
Fa
ch

be
re

ich
In

fo
rm

at
ik

E
«93 c
8 5
"(2 59; %_ÖhO3 :32
4—00
1c@88
35 ' ;c38 :5

SE
KI

-
R

EP
O

R
T

EFFiCIENT ACl—MATCHING USING
CONSTRAINTS

J.Avenhaus, J.Denzinger, T.Hofl'mann

SEKI Report SR—92-03 (SFB)

EFFICIENT ACI-MATCHING USING

CONSTRAINTS

J.Avenhaus, J.Denzinger, T.Hoffrnann

SEKI Report SR-92-03 (SFB)

EFFICIENT ACl—MATCHING USING
CONSTRAINTS

J .Avenhaus, J .Denzinger, T.Hoffma.nn

SEKI Report SR—92—03 (SFB)

Efficient AC1-Matching using

Constraints

J. Avenhaus. J. Denzinger. T. Hoffmann

FB Informatik

Uni versi UitKaisersla u tern

Postfach 3049

6750 Kaiserslautern

E-mail {avenhaus.denzinge}@informatik.uni-kl.de

Abstract:

We present an algorithm for the matching problem modulo the theory
ACl of associativity. commutativity and a unit element Straight forward
matching algorithms create a large number of branching points for
backtracking. To reduce the enormous search space we propose to
postpone the solution of sUbproblems and instead to approximate the
solutions by constraints. This allows one to have a global view on the
whole problem and so to reduce the large number of branching points.
We demonstrate the algorithm by some examples and give hints how
the general idea - contraint propagation - can be used for other theory
matching algorithms and how term constraints from calling functions of
our algorithm can be incorporated.

1 Introduction

As a basic operation used for simplification in deduction systems.
efficient matching is very important for a good performance of these
systems. In the last years the' tendency to put more and more
knowledge into the basic inference rules used by deduction systems
resulted in the need for efficient theory matching and theory unification
algorithms. Although for most of the interesting theories it is possible
to simulate theory matching by theory unification. this solution of the
matching problem is in most cases not very efficient

In this paper we present an algorithm for AC1-matching, that is
matching with function symbols that are commutative. associative and
have a neutral element, which uses constraint propagation to limit
unnecessary branching. We extend the technique developed for
AC~matching in [OGee]. Since ACl is a collapsing theory we have to
solve new problems. On the other hand it turned out that the idea of
using constraints is more powerful for the more complex problem of
AC1-matching than for AC-matching. We outline some ideas of how to
use this technique for matching modulo other theories.

The paper is structured as follows. After this section we give the

- 1 ­

Eff i c i en t ACl—Match ing u s i n g

Cons t r a in t s

J . Avenhaus , J . Denz inge r , T. Hoffmann

FB In fo rma t ik

Universität “Ka i se r s l au t e rn

Pos t f ach 3049

6750 Kaise r s l au t e rn

E-ma i l : {avenhaus denzinge}@informat ik .uni-kl .de

Abstract :

We pre sen t an a lgo r i t hm fo r t he matching prob lem modu lo t he t heo ry
AC1 of a s soc i a t i v i t y . commuta t iv i t y and a un i t e l emen t . S t r a igh t fo rward
ma tch ing a lgo r i t hms c r ea t e a l a rge number of b r anch ing po in t s fo r
back t r ack ing . To r educe t he eno rmous s ea rch Space we p ropose t o
pos tpone the so lu t i on of subp rob lems and in s t ead t o app rox ima te t he
so lu t ions by cons t r a in t s . Th i s a l l ows one t o have a g loba l V iew on the
who le p rob lem and so t o r educe t he l a rge number of b r anch ing po in t s .
We demons t r a t e t he a lgo r i t hm by. some examples and g ive h in t s how
the gene ra l i dea — con t r a in t p ropaga t ion — can be u sed fo r o the r t heo ry
ma tch ing a lgo r i t hms and how t e rm cons t r a in t s f rom ca l l i ng func t ions of
our a lgo r i t hm can be i nco rpo ra t ed .

L In t roduc t ion

As a ba s i c ope ra t i on u sed fo r s imp l i f i ca t i on i n deduc t ion sys t ems ,
e f f i c i en t ma tch ing i s ve ry impor t an t fo r a good pe r fo rmance of t he se
sys t ems . In t he l a s t yea r s t he ‘ t endency to pu t more and more
knowledge in to t he bas i c i n f e r ence ru l e s u sed by deduc t ion sys t ems
r e su l t ed i n t he need fo r e f f i c i en t t heo ry ma tch ing and theo ry un i f i ca t i on
a lgo r i t hms . A l though fo r mos t of t he i n t e r e s t i ng t heo r i e s i t i s pos s ib l e
t o s imu la t e t heo ry ma tch ing by theo ry un i f ica t ion , t h i s so lu t i on of t he
match ing p rob lem i s i n mos t ca se s no t ve ry e f f i c i en t .

In t h i s pape r we p re sen t an a lgo r i t hm fo r AC1-ma tch ing , t ha t i s
ma tch ing wi th func t ion symbo l s t ha t a r e commuta t ive , a s soc i a t i ve and
have a neu t r a l e l emen t . wh ich u se s cons t r a in t p ropaga t ion t o l im i t
unneces sa ry b ranch ing . We ex t end the t echn ique deve loped fo r
ACematching in [DG88]. Since ACl is a collapsing theory we have t o
so lve new p rob lems . On the o the r hand i t t u rned ou t t ha t t he i dea of
us ing cons t r a in t s i s more power fu l fo r t he more complex p rob lem of
ACl -ma tch ing than fo r AC—match ing . We ou t l i ne some ideas of how to
use t h i s t e chn ique fo r ma tch ing modu lo o the r t heo r i e s .

The pape r i s s t ruc tu red a s fo l l ows . Af t e r t h i s s ec t i on we g ive t he

definitions needed throughout the paper and a description of the
theoretical and implementational background of theory, especially
ACt-matching. In section 3 we present an inference system for
ACt-matching and sketch the proof of its correctness and completeness.
In section 4 we describe. how we handle and process our constraints
and how the inference system can be transformed into an algorithm. In
the same section we also demonstrate the efficiency of this algorithm
by some examples. In section 5 we outline how to apply our method for
matching modulo other theories.

2. Notations and background

2.1 Notations

Let F be a finite set of function symbols of fixed ari t y and V be a
denumerable set of variables disjoint from F. The set of terms over F
and V is denoted by T(F, V). By V(t] we denote the set of all variables
occuring in a term t. Top(t] is the top-level symbol of t. A substitution
o is a mapping from V to T(F, V] with finite domain Dom(o). It is
extended to a mapping from T(F, V] to T(F. V] in the usual way.
Given F and V. the equational theory =E induced by a set E of
equa tions over T(F, V) is defined to be the smallest congruence on
T(F, V) containing E and closed under substitution. Two terms t1 and t 2

are said to be E-equi valent iff t1 =E t 2 holds. A substitution 0 is an
E-match from the pattern t to the example s iff oft) =E s.
In the following we always assume F to be partitioned into disjoint sets
FAC1' F1 where F AC1 is a non-empty set of binary operatorsand FNAC1 '
and F1 is the set of units for FAC1' Le. F1 = {If I f E FAC1}. The set E of
equations consists of the ACt-axioms for the operators of FAC1' i.e.

E := ACt := {f(x.y) = f(y,x) . f(f(x.y).z) = f(x,f(y,z)) , f(x,t f) = x I f E FAC1 }.

We use the following notations. With f.g,f1,... we will denote elements of
FAC1' 1f.1 g .1 f1 ,.. · are the corresponding members of F1 and h,k,h1,... are
elements of For variables we use x,y,Z.X1'·" and elements ofFNAC1 '
T(F, V) are denoted by t, t1.t 2 , .. , Finally s, S1' ... denote ground terms, i.e.
terms s with V(s] :: 0.

When using theory matching as an operation in deduction systems
pattern and example term have no variables in common. Therefore we
will assume in the follOWing, that all example terms are ground terms.

2.2 Related results

The first work on theory matching was done by Hullot ([Hu79]) for the
theory AC. A similar framework was later used by Mzali in his works
on ACI-, AC-. A-, C-matching ([Mz85]) and D-matching ([Mz86]).
Nipkow used in [Ni89] the concept of variable abstraction, introduced
by Stickel in [St8t] for unification. for combining matching algorithms

- 2 ­

de f in i t i ons needed th roughou t t he pape r and a de sc r ip t i on of t he
theo re t i ca l and imp lemen ta t i ona l backg round of t heo ry . e spec i a l l y
ACl -ma tch ing . In s ec t i on 3 we p re sen t an i n f e r ence sys t em fo r
ACI -ma tch ing and ske t ch t he p roo f of i t s co r r ec tnes s and comple t enes s .
In s ec t i on 4 we desc r ibe , how we hand le and ‘p roces s ou r cons t r a in t s
and how the i n f e r ence sys t em can be t r ans fo rmed in to an a lgo r i t hm. In
the s ame sec t i on we a l so demons t r a t e t he e f f i c i ency of t h i s a lgo r i t hm
by some examples . I n s ec t i on 5 we ou t l i ne how to app ly ou r me thod fo r
match ing modu lo o the r t heo r i e s .

; Nota t ions and background

A Nota t ions

Le t F be a _finite s e t of func t ion symbo l s of f i xed a r i t y and V be a
denumerab le s e t of va r i ab l e s d i s jo in t f rom F . The s e t of t e rms ove r F
and V i s deno ted by T[F,V]. By V[t] we deno te t he s e t of a l l va r i ab l e s
occuring in a term t. Top[t] is t he top—level symbol of t. A subst i tut ion
0 i s a mapp ing f rom V t o T[F,V] w i th f i n i t e doma in Dom[c]. I t i s
ex t ended to a mapp ing f rom T[F‚V] t o T[F‚V] i n t he u sua l way.
Given F and V. t he equa t iona l t heo ry =5; i nduced by a s e t E of
equa t ions ove r T[F ,V] i s de f ined to be t he sma l l e s t cong ruence on
T[F.V] con ta in ing E and c lo sed unde r subs t i t u t i on . Two t e rms t l and t2
a re s a id t o be E -equ iva l en t iff t1 :5; t z holds . A subs t i t u t i on 0 i s an
E-match from the pat tern t to t he example 5 iff c[t] ‘ s s.
In t he fo l l owing we a lways a s sume F t o be pa r t i t i oned in to d i s jo in t s e t s
PAC}. F1 and FNACI' whe re PAC, i s a non—empty se t of b ina ry ope ra to r s
and F, is t he s e t of uni t s for FAG}. i.e. F1 = {If I f € FAG}. The se t E of
equa t ions cons i s t s of t he ACI—axioms for t he ope ra to r s of FAG}, i.e.

E := ACl := {f[x‚y] = f[y.x] . f[f[x.y].2] = f [X . f [y . l . f i f] = x I f E FACI}~

We use t he fo l l owing no t a t i ons . Wi th f,g,f1,... we wi l l deno te e l emen t s of
FAG, 1f‚lg‚l‚1‚._. a r e t he co r r e spond ing member s of F1 and h‚k‚h1,... a r e
e l emen t s of FNAm. For va r i ab l e s we use x‚y‚z‚x„... and e l emen t s of
T[F‚V] a re denoted by t‚t„t2‚... Finally 5.51,... denote ground terms. i.e.
t e rms s w i th V[s] = @.
When us ing theo ry ma tch ing a s an ope ra t i on i n deduc t ion sys t ems
pa t t e rn and example t e rm have no va r i ab l e s i n common . The re fo re we
wi l l a s sume in t he fo l l owing . t ha t a l l example t e rms a r e g round t e rms .

2_.21 Re la ted resul t s

The first work on theory matching was done by Hullot [[Hu79]] for t he
t heo ry AC. A s imi l a r f r amework was l a t e r u sed by Mza l i i n h i s works
on ACl-‚ AC—. A-‚ C-ma tch ing [[M285]] and D—matching [[M286]].
Nipkow used in [Ni89] the concept of variable abstraction, introduced
by S t i cke l i n [St81] for un i f i ca t ion . for combin ing ma tch ing a lgo r i t hms

and dealing with collapsing theories. Kapurand Narendran [[KN90])

have shown that AC1-matching is NP-complete. Despite of this our

algorithm is fast on most inputs of practical interest.

The framework of Mzali consists of four steps to perform in order to

sol ve a gi ven ma tching problem. some of them several times :

- computation of a normalform for an efficient decision of =E

- decomposition of problems t = s where top(t) is free

- merging of found substitutions into the remaining problems and

- mutation of problems t = s with top(t) is a theory symbol.

Because the first three steps are also important to our algorithm and
the forth step is the one which introduces most of the problems
concerning efficiency we will discuss them here more precisely.

Normalform for deciding =E

A theory matching algorithm always must be able to determine
wheater two terms are equal with respect to E. A standard way to do
this is to generate a unique normalform for all E-equal terms and then
to test the normalforms for syntactic identity. In [Mz851 there is a
classification of parts of some theories and their requirements for the
normalform. For example. if the associativity is part of the theory then
the terms have to be flattened. The commutativity allows one to order
the arguments. Idempotency in addition leads to a set representation.

For AC1-matching. this leads to ordered multisets as a data structure
for the arguments of symbols of FACt. The multisets are obtained by
flattening and sorting the arguments and by eleminating all occurences
of the corresponding l-eIement of a symbol in the set. So terms with
top-level function in FACt have the form f[trt t~nJ. where the ai
indicate the number of occurences of t i. Further. as in the case of
AC-matching ([0088]). the ordering can enhence the efficiency of the
algorithm by forcing easy parts of the problem to be solved first. We
use an ordering on the arguments where the smallest components are
the constants. then terms with top-level functions that are not ACl,
then the terms with top-level functions that are ACl and finally the
variables. Within each class. the symbols are ordered leXicographically.
Note that f[sO) denotes f(s) and f(s) denotes s.

Examples

f(a.f(g(a.b).f(lf.aJ)] has the normalform f(a 2.g(a.bJ].

f[x.g[f[x.a),g[l f.g(a.f(a.xJJJJJ has the normalform f(g(a.l f .Ha.x)2),x).

f(f(h(a, b), f[a.x)). f(f(g(x. b). h(b, a)J. f(X. y))) has the normalform
f(a. h(a. b).h(b.a). g(b. x), x 2 •y).

Decomposition
Decomposition steps handle E-matching problems of the form
h[tt t n) = h(st snJ. i.e. problems where the top-level function symbols are

- 3 ­

and dea l ing w i th co l l aps ing theo r i e s . Kapur and Narend ran [[KN90]]
have shown tha t ACl -ma tch ing i s NP-comple t e . Desp i t e of t h i s ou r
a lgo r i t hm i s f a s t on mos t i npu t s of p r ac t i ca l i n t e r e s t .

’ The f r amework of Mza l i cons i s t s of fou r s t eps t o pe r fo rm in o rde r t o
so lve a g iven ma tch ing p rob lem, some of t hem seve ra l t imes :

— compu ta t i on of a no rma l fo rm fo r an e f f i c i en t dec i s ion of =E

— decompos i t i on of p rob lems t = s whe re top[t] i s f r ee

- merg ing of found subs t i t u t i ons i n to t he r ema in ing p rob lems and
- mutat ion of problems t = s wi th top[t] is a theory symbol.

Because t he f i r s t t h r ee s t eps a r e a l so impor t an t t o ou r a lgo r i t hm and
t he fo r th s t ep i s t he one wh ich i n t roduces mos t of t he p rob lems
conce rn ing e f f i c i ency we wi l l d i s cus s t hem he re more p rec i s e ly .

Normalforrn fo r dec id ing = ;

A theo ry ma tch ing a lgo r i t hm a lways mus t be ab l e t o de t e rmine
whea te r two t e rms a r e equa l w i th r e spec t t o E. A s t anda rd way to do
t h i s i s t o gene ra t e a un ique normal fo rm for a l l E—equal t e rms and then
t o t e s t t he no rma l fo rms fo r syn t ac t i c i den t i t y . I n [M285] , t he re i s a
c l a s s i f i ca t i on of pa r t s of some theo r i e s and the i r r equ i r emen t s fo r t he
no rma l fo rm. Fo r example , if t he a s soc i a t i v i t y i s pa r t of t he t heo ry t hen
the t e rms have t o be f l a t t ened . The commuta t iv i t y a l l ows one t o o rde r
the a rgumen t s . l dempo tency in add i t i on l eads t o a s e t r ep re sen t a t i on .

Fo r ACl -ma tch ing . t h i s l e ads t o o rde red mu l t i s e t s a s a da t a s t ruc tu re
for t he a rgumen t s of symbo l s of FACT The mu l t i s e t s a r e ob t a ined by
f l a t t en ing and so r t i ng t he a rgumen t s and by e l emina t ing a l l occu rences
of t he co r r e spond ing l - e l emen t of a symbo l i n t he s e t . So t e rms wi th
top-level function in FAC1 have t he form f[tf‘1 tan], where t he ai
i nd i ca t e t he number of occu rences of t i . Fu r the r , a s i n t he ca se of
AC-match ing [[DG88]]‚ t he o rde r ing can enhence t he e f f i c iency of t he
a lgo r i t hm by fo rc ing ea sy pa r t s of t he p rob lem to be so lved f i rs t . We
use an o rde r ing on the a rgumen t s whe re t he sma l l e s t componen t s a r e
the cons t an t s , t hen t e rms wi th top—leve l func t ions t ha t a r e no t AC1.
then the t e rms wi th top—leve l func t ions t ha t a r e AC1 and f i na l l y t he
va r i ab l e s . Wi th in each c l a s s . t he symbo l s a r e o rde red l ex i cog raph ica l l y .
Note tha t f[so] denotes f[s] and f[s] denotes 5.
Examples

f[a,f[g[a,b].f[lf,a]]] ha s t he no rma l fo rm f[a2.g[a,b]].
f[x,g[f[x,a],g[1,.g[a.f[a.x]]]]] ha s t he normal fo rm f[g[a.lf,f[a,x]2],x].
f[f[h[a.b].f[a.X]].f[flglx.b].h[b.a]],f[x,y]]] has the normalform

f[a,h[a,b].h[b.a].g[b.x].x2.Y].

Decomposit ion
Decompos i t i on s t eps hand le E -ma tch ing p rob lems of t he fo rm
h[t1 tn] = h[s, sn]. i.e. problems where t he top-level function symbols a r e

free. Such problems are decomposed into n smaller problems t i = si.
i = 1. n. If hI and h 2 are different free function symbols then the problem
h1(t1, t n) = h2(Sl Sm) is unsolvable.

Merging

Normally a variable occurs in pattern terms several times. Thus, when
the steps decomposition and mutation generate a subproblem x = s. the
other problems can also have occurences of x in their patterns. By
merging these occurences will be replaced by s. In this way. found
solutions are propagated within the set of subproblems. Hopefully. the
resulting problems then are easier to solve or the unsolvability of the
problem is detectable.

Mutation

Besides the computation of normalforms the mutation steps are the only
steps which deal with the underlying theory. In fact, mutation reflects
the properties of the theory. Mutation steps are used, whenever the
matching problem has the form f(tl, ... ,t n) = s, with f not free. For most
theories there are many solutions of this atomic problem. All these
solutions have to be examined and this results in the need for
backtracking. Mutation steps for a theory are usually defined for the
so-called variable-only case. Le. all arguments t i are variables xi' For
example. in the theory ACl there are two different mutation steps. The
first one is similar to the mutation for the theory AC. If the problem
has the form

f(xfl, x~n) = f(sPl, ...,s~m)

then mutation has to generate the possible sUbproblems

Xl = f(sfl,s~m)

f(x~2 ,x~n) = f[sPl- cl-a l,s~m-cm .. al]

where the Ci range from 0 to b i di v al'
Example:

f[x 2,y3. z) = f[a 2.b.c,d 5) generates the following 6 possible branches for x :

X = 1£ x = a x = d
f[y3,z) = f[a 2.b,c.d5) f[y 3,z] = f[b.c,d 5) f[y3,z) = f[a 2,b.c.d3)

x = f[a,d) x = f[d 2) x = f(a,d 2)
f[y3. Z) = f(b.c,d 3) f[y 3,Z) = f(a 2,b,c.d) f[y3,z) = f(b,c,d)

This effect may lead to a combinatorical explosion.

The second mutation step reflects the fact that ACl is a so-called

collapsing theory. This means. that certain partial solutions may lead to

a change of the top-level symbol of a term.

Example:

Let t '= f(h(y.a).x,y2] and l-t = {x ~ If ' Y ~ If}, then l-t(t] =ACl h(lf,a).

- 4 ­

f ree . Such prob lems a r e decomposed in to n sma l l e r p rob l ems t i = s i ,
i = l n. If h , and hz a r e d i f f e r en t f r ee func t ion symbo l s t hen the p rob lem
h1[t1‚„..tn] = h2[s1 sm] is unsolvable.

Merging
Norma l ly a va r i ab l e occu r s i n pa t t e rn t e rms seve ra l t imes . Thus . when
the s t eps decompos i t i on and mu ta t i on gene ra t e a subp rob lem x = 3, t he
o the r p rob lems can a l so have occu rences of x i n t he i r pa t t e rns . By
merg ing the se occu rences w i l l be r ep l aced by s . I n t h i s way , found
so lu t ions a r e p ropaga t ed w i th in t he s e t of subp rob lems . Hope fu l ly . t he
re su l t i ng p rob lems then a r e ea s i e r t o so lve o r t he unso lvab i l i t y of t he
p rob lem i s de t ec t ab l e .

Muta t ion

Bes ides t he compu ta t i on of no rma l fo rms the mu ta t i on s t eps a r e t he on ly
s t eps wh ich dea l w i th t he unde r ly ing theo ry . I n f ac t , mu ta t i on r e f l ec t s
the p rope r t i e s of t he t heo ry . Muta t i on s t eps a r e u sed , wheneve r t he
ma tch ing p rob lem has t he fo rm f[t1‚...‚tn] = s , w i th f no t f r ee . Fo r mos t
theo r i e s t he re a r e many so lu t i ons of t h i s a tomic p rob lem. A l l t he se
so lu t i ons have t o be examined and th i s r e su l t s i n t he need fo r
back t r ack ing . Muta t i on s t eps fo r a t heo ry a r e u sua l ly de f ined fo r t he
so—called va r i ab l e -on ly ca se , i.e. a l l a rgumen t s t i a r e va r i ab l e s x i . For
example , i n t he t heo ry ACl t he re a r e two d i f f e r en t mu ta t i on s t eps . The
f i r s t one i s s imi l a r t o t he mu ta t i on fo r t he t heo ry AC. If t he p rob lem
has t he fo rm

f(xl81 xän] = f[s}°1....,s§1m]
t hen mu ta t i on has t o gene ra t e t he pos s ib l e subp rob lems

x1 = f[sf"1 531m]
:[xgz.....x:n1 = asp—oval Sam-omen

where t he c i r ange f rom O t o b i d iv a1.
Example :

f[x2.y3,z] = f[a2.b‚c‚d5] genera tes the following 6 possible branches for x :
x = l , x = a x = d

f[y3.z] = f[a2,b.c,d5] i[y3.z] = f[b.c.d5] f[y3‚z] = f[a2.b‚c‚d3]

x = f[a‚d] x = f[d2] x = f[a‚d2]
f[y3,z] = f[b‚c‚d3] f[y3,z] : f[a2.b.c,d] f[y3‚z] = f[b‚c.d]

Thi s e f f ec t may l ead t o a combina to r i ca l exp los ion .

The second mu ta t i on s t ep r e f l ec t s t he f ac t t ha t AC1 i s a so -ca l l ed
co l l aps ing theo ry . Th i s means , t ha t c e r t a in pa r t i a l so lu t i ons may l ead t o
a change of t he top—leve l symbo l of a t e rm .

Example :

Let t E f[h[y.a].x.y2] and p. = {x <- lf . y e if}. then i i I t] =AC,‘ h[lf‚a].

Let t "f(g(a.y].xJ, (11 = {x ~ If} and!l2 = {x ~ 1f . Y ~ 19 }. then !ll(t)
=AC1 g(a.y) and !l2(t) =ACl a.

To deal with this problem. we need the following step. We start with
the problem

f(xf1 x~n] = s. where top(s] :j: f.

Then we get the following n possible solutions:

Xfl = S x~n = s
x2 = ... = x n = 1f xl = ... = Xn-l = 1f

Note. that all cases x?i = s. where ai :j: 1, are unsol vable.

Example:

For f(x 2.y.z] = h(a.b] we get the following 2 branches

Y = h(a.b] z = h(a.b]

x = z = 1f x = y = 1£

In the non-variable case we either have the atomic problem sl = s2 ­
which is solvable iff sl " s2 - or we have to apply variable abstraction
to reduce the problem to the variable case.

Mutation generates with every branch a local solution of a problem.
Merging propagates this solution to the other problems generated
earlier. An important source of inefficiency is the fact. that many of the
branches are detected to be unsolvable o'nly very late. This is due to
the locality of this method. Human beings would detect the
unsolvability often very early because they have a global view on all
sUbproblems. Therefore we will use constraint propagation to deal with
this problems.

There are many extensions to mutation. for example in [Mz85] or [Ni89J.
that help to a void some of the branching in the non-variable case. For
example. the ground subterms in the pattern have also to appear in the
example term. if the problem is solvable. Therefore the same ground
term in the pattern and the example can be deleted. This provides
fewer possibilities for branching. Our inference system D ACl will also
include these extensions before the problems are used to generate
constraints.

3. An inference system for ACt-matching with constraints

The idea to use constraints for enhancing the efficiency of a matching
algorithm is to postpone the solution of an atomic problem f(x1..... x n] = s
and instead to create constraints for the solutions. The constraints
should be sharp and easy to propagate. Of course. not every solution of
the constraints has to be a solution of the matching subproblems. But
in many cases one may early detect that the constraints are unsolvable
and so the matching problems are unsolvable also. This results in a
reduction of the search space and so saves computing time. Of course.

5 ­

Le t t E f[g[a.y].x]; U: = {x <— 11} and 112 = {x <- 1f . y é- lg}. t hen u‚[t]
=ACi Q[8«Y] and Uzm =Ac1 a .

To dea l w i th t h i s p rob l em, we need the fo l l owing s t ep . We s t a r t w i th
the p rob lem

f[x,a1....,x§n] = s , where top[s] $ f.
Then we ge t t he fo l l owing n pos s ib l e so lu t i ons :

X1” : s x3“ = s
x2= . . .=xn=1f . . . x1= . . .=xn_1= l f

Note. t ha t a l l c a se s x3“ = s. whe re a i * 1. a r e unso lvab le .
Example : .

For f[x2,y,z] = h[a .b] we ge t t he fo l lowing 2 branches :

y = b lah] z = h[a‚b]
x = z = If x = y = I t

In t he non -va r i ab l e ca se we e i t he r have t he a tomic p rob lem 5 , = 52 -
which i s so lvab le i i i s , 5 52 — or we have t o app ly va r i ab l e abs t r ac t i on
to r educe t he p rob lem to t he va r i ab l e ca se .

Muta t i on gene ra t e s Wi th eve ry b ranch a l oca l so lu t i on of a p rob l em.
Merg ing p ropaga t e s t h i s so lu t i on t o t he o the r p rob lems gene ra t ed
ea r l i e r . An impor t an t sou rce of i ne f f i c i ency i s t he f ac t , t ha t many of t he
branches a r e de t ec t ed t o be unso lvab le on ly ve ry l a t e . Th i s i s due t o
t he l oca l i t y of t h i s me thod . Human be ings wou ld de t ec t t he
unso lvab i l i t y o f t en ve ry ea r ly because t hey have a g loba l v i ew on a l l
subprob lems . Therefore we wi l l u se cons t r a in t p ropaga t ion t o dea l w i th
t h i s p rob l ems .

There a r e many ex t ens ions t o mu ta t i on , for example i n [M285] or [Ni89].
t ha t he lp t o avo id some of t he b ranch ing in t he non—variable case . For
example , t he g round sub te rms in t he pa t t e rn have a l so t o appea r i n t he
example t e rm . if t he p rob lem i s so lvab le . The re fo re t he s ame g round
t e rm in t he pa t t e rn and the example can be de l e t ed . This p rov ides
fewer pos s ib i l i t i e s for b r anch ing . Our i n f e r ence sys t em 9Ac1 wi l l a l so
i nc lude t he se ex t ens ions be fo re t he p rob lems a r e u sed to gene ra t e
cons t r a in t s .

1 fl inference sys tem for AC1-matching wi th cons t ra in ts
The idea t o u se cons t r a in t s fo r enhanc ing the e f f i c i ency of a ma tch ing
a lgo r i t hm i s t o pos tpone the so lu t i on of an a tomic p rob lem f[x1 xn] = s
and in s t ead t o c r ea t e cons t r a in t s fo r t he so lu t i ons . The cons t r a in t s
shou ld be sha rp and ea sy t o p ropaga t e . Of cou r se . no t eve ry so lu t i on of
the cons t r a in t s ha s t o be a so lu t i on of t he ma tch ing subprob lems . Bu t
i n many ca se s one may ea r ly de t ec t t ha t t he cons t r a in t s a r e unso lvab le
and so t he ma tch ing p rob lems a r e unso lvab le a l so . Th i s r e su l t s i n a
r educ t ion of t he s ea rch space and so s aves compu t ing t ime . Of cou r se .

the form of the constraints will depend on the underlying theory E.

Our inference system works on a triple of sets (E. c,Sol). where E is a
set of ACt-matching problems to solve. Sol is a substitution that

describes the partial solution so far and C = Cv U CE consists of a set
of constraints for variables Cv. each of the form Cx = x E: S or
Cx = x E: [t(sfl s~n]J. and a set of verification equations CE . S is a set of
ground terms and by [f[sft s~n)] we denote the set of flattened terms

{f[sftsgn] I f E: FACt and 0 ~ Ci ~ a i for i = 1..... n}.

We call [t[sfl s~n)] an intervall. CE is used to check whether solutions
of Cv are also solutions of the matching problem.

In the following inference system D ACt the ideas of section 2.2 for
solving the AC1-matching problem are made precise. The rules "Trivial
equa tion", .. Decomposition" and" Explicit solution" are' our notion of the
steps decomposition and merging of 2.2 . .. Simplifica tion" gets rid of
ground terms as arguments of ACt-functions. "Variable abstraction" is a

well know method to deal with terms that do not belong to the theory.
in our case ACl. Variable abstraction was introduced by Stickel in
[StB1) for AC-unification and used by Nipkow in [NiB9] as central idea
to combine matching algorithms for different theories. The rule
"Variable arguments" generates new constraints.

The inference system t:JACt

Trivial equa tion

a] {s=s} U E . C . Sol b) {s=s'} U E , C , Sol
if s :$ s'

E . C . Sol Fail

Decomposition

{t i = si I = 1..... n} U E . C . Sol

Fail

if top(s) :j: k

Explicit solution [Merging)

a) {x=s} U E , C . Sol

Cl (E) . Cl [C - Cx) . Sol U Cl

if Cl = {x~s} and Cl satisfies C

- 6 ­

the fo rm of t he cons t r a in t s w i l l depend on the unde r ly ing theo ry E.

Our i n f e r ence sys t em works on a t r i p l e of s e t s [E.C,Sol] , whe re E i s a
s e t of ACl -ma tch ing p rob lems to so lve , $01 i s a subs t i t u t i on t ha t
desc r ibes t he pa r t i a l so lu t i on so f a r and C = CV U CE cons i s t s of a s e t
of cons t r a in t s for va r i ab l e s CV. each of t he fo rm C‚(= x € S or
C‚(= X E [f[s?1,...‚s%n]]‚ and a se t of verification equat ions CE. S is a s e t of
ground terms and by [f[s‚°1‚.„‚s$‚n]] we denote t he s e t of f la t tened t e rms

{f[s1°1‚...sgn] I f E FACI and 0 s ci s a i for i = 1,...,n}.
We call [f[s?1‚...‚sgn]] an intervall. CE is used to check whether solutions
of CV a re a l so so lu t i ons of t he ma tch ing p rob lem.

In t he fo l l owing in f e r ence sys t em 9Ac1 t he i deas of s ec t i on 2 .2 fo r
so lv ing the ACI—matching p rob lem a re made p rec i s e . The ru l e s ”Trivia l
equa t ion" . "Decompos i t i on" and "Exp l i c i t so lu t ion" a r e ou r no t ion of t he
s t eps decompos i t i on and merg ing of 2 .2 . "S imp l i f i ca t i on" ge t s r i d of
g round t e rms a s a rgumen t s of ACl - func t ions . "Var i ab l e abs t r ac t i on" i s a
we l l know me thod to dea l w i th t e rms tha t do no t be long to t he t heo ry ,
i n ou r ca se AC1. Var i ab l e abs t r ac t i on was i n t roduced by S t i cke l i n
[S t81] fo r AC-un i f i ca t i on and used by Nipkow in [N i89] a s cen t r a l i dea
to combine ma tch ing a lgo r i t hms fo r d i f f e r en t t heo r i e s . The ru l e
"Var i ab l e a rgumen t s " gene ra t e s new cons t r a in t s .

The in fe r ence sys t em QM”

Tri vial equa t ion

a] {s=s} U E . C , Sol b] {s=s'} U E , C ‚ Sol
_- ‚ " _ if s $ s '

E , C . Sol Fa i l

Decomposi t ion

a] {k[t1 t n] = .k[sl‚...‚sn]} U E . C , Sol

{ t i=s i ' i=1 n}UE,C .SOl

b] {k[t1....,tn] = s} U E . C , Sol
if top[s] x k

Fa i l

Explicit solut ion [Merging]

a] {x=s} U E . C . Sol
if a = {X65} and o sa t i s f i e s C

o[E] . o[C - Cx] . Sol U o

b) {x=s} u E . C , Sol

if Cl = {x~s} and Cl does not satisfy C

Fail

Simplification

ifIs:as:b
{f(tf1 t~n] = f(sf>1, ... ,sb-a,s~rn]} U E C Sol

if a > b

Fail

c) {f[s.tf1, t~n] = s} U E , C . Sol

d] {f(sa,tf1 t~n] = s}

Fail

U E . C , Sol

if a > 1

e] {f[sa, tf1 t~n] = s'}

Fail

U E . C , Sol

if s $ sand top[s'] :j: f

Variable abstraction of alien subterms

{f[X1, ... 'xn'uf>1' u~rn] = s} U E . {tj = Uj I j = l,. .. ,m} U C . Sol

if t j not in V and not ground

where Uj E Vaux new. i.e. Vaux n V = 0

Variable arguments

Cl[E) , Cl[C'] . Sol u Cl

if top[s] :j: f and aj > 1

where 0 = {Yj ~ If I j = I, m}

Cv = Cv U {Xi E: {If. s} I

CE = C E U {f(x1, ... ,xn) = s}

= I ,n}

- 7 -

b] {x=s} U E . C , Sol
_ if a = {x<—s} and a does not sa t i s fy C

Fa i l

Simpli f icat ion

a] {.f[sa‚ta'‚„.tan] = f[sb1‚....sb‚„.‚sbm]} U E , c . Sol1 n 1 m

i f I s a S b
{f[t‚a1‚...‚tgn] = f[s‚lm sb-a sgml} U E , c , Sol

b] {f[sa‚t‚ai..„tgn] = f[s}"1 sb.....s}°„m]} U E . c . Sol
i f a > b

Fa i l

c] {f[s‚t1a‘.„.‚t‚a‚n] = s} U E , C . Sol

{f[tf1‚...‚t;n] = 1,} U E . c . Sol

d] {f[sa,t?1.....t:n] = s} U E . C . Sol
i f a > 1

Fa i l

e] {f[s""',t1a1 tgn] = s'} U E . C , Sol
if 5 $ s' and top[s'l x f

Fa i l

Var iab le abs t rac t i bn of a l i en sub te rms

{f[tl1°1....‚tlgnm.x1„„‚xn] = s} U E , C . Sol

{f[x‚ xn‚u{°1.„.‚uR‚m] = s} U E , {tj = uj l j = 1.....m} U C . $01
i f tj no t in V and not ground
where uj € Vaux new. Le. Vaux n V = z

Var iab le a rgumen ts

a] {f[x1,....xn.y1a1,...,y$nm] = s} U E . C . Sol
if top[s] t { and aj > 1

o[E] , o[C'] . Sol U o

where o= {y j e1 , l j =1 m}
c", : CV U {X i € { I f . S } | 1 = 1 , n}

C'E = CE U { f [X1 xn] : S}

b) {f(xf1 x~n) = f(SP1S~)} U E . C . Sol

E. CU{xiE[f[sf1i..... S~rni)] I i= l n} U {f[xfl..... x~n) = f(s~l s~rn)} . Sol

where Cij = bj di v ai

The following rules deal with the solution of easy constraints and the
detection of unsolvable constraints. Note. that in same cases the
solution of a constraint generates new AC1-matching problems.

Pruning constraints

a) E . C . Sol

if Cx = x E {s} and 0 = {x ~ s}

orE) o(C - Cx) . Sol U 0

Fail

if a I b i for all = 1. n
orE) . o[C) . Sol U 0

where Ci = b i diva

o = {x <Eo- f(sf1 sgn)}

d) E . {t=u . u=s} U C . Sol

if u E Vaux

{t=s} U o[E) . o[C) . Sol

where d = {u <E- s}

e) E . C . Sol

if C unsa tisfyable

Fail

We are going to show that the inference system !JAC1 is correct.

Lemma

If E :j: 0 then one rule of the inference system D AC1 is applicable to

(E.C.Sol).

Proof:

By induction on the structure of possible flattened pattern terms. •

- 8 ­

b] {f[x$i,.„‚xgn] = f[s{°1‚_...sg‚ml} U E , c , Sol

E‚cu{x‚e[f[sf1i sgmin | 1: 1 n} U {f[x‚al.....x—‘;‚n] = {[sfn sgml} . Sol

where Ci]. = bj l a i

The fo l l owing ru l e s dea l w i th t he so lu t i on of easy cons t r a in t s and the
de tec t i on o f unso lvab le cons t r a in t s . No te , t ha t i n s ame cases t he

so lu t i on of a cons t r a in t gene ra t e s new ACl -ma tch ing p rob lems .

Pruning constrain t s

a] E.C ,So l
i f=x€{s}anda={x<-s}

o[E] , o[C —Cx] , Sol Us

b] E . C u {f[xa] = ([s1b1 sgnl} , Sol
if 3 i : Ha I b i

Fa i l

c] E . c u {f[xa] = f[s{°l‚...‚sgn]} , Sol
_ if a l b i for a l l i = l....‚n

c[E] . o[C] . Sol U o

where c i = b i d iv a

o = {x <- f[s$1‚.„‚sgn]}

d] E , {t=u . u=s} U _C . Sol
if u € V a u x

{t=s} U o[E] , o[C] , Sol

where o = {u € s}

e] E . c , Sol
——-— if C unsa t i s i yab l e

Fa i l

We a re go ing to show tha t t he i n f e r ence sys t em 9Ac1 i s co r r ec t .

Lemma

If E i @ t hen one ru l e of t he i n f e r ence sys t em 9Ac1 i s app l i cab l e t o
[E,C,Sol].
Proof :

By induc t ion on the s t ruc tu re of pos s ib l e f l a t t ened pa t t e rn t e rms . .

Theorem

Let E be an ACI-matching problem:

a) If every derivation in D ACt from [E.0.0) ends with Fail. then E is
unsol vable.

b) For every solution Cl of E. there is a derivation in D ACt from [E.0.0l
to [0.C.SoI) such that Cl = Cl' U Sol and Cl' satisfies C.

Proof:

If we can show the following lemma. then an induction on the number
of applications of inference rules of D ACt proves the theorem.

Lemma

Let [Et.Ct.Sol t) result from [Eo.Co.Solo) be application of a rule of
D ACt ' Then Cl1V is part of a solution of (Et.Ct.Sol t) iff Cl1V is part of
a solution of [Eo.Co.Solo).

Here Cl1V denotes the restriction of Cl to the variables in V.

The proof of the lemma for most of the inference rules is easy. We will

show here the proofs for the rules Variable abstraction and Variable

arguments.

Let Il be a solution of (Et.Ct.Solt) and t a solution of [Eo.Co.Solo).

1) Variable abstraction

Then Eo = E U {f(tPt t~In.x?t x~n) = s}. Ct = Co U {tj = Uj I j = 1. n},

Solt = Solo and Et = E U {f(xf-t ,x~n, upt U~In) = s}.

Let t' = to{Uj ~ t j I j = I..... n}. Then t'lv = tlv.

t'[f[x?t,x~n.upt, ...,U~In)) = tC{Uj ~ t j I j = 1, n}[f(x?tx~n,upt,U~In))

=ACt t[f[tpt t~In.x?t, x~n))

=ACt S.

SO tlv is part of a solution of (Et,Ct,Solt).

It is obvious. that Il is a solution of (Eo.Co.Solo), because

Il(f[x?t ,.... x~n. upt U~In))	 = f[ll[x?t),Il(x~n),Il[upt l..... Il(u~In))

=ACt f[ll(tpt), Il[t~In),Il(x? t), ... ,Il(x~n))

=ACt ll(f[tpt t~In.x?t....,x~n))

=ACt S.

2) Variable arguments

a) Il is a solution for (Et.Ct.Solt), therefore Il(Yj) = If.

1l[f(Xt, .. ·. x n ' y?t y~In) =ACt f[ll(xt), Il[X n),lf, ''', If)
=ACt Il[f(xt ,.. ·.xn))
=ACt s, because f(Xt ... ·.xn) = s E CE.

SO Il is a solution of (Eo.Co.Solo).

t(Yj) = If for all j = l ,m. else let t(Yk) = s'. Then
top(t[f[xt, ... ,xn .Y?t y~In))) = f, which contradictes top[s) :j: f and t

sol ution of [Eo, Co. Solo).

Therefore is 0 part of t, t = t ocl. t(Cl(E)) = t'(Cl(Cl(E)]) = t[Cl(E)) = t(E).

- 9 ­

Theorem
Le t E be an ACl -ma tch ing p rob lem :

a] If every derivation in DAG, from [8.9.9] ends w i th Fail, then E is
unso lvab le .

b] For eve ry so lu t i on 0 of E, there i s a de r iva t i on i n 9Ac1 f rom [E .Qß]
t o [®‚C‚Sol] such tha t c = 0 ' U Sol and o ' s a t i s f i e s C.

m: ‘
If we can show the fo l l owing l emma , t hen an i nduc t ion on the number
of app l i ca t i ons of i n f e r ence ru l e s of 9Ac1 proves t he t heo rem.

Lemma

Let [E1.C1.5011] result from [E0.Co‚Solo] be applicat ion of a rule of
QAcr Then c lv i s pa r t of a so lu t i on of (E„C„Sol‚] iff o lv i s pa r t of
a solution of [Eo‚Co‚Solo].

Here olv deno te s t he r e s t r i c t i on of o t o t he va r i ab l e s i n V.
The p roo f of t he l emma fo r mos t of t he i n f e r ence ru l e s i s e a sy . We wi l l
show he re t he p roo f s fo r t he ru l e s Va r i ab l e abs t r ac t i on and Var i ab l e
a rgumen t s .
Let u be a solution of [E„C„Sol‚] and t a solution of [Eo‚Co‚Solo].
1] Var i ab l e abs t r ac t i on ’

Then EO = E U {rm->1 gmx? xgn] = s}, c1 = c0 U {tj = uj l j = 1,...,n},
5011 = $010 and E, = E U {f[x‚°1 xän‚uä°1‚...‚u‚‘?nm] = 5}.
Le t T , = 'EO{Uj é’ t j | j : 1 , . . . ‚ n} . Then 'C l lv = t l v .

t’[f[x?1,...,xgn,u}’1 ugmn to{uj <- tj I j = 1 n}[f[x§5‘1,...,x§n.uf’1 ugmH
=AC1 t [f [t1b1 tbmm‚x181 X : n]]

=Ac1 5-

So t lv i s par t of a solution of [E1.C1.Sol1].
It i s obvious, tha t ll is a solution of [Eo‚Co‚Solo], because
gmx?" xgn,u‚b1 uglmfl = f[u[x1a1],...,u[x§n],p[u{°1],...,u[u'§lm]]

:ACI Huh?” UHRPLMX?“ ----- dxän l l
=Ac1 ‘u[f[t{°1,...,tfi,m,xlal,....x§n]]
=Ac1 5 -

2] Var i ab l e a rgumen t s
a] Ll is a solution for [E1,C„Soli]‚ therefore u[yj] = l , .

gmx, xn‚y1°1‚„.,y$nm =AC1 f[p[x1] u[xn]‚l„.„‚lf]
=AC‘ l u[f[x1‚„.‚xn]]
=Ac1 s. because f[x1 xn] = s € Ct .

So ll is a solution of [E°.Co,Solo].
1:[yj] = if for a l l j = 1.....m, e l s e l e t 1:[yk] = s ' . Then
top[t[f[x1....‚xn,y?1 y?nm]]] = i, which contradictes top[s] $ f and 1:
solution of [E0.Co.So‘lo].
Therefore i s a pa r t of t . t t'oo. t[o[E]] = t'[o[o[E]]] = t'[o[E]] = t[E].

t[Sol U a) = t[Sol) and it is obvious that t is a solution of Cv and CE.
SO t is also a solution of [Et.Ct,Solt)·

b) Because f(xrl, x~n) = f(s~t, s~In) E Ct II is solution to (Eo.Co.Sol o].

Because f[xrl ,x~n) = f[s~t s~In) E Eo and t[xd E [f[sf1i S~Ini)]

due to the definition of intervall t is solution to (Et.Ct.Solt)· •

.!.. Processing of constraints and implementational issues

4.1 Processing of constraints

So far. we have presented an inference system that transforms
AC1-matching problems into a set of constraints by decomposition and
solving of easy subproblems. Further the system explains how very
special constraints, Le. of the form x E {s}. can be solved or very special
constraints can be detected as unsolvable. Now the questions remain,
how to combine several constraints for a variable and how to sharpen
constraints. if new substitutions are found. The answers to these
questions will also show that constraints can help to solve
AC1-matching problems more efficiently.

Our constraints represent possible substitutions for a variable in a
compact form. All possible substitutions form a set. If we have two
constraints Cx and C~ for a variable x. then we have to compute the
intersection C~ = Cx n C~. The intersection of two intervalls may not
be an interval!. Then we switch to an explicit set representation. Note
that for intervall variable constraints. Le. constraints for a variable in
intervall form. the argument lists can be extended. if necessary. So
[f[srt,s~n)] is the same as [f[so.srt, ...,s~n)]. Thus we have the following
possible intersection si t ua tions :

- two variable constraints in set representation

normal intersection {St sn} n {sl, ..·,s~.J

- variable constraint in set representation with intervall constraint:

{si s~} n [f[srt,s~n)] =

{s" I s" E {sl s~} and [s" E {St, ... ,sn} or

- two intervall constraints with equal top-level symbol:

[f[srt s~n)] n [f[s~t, s~n)] = [f[sft sgn)]

where Ci = min[ai.bd for all L

- two intervall constraints with different top-level symbol:

[f[at 'snan)] n [['bt ,.... sIn'bIn)] ­ ­St g St

[{St, ... ,sn} n [g[sibt, ...,S~In)]] u ({si s~} n [f[sft s~n)]).

So we have to convert the intervall representation to the set
representation only when constraints with different top-level symbols

- 10 ­

1:[Sol U a] = t[Sol] and i t i s obv ious t ha t 1: i s a so lut ion of Ci, and cg .
So 1: i s a lso a solution of [E„C„Soli].

b] Because f[x1311..... xän] = f[s}°1.....sfi‚m] € C1 [1 is solution to [Eo,Co.Solo].
Because f[x1a1 xän] = f[s}°1.„.‚sg‚m] E EO and t[xi] E [f[sf1i‚...‚s$nmi]]
due to t he definition of intervall t i s solution to [E,,C1,Sol1]. .

3L Processing o_f constraints and implementational i ssues

fl Processing o_f constraints
So far. we have presented an inference sys t em that transforms
ACi—matching problems in to a s e t of constraints by decompos i t ion and
so lv ing of easy subprob lems . Fur ther the sys t em exp la ins how very
special constraints, i.e. of the form x E {s}, can be solved or very special
cons tra in t s can be de tec ted as unso lvab le . Now the ques t ions remain .
how to combine severa l cons tra in t s for a var iab le and how to sharpen
cons tra in t s . if new subs t i tu t ions are found . The answers to these
ques t ions w i l l a l so show that cons tra in t s can he lp to so lve
ACl—match ing prob lems more e f f i c i en t ly .

Our constraints represent poss ib le subst i tut ions for a var iable in a
compact form. A l l pos s ib l e subs t i tu t ions form a s e t . If we have two
constraints Cx and C')(for a va r i ab l e x, t hen we have to compu te the
in ter sec t ion c ; = C" fl C'x. The in tersec t ion of two in terva l l s may not
be an in terva l l . Then we swi tch to an exp l i c i t s e t representa t ion . Note
that for in terva l l var iab le cons tra in t s , i .e. cons tra in t s for a var iab le in
in terva l l form, the argument l i s t s can be ex tended , if neces sary . So
[f[s§i1 sfinfl i s the same as [f[s°.s?1....,s§n]]. Thus we have the fo l lowing
poss ib l e in tersec t ion s i tua t ions :

- two var iab le cons tra in t s in s e t representa t ion :
normal intersection {sl sn} m {si‚...‚s;n}.

— va r i ab l e cons t r a in t i n se t representa t ion wi th in terva l l cons tra in t :
{si.....s'm} fl [f[s?1,....s§n]] =

{s" I s " E {si....,s}n} and [s" E {51 sn} or s" = f[sf1,...,s§n] with
o s ci s ai]}.

- two in terva l l cons tra in t s w i th equa l top- l eve l symbol :
[f[s1a1,....s:n]] n [f[s{°1 sänfl = [f[s{71 sgn]]

where ci = min[ai‚bi] for' all i.

- two interval l constraints w i th different top- l eve l symbol :
[f[s1°1‚...‚sän]] fl [g[Sib‘ 832m]] =

[{sl sn} 0 [g[sib1,...,s}fim]]] U [{si s'm} fl [f[s?1‚...‚sän]]].

So we have to conve r t the in terva l l r epresenta t ion to the s e t
representa t ion on ly when cons tra in t s w i th d i f f erent top- l eve l symbol s

-10 -

have to be combined or if the representation is [f(sP, ...,s~n which
means that the only solution of this constraint is If. Note. that an
implementation of this intersection rules can be efficiently done.

Examples:

1) X E {a. b. c. If' f(a. b)} and x E [f(a3.b2.d)].
Combination leads to

x E {a. b. If. f(a.b)}.

2) x E [f[a6,b2,c8,d3.e4J] and x E [f(a 2.b4.d6.e2)].
Combina tion leads to

x E [f(a 2.b2.d3.e2)].

3) x E [f[a2.b4 .d6)] and x E [g(lf.a.b4.f(a2.b3],f(b4.e2])].
Combination leads to

x E {a. b} U {If. a. b. f(a 2.b3)} = {If. a. b. f[a 2.b3)}.

The inference rule Variable abstraction allows for a second way to
restrict variable constraints. If we have a constraint of the form

f(tft t~n,xfn+t x~n+k) = u.

where f E FACt. u E Vaux and t i not in V. then we can compute "at-least"
requirements for the variable u. A substitution that solves this equation
must substitute for u at least a term of the form f[tflt tf1il)' where
ij E {l n} and top(t ij) not in FACt. If there is an intervall variable constraint
u E [f[s~t, s~m)], we get a combined constraint .

u E [f[stCt.bt]; s~m.bm])],

with Ci =
constraints

0, if Si not in {tit t il }.
are not solvable.

or aij else. If c i > bi' then the

If solutions for variables in {Xt..... Xk} or variables in
"at-least" constraints Ci have to be adjusted.

V(td are found. the

Example:

f[a.h(a,b).h[c,x),g(a 2),x,y) = u and
u E [f(a2,c.h(a,b),h(c.d]2,g[a2)2. g [a,b))]

leads to
u E [f[a et. 2], c[o. tJ, h[a. b)[U]. h[c, d)[O' 2]. g[a 2)[1.2], g

So {Lt = {u -Eo­ f(a 2,h(a.b).g[a2).g(a.b)} is a solution for

(a, b)[0. t]).

u. but
(1.2	 = {u -Eo- f[a,c.h[c.d),g[a 2))} is not. because of the constraint on h[a.bJ.

The intersection of "at-least" constraints is like before.

Examples:

1) X E {a. b, C, If' f[a,b)} and x E [f(a[t.3J.b[0.2].c[0.tJ,d[0.tJ)].

Combina tion leads to
x E {a, f[a.b)}.

2)	 x E[f(a[t·6],b[2,2J. c[0.8].d[t.3],e[0,4])] and
x E[f(a[0.2J.b[0,4].d[0.6].e[0.2J)).

Combination leads to

- 11 ­

have to be combined or if t he representation i s [f[s1° sg]] which
means t ha t t he on ly so lu t i on of t h i s cons t r a in t i s 1‚. No te . t ha t an
imp lemen ta t i on of t h i s i n t e r sec t i on ru l e s can be e f f i c i en t ly done ,

Examples :

1] x € {a. b. c. 1,, f[a.b]} and x €[1[a3,b2.d]].
Combina t ion l eads t o

x € {a. b. If. f(a.b]}.
2] x € [f[a5,b2‚c8.d3.e4]] and x € [f[a2,b4.d6,e2]].

Combina t ion l eads t o
x € [f[a2 b2. d3 e2]].

3] x € [f[a2. b4 016]] and x € [g[1,2. a. b4 t[a2 b3] f[b4 e2]]]
Combina t ion l eads t o

x € {a. b} U {1,, a, b. f[a2,b3]} = {lb a. b. f[a 2 ,b3]} .

The in fe r ence ru l e Va r i ab l e abs t r ac t i on a l l ows fo r a s econd way to
r e s t r i c t va r i ab l e cons t r a in t s . If we have a cons t r a in t o f t he fo rm

f[ti‘1,....t§n,x1an*1 xfin’k] =
where f € FAQ. u € Vaux and t i no t i n V, t hen we can compu te " a t - l ea s t "
r equ i r emen t s fo r t he va r i ab l e 11. A subs t i t u t i on t ha t so lves t h i s equa t ion
mus t subs t i t u t e for u a t l e a s t a t e rm of t he fo rm f[tiali1,. ..tialil]. where
ij €{1.„‚n} and top[t‚j] not in FAG-‚. If there is an intervall variable constraint
u € [f[s}°1 sbm]] . we ge t a combined cons t r a in t

u E [f[sl;c1.b1] _____ SEcm.bm]]]

with c i = 0. if si not in {ti1‚.... i 1} ' or a-j else. If ci > bi. t hen t he
cons t r a in t s a r e no t so lvab l e .

If solutions for variables in {x1,...,xk} or variables in V[ti] a r e found, t he
"a t - l ea s t " cons t r a in t s c i have t o be adjusted.
Example :

{[a.h[a.b].h[c‚x].g[a2]‚x.y] = u and
u € [f[a2.c.h[a‚b].h[c.d]2.g[a2]2.g[a.b]]]
l e ads t o

u € [f[a["2].c[°'1].h[a.b]Ü'Ü‚h[c.d][°'2].g[a2]Ü'2].g[a.b][°-Ü].
5° 111 = {u <- f[a2.h[a.b].g[a2].g[a.bl} is a solution for u. bu t

112 = {u <- f[a,c.h[c,d],g[a2]]} is not, because of t he constraint on h[a,b].

The in t e r sec t i on of " a t - l ea s t " cons t r a in t s i s l i ke be fo re .

Examples :
1] x € {a. b, c, i,. f[a.b]} and x € [f[a[1'3].b[°'2].c[°‘1].d[°-1]]].

Combina t ion l eads t o
x € {a. f(a.b]}.

2] X E [Ham-61b” .23 , cC° -83 ,dE1 .3J , eE0 .4]]] and

x €[Ham-21,late-414061402111
Combina t ion l eads t o

-11—

x E: [f(a[l·2J,b[2.2J.d[1,3J,e[0.2J)].

3)	 x E [t(a[0.2J,b[0,4J,d[0.6J)] and

x E [g[l ~0.2J, a [0, 1], b[O,4 J, f(a 2, b 3)[0. 1]. f(b 4 , e2l[0, 1])].

Combination leads to

x E:	 {a, b} U {It, a, b, f[a 2 ,b 3)} = {It, a, b, f(a 2.b3)},

If an AC1-matching problem has been transformed by .!JAC1 into
[0,C,Sol) and C t 0 then we have to solve the constraints, As stated

'before,. not every substitution of x E: S or x E [f(sr1 s~n)] is a solution
of the matching problem. So a variable with the smallest number of
possible substitutions is chosen and one of the solutions is propagated
in CE . If this leads to no Fail. the next "smallest" variable is chosen
and so on. If a Fail occurs, using backtracking another solution for the
variable is tried.

4.2	 Implementation

Our implementation combines the inference system .!JAC1 with the
constraint handling of 4.1, with some small changes. The rul3 "Variable
abstraction" that postpones branching into the solution of the
constraints is not used in this manner. Instead only such arguments t
wi th top(t) E FAC1 are treated as variables. the possible subproblems
generated by other arguments are tried at once. We do not want to
process all branches, because in most systems only one and not all
matches of a pattern to an example are needed. Therefore we select one
possibility and do backtracking if this branch is not sucessful. As we
also want to generate as fast as possible partial soulutions or
constraints, we do a depth-first search. This requires a control that uses
three stacks :

- a to-do stack, where all remaining problems of the branch are
stored. Always the first problem of the stack will be tackled next
[depth-first).

- a done stack. where all backtracking points with the proper partial
solutions and pointers to the to-do stack and the constraint stack at
this time are stored.

- a constraint stack. where all constraints and their adjustments are
stored. An adjustment of a constraint is generated, when a
substitution of a variable is propagated in the constraints. In every
verification equation with this variable in its left hand side the
variable is deleted from the left hand side and apropriate times the
substitution from the right hand side. If this is not possible. we
have a Fail. If it is possible, the constraints of all variables in such
adjusted verification equations can be sharpened. This can be done
very efficiently, because the right hand sides of the equations are
the constraints [or a multiple of it). Then the rule "Pruning
constraints" is applied.

- 12 ­

x E [f[a[i .2] 'b[2.2] 'd[1.3] 'e[o.2]]] .
3] x E [f[a[°'2].b[°'4]‚d[°-63]] and ,

x 6Eg l1 l °~21aE°J] . bE° -4 l r [a2 .b31E° -U .w .eZIEO-fln .

Combina t ion l eads t o
x E {a. b} u {1„ a. b. f[a2‚b3]} = {1„ a, b. f[a2‚b3]}.

If an ACl -ma tch ing p rob lem has been t r ans fo rmed by 9Ac1 i n to
[6 .0 .501] and C # ® t hen we have t o so lve t he cons t r a in t s . As s t a t ed
before“ not every subst i tut ion of x E S or x E [f[sf1....,s§n]] is a solution
of t he ma tch ing p rob lem. So a va r i ab l e w i th t he sma l l e s t number of
poss ib l e subs t i t u t i ons i s chosen and one of t he so lu t i ons i s p ropaga t ed
i n CB. If t h i s l e ads t o no Fail , t he nex t " sma l l e s t " va r i ab l e i s chosen
and so on . If a Fa i l occu r s . u s ing back t r ack ing ano the r so lu t i on fo r t he
va r i ab l e i s t r i ed .

3; Implementation _
Our imp lemen ta t i on combines t he i n f e r ence sys t em 9Ac1 wi th t he
cons t r a in t hand l ing of 4.1, w i th some sma l l changes . The ru l e "Var i ab l e
abs t r ac t i on" t ha t pos tpones b ranch ing in to t he so lu t i on of t he
cons t r a in t s i s no t u sed i n t h i s manne r . I n s t ead on ly such a rgumen t s t
wi th top[t] E FAG, a r e t r ea t ed a s va r i ab l e s . t he pos s ib l e subp rob lems
gene ra t ed by o the r a rgumen t s a r e t r i ed a t once . We do no t wan t t o
p roces s a l l b r anches . because i n mos t sy s t ems on ly one and no t a l l
matches of a pa t t e rn t o an example a r e needed . There fore we se l ec t one
poss ib i l i t y and do back t r ack ing if t h i s b r anch i s no t suces s fu l . As we
a l so wan t t o gene ra t e a s f a s t a s pos s ib l e pa r t i a l sou lu t ions o r
cons t r a in t s , we do a dep th - f i r s t s ea rch . Th i s r equ i r e s a con t ro l t ha t u se s
t h r ee s t acks :

- a t o -do s t ack , whe re a l l r ema in ing p rob lems of t he b ranch a r e
s to red . A lways t he f i r s t p rob l em of t he s t ack w i l l be t ack l ed nex t
[dep th - f i r s t] .

- a m s t ack , whe re a l l back t r ack ing po in t s w i th t he p rope r pa r t i a l
so lu t i ons and po in t e r s t o t he to—do s t ack and the cons t r a in t s t ack a t
t h i s t ime a r e s to r ed .

- a cons t r a in t s t ack . whe re a l l cons t r a in t s and the i r ad jus tmen t s a r e
s to red . An ad jus tmen t of a cons t r a in t i s gene ra t ed . when a
subs t i t u t i on of a va r i ab l e is" p ropaga t ed i n t he cons t r a in t s . I n eve ry
ve r i f i ca t i on equa t ion w i th t h i s va r i ab l e i n i t s l e f t hand s ide t he
va r i ab l e i s de l e t ed f rom the l e f t hand s ide and ap rop r i a t e t imes t he
subs t i t u t i on f rom the r i gh t hand s ide . If t h i s i s no t pos s ib l e , we
have a Fa i l . If i t i s pos s ib l e , t he cons t r a in t s of a l l va r i ab l e s i n such
ad jus t ed ve r i f i ca t i on equa t ions can be sha rpened . Th i s can be done
ve ry e f f i c i en t ly , because t he r i gh t hand s ides of t he equa t ions a r e
t he cons t r a in t s [o r a mu l t i p l e o f i t] . Then the ru l e "P run ing
cons t r a in t s " i s app l i ed .

-12 -

In fact, the first and the last stack are so-called cactus stacks, because
they have several branches, but at every moment only one branch is
active. Other branches can become alive after backtracking using the
second stack.

The same kind of algorithm with these stacks has also proven well
suited for AC-matc1)ing.

4.3 ACt-matching examples

We will .demonstrate the efficiency of our algorithm by some examples.

a) h(f(x,y),g(x,y)) = h(f(a,b 2 1.g(a2 ,b))

Decomposition leads to
(1)	 f(x,y) = t(a,b2)

[2] g(x,y] = g(a 2 ,b].

So we get the constraints
x,y E [f(a,b2)] from (1) and x,y E [g(a2 ,b)] from (2].

Intersection of the constraints results in
x, y E {a,b}.

For x we try
01 = {x ~ a} which leads to y = f(b 2) and y = g(a,b) f and
02 = {x ~ b} which leads to y =, f(a,b] and y = g(a 2] r

So we have to try 2 possible substitutions to detect the unsolvability
of the problem instead of 6 using mutation steps.

b) f(a,g(b 3 ,x),x, y] = f(a,b,g(a,b),g(a,b 2),g(a,b4])

Simplification deletes the term a in both sides
f(g(b 3 ,x),x,y) = f(b,g(a,bl.g(a,b 2),g(a,b4)].

Variable abstraction results in
f(u,x,y] = f(b,g(a,b),g(a,b 2),g(a,b 4)) (.)

and the constraint g(b3 ,x) = u which gives an at-least constraint
u E [g(b:>3]].

The equation [.] yields to the constraints
u,x,y E [f(b,g[a,b),g(a,b2),g[a,b 4]].

Because of the at-least constraint we get u = g(a, b 4) and therefore
g(b3 ,x) = g(a,b 4].

\

Simplification results in the substitution
x = g(a,b].

Propagating this substitution in the verification equation (.] we get
f[g(a, b 4). g(a, b], y) = f(b, g(a, b), g(a, b 2), g(a, b 4])

or simplified
y = f(b,g(a.b 2)].

$0	 the found solution is

° = {x ~ g(a,b), y ~ f(b,g(a,b 2])}.

- 1.3 ­

In fact, t he first and the l a s t s t ack a r e so -ca l l ed cac tu s s t acks , because
t hey have s eve ra l b r anches . bu t a t eve ry momen t on ly one branch i s
ac t i ve . Other branches can become a l ive a f t er back t r ack ing us ing the
second s t ack .

The same k ind of a lgo r i t hm wi th t he se s t acks has a l so p roven we l l
su i t ed fo r AC-ma tch ing .

5._3 ACl-matghigg examples
We wi l l_demons t r a t e t he e f f i c i ency of ou r a lgo r i t hm by some examples .

a] h[f [x .y l . g [x .y l l = h[f[a.b2]‚g[a2‚bll
Decompos i t i on l eads t o
(11 f(x.yl = fla.b2]
[2] g[x .y] = g[a2.b].
So we ge t t he cons t r a in t s

x.y € [l[a,b2]] from [1] and x.y € [g[az.b]] from [2].
In t e r sec t i on of t he cons t r a in t s r e su l t s i n

x .y E {a.b}.
For x we t r y

c1 = {x <- a} which leads to y = fs] and y = g[a‚b] & and
oz = {x <— b} which leads to y = f(a,b] and y = g[a2] /

So we have t o t r y 2 poss ib l e subs t i t u t i ons t o de t ec t t he unso lvab i l i t y
of t he p rob lem in s t ead of 6 using muta t ion s t eps .

b] fla.glb3.xl.x.yl = fta.b.gla.b1.g[a.b2]‚gla.b4]]
Simpl i f i ca t i on de l e t e s t he t e rm a i n bo th s ide s :

flglb3‚xl.x.yl = f[b.g[a.b]‚g[a‚b2].g[a.b4ll.
Var iab le abs t r ac t i on r e su l t s i n

f [U .X .y l = f [b .g [a .b] .g [a .b2] ‚g [a .b4]] [*]
and the cons t r a in t g[b3,x] = 11 wh ich g ives an at—least cons t r a in t

u € [g[b23]].
The equa t ion [*] y ie lds t o t he cons t r a in t s

u,x.y € [f[b‚g[a‚b].g[a‚b2]‚g[a‚b4]].
Because oi t he a t - l ea s t cons t r a in t we ge t u = g[a ,b4] and the re fo re

g[b3 .XJ = g[a .b4] . ‘
Simpl i f i ca t i on r e su l t s i n t he subs t i t u t i on

x = g[a‚b].
Propagating th is subst i tut ion in t he verification equat ion [*] we ge t

f l g l a .b4] .g [a .b] ‚Y] = f [b .g [a .b l . g [a .b2] .g [a .b4]]

or s imp l i f i ed
Y = f l b .g [a .b2] l .

So the found so lu t i on i s
a = {x + g[a‚b]‚ Y e f[b.g[a.b2]]}_

-13 -

c) f(a2,g(a.x~.y).g(x,z)) = f(a 3)

Simplification results in
f(g(a,x 2,y),g(x.z)) = a.

Variable abstractions generates the equation
f(u1,U2) = a (+)

and the (at-least) constraints g{a.x2.y) = u1 which means u1 contains
at least a. Le. u1 E: [g(a:>:1)] and g{x,z) = u2'

(+) leads to the constraints
u1. u2 E: {If. a }.

Combining this constraint with the at-least constraint for u1. we get
U1 = a

and a new equation
g(a.x2,y) = a.

Simplification and the inference rule Variable arguments generate
x = 19 and y = 19 .

Propagating this substitution into the verification equation and
simplifying it yields directly to

Z = 1f

So the found solution is
Cl = {x .,.. 1 • Y .,.. 1 • Z .,.. 1f }.

9 9

5. Conclusion and future work
We have presented an AC1-matching algorithm using constraint
propagation to reduce the necessary branching. We have shown that our
ideas on constraints and theory matching presented earlier ([DG88]) for
the AC case can also be applied to collapsing theories like ACl.

(.
Especially the collapsing cases can also be represented in constraints
and be used to reduce the search. The algorithm can easily be adapted
to new theories. the main task is to define the norm8.lform and the
representation and combination of the constraints.

For example, for the theory ACI. Le. associativity. commutativity and
idempotency, we would use ordered sets as arguments for ACI-functions
in the normalform. Constraints are represented in the form [f(s1 Sn)J.
similar to the representation of AC1-constraints. Due to the
idempotency. no element of the set occurs more than once. Combination
of the constraints is similar to the AC1-case. too. When propagating
substitutions into verification equations. terms on the right hand side
are not deleted but marked. Then a verification equation is satisfied. if

all terms on the right hand side are marked. when there are no more
variables on the left hand side. This is correct. because the
idempotency allows the multiple use of these terms.

For a theory like A (Le. associativity). we have to use different
representations and normalforms. Again. the normalform the

- 14 ­

c] f[a2.g[a.x2f.y].g[x.z}l = f[a3]
Simpl i f i ca t i on r e su l t s i n

f [g [a .xz .y] . g [x . z} l = a.
Var i ab l e abs t r ac t i ons gene ra t e s t he equa t ion

f[u1,u2] = a [+]
and the [a t - l ea s t] cons t r a in t s g{a,x2.y] = u1 which means u1 con ta in s
a t leas t a, i.e. ul € [g[a2‘]] and g[x‚z] = uz.
[»] l e ads t o t he cons t r a in t s

u1.u2 E {1,,a}.
Combin ing th i s cons t r a in t w i th t he a t - l ea s t cons t r a in t for ul, we ge t

u l : a

and a new equa t ion
g[a.x2,y] = a.

Simpl i f i ca t i on and the i n f e r ence ru l e Va r i ab l e a rgumen t s gene ra t e
x= igandy= ig .

P ropaga t ing t h i s subs t i t u t i on i n to t he ve r i f i ca t i on equa t ion and
s imp l i fy ing i t y i e ld s d i r ec t l y t o

z = 1 ,

So the found so lu t i on i s
o={x<—-ig ,y<- ig , z< -1 ,} .

g Conclusion andvfu tu re work

We have p re sen t ed an ACI—match ing a lgo r i t hm us ing cons t r a in t
p ropaga t ion t o r educe t he neces sa ry b ranch ing . We have shown tha t ou r
i deas on cons t r a in t s and theo ry ma tch ing p re sen t ed ea r l i e r [[DG88]] for
t he AC case can a l so be app l i ed t o co l l aps ing theo r i e s l i ke AC1.
Espec i a l l y t he co l l aps ing ca se s can a l so be r ep re sen t ed i n cons t r a in t s
and be u sed to r educe t he s ea rch . The a lgo r i t hm can ea s i l y be adap ted
to new theo r i e s , t he ma in t a sk i s t o de f ine t he no rma l fo rm and the
rep re sen t a t i on and combina t ion of t he cons t r a in t s .

For example , for t he t heo ry ACI, i.e. a s soc i a t i v i t y , commuta t iv i t y and
idempo tency . we wou ld u se o rde red s e t s a s a rgumen t s for ACl - func t ions
in t he normalform. Constraints a r e represented in t he form [f[si,...,sn]],
s imi l a r t o t he r ep re sen t a t i on of ACl—constraints. Due to t he
idempo tency , no e l emen t of t he s e t occu r s more t han once . Combina t ion
of t he cons t r a in t s i s s imi l a r t o t he ACl—case, t oo . When p ropaga t ing
subs t i t u t i ons i n to ve r i f i ca t i on equa t ions , t e rms on the r i gh t hand s ide
a re no t de l e t ed bu t marked . Then a ve r i f i ca t i on equa t ion i s s a t i s f i ed , if
a l l t e rms on the r i gh t hand s ide a r e marked , when the re a r e no more
va r i ab l e s on t he l e f t hand s ide . Th i s i s co r r ec t , because t he
idempo tency a l l ows the mu l t i p l e u se of t he se t e rms .

Fo r a t heo ry l i ke A [i .e . a s soc i a t i v i t y] , we have t o u se d i f f e r en t
r ep re sen t a t i ons and no rma l fo rms . Aga in . t he no rma l fo rm - t he

_14-

argumentlist of an A-function symbol is a word - helps to find the

variable constraints. Then the combination of constraints reduces to
finding common prefixes. suffixes or subwords of the words
representing the constraints.

Using constraints is a concept not only for building single theory
matching algorithms, it can also provide a way to combine such
algorithms efficiently. Within the borders of the theoretical results of
Nipkow in [NiS91 using constraints can provide a similar gain of
efficiency compared to Nipkow's algorithm as in the single theory cases.

A third ad vantage of the use of constraints in theory matching is the
ability to start the matching operation with constraints obtained from
calling functions of deduction systems. In the last years many efforts in
the areas constraint deduction and constraint logic programming
showed the usefulness of constraints. Our approach to theory matching
allows to pass down term constraints in a basic operation. i.e. matching.
This can result in more efficiency, again, because theory matches that
are no solutions of the term constraints can be detected by the
matching algorithm itself and need not be checked by higher levels of
the deduction systems. Finally, when the constraints are used as result
of the matching operation, we get a compact representation of all
solutions of the problem

References ~

[DGSS]	 Denzinger, J. ; Gramlich, B. :
Efficient AC-Matching Using Constraint Propagation.
SEKI-Report SR-8S-15, University of Kaiserslautern, 19S8.

[KN90]	 Kapur, D. ; Narendran, P. :
Complexity of Associative-Commutative Unification Check and
Rela ted Problems,
Tech. Rep. 90-7. Dep. of Computer Science, SUNY, Albany, 1990.

[MzS5]	 Mzali. J. :

Filtrage Associa tit. Commuta tif ou Idempotent.
Int. Rep. 85 R 25. CRIN. Nancy, 1985.

[MzS6]	 Mzali, J.:

Matching with Distributivity.
Proc. 8th CADE. LNCS 230, Springer. 1986.

[NiS9]	 Nipkow. T. :
Combining Matching Algorithms: The Regular Case.
Proc. 3rd RTA. LNCS 355, Springer, 1989, pp. 343-35S.

[St81]	 Stickel. M.E. :
A unification algorithm for associative-commutative functions,
J. ACM 2S (3). 1981. pp. 423-434.

- 15 ­

a rgumen t l i s t of an A- func t ion symbo l i s a word — he lps t o f i nd t he
va r i ab l e cons t r a in t s . Then the combinat ion of cons t r a in t s r educes t o
f ind ing common p re f ixes . su f f i xe s o r subwords of t he words
rep re sen t ing t he cons t r a in t s .

Us ing cons t r a in t s i s a concep t no t on ly fo r bu i ld ing s ing l e t heo ry
ma tch ing a lgo r i t hms . i t c an a l so p rov ide a way to combine such
a lgo r i t hms e f f i c i en t ly . Wi th in t he bo rde r s of t he t heo re t i ca l r e su l t s of
Nipkow in [N i89] , u s ing cons t r a in t s can p rov ide a s imi l a r ga in of
e f f i c i ency compared to N ipkow ' s a lgo r i t hm as i n t he s ing l e t heo ry ca se s .
A th i rd advan tage of t he u se of cons t r a in t s i n t heo ry ma tch ing i s t he
ab i l i t y t o s t a r t t he ma tch ing ope ra t i on w i th cons t r a in t s ob t a ined f rom
ca l l i ng func t ions of deduc t ion sys t ems . In t he l a s t yea r s many e f fo r t s i n
t he a r ea s cons t r a in t deduc t ion and cons t r a in t l og i c p rog ramming
showed the u se fu lnes s of cons t r a in t s . Our app roach to t heo ry ma tch ing
a l lows to pas s down t e rm cons t r a in t s i n a ba s i c ope ra t i on , i .e . ma tch ing .
Th i s can r e su l t i n more e f f i c i ency , aga in , because t heo ry ma tches t ha t
a r e no so lu t i ons of t he t e rm cons t r a in t s can be de t ec t ed by the
ma tch ing a lgo r i t hm i t s e l f and need no t be checked by h ighe r l eve l s of
the deduc t ion sys t ems . F ina l ly , when the cons t r a in t s a r e u sed a s r e su l t
of t he ma tch ing ope ra t i on , we ge t a compac t r ep re sen t a t i on of a l l
so lu t i ons of t he p rob lem

W ;
[DG88] Denz inge r , J . ; Graml i ch . B. :

Ef f i c i en t AC—Match ing Us ing Cons t r a in t P ropaga t ion ,
SEKI -Repor t SR—88-15, Un ive r s i t y of Ka i se r s l au t e rn , 1988.

[KNQO] Kapur , D. ; Narendran , P. :
Complex i ty of Assoc i a t i ve -Commuta t ive Un i f i ca t i on Check and
Re la t ed P rob lems ,
Tech . Rep. 90—7. Dep. of Compu te r Sc i ence , SUNY. Albany , 1990.

[M285] Mza l i . J . :
F i l t r age Assoc i a t i f , Commuta t i f ou Idempo ten t ,
Int . Rep. 85 R 25 , CRIN, Nancy . 1985 .

[M286] Mza l i . J . , :
Matching wi th D i s t r i bu t iv i t y .
Proc . 8 th CADE. LNCS 230 . Sp r inge r , 1986 .

[N189] Nipkow, T. :
Combin ing Ma tch ing Algo r i t hms -. The Regular Case .
Proc. 3rd RTA. LNCS 355 , Sp r inge r , 1989, pp . 343 -358 .

[S t81] S t i cke l , ME. :
A un i f i ca t i on a lgo r i t hm fo r a s soc i a t i ve -commuta t ive func t ions .
J . ACM 28 [3] , 1981, pp . 423 -434 .

-15 -

