
F
a

ch
b

e
re

ic
h

In
fo

rm
a

ti
k

Un
ive

rs
itä

t
Ka

ise
rs

la
ut

er
n

Po
s’r

fo
ch

30

49

SE
KI

-
R

EP
O

R
T

D
-b

7
5

0
K

a
i s

e
rs

l a
u

te
rn

Simplification and Reduction
for

Automated Theorem Proving

Rolf Socher-Ambrosius

SEKI Report SR-90-10

Simplification and Reduction

for

Automated Theorem Proving

Rolf Socher-Ambrosius

Fachbereich Informatik, UniversiUit Kaiserslautern

Postfach 30 49, D-6750 Kaiserslautern, W.-Germany

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314.

Simplification and Reduction
for

Automated Theorem Proving

Rolf Socher—Ambrosius
Fachbereich Informatik, Universität Kaiserslautern
Postfach 30 49, D-6750 Kaiserslautern, W.-Gerrnany

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314.

Simplification and Reduction

for

Automated Theorem Proving

Vom Fachbereich Informatik der Universitat Kaiserslautern

zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. not.)

genehmigte Dissertation von

Dipl.-Math. Rolf Socher-Ambrosius

Datum der wissenschaftlichen Aussprache: 13. Juni 1990
Berichterstatter: Prof. Dr. J6rg Siekmann

Prof. Dr. JOrgen Avenhaus
Dekan: P"of. Dr. Gerhard Zimmermann

D386

Simpl i f icat ion and Reduct ion
fo r

Automated Theorem Proving

Vom Fachbereich informatik der Universität Kaiserslautern
zur Verleihung des akademischen Grades

Doktor der Naturwissenschaften (Dr. rer. nat.)
genehmigte Dissertation von

Dipl.—Math. Rolf Socher—Ambrosius

Datum der wissenschaftlichen Aussprache: 13. Juni 1990
Berichterstatter: Prof. Dr. Jörg Siekmann

Prof. Dr. Jürgen Avenhaus
Dekan : Prof. Dr . Gerhard Zimmermann

D386

Danksagung

!ch mochte mich bei alIen bedanken, die zum Entstehen dieser Arbeit beigetra­

gen haben.

Mein besonderer Dank gilt Professor Jorg Siekmann und Norbert Eisinger. Jorg

hat mich auf den Geschmack der KI und des automatischen Beweisens gebracht,

und mit seinem Optimismus und mit viel Zuspruch hat er mich mehrfach "uber

die Runden gerettet". Er hat die "Markgraf Karl" Beweisergruppe aufgebaut, die

eine ideale Umgebung fur die Entstehung dieser Arbeit war. Von Norbert habe

ich mit viel Miihe und einigen FehlschHigen gelernt, wie man wissenschaftliche

Texte schreibt. Seine Geduld und auch sein schier unerschopflicher Erfahrungs­

schatz im Umgang mit Klauseln, Graphen und dergleichen waren mir eine gro:f.Se

Hilfe, die ich an dieser Stelle gar nicht ausreichend wiirdigen kann. Fur jede

meiner schlechten Ideen hatte er ein passendes Gegenbeispiel parat.

Bedanken mochte ich mich auch bei Professor Jurgen Avenhaus fur seine

Unterstiitzung und seine Verbesserungsvorschlage, insbesondere zur Gestaltung

des Anhangs.

Waiter Olthoff hat mir geholfen, die Fruchtlosigkeit eines friiheren Disser­

tationsthemas zu erkennen, und Manfred Schmidt-Schau:f.S und Hans Jiirgen

Ohlbach haben dann fur das endgiiltige Thema der Arbeit die entscheidenden

Impulse gegeben.

Fiir eine Zeit von zwei Jahren ist diese Dissertation von einem Projekt der

IBM Deutschland unterstiitzt warden. Den Initiatoren mochte ich hiermit

danken.

Schlie:f.Slich mochte ich noch Larry Wos' Buch "Automated Reasoning: 33 Basic

Research Problems" erwiihnen. Die entscheidenden Ansto:f.Se zu den wichtigen

Kapiteln 5 und 6 dieser Arbeit kamen aus der Lektiire dieses lesenswerten

Buches.

Danksagung

Ich möchte mich bei allen bedanken, die zum Entstehen dieser Arbeit beigetra-
gen haben.

Mein besonderer Dank gilt Professor Iörg Siekmann und Norbert Eisinger. Jörg
hat mich auf den Geschmack der KI und des automatischen Beweisens gebracht,
und mit seinem Optimismus und mit viel Zuspruch hat er mich mehrfach „über
die Runden gerettet”. Er hat die „Markgraf Karl” Beweisergruppe aufgebaut, die
eine ideale Umgebung für die Entstehung dieser Arbeit war. Von Norbert habe
ich mit viel Mühe und einigen Fehlschlägen gelernt, wie man wissenschaftliche
Texte schreibt. Seine Geduld und auch sein schier unerschöpflicher Erfahrungs-
schatz im Umgang mit Klauseln, Graphen und dergleichen waren mir eine große
Hilfe, die ich an dieser Stelle gar nicht ausreichend würdigen kann. Für jede
meiner schlechten Ideen hatte er ein passendes Gegenbeispiel parat.

Bedanken möchte ich mich auch bei Professor Iürgen Avenhaus für seine
Unterstützung und seine Verbesserungsvorschläge, insbesondere zur Gestaltung
des Anhangs.

Walter Olthoff ha t mir geholfen, die Fruchtlosigkeit eines früheren Disser-
tationsthemas zu erkennen, und Manfred Schmidt-Schauß und Hans Jürgen
Ohlbach haben dann für das endgültige Thema der Arbeit die entscheidenden
Impulse gegeben.

Für eine Zeit von zwei Jahren ist diese Dissertation von einem Projekt der
IBM Deutschland unterstützt worden. Den Initiatoren möchte ich hiermit
danken.

Schließlich möchte ich noch Larry Wos' Buch „Automated Reasoning: 33 Basic
Research Problems” erwähnen. Die entscheidenden Anstöße zu den wichtigen
Kapiteln 5 und 6 dieser Arbeit kamen aus der Lektüre dieses lesenswerten
Buches.

Abstract

The most severe obstacle on the way to the efficient automation of theorem
proving is the size of the search space for drawing new inferences. There are two

well known ways to overcome this difficulty. One solution comes under the term

"refutation strategies", which denotes techniques to choose candidates for the

next inference step. The other solution is termed "reduction", which subsumes

all techniques to remove those elements of the search space that do not

contribute to the solution and thus are redundant.

The second approach's most critical part is the test on redundancy. Since each

element of the search space has to be subjected to such a test, its efficiency is

crucial for the value of the reduction approach. Subsumption, being one of the

most important types of redundancy, is also a most problematic one. In this

thesis, new and efficient tests for the variant and the subsumption property are

developed, both based on the well known algorithms for detecting isomorphism

of directed graphs.

A most undesired aspect of redundancy is the derivation of subsumed clauses.

Besides the problem with the subsumption test, the amount of computer time,

which is spent for the derivation and normalization of such a clause, is purely

wasted. In this thesis, the two approaches, strategy and reduction, are combined by

a strategy to decrease the number of redundant information derived. This strategy

is heavily based on a special treatment of logical equivalence. It turns out that this

strategy represents a first step towards the answer of several open questions in

automated theorem proving, like the problem with the derivation of redundant

clauses, the choice of the appropriate representation and inference rule, the

question for a theory to demodulate on the literal level, and finally the choice of

clauses to apply a given inference rule. These problems are discussed in Wos'

(1988) 33 BasiC Research Problems.

Abstract

The most severe obstacle on the way to the efficient automation of theorem
proving is the size of the search space for drawing new inferences. There are two
well known ways to overcome this difficulty. One solution comes under the term
”refutation strategies”, which denotes techniques to choose candidates for the
next inference step. The other solution is termed ”reduction", which subsumes
all techniques to remove those elements of the search space that do not
contribute to the solution and thus are redundant.

The second approach’s most critical part is the test on redundancy. Since each
element of the search space has to be subjected to such a test, i ts efficiency is

crucial for the value of the reduction approach. Subsumption, being one of the
most important types of redundancy, is also a most problematic one. In this
thesis, new and efficient tests for the variant and the subsumption property are
developed, both based on the well known algorithms for detecting isomorphism
of directed graphs.

A most undesired aspect of redundancy is the derivation of subsumed clauses.
Besides the problem with the subsumption test, the amount of computer time,
which is spent for the derivation and normalization of such a clause, is purely
wasted. In this thesis, the two approaches, strategy and reduction, are combined by
a strategy to decrease the number of redundant information derived. This strategy
is heavily based on a special treatment of logical equivalence. It turns out that this
strategy represents a first step towards the answer of several open questions in
automated theorem proving, like the problem with the derivation of redundant
clauses, the choice of the appropriate representation and inference rule, the
question for a theory to demodulate on the literal level, and finally the choice of
clauses to apply a given inference rule. These problems are discussed in Wos’
(1988) 33 Basic Research Problems.

Contents

1 Introduction 1

1.1 Simplification 1

1.2 Reduction 4

2 Logical Foundations 8

2.1 Terms, Substitutions, and Unifiers 8

2.2 Clauses and Resolution 11

2.3 Uniqueness of the Irreducible Factor 15

2.4 Resolution and its Properties 16

3 Simplification 19

3.1 Boolean Algebra and Prime Implicants 19

3.2 An Optimized CNF Transformation 28

4 Eliminating Redundant Clauses 40

4.1 The Use of Subsumption in Automated Reasoning Systems .40

4.2 A Variant Test Based on Characteristic Matrices 42

4.3 An Algorithm to Produce the Irreducible Factor of a Clause 60

4.4 A Subsumption Algorithm Based on Characteristic Matrices 65

4.5 Concluding Remarks 73

5 Eliminating the Derivation of Redundant Clauses 74

5.1 Clause Graphs 75

5.2 Redundancy Caused by Cyclic Structures 77

5.3 Redundancy Caused by Subsumed Links 94

5.4 Removing Cycles and Subsumed Links 101

6 Resolution with Equivalence
 110

6.1 The Calculus
 113

122

125

Appendix: Boolean Algebra Admits

: 130

140

142

7 Conclusion

References

System

Special Symbols

Index

no Canonical Term Rewriting

Contents

1 Introduction .. 1
1.1 Simplification ... 1
1.2 Reduction .. 4

2 Logical Foundations .. 8
2.1 Terms, Substitutions, and Unifiers ... 8
2.2 Clauses and Resolution .. 11
2.3 Uniqueness of the Irreducible Factor ... 15
2.4 Resolution and its Properties .. 16

3 Simplification ... 19
3.1 Boolean Algebra and Prime Implicants .. 19
3.2 An Optimized CNF Transformation .._. 28

4 Eliminating Redundant Clauses .. 40
4.1 The Use of Subsumption in Automated Reasoning Systems 40
4.2 A Variant Test Based on Characteristic Matrices .. 42
4.3 An Algorithm to Produce the Irreducible Factor of a Clause 60
4.4 A Subsumption Algorithm Based on Characteristic Matrices 65
4.5 Concluding Remarks..................................._ ... 73

5 Eliminating the Derivation of Redundant Clauses ... 74
5.1 Clause Graphs .. 75
5.2 Redundancy Caused by Cyclic Structures ... 77
5.3 Redundancy Caused by Subsumed Links ... 94
5.4 Removing Cycles and Subsumed Links ... 101

6 Resolution with Equivalence ... 110
6.1 The Calculus ... 113

7 Conclusion .. 122

References .. 125

Appendix: Boolean Algebra Admits no Canonical Term Rewriting
System ... 130

Special Symbols ... 140

Index .. 142

Introduction Chapter 1

1 Introduction

The use of the two notions simplification and reduction for automated

reasoning is not a homogenous one. Mostly workers in the field do not even

clearly distinguish between the two words. The two notions' most basic
common feature can best be seen by comparing them with deduction.

Deduction is considered mainly a mechanism for deriving new knowledge

from a given knowledge base, in order to find a problem's solution. Simpli­

fication and reduction, on the other side, are both regarded in this thesis as

first and foremost a means to find as simple as possible a representation for

given information. This does not contradict the fact that under certain

circumstances both simplification and reduction are able to find trivial

solutions of their own. The difference between the two techniques will be

seen rather as a technical than a conceptual one.

1.1 Simplification

Simplification is usually understood to be part of the preprocessing of

formulae, which takes place before they are subjected to some automated

reasoning program. Historically, simplification developed from serious

problems with proving verification conditions. Although these formulae

are usually of a very trivial nature, their structure and size makes them

difficult to prove, if not unprovable in practice, for general purpose

reasoning programs. Fast and efficient simplification procedures, which are

tailored for particular classes of objects, are widely accepted to be a solution

to this problem. Their application should result in a formula, which is

exempted from all easy to solve parts, such that the general prover's

comparably inefficient mechanisms have to deal only with the really hard

kernel of the problem. In particular this implies that simplifiers should be

able to find proofs of their own for trivial theorems.

Simplification procedures are always bound to a particular theory like

arithmetic, theories of orderings or theories of data structures. The simpli­

fication task can very generally be described as the task to transform a term

of the underlying theory with given rules into a simpler equivalent term.
Thus the notions of transformation rules, equivalence and simplicity are

1

Introduction Chapter 1

1 Introduction

The use of the two notions simplification and reduction for automated
reasoning is not a homogenous one. Mostly workers in the field do not even
clearly distinguish between the two words. The two notions’ most basic
common feature can best be seen by comparing them with deduction.
Deduction is considered mainly a mechanism for deriving new knowledge
from a given knowledge base, in order to find a problem’s solution. Simpli-
fication and reduction, on the other side, are both regarded in this thesis as
first and foremost a means to find as simple as possible a representation for
given information. This does not contradict the fact that under certain
circumstances both simplification and reduction are able to find trivial
solutions of their own. The difference between the two techniques will be
seen rather as a technical than a conceptual one.

1.1 Simplification

Simplification is usually understood to be part of the preprocessing of
formulae, which takes place before they are subjected to some automated
reasoning program. Historically, simplification developed from serious
problems with proving verification conditions. Although these formulae
are usually of a very trivial nature, their structure and size makes them
difficult to prove, if not unprovable in practice, for general purpose
reasoning programs. Fast and efficient simplification procedures, which are
tailored for particular classes of objects, are widely accepted to be a solution
to this problem. Their application should result in a formula, which is
exempted from all easy to solve parts, such that the general prover’s
comparably inefficient mechanisms have to deal only with the really hard
kernel of the problem. In particular this implies that simplifiers should be
able to find proofs of their own for trivial theorems.

Simplification procedures are always bound to a particular theory like
arithmetic, theories of orderings or theories of data structures. The simpli-
fication task can very generally be described as the task to transform a term
of the underlying theory with given rules into a simpler equivalent term.
Thus the notions of transformation rules, equivalence and simplicity are

Simplification and Reduction for Automated Reasoning

relevant in this context. The transformation rules mostly derive from the

equations that define the theory. The equivalence relation is just equality in

the underlying theory. More problems, however, come along with the

notion of simplicity. A formal definition seems difficult, since the alleged

simplicity of terms heavily depends on their use for subsequent algorithms.

The following general criteria for simplicity may be interesting: the length of

the term, its "readability" or its nesting depth. For theories with canonical

term rewriting systems, however, the simplicity problem can easily be

bypassed. Canonical forms are widely accepted as simplest forms, even if the

criteria mentioned above do not apply. For instance, the arithmetical

expression (x+1)3 is shorter and even better "readable" than its canonical

form x3+3x2+3x+1.

Procedures that simplify formulae on the basis of their Boolean proper­

ties, can be seen as theory simplifiers under the theory of Boolean algebra.

According to their nature, these procedures are more closely related to

reduction procedures than any other theory simplification. This thesis will

only deal with what we call Boolean simplification. This notion subsumes

all techniques that transform formulae given in prenex negation normal

form1 along the rules of Boolean algebra.

Boolean simplification originated in the 1950s in connection with the

problem of minimizing the number of components of a given switching

circuit. Although the theory of Boolean algebra does not admit a canonical

reduction system (Hullot 1980), it admits a certain normal form in the

following sense: Instead of a canonical rewriting system, there exists an

algorithm that transforms each Boolean algebra term into a unique form.

This uniquely determined form is called the set of prime implicants and can

be given either as a conjunction of disjunctions, or as a disjunction of

conjunctions. For purposes of automated reasoning, the clausal form, that is

a conjunction of disjunctions, is usually preferred. A number of algorithms

to obtain the set of prime implicants of a given formula has been developed,

1 Prenex negation normal form denotes a form 'v'Xl ...Xn M, where M is a quantifierfree formula

containing only the connectives &, v and ..." and negation is moved directly in front of the

literals.

2

Simplification and Reduction for Automated Reasoning

relevant in this context. The transformation rules mostly derive from the
equations that define the theory. The equivalence relation is just equality in
the underlying theory. More problems, however, come along with the
notion of simplicity. A formal definition seems difficult, since the alleged
simplicity of terms heavily depends on their use for subsequent algorithms.
The following general criteria for simplicity may be interesting: the length of
the term, its ”readability” or its nesting depth. For theories with canonical
term rewriting systems, however, the simplicity problem can easily be
bypassed. Canonical forms are widely accepted as simplest forms, even if the
criteria mentioned above do not apply. For instance, the arithmetical
expression (x+1)3 is shorter and even better ”readable” than its canonical
form x3+3x2+3x+1.

Procedures that simplify formulae on the basis of their Boolean proper-
ties, can be seen as theory simplifiers under the theory of Boolean algebra.
According to their nature, these procedures are more closely related to
reduction procedures than any other theory simplification. This thesis will
only deal with what we call Boolean simplification. This notion subsumes
all techniques that transform formulae given in prenex negation normal
form1 along the rules of Boolean algebra.

Boolean simplification originated in the 1950s in connection with the
problem of minimizing the number of components of a given switching
circuit. Although the theory of Boolean algebra does not admit a canonical
reduction system (Hullot 1980), i t admits a certain normal form in the
following sense: Instead of a canonical rewriting system, there exists an
algorithm that transforms each Boolean algebra term into a unique form.
This uniquely determined form is called the set of prime implicants and can
be given either as a conjunction of disjunctions, or as a disjunction of
conjunctions. For purposes of automated reasoning, the clausal form, that is
a conjunction of disjunctions, is usually preferred. A number of algorithms
to obtain the set of prime implicants of a given formula has been developed,

1 Prenex negation normal form denotes a form \7’x1...xn M, where M is a quantifierfree formula
containing only the connectives &, v and -‚ and negation is moved directly in front of the
l i t era l s .

Introduction Chapter 1

for instance by Quine (1952) and (1959), Slagle, Chang & Lee (1970), and Tison

(1969). In the context of theorem proving, the problem of minimizing

Boolean expression comes along with the multiplication of formulae into

clausal form. Most theorem provers require the conversion of formulae to

be proved into clausal form. This is the case for resolution based systems

(Robinson 1965), for matrix methods (Bibel 1981, Andrews 1981), as well as

for completion theorem proving (Hsiang 1982 and 1985). Although some

efforts have been spent on developing non-clausal methods, for instance

non-clausal resolution by Murray & Rosenthal (1987), or non-clausal

completion theorem proving by Hsiang (1985), as well as matrix methods for

negation normal form (andrews 1981), they all suffer from a serious draw­

back, namely the problem with unifying whole formulae instead of literals.

The importance of an efficient clausal form transformation thus becomes

obvious, in particular, when the shortcomings of the naive approach are

taken into account. The transformation's most critical step is the multipli­

cation of a nested sequence of conjunctions and disjunctions into clausal

form. This step can result in an exponential increase of formulae (Eisinger &

Weigele 1983). The difficulties to prove the formula of Andrew's example

(see Henschen 1980) are caused by this inflation, since here it is the pure

number of clauses produced by the clausal form transformation that

constitute the problem. For this example the number of clauses produced

can range from 128 to over 16000, depending on how the transformation is

performed.

Most of the known algorithms to produce the prime implicants require

the formula already given in clausal form. In view of the problems coming

with the clausal form transformation, however, an integration of the

Boolean minimization techniques into the clausal form transformation

seems far more favourable. In other words, the clausal form transformation

should be organized in such a way that it already produces the prime impli­

cant form. This idea has its origins in Slagle, Chang & Lee's (1970) algorithm,

and it is elaborated in chapter 3 of this thesis. The algorithm presented in

this chapter is based on a matrix method very similar to Andrew's and

Bibel's techniques for proving first order formulae. It takes as input a

formula in negation normal form, and generates the prime implicants of

this formula. This approach follows the strategy to avoid the generation of

3

Introduction Chapter 1

for instance by Quine (1952) and (1959), Slagle, Chang & Lee (1970), and Tison
(1969). In the context of theorem proving, the problem of minimizing
Boolean expression comes along with the multiplication of formulae into
clausal form. Most theorem provers require the conversion of formulae to
be proved into clausal form. This is the case for resolution based systems
(Robinson 1965), for matrix methods (Bibel 1981, Andrews 1981), as well as

for completion theorem proving (Hsiang 1982 and 1985). Although some
efforts have been spent on developing non-clausal methods, for instance
non-clausal resolution by Murray & Rosenthal (1987), or non-clausal
completion theorem proving by Hsiang (1985), as well as matrix methods for
negation normal form (andrews 1981), they all suffer from a serious draw-
back, namely the problem with unifying whole formulae instead of literals.
The importance of an efficient clausal form transformation thus becomes
obvious, in particular, when the shortcomings of the naive approach are
taken into account. The transformation’s most critical step is the multipli-
cation of a nested sequence of conjunctions and disjunctions into clausal
form. This step can result in an exponential increase of formulae (Eisinger &;
Weigele 1983). The difficulties to prove the formula of Andrew’ 5 example
(see Henschen 1980) are caused by this inflation, since here i t i s the pure
number of clauses produced by the clausal form transformation that
constitute the problem. For this example the number of clauses produced
can range from 128 to over 16000, depending on how the transformation is
performed.

Most of the known algorithms to produce the prime implicants require
the formula already given in clausal form. In view of the problems coming
with the clausal form transformation, however, an integration of the
Boolean minimization techniques into the clausal form transformation
seems far more favourable. In other words, the clausal form transformation
should be organized in such a way that it already produces the prime impli-
cant form. This idea has its origins in Slagle, Chang 6: Lee’s (1970) algorithm,
and it is elaborated in chapter 3 of this thesis. The algorithm presented in
this chapter is based on a matrix method very similar to Andrew’s and
Bibel’s techniques for proving first order formulae. It takes as input a
formula in negation normal form, and generates the prime implicants of
this formula. This approach follows the strategy to avoid the generation of

Simplification and Reduction for Automated Reasoning

redundancy (in our particular case during the clausal form transformation)
instead of removing it after its derivation, an idea, which is even more
emphasized in chapter 5 of this thesis.

1.2 Reduction

Reduction is regarded as part of the inference system. While deduction

infers new information from given one, reduction is the part that removes

redundant information from a given set and thus helps to keep the search

space small. Experience with automated theorem provers has shown that

the derivation of redundant information is one of the greatest obstacles to

the efficiency of reasoning programs. As is the case with simplification,

reduction is required to be fast and efficient, since after each step that infers

new information, each element of the actual problem set is potentially
redundant and has thus to be subjected to the reduction procedures.

Two basic types of redundant information face automated reasoning

systems: Information can be redundant on account of its logical form, which

means that it can be removed without changing the logical value of the

given information. On the other hand, information can also be redundant,

if it cannot contribute to a proof. From the second type, only the so called

purity check has gained some attention, however, without posing greater

theoretical difficulties. In this thesis, only the first type of redundancy will be

considered.

For resolution based reasoning systems, reduction traditionally is an

operation that discards redundant clauses from a set of clauses, while

preserving the logical value of this clause set. The very general idea is the

removal of any clause that is logically implied by another already present
clause. In this generality, however, reduction is infeasible, since it is

undecidable, whether one clause implies another (Schmidt-SchauB 1986).

Two syntactic concepts stronger than implication are commonly employed
in most reasoning systems, and most other types of reduction, like
replacement factoring or replacement resolution (Markgraf 1984) are
refinements or derivatives of these two. One is tautology, and the other is

subsumption (Robinson 1965). While tautology is most simple a concept,

and being easily recognized, subsumption is far more intricate, yet also far

4

Simplification and Reduction for Automated Reasoning

redundancy (in our particular case during the clausal form transformation)
instead of removing it after its derivation, an idea, which i s even more
emphasized in chapter 5 of this thesis.

1.2 Reduction

Reduction is regarded as part of the inference system. While deduction
infers new information from given one, reduction is the part that removes
redundant information from a given set and thus helps to keep the search
space small. Experience with automated theorem provers has shown that
the derivation of redundant information is one of the greatest obstacles to
the efficiency of reasoning programs. As is the case with simplification,
reduction is required to be fast and efficient, since after each step that infers
new information, each element of the actual problem set is potentially
redundant and has thus to be subjected to the reduction procedures.

Two basic types of redundant information face automated reasoning
systems: Information can be redundant on account of its logical form, which
means that it can be removed without changing the logical value of the
given information. On the other hand, information can also be redundant,
if it cannot contribute to a proof. From the second type, only the so called
purity check has gained some attention, however, without posing greater
theoretical difficulties. In this thesis, only the first type of redundancy will be
considered.

For resolution based reasoning systems, reduction traditionally is an
operation that discards redundant clauses from a set of clauses, while
preserving the logical value of this clause set. The very general idea i s the
removal of any clause that is logically implied by another already present
clause. In this generality, however, reduction i s infeasible, since i t i s
undecidable, whether one clause implies another (Schmidt-Schauß 1986).
Two syntactic concepts stronger than implication are commonly employed
in most reasoning systems, and most other types of reduction, like
replacement factoring or replacement resolution (Markgraf 1984) are
refinements or derivatives of these two. One is tautology, and the other is
subsumption (Robinson 1965). While tautology i s most simple a concept,
and being easily recognized, subsumption is far more intricate, yet also far

Introduction Chapter 1

more powerful. There is a broad accordance that subsumption is essential to

solving more complicated problems (see for instance Wos (1988), Eisinger

(1981), or Markgraf (1984)). However, the subsumption test is rather

expensive, and it has to be repeated over and over again during a refutation.

The efficiency of the subsumption test thus seems decisive for its use.

Not always, however, is the use of a complete subsumption test essential

for completing proofs. There are examples, where no subsumed clauses are

generated at all (for instance, during the proof that some formula represents

a shortest axiom of equivalential calculus, subsumption did not take place at

all, see Wos et al (1984)). There are other examples, where only particular

types of subsumption occur. A frequently occurring type of subsumption is

that where two clauses are variants of each other, that is, they are just

identical up to renaming of variables. In particular, the clausal form

transformation tends to produce this type of redundancy. In chapter 4 it is

shown that the decision problem, whether a given clause is a variant of

another, amounts to a generalization of the graph isomorphism problem.

Using the well-known graph technique of characteristic matrices, the variant

test represents an efficient means to test the variant relation between

clauses. Moreover, this test can be generalized in a straightforward way to a

subsumption test that uses characteristic matrices to improve the inherently

exponential merging procedure, which is usually required by subsumption

algorithms.

Subsumption is usually classified into what is called backward sub­

sumption and forward subsumption (Overbek 1975). Backward subsumption

is a process for discarding already retained clauses, when a new clause is

derived that subsumes it. Forward subsumption is the process that removes

a newly generated clause because it is subsumed by another, already retained

clause. Backward subsumed clauses are nearly inevitable in any refutation.

For instance, any possible resolution step between clauses of the set {PQ,
...,PQ, p...,Q, ...,P...,Q} derives a unit clause that (backward) subsumes two

already present clauses. Forward subsumed clauses, on the other hand,

represent a highly undesirable derivation, since the whole time required to

perform the resolution step, including unification, and to search the whole

database for the appropriate clauses to apply the inference rule is wasted
with deriving an unneeded result. Moreover, newly generated clauses must

5

Introduction Chapter 1

more powerful. There is a broad accordance that subsumption is essential to
solving more complicated problems (see for instance Wos (1988), Eisinger
(1981), or Markgraf (1984)). However, the subsumption test is rather
expensive, and it has to be repeated over and over again during a refutation.
The efficiency of the subsumption test thus seems decisive for its use.

Not always, however, is the use of a complete subsumption test essential
for completing proofs. There are examples, where no subsumed clauses are
generated a t all (for instance, during the proof that some formula represents
a shortest axiom of equivalential calculus, subsumption did not take place at
all, see Wos et a1 (1984)). There are other examples, where only particular
types of subsumption occur. A frequently occurring type of subsumption is
that where two clauses are variants of each other, that is, they are just
identical up to renaming of variables. In particular, the clausal form
transformation tends to produce this type of redundancy. In chapter 4 i t is
shown that the decision problem, Whether a given clause is a variant of
another, amounts to a generalization of the graph isomorphism problem.
Using the well-known graph technique of characteristic matrices, the variant
test represents an efficient means to test the variant relation between
clauses. Moreover, this test can be generalized in a straightforward way to a
subsumption test that uses characteristic matrices to improve the inherently
exponential merging procedure, which is usually required by subsumption
algorithms.

Subsumption i s usually classified into what is called backward sub-
sumption and forward subsumption (Overbek 1975). Backward subsumption
is a process for discarding already retained clauses, when a new clause is
derived that subsumes it. Forward subsumption is the process that removes
a newly generated clause because it is subsumed by another, already retained
clause. Backward subsumed clauses are nearly inevitable in any refutation.
For instance, any possible resolution step between clauses of the set {PQ,
-IPQ, P-IQ, fiP-IQ} derives a unit clause that (backward) subsumes two
already present clauses. Forward subsumed clauses, on the other hand,
represent a highly undesirable derivation, since the whole time required to
perform the resolution step, including unification, and to search the whole
database for the appropriate clauses to apply the inference rule is wasted
with deriving an unneeded result. Moreover, newly generated clauses must

Simplification and Reduction for Automated Reasoning

be processed with demodulation, term simplification, and various other

standard procedures, before they are recognized to be redundant. Finally, the
test on subsumption itself is rather expensive, as already mentioned.
Altogether, a strategy to prevent the derivation of such redundant informa­

tion would thus obviously be better than the removal of redundancy a

posteriori. It seems, however, that developing such a strategy requires a deep

understanding on how clauses can be derived that are subsumed by already

retained clauses.

In chapter 5 we isolate two typical structures that would systematically

generate subsumed clauses. One such source of redundancy consists in what

we call (forward) ancestor subsumption, which denotes the subsumption of

a newly derived clause by one of its own ancestors. A frequently occurring
case of ancestor subsumption is caused by the symmetry clause ..,Pxy v Pyx.

Resolving a clause C against this clause can be seen as exch~nging the

arguments in a P-literal of the clause C, and performing this operation twice

obviously yields the original clause.

On closer inspection, it seems that the distinction between forward and

backward subsumption, although apparently evident at a first glance,

becomes irrelevant in many cases. While in the case of ancestor subsump­

tion the already present and the newly deduced clause can definitely be

determined, it is not that easy for the following example: Consider the set

S ={PQ, ..,PR, -.QS}. This set admits two different derivations of the clause

RS, which could sequentially be executed. However, a distinction between

an already present clause RS and the newly derived clause RS seems

meaningless. Instead of forward or backward subsumption, one should

better speak of a parallel derivation of identical clauses in this example.

Syntactic characterizations of the ancestor subsumption structure and of

the parallel derivation of identical clauses are given in chapter 5, and it is

shown that the generation of redundancy rests on "hidden" redundancies

(partially inherent in links) that are inherited. Similar concepts of redun­

dant links and their inheritance are investigated by Walther (1981), and by

Ohlbach (1988). These characterizations lead to a strategy to prevent these
unwanted derivations.

6

Simplification and Reduction for Automated Reasoning

be processed with demodulation, term simplification, and various other
standard procedures, before they are recognized to be redundant. Finally, the
test on subsumption itself i s rather expensive, as already mentioned.
Altogether, a strategy to prevent the derivation of such redundant informa-
tion would thus obviously be better than the removal of redundancy a
posteriori. It seems, however, that developing such a strategy requires a deep
understanding on how clauses can be derived that are subsumed by already
retained clauses.

In chapter 5 we isolate two typical structures that would systematically
generate subsumed clauses. One such source of redundancy consists in what
we call (forward) ancestor subsumption, which denotes the subsumption of
a newly derived clause by one of its own ancestors. A frequently occurring
case of ancestor subsumption i s caused by the symmetry clause ~1n v Pyx
Resolving a clause C against this clause can be seen as exchanging the
arguments in a P-literal of the clause C, and performing this operation twice
obviously yields the original clause.

On closer inspection, i t seems that the distinction between forward and
backward subsumption, although apparently evident at a first glance,
becomes irrelevant in many cases. While in the case of ancestor subsump-
tion the already present and the newly deduced clause can definitely be
determined, it is not that easy for the following example: Consider the set
S = {PQ, —-PR‚ —-QS}. This set admits two different derivations of the clause
RS, which could sequentially be executed. However, a distinction between
an already present clause RS and the newly derived clause RS seems
meaningless. Instead of forward or backward subsumption, one should
better speak of a parallel derivation of identical clauses in this example.

Syntactic characterizations of the ancestor subsumption structure and of
the parallel derivation of identical clauses are given in chapter 5, and i t is
shown that the generation of redundancy rests on ”hidden” redundancies
(partially inherent in links) that are inherited. Similar concepts of redun—
dant links and their inheritance are investigated by Walther (1981), and by
Ohlbach (1988). These characterizations lead to a strategy to prevent these
unwanted derivations.

Introduction Chapter 1

A better understanding of reduction for resolution based systems could be

gained by taking a look at reduction in other reasoning systems, in particular

the completion based systems, which traditionally emphasize the role of

reduction (see for instance Hsiang (1982) and (1985), Kapur & Narendran

(1985), or Muller (1988». The relation between the completion approach and

the resolution approach to theorem proving as revealed to some extent in

Socher (1990) and Muller & Socher (1988), provides a means to integrate

some of the strong reduction potentials of the completion method also into

resolution based systems. One such possibility, which is further investigated

in chapter 6, consists in an extension of the resolution calculus by

equivalences. The problems caused by equivalences are already addressed in

chapter 5, and their systematic treatment in chapter 6 provides a partial

solution. A resolution calculus extended by logical equivalence is given in

this chapter, and its soundness and completeness is proved.

7

Introduction Chapter 1

A better understanding of reduction for resolution based systems could be
gained by taking a look at reduction in other reasoning systems, in particular
the completion based systems, which traditionally emphasize the role of
reduction (see for instance Hsiang (1982) and (1985), Kapur & Narendran
(1985), or Müller (1988)). The relation between the completion approach and
the resolution approach to theorem proving as revealed to some extent in
Socher (1990) and Miiller & Socher (1988), provides a means to integrate
some of the strong reduction potentials of the completion method also into
resolution based systems. One such possibility, which is further investigated
in chapter 6, consists in an extension of the resolution calculus by
equivalences. The problems caused by equivalences are already addressed in
chapter 5, and their systematic treatment i n chapter 6 provides a partial
solution. A resolution calculus extended by logical equivalence is given in
this chapter, and its soundness and completeness is proved.

Simplification and Reduction for Automated Reasoning

2 Logical Foundations

This chapter provides the definitions for the basic notions and concepts that
are used throughout this thesis.

2.1 Terms, Substitutions, and Unifiers

2.1.1 Definition:

Given a signature JF = l J f'n of finite sets of n-ary function symbols and anEN
denumerable set V of variable symbols, the term set T =T(JF,V) is the least

set with V ~ T and £It... tn E T whenever fE JFn and tt,. ..,tn E T. This set is the

carrier of the absolutely free term algebra, whose operators are the usual

term constructors induced by the function symbols.

Parentheses may be used throughout this thesis for better readibility. For

any object 0 containing variables we define V(o) to be the set of all variables

occurring in o. A term t is said to be ground, iff V(t)=0.

2.1.2 Definition:

A substitution is an endomorphism on the term algebra, which is identical

almost everywhere on V. For a substitution cr we define dom(cr), the domain

of cr, as the set {XE V I xcr:;tx}, and cod(cr), the codomain of cr, as the set {xcr I

xEdom(a)}.

A substitution cr with domain {Xl,...,Xn} is usually represented as a set

{Xl~Xla,...,Xn~xncr} of argument-image pairs. The application of the

substitution a to any term t is denoted by ta. The application of cr to any

object containing terms is defined in the obvious way.

The set ~ of all substitutions on the term algebra together with the

functional composition (which is formally denoted by juxtaposition of the

substitutions), constitutes a monoid with the identity substitution E as

neutral element.

2.1.3 Definition:

A permutation is an invertible substitution, Le. crE ~ is a permutation, Hf

there exists a a-E~ with crcr- =e. A substitution a is idempotent, Hf O'a = 0'.

8

Simplification and Reduction for Automated Reasoning

2 Logical Foundations

This chapter provides the definitions for the basic notions and concepts that
are used throughout this thesis.

2.1 Terms, Substitutions, and Unifiers

2.1.1 Definition:

Given a signature IF = nkéfq a of finite sets of n-ary function symbols and a
denumerable set V of variable symbols, the term set T = T(]F,‘V) i s the least
set with V g T and ft1...tn e T whenever fe]Fn and t1,...,tn e T. This set is the

carrier of the absolutely free term algebra, whose operators are the usual
term constructors induced by the function symbols.

Parentheses may be used throughout this thesis for better readibility. For
any object 0 containing variables we define V(o) to be the set of all variables
occurring in o. A term t is said to be ground, iff V(t)=@.

Mimic};
A substitution is an endomorphism on the term algebra, which is identical
almost everywhere on V. For a substitution 0 we define dom(o), the domain
of 0', as the set { e ! xcatx}, and cod(o), the codomain of o, as the set {xo I
xe dom(o)}.

A substitution 6 with domain {x1‚...,xn} is usually represented as a set
{x1—9x1o,...,xn—)xn6} of argument-image pairs. The application of the
substitution 0 to any term t is denoted by to. The application of o to any
object containing terms is defined in the obvious way.

The set }; of all substitutions on the term algebra together with the
functional composition (which is formally denoted by juxtaposition of the
substitutions), constitutes a monoid with the identity substitution 8 as
neutral element.

2.1.3 Definition:

A permutat ion is an invertible substitution, i.e. 662 i s a permutation, iff
there exists a (rel with 66' = e. A substitution 0 is idempotent, iff 66 = 6.

Logical Foundations Chapter 2

The set of permutations is denoted by I:-, the set of idempotent substitutions

by I:*.

It is easy to see that the permutations are just the finite automorphisms of

the term algebra. Another characterization of idempotent substitutions is

the requirement that dom(O') (1 V(cod(O'» = 0 holds for each 0' (see Herald

1983).

2.1.4 Definition:

For O'eI: and Vr;;,V the restriction O'lv is the substitution with dom(O'lv)r;;,V

and which agrees with 0' on V.

2.1.5 Definition:

The following relations are defined for s,tET and O','teI: and VcV.

s ~ t iff there exists O'e I: with t=sO' (s subsumes t)l

s =t iff s~t and t~s holds (s is subsumption equivalent to t)

s == t iff there exists O'E:r,- with s=tO' (s is a variant of t)

0' = 't[V] iff O'lv = 'tlv

0' ~ 't[V] iff there exists AEI: with 't=O'A[VJ) (0' subsumes 't on V)

0'= 't[vJ) iff O'~'t[VJ) and 't~O'[vJI hold

(0' is subsumption equivalent to 't)

0' == 't[V] iff there exists AE I:- with O'='tA (s is a variant of t)

In the following, we will omit the suffix [vl if V=V.

Synonyms for "s subsumes t" are "t is an instance of s" or "s is more

general than t". Synonyms for "s is a variant of t" are "s is a copy (or a

duplicate) of t" or "s and t are equal up to renaming". The relation =is the

equivalence relation generated by the preordering ~. It can be shown that the

variant relation and the subsumption equivalence coincide for terms and

substitutions (Herold 1983). For O','tEI:* the subsumption relation O'~'t can

also be defined by O''t='t.

1 Beware of the fact that the subsumption relation::;; is sometimes written in the opposite

direction.

9

Logical Foundations Chapter 2

The set of permutations is denoted by 2“, the set of idempotent substitutions
by E‘.

It is easy to see that the permutations are just the finite automorphisms of
the term algebra. Another characterization of idempotent substitutions is
the requirement that dom(o) nV(cod(o)) = @ holds for each 6 (see Herold

1983).

2.1.4 Definition:

For ce Z and Vg‘V the restriction o lv is the substitution with dom(olv)gV
and which agrees with <; on V.

2.1.5 Definition:

The following relations are defined for s,te T and 6 ,162 and Vg‘V.
s s t iff there exists GEZ with t=so (s subsumes t)1
s s t iff sSt and tSs holds (5 is subsumption equivalent to t)
s 5 t iff there exists Ge 22“ With s=to (s is a variant of t)

O'= tIIV] i f f6 |v = IIV
o s tlIV]! iff there exists AGE with t=o7t[[V]l (o subsumes 1: on V)
o E 'cl[V]l iff GSTIIV] and tSoEVJI hold

(6 is subsumption equivalent to 1:)
o _=. 1:[[V]l iff there exists ke 2‘: with o=1:7t (s i s a variant of t)

In the following, we will omit the suffix |[V]], if V=V.

Synonyms for "s subsumes t” are ”t is an instance of 5” or ”3 is more
general than t”. Synonyms for ”s is a variant of t” are ”5 is a copy (or a
duplicate) of t” or ”s and t are equal up to renaming”. The relation 7-: is the
equivalence relation generated by the preordering s. It can be shown that the
variant relation and the subsumption equivalence coincide for terms and
substitutions (Herold 1983). For 0,116 2‘.” the subsumption relation 69: can
also be defined by 61:1.

1 Beware of the fact that the subsumption relation 5 is sometimes written in the opposite
direction.

Simplification and Reduction for Automated Reasoning

2.1.6 Definition:

A weak renaming p is a substitution with COd(p)k;V. A renaming is a weak

renaming, which is injective on its domain. The set of weak renamings is

denoted by JPW, the set of renamings by JPI.

2.1.7 Definition:

Let s,tE T. A unifier for sand t is a substitution a with sa = ta. A most

general unifier for sand t is a unifier, which is minimal in the set of all

unifiers of sand t. A weak unifier of sand t is a pair (a,t) with sa=tt. The

terms sand t are said to be (weakly) unifiable, if there exists a (weak) unifier.

Robinson (1965) and Huet (1976) show that the most general unifier of

two unifiable terms is unique up to renaming, that is (J == t holds for any two

most general unifiers a andt of sand t. According to Herold (1983), lemma

IIL2, one of the most general unifiers is always idempotent.

2.1.8 Definition:

Let a,tE r.*. A unifier for a and 't is a substitution A with aA = 'tA.. A most

general unifier for a and t is a unifier, which is minimal in the set of all

unifiers of a and 'to

The substitutions a and t are said to be compatible, iff they have a unifier A.

They are said to be strongly compatible, iff at = ta. If a and t are compatible

substitutions, then the merge a*t of a and 't is the substitution aA, where Ais

a most general unifier of a and t.

2.1.9 Lemma:

Let a,tE::E*. If a and t are strongly compatible, then they are compatible.

Proof: Take A=at. •
The converse is not true in general, as the example a={x~y}, 't={y~z}

shows. The substitutions (J and t are compatible, with common instance at,

but at;tta. However, it is easy to see that for ground substitutions the

converse is true:

1 The letter JP' is the capital greek rho, which should not be mistaken for the latin letter P.

10

Simplification and Reduction for Automated Reasoning

2.1.6 Definition:
A weak renaming p is a substitution with cod(p);V. A renaming is a weak
renaming, which is injective on its domain. The set of weak renamings is
denoted by PW, the set of renamings by 11“.

2 .1 .7 Definition:

Let s , teT. A unif ier for s and t is a substitution 0 with so = t6 . A mos t
general unifier for 5 and t is a unifier, which is minimal in the set of all
unifiers of s and t. A weak unifier of s and t is a pair (6,17) with so=t1:. The
terms s and t are said to be (weakly) unifiable, if there exists a (weak) unifier.

Robinson (1965) and Huet (1976) show that the most general unifier of
two unifiable terms is unique up to renaming, that is o _=. 1 holds for any two
most general unifiers o and "c of 5 and t. According to Herold (1983), lemma
1112, one of the most general unifiers is always idempotent.

2.1.8 Definition:

Let 6,16 Y . A unif ier for o and 1: is a substitution Ä with ok: 1)». A mos t
general unifier for o and fc i s a unifier, which is minimal in the set of all
unifiers of o and 1:.
The substitutions o and 1: are said to be compatible, iff they have a unifier 7L.
They are said to be strongly compatible, iff at = 156. If a and 1: are compatible
substitutions, then the merge 0*1: of o and 1: is the substitution ck, where 7L is
a most general unifier of o and 1.

2.1.9 Lemma:

Let 03162". If 6 and 1: are strongly compatible, then they are compatible.

Proof: Take A. = or. I
The converse is not true in general, as the example o={x—>y}, r={y—>z}

shows. The substitutions o and t are compatible, with common instance or,
but outta. However, it is easy to see that for ground substitutions the
converse is true:

1 The letter P is the capital greek rho, which should not be mistaken for the latin letter P.

10

Logical Foundations Chapter 2

2.1.10 Lemma:

Two ground substitutions a and 't are compatible, iff they are strongly

compatible.

Proof: We have only to show that compatibility implies strong

compatibility. Let ° and't be compatible ground substitutions, that is, there is

a eE~ with ae = 'te. If x~dom(a)udom('t),then obviously xa't = x = x'ta. If

XE dom(a)\dom('t), then xO't = xa = x'tO, and similarly for XE dom('t)\dom(a),

and finally, if XE dom(a)(")dom(-t), then xo't = xa = xae = x'te = x't = x'ta. •

The following lemma gives an alternative definition of weak unifiability,

which will be useful in later chapters.

2.1.11 Lemma:

For s,tE l' the following two assertions are equivalent:

a) sand t are weakly unifiable

b) There are pE JP and aE ~ with spa = ta.

Proof: See Eisinger (1988), Lemma 4.1.12.

2.2 Clauses and Resolution

2.2.1 Definition:

Let lP = l J lPn consist of finite sets of n-ary predicate symbols. The atom set
nEN

A = A (lP,lF,V) is the set consisting of the elements Ptl ... tn for PElPn and

tl,. ..,tn E T. If A is an atom, then +A (usually written A) and -A (usually

written -,A) are literals. The atom of the literal L is denoted by A(L), the

predicate (symbol) of L is denoted by lP(L). Literals L, K with the same atom

but different sign are called complementary. As before, ground atoms, lite­

rals or clauses are objects containing no variables.

2.2.2 Definition:

A clause is a finite set of literals. The cardinality of the clause C is denoted by

1C I. A clause C with IC I =1 is called a unit (clause). As a matter of conven­

tion, the empty clause is denoted by c.

Clauses are usually written without set braces and commas. In particular,

often we do not distinguish between a unit clause and its (single) literal. The

11

Logical Foundations Chapter 2

2.1.10 Lemma:

Two ground substitutions 0' and 1 are compatible, iff they are strongly
compatible.

Proof: We have only to show that compatibili ty implies s t rong
compatibility. Let 0 and x be compatible ground substitutions, that is, there is
a GEZ with 09 = “ce. If xe dom(o)udom(t) , then obviously x0": = x = xto. If
xe dom(o)\dom(’c), then xo'c = xo = mo, and similarly for xe dom(t) \dom(o) ,

and finally, if xe dom(o)ndom(t), then X01: = xo = x09 = x19 = xx = xw. I

The following lemma gives an alternative definition of weak unifiability,
which Will be useful in later chapters.

2.1.11 Lemma:

For s,te T the following two assertions are equivalent:
a) s and t are weakly unifiable
b) There are pe P and GEZ with spo’ = to“.

Proof: See Eisinger (1988), Lemma 4.1.12.

2.2 Clauses and Resolution

2.2.1 Definition:

Let]P = “td“ Pn consist of finite sets of n-ary predicate symbols. The atom set

A =A(]I’,]F,V) i s the set consisting of the elements Pt1. . . tn for Pe Pn and
t1‚...‚tne T . If A i s an atom, then +A (usually written A) and -A (usually
written -A) are l i terals . The atom of the literal L is denoted by A(L), the
predicate (symbol) of L is denoted by P(L). Literals L, K with the same atom
but different sign are called complementary. As before, ground atoms, lite-
rals or clauses are objects containing no variables.

2.2.2 Definition:

A clause is a finite set of literals. The cardinality of the clause C is denoted by
IC | . A clause C with IC | =1 is called a unit (clause). As a matter of conven-
tion, the empty clause is denoted by :|.

Clauses are usually written without set braces and commas. In particular,
often we do not distinguish between a unit clause and its (single) literal. The

11

Simplification and Reduction for Automated Reasoning

notions defined for terms apply to atoms and literals in the obvious way.
Two literals are called (weakly) unifiable, if their signs are equal and their

atoms are (weakly) unifiable. The set of unifiers of the literals Le C and KE D

will be denoted by uni(C,L,O,K), where the clauses C and D can be omitted.

Moreover, we define uni(C,L,D) = {ae uni(C,L,D,K) I KE D}. Two literals are

called (weakly) resolvable, if their signs are different and their atoms are

(weakly) unifiable. Clauses containing complementary literals are called

tautologies.

2.2.3 Definition:

Let C and D be clauses.

C ~ D Hf there exists aE~ with CaeD (C subsumes 0)1

C == D iff C~D and C~D holds (C is subsumption equivalent to D)

C == D iff there exists aE ~- with C=Da (C is a variant of D)

C E D iff there exists D'eD with C == D'

C < D iff CsD and C~D (C properly subsumes D)

Note that in particular we have 0 ~ C for each clause C. Furthermore, C ~ 0,

iffC = o.

Contrary to terms and substitutions, the variant relation for clauses does

not coincide with the subsumption equivalence. A simple counterexample

consists of the two clauses C =PxPyQz and D =PuQvQw, where C ~ 0 and

D ~ C holds, but not C == D.

2.2.4 Definition:

Let C be a clause and let a be a substitution such that ICa I< ICl. Then Ca is

called a factor of C. A factor of C, which also subsumes C is called a

subsuming factor of C, and so is each of its variants. A clause is called

irreducible, if it possesses no subsuming factor. For any clause C, let C'"

denote the irreducible subsuming factor of C.

1	 Beware of the fact that some authors, for instance Loveland (1978), call this relation 0­

subsumption, whereas their term subsumption denote3 implication. Sometimes the

additional condition IC I~ ID I can be found in the literature, which is a technical

requirement to prevent factors of a given clause C, which are in fact subsumed by C, to be

eliminated by reduction procedures.

12

Simplification and Reduction for Automated Reasoning

notions defined for terms apply to atoms and literals in the obvious way.
Two literals are called (weakly) unifiable, if their signs are equal and their
atoms are (weakly) unifiable. The set of unifiers of the literals Le C and Ke D
will be denoted by uni(C,L,D,K), where the clauses C and D can be omitted.
Moreover, we define uni(C,L,D)= {ce uni(C‚L‚D‚K) | Ke D}. Two literals are
called (weakly) resolvable, if their signs are different and their atoms are
(weakly) unifiable. Clauses containing complementary literals are called
tautologies.

2.2.3 Definition:

Let C and D be clauses.
C S D iff there exists GEZ with CogD (C subsumes D)1
C E D iff CSD and CSD holds (C is subsumption equivalent to D)
C E- D iff there exists O'E E“ with C=Do (C is a variant of D)
C S D iff there exists D‘gD with CED'
C < D iff CSD and C#.D (C properly subsumes D)

Note that in particular we have El S C for each clause C. Furthermore, C S u ,
iff C = n .

Contrary to terms and substitutions, the variant relation for clauses does
not coincide with the subsumption equivalence. A simple counterexample
consists of the two clauses C = PxPs and D =PuQv, where C S D and
D S C holds, but not C 5 D.

2.2.4 Definition:

Let C be a clause and let a be a substitution such that lCo |< ICI . Then C6 is
called a f ac to r of C . A factor of C, which also subsumes C i s called a
subsuming factor of C, and so is each of its variants. A clause is called
irreducible , if it possesses no subsuming factor. For any clause C, let C"
denote the irreducible subsuming factor of C.

1 Beware of the fact that some authors, for instance Loveland (1978), call this relation 9-

subsumption, whereas their term subsumption denotes implication. Sometimes the

additional condition IC IS ID I can be found in the literature, which i s a technical

requirement to prevent factors of a given clause C, which are in fact subsumed by C, to be

eliminated by reduction procedures.

12

Logical Foundations Chapter 2

In general there exist several subsuming factors of a clause. In the next

section, however, it will be shown that there always exists a unique

"smallest" subsuming factor, that is, all irreducible subsuming factors are

equal up to renaming. This justifies the definition of C*.

2.2.5 Lemma:

If C' is a subsuming factor of C, then either C' E C, or there is a subsuming

factor C" of C with C" E C.

Proof: Let C be a subsuming factor of C. By definition, there are literals

L,KE C and O'E mgu(L,K), and a substitution ~ such that C = CO' and CIl ~ C.

Then C~O'~CO'=C'.

Case 1: IC'~ I < I C' I . Then ~ must unify at least two literals of C, that is,

CIl is a factor of C. Moreover, since CIlO' c C', CIl is also a subsuming
factor of C. Finally, C'1lS;;C holds. Take C" =C'~.

Case 2: Iclll = Icl. We have C=CO'. Since 0' is idempotent, CO'=C, hence

0' cannot unify two literals of C. Then, a fortiori, 0' cannot unify two literals

of C~, which implies I C'1l0" = I CIl' = I C' , . Together with CIlO' c C' this

implies CIlO'=C. Hence ~ must be injective, which implies C::C'Ils;;C.

Thus C EC. •

Since irreducible clauses possess no subsuming factors, we have the

following

2.2.6 Corollary:

For any clause C, C* E C holds. •
2.2.7 Lemma:

Let C and D be clauses. Then the following conditions are equivalent:

a) C= D.

b) There are O','tEI. with CO' = D and D't = C.

Proof: See Eisinger (1988), lemma 4.2.3. •
The next lemma gives an alternative characterization of subsumption

equivalence.

2.2.8 Lemma:

Let C and D be clauses. Then the following conditions are equivalent:
a) C:=D.

13

Logical Foundations Chapter 2

In general there exist several subsuming factors of a clause. In the next
section, however, it will be shown that there always exists a unique
”smallest" subsuming factor, that is, all irreducible subsuming factors are
equal up to renaming. This justifies the definition of C".

If C' is a subsuming factor of C, then either C' s C, or there is a subsuming
factor C" of C' with C" S C.

Proof: Let C' be a subsuming factor of C. By definition, there are literals
L,Ke C and ce mgu(L,K), and a substitution p. such that C' =Co and C'ugC.

Then C'uogCo'=C'.
Case 1: IC'uI < I C' | . Then p. must unify at least two literals of C', that is,
Cu is a factor of C'. Moreover, since C 'uogC' , Cu is also a subsuming
factor of C‘. Finally, C'n holds. Take C"=C'u.
Case 2: | C'u | = IC' | . We have C'=Co. Since o is idempotent, C'o=C', hence
0' cannot unify two literals of C'. Then, & fortiori, 6 cannot unify two literals
of Cu, which implies lC'uol = lC'ul = |C' | . Together with C'uogC‘ this
implies C‘u6=C'. Hence it must be injective, which implies C'EC'ugC.
Thus C' SC. I

Since irreducible clauses possess no subsuming factors, we have the
following

For any clause C, C” S C holds. I

2.2.7 Lemma:

Let C and D be clauses. Then the following conditions are equivalent:
a) C E D.
b) There are 0 ,152 with Co = D and D': = C.

Proof: See Eisinger (1988), lemma 4.2.3. I
The next lemma gives an alternative characterization of subsumption

equivalence.

2.2.8 Lemma:

Let C and D be clauses. Then the following conditions are equivalent:
a) C a D.

13

Simplification and Reduction for Automated Reasoning

b) There are subsuming factors C' of C and D' of D with C' == D'.
c) co. == DO..

Proof: a) ~b): Let C S D and DSC. Then there are a,te:E w.ith Dt ~ C and

Ca ~ D. From this we obtain Dta k; Ca and Cat k; D't. Continuing this way,

we obtain the following two chains:

C ;2 Dt ::::> Cat ;2 Dtat ~... and

D ::::> Ca ::::> Dta ::::> Cata ::::>•••

Since the sets C and D are finite, there must be some ne N such that C(at)i =

Dt (at)i = D(ta)h for all j~n. Analogously there must be an meN with D(ta)k

= Ca(ta)k = C(at)ka for all k~m. Let r be the maximum of m and n. Let

C = C(at)r s;;;; C and D' = D(ta)r k D. Then we have Ca = D' and D't = C.

Lemma 2.2.5 now implies C' == D'.

b) ~ c): follows from the fact that the irreducible factor of a clause is

unique up to renaming.

c) => a): Let a,'te:E with CacC and DtcD and Co' == Dt. There are p,p'e JP'

with Cap = Dt c D and D'tp' = Co' C C, that is CsD and DSC. •

In particular, the previous lemma implies that subsumption equivalence

and the variant relation coincide for irreducible clauses.

2.2.9 Definition:

a) If C and D are clauses with V(C)rlV(D)=0, and Le C, Ke D are resolvable

with most general unifier a, then (C\{L})a u (D\{K})a is called a

(binary) resolvent of C and D. If R is a binary resolvent of factors C' and

D' of C and D, respectively, then R is called a resolvent of C and D.

b) For each clause C, let 1L+(C) denote the set of positive literals of C. If

N ,E1, ... ,En are variable disjoint clauses with 1L+(N) = {Ll, ... ,Ln}:t:0,

lL+(Ei)=0 and Kie Ni for ie {1, ,n}, and a is a most general simultane­

ous unifier of Li and Ki for ie {I, ,n}, then
n

(N\P)a u V Ei\ {Ld
1=1

14

Simplification and Reduction for Automated Reasoning

b) There are subsuming factors C’ of C and D‘ of D with C‘ E D'.
c) C" E D".

Proof: a) =>b): Let C S D and D S C. Then there are 6,1262 W_ith D1: g C and
Co g D. From this we obtain D126 g CO“ and Cat ; Dt. Continuing this way,
we obtain the following two chains:

C ;; D1: ; CG’C 2 D’CO‘T 2... and
D ; Co ; Dw ; Cow ;>_...

Since the sets C and D are finite, there must be some neN such that C(ot)i =
Dr (ot)i = D(w)it for all jan. Analogously there must be an meN with D(1:o)1<
= CO’("CO')k = C(ot)ko for all kam. Let r be the maximum of m and n. Let
C‘ =C(m) fg C and D' = may; D. Then we have Co = D' and D’t =C'.
Lemma 2.2.5 now implies C' s D'.

b) = c): follows from the fact that the irreducible factor of a clause i s

unique up to renaming.

c) :> a): Let 0“a with CocC and Dt and Co _~__ D‘t. There are p,p'e P
with Cop = D'c c D and Dtp' = CC C C, that is CSD and DSC. I

In particular, the previous lemma implies that subsumption equivalence
and the variant relation coincide for irreducible clauses.

W
a) If C and D are clauses with V(C)nV(D)=®‚ and Le C, Ke D are resolvable

with most general unifier 0', then (C\{L})O‘ U (D \ [K})o i s called a
(binary) resolvent of C and D. If R is a binary resolvent of factors C‘ and
D' of C and D, respectively, then R is called a resolvent of C and D.

b) For each clause C, let lL+(C) denote the set of positive literals of C. If
N,E1,...,En are variable disjoint clauses with 1L+(N) = {L1‚...‚Ln}$®‚
lL+(Ei)=Q and Kie Ni for ie {1,...,n}, and 0' is a most general simultane-
ous unifier of Li and Ki for ie {1,...‚n}, then

(N \P)o U ig Ei\ {Li}

14

Logical Foundations Chapter 2

is called a (negative) (binary) hyperresolvent of N with {El, ... ,En }. The

clause N is called the nucleus, the clauses Di are the electrons of the

hyperresolution step. A binary hyperresolvent of factors N', El',·· .,En ' of

N,El, ... ,En is hyperresolvent of N,El, ... ,En. The definition of a positive

hyperresolvent is obtained by reverting the signs in the above

defini tion.

2.3 Uniqueness of the Irreducible Factor

In this section it is shown that the irreducible subsuming factor of a clause is

unique up to renaming. According to lemma 2.2.5, we can restrict ourselves

to those subsuming factors of a given clause C that are also subsets of C. In

the following such a clause D~C, which is a subsuming factor of C, will be

called a subsuming factor in C.

We consider a clause C together with the set L.C ={creZ I Ccr~C}. Obvious­

ly, Lc together with the concatenation of substitutions is a semigroup with

identy element e. We define a quasiorderl c on .Lc by a~'t Hf Ca~Ct and an
equivalence relation ~ by a~'t iff Ca=C't.

From the definition of LC it is clear that the mapping <1>: cr -4 Ca yields a

surjective mapping from LC on the set of all subsuming factors in C. The

equivalence relation induced by this mapping is just the relation "'. Thus
there is a one-to-one correspondence between the subsuming factors in C

and the elements of .Lc/"', where the irreducible factors of C correspond to

the minimal elements in .Lc/'" w.r.t. ~.

2.3.1 Lemma:

If't is minimal in Le/'" w.r.t. ~, then 't:=:: O''t holds for each ae .Lc.

Proof: Let ae Lc. CacC implies Ccr't~C't, hence a't c't. From the minima­

lity of't w.r.t. c follows 't:=:: a't. •

2.3.2 Theorem:

If both Ca and Ct are irreducible factors in C, then Ccr::C't holds.

1 A quasiorder is a reflexive and transitive relation.

15

Logical Foundations Chapter 2

i s called a (negative) (binary) hyperresolvent of N with {E1,...,En}. The
clause N i s called the nucleus , the clauses D1- are the e lec t rons of the

hyperresolution step. A binary hyperresolvent of factors N', E1',...,En' of
N ,E1,...,En is hyperresolvent of N ,E1,...,En. The definition of a positive
hyperresolvent i s obtained by reverting the signs in the above
definition.

2.3 Uniqueness of the Irreducible Factor

In this section i t is shown that the irreducible subsuming factor of a clause is
unique up to renaming. According to lemma 2.2.5, we can restrict ourselves
to those subsuming factors of a given clause C that are also subsets of C. In
the following such a clause DgC, which is a subsuming factor of C, will be
called a subsuming factor in C.

We consider a clause C together with the set EC = {062 I CogC}. Obvious-
ly, 2c together with the concatenation of substitutions is a semigroup with
identy element 8. We define a quasiorder1 <; on 2c by og: iff Cogc'c and an
equivalence relation = by oz“: iff Co=C1:.

From the definition of 2c i t is clear that the mapping (D: o —>Co yields a
surjective mapping from EC on the set of all subsuming factors in C. The
equivalence relation induced by this mapping i s just the relation =. Thus
there is a one-to-one correspondence between the subsuming factors in C
and the elements of Ec/z , where the irreducible factors of C correspond to
the minimal elements in Zc/z w.r . t . ; .

2.3.1 Lemma:

If 1: i s minimal in Ec/z w.r.t . ; , then 1: = 61: holds for each oe 2c.

Proof: Let oe 2c. CogC implies Co'c'c, hence or <; 1. From the minima-
lity of 'c w.r.t. <; follows I = 61:. I

If both Co and C1: are irreducible factors in C, then CosCt holds.

1 A quasiorder is a reflexive and transitive relation.

15

Simplification and Reduction for Automated Reasoning

Proof: If both Ccr and Cc are irreducible factors in C then both 0" and tare
minimal in in LC/~ w.r.t. ~. Lemma 2.3.1 implies that t"" at and cr ~ tcr hold.

Hence Ct =Ccrt and CO" =Cta. According to 2.2.7, this implies Ccr::Cc. •

2.4 Resolution and its Properties

2.4.1 Definition:

An interpretation,g is a maximal set of ground literals, containing no pair of

complementary literals. ,g satisfies its member literals and falsifies all other

ground literals. An interpretation ,g satisfies a ground clause, if it satisfies

some literal of the clause. It satisfies an arbitrary clause, if it satisfies all of its

ground instances, and satisfies a set of clauses, if it satisfies each member of

the set. Any object is said to be satisfiable if there exists an interpretation
satisfying it, and unsatisfiable otherwise. We also write ,g F= 0, if,g satisfies

the object o. An interpretation ,g satisfying 5 is also called a model of 5.

There is a very useful technique, which can serve various purposes, such

as proving completeness of resolution: If 5 is an unsatisfiable clause set, then
construct a clause set 5(L) from 5 by removing all clauses containing the
literal L, and deleting the literal -,L from the remaining clauses. Then the
resulting clause set 5(L) is also unsatisfiable, since each model ,g of 5(L) could

easily be extended to a model ,g I for 5 by adding the literal L. This
construction will also be used in the following.

2.4.2 Definition:

a) Let 5 be a set of clauses. The semantic closure of 5 is the set of all clause

sets 5', such that ,g 1= 5 implies .g 1= 5'. We write (5) for the semantic

closure of 5. By abuse of notation, we write (C) for ((Cl).

b)	 Let 5 and 5' be clause sets. 5 implies 5', iff 5'e (5). 5 is (logically)

equivalent to 5', written 5 =::: 5', iff 5 implies 5' and 5' implies 5.

The implication relation 5 implies 5' can also be expressed as follows:

Each model of 5 is also a model of 5'.

2.4.3 Lemma:

Let 5 be a set of clauses and let C={L}, ... ,Ln } be a clause. 5 implies C, iff

5u{oL}}u...u{-'Ln}is unsatisfiable.

16

Simplification and Reduction for Automated Reasoning

Proof: If both C6 and. C1: are irreducible factors in C then both 6 and 1: are
minimal in in SLC/== w.r.t. c_:. Lemma 2.3.1 implies that 1: = 0'1: and 0' = 10' hold.
Hence CI = Cox and Co = Cw. According to 2.2.7, this implies Cos-Ct. I

2.4 Resolution and its Properties

2.4.] Definition:
An interpretation 3 is a maximal set of ground literals, containing no pair of
complementary literals. 8 satisfies its member literals and falsifies all other
ground literals. An interpretation 8 satisfies a ground clause, if i t satisfies
some literal of the clause. It satisfies an arbitrary clause, if i t satisfies all of its
ground instances, and satisfies a set of clauses, if i t satisfies each member of
the set. Any object is said to be satisfiable if there exists an interpretation
satisfying it, and unsatisfiable otherwise. We also write 3 != o, if 3 satisfies
the object 0 . An interpretation 3 satisfying S is also called a model of S.

There is a very useful technique, which can serve various purposes, such
as proving completeness of resolution: If S is an unsatisfiable clause set, then
construct a clause set S(L) from S by removing all clauses containing the
literal L, and deleting the literal -L from the remaining clauses. Then the
resulting clause set S(L) is also unsatisfiable, since each model 8 of S(L) could
easily be extended to a model 8 ' for S by adding the literal L. This
construction will also be used in the following.

W
a) Let S be a set of clauses. The semantic closure of S is the set of all clause

sets S', such that S I= S implies 8 l= S'. We write (S) for the semantic
closure of S. By abuse of notation, we write (C) for <{C}).

b) Let S and S' be clause sets. S imp l i e s 5', tit 96 (S). S is (logically)
equivalent to 8', written 5 = 5', iff 3 implies S' and 5' implies S.

The implication relation 8 implies S' can also be expressed as follows:
Each model of S i s also a model of S'.

2.4 .3 Lemma:

Let S be a set of clauses and let C={L1,...,Ln} be a clause. S implies C, iff

SU{—-L1}U. . .u{—-Ln} is unsatisfiable.

16

Logical Foundations Chapter 2

Proof: Let Ce (5), and assume 5u{..,Ll}U ... u{-.Ln } has a model ,g. Then a

fortiori ,g satisfies 5, and from Ce (5) follows that ,g satisfies C. Then there is

one literal Li of C, such that ,g 1= Li, in contradiction to the fact that ,g 1=

5u{-,Ll}U... u{..,Ln }. Conversely, assume that 5u{..,Ll}U... u{..,Ln } is unsatis­

fiable. Then each model of S must satisfy one element of {Ll, ... ,Ln}, and

hence satisfies C. •

2.4.4 Lemma:

a) C implies D, iff (D)~(C).

b) C is equivalent to D, iff (C) = (D).

b) The implication relation on clauses defines a partial order.

Proof: a) If (D)~(C), then obviously {D}e (D)~(C). Conversely, let {D}e (C),

and let Se (D). Then each interpretation ,g satisfying D also satisfies S. Let ,g

be an interpretation with ,g 1= C. Then, since {O}e (C),,g 1= 0, and hence also ,g

1= S. As ,g was arbitrary, we have shown that Se (C). This proves (O)~(C).

b) and c) follow from a). •
2.4.5 Lemma:

Let C and D be clauses, and let 5 be a clause set.

a) If Sf, S"e (5), then S'u5"e (5).

b) C implies D, iff {C,D} ~ {Cl.

c) If C S; 0, then C implies O.

Proof: a) Follows from the definition.

b) If C implies 0, then {O}e (C), with {C}e (C) and a) we obtain {C,D}e (C).

Furthermore {C}e (S) follows from the definition, hence we have {C,D} ~ {Cl.

The converse is proved analogously.

c) Assume CS;D, and D={Ll/" .. ,Ln }. According to lemma 2.3.4 we have to show

that {C}u{-,Ll}U... u{..,Ln} is unsatisfiable. There is a substitution a such that

Ccr~D, that is, there is kS;n such that Ccr={Ll, ... ,Lk}. Let <l>gr be a ground

substitution with dom(cr)=V(D). Then

({Ccr}u{..,Ll}U...u{-,Lnl)<I>gr = ({Ll/" ..,Lk1u{..,Ll}U...u{-,Lnl)<I>gr

is a ground instance of {C}u{..,Ll}U ... u{..,Ln}, which is obviously unsatis­

fiable. •

From the previous lemma, part a), follows that a clause that is implied by

another clause, can be discarded from a clause set without changing the

17

Logical Foundations Chapter 2

Proof: Let Ce (5), and assume SU{'\L1}U...U{-Ln} has a model S . Then a
fortiori S satisfies 5, and from Ce (S) follows that 3 satisfies C . Then there is
one literal Li of C, such that S |= Li, in contradiction to the fact that S |=
Su{-IL1}U...u[-1Ln}. Conversely, assume that SU{-IL1}U...U{oLn} i s unsatis-
fiable. Then each model of S must satisfy one element of {L1,...,Ln}, and

hence satisfies C . .

2.4.4 Lemma:
a) C implies D, iff (D)<;(C).
b) C is equivalent to D, iff (C) = (D).
b) The implication relation on clauses defines a partial order.

Proof: a) If (D);(C), then obviously {D}e (D);(C). Conversely, let {D}e (C),
and let Se (D). Then each interpretation 3 satisfying D also satisfies 5. Let S
be an interpretation with 3 != C. Then, since {D}e (C), S I= D, and hence also 3
!= 5. As 8 was arbitrary, we have shown that Se (C). This proves (D);(C).

b) and c) follow from a). I

2.4.5 Lemma:

Let C and D be clauses, and let S be a clause set.
a) If S', S"e (S), then S 'uS"e (S).
b) C implies D, iff {C,D} = {C}.
c) If C S D, then C implies D .

Proof: a) Follows from the definition.
b) If C implies D, then {D}e (C) , with {C}e (C) and a) we obtain [C,D}e (C).
Furthermore {C}e (5) follows from the definition, hence we have {C,D} = {C}.
The converse is proved analogously.
c) Assume CSD, and D={L1,. ..,Ln}. According to lemma 2.3.4 we have to show
that {C}U{—IL1}U...U{’ILn} is unsatisfiable. There is a substitution 0' such that
CogD, that is, there is kSn such that Co={L1,. . . ,Lk}. Let (bg; be a ground
substitution with dom(o)=V(D). Then

({CO‘}U{'|L1]U. . .u{-=Ln})q>gr = ({L1,. . .,Lk}U{-\L1}U. . .U{-Ln})<pg‚
is a ground instance of {C}U{'1L1)U...U{-1Ln}, which is obviously unsatis-
fiable. I

From the previous lemma, part a), follows that a clause that is implied by
another clause, can be discarded from a clause set without changing the

17

Simplification and Reduction for Automated Reasoning

logical value of this set. In particular, by part c) of the lemma, this holds for

subsumed clauses. In other words: Subsumed clauses are redundant.

2.4.6 Definition:

Let C,D,R be clauses, and let S be a clause set.

a) We write C -+D R, iff R is a resolvent of C and D. C and D are called

parents of R.

b) We write S -+ Su{R}, Hf there are C,De S, such that C -+D R.

c) The reflexive, transitive closure of -+ is denoted by -+...

d)	 C is called an ancestor of R in a given deduction S-+S', iff C is a parent

of R, or C is parent of some ancestor C' of R.

2.4.7 Definition:

A resolution refutation of S is a derivation S ~ .. S' with c e S'.

Soundness and completeness of the resolution method are stated by the

fact that a clause set is unsatisfiable, iff it admits a resolution refutation. This

classical theorem correlates the semantic notion of unsatisfiability with the

syntactic deduction relation. The proof of completeness usually divides into

two parts: A completeness proof for ground resolution and a lifting lemma

stating that each ground resolution step can be "lifted" to the appropriate

first order resolution step. Several techniques, including semantic trees, or

induction on the number of literals, to prove completeness of ground

resolution can be found in the literature (see e.g. Chang & Lee (973),

Loveland (1978), Gallier (1988), Socher-Ambrosius (1989c». Hyperresolution

derivations are defined similarly to resolution refutations, and they can also

be shown to be sound and complete.

As already noted, implied clauses may be discarded from clause sets

without changing the logical value of the set. Still, this does not imply that

implied clauses may be removed during a resolution refutation after each

resolution step. For instance, each resolvent is implied by its parents, but

discarding each resolvent immetiadely after its generation obviously

precludes any successful refutation. For subsumed clauses, however, it has

been shown (see Loveland (1978», that their removal preserves complete­

ness of resolution, even if certain restrictions are imposed on the resolution

procedure.

18

Simplification and Reduction for Automated Reasoning

logical value of this set. In particular, by part c) of the lemma, this holds for
subsumed clauses. In other words: Subsumed clauses are redundant.

2.4g Definition:
Let C,D,R be clauses, and let S be a clause set.
a) We write C —>D R, iff R i s a resolvent of C and D . C and D are called

parents of R.
b) We write S —-> Su{R}‚ iff there are C,De S, such that C —->D R.
c) The reflexive, transitive closure of _) is denoted by —>*.
d) C is called an ancestor of R in a given deduction S—aS', iff C is a parent

of R, or C is parent of some ancestor C' of R.

2.4.7 Definition:

A resolution refutation of S i s a derivation S —>* S' with ae S'.

Soundness and completeness of the resolution method are stated by the
fact that a clause set is unsatisfiable, iff i t admits a resolution refutation. This
classical theorem correlates the semantic notion of unsatisfiability with the
syntactic deduction relation. The proof of completeness usually divides into
two parts: A completeness proof for ground resolution and a lifting lemma
stating that each ground resolution step can be "lifted” to the appropriate
first order resolution step. Several techniques, including semantic trees, or
induction on the number of literals, to prove completeness of ground
resolution can be found in the literature (see e.g. Chang & Lee (1973),
Loveland (1978), Gallier (1988), Socher-Ambrosius (1989c)). Hyperresolution
derivations are defined similarly to resolution refutations, and they can also
be shown to be sound and complete.

As already noted, implied clauses may be discarded from clause sets
without changing the logical value of the set. Still, this does not imply that
implied clauses may be removed during a resolution refutation after each
resolution step. For instance, each resolvent is implied by its parents, but
discarding each resolvent immetiadely after its generation obviously
precludes any successful refutation. For subsumed clauses, however, i t has
been shown (see Loveland (1978)), that their removal preserves complete-
ness of resolution, even if certain restrictions are imposed on the resolution
procedure.

18

Simplification Chapter 3

3 Simplification

This chapter provides several techniques for Boolean simplification, which

are based on the equations and rules of the theory of Boolean algebra. This

particular theory does not admit a canonical term rewriting system.

Nevertheless, there exists a normal form for Boolean algebra terms in the

following sense: There is a transformation algorithm that transforms each

Boolean algebra term t into another uniquely determined term t"', and each

term t', which is equal to t under the theory of Boolean algebra, is trans­

formed into the same term t*. This normal form is called the set of prime
implicants. Historically, due to the early investigations of switching circuits,

the prime implicants have been denoted in a disjunctive form. For the

purposes of automated reasoning, however, the conjunctive form is usually

preferred.

Throughout this chapter equality under the theory of Boolean algebra will

be denoted by =, since no confusion with the variant relation can occur.

In the following the reader is assumed to be familiar with the basic

notions of (equational) term rewriting.

3.1 Boolean Algebra and Prime Implicants

3.1.1 Definition:

A Boolean algebra is an algebra (B,I\,v,"') with the binary operators I\,V and

the unary operator -', satisfying the following properties:

a) (B,I\,v) is a distributive lattice, that is for all a,be B:

avb =bva aAb =bl\a Commutativity
av(bvc) = (avb)vc al\(bl\c) =(al\b)l\c Associativity
(avb)I\b = b (aAb)vb ;= b Absorption
al\(bvc) =(al\b)v(al\c) av(bl\c) =(avb)l\(avc) Distributivity

b) (al\-,a)vb =b (av-,a)l\b ;= b

The set B is called the carrier of the Boolean algebra. Henceforth we shall

denote a Boolean algebra by its carrier. The abbreviations => and ~ are

defined as a=>b = -,avb, and a~b ;= a=>b 1\ b=:>a. The axioms of Boolean

19

Simplification Chapter 3

3 Simplification

This chapter provides several techniques for Boolean simplification, which
are based on the equations and rules of the theory of Boolean algebra. This
particular theory does not admit a canonical term rewriting system.
Nevertheless, there exists a normal form for Boolean algebra terms in the
following sense: There is a transformation algorithm that transforms each
Boolean algebra term t into another uniquely determined term t‘, and each
term t', which is equal to t under the theory of Boolean algebra, is trans-
formed into the same term t‘. This normal form is called the set of prime
implicants. Historically, due to the early investigations of switching circuits,
the prime implicants have been denoted in a disjunctive form. For the
purposes of automated reasoning, however, the conjunctive form is usually
preferred.

Throughout this chapter equality under the theory of Boolean algebra will
be denoted by :—:, since no confusion with the variant relation can occur.

In the following the reader is assumed to be familiar with the basic
notions of (equational) term rewriting.

3.1 Boolean Algebra and Prime Implicants

3.1.1 Definition:

A Boolean algebra is an algebra (B,A,V‚'l) with the binary operators A,V and
the unary operator —-.‚ satisfying the following properties:
a) (B,A,V) i s a distributive lattice, that i s for all a‚be B:

avb = bva ab = bAa Commutativity
av(bvc) = (avb)vc aA(b/\C) = (aAb)/\C Associativity
(avb)/\b = b (aAb)vb = b Absorption
aAvc) = (aAb)v(a/\c) av(bAc) = (avb)A(avc) Distributivity

b) (aA-aa)vb = b (av-va)Ab = b

The set B is called the carrier of the Boolean algebra. Henceforth we shall
denote a Boolean algebra by its carrier. The abbreviations :: and @ are
defined as a=>b = navb , and aäb = a=>b Ab=> a . The axioms of Boolean

19

Simplification and Reduction for Automated Reasoning

algebra imply the following well-known properties of the operators V,A, and
-,:

3.1.2 Lemma:

Let B be a Boolean algebra. Then there exist O,le B, such that for all a,be B:

Ova ::= a 1Aa :: a

Iva::= 1

ava::=a
-,(avb}::= -'aA-,b

al\a::= a
-,(aAb) :: -,av-,b

Idempotency

•
3.1.3 Lemma:

Let B be a Boolean algebra. For any a,be B:

(0

(H)

avb::O iff a::O and b::O.

al\b:: 1 iff a:: 1 and b::= 1. •
The simplest Boolean algebra is the algebra lB with carrier {O,l}. Given a

set V of variables and a set C of constants, the set T(C,V) is the free term

algebra whose operators are the term constructors induced by the symbols

V,A, and -'. The Boolean algebra lB[C,V], whose carrier is T(C,V), is also called

the set of Boolean polynomials1 over lB. A Boolean polynomial over the

variables {Xl,... ,xn} can also be interpreted as a function f: lBn~lB[C] (Rudeanu
1974).

3.1.4 Lemma:

There is no canonical term rewriting system modulo associativity and

commutativity of 1\ and v for the theory of Boolean algebra2•

Proof: See Appendix. •

3.1.5 Definition:

Let B be a Boolean algebra, and let s,te B.

a) We define the relation :S on B by s:St, iff svt == 1.

1 The Boolean polynomials are also called Boolean functions (Rudeanu 1974), or simply

Boolean terms.

2	 As to the definitions of (equational) canonical term rewriting systems see for instance Huet

& Oppen (1980).

20

Simplification and Reduction for Automated Reasoning

algebra imply the following well-known properties of the operators V,A, and
- :

3.1.2 Lemma:

Let B be a Boolean algebra. Then there exist 0,1e B, such that for all a,be B:
Ova s a Ma S a
Iva 5 1 OAa 5 O
ava E a aAa E a Idempotency
-n(avb) _=. 'laA'1b -1(aAb) s -1av-Ib
“Ha E a I

3.1.3 Lemma:

Let B be a Boolean algebra. For any a,be B:
(i) avbsO iffaEO and bEO.
(ii) aAbEI i f fas l and be i . I

The simplest Boolean algebra is the algebra IB with carrier {0,1}. Given a
set V of variables and a set C of constants, the set T(C,V) is the free term
algebra whose operators are the term constructors induced by the symbols
V,A, and -. The Boolean algebra B[C,V], whose carrier is T(C,V), is also called
the set of Boolean polynomials1 over 13. A Boolean polynomial over the
variables {x1,...,xn} can also be interpreted as a function f : Bn-—>B[C] (Rudeanu
1974).

3.1.4 Lemma:
There is no canonical term rewriting system modulo associativity and
commutativity of A and v for the theory of Boolean algebraz.

Proof: See Appendix. I

3.1.5 Definition:

Let B be a Boolean algebra, and let s,te B.
a) We define the relation S on B by s.<_t, iff svt a t.

1 The Boolean polynomials are also called Boolean functions (Rudeanu 1974), or simply

Boolean terms.

2 As to the definitions of (equational) canonical term rewriting systems see for instance Huet

& Oppen (1980).

20

Simplification Chapter 3

b) The principal filter (t) generated by t, is defined by (t)= {t'e B I t$t'}.

3.1.6 Lemma:

Let s,te B. Then the following conditions are equivalent to s$t:

a) svt == t

b) SAt == s

c) SA t == 0

d)svt == 1

Proof: a) <=> b): If svt == t then s == SA(svt) == SA t. The converse is proved

analogously.

b)~c): If SAt == s, then SA t == SAtA....t == O.

c)~d): If SA.... t == 0, then svt == 1.

d)~b): Ifsvt == 1, then s == SAl == SA(....SVt) == SAt. •

In spite of lemma 3.1.4, there exists a normal form for Boolean algebra

polynomials, the so called set of prime implicants. In order to define the

notion of prime implicants, we first transfer the semantic notions for clauses

and clause sets to Boolean algebra polynomials.

Given a set A of ground atoms, let

B[A] = {f(Al,...,An) I Al,...,AneA, feB[0,V]}

Then B[A] is isomorphicl to the Boolean algebra B[A,0]. In the following we

shall establish the relation between a given set S of ground clauses and the

Boolean algebra B[A], where A is the atom set of S.

3.1.7 Definition:

Let S be a set of ground clauses and let A=A(S) be the set of atoms occurring

in S. Let a: A~V be an injective mapping, and let V = a(A).

We define a mapping </>: lL(S)uSu2S~B[0,V] as follows:

</>(+A) = Aa, for any positive literal +A

</>(-A) =Aa, for any negative literal -A

</>({Ll,.· .,Lnl) = </>(Ll)V v</>CLn) for any clause {Ll,. ..,Lnl

</>({Cl,. ..,CnJ) = </>(Cl)A A</>(Cm> for any clause set {Cl,...,Cmlg;

1 The notion of homomorphism and isomorphism of Boolean algebras is defined in a

canonical way, see for instance, Rudeanu (1974).

21

Simplification Chapter 3

b) The principal filter (t) generated by t, is defined by (t)= {t 'e B | tSt'}.

3.1.6 Lemma:

Let s,te B. Then the following conditions are equivalent to sSt:
a) svt E t
b) SAt E s
c) SA—-t E 0
d) -svt a 1

Proof: a) ab) : If sv t ‚=. t then s & SA(svt) 5 SAt. The converse is proved
analogously.
b)==>c): If SAt E s , then SA'lt s SAtA-nt E O.
c)=>d): If SA-lt E 0, then fi sv t a-] .
d)=>b): If —-svt E 1, then s 5 SA]. 5 SA('\SVt) E SAt. I

In spite of lemma 3.1.4, there exists a normal form for Boolean algebra
polynomials, the so called set of prime implicants. In order to define the
notion of prime implicants, we first transfer the semantic notions for clauses
and clause sets to Boolean algebra polynomials.

Given a set A of ground atoms, let
MA] = {f(A1,. . „An) | A1,. . .,AneA, fe B[@,V]}

Then IB[A] is isomorphic1 to the Boolean algebra MAE]. In the following we
shall establish the relation between a given set 5 of ground clauses and the
Boolean algebra lB[A], where A is the atom set of S.

3.1.7 Definition:

Let S be a set of ground clauses and let A=A(S) be the set of atoms occurring
in S. Let oz: A—aV be an injective mapping, and let V = MA).
We define a mapping q): 1L(S)USU25—>B[Q!‚V] as follows:

¢(+A) = Act, for any positive literal +A
¢(—A) = -Aoc, for any negative literal -A
¢({L1,. . .‚L„}) = ¢(L1)v. . .v¢(Ln) for any dause {L1,. . .‚Ln}
q>({C1‚...‚Cm}) = ¢(C1)A. . .A¢(Cm) for any clause set {C1,. . .,lgs

1 The notion of homomorphism and isomorphism of Boolean algebras is defined in a
canonical way, see for instance, Rudeanu (1974).

21

Simplification and Reduction for Automated Reasoning

For any object 0, the polynomial <1>(0) will be denoted by fa. Following the
convention that a disjunction over the empty set is zero, we have fo = O. As

for clauses, the number n is called the length of le. The objects 10 will be

called literal (clause, CNF-) polynomials. CNF stands for clausal normal

form, or conjunctive normal form.

For any polynomial 10(Xl, ... ,xn)e B[0,V], we define a term toe B[A] by

to=IO(Xl<r1,...,xn(X.-1). The objects to will be called literal (clause, CNF-) terms.

Conversely, each clause term t;t:1 defines a unique clause, and each CNF­

term defines a (not necessarily unique) clause set. It can be shown that each
te B[A] is equivalent to some CNF-term (see, for instance, Rudeanu (1974».1

While there exists no canonical AC-term rewriting system (that is, a

system modulo associativity and commutativity) for Boolean algebra, there

is at least a terminating (but not confluent) system, which is, however, even

confluent on clause terms.

3.1.8 Lemma:

Let AC denote the set of equations representing commutativity and

associativity of 1\ and v, and let R be the following system of rules:

av(bl\c) -7 (avb)l\(avc)

(aI\b)vb -7 b

ava ---+ a al\a -7 a

-,ava ---+ 1 ...,al\a -7 0

Iva---+1 Ol\a ---+ 0

11\a ---+ a Ova -7 a

...,1 ---+ 0 -,0 -7 1

(avb)I\(""avb) ---+ b

""(avb) -7 -,al\...,b

...,...,a -7 a

Then the equational system 9t=(AC,R) is terminating. On the set of clause

polynomials, it is even confluent.

1	 The difference between polynomials and terms is often blurred in the literature by

regarding a term like PvQ as a polynomial in the variables P,Q. This view, however, is not

quite correct because the polynomial j(P)=P is identical to the polynomial j(Q)=Q, where­

as the clauses {P} and {Q} are different.

22

Simplification and Reduction for Automated Reasoning

For any object O, the polynomial (MO) will be denoted by fo. Following the
convention that a disjunction over the empty set is zero, we have f,; = 0. As
for clauses, the number n is called the length of fc. The objects fo will be
called literal (clause, CNF-) polynomials. CNF stands for clausal normal
form, or conjunctive normal form.
For any polynomial fo(x1,...,xn)eB[@,V]‚ we define a term toe B[A] by
to=fo(x10t'1,...,xn0t'1). The objects to will be called literal (clause, CNF-) terms.
Conversely, each clause term t¢1 defines a unique clause, and each CNF-
term defines a (not necessarily unique) clause set. It can be shown that each
te B[A] is equivalent to some CNF-term (see, for instance, Rudeanu (1974)).1

While there exists no canonical AC-term rewriting system (that is, a
system modulo associativity and commutativity) for Boolean algebra, there
i s at least a terminating (but not confluent) system, which is, however, even
confluent on clause terms.

3.1.8 Lemma:
Let AC denote the set of equations representing commutativity and
associativity of A and v, and let R be the following system of rules:

av(b/\c) -—> (avb)A(avc)
(aAb)vb —> b
ava —-) a aAa —> a
nava ——) 1 -aAa _) 0
lva —) 1 0Aa —-> 0

ha _) a Ova —> a
«1 _) 0 -0 —-> 1
(avb)A(-1avb) —-> b
-(avb) _) waA-nb -u(aAb) -> —=av-b
-1-1a ——> a

Then the equational system 9i=(AC,R) is terminating. On the set of clause
polynomials, it is even confluent.

The difference between polynomials and terms i s often blurred in the literature by

regarding a term like PVQ as a polynomial in the variables P,Q. This view, however, is not
quite correct because the polynomial f(P)=P is identical to the polynomial f(Q)=Q, where—
as the clauses {P} and {Q} are different.

22

Simplification Chapter 3

Proof: See Appendix. -
Now let ~ be an interpretation, and let tE B[A]. For any AE A, let A(~) be

defined by A(~)=l, if the literal +A is in g, and A(g)=O otherwise.

3.1.9 Lemma:

Let 5 be a ground clause set with A(5)={Al, ... ,An}, and let ~ be an interpre­

tation. Then ~ 1= 5 iff fs(Al(g), ...,An(~» =1.

Proof: Obviously LE~ iff fL<Al(~), ...,An(~»=1 holds for any literal L.

~ does not satisfy 5, iff there is some Ce 5 with ~ l# C

iff there is some CE S with Llit ~ for all Le C

iff there is some CE 5 with fL<Al(~),.. .,An(~» =0 for all Le C

iff there is some Ce5 with fdAl(g),. .. ,An(g»=0
iff fS(Al(~),...,An(3»=0. _

3.1.10 Corollary:

Let 5 be a clause set. Then tS=O iff 5 is unsatisfiable. _

3.1.11 Lemma:

Let 5 be a ground clause, and let C = {Ll,... ,Ln}be a single ground clause. Then

tce (ts), ifftSI\-,Lll\.· .1\...,Ln == O.

Proof: We have tce (ts), iff tsStc iff, by lemma 3.1.9, tSI\-,tc = 0, iff

tSI\..,Lll\...1\..,Ln =o. •

Obviously, the relation ~ defines an order on B. The correspondence

between the implication relation and semantic closure on the one hand and

the notions for Boolean algebra given in the previous definition, is estab­

lished by the following

3.1.12 Lemma:

Let 51 and 52 be a set of ground clauses, for i=1,2, let ti=tSi, and let C be a

ground clauses.

a) tl ~ tD iff 51 implies D.

b) tl S t2 iff 51 implies 52.

c) (tc) = {tc I C'e (C)}.

Proof: a) Follows immetiadely from the previous lemma and 2.4.3.

b) Let 52 = {Dl,...,Dn}, and for i=l,...,n, let ti=tDi' We have
tlSt2 iff tll\..,t2 =0 iff

23

Simplification Chapter 3

Proof: See Appendix. .

Now let 8 be an interpretation, and let teB[A]. For any Ae A, let A(8) be
defined by A(S)=1, if the literal +A is in 3 , and A(3)=0 otherwise.

3.1.9 Lemma:

Let S be a ground clause set with A(S)={A1,...,An}, and let 8 be an interpre-

tation. Then 8 != 5 iff fs(A1(S),...,An(S)) E 1.

Proof: Obviously Le 55 iff fL(A1(3),...,An(S)) 51 holds for any literal L.
S does not satisfy S, iff there is some Ce 3 with S # C
iff there is some Ce S with Le 8 for all Le C
iff there is some Ce S with fL(A1(8),...,An(8)).=-:0 for all Le C
iff there is some Ce S with fc(A1(3),...,An(8))EO
iff fs(A1(S),. . .‚An(5)) _=_0. l

3.1.10 Corollary:

Let S be a clause set. Then tsEO iff S is unsatisfiable. I

3.1.11 Lemma:

Let S be a ground clause, and let C = {L1,.. .,Ln} be a single ground clause. Then
tce (ts), iff tsAlA” .A—ILn 5 0.

Proof: We have t ce (t s) , iff t sS tc iff, by lemma 3.1.9, tSA‘ItC EO, iff
tsA-ILlA...A-ILn E 0. I

Obviously, the relation S defines an order on B. The correspondence
between the implication relation and semantic closure on the one hand and
the notions for Boolean algebra given in the previous definition, is estab-
lished by the following

3.1.12 Lemma:

Let S] and 82 be a set of ground clauses, for i=1,2, let ti=tsi, and let C be a
ground clauses.
a) t1 5 to iff S1 implies D.
b) t1 5 tz iff 51 implies 52.
c) (tc) = he I 06 (C)}.

Proof: a) Follows immetiadely from the previous lemma and 2.4.3.
b) Let $2 = {D1,. . .,Dn}, and for i=1,. . .,n, let ti=tDi. We have

t1$t2 iff t1A‘lt2 EO iff

Simplification and Reduction for Automated Reasoning

t11\(-,d1V v-,dn)::O iff

t11\-,d1 =0, ,t11\...,dn=0 iff
51 implies 01 and ... and 51 implies On iff

51 implies 52.
c) tCE (te) iff tc~tc iff C implies C' iff C'E (C). •
3.1.13 Corollary:

Let 5' and 5" be ground clause sets. Then t5' =ts" iff 5':::::: S". •
According to the previous lemma, the Boolean algebra 1B [A] is the

Lindenbaum algebra of 5 (see Gallier 1988). Now suppose 5 and 5' are first

order clause sets, and 5gfl 5'gr are ground clause sets obtained from 5 and 5'

by instantiating each variable with a new constant. If the two ground clause

sets 5gr and 5'gr are logically equivalent, then the corresponding first order

clause sets 5 and 5' are also equivalent. From the previous lemma thus

follows that transformations based on the rules of Boolean algebra on a

clause set 5gr leave the logical value of 5 invariant. This means that Boolean

transformations operate on clause sets (or, more generally, on arbitrary first­

order formulae) as they do on the corresponding ground objects. Hence the

transformations considered in the following chapter 3.2 will be stated for

pure propositional logic, which in fact is equivalent to the logic of ground
formulae.

3.1.14 Definition:

Let t be a Boolean algebra polynomial. Then a prime implicant of t is a

minimal clause polynomial in (t) (w.r.t. the partial order ~). If t1, ...,tn are the

prime implicants of t, then 1(t) = t11\ ... I\tn is called the prime polynomial of t.

3.1.15 Lemma:

For each polynomial t, 1(t) =t holds.

Proof: Let P(t) = t11\ .. .I\tn. First we show that t ~ P(t). Since tiE (t), t~ti holds

for any iE {l, ...,n}. Hence,

t v 1(t) = t v (t11\ . ..I\tn) == (tvt1)1\ I\(tvtn) == t11\ ...I\tn =1(t).

Next we show that P(t) ~ t. Let S11\ I\Sm be a CNF-representation of t. Then,

for each je {l,...,m}, t~Sj, which implies SjE (t). As the ti are the minimal

clause polynomials in (t), and Sj is a clause polynomial, there is some

24

Simplification and Reduction for Automated Reasoning

t1A(nd1v. . .v-ndn)50 iff
t lAfldl 5 O,. . . ‚tIA-‘dn E 0 iff
S1 implies D1 and and 51 implies Dn iff
S1 implies 52.

c) tcve (tc) iff tCStcv iff C implies C ' iff C 'e (C). I

3.1.13 Corollag:

Let S’ and S" be ground clause sets. Then t5~ 5 ts» iff 8': S " . I

According to the previous lemma, the Boolean algebra B[A] is the
Lindenbaum algebra of S (see Gallier 1988). Now suppose S and S‘ are first
order clause sets, and Sgr, S'gr are ground clause sets obtained from S and S'
by instantiating each variable with a new constant. If the two ground clause
sets sg,— and S'gr are logically equivalent, then the corresponding first order
clause sets S and 5 ' are also equivalent. From the previous lemma thus
follows that transformations based on the rules of Boolean algebra on a
clause set Sgt leave the logical value of S invariant. This means that Boolean
transformations operate on clause sets (or, more generally, on arbitrary first-
order formulae) as they do on the corresponding ground objects. Hence the
transformations considered in the following chapter 3.2 will be stated for
pure propositional logic, which in fact is equivalent to the logic of ground
formulae.

am
Let t be a Boolean algebra polynomial. Then a prime implicant of t is a
minimal clause polynomial in (t) (w.r.t. the partial order 3). If t1,...,tn are the
prime implicants of t, then f(t) = t1A...Atn is called the prime polynomial of t.

3.1.15 Lemma:
For each polynomial t, ‘.P(t) s t holds.

Proof: Let f(t) = t1A...Atn. First we show that t _<_ £P(t). Since tie (t), tSti holds
for any ie {1,.. .,n}. Hence,

t v r£(t) = t v (t1A. . .Atn) 5 (tvt1)/\...A(tvtn) a t1A. . .Atn = @(t).
Next we show that :P(t) S t . Let S1A.../\Sm be a GNP-representation of t. Then,
for each je {1,...,m}, tSSj, which implies sis (t) . As the ti are the minimal
clause polynomials in (t), and Si is a clause polynomial, there is some

24

Simplification Chapter 3

ie {1, ,n} with ti~Sj' Thus there are tl ',...,tm'E {tl, ...,tnl such that tj'~Sj for each
je {l, ,m}. Then we have

1{t) =tll\.· .I\tn ~ tl'I\· . .I\tm' ~ SII\...I\Sm == t. •

Besides the prime implicants' minimality property, which is given by the

definition above, prime implicants also have the useful property of being

minimal w.r.t. their length. In other words, each clause polynomial in (t),

which is not a prime implicant of t, contains some superfluous literals. This

property can be used to formulate one notion of simplicity and has been the

major reason for the interest in prime implicants.

3.1.16 Definition:

Let C and D be ground clauses. Then tc subsumes tu, iff C subsumes D.

Th~s the clause polynomial s subsumes the clause polynomial t, iff each

literal occurring in s also occurs in t.

3.1.17 Lemma:

Let s,t be clause polynomials with s,t ;tl. Then s~t iff s subsumes t.

Proof: If s subsumes t, then t is of the form SVkl v ... vkn. Then svt =
SVSVklV vkn = t, that is, s~t. Conversely, assume that s:::;t. Let s =klV...vkn and

let t = hlV vhm. Then

klV vknvhlV...vhm= hlV...vhm

The term rewriting system 9t of lemma 3.1.8 is canonical for clause polyno­

mials. W.l.o.g. we can assume that the polynomials sand t are already

irreducible w.r.t. 9t. Thus we have
* klV...vknvhlV...vhm ~ hlV...vhm

Since s,t i 1, the only rule of R applicable to the left hand side, is the

idempotency rule ava~a. Hence for each ki there is some hj with ki=kj, that
is, all literals occurring in s also occur in t. Thus s subsumes t. •

This a particular case of Gottlob's (1987) result for first order logic on the

equivalence of subsumption and implication for non-selfresolving clauses.

Several methods to compute the prime implicants of a given ground

formula have been developed, for instance Quine's (1959) method of iterated
consensus, or the algorithms of Tison (1967), and Slagle, Chang & Lee (1970).

They all consider clauses and clause sets instead of polynomials over a

Boolean algebra. The prime polynomial of a clause set S is thus called the set

25

Simplification Chapter 3

ie {1,...,n} with tSj. Thus there are t1',...‚tm'e {t1,...,tn} such that tj'SSj for each
je {1,...,m}. Then we have

f(t) = t1A. . .Atn S tl'A. . .Atm' S 81A. ..ASm E t. l

Besides the prime implicants’ minimality property, which is given by the
definition above, prime implicants also have the useful property of being
minimal W.r.t. their length. In other words, each clause polynomial in (t),
which is not a prime implicant of t, contains some superfluous literals. This
property can be used to formulate one notion of simplicity and has been the
major reason for the interest in prime implicants.

3.1.16 Definition:

Let C and D be ground clauses. Then tc subsumes tD, iff C subsumes D.

Thus the clause polynomial s subsumes the clause polynomial t, iff each
literal occurring in s also occurs in t.

3.1.17 Lemma:

Let s,t be clause polynomials with s,t aél. Then sSt iff s subsumes t.

Proof: If s subsumes t, then t i s o f the form svk1v . . . vkn . Then sv t =
svsvklv. . .vkn = t, that is, sSt. Conversely, assume that sit. Le t s = k1v. . .vkn and
let t = h1v. . .vhm. Then

k1v. . .vknvh1v. . .vhm “=" h1v. . .vhm
The term rewriting system SR of lemma 3.1.8 i s canonical for clause polyno-
mials. W.l.o.g. we can assume that the polynomials s and t are already
irreducible W.r.t. 9?. Thus we have

kw. . .vknvh1v. . . t at; h1v. . .vhm
Since s‚ta(1, the only rule of R applicable to the left hand side, is the
idempotency rule ava->a. Hence for each ki there is some h]- with ki=1<j, that
is, all literals occurring in 5 also occur in t. Thus s subsumes t . l

This a particular case of Gottlob's (1987) result for first order logic on the
equivalence of subsumption and implication for non-selfresolving clauses.

Several methods to compute the prime implicants of a given ground
formula have been developed, for instance Quine’s (1959) method of iterated
consensus, or the algorithms of Tison (1967), and Slagle, Chang & Lee (1970).
They all consider clauses and clause sets instead of polynomials over a
Boolean algebra. The prime polynomial of a clause set S is thus called the set

Simplification and Reduction for Automated Reasoning

of prime implicants of 5. Moreover, the sets representing clauses are written

without set braces and without separating commas. For instance, the clause
set {{P,Q},{..,P,Q,R}} will be denoted simply by {PQ, ..,PQR}. Since these two

formulations are equivalent according to lemma 3.1.10, we will also adopt

the more convenient notation using clauses and clause sets in the following.

The method of iterated consensus appears to be the best-known technique

to generate the prime implicants of a formula. It starts from a formula given

in conjunctive normal form, that is, a set 5 of clauses. Then the nontautolo­

gical resolvents of clauses of 5 are repeatedly formed and added to 5. Each

time a resolvent is generated, subsumed clauses are removed from S. When

only such new clauses can be produced that are already subsumed by existing

clauses, the set of prime implicants has been obtained. The following

example is taken from Loveland & 5hostak (1980).

3.1.18 Example:

Let
5 ={..,PRS, ..,PQR..,S, PQRS}.

From the given clauses we can derive the resolvent ..,PQR, which subsumes

its parent clause ..,PQR..,5, and we obtain
51 ={..,PRS, ..,PQR, PQRS}

In the next step we derive QR5, which subsumes its parent PQRS, and we

obtain
52 ={..,PR5, ..,PQR, QRS}

No more resolvents can be derived from this set, which thus represents the
prime implicants of S.

Since there is only a finite set of clauses built from a given set of literals, it

is obvious that the algorithm terminates. In order to prove the algorithm's

correctness, we first give a lemma concerning a property of resolution

derivations. One of the resolution method's main advantages is the fact that

not all possible inferences can be drawn from a given problem set S.

However, the important inferences, namely the minimal clauses in (5) can

be derived, as is shown by the following lemma. This lemma is due to

Kowalski (1970), we will however, provide a shorter proof that basically uses

the refutation completeness of resolution.

26

Simplification and Reduction for Automated Reasoning

of prime implicants of S. Moreover, the sets representing clauses are written
without set braces and without separating commas. For instance, the clause
set {{P,Q},{-IP,Q,R}} will be denoted simply by {PQ, wPQR}. Since these two
formulations are equivalent according to lemma 3.1.10, we will also adopt
the more convenient notation using clauses and clause sets in the following.

The method of iterated consensus appears to be the best-known technique
to generate the prime implicants of a formula. It starts from a formula given
in conjunctive normal form, that is, a set S of clauses. Then the nontautolo-
gical resolvents of clauses of S are repeatedly formed and added to S. Each
time a resolvent is generated, subsumed clauses are removed from 5. When
only such new clauses can be produced that are already subsumed by existing
clauses, the set of prime implicants has been obtained. The following
example is taken from Loveland & Shostak (1980).

3.1 .18 Example:

Let

S = {-1PRS, -PQR-1$, PQRS].
From the given clauses we can derive the resolvent HPQR, which subsumes
its parent clause nPQR-aS, and we obtain

S1 = {-IPRS, —-PQR, PQRS}
In the next step we derive QRS, which subsumes its parent PQRS, and we
obtain

52 = {-vPRS, fiPQR, QRS}
No more resolvents can be derived from this set, which thus represents the
prime implicants of 3.

Since there is only a finite set of clauses built from a given set of literals, it
is obvious that the algorithm terminates. In order to prove the algorithm’s
correctness, we first give a lemma concerning a property of resolution
derivations. One of the resolution method’s main advantages is the fact that
not all possible inferences can be drawn from a given problem set S.
However, the important inferences, namely the minimal clauses in (S) can
be derived, as is shown by the following lemma. This lemma is due to
Kowalski (1970), we will however, provide a shorter proof that basically uses
the refutation completeness of resolution.

26

Simplification Chapter 3

3.1.19 Lemma:

Let S be a set of ground clauses. For each clause CE (5), there exists a clause D,

which subsumes C and a resolution derivation of D from 5.

Proof: Let C={Ll, ...,Ln}. If Ce (5), then by lemma 2.4.3 Su{-,Ll}U...u{-,Ln} is

unsatisfiable. According to the construction in section 2.4 let 5' =
5(-,Ll, ... ,-,Ln) be obtained from 5 by removing all clauses containg some -,Li,

and deleting all literals Lj from the remaining clauses. Then S' is still

unsatisfiable and thus admits a resolution refutation, that is a derivation

S ~*S", with DE S". By adjoining the literals Lj back to those clauses, from t

which they were removed, we obtain a resolution derivation S~* S"', with

DE Sill, where D is a subset of the literals {Lt, ...,Ln}, that is, D subsumes C. •

3.1.20 Corollary:

Let S be a set of ground clauses, and let p be the set of clauses constructed by

the method of iterated consensus from S. Then P is the set of prime impli­

cants of 5.

Proof: First of all, we remark that we deal only with nontautological

clauses. As subsumption and implication coincide for nontautological

clauses (lemma 3.1.16), the prime implicants are the minimal clauses w.r.t.

the subsumption ordering. Furthermore, obviously each clause D generated

by the algorithm is in (5).

Let C be a prime implicant of 5. The previous lemma guarantees that C,

which is a minimal clause in (5) w.r.t. subsumption, can be obtained by a

resolution derivation from S. Moreover, since C is minimal, no clause C'

which properly subsumes C, can be generated. Since the method produces all

possible resolvents, that are not already subsumed by existing clauses, the

clause C must be generated, if it is not already present in S. Moreover, it is

guaranteed that the generated non minimal clauses in (S) are removed

during the algorithm. •

Most of the well known techniques for generating a formula's prime

implicants require the formula already be given in clausal form. In the next

section we will present an algorithm that generates the prime implicants of

arbitrary formulae.

27

Simplification Chapter 3

3 .1 .19 Lemma:

Let S be a set of ground clauses. For each clause Ce (5), there exists a clause D,

which subsumes C and a resolution derivation of D from S.

Proof: Let C={L1,.. .,Ln}. If Ce (S), then by lemma 2.4.3 SU{-IL1}U...U{‘1Ln} is
unsatisfiable. According to the construction in section 2.4 let S' =
S(-:L1,. . . ,-Ln) be obtained from S by removing all clauses containg some -:Li,

and deleting all literals Lj from the remaining clauses. Then S' is still
unsatisfiable and thus admits a resolution refutation, that i s a derivation

S ' —>* 5", With a s S". By adjoining the literals Li back to those clauses, from
which they were removed, we obtain a resolution derivation 5—)" S'“, with

De 5'”, where D is a subset of the literals [L1,...,Ln}, that is, D subsumes C. I

am
Let S be a set of ground clauses, and let '.P be the set of clauses constructed by
the method of iterated consensus from S. Then 1’ is the set of prime impli-
cants of S.

Proof: First o f all, we remark that we deal only with nontautological

clauses. As subsumption and implication coincide for nontautological
clauses (lemma 3.1.16), the prime implicants are the minimal clauses w.r.t.
the subsumption ordering. Furthermore, obviously each clause D generated
by the algorithm is in (S).

Let C be a prime implicant of S. The previous lemma guarantees that C,
which is a minimal clause in (S) w.r.t. subsumption, can be obtained by a
resolution derivation from 8. Moreover, since C i s minimal, no clause C '
which properly subsumes C, can be generated. Since the method produces all
possible resolvents, that are not already subsumed by existing clauses, the
clause C must be generated, if i t is not already present in 5. Moreover, i t is
guaranteed that the generated non minimal clauses in (S) are removed
during the algorithm. I

Most of the well known techniques for generating a formula’s prime
implicants require the formula already be given in clausal form. In the next
section we will present an algorithm that generates the prime implicants of
arbitrary formulae. .

27

Simplification and Reduction for Automated Reasoning

3.2 An Optimized CNF Transformation

Most resolution based theorem proving systems require that the logical

formulae, which are to be proved, should be converted into clausal normal

form. This transformation usually takes several steps including the

elimination of implications and equivalences, skolemization and possibly

splitting into several easier to prove subformulae (Eisinger & Weigele 1983).

In any case, the procedure's last step consists in the multiplication of

formulae in prenex negation normal form into disjunctive normal form or

into conjunctive normal form. Usually the transformation into disjunctive

form is required for formulae to be tested for splitting whereas conversion

into conjunctive form is necessary for the single splitparts. This multipli­

cation, possibly resulting in an inflation of the original formula, is the algo­

rithm's most critical step. Multiplying a disjunctive form 'D to a conjunctive

form C (or vice versa), the number of subformulae of C depends exponen­

tially on the number of subformulae of 'D. Yet often a significant part of the

resulting formulae are redundant, as the following example shows:

3.2.1 Example:

Assume the propositional formula

l'=(PJ\RAS) v (PJ\QJ\S) V (QJ\RJ\S)

is to be transformed into CNF. In the following we drop the v and write

conjunctions as sets. The first step of this transformation is a distributive

multiplication into clause form, which yields

{PPQ, PPR, PPS, PQQ, PQR, PQS, PSQ, PSR, PSS,

(1) RPQ, RPR, RPS, RQQ, RQR, RQS, RSQ, RSR, RSS,

SPQ, SPR, SPS, SQQ, SQR, SQS, SSQ, SSR, SSS}

We call this form the totally multiplied form of :F-
Using the commutativity and idempotence of v, this clause set can be

simplified to

{PQ, PR, PS, PQ, PQR, PQS, PSQ, PSR, PS,

(2) RPQ, RP, RPS, RQ, RQ, RQS, RSQ, RS, RS,

SPQ, SPR, SP, SQ, SQR, SQ, SQ, RQ, S}

In this formula all multiple occurrences of clauses and all clauses that are

subsumed by some other clause, are redundant. Deleting these redundant

clauses yields

(3) {PQ, PR, RQ, S}

28

Simplification and Reduction for Automated Reasoning

3.2 An Optimized CNF Transformation

Most resolution based theorem proving systems require that the logical
formulae, which are to be proved, should be converted into clausal normal

form. This transformation usually takes several steps including the
elimination of implications and equivalences, skolemization and possibly
splitting into several easier to prove subformulae (Eisinger & Weigele 1983).
In any case, the procedure’s last step consists in the multiplication of
formulae in prenex negation normal form into disjunctive normal form or
into conjunctive normal form. Usually the transformation into disjunctive
form is required for formulae to be tested for splitting whereas conversion
into conjunctive form is necessary for the single splitparts. This multipli-
cation, possibly resulting in an inflation of the original formula, is the algo-
rithm’s most critical step. Multiplying a disjunctive form 1) to a conjunctive
form C (or vice versa), the number of subformulae of C depends exponen-
tially on the number of subformulae of ’1). Yet often a significant part of the
resulting formulae are redundant, as the following example shows:

W
Assume the propositional formula

_‘f = (PARAS) v (PAQAS) v (QARAS)
is to be transformed into CNF. In the following we drop the v and write
conjunctions as sets. The first step of this transformation is a distributive
multiplication into clause form, which yields

{PPQ, PPR, PPS, PQQ, PQR, PQS, PSQ, PSR, FSB,
(1) RPQ, RPR, RPS, RQQ, RQR, RQS, RSQ, RSR, RSS,

SPQ, SPR, SPS, SQQ, SQR, SQS, SSQ, SSR, $83}
We call this form the totally multiplied form of ?.
Using the commutativity and idempotence of v , this clause set can be
simplified to

{PQ, PR, PS, PQ, PQR, PQS, PSQ, PSR, PS,
(2) RPQ, RP, RPS, RQ, RQ, RQS, RSQ, RS, RS,

SPQ, SFR, SP, SQ, SQR, SQ, SQ, RQ, 5 }

In this formula all multiple occurrences of clauses and all clauses that are
subsumed by some other clause, are redundant. Deleting these redundant
clauses yields
(3) {PQ‚ PR, RQ, 5}

28

Simplification Chapter 3

In this particular example the formula :F to be transformed into CNF is

given in the opposite, disjunctive, normal form. The transformation bet­

ween opposite normal forms is the basic case of our algorithm and will be

dealt with first. We will only consider the conversion into CNF, the trans­

formation in the other direction is just symmetric.

The example shows that the multiplication process produces many terms

that can be deleted by subsequent simplification steps. Would it not be better

to avoid generating these redundant terms in the first place? Ideally such an

algorithm's output should be a minimal representation of the original

formula. In this chapter we present an algorithm that multiplies formulae

into clausal normal form without producing redundant clauses. The output

P of the algorithm, given a formula 1', is the set of prime implicants of if. In

particular, if :F is an unsatisfiable ground formula then P consists only of

the empty clause.

In the following we will briefly sketch the proceeding of the algorithm
using example 3.2.1.

The method can be considered" as an extension of the well-known matrix

methods in automated theorem proving (Andrews 1981 and Bibel 1982).

While it is sufficient to find a spanning set of appropriate paths through the

matrix in order to refute a formula, we have to develop all paths through

the matrix in order to generate the clausal form of a formula.

We write the formula if as a 3x4-matrix M, labeling the rows of M with

the variables of :F and the columns of M with the numbers of the

subformulae of :F. We let M(P,k)=l if the k-th term of :F contains the

propositional variable P and M(P,k)=O otherwise. This results in the

following matrix M for :F

1 2 3

P 1 1 0

M= Q 0 0 1

R 1 0 1

S 1 1 1

The columns of the matrix represent the conjunctions of the original

formula :F and the clauses of the totally multiplied form of :F correspond to
the paths through the matrix. A path is obtained by taking in each column of

29

Simplification Chapter 3

In this particular example the formula T to be transformed into CNF is
given in the opposite, disjunctive, normal form. The transformation bet-
ween opposite normal forms is the basic case of our algorithm and will be
dealt with first. We will only consider the conversion into CNF, the trans-
formation in the other direction is just symmetric.

The example shows that the multiplication process produces many terms
that can be deleted by subsequent simplification steps. Would i t not be better
to avoid generating these redundant terms in the first place? Ideally such an
algorithm’s output should be a minimal representation of the original
formula. In this chapter we present an algorithm that multiplies formulae
into clausal normal form without producing redundant clauses. The output
T of the algorithm, given a formula :7, is the set of prime implicants of T. In
particular, if }" i s an unsatisfiable ground formula then {P consists only of
the empty clause.

In the following we will briefly sketch the proceeding of the algorithm
using example 3.2.1.

The method can be considered" as an extension of the well-known matrix
methods in automated theorem proving (Andrews 1981 and Bibel 1982).
While it is sufficient to find a spanning set of appropriate paths through the
matrix in order to refute a formula, we have to develop all paths through
the matrix in order to generate the clausal form of a formula.

We write the formula T as a 3x4-matrix M, labeling the rows of M with
the variables of {F and the columns of M with the numbers of the
subformulae of 97. We let M(P,l<)=1 if the k-th term of }" contains the
propositional variable P and M(P,l<)=0 otherwise. This results in the
following matrix M for }"

The columns of the matrix represent the conjunctions of the original
formula {F and the clauses of the totally multiplied form of _‘F correspond to
the paths through the matrix. A path is obtained by taking in each column of

29

Simplification and Reduction for Automated Reasoning

M a nonzero entry and writing down the variable of the corresponding row.

Thus a path is a sequence (Pl,P2, P3) where M(Pl,l) = M(Pz,2) = M(P3,3) = 1.

For instance (P,P,Q), (P,5,R) or (5,5,5) are paths through M. We say that a

path p subsumes another path q, if all variables occurring in p also occur in q,

Le. if the clause corresponding to p subsumes the clause corresponding to q.

The terms of the reduced form (2) of :F can be obtained by removing

multiple occurrences of variables in the paths. Then (P,Q) stands for the path

(P,P,Q) and (R,Q) corresponds to the path (R,Q,R) in M.

The terms of the totally reduced form (3) correspond to the following

subset of paths of M: If a path p of M contains two entries of the same

variable in two different columns i and j, for instance (P,P,Q), then all paths

.differing from P only in either i or j, namely the paths (P,P,Q), (P,S,Q),

(R,P,Q) and (S,P,Q), are subsumed by (P,Q) or equal to (P,Q) up to

permutation. The generation of these redundant paths can be avoided in the

following way: Having developed a partial path (Pl,P2,. .. ,Pi) as before, take

only those 1-entries in the column i+1, which are not already on the path,

that is, those entries satisfying M(Pj, i+1)=0 for all je {1,..,i}.

In our example, developing the paths beginning with the row S, we see

that all columns except the first can be discarded. Once we have developed

the' path containing only the variable S, we can cancel the whole row: all

paths starting with a different variable and containing 5 are subsumed by the

path (5). This is the analogon to the transformation:

(PI\RI\S) v (PI\QI\S) v (QI\RAS) -7 S 1\ «PI\R) v (PI\Q) v (QI\R».

The computation of unnecessary paths can be avoided by developing first

the paths of the form (5,...): Beginning with the paths starting with P, for

instance, one obtains the paths (P,Q), (P,R), (P,S), from which (P,5) is

redundant, since it is subsumed by (5)..

The computation of P from the matrix M proceeds as follows:

1. At the beginning the result set P is empty.

First we develop the S-row. The second and third column don't have to be

considered, since they have a 1-entry at 5. Having obtained the path (S) in

this way, we add it to P and cancel the S-row from the matrix. Now we have
P={(5)} and

30

Simplification and Reduction for Automated Reasoning

M a nonzero entry and writing down the variable of the corresponding row.
Thus a path i s a sequence (P1,P2, Pa) where M(P1,1) = M(P2,2) = M(P3,3) = 1.
For instance (P,P,Q), (P,S,R) or (8,5,5) are paths through M. We say that a
path p subsumes another path q, if all variables occurring in p also occur in q,
i.e. if the clause corresponding to p subsumes the clause corresponding to q.

The terms of the reduced form (2) of 37 can be obtained by removing
multiple occurrences of variables in the paths. Then (P,Q) stands for the path
(P,P,Q) and (R,Q) corresponds to the path (R,Q,R) in M.

The terms of the totally reduced form (3) correspond to the following
subset of paths of M: If a path p of M contains two entries of the same
variable in two different columns i and j, for instance (P,P,Q), then all paths

differing from P only in either i or j, namely the paths (P,P,Q), (P,S,Q),
(R,P,Q) and (S,P,Q), are subsumed by (P,Q) or equal to (P,Q) up to
permutation. The generation of these redundant paths can be avoided in the
following way: Having developed a partial path (P1,P2,...,Pi) as before, take
only those 1-entries in the column i+1‚ which are not already on the path,
that is, those entries satisfying M(Pj, i+1)=0 for a11je{1,..,i}.

In our example, developing the paths beginning with the row 5, we see
that all columns except the first can be discarded. Once we have developed
the‘ path containing only the variable S, we can cancel the whole row: all
paths starting with a different variable and containing 3 are subsumed by the
path (S). This is the analogon to the transformation:

(PARAS) v (PAQAS) v (QARAS) —) S A ((PAR) v (PAQ) v (QAR)).

The computation of unnecessary paths can be avoided by developing first
the paths of the form (S,...): Beginning with the paths starting with P, for
instance, one obtains the paths (P,Q), (P,R), (P,S), from which (P,S) is
redundant, since i t i s subsumed by (S). .

The computation of !Pfrom the matrix M proceeds as follows:
l . A t the beginning the result set 9? is empty.
First we develop the S-row. The second and third column don’t have to be
considered, since they have a 1-entry at S. Having obtained the path (S) in
this way, we add it to EP and cancel the S-row from the matrix. Now we have
lit-{(8)} and

30

Simplification Chapter 3

1 2 3

P 1 1 0

M= Q 0 1 1

R 1 0 1

2. Next we develop the P-row obtaining the two paths (P,Q) and (P,R) (the

second column can be canceled, since it contains a I-entry for P), add them to

the solution set and obtain P={(5),(P,Q),(P,R)}. Now the P-row can be

removed too and it remains the matrix

1 2 3

M= Q 0 1 1

RIO 1

This matrix corresponds to the formula

l' = RvQv(Q 1\ R)

Now the absorption law applies to l' yielding

l' =RvQ
The analogon in our procedure is the deletion of the third column of M and

hence

M= ~
~ I~ ~

3. Now the only path in M is (R,Q). This path is added to the solution set and

we have obtained the result p::: { (5), (P,Q), (P,R), (R,Q)}.

This is the set of prime implicants of the original formula :F and since no

pair of clauses is resolvable, it is already a simplest equivalent of :F.

After the introductory example we provide the definitions of normal

form matrices and paths as well as some of their basic properties.

JP is a set of propositional variable symbols. JL is the set of all propositional
literals (P and ...,P).

For any object 0 containing variables we define JP(o) as the set of all

propositional variables occurring in o. L(o) is the set of all literals occuring

in o.

31

Simplification Chapter 3

2. Next we develop the P—row obtaining the two paths (P,Q) and (P,R) (the
second column can be canceled, since i t contains a l-entry for P), add them to
the solution set and obtain 1’={(S)‚(P‚Q),(P‚R)}. Now the P-row can be
removed too and it remains the matrix

123
M: Q011

R 1 0 1

This matrix corresponds to the formula
3“ = RVQV(Q A R)

Now the absorption law applies to ‚‘F yielding
T = RVQ

The analogon in our procedure is the deletion of the third column of M and
hence

K II

W
O

w
on

-

::
. -

nm

3. Now the only path in M is (R,Q). This path is added to the solution set and
we have obtained the result 1’ = { (S), (P,Q)‚ (P,R), (R,Q)}.
This is the set of prime implicants of the original formula T and since no
pair of clauses is resolvable, i t is already a simplest equivalent of IF.

After the introductory example we provide the definitions of normal
form matrices and paths as well as some of their basic properties.
P is a set of propositional variable symbols. l. is the set of all propositional
literals (P and “P).
For any object 0 containing variables we define 1P(o) as the set of all
propositional variables occurring in o. lL(o) is the set of all literals occuring
m o .

31

Simplification and Reduction for Automated Reasoning

3.2.2 Definition:

A normal form matrix (NF-matrix) M is an nxk-matrix over the set {O,l}.

The rows of M are labeled with different elements from 1L. We write M(p,i)

for the element of M in the p-th row and the i-th column. If i is a column of

M,	 then we define

ti (M)::::: V P
M(P,l)=l

to be the clause term corresponding to the column i. We define

tc(M) ::::: ~ t i (M) ,

the formula in disjunctive normal form belonging to M and analogously

tD(M), the forql.Ula in conjunctive normal form belonging to M.

The notions of subsumption and tautology are then defined for columns

of NF-matrices just as for the corresponding clause terms.

3.2.3 Definition:

Let M be an NF-matrix.

(i)	 A complete path p through M is a sequence (Pl,. ..,Pn) of variables such

that M(Pi,i)=l for each i. A path through M is a subsequence of a

complete path. A clause path is a path with no multiple occurrences of

variables. The concatenation of two paths p and q is denoted by p$q.

We write p(i) for the i-th element of the path p.

(ii)	 Let Pbe a set of paths through a matrix M. For any pe P, we define

tP(M)= V P
Pe Up)

the clause term corresponding to p, and

tc(~ := pEf\p tp (M) ,

the term in conjunctive normal form belonging to P and analogously

tD(Pt the term in disjunctive normal form belonging to P. We call

these terms the totally multiplied forms of M.

From the definitions it is clear that the set P of all complete paths through

an NF-matrix M represents the totally multiplied form of the term

belonging to M, Le. tcC~ == tD(M) and tD(P) == tC(M). Again, the notions of

subsumption and tautology are defined for paths just as they are for the

corresponding clause terms. Also, the notion of a resolvent of clause paths is

32

Simplification and Reduction for Automated Reasoning

5_2_2_Qe_fi_nit_ign_=
A normal form matrix (NF-matrix) M i s an nxk-matrix over the set {0,1}.
The rows of M are labeled with different elements from L . We write M(p,i)

for the element of M in the p-th row and the i-th column. If i is a column of
M, then we define

i .—_
t (M) M(I}‚/i)=1 P

to be the clause term corresponding to the column i. We define

team = 2; ti (M) ,
the formula in disjunctive normal form belonging to M and analogously
tD(M), the formula in conjunctive normal form belonging to M.

The notions of subsumption and tautology are then defined for columns
of NF—matrices just as for the corresponding clause terms.

3.2.3 Definition:
Let M be an NF-matrix.
(i) A complete path p through M is a sequence (P1,...,Pn) of variables such

that M(Pi,i)=l for each i. A pa th through M is a subsequence of a
complete path. A clause path is a path with no multiple occurrences of
variables. The concatenation of two paths p and q i s denoted by fill.
We write p(i) for the i-th element of the path p.

(ii) Let The a set of paths through a matrix M. For any pe ?, we define

t? (M): Pe\1L/.(p) P

the clause term corresponding to p, and
t c (® : : rg}, tp (M) I

the term in conjunctive normal form belonging to IP and analogously
tpm’), the term in disjunctive normal form belonging to LP. We call
these terms the totally multiplied forms of M.

From the definitions it is clear that the set 32’ of all complete paths through
an NF-matrix M represents the totally multiplied form of the term
belonging to M, i.e. td?) s tD(M) and tD(’.P) a tc(M). Again, the notions of
subsumption and tautology are defined for paths just as they are for the
corresponding clause terms. Also, the notion of a resolvent of clause paths is

32

Simplification	 Chapter 3

defined as for clauses. In the following we will consider only non­

tautologous paths.

It is obvious that subsumed paths and columns can be canceled without

changing the corresponding term's value.

3.2.4 Lemma:

(i)	 Let P be a row of M such that M(P,l)=1. Each complete path p containing

P at a position k*lwith P*p(l) is a properly subsumed path.

(ii)	 Let p be a complete path of M with p(j)=P. If there is a column i*j, such

that M(P,i)=l and P*p(i), then p is a properly subsumed path.

Proof: (i) Since M(P,l)=I, the path q defined by q(l)=P and q(j)=p(j) for j>1 is
a complete path of M. Since Pe JL(p), JL(q) = JL(p) \ {pO)} c JL(p).

(ii) Since M(P,i)=l, the path q defined by q(i)=P and q(j)=p(j) for j:;i:i is a

complete path of M. Since Pe JL(p), JL(q) =JL(p) \ {p(i)} c JL(p). •

Now we are ready to formulate the algorithm that performs an optimized

multiplication between conjunctive and disjunctive normal form.

Algorithm Transform

INPUT: An nxk-matrix M .

OUTPUT: A set P of paths through M such that teeM) == tD(P) and tD(M) == te(P)

1. P:= 0. Cancel all tautological columns of M.

2. Cancel all subsumed columns of M. If M is now a matrix with only

zero entries, go to step 5.

3. Take a row P of M that has a maximal number of I-entries and

permute the columns of M in such a way, that M(P,l) = 1. Generate all

paths of M with initial part (P) at column 2 and add them to P.

4. Cancel the row P of M and go to 2.

5. Remove properly subsumed paths from P.

6. Return P.

Generate all paths of M with initial part q at column i

INPUT: An nxk-matrix M corresponding to a formula !T in conjunctive

normal form, a path q, developed from column 1 to column i-I, and a

column i of M.

OUTPUT: Q= {pe PI P is output of transform and p has initial part Q}

33

Simplification Chapter 3

defined as for clauses. In the following we will consider only non-
tautologous paths.

It is obvious that subsumed paths and columns can be canceled without
changing the corresponding term’s value.

W
(i) Let P be a row of M such that M(P,1)=1. Each complete path p containing

P a t a position katlwith P¢p(1) is a properly subsumed path.
(ii) Let pbe a complete path of M with p(j)=P. If there is a column i¢j, such

that M(P,i)=1 and P¢p(i), then p is a properly subsumed path.

Proof: (i) Since M(P,1)=1, the path q defined by q(1)=P and q(j)=p(j) for j>1 is
a complete path of M. Since Pe lL(p), lL(q) = lL.(p) \ {p(1)} c 1L(p).
(ii) Since M(P‚i)=1, the path q defined by q(i)=P and q(j)=p(j) for j¢i is a
complete path of M. Since Pe lL(p), lL(q) = lL(p) \ {p(i)} c lL(p). I

Now we are ready to formulate the algorithm that performs an optimized
multiplication between conjunctive and disjunctive normal form.

Algorithm Transform
INPUT: An nxk-matrix M .
OUTPUT: A set fPof paths through M such that tC(M) ;. tD(1’) and tD(M) E tdi?)

1. 1’ := @. Cancel all tautological columns of M.
2. Cancel all subsumed columns of M. If M is now a matrix with only
zero entries, go to step 5.
3. Take a row P of M that has a maximal number of 1-entries and
permute the columns of M in such a way, that M(P,1) = 1. Generate all
paths of M with initial part (P) at column 2 and add them to ’.P.
4. Cancel the row P of M and go to 2.
5. Remove properly subsumed paths from EP.
6. Return 1’.

Generate all paths of M with initial part 4 at column i
INPUT: An nxk-matrix M corresponding to a formula f in conjunctive

normal form, a path q, developed from column 1 to column i-1, and a
column i of M.

OUTPUT: Q: {pe SPI p is output of transform and F has initial part Q}

33

Simplification and Reduction for Automated Reasoning

COMMENT: All parameters are value parameters, in particular the matrix M

is unchanged when the procedure has terminated.

1. If i is greater than the last column of M then return {q}.

2. If there is a PelP'(q) such that M(P,i) = 1 then i:=i+li go to 1.

3. Q=0. Let V = {QelL(M)\{...,P I Pe q} I M(Q,i) = I}. Sort V according to

the number of I-entries in the columns i+l to k, such that the variable

with the highest number of I-entries in M becomes the first element.
For all Qe V do

3.1 Generate all paths of M with initial part q$(Q) at column i+li

3.2 Add these paths to Qi
3.3 Cancel the row Q from M.

4. Return ~

The following example shows that step 5 of the Transform algorithm is in

fact necessary, as the paths generated by steps 1 until 4 still may contain

redundancy:

3.2.5 Example:

Let M be the following matrix:

1 2 3 4

P 1 100

M= Q 0 1 1 0

RIO 0 1

50011

Then, without removing subsumed paths, the algorithm produces the paths

(P,S), (P,Q,R), and (Q,R), from which the second path is subsumed by the

third.

In the following we consider some of the algorithm's elementary

properties. P(M) denotes the set of paths obtained by applying the algorithm

to the matrix M. First we will show that P(M) does not contain any

redundancy.

3.2.6 Lemma:

Let p,q be paths generated by the algorithm. If p is a permutation of q, i.e. if

JL(p) =JL(q), then p=q.

34,

Simplification and Reduction for Automated Reasoning

COMMENT: All parameters are value parameters, in particular the matrix M
is unchanged when the procedure has terminated.
1 . I f i i s greater than the last column of M then return {q}.
2. If there is a Pe IP(q) such that M(P,i) = 1 then i:=i+1; go to 1.
3. Q36. Let V = {QeL(M)\{-P ! Pe q} I M(Q,i) = 1}. Sort V according to
the number of 1-entries in the columns i+1 to k, such that the variable
with the highest number of 1-entries in M becomes the first element.
For all Qe V do

3.1 Generate all paths of M with initial part 49(Q) at column i+1;
3.2 Add these paths to Q;
3.3 Cancel the row Q from M.

4. Return Q,

The following example shows that step 5 of the Transform algorithm is in
fact necessary, as the paths generated by steps 1 until 4 still may contain
redundancy:

3.2.5 Example:
Let M be the following matrix:

Then, without removing subsumed paths, the algorithm produces the paths
(P,S), (P,Q,R), and (Q,R), from which the second path i s subsumed by the
third.

In the following we consider some of the algorithm’s elementary
properties. !P(M) denotes the set of paths obtained by applying the algorithm
to the matrix M. First we will show that !P(M) does not contain any
redundancy.

3 .2 .6 Lemma:

Let p,q be paths generated by the algorithm. If p is a permutation of q, i.e. if
L(p) = lL(q), then p=q.

34 '

Simplification Chapter 3

Proof: Suppose pq and j is the first index for which p(j);tq(j). Since q is a

permutation of p, there is a i#j with q(j)=p(i). Suppose kj. Since j is the first

index, such that P(jh~:q(j) we have q(j)=p(i)=q(i), but according to step 2 of the

generate algorithm, q cannot have multiple occurrences of a literal, which is

a contradiction. Hence we have i>j. In the same way we get p(j)=q(m) for

some m>j. Therefore p and q have the following form:

1 j-1 j i

p = (P(1) ,..., p(j-1), p(j) ,..., pCi) ,...)

q= (P(1) ,..., p(j-l), p(i) ,..., P(j),. ..)

1 j-1 j m

The paths p and q both have been developed by generating all paths with

initial part (p(l), .. ,p(j-1» at column j. Without loss of generality we may

assume that p was developed before q by the algorithm. Then by step 3.1 first

all paths beginning with (p(1), ..,p(j-l),p(j» have been developed, and then,

according to step 3.3, the row p(j) has been removed from M. After this

removal of p(j), however, there is no way to develop the path q, which

contains p(j), and this is a contradiction. _

Thus two different paths produced by the algorithm indeed correspond to

two different clauses.

3.2.7 Remark:

Lemmata 2.3 and 2.4 together show that for each complete path p of a matrix

M there is a path qe ~M) with ~p.

Step 4 of the algorithm assures that]1'5.q implies p=q for arbitrary p,qe ~M).

The next lemma justifies step 2 of the transformation algorithm. It says

that by developing at first a row with a maximal number of I-entries, no

more paths are produced than by developing any other row that is not

maximal. Example 3.2.1 showed that the converse is not true in general: if

the S-row is developed at first, the result contains fewer paths than by

developing first the P-row.

3.2.8 Lemma:

Let P and Q be rows of an nxk NF-matrix M such that

L~l M(Q,i) < L:=l M(P,i).

35

Simplification Chapter 3

Proof: Suppose peg and j is the first index for which p(j)=tq(j). Since q is a
permutation of p, there is a i¢j with q(j)=p(i). Suppose i<j. Since j is the first
index, such that p(j)¢q(j) we have q(j)=p(i)=q(i)‚ but according to step 2 of the
generate algorithm, q cannot have multiple occurrences of a literal, which is
a contradiction. Hence we have i>j. In the same way we get p(j)=q (m) for
some m>j. Therefore ;; and q have the following form:

1 j-1 j i
p : (p(1) ,..., p(j -1) , p(j) ,..., p(i) ,...)

q= (pa) p021), pa) pg) ‚..>
1 j—1 j m

The paths p and q both have been developed by generating all paths with
initial part (p(1),..,p(j-1)) a t column j. Without loss of generality we may
assume that p was developed before q by the algorithm. Then by step 3.1 first
all paths beginning with (p(1)‚..‚p(j-1),p(j)) have been developed, and then,
according to step 3.3, the row p(j) has been removed from M. After this
removal of p(j), however, there is no way to develop the path q, which
contains p(j), and this is a contradiction. |

Thus two different paths produced by the algorithm indeed correspond to
two different clauses.

W
Lemmata 2.3 and 2.4 together show that for each complete path p of a matrix
M there is a path qe EP(M) with q.
Step 4 of the algorithm assures that 125:] implies p=q for arbitrary p,qe CRM).

The next lemma justifies step 2 of the transformation algorithm. I t says
that by developing at first a row With a maximal number of 1-entries, no
more paths are produced than by developing any other row that is not
maximal. Example 3.2.1 showed that the converse is not true in general: if
the S-row is developed a t first, the result contains fewer paths than by
developing first the P-row.

3.2.8 Lemma:

Let P and Q be rows of an nxk NF—matrix M such that

2:1 M(Q,i) < Z; M(P‚i).

35

Simplification and Reduction for Automated Reasoning

Suppose P is the set of paths obtained by developing the row P at first and Q
is the set of paths obtained by developing the row Q at first. Then for any
Pe P, there exists some Qe ~ such that Q is only a permutation of P.

Proof: Without loss of generality we permute the columns of M in such a

way, that we have first the set Cl of columns i with M(p,i)=M(q,i)=l, then Cz
with M(p,i)=l, M(q,i)=O, then C3 with M(p,i)=O, M(q,i)=l, and last C4 with

k
M(p,i)=M(q,i)=O. From ~~1 M(Q,i) < L i=l M(P,i) follows that Cz#:0.

Furthermore we assume that subsumed columns in M are already deleted.

Then we can write M in the following form:

0 C2 C4
P 1.. ;1 1...1 0...0 0...0

Q 1...1 0...0 1...1 0...0

Let P be any path in P.

Case I: P has the form (p,q,....), where p is taken from Cl and q is taken from

C3·

Exchanging the first two elements of P by taking first q from Cl and then p

from Cz yields a path Qe ~ which is only a permutation of P.

Case II: P has the form (p,X1,...,Xm,Y1,. ..,Yn), where p is taken from Cl, the Xi are

taken from C3 and the Yj are taken from C4. We show that the same path P is

in Q;

After the development of the p-row this row has been deleted according to

step 3. Let M' be the resulting matrix:

P

Xl

:

M=	 X",

YI
:

Yn

...

0

1...1

... ..

C2 C3 C4
1...1 0...0 0...0

1

1

1

1
..

36

Simplification and Reduction for Automated Reasoning

Suppose !? is the set of paths obtained by developing the row P at first and Q
is the set of paths obtained by developing the row Q at first. Then for any
Pe GP, there exists some Qe Q, such that Q is only a permutation of P.

Proof: Without loss of generality we permute the columns of M in such a
way, that we have first the set C1 of columns i with M(p,i)=M(q,i)=1, then C2
with M(p,i)=1, M(q,i)=0, then C3 with M(p,i)=0, M(q,i)=1, and last C4 with

M(p,i)=M(q,i)=0. From Zilmog) < 2:1M(P,i) follows that C2#G.
Furthermore we assume that subsumed columns in M are already deleted.
Then we can write M in the following form:

Let P be any path in {P.

Case I: P has the form (p,q,....), where p is taken from C1 and q i s taken from
C3.
Exchanging the first two elements of P by taking first q from C1 and then p
from C2 yields a path Qe Q, which is only a permutation of P.
Case II: P has the form (p,x1,...,xm,y1,...,yn), where p is taken from C1, the xi are
taken from C3 and the yj are taken from C4. We show that the same path P is
in Q;
After the development of the p-row this row has been deleted according to
step 3. Let M' be the resulting matrix:

C1 C2 C3 C4

P l . . .1 1 .4 DJ U
X1 1

M: X 1
Y1 1

Yn 1

36

Simplification Chapter 3

There is only one possibility that the path P=(P,xl, ... ,xm ,Yl, ... ,Yn) is not

developed in Q; one column j of the set C3 or the set C4, from which one of

the Xi or Yj of P has been taken, has been canceled in step 2 of the transform

algorithm.
The subsuming column h, against which j has been canceled, must be from

C3 or C4, since M(p,j)=O and M(p,i)=l for all ie C1UC2. Suppose that je C3. This

implies M(q,j)=l and so we have M(q,j) ~ M(q,h). Furthermore we have

M(u,j) ~ M(u,h) for all U;l!:q, since h subsumes j in M'. Together we have

M(u,j) ~ M(u,h) for all ue lL(M), Le. h subsumes j already in M and this is a

contradiction. Thus j must be from C4 and there must be some Ys with

M(Ys,j)=l. By an analogous argument h must be from C3. There must be an xr

such that M(xr,h)=M'(xf/h)=l. Since j is subsumed by h, we have M'(xr,j)=l,

hence also M(xf/j)=l. Thus we have the following situation:

.,. h." }"

M=
Ys

1 1

1

But in this situation the path P=(....xr, ... ,ys,...) could not have been

developed according to step 2 of the generate algorithm. Therefore the path

P must be in Q •

Next we show that our algorithm produces the set of prime implicants of

the given formula.

3.2.9 Lemma:

Let p and q be resolvable paths from P(M) and let R be a nontautological

resolvent of p and q.

Then there is an R'e P(M) with R'~R.

Proof: W.l.o.g. let p = (R,UlI..,Uj ,W1,..,Wj) and q= (..,R,U1, ..,Ui,SlI",Sk), i,j,k~

O. Then we have R = (Ull..,U j ,W1,,,,Wj,Sl,,,,Sk)' We define U = {UlI..,Ui},

S = {Sl,,,,Sk} and W = {W1, .. ,Wj}.

We have to show that there is a path R' in P(M) such that

lL(R') c lL(R) =UuWuS. Let c be any column of M with M(R,c)=1. Then

37

Simplification Chapter 3

There is only one possibility that the path P=(p‚x1‚...‚xm‚y1‚...‚yn) is not
developed in Q; one column j of the set C3 or the set C4, from which one of
the xi or yj of P has been taken, has been canceled in step 2 of the transform
algorithm.
The subsuming column h, against which j has been canceled, must be from
C3 or C4, since M(p,j)=0 and M(p,i)=1 for all ie C1UC2° Suppose that je C3. This
implies M(q,j)=1 and so we have M(q,j) 2 M(q‚h). Furthermore we have
M(u,j) 2 M(u,h) for all u¢q, since h subsumes j in M'. Together we have
M(u,j) 2 M(u,h) for all ue lL(M), i.e. h subsumes j already in M and this is a
contradiction. Thus j must be from C4 and there must be some yS with
M(ys,j)=1. By an analogous argument h must be from C3. There must be an xr
such that M(x,,h)=M'(x,,h)=1. Since j is subsumed by h, we have M’(xr,j)=1,
hence also M(xr,j)=1. Thus we have the following situation:

But in this situation the path P=(....xr,...,ys,...) could not have been
developed according to step 2 of the generate algorithm. Therefore the path
P must be in Q !

Next we show that our algorithm produces the set of prime implicants of
the given formula.

mm
Let F and q be resolvable paths from !P(M) and let R be a nontautological
resolvent of ; and q.
Then there is an R‘e f(M) with R'SR.

Proof: W.1.o.g. let p =(R,U1,..,Ui,W1,..,Wi) and q=(-1R,U1,..,Ui,51,..,Sk), i,j‚k2
0 . Then we have R= (U1,..,Ui‚W1,..‚Wj‚Sl‚..‚Sk). We define U = {U1,..,Ui},
S = {Sl,-~,Sk} and W = {W1‚..,W]-}.
We have to show that there is a path R' in £P(M) such that
lL(R')glL(R) =UUWUS. Let c be any column of M with M(R,c)=1. Then

37

Simplification and Reduction for Automated Reasoning

M(..,R,c)=0, since otherwise the column c would be tautological. Since

q=(..,R,U1".,Ui,Sl,..,Sk) is a path through M and M(-.R,c)=O, there must be an

Xe UuS with M(X,c)=l.

Analogously if d is any column of M with with M(..,R,d)=l, then there must

be a YeUuW with M(Y,d)=1.

The same argument shows that for any column e with M(R,e)=M(..,R,e)=O

there must be a ZeUuW with M(Z,e)=l and a Z'eUuS with M(Z',e)=1.

Now we have shown that for each column c of M there exists a Pe UuWuS

such that M(P,c)=1. This implies that there is a complete path p through M

with JP'(p) c UuWuS. Together with Remark 3.2.7 this implies that there is a

path R'e P with 1L(R') ~ 1L(p) ~ UuWuS. •

Lemma 3.2.9 shows that the method of iterated consensus applied to a set

~M) does not change ~M). Therefore we have the following

3.2.10 Corollary:

~M) is the set of prime implicants of tc(M).
 •
Since the set of prime implicants of an unsatisfiable propositional formu­

la is empty, we have the following

3.2.11 Corollary:

Let r;: be an unsatisfiable ground formula and M the NF-matrix of 1'. Then

~M)=0. •

We described the conversion between conjunctive and disjunctive

normal form, being the basic step of the clausal normal form algorithm. The

transformation of an arbitrary formula :;: into clausal normal form (or

disjunctive normal form, respectively) starts with the innermost terms of !F
and multiplies them by using successively the basic algorithm until the

desired normal form is achieved.

The algorithm described in this paper is similar to the algorithm presen­

ted in Slagle, Chang & Lee (1970). There are, however, two substantial differ­

ences between the two approaches. First, their algorithm's basic data struc­

tures are semantic trees, while the data structures used here are matrices.

The use of matrices makes our method very suitable for application in the

matrix methods for automated theorem proving. All the features described

in this paper, like the frequency ordering of literals or the canceling of rows

38

Simplification and Reduction for Automated Reasoning

M(fiR,c)=0, since otherwise the column c would be tautological. Since
q=(uR,U1,..,Ui,Sl,..,Sk) is a path through M and M(-1R,c)=0, there must be an
Xe UUS with M(X,c)=1.
Analogously if d is any column of M with with M(-R,d)=1, then there must
be a Ye UUW with M(Y‚d)=1.

The same argument shows that for any column e with M(R,e)=M(-R,e)=0
there must be a Ze UUW with M(Z,e)=1 and a 2'6 UUS with M(Z',e)=1.
Now we have shown that for each column c of M there exists a Pe UuWuS
such that M(P‚c)=1. This implies that there is a complete path p through M
with]P’(p) ; UUWUS. Together with Remark 3.2.7 this implies that there is a
path KG 1’ with lL(R') ; lL(p) (; UUWUS. I

Lemma 3.2.9 shows that the method of iterated consensus applied to a set
£P(M) does not change .‘P(M). Therefore we have the following

3.2.10 Corolla:
RM) is the set of prime implicants of tC(M). I

Since the set of prime implicants of an unsatisfiable propositional formu-
la is empty, we have the following

3.2.11 Corollary:
Let 5F be an unsatisfiable ground formula and M the NF-matrix of 17'. Then
f(M)=@. I

We described the conversion between conjunctive and disjunctive
normal form, being the basic step of the clausal normal form algorithm. The
transformation of an arbitrary formula ? into clausal normal form (or
disjunctive normal form, respectively) starts with the innermost terms of :?
and multiplies them by using successively the basic algorithm until the
desired normal form is achieved.

The algorithm described in this paper is similar to the algorithm presen-
ted in Slagle, Chang & Lee (1970). There are, however, two substantial differ-

ences between the two approaches. First, their algorithm’s basic data struc-
tures are semantic trees, while the data structures used here are matrices.
The use of matrices makes our method very suitable for application in the
matrix methods for automated theorem proving. All the features described
in this paper, like the frequency ordering of literals or the canceling of rows

38

Simplification Chapter 3

and columns under certain conditions, directly apply to the matrix approach,

resulting in simplification or avoidance of redundancy. Another improve­

ment with regard to the semantic trees method is the cancellation of sub­

sumed columns of the matrix, which is not present in Slagle, Chang & Lee's

algorithm and which can save a considerable amount of time.

There is another method to minimize the clausal form of a formula,

which is described for instance in Lewis & Papadimitriou (1981) and Gallier

(1986). Their method is based on a linear transformation using additional

variables, and it avoids the exponential increase in the size of the formula,
when multiplied in clausal form. The issue of this thesis, however, is

deleting redundancies (Le. subsumed clauses) rather than minimizing the

length of the resulting clause set. The removal of subsumed clauses is

usually accomplished in later stages of the proof of a formula, and it is

known to be very expensive there. These redundancies, however, are still
present in the clause set T that is produced by the linear transformation,

;

since all clauses of the totally multiplied form of a formula can be obtained

by resolving clauses of T.

The multiplication algorithm described in this section has been imple­

mented in the MKRP theorem prover (Raph 1984). It performs particularly

well for examples with nested equivalences, as it is the case with Andrew's

example (Henschen 1980). For instance a formula of the form f1<=>f2<=> ...<=>

fn+1 with n nested equivalences will result in 2n clauses in the best case of

transformation and in 4n clauses in the worst case. Our algorithm always

produces the minimal number of 2n clauses.

39

Simplification Chapter 3

and columns under certain conditions, directly apply to the matrix approach,
resulting in simplification or avoidance of redundancy. Another improve-
ment with regard to the semantic trees method is the cancellation of sub—
sumed columns of the matrix, which is not present in Slagle, Chang & Lee’s
algorithm and which can save a considerable amount of time.

There i s another method to minimize the clausal form of a formula,
which is described for instance in Lewis & Papadimitriou (1981) and Gallier
(1986). Their method is based on a linear transformation using additional
variables, and it avoids the exponential increase in the size of the formula,
when multiplied in clausal form. The issue of this thesis, however, is
deleting redundancies (i.e. subsumed clauses) rather than minimizing the
length of the resulting clause set. The removal of subsumed clauses is
usually accomplished in later stages of the proof of a formula, and it is
known to be very expensive there. These redundancies, however, are still
present in the clause set T that is produced by the linear transformation,
since all clauses of the totally multiplied form of a formula can be obtained
by resolving clauses of T.

The multiplication algorithm described in this section has been imple-
mented in the MKRP theorem prover (Raph 1984). It performs particularly
well for examples with nested equivalences, as it is the case with Andrew’s
example (Henschen 1980). For instance a formula of the form £1954: „=>
fm“ with n nested equivalences will result in 2n clauses in the best case of
transformation and in 411 clauses in the worst case. Our algorithm always
produces the minimal number of 2H clauses.

39

Simplification and Reduction for Automated Reasoning

4 Eliminating Redundant Clauses

4.1 The Use of Subsumption in Automated Reasoning Systems

The derivation of red?ndant information is one of the greatest obstacles to
the efficiency of automated reasoning programs. Even very small problems
can become intractable due to the increasing amount of redundant clauses

during the proof. The main problem with redundant clauses is their
inheritance property. This means that any derivative of a redundant clause
itself is redundant. The following example, while being somewhat artificial,
is nevertheless very instructive.

4.1.1 Example:

Let n be any even natural number, and let S be the set consisting of the two
clauses

Cl: {Px, Pfx}
C2: {-,Py, -,Pfny}

The set S is unsatisfiable, which is easily proved for n=2 or n=4. Already for
n=6, however, many redundant clauses are derived in the proof, and for n>6
the problem is nearly intractable, since the computer resources are swamped
with thousands of redundant clauses.

Many other examples show that an approach, which retains all derived
information, even the redundant one, usually results in a combinatorial

explosion or leads reasoning programs to fruitless paths by concentrating on

the redundant information. A means to detect and to discard redundant

information thus seems indispensible for solving even small problems1.

The former task has turned out to be very difficult, and it will be the issue of
this chapter. Since in general the test on redundancy must be repeated very

often during a refutation, its efficiency is crucial for its use.

Redundant information comes under different logical forms. The two
most common types of redundancy are tautology and subsumption. Since

1	 Overbeek & Wos (1989) provide a broad discussion on the value of procedures removing

redundant information, compare also Wos (1988).

40

Simplification and Reduction for Automated Reasoning

4 Eliminating Redundant Clauses

4.1 The Use of Subsumption in Automated Reasoning Systems

The derivation of redundant information is one of the greatest obstacles to
the efficiency of automated reasoning programs. Even very small problems
can become intractable due to the increasing amount of redundant clauses
during the proof. The main problem with redundant clauses is their
inheritance property. This means that any derivative of a redundant clause
itself is redundant. The following example, while being somewhat artificial,
is nevertheless very instructive.

4.1.1 Example:
Let 11 be any even natural number, and let 5 be the set consisting of the two
clauses

C1: {Px‚ Pfx}
C2: {-Py, fiPP‘y}

The set S is unsatisfiable, which is easily proved for n=2 or n=4. Already for
n=6, however, many redundant clauses are derived in the proof, and for n>6
the problem is nearly intractable, since the computer resources are swamped
with thousands of redundant clauses.

Many other examples show that an approach, which retains all derived
information, even the redundant one, usually results in a combinatorial
explosion or leads reasoning programs to fruitless paths by concentrating on
the redundant information. A means to detect and to discard redundant
information thus seems indispensible for solving even small problemsl.
The former task has turned out to be very difficult, and it will be the issue of
this chapter. Since in general the test on redundancy must be repeated very
often during a refutation, its efficiency is crucial for its use.

Redundant information comes under different logical forms. The two
most common types of redundancy are tautology and subsumption. Since

1 Overbeek & Wos (1989) provide a broad discussion on the value of procedures removing
redundant information, compare also Wos (1988).

40

Removing Redundancy Chapter 4

detecting tautologies causes no serious problems, we shall deal only with

subsumption. The formulation of subsumption is due to J. Robinson

(l965a), and it is assessed by Overbek & Wos (1989) to be his most important

contribution to automated reasoning, even with regard to his formulation

of binary resolution (J. Robinson 1965a) and hyperresolution (J. Robinson

1965b). In fact, practical experience over decades has shown that sub­

sumption, besides demodulation, is the most important means to discard

redundant information, such as duplicates or instances of already retained

clauses.

The subsumption test has proved to be very expensive in its most general

form. In fact, testing subsumption requires a matching process under the

theory of associativity, commutativity, and idempotence, which is NP­

complete, as Kapur & Narendran (1986) remark. Section 4.4 will give a brief

account of several subsumption algorithms that have been developed until

now. On account of the subsumption test's complexity, several less complex

variants of subsumption can be employed in automated reasoning pro­

grams. I For instance, the potential subsumers can be restricted to unit

clauses. This is a very common variant, which comes under linear

complexity. It may also suffice, for instance, to employ the particular kind of

subsumption that merely tests whether two clauses are copies of each other.

This test will be called variant test for short. Being itself NP-complete, the

variant test nevertheless allows for refinements that are particularly

efficient for the most common cases of clauses with few variables or clauses

consisting of few literals. Such a variant test will be presented in the next

section. One of our previous results was that two clauses are subsumption

equivalent, iff their irreducible factors are variants of each other. In view of

this result, it turns out that the variant test in fact amounts to a test on

subsumption equivalence, provided that all clauses are completely reduced.

The following example shows the effect of the combined reduction to

irreducible factors and subsequent elimination of variants.

1 The question, which type of subsumption to select, however, seems by no means to be

answered, this is the issue of one of Wos' (1988) Basic Research Problems.

41

Removing Redundancy Chapter 4

detecting tautologies causes no serious problems, we shall deal only with
subsumption. The formulation of subsumption is due to]. Robinson
(1965a), and i t is assessed by Overbek & Wos (1989) to be his most important
contribution to automated reasoning, even with regard to his formulation
of binary resolution (]. Robinson 1965a) and hyperresolution (]. Robinson
1965b). In fact, practical experience over decades has shown that sub-
sumption, besides demodulation, is the most important means to discard
redundant information, such as duplicates or instances of already retained
clauses.

The subsumption test has proved to be very expensive in its most general
form. In fact, testing subsumption requires a matching process under the
theory of associativity, commutativity, and idempotence, which is NP-
complete, as Kapur & Narendran (1986) remark. Section 4.4 will give a brief
account of several subsumption algorithms that have been developed until
now. On account of the subsumption test’ s complexity, several less complex
variants of subsumption can be employed in automated reasoning pro-
grams .1 For instance, the potential subsumers can be restricted to unit
clauses. This i s a very common variant, which comes under linear
complexity. It may also suffice, for instance, to employ the particular kind of
subsumption that merely tests whether two clauses are copies of each other.
This test will be called variant test for short. Being itself NP-complete, the
variant test nevertheless allows for refinements that are particularly
efficient for the most common cases of clauses with few variables or clauses
consisting of few literals. Such a variant test will be presented in the next
section. One of our previous results was that two clauses are subsumption
equivalent, iff their irreducible factors are variants of each other. In view of
this result, i t turns out that the variant test in fact amounts to a test on
subsumption equivalence, provided that all clauses are completely reduced.
The following example shows the effect of the combined reduction to
irreducible factors and subsequent elimination of variants.

1 The question, which type of subsumption to select, however, seems by no means to be
answered, this is the issue of one of Wos‘ (1988) Basic Research Problems.

41

Simplification and Reduction for Automated Reasoning

4.1.2 Example:

The multiplication of a formula to conjunctive/disjunctive normal form

may produce parts of formulae, which are equal up to renaming. In this

example the variant test suffices to remove all redundant parts.

The following formula

Vx,y,z (x$y /\ x$2) v (y$X /\ y$2) v (z$y /\ z~)

is valid in totally ordered sets. Its clausal form consists of the clauses Cl, .. .,CB

with

Cl = {x:S:;y, y~, z:S:;y}, C2 ={xy, yX, z$x}, C3 = {x$y, y$2, Z$y},

C4 ={x:s:;y, y::;;z, z~}, Cs ={x$2, y~, Z$y}, C6 ={x$2, y~, z$x},

C7 = {x$2, y$2, Z$y}, CB ={x$2, y$2, z$X}.

First of all, reducing each Ci to its irreducible factor Ci' yields:

Cl' ={xy, yx}, Ci ={xy, yx}, C3' ={y$2, Z$y},

C4' = {xy, yZ, z~}, Cs' = {x$Z, y::;;x, z::;;y}, C6' = {xz, zX},

C7' ={yZ, Zy}, CB' ={x$2, z~}.

In the next step, the variant test recognizes Ci, C3', C6', C7', Cs' as variants of

Cl', and CS' as variant of C4'. Removing the redundant parts results in the

clause set

S ={{xy, yX}, {x$y v y$2 v z$X}}

An algorithm that accomplishes the task to produce the irreducible factor

of a given clause will be given in section 4.3. Finally, in section 4.4 we will

show that the notions and methods of 4.2 also prove useful for the general

subsumption test.

4.2 A Variant Test Based on Characteristic Matrices

The variant test can be seen as a generalization of the well known (directed)

graph isomorphism problem, that is, the problem to decide whether there is

a bijective homomorphism mapping one given graph to another. If a direc­

ted graph G consisting of k nodes is represented as a set of ordered pairs (i,j),

with i,je {l,...,k}, a clause CG corresponding to G can be constructed which

contains the literal PXiXj iff G contains the ordered pair (i,j). Then obviously

the directed graphs G and G' are isomorphic iff the corresponding clauses CG

and eG' are isomorphic. The most common technique to solve the graph

isomorphism problem can be sketched as follows: The basic idea is to test all

42

Simplification and Reduction for Automated Reasoning

4.1.2 Example:
The multiplication of a formula to conjunctive/ disjunctive normal form
may produce parts of formulae, which are equal up to renaming. In this
example the variant test suffices to remove all redundant parts.
The following formula

Vx,y,z (xSy A s) v (n A ySz) v (z_<.y A s<)
is valid in totally ordered sets. Its clausal form consists of the clauses C1,.. .,C3
with

C1 = {x_<.y, y.<_x, zSy}, C2 = {x$y‚ n, z_<_x), C3 = {xSy, ySz, zSy},
C4 = {x$y‚ ySz, z_<_x}‚ C5 = {s‚ n, zSy}, C6 = {x_<.z, n, s},
C7 = {s, ySz, 25y}, C8 = {s, ySz, s}.

First of all, reducing each Ci to its irreducible factor Ci' yields:
C1 ' = {xSy, n}. C2' = {xSy, n}, C3' = {ySz, 25y},
C4' = {xSy, ySz, s}, C5' = {s, n , z_<.y}, C6' = {xsz, s},
C7' = {ySz, zSy}, C8' = [s, s}.

In the next step, the variant test recognizes C2', C3', C6', C7', C3' as variants of
C1' , and C5' as variant of C4'. Removing the redundant parts results in the
clause set

S = {{xSy, y_<_x}, {26y v ySz v s}}

An algorithm that accomplishes the task to produce the irreducible factor
of a given clause will be given in section 4.3. Finally, in section 4.4 we will
show that the notions and methods of 4.2 also prove useful for the general
subsumption test.

4.2 A Variant Test Based on Characteristic Matrices

The variant test can be seen as a generalization of the well known (directed)
graph isomorphism problem, that is, the problem to decide whether there is
a bijective homomorphism mapping one given graph to another. If a direc-
ted graph G consisting of k nodes is represented as a set of ordered pairs (i,j),
with i,je {1,...,k}, a clause CG corresponding to G can be constructed which
contains the literal Pxi iff G contains the ordered pair (i,j), Then obviously
the directed graphs G and G' are isomorphic iff the corresponding clauses Cc;
and CG' are isomorphic. The most common technique to solve the graph
isomorphism problem can be sketched as follows: The basic idea is to test all

42

Removing Redundancy Chapter 4

bijective mappings <j):{l, ... ,k}--?{l,...,k}, whether they yield a homomorphism

<J5:G--?G, that is, whether (i,j)e G implies (i<j),j<j»e G. Since the number of

those bijective mappings is k!, heuristic techniques have been used to

restrict the number of mappings that must be considered in this problem

(see, for instance, Unger (1964), or Berztiss (1973». This techniques all are

based on the observation that there are several invariant properties of

directed graphs that must be preserved by an isomorphism. Unger, for

instance, states that the pair (indegree, outdegree)l is such an invariant

property of the nodes.

The analogy between the graph isomorphism problem and the variant

test suggests that the well known heuristic techniques to restrict the possible

pairings of nodes could also prove useful to limit the number of pairings of

variables in the variant test. In the following we shall adopt Unger's

invariant to develop an appropriate variant test. Throughout this section,

all occurring clauses will be assumed to be irreducible.

Three generalizations have to be made in order to extent the solution of

the graph isomorphism problem to an algorithm that detects variants: First,

the occurrence of constants and functions has to be considered; second,

literals with more than two variables have to be dealt with; and finally, one

has to take into consideration that several different predicate symbols can

occur in clauses.

Before giving the exact definitions, the basic notions and methods shall be

introduced informally by means of an example. Let C == {Ll,L2} with

Ll =P(fx,gy) and L2=PyX, and let D == {Kl,K2} with Kl =P(fu,gz) and K2=PUZ. If

we want to apply the techniques to solve the graph isomorphism problem,

we first have to get rid of the function symbols. This can be done by

introducing new predicate symbols, say a binary predicate Q, such that QVIV2

stands for P(fVl,gv2). The symbol Q represents the "term skeleton"

P(f(*),g(*». Note, however, that the literal P(fx,gx) is transformed into a

1 Indegree means "number of incoming links" I outdegree means "number of outgoing links".

43

Removing Redundancy Chapter 4

bijective mappings ¢:{l,...,k}-—>{1,...,k}, whether they yield a homomorphism
¢:G—->G', that is, whether (i , j)eG implies (i¢,j¢)e G ' . Since the number of

those bijective mappings is k!, heuristic techniques have been used to
restrict the number of mappings that must be considered in this problem
(see, for instance, Unger (1964), or Berztiss (1973)). This techniques all are
based on the observation that there are several invariant properties of
directed graphs that must be preserved by an isomorphism. Unger, for
instance, states that the pair (indegree, outdegree)1 is such an invariant
property of the nodes.

The analogy between the graph isomorphism problem and the variant
test suggests that the well known heuristic techniques to restrict the possible
pairings of nodes could also prove useful to limit the number of pairings of
variables in the variant test. In the following we shall adopt Unger's
invariant to develop an appropriate variant test. Throughout this section,
all occurring clauses will be assumed to be irreducible.

Three generalizations have to be made in order to extent the solution of
the graph isomorphism problem to an algorithm that detects variants: First,
the occurrence of constants and functions has to be considered; second,
literals with more than two variables have to be dealt with; and finally, one
has to take into consideration that several different predicate symbols can
occur in clauses.

Before giving the exact definitions, the basic notions and methods shall be
introduced informally by means of an example. Let C={L1 ,L2} with
L1=P(fx,gy) and L2=Pyx, and let D= {K1,K2} with K1=P(fu,gz) and K2=Puz. If
we want to apply the techniques to solve the graph isomorphism problem,
we first have to get rid of the function symbols. This can be done by
introducing new predicate symbols, say a binary predicate Q, such that v2
stands for P(fvbgvz) . The symbol Q represents the ”term skeleton”
P(f(*),g(*)). Note, however, that the literal P(fx,gx) is transformed into a

1 Indegree means ”number of incoming links”, outdegree means ”number of outgoing links”.

43

Simplification and Reduction for Automated Reasoning

literal R(x) with a unary "skeleton".l That this transformation is correct, can

be seen from the fact that two literals Land K are equal up to renaming, iff

they have the same term skeletons. In our example we obtain C* ={Qxy, Pyx},

and D* ={Quz, Puz}. These two clauses can be represented by two graphs,

whose arcs are labeled with the predicate symbols P and Q (see figure 4.1)

Q

p p

fig. 4.1

Next we compute for each variable VE V(C) the (characteristic) pair

Xp,C<v) =(indegree(v,p), outdegree(v,P» and XQ,C(v) =(indegree(v,Q),

outdegree(v,Q», where indegree(v,P) denotes the number of P-arcs outgoing

from v, and analogously for the other symbols. Since the clauses are variable

disjoint, the indices C and D can be omitted. Abbreviating XP,C<x) by xp, we
obtain

xp =(0,1), XQ= (l,O), YP =(1,0), YQ = (0,1)
up =(1,0), uQ=(1,O), zp=(O,l), zQ=(O,l)

Since the two characteristic pairs for x do not match the characteristic pairs of

any variable of D, it can already be decided that the variant property does not

hold. It can, however, also be useful to define a characteristic for literals, by

just joining the characteristic pairs of the corresponding variables, which can
be represented by matrices as follows:

1	 A similar notion is that of the rigid part of a literal, see Nicolaita (1989). The difference

to the notion of a term skeleton is that the rigid part does not mirror multiple occurences of

variables, whence the rigid part of P(fx,gx) is P(f(*),g(*».

44

Simplification and Reduction for Automated Reasoning

literal R(x) with a unary "Skeleton".1 That this transformation is correct, can
be seen from the fact that two literals L and K are equal up to renaming, iff
they have the same term skeletons. In our example we obtain C" = {Qxy, Pyx},
and D‘ : {Quz, Puz}. These two clauses can be represented by two graphs,
whose arcs are labeled with the predicate symbols P and Q (see figure 4.1)

Q Q

P P

fig.4.1

Next we compute for each variable ve ‘V(C) the (characteristic) pair
xpldv) = (indegree(v,P), outdegree(v,P)) and XQ‚C(V) = (indegree(v,Q)‚
outdegree(V,Q)), where indegree(v,P) denotes the number of P-arcs outgoing
from v, and analogously for the other symbols. Since the clauses are variable
disjoint, the indices C and D can be omitted. Abbreviating xp‚c(x) by XP, we
obtain

XP = (0,1), XQ= (1,0), W = (1,0), YQ = (0,1)
up = (1,0), uQ = (1,0), 213 = (0,1), zQ = (0,1)

Since the two characteristic pairs for x do not match the characteristic pairs of
any variable of D, it can already be decided that the variant property does not
hold. It can, however, also be useful to define a characteristic for literals, by
just joining the characteristic pairs of the corresponding variables, which can
be represented by matrices as follows:

1 A similar notion is that of the rigid part of a literal, see Nicolaita (1989). The difference
to the notion of a term skeleton is that the rigid part does not mirror multiple occurences of
variables, whence the rigid part of P(fx,gx) is P(f(*),g(*)).

44

Removing Redundancy Chapter 4

(Ll)P =(Qxy)p = [(xp)T,(yP)T]1 = [~~],or

(Kl)P = (Quz)p = [~~] = (K2)P

(Ll)P does not match neither the characteristic matrix (Kl)P nor (K2)P, which

also indicates that the variant property does not hold.

In the following the previous informal description of the algorithm shall

be made more precise.

Let £ be a set of literals. For any Le £, let [L] denote the equivalence class

{L'e L I L' == L}. If A is any such equivalence class, we take an arbitrary Le A.

We define the literal L* by L* = PA(Xl, ... ,Xn), where {Xl, ... ,Xn} = V(L). For any

Ke A, we define K* = PA(XIP, ... ,xnP), if P is the renaming that maps L to K.

This transformation is extended to clauses by e* = {L*I Le C} .

4.2.1 Example:

Let L = P(f(x, g(y», h(z», K = P(f(u, g(v», h(w», and M = P(f(u, g(v», h(u».

Since [L] = [K] =p [M], we have C = P[L](X,y,z), and K* = P[L](U,V,w), where P[L]

can be interpreted as the term "skeleton" P(f(*, g(*», h(*». For the literal M

we obtain M* = P[M](U,V).

4.2.2 Lemma:

Let Land K be literals, and let pe P. Then

Lp =K iff Cp =K*.

Proof: LetL*=P[L](Xl,. .. ,Xn). Then Lp=K Hf [L]=[K] and K*=P[K](XIP, ...,xnP)

iffCp=K*· •

From the previous lemma follows easily that e == D holds for two clauses

e and D, if and only if e* == D* holds. L* is a positive literal without function

and constant symbols. Moreover, it has the additional property that the

variables of its argument list are pairwise distinct. Terms or literals of this

kind are also called linear. The transformation C--tC* thus reduces the

problem to the elementary case of positive linear literals, and we shall

assume in ~he following that all occurring literals are of this particular form.

1 The operation T denotes the transposition of matrices. Transposing a row vector yields a

column vector.

45

Removing Redundancy Chapter 4

0(L1)P=(Qxy)P=[(XP)T,(yP)T]1 = [13,],or

(K1)P = (QUZ)P = [32] = (K2)P

(L1)p does not match neither the characteristic matrix (K1)p nor (K2)p, which

also indicates that the variant property does not hold.

In the following the previous informal description of the algorithm shall
be made more precise.

Let L be a set of literals. For any Le L, let [L] denote the equivalence class
{L ' eL | L ' 5 L}. If A is any such equivalence class, we take an arbitrary Le A .

We define the literal L“ by L” = PA(x1‚...‚xn)‚ where {x1,...,xn} = V(L). For any
Ke A, we define K‘ = PA(x1p,...,xnp), if p is the renaming that maps L to K.
This transformation is extended to clauses by C" = {L‘I Le C}.

4.2.1 Example:
Let L = P(f(x, g(y)), h(z)), K = P(f(u, g(v)), MW”, and M=P(f (u , g(v)), h(u)).
Since [L] = [K] at [M], we have L“ = P[L](x,y,z), and K" = P[L](u,v,w), where Pm
can be interpreted as the term ”skeleton” P(f(*‚ g(*))‚h(*)). For the literal M
we obtain M” = P[M](u,v).

4.2.2 Lemma:

Let L and K be literals, and let pe IP. Then

Lp = K iff L‘p = K‘.

Proof: Let L" = P[L](x1,. . .,xn). Then Lp = K iff [L] = [K] and K" = P[K](x1p,. . .,xnp)
iff L‘p = K*- I

From the previous lemma follows easily that C s D holds for two clauses
C and D, if and only if C" .=. D‘ holds. Ü is a positive literal without function
and constant symbols. Moreover, i t has the additional property that the
variables of its argument list are pairwise distinct. Terms or literals of this
kind are also called linear. The transformation C—->C* thus reduces the
problem to the elementary case of positive linear literals, and we shall
assume in the following that all occurring literals are of this particular form.

1 The operation T denotes the transposition of matrices. Transposing a row vector yields a
column vector.

45

Simplification and Reduction for Automated Reasoning

Some additional assumptions can be made for the test, whether the clause C

is a variant of the clause D. IV(C)I = IV(D)I as well as Icl = IDI are necessary,
and also easy to test, conditions for C == D. Throughout the rest of this section,

it will thus be assumed that both conditions are satisfied. Moreover, we shall

assume that I{Le C I P(L) = P} I= I{Ke D I JP(K) =P}I holds for each predicate

symbol P occurring in CuD.

The following definition introduces the notion of a characteristic function

of a clause, which will be the desired invariant analogon to the pair

(indegree, outdegree) for directed graphs.

4.2.3 Definition:

Let C and D be (not necessarily distinct) clauses.

a) For any literal L=PXl ...Xn e C we define the func~ion

<PL,C : V(C) ~ {O,l}n by

I if X = x·

(<PL,c(X»j = { 0 h J. 1

ot erWlse

b) For any n-ary predicate symbol P occurring in C we define the function

XP,c : V(C) ~ Nn by

Xp,c(x) = L <PL,c(X),

P(L)=P

where the addition on tuples is defined pointwise.
c) For any n-ary predicate symbol P occurring in C we define the function

XP,C: C ~~xmby

Xp,c(L) = (XP,c(X l)T, .. ·,Xp,c(xm)T),

where L is of the form QXl ...Xm.

d) We define a relation ""C,D on V by

x ""C,D Yiff XP,C (x) =XP,D (y) for all P occurring in CuD.

The relation ""C,C will be written ""C, Analogously, a relation ""C,D can

be defined for literals, with the additional requirement that P(L) = P(K)

must hold for L""K.

The function XC is called the characteristic (function) of C. Xp,c(x) is an n­

tuple of natural numbers, and the k-th component of this n-tuple denotes

the number of occurrences of the variable x in the n-th coordinate position

1 Note that aj denotes the j-th component of the vector a.

46

Simplification and Reduction for Automated Reasoning

Some additional assumptions can be made for the test, whether the clause C
is a variant of the clause D. IV(C)I = IV(D)I as well as ICI = IDI are necessary,
and also easy to test, conditions for C5D. Throughout the rest of this section,
i t will thus be assumed that both conditions are satisfied. Moreover, we shall
assume that |{Le C I P(L) =P}I = |{Ke D I P(K) =P}I holds for each predicate
symbol P occurring in CuD.

The following definition introduces the notion of a characteristic function
of a clause, which will be the desired invariant analogon to the pair
(indegree, outdegree) for directed graphs.

4.2.3 Definition:
Let C and D be (not necessarily distinct) clauses.
a) For any literal L=Px1. . .xn e C we define the function

<PL‚c : V(C) -9 {0,1}“ by

1 if x = xi
O otherwise1

b) For any n-ary predicate symbol P occurring in C we define the function

xnc : V(C) —-> Nn by

XP,C(X) = 2 (PL,C(x),

P(L)=P
where the addition on tuples is defined pointwise.

c) For any n-ary predicate symbol P occurring in C we define the function
xpp‘ : C —> Nnxm by
XP,c(L) = (xP,c(X1)T,. . ..xP,c(xm)T).

where L is of the form Qx1. . .xm.
d) We define a relation c on V by

x c y iff XP,C (x) = xP,D (y) for all P occurring in CUD.

((PL,C(X»j =

The relation =(;‚c will be written =C- Analogously, a relation zclp can
be defined for literals, with the additional requirement that P(L) =P(K)
must hold for LzK.

The function XC is called the characteristic (function) of C. XP,C(X) is an n-
tuple of natural numbers, and the k-th component of this n-tuple denotes
the number of occurrences of the variable x in the n-th coordinate position

1 Note that ai denotes the i—th component of the vector a.

46

Removing Redundancy	 Chapter 4

in literals with predicate P in the clause C. Suppose the clause C contains

only one single predicte symbol P and arity(P)=2 holds. Then the first

component of XP,C<x) denotes the number of literals of the form P(x,*). In

the notation of directed graphs, this is just the number of links outgoing

from the node x. Similarly, the second component of XP,C(x) denotes the

number of links incoming to the node x.

The index referring to a clause will be dropped in the following. The

relation ""C,D is an equivalence relation, and the equivalence class of x

modulo ""C,D will be denoted by [Xk,D.

In the following we shall use the abbreviation :L* a for L~=t ai, if a is an

n-tuple (at,. ..,an).

4.2.4 Example:

Let C = {Lt, L2, L3, L4}, where Lt=Pxy, L2=PyZ, L3=PXZ, L4=Qzx.

Then	 we have

XP(x) = <!'Ll(x) + <!'L2(x) + <!'L3(x) = (1, 0) + (0,0) + (1,0) = (2,0)

and analogously Xp(y) = (1, I), Xp(z) = (0,2), XQ(x) = (0, 1) etc.

The characteristics of literals are represented by matrices, for instance:

Xp(Lt)= [~~],xP<L2)= C~], XP(L3) = [~~]

The characteristic fu:t:lction is indeed a property that is invariant under

renamings, as the following lemma shows:

4.2.5 Lemma:

Let C and D be clauses and let pe lP, such that Cp=D. Then

a) <PL,c(X) = <PLp,D(XP) holds for each LeC, xeV(C).

b) x"" xp holds for each xeV(C).

c) L "" Lp holds for each Le C.

Proof: a) Let L = PXl ...Xn. Then Lp = PXIP...Xnp. We have

(<!'L,C<X»j = 1 iff x = Xj iff xp = XjP iff (<!'Lp,D(XP»j = 1.
b) follows from a) and the fact that

I{Le C IP(L)=P}I= I{Ke D 1lP'(K)=P}I
holds for each predicate symbol P occurring in CuD.

c) follows from b) •

47

Removing Redundancy Chapter 4

in literals with predicate P in the clause C. Suppose the clause C contains
only one single predicte symbol P and arity(P)=2 holds. Then the first
component of xp,c(x) denotes the number of literals of the form P(x,*). In
the notation of directed graphs, this is just the number of links outgoing
from the node x. Similarly, the second component of xp,c(x) denotes the
number of links incoming to the node x.

The index referring to a clause will be dropped in the following. The
relation ”CD is an equivalence relation, and the equivalence class of x
modulo =C,D will be denoted by [X]C,D.

In the following we shall use the abbreviation 2*a for ZL ai, if a is an
n-tuple (a1,. „an).

Let C = {L1, Lg, L3, L4}, where L1=n, L2=Pyz, L3=s, I4=s.
Then we have

xp(x) = (PL1(X) + (PL2(X) + <pL3(X) = (1, 0) + (0, 0) + (1, 0) = (2, 0)

and analogously xp(y) = (1, 1), xp(z) = (0, 2), xQ(x) = (0, 1) etc.
The characteristics of literals are represented by matrices, for instance:

mm) = 3}],m2)=[13]xpm3>=[3§
The characteristic function is indeed a property that is invariant under

renamings, as the following lemma shows:

4.2.5 Lemma:

Let C and D be clauses and let pe]P’, such that Cp=D. Then
a) <pL‚c(x) = <p‚D(xp) holds for each Le C, xe V(C).
b) x = xp holds for each xe V(C).
c) L z Lp holds for each Le C.

Proof: a) Let L = Px1.. .xn. Then Lp = Px1p. ..xnp. We have
(QL‚C(X))j = l iff x = xi iff xp = i iff ((p‚D(xp))j = 1.

b) follows from a) and the fact that
|{Le C IP(L)=P}I = |{Ke D |P(K)=P}I

holds for each predicate symbol P occurring in CUD.
c) follows from b) I

47

Simplification and Reduction for Automated Reasoning

However, the characteristic function's invariance under the renaming p is

only a necessary, but not a sufficient condition for the renaming p to map C

onto D. Consider, for instance, the clauses C = {Pxy, Pyz, Pyu, Pux} and D =

{Px'y', Py'x', Pz'u', Pu'z'}. For all v,we V(CuD) we have v ""'C,D w, but

nevertheless there exists no renaming p such that Cp = D holds.

Under certain additional restrictions, however, the characteristic func­

tion's invariance is also a sufficient condition for the clauses C and D to be

variants. If we require, for instance, that no two variables of C have the same

characteristic, then it suffices to compare the characteristics of the variables

of C with the characteristics of the variables of D in order to decide the

variant property. This requirement can also be formulated in the following

form: The equivalence classes of V(C) modulo "'" have to be singletons. The

requirement above can still be weakened, which is shown in the following

two lemmata.

For any xe V, we define O(x,C) to be the total number of occurrences of x

in C, that is, O(x,C) = r r* <pLCx).
Lee

4.2.6 Lemma:

Let C be a clause and let XE V(C). Then the total number of occurrences of

variables y"'" x in C is
j[x]c1 rl*xP(x),

p

where the first sum is taken over all predicate symbols P occurring in C.

Proof: r * Xp(x) is the number of occurrences of x in literals Le C with
lP'(L)=P. Then r r* Xp(x) is the number of occurrences of x in all literals Le C.

p

From Xp(y) = Xp(x) for all y with Y"'" x follows l*Xp(x) = r* Xp(y) for all ye [x]c,

and for each predicate P. From this follows the assertion of the lemma. _

4.2.7 Lemma:

Let C and 0 be irreducible clauses with Icl = 101. Suppose I[xlcl = 1 holds for

each xeV(C) that satisfies O(x,C»l. Then

C == D, iff for each Le C there is a Ke 0 with L "'" K.

Proof: If Cp=D holds for some renaming p, then L"", Lp holds for each Le C,

according to lemma 4.2.5.

48

Simplification and Reduction for Automated Reasoning

However, the characteristic function’s invariance under the renaming p is
only a necessary, but not a sufficient condition for the renaming p to map C
onto D. Consider, for instance, the clauses C = {n, Pyz, Pyu, Pux] and D =
{Px'y', Py'x‘, Pz'u‘, Pu'z‘}. For all v,we V(CUD) we have V =C,D w, but
nevertheless there exists no renaming p such that Cp = D holds.

Under certain additional restrictions, however, the characteristic func-

tion’s invariance is also a sufficient condition for the clauses C and D to be
variants. If we require, for instance, that no two variables of C have the same
characteristic, then it suffices to compare the characteristics of the variables
of C with the characteristics of the variables of D in order to decide the
variant property. This requirement can also be formulated in the following
form: The equivalence classes of V(C) modulo = have to be singletons. The
requirement above can still be weakened, which i s shown in the following
two lemmata.

For any xe V, we define O(x,C) to be the total number of occurrences of x
in C, that is, O(x,C) = Z 2* <PL(X).

[ec

4.2 .5 Lemma:

Let C be a clause and let xe ‘V(C). Then the total number of occurrences of
variables yzx in C is

|[x]c| %? XP(x)‚

where the first sum is taken over all predicate symbols P occurring in C.

Proof: 2* xp(x) is the number of occurrences of x in literals LeC with
]P(L)=P. Then %}? xp(x) is the number of occurrences of x in all literals Le C.

From xp(y) =xp(x) for all y with yzx follows Z" xp(x) = E‘ xp(y) for all ye [x]c,
and for each predicate P. From this follows the assertion of the lemma. I

Meme
Let C and D be irreducible clauses with ICI = IDI. Suppose |[x]c| = 1 holds for
each xe V(C) that satisfies O(x,C)>1. Then

C ED, iff for each Le C there is a Ke D with LeK.

Proof: If Cp=D holds for some renaming p, then Ls holds for each Le C,
according to lemma 4.2.5.

48

Removing Redundancy Chapter 4

In order to prove the converse direction, we first show that under the

assumptions of the lemma the equivalence classes of C modulo "" are

singletons: If this is not the case, then there are L,KE C, with L:;tK but L "" K,

which implies lP(L) =lP(K). Let lP(L) =P, and let L=PXl ... Xn and K=PYl ...Yn.

Then there is jE {1, ...,n} such that Xj:;tYj but Xj""Yj' W.l.o.g. we can assume that
there is exactly one such jE {1, ...,n}. From Xj"" Yj follows that YjE [Xj]c, hence

[Xjle> 1. The assumptions of the lemma imply that O(Xj,C) ~ 1, and since Xj

occurs in L, we have O(Xj,C) = 1. Let 't={Xj~Yj}' Since Xi=Yi holds for i:;tj, we
have L't = K, and L''t = L' for each Lt:;t L, since xje V(L') holds for L':;t L. But

this implies C't = C\{L}, which contradicts the irreducibility of C. Thus we

have proved that L "" K iff L=K.

Next we construct a renaming p with Cp = D. Let L be any literal of C. Then

there is a unique literal L'E D with L'""L, and, conversely, L is the only literal

in C with L""L'. The mapping L---+Lt thus yields a bijective function P-:C---+D.

We show that P' induces a renaming p:V(C)---+V(D). For any variable x we

take an arbitrary literal L of C with XE V(L), say L = PXl ... Xn with x=Xj'

Moreover, let Lp = PYl"'Yn. Then we define XjP =Yj' From the condition
L "" Lp we obtain Xi"" Yi for each iE (l, ... ,n}, that is, XP(Xi) = XP(Yi) for each
predicate symbol P occurring in C, and each iE {l,... ,n}. From this follows that

for any XE V(C)

\[x]c n V(L)I = \[XP]D n V(Lj'5)I
that is, the total number of occurrences of variables y""x in L equals the total

number of occurrences of variables y'""xp in Lp, and hence
L \[xlenV(L)1 = L l[xp]DnV(Lp)1,
LeC LeC

that is, the total number of occurrences of variables y""'x in C equals the total

number of occurrences of variables y'""xp in D. According to the previous
lemma, these numbers can also be computed by I[x]c1I, I,*XP c<x) and p ,

\[xp]c1rI,* XP,D(XP), respectively, from which follows that

\[xlcl I, I,* XP c(x) = \[xplcl I, I,* XP D(Xp)
p' p'

Since I,* Xp,C<x) =I,* XP,D(Xp) holds for each P, we obtain

I[xlcl = I[Xp]DI.

Now we show that P is well defined. Assume that x occurs in Ll and in L2,

say Ll = PXl· ..X~ and L2 = Qyl ...Ym with X=Xj=Yk. From the construction of p we

49

Removing Redundancy Chapter 4

In order to prove the converse direction, we first show that under the
assumptions of the lemma the equivalence classes of C modulo = are
singletons: If this is not the case, then there are L,Ke C , with L¢K but L = K,

which implies 1P(L)=]P(K). Let P(L) =P , and let L = Px1. . .xn and K: Py1. . .yn.
Then there is j e {1‚...‚n} such that x i¢y j but i yi. W. l .o .g . we can assume that

there is exactly one such je [1,...,n}. From s Yi follows that yje [x]-]C, hence
[Xj]C> 1. The assumptions of the lemma imply that O(Xj,C) S1 , and since Xi

occurs in L, we have O(Xj,C) = 1 . Let T={Xj—>Yj}. Since xi=yi holds for i¢j, we
have L17: K, and L ' t = L' for each L’¢L , since XjE V(L') holds for L '¢L . But
this implies C1:=C\{L}, which contradicts the irreducibility of C. Thus we
have proved that L-=K iff L=K.
Next we construct a renaming p with Cp =D. Let L be any literal of C. Then
there is a unique literal L'e D with L'=L, and, conversely, L is the only literal
in C with LzL'. The mapping L—9L' thus yields a bijective function p’:C—)D.
We show that ö induces a renaming p:V(C)—>‘V(D). For any variable x we
take an arbitrary literal L of C with xe V(L), say L=Px1 . . . xn with X=Xj.
Moreover, let L6 = Py1...yn. Then we define i =yj . From the condition
LzLfi we obtain x i zy i for each ie {1,...,n}, that is, xp(xi)=xp(yi) for each
predicate symbol P occurring in C, and each ie [1,...,n}. From this follows that
for any xe V(C)

l}cn‘V(L)I = IIXPJDOWLWI
that is, the total number of occurrences of variables yzx in L equals the total
number of occurrences of variables y'zxp in Lfi, and hence

Z |[x1cnvcml = 2 lpJDnV(L§)l,
LeC LeC

that is, the total number of occurrences of variables yzx in C equals the total
number of occurrences of variables y'zxp in D. According to the previous
lemma, these numbers can also be computed by IlX]C|Z Z*xp‚c(x) and

P
|[xp]C|% 2* xp‚D(xp)‚ respectively, from which follows that

|[c| %)? xP,c(x) = llxplcl % 2* xP‚D(xp)
Since 2* xp‚c(x) =2* xP‚D(xp) holds for each P, we obtain

|[X]c| = llXPlDI-
Now we show that p i s well defined. Assume that x occurs in L1 and in Lg,
say L1 = l . . .xn, and Lg = l . . .ym with x=Xj=yk. From the construction of p we

49

Simplification and Reduction for Automated Reasoning

have LI "" LIP and L2 "" L2P, hence x=Xj"" XjP and X=Yk =YkP, which implies

XjP""YkP·

Case 1: If HXjlcl = 1, then also l[xjPlDI =1. From the previous result follows

XjP =YkP and P is thus well defined.

Case 2: If I[xjlcl > 1, then O(Xj,C)::;; 1, and, since Xj occurs in LI, O(Xj,C) =1 must

hold. Then LI=L2 and again P is well defined.

Finally we have to show that P is a renaming, that is, P is bijective on its

domain. Since V(C) and V(D) are finite sets of equal length, it suffices to

show that P is surjective. But this is clear, since 15 is a bijective extension of P

on C, and if P were not surjective, then 15 could not be surjective either. _

Criteria that allow to replace the search for an appropriate variable pairing

by a mere comparision of the characteristics are of great value, as the

following example shows:

4.2.8 Example:

Let C={Ll,L2,L3}, with Ll =Pxy, Lz=Pyz, L3=PXZ, and D={Kl,Kz,K3}, with

Kl=PUV, K2=PWV, K3=PWU. As P is the only predicate symbol, we omit the

index P from the characteristics. We have

X(x) =(2,0), X(y) =(1, 1), X(z) = (0,2),

hence the classes [x]c are singletons for all XE V(C). The conditions of the

previous lemma thus apply, and from

X(LI) = [~~] =X(K3), X(Lz) =[~~] =X(Kl), X(L3) = [~~] = X(Kz)

already follows that C:: D. This saves the computation of the 6 possible

variable pairings.

In the following it is shown that for clauses with a small number of

variables or clauses with few literals the comparision of the characteristic

matrices is also sufficient to test the variant property.

4.2.9 Lemma:

Let C and D be clauses. Suppose IV(C)I::::; 2 and IV(D)I = 2 hold. Then C:: D, iff

{X(x) I XE V(C)} ={X(x') I X'E V(D)} holds.

Proof: Obvious. -
We will mainly consider the so called homogeneous clauses. A clause is

homogeneous, if all its literals have the same predicate"symbol. Our first

50

Simplification and Reduction for Automated Reasoning

have L1 =L1p and L2=L2p, hence x=xj=x]-p and x=yk==ykp, which implies

i = Ykpv
Case 1: If [[Xj1cl = 1, then also [[i l p l = 1. From the previous result follows
i =ykp and p is thus well defined.
Case 2: If |[x]-]c| > 1, then O(x]',C)S1‚ and, since x]- occurs in L1, O(Xj,C) = 1 must
hold. Then L1=L2 and again p is well defined.
Finally we have to show that p is a renaming, that is, p is bijective on its
domain. Since V(C) and V(D) are finite sets of equal length, it suffices to
show that p is surjective. But this is clear, since p’ is a bijective extension of p
on C, and if p were not surjective, then 5 could not be surjective either. I

Criteria that allow to replace the search for an appropriate variable pairing
by a mere comparision of the characteristics are of great value, as the
following example shows:

4.2.8 Example:
Let C={L1,L2,L3}, with L1=n, L2=Pyz, L3=s, and D={K1,K2,K3}, With
K1=Puv, K2=Pwv, K3=Pwu. As P is the only predicate symbol, we omit the
index P from the characteristics. We have

x(x) = (2, 0), x(y) = (1, 1), 95(2) = (0, 2),
hence the classes [xlc are singletons for all xe V(C). The conditions of the
previous lemma thus apply, and from

2 1 1 o 2 ox<L1> = [01] = we), x(L2) = [1 2] = x(K1)‚ x(L3) = [02] = x<1<2>
already follows that CED. This saves the computation of the 6 possible
variable pairings.

In the following i t is shown that for clauses with a small number of
variables or clauses with few literals the comparision of the characteristic
matrices is also sufficient to test the variant property.

4.2.9 Lemma:

Let C and D be clauses. Suppose IV(C)I = 2 and |V(D)| = 2 hold. Then C5 D, iff
{x(x) I xe V(C)} = {x(x') I x‘e V(D)} holds.

Proof: Obvious. I

We will mainly consider the so called homogeneous clauses. A clause is
homogeneous, if all its literals have the same predicate. symbol. Our first

50

rvrngRedundancy Chapt., 4

Iresult states that for homogeneous clauses with not more than three varia­
I
bles, the variant property can be decided by merely comparing the characte­

ristics of the variables. Before giving the theorem, we first show some

lemmata.

The following assumptions are made throughout the rest of this section:

We consider clauses C and D with corresponding variable sets V and W,

respectively. If C is homogeneous, then P is the (unique) predicate symbol

occurring in C (and also in D), and n is its arity. Since the case Ivl=2 is

trivial, we can assume IVI~3. In lemmata 4.2.10 to 4.2.14 we consider the case

Ivl=3, and we shall always assume V = {x,y,z}.

First, we remark that a homogeneous clause with n=l is uniquely

determined up to renaming. Only the case, where n>1 will thus be

considered in the following.

4.2.10 Lemma:

Let Ivl ::;3. Then

a) n::;3

b) 05 (XP(X»i ::;2, for each ie {I,...,n}.

Proof: a) is clear from Ivl::;3 and the linearity of L.

b) From part a) follows n=2 or n=3. Suppose that (XP(X»i ~ 3 for some

ie {I,... ,n}, say i=1. Then there are different literals LI, LZ, L3 all of the

form P(x,*,*) orP(x,*). But this is impossible, since there are at most two

variables left to fill out the free positions in LI, Lz, L3. •

4.2.11 Lemma:

Suppose (X(x) I XEV} = (X(x') I x'eW}. If x"-'y, and all components of X(z) are

even, then C == D.

Proof: Let W= {u,v,w}, with u,,-,x, v"-'y, w""'z. First we remark that

(X(z)}j e {O,2} for O::;i::;n. Let p = {x~u, y~v, z~w}. We have to show that

LpE D for each LE C. Let L = PXI ...Xne C. Furthermore, let

C={LE C IZE V(L)}, and C'=C\C,

and let D' and D" be defined analogously.

a) Suppose ZE V(L). W.l.o.g. we can assume Z=XI. Then (x(z)h = 2 must hold.

Hence there must be some literal K=PYI ... Yn, with K;tL and z=Y1. It is easy to

see, that there are only the following two possibilities: Either n=2 and L = Pzx

1

emoving Redundancy Chapter 4

result states that for homogeneous clauses with not more than three varia-
bles, the variant property can be decided by merely comparing the characte-
ristics of the variables. Before giving the theorem, we first show some
lemmata.

The following assumptions are made throughout the rest of this section:
We consider clauses C and D with corresponding variable sets V and W,
respectively. If C is homogeneous, then P is the (unique) predicate symbol
occurring in C (and also in D), and n i s its arity. Since the case IVI=2 is
trivial, we can assume IVI.>_3. In lemmata 4.2.10 to 4.2.14 we consider the case
IVI=3, and we shall always assume V = {x,y,z}.

First, we remark that a homogeneous clause with n=1 is uniquely
determined up to renaming. Only the case, where n>1 will thus be
considered in the following.

4 .2 .10 Lemma:

Let IVI S3 . Then

a) 11 SS
b) 0 S (xp(x))i $2 , for each ie (I,. . .,n}.

Proof: a) is clear from IVI S3 and the linearity of L.
b) From part a) follows n=2 or n=3. Suppose that (xp(X))i23 for some
i e {1,...‚n}‚ say i=1. Then there are different literals L1, L2, L3 all of the
form P(x‚*‚*) orP(x,*). But this i s impossible, since there are a t most two
variables left to fill out the free positions in L1, L2, L3. I

4 .2 .11 Lemma:

Suppose {x(x) I xe V} = {x(x') I x'e W}. If x==y‚ and all components of x(z) are
even, then CsD.

Proof: Let W= {u,v,w}, with uz x, v = y, w= 2. First we remark that
(x(z))ie {0,2} for OSiSn. Let p = {x—->u, y—w, z—)w}. We have to show that
Lpe D for each Le C. Let L = Px1. . .xne C. Furthermore, let

C'={Le C | ze V(L)}‚ and C"=C\C'‚
and let D' and D" be defined analogously.
a) Suppose ze V(L). W.l.o.g. we can assume z=x1. Then (x(z))1 =2 must hold.
Hence there must be some literal K = Py1. Hy“, with K¢L and z : y1. It is easy to
see, that there are only the following two possibilities: Either n=2 and L=s

51

Simplification and Reduction for Automated Reasoning

and K = pzy, or n=3 and L = pzxy and K = PZyx. Since (X (w)h = 2, the same

must hold for w, u, and v, that is, either n=2 and L' = Pwu and K' = Pwv are

in 0, or n=3 and L' = Pwuv and Kt = Pwvu are in D. In both cases, Lp =L'e D.

b) Suppose z~ Vel). Then V(L)={x,y}, and, since L is linear, either L=Pxy or

L=Pyx. W.l.o.g. let L = Pxy. From a) follows that Pxz e C iff Pyz e C, and

Pzx e C iff pzye C, hence Xc(x) = XC'(y). From Xc<x) = xe(y) thus follows

xc(x) = XC(y)· Now Pxye C", hence also Pyxe C". From a) follows that

Icl = ID'!, hence also IC"I = ID"I, in particular, there is a literal Ke 0 with
we V(K). Now the same argument as before applies to D, with the result

Puve D and Pvue D, in particular Puv=LpeD. •

4.2.12 Lemma:

Suppose {X(x) I xe V} = {x(x') I x'e W}. If (X(X»i = 1 for all xe V, and all
ie {l,...,n}, then C::D.

Proof: Case 1: n=2. It is easy to see that under the assumptions of the

lemma either C={Pxy, Pyz, Pzx) or C={Pyx, Pzy, pxz}, that is, C is determined

uniquely up to renaming. The same holds for D, hence C::D.

Case 2: n=3. It is easy to see that either C={Pxyz, Pyzx, Pzxy} or C={Pzyx, Pxzy,
Pyxz}, and again C is determined uniquely up to renaming. _

4.2.13 Lemma:

Suppose {x(x) I xe V} = {X(x') I x'e W}. If I{X(x) I xe vJI = 3, that is, if the

characteristics of the variables are all distinct, then C:: D.

Proof: Let W = {u,v,w} such that x""u, y""v, z""w. Let p = {x~u, y~v, z~w}.

We have to show that Lpe 0 for each Le C.

Case 1: n=2. Let L=Pxy, and assume Puve D. From (X(x)h~l and (X(y)h~l

follows (X(u)h~l and (x(v)h~1. Since Puve 0, Puw and Pwv must be in O.

This implies (X(w)h~l and (X(w)h~l, hence also (X(z)h~l and (X(z)h~l. If

pxz would be in C, then (x(u)h = (X(x)>I~2, hence besides Puw there must be

another literal P(u,*)e D, but from the other choices Puve D contradicts our

assumption and Puu is impossible due to the linearity condition. Thus

Pxz~ C. Similarly it can be shown that Pzy~ O. Since ze V(C), Pzx or Pyz must

be in C. In both cases the same argumentation as above applies, yielding

Pyx~ C. Altogether we have excluded Pyx, Pxz, and pzy from occurring in C.

Thus either C={Pxy, Pyz}, C={Pxy, Pzx}, or C={Pxy, Pyz, pzx}. But in the last

case we have X(x)=X(y)=X(z), contradicting the assumption I{X(x) I xe vJI = 3.

52

Simplification and Reduction for Automated Reasoning

and K=s , or n=3 and L=sy and K=sx . Since (x(w))1 = 2, the same
must hold for w, u, and v, that is, either n=2 and L ' =Pwu and K' =Pwv are
in D, or n=3 and L' =Pwuv and K‘ =w are in D. In both cases, Lp =L ' e D .
b) Suppose ze V(L). Then V(L)={x,y}, and, since L is linear, either L=n or

L=Pyx. W.1.o.g. let L = n . From a) follows that s e C iff Pyze C, and
s e C iff s e C, hence XC'(X) = xC'(y). From XC(X) = xc(y) thus follows
XC"(X) =xcn(y) . Now ne C" , hence also Pyxe C". From a) follows that
|C' = ID‘I, hence also IC"| = |D"|, in particular, there is a literal Ke D with
we V(K). Now the same argument as before applies to D, with the result
Puve D and Pvue D, in particular Puv=Lpe D. I

4.2.12 Lemma:

Suppose {x(x) I xe V} = {x(x') I x ' . eW} If (x(x))i—— 1 for all xe V, and all
re {1 .,n}, thenC= D.

Proof: Case 1: n=2. It is easy to see that under the assumptions of the
lemma either C={n, Pyz, s} or C={Pyx, s, s}, that is, C is determined
uniquely up to renaming. The same holds for D, hence C5D.
Case 2: n=3. It is easy to see that either C={nz, Pyzx, sy} or C={sx, sy,
Pyxz}, and again C is determined uniquely up to renaming. I

4.2.15 Lemma:

Suppose {x(x) I xe V} = {x(x') I x ' e W}. If I{x(x) I xe V}| = 3, that is, if the
characteristics of the variables are all distinct, then Cs D .

Proof: Let W= {u,v,w} such that x=u‚ y=v‚ z=-w. Let p = {x-—)u, y-—>v, z—>w}.
We have to show that Lpe D for each Le C. '
Case 1: n=2. Let L=n, and assume Puve D. From (x(x))121 and (x(y))221
follows (x(u))121 and (x(v))221. Since Puve D, Puw and Pwv must be in D.
This implies (x(w))121 and (x(w))221, hence also (x(z))121 and (x(z))221. If
s would be in C, then (x(u))1=(x(x))122, hence besides Puw there must be
another literal P(u,")e D, but from the other choices Puve D contradicts our
assumption and Puu is impossible due to the linearity condition. Thus
se C. Similarly i t can be shown that se D. Since ze V(C), s or Pyz must
be in C. In both cases the same argumentation as above applies, yielding
Pyxe C. Altogether we have excluded Pyx, s, and s from occurring in C.
Thus either C={n, Pyz}, C={n, s}, or C={n, Pyz, s}. But in the las t
case we have x(x)=x(y)=x(z), contradicting the assumption I{x(x) I xe V} I =3.

52

Removing Redundancy Chapter 4

The first two cases are variants of each other. Hence C is determined

uniquely up to renaming.

Case 2: n=3. Let L = Pxyz, and assume that PUVWE O. We have (X(X»l~l,

(X(y)h~l, and (X(z)b~l, hence also (X(u)h~l, (X(v)h~l, and (X(W»3~1. Since

PUVWE 0, this is only possible, if Puwve 0, Pwvue 0, and Pvuwe o. If D

would consist only of these three literals, then we had uo:::vo:::w, which

contradicts the assumption. Thus there is some other literal, say Pwuv, in D.

Then (X(v)b~2, hence also (X(y)b~2. This implies pxzye C and pzxye C, hence

also (X(x)h~2. From this follows (X(u)h~2, that is, Puvw and Puwv must be

in 0, which contradicts the assumption. Hence we have proved

Puvw=LpeO. •

4.2.14 Theorem:

C == 0 iff {x(x) I xe V} = {X(x') Ix'e W}.

Proof: It suffices to prove that {x(x) I xeV} = {x(x') Ix'eW} implies C::D. Let

~ = X(x),11 = X(y), and ~ = X(z).

It is easy to verify that the following conditions (1) and (2) must hold:

(1) ~i +11i + ~i =Icl, for each ie {1, ,n}.

(2) ~i + 'T1i - ~k S;; 2, for each i,ke {l, ,n} such that i;t:k.

As to the inequality (2), note that ~i + 'T1i - ~k is smaller than the number of

literals having x or y in position i, and having z not in position k;t:i, that are

those literals having x or y in position i and in position k. There are at most

two literals of this kind.

With regard to the previous lemma we can assume that H~,l1,~H S;;2, that is,

at least two of these characteristics are equaL W.l.o.g. we assume that ~ =11.

Case 1: n=2. Then (1) implies

2~1 + ~1= 2~2 + ~2,

that is,

~1- ~2 = 2~2 -2~I,

hence ~1 - ~2 is even, which implies that either both ~1 and ~2 are even or

both are odd. If both are even, then we are done by lemma 4.2.11. If both are

odd, then ~1 = ~2 = 1. Then (2) implies
2~1-2 S;; 1 and

2~2 - 2 S;; 1.

Since ~1 = ~2, ~1 cannot be zero. Hence we have

~1 =~2=111 =112=~1 =~2=1.

53

Removing Redundancy Chapter 4

The first two cases are variants of each other . Hence C is determined
uniquely up to renaming.
Case 2: n=3. Let L=nz , and assume that Puvwe D. We have (x(x))121,
(x(y))221, and (95(2))321, hence also (x(u))121, (x(v))221, and (x(w))321. Since
Puvwe D, this i s only possible, if Puwve D, Pwvue D, and Pvuwe D. If D

would consist only of these three literals, then we had u=v=w‚ which
contradicts the assumption. Thus there is some other literal, say Pwuv, in D .

Then (x(v))322, hence also (x(y))322. This implies syeC and sye C, hence
also (x(x))122. From this follows (x(u))122, that is, Puvw and Puwv must be
in D, which contradicts the assumption. Hence we have proved
Puvw=Lpe D. .

4.2.14 Theorem:

C a D iff {x(x) I xe V} = {x(x') I x'e W}.

Proof: It suffices to prove that {x(x) I xe V} = {x(x') I x'e W} implies CED. Let
E = W» n = x(y)‚ and C= x(z)-
I t is easy to verify that the following conditions (1) and (2) must hold:
(1) §i+m + Ci: ICI, for each ie {1,...,n}.
(2) éi+ni-Ck_<_2, for each i,1<e {1,...,n} such that i¢l<.
As to the inequality (2), note that § i+ n i -Ck i s smaller than the number of
literals having x or y in position i , and having z not in position k¢i, that are
those literals having x or y in position i and in position k. There are a t most
two literals of this kind.
With regard to the previous lemma we can assume that I{§,n,§}l _<.2, that is,
at least two of these characteristics are equal. W.l.o.g. we assume that F,:n.
Case 1: n=2. Then (1) implies

2§1 + C1 = 23,2 + C2,
that is,

Cl -C2 = 2332-2321,

hence C1 -C2 is even, which implies that either both C1 and C2 are even or
both are odd. If both are even, then we are done by lemma 4.2.11. If both are
odd, then C1 =C_‚z = 1. Then (2) implies

2?; - 2 S 1 and
2&2-2 S 1.

Since §1=§2, £1 cannot be zero. Hence we have
§1=§2=fl1=fi2=§1=§2=1

53

Simplification and Reduction for Automated Reasoning

The assertion of the theorem now follows by lemma 4.2.12.
Case 2: n=3. As in case 1 we obtain that ~1- ~2 is even, ~2 - ~3 is even, and ~l ­

~3 is even. Hence either ~l, ~2, and ~3 all are even, and then we are done by

lemma 4.2.11, or all are odd, which implies ~l = ~2 = ~3 = 1. Again we obtain

2~1-2 ~ 1, 2~1-2 ~ i and 2~3-2 ~ 1,
and the rest is analogous to case 1. •

The following example shows that an analogous theorem for clauses C

with IV(C)I=4 does not hold.

4.2.15 Example:

Consider the clauses C = {Pxy, Pxz, Pyz, Pzu, Pux} and D = {pqr, Prq, Ppr, Pps,

Psp}. In this example arity(P)=2 holds, so that the clauses can be depicted by

directed graphs, as shown in figure 4.2.

rYf/l Z

x .~ • u p s

fig. 4.2

It is easy to verify that x""'p, y""'q, z"='r, and u"='s holds. Still, the two graphs

are not isomorphic, that is, C 1:. D.

4.2.16 Theorem:

Let C be a homogeneous clause with Icl = 3 and I[xlcl < 3 for all xe V(C).
Then C= D iff {x(x) I xe V} = {X(x') I x'e W} and {X(L) I Le C} = {X(K) I Ke D}.

Proof: Let C = {Ll,L2,L3} and 0 = {Kl,K2,K3} such that Li = Ki for i=1,2,3. Let
p:C~D be defined by LiP=Ki. We show that p induces a renaming p ofV(C)

by V(D). In analogy to the proof of 4.2.7 it suffices to show that p is well

defined: Let

Ll=Pxl.·.Xn, L2=Pyl· ..yn, L3=PZl ...Zn,
Kl=PXl'· ..Xn', K2=PYl' ...yn', K3=PZl' ...Zn'·

Furthermore, let Ai = X(Li), Ki = X(Ki) for i=1,2,3.

Let xe V, let ~=X(x), and suppose X=Xi=Yj, for some i,je {l,...,n}. Since Al=Kl,

Xi' "'" x"=' yj' holds.

54

Simplification and Reduction for Automated Reasoning

The assertion of the theorem now follows by lemma 4.2.12.
Case 2: n=3. As in case 1 we obtain that C1 - C2 is even, C2‘ C3 is even, and C1 -
C3 is even. Hence either Q, Q, and C3 all are even, and then we are done by
lemma 4.2.11, or all are odd, which implies C1 = C2 = C3 = 1. Again we obtain

2:1-2 s 1, 2:1-2 s 1‘ and 2&3-2 s 1,
and the rest is analogous to case 1. I

The following example shows that an analogous theorem for clauses C
with IV(C)I =4 does not hold.

4.2.15 Example:
Consider the clauses C= {n, s, Pyz, q, Pux} and D = {q, Prq, Ppr, Pps,
Psp}. In this example arity(P) =2 holds, so that the clauses can be depicted by
directed graphs, as shown in figure 4.2.

y———>-z q r

X l <——- “

fig. 4.2

It is easy to verify that x= , yzq, z=r, and uzs holds. Still, the two graphs
are not isomorphic, that is, C # D.

4 .2 .16 Theorem:

Let C be a homogeneous clause with [Cl =3 and | [x]c | <3 for all xe V(C).
Then CED iff {x(x) I xe V) = {x(x‘) I x'e W} and {x(L) I Le C} = {x(K) IKE D}.

Proof: Let C = {L1,L2,L3} and D: {K1,K2,K3} such that L iz Ki for i=1,2,3. Let
ö : C—>D be defined by Lip =Ki. We show that ö induces a renaming p of V(C)
by V(D). In analogy to the proof of 4.2.7 it suffices to show that p is well
defined: Let

L1=PX1.. .xn, L2=Py1...yn, L3=l...zn,
K1=PX1'. . .xn', K2=Py1'. . .yn'‚ K3=l'. . 1;".

Furthermore, let M: x(Li), Ki =x(I<i) for i=1,2,3.
Let xe V, let §=x(x), and suppose x=xi=yj, for some i,je {1,...,n}. Since M=K1,
xi' = x = yj' holds.

54

Removing Redundancy Chapter 4

If Hx]c1 = I, then from {XCv) I ve V} = b:;(v') I V'E W} follows that HXi']ol = I,

hence Xi' = yj', that is, p is well defined for x.

Now suppose Hx]c1~2, that is, there is YEV(C) with x""y. Then X(y)=~ holds.

W.l.o.g. we assume that x (hence also y) occurs in the first three argument

positions, that is, ~i=O for i>3. First we remark that Icl =3 implies ~i+X(Y)i~3,

hence 2~i~3, which in turn implies ~i~l for all iE {l, ... ,n}.

Case 1: O(x,C) = 3, that is, x occurs three times in C. Together with ~i ~ 1 for all

ie {I, ...,n} we obtain ~1=!;2=~3=1. W.l.o.g. we assume X=Xl=Y2=Z3. For y we

obtain two possibilities, either y=x2=Y3=Zt or y=x3=Yl=Z2. These two cases are

symmetric, and we just assume the first. If Yl=Z2=x3, then Yle [x]C, contra­

dicting the assumption [xJc < 3. Thus

Lt ={P(X,y,x3,...), L2=P(Yl,x,y,...), L3=P(y,z2,X,...),

with Yl:;t:Z2 or Yl:;tx3 or z2:;t:x3, and the Ai have the form

] ["'11"'] [1"'1"']1111 "'11... 1*1 ...

A1=
[.~ ..~ ..~.::: ,A2= .~ ..~ ..~.::: ,A3= .~ ..~ ..~.:::

where in each matrix at least one of the asterisks is equal to O. Furthermore,

lCi=Ai for i=l,2,3. This implies that there are x',y'e V(D) such that

K1 =P(x',y',x3',...), K2 =P(Y1',x',y', ...), K3 = P(y',z2',x',...).

with Yl';t:Z2' or Yl';t:X3' or Z2':;t:X3'. This shows that xp=x', yp=y' and hence p is

well defined for x (and y).

Case 2: O(x,C) = 2. W.l.o.g. we assume that ~1 =!;2=1. Then we can distinguish

two cases: Either

L1 =P(x,y,), L2=P(y,X,), and x,yeV(L3), or

L1 =P(x,y,), L2 =P(u,x,), and L3 =P(y,v,...).

In the first case, the Ai have the form

11 ...] [11 ...] [10 ...]
[A1= .~ ..~.::: ,A2= .~ ..~.::: ,A3= .~..~.:::

Furthermore, lq=Ai for i=I,2,3. Thus there are x',y'e V(D) such that

K1 = pex',y', ...), K2 = P(y',x', ...), and x',y'e V(K3).

This shows that xp=x', yp=y' and p is well defined for x (and y).

If, on the other hand, L1 =P(x,y,...), L2 =P(u,x,...), and L3 =P(y,v, ...), then the A.i
have the form

55

Removing Redundancy Chapter 4

If l[x]C| = 1, then from {x(v) I ve V} = {x(v') | v ' e W} follows that |[xi']D| = 1 ,
hence xi' = yj'‚ that is, p is well defined for x.
Now suppose |[x]c|22, that is, there is ye V(C) with x=y. Then x(y)=§ holds.
W.l.o.g. we assume that x (hence also y) occurs in the first three argument
positions, that is, §i=0 for i>3. First we remark that ICI =3 implies §i+x(y)i33,
hence 2&33 , which in turn implies gi $1 for all i e {1,...,n}.

Case 1: O(x,C) =3 , that is, x occurs three times in C . Together with 5,451 for all
ie {1,...,n} we obtain §1=§2=§3=L W.l.o.g. we assume x=x1=y2=23. For y we
obtain two possibilities, either y=x2=y3=z1 or y=X3=y1=zz. These two cases are
symmetric, and we just assume the first. If y1=22=X3, then y1e [x]C, contra-
dicting the assumption [x]c< 3. Thus

L1 = {P(x,y,x ,. . .), L2 = P(y1,x,y,. . .), L3 = P(y,zz,x,. . .),
with y1¢zz or y1¢X3 or 22¢X3, and the Xi have the form

11* . . . *11 . . . 1 ’1 . . .
11* . . . - *11 . . . 1 *1 . . .

M: 11*... ‚lz= *11... ' 13 : 1*1 . . .

where in each matrix at least one of the asterisks is equal to 0. Furthermore,
m:?„i for i=1‚2‚3. This implies that there are x',y'e ‘V(D) such that

K1 =P(x',y',X3',.. .) , K2=P(y1',x',y',. . .) , K3 = P(y',zz',x',.. .).
with y1‘¢zz' or y1'¢X3' or zz'¢xg'. This shows that xp=x' , yp=y‘ and hence p is
well defined for x (and y).
Case 2: O(x,C) =2 . W.1.o.g. we assume that §1=§2=L Then we can distinguish
two cases: Either

L1 = P(x,y,. . .), L2 = P(y,x,. . .), and x,ye V(L3)‚ 0r
L1 =P(x,y,. . .), L2 =P(u,x,. ..), and L3 =P(y,v,. . .).

In the first case, the 7L1 have the form
11 1 1 1 0...K1=[1 1...],12=[1 1 ---]‚7£3=[o 1 ...]

Furthermore, Ki=9ti for i=1,2,3. Thus there are x',y’e V(D) such that
K1 = P(x',y',.. .), K2 = P(y',x‘,. . .), and x',y'e V(K3).

This shows that xp=x', yp=y' and p is well defined for x (and y).
If, on the other hand, L1 =P(x,y,. . .), Lg =P(u‚x‚. ..), and L3 =P(y,v,.. .), then the 71.1
have the form

55

Simplification and Reduction for Automated Reasoning

[11 ...] [11 ...] [1]
Al = .~ ..~. ::: ' A2 = .~ ..~. ::: ' A3 = .~ ..~. :::

where, due to the assumption [x]c < 3, the first two columns of A2 (and also

of A.3) are different. Furthermore, lq=Ai holds for i=l,2,3, hence there are
x',y'e V(D) such that

Kl =P(x',y',. ..), K2 =P(*,x',. ..), and K2 =P(y',*,...),

and again p is well defined for x (and y). •

The following example shows that the condition \[x]c\<3 cannot be

dropped from the previous theorem.

4.2.17 Example:

Let C={Pxyzuvw, Pyzxvwu, pzxywuv} and D={Px'y'z'u'v'w', Py'z'x'w'u'v',

PZ'x'y'v'w'u'}. Then

111000

111000

111000

X(L) = =X(K)000111

000111

000111

holds for each Le C, Ke D. We have {X(x) I xe V} = {x(x') I x'e W} and

{X(L) ILe C} = b:(K) IKe D}, but C == D does not hold.

Of course, theorem 4.2.16 also holds for non homogeneous clauses,

possibly containing different predicate symbols. One might suggest that even

an anlogon of this theorem holds for clauses, where each homogeneous

subclause is of length ~3. That this is not the case can be seen by the

following example:

4.2.18 Example:

Let C={Pxyzw, Pyxwz, Qxyzw, Qyxwz}, and let D={Pxyzw, Pyxwz, Qyxzw,

Qxywz}. Then

Xp(L) = XQ(L) = = Xp(K) =XQ(K)[ii~ ~]
0011

holds for each Le C, Ke D. Still, C == D does not hold.

We are now able to use the previous results to define an algorithm that

decides whether two given irreducible clauses are variants of each other.

Result 4.2.5 shows that the search for the possible matches from variables of

56

Simplification and Reduction for Automated Reasoning

11 . . . 11 . . . 1" . . .
Ä1= | i 1 1 . . . "] ‚Ä2=l i * 1 " '] 12~3=[1 1 . . . : |

where, due to the assumption [x]c< 3, the first two columns of 12 (and also
of A3) are different. Furthermore, Ki=7Li holds for i=1,2,3, hence there are
x',y'e V(D) such that

K1 =P(x',y',. ..), K2 = P(* ',. ..), and K2=P(y',*,. ..),
and again p is well defined for x (and y). I

The following example shows that the condition | [x]c|<3 cannot be
dropped from the previous theorem.

4.2.17 Example:

Let C={nzuvw, Pyzwu, sywuv} and D={Px'y'z'u'v‘w', Py'z'x'w'u'v',
Pz'x'y v w'u'}. Then

111000
111000
111000

ML): 000111 =x(K)
000111
000111

holds for each Le C, Ke D . We have {x (x) | xe V} = {x(x ') I x ' e W} and

{X(L) | Le C} = {x(K) I Ke D}, but C _=_D does not hold.

Of course, theorem 4.2.16 also holds for non homogeneous clauses,
possibly containing different predicate symbols. One might suggest that even
an anlogon of this theorem holds for clauses, where each homogeneous
subclause is of length $3. That this is not the case can be seen by the
following example:

4.2.18 Example:

Let C={nzw, Pyxwz, Qxyzw, nwz}, and let D={nzw, Pyxwz, nzw,
Qxywz]. Then

1100

XP(L) = XQ(L) = [3322] = xp(l<) = xQ(K)
0011

holds for each Le C, Ke D. Still, CED does not hold.

We are now able to use the previous results to define an algorithm that
decides whether two given irreducible clauses are variants of each other.
Result 4.2.5 shows that the search for the possible matches from variables of

56

Removing Redundancy Chapter 4

C to variables of D may be restricted to those matches that respect the

equivalence "". Results 4.2.7 to 4.2.16 give sufficient conditions for the

variant property for some particular cases.

For the remaining cases we use a constraint propagation procedure: First

we determine for each LE C the set [Lk,D of possible matches in D. Then the

following constraint is propagated through C: if two literals L, K share a

variable x, say at positions i and j, then the matches L' for Land K' for K

must have a common variable at positions i and j. This yields the formal

definition of what we call incompatibility of two matches for two different

literals:

Let L=PXl ...Xn, K=QY1"'Ym be literals of C and let L'=PXl'",Xn', K'=QY1""Ym'
be possible matches for L, K, respectively. Then we call L' and Kt incom­

patible, if the mapping {L~L', K~K'} does not induce a renaming of the

corresponding variables, that is, if Xi=yj for some iE (1, ...,n}, je (1, ...,m), but

xi';ty(

Algorithm

VARIANT (C,D).

INPUT: two clauses C and D, with variable sets V and W, respectively.

OUTPUT: TRUE, if C::D, FALSE otherwise.

O. If ICI;t ID/, IVI;t Iw I, (X(x) I xe V};t {X(x') I x'e W} or {X(L) I Le C}

;t {X(K) IKe D}, then return FALSE.

1. If for each variable XE V that occurs more than once, [xlc is a

singleton, then return TRUE.

If C is homogeneous, then

if IVI::;3, ICI<3, or (lcl=3 and [xk<3 for all xe V), then return

TRUE.

2. Otherwise form a queue consisting of all literals of C. For each literal

L of C compute the set of all neighbourhood literals, i.e. those literals

that have at least one variable in common with L.

3. Until the queue is empty:

3.1 Remove the first literal from the queue; this is now the current
literal.

3.1.1 Compute, if this has not yet been done, the set of all

possible matches for the current literal; Le. the set of all lite­
rals of D with the same characteristic as the current literal.

57

Removing Redundancy Chapter 4

C to variables of D may be restricted to those matches that respect the
equivalence z . Results 4.2.7 to 4.2.16 give sufficient conditions for the
variant property for some particular cases.

For the remaining cases we use a constraint propagation procedure: First
we determine for each Le C the set [L]c‚D of possible matches in D. Then the
following constraint is propagated through C: if two literals L, K share a
variable x, say a t positions i and j, then the matches L ' for L and K' for K
must have a common variable a t positions i and j. This yields the formal
definition of what we call incompatibility of two matches for two different
literals:

Let L=Px1.. .xn, K=Qy1. . .ym be literals of C and let L'=Px1'. . .xn‘, K‘=Qy1'...ym‘
be possible. matches for L , K, respectively. Then we call L ' and K‘ i ncom-
patible , if the mapping {L—>L', K->K'} does not induce a renaming of the
corresponding variables, that is, if xi=yj for some ie [1,...,n}, je [1,...‚m}‚ but
xi 'atyi ' .

Algorithm
VARIANT (C,D).
INPUT: two clauses C and D, with variable sets V and W, respectively.
OUTPUT: TRUE, if C5D, FALSE otherwise.

0. If ICI == |D|‚ |V|¢ IWI, {x(x) I xe v} ¢{x(x') l x‘e W} or MD I Le c}
at {x(K) IKe D}, then return FALSE.
1. If for each variable xe V that occurs more than once, [x]c is a
singleton, then return TRUE.
If C is homogeneous, then

if IVIQ, ICI<3, or (ICI=3 and [x]c<3 for all xe V), then return
TRUE.

2. Otherwise form a queue consisting of all literals of C. For each literal
L of C compute the set of all neighbourhood literals, i .e. those literals
that have a t least one variable in common with L.
3. Until the queue is empty:

3.1 Remove the first literal from the queue; this is now the current
literal.

3.1.1 Compute, if this has not yet been done, the set of all
possible matches for the current literal; i.e. the set of all lite-
rals of D with the same characteristic as the current literal.

57

Simplification and Reduction for Automated Reasoning

3.1.2 Remove all literals X from the set of possible matches
for the current literal that are incompatible with all possible

matches for a literal Y in the neighbourhood of the current

literal. If thereby the set of possible matches for the current

literal becomes empty, then return False.

3.2 If any change has occurred, then add those literals that are in

the neighbourhood of the current literal to the front of the queue.

4. Return True.

To show the termination of the algorithm, let n =L HL]c,DI, where
Lee

[L] C,D denotes the set of possible matches for L. Let Q denote the queue used
in the algorithm. It is easy to see, that the pair (n,IQ!) decreases with respect

to the lexicographic order over the natural numbers each time the loop is
traversed.

4.2.19 Example:

Let C ={KI, K2, K3,Kd and D ={LI, L2, L3, L4} with

LI =Ptw, L2 =Pst, L3 =Prs, 4 =Pqr and

KI =Pxy, K2 =Pyz, K3 =Pzu, Kt =Puv.
C and D are homogeneous, we thus omit the index P for the characteristics

in the following. The following variable characteristics (see figure 4.3) are

computed:

v X W

X (1,0) q

y, z, u (1,1) r, s, t

v (0, 1) w

fig. 4.3

and the following literal characteristics (see figure 4.4)

58

Simplification and Reduction for Automated Reasoning

3.1.2 Remove all literals X from the set of possible matches
for the current literal that are incompatible with all possible
matches for a literal Y in the neighbourhood of the current
literal. If thereby the set of possible matches for the current
literal becomes empty, then return False.

3.2 If any change has occurred, then add those literals that are in
the neighbourhood of the current literal to the front of the queue.

4. Return True.

To show the termination of the algorithm, le t I'I =2 |[L]C,D|r where
LeC

[L] C,D denotes the set of possible matches for L . Let Qdenote the queue used
in the algorithm. It is easy to see, that the pair (ILIQI) decreases with respect
to the lexicographic order over the natural numbers each time the loop is
traversed.

4_-2_—1_9_E>_<än_p_1_e;

Let C= {K1, KZ, K3,I<4} and D = {L1, L2, L3, L4} with
L1 = t, L2 = Pst, L3 = Prs, L4 = q and
K1 = n, Kg = Pyz, K3 = q , K4 = Puv.

C and D are homogeneous, we thus omit the index P for the characteristics
in the following. The following variable characteristics (see figure 4.3) are
computed:

V)(W

x (l , 0) q

, z, u (1, 1) r, s, t

v (0, 1) w

fig. 4.3

and the following literal characteristics (see figure 4.4)

58

Removing Redundancy Chapter 4

C X D

Kl [~~J 1.4

K2, K3 [~~J L2, L3

~ [~ ~J Ll

fig. 4.4

Thus we have {x(x) I XE V} = {x(x') I X'EW} and {X(L) I LEC} = {X(K) I KE D}.

Since Ivl>3, Icl>3, and Hy]l >1, none of the sufficient conditions for

returning true applies.

We form the queue Q= (Kl, K2, K3, ~) and remove its first literal Kl. The

only possible match for Kt is L4, that is, PM(Kt) = {L4}. All literals in the

neighbourhood of Kt are still in the queue, so we remove the next literal,

K2, from Q:. Next we compute PM(K2) = {L2, L3}·

The only literal in the neighbourhood of K2, for which the set of possible

matches is yet computed, is Kl. The possible match L2 for K2 is incompatible
with L4, since it maps y to s. So L2 is canceled from PM(K2).
Now we have PM(K2) = {L3} and Q= (K3, K4). Since a change has occurred,

we have to put the literal Kt, which is in the neighbourhood to K2, at the

front of the queue.

Next Kt is removed from the queue and it is easily seen that no change will

occur in this step.

The next literal, K3, is removed from the queue. We compute the set of

possible matches for K3, which is PM(K3) = {L2, L3}.

The possible match L3 for K3 is incompatible with the match L3 for the

neighbourhood literal K2. Therefore L3 is removed from PM(K3). Thus we

have PM(K3) ={L2}, and Q= (1<4). Now K2 has to be added again to the front

of the queue, but this will not yield a change.

Now the last element, 1<4, is removed from the queue. Ll is the only possible

match for ~, and this match is compatible with all other matches.

Now the queue is empty; therefore C == D holds.

59

Removing Redundancy Chapter 4

C x D
11

KI [01] L4

11K2,K3 [11] L2 ,L3

10
K4 [11] L1

fig. 4.4

Thus we have {x(x) I xe V} = {x(x') I x'e W} and {x(L) | Le C} = {x(K) I Ke D}.
Since IVI>3, ICI>3, and I[y]l >1, none of the sufficient conditions for
returning true applies.
We form the queue Q : (K1, Kg, K3, K4) and remove i ts first literal K1. The
only possible match for K1 i s L4, that is, PM(K1) = {L4}. All literals i n the
neighbourhood of K1 are still in the queue, so we remove the next literal,

Kg, from Q., Next we compute PM(K2) = {Lg, L3}.

The only literal in the neighbourhood of Kg, for which the set of possible
matches is yet computed, i s K1. The possible match Lg for Kg i s incompatible
with L4, since i t maps y to s. 50 Lg is canceled from PM(Kg).
Now we have PM(Kg) = {L3} and Q= (K3, K4). Since a change has occurred,
we have to put the literal K] , which i s in the neighbourhood to Kg, at the
front of the queue.
Next K1 is removed from the queue and i t is easily seen that no change will
occur in this step.
The next literal, K3, i s removed from the queue. We compute the set of
possible matches for K3, which is PM(K3) = {Lg, L3}.
The possible match L3 for K3 i s incompatible with the match L3 for the
neighbourhood literal Kg. Therefore L3 i s removed from PM(K3). Thus we
have PM(K3) = {Lg}, and Q= (K4). Now Kg has to be added again to the front
of the queue, but this will not yield a change.
Now the last element, K4, is removed from the queue. L1 is the only possible
match for K4, and this match is compatible with all other matches.
Now the queue is empty; therefore C _=. D holds.

59

Simplification and Reduction for Automated Reasoning

4.3 An Algorithm to Produce the Irreducible Factor of a Clause

This section provides an algorithm that computes the irreducible factor of a

given clause. A first approach is suggested by the definition of a subsuming

factor. Such an algorithm, which is proposed by Joiner (1973)1, proceeds by

checking the given clause C for unifiable pairs of literals. If such a pair (L,K)

is found, and the most general unifier a of Land K has the property that Ca

subsumes C, then Ca is a subsuming factor of C, and the procedure is repeat­

ed with Ca instead of C. This is done until no more pair of unifiable literals

can be found in the actual clause. This approach's drawback consists in the

unification procedure it involves, and, in particular, the number of expen­

sive subsumption tests. It will turn out, however, that the unification

operation is not really necessary, and, moreover, that the number of sub­

sumption tests can be significantly reduced.

By lemma 2.2.5, at least one of the irreducible factors of a clause is a subset

of this clause. Our algorithm produces such an irreducible factor. Thus C*

will always denote one of the irreducible factors of C that satisfies C*~c.

Our introductory example 4.1.2 contained the reducible clause Cl ={x~y,

y~, z~y}. Here, the fact that the subclause C ={x~y, y~x} of C is subsumed by
C\C' = {zsy}, with the additional property that C is invariant under the

subsumption substitution, accounts for the reducibility of C. The following

lemma, which is fundamental for our algorithm, shows that this indeed

constitutes a necessary and sufficient condition for reducibility.

4.3.1 Lemma:

The clause C has a subsuming factor C, iff there exists a substitution f.l with

(i) (C\C')f.l cC' and

(ii) V(C)l1dom(f.l) = 0

Proof: Suppose that conditions (i) and (ii) are satisfied. Then, by (iD,

C'f.l = C holds, hence from (i) follows Cf.l =C'f.l u (C\C')1l = C, which implies

that C' is a subsuming factor of C.

1	 Joiner calls a subsuming factor of clause C a condensation of C, and the irreducible factor of C

the most specific condensation of C.

60

Simplification and Reduction for Automated Reasoning

4.3 An Algorithm to Produce the Irreducible Factor of a Clause

This section provides an algorithm that computes the irreducible factor of a
given clause. A first approach is suggested by the definition of a subsuming
factor. Such an algorithm, which is proposed by Joiner (1973)1, proceeds by
Checking the given clause C for unifiable pairs of literals. If such a pair (L,K)
is found, and the most general unifier o of L and K has the property that Co
subsumes C, then Co is a subsuming factor of C, and the procedure is repeat-
ed with Co instead of C. This is done until no more pair of unifiable literals
can be found in the actual clause. This approach’s drawback consists in the
unification procedure i t involves, and, in particular, the number of expen-
sive subsumption tests. It will turn out, however, that the unification
operation i s not really necessary, and, moreover, that the number of sub—
sumption tests can be significantly reduced.

By lemma 2.2.5, at least one of the irreducible factors of a clause is a subset
of this clause. Our algorithm produces such an irreducible factor. Thus C"
will always denote one of the irreducible factors of C that satisfies C'gC.

Our introductory example 4.1.2 contained the reducible clause C1 = {xSy,
n, 25y}. Here, the fact that the subclause C' = {xSy, n} of C is subsumed by
C\C ' = {25y}, with the additional property that C' is invariant under the
subsumption substitution, accounts for the reducibility of C. The following
lemma, which i s fundamental for our algorithm, shows that this indeed
constitutes a necessary and sufficient condition for reducibility.

4 .3 .] Lemma:

The clause C has a subsuming factor C', iff there exists a substitution [.1 with

(i) (C\C‘)u;C‘ and
(ii) V(C')ndom(u) = @

Proof: Suppose that conditions (i) and (ii) are satisfied. Then, by (ii),
C'u=C' holds, hence from (i) follows Cu=C'uU(C\C')u=C'‚ WhiCh implies
that C' is a subsuming factor of C.

1 Joiner calls a subsuming factor of clause C a condensation of C, and the irreducible factor of C

the most specific condensation of C.

60

Removing Redundancy Chapter 4

Conversely, let C be reducible and let C' be a subsuming factor of C. By

lemma 2.2.5, we can assume w.l.o.g. that C' c C. Hence, there exists an

idempotent substitution IJ. with C' == C IJ. c C. Then we have

(C\C)IJ. ~ CJ.l = C.
Finally, if xe V (C), then x==YIJ. for some ye V (C). This implies

xlJ. == yIJ.2 == YIJ. = x, that is, xe dom(Il)· •

4.3.2 Definition:

Let C be a clause and C,C"~c. We write

C == C<t>C"
if C = CuC" and V(C)nV(C") = 0. C is called connected, if it cannot be

written in the form C'EeC".

4.3.3 Lemma:

If C=Cl<t>C2, then C2 is a subsuming factor of C iff it is subsumed by Cl.

Proof: Observe that V(Cl)nV(C2) = 0 enforces condition (ii) of lemma

4.3.1, hence Cl:::;C2 implies that C2 is a subsuming factor of C. To prove the

converse direction, assume that C2 is a subsuming factor of C, that is,

C2 = CIJ. cC for some idempotent substitution Jl. If xe V(C2), then x=YIJ. for

some ye V(C). Hence xJl=x, and we have

C2 =CJl=CIJlUC2Jl=ClI.lU C2.
Hence Clll~C2 holds. •

4.3.4 Corollary:

If C =ClEe... <t>Cn such that Ci is irreducible and connected for ie {l,...,n}, then

C* = Ml<t> $Mk,

where {Ml, ,Mk} is the set of maximal elements in {Cl, ... ,Cn } w.r.t. the

subsumption ordering.

Proof: Follows from the previous lemma. •
The previous lemmata suggest a proceeding for computing the irreducible

factor of a given clause C as follows: First find the connected subsets

{Cl, ... ,Cn } of C and reduce each of it to its irreducible factor. Then test each

pair of these reduced clauses on subsumption and remove the subsuming

clause, if the test was successful. If C is a connected clause, the irreducible

factor of C is produced as follows: Test for all subsets C of C, whether (a) C'

61

Removing Redundancy Chapter 4

Conversely, let C be reducible and let G be a subsuming factor of C. By
lemma 2.2.5, we can assume w.1.o.g. that C'gC . Hence, there exists an
idempo ten t subs t i t u t i on u with C' = Cu g C. Then we have
(C \C ')ugCu=C ' .
Finally, if xe V(C') , then x=yu for some ye V(C) . This impl ies
xu =yu2 =yu=x , that is, xe dom(p.). I

Wm
Let C be a clause and C',C"_c_C. We write

C = C'EBC"
if C : C'UC" and V(C')nV(C") =2 . C is called connected, if it cannot be
written in the form C'GBC".

4.3.3 Lemma:

If C = C1$C2, then C2 is a subsuming factor of C iff i t i s subsumed by C1.

Proof: Observe that V(C1)nV(C2) = @ enforces condition (ii) of lemma
4.3.1, hence C1$C2 implies that C2 is a subsuming factor of C. To prove the
converse direction, assume that C2 i s a subsuming factor of C, that is,
C2 =CugC for some idempotent substitution u. If xe V(C2), then x=yu for
some ye V(C). Hence xu=x, and we have

C2 =Cu=C1u UC211 =C1|.LUC2.
Hence Cm g C2 holds. I

Mgr—01m
If C =C1$...€BCn such that Ci is irreducible and connected for ie {1,.. .,n}, then

C*=M1$...$Mk,
where {M1,. . . ,Mk} i s the set of maximal elements in {C1,.. . ,Cn} w.r . t . the
subsumption ordering.

Proof: Follows from the previous lemma. l

The previous lemmata suggest a proceeding for computing the irreducible
factor of a given clause C as follows: First find the connected subsets
{C1,...,Cn} of C and reduce each of i t to its irreducible factor. Then test each
pair of these reduced clauses on subsumption and remove the subsuming
clause, if the test was successful. If C i s a connected clause, the irreducible
factor of C is produced as follows: Test for all subsets C' of C, whether (a) C‘

61

Simplification and Reduction for Automated Reasoning

subsumes C\C and (b) the subsumption substitution satisfies condition (ii)
of lemma 4.3.1.

The condition x~=x for each XE V(C)nV(C\C) provides a restriction for

the number of possible matching substitutions ~. This condition can also be
expressed as follows: If x is a variable, which is shared by C and C\C, and L
is a literal in C', such that XE L, then the search for the matching literal L' in
C\C can be restricted to those L' that satisfy XE L'. Moreover, we can state
that the occurrences1 of x in L must be the same as those of x in Lt. This

allows a characterization of subclauses as potential subsumers:

4.3.5 Definition:

Let C be a connected clause, and let CcC. A variable XE V(C)nV(C\C) is

called isolated in C, if there is LE C' with XE V(L) and XE dom(O') holds for

each O'E uni(L,C\C).

4.3.6 Example:

Let C = {Pxy, Pzx, Pwy}, and let L=Pxy. Then x is isolated in C' = {L}, since

xO'=z or xO'=w holds for each O'E uni(L,C\C). A similar argument shows that

x is also isolated in {Pzx}. Note, however, that x is not isolated in C"={Pxy,

PZx}, since the condition XE V(C")nV(C\C") is violated. This restricts the

potential subsuming factors to C" and C\C".

4.3.7 Lemma:

Let C be a connected clause, let C~c. If C' is a subsuming factor of C, then

C\C' contains no isolated variables.

Proof: Since C is a subsuming factor of C, there exists a substitution
~ with (C\C)llcC, and V(C)ndom(ll) = 0. In particular, ~E uni(L,C) holds
for each LE C\C, and if XE V(C)nV(C\C), then X~ dom(ll) holds, which

implies that x is not isolated in C\C. •

1	 We do not formally define the notion of an occurrence of a variable x in a term t. But it is

intuitively clear that this means the tree address of x in t. We shall rather denote the fact

that x has the same occurrences in literals Land K by x~ dom(cr) for the most general unifier

crofL and K.

62

Simplification and Reduction for Automated Reasoning

subsumes C\C' and (b) the subsumption substitution satisfies condition (ii)
of lemma 4.3.1.

The condition xu=x for each xe V(C')nV(C\C') provides a restriction for
the number of possible matching substitutions u. This condition can also be
expressed as follows: If x is a variable, which i s shared by C ' and C\C ' , and L
is a literal in C ' , such that xe L, then the search for the matching literal L ' in

C\C ' can be restricted to those L ' that satisfy xe L ' . Moreover, we can state
that the occurrences1 of x in L must be the same as those of x in L‘. This
allows a characterization of subclauses as potential subsumers:

MM
Let C be a connected clause, and let C'CC. A variable xe V(C')nV(C\C ') i s
called isolated in C', if there is Le C ' with xe V(L) and xe dom(o) holds for
each oe uni(L,C\C') .

4.3.6 Example:

Let C = {n, s, Pwy}, and let L=n. Then x is isolated in C ' = {L}, since
xo=z or xo=w holds for-each oe uni(L,C\C'). A similar argument shows that
x i s also isolated in {s} . Note, however, that x i s not isolated in C"={n,
s}, since the condition xe V(C")nV(C\C") is violated. This restricts the
potential subsuming factors to C" and C\C".

4 .3 .7 Lemma:

Let C be a connected clause, let C'gC. If C ' is a subsuming factor of C, then
C\C’ contains no isolated variables.

Proof: Since G i s a subsuming factor of C, there exists a substitution
u with (C\C')u<__:C', and V(C ')ndom(u)=@. In particular, pe uni(L,C') holds
for each Le C\C ' , and if xe V(C')nV(C\C ') , then xe dom(u) holds, which
implies that x is not isolated in C\C'. l

1 We do not formally define the notion of an occurrence of a variable x in a term t. But it is

intuitively clear that this means the tree address of x in t. We shall rather denote the fact

that x has the same occurrences in literals L and K by xe dom(o) for the most general unifier

6 of L and K.

62

Removing Redundancy Chapter 4

According to the previous lemma, the subsets C' may be chosen from

those subsets of C that contain no isolated variables.

In particular, if a variable x occurs exactly in the literals Land K, but with

different occurrences, then x is L-isolated and also K-isolated. This implies

that L is element of a potential subsumer if and only if K is. The variable x

will be called (L,K) isolated in this case. For instance, the variable x in

example 4.3.6 is (L,K)-isolated with L=Pxy, K=Pzx. The test on isolated

variables is mainly understood to be a test on irreducibility of the underlying

clause. As in actual problems the clauses most probably are not reducible, a

test which early detects failure, should be more valuable than a test which

assumes reducibility of the clause. We suggest that for most clauses C arising

in practice the reducibility test will fail exactly on account of (L,K)-isolated

variables for each pair (L,K) of literals of C.

When checking whether a subclause C' of a connected clause C is a

subsuming factor of C, the shared variables are instantiated with "new"

constants in order to assure that the subsumption substitution Jl with

(C\C')Jl~C' leaves C' invariant.

Algorithm
IRRED_FACTOR (C)

Input: A clause C

Output: The irreducible factor C* of C

1. Compute all the connected components CI"",Cn of C, and let

S={Ct,. ..,CnJ·

2. For i = 1,...,n do

Cj:= IRRED_CONN (Cj).

3. For i = 1,...,n do

If Cj subsumes some CjES\{Cil, then S:=S\{Cj}.

4 C*·- U C'
. .- qe5 l'

Function
IRRED_CONN (C)

Input: A connected clause C

Output: The irreducible factor C* of C

1. Let S = POTENTIAL SUBSUMERS(C).

2. If S:~C then for all subsets C' of C containing some element of S do

63

Removing Redundancy Chapter 4

According to the previous lemma, the subsets C ' may be chosen from
those subsets of C that contain no isolated variables.

In particular, if a variable x occurs exactly in the literals L and K, but with

different occurrences, then x is L—isolated and a lso K-isolated. This implies

that L is element of a potential subsumer if and only if K is. The variable x
will be called (L,K) isolated in this case. For instance, the variable x in
example 4.3.6 is (L,K)-isolated with L=n, K=s. The test on isolated
variables is mainly understood to be a test on irreducibility of the underlying
clause. As in actual problems the clauses most probably are not reducible, a
test which early detects failure, should be more valuable than a test which
assumes reducibility of the clause. We suggest that for most clauses C arising
in practice the reducibility test will fail exactly on account of (L,K)—isolated
variables for each pair (L,K) of literals of C.

When checking whether a subclause C ' of a connected clause C is a
subsuming factor of C, the shared variables are instantiated with ”new”
constants in order to assure that the subsumption substitution p with
(C\C‘)ugC' leaves C' invariant.

Algorithm
IRRED_FACTOR (C)
Input: A clause C
Output: The irreducible factor C” of C

1 . Compute all the connected components C1 , . . . ,Cn of C, and let
S = {C1,. . .,Cn}.
2. For i : 1,. . .,n do

Ci := IRRED_CONN (Ci).
3. For i= 1 , . . .,n do

If Ci subsumes some Cie S\{Ci}, then S : : S\{Ci}.
4. C*:= (5e Ci .

Function
IRRED_CONN (C)
Input: A connected clause C
Output: The irreducible factor C‘ of C

1. Let S =POTENTIAL_SUBSUMERS(C).
2. If sic then for all subsets C' of C containing some element of S do

63

Simplification and Reduction for Automated Reasoning

Let V = V(C)f1V(C\C).

Let ~= {x---tax IXEVi ax is a constant not occurring in Cl.

If C~ subsumes (C\C)Il, then return IRRED_CONN(C\C).

3. Return C.

Function
POTENTIAL SUBSUMERS (C)

Input: A connected clause C

Output: {C~C I C contains no isolated variable}.

1. Let C = Cl U...U Cn, where (Li,Lj) with LiE Ci, Lje Cj is unifiable iff i=j.

2. m=l. SO=0. For all xeV(C) do

If x is (L,K)-isolated for some literals L,K, then

if there are i~m such that Le Si and j~m suc~ that Ke Sj, then

Sj=SiUSji Sj=0 else

if there is isn such that Le Si then Si=SiU{K} else

if there is j~m such that Ke Sj then Sj=Sju{L} else

Sm={L,K}i m=m+1.

If either of Si,Sj, or Sm contains some Ck, then return C.

3. Return {Sl,,,.,Sm}'

Next, we give some examples to demonstrate how the algorithm works.

These are clauses, which frequently occur in axiomatizations of mathema­

tical structures that avoid the use of equality. All these clauses are connected

clauses. In all examples the test on isolated variables suffices to recognize

irreducibility.

4.3.8 Examples:

a) This is the clause expressing n-fold transitivity of the P-predicate. Such a

clause can be obtained, for instance, by n-fold self-resolution of the well­

known transitivity clause PXyAPyZ ~ Pxz. Let n be a natural number, n~2,

and let Cn = {Ll,...,Ln,Ln+l} with

L1 = ...,PXlX2,. ..,Ln = ...,Pxnxn+I, Ln+1 =PXlxn+1·

For each ie {2,...,n}, the variable Xi is (Li_l,Li)-isolated. Thus C\{Ln+l} is the

smallest subset of C containing no isolated variables. Obviously, this

subclause can not subsume {Ln+I}, hence, Cn is irreducible. For Joiner's

algorithm, however, this is nearly the worst case example. Each pair (Li,Lj)

64

Simplification and Reduction for Automated Reasoning

Let V = V(C')nV(C \C').
Let u = {x—>ax | xe V; ax is a constant not occurring in C}.
If C 'u subsumes (C\C')|‚1‚ then return IRRED_CONN(C\C').

3. Return C.

Function
POTENTIAL_SUBSUMERS (C)
Input: A connected clause C
Output: {C'gC I C' contains no isolated variable}.

1 . Let C = C1 u . . .U C“, where (Li,Lj) with Lie Ci, Lie Ci is unifiable iff i=j.
2. m=1. 50:0. For all xe ‘V(C) do

If x is (L,K)-isolated for some literals L,I<, then
if there are iSm such that Le Si and jSm such that Ke Si, then
Sj=SiUSj; SFG else

if there is iSrn such that Le Si then Si=SiU{K} else
if there is jSm such that Ke Si then Si=Sju{L} else
Sm={L,K}; m=m+1.
If either of Si,Sj, or Sm contains some Ck, then return C .

3. Return {Sl,...,Sm}.

Next, we give some examples to demonstrate how the algorithm works.
These are clauses, which frequently occur in axiomatizations of mathema-
tical structures that avoid the use of equality. All these clauses are connected
clauses. In all examples the test on isolated variables suffices to recognize
irreducibility.

W
a) This is the clause expressing n-fold transitivity of the P-predicate. Such a
clause can be obtained, for instance, by n-fold self-resolution of the well-
known transitivity clause nAPyz => s. Let n be a natural number, n22,
and let Cn = {L1‚. . .,Ln,Ln+1} with

L1 = “PXIXZI- . a= "Pxnxnfl; Ln+1 =lxn+1-
For each ie {2,...‚n}, the variable xi is (Li-1,Li)-isolated. Thus C\{Ln+1} i s the

smallest subset of C containing no isolated variables. Obviously, this
subclause can not subsume {Ln+1}‚ henceCn i s irreducible. For Ioiner’s
algorithm, however, this is nearly the worst case example. Each pair (Li/Li)

64

Removing Redundancy	 Chapter 4

with i,je 0,...,n} is unifiable. Thus the algorithm requires O(n2) subsumption

tests with a very unfavourable subsumer/subsumend relation of n/n+l1.

b) The following two clauses represent the axiom of associativity in a

notation that avoids the use of equality.2

Cl = ..,Pxyu ..,Pyzv ..,Pxvw Puzw

C2 =..,Pxyu ..,Pyzv ..,Puzw Pxvw

The test on isolated variables yields the following result: The variable y is

isolated in the first two literals, v is isolated in ..,Pyzv and ..,Pxvw (Pxvw),

and u is isolated in ..,Pxyu and Puzw (..,Puzw). Thus each proper subset of Cl

and C2, respectively, contains isolated variables.

4.4 A Subsumption Algorithm Based on Characteristic Matrices

In this section it is shown that the variant test of section 4.2 can be

generalized to a subsumption algorithm that compares favorably with the

subsumption tests developed as yet. First, we shall give a brief overview on

those algorithms3• All these algorithms rely heavily on the fact that the

problem to decide whether clause C subsumes clause D is equivalent to the

decision whether C subsumes Dgr, where Dgr is obtained from D by replacing

all variables by constants not occurring in CuD. We shall thus assume

throughout this section that D is a ground clause. We shall refer to C as the

subsumer, and D will be called the subsumend.

The search for a matching substitution /-1, such that C/-1~D, amounts to a

successive computation of matchers for literals pairs (L,K), where Le C, Ke D.

In analogy to Robinson's (1965a) unification algorithm on the one hand, and

the algorithm given by Martelli & Montanari (1982) on the other hand, there

are two different ways to find out, whether the computed substitutions are

1	 Such a test has a worst case complexity of O«n+l)n), see for instance Gottlob & Leitsch

(1985).

2	 Axiomatizations of some mathematical theories including group theory and ring theory can

be found in Wos's (1988) Basic Research Problems.

3	 Gottlob & Leitsch (1985) provide a detailed discussion of the existing subsumption tests

(except Eisinger's (1981» and their complexity.

65

Removing Redundancy Chapter 4

with i,je {1,...,n} is unifiable. Thus the algorithm requires 0(n2) subsumption
tests with a very unfavourable subsumer/subsumend relation of n/n+11.
b) The following two clauses represent the axiom of associativity in a
notation that avoids the use of equality.2

C1 = -nu -Pyzv -vw Puzw
C2 =-nu -Pyzv -»Puzw vw

The test on isolated variables yields the following result: The variable y is
isolated in the first two literals, v i s isolated in —-Pyzv and fivw (vw),

and u is isolated in -qyu and Puzw (-uPuzw). Thus each proper subset of C1
and C2, respectively, contains isolated variables.

4.4 A Subsumption Algorithm Based on Characteristic Matrices

In this section i t is shown that the variant test of section 4.2 can be
generalized to a subsumption algorithm that compares favorably with the
subsumption tests developed as yet. First, we shall give a brief overview on
those algorithms3. All these algorithms rely heavily on the fact that the
problem to decide whether clause C subsumes clause D is equivalent to the
decision whether C subsumes Dgr, where D3, is obtained from D by replacing
all variables by constants not occurring in CUD. We shall thus assume
throughout this section that D is a ground clause. We shall refer to C as the
subsumer, and D will be called the subsumend.

The search for a matching substitution u, such that CugD, amounts to a
successive computation of matchers for literals pairs (L,K), where Le C, Ke D .
In analogy to Robinson’s (1965a) unification algorithm on the one hand, and
the algorithm given by Martelli & Montanari (1982) on the other hand, there
are two different ways to find out, whether the computed substitutions are

Such a test has a worst case complexity of O((n+1)n)‚ see for instance Cottlob & Leitsch
(1985).

Axiomatizations of some mathematical theories including group theory and ring theory can

be found in Wos’s (1988) Basic Research Problems.

Gottlob & Leitsch (1985) provide a detailed discussion of the existing subsumption tests
(except Eisinger’s (1981)) and their complexity.

65

Simplification and Reduction for Automated Reasoning

compatible. The first approach, which could be compared with Robinson

unification, instantiates the remainder of the given clauses with the

substitution just found. This approach is followed by Chang & Lee (1973), by

Stillman (1973), and by Gottlob & Leitsch (1985). The first two differ in the

search strategy, while the third algorithm improves Stillman's by exploiting

the partition of the clause C into connected components, similarly to the

algorithm given in section 4.3 of this thesis.

The second approach, followed by Eisinger (1981), first computes for each

literal of C a matcher into D and then tests these matchers oh compatibility.

This subsumption test is mainly designed for use in Kowalski's (1975)

connection graph procedure1, it is yet also applicable for resolution based

systems. In the connection graph environment, this subsumption test

profits by the explicit representation of unifiers between the literals of C and

D by so called 5-links2•

Experience has shown that it is much more likely that subsumption does

not take place than the converse. Therefore it seems reasonable to look for

some easy to test criteria that preclude subsumption. One such criterion is

easily provided by the S-link test. If the subsumer contains a literal, which is

not connected to any literal in the subsumend, then subsumption cannot

take place.

As our algorithm is based on Eisinger's, we shall provide a short

description of the S-link test. The following theorem can be found in

Eisinger's (1981) paper.

4.4.1 Theorem:

Let C = {LI,...,Lnl and D be clauses. Then C subsumes D iff Icl ~ IDI and there
is an n-tuple (O"I,. ..,O"n) E uni(C,Ll,Dgr) x ...x uni(C,Ln,Dgr) such that the O"i are

pairwise strongly compatible3. ­

1 For a detailed account of graph based reasoning see Eisinger's thesis (1988).

2 The algorithm is thus also called the S-link test.

3 In our particular case, where D is a ground clause, the notions of unifiers and matchers

coincide, and so do the notions of compatibility and strong compatibility (see lemma

2.1.10).

66

Simplification and Reduction for Automated Reasoning

compatible. The first approach, which could be compared with Robinson
unification, instantiates the remainder of the given clauses with the
substitution just found. This approach is followed by Chang & Lee (1973), by
Stillman (1973), and by Gottlob & Leitsch (1985). The first two differ in the
search strategy, while the third algorithm improves Stillman’s by exploiting
the partition of the clause C into connected components, similarly to the
algorithm given in section 4.3 of this thesis.

The second approach, folloWed by Eisinger (1981), first computes for each
literal of C a matcher into D and then tests these matchers on compatibility.
This subsumption test is mainly designed for use in Kowalski’s (1975)
connection graph procedurel, i t is yet also applicable for resolution based
systems. In the connection graph environment, this subsumption test
profits by the explicit representation of unifiers between the literals of C and
D by so called S-linksz.

Experience has shown that i t is much more likely that subsumption does
not take place than the converse. Therefore i t seems reasonable to look fOr
some easy to test criteria that preclude subsumption. One such criterion is
easily provided by the S-link test. If the subsumer contains a literal, which is
not connected to any literal in the subsumend, then subsumption cannot
take place.

As our algorithm i s based on Eisinger’s, we shall provide a short
description of the S-link test. The following theorem can be found in
Eisinger’s (1981) paper.

4.4.1 Theorem:

Let C = {L1,...,Ln} and D be clauses. Then C subsumes D iff ICI s IDI and there
i s an n-tuple (01,.. . ,on)e uni(C,L1,Dgr)x. . .xuni(C,Ln,Dgr) such that the oi are
pairwise strongly compatible3. I

1 For a detailed account of graph based reasoning see Eisinger’s thesis (1988).

2 The algorithm is thus also called the S-link test.

3 In our particular case, where D i s a ground clause, the notions of unifiers and matchers

coincide, and so do the notions of compatibility and strong compatibility (see lemma

2.1.10).

66

Removing Redundancy Chapter 4

4.4.2 Example:

Given the set {C,Dl,D2,D3} of clauses with

C ={Pxy,Qyc}, Dl ={Pac,Rbc}, D2 ={Puv,Qvw}, D3 ={Pab,Pba,Qac}

one wants to find out, which clauses are subsumed by C. In fig. 4.5 the

unifiable literals are connected with links.

fig. 4.5

Dl can be excluded, since the literal Qyz from C is not unifiable with any

literal in Dl. D2 cannot be a candidate either, since uni(C,Qyc,(D2)gr) =0. For

D3 we obtain the two pairs (O'l,'t) and (0'2;t), where

0'1 ={x~a, y~b}, 0'2 ={x~b, y~a} and 't ={y~a}.

From these two pairs only (0'2,'t) is strongly compatible and thus C subsumes

D3·

This example shows that in order to find the clauses that are subsumed by

a given clause C ={Ll,... ,Ln} first there is a preselection of those clauses that

are connected to every literal in C by the S-links of the connection graph. For

such a candidate clause D the subsumption algorithm is accomplished by a

test of all elements of unHC,Ll,D)x ...xuni(C,Ln,D) on strong compatibility.

Subsumption tests involving long clauses with more than one matching

substitution for each literal may require an expensive search of all elements

of the cartesian product. A case in point is the existence of more than one

most general unifier for two literals on account of theory unification. In this

section we shall provide an algorithm that basically employs the same

principles to restrict the search for an appropriate mapping as the variant

test of section 4.2. Subsumption can be considered a generalization of graph
homomorphism, as is the case for renaming and graph isomorphism. It goes

67

Removing Redundancy Chapter 4

Mm
Given the set {C,D1,D2,D3] of clauses with

C = {n,c}, D1 = {Pac,Rbc}, D2 = {Puv,v}, D3 = {Pab,Pba,Qac}
one wants to find out, which clauses are subsumed by C. In fig. 4.5 the
unifiable literals are connected with links.

D1 Pac Rbc Puv v D2

\ / /
c CJim y

Pab Pba Qac D3

fig. 4.5

D1 can be excluded, since the literal Qyz from C is not unifiable with any
literal in D1. D2 cannot be a candidate either, since uni(C,c,(D2)gr)= @. For
D3 we obtain the two pairs (61,11) and (02,1), where

61 = {x—-)a, y—->b}, 0'2 = {x—9b, y—)a} and 1: = {y—ea}.
From these two pairs only (62,17) is strongly compatible and thus C subsumes
D3.

This example shows that in order to find the clauses that are subsumed by
a given clause C= {L1,...,Ln} first there is a preselection of those clauses that
are connected to every literal in C by the S-links of the connection graph. For
such a candidate clause D the subsumption algorithm is accomplished by a
test of all elements of uni(C,L1,D)x.. .xuni(C,Ln,D) on strong compatibility.

Subsumption tests involving long clauses with more than one matching
substitution for each literal may require an expensive search of all elements
of the cartesian product. A case in point is the existence of more than one
most general unifier for two literals on account of theory unification. In this
section we shall provide an algorithm that basically employs the same
principles to restrict the search for an appropriate mapping as the variant
test of section 4.2. Subsumption can be considered a generalization of graph
homomorphism, as is the case for renaming and graph isomorphism. I t goes

67

Simplification and Reduction for Automated Reasoning

without saying that the properties invariant under homomorphism are
weaker than those invariant under isomorphism. For our purposes, the
mere existence of an outgoing (incoming) link for some node will be an
appropriate invariant. The extensions of the graph algorithms in order to

include constants and functions, however, will turn out to be more cOPlpli­
cated than in section 4.2. We thus first deal with the case where the subsu­

mer is a function free clause. Constants and functions in the subsumend do
not provide any problems:

4.4.3 Definition:

Let D be a ground clause, and let T = T(D) be the set of all terms occurring as
arguments in literals of D. Let S :T~V be injective. Then for each predicate

occurring in D, the characteristic function XP,O is defined by XP,o = xP,oe·

4.4.4 Example:

Let C = {L1, L2} with L1=P(fa,gb) and L2=P(gb,a). Then the terms occurring as
arguments are t1 =fa, t2=gb, t3=a. With S = {ti~ Xi I i=1,2,3} we obtain

CS = {PX1X2, PX2X3}, and thus XC<L1) = [~~J.

It is obvious that the definition of the characteristic function of D does not

depend on the particular choice of S.

4.4.5 Lemma:

Let C be function free, and let D be a ground clause. Let S: 'f(D)~V\V(C) be

injective. Then C subsumes D, iff C subsumes DS.

Proof: If CA k D, then Co'S c DS, hence C subsumes DS. If conversely

C'tcDS, then C'tS-1cD, hence C subsumes D. •

Characteristic matrices encode variable occurrences and the test proposed
in section 4.2, whether the renaming 0' satisfies CO'=D is based on the
observation that there must be pairs of variables from the two clauses that

match in the number of occurrences, which is expressed by Xc<x) = Xo(xO') for

all XE V(C). One might suspect that XC(x):::;; XO(xO')l for all XE V(C) is the

1	 The relation ~ on n-tuples is defined pointwise, that is, (al, ...,an)~(bl,... ,bn), Hf ai~bi for

all iE {I, ... ,n}.

68

Simplification and Reduction for Automated Reasoning

without saying that the properties invariant under homomorphism are
weaker than those invariant under isomorphism. For our purposes, the
mere existence of an outgoing (incoming) link for some node will be an
appropriate invariant. The extensions of the graph algorithms in order to
include constants and functions, however, will turn out to be more compli-
cated than in section 4.2. We thus first deal with the case where the subsu—
mer is a function free clause. Constants and functions in the subsumend do
not provide any problems:

w
Let D be a ground clause, and let T = T(D) be the set of all terms occurring as
arguments in literals of D. Let 9 :T—>V be injective. Then for each predicate
occurring in D, the characteristic function xpp is defined by xpp =XP‚D9-

4.4.4 Example:

Let C = {L1, L2} with L1=P(fa,gb) and L2=P(gb,a). Then the terms occurring as
arguments are t1 =fa, t2=gb, t3=a. With 9 = {ti—) Xi I i=1,2,3} we obtain

1 1
C9 = {PX1X2, PX2X3}, and thus XC(L1) = [0 I] .

It is obvious that the definition of the characteristic function of D does not

depend on the particular choice of 9.

4 .4 .5 Lemma:

Let C be function free, and let D be a ground clause. Let 0 : T(D)—->‘V\V(C) be
injective. Then C subsumes D, iff C subsumes De.

Proof: If Co g D, then C09 (_: D6, hence C subsumes De. If conversely
C1: g D6, then C'I:(3'1 ;D, hence C subsumes D. I

Characteristic matrices encode variable occurrences and the test proposed
in section 4.2, whether the renaming 0‘ satisfies Co=D is based on the
observation that there must be pairs of variables from the two clauses that
match in the number of occurrences, which is expressed by xdx) =XD(X6) for
all xe V(C). One might suspect that xc(x)SxD(xo)1 for all xe V(C) is the

1 The relation 3 on n-tuples i s defined pointwise, that is, (a1,. . . ,an)s(b1,. . . ,bn), iff aisbi for

all ie {1,...‚n}.

68

Removing Redundancy Chapter 4

appropriate condition for a subsumption substitution cr. That this is not the

case, "is shown by the clauses C = {Pxy, Pxz, Pyz} and D = {Puu}. The

substitution 0' = (v~u I ve V(C)} satisfies CacD, but xc(x) == (2,0) i (1,1) ==

xo(xa). Only the following weaker condition is necessary for a subsumption

substitution 0': If the variable x occurs at least once at argument position k,

that is, if (XC<X»k~l, then xa must occur at the same argument position, that

is, (xo(xa»k~l. This can also be expressed by sign(xC<x»k ~ sign(xo(xa»k. In

the following we shall denote sign(n) by n.

4.4.6 Definition:

a) We define a relation ~ on NxN by n ~ m, Hf n ~ m. This relation is

extended to n-tuples and matrices over N in an obvious way.

b) We define a relation ~ on clauses C, D by

L ~ K iff (i) IP(L) = JP(K) and (H) XP,c<L) ~ XP,o(K) holds for each predicate

symbol P occurring in CuD.

4.4.7 Lemma:

Let C be a function free clause and let D be a ground clause. If there is a

substitution a, such that Co' k; D, then L ~ La holds for each Le C.

Proof: Suppose Ca ~ D and Le C. Let A == Xp,C<L) and B = XP,o(La). Let

L=PXl...Xn, and take any i,je{l,... ,n}. If Ai,j==O, then obviously Ai,j~Bi,j. If

Aij=l, then there is some KeC with K==PYl ... Yn such that Xi=yj' Since KaeD,

we have xia=Yja, hence Bi,j==1. •

The previous lemma provides a restriction on the possible matching sub­

stitutions that suffices in many cases to exclude subsumption all together: If

there is some literal L in C such that there exists no literal K in D with L ~ K,

then C cannot subsume D. The following example, taken from (Gottlob &

Leitsch 1985), illustrates this enhancement of the subsumption test.

4.4.8 Example:

For any me N, let

Cm = {PXYIZl, PZ1Y2ZZ,...,PZm-2Ym-lZm-l, PZm-lXZrrJ and

Ok = {Pabla,...,Pabka}.

Each pair (Li,Kj) e CmxDk is unifiable. Let aij be the unifier of (Li,Kj).

a) The S-link test for subsumption needs km steps in the worst case and k2

steps in the best case to detect that C does not subsume D:

69

Removing Redundancy Chapter 4

appropriate condition for a subsumption substitution o. That this is not the
case, 'is shown by the clauses C = [n, s, Pyz} and D = {Puu}. The
substitution o= [v—->u | ve V(C)} satisfies CogD, but XC(X) = (2,0)$(l,1) =
XD(xo). Only the following weaker condition i s necessary for a subsumption

substitution 0': If the variable x occurs at least once at argument position k,
that is, if (xc(x))k21‚ then xO' must occur at the same argument position, that
is, (xD(xo))k21. This can also be expressed by sign(xc(x))k S sign(xD(xo))k. In
the following we shall denote sign(n) by Y1.

4.4.6 Definition:

a) We define a relations, on N xN by n E, m, iff fi $ r‘n. This relation is
extended to n-tuples and matrices over N in an obvious way.

b) We define a relation ‚<. on clauses C, D by
L S, K iff (i) IP(L) =1P(K) and (ii) xp,c(L) ‚<. xP,D(K) holds for each predicate
symbol P occurring in CUD.

4.4.7 Lemma:

Let C be a function free clause and let D be a ground clause. If there is a
substitution 0, such that Co; D, then L E, Lo holds for each Le C.

Proof: Suppose Co g D and Le C. Let A= 7p,C(L) and B=7p,D(Lo). Let
L=Px1...xn, and take any i,je {1,...,n}. If Ai‚j=0, then obviously AiJSBiJ. If
Aij=1‚ then there is some KeC with K=Py1 . . . yn such that xi=yj. Since Koe D,
we have xio=yio, hence Bi‚j=1. I

The previous lemma provides a restriction on the possible matching sub—
stitutions that suffices in many cases to exclude subsumption alltogether: If
there is some literal L in C such that there exists no literal K in D with L S. K,
then C cannot subsume D. The following example, taken from (Gottlob &
Leitsch 1985), illustrates this enhancement of the subsumption test.

4.4.8 Example:
For any me N , let

Cm = {n121, P21yzzz,...,s-2ym-1Zm-1, PZm-1XZmJ and
Dk = {Pab1a,...,Pabka}.

Each pair (Li,Kj) e mDk is unifiable. Let 61; be the unifier of (Li‚Kj).
a) The S-link test for subsumption needs km steps in the worst case and k2
steps in the best case to detect that C does not subsume D:

69

Simplification and Reduction for Automated Reasoning

For each literal LiE Cm we have uni(Li,D) = {O"ij 11~j~k} whence luni(Li,D)1 =
k.	 Therefore

I .><: unHLi,D)1 = km.
1==1

The number of steps needed for the search of a strongly consistent m-tuple

(O"l,.. ,O"m)E.><: uni(Li,D) depends on the ordering of the literals in Cm and on
1==1

the search strategy. Depth-first search (with uncontrolled backtracking) will

always yield the worst case with complexity km. Breadth-first search will

yield the best case when one starts with the literals L1 and Lm and the worst

case when one ends with one of the literals L1 or Lm.

b) The test provided by lemma 4.4.7 needs at most 2 steps fo establish non­

subsumption.

The characteristic matrices of the literals in C are computed as follows:

Xp(L1) = [~ ~ ~], Xp(Li) = [~~~] for iE {2,...,m-1}, and Xp(Lm) =[~~ ~],
001 101101

and for the clause D

Xp(K) =[~ ~ ~],
101

holds for each KE D. We have to test if X(Li) ~ X(K) holds for the three

matrices above. After at most two steps one can recognize that X(LI) ~ X(K)

(respectively X(Lm) ~ X(K» does not hold.

In order to extend the characteristic to arbitrary literals, we define the

function free form C" of a clause C as it was defined in section 4.2.

The computation of the characteristic of the clause D requires only the
consideration of those literals in D that are instantiations of some literal in

C. We write those literals with the predicate symbols occurring in e*.

4.4.9 Definition:

Let C and D be clauses. Then

M(D,C):= {CIlI LEC,IlEuni(C,L,D)}.

4.4.10 Example:

Let e = {LI, L2, L3} with

L1 =P(x,y), L2=P(f(y),d), L3=R(a,g(x» and

D = {P(a,b), P(f(b),d), R(a,g(b»}.

70

Simplification and Reduction for Automated Reasoning

For each literal Lie Cm we have uni(Li,D) = {oii | ISjsk} whence |uni(Li‚D)| =
k. Therefore

I & uni(Li,D)| = km.
The number of steps needed for the search of a strongly consistent m-tuple

(61‚..,0'm)e 131 uni(Li‚D) depends on the ordering of the literals in Cm and on

the search strategy. Depth-first search (with uncontrolled backtracking) will
always yield the worst "case with complexity km. Breadth-first search will
yield the best case when one starts with the literals L1 and Lm and the worst
case when one ends with one of the literals L1 or Lm.

b) The test provided by lemma 4.4.7 needs at most 2 steps to establish non-
subsumption.
The characteristic matrices of the literals in C are computed as follows:

101 101 111

XP(L1)=[1 1 °] , XP(Li)=[°1 0] for i e {2 , . . . ,m-1} , and xp(Lm)=.-|:o 1 0],
001 101 4101

and for the clause D
101

XP(K)=[010] I
101

holds for each Ke D. We have to test if x(Li) S. x(K) holds for the three
matrices above. After at most two steps one can recognize that MM) 5. x(K)
(respectively x(Lm) ‚€ x(K)) does not hold. '

In order to extend the characteristic to arbitrary literals, we define the
function free form C' of a clause C as it was defined in section 4.2.

The computation of the characteristic of the clause D requires only the
consideration of those literals in D that are instantiations of some literal in
C. We write those literals with the predicate symbols occurring in C”.

4.4.9 Definition:

Let C and D be clauses. Then

M(D,C) := {L‘u | Le C, we uni(C,L,D)}.

4.4.10 Example:

Let C = {L1, L2, L3} with
L1 = P(x,y), L2 = P(f(y),d), L3 = R(a,g(X)) and

D = {P(a,b), P(f(b),d), R(a‚g(b)))-

70

Removing Redundancy Chapter 4

For the construction of C'" we introduce the new predicate symbols Ql, Q2,

Q3. Then C"'={QIX Y, Q2Y, Q3X }, We have the following matchers:

uni(C,Ll,D) = {1l11, 1l12}, with 1111 ={x--?a, y--?b}, Jl12 = {x~f(b), y--?d}.

uni(C,L2,D) = {1l22}, with 1122 = {y~b}.

uni(C,L3,D) = {1l33}, with Jl33 ={x~b}.

fig. 4.6

This yields

M(D,C) = {Qlab, Qlfbd, Q2b, Q3b}

4.4.11 Lemma:

Let C and D be clauses. C subsumes D iff C'" subsumes M(D,C).

Proof: Assume there is a substitution cr with Ccr~D. Let Ke C.... Then there

is an Le C with L*=K. We have Kcr=L"'cre M(D,C), since cre unHC,L,D). Hence

C"'cr~M(D,C).

Now suppose there is a substitution cr with C"'crcM(D,C). This implies that

for each Le C there is some K'" with Ke C and some 'tE uni(C,K,D)

L*cr=K"'t. This obviously implies Lcr = K't, which proves CcrcD.

with

•

4.4.12 Corollary:

Let C and D be arbitrary clauses. If CcrcD, then

XP,C...(L) :5; XP,M(D,C)(Lcr)

holds for each predicate symbol P in C, and each LE C....

Now we can formulate the algorithm that improves the S-link test for C

subsumes 0:

71

Removing Redundancy ' Chapter 4

For the construction of C" we introduce the new predicate symbols Q1, Q2,
Q3. Then C‘={Q1xy, s, n}. We have the following matchers:

uni(C,LLD) = {M 1. #12}, with un = {x—>a‚ y-9b}, u1z= {x—9f(b), y—ed}.
uni(C,LzrD) = {1122}, with H22 = {Y->b}-

uni(C,L3,D) = {LL33}, with [133: [x—éb}.

n Pfyd Ragx Qi xy Q2 y Q3 x

Pab bd Ragb Q1 ab Q1 fbd s Q3 b

fig. 4.6
This yields

M(D‚C) = {Qlab‚ Qlfbd, Q2b‚ Qab}

4.4.11 L mma:

Let C and D be clauses. C subsumes Diff C" subsumes M(D,C).

Proof: Assume there is a substitution o with CogD. Let Ke C’. Then there
is an Le C with L'=K. We have K6=L*Ge M(D,C), since 6e uni(C,L,D). Hence
C‘ogM(D,C).
Now suppose there is a substitution 0' with C*6;M(D,C). This implies that
for each Le C there is some K” with Ke C and some t e uni(C,I<,D) with
L*o=K*r. This obviously implies L6=K1:‚ which proves CogD. I

4.4.12 Corollary:
Let C and D be arbitrary clauses. If C6_C_D, then

XP‚C*(L) S xP,M(D,c)(Lo)
holds for each predicate symbol P in C, and each Le C".

Now we can formulate the algorithm that improves the S-link test for C
subsumes D:

71

Simplification and Reduction for Automated Reasoning

Algorithm

SUBSUMPTION (C,D)

Input: Clauses C = {L1r..,L } and D.n

Output: True, if C subsumes D and False otherwise.

1. If there is a literal L in C that does not possess an S-link to a literal in
D, then return False.

2. For each literal L of C do begin

Compute uni(C,L,D) . If uni(C,L,D)=0, then return False end.

3. Compute C* and M(D,C) and the set of all characteristic matrices of all

literals.

4. For all Le C do begin

for all O'e unHC,L,D): If X(L*) i X(LO'), then discard 0' from
uni(C,L,D,);

if uni(C,L,D) = 0, return False end

5. If there is some (O'l,...,O'n) e .~ uni(Li,D) such that the O'i are pairwise
1=1

strongly compatible then return True, otherwise False.

In automated theorem proving subsumption tests are usually repeated
very often. Therefore the characteristic matrices for a clause C can be

computed once for many'subsumption tests.

Of course one has to realize that the computation of the set S of

characteristic matrices for the clause C is an additional effort that has to be
performed by the subsumption algorithm. Thus one has to weigh the costs

of the method against its possible gains.

Finally, it should be pointed out that the occurrence of theory unifiers
causes no change in the subsumption algorithm. Theory subsumption in an

equational theory 'E ('E-subsumption) is defined by the existence of a substi­

tution 0', such that CO'=~D'~D. Lemma 4.4.11 applies to 'E-subsumption in

the following form: C 'E-subsumes D, iff C* subsumes

M~(D,C)= {L\1 ILe C, Ile uni~C,L,D)},

where uni~(C,L,D) denotes the set of 'E-unifiers of L and literals in D. Thus

E-subsumption is reduced to ordinary subsumption.

72

Simplification and Reduction for Automated Reasoning

Algorithm

SUBSUMPTION (C,D)
Input: Clauses C = {L1,...,Ln} and D.
Output: True, if C subsumes D and False otherwise.

1. If there is a literal L in C that does not possess an S—link to a literal in
D, then return False.

2. For each literal L of C do begin
Compute uni(C,L,D) . If uni(C,L,D)=@, then return False end.

3. Compute C" and M(D,C) and the set of all characteristic matrices of all
literals.

4. For all Le C do begin
for all 66 uni(C,L,D): If x(L") $ x(L0') , then discard o from

uni(C,L,D);
if uni(C,L,D) = @, return False end

5. If there is some (01,...,o'n) e 31 uni(Li,D) such that the ci are pairwise

strongly compatible then return True, otherwise False.

In automated theorem proving subsumption tests are usually repeated
very often. Therefore the characteristic matrices for a clause C can be
computed once for many‘ subsumption tests.

Of course one has to realize that the computation of the set S of
characteristic matrices for the clause C is an additional effort that has to be
performed by the subsumption algorithm. Thus one has to weigh the costs
of the method against its possible gains.

Finally, it should be pointed out that the occurrence of theory unifiers
causes no change in the subsumption algorithm. Theory subsumption in an
equational theory £ (ii-subsumption) is defined by the existence of a substi-
tution 0', such that C6=£D'QD. Lemma 4.4.11 applies to ZZ-subsumption in

the following form: C ßsubsumes D, iff C" subsumes
M£(D,C) = {Up | Le C, pe uni£(C,L,D)},

where uni£(C,L,D) denotes the set of E-unifiers of L and literals in D . Thus
E—subsumption is reduced to ordinary subsumption.

72

Removing Redundancy Chapter 4

4.4.13 Example:

Let C = (Pf(x,y), Qxz, Qzx}, and 0 = (Pf(a,b), Qba}, where the function symbol f

is commutative. We introduce the new predicate symbol PI for Pf(*,*), and

obtain C* = {PIxy, Qxz, Qzx}. Since f is commutative,

uni'!:(C,Pf(x,y),D) = (crl,CJ2} with

crl={x~a, y~b} and cr2={x~b, y~a}.

Thus M'!:(D,C) = {PIab, Plba, Qba}, and it remains to test whether {PIxy, Qxz,

Qzx} subsumes {Plab, Plba, Qba}, which is performed with the algorithm

above.

4.5 Concluding Remarks

Section 4 provides several techniques to detect redundant information,

which come under subsumption. Both the variant test and the subsumption

test are based on the notion of a characteristic matrix of a literal, which,

roughly speaking, encodes the occurrences of the literal's variables in the

literals of the whole clause. These tests proceed from the assumption that

most probably a given clause does not subsume another one (and, a fortiori,

it is not a variant of the other), and that failure of the subsumption test often

finds is expression by clashes in variable occurrences. Thus our techniques
proceed in the spirit of Eisinger's (1981) S-link test, by "filtering out" the

potential subsumers according to fast and successively stronger preselections

and thus postponing the expensive merging of substitutions. The particular

siginificance of the variant test is due to the fact that for many "simple"

clauses, which nevertheless frequently occur in practice, there is an algorith­

mic solution which requires no merging at all. This solution simply

amounts to a test on equality of two sets of matrices. In the case of "simple"

clauses, the corresponding set of matrices yields a unique representation.

Therefore the characteristic matrix of a clause can be used just as an indexing

scheme, that is, a single data element suffices to represent two clauses, which

are equal up to renaming.

73

Removing Redundancy Chapter 4

@@
Let C = {Pf(x‚y)‚ s, s}, and D = (Pf(a,b), Qba}, where the function symbol f

is commutative. We introduce the new predicate symbol P1 for Pf(*,*), and
obtain C"= {P1xy‚ s, s}. Since f is commutative,

uni£(C,Pf(x,y),D) = {01,62} with
ol={x——>a, y-—>b} and 62={x—-)b, y—-)a}.

Thus M1;(D,C) = {P1ab, P1ba, Qba}, and i t remains to test whether {P1xy, s,
s} subsumes {P1ab, P1ba, Qba}, which i s performed with the algorithm
above.

4.5 Concluding Remarks

Section 4 provides several techniques to detect redundant information,
which come under subsumption. Both the variant test and the subsumption
test are based on the notion of a characteristic matrix of a literal, which,
roughly speaking, encodes the occurrences of the literal’s variables in the
literals of the Whole clause. These tests proceed from the assumption that
most probably a given clause does not subsume another one (and, a fortiori,
i t is not a variant of the other), and that failure of the subsumption test often
finds is expression by clashes in variable occurrences. Thus our techniques
proceed in the spirit of Eisinger’s (1981) S—link test, by ”filtering out” the
potential subsumers according to fast and successively stronger preselections
and thus postponing the expensive merging of substitutions. The particular
siginificance of the variant test is due to the fact that for many "simple"
clauses, which nevertheless frequently occur in practice, there is an algorith-
mic solution which requires no merging a t all. This solution simply
amounts to a test on equality of two sets of matrices. In the case of ”simple”
clauses, the corresponding set of matrices yields a unique representation.
Therefore the characteristic matrix of a clause can be used just as an indexing
scheme, that is, a single data element suffices to represent two clauses, which
are equal up to renaming.

73

Simplification and Reduction for Automated Reasoning

5 Eliminating the Derivation of Redundant Clauses

Not only the mere presence, but also the additional derivation of redundant

information is one of the greatest obstacles to the efficiency of reasoning

programs, as redundant clauses generate further redundancy. Wos (1988)

reports an attempt to prove SAM's lemma (see Guard 1969) using hyper­

resolution, where 6000 clauses identical to retained clauses and 5000 clauses

being proper instances of retained clauses were generated. Even if these

redundant clauses can be removed after their generation, they must be

processed with demodulation, subsumption, and other standard procedures.

Moreover, the test on subsumption is rather expensive (cf section 1.2 of this

thesis). A strategy to prevent the generation of redundant clauses, or at least

to reduce the number of newly generated unneeded clauses, would thus

prove very useful for increasing the power of a reasoning system. In sections

5.3 and 5.4 we shall characterize two clause structures that admit the

systematic derivation of subsumed clauses, and in section 5.5 we show how

to cope with these structures in order to prohibit the derivation of subsumed

clauses.

Another question addressed in this chapter is closely related to the quest

for a strategy to decrease the derivation of redundant clauses. If we had a

reasonable means to completely prohibit the derivation of redundant

clauses, we could also decrease the number of necessary subsumption tests

in a significant way, since use of this means would automatically exclude the

occurrence of forward subsumed clauses. As the subsumption test is rather

expensive, it would be of great value to have a means to restrict the number

of required tests. Even if we cannot expect to find such a strategy that over­

comes the need for forward subsumption tests, the results of sections 5.2 and

5.3 will show that we can at least exclude a great part of the present clauses

from being subsumers of the newly generated clause.

The structures, which are to a part responsible for the derivation of

redundant clauses, will be described as particular clause graph structures.

Section 5.1 serves as a short introduction into the clause graph terminology.

74

Simplification and Reduction for Automated Reasoning

5 Eliminating the Derivation of Redundant Clauses

Not only the mere presence, but also the additional derivation of redundant
information is one of the greatest obstacles to the efficiency of reasoning
programs, as redundant clauses generate further redundancy. Wos (1988)
reports an attempt to prove SAM’s lemma (see Guard 1969) using hyper-
resolution, where 6000 clauses identical to retained clauses and 5000 clauses
being proper instances of retained clauses were generated. Even if these
redundant clauses can be removed after their generation, they must be
processed with demodulation, subsumption, and other standard procedures.
Moreover, the test on subsumption is rather expensive (cf section 1.2 of this
thesis). A strategy to prevent the generation of redundant clauses, or at least
to reduce the number of newly generated unneeded clauses, would thus
prove very useful for increasing the power of a reasoning system. In sections
5.3 and 5.4 we shall characterize two clause structures that admit the
systematic derivation of subsumed clauses, and in section 5.5 we show how
to cope with these structures in order to prohibit the derivation of subsumed
clauses.

Another question addressed in this chapter is closely related to the quest
for a strategy to decrease the derivation of redundant clauses. If we had a
reasonable means to completely prohibit the derivation of redundant
clauses, we could also decrease the number of necessary subsumption tests
in a significant way, since use of this means would automatically exclude the
occurrence of forward subsumed clauses. As the subsumption test is rather
expensive, it would be of great value to have a means to restrict the number
of required tests. Even if we cannot expect to find such a strategy that over—
comes the need for forward subsumption tests, the results of sections 5.2 and

5.3 will show that we can at least exclude a great part of the present clauses
from being subsumers of the newly generated clause.

The structures, which are to a part responsible for the derivation of
redundant clauses, will be described as particular clause graph structures.
Section 5.1 serves as a short introduction into the clause graph terminology.

74

Reducing the Derivation of Redundancy	 Chapter 5

5.1 Oause Graphs

In the following we shall deal with finite graphs, whose nodes are labelled

with literals and whose links are R-links (Le. links joining resolvable

literals) or S-links (Le. links joining unifiable literals) labelled with substitu­

tions.

5.1.1 Definition:

An (un)directed clause graph is a 5-tuple G =(N,A,[NJ,£,:L*), where

(i)	 N is a finite set of literal nodes.
(ii)	 A k NxN is a (symmetric) relation. The elements (L,K) of A are called

links and written in the form LK.

(Hi)	 [N] k 2N is a partition of the literal nodes. The elements of [N] are

called the clause nodes of G. The clause of a literal node L is denoted by

[L].

(iv)	 £:N~1L is a mapping, which labels each literal node L with a literal

denoted by 1LL such that LKe A implies that the atoms of 1LL and 1LK are

weakly unifiable.

(v)	 L*:A~2~ is a mapping, which labels each link with a set of substitu­

tions, such that LKe A implies I,*(LK) is the set of most general unifiers

of the atoms of 1LLand 1LK.

We do not distinguish between literal and clause nodes on the one hand

and literals and clauses on the other hand. We make the additional (purely

technical) requirement that V(C)nV(D)=0 for different clause nodes C and

D of G. The standard graph theory terminology applies to clause graphs: a

link LKe A joins the literal nodes Land K; the link LK is incident with the

literal nodes Land K and also with the clause nodes [L] and [K]; two links are

adjacent, if they are incident with a common literal node.

The following definitions and results hold equally for undirected as for

directed clause graphs. Note that according to definition 5.1.1, undirected

graphs are considered a special form of directed ones with symmetric link

relation.

5.1.2 Definition:

For a clause graph G =(N,A,[NJ,£,:L*) we use the following notation:

N(G) = N, A(G) = A, C(G) = [N]

75

Reducing the Derivation of Redundancy Chapter 5

5.1 Clause Graphs

In the following we shall deal with finite graphs, whose nodes are labelled
with literals and whose links are R—links (i.e. links joining resolvable
literals) or S-links (i.e. links joining unifiable literals) labelled with substitu-
tions.

mm
An (un)directed clause graph is a 5-tuple G = (N,A,[N],£,2"), where
(i) N is a finite set of literal nodes.
(ii) A ; NxN is a (symmetric) relation. The elements (L,K) of A are called

links and written in the form LK.
(iii) [N] g 2N is a partition of the literal nodes. The elements of [N] are

called the clause nodes of G. The clause of a literal node L is denoted by
[L].

(iv) £:N-—)lL is a mapping, which labels each literal node L with a literal
denoted by LL such that LKe A implies that the atoms of LL and LK are
weakly unifiable.

(v) SEA—>22 is a mapping, which labels each link with a set of substitu-
tions, such that LKeA implies 2*(LK) is the set of most general unifiers
of the atoms of LL and LK.

We do not distinguish between literal and clause nodes on the one hand
and literals and clauses on the other hand. We make the additional (purely
technical) requirement that V(C)nV(D)=@ for different clause nodes C and
D of G. The standard graph theory terminology applies to clause graphs: a
link LKe A joins the literal nodes L and K; the link LK is incident with the
literal nodes L and K and also with the clause nodes [L] and [K]; two links are
adjacent, if they are incident with a common literal node.

The following definitions and results hold equally for undirected as for
directed clause graphs. Note that according to definition 5.1.1, undirected
graphs are considered a special form of directed ones with symmetric link
relation.

5.1.2 Definition:

For a clause graph G = (N,A‚[N]‚£‚Z") we use the following notation:
N (G) = N, MG) = A, C(G) = [N]

75

Simplification and Reduction for Automated Reasoning

O(L) = ({L}xN)flA is the set of links outgoing from the literal L,

I(L) = (Nx{L})nA is the set of links incoming to the literal L,

A(L) = I(L)uO(L) is the set of links incident with L, and likewise for clause

nodes.

A link LK is called an R-link, if the signs of Land K are different, and an s­

link otherwise.

The notions O(L), I(L), and A(L) coincide for undirected graphs. Two links

with compatible substitutions will also be called compatible. For any clause

node C, E(C) denotes the literals 'of C which are not incident with any
AE A(C). If O(C)nI(D):;t0, then D is called a successor of C, and C is a prede­
cessor of D.

5.1.3 Definition:

A clause graph G' is a subgraph of a clause graph G, if each link of G' is a link

of G, and each clause node of G' is a clause node of G, and the labeling

function of G' is the appropriate restriction of the labeling function of G.

Two frequently occurring types of subgraphs are obtained from a graph G

by removing a subset of A(G), or by removing a clause node of G together
with the links incident with this node, respectively: •

5.1.4 Definition:

Let G be a clause graph, let AcA(G), and let CE C(G).

a) The subgraph GA of G is defined by
C(GA) =C(G), and A(GA) =A(G)\A

b)	 The subgraph GC of G is defined by

C(GC) = C(G)\{C}, and A(GC) = A(G)\A(C)

Let A=LK be an R-link with LE C and KE D, and let crE L"'(A). Then the
resolvent along A is the resolvent R = (C \ {L})cru(D \ {K})cr of C and D. Let

Al =MM' be an R-link with Me C\{L} and M'EE. If Al is compatible with A,

then Mcr and M' are also resolvable. The link AI' = MO'M' between the literal
MO' in R and the literal M' is called the link inherited from Al qua A (see
figure 5.1). For any link A, we define the relation ~A. by C~D,A.R, Hf
AE O(C)nI(D), and R is the resolvent along A.

76

Simplification and Reduction for Automated Reasoning

O(L) = ({L}><N)nA is the set of links outgoing from the literal L,
I(L) = (Nx{L})nA is the set of links incoming to the literal L,

A(L) = I(L)UO(L) is the set of links incident with L, and likewise for clause
nodes.
A link LK is called an R-link, if the signs of L and K are different, and an S -
link otherwise.

The notions O(L), I(L), and A(L) coincide for undirected graphs. Two links

with compatible substitutions will also be called compatible. For any clause
node C, E(C) denotes the literals “of C which are not incident with any
Xe MC). If O(C)nI(D)¢@, then D is called a successor of C, and C is a prede-
cessor of D.

W
A clause graph G' is a subgraph of a clause graph G, if each link of G‘ is a link
of G, and each clause node of G' is a clause node of G, and the labeling
function of G' is the appropriate restriction of the labeling function of G.

Two frequently occurring types of subgraphs are obtained from a graph G
by removing a subset of A(G), or by removing a clause node of G together
with the links incident with this node, respectively: '

W
Let G be a clause graph, let A<_:A(G), and let Ce C(G).
a) The subgraph GA of G is defined by

C(GA) = C(G), and MGA) = A(G)\A
b) The subgraph GC of G is defined by

C(GC) = C(G)\{C}, and NGC) = A(G)\A(C)
Let Ä=LK be an R-link with Le C and Ke D, and let oe 2‘0»). Then the

resolvent along 1 is the resolvent R= (C\ {L})ou(D\{K})o of C and D. Let

M =MM' be an R-link with Me C\{L} and M'e E. If M is compatible with Ä,
then Mo and M‘ are also resolvable. The link 11': MoM' between the literal
M6 in R and the literal M‘ i s called the link inher i ted from 7L1 qua % (see
figure 5.1). For any link 7L, we define the relation —>7L by C—->D‚7„ R, iff
le O(C)nI(D)‚ and R is the resolvent along X.

76

Reducing the Derivation of Redundancy Chapter 5

Resolvent along A. A.'l is inherited fromA.1 quaA.

Fig. 5.1: Link Inheritance

If A = {lq, ... ,An} is any finite set of links, then the merge of A is defined by

k*(A)=k*(Al)* ... *k*(An), that is the set of most general common instances of

substitutions belonging to A. Note that in particular k*('21) = {id}.

5.1.5 Definition:

Let G be a clause graph and let AE A(G). Then the derivation relation G--7A.G'

is defined by C(G')=C(G)u{R}, where R is the resolvent along A, and

A(G')=A(G)uA', where A' is the set of links, which are inherited qua A.

A path from node Cl to Cn, n~l, in a clause graph is an alternating

sequence (Cl, AI,,Cn-l, An-I, Cn) of clause nodes and links, such that

AiE O(Ci)nI(Ci+l) for iE {l,... ,n-1}, no two links are adjacent, and the links

AI, ... ,An-1 are pairwise compatible. The latter condition implies that

k*({AI, ...,An-l}) *'21.

The path from Cl to Cn is called weakly cyclic, if there is also a link An

from Cn to Cl. A weakly cyclic path is called cyclic, if k*({Al, ...,An-I,AnD :;i:'21. A

clause graph is called cyclic, if it contains a (weakly) cyclic path.

5.2 Redundancy Caused by Cyclic Structures

On closer inspection of the proof of SAM's lemma it turns out that many of

the duplicates are generated by twofold application of the symmetry clause

S = ...,Pxy Pyx, like1

Pab --75 Pba --75 Pab

1 Remember the notation C~DE for the resolution step yielding resolvent E(definition 2.4.7).

77

Reducing the Derivation of Redundancy Chapter 5

Ä. M

U resolution 1.1

Resolvent along 1, 1'1 is inherited from M qua Ä

Fig. 5.1: Link Inheritance

If A = {7.1,...,7Ln} is any finite set of links, then the merge of A is defined by
ETA) = E‘(M)*...*Z‘(Ä‚n), that is the set of most general common instances of
substitutions belonging to A. Note that in particular 279) = {id}.

msn—&num-
Let G be a clause graph and let le A(G). Then the derivation relation G—nG'
is defined by C(G')=C(G)U{R}, where R is the resolvent along Ä, and
A(G‘)=A(G)UA', where A' is the set of links, which are inherited qua 7».

A pa th from node C1 to C“, n21, in a clause graph i s an alternating
sequence (C1, M, ‚Cn-1‚ MM, Cn) o f clause nodes and links, such that
Me O(Ci)nI (Ci+1) for ie {1,...‚n-1}‚ no two links are adjacent, and the links
M,...‚Änq are pairwise compatible. The latter condition implies that
Z”({k1,. . Jun-1}) #6 .

The path from C1 to Cn is called weakly cyclic, if there is also a link An
from Cn to C1. A weakly cyclic path i s called cyclic, if Z*({Ä1,...‚Än.1,ln}) :26. A
clause graph is called cyclic, if it contains a (weakly) cyclic path.

5.2 Redundancy Caused by Cyclic Structures .

On closer inspection of the proof of SAM’s lemma it turns out that many of
the duplicates are generated by twofold application of the symmetry clause
S = -n Pyx, like1

Pab ——>s Pba —>s Pab

1 Remember the notation C—>DE for the resolution step yielding resolvent E (definition 2.4.7).

77

Simplification and Reduction for Automated Reasoning

Obviously, only the symmetry clause Pxy -'Pyx accounts for the derivation
of the duplicate clause Pab in this example. No matter what the other clause

looks like, the result after the second resolution step is always identical to
the original clause. This should be compared with the following two

resolution steps with the clause C = -,Px Pa:

Pa ~C Pa and Pb ~c Pa

In this example, the derivation of a subsumed clause depends not only on
the clause C, but also on the choice of the other clause. In the following

section, we shall be concerned with structures of the first type. In this

symmetry example the resolvent is identical to its own "grandfather" in the
resolution derivation. More generally, we shall deal with resolvents that are
subsumed by some of their ancestors in a linear resolution derivation, a

phenomenon, which we shall call ancestor subsumption. Ancestor

subsumption is a particular kind of forward subsumption (Overbeek 1975),
that is the subsumption of a newly deduced clause by another, already

present clause. One of this section's objectives is to characterize clause sets
that admit ancestor subsumption. This approach is based on the following

observation: A resolvent of two ground clauses cannot be subsumed by one

of its parent clauses (a situation, which could be called parent subsumption),
unless the other parent is a tautology. This can easily be seen: let C = LIL2 ...Ln

and D = -,LIK2 Kn be ground clauses and assume, C subsumes the resolvent

R=K2 KnL2 Ln. Then LIER must hold and from Ll~L2...Ln now follows

LIEK2 Kn. Hence D is a tautology. It will turn out in this section that cycles
are for ancestor subsumption what tautologies are for parent subsumption.

This means that a resolvent R cannot be subsumed by some ancestor C,

unless the set of ancestors of R contains a cycle1. Noncyclic clause sets thus

have the nice property of excluding ancestor subsumption. A prominent
example for this class of clause sets is Schubert's Steamroller (see Stickel
1986).

The concept of cyclic clause sets, which accounts for ancestor subsump­

tion, proves also very useful in the context of decreasing the number of sub­
sumption tests. Such a restriction can be achieved as follows: Having

1 The notion of a cycle was introduced by Shostak (1976).

78

Simplification and Reduction for Automated Reasoning

Obviously, only the symmetry clause n —1Pyx accounts for the derivation
of the duplicate clause Pab in this example. No matter what the other clause
looks like, the result after the second resolution step is always identical to
the original clause. This should be compared with the following two
resolution steps with the clause C = -q Pa:

Pa —->C Pa and Pb —->C Pa

In this example, the derivation of a subsumed clause depends not only on
the clause C, but also on the choice of the other clause. In the following
section, we shall be concerned with structures of the first type. In this
symmetry example the resolvent is identical to its own ”grandfather” in the
resolution derivation. More generally, we shall deal with resolvents that are
subsumed by some of their ancestors in a linear resolution derivation, a
phenomenon, which we shall call ancestor subsumption. Ancestor
subsumption is a particular kind of forward subsumption (Overbeek 1975),
that is the subsumption of a newly deduced clause by another, already
present clause. One of this section’s objectives is to characterize clause sets
that admit ancestor subsumption. This approach is based on the following
observation: A resolvent of two ground clauses cannot be subsumed by one
of its parent clauses (a situation, which could be called parent subsumption),
unless the other parent is a tautology. This can easily be seen: let C =L1L2...Ln
and D = nL1K2 . . .Kn be ground clauses and assume, C subsumes the resolvent
R=K2...KnL2...Ln. Then L16 R must hold and from L1eL2...Ln now follows
L1eK2...Kn. Hence D is a tautology. It will turn out in this section that cycles
are for ancestor subsumption what tautologies are for parent subsumption.
This means that a resolvent R cannot be subsumed by some ancestor C,
unless the set of ancestors of R contains a cyclel. Noncyclic clause sets thus
have the nice property of excluding ancestor subsumption. A prominent
example for this class of clause sets is Schubert’s Steamroller (see Stickel
1986).

The concept of cyclic clause sets, which accounts for ancestor subsump-
tion, proves also very useful in the context of decreasing the number of sub—
sumption tests. such a restriction can be achieved as follows: Having

1 The notion of a cycle was introduced by Shostak (1976).

78

Reducing the Derivation of Redundancy Chapter 5

identified the cycles in a given clause set, a comparision of the ancestors of a

given resolvent with the set of cycles suffices to possibly exclude these

ancestors from being subsumers. Applied to the simple example from above,

where R is the resolvent of two ground clauses C and D, we can state that the

tests C subsumes Rand D subsumes R both are superfluous, since these tests

fail, except one of the clauses is a tautology. (We can assume, of course, that

tautologies are always removed).

In the following we give a syntactical characterization of clause sets ad­

mitting ancestor subsumption. Our main result is as follows: Clause sets

admitting ancestor subsumption possess cycles, whose elements are the far
parents of the subsumed clause. First, we establish some results for the

particular case of parent subsumption.

5.2.1 Definition:

A clause is self-resolving, if it resolves with a copy of itself.

The following lemma determines those clauses that possibly produce

subsumed resolvents.

5.2.2 Lemma:

Let C, D, and R be clauses with C~D R. If R is a variant of C, then D is self­

resolving.

Proof: For sake of simplicity we shall assume that IC I = I D I == 2. Let C =

NM and let D = LK and let 0' be a unifier of M and ..,L. From the assumption

follows the existence of a renaming p with Rp = (NK)ap == NM. Now either

Nap == Nand Kap == M or

Nap=M and Kap=N.

Case 1: If Kap == M, then Kapa = Ma = ...,La. Let <p == apa. We show that there is

a renaming substitution p' and a substitution "', such that Kp'", == ...,L",. Let p'

be a renaming substitution with

dom(p') == dom(a) r1 dam(<p) and cod(p')r1V(L,K)==0.

Define the substitution", with dom(",) =dam(a)udam(cp)ucad(p') by

'" Idom(cr) =a,
'" Idom(<p)\dom(cr) =<p and
(xp')",=xcp far xp'e cod(p').

Then we have x",=xa for xe VeL) and yp'",=ycp far ye V(K), hence L",=LO'=K<p

== Kp''l'.

79

Reducing the Derivation of Redundancy Chapter 5

identified the cycles in a given clause set, a comparision of the ancestors of a
given resolvent with the set of cycles suffices to possibly exclude these
ancestors from being subsumers. Applied to the simple example from above,
where R is the resolvent of two ground clauses C and D, we can state that the
tests C subsumes R and D subsumes R both are superfluous, since these tests
fail, except one of the clauses is a tautology. (We can assume, of course, that
tautologies are always removed).

In the following we give a syntactical characterization of clause sets ad-
mitting ancestor subsumption. Our main result is as follows: Clause sets
admitting ancestor subsumption possess cycles, whose elements are the far
parents of the subsumed clause. First, we establish some results for the
particular case of parent subsumption.

5.2.1 Definition:
A clause is self-resolving, if it resolves with a copy of itself.

The following lemma determines those clauses that possibly produce
subsumed resolvents.

5.2.2 Lemma:

Let C, D, and R be clauses with C—m R. If R is a variant of C, then D i s self-
resolving.

Proof: For sake of simplicity we shall assume that ICI = l DI =2. Let C =
NM and let D = LK and let 6 be a unifier of M and ~1L. From the assumption
follows the existence of a renaming p with Rp = (NK)op = NM. Now either

Nap = N and c = M or
N6p=M and c=N.

Case 1: If Kap = M, then Kopo = M0 = nLo: Let (p = 0pc. We show that there is
a renaming substitution p' and a substitution w, such that Kp'w = "IL\|I. Let p'
be a renaming substitution with

dom(p') = dom(o) (\ dom((p) and cod(p')nV(L,K)=@.
Define the substitution \V with dom(w) =dom(o)udom(<p)ucod(p') by

w | dom(0') = o,
W | dom(<p)\dom(6) = (P and
(xp')\|r=xq> for xp'e cod(p').

Then we have xqt=xc for xe V(L) and yp'w=y(p for ye V(K), hence Lw=Lc=K<p
= KP'W»

79

Simplification and Reduction for Automated Reasoning

Case 2: Now we have Kerperp = M, and the lemma is proved analogously to
case 1. •

The next lemma shows that clauses, which only produce parent sub­

sumed clauses, are tautologies. A tautology D with ID I =2, with linear lite­

ralsI , and without function symbols2 will be called an elementary tautology.

5.2.3 Lemma:

Let D be a clause.

a) Suppose for all clauses C the following holds: C ~D R implies that C

and R are variants. Then D is an elementary tautology.

b) Suppose for all clauses C the following holds: C ~D R implies that R is

an instance of C. Then D is a tautology and ID I = 2.

c)	 Suppose for all clauses C the following holds: C ~D R implies that C

subsumes R. Then D is a tautology.

Proof: a) Let L = Ptl ... tn be an arbitrary literal of D. Let C be the unit clause

consisting of the literal M=-.Lp, for some variable renaming substitution p.

Then there is a resolvent R of C and D and R is a subset of D. From the

assumption follows that C is a variant of the resolvent R, that is, there is a

renaming substitution er, such that R=Mer =-.Lper. Thus C is the binary clause

LR. Let ~ be the renaming substitution per. If ~ is not the identity, then there

is some xe V(L) such that x~=x' with x*x'. Let a be an arbitrary constant not

occurring in C nor D and let C' be the clause consisting of the literal M' =

-.L{x~a}. Let R' be the resolvent of C' and D. Then, as a occurs in M', but not

in R'=-.L~{x~a}=-.L~,we obtain R':;t:M', which is a contradiction. Hence ~ is

the identity and R=-.L. If D contains a function symbol g, then g occurs in

both literals of D, hence also in any resolvent of D. Let Cl be the unit clause

consisting of the literal PXI ..Xn, with Xie V(D) for all ie {1..n}. Then Cl has a

resolvent RI with D, however, as g occurs in RI, but not in Cl, the clauses RI

and Cl cannot be variants, which is a contradiction to the assumption. Thus

D cannot contain function symbols. In a similar way it can be shown that the

literals of D are linear.

1 Remember that a literal L is called linear, iff each variable occurs at most once in L.

2 Note that this condition also precludes the occurence of constant symbols.

80

Simplification and Reduction for Automated Reasoning

Case 2: Now we have Kopop =M, and the lemma is proved analogously to
case 1. .

The next lemma shows that clauses, which only produce parent sub-
sumed clauses, are tautologies. A tautology D with ID I =2, with linear lite-
ralsl, and without function symbols2 will be called an elementary tautology.

Let D be a clause.
a) Suppose for all clauses C the following holds: C —>D R implies that C

and R are variants. Then D is an elementary tautology.
b) Suppose for all clauses C the following holds: C—>DR implies that R is

an instance of C. Then D is a tautology and I DI = 2.
c) Suppose for all clauses C the following holds: C—aDR implies that C

subsumes R. Then D is a tautology.

Proof: a) Let L = Pt1...tn be an arbitrary literal of D. Let C be the unit clause
consisting of the literal M=-1Lp, for some variable renaming substitution p.
Then there i s a resolvent R of C and D and R i s a subset of D . From the
assumption follows that C i s a variant of the resolvent R, that is, there is a

renaming substitution 6, such that R=Mo =—:Lp0'. Thus C is the binary clause.
LR. Let u be the renaming substitution pc. If „ is not the identity, then there
is some xe V(L) such that xu=x' with X:;tx'. Let a be an arbitrary constant not
occurring in C nor D and let C' be the clause consisting of the literal M' =
-L{x—>a}. Let R' be the resolvent of C' and D. Then, as a occurs in M', but not
in R'=-1Lp.{x—-)a}=-Lu, we obtain R'¢M', which is a contradiction. Hence it i s
the identity and R=-L. If D contains a function symbol g, then g occurs in
both literals of D, hence also in any resolvent of D. Let C1 be the unit clause
consisting of the literal Px1..xn, with xie V(D) for all i e {1..n}. Then C1 has a
resolvent R1 with D, however, as g occurs in R], but not in C1, the clauses R1
and C1 cannot be variants, which is a contradiction to the assumption. Thus
D cannot contain function symbols. In a similar way it can be shown that the
literals of D are linear.

1 Remember that a literal L i s called linear, iff each variable occurs at most once in L.

2 Note that this condition also precludes the occurence of constant symbols.

80

Reducing the Derivation of Redundancy Chapter 5

b) The same argument as for the first part of a) applies, except that ~ is now

an arbitrary substitution, and x' must be replaced by a term t.

c) If C is any clause resolving with D to some resolvent R, then C subsumes

R, that is, there exists some subset R' of R, which is an instance of C. The

assertion now follows from part b). •

Our goal now is to generalize lemmata 5.2.2 and 5.2.3 to ancestor sub­

sumption instead of parent subsumption, that is, we want to determine

those clause sets V, which - possibly or only - produce (ancestor) subsumed

clauses. It will turn out that the appropriate generalization of self-resolving

and tautologous clauses are cyclic clause sets in directed clause graphs.

In the following we shall deal with linear derivation without repetitions,

that are derivations ~ of the form

~=C ~Dl ,AI Cl ~D2,A2'" ~Dn,AnCn,
where the Di are pairwise distinct.

The number n is called the length of ~. A derivation of length 0 is said to

be trivial. It will prove useful to determine the clause graph structure for

such a linear derivation. A linear derivation implies a certain direction of

resolution steps, and this direction is reflected in the representation in form

of a directed clause graph. We are thus interested in the structure of the

directed clause graph G with C(G) = {DI,...,Dn}, where each AE A(G) represents

a link between some clause nodes of G, which is inherited to some Aj. Note

that the links in G, which inherit to some Aj are uniquely determined.

5.2.4 Definition:

Let

~=C ~Dl ,AI Cl ~D2,A2 ... ~Dn/An Cn
be a linear derivation without repetition. The associated clause graph G(8)
is the graph G with

C(G) = {C,DI,. ..,Dnl and

A(G) = {AE N(G)xN(G) I there is iE {1,... ,n}, such that Ais inherited to Ai

qua AI,. ..,Ai-l}

5.2.5 Example:

Consider the derivation ~ = C ~Dl ,AI Cl ~D2,A2C2, which is shown in the left

half of figure 5.2. The associated clause graph G(~) is shown in the right half

of figure 5.2. Both links AZ' and AZ" of this graph are inherited to the link A2

81

Reducing the Derivation of Redundancy Chapter 5

b) The same argument as for the first part of a) applies, except that p. is now
an arbitrary substitution, and x' must be replaced by a term t.
c) If C is any clause resolving with D to some resolvent R, then C subsumes
R, that is , there exists some subset R' of R, which i s an instance of C. The
assertion now follows from part b). .

Our goal now is to generalize lemmata 5.2.2 and 5.2.3 to ancestor sub-
sumption instead of parent subsumption, that is, we want to determine
those clause sets 1), which - possibly or only - produce (ancestor) subsumed
clauses. It will turn out that the appropriate generalization of self-resolving"
and tautologous clauses are cyclic clause sets in directed clause graphs.

In the following we shall deal with linear derivation without repetitions,
that are derivations A of the form

A=C —)D1 ‚)„1 C1 _>D2‚Ä2 —)Dn,;m Cn,
where the Di are pairwise distinct.

The number n is called the length of A. A derivation of length 0 is said to
be trivial. It will prove useful to determine the clause graph structure for
such a linear derivation. A linear derivation implies a certain direction of
resolution steps, and this direction is reflected in the representation in form
of a directed clause graph. We are thus interested in the structure of the
directed clause graph G with C(G) = {D1,...‚Dn}‚ where each le MG) represents
a link between some clause nodes of G, which is inherited to some Xi. Note
that the links in G, which inherit to some)“i are uniquely determined.

mum
Let

. A = C -'>D1 ‚)„1 C1 —>1)2‚)„2 “’DnJa
be a linear derivation without repetition. The associated clause graph C(A)
is the graph G with

C(G) = {C‚D1‚.„‚Dn} and
A(G) = {ke N(G)><N (G) I there is ie {1,...,n}, such that X is inherited to M

qua M,. . „Xi-1}

5.2.5 Example:
Consider the derivation A =C —>D1 Inc l “’DLMCZI which is shown in the left
half of figure 5.2. The associated clause graph G(A) is shown in the right half
of figure 5.2. Both links K2' and 7L2" of this graph are inherited to the link M

81

C=Paa Dl =...,Pxy Qx Qy

I~
Cl =Qa D2 =...,Qu Ru : Qa

..
: - - ~~ - ~
\ I.--_--'-_--.l

I~
C2=Ra

Simplification and Reduction for Automated Reasoning

of 8. This example shows that there can be several links in G(.~), which are
inherited to the same link in the derivation ~.

Fig. 5.2

In the sequel we shall make frequent use of the following lemma:

5.2.6 Lemma:

Let

8=C ~Dl ,A.l Cl ~D2,A.2 ... ~Dn,A.n C n

be a linear derivation, and let G be its associated clause graph. Let

crE L*(A(G». Then there is a derivation

S =Ccr ~DIO' ,A.l,CI' ~D20',A.z' ." ~DnO',A.n'Cn'

with Cn'::Cn.

Proof: Follows by an induction argument on n from lemma IV.9 in

Herold (1983). •

In the rest of section 5.2 all occurring clause graphs will be directed clause

graphs, unless stated otherwise. The following lemma shows that the

structure of the clause graph associated to a linear derivation is a tree-like

structure.

5.2.7 Lemma:

Let

8 = Do ~Dl,A.l C I ~D2,A.2 ... ~Dn,A.nC n

be a linear derivation without repetition. Let G be the clause graph

associated with 8. Then G is an acyclic clause graph, which satisfies:

(0 Each clause node C of G is of the following form (see figure 5.3):

82

Simplification and Reduction for Automated Reasoning

of A. This example shows that there can be several links in G(A), which are
inherited to the same link in the derivation A.

Paa D1= _.n Qn Paa \ ~1n QX
C=l / 7L M %;

C1= Qa D2=—.QuRu :Qa Luz-«J —|Qu Ru

C2 = Ra

Fig. 5.2
In the sequel we shall make frequent use of the following lemma:

5.2.6 Lemma:

Let
A=C —)D1 ‚Äl C1 ")DLM “)Dmlncn

be a linear derivation, and le t G be i ts associated clause graph. Let
oe E‘(A(G)). Then there is a derivation

A' =CO' —)D16 ,M'Cl ' ">c,)„2' _)DnO'Än'Cn'

with Cn 'a .

Proof: Follows by an induction argument on n from lemma IV.9 in
Herold (1983). I

In the rest of section 5.2 all occurring clause graphs will be directed clause
graphs, unless stated otherwise. The following lemma shows that the
structure of the clause graph associated to a linear derivation is a tree-like
structure.

5.2.7 Lemma:

Let
A = Do —)D1‚7\‚1 C1 —->D2‚)„2 . . . “*Dmln Cn

be a linear derivation without repetition. Let G be the clause graph
associated with A. Then G is an acyclic clause graph, which satisfies:
(i) Each clause node C of G is of the following form (see figure 5.3):

82

Reducing the Derivation of Redundancy Chapter 5

- If C=Do, then I(C)=0

- If C*Do, there is a literal LE C such that I(L)*0, O(L)=0, and I(C)=I(L)

- No two links in O(C) are adjacent

(ii) L*(A) *0

Proof: (i) Let CE C(G). If C=Do, then obviously I(C)=0. If C=Dj with lsjsn,

then from the assumptions it is clear that there is some AE A(G), which is

inherited to Aj. Then AE I(Dj), that is, I(C)*0. If there are two links Aj' and At

in HC), then both are inherited qua {Al, ... ,Aj-l} to the same link Aj with

Dj-l ~C,Aj Dj. But this implies that Aj' and A(are incident with the same

literal L in C, that is, Aj',A;"E I(L). Since Aj' and A;" were arbitrary, this proves

I(C)=I(L). If there were any link Ae O(L), then there would be some k>j with

A=Ak. But A could not be inherited to the step k, since the literal L, which is

incident with A, is resolved away in the step j, and this is a contradiction.

This proves O(L)=0. Suppose there are two links Aj and Ak incident with the

same literal Ke C, and w.l.o.g. assume that k>j. But then again the link Ak

could not be inherited since the literal K is resolved away in step j.

(ii) is obvious (see, for instance, Herald (1983». •

O(N)

Fig. 5.3: Structure of a Branching Node

A clause node, which satisfies condition (i) of the previous lemma, will be

called a branching node in the following. The literal L of the branching node

C, which satisfies I(C)=I(L) is called the I-literal, each literal of C incident

with a link in O(C) is an O-literal of C. A clause graph G satisfying conditions

(i) and (H) of the previous lemma will be called a branching tree with root

Dl·

83

Reducing the Derivation of Redundancy Chapter 5

- If C=Do, then I(C)=G
- If C¢Do, there is a literal Le C such that I(L)¢0, O(L)=@‚ and I(C)=I(L)
- No two links in O(C) are adjacent

(ii) 2*(A) at @

Proof: (i) Let Ce C(G). If C=Do, then obviously I(C)=Q. If C=Dj with 1_<.a,

then from the assumptions it is clear that there is some he IMG), which is
inherited to li. Then le I(Dj), that is, I(C)¢@. If there are two links 7Lj' and li"
in I(C), then both are inherited qua {M,...,7tj_1} to the same link l i with
Dj-1-—>c, i j . But this implies that Äj' and l i" are incident with the same
literal L in C, that is, lj'fitj'e I(L). Since lj' and Xi" were arbitrary, this proves
I(C)=I(L). If there were any link ke O(L), then there would be some k>j with
7L=7Lk. But Ä. could not be inherited to the step k, since the literal L, which i s
incident with X, is resolved away in the step j, and this is a contradiction.
This proves O(L)=®. Suppose there are two links 7»; and M incident with the
same literal Ke C, and w.l.o.g. assume that k>j. But then again the link Wk

could not be inherited since the literal K is resolved away in step j.
(ii) is obvious (see, for instance, Herold (1983)). I

Fig. 5.3: Structure of a Branching Node

A clause node, which satisfies condition (i) of the previous lemma, will be
called a branching node in the following. The literal L of the branching node
C, which satisfies I(C)=I(L) i s called the I-l i teral , each literal of C incident
with a link in O(C) is an O-literal of C. A clause graph G satisfying conditions
(i) and (ii) of the previous lemma will be called a branching tree with root
D1.

83

Simplification and Reduction for Automated Reasoning

5.2.8 Definition:

Let G be a branching tree and let ae l',*(A(G». Then

res(G) = U E(D)a
DeC(G)

is the residue of G.

In the following we shall prove that the residue of a branching tree G(A) is

just the last clause Cn of the corresponding linear derivation 11.

5.2.9 Lemma:

Let

11 = C ~Dl,A.l C1 ~D2,A.2 ... ~Dn,A.nCn
be a linear derivation without repetition, and let 11' = Cl ~D2 ... ~Dn Cn. Then

res(G(I1» =res(G(I1'».

Proof: Let G=G(I1), G'=G(I1'), and let G~A.l G". Then G'=(G")(C,Dl}, and

L*(A(G»=l',*(A(G'» holds. We have to show that

U E(D)o- = U E(D')o-
DeC(G) D'eC(G') ,

Let LE E(D) in G for some De C(G), that is, L is not incident with any link in

A. Suppose there is some A'e A(G'), which is incident with L. Then A' must

be inherited from some AE A(G), which is also incident with L. This is a

contradiction, hence L is not incident with any link in A(G') either, which

implies Le E(D) in G. This proves U E(D)o- c U E(D')o-.
DeC(G) - D'eC(G')

Conversely, we can also show that U E(D')o- c U E(D)o-, which
D'eC(G') - DeC(G)

implies the assertion of the lemma. •
5.2.10 Example:

Let

11 = PR.,S ~..,RWPW"S ~SWPW ~"'WQPQ.

Then 11' = PW.,S ~SW PW ~"'WQ PQ. The corresponding branching trees
G(I1) and G(I1') are shown in figure 5.4. The links At are inherited from the

corresponding link Ai qua Al.

84

Simplification and Reduction for Automated Reasoning

5.2.8 Definition:
Let G be a branching tree and let oe Z*(A(G)). Then

= Ures(G) Dede) E(D)6

is the residue of G.

In the following we shall prove that the residue of a branching tree G(A) is
just the last clause Cn of the corresponding linear derivation A.

5.2.9 Lemma:

Let
A =C '—>D1,M C1 _>D2‚Äz . . . "Dnßvncn

be a linear derivation without repetition, and let A' = C1 ——>D2 —>Dn Cn. Then
res(G(A)) = res(G(A')).

Proof: Let G=G(A), G'=G(A'), and let G—ulG". Then G'=(G"){CID1}, and
2*(A(G))=2*(A(G')) holds. We have to show that

U E(D)o= U E(D')c‚
DeC(G) D'e C(G‘)

Let Le E(D) in G for some De (XG), that is, L i s not incident with any link in
A. Suppose there is some We A(G') , which is incident with L. Then 2) must

be inherited from some le A(G)‚ which is also incident with L. This is a

contradiction, hence L is not incident with any link in A(G') either, which

' 1' L E ' '. ' U U ' .imp 1es e (D) m G This proves DeC(G) E(D)og D'eC(G') E(D)o

Conversely, we can also show that U E(D')0' ; U E(D)o, which
D'eC(G') DeC(C)

implies the assertion of the lemma. l

5.2.10 Example:

Let

A = PR-as _)q PW-S —>SW PW —->_.wQPQ.
Then A' = PW—NS —)sw PW -—->_.wQ PQ. The corresponding branching trees
G(A) and G(A') are shown in figure 5.4. The links M" are inherited from the
corresponding link M qua M.

Reducing the Derivation of Redundancy	 Chapter 5

G(~)	 G(S)

Fig. 5.4

5.2.11 Corollary:

Let

~ =C ~Dl Cl ~D2 ... ~DnCn
be a linear derivation without repetition. Then

Cn =res(G(~».

Proof: An induction argument using the previous lemma shows that

res(G(M) = res(G(~n», where ~n is the trivial derivation Cn. Thus C(G(,,~n» =

{Cn} and A(G(t:\.n» = 0), which implies res(G(~n» = E(Cn) = Cn. •

Next we shall give the characterization of ancestor subsumption for the

ground case. Ancestor subsumption is expressed by a linear derivation ~ =

C ~Dl Cl ~D2 .. , ~Dn Cn, where C subsumes Cn. From lemma 5.2.7 it follows

that the associated clause graph is a branching tree. In particular, if C is a unit

clause, then there is a linear derivation Dl ~D2 CZ' ~D3 ... ~Dn Cn', and the

branching tree associated with this derivation is G(MC.

A semicycle G is a clause graph, which satisfies:

(i)	 Each node CeC(G) is a branching node with II(C) I >0 and E(C)=0.

(ii)	 There is a special node Coe C(G) such that each cyclic path of G passes

CO·
(iii)	 All occurring substitutions are compatible, that is, L*(.A(G»~0.

It is obvious that the subgraph GI(Co) of a semicycle G with special node Co

is a branching tree with root CO. The residue of the semicycle G is defined by
the residue of the branching tree GI(Co).

85

Reducing the Derivation of Redundancy Chapter 5

Fig. 5.4

Let
A=C -—)D1C1 —-)D2... “’Dncn

be a linear derivation without repetition. Then
Cn = reS(G(A))-

Proof: An induction argument using the previous lemma shows that
res(G(A)) = res(G(An)), where A“ is the trivial derivation Cn. Thus C(G(An)) =
{cn} and A(G(An)) = 6), which implies res(G(An)) = E(Cn) = Cn. I

Next we shall give the characterization of ancestor subsumption for the
ground case. Ancestor subsumption is expressed by a linear derivation A =
C —>D1 C1 ——>D2 _)Dn Cn, where C subsumes Cn. From lemma 5.2.7 i t follows
that the associated clause graph is a branching tree. In particular, if C is a unit
clause, then there is a linear derivation D1 -‘>D2 Cz' —*D3 _)Dn Cn', and the
branching tree associated with this derivation is G(A)C.

A semicycle G is a clause graph, which satisfies:
(i) Each node Ce C(G) is a branching node with lI(C)l >0 and E(C)=Q.
(ii) There is a special node Coe C(G) such that each cyclic path of G passes

Co.
(iii) All occurring substitutions are compatible, that is, 2‘(A(G))¢Q.

It is obvious that the subgraph GKCO) of a semicycle G with special node Co
is a branching tree with root Co. The residue of the semicycle G is defined by
the residue of the branching tree GKCO).

85

Simplification and Reduction for Automated Reasoning

The fact that each node C of a semicycle has an incoming link guarantees
the existence of a cyclic path in a semicycle. The concept of semicycles is

easily seen to be a generalization of self-resolving clauses, for a semicycle

consisting of only one clause node C forces this clause to be self-resolving.

The semicycle G is called a cycle, if IO(C) I = 1 holds for each Ce C(G). It is easy

to see that a cycle is just a single cyclic path with nodes of length two,

whence condition b) of the definition of a semicycle is satisfied for each node

of a cycle.

A cycle is just what Shostak (1976) and (1979) calls a loop. This notion also

corresponds to the notion of recursive predicates in the terminology of

deductive databases (Vieille 1987, Ohlbach 1988) and logic programming.

5.2.12 Example:

The graphs Gl and G2, which are shown in figure 5.5, are semicycles; Gl is a

cycle. It can be seen that each node of a cycle may be chosen to be the "special

node" Co. As to semicycles, still several, but in general not all nodes have

this property. The clauses .,R.,W and .,UV, for instance, cannot be chosen to

be the special node of G2.

Gl

Fig. 5.5

5.2.13 Theorem:

Let Ll = C ~Dl Cl ~D2 '" ~Dn Cn be a ground derivation with unit clause C,

and let G=G(Ll)C.

a)	 If en = C, then G is contained in a semicycle G' with special node Dl and
G = (G')I(Dl).

86

Simplification and Reduction for Automated Reasoning

The fact that each node C of a semicycle has an incoming link guarantees
the existence of a cyclic path in a semicycle. The concept of semicycles is
easily seen to be a generalization of self-resolving clauses, for a semicycle
consisting of only one clause node C forces this clause to be self-resolving.
The semicycle G is called a cycle, if |O(C)| = 1 holds for each Ce C(G). It is easy
to see that a cycle is just a single cyclic path with nodes of length two,
whence condition b) of the definition of a semicycle is satisfied for each node
of a cycle.

A cycle is just what Shostak (1976) and (1979) calls a loop. This notion also
corresponds to the notion of recursive predicates in the terminology of
deductive databases (Vieille 1987, Ohlbach 1988) and logic programming.

5.2.12 Example:

The graphs G1 and G2, which are shown in figure 5.5, are semicycles; G1 is a
cycle. It can be seen that each node of a cycle may be chosen to be the ”special
node” Co. As to semicycles, still several, but in general not all nodes have
this property. The clauses --R-W and -IUV, for instance, cannot be chosen to
be the special node of G2.

Fig. 5.5
5.2.13 Theorem:

Let A = C ——>D1 C1 —>D2 “"Dn Cn be a ground derivation with unit clause C,
and let G=G(A)C.
a) If Cn =C, then G is contained in a semicycle G' with special node D1 and

G = ((391031). '

86

Reducing the Derivation of Redundancy	 Chapter 5

b)	 If Cn ~ C, then G is contained in a cyclic graph G' with C(G)=C(G') and

A(G)cA(G').

Proof: a) Let C=Cn={L}. From the branching tree G we construct a semicycle

in the following way: From res(G) = {L} = U E(C) we can conclude that
CeC(G)

for each Ce C(G) either E(C)=0 or E(C)={L}. Moreover, since C is a unit

clause, the I-literal of 01 must be ...,L. For each Ce C(G) with E(C)={L} let AC =

L...,L e O(C)nI(Dl). Let

A' =Au U A.c
CeC(G)

Let G' be the graph with C(G')=C(G) and A(G')=A'. From the construction it

is clear that G' satisfies the conditions of a semicycle and G = (G')I(Dl).

b) Let C={L}. In a way similar to a) we conclude that {L} ~ U E(C), that is,
CEC(G)

there exists a node Ce C(G) with Le E(C). Let A= L...,L e O(C)nI(C), and define

the graph G' by C(G')=C(G) and A(G')=Au{A}. Then G' is a cyclic graph with

A(G)~A(G'). •

In order to generalize the previous lemma to the general nonground case,

we first have to prove some properties of substitutions.

5.2.14 Lemma:

Let Land K be literals and 0 be a substitution.

a) If Lo and Ko are weakly unifiable, then so are Land K. Moreover, there

is a substitution a and a renaming p, such that

Loa = Kpoa and

dom(o) f1 V(cod(p» = dom(p) n V(cod(o» = 0.

b)	 If there is a substitution cp and a renaming p, such that Lpcp = Kcp holds,

then Lp'cp = Kp'cp for some renaming p'.

Proof: a) see (Herold 1983), lemma 111.9.

b) see (Herold 1983), lemma 111.8. •
5.2.15 Definition:

Let A,Iq, AI' be R-links, such that Al is inherited qua A to AI'. We say that AI'

is inherited qua A solely from AI, iff there is no link A2*Al, which inherits

qua A to AI'.

87

Reducing the Derivation of Redundancy Chapter 5

b) If Cn <; C, then G is contained in a cyclic graph G' with C(G)=C(G') and
A(G);A(G').

Proof: a) Let C=Cn={L}. From the branching tree G we construct a semicycle

in the following way: From res(G) = {L} = CeKäG) E(C) we can conclude that

for each Ce C(G) either E(C)=Q or E(C)={L}. Moreover, since C i s a unit
clause, the I-literal of D1 must be =L. For each Ce C(G) with E(C)={L} let kg =

L-1L e O(C)nI(D1). Let

' = U
A AUCeC(G) ‚“C

Let G' be the graph with C(G')=C(G) and A(G‘)=A‘. From the construction it
is clear that G' satisfies the conditions of a semicycle and G = (0)1031).
b) Let C={L}. In a way similar to a) we conclude that {L} ; Cekcjmz) E(C), that is,

there exists a node Ce C(G) with Le E(C). Let l = L-L e O(C)nI(C)‚ and define
the graph G' by C(G')=C(G) and A(G')=AU{M. Then G' is a cyclic graph with
A(G)QA(G'). I

In order to generalize the previous lemma to the general nonground case,
we first have to prove some properties of substitutions.

M
Let L and K be literals and 6 be a substitution.
a) If Lo and K0 are weakly unifiable, then so are L and K. Moreover, there

is a substitution 6 and a renaming p, such that
L06 = Kpoe and
dom(o) n ‘V(cod(p)) = dom(p) n V(cod(o)) = @.

b) If there is a substitution (p and a renaming p, such that Lptp = c holds,
then Lp'cp = Kp’tp for some renaming p'.

Proof: a) see (Herold 1983), lemma 111.9.
b) see (Herold 1983), lemma III.8. .

5.2.15 Definition:

Let NM, 2.1' be R-links, such that M is inherited qua 7L to M'. We say that M'
is inherited qua Ä sole ly from M, iff there is no link Mfiq, which inherits
qua 7L to M'.

87

Simplification and Reduction for Automated Reasoning

5.2.16 Lemma:

Suppose we have clauses C, D, and E, and undirected, compatible links
Al EA(C)f1A(D), A2E A(D)f1A(E), which are not adjacent. Let A2' be a link in­

herited solely from A2 qua Al. If there are derivations

C ~A.l Cl ~A.2C' and

D ~A.2 Dl ~A.l D',
then D' S C' holds.

C E

Fig. 5.6

Proof: Let C, D, E be as in figure 5.6. For i=l,2, let aiE L"(Ai), and let

aE at *a2. Obviously, C' and D' can also be derived as resolvents of the

clauses Ca, Da, and Ea. Let Cl" be the resolvent of Ca and Da, then Cl" ==

(Ml ... Mk-lL2 ... Ln)a. From the assumption of the lemma follows that

Mial;t:Ljal for any appropriate i,j. Suppose Lja = ... = Lna, 2~j~. Then

C' == (Ml ...Mk-lL2...Lj-lK2...Km)a
If Dl" is the resolvent of Da and Ea, then Dl" =(Ll ...Lj-lK2...Km)a. Suppose

Kja= Lla for some je {2,...,m}. W.l.o.g let j=m. Then

D':: (Ml ...Mk-lL2...Lj-lK2...Km-l)a S C.

Otherwise, if Kja;t:Lla for all je {2; ...,m}, we have D'::C'. In either case D' S

C holds. •

In particular, if C is a unit clause, there can be no link in A(C), which is

inherited to A2', and so the last assumption of the lemma is trivially

satisfied.

5.2.17 Theorem:

Let ~ = C ~Dl Cl ~D2 ... ~Dn Cn be a derivation with unit clause C, and let
G=G(MC.

a) If Cn:: C, then G is contained in a semicycle G' with special node Dl and
G = (G')I(Dl>.

b) If Cn is subsumed by C, then G is contained in a weakly cyclic graph G'

with C(G)=C(G') and A(G)k;A(G').

88

Simplification and Reduction for Automated Reasoning

5.2.16 Lemma:

Suppose we have clauses C, D , and E, and undirected, compatible l inks

7L1eA(C)nA(D), 126 A(D)nA(E), which are not adjacent. Let 12' be a link in-
herited solely from 12 qua M. If there are derivations

C “>11 C1 —->)„2C' and
D “>12 D1 ——>)‚1 D',

then D' S C' holds.

C M1... Mk L1]:. Ln K1~E<ml E

Fig. 5.6

Proof: Let C, D, E be as in figure 5.6. For i=1,2, let s i e E‘Oq), and let
oe 61*62. Obviously, C' and D' can also be derived as resolvents of the
clauses C6, D6, and EG. Let C1" be the resolvent of Co and Do, then C1" 5
(M1. . .Mk-1L2 . . .Ln)o . From the assumption of the lemma follows that
MiöpfiLjO'l for any appropriate i,j. Suppose Ljo = = Luc, ZSa. Then

C' E (M1. . .Mk-1L2. . .LHKz. . .Km)0'
If D1" is the resolvent of Do and Es, then D1" =(L1...Lj-1K2...Km)O'. Suppose
Kj6=L16 for some je {2,...,m}. W.l.o.g let j=m. Then

D' 5 (M1. . .Mk-1L2. ..Lj.1K2. . .Km.1)0' S C'.
Otherwise, if Kjo¢L10 for all je {2,-...,m], we have D'EC ' . In either case D' S
C' holds.

In particular, if C is a unit clause, there can be no link in A(C), which is
inherited to 12 ' , and so the last assumption of the lemma is trivially
satisfied.

5.2.17 Theorem:
Let A = C——>D1 C1 —>D2 —*D„Cn be a derivation with unit clause C, and let
G=G(A)C.
a) If CnEC, then G is contained in a semicycle G' with special node D1 and

G = (G ,) I (D1)_

b) If Cu is subsumed by C, then G is contained in a weakly cyclic graph G'
with C(G)=C(G') and A(G)<_:A(G').

88

Reducing the Derivation of Redundancy Chapter 5

Proof: a) In view of lemma 5.2.13 the only thing we have to prove is the

compatibility of the substitutions in A=A(G'), that is, L*(A);t0. Let

/). = C ~Dl C} ~D2 .. , ~Dn Cn'
Since C is a unit clause, there is a derivation

/).' = D} ~D2 C2'" ~Dn C~
Let D=C~, and let C ~D C. Since C is a unit clause, the previous lemma

implies that C £ Cn, and since C;t[J, C =Cn=C holds (see figure 5.7).
Thus, according to lemma 5.2.2, D is a self-resolving clause of the form

L'K} '..Kn ', with a renaming p and a substitution 't, such that L''t = ""Ki'P't for

each ie O,..,n} holds. Moreover, since D=res(G(/).», we have L'=La and

Ki'=Kia, where L is the I-literal of D} and the Ki are the O-literals of the

predecessors of D}. Take any Ke {Kt,..,Kn}. We have La't = ...,Kap't and from

lemma 5.2.14 a) follows that there is some substitution S with LaS = ...,Kp'aS

for some renaming p', and from part b) of the same lemma follows that

Lp"aS = -.Kp"aS for- some renaming pIt. Let A= p"aS, then Ais a unifier of L

and ...,K, hence A is an instance of the most general unifier cP of Land ...,K. We

show that a and cp are compatible substitutions. Let A = cpA'. The renaming p"

can be chosen, such that dom(a) n V(cod(p"» = dom(p") n V(cod(a» = 0,

that is, ap" =p"a. This implies

aA = ap"aS = aap"S = A. = CPA' = CPCPA' = CPA,
hence cP and a are compatible. We have shown that a is compatible with the

unifier of an arbitrary link in 1(D}), that is, all occurring unifiers are

compatible and condition (iii) of the definition of a semicycle is satisfied.

b) is proved analogously to a) •

89

Reducing the Derivation of Redundancy Chapter 5

Proof: a) In view of lemma 5.2.13 the only thing we have to prove is the
compatibility of the substitutions in A=A(G'), that is, 2*(A)¢@. Let

A = C —)D1 C1 —->D2 _)Dncn-

Since C is a unit clause, there is a derivation

A' = D1—)D2 C'z...—>DnC;\
Let D=C;„ and let C—)D G. Since C i s a unit clause, the previous lemma
implies that C ' S Cu, and since C'aeu, C' ECnEC holds (see figure 5.7).
Thus, according to lemma 5.2.2, D is a self-resolving clause of the form
L‘K1'..Kn', with a renaming p and a substitution "c, such that L't = fiKi'p 'c for
each ie {1,..,n} holds . Moreover, s ince D=res(G(A)), we have L'=Lo and
Ki'=Ki0', where L is the I-literal of D1 and the Ki are the O-literals o f the
predecessors of D1. Take any Ke {K1,..,Kn}. We have LG? : nKop'c and from
lemma 5.2.14 a) follows that there is some substitution 6 with LGB = "Kp'O'O
for some renaming p ' , and from part b) of the same lemma follows that
Lp“oe = nKp‘oB for some renaming p". Let)» = p"69, then). is a unifier of L
and -»K, hence 7L is an instance of the most general unifier (p of L and -K. We
show that o and (p are compatible substitutions. Let A = (pk’. The renaming p"
can be chosen, such that dom(o) n V(cod(p")) = dom(p") n V(cod(o)) = @,
that is, op" = p"o. This implies

o?» = op"oe = oop"6 = k = (pl! = (pcpk' = (pl,
hence cp and o are compatible. We have shown that o is compatible with the
unifier of an arbitrary link in I(D1), that is, all occurring unifiers are
compatible and condition (iii) of the definition of a semicycle is satisfied.

b) is proved analogously to a) I

89

Simplification and Reduction for Automated Reasoning

C

I~~
Tl~D2

Cn-l1:/ D
n-l

Cn

C~ ... -u Cn1 n-l

Fig. 5.7

Our next goal is to identify those graphs that allow only derivations with

ancestor subsumption, corresponding to lemma 5.2.3. The possible deriva­

tions from a graph G are those derivations 11, for which the associated graph

G(I1) is the branching tree of any cyclic subgraph of G.

5.2.18 Theorem:

The semicycle G is a cycle, iff each cyclic subgraph of G is a semicycle.

Proof: Obviously, if G is a cycle, then each cyclic subgraph of G is also a

cycle. To prove the converse, we choose a special node Co from G, and con­

struct inductively a subgraph of G as follows: If we have already constructed

(CO,AO, ... ,Ci), then take arbitrarily any AE O(Ci) and let C be the node of G

which satisfies AEI(C). Set Ai=A, and Ci+l=C. Since G is cyclic, there must be

j,kE N with j<k and Ck=Cj, that is, we have constructed a cyclic path. Since

each cyclic path must pass Co, we can w.Lo.g. assume that Ck=CO. Moreover,

we take the smallest such k. Let G' = ({Ci I i=1, ...,k},{Ai I i=1, ... ,k}). Assume G is

not a cycle. Then there exists a branching node CE C(G) with IO(C) 1>1.

W.l.o.g. we assume that this node is Co. Since IO(Co) I >1, there is a link

AE O(Co) with A#AO and a LE Co with AE O(L). Since Cj#CO for O<j<k, the link

Aa is the only link in O(Co)nA(G'), which implies LE E(Co) in G. This vio­

lates the condition E(C)=0 for semicycles, which contradicts the assumption

of the lemma. Thus G must be a cycle. _

90

Simplification and Reduction for Automated Reasoning

c DI D
2

| /D1 l /
(f l /DZ E

= C I /D '1

DC!” D |I / [Pl Cn

Cn
C—> C

C—>D1..._bn1 n D n

Fig. 5.7

Our next goal is to identify those graphs that allow only derivations with
ancestor subsumption, corresponding to lemma 5.2.3. The possible deriva-
tions from a graph G are those derivations A, for which the associated graph
G(A) is the branching tree of any cyclic subgraph of G.

5.2.18 Theorem:
The semicycle G is a cycle, iff each cyclic subgraph of G is a semicycle.

Proof: Obviously, if G is a cycle, then each cyclic subgraph of G is also a
cycle. To prove the converse, we choose a special node Co from G, and con-
struct inductively a subgraph of G as follows: If we have already constructed
(Co,7to,...,Ci), then take arbitrarily any ke O(Ci) and let C be the node of G
which satisfies Xe KC). Set M:)», and Ci+1=C. Since G is cyclic, there must be
j ,keN with j<l< and Ck=Cj, that is, we have constructed a cyclic path. Since
each cyclic path must pass Co, we can W.l.o.g. assume that Ck=Co. Moreover,
we take the smallest such k. Let G' = ({Ci l i=1,...,1<},{7ti | i=1‚...‚k}). Assume G is
not a cycle. Then there exists a branching node Ce C(G) with |O(C) | >1.
W.l.o.g. we assume that this node i s Co. Since |O(Co) |>1 , there is a link
ke O(Co) with Ratio and a Le Co with he O(L)‚ Since CjaéCo for O<j<1<, the link
Äo is the only link in O(Co)nA(G')‚ which implies Le E(Co) in G'. This vio-
lates the condition E(C)=Q for semicycles, which contradicts the assumption
of the lemma. Thus G must be a cycle. I

90

Reducing the Derivation of Redundancy Chapter 5

5.2.19 Corollary:

Let G be a semicycle consisting of ground clauses. G is a cycle, iff for any

derivation ~ =C ---70 1 Cl ---70 2 ... ---7on Cn, where {DI,... ,Dn } are the nodes of a

cyclic subgraph of G, C = Cn holds.

Proof: The assumption of the theorem can be stated as follows: Each cyclic

subgraph of G is a semicycle. The assertion now follows from the previous
theorem. _

Thus cycles are the only clause sets with the following property: Take any

clause node D of the cycle, and an arbitrary clause C, which resolves with D.

Construct derivations .1k = C---70 1 Cl ---70 2 .,. ---70 k Ck, where Dl=D, and Di is
the successor of Di-l in the cycle. Then there is a ke N, such that Ck = C

holds.

The proof of theorem 5.2.12 showed that semicycles are structures that

shrink to self-resolving clauses. Those particular semicycles that can be

reduced to tautologies, are characterized by a particular property of their

substitutions:

5.2.20 Definition:

Let G be a semicycle with special node CO. Let oe .I:*(A \I(Co», and let

'te .I:*(I(Co». The semicycle G is called Co-complete, if a is an instance of 't,

that is La = KO' holds for all literals Land K joined by a link in I(Co). G is

called complete, iff it is complete for each choice of Co.

Let G be a complete semicycle. Let D = (LK1 ..Km)cr be the residue of G. As

for each ie {l,..,m}, Ki and L are complementary unifiable under 't, and cr is

an instance of 't, we have the following corollary:

5.2.21 Corollary:

The semicycle G is complete, Ht res(G) is a tautology for any choice of the

special node of G.

Complete cycles can also be characterized in the following way: There

exists a clause C and a substitution Cj), which is the identity on C, such that all

links in the cycle become complementary pairs of literals. This is the way

Bibel (1987) defines what he calls tautological cycles.

91

Reducing the Derivation of Redundancy Chapter 5

5.2.19 Corollary:
Let G be a semicycle consisting of ground clauses. G is a cycle, iff for any
derivation A = C ——)D1 C1 —->D2 _’Dn Cu, where {D1,...,Dn} are the nodes of a

cyclic subgraph of G, C = Ch holds.

Proof: The assumption of the theorem can be stated as follows: Each cyclic
subgraph of G is a semicycle. The assertion now follows from the previous
theorem. .

Thus cycles are the only clause sets with the following property: Take any
clause node D of the cycle, and an arbitrary clause C , which resolves with D .

Construct derivations Ak = C--->D1 C1 -9D2 —>Dk Ck, where D1=D, and Di is

the successor of DH in the cycle. Then there is a ke N , such that Ck = C
holds.

The proof of theorem 5.2.12 showed that semicycles are structures that
shrink to self-resolving clauses. Those particular semicycles that can be
reduced to tautologies, are characterized by a particular property of their
substitutions:

5.2.20 Definition:
Let G be a semicycle with special node Co. Let oe Z”(A\I(Co)), and let
r e 2*(I(Co)). The semicycle G is called Co-complete , if 0 i s an instance of 1:,
that is L6 = Ko holds for all literals L and K joined by a link in I(Co). G is
called complete, iff i t is complete for each choice of Co.

Let G be a complete semicycle. Let D = (LK1..Km)o be the residue of G . As
for each ie {1,..,m}, Ki and L are complementary unifiable under 1:, and O' is
an instance of t, we have the following corollary:

5.2.21 Corollary:
The semicycle G is complete, iff res(G) is a tautology for any choice of the
special node of G.

Complete cycles can also be characterized in the following way: There
exists a clause C and a substitution (p, which is the identity on C, such that all
links in the cycle become complementary pairs of literals. This is the way
Bibel (1987) defines what he calls tautological cycles.

91

Simplification and Reduction for Automated Reasoning

In analogy to elementary tautologies, complete cycles, all literals of which
are linear and function free, will be called elementary cycles.

5.2.22 Theorem:

Let G be a semicycle.

a) G is an elementary cycle, if{ C == Cn holds for any derivation Ll = C ~Dl

... ~Dn Cn, for which {DI,...,Dn} are the nodes of a cyclic subgraph of G.

b) G is a complete cycle, if{ Cn is an instance of C for any derivation Ll =

C ~Dl ... ~Dn Cn, for which {DI,...,Dn} are the nodes of a cyclic subgraph

ofG.

c)	 G is complete, if{ C subsumes Cn for any derivation Ll =C ~Dl ... ~DnCn,

for which {DI,...,Dn} are the nodes of a cyclic subgraph of G.

Proof: a) The cyclic structure of G is provided by corollary 5.2.19. Choose

any C to be the special node of G. As in the proof of theorem 5.2.17, let D =
(LK)a be the residue of G. Then the relation C ~D Cn implies Cn == C for each

clause C that resolves with D. From lemma 5.2.3 follows that D is a

tautology, which is function and constant free, which shows that the same

holds for Land K. As C was chosen arbitrary, all elements of C(G) are

function and constant free. Since D is a tautology, the cycle G is complete.
b) and c) are proved analogously. _

Note that the definition of the derivation relation ~D does not capture

ancestor resolution, which is part of complete linear strategies.

5.2.23 Example:

Let

~ = P ~...,PRS RS ~...,SR R ~...,RT T ~...,T...,RP ..,RP ~R P

be a linear derivation with ancestor resolution and ancestor subsumption.

The corresponding graph G is shown in figure 5.8. It is easy to see that this

graph is not a semicycle. The bold faced links represent the "ancestor

resolution links".

92

Simplification and Reduction for Automated Reasoning

In analogy to elementary tautologies, complete cycles, all literals of which
are linear and function free, will be called elementary cycles.

5.2 .22 Theorem:

Let G be a semicycle.
a) G is an elementary cycle, iff C E Cn holds for any derivation A = C —>D1

_)Dn Cn, for which {D1‚. ..,Dn} are the nodes of a cyclic subgraph of G .
b) G is a complete cycle, iff Cu is an instance of C for any derivation A =

C —>D1 "’Dn Cu, for which {D1,...,Dn} are the nodes of a cyclic subgraph
of G.

c) G is complete, iff C subsumes Cn for any derivation A = C -9D1 —)Dn Cn,
for which {D1,. . .,Dn} are the nodes of a cyclic subgraph of G.

Proof: a) The cyclic structure of G is provided by corollary 5.2.19. Choose
any C to be the special node of G. As in the proof of theorem 5.2.17, let D =
(LK)o be the residue of G. Then the relation C —>D Cn implies CnEC for each
clause C that resolves with D . From lemma 5.2.3 follows that D is a
tautology, which is function and constant free, which shows that the same
holds for L and K . As C was chosen arbitrary, all elements of C(G) are
function and constant free. Since D is a tautology, the cycle G is complete.
b) and c) are proved analogously. l

Note that the definition of the derivation relation ——>D does not capture
ancestor resolution, which is part of complete linear strategies.

Let
A = P ">m RS —)—-SR R “9—‘RT T ~94“q -|RP -—)R P

be a linear derivation with ancestor resolution and ancestor subsumption.
The corresponding graph G is shown in figure 5.8. It is easy to see that this
graph is not a semicycle. The bold faced links represent the ”ancestor
resolution links”.

92

Reducing the Derivation of Redundancy Chapter 5

Fig. 5.8

The following lemma shows that it is sufficient to look for cycles in an

initial clause set during a resolution refutation, as "new" cycles cannot be

generated by resolution. For any clause set 5, 9\(5) denotes the resolution

closure of 5, that is the smallest clause set containing 5 and closed under the

resolution operation.

5.2.24 Lemma:

The clause set 5 contains a semicycle, iff 9\(5) contains a semicycle.

Proof: Let R be a resolvent of clauses C and D with C, De 5 and assume
that R is a node of a semicyc1e G. We show that C and D are also nodes of a

semicycle.

c

D

Fig.5.9

93

Reducing the Derivation of Redundancy Chapter 5

S‘ —ISR—.Hf
PhR—nT 4 — ‘ T fi R

Fig. 5.8

The following lemma shows that i t is sufficient to look for cycles in an
initial clause set during a resolution refutation, as ”new” cycles cannot be
generated by resolution. For any clause set S, 9i(S) denotes the resolution
closure of S, that is the smallest clause set containing S and closed under the
resolution operation.

may;
The clause set 3 contains a semicycle, iff EMS) contains a semicycle.

Proof: Let R be a resolvent of clauses C and D with C, De S and assume
that R is a node of a semicycle G. We show that C and D are also nodes of a
semicycle.

k1 kn

1] . l l ' . . . lm

Fig.5.9

93

Simplification and Reduction for Automated Reasoning

Each link ki and lj of G going into or coming from the node R must be
inherited from some link kit and lj', respectively, as shown in figure 5.9. The

diagram illustrates that these links are links of a semicycle G', which
contains nodes C and D. •

5.3 Redundancy Caused by Subsumed Links

On closer inspection of proofs using a deduction system consisting solely of
the resolution rule, it turns out that a lot of redundancy is produced by
permuting the order of resolution steps. For instance, it does not matter,

whether the clause ..,P..,QR is first resolved with the clause P and then the

resolvent ..,QR is resolved with the clause Q, or vice versa; the result always

is the clause R. This observation has led to the hyperresolution strategy
(Robinson 1965) and the UR-resolution strategy (McCharen 1976), which

both combine several resolution steps, thus abstracting from their order.

Clause graph resolution too avoids this multiple derivation of identical

clauses. There, it is a cooperation between link deletion and link inheri­

tance, which precludes one of the two resolution sequences. Link inheri­

tance denotes the fact that each resolvent inherits all its links by its parent
clauses. Deleted links thus cannot be inherited, and link deletion thus not
only prevents the single resolution step connected with the removed link,

but it also accounts for the exclusion of subsequent resolution steps

connected with inherited links. The following example illustrates this effect

of link deletion and link inheritance.

5.3.1 Example:

Consider the clauses C = PQR, Dl = ..,PS, and D2 = ..,QW (see figure 5.10).

Resolving first C with Dl along Iq yields the resolvent Cl = QRS, and the

link Iq is removed afterwards. The resolvent C2 = PRW of C and D2 thus

cannot inherit AI, and there remains only one possibility to derive the

resolvent Cl2 = WRS.

94

Simplification and Reduction for Automated Reasoning

Each link ki and li of G going into or coming from the node R must be
inherited from some link ki‘ and lj', respectively, as shown in figure 5.9. The

diagram illustrates that these links are links of a semicycle G', which
contains nodes C and D. I

5.3 Redundancy Caused by Subsumed Links

On closer inspection of proofs using a deduction system consisting solely of
the resolution rule, i t turns out that a lot of redundancy i s produced by
permuting the order of resolution steps. For instance, it does not matter,
whether the clause -1P-1QR is first resolved with the clause P and then the
resolvent "QR is resolved with the clause Q, or vice versa; the result always
is the clause R. This observation has led to the hyperresolution strategy
(Robinson 1965) and the UR-resolution strategy (McCharen 1976), which
both combine several resolution steps, thus abstracting from their order.
Clause graph resolution too avoids this multiple derivation of identical
clauses. There, it is a cooperation between link deletion and link inheri-
tance, which precludes one of the two resolution sequences. Link inheri-
tance denotes the fact that each resolvent inherits all its links by its parent
clauses. Deleted links thus cannot be inherited, and link deletion thus not

only prevents the single resolution step connected with the removed link,
but it also accounts for the exclusion of subsequent resolution steps
connected with inherited links. The following example illustrates this effect
of link deletion and link inheritance.

mm
Consider the clauses C = PQR, D1°= -PS, and D2 = -QW (see figure 5.10).

Resolving first C with D1 along M yields the resolvent C1 = QRS, and the

. link M is removed afterwards. The resolvent C2 = PRW of C and D2 thus
cannot inherit M, and there remains only one possibility to derive the
resolvent C12 = WRS.

94

Reducing the Derivation of Redundancy Chapter 5

resolution along Al

and deletion of Al

eJ!J
A1 E···.

[:~]~:J"" A2A.; ••.•
2 1 •••• f<;- Not present, sinceA,I deleted.

-,Q W t!JW IR I

.l- resolution along A2

Fig. 5.10: Link Inheritance and Link Deletion

In general, however, the order, in which clauses are processed in a

sequence of resolution steps, cannot simply be permuted without changing

the result. Consider for instance the clauses Pc, ...,Px Pa , and ...,Px Pb. If Pc is

first resolved with ...,Px Pa and the resulting clause Pa is resolved with ...,Px

Pb, the clause Pb is obtained. By resolving first Pc with ...,Px Pb and then the

result with ...,Px Pa, the clause Pa is derived.

There are, however, still other clause structures, which are invariant

under the permutation of the resolution steps' order, and to which

hyperresolution does not apply. The transitivity clause Pxy & Pyz => pxz is a

well-known example for such structures. Suppose, we are given the unit

clauses Pab, Pbc and Pcd and the transitivity axiom holds for the predicate P.

There are two different ways to deduce the clause Pad by two applications of
the transitivity axiom, which differ only in the resolution steps' order. Still

worse, given n clauses Pata2, Pa2a3, ..., Pan-tan, the number of different ways
to derive the clause Patan amounts to 2n-t(n!)-trr~-l(2i - I), which is of order

O(4n) (see Liineburg 1976). It is also easy to see that the clause graph mecha­
nisms of link inheritance and link deletion do not prevent the multiple

derivation of identical resolvents in this case.

95

Reducing the Derivation of Redundancy Chapter 5

7‘1 ——> [P Q }?
P Q R resolution along RI 7‘2

)„2 and deletion of M

|-:Q W .
1, resolution along kg

|:P S

A: 1 ä. . . ' ' \ . Q R

HQ 7‘2

Äz "":-_- Not present, since“ deleted.
P W R

Fig. 5.10: Link Inheritance and Link Deletion

In general, however, the order, in which clauses are processed in a
sequence of resolution steps, cannot simply be permuted without changing
the result. Consider for instance the clauses Pc, —\Px Pa , and -1Px Pb. If Pc is
first resolved with a Pa and the resulting clause Pa is resolved with —-Px
Pb, the clause Pb is obtained. By resolving first Pc with -\Px Pb and then the
result with -v Pa, the clause Pa is derived.

There are, however, still other clause structures, which are invariant
under the permutation of the resolution steps’ order, and to which
hyperresolution does not apply. The transitivity clause n & Pyz => s is a
well-known example for such structures. Suppose, we are given the unit
clauses Pab, Pbc and Pcd and the transitivity axiom holds for the predicate P.
There are two different ways to deduce the clause Pad by two applications of
the transitivity axiom, which differ only in the resolution steps’ order. Still
worse, given It clauses Pa] az, Pa2a3, ..., Panqan , the number of different ways
to derive the clause Palan amounts to 211'1(n!)'1l_1i‘;‘11 (2i - 1), which is of order

0(4“) (see Lüneburg 1976). It is also easy to see that the clause graph mecha-
nisms of link inheritance and link deletion do not prevent the multiple
derivation of identical resolvents in this case.

95

Simplification and Reduction for Automated Reasoning

Another example for the permutability of resolution steps consists of the
clauses Pal Cl = ..,Px Pf2x and C2 =..,Px Pf3x. There are two ways to deduce the

clause PfSa, which differ only in the choice of resolving Pa first with Cl or

with C2.

The difference between this example and the hyperresolution example is

revealed by considering the clause graph structure (Figure 5.11):

Fig. 5.11

In the hyperresolution example the order, in which the electrons are

resolved against the nucleus, corresponds to the order of selecting the links

that join the nucleus with the electrons. In the last example, however, the

two different ways to produce the clause PfSx correspond to different pairs of

links: One deduction proceeds on links Al and A2, while the other uses links

A3 and A4. The very reason for the permutability of the resolution steps in

this particular example becomes clear, when we take into account that

processing link A2 or processing link A4 yields the same resolvent up to

renaming, namely ..,Px PfSx. As a natural generalization of the variant

notion these will be called variants.

More general, the subsumption relation between clauses will be extended

to links by calling those links subsumed that produce a subsumed resolvent.

In the sequel it will be shown that the type of redundancy, which is inherent

in subsumed links, is inherited via the usual link inheritance. In particular,

it will be shown that the inheritance of subsumed links accounts for the

redundancies occurring in the two introductory examples.

The syntactic description of the permutability of resolution steps by means

of subsumed links is but the first step to overcome the difficulty with the

multiple derivation of identical clauses. In this particular example it is

96

Simplification and Reduction for Automated Reasoning

Another example for the permutability of resolution steps consists of the
clauses Pa, C1 = -Px Pflx and C2 = -Px Pf3x. There are two ways to deduce the
clause Pf5a, which differ only in the choice of resolving Pa first with C1 or
With C2.

The difference between this example and the hyperresolution example is
revealed by considering the clause graph structure (Figure 5.11):

k 13

—.P sx 7‘2 —1Pf3x
L

M

Fig.5.11

In the hyperresolution example the order, in which the electrons are
resolved against the nucleus, corresponds to the order of selecting the links
that join the nucleus with the electrons. In the last example, however, the
two different ways to produce the clause Pf5x correspond to different pairs of
links: One deduction proceeds on links M and lg, while the other uses links
13 and 7.4. The very reason for the permutability of the resolution steps in
this particular example becomes clear, when we take into account that
processing link kg or processing link 7L4 yields the same resolvent up to
renaming, namely -Px Pf5x. As a natural generalization of the variant
notion these will be called variants.

More general, the subsumption relation between clauses will be extended
to links by calling those links subsumed that produce a subsumed resolvent.
In the sequel it will be shown that the type of redundancy, which is inherent
in subsumed links, i s inherited v ia the usual link inheritance. In particular,
it will be shown that the inheritance of subsumed links accounts for the
redundancies occurring in the two introductory examples.

The syntactic description of the permutability of resolution steps by means
of subsumed links is but the first step to overcome the difficulty with the
multiple derivation of identical clauses. In this particular example it is

96

Reducing the Derivation of Redundancy Chapter 5

rather obvious, how to cope with the problem of deducing redundant

clauses: The solution, very simply, consists in the appropriate selection of

links to process. The suitable order to proceed is resolving first on link 2 (or

4, respectively), obtaining the clause ...,PxPf5x. Both links 2 and 4 can now be

removed, which inhibits further derivations starting from pf2a or from Pf3a.

The only way to deduce the clause pf5a now consists in resolving Pa with

PxPf5x. This approach is based on the observation that redundant informa­

tion, if not removed, usually causes an inflation of redundancy. This is the

case for subsumed clauses as well as for tautologous clauses: Each descendant

of such a clause is redundant, too. In the following it will be shown that the

same holds for the redundancy inherent in subsumed links. In other words,

each link, which is inherited from a subsumed link, is again subsumed.

We shall also consider a very particular kind of subsumed links, which

will be defined by symmetric clauses. A clause is symmetric, if it has literals

LI and L2 such that resolving on Ll always yields the same resolvent as

resolving on L2. For instance, the clause Pxy Pyx is symmetric. Symmetric

clauses are a source of redundancy very similar to clauses with subsumed

links. This section provides a complete syntactic description of symmetry,

which is the basis for an appropriate reduction consisting in the restriction

of resolution to one of the arbitrarily chosen symmetry literals.

Note that throughout this section all clause graphs are undirected graphs.

5.3.2 Definition:

Let AI, A2 be R-links, and for i=1,2, let Ci be the resolvent along Ai. The

subsumption and variant relations between links are defined by

Al ~ A2 (AI subsumes A2), Hf Cl ~ C2

Al == A2 0.1 is a variant of A2), Hf Cl == C2.

Although a resolution step using a subsumed link is obviously unneces­

sary, it is not clear that the subsumed link itself can be removed, since such

removal implies the deletion of all inherited links. Our main theorem will

justify the removal of subsumed links, by showing that each link A', which

is inherited solely from a subsumed link A, is itself subsumed. If there are,

however, other (non-subsumed) links besides A, which also inherit to A',

then A' is not subsumed. But also in this case the removal of A causes no

problems, since generation of A' is guaranteed by inheritance.

97

Reducing the Derivation of Redundancy Chapter 5

rather obvious, how to cope with the problem of deducing redundant
clauses: The solution, very simply, consists in the appropriate selection of
links to process. The suitable order to proceed is resolving first on link 2 (or
4, respectively), obtaining the clause fiPf5x. Both links 2 and 4 can now be
removed, which inhibits further derivations starting from PfZa or from Pßa.
The only way to deduce the clause Pf5a now consists in resolving Pa with
Pf5x. This approach is based on the observation that redundant informa—
tion, if not removed, usually causes an inflation of redundancy. This i s the
case for subsumed clauses as well as for tautologous clauses: Each descendant
of such a clause is redundant, too. In the following it will be shown that the
same holds for the redundancy inherent in subsumed links. In other words,
each link, which is inherited from a subsumed link, is again subsumed.

We shall also consider a very particular kind of subsumed links, which
will be defined by symmetric clauses. A clause is symmetric, if it has literals
LI and L2 such that resolving on L1 always yields the same resolvent as
resolving on L2. For instance, the clause n Pyx is symmetric. Symmetric
clauses are a source of redundancy very similar to clauses with subsumed
links. This section provides a complete syntactic description of symmetry,
which is the basis for an appropriate reduction consisting in the restriction
of resolution to one of the arbitrarily chosen symmetry literals.

Note that throughout this section all clause graphs are undirected graphs.

5_-32_Defimt1_on_

Let M, M be R-links, and for i=1,2, let Ci be the resolvent along M. The
subsumption and variant relations between links are defined by

M S 1.2 (M subsumes Kg), iff C1 S C2
M E M (M is a variant of M), iff C1 '=' C2.

Although a resolution step using a subsumed link is obviously unneces-
sary, i t is not clear that the subsumed link itself can be removed, since such
removal implies the deletion of all inherited links. Our main theorem will
justify the removal of subsumed links, by showing that each link)3, which
is inherited solely from a subsumed link %, is itself subsumed. If there are,
however, other (non—subsumed) links besides Ä, which also inherit to %,
then N is not subsumed. But also in this case the removal of Ä. causes no
problems, since generation of 7c is guaranteed by inheritance.

97

Simplification and Reduction for Automated Reasoning

5.3.3 Lemma:

Let C and D be clauses with C:5;;D. If R is a resolvent of D with any other
clause, then there is a clause C with C:5;;R.

Proof: Since D is subsumed by C, it can be written in the form D = CSuD'.

Let E be a clause resolving with D, and let L',K be literals with most general

unifier a', such that R' = (D\{L'})cr'u(E\{K})cr'. If L'e D', then

R' = (CSuD'\{L'})cr'u(E\K)a'= CScr'u(D'\{L'})a'u(E\K)cr'

is subsumed by C. Otherwise, if L'e CS, then there is a literal Le C with LS=L',

and R' = (C\{L})Sa'uD'a'u(E\K)a'. L' and K are unifiable, hence so are L

and K. Let a be a most general unifier of Land K. Since different clauses are

assumed to be variable disjoint, V(E)(')dom(S)=0. Hence LSa' = L'cr' = Ka' =

KScr', that is, Sa'e uni(L,K), which implies a:5;;Sa'. Consider the resolvent R =

(C\{L})cru(E\K)a of C and E. We have

(C\{L})au(E\K)cr ~ (C\{L})Sa' u (E\K)Sa' = (C\{L})Scr' u (E\K)a' = E,

and E is subsumed by R. •

5.3.5 Theorem:

Let A,Iq and A2 be R-links, such that 1I.}:5;;A2 holds, and A. is compatible with A2.

If A.2' is inherited solely from A2 qua A, then there is a link A*, which is not

inherited from A2 neither inherited qua 11.2, with 11.*:5;;11.2'.

Proof: For i=1,2, let Ci and Di be the clauses incident with Ai, let Ei be the

resolvent along Ai, and let C be incident with A (see figure 5.12). Note that

the clauses Cl, C2, as well as the clauses Dl, D2 need not be distinct. Then

El~E2 holds by the assumption of the lemma. Let A' be the link inherited

from Aqua A2. From lemma 5.2.16 follows that the resolvent E2' of E2 with C

subsumes the resolvent along 11.2', that is, A'~A2'. From the previous lemma

follows that E2' itself is subsumed either by El or by the resolvent of El with

C. In the latter case there exists a link 1('e A(El)(')A(C), which is inherited

from some link 1(e (A(Cl)uA(Dl»(')A(C). Hence either Al~A':5;;A2' or

1('~A':5;;A.2', and both A.I and 1(' are not inherited from 11.2 neither inherited qua

4 •

98

Simplification and Reduction for Automated Reasoning

5.3.3 Lemma:

Let C and D be clauses with CSD. If R is a resolvent of D with any other
clause, then there is a clause C' with C'SR.

Proof: Since D is subsumed by C, it can be written in the form D = CGUD'.
Let E be a clause resolving with D, and let L',K be literals with most general
unifier 6', such that R' = (D\{L'})o'U(E\{K})o'. If L'e D', then

R' = (C9UD'\{L'})G'U(E\K)G'= C96'U(D'\{L'})O"U(E\K)O"
is subsumed by C. Otherwise, if L‘e Ct), then there is a literal Le C with L6=L',
and R' = (C \{L})96 'UD 'o ‘u (E \K)o ' . L' and K are unifiable, hence so are L
and K. Let 6 be a most general unifier of L and K. Since different clauses are
assumed to be variable disjoint, V(E)ndom(6)=®. Hence Leo' = L'o' = Ko' =
Keo' , that is, Oo'e uni(L,K), which implies 6396' . Consider the resolvent R =
(C\{L})ou(E\K)o of C and E. We have

(C\{L})ou(E\I<)o s (C\{L})96' u (E\K)96' = (C\{L})Oo' u (E\K)o' = E,
and E is subsumed by R. I

5 .3 .5 Theorem:

Let LM and Äz be R-links, such that MSM holds, and X is compatible with 12.
If 7L2‘ i s inherited solely from X2 qua 7L, then there is a link 1*, which i s not
inherited from 9.2 neither inherited qua 12, with 735x22

Proof: For i=1,2, let C1 and Di be the clauses incident with xi, let E be the
resolvent along M, and let C be incident with 1 (see figure 5.12). Note that
the clauses C1, C2, as well as the clauses D1, DZ need not be distinct. Then
E15E2 holds by the assumption of the lemma. Let N be the link inherited
from 7L qua 12. From lemma 5.2.16 follows that the resolvent E2' of EZ with C
subsumes the resolvent along 12', that is, Ä'SÄg'. From the previous lemma
follows that Ez' itself is subsumed either by E1 or by the resolvent of E1 with
C. In the latter case there exists a link lc'e A(E1)nA(C), which i s inherited
from some l ink ICE (A(C1)UA(D1))nA(C) . Hence either Msl ' s l z ' or
K'SÄ'SÄZ', and both M and K' are not inherited from A2 neither inherited qua
1.2. I

98

Reducing the Derivation of Redundancy Chapter 5

El c-==J ""
resol~ DJ "',K'

Cl 1",,----,1 I \" '." ""
l(1

111

.:-,lit r----.y

c

Fig. 5.12: A2' is subsumed either by Al or by 1('

5.3.6 Example:

In our introductory example the multiple derivation of identical resolvents

by the transitivity clause results from the inheritance of two internal links

Al == A2 in the transitivity clause -'Pxy -'Pyz Pxz. Both resolvents are copies of

the 3-transitivity clause -'Pxy -'Pyz -,pzw Pxw. Figure 5.13 shows the effect of

inheriting these variants.

Fig. 5.13: Link Inheritance From the Transitivity Clause

99

Reducing the Derivation of Redundancy Chapter 5

El ‚ . .

resolv. * 791 D . " . _K 'q {::—{ij
" ' h C

Ä2 DL Ä resolv.

Wa

Fig. 5.12: 12 ' is subsumed either by Ä; or by x’

5.3.6 Example:
In our introductory example the multiple derivation of identical resolvents
by the transitivity clause results from the inheritance of two internal links
M E 2.2 in the transitivity clause -1n -:Pyz s . Both resolvents are copies of
the 3-transitivity clause ..n -Pyz -‘Pzw w. Figure 5.13 shows the effect of
inheriting these variants.

Pab I Pbc I Pab ‘

—\n 2 PM —.n _.Pyz ’“

l 7L .../ \ 7‘1 = K2

—-n Pyz >xz _.n HPYZ

Pcd Pbc Pod

i i
—.s Paz

7C2 7:15 X2

Fig. 5.13: Link Inheritance From the Transitivity Clause

99

Simplification and Reduction for Automated Reasoning

A particular kind of link subsumption is symmetry. A clause D with

distinct literals LI,L2 is called symmetric (on Ll,L2), iff there is a bijective

mapping P : V(D)~V(D) with LIP = L2, L2P = Ll and Dp = D.

5.3.6 Theorem:

Let D be a clause with literals LI and L2. Then the following conditions are

equivalent:

a) - D is symmetric on Ll, L2.

b)	 Ll and L2 have the same predicate symbol and the same sign and Iq == A2

holds for each pair (Al,A2) of adjacent R-links with I\.jE A(Li).

Proof: Suppose there is a renaming p satisfying the symmetry condition

for D. Let C be a clause and LE C a literal, such that Land Ll are unifiable.

Since C and D are assumed to be variable disjoint, V(D)ndom(p)=0. Then L

and L2 are unifiable, and pa is a most general unifier of (L2,L) for any most

general unifier a of (Ll,L). For i=l,2, let Ri be the resolvent of D with C on Li.

Then

R2 = (D\{L2}UC\{L})pa = (D\{Ll}uC\{L})a = RI.

Conversely, suppose that b) is satisfied. Let D=LIL2D'. First we show that Ll

and L2 are variants: W.l.o.g we assume that Ll is a positive literal. Let

Ll = PtI.·.tn. Since L2 and Ll have the same predicate symbol and the same

sign, there are Sl, ... ,Sn, such that L2 = PSl ...Sn. Let C=""PXI ...Xn, where

Xl,.·.,Xn e V(D). For i=l,2, let AiE A(C)nA(Li), and let Ri be the resolvent

along Ai. Then RI = L2al D'al and R2 = Lla2 D'a2, where aiE l:*(Ai). Both al

and <12 are renamings, thus RI ==L2D' = D\LI and R2 == LID' = D\L2 holds. If

LI were not a variant of L2, then also RI could not be a variant of R2, which

contradicts Al =A2.

We write Ll in a form P'(Xl,. ..,Xn), with {Xl" ..,Xn} = yell). As Ll and L2 are

variants of each other, L2 can be written in the form P'(Yl,...,Yn).

Let C be a unit clause ...,P'(C},. ..,cn) with C},. ..,Cn are constants not occurring in

D. For i=l,2, let AiE A(C)nA(Li) with <1iE l:*(Ai). Then <11 = {Xi~Ci I i=l,...,n}

and a2 = {Yi~q I i=l,...,n}. Define p:V(D)~V(D) by

zp = ZaI<12-I if zEV(Ll),

zp = Z<12<11-1 if ZE V(L2), and

zp = Z otherwise.
First we have to show that p is well defined: Let ZE V(Ll)nV(L2). Then there

are XiE V(Ll) and YjE V(L2) with Z=Xi=Yj' From the assumption follows that

100

Simplification and Reduction for Automated Reasoning

A particular kind of link subsumption is symmetry. A clause D with
distinct literals L1,L2 is called symmetric (on L1,L2), iff there is a bijective
mapping p :V(D)—>V(D) with L lp = Lg, Lgp = L1 and Dp = D.

W
Let D be a clause with literals L1 and Lg. Then the following conditions are
equivalent:
a) ' D is symmetric on L1‚ Lg.
b) L1 and Lg have the same predicate symbol and the same sign and M :—:?„g

holds for each pair (11,12) of adjacent R-links with Me A(Li).

Proof: Suppose there i s a renaming p satisfying the symmetry condition
for D. Let C be a clause and LeC a literal, such that L and L1 are unifiable.
Since C and D are assumed to be variable disjoint, V(D)ndom(p)=®. Then L
and Lg are unifiable, and po is a most general unifier of (Lg‚L) for any most
general unifier o of (L1,L). For i=1,2, let Ri be the resolvent of D with C on Li.
Then

R2 = (D\{L2}UC\{L})pG = (D\{L1}uC\{L})o = R1.

Conversely, suppose that b) is satisfied. Let D=L1LgD'. First we show that L1
and Lg are variants: W.l.o.g we assume that L1 is a positive literal. Let
L] = Pt1...tn. Since Lg and L1 have the same predicate symbol and the same
sign, there are 51,...‚sn, such that Lg = PS1...Sn. Let C=-!Px1...xn, where
x1,...‚xne V(D) . For i=1,2‚ let Me A(C)nA(L i) ‚ and let Ri be the resolvent
along l i . Then R1 = L20’1 D'61 and R2 = L162 D'O'z, Where Cie Z*(7Li). Both 61
and 62 are renamings, thus R1 -:-LgD' = D\L1 and Rg s L1D' = D\Lg holds. If
L1 were not a variant of Lg, then also R] could not be a variant of Rg, which
contradicts M E Kg.
We write L1 in a form P’(x1,...‚xn), with {x1,...,xn} = V(L1). As L1 and L2 are
variants of each other, L2 can be written in the form P'(y1‚...,yn).
Let C be a unit clause -P'(c1,...,cn) with C1,...,Cn are constants not occurring in
D. For i=1,2, let 7Lie A(C)nA(Li) with me ZKM). Then 0'1 = {xi—)ci l i=1,...,n}
and 62 = {yi——>ci | i=1,...,n}. Define p:V(D)—>V(D) by

zp = 26162‘1 if ze V(L1)‚
zp = 20261-1 if ze ‘V(Lg), and
zp = 2 otherwise.

First we have to show that p is well defined: Let ze V(L1)nV(Lg). Then there
are xie V(L1) and yje V(L2) with z=xi=ylz From the assumption follows that

100

Reducing the Derivation of Redundancy Chapter 5

the resolvent along A21 which is LlO'2D'O'2, is a renaming of the resolvent

along All which is L2O'lD'O'l. Thus we have L20'1 ::LI0'2 and D'0'2 = D'O'I. As

Xi=Yjl Xi0'2 is the constant Cjl which implies XiO'2 = YiO'I. Moreover, we have

Ll0'1=L2O'2=C, which implies XiO'I =YiO'2. Hence we have

XiO'20'1-1 = YiO'lO'I-l = Yi and

XiO'10'2-1 = Yi0'20'2-1 = Yi·
Next we have to show that LIP = L2 and L2P =LI I and that D'p =D'. The

latter follows from D'O'2 = D'O'II and the first equations are obtained by

LIP = LIO'I0'2-l = L20'20'2-1 = L21 and L2P = L20'2O'l-1 = LlO'lO'l-1 = LI. •

5.3.7 Example:

The clause C = Px Pyx is symmetric, since the renaming P = {x.-+y, y.-+x}

satisfies {Pxy)p =Pyx, {Pyx)p = Pxy and Cp = C. Resolving on the literal Pxy

always yields the same result as resolving on the literal Pyx, that is, if Al (A2)

is a link joining the clause D with Pxy (Pyx) in C, then Al :: A2 holds.

A clause thus is symmetric, if it contains two literals, such that resolving

on one of the literals always yields the same resolvent as resolving on the

other literal. The condition that the two literals have the same predicate

symbol and polarity, guarantees the existence of a clause resolving on both

literals. Since symmetric clauses are a source of redundancy, such a charac­

terization proves useful in order to recognize symmetric clauses and to

restrict unneeded resolution steps.

Clause graph resolution provides an obvious means to cope with the kind

of redundancy, which results from subsumed links. However, the context of

this chapter is a resolution based reasoning system rather than a clause

graph based system. In the following it will be shown how the results of

section 5.2 and 5.3 can be used to reduce the derivation of redundant clauses,

without referring to link inheritance and link deletion.

5.4 Removing Cycles and Subsumed Links

As cycles and subsumed links in clause sets are responsible for the genera­

tion of redundant information, a technique to remove such structures

would prove very useful. As to cycles, a first approach to this question is due

to Bibel (1981). He showed that under certain conditions, similar to those

101

Reducing the Derivation of Redundancy Chapter 5

the resolvent along 12, which i s L162D'O'2, i s a renaming of the resolvent

along X1, which is LzolD‘ol. Thus we have L261 5L1oz and D‘oz = D‘ol. As
xi=yj‚ xioz is the constant Ci, which implies xioz = Yiöl- Moreover, we have
L1o1=L262=C‚ which implies xio1=yioz. Hence we have

xiozcn'1 = yiolorl = yi and
XiGiOz'1 = yi6262'1 = Yi~

Next we have to show that L1p =L2 and s =L1 , and that D'p =D' . The

latter follows from D'oz =D'O‘1, and the first equations are obtained by
L1P = 14616?1 = L26262'1 = L2, and L29 = 1:26261'1 = L16161'1 = Li . I

The clause C =Px Pyx is symmetric, since the renaming p = {x—>y, y-—>x}
satisfies (n)p = Pyx, (Pyx)p = n and Cp = C. Resolving on the literal n
always yields the same result as resolving on the literal Pyx, that is, if M (M)
is a link joining the clause D with n (Pyx) in C, then M s 7L2 holds.

A clause thus is symmetric, if it contains two literals, such that resolving
on one of the literals always yields the same resolvent as resolving on the
other literal. The condition that the two literals have the same predicate
symbol and polarity, guarantees the existence of a clause resolving on both
literals. Since symmetric clauses are a source of redundancy, such a charac-
terization proves useful in order to recognize symmetric clauses and to
restrict unneeded resolution steps.

Clause graph resolution provides an obvious means to cope with the kind
of redundancy, which results from subsumed links. However, the context of
this chapter is a resolution based reasoning system rather than a clause
graph based system. In the following it will be shown how the results of
section 5.2 and 5.3 can be used to reduce the derivation of redundant clauses,
without referring to link inheritance and link deletion.

5.4 Removing Cycles and Subsumed Links

As cycles and subsumed links in clause sets are responsible for the genera-
tion of redundant information, a technique to remove such structures
would prove very useful. As to cycles, a first approach to this question is due
to Bibel (1981). He showed that under certain conditions, similar to those

101

Simplification and Reduction for Automated Reasoning

allowing the deletion of tautologies in clause graphs, cycles can be removed

from clause sets. In this section, a uniform approach to cope with both cycles

and subsumed links, will be considered.

The method's basic idea is to preclude certain resolution steps by "com­

piling" the "critical structures" into a theory serving as the basis for theory

resolution. A rather similar approach is pursued in equational reasoning,

where certain equations, like that defining commutativity, are removed

from the derivation and put into the unification procedure. Theory resolu­

tion, first proposed by Stickel (1985), is a generalization of ordinary resolu­

tion. The literals resolved upon need not be syntactically complementary, it

is sufficient for them to be complementary under some theory. For instance,

while the literals a<b, b<c, and c<a are not syntactically complementary, they

are complementary under the theory of transitivity of the symbol <. Simi­

larly, the literals Pab and ..,Pba are complementary under the theory of

symmetry for the predicate P. For our purpose, the basic theory is always

given by a set S of clauses, namely cyclic clause sets, or clauses containing

subsumed links. The following example illustrates that this approach

precludes the "critical" derivations.

5.4.1 Example:

Let S = {Cl,...,C6}, with Cl=PQ, C2=..,PR, C3=RS, C4=QS..,W, Cs=..,RW, C6="'SU
(see figure 5.14).

R S -,R U

""/S U -,SQW

,,/
QW U subsumed by

Fig. 5.14

The resolvent of C3 and C4 is subsumed by the resolvent of Cl and C2, that

is, 1\.}$A2 holds for the appropriate links. Removing only the subsumed

clause does not preclude further derivations of subsumed clauses by

102

Simplification and Reduction for Automated Reasoning

allowing the deletion of tautologies in clause graphs, cycles can be removed
from clause sets. In this section, a uniform approach to cope with both cycles
and subsumed links, will be considered.

The method’s basic idea is to preclude certain resolution steps by ”com-
piling” the ”critical structures” into a theory serving as the basis for theory
resolution. A rather similar approach is pursued in equational reasoning,
where certain equations, like that defining commutativity, are removed
from the derivation and put into the unification procedure. Theory resolu-
tion, first proposed by Stickel (1985), is a generalization of ordinary resolu-
tion. The literals resolved upon need not be syntactically complementary, it
is sufficient for them to be complementary under some theory. For instance,
While the literals a<b‚ b<c‚ and c<a are not syntactically complementary, they
are complementary under the theory of transitivity of the symbol <. Simi-
larly, the literals Pab and -|Pba are complementary under the theory of
symmetry for the predicate P. For our purpose, the basic theory is always
given by a set S of clauses, namely cyclic clause sets, or clauses containing
subsumed links. The following example illustrates that this approach
precludes the ”critical” derivations.

5.4.1 Example:

Let S = {C1‚.. .,C6}, with C1=PQ, C2=-1PR, C3=RS, C4=QS-1W‚ C5=-IRW, C6=-ISU
(see figure 5.14).

QPflL—flR] _Rs _.s WW fiR _.sLUI

RS " IRU PQ 'fiPR

\ / \ /
SU " ISQW QR - |RU

\QV{ subsumed by V

Fig. 5.14
The resolvent of C3 and C4 is subsumed by the resolvent of C1 and C2, that

is, MSM holds for the appropriate links. Removing only the subsumed
clause does not preclude further derivations of subsumed clauses by

102

Reducing the Derivation of Redundancy	 Chapter S

inherited subsumed links. A case in point is the derivation of the clause

QWU (see figure 5.14).

Such redundant derivations can be avoided by using the "critical clauses"

(C3, C4} for theory resolution. Obviously, a set of literals complementary

under (C3, C4} must contain the literals ...,R and ...,S, or the literals -Q, S, and

...,W. This enables, for instance, a resolution step between Cs and C6 yielding

the resolvent U (see figure 5.15). Resolution steps involving a clause of the

theory are not allowed, hence no more derivations yielding subsumed clau­

ses are possible. Figure 5.15 also illustrates why the particular kind of theory

resolution, which is defined by clause sets, is called lllink resolutionll by

Ohlbach & Siekmann (1988)1. The link between the literals ...,R and ...,S in the

middle of the diagram can be seen as a theory link, under the theory

generated by the clause RS.

-,R U -,R U

I
RS

I
.. { R S } • u

-,S u -,S U

Fig. 5.15

In the following, we shall deal with so called S-theories, that are theories

generated by a finite set 5 of clauses. If S is any set of clauses, then the theory
of S is just the semantic closure (5) of S.

5.4.2 Definition:

Let S be a set of clauses, and let C={Lt, ...,Ln}e(S). Let Ct,...,Cn be clauses with

Kie Ci for ie {l,...,n}. If there is a most general simultaneous unifier 0' of
n

{(Li,...,Ki) I i=1,...,n}, then the clause 8. (Ci\(Li})O' is an S-resolvent of Cl"",Cn

(using C).

1	 The ancestor of the link resolution principle seems to be Wos' et al (1984) linked inference

rules.

103

Reducing the Derivation of Redundancy Chapter 5

inherited subsumed links. A case in point is the derivation of the clause
QWU (see figure 5.14).

Such redundant derivations can be avoided by using the ”critical clauses”
[C3, C4} for theory resolution. Obviously, a set of literals complementary
under {C3, C4} must contain the literals -'R and -S, or the literals flQ, S, and
«W. This enables, for instance, a resolution step between C5 and C6 yielding
the resolvent U (see figure 5.15). Resolution steps involving a clause of the
theory are not allowed, hence no more derivations yielding subsumed clau-
ses are possible. Figure 5.15 also illustrates why the particular kind of theory
resolution, which is defined by clause sets, is called ”link resolution” by
Ohlbach & Siekmann (1988)1. The link between the literals fiR and -»S in the
middle of the diagram can be seen as a theory link, under the theory
generated by the clause RS.

—.RU —.RU

R3 ——> {RS}——> U

-uSU —-SU

Fig. 5.15
In the following, we shall deal with so called S-theories, that are theories

generated by a finite set 5 of clauses. If S is any set of clauses, then the theory
of S is just the semantic closure (5) of S.

5.4.2 Definition:
Let S be a set of clauses, and let C={L1,...,Ln}e(S). Let C1‚...‚Cn be clauses with
Kie C i for ie {1,.. .,n}. If there is a most general simultaneous unifier o of

{(Li,-1Ki)|i=1,...,n}, then the clause 91 (Ci\[Li})O' i s an S-resolvent of C1,...,Cn

(using C).

1 The ancestor of the link resolution principle seems to be Wos’ et al (1984) linked inference
rules.

103

Simplification and Reduction for Automated Reasoning

Note that if the clause C in the previous definition is an elementary

tautology, then the 5-resolution step is an ordinary resolution step. 5ince

elementary tautologies are contained in each 5-theory, the concept of 5­

resolution includes ordinary resolution. If the clause C is the empty clause,

then the 5-resolvent using C is also the empty clause.

The definitions of the derived notions, like 5-resolution refutation, are

straightforward. It is easy to see that the concept of 5-resolvents is an

instance of total narrow theory resolution, where (5) is the theory, and the Li

are the key literals1. 5ince theory resolution was shown to be correct and

complete, this result implies soundness and completeness of 5-resolution:

5.4.3 Corollary:

Let 5 be a clause set, and 5'k5. Then 5 is unsatisfiable, iff 5\5' admits an 5'­

resolution refutation.

In general, it is not decidable, whether a given clause C lies in the theory

(5), even if 5 consists of a single clause only (Schmidt-5chaufS 1986). How­

ever, it is not necessary to use all clauses in (5) for 5-resolution. 5-resolution

remains complete, if only the prime implicants of (5), that is, the minimal

clauses in (5) w.r.t. the subsumption order, are employed in the 5-resolution

steps2. Of course, even the set of prime implica!'-ts of (5) may be an infinite

set.

5.4.4 Lemma:

Let 5 be a clause set, and let De (5). If there is a clause Ce (5) with C:SD, then

each 5-resolvent using 0 is subsumed by an 5-resolvent using C.

Proof: Obvious. •

1	 As to the notions of key literals and total vs. partial, and narrow vs. wide theory resolu­

tion, see Stickel (1985).

2 Note that the restriction to prime implicants corresponds to the requirement that the key

literals of a theory resolution step have to be minimally unsatisfiable in the basic theory.

104

Simplification and Reduction for Automated Reasoning

Note that if the clause C in the previous definition is an elementary
tautology, then the S—resolution step is an ordinary resolution step. Since
elementary tautologies are contained in each S-theory, the concept of S-
resolution includes ordinary resolution. If the clause C is the empty clause,
then the S-resolvent using C is also the empty clause.

The definitions of the derived notions, like S-resolution refutation, are
straightforward. It i s easy to see that the concept of S—resolvents is an
instance of total narrow theory resolution, where (S) is the theory, and the Li
are the key literalsl. Since theory resolution was shown to be correct and
complete, this result implies soundness and completeness of S-resolution:

5.4.3 Corollary:

Let S be a clause set, and S'gS. Then S is unsatisfiable, iff S \S ' admits an S'-
resolution refutation.

In general, it is not decidable, whether a given clause C lies in the theory
(S), even if S consists of a single clause only (Schmidt-SchauB 1986). How-
ever, i t is not necessary to use all clauses in (S) for S-resolution. S-resolution
remains complete, if only the prime implicants of (S), that is, the minimal
clauses in (S) w.r.t. the subsumption order, are employed in the S—resolution
stepsz. Of course, even the set of prime implicants of (S) may be an infinite
set.

5.4.4 Lemma:

Let S be a clause set, and let De (8). If there is a clause Ce (S) with CSD, then
each S-resolvent using D is subsumed by an S-resolvent using C.

Proof: Obvious. '

1 As to the notions of key literals and total vs. partial, and narrow vs. wide theory resolu-
tion, see Stickel (1985).

2 Note that the restriction to prime implicants corresponds to the requirement that the key
literals of a theory resolution step have to be minimally unsatisfiable in the basic theory.

104

Reducing the Derivation of Redundancy	 Chapter 5

5.4.5 Definition:

Let S be a clause set. Then the set [S] is the set of prime implicants of (S), that

is, the set of nontautologous clauses, which are minimal in (S) w.r.t. the

subsumption order.

In contrast to the closed set (S), the set [S] of prime implicants does not

contain any tautologies. In order to remain complete, when the used clauses

are restricted to the prime implicants, the ordinary resolution steps, which

are considered S-resolution steps using an elementary tautology, have to be

explicitely admitted. Thus an [S]-resolution derivation (refutation) will be

regarded as a derivation (refutation) consisting of S-resolution steps using

clauses in [S] and of ordinary resolution steps.

5.4.6 Corollary:

Let S be a clause set, and S'k;S. Then S is unsatisfiable, iff S\S' admits an

[S']-resolution refutation.

For any clause set S, the set [S] of prime implicants can be generated in the

usual way1: Form resolvents and remove subsumed clauses and tautologies.

For the class of complete semicycles, which produce only subsumed

resolvents, the set of prime implicants is finite. This is easy to see: Suppose

there is a resolution derivation from the set S of nodes of a complete semi­

cycle G. W.l.o.g the derivation can be assumed to be minimal, that is, it pro­

duces only non-subsumed resolvents. If the set of prime implicants were in­

finite, then we had an infinite resolution derivation from the nodes of a

complete semicyc1e G. This derivation would obviously involve a cyclic

subset of G. According to the results of the previous section, such a derivati­

on would produce a subsumed resolvent, which contradicts the assumption.

5.4.7 Examples:

a) Let S = {-'Pxy Qxy, -'Quv Puv}. Together with the appropriate links, S

forms an elementary cycle G, and [C(G)] = S holds, since no non-tautological

resolvents can be formed from S.

1	 As in chapter 3 of this thesis. Note, however, that chapter 3 deals only with ground

clauses, where the set of prime implicants is always finite.

105

Reducing the Derivation of Redundancy Chapter 5

5.4.5 Definition:

Let S be a clause set. Then the set [S] is the set of prime implicants of (S), that
is, the set of nontautologous clauses, which are minimal in (S) w.r.t. the
subsumption order.

In contrast to the closed set (S), the set [S] of prime implicants does not
contain any tautologies. In order to remain complete, when the used clauses
are restricted to the prime implicants, the ordinary resolution steps, which
are considered S—resolution steps using an elementary tautology, have to be
explicitely admitted. Thus an [S]—resolution derivation (refutation) will be
regarded as a derivation (refutation) consisting of S—resolution steps using
clauses in [S] and of ordinary resolution steps.

5.4.6 Corolla :

Let S be a clause set, and S'gs. Then S is unsatisfiable, iff S \S ' admits an

[S]-resolution refutation.

For any clause set S, the set [S] of prime implicants can be generated in the
usual waylz Form resolvents and remove subsumed clauses and tautologies.

For the class of complete semicycles, which produce only subsumed
resolvents, the set of prime implicants is finite. This is easy to see: Suppose
there is a resolution derivation from the set S of nodes of a complete semi-
cycle G. W.1.o.g the derivation can be assumed to be minimal, that is, it pro—
duces only non-subsumed resolvents. If the set of prime implicants were in-
finite, then we had an infinite resolution derivation from, the nodes of a
complete semicycle G. This derivation would obviously involve a cyclic
subset of G. According to the results of the previous section, such a derivati—
on would produce a subsumed resolvent, which contradicts the assumption.

W
a) Let S = {-qy Qxy, -q Puv}. Together with the appropriate links, S
forms an elementary cycle G, and [C(G)] = S holds, since no non-tautological
resolvents can be formed from S.

1 As in chapter 3 of this thesis. Note, however, that chapter 3 deals only with ground
clauses, where the set of prime implicants is always finite.

105

Simplification and Reduction for Automated Reasoning

b) Let 5 = {-.Pxy Pyx}. Together with the internal link,S forms a function

free, but not complete, cycle G. However, adding a copy of -.Pxy Pyx yields
the elementary cycle {-.Pxy Pyx, -.Puv Pvu}. Thus [C(G)] is finite and again

[C(G)] =5 holds.

c) Let 5 = {-.Pf(f(x,y), z) Pf(x,f(y,z»}. Together with the internal link, 5 forms a

non-complete cycle G. Then [C(G)]= 5 U {-.Pf(f(f(x,y),z),u) Pf(x,f(y,f(z,u»), ...} is

infinite.

In section 5.2, it was shown that cyclic structures in clause sets account for

ancestor subsumption. The strongest forms of ancestor subsumption are

caused by complete semicycles, which correspond to finite theories. These

can easily be employed for S-resolution, which thus in part overcomes the

problem with the derivation of redundant clauses.

The situation is somewhat different, however, for the problem with sub­

sumed links. The theory generated by clauses containing subsumed links,

need not be finite, as the transitivity example shows:

5.4.8 Example:

Let T3 be the transitivity clause "PXtX2 "PX2X3 PXtX3. T3 possesses two internal

links Iq and 1..2 with At == 1..2. Resolving on Al (or, equivalently, on 1..2) yields

the clause T4 = "PXIX2 "PX2X3 "PX3X4 PXIX4. This clause again possesses inter­
nallinks, and the process continues. Proceeding this way, we obtain the set

rr={-.PXtX2 "PX2X3 ... "PXn-lXn PXIXn I 123}
This admits for instance the following sequence (figure 5.16):

IPab I I P~~ I IPcd I
S-resolution
not possible ~---I~Pad!T 3

T4

~ 0
......_...,...., S-resolution

Fig. 5.16

106

Simplification and Reduction for Automated Reasoning „

b) Let S = {-In Pyx}. Together with the internal link, S forms a function
free, but not complete, cycle G. However, adding a copy of -n Pyx yields
the elementary cycle {-ty Pyx, -1Puv Pvu}. Thus [C(G)] is finite and again
[C(G)] = S holds.
c) Let S = {-i(f(x,y), z) Pf(x,f(y,z))}. Together with the internal link, S forms a
non-complete cycle G. Then [C(G)]= S U {-i(f(f(x,y),z),u) Pf(x,f(y,f(z,u))), ...} is
infinite.

In section 5.2, it was shown that cyclic structures in clause sets account for
ancestor subsumption. The strongest forms of ancestor subsumption are
caused by complete semicycles, which correspond to finite theories. These
can easily be employed for S—resolution, which thus in part overcomes the
problem with the derivation of redundant clauses.

The situation is somewhat different, however, for the problem with sub-
sumed links. The theory generated by clauses containing subsumed links,
need not be finite, as the transitivity example shows:

W
Let T3 be the transitivity clause —-Px1x2 -Px2x_o‚ PX1X3. T3 possesses two internal
links M and 12 with M 52.2. Resolving on M (or, equivalently, on 7L2) yields
the clause T4 = -Px1xz ‘|PX2X3 '"PX3X4 PX1X4. This clause again possesses inter-
nal links, and the process continues. Proceeding this way, we obtain the set

T: {alxz azxa an-1xn lxn | n23}
This admits for instance the following sequence (figure 5.16):

___—“=. ’73—: ..":— S-resolution

T3 —.n fiPyz s . _ - - -.Pad not possible

TEE] Pcd _) EI
S—rcsolution

T4 —.n —.Pyz —-\Pzw w -uPad

106

Reducing the Derivation of Redundancy Chapter 5

Next we show by an example, how the information concerning cycles in

clause graphs can be used to reduce the search space in resolution theorem

proving. This example illustrates the application of S- resolution to

problems containing cyclic structures.

5.4.9 Example

Translating SAM's lemma into a clause set, avoiding the use of the equality

predicate (see Wos 1988), results in a clause set S that consists of the follow­

ing 11 units
min(O x 0), max (x 0 x), max(a b dl), max(C} e g), max(q f h), min(c2 b e)

min(d2 C2 0), min(c2 a f), min(dl Cl 0), min(a b d2), -,min(g h Cl)

and 6 non unit clauses:

(Cl) -,min(x y z) min(y x z)

(C2) -,max(x y z) max(y x z)

(C3) -,min(x y u) -,min(y z v) -,min(x v w) min(u z w)
(C4) -,min(x y u) -,min(y z v) -,min(u z w) min(x v w)

(Cs) -,max(x y z) min(x z x)

(4) -,min(x z x) -.max(x y Xl) -.min(y z n) -,max(x YI Zl) min(z xl Zl)

In the following we describe a refutation of this clause set using positive

hyperresolution together with theory resolution. The cyclic clauses Cl and

C2, describing the symmetry of the min and max predicates, can be used for

S-resolution, as in example 5.4.8.b). The same holds for the clause CS, which

is neither self-resolving nor a member of a cycle. The clauses C3 and C4,

describing the associativity of the min predicate, form a cyclic structure,

which produces ancestor subsumed clauses in the following way: Let DI, D2,

D3 be clauses that resolve with C3 to the unit clause D4. Then (DI, D2, D4)

resolves with C4 to a copy of D3. The resolution closure of the set {C3, C4} is

not finite, it thus cannot be used directly for theory resolution. But C3, C4 can

be used to derive complete cycles in a way, as shown in figure 5.17:

107

Reducing the Derivation of Redundancy Chapter 5

Next we show by an example, how the information concerning cycles in
clause graphs can be used to reduce the search space in resolution theorem
proving. This example illustrates the application of S- resolution to
problems containing cyclic structures.

5_A_-9_Ex_amp_le

Translating SAM’s lemma into a clause set, avoiding the use of the equality
predicate (see Wos 1988), results in a clause set S that consists of the follow-
ing 11 units

min(O x 0), max (x 0 x), max(a b dl), max(c1 e g), max(c1 fh) , min(C2 b e)
min(d2 cz 0), min(c2 a f), min(d1 c1 0), min(a b d2), -min(g h c1)

and 6 non unit clauses:
(C1) “min(x y z) min(y x z)

(C2) -max(x y z) max(y x 2)
(C3) -min(x y u) -min(y z v) fimin(x v w) min(u z w)
(C4) -min(x y u) -min(y 2 v) -min(u z w) min(x v w)
(C5) -max(x y z) min(x z x)
(C6) -min(x z x) amax(x y x l) —-min(y z y1) -max(x y1 Z1) min(z x1 21)

In the following we describe a refutation of this clause set using positive
hyperresolution together with theory resolution. The cyclic clauses C1 and
C2, describing the symmetry of the min and max predicates, can be used for
S—resolution, as in example 5.4.8.b). The same holds for the clause C5, which
is neither self—resolving nor a member of a cycle. The clauses C3 and C4,
describing the associativity of the min predicate, form a cyclic structure,
which produces ancestor subsumed clauses in the following way: Let D1, D2,
D3 be clauses that resolve with C3 to the unit clause D4. Then (D1, D2, D4)
resolves with C4 to a copy of D3. The resolution closure of the set {C3, C4} is
not finite, i t thus cannot be used directly for theory resolution. But C3, C4 can
be used to derive complete cycles in a way, as shown in figure 5.17:

107

Simplification and Reduction for Automated Reasoning

I-.min (c2 d2 W)I min(f b w)

rmin (c2 d2 w) I-.min(f b w) .

Fig. 5.17

Only the relevant links are shown in this figure. The dotted links denote

the cyclic structure. The result of resolving {C3,C4} with the two units is a

complete cycle, which is added to the theory box. A resolution step of this
particular kind will be abbreviated by the following diagram (figure 5.18),

where a cycle is represented by an equivalence of the form A=B.

ID'--- --'- .L..m_ _"_<x_v_w_)_",_m_in_(_u_z_w_)...J ~ I min (c2 d2 w) '" min(f b w) I
Fig. 5.18

Proceeding this way, only the clause C6 is needed to produce "ordinary"

resolvents. Of course, there remains the possibility to produce copies of

already retained cycles. Taking into account these redundancies, a total 660

copies or instances of already present clauses are generated in the proof.

The proof of SAM's lemma, as illustrated below, consists of 8 steps. The

bold faced links denote theory links, the used theories are denoted by their

clauses. For instance, a link numbered with Cl denotes a theory link under

the theory of C1, that is the commutativity of min.

108

Simplification and Reduction for Automated Reasoning

—:min(xyu) —min(yzv) —min(w) min(uzw) —.min(c2w) min (fbw)

—.rnin(xyu) —-1min(yzv) min(w) —-.min(uzw) min(c2d2w) min(fbw)

Only the relevant links are shown in this figure. The dotted links denote
the cyclic structure. The result of resolving {C3,C4} with the two units is a
complete cycle, which is added to the theory box. A resolution step of this
particular kind will be abbreviated by the following diagram (figure 5.18),

Fig. 5.17

where a cycle is represented by an equivalence of the form A=B.

—.min(xyu) fimin(yzv) min(w)==min(uzw) -) min(c2d2w)=min(fbw)

Fig. 5.18
Proceeding this way, only the clause C6 is needed to produce ”ordinary"

resolvents. Of course, there remains the possibility to produce copies of
already retained cycles. Taking into account these redundancies, a total 660
copies or instances of already present clauses are generated in the proof.

The proof of SAM’s lemma, as illustrated below, consists of 8 steps. The
bold faced links denote theory links, the used theories are denoted by their
clauses. For instance, a link numbered with C1 denotes a theory link under
the theory of C1, that is the commutativity of min.

108

Reducing the Derivation of Redundancy Chapter 5

{x->c2. y->b, u->e, z->dl, v->b} El

---t Imin (c2 b w) '" min(e dl w)

{x->e, y->c1. z->dl. yl->O, zl->e}

L-L..-L..- -'-m_in_(z_xl_Zl_)... ---t [min (dl e g) I

{x->cZ, y->a, u->f, z->dl, v->a} E2

---t Imin (c2 a w) '" min(f dl w)

{x->c2, y->a. u->f. z->b. v->d2} E3

L-L-ffi_in_(X_V_W_)_"'_ffi_ffi_·_(_U_Z_W_)-", ---t Imin (c2 d2 w) '" min(f b w)

{x->f, y->b, u->O, z->c2, v->e} E4

---t Imin (f e w) '" min(O c2 w)

{x->f, y->dl, u->f, z->g, v->e} E5

min (x v w) '" min (u z w) ---t Imin (f e w) '" min (0 c2 w)

"----_........_---""-----------'"

{x->e, y->cl. z->dl, yl->O, zl->e}

L-IL..-L.m_in_(z_xl_zl_)-a ---t Imin (g h cl) I

Imin (g h cl) r-l---.min (g h cl) I 0

109

Reducing the Derivation of Redundancy Chapter 5

{X->c2. y->b. u->e. 2->d1. V->b) El
C2.C5

~min(xyu) min(yzv) min(w)=min (uzw) _) min(c2bw)=min (ed1w)

rmin(c2 b c) ”max(cl e g) [min(d1 clfll [max(x 0 m {x->e‚ y->c1, z->d1. y1->0, z1->e}
c1] C2] Cl I

fimin(x z x) —:max(x y x l) -:min(y z y l) amax(x y l z l) min(z x1 21) _) min (d l e g)

{x—>c2‚ y->a‚ u->f. z->d1, v->a} EZ
C5

—:min(xyu) min(yzv) min(w)=min(uzw) -9 min(c2aw)~min(fd lw)

(x->c2. y->a‚ u->f‚ z->b‚ v->d2} E3

min(xyu) —.min(yzv) min(w)=min(uzw) _) min(c2d2w)=min (fbw)

{x->f‚ y->b. u->0. 2->c2. V->e} E4
E3 C1

—-min(xyu) —-.min(yzv) min w)=min(uzw) -—) min(few)=min(0c2w)

{x->f. y—>d1, u->f, z—>g, v->e] ES
E3

—min(xyu) —.min(yzv) min(w)s=min(uzw) _) min(few)=min(0c2w)

| max(c1 e g) | [max(c1 f fl I min(0 c2 ())—| rmax(x 0 xfl {x->e. y->c1‚ z—>d1. y1->0‚ z1->e}

T cs l E4.Es I
—1min(x z x) —1max(x y x l) —umin(y z y1) —m1ax(x y1 z l) min(z x1 z l) _) min (g h c l)

min (g h c l) —ua (g h 01) '_) D

109

Simplification and Reduction for Automated Reasoning

6 Resolution with Equivalence

As in most languages, there are many ways to represent information to an

automated reasoning program. One has, for instance, the choice between the
predicative notation Iyx => Pxye and the functional notation P x inv(x) e,

when encoding that the product of x and its inverse is e. Similarly, the fact

that z is the product of x and y can be expressed using a predicative notation

Pxyz, or using an equality notation fxy =z. Usually the performance of a

reasoning system strongly depends on the particular choice of notation,

together with the appropriate choice of inference rule. For instance, if

resolution is the chosen inference rule, while the problem is represented in

the equality formulation, even simple problems become difficult to solve.
Wos (1988) reports a proof of the commutator theorem of group theory,

which was solved in 2 CPU seconds employing the inference rule para­

modulation (Robinson & Wos 1969). The same problem took some 100 CPU

seconds, when hyperresolution was used instead of paramodulation. In

general, there is a number of advantages of using an equality oriented

notation, together with the appropriate choice of the inference rule. It is not

only that these proofs are shorter, in particular when demodulation (Wos

1967) is employed. Moreover, these proofs are often much more natural and

easier to read. The performance of reasoning systems could thus be

considerably increased, if the inference rules of paramodulation and demo­

dulation could be made applicable also to problems that are represented in

an equality-free notation. In this chapter it will be shown that the incor­

poration of logical equivalence into clause resolution is such a way to

enhance the efficiency of automated reasoning systems.

With regard to the fact that a cycle of the form {...,LIL2, ...,L2L3,...,...,LnLl}

represents a set {Ll=>L2, L2=>L3,..,Ln=>Ll} of implications, which expresses

that the literals Li are pairwise logically equivalent, the incorporation of

logical equivalence thus also presents, besides the approach described in the

previous chapter, another means to overcome the problems with the

derivation of redundant clauses caused by cyclic structures in clause sets.

The approach described in this chapter is based on the correspondence
between equivalence of literals and the equality of terms. This similarity

finds expression in the fact that translating the functional expression

110

Simplification and Reduction for Automated Reasoning

6 Resolution with Equivalence

As in most languages, there are many ways to represent information to an
automated reasoning program. One has, for instance, the choice between the
predicative notation Iyx=>ne and the functional notation Pxinv(x) e,
when encoding that the product of x and its inverse is e. Similarly, the fact
that z is the product of x and y can be expressed using a predi'cative notation
nz, or using an equality notation fxy =z . Usually the performance of a
reasoning system strongly depends on the particular choice of notation,
together with the appropriate choice of inference rule. For instance, if
resolution i s the chosen inference rule, while the problem i s represented in
the equality formulation, even simple problems become difficult to solve.
Wos (1988) reports a proof of the commutator theorem of group theory,
which was solved in 2 CPU seconds employing the inference rule para-
modulation (Robinson & Wos 1969). The same problem took some 100 CPU
seconds, when hyperresolution was used instead of paramodulation. In
general, there is a number of advantages of using an equality oriented
notation, together with the appropriate choice of the inference rule. It is not
only that these proofs are shorter, in particular when demodulation (Wos
1967) is employed. Moreover, these proofs are often much more natural and
easier to read. The performance of reasoning systems could thus be
considerably increased, if the inference rules of paramodulation and demo-
dulation could be made applicable also to problems that are represented in
an equality-free notation. In this chapter it will be shown that the incor-
poration of logical equivalence into clause resolution is such a way to
enhance the efficiency of automated reasoning systems.

With regard to the fact that a cycle of the form {fiL1L2, fiL2L3 , . . . , - ILnL1}

represents a set {L1=>L2, L2=>L3,..,Ln=L1} of implications, which expresses
that the literals Li are pairwise logically equivalent, the incorporation of
logical equivalence thus also presents, besides the approach described in the
previous chapter, another means to overcome the problems with the
derivation of redundant clauses caused by cyclic structures in clause sets.

The approach described in this chapter is based on the correspondence
between equivalence of literals and the equality of terms. This similarity
finds expression in the fact that translating the functional expression

110

Resolution with Equivalence	 Chapter 6

fxy =fuv into predicate notation yields the logical equivalence Pxyz == Puvz.

This can be taken as a hint that equality problems, which are denoted in an

unsuited, predicative notation, admit a translation back into a better suited

equivalence notation. Moreover, a resolution calculus that is extended by

logical equivalence provides the power of paramodulation and demodula­

tion also for problems that cannot be represented in an equality notation.

For instance, the problem consisting of the axiom V'x Px == ...,Pfx and the

theorem 3x Px & ...,Pfx (see Pelletier 1986) could be equally well handled with

demodulation, even if it does not possess any corresponding equality

formulation.

What would such a resolution calculus with equivalence look like?

Consider for instance the clause set 5 = {Ct, C2, C3, C4}, with Cl =PQ,

C2 =""PQ, C3 =P""Q, and C4 =...,p...,Q. In a pure resolution calculus, resolving

C2 with C3 is unnecessary, since the resolvents are tautologies, and likewise

for Cl and C4. In an extended resolution calculus, however, there is an

inference rule that derives the equivalence P == Q from C2 and C3, and the

negated equivalence ...,(P == Q) from Cl and C4. These equivalences can be

treated like ordinary clauses, that is, the empty clause can be derived from

them. This example expresses the fact that a single equivalence P == Q or a

negated equivalence can be treated like a single literal (or a unit clause). For

instance, P == Q and ...,(P == Q) can be resolved to the empty clause, which is

possible only for unit clauses. The equivalence P == Q, however, might also

be used as a demodulator1 (Wos 1967) in the form P~Q or Q~P. Directing

this (ground) equivalence is arbitrary, one might employ for instance a well

founded ordering on the predicate symbols. Thus one could "normalize" the

actual clause set, after having deduced the rule P~Q. Normalizing the
parent clauses ...,PQ and P...,Q yields the tautologies ...,QQ and Q...,Q, which can

thus be removed. In fact, this is but another way to describe that P == Q

subsumes its parent clauses P => Q and Q => P. Note, however, that this

description of subsumption applies only to equivalences that can be directed

to rules. Normalizing the other clauses yields Q and ""Q, and the next step

1	 A demodulator is the same as a rewrite rule. The notion of a demodulator, however, is more

commonly used in the context of resolution theorem proving.

111

Resolution with Equivalence Chapter 6

fxy =fuv into predicate notation yields the logical equivalence nz E Puvz.
This can be taken as a hint that equality problems, which are denoted in an
unsuited, predicative notation, admit a translation back into a better suited
equivalence notation. Moreover, a resolution calculus that is extended by
logical equivalence provides the power of paramodulation and demodula-
tion also for problems that cannot be represented in an equality notation.
For instance, the problem consisting of the axiom Vx a flPfx and the
theorem 3x Px & —-Pfx (see Pelletier 1986) could be equally well handled With
demodulation, even if it does not possess any corresponding equality
formulation.

What would such a resolution calculus with equivalence look like?
Consider for instance the clause set S = {C1, C2, C3, C4}, with C1 =PQ,

C2 = -:PQ, C3 = P-Q, and C4 = fiP—IQ. In a pure resolution calculus, resolving
C2 with C3 is unnecessary, since the resolvents are tautologies, and likewise
for C1 and C4. In an extended resolution calculus, however, there i s an
inference rule that derives the equivalence P s Q from C2 and C3, and the
negated equivalence -1 (PEQ) from C1 and C4. These equivalences can be
treated like ordinary clauses, that is, the empty clause can be derived from
them. This example expresses the fact that a single equivalence PE Q or a
negated equivalence can be treated like a single literal (or a unit clause). For
instance, P E Q and fi (P .=. Q) can be resolved to the empty clause, which is
possible only for unit clauses. The equivalence P 5 Q, however, might also
be used as a demodulator1 (Wos 1967) in the form P—>Q or Q—>P. Directing
this (ground) equivalence is arbitrary, one might employ for instance a well
founded ordering on the predicate symbols. Thus one could ”normalize” the
actual clause set, after having deduced the rule P—->Q. Normalizing the
parent clauses -IPQ and P-IQ yields the tautologies -QQ and Q-«Q, which can
thus be removed. In fact, this i s but another way to describe that PEQ
subsumes its parent clauses P=>Q and Q=>P. Note, however, that this
description of subsumption applies only to equivalences that can be directed
to rules. Normalizing the other clauses yields Q and -1Q, and the next step

1 A demodulator i s the same as a rewrite rule. The notion of a demodulator, however, is more

commonly used in the context of resolution theorem proving.

111

Simplification and Reduction for Automated Reasoning

leads to the empty clause. This derivation has an analogon on the
"resolution side", as figure 6.1 shows:

subsumed
subsumed

~
Q

-,P-,Q

Ireplacement
,esolution

Fig. 6.1

Replacement resolution (Markgraf 1984), is a combined resolution and

subsumption deletion step. In this example, resolving P...,Q and Q yields the

unit clause P. This step is combined with the deletion of the subsumed
parent clause p...,Q. In fact, this step can be considered a reduction step rather

than a deduction step, since it derives no new clause, but instead removes a

literal of the clause p...,Q. Replacement resolution can thus be considered a

reduction, very similar to normalization by means of the rule P~Q.

One might argue that this example contains nothing really new. The

derivations employing the equivalence clause are rather similar to the other

ones and there seems to be no advantage in using them. In the following

example (see figure 6.2), however, the rewriting approach surpasses the pure
resolution refutation. The clause set in point is S ={...,PQ, p...,Q, ...,PR, P...,R,

QR, ...,Q...,R}. While figure 6.2 shows a pure reduction refutation based on

demodulators, no resolution reduction rule is applicable to the initial clause

set.

Fig. 6.2

112

Simplification and Reduction for Automated Reasoning

leads to the empty clause. This derivation has an analogon on the
“resolution side”, as figure 6.1 shows:

“WW“, subsumed

—IP—1Q @fiPQ P—IQ —IP—IQ
lreplacement

rewriting r8W7”m8 resolution

P mp
Q\P;9Q/_ / l

Fig. 6.1

Replacement resolution (Markgraf 1984), is a combined resolution and
subsumption deletion step. In this example, resolving P-iQ and Q yields the
unit clause P. This step is combined with the deletion of the subsumed
parent clause P-wQ. In fact, this step can be considered a reduction step rather

than a deduction step, since it derives no new clause, but instead removes a
literal of the clause P-1Q. Replacement resolution can thus be considered a
reduction, very similar to normalization by means of the rule P—->Q.

One might argue that this example contains nothing really new. The
derivations employing the equivalence clause are rather similar to the other
ones and there seems to be no advantage in using them. In the following
example (see figure 6.2), however, the rewriting approach surpasses the pure
resolution refutation. The clause set in point i s S = {fiPQ, P—vQ, —-PR‚ P-1R‚

QR, nQ-IR} . While figure 6 .2 shows a pure reduction refutation based on
demodulators, no resolution reduction rule is applicable to the initial clause
set.

-|PQ P_IQ fiPR P-nR QR -|Q—|R

\ / _)
P—>Q P Q P" Q Q-> R Q4 R

"QR R fiR
Q—>R \u /

Fig. 6.2

112

Resolution with Equivalence Chapter 6

While the previous example showed that literal demodulation enhances

the reduction potential of resolution inference systems, another example

demonstrates an effect of concentrating dispersed information. Refuting the

set S ={Cl,C2} with Cl = ...,Pax...,Pyb and C2 = PaxPyb requires either resolution

with factoring or otherwise six binary resolution steps. Factoring, being

necessary to guarantee completeness, is also a highly undesirable inference

rule, since its unconstrained use can lead to a growing number of redundant

clauses. (See NolI (1980) or Rabinov (1988». Computing with equivalence

clauses condenses the information about the necessary factoring step in the

clause ...,(Pax = Pyb). Now only the instantiation {x~b, y~a} is needed for the

refutation.

It should, however, be mentioned that there is a certain tradeoff between

supplying more power to reduction by the new rewrite rules and enlarging

pure resolution's search space. New resolution possibilities (the ones

resulting in equivalence literals) have to be considered besides the old ones,

yet their successful application is not warranted. Restricting the unlimited

derivation of equivalences could thus be appropriate. There are several

choices for such a restriction. One could for instance derive equivalence

clauses only if they subsume their parents (or at least one parent), such that

this operation does not increase the size of the actual data base. We will

adopt another restriction, which is based on the assumption that conditional

rewriting (see for instance Kaplan (1984) or Zhang (1984» is far more intri­

cate than the unconditional version. In order to avoid a derivation like the

one that computes the conditional equivalence (P=Q)RS from the two

clauses ...,PQR and p...,QS, we will allow only unit (that is, unconditional)

equivalence clauses. Recently, Zhang & Kapur (1988) have developed a first

order calculus using conditional rewrite rules. According to their calculus,

one literal of each clause is transformed into a conditional rewrite rule,

where the condition consists of the remaining literals of the clause.

6.1 The Calculus

The resolution calculus with logical equivalence requires a slight extension

of the syntax. In addition to the standard definitions of atomic formulae and

113

Resolution with Equivalence Chapter 6

While the previous example showed that literal demodulation enhances
the reduction potential of resolution inference systems, another example
demonstrates an effect of concentrating dispersed information. Refuting the
set S = {C1,C2} with C1 = wPax-wb and C2 = PaxPyb requires either resolution

with factoring or otherwise six binary resolution steps. Factoring, being
necessary to guarantee completeness, i s also a highly undesirable inference
rule, since its unconstrained use can lead to a growing number of redundant
clauses. (See Noll (1980) or Rabinov (1988)). Computing with equivalence
clauses condenses the information about the necessary factoring step in the
clause fi (Pax5 Pyb). Now only the instantiation {x—->b, y—->a} i s needed for the
refutation.

It should, however, be mentioned that there is a certain tradeoff between
supplying more power to reduction by the new rewrite rules and enlarging
pure resolution’s search space. New resolution possibilities (the ones
resulting in equivalence literals) have to be considered besides the old ones,
yet their successful application is not warranted. Restricting the unlimited
derivation of equivalences could thus be appropriate. There are several
choices for such a restriction. One could for instance derive equivalence
clauses only if they subsume their parents (or a t least one parent), such that
this operation does not increase the size of the actual data base. We will
adopt another restriction, which is based on the assumption that conditional
rewriting (see for instance Kaplan (1984) or Zhang (1984)) is far more intri—
cate than the unconditional version. In order to avoid a derivation like the
one that computes the conditional equivalence (PEQ)RS from the two
clauses -PQR and P-IQS, we will allow only unit (that i s , unconditional)
equivalence clauses. Recently, Zhang & Kapur (1988) have developed a first
order calculus using conditional rewrite rules. According to their calculus,
one literal of each clause i s transformed into a conditional rewrite rule,
where the condition consists of the remaining literals of the clause.

6.1 The Calculus

The resolution calculus with logical equivalence requires a slight extension
of the syntax. In addition to the standard definitions of atomic formulae and

113

Simplification and Reduction for Automated Reasoning

literals, given in chapter 2 of this thesis, we will deal with atomic formulae
that consist of an equivalence.

6.1.1 Definition:

An atomic formula is either a P-atom Pt} ... tn, with terms t},... ,tn and a

predicate symbol P of arity n, or it is an E-atom consisting of a pair (A,B) of

P-atoms A and B. If the pair (A,B) is ordered, then the E-atom (A,B) is also

called a rule, and written in the form A~ B. If it is unordered, then it is
written in the form A=Bl. An E-literal is a literal, whose atom is an E-atom,
and an E-clause is - due to the restriction mentioned above - a unit clause
consisting of an E-literal.

The extensions of the semantic notions are straightforward:

6.1.2 Definition:

An interpretation .s satisfies a ground E-clause (L,K), Hf either.s satisfies

both Land K, or .s falsifies both Land K, and it satisfies an arbitrary E-clause

E, Hf it satisfies all its ground instances.

From now on a clause set will be understood as consisting of usual
and/or E-clauses. The previous definition implies that the notions -'(A,B),
(....A,B) and (A,....B) are equivalent. An E-literal that is used to paramodulate

on some literal L, may thus be assumed in a form (Kt,K2), where the literals
L and Kt have the same sign. This avoids an awkward case analysis in the
definition of the derivation rules. For instance, the paramodulation step

between the E-clause P=Q and the clause -'PR, yielding the clauseQR, will

be described with the modified E-literalP=....Q. Thus in the following E­

literals will always be assumed to be in a form (L,K) with literals Land K.

The set A(E) of atoms of the E-literal E = (L,K) is the set {A(L),A(K)}.

6.1.3 Definition:

For any E-clause E = (L,K), the expanded form E* of E is defined as the clause
set {....LK, L....K}.

1 We shall, however, still write (A,B) for the E-atom to include both possibilities A=B and

A~B.

114

Simplification and Reduction for Automated Reasoning

literals, given in chapter 2 of this thesis, we will deal with atomic formulae
that consist of an equivalence.

6.1.1 Definition:

An atomic formula i s either a P -a tom Pt1...tn, with terms t1,...,tn and a
predicate symbol P of arity n, or it is an E-atom consisting of a pair (A,B) of
P-atoms A and B. If the pair (A,B) is ordered, then the E-atom (A,B) is also
called a ru le , and written in the form A-—>B. If i t i s unordered, then it is
written in the form A281. An E-literal is a literal, whose atom is an E-atom,
and an E-clause i s - due to the restriction mentioned above - a unit clause
consisting of an E-literal.

The extensions of the semantic notions are straightforward:

6 .1 .2 Definition:

An interpretation 8 satisfies a ground E-clause (L,K), iff either 8 satisfies
both L and K, or 8 falsifies both L and K, and it satisfies an arbitrary E-clause
E, iff it satisfies all its ground instances.

From now on a clause set will be understood as consisting of usual
and/ or E-clauses. The previous definition implies that the notions -1(A,B),

(-A,B) and (A,-IB) are equivalent. An E-literal that is used to paramodulate
on some literal L, may thus be assumed in a form (K1,K2), where the literals
L and K1 have the same sign. This avoids an awkward case analysis in the
definition of the derivation rules. For instance, the paramodulation step
between the E-clause PEQ and the clause -vPR, yielding the clause -IQR, will
be described with the modified E-literal -P.-.--Q. Thus in the following E-
literals will always be assumed to be in a form (L,K) with literals L and K.
The set A(E) of atoms of the E-literal E = (L,K) i s the set {A(L),A(K)}.

6.1.3 Definition:

For any E—clause E = (L,K), the expanded form E” of E is defined as the clause
set {-ILK, L—aK}.

1 We shall, however, still write (A,B) for the E-atom to include both possibilities AEB and

A—-)B.

114

Resolution with Equivalence Chapter 6

6.1.4 Corollary:

The interpretation Z satisfies the E-c1ause E, iff it satisfies E*.

Proof: Let E*={Cl,C2}. ~ satisfies (L,K), iff Z satisfies each ground instance

of L::K, iff for each ground substitution 6, either ~ satisfies both Le and Ke or
Z falsifies both Le and Ke, iff for each ground substitution e, Z satisfies both
C16 and C26, iff for each pair (61,62) of ground substitutions, ~ satisfies both

C16l and C262, iff Z satisfies both clauses Cl and C2. •

6.1.5 Definition:

A strong reduction ordering is a well-founded1 ordering I:: on terms and

atoms, such that for all si,tiE T, s,tE TuA, O"E~, fE JFnulPn:

a) if 5I::t, then SCJE::to" (I:: is stable),

b) if Sil::ti, then f(SI,. ..,Si,...,sn) I:: £(SI,... ,ti, ...,sn) (I:: is monotonic),

c) Sl::t holds, if t contains s as a subterm (I:: has the subterm property),

d) I:: is total on ground terms.

For any objects a,b, we define asb, iff a=b, or al::b. The ordering I:: can be

extended to literals and to ground clauses in a canonical way:

6.1.6 Definition:

Let I:: be a strong reduction ordering on TuA. For all non-E-literals L,K, and

for all (arbitrary) ground clauses C and D:

a) L I:: K, iff A(L) I:: A(K)

b) Cl:: D, iff C*D and for each LE C there is a KE D with LE: K.

Note that this definition implies that E-clauses are incomparable by 1::.

From the definition it is clear that the strong reduction ordering I:: on

ground clauses is stronger than the subsumption ordering and in particular,

01:: C holds for arbitrary (E and non-E) ground clauses. In the sequel we shall

assume a strong reduction ordering on the set of terms and atoms. Such an

ordering allows to direct equivalences to rewrite rules. The E-clause (L,K)

will be assumed to be ordered (that is, it is a rule L4K), iff KI:: L holds.

Such an ordering could also be used to restrict the other inference rules

like resolution by requiring that at least one of the literals involved must be

1 An ordering I: is well-founded, iff it admits no infinite descending chains tl::::l t2::::1 ...

115

Resolution with Equivalence Chapter 6

6.1.4 Corollary:
The interpretation 8 satisfies the E-clause E, iff it satisfies E".

Proof: Let E"={C1,C2}. 3 satisfies (L,K), iff 8 satisfies each ground instance
of LEK, iff for each ground substitution 6, either 8 satisfies both Le and K6 or
S falsifies both LG and K6, iff for each ground substitution 9 , 8 satisfies both
C19 and C29, iff for each pair (91,92) of ground substitutions, 8 satisfies both
C191 and C262, iff 8 satisfies both clauses C1 and C2. I

6.1.5_D_ef_im@_=
A strong reduction ordering is a well—founded1 ordering = on terms and
atoms, such that for all si,tie ’ll‘, s,te TUA, oe 2:, fe IFnua:

a) if s=t, then so=to (= is stable),
b) if si=ti‚ then f(51,. . .‚si‚. . .‚sn) = f(s1‚. . .‚ti‚.‚ „5,0 (= is monotonic),
c) s=t holds, if t contains s as a subterm (= has the subterm property),
d) = is total on ground terms.

For any objects a,b‚ we define aEb, iff a=b, or a=b. The ordering = can be
extended to literals and to ground clauses in a canonical way:

6.1.6 Definition:

Let = be a strong reduction ordering on TuA. For all non-E-literals L,K, and
for all (arbitrary) ground clauses C and D:
a) L= K, iff A(L) = A(K)
b) C= D, iff C¢D and for each Le C there is a Ke D with LE K.

Note that this definition implies that E-clauses are incomparable by = .
From the definition i t is clear that the strong reduction ordering = on
ground clauses is stronger than the subsumption ordering and in particular,
D = C holds for arbitrary (E and non-E) ground clauses. In the sequel we shall
assume a strong reduction ordering on the set of terms and atoms. Such an
ordering allows to direct equivalences to rewrite rules. The E—clause (L,K)
will be assumed to be ordered (that is, it is a rule L-—>K), iff K : L holds.

Such an ordering could also be used to restrict the other inference rules
like resolution by requiring that at least one of the literals involved must be

1 An ordering = is well-founded, iff it admits no infinite descending chains t1 = Q:

115

Simplification and Reduction for Automated Reasoning

maximal in its clause w.r.t. the ordering. This proceeding results in a variant
of ordered resolution, as it is described for instance by Rusinowitch (1987).

The calculus will be formulated, however, using rewrite rules only for

reduction.

An E-clause of the form A=A is called tautologous. It is obvious that

tautologous E-dauses represent tautologies and thus are redundant.

Besides the well-known resolution rule (with factoring), the calculus has

four additional deduction rules.

6.1.7 Definition:

Let C be a clause, let Et be an E-clause, and let E be an E-clause of the form

(L,K), with V(C)flV(E)=0, and V(E)flV(Et)=0.

a) Let L'e C be unifiable with L with most general unifier cr. Then

(C\{Lt}uK)cr is an ER-paramodulant of C and E.I

b) Let Et = (L',K'), and let L' be unifiable with L with most general unifier

cr. Then the E-clause (Kcr,K'cr) is an ER-paramodulant of E and E'.2,3

c) If there is a substitution Il with LIl = ...,KIl, then the empty clause [J IS an

ER-paramodulant of E.

The following lemma establishes the relation between ER-paramodula­

tion with an E-clause on the one hand and resolution with the clauses of the

expanded form on the other hand.

6.1.8 Lemma:

Let E, Et, and C be as in the previous definition.

a) Each ER-paramodulant of C and E is a resolvent of C with a clause in
E*.

b) Let E" be an ER-paramodulant of E and E'. Let D"e (E")*. Then D" is

resolvent of clauses D and D' with De E*, D'e (E')*.

c)	 If the empty clause [J is an ER-paramodulant of E, then [J is a resolvent

of the clauses in E*.

1 ER-Resolution stands for resolution with equivalence and rewriting.

2 In the terminology of rewriting, rule a) would be called narrowing, rule b) superposition.

3 Note that ER-paramodulation is ordered, if E is a rule.

116

Simplification and Reduction for Automated Reasoning

maximal in its clause w.r.t. the ordering. This proceeding results in a variant
of ordered resolution, as i t i s described for instance by Rusinowitch (1987).
The calculus will be formulated, however, using rewrite rules only for
reduction.

An E-clause of the form AEA is called tautologous. It is obvious that
tautologous E-clauses represent tautologies and thus are redundant.

Besides the well-known resolution rule (with factoring), the calculus has
four additional deduction rules.

6.1.7 Definition:
Let C be a clause, let E' be an E-clause, and let E be an E-clause of the form

(L,K), with V(C)nV(E)=Q, and V(E)nV(E')=Z.
a) Let L'e C be unifiable with L with most general unifier 6 . Then

(C\{L'}UK)o is an ER-paramodulant of C and E.1
b) Let E' = (L',K'), and let L' be unifiable with L with most general unifier

0'. Then the E-clause (Ko,K'o) is an ER-paramodulant of E and Em
C) If there is a substitution p. with Lu = -uK|.1, then the empty clause n is an

ER-paramodulant of E.

The following lemma establishes the relation between ER-paramodula-
tion with an E—clause on the one hand and resolution with the clauses of the
expanded form on the other hand.

6.1 .8 Lemma:

Let E, E', and C be as in the previous definition.
a) Each ER—paramodulant of C and E is a resolvent of C with a clause in

E".
b) Let E" be an ER-paramodulant of E and E'. Let D"e (E")". Then D" is

resolvent of clauses D and D' with De E”, De (E')*.

c) If the empty clause |:| is an ER-paramodulant of B, then D is a resolvent
of the clauses in E”.

1 ER-Resolution stands for resolution with equivalence und rewriting.

2 In the terminology of rewriting, rule a) would be called narrowing, rule b) superposition.

3 Note that ER-paramodulation i s ordered, if E i s a rule.

116

Resolution with Equivalence Chapter 6

Proof: Obvious. •
6.1.9 Definition:

Let C = L}K} and let D = L2K2 be variable disjoint clauses, and let a be a

simultaneous most general unifier of (Ll, -,L2) and (Kl, -,K2). Then the E­

clause (L20',KIO') is an ER-resolvent of C and D.

From this definition follows that {Ca, DO'} is the expanded form of the ER­

resolvent of C and D.

An ER-deduction step is either a usual resolution step, or an ER-paramo­

dulation step or an ER-resolution step. In addition to the common resolu­

tion reduction rules like tautology removal and subsumption deletion there

are the following reduction rules.

6.1.10 Definition:

Let E and Et be E-clauses, and let C be a non-E-clause.

a) Then E::;;C (E subsumes C) holds, Hf D ::;; C holds for some DE E*.

b) Then E::;;E' (E subsumes E') holds, iff there is a substitution IJ. with

E).1 =Et.

6.1.11 Definition:

Let R = L~K be a rule, let E be an E-clause of the form (L',K') with R;t:E, and

let C= Lt C be a clause.

a) R reduces C to KJl C, if there is a substitution).1 with LIJ.=L'.

b)	 R reduces E to the E-clause (KIJ.,K'), if there is a substitution I..l with

LI..l=L'.

A clause or rule C is called irreducible w.r.t. the set 9\ of rules, iff no rule

of 9\ is applicable to C. An ER-derivation is a sequence (Sl, ... ,Sn) of irredu­

cible clause sets, where Si+l is obtained by reducing SiU{Ri}, where Ri is an

ER-resolvent or ER-paramodulant of clauses of Si.

According to corollary 6.1.4 and lemma 6.1.8, it is clear that all the deduc­

tion and reduction rules of ER-resolution are sound. At the first glance, also

the completeness of the calculus (without reductions) seems trivial, since

ER-resolution is an extension of the resolution calculus, which itself is

Iknown to be complete. This argument, however, applies only for clause sets

I\Without E-clauses. For general clause sets, the completeness of the calculus
as to be proved, and this is done traditionally in two steps. First complete­

117

Resolution with Equivalence Chapter 6

Proof: Obvious. l

6.1.9 Definition:

Let C = L1K1 and let D = L2K2 be variable disjoint clauses, and let 6 be a

simultaneous most general unifier of (L1, «L2) and (K1, -IK2). Then the E-
clause (L26,K10) is an ER-resolvent of C and D.

From this definition follows that {C6,Do} is the expanded form of the ER-
resolvent of C and D.

An ER-deduction step is either a usual resolution step, or an ER-paramo-
dulation step or an ER-resolution step. In addition to the common resolu-
tion reduction rules like tautology removal and subsumption deletion there
are the following reduction rules.

é-LLLQi—nim
Let E and E" be E-clauses, and let C be a non-E-clause.

a) Then ESC (E subsumes C) holds, iff D s C holds for some De E".
b) Then ESE' (E sub sumes E‘) holds, iff there is a substitution u with

Eu = E ' .

Mm
Let R = L—->K be a rule, let E be an E-clause of the form (L',K') with R¢E, and
let C : L ' C ' be a clause.
a) R reduces C to Ku C', if there is a substitution u with Lu=L'.
b) R r educes E to the E-clause (Ku,K'), if there is a substitution u with

Lu=L ' .

A clause or rule C is called irreducible w.r.t. the set 9i of rules, iff no rule
of SK i s applicable to C . An ER-derivation is a sequence (51,...‚Sn) of irredu-
cible clause sets, where SM is obtained by reducing Siu{Ri}‚ where Ri is an
ER—resolvent or ER—paramodulant of clauses of Si.

According to corollary 6.1.4 and lemma 6.1.8, it is clear that all the deduc-
tion and reduction rules of ER-resolution are sound. At the first glance, also
the completeness of the calculus (without reductions) seems trivial, since
ER-resolution i s an extension of the resolution calculus, which itself i s
lknown to be complete. This argument, however, applies only for clause sets
without E-clauses. For general clause sets, the completeness of the calculus

as to be proved, and this is done traditionally in two steps. First complete-

117

Simplification and Reduction for Automated Reasoning

ness for ground clauses is shown, then a lifting lemma transfers this result

to the general case.

6.1.12 Lemma:

Let S be an unsatisfiable set of irreducible ground clauses. If DE Sand D.,to,

then there is an ER-derivation of a non-E clause C with Cc: D from S.

Proof: Let n be the number of atoms occurring in S. We proceed by

induction on n. If n=l, then S must consist of two complementary unit

clauses, which yields a resolution derivation of 0 and thus proves the

assertion. Now let n>1.

Case 1: D is a non-E-clause. Let LE D and let S(...,L) be the set obtained from S

by removing all non-E-clauses containing the literal ...,L, deleting the literal L

from the remaining non-E-clauses, and replacing each E-clause of the form

(L,K) by the unit clause {-,K}. Then S(...,L) is also unsatisfiable,l and contains

n-l atoms. By the induction hypothesis, S(...,L) admits an ER-derivation 'Dof

a clause C'c:D\{L}. From 'D we construct a derivation 'D' in the following

way: we adjoin the literals L back to all clauses which were used in the

derivation 'D. Suppose, 'D contains a resolution step between C and ...,K

yielding the resolvent C\{K}, where the clause ...,K was generated from the E­

clause (L,K). The ordering c: is total on ground terms, hence either Lc:K, or

Kc:L holds. If Lc:K, then this step is replaced by a reduction/paramodulation
step between C and (K,L) yielding C\{K}u{L}. If Kc:L, then this resolution

step is simply dropped. In the derivation 'D, all literals but L are reduced after

each derivation step. In the derivation 'D' we additionally reduce the literal

L.

It is easy to see that 'D' results either in the clause C=C', or in a clause

C=C'u{K} with KsL. In both cases, Cc:D holds.

Case 2: D is an E-clause of the form (L,K). W.l.o.g. we assume that Kc:L holds.

Let S' be the clause set obtained from S by removing D and replacing all

occurrences of L (...,L) by K (...,K). Then S' is also unsatisfiable, and contains

n-l atoms. By induction hypothesis, there is an ER-derivation of the empty

1	 Compare the analogous construction in section 2.4 of this thesis; the argument that S(L) is

also unsatisfiable is literally the same.

118

Simplification and Reduction for Automated Reasoning

ness for ground clauses is shown, then a lifting lemma transfers this result
to the general case.

6 .1 .12 Lemma:

Let S be an unsatisfiable set of irreducible ground clauses. If DeS and Din,
then there is an ER-derivation of a non-E clause C with C: D from 5 .

Proof: Let n be the number of atoms occurring in 5. We proceed by
induction on n. If n=1, then S must consist of two complementary unit
clauses, which yields a resolution derivation o f n and thus proves the
assertion. Now let n>1.
Case 1: D is a non-E-clause. Let Le D and let SGL) be the set obtained from S
by removing all non-E-clauses containing the literal -L, deleting the literal L
from the remaining non—E-clauses, and replacing each E-clause of the form
(L,K) by the unit clause {-IK}. Then S(-‘L) is also unsatisfiable,1 and contains
n-1 atoms. By the induction hypothesis, S(--L) admits an ER-derivation Dof
a clause C'I=D\{L}. From 1) we construct a derivation D' in the following
way: we adjoin the literals L back to all clauses which were used in the
derivation @. Suppose, ‘D contains a resolution step between C and -K
yielding the resolvent C\{K}, where the clause -K was generated from the E-
clause (L,K). The ordering I: is total on ground terms, hence either IFK, or
K=L holds. If LI=I<, then this step is replaced by a reduction/paramodulation
step between C and (KL) yielding C\{K}U{L}. If KCL, then this resolution
step is simply dropped. In the derivation @, all literals but L are reduced after
each derivation step. In the derivation D' we additionally reduce the literal
L.
It is easy to see that 1)“ results either in the clause C=C', or in a clause
C=C'U{K} with KEL. In both cases, C=D holds.
Case 2: D is an E-clause of the form (L,K). W.l.o.g. we assume that K=L holds.

Let 3' be the clause set obtained from S by removing D and replacing all
occurrences of L (--L) by K (-wK). Then S’ is also unsatisfiable, and contains
n-l atoms. By induction hypothesis, there is an ER-derivation of the empty

1 Compare the analogous construction in section 2.4 of this thesis; the argument that S(L) is

also unsatisfiable is literally the same.

118

Resolution with Equivalence Chapter 6

clause from 5'. Since 5' is obtained from 5 only by ER-reduction steps with

the rule D, we have an ER-derivation of Cl from 5. •

The completeness theorem for ground clauses now immediately follows

from the previous lemma by an induction argument (note that the empty

clause is a minimal element in the set of clauses W.r.t. t:).

6.1.13 Theorem:

Let S be an unsatisfiable set of ground clauses. Then there is an ER-deri­

vation of the empty clause D from S. •

6.1.14 Lemma (Lifting lemma):

Let C' and D' be instances of (E-)clauses C and D, respectively, and assume R'

is derived by an ER-derivation step from C' and D'. Then there is some

clause R, which can be derived by the same type of ER-derivation step from

C and D. Moreover, R' is an instance of R. •

The proof of this lemma is analogous to the corresponding proof for

resolution. The completeness theorem for ground ER-resolution together

with the lifting lemma proves the completeness of the ER-calculus.

6.1.15 Theorem:

5 is unsatisfiable, iff it admits an ER-derivation of the empty clause D. •

We have shown that the resolution calculus allows for a sound and

complete extension by equivalence literals. This extension provides part of

the power of equality reasoning techniques also for resolution provers. In

particular, it enhances the reduction part of resolution inference systems by

literal demodulation. The following example shows the striking effect that

this new reduction rule can have.

6.1.16 Example:

Let n be any even natural number and let S be the clause set {Cl, C2} with

Cl = PxPfx,
C2 =...,Px ...,Pfnx.

Except for the rather trivial cases n=2 and n=4, this clause set is not easy to

refute. For instance, the Markgraph Karl theorem prover (Markgraph 1984)

failed for numbers n>10. However, the problem has a straightforward

119

Resolution with Equivalence Chapter 6

clause from S'. Since S' is obtained from 5 only by ER-reduction steps with
the rule D, we have an ER-derivation of :! from S. I

The completeness theorem for ground clauses now immediately follows
from the previous lemma by an induction argument (note that the empty
clause is a minimal element in the set of clauses w.r.t. =).

Manga:
Let S be an unsatisfiable set of ground clauses. Then there is an ER-deri—
vation of the empty clause |: from S. I

6.1.14 Lemma SLifting lemma}:

Let C ' and D' be instances of (E-)c1auses C and D, respectively, and assume R'
is derived by an FIR-derivation step from C' and D'. Then there is some
clause R, which can be derived by the same type of ER-derivation step from
C and D. Moreover, R‘ is an instance of R. I

The proof of this lemma is analogous to the corresponding proof for
resolution. The completeness theorem for ground ER-resolution together
with the lifting lemma provesthe completeness of the ER-calculus.

_ 6.1.15 Theorem:

Si s unsatisfiable, iff i t admits an ER—derivation of the empty clause D. I

We have shown that the resolution calculus allows for a sound and
complete extension by equivalence literals. This extension provides part of
the power of equality reasoning techniques also for resolution provers. In
particular, it enhances the reduction part of resolution inference systems by
literal demodulation. The following example shows the striking effect that
this new reduction rule can have.

Marni-1%
Let n be any even natural number and let S be the clause set {C1, C2} with

C1 = Px Pfx,
C2 =-Px flax.

Except for the rather trivial cases n=2 and n=4, this clause set i s not easy to
refute. For instance, the Markgraph Karl theorem prover (Markgraph 1984)
failed for numbers n>10. However, the problem has a straightforward

119

Simplification and Reduction for Automated Reasoning

solution based on literal demodulation: First, the following four resolvents
of Cl and C2 are deduced:

C3 = Pfx ..,Pfnx
C4 = ..,Px pf11-1x

Cs = ..,Px pfn+lx
C6 = Px ...,pfn+lx

Next, the E-clause El: Px == pfn+lx can be derived from Cs and C6. No matter,

which strong reduction ordering is employed, this clause is always directed

to the rule RI = pf11+lx -+ Px. The rule RI rewrites its parent clauses Cs and C6

to tautologies, or, in other words, it subsumes them.

In the same way, the E-clause E2: Pfnx == Pfx with the corresponding rule R2:

Pf11x -+ Pfx can be derived from C3 and C4. E2 subsumes C3, and R2 rewrites

C2 to C2'= ..,Px..,Pfx. At this stage, we have the following set of clauses and
rules

Cl = Px Pfx,
C2' = ..,Px ...,Pfx.

C4 = ..,Px Pf11-lx

RI = pfn+lx -+ Px

R2 = Pfnx -+ Pfx
The clauses Cl, C2', and C4 are irreducible. The rule RI, however, reduces

with R2 to Pf2x == Px, which can be directed to RI' == Pf2x -+ Px. Then the

repeated application of RI' to R2 yields finally - to be precise, after n/2 steps ­
the rule Pfx -+ Px (note that n is even!), which in turn reduces Cl to Px and
C2 to ..,Px, and a last resolution step concludes the refutation.

The original clause set S with an odd number n is consistent - for instance,

the natural numbers with P being the even-predicate, and f being the
successor function is a model for this set. It is interesting to see that the same
process as above results in the final set {R}, where R is the irreducible rule

Px-+..,Pfx. This proves the original set's consistency. Resolution theorem

proving, however, fails already for n=l: The clause set {PxPfx, ...,Px...,Pfx}
allows for an infinite derivation of clauses ..,PxPf2kx and Px...,pf2kx for all

natural numbers k, and there is no way to detect that S is satisfiable. Ordered

resolution (see Chang & Lee 1973), however, would perform analogously to

ER-resolution in this case.

120

Simplification and Reduction for Automated Reasoning

solution based on literal demodulation: First, the following four resolvents
of C1 and C2 are deduced:

C3 = Pfx "!p
C4 = -Px a'lx
C5 = -Px a+1x
C6 = Px Ha+1x

Next, the E-clause E1: Px E a+1x can be derived from C5 and C6. No matter,
which strong reduction ordering is employed, this clause is always directed
to the rule R1 = a+1x —-> Px. The rule R1 rewrites its parent clauses C5 and C6
to tautologies, or, in other words, it subsumes them.
In the same way, the E-clause EZ: ax E Pfx with the corresponding rule R2:
Pfhx -> Pfx can be derived from C3 and C4. E2 subsumes C3, and R2 rewrites
C2 to C2'= -1Px-qx. At this stage, we have the following set of clauses and
rules

C1 = PX Pfx,
C2' = "IPx “Pfx.
C4 = fiPx a'lx
R1 = a+1x —> Px
R2 = ax —-) Pfx

The clauses C1, Cz', and C4 are irreducible. The rule R1, however, reduces
with R2 to Pf2x EPX, which can be directed to R1' =Pf2x ——>Px. Then the
repeated application of R1' to R2 yields finally - to be precise, after n / 2 steps -
the rule Pfx -—> Px (note that n is even!)‚ which in turn reduces C1 to Px and
C2 to -1Px‚ and a last resolution step concludes the refutation.
The original clause set 5 with an odd number n is consistent - for instance,
the natural numbers with P being the even-predicate, and f being the
successor function is a model for this set. It is interesting to see that the same
process as above results in the final set {R}, where R is the irreducible rule
Px—>-1Pfx. This proves the original set’s consistency. Resolution theorem
proving, however, fails already for n=1: The clause set {Pfx, w—qx}
allows for an infinite derivation of clauses aPkx and Px-«m‘x for all
natural numbers k, and there is no way to detect that S is satisfiable. Ordered
resolution (see Chang & Lee 1973), however, would perform analogously to
ER—resolution in this case.

120

Resolution with Equivalence Chapter 6

The following example illustrates the translation from a predicative into

an equivalence notation that comes very dose to the equality notation.

6.1.17 Example:

Consider the axiomatization for a group (G,*), avoiding where possible the

use of equality (see Wos 1988). The equation x*y =z is represented by the

literal Pxyz, the term x*y by the term pxy.

The associativity axiom is represented by the two clauses
..,Pxyu ..,Pyzv ..,Puzw Pxvw

..,Pxyu ..,Pyzv ..,Pxvw Puzw

and the closure axiom by

P(x,y,pxy)

Resolving the closure axiom against the first two literals of each of the

associativity clauses, one obtains
..,P(pxy,z,w) P(x,pyz,w) and

P(pxy,z,w) ..,P(x,pyz,w)

From these two clauses the E-clause P(pxy,z,w) == P(x,pyz,w) can be derived,

which is a far more useful representation for the associativity axiom.

The role of reduction for resolution based systems is traditionally under­

estimated compared with that of deduction rules and particular strategies.

Completion theorem provers like Hsiang (1982) and (1985), Kapur & Naren­

dran (1985), Miiller (1987), however, emphasize the role of reduction, which

surely accounts for their increasing success. The transformation of clauses

into rewrite rules, which is the basic feature of our approach, is also a

common principle to completion theorem proving. Thus the resolution

calculus extended by equivalence may be regarded as a partial incorporation

of principles of completion theorem proving into resolution theorem

proving.

121

Resolution with Equivalence Chapter 6

The following example illustrates the translation from a predicative into
an equivalence notation that comes very close to the equality notation.

We;
Consider the axiomatization for a group (G,*), avoiding where possible the
use of equality (see Wos 1988). The equation x*y =z i s represented by the
literal nz, the term x*y by the term pxy.
The associativity axiom is represented by the two clauses

ayu nPyzv -1Puzw vw
ayu -Pyzv "vw Puzw

and the closure axiom by
P(x‚y‚pxy)

Resolving the closure axiom against the first two literals of each of the
associativity clauses, one obtains

-P(pxy,z,w) P(x,pyz,w) and
P(pxy,z,w) -P(x,pyz,w)

From these two clauses the E-clause P(pxy,z,w) E P(x‚pyz‚w) can be derived,
which is a far more useful representation for the associativity axiom.

The role of reduction for resolution based systems is traditionally under-
estimated compared with that of deduction rules and particular strategies.
Completion theorem provers like Hsiang (1982) and (1985), Kapur & Naren—
dran (1985), Miiller (1987), however, emphasize the role of reduction, which
surely accounts for their increasing success. The transformation of clauses
into rewrite rules, which is the basic feature of our approach, is also a
common principle to completion theorem proving. Thus the resolution
calculus extended by equivalence may be regarded as a partial incorporation
of principles of completion theorem proving into resolution theorem
proving.

121

Simplification and Reduction for Automated Reasoning

7 Conclusion

The basic questions like completeness largely being solved, Automated

Theorem Proving still poses intriguing problems, most of which come

under the need for efficiency. One of those issues, the derivation of un­

needed informationI, was the starting point for the second part of this thesis.

Besides the development of an efficient subsumption test in chapter 4, our

main interest was aimed at avoiding, or at least reducing, the derivation of

those useless clauses, instead of removing them after their generation. As it

is frequently the case, it turned out that the answer to this question was

relevant also to some other basic problems of automated reasoning, showing

yet again that most of these problems are deeply connected.

Among those basic research problems, which Wos (1988) ranks among the

most important challenges for reasearch in automated theorem proving, the

following questions turned out to be connected with the reduction of

redundancy.

The first question2 deals with issues of choosing the appropriate

representation and inference rule. As already remarked (see chapter 6), for

many problems one has the choice between an equality representation,

permitting the use of the inference rule of paramodulation and other

equality reasoning methods, and an equality free notation, which restricts

the possible inferences to resolution and derived rules like hyperresolution.

Usually, these two approaches exhibit a disparate performance. While some

very small problems seem to favour the hyperresolution approach3, most

other problems are almost intractable when the inference rule hyperreso­

lution is employed. It is natural to ask for the reason of this different beha­

vior. It seems that the results of chapter 5 shed some light on the poor

performance of hyperresolution in those cases. At a first glance, it seems that

1	 Compare also problem 6 in Wos (1988).

2 Compare also problems 4 and 11 in Wos (1988).

3	 For instance, the following problem admits a short and fast solution using hyperresolution:

Given a group G, if x2=1 holds for each XE G, then G is commutative. Paramodulation, on the

other hand, performs very poorly on this problem (see BHisius (1987».

122

Simplification and Reduction for Automated Reasoning

7 Conclusion

The basic questions like completeness largely being solved, Automated
Theorem Proving still poses intriguing problems, most of which come
under the need for efficiency. One of those issues, the derivation of un-
needed information1‚ was the starting point for the second part of this thesis.
Besides the development of an efficient subsumption test in chapter 4, our
main interest was aimed at avoiding, or a t least reducing, the derivation of
those useless clauses, instead of removing them after their generation. As it
is frequently the case, i t turned out that the answer to this question was
relevant also to some other basic problems of automated reasoning, showing
yet again that most of these problems are deeply connected.

Among those basic research problems, which Wos (1988) ranks among the
most important challenges for reasearch in automated theorem proving, the
following questions turned out to be connected with the reduction of
redundancy.

The f irst question2 deals with issues of choosing the appropriate
representation and inference rule. As already remarked (see chapter 6), for
many problems one has the choice between an equality representation,
permitting the use of the inference rule of paramodulation and other
equality reasoning methods, and an equality free notation, which restricts
the possible inferences to resolution and derived rules like hyperresolution.
Usually, these two approaches exhibit a disparate performance. While some
very small problems seem to favour the hyperresolution approach3, most
other problems are almost intractable when the inference rule hyperreso-
lution is employed. It is natural to ask for the reason of this different beha-
vior. I t seems that the results of chapter 5 shed some light on the poor
performance of hyperresolution in those cases. At a first glance, it seems that

Compare also problem 6 in Wos (1988).

2 Compare also problems 4 and 11 in Wos (1988).

For instance, the following problem admits a short and fast solution using hyperresolution:

Given a group G, if x2=1 holds for each xe G, then G is commutative. Paramodulation, on the

other hand, performs very poorly on this problem (see Bläsius (1987)).

122

Resolution with Equivalence Chapter 6

equations are eliminated in the equality free formulation of those problems.

On closer inspection, however, it turns out that equalities take the form of

equivalences in all these examples. It seems that the absence of demodula­

tors accounts largely for the poor performance of hyperresolution on these

examples, and the results of chapter 5 and 6 also provide a means to employ

hyperresolution with almost the same efficiency as paramodulation on

these class of problems.

The second question reads as follows: "What is the appropriate theory for

demodulating across argument and across literal boundaries - a theory

similar to the current use of demodulation or similar to that for complete

sets of reducions - to replace certain predicates by other predicates and certain

collections of literals by other collections?" (Wos 1988). This question seems

to be answered completely by the extension of resolution with equivalence

as proposed in chapter 6.

A last problem concerns the question of how to choose the clauses a
particular inference rule like hyperresolution, or linked inference rules, is

applied to. Most of these rules rely exclusively on syntactic criteria, like

literal polarity, or clause length. As far as linked inference is concerned, the

results of chapter 5 suggest a particular choice of clauses as "nuclei" of linked

inference rules. Those clauses that represent "hidden" redundancies like

subsumed links, or complete cycles, should preferably be chosen to act as

such nuclei, in order to avoid their being involved in resolution steps.

A first step towards a satisfying solution to these problems has been made

in this thesis, however, many more questions remain unanswered. For

instance, many unneeded clauses will still be derived, even if cyclic clause

sets or subsumed links are removed. Which structures account for these

redundancies, and how could they be used to avoid redundancies? Is there

any reasonable means to completely avoid the derivation of redundant

information? It might be suspected that subsumption is irrelevant for those

approaches that entirely avoid the retention of new information like

Stickel's (1988) Prolog technology theorem prover or the Matrix methods

developed by Andrews (1981) and Bibel (1982). These methods thus seem to

represent a means to sidestep the problem with the derivation of unneeded

information. However, as Overbeek & Wos (1989) remark, such a position is

flawed. In these approaches, subsumption comes under the form of identical

123

Resolution with Equivalence Chapter 6

equations are eliminated in the equality free formulation of those problems.
On closer inspection, however, it turns out that equalities take the form of

equivalences in all these examples. It seems that the absence of demodula—
tors accounts largely for the poor performance of hyperresolution on these
examples, and the results of chapter 5 and 6 also provide a means to employ
hyperresolution with almost the same efficiency as paramodulation on
these class of problems.

The second question reads as follows: ”What is the appropriate theory for
demodulating across argument and across literal boundaries - a theory
similar to the current use of demodulation or similar to that for complete
sets of reducions - to replace certain predicates by other predicates and certain
collections of literals by other collections?” (Wos 1988). This question seems
to be answered completely by the extension of resolution with equivalence
as proposed in chapter 6.

A last problem concerns the question of how to choose the clauses a
particular inference rule like hyperresolution, or linked inference rules, is
applied to. Most of these rules rely exclusively on syntactic criteria, like
literal polarity, or clause length. As far as linked inference is concerned, the
results of chapter 5 suggest a particular choice of clauses as "nuclei” of linked
inference rules. Those clauses that represent "hidden” redundancies like
subsumed links, or complete cycles, should preferably be chosen to act as
such nuclei, in order to avoid their being involved in resolution steps.

A first step towards a satisfying solution to these problems has been made
in this thesis, however, many more questions remain unanswered. For
instance, many unneeded clauses will still be derived, even if cyclic clause
sets or subsumed links are removed. Which structures account for these
redundancies, and how could they be used to avoid redundancies? Is there
any reasonable means to completely avoid the derivation of redundant
information? It might be suspected that subsumption is irrelevant for those
approaches that entirely avoid the retention of new information like
Stickel’s (1988) Prolog technology theorem prover or the Matrix methods
developed by Andrews (1981) and Bibel (1982). These methods thus seem to
represent a means to sidestep the problem with the derivation of unneeded
information. However, as Overbeek & Wos (1989) remark, such a position is
flawed. In these approaches, subsumption comes under the form of identical

123

Simplification and Reduction for Automated Reasoning

or subsumed subgoals to solve. For instance, a logic program might first

make an attempt to solve the goal -,Pxyz, and later as a subgoal, the clause

-,Pabc, and succesively numerous instances of the first subgoal. Or, in the

presence of the recursive program clause -'PxyPyx (in Prolog notation Pxy :­

Pyx), the successive subgoals might be of the form Pab, Pba, Pab, and so on.l

The problem with the derivation of redundant information is among the

most important problems for automated reasoning. It would thus be of great

value to transfer some of the results of chapter 5 to other inference rules like

paramodulation. For instance, an analogon to the inheritance of subsumed

links (compare theorem 5.3.5 of this thesis) for paramodulation is given by

the following conjecture: Suppose the paramodulant K of some literal L at

subterm u with the equation tl =t2 is subsumed. Then for each descendant L'

of L, which admits a paramodulant K' at the same subterm u with the

equation tl=t2, K' is also subsumed. Of course, the notions of links and link

inheritance for paramodulation have to be made precise in order to

investigate this question.

1 Compare the discussion in section 5.2.

124

Simplification and Reduction for Automated Reasoning

or subsumed subgoals to solve. For instance, a logic program might first
make an attempt to solve the goal ---n2, and later as a subgoal, the clause
-Pabc, and succesively numerous instances of the first subgoal. Or, in the
presence of the recursive program clause finPyx (in Prolog notation n :-
Pyx), the successive subgoals might be of the form Pab, Pba, Pab, and so on.1

The problem with the derivation of redundant information is among the
most important problems for automated reasoning. It would thus be of great
value to transfer some of the results of chapter 5 to other inference rules like
paramodulation. For instance, an analogon to the inheritance of subsumed
links (compare theorem 5.3.5 of this thesis) for paramodulation is given by
the following conjecture: Suppose the paramodulant K of some literal L at
subterm u with the equation t1=t2 i s subsumed. Then for each descendant L'
of L, which admits a paramodulant K' at the same subterm u with the
equation t1=t2, K' is also subsumed. Of course, the notions of links and link
inheritance for paramodulation have to be made precise in order to
investigate this question.

1 Compare the discussion in section 5.2.

124

References

References
Andrews, P.B. (1981). Theorem Proving via General Matings. J. of the ACM, 28, 193 - 214.

Bachmair, L. & Dershowitz, N. (1987). Inference Rules for Rewrite-Based First Order
Theorem Proving. In: Proc. of 2nd Conference on Logic in Computer Science.

Berztiss, AT. (1973). A Backtrack Procedure for Isomorphism of Directed Graphs. Journal
of the ACM , 20/3, 365-377.

Bibel, W. (1981). On Matrices with connections. Journal of the ACM 28/4, 633 - 645.

Bibel, W. (1982). Automated Theorem Proving. Braunschweig. Vieweg.

Bibel, W. (1987). Advanced Topics in Automated Deduction. Technical Report 87-39.
University of Vancouver.

Bla-sius, K. H. (1987). Equality Reasoning Based on Graphs. SEKI-Report SR-87-01,
University of Kaiserslautern.

Biirckert, H.-J., Herold, A. & Schmidt-Schau15, M. (1987). On Equational Theories,
Unification and Decidability. In: Lescanne, P. (ed): Proc. of 2nd Conference on
Rewriting Techniques and Applications, Bordeaux, France. Springer LNCS 256, 204 ­
215.

Chang, e.L. & Lee, R.e. (1973). Symbolic Logic and Mechanical Theorem Proving.
Academic Press. New York.

Eisinger, N. & Weigele, M. (1983). A Technical Note on Splitting and Clausal Normal
Form Algorithms. In: Proc. of 7th German Workshop on Artificial Intelligence,
Dassel/Solling. Springer !FB 76, 225 - 231.

Eisinger, N. (1981). Subsumption and Connection Graphs. In: A. Drinan (Ed.): Proc. of the
7th 1nl. Joint Conf. on AI, Vancouver, 480-486.

Eisinger, N. (1988). Completeness, Confluence, and Related Properties of Clause Graph
Resolution. PhD thesis and SEKI-Report SR-88-07, UniversWit Kaiserslautern.

Gallier, J.H. (1986). Logic for Computer Science. New York. Harper & Row.

Garey, M.R. & Johnson, D.S. (1979). Computers and Intractability. Freeman, San Francisco.

Gottlob, G. & Leitsch, A. (1985). On the Efficiency of Subsumption Algorithms. Journal of
the ACM, 32/2, 280-295.

Guard, J. et al (1969). Semi-Automated Mathematics. Journal of the ACM. 16, 49 - 62.

Henschen, L. et al. (1980). Challenge Problem 1. SIGART Newsletter 72, 30 - 31.

Herold, A & Siekmann, J. (1985). Unification in Abelian Semigroups. Memo-SEKI-85-III.
Universitat Kaiserslautern.

Herold, A (1983). Some Basic Notions of First Order Unification Theory. Internal Report,
Universitat Kaiserslautern.

Hsiang, J. (982). Topics in Automated Theorem Proving and Program Generation. Ph.D.
Thesis, Dep. of Comp. Sc. , University of Illinois at Urbana-ehampaign.

125

References

References
Andrews, PB . (1981). Theorem Proving via General Matings. J. of the ACM, 28, 193 - 214.

Bachmair, L . & Dershowitz, N . (1987). Inference Rules for Rewrite-Based First Order
Theorem Proving. In: Proc. of a Conference on Logic in Computer Science.

Berztiss, A.T. (1973). A Backtrack Procedure for Isomorphism of Directed Graphs. Journal
of the ACM , 20/3, 365-377.

Bibel, W. (1981). On Matrices with connections. Journal of the ACM 28/4, 633 - 645.

Bibel, W. (1982). Automated Theorem Proving. Braunschweig. Vieweg.

Bibel, W. (1987). Advanced Topics in Automated Deduction. Technical Report 87-39.
University of Vancouver.

Bläsius, K. H. (1987). Equality Reasoning Based on Graphs. SEKI-Report SR-87-01,
University of Kaiserslautern.

Bürekert, H.-].‚ Herold, A. & Schmidt-Schauß, M. (1987). On Equational Theories,
Unification and Decidability. In: Lescanne, P. (ed): Proc. of a Conference on
Rewriting Techniques and Applications, Bordeaux, France. Springer LNCS 256, 204 -
215.

Chang, C.L. & Lee, R.C. (1973). Symbolic Logic and Mechanical Theorem Proving.
Academic Press. New York.

Eisinger, N. & Weigele, M. (1983). A Technical Note on Splitting and Clausal Normal
Form Algorithms. In: Proc. of 7th German Workshop on Artificial Intelligence,
Dassel/Solling. Springer IFB 76, 225 - 231.

Eisinger, N. (1981). Subsumption and Connection Graphs. In: A. Drinan (Ed.): Proc. of the
7th Int. Joint Conf. on A1, Vancouver, 480-486.

Eisinger, N. (1988). Completeness, Confluence, and Related Properties of Clause Graph
Resolution. PhD thesis and SEKI-Report SR-88—07, Universität Kaiserslautern.

Gallier, JH. (1986). Logic for Computer Science. New York. Harper & Row.

Garey, M.R. & Johnson, D.S. (1979). Computers and Intractability. Freeman, San Francisco.

Gottlob, G. & Leitsch, A. (1985). On the Efficiency of Subsumption Algorithms. Journal of
the ACM, 32/2, 280-295.

Guard,]. et al (1969). Semi-Automated Mathematics. Journal of the ACM. 16, 49 - 62.

Henschen, L. et al. (1980). Challenge Problem 1 . SIGART Newsletter 72, 30 - 31.

Herold, A. & Siekmann,]. (1985). Unification in Abelian Semigroups. Memo-SEKI-SS-III.
Universität Kaiserslautern.

Herold, A. (1983). Some Basic Notions of First Order Unification Theory. Internal Report,
Universität Kaiserslautern.

Hsiang,] . (1982). Topics i n Automated Theorem Proving and Program Generation. Ph.D.
Thesis, Dep. of Comp. Sc. , University of Illinois at Urbana-Champaign.

125

Simplification and Reduction in Reasoning Systems

Hsiang, J. (1985). Refutational Theorem Proving using Term-rewriting Systems. Artificial
Intelligence 25, 255 - 300.

Huet, G. (1976). Resolution d'equations dans des langages d'ordre 1,2,...,00. These d'Etat,
Universite de Paris VII.

Hullot, J.M. (1980). A Catalogue of Canonical Term Rewriting Systems. Report CSL-113,
SRI International, Menlo Park.

Joiner, W. (1973). Automatic Theorem-Proving and the Decision Problem. Report
7/73Center Research Comp. Tech., Harvard University.

Kaplan, S. (1984). Fair Conditional Term Rewriting Systems: Unification, Termination,
and Confluence. LRI, Orsay.

Kapur, D. & Narendran, P. (1985). An Equational Approach to Theorem Proving in First­
Order Predicate Calculus. 84CRD322, General Electric Corp. Research and
Development Report, Schenectady, N.Y.

Kapur, D. & Narendran, P. (1986). NP-Completeness of the Set Unification and Matching
Problems. In: J. H. Siekmann (Ed.): Proc. 8th International Conference on Automated
Deduction, Oxford. Springer LNCS 230, 489 - 495.

Kowalski, R. (1970). The Case for Using Equality Axioms in Automated Demonstration.
Symp. on Automated Demonstration. Springer LNM, 125, 181 - 201.

Kowalski, R. (1975). A Proof Procedure Using Connection Graphs. Journal of the ACM, 22/4,
572 - 595.

Lewis, H.R. & Papadimitriou, CH. (1981). 9-lements of the Theory of Computation.
Englewood Cliffs, Prentice Hall.

Loveland, D.W. & Shostak, R.E. (1980). Simplifying Interpreted Formulas. In: W. Bibel &
R. Kowalski (Eds.): Proc. of 5th Conference on Automated Deduction, Les Arcs, France.
Springer LNCS 87, 97 - 109.

Loveland, D.W. (1970). A Linear Format for Resolution. In: Proc. IRIA Symp. on Automatic
Demonstration. Versailles, France. Springer Lecture Notes in Math. 125, 147 - 162.

Loveland, D.W. (1978). Automated Theorem Proving: A Logical Basis. North-Holland.

Markgraph, K. (1984). The Markgraph Karl Refutation Procedure. SEKI Memo MK-84-0l,
UniversitiH Kaiserslautern.

Martelli, A. & Montanari, U. (1982). An Efficient Unification Algorithm. ACM TOPLAS,
4/2,258 - 282.

McCharen, J. Overbeek, R. & Wos, 1. (1976). Complexity and related enhancements for
automated theorem-proving programs. Computers and Mathematics with
Applications 2, 1 - 16.

Muller, J. & Sacher, R. (1988). Topics in Completion Theorem Proving. SEKI-Report SR-88­
13, UniversitiH Kaiserslautern.

Muller, J. (1987). Theopogles - A Theorem Prover Based on First-Order Polynomials and a
Special Knuth-Bendix Procedure. In: K. Morik (Ed.): Proc. of the 11 the German
Workshop on Artificial Intelligence, Geseke. Springer IFB 152,241 - 250.

126

Simplification and Reduction in Reasoning Systems

Hsiang, I. (1985). Refutational Theorem Proving using Term-rewriting Systems. Artificial
Intelligence 25, 255 - 300.

Huet, G . (1976). Résolution d’équations dans des langages d’ordre 1,2,...,u). These d’Etat,
Université de Paris VH.

Hullot,].M. (1980). A Catalogue of Canonical Term Rewriting Systems. Report CSL—113,
SRI International, Menlo Park.

Joiner, W. (1973). Automatic Theorem-Proving and the Decision Problem. Report
7/73Center Research Comp. Tech., Harvard University.

Kaplan, S. (1984). Fair Conditional Term Rewriting Systems: Unification, Termination,
and Confluence. LRI, Orsay.

Kapur, D. & Narendran, P. (1985). An Equational Approach to Theorem Proving in First-
Order Predicate Calculus. 84CRD322, General Electric Corp. Research and
Development Report, Schenectady, NY.

Kapur, D. & Narendran, P. (1986). NP-Completeness of the Set Unification and Matching
Problems. In: I. H. Siekmann (Ed.): Proc. 8th International Conference on Automated
Deduction, Oxford. Springer LNCS 230, 489 - 495.

Kowalski, R. (1970). The Case for Using Equality Axioms in Automated Demonstration.
Symp. on Automated Demonstration. Springer INM, 125, 181 - 201.

Kowalski, R. (1975). A Proof Procedure Using Connection Graphs. Journal of the ACM, 22/4,
572 — 595.

Lewis, H.R. & Papadimitriou, C.H. (1981). Elements of the Theory of Computation.
Englewood Cliffs, Prentice Hall.

Loveland, D.W. & Shostak, RE. (1980). Simplifying Interpreted Formulas. In: W. Bibel &
R. Kowalski (Eds.): Proc. of 5th Conference on Automated Deduction, Les Arcs, France.
Springer LNCS 87, 97 - 109.

Loveland, D.W. (1970). A Linear Format for Resolution. In: Proc. IRIA Symp. on Automatic
Demonstration. Versailles, France. Springer Lecture Notes in Math. 125, 147 - 162.

Loveland, D.W. (1978). Automated Theorem Proving: A Logical Basis. North-Holland.

Markgraph, K. (1984). The Markgraph Karl Refutation Procedure. SEKI Memo MK-84-01,
Universität Kaiserslautern.

Martelli, A. & Montanari, U. (1982). An Efficient Unification Algorithm. ACM TOPLAS,
4/2, 258 - 282.

McCharen, I . Overbeek, R. & Wos, L. (1976). Complexity and related enhancements for
automated theorem-proving programs. Computers and Mathematics with
Applications 2, 1 - 16.

Müller,]. & Socher, R. (1988). Topics in Completion Theorem Proving. SEKI-Report SR—88-
13, Universität Kaiserslautern.

Müller,]. (1987). Theopogles - A Theorem Prover Based on First—Order Polynomials and a
Special Knuth-Bendix Procedure. In: K. Morik (Ed.): Proc. of the 11the German
Workshop on Artificial Intelligence, Geseke. Springer IFB 152, 241 - 250.

126

References

Muller, J. (1988). Theorembeweisen mit Rewritetechniken. Dissertation. UniversWit
Kaiserslautern.

Murray, N.V. & Rosenthal, E. (987). Inference with Path Resolution and Semantic
Graphs. Journal of the ACM, 34/2, 225 - 254.

Nicolaita, D. (1989). Structure Sharing with Literal Indexing Mechanisms for Resolution
Systems. Unpublished manuscript. University of Bucharest.

Noli, H. (1980). A Note on Resolution: How to Get Rid of Factoring Without Loosing
Completeness. In: W. Bibel & R. Kowalski (Eds): Proc. of 5th Conf. on Automated
Deduction. Springer LNCS 87, 50 - 63.

Ohlbach, H.J. & Siekmann, J. (1988). Using Automated Reasoning Techniques for Deductive
Databases. SEKI-Report SR-88-06, UniversitiH Kaiserslautern.

Overbeek, R. & Wos, L. (1989). Subsumption, a Sometimes Undervalued Procedure.
Technical report MCS-P93-Q789, Argonne National Laboratory, Argonne, IL.

Overbeek, R. (1975). An Implementation of Hyper-Resolution. Computational
Mathematics with Applications 1, 201 - 214.

Pelletier, F.J. (1986). Seventy-five Problems for Testing Automatic Theorem Provers.
Journal of Automated Reasoning. 212, 191 - 216.

Quine, W.V. (1952). The Problem of Simplifying Truth Functions. American Math.
Monthly, 59, 521 - 531.

Quine, W.V. (1959). On Cores and Prime ImpIicants of Truth Functions. Am. Math.
Monthly, 66, 755 - 760.

Rabinov, A. (1988). A Restriction of Factoring in Binary Resolution. In: E. Lusk & R.
Overbeek (Eds.): Proceedings of the 9th International Conference on Automated
Deduction. Argonne, Illinois, U.S.A. Springer LNCS 310, 582 - 591.

Robinson, G. & Wos, L. (1969). Paramodulation and theorem-proving in first-order theories
with equality. In: B. Meltzer, & D. Michie, (Eds.): Machine Intelligence 4.
Edinburgh, 135 - 150.

Robinson, J.A. (1965a). A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12/1,23 - 41.

Robinson, J.A. (1965b). Automated Deduction with Hyper-Resolution. Intern. Journal of
Comp. Mathematics, 1,227 - 234.

Rusinowitch, M. (1987). Demonstration automatique par des techniques de reecriture. These
de doctorat d'etat. Nancy.

Schmidt-SchauB, M. (1986). Some Undecidable Classes of Clause Sets. Interner Bericht,
SEKI-Report 86-08, Universitat Kaiserslautern.

Shostak, R.E. (1976). Refutation Graphs. Artificial Intelligence. 7/1,51 - 64.

Shostak, R.E. (1979). A Graph-Theoretic View of Resolution Theorem-Proving. Report SRI
International, Menlo Park, CA.

Slagle, J.R.; Chang, c.L. & Lee, R.C.T. (1970). A New Algorithm for Generating Prime
Implicants. IEEE Trans. on Comp. 19/4, 304 - 310.

Socher, R. (1987a). Boolean Simplification of First Order Formulae. SEKI-Report SR-87-4,
Universitat Kaiserslautern.

127

References

Miiller, I . (1988). Theorembeweisen mit Rewritetechniken. Dissertation. Universität
Kaiserslautern.

Murray, N.V. & Rosenthal, E. (1987). Inference with Path Resolution and Semantic
Graphs. Journal of the ACM, 34/2, 225 — 254.

Nicolaita, D. (1989). Structure Sharing with Literal Indexing Mechanisms for Resolution
Systems. Unpublished manuscript. University of Bucharest.

Noll, H. (1980). A Note on Resolution: How to Get Rid of Factoring Without Loosing
Completeness. In: W. Bibel & R. Kowalski (Eds): Proc. of 5th Conf. on Automated
Deduction. Springer INCS 87, 50 - 63.

Ohlbach, H.]. & Siekmann,]. (1988). Using Automated Reasoning Techniques for Deductive
Databases. SEKI-Report SR-88-06, Universität Kaiserslautern.

0verbeek, R . & Wos, L. (1989). Subsumption, a Sometimes Undervalued Procedure.
Technical report MCS—P93-0789, Argonne National Laboratory, Argonne, IL.

Overbeek, R. (1975). An Implementation of Hyper-Resolution. Computational
Mathematics with Applications 1, 201 - 214.

Pelletier, F.]. (1986). Seventy-five Problems for Testing Automatic Theorem Provers.
Journal of Automated Reasoning. 2/2, 191 - 216.

Quine, W.V. (1952). The Problem of Simplifying Truth Functions. American Math.
Monthly, 59, 521 - 531.

Quine, W.V. (1959). On Cores and Prime Implicants of Truth Functions. Am. Math.
Monthly, 66, 755 - 760.

Rabinov, A. (1988). A Restriction of Factoring in Binary Resolution. In: E. Lusk & R.
Overbeek (Eds) : Proceedings of the 9th International Conference on Automated
Deduction. Argonne, Illinois, U.S.A. Springer LNCS 310, 582 - 591.

Robinson, G. & Wos, L. (1969). Paramodulation and theorem—proving in first-order theories
with equality. In: B. Meltzer, & D. Michie, (Eds.): Machine Intelligence 4.
Edinburgh, 135 - 150.

Robinson,].A. (1965a). A Machine-Oriented Logic Based on the Resolution Principle.
Journal of the ACM, 12/1, 23 - 41.

Robinson,] .A . (1965b). Automated Deduction with Hyper-Resolution. Intern. [ournal of
Camp. Mathematics, 1, 227 - 234.

Rusinowitch, M. (1987). Demonstration automatique par des techniques de réécriture. Th‘ese
de doctorat d’etat. Nancy.

Schmidt-Schauß, M. (1986). Some Undecidable Classes of Clause Sets. Interner Bericht,
SEKI-Report 86-08, Universität Kaiserslautern.

Shostak, R.E. (1976). Refutation Graphs. Artificial Intelligence. 7/1, 51 - 64.

Shostak, R.E. (1979). A Graph-Theoretic View of Resolution Theorem-Proving. Report SRI
International, Menlo Park, CA.

Slagle, I.R.; Chang, CL. &: Lee, R.C.T. (1970). A New Algorithm for Generating Prime
Implicants. IEEE Trans. on Comp. 19/4, 304 - 310.

Socher, R. (1987a). Boolean Simplification of First Order Formulae. SEKI-Report SR—87-4,
Universität Kaiserslautern.

127

Simplification and Reduction in Reasoning Systems

Socher, R (1987b). Graph Isomorphism: Some Special Cases. SEKI-Report SR-87-10,
Universitiit Kaiserslautern.

Soeher, R (1987e). Optimizing the Clausal Normal Form Transformation. To appear in:
Journal of Automated Reasoning.

Socher, R. (1988a). A Subsumption Algorithm Based on Characteristic Matrices. In: E.
Lusk; R. Overbeek (Eds.): Proc. 9th International Conference on Automated Deduction,
Argonne. Springer LNCS 310,573 - 58l.

Socher, R (1990). On the Relation Between Resolution Based and Completion Based
Theorem Proving. To Appear in: Journal of Symbolic Computation, special issue on
Theorem Proving using rewrite techniques.

Socher-Ambrosius, R. & Muller, J. (1989). A Resolution Calculus Extended by Equivalence.
In: D. Metzing (Ed.): Proc. of 13th German Workshop on Artificial Intelligence,
Eringerfeld. Springer IFB 216, 102 - 106.

Socher-Ambrosius, R. (1989a). Detecting Redundancy caused by Congruent Links in Clause
Graphs. In: D. Metzing (Ed.): Proc. of 13th German Workshop on Artificial
Intelligence, Eringerfeld. Springer IFB 216, 74 - 82.

Socher-Ambrosius, R. (1989b). Reducing the Derivation of Redundant Clauses in Reasoning
Systems. In: N. Sridharan (Ed.); Proc. of the 11th Int. Joint Conf. on AI, Detroit.
Morgan Kaufman Publ., 401 - 406.

Socher-Ambrosius, R. (1989c). Another Technique for Proving Completeness of Resolution.
SEKI-Report SR-89-05, UniversWit Kaiserslautern.

Sochet-Ambrosius, R (1990). Boolean Algebra Admits no Canonical Term Rewriting
System. SEKI-Report, Universitiit Kaiserslautern, to appear.

Stiekel, M. E. (1985). Automated Deduction by Theory Resolution. Journal of Automated
Reasoning. 1/4, 333 - 356.

Stickel, M. E. (1986). Schubert's steamroller problem: Formulations and Solutions. Journal
of Automated Reasoning. 2/1, 89 - 102.

Stillman, RB. (1973). The Concept of Weak Substitution in Theorem Proving. Journal of the
ACM, 20/4, 648-667.

Tison, P. (1967). Generalized Consensus Theory and Application to the Minimization of
Boolean Functions. IEEE Trans. on Comp. 16/4, 446 - 456.

Unger, S.H. (1964). GIT - A Heuristic Program for Testing Pairs of Directed Line Graphs for
Isomorphism. Comm. of the ACM 7, 26 - 34.

Vieille, 1. (1987). Recursive Query Processing: The Power of Logic. ECRC Munich,
Technical Report TR-KB-17.

Walther, C. (1981). Elimination of Redundant Links in Extended Connection Graphs. In:
J.H. Siekmann (Ed.): Proc. of German Workshop on Artificial Intelligence. Bad
Honnef. Springer IFB 47, 201 - 213.

Wos, 1. (1988). Automated Reasoning: 33 Basic Research Problems. Prentice Hall,
Englewood Cliffs.

Wos, 1.; Robinson, G.; Carson,D. & Shalla, L. (1967). The Concept of Demodulation in
Theorem Proving. Journal of the ACM, 14, 698 - 709.

128

Simplification and Reduction in Reasoning Systems

Socher, R. (1987b). Graph Isomorphism: Some Special Cases. SEKI-Report SR—87—10,
Universität Kaiserslautern.

Socher, R. (1987c). Optimizing the Clausal Normal Form Transformation. To appear in:
Journal of Automated Reasoning.

Socher, R. (1988a). A Subsumption Algorithm Based on Characteristic Matrices. In: E.
Lusk; R. Overbeek (Eds.): Proc. 9th International Conference on Automated Deduction,
Argonne. Springer LNCS 310, 573 - 581.

Socher, R. (1990). On the Relation Between Resolution Based and Completion Based
Theorem Proving. To Appear in: Journal of Symbolic Computation, special issue on
Theorem Proving using rewrite techniques.

Socher-Ambrosius, R. & Müller,]. (1989). A Resolution Calculus Extended by Equivalence.
In: D. Metzing (Ed.): Proc. of 13th German Workshop on Artificial Intelligence,
Eringerfeld. Springer IFB 216, 102 - 106.

Socher-Ambrosius, R. (1989a). Detecting Redundancy caused by Congruent Links in Clause
Graphs. In: D. Metzing (Ed.): Proc. of 13th German Workshop on Artificial
Intelligence, Eringerfeld. Springer IFB 216, 74 - 82.

Socher-Ambrosius, R. (1989b). Reducing the Derivation of Redundant Clauses in Reasoning
Systems. In: N. Sridharan (Ed.): Proc. of the 11th Int. Joint Conf. on AI, Detroit.
Morgan Kaufman Publ., 401 - 406.

Socher-Ambrosius, R. (1989c). Another Technique for Proving Completeness of Resolution.
SEKI—Report SR-89-05, Universität Kaiserslautern.

Socher-Ambrosius, R. (1990). Boolean Algebra Admits no Canonical Term Rewriting
System. SEKI-Report, Universität Kaiserslautern, to appear.

Stickel, M. E. (1985). Automated Deduction by Theory Resolution. Journal of Automated
Reasoning. 1/4, 333 - 356.

Stickel, M. E. (1986). Schubert’s Steamroller problem: Formulations and Solutions. Journal
of Automated Reasoning. 2/1, 89 - 102.

Stillman, RB. (1973). The Concept of Weak Substitution in Theorem Proving. Journal of the
ACM, 20/4, 648-667.

Tison, P. (1967). Generalized Consensus Theory and Application to the Minimization of
Boolean Functions. IEEE Trans. on Comp. 16/4, 446 - 456.

Unger, S.H. (1964). GIT - A Heuristic Program for Testing Pairs of Directed Line Graphs for
Isomorphism. Comm. of the ACM 7, 26 - 34.

Vieille, L. (1987). Recursive Query Processing: The Power of Logic. ECRC Munich,
Technical Report TR-KB-17.

Walther, C. (1981). Elimination of Redundant Links in Extended Connection Graphs. In:
J.H. Siekmann (Ed.): Proc. of German Workshop on Artificial Intelligence. Bad
Honnef. Springer IFB 47, 201 - 213.

Wos, L. (1988). Automated Reasoning: 33 Basic Research Problems. Prentice Hall,
Englewood Cliffs.

Wos, L.; Robinson, G.; Carson,D. & Shalla, L. (1967). The Concept of Demodulation in
Theorem Proving. Journal of the ACM, 14, 698 — 709.

128

References

Wos, L.; Veroff, R.; Smith, B. & McCune, W. (1984a). The Linked Inference Principle, II:
The User's Viewpoint. In: RE. Shostak (Ed.): Proceedings of the 7th Int. Conference
on Automated Deduction. Springer lNCS 170, 316 - 332.

Wos, L.; Winker, S.; Veroff, R; Smith, B. & Henschen, L. (1984b). A New Use of an
Automated Reasoning Assistant: Open Questions in Equivalential Calculus and the
Study of Infinite Domains. Artificial Intelligence, 22,303 - 356.

Zhang, H. & Kapur, D. (1988). First-Order Theorem Proving Using Conditional Rewrite
Rules. In: E. Lusk & R Overbeek (Eds.): Proceedings of the 9th International
Conference on Automated Deduction. Argonne, Illinois, U.S.A. Springer LNCS 310,1 ­
20.

Zhang, H. (1984). Reveur 4: Etude et Mise en CEuvre de la Reecriture Conditionelle. These
de Doctorat de 3eme cycle. Universite de Nancy 1.

129

References

Wos, L.; Veroff, R.; Smith, B. & McCune, W. (1984a). The Linked Inference Principle, II:
The User’s Viewpoint. In: R.E. Shostak (Ed.): Proceedings of the 7th Int. Conference
on Automated Deduction. Springer LNCS 170, 316 - 332.

Wos, L.; Winker, S.; Veroff, R.; Smith, B. & Henschen, L . (1984b). A New Use of an
Automated Reasoning Assistant: Open Questions in Equivalential Calculus and the
Study of Infinite Domains. Artificial Intelligence, 22, 303 - 356.

Zhang, H. & Kapur, D. (1988). First-Order Theorem Proving Using Conditional Rewrite
Rules. In: E. Lusk & R. Overbeek (Eds.): Proceedings of the 9th International
Conference on Automated Deduction. Argonne, Illinois, U.S.A. Springer LNCS 310, 1 -
20.

Zhang, H. (1984). Reveur 4: Etude et Mise en (Euvre de la Réécriture Conditionelle. 'I'hése
de Doctorat de 3éme cycle. Université de Nancy I.

129

Simplification and Reduction for Automated Reasoning

Appendix: Boolean Algebra Admits no Canonical Term Rewriting
System

In the following a formal proof will be given that a canonical term rewiting

system for Boolean algebra cannot exist. First we introduce the basic notions

of equational term rewriting systems.

A.I Definition (Equational System):

An equational system E is a set of termpairs s=t. This system generates an

equality relation =E in the following way: We define a relation =k bys =~t, iff
there exists an occurrence u in s, an equation s'=t' or t'=s' in E, and a

substitution a, such that slu = s'a and t = s[u-H'a]. The relation =E is defined

as the transitive, reflexive closure of =~. It is clear that =E is an equivalence

relation. The equivalence class of t modulo E will be denoted as [t]E­

A.2 Definition <Equational Term Rewriting System):

A term rewriting system R (over T) is a set of termpairs l-H (the so called

rules), such that V(r>k;V(l) (and l,rE T). A term tl R-reduces to a term t2,

written tl ~R t2, iff there exists an occurrence u in tl, a rule l-H in R, and a

substitution a, such that tllu = la and t2 = tl[u~ra].

A term tl E,R-reduces to t2, written tl ==>E,R t2, iff there exist t'lE [tl], 1'2E [t2]

with 1'1 ~R t'2.

~~,R denotes the transitive; ~;,R denotes the reflexive transitive closure of

~E,R and =E,R denotes the reflexive, symmetric, and transitive closure of

~E,R·

The pair (E,R) is called an equational term rewriting system (ETRS). It can be

understood also as a rewriting system for TI =E = {[t] I tE T}_

(E,R) is noetherian, iff there is no infinite sequence of E,R-reductions from

any term.

... ...

(E,R) is confluent, iff t ~E R tl and t ==>E R t2 implies the existence of a term t3
,.. *' ' I

with t1 ~E,R t3 and t2 ~E,R t3·
A noetherian and confluent system is called convergent.

A term tl is called (E,R-Hrreducible, iff there is no term t2 with t1 ~E,R t2,

and (E,R-)reducible otherwise.

130

Simplification and Reduction for Automated Reasoning

Appendix: Boolean Algebra Admits no Canonical Term Rewriting
System

In the following a formal proof will be given that a canonical term rewiting
system for Boolean algebra cannot exist. First we introduce the basic notions
of equational term rewriting systems.

WW
An equational system E is a set of termpairs s=t. This system generates an
equality relation =E in the following way: We define a relation =Ebys =Et, iff
there exists an occurrence u in s, an equation 5 '=t' or t'=s' in E, and a
substitution 6, such that s / u = 5'6 and t = s[u—>t'o]. The relation :15 is defined
as the transitive, reflexive closure of =15. It is clear that =E i s an equivalence

relation. The equivalence class of t modulo B will be denoted as [tlg.

A.2 Definition gEguational Term Rewriting System):

A term rewriting system R (over T) is a set of termpairs 1—>r (the so called
rules), such that V(r)<;V(1) (and l‚re T). A term t1 R-reduces to a term tz,
written t1 =R tz, iff there exists an occurrence u in t1, a rule 1—)1' in R, and a
substitution 0', such that t 1 /u = lo and tz = t1[u->ro].
A term t1 E,R-reduces to tz, written t1 =>E,R tz, iff there exist t'1e [t1], t 'ze [tz]
with t'1 =R t 'z.
:EIR denotes the transitive, =>;‚R denotes the reflexive transitive closure of
=>E,R and =E,R denotes the reflexive, symmetric, and transitive closure of
=>E,R~

The pair (E,R) is called an equational term rewriting system (ETRS). It can be
understood also as a rewriting system for T/=E = ([t] | te T}.
(E,R) is noetherian, iff there is no infinite sequence of E,R—reductions from
any term
(E, R) is confluent, iff t=>EI R t1 and t=>EIR tz implies the existence of a term t3
With t1 =>EI R t3 and tz =>EI R t3.
A noetherian and confluent system is called convergent.
A term t1 i s called (E,R-)irreducible, iff there i s no term tz with t1 =>E‚R tz,
and (E,R-)reducible otherwise.

130

Appendix
...

An irreducible term t is called a normal form for t1, Hf t1 =>E,R t.

If (E,R) is convergent, then each term t has a normal form H, and SJ,=E tJ,

holds for each term s with s =E,R t .

A.3 Definition:

Let 9t be a convergent ETRS over T. Then the noetherian partial ordering

>')t on T generated by 9t is defined by s>t Hf s=>; t. In the following we shall

usually drop the index 9t.

AA Lemma:

Let 9t be a convergent system on T with =')t = =E.

a) The ordering> generated by 9t is compatible with substitutions, that is,

s>t implies sa>ta for any s,te T and any substitution a.

b) Let s,te T. If s =E t and t is 9t-irreducible, then s>t holds.

Proof: Obvious. •
In the following let AC be the equational system

AC = {xvy = yvx, xl\Y = YI\X, xv(yvz) = (xvy)vz, xl\(YI\Z) = (XI\Y)I\Z}.

and ACD the system AC u {xv(YI\Z) = (xvY)I\(xvz), XI\(Yvz) = (xI\Y)v(xl\Z)}.

In the following we shall consider exclusively the term set T=T(FB,V),

where FB is the signature (I\,v,"") of boolean algebra.

For ease of notation, we shall use the following convention: For any te T,

we define the dual term T, which is obtained from t by simultaneously

replacing each occurrence of v by 1\ and vice versa, and each occurrence of 0

by 1, and vice versa.

In the following equality will tacitly be understood to be equality modulo

AC. As it is done in chapter 3, equality modulo BA will be denoted by:, and

terms which are equal under BA, will also be called equivalent. We will use

the customary notion of literals, clauses and a conjunctive normal form
(CNF). Recalling the notions of chapter 3, a term t is called a literal, Hf it is

either of the form a, or of the form ...,a, with a being a constant or avariable.

The term t is a clause, if t = Slv ... VSn, with pairwise distinct literals Si. A term

t is called a CNF-term, if t=Sll\ ... I\Sn, where the Si are pairwise distinct

clauses. A term with topsymbol v is also called a disjunction, a term with

topsymbol 1\ a conjunction, and a term with topsymbol ..., a negation.

131

Appendix *

An irreducible'term t is called a normal form for t1, iff t1 =>E‚R t.
If (E,R) i s convergent, then each term t has a normal form t i , and s l=E ti
holds for each term s with s =E‚R t .

A.3 Definition:

Let 9i be a convergent ETRS over T. Then the noetherian partial ordering
>9§ on T generated by ER is defined by s>t iff 5:92,} t. In the following we shall
usually drop the index 9?.

Miem—ma;
Let ER be a convergent system on T with = = =E—
a) The ordering > generated by SR is compatible with substitutions, that is,

s>t implies so>to for any s,te T and any substitution 6.
b) Let s,te T . If s =E t and t i s Eli-irreducible, then s>t holds.

Proof: Obvious. I

In the following let AC be the equational system
AC = {xvy = yvx, XAy = yAx‚ xv(yvz) = (xvy)vz, XA(yAz) = (XAy)/\z}.
and ACD the system AC U {xv(y/\z) = (xvy)A(xvz)‚ XA(yvz) = (XAy)v(X/\z)}.

In the following we shall consider exclusively the term set T=T(FB,V)‚
where FB is the signature (A,V‚fi) of boolean algebra.

For ease of notation, we shall use the following convention: For any te T,
we define the dual term 't', which i s obtained from t by simultaneously
replacing each occurrence of v by A and vice versa, and each occurrence of 0
by 1, and vice versa.

In the following equality will tacitly be understood to be equality modulo
AC. As it is done in chapter 3, equality modulo BA will be denoted by E, and
terms which are equal under BA, will also be called equivalent. We will use
the customary notion of literals, clauses and a conjunctive normal form
(CNF). Recalling the notions of chapter 3, a term t is called a literal, iff i t is
either of the form a, or of the form -a, with a being a constant or a variable.
The term t i s a clause, if t = s1v. . .vsn‚ with pairwise distinct literals si. A term
t is called a CNP- t e rm, if t =S]/ \ . . . / \Sn, where the si are pairwise distinct
clauses. A term with topsymbol v is also called a disjunction, a term with
topsymbol A a conjunction, and a term with-topsymbol -. a negation.

131

Simplification and Reduction for Automated Reasoning

A.5 Theorem:

There exists no convergent ETRS (Ac,R) such that =AC,R coincides with:.
 .
Note that we deal exclusively with term rewriting systems over the fixed

signature FB. There exists, for instance, a convergent system over the

extended signature (t\,v,...,,+,*,O,1), see Hsiang (1985).

In order to prove the theorem above, we first provide some lemmata. For

the remainder of this section, we shall assume that there exists a convergent

system 9i = (AC,R) for BA. Let > be the noetherian ordering associated with

9i.

A.6 Lemma:

The following relations hold:

(xVY)t\y>y
...,xvx> 1

xvx>x

xvO>x

xvI> 1

(xVY)t\(...,xvy) > y

Proof: For each line, the two terms are equivalent according to definition

3.1.1 and lemma 3.1.2. Furthermore, each right hand side is obviously

irreducible, hence the assertion follows from lemma AA.b. •

The proof of our main theorem proceeds essentially by considering a

particular term t, and proving that all terms t':t are reducible. The

following lemmata will provide two important techniques to prove a term t

reducible, which are used heavily in the sequel. The first states that the

normal form of a symmetric term must be symmetric.

If t is a term containing the (distinct) symbols p,q, and t(p,q) = t(q,p), then

the term t is called symmetric in (p,q). t is called semi-symmetric in (p,q), iff

t(p,q) : t(q,p).

132

Simplification and Reduction for Automated Reasoning

A.5 Theorem:
There exists no convergent ETRS (AC,R) such that =AC,R coincides with 5.

Note that we deal exclusively with term rewriting systems over the fixed
signature FB. There exists, for instance, a convergent system over the
extended signature (A,v,-u,+,*,0,1), see Hsiang (1985).

In order to prove the theorem above, we first provide some lemmata. For
the remainder of this section, we shall assume that there exists a convergent
system 9i = (AC,R) for BA. Let > be the noetherian ordering associated with
ER.

Mm
The following relations hold:

(xvy)Ay > y
-xvx > 1
xvx > x
v > x
xv1 > 1
"mx > X

(xvy)A(-xvy) > y
Proof: For each line, the two terms are equivalent according to definition

3.1.1 and lemma 3.1.2. Furthermore, each right hand side i s obviously
irreducible, hence the assertion follows from lemma A.4.b. I

The proof of our main theorem proceeds essentially by considering a
particular term t, and proving that all terms t ' s t are reducible. The
following lemmata will provide two important techniques to prove a term t
reducible, which are used heavily in the sequel. The first states that the
normal form of a symmetric term must be symmetric.

If t is a term containing the (distinct) symbols p,q, and t(p,q) = t(q,p), then
the term t is called symmetric in (p,q). t is called semi-symmetric in (p,q), iff
t(p,q) E t(q‚p).

132

Appendix

A.7 Lemma <Symmetry Lemma):

Let x,ye V with x*y, and let t=t(x,y) be irreducible. If t is semi-symmetric in

(x,y), then t is even sYmmetric in (x,y).

Proof: Assume t(x,y)*t(y,x). Then we have t(x,y»t(y,x), since the latter is

irreducible. But then, according to A.4.a also t(x,y)O'>t(y,x)O' for O'={x~y; y~x},

which implies t(y,x»t(x,y), a contradiction. _

The symmetry lemma can also be stated as follows: If the term t is

symmetric in (x,y), then t.l. is also symmetric in (x,y).

The next "subterm lemma" shows that a term t is reducible, if a subterm

of t can be replaced by a shorter term, without changing the original term's

value.

A.8 Lemma (Subterm Lemma):

Let t = S1/\ ... /\Sn, with n2::1, and let O'={x~to} be a substitution with xe Vet) and

xe VetO). If S1O' i S1, and S1O'/\S2/\.· ./\sn == t, then t is reducible.

Proof: Assume that t is irreducible. Let S1' = (S1O').1., and let l' = S1'/\S2/\ ... /\Sn.

Then, since S1O' i S1, and t' == t, we have t'>t. In particular, we have

1'0' > to',

which implies

S1 'O'/\S2O'/\.../\SnO' > S1O'/\S2O'/\... /\SnO',

and, since S1O' > S1'= s1'O', we have

S1'O'/\S2O'/\· ../\SnO' > S1 'O'/\S2O'/\.../\SnO',
which is a contradiction. _

It should be noted that the assertion of the subterm lemma also holds for

a disjunction t = S1v ...VSn.

A.9 Example:

Let t = (xvy) /\-.x. We show that t is reducible. Let 0'= {x~O}. First it is easy to

see that t == y/\-.x, and y = yO' =!(xvy). If t were irreducible, then we had
y /\-.x > (xvy) /\-.x

hence

y /\-.0 = (y /\-.x)O' > «xvy) /\-.x)O' = (Ovy) /\-.0 > y /\-.0

which is a contradiction.

133

Appendix

A.7 Lemma {Symmetry Lemma):

Let x,e with x¢y, and let t=t(x,y) be irreducible. If t is semi-symmetric in
(x,y), then t is even symmetric in (x,y).

Proof: Assume t(x,y)¢t(y,x). Then we have t(x,y)>t(y,x), since the latter is

irreducible. But then, according to A.4.a also t(x,y)o>t(y,x)o for o={x—)y; y—>x},
which implies t(y,x)>t(x,y), a contradiction. . .

The symmetry lemma can also be stated as follows: If the term t is
symmetric in (x,y), then ti is also symmetric in (x,y).

The next ”subterm lemma” shows that a term t is reducible, if a subterm
of t can be replaced by a shorter term, without changing the original term’s
value.

A.8 Lemma Su term Lemma :

Let t = S]A...ASn, with n21, and let 6={x—-)to} be a substitution with xe V(t) and
x95 V(to). If 510' 9% 51, and S10'A52A.. .ASn E t, then t i s reducible.

Proof: Assume that t is irreducible. Let s1' = ($16», and let t' = s1'AszA.../\sn.
Then, since S16 #. 51, and t ' 5 t, we have t '>t. In particular, we have

to > to,
which implies

s1'oAszoA.. .ASnO' > $16A526A. . .ASnO',
and, since 816 > s1'= sfa, we have

s1'O'Aszo'A. . .ASnG > S1'O'A520'A. . ‚Asus,

which i s a contradiction. I

I t should be noted that the assertion of the subterm lemma also holds for

a disjunction t = s1v. . .vsn.

W
Let t = (xvy) A'1X. We show that t is reducible. Let 6= {x—-)0}. First it i s easy to
see that t E y/wx, and y = yo ;! (xvy). If t were irreducible, then we had

y A-ux > (xvy) A'IX
hence

y A-IO = (y A-ux)0' > ((xvy) A-IX)O' = (Ovy) A-O > y A-IO
which is a contradiction.

133

Simplification and Reduction for Automated Reasoning

A.10 Lemma:

Let t be a term with V(t) = {Xl, ... ,Xn}. Then there is a unique CNF-term t =

CIA...ACm, where each Ci is a clause containing all xj's, and t == t. The term t

is called the standardized CNF of t. Each Ci is called a standard clause of t.

The notion of a standardized DNF is defined analogously.

Proof: See, for instance, Rudeanu (1974). •
A.ll Example:

Let t = (-.XVy)A(-.XV-.Z). Then t =(-.XVyVZ)A(-.XVyV-.Z)A(-.XV-.yv-.z) is the

standardized CNF of t.

A.12 Lemma:

If t = tlA ... Atn, then for each ie {I,... ,n}, there are standard clauses Cil,...,Ciki'

with

ti == CilA...ACiki.

Moreover,

n ni - {- - }Ui=l Uj=l Cij = Cl,···, Cn • •
A.13 Lemma:

Let t =xvy. Then either tJ, = t, or tJ, = -.(-.XA-.y).

Proof: Obvious. •
A.14 Lemma:

Let t =(xvy) A (yvz) A (ZVX). Then tJ,e {tl,. .. ,ts}, where

tl =(XAy) v (yAZ) v (ZAX),

t2 =-.(-.yv-.z) v -.(-,xv-.z) v -.(-.yv-.x),

t3 =(xvy) A (yvz) A (ZVX),

t4 =-.(-'yA-'Z) A -.(""XA-'Z) A -.(-'yA-'X)

ts = -.[-.(yvz) v -'(XVz) v -.(yvx)],

t6 = -.[(-.yA-.Z) v (-'XA-.Z) v (-'yA-'X)],

t7 = -.[(-.yv-.Z) A (-'XV-'Z) A (-.yv-.x)],

ts =-.[-.(yAZ) A -'(XAZ) A -.(yAX)].

Proof:

134

Simplification and Reduction for Automated Reasoning

A.10 Lemma:

Let t be a term with V(t) = {x1,...,xn]. Then there i s a unique CNF-term t =
Emm/\ Em, where each Ei is a clause containing all Xj's, and 'f 5 t. The term t
is called the standardized CNF of t. Each Ei is called a standard clause of t .
The notion of a standardized DNP is defined analogously.

Proof: See, for instance, Rudeanu (1974). I

A.11 Example:

Let t = (nxvy)A(nxv-z) . Then t = (nxvyvz)A(-uxvyv-z)A(-xvnyv-Iz) is the

standardized CNF of t .

A.12 Lemma:

If t = t1A.../\tn, then for each ie {1,...‚n}‚ there are standard clauses Ei1,...,'éiki‚

with
ti E a i l / \ u -Aa ik i -

Moreover,
n n- - .. „

Ui=1Uj=l1 Cij = {C1 , - - - ,Cn}- I

A.13 Lemma:

Let t = xvy. Then either t i = t, or ti = -1(nXA-Iy).

Proof: Obvious. l
API—Lana

Let t = (xvy) A (yvz) A (zvx). Then tie {t1,. . .,t8}, where
t1 = (XAy) v (yAz) v (ZAx),
t2 = -(-«yv-z) v -|(—1xv-uz) v -(-1yv-1x)‚
t3 = (xvy) A (yvz) A (ZVX),
t4 = -(-IyA-Iz) A -(-IXAnz) A 'I("|YA‘1X)
ts = nl-Kyvz) v “(xvz) v -I(yvx)],
ts = -[(--yA-z) v (-XA-vz) v (nyAnx)],
t 7 = “[(nyv-IZ) A (-xv-z) A (WV-M)],
t8 = nHyAZ) A -'(XAZ) A -(yAX)].

Proof:

134

Appendix
a) Let t.,J, = SI v ... VSn, and let t be the standardized DNF of t. Then

f = dlVd2Vd3Vd4, with

dl = XI\YAZ, d2 = ""XI\YAZ, d3 = XI\""YAZ, d4 = xI\YI\""z,

According to A.12, each Si is equivalent to a disjunction of dj's. Moreover, t..J,

must be symmetric in (x,y), in (y,z), and in (x,z), and thus there are only the

following cases: Either H = SI VS2, with SI == dl, and S2 == d2Vd3Vd4, or t.,J, =
SIVS2vs3 , with the following possibilities:

SI == dlVd2, S2 == dlVd3, S3 == dlvd4,
SI == dlVd2Vd3, S2 == dlvd3vd4, S3 == d1vd2vd4.

Let t.,J, = SlV S2 with SI == dl, and S2 == d2Vd3Vd4, and let O'={z~l}. Then SlO' t:. SI.

We show that S10V S2 == SlV S2: We have

SIO'V s2 == (XI\YI\Z) V (XI\y1\...,z) v d2 v d3 ==

(XI\Y) v d2 v d3 == (XI\Y) v (XI\YI\""Z) v d2 v d3 == Slv S2

Hence the subterm lemma implies that SIv s2 is reducible.

Let t.,J, = SlvS2vs3. If SI == dlVd2 == YI\Z, S2 == d1Vd3 == XI\Z, s3 == dlVd4 == YI\X, then

we have either SI = YI\Z, S2 = XI\Z, S3 = XI\Y, and H= t1, or SI = ""(""yv...,z), S2 =

...,(...,xv...,z), S3 = ""(""yv...,x), and t.,J, = t2'

If SI == dlVd2Vd3 == (XVY)I\Z, S2 == dlVd3Vd4 == XI\(YVZ), s3 == dlVd2Vd4 == YI\(xvz),

then let 't={x~O}. It is easy to see that

Sl'tV S2VS3 == SlV S2Vs3 ,
and SI't t:. SI' Hence the subterm lemma implies that SlV S2 v S3 is reducible.

b) Let t.,J, = Sll\ • .• I\Sn. Analogously to a) it can be shown that t.,J,e {t3,t4} in this

case.

c) Let tJ- = -,t', with t' = SI v ... V Sn' Then tJ- == -'Sll\ ... 1\ ""Sn. Let f be the

standardized CNF of t. Then f = ClI\C2I\c3I\Q, with

Cl =xvyvz, Z2 =-,xvyvz, Z3 =xv-'yvz, Z4 =xvyv""z.

Then each -'Si is equivalent to a conjunction of cj's, and analogously to part

a) it can be shown that either U is reducible according to the subterm

lemma, or He {tS,t6}. The case where t' = Sll\ ... 1\ Sn is treated analogously. _

A.15 Lemma:

If the terms xV(Yl\z) and xl\(Yvz) are both irreducible, then 9\ is not

convergent.

Proof: The assumption of the lemma implies (xvY)I\(xvz) > xV(Yl\z),

(xl\y)v(xI\Y) > XI\(Yvz), and, in particular, since both Yl\z and yvz are

135

Appendix
a) Let ti = s1v vsn , and let t be the standardized DNF of t. Then
‚f = d1vd2vd3vd4, With

d1 = XAyAz, d2 = "XAYAZ, d3 = xzx-wyAz, d4 = XAyA—IZ.

According to A.12, each si is equivalent to a disjunction of dj's. Moreover, ti
must be symmetric in (x,y), in (y,z), and in (x,z), and thus there are only the
following cases: Either t i = s1vsz, with S1 '5 d1, and 32 E d2Vd3Vd4, or t i =
slvszv53 , with the following possibilities:

S1 5 d1vd2, 82 E d1vd3, S3 5 d1vd4,
51 E d1vd2vd3, $2 a d1vd3vd4, 53 —:— d1Vd2Vd4.

Let ti = 51V 52 with 51 5 d1, and $2 5 d2vd3vd4, and let o={z—->1}. Then $10 sé 51.
We show that s1ov 52 E s1v 52: We have

slov 52 5 (XAyAz) v (XAy/wz) v d2 v d3 E
(XAy) v d2 v (13 E (XAy) v (XAyA—nz) v d2 v d3 _=_ 51V 52

Hence the subterm lemma implies that SW 52 is reducible.
Let ti = s1vszv53. If 51 E dlvdz & yAz, 52 s d1vd3 E xxxz, 83 ‚=. d1vd4 a yAx, then
we have either 51 = yAz, 52 = XAZ, S3 = xxxy, and t i : t1, or S1 = -(-1yv-vz), 52 =
"I(‘IXV“Z), $3 = -(-yv-x), and ti = tz.
If s1 E d1vd2vd3 ;. (xvy)Az, $2 5 d1vd3vd4 s XA(yvz), 53 E d1vd2vd4 E yA(xvz),
then let 1:={x—-)0}. It is easy to see that

51c 52v 53 s 51v 52v $3 ,
and $11 5% S1. Hence the subterm lemma implies that s1v 52 v 53 is reducible.
b) Let t i = S]A...A5n. Analogously to a) i t can be shown that t ie {t3,t4} in this
case.
c) Let ti = -nt', with t' = 51v.. .v S“. Then ti 5 -s1A. . .A-sn. Let ? be the
standardized CNF of t. Then t = C1AC2AC3AC4, with

c1 = xvyvz, zz = -1xvyvz, 23 = xv-ayvz, Z4 = xvyv-rz.
Then each fls i is equivalent to a conjunction of Cj'S, and analogously to part
a) i t can be shown that either t i is reducible according to the subterm
lemma, or t i e {t5,t6}. The case where t' = S]/\.../\ sn is treated analogously. I

A.15 Lemma:

If the terms xv(yAz) and XA(yvz) are both irreducible, then 91 is not
convergent.

Proof: The assumption of the lemma implies (xvy)/\(xvz) >xv(yAz) ,
(XAy)V(XAy) > xxx(yvz), and, in particular, since both yAz and yvz are

135

Simplification and Reduction for Automated Reasoning

irreducible, ~("'YA"'Z) > yvz, and "'("'yv..,z) > yAZ. This proves all terms t1, ...,t8
of the previous lemma to be reducible, hence 9t cannot be confluent. _

Hence it will be assumed in the following that one of the terms XV(yAZ)

and XA(YVZ) is reducible. It is sufficient to assume the term XV(YAZ) to be

reducible, the alternative case admitting an analogical proof. In particular,

this assumption implies that each disjunct Si of an irreducible term t =

S1v ...VSn is either a negation or an atom.

A.16 Lemma:

Either the term xvy or the term XAy is reducible.

Proof: We consider the term t = ("'XVy)A("'yVX)A(XVZ). Since t is semi­

symmetric in (x,y), but not symmetric, t must be reducible.

a) Let tJ. = S1A...ASn, where the Si are not conjunctions.
If n~3, let a be an arbitrary constant and let 0' = {x~a, y~a, z~"'a}. We have t
> H, and in particular to' > tJ.O', where to'= (..,ava)A(..,ava)A(av..,a), and tJ.O'

= s 10'11. ... ASncr. From to' == 1 follows U 0' == I, and hence SiO' == I, for each
ie {I,... ,n}. Hence SiO' > I, and, since SiO' is composed solely of the literals a

and ..,a, the last step of this derivation must be of the form av..,a => 1. Thus
we have the reduction (..,ava)A(..,ava)A(av..,a) =>;(..,ava)A... A(av..,a), where

the second term has n~3 conjuncts, which obviously contradicts the finite

termination property of 9t
Now let n=2, that is tJ. = S1AS2. Let t be the standardized CNF of 1. Then
f = qA...AC5, with

Cl = ..,xvyvz, C2 = xv..,yvz, C3 = ",xvyv",z, C4 = xv"'yv"'z, C5 = xvyvz.

We distinguish two cases:

Case 1: S1 is symmetric in (x,y). Then S2 is also symmetric in (x,y), since tJ.

is. From lemma A.12 follows that 51 and S2 are equivalent to conjunctions of

the Cj. Taking into account the symmetry property, there remain the

following possibilities:

S1 == QAC2, S2 == C3AC4AC5,

S1 == C3AC4, or S1 == C3AC4AC5, and S2 == QAC2AC5,

S1 == QAC2AC3AC4, S2 == C5, S2 == QAC2AC5, or S2 == C3AC4AC5·
In the first line, let O'={z~O}. We have S1(JAS2 == t, and S1 :t. S10'. From the

subterm lemma follows that S1AS2 is reducible.

136

Simplification and Reduction for Automated Reasoning

irreducible, ‘1("‘YA"IZ)> yvz, and -1(-1yv-nz) > yAz. This proves all terms t1,...,t8
of the previous lemma to be reducible, hence 9? cannot be confluent. I

Hence it will be assumed in the following that one of the terms xv(yAz)
and XA(YVZ) is reducible. It is sufficient to assume the term xv(yAz) to be
reducible, the alternative case admitting an analogical proof. In particular,
this assumption implies that each disjunct si of an irreducible term t =
51v.. .vsn is either a negation or an atom.

A.16 Lemma:

Either the term xvy or the term XAy is reducible.

Proof: We consider the term t = (-xvy)A(-yvx)/\(xvz). Since t is semi-
symmetric in (x,y), but not symmetric, t must be reducible.

a) Let ti = S]A...ASn, where the si are not conjunctions.
If n23, let a be an arbitrary constant and let 0' = {x—>a, y->a, z—wa}. We have t

> t i , and in particular to > t i 0', where to: (nava)A(-ava)A(av-Ia), and t ic
=S]O‘A.. .ASn6. From to s l follows t i c s 1, and hence SiO’E 1, for each
ie {1,...,n}. Hence 516 > 1, and, since sic i s composed solely of the literals a
and Ha, the last step of this derivation must be of the form av -a => 1. Thus
we have the reduction (-ava)A(-ava)A(av-1a) =>; (fiava)A...A(av—-a), where
the second term has n23 conjuncts, which obviously contradicts the finite
termination property of Si.
Now let n=2, that is ti = s1Asz. Let t be the standardized CNF of t. Then
t = C1A...AC5,With

c1 = -xvyvz, cz = xv-wyvz, C3 = -nxvyv-z, C4 = xVHyv-lz, C5 = xvyvz.

We distinguish two cases:

Case 1: s1 is symmetric in (x,y). Then 52 is also symmetric in (x,y), since ti
is. From lemma A.12 follows that $1 and sg are equivalent to conjunctions of
the ci. Taking into account the symmetry property, there remain the
following possibilities:

51 E C1AC2, 82 E C3AC4AC5,

81 E C3AC4, or $1 5 C3AC4AC5, and 52 5 C1AC2AC5,
S1 ."—: C1AC2AC3AC4, sz _=. C5, sg a C1AC2AC5, or 52 E C3AC4AC5.

In the first line, le t o={z—>0}. We have S10’ASz E t, and s1 $ $10. From the

subterm lemma follows that SlASZ is reducible.

136

Appendix

In the seco:n.d line, let 't={z-71}. We have 51'tI\S2 == t, and 51 i 510'. From the

subterm lemma follows that S1AS2 is reducible.

In the third line, let <p={X-7Y}. We obtain in all three ca5es SIAS2<P == t, and S2

i S2<P, and from the 5ubterm lemma follow5 that S1AS2 is reducible.

Case 2: SI is not symmetric in (x,y). Then SI = S2{X-7Y; Y-7x}, and for each q

occurring in SI, q{X-7Y; Y-7X} must occur in 52. Hence both 51 and 52 must

consist of at least 3 q's, and both contain cs. We have the following

possibilities:

51 == Cl AC3ACS, S2 == C21\C4I\CS,

51 == C}AC4ACS, S2 == C2AC3I\CS,

SI == ClI\C2I\C3I\CS, S2 == C}I\C21\C4I\CS,

SI == C21\C31\C4I\CS, s2 == ClI\C31\C4AC5·

In the first, third, and fourth line, let 0"={z-71}. In either case, we have S1O"AS2

== t, and SI ~ SIO", hence S1A52 must be reducible according to the 5ubterm

lemma.

In the second line, we have SI == (yvz)l\(xv...,yv""z), and 52 == (XVZ)A(""XVYV""z).

Let 't={Z-7""x}. Since SI'tI\S2 == t, and SI t:. SI't, S1AS2 must be reducible according

to the subterm lemma.

b) Let tJ, = SIV...VSn,- Let r be the standardized DNF of t. Then f = qvc2vc3,

with

d1 = ""XI\""YI\Z, d2 = XAYI\Z, d3 = XI\Y1\""z.

Obviously, n~, since otherwise one Si, say Sn, would be redundant, that is tJ,

== 51V... VSn-l, which obviously contradicts the irreducibility of tL If n=3, then

U = SIVS2vS3, with Si == di. But then S2VS3 == XI\Y == ""(",,xv""y), hence S2VS3 is

reducible.

Thus we have tJ, = SI vSz, where both SI and 52 are negations, with the

following possibilities:

51 == dl, 51 == dlVd3, or 51 == dlVdz, and sz == d2Vd3,

SI == d3, or 51 == dlVd3, and 52 == dlVd2,

51 == dz, S2 == dlVd3,

In the first line, s2 == dzvd3 == xl\Y == ""(",,xv""y) holds. One of the last two terms

is irreducible, hence S2 = XAY, or 52 = ""(",,xv-'y). But 52 is a negation, hence tt

= SIV""(""XV""Y), from which follows that ""(",,xv""y) is irreducible and thus XI\Y

is reducible.

137

Appendix
In the second line, let r={z—>1}. We have s11Asz s t, and $1 $ S16. From the
subterm lemma follows that 51 A52 is reducible.
In the third line, let <p={x—>y}. We obtain in all three cases s1Asz<p s t, and $2
at 52¢, and from the subterm lemma follows that 51A52 is reducible.

Case 2: s1 is not symmetric in (x,y). Then 51 = sz{x-—>y; y——>x}, and for each ci
occurring in s l , ci{x—->y; y—>x} must occur in 52. Hence both 51 and 52 must
consist of a t least 3 ci‘s, and both contain C5. We have the following
possibilities:

51 E C1AC3AC5, sz ; C2AC4AC5,
s1 5 C1AC4AC5, $2 a gms/ms,
s1 E C1AC2AC3AC5, $2 5 C1AC2AC4AC5,
s1 5 C2AC3AC4AC5, 52 s C1AC3AC4AC5.

In the first, third, and fourth line, let o={z—-)1}. In either case, we have s1oA52
E t, and s1 sé s10", hence 51A52 must be reducible according to the subterm
lemma.
In the second line, we have 51 E (yvz)A(xv-yv-z), and 52 E (xvz)A(-vyv-uz).
Let I={z-—>-x}. Since SIT/\Sz s t, and s1 sé 511:, s1Asz must be reducible according
to the subterm lemma.

b) Let ti = 51v...vsn,. Le t? be the standardized DNF of t . Then 't' = C1VC2VC3,
with

dl = -vXA-y/\z, d2 = XAyAz, d3 = XAyA—-z.
Obviously, n33, since otherwise one si, say Sn, would be redundant, that is ti
E 51v...vsn_1, which obviously contradicts the irreducibility of t i . If n=3, then
t i = s1vs2v53, with si E di. But then szv53 :- XAy ; “("XVfiyL hence 52v53 is
reducible.
Thus we have ti = 51v52, where both s1 and 52 are negations, with the
following possibilities:

51 E d1, 51 E d1vd3, or 51 E d1vd2, and $2 E dzvd3,
s1 5 d3, or $1 & d1vd3, and 52 a d1vd2,
$1 5 d2, sg E d1vd3,

In the first line, sz _=. dzvd3 5 xxxy “__: -(-axv-y) holds. One of the last two terms
is irreducible, hence s2 = XAy, or 52 = -(-xv-1y). But sg is a negation, hence ti
= slv-ntfly), from which follows that -(-xv-ny) i s irreducible and thus XAy
is reducible.

137

Simplification and Reduction for Automated Reasoning

In both the second and the third line, let (J={z~l}. Then Sl(J v S2 == t, and
from the subterm lemma follows that Sl"S2 is reducible.

c) Let t.1 = -,s. Then either t.1 = -'(Sl v ... vSn), which can be treated

analogously to a), or t.1 = -'(Sll' ... I\sn). In this case we obtain, similarly to b),

t.1 = -'(Sl' 1\ S2'), with SI' == dl', or SI' == dl'l\ d2', or SI' == dl'l\ d3' and S2' == d2'1\

d3', where

dl' = xvyv-,z, d2' = -,xv-'yv-,z, d3' = -,xv-'yvz.

First of all, t.1 = -'(Sl' 1\ 52') implies that -,(xI\Y) is irreducible, hence -,xv-'y

is reducible. We have S2' == d2'1\ d3' == -,xv-'y, and since S2' is irreducible, S2' =
-,(xI\Y). Now t.1 = -'(Sl' 1\ -,(xI\Y» implies that -,(xl\-,y) is irreducible, hence

-,xvy is reducible. Assume that SI' is a disjunction, say SI' = Ulv ...VUm. Then

each Uj must be an atom, since both xv(yI\z) and xv-'y are reducible. But it is

easy to see that there is no disjunction of the atoms x, y, and z can be

equivalent to one of the terms dl', dl'l\ d2', or dl'l\ d3'. Hence SI' must be of
the form SI' = -,u, which implies that t.1 = -,(-,u 1\ -'(XI\ y» is irreducible.
Hence also -,(-'x 1\ -'y) is irreducible, which implies that xvy is reducible. _

A.17 Lemma:

Either the terms xvy and -,(xI\Y)I\-,(xl\z) are both reducible, or the terms XI\Y

and -,(xvy)v-,(xvz) are both reducible.

Proof:According to the previous lemma, either xvy or xl\Y is reducible.
Case 1: xvy is reducible. Consider the term t = (-,xvY)I\(-'yvx)I\(-,xv-,z). Since t

is semi-symmetric in (x,y), but not symmetric, t must be reducible. Since xvy
is reducible, t.1 cannot be a disjunction. Hence we have either t.1 = Sll\ ... I\Sn or
t.1 =-,s. The first case is treated analogously to case a) of the previous lemma.

In the case, where t.1 =-,s, we have t.1 = -'(Sl' 1\ s2'), with SI' == dl', or SI' == dl'l\

d2', or SI' == dl'l\ d3' and S2' == d2'I\ d3', where
dl' = -,xv""yvz, di = xvyvz, d3' = xvyv-,z.

Analogouly to case c) of the previous lemma, we obtain S2' = -'(-'XI\-,Y),

hence from t.1 = -'(Sl' 1\ S2') follows that the term to:=-'(x 1\ -,(-'XI\ -'y» is

irreducible, which in turn implies that tl:=-'(XI\Y)I\-,(xl\z), which is equiva­

lent to to, is reducible.

Case 2: XI\Y is reducible. Consider the term t = (xvyvz) 1\ (-,xv-'y). Since XI\Y is
reducible, t is also reducible, and, moreover, tJ, cannot be a conjunction.

138

Simplification and Reduction for Automated Reasoning

In both the second and the third line, let o={z~—>1}. Then s lo v sz 5 t, and
from the subterm lemma follows that SIASZ is reducible.

c) Let ti = --s. Then either ti = - \ (s lv vsn) , which can be treated
analogously to a), or ti = “(sm ASn). In this case we obtain, similarly to b),
ti = -I(s1' A 52'), with 51' 5 d1', or s1' E d1'A d2', or 51' s d1'A d3' and 52' E dz'A
d3', where

d1' = xvyv-Iz, dz' = -uxv-1yv-Iz, d3' = -v-vz.

First of all, ti = "(Sf A 52') implies that fl (XAy) i s irreducible, hence -xv~y
is reducible. We have 52' E dz'A d3‘ E -v-y, and since 52' is irreducible, sz' =
-(XAy). Now ti = “(Sf A -(XAy)) implies that -(XA-'y) is irreducible, hence
fixvy i s reducible. Assume that 51' is a disjunction, say 51' = u1v. . .vum. Then
each uj must be an atom, since both xv(yAz) and xv-Iy are reducible. But it is
easy to see that there is no disjunction of the atoms x, y, and 2 can be
equivalent to one of the terms d1 ', d1'A d2', or d1'A d3'. Hence 51' must be of
the form s1' = -u, which implies that ti = -v(-1u A -(x1\y)) i s irreducible.
Hence also -(~x A -y) is irreducible, which implies that xvy is reducible. I

A.17 Lemma:

Either the terms xvy and -(XAy)A-(XAz) are both reducible, or the terms XAy
and -:(xvy)v-(xvz) are both reducible.

Proof:According to the previous lemma, either xvy or my is reducible.
Case 1: xvy is reducible. Consider the term t = ('IXVY)A(*1y\/X)A('1XV"Z). Since t
is semi-symmetric in (x,y), but not symmetric, t must be reducible. Since xvy
is reducible, ti cannot be a disjunction. Hence we have either ti = SlA...ASn or
ti =-ss. The first case is treated analogously to case a) of the previous lemma.
In the case, where ti =-s‚ we have ti = -(51'A 52'), with s1' :—: d1', or s1' E d1'A

dz', or 51' E d1'A d3' and 52' E dz'A d3', where
d1' = fixv-vz, dz' = xvyvz, d3' = xvyv-vz.

Analogouly to case c) of the previous lemma, we obtain 52' = -(-|XA-vy),
hence from ti = - (51 'A 52’) follows that the term t0:=-|(x A “(fiXA—Iy» is
irreducible, which in turn implies that t12='1(XAy)A'1(X/\Z), which is equiva-
lent to to, is reducible.
Case 2: XAy is reducible. Consider the term t = (xvyvz) A (fixv—vy). Since XAy is
reducible, t i s also reducible, and, moreover, ti cannot be a conjunction.

138

Appendix

Hence we have either H = SI v ... vS n or tt =-.s. The first case is treated

analogously to case a) of the previous lemma. In the case, where tl =-'5, we

have t.1 = -'(SI' v S2'), with SI' == dl', or SI' == dl'V dz', or 51' == dl'V d3' and 52' ==

dz'v d3', where
dl' = -'XA-'yA-'Z, dz' = XAyAZ, d3' = XI\.YA-'Z.

Analogouly to case c) of the previous lemma, we obtain S2' = .(.xv'y),

hence from t.1 = ""(SI' A S2') follows that the term to:='(x v ""(.xv'y» is

irreducible, which in turn implies that tl:=-'(XVY)v",,(xvz), which is equiva­

lent to to, is reducible. •

A.18 Corollary:

9t is not confluent.

Proof: We consider again the term t = (xvy) A (yvZ) I\. (zvx) == (XAy) v (yAZ) v

(ZAX) of lemma A.14.

Case 1: The terms xvy and '(XAY)A""(XAZ) are both reducible. The reducibility

of xvy excludes h, tz, t3, ts, t6, and t7 of lemma A.14 from being irreducible,

and the reducibility of ""(Xl\.Y)I\. -'(Xl\.Z) excludes both t4 and ts from being

irreducible.

Case 2: The terms XAy and -,(xvy)v...,(xvz) are both reducible. The reducibility

of XAy excludes tl, t3, t4, t6, t7, and t8 of lemma A.14 from being irreducible,

and the reducibility of ...,(xvy)v-.(~vz) excludes both t2 and ts from being

irreducible. •

This corollary provides the proof of our main theorem A.S.

A.19 Lemma:

Let R be the following set of rules:

q: ·xvx ~ 1

r2: Ovx ~x

r3: 1vx ~ 1

q: ...,1 ~ 0 r4: .0 ~ 1

rs: xvx ~x

and let 9t=(AC,R). Then the system 9\ is confluent on clause terms.

Proof: It is easy to verify that there are no divergent critical pairs (tl,tZ)

with clause terms tl, t2. •

139

Appendix
Hence we have either t i = 51v . . . v sn or t i =-1$. The first case is treated
analogously to case a) of the previous lemma. In the case, where t i =fis, we
have ti = “(S1'V 52‘), with s1' E d1', or 51' 5 d1'v dz', or s1' s d1'v d3 ' and sz' 5
dz 'v d3', where

d1' = “IX/\‘IYA—IZ, d2' = xAyAz, d3' = XAyA-‘z.
Analogouly to case c) of the previous lemma, we obtain 52' = fihxv- iy) ,

hence from ti = _ . (51 ' A 52') follows that the term to:=-(x v -I(-v-1y)) is
irreducible, which in turn implies that t1:=—-(xvy)v-(xvz)‚ which is equiva—
lent to to, is reducible. I

A.18 Corollar :

91 is not confluent.

Proof: We consider again the term t = (xvy) A (yvz) A (zvx) z- (xAy) v (yAz) v
(ZAX) of lemma A.14.

Case 1: The terms xvy and fi(XAy)A-v(X/\z) are both reducible. The reducibility
of xvy excludes t1, t2, t3,_ t5, te„ and t7 of lemma A.14 from being irreducible,
and the reducibility of -1(xAy)A-(xAz) excludes both t4 and ts from being
irreducible.

Case 2: The terms XAy and -'(xvy)v-(xvz) are both reducible. The reducibility
of XAy excludes t1, t3, t4, t6, t7, and t3 of lemma A.14 from being irreducible,
and the reducibility of fi (xvy)v - I (xvz) excludes both tz and t5 from being
irreducible. I I

This corollary provides the proof of our main theorem A5.

523%
Let R be the following set of rules:

r l : --xvx -—) 1
rg: v —> x

r3: 1vx _) 1
r4:-11——>0 r4:-—O—-)1
r5: xvx _) x

and let SR=(AC,R). Then the system 9% is confluent on clause terms.

Proof: It is easy to verify that there are no divergent critical pairs (t1,t2)
with clause terms t1, tz. I

139

Simplification and Reduction for Automated Reasoning

Special Symbols

A
A(E)

A(L)

C(G)
E(C)

F
I(L)

A(G)
A(L)

L(o)

N'(G)

O(L)

JP

JP(L)

JP(o)

JP
JPw

E

E*

E­

l'

V

V(o)

g 1=0

I.*a
(A,B)
[J

[L]

[S]

[xlc,o
M(D,C)

M'E(D,C)

C~A.R

140

Set of atoms 11

Set of atoms of the equivalence literal E 114

Atom of the literal L 11

Clause nodes of the graph G 75

Literals of C without links 76

Set of function symbols 8

Set of links incoming to the literal L 76

Set of links of clause graph G 75

Set of links incident with the literal node L. 76

Set of literals occurring in 0 31

Set of nodes of the clause graph G 75

Set of links outgoing from the literal L. 76

Set of predicate symbols 11

Predicate symbol of the literal L. 11

Propositional variables occurring in 0 .31

Set of Renamings 10

Set of weak renamings 10

Set of substitutions 8

Set of idempotent substitutions 9

Set of permutations 9

Set of terms 8

Set of variables 8

Variables occurring in 0 8

The interpretation g satisfies 0 16

Sum over the elements of the vector a 47

Equivalence literal 114

Empty clause 11

Equality in boolean algebra 19

Equivalence class of the literal L modulo : .45

Set of prime implicants of (S) 105

Equivalence class of the variable x modulo ""C,o ·..··..47

{L*~ I LeC, ~euni(C,L,D)} 70

{L*~ I Le C, ~e uni'E(C,L,D)} 72

R is resolvent along A 76

Simplification and Reduction for Automated Reasoning

Special Symbols

A Set of atoms .. 11
A(E) Set of atoms of the equivalence literal E 114
A(L) Atom of the literal L ... 11
C(G) Clause nodes of the graph G .. 75
E(C) Literals of C without links .. 76
]F Set of function symbols ..8
KL) Set of links incoming to the literal L 76
NC) Set of links of clause graph G ... 75
ML) Set of links incident with the literal node L......................... 76
L(o) Set of literals occurring in o ... 31
N (G) Set of nodes of the clause graph G .. 75
OG) Set of links outgoing from the literal L 76
P Set of predicate symbols .. 11
MD Predicate symbol of the literal L .. 11
]P(o) Propositional variables occurring in o 31
P Set of Renamings ... 10
FW Set of weak renamings ... 10
2 Set of substitutions ..8
2* Set of idempotent substitutions ..9
2‘ Set of permutations ...9
T Set of terms ..8
V Set of variables ...8
V(o) Variables occurring in o ...8
3 l=o The interpretation 8 satisfies o ... 16
2*a Sum over the elements of the vector a 47
(A,B) Equivalence literal .. 114
CI Empty clause ... 11
E Equality in boolean algebra ... 19
[L] Equivalence class of the literal L modulo E45
[S] Set of prime implicants of (S) ... 105
[X]C‚D Equivalence class of the variable x modulo =C,D47
M(D‚C) {L‘u I Le C, pe uni(C,L‚D)} .. 70
MADE) {Üu ! Le C, pe unidC,L‚D)} .. 72
C "91 R R is resolvent along 7». .. 76

140

E*

C-7oR

XP,C

C*

C<D

AI:: A2

Al $ A.2
s::=t

s~t

C::D

C$D

C=D

1(t)

a/v
uni(C,L,D,K)

dom(a)

cod(a)

ICI
O(x,C)

9\(S)

""C,D

(S)

(t)

Symbols

Particular subgraph of G 76

Particular subgraph of G 76

Expanded form of the equivalence literal E 114

R is resolvent between C and D 18

Characteristic function 46; 68

Irreducible factor of the clause C 12

Clause C properly subsumes D 12

Link Al is a variant of link A2 97

Link A.l subsumes link A2 97

Term s is variant of t 9

Term s subsumes t 9

Clause C s is variant of clause D 12

Clause C subsumes clause D 12

Clause C is subsumption equivalent to clause D 12

Prime polynomial of t 24

Restriction of a to V 9

Set of unifiers of literal Le C with Ke D 12

domain of the substitution 0" 8

codomain of the substitution 0" 8

Cardinality of the clause C 11

Number of occurrences of variable x in clause C 48

Resolution closure of S 93

equivalence generated by charact. function 47

Semantic closure of S 16; 103

Principal filter generated by t 21

141

GC

GA
E!-

C —)D R

XP‚C
CSI-

C<D
M 5 l2
M S kg
SEt

sSt

CE
CSD

ED
f(t)

O'IV
uni(C,L,D,K)
dom(6)
cod(o)
ICI

O(x,C)
WS)
=C,D

(S)
(t)

Symbols

Particular subgraph of G ... 76
Particular subgraph of G ... 76
Expanded form of the equivalence literal E 114
R is resolvent between C and D ... 18
Characteristic function ... 46; 68
Irreducible factor of the clause C .. 12
Clause C properly subsumes D ... 12
Link M is a variant of link 12 ... 97
Link M subsumes link ?»2 .. 97
Term s is variant of t... 9
Term s subsumes t... 9
Clause C s i s variant of clause D ... 12
Clause C subsumes clause D .. 12
Clause C is subsumption equivalent to clause D 12
Prime polynomial of t .. 24
Restriction of o to V .. 9
Set of unifiers of literal Le C with Ke D 12
domain of the substitution 0 ... 8
codomain of the substitution 0' ... 8
Cardinality of the clause C ... 11
Number of occurrences of variable x in clause C 48
Resolution closure of 3 .. 93
equivalence generated by charact. function 47
Semantic closure of S.. 16; 103
Principal filter generated by t .. 21

141

Simplification and Reduction for Automated Reasoning

Index

ancestor 18

- resolution 92

- subsumption 78; 106

associated clause graph 81

atom 11

binary resolvent 14

boolean algebra 19

boolean simplification 19

branching node 83

branching tree 83

characteristic (function) 46; 68

clause 11

- node 75

- path 32

- term 22

- polynomial 22

clause graph 75

- resolution 94

- associated 81

CNF-term 22

CNF-polynomial22

codomain 8

compatible 10; 76

-, strongly 10

complementary 11

complete semicycle 91

complete path 32

completion theorem proving 121

conditional rewriting 113

connected 61

copy 9

cycle 86; 111

- elementary 92; 106

cyclic 77

demodulation 74; 111

domain 8

E-atom 114

E-clause 114

142

Simplification and Reduction for Automated Reasoning

Index

ancestor 18
- resolution 92
- subsumption 78; 106
associated clause graph 81
atom 11
binary resolvent 14
boolean algebra 19
boolean simplification 19
branching node 83
branching tree 83
characteristic (function) 46; 68
clause 11

- node 75
- path 32
- term 22
- polynomial 22

clause graph 75
— resolution 94
- associated 81

CNF—term 22
CNF-polynomial 22
codomain 8
compatible 10; 76
-, strongly 10
complementary 11
complete semicycle 91
complete path 32
completion theorem proving 121
conditional rewriting 113
connected 61
copy 9
cycle 86; 111

- elementary 92; 106
cyclic 77
demodulation 74; 111
domain 8
E-atom 114
E-clause 114

142

E-literal 114
electrons 14
elementary cycle 92; 106
elementary tautology 80
equivalent 16
ER-deduction 117
ER-derivation 117
ER-paramodulant 116
ER-resolvent 117
expanded form 114
factor 12
-, subsuming 12
-, irreducible subsuming 12
Factoring 113
falsifies 16
forward subsumption 78
function 8
grandparent 78
graph isomorphism problem 42
ground 8
homogeneous 50
hyperresolution 15; 74; 94
hyperresolvent 15
I-literal 83
idempotent 8
implies 16
incident 75
inherited 76
instance 9
interpretation 16
invariant properties 43
irreducible 12; 118

- subsuming factor 12
isolated in C 62
iterated consensus 25
joins 75
key literals 104
Lifting lemma 120
Lindenbaum algebra 24
linear derivation 81
link 75

Index

143

E—literal 114
electrons 14
elementary cycle 92; 106
elementary tautology 80
equivalent 16
ER—deduction 117
ER-derivation 117
ER—paramodulant 116
ER—resolvent 117
expanded form 114
factor 12
-, subsuming 12
-, irreducible subsuming 12
Factoring 113
falsifies 16
forward subsumption 78
function 8
grandparent 78
graph isomorphism problem 42
ground 8
homogeneous 50
hyperresolution 15; 74; 94
hyperresolvent 15
I-literal 83
idempotent 8
implies 16
incident 75
inherited 76
instance 9
interpretation 16
invariant properties 43
irreducible 12; 118

- subsuming factor 12
isolated in C 62
iterated consensus 25
joins 75
key literals 104
Lifting lemma 120
Lindenbaum algebra 24
linear derivation 81
link 75

Index

143

Simplification and Reduction for Automated Reasoning

- deletion 94
- inheritance 94
- resolution 103
- Subsumed 94
- adjacent 75

literal 11
- demodulation 113
- node 75

logical equivalence 111
matrix methods 29
merge 77
model 16
monotonic 115
most general unifier 10
NF-matrix 32
nucleus 15
O-literal 83
P-atom 114
paramodulation 111; 125
parents 18
path 30; 32; 77
permutation 8
predecessor 76
predicate 11
prenex negation normal form 28
prime implicant 24; 25; 105
principal filter 21
R-link 76
recursive predicates 86
renaming 10
replacement resolution 112
residue 84
resolution 3; 4; 7; 11; 14; 16; 18; 26; 27; 41; 66; 78; 93; 94; 97; 101; 102; 110; 111;

112;113;116;118;119;120;121
- ancestor 92
- clause graph 94
- ER-117
- hyper- 74; 94
- refutation 18
- replacement- 112

144

Simplification and Reduction for Automated Reasoning

- deletion 94
inheritance 94
resolution 103
Subsumed 94
adjacent 75

literal 11
- demodulation 113
- node 75

logical equivalence 111
matrix methods 29
merge 77
model 16
monotonic 115
most general unifier 10
NF-matrix 32
nucleus 15
O-literal 83
P-atom 114
paramodulation 111; 125
parents 18
path 30; 32; 77
permutation 8
predecessor 76
predicate 11
prenex negation normal form 28
prime implicant 24; 25; 105
principal filter 21
R—link 76
recursive predicates 86
renaming 10
replacement resolution 112
residue 84
resolution 3; 4; 7; 11; 14; 16; 18; 26; 27; 41; 66; 78; 93; 94; 97; 101; 102; 110; 111;

112; 113; 116; 118; 119; 120; 121
- ancestor 92
- clause graph 94
- ER- 117
- hyper- 74; 94
— refutation 18
- replacement- 112

144

Index

- S-103
- theory- 102

resolvent 14; 33
- along 76
- binary 14

root 83
rule 114
S-link 76
S-resolution 104
S-theories 104
SAM's lemma 74; 107
satisfiable 16
satisfies 16; 115
Schubert's Steamroller 78
self-resolving 79
semantic closure 16
semicycle 85
simplification 19
solely 87; 97
special node 85; 91
stable 115
strong reduction ordering 115
strongly compatible 10
subgraph 76
substitution 8
Subsumed Link 94
subsumes 9; 11; 25; 97; 118
subsuming factor 12
subsumption 4; 5; 6; 25; 27; 32; 33; 40; 41; 42; 60; 63; 65; 66; 67; 72; 73; 74; 78;

79; 104; 111; 115; 117; 122
- equivalent 9; 12
- tests 74
- ancestor 78; 106
- forward 78

subterm property 115
successor 76
symmetric 97; 100
symmetry clause 77
tautology 12;33; 41
- elementary 80
term 8

145

Index

— S- 103
- theory- 102

resolvent 14; 33
- along 76
- binary 14

root 83
rule 114
S-link 76
S-resolution 104
S-theories 104
SAM’s lemma 74; 107
satisfiable 16
satisfies 16; 115
Schubert’s Steamroller 78
self-resolving 79
semantic closure 16
sernicycle 85
simplification 19
solely 87; 97
special node 85; 91
stable 115
strong reduction ordering 115
strongly compatible 10
subgraph 76
substitution 8
Subsumed Link 94
subsumes 9; 11; 25; 97; 118
subsuming factor 12
subsumption 4; 5; 6; 25; 27; 32; 33; 40; 41; 42; 60; 63; 65; 66; 67; 72; 73; 74; 78;

79; 104; 111; 115; 117; 122
- equivalent 9; 12
- tests 74
- ancestor 78; 106
- forward 78

subterm property 115
successor 76
symmetric 97; 100
symmetry clause 77
tautology 12;33; 41
- elementary 80

term 8

145

Simplification and Reduction for Automated Reasoning

- skeleton 44

theory link 104

theory resolution 102

totally multiplied forms 32

transitivity clause 95; 99; 107

trivial derivation 81

unifi.er 10

- most general 10

- weak 10

unit 11

variable 8

variant 9; 12; 97

- test 42

weak renaming 10

weak unifier 10

weakly cyclic 77

weakly resolvable 12

weakly unifiable 12

well-founded 115

146

Simplification and Reduction for Automated Reasoning

- skeleton 44
theory link 104
theory resolution 102
totally multiplied forms 32
transitivity clause 95; 99; 107
trivial derivation 81
unifier 10

- most general 10
- weak 10

unit 11
variable 8
variant 9; 12; 97

— test 42
weak renaming 10
weak unifier 10
weakly cyclic 77
weakly resolvable 12
weakly unifiable 12
well-founded 115

146

1982

Lebenslau£

Rolf Socher-Ambrosius, geboren am 11.5.1956 in Ludwigshafen/Rh. Verheiratet,

zwei Kinder.

1962 -1966

1966 -1974

1974 -1975

1975 -1977

1977 -1982

1982 -1984

1984 -1985

seit 1986

Volksschule in Maikammer

Kurfiirst-Ruprecht-Gymnasium in Neustadt/Wstr. Abitur im

Mai 1974

Grundwehrdienst

Studium der Mathematik mit NebenHichern Informatik und

Physik an der UniversWit Kaiserslautern

Studium der Mathematik mit Nebenfach Physik an der

Johannes Gutenberg-UniversWit in Mainz

Diplom in Mathematik

Tiitigkeit als Softwareingenieur bei der Firma STS

Systemtechnik und Software in Frankfurt

wis. Hilfskraft am Fachbereich Informatik der Universitiit

Kaiserslautern

wiss. Mitarbeiter am Fachbereich Informatik der UniversWit

Kaiserslautern

Lebenslauf

Rolf Socher-Ambrosius, geboren am 11.5.1956 in Ludwigshafen/ Rh. Verheiratet,
zwei Kinder.

1962 - 1966
1966 - 1974

1974 - 1975
1975 - 1977

1977 - 1982

1982

1982 - 1984

1984 - 1985

seit 1 986

Volksschule in Maikammer
Kurfürst-Ruprecht—Gymnasium in Neustadt/Wstr. Abitur im
Mai 1974
Grundwehrdienst
Studium der Mathematik mit Nebenfächern Informatik und
Physik an der Universität Kaiserslautern
Studium der Mathematik mit Nebenfach Physik an der
Johannes Gutenberg-Universität i n Mainz
Diplom in Mathematik
Tät igkei t a l s Softwareingenieur bei der Fi rma STS
Systemtechnik und Software in Frankfurt
wis. Hilfskraft am Fachbereich Informatik der Universität
Kaiserslautern
wiss . Mitarbeiter am Fachbereich Informatik der Universität
Kaiserslautern

	1990-1.pdf
	1990-2
	1990-3

