UNIVERSITAT DES SAARLANDES

FACHBEREICH INFORMATIK

-
c
QD

T X
@U
b=
5 =
- 0
™
o ©
- 0
¥ »n
(=)
ES
(V=]
Ve
|
=

SEKI-REPORT

Germany

Integration of Rewriting, Narrowing,
Compilation, and Heuristics for
Equality Reasoning in
Resolution-Based Theorem Proving

Axel Pracklein
SEKI Report SR-92-21 (SFB)

Integration of
Rewriting, Narrowing, Compilation,
and Heuristics for Equality Reasoning

in Resolution-Based Theorem Proving

Axel Priacklein

Fachbereich Informatik, Universitat des Saarlandes
Im Stadtwald 15, 6600 Saarbriicken 11

Contents

Contents ’ 1
Extended German Abstract v
English Abstract vii

1 Introduction 1
1.1 Equality e e
1.2 The Central Role of Completion

2 Equality Reasoning - An Overview 5
2.1 Basic Termini and Definitions IR 5
2.2 Theory Unification e e e e e e 8
2.3 Paramodulation.« . . e e e e e e e e 9
2.4 Decomposition e e e e 10

24.1 RUE-Resolution e - 10
2.4.2 Decomposition-Based E-Unification. 00 0., 12
2.5 RewrlbIng o o e e e e e e e e e 15
2.6 Restrictions for Paramodulation. 17
2.6.1 Superpositiono e e e 17
2.6.2 Reduction L L e e e 21
263 SUmMMAEY o e e e e e e e e e e e e 22
27 NaITOWINE o o it e e e e e e 22

3 Variations of the Basic Superposition Calculus 25

3.1 Imference Rules e 25
3.1.1 E-Resolution via Narrowing 26
3.1.2 Completeness Considerations 28

3.2 Restriction Strategles. L 28
3.2.1 The Superposition Strategy 29
3.2.2 A Clause Graph Strategy 29

3.3 Reduction L 34

3.4 Summary e e e e e e e e e e e 37

Contents

Heuristic Control 39
4.1 Narrowing Control 39
4.1.1 Prerequisites for E-Resolution 41
4.1.2 Adaptation of Difference Reduction Heuristics 42
4.1.3 Restrictions for Narrowing 43
4.2 Completion Control e 44
4.2.1 Choosing the Restriction Strategy 45
4.2.2 Reduction Orderings L e e 47
4.2.3 Critical Pair Selection 49
4.2.4 Critical Pair Reduction, 51
4.3 Summary e e e e e e e e e e e e e e e e 52
Compilation: Towards an Equality Reasoning Machine 53
5.1 A Compilation Example 55
5.2 The Transformation into Mnemonic Assembler Code 57
5.2.1 Abstract Code 58
522 Terms — Lisp e e e e 59
5.2.3 Lisp — Single Functions 60
5.2.4 Single Functions — Abstract Code oo i 61
5.3 Evaluation of an Implementation 62
5.4 Unfailing and Conditional Rewriting 64
5.5 Possible Refinements o 64
5.5.1 Compiled Unification e 64
5.5.2 Indexing Trees e 64
Aspects of Integration 69
6.1 Rules for Building Theorem Provers 69
6.2 Control Through System Architecture 72
6.3 Global Supervision e e e e e e e e e e e e e 73
6.4 Integration into an Existing Theorem Prover 75
6.5 Usage of Theory Unification 76
6.6 Towards a Human-Oriented Presentation of Equational Proofs 79
Conclusion - 81
Sparc 83
Al Compound Term and Constant 83
A2 Variable e e e 84
A3 Term List Cons Cell e 85
A4 Bindings L e e . 86
A4l Setting Bindings e e 86

A4.2 Checking Bindings 86

Contents

B Commented Examples
B.1 Lusk/Overbeek e
B.1.1 Examplel. e e e
B.1.2 Example2. e
B.1.3 Example 3. e
B.14 Exampled. e
B.1.5 Exampled. e
B.1.6 Example6.

B.2 Pelletier . .

B.2.1 Exampled8 e e
B.2.2 Exampled9 e
B.2.3 Example 81 e e e e e
B.2.4 Example b2 e e
B.25 Exampleb3 L e e e e e e
B.2.6 Examplebd L e e e e
B.2.7 Examplebd
B.28 Exampleb6 e e e e e e e
B.29 Bxample b8 e e
B.2.10 Example 61 e e
B.2.11 Example 63 L e e e e e
B.2.12 Example 64 e
B.213 Example 65 e e e e e
B.2.14 Example 73, Four Pigeons — Three Holes
B.3 Other Examples e
B.3.1 Cancellation e
B32 TwoSquare Roots e
B.3.3 Commutator e e e

B.3.4 Group Completion L e
B35 Central Groupoid. e

B.3.6 Z22
B3.7 729

Acknowledgement
Bibliography

Index

1ii

87
88
89
89
90
91
93
94
95
95
96
96
97
97
106
107
108
109
109
110
111
111
111
119
119
120
122
122
123
124
133

157

159

173

Zusammenfassung

Mit der vorliegenden Arbeit wird ein Rahmen zur Integration verschiedener Methoden und Werkzeuge
im Bereich des Gleichheitsbeweisens vorgestellt. Die Arbeit konzentriert sich auf die praktischen Aspekte
dieser Integration: Wie und fiir welche Beispiele kann man welche Komponenten des Systems verwenden?

Die Gleichheit ist eine der wichtigsten Relationen in der Mathematik und auch bei der Modellierung der
uns umgebenden Realitdt. Deshalb fungierte sie von Anfang an als ein Fallbeispiel fiir die Methoden
der Kiinstlichen Intelligenz (KI).

Ausgehend von der Standardaxiomatisierung der Gleichheit fiir die Logik erster Stufe wurden in zahlrei-
chen Veroffentlichungen unterschiedliche Gleichheitskalkiile mit dem Ziel der Mechanisierung auf dem
Rechner entwickelt. Dabei sind zwei grundverschiedene Varianten zu unterscheiden, ndmlich solche,
die versuchen, die Unterschiede zwischen zwei Termen zu reduzieren und solche, die mit Ersetzung von
Untertermen arbeiten.

Als Basis fiir diese Arbeit wurden verschiedene Methoden auf ihre allgemeine Anwendbarkeit und auf
Maéglichkeiten hin untersucht, sie in das MKRP-System, das in unserer Arbeitsgruppe entwickelt wurde,
zu integrieren (Kapitel 2):

— Die konzeptionell einfachste Art des Gleichheitsbeweisens ist die Unifikation, die dazu dient zwei
oder mehr Objekte durch geeignete Belegung ihrer Variablen gleichzumachen. Hier gibt es Er-
weiterungen, die bestimmte Theorien wie Assoziativitit oder Kommutativitét in diesen Proze8
einbeziehen (Abschnitt 2.2).

- Die Basisregel fiir ersetzungsorientierte Gleichheitskalkiile ist die Paramodulation. Die Paramodu-
lationsregel verhalt sich in Kalkiilen ahnlich wie die Resolutionsregel, beide lassen sich also gleich
ansteuern (Abschnitt 2.3).

— Differenzreduzierende Gleichheitsbeweiser arbeiten haufig durch Termdekomposition, dabei sind
bestimmte Einschrankungen, die fiir die Paramodulation méglich sind, nicht iibertragbar. Aufler-
dem hat man bei der Integration von Dekomposition und Resolution das Problem, die beiden
Regeln verschieden ansteuern zu miissen, weshalb wir uns dann mehr auf die ersetzungsorientier-
ten Verfahren konzentriert haben (Abschnitt 2.4).

— Eine der stérksten Einschrinkungen fiir die Paramodulation stellt eine fiir das Theorembeweisen
taugliche Abart des Knuth-Bendix-Vervollstdndigungsalgorithmus’ dar. Er sollte den Kern eines
fiir Gleichheitsbeweise geeigneten Beweisers darstellen. Der Knuth-Bendix-Algorithmus arbeitete
urspriinglich nur auf unbedingten Gleichungen (Abschnitt 2.5).

~ Es gibt inzwischen verschiedene Erweiterungen fiir bedingte Gleichungen, die alle als Restrikti-
onsstrategien der Paramodulationregel angesehen werden kénnen. Von diesen haben wir mehrere
in unserem Beweissystem implementiert (Abschnitt 2.6).

- Die ,Narrowing “-Technik stellt eine Mglichkeit zur Verfiigung mit dem Knuth-Bendix-Verfahren
vervollstandigte Gleichungssysteme in einem quasi generischen Theorieunifikationsalgorithmus als
Theorie zu verwenden (Abschnitt 2.7).

vi Extended German Abstract

Die Untersuchung der hier aufgefithrten Verfahren gab dariiber Aufschlu, welche davon im Kontext
unseres vorhandenen Beweissystems verwendet werden konnen (Kapitel 3).

- Es wurde ein Modus fiir das System entwickelt, der alle bisherigen Fahigkeiten des Systems erhalt
und mehrere der vorgestellten Verfahren integriert.

- Die bedingten Vervollstindigungsverfahren kénnen durch Ansteuvern der Paramodulation und Re-
solution simuliert werden. Wird nur die Paramodulation in diesem Sinne angesteuert, ergibt sich
das konservative, praktisch alle Fahigkeiten erhaltende Verfahren. Durch ein Beispiel wird nach-
gewiesen, dafl dieses Verfahren auch in seiner schwichsten Form unvollstandig ist. Dies fithrt nicht
notwendigerweise zu seiner Unbrauchbarkeit, da die Unvollstindigkeit in der Praxis eine geringe

Rolle spielt.

- Durch die heuristische Verwendung von Narrowing kann man den Vorteil der unterschiedsreduzie-
renden Verfahren, namlich relativ michtige Heurlstxken in das im Grunde ersetzungsorientierte
Verfahren emba.uen

Ein weiterer Schwerpunkt dieser Integrationsarbeit ist die Untersuchung, wie viele der im Bereich des
" automatischen Beweisens entwickelten Heuristiken, msbesondere die fiir die Dekomposition verwendeten,
genutzt werden kdnnen (Kapltel 4).

- Die Differenzreduktionsheuristiken kénnen ;;roblemlos in die Ansteuerung der Narrowingschritte
integriert werden. Sie kénnen sogar im Hinblick auf Beurteilung globaler Strukturen erweitert
werden.

— Die verschiedenen Superpositionskalkiile wurden auf Unterschiede beim Beweis von ausgewéhlten
Beispielproblemen untersucht.

- Eine Schwierigkeit beim Vervollstandigungsverfahren ist die Auswahl der Ordnung, die meistens
manuell erfolgt. In unserem System verrichtet ein relativ einfacher automatischer Generierungs-
algorithmus seinen Dienst.

— Die iiblichen Auswahlverfahren fiir kritische Paare kénnen in das integrierte System iibernom-
men werden. Anhand eines Beispielkatalogs wurde das Verhalten des Systems bei der Variation
mehrerer wichtiger Parameter untersucht.

Zur effizienten Realisierung des vorgeschlagenen integrierten Systems wurde ein Kompilationsansatz fiir
Termersetzungsregeln weiterentwickelt, der den Vervollstindigungsalgorithmus direkt auf den kompi-
lierten Termersetzungsregeln ablaufen 1d8t. Leider sind die Ergebnisse des implementierten Prototyps
nicht iiberzeugend, weshalb wir auch keine Erweiterung fiir aligemeine Klauseln vornahmen. Dieses ne-
gative Ergebnis ist zum einen auf die Wahl der konkreten Maschine zuriickzufiihren, auf der wir unseren
Ansatz testeten, zum anderen darauf, dafl die zu optimierende Komponente im Verfahren nicht den
erwartet hohen Zeitanteil einnimmt (Kapitel 5).

Bei der Integration gab es die Chance, die Verwendbarkeit weiterer Werkzeuge beim automatischen
Beweisen zu untersuchen.

~ Es wurde die Niitzlichkeit verschiedener Theorieunfikationsalgorithmen gepriift (Abschnitt 6.5).

— Es wurde untersucht, inwieweit Gleichheitsbehandlung in ein Verfahren zur strukturierten Dar-
. stellung von Beweisen eingebaut werden kann (Abschnitt 6.6).

Die Intergrationsarbeit fiihrte zu einer Anzahl von Regeln und Vorschligen, deren Beachtung bei der
Implementierung automatischer Beweiser sinnvoll ist (Abschnitte 6.1 bis 6.3).

Im Anhang werden exemplarisch Beweisldufe fiir die Beispiele aufgefiihrt, die im Text fir zahlreiche
Statistiken und Analysen verwendet werden. Der Anhang enthilt weitere Analysen und Kommentare.

Abstract

We present a framework for the integration of the Knuth-Bendix completion algorithm with narrowing
methods, compiled rewrite rules, and a heuristic difference reduction mechanism for paramodulation.
The possibility of embedding theory unification algorithms into this framework is outlined.

Results are presented and discussed for several examples of equality reasoning problems in.the context
of an actual implementation of an automated theorem proving system (the MKRP-system) and a fast C
implementation of the completion procedure. The MKRP-system is based on the clause graph resolution

procedure.

The thesis shows the indispensibility of the constraining effects of completion and rewriting for equality
reasoning in general and quantifies the amount of speed-up caused by various enhancements of the basic

method.

The simplicity of the superposition inference rule allows to construct an abstract machine for completion,
which is presented together with computation times for a concrete implementation.

Keywords: Equality reasoning, Knuth-Bendix completion algorithm, narrowing, paramodulation, res-
olution, compilation.

vii

Chapter 1

Introduction

Equality is a very important relation in mathematics. Its mechanization is an interesting field for the
employment of artificial intelligence (AI} methods and it has served as a test bed for the development
of general techniques in Al from the very beginnings [Dartmouth Conference 1956]. Equality not only
occurs in mathematics. The problem of identity for two different formal expressions arises almost
anywhere where aspects of reality are treated in a formal way. So, not surprisingly, the concept of
equality is encountered in almost every subfield of artificial intelligence.

1.1 Equality

Following Leibniz equality is construed as a higher order property in the sense that two things are equal
if they have the same properties, that is, all unary predicates which hold for these objects are equal:

VP:P(:B):P(y):}:c:y

This higher order property can be axiomatized in a first order calculus by the following three axioms
that define an equivalence relation and two additional axiom schemata that define the equality predicate
which is a congruence relation. This i1s by now a standard treatment of equality in all introductory text
books on logic or mathematics like for example E. Mendelson [Men87], H.-D. Ebbinghaus, J. Flum, and
W. Thomas [EFT86], or V. Sperschneider [Spe84]. Like all higher order properties the axioms depend
on the concretely specified signature, that is, the function and predicate constants f and P.

Definition 1.1 (Equality Axioms)
-V z =z (reflexivity)
-Ve,y: 2=y = y==z (symmetry)l
-Vz,y,2: e=yAy=12 = &=z (transitivily)
~ For each function symbol f and each argument position t of this function:
Vey, ..oyt Zi=y= f(T,.. . 85,0, 20) = f(@1,. ., ¥y, Tn)

- For each predicate symbol P and each of ils argument positions i:

YEr, .., 20,y 2i=y APz, 2., 20) 2 Pz, .00, ., 20)

2 Chapter 1. Introduction

It would be rather inefficient to handle the equality predicate by these axioms in an automatic theorem
prover, nevertheless some trivial problems like B.2.1, page 95 and B.2.2, page 96 could be solved in this
way.

As depicted in figure 1.1 research on the mechanization of the equality predicate was historically car-
ried out in several areas, mainly: “General equality reasoning” (see the “International Conferences
on Automated Deduction”, CADE), “Unification theory” (see the “International Workshops on Uni-

fication”), and “Rewriting systems” (see the “International Conferences on Rewriting Techniques and
Applications”, RTA).

Figure 1.1: Equality Research Areas and Concepts

Unification Theory General E-Reasoning

theory unification,
paramodulation, demodulation,
rewriting, completion,
E-resolution, decomposition,
superposition, narrowing,
compilation,

Concepts

Rewrite Systems

Areas

The first area originated from automated theorem proving and led to a variety of special calculi that
are more appropriate for a logical basis of an actual theorem proving system than working with the
axioms above. Some of the inference systems, for example paramodulation [RW69] and RUE-resolution-
[Dig79)], integrate a new rule into an existing calculus as for example resolution, others like E-resolution
[Mor69] and the more recent general E-unification approaches [Bl486, YS86] ignore the context of the
local equality problem and consider only equations without conditions. In fact, they integrate equality
completely into the unification algorithm.

Most results in unification theory apply to special equational theories like associativity, associativity
with commutativity together, or Boolean rings. Various unification and matching algorithms as well as
solvability and complexity issues were dealt with. For an overview see [Sie89].

A new drive for equality reasoning came from the completion method of D. Knuth and P. Bendix [KB70],
who constrained the applicability of equations by directing them, such that normal forms of terms are
defined. At the beginning, this approach was restricted to orientable unit equations, but by now it has
been extended in many directions, for instance to conditional or unorientable equations and to equations
modulo a theory.

The main goal of this thesis was to integrate as much as possible of the tools and methods available for
equational and resolution theorem proving into one single system. We present a system that is mainly
based on three constituents, namely (i) Knuth-Bendix completion extended by clausal superposition,
(ii) narrowing which is used to perform difference reduction, and finally (iii) a compilation technique
for the application of rewrite rules. All three approaches are integrated into a classical resolution based
clause graph theorem prover [Eis88], the “Markgraf Karl Refutation Procedure (MKRP)”.

If we examine the combination of these methods, formal descriptions give no evidence for their usability,
but only experiments with many examples lead to insights for the feasibility of these methods. So we

1.2. The Central Role of Completion 3

are as informal as possible in this thesis and discuss the results of using the algorithms mainly by giving
examples and statistics.

In chapter 2 we shall give a general overview of most contemporary equality reasoning methods, and
we shall try to motivate our use of these ideas (or why we do not use them). This is followed by
a more formal description of the extensions of the inference system of MKRP in chapter 3 that are
derived from the equality reasoning methods described in chapter 2. Chapter 4 verifies that the most
important heuristics of traditional equality reasoning can be retained within this system. In chapter 5
we concentrate on an efficient implementation, that is, we present an abstract machine for the kernel
of the calculus, which is constructed via successive transformations. Chapter 6 outlines the essentials
necessary to construct an equational theorem prover from the toolbox and the experiences described
in the previous chapters. It illustrates that various methods and tools fit well into the framework of
conventional theorem proving.

We see the completion idea and its derivatives as the most important paradigm of equality reasoning
and hence as a central part of automated deduction. Based on the examples in the appendix, which
cover a wide range of mathematics, we give additional evidence for the importance of this paradigm.
Our work is experimental and empirical in nature as opposed to purely theoretical work and hence there
is a strong emphasis on actual examples, that are collected in the extensive appendix.

1.2 The Central Role of Completion

Systems which are not based on normal forms for terms, as for example the decomposition approaches of
V. Digricoli [Dig79] and K. Blasius [B1a86], as well as J. Gallier’s first system [GS86] often produce many
unifiers for the same subproblem. For example they may generate the unifiers {z + 0}, {z — —0}, {z —
——0} for the problem z = 0, that is, these systems try to enumerate all unifiers {{z — (=)"0} |
n € IN}. One possibility that avoids this effect is to postpone the computation until a solution of the
subproblem x = 0 is really needed. But in computational terms there is a better possibility to circumvent
this situation: demodulation can be used to reduce all solutions to a simplest one. The principle of
demodulation was introduced and promoted by L. Wos [WRCS67, WOLB84]. Equations are directed
and applied to all terms. The orientation can be chosen either heuristically by the machine or else by
the user. When we use demodulation it is clear that good demodulators should be computed during
the search for a proof. This directly leads to the usage of the Knuth-Bendix completion algorithm with
its strong and elaborated reduction orderings.

The key point is that the constraints introduced by the orientation of equations and the reductions are
so strong that it is better to perform forward search as opposed to goal oriented backward search, which
is performed in a decomposition approach as we shall see. This forward reasoning style was one of the
main reasons for the lack of confidence of classical automated deduction research into this method.

The following sketch of an example gives some intuitive evidence for the drastic reduction of the search
space in the completion method. Many authors as for example J. Siekmann [Sie75], A. Bundy [Bun83],
and K. Blasius [BI486] discussed the complexity of automatically finding a proof for the problem “every
group with z + 2 = 0 is commutative” (see example B.1.1). Their comparison of the different calculi is
based on the number of inference steps that are necessary to solve the problem.

A resolution theorem prover with explicit usage of the equality axioms as stated in definition 1.1 based
on breadth first search must generate about 102! resolvents to prove this theorem. For a similarly unin-
formed paramodulation prover the situation is “slightly” better, but it still has to create approximately
12'° (= 6-10'°) clauses. This reduction in the number of steps stems from the fact that paramodulation
search trees are not as deep as resolution search trees. But they are much more bushy, and for that rea-
son the amount of reduction is far less than originally hoped for by the inventors of the paramodulation
rule.

4 Chapter 1. Introduction

It 1s intuitively clear that an orientation of the equations (that is, their usage in only one direction
and their usage as normalization rules) leads to another reduction. However, this reduction is far more
drastic than usually anticipated: if we regard each selection of a critical pair and its conversion into
a rule as one step, we arrive at the following computation: Administrating the critical pairs with a
FIFO-strategy, which simulates the breadth first search, leads to a proof in less than 100 steps. With
some simple heuristic refinements the number of steps is reduced to 7 (Example B.1.1).

This example alone may show that completion is indispensable for equality reasoning and that it should
be placed into the centre of any efficient equality reasoning program. The question arises why this
approach was ignored in many theorem proving systems based on traditional methods of automated
reasoning.

One standard objection against the application of rewriting systems pointed to the fact that a completion
approach is at face value limited to a few special cases, where a canonical rewriting system can be
obtained. But even if the Knuth-Bendix procedure diverges, enough interesting intermediate results
can be derived as exemplified in problems B.1.3 and B.1.5. These examples demonstrate that most of
the generated equations are often useful as lemmata to find the proof for the theorem. In such cases
completion is superior to any other method dealing with equality.

Another disadvantage of completion as mentioned above appears to be its forward reasoning style
without a goal. Furthermore there is no way to distinguish between different abstraction levels: the
only parameters that can be set are the reduction ordering and the selection strategy for choosing critical
pairs to be directed. But this defect is more than compensated for by the constraining effect of the
orientation. For problems which combine equality and other predicates forward reasoning in such a way
saves resources, because the computation of the lemmata is only done once and they can then be used
a hundred or a thousand times in the remaining search process.

Chapter 2
Equality Reasoning — An Overview

We begin this chapter with the basic definitions for terms, clauses, and other symbolic objects that are
standard in the field. Then we give an overview of the context of our work. This seems appropriate in
view of the more practical approach we take in this thesis: the main goal of our work is to integrate
these methods into one single system and to evaluate the different approaches.

We think that the historical division of equality reasoning into general equality reasoning, unification
theory, and term rewriting is inappropriate for structuring the whole research area. This is especially so,
because there are many interdependencies and parallel developments in these areas. For some concepts
the assignment to the area is not at all straightforward: narrowing, for example, is a technique that
belongs conceptually to unification as well as to rewriting.

Another possibility to classify equality reasoning was given by K. Blasius [Bla86]: two main principles
can be distinguished, namely superposition (subterm replacement) and difference reduction (see also
section 6.3). Paramodulation, for example, works according to the first principle, where a subterm of a
term is replaced by some other term - maybe with some restriction strategy but almost always without
any general plan. In contrast difference reduction tries to minimize and finally remove the difference
between two terms using special operations similar to. those employed in GPS [NSS59).

These two different techniques lead to two different views of resolution and paramodulation. The one
related to superposition considers resolution as a subcase of paramodulation. The other view completely
eliminates the paramodulation rule in the extremal case and extends unification and resolution to E-
resolution. Unfortunately, this classification does not clarify any of the dependencies of the available
techniques either.

Hence we choose to present the techniques and concepts actually available to build programs which are
able to adequately handle the equality predicate. In some cases the name of a method is the same as
that of a research area as can be seen in figure 1.1.

In the following sections 2.1 and 2.2 we shall give some basic definitions. The sections 2.3 and 2.4
introduce the rules for replacement and decomposition based equality reasoning. In the rest of the
chapter we elaborate on some useful extensions and refinements of the replacement (rewriting) approach.

2.1 Basic Termini and Definitions

Definition 2.1 (Variable, Function, Term)

F = |UF, is a denumerable set of function symbols, called a signature and consisting of disjoint
subsets of function symbols with arity n > 0. Function symbols with arity 0 are called constant
symbols.)

6 Chapter 2. Equality Reasoning — An Overview

V is a denumerable set of variable symbols. ,
T = T(V,F) is the set of terms, that is, the least set with ¥V C T, and faly...t, € T, whenever
fn€EF,andallt; €T.

In the sequel we sometimes write the terms with parentheses if they occur within the written text, but
in examples and figures the parentheses often hide more information than they transmit.

Definition 2.2 (Predicate, Atom, Formula)

P ={JPn is a denumerable set of predicate symbols, consisting of disjoint subsets of predicate symbols
with arity n > 0.

A= {P(t1,...,tx)In >0, P, € P, and allt; € T} is the set of atoms.

® 15 the setl of formulae, that is, the least set with AC ®, and (AA B), (AV B), (A= B), (A& B),
(—A), (VzA), (AzA) € ® whencver A and B € 9.

We often omit the parentheses in atoms and formulae for the sake of clarity, as mentioned above.

Definition 2.3 (Literal, Clause)
If Ac A then A and —A are literals.

Special ﬂattened formulae Ly V Ly V...V L, with all L; literals are clauses. They are often written as
set {Ly,La,...,L,}. We also use the recursive notation LV C for clauses constructed from a literal L
and a clause C.

Definition 2.4 (Substitution, Unifier, Matcher)

A substitution is an endomorphism o : T — T, such that the set {z € V|o(z) # z} is finite. The empty
substitution is denoted by ¢, all others by their finile set of variable-term pairs {z111,...,Zn—1s}.
{z1,...,2n} s called the domain, {t,...,t,} the codomain of the substitution.

The composition of two substitutions is written o7. ¢ = 7 iff o(t) = 7(t) for allt € T. o > 7 iff there
exists a substitulion p with o = pr.

Given a set of terms {s1,...,5m} we call ¢ substitution o with o(s;) = --- = o(s,) a unifier of
S1y-c4y8n.
o is e most general unifier (mgu) of {s1,...,sm} if for all unifiers T of {51,...,5m} 7> 0.

Given two terms t and s we call a substitution o with o(t) = s ¢ matcher, which matches t on s.

Definition 2.5 (Position, Subterm, Replacement)
The positions of a term t are denoted by I(t) and are defined as follows:

() = {e} iftey
=\ fislieN,1<i<npe Mt} U{e} ift=flts,...,ta)n €N,n >0

To every position p € II(t) corresponds a unique subterm of t denoted by ¢|p.
We extend the nolion of positions canonically o literals and formulae.

t[p «— s]| denotes the replacement of the subterm tlp of t by s.

Example 2.6 (Position, Subterm, Replacement)
[(f(a,9(x))) = {¢,1,2,21}

li(a) = {}

f(a, g(x))[21—g(b)] = f(a, 9(g(b)))

=P(a)[11—b] = ~P(b)

2.1. Basic Termini and Definitions 7

In accordance with N. Eisinger [Eis88] we define deduction and reduction rules. M. Bonacina and
J. Hsiang [BH91] named them expansion and contraction rules, respectively. For the actual definitions
of rules we use the following schemata 2.7 and 2.8.

Definition 2.7 (Deduction Rule Scheme)
Clause

Clausen if Condition

‘e
Clausen 41

This scheme means that Clause,41 can be derived from the clauses Clause;, ..., Clause,. The +
indicates that Clause is added to the ezisting sel of clauses. Condition specifies when the rule can be
applied.

Definition 2.8 (Reduction Rule Scheme)
Clausey

Clause, if Condition
Clause

l

Clause’

This scheme means that Clause’ can be derived from Clause using Clause; ...Clause,. The |
indicates that Clause is replaced by Clause’ rather than added, so that the total number of clauses
remains the same.

Thus we can define the usual binary resolution rule as follows:

Definition 2.9 (Resolution Step)

Lo, Ly, ..., Ly
II‘O' Ki, .o Km if o is an mgu of Lo and K.

o(Ly, - Lny K1, -y Km)

Now we have a look at the particulars of the clause graph calculus, which is inter alia the basis for the
Markgraf-Karl system [BBB+84, 0S89, EOP89, Eis88]. A clause graph consists of a set of clauses, each
of them a multiset of literals, and a set of links, which connect pairs of literals with unifiable atoms.
A link connecting a positive and a negative literal is called an R-link (resolution), while an S-link
(subsumption) joins two literals with the same sign. If the literals incident with a link belong to two
different clauses, it is an R2-link or S2-link. If both literals belong to the same clause, the link is
called an R1-link or an S1-link. If the atoms of two literals are unifiable only after renaming their
variables apart we speak of a weak link.

The different kinds of links provide immediate access to different kinds of operations involving a given
literal occurrence. Most notably, R2-links represent the possible applications of the resolution rule,
and S1-links indicate factoring. Sets of compatible S2-links represent subsumption possibilities. When
applying such deduction rules, we have to add to the graph the new clause along with the links connecting
the new literals to the existing graph.

If the new literals are instances of ancestor literals already present in the graph, the new links can be
obtained without search by a simple inheritance process. This inheritance was invented by R. Kowalski
[Kow75] and extended to R1-links by M. Bruynooghe [Bru75]. For a detailed explanation of the mech-
anisms in the MKRP-system see H. J. Ohlbach [Ohl87] or H. J. Ohlbach and J. Siekmann [0S89]. The

8 Chapter 2. Equality Reasoning — An Overview

transfer to S-links is trivial. To remove tautologies or subsumed clauses, special link conditions must
be fulfilled.

For new literals that are not obtained by instantiating others, for example the paramodulated literal
in a paramodulation step, this form of link inheritance unfortunately does not work [B1486] (see also
section 3.2.2).

In the case of paramodulation there are also approaches based on links and inheritance. In J. Siekmann’s
and G. Wrightson’s paper [SW80], for example, links to be paramodulated upon do not join literals,
they join one side of a positive equation with an arbitrary unifiable term in another literal. They are
P2-links if the other literal is in a different clause, P1-links if they are in the same. An inheritance
mechanism for such links was implemented in our system, but unfortunately P-link inheritance does not
work as easily as for R-links because after each resolution or paramodulation step unifiers are applied
and therefore completely new terms are generated (see theorem 3.7). Hence our first task was to repair
this inheritance mechanism to produce the lacking links. This is simply done by newly generating all
P-links and all problematic other links, but of course this brute force approach violates the essential
motivation for the clause graph procedure.

2.2 Theory Unification

The simplest case of working with equality is to make two objects equal by the consistent replacement of
subobjects by others. Unification is the process of finding a uniform replacement for the variables such
that the terms to be unified become syntactically equal, which means that they can be written as the
same string. The endomorphism describing the replacement for the variables is called a substitution. As
defined in section 2.1 a unifier is a substitution which makes the terms equal. For example {zb, y—a}
is a unifier of f(z,a) and f(b,y), but f(a,z) and f(b,y) are not unifiable.

The classification of equality reasoning methods into replacement and decomposition based approaches
originated from unification theory: decomposition was first used by J. Herbrand in his thesis [Her30],
whereas J. Robinson proposed a replacement based unification algorithm for his resolution principle

[Rob65].

To come closer to the mathematical equality relation the notion of unification can be extended to E-
unification, where a set E of equations is given as axioms, which induce an equivalence relation that
is written =g. An example for a unifier of f(a,z) and f(b,y) under the theory E = {f(z,y) = f(y,z)}
of commutativity is {z«b, y—a}.

In general a unification problem can have more than one solution. J. Robinson [Rob65] proved that in
the case of the empty theory E there exists (up to the renaming of variables) a unique most general
unifier (mgu) representing the whole set of solutions whenever this set is not empty. In arbitrary
theories there is not necessarily such a unique representative unifier. The next step was to extend the
concept to sets of unifiers, which fulfill the requirements to be correct, complete, and minimal. But
there are theories for which such sets do not exist either. Hence equational theories can be classified as
to whether for each unifiable set of terms the set of most general unifiers has only one element, is finite,
infinite, or does not exist at all, that is, it cannot be distinguished from the set of all unifiers [Sie89].
The corresponding theories are called unitary, finitary, infinitary, and nullary.

One task in unification theory is to develop algorithms to compute sets of unifiers. A universal unification
algorithm is an algorithm that works for all theories [Sie89], usually this notion is also used for algorithms
handling whole classes of theories (for example [SS81]). Another main goal in this area is to combine
known unification algorithms for special theories to obtain new ones for more complex theories. However
there are problems: for example the algorithms for associative unification and commutative unification
could not be combined to an algorithm for theories that have both properties, and this is the case
for almost all theories. In general a new algorithm must be designed for such combined theories.
M. Schmidt-Schauf8’ method for the combination of unification algorithms [Sch89] works for arbitrary

2.3. Paramodulation 9

disjoint theories and free function symbols. The newest publication on this topic is an extension which
can additionally serve to combine decision procedures, that is, unification algorithms for some infinitary
theories. It has been developed by F. Baader and K. Schulz [BS92].

In some cases theory unification algorithms are powerful tools to prove theorems which cannot be
proved in any other way, but there are examples where they slow down the search for a proof, because
the unification process itself becomes very time consuming. These points are discussed in section 6.5
(see also A. Mahn [Mah91]).

C. Kirchner’s approach [Kir85] induces the idea to automatically or manually construct new unification
algorithms. This is especially worthwhile for frequently occurring theories but we did not integrate any
of these into our system. It appears that theory unification is not compatible with the compilation
approach as presented in chapter 5, at least not with our current understanding.

2.3 Paramodulation

A general purpose deduction system must handle all combinations of equations, even if they occur
together with other predicates in the same formula, as for example in Vn : Even(n) < (Im: n = 2m).

The handling of equality via the axioms in definition 1.1 is very inefficient and this motivated inter alia
J. Darlington [Dar68], E. Siebert [Sib69], J. Robinson [Rob65], and G. Robinson and L. Wos [RW69] to
incorporate the equality relation into automated deduction systems by designing new inference rules.
The best known such inference rule is paramodulation, which works on two clauses one of which contains
a positive equality literal. One side of the equation must be unifiable with a subterm ¢ in the other
clause by a substitution o. Then the paramodulant consists of all literals of the two clauses without the
equality literal after replacing the term ¢ by the other side of the equation and applying the substitution
o to all literals of the new clause. R. Kowalski showed [Kow75] the advantages of the paramodulation
rule and how it can enhance the power of a deduction system.

Definition 2.10 (Paramodulation)

LO; Ll; LRRY] Ln
t=s, Ky, ..., K : P ; ii
L S By ooy Bm if pis a position in Ly and ¢ is an mgu of Lo|p and t(9).

O’(Lo[p<—8], L1, ey Ln, I(l, “aey .Km)

If equality is embedded into resolution theorem proving via the paramodulation rule the clause x = «
must be added. However, the application of paramodulation can be restricted in such a way that it
1s never necessary to paramodulate from and into variables, one of the main factors for the immense
search space. G. Robinson and L. Wos showed that this inference system is sound and complete in
combination with the resolution rule and the functional reflexive axioms [RW69](#5). The functional
reflexive axioms were shown to be superfluous by D. Brand [Bra75], for this fact see also M. Richter
[Ric78]. Unfortunately these restrictions cause the incompleteness of the set-of-support strategy(*), and
therefore it is difficult to construct a goal oriented equational calculus(®).

Paramodulation is a deduction rule that is applicable “almost everywhere” making search graphs very
bushy [Bun83] (see section 1.2), and so it should only be used if the result is of overriding importance for
other arguments in the proof. One such application of paramodulation could be to transform two literals
into resolvable ones. That was the motivation for the so-called E-resolution principle [Mor69, And70].

() 0f course = is considered to be symmetric and hence it does not matter whether to paramodulate with s or t.
G f(z) = f (z), for example, is the functional reflexive axiom for the futhction symbol f.

(¢%)The unsatisfiable clause set’ {f(a,b) = a,a = b, f(z,z) # =} with {f(x,z) # =} as set-of-support can only be refuted
by paramodulating into a variable [SL91b].

(')’)There are also a lot of non equality examples where the set-of-support strategy is not at all the best choice (see page
50).

10 Chapter 2. Equality Reasoning — An Overview

Definition 2.11 (E-Resolution)

Let A, B,C, D, ..., Dy be clauses. Then the following two rules deduce E-resolvents, where P(s1,...,5m)
and =P(t1,...,ty) are the literals to be resolved upon, and I; = r; for 1 < i < n are the defining equa-
tions of the theory.

P(S]_,...,Sm)VA

=P(t4,.. "tm.) vV B

11 =7 \Y% D1

. if s =t1,...,8m =t can be shown to be wvalid using ol; =
: ory,...,ol, =ory.

ly=r, VD,

+

c(AVBV Dy V...V D,)

The second rule is:

l£rvC

Lh=rmVD

: if =1 can be shown to be valid using oly = ory,...,0l, = ory
lon=r,VD,

+

o(CVDiV...VD,)

This can be seen as a special case of the theory resolution rule, defined by M. Stickel [Sti85], with an
undecidable theory. The question of how to prove the validity of the equations s; = t1,...,8m = tp, is
left open in the formulation of theory resolution. J. Morris [Mor69] uses a variant of paramodulation
where the intermediate results are stored in trees. So E-resolution is an approach to use paramodulation
more goal oriented, but in the conclusion of section 2.4 we shall argue that the resolution steps are not the
mile stones of equational proofs anyway: they are at best something like second-rate steps, because they
typically correspond to comparatively trivial conclusions. Therefore there are many practical reasons
to use a calculus with paramodulation as the dominant rule and resolution only as a secondary rule.

As we shall see paramodulation can be the frame to incorporate several general equality reasoning
strategies into one system. We shall elaborate on this concept in chapter 3.

2.4 Decomposition

Having introduced the basic rules for replacement based equality reasoning in the previous section
we now turn to difference reduction techniques, the second type of equality reasoning according to
K. Blasius. A decomposition approach to automated theorem proving, which is based on difference
reduction, was first advocated and elaborated by V. Digricoli [Dig79].

2.4.1 RUE-Resolution

V. Digricoli extended the resolution calculus by defining the two additional inference rules RUE (reso-
lution by unification and equality) and NRF (negative reflexive function) on the same abstraction level
as the resolution rule. He used disagreement sets to define the inference rules.

2.4. Decomposition 11

Definition 2.12 (Disagreement Sets)

A disagreement set for two terms s and t is defined recursively:

If s and t are equal, the unique disagreement set is {.

If s and t differ at top level, the unique disagreement set is {[s,]}.

If s = fs1...sn and t = ft;...t, then {[s;,t;]|s; and t; are different} is a disagreement set and all
Ui<icn Di are disagreement sets, with each D; a disagreement set of s; and 1;(v9),

Definition 2.13 (RUE)

Let A and B be clauses:

P(s1,-..,5m)VA
=P(ty,...,tm) VB

+
O'(A VBV DRUE)

Drug is the disjunction of inequalities s #1t with [s,t] renging over
if the elements of a selected disagreement set of o(P(si,...,sm)) and
o(P(ty,...,tm)) with an arbitrary substitution oviid)

Definition 2.14 (NRF)
Let C be a clause:

:_?é rve DnRy s the disjunction of inequalities s # t with all [s,t] in one disagreement set
—_— 2 : ot (viii)
#(CV Dxrr) of o(l) and o(r) with an arbitrary substitution o'****).

These rules perform a difference reduction strategy that embeds equality unification into the deduction
and not into the unification method. As these definitions show, part of the unification process, namely
the successive computation of the disagreement sets, is performed on the same level as resolution. RUE
and NRF steps really work on terms and not on literals and hence are “smaller” than E-resolution steps.
This solves the control problem of E-resolution mentioned above. It has the advantage that the steps
can be performed more often but it has the disadvantage that' many new clauses can be brought in
and the deduction procedure, which controls the application of the resolution rule, is overstrained with
decisions concerning the equality predicate. In this way the concept of theory resolution is diluted. No
orientation of equations is provided.

Hence, in contrast to J. Morris, V. Digricoli uses no separate new unification method but puts the
equality inference rules on a par with the resolution rule.

V. Digricoli [Dig85] gives a set of heuristics to control the application of RUE and NRF. He uses
syntactic heuristic rules, which are generally applicable to all equality problems or to resolution like
inference rules. These heuristic rules are also used and extended by K. Blasius (see the next section).

(*)Hence there can be several disagreement sets for two terms.
(v#}V. Digricoli proposes the usage of special substitutions o (most general partial unifiers) but the completeness
proof is based on arbitrary ones and can only be restricted to using empty substitutions. Hence the selection of the
unifier has to be driven heuristically. -

12 Chapter 2. Equality Reasoning — An Overview

2.4.2 Decomposition-Based E-Unification

The concept of decomposition for E-unification is a method to derive unifiers for the subterms of the
given terms, and to combine these solutions to solve the equality problem for the whole term.

A. Martelli and U. Montanari [MM82] exploited the “divide and conquer” strategy of J. Herbrand for an
alternative to the unification algorithm of J. Robinson [Rob65]. The kernel of the unification algorithm
based on decomposition is given in definition 2.15.

Definition 2.15 (Unification by Transformation Rules)

A unification problem is a set of equations. It is in solved form when each equation has the form z =t
with the variable £ not occurring anywhere else in the equation set. The following rules are performed
on ¢ set of equations until no rule is applicable. If the sysiem is in solved form this is the final situation
and the derived set of equations represents a solution, else no solution exists.

1. Switching: replace an equationt =z by z = 1.
2. Deletion: deletet =1t.
3. Decomposition: replace fsy)...sp = fty.. . t, by sy =€1,...,8, =1n.

4. Elimination: if £ =t is an equation where does not occur in t, then replace the occurrences of
z by t in all other equations.

A. Martelli and U. Montanari refined this version using special data structures and labelings and ob-
tained an almost linear unification algorithm. Of course they used a different representation of unifiers
because the exponentiality of Robinson-unification stems from the term replacement property of idem-
potent unifiers, that is, the algorithm to construct the unifiers is itself exponential.

~

One advantage of the usage of nondeterministic rules is that the order of operations is easier to control
and unimportant conditions need not be checked in the control mechanism. This can make soundness
and completeness proofs for theory unification algorithms much easier.

C. Kirchner [Kir85] invented a conceptual framework to include special equality theories in such a
rule based algorithm. J. Gallier and W. Snyder [GS89] and K. Blasius [Bla86] concurrently described
universal unification algorithms via rules. J. Gallier used a Martelli-Montanari-like version for the pure
unification part, whereas K. Blasius unifies with a Robinson procedure. In addition K. Blésius’ approach
is more implementation oriented and proposes special graph structures for storing the information
about the unification state. Both do not handle equations with conditions and both have a substantial
disadvantage against superposition oriented equational reasoning: they need functional reflexive axioms.
In J. Gallier’s and W. Snyder’s system a restricted form of those axioms is put in the rule “root imitation”
and is constrained to be applied only to the top level of terms. It can be regarded as variable abstraction
of all subterms of a compound term.

In their improved system they relax the constraint of top level application of equations, and as a result
they do no longer need the functional reflexive axioms. But even in this system they cannot avoid to
use rewrite rules in the opposite direction, the introduced reduction ordering can only be used when the
set of equations and rules is known to be ground Church-Rosser. For the improved system they use an
extension of narrowing (see section 2.7).

D. Dougherty and P. Johann [DJ90] constrained the Gallier-approach to the usage of narrowing instead
of paramodulation when applying equations.

We implemented an equality reasoning system using an improved version of K. Blasius’ rules. First the
Robinson unification rules were replaced by Martelli-Montanari-rules, because these fit better into the
general framework due to their decomposition nature.

2.4. Decomposition 13

We demonstrate the usage of the rules with the help of a classical example, namely that ——z = z in
a group. Unsolved subproblems are indicated by dashed lines, solved subproblems by complete lines
labeled with unifiers. Equality chains are represented as term; —), =7y — -+ — I, = r, — termg,
two terms concatenated with — must always have the same top function symbol or must be variables.
No equation is allowed to occur more than once in one chain. Otherwise it is possible to concatenate
multiple chains.

Figure 2.1: Example, Difference Reduction

a) —;—a b) T—a c) ——a

u+— ——a

‘é, Li:—f—uO

+x+yz = ++xyz

+0v = v
a a
d) ——a e) —=a
U~ ——a /u - ——3a
/ |

Example 2.16 (Group, Involution) The figures 2.1a through 2.1e depict the development of a graph
for the equation ——a = a in a group.

In figure 2.1a the initial termgraph is shown, it represents that ——a and a are to be made equal. The
dashed line indicates the problem to be solved.

Figure 2.1b shows the graph after the insertion of the eguality chain u = +u0 — 4+x+yz = ++xyz —
+0v = v. Four subproblems indicated by the dashed lines must be solved and their solutions must be

14 Chapter 2. Equality Reasoning — An Overview

combined to solve the whole problem. The chains {0 be inserted must have the property that the terms of
each subproblem have the same top level symbol. In this case the pairs of toplevel symbols of the terms
areu — —, +— -+ +—+4 and v—a.

Figure 2.1c shows the graph after the solution of the first and fourth subproblems and the decomposition
of the second and third. Two of the new subproblems can be solved trivially. Note that the subproblems
0 = +yz and +xy = 0 are structurally equal.

In figure 2.1d the solved subproblems are indicated by lines marked with the corresponding unifier. Two
chains can be inserted to solve the nontrivial subproblems of the last graph.

In the final graph, depicted in figure 2.1e, all subproblems were solved and the unifiers can be succes-
sively combined to derive a substitution that is the empty substitution € if restricted to the variables of
the input terms.

In this example only the successful steps of the algorithm are depicted. However, as always, there is an
enormous amount of useless steps in the search space. The power of an equality prover lies in its ability
to avoid such useless steps as often as possible. Even the duplicate steps, like for example the second
one with the axiom +—ww= 0 in the above example, should be avoided.

K. Blasius and V. Lotz [Lotz88] used several heuristics in the implementation of their system and the
main power of the program stems from these heuristics. But the results are unsatisfiable when compared
to the standard problems of equality reasoning: only theorems of the difficulty like the rather simple
examples B.1.1 and B.1.2 proposed by E. Lusk and R. Overbeek [LO84] could be solved. One main
reason is that operations with variables are necessary as can be seen in figure 2.1.

Refinements like the following one resemble “dynamic programming” in software development and “in-
dexing” in theorem proving, but they enhance the power of the method only slightly. To use different
solutions of structurally identical subproblems at different positions in the graph all subproblems with
their graphs can be organized in a hashtable. The hashkey is computed from the structure of the two
terms of the equality problem. The test for equality of two such pairs of terms (two equality problems)
is made efficient by using the same variable, theory-free constant, and theory-free function symbols, that
is, fe1co = feax is structurally the same problem as feoey = feiy /when ¢1 and cq are Skolem constants
(not occurring in a theory) and z and y are variables. This approach is similar to the usual indexing
mechanisms in automated theorem proving [OL80, Ohl89]. In the context of compilation techniques
such stored result objects are often called “suspensions” [CL91]. Everywhere in the graph a “renaming”
to the standard representation is stored instead of commonly used subproblems, in the example just
given we have: {z«=z;} and {cs+c1,c1¢c2,y—2z1}. Solutions for the subproblems are then simply
propagated to all superproblems applying the inverse of the “renaming” to the solutions.

Example 2.17 (Structure Sharing)

Figure 2.2 shows a graph where two subgraphs are shared.

The conclusion drawn from the results of two implementations of this idea is that decomposition is a
handy tool for theoretical issues of theory unification, especially general E-unification [GS89], but is
not feasible for an efficient immediate implementation of a general equality reasoner. The main reason
for this fact is that rewriting alone is more powerful than the decomposition mechanism combined with
syntactic heuristics.

This does not exclude that for special domains semantic heuristics based on special knowledge can be
very powerful as for example in the case of induction theorem proving [Hut90] (see also section 6.3).
We think that E-resolution and related methods work at the wrong level: if equations are present
the replacement of equals is the main work in the proof and implicational steps which correspond to
resolution have auxiliary and finishing character. Adequate calculi to handle resolution as a subcase of
equational reasoning are presented in section 2.6. By the combination of E-resolution and E-unification
the central problems are tried to be solved locally without any possibility to take the global context into
account. Therefore decomposition is inadequate to handle equational problems that are mainly based
on equality.

However, an approach related to decomposition can be used at a more general level to guide the search
for refutation graphs as explained in chapter 4.

2.5. Rewriting 15

Figure 2.2: Structure Sharing

This is a variant of the fourth graph of example 2.16. —-a
The same (up to renaming) subproblem 0=+x;x2 4 e ——a
occurs at two different positions. The renaming

substitutions are depicted in the boxes. u = 4ul

ly *—;(1, 7 X3 \m

+xtyz = ++xyz 0=+-—ww
:._'|x(__xl,y(—-)(2 @
VvV — 2
+0‘;: v
V + a
a

2.5 Rewriting

The observation that equations can be “applied” to terms led to a term replacement approach for the
treatment of the equality relation. In order to obtain an algorithm which proves the equality of two
terms, one can successively apply oriented equations to the terms. Such an algorithm only decides the
equality of the terms but cannot make them equal by computing an instantiation of their variables as
required for resolution based systems.

The main idea of a term rewriting system is to consider the equations as rules that may only be applied
in one direction. The direction is determined by a partial ordering on the set of terms. A method to
decide the equality of two terms under special equality theories can then be obtained by “reducing”
the terms to a unique normal form using the directed equations. The theory axioms must obey certain
conditions, namely, they must be confluent and Noetherian(*®), to ensure completeness and termination
of the decision procedure. The equations defining the theory must be directable and must have the
properties above or it must be possible to add other equations such that the new system is equivalent
to the old one and has the desired properties. This procedure developed by D. Knuth and P. Bendix
[KB70] is called completion. The system of directed equations constitutes a set of rewriting rules.

When computing a normal form all situations where two rules can be applied to derive different suc-
cessors are potentially dangerous, because it must be ensured that both cases lead to the same normal
form later on (confluence). D. Knuth and P. Bendix showed that it is sufficient to consider critical pairs
Jjust between the rules and to add the corresponding equations to ensure this property. Critical pairs
can be constructed from two rules or two instances of the same rule if the left hand sides of the rules

overlap, that means that some non-variable subterm of one left hand side can be unified with the other
left hand side.)

(t2) terminating

16 Chapter 2. Equality Reasoning — An Overview

Definition 2.18 (Critical Pair Construction)
i —nr
12‘ - P
“+ @
o(la[p « r1] = r2)

if pis a non variable position of I, o is an mgu of lz|p and ly.

If we write | — r we always assume that o(l) > o(r).

In principle the Knuth-Bendix completion algorithm then works as follows [KB70, HO80, Buc85, Der87,
JL87]: beginning with a set of undirected equations, an empty set of directed rules, and a reduction
ordering it tries to derive a confluent and terminating set of rules from the equations. It applies the
following steps until no equations remain: Take an equation, apply all rules to the equation, direct the
equation according to the given reduction ordering, and put it into the set of rules. Generate all critical
pairs, that is, terms for which rule applications overlap, between the new rule and the set of rules and
put them into the set of equations. If this algorithm terminates, it produces a set of rules that can be
used to decide the equality of arbitrary sets of terms of the given theory.

A rule is applicable to a term if the left hand side of the rule matches the term or one of its subterms.
If a rule is applied to an object with subterms to which it is applicable, then these are replaced by the
right hand side of the rule with the matcher applied to it.

Definition 2.19 (Rewrite)
l—r
tl if pis a non variable position of t and (1) = t|p.

tlp — o(7)]

In the field of automated deduction the application of the rules is often called demodulation [WRCS67,
WOLB84] and we will use this term here too. In the field of automated deduction the orientation is
often determined heuristically, unless an immediately obvious orientation of the equation is possible.

Meanwhile there are results in handling undirectable equations [BDP87, BDP89] and using special theory
unification and matching algorithms [Sti85, KZ89] (see section 6.5). In addition there are attempts to
use rewrite systems to construct universal unification algorithms [Kir87] and various methods using
narrowing [Hul80]. Completion is also integrated with conditional equations [Ric83a, Pet83, Kap84b,
ZR85, JW86, JL87, Rus87, ZK88, BG90] but unfortunately the unfailing as well as the conditional
attempts are not as convincing as the pure method when unit equations are directable. Nevertheless
almost all problems contain directable equations. '

The techniques developed in the area of rewrite systems are widely used. Applications range from the
simple and nevertheless powerful Knuth-Bendix equality reasoning procedure up to a special rewriling
logic to describe the semantics of concurrency in programming languages [Mes90, Mes91].

Of course there are interrelations between unification theory and term rewriting systems and one goal
is to combine rewriting techniques and unification algorithms.

Some results of the research in term rewriting systems led to universal unification algorithms restricted
to theories with a confluent and terminating rewrite system. F. Fages [Fag83], J. Hullot [Hul80], J.-
P. Jouannaud, C. Kirchner, H. Kirchner [JKK83], J. You, P. Subramayou [YS86], A. Martelli, C. Moiso,
G. Rossi [MMR86], and C. Kirchner [Kir85] defined systems for this purpose.

Sometimes special theory unification algorithms are used in completion systems as a powerful instrument
to handle unorientable equations. Such a method was used for example by M. Stickel [Sti85] to prove
ring commutativity from z3 = z. We shall come back to this point in section 6.5.

There are also interrelations between special deduction rules and rewriting systems; we shall discuss
them in section 3.1.

2.6. Restrictions for Paramodulation 17

The Knuth-Bendix algorithm itself is just a method to construct decision procedures for some equational
theories. But unfortunately this type of decidable equational theory is very rare. What we need is a
system that uses the benefits of this method for automated reasoning within a semidecision procedure.
M. Bonacina and J. Hsiang [BH91] give an excellent framework for a unifying look at the various
extensions of the completion procedure also including its value for automated theorem proving.

2.6 Restrictions for Paramodulation

The problem of unifying resolution, paramodulation, and rewriting was tackled by researchers of all the
three areas. The goal is to obtain an automated reasoning calculus with the benefits of each of the
areas, that is, the simplicity and efficiency of resolution, the availability of equations when formulating
mathematical theories of paramodulation, and the ordering restrictions as well as the reduction power
of rewriting.

Most people primarily concerned with resolution tend to separate the equational problem from the
“main” problem. They circumvent the problem of conditional equations and reason that in most cases
conditional equations occur together with unit equations which can be handled by completion and
rewriting. Hence the solution of equational problems is seen as a preprocessing step of the resolution
theorem prover. This viewpoint is for example a basis for most approaches that embed equations into
Prolog (see page 53).

All advanced equality reasoning methods mentioned above are led astray when formulaclike A=z =y
or A = z =t (see example 4.1, page 39) are among the axioms. Such conditional equations are
typical, however, for real situations and neither do they have any particular general structure that can
be exploited for difference reduction nor are they directable, and there is no reason to believe that the
“equality problem” is solved when a satisfactory procedure for handling the unit equations is found.

From the preprocessing idea above we obtain a complete theorem prover if we first generate all “good
and necessary” rewrite rules and then use fair heuristics when applying the conditional equations using
paramodulation.

In the present section we focus on a view of automated reasoning that imposes restrictions on the pa-
ramodulation inference rule. These restrictions are incorporated into calculi which consider resolution
steps as special paramodulation steps and they have the property to behave like the Knuth-Bendix
completion procedure if only unit equations are present. We name the calculi superposition calculi
according to the name of their main inference rule.

In the following subsection we focus on the development of the superposition rule. We use the notions
completion step, paramodulation step, and superposition step synonymously in this context. In chapter
4 we shall compare some of the paramodulation restriction strategies which we incorporated into the
MEkRrpP-system to obtain some heuristic criteria to decide when to use which strategy.

The development of the reduction operations can be considered separately from the development of the
superposition rule. This is done in subsection 2.6.2.

2.6.1 Superposition

We consider the completion algorithm for conditional equations as a paramodulation calculus with
restrictions on the application of the paramodulation rule. The calculus incorporates resolution as a
special case of paramodulation. A resolution step between the literals L and —L’ for example is done
by paramodulating L = True into L’ = False. Ordinary positive equations remain unaltered, negative
equations can be written (s = t) = False.

18 Chapter 2. Equality Reasoning — An Overview

This facet of paramodulation theorem proving leads to a homogeneous calculus regarding resolution
and paramodulation as one rule. It completely eliminates the control problem of a paramodulation part
grafted on a resolution theorem prover.

D. Lankford was the first who extended the concept of orientation of equations to paramodulation
theorem proving [Lan75].

G. Peterson [Pet83] developed a resolution and paramodulation calculus which reduces to the Knuth-
Bendix algorithm when only given unit equality axioms and theorems. G. Peterson’s approach only
allows for restricted reduction orderings and only demodulation by unit reduction rules. J. Hsiang and
M. Rusinowitch [HR86, Rus87] extend the reduction ordering to literals, that is, only the “maximal” lit-
erals of the clauses must be considered for paramodulation. The restrictions on the orderings imposed by
these works allow all commonly used orderings to be adapted. They use strong simplification orderings.
H. Zhang and D. Kapur [Zha88, ZK88] extended it to more orderings and contextual rewriting.

We implemented some superposition rules as strategies in the MKRP-system. The implementation and
comparison (see chapter 4) makes it necessary to have the rules available in the same notation. Hence
we present the rules not in the original notation but instead in the notation as introduced above, also
to gain a homogeneous presentation. We omit the factoring rule which is always necessary to get a
complete calculus, as in the case of resolution. The differences in the definitions 2.20 through 2.23 are
emphasized in the print, because the rules themselves are very similar.

In the definition 2.20 of J. Hsiang and M. Rusinowitch superpositions with the left and right hand side
of an equation into a maximal literal are allowed. The problem of ordered paramodulation is that it
does not reduce to Knuth-Bendix completion in the case when only unit equations are present. For this
situation ordered paramodulation is weaker than completion, in the sense that it has a larger search
space.

In the following definitions a Literal L is called mazimal with respect to a set of literals {L;, ..., Lo} iff
for all i L; # L, we call it strictly mazimalif L; # L and L; # L, hence does not occur in the set (see
[BGI0, page 430]).

Definition 2.20 {Ordered Paramodulation [Rus87, page 49])

s=1%L1,...,Ln p is a non variable position of s, o is an mgu of s|p
l=rKi,...,Km . and I, s =t is mazimal with respect to {L1,...,Ln},
+ if I = r is maximal with respect to {K,,...,K,},
U(S[p — 7‘] = t7L1a .- ‘,Ln;A,l; .. 7Km) and U(T) } 0(1)

In the definition 2.21 of M. Rusinowitch superposition into left hand sides of all literals is allowed.
This rule reduces to the critical pair creation of D. Knuth and P. Bendix, but is weaker than ordered
paramodulation in the conditional case where more operations are allowed.

Definition 2.21 (Weak Clausal Superposition [Rus91, page 24])

S:t,Ll,...,Ln . R - .
l=r.Ky,... Kn p 18 a non variable position of s, o is an mgu of s|p and ,

" if o(s=1t) is mazimal with respect to {o(L1),...,0(Ln)},
o(slp — 1=, L1,...,Ln, K1, .., Km) o(t) # a(s), and o(r) ¥ o ().

H. Zhang’s and D. Kapur’s inference rule 2.22 [ZK88] removes both restrictions, that is, it possesses
the property to reduce to Knuth-Bendix completion as well as the constraint to consider only maximal
literals.

2.6. Restrictions for Paramodulation 19

Definition 2.22 (Strict Clausal Superposition, [ZK88, page 7])

s=1tLy,...,L, p is a non variable position of s, o is an mgu of s|p and
l=rKi...,Kn if l, s =1t is mazimal with respect to {L1,...,Lp}, l =7 is
+ maximal with respect to {K,,..., K.}, t % s, and
o(slp—r]=%tL1,...,La,Ki,...,Kp) r#l

It is somewhat dubious that the condition is formulated without the substitution o. Of course it is
possible to comprise the substitution in the inference rule. Unfortunately H. Zhang’s refutation system
is not complete together with the tautology removal rule, as L. Bachmair and H. Ganzinger showed with
an example [BG90]. They also propose how the system can be repaired such that this incompleteness
does not longer occur. They defined the following refined strict superposition rule and additionally a
merging paramodulation rule (we call it merging superposition).

Definition 2.23 (Strict Superposition, [BG90, page 431])
sign®(s =t), Ly, ..., Ln
l=rK,. . Ky
+
o(sign(slp —r] =1¢),L1,...,Ln, K1,...,Km)

if

- p is a non variable position of s, o is an mgu of s|p and 1

= a(r) #a()

- o(l = r) strictly mazimal with respect to o(Ky, ..., Kn)
- o(l) does not occur in the negative literals of o(K1, ..., Kp)
- o(t) # o(s)

- o(sign(s = t)) is strictly mazimal with respect to all positive literals of o(Ly, ..., Ls). If
sign is posttive it is also strictly mazimal with respect to all negative literals, else it is
only mazimal

Compared with H. Zhang’s rule strict superposition has two refinements beside the consideration of the
substitution, both sharpening the restriction on the applicability:

1. o(l) does not occur in the negative literals of 6(K1, ..., Km).

2. The notion “strictly maximal”.

The merging inference rule must be added to circumvent the tautology problem of H. Zhang’s calculus.
1t is a genuine superposition into a right hand side of a directable equation under certain restrictions.
Two similar (they have the same left hand side) positive literals in a clause are made equal by successive
applications of merging superposition and one final factoring step, thus removing the literal causing the
possibly necessary tautology in H. Zhang’s inference system.

(") With sign we denote that this literal is positive (not negated) or negative (negated with —).

20 Chapter 2. Equality Reasoning — An Overview

Definition 2.24 (Merging Superposition, [BG90, page 432])
s=t,s =t Ly,...,L,
l=rKi,...,Knp
+
o(s=tlp—r],s=t',Ly,...,Ln, Kq,...,Kp)

of
- 0 = 7p where T is an mgu of t|p and {, p an mgu of 7(s) and 7(s'), and p is a non variable -
position of t

—o(r) # o)

~ o(l = r) sirictly mazimal with respect to o(Ky,...,Km)

- o(l) does not occur in the negative literals of (K1, ..., Kn)
- o(s) # oft)

- o(s =t) strictly mazimal with respect to o(L1, ..., L,)

~ 0(s) does not occur in the negative literals of o(Ly, ..., Ly)

- 1(s) > 7(t) and o(t') % o(2)
Using any one of these superposition methods drastically changes the resolution strategy because it can

only be resolved or paramodulated on links joining maximal literals. In this case no set-of-support or
linear strategy is complete even for resolution alone.

The invention and distribution of Prolog showed that it is very promising to consider special rule systems
for Horn clauses. The first who studied the restriction of superposition to Horn clauses was E. Paul
[Pau85] but his algorithm only works for orientable equations.

N. Dershowitz [Der91] presented two restriction strategies for paramodulation, specialized for Horn
clauses, which reduce to Knuth-Bendix completion because they are refinements of strict superposition.
The first one is a unit strategy with the two rules of definition 2.25. The second one is called a decreasing
strategy and we do not elaborate on it (the description in [Der91] is not detailed enough).

Definition 2.25 (Unit Superposition, Unit Narrowing [Der91, page 120])

s=t

I=r i p is a non variable position of s, o is an mgu of s|p and I, ot } os and
.Y # ol(#)

o(slp —r]=1)

s#t,~L1,...,~L,

l=r if p is a non variable posttion of s, o is an mgu of s|p and I, ¢L;,
+ cesy 0Ly, ot, o(s[p — r]) } os.

U(S[p - T‘] # t:—‘Lly .. -;—‘Ln)

There are other approaches to restrict paramodulation in the case of Horn clauses. M. Rusinowitch for
example gives a refinement of his calculus to Horn clauses [Rus91, section 7]. U. Furbach, S. Holldobler,
and J. Schreiber propose linear paramodulation as a natural extension of the SLD strategy [FHS91].
Unfortunately linear paramodulation requires paramodulation with variables.

W. Snyder and C. Lynch proposed a restriction based on basic narrowing, thus inhibiting certain posi-
tions for paramodulation steps. In particular they use a constructive method for the completeness proof
of this calculus providing the possibility to see the effects of further restrictions to completeness. -

(#)The last condition was originally formulated as a(s[p «r1]) ¥ os.

2.6. Restrictions for Paramodulation 21

Definition 2.26 (Basic Paramodulation [SL91a, Definition 3.5])
sign(s =t),Ly,..., Ly
I=r K., .. Kn
I .
o(sign(slp —~r] =t),L1,..., Ly, K1,..., Kp)
if

- p is a non variable position of s, o is an mgu of s|p and |

a(r) #o(l)

t

- ol =r) mazimal in 0(Ky,. .., Km)
—o(l=r)po(s=t)
- o(s = t) is mazimal with respect to o(L1,..., Ly)

~ the root of s|p is unmarked
- a mark is placed on each position in the conclusion iniroduced by instantiation via ¢

- a mark is placed on each position of o(r) in the substitute

It is clear that any kind of rewrite reduction must be adapted to handle the marks placed by the basic
paramodulation rule. Unfortunately the reduction operations (rewriting as well as subsumption) are
incomplete together with this rule. In an extension of the calculus L. Bachmair, H. Ganzinger, C. Lynch,
and W. Snyder developed restrictions for the reduction rules that lead to a complete inference system
[BGLS92]. :

As mentioned above we incorporated some of the cited paramodulation restriction strategies into our
theorem prover and shall give an evaluation in section 4.2.1.

2.6.2 Reduction

The power of Knuth-Bendix completion for theorem proving heavily relies on the strong reduction fa-
cility. In parallel to the extensions of the critical pair construction to clauses the rewrite operation was
extended to conditional rewrite rules. We give a shorter overview on reduction rules because we did
not concentrate on different reduction rules in our implementation but just on suitable extensions of
the MKRP reduction facility (see section 3.3). The definitions of D. Brand, J. Darringer, and W. Joyner
[BDJ79], D. Lankford [Lan79], J.-L. Rémy [Rém82], and S. Kaplan [Kap84a] cleared the way for the
more general contextual rewriting ones given by H. Ganzinger [Gan91] and H. Zhang [ZK88] (see be-
low). L. Bachmair and H. Ganzinger [BG90] finally extended it to the semantically induced notion of
redundancy which encompasses tautology deletion, subsumption, contextual rewriting, and elimination
of redundant atoms (literals).

In this section we are in less detail than for the superposition rules above, because we think that for
reduction it is essential to detect potential applications efficiently in a concrete context and not how
powerful the reduction rule itself is defined. Therefore we just cite H. Zhang’s very general rule [ZK88],
which reduces to Knuth-Bendix reduction in the case of unit equations, and which can also be used to
apply the subsumption rule.

Definition 2.27 (Contextual Rewriting [ZK88, page 12])
- p s a non variable position of Lo

l—r Ky, ..., Kn - C={~L,...,~Ln}

Lo, Ly, ..., Ly, = Lylp=ct
! if
Lolp — t'[p" — o()]], L1, ..., Ln

- p' is a non variable position of t/

o) =0y
- Vi:o(=K;) —¢ True

22 Chapter 2. Equality Reasoning — An Overview

This definition needs some explanations: t’[p’ can be reduced to o(r) in the context C. The context
can be used to reduce the conditions —Kj,...,—K,, of the conditional rewrite rule l — r, Ki,..., Ky,
to True. =¢ (constant congruence) is the minimal congruence relation which contains all equations of
C ({~L1,...,~L,}). For full equality the substitution property must be satisfied in addition.
Example 2.28 (Contextual Rewriting, taken from [ZK88])

HasTeeth(z) — True V —IsTiger(z)

—HasTeeth(y) V ~IsTiger(y)

We can reduce ~HasTeeth(y) in the second clause to —True and hence to False and remove the literal,
because with the context C = {IsTiger(y)} the condition IsTiger(z) for HasTeeth(z) — Truc can be
reduced by the context literal IsTiger(y) — True to True.

Example 2.29 (Contextual Rewriting with Equational Conditions)
a—bV f(c) # f(d)
Pl@)Ve#d

We can reduce P(a) to P(b) in the second clause because with the coniezt C = {¢ = d} the condition
f(¢) = f(d) can be reduced to True. The logical reason is as follows:

c=d = P(a)
hence c¢=d = P(a)A f(c) = f(d) because f is a function
= P(a)Aha=1b because f(c¢) = f(d) =>a=b
= P(b)
that is c=d = P(b)

2.6.3 Summary

The extensions of completion to all versions of superposition calculi are very powerful because of the
constraints on the paramodulation rule and the reduction facility. In addition every resolution and
paramodulation theorem prover can be controlled in such a way that it simulates this calculus and all
features of the underlying prover remain available in the absence of equations (see chapter 3). This
result rests on the fact that resolution is a subcase of paramodulation in the usual presentation of
superposition calculi. The empirical results in chapter 4 and in appendix B corroborate our view,
namely, that choosing paramodulation with restrictions as a basis of the calculus is the adequate way
to build equality theorem provers.

2.7 Narrowing

Up to now we considered difference reduction and superposition as two completely incompatible ap-
proaches to equality reasoning. In this section we shall discuss a special technique developed in unifica-
tion theory that can serve as a basis to unify both approaches.

After the discovery of confluent and terminating rewrite systems, attempts were made to use them in
a broader context than simple reduction, such that not only the equality of terms could be decided but
also proper solutions for equational problems could be computed. In order to do so, the matching in
the directed application of equations for rewriting is replaced by complete unification. Of course this
is not a reduction operation and hence the complete search space must be taken into account, which
is nevertheless considerably reduced by the orientation of the equations and further constraints on the
positions to be considered. For this constrained usage of equations the notion “narrowing” was moulded.

The unification algorithm given in definition 2.15 can be extended to the following one using narrowing.

2.7. Narrowing 23

Definition 2.30 (E-Unification Using Narrowing)
Given a sel R constituting a confluent and terminating rewrite system we obtain a complete and correct
R-unification procedure by adding a fifth rule to the algorithm in definition 2.15.

Switching: replace an equationt =z by z =t.

o o~

Deletion: delete t =1.

Decomposition: replace fsy...sn = ft1...0, by sy =t1,...,8, = 1y.

™ So

Flimination: if x =t is an equation where & does not occur in t, then replace all occurrences of ©
by t in all other equations.

5. Narrow: replacet = s (s =t) by o(t[p «— r]) = o(s) if p is a non variable position of t, | > r € R,
and o(l) = o(t|p).

Step 5 is a branching step and all possibilities to apply this step must be considered to obtain all unifiers.

Narrowing is an adequate tool to perform E-unification relative to a confluent and terminating theory
interleaved with other steps. Of course narrowing can be used before this confluent and terminating
set of rewrite rules 1s derived. It can be used even if no such set exists but then only in a heuristical
manner.

Hence narrowing can serve to perform difference reduction, that is, to derive E-resolution steps. It can
be controlled in a lazy way, that is, the incorporation of new rewrite rules is allowed. Hence with lazy we
denote another thing than usually in the context of narrowing, where it roughly models “call-by-need”
[Red85].

M. Fay [Fay79] and J. Hullot [Hul80] were the first to use narrowing techniques to construct unification
algorithms for a confluent and terminating theory, J. Hullot found further constraints and called his
procedure basic narrowing. Basic means that positions which are prefixes of the narrow position must
not be considered for further steps. .

L. Fribourg [Fri84a, Fri85b, Fri85a] made additional restrictions, he used an innermost strategy, but his
method requires more conditions to be fulfilled for the equational theory.

P. Bosco, E. Giovannetti, and C. Moiso [BGM88] give a better strategy developed from SLD-resolution.
They introduce non terminating rewrite systems which are used for modelling infinite datastructures.
For this method normalizing on the intermediate results is not possible (selection narrowing). Their
paper also shows how to represent equational problems only at the predicative level. P. Bosco, C. Cecchi,
and C. Moiso incorporated this approach into the Prolog compilation technique [BCM89)].

M. Fay [Fay79] as well as P. Rety, C. Kirchner, H. Kirchner, and P. Lescanne [RKKL85] use normalizing
narrowing, which allows to keep intermediate results reduced. The second work introduces subsumption
of newly derived terms and a finite representation of loops in the narrowing tree.

A good overview of these different strategies of narrowing is given by S. Krischer [Kri90]. Statistics
about the effect of the various restrictions are given which demonstrate their respective usefulness.
There are various areas where narrowing can be used. For example, it can serve as an operational model
of functional languages. This technique is used in the context of logic programming [Red85, DG89].

Another extension is that to a universal unification algorithm for conditional theories [Hus85].

The various restriction strategies developed for narrowing ask for an extension to general paramodula-
tion. W. Snyder and C. Lynch [SL91a] give two such restrictions on paramodulation corresponding to
the basic strategy (see also definition 2.26). Unfortunately these restrictions do not lead to a complete
inference system together with rewrite reductions.

As in the case of rewriting where L. Wos developed a heuristic version, he and his fellow researchers were
successful to develop a technique of combining several equality reasoning steps to a heuristic extension
of paramodulation.

Hyperparamodulation was defined by L. Wos, R. Overbeek, and L. Henschen [WOHS0] as follows:

24 Chapter 2. Equality Reasoning — An Overview

Definition 2.31 (Hyperparamodulation)

81 = tl

Sn =1,

Co if th,...,t;, are distinct terms in Cy and o(t) = o(t;) fori€ {0,...,n— 1}
+

Cn

Then C,, is a hyperparamodulant with nucleus Cy and satellites s; =11,...,5p = Iy.

It is clear that hyperparamodulation is complete in the sense that all paramodulation steps are hyper-
paramodulation steps with » = 1. It is a straightforward restriction for hyperparamodulation to apply -
it just in those cases where a new resolution possibility is introduced by the successive paramodulations.
In chapter 3 we shall give a rule with the aim to combine narrowing and difference reduction.

Chapter 3

Variations of the Basic
Superposition Calculus

In the previous chapter we presented various equality reasoning methods which we wanted to combine
into one single system. In this chapter we describe the corresponding extensions of the calculus of the
Markgraf Karl system and clarify their influence on the completeness of the overall system.

In section 1.2 we motivated extensions of the Knuth-Bendix algorithm as a basis for an equality reasoning
procedure. For conditional equations this amounts to a superposition approach. In the sequel we shall
show how this mechanism can be embedded into a system based on resolution in general and on clause
graph resolution in particular.

We extend it by more elaborated inference and reduction rules for clause graph resolution. The handling
of special methods such as narrowing is incorporated into the superposition calculus through the defini-
tion of abbreviation inference rules. Narrowing will be used to make theory resolution steps practically
feasible. We shall elaborate in section 4.1 on a technique to perform the narrowing steps only if they
are useful at a higher level, that is, if a refutation graph structure can be detected in the clause graph
or if their application may lead to such a structure.

3.1 Inference Rules

Each of the inference rule systems given in section 2.6 can be used as a restriction strategy for the
paramodulation and resolution rules. As default we propose to use L. Bachmair’s and H. Ganzinger’s
approach (definitions 2.23 and 2.24) because of its stronger restrictions. For the narrowing technique
presented in 3.1.1 it is not important which of the available restrictions of superposition is chosen.
The superposition steps comprise selected resolution and paramodulation steps. Example 3.1 shows the
correspondence of a resolution step as defined in definition 2.9 to a superposition step.

Example 3.1 (Resolution Step as Superposition)

Superposition ts combined with the deletion of a literal “True=False”:
L() - True, Ll, o Ln
Ky — False, K4, ..., K,

+
o(L1, .. Ln, K1, ..., Km)

if o is an mgu of Ly and K.

It is clear that superposition on the maximal literals corresponds to a calculus which does not necessarily
find a proof which is as short as possible. But the restriction is strong enough to lead to a much reduced -
search time, even if it results in a considerably longer proof. Especially if only proper paramodulation
steps occur, that is no resolution steps, this restriction is very useful.

25

26 Chapter 3. Variations of the Basic Superposition Calculus

3.1.1 E-Resolution via Narrowing

In order to integrate a difference reduction mechanism into the basic calculus we shall use narrowing
(see section 2.7).

In the sequel we describe how E-resolution steps can be performed as special hypersteps which combine
arbitrary many narrowing steps. With this technique the inference system is enhanced concerning
directable unit equations. For this purpose we use a method which is very simple and general but
nevertheless can be extremely powerful: we allow additional steps in the calculus which are just useful
abbreviations. Using such a technique the completeness of the basic superposition calculus is retained
and only the soundness of the abbreviations must be proven. In our case the abbreviations are always
combinations of correct steps and hence are also correct.

We only concentrate on one abbreviation rule in this thesis: one E-resolution step abbreviates several
paramodulations represented by the narrowing steps. Another candidate for the abbreviation technique
would be induction.

A single superposition step generates a clause with one paramodulated literal and any number of in-
stantiated literals. The maximal literal of the new clause need not necessarily be the successor of the
maximal literal of the parent clause (see figure 3.1). Hence it is not possible in general to apply se-
quences of superposition steps to one literal in order to make it resolvable within the pure superposition
calculus. But following such a linear strategy is desirable because linear strategies are working according
to an implicit plan, namely to remove successively all literals of one clause. Hence they tend to solve
the subproblems defined by the literals separately. Of course they are more endangered to be led astray
in the depths of the search space.

Figure 3.1; Example Maximal Literals

PfzV Pz Descendent of Pfz: Pb
Descendent of Pz: Pa
Ordering: a>f>b
fa—b Maximal literal of Pfz VvV Pz: Pfxz
Paramodulant: PbV Pa Maximal literal of PbV Pa: Pa

The operation of making two literals resolvable is just general E-unification and can be performed using
narrowing. The narrowing steps can be controlled such that they reduce the differences (see section 2.4)
of the literals. We define narrowing steps to successively produce theory unifiers in the following way:

Definition 3.2 (Narrowing Inference)
Ly Ly, ..., Ln

[

Ly Ly, Ly
if

- each t* is a pair (L7, o")

- L* is a literal derived from Lo by successive applications of equations and reductions

- o' is the merge of the unifiers of these applications and reductions

- LF¥*1 s the normalized o(L{p « r])

- 0¥+l is the corresponding extended unifier

- p is a narrowing position in L

- o(Lilp) = o(l)
The narrowing process can be depicted using a tree like that in figure 3.2. The string t!...¢* of the
definition above is used to record the nodes of the narrowing tree.

3.1. Inference Rules 27

Example 3.3 (Narrowing Tree as a String)

Figure 3.2 shows one of the successful paths through the narrowing tree leading 1o the first E-resolution
step of ezample B.3.2(). The derived unifier is {y—c+ (=b), z—a}.

The depicted tree in the notation t* .. t* of the narrowing inference rule is:
(y-z#0,{})

(Z Y+ -y #0,{y—++z',z—y})
(b-at+z”-a#0,{y—c+z" z—a})
(bra—u-a#0,{y—c+(-u),z —a})

(0 #0,{y — c+ (~b), = —a})

A(b-a;ﬁ[),{y<——c,z<—a})

Figure 3.2: Narrowing Tree
(y -z # 0: {})

Distributivity o c-a—b-a

(29 +2' ¥ #0{y — 2 +3',z —y'}) (b-a#0,{y —c,z—qa})
c-a—b-a

(bratz" -a#0,{y—c+z",za})

gy —(z-y)

(b-a~u-a#0,{y —c+(—u),z —a})

z+(~z)—0

(b-a—b-a#0,{y «~ c+(-b),z —a})
reduced to (0 £ 0, {y — c+ (=b),z — a})

In the string t! ...t* the narrowing tree of Lg is recorded including all results after normalization. The
intermediate results would be only necessary to obtain a better understandable proof, but they could
be handled in the same manner as the narrowing steps if this is desired. The process of producing t¥+1
can be controlled in any way proposed by one of the known narrowing strategies.

The information collected by the narrowing process is used to perform E-resolution steps. The strategy
is to produce resolvable literals via na}*rowing and then to E-resolve upon them. When a reflexivity
clause z = z is present NRF-like steps(é) are not necessary.

Definition 3.4 (E-Resolution Inference)

itk
L , Ly, ..., Ly

L Ly and Kg have same predicate symbols and opposite signs
K35 K K .) A e , AR

0 By ey Bm if and there exzists an mgu p of L' and K7 int* = (L}, 7*) and
* s’ = (K?,d7).

p(t'(Ly, ..., Ln), 09 (K1, ..., Km))

The way how E-resolution is integrated into the calculus can be regarded as a scheme of how other
specialized inference rules — as for example an induction step — could be handled. Another rule to ab-
breviate the forward search induced by the completion procedure by considering a goal is to incorporate
a “forward closure” rule into the calculus [SA92].

(.f)Resulting in R243.
(¥) See definition 2.14.

28 Chapter 3. Variations of the Basic Superposition Calculus

3.1.2 Completeness Considerations

The soundness of the inference system with E-resolution follows immediately because the new E-
resolution rule is just a combination of several paramodulation steps. Completeness is also obvious
because all paramodulation steps remain possible as before.

Of course it is interesting to consider potential restrictions on the superposition steps. We distinguish
three cases where the calculus remains complete:

— If equations occur only as units and constitute a confluent and terminating rewrite system, nar-
rowing and E-resolution alone are possible, and we can get rid of the paramodulation rule. Then
the inference system realizes a lazy E-unification process via narrowing, and hence it is complete
if E-resolution and narrowing steps are selected in a fair way. Theory resolution with the specified
equational theory is performed. For a proof that narrowing in general constitutes a complete
unification algorithm for a confluent and terminating theory with an infinite set of unifiers see for
example M. Fay [FayT79].

- If equations only occur as units and do not constitute a confluent and terminating rewrite system,
narrowing and E-resolution may become complete without superposition during the deduction
process. If we start with an inference system using paramodulation, narrowing, and E-resolution
and a confluent and terminating rewrite system is derived using the given reduction ordering, then
we can proceed as follows: all paramodulants but the unit equations of the confluent and termi-
nating system are removed from the clause set and from now on only narrowing and E-resolution,
and no paramodulation inferences are performed, that is, the theorem prover is restarted with new
input and then behaves as in the first case.

~ If arbitrary equations with conditions occur, narrowing and E-resolution are just used as additives
to the basic superposition calculus. The E-resolution steps are abbreviations for sequences of
paramodulation steps which could still be executed separately.

The key problem in this case is how to use the lemmata, that is, the derived equations, in order
to perform the narrowing steps. Because of the constraining effect of the narrowing strategies we
propose lazy narrowing in the sense that new narrowing rules can be inserted into the narrowing
process and not only additional problems as usual. In section 4.1.3 we shall discuss the control of
interleaving narrowing and superposition steps.

The central question for further research is what may be done with the intermediate results. Such a
restriction seems to be: all steps represented in the tree can be disregarded for superposition when
they cannot contribute to the inference of new equations. In such cases nothing can be done with the
intermediate results.

3.2 Restriction Strategies

Now we come to the problem of incorporating superposition techniques into our theorem prover. For
the incorporation of equality reasoning into an existing theorem prover it is advantageous to regard a
superposition calculus as a strategy to control the resolution and paramodulation rules.

There are well-known resolution strategies which are not complete, for instance unit or input resolution,
but nevertheless they are useful to solve problems that practically cannot be solved with other strategies.
This is a motivation to also use incomplete paramodulation strategies.

There are special tools for resolution theorem provers, for example the terminator [AO83] (see also
section 6.4). To retain the power of such dedicated mechanisms justifies incomplete equality handling,

3.2. Restriction Strategies 29

especially when it is complete for the case where only unit equations occur. This is the aim of the clause
graph strategy in section 3.2.2.

Additionally it need not always be the case that a strongly constraining and restricting strategy is
the best one, regardless of its completeness, because it could produce long proofs with many auxiliary
results.

To remain complete we introduced the E-resolution rule only as a short cut for a combination of several
paramodulation steps, but of course it can also be used as an incomplete restriction strategy only
allowing E-resolution steps.

3.2.1 The Superposition Strategy

We presented various superposition rules in section 2.6. Here we just mention some aspects of their
implicit resolution possibilities.

The usual superposition strategy makes no distinction between axiom and theorem clauses, because
the set-of-support strategy is incomplete in this case. This is not important in most equality reasoning
problems because a forward reasoning method is adequate, but it is essential when using resolution.
M. Bonacina and J. Hsiang [BH91, section 5] as well as R. Socher-Ambrosius [SA92] elaborated the
problem of goal oriented completion.

In the context of a different search behaviour of theorem provers and a view of multiple agents [Den91] it
is essential to incorporate more than one restriction(¥") or selection strategy into such a system (see also
the discussion in chapter 4). Of course ordered resolution is not compatible with the usual resolution
strategies like linear resolution and set-of-support. An example for the incompleteness of the second
one is the set of clauses {P,—P V =@, Q} with P > @, where @ is the set-of-support.

3.2.2 A Clause Graph Strategy

As mentioned several times in this thesis the MKRP-system is based on the clause graph resolution
calculus which was first proposed by R. Kowalski [Kow75]. Its main advantage is the inheritance mech-
anism for resolution possibilities. For a short introduction into the calculus see section 2.1. N. Eisinger
proved that the clause graph calculus itself is refutation complete and refutation sound [Eis88, theorems
3.3.2 and 3.3.3]. But a calculus must always be regarded together with a strategy to select the next
applicable step. As argued by N. Eisinger [Eis88, page 162ff] the clause graph calculus can get into
cycles, even with a fair control strategy.

However, the experience of our research group with the clause graph procedure shows that in practice
completeness is not the problem.

We like to embed equality reasoning into the clause graph procedure. With “embed” we mean that
the calculus behaves as before if no equations are among the input formulae and hence no equational
operations occur. We introduce the notion “as complete as”, because we are not interested in the
intrinsics of the clause graph calculus, we just examine the effect of the additional paramodulation rule.

Definition 3.5 (as Complete as)
Let A be a set of clauses and let £(A) be the set A together wilh the equality axioms corresponding to
definition 1.1.

A calculus K1 is as complete as K, iff

~ Whenever the empty clause is derivable in Ky from A then it is also derivable in K4 from A.

(+#1) J, Denzinger only uses different selection strategies because of the difficulties to value the results obtained with different
orderings: a “good rule” in the one system can be a “bad equation” in the other one.

30 Chapter 3. Variations of the Basic Superposition Calculus

~ Whenever the empty clause is derivable from £(A) in Ky then it is derivable from A in K2.

The projected procedure would be to allow paramodulation steps wherever possible, to reconstruct all
links to paramodulated literals, and to inherit R-links to all other new literals, but first we try to clarify
the influence of the ordering restriction on the clause graph procedure.

With ordered clause graphs we denote usual clause graphs with a restriction on the allowed resolution
links, corresponding to the superposition rule.

Theorem 3.6 (Ordered Clause Graphs) Ordered clause graph resolution with the following link in-
heritance and consiruction rules is incomplete.

- Delete resolution link.
- Inherit all R-links as described in [Eis88].

— Remowval of tautologies and subsumed clauses.

Proof: The counterexample is taken from [Eis88](**). There it is used to show the inadequacy of the
class of lifting lemmata usually proposed to prove the completeness. The links allowed in L. Bachmair’s
and H. Ganzinger’s strategy (see definitions 2.23 and 2.24) are always labeled with a number, that Is,
only links with numbers represent possible resolution steps.

1
[-Qz | Pza | Pzb —-=Pzb| Paz [-Qz |
1 2
[=Qz [=Pax[-=Pbz}—— Pbz [-Pza] Qx|
T

Together with the clause Qa V Qb the specified set of clauses is unsatisfiable. In the following figures we
omit the clause Qa V @b and all its incident links as long as they do not contribute to the deduction.

After resolution on link 1 we have the following graph.

1
[-Qz] Pza | Pzb —-Pzb| Pax [Qx|
-Qa
- Pba 2
Pab

5
[=Qz [~Paz[~Pbzl—T Pbz [~Pza] ~Qz |
1]

Resolution on 5 leads to R : ~Qa V ~Pba V ~QbV ~Pbb, which we do not depict.

Resolution on link 2 leads to the next graph.

— 1
—~Qz | Pza | Pxb ~Pzb| Paz | -Qz |
—1Qa, 6 —|Qa
=Pba Pba
Pab 7 JA\ - Pab

[~Qz [=Paz[-Pbe——] Pbz [-Pza[-Qz |

Resolution on 6 leads to Rg : =QbV -~ PbbV —QaV Pba, which we do not depict.

(i%)Unfortunately we could not construct a smaller example.

3.2. Restriction Strategies 31

Resolution on 7 leads to R7 : =Qa V —~PbaV =QaV Pba, which we do not depict.

After resolution on 3 we obtain the following graph.
—
[=Qz | Pza | Pzb —-Pzb| Paz [-Qxz |

~Qa 8 ~Qa

- Pba Pba
Pab -Pab

9
- Pzxb
- Pbzx
-Qz | 10 4

[-Qz [=Paz[~Pbs}— Ptz [-Pzd] -Qz |
:]

Resolution on 8 leads to Rg : =QbV —PbbV =Qa V ~Pba, which we do not depict. After this operation
the upper right input clause is pure and can be deleted.
Resolution on 9 leads to the following graph.

—|Qa
[—11 -1Pba
[-Qz | Pza | Pzb |

—lQa —'Qa

~Pba K Pba

Pab —=Pab

~Pzxb

= Pbz

-Qz | 10 4

—Qz |~ Paz|-~Pbz Pbz [~ Pza] ~Qz |
[~Qz [=Paa|~Pbzf—
Resolution on 11 leads to Ry : =QbV PbbV -Qa, which we do not depict.
After resolving on link 10 we obtain the following graph.
12
-Qa

| =Qz | Pza | Pxb | —Pba [=Pzb|~Pza| Q= |
_IQa _|Qa’
- Pba Pba
Pab ~Pab
—Pzb
- Pbz
-Qz 4

| ~Qz [~ Paz|-Pbz} | Pbz [-Pza] -Qx |

L1

Resolving on 4 results in the following graph.

Chapter 3. Variations of the Basic Superposition Calculus

[=Q= |=Paz]-Pbs]

Resolution on 14 leads to Ry4 : ~@Qa V Pba V ~QbV —=Pbb, which we do not depict.

Resolving on 13 produces —Qa V Pba, a successive resolution between this clause and =PbaV —~Qa leads
_to a resolvent —Qa, which subsumes all clauses containing ~Qa. This includes all clauses, which are not
depicted.

The clause Qa V Qb can be resolved with ~Qa resulting in @b, which in turn subsumes Qa V Qb.

The clauses resulting from links 12, 15, 16, and 17 are tautologies. Because the tautology link condition
is not fulfilled®), we can only delete the resulting clauses if we do not erase the links from the graph.

(~Qz] Pral Pt —{~Psbl-Paal Q7]

12
i ~Qa
[-Qz] Pza | Pzb | —Pba [=Pzb|-P2a] ~Qz |
-Qa -Qla
—Pba > Pba
Pab N\ —~Pab
{6] 13
"IPCL'b ~ Y- S I3 Pbx
-~ Pbz < — “—F Pzb
—-:Q;z; 15 “'IQ:I)
{ Pbx [=Pza| ~Qz
T

-~Pzb — 7\ 7 Pbz
—wa:c" - F Pzb
| ~Qx | -Qz

[=Qz[=Paz[=Pbc—— Pbx [=Pza] -Qz]
T 1

In this figure we have all remaining clauses depicted, we only have omitted the clause (Qb.
In the next step we infer two factors for the left and right clauses of the graph. For the inheritance
in the merging case, mono merging is considered, that is, only the links of one literal are inherited for

factors.
T]
| ~Qz | Pza| Pzb ——-Pzbl=Pza[-Qz |
—1Qb —|Qb
- Pbb 19 < 18 Pbb
~Pzxb —7X 7 Pbr
- Pbe — < Pzxb

-Qz [~ Paz|-Pbx Pbz |- Pza| ~Qz

(*)The clause graph calculus imposes conditions on the existence of special links when deleting tautologies or subsumable
clauses (see for example [Bib82]).

3.2. Restriction Strategies 33

Now we have no link between the P-literals of the factors, and hence we shall never succeed to infer
the empty clause. The remaining links between maximal literals, that is 18 and 19, lead to dead ends.
q.e.d.

The conclusion from this theorem is that the clause graph procedure is inadequate as a basis for super-
position calculi, because the restrictions of the two calculi are incompatible. To retain R-link inheritance
to be used instead of reconstruction in a superposition calculus we would inhibit the operation links
and not inherit the inhibition. Then the clause graph procedure just simulates clause set resolution(v®.

The next theorem connects the clause graph procedure with paramodulation. In this case the properties
of clause graph resolution can be retained (but this is relatively worthless when we consider the result
of theorem 3.6).

Theorem 3.7 (Paramodulated Clause Graphs)
The clause graph procedure together with paramodulation and the following link inheritance, inference,
and construction rules is as complete as the clause graph procedure for resolution.

~ Delete operation link.

- Reconstruct all P-links to paramodulanits and resolvents.
~ Construct all R-links to the paramodulated literal.

- Inherit all other R-links.

Proof: Each paramodulation step can be simulated by resolution steps with the clauses of definition
1.1 (E-clauses) and the literals involved in the paramodulation step. All paramodulation steps in the
graph except those that are already performed are always possible because paramodulation links are not
inherited but reconstructed. Hence the procedure behaves as if all E-clauses were always fully connected.
Imagine we initially started the procedure with the E-clauses, then we would have fewer links than in
the actually described version. Hence it is at least as complete as the one started with E-clauses without
paramodulation. q-e.d.

Example 3.8 depicts the typical example where some resolution step is not possible because an operated
link (1) is not inherited. But it does not matter that after paramodulation on clause Rfz V Pz or
Rfz V Qz no empty clause can be derived because the paramodulation step can also be done on the
unit clause Rfb(®i),

Example 3.8 (Link Inheritance)
2
FEgul e=78 [Bfe]Pe =Py Qu]-"—{-Ql]

11
—Rgu| |gc= fb |[Rfz| Pz] [-Py| Qy 2

2/

12

(”":)Ti'le one originally defined by Robinson.
(v#)When we construct a mirrored clause graph to the left hand side of the equation we have a situation in which an
application of gc = fb to —=Rgu in the other direction leads to a symmetric effect.

34 Chapter 3. Variations of the Basic Superposition Calculus

[~Rgu| [lgc=78 [Rfz[Pz]| [2Py[Qu] [-Qb]

12

[oRgu| lge=fY [Bfe[Pz] [=PyfQy] [-QY]

This example shows that no general purity deletion is possible if equations are present. Clauses can just
be pure if the predicate of the linkless literal occurs with only positive or negative signs.

3.3 Reduction

For our purpose we are not interested in a confluent and terminating set of conditional rewrite rules but
only in a refutation proof for certain theorems. Hence we do not need a reduction procedure producing
unique normal forms independent of the invested resources. We use a reduction rule which has much in
common with H. Zhang’s contextual rewriting, but retains the reduction facilities of the clause graph
procedure. In the sequel we relate contextual rewriting and the reduction rules of the MKRP-system.

The clause graph procedure defines a set of reduction rules as described in [Eis88, Pra85, EOP89):
deletion of pure clauses, tautologies, and subsumed clauses, removal of redundant literals (replacement
resolution), removal of links that produce tautologies, subsumed, or pure clauses. Of course purity
deletion("*%) is not allowed together with equations in general. First we shall motivate that parts of
replacement resolution and the subsumption rule are special cases of contextual rewriting (see definition
2.27). Then we shall show that the other rules are compatible with the superposition calculus and define
a new reduction operation.

Subsumption for the clause graph procedure is defined as usual. Example 3.9 shows the correspondence
to H. Zhang’s contextual rewriting,.

Example 3.9 (Subsumption and Contextual Rewriting)

C = Qz V Rz subsumes D = QaV RaV Qb.

If we select an ordering @ > R then Qz is the mazimal literal in the clause C and we can construct a
conditional rewrite rule Qz — True V Rz. In this case the condition is ~Rz, the context is {-Ra, -Qb}.

A conteztual rewriting siep with the instance R = Qa ~ True V Ra of the rule Qz — True V Rz leads
to the true clause D' = TrueV RaV Qb because the condition literal Ra of R can be reduced 1o True by
the context literal ~Ra of D.

(v¥4)The deletion of literals without R-links.

3.3. Reduction 35

Replacement resolution is a hyperstep in the clause graph procedure combining resolution and a suc-
cessive subsumption of one parent of the resolvent by the resolvent. This step can be abbreviated by
deleting literals in the parent and not explicitly generating the resolvent.

Definition 3.10 (Replacement Resolution)

gl’ f"’ K K there is a sequence of one unrestricted resolution step and arbitrary
ll’ s my Bl e 2R if many unit resolution steps such that the finally resulling clause is {K;,
Ky, ..., K - i}

In [Pra85] we weakened the restriction to unit resolution in the definition of replacement resolution and
allow some other easily detectable steps. The replacement resolution operation is an abbreviation of
resolution and subsumption and hence is complete whenever subsumption is complete. Example 3.11
relates a replacement resolution step and the corresponding contextual rewrite.

Example 3.11 (Replacement Resolution, Contextual Rewriting)
C = ~Qz V Rz replacement resolves into D = QaV RaV Qb and reduces D to Ra V @b.
Again we select an ordering @ > R and get a rule for the clause C.

A contertual rewriting step with the instance R = QQa — False V Ra of the rule Qz — False V Rx leads
to the clause False V RaV Qb. As in example 3.9 the condition literal ~Ra of R can be reduced to True
by the context literal ~Ra of D.

But replacement resolution is not really an instance of contextual rewriting. Example 3.12 is not
covered by contextual rewriting, because the essential step is no reduction application: it uses genuine
unification, not just matching.

Example 3.12 (Replacement Resolution, no Contextual Rewriting)

PzaV Qz : PzaVv Qzx
_|Pby \Y Rya \Y Qb Replacement Resolution Qb
—-Razx - Rax

This reduction corresponds to the parallel application of two rewrite rules.

Our experience with replacement resolution showed that it is not very promising to extend it recursively
to arbitrary non unit clauses [Pra85]. Because of this, we do not need a recursive definition of contextual
rewriting as proposed by H. Zhang and D. Kapur [ZK88], we only want to apply unit clauses without
context in all further steps. So we use only those instances of contextual rewriting that are efficiently
detectable in our framework of clause graphs and abstain from the others.

All derivatives of replacement resolution and replacement factoring as described in [EOP89] are complete
due to the same reasons as in conventional clause graphs. They are just a look ahead for the subsumption
rule. The reduced clause subsumes the original one and all intermediate results, and subsumption is
complete in the superposition calculus adapted from L. Bachmair and H. Ganzinger. Of course critical
pairs must be recomputed for the reduced clause which is different from clause graphs, where the links
remain unaltered. '

Something like replacement paramodulation is an adequate and straightforward extension of replacement
resolution to cover some other reduction cases.

36 Chapter 3. Variations of the Basic Superposition Calculus

Definition 3.13 (Replacement Paramodulation)

Clr RIS Cn

Ly, ...y Lym, Ky, ..., Ky if there is a sequence of one paramodulation step and arbitrary many unil
l resolution steps such that the finally resulling clause is {K1, ..., Kp}.
K, ..., K

Instead of using just one paramodulation step we could use an arbitrary but fixed value of n. This
constraint fixing the search depth is necessary in order to obtain a decidable reduction relation. Of
course we can extend the rule in the same way as we did for replacement resolution in [Pra85].

Situations corresponding to usual rewrite reductions cannot be extended to replacement paramodula-
tion cases in general as shown in example 3.14, where it is a step obviously causing incompleteness.
The unsatisfiable graph becomes a satisfiable one because for this rule the original clause is not at all
subsumed by the reduced one.

Example 3.14 (Wrong Replacement Paramodulation)

A step included in a wrong definition of replacement paramodulation would be the following. It can of
course not be comprised in any form of conlextuel rewriting:

fzb = ga fzb=yga
_"bey A\ Ry Wrong Replacement Paramodulation ﬁPg(l
Pfbb —Rb Pfbb —Rb

That 1s, in this case the paramodulated literal does not disappear.

This contemplation leads to the preceding definition of replacement paramodulation. Often such psendo
reduction steps are good normal inference steps, so we can use a rule corresponding to general replace-
ment paramodulation as an additional inference rule without deleting the parent clause.

If the paramodulation literal itself can be removed or replaced by a more general one we have the
same phenomenon as for replacement resolution, namely the subsumption of the parent clause and all
intermediate results, and the calculus fogether with the replacement paramodulation rule is sound and
complete. The next example shows as for replacement resolution that replacement paramodulation is
not covered by contextual rewriting.

Example 3.15 (Replacement Paramodulation, no Contextual Rewriting)

After a paramodulation step with fab — ga and two resolutions with Pga and ~Rbz we oblain the clause
Q, which subsumes the original clause and all intermediate clauses.

fzb = ga fxb=ga
. Replacement
—‘bey " Rya V Q T """ Paramodulation Q U
Pga —-Rbz Pga —Rbz

3.4. Summary 37

3.4 Summary

We presented two results in this chapter: first we succeeded to combine the difference reduction and the
rewrite (superposition) approach in one system using a standard technique, namely narrowing.

The second contribution of this chapter is that the most powerful parts of the MKRP-system can be
retained when integrating the superposition approach as a paramodulation strategy.

We developed a clause graph strategy for superposition. Although incomplete, the clause graph strategy
induces a behaviour of the MKRP-system as before, when it is only started with clauses without the
equality predicate. It behaves like the Knuth-Bendix completion procedure if applied to unit equations.

If controlled by a conventional superposition strategy the theorem prover is complete but has a different
behaviour than the original MKRP-system, although the reduction facilities are still applicable.

Chapter 4

Heuristic Control

A calculus only provides inference rules to be applied indeterministically. For an effective application
of such a rule system we need special control strategies, that is, rules to instruct the system which step
should be performed next. Hence the question arises of how the known heuristics of the field can be
used to control our rule system.

After focusing on a global search behaviour concerning graph structures, that is, the E-resolution part
of the calculus, we elaborate in the following parts of this chapter upon heuristics to select inference
steps and orderings for rewriting,.

4.1 Narrowing Control

It is a good tradition in AI to use human problem solving as a guide line for the construction of
machine oriented problem solving techniques. For example, A. Bundy developed methods to use human
knowledge in equational theorem proving [Bun74, Bun83], although at the lowest level.

In some cases it is relatively simple for a human being to detect the structure of the E-refutation-graph
(see section 4.1.1) for a given problem. Two clause graphs for such problems, which can be instantiated
to refutation graphs, are depicted in figure 4.1. It is possible to simulate such a human way of solving
the problem on a machine by extending the usual difference reduction heuristics (see section 2.4).

At the beginning we shall demonstrate this principle with examples taken from the theory of commu-
tative, zero divisor free rings. The ring axioms are given as usual and the property that the ring has
no zero divisors is expressed by a conditional equation Yo,y : -y =0 = 2 = 0V y = 0, which can be
transformed into a clause -y Z0Vz =0VvVy =0.

Next we give a proof of a human mathematician at a high level, then we show that it cannot be used to
construct an adequate paramodulation proof, and finally we shall illustrate that heuristics can be used
to control narrowing in the direction of finding a refutation graph which reflects the structure of the
human proof.

Example 4.1 (Human Proof for Cancellation Law)
Let a) (R,+,-,0,1) be a commutative ring with 1 and

b) Vz,y:z-y=0=>2=0Vy=0 (zero divisor free)
thenVe,y,z:z-2=y-2A2# 0=z =y (cancellation)

Proof: Letz,y,z€ Randz-z=y-2Az#0
2>z-z2—y-z=(x—y)-2=0
= 2 —y =0 because z # 0 and b)
>T=yY

g.e.d.

39

40

Chapter 4. Heuristic Control

Figure 4.1: Examples E-Clause-Graphs

u=1u

y=0vVz=0VvVazy#0

a#ec

b#£0
Cancellation in zero divisor free rings (see
B.3.1). a, b, and c are Skolem constants stem-
ming from the theorem z -z =y-zAz#£ 0=
2 = y. The E-refutation graph can be gener-
ated by an instantiation with the substitution

u=1u

c# -1

y=0vzez=0Vzy#0

c#1
Square roots in zero divisor fiee rings (see
B.3.2). c is a Skolem constant stemming from
the theorem z? = 1 = ¢ = 1Ve = -1
A substitution for the instantiation to an E-
refutation graph is {y — 1 +¢, ¢ — 1 — ¢,

{y—c+(=b),z —a,u—alc+(=b)} (see u—(1-c)(l+0c)}.

example 3.3).

Figure 4.2: Paramodulation Proof for Cancellation

z+0==z atec
y=0vVz=0vVzy#0
Paramodulation
(-y)+y=0 a+0#¢c b#0
Paramodulation 1Resolution
a+(-y)+y#c z=0Vzb#0

Paramodulation

O+y#cVia+(-y)b #0

Multiple Demodulation

t=cx— y#£cVab+ —(yb) #0

Resolution
chb = ab ab+ —(cb) #0
| N —
Paramodulation
cb+ —(cb) #0
Demodulation
r=r—— 040

Resolution

O

In figure 4.2 we depict a paramodulation proof for this example in form of a graph. The proof is
hand-made with the following heuristics in mind: use the human proof as orientation, make the proof
as linear as possible, and begin the linear chain with a clause in a rather small set-of-support, that is,
not the whole theorem but just an essential part of it. The negated and Skolemized theorem consists

4.1. Narrowing Control 41

of three clauses cb = ab, b # 0, and a # ¢ with Skolem constants a, b, and ¢. The most restricted
set of support consists of just the conclusion of the theorem a # ¢ and this should be the nucleus of
our linear proof. The first action consisting of two paramodulation steps is to expand one side of the
inequality by subtracting and adding the same thing, this “something” is intended to become a “¢” so
that the “something”-literal is ¢ # ¢ and can be resolved away. This goal can almost be achieved by
applying a rewrite rule to make a + (—y) to 0 but we just have a conditional equation (derived via
a resolution step at the right hand side of the picture) and so we introduce a new literal. The next
two steps (Multiple Demodulation and Resolution) are done according to our intention of removing
the ¢ # c literal. What remains to be done is to eliminate the newly introduced literal, which is done
straightforwardly by applying a structurally very simple equation (due to its lack of variables) and

demodulating until resolution of the empty clause is possible.

This proof seems to be simple but there are essential disadvantages: rewrite rules are used for su-
perposition steps in the reverse direction, that is, unlike narrowing (z +0 = =z, (—y) +y = 0),
paramodulation with variables is used (z + 0 = z), associativity is used implicitly in both directions
(a+((—y)+y) = (a+(~y))+y), and a partially completed set of axioms is used (right identity although
it is not given).

Hence the heuristic approach with the human proof as a guide line is not very promising at this level.
But this does not mean that heuristics are completely worthless.

With B.3.2 (see right hand side of figure 4.1 and also [Pra90]) we gave a second example of the same
class of problems (two square roots), which is essentially more complicated in practice, because both
equality literals in the zero divisor clause must be paramodulated into, in order to obtain the empty
clause. But the refutation graph has the same structure.

Hence the refutation graphs are relatively simple for such equality reasoning problems and using dif-
ference reduction methods at this global level may be valuable. In some sense the heuristic “Produce
the shortest clause next!” is also a difference reduction heuristic: the difference to the empty clause is
as small as possible with respect to the length of the clauses. In section 4.1.2 we shall adapt V. Di-
gricoli’s [Dig81, Dig85], K. Blasius’s [Bla86], V. Lotz’ [Lot88], and M. Fuchs’ [Fuc90] heuristics to our
goal of reducing the difference to an equality refutation graph but first we have to elaborate upon the
representation of information and the methods to compute if.

4.1.1 Prerequisites for E-Resolution

In chapter 3 we presented an E-resolution rule based on narrowing. We propose to store the narrowing
trees in the literals. For an efficient search of really resolvable nodes of different trees we use indexing
trees for every predicate, representing all literals occurring in clauses and narrowing trees with P and
-P.

In order to make the decision about the next narrowing tree node that should be expanded we need
data structures to store information about the probability for two nodes to become resolvable. For this
purpose PE-links are used.

Definition 4.2 (Potential Equality Resolution Link)
Two literals in different clauses with same predicates and different signs are connected via a PE-link.

Our narrowing starts with arbitrary literals and successively searches for the best fitting opposite literal.
Therefore it is not advisable to implement PE-links like classical R-links. This would restrict the
narrowing to pairs of literals and enhances the amount of multiple computations. We would propose
indexing trees for each predicate and sign. Hence PE-links are just virtual links and we need them only
to speak about.

Indexing is a special technique to store several terms together in a tree such that algorithms can work
simultaneously for parts of the terms. It was presented by R. Overbeek [Ove75] and is based on “tries”,
a type of trees to store character strings (see for example [AHUS83, section 5.3]). An example of an
indexing tree is depicted in figure 5.8.

42 Chapter 4. Heuristic Control

4.1.2 Adaptation of Difference Reduction Heuristics

For the selection of possible equational steps three levels of heuristics can be distinguished.

~ At a first level only local heuristic' information is exploited: the complexity of critical pairs or
literals in the narrowing tree.

~ At the second level the difference of two terms that should be made equal is measured. V. Lotz
[Lot88] and V. Digricoli [Dig85] mainly define this type of heuristics.

— At the third level we consider several such differences between literals and join them to get infor-
mation about all resolution possibilities concerning one clause, that is, hyper-E-resolution steps
are valued.

Hence a heuristic function to select the next expansion step contains three dependent parts:

h(step) = w1 - hioeat(step) + wy - haig(step) + wsa - hpyper(step)

step is a node of a narrowing tree, that is, a pair of a literal and a unifier. The three parts of the
function h are dependent in the sense that the definition of Aj,cqr can recursively be used in hg4ig and in
hhyper, as well as the definition of kg can be used in Apyper

It is not difficult to imagine several functions to be used for hjocqr, which computes in some sense the
size of the narrowing tree node:

— number of variable, function, and constant symbols
— number of all functions

~ Knuth-Bendix weight with weights for function and constant symbols

weighting polynomials (see section 4.2.4)

hiocat, haigr, and Apyper can be taken just for the literal alone and also for the literal and the unifier
together. The main task of hjeq; 18 to prune the most complex tasks from the search space because
the biggest problem of completely uninformed breadth first search is that very complex states must be
considered very early in the search process, while with the same effort hundreds of simpler nodes can
be expanded.

haig values the difference of the input node to some other potentially unifiable node. Let C' =

Ltl’"""k,Ll, ..., L, be a clause in a clause set. We denote the first literal with L and this literal is
a maximal literal. t!,...,t* are the nodes of the narrowing tree attached to L. Each ¢ is a pair (L?, o)
with L? a literal descending from L by successive applications of equations and o* the merge of the
unifiers of equation applications (see definition 3.4).

For each literal L there exists a set of literals {M1,..., M\n} connected via a PE-link to L. This link
expresses the potential unifiability mentioned above. Let D; be the clause containing M;. Each literal

M; has narrowing trees with nodes (M}, u}),...(M;?, p;7)). Now we can define a difference measure

hag((L},0)) i= (minjL,)pl, (dist(M}, L))

The function dist is intended to compute the difference between two terms or literals. It can be taken
from V. Lotz [Lot88, pages 101-112] or V. Digricoli [Dig85] and is integrated in our heuristic hgig in
the introduced form, because firstly V. Lotz and V. Digricoli always consider the possibly applicable
equations and secondly they focus on two terms in a path to be compared whereas we want to completely

4.1. Narrowing Control 43

expand the nodes of the narrowing tree which is not so complicated compared to only applying one
equation and to keep book over the used equations. In addition it is more homogeneous to consider only
terms and not terms and equations in relation to the terms. In fact it is always better to consider the
actual instance instead of the general equation. We think that by this the complexity of the expansion
operation is decreased and the operation itself is better informed.

Rhyper is intended to compute something like the value of a narrowing step to diminish the difference of
a clause to the empty clause. Let C from above be a clause in a clause set with ((L},03),...(L}?,0;7))
for j = 1,...,n the narrowing trees for the literals of C'. Then

higper((LF, 0%)) = Z mingZ, (hdiﬁ((L}c) ‘7;)))

i=1

The function hpyper values all nodes of narrowing trees in one clause equally, only the combination
with hgig and hiecqr characterizes different values. Of course the function can be extended to take into
account the interrelations between the n unifiers.

Unfortunately the computation of hgjg and hpyper causes problems. In principle we would have to
consider several matrices for each PE-link (see figure 4.3) with the dimensions being the actual number
of nodes in the narrowing trees in order to get the same heuristic power as V. Lotz and V. Digricoli. Of
course these matrices need not always be recomputed, they can be extended when adding new nodes,
but the amount of storage and update is enormous, so it seems useful to constrain the usage of hy;5 and
Rpyper. Otherwise there would be too much computation.

Figure 4.3: Comparing Narrowing Nodes
1 ... MPm

One possibility is to only use the difference to some literal In another clause and not to all nodes of the
narrowing trees. Then hgyg is defined as minJL,(dist(Mj, L*)). hayper must be computed only once for
each clause when not considering further dependencies.

4.1.3 Restrictions for Narrowing

Unrestricted narrowing makes it necessary to compute indexing trees or related structures for all literals
which are not positive equations. Therefore we like to have more semantically motivated restrictions
for narrowing steps than those mentioned above to keep the set of trees as small as possible.

In section 3.1.1 we motivated the use of a linear E-resolution strategy based on narrowing because it is
a way to “divide and conquer” the whole problem into the subproblems to resolve away single literals.
Linear resolution needs a focus clause as nucleus of the inference sequence. Clauses that serve as starting
point for E-resolution can be determined in various ways.

— In a semi-automatic proof system the selection can be done by the user.

— If only one non equality literal is present this can naturally be selected as nucleus.

44 Chapter 4. Heuristic Control

— If only one clause with more than one literal is in the clause set we begin the sequence of inference
steps with the maximal literal of this clause.

— It can be advisable to use the theorem or part of it as a focus clause, as it is done in the set-of-
support strategy.

The inference system remains complete if these restrictions are only used as a supplement to the orig-
inal superposition calculus, that is, all superposition steps remain possible. E-resolution is just an
abbreviation of several paramodulation steps.

E-resolution steps can be seen as normal superposition steps like resolution itself. The problem with
narrowing is how the interleaving of narrowing and superposition steps can be controlled. In the following
'some control rules are specified.

- If a new literal is created then compute the narrowing tree up to a predefined level. This level is
determined by the heuristics in the previous section and some user specified options.

— After the creation of a new clause perform n narrowing steps according to the heuristics.

- After creation of a new unit rewrite rule extend all narrowing trees up to the actual level using
this rule.

— If some exception occurs extend all or some selected narrowing trees by one (m) level. Such an
exception could be that no unit superposition steps remain to be performed.

- If a supervisor program assigns a high heuristical value to a PE-link extend the trees of the
corresponding literals.

All five rules can be combined or used alone. The simplest version of narrowing integration is to only
use the first one. Then it is not necessary to update any information, the potentially available narrowing
control information is approximated as roughly as possible.

4.2 Completion Control

There are many heuristics in automatic theorem proving and equality reasoning but their respective
contribution to the overall search is sometimes dubious. In order to measure their influence, we used
some more complex examples, because the loss of accuracy caused by the machine and the graph
construction is relatively smaller.

A paramodulation theorem prover based on Knuth-Bendix completion and rewriting usually uses two
orderings. The first one is the ordering to constrain the possible steps and to perform reductions.
N. Eisinger calls this a restriction strategy [Eis88]. It must be a reduction ordering or the strategy of
the theorem prover becomes incomplete. Examples of such restriction strategies for resolution theorem
proving are the set-of-support strategy or the basic strategy.

The second one is a selection ordering for the selection of the next step called an ordering strategy by
‘N. Eisinger [Eis88]. This ordering need not necessarily be Noetherian. But it can be more goal directed
and more powerful. For example, such a strategy can be chosen to perform goal directed depth first
search without considering the termination. The selection strategy can be used to employ a weakened
form of a restriction strategy, for example, if this restriction strategy is incomplete. A typical way to
implement a selection strategy is to compute some heuristic values for all possible steps.

A possibility to approximate the set-of-support strategy is to multiply the heuristic value of all non
set-of-support clauses with a big constant value. By this we obtain a goal directed selection of inference
steps even if the set-of-support strategy is incomplete.

Our goal was to examine which problems can be solved with which strategy and hence to provide a
basis to automatically choose both, restriction and selection strategy, if the user does not specify them.

We shall elaborate the restrictions in the sections 4.2.1 and 4.2.2 and the selection ordering in section
4.2.3.

4.2. ‘Completion Control 45

4.2.1 Choosing the Restriction Strategy

We selected six restriction orderings of paramodulation for our experiments on strategies. H-C and C-G
denote our own ones described in section 3.2.2 and abbreviate “Heuristic-Completion” and “Connection-
Graph”. Both use the inheritance rules of theorem 3.7, but they differ in the selection function for the
remaining links. C-G weighs R- and P-links in the same way as all other strategies whereas H-C uses a
different resolution specific function for R-links. Hence the H-C strategy includes through its definition
a different selection function and is not really comparable to the others. It is only included in the
investigation for the sake of completeness of the considered methods.

H-C is intended to retain the behaviour of the MKRP-system if no equations are present. The resolution
steps are selected according to the selection function of the old MKRP-system, whereas the paramodu-
lation steps are selected according to a selection function developed for the superposition rule. This
causes a disjoint control of resolution and paramodulation for H-C and makes it necessary to correlate
the two heuristic values with a factor. Hence this strategy is not well suited for the selected examples,
which combine throughout equational and non-equational parts. It remains to be noted that H-C uses
a strong set-of-support selection for resolutions.

C-G serves as a test for the link inheritance for ordered paramodulation and resolution. Although
incomplete, in practice such a proceeding can be useful. The clause graph procedure behaves often
good-naturedly even if it is controlled with an incomplete restriction strategy.

Z-K stands for “Zhang-Kapur” (see definition 2.22, strict clausal superposition), B-G for “Bachmair-
Ganzinger” (see definitions 2.23 and 2.24, strict and merging superposition).

S-L abbreviates “Snyder-Lynch” (see definition 2.26, basic paramodulation). It provides an implemen-
tation of basic paramodulation (the variant without dagger).

D stands for “Dershowitz” (see definition 2.25, unit superposition and narrowing). We implemented a
version of his unit strategy that is incomplete in the case where non-Horn clauses are in the input set.
Another possibility would be to check whether the input clauses are Horn clauses and in case they are
not Horn to select a different complete restriction strategy.

As examples we choose the conditional equality examples of F. Pelletier and a famous non equality one:
Schubert’s steamroller problem (published for example as problem 47 of F. Pelletier). Automatically
generated proofs for all equality examples can be found in appendix B. The most examples in the
appendix are computed using the B-G strategy.

For all examples computed here we could realize that a slight change of the selection strategy (heuristic)
and of the ordering (see the lines 51a and b of table 4.1) has a stronger influence on the search behaviour
and hence on the run times than choosing a different restriction strategy.

Unless otherwise stated we used the automatically generated ordering.

™ indicates a collapse of the graph for an incomplete strategy, which is often the case for the D-strategy,
because the selected examples are non-Horn problems. oo means that the system was not able to find
a proof within a reasonable time.

Z-K/B-G One advantage of B-G over Z-K is its completeness when deleting tautologies. Additionally
B-G considers the substitution for the restriction: the terms and literals have to be maximal in
the instances of the clauses. Example 47 shows that the consideration of the substitution can be
necessary for finding a proof.

C-G Surprisingly there are really two examples (51a, 55) which behave best with this strategy, that is,
sometimes it is good to use inheritance for the resolution case.

46 Chapter 4. Heuristic Control

Table 4.1: Different Strategies (Run Time in Seconds)
Example H-C| C-G | Z-K |B-G | S-L
47 a| oo | 133 | oo [127 | 127
b| 45 | 54 34 | 34 | 34
48(B.2.1) 6 6 6 6 6
T T TR
a| oo
51(B.2.3) b| oo | 28 48 | 48 | 41
53(B.2.5) oo |16534) 2181 | 2137 | 2732
a| o | 25 29 | 31 | 31
54(B.2.6) b| 74 | 25 29 | 31 | 31
55(B.2.7) 23 17 22 22 21
56(B.2.8) 9 9 9 9 9
73(B.2.14) 0 [o oo | 5929 | 5898

Xxgzxggg;;mggzc

47 The ordering for the steamroller was Grain > Snake > Caterpillar > Bird > Fozr > Wolf > Plant
> Animal > Smaller > Eats. With other orderings the system did not succeed to find a proof in
any strategy: we tried Smaller > FEats > Plant > Grain > Snake > Caterpillar > Bird > Foz >
Animal > Wolf (automatically generated) and Plant > Animal > Grain > Snake > Caterpillar >
Bird > Foxr > Wolf > Smaller > Eats.

This is not surprising, the successful ordering is constructed using the sort hierarchy of the example.
In this case the ordering is a different way to express such a sort hierarchy.

47a Without terminator.

47a/H-C Example 47 could not be proved with H-C because the strong set-of-support strategy is not
well suited for such examples.

47b With terminator [AO83]. H-C and C-G need 26 resolution steps before the proof is found by the
terminator whereas for the other strategies the proof is found immediately after the first step. The
set-of-support strategy in H-C and B-G prevents inference of units useful for the terminator but
the other strategies need more time to compute possible results.

49 B-G and S-L need more steps. D) generates a completely different, proof.
51a Ordering P > fo > f3> fi.
51b Ordering fo > f3 > f1 > P.

51/H-C Because of the wrong relation between paramodulation and resolution steps the problefn could
not be solved in a reasonable time.

53 Ordering fs > fa>fa>fu>fi>Pand fr> fo> fio> fo > fa> P.

54 Could only be solved with terminator.

54a Ordering In > fs > f3 > fo > f1 (Skolem functions as normal functions).

54a/H-C For resolvents the old MKRP-strategy does not consider the term depth for the weight.
54b Ordering fa > f3 > fo > fi > In (Skolem functions greater than all others).

55 Longer proofs for B-G and S-L.

4.2. Completion Control 47

The first question to be answered from these results is: did it pay to integrate the various superposition
strategies into the MKRp-system? For all examples in table 4.1 the H-C strategy which is defined to
retain the behaviour of the old MKRP-system is worse than Z-K and B-G. This is not surprising because
the examples in the table are just of the type that can not be handled by the old system. Example 47a,
shows that a restriction strategy can even enhance the power of the system for pure resolution examples,
but only when we choose a very dedicated ordering.

In 47b which behaves better for all strategies than 47a an MKRP-feature, the terminator, is used. This
is also the case for example 53, where the splitting and the finite domain options are set. That is, the
integrated features are useful throughout all strategies.

The second question is, when to use which strategy. For all examples the B-G strategy behaves best
concerning computation time. Hence it pays to consider the instantiation caused by the substitution,
when deciding the next step. The expected effect that this strategy often produces longer proofs does
not happen as shown in table 4.2. This effect is a property of many restriction strategies in automated
theorem proving (see also section 3.1).

Table 4.2: Different Strategies (Proof Length in Steps Including Rewrites)
Example H-C|C-G|Z-K|B-G|SL|D
47 al oo | 40 [co | 40 | 40 | M
b| 52 | 52 | 45 | 45 | 45 |45
48(B.2.1) 9 9 9 9 9 19
49(B.2.2) 15|16 | 16 | 15 | 15 |16

oo [17 | 17 | 17 | 17
51(B23) 17 | 17 | 17 | 17
53(B.2.5) oo | H97 | 564 | 564 | 580

oo | 22 | 22 | 22 | 22
54(B-2.6) 23 | 24 | 24 | 24
55(B.2.7) 17 | 15 | 15 | 15 | 15
56(B.2.8) 15) 15 | 15 | 15 | 15
73(B.2.14) 0 | oo | co | 195 | 195

[oul K
8

o e
[
[ZX]

XX XX X[R]E|8

4.2.2 Reduction Orderings

For the MKRP-system it is possible to select a Knuth-Bendix ordering, a polynomial ordering, or a
lexicographic recursive path ordering (LRPO). If the user does not specify the ordering for an operator
the system automatically extends the specified ordering or completely generates one.

We. mainly experimented with LRPOs. An exception is the case of theory unification, where we used
polynomial orderings because the restriction on the ordering caused by the theory can be more simply
modelled in the polynomials.

Some of the results in table 4.1 show that the choice of the ordering can be essential for finding a proof.
Example 47 can only be solved with an ordering reflecting the sort hierarchy inherent in the example.
Examples 51a and b as well as 54a and b also show that the ordering has influence on the run time and
the proof length.

In this section we shall analyse the choice of the operator ordering for example 53. We shall show that
the influence of the reduction ordering is essential for the run time even if all selected orderings are total '
because the example contains only ground terms. We selected this example because it is important to
choose good orderings especially for Skolem functions("), which cannot be a priori chosen automatically.

(*)Skolem functions are automatically generated by the theorem prover for all existentially bound variables.

48 Chapter 4. Heuristic Control

The automatic generation for the operator ordering of the LRPO is according to the following rules.
For the description of the implemented ordering selection we use the term “function” for functions as
well as for constants. A symbol f is selected to be greater than ¢ if

1. both are functions and the sort of f is greater than that of g,
2. f is a Skolem function and ¢ not,
3. f is a predicate and g is a non-Skolem function, or

4. both are predicates or functions, and the arity of f is greater than that of g and g is not a Skolem
function.

If both are equal relative to this specification we order them arbitrarily.
The reasons for the rules are as follows:

1. The MKRP-system is an order-sorted theorem prover [Wal84]. It is known that the ordering for
the reduction relation must be compatible with the sort hierarchy [Sch88). An example is the
refutable clause set {R(ar), ~R(zs),ar = bs}. The sorts are written as indices. S is a subsort of
T. Therefore zs and ar are not unifiable. ar must first be replaced by by which would not be
possible if we select an operator ordering bs > ar opposite to the sort hierarchy.

2. Skolem functions are auxiliary functions to be deleted as soon as possible, hence we choose them
greater than others.

Making Skolem functions as big as possible is obviously not always a good idea as the following
example shows:

Let S(y,z) V A(f(=,y),y) be a clause. If we select an ordering first working on the S literal
because we think the A literal will be reduced away after a fitting resolution on S and select an
ordering S > A then we have to choose S > f > A to enforce L1 > L. If we select automatically
f > S > A then we have Ly > L; which is not the idea of § > A.

3. We select predicates greater than functions because it is an advantage for clauses like P(z,y) V
f(z,y) = z if the non-equational literal is maximal. This reduces the number of possible operations
because resolution is less branching than paramodulation (see also section 1.2).

4. If we have for example a clause P(z,y)V Q(z)V R(y) the only possibility to have a single maximal
literal in the clause is an operator ordering with P > @ and P > R. With @ > P > R as well as
with B > P > @ we obtain two incomparable maximal literals. All other orderings even lead to
three incomparable maximal literals. The variable distribution as in the clause above is typical for
the relation of predicates and also of functions with different arity in the same clause. Therefore
we select a predicate P greater than @ if its arity is greater, and correspondingly proceed for
functions.

Next we tried to refine the rules for the automatic generation of the operator ordering. We computed
example 53 with various permutations of the ordering for the five Skolem functions. Table 4.3 shows
that three behavioural variants can be distinguished.

Table 4.3 shows that it is essential to have fo > fi. If additionally fi > fs > fo > fa > f4 we have an
even worse behaviour. We try to correlate the condition fo > f; with the occurrences of the functions
in the clause which we depict in table 4.4.

J2 only occurs together with f; whereas f; also occurs with another function (f3) in the same clause. f3
must be greater than fi to replace the f; in this clause by f; (see section B.2.5, D228 is the conditional
rewrite rule). This examination induces a refinement of the ordering rules: select the function or
predicate as the biggest one which has the least dependencies with other functions or predicates.

It remains to examine other examples, to implement and verify this refinement of ordering selection, and
to integrate other approaches for the automatic generation of orderings. It is also necessary to transmit
the rules to polynomial orderings, for which it is essentially more complicated to define a fitting ordering.

»

4.2. Completion Control 49

Table 4.3: Statistics For Different Ordering of Skolem Functions

Ordering Proof Length | Time
fs>Ffa>fa>fa>fi>es 564 2137
fo>fs>fs>fa>fi>es 564 2166
fo>fa>fs>fa>fi>ces 564 2180
fo>f>h>f>f>c 564 2197
fo>fa>fa>fi>fs>c3 564 2157
fa>fa>fa>fi>fs>c3 564 2173
fa>h>h>hHh>Ff>c 564 2176
f3 > f4 > f1 > fz > f5 > c3 709 4832
f3>f4>f1 >f5>f2>63 709 4876
fa>fs>h>fs>fr>es 709 4854
fixfs>fa>fs>fa>cs 1002 10661
fs>fo>h>fa>fs>¢3 564 2171

Table 4.4: Occurrences of Skolem Functions

Function | Arity Qccurrences - 2 x fi and fp in same literal
in Clauses

hi&fs 1 8 - 2 X fs and 2f; in same clause
folefo | 2 3] .

[1 2 2 x 2f; and 2f, in same clause
fa& fs 1 2 - 2 x f4 and c3 in same clause
f&fr | 2 Z .
ea&ees 0 4 — 2 x 2fs and e3 in same clause

4.2.3 Critical Pair Selection

In principle it is sufficient to have a reduction ordering around and to abuse it also as a selection ordering,
but this is a restriction in usefulness and efficiency.

We begin this section with some differences of selection strategies in Knuth-Bendix completion and
arbitrary theorem proving. It is known that a selection function counting the number of symbols in the
critical pairs gives a complete strategy for completion when keeping the rules interreduced9) . Such a
selection is called “smallest component strategy” by G. Huet [Hue80]. But this is not necessarily the
case for general theorem proving as shown in figure 4.4. The reduction relation must be enhanced such
that it contains at least subsumption. ‘

Figure 4.4: Example for Incomplete Counting Strategy

In this example the clause =R fzV- Rz remains Rfffffa Rffffa

the same after each paramodulation step on the

P-link labeled with 1 and the correspondingly

constructed link is always selected anew. ﬁR\f zV-Re
1

ffy—y

For a set of selection strategies see J. Denzinger in the description of his experts [Den91]. He also gives
a detailed discussion and measurements for examples in the case of unfailing completion with goal, that
is, the restriction on the input is: the axioms are all unit equations and the theorem is one disequation.

(#) That is, each rule is completely reduced by all other rules in the actual rule set.

50 Chapter 4. Heuristic Control

Hence we concentrate on the conditional case with our own measurements. The MKRP-system allows
to specify polynomial weighting functions for all predicate, function, and constant symbols. We do not
vary this parameter, we just use the default weighting which counts the symbols. In the sequel the
result of the polynomials is denoted by “default-weight”. Again we use the examples of section 4.2.1.

First we explore the influence of a set-of-support weighting on the run times(¥¥), MKRP supports the
weighting of set—of—suppor§ clauses for examples by specifying for example (* (if support 1 2) ...)
in the weighting function(*?). In table 4.5 we used the following weighting functions.

1. (# default-weight (if support 1 10))
. (* default-weight (if support 1 3))

. (* default-weight (if support 1 1.5))

. (* default-weight (if support 1.5 1))

2
3
4. default-weight
5
6. (* default-weight (if support 3 1))
7

. (* default-weight (if support 10 1))

The parameter setting 1 corresponds to a strong set-of-support selection, the setting 7 simulates a
forward reasoning strategy. The variation from 1 to 7 causes the transition from backward to forward
reasoning.

Table 4.5: Set-of-Support Variation (Run Time in Seconds
Example 1 2 3 4 5 6 7
47a o | oo | oo | 264|230 | 134 | 134
48(B.2.1) 7 7 7 7 7 7 7
49(B.2.2) 13 | 13 | 13 13 13 | 13 13
51(B.2.3)a| 27 | 27 | 27 | 27 | 27 | 27 | 27
53(B.2.5) | 2180 | 2180|2180 2180 | 2180 | 2180 | 2180
54(B.2.6)a| 23 | 23 | 23 | 23 | 23 | 23 | 23
55(B.2.7) | 22 | 22 | 22 | 22 | 22 | 35 | 35
56(B.2.8) 9 9 9 9 9 9 | 9

The reason for the times of example 47 is that the ordering forces the system to first eliminate the sort
literals and then to do the main proof. This can only be done when first resolving between axioms,
otherwise the sorts in the axioms cannot be removed. For the other examples the set-of-support plays
no or no essential role. We also tested the set-of-support weighting for pure equational examples, where
it is typical that equations are not applicable to the theorem in the initial clause set.

The next parameter we vary is the weighting of the depth of the search space.
1. (+ default-weight (* depth 10))
2. (+ default-weight (* depth 3))
3. (+ default-weight depth)
4. defaunlt-weight

(i¥)We did not use any special features and always selected the B-G strategy. Unless specified otherwise we used the
same ordering as in section 4.2.1.
(*v)The critical pair clause with the lowest value is selected.

4.2. Completion Control 51

5. (- default-weight depth)
6. (- default-weight (* depth 3))

7. (- default-weight (* depth 10))

The parameter setting 1 induces a behaviour close to breadth first search, the setting 7 approximates
depth first search, that is, the variation from 1 to 7 causes the transition from breadth to depth first
search.

Table 4.6: Depth Variation (Run Time in Seconds)
Example 1 2 3| 4 5 6 7
47 317 | 254 | 254 | 254 | 254 | 254 | 134
48(B.2.1) 7 7 7 7 7 7 7
49(B2.2) [13 | 13 | 13 | 13 | 13 | 13 | 13
51(B.2.3)a| 93 | 63 | 27 | 27 | 23 | 23 | 23
53(B.2.5) [3230 | 4056 | 2600 | 2282 | 4687 | 6646 | 6687
54(B.2.6)a| 64 | 38 | 32 | 23 | 23 | 24 |
55(B.2.7) 22 22 | 22 | 22 | 22 22 27
56(B.2.8) | 9 9 9 9 9 9 9

From the results in table 4.6 we can conclude that it is a good heuristic to ignore the depth of a proof
step completely. Only for examples 47 and 51 we realized a slight improvement when we prefer deeper
steps, but this seems to be an accident. Setting 7 for example 54 is the only one with the depth first
effect of getting lost in the depths of the search space.

The different results in table 4.6 show that an extension of a multi agent approach as proposed by
J. Denzinger (see [Den91)]) to restriction strategies is also very promising for the conditional case.

4.2.4 Critical Pair Reduction

A global design decision is when to reduce potential results of superposition steps.

Essentially we have three possibilities how critical pairs can be administrated with regard to reduction.
The question is, how much information should be used to make the decisions of the previous section.

1. As a maximal solution we can keep the critical pairs reduced all the time exactly as it is done for
rewrite rules.

2. We can reduce them after creation and after selection. That is the most natural way to proceed.
Whenever you create an object you will reduce it, in the first case a reduced critical pair is created,
in the second one a reduced rewrite rule.

3. As a minimal solution we can just reduce them after selection. That is necessary to get an
interreduced set of rules but the reduction facility is absolutely not exploited for the selection of
the next rule.

In table 4.7 we give the execution times and the numbers of performed steps for three examples. The
table shows that it pays to perform reductions whenever it is possible. This is valid for all examples with
a high number of successful reductions. For systems with many rules which are seldomly applicable the
second strategy should be selected, this selection can be controlled automatically by storing the numbers
of successful and successless applications of rules and invoking the first strategy if the statistic limits
are exceeded.

52

Chapter 4.

Table 4.7: Statistics, Reduction of Critical Pairs

Times in Seconds Proof Steps
Example 1 | 2 | 3] | ‘ 3
B.3.4 (Group) 16.57 17.06 | 30.60 |13 | 14 | 39
B.3.5 (Groupoid) | 81.84 | 100.75 | 198.43 | 31 | 42 | 145
B.3.6 (Z22) 3196.05 | 4701.91) 91 | 121 | o

4.3 Summary

Heuristic Control

First the heuristics developed for difference reduction are applicable in the combination of superposition
and narrowing. They can even be extended to cope with something like a refutation graph structure.

The second result concerning heuristics is that those developed for resolution are also compatible with
the superposition approach. Resolution strategies that are 1ncomplete in the presence of equations can

be stmulated by an approximation with heuristics.

Naturally the heuristics for rewriting systems are included in a proof system based on superposition.

Chapter 5

Compilation: Towards an Equality
Reasoning Machine

How can a superposition calculus be implemented efficiently using standard techniques of automated
theorem proving like indexing, structure sharing, and compilation, without loosing facilities like heuristic
search, hashing, and weights? We shall show how these techniques can be retained by systematically
constructing an abstract machine for rewrite operations.

The presented actual prototype realization on a SUN Sparc architecture (see appendix A) did not come
up to our expectations based on experiments with compilation in Lisp, but shows that a compilation
approach is in principle compatible with all tools not relying on special data structures as it is the case
for various theory unification algorithms.

That the results are not convincing was the reason to not incorporate the extensions of the sections 5.4
and 5.5 into the SUN implementation.

How to compile and apply canonical rewrite systems is known from rewrite rule compilation [Kap87] and
Prolog techniques. Especially in the Rewrite Rule Machine (RRM) project an advanced efficient and
parallel reduction machine is under development [AGM90, Gog90]. It bases on an array architecture
consisting of many small processing cells with local storage. But such a reduction machine always
requires a fully specified canonical rewrite system such that it can be compiled on a special machine.
Another disadvantage is that it is not dedicated to the standard von Neumann architecture. In the
RRM-project a hardware realization [ALM90] is favoured. Our goal is not such a functional language
compiler but instead we are interested in fast equality reasoning.

The second compilation approach in the context of automated reasoning is the Warren Abstract
Machine (WAM) for Prolog [War77]. This method is not adequate for equality reasoning because
every serious equality problem needs dynamical changes of the structure, thus violating one of the basic
assumptions of compiled Prolog.

Prolog is a programming language but also a special proof procedure: the three disadvantages of this
special purpose strategy, namely, its restricted depth first and ordering strategy, the lack of an occur-
check in the unification procedure, and the confinement to Horn clauses, can be avoided as suggested
inter alia by M. Stickel [Sti86]. This extended Prolog is a complete first order theorem prover. However
the most interesting feature of Prolog is a programming language feature, namely the possibility of com-
pilation. Incorporating equality into Prolog means in the programming language context to introduce
functional programming into logic programs.

There seem to be five distinguishable approaches to incorporate equality into Prolog, namely: J. Jaffar,
J-L. Lassez, and M. Maher [JLM84], J. Goguen and J. Meseguer [GM85], SLDE-resolution of J. Gallier
and S. Raatz [GR89], N. Dershowitz and D. Plaisted [DP85], and L. Fribourg [Fri84b, Fri85b]. The

53

54 Chapter 5. Compilation

first three are E-unification based (see section 2.3) whereas the other two build upon superposition (see
section 2.6).

The E-unification based approaches are easier to incorporate into existing non-equational Prolog-systems
but they are less specialized to equational reasoning and hence less effective in proving theorems than
the others (see sections 2.4.2 and 2.6).

P. Baumgartner developed a technique to transform a canonical rewrite system directly into Prolog
clauses [Bau90]. He uses a restriction of the equality axioms (see definition 1.1), which is a simple one
but may be efficient for logic programs if the role of equations is not dominating.

The main example of J. Gallier and S. Raatz in {GR89] shows the inefficiency of E-unification based
systems when compared to rewriting. \

Example 5.1 (Gallier-Raatz) The first column of table 5.1 gives the set of Prolog clauses to be
refuted, where the usual Prolog syntaz :— is used. We begin by reducing the first clause”) with b — a
and deletion of the false literal and arrive at the second column with a new rewrite rule f3a — a. With
it the fifth clause can be reduced resulting in Q(a). Then clause 4 is reduced by Qa producing a new rule:
f?a — a. This rule reduces f3a — a to fa — a depicted in the fourth column. After several reductions
we obtain a refutation only by simplifying the set of clauses and one final resolution step between Ra
and - Ra.

Table 5.1: Rewriting the Gallier-Raatz Example

fPa=a:— fa=fb|fPa=a fPa=a fa=a
a=1b a=1b a=1b a=1"b
Pa Pa Pa Pa
fPfa=a:~ Qa ffa=a:— Qa ffa=a fa=a
Qa :— f3a=a Qa:— fla=a Qa Qa
Ra :— fa=a,Pfa |Ra :— foa=a,Pfa|Ra :— fa=a,Pfa|Ka
:— Rfa :— Rfa :~ Rfa :~ Ra

The advantage of the E-unification based systems is that they can be handled also by Prolog compilers
and hence the non-equational part is very efficient.

The best known method to compile logic programs is that based on the Warren Abstract Machine
(WAM) of D. H. D. Warren [War77, War83, GLLO84]. The main idea is to compile each head literal
of a clause into a self unifying piece of code representing a specialized unification algorithm instead of
using a general one. In addition a set of stacks are needed to handle backtracking and bindings.

Two operational models of functional languages can be incorporated into an abstract machine like the
WAM. Environment based graph reduction machines were developed for example by J. Fairbairn and
S. Wray [FW87] or S. Peyton-Jones and J. Salkild [PS89]. A machine based on lazy narrowing is
developed by M. Chakravarty and H. Lock [CL91].

We do not think that Prolog techniques extended in the E-unification style are very useful in general
theorem proving with equality due to similar reasons as general E-unification. The disadvantage of the
superposition style is that it is not really Prolog and that it is therefore not better than the normal
superposition calculi.

M. Stickel’s PTTP() idea [Sti86] (iterative deepening) is not as promising as for pure resolution systems
because of the high branching rate of equation applications.

(":)An orientation in the opposite direction makes no essential difference.
(#) Prolog Technology Theorem Prover

§.1. A Compilation Examnple 55

There are various approaches to integrate functional and logic programming on the basis of the WAM
by combining the two techniques as for example the attempt of P. Kreuger [Kre89] or M. Chakravarty
and H. Loch [CL91].

The essential point used in our work is the idea of compilation. In this chapter we shall focus on the
main extension of our system: newly derived rules. Hence we improve the compilation methods to an
algorithm which automatically derives new rewrite rules and which is in some sense an extension of both,
Prolog-WAM and compiled rewrite rules. The power of the WAM 1is extended to work with arbitrary
clauses and rewrite rule applications to perform superposition. Our abstract machine is not intended
to be as complete as the WAM is, but only to give machine operations for the special inferences in our
context, thus our approach is dedicated to a standard machine architecture and gives a procedure to
semi-automatically generate code to handle different standard architecture machine code.

The main idea is to perform superposition and unification on the compiled program. The actual devel-
opment of the algorithms is done in two steps:

1. Lisp programs are given to perform unification of interpreted Lisp functions in A-notation.

2. Equivalent C programs are specified to perform the operations on pieces of assembler code and to
generate new pieces of code for the newly derived rules.

The concrete procedure is performed for a Sparc-machine realization in appendix A. The method
presented here is general in nature and hence can be applied to any kind of inference if the application
of rules via matching is the dominating operation.

Beginning with the pure Knuth-Bendix algorithm we first give a sequence of transformations which
finally generate an efficient implementation of the matching algorithm, which is the basis of the abstract
machine. This transformation shows the algorithm to be as correct as the original calculus. The
proceeding is general enough to work with the Bachmair-Ganzinger calculus or any other calculus based
on superposition. The system is actually only implemented for the pure Knuth-Bendix procedure.

It is clear that one needs a method to specify the correspondence between the abstract reasoning machine
and the special assembler language, because in contrast to usual compilers a method to newly construct
code (terms) must be given. This can be done relatively easily because we defined a narrow interface
and used just a few assembler instructions.

5.1 A Compilation Example

We begin this chapter with an example. The left hand side of the rule —u + u — 0 can be overlapped
into the term z + y of the rule (2 +y)+ z — = + (y+ z) with a unifier {z«— — u, y—u}. For the following
discussion we give names to all occurring subterms as listed in table 5.2.

Table 5.2: Term Names

Term Name Term Name || Term | Name
(z+y)+2{ 1 z+(y+z)| r |[~v+ul
z+y I zinr r —u H
zinl I y+z T3 uin [1
yinl lio yinr o1 win l' I
zinl I zinr T9 0 r

The kernel of the unification algorithm is depicted in figure 5.1. The algorithm has four cases. If the
first term is a variable and if it has no binding we set the second term as its binding or if it has one
we unify the term with the binding. When the second term is a variable we do the same with switched
roles. If both terms have the same topsymbol we recur on their subterms. Else we have a clash. We use

56 Chapter 5. Compilation

the primitive functions variable?, binding?, binding, binding!, top, and sub as predicates, selectors, and
modifiers for the datalii)). It is clear that the lack of an occur check can be added in the same manner as
the algorithm itself is stated. The explicit construction of the unifier is not necessary, it is delayed until
the unifier is needed, that is, the critical pair is constructed. It is also evident that all other functions
that are necessary for the Knuth-Bendix completion as for example overlapping, reduction, and ordering
can be written analogously.

Figure 5.1: Kernel of the Unification Algorithm

(defun unify (term1 term2)
(cond ((variable? terml)
(if (binding? terml)
(unify (binding term1) term2)
(binding! term1 term2)))
((variable? term2) (unify term2 terml))
((eq (top terml) (top term2))
(every #’unify (sub term1l) (sub term2)})

(t ni))

The first step of the transformation is to represent the rewrite rules themselves as Lisp programs (see
figures 5.2 and 5.3). It is obvious that the unification procedure in figure 5.1 works as before because
for the unification the changes concern only the representation of terms which are hidden via data
abstraction. The changes are local to the functions variable?, binding?, binding, binding!, top, and sub.

Figure 5.2: Associativity Rule as Lisp Program

(when (A (D)
(and (eq (top 1) '+)
((A (1) (and (eq (top 1) "+)
((A (1) (= ’x L)) (sub 1 1))
((A (h2) (—y h2)) (sub 2 1))
(sub 11))

(A (I2) (=2 1)) (sub 21))))

)
(bind ’(A (r)
(and (eq (top r) '+)

((A (r1) (& ’x r1)) {sub 1 7))

((A (r2) (and (eq (top r2) '+)
((A (ra1) (= ’y r21)) (sub 1 73))
((A (r22) (& 'z r22)) (sub 2 r2))))

(sub 2 7))))))

The advantage of the new representation is that rules are directly applicable to terms. For example the
term —a + a in the new representation can be reduced not by interpreting an abstract rule —u-+u — 0,
but by applying the piece of Lisp code given in figure 5.3.

The function « checks whether the variable has a binding and if so whether it is the same as the new
one to be set. If it has no binding it sets the new one, if the binding is not compatible it returns nil, that
means that the match fails. In the right hand side of the Lisp rule the function « invokes an insertion
of the binding which is executed by the function bind.

() We use the standard naming convention for functional programming constructs of H. Abelson and G. Sussman [AS84].
The notation ((A{{) body) input-!) of binding a new variable is also introduced there.

5.2. The Transformation into Mnemonic Assembler Code 57

Figure 5.3: Left Inverse Rule as Lisp Program
(when ((A (1)
(and (eq (top V') +)
((A (1) (and (eq (top 1) '=)
(A (i) (= ulyy)) (sub 1 5))))
(sub 1 1)) :

((A (1) (= "uly)) (sub 17))))

(bind °(A (')
(eq (top 7') *0))))

We think this technique of encoding the match can be partially extended to full unification and hence
can be used to implement a fast narrowing procedure. Of course this technique is not compatible with
the theory unification algorithms, which have very dedicated structures.

By this way the procedure of applying a rewrite rule to a term ¢ at toplevel is reduced to “(funcall rule
t)”, that is, customary matching can be omitted, it is encoded in the rule.

The next step in transforming the representation is to give the names of table 5.2 to all occurring
subterms and to define them separately such that the rules are written just as in the lower part of the
left hand sides of the figures 5.4 and 5.5. We introduce extra functions for lists of terms such that we
do not need and-operators with different lengths.

The left hand sides of these figures show that all subterms look very similar and can be well organized
in the computer memory. In a third step we can convert the Lisp functions into abstract assembly code
which is shown in the right hand sides of the figures 5.4 through 5.5. In the sequel we shall often use
the notion of “term [in Lisp notation” or “term ! in assembler notation”, but writing ! in the usual
way, for example “z + y or f(z, y) in Lisp notation”.

The essential point is that the unification procedure still remains the same, again only the physical
access to the subterms, binding, and type changes. We use “sub” with a numerical first argument if we
access a single subterm and without this numerical argument for the list of all subterms.

The application of rules in the Lisp case can be handled by the Lisp interpreter and if a canonical system
of rules is given by the corresponding compiler and the underlying machine. The pieces of Lisp code for
the two rules of our example are given in figure 5.6a. An assembler analogon to the first rule is given in
figure 5.6b.

5.2 The Transformation into Mnemonic Assembler Code

The transformation from “normal” terms to an “abstract” assembler language is done to ensure the
sounduness and completeness of the resulting proof procedure. In practice terms are created immediately
in the final form. For the representation of replacement patterns in transformation rules we use the
reader macro notation of Common Lisp: ‘(pattern ,expand pattern) constructs an expression where
subexpressions preceded by commata are replaced by their values(*),

(#v)For a detailed description of the notation see the books of G. Steele [Ste90] or P. Winston and B. Horn [WH89). For
example ‘(list ,z ,y 3) is equivalent to '(list 1 23) if z is 1 and y is 2.

58

Figure 5.4: Abstract Code for Term [

Chapter 5. Compilation

5.2.1 Abstract Code

A Al input {
(and (eq (top I) "+ = top({) +
' Bfalse endAl
(). call Al sub(l)
(sub 1 1)) Bfalse endM
((A)..) return true
) endAl return false
Ally input]
call Aly first(l)
(defun M (1) Bfalse endAll;
(and (eq (top 1) *+) call Ally rest(ll)
(Ally (sub 1)))) Bfalse endMll;
return true
(defun Ally (1) endAll;y return false
(and (Al (first 11,))
(/\112 (rest ”1)))) '\Il .
efun Al; ... 9 input
defun Al Al y u
call Aly first(10)
(defun Ally (1) Bfalse endAlly
(and (Al (first Uy)) nop
) Bfalse endMlls
return true
(defun Al ...) endMl; return false
M. ..
|
Figure 5.5: Abstract Code for Term »/
') (eq (top r r input
(A (r') (eq (top ') '0)) | [Ar
= top(r') 0
., Bfalse endAr/
(defun Ar (7") ’ 10p
(eq (top 7') °0)) Bfalse end)r’
return true
endAr’ return false

We just give a brief and informal description of our goal langunage.

Each instruction is a line “{label }id{ arg}*{lcomment}” with label a label identifier to be used in call
or branch instructions, ¢d the instruction name, {arg }* a list of arguments for id separated by blanks
and !comment an arbitrary sequence of characters beginning with !, which serve as comment.

5.2. The Transformation into Mnemonic Assembler Code 59

Figure 5.6: Rules

a) Two Rules in Lisp b) Rule in Assembler
(when (M 1) (bind "Ar)) Arule input !
(when (A I') (bind *Ar')) call ALl

Bfalse end-int

call Bind Ar

return result
end._rule return false

input a Inserts some input into register a.

= ai as Checks whether some constants or register contents are equal
and stores the result into a branching register.

Bfalse addr Jumps to the address if the branching register contains False.

call addr ay ...an, Calls the routine addr with the arguments a; ...a,. There
have to be n input instructions at the beginning of addr.

return a Leaves a program entered by call storing a into the branching
register.

storage # Reserves #t bytes of storage. This instruction reserves slots to
label terms, which are used in superordinate algorithms.

true, false Predefined constants.

" top, sub Primitive functions to access the function symbol and the ar-

guments of a term.
first, rest Primitive functions to separate term lists.

For each step of the transformation we have to consider three cases: compound terms, constants, and
variables.

5.2.2 Terms — Lisp

The result of this step is depicted for our examples in the upper left corner of the figures 5.4 and 5.5.

Variable

For a variable the binding must be checked and set if necessary. This is done by applying the function
« described above.

Taz) ~ (AH)(=’zt))

Constant

The function for constants has just to do the clash check. It must return True if the constant symbol
coincides with thal of the input term. We use a primitive function top to access the top symbol of a
term throughout all notations (see figure 5.5).

Ta(e) ~ (A(%)(eq (top t:) c))

60 Chapter 5. Compilation

Compound Term

The transformation for compound terms is done by recursion on the subterms. The first transformation
rule separates the top symbol and performs the clash check and the handling of the list of subterms
separately. For the access to the subterms we use a primitive function sub.

‘(A (t) (and (eq (top t) °f
TS, t0) ~ e e) sub o)

The second rule transfers an empty termlist, which can match all other lists because we pay attention
to only call the resulting function on termlists of the same length.

X(0) ~ (A () T)
The third rule separates the first element and the rest of the list.

‘(A () (and (,75(t1) (first ¢l
LUCIERLY ~ O et 1)

5.2.3 Lisp — Single Functions

We have now Lisp code for all terms but terms are large interlocking objects. Our goal is to perform
replacements by changing addresses and so we like to represent the logical composition of terms also
physically and to represent all subterms as single objects. For these single functions in Lisp it is assumed
that they all get distinct names. To assign the names to the function we use the Lisp special form defun.

In the example this is the step from the upper left to the lower left corner of the figures 5.4 and 5.5.

Variable

The transformation rule for variables just generates a name for the variable A-expression.
T((X#) («zt))) ~ (defun At (1) (« 'z 1)),

where At is a new name.

Constant

The rule for constants works like that for variables. For an example see figure 5.5.
T.((A (t) (eq (top t) ¢))) ~ (defun At (t) (eq (top t) ’c))
with At again a new name.

5.2. The Transformation into Mnemonic Assembler Code 61

Compound Term

The first transformation rule for compound terms handles the top level of the term, it generates one
function for the top symbol and one for the subterms.
TAO @) (defun At (¢)

, (and (eq (top ¢) ’f)
and {(eq {top t) 'f ~r
(§(§‘ gtop..).) <s)ub) (At (sub 1))))

T((A @) -.)
The second rule handles the empty termlist.
T.((X (t)) T)) ~» (defun Atl (1) T))

The third rule separates non-empty termlists. It generates one function for the separation, one for the
first subterm, and one for the remaining termlist.

(defun At (1)

T(() (2] (and (Xt (first t1))
(and ((A (t) ...) (first t]) ~ (Asl (rest t0))))
(A (s1) ...) (rest 21)))) T () ..))

(> (s0) -.)
Here Atl, At, and Asl are new names but they are also used in the corresponding substructure: At in (A
(t) ...) and Asl in (A(sl}...). For an example see figure 5.4.

5.2.4 Single Functions — Abstract Code

For the example we step to the right hand sides of the figures 5.4 and 5.5.

Variable

An unbound variable just calls a SetBind instruction, which replaces itself by the term to be set as
binding. SetBind always returns True when called non-recursively.

At input ¢

Bind storage Binding
call SetBind ¢
Bfalse end\t
return true

endAt return false

To((defun At; (8;) (« 'z t3))) ~

Variable with Binding

A variable with binding calls this binding instead of calling SetBind, hence the binding checks itself. We
omit that SetBind called inside this As-call is not allowed to set bindings but just has to check. This
omission is for clarity of presentation.

At input
Bind storage Binding
call Ast

Bfalse endAt
return true
endAt return false

62 Chapter 5. Compilation

Constant and Compound Term

For examples see the right hand sides of figures 5.4 and 5.5.

At input ¢
= Top(t) ¢
Bfalse endAt
(defun Mt () (eq (top t) ’¢)) ~ nop

Bfalse endAt
return true
endAt return false

At input ¢
= Top(t) f
(defun Xt (2) Bfalse endAt
(and (eq (top t) ’f) ~ call At sub(t)
(At (sub 1)))) Bfalse endXt

teturn true
end)t return false

Term List
(defun Al (#) T)) ~» 1Op
Al input #
call At first(¢l)
(defun A#l (tl) Bfalse endAtl
(and (At (first t)) ~ call sl rest(tl)
(Asl (rest t1)))) Bfalse endAtl

return true
endAt! return false

5.3 Evaluation of an Implementation

For the evaluation of our concrete realization (that is given in more detail in appendix A) we chose three
examples:

1. A group with the defining equations given in section B.3.4.
2. The central groupoid defined in section B.3.5.

3. A finite group (Z22) whose axioms are specified by the defining equations in section B.3.6.

For all experiments we chose a lexicographic recursive path ordering (LRPO).

We just implemented a pure Knuth-Bendix completion procedure for our experiments on compilation,
because all problems occur already there. We present in the sequel the statistics for three different ver-
sions of the system: normal completion, completion with assembler data structure, and real application
of the assembler procedures.

All times given here are computed on a SUN 4/370 and are statistical values in the sense that exact
measurements are not possible for such small times. They are always given in seconds.

The loss of efficiency from “normal” to “new data structure” mainly has two reasons:

5.3. Evaluation of an Implementation

63

Table 5.3: Statistics Completion With Reduction of Critical Pairs (Times in Sec-

onds)
Group | Groupoid | Z22
Example Bid | B3 B.3.6—}
Normal 0.79 3.05 49.34
New Data Structure | 1.48 5.94 81.94
Compiled 1.32 5.82 73.48

1. It is due to the format of the “call” instruction of Sparc-ass

embler, where the address is not

directly accessible for the user but must be shifted two bits. For the construction the sequence
“01” must be added in front of the address to construct a legal “call” directive (see appendix A)

from a given address:

b31b3o .. .bab1bg — Olba1bsg. .. bo

With this coercion the access to substructures is more complicated than before.

written into the memory slots.

2. The allocation of memory is more expensive than before, because all the instructions have to be

Table 5.4 shows that the loss of efficiency is even present in that part of the procedure accelerated

by the compilation.

Table 5.4: Statistics Completion, Only Matchin

g, in Seconds

Group | Groupoid | Z22
Example B34 | B35 |B.36
Normal 0.18 0.81 11.44
New Data Structure | 0.32 1.16 13.18
Compiled 0.22 0.98 6.90

First of all we have to state that only about 25% of the time is spent
table 5.5 and 5.6.

for matching as can be seen in the

Table 5.5: Time Consumed by Subroutines in Percent (Normal)

Group | Groupoid | 722
Example B.3.zf B.3I.>5 B.3.6
Match 22.78 26.55 23.19
Unification 506 | 6.56 2.03
Memory Management | 25.32 | 22.62 10.99
Ordering 0.01 0.02 2.47

Table 5.6: Time Consumed by Subroutines in Percent

New Data Structure)

Group | Groupoid | Z22
Example B34 | B35 |B36
Match 26.35 | 23.23 16.15
Unification 3.38 5.38 143
Memory Management | 43.91 | 50.84 38.15
Ordering 0.01 0.01 1.54

64 Chapter 5. Compilation

Unfortunately the loss of efficiency caused by the new data structure is not offset by the compilation
effect. Only the match time for large examples could be reduced as can be seen in the fourth column of
table 5.4.

For these numbers we can conclude that compilation does not really disturb the efficiency of the com-
pletion process but also does not contribute to more efficiency. That means if a system is employed that
intensively uses reduction and only sometimes a completion step is slipped in then the presented method
can be used to get completion together with a fast reduction. In chapter 4 we showed that heuristics for
choosing the next critical pair have a more drastical effect on the efficiency of the completion procedure.

To repair the deficiencies of our compilation approach we propose to take the following steps:

1. The amount of time used for memory allocation can be reduced when the routines are shorter.
Using a more stack oriented architecture of our system (like the WAM) could reduce this size.
But it is not dedicated to the standard computer architecture.

2. The same method as in 1 would also avoid many of the address manipulations mentioned above.

3. Using an underlying machine with a more homogeneous address format also would reduce these
manipulations.

4. The usage of dedicated memory management routines.

5.4 Unfailing and Conditional Rewriting

The incorporation of standard extensions to the Knuth-Bendix procedure does not cause additional
problems, however, we did not implement these extensions because we do not think that there is a
considerable enhancement even comparable to that in section 5.3.

5.5 Possible Refinements

5.5.1 Compiled Unification

Prolog derives part of its speed up from the compiled unification process. In table 5.5 we gave the
percentages of time used for the unification in our compilation examples. These times are smaller than
those for matching and therefore it is less promising to get an enhancement. So we renounced on any
experiment with compiled unification. In section 5.5.2 we cite our results of unifying indexing trees, but
this is only useful because the trees have some other advantages.

5.5.2 Indexing Trees

Another approach to an equality reasoning machine can be developed based on interpreting indexing
trees.

All non resolution relevant equality operations can be performed on the term level of indexing trees.
They can be used for the representation of reduction rules and terms as well as a basis for the compilation
of reduction and other special algorithms like narrowing. In this case a two step compilation as given
in figure 5.7 can be performed.

A compiler for term reduction systems into Lisp is described by S. Kaplan [Kap87], an implementation
in our system works very similar but explicitly uses a layer between simple clause rules and Lisp code,
which allows to incrementally construct more efficient code.

5.5. Possible Refinements 65

Figure 5.7: Compilation

The two tranformation steps: Rules
— rules, clauses — abstraction tree

- tree — Lisp code ' ' Tree

Narrowing Reduction

‘ Figure 5.8: Indexing Tree for Group
+ y—rz (z+1)+z—a+(y+2)

z
+ z -y ~z+(z+y)—vy
z<: ()
: z —z4+z—0
0—>z— : ! O+4+z—z

+
\\ + - z—Y z4+(~z+y)—y
x<,— .

T z4(—2z)—=0
0 z+0—z
+ z—Yy —(z+y) = (-9 +(-2)

——ZT =z

0 —0—0

In figure 5.8 we choose an example for an indexing tree as they are used in the system. It represents the
complete set of reduction rules for groups. The leafs of the tree are labeled with the rules, the paths to
the leafs represent the flattened left hand sides, the internal nodes are labeled with operator symbols
and variables, arrows are drawn for the recurrence on higher levels of terms, that is, after variables or
constants that are leafs in the term tree. They are not really needed but make the figure more readable.

These trees are a special sort of indexing trees [WOLB84] or abstraction trees [Ohl89], but we use them
as the programs of an abstract machine. An interpreter for this machine will be described below (figure
5.9). A. Nonnengart used such directed acyclic graphs [Non86]. He evaluated run times for unification
processes on such trees that coincide with our times for rewriting given in table 5.7.

For the compilation process into Lisp each subtree for an operator symbol will produce one Lisp function
[Kap87]. ‘

The figure illustrates that these trees are well suited for parallelization (see [HM89, Den91]). For
an implementation of this system two abstraction levels can be distinguished. The first step of the
compilation can be performed using a special interpreter for the indexing trees when performing a
reduction or both steps can be performed finally using compiled Lisp code for the reduction. An
interpreter for indexing trees is depicted in figure 5.9. The problem with the second version is that in
the case of theorem proving the system of reduction rules changes dynamically causing changes of code
that are almost impossible to be handled in compiled Lisp. Interpreted Lisp, however, is very slow.
Using a similar technique as at the begin of the chapter will lead to comparable results because the
distance between C and compiled code is smaller than between Lisp and code.

We now try to discuss the problem when to use which of the two levels by evaluating the statistics for
our implementation.

For the performance test we selected the following examples:

66 Chapter 5. Compilation

L (((((—T ';‘ —z)+—z)+ —z)+—z)+ ~z)+ ((((z+z) +) +) + z) +z) = 0 in a group (standard
example

2. (= +2)+2) +2)+2) +2)+2) +2)+2)+a = 24;(z+(z+(z+(z+(z+($+(z+(z+r))))))))
in an associative structure with + (small set of rules, in this case one rule)

3 (((z + Dz ~ 1)°)z + D)z = 1) = 2° + (=(=) + (= (%) + (2 + (= + (- ~(@?) + (~(=%) + (= +
(=) + (@ + (& + (=(@) + (=) + (2 + (=" = D)) in a ring (more ‘rules)

All of these examples work with a completion process and succeeding reductlon usmg some of the newiy
generated reduction rules. We employed the MKRP-version of our system, hence the runs were relatively
slow.

In table 5.7 we collected the running times of the pure final rewrite steps, in table 5.8 the complete
refutation times including the completlon process are given. We fed the system thh a mlmmal set of
axioms. - -
Table 5.7: Running Times for Rewriting (in Seconds)
Example 1]-2 3
pure rules 1.85 [0.09 | 305.83
interpreted trees 0.1710.03] .. 9.97
compiled procedures | 0.04 [0.02| 2.37

The entry “pure rules” means that the rewrite rules are not compiled in any sense, they are used
completely independent, “interpreted trees” means that trees as those described above are successively
constructed and maintained, “compiled procedures” means that these trees are compiled into Lisp. In
the second table the last point is changed to “always compiled”, which means that after each change of
the tree, new Lisp code is genera.ted Another possibility would be to compile only if a canonical system
is derived, that is, all critical pairs between unit equations are confluent. We omitted this case because
for the cons1dered examples this coincides with the “mterpreted trees” case. In addition we tested the
system with the compilation of pure rules depicted in the line “pure rules compiled”.

Table 5.8: Running Times for Refutations (in Seconds)

Example 1 2 3

pure rules 8.84 |4.32|473.14
pure rules compiled [9.82 | 6.00 | 302.67
interpreted trees 8.68 | 4.40 | 292.25
always compiled 35.79 | 9.39 | 640.13

The last step needs the longest time because equality examples are very dynamic and the final reduction
and resolution operation is performed just after the last rule is derived or even it needs not to be derived
to obtain the result.

A Lisp procedure for the reduction using indexing trees is depicted in figure 5.9. It works by stepping
recursively through a given termlist and a list of indexing trees setting bindings for variables in the tree.
The initial input are lists with one term and one tree. If the termlist is worked off we have successfully
reached a leaf of the indexing tree and return the stored right hand side with inserted bindings. If
there remain terms to be reduced we select a subtree via the “some” statement with variable or fitting
function symbol. In the function case we have to consider the subterms, in the variable case we have to
check and set the binding.

The algorithms for indexing trees can be refined to work for special sorts of narrowing like commutation
narrowing and their specialized reduction rules.

5.5. Possible Refinements 67

Figure 5.9: Interpreter for Indexing Trees

(defun reduce (termlist trees)
(if (null termlist)
(bind (stored-tree trees))
(let ({first-term (first termlist)))
(some #’(lambda (tree)
(let ((symbol (symbol tree)})
(cond ((equal symbol (top first-term))
(reduce (append (sub first-term) (rest termlist))
(subtrees tree)))
((variable? symbol)
(cond ({(not (binding? symbol))
(binding! symbol first-term)
(reduce (rest termlist) (subtrees tree})
(reset-binding! symbol))
((equal (binding? symbol) first-term)
(reduce (rest termlist) (subtrees tree))))))))

trees))

A. Nonnengart described a representation of terms with acyclic directed graphs [Non86] which is very
similar to our indexing trees. He also has the result that unification on graphs is about ten times faster
than the usual one, but we have to keep in mind that the unification process just takes about 5% of the
time consumed by a typical completion procedure (see table 5.5).

We can recapitulate at the end of this chapter the results of table 5.5. None of the operations in the
completion procedure is so dominating(®) that its speed-up can result in a considerable speed-up of the
whole process, hence compilation seems to be no promising approach to completion, because it will
always fasten just one of these components.

From our compilation experiments in Lisp (see table 5.7) we expected an essential speed-up when using
our compilation technique. But implementing the system in C led to a speed-up that outperformed any
possible speed-up by compilation.

(v)Unification < 5%, matching < 25%, ordering < 5%.

Chapter 6

Aspects of Integration

The previous chapters presented various equality reasoning methods as developed in the last decades
(chapter 2), some enhancements of our own (chapter 3), experiments with various heuristics (chapter
4), and our experiences with the development of a compilation approach to rewriting (chapter 5). That
is, we have collected a large equality reasoning toolbox.

This chapter sketches how we obtain a powerful integrated system from the equality reasoning toolbox.
It contains a presentation of a system architecture for such an integrated equational theorem prover,
and the need for different inference systems to prove special problem classes is discussed. A point of
interest is, of how special features of the theorem proving programs developed in our research group fit
into the superposition approach, including compilation and heuristics (see sections 6.4 through 6.6).

The MKRP-system was first of all used as a general scratchpad for our ideas. Furthermore the integration
into this theorem prover makes available a pile of features that were developed over many years [0S89).
For our experiments on theory completion we used the unification algorithms collected and implemented
in the HADES tool box [Sch89, Pra92a]. In order to represent the equational proofs in a human-oriented
way additional rules were integrated into the proof presentation system GENTZEN [Lin90].

6.1 Rules for Building Theorem Provers

Equality is an indispensable feature for a powerful theorem prover. The integration of equality reasoning
showed that certain rules must be followed, when building a general theorem prover if the integration
of a basic feature like equality is desired. A comparably basic concept would be sorts.

Of course it 1s necessary to heed all basic rules of software engineering such as data abstraction or
documentation issues. In the scientific area it is also necessary to keep the systems as small as possible
to make them usable for someone outside. This is a big advantage of the programming language C over
Common Lisp. Another suggestion is to always project two implementations from the very beginning,
the first one a prototype without too much emphasis on performance issues, just for learning concepts
and making experiences (rapid prototyping). The second implementation should be done by the same
persons as the first one and integrate all known and desired features. You should never believe that
you can program something you do not know, your first errors will survive your presence in the project
.team! Hence rapid prototyping is worthless if it is not followed by a reimplentation.

The first and main rule for implementing theorem provers is to never invent any complicated things, the
main parts of theorem provers must be simple and transparent. It never pays to complicate matters,
may they reside in the inference rules, the control strategy, or the data structures.

For the inference system this means that we prefer a simple homogeneous set of calculus rules with
ideally one rule as a basis which incorporates all facilities necessary to obtain an efficient theorem
prover. This includes also a simple control for the selection of possible steps.

69

70 ‘ Chapter 6. Aspects of Integration

ﬁ?.ule 1 Use a sample and homogeneous basic calculus! I

Example 6.1 (Rule 1) The superposition calculus unifies all important inference rules in contrast to
a natural deduction calculus which has several inference rules that are controlled differently. Resolution
and paramodulation can have different heuristic functions and there exists no correlating function that
can be used in general (see also the strategy H-C in section 4.2.1).

Often complicated data structures as for examples “clause graphs” mix data and control information.
In clause graphs the potential resolution steps which must be considered for the control of the theorem
prover are encoded as links in the graph which is in fact a data structure. When selecting a step, the
control must consider all links to decide which should be used. This makes it necessary to keep all links
additionally in a list or always compute this list, which must be also updated when inheriting the links
after a resolution step. Then the actual state of the system becomes very confusing, because relevant
information is kept more than once. The more complicated the structure the more complicated is it to
hide this structure from the control module and hence from the user.

Simple data structures cause more flexibility and portability:

— A function to select one of a set of equal objects can be changed very flexible and adapted to many
special cases. To select one out of a selection of very different objects is very difficult.

— Basic constructs can be the same for various algorithms if they are sufficiently simple.

Of course it is possible to translate the basic data structure of one algorithm to another but especially
in the case of theory unification this causes a lot of overhead.

If you begin the implementation with a complicated system, it is almost impossible to integrate anything
because it must be in tune with all other already existing components. The problem can be further
complicated if various components use different data structures and are differently controlled. This
contemplation leads to the following two rules.

’Eﬂe 2 Use simple abstract data structures!

Example 6.2 (Rule 2) Lists of clauses are more suitable for other algorithms than clause graphs.
Normalization, for example, may it be by rewriting or otherwise, can be handled in clause graphs only
by reconstructing the incident links of the normalized clause node, hence it is necessary 1o know the
link concept when normalizing clauses. If two algorithms use functions to create lerms then these two
functions should differ at the most in the name.

The simple data structure makes it easy to adapt other programs also using simple data structures.

Example 6.3 (Rule 2) Two main problems we had when we integrated external programs were firstly
two different complicated data structures for HADES and MKRP and secondly the lacking abstraction in
the implementation of the AC- and AC1-maich implementations [Hof88].

It is typical for Al programs that some of their modules compute a lot of information to be used by
other parts. This causes a fundamental communication problem. It is evident that all stored control
information should have the same representation and format. Too much communication causes enormous
overhead.

‘Rule 3 Use a homogeneous format to represent control information! |

Example 6.4 (Rule 3) Use homogeneous, that is comparable, heuristic values for different proof steps.

Neglecting this rule makes it normally infeasible to use foreign external programs for additional inference
rules directly. It is also often the case that the control of such external programs is implemented
completely different. To cope with such situations we need the following rule.

Rule 4 Use only external ideas, not external programs!

6.1. Rules for Building Theorem Provers 71

Example 6.5 (Rule 4) We do not use en external implementation of the Knuth-Bendiz algorithm,
but simulate it within our calculus.

A related question is which control information should be stored at all. Often there is the problem that
programs are mainly occupied with managing and updating control information. Hence it is necessary
to keep this information as simple as possible. We can distinguish dynamic and static information. It
is no problem to store and use static information which never changes. If the information changes with
each step it may be advisable to recompute it whenever it is needed, rather than to keep this information
stored and to update it permanently.

{Rule 5 Store static information, recompute dynamic information!

Example 6.6 (Rule 5) The heuristic value for possible results can be stored. It is not advisable to
store too much indezing information for finding terms, because its update can be very expensive.

Often dynamic information can be approximated by static information. For example, we can use old
heuristic values if it is too expensive to recompute them. We can use old narrowing trees, even if new
rules are added (see section 4.1.3) or we can omit the normalization of possible results, that is we do
not keep critical pairs reduced (see section 4.2.4).

For integrating additional incompatible inference rules these rules should be not visible on the top level of
the inference system. Their results are only computed up to a certain level and special data structures
as for example continuations can be used to store the results. The computation of this information
can be interleaved with the main loop. These steps should only be used if they can be combined to
abbreviations on the main inference level.

|Rule 6 Abbreviate additional incompatible inference rules! |

Example 6.7 (Rule 6) Narrowing can be used to simulate E-resolution; then one E-resolution step
which behaves like a normal superposition step corresponds to a couple of narrowing steps (see section
3.1). The terminator can be used to find unit refutations or unit clauses as lemmata.

This technique minimizes the selection problem for the next step. There must be no distinction between
different rules, the result is of the same type at the top level of the inference loop.

Of course the amount of stored information can be extended enormously by such rules, but the infor-
mation is not relevant and hence cannot confuse on the main inference level. There the information
should be as narrow as possible.

Rule 7 Keez;l,the actual set of formulae and the formulae themselves
smalll

Example 6.8 (Rule 7) In resolution theorem proving all evailable reduction rules like subsumption,
tautology removal, and replacement resolution should be used. Using sorts may be elso a technique to
keep the formulae small. Not using resolution is for special problems e good technique to keep the set of
formulae small. This enforces to use several theorem provers.

Now we come to the rules that are more specific for equality. For equality, rule 6 is not valid because
equality is too basic to be handled this way. It is overridden by the following rule.

Rule 8 5\’61’)61‘ handle basic things independently from the basic calcu-
us!

Example 6.9 (Rule 8) Superposition embeds equalily and resolution into one step, E-resolution sim-
ulates equality as an abbreviation and is therefore unsustable to cope with equations in general.

Hence equality reasoning should always be fully integrated and should never be used as a preprocess or
as a support module. Using first the Knuth-Bendix algorithm to compute new equations and then use
these equations and ignore all further equational steps would be such a preprocess.

Because equality works on the term level we need a specialization of rule 7.

| Rule 9 Keep terms small!

Example 6.10 (Rule 9) Use rewriting, that is, normalization of terms wherever it is possible.
The summary rule for us would be: whenever equality is present use superposition and rewriting!

72 Chapter 6. Aspects of Integration

6.2 Control Through System Architecture

In this thesis we have elaborated so far mainly the details of various equational reasoning tools rather
than an explicit global supervisor to control the various components. Now we shall take a more global
view on the system architecture. In this section we focus on tools that are compatible with the su-
perposition calculus in the sense that they use essentially the same inference rules. The next section
will concentrate on inference rules which are incompatible to our approach. First we can distinguish
strategies selected explicitly by the user or the system and strategies that are inherent(®) to the calculus.

The explicit selection can be organized in such a way that the general strategies reduce to special
algorithms if available. The decision how to refine the strategy must be made globally. For example,
if it can be detected that narrowing is complete (that is, a canonical reduction system exists) general
equality reasoning is reduced to a pure narrower with the best possible narrowing strategy according
to the equational theory as depicted in figure 6.1. Some narrowing strategies are only applicable if
additional restrictions are imposed on the equational theory. If narrowing is not complete it is only
applied in a lazy and heuristic way.

Figure 6.1: Combination Completion — E-Resolution

Completion

l

Narrowing

An arrow A — B means that A is used to implement B.

General E-Unification

E-Resolution

As a second example we mention the compiling version of the system. It can only be used if theory
unification is not necessary and that must be decided globally by taking into account special declarations
of function symbols. Narrowing also can only be reduced to a compiled version if no E-unification is
necessary. This selection depends on the compilability of the theory unification algorithm.

If no algorithms are necessary the calculus itself may reduce to a new one. An example for such a
local reduction of the calculus is from general superposition to Knuth-Bendix completion if only unit
equations are present. This reduction is inherent to the system.

Some of the possible refinements are depicted in figure 6.2. A step labeled with 1 is always done by
applying a restriction to the inference rules, in the paramodulation case using a reduction ordering,
in the Prolog case using SLD-resolution. A step labeled with 2 is autormatically embedded into the
calculus. The completion case happens when only unit equations are present, the resolution case when
no equations are given at all.

The introduction of theory unification is possible for all items in the figure leading to a picture of the
same shape with an “E-” before each symbol, for example E-resolution or theory completion. We will
discuss the suitability of this theory operator for completion in section 6.5.

(JWe very freely use the notion “strategy”. Normally a strategy is something to control an inference system and the
notion cannot be used without relating it to this system. But of course one can simulate strategies of one inference system
in another one. this justifies our open use of the term “strategy”. For this problem see also our distinction of restriction
and selection strategy in section 4.2 on page 44.

6.3. Global Supervision 73

Figure 6.2: System Axchitecture

‘An arrow A — B means that B is a subcase of theory

A (a restriction of the inference rule).
free

1 2

Ordered Paramodulation | Resolution

2 2 1 1

KB—Completion| Igdered Resolutionl Prolog

6.3 Global Supervision

Now we come to the possibilities to integrate methods that are incompatible with the proposed super-
position calculus as for example decomposition based equality reasoning [B1486] or classical induction
theorem proving [BM79]. The incompatibility is mainly caused by completely different inference rules.

Firstly the question must be answered whether all facilities have equal rights or whether they are invoked
in an hierarchical order.

As argued in section 6.1 we prefer an hierarchical approach using a simple basic inference rule and
embedding the other rules on a subordinate level which is invisible in the main inference loop. Hence
global supervision of the classical type is not necessary at all.

An “equal rights” approach would be to have several theorem provers available and to decide either
manually or automatically which should be used for a concrete problem. In the Q-MKRP project [Sie92]
this selection will be embedded into a dialogue oriented natural deduction theorem prover which is
controlled manually at the first development level. For an automatic selection we have to answer the
question whether and above all how the given formulae help to decide which prover to use.

There are some general approaches to classify equality reasoning methods. One of them distinguishes
between term replacement and difference reduction methods [Bla86] (see section 2.4, page 5). Term
replacement works by substituting terms using equations, difference reduction considers at least two
terms and tries to make them equal by inserting equations at top level and proceeding recursively on
the subterms for terms with the same function symbol.

The term “difference reduction” is used at two levels of abstraction. First it denotes term decomposition
as explained above. This is at the same level as term replacement. Secondly it means that the whole
approach operates on a higher (AI) level and reduces semantical differences [Bla86]. We think that the
second level is not adequate to control operations on the term level as elaborated in section 2.4 on pages
10 and 14.

This classification is related to a classification of the axioms and theorems containing the equality
predicate. It concerns the structure of equations with regard to similarity of their left and right hand
sides, and with respect to similarities between the whole equations. Commutativity for example is an
axiom, which is itself structured in the sense that its left and right hand side are very similar. It is
very handy for difference reduction. The single axioms for left and right zero however are examples for
formulae without such a structure. They are well suited for replacement style reasoning. Corresponding
properties can be attached to theorems.

Additionally theorems can be classified according to their relation to axioms. Especially induction
theorems possess a typical structure and a strong relationship to their hypotheses (for example z(y+z) =

74 Chapter 6. Aspects of Integration

zyt+zz = (2+1)(y+2) = (z+1)y+(z+1)z) [Hut90, BvHSI9O]. The structure of the induction scheme
is depicted in figure 6.3 using a scheme of an equality graph (see section 2.4.2). A comparison of this
type of structure usage in induction theorem proving (named rippling) with an inductionless induction
prover based on completion is given by R. Barnett; D. Basin, and J. Hesketh [BBH91].

Figure 6.3: Induction Scheme

This equality graph depicts a scheme for the induction step of the theorem :s[n+1]
Vn : s[n] = ¢[n]. H
s[n] = t[n]
t:'[n+1]

Another dimension for the classification is whether there is just one theorem or several theorems. Many
theorems can occur when equality is embedded in a resolution prover via E-resolution, namely one for
each pair of literals with the same predicate and opposite sign.

This classification induces corresponding reasoning methods. Structure in the axioms induces the usage
of a decomposition approach, structure in the theorems induces special transformation methods [Hut90]
based on difference reduction. Many theorems in combination with structured axioms induce a graph
based decomposition method to store partial solutions to be shared such that they can be used at
different positions.

In the unstructured case rewriting and narrowing bring the literals to normal form, and then they are
unifiable.

It is interesting to remark that the best fitting method to solve equality reasoning problems can also serve
to classify them. We could name this phenomenon statistical classification and the result corresponds
to the structural classification mentioned above.

Very often the really complex replacement problems are characterized by orientable equations.

When equations occur together with other predicates the problem is to determine which constituent
is responsible for the main work. In the case where resolution does the main work we have simple
replacement problems and it is often better to use difference reduction. In the other case where paramo-
dulation is the more frequently used operation we have complex replacement problems with orientable
equations and only a few narrowing problems occur.

If just one unorientable equation is present often a theory unification algorithm exists to solve this
equation, or narrowing with a canonical set of rewrite rules is the method of choice.

Hence the type of reasoning in an “equal rights” approach could be selected problem driven, that is,
calculus and inference rules are selected automatically when appropriate clauses are present.

Additional aspects of global supervision are the use of analogy [Ker89] and plan generation [Bun89].
In contrast to the other control components mentioned in this section analogy and plan generation do
not consider just one example, but a whole set of solved problems, which are for example stored in a
mathematical data base.

They need methods to detect similarities of the given problem to neighboured problems stored in the
data base. They also need a method to store the proceeding of finding a special proof. For this purpose
tactics can be used [KP92]. One day such automatically generated tactics could represent something
like contemplation and analysis of computed problems.

6.4. Integration into an Existing Theorem Prover ‘ 75

6.4 Integration into an Existing Theorem Prover

In the chapters 3 and 4 we gave the main rules of how equality reasoning features can be integrated into
a resolution theorem prover. Embedding equality handling into an existing resolution based theorem
prover as described in chapter 3 would be worthless unless useful properties of this theorem prover could
be inherited.

In this section we list some facilities of the MKRP-system that are retained by our method of integrating
the equality reasoning mechanism.

Splitting, for example, makes it possible to formulate some problems in a more natural way, because the
parts of the proof are proved separately. A typical application of this simple but nevertheless powerful
method is the break-up of an equivalence A < B into two separately provable implications A = B and
B => A. This is of great value especially for theorem provers based on clause normal forms. The clause
sets can be drastically smaller using splitting. Example 53 of F. Pelletier (see section B.2.5, page 97)
has 32 clauses each with six literals without splitting. With splitting two splitparts each with only eight
three-literal clauses must be refuted. Another example for this mechanism is 6.11.

Example 6.11 (Splitting)
The three parts of a circular implication can be 1L z4+y=y+c
given as one formula and are then proved in-

dependently. (The statemenis are equivalent 2. (z+y)+@ytao)=(z+2)+(y+y)
in a group.) 3. —(z+y) = —(2)+ —(v)

Another distinguishing feature of the MKRP theorem prover are sorts [Wal84, Sch88]. They are compat-
ible with our approach as long as we take care that the ordering is compatible with the sort structure.
Of course there is an abundance of literature describing the combination of sorts and equality reason-
ing methods. J. Goguen, J.-P. Jouannaud, and J. Meseguer [GIMS85], A. Dick [Dic85], K. Futatsugi,
J. Goguen, J.-P. Jouannaud, and J. Meseguer [FGIM85], M. Bidoit and M. Glaudel [BG85], and J.-
P. Jouannaud and P. Lescanne [JL87] take a view from program specification on rewriting and sorts, the
viewpoints of R. Cunningham and A. Dick [CD85], J. Goguen and J. Meseguer [GM85], G. Smolka and
colleagues [SNMG87], as well as the works of J. Gallier and T. Isakowitz [GI88], and M. Schmidt-SchauB
[Sch88] do not regard such a concrete application. Especially [Sch88] must be considered when fully
integrating sorts and rewriting. An open problem in this area is that it is not clear how strong the
restriction on the correlation of the reduction ordering and the sort hierarchy must be.

Another way to introduce sorts in a theorem prover in contrast to the static programming language
oriented way is their dynamic integration [Coh87, Rug9l, Wei89, Wei91] in form of sort literals like
€(Tweety, Birds). This opens the perspective to define richer structures by describing sorts not only
using constants but also compound terms. In this case equality can be easily incorporated via superposi-
tion into sort terms which are handled as normal literals. Sorted unification usually works by restricting
the unsorted unifiers by some constraints. For order-sorted unification the codomain term must have the
same or a subsort of the domain variable. For more complicated sort structures the restrictions become
undecidable and to make the unification terminating residue literals must be added to the resolvent.
They represent the unfinished decision computation. It is unclear up to now which restrictions on the
unification algorithm must be imposed if equality is combined with dynamic sorts as mentioned above
[Wei93].

One of the most powerful tools in MKRP is its dedicated clause graph reduction facility [Pra85, EOP89].
Especially the subsumption rule is very useful in the equality reasoning context. We implemented an
extended form according to chapter 3, which allows a lookahead of demodulation steps such that a lot
of unnecessary link generations could be suppressed. But there remains an enormous overhead caused
by the generation of these links.

Another source of the strength of the MKRP-system is the “terminator” which is a tool to find unit
refutations. Terminator situations are like the one displayed in figure 6.4. This connection graph has

76

Chapter 6. Aspects of Integration

no cycles in contrast to arbitrary connection graphs. Such situations are searched beginning with unit

clauses (see [AO83]).

In another mode the terminator program searches unit clauses which are often very useful as lemmata
in resolution theorem proving. In this mode the terminator performs forward search for resolution like
the completion procedure for equations. Therefore completion together with rewriting can be regarded
as a terminator for equations. Of course this is only one aspect: completion is fully integrated into the
calculus whereas the terminator is a distinct program interleaved with the resolution rule. Hence in this
point the terminator is more comparable with the method how narrowing is integrated (see section 4.1).

Figure 6.4: Terminator Situation

(1] LI T 17

In table 6.1 we list the methods available in MKRP that are used to solve F. Pelletier’s examples [Pel86].
We used the B-G strategy. With other strategies we get better quotients proof steps / made steps but
almost the same computation times. For the examples 51 and 52 we used the ordering of 51a in table

4.1,
Table 6.1: Pelletier: Statistics and Features
Proof Steps Made | .
Example Including Re\frrites Steps Time Features
48(B.2.1)) 9 6
49(B.2.2) 15 32 13
51(B.2.3) 17 23 33
52(B.2.4) 17 23 33
splitting,
53(B.2.5) 564 1434 | 2137 | finite domain,
ordering
54(B.2.6) 22 24 31 terminator
55(B.2.7) 15 29 22
56(B.2.8) 15 15 9
58(B.2.9) 2 3 5
61(B.2.10) 3 3 3
63(B.2.11) 15 45 18
64(B.2.12) 7 10 10
65(B.2.13) 8 14 11
73(B.2.14) 195 215 | 5929

6.5 Usage of Theory Unification

As mentioned earlier simple completion and demodulation alone are not the unique mechanism to solve
the problem of handling the equality predicate automatically. The first implication (1 = 2) of example
6.11 is a suitable instance of such a problem. To prove 2 nothing must be done, except to first switch

6.5. Usage of Theory Unification 77

the middle pair of identifiers and then the right pair. But associativity can only be applied left to right
and so we have an equation £+ (y+ (y+2)) = z+(z + (y+y)) and a relatively complicated proof using
unfailing completion with 26 completion and demodulation steps is generated by our theorem prover.
Using AC-unification the proof consists of a trivial unification step, which only has to state that the two
terms are equal. This shows that theory unification is a powerful tool in combination with rewriting.

The HaDEs-system (Highly Adaptable Deduction System) was designed as an environment to develop
inference systems and unification algorithms [OS88, section 7], [Pra92a]. Theory unification [Tep89] is
the only feature of the HADES-system used in our context.

Unfortunately the universality of the approach to integrate all available features into one system is
broken. None of the theory unification algorithms works with our compilation approach.

Most of the theories are incompatible with the link inheritance mechanisms. They require that all links
are newly constructed, hence in this case a non clause graph approach should be better.

We have a prototype implementation [Mah91] of such a system to evaluate the usability of unification
algorithms and disunification for the completion method. Furthermore theory unification algorithms
require special data structures to work efficiently.

Using just a special unification algorithm for the commutativity axiom leads nowhere because for com-
mutative function symbols an ordering respecting the symmetry is necessary and then the associativity
axiom is not directable. And commutativity without associativity does rarely occur, anyway.

Often associativity, commutativity, and an identity element occur together and one has to decide which
unification algorithm should be selected to overcome the problem to be proved: AC- (associative and
commutative) or ACl-unification (AC with identity). For the discussion of their properties we first try
to elaborate the structure of the occurring unifiers. Imagine our task would be to unify the terms f(z,y)
and f(u,v). They have the unique most general unifier {z«u,y—v} for the empty theory as well as
for associativity alone. For AC1 and AC intuitively there should be two most general unifiers: o; =
{z—u,y—v} and 03 = {z—v, y—u}. But the usuval AC1 algorithm works differently. In the case without
free constant or function symbols it is always possible to compute a unique most general unifier. For our
task the result is 0 = {z—f(v1,v2), y—f(v3, v4), u—f(v1, v3), v—F (v, v4)} with new variables vy, vo, v3,
and v4, which is more general than both, o1 and o5. For example o1 = oo {vy«—u, vae1y,v315, v4v}
with 1; the identity element corresponding to f. The crossing of commutativity is encoded into the
structure of the unique unifier. This phenomenon is typical for ACl-unification and one can imagine
the increase of complexity with growing number of variables.

The set of AC-unifiers is always computed by instantiating variables in the codomains of ACl-unifiers
with the identity element, yielding

m {e—f(v1,v2), y—f(vs, v4), u—F(v1, v3), v—f(v2,v4)},
3 = {x—va, y—f(v3,v4), u—v3, v—f(v2, v4)},

3= {1'4——1)1, y""f(v?n U4)v u"‘f(vl) 1)3), ’U(-—'U4},
Ty = {(L“——f('()1 y 1’2)’ Y4, U0y, U(——f(’l)z, v4)}:
5 = {z(—_f(vlyvz)7 yhv37u(__f(v1)lv3)vv‘_'vz}7
76 = {reu,y—v}, and

77 = {z«wv,y—u} in our example.

It can be concluded that the set of AC-unifiers has the advantage that smaller unifiers can be heuristically
selected whereas for the theory AC1 the system is forced to use the most complicated one. We could call
the phenomenon as “conservation of problem complexity” in the solution whatever way it is computed.

M. Stickel [Sti84] as well as D. Kapur and H. Zhang [KZ89] show that AC-completion is useful but only
with specific tricks which are not valid for Knuth-Bendix theorem proving in general: the cancellation
law for the additive group (group specific), special weighting functions for the selection of critical
pairs (example specific, see also section 4.2.3), various possibilities to detect symmetries in critical
pairs, unifiers, or even superpositions (commutativity specific), “systematic instantiation” which is a
rule derived from T. Wang’s Z-module reasoning for non-associative rings [Wan88] (ring specific). In

78 Chapter 6. Aspects of Integration

addition “the blocked superposition criterion” showed to be very useful in this case. It states that
critical pairs can be omitted if the corresponding unifier can be reduced by one of the parent equations.

There are three levels to constrain the comstruction of critical pairs. The first concerns the positions
where superpositions take place. Some of the constraints enforce changes to the theory unification
algorithm itself because the construction of unifiers must be restricted as early as possible to be more
efficient. The third level allows to omit ready unifiers and ecritical pairs.

Another essential aspect when selecting the unification algorithm is that orderings are stronger for
AC- than for ACl-completion because of the presence of collapsing axioms in AC1-theories. For ACI-
completion the two disadvantages of exploding structure and weak ordering accumulate.

The effect can be best depicted with one of the simplest critical pairs computed in the completion process
of an Abelian group: x+y = z+4+y— (u+ 2z — (u+)). This equation is selected to be directed but this
is not possible due to the restrictions on the ordering. These are necessary because, for example, the
instance obtainable when applying the unifier o= = {20, 20, u~0} is y = y and hence obviously
not orientable,

Another instance of this equation is z = —(—(z)) reachable with the unifier o_, = {y«0, 20, u0}.
This instance is essential for the completion as directed rule —(—(z)) — z and occurs only as instance
of equations of the presented type when running AC1-completion.

This problem could be fixed by selecting appropriate instances of equations but that corresponds exactly
to choosing suitable AC-unifiers. AC-completion through AC1-unification and disunification (seé [BB89,
KK89]) does not behave essentially better than AC-completion because the problem is not fixed to the
number of unifiers, but inherent to the structure of the ACl-unifiers. For this method an additional
problem is that the reduction operation must be restricted considerably when constraints are used (see

[Mah91]C).

An additional unification algorithm included in the HADES-system is that for Abelian groups (AG).
Without free function symbols this algorithm is unitary (like that for AC1) but with function symbols
the number of unifiers explodes (comparatively to AC1).

Other experiments could be made using HADES’ string (semigroup, associative, SG) unification algo-
rithm also without promising results.

HADES additionally contains an algorithm for the unification in Boolean rings [CR89]. Boolean unifica-
tion can for example be used in the field of hardware verification. W. Biittner and H. Simonis embedded
it into a Prolog system for this purpose [BS87]. We did not make experiments with Boolean completion.
But it is evident that the difficulties are the same as for ACl-unification because the theory is also
unitary and the collapsing axioms constrain the ordering in a comparable manner.

For infinitary theories the same arguments have to be considered as for narrowing (see chapters 3 and
4). Special algorithms like that for associativity can be seen as specializations of this technique. One
of the main problems is to control the unification algorithm such that it enumerates the unifiers in a
heuristically useful order. A typical effect of taking the first solution first is, that it behaves worse than
a really random choice (see [Gee92, section 4.2], for example). This random or a “best” choice cannot
be done when having infinitary many solutions but can be approximated by computing “n” solutions
and then choosing randomly or the best one, respectively.

The experiments with theory unification algorithms show that they are not very suitable in the context
of theorem proving if they are used as they are. This is mainly due to the “uninformed” results they
return. We think that it would be very promising to develop control mechanisms for theory unification
algorithms, which enforce them to first return the “useful” results or constrain the results if they are
used in special contexts.

() Unfortunately the completion operation presented there is not correct. The constraints do not contain enough infor-
mation to eliminate all AC1 critical pairs and hence too many equations can be inferred.

6.6. Towards a Human-Oriented Presentation of Equational Proofs 79

6.6 Towards a Human-Oriented Presentation of Equational
Proofs

A theorem proving system is worthless if the proofs cannot be presented in a manner that human beings
can understand them. Of course this is also the case for the MKRP protocols given in the appendix.

The proof transformation system GENTZEN was developed to transform a resolution proof given in
form of a refutation graph [Sho76, Eis88] into a natural deduction proof [Jas33, Gen35]. Rules are
incorporated to avoid the frequent use of proofs by contradiction and to select lemmata or perform case
analysis. The system of transformation rules is described in detail in C. Lingenfelder’s thesis [Lin90].

Together with C. Lingenfelder we extended the system in two directions: embedding equational reasoning
into refutation graphs [LP91b] and constructing equation chain proofs from equality solution graphs
[LP91a]. Equality solution graphs are special instances of the equation graphs introduced by K. Blasius
(see section 2.4.2), representing solutions for equality problems. They are the final states of equation
graphs. In the transformation process of equational proofs they play the role of refutation graphs in the
transformation of resolution proofs.

For the solution of the embedding problem two further rules in the natural deduction calculus and in
the transformation system are necessary. In addition to G. Gentzen’s original rules for his calculus NK
we needed rules to handle the equality predicate. So we added the following rules:

Rule of Reflexivity (Ref): TFi=T

At F[s] BFs=t AFF[t] BFs=t
A, B+ Flt] ’ A,BF Fls]

In general C. Lingenfelder’s method works by translating refutation graphs into Gentzen proofs. The
equality applications can be represented in refutation graphs using special three literal clauses P[t]At =
s = P[s] simulating the replacement of ¢ by s in P[t]. Hence it was necessary to add rules translating
theses clauses into applications of the rules Ref and =. The Ggrs in the following two rules represent
refutation graphs. The As are assumptions of Gentzen proof lines.

Rule of Equality (=):

The rule E-=_1 translates s 2 s — x = z resolutions into applications of Ref:
(@) Fs=s Ref

(y) A F False Gr }~ < (B) A Fs#s Gx
(v) A F False Contra

E-= corresponds to the = rule:

() A Fs=t RuleR

(v) A FF[Gr (B) A FF[s] Gh

(v A FFfE] =(8,0a)

For the second task dealing with purely equational proofs a new “equation chain proof” calculus with
obvious rules (see the example below) is used as goal calculus. We started the translation process with
equality graphs, for example: the one depicted in figure 2.1e, and the following rules for the translation
into equation chains:

Insert:

(Ot) ...851 =8g2... (gg)

~r (oz)...slztl:tz:sz... (...gsl,tlztz,ggg...)

if G¢ is an equality solution graph constructed corresponding to case 3 of the definition for equation
solution graphs [LP91a, page 315] (see figure 6.5b) and the terms of the splitting equation t; = t2
represent instances of the top level terms of an equality solution graph.

} (¢) A Fs=t RuleR

Decomposition:

((l/) ...ftl...t,,:fsl...sn... (gg)

80 Chapter 6. Aspects of Integration

Figure 6.5: Splitting of Equation Solution Graphs

a) fls1,--.50) The ovals depict sub- b) 51
graphs. In figure a) the

e1l- - -Gen sepa%'ation is vertically Ge1
and in b) horizontally.

f(tla'--,tn) 1 =19
£2
. 5
~> (a) Jhiota = a1t ity = ... =fs1...850... (...gsl,...,ng...)

if G¢ is an equality solution graph constructed corresponding to case 2 of the definition for equation
solution graphs [LP91a, page 315] (see figure 6.5a).

Lemma:

O =t (G . (6 = %)

.o
If ' = s’ is an instance of ¢ = s, which is the pair of top level terms of G¢.

These rules fit perfectly well into C. Lingenfelder’s original framework and all the features developed
for his system can be easily adapted to equality proofs.

A proof for the simple example 2.16 (see also B.1.2) with the equality solution graph depicted in figure
2.1e can be developed with the second rule system beginning with the protocol of the MKRP-system,
proceeding with the equality solution graph constructed from the protocol, and ending with the output:

—~—a+0 (z=2z+0)
——a+(-a+a) (0=-z+z)
(——a+—a)+a (Associativity)
0+a (—z+z=0)
a O+z==2)

This seems to be the most natural representation for purely equational proofs.

Of course these mechanisms do not solve all problems with presentation of proofs. There is the need
for a representation of narrowing steps and especially to protocol the intrinsics of theory unification
algorithms.

Chapter 7

Conclusion

Our main conclusion is that a general equality reasoning procedure should include Knuth-Bendix com-
pletion in some way. Even if only a subset of equations can be directed it is still worthwhile to have
the completion procedure around. Almost every interesting mathematical theory has a part consist-
ing of directable unit equations, albeit it may not be possible for this subset to be “completed”. The
Knuth-Bendix algorithm is the most successful way to derive new interesting equations of which some
are needed for almost every proof in the theory. The strong restrictions of equation application (di-
rected and reduction) ensure that many interesting problems can be solved. In its constraining effect
the usage of the Knuth-Bendix procedure is comparable to the Waltz-effect in contrast to the findings
of K. Blasius for his proof method [B1486].(*) :

The constraining effects equalize the usually negative forward reasoning character of the completion
approach with its ignorance of goals. The forward search space becomes smaller than the corresponding
backwardly directed one.

In addition other equality reasoning methods can be integrated together with the completion approach
into one system. Narrowing can be used to obtain a proof style method retaining the advantages of E-
resolution without inheriting the disadvantages. The integration of other inference rules as for example
an induction step in an analogous form could be the goal of further research in this direction. The
main objective must be to retain the equality reasoning power of the completion procedure whenever
the equality predicate is present.

The superposition calculus with maximal literals resembles the Prolog SLD-strategy with head literal
and indeed a similar compilation approach can be developed but unfortunately the gain of efficiency is
not enough to accept the complications of the programs due to the compilation prerequisites.

One reason for this unsatisfactory outcome is that the forward reasoning nature of completion requires
the dynamic construction of new programs. Another point is that a normal C-implementation is already
so fast that compilation on the standard architecture does not enhance the efficiency to a reasonable
extent. A third argument against a compilation approach for completion in general is the distribution
of resources used by the single operations of the completion procedure. None of the operations is so
dominant that compilation is valuable.

The extended selection of available heuristics and strategies gives evidence that a multi agent approach
like that of J. Denzinger [Den91] can be extended to non-unit clauses.

Structure in axioms and theorems should be considered wherever this is possible. Unfortunately “nor-
mal” mathematical theories seem to have no structure usable for difference reduction in general, but
at least this structure is not yet detected. This does not mean that knowledge should not be stored

(*)The Waltz-effect is exploited for constraint satisfaction in Vision to derive consistent possibilities in interpreting the
topology of objects in a picture (see for example [Ric83b, pages 351-358]).

81

82 Chapter 7. Conclusion

and exploited for finding proofs, and it does also not exclude to use structure for other purposes as for
example induction.

We think that an equational calculus should fulfill three reduction properties: first it should reduce to
Knuth-Bendix completion in the case of unit equations, which is ensured by almost all superposition
strategies.

A second reduction is to classical narrowing in the case of equation solving. If the system can be
completed to a canonical one this reduction can be achieved by interleaving the superposition approach
with narrowing steps.

Thirdly it should reduce to Horn equational logic in the case of Horn clauses, which can be established
for example by the two strategies of N. Dershowitz [Der91].

It is possible to integrate the main heuristics of the field with these three reduction properties using a
superposition calculus as logical basis.

This thesis shows the adequacy of the superposition calculus for general automated theorem proving
with equality. Furthermore it is possible to integrate almost all known techniques and heuristics of the
field into this calculus. This approach is compatible with various calculus independent tools that were
developed within our group and that are believed to be essential for a strong system, like the terminator
and theory unification. ‘

We conclude this work on integration with a general remark: whether something fits into your framework
just depends on how you see it.

Appendix A

Sparc

This chapter contains the central part of the concrete realization of the ideas of chapter 5 for a Sun
Sparc station. The following three Sparc assembler procedures realize patterns for the generation of
terms, variables and term list cons cells. For explanations of the assembler see the SPARC architecture

manual [Sun87).

A.1 Compound Term and Constant

_AT: save
ba
nop
nop
nop
nop

TBegin: 1d

s1ll
srl
cmp

bne
1d

sll
add
add
call
nop
cmp
be
mov
ba
nop
TFalse: mov
TEnd: ret
restore

Y%sp,—128,%sp
TBegin

[%10+36] ,%00

%00,19,%00
%00, 19, %00
Y%00,111

TFalse
[%i0+60],%00

%00,2,%00
%00,%i0,%00
%00,60,%00
AT1

%00,0
TFalse
1,%410
TEnd

0,%io0

Check slot.

Binding,.

Type.

Get other topsymbol from the input address in register i0. The first
19 bits are zeroed.

Compare the own topsymbol with the other one. 111 is just an

arbitrary default.
Clash.
Compute the address of the other termlist to be input to the sub-

termlist function.
Compute the relative address.

Compute the absolute address.
Call the subtermlist function, for constants nop.
Handle result of subtermlist call.

Move true into the result register.

Move false into the result register.

83

84 Appendix A. Sparc

Such a term is generated by the C-function TCreate:
typedef unsigned int *termlist;

typedef unsigned int *term;

term TCreate (unsigned int top, unsigned int type, termlist tl)
{ term new;
unsigned int i;
if (type == 0)
{ new = VAlloc();
new[VSetBindIndex] =
CallLocate((unsigned int)({(char *)ASetBind),
(unsigned int)new+VSetBindRel);
new[VCheckBindIndex] =
CallLocate((unsigned int)((char *)ACheckBind),
(unsigned int)new+VCheckBindRel); }
else { new = TAlloc();
TTopSet(new,top);
TSubtermsSet (new,tl); }
TTypeSet(new,type);
CheckSlotSet(new,0);
TBindingReset(new);
return new; }

VAlloc and TAlloc copy the code from the master copies VPattern and TPattern.

term VAlloc()

{ void #*new;
new = OwnAlloc(VLength, "Variable");
beopy((char *)VPattern, new, VLength);
return (term) new; }

term TAlloc()

{ void #*mnew;
new = OwnAlloc(TLength, "Term");
beopy((char *)TPattern, new, TLength);
return (term) new; }

The patterns are connected to the mnemonic written assembler programs for terms and variables via
the following declarations.

(char *)AVar;
(char *)AT;

char * VPattern

char * TPattern

A.2 Variable

AVar: save %sp,-128,%sp

ba VBegin
nop
nop Check slot
nop Binding
nop Type
VBegin: mov %10,%00 Give input argument to ACheckBind or ASetBind

ba VCB Go to ACheckBind call (only for bound variables, otherwise nop)

A.3. Term List Cons Cell

nop
nop
call -ASetBind Sets the binding and adjoins the variable to the bound variables
nop
ba VEnd
nop
nop
nop
VCB: nop
nop
call -ACheckBind
nop
VEnd: mov %00,%i0 Return what ACheckBind or ASetBind returns
ret
restore

Variables are also generated using the C-function of the previous section.

A.3 Term List Cons Cell

ATL: save %sp,-128,%sp

14 [%i0+20],%00 Get relative address of AT
sl1 %00,2,%00 Compute
add %00,%10,%00 absolute
add %00,20,%00 address
call AT Call match for first element in the input list
nop
cmp %00,0
be TlFalse
1d [%10+52] ,%00 Get relative address of rest ATl
s11 %00,2,%00 Compute
add %00,%10,%00 absolute
add %00,62,%00 address
call AT1
nop
cmp %00,0
be TlFalse
mov 1,%i0 Match successful
ba T1End
nop

TlFalse:mov 0,%i0 Match failed

T1End: ret
restore

Such calls are constructed using the C-function T1Cons.

termlist TlCons(term t, termlist t1)
{ termlist new;

unsigned int i;

new = T1lilloc();

TlFirstSet(new, t);

TlRestSet(new, tl);

return new; }

85

86 Appendix A. Sparc

T1Alloc copies the assembler code from the master copy T1Pattern.

termlist T1Alloc()

{ void *new;
new = OwnAlloc(TlLength, "TlAlloc");
beopy((char *)TlPattern, new, TlLength);
return (termlist) new; }

The connection is again done with a declaration:

char * TlPattern = (char *)AT1;
A.4 Bindings
Setting bindings is implemented by changing the jump commands in the variable data structure.

A.4.1 Setting Bindings

-ASetBind: save %sp,—128,%sp

st %i0, [%i7-24] Store binding.

sethi %hi(AVar),¥gl Get call for AVar.

add %g1,%Llo(AvVar),¥%gl

1d [%g1+28] ,%10 Get VCB jump.

st %10, [4i7-12] Store jump.

mov %i7,%00 .

sub %00,40,%00 Address of the actually bound variable (self).

sethi %hi(bound),%gl Get the stored list of all bound variables.

1d [Yg1+%1o(bound)],%o1

call _T1lCons,0 Adjoin the actually bound variable itself to the list of
all bound variables.

nop

sethi %hi(_bound),%gl Store the list of bound variables.

st %00, [%g1+%lo(bound)]

mov 1,%i0

ret

restore

A.4.2 Checking Bindings

-ACheckBind: save %sp,-128,%sp

14 [%i7-56],%00 Get Binding

mov %i0,%01

call _TEqual Compare Bind with Input
nop

mov %00,%i0

ret

restore

Of course there are some special procedures written in the programming language C that deal with the
above assembler code. Here we only gave the main declarations representing terms and termlists.

Appendix B

Commented Examples

The following examples are taken from arithmetic and algebra, others are just constructed to test certain
aspects of theorem proving systems. The usage of arithmetic and algebraic examples should not propose
that a general reasoning method is adequate to prove them, especially when algorithms exist to solve
whole classes of problems. We only think that these well elaborated problems are more suitable for
comparisons with other theorem provers and that it is more convenient to think about known concepts
than strangely constructed ones. We focus on examples using the equality predicate because our goal
was to enhance the power of a resolution theorem prover and leave the program work as before when
no equations are present (see section 3.2.2).)

E. Lusk and R. Overbeek [LO84] published a set of six equality problems without conditions that should
be useful to check the power of an equality reasoning procedure (B.1.1, B.1.2, B.1.3, B.1.4, B.1.5, B.1.6).
Examples B.1.1 and B.1.2 are trivial, examples B.1.3 through B.1.5 make some trouble but no problems,
example B.1.6 could not be solved by the MKRP-system.

The next selection of examples is taken from F. Pelletier [Pel86] (B.2.1, B.2.2, B.2.3, B.2.4, B.2.5, B.2.6,
B.2.7, B.2.8, B.2.9, B.2.10, B.2.11, B.2.12, B.2.13, B.2.14).

There are other well-known sets of examples, we cannot even cite all of them here, but we selected
some simpler problems from various benchmarks in section B.3. L. Wos published examples in his book
on the problems of automated theorem proving [Wos88]. L. Wos and W. McCune gave examples from
combinator theory [WM88|, which are classical challenging problems for pure equational reasoning (a
- simpler one of them is proved as example B.3.3). W. McCune selected various examples from lattice
theory [McC88]; we could not prove any one of them. R. Stevens gave examples from the theory of
non-associative rings [Ste88], where we also selected one for our tests but were not successful. Another
interesting domain of pure equality reasoning is that of finitary groups (Z22 in section B.3.6, Z29 which
can be seen as a challenge problem in example B.3.7). The hint to use the finite group examples came
from J. Kalman. They are special string rewriting systems.

We focus on a wide range of more simpler examples than on real challenging ones. The only exception
is the completion of the Z29 axioms (example B.3.7) for which we could generate a canonical rewrite
system with the C-version of our system. The given examples are not, selected for the purpose to evaluate
the theorem prover as it is, but to compare equality reasoning methods in their ability to cooperate
with an existing theorem prover and their resources in efficiency enhancement.

Now we come to the examples. The default reduction ordering for the system is a lexicographic recursive
path ordering with the precedence * > ~ > + > 1 > 0. We changed it for some of the examples. The
selected one is explained there. The number of paramodulation steps really performed is not depicted
in the protocol and so we give it after the examples in a separate table.

The asterisks in the protocols label the axioms and derived clauses really used in the proof. The
Markgraf-Kar] system is a sorted theorem prover, but for the most equality reasoning examples no sorts

87

88 Appendix B. Commented Examples

are used. This is documented in the protocol by the top sort Any. Positive literals are labeled with +,
negative ones with —. For a detailed description of the language see [Wal82, Pra92b).

The clauses in the protocol are labeled with a unique number preceded by characters denoting their
origin with the following meaning:

Axiom

Double literal removal

Instance

A

D

F Factor
I

P Paramodulant
R

Resolvent
RS Rewrite Symmetry
RW Rewrite
T Theorem

The numbers of the clauses in the protocol are not related to the numbers of clauses generated during
the proof, they get their numbers in the protocol module due to some mystery. The computation times
given in this thesis are mostly computed on a Symbolics UX1200.

B.1 Lusk/Overbeek

We begin this section with a short discussion of the results. Table B.1 shows a statistic of the necessary
steps for the examples and we give the ratio number of performed sieps / number of proof steps (g-
penetrance) in a second column. Numbers smaller than one stem from the reduction steps which are
not counted as paramodulation steps, because they are in some sense “deterministic”. The third column
gives the ratio when only completion steps in the proof are counted (this is the most interesting column).
The table is another hint that the completion process can be seen as a very straightforward lemma
generation. With a corresponding selection function and a lookahead that should be more efficient than
ours, there are almost all produced clauses useful for the proof.

Table B.1: Ratio Useful Steps

Ratio with|Ratio without
Example|Steps . .
rewrites rewrltes

B.1.1 6 0.75 1.2
B.1.2 7 1 1.75
B.1.3 41 0.89 1.78
B.14 18 0.34 1.29
B.1.5 20 1.43 2.22
B.1.6 oo 00 0

Of course it is a little dishonest when we just count the generation of a new rule as one inference step.
Another possibility would be to count the generation of critical pairs, that is, each resolution and para-
modulation possibility as one inference step. Then we would have a considerably worse ratio. But the
heuristically controlled selection justifies our counting.

B.1.3. Lusk/Overbeek: Example 1 89

B.1.1 Example 1

The first theorem states that every group with z -+ z = 0 is commutative, and this problem is very
trivial using the completion technique. For a comparison with the decomposition approach based on
universal unification see section 2.4.2.

Set of Axiom Clauses Resulting from Normalization

Al: A1l x:Any + =(x x)
* A2: A1l x,y,z:Any + =(+(+(z y) x) +(z +(y x)))
* A3: All x:Any + =(+(0 x) x)

A4: A1l x:Any + =(+(-(x) x) 0)
* A5: A1l x:Any + =(+(x x) 0)

Set of Theorem Clauses Resulting from Formalization

* T6: - =(+(c_1 ¢_2) +(c_2 c_1))

Refutation:

A5,1 & A2,1 ~-=> * P1: All x,y:Any + =(+(0 y) +(x +(x y)))
Pi,1 & A3 --> % RW2: A1l x,y:Any + =(y +(x "+(x y)))
A5,1 & RW2,1 -=> * P3: All x:Any + =(x +(x 0))

A5,1 & A2,1 -~> * P8: A1 x,y:Any + =(0 +(y +(x +(y x))))
P8,1 & RW2,1 --> % P9: A1l x,y:Any + =(+(y +(x y)) +(x 0))
P9,1 & P3 —-=> % RW10: All x,y:Any + =(+(y +(x y)) x)
RW10,1 & RW2,1 --> % P13: All x,y:Any + =(+(y x) +(x y))
P13,1 & T6,1 --> % R14: []

B.1.2 Example 2

The second theorem states that the inverse of a group is an involution, and this problem is trivial too,
because for a non-commutative group there exists a complete and confluent rewrite system, such that
in this theory all purely equational theorems can be solved.

Set of Axiom Clauses Resulting from Normalization

Al: All x:Any + =(x x)
* A2: A1l x,y,z:Any + =(+(+(z y) x) +(z +(y x)))
* A3: All x:Any + =(+(0 x) x)
* A4: All x:Any + =(+(-(x) x) Q)

Set of Theorem Clauses Resulting from Normalization

* T5: = =(-(~(c_.1)) c_1)
Refutation:
A4,1 & A2,1 ~-~> # P1: All x,y:Any + =(+(0 y) +(~(x) +(x y)))
P1,1 & A3 -=> % RW2: A1l x,y:Any + =(y +(-(x) +(x ¥)))
A4,1 & RH2,1 --> % P4: All x:Any + =(x +(-(-(x)) 0))
P4,1 & RN2,1 ==> % P12: A1l x:Any + =(0 +(-(-(-(x))) x))
P12,1 & RW2,1 =-> % P13: All x:Any + =(x +(-(=(-(-(x)))) 0))
P13,1 & P4 --> * RW14: All x:Any + =(x -(~(x)))
RW14,1 & T5,1 --> * R15: []

90 Appendix B. Commented Examples

B.1.3 Example 3

The third example comes from ring theory and is therefore more complicated but not really difficult
because the commutativity of addition is not involved and so no undirectable equations must be applied.

Set of Axiom Clauses Resulting from Normalization

Al: A1l x:Any + =(x x)
* A2: ALl x,y,z:Any + =(+(+(z y) x) +(z +(y x)))
A3: All x:Any + =(+(0 x) x)
* Ad: All x:Any + =(+(-(x) x) 0)

A5: All x,y:Any + =(+(y x) +(x y))

A6: A1l x,y,z:Any + =(x(*(z y) x) *(z *(y x)))
* A7: All x,y,z:Any + =(*(+(z y) x) +(*(z x) *(y x)))
* A8: All x,y,z:Any + =(x(z +(y x)) +(x(z y) *(z x)))
* A9: A1l x:Any + =(*(x x) x)

*

Set of Theorem Clauses Resulting from Hormalization

* T10: - =(*(c_1 c_2) *(c_2 c_1))
Refutation:
A4,1 & A2,1 -=> * P1: A11 x,y:Any + =(+(0 y)

+(-(x) +(x)

P1,1 & A3 -=> * RW2: All x,y:Any + =(y +(~(x) +(x y)))
A3,1 & RW2,1 -=> % P3: A1l x:Any + =(x +(-(0) x))
A4,1 & RW2,1 ~=> % P4: A1l x:Any + =(x +(-(-(x)) 0))
P3,1 & RW2,1 --> % P5: A1l x:Any + =(x +(-(-(0)) x))
P5,1 & A4,1 ~-> % P6: + =(~(0) 0)
P4,1 & RW2,1 -~> % P13: All x:Any + =(0 +(-(-(=(x))) x))
P13,1 & RW2,1 --> % P14: All x:Any + =(x +(-(-(-(-(x)))) 0))
P14,1 & P4 --> * RW15: All x:Any + =(x ~(~(x)))
P4,1 & RW15 -=> % BW16: All x:Any + =(x +(x 0))
RW15,1 & A4,1 -=> * P19: A1l x:Any + =(+(x -(x)) 0)
P19,1 & A2,1 --> % P21: A1l x,y:Any + =(0 +(y +(x ~(+(y x)))))
P21,1 & RW2,1 -=> * P22; All x,y:Any + =(+(y ~(+(x ¥)))
+(-(x) 0))
P22,1 & RW16 -=> * RW23: All x,y:Any + =(+(y ~(+(x ¥))) -(x))
RW23,1 & RW23,1 -=> % P26: All x,y:Any + =(+(-(+(y x)) ~(-(y)))
-(x))
P26,1 & RWi5S ~-> x RW27: All x,y:Any + =(+(-(+(y x)) y) -(x))
A3,1 & A7,1 --> & P28: A11 x,y:Any + =(*(y x) +(x(0 x) *(y x)))
P28,1 & RW23,1 --> x P29: A1l x,y:Any + =(+(*(y x) ~(x(y x)))
-(x(0 x)))
P29,1 & P19 --> * RW30: A1l x:Any + =(0 -(*(0 x)))
RW30,1 & A4,1 --> % P31: A11 x:Any + =(+(0 *(0 x)) 0)
P31,1 & A3 -~> % RW32: All x:Any + =(*(0 x) 0)
Ad,1 & A7,1 ~~> * P37: All x,y:Any + =(*(0 y)
+(x(-(x) y) *(x y)))
P37,1 & RW32 -=> % RN38: All x,y:Any + =(0 +(*(-(y) x) *(y x)))
49,1 & RW38,1 --> x P39: All x:Any + =(0 +(*(~(x) x) x))
P39,1 & RW27,1 ~-~> % P42: ALl x:Any + =(+(-(0) *(-(x) x)) -(x))
P42,1 & P6 ~-~> * RW43: All x:Any + =(+(0 *(-(x) x)) -(x))
RW43,1 & A3 -=> % RW44: A1l x:Any + =(*(-(x) x) -(x))
RWi5,1 & RW44,1 -=> % P49: A1l x:Any + =(*(x -(x)) -(-(x)))
P49,1 & RW15 -=> % RW50: All x:Any + =(*(x -(x)) x)
A3,1 & A8,1 -=> * P64: All x,y:Any + =(x(y x) +(*(y 0) *»(y x)))
P64,1 & RW23,1 ~=> % P65: All x,y:Any + =(+(x(y x) -(x(y x)))
-(*x(y 0)))
P65,1 & P19 -~> * RW66: A1l x:Any + =(0 -(*(x 0)))

RW66,1 & A4,1 -~> % P67: All x:Any + =(+(0 *(x 0)) 0)

B.1.4. Lusk/Overbeek: Example 4 91

P67,1 & A3 ~=> * RW68: All x:Any + =(*(x 0) 0)
A4,1 & AB,1 --> % P73: All x,y:Any + =(x(y 0)
+(x(y -(x)) *(y x)))

*

P73,1 & RW68 -=> % RW74: A1l x,y:Any + =(0 +(*(y -(x)) *(y x)))
RWSO,1 & RW74,1 --> * P75: All x:Any + =(0 +(x *(x x)))

P75,1 & A9 ~--> * RU76: All x:Any + =(0 +(x x))

RW76,1 & RW2,1 ~~> % P77: All x:Any + =(x +(~(x) 0))

P77,1 & RWN16 -=> * RW78: All x:Any + =(x -(x))

RW27,1 & RW78 --> * RW89: All x,y:Any + =(+(+(y x) y) -(x))
R¥89,1 & RW78 ==> % RW90: All x,y:Any + =(+(+(y x) y) x)

R¥90,1 & A2 ~=> % RWO1: All x,y:Any + =(+(y +(x ¥)) x)

RWOL,1 & A2,1

-=> #* P109: All x,y,z:Any + =(z +(y +(x +(z +(y x)))))
RW91,1 & P109,1)

--> % P114: All x,y,z:Any + =(z +(y +(+(x y) +(z x))))
P114,1 & A2

--> = RW115: A1l x,y,z:Any + =(z +(y +(x +(y +(z x)))))
A9,1 & A7,1

--> * P125: All x,y:Any + =(+(y x) +(x(y +(y x)) *(x +(y x))))
P125,1 & A8

--> & RW126: All x,y:Any + =(+(y x) +(+(x(y y) *(y x)) *(x +(y x))))
. RW126,1 & A9

-=> % RW127: All x,y:Any + =(+(y x) +(+(y *(y x)) *(x +(y x))))
RW127,1 & A8

~~> * RW128: A1l x,y:Any + =(+(y x) +(+(y *(y x)) +(G(x y) *(x x))))
RVW128,1 & A9

—-=> * RW129: A1l x,y:Any + =(+(y x) +(+(y *(y x)) +(*(x y) x)))
RW129,1 & A2

-=> * RW130: A1l x,y:Any + =(+(y x) +(y +(*(y x) +(*(x y) x))))
R¥130,1 & RW115,1

~=> * P131: All x,y:Any + =(*(y x) +(y +(+(*(x y) x) +(y x))))

P131,1 & A2

~=> % RW132: All x,y:Any + =(*(y x) +(y +(x(x y) +(x +(y x)))))
RW132,1 & RW91 -=> * RW133: All x,y:Any + =(*(y x) +(y +(x(x y))N
RW133,1 & RWO1 --> * RW134: All x,y:Any + =(*(y x) *(x y))
RWN134,1 & T10,1 --> % R135: u|

B.1.4 Example 4

"The fourth example is another special theorem of group theory and in complexity comparable to the
third one. Again no unorientable equation is necessary and therefore no real problem arises. Here an
additional feature of the Markgraf-Karl system comes into the game. It detects definitory equations and
replaces the definiens at every occurrence by the definiendum. This is sometimes very useful because
it reduces the clause set and especially the number of function symbols. Here 46 is taken as definition
for comm and so comm is completely eliminated by preprocessing operations. For this example we chose
the usual Knuth-Bendix ordering for the completion of groups [KB70] such that clause RW21 is directed
from left to right. The precedence is = > + > 1, and the weights are +: 1, -: 0, 0: 0. In this way
the refutation is found faster, because the search space is smaller.

Set of Axiom Clauses Resulting from Normalization

Al: All x:Any + =(x x)

A2: A1l x,y,z:Any + =(+(+(z y) x) +(z +(y x)))

A3: All x:Any + =(+(0 x) x)

Ad: A1l x:Any + =(+(-(x) x) 0)

A5: All x:Any + =(+(+(x x) x) 0)

46: All x,y:Any + =(comm(y x) +(y +(x +(-(y) -(x)))))

* X K ¥ ¥ O®

Initial Operations on Axioms

92 Appendix B. Commented Examples

A5,1 & A2 —-> * RW1: All x:Any + =(+(x +(x x)) 0)

Set of Theorem Clauses Resulting from Normalization

* T7: - =(comm(comm(c_1 c_2) c_2) 0)

Initial Operations on Theorems

T7,1 & A6 =--> * RW2:
= =(+(comm(c_1 c_2) +(c_.2 +(-(comm(c_1 c_2)) -(c_2)))) 0)
RW2,1 & A6 —-~> = RN3:
= =(+(+(c_1 +(c_2 +(~(c_1) ~(c_2))))
+(c_2 +(-(#(c_1 +(c_2 +(=(c_1) -(c.2))))) =(c_2))
0)
RW3,1 & A2 --> * RW4:
= =(+(c_1 +(+(c_2 +(-(c_1) -(c_2)))
+(c. 2 +(-(+(c_1 +(c.2 +(~(c_1) -(c_2))))) -(c_2)))))
0)
RW4,1 & A2 --> * RW5:
- =(+(c_1 +(c_2 +(+(~(c_1) -(c.2))
+(c_2 +(-(+(c_1 +(c_2 +(~(c.1) -(c_2))))) -(c_2))))))
0)
RW5,1 & A2 —-> * R¥6:
- =(#(c 1 +(c_2 #(-(c_1) +(-(c_.2) +(c_2 +(~(+(c_1 +(c_2 +(-(c_1)

-(c_2)0)))
=(c_22)))))))
0)
Refutation:
A4,1 & A2,1 --> * PT: A1l x,y:Any + =(+(0 y) +(-(x) +(x y)))
P7,1 & A3 --> * RW8: All x,y:Any + =(y +(-(x) +(x y)))
RW6,1 & RWS ~~> * RW9:
~ =(+(c_1 +(c_2 +(~C(c_1) +(-(+(c_1 +(c.2 +(~(c_1) -(c_2))))) -(c_.2)))
0)
Ad,1 & RN8,1 --> * P14: All x:Any + =(x +(-(~(x)) 0))
RW1,1 & RWS8,1 ~--> * P15: All x:Any + =(+(x x) +(~(x) 0))
RW1i,1 & A2,1 ~=> % P16: All x,y:Any + =(+(0 y) +(x +(+(x x) ¥)))
P16,1 & A2 ==> * RW17: All x,y:Any + =(+(0 y) +(x +(x +(x y))))
RW17,1 & A3 ~=> % RW18: All x,y:Any + =(y +(x +(x +(x ¥))))
R¥W1,1 & RW18,1 -=> * P19: All x:Amy + =(x +(x 0))

*

*

*

*

*

*

P14,1 & P19 -=> % RW20: All x:Any + =(x -(-(x)))
P15,1 & P19 ==> % RW21: A1l x:Any + =(+(x x) -(x))
RW1,1 & RW21 -~> * RW22: All x:Any + =(+(x -(x)) 0)
RW22,1 & A2,1 --> * P27: All x,y:Any + =(+(0 y) +(x +(-(x) y¥)))
P27,1 & A3 -=> » RW28: All x,y:Any + =(y +(x +(-(x) y)))

A2,1 % RW22,1 --> = P32: All x,y:Any + =(+(y +(x ~(+(y x)))) 0)
P32,1 & RW8,1 =-> * P33; All x,y:Any + =(+(y —~(+(x y))) +(-{x) 0))
P33,1 & P19 -=> * RW34: A1l x,y:Any + =(+(y -(+(x y))) -(x))
RW21,1 & A2,1 --> * P36: All x,y:Any + =(+(-(y) x) +(y +(y x)))
RW34,1 & RW8,1 --> % P38: All x,y:Any + =(-(+(y x)) +(=(x) -(y)))

RW9,1 & P38 -=> % RW40:
- =(+(c_1 +(c_2 +(~(c_1) +(+(-(+(c_2 +(~(c_1) -(c_2)))) -(c_1))
=(c_2)))N)
0)
RW40,1 & P38 ~-~> * RW41:
- =(+(c_1 +(c_2 +(~(c_1) +(+(+(~(+(~(c_1) -(c_2))) ~(c.2)) -(c_1))
=22
0)
RW41,1 & P38 -=> * RW42:
- =(+(c_1 +(c 2 +(~(c 1) +(+(+(+(-(~(c_2)) =(~(c.1))) -(c.2)) ~(c_1))
~(c_2)M)))

0

B.1.5. Lusk/Overbeek: Example 5 93

RW42,1 & RW20 --> * RW43:
« =(+(c_t +(c_2 +(~(c_1) +{+(+(+(-(~(c_2)) c_1) ~(c.2)) -(c_1))
-(c.2)))))
0)
RW43,1 £ RW20 --> * RW44:
- =(+(c.1 +(c_2 +(~(c_1) +(+(F(+(c2 c_1) ~(c_2)) -C(c_1)) -(c_2))))) O

RW44,1 & A2 -~> % RW45:

= =(+(c_1 +(c_2 +(~(c_1) +(+(+(c_2 +(c_1 ~(c.2))) -(c.1)) -(c_2))))) O)
RW45,1 & A2 --> = RW46:

- =(+(c.1 +(c_2 +(~(c_ 1) #(+(c_2 +(+(c_1 -(c_2)) ~(c_1))) -(c_.2))))) 0)
RW46,1 & A2 --> * RW47:

- =(+(c_1 +(c_2 +(-(c._1) +(+(c_2 +(c_1 +(-C(c_2) -(c_1)))) =(c_2))))) O)
RW47,1 & A2 -=> % RWA8:

- =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(+(c_1 +(~(c_.2) ~(c_1))) -(c_2)))))) 0)
RW48,1 & A2 -~> % RW49:

- =(+(c_1 +(c_2 +(=(c_1) +(c_2 +(c_1 +(+(~(c_2) =(c_1)) ~(c_2))IN)) 0)
RW49,1 & A2 --> * RW50:

- =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(c_1 +(-(c_2) +(-(c 1) =(c2)NN »
A2,1 & RW21,1 ~-~> % P51: All x,y:Any + =(+(y +(x +(y x))) ~(+(y x)))
P51,1 & P38 -~> * RW52: All x,y:Any + =(+(y +(x +(y x)))

+(~(x) ~(PN
RW52,1 & P36,1 =~> % P56: All x,y:Any + =(+(-(y) +{(x +(y x)))
+(y +(=(x) -y
RW20,1 & P56,1 -~> * P57: All x,y:Any + =(+(y +(x +(-(y) x)))
+(=(y) +(-(x) -¢-PNN
P57,1 & RW20 —-> * RWS8: All x,y:Any + =(+(y +(x +(=(y) x)))
+(=(y) +(-(x) VI
RW50,1 & RN58 --> * RW59:

- =(+(col +(c 2 +(=(c_1) +(c_2 +(~(c_1) +(-(-(c.2)) c_1)))))) O)
RW59,1 & RW20 -~> % RW60:

- =(+(c_1 +(c_2 +(-(c_1) +(c_2 +(~(c_1) +(c_2 c_1)))))) 0)

P36,1 & A2,1 -=> * P61: All x,y,z:Any + =(+(-(+(z y)) x)
+(z +(y +(+(z y) x)))»)
P61,1 & A2 ~=> % RW62: All x,y,z:Any + =(+(~(+(z y)) x)

+(z +(y +(z +(y x)))))
R¥62,1 & P38 =--> #% RW63: All x,y,z:Any + =(+(+(=(z) -(y)) x)
+(y +(z +(y +(z x)))))
RW63,1 & A2 -~> % RW64: All x,y,z:Any + =(+(-(z) +(-(y) x))
+(y +(z +(y +(z x)))))
=(+(c_1 +(c_2 +(-(c_2) +(-(~(c_1)) c_1))))

RW60,1 & RW64 ~-> * RW6S:

0)
RW65,1 & RW20 --> * RW66: - =(+(c_1 +(c_2 +(~(c_2) +(c_1 c.1)))) O)
RW66,1 & RW21 --> * RW67: - =(+(c_1 +(c_2 +(~(c.2) -(c_1)))) O)
R¥67,1 & RW28 —--> * RW68: =~ =(+(c_1 =-(c_.1)) 0)
RW68,1 & RW22 ~-> * RW69: - =(0 0)
RW69,1 & A1,1 --> % R70: []

B.1.5 Example 5

The fifth example is taken from the less known theory of ternary algebra and we have to say a few
words about the problem and our proof. In most cases the theory is given with an additional axiom:
a right inverse *(x y -(y)) = x. But only one of the inverses is necessary. Normally a Knuth-Bendix
reduction ordering, which we used for this example, sets the parentheses right-associative so that for
example a(b(c(d €))) is the normal form and not (((a b)c)d)e. In this case omitting the left inverse causes
no difficulties and the theorem can be proven despite of the divergence of the completion algorithm.
But omitting the right inverse induces trouble, the left side of the inverse rule cannot be unified with
the left side of the equation P20. So the other way of setting the parentheses must be chosen to find a
proof with this method. It is a commonly used technique to define orderings from left to right or right
to left for different operators in term rewriting. Using the left to right ordering and unfailing completion
such that the necessary derived unorientable equations can be applied in both directions, increases the

94 : Appendix B. Commented Examples

search space enormously such that MKRP does not find the solution, but it is not impossible to find it
as shown by J. Denzinger [Den91].

Set of Axiom Clauses Resulting from Normalization

At: All x:Any + =(x x)
* A2: All x,y,z,u,viAny + =(*(%(v u z2) y *(v u x))
(v u(z yx)))
* A3: All x,y:Any + =(*(y x x) x)
* A4: All x,y:Any + =(x(y ¥y x) y)
* A5: AL x,y:Any + =(*(~(y) y x) x)

Set of Theorem Clauses Resulting from Hormalization

* T6: ~ =(*(c_1 ~(c_1) c_.2) c_2)

Refutation:
A4,1 & A2,1 --> * Pi: A1l x,y,z,u:Any + =(x(u z *(u u y))

*(uu *(x 2z y)))
P1,1 & A4 ~=> * RW2: All x,y,z:Any + =(x(z y *(z z x)) z)
RW2,1 & A4 ~-=> % RW3: All x,y:Any + =(*(y x y) y)
A3,1 & A2,1 -=> =* PT: All x,y,z,u:Any + =(*(*(u 2 y) x z)

*(u z *»(y x z)))
A5,1 & P7,1 --> * P8: A1l x,y,z:Any + =(*(x(z y -(x)) x y)

*(z yy))

P8,1 & A3 -=> * BRW9: All x,y,z:Any + =(x(x(z y -(x)) x y) ¥)
A4,1 & P7,1 -=> # P10: All x,y,z:Any + =(x(*(z y x) x y) *(z y X))
P10,1 & R¥9,1 --> % P11: All x,y,z:Any + =(*(*(z -(y) x) y x) x)
RW3,1 & A2,1 -=> % P20: All x,y,z,u:Any + =(*(*(u z y) x u)

*(u z *(y x u)))
A4,1 & P20,1 --> #« P23: All x,y,z:Any + =(*x(*(z y x) x z) *{(z y x))
P23,1 & P10,1 -=> * P25: All x,y,z:Any + =(*(*(z2 y x) z x)

*(x(z y x) x 2))

P25,1 & P23 -=> % RW26: All x,y,z:Any + =(*(*(z y x) z x) *(z y x))
P11,1 & RN26,1 =-~> * P27: All x,y:Any + =(y *(x -(x) y))
P27,1 & 16,1 -=> * R28: 8|

B.1.6 Example 6

E. Lusk and R. Overbeek introduced this problem to the community, which is probably the best known
one in equality reasoning: “every ring with 3 = z is commutative.” Many authors as for example
M. Stickel [Sti84] and D. Kapur [KZ89] focused on it. They-used special techniques to solve it and
other related problems in the family z" = z, especially they used completion modulo AC-unification.
D. Kapur developed a special algorithm to handle these problems very efficiently. We used a completion
procedure based on ACl-unification with constraints like this of C. and H. Kirchner [KK89], but we did
not succeed in solving the problem with this technique (see section 6.5). The problem also was solved

by J. Denzinger using a multi agent approach with parallel unfailing completion in about 700 seconds
[Den91].

Set of Axiom Clauses Resulting from Normalization

Ai: All x:Any + =(x x)

A2: ALl x,y,z:Any + =(+(+(z y) x) +(z +(y x)))
A3: All x:Any + =(+(0 x) x)

A4: ALl x:Any + =(+(-(x) x) 0)

AS: All x,y:Any + =(+(y x) +(x y))

A6: All x,y,z:Any + =(*(*x(z y) x) *(z *(y x)))

B.2. Pelletier 95

A7: All x,y,z:Any + =2(%(+(z y) x) +(x(z x) *(y x)))
A8: All x,y,z:Any + =(x(z +(y x)) +(x(z y) *(z x)))
A9: A1l x:Any + =(*(x *(x x)) x)

Set of Theorem Clauses Resulting from Hormalization

T10: ~ =(*(c_1 c_2) *(c_2 c_1))

B.2 Pelletier

F. Pelletier published a graduated set of 75 problems for testing automatic theorem provers. We picked
from this set all clearly specified problems dealing with the equality predicate. It must be noted that
F. Pelletier’s task 73 is the equality representation of the pigeon hole problem, which is in fact an
infinitary set of problems. We just computed the 3-hole problem (B.2.14).

In table 6.1 we collected the statistics for F. Pelletier’s examples. The last column gives the additional
features of MKRP needed to find a proof.

B.2.1 Example 48

The most astonishing thing with the trivial example 48 is that it needs nine steps in the proof. It is one
of the simplest possible examples with conditional equations.

Formulae Given to the Editor

Axioms: A=BORC=D
A=CORB=D
Theorems: A =D ORB =C

Set of Axiom Clauses Resulting from Normalization

Al: A1l x:Any + =(x x)
* A2: + =(ab) + =(cd)
* A3: + =(ac) + =(b d)

Set of Theorem Clauses Resulting from Hormalization

* T4: - =(a @)

* T5: - =(b ¢)
Refutation:
A3,2 & A2,1 -=> *P1: +=(ad) +=(ac) +=(cd)
P1,1 & T4,1 -~> * R2: + =(ac) + =(cd)
43,2 & 15,1 -=> * P3: -=(dc) +=(ac)
P3,1 & R2,2 --> *R4: + =(ac) + =(ac)
R4 1=2 --> *D5: + =(ac)
A2,1 & D5 -=> * RW6: + =(cb) + =(c d)
T4,1 & DS -=> * RW7: - =(c d)
RW6,2 & RW7,1 --> =* R3: + =(c b)
R8,1 & T5,1 ~-=> * R9: 1

96 Appendix B. Commented Examples

B.2.2 Example 49

Problem 49 combines conditional equations with other predicates. It states that if there are two objects
such that all other objects are equal to one of them and if we have two constants with the property P
then P holds universally.

Formulae Given to the Editor

Axioms: EX X, Y (ALLZZ=X0RZ=Y)
P(A) ARD P(B)
NOT A =B

Theorems: ALL X P(X)

Set of Axiom Clauses Resulting from Formalization

Al: All x:Amny + =(x x)

* A2: + P(a)

* A3: + P(b)

* A4: - =(ad)

* Ab: A1l x:Any + =(x c_2) + =(x c_1)

Set of Theorem Clauses Resulting from Normalization

* T6: - P(c_3)

Refutation:

A5,1 & A2,1 ~-=> % P1: + P(c_1) + =(a c_.2)
A5,1 & A3,1 --> * P3: + P(c_1) + =(b c_.2)
P1,2 & A4,1 ~=> % P4: - =(c_.2 b) + P(c.1)
P4,1 & P3,2 --> * R5: + P(c_1) + P(c_1)

R5 1=2 -=> % D6: + P(c_1)

A5,1 & A4,1 -~> * P7: ~ =(c_1 b) + =(a c_2)
P7,2 & A2,1 --> * P8: + P(c_2) -=(c_1Db)
A5,1 & P8,2 -=> * P9: - =(c_1 ¢c_1) + =(b c_2) + P(c.2)
P9,1 & A1,1 ~=> % R10: + =(b c_2) + P(c_2)
R10,1 & A3,1 -=> % P12: + P(c_2) + P(c_2)

P12 2=1 -~> * D13: + P(c.2)

A5,1 & T6,1 --> % P23: - P(c_1) + =(c_3 c_2)
P23,1 & D6,1 -=> % R24: + =(c_3 c_2)

D13,1 & R24 -=> * RW27: + P(c.3)

RW27,1 & T6,1 --> = R32: []

B.2.3 Example 51

Problems B.2.3, B.2.4, and B.2.5 are comparable to Andrews’ challenging example for resolution theorem
proving. The theorems contain equivalences which explode during the normalization. Such examples
show that methods using clause normal form are often not adequate (see [Sie92, KP92], and also section
6.4).

Formulae given to the editor

Axioms: EX Z,W (ALL X,YP(X Y) EQV (X =2Z) ABD Y = W)

Theorems: EX Z (ALL X (EX W (ALL Y P(X Y) EQV Y = W)) EQV X = Z)

B.2.5. Pelletier: Example 52 97

Set of Axiom Clauses Resulting from FNormalization

* Al: All x:Any + =(x x)

* A2: All x,y:Any - P(y x) + =(y c_2)

* A3: A1l x,y:Any - P(y x) + =(x c_1)

* A4: All x,y:Amy + P(y x) - =(y ¢.2) - =(xc.1)

Set of Theorem Clauses Resulting from Normalization

* T5: All x,y:Any - P(£_3(y) £.1(x y))

-=(f_1(x y) x) - =(.3()y)
* T6: All x,y:Any + P(£.3(y) f_1(x y))
+ =(f_1(x y) x) - =(£.3(y) y)
* T7: A1l x,y:Any + P(£.3(y) x) = =(x £.2(y)) + =(£.3(y) y)
T8: A1l x,y:Any - P(£_3(y) x) + =(x £.2(y)) + =(£.3(y) ¥
Refutation:
T7,1 & 42,1 ~-> * R1: All x,y:Amy - =(y £.3(x)) + =(£.1(x) x)

+ =(£f_1(x) c_1)

Ri,1 & A1,1 -=> % R2: A1l x:Any + =(f_1(x) x) + =(f.1(x) c.1)

R2 (factor) -—--> * F3: + =(£f_1(c_1) c_1)

F3,1 8 T6,1 --> * P9: A1l x:Any + P(c_t £_2(x c.1)) + =(£f_2(x c.1) x)
=(f_1(c_1) c_1)

P9,3 & F3 -=> % RW10: All x:Any + P(c_1 f_2(x c_1)) + =(f_2(x c.1) x)
- =(c_1 c_1)
RW10,3 & A1,1 --> * Ri1: All x:Any + P(c_1 f_2(x c_1)) + =(£f_2(x c_1) x)
Rii,1 & A3,1 --> % R12: A1l x:Any + =(f_2(x c_1) x) + =(f_2(x c.1) c.2)
R12 (factor) =--> * F13: + =(£f_2(c_2 c_1) c_2)
Fi3,1 & TS,1 --> * P15: - P(f_1(c_1) c_2) - =(£f.2(c.2 c_1) c_2)
- =(f_1(c.1) c_1)
P15,3 & F3 -=> * RW16: - P(£f_1(c_1) c_2) -~ =(£_2(c_2 c_1) c_2)
- =(c_1 c_1)
RW16,2 & F13 ~-> * RW17: =~ P(f_1(c_1) c_2) - =(c_2 c_2) = =(c_1 c_1)
RWi7,1 & F3 --> * RW18: - P(c_1 c.2) =~ =(c_2 c_2) - =(c_1 c_1)
RWi8,2 & A1,1 --> * R19: - P(c_1 c_2) - =(c_1c_l)
R19,2 & Al,1 --> * R20: - P(c_1 ¢c_2)
R20,1 & A4,1 --> * R21: - =(c_1c_1) =-=(c_2c_2)
R21,1 & A1,1 --> = R22: - =(c_2 c_2)
R22,1 & A1,1 --> * R23: (]

B.2.4 Example 52

Problem 52 is a symmetric version of B.2.3 and therefore we omit the proof. The produced proof differs
from that of problem 51 because the automatically generated ordering for the Skolem functions led to
a different operator ordering and in this case to a longer proof.

Formulae Given to the Editor

Axioms: EX Z,¥ (ALL X,YP(X Y) EQV (X = Z AND Y = ¥))

Theorems: EX W (ALL Y (EX Z (ALL X P(X Y) EQV X = Z)) EQV Y = W)

B.2.5 Example 53

Example 53 is the most difficult of the equality problems given by F. Pelletier. The proof is done in two
parts for the two directions of the equivalence. These parts are .completely symmetric and the proofs
are equal modulo the names of Skolem constants and functions, hence we omit the second splitpart.
The symmetry contrasts to other examples where asymmetric effects occur due to the directability of

98 Appendix B. Commented Examples

associativity or other asymmetric axioms. F. Pelletier formulated the problem not to be proven but
to test the normalization operation of theorem provers. We think that this means that strong logical
preprocessing operations during normalization are able to solve the problem. However, those of the
MKRP-system were not able to do so.

Our option setting includes an option to use all possible instances of clauses if a finite domain is specified,
in this case by the clause # = ¢y V £ = ¢;. In the given example this strategy is complete because the
unique possibility to produce deeper terms is to paramodulate into variables, which is not necessary.

Formulae Given to the Editor

Axioms: EX X,YBOT Y =X ASD (ALLZZ=XO0R Z=Y)

Theorems: (EX Z (ALL X ((EX W (ALL Y (P (X Y) EQV Y = ¥))) EQV X = 2)))
EQV (EX Z (ALL X ((EX W (ALL Y (P (Y X) EQV Y = W))) EQV X = 7)))

Set of Axiom Clauses Resulting from Normalization

* A1: All x:Any + =(x x)
* A2: - =(c_2 c_1)
* A3: A1l x:Any + =(x c_1) + =(x c_2)

Set of Theorem Clauses Resulting from Hormalization and Splitting

Splitpart 1

* T4: A1l x,y:Any - P(£_1(y) £2(x y)) - =(£2(xy) x) - =(£.1(y)
* T5: All x,y:Any + P(£_1(y) £2(x y)) + =(f.2(xy) x) - =(£.1(y) y)
* T6: ALl x,y:Any + P(£.1(y) x) =~ =(x £.3(y)) + =(£.1(y) y)

* T7: All x,y:Any - P(£.1(y) x) + =(x £.3(y)) + =(f_1(y) y)

* T8: All x,y:Any + P(y x) - =(y £.4(x)) - =(x c_3)

* T9: AlL x,y:Any - P(y x) + =(y £_4(x)) =~ =(x c.3)

* T10: All x,y:Any - P(£_5(y x) x) - =(f_5(y x) y) + =(x c_3)

* T11: A1l x,y:Any + P(£.6(y x) x) + =(£.5(y x) y) + =(x c_3)

Splitpart 2 analogous to splitpart 1

Initial Operations on Theorems

Splitpart 1

T4 (instance) --> % I1: - P(f_1(c.2) £.2(c_2 c.2))

- =(f_2(c_2 c_2) c_2) - =(£f_1(c_2) c_2)
T4 (instance) --> * I2: - P(£f_1(c_2) £_2(c.1 c_.2))

- =(£f.2(c_1 ¢_2) c_1) - =(£_1(c_2) c_2)
T4 (instance) --> * I3: -~ P(f_1(c_1) £_2(c_2 c_1))

- =(£.2(c_2 ¢_1) c¢_2) - =(£_1(c_1) c_1)
T4 (instance) --> * I4: = P(f_1(c.1) £.2(c_1 c_1))

- =(£_2(c.1 c_1) c_1) - =(f_1(c_1) c_1)
T5 (instance) --> % 15: + P(f_1(c_2) £_2(c_2 c_2))

+ =(£f.2(c.2 c_2) c_2) - =(f_i(c_2) c.2)
TS5 (instance) =--> * I6: + P(f_1(c_2) f_2(c_1 c.2))

+ =(£f_2(c_t c_2) c_1) - =(f_1(c.2) c_2)
T6 (instance) --> * I7: + P(f_1i(c_1) f_2(c_2 c_1))

+ =(£_2(c_2 c_1) c.2) - =(f_1(c.1) c_1)
T5 (instance) =~~> * I8: + P(f_1(c_1) f£_2(c_1 c.1))

+ =(£_2(c_1 c_1) ¢c_1) = =(f_1(c_1) c_1)
T6 (instance) =--> * I9: + P(f_1(c_2) c_.2) =~ =(c_2 £_3(c.2))

+ =(£_1(c_2) c_2)
T6 (instance) =--> * I10: + P(f_1(c_2) c_1) = =(c_1 £.3(c.2))

+ =(£f_1(c_2) c_2)

B.2.5. Pelletier: Example 53

T6 (instance)

T6 (instance)

T7 (instance)

T7 (instance)

T7 (instance)

T7 (instance)
T8
T8
T8
T8
TS
9
T9
T9
T10

(instance)
(instance)
(ingtance)
(instance)
(instance)
(instance)
(instance)
(instance)
(instance)

T1i0 (instance)

T10 (instance)

T10 (instance)

T11 (instance)

T11 (instance)

T11l (imnstance)

Tii (instance)

Splitpart 2

analogous to splitpart

O R

I11:

I12:

I13:

I14:

I16:

117
Iis

119:

120

I21:

I22
123

I124:

125

I126:

127:

I28:

129

130:

I31:

I132:

R

o+

+ + + 4+ + 1V + t +

04

T

Refutation of Splitpart 1:

123,2 & 121,2
P65 3=5

D66,1 & A2,1
124,22 & 122,2

P68 3=5

D69,1 & A2,1
A3,1 & I19,2

P71,1 & A1,1
R72,1 & 117,2

P74 3=5

D75,1 & A1,1
A3,1 & 120,2

P77,1 & A1,1
R78,1 & I18,2

P65:

D66 :

R67:
P68:

D69:

R70:
P71:

R72:
P74:

D75:

R76:
P77:

R78:
P80:

P(f_1(c_1) e_2) ~ =(c_2 £_3(c_

=(f_1(c_1) c_1)

P(f_1(c_1) c_1) =~ =(c_1 £_3(c_

=(f_1(c_1) c_1)

P(£_1(c_2) c_2) + =(c_2 £.3(c..

=(£f_1(c_2) ¢_2)

P(f_1(c_2) c_1) + =(c_1 f_3(c..

=(f_1(c_2) c_2)

P(f.1(c_ 1) c_2) + =(c_2 f_3(c_

=(f_1(c_1) c_1)

P(f_1(c_1) c_1) + =(c.1 £_3(c.

=(f_1(c_1) c_1)

P(c_2 ¢_2) - =(c_2 £_4(c.2))

P(c.2 c_1) = =(c.2 f_4(c_1))

P(c_1 c_2) - =(c_1 £_4(c_2))

P{c_1 c.1) - =(c_1 f_4(c_1))

P(c_2 c_2) + =(c.2 f_4(c_2))

Plc_2 c_1) + =(c_2 f_4(c. 1))

P(c.1 c_2) + =(c_1 £_4(c_2))

P(c.1 c 1) + =(c_1 f_4(c.1))

P(£_5(c_2 c_2) c.2) - =(f_5(c_

=(c_2 c_.3)

P(£_5(c_2 c_1) c. 1) = =(£_5(c_

=(c_1 ¢c_3)

P(£_5(c_1 c_2) c_2) - =(£f_5(c_

=(c_2 ¢c_3)

P(f_5(c_1 c_1) c_1) - =(f_5(c_

=(c_1 c_3)

P(£_5(c_2 c_2) c_2) + =(£f_5(c_

=(c_2 c_3)

P(f_5(c_2 c_1) c_1) + =(£f_5(c.

=(c.1 c_3)

P(£_5(c_1 c_2) c_2) + =(£_5(c.

=(c_.2 ¢c_3)

P(f_5(c_1 c_1) c_1) + =(£_5(c_

=(c_1 ¢_3)

i

t+ =(c_2 c_1) - P(c.1 c.2)
- P(c_2 ¢ 2) -=(c_2¢c.3)
+ =(c_2 c_1) = P(c_1 c.2)
~ =(c.2 c.3) - P(c_2 c_2)
= Plc_1 c_.2) =~ =(c_2 c_3)
+ =(c_2 c_1) - P(c_.1l c.1)
- Plc_2 ¢c_1) - =(c.1 ¢ 3)
+ =(c_2 c_1) - P(c.1 c.1)
- =(c_16¢.3) -Plc_2c.l)
- P(c_1 c_1) - =(c.1 c.3)
- =(c.1 c_1) + =(£_4(c_2)
+ P(c_1 c_2) - =(c_2 c_3)
+ =(f£_4(c.2) c_2) + P(c_t
- =(c.2 c_2) + P(c_1c¢c_2)
+ Pc_2 c_2) - =(c.2 ¢_3)
- =(c_2 c_2) + P(c_1 c_2)
= =(c.2 c 3) + P(c.2 c.2)
+ P(c_1 c.2) = =(c_2¢_3)
- =(c_1 c_1) + =(£f_4(c_1)
+ P(c_1 c 1) = =(c_1c.3)
+ =(f_4(c_1) ¢_2) + P(c_1
= =(c.2 c.2) + P(c.1l c_1)
+ P(c_2 c_1) - =(c_1 c_3)

1))
i
2))
2))
i)
1)

c.3)
c_3)
c.3)
c.3)
c.3)
c.3)
c_3)
c_3)
2 c_2) c_2)

2c.1) c.2)

1c¢.2) c 1)

1c.1) c_1)

2c.2) c_2)

2 c_1) c_2)

1c.2) c_1)

1c 1) c 1)

=(c_2 c_3)

P(c_2 c_2)
=(c_1 c_3)

Pc_2 c_1)
c.2)

c.2)
- =(c_2 c_3)

+ P(c_2 ¢_2)
c.2)

c_1)
- =(c_1 c.3)

- =(c_2 c._3)

- =(c_1 c_3)

100

Appendix B. Commented Examples

P80 3=5 --> = D81: ~ =(c_2¢c.2) + P(c_1lc_l)
- =(c.1 c_3) + P(c_.2c 1)
D81,1 & A1,1 -=> % R82: 4+ PCc 1l c 1) = =(c_1c.3) + P(c.2ec 1)
A3,1 g 129,1 -~> % P83: + P(c.1 c.2) + =(£.5(c.2 c.2) c_2)
+ =(£_5(c_2 c_2) c_2) + =(c_2 c_3)
P83 2=3 -=> x D84: + P(c_1 ¢_2) + =(£.5(c.2 c_2) c.2)
+ =(c_2 c_3)
A3,1 & 130,1 --> * P85: + P(c_1 c.1) + =(£_5(c_2 c_1) c.2)
+ =(£.5(c_2 c_1) c_2) + =(c_1 c.3)
P85 2=3 --> * D86: + P(c_1 c_1) + =(£_5(c_2 c_1) ¢c.2)
+ =(c_1 c_3)
A3,1 & I10,2 --> * P87: - =(c.1 c 1) + =(£_3(c_2) ¢_2)
+ P(£f_1(c_2) c_1) + =(£_1(c_2) c_2)
P87,1 & A1,1 --> % R8S8: + =(£_3(c.2) c_2) + P(£_1(c_2) c.1)
+ =(£f_1(c_2) c_2)
A3,1 & I12,2 -=> % P90: - =(c_1 c_1) + =(£_3(c_1) c_2)
+ P(£_1(c.1) c_1) + =(f_1(c_1) c_1)
P90,1 & Ai,1 -=> % RO1: + =(£.3(c.1) ¢.2) + P(f_1{c_1) c.1)
+ =(f_1(c_1) c_1)
114,2 & 113,2 -=> % P93: + =(c_2c.1) - P(£f.1(c2) c 1)
+ =(£_1(c_2) c_2) -~ P(f_1{(c_2) c_2)
+ =(£_1(c.2) c_2)
P93 3=5 -=> * D94: + =(c_2 c_1) - P(£f_1(c.2) c_1)
+ =(f_1(c_2) c_2) =~ P(£f_1(c_2) c.2)
D94,1 & A2,1 --> * R95: - P(£_1(c_2) c 1) + =(£f_1(c_2) c.2)
- P(£_1(c_2) c.2)
A3,1 & RO5,1 -=> * P96: - P(c_1 c_1) + =(£_1(c_2) c_2)
+ =(f_1(c_2) c_2) =~ P(£f_1(c.2) c_2)
P96 2=3 -=> * DIT7: - Ple_1 ¢ 1) + =(£f.1(c_2) ¢.2)
- P(£f_1(c.2) <c_2)
A3,1 & D97,3 ~--> * P98: - Plcl c.2) + =(£_1(c.2) e.2)
- PCe_1 c_1) + =(£f_1(c.2) c.2)
P98 2=4 --> * D99: - P(cl c_2) + =(£_1(c.2) c_2) - P(c_1l c.1)
116,2 & I15,2 -=> % P100: + =(c_2 c_1) - P(£_1(c_1) c.1)
+ =(£_1(c_1) c_1) = P(f_1(c1) c_2)
+ =(£_1(c_1) c_1)
P100 3=5 -=> * D101: + =(c_2 c_1) - P(f_1(c.1) c.1)
+ =(f_1(c_1) c_1) - P(f_1(c_1) c_2)
D101,1 & A2,1 -=> ® R102: =~ P(£f_1(c_1) c_1) + =(£f_1(c_1) c.1)
- P(£_1(c_1) c_2)
R838,1 & 19,2 -=> * P103: = =(c_2 ¢c_2) + P(£f_1(c.2) c.1)
+ =(£_1(c_2) c.2) + P(f_1(c.2) ¢_2)
+ =(£_.1(c.2) c.2)
P103 3=5 -=> * D104: =~ =(c_2 c_2) + P(f_1(c.2) c.1)
+ =(f_1(c_2) c_2) + P(£_1(c.2) c.2)
D104,1 & A1,1 -=> % R105: + P(£_1(c_2) c_1) + =(f_1(c_.2) c.2)
+ P(£f_1(c_2) c_2)
A3,1 & R105,1 -=> % P106: + P(c_1 c_1) + =(f_1(c.2) c.2)
+ =(£,1(c_2) c_2) + P(£f.1(c.2) c.2)
P106 2=3 -=> * D107: + P(c_1 c_1) + =(£_1(c_2) c.2)
+ P(£_1(c_2) c_2)
A3,1 & D107,3 --> * P108: + P(c_1 c_2) + =(f_1(c_2) ¢.2)
+ PCc_1 c 1) + =(£.1(c_2) c.2)
P108 2=4 -=> % D109: 4+ P(c_1 c_2) + =(£_1(c_2) c.2) + P(c_1l c 1)
RO1,1 & I11,2 -=> * P110: - =(c_2 c_2) + P(f_1(c_1) c.1)
+ =(f_1(c_1) c_1) + P(£f.1{c.1) c.2)
+ =(£f_1(c_1) c_1)
P110 3=§ -=> *x Di11: = =(c_2 c_2) + P(£f_1(c_1) c.1)
+ =(f_1(c.1) c_1) + P(£f_1(c_1) c_2)
D1i1,1 & A1,1 --> # R112: + P(£f_1(c.1) c_1) + =(f.1(c.1) c_.1)
+ P(f_1(c_1) c_2)
43,1 & I5,1 --=> % P113: + P(f_1(c_2) c_1) + =(£f.2(c.2 c.2) c_2)
+ =(f.2(c_2 e.2) ¢c.2) -~ =(f_1(c.2) c.2)
P113 2=3 —=> *= D114: + P(f_1(c_2) c_1) + =(£.2(c.2 c.2) c.2)

=(£_1(c.2)

c.2)

B.2.5. Pelletier: Example 53

A3,1 & 17,1
P115 2=3
D84,2 & 125,1
P117 3=5
D118,4 & D84,2
R119 2=4

D120 3=4
D86,2 & 126,1

P122 3=5
D123,4 & D86,2
R124 2=4

D125 3=4
23,1 & I127,1

P127,3 & A3,1
R128 2=4
D129,2 & 1I31,1
P138 3=5
D139,4 & D129

RW140,4 & A2,1
A3,1 & 128,1

P148,3 & A3,1
R149 2=4
D150,2 & 132,1
P159 3=5
D160,4 & D150
RW161,4 & A2,1
D114,2 & I1,t
P169 3=5

D170,4 & D114,2

R171 2=4
D172 3=4

pii6,2 & I3,1

P174 3=5

>

P115:

Dii6:

P117:

D118:

R119:

D120:

Di121:
P122:

D123:

R124:

D125:

D126:
P127:

R128:

D129:

P138:

D139:

RW140:

R141:
P148:

R149:

D150:

P159:

D160:

RW161:

R162:

P169:

D170:

R171:

D172:

D173:

P174:

D175:

F U E LT 4 4+

B A

+

P(f_1(c_1) c_1) + =(£_2(c_2 c_1) c_2)
=(f_2(c_2 c_1) c.2) - =(f_1(c.1) c.1)
P(£_1(c_1) c_1) + =(£_2(c_2 c_1) c.2)
=(£f_1(c_1) c_1)

P(c.2 ¢_2) + P(c_1 c_2) + =(c_2 c_3)
=(£_5(c_2 ¢_2) ¢c_2) + =(c_2 c_3)
P(c_2 c_2) + P(c_1c_2)

=(c.2 c_.3) - =(£.5(c_2 c_2) c_2)
P(c_2 c_2) + P(c.1 c_2) + =(c_2 c_3)
P(c_1 c_2) + =(c.2 c_3)

P(c_2 c_2) + P(c_1 c_2)

=(c.2 c_3) + =(c_2 c.3)

P(c_2 c_2) + P(c.1c_2) + =(c_2 c_3)
P(c_2 c_1) + P(c_1 c_1) + =(c_1 c_3)
=(£.5(c.2 c_1) c_2) + =(c_1 c 3)
P(c_2 c_1) + P(c_1 c_1)

=(c_1 c.3) - =(£f_5(c_2 c_1) c_2)
P(c_2 ¢_1) + P(c.1 c_1) + =(c_1 c_3)
P(c.1 c_1) + =(c_t c. 3)

P(c.2 c_1) + P(c_1 c_1)

=(c_1 c_3) + =(c_1 c_3)

P(c_2 c_1) + P(c_1 c_1) + =(c_1 ¢_3)

P(c.1 c_2) + =(£_5(c_1 c_2) c_2)
=(£_5(c_1 c_2) c_1) + =(c_2 c_3)
P(c.1 c_2) + =(£_5(c_1 c_2) c_2)
=(c_2 ¢_3) + =(£.5(c_1 ¢c_2) c_.2)
P(c_1 c_2) + =(£f_5(c_1 c_2) c_2)
=(c_2 ¢c_3)

P(c_2 c_2) - P(c_1c.2) + =(c_2 c_3)
=(£_5(c.1 c_2) c_1) + =(c_2¢c 3)
P(c.2 c_2) - P(c_.1c_2)

=(c_2 c_3) + =(£_5(c.1 c_2) c_1)
P(c_2 ¢.2) = Plc.l c_2)

=(c_2 ¢.3) + =(c_2c.1)
P(c_2 c_2) - P(c_1 c_2) + =(c_2 c_3)
P(c_1 c_1) + =(£_5(c_1 c..1) c_2)
=(£_5(c_1 c_1) c_1) + =(c_1 c_3)
P(c_1 c_1) + =(£_5(c_1 c_1) c_2)
=(c_1 ¢_3) + =(£_5(c_1 c_1) c_2)

- P(c.1 c_1) + =(£.5(c_1 c_1) c_2)

EEEEEEREE:

=(c_1 c_3)

P(c_2 c_1) =~ P(c_.1 c.1) + =(c_1 ¢_3)
=(£_5(c_1 c.1) c_1) + =(c_1 ¢_3)
P(c_2 ¢c_1) =~ P(c_1 c_1)

=(c_1 ¢_3) + =(£_5(c_1 c_1) c_1)
P(c_2 c_1) = Plc.1l c 1)

=(c.1 c.3) + =(c_2c.1)

P(c_2 c_1) - P(c_1 c_1) + =(c_1 c_3)

PCE_1(c_2) ¢_2) + P(f_1(c_2) c_1)
=(£.1(c_2) c_2) = =(£f.2(c_2 c_2) c_2)
=(£f_1(c_2) c_2)

P(f_1(c_2) c_.2) + P(f_1(c.2) c_1)
=(f_1(c_2) c.2) = =(£f_2(c_.2 c.2) c_2)
P(f_1(c_2) c_2) P(f_1(c_2) c_1)
=(f_1(c_2) c_2) P(f_1(c_2) c_1)
=(£_1(c.2) c_2)

P(f_1(c_2) ¢c_.2) + P(£f_1(c_2) c_1)
=(f_1(c.2) c_2) - =(£_1(c_2) c_2)
P(f_1(c_2) c_2) + P(f_1(c_2) c_1)
=(£_1(c_2) c_2)

P(f_1(c_1) c_.2) + P(£f_1(c_1) c_1)
=(f_1(c_1) c_1) - =(£f_2(c_2 c.1) c_2)
=(£f_1(c_1) c_1)

P(f_1(c_1) c.2) + P(f_1(c_1) c.1)
=(f.1(c_1) c_1) -~ =(£.2(c_2 c.1) c.2)

101

102

Pi75,4 & Di16,2

R176 2=4
D177 3=4
A3,1 & D178;2
P179,4 & A3,1
R180 2=4
A3,1 & b181,3

P182 2=4
‘a3,1 & 12,1

P184,3 & A3,1
R185 2=4

D186,2 & 16,1

P195 3=5
D196,4 & D136
RW197,4 & A2,1
A3,1 & 14,1
P226,3 & A3,1
R227 2=4

D228,2 & 18,1

P237 3=5

D238,4 & D228
RW239,4 & A2,1
A3,1 & R240,2
P241,4 & A3,1
R242 2=4

A3,1 & D243,3

P244 2=4
D109,2 & D173,2

P260,5 & D109,2
R261 2=5
D262 3=5

D263,4 & D109

R176:

D177:

D178:

P179:

R180:

Di81:

P182:

D183:
P184:

R185:

D186:

P195:

D196:

RW197:

R198:

P226:

R227:

D228:

P237:

D238:

RW239:

R240:

P241:

R242:

D243:

P244:

* D245:

P260:

R261:

D262:

D263:

RW264:

Appendix B. Commented Examples

- P(£_1(c_1) c_2) + P(£f_1(c_1) c_1)

- =(f_1{c_1) c_1) + P(f_1(c.1) c_1)

- =(f_1(c_1) ¢_1)

- P(f_1(c.1) c_2) + P(f_1(c_1) c_1)

- =(f_1{c_1) c_1) =~ =(£f_1(c_1) c_1)

- P(f.1(c.1) c_.2) + P(f_1(c.1) c_1)

- =(f_1(c_1) c_1)

+ P(c_1lc 1) + =(f_1(c_1) c.2)

- P(f_1(c_1) c_2) - =(f_1(c.1) c_1)

+ P(c_1 c 1) + =(f_1(c_1) c_2)

- P(f_1(c_1) c.2) + =(£f_1(c_1) c_.2)

+ P(c.1 c_1) + =(f_1(c_1) c_2)

- P(£f_1(c_1) c_2)

-~ Plc_t c.2) + =(£f_1(c_1) c_2)

+ P(c_1 c_1) + =(£f_1(c_1) c_2)

- P(c.1c.2) + =(f_1(c_1) c_2) + P(c.t c_1)
- P(£_1(c_2) c_1) + =(£_2(c_1 c_2) c_2)
- =(f_2(c_1 c_2) c_1) - =(£_1(c_2) c_2)
- P(f_1(c.2) c_1) + =(£f_.2(c_1¢_2) c_2)
- =(f_1(c.2) c_2) + =(£_2(c_1 c_2) c¢c_2)
- P(£_1(c_2) c_1) + =(f_2(c_1c_2) c_2)
- =(£_1(c_2) c_2)

+ P(f_1(c_2) ¢_2) - P(f_1(c_2) c.1)

- =(£f_1(c.2) c_2) + =(£.2¢(c_1 c_2) c.1)
- =(f_1(c_2) c_2)

+ P(£f_1(c_2) ¢.2) = P(£f_1(c_.2) c_1)

- =(£f.1(c_2) c_2) + =(£.2(c_1 c_2) c.1)
+ P(£.1(c_.2) c_2) - P(f_1(c.2) c_1)

- =(f_1(c.2) c_2) + =(c_2 c.1)

+ P(f_1(c_2) c_2) = P(£_1(c_2) c_1)

- =(f_1(c_2) c_2)

- P(f_1(c_1) c_1) + =(f_2(c_1 c_1) c_2)
- =(f_2(c_1 c_1) c_1) - =(f_1(c_1) c.1)
- P(f_1(c_1) c_1) + =(£_2(c.1 c_1) c_2)
- =(f_1(c.1) c_1) + =(£.2(c.1 c_1) c_2)
- P(£f_1(c_1) c_1) + =(f_2(c_1 c_1) c_2)
- =(£f_1(c_1) c_1)

+ P(£f_1(c_1) c_2) - P(f_1(c_1) c_1)

- =(f_1(c_1) c_1) + =(£f_2(c_1tc_1) c_.1)
~ =(f_1(c_1) c_1)

+ P(f_1(c_1) c_2) - P(£_1(c_1) c_1)

- =(£_1(c_1) c_1) + =(£f_2(c_1 c_1) c_1)
+ P(f_1(c_1) c_2) - P(f_1(c_1) c_.1)

- =(f_1(c_1) c_1) + =(c_2 c_1)

+ P(f_1(c.1) c_2) - P(f_1{(c.1) c_1)

- =(f_1(c_1) c_1)

- P(c_1 cll) + =(f_1(c_1) c.2)

+ P(£.1(c_1) c_2) =~ =(f_1(c_1) c_1)

- Plc_1 c_1) + =(f_1(c_1) c_2)

+ P(£_1(c1) ¢ 2) + =(£_1(c_1) c_2)

- P(c.1 c_1) + =(£f_1(c_1) c_2)

+ P(£f_1(c_1) c_2)

+ P(c_1 c.2) + =(f_1(c_1) c_2)

- Pc_t c 1) + =(f.1(c.1) c.2)

+ P(c_1 c_2) + =(f_1(c_1) c.2) - P(c.1 c_1)
+ P(c_2 c_1) + P(c_1c.2) + P(c_1lc_1)
- P(f_1(c_2) c_.2) - =(£f_1(c_2) c_2)

+ P(c_2 c.1) + P(c_1c_2) + Plc_ic_1l)
- P(£_1(c_2) c_2) + P(c_1 c_2) + P(c_1 c_1)
+ P(c_2 ¢c_1) + P(c_1c_2) +P(c_1c_l)
- P(f_1(c_2) ¢_2) + P(c_1 c_1)

+ P(c_2 c_1) + P(c_t c_2)

+ P(c_1 c_1) - P(f_1(c.2) c_2)

+ P(c_.2 c_1) + P(c_1 c_2)

+ P(c_1 c_1) - P(c_2c_2)

B.2.5. Pelletier: Example 53

RW264,3 & R162,2
R265 4=1

D266,1 & R67,1
R267 5=1

D268,3 & A3,2

R269 2=4
D99,2 & D173,2

P271,5 & D97,2

R272 3=5

D273 4=5

D274,4 & D99
R82,1 & RW275,3
R276 3=2

D277,1 & D270,2
R278 1=4

D279 3=4
RW264,2 & D280,2

R281 1=4

D282 3=4
D183,2 & R102,1

P296,4 & D183
RW297,5 & D183
RW298,4 & A2,1
R299,1 & D283,1
R300 2=4

D301 3=4
D302,2 & R70,1

R303,4 & D280,1
R304 1=4

D305 2=4
D121,2 & D306,1

R307 3=1
D308,3 & A3,1
R309 1=3
R141,1 & D310,2
R311 2=3

R67,2 & D310,1
R316 2=3

* Kk K N X K ¥

R265:
D266:
R267:
D268:
§269:

D270:
P271:

R272:

D273:
D274:
RW275:
R276:
D277 :
R278:
D279:

D280:
R281:

D282:

D283:
P296:

RW297:
RW298:
R299:
R300:
D301:

D302:
R303:

R304:
D305:

D306:
R307:

D308:
R309:
D310:
R311:
D312:
R315:
D316:

+ o+ 4+

PR T S B A A

+

P(c_2 c_1) + P(c_1 c_2) =~ P(c_2 c_2)
P(c_2 c_1) + =(c_1 c_3)

P(c_1 c_2) - P(c_2 c_2)

P(c_2 c_1) + =(c_1 ¢_3)

P(c_2 c_2) + P(c.2c_1) + =(c_1 ¢c_3)
=(c_2 ¢_3) - P(c_2 c_2)

P(c_2 c_1) + =(c_t c_3)

=(c_.2 ¢.3) =~ P(c_2 c_2)

P(c.2 c_1) + =(c_1 c_3)

P(c_2 c.2) + =(c_.3 c.1)

P(c_2 c_.1) + =(c_1 c_3) =~ P(c.2 c_2)
P(c.2 ¢c_1) - P(c_1¢c_2) =~ P(c.1c.1)
P(f_1(c_2) c_2) =~ =(f_1(c_2) c_2)
P(c.2 ¢_1) =~ P(c_1 c_2) = P(c_1 c_1)
P(£f_1(c_2) ¢_2) - P(c_1 c_1)
P(£f_1(c_2) c_2)

P(c_2 c.1) - P(c_1c.2) - P(c.1lc.t)
P(f_1(c_2) c_2) =~ P(f_i(c_2) c_2)
P(c_2 c_1) - P(c_1 c_2)

P(c_1 c_1) =~ P(f_1(c_2) c_2)

P(c_2 c_1) =~ P(c_1 c_2)

Plc.1 c_1) - P{c_2c.2)

=(c.1 ¢c.3) + P(c_2 c_1) + P(c_2c_1)
P(c.1l c.2) - P(c_2 c_.2)

=(c_1 c_3) + P(c_2 c_1)

P(c.1 c_.2) - P(c.2 c_.2)

P(c.2 c.1) - P(c_1 c_2) =~ P(c_2c_2)
P(c.2 c.1) -P(c_2¢c2)

P(c_2 c_1) =~ P(c_1 c.2)

P(c.2 c.2) - P(c.2 c.2)

P(c.2 ¢.1) - P(c_1¢_2) - P(c_2c_2)
P(c_2 c_1) + P(c_1 c_1) =~ P(c.2 c.2)
P(c_2 c_1) = P(c_ 2 c_2)

P(c_2 c_1) + P(c_1 c_1)

P(c_2 ¢_2) =~ P(c_2c_2)

P(c_.2 c_1) + P(c_1 c_1) =~ P(c.2 c_2)
P(c_2 c_1) =~ P(e_1c.2) + P(c_ic_ 1)
=(£_1(c_1) c.1) - P(f_1(c_1) c_2)
P(c_2 c_1) =~ P(c_1 c_2) + P(c_1 c_1)
=(c.2 ¢c_1) - P(£f_1(c_1) ¢c_2)

P(c.2 c_1) =~ P(c.1 c_2) + P(c_1 c_1)
=(c_2 c_1) - P{c_2 c_2)

P(c_2 c_1) =~ P(c.1 c.2)

Plc.1 c_1) = P(c_2 c_2)

P(c_1 c.2) + Plc_t c_1) - P(c_2 c_2)
P(c_t c_1) - P(c_2 c_2)

P(c.1 ¢_2) + P(c. 1 c 1)

P(c_2 c_2) = P(c_2 c.2) -
P(c_1 c_2) + P(c_1c.1) - P(c.2c_2)
P(c_1 c_2) =~ P(c_2 c_2)

=(c.1 ¢c_3) - P(c.2 c_1)

P(c_1 c_2) - P(c_2c_2) - =(c_1c.3)
P(c_1 c.2) - P(c.2 c.2)

P(c_1 c_2) - P(c_2 c_2)

=(c_1 ¢_3) ~ P(c_2 c_2)

Plc.t c_2) - P(c_2 c_2) - =(c_1 c_3)
P(c.2 c_2) + =(c_2 c_3)

P(c_2 c.2) - =(c.1 c_3)

=(c.2 ¢_3) - P(c_2c_2) - =(c_1c_3)
=(c_2 c_3) - P(c_.2 c_2) + =(c_3 c_2)
=(c.2 c.3) - P(c_2 c.2)

P(c_1 c.2) + =(c_2 ¢c_3) + =(c_2 c_3)
P(c_1 c.2) + =(c_2 c_3)

P(c_1 c.2) - P(c_2 c_2) - P(c.2 c_2)
Pc_1 c.2) - P(c.2 c_2)

103

104 Appendix B. Commented Examples

D183,2 & R112,1 --> % P323: + P(c.2c_1) - P(c_.1c.2) +Plc_1c_l)
+ =(f_1(c_1) c_1) + P(£f_1(c.1) c.2)
P323,4 & D183 ~=> * RW324: + P(c_2 c_1) - P(c_1 c.2) + P(c_1c. 1)
+ =(c.2 c_1) + P(f_1(c_1) c_2)
RW324,5 & D183 --> * RW325: + P(c_2 c¢c_1) - P(c_1c_2) + P(c_1lc_1)
+ =(c.2 c.1) + P(c_2c_.2)
RW325,5 & D316,2 --> * R326: + P(c_.2 c_1) - P(c_1c_2) + P(c_tc.1)
' + =(c_2c_1) -~ P(c_1c_2)
R326 2=5 -=> % DP327: + P(c_2 c_1) - P(c_1 c_2)
+ P(c_1 c_1) + =(c.2c.1)
D327,4 & A2,1 ~-=> * R328: + P(c_2c_1) - P(c_.1c_2) + P(c_.ic 1)
R328,3 & R162,2 -=> % R329: + P(c_2 c.1) =~ P(c.1 c_2)
+ P(c_.2c_1) + =(c_1c.3)
R329 3=1 ~=> % D330: - P(c_1c_2) + P(c_2 c.1) + =(c.1 c.3)
R76,1 & D330,1 -=> * R331: ~ =(c_2 c_3) + P(c_2c.2)
+ P(c_2 c_1) + =(c_1 ¢_3)
R331,2 & D270,3 --> * R332: - =(c_2c.3) +P(c.2c_1) + =(c_1c.3)
S + P(c.2 c.1) + =(c.1 c.3)
R332 2=4 --> * D333: - =(c_.2 ¢.3) + P(c_2c_1)
+ =(c_1 c_3) + =(c_1 c_3)
D333 3=4 --> % D334: - =(c_2¢.3) + P(c_2c¢c.1) + =(c_1c_3)
D334,1 & A342 --> #'BR335: + P(c_2 c.1) + =(c_1c.8) + =(c.3c.l)
R335 2=3': --> # D336: + P(c_2c_1) + =(c_1¢c_3)
R82,2 & D336,2 ~~> % R339: + P(c_1c_1) + P(c_2c_1) + P(c.2c_1)
R339 2=3 ~=> % D340: + P(c_1 c_1) + P(c_2 c_1)
D126,1 & D336,1 --> * R341: + PCc_1 c_1) + =(c_1 c_.3) + =(c_1c.3)
R341 2=3 --> % D342%" + P(c_1 c_1) + =(c_1.c_3)
D109,2 & R1968,2 --> * P354: - P(c_2 c_1) + P(c_1 c_2) + P(c_1lc. 1)
+ P(£_1(c.2) c_2) - =(f_.1(c.2) ¢.2)
P354,5 & D107,2 --> * R355: - P(c_2 c.1) + P(c_1c.2) +Plc.1lc_1)
+ P(£_1(c_2) c_2) + P(c_1 c.1)
+ P(£_1(c_2) c_2)
R355 3=5 -=> * D356: - P(c_2c_1) + P(c_1¢c_2) +P(c.lc.l)
+ P(£_1(c_2) ¢.2) + P(£f_1(c_2) c_2)
D366 4=5 -=> % D357: - P(c_2 c_1) + P(c_1c_2)
: + P(c_1 c_1) + P(f_1(c_2) c_2)
D357,1 & D340,2 --> * R358: + P(c_1 c_2) + P(c_1c.l)
+ P(£f_1(c_2) ¢_2) + P(c_1 c.1)
R358 2=4 ~~> % D359: + P(c_1c¢_2) + P(c_1 c_1) + P(f_1(c_2) c_2)
D359,3 & D109 —-> * RW360: + P(c_1 ¢.2) + P(c_1c_1) + P(c_2c.2)
RN360,2 & R70,1 ~--> * R361: + P(c_1 c_2) + P(c_2 c_2)
- =(c_1 ¢.3) = P(c_2 c.1)
D99,2 & R198,2 --> * P367: - P(c_2c_1) - P(c_1c_2) - P(c.lc.l)
+ P(f_1(c_2) c_2) =~ =(£_1(c_2) c.2)
P367,5 & D99,2 --% % R368: =~ P(c_2c_1) =~ P(c_1c_2) - P(c.1c.l)
+ P(£.1(c_2) c_2) - P(c.1¢c.2) - P(c_lc 1)
R368 2=5 ~-> * D369: - P(c_2¢_1) =~ P(c_tc.2) -Plc_lc.l)
+ P(£_1(c_2) c_2) - P(c.1 c_1)
D369 3=5 -=> * D370: =~ P(c_2c.1) - P(c.1 c.2)
~ P(c_1 c_1) + P(f_1(c_2) ¢c.2)
D370,4 & D99 ~-> * RW371: =~ P(c_2 c.1) - P(c_1ic_2)
~ P(c_1 c_1) + P(c_2 c.2)
RW371,4 & D316,2 --> * R372: ~ P(c_2 c_1) =~ P(c_1 c_2)
- Plc.l c1) =~ P(c_1c.2)
R372 2=4 -~> * D373: - P(c_2 c.1) - P(c.1l c.2) ~- P(c.1lc_ 1)
D342,1 & D373,3 ~=> * R374: + =(c_1 c_.3) =~ P(c.2 ¢c_1) - Plc.1c.2)
R374,2 & D336,1 -=-> % R375: + =(c_1 c_3) -~ P(c_1c.2) + =(c_.1c.3)
R375 1=3 ~=> % D376: + =(c_1 c_3) - P(c_1i¢c.2)
R76,1 & D376,2 -=> # R377: - =(c_2 ¢.3) + P(c.2c.2) + =(c.1lc.3)
R377,1 & A3,2 --> % R378: + P(c_2 c_2) + =(c_1 c_3) + =(c.3c. 1)
R378 2=3 --> * D379: + P(c_2 c.2) + =(c.1 ¢ 3)
R361,3 & D379,2 --> % R380: + P(c.1c_2) + P(c_2c_2)
- P(c_2 c_1) + P(c_2c.2)
R380 2=4 --> # D381: + P(c_1c_2) +P(c_2c.2) ~-P(c_2cl)
D381,1 & D379 -=> % RW382: + P(c_3 c_2) + P(c_2c_2) - P(c_2c_1)

B.2.5. Pelletier: Example 53 105

RW382,3 & D379 -~> % RW383: + P(c_3 c_2) + P(c_2 c_2) - P(c_2c.3)
RW360,1 & D379 --> & R¥384: + P(c_3 c_2) + P(c_1 c_1) + P(c_2 c_2)
RW384,2 & D379 -=> % RW385: + P(c_3 c_2) + P(c_3 c_1) + P(c_2 c_2)
RW385,2 & D379 ~-> * RN386: + P(c_3 c_2) + P(c_3 c_3) + P(c_2 c_.2)
D379,2 & A2,1 -=> * P388: -~ =(c_2¢c_3) + P(c_2c_2)
p379,2 & D312,1 ~--> * P395: -~ P(c_3 c_2) + P(c_2c_2) + =(c_2 c_3)
P395,3 & P388,1 --> * R396: - P(c_3 c.2) + P(c.2 c_2) + P(c_2c_2)
R396 2=3 ~-> # D397: = P(c_3 c_2) + P(c.2c_2)
RW386,1 & D397,1 --> #* R398: + P(c_3 ¢_3) + P(c_2c_2) + P(c_2c.2)
R398 2=3 -=> # D399: + P(c_3 ¢_3) + P(c_2c_2)
RW383,1 & D397,1 ~-> * R400: + P(c.2 c_2) =- P(c_2c.3) + P(c.2c.2)
R400 1=3 -~> * D401: + P(c_2 c_2) - P(c_2 c_3)
D399,2 & D310,2 ~-> * R402: + P(c_3 c_3) + =(c_2 ¢_3)
D399,2 & R402 -=> % RN403: + P(c_3 c_3) + P(c_3 c_2)
RW403,2 & R402 --> % RW404: + P(c_3 c_3) + P(c_3 c_3)
RW404 (instance) --> % I405: + P(c.3 c_3) + P(c_3 ¢_3)
1405 1=2 --> % D406: + P(c_3 c_3)
D379,2 & D245,2 --> % P449: + =(£_1(c_3) c_2) + P(c.2 c.2)

+ P(c_1 c.2) - P(c.ic_l)
P449,3 & D379 -=> * RW450: + =(£_1(c_3) c_2) + P(c_2 c_2)

+ P(c_3 c_2) =~ P(c_1c_1)
RW450,4 & D379 --> % RW451: + =(f_1(c_3) c_2) + P(c_2 c_2)

+ P(c_3 c_2) = P(c_3 c_1)
RW451,4 & D379 ~=> * RW452: + =(£_1(c_3) ¢c_2) + P(c_2 ¢.2)

+ P(c_3 c.2) - P(c.3 c.3)
RWA52,4 & D406,1 --> * R453: + =(£_1(c_3) c_2) + P(c_2 c_2) + P(c_3 c_2)
R453,3 & D397,1 --> * R454: + =(f_1(c_3) c_2) + P(c_2 c_2) + P(c_2 c_2)
R454 2=3 --> % D455: + =(£_1(c_3) c_2) + P(c.2 c.2)
D379,2 & 111,2 ~~> % P504: - =(c_2 £_3(c_3)) + P(c_2 c_2)

+ P(f_1(c_1) ¢_2) + =(f_1(c_1) c_1)
P504,3 & D379 --> % RW505: - =(c_2 £_3(c_3)) + P(c_2 c.2)

+ P(£_1(c_3) c_2) + =(£f.1(c_1) c_1)
RW505,3 & D455 --> * RW506: - =(c_2 £_3¢c_.3)) + P(c_2 c_2)

+ P(c_2 c_2) + =(f_1(c_1) c_1)
RW506,4 & D379 --> » RW507: - =(c_2 £_3(c_3)) + P(c.2 c.2)

+ P(c_2 c.2) + =(f_1(c_3) c_1)
RW507,4 & D379 --> * RW508: - =(c_2 £_3(c_3)) + P(c_2 c_2)

+ P(c_2 c.2) + =(f_1(c.3) c_3)
RW508,4 & D465 ~-> % RW509: - =(c_.2 £.3(c_3)) + P(c_2 c_2)

+ P(c_2 c_2) + =(c_.2 c_3)
RR509 3=2 -=> % D510: - =(c_2 £_3(c_3)) + P(c_2c.2) + =(c.2c.3)
D510,3 & P388,1 =--> » R611: =~ =(c_2 £.3(c_3)) + P(c_2 c_2) + P(c_2 c_2)
R511 2=3 --> % D512: -~ =(c_.2 £_3(c_3)) + P(c_2 c_2)
D379,2 & R91,1 -=> % P538: + =(£.3(c_3) ¢.2) + P(c_2 c_2)

+ P(f_1(c.1) c.1) + =(f_1(c_1) c_1)
P538,1 & D512,1 ~-> * R539: + P(c_2 ¢_2) + P(f_1(c_1) c_1)

+ =(f_1(c_1) c_1) + P(c_2 c_2)
R539 1=4 -=> % D540: + P(c_2.¢_2) + P(f_1(c_1) c_1)

+ =(f_1(c_1) c_1)
D540,2 & D379 -~> * RW641: + P(c_2 c_2) + P(£_1(c_3) c_1)

+ =(f_1(c 1) ¢.1)
RW541,2 & D379 —-> % RW542: + P(c_2 ¢_2) + P(f_1(c.3) c.3)

+ =(f_1(c_1) c_1)
RW542,2 & D455 --> * RW543: + P(c_2 c_2) + P(c_2 c_3) + =(£f_1(c_1) c_1)
RW543,3 & D379 -=> * RW544: + P(c_2 ¢c_2) + P(c_2c.3) + =(£_1(c_3) c_1)
RW544,3 & D455 -=> % RW545: + P(c_2 c_2) + P(c_2c 3) + =(c.2c_1)
RW545,3 & D379 -~> % RW546: + P(c_2 c_2) + P(c_2c_3) + =(c_2 c_3)
RW546,3 & P388,1 =--> % R547: + P(c_2 c.2) + P(c_2 ¢_3) + P(c_2 c_2)
R547 1=3 -=> % D548: + P(c_2 c_2) + P(c_2 c_3)
D548,2 & D401,2 -—-> * R549: + P(c_2 c.2) + P(c_2 c_2)-
R549 1=2 ~=> % D550: + P(c_2 c_2)
D316,2 & D550,1 ~-> * R552: - P(c_1 c_2)
D310,2 & D550,1 ~--> # R553: + =(c.2 c_3)
D245,1 & R552,1 —-> * R554: + =(f_1(c.1) c_2) - P(c_1 c_1)
A2,1 & R553 ~-=> * RW608: - =(c_3 c_1)

106

R102,3 & R553 ——
R554,1 & R553 -5 %
D336,1 & R553 ——> %
RV689,2 & D342,1 --> =
R697,2 & RW608,1 --> *
RW663,3 & R698 --> *
RW719,2 & R698 —--> *
RW720,1 & R698 --> *
RN721,3 & D406,1 =--> *
R739,2 & RN608,1 --> *
RW692,1 & R742,1 --> *
R744,1 & RW608,1 —-> *

Refutation of Splitpart

RW663:

RWE89:
RW692:
R697:
RE698:
RW719:

RW720:
RW721:
R739:
R742:
R744:
R745:

similar to splitpart 1

B.2.6 Example 54

- P(f_1(c_1) c.1)
P(£f_1(c_1) c_3)
=(f_1(c_1) c_3)

=(f_1(c_1) c_3)
=(f_1(c_1) ¢c_3)
- P(f_1(c_1) c_1)
- P(c_3 c_3)
- P(f_1(c_1) c_1)

+
+ P(c.3 c_1) + =(c_1 c.3)
"
+

Appendix B. Commented Examples

+ =(f_1(c_1) c_1)
- P(c.1 c_ 1)
+ =(c_1 ¢_3)
+ =(f_1(c_1) c_1)

+ =(c_3 c_1) - P(c_3 c_3)

- P(c_3c¢_1) + =(c_3c_1) - P(c_3c.3)
- P(c_3 c_1) + =(c_3c_1)

- P(c_3 c_1)
+ =(c_1 c_3)

Example 54 is a nice mathematical problem proved in the fifties [Mon55, She53]. The biggest problem
with it was a typing error in F. Pelletier’s publication. He wrote IN(X K) and IN(Z Y) in the last line
of the axiom, which causes the unrefutability of the set of clauses.

Formulae Given to the Editor

Axioms: * Montague’s Paradox of Grounded Classes *
ALL Y (EX Z (ALL X IN(X Z) EQV X = Y))

* Z = {Y} *
ALL X REG(X)

EQV (ALL K IN(X K)
IMPL (EX Y INCY K) AND

HOT (EX Z IN(Z K)

Theorems: * REG of Montague Doesn’t Exist #
HOT (EX W (ALL X IN(X W) EQV REG(X)))

Set of Axiom Clauses Resulting from Normalization

* Al: All x:Any + =(x x)
* A2: All x,y:Any + IB(y £ 1(x)) - =(y x)

* A3: A1l x,y:Any - IH(y £_1(x)) +

AND IN(Z Y))))

=(y x)

Set of Theorem Clauses Resulting from Normalization

* T4: A1l x:Any + IB(x c_1) + IN(x £_3(x)
* T5: All x,y:Any + IR(y c_1) - IN(x £_3(
+ IN(£_2(x y) £.3(y))

* T6: All x,y:Any + IN(y c_1)

* T7: All x,y:Any -~ IN(y c_1) - IN(y x)
* T8: All x,y,z:Any - IN(z c.1) =~ 1i(z y)
- IE(x f_4(y z))

Refutation:

Al,1 & A2,2 -=> * Ri:

)
322

- IN(x £.3(y)) + IN(f_2(x y) x)

+ IN(f_4(x y) x)
- IN(x y)

A1l x:Any + IN(x £_1(x))

B.2.7. Pelletier: Example 55 107

17,3 & A3,1 --> * R2:

R1,1 & R2,2 -=> R3:

A2,1 & R2,2 -=> % R4:

R3,2 & R4 -=> RW5:
R1,1 & T8,2 ~=> * R6:

R6,3 & R4 -=> * RW7:
RW7 (factor) --> x F8:

F8,2 & R1,1 ~=> % R9:

T4,1 & R9,1 --> * R10:
R10,1 & T6,2 ~--> * Rit:
R11,1 & R9,1 --> * R12:
T5,1 & R9,1 -=> x R13:
R13,1 & R10,1 ~-> * Ri4:
R14,1 & T7,2 ~--> % R15:
R15,1 & R12,1 --> * R16:
R16,1 & T6,2 -=> % R17:
R17,1 & R9,1 ~-> % R18:
R16,1 & T5,2 --> * R19:
R19,1 & R9,1 --> * R20:
R20,1 & T8,3 --> * R21:
R21,2 & R14,1 --> * R22:
R22,1 & R12,1 --> * R23:
R23,1 & R18,1 --> * R24:

B.2.7 Example 55

All x,y:Any -~ IB(y c_1) - IN(y £_1(x))
+ =(f_4(£_1(x) y) x)
A1l x:Any - IB(x c_1) + =(£_4(f_1(x) x) x)
All x,y:Any - =(y x) - IK(y c_1)
+ =(£_4(£_1(x) y) x)
All x:Any - IN(x c_1) + =(x x)
All x,y:Any ~ IN(y c_1) - IN(x £f_1(y))
- IN(x £_4(£_1(y) y))
A1l x,y:Any - IN(x c_1) =~ IN(y £_1(x)) - IB(y x)
I8(c_1 ¢.1) - IN(c.1 f_1(c.1))
I8(c_1 c.1)

+ I8(c_1 f_2(c_1))

+ IN(c_1 c¢_1) + IE(£.3(c_1 c_1) c_1)

+ IN(£_3(c_1 c.1) c_1)

- IN(c_1 £.2(c_1)) + IN(£_3(c_1 c_1) £_2(c_1))

+ IN(f_3(c_1 c_1) £_2(c_1))

- IN(£_3(c.1 c_1) c_1)

+ IN(£.4(£_2(c.1) £_3(c_1 c_1)) £_2(c_1))

+ IN(£_a(£.2(c_1) £.3(c_1 c_1)) f_2(c_1))

+ IN(c_1 c_1)

+ IB(£_3(£_4(f_2(c_1) £.3(c_1 c_1)) c_1)
£_4(f_2(c_1) £.3(c_1 c_1)))

+ IN(E_3(£f_4(f_2(c_1) £.3(c_1 ¢c_1)) c_1)
£_4(£.2(c_1) £.3(c_1 c.1)))

+ I8(c_1 c_1)

+ IN(£_3(£_4(£f_2(c_1) £_3(c_1 c_1)) c_1) £_2(c_1))

+ IN(£_3(£f_4(£f_2(c_1) f_3(c_1 c_1)) c_1) £_2(c_1))

- IN(£f_3(c_1 c_1) c_1) - IE(£.3(c_1c.1) f_2(c_1))

- IN(£_3(f_4(£f_2(c_1) £_3(c_1 c_1)) c_1)
f_4(£_2(c_1) £.3(c_1 c_1)))

- IN(£_3(c_1 c.1) c_1)

- IN(£_3(£.4(£_2(c_1) £.3(c_1 c_1)) c_1)
f_4(f_2(c_1) f£_3(c_1 c_1)))

- IN(£_3(f_4(£_2(c_1) £_3(c.1 c_1)) c_1)
£_4(f_2(c_1) £.3(c.1 c_1)))

(N

Example 55 is a logical riddle given by L. Schubert. The question is: Who killed aunt Agatha? In
refutational theorem proving we have to prove the answer: Aunt Agatha killed herself (K(A 4)).

Formulae given to the editor

Axioms:

EX X L(X) ABD K(X &)

L (A) AND L(B) AND L(C)

ALL XL (X) INPLX=AORX=BORX=C
ALL Y,X K(X Y) IMPL H(X Y)

ALL X,Y X(X Y) IMPL BOT R(X Y)

ALL X H(A X) IMPL NOUT H(C X)

ALL X NOT X = B IMPL H(A X)

ALL X HOT R(X A) IMPL H(B X)

ALL X H(A X) IMPL H(B X)

ALL X (EX Y NOT H(X Y))

HOT A =B

Theorems: K(A A)

Set of Axiom Clauses Resulting from Normalization

A1: All x:Any + =(x x)

* A2: + L(c_1)

108

* A3:
A4:
Ab5:
A6:
AT:
A8:
A9:

LK B R K NN R A 3K)

A10:
A11:
A12:
A13:
Al4:
Al15:

Appendix B. Commented Examples

+ K(c_1 a)

+ L(a)

+ L)

+ L(c)

A1l x:Any - H(x £_1(x))

- =(a b)

All x,y:Any - K(y x) + H(y x)
All x,y:Any - K(y x) - R(y x)
All x:Any - H(a x) - H(c x)
All x:Any + =(x b) + H(a x)
All x:Any + R(x a) + H(b x)
All x:Any - H(a x) + H(b x)
All x:Any - L(x) + =(xa) +=(xb) + =(xc)

Set of Theorem Clauses Resulting from Normalization

* T16: - K(a a)

Refutation:

A2,1 & A15,1
R5,1 & T16,1
P6,1 & A3,1
A12,2 & A11,1
A13,1 & A10,2
R13,1 & A7,1
212,2 & Al14,1
R17,2 & A7,1
R14,1 & R18
R7,1 & RW19,1
P20,1 & A3,1
R12,2 & R21
RW26,2 & A9,2
R27,1 & A8,1
R28,1 & A3,1

--> * R5: + =(c_1a) + =(c_1b) +=(c_1¢)
~-> % P6: - K(c.1 a) + =(c_1b) +=(c_1c)
--> * R7: + =(c_1 b) + =(c_1¢c)

--> * R12: All x:Any + =(x b) - H(c x)

~-=> % R13: All x:Any + H(b x) - K(x a)

~=> * R14: - K(f_1(b) a)

-=> * R17: All x:Any + =(x b) + H(b x)

-~> * R18: + =(£_1(b) b)

--> * RW19: - K(b a)

~~> % P20: -~ K(c_1 a) + =(c_1 ¢)

--> % R21: + =(c_1 ¢)

-=> % RW26: All x:Any + =(x b) -~ H(c_1 x)

-=> % R27: + =(a b) - K(c.1 a)

--> % R28: - K(c_1 a)

-=> % R29: [

B.2.8 Example 56

Example 56 is the first equational one of F. Pelletier using a function.

Formulae given to the editor

Theorems: (ALL X (EX Y P(Y) AND X = F(Y)) IMPL P(X))
EQV (ALL X P(X) IMPL P(F(X)))

Set of Theorem Clauses Resulting from Normalization

T1:
T2:
T3:
T4:
T5:
T6:
T7:
T8:

L I I B B AR

A
+

+
+
+

A

11 x:Any + =(x x)

P(c.1) + P(c_3)

P(c_1) - P(£(c_3))

=(c_2 f(c_1)) + P(c_3)

=(c.2 f(c_1)) - P(£(c.3))

P(c_2) + P(c.3)

P(c_2) - P(£f(c_.3))

11 x,y,z:Any - P(z2) - =(y £(z)) + P(y)
- P(x) + P(£f(x))

Initial Operations on Theorems

T8,2 & T1,1

--> # R1: A1l x:Any - P(x) + P(f(x)) - P(x) + P(£(x)) \

B.2.10. Pelletier: Example 58 109

R1 3=1 --> * P2: All x:Any + P(£(x)) - P(x) + P(f(x))
D2 3=1 --> % D3: All x:Any - P(x) + P(f(x))
Refutation:

D3,2 & T7,2 ~-> % R4: - P(c_3) - P(c_1)

R4,1 & 76,2 ~-> x R5: = P(c_1) = P(c_1)

RS 1=2 --> * D6: - P(c_1)

D3,2 & T3,2 =~> * R7: = P(c_3) + P(c_2)

R7,1 & T2,2 --> % R8: + P(c_2) + P(c_2)

B8 1=2 --> * D9: + P(c_2)

D3,2 &£ T5,2 =~-> % R10: =~ P(c_3) + =(c_1 £(c.2))

R10,1 & T4,2 --> * Ri1: + =(c_1 £(c_2)) + =(c.1 £(c_2))
R11 1=2 -=> * D12: + =(c_1 £(c_2))

D12,1 & D3,2 ~--> * Pi3: + P(c_1) = P(c.2)

P13,2 &£ D9,1 =--> * R14: + P(c_1)

R14,1 & D6,1 --> = R15: []

B.2.9 Example 58

Example 58 checks pure equation application.

Formulae Given to the Editor

Axioms: ALL X,Y F(X) = G(Y)
Theorems: ALL X,Y F(F(X)) = F(G(Y))

Set of Axiom Clauses Resulting from Normalization

At: ALl x:Any + =(x x)
* A2: ALl x,y:Any + =(£(y) g(x))

Set of Theorem Clauses Resulting from Hormalization

* T3: - =(£(f(c_2)) £(glc_1)))

Refutation:

A2,1 & T3,1 --> = Pi: All x:Any - =(g(x) f(g(c_1)))
P1,1 & A2,1 --> #* R2: []

B.2.10 Example 61

Example 61 checks whether the prover is able to deal with associativity.

Formulae given to the editor

Axioms: ALL X,Y,Z F(X F(Y Z)) = F(F(X Y) Z)

Theorems: ALL X,Y,Z W F(X F(Y F(Z W))) = FF(F(XY) Z) W)

Set of Axiom Clauses Resulting from Normalization

Al: A1l x:Any + =(x x)
* A2: All x,y,z:Any + =(£(z2 £(y x)) £(£(z y) x))

110 Appendix B. Commented Examples

Set of Theorem Clauses Resulting from Normalization

* T3: - =(£(c_4 £(c_2 £(c_3 c_1))) £(£(£(c_4 c_2) c_3) c_1))
Refutation:
A2,1 &8 T3,1 ~-> * Pi: - =(f(c_.4 £f(c.2 £f(c.3 c_1)))

f(£f(c_4 c_2) £(c_3 c_1)))
P1,1 & A2,1 --> =* R2: []

B.2.11 Example 63

Example 63 is a simple group example.

Formulae Given to the Editor

Axioms: ALL X,Y,Z F(X F(Y 2)) = F(FXY) 2)
ALL X F(A X)) =X
ALL X (EX Y F(Y X) = 4)

Theorems: ALL X,Y,Z F(X Y) = F(Z Y) IMPL X = Z

Set of Axiom Clauses Resulting from Normalization

Al: All x:Any + =(x x)
* A2: A1) x,y,z:Any + =(£f(z £(y x)) £(£(z y) x))
* A3: A1l x:Any + =(f(a x) x)
* A4: All x:Any + =(£f(£_1(x) x) a)

Set of Theorem Clauses Resulting from Hormalization

* Th: + =(£f(c_3 c_1) f(c_2 c_1))

* T6: - =(c_3 ¢_2)
Refutation:
A4,1 & A2,1 --> * P1: All x,y:Any + =C£(£_1(y) £(y x)) £(a x))
Pi,1 2 A3 -=> % RW2: All x,y:Any + =(£(£f_1(y) £(y x)) x)
A,1 & RW2,1 -=> * P4: All x:Any + =(£(f_1(£_1(x)) a) x)
15,1 & RW2,1 --> % P10: + =(£(£_1(c_3) £(c_2 c_1)) c_1)
P4,1 & RW2,1 --> % Pii: A1l x:Any + =(£C£_1(£_1(£_1(x))) x) a)
P11i,1 & RN2,1 --> # P12: A1l x:Any + =(£(£_1(£_1(£_1{(£_1(x)))) a) x)
Pi2,1 & P4 -=> * RW13: All x:Amy + =(£_1(£_1(x)) x)
P4,1 & RWi3 --> * RWi5: All x:Any + =(f(x a) x)
RWi3,1 & A4,1 --> #* P19: All x:Any + =(£f(x £_1(x)) a)
RW13,1 & RW2,1 -~> = P20: All x,y:Any + =(£f(y £(£.1(y) x)) x)
P19,1 & A2,1 -=> # P21: All x,y:Any + =(£(y £f(x £_1(f(y x)))) a)
P10,1 & P21,1 --> * P22: + =(£(£_1(c_3) £(£(c_2 c_1) £_1(c_1))) a)
P22,1 & A2 ~=> * RW23: + =(£(£_1(c_3) £(c_.2 f(c_1 £_1(c_1)))) a)
RW23,1 & P19 ~-> = RW24: + =(f(f_1(c_3) £(c_2 a)) a)
RW24,1 & RW15 -=> * RW25: + =(f£(£_1(c_3) c_2) a)
RW25 --> * RS26: + =(a £(£f_1(c_3) c.2))
RW15,1 & RS26 -~> * RW29: All x:Any + =(£(x £(£_1(c_3) <c_2)) x)
P20,1 & RW29,1 --> % P35: + =(c_2 c_3)
P35,1 & T6,1 --> % R36: []

B.2.12. Pelletier: Example 64 111

B.2.12 Example 64

Example 64 is another simple group theorem.

Formulae given to the editor

Axioms: ALL X,Y,Z F(X F(Y Z)) = F(F(X Y) 2)
ALL X F(A X) = X
ALL X (EX Y F(Y X) = 4)

Theorems: ALL X,Y F(Y X) = A IMPL F(X Y) = A

Set of Axiom Clauses Resulting from Bormalization

Al: All x:Any + =(x x)

A2: A1l x,y,z:Any + =(£f(z £(y x)) £(£(z y) x))
A3: A1l x:Any + =(f(a x) x)

A4: A1l x:Any + =(f(f_1(x) x) a)

* ¥ * *

Set of Theorem Clauses Resulting from Normalization

* T5: + =(f(c_1 c_2) a)

* T6: - =(f(c_2 c_1) a)
Refutation:
A4,1 & A2,1 -=> * P3: All x,y:Any + =(£(£_1(y) £(y x)) f(a x))
P3,1 & A3 ~=> % RW4: All x,y:Any + =(£(£_1(y) £(y x)) x)
T5,1 & RW4,1 --> = P5: + =(£(£_1(c_1) a) c_2)
P5 -=> * R§6: + =(c_2 f(£f_1(c.1) a))
T6,1 & RS6 --> * RW8: ~ =(£(£(f_1(c_1) a) c_1) a)
R¥S,1 & A2 -=> % RW13: - =(£(f_1(c_1) f(a c_1)) a)
RW13,1 & A3 -=> % RW14: - =(£(f_1(c_1) c_1) a)
RW14,1 & A4 --> * RW15: - =(a a)
RW15,1 & AL,1 --> * R16: []

B.2.13 Example 65

We omit example 65 because it is exaclly the same as B.1.1.

B.2.14 Example 73, Four Pigeons — Three Holes

The general pigeon hole problem is: it is impossible that there are n holes and n + 1 pigeons, every
pigeon is in a hole, and no hole contains two pigeons [CR79]. It is no problem to prove the general
problem with arbitrary n [KP92], but of course the idea is to use the problem as a scheme to generate
arbitrary complicated test examples.

The original formulation was in propositional logic. F. Pelletier proposes a series of corresponding
problems specified using the equality predicate. The problem selected here is the instance for n = 3.

Formulae given to the editor

Axioms: EX X,Y,Z,W P(X) AND P(Y) AND P(Z) AND P(W)
AEND HOT X = Y AND HOT X = Z AND ROT X
AND HOT Y = Z ARD BOT Y = W AND NOT Z
EX X,Y,Z H(X) AND H(Y) AND H(Z)

no
«

112

Appendix B. Commented Examples

AND NOT X = Y AND NOT X = Z AND NOT ¥ = 2

AND ALL ¥ H(W) IMPL (W = X OR W =

ALL X P(X) IMPL EX Y H(Y) AND In(X Y)
ALL X .

YOR W =12

H(X) IMPL ALL Y,Z P(Y) ARD P(Z) AND In(Y X) AND In(Z X) IMPL Y = Z

Theorems: Hone

Set of Axiom Clauses Resulting from Normalization

Ai: All x:Any + =(x x)
* A2: + P(c_1)
* A3: + P(c_2)
* A4: + P(c_3)
* AS: + P(c_4)
* A6: - =(c_1 c_2)
* A7: - =(c_1 c_3)
* A8: - =(c_1 c_4)
* A9: ~— =(c_2 c.3)
* A10: - =(c_2 c_4)
. * A11: - =(c_3 c_4)
A12: + H(c.5)
A13: + H(c_6)
* A14: + H(c.T)
A15: - =(c_5 c_6)
A16: -~ =(c_5 c.7)
ALT7: =~ =(c_6 c_7)
* A18: ALl x:Any - P(x) + H(£_1(x))
* A19: All x:Any - P(x) + IN(x f_1(x))
* A20: All x:Any - H(x)
* A21: A1l x,y,z:Any - H(z) - P(y) - P(x)
+ =(y x)
Refutation:

+ =(x c.B) + =(xc¢_6) +=(xc.7)

- IB(y z) - IN(x z)

A18,2 & A20,1 ~=> % R1: All x:Any - P(x) + =(f_1(x) c_5)
+ =(f_1(x) c.6) + =(f_1(x) c.7)
A5,1 & Ri,1 -=> % R2: + =(f_1(c_4) ¢_5) + =(£f_1(c_4) c_6)
+ =(f_1{(c_4) c.7)
A4,1 & R1,1 --> % R3: + =(£_1(c_3) ¢.5) + =(f_1(c_3) c_6)
+ =(£f_1(c_3) c_7)
A3,1 & R1,1 -=> * R4: + =(f_1(c_2) c_5) + =(f_1<c_2) c_6)
+ =(f_1(c_2) ¢.7)
A2,1 & R1,1 --> % R5: + =(f_1(c_1) c_5) + =(£f_1(c_1) c_6)
+ =(£f_1(c_1) ¢_.7)
R2,1 & A19,2 -~> % P6: + IB(c_4 c_5) + =(f_1(c.4) c_6)
+ =(£f_1(c_4) c.7) - P(c_4)
P6,4 & A5,1 --> % R7: + IN(c_4 c_5) + =(f_1(c_4) c_6)
+ =(f_1(c_4) <.7)
R3,1 & A19,2 -=> % P8: + IN(c_3 c_5) + =(f_1(c_3) c_6)
+ =(£_1(c_3) c.7) = P(c_3)
P8,4 & A4,1 ~=> *x R9: + IN(c_3 c_5) + =(£f_1(c_3) c_6)
+ =(f_1(c_3) c_7)
R4,1 & A19,2 -=> % P10: + IN(c.2 c_5) + =(f_1(c.2) c_6)
' + =(f_1(c.2) c.7) - P(c_2)
P10,4 & A3,1 --> * R11: + IN(c_2 ¢_5) + =(f_1(c_2) c_6)
+ =(£f_1(c.2) c.7)
A19,2 & A21,5 --> * R14: All x,y:Any - P(y) - H(£f.1(y)) - P(x)
- P(y) - IN(x £_1(y)) +=(xy)
R14 4=1 -~> % Di5: All x,y:Any - H(f_1(x)) - P(y) - P(x)
- IN(y £.1(x)) + =(y x)
Di5,1 & A18,2 --> % R16: All x,y:Any - P(x) - P(y) - IN(x £.1(y))
+=(xy) - Py

B.2.14. Pelletier: Example 73, Four Pigeons - Three Holes 113

R16 2=5 -=> * D17: All x,y:Any - P(x) - P(y) - IE(x f_1(y))
+ =(x y)
R5,1 & D17,3 -=> % P18: All x:Any - IN(x c_5) + =(f_1(c_1) c_6)
+ =(f_1(c_1) ¢ 7) - P(x) - P(c.1)
+ =(x c_1)
P18,5 2 A2,1 ~=> * R19: All x:Any - IN(x c_5) + =(f_1(c_1) c.6)
+ =(f_1(c.1) c.7) - P(x)
+ =(x c_1)
R11,1 & R19,1 -=> * R20: + =(f_1(c_2) c_6) + =(£_1(c_2) c_7)
+ =(f_1(c_1) ¢c_6) + =(f_1(c_1) c_7) - P(c_2)
+ =(c_2 c_1)
R20,6 & A6,1 ~=> % R21: + =(f_1(c_2) c_6) + =(£f_1(c.2) c_7)
+ =(£f_1(c_1) c_.6) + =(f_1(c_1) c_.7) - P(c_2)
R21,5 & A3,1 -=> * R22: + =(£f_1(c_2) c_6) + =(£_1(c_2) c_7)
+ =(£f_1(c_1) c_6) + =(f_1(c_1) c_7)
R9,1 & R19,1 ~-> # R23: + =(£_1(c_3) c_6) + =(£_1(c_3) c_7)
+ =(f_1(c_1) c_6) + =(f_1(c_1) c_7) -~ P(c_3)
+ =(c_3 c_1)
R23,6 & A7,1 --> * R24: + =(£.1(c_3) c_6) + =(£_1(c_3) ¢_7)
+ =(f_1(c_1) c_6) + =(f_1(c_1) ¢_7) -~ P(c_3)
R24,5 & A4,1 -=> % R25: + =(£_1(c_3) c_6) + =(£_1(c.3) c.7)
+ =(£_1(c_1) c_6) + =(£_1(c_1) c_7)
R7,1 & R19,1 —=> * R26: + =(£_1(c_4) c_6) + =(f_1(c_4) c_7)
+ =(£f_1(c_1) c_6) + =(£f_1(c_1) c_7) - P(c_4)
+ =(c_4 c_1)
R26,6 & A8,1 --> % R27: + =(£f_1(c_4) c_6) + =(£f_1(c_4) c.7)
+ =(f_1(c_1) c_6) + =(f_1(c_1) ¢.7) =~ P(c_d)
R27,5 & A5,1 -=> % R28: + =(f_1(c_4) c_6) + =(£f_1(c_4) c_7)
+ =(£f_1(c_1) c_6) + =(f_1(c.1) c.7)
R4,1 & D17,3 ~-> % P35: All x:Any - IN(x c_5) + =(f_1(c_2) c_6)
+ =(£_1(c_2) c_7) - P(x) - P(c_2)
+ =(x c_2)
P35,5 & A3,1 ~—> % R36: All x:Any - IN(x c_5) + =(f_.1(c_2) ¢_6)
+ =(£_1(c_2) c_7) - P(x)
+ =(x ¢c_2)
R9,1 & R36,1 --> % R37: + =(£_1(c_3) c_6) + =(£.1(c_3) c_7)
+ =(£_1(c_2) c_6) + =(£f_.1(c_2) ¢.7) - P(c.3)
+ =(¢_3 c.2)
R37,6 & 49,1 -=> % BR38: + =(£_1(c_3) ¢_6) + =(£_1(c_3) c_T)
+ =(f_1(c_2) c_6) + =(£f_1(c_2) c_7) = P(c_3)
R38,5 & A4,1 —=> # R39: + =(£_1(c_3) c_6) + =(£_1(c_3) c_7)
+ =(£_1(c_2) c_6) + =(f_1(c_2) c.7)
R7,1 % R36,1 -=> % R40: + =(f_1(c_4) c_6) + =(£_1(c_4) c_T)
+ =(£.1(c_2) c_6) + =(f_1(c_2) c_.7) -~ P(c_4)
+ =(c_4 c_2)
R40,6 & A10,1 -=> * R41: + =(£f_1(c_4) c_6) + =(f_1(c_4) c_.7)
+ =(£f_1(c_2) c_6) + =(£f_1(c_2) c_7) - P(c_4)
R41,5 & A5,1 -=> % R42: + =(f_1(c_4) c_6) + =(f_1(c_4) c_7)
+ =(f_1(c_2) c_6) + =(£f_1(c_2) c_7)
R39,3 & A19,2 ~=> % P43: + IH(c_2 c_6) + =(f_1(c_3) c_6)
+ =(£.1(c.3) .7y + =(£f.1(c_2) ¢.7) - P(c.2)
P43,5 & A3,1 -=> % R44: + IN(c_2 c_6) + =(£f_1(c_3) c_6)
+ =(f_1(c_3) c.7) + =(£_1(c.2) c.7)
R42,3 & A19,2 -=> % P45: + IN(c_2 c¢_6) + =(f_1(c_4) c_6)
+ =(f_1(c_4) c.7) + =(f_1(c_2) c_7) = P(c_2)
P45,5 & A3,1 -~> * R46: + IN(c_2 c_6) + =(f_1(c_4) c_6)
+ =(£f_1(c_4) c_7) + =(£_1(c_2) <_.7)
R3,1 & D17,3 ~=> * P4T7: All x:Any - IN(x c_5) + =(f_1(c_3) c_6)
+ =(£_1(c_3) c.7) = P(x) - P(c.3)
+ =(x c_3)
P47 .5 & A4,1 --> * R48: All x:Any - IN(x c_5) + =(£f_1(c_3) c_6)
+ =(f_1(c_3) c_7) -~ P(x)
+ =(x c¢_3)
R7,1 & R48,1 --> * R49: + =(f_1(c_4) c_6) + =(£f_1(c_4) c_7)

+ =(f_1(c_3) c_6) + =(£f_1(c_3) c_7) =~ P(c_4)

114

R49,6 &
R50,5 &
R51,3 &
P52,5 &

R22,3 &
P56,6 &
R25,3 &
P58,6 &

R44,1 &

R60 2=5
D61 1=4

D62,6 &
R63,5 &

R28,3 &
P67,6 &

R53,1 &

R69 2=5
D70 1=4

D71,6 &
R72,5 &
R46,1 &

R74 2=5

D75 1=4

Al1,1
A5,1
A19,2
A4,1

D17,3

A2,1

p17,3

A2,1

R59,1

26,1
A3,1

D17,3

42,1

R68,1

A7,1
A4,1

R68,1

R50:

R51:

P52:

R53:

P56:

= R57:

P58:

R59:

R60:

D61:

D62:

R63:

R64:

P67:

R68:

R6E9:

D70:

D71:

R72:

R73:

R74:

D75:

D76:

Appendix B. Commented Examples

+ =(c_4 c_3)

+ =(£_1(c_4) c.6) + =(f_1(c_4) c_7)

+ =(f_1(c_3) ¢_6) + =(£_1(c_3) c_7) =~ P(c_4)

+ =(f_1(c_4) c_6) + =(£_1(c_4D) c.7)

+ =(£_1(c_3) c_6) + =(£f_1(c_3) c_7)

+ IN(c_3 c_6) + =(f_1(c_4) c_86)

+ =(£f_1(c_4) c_.7) + =(£f_1(c_3) c.7) = P(c.3)

+ IH(c_3 ¢_6) + =(f_1(c_4) c_6)

+ =(f_1(c_4) c_7) + =(£_1(c_3) c_7)

All x:Any ~ IN(x c_6) + =(f_1(c_2) c_6)
+ =(£_1(c_2) c_.7) + =(f_1(c_1) c_7)
- P(x) = P(c_1) + =(xc_1)

All x:Any - IN(x c_6) + =(f_.1(c_2) c_6)
+ =(£_1(c_2) c_7) + =(£_1(c.1) c_7)
- P(x) +=(xc.1)

All x:Any - IN(x c_6) + =(£_1(c_3) c.6)
+ =(£_1(c_3) c.7) + =(£f_1(c.1) c_7)
- P(x) =-P(c_1) + =(x c.1)

A1l x:Any - IN(x c_6) + =(£f.1(c_.3) c_6)
+ =(f_1(c_3) c_7) + =(f_1(c_1) c.7)
- P(x) +=(xc_1)

+ =(£_1(c_3) c_6) + =(£_1(c_.3) c_7)

+ =(f.1(c.2) c.7) + =(£f_1(c_.3) c_6)

+ =(£_1(c_3) c_7) + =(£f_1(c_1) ¢_.7) - P(c.2)

+ =(c.2 c 1)

+ =(£f.1(c.3) c_6) + =(£.1(c.3) c.7)

+ =(f_1(c_2) c_7) + =(£f_1(c_3) c_6)

+ =(f_1(c_1) ¢_7) - P(c_2) + =(c_2 c_1)

+ =(£_1(c_3) c_6) + =(£_1(c_3) c_7)

+ =(f_1(c_2) c_7) + =(£f_1(c_1) c.7) - P(c.2)

+ =(c_2 c_1)

+ =(£_1(c.3) ¢c_6) + =(£_1(c_3) c_7)

+ =(f_1(c_2) c.7) + =(f_1(c_1) c_7) - P(c_2)

+ =(£_1(c.3) ¢c_6) + =(£.1(c_3) c_.7)

+ =(f_1(c_2) ¢ 7) + =(£f_1(c.1) c_.7)

All x:Any - IN(x c_6) + =(£_1(c_4) c_6)
+ =(f_1(c_4) c_7) + =(f_1(c_1) c_.7)
- P(x) - Plc_1) + =(x c_1)

A11 x:Any - IN(x c_6) + =(f_1(c_4) c_6)
+ =(f_1(c_4) ¢_7) + =(£f_1(c.1) c_T)
- P(x) + =(xc.1)

+ =(£f_1(c_4) c_6) + =(£_1(c_4) c.7)

+ =(£_1(c_3) c.7) + =(£f_1(c_4) c.6)

+ =(f_1(c_4) c_7) + =(£f_1(c_1) c.7) - P(c_3)

+ =(c_3 c_1)

+ =(f_1(c_4) c_6) + =(f_1(c_4) c.7)

+ =(f_1(c_3) c_7) + =(f_1(c_4) c_6)

+ =(f_1(c_1) c_.7) - P(c_3) + =(c.3 c.1)

+ =(£.1(c_4) c_6) + =(f_1(c_4) c.7)

+ =(f_1(c_3) c_.7) + =(£_1{(c_1) ¢_7) - P(c.3)

+ =(c_3 c_1)

+ =(f_1{c_4) c.6) + =(f_1(c_4) c_7)

+ =(£_1(c_3) c.7) + =(£f_1(c_1) c.7) - P(c_3)

+ =(f_1(c_4) c_8) + =(f_1(c_4) c.T)

+ =(£_1(c_3) c_7) + =(£_1(c_1) c.7)

+ =(£f_1(c_4) c_6) + =(£f_1(c_4) c_7)

+ =(f_1(c_2) c_7) + =(£f_1(c_4) c¢_6)

+ =(f_1(c_4) c_7) + =(£_1(c_1) c.7) - P(c_2)

+ =(c_2 c_1)

+ =(f_1(c_4) c_6) + =(£f_1(c_4) c_7)

+ =(£.1(c.2) c.7) + =(f_1(c_4) c_6)

+ =(f_1(c_.1) ¢_7) - P(c_2) + =(c_2 c_1)

+ =(f_1(c_4) c.6) + =(f.1(c.4) c.7)

+ =(f_1(c_2) c¢_7) + =(£f_1(c_1) c¢_7) = P(c_2)

+ =(c_2 c_1)

B.2.14. Pelletier: Example 73, Four Pigeons — Three Holes

D76,6 & A6,1
R77,5 & A3,1
R78,4 & A19,2
P81,5 & A2,1

R39,3 & D17,3

P83,6 & A3,1

R42,3 & D17,3

P85,6 & A3,1

R53,1 & R86,1

R87 2=5

D88 1=4

D89,6 & A9,1
R90,5 & A4,1
R91,4 & A19,2
P92,5 & A3,1

R64,4 & D17,3

P96,6 & A2,1

R73,4 & D17,3

P98,6 & A2,1

R93,1 & R99,1

R100 1=4

D101 2=4

D102 3=4
D103,4 & A3,1

R104,4 & A6,1

R77:

R78:

P81 :

R82:

P83:

R84:

P85:

R86:

R87:

D88:

D89:

R9O:

RO1:

P92:

R93:

P96:

RO7:

P98:

R99:

R100:

D101:

D102:

D103:

R104:

R105:

=(£f_1(c_4) c_6)
=(f_1(c_2) c_.7)
=(f_1(c_4) c_6)
=(£f_1(c_2) c_.7)

+
+
+
+

=(£_1(c_4) c.7)
=(f_1{c_1) c.T)
=(f_1(c_4) c_7)
=(£f_1(c_1) c_7)

- P(c.2)

IN(c_1 c.7) + =(f_1(c_4) c_6)
=(f_1(c_4) c_.7T) + =(£f_1(c_2) c_7) - P(c_1)
I8(c_1 c.7) + =(£_1(¢_4) c_6)
=(f_1(c_4) c_.7) + =(£f_1(c_2) c_7)
A1l x:Any - IN(x c_6) + =(£f_1(c_3) c_6)

+ =(£f_1(c_3) c.7) + =(f_1(c_2) c.7)

- P(x) - P(c_2) + =(xc_2)
All x:Any ~ IN(x c_6) + =(f_1(c_3) c_6)

+ =(f_1(c_3) ¢ 7) + =(£f_1(c_2) c_7)

- P(x) + =(x c.2)
A1l x:Any - IE(x c_6) + =(f_1(c_4) c_6)

+ =(£f_1(c_4) c.7) + =(f_1(c_2) c.7)

~ P(x) - P(c.2) + =(xc_2)
All x:Any ~ IN(x c_6) + =(f_1(c_4) c_6)

+ =(f_1(c_4) c_7) + =(£f_1(c.2) c_7)
- P(x) + =(x c_2)
=(f_1(c_4) c_6) + =(£f_1(c_4) c.7)
=(f_1(c_3) c_.7) + =(£_1(c_4) c_6)
=(f_1(c_4) <.7) + =(£_1(c_2) c_7) =~ P(c_3)
=(c_3 c_2)
=(f_1(c_4) c_6)
=(£.1(c_3) c.7)
(f_1(c_2) c_7)
(f_1(c_4) c_6)
=(£f_1(c_3) c_7)
=(c.3 ¢c_2)
=(f_1(c_4) c_6) + =(f_1(c_.4) c.7)
=(f_1(c_3) c_7) + =(£_1(c_2) ¢_.7) =~ P(c_3)
+
+

B I .

=(f_1(c_4) c_7)
=(f_1(c_4) c_6)

P(c_3) + =(c_3 c_2)
=(f_1(c_4) c_7)
=(f_1{(c_2) c_.7) - P(c_3)

]
o+ o+

+ o+

=(f_1(c_4) c_6) =(£_1(c_4) c_.7)
=(f_1(c_3) c.7) =(f_1(c_2) c_7)
IN(c.2 c.7) + =(f_1(c_4) c.6)
=(£f_1(c_4) c_7) + =(£_1(c_3) c.7) - P(c.2)
IB(c.2 c_7) + =(£.1(c_4) c_6)
=(£f_1(c_4) c.7) + =(£_.1(c.3) c_.7)
All x:Any - IN(x c_7) + =(f_1(c.3) c_6)
+ =(£_1(c_3) c.7) + =(£f.1(c_2) c_7)
- P(x) = P(c_1) + =(xc.1)
All x:Any - IN(x c.7) + =(£.1(c_3) c_6)
+ =(f_1(c.3) c.7) + =(£f_1(c_.2) c_.7)
- P(x) +=(xc 1)
All x:Any - IN(x c_7) + =(f_1(c_4) c_6)
+ =(f_1(c_4) c.7) + =(£_1(c_3) c_T)
- P(x) - P(c_1) + =(xc_1)
All x:Any - IN(x c_7) + =(f_1(c_4) c_6)
+ =(f_1(c_4) c.7) + =(f_1(c.3) c_7)
- P(x) + =(x c.1)
=(£f_1(c_4) c_6) =(f_1(c_4) c_7)
=(£.1(c.3) ¢.7) =(f_1(c_4) c_6)
=(f_1(c_4) c_.7) + =(£_1(c_3) ¢_7) = P(c_2)
=(c.2 c_1)
(f_1(c_4) c_6)
(f_1(c_3) c_.7)
=(£_1(c_3) c_7)
=(£f_1(c_4) c_6)
=(£f.1(c_3) c_7)
=(c.2 c_1)
=(£f_1(c_4) c_6)
=(£_1(c_3) c.7)
=(f_1(c_4) c_6)
=(£_1(c_3) c_7)
=(f_1(c_4) c_6)

T T T T S S R S A A A A A 2 -

+ o+

=(f_1(c_4) c.7)
=(£_1(c_4) c_7)

P(c_2) + =(c_2 c.1)
=(£_1(c_4) c_7)
=(f_1(c_3) c_.7) - P(c_2)

+ 4+ o+

=(£_1(c_4) <.7)
P(c_2) + =(c.2 c_1)
=(f_1(c_4) c.7)
=(c_2 c_1)
=(f_1(c_4) c.7)

O T S S N A N s

b0+

115

116

R105,3 & 419,2
P106,4 & A4,1

R10O7,1 & A21,4
R108,4 & A4,1

R109,3 & A14,1

R82,1 & R110,4
R1i1 1=4

D112 2=4
D113,4 & A2,1
R114,4 & A7,1
R115,3 & A19,2
P116,4 & A3,1

R117,1 & R110,4

R118 1=3
D119 2=3
D120,3 & A3,1
R121,3 & A9,1
R122,1 & A19,2
P123,3 & A5,1
R124,1 & R84,1
R125,6 & Al10,1

R126,5 & A5,1

R124,1 & R59,1

R128,6 & A8,1
R129,5 & A5,1

R124,1 % R57,1

R131,6 & A8,1
R132,5 & A5,1
R122,1 & D17,3

P134,4 & A5,1

*

P106:
R107:

R108:

R109:

R110:

Ri11:

D112:

D113:
Ri114:
R115:
P116:
R117:

R118:

D119:
D120:
R121:
R122:
P123:
R124:
R125:
R126:

R127:

R128:

R129:
R130:

R131:

R132:
R133:
P134:

R135:

Appendix B. Commented Examples

=(£_1(c_3) c_.7)
I8(c_3 c_7) + =(£f_1(c_4) c_6)
=(f_1(c_4) c.7) - P(c_3)
I8(c_3 c.7) + =(f_1(c_4) c_6)
=(f_1(c_4) c.7)
All x:Any + =(£_1(c_4) c_6) + =(£f_1(c_4) c_7)
- H(c_7) - P(c_.3) -~ P(x)
- IE(x c_.7) + =(c.3 x)
All x:Any + =(f_1(c_4) c_6) + =(f.i(c_4) c.7)
- H(c_7) =~ P(x) - IN(x c_.7)
+ =(c_3 x)
All x:Any + =(f_1(c_4) c_6) + =(f_1(c_4) c_7)
- P(x) - IB(x c.7) + =(c_3 x)
=(f_1(c_4) c_6) + =(f_1(c_4) c_7)
=(£f_1(c_2) c_7) + =(£f_1(c_4) c_6)
=(£_1(c.4) ¢_7) -~ P(c_1) + =(c_3 c_1)
+
+

+ 4+ o+ o+

=(f_1(c_4) c_6) =(f_1(c_4) c.1)
=(£_1(c_2) c.7) =(£_1(c_4) c_.7) = P(c_1)
=(c_3 c_1)

=(f_1(c._4) c_6) + =(£f_1(c_4) c_7)
=(£_1(c_2) c.7) = P(c_1) + =(c.3 c_1)
=(£f_1(c_4) c_8) + =(f_1{(c_4) c.7)
=(£f.1(c_2) ¢ 7) + =(c_3 c_1)

=(£.1(c_4) c_6) + =(f_1(c.d) c_7)
=(£f_1(c_2) c.7)

IB(c.2 c_7) + =(f_1(c_4) c_6)

=(f_1(c_4) c_7) - P(c_2)

IN(c. 2 ¢_.7) + =(£f_1(c_4) c_6)

=(f_1(c_4) c_7)

=(f_1(c_4) c_6) + =(£_1(c_4) c_7)
=(f_1(c_4) c_6) + =(£_1(c_4) c_7) - P(c.2)
=(c_3 c_2)

=(f_1(c_4) ¢c_6) + =(f_1(c_4) c.7)
=(f_1(c_4) c_7) - P(c_2) + =(c_3c.2)
=(f_1¢c_4) c_6) + =(£f_1(c_4) c_7) - P(c_.2)
=(c_3 c_2)

=(£f_1(c_4) c_6) + =(£f_1(c_4) c.7)

=(¢.3 c_2)

=(£f_1(c_4) c_6) + =(f_1(c_4) c_7)

I8(c_4 c_6) + =(f_1(c_4) c_7) - P(c_4)
I8(c_4 c_6) + =(£f_1(c_4) c.7)

=(f_1(c_4) c_7) + =(£_1(c_3) c_6)
=(f_1(c_3) ¢c_7) + =(£f_1(c_2) c_7) - P(c_®)
=(c_4 ¢_2)

=(£f_1(c_4) c_.7) + =(£_1(c_3) c_6)
=(£_1(c_3) c_7) + =(£f_1(c_2) c.7) - P(c_4)
=(f_1(c_4) c_7) + =(£.1(c_3) c_6)
=(£_1(c_3) c_7) + =(£f_1(c_2) c.7)
=(£_1(c_4) c_.7) + =(£f_1(c_3) c.6)
=(£_1(c.3) c_7) + =(£_1(c_1) c_7) - P(c_®)
=(c_4 c_1)

=(f_1(c_4) c_.7) + =(£.1(c_3) c_6)
=(£._1(c.3) c.7) + =(£f_1(c_1) ¢_7) = P(c_4)
=(£f_1(c_4) c_7) + =(£f_1(c_3) c_6)
=(f_1(c.3) c_7) + =(£f_1(c.1) c.7)
=(f_1(c_4) c¢_T) + =(£f_1(c._2) c_6)
=(f_1(c.2) c_7) + =(f_1(c_1) c_7) = P(c_4)

=(c_4 c_1)
=(£.1(c_4) c_7) + =(f_1(c_2) c_6)
=(£_1(c_2) c¢_7) + =(f_1(c_1) ¢_7) - P(c_®)
=(f_1(c_4) c.7) + =(£f_1(c_2) c_6)
=(£f_1(c_2) c_7) + =(f_1(c_1) c.7)
All x:Any - IR(x c_6) + =(f_1(c_4) c.7)

- P(x) - P(c.4) + =(xc_d)
All x:Any - IN(x c.6) + =(f_1(c_4) c_7)

R I TR T IR T B T T T S S A S N AR A S TR S N N T R N N S I

B.2.14.

R130,4 &
P138,5 &
R133,4 &
P140,5 &

R127.4 &

P142,6. &

R139,1 &

R144 1=4

D145 2=4

D146 3=4
D147,4 &
R148,4 &
R149,2 &
P150,4 &
R151,1 &
R152 1=3
D153,3 &

R154,3 &
R185,2 &

P158.,4 &

R141,1 &

R160 1=4
D161,4 &
R162,4 &
R163,2 &
P164,4 &
R165,1 &
R166 1=3

D167,3 &

Pelletier: Example 73, Four Pigeons — Three Holes

A19,2
A2,1
A19,2
A2,1

D17,3

A3,1

R143,1

A2,1
46,1
A19,2
A4,1

R135,1

A4,1

Afi,1
D17,3

A4,1

R159,1

42,1
A7,1
A19,2
43,1

R135,1

A3,1

P138:
R139:
P140:
R141:

P142:
R143:

R144:

D145:
D146:

D147:
R148:
R149:
P150:
R151:
R152:
D153:
Ri54:

* R165:
P158:

R159:

R160:

Di61:
R162:
R163:
P164:
R165:
R166:
D167:

R168:

R

All x:Any -

A1l x:Any - IN(x c_7)
+ =(£_1(c_3) c_6)
+ =(x c_2)

AR IR I TR I I K R I T R S N A S

- P(x)

+ =(x c_4)

I8(c_1 c_7) + =(f_1(c_4) c_.7)

=(£f_1(c_3) c_6)

+ =(f_1(c_3) c_.7)

IN(c_1 c.7) + =(f.1(c_4) c.7)

=(£_1(c_3) c_6)

+ =(£_1(c_3) c.7)

I8(¢c_1 c.7) + =(f_1(c_4) c_T)

=(£f_1(c_2) c_6)

+ =(£_1(c_2) c.7)

INCc_1 c_7) + =(£_1(c_4) c._T)

=(£f_1(c_2) c_6)

I8(x c_7)

+ =(f_1(c_2) c.7)

- P(c 1)

- P(c_1)

+ =(f_1(c_4) c_.7)

+ =(f_1(c_3) c_6) + =(£_1(c.3) ¢.7)

- P(x)

- P(x)
=(f_1(c_4) c_.7)
=(f_1(c_3) c.7)
=(f_1(c_3) c_6)
=(c_1 c_2)
=(f_1(c.4) c_.7)
=(£_1(c_3) ¢.7)
=(£_1(c_3) c_7)
=(f_1(c_4) c_T)
=(£f_1(c_3) c_.7)
=(c_1 c_.2)
=(f_1(c_4) ¢_7)
=(f_1(c_3) ¢.7)
=(f_1(c_4) c_7)
=(f_1(c_3) c_7)
=(f_1(c_4) c_.7)
=(f_1(c_3) ¢c_7)

~ P(c_2)

+ =(f_1(c_3) c_6)
+ =(£f_1(c_4) c.7)

+ =(x c_.2)
+ =(£_1(c_4) c_.7)
+ =(£_1(c_3) c_7)

+ =(f_1(c_3) c_7) - P(c.1)
+ =(£f_1(c_3) c_6)

+ =(£f_1(c_3) c_6)

- P(c_1) + =(c_1 c.2)

+ =(f_1{(c_3) c_6)

+ =(£_1(c_3) c_7) =~ P(c.1)
+ =(£f_1(c_3) ¢c_6)

- P(c_1) + =(c_1 c.2)

+ =(f.1(c.3) c.6)
+ =(c_1 ¢c_2)
+ =(£_1(c_3) c_6)

IH(c_3 c_6) + =(f_1(c_4) c.7)

=(f£_1(c_3) c_.T)

- P(c_3)

1M(c 3 c_6) + =(f_1(c.4) c.7)

=(£f_1(c_3) c_7)
=(f_1(c_4) c.7)
=(f_1(c_4) c.7)
=(£f_1(c_4) c_.7)
=(c_3 c_4)

=(£_1(c_4) c.7)
=(c_3 c_4)

=(f_1(c_4) c_7)

+ =(f.1(c.3) c.7)

- P(c_3) + =(c_3 c ¥

+ =(£.1(c_3) c_7)
+ =(£_1(c_3) c.T)

+ =(£.1(c_3) c_7)

- P(c_3)

A1l x:Any ~ IN(x c_7) + =(f_1(c_4) <_7)

All x:Any -

L R IR I I I IR T O T T U SRy

P(x) - P(c_3) + =(x c_3)
IE(x c_.7) + =(f_1(c_4) c_.T)
P(x) + =(x c_3)

=(f_1(c_4) c_.7) + =(f_1(c_2) c_6)
=(f_1(c.2) c_7) + =(£_1(c_4) c_7) =~ P(c_1)

=(c_1 c.3)

=(f_1¢(c_4) c_7) + =(£_1(c_2) c_6)
=(£_1(c_2) c.7) -~ P(c_1) + =(c_1 c_3)
=(f_1(c_4) c_7) + =(£_1(c_2) c_6)
=(f_1(c_2) c_7) + =(c_.1 c_3)
=(£_1(c_4) c_7) + =(£f_1(c_2) c_6)
=(£_1(c_2) c_7)

I8(c_2 c_6) + =(f_1(c_d) c.7)
=(f_1(c_2) c.7) - P(c_.2)

IN(c_2 c_6) + =(f_1(c_4) ¢c_T)
=(£_1(c_2) c.7)

=(f_1(c_4) c.7) + =(£_1(c_2) c.7)
=(f_1(c_4) c.7) - P(c.2) + =(c.2 c.4)
=(f_1(c_4) c_.7) + =(£_1(c_2) ¢c_7) -~ P(c_2)

=(c.2 c_4)

=(f_1(c_4) c_.7) + =(f_1(c_2) c.7)

=(¢c_2 c_4)

117

118 Appendix B. Commented Examples

R168,3 & A10,1 --> * R169: + =(f_1{c_4) c_7) + =(f_1(c_2) c_T)
R169,2 & A19,2 --> % P170: + IB(c_2 c_7) + =(f_1(c_4) c_.7) - P(c_2)
P170,3 & A3,1 -=> % R171: + IB{(c_2 c.7) + =(f_1(c_4) c_7)
R171,1 & R159,1 --> * R172: + =(f_1(c_4) c_7) + =(f_1(c_4) c.7) =~ P(c_2)
+ =(c.2 ¢c_3)
R172 1=2 -=> % D173: + =(£f_1(c_4) c_7) = P(c_2) + =(c_2 c.3)
D173,2 & A3,1 -=> % R174: + =(f_1(c_4) c_7) + =(c_2 c_3)
R174,2 & A9,1 --> * R175: + =(f_1(c_4) c.7)
R175,1 & A19,2 ~-> % P176: + IN(c_4 c.7) - P(c_4)
P176,2 & AS5,1 -=> % R177: + IN(c_4 c.7)
R97,1 & R177,1 --> * R178: + =(£_1(c.3) c_6) + =(f_1(c_3) c.T)
+ =(f_1(c_2) ¢_7) - P(c_4) + =(c_4 c_1)
R178,4 & A5,1 -=> % R179: + =(£f_1(c_3) c_6) + =(f_1(c_3) c.7)
+ =(f_1(c_2) c_7) + =(c_4 c_1)
R179,4 & A8,1 -=> * R180: + =(£f_1(c_3) c_6) + =(£f_1(c.3) c.7)
+ =(f_1(c_2) c.7)
R175,1 & D17,3 --> # P181: All x:Any - IN(x c_7) - P(x) - P(c_4)
+ =(x c_4)
P181,3 & A5,1 -=> % R182: All x:Any - IN(x ¢_7) - P(x) + =(x c_4)
R180,3 & A19,2 -=> % P183: + IN(c_2 c_7) + =(f_1(c_3) c_6)
+ =(f_1(c_3) c_.7) - P(c.2)
P183,4 & A3,1 -=> % R184: + IN(c_2 c_7) + =(£f_1(c_3) c_6)
+ =(f_1(c.3) c.7)
R184,1 & R182,1 --> % R185: + =(f_1(c_3) c_6) + =(f_1(c_3) c_7) - P(c.2)
+ =(c_2 c_4)
R185,3 & A3,1 -=> * R186: + =(£_1(c_3) c_6) + =(£f_1(c_3) c_7)
+ =(c_2 c_4)
R186,3 & A10,1 --> * R187: + =(£_1(c_3) c_6) + =(£f_1(c_.3) c_7)
R187,1 & A19,2 --> * P188: + IN(c_3 c_6) + =(f_1(c_3) ¢_7) - P(c_3)
P188,3 & A4,1 ==> % R189: + IN(c_3 c.6) + =(£f_1(c.3) c_7)
R189,1 & R57,1 --> » R190: + =(£_1(c_3) c_7) + =(f_1(c_2) c_6)
+ =(£_1(c_2) ¢_7) + =(f_1(c_1) c_7) - P(c_3)
+ =(c_3 c_1)
R190,6 & A7,1 -=> * Ri91: + =(f_1(c_3) c_7) + =(£f_1(c_2) c_6)
+ =(f_1(c_2) c_7) + =(£_1(c_1) c_.7) - P(c_3)
R191,5 & A4,1 -=> % R192: + =(£f_1(c_3) c_7) + =(f_1(c.2) c_6)
+ =(£_1(c_2) c_.7) + =(£f_1(c_1) c_7)
R187,1 & D17,3 ~=> % P193: All x:Any - IN(x c_6) + =(£f_1(c_3) c.7)
- P(x) - P(c.3) + =(x c.3)
P193,4 & A4,1 ~=> # R194: All x:Any - IN(x c_6) + =(£_1(c_3) c_7)
- P(x) + =(x¢c_3)
R192,4 & A19,2 --> % P195: IN(c_1 c.7) + =(f_1(c_3) c_.7)
=(f_1(c_2) ¢_6) + =(£f_1(c_2) c_7) - P(c_1)
P195,5 & A2,1 ~=> * R196: IB(c_1 c_7) + =(£_1(c_.3) c.7)

=(f_1(c_2) c_6) + =(£f_1(c_2) c.7)
=(£f_1(c_3) ¢.7) + =(£_1(c_2) c_6)
=(£f_1(c_2) ¢_7) - P(c_1) + =(c_1 c_4)

R196,1 & R182,1 --> * R197:

R197,4 & A2,1 -=-> * R198: =(£_1(c_3) c_7) + =(£f_1(c.2) c_6)
=(f_1(c.2) ¢.7) + =(c_1 c_4)

R198,4 & A8,1 -=> % R199: =(f_1(c_3) c_7) + =(£f_1(c_2) c_6)
=(£f_1(c_2) <_7)

R199,2 & A19,2 ~-=> * P200: I8(c_2 c_6) + =(£_1(c_3) c_7)
=(f_1(c_2) c_7) = P(c_2)

P200,4 & A3,1 -=> * R201: IN(c_2 c.6) + =(f_1(c_3) c.7)

=(£_1(c.2) c_.7)
=(f_1(c.3) c_7) + =(£_1(c.2) c.7)
=(£f_1(c_.3) ¢_7) =~ P(c_2) + =(c.2c_3)

R201,1 & R194,1 --> x R202:

PN IR TR IR T TR R B T T T S T N N S S S

R202 1=3 --> * D203: =(£_1(c.3) c_7) + =(£f_1(c.2) c_.7) - P(c_2)
=(c_.2 c_3)

D203,3 & A3,1 -=> % R204: =(f_1(c_3) c_7) + =(f_1(c_2) c_.T)
=(c_2 c_3)

R204,3 & 49,1 --> * R205: =(£f_1(c.3) c_7) + =(£f_1(c_2) c_.7)

R205,2 & A19,2 --> * P206: IN(c_2 ¢_7) + =(£f_1(c_3) c_7) =~ P(c_2)

P206,3 & A3,1 --> » R207: INCc.2 c_7) + =(£f_1(c_3) c_7)

R207,1 & R182,1 --> * R208: =(£f_1(c_3) c¢_.7) = P(c_2) + =(c_2c_d)

B.3. Other Examples 119

R208,2 & A3,1 ~-> % R209: + =(f_1(c_3) c_7) + =(c_2 c_4)
R209,2 & A10,1 --> * R210: + =(f_1(c_3) c_7)

R210,1 & A19,2 ~-> * P211: + IN(c_3 c_7) - P(c_3)

P211,2 & A4,1 —-> * R212: + IN(c_3 c_7) .

R212,1 & R182,1 --> * R213: =~ P(c_3) + =(c_3 c_4)

R213,1 & 24,1 --> % R214: + =(c_3 c_4)

R214,1 & A11,1 --> * R215: [J

B.3 Other Examples

The first two examples of this section are taken from the theory of zero divisor free rings and show the
usefulness of narrowing to find E-unifiers for arbitrary theories. They are not presented in the version
originally computed on the machine because we used a different system to run them. Especially for the
second example the MKRP-system was not able to find a solution without the help of a user, because of
various implementation restrictions in this almost ancient system. The automatically generated version
computed by a program with fully integrated narrowing is published by J. Richts [Ric91].

B.3.1 Cancellation

The cancellation law for multiplication is valid in a zero divisor free ring.

Formulae given to the editor

Axioms: * Ring *
ALL X,Y,Z +(+(X Y) Z) = +(X +(Y 2))
ALL X +(0 X) = X
ALL X +(-(X) X) =0
ALL X,Y,Z #(*(X Y) Z) = *(X *(Y Z))

+(x(X Y) *(X Z))
+(*(Y X) *(Z X))

ALL X,Y,Z (X +(Y 2))
. ALL X,Y,Z *(+(Y 2) X)

* With One *

ALL X *(1 X) = X

ALL X *(X 1) =X

* Zero Divisor Free *

ALL X,Y *(X Y) = O IMPLX =0 0R Y =0

Theorems: * Cancellation *
ALL X,Y,Z *(X Y) = *(Z Y) AND HOT (Y = 0) IMPL X = Z

Set of Axiom Clauses Resulting from Normalization

A1: All x:Any + =(x x)

A2: A1l x,y,z:Any + =(+(+(z y) x) +(z +(y x)))

A3: A1l x:Any + =(+(0 x) x)

A4: ALY x:Any + =(+(-(x) x) 0)

AS: All x,y,z:Any + =(*(*(z y) x) *(z *(y x)))

A6: All x,y,z:Any + =(*(z +(y x)) +(x(z y) *(z x)))
A7T: A1l x,y,z:Any + =(*x(+(z2 y) x) +(x(z x) *(y x)))
A8: All x:Any + =(*(1 x) x)

A9: A1l x:Any + =(*(x 1) x)

A10: All x,y:Any - =(*(y x) 0) + =(y 0) + =(x 0)

L L IR B B K B B

Set of Theorem Clauses Resulting from Normalization

* T1t: + =(*(c_2 c_1) *(c_3 c_1))
* T12: - =(c_1 0)

120 Appendix B. Commented Examples

* T13: - =(c_2 c_3)
Refutation:
Ad,1 & A2,1 —=> % P1: All x,y:Any + =(+(0 y) +(~(x) +(x y))»)
P1,1 & A3 -=> % RW2: All x,y:Any + =(y +(~(x) +(x y)))
A4,1 & RW2,1 -=> % P4: All x:Any + =(x +(-(~(x)) 0))
P4,1 & BRW2,1 ==> * P10: All x:Any + =(0 +(~(~(-(x))) x))
P10,1 & RW2,1 -=> % P11: All x:Any + =(x +(-(-(~(-(x)))) 0))
P11,1 & P4 ~=> % RW12: A1l x:Any + =(x -(-(x)))
P4,1 & RW12 -=> * RW14: All x:Any + =(x +(x 0))
RW12,1 & A4,1 -=> % P15: All x:Any + =(+(x -(x)) 0)
A3,1 & A6,1 -~> % P16: All x,y:Any + =(*(y x) +(*(y 0) *(y x)))
49,1 & Pi6,1 ~=> % P17: All x:Any + =(*(x 1) +(*(x 0) x))
Pi7,1 & A9 ==> % RW18: All x:Any + =(x +(*(x 0) x))
R¥14,1 & RW18,1 --> * P19: + =(0 *(0 0))
A3,1 & A7,1 --> % P21: All x,y:Any + =(x(y x) +(*(0 x) *(y x)))
A8,1 & P21,1 -=> % P22: All x:Any + =(*(1 x) +(*(0 x) x))
P22,1 & A8 -=> % RW23: All x:Any + =(x +(*(0 x) x))
RW23,1 & RW2,1 =-> % P24: All x:Any + =(x +(-(*(0 x)) x))
P19,1 & A5,1 -=> % P28: All x:Any + =(*(0 x) *(0 *(0 x)))
P28,1 & P24,1 -=> % P29: All x:Any + =(*(0 x) +(~(*(0 x)) *(0 x)))
P29,1 & A4 --> * R¥30: A1l x:Any + =(%(0 x) 0)
P28,1 & RW30 -=> * RW31: All x:Amy + =(*(0 x) *(0 0))
RW31,1 & RW30 ~-> * RW32: All x:Any + =(*(0 x) 0)
A4,1 & A7,1 ~-~> % P82: All x,y:Any + =(*(0 y) +(*(-(x) y) *(x y)))
P82,1 & RW32 ~-=> % RW83: All x,y:Any + =(0 +(*(-(y) x) *(y x)))
RW83,1 & RW2,1 --> * P87: All x,y:Any + =(x(y x) +(-(+(-(y) x)) 0))
P87,1 & RW14 ~=> * RW88: All x,y:Any + =(x(y x) -(*(=(y) x)))
RW8S,1 & A4,1 -=> % P97: A1l x,y:Any + =(+(*(y x) *(-(y) x)) 0)
P97,1 & RW2,1 ~~> = P98: All x,y:Any + =(x(-(y) x) +(-(x(y x)) 0))
P98,1 & RWi4 -=> * RW99: All x,y:Any + =(*(~(y) x) -(*(y x)))
A7,1 & A10,1 ==> x P154: All x,y,z:Any - =(+(x(z y) *(x y)) 0)
+ =(+(z x) 0) + =(y O)

T11,1 & P154,1 --> # P155: All x:Any - =(+(*(c_2 c_1) *(x c_1)) 0)

+ =(+(c_3 x) 0) + =(c_1 0)
P155,3 & T12,1 --> * R156: All x:Any - =(+(*(c_2 c_1) *(x c_1)) 0)

+ =(+(c_3 x) 0)
RW99,1 & R156,1 =--> * P167: A1l x:Any - =(+(*(c.2 c_1) ~(*(x c_1))) 0)
+ =(+(c_3 -(x)) 0)

P15,1 & P167,1 =~~> * P168: ~ =(0 0) + =(+(c_3 -(c_2)) 0)
P168,1 & A1,1 -=> % R169: + =(+(c_3 -(c_2)) 0)

R169,1 & RW2,1 --> % P170: + =(-(c_2) +(-(c_3) 0))
P170,1 & RW14 —=> % RW171:+ =(-(c_2) ~(c_.3))

RW171,1 & RW12,1 ~=> * P172: + =(c_3 ~(-{(c_2)))

P172,1 & RW12 -=> * RW173:+ =(c_3 c_2)

RW173,1 & T13,1 ~=-> x R174: []

B.3.2 Two Square Roots

There are exactly two square roots of 1 in a zero divisor free ring, namely —1 and 1.

Formulae given to the editor

Axioms: * Ring *
ALL X,Y,Z +(+(X Y) Z) = +(X +(Y 2))
ALL X #(0 X)) = X
ALL X +(-(X) X) = 0
ALL X,Y,Z *(*(X Y) Z) = *(X *(Y Z))

ALL X,Y,Z #(X +(Y 2))
ALL X,Y,Z *(+(Y Z) X)
* With One *

+(x(X Y) *(X Z))
+(x(Y X) *(Z X))

B.3.2. QOther Examples: Two Square Roots

Theorems:

ALL X *(1X) =X

ALL X *(X 1) = X

* Zero Divisor Free *

ALL X,Y *(X Y) = 0 IMPLX =00RY =0

* Two Square Roots *
ALL X +(*(X X) -(1)) =0 INPL X = 1 OR X = -(1)

Set of Axiom Clauses Resulting from Hormalization

**

* * % ®

Ai: A1l x:Any + =(x x)

A2: All x,y,z:Any + =(+(+(2 y) x) +(z +(y X))

A3: A1l x:Any + =(+(0 x) x¥

A4: All x:Any + =(+(-(x) x) 0)

A5: All x,y,z:Any + =(*(x(z y) x) *(z *(y x)))

A6: All x,y,z:Any + =(*(z +(y x)) +(*x(z y) *(z x)))
A7: All x,y,z:Any + =(*(+(z y) x) +(*(z x) *(y x)))
A8: A1l x:Any + =(x(1 x) x)

A9: All x:Any + =(*(x 1) x)

A10: All x,y:Any - =(x(y x) 0) + =(y 0) + =(x 0)

Set of Theorem Clauses Resulting from Normalization

*

Tit: + =(+(*(c_1 c_1) -(1)) 0)

* T12: - =(c_1 1)
* T13: = =(c_1 =(1))
Refutation:
Ad,1 & A2,1 -=> * Pi: ALl x,y:Any + =(+(0 y) +(-(x) +(x y)))
P1,1 & A3 -=> % RW2: All x,y:Any + =(y +(~(x) +(x y)))
A4,1 & RW2,1 -~> % P4: 411 x:Any + =(x +(-(~{x)) 0))
Tii,1 & A2,1 ~=> % P10: All x:Any + =(+(0 x) +(*(c_1 c_1)
+(~(1) x)))

P10,1 & A3 -=> * RWii: A1l x:Any + =(x +(*(c_1 c_1) +(-(1) x)))
A4,1 & RWi1,1 -=> * P12; + =(1 +(*(c_1 c_ 1) 0))
RW2,1 & RW11,1 =-=> * Pi3: All x:Any + =(+(1 x) +(*(c_1 c_1) x))
P12,1 & P13 ~-=> x RW16: + =(1 +(1 0))
RW16,1 & A6,1 -=> % P17: All x:Any + =(*(x 1) +(*(x 1) *(x 0)))
Pi7,1 & A9 ~=> % RW18: A1l x:Any + =(*(x 1) +(x *(x 0)))
RW18,1 & A9 ~-=> % RW19: All x:Any + =(x +(x *(x 0)))
RW19,1 & RW2,1 ~-> x P2i: All x:Any + =(*(x 0) +(~(x) x))
P21,1 & A4 -=> % RW22: All x:Any + =(*(x 0) 0)
RW19,1 & RW22 ~-> % RW23: A1l x:Any + =(x +(x 0))
P4,1 & RW23 -=> % RW24: All x:Any + =(x —-(-(x)))
P13,1 & RW23,1 ~-> % P26: + =(x(c_1 c_1) +(1 0))
P25,1 & RW23 -=> * RW26: + =(*(c_1 c_1) 1)
RW24,1 & A4,1 -=> % P28: All x:4&ny + =(+(x -(x)) 0)
Ad,1 & A6,1 -=> * P32: All x,y:Any + =(3(y 0) +(*(y ~(x)) *(y x)))
P32,1 & RW22 -=> * RW33: All x,y:Any + =(0 +(x(y -(x)) *(y x)))
RW33,1 & RW2,1 --> * P42: All x,y:Any + =(*(y x) +(-(=(y -(x))) 0))
P42,1 & RW23 -=> * RW43: All x,y:Any + =(*(y x) ~(*(y ~(x))))
RW24,1 & RW43,1 --> % P53: All x,y:Any + =(x(y ~(x)) ~(*(y x)))
A7,1 & A10,1 --> % P235: All x,y,z:Any - =(+(*(z y) *(x y)) 0)

+ =(+(z x) 0) + =(y 0)
A8,1 & P235,1 -=> % P236: All x,y:Any - =(+(y *(x y)) 0)

+=(+(1 x) 0) + =(y O)

A2,1 & P236,1 --> % P237: All x,y,z:Any - =(+(z +(y *(x +(z y)))) 0)

+ =(+(1 x) 0) + =(+(zy) 0)
P237,1 & A6 -=> # RW238:411 x,y,z:Any ~ =(+(z +(y +(*(x z) *(x y))))

0)
+ =(+# {1 x) 0) + =(+(z y) 0)

121

122

49,1 & RW238,1

RW2,1 & P239,1

P240,1 & P53

RW26,1 & RW241,1

P242,1 & P28,1

R243,2 & A2,1

P244,1 & A3

P28,1 & RN245,

P246,1 & RW23

1

RW247,1 & RW24

RW248,1 & T12,

1

R249,1 & R¥2,1

P250,1 & RW23

RW251,1 & T13,

1

* P239:

* P240:

* RW241:

* P242:

* R243:
~=> % P244:

-=2> % RW245:

L I B K B AR)

P246:
RW247:
RW248:
R249:
P250:
RW251 ;
R252:

B.3.3 Commutator

Formulae given to the editor

Appendix B. Commented Examples

All x,y:Any - =(+(1 +(y +(x *(x ¥)))) 0)
+ =(+(1 x) 0) + =(+(1 y) 0O)
- =(+(1 *(x -(x))) 0)
+ =(+#(1 x) 0) + =(+1 ~(x)) 0)
- =(+1 -(+(x x))) 0)
+ =(+(1 x) 0) + =(+(1 ~(x)) 0)
- =(+(1 -(1)) 0) + =((1 c_1) 0)
+ =(+(1 -(c_1)) 0)
+ =(+(1 ¢.1) 0) + =(+(1 -(c_1)) 0)
A1l x:Any *+ =(+(0 x) +(1 +(-(c.1) xX)))
+ =(+(1 c_1) 0)
All x:Any + =(x +(1 +(-(c.1) x)))
+ =(+(1 c_1) 0)

All x:Any

All x:Any

+ =(=(~(c_1)) +(1 0)) + =(+(1 c_1) 0)
+ =(-(-(c.1)) 1) + =(+(1 c_1) 0)
+=(c_1 1) + =(+(1 c_1) 0)

+ =(+(1 c_1) 0)

+ =(c_1 +(~(1) 0))

+ =(c_1 ~(1))

]

Axioms: ALL X,Y,Z ACACA(S X) Y) Z) = ACACX Z) ACY 2))
ALL X,Y AAR XD Y) =X

Theorems: EX U ALL X,Y A(A(U X) Y) = A(Y ACACX) Y))

Refutation:

Injitial Clauses:

P1,1 & 22,1

P9,1 & P3,1

Pi04,1 & P6,1

P105,1 & T4,1

*

A2:

43:
T4:

P1:
P3:

P6:

P9:

P104:

P105:

R106:

All

All
All

All
All

All
All

All

All

1

x,y,z:Any + =(a(a(a(s z) y) x)
a(a(z x) a(y x)))
x,y:Any + =(a(a(k y) x) y)
x:Any -~ =(alalx £_2(x)) f_1(x))
a(f_1(x) a(a(f_2(x) £_2(x))
£_1(x))))

x,y:Any + =(a(ala(s k) y) x) x)
x,¥,z:Any + =(aa(a(s a(k z)) y) x)
a(z a(y x)))
x,¥,%:Any + =(a(ala(s ala(s k) 2)) y) x)
a(x a(y x)))
x,y¥,z:Any + =(a(a(a(s 2z) a(a(s k) y)) x)
a(a(z x) x))
x,¥,z:Any + =(a(a(a(s a(s a(k z)))
a(a(s k) y))
x)
a(z alx x)))
X,y¥,z,u:Any
+ =(a(a(ala(s a(s a(k a(s a(a(s k) u)))))
a(a(s k) z)) ¥ x)
a(x aCaCy y) x)))

B.3.4 Group Completion

We prove —(z + y) = (~y) + (—=z) for a group just to present the example where all steps must be
performed to derive a canonical rewrite system for groups.

B.3.5. Other Examples: Central Groupoid .

Set of Axiom Clauses Resulting from Normalization

A1: All x:Any + =(x x)
* A2: ALl x,y,z:Any + =(+(+(z y) x) +(z +(y x)))
* A3: All x:Amny + =(+(0 x) x)
* A4: A1l x:Any + =(+(~(x) x) O)

Set of Theorem Clauses Resulting from Normalization

* T5: ~ =(+(-(c_1) -(c_2)) =(+(c_2 c_1)))
Refutation:
Ad,1 & A2,1 -~> * P1: A1l x,y:Any + =(+(0 ¥) +(-(x) +(x y)))
Pi,1 & A3 -=> * RW2: All x,y:Any + =(y +(-(x) +(x y)))
A4,1 & RN2,1 > % P4: A1l x:Any + =(x +(-(-(x)) 0))
P4,1 & RW2,1 ~=> * P12: A1l x:Any + =(0 +(~-(~(-(x))) x))
P12,1 & RW2,1 ~~> % P13: All x:Any + =(x +(-(-(-(~(x)))) 0))
P13,1 & P4 ~~> * RW14: A1l x:Any + =(x ~(-(x)))
P4,1 & RW14 -~> % RW15: A1l x:Any + =(x +(x 0))
RW14,1 & A4,1 --> % P18: All x:Any + =(+(x -(x)) 0)
P18,1 & A2,1 ~-=> % P20: All x,y:Any + =(0 +(y +(x -(+(y x)))))
P20,1 & R¥2,1 ~-~> * P21: All x,y:Any + =(+(y -(+(x y))) +(-(x) 0))
P21,1 & RW15 -=> % RW22: All x,y:Any + =(+(y ~(+(x ¥))) -(x))
RW22,1 & RN2,1 --> % P27: All x,y:Any + =(-(+(y x)) +(-(x) -(3)))
P27,1 & T5,1 --> % R28: [

B.3.5 Central Groupoid

This example can be found in [KB70] or [SK90, Example 3.5].

Set of Axiom Clauses Resulting from Hormalization

Al: A1l x:Any + =(x x)

A2: A1l x,y,z:Any + =(*(*(z y) *(y X)) y)
A3: A1l x:Any + =(*(*(x x) x) £(x))

A4: ALl x:Any + =(*(x *(x x)) g(x))

AS: A1l x,y:Any + =(*(g(y) x) *(y x))

* % * #

Set of Theorem Clauses Resulting from Normalization

* T6: - =(*(*(c_1 c_2) c_3) *(£(c_2) c_3))

Refutation:

A2,1 & A4,1 --> % P3: All x:Any + =(x(*(x x) x) g(*(x x)))
P3,1 & A3 --> % RW4: ALl x:Any + =(£(x) g(*(x x)))

A3,1 & A2,1 --> % P5: A1l x,y:Any + =(x(£(y) *(y x)) y)

A4,1 & P51 --> x P6: All x:Any + =(*(£(x) g(x)) x)

A4,1 & A2,1 -=> % P7: All x,y:Any + =(*(*(y x) g(x)) x)

P6,1 & A2,1 --> # Pi1; All x,y:Any + =(x(y *(g(y) x)) g(y))
Pi1,1 & AS --> * RW12: A1l x,y:Any + =(*(y *(y x)) g(y))
RW12,1 & A5,1 ~--> * P13: All x,y:Any + =(g(g(y)) *(y *(g(y) x)))
P13,1 & A5 ~=> % RW14: All x,y:Any + =(g(g(y)) *(y *(y x)))
RW14,1 & RW12 --> * RW15: All x:Any + =(g(s(x)) g(x))

P7,1 & RW12,1 —--> % P46: A1l x,y:Any + =(x(x{y x) x) g(*(y x)))
RW15,1 & P7,1 --> % P47: All x,y:Any + =(x(*(y g(x)) g(x)) glx))
P47,1 & P46 -=> % RW48: All x,y:Any + =(g(x(y g(x))) g(x))

123

124

Appendix B. Commented Examples

RW48,1 & A5,1 --> % P51: All x,y,z:Any + =(*(g(z) y) *(*(x g(2)) y)»)
PS1,1 & A5 —=> % RW52: All x,y,z:Any + =(*(z y) *(+(x g(z)) y»)
P5,1 & A2,1 -=> % P53: All x,y,z:Any + =(*(z *(*(z y) x)) *(z y))
RW52,1 & PS3,1 =--> % P54: All x,y,z:Any + =(x(z *(y x)) *(z g(y)))
P54,1 & RW4,1 -=> = P66: All x,y:Any + =(£(*(y x)) g(*(x(y x) g(y)»)))
P66,1 & RW48 ~=> % RW6T: All x,y:Any + =(£f(*(y x)) g(y))

P7,1 & RW67,1 --~> » P70: All x,y:Any + =(£(y) g(x(x y)))

P70,1 & A5,1 ==> % P85: All x,y,z:Any + =(x(£(2) y) *(*(x 2) y))
P85,1 & T6,1 --> % R86: 0

B.3.6 Z22

722 is a finite cyclic group containing five elements (a b ¢ d e) and their inverses (a1 bl c1 d1 e1). The

dependencies are expressed by the axioms A2 to A6.

Set of Axiom Clauses Resulting from Bormalization

Al: A1l x:Any + =(x x)
* A2: A1l x:Any + =(a(b(c(x))) d(x))
* A3: A1l x:Any + =(b(c(d(x))) e(x))
* A4: A1l x:Anry + =(c(d(e(x))) a(x))
* A5: A1l x:Any + =(d(e(alx))) b(x))
* A6: A1l x:Any + =(e(a(b(x))) c(x))
* A7: All x:Any + =(a{al(x)) x)

A8: All x:Any + =(al(a(x)) x)

A9: A1l x:Any + =(b(b1(x)) x)
* A10: A1l x:Any + =(bi(b(x)) x)
* A11: A1l x:Any + =(c(ci(x)) x)
* A12: All x:Any + =(ci(c(x)) x)
* A13: All x:Any + =(d(di(x)) x)
* Al4: A1l x:Any + =(d1(d(x)) x)
* A15: All x:Any + =(e(e1(x)) x)
* A16: All x:Any + =(ei(e(x)) x)

Initial Operations on Axioms

A2,1 & A4 --> * R¥1i: A1l x:Any + =(c{d(e(b{(c(x))))) d(x))

AS5,1 & A4 --> * RW2: A1l x:Any + =(d(e(c(d(e(x))))) b(x))

RW1,1 & RW2 ——> * RW3: All x:Any + =(c(d(eld(e(c(d(e(c(x)))))N)) d(x))
A3,1 & RW2 --> * RW4: All x:Any + =(d(e(c(d(e(c(d(x))))))) e(x))

46,1 & RH2 --> + RW5: All x:Any + =(e(a(d(e(c(d(e(x))))))) c(x))
RW5,1 & A4 --> * RW6: All x:Any + =(e(c(d(e(d(e(c(d(e(x))))))))) c(x))
A7,1 & A4 -~> * RN7: All x:Any + =(c(d(e(a1(x)))) x)

A10,1 & RW2 --> * RW10: All x:Any + =(b1(d{e(c(d(e(x)))))) x)

Set of Theorem Clauses Resulting from Hormalization

* T17: - =(d(c.1) a(a(a(c_1)))) = =({d(c_2) e(e(ele(e(c_2))M)))

Initial Operations on Theorems

T17,1 & A4 —-> * RW1l: - =(d{c_1) c(d(e(alalc_1)))))) - =(d(c_2) e(e(e(e(e(c_2))))))

RW1i1,1 & A4 —-> * RW12: - =(d(c_1) c(d(e(c{d(eCalc_1)))IN))
RW12,1 & A4 ~--> * RW13: ~ =(d(c_1) c(d(e(c(d(e(c(d(e(c_1))))))))))

- =(d(c.2) e(e(elele(c_2))1)))

- =(d(c_2) ae(ele(e(c_2))))))

RW13,1 & RW4 --> * RW1i4: - =(d(c_1) c(e(e(c_1)))) - =(d(c_2) e(e(e(e(e(c_2))))))

Refutation:

B.3.6. Other Examples: Z22

RW3,1 & RWG,1

RW4,1 & RW10,1
RW7,1 & RW10,1
RW7,1 & P17
A15,1 & RW18,1
P21,1 & A12,1
P24,1 & A14,1
P27,1 & A16,1
A13,1 & P30,1
P1i6,1 & P40
P15,1 & A12,1
A11,1 & P15,1
A13,1 & P50,1
P51,1 & A16,1
A15,1 & P52,1
RW47,1 & P58
PS5,1 & P58

A16,1 & RN69,1
P70,1 & A14,1
RW64,1 & P73
RW79,1 % A15
RW80,1 & A15,1
P96,1 & A13,1
P99,1 & P73,1
P102,1 & A15
RW103,1 & P15
RW104,1 & A16
RW105,1 & A14
RW106,1 & RW3,1
P110,1 & A15
RW111,1 & A13
A15,1 & RW112,1
RW3,1 & P113
RW114,1 & P113
RW6,1 & P113
RN118,1 & P113
RW106,1 & P113
RW115,1 & RW119

All
All
Al
All
All
All
All
All
A1l
a1l
All
A1l
411
A1l
All
A1l
A1l
A1l
A1l
411
All
All
All
All
All
All
All
All
All
All
All
All
A1l
All
A11
All
A1l

MoMo ok MM MM MoK M MoK MM MM K KM KKK MK KK KM KK KKK MK KX

:Any +
iAny +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +
tAny +
‘Any +
‘Any +
tAny +
tAny +
tAny +
iAny +
:Any +
:Any +
tAny +
:Any +
tAny +
:Any +
:Any +
:Any +
:Any +
:Any +
tAny +
tAny +
:Any +
tAny +
:Any +
‘Any +
:Any +
(Any +
:Any +
:Any +
cAny +

125

=(e(d(x)) clc(x)))

=(b1(e(x)) c(d(x)))

=(b1(d(e(x))) a1(x))

=(c{d(e(b1(d(e(x)))))) x)

=(c(d(e(b1(d(x))))) ell(x))

=(c1({e1(x)) d(e(b1(d(x)))))

=(d1(c1(e1(x))) e(b1(d(x))))
=(el1(di(ci(el(x}))) b1(d(x)))
=(e1(d1(c1(e1(d1(x))))) b1(x))

=(e1(dl (c1(e1(d1(e(x)))))) c(d(x)))
=(c1(e(d(x))) c(x))

=(e(d(c1(x))) ¢(x))

=(ci(e(x)) c(d1(x))>

=(el(c(x)) d{c1(x)))

=(c1(x) c(di(e1(x))))
=(e1(d1(c(d1 (el (ei(dl(e(x)))N)) c(d(x)))
=(ei(c(x)) d{c(di(e1(x)))))

=(el(c(e(x))) d(c(d1(x))))

=(d1(el(c(e(x)))) c(di(x)))

=(e1(d1(d1 (el(c(e(et (et (d1(e(x))))))IN)) cld(x)))
=(e1(d1(d1(ellc(e1(di(e(x)))))))) c(d(x)))
=(e(c(d(x))) d1(d1(el(c(er(dr(elx))})))))
=(d(e(c(d(x)))) di(el(c(et(dl(e(x)N))
=(d1(et(c(e(el(c(e1(d1(e(x)))))1))) c(d(elc(d(x))))))
=(d1(el(c(c(el(d1(e(x))))))) c(d(e(c(d(x))))))
=(di(el(e(d(e1(d1(e(x))))))) c(d(elc(d(x))))))
=(d1(d(e1(d1(e(x))))) c(d(e(c(d(x))))))
=(e1(d1(e(x))) c(d(e(c(d(x))))))
=(c(d{e(d(eler(d1(e(x)))))))) d(d(x)))
=(c(d(e(d(di(e(x)))))) d(d(x)))
=(c(d(e(e(x)))) d(d(x)))

=(c(d(e(x))) d(d(el(x))))
=(d(d(e1(d(e(c(d(ec(x)))))I))) d(x))
=(d(d(e1(d(e(d(d(er(c(x)NNM) d(x))
=(e(d(d(e1(d(e(c(d(e(x)N N))) c(x))
=(e(d(d(e1(d(e(d(d(e1 (X)) clx))
=(e1(d1(e(x))) d(d(e1(c(d(x)}))))

A1l x:Any + =(d(d(ei(d(e(d(d(el(e(d(d(e1(d(e(d(d(e1{x)))))))))))I))))) d(x))

411 x:Any + =(d(d(et(d(e(d(d(d(d(e1(dCe(a(d(e1(x)))))))IN)I)))) d(x))
- =(d(c_1) e(d(d(ei(d(e(d(d(et(elelc_iNININNIN))

- =(d(c_2) e(ee(e(e(c_2))))))

~ =(d(c.1) e(d(d(e1(d(e(d(d(alc.1))))))))

- =(d(c_2) e(e(e(e(elc.2)IN)))

RW123,1 & Al6
RWi4,1 & RW119

RW125,1 & Al6

P73,1 & RW119
RW141,1 & RW119

RW142,1 & A16
RW143,1 & A16

RW1i44,1 & A14
RW120,1 & RW119
RW153,1 & Al6
P113,1 & RW119
A15,1 & RW154,1
RW145,1 & P158

All
All

All

AlL

A1l
A1l
A1l
All
All

A1l x:Any + =(d(e1{(a(e(d(d(x2)))))

A15,1 & RW155,1
RW124,1 & A14,1
P167,1 & Al4
P158,1 & A15,1
A13,1 & P170
Al4,1 & P170

-=> * P15:
--> * P16:
--> * P17:
--> * RWiS8:
-=> % P21:
-=> * P24:
-=> * P27:
-=> * P30:
--> % P40:
-=> * RWAT:
~=> % P50Q:
-=> * P51:
-=> * P§2:
-~> * PB5:
-=> % P58:
-~> * RW64:
~=> * RW69:
-=> * P70:
-=> # P73:
~=> % RW79:
~=> % RW80:
--> * P96:
-=> * P99:
-~> % P102:
-=> % RW103:
-=> * RW104:
~-=> % RW105:
==> * RW106:
--> * P110:
~=> % RW1i1:
~=> % RW112:
~=> % P113:
~~> * RW114:
~-> * RW115:
~=> * RWii8:
~-> * RWiig:
~=-> * RW120:
~=> % RW123:
-=-> * RW124:
~=> % RW125:
--> * RW126:
~=> % RW141:
=-=> * RW142:
~=> * RW143:
~=> * RW144:
~—> * RW145:
~=> % RW153:
~=> * RWi54:
~-> % RW155:
~-> * P158:
=~=> * RW160:
~=> * P163:
~=> * P167:
--> % RW168:
==> % P170:
-=> * RW171:
~=> % RW172:

All
All
A1l
All
All

X:
xX:

x

Any +
Any +

‘Any +
tAny +
:Any +

x
x:Any +
x:
x
x

Any +

:Any +
:Any +

=(d1{e1(e(d(d(e1(d(e(d(d(e1(e(x))))))))))) c(a1(x)))
=(d1(el(e(d(d(e1(d(e(d(d(e1 e COIINIINM
e(d(d(e1(d(e(d(d(e1(d1CGININIMINN
=(d1(d{d(e1(d(e(d(d(elleGX)ININIDIM)
e(d(d(e1(d(e(d(d(el(d1C)INIMINN
=(d1(d(d(e1(d(e(d(d(x)))N)N)
e(d(d(et(d(e(d(da(e1 (A1 (x))NINNM
=(d(e1(d(e(d(d(x)))))) el(d(d(e1(d(e(d(d(et (A1(X)))NINNN
=(e1(d1{e(x))) d(d(et(e(d(d(e1(d(e(d(d(e1(d(x)))))ININN)I))
=(e1(d1{(e(x))) d(d(d(d(e1(d(e(d(d(el(d(x))))NIN)))
=(e(d(d(e1(d(e(d(d(e1(d(e(x))))))))))) d(d(e1(x))))
=(e1(d1(x)) d(d(d(d(ei(d(e(d(d(e1(d(e1(x)2I NN

e(d(d(e1(d(e(d(d(d(d(d(d(e1(d(e(d(d(e1(@CeiX)NIMNNIMINIMNIHINN

X:Any +
x:Any +
x:
x
X

Any +

:Any +
:Any +
All x:

Any +

=(e(d(d(e1(d(e(d(d(e1(d(x)})))))7)) d(d(e1(e1(x)))))
=(d1(d(x)) d(e1(d(e(d(d(d(d(e1(d(e(d(d(e1(IIMNINNIMIN)
=(x d(e1(d(e(a(d(d(d(e1(a(e(a(d(e1(x))})})3))N)N
=(e(d(d(d(d(et(d(e(ald(e1(d(e1(x)))))))))M)) d1(x))
=(d(e(d(d(d(d(e1(d(e(d(d(e1(d(e1(x)))1)))))))))) x)
=(e(d(d(d(d(ei(d(e(d(d(el(d(e1(d(x)))))))))))))) x)

126

P163,1 & A16,1
RW171,1 & P175
RW172,1 & P175
RW160,1 & P75

RW177,1 & A16,1
A16,1 & RW176,1
P187,1 & P175,1
P190,1 & A16
A16,1 & P187,1
RW191,1 & A15,1
A16,1 & P192,1
416,1 & P200,1
P208,1 & P205,1
P215,1 & A16
RW216,1 & A1S
RW217,1 & A15
A16,1 & P208,1
A15,1 & RW218,1
RW179,1 & P224

RW225,1 & Al6

RW168,1 & P224
RW227,1 & A16

A16,1 & RW228,1
P175,1 & P224,1

P234,1 & P205
R¥235,1 & A15
RW236,1 & A15
RW237,1 & Al16,1
P238,1 & A16
P184,1 & P205,1
P241,1 & A1S
P205,1 & P219,1

P247,1 & A16
RW248,1 & A16
P175,1 & RW239,1

P252,1 & AiS
A16,1 & RW242,1
P175,1 & P254

RW269,1 & A16
RW270,1 & P254

RW271,1 & A1S

RW239,1 & P254
RW275,1 & Al6

RW276,1 & Al6

RW249,1 & A16,1
Al6,1 & RW253,1
A16,1 & P254,1
A16,1 & P289,1
P292,1 & A16,1
P305,1 & A16,1
P224,1 & P219,1

P314,1 & A16
P219,1 & P224,1
P231,1 & RW226,1

L S A * LN I 2N L I B B R IR JEE TR NN) % * F #*

LR I AR R]

L 20 JNE B K IR B K 2R B

P175:

RW176:
RW177:
RW179:

P184:
P187:
P190:

RW191:

P192:
P200:
P205:
P208:
P215:

RW216:
RW217:
RW218:

P219:
P224:

RW225:

RW226:

RW227:
RW228:

P231:
P234:

RW235:
RW236:
RW237:

P238:

RW239:

P241:

RW242:

P247:

RW248:
RW249:

P252:

RW263:

P254:

RW269:

RN270:
RW271:

RW272:
RW275:

RW276:
RW277:

P283:
P289:
P292:
P302:
P305:
P308:
P314:

RW315:

P316:

* P317:

All
All
All
All

All
A1l
All
All
All
All
A11
All
All
All
A1l
All
A1l
All
All

All

All
All
All
All

All
aAll
All
All
All
A1l
All
All

All
All
All

All
All
A1l

All
All

All

All
A1l
All
411
A1l
All
A1l
A1l
All
All

A1l
All
A1l

Mok oM M MK MM KK K KK XX Hom R o

"

LI I I

[O T B I

MM K MoK oMK KX X

:Any +
tAny +
:Any +
:Any +

:Any +
:Any +
:Any +
:Any +
:Any +
tAny +
:Any +
(Any +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +

:Any +

:Any +
:Any +
:Any +
sAny +

:Any +
:Any +
:Any +
tAny +
:Any +
:Any +
:Any +
:Any +

:Any +
:Any +
:Any +

:Any +
:Any +
:Any +

:Any +
:Any +

:Any +

:Any +
‘Any +
:Any +
:Any +
:Any +
iAny +
:Any +
:Any +
:Any +
:Any +

:Any +
:Any +
tAny +

Appendix B. Commented Examples

=(e1(d(d(e1(e1(x))))) d(d(e1(d(e(d(d(e1(d(x))))))))))
=(d(e(d(d(e1(d(d(e1(e1(el(x)))))))))) x)
=(e(d(d(e1(d(d(e1(e1(e2(d(x)INMI M) x)
=(d(e1(d(e(d(d(x))))))
e(d(d(e1(d(e(d(d(d(d(e1(d(da(e1(el1(el(x)))})I)III)))))
=(a1(x) d(d(e1(d(d(ei(el (e (d(x))))I)N))
=(d(e(d(d(e1(d(d(el(e1(x))))))))) e(x))
=(e1(d(d(e1(ei(d(el(el(x)))))))) d(d(ei(e(x)))))
=(e1(d(d(et(e1(d(ei(e1(x)))))))) d(d(x)))
=(d(e(d(d(e1(d(d(e1(x))))I)))) ele(x)))
=(e(d(d(x))) d{d(el(e1(d(e1(el(x))))))))
=(d(e(d(d(e1(d(d(x))))))) e(ele(x))))
=(e(d(d(e(x)))) d(d(el(e1(d(e1(x)))))M)
=(d(e(d(d(e1(e(d(d(e(x)))IN)))) e(e(elel(el(d(el(x))))))))
=(d(e(d(d(d(d(e(x))))))) e(e(e(et(el(d(e1(x)}))))))
=(d(e(d(d(d(d(e(x))))))) e(e(el(d(e1(x))))))
=(d(e(d(d(d(d(e(x))))))) e(d(el1(x))))
=(e(d(d(e(e(x))))) d(d(e1(e1(d(x))))))
=(d(e(d(d(d(d(x)))))) e(d(e1(e1(x)))))
=(d(el(d(e(d(d(x))))))
e(d(d(el(e(d(el(el(e1(d(d(el(e1(el(x)))))))))))))))
=(d(e1(d(e(d(d(x))))))
e(d(d(d(e1(ei(el(d(d(e1(ei(e1(x})I))NIN))
=(x d(el(e(d(el(ei(e1(d(e(d(d(ei(x)))))))))))))
=(x d(d(et(el(el(d(e(d(d(e1(x)))))})))))
=(e(x) d(d(et(el(et(d(e(d(d(x))))))))))
=(d(e(d(d(el(a(d(el(e1(x)))))))))
e(d(e1(el(e1(d(e(d(d(e1(d(x))))))))II))
=(e(elele1(e1(x))))) e(d(el1(ei(e1(d(e(d(d(e1(d(x))))))))))))
=(e(e(e1(x))) e(d(el(ei(el(d(e(d(d(e1(d(x)IINININ)
=(e{x) e(d(ei(ei(el(d(e(d(d(e1(d(x))))»)N))M))
=(e1(e(x)) d(el(el(e1(d(e(d(d(e1(d(x)))))))>)))
=(x d(el(el(e1(d(e(d(d(e1(d(x)))))))))
=(d(e(d(d(e1(e1(x)))))) e(ele(el(d(d(er(e1(e1(d(x)))))))I)))
=(d(e(d(d(el(e1(x)))))) e(e(d(d(ei(el(e1(d(x)))))))))
=(e(d(d(e(e(e(d(d(e1(d(d(x))))))})))))
d(d(e1(el(e(eCe(x))))))))
=(e(d(d(e(e(e(d(d(e1(d(d(x))))))))))) d(d(et(e(e(x))))))
=(e(d(d(elele(d(d(e1(d(d(x))))))))))) d(d(e(x))))
=(e(d(d(e1(d(x)))))
d(el1(et(el(d(e(e1(d(d(e1(el(x))))))))))))
=(e(d(d(e1(d(x))))) d(e1(el(e1(d(d(d(el(e1(x))))I)IN))
=(d(e(d(d(e1(x))))) e(e(d(d(el(el(el(d(e(x))))))N)))
=(e1(d(d(el el (x)))))
d(d(e1(e(e(d(dCel(e1(et (d(e(d(x)))))))))))}M)
=(e1(d(d(e1(e1(x))))) d(d(e(d(d(et(e1l(e1(d(e(d(x)))))))I))))
=(e1(d(d(et(el(x)))))
d(e(e(d(d(et(e1(ei(d(e(ei(el(d(e@X)DNINIMININMIN
=(e1(d(d(et (el (x)))))
d(e(e(d(d(el(ei(e1(d(e1(d(e(d(x)))))))IIIINM)
=(x d(el(e1(el(e(e(d(d(ei(el1(e1(d(a(dCOIMMININMINIMIM)
=(x d(ei(el(e(d(d(el(e1(el(d(e(d(x)))))))))N))
=(x d(ei(d(d(et(e1(e1(d(e(d(x)))))))))))
=(e1(d(d(e(x)))) d{(d(e(e(e(d(d(e1(d(d(x)>)))))))))
=(e(d(d(e1(d(e(x)))))) dlel(el(e1{(d(d(d(e1(x))))N))))
=(d(e(d(d(x)))) e(e(d(d(e1(ete1(de(e(x)))))I)M)
=(e(d(dfet(d(e(e(x))))))) d(e1(el(e1(d(d(d(x))))N)
=(e1(d(e(d(d(x))))) e(d(d(et(e1(e1(d(e(e(x)))))))N)))
=(e1(e1(d(e(d(d(x)))))) d(d(et(el(e1(d(e(e(x)))))I))))
=(e(d(d(e{e(a(d(d(d(d(x))))))))))
d(d(et(e1(e(d(el(et(x)))))))))
=(e(d(d(e(e(e(d(d(a(d(x)))))))))) d(d(e1(d(el1(el(x)))))))
=(d(e(d(d(e(d(d(e(e(x)))3))))) el(d(ei(el(el(el(d(x))))))))
=(d(e1(d(e(d(d(d(e(d(d(x))))N)))
e(d(d(a(el(etleleCININNN

B.3.6. Other Examples: Z22

P317,1
P231,1

P319,1
P231,1

P331,1
P224,1

P334,1
P231;1

P336,1
P219,1

P338,1
P302,1

P340,1

&

&

&

&
&

&
&

&
&

&
&

4

A16
Pi84,1

Al6
P219,1

Al6
RW277,1

P308
P254,1

A15
P254,1

ALS
RW339,1

P254

-

-->

*

*

RW318:
P319:

RW320:
P331:

RW332:
P334:

RW335:
P336:

RW337:
P338:

RW339:
P340:

RW341:

A1l
A1l

All

All

All
All

All
All

All
All

All
All

:Any
rAny

tAny

:Any

:Any
:Any

:Any
:Any

:Any
:Any

:Any
:Any

+

+

+

+

+

+

+

+

+

127

=(d(e1(d(e(d(d(d(e(d(d(x)))))))))) e(d(d(d(ei(el1(x)))))))
=(el(d(el(e1 (et (d(e(d(d(x)})))N)))
d(d(e1(d(d(e1(elCel(e(x))NINNN)
=(e1(d(e1(e1(e1(d(e(d(a(x)))))))))
d(d(e1(d(d(e1(ei(x)))))N)
=(e(d(d(e(e(d(e1(e1(e1(d(e(d(d(x)))))))3)))))
d(d(ei(el(e(x))))))
=(e(d{(d(e(e(d(e1(e1(e1(d(e(d(d(x))))))))))))) d(d(e1(x))))
=(e(d(d(d(d(x)))))
d(e1(d(d(e1(el(e1(d(e(e(d(el(el(x)))))))INI)))
=(e(d(d(d(d(x))))) d(el(el(ei(d(e(d(da(d(el(el(xI)))N))
=(d(e(e(x)))
e(e(d(d(el(el(ei(d(e(el(e1(d(e(d(dxIIMNIMNININ
=(d(e(e(x))) e(e(d(d(ei(el(el1(d(el(d(e(d(d(x)INIMNINNN
=(d(e(e(d{d(e(e(x)))))))
e(e(d(d(el(eti(e1(d(e(ei(d(x))))))))))))
=(d(e(e(d(d(e(e(x})))))) e(e(d(d(el(ei(el(d(d(x)}})))))))
=(d(e(e(d(d(e(e(el(e1(ei (@@ @GININIMDNIN
e(e(d(d(el(er(ei(d(e(d(d(et(d(eCeXIINNNINIIND)

All x:Any + =(d(e(e(d(d(e(e(eilei(el1(d(d(d(x)))))))))))))

RW341,1 & Al6

RW342,1 & Al16

RW343,1 & RW320

RW344,1 & P254
All x:Any + =(d(e(e(d(d(a(e(el(e1(e1(d(d(d(x)))))))))))))

RW345,1 & AlL6

RW346,1 & Al16

RW347,1 & RW277

RW348,1 & Al6

RW349,1 & A1S
RW350,1 & A15
P302,1 & RW277,1

P359,1 & P308

R¥360,1 & P224

R¥361,1 & A16

P231,1 & P302,1

P363,1 & A5

RW364,1 & AlS
P308,1 & P224,1

P369,1 & RW¥362

RW370,1 & P219

RW371,1 & A1S
P283,1 & RW372,1
P373,1 & A1S

~=> * RW342:
A1l x:Any + =(d(e(e(d(d(e(e(el(el(e1(d(d(d(x))))))2)2))))

~~> % RW343:

~-> * RW344:

~-> * RW345:

~=> * RW346:
A1l x:Any + =(d(e(e(d(d(e(e(el(e1(el1(d(d(d(x)))))))))))))

~-> * RW347:
~=-> % RW348:
~=> % RW349:
-=> % RW350:
--> * RW351:
~=> % P359:

~=> * RW360:
~=> * RW361:
~=> * RN362:
~=> * P363:

~=> * RW364:
--> * RW365:
-=> * P369:

--> % RW370:
--> * RW371:
-=> * RW372:
=-> % P373:

-=> % RW374:

e(e(d(d(et (et (el (e(e(d(d(el(el(e1(d(e(d(e(e(x))))}}3))))I)IIIN))

e(e(d(d(e1(et(e(d(d(el(el(ei(d(e(d(e(e(x)))))))))))))I))))

A1l x:Any + =(d(e(e(d(d(e(e(el(ei(e1(d(d(d(x))))))II))))))

e(e(d(d(e1(d(d(el(el(e1(d(e(d(e(e(x)))))))))))N)))

A1l x:Any + =(d(e(e(d(d(e(e(el(e1(e1(d(d(d(x)))))II)))

411

A1l

A1l

All

A11

All

Al

All

All

All

All

All
All

A1l
All
A1l

All
All

x

e(e(ei(d(el(et(el(d(e(d(d(et(d(e(d(ee(x))))))NNINIINN

e(e(el(d(el(el(el(e(e(d(d(el(e1(e1(d(e(d(e(d(e(e(x))))NNNINMINMINY

e(e(e1(d(e1(ei(e(d(d(ei(e1(el(d(e(d(e(de(e(x))NINININININNIN)

:Any + =(d(e(e(d(d(e(e(el(el (e1(d(d(d(x))))))NIII)

x:Any +

X:

X:

X:

X:

X:

X:

X:

X

Any

:Any

:Any
:Any

:Any
:Any
:Any

(Any
:Any

+

e(e(e1(d(e1(d(d(e1(el(e1(d(e(d(e(d(e(e(x))))))ININNIN))
=(d(e(e(d(d(e(ef(e1(el(e1(a(A(@CXIIN NN
e(e(el(e(d(eCe(x)))))))
=(d(e(e(d(d(e(e(el(e1(e1(d(d(d(x))))))I))))
e(a(d(e(e(x))))))
=(d(e(e(d(d(e(e1(e1(d(d(d(x))3)))))))) e(e(d(e(e(x))))))
=(d(e(e(d(d(e21(d(d(d(x))))1)))) e(e(ale(e(x))))))
=(el(el1(e1(d(da(d(x))»))
d(e1(d(d(e1(e1(e1(ale(e(d(d(e1(d(e(ex))IINNININIINM
=(el(e1(e1(d(d(d(x))))))
d(el(el(ei(d(e(d(d(d(d(e1(d(e(e(x))IIIINNINI)
=(e1(e1(ei(d(d(d(x))))))
d(et(el(e1(e(d(el(ei{er(d{e(e(x)))INNNN
=(el(e1(e1(d(d(d(x))))))
d(et(el(d(ei(el1(e1(d(ele(x)))))))))))
=(e(d(d(e1(d(e(e(ei(el(e1(d(e(d(d(x))))IIININ)
d(el(e1(el(d(e(x)})))))
=(e(d(d(el(d(e(el(e1(d(e(d(d(x))))))IN)
d(el(et(el(d(e(x)))NN
=(e(d(d(e1(d(e1(d(e(d(d(x)))))))))) d(el(et(er(d(e(x)))))))
=(d(e(d(d(d(e1(e1(d(e(d(d(x))IN))
e(d(et(e1(d(et(e1(al(d(e(e(x))))))))))))
=(d(e(d(d(d(el(e1(d(e(d(A(x)MIN)
e(el(el(e1(d(d(d(x))))N))
=(d(e(d(e(d(d(e(e(e(dAINNIMNNM)
e(el(e1(e1(d(d(dx))NNM
=(d(e(d(e(d(d(e(e(e(d(d(x))))))))))) ei(e1(d(d(d(x))))))
=(d(e(d(e(e1(d(d(e(x)?)))))) e1(e1(d(d(d(e1(d(d(x)))))I))))
=(d(e(d(d(d(e(x)))))) ei(et(d(d(d(e1(d@(INNNMN

128 Appendix B. Commented Examples

P231,1 & RW372,1 —--> % P375: All x:Any + =(d(e(d(e(d(d(e(e(e(e(x))))))))))
e1(e1(d(d(d(e1(el(e1(d(e(d(d(x))))))))2))))

P375,1 & P231 ~=> % RW376: All x:Any + =(d(e(d(e(d(d(e(e(e(e(x)))))))))) el(ei(d(e(x)))))

A15,1 & RW376,1 ==> * P377: A1l x:Any + =(d(e(d(e(d(d(e(e(e(x))))))))) el(el(d(e(el(x))))))

P377,1 & A15 -=> * RW378: All x:Any + =(d(e(d(e(d(d(e(e(e(x))))))))) el(el(d(x))))

A15,1 & RW378,1 ==> * P379: All x:Any + =(d(e(d(e(d(d(e(e(x)))))))) ei(el(d(ei(x)))))

A15,1 & P379,1 ~==> * P382: All x:Any + =(d(e(d(e(d(d(e(x))))))) el(el(d(eilel(x))))))

A15,1 & P382,1 ==> % P385: All x:Any + =(d(e(d(e(d(d(x)))))) ei(ei(d(ei(ei(el(x)))))))

P219,1 & P231,1 --> * P388: All x:Any + =(e(d(el(e1(d(x)))))
d(d(e1(el(e1(d(e(d(e(d(d(e(e(xX)INININNN)

P388,1 & P385 --> % RW389: All x:Any + =(e(d(el(el(d(x)))))
d(d(ei(el(el(el(el(d(el(e1let(e(e(x))))))))I))I))

R¥389,1 & A16 ~-=> * RW390: All x:Any + =(e(d(e1(e1{d(x)))))
d(d(et1(el(et(et(er(d(e1(e1le(x)))))))))I))

RW390,1 & A16 ~~> % RW391: All x:Any + =(e(d(e1(e1(d(x))))) d(d(el(e1(ei(e1(e1(d(e1(x))))))))))

P219,1 & RW335,1 --> * P392: A1l x:Any + =(e(d(d{d(dd(x))))
d(e1(ei(e1(d(e(d(e(d(d(e(e(x)MMINNN

P392,1 & P385 ~=> * RW393: All x:Any + =(e(d(d(d(d(d(x))N))
d(el(ei(el(et(el(d(el(ei(el(e(e(x)))NININNNN)

RW393,1 & A16 ==> % RW394: All x:Any + =(e(d(d(d(d(d(x))))))
d(ei(el{et(el(e1(d(ei(ei(cGININININN

RW394,1 & A16 -=> * RW395: All x:Any + =(e(d(d(d(d(d(x)))))) d(e1(el(el(ei(e1(d(e1(x)))))I)))

RW374,1 & Al15,1 ==> % P396: All x:Any + =(e(d(e(d(d(d(e(x))))))) e1(d(d(d(e1(d(d(x))))))))

P385,1 & P224,1 —-> % P399: All x:Any + =(d(e(d(d(d(ei(el(d(el(el(ei(x))))IN))
e(d(el(et(e(d(e(d(d(x)))))))))

P399,1 & P219 -=> * RW200: All x:Any + =(d(e(d(e(d(d(e(e(el(e1(el1(x))))))))N))
e(d(el(et(e(d(e(d@NINNIMHN

RW400,1 & P385 —=-> * RW401: All x:Any + =(el(el(d(ei(el(el(e(e(ei(e1(el1(x)))))))))))
e(d(el(ei(e(d(e(d(d(IMINNIN

RW401,1 & A16 -=> * RW402: All x:Ary + =(el{el(d(el(el(e(el(el(et(x)))))))))
e(d(ei(el(e(d(e(a(d(x))>»))))))

RW402,1 & A16 —=> * RW403: All x:Any + =(el{el(d(el(el(el(el(x)))))))
e(d(et(el(e(d(e{d(d(x)))))M)N)

RW403,1 & A16 ==> * RW404: All x:Any + =(e1(ei(d(ei(ei(ei(ei(x))))))) e(d(ei(d(e(d(d(x))))))))

P231,1 & RW351,1 --> * P405: All x:Any + =(d(e(e(d(d(e1(d(e(x))))))))
e(e(d(e(e(et(e1(e1(d(e(d(d(x)))))ININ))

P405,1 & A1S -=> * RW406: All x:Any + =(d(e(e(d(d(e1(d(e(x))))))))
e(e(d(e(e1(el(d(e(d(d(x)))INIM)

RW406,1 & A15 ~=> % RWA0O7: All x:Any + =(d(e(e(d(d(e1(d(e(x)))))))) e(eld(e1(d(e(d(d(x))))N))

RW407,1 & RW404 ~=> * RW408: All x:Any + =(d(e(e(d(d(e1(d(e(x))))))))
a(ei(er(d(el(el(e1(el(x)))))))

RW408,1 & A15 —=> * RW409: A1l x:Any + =(d(e(e(d(d(ei(d(e(x)))))))) el(d(ei(ei(el(el(x)})))))

P231,1 & RW339,1 --> * P410: A1l x:Any + =(d(e(e(d(d(e(e(el(e1(el(d(e(d(d(x)))))))))))))
e(e(d(d(et(et(eile(x)))))))))

P410,1 & A16 -=> * RW411: ALl x:Any + =(d(e(e(d(d(e(elel(el(e1(d(e(d(d(x))))))))))))))
e(e(d(d(e1(ei(x)))))))

RW411,1 & A15 ~=> * RW412: All x:Any + =(d(e(e(d(d(e(el(el(d(e(d(d(x))))))))))))
e(e(d(d(e1(ei(x)))))))

RW412,1 & A15 ~=> % RW413: All x:Any + =(d(e(e(d(d(e1(d(e(d(d(x)))))))))) e(e(d(d(e1(e1(x)))))))

R¥413,1 & RW409 --> % RW414: A1l x:Any + =(ei(d(e1(el(e1(e1(d(d(x)))))))) e(e(d(d(et(et(x}))))))

RW320,1 & P385,1 --> % P415: A1l x:Any + =(d(e(d(e(e1(d(el(e1(e1(d(e(d(d(x)))})))))))))
el(e1(d(el(ei(el(el(d(d(e1(e1(x))))))))))))

P415,1 & RW414 ==> % RW416: All x:Any + =(d(e(d(e(e1(d(el1(ei(el1(d(e(d(d(x)})))))))))))
el(e(e(d(d(e1(el(e1(e1(x))})))))))

RW416,1 & A16 -=> % RW417: A1l x:Any + =(d(e(d(e(ei(d(ei(e1(el(d(e(d(d(x))))))>>I))))
e(d(d(et(el(el(el(x)))))))

RW417,1 & A5 -=> * RW418: All x:Any + =(d(e(d(d(ei(el(e1(d(e(d(d(x)))))))))))
e(d(d(el(ei(el (el () N)))

RW418,1 & P254 =~> % RW419: A1l x:Any + =(e(e(d(d(el(ei(el(d(e(el(ei(d(e(d(d(x)))))I))N)))
e(d(d(el(et(el(eli(x)))))))

RW419,1 & A1S --> % RW420: A1l x:Any + =(e(e(d(d(e1(et(e1(d(e1(d(e(d(d(x)}))))))I)M
e(d(d(et(e1(e1(e1(x)))2N))

RW420,1 & RW337 ~=> * RW421: A1l x:Any + =(d(e(e(x))} e(d(d(ei(ei{ei(el(x))}})))))

RW421,1 & A16,1 -=> * P422: All x:Any + =(el(d(e(e(x)))) d(d(et(el(el(el(x)))))))

RW391,1 & P422 -~> % RW423: All x:Any + =(e(d(e1(e1(d(x))))) e1(d(e(e(e1(d(e1(x})))))))

B.3.6. Other Examples: Z22 129

R¥W423,1 & A1S ~=> % RW424: A1l x:Any + =(e(d(e1(e1(d(x))))) e1(d(e(d(ei(x))))))

P422,1 & RW318,1 --> x P427: All x:Any + =(d(e1(d(e(d(d(d(e(el1(d(e(e(x))))))))))))
e(d(d(d(el(el(elleilel(et(x))))))I0)))

P427,1 & PA22 ~~> * RW428: All x:Any + =(d(el(d(e(d(d(d(e(el1(d(e(e(x)))))I))I))}))
e(d(e1(d(efe(el (e CG)IINININ

RW428,1 & AlS -=> * RW429: All x:Any + =(d(e1(d(e(d(d(d(d(e(e(x))))))INMN

e(d(er(d(e(ele1(e1(x223)2))))

RW429,1 & P224 -=> % RW430: All x:Any + =(d(el(e(d(el(el(e(e(x))}))))) e(d(el(d(e(e(el(el(x)))))))))

RW430,1 & Al6 ~=> * RW431: All x:Any + =(d(d(et(el(e(e(x)))))) e(d(el(d(e(e(el(el(x)))))))))

RW431,1 & Al16 --> * RW432: All x:Any + =(d(d(el(e(x)))) e(d(ei(d(e(elellel(x)))))))))

RW432,1 & A16 ~=> * RW433: a1l x:Any + =(d(d(x)) e(d(e1(d(e(e(el(el(x)))))))))

RW433,1 & AiS ~-> * RW434: A1l x:Any + =(d(d(x)) e(d(e1(d(e(el(x))}))))

RW4A34,1 & A15 —=> * RW435: All x:Any + =(d(d(x)) e(d(e1(d(x)))))

RW404,1 & RW435 ~-=> * RW436: All x:Any + =(el(ei(d(el(et(e1(el1(x))))))) d(d(e(d(d(x))))))

P316,1 & RW436 -=> % BWA37: All x:Any + =(d(e(el(ei(d(ei(el(ellel{e(e(x)))))N))I)D)
e(d(et(e1(ei(e1(d(x)))))))

RW437,1 & A16 ~=> * RW438: A1l x:Any + =(d(e(ei(el(d(el(el(e1(e(x)))))))))
e(d(el(el(e1(e1(d(x))))))))

RW438,1 & A18 -=> * RW439: All x:Any + =(d(e(el(ei(d(el(el1(x))))})) e(d(et(ellei(e1(d(x))})))))

RW439,1 & A15 --> & RW440: All x:Any + =(d(e1(d(ei(el1(x))))) e(d(ei(el(e1(e1(d(x))I)I))I)

RW315,1 & RW440 ~=> * RW443: All x:Any + =(e(d(d(e(e(e(a(a(d(d(x)))))IN))

d(e(d(el(et(et(e1(d(x))))))N)
RW277,1 & RW435,1 ~-> # P447: A1l x:Any + =(d(d(e1(d(d(el{el(e1(d(e(d(x))))))))))) el(d(e1(x))))

P447,1 & RW320 -=> x RW448: A1l x:Any + =(e1(d(el(ei(el(d(e(d(d(el(d(e(d(x))))))))))))) e(d(el(x))))
RW448,1 & P254 --> = RW449:
ALl x:Any + =(et(d(el(el(el(e(e(d(d(et(el(el(d(e(d(e(d(x)))})))))))I))))) eld(el(x))))
RW449,1 & A16 -=> * RW450: All x:Any + =(el{(d(eil(el(e(d(d(el(el(e1(d(e(d(e(d(x)))))))))))I)I))
e(d(e1(x))))
RW450,1 & Ai6 -=> % RW451: A1l x:Any + =(el(d(e1(d(d(el(el(el1(d(e(d(e(d(x))))))2)))))) e(d(el1(x))))
RW451,1 & RW277 -~> % RW452: All x:Any + =(el(e(d(x))) e(d(ei(x))))
RW452,1 & A16 -=> % RW453: All x:Any + =(d(x) e(d(e1(x))))
P224,1 & RW453 ~-> * RW454: A1l x:Any + =(d(e(d(d(d(d(x)))))) d(e1(x)))
RW443,1 & RW453 ==> * RW455: All x:Any + =(e(d(d(e(e(e(d(d(d(d(x)))))IM)))) d(d(e1(el(e1(d(x)})))))
RW440,1 & RW453 -~> * RW456: All x:Any + =(d(e1{d(e1(el(x)}))) d(el(e1(e1(d(x))))))
RW¥W332,1 & RW453 -=> * RW462: A1l x:Any + =(e(d(d(e{d(e1(e1{d(e(d(a(x))))))))))) d(d(el(x})))
RW462,1 & RW453 -=> % RW463: All x:Any + =(e(d(d(d(e1(d(e(d(d(x))))))))) d(d(ei(x))))
RW424,1 & RW453 -=> * RW465: All x:Any + =(d(e1(d(x))) el(d(e(d(e1(x))))))
RW465,1 & RW453 ==> * RW466: All x:Any + =(d(e1(d(x))) e1(d(d(x))))
RW126,1 & RW466 --> * RWA70: ~ =(d(c_1) e(d(el(d(d(el(d(d(e(c_1)))))))))
- =(d{c_2) e(elel(e(e(c_2)1))))
RW470,1 & RW466 -=> % RW4T1: - =(d(c_1) e(el(d(d(d(e(d(d(e(c_1))))))))))
= =(d(c_2) e(elelele(c_2)))))
RW471,1 & RW436 -=> * RW472: - =(d(c.1) e(e1(d(el(el(d(el(et(el(el(e(c_1))))))))))))
- =(d(c_2) e(ele(e(e(c_2)))))
RWA72,1 & Al6 --> * RW473: - =(d(c_1) e(et(d(eil(ei(d(e1(etlel(c_1))))))))))
~ =(d(c_2) e(eleele(c_2)))))
RW473,1 & A1S --> * RR474: - =(d(c_1) d(e1(e1{(d(el(ellel(c_1))))))))
- =(d(c_2) e(ele(ele(c_2)))))
RW272,1 & RW466 -=> * RWA88: All x:Any + =(e1(d(d(el(el(x)))))
d(e(e(d(d(el(el(e1(e1(d(d(e(d(x)I)IMMMIMNM)
RW488,1 & P422 -~> * RW489: A1l x:Any + =(e1(d(d(e1(e1(x))))) d(e(e(el(d(ee(d(d(e(d(x)))))INN))
RW489,1 & Al15 ~--> * RWA90: All x:Any + =(e1{(d(d(e1(el1(x))))) d(e(d(e(e(d(d(e(d(x)))))I))))
RW277,1 & RW466 -=> * RW491: All x:Any + =(x el(d{(d(d(el(et(e1(d(e(d(x))))))I)))))
RW456,1 & RW466 ~=> % RW498: All x:Any + =(el(d(d(el(e1(x))))) d(et(el(e1(d(x))))))
RW320,1 & RW466 -=> % RN499: A1l x:Any + =(e1(d(e1{e1(e1{d(e(d(d(x)))))))}))
d(el(d(d{d(e1 (el)N
RW499,1 & RW466 -=> % RW500: A1l x:Any + =(e1(d(ei(e1(e1(d(e(d(@C))I)N
e1(d(d(d(d(et(el(x)NIN)N)
RW463,1 & RW466 -=~> % RW501: A1l x:Any + =(e(d(d(e1(d(d(e(d(d(x)})})))))) d(dCe1(x))))
RW501,1 & RW466 --> * RW502: All x:Any + =(e(d(e1(d(d(d(e(d(d(x))))))))) d(a(ei(x))))
RW502,1 & RW466 ~=> * RW503: All x:Any + =(e(e1(d(d(d(d(e(d(d(x))))))))) dld(e1(x))))
RW503,1 & RW436 --> * RW504: All x:Any + =(e(e1(d(d(el(ei(d(el(el(ei(el(x)))))))))I) d(d(el(x))))
RW504,1 & P219 -=> * RW505: All x:Any + =(e(el(e(d(d(e(e(al(e1lel1(e1(x))))))))))) d(d(el(x))))
RW505,1 & A16 ~=> * RW506: All x:Any + =(e(d(d(e(e(el(el(ei(el(x))))))))) d(d(el(x))))
RW506,1 & A1S -=> % RW507: All x:Any + =(e(d(d(e(et(e1(e1(x))))))) d(d(e1(x))))

130

RW507,1 & A15
RW351,1 & RW466
RW517,1 & RW466
RW518,1 & A1S
RH519,1 & RW454
RW520,1 & RW466
RW365,1 & RW466
EW533,1 & RW466
RW534,1 & RW466
RW535,1 & RW466
EW536,1 & RW466
RW537,1 & RW436
RW538,1 & P219
RW539,1 & A16
RW540,1 & A15
RW541,1 & A1S
RW542,1 & AlS
P396,1 & RW466
BW547,1 & RW466
RW¥548,1 & RW466
RW409,1 & RW466
EW550,1 & RW466
RW551,1 & A15
RW549,1 & RW552
RW553,1 & RW521
R¥554,1 & Al16
RWES5,1 & A1S
RW490,1 & RW543
P219,1 & RW543
RW491,1 & RW543
RW598,1 & RW543
RW599,1 & A15
RH600,1 & RW521
RW601,1 & A16
RW602,1 & A16
RW603,1 & RW521
RW604,1 & AlS
P308,1 & RW543
RW612,1 & A15
RW613,1 & RW521
RW614,1 & A16
RW615,1 & A16
RW455,1 & RW543
RW617,1 & A15
RW618,1 & RWS21
RW619,1 & A16
RW620,1 & A16
RW4S98,1 & RW543
RW500,1 & RW543
RW623,1 & RW543
RW624,1 & RWS543
RW625,1 & A15
RW626,1 & RWS21
RW627,1 & A16

L I B B R N R I R R

LI I N JEE WY SEY CRE N AR S R R R N BN REE IR B BN CBEE CBER BRI R BRI) *

* *

* * *

RW508:
RW517:
RH518:
RW519;
RW520:
RW521:
RW533:
RW534:
RW535;
RW536:
RW537:
RW538:

RW639:

RW540:

RW541:
RW542:
RW543:
RW547:
RW548:
RW549:
RWS50:
RW551:
RW552:
RW553:
RW554
RW555:
RW556:
RW591:
RW592:
RW598:
RW599:
RW600 :
RW601:
RW602:
RW603:
RW604:
RW605:
R¥WE612:
RW613:
RW614:
RW615:;
RUW616:
RW617:

RWG1S:
RW619:

RW620:
RW621:
RW622:
RW623:
RW624:
RW625:
RW626:

RW627:

RW6238:

All
All
All
All
All
A1l
All
All
All
All
All
All

All

All

A1l
All
All
A1l
All
A1l
All
All
All
A1l
All
All
All
All
A1l
A1l
All
All
All
A1l
All
All
A1l
All
All
All
All
A1l
All

All
All

All
All
All
All
All
A1l
All

All

All

MoK oMM XK K K MK X X

=

MoX M oX oK oK OM XK OK KK KM KM KM KK OM K KN K KK KK]

" X

oMM R

o]

x

X:

sAny +
tAny +
:Any +
tAny +
:Any +
tAny +
:Any +
:Any +
cAny +
:Any +
:Any +
tAny +

:Any +
:Any +

:Any +
tAny +
:Any +
iAny +
:Any +
:Any +
:Any +
:Any +
Any +
:Any +
:Any +
tAny +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +
Any +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +

:Any +
:Any +

:Any +
cAny +
:Any +
:Any +
:Any +
:Any +

:Any +

:Any +

Any +

Appendix B. Commented Examples

=(e(d(d(et(e1(x))))) d(d(el(x))))
=(d(e(e(d(e1(d(d(d(d(x))))))))) e(e(d(e(e(x))))))
=(d(e(e(e1(d(d(d(d(d(x))))))))) e(e(d(e(e(x))))))
=(a(e(d(d(d(d(d(x))))))) el(e(d(e(e(x))))))
=(d(e1({d(x))) e(e{d(e(e(x))))))
=(e1(d(d(x))) e(e(d(e(e(x))))))
=(e(d(e1(d(d(e1(d(e(d(d(x)))))))))) dlel(el(el(d(e(x)I)))
=(e(e1(d(d(d(e1(d(e(d(d(x)}))))N))) d(et(et(e1(d(e(x)))))))
=(e(el(d(d(e1(d(d(e(d(d(x)))))))))) d(el(el(e1(d(e(x)))))))
=(e(e1(d(e1(d(d(d(e(d(d(x))))))))) d(et(el(ei(d(e(x)))))))
=(e(e1(e1(d(d(d(d(e(d(d(x)))))))))) d(elel(e1(d(e(x)))}))))
=(e(et(e1(d(d(e1(el(d(e1(e1(e1(el(x))))IMIN)
d(e1(et(e1(d(e(x)))))))
=(e(ei(el(e(d(d(e(e(el(el(el1(e1(x)))))IIIII))
d(e1(eife1(d{e(x)))I)N)
=(e(e1(d(d(e(e(e1(e1(el(el(x))NM
d(et(el(e1(d(e(x)))))))
=(d(d(e(eel(ei(el(e1(x)))))))) d(el(el(ei(d(e(x))}))))
=(d(d(e(e1(e1(e1(x)))))) d(et(et(el(d(e(x)))))))
=(d(d(e1(el1(x)))) d(et(e1(ei(d(e(x)))))))
=(e(d(e(d(d(d(e(x))))))) e1(d(d(e1(d(d(d(x)))))IM)
=(e(d(e(d(d(d(e(x))))))) e1(d(e1(d(a(dd(x))}N)))
=(e(d(e(d(d(d(e(x))))))) e1(e1(d(d(d(d(d(x)))))I)))
=(d(e(e(d(e1(d(d(e(x)))))))) et(d(el(el(el(el(x)))))))
=(d(e(e(e1(d(d(d(e(x)))))))) e1(d(e1(eilel(e1(x))))))
=(d(e(d(d(d(e(x)))))) e1(d(e1(el(el(el(x))I})))
=(e(el(d(et(el(et(e1(x))))))) el(el(d(d(d(d(d(x)))))))
=(e(el(d(el(el1(e1(e1(x))))))) el(e(e(d(e(e(d(d(d(x)))))))))
=(e(e1(d(e1(el(e1(e1(x))))))) e(d(e(e(d(d(a(x))))))))
=(d(et(e1(e1(e1(x))))) e(d(e(e(d(ddx)ININ))
=(e1(d(el(e1(e1(d(e(x))))))) d(e(d(e(e(d(d(e(d(x))))))))))
=(e(d(d(e(e(x))))) d(e1(el(e1(d(e(d(x))))))))
=(x el(d(d(e1(el(e1(d(e(e1(d(e(d(x))))))II))))
=(x e1(d(e1(e1(ei(d(e(el(d(e(e1(d(e(d(x)))MINMNIMNNN
=(x e1(d(ei(e1(e1(d(d(ee1(d(e(d(x))}>)))))))))
=(x el(d(el(el(e(e(d(e(e(e(el(d(e(@x)NNINNNIIMNM
=(x el(d(el(e(d(e(e(e(el(d(e(d(x)IMINNIN)
=(x e1(d(d(e(e(e(ei(d(e(d(x)))))IN))
=(x e(e(d(e(e(e(efe(e1(d(e(d(x)))IINNINN)
=(x e(e(d(e(e(e(e(d(e(d(x)?)NNN))
=(el(e1(d(e(d(d(x)))))) d(ei(el(ei(d(e(e1(d(e(e ()N
=(e1(e1(d(e(d(d(x)))))) d(el(et(el(d(d(e(e(x)))))N)))
=(el(e1(d(e(d(d(x)))))) d(ei(el(e(e(d(e(e(e(e(x))}))I))))))
=(e1(e1(d(e(d(d(x)))))) d(e1(e(d(e(ele(e(x)))))))))
=(e1(e1(d(e(d(d(x)))))) d(d(e(e(e(e(x))N)))
=(e(d(d(e(e(e(d(d@@GNININNN
d(ei(e1(e1(d(e(el(d(x))))))))
=(e(d(d(e(e(e(d(d(d(d(x)))))))))) d(el(el1(el1(d(d(x)))))))
=(e(d(d(e(e(e(d(d(ald(x))MM))
d(ei(el(ele(d(e(e(x)))))))))
=(e(d(d(e(e(e(d(d(d(d(x)))))))))) d(el(el(d(e(e(x)))))
=(e(d(d(e(e(e(d(d(d(d(x))))))))) d(d(ele(x)))))
=(e1(d(e1(eile1(d(e(x))))))) d(e1(ei(e1(d(x))))))
=(e1(d(e1(et(el(d(e(d(d(x)))))))))
e1(d(d(d(e1(e1{el(d(e(x)))IN))
=(e1(d(el(el(e1(d{e(d(@(x)1)NNN
e1(d(d(el(et(e1(d(ee1(d(e(x))})))))))))
=(e1(d(el(e1(e1(d(e(d(d(x))}))))))
el(d(e1(et(e1(d(ele1(d(e(el(d(c(x))))NNINN))
=(e1(d{e1(el(e1(d(e(d(d(x))))IN))
el(d(el(e1(e1(d(de(el1(dle(x))))))II))N)
=(et(d(el(et(e1(d(e(d(d(x))))I))))
el(d(e1(el(e(e(d(e(e(e(el (d(e()NININININNY
=(e1(d(e1(e1{e1(d(e(d(d(x)MIN)))
e1(d(e1(e(d(e(e(elel(d(e(x)))))))))))

B.3.6.

RY628,1
RW629,1
RW630,1
RW508,1

RW632,1
RW335,1

RW634,1

RW635,1
RW636,1
RW637,1
RW339,1
v RW639,1
RW640,1

RW641,1
RW642,1
RW643,1
RW414,1

RWG45,1

RW646,1
RW647,1
RW648,1
RW649,1
RW650,1
RW651,1
RW652,1
RW653,1
RW654,1

Other Examples: 722

4

&

&

2

&

&

&

&

g

&

&

&

&

&P 8P RP RP

[d

&R R R

Al6

RW521
A1S

RW543
RW453
RW543
RW543
RW453
RW543
A15

RWS543
RW521
RW453
RW453
RW466
RW521
RW543
RR521
RW453
RW453
RW466
RWS521
Al6

Al6

RW466

RW521
A16

P422,1 & RW543

RW656,1
RW638,1
RW658,1
RW659,1
RW660,1
RW661,1
RW662, 1
RW663,1
RW664,1
RW665,1
RW666, 1
RW605,1

RW631,1

RW670,1
RW671,1

&
&
&
&

&
&
&
&
&
&
&
&

&

&
&

A1S

RW6E57
R¥616
RW644
RW655
RW655
RN655
RWE55
RW655
RW655
A16

RW655

RW655

RW622
RW521

LK R

L IR K R R B R R IR R BEE K R R

* RWET71:
RWE72:

RW629:
RW630:
RW631:
RW632:
RW633:
RW634 :
RW635:
RWG36:
RW637:
RW638:
RW639:
RW640:
RW641:
RW642:
RW643:
RW644:
RW645:
RR646:
RW64T :
RW648:
RW649:
RW650:
RW651:
RWE52:
RWE53:
RW654:
RW655:
RW656:
RW657 :
RWEE8:
RW659:
RW660:
RW661:
RW662:
RN663:
RWG64:
RW6E65 :
RWGE6:
RWE67 :

RW669:
RWG70:

All
All
A1l
A1l
A1l
11
All
All
A1l
All
All
All
All
All
All
All
All
411
All
All
All
All
All
A1l
All
All
All
All
All
All
All
All
411
All
All
A1l
All
All
All
All
All

All
All

LI T

LTI B T I O O I]

:Any
:Any
:Any
:Any
:Any
:Any
:Any
:Any
:Any
:Any
:Any
sAny
:Any

sAny

o o b obe
5 5 5 EREEE]
Tl v G

:Any

Fodl ol od
s 8 B
Y w

:Any

Lol il ol ol ol o
B B3 EE=083
“d e g

:Any
:Any
:Any
:Any
:Any
:Any
:Any
:Any
Any

:Any
:Any

+

+

+ 4+ o+ +

+

Y R R I T

+

+

+

+

131

=(e1(d(el(el(el(d(e(d(d(x)))))))))
el(d(d(e(e(ele1(da(e(x)))))))N)
=(et(d(el(el(el (d(e(d(d(x)))))))N)
e(e(d(e(e(e(e(e(er(d(ex))NINN))
=(e1(d(el(e1(el (d(e(ald(x))» M)
e(e(d(e(e(e(e(d@Ce(x))NIN))
={e(d(ei(el1(et(d(e(x))))))) d(d(el(x))))
=(d(e1(e1(d(e(x))))) d(d(e1(x))))
=(e(d(d(d(d(x)))))
d(ei(e1(e1(d(e(d(d(el(el(e1(d(e(x)))))IINININ)
=(e(d(d(d(d(x)))))
d(eifel(e1(d(e(d(ei(et(e1(d(e(e1(d(e(x)))ININMIMNINN
=(e(d(d(d(da(x)))N
d(el(et(el1(d(d(e1(e1(d(e(el (d(e(xX2)INIINN
=(e(d(d(d(d(x)))))
del(ei(er1(d(et(el(el(d(e(d(e(el(ACeXIMININMINMN
=(e(d(d(d(d(x)))))
d(et(el(et(d(el(e1(e1(d(e(ddexNMNMIMNMINM
=(d(e(e(d(d(e(e(x)))))))
e(e(d(el(el(e1(d(ee1 (A(A{x))IIMNNI)
=(d(e(e(d(d(e(e(x)))))))
e(e(d(e1(e1(e1(d(e(ele(d(e(e(x)DMINMNINNN
=(d(e(e(d(d(e(e(x)))))))
e(d(et(el(d(e(e(e(d(eCe(x))))NNINN)
=(d(e(e(d(d(e(e(x))))))) d(e1(d(e(e(e(d(e(e(x))))))))))
=(d(e(e(d(d(e(e(x))))))) et(d(d(e(e(e(d(ale(x))))))))))
=(d(e(e(d(d(e(e(x))))))) e(el(d(ele(e(e(e(@(e(e(x)))INNN)))
=(e1(d(el(el(e1(et (d(d(x))>)))))
e(e(d(e1(el(e1(d(e(x))))N))
=(e1(d(e1(e1(e1(e(e(d(e(e(x)))))IN))
e(e(d(el(el(e1(d(e(x)))IN)))
=(e1(d(ei(el(et(e(a(d(e(e(x)))))))))) e(d(e1(e1(d(e(x)))))))
=(e1(d(el(e1{el(c(e(d(e(e(x)))))IN))) d(etl(d(e(x)))))
=(e1(d(el(ei(el(e(e(d(e(e(x)))))))))) el1(d(d(e(x)))))
=(e1(d(e1(e1(e1(elel(d(e(e(x)))))))))) e(e(d(e(ele(x)))))))
=(e1(d(el(e1(e(d(e(e(x)))))))) e(e(d(e(e(e(x)))))))
=(e1(d(el(d(e(e(x)))))) e(e(d(e(e(e(x)))))))
=(e1(ei(d(d(e(e(x)))))) e(e(d(elele(x)))))))
=(e1(e(e(d(e(ele(e(x)))))))) e(e(d(el(e(e(x)))))))
=(e(d(e(ele(e(x)))))) e(e(d(e(e(e(x)))))))
=(e1(d(e(e(x)))) d(et(e1(ei(d(e(e1(el(x))))I)I))
=(e1(d(e(e(x)))) dlel(el(e1(d(el(x))))I))
=(e(d(d(d(d(x))))) e1(d(ele(e1(e1(d(e(dld(e(x)))IMIN) -
=(e(d(da(d(d(x))))) ei(d(e(e(d(d(e(e(e(ele(x)IINNNN
=(e(d(d(d(d(x)))))
el(e(e(d(e(e(e(ele(d(ele(e(ecG)MININMINMNM
=(e(d(d(a(d(x)))))
el(e(e(e(d(e(e(e(e(d(e(e(e(el(eCXIINININININN
=(e(d(d(d(d(x)))))
el{e(e(e(e(d(e(e(e(d(ele(e(ecCONNMIMIMIMNMIMNY
=(e(d(d(d(d(x)))))
el(e(e(e(e(d(e(e(e(e(d(e(e(elcGINIMNMIMIMN
=(e(d(a(d@x)N»
el(e(e(e(e(e(d(e(e(e(d(ele(ele(x)INMNNNMI)
=(e(d(d(d(a(x)))))
el(e(e(e(e(e(d(e(e(e(e(d(e(e(cxX)INIMINMNINNN
=(e(d(d(d(d(x))))»)
el(e(e(e(e(e(e(d(e(ele(d(elelexX)INININNININN
=(e(d(d(d(d(x))))) e(el(e(e(e(d(e(e(e(d(e(e(e(x)IIMININ)
=(x e(e(e(d(e(e(e(d(e@x)DMINNN
=(e1(d(e1(e1(e1(d(e(d(@(x))IINMN
e(e(e(d(e(e(e(deXNIMNNINN
=(d(el(e1(e1(d(d(d(x))))))) e(e(e(d(e(e(e(d(el(x))))N)))I))
=(d(e1(elelelde(a(d(x)))NI))
e(e(e(d(e(e(e(@(e(x))NNNN

132

RW672,1
RW673,1
RW644,1
RW67S5,1
RW454,1
RW621,1

RW395,1
RW362,1

RN724,1
RW725,1
RWT26,1
RW727,1
RW728,1
RW729,1
RNT30,1
RWT31,1
RW732,1
RW733,1
RW592,1
RW680,1

RW744,1

RW745,1
RW746,1
RW674,1
RW676,1
RW591,1

RW756,1
RW757,1

RW758,1
RW759,1
RWS556,1
RW761,1
RW6SS, 1

RW770,1
RN737,1
RW777,1
RW543,1
RW781,1
RW782,1
RW474,1
RW790,1
RW791,1
RW792,1
RW793,1
RW669,1
RWT749,1
RW831,1
RW832,1
RH833,1
RW771,1
RW835,1
RW836,1
RW819,1
RWS37,1

RW839,1

8P R BP RP WP R

&

[

8P BP RP P RP BP BP RP OGP RP RP RP B9 RP RP RP 8P P RP RP PP

.4

416
Al6
RW655
RW6ESS
RW667
RW667

RW667
RW521

RW622
RW622
RW633
Al6
Al6
Al15
RW466
RW521
A16
Alé
RW734
RW734

RW734

RW67T7
RW453
RW734
RW734
RW748

RW747
RW655

RW669
RW622
RW748
RWE69
RW762

A15
RW760
RW747
RW760
RW633
A1S
RW783
A15
A15
A1S
AL,1
RW778
RW778
RW747
RWT47
RW747
RW778
RN778
RW778
RWS34
RW834

RW838

* %k N K F K

*

* L B B B LR B EE I A B *

LK IR 2K N

*

*

* X Xk #*

L I K S S B N R S B BN IR BN R EE BRI B R

*

RW673:
RW674:
RWE75:
RWE76:
RRE77:
RWG80:

RW688:

RW724:

RW725:
RW726:
RW727:
RW728:
RW729:
RW730:
RW731:
RW732:
RW733:
RW734:
RW737:
RW744:

RW745:

RW746:
RN74T:
RW748:
RW749:
RW756:

"RW757:

RW758:

RW759:
RWN760:
RW761:
RW762:
RW770:

RW771:
RW777:
RW778:
RW781:
RW782:
RW783:
RW790:
RW791:
RW792:
RW793:

R800:

RH8B19:
RW831:
RW832:
RW833:
R¥834:
RW835:
RW836:
RW837:
RW838:
RW839:

RW842:

All
All
All
All
All
All

All

All

All
All
All
All
All
A1l
All
All
A1l
A11
A1l
All

All

All
All
All
All
All

All

All

All
All
All
All
All

All
All
All
All
All
All

- =qac

111
All
All
A1l
All
All
All
All
All
All

All

LI T I I

bod

> oM X KK MK KK K MM Lol

® oM oM KK

LI I

LI I T

X

LR I I T]

»”

:Any +
tAny +
:Any +
:Any +
:Any +
:Any +

:Any +
Any +

:Any +
:Any +
:Any +
:Any +
Any +
:Any +
:Any +
:Any +
:Any +
:Any +
tAny +
:Any +

tAny +

:Any +
:Any +
:Any +
:Any +
:Any +

:Any +
:Any +

:Any +
:Any +
:Any +
:Any +
:Any +

:Any +
:Any +
iAny +
:Any +
:Any +
x:

Any +

Appendix B. Commented Examples

=(d(el(e(d(e(e(d(x))))))) e(e(e(d(e(e(e(d(e(x)))))NI))

=(d(d(e(e(d(x))))) e(e(e(d(ele(e(d(e(x))))))))))

=(d(e(e(d(d(e(e(x))))))) e(e(e(d(e(e(ele(d(e(e(x))))))II)

=(d(e(e(d(d(e(e(x))))))) e(e(e(e(d(e(e(e(d(e(e(x)))))IIN))

=(d(e(e(e(e(e(d(e(e(e(d(e(e(e(x)))))))2)))))) d(el(x)))

=(e(d(d(e(e(e(e(ele(e(d(e(e(e(d(e(e(e(x)))))IIINIIIIND)
d(d(e(e(x)))))

=(e(e(e(e(e(d(ele(e(d(e(e(e(d(xINININININY
d(et(ei(ei(e1(ei(d(e1(x))))I)N)))

=(et(el(e(e(d(e(e(d(x))))))))
d(el(et(d(et(el(e1(d(ee(x)))))I)))

=(e1(el(e(e(d(e(e(d(x)))))))) d(e1(d(et(el(e1(d(e(x)))))))))

=(el(e1(e(e(d(e(e(d(x)))))))) d(d(ei(el(e1(d(x)))))))

=(e1(el(e(e(d(e(e(d(x)))))))) dlet(e1(d(e(et(e1(d(x)))))N)))

=(e1(e(d(e(e(d(x)))))) d(e1(er(d(e(e1{e1(d(x)))))))))

=(d(e(e(d(x)))) d(e1(el(d(e(el(e1(d(x)))))))))

=(d(e(e(d(x)))) d(ei(e1(d(e1(d(x)))N))

=(d(e(e(d(x)))) d(eil(e1(e1(d(d(x)})))))

=(d(e(e(d(x)))) d(el(e1lele(d(ele(x)))IN))

=(d(e(e(d(x)))) d(et(e(d(e(e(x)))))))

=(d(e(e(d(x)))) d(d(e(e(x)))))

=(ef{d(e(e(d(x))))) d(ei(el(ei(d(e(d(x))))))))

=(e(d(e(e(d(e(e(e(e(e(d(e(e(el(d(e(e(e(x))))))))))))I)INN)
d(d(e(e(x)))))

=(e(d(e(e(d(e(e(e(e(e(dle(e(e(d(e(e(e(x)))ININMNNNND
d(e(e(d(x)))))

=(e(d(e(e(d(e1(x)))))) d(e(e(d(x)))))

=(e(d(e(d(x)))) d(e(e(d(x)))))

=(d(e(e(d(d(x))))) e(e(e(d(e(e(e(d(e(x))))))))))

=(d(e(e(d(e(e(d(x))))))) e(ele(eld(e(e(eld(e(e(x))))I)ININN)

=(e1(d(el(ei(e1(d(e(x)))))))
d(e(e(e(e(d(e(ele(d(e(e(d(x)))))ININD)

=(e1(d(el(el(el(d(e(x)))))))
d(e(e(e(e(d(e(ele(e(d(e(d(x))))))IIN))

=(e1(d(eilel(el(d(e(x)))))))
d(e(e(e(e(e(d(e(e(e(d(e(d(x))))INNNN))

=(e1(d(et(e1(e1(d(e(x))))))) d(e(e(x))))

=(d(e1(e1(e1(d(x))))) d(e(e(x))))

=(d(e1(e1(el(e1(x))))) e(e(e(e(d(e(e(e(d(e(d(x)))))II)N))

=(d(e1(etlel(e1(x))))) e(x))

=(e(e(e(ele(d(ele(e(dle(e(e(d(xININMNNNIN
e(ei(d(e1(x)))))

=(e(e(ele(e(d(e(e(e(d(e(e(e(d(x))))))I))I)NN)) dlel(x)))

=(e(d(e(e(d(x))))) d(e(e(e(d(x))))))

=(e(e(d(e(d(x))))) d(e(e(e(d(x))))))

=(d(d(e1(e1(x)))) d(e(e(e(x)))))

=(d(el(ei(d(e(e1(x)))))) d(e(e(e(x)))))

=(d(e1(e1(d(x)))) d(e(e(e(x)))))

c_1) d(e(e(eei(et(ei(c_1INN))) - =(d(c_2) e(e(ele(e(c.2))))))
- =(d(c_1) d(e(e(elel(c_1)))))) - =(d(c_2) e(e(e(e(e(c.2))))))

- =(d(c_1) d(e(e1(c_1)))) - =(d(c.2) e(e(e(e(e(c_2))))))

- =(d(c_1) d(c_1)) - =(d(c_2) e(e(e(e(e(c_2))))))

- =(d(c_.2) e(e(ele(e(c_2))))))

:Any +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +
:Any +

:Any +

=(x e(e(e(e(e(d(e(d(e(d(x))))))IM
=(d(e(e(d(e(e(d(x))))))) ele(e(e(ale(d(e(d(e(e(x))INIIN))
=(e(d(e(d(e(e(d(x})))))) e(e(e(ele(e(d(e(d(e(e(x))))))IINN)
=(e(d(e(e(d(e(d(x))))))) e(ele(e(ele(d(e(d(e(e(x)IININN
=(e(e(d(e(d(e(d(x))))))) e(e(e(e(e(e(d(e(d(e(e(x))))))))II))
=(e(e(e(e(e(e(e(d(e(d(e(e(e(d(x)))))))))))))) d(e1lx)))
=(e(e(e(e(e(ele(d(e(ele(d(e(d(x)))))))I}I)))) d(el(x)))
=(e(e(e(e(e(ele(e(e(d(e(d(e(d(x))))2))))))))) d(el(x)))
=(x e(e(e(e(e(a(e(ele(d(eld(e(e(x))))NININNN
=(e(e(e(ale(e(e(e(e(e(elele(d(e(d(e(e(x))))IINNINNN
d(e1(x)))
=(e(e(e(e(x)))) dlel(x)))

B.3.7. Other Examples: Z29 133

RW453,1 & RW842 —-=> * RW866: A1l x:Any + =(d(x) e(e(e(e(e(x))))))
RW866,1 & R800,1 --> x R867: .[1
B.3.7 729

729 is a more complicated finite cyclic group. For this example we just present the input formulae
because the proof is too long (686 inference steps) and in another format than the others displayed in
this appendix. It was generated by the completion procedure of chapter 5. The result of the completion
process are the 14 rules below.

This example can be regarded as a real challenge problem. It needed some days of computation time
and about 180 MByte of swap space.

Set of Axiom Clauses Resulting from Normalization

At: ALl x:Any + =(x x)

A2: A1l x:Any + =(a(b(x)) c(x))
A3: A1l x:Any + =(b(c(x)) d(x))
Ad: A1l x:Any + =(c(d(x)) e(x))
A5: ALl x:Any + =(d(e(x)) £(x))
A6: All x:Any + =(e(f(x)) g(x))
A7: A1l x:Any + =(£f(g(x)) a(x))
A8: All x:Any + =(gla(x)) b(x))
A9: A1l x:Any + =(a(ai(x)) x)
A10: A1l x:Any + =(b(b1(x)) x)
All: All x:Any + =(c(c1(x)) x)
A12: All x:Any + =(d(d1(x)) x)
A13: All x:Any + =(e(el(x)) x)
A14: A1l x:Any + =(f(£1(x)) x)
A15: A1l x:Any + =(g(g1(x)) x)
A16: A1l x:Any + =(ail(a(x)) x)
A17: All x:Any + =(b1(b(x)) x)
A18: A1l x:Any + =(ci(c(x)) x)
A19: All x:Any + =(d1(d(x)) x)
A20: All x:Any + =(el(e(x)) x)
A21: A1l x:Any + =(f1(f(x)) x)
A22: A1l x:Amy + =(g1(g(x)) x>

Completion of z29.
a(d(x)) --> c(x)
b(c(x)) --> d(x)
c(@d{x)) --> e(x)
d(e(x)) -—> £(x)
e(f(x)) ~-> g(x)
£f(g{x)) --> alx)
gla(x)) -=> b(x)
da(d1(x)) --> x

d1(d(x)) =-> x
e(et(x)) -=> x
el(e(x)) ——> x
f(£f1(x)) -~> x
FL(F(x)) --> x
glgl(x)) ~-> x
gl(g(x)) --> x
c(9(x)) —-> x

9(c(x)) —-> x

b(bi(x)) --> x

b1(b(x)) --> x

at(a(x)) --> x

a(ai(x)) --> x

New Rule (20): aal{(x)) —--> x
Hew Rule (19): ai(a(x)) --> x
New Rule (18): b1i(b(x)) --> x

134 Appendix B. Commented Examples

¥ew Rule (17): b(bi(x)) --> x
Hew Rule (8): 9(c(x)) ~-> x

Hew Rule (7): c(9(x)) --> x

Bew Rule (16): g1(g(x)) --> x
Hew Rule (15): g(gi(x)) --> x
Few Rule (14): f1(£(x)) =-=-> x
Hew Rule (13): £(£f1(x)) --> x
Bew Rule (12): el(e(x)) -—> x
Eew Rule (11): e(ei(x)) ~-> x
Hew Rule (10): di1(d(x)) --> x

Hew Rule (9): d(di(x)) ~-> x

Bew Rule (6): g(a(x)) --> b(x)

New Rule (51): g(x) --> b(at(x))
derived from: 20 and 6

New Rule (16): gi(b(al(x))) --> x

Hew Rule (54): gi(b(x)) --> a(x)
derived from: 19 and 16

Bew Rule (56): g1(x) —-> a(bi(x))
derived from: 17 and 54

New Rule (5): f(b(at(x))) --> a(x)

New Rule (4): e(f(x)) --> v(al(x))

Hew Rule (3): £(x) -~> d(e(x))

New Rule (14): f1(d(e(x))) --> x

New Rule (67): £1(d(x)) --> ei(x)
derived from: 11 and 14

Hew Rule (69): £f1(x) =-> e1(di(x))
derived from: 9 and 67

FNew Rule (2): e(x) --> c(d(x))

Hew Rule (12): el1(c(d(x))) --> x

Hew Rule (73): ei(c(x)) ~-> di(x)
derived from: 9 and 12

New Rule (75): el(x) --> d1(9(x))
derived from: 7 and 73

New Rule (1): d(x) =-> b(c(x))

Hew Rule (10): di(b(c(x))) --> x

New Rule (79): di(b(x)) --> 9(x)
derived from: 7 and 10

Hew Rule (81): d1(x) ~-> 9(bi1(x))
derived from: 17 and 79

Hew Rule (0): c(x) ——> a(b(x))

Bew Rule (8): 9(a(b(x))) --> x

Hew Rule (85): 9(a(x)) --> bi(x)
derived from: 17 and 8

New Rule (87): 9(x) --> bi(al(x))
derived from: 20 and 85

Hew Rule (5): b(a(b(a(b(b(a(b(b(al(x)))))I))) -~> alx)

Hew Rule (4): a(b(b(a(b(b(a(b(al(b(b(ald(x)))))N)II)I)) -=> blal(x))

Hew Rule (62): a(b(b(a(b(a(x}))))) —> bla1(b(ai(x))))
derived from: 5 and 4

New Rule (105): a(b(b(a(b(x))))) --> bla1(b(al(al(x)))))
derived from: 20 and 62

Bew Rule (109): b(b{a(b(x)))) --> al(b(at(b(ail(al(x))))))
derived from: 19 and 105

¥New Rule (113): bi(ail(b(ail(b(al(al(x))})))) --> bla(b(x)))
derived from: 18 and 109

Rew Rule (116): bi(ai(b(al(b(al(x)))))) --> blal(b(a(x))))
derived from: 19 and 113

New Rule (119): bi(ai(b(ai(b(x))))) —-> bla(blala(x)))))
derived from: 19 and 116

Kew Rule (122): bi(ai(b(ai(x)))) --> b(a(b(ala(bi(x))))))
derived from: 17 and 119

Hew Rule (126): bi(al(b(x))) --> bla(b(ala(bi(al(x)))))))
derived from: 19 and 122

Hew Rule (129): b(a(b(a(a(b1(a(bi(x))}))))) -=> bi(ai(x))
derived from: 17 and 126

B.3.7. Other Examples: Z29

New Rule (137):
derived from:
New Rule (142):
derived from:
New Rule (147):
derived from:
Hew Rule (153):
derived from:
Hew Rule (163):
derived from:
New Rule (172):
derived from:
Hew Rule (183):
derived from:
Hew Rule (194):
derived from:
Bew Rule (204):
derived from:
New Rule (217):
derived from:
New Rule (230):
derived from:
New Rule (240):
derived from:

b1(b1(a1(x))) ~-> a(b(a(a(bi(al(bi(x)))))))

18 and 129

a(b(ala(bi(alb1(al(x)))))))) --> b1(b1(x))
19 and 137 i

b(ala(bi(a(bi(a(x))))))) --> a1(bi(b1(x)))
19 and 142

b1(a1(b1{bi(x)))) --> ala(bi(a(bi(alx))))))
18 and 147

a(a(b1(a(bl(a(b(x))))))) --> b1(a1(bi(x)))
18 and 153

a(bi(a(b1(a(b(x)))))) =-> at(b1(ai(b1(x))))
19 and 163

b1i(a(bi(a(d(x))))) --> ai(a1(bi(a1(b1(x)))))
19 and 172

b(a1(at(bi(al(b1(x}))))) --> a(bi(alb(x))))
17 and 183

a(b1(a(b(b(x))))) —-> b(at(al(bi(al(x)))))
18 and 194

b1(a(b(b(x)))) --> al(b(at(a1(bilal(x))))))
19 and 204

b(a1(b(a1(a1(b1(al(x)))}))) --> a(b(b(x)))
17 and 217

b(a1(b(a1(al(b1(x}))))) -=> a(b(b(alx))))
19 and 230

Bew Rule (5): b(a(b(b(al(v(at(al(b(ai(x)))))))))) —-> a(x).

Hew Rule (263):
derived from:
Hew Rule (277):
derived from:
Hew Rule (285):
derived from:
Bew Rule (291):
derived from:

b(a(b(blal(b(a1(ai(b(x))))))))) —-> alalx))

19 and 5

bi(a(a(x))) --> a(b(b(a1(b(ai(al(b(x))))))))
18 and 263

bi(a(x)) -~> a(b(b(al(b(a1(a1(b(al(x)))))))))
20 and 277

bi(x) --> a(b(b(ai(b(a1(a1(b(a1(a1(x))))}))))))
20 and 285

Hew Rule (18): a(b(b(ai(b(al(al(b(ai(ali(b(x)}))))IIM))) —-> x

New Rule (298):

derived from:

b(b(a1(b(al(ai(b(a1(a1(b(x)))))))))) --> a1(x)
19 and 18

Bew Rule (4): a(b(b(b(al(b(al(al(b(al(b(a1(a1(x)))))))I)I))) --> bla1(x))

Hew Rule (308):

derived from:

New Rule (313):

- derived from:
b(b(b(a1(b(a1(a1(b(a1(b(x)))))INI)) --> al(blalx)))

Hew Rule (318):
derived from:
New Rule (325):

derived from:

Bew Rule (336):

derived from:

Hew Rule (348):

derived from:

Hew Rule (358):

derived from:

New Rule (367):

derived from:

Kew Rule (376):

derived from:

Hew Rule (274):

derived from:

Hew Rule (402):
derived from:
New Rule (362):
derived from:
Bew Rule (433):
derived from:
Hew Rule (444):
derived from:

a(b(b(b(ai(b(al(al(b(a1(b(a1(x))?)))I)NN) ~=> bx)
19 and 4

b(b(b(a1(b(a1(at(b(al(b(al(x))))))))))}) --> a1(b(x))
19 and 308

19 and 313
al(ba(b(a(b(x)))))) --> blai(al(blai(al(x))))))
109 and 318
b(a(b(a(db(x))))) --> a(b(at(al(b(al(al(x))))N)
20 and 325
b(a(b(at(at(b(al(ai(x)))))))) --> at(b(ai(b(a1(b(x))))»
109 and 336
b(a(b(at(al(b(a1(x))))))) ~-> a1(b{a1(blai(b(alx))))))
19 and 348
a1(b(a1(b(at1(b(ala(x)))))))) —-> bla(b(a1l(a1(b(x))))))
19 and 358
b(al(b(a1(b(alalx))))))) --> a(b(alb(al(a1{b{x)))))})
20 and 367
al(b(ai(b(at(at(b(a1(b(al(at(b(x))))))NN)) --> blalalx)))
109 and 263
b(a1(b(a1(a1(b(a1(db(al(a1(b(x)))))»)))))) --> a(b(alalx))))
20 and 274
a1 (b(ala(b(al(ai(b(a1(x))))))))) --> blal(ai(b(al(b(alx)))))))
318 and 358
b(a(a(b(al(al (b(al(x)))))))) --> a(blat(al(db(ai(b(alx))))))))
20 and 362
a(b(al(a1(b(ai®b@(alx))))N) --> blalal(blat(al(b(x)))))))
19 and 433

136

Kew Rule (453):
derived from:
Bew Rule (265):
derived from:
¥ew Rule (488):
derived from:
New Rule (508):
derived from:
New Rule (522):
derived from:
New Rule (536):
derived from:
Bew Rule (547):
derived from:
Hew Rule (574):
derived from:
Hew Rule (602):
derived from:
Hew Rule (605):
derived from:
Hew Rule (657):
derived from:
New Rule (505):
derived from:
New Rule (318):
Hew Rule (703):
derived from:
Eew Rule (739):
derived from:
Bew Rule (752):
derived from:
Kew Rule (773):
derived from:
New Rule (805):
derived from:
Hew Rule (836):
derived from:
Hew Rule (811):
derived from:
¥ew Rule (890):
derived from:
Hew Rule (613):
derived from:
New Rule (953):
derived from:
New Rule (111):
derived from:
Hew Rule (1012):
derived from:
Hew Rule (992):
derived from:
Hew Rule (1083):
derived from:
Eew Rule (1134):
derived from:
Hew Rule (910):
derived from:
Bew Rule (1219):
derived from:
New Rule (862):
derived from:
New Rule (666):
derived from:
Bew Rule (1355):
derived from:

Appendix B. Commented Examples

b(al(a1(b(al(b(alalx))}))))) --> at(b{alalblal(a1(b(x)})))I)))
19 and 444

a(a(a(b(b(al(b(al(a1(b(x)))))))))) -=> blalb(b(ai(b(x))))))
263 and 263

b(a(b(b(a(x))))) ~-> alala(b(b(al(b(x)))))))

263 and 265
a(a(a(b(b(al(b(a1(x)))))))) --> blalb(b(x))))
20 and 488
ala(b(b(a1(b(a1(x))))))) --> ai(b(alb(b(x)))))
19 and 508
a(b(b(al(b(a1(x)))))) -=> at(ai(bla(b(b(x))))))
19 and 522
al(ai(b(ai(a1(b(a(d(b(al(b(x)}))NINI) > x
298 and 536
al(b(at(a1(b(a(b(b(at(b(x)))))))))) ~=> alx)
20 and 547
b(ai(al(b(a(b(b(a1(b(x))))))))) --> alalx))
20 and 574
b(al(ai(b(a1(al(b(al(b(b(x)))))>»}I)) --> alx)
5§36 and 602
b(b(a1(b(al(x))))) -=> ai1(ai(a1(b(alb(b(x)))))))
298 and 605

a(a(a(b(b(alb(b(x)))))))) —-> at(ai(at(b(al(b(b(al(x))))))))

109 and 488 ,
b(ai(a1(ai(b(ai(al(b(alb(b(b(x))})))IN)I)N) -=> a1(b(alx)))
b(b(ati(a1(b(alx)))))) --> a1(at(blat(al(b(al(ai(x))))))))

657 and 318
b(b(a1(a1(b(x))))) --> a1(al(b(al(at(b(ai(ai(al(x))))))))

20 and 703
al(ai(b(at(a1(bCat(al(b(b(a1(b(x)))))I))))) ~-> bla(alx)))

602 and 739
b(b(al(b(b(alalx))))))) --> ai(al(ai(b(b(al(b(x)))))))

657 and 752
b(ai(ai(b(at (a1 (b(b(a1(b(x)))))))))) ~-> ala(b(alalx)))))

602 and 773
b(ai(b(al(al(b(alblalalx))})INI)) --> alb(b(bl(ai(b(x))))))

402 and 805
b(b(a1(b(b(a(x)))))) —-> al(ai(ai(at(al(a1(b(a(b(b(x))))))))))

20 and 773
b(b(a1{b(b(x))))) --> a1(at(at(ai(ai(al(b{alb(b(ai(x))))IN))))

20 and 811
a(b(a(ala(b(b(a1(b(x))))))))) --> blal(b(ai(al(b(alx)))))))

402 and 602
b(aCa(a(b(b(a1(b(x)))))))) —-> at(b(at(b(at(al(db(alx))))))))

19 and 613
b(at(a1(al(b(a(b(b(a1(x))))))))) ——> at(b(at(b(ai(ai(b(al(b(x)))))))))

109 and 109

b(ai(al(b(at(ai(bai(b(al(al(b(x)))))))))))) --> at(b(alalalx)))))

376 and 111
a1(b(ai(b(al(b(al(al(b(al(al(b(a(b(x))))))))))I))) -=> al(b(al(x)))

953 and 11t

a(b(al(b(ai(ai(b(ai(ai(b(a(d(x))))IIN)) --> alx)

602 and 992

b(ai(b(ai(al(b(a1(a1(b(a(b(x))))I)))))) --> x

19 and 1083
b(at(ai(blai(ai(at(at(al(balb(®b@lix)))ININMINMI) --> a(a(d(x)))

602 and 890

b(a1(al(b(al(al(aiCaial(b(a(b(b(x))))))))))))) ~-> alalblalx))))

19 and 910
b(a1(b(al(b(b(b(a1(b(x)}))))))) ~-> a(b(alala(b(ala(x))’)))))

402 and 836
al(al(al(b(a(b(b(ai(b(a(b(b(al(d(x)))))IMNI))))) --> b(bla(x)))

602 and 657

a1(al(b(a(b(b(al(b(alb(b(al(b(x)))))IIIN)) ~-> a(b(b(alx))))

20 and 666

B.3.7. Other Examples: Z29

Hew Rule (1398):
derived from:
New Rule (1447):
derived from:

Hew Rule (648):

derived from:

Hew Rule (380):

derived from:

New Rule (129):
Hew Rule (147):
Hew Rule (183):
Bew Rule (217):

New Rule (275):

derived from:
New Rule (1746):
derived from:
Hew Rule (1455):
derived from:
Hew Rule (1896):
derived from:
Hew Rule (1938):
derived from:
Hew Rule (1970):
derived from:
Hew Rule (£225):
derived from:
Hew Rule (2092):
derived from:
Hew Rule (2142):
derived from:

Hew Rule (499):

derived from:

Hew Rule (498):

derived from:

New Rule (461):

derived from:

New Rule (2321)

derived from:

Hew Rule (365):

derived from:
Hew Rule (2403):
derived from:
Hew Rule (2147):
derived from:
New Rule (2535):
derived from:
Bew Rule (2601):
derived from:
New Rule (2662):
derived from:

New Rule (2717)

derived from:
New Rule (2780):
derived from:
Hew Rule (2626):
derived from:

New Rule (2907)

derived from:
New Rule (2623):
derived from:
Few Rule (3038):

137

al(b(a(b(b(at(b(a(b(b(ai(b(x))>2)))))))) ~-> ala(b(b(al(x)))))

20 ard 1355

b(a(b(b(a1(b(a(b(b(at(b{x))))))I))) --> a(ala(d(db(alx))))))

20 and 1398

a1(b(ai(b(at(al(al(b(al(al(bal(al(b(®b(x))))))))))))) --> bla(blal(x))))
358 and 605
b(al(ai(al(blalb(al(b(at(b(al(ai(al(al(b(x)))))>))))ININ) --> ai(b(b(alalx)))))
318 and 376
at(at{a1(b(al(a1(b(a(b(b(b(al(ai(al(b(al(al(b(alb(b(al(x)}?)))))ININIIII))
--> ai(ai(b(at(a1(b(alb(b(ai(al(x)?))))ININ
ai(ai(al(b(al(al(b(a(b(b(al(al(ai(b(ai(at(b(ald(d(a1(x)>)>»)))MMNINNN
-=> a1(b(al(b(ai(al(b(al (b(ai(al(al(b(al(at(b(a(d(b(x)))))))2)))))))HIN)
ai(al(al(al(b(a1(ai(b(a(b(b(al(ai(al(al(b(al(at(b(alb(®@i{xIIINNIMIMIMININN
--> al(ai1(b(al(b(ai(al(b(at(ai(x)))))I))))
a1(a1(b(al(at(b(a(b(d(b(b(x)})))))))))
--> at(b(a1(al(ai(ai(b(ai(al (b(a(b(b(al(ai(x))?)))))))))))»)
a1(b(al(b(al(a1(ai(al(b(alb(b(a1(b(x)))))))))II))) -=> b(b(alalalx)))))
109 and 2

b(b(alalala(b(®(a1(b(x2))))))))) --> ai(b(ai(b(al(b(b(alx))))))))

1447 and 275

b(al(al(b(al(al(b(balx))))))))) --> a(b(ai(b{at(al(b(a1(b{x)))I)))))):
1219 and 1447

a(b(a1(b(ai(al(b(ai(b(a1(x)))))))))) --> b(ail(ai(b(a1(al(b(d(x))))))))

20 and 1455

blat(blai(al(b(al(b(al(x))))))))) ~-> ai(b(al(al(b(a1l(al(b(b(x)))))})))
19 and 1896

b(al(b(ai{al(b(alblalx))))IN)) --> a(b(ai(ai(al(bCalb(b{(x)))))I))

1219 and 1938

b(ai(a1(b(al(al(b(ab{alx)))))))))) ~-> a1(b(al(al(b(aldb(d(x))})))M)

1012 and 1219

al(b(al(at(db(alb(b(at(x))))))))) --> bla1(at(b(ai(al(b(a(db(x)))))))))

20 and 1225

b(a1(a1(b(a(b(b(al(x)))))))) --> a(b(al(ai(b(a1(al(b(a(b(x))))))))))

20 and 2092

blalalalalb{b(at(b(x)IM)))) --> alb(al(al(blal(a1(blal(x))))II)I))

336 and 4838

at(a1(al(b{a(b(®d(b(x)))))))) --> alblai(ai(b(ai(al(al(al(b(a1(al(x)))I)I))I)I))
336 and 488

a1(b(at(b(a1(b(alblalalx)))))))))) —~> bb(a(a(b(ai(at(b(x)))))))

3568 and 453
: b(at(b(a1(balbCalalx)?)IN)))) --> a(b(b(alaldb(al(al(®(x)))))))))

20 and 461
b(al(b(al(blal(b(alx)))))))) —=> al(blat(blal(ai(a1(al(b(ai(x))))NN))
109 and 358

b(at(b(al1(b(a1(b(x))))))) ~-> al(b(al(b(al(al(al(at(b(al1(al(x))))IMN))
20 and 365

b(al(al(bCa(blal(blai(al(b(a1(al(b(®d(x))I1)INININ)) —-> blal(bl(ai(x))))
1938 and 2142

ai(b(a(b(ai(b(a1(al(blal(a1(b(d(x)))))))))IN)) --> b(al(x))

605 and 2147

b(a(b(al(b(a1(al(b(al(al(db(b(x)))))ININ))) --> a(b(a1(x)))

20 and 2535

b(a(b(al(b(al(al(b(ai(ai(al(b(ai(b(al(al(x))))))>)»)IIN)) -=> a(b(b(x)))
109 and 2601
: bla(b(ai(b(al(al(b(al(ai(al(b(al(b(a1(x))))))ININI)) --> a(b(b(alx)))
19 and 2662
b(a(b(al(b(at(at(b(a1(a1(al(b(a1(®(x)))I>)IINI)) —-> a(b(b(alalx)))))
19 and 2717

a(b(ai(al(b(al(b(b(b(ai(b(x))))))))))) --> b(alalalaldb(alalx))))))
862 and 2601
: b(ai(al(b(a1(b(b(b(al(®d(x)))))))))) ~-~> al(b(aalala(b(alalx)))))))

19 and 2626
a1(b(atl(b(al(al(al(b(al(at(b(al(at(b(a(d(al(x)?)ININNINII)) --> blb(x))
648 and 2601
b(al(b(ai(ai(at(b(a1(al(b(ai(al (b(a(®(a1(x))})))IIIIIN)) --> a(b(b(x)))

138

derived from:
New Rule (3107):
derived from:
New Rule (3131):
derived from:
Bew Rule (3264):
derived from:
New Rule (2072):
derived from:
New Rule (3438):
derived from:
Few Rule (1940):
derived from:
Hew Rule (1241):
derived from:
Bew Rule (3659):
derived from:
Bew Rule (1174):
derived from:
New Rule (3808):
derived from:

Hew Rule (660):

derived from:
New Rule (3982):
derived from:
Bew Rule (4068):
derived from:

Hew Rule (641):

derived from:

New Rule (619):

derived from:

New Rule (503):

derived from:

Hew Rule (346):

derived from:

Bew Rule (345):

derived from:

Hew Rule (333):

derived from:

Hew Rule (326):

derived from:

Hew Rule (273):

derived from:
New Rule (4674):
derived from:
Hew Rule (4781):
derived from:
New Rule (4850):
derived from:
New Rule (4129):
derived from:
Hew Rule (5011):
derived from:
New Rule (5045):
derived from:
Hew Rule (5000):
derived from:
Hew Rule (5180):
derived from:
New Rule (3716):
derived from:
Hew Rule (5282):
derived from:
New Rule (5411):
derived from:

Appendix B. Commented Examples

20 and 2623

b(ai(b(ai1(a1(al(b(ai(a1(b(al1(a1(bCalb(x)>)I)III>))I))) ~=> a(b(bl(alx))))

19 and 3038

b(al(b(al(ai(al(al(b(a1(al(b(a(b(b(x))))))>))))))) --> alb(b(ala(x)))))

1225 and 3107

b(ai(b(ai(al(a1(al(b(alb(b(a1(b(x))))))))))))) —-> alb(b(alalalx))))))

488 and 3131

al(b(ai(b(al(b(at(al(al(b(ad(®(x)}))))))»))) --> b(a(ala(b(alx))))))

953 and 1225

b(a1(b(ai(b(al(al(a1(o(alb(b(x))))))))))) -=> a(b(alala(®d(alx))))))

20 and 2072

b(a1(b(ai(ai(al(b(al(al(b(al(al(b(b(x)))>3)))))»))) --> a(blalb(al(x)))))
1938 and 1938

b(at(al(b(ai(ai(at(aiai(b(a(b(al(b(al(x)))})))))))I))) --> a(ala(b(x))))

318 and 1219

b(ai(a1(b(a1(ai(ai(al(al(b(abCal(b(x)?))2))))))N)) --> alala(blai(x)))))

20 and 1241

b(a1(b(a1(al(b(al(al(ai(b(a1(b(a1(b(a(x))))})I)IIININ)) --> a1(at(bla1(x))))
358 and 1134

b(at(b(al(ai(b(al(ai(al(b(al(b(a1(b(x))))))))))))) --> at(ai(b(at(a1(x)))))
20 and 1174
b(ai(ai(b(ai(at(b(a(b(al(b(al(b(ai(a1(x))))})))INN))) --> a(b(a(db(x))))

109 and 605

b(al (a1 (bCal(at(blalb(al(bCal(b(al(x)))))))))))))) --> a(b(a(b(alx)))))

19 and 660

b(al(ai(b(al(al(b(a(b(al(b(a1(b(x)))))))))))) --> a(b(a(b(alalx))))))

19 and 3982
a(b(al(al(b(al(al(al(b(ai(al(b(at(al(b(b(x))>))))))ININ)) ~--> blala(b(al(x)))))
433 and 605 ,
b(ai(al(al(b(a1(b(al(b(b(at(al(ai(ai(at(x)))))))))))) --> alala(dlal(b(x))))))
336 and 0
al(at(b(al(ai(b(al(blallat(b(al(al(a1(ati(b(x)I)IINNINNM) —=> blalbl(ala(x)))))
2 and 488

a(b(at(al(b(al(b(at(al(b(ai(al(ai(at(b(al(al(x))))))))ININN))) -~> alala®(al(b(x))))))
2 and 336

a(b(a1(at(b(at(at(al(a1(b(alb(b(al(b(x))))1)))))))))) —> b(alb(alalalx)?))))
2 and 336
b(at(a1(b(al(at(al(at (b(a(b(b(al(b(x))))))))H)))) --> at(b(ab(alalalx)))))))
2 and 325
a1 (b(al(b(a1(a1(at(at(b(al(al(b(al(b(al(al(bCal(al(x)))))})))))IHN))N)) -=> b(b(blalx))))
109 and 318
b(al(ai(b(al(b(al(al(b(ai(al(al(at(b(al(ai(x)))))))))ININ) —-> ala(blaldb(x)))))
109 and 2

a1(b(a1(a1(b(a((b(b(x))))))))) --> b(at(al(b(al(b(ai(ai(b(al(al(x)))))))NN
1012 and 273

b(al(al(b(a(b(b(b(x)))))))) --> a(b(ai(al(b(at(b(at(ai(b(ai(ai(x}))})))I}))))
20 and 4674

b(a(b(b(at(b(a(b(alalx)))))))))) -=> alala(bla(b(®b®(al(b(x)))))))N)

805 and 4781

b(a1(al(b(al(al(bla(b(al(x))))I)IN) --> a(b(al(b(al(al(b(al(al(b(x))))I))))))
1134 and 4068

a(b(a1(b(al(ai(b(al(a1(b(alx)))))N)HII)) --> b(ai(at(b(ai(al(b(alb(x)))>))))))
19 and 4129

b(ai(b(al(ai(b(ai(at(b(alx))))))) --> ai(b(at(al(b(al(al(b(a(b(x)))I))))})
19 and 5011

a(b(al(al(b(alala(a(b(b(x))))))))))) --> b(ai(al(b(at(al(b(alalx))))))I))

605 and 4129

b(a1l(ai(blala(aCa(b(d(x)))IINNI)) --> at(blal(at(blai(ai(blalalx))))))))))

19 and 5000

b(a1(al(b(al(al(b(ala(b{al(x))))))))))) --> a1(b(at(ai(b(alb(al(b(x)))))))))
1012 and 3659

a(a(a(a(a(a(b(b(al(b(a(b(at(x)))))))))))») --> bla(b(at(b(x)))))

4781 and 3716

a(a(a(a(a(b(b(al(db(alb(ai(x))))N --> a1(b(a(b(at(b(x))))))

19 and 5282 \

B.3.7. Other Examples: Z29

New Rule (5466):
derived from:
Hew Rule (5523):
derived from:
Hew Rule (5581):
derived from:
Hew Rule (5639):
derived from:
Hew Rule (5705):
derived from:
Hew Rule (5797):
derived from:
Hew Rule (5873):
derived from:
New Rule (5949):
derived from:
New Rule (6026):
derived from:
Hew Rule (5917):
derived from:
New Rule (5852):
derived from:
Hew Rule (5311):
derived from:
Bew Rule (2606):
derived from:
Hew Rule (6411):
derived from:
Hew Rule (2295):
derived from:
Hew Rule (6548):
derived from:
New Rule (6642):
derived from:
Hew Rule (1890):
derived from:
New Rule (6797):
derived from:

Hew Rule (855):

derived from:
Few Rule (6086):
derived from:
New Rule (5109):
derived from:
Hew Rule (7111):
derived from:
New Rule (7207):
derived from:
New Rule (5094):
derived from:
Hew Rule (7393):
derived from:
New Rule (7381):
derived from:
Hew Rule (4273):
derived from:
New Rule (7721):
derived from:
Hew Rule (7779):
derived from:
Hew Rule (7856):
derived from:
New Rule (7952):
derived from:

139

a(a(a(a(b(b(al(b(a(b(al(x)))))}))))) —-> al(ai(blal(b(a1(b(x)))))))

19 and 541t

a(a(a(b(b(al(®(a(b(ai(x)))NN))) —-> at(al(alb(a(b(al(b(x))))))))

19 and 5466

aCa(b(b(a1(b(a(b(al(x))))))))) --> ai(ai(al(at(b(alblat(b(x)))))I)))

19 and 5523

a(b(b(a1(b(a(b(a1(x)))))))) --> al(ai(ai(at(al(b(a(bCai(b(x))))))))}))

19 and 5581 \

b(b(al(b(a(b(al(x))))))) --> ail(ai(al(al(al(al(b(a(b(@l(db(x)))))NN))

19 and 5639

b(b(a1(b(a(b(x)))))) --> ai(al(ai(ai(ai(at(b(alb(at(b(alx)))))II)M)

19 and 5705

b(at(al(al(b(a(b(ai(b(ax)))))))N) ~-> ai(b(al(b(al(ai(b(alalb(x))INN))
953 and 5797

al(b(at(b(ai(al(b(a(alb(al(x))))))))))) —> blai(al(al(b(a(b(a1(b(x)))))))))
20 and 5873

b(a1(b(at(at(blaa®b(al(x)))))))))) --> a(b(al(alal(b(al(blai(b(x))))))IN))

20 and 5949

b(a1(b(a1(b(b(ala(b(x))))))))) -=> at(b(ai(at(b(ai(at(bla1(b(alx)))))))N))
3107 and 5873

b(at(ai(b(a(blal(b(a(x))))))))) -~> a(b(al(ai(b(ai(al(b(alalb(x)))))))IN))

499 and 5797

ba(blal(al(b(a®{b(x)3))))))) --> a(b(at(at(blai(ai(b(al(b(al(x))))II))IN))
2780 and 3716

a(b(a1(al(b(ai(db(a(b(alalx)?))))I)))) --> b(a(b(ala(b(al(a1(b(x))>))))))

2321 and 2601

b(ai(al(b(al(b(a(b(alalx)?)))))))) --> a1(b(a(b(alalblal(a1(b(x))))))))))

19 and 2606

a1(a1(b(a(b(b(®(x))))))) --> ala(b(aial(b(at(al(a1(at(b(at(al(x))IINNNN
20 and 498

al(b(a(b(b(d(x)))))) --> a(a(a(b(al(al(b(at(ai(al(al(b(al(a1(x))))IIIMNIMNN
20 and 2295

ba(d{(b(b(x))))) --> ala(ala(blal(at(b(at(al(al(al(b(atCal(x))INNININNN

20 and 6548

al(b(a1(b(at(b(b(b(a(x)))))I)))) --> blala(b(al(b(al(ai(b(at(b(x)))))I)))))

358 and 1455

b(a1i(b(al(b(b(b(al(x)))))))) --> a(b(ala(blai(blal(al(b(ai(b(x)))))I)I)

20 and 1890

a1(a1(ai(d(ai(ai(al(a1(ai(bCalblal(badalalx)))NNNNNNN

--> a(a(a(a(b(al(ai(b(al(al(al(at(b(al(ai(al (®(x))))ININININN

657 and O

b(a1(b(at(b(al(at(at (b(a(b(a1(b(x))))))))))))) --> a(b(alalala(b(a1(x))))))))
1938 and 6026

al(b(al(al(b(a1(b(al(at(b(ai(al(al(at(b(al(x)))))))))IIN))) -=> a(db(a(b(alx)))))
433 and 5045

b(a1(al(b(al(b(ai(al(b(al(al1(al(al(b(a1(x)IN)ININN)) --> ala(b(a(b(alx))))))
20 and 5109

b(al(al(b(al(b(al(ai(b(al(al(ai(al(b(x))))))I))I)))N) —> al(a(b(al(b(alalx)))))))
19 and 7111

b(a1(al(b(al(at(al(b(al(al(b(al(al(b(a(b(x))))IIINNNINN) -=> a1(b(alblalx)))))
1012 and 5045

b(at(at(at(b(ai(al(b(alb(atl(b(al(b(x)))))IIINNINII) —-> at(blala(db(alalx))))i))
1012 and 5094

b(ai(al(b(al(al(ailal(b(at(al(b(alb(b(x))))))I)I)N)) --> at(b(a(db(alalx))))))
1225 and 5094

b(ai(al(al(b(al(blal(b(b(al(al(at(ai(x)))))))))N) --> a(alalb(alb(alx)))))))
19 and 619

b(al(al(al(b(al(b(al(b(b(al(ai(al(x))I)IN NN --> alalalblalblalal(x)))))))
19 and 4273

b(al(al(ai(b(at(b(al(b(b(a1(a1(x)))))INI)) =-> alalalbla(blalalalx)))))))))
19 and 7721

b(ai(a1(al(b(al(blai(b(b(ai(x))))))))))) --> ala(alblalb(alalalalx))))))I)))I)
19 and 7779

b(al(al(a1(b(ai(b{al(b(b(x))M))IID) —--> alala(bla(blalalalalalx)))IIIII)))

19 and 7856

140

Hew Rule (4228):
derived from:
Hew Rule (3455):
derived from:
Few Rule (8270):
derived from:
Hew Rule (2978):

derived from:
Hew Rule (2416):
derived from:
Hew Rule (8584):
derived from:
New Rule (8693):
derived from:
Hew Rule (1942):
derived from:
Hew Rule (1343):

derived from:
HEew Rule (1297):

derived from:
Hew Rule (1243):
derived from:
Hew Rule (1216);
derived from:
New Rule (9356):
derived from:
Hew Rule (9476):
derived from:
HBew Rule (9571):
derived from:
New Rule (972):
derived from:
Hew Rule (9843)
derived from:
Hew Rule (817):
derived from:
New Rule (10110)
derived from:
New Rule (10239)
derived from:
Hew Rule (637):
derived from:
Hew Rule (10516)
derived from:
Hew Rule (10295)
derived from:
Bew Rule (10753)
derived from:
Hew Rule (10846)
derived from:
Hew Rule (10909)
derived from:
BEew Rule (11039)
derived from:
Hew Rule (10941)

derived from:
Hew Rule (9446):
derived from:
New Rule (11398)
derived from:
New Rule (11528)

Appendix B. Commented Examples

b(al(a1(b(ai(al(al(bal(a1(b(al(al(b(b(x))))))))))N))) ~--> ai(b(alalb(al(x))))))
19 and 641

a(b(a1(a1(b(ai(b(al(al(a1(b(alb(b{(x)))))))))))))) --> b(alal(ala(d(alx)))))))

2601 and 3438

b(ai(a1(b(at(b(al(al(al(bad(b(x)))ININ)N)) --> at(blalalalabl(alx))})))))

19 and 3455
al(b(al(b(alalalb(at(al(b(at(ai(al(al(b(atalatGG)INMNINIMDIMDIMINNN)

--> b(b(a(a(a(a(b(aalx)))IN)

358 and 2907

b(al(a1(b(a(b(al(b(at(b(al(al(al(ai(b(a1(ai(x)))))})))1)))})}) --> a(b(a1(b(x))))
2142 and 2403

b(ai(al(b(alb(ai(b(ai(b(ai(al(ai(al(b(al(x))))))II)IINNIN) -~> a(blal(b(al(x)))))

19 and 2416

b(ai(a1(b(a(b(al(b(ai(b(al(al(al(al(b(x))INNNINHM)) --> a(b(at(bl(alal(x))))))

19 and 8584

b(al(b(ai(at(at(ai(b(al(al(blai(b(al(at(b(al(al(x)))))))I)II)I)) ——> alb(b(b(alx)))))
1456 and 1938
al(al(al(ai(ai(al(bCa(b(at(b(a(b(ai(b(a(b(b(al(b(x))}))))I)))))))))))M

-~> b(b(a(a(b(®dCalx))))))

488 and O

a(b(ai(ai(b(ai(ai(al(al(b(al (a1 (b(bCat (b)) NNININMN

~=> bla(b(alalaldb(alalx)))NN))

657 and 862

b(al(al(b(al(al(al(ai(al (b(al(a1(®@EMBGIMINININIINIDI --> aa(b(b(atx)))))
657 and 1219 '
al(b(a1(b(a1(b(b(ai(ai(al(al(al(b(a(b(®d(a1(x}))))>)))))))I)) —-> bla(b(b(x))))
358 and O

b(ai(b(al(b(b(ai(ai(al(ai(al (b(a(b(b(ai(x))))IIINMNIN} --> a(b(ab(b(x)))))

20 and 1216

b{a1(bal(b(b(al(ai(at(al(al (bla(b(alx))}))))IIIIIN) ~=> alalala(b®(x))))))

605 and 9356

b(at(b{at(b(b(at(al(al(ai(al (b(a(b(x)))))))II))) --> ala(ala(b(®d(a1(x)))})))

20 and 9476
a1(b(a1(b(al(al(b(al (b(a(b(b(al(b(x))})))))NM)) --> blalalab®(alx)))))))

0 and 953

bla1(b(allal(blal(b(alb(b(a1(b(x)))INIIINN) —-> a(b(alalal®(b(al(x)))II)))

20 and 972
ai(ai(b(ai(al(blai(ai(ai(al(al(b(b(al(b(x))))))))IN))) --> blala(b(alalx))))))
739 and 805

: a1(b(al(a1(b(ai(al(ai(al(a1(b(b(al(b(x)))))))))))))) ==> a(blalalb(alalx)))))))

20 and 817

: b(a1(a1(b(atl(al(al(at (a1l (b(b(al(b(x))))))I))I))N) --> alalb(ala(blalal(x))))))))

20 and 10110
a1(b(al(ai(ai(al(ai(b(alb(al(ba(b(al(®b(x))))INNINNII) --> alalb(bl(alx)))))

488 and 605

: b(at(al(ai(al(al(b(a(b(al(b(a(b(al(b(x)))))))INNI) --> alala(b(b(alx))))))

20 and 637

: a(a(a(b(ai(al(at(b(a1(a1(db(x)))))))II)))) ~-> blai(al(blai(ai(al(al(blal(x))))))))I))
3716 and 10239

a(a(b(al(a1(a1(b(a1(al(b(®(x)))ININ)) -=> a1(blal(al(blal(al(ai(a1(b(al(x)))))))))))
19 and 10295

a(b(at(al(al(b(a1(a1(b(b(x)))))}))) -=> ail(ai(b(ai(ai(b(al(ai(al(al(b(al(x))))))IIN)
19 and 10753

a(b(ai(al(ai(b(ai(al(b(alb(al(a1(a1(b(alb(d(x)))))))»)I)II)I)))) --> b(blal(x)))
1970 and 10846

b(ai(at(a1(b(ai(ai(b(alb(al(al (al(b{a(b(®(x))))I)IIIINIIII) -~> at(b(b(al(x))))
19 and 10909

b(a1(ai(a1(b(al(ai(b(b(x)))))))))

-~> ai1(ai(ai(b(at(at(b(at(at(al(at(b(a1(x)))NHNNIN))

19 and 10846

a(b(b(ai(ai(ai(ailal(b(ald(b(ai(x)))))MI)N) —-> blat(blallal(b(al(b(b(x)))I)
2142 and O

b(b(a1(a1(a1(al(a1(b(alb(b(al(x))))))IN)I)) --> a1(b(al(b(at(al(b(al (b(b(x))>)))I})))
19 and 9446
: al(b(al(b(al(al(b(at(b(b(a(x)))))}))))) --> b(b(al(ai(at(al(al(d(alb(®d(x)))))))))))

B.3.7. Other Examples: 229

derived from:

New Rule (11588):

derived from:
Hew Rule (8053):
derived from:

Hew Rule (11717):

derived from:

Hew Rule (11814):

derived from:

New Rule (11911):

derived from:

New Rule (12012):

derived from:

Hew Rule (12155):

derived from:

Hew Rule (12280):

derived from:

New Rule (12140):

derived from:

New Rule (12537):

derived from:

Bew Rule (12687):

derived from:

Hew Rule (12812):

derived from:

Hew Rule (12963):

derived from:

New Rule (12434):

derived from:

Hew Rule (13238):

derived from:
Hew Rule (6831):
derived from:

Bew Rule (13433):

derived from:
New Rule (6331):
derived from:

New Rule (13619):

derived from:

New Rule (13747):

derived from:

¥ew Rule (13905):

derived from:

Hew Rule (13940):

derived from:

Few Rule (13797):

derived from:

New Rule (14094):

derived from:

Hew Rule (14189):

derived from:

New Rule (14093):

derived from:

New Rule (14477):

derived from:

New Rule (14620):

derived from:

Hew Rule (13778):

derived from:

New Rule (14998):

derived from:

¥ew Rule (15039):

derived from:
Hew Rule (5887):
derived from:

141

19 and 11398

b(al(b(al(al(b(al(d(b(alx))))))II)) --> a(b(b(ai(al(at(at(al(b(a(b(b(x))))))))))))
20 and 11528

a(a(a(b(a(b(ala(ala(alalb®@(x))))))I))INM) —> blal(ai(d(alalal(x)))))))
488 and 7952

a(a(a(b(a(b(a(alalalala(d(®(x))))))))))))) --> blal(al(b(alalx))))))
20 and 8053

a(a(b(a(b(a(a(a(ala(a(b®(x))))))))))))) --> a1(b(ai(at(b(alal(x)))))))

19 and 11717

a(bla(b(a(a(ala(ala(®(®(x))?))))))))) --> ai(at(b(al(ai(blalalx))))))))

19 and 11814

b(a(b(a(a(afa(ala(b(®(x)))))))))) --> at(al(ai(b(ai(at(b(alal(x))))I)))

19 and 11911

a1 (b(al(b(alalala(®(b(x))))I))))) --> b(at(al(al(blat(al(blalalx))))))))))}

109 and 12012

b(at(b(a(afala(b(b(x))))))))) --> a(b(al(ai(ai(b(al(ai(b(alalx))))II)IN)
20 and 12155 :

b(a(b(a(a(a(b(a(b(d(x)))))))N) ~-> al(ai(al(b(at(at(bla(b(al(x))))))))))
657 and 12012

b(a(b(a(a(a(a(b(al(al(b(al(a1(ai(x)?)))))))))))) --> a1(ai(ai(b(ai(al(db(b(x)))>N
2601 and 12140

b(a(b(alalala(b(al(al(b(ai(al(x)))))I}))))))) ~=-> a1(ai(al(b(ai(al(b(b(alx))))))I)))
19 and 12537

b{a(b(a(alala(b(al(al(b(al(x)))))))))N)) —-> ai(at(at(b(ai(ai(b(b(alalx)))))I))N
19 and 12687

b(a(bCala(ala(b(at(al(b(x))))))))) --> a1(al(al(b(ai(at(b(b(alaal(x)?I)IN))
19 and 12812

a(b(a(bla1(a1(blalad®dx))))I)III)I))) --> b(b(at(at(at(b(al(al (b(ala(x)))NNIN)N)
376 and 12280

b(a(blal(al(b(ala(b(b(x)))})))))) ~=> a1(b(b(al(ai(at(b(al(al(b(alalx))))))I})))
19 and 12434

a(b(a1 (a1 (b(a1(b(b(db(a(x)))))I)))) ~-> balala(b(al(b(al(at(b(a1(b(x)))II)ININ))
2601 and 6797

b(al(al(b(a1(b(b(b(alx))))IN))) --> at(b(alalalb(al(b(ai(al(b(al(d{(x)))))IN))))
19 and 6831

b(a(b(at(b(al(ai(b(al(al(al(x))})>))))) -~> alb(ai(ai(b(at(al(bla1(al(b(x)))))))))))
2601 and 5311

b(a(b(ai(b(aifal(blai(al(x)))))))))) ~-> a(b(ai(al(b(al(al(b(al(al(b(alx))}))I»))II))
19 and 6331

b(a(b(al(b(a1(ai(b(a1(x))))))))) —-> a(blal(al(b(ai(at(b(al(al(®(alalx)))?)INIINN)
19 and 13619

a(b(at(al(b(al(al(b(al(ai(b(alalalx))))))I))))) —=> blalb(al(b(al(al(b(x))))))))
19 and 13747

b(al(ai(b(ai(al(b(ai(al(b(alalalx))))))IINNI) -=> at(b(alb(ai(b(al{ai(b(x))))))))
19 and 13905

b(a(b(al(at(b(a(b(alalx))))))I)) ~-> a(b(ai(ai(ai(b(a(alalal(db®d(x)))IIMN)N
7381 and 13747

a(b(al(al(at(bl(a(alalaldb(d(al(x))))))IN)) —-> bla(d(ai(al(b(a(blalx)))I))N))
20 and 13797

b(al(al(al(b(a(a(ala(b(d(at(x)?)))))))))) --> at(b(a(b(at(al(b(a(b(alx)))I))I))))
19 and 14094

b(b(ala(b(at(al(al(b(aatala@®®ENININININMIIG ——> al(b(b(b(b(a1(b(x)>)))))

109 and 13797

b(b(b(b(b(ai(b(x))))))) ~=> ailai(al(at(b{al(b(ai(ai(al(bCal(a1(bal(x)))NNNNNN
488 and 14093

b(b(b(al(al(al(b(a(b(al(®d(al(b(x))})))))))))) --> al(ai(at(b(b(alaalx))))))))
2321 and 14477

bla(b(ai (b(b(b(al(x))))))) -=> a(b(ai(b(al(b(ai(al(al(b(a(blaal(x))))INIINN
1243 and 13747

a(b(at(b(a1(b(al(al(al(b(a(blalalalx)))?)))IINN) --> blad(at (bbb (x)))))))

19 and 13778

b{a1 (b(a1(b(at(al(al(bla(b(alalalx))??))))INII) --> at(blalb(al (b(b(b(x)))I)))
19 and 14998

b(b(a(a(b(b(al(b(x)))))))) --> a1(ai(al(ai(at(al(b(alb(al(d(al®@(x)))INNINNN
488 and 5797

142

New Rule (5349):
derived from:

Hew Rule (15431):

derived from:
New Rule (4978):
derived from:
New Rule (4044):

derived from:

Eew Rule (15701):

derived from:
Hew Rule (15931)
derived from:

New Rule (15977):

derived from:

New Rule (16226):

derived from:

New Rule (16367):

derived from:

Hew Rule (16541):

derived from:

Hew Rule (16581):

derived from:

Hew Rule (16646):

derived from:
New Rule (3588)

derived from:
Hew Rule (3501):

derived from:
Hew Rule (3465)
derived from:

Hew Rule (17110):

derived from:
New Rule (2408):
derived from:
New Rule (2037):

derived from:
New Rule (1991):

derived from:
Eew Rule (1029):
derived from:
Bew Rule (1002):

derived from:
Hew Rule (939):

derived from:
Hew Rule (756):
derived from:
Hew Rule (674):

derived from:
New Rule (524):

derived from:
Hew Rule (438):

derived from:
New Rule (384):
derived from:
Hew Rule (378):

Appendix B. Commented Examples

a(b(ai(ai(b(ai(b(b(ala(b(al(x)))))»))))))) --> b(a(b(ai(al(b(a(b(al(b(x))))))))))

433 and 3716

b(al(ai(b(ai(b(b(ala(b(a1i(x)))))))))) --> at(b(a(b(ai(al(b(a(b(al(®d(x)))I))I)))))

19 and 5349

b(al(al(b(ai(ai(b(b(b(a(alx)))))I))))) --> a(b(al(b(at(b(a(b(al(al(b(x))))I))))))

380 and 4129

a(a(b(b(ai(al(al(al(at(b(alb(b(x)))))))N))))

==> b(ai(a1(b(al(al(al(b(al(b(a1(x)))))))I))))

1012 and O

a(b(ai(b(al(al(b(al(d(b(x)))))))))) --> blait(al(b(al(al(ai(b(al(b(al(at(x))II)I)I)))
11398 and 4044

: b(a1(b(al(a1(b(a1(b(b(x))))))))) -=> al(b(ai(ai(b(ail(al(al(b(al(b(ai(ai(x))))}))I))I))
19 and 15701

a(b(b(al(ai(ai(blal(b(at(at(x)))INNI)) ~=> at(b(ai(at(blai(al(at(b(a(b(x)))))))))I)
11398 and 15931

b(b(al(al(al(blai(b(al(al(x)))))))))) --> ai(al(b(ai(al(b(al(al(al(b(alb(x)))))))))))
19 and 15977

b(b(al(ai(al(b(ai(b(ai(x))))))))) --> at(al(b(ai(ai(b(al(al(at(bla(b(alx)))))))NI)
19 and 16226

ai(ai(b(a1(al(b(ai(ai(at(b(a(b(alalx)))N))I)))) =-> b(blat(al(al(bCai(b(x))))))))
19 and 16367

al(b(al(ai(bCal(ai(al(b(a(blala(x))))))))I)) -=> a(b(b(ai(a1(ai(b(al(b(x)))))))))
20 and 16541

b(a1(a1(b(al(at(ai(b(alb(alalx))?)))IN)) -=> ala(b(b(ai(al(ai(b(a1(b(x)))})I)N))

20 and 16581

: a(a(b(al(b(ai(at(b(al(al(b{b(x))))))))))N)

-=> b(ai(a1(b(al(b(ai(ai(b(a1(a1(al(x)))))INN

805 and 1940

a(a(b(a(b(al(a1(al(bCalb(b(x))})))))IN))

--> ai(b(ai(ai(at(al(ai(b(a(b(al(b(a(al(x))})))I)II)
805 and 3438

: b(a(a(a(a(b(b(blal(ala(®b(alx)))))))))NI)) ~-> alalalblal (b(ald(b(x)))})))))

499 and 3438

b(ala(a(alb(b(b(alalald(x)))))IN))) --> a(ala(blal(b(a(b(®(al(x))))))))))

20 and 3465
b(b(b(alalblal(al(b(x))))))))) -=> a1(b(at(b(al(al(al(ai(b(ai(b(alalx)))))))IIN))
2321 and 2403
b(a(b(al(al (a1 (b(alb(b(x)))))))))

--> ai(al(ai(b(al(ai(ai(aial(b(a(blal(b(alalx))))))I)NIIN))

657 and 1970
b(a1(b(al(al(b(al(al (b(b(x))))))IN)

--> at(ai(b(ai(ai(b(at(b(al(at(blal(at(ai(x))))))N)N))
657 and 1938

b(ai(al(b(al(al(blai(b(b(ala(x))))INININ) --> a1(b(a(b(ai(ai(b(b(al(b(x))))))1)))
805 and 1012

b(a1(at(al(b(ai(al(b(a(b(b(x)))NIN)

~-> ai(al(ai(b(at(ai(b(al(ai(ai(ai(at(b(a(b(x})))INININ)
657 and 111

al(al(ai(b(ai(at(at(ai(al(blabCal(bla(b(alx)))))))I)ININ))

~~> a1(al(ai(al(al(al(b(a(blal(blal®bal(b(x)))INININMNN

488 and 3
b(al(b(ala(b(al(al(®(x))))))))) --> ai(al(b(ai(ai(b(ai(ai(al(ai(b(alal(x))))))INNN
453 and 739

a(b(al(al(b(at(ai(al(al(b(at(ai(al(b(aa(x)))INININN)

-=> b(a1{b(a1(b(al(ai(al(al(®(x))))))))

376 and 657

al(al(al(b(a(b(at(bCalb(al(®(at(x))ININNNN

~-> b(ai(al(al(al(al(b(a(b(al(b(alb{x)))))INNN)

488 and O

a(b(a(b(at(at(at(al(b(at(ai(b(al(ai(al(a1(x)?)>>)»I)IN)H)
-=> b(al(ai(a1(blai(ai(b(al(ai(a1(al(b(a(x)))IN NN

376 and 433
b(b(a(a(b(a(b(ai(ai(b(x)))))))))) ~-> al(b(ai(b(al(al(at(b(al(b(alalx))))))I)))
109 and 376

at(b(ai(b(at(b(a(b(at(db(alalx))))NIN)) ~-> b(a(b(ai(b(a(blat(al(b(x)))>)MNN)

B.3.7. Other Examples: Z29

derived from:
Hew Rule (18972):
derived from:
New Rule (18880):
derived from:
Bew Rule (19291):
derived from:
New Rule (18420):

derived from:
¥Wew Rule (19705):

derived from:
Wew Rule (19906):

derived from:
New Rule (17853):

derived from:
Hew Rule (20256):

derived from:
Hew Rule (20402):
derived from:
Hew Rule (20578):
derived from:
Hew Rule (17482):
derived from:
¥New Rule (20996):
derived from:
New Rule (17269):
derived from:
Hew Rule (21361):
derived from:
New Rule (21480):
derived from:
New Rule (21629):
derived from:
Hew Rule (21749):
derived from:
Bew Rule (21869):
derived from:
New Rule (22038):
derived from:
Hew Rule (22085):
derived from:
New Rule (22143):
derived from:
New Rule (22226):
derived from:
Hew Rule (22300):
derived from:
Hew Rule (22261):
derived from:
Hew Rule (21507):
derived from:
Hew Rule (22936):
derived from:
Hew Rule (16105):

derived from:
Hew Rule (23353):

derived from:
Hew Rule (23513)

143

358 and 376

b(al(b(al(b(a(b(at(b(alalx))))ININ) ==> a(b(a(b(ai(blalb(al(al(b(x))))})))I))))

20 and 378

al(b{al(b(at(ai(al(b(al(ai(b(al(b(al(ai(b(x}))))I)))»)))))) —=> b(b(ala(b(ala(x)))))))
605 and 384

b¢at(b(ai(al(al(b(al(al1(b(at(b(al(ai(b(x))?)))))IIN))) --> ab(db(a(aldblalal(x))))))))
20 and 18880

a1(a1l(b(at(a1(b(ai(ai(ai(al(ai(b(al(b(al(a1(b(x))I)INNNIINN

-=> b(at(b(a(ala(x))))))
605 and 756

al(b(a1(a1(db(al(ai(ai(al(al(b(at(b(al(al(®(x)??))))))33)N))

-=> a(b(at(b(alalalx)))N))
20 and 18420

b(ai(al(b(at(at(al(al(al1(blat(b(a1a1(®d(x)))))))3)))))) --> ala(blai(blalalalx))))))))
20 and 19705

al(al(b(al(a1(b(ai(ail(ai(ai(al(ai(a1(a1(b(alb®alIMIMNMIMNMIMININN

-=> blala(db(x))))
953 and 1991

al(b(at(at(b(al(ai(al(al(ai(al(ai(al(b(ab(b(a1(x)?)))))))))))))

-=> a(b(afa(b(x)))))

20 and 17853

b(al(al(b(al(at(ai(ai(ai(ai(al(al(b(alb(b(a1(x)))))))INNINI) --> ala(b(alad(x)))N)
20 and 20256

b(al(al(b(al(ai(al(ai(al(al(at(al (b(a(®(b(x))))2)2))))))))) —> ala(blalal®(alx)})))))
19 and 20402

a1 (b(ai(b(ai(ai(ai(al(b(at(a1(b(at{b(ai(al(®(x)}))))))))))))))) --> b(b(b(alalalx))))))
605 and 2408

bla1(b(a1(al(aifai(blal(al (bCa1(b(a1(al(®CINIMINMININIMN) ~=> a®d(b(b(alalalx)))))))
20 and 17482

b(aalaa(b(al(b(al(b(at(at(at(at(b(a1(ai(a1(x))))II)INIININI) --> a(alald(alx)))))
739 and 17110

b(a(al(ala(b(at(b(al(b(al(ai(al (ai(b(al(al(x)}))))))))))»))) -—> alala(b(alalx))))))
19 and 17269

a(a(a(b(a(a(blalb(b(ai(x))))))))))) --> b(alalala(b(®(b(alx)))))I)))
2142 and 21361

ala(b(alalb(alb(b(ai(x)))))))))) ~~> al(b(alalala(d(d(b(a(x)))))IN))

19 and 21480

a(b(alalpa®®al(x)))NN)) --> at(ai(b(alalalalb(d(b(al(x?)))))INN)

19 and 21629 . .
blala(blalb(b(al(x)))))))) ~-> ai(al(al(b(alalalalb(b(b(alx)))))?)N

19 and 21749

al(ai(al(b(ala(a(a(b(b(b(ala(x)))))))})))))) —-> blalad(ad(b(x)))))))

19 and 21869 _
al(al(b(ala(ala(b(db(b(alalx))’)IINI) ~-> a(blaa(bla(b(b{x))))))))
20 and 22038

al(b(a(a(ala(b®(b(alalx)))))II))))) —=> a(a(b(alalbla®®d(x)))))))))

20 and 22085

b(a(a(ala(d(d(b(alaix)))))IN)) ——> alala(db(alaldb(alb(b(x))))I))I)))

20 and 22143

b(a(b(ala(b(al(b(b(x))))))))) ~-> a1(b(ai(ai(blal(at(blalalb(ala(x)INIININNN

5180 and 22226

b(b(a(a(b(b(ala(b(a(b(b(x))))))))I))) ~-> a1(b(b(al(at(al(b(b(a1(b(x)))>)))I))))

14093 and 22226

b(a(a(a(a(b(al(b(al(b(ai(ai(ai(al(b(a1(x))))))))3))))))) ~-> a(a(a(b(alalalx)))))))
19 and 21361

b(a(a(a(a(b(ai(b(al(blal(al(at(al (b(x))))))))))I)))) --> alala(db(alalalalx))))))))

19 and 21507 ,
al(b(al(al(b(a1(ai(ai(b(at(b(a1(a1(b(ai(at(b(x))NININININN

-~> a(b(b(al(at(a1(x))))))

739 and 15931

b(al(al(b(al(al(at(b(al(b(al(al(b{al(a1(b(x))))IIINNNN

-~> ala(b(bCai(al(ai (x))))M)

20 and 16105

b(al(al(b(al(al(al(ai(b(al(al1(b(alCalbabxI)ININNININII)

-~> aa(b(b(a1(al(x))))))

144

derived from:

New Rule (16080):

derived from:

New Rule (15457):

derived from:

Hew Rule (15234):

derived from:

Bew Rule (24435):

derived from:

New Rule (13844):

derived from:

Hew Rule (12509):

derived from:

Hew Rule (24914):

derived from:

Hew Rule (25067):

derived from:

Hew Rule (25224):

derived from:

Hew Rule (25383):

derived from:

Hew Rule (25556):

derived from:

New Rule (25752):

derived from:

New Rule (25968):

derived from:

New Rule (26183):

derived from:

Hew Rule (26333):

derived from:

New Rule (12075):

derived from:

Hew Rule (26739):

derived from:

Hew Rule (26893):

derived from:

Hew Rule (27051):

derived from:

Hew Rule (27211):

derived from:

New Rule (27386):

derived from:

Hew Rule (27584):

derived from:

New Rule (27730):

derived from:

Bew Rule (27946):

derived from:

Bew Rule (27987):

derived from:

New Rule (10382):

derived from:

Hew Rule (28652):

derived from:
New Rule (9710):
derived from:

Hew Rule (29131):

derived from:

New Rule (29373):

derived from:

New Rule (29516):

derived from:

vAppendix B. Commented Examples

5045 and 23353

b(ai(b(at(ar(at(blai(al(b(ailal(al(b(al(bali@1G)IMINMINININMN

~=> a(b(a(b(b(x)))))

1938 and 15931

b(a1(b(ai(b(ai{at(b(at(al(b{al (b(a(b(b(x))})))))))))))) --> at(b(a(b(al(b(al(x)))))))
10941 and 15431

a(b(at(at(blal(at(b(al(b(a(b(b(ai®(x)))))))MN))))) —-> blala(ala®d(d(alx))))))))
5311 and 5887

b(a1(a1(b(a1(ai(b(ai(bCa(®(b(ai(db(x2)))ININI) —=> ar1(b(alalala®d(db(alx)))))I))))
19 and 15234
a(b(ai(al(b(al(al(al(b(ai{al(b(ai(b(al(al(b(ai(a1 (a1) NININNINIMNIINN

-=> b(a(b(ala(b(ai(x)))))))
3659 and 13747
al(ai(ai(ai(at(at(b(a(blal(blalalb(alalald(al®d(b(x)))))I))INININIIIN) -=> blal(x))
5797 and 12140

al(ai(ai(at(at(b(a(blat(b(a(a(b(a(a(a(bla(b(b(x))))))INNINININIII) -=> a(blal(x)))
20 and 12509

a1(ai(ai(ai(b(a(b(al(b(alalb(alala(d(ab®(x)))NIMINI ~-~> ala(b(ai(x))))
20 and 24914

al(ai(at(b(a(b(a1(b(ala(blalala(®d(a(d(b(x)))?))))))))I)) ——> alala(b(al(x)))))

20 and 25067

al(al(b(a(b(at(b(alalb(alala(b(a(b(b(x)))))))))))IH) —-> alalalal(b(a1(x))))))
20 and 25224

al(b(a(b(at(b(alaldb(alalalba(b(®(x))))))NNNNI)) —--> a(alalala(d(al(x)))))))
20 and 25383

b(a(b(al(b(a(a(b(alala(b(ald®{x))IINNNNI)) ~--> a(alalalala(b(ai(x))))))))

20 and 25556

b(a(b(al(b(a(b(al(blal(al(b{b(x))))})))I)N)) ~-> a(a(a(al(a(b(ai(b(at(ai(x))))))))))
336 and 25752

b(a(b(ai(b(alb(al(blal(a1(b(a(x)))))NNIN) --> a(alalalalalb(blalalx))))IIIN)
605 and 25968

bla(b(ai(blalblal(b(al(ai(b(x)))))))))))) ~—> ala(alaalalb(d(alx)))))))))

20 and 26183

a1(at(ai(ai(ai(ai(b(a(at (b(a(alblalalalalaabB)IMIMNNININIMINIMIMIII > alx)
5797 and 12012
al(at(ai(ai(at(bla(b(al(blala(blalalalalala(®d(b(x)))))2))IINNIIIMND —-> alalx))
20 and 12075

a1(al(al(at(bla(blal(b(alalb(alalalalaadbbGINNNINNIMINN) --> alalalx)))
20 and 26739

ai(al(ai(b(a(b(al(blala(d(alalalalalalb(b(x))?)))))ININNII)) --> alalalalx))))

20 and 26893

al(ai(b(a(b(ai(b(ala(b(alalalalaa(d(b{x))))))))INNINM) --> alalalalalx)))))

20 and 27051

a1(b(a(b(at(b(alalblalalalalaalb(®b(x)))))IININNII) --> alalalalalalx))))))

20 and 27211

b(a(b(at(b(ala(blalalalalalalb(®(x)’?)IIIIININ) --> alalala(alalalx))I)))

20 and 27386

b(a(b(al(b(a(b(ai(b(a1(al(al(b(al(x)))))II)) --> a(a(a(alala(b(al(d(x)))))))))
5797 and 27584

b(a(b(al(b(alb(al(b(at(al(a1(b(x})?)))))))N)) --> a(alalalalalbla(blal(x))))))))))
20 ard 27730

b(a1(al(at(aifai(b(alblai(b(a(d(ai(ai(b(x)))MIMNNMNII) -=> alalab(a(b(ai(x))I))))
524 and 27946

al(b(al(b(at(b(ai(ai(al(b(b(a1(b(x)))>))))))))) ~-> blalalalbl(ala(db(alalx)))))IIN)
358 and 10239

b(al(b(al(b(ai(ai(al(b(b(al(d(x)))))3))))) --> a(b(ala(a(b(alalblalalx)))))))N))
20 and 10382

b(ai(b(al(b(b(ai(al(at(ai(b(al(al(b(a1(a1(x)))))))))))1))»)) -=> a(alalalb(®d(d(x)))))))
336 and 9571 '

b(at(b(ai(b(b(al(al(al(al(b(al(al (b(ai(x)}))))I)INIIN) —-> a(alala(db®db(blalx)))III)I)
19 and 9710

b(al(b(al(b(b(ai(at(al(al(b(al(al(b(x))))))))))NI)) --> alalala(b(b(b(alalx})))))M
19 and 29131

b(a1(b(al(b(b(at(ai(al(al(al(b(a(a(b(a1(x)))))II))INI)) ~-> a(ala(alb(al(b(x)))))))
4228 and 29373

B.3.7. Other Examples: Z29

Hew Rule (29867):
derived from:

New Rule (9437):

derived from:
Bew Rule (9250):

derived from:
Hew Rule (30425):
derived from:
Few Rule (30670):
derived from:
Few Rule (9028):
derived from:
Hew Rule (31006):

derived from:
New Rule (31196):

derived from:
Hew Rule (31455):

derived from:
New Rule (31647):
derived from:
New Rule (31915):
derived from:
New Rule (32167):
derived from:
Hew Rule (32302):
derived from:
Hew Rule (32448):
derived from:
Few Rule (32593):
derived from:
Hew Rule (32739):
derived from:
New Rule (32854):
derived from:
New Rule (33095):
derived from:
New Rule (33344):
derived from:
Hew Rule (3214i):
derived from:
Hew Rule (33718):
derived from:
Few Rule (33837):
derived from:
Hew Rule (33981):
derived from:
New Rule (31684):
derived from:
New Rule (8382):

derived from:
Hew Rule (6962):

derived from:
New Rule (34822):

derived from:
Bew Rule (5334):

derived from:
Hew Rule (5005):
derived from:

145

b(a1(b(a1(b(b(al(at(al(aial(b(ala(b(x))))})))))I)I)) ~-> alalala(blat(b(alx))})))))
19 and 29516
a(b(al(al1(b(ail(al(al(b(al(ai(b(al(al(al(b(ai(b(al(a1(x)))I)IIIINNNNIINNNMIN

-=> b(ala(d(b(x)))))

0 and O

at(b(ai(b(al(al(at(ai(b(al(al(b(ai(al(at(al(al(b(a(b(x))))»)M)IIMNINNIN

--> b(a(a(a(b(b(a1(x)))))))

358 and 1243

b(b(b(at(b(aC@®(bCal(x)))))))))) ~-> a1(b(b(b(al(ai(al(ai(at (b(a(b(x))))))II))))
380 and 9250

b(b(b(al (blala(b(b(x))))))I))) ~=> at(b(b(b(al(al(ai(ai(al(d(a(b(alx))?)))))I))))
19 and 30425 ‘
a(b(al(al(b(ai(al(ai(al(blai(at(al(a1(b(al(al(b(a(b(alx)))))?)23373))1)))))) ~=> b(b(x))
8270 and 1297
a(b(ai(ai(b(ai(ai(ai(al(b(ai(al(at(a1(b(at (a1 (b(a(b(x)))}33)31I))ININ)

--> b(b(a1(x)))

20 and 9028
b{al(al(b(al(ai(at(at(b(at(a1(al(ai(b(al(al(bCalb(x))))ININNINNIN)

-=> al(b(b(al(x))))

19 and 31006

al(b(al(b(at(b(al(ai(b(al(a1(at(al(b(a1(at (b(ab(x)II)IIIINIINNN

--> b(b(b(a1(x))))

358 and 31196

b(at{b(al(a1(b(b(b(b(a1(x)))))))))) --> at(at(blalalalalalal(ald(x1))))))))))
1938 and 31455

b(al(b(a1(ai1(b(b(b(b(x)))))}))) —-> ai(al(b(a(alalalalala(d(a(x))IININ

19 and 31647

a1 (b(a(b(al(b(ai(al(b(alalalalb(alx)))INNINIINI) ~=> alalb{b®®d®{x))})}))
805 and 31915

b(a(b(a1(b(ai(al(b(a(alalald(alx))?)IINNNMNI) --> alalabb(b®(b(x)))))I)N)
20 and 32167

a(aa(b(b(b(b(b(a1(x))))))))) ~-> bla(b(al(b(al(al(b(alalala(b(x))))}))INNI))

20 and 32302

a(a(b(b(b(b(b(a1(x)))))))) --> al(b(a(b(al(b(ai(at(b(alalalal(®d(x)))))))))NIHI)

19 and 32448

a(b(b(b(b(b(al(x))))))) ~~> al(ar(b(a(b(ai(b(al(al(blalalala(b(x))))))))INI)))
19 and 32593

a(b(blala(b(al(ar1(at(b(a(alala(®b(x)))IIIIINNID) ~-~> b(b(b(b(a1(x)))))

5045 and 32739

b(b(a(a(b(ai(ai(al(b(alalalal®(x))??)))IIINNI) -=> a1(b(b(b(b{al(x))))))
19 and 32854

b(b(b(b(b(al(x)))))) -~> allal(at(b(a(b(at(b(al(a1(b(a(alala(d(x))))IIIIINIII)
488 and 33095

b(ai(ai(b(a(blal(al(blala(alalalala®(@lx))))NNNNNNI)) ~-> bbb ®BK))))
2142 and 31915

at(b(a(b(ai(at(b(a(alalalalada(db(@aix)’’)NNININ) ==> a(d(b(b(x))))
605 and 32141

b(a(b(al(al(b(ala(ala(alala(b(alx)))))NINNMN) -=> alalb(b(b(x)))))
20 and 33718

ba(b(al(al(b(alalalalalala(®(x))))NINN)) -=> ala(b(d(b(al(x))))))

20 and 33837

b(al(b(a1(b(ai(al(b(al(ai(al(al(b(at(al(b(alb(x)))ININNIIN ~=> alb(b(b(al(x)))))
20 and 31455
al(b(a1(b(at(ai(al(al(b(al(al(a1(at(al(b(alb(al(b(@la(x)’>»>>))NNINMNMINN
--> b(b(a(alala®dalxNNINN

358 and 8270

a(b(al(at(b(al(b(ai(at(al(b(a®(al (b(x))))MIIIN)) --> blalalalalalblal(x))))))))
0 and 6086

b(at(al(b(ai(b(al(al(al(b(ab(al(b(x))))?))I))))) --> at(blalalalala(d(arlx)))»N NN
19 and 6962
b(al(a1(b(al(al(al(b(ai(al(b(ai(b(ai(at(b(a1(ai(ai(x)))))))))})))))))))
~-> at(b(a(b(alalb(al(x))NMNN

1012 and 3716
b(ai(ai(b(ai(al(b(ala(b(ab(al(a1(b(x))>)MIIMNMN) ——> alb(alblalalalalx))))))))
376 and 4129

146

Hew Rule (3536):

derived from:
Few Rule (35817):

derived from:
New Rule (3529):

derived from:
Bew Rule (3508):

derived from:
Hew Rule (3356):

derived from:
Hew Rule (2973):

derived from:
Hew Rule (2438):

derived from:
New Rule (37323):

derived from:
New Rule (1417):

derived from:
Hew Rule (1311):

derived from:
Hew Rule (1255):

derived from:
¥ew Rule (38145):

derived from:
Few Rule (829): b

derived from:

Appendix B. Commented Examples

a1(b(al(b(ai(ai(ai(al(b(ai(al(ai(al(b(al(a1(badGINININININNINN)

-=> b(al(b(a1(x))))

3107 and 1940

b(a1(b(ai(al(at(ai(b(al(al(al(al(b(at(a1(b(a®(x))NNINIMINHINN

-=> a(b(a1(b(a1(x)))))

20 and 3536
b(at(b(al(ail(ai(ai(b(at(ai(al(al(al(b(albat (bCaa(x))NNINNINNNIINN

--> a(b(b(alalalalb(alx)))))I)))
3438 and 1940
b(at(b(al(al(at(ai(b(ai(al(b(ai(al(al(al(at(bCa(®b(x))))NNINIININ))

~~> a(b(a(a(a(b(b(ai(x))))))))
657 and 3438
b(ai(b(at(ai(ai(ai(al(al(at(b(a(b(al(b(alb(al(b(x))>)))3))3)))INN

-=> a(b(b(alalaalb(®d(alx))NNN)N
488 and 3264
a(b(al(at(b(alala(b(al(al(b(ai(al(ai(al(®(at (a1 @i BCOMINDIPMIININIMN

~--> b(a(b(a(a(a(a(b(alal(x))))))))))
433 and 2907

ai(b(a1(b(ai(al(al(a1(b(al(ai(b(b(at(b(x)))>1))))})})))) --> b(blalalalblalalx))))))))
862 and 2403

b(al(b(al(al(al(ai(b(al(al(b(b(al(b(x)))))))INI)))) -=> a(b(b(alala(b(ala(x)))))))
20 and 2438 '
b(a1(a1(b(ai(ai(ai(ai(at(blal(al(ai(al(al (b(a(blal(b{(a(x))))))))3)ININI)N)
--> a(b(at(b(ailal(x))))))
890 and 12
al(b(ai(al(b(ai(ai(b(al(at(b(at(ali(ba1iaialIININNININY
--> a(b(alala(b(a®(alalx)))NMNN)
376 and 862
a(b(ai(ai(b(al(b(b(ai(al(al(al(al(b(adb(b(x))))))))»))))))) --> blala(d(b(alx))))))
433 and 1219

b(ai(a1(b(al(b(b(al(ai(al(at(al(bCa(b(b(x})))))»)))))))) -=-> al(b(ala(b(®(alx)))))))
19 and 1255

(a1(a1(b(a1(ai(al(al(al(al(al(al(b(a(blat(b(a(d(alx))))))I)NINIIN)))
-> a(a(b(aaCa(b(b(alx))))INN
488 and 805

Hew Rule (818): al(ai(b(ai(ai(b(ai(at(ai(al(al(b(al(a1(b(b(a1(b(x))32))))))))1))))) ~=> b(b(b(alalx)))))

derived from:
Hew Rule (38832):
derived from:
New Rule (39099):
derived from:
Hew Rule (37735):
derived from:
Hew Rule (39624):
derived from:
Hew Rule (39890):
derived from:
New Rule (40192):
derived from:
Hew Rule (40328):

derived from:
Hew Rule (40554):
derived from:
Hew Rule (40189):
derived from:
Hew Rule (40993):
derived from:
Hew Rule (41191):

derived from:
Hew Rule (40920):

derived from:
Hew Rule (41579):

derived from:

739 and 805

al(b(ai(at(b(al(ai(ai(ailal(b(al(al(b®b@1(bx))INNININNI) -=> a(b(b(b(alal(x))))))
20 and 818

b(ai(at(b(aial(al(ai(ai(b(al(al(b(b(a1(b(x)))))IDININIINI) -=> alabb(blalalx)})))))
20 and 38832

b(a(b(a(a(alalalblal(b(al(ai(x)}))))H)))))) --> ai(ai(al(b(ai(at(b(alala(b(x))})))))I))
12963 and 1417

b(a(b(a(a(ala(a(b(al(b(a1(x)))))))))))}) -=> ai(ai(ai(b(ai(al(b(alalaldb(alx))))I)))IM))
19 and 37735

bla(blala(alala(b(at(b(x)))))))))) --> a1(ai(al(b(at(ai(blalalalb(alalx)))I)IIINN)I)
19 and 39624

b(al(ai(al(b(at(at(b(alalal(b(alalx)?))))))N)) --> ai(b(al(blaalal(b(ai(b(x)}))))))))
109 and 39890

al(b(at(b(ala(a(b(al(d(ai(x)))N NN

--> b(at(ai(al(b(al(ai(blala(abCalx))?)IINN

20 and 40192

b(at(b(a(ala(b(al(b(ai(x))))))))) -=> a(b(ai(ai(al(b(ai(al(b(a(alalb(alx)))))NINN
20 and 40328

b(a1(al{b(a1(at (b(alala(b(alalx}?)))))))I))) --> a(b(ai(al(b(a(alald(al(b(x)))))))I)I)))
336 and 39890

a(b(al(al(b(alala(b(al(b(al(x))))M))))) ~-> blat(al(b(ai(al(blalalalblalx)))))INII))
20 and 40189

b(at(al(b(alala(blal(bCal(x)))))))))))

~-> a1l(b(at (at(b(at(ai(b(alala(b(alx))))INIIN)

19 and 40993

al(db(a(b(at(b(al(al(bb(alalx))))INI)) —-> blai(b(ai(ai(b(alalalb(al(b(x))}}>)))))))
13940 and 40189

b(a(b(al(b(ai(at(b(b(alalx))}))))IN)) ~--> a(b(at(b(ai(at(blalalalb(al(®d(x))))>)})I)INM)
20 and 40920

B.3.7. Other Examples: Z29

New Rule (41679):

derived from:

Hew Rule (41804):

derived from:

New Rule (42039):

derived from:

New Rule (42265):

derived from:

Hew Rule (42547):

derived from:

Hew Rule (42024):

derived from:

New Rule (43128):

derived from:

Hew Rule (43386):

derived from:

Bew Rule (43677):

derived from:

New Rule (43974):

derived from:

New Rule (44213):

derived from:

Hew Rule (44445):

derived from:

Hew Rule (44678):

derived from:

New Rule (44925):

derived from:

Hew Rule (43979):

derived from:

New Rule (45479):

derived from:

Hew Rule (41803):

derived from:

New Rule (36502):

derived from:

Hew Rule (46128):

derived from:

Bew Rule (46241):

derived from:

Hew Rule (46356):

derived from:

Eew Rule (46990):

derived from:

Hew Rule (47218):

derived from:

Hew Rule (47467):

derived from:

New Rule (47756):

derived from:

New Rule (47836):

derived from:

New Rule (47917):

derived from:

New Rule (48003):

147

a(b(a(a(a(a(b(at(al(at(b(b(alalx)))))» 1) --> b(b(alalalala(b(al(b(x))))I)I)))
6086 and 41579 :
b(b(a(ala(alalb(al(b(al(x)))))))))) --> a(b(a(ala(alb(al(ai(al(b(b@(x)ININNOMNM)
20 and 41679

b(b(a(ala(ala(a(b(®(alx)))INN)I)) --> a(b(a(alalalb(ai(ai(at(b(x)))))I))N))

3107 and 41804

b(b(a(alalalalalb(b(x)))))))))) --> a(b(a(al(a(al(b(ai(al(ai(b(a1(x)))H)I)N)IN)N)

20 and 42039

b(b(ala(a(b(alb(b(x))))))))) ~-> a(b(a(ala(a(blal(ai(al(b(ai(al(b(ai(x))>)NNINNM
657 and 42265

b(b(alalalala(albla(b(al(x)))))))))))) -=> a(blalalala(b(al(at(at(at(b(x))II)I))II)))
1940 and 41804

b(b(a(a(a(a(ala(b(a(d(x))))))I))) —-> a(b(a(a(a(a(b(al(at(at(a1(b{alx})))III)IN)
19 and 42024

a(b(a(a(a(b(a(b(alalalalalalb(a(b(x))))))))))I))) --> at(b(ai(al(at(b(alx))))))
3438 and 43128 :
b(a(ala(b(a(d(a(alalalala(ba®(x))))IINININNNI) --> ai(ai(blal(aial(b(alx))))))))
19 and 43386

a(a(a(a(b(b(b(b(b(b(x)))))))))) --> blal(b(al(ai(al(b(ai(al(al(b(alx))))})NN))
376 and 43677

a(aCa(b(b (bbb x)IIIINDI) --> al(blal(b(ai(ai(al(blal(ai(al(dCalx))IIINNN)N

19 and 43974

a(a(b(b(b(b(b(b(x)))I)))) —~> a1(al(b{ai(b(al(ai(al(b(al(ai(al(b(alx)))}}))INM)
19 and 44213

a(b(b(b(b(b(b(x))))))) --> ai(ai(ai(b(al(blal(allal(b(al(al(at(®a(x))NNIMINNN
19 and 44445

b(b(b(b(b(b(x)))))) --> ai(ailat(al(b(al(b(al(allal(b(ai(al(al(b(alx))))NIININ))
19 and 44678

a(b(al(bCal(al(b(alalalalb(alb(x)))))II))) ~-> b(a(b(ai(b(al(ai(al(b(alx))?)))I))))
336 and 43677 .

b(a1(b(al (a1 (b(afalalaba(x))))))))NN) —-> al(bla(blai(b(al(al(al(b(alx)))))III)N
19 and 43979

b(a(ala(a(b(al(at(al(b(b(alalx)))))NNNIN) --> al(b(b(alalalala(db(al(®(x)))III)))
19 and 41679

a(b(a1(ail(al(b(a(b(al(b(ali(b(al(al(x)))>)))I)II))N)

--> b{a1(b(a1(blal(al(®d(a1(b(x))))))))))

2403 and 3508

b(at(ai(at(b(a(b(al(b(at(b(a1(ai(x))))II)INN

--> a1(b(a1(b(ai(b(al(a1(ba1(b(x))))))))))

19 ard 36502

b(ai(b(a1(b(al(al(al(al(b(ai(al(al(ai(b(al(b(x)))))))3))))N))

-=> al(ai(a1(b(b(a(x)))))

14620 and 46128

b(a1(al(al(b(alb(at(b(al(b(al(x))))INI)

~=> a1(b(a1(b(a1(b(ai(al(b(al(b(al(x))))I)))))))

19 and 46128

al(a1(b(a(b(al(b(ai(b(at(x))))))))))

--> a(a(b(al{al(b(al(al(al(al(b(al(b(alx)))I)NNI)))
605 and 46356

al(b(a(b(al(b(at(b(al(x))))))))

--> a(a(a(b(al(ai(b(al(al(al(ai(db(ar(b(alx)))>I)IINN)N

20 and 46990

bla(b(a1(b(al(b(ai(x))))))))

--> a{a(a(a(b(ai(a1(b(at(at{at(al(b(al(b(al(x))INIIININ))

20 and 47218

a(a(a(a(b(ai(at(b(ai(al(ai(ai(b(a1(b(alal(x))))>»))))>)NN)N

~=> b(a(b(a1(b(al(b(x)))))))

19 and 47467

a(a(a(b(al(ai(b(ai(al(al(ai(b(al(b(alalx)))))INNNN)N

--> a1(b(a(b(a1(b(a1(b{x))))))))

19 and 47756

a(a(b(al(al(b(ai(al(al(al(blai(b(alalx)))}}I})INIIM

-=> a1(a1(b(a(bCa1(ba1(b(x)))))I))

19 and 47836

a(b(al(al(b(ai(at(al(al(b(a1(b(alalx))))))IN))

148

derived from:

Hew Rule (48088):

derived from:

Hew Rule (36060):

derived from:

Hew Rule (48537):

derived from:

Eew Rule (48647):

derived from:

Hew Rule (48789):

derived from:

Hew Rule (35926):

derived from:

New Rule (49057):

derived from:

New Rule (49441):

derived from:

Hew Rule (49729):

derived from:

Hew Rule (50055):

derived from:

Hew Rule (50165):

derived from:

Hew Rule (50309):

derived from:

New Rule (49231):

derived from:

¥Wew Rule (50789):

derived from:

New Rule (35549):

derived from:

New Rule (51439):

derived from:

New Rule (35544):

derived from:

N¥ew Rule (51983):

derived from:

New Rule (52166):

derived from:

New Rule (34693):

derived from:

New Rule (52758):

derived from:

New Rule (53071):

derived from:

Hew Rule (53386):

derived from:

New Rule (52525):

derived from:

Hew Rule (53840):

derived from:

Appendix B. Commented Examples

-=> ai(ai(al(b(a(b(a1(b(al(b(x)))})))))))

19 and 47917

b(al(al(b(al(at(al(ai(b(ai(bl(alal(x))>})))))I)))))

=~=> at(ai(ai(ai(b(a(b(al(bCa1(b(x))))))))N

19 and 48003

b(ai(b(at(al(b(al(al(a1(b(al(x)))))))))))

-=> al(ai(b(a1(ai(ai(ai(b(a1(a1(b(a(p(x)))))))))N)

2142 and 35817

al(ai(b(al(ai(al(at(b(ai(al(b(a(blal(x)))))))))>))))

-=> b(ai(b(ai(al(b(ai(al(al(®(x))))))))

19 and 36060)

al(b(al(al(ai(al(b(al(al (b(ad@GINIININNIM

-=-> a(b(ai(b(at(ai(b(ai(al(al(b(x)))))))))))

20 and 48537

b(al(aiat(ai(b(al(al(b(alb(alx)))))))N)))

-=> a(a(b(al(b(al(ai(b(aiai(at(®b(x)))INNIM

20 and 48647

a(a(b(a(b(al(at (b(b(b(ai(b(x)))))))))))

~-=> b(al(bl(al(al(a1(a1(b(al(b(b(alx)))>)))I)
56887 and 35817

b(at(b(at(al(al(ai(b(at(bla(b(alaa(b(®d(alx))))INININIIN) —-> ala(b(a(d(x)))))
24435 and 35926

b(al(b(ai(a1(al(al(blat(b(alblalalald(d(x))))I))))INI)) ==> ala(bla(blal(x))))))
20 and 49057

b(al(al(blalb(alalbla®(al(x)))))INN) ~-> ai(al(b(al(b(alblalalalb®d(x)))III})H))
2142 and 49441

al(ai(bCat(b(alb(alala(b(®(alx)))))))NI)) --> bat(at(b(alblala(d(alb(x)?)))))N))
19 and 49729

a1 (b(al (b(alb(ala(alb(®bCalx))))))II))) -=> a(blal(al(blalblala(®d(a(®b(x))))))))H))
20 and 50055

blai(b(a(b(alalalb(b(alx))))IIN)) --> aa(b(al(al(blal(b(ala(b(alb(x?))))))INI))
20 and 50165

a(b(a(b(ai(al (b(b(b(al(b(x)))))))))))

--> a1(b(al(b(al(al(at(al(b(al (b(b(alx))))N

19 and 35926

b(a(b(a1(a1(b(b(b(al(b(x))))))NM)

--> a1(a1(b(al(b(at(ai(al(ai(bCa1(b(b(a(x)))INNNNMN

19 and 49231

ai(b(a(blala(b(a(b(ai (a1 bNINNNI)

~=> b(ai(a1(b(al(ai(at(b(al(b(alalx)))I)))))I)}

1012 and 5005

b(a(b(ala(b(alblal(al (b(x))))))I))) ~—-> a(bl(at(al(blal(ai(ai(blal(b(alalx)))))INNN))
20 and 35549

b(ai (a1 (b(ailal (blala(b(alalaldbalx)))))NINN) ~--> alblalblal(b(a(®d(b(x)})))))))
1219 and 5005

a(b(a(b(al(b{ab®(al(x)))))))))) —--> blai(al(blai(ai(b(ala(b(alalal®d(x)}))INNM
20 and 35544

b(a(b(al(b(a(b{b(ai(x))))))))) ~--> al(b(ai(ai(blat(ai(bf{ala(b(alalalb(x)))))NNN)N
19 and 51983

b(al(b(al(at(b(a(b(b(x)))))I)I))

~-> ai(ai(b(ai(ail(b(ai(ai(ai(al(al(b(aldb(a(x)))INININNN

13778 and 0

b(a1(b(a(b(b(al(b(x))))))))

--> al(al(b(al(ai(b(ai(ai(al(at(al(b(ab(alalx)))NNINNN

488 and 34693

a(b(ai(a1(ai(b(al(al(bCalb(x)))))IN))

—--> al(ai(b(ai(al(b(ai(ai(a1(ai(al(b(alx))))))IIN))
3107 and 52758

b(ai(al(at(b(a1(at{b(a(b(x))))))I)N))

--> ai(a1(ai(b(a1(al(b(ai(at(ai(al(ai(b(alx))))))))I)))))

19 and 53071

a{b(b(b(at(blalalblal (b{alx)))MNII))) --> b(b(blal(at(at(al(al(b(ala(b(x))))))INI)N)
29867 and 34693

a(b(b(b(al(b(alal(b(al(b(x)))})))))))) ~-> b(b(b(al(ai(al(al(al(b(alaldb(al(x)?)))))IIII)
20 and 52525

B.3.7. Other Examples: Z29

Hew Rule (54127)

derived from:

New Rule (34216):

derived from:

Hew Rule (54731):

derived from:

New Rule (54873):

derived from:

Hew Rule (33475):

derived from:

Hew Rule (55290):

derived from:

Hew Rule (55549):

derived from:

New Rule (55663):

derived from:

Hew Rule (33352):

derived from:

Hew Rule (31292):

derived from:

New Rule (56475):

derived from:

Hew Rule (27738):

derived from:

Hew Rule (57130):

derived from:

Hew Rule (57439):

derived from:

Hew Rule (25646):

derived from:

Hew Rule (58085):

derived from:

New Rule (25349):

derived from:

New Rule (23996):

derived from:

Hew Rule (58958):

derived from:

New Rule (59216):

derived from:

¥ew Rule (59348):

derived from:

¥New Rule (23339):

derived from:

Hew Rule (59847):

darived from:

New Rule (23260):

derived from:

New Rule (60334):

derived from:
Bew Rule (60333)

149

: b(b(b(ai(b(ala(b(ai(b(x)))))))))

--> a1(b(b(b(ai(ai(ai(al(al(b(aa(®(a1(x)))}}?))2)))))

19 and 53840

b(afa(b(b(b(al(x))))))) -=> a1(b(ai(b(al(ai(al(ai(b(alalalala(alab))ININIINIMNNN
109 and 33981

al(b(al(b(ai(al(at(ai(b(ala(alalalala(®(alx)))))IINNNNNMIII) ~-> blalalb(b(d(x))))))
19 and 34216

p(ai(b(ai(ai(at(al(b(alalalalalalaba(x)»NIMINN)) -=> alb(alal(b(b(®d(x)))))))
20 and 54731 .

al1(b(aCa(b(a1(b(b(b(ai(x)))))))))) -~> b(at(ai(b(b(ai(ai{at(b(alalalalb(x))))))IIII))
4228 and 33344

bla(a(b(al(b(b®al(x))))))))) ——-> al(b(al(ai(b(blal(al(ai(blalalala(b(x)))))ININN)))
20 and 33475

a(b(ai(a1(b(b(ai(at(al(blalalala(blalx))})))>)3))3)))) --> blala(b(al(b(b(db(x))))))))
19 and 55290

b(al(al(b(b(al(at(al(b(alalalalb(alx))))NNINI))) —=> at(b(alad(al(b(b(®(x))))N)))
19 and 55549

b(at(at(at(bla(b(al(b(al(ai(b(alalaCa®(x)))ININIININNN

~-> ai(ai1(ai(a1(b(a1(b(ati(al(al(b(al(a1(a1(b(x)))))))NI)IN)N

109 and 33095

a1 (b(b(ai(b(alalb(b(al(b(x))}))))))))

~=> b(at(at(b(al(at (a1l (a1 (bCa1(b(b(alx))I)IIN))

6887 and 31196

b(b(al(b(ala(b(®d(al(b(x))))I))

~-> a(b(at(at(b(a1(ai(ai(al(b(al(db(b(a(x))))>)))))))))

20 and 31292

al(b(a(a(b(aalalaa(a(b(b(x)))))))))))) > blat(b(al(ai(b(alalalalalx))))))))))
5045 and 27584

b(a(a(b(alalalalala(b(b(x)))))IIIII)) --> a(b(al(b(at(at(b(alalalala(x))?))INNN)

20 and 27738

b(a(a(b(ala(alba®(b(x))))))))))) --> a(bl(ai(b(ai(at(b(alalalaldb(al(x)))))ININN
657 and 57130

a(b(ala(b(at(b(al(al(d(a1(at (b(x)))I))))))

~~> al(b(al(ail(bCat(al (b(b(a1(al(x))))))IN)))

9571 and 0

b(a(a(b(al(b(ai(al(b(al(a1(b(x))))))))))))

--5> ai(ai(b(al(al(blal(at(b(blal(al(x))INININN

19 and 25646

ba(b(b(al(bla(abal(x)))IINI)) --> alala(b(a(blai(at(al(b(a(b(al(bx))NINIINI)N
2142 and 0

a1(b(a(b(al(al(ai(al(al(b(a(b(b(al(x))))))I))))»

--> b(a1(a1(b(ai(al(b(al(b(b(x}))))IN))

111 and 16080

b(a(b(al(al(al(al(al(b(a(b(b(al(x))>)))I)3))))

--> a(b(al(al(b(al(ai(b(a1l (d(db{x)))))N))

20 and 23996

a(b(ai(at (b(al(al(b(a1(b(bCa(x))))))))I))

=-> b(a(b(a1(a1(at(a1(at(b(a(b(b(x)))I)INIMN))

19 and 58958

b(a1(al(b(a1(a1(b(al(b(b(a(x))))))IN))

--> a1(b(a(b(al(ai(al(al(al(b(a(b(b(x))))ININN

19 and 59216

a(b(b(a1(ai(ai(al(ai(b(alb(b(x))))IIN))

~=> al(b(al(al(b(ai(al(al(b(ai(b(al(x)))))))IN))

605 and 0

b(b(ai(ai(al(at(al(ab(bx))IIINN

--> at(ai(b(al(al(b(al(al(al(b(al(b(ai(x)))))NIN)))

19 and 23339

a(b(b(ai(at(ai(al(at(ba(b(at(b(a(x)))))IININN

--> b(ai(b(ai(a1(b(al(b(a(b(x)))))I))))

5852 and O

b(at(b(a1(a1(b(al (b(a(b@iG))IINMNIN

--> a(b(b(at(at1(ai(al(ai(b(a(d(at(b(x)NINNN

20 and 23260
: b(b(ai(al(al(al(al(b(a(b(al(daG:INNINNNN

150

derived from:

New Rule (22946):

derived from:
New Rule (61009)
derived from:

New Rule (61185):

derived from:

Hew Rule (61388):

derived from:

New Rule (22713):

derived from:

New Rule (62079):

derived from:

Hew Rule (62313):

derived from:

Hew Rule (62504):

derived from:

Bew Rule (63031):

derived from:

Bew Rule (63317):

derived from:

New Rule (62975):

derived from:

Hew Rule (63875):

derived from:

New Rule (64286):

derived from:

Hew Rule (64652):

derived from:

New Rule (64834):

derived from:

Hew Rule (65033):

derived from:

Hew Rule (65241):

derived from:

New Rule (64820):

derived from:
Hew Rule (64427)
derived from:

Hew Rule (66166):

derived from:

New Rule (66300):

derived from:

New Rule (66589):

derived from:

New Rule (66738):

derived from:

Hew Rule (66946):

derived from:

Hew Rule (67131):

derived from:

Hew Rule (67454):

derived from:

New Rule (67620):

derived from:

New Rule (67788):

derived from:

New Rule (67957):

derived from:

Bew Rule (68130):

derived from:

New Rule (68307):

derived from:

New Rule (68499):

Appendix B. Commented Examples

-=> a1(b(at(b(ai(ai(b(al(b(a(b(x)))))))))))
19 and 23260

b(a(a(al(a(b(b(d(blalalalx))))))N)) ~-> alala(b(alalblal(blai(al (b(x)))))IIN))
20996 and 22936 .
: ba(a(ala(b(b(b(b(alalx))))I)III)) -=> a(ala(b(alalbl(ai(blal(al(b(al(x)))))II))I))I)
20 and 22946

b(a(a(a(a(b(b(®(b(alx)))))IN)) --> ala(a(b(ala(b(al(b(al(al(blal(ai(x))))I)))I))IIN)
20 and 61009

b(a(a(a(a(b(b(b(b(x))))))))) --> a(ala(b(alalb(ai(b(al(at(b(ai(aiCal(x)))))I)NINI))
20 and 61185

b(a1(b(b(b(alalblalb(®b(x)))))))) ~--> a(b(a(b(at(b(ai(al(al(b®d(al(b(x)))NNNN)
3107 and 22261

b(a1(b(b(b(ala(b(alblalx)))))))I))) --> a(bla(b(al(b(al(al(albBGIINI NN
605 and 22713

b(a1(b(b(b(ala(blalb(x)))))))))) —--> a(b(a(b(al(b(al(al1(ailb(b(a1(x)))))IN))I))))
20 and 62079

b(a(b(ala(b(b(alalb(alb(x))))I))I)) -=> a(bl(ai(b(a1(ai(al(b(b(ai(x))))))))))

1991 and 62313

a(b(a1(a1(b(b(b(ala(d(alb(x))))))IN)) --> bv(alalblat(blal(al(al (b(b(al(x))I))NM)
336 and 62504

bla1(al(b(b(b(ala(balb(x))))))IN) ~-> al(blala(b(al(b(al(alal(b(b(ai(x)))})))))))))
19 and 63031

ai(al(b(a(b(ar(b(alb(ala®(alb(x)))})))))))))) -=> a(b(b(blai(ai(ai(b(b(a1(x))))))))))
1940 and 62504

a(b(b(b(al(ai(at (b(b(alala(b(ai(al(b(x)))))))INM)))) —-> alalalb(at(b(al(x)))))
12963 and 62975

b(b(b(at(al(al(b(b(alalalblai(al(b(x})))))))))))))) --> a(albl(al(d(alx))))))

19 and 63875

b(b(b(a1(at(a1(b(b(alalalalx))))))N)II) --> ala(b(ai(blat(b(a(b(b(x))))))))))
605 and 64286

aa(b(ai(b(al (b(a(b(d(al(x)))))))})))) -=> b(b(b(al(ailal(b(b(alalalx)))))))I))

20 and 64652

a(b(a1(bla1(bla(b(b(ai(x)))II)I)) -=> at(b(b(b(at(a1(al(b(b(alalalx))?))II)II))

19 and 64834

bCai(b(al(b(a(b(blai(x))))))))) —-> at(al(b(b(b(ai(at(al(b®(alalalx)))))NI)))

19 and 65033

b(ala(a(b(al (blai(at(al(b(al(b(alb(b(x)))))))))))))) —-> ai(b(b(alalalal(x)))))))
499 and 64652
: b(b(b(at(at(al(b(b(alalalblalat(al (b(b(a1(x)))))))))))))))))) =-> al(b(ab(b(x)))))
31196 and 64286 .

b(b(b(ai(al(al(b(b(ala(al(b(ai(al(al (b(a(x))))II))ININ) --> ala(b®(x))))

605 and 64427

b(b(alala(blalb(alab(alx)))))IIN)I) ~-> a(b(al(at(b(al(al(b(x))})))))

13778 and 66166

a(b(al(ala(w(alb(alad@x)}ININI) --> ala(b(a(db(®d(x))))))

605 and 66300

b(a(a(a(b(a(b(ala(b(alx)))))NN))) --> ab(a®d(b(x)))))

19 and 66589

b(a(a(a(b(a(b(ala(b(x))?)IN)) -=> a(b(alb(b(al(x))))))

20 and 66738

a(a(a(a(a(a(b(al(b(a1(a1(x))>)))))))) —-> a(b(b(aalx)))))

18972 and 66946

a(a(a(a(a(b(al(b(ai(al(x)))))))) ~-> v(b(alalx))))

19 and 67131

a(a(a(a(b(at(b(al(ai(x)))))))) --> at(b(b(alalx)))))

19 and 67454

a(a(a(b(al(b(al(a1(x))))N)) --> ai(al(b(b(alalx)))))

19 and 67620

a(a(b(a1(b(a1(ai(x)))N)) ~-> a1(ai(ai(b(blalalx)))))))

19 and 67788

a(b(at(b(al(ai(x)))))) ~=> a1(al(al(ai(b(b(alal(x))))N))

19 and 67957

b(at(b(al1(ai(x))))) -=-> a1(at(ai(al(ai(b(blalalx)))))}?)))

19 and 68130 '

b(ai(b(al(x)))) —-> ai(ai(al(ai(ai(b(b(alala(x))))))))))

B.3.7. Other Examples: Z29

derived from:

New Rule (68665):

derived from:

New Rule (68704):

derived from:

Hew Rule (68743):

derived from:

New Rule (68784):

derived from:

New Rule (68835):

derived from:

New Rule (68902):

derived from:

New Rule (67758):

derived from:

New Rule (69145):

derived from:

New Rule (69323):

derived from:

19 and 68307

al(ai(ai(al(al(b(b(a(alalalx))))))N)) ~=> bla1(b(x)))
19 and 68499

al(ai(al(al(b(db(a(alalalx))?)))) ~=> a(blal(b(x))))
20 and 68665

al(ail(al(b(b(a(alalalx)))IIN)) -=> alalb(al(®(x)))))
20 and 68704

al(al(b(b(a(alalalx))}))))) --> ala(a(b(a1(db(x))))))
20 and 68743

a1 (b(b(a(alalalx))))))) -—> alal(ala(b(al(b(x)))))))
20 and 68784

b(b(a(a(a(a(x)))))) --> ala(a(a(a(b(at(db(x))))))))

20 and 68835

a1({b(b(afa(b(al(a1(b(a(b(al(x)))))))))))) --> alalalx)))
4129 and O

b(b(a(a(b(al(al(db(alb(ai(x)))))N) —-> a(alalalx))))
20 and 67758

b(b(ala(blal(al(b(alb(x)))))N))) ——> alalalalalx)))))
19 and 69145

New Rule (657): b(al(al(al(al(al(b(b(alalalx))))))II))I)) --> ai(ailal(blalb(b(x)))))))

New Rule (69669):

derived from:

New Rule (69768):

derived from:
Hew Rule (69876)
derived from:

Bew Rule (70007):

derived from:

Bew Rule (70154):

derived from:

New Rule (70164):

derived from:

New Rula (69881):

derived from:

Hew Rule (70739):

derived from:

New Rule (70896):

derived from:

Hew Rule (71034):

derived from:

New Rule (71175):

derived from:

New Rule (71337):

derived from:

Hew Rule (71526):

derived from:

Hew Rule (71665):

derived from:

New Rule (71673):

derived from:

New Rule (72007):

derived from:
New Rule (72125)
derived from:

New Rule (72274):

derived from:

Hew Rule (72425):

derived from:

New Rule (72609):

derived from:

New Rule (72794):

derived from:

New Rule (72965):

derived from:

al(al(al(b(a(b(®(al(x)))))))) —-> blai(ai(ai(at(at(b(blalalx))))))))))
20 and 657

ai(al(b(a(b(b(al(x))))))) ~-> a(b(ai(ai(ai(al(al (b(b(alalx))ININ)
20 and 69669
: b(ai(ai(b(a(b(al(al(at(ai(at(b(b(alal(x))))IIININI)) --> x
605 and 69768

b(a1(at(b(a(b(ai(ai(al(al(ai(b(b(a(x))))IIIII} =-> a1(x)

20 and 69876

b(al(al(b(a(b(al(ai(ai(al(al(b(®(x)3)23)))))))) --> ai(ai(x))

20 and 70007

b{a(b(at(at(at(ar(a1(b(blala(®(x)))»)))))))) --> alalx))
68902 and TQ164

al(b(a(b(b(ai(x)))))) --> ala(blai(ai(al(ai(at(b(bl(alalx)))))))}))))
20 and 69768

bla(b(b(al(x))))) -=> aala(b(at(ai(at(ai(al(db(b(ala(x))))ININI)
20 and 69881
b(ai(al(b(al(al(blat(al(al(al(al(b(b(alalx)))?)))))NII)) ~=> alal(b(x)))
1219 and 70739

b(ai(at(b(ai(a1(b(a1(at{ai(al(al(db(®(alx?)))I)I)INIIN)I) -=> alalb(al(x))))
20 and 70896

b(ai(al(b(al(ai(b(al(al(al(al(al(b(b{(x)})))))IN)1))) --> ala(b(ai(al(x)))))
20 and 71034

b(b(a(a(b(alalx)))}))) ~--> ala(b{al(al(a1(b(x)))))))

10239 and 71175

b(b(ala(b(alx)))))) --> ala(b(atl(at(ai(b(al(x))))))))

20 and 71337

b(b(a(a(b(x))))) --> a(a(b(at(al(ai(b(al(al(x)))))I)

20 and 71526
b(ai(a1(b(a(b(ai(alfal(b(ai(al(ai(b(a1(ai(x))))))))IIINII)) —-> blx)
70154 and 71666

al(b(a(b(ai(al(al(b(at{al(a1(b(a1(at(x))>)))IIM)) -=> alx)
605 and 71673
: bla(b(al(al(al(b(al(al(ai(b(al(al(x)I})))IN)))) -=> alalx))
20 and 72007

b(a(b{at(ai(al(b(ai(al(al (b(a1(x)))))II)I))I))) -~> alala(x)))

19 and 72125

b(a(b(al(al(at(b(a1(a1(at(b(x))))>»)))))) —-> ala(ala(x))))

19 and 72274

a(a(b(a1(al(b(a(b(b(x))))I)))) —-> b(a(bl(al(ai(at(b(al(al(x)))))))))
605 and 72425

a(b(al(a1(b(a(b(b(x))))))») ~=> a1(b(a(b(al(al(at(b(al(al(x)))N)M))))
19 and 72609

b(a1(al(b(alb(b(x))))))) —-> a1(ai(b(a(b(al(ai(al(b(ai(al(x))))))I)))N)
19 and 72794

New Rule (605): b(ai(al(ai(al(b(a(b{ai(ai(al(b(al(al(x)))}))IIN))) —-> alx)

151

152

Hes Rule (73297):

derived from:

New Rule (73434):

derived from:

New Rule (73436):

derived from:

New Rule (73620):

derived from:

New Rule (73780):

derived from:

Hew Rule (74058):

derived from:

New Rule (74157):

derived from:

New Rule (74171):

derived from:

Hew Rule (74368):

derived from:

Eew Rule (74471):

derived from:

Bew Rule (74583):

derived from:

Hew Rule (73961):

derived from:

New Rule (74049):

derived from:

New Rule (74882):

derived from:

Hew Rule (74925):

derived from:

Hew Rule (74984):

derived from:

Hew Rule (75072):

derived from:

New Rule (75077):

derived from:

Hew Rule (75229):

derived from:

Bew Rule (75074):

derived from:

Hew Rule (75364):

derived from:

Hew Rule (74934):

derived from:

New Rule (75458):

derived from:

New Rule (75505):

derived from:

New Rule (75547):

derived from:

Hew Rule (75553):

derived from:

Hew Rule (75636):

derived from:

New Rule (75551):

derived from:

Hew Rule (75711):

derived from:

Hew Rule (75369):

derived from:

Hew Rule (75367):

derived from:
New Rule (75902)
derived from:
Bev Rule (75953)

Appendix B. Commented Examples

b(ai(al(at(at (b(alb(al(al(al(b(ai(x)))))ININ)) --> a(alx))
19 and 605

b(ai(ai(ai(al(b(alb(ai(ai(a1(®(x))))))))))) --> ala(alx)))
19 and 73297

al(b(a(b(al(a1(a1(b(x)))))))) --> b(a1(al(ai(al(b(a(b(x)))))))
73434 and 73434

b(a1(al(al(b(al(al(al(at(b(a(b(x)))ININ)) --> alalal(x)))
72425 and 73436

b(a1(al(al(al(b(alalaalx)))))I)I) --> al(b(a(b(x))))
73436 and 73620

al(b(a(b(ai(x))))) --> b(al(al(al(al(blalalalx)))))))))

20 and 73780

b(a(b{a1(x)))) --> a(b(at(ai(ai(ai(b(aalalx))INN)IN

20 and 74058)

a(a(b(b(b(a1l(x)))))) =-> ai(ai(al(a1(d(a1(b(a(x))))))))
66166 and 74157

a(b(b(b(ai(x))))) --> ai(ai(ai(ail(ai(b(al(b(alx)))))})))

19 and 74171 R

b(b(b(a1(x)))) --> at(ai(al(ai(ai(ai(b(al(b(a(x))))))})))

19 and 74368

b(b(b(x))) ~~> ai(al(ai(al{al(al(b(at(b(alal(x))))))))))

19 and 74471

b(al(ai(a1(b(al (b(b(a1(b(x)))))})))) --> alala(b(alx)))))
488 and 73620

a(a(b(at(ai(ai(blalalalalx)))IININ)) --> alala(b(b(x)))))
1219 and 73780

a(b(al(al(at(b(ala(aalx))))))N)) --> ala(d(®(x))))

19 and 74049 .

b(a1(ai(ai(b(ala(alalx))))))))) --> a(b(b(x)))

19 and 74882

a(b(b(a1(x)))) -~> b{al(al(al(b(a(alalx))))))))

20 and 74925

b{b(al(x))) ~-> al(b(ai(at(al(b(alala(x))))I))))

19 and 74984

a1(b(a(a(b(a1(b(x))))))) --> blal(b(a(b(x)))))

73780 and 75072

b(ala(b(al(b(x)))))) --> a(b(al(b(a(b(x))))))

20 and 75077

al(b(ai(ai(al(b(a(blalalalalx)))))))))))) --> bla(b(b(x))))
74925 and 75072

b(al(ai(ai(b(alb(alalaax)))»)))N)) -=> a(b(a(p(b(x}))))
20 and 75074

a(a(b(ai(al(ai(al(al(b(alalalalx))))?)?)NN)) --> b(blal(x)))
71175 and 74925

a(a(b(al(ai(ai(at(ai(b(alalalx)))))))))) -=> b{b(x))

20 and 74934

a(b(al(al(at(at(al(b(a(aalx)))))))I)) --> al(b(b(x)))

19 and 75458

b(ail(al(ai(ai(at(b(alalalx)))))))))) ~-> a1(al(b(b(x))))

19 and 75505

a(b(al(ai(al(at(b(al(b(alalalx)))))?))NI) --> blal(b(d(x))))
74157 and 75547

b(ai(al(aifal(b(al(b(alalalx)))))))) --> a1(b(al(b(b(x)))))
19 and 76553

al(b(al(al(al(b(at(b(al(alalx)))}))))))) --> b(a1lai(b(b(x)))))
75072 and 75547

b(a1(al (a1 (bCat(blala(alx))))NNI) -~> adb(al(al(b(b(x))))))
20 and 75551

74157 and 75364

75072 and 75364 N

: b(at(al(b(ai(al(b(aa(x))))))))) --> ala(b(ai(al(b(a1(al(b(x)))))))))

20 and 75367

: ala(b(al(a1(b(ai(ai(b(ai(x)))3)))))) --> b(ai(ai(b(a1(al(b(a(x)>))))))

baa(b(a(b(b(x))))))) --> a(b(ai(ai(ai(b(ai(al(b(alalx)))))))NN

a1(b(al(al(b(ai(al(b(alalx)))))})I)N)) --> a(b(at(ai(b(al(al (b(x)}))))))

B.3.7. OQther Examples: 729

derived from:

New Rule (76032):

derived from:

New Rule (76067):

derived from:

New Rule (76229):

derived from:

New Rule (76329):

derived from:

Hew Rule (76425):

derived from:

New Rule (76511):

derived from:

Hew Rule (76567):

derived from:

New Rule (76647):

derived from:

Hew Rule (76122):

derived from:

New Rule (76805):

derived from:

New Rule (76888):

derived from:

New Rule (75369):
New Rule (75233):

derived from:

Wew Rule (77088):

derived from:

Bew Rule (75088):

derived from:

¥ew Rule (74930):

derived from:

New Rule (77259):

derived from:

Hew Rule (77272):

derived from:

Hew Rule (14189):

Hew Rule (77316):

derived from:

Bew Rule (77467):

derived from:

Hew Rule (77608):

derived from:

Hew Rule (77694):

derived from:

New Rule (77725):

derived from:

New Rule (77789):

derived from:
Hew Rule (77714)
derived from:

New Rule (77830):

derived from:
New Rule (78066)
derived from:

New Rule (77794):

derived from:

Hew Rule (78261):

derived from:
Hew Rule (78354)
derived from:
New Rule (78452)
derived from:

Hew Rule (78507):

153

20 and 75902

ala(b(al(al(at(b(a(b(a(x)))))))))) --> b(ai(al(b(at(al(x))))))
5094 and 75953

a(aa(b(a(b(b(x))))))) =-> b(at(ai(bl(a(x)))))

75364 and 76032

aCa(b(a(b(b(x)))))) --> a1(blai(al(b(alx))))))

19 and 76067

a(b(a(b(b(x))))) -~> ai(at(b(ai(ai(b(al(x)))))))

19 and 76229

b(a(b(b(x)))) ~-> at(al(ai(b(al(ai(b(a(x)))))}}))

19 and 76329

b(al(al(b(at(at(b(alx)))))))) --> a(b(ai(ailb(al(a1(®d(x))))))))
336 and 76425

a(b(al(al(b(at(a1(®(a1(x))))))))) --> b(at(al(b(arlai(b(x)))})))
20 and 76511

b(ai(al(b(al(ai(b(al(x)))))))) -=> a1(b(ai(ai(bl(ai(al(b(x))))))))
19 and 76567 A
a(a(b(ai(a1(a1(d(a®(x)?))))))) --> blat(ar(b(ailal(ai(x)))))))
20 and 76032

a(b(al(ai(ai((alb(x)))))))) --> a1(blai(ai(b(al(al(a1(x)))))
19 and 76122

b(at(ai(ai(b(a(b(x))))))) -=> at(al(b(al(al(b(ai(ai(al(x)))))))))
19 and 76805

a(b(ai(at(al(blat(at(b(alalx))))IN))) --> at(ai(ai(blai(al(ai(b(a1(x)))))))))
a(b(a1(b(ala(d(®d(x))))))))} --> blat(at(al(a1(b(a1(blalal(x)?)))))))
74925 and 75229

b(al(b{ala(b(b(x))))))) --> at(b(al(ai(at(al(b(al(b(alal(x)}))}))))))
19 and 75233

a1l(b(at(at(at(b(alalalb(at(x))))))))))) --> ai(a1(ai(ai(al(ai(b(ai(al(b(a(x)))))))))))
68499 and 75072

a(b(al(a1(ai(al(b(alb(alalalalx))))ININI) —=> blalalb(b(x)))))
74157 and 74925

b(ai(al(ai(ai(b(a(b(alalalalx)))))INNI)) —> al(b(alalb(d(x))))))
19 and 74930

b(ai(ai(at(at(b(alalb(b(x)))))))))) --> alala(alalalalx)))))))
73620 and 77259

b(at(al(al(al(b(ala(b(a(®(alx)))INNN

--> ai(al(ai(aifal(ai(b(alalb(al(al(b(alx))))NINN
b(al(al(ai(ai(b(ala(b(al(at(b(b(x))))))))))))) --> alaldb(alalalx))))))
75547 and 77272

a(a(b(ala(a(alalb(x))))IN)) --> ala(a(a(db(al(al(x)))))))
71665 and 77316

a(b(a(a(a(a(alb(x)))))))) --> a(a(a(blat(ailx))))))

19 and 77467

b(a(a(a(ala(b(x))))))) --> a(a(b(al(ai(x)))))

19 and 77608

b(a(a(a(a(ala(b(®(x))))))))) -=> b(blalx)))
74925 and 77694

b(a1(b(b(alalx)))))) --> a(a(b(al(at(b(alb(x))))))))

109 and 77694
: blaCa(b(al(al(b(alx)?)))))) --> ala(b(al(b(®d(x))))))
76425 and 77694

al(bla(b(alalb(b(x))1))))) --> b(at(al(al(al(b(b(alx))))))))
73780 and 77725
: bla(b(alalb(®(x))))))) --> a(b(ai(ai(ai(al(b(b(a(x)))))))))
20 and 77830

a(a(b(ala(ala(b(®(x))))))))) ~-> ala(b(ailat(blalx))))))
77694 and 77725

a(b(a(aCala(b(b(x))N))) --> a(b(al(ai(db(alx))))))

19 and 77794
: blaala(a(b(v(x))))))) ==> b(at{ai(b(alx)))))

19 and 78261
: blal(at(b(balalx))))))) —=> blai(al(blalald(x)))))))
109 and 78354

b(a1(a1(b(ala(b(al(x))))))) --> blai(at(b(b(alx))))))

154

derived from:

How Rule (78548):

derived from:

Hew Rule (78664):

derived from:

Bew Rule (78737):

derived from:

New Rule (78748):

derived from:

New Rule (75229):
New Rule (78792):

derived from:

New Rule (78997):

derived from:

Hew Rule (79057):

derived from:

Hew Rule (79126):

derived from:

New Rule (79199):

derived from:

New Rule (79206):

derived from:

Hew Rule (79306):

derived from:

Hew Rule (78748):
Bew Rule (78760):

derived from:

Hew Rule (79524):

derived from:

New Rule (79573):

derived from:

New Rule (79613):

derived from:

New Rule (79631):

derived from:

New Rule (79651):

derived from:

New Rule (79675):

derived from:

Bew Rule (74157):
New Rule (79684):

derived from:

Hew Rule (79306):
New Rule (79701):

derived from:
Hew Rule (79707)

derived from:

New Rule (79713):

derived from:

Hew Rule (79719):

derived from:

Hew Rule (77694):
Hew Rule (79728):

derived from:

Hew Rule (79738):

derived from:

New Rule (79750):

derived from:

Hew Rule (79757):

derived from:

Hew Rule (79764):

derived from:

New Rule (79771):

derived from:

Kew Rule (73620):

Appendix B. Commented Examples

20 and 78452

a(b(ala(b(a1(x))»)))) -~> a(b(blalx))))

73620 and 78507

b(a(a(b(al(x))))) ==> b(blalx)))

19 and 78548

b(b(aa(x)))) --> blala(b(x))))

19 and 78664

blala(b(aCala®(x))?))))) -=> b(b(x))

77694 and 78737

a(b(al(b(a(b(x)))))) ~=> a1(at(a1(at(al(at(b(ala(b(x)))))))))
b(a(a(a(a(b(ai(ai(al(ai(x)))))))))) —-> b(b(x))
77694 and 78748
b(a(a(a(a(b(al(a1(a1(x))))})))) -=> b(blalx)))
19 and 78792

blala(a(a(b(ai(a1(x)))))))) --=> blala(b(x))))
19 and 78997

b(a(a(a(a(b(al(x))))))) —-> blala(d(al(x)>)))
19 and 79057

blada(b(alal(x?))))) ——> b(a(al(aalb(x))))))
19 and 79126

bla(a(b(b(a(x)))))) --> blal(al(b(x))))
78664 and 79199

b(aCa(b(b(x))))) -~> b(al(ai(b(ai(x)))))

20 and 79206

b(a(a(a(a(b(a(b(x)))})))) ~=> b(b(x))
a(a(a(b(ala(x)))))) ~-> a(alalala(b(x))))))
73620 and 78737

a(a(b(aa(x))))) ~=> a(alal(a(b(x)))))

19 and 78760

a(b(ala(x)))) ~-> alafa(b(x))))

19 and 79524

b(a(a(x))) —--> a(a(b(x)))

19 and 79573

a(a(b(al(x)))) --> b(a(x))
20 and 79613

a(b(ai(x))) --> at(b(a(x)))

19 and 79631

b(a1(x)) --> al(ai(bla(x))))

19 and 79651

al(ai(b(a(b(a(x)))))) ~=> a1(b(b(alx))))
bla(b(x))) ~-> a(b(b(x)))
79613 and 74157

al(ai(ai(al(b(b(alx))))))) ==> ai(a1(al(b(b(x)))))
al(al(a1(b(b(alx))}))) --> a1(at(b(b(x))))

20 and 79306

1 at(a1(e(b(al(x))))) --> a1(b(b(x)))

20 and 79701

a1(b(B(a(x)))) --> b(b(x))

20 and 79707

b(b(alx))) ~=> a(b(b(x)))

20 and 79713

a(a(aaCa(b(b(x))))))) -=> b(x)
b(a(x)) -=> a(b(x))
79719 and 77694

a(a(a(a(d(®d(x)))))) --> al(b(x))

19 and 77694

a(a(a(d(d(x))))) ~--> a1(ai(b(x)))

19 and 79738

ala(b(b(x)))) —-> al(at(al(b(x))))
19 and 79750 _
a(b(v(x))) --> at(at(a1(a1(b(x)))))
19 and 79757

b(b(x)) --> ai(al(al(ai(al(b(x))))))
19 and 79764
ai(al(al(at(ai(at(al(ai(al(ai(at(al(al(al(al(ai(ai(aial(

B.3.7. Other Examples: Z29

Hew Rule (79777):

derived from:

Hew Rule (79787):

derived from:

Hew Rule (79793):

derived from:

Hew Rule (79799):

derived from:

New Rule (77272):

Hew Rule (79308):

derived from:

Hew Rule (69317):

derived from:

New Rule (78689):

derived from:

New Rule (78670):

derived from:

New Rule (77932):

derived from:

New Rule (77833):

derived from:

Hew Rule (76453):

derived from:

New Rule (75949):

derived from:

Bew Rule (75908):

derived from:
New Rule (1938):

Bew Rule (3659):
New Rule (1205):

derived from:

Hew Rule (19839):

derived from:

Hew Rule (19649):

derived from:

Hew Rule (27209):

derived from:

New Rule (26891):

derived from:
Hew Rule (4130):

derived from:

Result:

155

a1 (@i @GNV MINININNI)Y ~=> alalalx)))
a(a(a(b(x)))) --> a1(ai(x))

79771 and 73620
aCa(b(x))) --> a1(ai(a1(x)))

19 and 79777
a(b(x)) --> al(ai(al(al(x))))

19 and 79787
b(x) -~> al(ai(ai(a1(al(x)))))

19 and 79793
at(al(al(ai(ai(ai(al(al(ai(at(al(ail(ai(al(ai(ai(al(al(al(al(

ata1G)INININIMINIDMIMNY) ——> alalalalalalalx))))))) .
ai(ai(al(al(al(al(ai(al(ai(ai(ai(al(ai(al(ai(a1(al (a1(al @1 a1 GINNMINNNIINNN)
~-> a(a(a(a(a(a(aa(x)))))))

0 and O
al(al(ai(ai(ai{al(al(al(ai(al(al(ai(al(al(at(a1(ai(al(a1(x))>3))))ININNN))
--> a(a(a(a(aCa(aaCaa(x)NNN))

0 and O
ai(ai(al(al(al(al(al(al(al(ai(ai(al(ai(ai(al(at(at(a1(x)))))))233)3N))))
--> a(a(a(a(a(alata(ataa(x))NNNN

0 and 78664
at(al(ai(al(ai(ai(ar(al(at(al(al(ai(al(ai(al(a1{a1(x))))))))1)))XN))
=-> a(a(a(a(a(a(a(a(aa(aalx))’))INN)

77789 and 78664
at(ai(ai(ai(ai(ai(al(at(at{al(ai(ai(al(ai(al(x)))))))))IN)))

--> a(a(afa(a(a(a(a(aa(aCataa(x))DNINININN

20 and 77789
al(ail(ai(at(al(al(al(ai(at(ai(al(ai(x))))))N))

--> a(a(a(a(a(a(a(a(ala(a(alaa(alalalx))))))NNNNNI)

0 and O
at(at(ai(al(ai(ai(at(al(a1(ai(x)))))))N))

--> a(a(a(a(a(ala(a(a(a(a(aCa(aa(alaaa(x)?NINNNINNINN

0 and 0
a(a(a(a(a(a(a(a(a(a(a(a(alalal(alalalalalalalalalalalalalalal

a(a(aaCaa@@GIDINININIDHIBIMINIIMIIDIMIMIMNINID
--> a(a(a(a(a(aa(aa(x))))N))

0 and O
a(a(a(a(a(a(a(ala(a(a(a(ala(a(a(a(ala(ala(a(a(a(alalalalalal

a(a(aaaCa(x)))IMNMIINNMINIMINIINMNMIMNIIID —-> alal(a(alalalalx)))))))

0 and O

a(a(a(a(a(a(a(ala(a(a(a(a(a(a(aalalalalaala(ala(alalalala(

aa@GEIN)NIMINMIINIIMIMNNINMINID) —-> alalalalx))))

al(ai(a1(x)))

--> a(a(afa(ala(a(a(a(a(a(a(a(alalalalaalalalatalaaalx)})>>)NININNNNINiII

a(a(a(a(a(a(a(a(a(a(a(a(alalala(alalalala(a(a(a(alalalalalal

aCaGIMINMINIMNIMIMIIMNIMIMINININII) ~-> a(ala(x)))

0 and O
a(a(a(a(a(a(ala(a(a(a(a(alala(alalalalalalalalalalalalalalal

a@INMIMIMIMIMIDMIMININMIIINN) > alalx))

3659 and O
a(a(a(a(a(a(afa(a(a(a(ala(a(a(a(ala(ala(alala(alalaalalal

a(x))))))2I03)ININININIIIIDI —> alx)

3659 and O
a(a(a(aa(a(a(a(a(a(a(a(a(a(a(a(a(ala(a(a(ala(alalalala(

aGIMIMINIIMMIIMINIMININ) > x

0 and O
ai(al(x))

--> a(a(a(a(a(a(a(a(ala(ala(alalalaCalalaalalalalaataaG)INMINNINNININMNIN

0 and O

al(x) --> a(a(a(a(a(a(a(a(a(ala(a(a(alalalala(a(

a(a(aaa(aalaa(x))MNINNHINHNININNN

1134 and 0

al1(x) --> a(a(a(a(a(a(a(a(a(aa(a(a(a(al(ala(ala(ala(aalaladaaalx))’?)NNNNNININMINNID
a(a(a(a(a(ala(a(a(a(ala(a(a(a(ala(afalalalaalalalaaCaax)dNNNINIINDONINIININ) ~--> x

156 Appendix B. Commented Examples

b(x) --> a(a(a(a(alalalalal(alalalalalalalalalalalalalalalx)??))ININNMINIIINNY
b1({x) --> ala(alalalx}))))

9(x) --> alalaCa(x))))

c(x) ~-> a(a(a(ala(a(ala(alalalala(ala(a(alalalaaalata@GIINNNINHINNINIMIMIN)
d1(x) --> a(a(a(a(a(a(a(alalx))))))))

d(x) --> a(ala(a(a(ala(a(alalalala(alalalalalala(x)’’’’)NINININN)

e1(x) --> a(ala(a(a(a(a(alala(a(ala(x)’)’))INMN

e(x) --> a(a(a(a(a(a(a(a(a(aCa(aa(alala(x)?))’INNNNN

£1(x) --> a(a(a(a(a(a(alala(alalalalalaa(alalalalatalx)?)NINININNNNN)
£(x) --> aa(a(a(alaal(x)))N

1(x) --> a(aa(a(aa(x))))))

g(x) --> ala(a(a(alalala(alalalalalalalalalalalalalalalx)’))?>¥>»>13>392193330)))

Danksagung

Zu Mirdistan, im Walde von Kulub,
Liegt einsam, tief versteckt die Geisterschmiede.
Nicht schmieden Geister; nein, man schmiedet sie!

Karl May

Wegen des personlichen und weniger fachlichen Charakters einer Danksagung verfasse ich diese in meiner
deutschen Muttersprache, fiir die ich weitaus besser beurteilen kann, was ich iiberhaupt ausdriicke und
ob es das trifft, was ich sagen will.

Das Sprechen einer gemeinsamen Sprache, ein gemeinsamer Hintergrund und ein gemeinsames Ar-
beitsziel miissen allerdings noch lange nicht zum einander Verstehen fiilhren, wie ich in verschiedenen
Gesprachen und Auseinandersetzungen mit meinem Doktorvater Jorg Siekmann erfahren mufite. Ich
muf ihm dafiir danken, dafl er trotz dieses gegenseitigen Unverstindnisses und diverser Streits diese
Arbeit bis zu ihrem Abschluff mit allen ihm zur Verfiigung stehenden Kréften unterstiitzt hat. Seine
Ratschlage beschrankten sich leider auf die Darstellung und Prasentation der Arbeit und zahlreiche
Nachfragen nach ihrem Fortgang.

Durch meine Einstellung im SFB 314 in Kaiserslautern und spiter als freier Mitarbeiter am DFKI in
Saarbriicken wurde diese Arbeit iiberhaupt erst ermdglicht.

Zu danken habe ich ganz besonders Gebhard Przyrembel, ohne dessen unermiidliche Versuche, unsere
Rechnermenagerie in Zaum zu halten, kein einziges Programm unserer Arbeitsgruppe laufen wiirde.
Dies war fiir meine Arbeit um so wichtiger, da sie sehr praktisch orientiert ist und bis in die Untiefen
des Sparc-Assemblers fithrte. Gebhard stand mir zu jeder Zeit von morgens bis nachts mit Rat und Tat,
manchmal auch mit dem Tischtennisschliger, zur Verfiigung. In Saarbriicken iibernahm Dan Nesmith
die undankbare Aufgabe der Rechnerbetreuung mit gleichem Engagement.

Manfred Kerber habe ich nicht nur fiir das Korrekturlesen der Arbeit zu danken, sondern auch fiir
die jahrelange fachkundige Benutzung des MKRP-Systems. Ohne ihn wiren viele Fehler nicht gefun-
den und damit auch nicht beseitigt worden. Seine Beispiele brachten mir sehr viel Verstindnis fiir die
Einsetzbarkeit von automatischen Beweisern, und sein politisches Engagement erweckte bet mir die Er-
kenntnis, solche Computerprogramme eben nicht immer einsetzen zu diirfen. Dieser durchaus rationale
Blick iiber die engen Grenzen unseres Fachgebietes hinaus hielt meine Motivation aufrecht, die Arbeit
fortzusetzen und zu beenden. Die Zusammenarbeit mit Manfred im FiFF und bel der Veranstaltung
mehrerer Seminare scharfte vielleicht auch bei anderen den Blick fiir die gesellschaftlichen Auswirkungen
der Informatik und der KI im Besonderen.

Fiir zahlreiche Anregungen und konstruktive Verbesserungsvorschlage habe ich meinen Kollegen Jiirgen
Cleve, Jorg Denzinger, Manfred Kerber und Christoph Lingenfelder, sowie Klaus Madlener als zweitem
Gutachter zu danken, Christoph danke ich auch fiir die Zusammenarbeit beziiglich des Abschnitts 6.6.

Jorn Richts, ,meinem “ Diplomanden und HiWi habe ich fiir die Implementierung des Narrowingbewei-
sers und die Wartung der Theorieunifikationsalgorithmen in HADES zu. danken, sowie fiir die Arbeit

157

158 Acknowledgement

beim Entwurf von Q-MKRP. Ohne sein Engagement hatte sich der Abschlufl dieser Arbeit noch weiter
verzogert.

Norbert Eisinger danke ich fiir die intensive Betrenung beim Einstieg in die Arbeitsgruppe.

Auf dem langen und beschwerlichen Weg von meiner Aufnahme in die AG Siekmann bis zu diesem
krénenden Abschlufl lernte ich viele Menschen kennen, die mich in meiner Sicht der Welt bestirkten,
selbst wenn sie sich mit missionarischem Eifer bemiihten, mein Weltbild zum Einsturz zu bringen. Sie
haben letztendlich dazu beigetragen, dieses zu stabilisieren. Bedauerlicherweise ist man nicht hinrei-
chend immun gegen diverse Paradoxien des Wissenschaftsbetriebs, der nun einmal die polarisierende
einer differenzierenden Betrachtungsweise und Darstellung vorzieht. Einige solcher von mir gar nicht
erwiinschten Polarisierungen finden sich sicher auch in dieser Arbeit.

Ich m&chte mich bei Jorg Denzinger, Detlef Fehrer, Horst Gerlach, Manfred Kerber, Michael Kohlhase,
Andreas Nonnengart, Gebhard Przyrembel, Christoph Weidenbach und allen nicht so oft Belistigten
auch fiir ihr nachgeradezu unermiidliches Zuhéren bedanken, wenn ich von meinen Frustrationen an der
Wissenschaft berichtete.

Weiteren Dank schulde ich unseren Sekretdrinnen Dorothea Kilgore und Maria Pfeiffer in Kaiserslautern
sowie Agnes Back in Saarbriicken fiir die Verwaltungarbeit im Hintergrund, ohne die man sich leicht in
den Wirren der Biirokratie verirrt.

Horst Gerlach und John Kalman danke ich fiir Ratschlige und neue Testbeispiele.

Ich méchte auch denen danken, die in vielen Tee-, Kaffee-, Keks- und Kuchenpausen eine menschlich
warme Atmosphire schufen, die wohltuend von derjenigen in Arbeitsgruppenbesprechungen abwich. Ich
mochte hier ohne vollstindig sein zu wollen Bettina und Sonja Anslinger, Kerstin und Klaus Becker,
Detlef und Judith Fehrer, Claudia Graf, Monika Keil, Andreas Nonnengart, Gebhard Przyrembel, Rosa
Ruggeri, Petra Stoll, Martin Strobl und Christoph Weidenbach nennen. Ohne die Teepausen als gesell-
schaftliches Ereignis wire wissenschaftliches Arbeiten fiir mich nicht méoglich gewesen.

Bei all denjenigen, die ich in dieser Danksagung vergessen habe und bei allen, denen ich unabsichtlich
auf die Fiile getreten bin, bitte ich hiermit aufrichtig um Vergebung.

Bibliography

[AGM90]

[AHUS3]

[ALM90]

[And70]

[A083]

[AS84]

[Bau90]

- [BB8Y]

(BBB+84]

[BBHO1]

Hitoshi Aida, Joseph Goguen, and José Meseguer. Compiling concurrent rewriting onto
the rewrite rule machine. Report SRI-CSL-90-03R, Computer Science Laboratory, SRI
International, 333 Ravenswood Avenue, Menlo Park, California 94025-3493, USA, February,
Rev. December 1990.

Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. Data Structures and Algorithms.
Computer Science and Information Processing. Addison Wesley Publishing Company, Read-
ing, Massachusetts, USA, 1983.

Hitoshi Aida, Sani Leinwand, and José Meseguer. Architectural design of the rewrite rule
machine ensemble. Report SRI-CSL-90-17, Computer Science Laboratory, SRI International,
333 Ravenswood Avenue, Menlo Park, California 94025-3493, USA, December 1990.

Robert Anderson. Completeness results for E-resolution. In Spring Jotnt Computer Confer-
ence, American Federation of Information Processing Societies (AFIPS), Conference Pro-
ceedings, Volume 36, pages 653-656, Atlanta City, New Jersey, May 1970. AFIPS Press, 210
Summit Avenue, Montvale, New Jersey 07645.

Grigorios Antoniou and Hans Jirgen Ohlbach. Terminator. In Alan Bundy, editor, Proceed-
ings 8% International Joint Conference on Artificial Intelligence (IJCAI), pages 916-919,
Karlsruhe, Germany, August 1983. William Kaufmann, Inc., 95 First Street, Los Altos,
California 94022, USA.

Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of Computer Pro-
grams. MIT Press, Cambridge, Massachusetts, USA, 1984.

Peter Baumgartner. Combinig Horn clause logic with rewrite rules. Report FKI-131-90,
Institut fiir Informatik, Technische Universitat Minchen, Arcisstr. 21, 8000 Miinchen 2,
Germany, May 1990.

Wray L. Buntine and Hans-Jiurgen Biirckert. On solving equations and disequations. SEXI-
Report SR-89-03, Fachbereich Informatik, Universitat Kaiserslautern, Postfach 3049, 6750
Kaiserslautern, Germany, 1989.

Susanne Biundo, Karl Hans Blasius, Hans-Jirgen Birckert, Norbert Eisinger, Alexander

Herold, Thomas Kaufl, Christoph Lingenfelder, Hans Jiirgen Ohlbach, Manfred Schmidt--

Schaufl, Jorg H. Siekmann, and Christoph Walther. The Markgraf Karl Refutation Proce-
dure. SEKI-MEMO MK-84-01, Fachbereich Informatik, Universitat Kaiserslautern, Post-
fach 3049, 6750 Kaiserslautern, Germany, Institut fiir Informatik I, Universitat Karlsruhe,
Postfach 6380, 7500 Karlsruhe 1, Germany, 1984.

Richard Barnett, David Basin, and Jane Hesketh. A recursion planning analysis of inductive
completion. D.AI. Research Report 518, Department of Artificial Intelligence, University
of Edinburgh, 80 South Bridge, Edinburgh EB1 1HN, Scotland, 1991.

159

160

[BCMS89]

[BDJI79)]

[BDPS7]

[BDP89]

[BGS5]

[BG90]

[BGLS92]

[BGMS8]

[BH91]

[Bib82]
(Bl486]

[BM79]
[Bra75]
[Bru75]

[BS87]

Bibliography

Pier Giorgio Bosco, C. Cecchi, and Corrado Moiso. An extension of WAM for K-LEAF: A
WAM-based compilation of conditional narrowing. In Proceedings 6** International Confer-
ence on Logic Programmaing, 1989.

Daniel Brand, John A. Darringer, and William H. Joyner: Completeness of conditional
reductions. In William H. Joyner, editor, Proceedings 4** Workshop on Automated Deduc-
tion, pages 36-42, Austin, USA, February 1979. Aso published as Report, IBM Thomas J.
Watson Research Center, Yorktown Heights, 1978.

Leo Bachmair, Nachum Dershowitz, and David Plaisted. Completion without failure. In
H. Ait-Kaci and M. Nivat, editors, Conference on Resolution of Equaiions in Algebraic
Structures (CREAS), Lakaway, Texas, USA, 1987.

Leo Bachmair, Nachum Dershowitz, and David Plaisted. Completion without Failure, vol-
ume 2 of Resolution of Equations in Algebraic Structures. Academic Press, New York, USA,
1989.

M. Bidoit and M. C. Glaudel. PLUSS: Proposition pour une langage de spécification struc-
turée. Bicre + Globéle 45, France, 1985.

Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodulation with simpli-
fication. In Mark E. Stickel, editor, Proceedings 10** International Conference on Automated
Deduction (CADE), Lecture Notes in Artificial Intelligence (LNAI) 449, pages 427-441, Kai-
serslautern, Germany, July 1990. Springer-Verlag, Berlin, Germany.

Leo Bachmair, Harald Ganzinger, Christopher Lynch, and Wayne Snyder. Basic paramod-
ulation and superposition. In Deepak Kapur, editor, Proceedings 11** International Con-
ference on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence (LNAI)
607, pages 462-476, Saratoga Springs, New York, USA, June 1992. Springer-Verlag, Berlin,
Germany.

Pier Giorgio Bosco, Elio Giovannetti, and Corrado Moiso. Narrowing vs. SLD-resolution.
Theoretical Computer Science, North Holland, Elsevier Science Publishers B.V., 59:3-23,
1988.

Maria Paola Bonacina and Jieh Hsiang. Towards a foundation of completion procedures as
semidecision procedures. FTP-Report, Department of Computer Science, SUNY at Stony
Brook, Stony Brook, New York 11794-4400, USA, 1991.

Wolfgang Bibel. Automated Theorem Proving. Vieweg Verlag, Wiesbaden, Germany, 1982.

Karl Hans Blasius. Fquality Reasoning Based on Graphs. PhD thesis, Fachbereich Infor-
matik, Universitat Kaiserslautern, Postfach 3049, 6750 Kaiserslautern, Germany, 1986. Also
published as SEKI-Report SR-87-01, Fachbereich Informatik, Universitat Kaiserslautern,
Postfach 3049, 6750 Kaiserslautern, Germany.

R. S. Boyer and J Strother Moore. A Computational Logic. Academic Press, London,
England, 1979.

Daniel Brand. Proving theorems with the modification method. SIAM (Society for Industrial
and Applied Mathematics) Journal of Computing, 4(4):412-430, December 1975.

M. Bruynooghe. The inheritance of links in a connection graph. Report CW2, Applied
Mathematics and Programming Division, Katholieke Universiteit Leuven, 1975.

Wolfgang Buttner and Helmut Simonis. Embedding Boolean expressions into logic program-
ming. Journal of Symbolic Compuiation, Academic Press, Inc., London, England, 4:191-205,
1987.

Bibliography 161

[BS92]

[Buc85]

[Bun74]

[Bun83]

[Bun89]

[BvHSI9O)]

[CD85]

[CL91]

[Coh87]

[CR79]

[CR89]

[Dar68]

[Den91]

[Der87]

Franz Baader and Klaus U. Schulz. Unification in the union of disjoint equational theo-
ries: Combining decision procedures. In Deepak Kapur, editor, Proceedings 11** Interna-
tional Conference on Automated Deduction (CADE), Lecture Notes in Artificial Intelligence
(LNAI) 607, pages 50-65, Saratoga Springs, New York, USA, June 1992. Springer-Verlag,
Berlin, Germany.

Bruno Buchberger. History and basic features of the critical-pair/completion approach.
Dzjon, France, 1985.

Alan Bundy. Analysing mathematical proofs (or reading between the lines). D.A.L. Research
Report 2, Department of Artificial Intelligence, University of Edinburgh, 80 South Bridge,
Edinburgh EH1 1HN, Scotland, 1974.

Alan Bundy. The Computer Modelling of Mathematical Reasoning. Academic Press, London,
England, 1983.

Alan Bundy. A science of reasoning. D.A.I. Research Paper 445, Department of Artificial
Intelligence, University of Edinburgh, 80 South Bridge, Edinburgh EH1 1HN, Scotland,
October 1989.

Alan Bundy, Frank van Harmelen, Alan Smaill, and Andrew Ireland. Extension to the
ripling-out tactic for guiding inductive proofs. In Mark E. Stickel, editor, Proceedings 10°*
International Conference on Automated Deduction (CADE), Lecture Notes in Artificial In-
telligence (LNAI) 449, pages 132-146, Kaiserslautern, Germany, July 1990. Springer-Verlag,
Berlin, Germany.

R.J. Cunningham and A. J. J. Dick. Rewrite systems on a lattice of types. Acta Informatica,
Springer- Verlag, Berlin, Germany, 22:149-169, 1985.

Manuel M. T. Chakravarty and Hendrik C. R. Lock. The implementation of lazy narrowing:
The jump machine. Arbeitspapier der GMD 530, Gesellschaft fiir Mathematik und Daten-
verarbeitung mbH, Schlof8 Birlinghoven, Postfach 1240, 5205 Sankt Augustin 1, Germany,
April 1991.

Anthony G. Cohn. A more expressive formulation of many sorted logic. Journal of Au-
tomated Reasoning (JAR), Kluwer Academic Publishers, 3300 AH Dordrecht, The Nether-
lands, 3(2):113-200, 1987.

S‘. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal of
Symbolic Logic, 44:36-50, 1979.

Bernhard Crone-Rawe. Unification algorithms for Boolean rings. SEKI-Working Paper
SWP-89-01, Fachbereich Informatik, Universitat Kaiserslautern, Postfach 3049, 6750 Kaiser-
slautern, Germany, 1989.

J. L. Darlington. Automatic theorem proving with equality substitution and mathematical
induction. Machine Intelligence, Edinburgh Universily Press, 22 George Street, Edinburgh,
Scotland, 3:113-127, 1968.

Jorg Denzinger. Distributed knowledge-based deduction using the team work method. SEKI-
Report SR-91-12, Fachbereich Informatik, Universitat Kaiserslautern, Postfach 3049, 6750
Kaiserslautern, Germany, 1991.

Nachum Dershowitz. Rewriting systems. Draft, Department of Computer Science, University
of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA, 1987.

162

[Der91]

[DG89]

[Dic85]

[Dig79]

[Dig81]

[Dig85]

[DI90]

[DP85]

[EFTS6]

[Eis88]

[EOPS9]

[Fag83]

Bibliography

Nachum Dershowitz. Ordering-based strategies for Horn clauses. In John Mylopoulos and
Ray Reiter, editors, Proceedings 12% International Joint Conference on Artificial Intel-
ligence (IJCAI), pages 118-124, Sydney, Australia, 1991. Morgan Kaufmann Publishers,
Inc., 2929 Campus Drive San Mateo, California 94403, USA.

John Darlington and Yi-Ke Guo. Narrowing and unification in functional programming
- an evaluation mechanism for absolute set abstraction. In Nachum Dershowitz, editor,
Proceedings 3¢ Conference on Rewriting Techniques and Applications (RTA), Lecture Notes
tn Computer Science (LNCS) 355, pages 92-108, Chapel Hill, North Carolina, USA, April
1989. Springer-Verlag, Berlin, Germany.

A. J. J. Dick. Eril — equational reasoning, an interactive laboratory. In Bruno Buchberger,
editor, Proceedings European Computer Algebra Conference, EUROCAL’85, volume 2, Lec-
ture Notes in Computer Science (LNCS) 204, Linz, Austria, April 1985. Springer-Verlag,
Berlin, Germany.

Vincent J. Digricoli. Resolution by unification and equality. In William H. Joyner, editor,
Proceedings 4" Workshop on Automated Deduction, pages 43-52, Austin, USA, February
1979.

Vincent J. Digricoli. The efficacy of RUE resolution, experimental results and heuristic
theory. In Ann Drinan, editor, Proceedings 7" International Joint Conference on Artificial
Intelligence (IJCAI), pages 539-547, Vancouver, Canada, 1981. William Kaufmann, Inc.,
95 First Street, Los Altos, California 94022, USA.

Vincent J. Digricoli. The management of heuristic search in Boolean experiments with
RUE resolution. In Aravind Joshi, editor, Proceedings 9" International Joint Conference
on Artificial Intelligence (IJCAI), pages 1154-1161, Los Angeles, USA, 1985.

Daniel J. Dougherty and Patricia Johann. An improved general E-unification method. In
Mark E. Stickel, editor, Proceedings 10** International Conference on Automated Deduction
(CADE), Lecture Notes in Artificial Intelligence (LNAI) 449, pages 261-275, Kaiserslautern,
Germany, July 1990. Springer-Verlag, Berlin, Germany.

Nachum Dershowitz and David A. Plaisted. Logic programming cum applicative program-
ming. In 1985 Symposium on Logic Programming, pages 5466, Boston, Massachusetts,
USA, 1985. IEEE Computer Society Press, Washington D.C. 20036-1903, USA.

Heinz-Dieter Ebbinghaus, Jorg Flum, and Wolfgang Thomas. Finfihrung in die mathema-
tische Logik. Wissenschaftliche Buchgesellschaft, Darmstadt, Germany, 27¢ edition, 1986.
The first edition was published 1978.

Norbert Eisinger. Completeness, Confluence, and Related Properties of Clause Graph Res-
olution. PhD thesis, Universitat Kaiserslautern, Postfach 3049, 6750 Kaiserslautern, Ger-
many, 1988. Also published as SEKI-Report SR-88-07, Fachbereich Informatik, Universitat
Kaiserslautern, Postfach 3049, 6750 Kaiserslautern, Germany, 1988.

Norbert Eisinger, Hans Jurgen Ohlbach, and Axel Pracklein. Elimination of redundancies in
clause sets and clause graphs. SEKI-Report SR-89-10, Fachbereich Informatik, Universitat
Kaiserslautern, Postfach 3049, 6750 Kaiserslautern, Germany, Qc¢tober 1989. Also published
as: Reduction Rules for Resolution-Based Systems, in Artificial Intelligence 50 (1991), pages
141-181, Elsevier Science Publishers B.V.

F. Fages. Formes canoniques dans les algébres booléennes et application a la démonstration
automatique en logique de premier ordre. Thése de 3éme Cycle, Paris, 1983.

Bibliography 163

[Fay79]
[FGIMS85]
[FHS91]

[Fri84a)

[Fri84b)

[Fri85a]

[Fri85b]

[Fuc90]
[FW8T7]
[Gand1]
[Gee92]

[Gen35]

[GI88]

[GTMS5]

Michael J. Fay. First order unification in an equational theory. In William H. Joyner, editor,
Proceedings {*" Workshop on Automated Deduction, pages 161-167, Austin, USA, February
1979.

Kokichi Futatsugi, Joseph A. Goguen, Jean-Pierre Jouannaud, and José Meseguer. Prin-
ciples of OBJ2. In Proceedings 12* ACM Symposium on Principles of Programming Lan-
guages, 1985.

Ulrich Furbach, Steffen Hélldobler, and Joachim Schreiber. Linear paramodulation modulo
equality. Report FKI-111-89, Institut fir Informatik, Technische Universitat Miinchen,
Arcisstr. 21, 8000 Miinchen 2, Germany, December 1991.

Laurent Fribourg. A narrowing procedure for theories with constructors. In Robert E.
Shostak, editor, Proceedings 7' International Conference on Automated Deduction
(CADE), Lecture Notes in Computer Science (LNCS) 170, pages 259-301, Napa, California,
USA, May 1984. Springer-Verlag, Berlin, Germany.

Laurent Fribourg. Oriented equational clauses as a programming language. Journal of
Logic Programming, Elsevier Science Publishing Co., Inc., 52 Vanderbilt Avenue, New York
10017, USA, 2:165-177, 1984.

Laurent Fribourg. Handling function definitions through innermost superposition and rewrit-
ing. In Jean-Pierre Jouannaud, editor, Proceedings 1°* Conference on Rewriting Techniques
and Applications (RTA), Leclure Notes in Compuler Science (LNCS) 202, pages 325-344,
Dijon, France, May 1985. Centre de Recherche en Informatique de Nancy, Springer-Verlag,
Berlin, Germany.

Laurent Fribourg. SLOG: A logic programming language interpreter based on clausal super-
position and rewriting. In 1985 Symposium on Logic Programming, pages 172184, Boston,
Massachusetts, USA, 1985. IEEE Computation Society Press, 1730 Massachusetts Avenue,
Washington, D.C. 20036-1903, USA.

Matthias Fuchs. Implementation vo Heuristiken zur Behandlung von Gleichheitsinferenzen
im Theorembeweiser EQTHEOPOGLES. Projektarbeit, Universitat Kaiserslautern, Fach-
bereich Informatik, Postfach 3049, 6750 Kaiserslautern, Germany, July 1990.

Jon Fairbairn and Stuart Wray. TIM - A simple machine to execute supercombinators.
In G. Kahn, editor, Proceedings Conference on Functional Programming Lenguages and
Computer Architecture, Lecture Notes in Computer Science (LNCS) 274. Springer-Verlag,
Berlin, Germany, 1987.

Harald Ganzinger. A completion procedure for conditional equations. Journal of Symbolic
Computation, Academic Press, Inc., London, England, 11:51-81, 1991.

P. A. Geelen. Dual viewpoint heuristics for binary constraint satisfaction problems. In
Proceedings 9** European Conference on Artificial Intelligence (ECAI), 1992. Submitted.

Gerhard Gentzen. Untersuchungen uber das logische Schliefen II. Mathematische Zedtschrift,
39:572~595, 1935.

Jean H. Gallier and T. Isakowitz. Rewriting in order-sorted equational logic. Draft, De-
partment of Computer and Information Science, School of Engineering and Applied Science,
University of Pennsylvania, Philadelphia 19104-6389, USA, 1988.

Joseph A. Goguen, Jean-Pierre Jouannaud, and José Meseguer. Operational semantics for
order-sorted algebra. In Wilfried Brauer, editor, Proceedings Automata, Languages and
Programming, 12* Colloguium (ICALP), Lecture Notes in Computer Science (LNCS) 194,
pages 221-231, Nafplion, Greece, July 1985. Springer-Verlag, Berlin, Germany.

164

Bibliography

[GLLO84] John Gabriel, Tim Lihdholm, Ewing L. Lusk, and Ross A. Overbeek. A tutorial on the

[GMS5]

[Gog90]

[GRS9]

[GS86]

[GS89]

[Her30]

[HMS9]

[HO80]

[Hof88]

[HRS6]

[Hue80]

[Hul80]

Warren abstract machine. Report ANL-84-84, Argonne National Laboratory, Mathematics
and Computer Science Division, Argonne, Illinois 60439, USA, 1984.

Joseph A. Goguen and José Meseguer. Eglog: Equality, types, and generic modules for
logic programming. In Doug DeGroot and Gary Lindstrom, editors, Functional and Logic
Programming, pages 295-363. Prentice Hall, Englewood Cliffs, New Jersey 07632, USA,
1985.

Joseph A. Goguen. Semantic specifications for the rewrite rule machine. Technical Report
SRI-CSL-90-13, Computer Science Laboratory, SRI International, December 1990.

Jean H. Gallier and Stan Raatz. Extending SLD resolution to equational Horn clauses
using E-unification. Journal of Logic Programming, Elsevier Science Publishing Co., Inc.,
§2 Vanderbilt Avenue, New York 10017, USA, 6(1-2):3-43, January and March 1989.

Jean H. Gallier and Wayne Snyder. A general complete E-unification procedure. Techni-
cal report, Department of Computer and Information Science, School of Engineering and
Applied Science, University of Pennsylvania, Philadelphia 19104-6389, USA, 1986.

Jean H. Gallier and Wayne Snyder. Complete sets of transformations for general E-
unification. Report MS-CIS-89-12, Department of Computer and Information Science,
School of Engineering and Applied Science, University of Pennsylvania, Philadelphia 19104-
6389, USA, December 1989. Also published in Theoretical Computer Science, 1988.

Jacques Herbrand. Recherches sur la théorie de la démonstration. Travauz de la societé des
sciences et de lettre de Varsovie, Class III Science mathématique et physique, 33, 1930.

Jochen Hager and Martin Moser. An approach to parallel unification using transputers. In
D. Metzing, editor, Proceedings 13* German Workshop on Artificial Intelligence (GWAI),
Informatikfachberichte (IFB) 216, pages 83-91, Eringerfeld, Germany, September 1989.
Springer-Verlag, Berlin, Germany.

Gérard Huet and Derek C. Oppen. Equations and rewrite rules: a survey. Technical Report
CSL-III, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025-3493,
USA, 1980.

Thomas Hoffmann. Effizientes AC1-Matching durch Constraint-Propagation. Projektar-
beit, Universitat Kaiserslautern, Fachbereich Informatik, Postfach 3049, 6750 Kaiserslau-
tern, Germany, August 1988.

Jieh Hsiang and Michaél Rusinowitch. A new method for establishing refutational com-
pleteness in theorem proving. In Jorg H. Siekmann, editor, Proceedings 8* International
Conference on Automated Deduction (CADE), Lecture Notes in Computer Science (LNCS)
230, pages 141-152, Oxford, England, 1986. Springer-Verlag, Berlin, Germany.

Gérard Huet. Confluent reductions: Abstract properties and applications to term rewriting
systems. Journal of the Association for Computing Machinery (ACM), ACM, Inc., 1133
Avenue of the Americas, New York 10036, USA, 27(4):798-821, 1980.

Jean-Marie Hullot. Canonical forms and unification. In Wolfgang Bibel and Robert Kowal-
ski, editors, Proceedings 5" International Conference on Automated Deduction (CADE),
Lecture Notes in Computer Science (LNCS) 87, pages 318-334, Les Arcs, France, July
1980. Springer-Verlag, Berlin, Germany.

Bibliography 165

[Hus85]

[Hut90]

[Jas33]
[TKK83]

[IL87]

[JLM84]

[IW86]

[Kap84a)

[Kap84b]

[Kap87]

[KB70]

[Ker89]

[Kir85]

[Kir87]

Heinrich Hussmann. Unification in conditional-equational theories. Report MIP-8502,
Fakultat fiir Mathematik und Informatik, Universitat Passau, Postfach 2540, 8390 Passau,
January 1985.

Dieter Hutter. Guiding induction proofs. In Mark E. Stickel, editor, Proceedings 10**
International Conference on Automated Deduction (CADE), Lecture Notes in Artificial In-
telligence (LNAI) 449, pages 147-161, Kaiserslautern, Germany, July 1990. Springer-Verlag,
Berlin, Germany.

Stanislaw Jaskowski. On the rules of supposition in formal logic. Studia Logica, 1, 1933.

Jean-Pierre Jouannaud, Claude Kirchner, and Héléne Kirchner. Incremental construction of
unification algorithms in equational theories. In Josep Diaz, editor, Proceedings Automate,
Languages and Programming, 10°* Colloguium (ICALP), Lecture Notes in Computer Science
(LNCS) 154, pages 361-373, Barcelona, Spain, July 1983. Springer-Verlag, Berlin, Germany.

Jean-Pierre Jouannaud and Pierre Lescanne. Rewriting systems. Technology and Science of
Informatics, 6(3):181-199, 1987.

Joxan Jaffar, Jean-Louis Lassez, and Michael J. Maher. A theory of complete logic programs
with equality. Journal of Logic Programming, FElsevier Science Publishing Co., Inc., 52

Vanderbilt Avenue, New York 10017, USA, 3:211-223, 1984.

Jean-Pierre Jouannaud and B. Waldmann. Reductive conditional term rewriting systems. In
Proceedings 3¢ IFIP Conference on Formal Description of Programming Concepts, Lyngby,
1986.

Stéphane Kaplan. Conditional rewrite rules. Theoretical Computer Science, North Holland,
Elsevier Science Publishers B. V., 33:175—-193, 1984.

Stéphane Kaplan. Fair conditional term rewriting systems: Unification, termination and
confluence. Laboratoire de Recherche en Informatique, Université d’Orsay, France, 1984.

Stéphane Kaplan. A compiler for conditional term rewriting systems. In Pierre Lescanne,
editor, Proceedings 2** Conference on Rewriting Techniques and Applications (RTA), Lec-
ture Notes in Computer Science (LNCS) 256, pages 25-41, Bordeaux, France, May 1987.
Springer-Verlag, Berlin, Germany.

Donald E. Knuth and Peter B. Bendix. Simple word problems in universal algebras. In
J. Leech, editor, Compulational Problems in Abstract Algebra, pages 263-297. Pergamon
Press, 1970.

Manfred Kerber. Some aspects of analogy in mathematical reasoning. In Klaus P. Jantke,
editor, Analogical end Inductive Inference; International Workshop AIl 89, Lecture Notes
in Artificial Intelligence (LNAIL) 397, pages 231-242, Reinhardsbrunn Castle, GDR, October
1989. Springer-Verlag, Berlin, Germany.

Claude Kirchner. Méthodes et outils de conception systematique d’algorithmes d’unification
dans les théories equationelles. Thése de Doctorat d’Etat en Mathématique, Nancy, France,
1985.

Claude Kirchner. Methods and tools ‘for equational unification. In H. Ait-Kaci and M. Nivat,
editors, Conference on Resolution of Equations in Algebraic Structures (CREAS), Lakaway,
Texas, USA, 1987.

166

[KK89]

[Kow?75]

[KP92]

[Kre89]

[Kri90]
[KZ89]
[Lan75]

[Lan79]

[Lin90]

[LO84]
[Lot88]

[LP91a]

[LP91b]

Bibliography

Claude Kirchner and Héléne Kirchner. Constrained equational rewriting. In Hans-Jiirgen
Biirckert and Werner Nutt, editors, UNIF’89 Extended Absiracts of the 3¢ International
Workshop on Unification, SEKI-Report SR-89-17, pages 160-171, Postfach 3049, 6750 Kai-
serslautern, Germany, 1989. Fachbereich Informatik, Universitat Kaiserslautern.

Robert Kowalski. A proof procedure using connection graphs. Journal of the Associalion
for Computing Machinery (ACM), ACM, Inc., 1133 Avenue of the Americas, New York
10036, USA, 22(4):572-595, 1975.

Manfred Kerber and Axel Pracklein. Tactics for the improvement of problem formulation in
resolution-based theorem proving. SEKI-Report SR-92-09 (SFB), Fachbereich Informatik,
Universitat des Saarlandes, Im Stadtwald 15, 6600 Saarbriicken 11, Germany, 1992. Talk
held at the Second International Symposium on Artificial Intelligence and Mathematics in
Fort Lauderdale, Florida, USA, 1992.

Per Kreuger. EWAM An extension of WAM to execute functional programs. Technical
Report SICS/T89/89016, Swedish Institute of Computer Science, Box 1263, 16428 Kista,
Sweden, November 1989. :

Stefan Krischer. Vergleich und Optimierung von Narrowing-Strategien. Diplomarbeit, Uni-
versitat Karlsruhe, 7500 Karlsruhe, Germany, Mirz 1990.

Deepak Kapur and Hantao Zhang. A case study of the completion procedure: Proving ring
commutativity problems. State Untversity of New York at Albany, 1989.

D. S. Lankford. Canonical inference. Report, ATP-32, Department of Computer Science,
University of Texas, Austin, Texas 78712, USA, 1975.

D. S. Lankford. Some new approaches to the theory and applications of conditional term
rewriting systems. Report, Department of Computer Science, University of Texas, Austin,
Texas 78712, USA, 1979.

Christoph Lingenfelder. Transformation and structuring of computer generated proofs.
SEKI-Report SR-90-26 (SFB), Fachbereich Informatik, Universitit Kaiserslautern, Postfach
3049, 6750 Kaiserslautern, Germany, 1990.

Ewing L. Lusk and Ross A. Overbeek. A short problem set for testing systems that include
equality reasoning. Report, Argonne National Laboratory, 1984.

Volkmar Lotz. Heuristische Kontrolle des Aufbaus von Gleichheitsgraphen. Diplomarbeit,
Postfach 3049, 67560 Kaiserslautern, Germany, 1988.

Christoph Lingenfelder and Axel Pricklein. Presentation of proofs in an equational calculus.
In John Mylopoulos and Ray Reiter, editors, Proceedings 12* International Joint Confer-
ence on Artificial Intelligence (IJCAI), pages 165-170, Sydney, Australia, 1991. Morgan
Kaufmann Publishers, Inc., 2929 Campus Drive San Mateo, California 94403, USA. Also
published as SEKI-Report SR-90-15 (SFB), Fachbereich Informatik, Universitdt Kaiser-
slautern, Postfach 3049, 6750 Kaiserslautern, Germany.

Christoph Lingenfelder and Axel Pracklein. Proof transformation with built-in equality pred-
icate. In Proceedings 1°t World Conference on the Fundamentals of Artificial Intelligence,
pages 313-321, Paris, France, 1991. Also published as SEKI-Report SR-90-13 (SFB), Fach-
bereich Informatik, Universitat Kaiserslautern, Postfach 3049, 6750 Kaiserslautern, Ger-
many.

Bibliography ‘ 167

[Mah91]

[McC88]

[Men87]

[Mes90]

[Mes91]

[MM82]

[MMRS6]

[Mon55]

[Mor69]

[Non86]

[NSS59]

[OhI87]

[Oh189]

[OL80]

Anne Mahn. Theorievervollstandigung mit Constraints. Diplomarbeit, Universitdt Kaisers-
lautern, Fachbereich Informatik, Postfach 3049, 6750 Kaiserslautern, Germany, September
1991.

William McCune. Challenge equality problems in lattice theory. In Ewing L. Lusk and
Ross A. Overbeek, editors, Proceedings 9" International Conference on Automated Deduc-
tion (CADE), Lecture Notes in Computer Science (LNCS) 310, pages 704-709, Argonne,
llinois, USA, 1988. Springer-Verlag, Berlin, Germany.

Elliott Mendelson. Introduction to Mathematical Logic. The Wadsworth & Brooks/Cole,
Advanced Books and Software, Mathematics Series. Wadsworth, Monterey, California 93940,
USA, 37¢ edition, 1987. The first edition was published 1964.

José Meseguer. Conditional rewriting logic: Deduction, models and concurrency. CSL
Technical Report SRI-CS1-90-14, Computer Science Laboratory, SRI International, 333
Ravenswood Avenue, Menlo Park, California 94025-3493, USA, November 1990.

José Meseguer. Conditional rewriting logic as a unified model of concurrency. Technical
Report SRI-CSL-91-05, Computer Science Laboratory, SRI International, 333 Ravenswood
Avenue, Menlo Park, California 94025-3493, USA, February 1991. To appear in Theoretical
Computer Science, North Holland, Elsevier Science Publishers B.V., 1992.

Alberto Martelli and Ugo Montanari. An efficient unification algorithm. ACM Transactions
on Programming Languages and Systems, 4(2):258-282, 1982.

Alberto Martelli, Corrado Moiso, and G. F. Rossi. Lazy unification algorithms for canonical
rewrite systems. Report, Dipartimento di Informatica — CSELT, C. so Svizera 185, 10149
Torino, Italia — Via Reiss Romoli 274, 10148 Torino, Italia, 1986.

Richard Montague. On the paradox of grounded classes. Journal of Symbolic Logic,
20(2):140, June 1955.

James B. Morris. E-resolution: Extension of resolution to include the equality relation. In
Donald E. Walker and Lewis Norton, editors, Proceedings 1°* International Joint Conference
on Artificial Intelligence (IJCAI), pages 287-294, Washington, D.C., USA, May 1969.

Andreas Nonnengart. Vervollstandigung von Termersetzungssystemen mit Hilfe einer
Reprasentation durch gerichtete, azyklische Graphen. Diplomarbeit, Universitat Kaisers-
lautern, Fachbereich Informatik, Postfach 3049, 6750 Kaiserslautern, Germany, June 1986.

Allen Newell, J. C. Shaw, and Herbert A. Simon. Report on a general problem-solving
program. In Proceedings of the International Conference on Information Processing, pages

256-264. UNESCO, Paris, June 1959.

Hans Jurgen Ohlbach. Link inheritance in abstract clause graphs. Journal of Automated Rea-
soning (JAR), Kluwer Academic Publishers, 3300 AH Dordrecht, The Netherlands, 3(1):1-
34, 1987.

Hans Jirgen Ohlbach. Abstraction tree indexing for terms. In Hans-Jiirgen Biirckert and
Wermner Nutt, editors, UNIF’89 Eztended Abstracts of the §¢ International Workshop on
Unification, SEKI-Report SR-89-17, pages 131-136, Postfach 3049, 6750 Kaiserslautern,
Germany, 1989. Fachbereich Informatik, Universitat Kaiserslautern.

Ross A. Overbeek and Ewing L. Lusk. Data structurés and control architecture for imple-
mention of theorem-proving programs. In Wolfgang Bibel and Robert Kowalski, editors,
Proceedings 5" International Conference on Automated Deduction (CADE), Lecture Notes
in Computer Science (LNCS) 87, Les Arcs, France, July 1980. Springer-Verlag, Berlin, Ger-
many.

168

[0588]

[0S89]

[OveT5]

[Pau85]

[Pel86]

[Pet83]

[Prass]

[Prago]

[Pr392a)

[Pra92b)

[PS89]

[Red85)

[Rém82)
[Ric78]

[Ric83a]

Bibliography

Hans Jiirgen Ohlbach and Jorg H. Siekmann. Using automated reasoning techniques for
deductive databases. SEKI-Report SR-88-06, Fachbereich Informatik, Universitit Kaiser-
slautern, Postfach 3049, 6750 Kaiserslautern, Germany, 1988.

Hans Jliirgen Ohlbach and Jorg H. Siekmann. The Markgraf Karl Refutation Procedure.
SEKI-Report SR-89-19, Fachbereich Informatik, Universitat Kaiserslautern, Postfach 3049,
6750 Kaiserslautern, Germany, 1989.

Ross A. Overbeek. An implementation of hyper-resolution. Comp. Maths. with Applications,
1:201-214, June 1975.

E. Paul. On solving the equality problem in theories defined by Horn clauses. In Bruno
Buchberger, editor, Proceedings European Computer Algebra Conference, EUROCAL’85,
volume 2, Lecture Notes in Compuler Science (LNCS) 204, pages 363-377, Linz, Austria,
April 1985. Springer-Verlag, Berlin, Germany.

Francis Jeffry Pelletier. Seventy-five problems for testing automatic theorem provers. Journal
of Automated Reasoning (JAR), Kluwer Academic Publishers, 3300 AH Dordrecht, The
Netherlands, 2:191-216, 1986.

Gerald E. Peterson. A technique for establishing completeness results in theorem proving
with equality. SIAM (Society for Industrial and Applied Mathematics) Journal of Comput-
ing, 12(1):82-100, February 1983.

Axel Pracklein. Ein Reduktionsmodul fiir einen automatischen Beweiser. Diplomarbeit,
Institut fir Informatik I, Universitat Karlsruhe, Postfach 6380, 7500 Karlsruhe 1, Germany,
Marz 1985.

Axel Pracklein. Solving equality reasoning problems with a connection graph theorem prover.
SEKI-Report SR-90-07, Fachbereich Informatik, Universitat Kaiserslautern, Postfach 3049,
6750 Kaiserslautern, Germany, April 1990.

Axel Pricklein (editor). The HADES Manual. SEKI-Working Paper to appear, Fachbereich
Informatik, Universitat des Saarlandes, Im Stadtwald 15, 6600 Saarbriicken 11, Germany,
1992.

Axel Pracklein (editor). The MKRP-User Manual. SEKI-Working Paper SWP-92-03, Fach-
bereich Informatik, Universitat des Saarlandes, Im Stadtwald 15, 6600 Saarbriicken 11,
Germany, 1992.

Simon L. Peyton-Jones and J. Salkid. The spinless tagless g-machine. In Proceedings 19589
ACM Conference on Functional Programming Languages and Computer Architecture, 1989.

Udday S. Reddy. Narrowing as the operational semantics of functional languages. In 1985
Symposium on Logic Programming, pages 138-151, Boston, Massachusetts, USA, 1985. IEEE
Computation Society Press, 1730 Massachusetts ‘Avenue, Washington, D.C. 20036-1903,
USA.

J. L. Rémy. Etude des systémes de réécriture conditionelles et applications aux types ab-
straits algébriques. Thése d’Etat, Nancy, France, 1982.

Michael M. Richter. Logikkalkile, volume 43 of Leitfiden der angewandien Mathematik und
Mechanik. B. G. Teubner, Stuttgart, Germany, 1978.

Monique Rice. The construction of a complete minimal set of contextual normal forms.
In J. A. van Hulzen, editor, Proceedings European Computer Algebrg Conference, EURO-
CAL’83, Lecture Notes in Computer Science (LNCS) 162, pages 255-266, London, England,
March 1983. Springer- Verlag, Berlin, Germany.

Bibliography 169

[Ric83b]

[Ric91)

[RKKLS5]

[Rob65]

[Rugd1]

[Rus87]

[Rus91]

[RW69]

[SA92]

[Sch88]

[Sch89]

[She53]

[Sho76]

[Sib69]

[SieT5]

Elaine Rich. Artificial Intelligence. International Student Edition. McGraw-Hill Book Com-
pany, Auckland, USA, 1983.

Joérn Richts. Implementierung verschiedener Narrow-Strategien fiir einen automatischen
Beweiser. Projektarbeit, Universitit Kaiserslautern, Fachbereich Informatik, Postfach 3049,
6750 Kaiserslautern, Germany, July 1991.

Pierre Rety, Claude Kirchner, Héléne Kirchner, and Pierre Lescanne. NARROWER: A
new algorithm for unification and its application to logic programming. In Jean-Pierre
Jouannaud, editor, Proceedings 1°* Conference on Rewriting Techniques and Applications
(RTA), Lecture Notes in Computer Science (LNCS) 202, pages 141-157, Dijon, France, May
1985. Centre de Recherche en Informatique de Nancy, Springer-Verlag, Berlin, Germany.

J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal of the
Association for Computing Machinery (ACM), ACM, Inc., 211 East 43¢ Street, New York,
10017, USA, 12(1):23-41, 1965.

Rosa Ruggeri. Una logica sorteta con unione e disgiunzione di sorte. PhD thesis, Universita
di Catania, 1991.

Michael Rusinowitch. Démonstration automatique par des téchniques de réécriture. Thése
de Doctorat d’Etat en Mathématique, Nancy, France, 1987.

Michaél Rusinowitch. Theorem proving with resolution and superposition. Journal of Sym-
bolic Computation, Academic Press, Inc., London, England, 11:21-49, June 1991. First
published as report 87-R-128, CRIN, Nancy, France 1987. Also published in Proceedings
International Conference on Fifth Generation Computer Systems, Tokyo, Japan 1988.

George A. Robinson and Larry Wos. Paramodulation and theorem-proving in first-order
theories with equality. Machine Intelligence, Edinburgh University Press, 22 George Streed,
Edinburgh, Scotland, 4:135-150, 1969.

Rolf Socher-Ambrosius. A goal oriented strategy based on completion. Report MPI-1-92-206,
Max-Planck-Institut fiir Informatik, Im Stadtwald, 6600 Saarbriicken, Germany, February
1992,

Manfred Schmidt-Schaufl. Computational Aspects of an Order-Sorted Logic with Term Dec-
larations. PhD thesis, Universitat Kaiserslautern, 1988. Also published as Lecture Notes in
Artificial Intelligence (LNAI) 395, Springer-Verlag, Berlin, Germany, 1990.

Manfred Schmidt-Schauf}. Unification in a combination of arbitrary disjoint equational
theories. Journal of Symbolic Computation, Academic Press, Inc., London, England, 8:51—
99, 1989. Also published as SEKI-Report SR-87-16, Fachbereich Informatik, Universitat
Kaiserslautern, Postfach 3049, 6750 Kaiserslautern, Germany, 1987.

Yuting Shen. Paradox of the class of all grounded classes. Journal of Symbolic Logic,
18(2):114, June 1953.

Robert E. Shostak. Refutation graphs. Artificial Intelligence, North Holland Publishing
Company, Amsterdam, The Netherlands, 7(1):51-64, 1976.

E. E. Sibert. A machine-oriented logic incorporating the equality axioms. Machine In-
telligence, Edinburgh University Press, 22 George Street, Edinburgh, Scotland, 4:103-133,
1969. '

Jorg H. Siekmann. Stringunification. Memo CSM-7of, Essex University, 1975.

170

[Sie89]
[Sie92]

[SK90]

[SL91a]

[SL91b]

[SNMG87]

[Spe84]
[SS81]

[Ste88]

[Steo0)

[Sti84]

[Sti85]

[Sti86]

[Sun87]

[SW80)]

Bibliography

Jorg H. Siekmann. Unification theory. Journal of Symbolic Computation, Academic Press,
Inc., London, England, 7:207-274, 1989.

AG Siekmann. Q-MKRP. SEKI-Report to appear, Fachbereich Informatik, Universitat des
Saarlandes, Im Stadtwald 15, 6600 Saarbriicken 11, Germany, 1992.

Joachim Steinbach and Ulrich Kiihler. Check your ordering ~ Termination proofs and
open problems. SEKI-Report SR-90-25 (SFB), Fachbereich Informatik, Universitat Kaiser-
slautern, Postfach 3049, 6750 Kaiserslautern, Germany, December 1990.

Wayne Snyder and Christopher Lynch. Basic paramodulation. Report, Computer Science
Department, Boston University, Boston, Massachusetts 02215, USA, 1991.

Wayne Snyder and Christopher Lynch. Goal directed strategies for paramodulation. In
R. V. Book, editor, Proceedings 4* Conference on Rewriting Techniques and Applications
(RTA), Lecture Notes in Computer Science (LNCS) 488, pages 150-161, Como, Italy, 1991.
Springer-Verlag, Berlin, Germany.

Gert Smolka, Werner Nutt, José Meseguer, and Joseph A. Goguen. Order-sorted equational
computation. In H. Ait-Kaci and M. Nivat, editors, Conference on Resolution of Equations
in Algebraic Structures (CREAS), Lakaway, Texas, USA, 1987.

Volker Sperschneider. Logik. Script for Lectures at the Universitat Karlsruhe, 1984.

Jorg H. Siekmann and Peter Szabo. Universal unification and regular equational ACFM
theories. In Ann Drinan, editor, Proceedings 7" International Joint Conference on Artificial
Intelligence (1JCAI), pages 532-538, Vancouver, Canada, 1981. William Kaufmann, Inc.,
95 First Street, Los Altos, California 94022, USA.

Rick L. Stevens. Challenge problems from nonassociative rings for theorem provers. In
Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings " International Conference
on Automated Deduction (CADE), Lecture Notes in Computer Science (LNCS) 310, pages
730~734, Argonne, Illinois, USA, 1988. Springer-Verlag, Berlin, Germany.

Guy L. Steele. Common Lisp — The Language. Digital Press, 12 Crosby Drive, Bedford,
Massachusetts 01730, USA, 2"¢ edition, 1990.

Mark E. Stickel. A case study of theorem proving by the Knuth-Bendix method discovering
that 23 = z implies ring commutativity. In Robert E. Shostak, editor, Proceedings 7h
International Conference on Automated Deduction (CADE), Lecture Notes in Computer
Science (LNCS) 170, pages 248-258, Napa, California, USA, May 1984.

Mark E. Stickel. Automated deduction by theory resolution. Journal of Automated Reason-
ing (JAR), Kluwer Academic Publishers, 3300 AH Dordrecht, The Netherlands, 1(4):333-
357, 1985.

Mark E. Stickel. A Prolog technology theorem prover: Implementation by an extended
Prolog compiler. In Jérg H. Siekmann, editor, Proceedings §'* International Conference
on Automated Deduction (CADE), Lecture Notes in Computer Science (LNCS) 230, pages
573-587, Oxford, UK, 1986. Springer-Verlag, Berlin, Germany.

Sun Microsystems Inc. The SPARCT™ Architecture manual. Manual 800-1399-08, Sun
Microsystems, Inc., 2550 Garcia Avenue, Mountain view, California 94043, USA, 415-960-
1300, 1987.

Jorg H. Siekmann and Graham Wrightson. Paramodulated connection graphs. Acta Infor-
matica, Springer-Verlag, Berlin, Germany, 13:67-86, 1980.

Bibliography 171

.[Tep89]
[Wal82]
[Wal84]

[Wan88]

[War77)

[War83]

[Wei89]

[Wei91]

[Wei3)]

[WHS9)]

[WM8S]

[WOHS0]

[WOLB&4]
[Wos88]

[WRCS67]

‘Michael Tepp. Kombinationsverfahren fur Unifikationsalgorithmen. SEKI-Working Paper

SWP-89-05, Fachbereich Informatik, Universitit Kaiserslautern, Postfach 3049, 6750 Kaiser-
slautern, Germany, 1989.

Christoph Walther. The Markgraf Karl Refutation Procedure PLL - A first-order lan-
guage for an automated theorem prover. Interner Bericht 35/82, Institut fir Informatik I,
Universitat Karlsruhe, Postfach 6380, 7500 Karlsruhe, Germany, 1982.

Christoph Walther. Ein mehrsortiger Resolutionskalkul mit Paramodulation. Interner
Bericht 23/84, Institut fir Informatik I, Universitat Karlsruhe, Postfach 6380, 7500 Karl-
srube, Germany, 1984.

T. C. Wang. Case studies of Z-Module reasoning: Proving benchmark theorems for ring
theory. Journal of Automated Reasoning (JAR), Kluwer Academic Publishers, 3300 AH
Dordrecht, The Netherlands, 3, 1988.)

D. H. D. Warren. Applied Logic — Iis Use and Implementation as Programming Tool. PhD
thesis, University of Edinburgh, 1977.

D. H. D. Warren. An abstract Prolog instruction set. Technical report, Computer Science
Laboratory, SRI International, 333 Ravenswood Avenue, Menlo Park, California 94025-3493,
USA, 1983.

Christoph Weidenbach. A resolution calculus with dynamic sort structures and partial
functions. SEKI-Report SR-89-23, Fachbereich Informatik, Universitat Kaiserslautern, Post-
fach 3049, 6750 Kaiserslautern, Germany, 1989.

Christoph Weidenbach. A sorted logic using dynamic sorts. MPI-Report MPI-I-91-218,
Max-Planck-Institut fiir Informatik, Im Stadtwald, 6600 Saarbriicken, Germany, December
1991.

Christoph Weidenbach. A superposition calculus with dynamic sort structures and partial
functions. MPI-Report to appear, Max-Planck-Institut fiir Informatik, Im Stadtwald, 6600
Saarbriicken, Germany, 1993.

Patrick Henry Winston and Berthold Klaus Paul Horn. Lisp. Addison Wesley Publishing
Company, Reading, Massachusetts, USA, 1989.

Larry Wos and William McCune. Challenge problems focusing on equality and combi-
natory logic: Evaluating automated theorem-proving programs. In Ewing L. Lusk and
Ross A. Overbeek, editors, Proceedings 9" International Conference on Automated Deduc-
tion (CADE), Lecture Notes in Computer Science (LNCS) 310, pages T14-729, Argonne,
Tllinois, USA, 1988. Springer-Verlag, Berlin, Germany.

Larry Wos, Ross Overbeck, and Lawrence J. Henschen. Hyperparamodulation: A refinement
of paramodulation. In Wolfang Bibel and Robert Kowalski, editors, Proceedings 5* Inter-
national Conference on Automated Deduction (CADE), Lecture Notes in Computer Science
(LNCS) 87, pages 208-219, Les Arcs, France, July 1980. Springer-Verlag, Berlin, Germany.

Larry Wos, Ross A. Overbeek, Ewing L. Lusk, and Jim Boyle. Automated Reasoning Intro-
duction and Applications. Prentice Hall, Englewood Cliffs, New Jersey, USA, 1984.

Larry Wos. 33 Basic Research Problems. Automated Reasoning. Prentice Hall, Englewood
Cliffs, New Jersey, USA, 1988.

Larry Wos, George A. Robinson, Daniel F. Carson, and Leon Shalla. The concept of demod-
ulation in theorem prooving. Journal of the Association for Compuling Machinery (ACM),
ACM, Inc., 211 East 43¢ Street, New York, 10017, USA, 14(4):698-709, October 1967.

172

[YS86]

[ZhaB8]

[ZKS88]

[ZR85]

Bibliography

Jia-Huai You and P. A. Subramanyou. E-unification algorithms for a class of confluent
term rewriting systems. In Laurent Kott, editor, Proceedings Automata, Languages and
Programming, 13" Colloquium (ICALP), Lecture Notes in Computer Science (LNCS) 226,
pages 454-463, Rennes, France, July 1986. Springer-Verlag, Berlin, Germany.

Hantao Zhang. Reduction, superposition, and induction: Automated reasoning in an equa-
tional logic. Technical report 88-06, Department of Computer Science, The University of
Iowa, Iowa City, Iowa 52242, USA, November 1988.

Hantao Zhang and Deepak Kapur. First order theorem proving using conditional rewrite
rules. In Ewing L. Lusk and Ross A. Overbeek, editors, Procecedings 9" International
Conference on Automated Deduction (CADE), Lecture Notes in Computer Science (LNCS)
310, pages 1-20, Argonne, Illinois, USA, 1988. Springer-Verlag, Berlin, Germany.

Hantao Zhang and J. L. Rémy. Contextual rewriting. In Jean-Pierre Jouannaud, editor,
Proceedings 1°* Conference on Rewriting Techniques and Applications (RTA), Lecture Notes
in Computer Science (LNCS) 202, pages 46-62, Dijon, France, May 1985. Springer-Verlag,
Berlin, Germany.

Index

abstract assembler
abstract code
abstraction tree
AC-AC1 comparison
acyclic graph

as complete as

atom

B-G
Bachmair-Ganzinger
basic paramodulation
binding

C-G

classification

clause

clause graph calculus
clause graph reduction
codomain

compilation

confluent
Connection-Graph

conservation of problem complexity

constant symbol
contextual rewriting
contraction rule

control strategy
counting strategy
critical pair construction
critical pair reduction

D

deduction rule
deduction rule scheme
Dershowitz
disagreement set
domain

dynamic sorts

E-refutation-graph
E-resolution
F-unification
E-resolution

equation chain #

67, 68,

73

74,77

83
98
83
39

57
57
27
72

57
93

10, 39

96

82
20
57
99

28

49
63
21
65

57

57
14

96

49
13
11
36
101

173

expansion rule

formula
function symbol

group

H-C

heuristic approach
heuristic level
Heuristic-Completion
Horn superposition
human proof
hyperparamodulant
hyperparamodulation

indexing

indexing trees
induction

infinitary theories
integration scratchpad
interpreter

iterative deepening

linear proof
link

PE

R

R1

R2

S

S1

S2
link condition
link inheritance
Lisp programs
literal

Martelli-Monatanari
matcher
maximal

strictly
merging paramodulation
merging superposition

o

82

57
51
53
57
26
51
31
31

52, 67
82

36, 94
100
87

84

69

50

52
10
10
10
10
10
10
10
10
71

15

24
24
25
26

174

mgu
most general unifier

narrowing

narrowing strategies
narrowing superposition
narrowing tree

natural deduction proof
Noetherian

NRF

ordered clause graphs
ordered paramodulation
ordering strategy
orderings

paramodulation
basic
hyper
merging
ordered
PE-link
position
predicate symbol
Prolog
proof transformation
PTTP
purity deletion

R-link

R1-link

R2-link

reduction ordering
reduction rule
reduction rule scheme
replacement
replacement paramodulation
replacement resolution
resolution

restriction strategy
rewrite

rewrite rule compilation
RRM

RUE

S-L

S-link

S1-link

S2-link

selection ordering
set-of-support weighting
single functions

smallest component strategy

11
8, 11, 98

29, 35, 84
31

26

35

101

20

15

39
24
56
56

12
27
31
25
24
52
9
8
68
101
69
45

10
10
10
60

9

9

9
47
45
10
56
21
67
67
14

57
10
10
10
96
63
76
63

Snyder-Lynch
sorts
splitting
steamroller
strategy reduction
strict clausal superposition
strict superposition
strictly maximal
structure sharing
structured axioms
substitution
subsumption
subterm
superposition
Horn
merging
narrowing
strict
strict clausal
weak clausal
superposition as strategy
superposition calculi

term
terminator situation
transformation

unification

using narrowing
unifier
unit superposition

variable symbol

WAM
weak clausal superposition

Z-K
Zhang-Kapur

Index

70,

11, 15,

57
96
95
57
92
25
25
24
67
94

45

26
26
26
25
25
24
38
23

96
73

70
30

26

67
24

57
57

	1992.pdf
	1992-1
	1992-ende

