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Abstract: 

We present an algorithm for the matching problem modulo the theory 
ACl of associativity. commutativity and a unit element Straight forward 
matching algorithms create a large number of branching points for 
backtracking. To reduce the enormous search space we propose to 
postpone the solution of sUbproblems and instead to approximate the 
solutions by constraints. This allows one to have a global view on the 
whole problem and so to reduce the large number of branching points. 
We demonstrate the algorithm by some examples and give hints how 
the general idea - contraint propagation - can be used for other theory 
matching algorithms and how term constraints from calling functions of 
our algorithm can be incorporated. 

1 Introduction 

As a basic operation used for simplification in deduction systems. 
efficient matching is very important for a good performance of these 
systems. In the last years the' tendency to put more and more 
knowledge into the basic inference rules used by deduction systems 
resulted in the need for efficient theory matching and theory unification 
algorithms. Although for most of the interesting theories it is possible 
to simulate theory matching by theory unification. this solution of the 
matching problem is in most cases not very efficient 

In this paper we present an algorithm for AC1-matching, that is 
matching with function symbols that are commutative. associative and 
have a neutral element, which uses constraint propagation to limit 
unnecessary branching. We extend the technique developed for 
AC~matching in [OGee]. Since ACl is a collapsing theory we have to 
solve new problems. On the other hand it turned out that the idea of 
using constraints is more powerful for the more complex problem of 
AC1-matching than for AC-matching. We outline some ideas of how to 
use this technique for matching modulo other theories. 

The paper is structured as follows. After this section we give the 
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Abstract  :

We pre sen t  an  a lgo r i t hm fo r  t he  matching prob lem modu lo  t he  t heo ry
AC1 of a s soc i a t i v i t y .  commuta t iv i t y  and  a un i t  e l emen t .  S t r a igh t  fo rward
ma tch ing  a lgo r i t hms  c r ea t e  a l a rge  number  of b r anch ing  po in t s  fo r
back t r ack ing .  To  r educe  t he  eno rmous  s ea rch  Space  we  p ropose  t o
pos tpone  the  so lu t i on  of subp rob lems  and  in s t ead  t o  app rox ima te  t he
so lu t ions  by  cons t r a in t s .  Th i s  a l l ows  one  t o  have  a g loba l  V iew on  the
who le  p rob lem and  so  t o  r educe  t he  l a rge  number  of b r anch ing  po in t s .
We  demons t r a t e  t he  a lgo r i t hm by.  some  examples  and  g ive  h in t s  how
the  gene ra l  i dea  — con t r a in t  p ropaga t ion  — can  be  u sed  fo r  o the r  t heo ry
ma tch ing  a lgo r i t hms  and  how t e rm cons t r a in t s  f rom ca l l i ng  func t ions  of
our  a lgo r i t hm can  be  i nco rpo ra t ed .

L In t roduc t ion

As  a ba s i c  ope ra t i on  u sed  fo r  s imp l i f i ca t i on  i n  deduc t ion  sys t ems ,
e f f i c i en t  ma tch ing  i s  ve ry  impor t an t  fo r  a good  pe r fo rmance  of t he se
sys t ems .  In  t he  l a s t  yea r s  t he ‘ t endency  to  pu t  more  and  more
knowledge  in to  t he  bas i c  i n f e r ence  ru l e s  u sed  by  deduc t ion  sys t ems
r e su l t ed  i n  t he  need  fo r  e f f i c i en t  t heo ry  ma tch ing  and  theo ry  un i f i ca t i on
a lgo r i t hms .  A l though  fo r  mos t  of t he  i n t e r e s t i ng  t heo r i e s  i t  i s  pos s ib l e
t o  s imu la t e  t heo ry  ma tch ing  by  theo ry  un i f ica t ion ,  t h i s  so lu t i on  of t he
match ing  p rob lem i s  i n  mos t  ca se s  no t  ve ry  e f f i c i en t .

In  t h i s  pape r  we  p re sen t  an  a lgo r i t hm fo r  AC1-ma tch ing ,  t ha t  i s
ma tch ing  wi th  func t ion  symbo l s  t ha t  a r e  commuta t ive ,  a s soc i a t i ve  and
have  a neu t r a l  e l emen t .  wh ich  u se s  cons t r a in t  p ropaga t ion  t o  l im i t
unneces sa ry  b ranch ing .  We  ex t end  the  t echn ique  deve loped  fo r
ACematching in [DG88]. Since ACl is  a collapsing theory we  have  t o
so lve  new p rob lems .  On  the  o the r  hand  i t  t u rned  ou t  t ha t  t he  i dea  of
us ing  cons t r a in t s  i s  more  power fu l  fo r  t he  more  complex  p rob lem of
ACl -ma tch ing  than  fo r  AC—match ing .  We  ou t l i ne  some  ideas  of how to
use  t h i s  t e chn ique  fo r  ma tch ing  modu lo  o the r  t heo r i e s .

The  pape r  i s  s t ruc tu red  a s  fo l l ows .  Af t e r  t h i s  s ec t i on  we  g ive  t he





definitions needed throughout the paper and a description of the 
theoretical and implementational background of theory, especially 
ACt-matching. In section 3 we present an inference system for 
ACt-matching and sketch the proof of its correctness and completeness. 
In section 4 we describe. how we handle and process our constraints 
and how the inference system can be transformed into an algorithm. In 
the same section we also demonstrate the efficiency of this algorithm 
by some examples. In section 5 we outline how to apply our method for 
matching modulo other theories. 

2. Notations and background 

2.1 Notations 

Let F be a finite set of function symbols of fixed ari t y and V be a 
denumerable set of variables disjoint from F. The set of terms over F 
and V is denoted by T(F, V). By V(t] we denote the set of all variables 
occuring in a term t. Top(t] is the top-level symbol of t. A substitution 
o is a mapping from V to T(F, V] with finite domain Dom(o). It is 
extended to a mapping from T(F, V] to T(F. V] in the usual way. 
Given F and V. the equational theory =E induced by a set E of 
equa tions over T(F, V) is defined to be the smallest congruence on 
T(F, V) containing E and closed under substitution. Two terms t1 and t 2 

are said to be E-equi valent iff t1 =E t 2 holds. A substitution 0 is an 
E-match from the pattern t to the example s iff oft) =E s. 
In the following we always assume F to be partitioned into disjoint sets 
FAC1' F1 where F AC1 is a non-empty set of binary operatorsand FNAC1 ' 
and F1 is the set of units for FAC1' Le. F1 = {If I f E FAC1}. The set E of 
equations consists of the ACt-axioms for the operators of FAC1' i.e. 

E := ACt := {f(x.y) = f(y,x) . f(f(x.y).z) = f(x,f(y,z)) , f(x,t f ) = x I f E FAC1 }. 

We use the following notations. With f.g,f1,... we will denote elements of 
FAC1' 1f.1 g .1 f1 ,.. · are the corresponding members of F1 and h,k,h1,... are 
elements of For variables we use x,y,Z.X1'·" and elements ofFNAC1 ' 
T(F, V) are denoted by t, t1.t 2 , .. , Finally s, S1' ... denote ground terms, i.e. 
terms s with V(s] :: 0. 

When using theory matching as an operation in deduction systems 
pattern and example term have no variables in common. Therefore we 
will assume in the follOWing, that all example terms are ground terms. 

2.2 Related results 

The first work on theory matching was done by Hullot ([Hu79]) for the 
theory AC. A similar framework was later used by Mzali in his works 
on ACI-, AC-. A-, C-matching ([Mz85]) and D-matching ([Mz86]). 
Nipkow used in [Ni89] the concept of variable abstraction, introduced 
by Stickel in [St8t] for unification. for combining matching algorithms 

- 2 ­

de f in i t i ons  needed  th roughou t  t he  pape r  and  a de sc r ip t i on  of t he
theo re t i ca l  and  imp lemen ta t i ona l  backg round  of t heo ry .  e spec i a l l y
ACl -ma tch ing .  In  s ec t i on  3 we p re sen t  an  i n f e r ence  sys t em fo r
ACI -ma tch ing  and  ske t ch  t he  p roo f  of i t s  co r r ec tnes s  and  comple t enes s .
In  s ec t i on  4 we desc r ibe ,  how we  hand le  and  ‘p roces s  ou r  cons t r a in t s
and  how the  i n f e r ence  sys t em can  be  t r ans fo rmed  in to  an  a lgo r i t hm.  In
the  s ame  sec t i on  we  a l so  demons t r a t e  t he  e f f i c i ency  of t h i s  a lgo r i t hm
by  some  examples .  I n  s ec t i on  5 we ou t l i ne  how to  app ly  ou r  me thod  fo r
match ing  modu lo  o the r  t heo r i e s .

; Nota t ions  and  background

A Nota t ions

Le t  F be  a _finite s e t  of func t ion  symbo l s  of f i xed  a r i t y  and  V be  a
denumerab le  s e t  of va r i ab l e s  d i s jo in t  f rom F .  The  s e t  of t e rms  ove r  F
and  V i s  deno ted  by  T[F,V]. By  V[t] we  deno te  t he  s e t  of a l l  va r i ab l e s
occuring in a term t. Top[t] is  t he  top—level symbol of t. A subst i tut ion
0 i s  a mapp ing  f rom V t o  T[F,V] w i th  f i n i t e  doma in  Dom[c]. I t  i s
ex t ended  to  a mapp ing  f rom T[F‚V] t o  T[F‚V] i n  t he  u sua l  way.
Given  F and  V. t he  equa t iona l  t heo ry  =5; i nduced  by  a s e t  E of
equa t ions  ove r  T[F ,V]  i s  de f ined  to  be  t he  sma l l e s t  cong ruence  on
T[F.V]  con ta in ing  E and  c lo sed  unde r  subs t i t u t i on .  Two  t e rms  t l  and  t2
a re  s a id  t o  be  E -equ iva l en t  iff t1 :5; t z  holds .  A subs t i t u t i on  0 i s  an
E-match from the  pat tern  t to t he  example  5 iff c[t] ‘ s  s.
In  t he  fo l l owing  we  a lways  a s sume  F t o  be  pa r t i t i oned  in to  d i s jo in t  s e t s
PAC}. F1 and  FNACI' whe re  PAC,  i s  a non—empty se t  of b ina ry  ope ra to r s
and F, is  t he  s e t  of uni t s  for FAG}. i.e. F1 = {If I f € FAG}. The se t  E of
equa t ions  cons i s t s  of t he  ACI—axioms for t he  ope ra to r s  of FAG}, i.e.

E := ACl := {f[x‚y] = f[y.x] . f[f[x.y].2] = f [X . f [y . l  . f i f ]  = x I f E FACI}~

We use  t he  fo l l owing  no t a t i ons .  Wi th  f,g,f1,... we  wi l l  deno te  e l emen t s  of
FAG,  1f‚lg‚l‚1‚._. a r e  t he  co r r e spond ing  member s  of F1 and  h‚k‚h1,... a r e
e l emen t s  of FNAm.  For va r i ab l e s  we  use  x‚y‚z‚x„... and  e l emen t s  of
T[F‚V] a re  denoted by  t‚t„t2‚... Finally 5.51,... denote  ground terms. i.e.
t e rms  s w i th  V[s] = @.
When  us ing  theo ry  ma tch ing  a s  an  ope ra t i on  i n  deduc t ion  sys t ems
pa t t e rn  and  example  t e rm  have  no  va r i ab l e s  i n  common .  The re fo re  we
wi l l  a s sume  in  t he  fo l l owing .  t ha t  a l l  example  t e rms  a r e  g round  t e rms .

2_.21 Re la ted  resul t s

The first work on theory matching was  done  by Hullot [[Hu79]] for t he
t heo ry  AC.  A s imi l a r  f r amework  was  l a t e r  u sed  by  Mza l i  i n  h i s  works
on  ACl-‚  AC—. A-‚  C-ma tch ing  [[M285]] and  D—matching [ [M286]].
Nipkow used in [Ni89] the  concept  of variable abstraction, introduced
by  S t i cke l  i n  [St81] for un i f i ca t ion .  for combin ing  ma tch ing  a lgo r i t hms





and dealing with collapsing theories. Kapurand Narendran [[KN90])
 
have shown that AC1-matching is NP-complete. Despite of this our
 
algorithm is fast on most inputs of practical interest.
 
The framework of Mzali consists of four steps to perform in order to
 
sol ve a gi ven ma tching problem. some of them several times :
 

- computation of a normalform for an efficient decision of =E 

- decomposition of problems t = s where top( t) is free 

- merging of found substitutions into the remaining problems and 

- mutation of problems t = s with top( t) is a theory symbol. 

Because the first three steps are also important to our algorithm and 
the forth step is the one which introduces most of the problems 
concerning efficiency we will discuss them here more precisely. 

Normalform for deciding =E 

A theory matching algorithm always must be able to determine 
wheater two terms are equal with respect to E. A standard way to do 
this is to generate a unique normalform for all E-equal terms and then 
to test the normalforms for syntactic identity. In [Mz851 there is a 
classification of parts of some theories and their requirements for the 
normalform. For example. if the associativity is part of the theory then 
the terms have to be flattened. The commutativity allows one to order 
the arguments. Idempotency in addition leads to a set representation. 

For AC1-matching. this leads to ordered multisets as a data structure 
for the arguments of symbols of FACt. The multisets are obtained by 
flattening and sorting the arguments and by eleminating all occurences 
of the corresponding l-eIement of a symbol in the set. So terms with 
top-level function in FACt have the form f[trt ..... t~nJ. where the ai 
indicate the number of occurences of t i. Further. as in the case of 
AC-matching ([0088]). the ordering can enhence the efficiency of the 
algorithm by forcing easy parts of the problem to be solved first. We 
use an ordering on the arguments where the smallest components are 
the constants. then terms with top-level functions that are not ACl, 
then the terms with top-level functions that are ACl and finally the 
variables. Within each class. the symbols are ordered leXicographically. 
Note that f[sO) denotes f(s) and f(s) denotes s. 

Examples 

f(a.f(g(a.b).f(lf.aJ)] has the normalform f(a 2.g(a.bJ]. 

f[x.g[f[x.a),g[l f.g(a.f(a.xJJJJJ has the normalform f(g(a.l f .Ha.x)2),x). 

f(f(h(a, b), f[a.x)). f(f( g(x. b). h(b, a)J. f(X. y))) has the normalform 
f(a. h(a. b).h(b.a). g(b. x), x 2 •y). 

Decomposition 
Decomposition steps handle E-matching problems of the form 
h[tt ..... t n ) = h(st ..... snJ. i.e. problems where the top-level function symbols are 
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and  dea l ing  w i th  co l l aps ing  theo r i e s .  Kapur  and  Narend ran  [[KN90]]
have  shown  tha t  ACl -ma tch ing  i s  NP-comple t e .  Desp i t e  of t h i s  ou r
a lgo r i t hm i s  f a s t  on  mos t  i npu t s  of p r ac t i ca l  i n t e r e s t .

’ The  f r amework  of Mza l i  cons i s t s  of fou r  s t eps  t o  pe r fo rm in  o rde r  t o
so lve  a g iven  ma tch ing  p rob lem,  some  of t hem seve ra l  t imes  :

— compu ta t i on  of a no rma l fo rm fo r  an  e f f i c i en t  dec i s ion  of =E

— decompos i t i on  of p rob lems  t = s whe re  top[ t ]  i s  f r ee

- merg ing  of found  subs t i t u t i ons  i n to  t he  r ema in ing  p rob lems  and
- mutat ion of problems t = s wi th  top[t] is a theory symbol.

Because  t he  f i r s t  t h r ee  s t eps  a r e  a l so  impor t an t  t o  ou r  a lgo r i t hm and
t he  fo r th  s t ep  i s  t he  one  wh ich  i n t roduces  mos t  of t he  p rob lems
conce rn ing  e f f i c i ency  we  wi l l  d i s cus s  t hem he re  more  p rec i s e ly .

Normalforrn  fo r  dec id ing  = ;

A theo ry  ma tch ing  a lgo r i t hm a lways  mus t  be  ab l e  t o  de t e rmine
whea te r  two  t e rms  a r e  equa l  w i th  r e spec t  t o  E. A s t anda rd  way  to  do
t h i s  i s  t o  gene ra t e  a un ique  normal fo rm for a l l  E—equal t e rms  and  then
t o  t e s t  t he  no rma l fo rms  fo r  syn t ac t i c  i den t i t y .  I n  [M285 ] ,  t he re  i s  a
c l a s s i f i ca t i on  of pa r t s  of some  theo r i e s  and  the i r  r equ i r emen t s  fo r  t he
no rma l fo rm.  Fo r  example ,  if t he  a s soc i a t i v i t y  i s  pa r t  of t he  t heo ry  t hen
the  t e rms  have  t o  be  f l a t t ened .  The  commuta t iv i t y  a l l ows  one  t o  o rde r
the  a rgumen t s .  l dempo tency  in  add i t i on  l eads  t o  a s e t  r ep re sen t a t i on .

Fo r  ACl -ma tch ing .  t h i s  l e ads  t o  o rde red  mu l t i s e t s  a s  a da t a  s t ruc tu re
for t he  a rgumen t s  of symbo l s  of FACT The mu l t i s e t s  a r e  ob t a ined  by
f l a t t en ing  and  so r t i ng  t he  a rgumen t s  and  by  e l emina t ing  a l l  occu rences
of t he  co r r e spond ing  l - e l emen t  of a symbo l  i n  t he  s e t .  So  t e rms  wi th
top-level function in FAC1 have  t he  form f[tf‘1 ..... tan], where  t he  ai
i nd i ca t e  t he  number  of occu rences  of t i .  Fu r the r ,  a s  i n  t he  ca se  of
AC-match ing  [[DG88]]‚ t he  o rde r ing  can  enhence  t he  e f f i c iency  of t he
a lgo r i t hm by  fo rc ing  ea sy  pa r t s  of t he  p rob lem to  be  so lved  f i rs t .  We
use  an  o rde r ing  on  the  a rgumen t s  whe re  t he  sma l l e s t  componen t s  a r e
the  cons t an t s ,  t hen  t e rms  wi th  top—leve l  func t ions  t ha t  a r e  no t  AC1.
then  the  t e rms  wi th  top—leve l  func t ions  t ha t  a r e  AC1 and  f i na l l y  t he
va r i ab l e s .  Wi th in  each  c l a s s .  t he  symbo l s  a r e  o rde red  l ex i cog raph ica l l y .
Note tha t  f[so] denotes  f[s] and  f[s] denotes 5.
Examples

f[a,f[g[a,b].f[lf,a]]] ha s  t he  no rma l fo rm f[a2.g[a,b]].
f[x,g[f[x,a],g[1,.g[a.f[a.x]]]]] ha s  t he  normal fo rm f[g[a.lf,f[a,x]2],x].
f[f[h[a.b].f[a.X]].f[flglx.b].h[b.a]],f[x,y]]] has the normalform

f[a,h[a,b].h[b.a].g[b.x].x2.Y].

Decomposit ion
Decompos i t i on  s t eps  hand le  E -ma tch ing  p rob lems  of t he  fo rm
h[t1 ..... tn] = h[s,  ..... sn]. i.e. problems where  t he  top-level  function symbols  a r e





free. Such problems are decomposed into n smaller problems t i = si. 
i = 1. n. If hI and h 2 are different free function symbols then the problem 
h1(t1, t n ) = h2(Sl ..... Sm) is unsolvable. 

Merging 

Normally a variable occurs in pattern terms several times. Thus, when 
the steps decomposition and mutation generate a subproblem x = s. the 
other problems can also have occurences of x in their patterns. By 
merging these occurences will be replaced by s. In this way. found 
solutions are propagated within the set of subproblems. Hopefully. the 
resulting problems then are easier to solve or the unsolvability of the 
problem is detectable. 

Mutation 

Besides the computation of normalforms the mutation steps are the only 
steps which deal with the underlying theory. In fact, mutation reflects 
the properties of the theory. Mutation steps are used, whenever the 
matching problem has the form f(tl, ... ,t n ) = s, with f not free. For most 
theories there are many solutions of this atomic problem. All these 
solutions have to be examined and this results in the need for 
backtracking. Mutation steps for a theory are usually defined for the 
so-called variable-only case. Le. all arguments t i are variables xi' For 
example. in the theory ACl there are two different mutation steps. The 
first one is similar to the mutation for the theory AC. If the problem 
has the form 

f(xfl, .... x~n) = f(sPl, ...,s~m) 

then mutation has to generate the possible sUbproblems 

Xl = f(sfl ....,s~m) 

f(x~2 .... ,x~n) = f[sPl- cl-a l ....,s~m-cm .. al] 

where the Ci range from 0 to b i di v al' 
Example: 

f[x 2,y3. z) = f[a 2.b.c,d 5 ) generates the following 6 possible branches for x : 

X = 1£ x = a x = d 
f[y3,z) = f[a 2.b,c.d5 ) f[ y 3,z] = f[b.c,d 5 ) f[y3,z) = f[a 2,b.c.d3) 

x = f[a,d) x = f[d 2 ) x = f(a,d 2) 
f[y3. Z ) = f(b.c,d 3) f[ y 3,Z) = f(a 2,b,c.d) f[y3,z) = f(b,c,d) 

This effect may lead to a combinatorical explosion.
 

The second mutation step reflects the fact that ACl is a so-called
 
collapsing theory. This means. that certain partial solutions may lead to
 
a change of the top-level symbol of a term.
 

Example: 

Let t '= f(h(y.a).x,y2] and l-t = {x ~ If ' Y ~ If}, then l-t(t] =ACl h(lf,a). 
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f ree .  Such prob lems  a r e  decomposed  in to  n sma l l e r  p rob l ems  t i  = s i ,
i = l ..... n. If h ,  and  hz  a r e  d i f f e r en t  f r ee  func t ion  symbo l s  t hen  the  p rob lem
h1[t1‚„..tn] = h2[s1 ..... sm] is  unsolvable.

Merging
Norma l ly  a va r i ab l e  occu r s  i n  pa t t e rn  t e rms  seve ra l  t imes .  Thus .  when
the  s t eps  decompos i t i on  and  mu ta t i on  gene ra t e  a subp rob lem x = 3, t he
o the r  p rob lems  can  a l so  have  occu rences  of x i n  t he i r  pa t t e rns .  By
merg ing  the se  occu rences  w i l l  be  r ep l aced  by  s .  I n  t h i s  way ,  found
so lu t ions  a r e  p ropaga t ed  w i th in  t he  s e t  of subp rob lems .  Hope fu l ly .  t he
re su l t i ng  p rob lems  then  a r e  ea s i e r  t o  so lve  o r  t he  unso lvab i l i t y  of t he
p rob lem i s  de t ec t ab l e .

Muta t ion

Bes ides  t he  compu ta t i on  of no rma l fo rms  the  mu ta t i on  s t eps  a r e  t he  on ly
s t eps  wh ich  dea l  w i th  t he  unde r ly ing  theo ry .  I n  f ac t ,  mu ta t i on  r e f l ec t s
the  p rope r t i e s  of t he  t heo ry .  Muta t i on  s t eps  a r e  u sed ,  wheneve r  t he
ma tch ing  p rob lem has  t he  fo rm f[t1‚...‚tn] = s ,  w i th  f no t  f r ee .  Fo r  mos t
theo r i e s  t he re  a r e  many  so lu t i ons  of t h i s  a tomic  p rob lem.  A l l  t he se
so lu t i ons  have  t o  be  examined  and  th i s  r e su l t s  i n  t he  need  fo r
back t r ack ing .  Muta t i on  s t eps  fo r  a t heo ry  a r e  u sua l ly  de f ined  fo r  t he
so—called va r i ab l e -on ly  ca se ,  i.e. a l l  a rgumen t s  t i  a r e  va r i ab l e s  x i .  For
example ,  i n  t he  t heo ry  ACl  t he re  a r e  two  d i f f e r en t  mu ta t i on  s t eps .  The
f i r s t  one  i s  s imi l a r  t o  t he  mu ta t i on  fo r  t he  t heo ry  AC.  If t he  p rob lem
has  t he  fo rm

f(xl81 ..... xän] = f[s}°1....,s§1m]
t hen  mu ta t i on  has  t o  gene ra t e  t he  pos s ib l e  subp rob lems

x1 = f[sf"1 ..... 531m]
:[xgz.....x:n1 = asp—oval ..... Sam-omen

where  t he  c i  r ange  f rom O t o  b i  d iv  a1.
Example :

f[x2.y3,z] = f[a2.b‚c‚d5] genera tes  the  following 6 possible branches  for x :
x = l ,  x = a x = d

f[y3.z] = f[a2,b.c,d5] i[y3.z] = f[b.c.d5] f[y3‚z] = f[a2.b‚c‚d3]

x = f[a‚d] x = f[d2] x = f[a‚d2]
f[y3,z] = f[b‚c‚d3] f[y3,z] : f[a2.b.c,d] f[y3‚z] = f[b‚c.d]

Thi s  e f f ec t  may  l ead  t o  a combina to r i ca l  exp los ion .

The  second  mu ta t i on  s t ep  r e f l ec t s  t he  f ac t  t ha t  AC1  i s  a so -ca l l ed
co l l aps ing  theo ry .  Th i s  means ,  t ha t  c e r t a in  pa r t i a l  so lu t i ons  may  l ead  t o
a change  of t he  top—leve l  symbo l  of a t e rm .

Example :

Let t E f[h[y.a].x.y2] and  p. = {x <- lf . y e if}. then  i i I t ]  =AC,‘ h[lf‚a].





Let t "f(g(a.y].xJ, (11 = {x ~ If} and!l2 = {x ~ 1f . Y ~ 19 }. then !ll(t) 
=AC1 g(a.y) and !l2(t) =ACl a. 

To deal with this problem. we need the following step. We start with 
the problem 

f(xf1 ..... x~n] = s. where top(s] :j: f. 

Then we get the following n possible solutions: 

Xfl = S x~n = s 
x2 = ... = x n = 1f xl = ... = Xn-l = 1f 

Note. that all cases x?i = s. where ai :j: 1, are unsol vable. 

Example: 

For f(x 2.y.z] = h(a.b] we get the following 2 branches
 

Y = h(a.b] z = h(a.b]
 
x = z = 1f x = y = 1£
 

In the non-variable case we either have the atomic problem sl = s2 ­
which is solvable iff sl " s2 - or we have to apply variable abstraction 
to reduce the problem to the variable case. 

Mutation generates with every branch a local solution of a problem. 
Merging propagates this solution to the other problems generated 
earlier. An important source of inefficiency is the fact. that many of the 
branches are detected to be unsolvable o'nly very late. This is due to 
the locality of this method. Human beings would detect the 
unsolvability often very early because they have a global view on all 
sUbproblems. Therefore we will use constraint propagation to deal with 
this problems. 

There are many extensions to mutation. for example in [Mz85] or [Ni89J. 
that help to a void some of the branching in the non-variable case. For 
example. the ground subterms in the pattern have also to appear in the 
example term. if the problem is solvable. Therefore the same ground 
term in the pattern and the example can be deleted. This provides 
fewer possibilities for branching. Our inference system D ACl will also 
include these extensions before the problems are used to generate 
constraints. 

3. An inference system for ACt-matching with constraints 

The idea to use constraints for enhancing the efficiency of a matching 
algorithm is to postpone the solution of an atomic problem f(x1..... x n ] = s 
and instead to create constraints for the solutions. The constraints 
should be sharp and easy to propagate. Of course. not every solution of 
the constraints has to be a solution of the matching subproblems. But 
in many cases one may early detect that the constraints are unsolvable 
and so the matching problems are unsolvable also. This results in a 
reduction of the search space and so saves computing time. Of course. 

5 ­

Le t  t E f[g[a.y].x]; U: = {x  <— 11} and  112 = {x <- 1f . y é- lg}. t hen  u‚[t]
=ACi Q[8«Y] and  Uzm =Ac1 a .

To dea l  w i th  t h i s  p rob l em,  we  need  the  fo l l owing  s t ep .  We  s t a r t  w i th
the  p rob lem

f[x,a1....,x§n] = s , where  top[s] $ f.
Then  we  ge t  t he  fo l l owing  n pos s ib l e  so lu t i ons  :

X1” : s x3“  = s
x2= . . .=xn=1f  . .  . x1= . . .=xn_1= l f

Note. t ha t  a l l  c a se s  x3“ = s. whe re  a i  * 1. a r e  unso lvab le .
Example : .

For f[x2,y,z] = h[a .b]  we  ge t  t he  fo l lowing  2 branches  :

y = b lah ]  z = h[a‚b]
x = z = If x = y = I t

In  t he  non -va r i ab l e  ca se  we  e i t he r  have  t he  a tomic  p rob lem 5 ,  = 52  -
which  i s  so lvab le  i i i  s ,  5 52  — or  we  have  t o  app ly  va r i ab l e  abs t r ac t i on
to  r educe  t he  p rob lem to  t he  va r i ab l e  ca se .

Muta t i on  gene ra t e s  Wi th  eve ry  b ranch  a l oca l  so lu t i on  of a p rob l em.
Merg ing  p ropaga t e s  t h i s  so lu t i on  t o  t he  o the r  p rob lems  gene ra t ed
ea r l i e r .  An  impor t an t  sou rce  of i ne f f i c i ency  i s  t he  f ac t ,  t ha t  many  of t he
branches  a r e  de t ec t ed  t o  be  unso lvab le  on ly  ve ry  l a t e .  Th i s  i s  due  t o
t he  l oca l i t y  of t h i s  me thod .  Human  be ings  wou ld  de t ec t  t he
unso lvab i l i t y  o f t en  ve ry  ea r ly  because  t hey  have  a g loba l  v i ew  on  a l l
subprob lems .  Therefore  we  wi l l  u se  cons t r a in t  p ropaga t ion  t o  dea l  w i th
t h i s  p rob l ems .

There  a r e  many  ex t ens ions  t o  mu ta t i on ,  for example  i n  [M285] or  [Ni89].
t ha t  he lp  t o  avo id  some  of t he  b ranch ing  in  t he  non—variable case .  For
example ,  t he  g round  sub te rms  in  t he  pa t t e rn  have  a l so  t o  appea r  i n  t he
example  t e rm .  if t he  p rob lem i s  so lvab le .  The re fo re  t he  s ame  g round
t e rm  in  t he  pa t t e rn  and  the  example  can  be  de l e t ed .  This  p rov ides
fewer  pos s ib i l i t i e s  for b r anch ing .  Our  i n f e r ence  sys t em 9Ac1  wi l l  a l so
i nc lude  t he se  ex t ens ions  be fo re  t he  p rob lems  a r e  u sed  to  gene ra t e
cons t r a in t s .

1 fl inference sys tem for AC1-matching wi th  cons t ra in ts
The  idea  t o  u se  cons t r a in t s  fo r  enhanc ing  the  e f f i c i ency  of a ma tch ing
a lgo r i t hm i s  t o  pos tpone  the  so lu t i on  of an  a tomic  p rob lem f[x1  ..... xn]  = s
and  in s t ead  t o  c r ea t e  cons t r a in t s  fo r  t he  so lu t i ons .  The  cons t r a in t s
shou ld  be  sha rp  and  ea sy  t o  p ropaga t e .  Of cou r se .  no t  eve ry  so lu t i on  of
the  cons t r a in t s  ha s  t o  be  a so lu t i on  of t he  ma tch ing  subprob lems .  Bu t
i n  many  ca se s  one  may  ea r ly  de t ec t  t ha t  t he  cons t r a in t s  a r e  unso lvab le
and  so  t he  ma tch ing  p rob lems  a r e  unso lvab le  a l so .  Th i s  r e su l t s  i n  a
r educ t ion  of t he  s ea rch  space  and  so  s aves  compu t ing  t ime .  Of cou r se .





the form of the constraints will depend on the underlying theory E. 

Our inference system works on a triple of sets (E. c,Sol). where E is a 
set of ACt-matching problems to solve. Sol is a substitution that 

describes the partial solution so far and C = Cv U CE consists of a set 
of constraints for variables Cv. each of the form Cx = x E: S or 
Cx = x E: [t(sfl ..... s~n]J. and a set of verification equations CE . S is a set of 
ground terms and by [f[sft ..... s~n)] we denote the set of flattened terms 

{f[sft ....sgn] I f E: FACt and 0 ~ Ci ~ a i for i = 1..... n}. 

We call [t[sfl ..... s~n)] an intervall. CE is used to check whether solutions 
of Cv are also solutions of the matching problem. 

In the following inference system D ACt the ideas of section 2.2 for 
solving the AC1-matching problem are made precise. The rules "Trivial 
equa tion", .. Decomposition" and" Explicit solution" are' our notion of the 
steps decomposition and merging of 2.2 . .. Simplifica tion" gets rid of 
ground terms as arguments of ACt-functions. "Variable abstraction" is a 

well know method to deal with terms that do not belong to the theory. 
in our case ACl. Variable abstraction was introduced by Stickel in 
[StB1) for AC-unification and used by Nipkow in [NiB9] as central idea 
to combine matching algorithms for different theories. The rule 
"Variable arguments" generates new constraints. 

The inference system t:JACt 

Trivial equa tion 

a] {s=s} U E . C . Sol b) {s=s'} U E , C , Sol 
if s :$ s' 

E . C . Sol Fail 

Decomposition 

{t i = si I = 1..... n} U E . C . Sol 

Fail 

if top(s) :j: k 

Explicit solution [Merging) 

a) {x=s} U E , C . Sol 

Cl (E) . Cl [C - Cx ) . Sol U Cl 

if Cl = {x~s} and Cl satisfies C 
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the  fo rm of t he  cons t r a in t s  w i l l  depend  on  the  unde r ly ing  theo ry  E.

Our  i n f e r ence  sys t em works  on  a t r i p l e  of s e t s  [E.C,Sol] ,  whe re  E i s  a
s e t  of ACl -ma tch ing  p rob lems  to  so lve ,  $01  i s  a subs t i t u t i on  t ha t
desc r ibes  t he  pa r t i a l  so lu t i on  so  f a r  and  C = CV U CE cons i s t s  of a s e t
of cons t r a in t s  for va r i ab l e s  CV. each of t he  fo rm C‚( = x € S or
C‚( = X E [f[s?1,...‚s%n]]‚ and  a se t  of verification equat ions  CE. S is  a s e t  of
ground terms and  by  [f[s‚°1‚.„‚s$‚n]] we denote  t he  s e t  of f la t tened t e rms

{f[s1°1‚...sgn] I f E FACI and  0 s ci s a i  for i = 1,...,n}.
We  call [f[s?1‚...‚sgn]] an  intervall.  CE is used to  check  whether  solutions
of CV a re  a l so  so lu t i ons  of t he  ma tch ing  p rob lem.

In  t he  fo l l owing  in f e r ence  sys t em 9Ac1  t he  i deas  of s ec t i on  2 .2  fo r
so lv ing  the  ACI—matching p rob lem a re  made  p rec i s e .  The  ru l e s  ”Trivia l
equa t ion" .  "Decompos i t i on"  and  "Exp l i c i t  so lu t ion"  a r e  ou r  no t ion  of t he
s t eps  decompos i t i on  and  merg ing  of 2 .2  . "S imp l i f i ca t i on"  ge t s  r i d  of
g round  t e rms  a s  a rgumen t s  of ACl - func t ions .  "Var i ab l e  abs t r ac t i on"  i s  a
we l l  know me thod  to  dea l  w i th  t e rms  tha t  do  no t  be long  to  t he  t heo ry ,
i n  ou r  ca se  AC1. Var i ab l e  abs t r ac t i on  was  i n t roduced  by  S t i cke l  i n
[S t81 ]  fo r  AC-un i f i ca t i on  and  used  by  Nipkow in  [N i89 ]  a s  cen t r a l  i dea
to  combine  ma tch ing  a lgo r i t hms  fo r  d i f f e r en t  t heo r i e s .  The  ru l e
"Var i ab l e  a rgumen t s "  gene ra t e s  new cons t r a in t s .

The in fe r ence  sys t em QM”

Tri vial  equa t ion

a ]  {s=s} U E . C , Sol b]  {s=s'} U E , C ‚ Sol
_-  ‚ " _ if  s $ s '

E , C . Sol  Fa i l

Decomposi t ion

a ]  {k[t1 ..... t n ]  = .k[sl‚...‚sn]} U E . C , Sol

{ t i=s i ' i=1  . . . . .  n}UE,C .SOl

b]  {k[t1....,tn] = s}  U E . C , Sol
if top[s ]  x k

Fa i l

Explicit solut ion [Merging]

a ]  {x=s} U E . C . Sol
if a = {X65}  and  o sa t i s f i e s  C

o[E] . o[C - Cx] . Sol U o





b) {x=s} u E . C , Sol 

if Cl = {x~s} and Cl does not satisfy C 

Fail 

Simplification 

ifIs:as:b 
{f(tf1 ..... t~n] = f(sf>1, ... ,sb-a ....,s~rn]} U E C Sol 

if a > b 

Fail 

c) {f[s.tf1, .... t~n] = s} U E , C . Sol 

d] {f(sa,tf1 ..... t~n] = s} 

Fail 

U E . C , Sol 

if a > 1 

e] {f[sa, tf1 ..... t~n] = s'} 

Fail 

U E . C , Sol 

if s $ sand top[s'] :j: f 

Variable abstraction of alien subterms 

{f[X1, ... 'xn'uf>1' .... u~rn] = s} U E . {tj = Uj I j = l,. .. ,m} U C . Sol 

if t j not in V and not ground 

where Uj E Vaux new. i.e. Vaux n V = 0 

Variable arguments 

Cl[ E) , Cl[ C'] . Sol u Cl 

if top[s] :j: f and aj > 1 

where 0 = {Yj ~ If I j = I, .... m} 

Cv = Cv U {Xi E: {If. s} I 

CE = C E U {f(x1, ... ,xn ) = s} 

= I .... ,n} 
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b] {x=s} U E . C , Sol
_ if a = {x<—s} and a does not sa t i s fy  C

Fa i l

Simpli f icat ion

a] {.f[sa‚ta'‚„.tan] = f[sb1‚....sb‚„.‚sbm]} U E , c . Sol1 n 1 m

i f  I s a S b
{f[t‚a1‚...‚tgn] = f[s‚lm ..... sb-a ..... sgml} U E , c , Sol

b] {f[sa‚t‚ai..„tgn] = f[s}"1 ..... sb.....s}°„m]} U E . c . Sol
i f  a > b

Fa i l

c] {f[s‚t1a‘.„.‚t‚a‚n] = s} U E , C . Sol

{f[tf1‚...‚t;n] = 1,} U E . c . Sol

d] {f[sa,t?1.....t:n] = s} U E . C . Sol
i f  a > 1

Fa i l

e] {f[s""',t1a1 ..... tgn]  = s'} U E . C , Sol
if 5 $ s' and top[s'l x f

Fa i l

Var iab le  abs t rac t i bn  of  a l i en  sub te rms

{f[tl1°1....‚tlgnm.x1„„‚xn] = s} U E , C . Sol

{f[x‚ ..... xn‚u{°1.„.‚uR‚m] = s} U E , {tj = uj l j = 1.....m} U C . $01
i f  tj no t  in  V and  not  ground
where  uj € Vaux new. Le. Vaux n V = z

Var iab le a rgumen ts

a] {f[x1,....xn.y1a1,...,y$nm] = s} U E . C . Sol
if top[s ]  t { and aj > 1

o[E] , o[C'] . Sol U o

where  o= {y j e1 , l j =1  ..... m}
c",  : CV U {X i  € { I f  . S }  | 1 = 1 . . . . , n}

C'E = CE U { f [X1  . . . . .  xn ]  : S}





b) {f(xf1 ..... x~n) = f(SP1 .....S~)} U E . C . Sol 

E. CU{xiE[f[sf1i..... S~rni)] I i= l ..... n} U {f[xfl..... x~n) = f(s~l ..... s~rn)} . Sol 

where Cij = bj di v ai 

The following rules deal with the solution of easy constraints and the 
detection of unsolvable constraints. Note. that in same cases the 
solution of a constraint generates new AC1-matching problems. 

Pruning constraints 

a) E . C . Sol
 
if Cx = x E {s} and 0 = {x ~ s}
 

orE) o(C - Cx) . Sol U 0
 

Fail 

if a I b i for all = 1. .... n 
orE) . o[C) . Sol U 0 

where Ci = b i diva 

o = {x <Eo- f(sf1 ..... sgn)} 

d) E . {t=u . u=s} U C . Sol
 
if u E Vaux
 

{t=s} U o[E) . o[C) . Sol
 

where d = {u <E- s} 

e) E . C . Sol
 
if C unsa tisfyable
 

Fail
 

We are going to show that the inference system !JAC1 is correct. 

Lemma 

If E :j: 0 then one rule of the inference system D AC1 is applicable to
 
(E.C.Sol).
 

Proof:
 

By induction on the structure of possible flattened pattern terms. •
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b] {f[x$i,.„‚xgn] = f[s{°1‚_...sg‚ml} U E , c , Sol

E‚cu{x‚e[f[sf1i  ..... sgmin | 1: 1 ..... n} U {f[x‚al.....x—‘;‚n] = {[sfn ..... sgml} . Sol

where  Ci]. = bj l a i

The  fo l l owing  ru l e s  dea l  w i th  t he  so lu t i on  of easy cons t r a in t s  and  the
de tec t i on  o f  unso lvab le  cons t r a in t s .  No te ,  t ha t  i n  s ame  cases t he

so lu t i on  of a cons t r a in t  gene ra t e s  new ACl -ma tch ing  p rob lems .

Pruning constrain t s

a ]  E.C ,So l
i f=x€{s}anda={x<-s}

o[E] , o[C —Cx] , Sol Us

b] E . C u {f[xa] = ([s1b1 ..... sgnl} , Sol
if 3 i  : Ha I b i

Fa i l

c] E . c u {f[xa] = f[s{°l‚...‚sgn]} , Sol
_ if a l b i  for a l l  i = l....‚n

c[E] . o[C] . Sol U o

where  c i  = b i  d iv  a

o = {x <- f[s$1‚.„‚sgn]}

d]  E , {t=u . u=s} U _C . Sol
if u € V a u x

{t=s} U o[E] , o[C] , Sol

where  o = {u  € s}

e ]  E . c , Sol
——-— if C unsa t i s i yab l e

Fa i l

We a re  go ing  to  show tha t  t he  i n f e r ence  sys t em 9Ac1  i s  co r r ec t .

Lemma

If E i @ t hen  one  ru l e  of t he  i n f e r ence  sys t em 9Ac1  i s  app l i cab l e  t o
[E,C,Sol].
Proof :

By induc t ion  on  the  s t ruc tu re  of pos s ib l e  f l a t t ened  pa t t e rn  t e rms .  .





Theorem 

Let E be an ACI-matching problem: 

a) If every derivation in D ACt from [E.0.0) ends with Fail. then E is 
unsol vable. 

b) For every solution Cl of E. there is a derivation in D ACt from [E.0.0l 
to [0.C.SoI) such that Cl = Cl' U Sol and Cl' satisfies C. 

Proof: 

If we can show the following lemma. then an induction on the number 
of applications of inference rules of D ACt proves the theorem. 

Lemma 

Let [Et.Ct.Sol t ) result from [Eo.Co.Solo ) be application of a rule of 
D ACt ' Then Cl1V is part of a solution of (Et.Ct.Sol t ) iff Cl1V is part of 
a solution of [Eo.Co.Solo ). 

Here Cl1V denotes the restriction of Cl to the variables in V.
 

The proof of the lemma for most of the inference rules is easy. We will
 
show here the proofs for the rules Variable abstraction and Variable
 
arguments.
 

Let Il be a solution of (Et.Ct.Solt ) and t a solution of [Eo.Co.Solo ).
 

1) Variable abstraction
 

Then Eo = E U {f(tPt ..... t~In.x?t x~n) = s}. Ct = Co U {tj = Uj I j = 1. .... n},
 
Solt = Solo and Et = E U {f(xf-t ,x~n, upt ..... U~In) = s}.
 

Let t' = to{Uj ~ t j I j = I..... n}. Then t'lv = tlv.
 

t'[f[x?t ....,x~n.upt, ...,U~In)) = tC{Uj ~ t j I j = 1, .... n}[f(x?t .....x~n,upt ....,U~In))
 

=ACt t[f[tpt ..... t~In.x?t, .... x~n)) 

=ACt S.
 

SO tlv is part of a solution of (Et,Ct,Solt).
 

It is obvious. that Il is a solution of (Eo.Co.Solo ), because
 

Il(f[x?t ,.... x~n. upt ..... U~In))	 = f[ll[x?t), ....Il(x~n ),Il[ upt l..... Il( u~In))
 

=ACt f[ll( tpt), Il[ t~In ),Il( x? t), ... ,Il( x~n))
 

=ACt ll(f[tpt t~In.x?t....,x~n))
 

=ACt S.
 

2) Variable arguments 

a) Il is a solution for (Et.Ct.Solt ), therefore Il(Yj) = If. 

1l[f(Xt, .. ·. x n ' y?t ..... y~In) =ACt f[ll( xt ), .... Il[X n ),lf, ''', If) 
=ACt Il[f(xt ,.. ·.xn )) 
=ACt s, because f(Xt ... ·.xn) = s E CE. 

SO Il is a solution of (Eo.Co.Solo ). 

t( Yj) = If for all j = l .... ,m. else let t( Yk) = s'. Then 
top(t[f[xt, ... ,xn .Y?t ..... y~In))) = f, which contradictes top[s) :j: f and t
 
sol ution of [Eo, Co. Solo ).
 

Therefore is 0 part of t, t = t ocl. t(Cl(E)) = t'(Cl(Cl(E)]) = t[Cl(E)) = t(E).
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Theorem
Le t  E be  an  ACl -ma tch ing  p rob lem :

a] If every  derivation in DAG, from [8.9.9] ends  w i th  Fail, then  E is
unso lvab le .

b] For  eve ry  so lu t i on  0 of E, there  i s  a de r iva t i on  i n  9Ac1  f rom [E .Qß]
t o  [®‚C‚Sol] such  tha t  c = 0 '  U Sol and  o '  s a t i s f i e s  C.

m:  ‘
If we  can  show the  fo l l owing  l emma ,  t hen  an  i nduc t ion  on  the  number
of app l i ca t i ons  of i n f e r ence  ru l e s  of 9Ac1  proves  t he  t heo rem.

Lemma

Let [E1.C1.5011] result from [E0.Co‚Solo] be  applicat ion of a rule  of
QAcr  Then  c lv  i s  pa r t  of a so lu t i on  of (E„C„Sol‚]  iff o lv  i s  pa r t  of
a solution of [Eo‚Co‚Solo].

Here olv deno te s  t he  r e s t r i c t i on  of o t o  t he  va r i ab l e s  i n  V.
The  p roo f  of t he  l emma  fo r  mos t  of t he  i n f e r ence  ru l e s  i s  e a sy .  We  wi l l
show he re  t he  p roo f s  fo r  t he  ru l e s  Va r i ab l e  abs t r ac t i on  and  Var i ab l e
a rgumen t s .
Let u be  a solution of [E„C„Sol‚] and  t a solution of [Eo‚Co‚Solo].
1] Var i ab l e  abs t r ac t i on  ’

Then EO = E U {rm->1 ..... gmx? ..... xgn] = s}, c1 = c0  U {tj = uj l j = 1,...,n},
5011 = $010 and  E, = E U {f[x‚°1 ..... xän‚uä°1‚...‚u‚‘?nm] = 5}.
Le t  T ,  = 'EO{Uj é’ t j  | j : 1 , . . . ‚ n} .  Then  'C l lv  = t l v .

t’[f[x?1,...,xgn,u}’1 ..... ugmn to{uj <- tj I j = 1 ..... n}[f[x§5‘1,...,x§n.uf’1 ..... ugmH
=AC1 t [ f [ t1b1 . . . . .  tbmm‚x181 . . . . .  X : n ] ]

=Ac1 5-

So t lv  i s  par t  of a solution of [E1.C1.Sol1].
It i s  obvious, tha t  ll is  a solution of [Eo‚Co‚Solo], because
gmx?" ..... xgn,u‚b1 ..... uglmfl = f[u[x1a1],...,u[x§n],p[u{°1],...,u[u'§lm]]

:ACI Huh?”  ..... UHRPLMX?“ ----- dxän l l
=Ac1  ‘u[f[t{°1,...,tfi,m,xlal,....x§n]]
=Ac1  5 -

2] Var i ab l e  a rgumen t s
a]  Ll is  a solution for [E1,C„Soli]‚ therefore u[yj] = l , .

gmx,  ..... xn‚y1°1‚„.,y$nm =AC1 f[p[x1] ..... u[xn]‚l„.„‚lf]
=AC‘ l  u[f[x1‚„.‚xn]]
=Ac1 s. because  f[x1 ..... xn]  = s € Ct .

So ll is  a solution of [E°.Co,Solo].
1:[yj] = if for a l l  j = 1.....m, e l s e  l e t  1:[yk] = s ' .  Then
top[t[f[x1....‚xn,y?1 ..... y?nm]]] = i, which  contradictes  top[s] $ f and  1:
solution of [E0.Co.So‘lo].
Therefore  i s  a pa r t  of t .  t t'oo. t[o[E]] = t'[o[o[E]]] = t'[o[E]] = t[E].





t[Sol U a) = t[Sol) and it is obvious that t is a solution of Cv and CE. 
SO t is also a solution of [Et.Ct,Solt)· 

b) Because f(xrl, x~n) = f(s~t, s~In) E Ct II is solution to (Eo.Co.Sol o ]. 

Because f[xrl ,x~n) = f[s~t s~In) E Eo and t[xd E [f[sf1i ..... S~Ini)] 

due to the definition of intervall t is solution to (Et.Ct.Solt )· • 

.!.. Processing of constraints and implementational issues 

4.1 Processing of constraints 

So far. we have presented an inference system that transforms 
AC1-matching problems into a set of constraints by decomposition and 
solving of easy subproblems. Further the system explains how very 
special constraints, Le. of the form x E {s}. can be solved or very special 
constraints can be detected as unsolvable. Now the questions remain, 
how to combine several constraints for a variable and how to sharpen 
constraints. if new substitutions are found. The answers to these 
questions will also show that constraints can help to solve 
AC1-matching problems more efficiently. 

Our constraints represent possible substitutions for a variable in a 
compact form. All possible substitutions form a set. If we have two 
constraints Cx and C~ for a variable x. then we have to compute the 
intersection C~ = Cx n C~. The intersection of two intervalls may not 
be an interval!. Then we switch to an explicit set representation. Note 
that for intervall variable constraints. Le. constraints for a variable in 
intervall form. the argument lists can be extended. if necessary. So 
[f[srt ....,s~n)] is the same as [f[so.srt, ...,s~n)]. Thus we have the following 
possible intersection si t ua tions : 

- two variable constraints in set representation
 
normal intersection {St ..... sn} n {sl, ..·,s~.J
 

- variable constraint in set representation with intervall constraint:
 
{si ..... s~} n [f[srt ....,s~n)] =
 

{s" I s" E {sl ..... s~} and [s" E {St, ... ,sn} or
 

- two intervall constraints with equal top-level symbol:
 
[f[srt ..... s~n)] n [f[s~t, .... s~n)] = [f[sft ..... sgn)]
 

where Ci = min[ai.bd for all L
 

- two intervall constraints with different top-level symbol:
 
[f[ at .... 'snan)] n [ ['bt ,.... sIn'bIn)] ­ ­St g St 

[{St, ... ,sn} n [g[sibt, ...,S~In)]] u ({si ..... s~} n [f[sft ..... s~n)]). 

So we have to convert the intervall representation to the set 
representation only when constraints with different top-level symbols 
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1:[Sol U a]  = t[Sol] and  i t  i s  obv ious  t ha t  1: i s  a so lut ion  of Ci, and  cg .
So 1: i s  a lso a solution of [E„C„Soli].

b] Because f[x1311..... xän] = f[s}°1.....sfi‚m] € C1 [1 is  solution to [Eo,Co.Solo].
Because f[x1a1 ..... xän] = f[s}°1.„.‚sg‚m] E EO and t[xi] E [f[sf1i‚...‚s$nmi]]
due  to t he  definition of intervall t i s  solution to [E,,C1,Sol1]. .

3L Processing o_f constraints  and  implementational  i ssues

fl Processing o_f constraints
So far. we  have  presented  an  inference  sys t em that transforms
ACi—matching problems in to  a s e t  of constraints  by  decompos i t ion  and
so lv ing  of easy  subprob lems .  Fur ther  the  sys t em exp la ins  how very
special constraints, i.e. of the form x E {s}, can be  solved or very special
cons tra in t s  can  be  de tec ted  as  unso lvab le .  Now the  ques t ions  remain .
how to  combine  severa l  cons tra in t s  for a var iab le  and  how to  sharpen
cons tra in t s .  if new subs t i tu t ions  are  found .  The  answers  to  these
ques t ions  w i l l  a l so  show that  cons tra in t s  can  he lp  to  so lve
ACl—match ing  prob lems  more  e f f i c i en t ly .

Our constraints  represent  poss ib le  subst i tut ions  for a var iable  in  a
compact  form.  A l l  pos s ib l e  subs t i tu t ions  form a s e t .  If we  have  two
constraints  Cx  and  C')( for a va r i ab l e  x, t hen  we  have  to  compu te  the
in ter sec t ion  c ;  = C"  fl C'x. The  in tersec t ion  of two  in terva l l s  may  not
be  an  in terva l l .  Then  we  swi tch  to  an  exp l i c i t  s e t  representa t ion .  Note
that  for  in terva l l  var iab le  cons tra in t s ,  i .e.  cons tra in t s  for a var iab le  in
in terva l l  form,  the  argument  l i s t s  can  be  ex tended ,  if neces sary .  So
[f[s§i1 ..... sfinfl  i s  the  same  as  [f[s°.s?1....,s§n]]. Thus we  have  the  fo l lowing
poss ib l e  in tersec t ion  s i tua t ions  :

- two  var iab le  cons tra in t s  in  s e t  representa t ion  :
normal intersection {sl ..... sn} m {si‚...‚s;n}.

— va r i ab l e  cons t r a in t  i n  se t  representa t ion  wi th  in terva l l  cons tra in t  :
{si.....s'm} fl [f[s?1,....s§n]] =

{s" I s "  E {si....,s}n} and [s" E {51 ..... sn} or s" = f[sf1,...,s§n] with
o s ci s ai]}.

- two  in terva l l  cons tra in t s  w i th  equa l  top- l eve l  symbol  :
[f[s1a1,....s:n]] n [f[s{°1 ..... sänfl  = [f[s{71 ..... sgn ] ]

where  ci = min[ai‚bi] for' all i.

- two  interval l  constraints  w i th  different top- l eve l  symbol  :
[f[s1°1‚...‚sän]] fl [g[Sib‘ ..... 832m]]  =

[{sl ..... sn} 0 [g[sib1,...,s}fim]]] U [{si ..... s'm} fl [f[s?1‚...‚sän]]].

So  we have  to  conve r t  the  in terva l l  r epresenta t ion  to  the  s e t
representa t ion  on ly  when  cons tra in t s  w i th  d i f f erent  top- l eve l  symbol s

-10 -





have to be combined or if the representation is [f(sP, ...,s~n which 
means that the only solution of this constraint is If. Note. that an 
implementation of this intersection rules can be efficiently done. 

Examples: 

1) X E {a. b. c. If' f(a. b)} and x E [f(a3.b2.d)]. 
Combination leads to 

x E {a. b. If. f(a.b)}. 

2) x E [f[a6,b2,c8,d3.e4J] and x E [f(a 2.b4.d6.e2)]. 
Combina tion leads to 

x E [f(a 2.b2.d3.e2)]. 

3) x E [f[a2.b4 .d6)] and x E [g(lf.a.b4.f(a2.b3],f(b4.e2])]. 
Combination leads to 

x E {a. b} U {If. a. b. f(a 2.b3)} = {If. a. b. f[a 2.b3)}. 

The inference rule Variable abstraction allows for a second way to 
restrict variable constraints. If we have a constraint of the form 

f( tft ..... t~n,xfn+t ..... x~n+k) = u. 

where f E FACt. u E Vaux and t i not in V. then we can compute "at-least" 
requirements for the variable u. A substitution that solves this equation 
must substitute for u at least a term of the form f[tflt ..... tf1il)' where 
ij E {l ..... n} and top(t ij ) not in FACt. If there is an intervall variable constraint 
u E [f[s~t, .... s~m)], we get a combined constraint . 

u E [f[stCt.bt]; .... s~m.bm])], 

with Ci = 
constraints 

0, if Si not in {tit ..... t il }. 
are not solvable. 

or aij else. If c i > bi' then the 

If solutions for variables in {Xt..... Xk} or variables in 
"at-least" constraints Ci have to be adjusted. 

V(td are found. the 

Example: 

f[a.h(a,b).h[c,x),g(a 2),x,y) = u and 
u E [f(a2,c.h(a,b),h(c.d]2,g[a2)2. g [a,b))] 

leads to 
u E [f[a et. 2], c[o. tJ, h[a. b)[U]. h[ c, d)[O' 2]. g[a 2)[1.2], g

So {Lt = {u -Eo­ f(a 2,h(a.b).g[a2).g(a.b)} is a solution for 

( a, b )[0. t ]). 

u. but 
(1.2	 = {u -Eo- f[a,c.h[c.d),g[a 2))} is not. because of the constraint on h[a.bJ. 

The intersection of "at-least" constraints is like before. 

Examples: 

1) X E {a. b, C, If' f[a,b)} and x E [f(a[t.3J.b[0.2].c[0.tJ,d[0.tJ)]. 

Combina tion leads to 
x E {a, f[a.b)}. 

2)	 x E[f(a[t·6],b[2,2J. c[0.8].d[t.3],e[0,4])] and 
x E[f(a[0.2J.b[0,4].d[0.6].e[0.2J)). 

Combination leads to 
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have  to  be  combined or if t he  representation i s  [f[s1° ..... sg] ]  which
means t ha t  t he  on ly  so lu t i on  of t h i s  cons t r a in t  i s  1‚. No te .  t ha t  an
imp lemen ta t i on  of t h i s  i n t e r sec t i on  ru l e s  can  be  e f f i c i en t ly  done ,

Examples :

1] x € {a. b. c. 1,, f[a.b]} and  x €[1[a3,b2.d]].
Combina t ion  l eads  t o

x € {a. b. If. f(a.b]}.
2] x € [f[a5,b2‚c8.d3.e4]] and x € [f[a2,b4.d6,e2]].

Combina t ion  l eads  t o
x € [f[a2 b2. d3 e2]].

3] x € [f[a2. b4 016]] and x € [g[1,2. a. b4 t[a2 b3] f[b4 e2]]]
Combina t ion  l eads  t o

x € {a. b} U {1,, a, b. f[a2,b3]} = {lb a. b. f[a 2 ,b3 ]} .

The  in fe r ence  ru l e  Va r i ab l e  abs t r ac t i on  a l l ows  fo r  a s econd  way  to
r e s t r i c t  va r i ab l e  cons t r a in t s .  If we  have  a cons t r a in t  o f  t he  fo rm

f[ti‘1,....t§n,x1an*1 ..... xfin’k] =
where  f € FAQ.  u € Vaux  and  t i  no t  i n  V, t hen  we  can  compu te  " a t - l ea s t "
r equ i r emen t s  fo r  t he  va r i ab l e  11. A subs t i t u t i on  t ha t  so lves  t h i s  equa t ion
mus t  subs t i t u t e  for u a t  l e a s t  a t e rm  of t he  fo rm f[tiali1,. ..tialil]. where
ij €{1.„‚n} and  top[t‚j] not in FAG-‚. If there  is an  intervall  variable constraint
u € [f[s}°1  ..... sbm] ] .  we ge t  a combined  cons t r a in t

u E [f[sl;c1.b1] _____ SEcm.bm] ] ]

with  c i  = 0. if si  not in {ti1‚.... i 1} '  or a-j else. If ci > bi. t hen  t he
cons t r a in t s  a r e  no t  so lvab l e .

If solutions for variables in {x1,...,xk} or variables in V[ti] a r e  found, t he
"a t - l ea s t "  cons t r a in t s  c i  have  t o  be  adjusted.
Example  :

{[a.h[a.b].h[c‚x].g[a2]‚x.y] = u and
u € [f[a2.c.h[a‚b].h[c.d]2.g[a2]2.g[a.b]]]
l e ads  t o

u € [f[a["2].c[°'1].h[a.b]Ü'Ü‚h[c.d][°'2].g[a2]Ü'2].g[a.b][°-Ü].
5°  111 = {u <- f[a2.h[a.b].g[a2].g[a.bl} is  a solution for u. bu t

112 = {u <- f[a,c.h[c,d],g[a2]]} is not, because  of t he  constraint  on h[a,b].

The  in t e r sec t i on  of " a t - l ea s t "  cons t r a in t s  i s  l i ke  be fo re .

Examples :
1] x € {a. b, c, i,. f[a.b]} and x € [f[a[1'3].b[°'2].c[°‘1].d[°-1]]].

Combina t ion  l eads  t o
x € {a. f(a.b]}.

2]  X E [Ham-61b” .23 , cC° -83 ,dE1 .3J , eE0 .4 ] ] ]  and

x €[Ham-21,late-414061402111
Combina t ion  l eads  t o
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x E: [f(a[l·2J,b[2.2J.d[1,3J,e[0.2J)]. 

3)	 x E [t(a[0.2J,b[0,4J,d[0.6J)] and
 
x E [g[l ~0.2J, a [0, 1], b[O,4 J, f(a 2, b 3)[0. 1]. f(b 4 , e2l[0, 1])].
 

Combination leads to
 
x E:	 {a, b} U {It, a, b, f[a 2 ,b 3 )} = {It, a, b, f(a 2.b3)}, 

If an AC1-matching problem has been transformed by .!JAC1 into 
[0,C,Sol) and C t 0 then we have to solve the constraints, As stated 

'before,. not every substitution of x E: S or x E [f(sr1 ..... s~n)] is a solution 
of the matching problem. So a variable with the smallest number of 
possible substitutions is chosen and one of the solutions is propagated 
in CE . If this leads to no Fail. the next "smallest" variable is chosen 
and so on. If a Fail occurs, using backtracking another solution for the 
variable is tried. 

4.2	 Implementation 

Our implementation combines the inference system .!JAC1 with the 
constraint handling of 4.1, with some small changes. The rul3 "Variable 
abstraction" that postpones branching into the solution of the 
constraints is not used in this manner. Instead only such arguments t 
wi th top( t) E FAC1 are treated as variables. the possible subproblems 
generated by other arguments are tried at once. We do not want to 
process all branches, because in most systems only one and not all 
matches of a pattern to an example are needed. Therefore we select one 
possibility and do backtracking if this branch is not sucessful. As we 
also want to generate as fast as possible partial soulutions or 
constraints, we do a depth-first search. This requires a control that uses 
three stacks : 

- a to-do stack, where all remaining problems of the branch are 
stored. Always the first problem of the stack will be tackled next 
[depth-first). 

- a done stack. where all backtracking points with the proper partial 
solutions and pointers to the to-do stack and the constraint stack at 
this time are stored. 

- a constraint stack. where all constraints and their adjustments are 
stored. An adjustment of a constraint is generated, when a 
substitution of a variable is propagated in the constraints. In every 
verification equation with this variable in its left hand side the 
variable is deleted from the left hand side and apropriate times the 
substitution from the right hand side. If this is not possible. we 
have a Fail. If it is possible, the constraints of all variables in such 
adjusted verification equations can be sharpened. This can be done 
very efficiently, because the right hand sides of the equations are 
the constraints [or a multiple of it). Then the rule "Pruning 
constraints" is applied. 
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x E [f[a[i .2] 'b[2.2] 'd[1.3] 'e[o.2]]] .
3]  x E [f[a[°'2].b[°'4]‚d[°-63]] and ,

x 6Eg l1 l °~21aE°J ] . bE° -4 l r [ a2 .b31E° -U .w .eZIEO-fln .

Combina t ion  l eads  t o
x E {a. b} u {1„ a. b. f[a2‚b3]} = {1„ a, b. f[a2‚b3]}.

If an  ACl -ma tch ing  p rob lem has  been  t r ans fo rmed  by  9Ac1  i n to
[6 .0 .501 ]  and  C # ® t hen  we  have  t o  so lve  t he  cons t r a in t s .  As  s t a t ed
before“ not  every subst i tut ion of x E S or x E [f[sf1....,s§n]] is  a solution
of t he  ma tch ing  p rob lem.  So  a va r i ab l e  w i th  t he  sma l l e s t  number  of
poss ib l e  subs t i t u t i ons  i s  chosen  and  one  of t he  so lu t i ons  i s  p ropaga t ed
i n  CB. If t h i s  l e ads  t o  no  Fail ,  t he  nex t  " sma l l e s t "  va r i ab l e  i s  chosen
and  so  on .  If a Fa i l  occu r s .  u s ing  back t r ack ing  ano the r  so lu t i on  fo r  t he
va r i ab l e  i s  t r i ed .

3; Implementation _
Our  imp lemen ta t i on  combines  t he  i n f e r ence  sys t em 9Ac1  wi th  t he
cons t r a in t  hand l ing  of 4.1, w i th  some  sma l l  changes .  The  ru l e  "Var i ab l e
abs t r ac t i on"  t ha t  pos tpones  b ranch ing  in to  t he  so lu t i on  of t he
cons t r a in t s  i s  no t  u sed  i n  t h i s  manne r .  I n s t ead  on ly  such  a rgumen t s  t
wi th  top[ t ]  E FAG, a r e  t r ea t ed  a s  va r i ab l e s .  t he  pos s ib l e  subp rob lems
gene ra t ed  by  o the r  a rgumen t s  a r e  t r i ed  a t  once .  We  do  no t  wan t  t o
p roces s  a l l  b r anches .  because  i n  mos t  sy s t ems  on ly  one  and  no t  a l l
matches  of a pa t t e rn  t o  an  example  a r e  needed .  There fore  we  se l ec t  one
poss ib i l i t y  and  do  back t r ack ing  if t h i s  b r anch  i s  no t  suces s fu l .  As  we
a l so  wan t  t o  gene ra t e  a s  f a s t  a s  pos s ib l e  pa r t i a l  sou lu t ions  o r
cons t r a in t s ,  we  do  a dep th - f i r s t  s ea rch .  Th i s  r equ i r e s  a con t ro l  t ha t  u se s
t h r ee  s t acks  :

- a t o -do  s t ack ,  whe re  a l l  r ema in ing  p rob lems  of t he  b ranch  a r e
s to red .  A lways  t he  f i r s t  p rob l em of t he  s t ack  w i l l  be  t ack l ed  nex t
[dep th - f i r s t ] .

- a m s t ack ,  whe re  a l l  back t r ack ing  po in t s  w i th  t he  p rope r  pa r t i a l
so lu t i ons  and  po in t e r s  t o  t he  to—do s t ack  and  the  cons t r a in t  s t ack  a t
t h i s  t ime  a r e  s to r ed .

- a cons t r a in t  s t ack .  whe re  a l l  cons t r a in t s  and  the i r  ad jus tmen t s  a r e
s to red .  An  ad jus tmen t  of a cons t r a in t  i s  gene ra t ed .  when  a
subs t i t u t i on  of a va r i ab l e  is" p ropaga t ed  i n  t he  cons t r a in t s .  I n  eve ry
ve r i f i ca t i on  equa t ion  w i th  t h i s  va r i ab l e  i n  i t s  l e f t  hand  s ide  t he
va r i ab l e  i s  de l e t ed  f rom the  l e f t  hand  s ide  and  ap rop r i a t e  t imes  t he
subs t i t u t i on  f rom the  r i gh t  hand  s ide .  If t h i s  i s  no t  pos s ib l e ,  we
have  a Fa i l .  If i t  i s  pos s ib l e ,  t he  cons t r a in t s  of a l l  va r i ab l e s  i n  such
ad jus t ed  ve r i f i ca t i on  equa t ions  can  be  sha rpened .  Th i s  can  be  done
ve ry  e f f i c i en t ly ,  because  t he  r i gh t  hand  s ides  of t he  equa t ions  a r e
t he  cons t r a in t s  [o r  a mu l t i p l e  o f  i t ] .  Then  the  ru l e  "P run ing
cons t r a in t s "  i s  app l i ed .
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In fact, the first and the last stack are so-called cactus stacks, because 
they have several branches, but at every moment only one branch is 
active. Other branches can become alive after backtracking using the 
second stack. 

The same kind of algorithm with these stacks has also proven well 
suited for AC-matc1)ing. 

4.3 ACt-matching examples
 
We will .demonstrate the efficiency of our algorithm by some examples.
 

a) h(f(x,y),g(x,y)) = h(f(a,b 2 1.g(a2 ,b))
 

Decomposition leads to 
(1)	 f(x,y) = t(a,b2 ) 

[2] g(x,y] = g(a 2 ,b]. 

So we get the constraints 
x,y E [f(a,b2 )] from (1) and x,y E [g(a2 ,b)] from (2]. 

Intersection of the constraints results in 
x, y E {a,b}. 

For x we try 
01 = {x ~ a} which leads to y = f(b 2 ) and y = g(a,b) f and 
02 = {x ~ b} which leads to y =, f(a,b] and y = g(a 2 ] r 

So we have to try 2 possible substitutions to detect the unsolvability 
of the problem instead of 6 using mutation steps. 

b) f(a,g(b 3 ,x),x, y] = f(a,b,g(a,b),g(a,b 2 ),g(a,b4 ]) 

Simplification deletes the term a in both sides 
f(g(b 3 ,x),x,y) = f(b,g(a,bl.g(a,b 2 ),g(a,b4 )]. 

Variable abstraction results in 
f(u,x,y] = f(b,g(a,b),g(a,b 2 ),g(a,b 4 )) (.) 

and the constraint g(b3 ,x) = u which gives an at-least constraint 
u E [g(b:>3]]. 

The equation [.] yields to the constraints 
u,x,y E [f(b,g[a,b),g(a,b2 ),g[a,b 4 ]]. 

Because of the at-least constraint we get u = g(a, b 4 ) and therefore 
g(b3 ,x) = g(a,b 4 ]. 

\ 

Simplification results in the substitution 
x = g(a,b]. 

Propagating this substitution in the verification equation (.] we get 
f[g(a, b 4 ). g(a, b], y) = f(b, g(a, b), g(a, b 2 ), g(a, b 4 ]) 

or simplified 
y = f(b,g(a.b 2 )]. 

$0	 the found solution is
 
° = {x ~ g(a,b), y ~ f(b,g(a,b 2 ])}.
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In  fact, t he  first and  the  l a s t  s t ack  a r e  so -ca l l ed  cac tu s  s t acks ,  because
t hey  have  s eve ra l  b r anches .  bu t  a t  eve ry  momen t  on ly  one  branch i s
ac t i ve .  Other  branches  can  become  a l ive  a f t er  back t r ack ing  us ing  the
second  s t ack .

The same  k ind  of a lgo r i t hm wi th  t he se  s t acks  has  a l so  p roven  we l l
su i t ed  fo r  AC-ma tch ing .

5._3 ACl-matghigg examples
We wi l l_demons t r a t e  t he  e f f i c i ency  of ou r  a lgo r i t hm by  some  examples .

a] h[ f [x .y l . g [x .y l l  = h[f[a.b2]‚g[a2‚bll
Decompos i t i on  l eads  t o
(11 f(x.yl = fla.b2]
[2] g[x .y ]  = g[a2.b].
So  we ge t  t he  cons t r a in t s

x.y € [l[a,b2]] from [1] and  x.y € [g[az.b]] from [2].
In t e r sec t i on  of t he  cons t r a in t s  r e su l t s  i n

x .y  E {a.b}.
For  x we t r y

c1 = {x <- a} which leads  to y = fs]  and y = g[a‚b] & and
oz = {x <— b} which leads  to y = f(a,b] and  y = g[a2] /

So  we have  t o  t r y  2 poss ib l e  subs t i t u t i ons  t o  de t ec t  t he  unso lvab i l i t y
of t he  p rob lem in s t ead  of 6 using muta t ion  s t eps .

b] fla.glb3.xl.x.yl = fta.b.gla.b1.g[a.b2]‚gla.b4]]
Simpl i f i ca t i on  de l e t e s  t he  t e rm  a i n  bo th  s ide s  :

flglb3‚xl.x.yl = f[b.g[a.b]‚g[a‚b2].g[a.b4ll.
Var iab le  abs t r ac t i on  r e su l t s  i n

f [U .X .y l  = f [b .g [a .b ] .g [a .b2 ] ‚g [a .b4 ] ]  [*]
and  the  cons t r a in t  g[b3,x]  = 11 wh ich  g ives  an  at—least cons t r a in t

u € [g[b23]].
The  equa t ion  [*] y ie lds  t o  t he  cons t r a in t s

u,x.y € [f[b‚g[a‚b].g[a‚b2]‚g[a‚b4]].
Because  oi  t he  a t - l ea s t  cons t r a in t  we  ge t  u = g[a ,b4 ]  and  the re fo re

g[b3 .XJ  = g[a .b4 ] .  ‘
Simpl i f i ca t i on  r e su l t s  i n  t he  subs t i t u t i on

x = g[a‚b].
Propagating th is  subst i tut ion in t he  verification equat ion [*] we ge t

f l g l a .b4 ] .g [ a .b ] ‚Y]  = f [b .g [a .b l . g [ a .b2 ] .g [ a .b4 ] ]

or  s imp l i f i ed
Y = f l b .g [a .b2 ] l .

So  the  found  so lu t i on  i s
a = {x + g[a‚b]‚ Y e f[b.g[a.b2]]}_
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c) f(a2,g(a.x~.y).g(x,z)) = f(a 3 ) 

Simplification results in 
f(g(a,x 2,y),g(x.z)) = a. 

Variable abstractions generates the equation 
f(u1,U2) = a (+) 

and the (at-least) constraints g{a.x2.y) = u1 which means u1 contains 
at least a. Le. u1 E: [g(a:>:1)] and g{x,z) = u2' 

(+) leads to the constraints 
u1. u2 E: {If. a }. 

Combining this constraint with the at-least constraint for u1. we get 
U1 = a 

and a new equation 
g(a.x2,y) = a. 

Simplification and the inference rule Variable arguments generate 
x = 19 and y = 19 . 

Propagating this substitution into the verification equation and 
simplifying it yields directly to 

Z = 1f 

So the found solution is 
Cl = {x .,.. 1 • Y .,.. 1 • Z .,.. 1f }.

9 9 

5. Conclusion and future work 
We have presented an AC1-matching algorithm using constraint 
propagation to reduce the necessary branching. We have shown that our 
ideas on constraints and theory matching presented earlier ([DG88]) for 
the AC case can also be applied to collapsing theories like ACl. 

(. 
Especially the collapsing cases can also be represented in constraints 
and be used to reduce the search. The algorithm can easily be adapted 
to new theories. the main task is to define the norm8.lform and the 
representation and combination of the constraints. 

For example, for the theory ACI. Le. associativity. commutativity and 
idempotency, we would use ordered sets as arguments for ACI-functions 
in the normalform. Constraints are represented in the form [f(s1 ..... Sn)J. 
similar to the representation of AC1-constraints. Due to the 
idempotency. no element of the set occurs more than once. Combination 
of the constraints is similar to the AC1-case. too. When propagating 
substitutions into verification equations. terms on the right hand side 
are not deleted but marked. Then a verification equation is satisfied. if 

all terms on the right hand side are marked. when there are no more 
variables on the left hand side. This is correct. because the 
idempotency allows the multiple use of these terms. 

For a theory like A (Le. associativity). we have to use different 
representations and normalforms. Again. the normalform the 
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c ]  f[a2.g[a.x2f.y].g[x.z}l = f[a3]
Simpl i f i ca t i on  r e su l t s  i n

f [g [a .xz .y ] . g [x . z} l  = a.
Var i ab l e  abs t r ac t i ons  gene ra t e s  t he  equa t ion

f[u1,u2] = a [+]
and  the  [ a t - l ea s t ]  cons t r a in t s  g{a,x2.y] = u1 which  means  u1 con ta in s
a t  leas t  a, i.e. ul € [g[a2‘]] and  g[x‚z] = uz.
[»] l e ads  t o  t he  cons t r a in t s

u1.u2 E {1,,a}.
Combin ing  th i s  cons t r a in t  w i th  t he  a t - l ea s t  cons t r a in t  for ul, we  ge t

u l  : a

and  a new equa t ion
g[a.x2,y] = a.

Simpl i f i ca t i on  and  the  i n f e r ence  ru l e  Va r i ab l e  a rgumen t s  gene ra t e
x= igandy= ig .

P ropaga t ing  t h i s  subs t i t u t i on  i n to  t he  ve r i f i ca t i on  equa t ion  and
s imp l i fy ing  i t  y i e ld s  d i r ec t l y  t o

z = 1 ,

So  the  found  so lu t i on  i s
o={x<—-ig ,y<- ig , z< -1 ,} .

g Conclusion andvfu tu re  work

We have  p re sen t ed  an  ACI—match ing  a lgo r i t hm us ing  cons t r a in t
p ropaga t ion  t o  r educe  t he  neces sa ry  b ranch ing .  We  have  shown  tha t  ou r
i deas  on  cons t r a in t s  and  theo ry  ma tch ing  p re sen t ed  ea r l i e r  [[DG88]] for
t he  AC case  can  a l so  be  app l i ed  t o  co l l aps ing  theo r i e s  l i ke  AC1.
Espec i a l l y  t he  co l l aps ing  ca se s  can  a l so  be  r ep re sen t ed  i n  cons t r a in t s
and  be  u sed  to  r educe  t he  s ea rch .  The  a lgo r i t hm can  ea s i l y  be  adap ted
to  new theo r i e s ,  t he  ma in  t a sk  i s  t o  de f ine  t he  no rma l fo rm and  the
rep re sen t a t i on  and  combina t ion  of t he  cons t r a in t s .

For example ,  for t he  t heo ry  ACI, i.e. a s soc i a t i v i t y ,  commuta t iv i t y  and
idempo tency .  we  wou ld  u se  o rde red  s e t s  a s  a rgumen t s  for ACl - func t ions
in t he  normalform. Constraints a r e  represented in t he  form [f[si,...,sn]],
s imi l a r  t o  t he  r ep re sen t a t i on  of ACl—constraints.  Due  to  t he
idempo tency ,  no  e l emen t  of t he  s e t  occu r s  more  t han  once .  Combina t ion
of t he  cons t r a in t s  i s  s imi l a r  t o  t he  ACl—case,  t oo .  When  p ropaga t ing
subs t i t u t i ons  i n to  ve r i f i ca t i on  equa t ions ,  t e rms  on  the  r i gh t  hand  s ide
a re  no t  de l e t ed  bu t  marked .  Then  a ve r i f i ca t i on  equa t ion  i s  s a t i s f i ed ,  if
a l l  t e rms  on  the  r i gh t  hand  s ide  a r e  marked ,  when  the re  a r e  no  more
va r i ab l e s  on  t he  l e f t  hand  s ide .  Th i s  i s  co r r ec t ,  because  t he
idempo tency  a l l ows  the  mu l t i p l e  u se  of t he se  t e rms .

Fo r  a t heo ry  l i ke  A [ i .e .  a s soc i a t i v i t y ] ,  we  have  t o  u se  d i f f e r en t
r ep re sen t a t i ons  and  no rma l fo rms .  Aga in .  t he  no rma l fo rm - t he
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argumentlist of an A-function symbol is a word - helps to find the 

variable constraints. Then the combination of constraints reduces to 
finding common prefixes. suffixes or subwords of the words 
representing the constraints. 

Using constraints is a concept not only for building single theory 
matching algorithms, it can also provide a way to combine such 
algorithms efficiently. Within the borders of the theoretical results of 
Nipkow in [NiS91 using constraints can provide a similar gain of 
efficiency compared to Nipkow's algorithm as in the single theory cases. 

A third ad vantage of the use of constraints in theory matching is the 
ability to start the matching operation with constraints obtained from 
calling functions of deduction systems. In the last years many efforts in 
the areas constraint deduction and constraint logic programming 
showed the usefulness of constraints. Our approach to theory matching 
allows to pass down term constraints in a basic operation. i.e. matching. 
This can result in more efficiency, again, because theory matches that 
are no solutions of the term constraints can be detected by the 
matching algorithm itself and need not be checked by higher levels of 
the deduction systems. Finally, when the constraints are used as result 
of the matching operation, we get a compact representation of all 
solutions of the problem 
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