
rewritingsystem R is complete. iff every ground term is reducible to a constructor ground term
by R. R is mnsistent, iff all constructor g‘ond terms are in R-normal form. For a confluent
term rewriting system R, the completeness (consistency) of R is equivalent tothe completeness
(consistency) of the equational ttieory induced by R.

(nimm
LetR beeterm rewriting system.
-Risconsistent,iff:

‘e’ t:t£CGT—btisinR-normaliorm
- Riscomplate,iff:
Vi;teei—>3t':t£-»Rt'at'ecei

Note
The completeness as defined here is different from the completeness of a term rewriting wstem
it after applying the Knuth—Berni): Algorithm to R. In this paper we will use the meaning of
Definition i t  for the completeness property.

The consistency test for a term rewriting systems is simple, i t  only has to be checked whethu
no left hand side of a rule is a constructor term. Then. no rule can be applied to a constructor
ground term. The completeness of a terminating term rewriting system can be proven by the test
of Kounelis [K0 85]. This test checks, whether everyterm of the form f t t I  , . . .  ,ln), wherefis
a Mined function end t ,  , . . . ,tn are wristructor ground terms, is reducible.
With these tests and the Knuth-Bendix Algorithm, we may try to prove, that a set of equations E"
holcb in the initial algebra of another set of equations E by the following method:

( l )  Transform the equations from E into rewrite rules and complete them by the Knuth-Bendix
Algorithm.

(2)  Check the consistency and the completeness of the conflwnt term rewriting system, i f  i t  is
inconsistent or incomplete stop with error.

(3)  Add the equations from E" as rules to the term rewriting system md complete this extenibd
set of rules by the Knuth—Bendix Algorithm

(4) Check the consistency of the extended term rewriting system, if R is cmslstent. then E’
holds in the initial algebra of E, otherwise there are nations in E' which m not hold in the
initial algebra of E.

The completeness test for this method works only for terminating term rewriting systems, but
here we are interested in  globally finite term rewriting systems. In the next lemma ,we wi l l
prove. that under certain conditions. i t  is sufficient to use the reducing subralatlon for the
completeness test. We get this reducing subrelation by splitting the set of rules into cyclicand
redtictim rules, m mitm in chmter 2.
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(4,2) Lemma 
Let Rbe 8 globally finite term rewriting system with: 

- R is confluent 8fld coherent 
- Ris coosistent 
- Rl: CR" RR. CR are f;yclic and RR ore r8Juctl00 rules 

Then: 
Rlscomplete ...... RR is complete. 

em 
(....) 
This directlon is obvlous, since RR is 0 su~t of R 

(....) 

tE eT -+3 r: t~R rArE eeT (R complete) 

=-+ r is in R- normal form (R consistent) 
... t+ RR ~CR r (R coherent & con0uent , Lemmo 3.8) 

.... r~CRt+RR (CRcyclicrules) 

.... r =t+RR (r Is in R- normol form) 

Now we w111 liJfine 0 wenker reletion --- on terms, where the VlI"iables from the left tmd ,tIE 
of El rule cen only be repltDKI by oonstructor terms (Defin1t1on 4.:n This restricted rel8lion 
creetes the seme COO(J'uence on lTound terms as the classical relation (Thoerem 4.5), For 
consistent term rewriting ~s, El rule C8t1not be eppHm to El subtflrm, which cm be mm.ched 
by 8 v8l"leble from 800ther rule. Therefore, the cOOer8nC8 property m5y 81so hold for term 
rewrit1ng systems with nonl1near rules. Theorem 4.7 g1ves 8 crit.c81 pair test for the local 
confluence Md the local coherence of the rel81ion --. 

!±3l.Defin11ion 
Let <5 be a substitution, V6 set of Variables and F = C'" Da set of functions, which can be 

splltted tnto lEftned functions D80d constructors C. We ca116 6 constructor substitution, 1ft: 
V x E V: 6( x) E CT 

We lEnote the set of constructor substItutlon by Ec­

( 4 4) Definitlon 
Let R be 6 term rewritlno system end F IZ C\!.JI 0 the set of function symbols from R. We ~f1ne 

the reletlon --*R Is as follows: 

t 1 ---*R ~.-.: 

3 u:3 <S E Ec : 3 <X -+ PER: t I / U =<S( <x) A t2 = t I [U +- <S( P)J 

The --R relation Is sometimes closer to the interOld meaning of the rewrite rules, boc8use we 

would like to ~ine our functlons on the elements of their OOrnsin, but not on arbitrary terms. 
The next lemma shows, thet if 6 term rewritlng system R is complete, then fMJfy ground term 
C80 be redu<:Ed to 8 constructor ground term by~. 
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Let R be a globally finite term rewriting system with:
- R is confluent and mm
— R is consistent
— R = CR 0 RR, CR we cyclic and RR are rflntionrules

Then:
R is complete (nl-=D RR is complete.

Emi
(4—)
This direction is obvious, since RR is a subset of R

(-n
te car—pa t’: t ipkn re  ceT (Roommate)

as t’ is in R - normal form (R consistent)
_» ti. RR 'L’cn' t’ (R coherent & confluent, Lemma 3.8)
_» t'äcatJfRR (on cyclic rules)
_» t’=t~|vRR (t’isinR-normalform)

Now we will define a weaker relation _»un terms, where the variables from the left hand sich
of a rule can only be replaced by constructor terms (Definition 4.3). This restricted relation
creates the same wm on ground terms the classical relation (Theorem 4.5). For
consistent term rewriting systems, a rule cannot be applied to a subterm , which out be matched
by a variable from another rule. Therefore, the Warm property may also hold for term
rewriting systems with mnlineu" rules Theorem 4.7 gives a critcal pair test for the local
confluence and the local coherence of the relation ——-».

(illDefinilim
Let 6 be a substitution, V a set of Variables and F = C 0 D a set of functions, which can be
splitted into defined functions 0 and constructors C. We cell 6 a mnstructcr substitution, lif:

Ve :6 (x )€CT
We dents the set of constructor substitution |)c

W
Let R be a term rewriting system and F = c e D the set of function symbols from R. We define
tra relation —"R is as follows.

i nfldezcz  3a—»fleR:t‚/u=6(o{)flt2=t‚[u+—-6(fl)l

The —"R relation is sometimes elm to the intended meaning of the rewrite rules, Denise we
would like to Mine our functions on tm elements of their domain, but not on arbitrary terms
The next lemma shows, that i f  a term rewriting system R is complete, two every wound term
can be reduced toaconstructor wound term by—IoR.
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(4.5) Lemma 
Let Rbe 8 globally f1nite term rewriting system wUh: 

- R '" CR ~ RR •CR ore cycl1c rules ond RR 81"8 redUction rules 
- RR is complete 

Then: 
V lE OT: 3 rE COT : t ~R r 

!TIm 
We wlll proof, t118t for fNary ground term t, which Is not a constructor oround term, 8 rule 
from RR C8fl be epplled. Since RR Is termlMtlng, RR wlll reduce t to a contructor lTound term. 

t Is not 8 constructor ground term
 

-.3u;(t/u=f(t" ... ,~)AfED) V(tlU-CACED)
 

Let u be the deepest occurence 01 8 defined function In t. Since RR Is complete, there is tl rule
 
from RR. which rWuces t I U:
 

-+ 3 v : 3 cs: 3 a ---+ PE RR : (t/ u) I v =<S(a) (RR ccmplete)
 
All occurences below u are constructor terms and if we essume, that no left hand side consists of
 
8 single verlable we ~t:
 

V xE V: CS( x) E ooT
 
-+ et I u) -RR (t I u) [v+-6(P)]
 

-+ t is reducIble by~R 

The connuence of ----R Is suffjclent for provlno the eQU8Jlty of two ground terms by ~ : 

(4.6) Theorem 
Let Rbe 8 globally finite term rewr1t1ng system With: 

- R=CR ~ RR •CR are cyclic rules and RR are rewct.ion rules 
- ----*R Is coofluent
 
- RR Is COOlplma
 

Then: 

fm!f
 
We prove this theorem by Induction on the length nof the minimal proof between t, and t2 :
 

t1 ~ t2 -+ 3 t: t1 ~ t A t2 ~ t 
The b8se C8Se (n=O) is obVious, since t,is equal to t2. For the proof of the induction step we 

assume: 
t', ~ t2~ 3 t: t', ~R t A t2~ t (inWctlon hypothesis) 

We hcwe to prove: 

t,~t',~t2""" 3t:tl~t A t2~t 
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MW
Let R be a globally finite term rewriting system with:

-- R =- CR 0 RR ‚CR ore cyclic rules and RR are reduction rules
- RR is complete

Then-
‘o'teoT: at'ecoiztinRRt'

£11991
We will proof , that for every ground term t ,  which is not a constructor ground term, a rule
from RR tm be hmmm. Since RR is terminating, RR will reducet to a mntructor ground term.

tisnotawistructorgrwndterm
-v3u:(t/u=i(t,, . . .  .12)AfeD) Vtt/u-chceD)
Let u be the deepest occurence of a define! function in t. Since RR is complete, there is a rule
from RR, which reduces t l u:
—93v:36 :  3a——*fleRR:(t/u)/v=6(a) (RRcomplete)
All awareness below u are constructor terms and i f  we assume, that no left hand side consists of
a single variable we get:
V e :6 (x )€  06T
_»( t /u )  —-»RR(t/u) [‘n-am)]
_)  t is Willie [iv—dorm

The confluence of ""R is sufficient for proving the equality of two wound terms by _"R :-

um
Let R be a globally finite term rewriting system with:

— R = CR U RR , CR are wclic rules and RR are reduction rules
-—IRisconfluent
—RRiscomplole

That:
i # t .V t l ,t2€GT:tI I—IRt2_—9 Bu l l—„Ria  t z—"R‘

Prg
We prove this theorem by induction on the length n of the minimal proof between \, md {? :

a: o

The base case (nr-O) is obvious, since tIis com] to tz. For the proof of the induction step we
assume.

t'll-M-IRt-wb 3 t:t'‚—"‘—»Rt A bloat  (irnmtimnypoumis)

Wehovetoprovc:
, ' _ t - *-tIF-ht‘l-M-lnt2—l-3tzt1—0Rtht2—a
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If t, ~ t' ,. then there h8s to be 8 rule ex --+ P or P--+ ex from R800 t', is derivable from 

t, by ex --+ P. or t, is derivable by P--+ ex from t',: 

3 u : 3 CS : t, I u :: CS( ex) At', =t, [u +- ~(P)] 

All subterms 1n t, and t' l' which are metched by variables froot ex and Pcan be rfrlJced by 

--'*R to constructor ground terms (R complete). then the rule ex .......... por p.......... a cm be 

llPP11E1d to the r8Wa3d tarmlJf t 1 or t' ,: 
We define CS'; 

- x E D( CS): CS'( x) =t end t Is the normel form of CS( x) In ~R -x. D( CS ): CS'( x) = x 
R Is cornplete: 

-+ 'V x E D( cS' ) : CS'(x) E roT with: Lemma 4.5 

.... 6'E~ 

Then we get: 
CS(a)~cs'(a) ACS(P)~CS'(P)
 

-+t, ~ t, [u+-cs'(a)] It. t, [u+-CS(P)]..!..t.Rt, [u+-CS'(P)]
 

There ere two ceses: 
(j) ex --+ PER: t, [u +- CS'( (X)] ~ II [u +- CS'( P)]
 

(to P--+ ex ER: t, [u +- CS'(P» ---*R t, [u +- CS'«X)]
 

For case (i) we let to =t, [u +- CS'(P)] end for case (tl) we let to =t, [u +- CS'(a)] . Then we
 
get for both C8SeS: 

tl~to It. t'1~to 
with the induction hypothesis: t', ~R t It. t2 ~R t and the confluence of ~ we l13t: 

3 t':t~t' It. to~t' 

..... tl~rlt.~~r 

The following diagram summmartzes the proof of the inductton step: 

\1 f---i t' p- - - - - - - - - - - - - - -H 2
 
, ; " i nd ucti0 n '
 

" : ' , hypothesis "
 
'~ ~ ,
 

to t1' , ,
 , con. ~ ~
 
, t
 

'!!I ~' 
r 

In the next throrem I we show how the 1~1 connuence Md the l~l coherence Of...!...,.R con be 

cta:ked by crltlcol pair tests. In this tlleor6m I we lEnote the normal form of a term t with 
~ to ~ al&) by tJ.R. 
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Inu—ht'htrmum'ehastobearulea—afl wfi—aafrunRandt', isderivehleirom
t‘ byOt—tp, ort‘ isderiveblebyfl-aairom t":

3 u :36: t ,  lu=6(<x) At"  =t, [u<—-6(p)]
All subterms in t1 and f„  which are matohm by variables from Ct and p can be ruined by
wieoonstructorgrwndterms (Roomplote), thenthe ruleoz—rflorp—«vaoon be
wpliedtothe radioed term an, or Y,:
Wetbflned':

- x6 D( 6 ): (f(x) a t  andtisthenormal form of6(x) in—"-'-»R
- x ‘  D( 6 ): (f(x) ==x

Risoomplete:
_»V  xe [)( 6’ ) :6“(x) e OBI with : Lemma 4.5
_6 '620  .

Then weoet:
aux) —'—»R6'(oc) A am) Len (STP)
_» tI im t, [uc—-6’(oc)] A \, lu4—-6(ß)l —"'-»R t. luv-619)]

Thema—chrom
(i) «_»penz tl [ac—61a” —”Rt l  [ac—619)]
(mp—wen;  t, [m—d'(fl)] —»Rt‚ Inc—6100]
Forceee(i)weletto=t‘ [us—61F)! andforuu(ii)welett0=tI [u<—6’(<x)] .Thenwe
wtforbothcoses:

ti"""itto “ t'li'fiz‘o _
with the induction hypothmis: t', im t 5 t2 —'3'-»R t and the confluence url»R we pet:
anti-mr A toihnt’
===) t‘ lauRt' A tQLnRt’

The following diegran summmarizes the proof of the induction step:
{i i—-i M i- - - - - - - - - - - - - -  412
‘ „ c \ induction ,

\ l\ \  , \\hupothesis’z’
!

\ I
I

!! IE
\ t

I
IEl ie

to

av  \
iQ  confl. ‘ ’

In thenmdtheoremmeshowhowthe local confluelmmdthelocoloolwrmof-f-nncmhe
checked by critical pair tests. In this theorem, we (note the normal form of a term twith
rmect to _"R ulsobytJ'i-‘t.
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( 4.]) Thoorem 
Let R=CR \!1 RR be a globally flnlte end consistent term rewriting system, which can be splltted 
into cyclic rules eR end reduction rules RR. 

R Is locally confluent If t'XXldlt1on ( 1) Is satIsfied: 
( 1) 'V <X ~ p, l~ 6 E RR VuE 0( <x) V CS E r C: CS( <x) I u ., CS(1) 

... CS(<x) [u +- CS(6»)J.RR..!..tt CR 6(P)J.RR 

R Is locally coherent If condltton (2) end (3) ere satIsfied: 
( 2) 'V 0: -+ PE RR, 1-+6 E CR 'V uE 0(<<) 'V CS E rC: CS(<<) I u =CS( 1) 

-+ 3 t': 6(0:) [u +- 6(6)] -* RR r A r J..RR -!...,. CR 6(P)J..RR 

(3) 'V 0: -+ PE RR, 1---t 6 E CR'V u E 0(1)'V 6 E rc:<s(«) =6(1) I u 

....... 3 r: 6(6) ---* RR r A t'J..RR ....!..-CR 6(1) [u +-6(P)]J..RR
 

If R Is coofl uent and coherent, then the conditlons ( 1), (2) and ( 3) are satIsfied. 

~ 
The detatls of this proof ere very similar to the proof for the classlasl crlUasl pttlr test, 
therefore we will sketch only the melln ldoos. 

R is IQIlv connuent 
Let t1 be rertv8ble from t by <X ~ PER end t2 be derlv8ble from t by l~ 6 E R. If <X ~ P 
E CR, then t Is oorlvable from t1 and t2 Is In the roouctlon set or t l' The same argument holds, If 

1---' 6 E CR Otherwise we gat two cases: 
(1) <X ---. Pand 1---.6 are applied at disjoint occurences.
 
Both rules can be applied simultaneously to t and we get. a term 1', which 1s in the reOJction set.
 
of t, 80d l:2.
 
(10 0: ---t Pand l~ 6 are applied at overlapping oa:urences.
 
No rule can be applied to a sublerm, wh1ch can be matched by 8 variable of enolher rUle (R
 
consistent), therefore we gal 8 cr1l1cal overlapping between these rules. For this cr1l1cal
 
overlapping we have tri consider all critical pairs between <X ---. Pand 1---.6.
 

R1s locpl1y g;Jherent
 
let t, be deriv8ble from t by <X ---. PE RR and t2 be derlveble from t by l~ 6 E CR.
 

If« -+ Pood1-+6 are 6PP lied at disjoint oa:urences, then t2 can be redtJc3l by 0: -+ Pto 

r 80d t' Is OOr'tvable from t 1. otherwise <x -+ PIs applied at en occurence below 1-+6 (j) or 

1-+ 6 Is applied below « -+ P(It). For C8S8 (1) we have to conslOOr' critical pairs 8S In
 
condition (3) Md for cese (It) we consider crltlasl pairs 8S In condition (2).
 

( I) ,e 2) QOd e3) ore satlafled If RIs coonuent ODd coherent
 
Every condition Is obviously satisfied In 8 coofl uent end coherent term rewritlno system,
 
therefore we ~ IP this proof.
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mm
Let R = OR a! RR be a globally finite and cmsistent term rewriting system, which can be splitted
into cyclic rules CR and reduction rules RR.

R is locally wnfluant ifcondition ( l )  is satisfied
(1)V«—+p‚x—-»öe RRV ue 0(a)vee£c:6(oc) l u  =6 “ )

_» am) [u e— atantnn JL» cn «mien

R is locally coherent if condition (2) and (3) are satisfied
(”Va—996RR,x——’6£CRVu€0(a)VGEEc:6(C()/u=6“)

_»; t’:6(0t) (“_-am] —»RR t‘ ‚. tales Lemawi lnn

(SJVd—bfleRR,3——+6€CRVU€0(X)VGGXC:6(OI)=6(X)/u
===-pa t’-:6(6)——»RR r a. rich Amen)  [u+—6(p)]J.RR

If  R is confluent and coherent, then the conditions ( l ) ,  (2 )  and (3 )  are satisfied

Emi
The chtails of this proof are very similar to the proof for the classical critical pair tat,
therefore we w i l l  sketch only the main ideas.

WM
Lett1 bearivablefromtbyot—afie R andtzbaderlvabiefrom ting—+66 R. l i d—op
e CR, than t is derivable from t ,  and t2 is in the reduction set art , .  The same argument holds, i f

3—4 6 € CR. Otherwise we get two cases:
( i )  « —-» p andx—e 6 are applied at disjoint occurences.
rEfoth altem he mplied simultaneously to t  md we get a term t’, which is in the reduction set

, .

(ii)  o: _» p and 3—» 6 are applied at overlapping occurences.
No rule can he applied to a subterm, which can be matched by a variable of mother rule (R
wnsistent), therefore we wt 3 critical overlapping between these rules. For this critical
overlapping we have to consider all critical pairs between (x __. p und 3—46.

R l ent
Let t1 becbrivable from tbyOt -fifle  RR mut? bederivablefrom tbyx-96 € CR.
IftX-aflandx—ibarsapplied atoisjolnt mrerms.tMn (20mm  retimedbya —+p to
t’endt’ is derivable from t,. Otherwisetx ——»p ismpliedat an occurence below 3—06 (i) or
3—» 6 is applied below a: _» p (ii). For case ( i )  we have to consider critical pairs as in
condition (3)  and for cam ( i i )  we consider critical pairs as in condition (2).

Every condition is obviously mtisfied in a confluent and coherent term rewriting system
therefore we skip this proof
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!..5lExt8nOld Knuth- Bend1x Prmrnre 

Asimple completion procedure, which bGses on the results of this p8pef' mtry look as foll0W3: 

Completion PrrpdJre 

Input	 - Aset of flIJJ6tions E 
- Aweak term orderino ~ 

( t) Cr_ rules from E: 

CR ::a { <X -+ PI ( <X =PE Ev p:c <X E E ) A<X ~ PAP ~ <X }
 

RR :IC { a -+ PI ( <X =PE Ev p::z <X E E ) A <X ;t PA , P~ <X }
 

3a :CPE E:a-+P4 RAp-+a4 R?
 
true: stop with foilure
 
false: ronUnue with ( 2)
 

( 2) Check local cohererx:e and local coofluenat. 

(t)	 'V a -+ P, '1-+ 6 E RR V' U E O(a) 'V 6 E Ee:6(a) / u • 6(1)
 

... 6(a) [u +- 6(6)] +RR ~ CR CSCP)+RR
 

(11)	 'V a -+ PE RR, 1-+6 E CR'V uE O(a) 'V 6 Ere: 6(a) / u = 6(1) 

... 3 t': 6(<x)[u +- 6(6)] -- RR t' It r+RR ~ CR 6(P)+RR 

(111)	 'V a -+ PE RR, 1-+6 E CR'V UE 0(1)'V 6 E1:e:6(a) :: 6(1) / u 

-+ 3 t': 6(6) -- RR t' A rJ.RR ~ CR 6(I)[U +- 6(P)] J.RR 

If (1), (ii) or (H1) 00 not hold then continue with step (3), otherwise ~ with soo:ess. 

(3) There are three cases: 

- 3 a -+ p, 1-+ 6 E RR 3 uE O(<x) 3 6 E Ee:6(<x) / u 0: 6(1)
 

-+ 6(a) [u +- 6(6)] J.RR + CR 6(P)J.RR
 

-+ contInue w1th step (3)
 

- 3 <X -+ P E RR, 1-+ 6 E CR 3 uE 0(<x) 3 6 E Ee : 6(<x) / u '" 6(1 )
 

... 'V r: 6(a) [u +-CS(6)] -f* RR r v r+RR ~ CR 6(P)J.RR
 

-+ td16(<x) [u +- 6(6)] -+ 6(P)J.RR to RR Md continue with (2)
 

-3<X-+PE RR,l-+6E CR3 UE 0(1)36EEe :6(a) =6(1) /u
 

-.'V r: 6(6) --+- RR r y rJ.RR ~ CR 6(1) [u +-6(P)]J.RR
 

---+ fKi16(6) -+ 6(1) [u +- 6(P)] +RR to RR and continue with (2)
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( 3) There are four cases: 

- 6(<X) [u +- 6(6)].J, RR ~ 6(P).J, RR A 6(P).J,RR ~ 6(<X) [u +- 6(6)] .J,RR
 

~6(<X) [u +-<s(6)].J,RR ~6(P).J,RR toCR
 
t016(P).J,RR ~ 6(<x) [u +- 6(6)] .J,RR to CR
 
cmttnue with (2) 

- 6(<x) (u +- 6(lDl .J,RR ~ 6(P).J,RR A, 6(P).J,RR ~ 6(<x) [u +- 6(6)] .J,RR
 

1D16(<x) (u +- 6(6)] .J,RR -HS(P).J,RR to RR
 
continue with (2)
 

- 6(P).J,RR ~ 6(<x) [u f- 6(6)] .J,RR A, 6( <X) [u f- 6(6)] J.RR ~ 6(P)J.RR
 
~6(P)J.RR ~ 6(<<) [u f- 6(6)] J.RR to RR
 
conttnue with (2) 

- 6(<x) [u +- 6(6)] J.RR Md 6(P)J.RR ore not compereble
 
stop with feilure
 

for rEl6SOOS of efflcleocy we had to Implement an extenOOd version of this completion proceliJre: 

- The completion prtmiJre should be able to remove rules wring the completion, If they can be 
reduced by new rules. After removing a rule from 8 set R, some critical polrs which were 
reducible by R might no longer be reducible by the new system. Then the IWlI coherence or 
locnl confluence for these polrs ml!Y not hold. For this purpose, we have proven thet we8:: 
ver,lons of the locol confluence end locol coherence property sttJI Imply the cmfluence. These 
weeker properties ere ouerenteed for all critical pairs, which have been testM during the 
completion, even If some rules h8Ve been removed from R. 

- The rel8tlon -----R Is weeker then the rel8tlon~R' therefore some critical pairs which 8r8 

reducible by ~R might not be rewelble by~. This wtJI cause the completion pNX:fdJre 

to diverge sometimes, when it would converge with the relation -"'R In our implement8tion 

we distinguish between decler«t verl8bles end other verl8bles. Adecler«t verl8ble CM only be 
replaced by 8 constructor term and the other variables may be replBa!d by arbitrary terms. 
This extension works corroctly I If all nonJ1near variables In left hand sides of rules are 
00c1ared. 

For 8 confluent and gl0b8lly finite term rewriting system, the completeness (Deflnitlon 4. 1) of 
the reduction rules can be chfdced by the test of Kounalls. 

In the appendiX we give 80 exempls, which wes completed by our implementation. ThlsexM'lple 
contains a nonllneer rule and some cyclic rules, for example: 

\r( p,1f(Q,x ,y) ,if( Q,U ,v» = if( Q,if( p,x .u) ,If( p,y ,v» 

This kind of equations are often created during the completion of term rewriting systems with 
axlOOlS for condItions. CUrrently I no untrlC8tlon allp"lthm Is koown for thIs 8)(100l. therefore an 
approoch which bases on theory unification, cannot be applied to this theory. 

Completion of globally finite term rewriting systems for inductive proofs l8

(3 )  There arefour cases:

- 6(a) [u «— amnion z «punk a «punk: 6(a) [u «awn-tan
autism) [u «- 6(6)l tee —-+ «anna toCR
metp)¢RR—+ der) [u 4- «Milne toCR
continue with ( 2)

- 6(a) [u +— aa)] the z «p)—Lan A -. «mm 2 am) [u +—e(o)l the
meta) [u e—ewntan _» am)—Lan to RR
continue with ( 2)

— (“P)—WR z der) [u ... etantnnx '1 doc) [u +— etcntnn z «mim
wetpNnR __. 6(a) [u ... etcntnn to RR
continue with ( 2)

—- star) to <— amnion matinee are not comparable
stop with failure

For reasons of efficiency we had to implement an extended version of this completion procedure.

— The completion prmedure shctnd be able to remove rules during the completion, if they can be
reduced by new rules. After removing a rule from a set R, some critical pairs which were
reducible by R might no longer be reducible by the new system. Then the local cohereme or
local confluence for these pairs may not hold. For this purpose. we have proven that weal:
versions of the local confluanw and local coherence property still imply the confluence. These
water properties me guarantmd for all critical pairs, which have been tested during-the
completion, even if  some rules have own removed from R.

- The relation _”R is water than the relation—4 ‚therefore some critical pairs which are
reducible by '—’R might not be reducible by —»R. This will cause the completion procethre

to diverge sometimes. when it would mnverga with the relation _'R' In our implementatim
we distinguish between (Elend variables and other variables. A declared variable can only be
replaced by a constructor term and the other variables may be replaced by arbitrary terms.
This extension works correctly, i f  all nonlinea‘ verwies in left had sides of rules are
declared

For 'a confluent and globally finite term rewriting system. the completeness (Definition 4. I ) of
the reduction rules can be checked by the test of Kounells.

In the appendix we give an example, which was completed by our implementation. This example-
contains a nonlinear rule and some cyclic rules, for example:

if(p,if(o,x.y),if(q,u,v)) = if(q.if(p.x,u),if(p,y,v))

This kind of situations are often created airing the completion of term rewriting wstams with
axioms for conditions. Currently. no unification algorithm is known for this axiom. therefore m
approach which bases on theory unification, cannot be applied to this theory.
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uuCqx;lusioo 

There ere two espects few' the rfJSUlts of \hts peper: 
Firstly, it desrctbes 0 extended completion prooedure for inductive proofs. This procedure is 
8ble to complete globally finite term rewriting systems with erbitrory cyclic rules, if these 
rules C8US8 finite cycles. No theory unification is r8:J.Iired, nor ooes it restrict the k.ind of rules 
(J1neer rules, cert.8in cyclic rules, ... ). It work.s also efficient, since no theory m8tching is 
r~ired for reWclng terms and we have to trewerse the cycles only for comparing fl(J'mal 
forms, which OI"'e usually small terms. 
Secondly, it describes 8 theoretical framework. for extending the Knuth-Bend1x Algorithm to 
globally finite term rewriting systems, which differs from former 8PprOldles. These former 
8Ppratr::hBs allowed rEdJctions mtxiJlo equivalence classes (e.g. [JK 84]). This k.eeps the finite 
termination pr~ty, but requires 8 theoretical b8ct.ground for this extension, where we have 
to consicEr two different relations. This compllcetes sometimes the theory, because we have to 
consider both relations end their combinetions. Another problem is, that all CiClic rules have to 
be incorportrted into the mateher' and unfier of the completion al(JX'ithm. In our theoretical 
frame, the conflll8OC8 r85Ults are rompletely tndepeudent from the '-ind of rules, we mllY use rJ 

theory m8tcher, where the theory is Qen8rated by an arbitrary subset of the cyclic rules. 
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(film

There are two aspects for the results of this paper:
Firstly, i t  dasrcibea a extamled completion procedure for inductive proofs. This prwedure is
able to complete globally finite term rewriting systems with arbitrary cyclic rules, if  these
rules cause finite wales. No timry unification is required, nor does it restrict the kind of rules
(linear rules, certain cyclic rules, . . .). It works also efficient, since no theiry matching is
rmired for reducing terms and we have to traverse the cycles only for comparing normal
forms, which are usually small terms.
Secondly, i t  describes a theoretical framework for extending the Knuth-Bendix Algorithm to
globally finite term rewriting systems, which differs from former approaches These former
morocches allowed reductims merino equivalence classes (eg [JK 841). This keeps the finite
termination property, but rmuires a theoretical background for this extension, where we have
to consicbr two different relations. This complimtes sometimes the thwry, bwause we have to
consicbr both relations and their combinations. Another problem is, that all welic rules have to
be incorporated into the matcher and unfier of the completion algorithm. In our theoretical
frame, the confluence results are completely inmpantbnt from the kindof rules, we may use a
theory matcher, where the theory is estimated by an arbitrary subset of the cyclic rules.
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Appendix 

These equations define elementary functions on natureI numbers. The naturel numbers ere 
represented by ground terms contalng the constructors S (successor) and 0 (zero). The 
functions ADD (lrtlition), SUB (subtr~tlon) 8fld MUL (multiplication) are dlroctly refined on 
these constructors. The definition of the function DIV (divide) requires axioms for the predieste 
LESS, an IF - THEN-ELSE construct end two n..."W constructors TRUE and FALSE: 

ADD( O,x) =x
 
ADD(S(x),Y) =S(ADD(x ,Y»
 

SUB( O,x) :c 0
 
SUB(x,O) = x
 
SUB(S(x),S(V» = SUB(x,Y)
 

MUl(O,x) ::z 0
 
MUL(S( x),V) z ADD( MUL( x,V) ,V)
 

LESS(x,O) ~ FAlSE 
LESSCO,s{x» :: TRUE 
LESS(S(x),S(V» = LESS(x,V) 

IF(TRUE.x,V) =x 
IF( FAlSE ,x ,V) = V 

DIV(x,O) =0
 
DIV(O,x) = 0
 
DIV( S( x) ,S(V» :c IF( LESS( x ,V),O,S( DIV( SUB( x .V) .S(V»»
 

We W8rlt to prove the foJlowlrlQ ~Ions: 

ADD( x ,V) z ADD( V,x) 
ADD( ADD( x,Y) ,1) = ADD( x,ADD(V,1» 
SUB(x,x) - 0 
MULCADD(x,V),z) • ADD(MUL(x,z),MUL(y,z» 
If( P,If(q,x ,V),If(q,u ,v» .. If(q,lf( p,x ,u),lf( p,V,v» 

The set of axioms Is complete end consistent 8nd we start the ext60lBJ completion procedure with 
the union of both sets. The v6ri8ble x in SUB( x,x) is not linear, therefore we hove to dechre 
this vflrleble. In the protocol on the next page, declared Yflriables are prefixed by 8 L. 

The completion procedure creates two new rules and then stops with success. 

These equations define elementary functions on natural numbers. The natural numbers are
represented by ground terms containo the constructors S (successor) and 0 (zero). The
functionsADD (addition), SUB (subtraction) and MUL (multiplication) are directly deflnadon
these constructors. The definition of the function DIV (divide) requires axioms for the predicate
LESS. an lF-THEN-ELSE amatl‘uct and two nee wnatrmta‘s TRUE end FALSE:

ADD(O,x) =x  ,
ADD(5(x),v) = Stew-(Lyn

SUB(0.x) = 0
SUB(X,0) = x _
$UB(S(x).$(Y)) = soot-w)

MUL(0.x) = 0
MUL(5(x),y) = ADD(P1UL( x,v),v)

LESS(x‚0) = FALSE
LESS(0,s(x)) =TRUE _
LESS(S(x).5(v)) = LES$(X.Y)

lF(TRUE ‚x ‚y) = x
IF( FALSE ‚x ‚y) = Y

D|V(x‚0) = 0
D|V(0‚x) = O
D|V(S(x).5(y)) = IF ( LES$(x.v)‚0.S( DW( SUB( x.v).S(v)-)))

We want to prove the following equations:

ADD(x,y) = ADD(y,x)
ADD(ADD( x ‚y) ‚z) = ADD( x ADD(Y.Z))
SUB(x,x) - 0
HUL(ADD(X.Y)‚Z) ' ADD(HUL(X.2).MUL(Y.Z))
lF(p,lF(q,x.y),lF(tl.u.v)) == IF(q‚IF(p‚x,u)‚lF(P.Y.v))

The set of axioms is complete and consistent and we start the extended completion procedure with
the union of both sets. The variable x in SUB(x‚x) is not linear, therefore we have to declare
this valuable In the protocol on the next page, declared variables are prefixed by a c..
The completion premium creates two new rules md then stops with sumess.



PROTOCOl.. Of COMPLETION 

( I): ADD( O,X) - - >X 
(2): SUB(X,O) --) X 
(3): SUB(O,X) --> 0 
(4): LESS(X,O) --> FALSE 
(5): MUl(OX)-->O 
(6): DIV(X,O) .. _> 0 
(7): DIV(OX) --> 0 
(8): SUB(c-x.c-x) --> 0 
(9): ADD(YX)-->ADD(X,Y) 
9, I ==> ( 10): ADD(X,O) --> X 
( 11) : ADD(S(X),Y) --> S(ADD(X,Y»
 
( 12): LESS( O,S(x» --> TRUE
 
(13): IF(TRUEX,Y) -->X
 
(14): IF(FAlSE,X,Y) --> Y
 
9,11 .. _> ( 15) : ADD(X,S(Y» --> S(ADD(Y X»
 
(16): SUB(S(X),S(Y» --> SUB(X,Y)
 
( 17): LESS(S(X),S(Y» --) LESS(X,Y)
 
(18): MUL(S(X),V) -->ADD(MUL(X,Y),V)
 
( 19) : ADD(X,ADO(Y,Z» --) AOD(ADD(X,Y),Z)
 
(20): MUL(ADO(X,Y),l) -->ADO(MUL(X,Z),MUL(Y,1»
 
(21): IF(Y,IF(X,Z,V),IF(X,U,W» --) IF(X,IF(Y ,Z,U),IF(Y ,V ,W»
 
(22) : OIV(S(X),S(Y» --) IF(LESS{X,Y),0,S(DIV(SU6(X,Y),S(Y»» 

The system is complete I 

FINAL RULES 

cyclic rule: 

(9): ADD(V,X)-->ADD(Y,X)
 
(19): AD(X,ADD(Y l» -->ADD(ADD(X,Y),Z)
 
(21): IF(Y,IF(X,Z,V),IF(X,U,W» --} IF(X,IF(V ,Z,U),IF(Y ,V ,W»
 

reduction rules: 

( I): ADD( O,X) --} X 
(2): SUB(X,O) --) X 
(3): SUB( OX) --> 0 
(4): LESS(X,O) --} FALSE 
(5): MUl(O,X)-->O 
(6): DIV(X,O) --) 0 
(7): DIV(O,X) --} 0 
(8): SUB(c-x.e-J() --} 0 
9,1 ",,,,}(IO): ADD(X,O)--}X 
(1 I) : ADD(S(X),Y) --> S(ADD(X,V» 
( 12): LESS{ O,S(x» --} TRUE 
(13): IF(TRUEX,Y) --}X 
(14): IF(FAlSE,X,Y) --) V 
9,11 ==> ( 15) : ADD(X ,S(V» --> S(ADD(X ,V» 
(16) : SUB(S(X),S(Y» --> SUB(X,Y) 
(17): LESS(S(X),S(Y» --> LESS(X,Y) 
(18): MUL(S(X),V) -->ADD(MUL(X,Y),Y) 
(20) : MUL(ADD(X,Y),l) --} ADD( MUL(X,Z),MUL(Y ,Z» 
(22): DIV(S(X),S(Y» --} IF(LESS(X,Y),O,S(DIV(SUB(X,Y),S(Y»» 

(reduction rule) 
(reduction rule) 
( reduction ru le) 
(reduction rule) 
(reduction rule) 
(rEWctlon rule) 
(reduction rule) 
(reduction rule) 
(cyclic rule) 
(ra1lction rule) 
(reduction rule) 
(rEWction rule) 
( reduction rule) 
(reduction rule) 
(ra1lction rule) 
(reduction rule) 
(redoction rule) 
( reduction rule) 
(cyclic rule) 
(reduction rule) 
(cyclic rule) 
(reduction rule) 

( l ) :
( 2 ) :
( 3 ) :
(4 ) :
(5):
( 6 ) :
( 7 ) :
( 8 ) :
( 9 ) :

( l 6 ) :  SUB(S(X).S(Y)) -->SUB(X‚Y)
( l 7 ) :  LESS(S(X).S(Y)) --> LEss(x,v)
( l 8 ) :  HUL(S(X),Y) ——>ADD(MUL(X‚Y),Y)
(19) : ADD(X.ADD(Y.Z)) -—>ADD(ADD(X‚Y)‚Z)
(20)
(2 ! )
(22)

The system is mplete l

EJMLBULES

cyclicrule

( 9 ) :  ADD(Y‚X)--->ADD(Y‚X)
( 19) : AD(X.ADD(Y‚Z)) --> ADD(ADD(X.Y).Z)
(21): IF(Y,IF(X‚Z,V)‚IF(X‚U‚W.)) —-> IF(X,IF(Y,Z,U),IF(Y,V,W))

reduction rules.

( I ) :  ADD(0‚X) -—>x
( 2 )  : SUB(X,0) - ->X
( 3 )  : SUB(O‚X) - ->0
( 4 ) :  LES$(X‚0) ">  FALSE
(5 )  : HUL(O,X) ——>0
(6 )  : D|V(X,0) ——> 0
( 7 ) :  DlV(0.X) - ->  0
(8 ) :  SUB(c_x‚c_x) - ->  0
9,1 “mm;  ADD(X‚0) ——>x
(1 \ ) :  ADD(S(X)‚Y) —->S(Aoo(x.v))
(12) :  LESS(O.S(x)) -->mU£
(13):  lF(TRUE.X.Y) -—>x
( I 4 ) :  IF(FALSE‚X‚Y) -->v
9,11 ==> ( 15); ADD(X‚S(Y)) ——>S(ADD(X‚Y))
( l 6 ) :  5UB(3(X).3(Y)) —->5UB(X,Y)
( I 7 ) :  LE88(S(X).3(Y)) —-> LESS(X‚Y)
( l 8 ) :  MUL(S(X)‚Y) -->ADD(MUL(X‚Y)‚Y)
(20) : HUL(ADD(X‚Y)‚Z) —-> ADD(P1UL(X,Z)‚I1UL(Y‚Z))
(22): D|v(s(x).S(Y)) —-> IF(LE&S(X.Y).0.5(DIV<SUB(X.Y).S(Y))))

ADD(0‚X) -—>x
SUB(X‚0) —-—->X
SUB(0‚X) --> 0
LESS(X ,0) " -> FALSE
MUL(0,X) —->0
DW(X,0) - ->  O
DIV(0,X) -—>0
SUB(c_x.c_x) -—> O
ADD(Y‚X)'——>ADD(X‚Y)

9,1 ==> ( IO ) :  ADD(X‚0) —->x
( I I )  : ADD(S(X),Y) --> S(ADD(X‚Y))
( l 2 ) :  LESS(0,S(x)) - ->  TRUE
( 13 ) :  IF(TRUE‚X‚Y) - ->X
( l 4 ) :  IF(FAL5E,X,Y) —->Y
9,11 - -> (15 ) :  ADD(X,S(Y)) -—-> S(ADD(Y‚X))

; HUL(ADD(X‚Y)‚Z) -->ADD(MUL(X,2)‚HUL(Y‚Z))
: urn/‚mx‚z,v),|r(x‚u‚w» -->|r(x‚|r(u‚u)‚|r(v‚v‚m)
: ow(5(x)‚5(v)) -—>mLiam,V).o.5(oIV(SUB(X.Y).S(Y))))

(reduction rule)
(reduction rule)
(reduction rule)
( reduction rule)
(reduction rule)
(reduction rule)
(reduction rule)
( reduction rule)
(cycllc rule)
(mum rule)
( reduction rule)
(reduction rule)
( raiuctim rule)
(reduction rule) '
(radiation rule)
( reduction rule)
( function rule)
( reductim rule)
( cycllc rule)
( rednllon rule)
(cyclic rule)
( reduction rule)
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