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Abstract:

Resolution based theorem proving systems require the conversion of predicate logic formulae into clausal
normal form. One step of all procedures performing this transformation is the multiplication into
conjunctive normal form. In general this is a critical step, since it can result in an exponential increase in
the size of the original formula. In general the resulting clausal normal form even contains many
redundant clauses. This paper presents a multiplication algorithm that avoids the generation of these
redundant clauses. It is shown that the set of clauses generated by this algorithm is the set of prime
implicants (in the sense of Quine) of the original formula. Especially in those cases where the usual
multiplication algorithm produces a contradictory set of ground clauses the improved algorithm generates
the empty clause.



1. Introduction

Most resolution based theorem proving systems require that the logical formulae, which are to be
proved, should be converted into clausal normal form. This transformation usually takes several steps
including the elimination of implications and equivalences, skolemization and sometimes the resulting
formula can be splitted into several easier to prove subformulac [EW83]. In any case, the last step of the
procedure consists in the multiplication of formulae containing only the connectives A, v and — to
disjunctive normal form or to conjunctive normal form, respectively. Usually the transformation into
disjunctive form is required for formulae to be tested for splitting whereas conversion into conjunctive
form is necessary for the single splitparts. In general this multiplication is the most critical step of the
algorithm, as it can result in an inflation of the original formula. For a multiplication of a disjunctive form
Do a conjunctive form C (or vice versa) the number of subformulae of C depends exponentially on the
number of subformulae of D. But in general most of the resulting formulae are redundant, as the
following example shows:

1.1 Example:
The propositional formula

F=(PAIAS) Vv (PAQAS) V (QATAS)
is to be transformed into CNF.
In the following we drop the v and write conjunctions as sets.
Multiplying yields

{ppq. ppr, pPps, paq, par, Pgs, psq, PsT, pss,
(n Ipq, Ipr, Ips, rqq, Iqr, rqs, 1sq, Isr, ISs,

spq, Spr, sps, sqq, sqr, Sqs, $Sq, SSI, SsS}
We call this form the totally multiplied form of ¥.
Using the commutativity and idempotence of v this clause set can be simplified to

{pq, pr, ps, pq, pqr, pgs, psq, psr, ps,
@) pq, Ip, Ips, 1q, Iq, IqS, 1sq, I8, IS,

spq, Spr, sp, sq, sqr, sq, $q, 1q, S}
In this formula all multiple occurrences of clauses and all clauses that are subsumed by some other
clause, are redundant. (A clause C is said to subsume another clause D, if C is a proper subset of D).
Deleting these redundant clauses yields

3 {pq. pr, 1q, s}

In this particular example the formula ¥ to be transformed into CNF is given in DNF. Since this is the
basic case for our algorithm, we first concern with the transformation from DNF into CNF. The
transformation from CNF into DNF is symmetric and therefore need not be considered.

The example shows that the multiplication process produces many terms that can be deleted by
subsequent simplification steps. Would it not be better to avoid the generation of these redundant terms
in the first place? Ideally the output of such an algorithm should be a minimal representation of the
original formula. In this paper we present an algorithm that multiplies formulae into clausal normal form
without producing redundant clauses. The output Pof the algorithm, given a formula ¥, is minimal in the
following sense: P is the set of all clauses implied by ¥, such that for each clause C in Pthere is no



subset of C that is implied by F. Thus ? is logically equivalent to ¥. Such a set is called a set of prime
implicants of F and this set is uniquely determined by ¥. Especially if ¥ is an unsatisfiable ground
formula then P consists only of the empty clause. The standard method to obtain the set of prime
implicants from a clause set Cis the successive computation of resolvents and the deletion of subsumed
clauses [Qu59].

In general the set of prime implicants is not absolutely minimal, as the following example shows: Let F
be the clause set {C,, C,, C;, C,}, where C,=(p, q, r}, C,={—q, r}, C4={q, s}, C,={r, s}. The

clause D=(p, r} is a subset of C, and is implied by ¥. Thus the set {D, C,, C;, C,} is the set of prime
implicants of ¥, but it is not minimal, since the set {D, C,, C;} is already equivalent to ¥. Such a
minimal subset of the set of prime implicants is called a simplest equivalent. In general this minimal
representation of a formula is not unique. However, if the set P of prime implicants of a formula ¥ does
not contain a pair of resolvable clauses, then Pis already a simplest equivalent of 7.

This paper is concerned with the simplification of formulae on the basis of the equality of some elements
of a formula, where the equivalence relation itself is deliberately left unspecified. We formulate our
results in the language of pure propositional logic, but the reader should be aware that the propositional
variables can stand for several things:

1.2 Example:

The simplification of pA(pvq) to p means that any formula, which is a conjunction between an element p

and a disjunction having an element equal to p as disjunct, is reduced to p.

a) If the elements p and q are interpreted as atomic formulae of predicate logic together with syntactic
equality, then the formula PxA(PxvQa) can be reduced to Px under this particular interpretation,
whereas the formula PxA(PyvQa) cannot.

b) Suppose that the propositional variables are interpreted as formulae and the equivalence relation is
taken to be equality up to renaming of bound variables. Then PxA(PyvQa) is equivalent to
(VxPx)A((VyPy)vQa) and the formulae VxPx and VyPy are equal up to renaming of bound
variables, hence the reduction to VxPx is possible.

Using example 1.1 we now describe how this algorithm works:
We write the formula F as a 3x4-matrix M and label the rows of M with the variables of ¥ and the
columns of M with the numbers of the subformulae of F. We set M(p,k)=1 if the k-th term of ¥ contains
the propositional variable p and M(p,k)=0 otherwise. This results in the following matrix for ¥
123
110
011
101
111

"'-O'UI

The conjunctions of the original formula ¥ correspond to the columns of the matrix. The clauses of the
totally multiplied form of ¥ correspond to the paths through the matrix. A path is obtained by taking in
each column of M a nonzero entry and writing down the variable of the corresponding row. Thus a path
is a sequence (p;,p,, P3) Where M(p,,1) = M(p,,2) = M(p;,3) = 1. For instance (p,p.q), (p,s.r) or
(s,s,8) are paths through M. We say that a path P subsumes another path Q, if the set of variables of P is
a subset of the set of variables of Q, i.e. if the clause corresponding to P subsumes the clause



corresponding to Q.
The terms of the reduced form (2) of ¥ can be obtained as follows: The paths are computed just as before
but only the first occurrence of a variable in the path is counted: Then (p,q) is the path (p,p,q) or (r,q) is
the path (r,q,r) in M.
The terms of the totally reduced form (3) correspond to the following subset of paths of M: If a path P of
M contains two entries of the same variable in two different columns i and j, for instance (p,p,q), then all
paths differing from P only in either i or j, namely the paths (p,p.q), (p.s,q), (r.p,q) and (s,p,q), are
subsumed by (p,q) or equal to (p,q) up to permutation. The generation of these redundant paths can be
avoided in the following way: Having developed a partial path (p,,p,.....p;) as before take a 1-entry in
the column i+1 only if M(p;, i+1)=0 for all j with 1<j<i, otherwise continue with column i+2.
If we develop the paths beginning with the row s in our example, we see that all columns except the first
can be disregarded.
Once we developed the path containing only the variable s, we can cancel the whole row: all paths
starting with a different variable and containing s are subsumed by the path (s).
This is the analogon to the transformation:
(pATAS) v (PAGAS) V (QATAS) = 5 A ((PAT) V (PAQ) V (QAT)).
Developing first the paths starting from s (i.e. the paths (s,...)) avoids computing unnecessary paths:
Beginning with the paths starting from p, one obtains the paths (p,q), (p.r), (p,s). But (p,s) is
redundant, since it is subsumed by (s). Later we will prove that the strategy of developing first a row
with a maximal number of 1-entries always produces a minimal set of paths.
The computation of P from the matrix M is done as follows:
1. At the beginning the result set Pis empty.
First we develop the s-row. The second and third column don't have to be considered, since
they have a 1-entry at s. Thus we obtain the path (s), add it to P and cancel the s-row from the
matrix. Now we have P={(s)} and

2. Next we develop the p-row obtaining the two paths (p,q) and (p,r) (the second column can be
canceled, since it contains a l-entry for p), add them to the solution set and obtain
P={(s),(p,9),(p,r)}. Now the p-row can be canceled also and the remaining matrix is

123
M= q| 011
r 101
This matrix corresponds to the formula
F =rvqv(q AT)
Now the absorption law is applicable to ¥ yielding
F=rvq
The analogon in our procedure is the deletion of the third column of M and hence
12
M= q] 01
10

3. Now the only remaining path in M is (r,q). This path is added to the solution set and the result is

3



P={ (), (p.®, (p.1), .0}
This is the set of prime implicants of the original formula ¥ and since no pair of clauses is resolvable, it
is already a simplest equivalent of .

2. Normal Form Matrices

We use the following notions of the propositional calculus:

P is a set of propositional variable symbols. L is the set of all propositional literals (+p and -p).

For any object o containing variables we define P(0) as the set of all variables occurring in o. L(0)
is the set of all signed variables occuring in 0. P*(0) is the set of all variables occurring with
positive sign in o, P-(0) is the set of all variables occurring with negative sign in o and P*(0)=

P*(0) " P(0).

We write =G to denote that the propositional formulae ¥ and G are logically equivalent.

2.1 Definition:
A normal form matrix (NF-matrix) M is an nxk-matrix over the set {0,1}. The rows of M are labeled
with different literals from L. We write M(p,i) for the element of M in the p-th row and the i-th column.
We define
FoM) =\, Vp:M(p iy1 P » the formula in conjunctive normal form belonging to M and
FoM) =V, -k/\P'M(p iy<1 P » the formula in disjunctive normal form belonging to M.
We call these formulae the totally multiplied forms of M.

2.2 Definition:
Let M be an NF-matrix.
(i) We say that a column i of M absorbs a column j of M, if M(p,i) < M(p,j) for all pe L(M).
(i) A column i of M is called tautological, if there is a pe L(M) with M(p,i)=M(-p.i)=1.
(iii) A complete path P through M is a sequence (p,;...,p,) of variables such that M(p,.i)=1 for
each i and PX(P) = @.
A path through M is a subsequence of a complete path. If P and Q are paths of M, then we
denote their concatenation by PeQ.
We write P(i) for the i-th element of the path P.
(iv) Let Pbe a set of paths through a matrix M.
We define
F(P) :=/N\p, vaeL(P) p , the formula in conjunctive normal form belonging to P and
F(P = Vp, preL(P) p , the formula in disjunctive normal form belonging to P,
In the following M is a NF-matrix.

2. mma:
The set P of all complete paths through a NF-matrix M represents the totally multiplied form of the
formula belonging to M, i.e.

Fo(B) =Fy(M) and F(P) =F(M) =



2.4 Definition:
We say that a path P subsumes a path Q, if L(P) = L(Q). We write P<Q if P subsumes Q and P<Q if
P=Q or P<Q.

2.5 Remark:
The relation < is a partial order on the set of all paths through M.

The next lemma says that subsumed paths can be canceled from path sets and absorbed columns can be
canceled from NF-matrices:

2.6 Lemma:

(©  Let Pbe a set of paths through M and P,Qe P with P < Q. Then
FA(PD) =F(P-{Q})

(ii) Letiand jbe columns of M such that i absorbs j. Let M' be the NF-matrix obtained by canceling
the column j of M. Then

Fo(M) = F(M) [ |
2.7 Lemma:
(i) Let p be arow of M such that M(p,1)=1. Each complete path P containing p at a position kz1with
p#P(1) is a subsumed path.
(ii) Let P be a complete path of M with P(j)=p. If there is a column i#j, such that M(p,i)=1 and pP(i),
then P is a subsumed path.
Proof:

(1) Since M(p,1)=1, the path Q defined by Q(1)=p and Q(j)=P(j) for j>1 is a complete path of M. Since
pe L(P), L(Q) = L(P)\ {P(1)} = L(P).

(ii) Since M(p,i)=1, the path Q defined by Q(i)=p and Q(j)=P(j) for j#i is a complete path of M. Since
pe L(P), I(Q) = L(P)\ {P()} = L(P). w

3. The Multiplication Algorithm

We are now ready to formulate the algorithm that performs an optimized multiplication between
conjunctive and disjunctive normal form.

Algorithm
Transform
Input: An NF-matrix M.
Output: A set Pof paths through M such that F.(M) = Fy(D) and F,(M) =F(P)
1. P:=0.
Cancel all tautological columns of M.



2. Cancel all absorbed columns of M.

If M is now a matrix with only zero entries, go to 5.
3. Take a row p of M that has a maximal number of 1-entries and permute the columns of M in
such a way, that M(p,1) = 1. Generate all paths of M with initial part (p) at column 2 and add
them to 2.
4. Cancel the row p of M and go to 2.
5.Retum 2.

Generate all paths of M with initial part Q at column i
Input: A matrix M corresponding to a formula ¥ in conjunctive normal form, a path Q, developed
from column 1 to column i-1, and a column i of M.
Output: Q= {Pe P | P is output of transform and P has initial part Q}
Remark: All paramelters are value parameters, especially the matrix M is unchanged when the procedure
has terminated.
1. If i is greater than the last column of M then return {Q}.
2. If there is a pe P(Q) such that M(p,i) = ltheni:=i+1; goto 1.
3. @=0.
For all g LIM)\{-p | pe Q} such that M(q,i) =1 do
3.1 Generate all paths of M with initial part Q@(q) at column i+1;
3.2 Add these paths to @,
3.3 Cancel the row q from M.
4. Return Q,

Since the algorithm may still produce subsumed paths, these are removed after the last step of the
transform algorithm. In the following AM) denotes the set of paths that can be obtained from the matrix
M using the algorithm above and which does not contain subsumed paths.

3.1 Lemma:
Let P,Q be paths generated by the algorithm. If P is a permutation of Q, i.e. if L(P) = 1(Q), then P=Q.

Proof:
Suppose P#Q and j is the first index for which P(j)2Q(j). Since Q is a permutation of P, there is a i#j
with Q(j)=P(i). Suppose i<j. Since j is the first index, such that P(j)2Q(j) we have Q()=P(@i)=Q(i), but
according to step 2 of the generate algorithm, Q cannot have multiple occurrences of a literal, which is a
contradiction. Hence we have i>j. In the same way we get P(j)=Q(m) for some m>j. Therefore P and Q
have the following form:
1 j-1 j i
P = (P(1),...,PG-1,PG),.....P(1),...)
Q = (P(D)....PG-1),P3),...PG)......)
1 1] m
Without loss of generality we may assume that P was developed before Q by the algorithm. After the
development of P first all other paths beginning with P(1),...,P(j) must have been developed and
thereafter the row P(j) must have been deleted according to step 4 of the transform algorithm or step 3.3



of the generate algorithm. Hence the path Q, which contains P(j), could not have been developed and this
s a contradiction. n

Thus two different paths produced by the algorithm indeed correspond to two different clauses.

3.2 Remark:

Lemmata 2.3 to 2.8 together show, that for each complete path P of a matrix M there is a path Qe BM)
with Q<P.

The last step of the algorithm assures that P<Q implies P=Q for arbitrary P,Qe AM).

The next lemma justifies step 2 of the transformation algorithm. It says that by developing at first a row
with a maximal number of 1-entries, not more paths are produced than by developing any other row that
is not maximal. Example 1.1 showed that the converse is not true in general: if at first the s-row is
developed, the result contains fewer paths than by developing at first the p-row.

33 TLemma:

Let p and q be rows of an nxk NF-matrix M such that Ziﬂ. § M(q,i) < ZH__k M(p.i). Suppose Pis the
set of paths obtained by developing the row p at first and Qs the set of paths obtained by developing the
row q at first. If P is any path in P, then there is a path Q in @, such that Q is only a permutation of P.

Proof:

Without loss of generality we permute the columns of M in such a way, that we have first the set C, of
columns i with M(p,i)=M(q,i)=1, then C, with M(p,i)=1, M(q,i)=0, then C; with M(p,i)=0, M(q,i)=1,
and last C, with M(p,i)=M(q,)=0. From X,_, , M(g,) < Z,_, , M(p,i) follows that C,#@.
Furthermore we assume that absorbed columns in M are already deleted.

Then we can write M in the following form:

@ 6 G &

P 1.1 1.1 0.0 0.0

¢ | 11 00 11000

We have to construct to each path P in Pa path Q in Q that is a permutation of P.

Case I P has the form (p,q,....), where p is from C,; and q is from C;.

It is easy to see that the following path Q is in @ first take q from C, and then p from C,. The rest of the
sequence can be obtained in the same way as by developing p first. Moreover Q is only a permutation of
pP. :

Case II: P has the form (p,X,,....X,¥;»----¥,,)» Where p is taken from C,, the x; are taken from C; and
the y; are taken from C,. We show that the same path P is inQ

After the development of the p-row this row has been deleted according to step 3. Let M’ be the resulting
matrix:



¢ 151S |G
p 1.1(1.1]0.0]0.0
M’ = Xy 1
.x 1
m
Yq 1
v, 1

There is only one possibility that the path P=(p,X{s..0X sY 10--0¥,) 1S DOt developed in Q; one column j
of the set C, or the set C,, from which one of the x; or y; of P has been taken, has been canceled in step
2 of the transform algorithm.

The absorbing column h, against which j has been canceled, must be from C, or C,, since M(p,j)=0 and
M(p.i)=1 for all ie C,UC,. Suppose that je C,. This implies M(q,j)=1 and so we have M(q,j) 2 M(q,h).
Furthermore we have M(u,j) = M(u,h) for all u#q, since h absorbs j in M'. Together we have
M(u,j) 2 M(u,h) for all ue L(M), i.e. h absorbs j already in M and this is a contradiction. Thus j must
be from C, and there must be some y, with M(y,,j)=1. By an analogous argument h must be from C;.
There must be an x_such that M(x ,h)=M'(x_,h)=1. Since j is absorbed by h, we have M'(x,,j)=1, hence
also M(x_,j)=1. Thus we have the following situation:

LGha Jooo
X 1 1
T
M=
s 1

But in this situation the path P=(....x ,...,y,....) could not have been developed according to step 2 of
the generate algorithm. Therefore the path P must be in Q. |

4. The Simplest Equivalent

In this section we show that the algorithm of chapter 3 produces the set of prime implicants of a formula.
Moreover it is shown how the core implicants and the absolutely eliminable implicants of a formula can
be determined in terms of NF-matrices. This classification of implicants is necessary to find a simplest
equivalent of a formula.

4.1 Definition:
(i) A prime implicant of a formula ¥ in conjunctive normal form is a term that is implied by ¥ and

subsumes no shorter term that is implied by ¥. The prime implicant of a formula G in disjunctive normal
form is defined dually.



(ii) LetP and Q be paths of a matrix M such that P*(P)NP(Q) = @. Let re PHP)NP(Q). Then we
call P and Q r-resolvable and their r-resolvent R is defined as

R=R\(r} @ Q\{-r}
We write R = P +_Q. Furthermore we write R = P+Q, if there is a re P*(P)\P(Q) withR = P+Q.

4.2 I emma:
Let P,Q and R be paths of a matrix such that P<Q and P and R as well as Q and R are r-resolvable.
ThenP+ R<Q+. R |

The main interest in prime implicants lies in the fact that a simplest CNF formula G equivalent to ¥is a
conjunction of prime implicants of ¥ [LS80]. The prime implicants of a given CNF formula ¥ can be
obtained by the method of iterated consensus described in [QuS9]: The nontautological resolvents of
disjunctions of ¥ are repeatedly formed and added to ¥. At the same time subsuming terms are deleted.
When no new terms can be added that are not subsumed by existing terms, the set of prime implicants
has been obtained. Thus the prime implicants of ¥ are the minimal (with respect to the subsumption
order) elements of the set of all clauses that are implied by .

‘We now show that a formula ¥ obtained by the transform algorithm is the set of all its prime implicants.

4.3 Lemma;
Let P and Q be r-resolvable paths from ‘AM) and R=P+ Q such that R is nontautological.
Then there is an Se AM) with S<R.

Proof:

W.lo.g. let P=(r,u,...,u,w,,.. ,wj) and Q=(-r,u,,..,u;,s,,..,8,), i,j,;k2 0. Then we have
R=(u1,..,ui,wl,..,wj,sl,..,sk). We define U:={u,,..,u;}, S:={ s,,..,5,} and W:={ wl,..,wj}.

We have to show that there is a path S in RM) such that L(S) € L(R)= UUWUS. Let ¢ be any column
of M with M(r,c)=1. Then M(-r,c)=0, since otherwise the column ¢ would be tautological. Since
Q=(-r,v;,..,u;,8,..,8; ) is a path through M and M(-r,c)=0, there must be an xe UUS with M(x,c)=1.
Analogously if d is any column of M with with M(-r,d)=1, then there must be a ye UUW with
M(y,d)=1.

The same argument shows that for any column e with M(r,e)=M(-r,e)=0 there must be a ze UUW with
M(z,e)=1 and a z’€e UUS with M(z',e)=1.

Now we have shown that for each column ¢ of M there exists an pe UUWUS such that M(p.c)=1. This
implies that there is a complete path P through M with P(P) ¢ UUWUS. Together with Remark 10 this
implies that there is a path Se P with I(S) ¢ L(P) ¢ UUWUS. [ ]

Lemma 4.3 shows that the method of iterated consensus applied to a set AM) does not change AM).
Therefore we have the following

4.4 Corollary:
‘AM) is the set of prime implicants of F_(M). ]

Since the set of prime implicants of an unsatisfiable propositional formula is empty, we have



4.5 Corollary:
Let Fbe an unsatisfiable ground formula and M the NF-matrix of F. Then AM)=@. |

The next corollary shows that one can dispense with the deletion of absorbed columns for the price of
obtaining eventually more redundant paths in the result.

4.6 Corollary:

Let A be the algorithm of chapter 4, let AM) be the set of paths produced by A and let A' be the same
algorithm with the exception that absorbed columns of a matrix are not deleted. Then each path generated
by A' is either in AM) or it is subsumed by some path in AM).

Proof:

Let Qbe the set of paths produced by A'. The construction of A and A' shows that AM) Q. Let Qe Q)
AM). Hence Q cannot be a prime implicant of F-(M), but Q is implied by F-(M), hence Q is subsumed
by some prime implicant Q'e AM). [}

In general the set of prime implicants of a formula does not represent its simplest equivalent. Therefore
the prime implicants can be classified into three categories [LS80]:

4.7 Definition:

(i) Core implicants are those implicants that cannot be obtained as a resolvent of other implicants.

(it) Absolutely eliminable implicants are those that can be obtained as a resolvent of implicants,
but cannot itself resolve with other implicants.

(iii) Eliminable implicants are those that are neither core nor absolutely eliminable implicants.

(iv) A simplest equivalent of a formula ¥ is a minimal subset S of the set of prime implicants of F,
such that S is logically equivalent to 7.

Any simplest equivalent to a formula must contain the core implicants and a subset of the eliminable
implicants. The absolutely eliminable implicants can be ignored.

4.8 Example:

The "naive" way to transform the formula F = (p&>q) A (p<=r) into conjunctive normal form results in
the formula F = (-pvq) A (pv-q) A (-pvr) A (pv-1). The set of prime implicants of Fis P= {(-pvq),
(pv-Q), (-pvr), (pv-1), (-qvr), (qv-1r)}. Since each element of Pcan resolve with some other element of
F and each element of ¥ can be obtained as a resolvent of two other implicants of ¥, all implicants are
eliminable. The sets {(-pvq), (pv-1), (-qvr)} and {(pv-q), (-pvr), (qQv-1)} are simplest equivalents to F.

In the following we give a characterization of core and absolutely eliminable implicanmats in terms of
paths through NF-matrices.

4.9 Lemma:
Let M be an NF matrix with PX(M)@ and re PX(M). Suppose that the columns of M are ordered in such

10



a way that

M@,l)=..=Mem)=1
M(-rm+1) = ... = M(-r,m+n) = 1 and
M(r,m+n+1) = ... = M(r,m+n+k) = 0.Since re P*(M) we have m>1 and n>1.

Let R be any complete path of BM) of the form
R = (by,ee0sbpysCprennsCpndyyennndy)
and let B= {b,,....b_ .}, C= {c,....c, }and D={d,,...,d, }.
(i) Suppose r,-r¢ BUC UD, B¢ C UD and C¢ B UD.
Then there are P,Qe AM) with R=P+ Q and R does not subsume any other path of AM).
(ii) If there are P,Qe BM) with R=P+Q then r,-r¢ BUC UD, B¢ C UD and C¢B UD.

Proof:

(i) The construction of M and R shows that P := (r,...r, CyreensCprdys...,dy) and
q := (byse.ssbpys Tye.-1,dy,.,dy ) are complete paths of M and R =P+ Q. We only have to show that
P,Qe AM). We assume the converse. Then either P or Q must be a subsumed path. W.lo.gletPbe a
subsumed path.

Case I: there is a path P'#R of AM) with P'<P. Then re L(P"), since otherwise L(P") = CUD = L(R),
i.e. P'<R. Let R' =P'+ Q. Then R'< P+ Q = R, which implies R'=R. Now we have R=P'+ Q with
P'.Qe AM).

Case II: R< P, i.e. I(R) ¢ L(P). Since r ¢ B, each b, must be in CUD, which is a contradiction to the
premise.

Since ‘AM) does not contain subsumed paths the second part of (i) is shown too.

(ii) R=P+Q is only possible for P:=(r,...,1,c,,...,.C,d;,...,d,) and Q:=(b;,....b_,-T,...,-1,d{,....d}). If
B < CuD or C ¢ B UD then R<P and R<Q, hence P,Qg AM). [ ]

4.10 Lemma:
If Re AM) with R = P, +...+P_ and P,e AM) for each i then there are P,Qe PAM) with R=Q+P.

Proof:

We show the lemma for n=3. The proof easily can be generalized to the case n>3.

LetR =P, +p P, + P, with P,, P,, P;e P(M). Then there is a Q€ (M) with QISP1+P P, If
Q= P1+P P, we are ready. Therefore let Q; < P1+p P,.If q¢ L(Q,) then Q; <P, +5 P, + P, =R,

which is a contradiction. If on the other hand we L(Q,), then Q, + P; <P, +5 P, + P, =R.
Furthermore there must be a Q'€ AM) with Q< Q, +g P, <R, from which follows Q'= Q, +g P, =R.
Take Q:=Q, and P:=P,. [

4.11 Corollary:
Core implicants are those implicants C that cannot be obtained in the form C=P+Q. ]

4.12 Theorem:

(i)  Each implicant Pe AM) with PH(M) < P(P) is a core implicant.

(i) Each implicant Pe AM) with P(P) — P(M)\P*(M) that is a resolvent of other implicants is
absolutely eliminable.
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Proof:
(i) Let P*(M) c P(P) and P=Q+ R. Then re PX(M), which implies re P(P). This is a contradiction to
4.9 (ii). Now (i) follows from 4.10.

(ii) Since -re L for each re L(P), P cannot resolve with any other implicant. |

4.13 L emma:
Let #be a set of prime implicants. Each implicant P of ¥ that is absolutely eliminable does not occur in
any simplest equivalent to F.

Proof:

Let G be a simplest equivalent to ¥ and pe ¥ be absolutely eliminable, i.e. there are Q,Re F with P=Q+R
and P does not resolve with any element from .

Now suppose Pe G. If Q and R are in G, then G\{P} is equivalent to G, which is a contradiction.

Assume Qg G. Since Qe ¥, there are S,Te G with Q=S+T. Hence P=S+T+R and again G\{P} is
equivalent to G. u

4.14 Example:
Consider the problem to transform the formula
F=(paqau) v (-pA-gAr) v s
into conjunctive normal form. We have the following NF matrix M:

1 123
P 100
M= P 010
q 100
q 010
r 010
s 001
ul 100

Then AM) = {(p,-q,8), (-p,q,8), (p.1-8), (-p,s,v), (.1.8), (-g,S.u), (r,s,u)}.
We have P*(M)={p,q}. Lemma 4.12(i) shows that the implicants (p,-q,s) and (-p,q,s) are core
implicants. All other implicants are seen to be resolvents according to 4.9(1):

(p.r,5) = (Q.1.8) +, (P,-q.5)

¢p:s,w) = (-q.8,u) +; (-p.g.S)

(@r,8) = (pr.s) +, (-p.q:8)

(-q.8.0) = (-p;s;w) +, (p.-q.8)

@s,) = (p.1,s) +, (-p.s;w) = (Qr8) +4 (-q,5.0)
Since POIMN\ PE(M) = {r,5,u}, it follows from 4.12(ii) that (r,s,u) is absolutely eliminable. Any simplest
CNF equivalent to ¥ consists of the core implicants (p,-q,s) and (-p,q,s), one clement of the set {(p.1.s),
(q,1,5)} and one element of the set {(-p,s,u), (-q,s,u)}.

Our definition of core implicants (4.7) differs from [L.S80], where a core implicant is defined to be any
implicant of a CNF formula that is not implied by all other implicants. We now show that the two
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definitions are equivalent:

4,15 Lemma;:
Let Fbe a set of prime implicants of a formula G in conjunctive normal form. If there is a Pe F such that
P is implied by all other implicants of 7, then there are Q,,...,Q € ¥ with P=Q,+...+Q,..

Proof:

Either P itself is a resolvent of implicants of ¥ or P is subsumed by a resolvent of implicants in ¥. In the
first case we are ready. Now assume R < P with R=R,+...+R_ and the R, are all in ¥. This implies
R'<R for some R'e ¥. Hence we have R'<P with R'e ¥, which implies P¢ ¥, a contradiction. [ ]

4.16 Theorem:
C is a core implicant of a set ¥ of prime implicants of a formula G iff C is not implied by F\{C}.

Proof:

a) If C is not implied by F\{C}, then it cannot be obtained in the form C =P+Q. Then 4.11 implies that
Cis a core implicant.

b) If Cis implied by A\{C]}, then it cannot be a core implicant due to 4.15. ]

Loveland and Shostak [LS80] define absolutely eliminable implicants to be those implicants that are
resolvents of core implicants. But this definition does not catch the intuitive meaning of absolutely
eliminable, since it cis possible, that an implicant does not occur in any simplest equivalent to a formula
but nevertheless it is not absolutely eliminable: In example 4.14 the implicant (r,s,u) does not occur in
any simplest equivalent to ¥ (it is absolutely eliminable according to definition 4.7) but it is not a
resolvent of the core implicants (r,-q,s) and (-p,q.s).

5. Conversion of Arbitrary Formulae

In section 3 we described the basic step of the conversion algorithm: the conversion between conjunctive
and disjunctive normal form. The transformation of an arbitrary formula ¥ into clausal normal form (or
disjunctive normal form, respectively) starts with the innermost terms of ¥ and multiplies them using
successively the basic algorithm until the desired normal form is achieved.

5.1 Example:
Let
F=x v ((yv(zax)) A (-yv(za-x)).
The transformation of ¥ into CNF takes the following steps: First the innermost formulae yv(zAx) and
-yv(zA-x), which are in DNF, are transformed into CNF and then concatenated. This yields:
Fii=x v ((yV2)A (YVXOA (-YVZ)A (-yVv-X))
Now the innermost formula (yvz)A (yvx)a (-yvz)a (-yv-x) is transformed from CNF into DNF:

Fo=X V (YAZA-X) V (-YyAZAX)

13



The final transformation is from DNF into CNF and yields

F=xvy)a(xvz)
which represents the set of prime implicants of .
On the other hand the outermost-innermost multiplication yields the formula

G:=(XvyVvz) A (XVYVX) A (XV-YVZ) A (XV-yV-X)
which can be reduced to (xvy) A (xv-yvz) by removing subsumed clauses. The reduction to the set of
prime implicants, however, can only be achieved by a resolution step.
The multiplication algorithm described in this paper has been implemented in the MKRP theorem prover
[KM84]. It works especially well for examples with nested equivalences, as it is the case with Andrew's
example [H80]. An equivalence of the form f, <> f, <> ...<> f__, will result in 2" clauses in the best
case of transformation and in 4" clauses in the worst case. Our algorithm always produces the minimal
number of 2" clauses.
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