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Abstract: 

Resolution based theorem proving systems require the conversion of predicate logic formulae into clausal 

normal form. One step of all procedures performing this transformation is the multiplication into 

conjunctive normal form. In general this is a critical step. since it can result in an exponential increase in 

the size of the original formula. In general the resulting clausal normal form even contains many 

redundant clauses. This paper presents a multiplication algorithm that avoids the generation of these 

redundant clauses. It is shown that the set of clauses generated by this algorithm is the set of prime 

implicants (in the sense of Quine) of the original formula. Especially in those cases where the usual 

multiplication algorithm produces a contradictory set of ground clauses the improved algorithm generates 

the empty clause. 
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Abstract:

Resolution based theorem proving systems require the conversion of predicate logic formulae into clausal
normal form. One step of all procedures performing this transformation is the multiplication into
conjunctive normal form. In general this is a critical step, since it can result in an exponential increase in
the size of the original formula. In general the resulting clausal normal form even contains many
redundant clauses. This paper presents a multiplication algorithm that avoids the generation of these
redundant clauses. It is shown that the set of clauses generated by this algorithm is the set of prime
implicants (in the sense of Quine) of the original formula. Especially in those cases where the usual
multiplication algorithm produces a contradictory set of ground clauses the improved algorithm generates

the empty clause.



1. Introduction 

Most resolution based theorem proving systems require that the logical formulae, which are to be 

proved, should be converted into clausal normal form. This transformation usually takes several steps 

including the elimination of implications and equivalences, skolemization and sometimes the resulting 

formula can be splitted into several easier to prove subformulae [EW83]. In any case, the last step of the 

procedure consists in the multiplication of formulae containing only the connectives A, v and --, to 

disjunctive normal form or to conjunctive normal form, respectively. Usually the transformation into 

disjunctive form is required for formulae to be tested for splitting whereas conversion into conjunctive 

form is necessary for the single splitparts. In general this multiplication is the most critical step of the 

algorithm, as it can result in an inflation of the original formula For a multiplication of a disjunctive form 

'D to a conjunctive form C(or vice versa) the number of subformulae of Cdepends exponentially on the 

number of subformulae of 'D. But in general most of the resulting formulae are redundant, as the 

following example shows: 

1.1 Example: 

The propositional formula 

g:=(PArAS) V (pAqAS) V (qArAS) 

is to be transformed into CNF. 

In the following we drop the v and write conjunctions as sets. 

Multiplying yields 

{ppq, ppr, pps, pqq, pqr, pqs, psq, psr, pss, 

(1) rpq, rpr, rps, rqq, rqr, rqs, rsq, rsr, rss, 

spq, spr, sps, sqq, sqr, sqs, ssq, ssr, sss} 

We call this form the totally multiplied form of !F. 
Using the commutativity and idempotence of v this clause set can be simplified to 

{pq, pr, ps, pq, pqr, pqs, psq, psr, ps, 

(2) rpq, rp, rps, rq, rq, rqs, rsq, rs, rs, 

spq, spr, sp, sq, sqr, sq, sq, rq, s} 

In this formula all multiple occurrences of clauses and all clauses that are subsumed by some other 

clause, are redundant. (A clause C is said to subsume another clause D, if C is a proper subset of D). 

Deleting these redundant clauses yields 

(3) {pq, pr, rq, s} 

In this particular example the formula g: to be transformed into CNF is given in DNF. Since this is the 

basic case for our algorithm, we first concern with the transformation from DNF into CNF. The 

transformation from CNF into DNF is symmetric and therefore need not be considered. 

The example shows that the multiplication process produces many terms that can be deleted by 

subsequent simplification steps. Would it not be better to avoid the generation of these redundant terms 

in the first place? Ideally the output of such an algorithm should be a minimal representation of the 

original formula In this paper we present an algorithm that multiplies formulae into clausal normal form 

without producing redundant clauses. The output Pof the algorithm, given a formula !F. is minimal in the 

following sense: P is the set of all clauses implied by !F. such that for each clause C in P there is no 
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1. Introduction

Most resolution based theorem proving systems require that the logical formulae, which are to be
proved, should be converted into clausal normal form. This transformation usually takes several steps
including the elimination of implications and equivalences, skolernization and sometimes the resulting
formula can be Splitted into several easier to prove subformulae [EW83]. In any case, the last step of the
procedure consists in the multiplication of formulae containing only the connectives A, v and —-1 to
disjunctive normal form or to conjunctive normal form, respectively. Usually the transformation into
disjunctive form is  required for formulae to be tested for splitting whereas conversion into conjunctive
form is necessary for the single splitparts. In general this multiplication is the most critical step of the
algorithm, as it  can result in an inflation of the original formula. For a multiplication of a disjunctive form
1) to a conjunctive form C (or vice versa) the number of subformulae of C depends exponentially on the
number of subformulae of ’D. But in general most of the resulting formulae are redundant, as the
following example shows:

1.1 Example:
The propositional formula

.‘T= (pArAS) v (pAqAS) v (qArAs)
is to be transformed into CNF.
In the following we drop the v and write conjunctions as sets.
Multiplying yields

{pm, ppr. pps. pqq. pqr. pqs. psq. psr. pss.
(1) rpq, rpr, rps, rqq, rqr, rqs, rsq, rsr, rss,

q ,  spr, sps, sqq, sqr, sqs, ssq, ssr, sss}
We call this form the totally multiplied form of ?.
Using the commutativity and idempotence of v this clause set can be simplified to

{m. pr. ps, pq. pqr. pqs. psq, psr, ps.
(2) rpq, rp, rps, rq, rq, rqs, rsq, rs, rs,

q, spr, sp, sq, sqr, sq, sq, rq, s}
In this formula all multiple occurrences of clauses and all clauses that are subsumed by some other
clause, are redundant. (A clause C is  said to subsume another clause D ,  if C is a proper subset of D).
Deleting these redundant clauses yields

(3) {pq. pr. rq, S}

In this particular example the formula 7 to be transformed into CNF is given in DNF. Since this is the

basic case for our algorithm, we first concern with the transformation from DNF into CNF. The
transformation from CNF into DNF is symmetric and therefore need not be considered.
The example shows that the multiplication process produces many terms that can be deleted by
subsequent simplification steps. Would it not be better to avoid the generation of these redundant terms
in the first place? Ideally the output of such an algorithm should be a minimal representation of the
original formula. In this paper we present an algorithm that multiplies formulae into clausal normal form
without producing redundant clauses. The output !Pof the algorithm, given a formula IF, is minimal in the
following sense: 1’ is the set of all clauses irnplied by ?, such that for each clause C in Q’there is no



subset of C that is implied by !J. Thus P is logically equivalent to !J. Such a set is called a set of prime 

implicants of :F and this set is uniquely determined by :F. Especially if :F is an unsatisfiable ground 

formula then P consists only of the empty clause. The standard method to obtain the set of prime 

implicants from a clause set C is the successive computation of resolvents and the deletion of subsumed 

clauses [Qu59]. 

In general the set of prime implicants is not absolutely minimal, as the following example shows: Let ~ 

be the clause set {Cl' Cz' C3, C4 }, where Cl={p, q, r}, Cz={ -q, r}, ~={q, s}, C4={r, s}. The 

clause D={p, r} is a subset of Cl and is implied by g:. Thus the set {D, Cz,~, C4 } is the set of prime 

implicants of :F, but it is not minimal, since the set {D, Cz' ~} is already equivalent to g:. Such a 

minimal subset of the set of prime implicants is called a simplest equivalent. In general this minimal 

representation of a formula is not unique. However, if the set P of prime implicants of a formula :Fdoes 

not contain a pair of resolvable clauses, then P is already a simplest equivalent of g:. 
This paper is concerned with the simplification of formulae on the basis of the equality of some elements 

of a formula, where the equivalence relation itself is deliberately left unspecified. We formulate our 

results in the language of pure propositionallogic, but the reader should be aware that the propositional 

variables can stand for several things: 

1.2 Example:
 

The simplification of pl\(pvq) to p means that any formula, which is a conjunction between an element p
 

and a disjunction having an element equal to p as disjunct, is reduced to p.
 

a) If the elements p and q are interpreted as atomic formulae of predicate logic together with syntactic
 

equality, then the formula PxI\(PxvQa) can be reduced to Px under this particular interpretation, 

whereas the formula PXI\(PyvQa) cannot. 

b)	 Suppose that the propositional variables are interpreted as formulae and the equivalence relation is 

taken to be equality up to renaming of bound variables. Then PXI\(PyvQa) is equivalent to 

('v'xPx)I\«'v'yPy)vQa) and the formulae 'v'xPx and 'v'yPy are equal up to renaming of bound 

variables, hence the reduction to 'v'xPx is possible. 

Using example 1.1 we now describe how this algorithm works: 

We write the formula :F as a 3x4-matrix M and label the rows of M with the variables of :F and the 

columns of M with the numbers of the subformulaeof!J. We set M(p,k)=1 if the k-th term of :Fcontains 

the propositional variable p and M(p,k)=O otherwise. This results in the following matrix for :F 
123 

P 110 

M= q 0 1 1 

r 1 0 1 

s 1 1 1 

The conjunctions of the original formula :Fcorrespond to the columns of the matrix. The clauses of the 

totally multiplied form of :Fcorrespond to the paths through the matrix. A path is obtained by taking in 

each column of M a nonzero entry and writing down the variable of the corresponding row. Thus a path 

is a sequence (PI'PZ' P3) where M(pl'l) = M(Pz,2) = M(P3,3) = 1. For instance (p,p,q), (p,s,r) or 

(s,s,s) are paths through M. We say that a path P subsumes another path Q, if the set of variables of P is 

a subset of the set of variables of Q, i.e. if the clause corresponding to P subsumes the clause 
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subset of C that is implied by 1T. Thus EP is logically equivalent to 9'. Such a set is called a set of prime
implicants of 9' and this set is uniquely determined by ff. Especially if 9’ is an unsatisfiable ground
formula then ? consists only of the empty clause. The standard method to obtain the set of prime
implicants from a clause set C is the successive computation of resolvents and the deletion of  subsumed
clauses [Q1159].

In general the set of  prime implicants is  not absolutely minimal, as the following example shows: Let _‘f
be the clause set {CP C2, C3, C4}, where C1={p, q, r}, C2={—q, r}, C3=={q, s}, C4={r, s}. The
clause D={ p,  r} is a subset of C1 and is implied by ff. Thus the set {D, C2, C3, C4} is the set of prime
implicants of ‚£ but it is  not minimal, since the set {D, C2, Q}  is already equivalent to ?. Such a
minimal subset of the set of prime implicants i s  called a simplest equivalent. In general this minimal
representation of a formula is not unique. However, if the set Q’Of prime implicants of a formula ,‘7 does
not contain a pair of resolvable clauses, then {Pis already a simplest equivalent of 92
This paper is concerned with the simplification of formulae on the basis of the equality of some elements
of  a formula, where the equivalence relation itself is deliberately left unspecified. We formulate our
results in the language of pure propositional logic, but the reader should be aware that the propositional
variables can stand for several things:

1.2 Example:
The simplification of pA(pvq) to p means that any formula, which is a conjunction between an element p
and a disjunction having an element equal to p as disjunct, is reduced to p.
a) If the elements p and q are interpreted as atomic formulae of predicate logic together with syntactic

equality, then the formula PxA(vQa) can be reduced to Px under this particular interpretation,
whereas the formula PxA(Pva) cannot.

b)  Suppose that the propositional variables are interpreted as formulae and the equivalence relation is
taken to be equality up to renaming of bound variables. Then PxA(Pva) is equivalent to
(VxPx)A((VyPy)a) and the formulae VxPx and VyPy are equal up to renaming of bound

variables, hence the reduction to VxPx is possible.

Using example 1.1 we now describe how this algorithm works:
We write the formula 9' as a 3x4-matrix M and label the rows of M with the variables of ‚T and the
columns of M with the numbers of  the subformulae of 9'. We set M(p,k)=1 if the k-th term of 9' contains
the propositional variable p and M(p,k)=0 otherwise. This results in the following matrix for 9'

1 2 3

1 l 0

0 1 1

1 0 1

1 1 1

"A
”U

I

The conjunctions of the original formula _‘FcorreSpond to the columns of the matrix. The clauses of the
totally multiplied form of 9' correspond to the paths through the matrix. A path is obtained by taking in
each column of M a nonzero entry and writing down the variable of the corresponding row. Thus a path

is  a sequence (pppz, p3) where M(p1,l)  = M(p2,2) = M(p3,3) = 1. For instance (p,p,q), (p,s,r) or

(s,s,s) are paths through M. We say that a path P subsumes another path Q, if the set of variables of P is
a subset of the set of variables of Q, i.e. if the clause corresponding to P subsumes the clause



corresponding to Q.
 

The terms of the reduced form (2) of :rcan be obtained as follows: The paths are computed just as before
 

but only the fIrst occurrence of a variable in the path is counted: Then (p,q) is the path (p,p,q) or (r,q) is
 

the path (r,q,r) in M.
 

The terms of the totally reduced form (3) correspond to the following subset of paths of M: If a path P of
 

M contains two entries of the same variable in two different columns i and j, for instance (p,p,q), then all
 

paths differing from P only in either i or j, namely the paths (p,p,q), (p,s,q), (r,p,q) and (s,p,q), are
 

subsumed by (p,q) or equal to (p,q) up to permutation. The generation of these redundant paths can be
 

avoided in the following way: Having developed a partial path (Pl'Pz,... ,Pi) as before take a I-entry in
 

the column i+l only ifM(Pj' i+l)=O for allj with I$j$i, otherwise continue with column i+2.
 

Ifwe develop the paths beginning with the row s in our example, we see that all columns except the fIrst
 

can be disregarded.
 

Once we developed the path containing only the variable s, we can cancel the whole row: all paths
 

starting with a different variable and containing s are subsumed by the path (s).
 

This is the analogon to the transformation:
 

(pArAS) v (pAqAS) v (qATAS) ~ S A «pAT) v (pAq) v (qAT».
 

Developing fIrst the paths starting from s (Le. the paths (s,...» avoids computing unnecessary paths:
 

Beginning with the paths starting from p, one obtains the paths (p,q), (p,r), (p,s). But (p,s) is
 

redundant, since it is subsumed by (s). Later we will prove that the strategy of developing fIrst a row
 

with a maximal number of I-entries always produces a minimal set of paths.
 

The computation of Pfrom the matrix M is done as follows:
 

1.	 At the beginning the result set Pis empty. 

First we develop the s-row. The second and third column don't have to be considered, since 

they have a I-entry at s. Thus we obtain the path (s), add it to Pand cancel the s-row from the 

matrix. Now we have P={ (s)} and 
123
 

p 110
 

M=	 q 0 1 1
 

r 1 0 1
 

2.	 Next we develop the p-row obtaining the two paths (p,q) and (p,r) (the second column can be 

canceled, since it contains a I-entry for p), add them to the solution set and obtain 

P={(s),(p,q),(p,r)}. Now the p-row can be canceled also and the remaining matrix is 
123
 

M= q\ 011
 

r 1 0 1
 

This matrix corresponds to the formula 

l' =rvqv(q A r) 

Now the absorption law is applicable to l' yielding 

l' =rvq 

The analogon in our procedure is the deletion of the third column ofM and hence 
2 

M=	 q 0 1
 

r 1 0
 ~ 
3. Now the only remaining path in M is (r,q). This path is added to the solution set and the result is 

3 

corresponding to Q.
The terms of the reduced form (2) of ‚'F can be obtained as follows: The paths are computed just as before
but only the first occurrence of  a variable in the path is counted: Then (p,q) is the path (p,p,q) or (r,q) is
the path (r,q,r) in M.
The terms of the totally reduced form (3) correspond to the following subset of paths of M:  If a path P of
M contains two entries of the same variable in two different columns i and j, for instance (p,p,q), then all
paths differing from P only in either i or j, namely the paths (p.p,q), (p‚s‚q)‚ (r,p.q) and (s.p.q). are
subsumed by (p,q) or equal to (p,q) up to permutation. The generation of these redundant paths can be
avoided in the following way: Having deve10ped a partial path (pl,p2,...,pi) as before take a l-entry in
the column i+1 only if M(pj, i+l)=0 for all j with lSjSi, otherwise continue with column i+2.
If we develop the paths beginning with the row s in our example, we see that all columns except the first
can be disregarded.
Once we developed the path containing only the variable 3, we can cancel the whole row: all paths
starting with a different variable and containing s are subsumed by the path (s).
This is the analogon to the transformation:
(pAI‘AS) v (pAClAS) v (qArAs) _) s A ((pAr) v (pAq) v (qm)).
Developing first the paths starting from s (i.e. the paths (s,...)) avoids computing unnecessary paths:
Beginning with the paths starting from p,  one obtains the paths (p,q), (p,r), (p,s). But (p,s) is
redundant, since i t  is subsumed by (s). Later we will prove that the strategy of developing first a row
with a maximal number of l-entries always produces a minimal set of paths.
The computation of ffrom the matrix M is done as follows:

1. At the beginning the result set ‘Pis empty.
First we deve10p the s-row. The second and third column don't have to be considered, since
they have a l-entry at s .  Thus we obtain the path (s), add it to fand cancel the s—row from the
matrix. Now we have !P={(s)} and

2. Next we deve10p the p—row obtaining the two paths (p,q) and (p,r) (the second column can be
canceled, since it contains a l-entry for p), add them to the solution set and obtain
1’={(s),(p,q),(p,r)} . Now the p-row can be canceled also and the remaining matrix is

1 2 3

M = q 0 1 1
r l 0 1

This matrix corresponds to the formula
T = rq(q A I)

Now the absorption law is applicable to T yielding
T=wq

The analogon in our procedure is the deletion of the third column of M and hence
_ 1 2

M = q 0 l
r 1 0

3. Now the only remaining path in M is (r,q). This path is added to the solution set and the result is

3



P = { (s), (p,q), (p,r), (r,q)}. 

This is the set of prime implicants of the original formula !Fand since no pair of clauses is resolvable, it 

is already a simplest equivalent of !J, 

2. Normal Form Matrices 

We use the following notions of the propositional calculus:
 

P is a set of propositional variable symbols. lL is the set of all propositionalliterals (+p and -p).
 

For any object 0 containing variables we define P(o) as the set of all variables occurring in o.lL(o)
 

is the set of all signed variables occuring in o. P+(o) is the set of all variables occurring with
 

positive sign in 0, P-(o) is the set of all variables occurring with negative sign in 0 and P±(o)=
 

JP+(0) nP-(o) .
 

We write !F=(j to denote that the propositional formulae !Fand (j are logically equivalent.
 

2.1 Definition:
 

A normal form matrix (NF-matrix) M is an nxk-matrix over the set {O,I}. The rows of M are labeled
 

with different literals from lL. We write M(p,i) for the element of M in the p-th row and the i-th column.
 

Wedefme
 

Fc(M) := I\i=l..k Vp:M(p,i)=l p, the formula in conjunctive normal form belonging to M and 

Fo(M) := Vi=l..k I\p:M(P,i)=l P , the formula in disjunctive normal form belonging to M. 

We call these formulae the totally multiplied forms of M. 

2,2 Definition: 

Let M be an NF-matrix. 

(i)	 We say that a column i of M absorbs a columnj of M, ifM(p,i) ~ M(p,j) for all pelL(M). 

(ii)	 A column i of M is called tautological, if there is a pe lL(M) with M(p,i)=M(-p,i)=I. 

(Hi)	 A complete path P through M is a sequence (Pl""'Pn) of variables such that M(Pi,i)=1 for 

each i and F(P) = 0. 
A path through M is a subsequence of a complete path. If P and Q are paths of M, then we 

denote their concatenation by P@Q. 

We write P(i) for the i-th element of the path P. 

(iv)	 Let Pbe a set of paths through a matrix M. 

Wedefme 

Fc(P) := I\pe'PVpEL(P) p, the formula in conjunctive normal form belonging to Pand 

Fo(P) := V PE pl\peL(P) P , the formula in disjunctive normal form belonging to P. 
In the following M is a NF-matrix. 

2.3 Lemma:
 

The set P of all complete paths through a NF-matrix M represents the totally multiplied form of the
 

formula belonging to M, Le.
 

Fc(P)=Fo(M) andFo(p)=Fc(M)	 
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SP=  { (S). (p‚q)‚ (p.r). (r‚q)}.
This is the set of prime implicants of the original formula ,‘T and since no pair of clauses is resolvable, it
is already a simplest equivalent of f.

2. Normal Form Matrices

We use the following notions of the propositional calculus:
IP is a set of propositional variable symbols. ll. is the set of all propositional literals (+p and -p).
For any object 0 containing variables we define 1P(o) as the set of all variables occurring in 0. He)
is  the set of all signed variables occuring in o .  1P+(o) is the set of all variables occurring with
positive sign in o, lP'(o) is the set of all variables occurring with negative sign in o and IP*(o)=
IP+(o) n IP'(o) .
We write 759 to denote that the propositional formulae 17' and (3 are logically equivalent.

2,1 &finig'gn;
A normal form matrix (NF-matrix) M is an nxk-matn'x over the set {0,1}. The rows of M are labeled
with different literals from L. We write M(p,i) for the element of M in the p-th row and the i—th column.
We define

FC(M) := Aizl. .k Vp-M(p.i)=1 p , the formula in conjunctive normal form belonging to M and
FD(M) := Vi=l._k ApM(pi)=1 p , the formula in disjunctive normal form belonging to M.

We call these formulae the totally multiplied forms of M.

Let M be an NF-matrix.
(i) We say that a column i of M absorbs a column j of M,  if M(p,i) S M(p,i) for all pe IL.(M).
(ii) A column i of M is called tautological, if there is a pe lL.(M) with M(p,i)=M(-p,i)=l.
(iii) A complete path P through M is  a sequence (p1,...‚pn) of variables such that M(pi.i)=l for

each i and Pi?) = 0.
A path through M is a subsequence of a complete path. If P and Q are paths of M, then we
denote their concatenation by P6 Q.
We write PG) for the i-th element of the path P.

(iv) Let ".Pbe a set of paths through a matrix M.
We define
FC(1’) := Ape fvpew) p , the formula in conjunctive normal form belonging to {Fand

FD(1’) := VPE 1,/\I‚EL(I‚) p , the formula in disjunctive normal form belonging to 1’.
In the following M is a NF-matrix.

2. ma:
The set ? of all complete paths through a NF-matrix M represents the totally multiplied form of the
formula belonging to M, i.e.

Fc(fl’)‘=*FD(M) and FD(®EFC(M) -



2.4 Defmition:
 

We say that a path P subsumes a path Q, iflL(P) C lL(Q). We write P<Q if P subsumes Q and P~Q if
 

P=QorP<Q.
 

2.5 Remark:
 

The relation < is a partial order on the set of all paths through M.
 

The next lemma says that subsumed paths can be canceled from path sets and absorbed columns can be 

canceled from NF-matrices: 

2.6 Lemma: 

(i)	 Let Pbe a set ofpaths through M and P,Qe Pwith P < Q. Then 

Fc(~ ;:Fc(P- {Q}) 

(ii)	 Let i and j be columns of M such that i absorbs j. Let M' be the NF-matrix obtained by canceling 

the column j of M. Then 

Fc(M) ;: Fc(M')	 • 

2,7 Lemma: 

(i)	 Let p be a row of M such that M(p,I)=I. Each complete path P containing p at a position k;t:lwith 

p:;eP( I) is a subsumed path. 

(ii)	 Let P be a complete path of M with P(j)=p. If there is a column i:;t:j, such that M(p,i)=! and p:;eP(i), 

then P is a subsumed path. 

Proof: 

(i) Since M(p,I)=l, the path Q defmed by Q(l)=p and Q(j)=P(j) for j>l is a complete path of M. Since 

pe lL(P), L(Q) = lL(P) \ {P(l)} c lL(P). ,'I 

(ii) Since M(p,i)=l, the path Q defmed by Q(i)=p and Q(j)=P(j) for j:;ei is a complete path of M. Since 

pe L(P), lL(Q) = L(P) \ {P(i)} c L(P). • 

3. The Multiplication Algorithm 

We are now ready to formulate the algorithm that performs an optimized multiplication between
 

conjunctive and disjunctive normal form.
 

Algorithm
 

Transform
 

Input: An NF-matrix M .
 

Output: A set Pofpaths through M such that Fc(M) = Fo(1? and Fo(M) =Fc(~
 

1. P:= 0.
 
Cancel all tautological colwnns of M.
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2.4 Definition:
We say that a path P subsumes a path Q, if IL(P) c IL(Q). We write P<Q if P subsumes Q and PSQ if
P=Q or P<Q.

2.5 Remark:
The relation < is a partial order on the set of all paths through M.

The next lemma says that subsumed paths can be canceled from path sets and absorbed columns can be
canceled from NF—matrices:

2.6 Lemma:
(i) Let f.?be a set of paths through M and P,Qe !Pwith P < Q. Then

Fc(® E Fc(1)" {QD
(ii) Let i and j be columns of M such that i absorbs j.  Let M' be the NF-matrix obtained by canceling

the column j of M. Then
FC(M) s FC(M') I

2,12 Lemma;
(i) Let p be a row of  M such that M(p,l)=1. Each complete path P containing p at a position kqtlwith

p¢P(1) is a subsumed path.
(ii) Let P be a complete path of M with PG)=p. If there is a column iaä, such that M(p,i#l and p¢P(i),

then P is a subsumed path.

Proof:
(i) Since M(p,1)=l, the path Q defined by Q(1)=p and Q(i)=P(j) for j>1 is a complete path of M. Since

PE MP), MQ) = MP) \ {P(1)} = 1L(P).

(ii) Since M(p,i)=1, the path Q defined by Q(i)=p and QÜ)=P(j) for j¢i is a complete path of M. Since

PG MP). MQ) = 1L(P) \ { P(i)} = MP). I

3. The Multiplication Algorithm

We are now ready to formulate the algorithm that performs an Optimized multiplication between
conjunctive and disjunctive normal form.

Algorithm
Transform
Input: An NF-matrix M .
Output: A set ft" of paths through M such that FC(M) E FD(T) and FD(M) E Fem?

l .  171: 0.
Cancel all tautological columns of M.



2. Cancel all absorbed columns of M.
 

If M is now a matrix with only zero entries, go to 5.
 

3. Take a row p of M that has a maximal number of I-entries and permute the columns of M in 

such a way, that M(p, 1) = 1. Generate all paths of M with initial part (p) at column 2 and add 

them to P. 

4. Cancel the row p of M and go to 2. 

5. Return P. 

Generate all paths of M with initial part Q at column i 

Input: A matrix M corresponding to a formula 1'in conjunctive normal form, a path Q, developed 

from column 1 to column i-I, and a column i of M. 

Output: Q= {PE pip is output of transform and P has initial part Q} 

Remark: All parameters are value parameters, especially the matrix M is unchanged when the procedure 

has terminated. 

1. If i is greater than the last column of M then return {Q}. 

2. If there is a pE 1P(Q) such that M(p,i) = Ithen i:=i+1; go to 1. 

3. Q;=0. 
For all qE lL(M)\{ -p I pE Q} such that M(q,i) = 1 do 

3.1 Generate all paths of M with initial part Q@(q) at column i+1; 

3.2 Add these paths to Q, 

3.3 Cancel the row q from M. 

4. Return Q, 

Since the algorithm may still produce subsumed paths, these are removed after the last step of the 

transform algorithm. In the following ~M) denotes the set of paths that can be obtained from the matrix 

M using the algorithm above and which does not contain subsumed paths. 

3.1 Lemma:
 

Let P,Q be paths generated by the algorithm. IfP is a permutation ofQ, Le. iflL(P) = lL(Q), then P=Q.
 

Proof: 

Suppose P;eQ and j is the fIrst index for which PU);eQ(j). Since Q is a permutation of P, there is a i:;t:j 

with Q(j)=P(i). Suppose i<j. Since j is the fIrst index, such that P(j);eQ(j) we have Q(j)=P(i)=Q(i), but 

according to step 2 of the generate algorithm, Q cannot have multiple occurrences of a literal, which is a 

contradiction. Hence we have i>j. In the same way we get P(j)=Q(m) for some m>j. Therefore P and Q 

have the following form: 

1 j-l j
 

P = (P(l), ,P(j-l),P(j),.... ,P(i), )
 

Q = (P(l), ,P(j-l),P(i),.. ,P(j), )
 

1 j-l j m 
Without loss of generality we may assume that P was developed before Q by the algorithm. After the 

development of P fIrst all other paths beginning with P(l),... ,P(j) must have been developed and 

thereafter the row P(j) must have been deleted according to step 4 of the transform algorithm or step 3.3 
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2. Cancel all absorbed columns of M.
If M is now a matrix with only zero entries, go to 5.

3. Take a row p of M that has a maximal number of l—entries and permute the columns of M in
such a way, that M(p,1) = 1. Generate all paths of M with initial part (p) at column 2 and add
them to 1’.

4. Cancel the row p of  M and go to 2.
5. Return 1’.

Generate all paths of M with initial part Q at column i
Input: A matrix M corresponding to a formula 9-” in conjunctive normal form, a path Q,  developed

from column 1 to column i - l  , and a column i of M.
Output: Q: {Pe T | P is output of transform and P has initial part Q}
Remark: All parameters are value parameters, especially the matrix M is unchanged when the procedure

has terminated.
l .  I f i  is greater than the last column of M then return {Q}.
2. If there is  a pe P(Q) such that M(p,i) = 1then i:=i+1; go to 1.
3. nQl.
For all qe lL.(M)\{ -p I pe Q}  such that M(q,i) = 1 do

3.1 Generate all paths of M with initial part Q@(q) at column i+1;
3.2 Add these paths to Q,
3.3 Cancel the row q from M.

4.  Return Q

Since the algorithm may still produce subsumed paths, these are removed after the last step of the
transform algorithm. In the following {P(M) denotes the set of paths that can be obtained from the matrix
M using the algorithm above and which does not contain subsumed paths.

3.1 Lemma:
Let P,Q be paths generated by the algorithm. If P is a permutation of Q, i.e. i f  ll..(P) = lL(Q), then P=Q.

Proof:
Suppose P¢Q andj is the first index for which P(j);¢Q(i). Since Q is  a permutation of P ,  there i s  a i¢j

with QÜ)=P(i). Suppose i<j. Since j is the first index, such that P(j)#:Q(i) we have QG)=P(i)=Q(i), but

according to step 2 of the generate algorithm, Q cannot have multiple occurrences of a literal, which is a

contradiction. Hence we have i>j. In the same way we get P(i)=Q(m) for some m>j. Therefore P and Q

have the following form:
1 j - l  j i

P = (P(l),...,P(j-1),P(i),....,P(i),...)
Q = (P(l),... ,P(j-l),P(i),..,P(i),  .....  )

1 j - l  j m
Without loss of generality we may assume that P was deve10ped before Q by the algorithm. After the
development of P first all other paths beginning with P(1),...,PÜ) must have been developed and
thereafter the row P(j) must have been deleted according to step 4 of the transform algorithm or step 3.3



of the generate algorithm. Hence the path Q, which contains PU), could not have been developed and this 

.isa contradiction. _ 

Thus two different paths produced by the algorithm indeed correspond to two different clauses. 

3.2 Remark:
 

Lemmata 2.3 to 2.8 together show, that for each complete path P of a matrix M there is a path QE ~M)
 

with Q$P.
 

The last step of the algorithm assures that P$Q implies P=Q for arbitrary P,QE ~M).
 

The next lemma justifies step 2 of the transformation algorithm. It says that by developing at first a row 

with a maximal number of I-entries, not more paths are produced than by developing any other row that 

is not maximal. Example 1.1 showed that the converse is not true in general: if at first the s-row is 

developed, the result contains fewer paths than by developing at first the p-row. 

3.3 Lemma:
 

Let p and q be rows of an nxk NF.;matrix M such that Li=l..k M(q,i) < Li=l..k M(p,i). Suppose Pis the
 

set of paths obtained by developing the row p at first and Qis the set ofpaths obtained by developing the
 

row q at first. IfP is any path in P, then there is a path Q in C4 such that Q is only a permutation of P.
 

Proof:
 

Without loss of generality we permute the columns of M in such a way, that we have first the set Cl of
 

columns i with M(p,i)=M(q,i)=I, then ~ with M(p,i)=I, M(q,i)=O, then <; with M(p,i)=O, M(q,i)=I,
 

and last C4 with M(p,i)=M(q,i)=O. From Li=l..k M(q,i) < Li=l..k M(p,i) follows that C2;t:0.
 

Furthermore we assume that absorbed columns in M are already deleted.
 

Then we can write M in the following form:
 

q S C; C
4 

M= 

p 

q 

I 1..1 

1..1 

1..1 

0..0 

0..0 

1..1 

0 ..0 

0..0 

.........................
 

We have to construct to each path P in P a path Q in Qthat is a permutation of P.
 

Case I: P has the form (p,q,....), where p is from Cl and q is from C3.
 

It is easy to see that the following path Q is in Q; first take q from Cl and then p from C2. The rest of the
 

sequence can be obtained in the same way as by developing p first. Moreover Q is only a permutation of
 

P.
 
Case 11: P has the form (p,xl'... ,xm'YI'... ,yn)' where p is taken from Cl' the Xi are taken from C3 and
 

the Yj are taken from C4. We show that the same path P is in Q;
 
After the development of the p-row this row has been deleted according to step 3. Let M' be the resulting
 

matrix:
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of the generate algorithm. Hence the path Q, which contains P(j), could not have been developed and this
.is ‘a contradiction. .

Thus two different paths produced by the algorithm indeed correspond to two different clauses.

3.2 Remark:
Lemmata 2.3 to 2.8 together show, that for each complete path P of a matrix M there is  a path Qe flM)

with QSP.
The last step of the algorithm assures that PSQ implies P=Q for arbitrary P,Qe ’_P(M).

The next lemma justifies step 2 of the transformation algorithm. It says that by developing at first a row
with a maximal number of l-entries, not more paths are produced than by developing any other row that
is not maximal. Example 1.1 showed that the converse is not true in general: if at first the s-row is
developed, the result contains fewer paths than by developing at first the p-row.

3.3 Lemma:
Let p and q be rows of an nxk NFématrix M such that 2i=l..k M(q,i) < 21:14; M(p‚i). Suppose Qis  the
set of paths obtained by deve10ping the row p at first and Qis the set of paths obtained by developing the
row q at first. If P is any path in 1’, then there is  a path Q in Q such that Q is only a permutation of P.

Proof:
Without loss of generality we permute the columns of M in such a way, that we have first the set C1 of
columns i with M(p,i)=M(q,i)=1, then C2 with M(p,i)=1, M(q,i)=0, then C‘3 with M(p,i)=0, M(q,i)=1,
and last C4 with M(p,i)=M(q,i)—-=0. From Zi= l . .k  M(q,i) < z i= l . .k  M(p,i) follows that C2¢¢ .

Furthermore we assume that absorbed columns in M are already deleted.
Then we can write M in the following form:

C1999

p 1..1 1..1 0..o o..0

q 1..1 o..0 __ 1..1 0..o

We have to construct to each path P in fl’a path Q in cat is a permutation of P.
Case I: P has the form (p,q,.. . .), where p is from C1 and q i s  from C3.

It is easy to see that the following path Q is in Q; first take q from C1 and then p from C2. The rest of the

sequence can be obtained in the same way as by developing p first. Moreover Q is only a permutation of

P . '
Case II: P has the form (p,xl,...,xm,y1,...,yn), where p is taken from C1, the xi are taken from C3 and
the yj are taken from C4. We show that the same path P is in Q;
After the development of the p-row this row has been deleted according to step 3. Let M‘ be the resulting
matrix:



M'=
 

<; S C3 C
4 

p 1..1 1..1 0..0 0..0 

Xl .. 
X 

m 

1 

1 

:1 .. 
Yn 

1 

1 

There is only one possibility that the path P=(p,xl""'~'Yl""'Yn)is not developed in Q; one columnj 

of the set ~ or the set C4, from which one of the Xi or Yj of P has been taken, has been canceled in step 

2 of the transform algorithm. 

The absorbing column h, against whichj has been canceled, must be from ~ or C4, since M(p,j)=O and 

M(p,i)=l for all ie C1uCz. Suppose thatje~. This implies M(q,j)=l and so we have M(q,j) ~ M(q,h). 

Furthermore we have M(u,j) ~ M(u,h) for all u~q, since h absorbs j in M'. Together we have 

M(u,j) ~ M(u,h) for all ue lL(M), Le. h absorbs j already in M and this is a contradiction. Thus j must 

be from C4 and there must be some Ys with M(ys,j)=l. By an analogous argument h must be from ~. 

There must be an xr such that M(~,h)=M'(xr,h)=l. Since j is absorbed by h, we have M'(xr,j)=l, hence 

also M(xr,j)=l. Thus we have the following situation: 
....h ......j .... 

M= 

X 
r 

YJ 

1 1 

1 

But in this situation the path P=(....Xr,... ,y5'''') could not have been developed according to step 2 of 

the generate algorithm. Therefore the path P must be in Q • 

4. The Simplest Equivalent 

In this section we show that the algorithm of chapter 3 produces the set of prime implicants of a formula 

Moreover it is shown how the core implicants and the absolutely eliminable implicants of a formula can 

be determined in terms of NF-matrices. This classification of implicants is necessary to find a simplest 

equivalent of a formula. 

4.1 Definition: 

(i) A prime implicant of a formula !Fin conjunctive normal form is a term that is implied by !Fand 

subsumes no shorter term that is implied by !F. The prime implicant of a formula (j in disjunctive normal 

form is dermed dually. 
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C1999 :

p l . . 1  1 . .1  0 . . 0  0..O

M' =
x1  1

x 1
rn

y1 1

y 1

There is only one possibility that the path P=(p,x1,...,xm,y1,...,yn) is  not developed in Q, one column j

of the set C3 or the set C4, from which one of the Xi or yj of P has been taken, has been canceled in step
2 of the transform algorithm.
The absorbing column h, against which j has been canceled, must be from C3 or C , since M(p,j)=0 and
M(p,i)=1 for all ie CIUCZ. Suppose that je CJ. This implies M(q,j)=l and so we have M(q,j) 2 M(q,h).

Furthermore we have M(u,j) 2 M(u,h) for all uatq, since h absorbs j in  M'. Together we have
M(u,j) 2 M(u,h) for all we MM), i.e. h absorbs j already in M and this is a contradiction. Thus j must
be from C4 and there must be some ys with M(ys,j)=1. By an analogous argument h must be from Q.
There must be an xr such that M(xr‚h)=M'(xr‚h)=1. Since j is absorbed by h, we have M'(xr‚j)=l‚ hence
also M(xr,j)=1. Thus we have the following situation:

. . . . h  . . . . . .] . . . .

x 1 1
f

M: :

ys 1

But in this situation the path P=(....xr,...,ys,...) could not have been developed according to step 2 of
the generate algorithm. Therefore the path P must be in Q I

4 .  The Simplest Equivalent

In this section we show that the algorithm of chapter 3 produces the set of prime implicants of a formula.
Moreover it is shown how the core implicants and the absolutely elirninable implicants of a formula can

be determined in terms of NF-matrices. This classification of implicants is necessary to find a simplest
equivalent of a formula.

am
(i) A prime implicant of a formula 9" in conjunctive normal form is a term that is implied by 9' and
subsumes no shorter term that is implied by f}: The prime irnplicant of a formula C} in disjunctive normal
form is defined dually.



(ii) Let P and Q be paths of a matrix M such that jp+(P)nJP-(Q) ::f:. 0. Let re jp+(P)nJP-(Q). Then we 

call P and Q r-resolvable and their r-resolvent R is defined as 

R == P\{ r} @ Q\{ -r} 

We write R = P +r Q. Furthermore we write R = P+Q, if there is a re ]?+(P)nJPT(Q) with R = P+rQ. 

4.2 Lemma:
 

Let P,Q and R be paths of a matrix such that P~Q and P and R as well as Q and R are r-resolvable.
 

Th~P~R~Q~R •
 

The main interest in prime implicants lies in the fact that a simplest CNF formula (j equivalent to !Fis a 

conjunction of prime implicants of !F [LS80]. The prime implicants of a given CNF formula !F can be 

obtained by the method of iterated consensus described in [Qu59]: The nontautological resolvents of 

disjunctions of !Fare repeatedly formed and added to g:. At the same time subsuming terms are deleted. 

When no new terms can be added that are not subsumed by existing terms, the set of prime implicants 

has been obtained. Thus the prime implicants of !F are the minimal (with respect to the subsumption 

order) elements of the set of all clauses that are implied by g:. 
We now show that a formula !Fobtained by the transform algorithm is the set of all its prime implicants. 

4.3 Lemma:
 

Let P and Q be r-resolvable paths from ~M) and R=P+rQ such that R is nontautological.
 

Then there is an Se ~M) with S~R.
 

Proof: 

WJ.o.g. let P=(r,ul''''ui ,w 1, .. ,wj ) and Q=(-r,ul' .. ,ui ,sl' .. ,sk)' i,j,k~ O. Then we have 

R=(u1,.. ,ui ,w1,.. ,wj ,Sl' .. ,Sk)' We define U:={ul' .. ,uJ, S:={ Sl' .. ,Sk} and W:={ w1,.. ,w). 

We have to show that there is a path S in ~M) such that lL(S) ~ lL(R)= UuWuS. Let c be any column 

of M with M(r,c)=l. Then M(-r,c)=O, since otherwise the column c would be tautological. Since 

Q=(-r,ui ,.. ,ui ,sl'.. ,sk) is a path through M and M(-r,c)=O, there must be an xe UuS with M(x,c)=l. 

Analogously if d is any column of M with with M(-r,d)=l, then there must be a ye UuW with 

M(y,d)=l. 

The same argument shows that for any column e with M(r,e)=M(-r,e)=O there must be a ze UuW with 

M(z,e)=l and a z'eUuS with M(z',e)=l. 

Now we have shown that for each column c of M there exists an pe UuWuS such that M(p,c)=l. This 

implies that there is a complete path P through M with l?(P) ~ UuWuS. Together with Remark 10 this 

implies that there is a path Se Pwith lL(S) ~ lL(P) ~ UuWuS. • 

Lemma 4.3 shows that the method of iterated consensus applied to a set ~) does not change ~M). 

Therefore we have the following 

4.4 Corollary:
 

~) is the set ofprime implicants ofFc(M).
 • 
Since the set of prime implicants of an unsatisfiable propositional formula is empty, we have 
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(ii) Let P and Q be paths of a matrix M such that lP+(P)a'(Q) at 0. Let re IP+(P)a'(Q). Then we
call P and Q r-resolvable and their r-resolvent R is  defined as

R E P\{r} © Q\{-—r}
We write R = P +: Q. Furthermore we write R = P+Q‚ if there is a re P+(P)a"(Q) with R == P+IQ.

4.2  Lemma:

Let P,Q and R be paths of a matrix such that PSQ and P and R as well as Q and R are r-resolvable.
ThenP+rRSQ+rR I

The main interest in prime implicants lies in the fact that a simplest CNF formula g equivalent to If is a
conjunction of prime implicants of ‚"F [LSSO]. The prime implicants of a given CNF formula 9' can be
obtained by the method of iterated consensus described in [Qu59]: The nontautological resolvents of
disjunctions of ‚T are repeatedly formed and added to ff. At the same time subsuming terms are deleted.
When no new terms can be added that are not subsumed by existing terms, the set of prime implicants
has been obtained. Thus the prime implicants of _‘F are the minimal (with respect to the subsumption
order) elements of the set of all clauses that are irnplied by 9?
We now show that a formula _‘T obtained by the transform algorithm is the set of all its prime implicants.

gamma;

Let P and Q be r—resolvable paths from RM) and R=P+rQ such that R is nontautological.
Then there is an Se  TIM) with S_<_R.

Proof:
W.l .o .g .  let  P=(r‚u1,„,ui ,w1,„,wj)  and Q=(-r,u1‚.. ,ui,sl, . . ,sk), i‚j,k_>_ 0 .  Then we have
R=(u1,..,ui,w1...,wj,sl,..,sk). We define U:={u1,..,ui}, S:={ 51...,sk} and W:={ w1,..,wj}.
We have to show that there is a path S in :P(M) such that ]L(S) g IL(R)= UUWUS. Let c be any column
of M with M(r,c)=1. Then M(-r,c)=0, since otherwise the column c would be tautological. Since
Q=(-r,ui,..,t.1i..sl,..,sk ) is a path through M and M(-r,c)=0, there must be an xe UUS with M(x,c)=l.
Analogously if d i s  any column of M with with M(—r,d)=1, then there must be a ye UUW with
M(y,d)=1.
The same argument shows that for any column e- with M(r,ekM(-r,e)=0 there must be a ze UUW with

M(z,e)=1 and a z'e UUS with M(z',e)=l.
Now we have shown that for each column c of M there exists an pe UUWUS such that M(p,c)=1. This
implies that there is a complete path P through M with IP(P) g UUWUS. Together with Remark 10 this
implies that there is a path Se  LPwith ]L(S) (_: MP) ; UUWUS. I

Lemma 4.3 shows that the method of iterated consensus applied to a set M) does not change RM).
Therefore we have the following

4.4 Corollary:
M) is the set of prime implicants of FC(M). I

Since the set of prime implicants of an unsatisfiable propositional formula is empty, we have



4.5 Corollary: 

Let .rbe an unsatisfiable ground formula and M the NF-matrix of 1'. Then ~M)=0. • 
The next corollary shows that one can dispense with the deletion of absorbed columns for the price of 

obtaining eventually more redundant paths in the result. 

4.6 Corollary:
 

Let A be the algorithm of chapter 4, let ~M) be the set of paths produced by A and let A' be the same
 

algorithm with the exception that absorbed columns of a matrix are not deleted. Then each path generated
 

by A' is either in ~) or it is subsumed by some path in ~.
 

Proof:
 

Let Qbe the set of paths produced by A'. The construction of A and A' shows that ~M) ~Q Let Qe Q\
 

~M). Hence Q cannot be a prime implicant ofFc(M), but Q is implied by Fc(M), hence Q is subsumed
 

by some prime implicant Q'e ~M). •
 

In general the set of prime implicants of a formula does not represent its simplest equivalent. Therefore
 

the prime implicants can be classified into three categories [LS80]:
 

4.7 Defmition: 

(i)	 Core implicants are those implicants that cannot be obtained as a resolvent of other implicants. 

(ii)	 Absolutely eIiminable implicants are those that can be obtained as a resolvent of implicants, 

but cannot itself resolve with other implicants. 

(iii)	 EIiminable impIicants are those that are neither core nor absolutely eliminable implicants. 

(iv)	 A simplest equivalent of a formula .ris a minimal subset S of the set of prime implicants of '.F. 
such that S is logically equivalent to 1'. 

Any simplest equivalent to a formula must contain the core implicants and a subset of the eliminable 

implicants. The absolutely eliminable implicants can be ignored. 

4.8 Example:
 

The "naive" way to transform the formula .r= (p<=}q) /\ (p~r) into conjunctive normal form results in
 

the formula !J' =(-pvq) /\ (pv-q) /\ (-pvr) /\ (pv-r). The set of prime implicants of .r is P = {(-pvq),
 

(pv-q), (-pvr), (pv-r), (-qvr), (qv-r)}. Since each element of P can resolve with some other element of
 

.rand each element of .rcan be obtained as a resolvent of two other implicants of .r. all implicants are
 

eliminable. The sets {(-pvq), (pv-r), (-qvr)} and {(pv-q), (-pvr), (qv-r)} are simplest equivalents to 1'.
 

In the following we give a characterization of core and absolutely eliminable implicanmats in terms of 

paths through NF-matrices. 

4.9 Lemma:
 

Let M be an NF matrix with F(M);e0 and re F(M). Suppose that the columns of M are ordered in such
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4.5 Corollary:
Let The an unsatisfiable ground formula and M the NF-matrix of I}: Then tP(M)=@. l

The next corollary shows that one can dispense with the deletion of absorbed columns for the price of
obtaining eventually more redundant paths in the result.

4.6 Corollary:
Let A be the algorithm of chapter 4 ,  let !P(M) be the set of paths produced by A and let A' be the same
algorithm with the exception that absorbed columns of a matrix are not deleted. Then each path generated
by A’ is either in ZKM) or it is subsumed by some path in HM).

Proof:
Let Qbe the set of paths produced by A'. The construction of A and A' shows that QM) gQ Let Qe Q)
QM). Hence Q cannot be a prime irnplicant of FC(M), but Q is implied by FC(M), hence Q is subsumed
by some prime implicant Q'e ‘.P(M). .

In general the set of prime implicants of  a formula does not represent its simplest equivalent. Therefore
the prime implicants can be classified into three categories [L880]:

am
(1) Core implicants are those implicants that carmot be obtained as a resolvent of other implicants.
(ii) Absolutely eliminable implicants are those that can be obtained as a resolvent of implicants,

but carmot itself resolve with other implicants.
(iii) Eliminable implicants are those that are neither core nor absolutely elirninable implicants.
(iv) A simplest equivalent of a formula 9' is a minimal subset S of  the set of prime implicants of £

such that S is logically equivalent to 7.

Any simplest equivalent to a formula must contain the core implicants and a subset of the elirninable
implicants. The absolutely eliminable implicants can be ignored.

4.8 Example:
The "naive" way to transform the formula :T = (pwq) A (par) into conjunctive normal form results in
the formula T = (-pvq) A (pv-q) A (-pvr) A (pv-r). The set of prime implicants of 9' is ? :  {(—pvq),

(pv-q), (-pvr)‚ (pv-r), (-q), (qv-r)}. Since each element of can resolve with some other element of

_‘F and each element of 37 can be obtained as a resolvent of two other implicants of {F, all implicants are
eliminable. The sets {(-pvq), (pV-r), (—q)} and {(pv-q), (-pvr), (qv-r)} are simplest equivalents to ‚'F.

In the following we give a characterization of core and absolutely eliminable implicanmats in terms of
paths through NF-matrices.

4.9 mma:

Let M be an NF matrix with PM and re WM). Suppose that the columns of M are ordered in such
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a way that 

M(r.1) = ... = M(r,m) = 1 

M(-r.m+1) = '" = M(-r.m+n) = 1 and 

M(r.m+n+1) = ... = M(r.m+n+k) = O.Since rE jp±(M) we have m~1 and n~l. 

Let R be any complete path of ~M) of the form 

R = (bI•...•bm.cl' ... ,cn.dl' ... ,dk ) 

and let B= {b1 •...•bm}, C= {cl'...•cn}and D={dl'... ,dk }. 

(i) Suppose r,-re BuC uD. B$ CuD and C$ BuD. 

Then there are P.QE ~M) with R=P+rQ and R does not subsume any other path of ~M). 

(ii) If there are P.QE ~M) with R=P+rQ then r.-re BuC uD, B$ CuD and C$B uD. 

Proof: 

(i) The construction of M and R shows that P:= (r•...•r. c1 .... ,cn.d1, ... ,dk ) and
 

q := (bl' ... ,bm,-r•... ,-r,dl'... ,dk ) are complete paths of M and R =P+rQ. We only have to show that
 

P.QE ~M). We assume the converse. Then either P or Q must be a subsumed path. W.l.o.g let P be a
 

subsumed path.
 

Case I: there is a path P',.eR of ~M) with P'<P. Then rE lL(P'). since otherwise lL(P') = CuD c: lL(R),
 

Le. P'<R. Let R' =P'+rQ. Then R'~ P+rQ = R, which implies R'=R. Now we have R=P'+rQ with
 

P'.QE~M).
 

Case 11: R< p. i.e.lL(R) ~ lL(P). Since re B, each bi must be in CuD. which is a contradiction to the
 

premise.
 

Since ~M) does not contain subsumed paths the second part of (i) is shown too.
 

(ii) R=P+rQ is only possible for P:=(r,... ,r,cl' ... ,cn,dl'...•dk) and Q:=(bI'... ,bm,-r,... ,-r,dI'... ,dk ). If
 

B ~ CuD or C ~ BuD then R<P and R<Q. hence P,Qe ~M). •
 

4.10 Lemma:
 

IfRE ~M) withR = P1+"'+Pn and PiE ~M) for each i then there areP.QE~) withR=Q+P.
 

Proof:
 

We show the lemma for n=3. The proof easily can be generalized to the case n>3.
 

Let R = PI +p P2 +q P3 with PI' P2, P3E P(M). Then there is a Q1E P(M) with Ql~Pl+pP2' If
 

Q1 = P1+pP2 we are ready. Therefore let Q1 < PI+p P2 . If q~lL(Ql) then Q1< PI +p P2 +q P3 = R.
 

which is a contradiction. If on the other hand WE lL(Ql)' then Q1 +q P3 ~ PI +p P2 +q P3 = R.
 

Furthermore there must be a Q'E ~M) with Q'~ Q1 +q P3 ~ R. from which follows Q'= Q1+qP3 = R.
 

Take Q:=QI and P:=P3·	 • 

4.11 Corollary:
 

Core implicants are those implicants C that cannot be obtained in the form C=P+Q.
 • 
4.12 Theorem: 

(i)	 Each implicant PE 1l:M) with F(M) ~ lP(P) is a core implicant. 

(ii)	 Each implicant PE ~M) with lP(P) ~ lP(M)\F(M) that is a resolvent of other implicants is 

absolutely eliminable. 
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a way that
M(r,1)  = = M(r,m) = 1

M(-r‚m+1) = = M(-r‚m+n) = 1 and
M(r,m+n+1) = = M(r,m+n+k) = 0.Since re IPHM) we have mal  and n21.

Let R be any complete path of (HM) of the form
R = (b1,...,bm,cl,...‚cn‚dl,...,dk)

and let B: {b1,....bm}, C= {01....,cn}and D={d1,....dk}.
(i) Suppose r,-re BUC uD, B; C uD and Ct; B UD.

Then there are P,Qe RM) with R=P+rQ and R does not subsume any other path of '_P(M).
(ii) If there are P,Qe SEM) with R=P+rQ then r,-re BUC UD, B4” C UD and C¢B UD.

Proof:
(i) The construction of M and R shows that P := (r,...‚r, c1 ,...,cn‚d 1 , . . . ,dk) and
q := (bl,...‚bm,-r,...‚—r,d1‚...,dk) are complete paths of M and R =P+IQ. We only have to show that
P,Qe flM). We assume the converse. Then either P or Q must be a subsumed path. W.l.o.g let P be a

subsumed path.
Case I: there is a path P'¢R of 11M) with P'<P. Then re LCP'), since otherwise lL(P') = CUD = 1L(R).
i.e. P'<R. Let R' =P'+rQ. Then R'S P+rQ = R,  which implies R'=R. Now we have R=P'+rQ with
P',Qe ’_P(M).
Case II: R< P, i.e. 1L(R) ; MP). Since I e B ,  each bi must be in CUD, which is a contradiction to the
premise.
Since QM) does not contain subsumed paths the second part of (i) is shown too.
(ii) R=P+rQ is only possible for P:=(r,...,r‚c1‚...‚cn,d1,.„,dk) and Q:=(b1....,bm,-r,...,-r,d1,...,dk). If
B ; CUD or C g B UD then R<P and R<Q, hence P,Qe ?(M). I

4.10 Lemma:
If Re KM) with R = P1+...+Pnl and Pie ?(M) for each i then there are P,Qe M) with R=Q+P.

Proof:
We show the lemma for n23. The proof easily can be generalized to the case n>3.
Let R = P1 +P P2 +q P3 with P l ,  P2, P3e T(M). Then there is  a Q le  1’(M) with Q1$P1+pP2. If

Q1 = P1+p  P2 we are ready. Therefore let Q1 < P1+p P2 . If qe HQI) then Q1 < PI +p P2 +q P3 = R,
which is  a contradiction. If on the other hand we IL.(Q1), then Q1 +q P3 S Pl  +p P2 +q P3 = R.
Furthermore there must be a Q'e flM) with Q's Q1 +q P3 5 R,  from which follows Q‘= Q1 +q P3 = R.

Take Q:=Ql and P:=P3. I

4.11 Corollary:
Core implicants are those implicants C that cannot be obtained in the form C=P+Q. I

4.12 ThQrem:
(i) Each implicant Pe SIM) with WM) g IP(P) is a core implicant.
(ii) Each implicant Pe QM) with M?) c_: IP(M)\IP*(M) that is a resolvent of other implicants is

absolutely eliminable.

l l



Proof: 

(i) Let P±(M) ~ pep) and P=Q+~. Then rE P±(M), which implies rE P(P). This is a contradiction to 

4.9 (ii). Now (i) follows from 4.10. 

(ii) Since -r~ lL for each rE lL(P), P cannot resolve with any other implicant. • 

4.13 Lemma:
 

Let .1"be a set of prime implicants. Each implicant P of .1"that is absolutely eliminable does not occur in
 

any simplest equivalent to 'J.
 

Proof:
 

Let g be a simplest equivalent to .1"and pE .1"be absolutely eliminable, i.e. there are Q,RE .1"with P=Q+R
 

and P does not resolve with any element from 'J.
 
Now suppose PE g. If Q and R are in g, then 0{P} is equivalent to g, which is a contradiction.
 

Assume Qli! g. Since QE!T, there are S,TE g with Q=S+T. Hence P=S+T+R and again 0{P} is
 

equivalent to g. •
 

4.14 Example:
 

Consider the problem to transform the formula
 

!T= (pl\ql\u) v (-pl\-ql\f) vs 

into conjunctive normal form. We have the following NF matrix M: 

p 

M= -p 

q 

'I 

r 

s 

u 

1 2 3 

100 

010 

100 

010 

0 1 0 

0 0 1 

100 

Then ~M) = {(p,-q,s), (-p,q,s), (p,r,s), (-p,s,u), (q,r,s), (-q,s,u), (r,s,u)}.
 

We have P±(M)={p,q}. Lemma 4.12(i) shows that the implicants (p,-q,s) and (-p,q,s) are core
 

implicants. All other impIicants are seen to be resolvents according to 4.9(i):
 

(p,r,s) = (q,r,s) +q (p,-q,s) 

(-p,s,u) = (-q,s,u) +q (-p,q,s) 

(q,r,s) = (p,r,s) +p (-p,q,s) 

(-q,s,u) = (-p,s,u) +P (p,-q,s) 

(r,s,u) = (p,r,s) +p (-p,s,u) = (q,r,s) +q (-q,s,u) 

Since P(M)\ F(M) = {r,s,u}, it follows from 4. 12(ii) that (r,s,u) is absolutely eliminable. Any simplest 

CNF equivalent to g:consists of the core implicants (p,-q,s) and (-p,q,s), one element of the set {(p,r,s), 

(q,r,s)} and one element of the set {(-p,s,u), (-q,s,u)}. 

Our defmition of core implicants (4.7) differs from [LS80], where a core impIicant is defined to be any 

implicant of a CNF formula that is not implied by all other impIicants. We now show that the two 
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Proof:
(i) Let Pi(M) g MP) and P=Q+rR. Then re IP1(M), which implies re MP). This is a contradiction to
4 .9  ( i i) .  Now (i) follows from 4 .10 .
(ii) Since -r¢ IL for each re LCP), P cannot resolve with any other implicant. I

4 .13  Lemma;

Let ‚‘F be a set of prime irnplicants. Each implicant P of i" that i s  absolutely eliminable does not occur in
any simplest equivalent to ‚%

Proof:
Let g be a simplest equivalent to 9' and pe fbe absolutely eliminable, i.e. there are Q,Re 97 with P=Q+R
and P does not resolve with any element from {F.

Now suppose Pe (j. If Q and R are in 5, then @{P} is equivalent to 9, which is a contradiction.
Assume Qe @. Since Qe 9', there are S.Te G with Q=S+T. Hence P=S+T+R and again g\{P} i s
equivalent to g. I

4.14 Example:
Consider the problem to transform the formula

9's (pAu) v (-pA-qAr) v s
into conjunctive normal form. We have the following NF matrix M:

__123
p 100

M: -p 010

q 100

«q 010
r 010

s 001

u 100

Then {EM) = {(I),-CLS), (—p‚q‚S). (p,r,s), (-p.s.U), (qm), (-q‚s‚u). (r‚s‚u)}-
We have IP*(M)={p,q} . Lemma 4.12(i) shows that the irnplicants (p,—q,s) and (-p,q,s) are core
implicants. All other irnplicants are seen to be resolvents according to 4.9(i):

(p.r.s) = (qm) +q (p,—CLS)
(—p‚s.u) = (-q‚s‚u) +q (—p‚q‚S)
(q‚r‚s) = (p,r,s) +p (-p.q.s)
(-q‚s‚u) = (-p.s.u) +1P (pres)
(r,s,u) = (p,r,s) +p (-p,s,u) = (q,r‚s) +q (—q,s‚u)

Since 1P(M)\ PKM) = {r,s,u}, it follows from 4.12(ii) that (r,s,u) is absolutely eliminable. Any simplest
CNF equivalent to ff consists of the core irnplicants (p,-q,s) and (-p,q,s), one element of the set {(p,r,s),

(q,r,s)} and one element of the set {(—p,s,u), (—q,s,u)}.

Our definition of core irnplicants (4.7) differs from [L880], where a core implicant is defined to be any
implicant of a CNF formula that is not implied by all other irnplicants. We now show that the two

12



definitions are equivalent: 

4,15 Lemma:
 

Let .rbe a set of prime implicants of a formula (j in conjunctive normal form. If there is a PE 1"such that
 

P is implied by all other implicanl:S of :F. then there are Ql'.··,Q E 1" with P=Ql+...+Qn'
 n

Proof: 

Either P itself is a resolvent of implicants of 1"or P is subswned by a resolvent of implicants in :r. In the 

first case we are ready. Now assume R < P with R=R1+...+R and the Ri are all in if. This impliesm 

R'::;R for some R'E if. Hence we have R'<P with R'E :r. which implies PE: :r. a contradiction. _ 

4.16 Theorem:
 

C is a core implicant of a set 1"ofprime implicants of a formula (j iff C is not implied by 1\{C}.
 

Proof:
 

a) If C is not implied by 1\{C}, then it cannot be obtained in the form C = P+Q. Then 4.11 implies that
 

C is a core implicant.
 

b) If C is implied by 1\{C}, then it cannot be a core implicant due to 4.15. _
 

Loveland and Shostak [LS80] define absolutely eliminable implicants to be those implicants that are
 

resolvents of core implicants. But this definition does not catch the intuitive meaning of absolutely
 

elirninable, since it cis possible, that an implicant does not occur in any simplest equivalent to a formula
 

but nevertheless it is not absolutely eliminable: In example 4.14 the implicant (r,s,u) does not occur in
 

any simplest equivalent to 1" (it is absolutely eliminable according to defmition 4.7) but it is not a
 

resolvent of the core implicants (r,-q,s) and (-p,q,s).
 

5. Conversion of Arbitrary Formulae 

In section 3 we described the basic step of the conversion algorithm: the conversion between conjunctive 

and disjunctive normal form. The transformation of an arbitrary formula 1"into clausal normal form (or 

disjunctive normal form, respectively) starts with the innermost terms of :Fand multiplies them using 

successively the basic algorithm until the desired normal form is achieved. 

5.1 Example: 

Let 

!F:= x v «yV(ZAX» /\ (-yv(Z/\-x». 

The transformation of :Finto CNF takes the following steps: First the innermost formulae yv(z/\x) and 

-yv(Z/\-x), which are in DNF, are transformed into CNF and then concatenated. This yields: 

:Ft:= x v «yvz)/\ (yvx)/\ (-yvz)/\ (-yv-x» 

Now the innermost formula (yvz)/\ (yvx)/\ (-yvz)/\ (-yv-x) is transformed from CNF into DNF: 

~:= x v (y/\Z/\-x) V (-y/\Z/\X) 
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definitions are equivalent:

4,1,5 Lemma;
Let 9' be a set of prime implicants of a formula (} in conjunctive normal form. Ifthere is a PE 9' such that
P is  implied by all other implicants of 9", then there are Q1,...‚Qne }“ with P=Ql+.. .+Qn.

Proof:
Either P itself is a resolvent of implicants of  9' or P is subsumed by a resolvent of implicants in 9'. In the
first case we are ready. Now assume R < P with R=R1+...+Rm and the Ri are all in _‘F. This implies
R'SR for some R‘e 9’. Hence we have R'<P with R'e 17, which implies Pe _‘f', a contradiction. I

4.16 Theorem:
C is a core implicant of a set {T of prime implicants of a formula g iff C is not implied by 9-\{ C}.

Proof:
a) If C is not implied by 9\{C}, then it cannot be obtained in the form C = P+Q. Then 4.11 implies that
C is a core implicant.
b) If C is implied by 9\{C} , then it cannot be a core implicant due to 4.15. I

Loveland and Shostak [L880] define absolutely eliminable implicants to be those implicants that are
resolvents of  core implicants. But this definition does not catch the intuitive meaning of absolutely
eliminable, since it cis possible. that an implicant does not occur in any simplest equivalent to a formula
but nevertheless it is not absolutely eliminable: In example 4.14 the implicant (r,s,u) does not occur in
any simplest equivalent to {F (it is absolutely eliminable according to definition 4.7) but it is not a
resolvent of the core implicants (r,-q,s) and (-p,q.s).

5. Conversion of Arbitrary Formulae

In section 3 we described the basic step of the conversion algorithm: the conversion between conjunctive
and disjunctive normal form. The transformation of an arbitrary formula ‚‘T into clausal normal form (or

disjunctive normal form. respectively) starts with the innermost terms of ‚'F and multiplies them using
successively the basic algorithm until the desired normal form is achieved.

5.1 Example:
Let

9%: x v ((yv(m)) A <—yv<zA-x».
The transformation of 9‘ into CNF takes the following steps: First the innermost formulae yv(2Ax) and
—yv(zA-x), which are in DNF, are transformed into CNF and then concatenated. This yields:

91:: x v ((yvz)A (yvx)A (-yvz)A (-yv-x))
Now the innermost formula (yvz)A (yvx)A (-yvz)A (-yv-x) is transformed from CNF into DNF:

372:: x v (yAZA-X) v (-yAZAx)

l3



The final transformation is from DNF into CNF and yields 

~:= (x v y) /\ (x V z) 

which represents the set of prime implicants of g::
 
On the other hand the outermost-innermost multiplication yields the formula
 

y:=(xvyvz) /\ (xvyvx) /\ (xv-yvz) /\ (xv-yv-x) 

which can be reduced to (xvy) /\ (xv-yvz) by removing subsumed clauses. The reduction to the set of 

prime implicants, however, can only be achieved by a resolution step. 

The multiplication algorithm described in this paper has been implemented in the MKRP theorem prover 

[KM84]. It works especially well for examples with nested equivalences, as it is the case with Andrew's 

example [H80]. An equivalence of the form f l ~ f2 ~ ...~ f +l will result in 2n clauses in the best n 

case of transformation and in 4n clauses in the worst case. Our algorithm always produces the minimal 

number of 2n clauses. 
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The final transformation i s  from DNF into CNF and yields
9 ; := (xvy)A(xvz )

which represents the set of prime irnplicants of 9'.
On the other hand the outerrnost-innennost multiplication yields the formula

Cj:=(xvyvz) A (xvyvx) A (xv—yvz) A (xv-yv-x)

which can be reduced to (xvy) A (xv-yvz) by removing subsumed clauses. The reduction to the set of
prime implicants. however, can only be achieved by a resolution step.
The multiplication algorithm described in this paper has been implemented in the MKRP theorem prover
[KM84]. It works especially well for examples with nested equivalences, as it is the case with Andrew's
example [H80]. An equivalence of the form f1 <=; f2 <==> „© f1n+1 will result in 2n clauses in the best
case of transformation and in 4'1l clauses in the worst case. Our algorithm always produces the minimal
number of 2n clauses.
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