uI8}ND|SIBSION 0S/9-a

6v0E YODHSOd
UIe}NDISIos|O) JDHSIBAIUN

AHOWIOU| YIleiaqydob4

)
Z.
[
wn
-
O
Z
L]
o
O
B
<
L)
-~
|
—
W/
<

CONSTRAINTS
J.Avenhaus, J.Denzinger, T.Hoffm.ann

SEKI Report SR-92-03 (SFB)

EFFICIENT

11Oddel - IA3S

EFFICIENT AC1-MATCHING USING
CONSTRAINTS

J.Avenhaus, J.Denzinger, T.Hoffmann
SEKI Report SR-92-03 (SFB)
LS

Efficient ACl-Matching using
Constraints

J. Avenhaus, J Denzinger, T. Hoffmann
FB Informatik
Universitdt Kaiserslautern
Postfach 3049
6750 Kaiserslautern
E-mail : {avenhaus, denzinge}@informatik.uni-kl.de

Abstract :

We present an algorithm for the matching problem modulo the theory
AC1t of associativity, commutativity and a unit element Straight forward
matching algorithms create a large number of branching points for
backtracking. To reduce the enormous search space we propose to
postpone the solution of subproblems and instead to approximate the
solutions by constraints. This allows one to have a global view on the
whole problem and so to reduce the large number of branching points.
We demonstrate the algorithm by some examples and give hints how
the general idea - contraint propagation - can be used for other theory
matching algorithms and how term constraints from calling functions of
our algorithm can be incorporated.

1. Introduction

As a basic operation used for simplification in deduction systems,
efficient matching is very important for a good performance of these
systems. In the last years the tendency to put more and more
knowledge into the basic inference rules used by deduction systems
resulted in the need for efficient theory matching and theory unification
algorithms. Although for most of the interesting theories it is possible
to simulate theory matching by theory unification, this solution of the
matching problem is in most cases not very efficient.

In this paper we present an algorithm for ACl-matching, that is
matching with function symbols that are commutative, associative and
have a neutral element, which uses constraint propagation to limit
unnecessary branching. We extend the technique developed for
AC-matching in [DG88] Since AC!I is a collapsing theory we have to
solve new problems. On the other hand it turned out that the idea of
using constraints is more powerful for the more complex problem of
ACl-matching than for AC-matching. We outline some ideas of how to
use this technique for matching modulo other theories.

The paper is structured as follows. After this section we give the

definitions needed throughout the paper and a description of the
theoretical and implementational background of theory, especially
ACl-matching. In section 3 we present an inference system for
ACl-matching and sketch the proof of its correctness and completeness.
In section 4 we describe, how we handle and process our constraints
and how the inference system can be transformed into an algorithm. In
the same section we also demonstrate the efficiency of this algorithm
by some examples. In section 5 we outline how to apply our method for
matching modulo other theories.

2. Notations and background

2.1 Notations

Let F be a finite set of function symbols of fixed arity and V be a
denumerable set of variables disjoint from F. The set of terms over F
and V is denoted by T(F,V). By V(t] we denote the set of all variables
occuring in a term t. Top(t] is the top-level symbol of t. A substitution
o is a mapping from V to T(F.V] with finite domain Dom(s]. It is
extended to a mapping from T(F.V) to T(F.V] in the usual way.

Given F and V, the equational theory =g induced by a set E of
equations over T(F,V] is defined to be the smallest congruence on
T(F.V]) containing E and closed under substitution. Two terms t; and t,
are said to be E-equivalent iff t; =g t5, holds. A substitution ¢ is an
E-match from the pattern t to the example s iff oft) =g s.

In the following we always assume F to be partitioned into disjoint sets
Facy Fy and Fyactr. where Fpoq is a non-empty set of binary operators
and Fy is the set of units for Fpoqy ie. Fy = {I; | f € Facql. The set E of
equations consists of the ACl-axioms for the operators of F 4y, le.

E = AC = {f{x.y] = H{y.x) . f{f{x,y)2]) = f{xfy.2]] f{x1) = x 1 { € Facyh
We use the following notations. With f,g.f;,.. we will denote elements of
Fact l1glgly.. are the corresponding members of F; and hkhy,.. are
elements of Fyacy. For variables we use x,y,zX;.. and elements of
T[F.V) are denoted by tt,.t,.. Finally s.s;. denote ground terms, i.e.
terms s with V(s] = @.

When using theory matching as an operation in deduction systems
pattern and example term have no variables in common. Therefore we
will assume in the following, that all example terms are ground terms.

2.2 Related results

The first work on theory matching was done by Hullot ([Hu79]) for the
theory AC. A similar framework was later used by Mzali in his works
on ACI-, AC-, A-, C-matching {[Mz85]] and D-matching ([Mz86]].
Nipkow used in [Ni89] the concept of variable abstraction, introduced
by Stickel in [St81] for unification. for combining matching algorithms

and dealing with collapsing theories. Kapur and Narendran [([KN90])
have shown that ACl-matching is NP-complete. Despite of this our
algorithm is fast on most inputs of practical interest.
- The framework of Mzali consists of four steps to perform in order to
solve a given matching problem, some of them several times :

- computation of a normalform for an efficient decision of =g

decomposition of problems t = s where top(t] is free

merging of found substitutions into the remaining problems and
mutation of problems t = s with top(t] is a theory symbol.

1

Because the first three steps are also important to our algorithm and
the forth step is the one which introduces most of the problems
concerning efficiency we will discuss them here more precisely.

Normalform for deciding =g

A theory matching algorithm always must be able to determine
wheater two terms are equal with respect to E. A standard way to do
this is to generate a unique normalform for all E-equal terms and then
to test the normalforms for syntactic identity. In [Mz85] there is a
classification of parts of some theories and their requirements for the
normalform. For example, if the associativity is part of the theory then
the terms have to be flattened. The commutativity allows one to order
the arguments. Idempotency in addition leads to a set representation.

For ACl-matching, this leads to ordered multisets as a data structure
for the arguments of symbols of F ;. The multisets are obtained by
flattening and sorting the arguments and by eleminating all occurences
of the corresponding l-element of a symbol in the set. So terms with
top-level function in Fpoy have the form f([tf1,..t2n], where the a;
indicate the number of occurences of t;. Further, as in the case of
AC-matching [([DG88]), the ordering can enhence the efficiency of the
algorithm by forcing easy parts of the problem to be solved first. We
use an ordering on the arguments where the smallest components are
the constants. then terms with top-level functions that are not ACI,
then the terms with top-level functions that are ACI and f{finally the
variables. Within each class, the symbols are ordered lexicographically.
Note that f[s®] denotes {(s] and f{s] denotes s.

Examples
f(a.f(g(a.b).f(1;,a))) has the normalform f{a2 g{a,b)].
f(x.glf(x,a).g(1;.g(a.f(a.x]]]])) has the normalform f{g[a.i;f(a,x]?) x].

f(f{h(a,b).f(a,x]).f(f(g(x.b) h(b.a]).{{x,y]}] has the normalform
t(a.h(a b).h(b.a).glb.x).x% y).

Decomposition

Decomposition steps handle E-matching problems of the form
h(ty....tn) = h[sy,...sn). i.e. problems where the top-level function symbols are

free. Such problems are decomposed into n smaller problems t; = s,
i=1..n If hy and h, are ditferent free function symbols then the problem
hy[ty...tn) = ho(sy....sm) is unsolvable.

Merging

Normally a variable occurs in pattern terms several times. Thus, when
the steps decomposition and mutation generate a subproblem x = s, the
other problems can also have occurences of x in their patterns. By
merging these occurences will be replaced by s. In this way, found
solutions are propagated within the set of subproblems. Hopefully, the
resuiting problems then are easier to solve or the unsolvability of the
problem is detectable.

Mutation

Besides the computation of normalforms the mutation steps are the only
steps which deal with the underlying theory. In fact, mutation reflects
the properties of the theory. Mutation steps are used, whenever the
matching problem has the form f(t;...t,) = s, with f not free. For most
theories there are many solutions of this atomic problem. All these
solutions have to be examined and this results in the need for
backtracking. Mutation steps for a theory are usually defined for the
so-called variable-only case, ie. all arguments t; are variables x;. For
example, in the theory ACl there are two different mutation steps. The
first one is similar to the mutation for the theory AC. If the problem
has the form
f(x21,.,x2n) = {[sP1 sBm]

then mutation has to generate the possible subproblems

f(x32,..x2n] = f[sP1-c1"a1 sbm-cm=~a1]
where the ¢ range from O to b; div a;.
Example :
f(x2,y3,z) = f{a2.b,c.d®] generates the following 6 possible branches for x :

X =1 X = a x =d
f(y3.z) = f{a%b.c,d5] f(y3.z] = f{b,c.d5] f{y3.z) = t(a? b,c.d3]
x = fla.d) x = f[d?] x = fla,d?]
f{y3z) = i(b.c.d3) fly3z) = fla2b.c.d] f{y3.z) = f{b,c.d)

This effect may lead to a combinatorical explosion.

The second mutation step reflects the fact that AC! is a so-called
collapsing theory. This means, that certain partial solutions may lead to
a change of the top-level symbol of a term.

Example :
Let t = f(h{y.a)xy?) and ¢ = {x < 1y . y < 14} then ylt) =5 h(lpa).

Let t = f(gla.ylx]. uy = {x « 1} and yy = {x « 1y .y « 15} then y4t]
:ac1 gla.y) and usft] =ac a

To deal with this problem, we need the following step. We start with
the problem
f(x21,..x3n) = s, where top(s] * £
Then we get the following n possible solutions :
xPl = s xan = g
Xy = .. Xpq "1

>
N
"
"
X
o]
"

Note, that all cases x{i = s, where a; + 1, are unsolvable.

Example : ’
For {{x2y.z] = h{a,b] we get the following 2 branches :
y = hla.b) z = hla.b)
X =2z =1 X =y =1

In the non-variable case we either have the atomic problem s; = s, -
which is solvable iff s; = s, - or we have to apply variable abstraction
to reduce the problem to the variable case.

Mutation generates with every branch a local solution of a problem.
Merging propagates this solution to the other problems generated
earlier. An important source of inefficiéncy is the fact, that many of the
branches are detected to be unsolvable only very late. This is due to
the locality of this method. Human beings would detect the
unsolvability often very early because they have a global view on all
subproblems. Therefore we will use constraint propagation to deal with
this problems.

There are many extensions to mutation, for example in [Mz85] or [Ni89],
that help to avoid some of the branching in the non-variable case. For
example, the ground subterms in the pattern have also to appear in the
example term, if the problem is solvable. Therefore the same ground
term in the pattern and the example can be deleted. This provides
fewer possibilities for branching. Our inference system Dj~; will also
include these extensions before the problems are used to generate
constraints.

3. An inference system for ACl-matching with constraints

The idea to use constraints for enhancing the efficiency of a matching
algorithm is to postpone the solution of an atomic problem f(x;,..x,] = s
and instead to create constraints for the solutions. The constraints
should be sharp and easy to propagate. Of course, not every solution of
the constraints has to be a solution of the matching subproblems. But
in many cases one may early detect that the constraints are unsolvable
and so the matching problems are unsolvable also. This results in a
reduction of the search space and so saves computing time. Of course,

the form of the constraints will depend on the underlying theory E.
Our inference system works on a triple of sets (E.C,Sol), where E is a
set of ACl-matching problems to solve, Sol is a substitution that
describes the partial solution so far and C = Cy, U Cg consists of a set
of constraints for variables Cy,, each of the form Cy, = x € S or
Cy = x € [{[s1, .,s2n]] and a set of verification equations Cg. S is a set of
ground terms and by [{(s?!,..s2n]] we denote the set of flattened terms
{tlsf1,..sSn) 1 f € F5cq and O < c; < a; for i = 1,..n}k
We call [{(s?1..s2n]] an intervall. Cg is used to check whether solutions
of Cy are also solutions of the matching problem.
In the following inference system 2D, the ideas of section 2.2 for
solving the ACl-matching problem are made precise. The rules "Trivial
equation”, "Decomposition’ and "Explicit solution” are our notion of the
steps decomposition and merging of 22 . "Simplification” gets rid of
ground terms as arguments of ACl-functions. "Variable abstraction” is a
well know method to deal with terms that do not belong to the theory,
in our case ACl. Variable abstraction was introduced by Stickel in
[St81] for AC-unification and used by Nipkow in [Ni838] as central idea
to combine matching algorithms for different theories. The rule
"Variable arguments’ generates new constraints.

The inference system D, oy

Trivial equation

a) {s=s} U E, C, Sol b] {s=s'} U E, C, Sol
o if s$#5s
E ., C, Sol Fail
Decomposition

Fail
Explicit solution [(Merging]

a) {x=s} UE, C. Sol

if 0 = {x<s} and o satisfies C
o(E) . o[C - C4) . Sol U o

b) {x=s} U E, C, Sol

if o = {x<s} and o does not satisfy C
Fail

Simplification

a) {f(s2.t21,.12n] = {(sP1, _sP _sEm]} U E, C, Sol

ifl<ac<h
{f(t21,tan) = f(sP1 sP-a sbml]} , E ., C, Sol
b) {f(s2.tp1 .tan) = f(sP1,.sP _sEm]} U E . C . Sol
if a>Db

c) {f[s,t31,.,t8n] = s} U E, C . Sol

{f(t21,..tan) = 1,} U E ., C . Sol

d) {f(s®.t21,..12n] = s} U E . C . Sol

if a > 1

e] {f{s®,t81,..tan] = s’} U E, C, Sol

if s £ s and top(s’] + f
Fail

Variable abstraction of alien subterms

{f{tP1. t8mx, . x }=s UE, C, Sol

{t{xq,.xp.uPlugm] = s} UE {t;=y;1j=1..m}uUC, Sol

if tj not In V and not ground
where u; € Vo new, ie. Vaue NV = &

Variable arguments

a) {f(xq,..xq. Y31 ..y2am) = s} U E, C, Sol

if top(s) + f and a; > 1
o[E] . os[C’] . Sol U o

where o ={y; « 11 j=1..,m}
C'\/ = CV U {Xi € {1f . S} l'1=1,.., n}
C’E = CE U {f[x-l ,,,,, Xn] = S}

b) {f(x$1,...xan] = {(sP1 _sPm]} U E, C . Sol

E. CU{x;el{[sfl,...sEMi)] | i= 1,..n} U {f{xP!..x3n] = {(sP . sEm]} Sol
where cij = b) div aj

The following rules deal with the solution of easy constraints and the
detection of unsolvable constraints. Note, that in same cases the
solution of a constraint generates new ACl-matching problems.

Pruning constraints

a) E, C . Sol

if C, = x € {s} and o = {x < s}
o[E] , ofC - C,]) . Sol U o

b) E . C U {f[x2] = f(sP1,..sEn]} | Sol

if Ji: -al b
Fail

c) E. C u {t(x2) = {(sP1..sEn]} | Sol

cifalb;foralli=1.n
o[E] , o[C) , Sol U o

where ¢; = b; div a

o = {x « {[sf1,.,sEn)}

d) E, {t=u , u=s} U C . Sol

lf u 6 Vaux
{t=s} U o[(E) ., o(C] ., Sol

where ¢ = {u « s}

e] E, C, Sol

if C unsatisfyable
Fail

We are going to show that the inference system D, is correct.

Lemma

If E+ @ then one rule of the inference system D, ~; is applicable to
(E.C.Sol).

Proof :

By induction on the structure of possible flattened pattern terms. =

Theorem
Let E be an ACl-matching problem :

a) If every derivation in Dj; from [E.@.@] ends with Fail, then E is
unsolvable.

b) For every solution o of E, there is a derivation in D, from (E.&.Q)
to (@.C,Sol) such that o = ¢° U Sol and ¢ satisfies C.
Proof : ‘

If we can show the following lemma, then an induction on the number
of applications of inference rules of D, ~; proves the theorem.

Lemma

Let [(E;.Cy.Soly] result from [Eo.Co.Solg] be application of a rule of
Iactr Then oly is part of a solution of (E;,C,Soly] iff oly, is part of
a solution of [Eqg,Cq.Solg).
Here oly, denotes the restriction of o to the variables in V.

The proof of the lemma for most of the inference rules is easy. We will
show here the proofs for the rules Variable abstraction and Variable
arguments.

Let ¢ be a solution of (E;,C;,Sol;] and t a solution of (Eg Cgq.So0lg).
1] Variable abstraction ’
Then Eg = E U {f(tP1,..tBm x31 xan] = s} Cy = c0 u {tj =uy | j=1..n}
Sol; = Solg and E; = E U {f{x21,.. x2nup? ubm] -
Let ‘C’ = TO{UJ‘ <« t] | J = 1,...,n}. Then TIIV = 'C'V.
T(f{x1,.., x8n uPtl, ubm]] = to{y; « t5 1§ = 1 n}f{x1,.. xan yP1, ubmj)
=AC1 T[f[tlbl tbmm,xla1 X:n]]
*acy S
So 1tly is part of a solution of (E;,C;.Sol4).
It is obvious, that p is a solution of (Eg.Cq.Solg), because
u(f(x1,...x&n uPl ubm]] = f(p(x$1),. w[x2n) u(uPt), u(ubm]))

_AC1 f[u[tl 1] u[t%m],il[x?l] u[xgn]]
2 oo wf(tP . tPm x81 xan))

=AcCt S.

2) Variable arguments
a) p is a solution for (E;,Cy.Soly). therefore u[yj] = 1.
[.L['f[xl Xn,ylai,...,y%.lm TAC f[p.[xl],...,[J.[Xn],lf,..‘,lf]

= acr HUE(%q %))
zact S. because f{xq,..x,] = s € Cg.

So u is a solution of [Eq.Cq.Solg).

t[y]] = lf for all J
top((t(xq...xn, y1.... Y2}
solution of (Eg.Cq.Solg).

1,..m, else let +t[yg] = s Then
f. which contradictes top(s) #+ f and =

Therefore is ¢ part of t, © = to0. t[c[E]] = t(c[a(E]]) = t[o[E)) = <(E).

t[Sol U o] = t[Sol) and it is obvious that t is a solution of Cy, and Cg.
So t is also a solution of [E,;,C;,Soly).

b) Because f[x{1,..x2n) = {[sP1, sEm] € C; p is solution to (Eq.Cp,Solg).
Because f[x1..x2n] = f(sP1,..sBm] € E5 and t(x;) € [f(sfli,..sSmi]]
due to the definition of intervall t is solution to (E;,Cy,Sol;). "

4. Processing of constraints and implementational issues

4.1 Processing of constraints

So far, we have presented an inference system that transforms
ACl-matching problems into a set of constraints by decomposition and
solving of easy subproblems. Further the system explains how very
special constraints, i.e. of the form x € {s}, can be solved or very special
constraints can be detected as unsolvable. Now the questions remain,
how to combine several constraints for a variable and how to sharpen
constraints, if new substitutions are found. The answers to these
questions will also show that constraints: can help to solve
ACl-matching problems more efficiently.

Our constraints represent possible substitutions for a variable in a
compact form. All possible substitutions form a set. If we have two
constraints C, and C, for a variable x, then we have to compute the
intersection Cy; = C, N Ci. The intersection of two intervalls may not
be an intervall. Then we switch to an explicit set representation. Note
that for intervall variable constraints, i.e. constraints for a variable in
intervall form, the argument lists can be extended, if necessary. So
[f(s?1,...s2n]] is the same as [{(s® s?! .. s3n]]. Thus we have the following
possible intersection situations :

- two variable constraints in set representation :
normal intersection {s;,...s,} N {s}...sp}

3

variable constraint in set representation with intervall constraint:
{s1...s;} N [f(sP1,.. s8n]] =
{s” I s € {s1,...5} and [s” € {sq....sp} or s = {[sf1,. sSn] with
0 s ¢ < alh

- two intervall constraints with equal top-level symbol :
[f(s21,...s2n]] N [{[sP1,...sBn]] = [{sF1,...sEn]]
where ¢; = min(a;,b;] for all i

two intervall constraints with different top-level symbol :
[#(s21....s3n)] N [g(s;Pl....s)Rm]] =
({s1...50} N [glsPl..s2m)]) U ({s)...s}m} N [f(s21,..san]]).

So we have to convert the intervall representation to the set
representation only when constraints with different top-level symbols

- 10 -

have to be combined or if the representation is [f(sP,..sQ)]. which
means that the only solution of this constraint is 1; Note, that an
implementation of this intersection rules can be efficiently done.
Examples :
1) x €{a. b, c. 1;. f{a.b)} and x € [f(a® b2 d]]
Combination leads to
x € {a, b, 1; fla.b]}.
2) x € [f(a® b2 cB d3e?]] and x € [{f{a%b* d®e?]]
Combination leads to
x € [f(a®b2d3 e?)].
3) x € [f[a%2,b% d®)] and x € [g(1f.a,b* f(a% b3).{(b%, 2]]]
Combination leads to
x € {a, b} U {l; a, b, {{a2b3)} = {1, a, b, (a2 b3)}

The inference rule Variable abstraction allows for a second way to
restrict variable constraints. If we have a constraint of the form
f{t321,..,138n x2n+1 y&n.k] = g,
where f € Fpy. U € Va4, and t; not in V, then we can compute "at-least”
requirements for the variable u. A substitution that solves this equation
must substitute for u at least a term of the form f[t3i1,.. t5i1). where
i €{1....,n} and top(t; J] not in F 5 ~;. If there is an intervall variable constralnt
u € [f(sP1...sEm]], we get a combined constraint
u € [f[sferP1l; slem bmlj]
with ¢; = 0, if s; not in {t;,..t;;}, or a;; else. If ¢; > b; then the
constraints are not solvable.
If solutions for variables in {x;...xy} or variables in V(t;] are found, the
"at-least” constraints c; have to be adjusted.
Example :

f(a,h(a,b) h(c,x]).g(a%?).x.y]) = u and
u € [f{a2,c.h(a.b],h[c,d)? g(a%]2 g[a b]]]

leads to

So yy = {u « f(a®h(a,b).gla®).g(a,b)} is a solution for u, but
s = {u « fla.c.h(c,d).g(a?))} is not, because of the constraint on h(a,b).

The intersection of "at-least” constraints is like before.
Examples :
1) x €{a. b, ¢ 1; f{a,b)} and x € [i(al?-3]1p[0.2] ;LO.1]1 4L0.11}]

Combination leads to
x € {a, f{a,b]}.

2] x €[f[atl,ﬁj‘bEZ.2].C[O.S]'d[1,3]'e[0,4]]] and
x €[#{al©.2]1 pl0.4] gL0.6] [0.2]}7

Combination leads to

- 11 -

x € [f[atl, 2]' b[2, 2],d[1‘3], e[O. 2]]].

3) x € [f(al© 2] pl[0.4] 4L0.61)] and :
x € [g(1§0-21al01] pl04] 1(a2 p3)[0-1] f[p4, ¢2)LO-1]]]
Combination leads to

x € {a, b} U {1; a. b, {f(a®2b3)} = {i;. a. b, f{a2b3)}.

If an ACl-matching problem has been transformed by D, into
(@.C,Sol} and C + @ then we have to solve the constraints. As stated
‘before, not every substitution of x € S or x € [f(sf1,..s2n]] is a solution
of the matching problem. So a variable with the smallest number of
possible substitutions is chosen and one of the solutions is propagated
in Cg. If this leads to no Fail, the next "smallest” variable is chosen
and so on. If a Fail occurs, using backtracking another solution for the
variable is tried.

4.2 Implementation ,

Our implementation combines the inference system Dpj~; with the
constraint handling of 4.1, with some small changes. The rulz "Variable
abstraction” that postpones branching into the solution of the
constraints is not used in this manner. Instead only such arguments t
with top(t] € Fpoey are treated as variables. the possible subproblems
generated by other arguments are tried at once. We do not want to
process all branches, because in most systems only one and not all
matches of a pattern to an example are needed. Therefore we select one
possibility and do backtracking if this branch is not sucessful. As we
also want to denerate as fast as possible partial soulutions or
constraints, we do a depth-first search. This requires a control that uses
three stacks :

- a to-do stack, where all remaining problems of the branch are
stored. Always the first problem of the stack will be tackled next
(depth-first).

- a done stack, where all backtracking points with the proper partial
solutions and pointers to the to-do stack and the constraint stack at
this time are stored.

- a constraint stack, where all constraints and their adjustments are
stored. An adjustment of a constraint is generated, when a
substitution of a variable is propagated in the constraints. In every
verification ecuation with this variable in its left hand side the
variable is deleted from the left hand side and apropriate times the
substitution from the right hand side. If this is not possible, we
have a Fail. If it is possible, the constraints of all variables in such
adjusted verification equations can be sharpened. This can be done
very efficiently, because the right hand sides of the equations are
the constraints [or a multiple of it] Then the rule "Pruning
constraints” is applied.

- 12 -

In fact, the first and the last stack are so-called cactus stacks, because
they have several branches, but at every moment only one branch is
active. Other branches can become alive after backtracking using the
second stack.

The same kind of algorithm with these stacks has also proven well
suited for AC-matching.

4.3 ACl-matching examples
We will demonstrate the efficiency of our algorithm by some examples.

a)

h(t(x.y).g(x.y])] = h(f(a, b3} g(aZ b]]
Decomposition leads to
(1) t(x.y) = f(a.b?]
(2] glx.y] = gla®b)
So we det the constraints
x,y € [f{a,b?]] from (1) and x,y € [g(a2 b]] from (2].
Intersection of the constraints results in
x.y € {a.b}l.
For x we try
o, = {x « a} which leads to y = f(b%) and y = g(a.b) f and
o5 = {x « b} which leads to y = f(a,b] and y = g(a®] #.
So we have to try 2 possible substiltutions to detect the unsolvability
of the problem instead of 6 using mutation steps.
fla.g(b3x).x.y) = f(a.b.gla.b).g(a,b2}.g(a,b*])
Simplification deletes the term a in both sides :
f{g{b3x).x.y] = f{b.gla b).gla,b3),g(a.b*)).
Variable abstraction results in »
flu.x,y] = f(b.gla,b).gla,b?].g(a.b?]] (*]
and the constraint g{b®x]) = u which gives an at-least constraint
u € [g(b>3]1.
The equation [*) yields to the constraints
u,x,y € [f[b.gla,b).gla.b?).gla b?]].
Because of the at-least constraint we get u = gf{a.b4] and therefore
g(b3x) = gla,b?). ‘
Simplification results in the substitution
x = gla,b].
Propagating this substitution in the verification equation (*] we get
flg(a.b*).gla.bl.y) = f(b.g(a.b).gla.b?).gla.b*})
or simplified
y = {[b.g(a.b?]).
So the found solution is
o = {x « glab) y « f[b.glab?]}

- 13 -

c) t(a% gla,x?y).g[x.2]]) = {(a®)
Simplification results in

flgla.x2.y).glx2])) = a.
Variable abstractions generates the equation

f{ug,uy) = a (+]
and the (at-least] constraints g{a,x?y) = u; which means u, contains
at least a, i.e. u; € [g(a®!)] and g(x.z] = u,.
(+) leads to the constraints

ug.u, € {1;a}

Combining this constraint with the at-least constraint for u;, we get

u1 = a
and a new equation
gla.x2y] = a.

Simplification and the inference rule Variable arguments generate
X =1g and y = 14
Propagating this substitution into the verification equation and
simplifying it yields directly to
Z = lf
So the found solution is
o={x «1g vy « 14 2z « I}

5. Conclusion and future work

We have presented an ACl-matching algorithm wusing constraint
propagation to reduce the necessary branching. We have shown that our
ideas on constraints and theory matching presented earlier ([DG88]] for
the AC case can also be applied to collapsing theories like ACIL
Especially the collapsing cases can also be represented in constraints
and be used to reduce the search. The algorithm can easily be adapted
to new theories, the main task is to define the normelform and the
representation and combination of the constraints.

For example, for the theory ACI, i.e. associativity, commutativity and
idempotency, we would use ordered sets as arguments for ACI-functions
in the normalform. Constraints are repfesented in the form [{(s;....s4)],
similar to the representation of ACl-constraints. Due to the
idempotency, no element of the set occurs more than once. Combination
of the constraints is similar to the ACl-case, too. When propagating
substitutions into verification equations, terms on the right hand side
are not deleted but marked. Then a verification equation is satisfied, if
all terms on the right hand side are marked, when there are no more
variables on the left hand side. This is correct, because the
idempotency allows the multiple use of these terms.

For a theory like A (ie. associativity), we have to use different
representations and normalforms. Again, the normalform - the

argumentlist of an A-function symbol is a word - helps to find the
variable constraints. Then the combination of constraints reduces to
finding common prefixes, suffixes or subwords of the words
representing the constraints.

Using constraints is a concept not only for building single theory
matching algorithms, it can also provide a way to combine such
algorithms efficiently. Within the borders of the theoretical results of
Nipkow in [Ni89] using constraints can provide a similar gain of
efficiency compared to Nipkow’s algorithm as in the single theory cases.

A third advantage of the use of constraints in theory matching is the
ability to start the matching operation with constraints obtained from
calling functions of deduction systems. In the last years many efforts in
the areas constraint deduction and constraint logic programming
showed the usefulness of constraints. Our approach to theory matching
allows to pass down term constraints in a basic operation, i.e. matching.
This can result in more efficiency, again, because theory matches that
are no solutions of the term constraints can be detected by the
matching algbrithm itself and need not be checked by higher levels of
the deduction systems. Finally, when the constraints are used as result
of the matching operation, we get a compact representation of all
solutions of the problem

References :
[DG88] Denzinger, J. ; Gramlich, B. :
Efficient AC-Matching Using Constraint Propagation,
SEKI-Report SR-88-15, University of Kaiserslautern, 1988.
[KN9O] Kapur, D.; Narendran, P. :
Complexity of Associative-Commutative Unification Check and
Related Problems,
Tech. Rep. 90-7, Dep. of Computer Science, SUNY, Albany, 1980.
[Mz85] Mzali, J. :
Filtrage Associatif, Commutatif ou Idempotent,
Int. Rep. 86 R 25, CRIN, Nancy, 1985.
[Mz86] Mzali, J.:
Matching with Distributivity,
Proc. 8th CADE, LNCS 230, Springer, 1986.
[Nigg] Nipkow, T. :
Combining Matching Algorithms : The Regular Case,
Proc. 3rd RTA, LNCS 355, Springer, 1989, pp. 343-358.
[St81] Stickel, ME. :
A unification algorithm for associative-commutative functions,
J. ACM 28 (3), 1981, pp. 423-434.

- 15 -

