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Abstract

The most severe obstacle on the way to the efficient automation of theorem
proving is the size of the search space for drawing new inferences. There are two
well known ways to overcome this difficulty. One solution comes under the term
“refutation strategies”, which denotes techniques to choose candidates for the
next inference step. The other solution is termed “reduction”, which subsumes
all techniques to remove those elements of the search space that do not
contribute to the solution and thus are redundant.

The second approach’s most critical part is the test on redundancy. Since each
element of the search space has to be subjected to such a test, its efficiency is
crucial for the value of the reduction approach. Subsumption, being one of the
most important types of redundancy, is also a most problematic one. In this
thesis, new and efficient tests for the variant and the subsumption property are
developed, both based on the well known algorithms for detecting isomorphism
of directed graphs.

A most undesired aspect of redundancy is the derivation of subsumed clauses.
Besides the problem with the subsumption test, the amount of computer time,
which is spent for the derivation and normalization of such a clause, is purely
wasted. In this thesis, the two approaches, strategy and reduction, are combined by
a strategy to decrease the number of redundant information derived. This strategy
is heavily based on a special treatment of logical equivalence. It turns out that this
strategy represents a first step towards the answer of several open questions in
automated theorem proving, like the problem with the derivation of redundant
clauses, the choice of the appropriate representation and inference rule, the
question for a theory to demodulate on the literal level, and finally the choice of
clauses to apply a given inference rule. These problems are discussed in Wos’
(1988) 33 Basic Research Problems.
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Introduction Chapter 1

1 Introduction

The use of the two notions simplification and reduction for automated
reasoning is not a homogenous one. Mostly workers in the field do not even
clearly distinguish between the two words. The two notions’ most basic
common feature can best be seen by comparing them with deduction.
Deduction is considered mainly a mechanism for deriving new knowledge
from a given knowledge base, in order to find a problem’s solution. Simpli-
fication and reduction, on the other side, are both regarded in this thesis as
first and foremost a means to find as simple as possible a representation for
given information. This does not contradict the fact that under certain
circumstances both simplification and reduction are able to find trivial
solutions of their own. The difference between the two techniques will be
seen rather as a technical than a conceptual one.

1.1 Simplification

Simplification is usually understood to be part of the preprocessing of
formulae, which takes place before they are subjected to some automated
reasoning program. Historically, simplification developed from serious
problems with proving verification conditions. Although these formulae
are usually of a very trivial nature, their structure and size makes them
difficult to prove, if not unprovable in practice, for general purpose
reasoning programs. Fast and efficient simplification procedures, which are
tailored for particular classes of objects, are widely accepted to be a solution
to this problem. Their application should result in a formula, which is
exempted from all easy to solve parts, such that the general prover’s
comparably inefficient mechanisms have to deal only with the really hard
kernel of the problem. In particular this implies that simplifiers should be
able to find proofs of their own for trivial theorems.

Simplification procedures are always bound to a particular theory like
arithmetic, theories of orderings or theories of data structures. The simpli-
fication task can very generally be described as the task to transform a term
of the underlying theory with given rules into a simpler equivalent term.
Thus the notions of transformation rules, equivalence and simplicity are
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relevant in this context. The transformation rules mostly derive from the
equations that define the theory. The equivalence relation is just equality in
the underlying theory. More problems, however, come along with the
notion of simplicity. A formal definition seems difficult, since the alleged
simplicity of terms heavily depends on their use for subsequent algorithms.
The following general criteria for simplicity may be interesting: the length of
the term, its “readability” or its nesting depth. For theories with canonical
term rewriting systems, however, the simplicity problem can easily be
bypassed. Canonical forms are widely accepted as simplest forms, even if the
criteria mentioned above do not apply. For instance, the arithmetical
expression (x+1)3 is shorter and even better “readable” than its canonical
form x3+3x2+3x+1.

Procedures that simplify formulae on the basis of their Boolean proper-
ties, can be seen as theory simplifiers under the theory of Boolean algebra.
According to their nature, these procedures are more closely related to
reduction procedures than any other theory simplification. This thesis will
only deal with what we call Boolean simplification. This notion subsumes
all techniques that transform formulae given in prenex negation normal
form! along the rules of Boolean algebra.

Boolean simplification originated in the 1950s in connection with the
problem of minimizing the number of components of a given switching
circuit. Although the theory of Boolean algebra does not admit a canonical
reduction system (Hullot 1980), it admits a certain normal form in the
following sense: Instead of a canonical rewriting system, there exists an
algorithm that transforms each Boolean algebra term into a unique form.
This uniquely determined form is called the set of prime implicants and can
be given either as a conjunction of disjunctions, or as a disjunction of
conjunctions. For purposes of automated reasoning, the clausal form, that is
a conjunction of disjunctions, is usually preferred. A number of algorithms
to obtain the set of prime implicants of a given formula has been developed,

1 Prenex negation normal form denotes a form Vx1..xn M, where M is a quantifierfree formula
containing only the connectives &, v and -, and negation is moved directly in front of the

literals.

.
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for instance by Quine (1952) and (1959), Slagle, Chang & Lee (1970), and Tison
(1969). In the context of theorem proving, the problem of minimizing
Boolean expression comes along with the multiplication of formulae into
clausal form. Most theorem provers require the conversion of formulae to
be proved into clausal form. This is the case for resolution based systems
(Robinson 1965), for matrix methods (Bibel 1981, Andrews 1981), as well as
for completion theorem proving (Hsiang 1982 and 1985). Although some
efforts have been spent on developing non-clausal methods, for instance
non-clausal resolution by Murray & Rosenthal (1987), or non-clausal
completion theorem proving by Hsiang (1985), as well as matrix methods for
negation normal form (andrews 1981), they all suffer from a serious draw-
back, namely the problem with unifying whole formulae instead of literals.
The importance of an efficient clausal form transformation thus becomes
obvious, in particular, when the shortcomings of the naive approach are
taken into account. The transformation’s most critical step is the multipli-
cation of a nested sequence of conjunctions and disjunctions into clausal
form. This step can result in an exponential increase of formulae (Eisinger &
Weigele 1983). The difficulties to prove the formula of Andrew’s example
(see Henschen 1980) are caused by this inflation, since here it is the pure
number of clauses produced by the clausal form transformation that
constitute the problem. For this example the number of clauses produced
can range from 128 to over 16000, depending on how the transformation is
performed.

Most of the known algorithms to produce the prime implicants require
the formula already given in clausal form. In view of the problems coming
with the clausal form transformation, however, an integration of the
Boolean minimization techniques into the clausal form transformation
seems far more favourable. In other words, the clausal form transformation
should be organized in such a way that it already produces the prime impli-
cant form. This idea has its origins in Slagle, Chang & Lee’s (1970) algorithm,
and it is elaborated in chapter 3 of this thesis. The algorithm presented in
this chapter is based on a matrix method very similar to Andrew’s and
Bibel’s techniques for proving first order formulae. It takes as input a
formula in negation normal form, and generates the prime implicants of
this formula. This approach follows the strategy to avoid the generation of
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redundancy (in our particular case during the clausal form transformation)
instead of removing it after its derivation, an idea, which is even more
emphasized in chapter 5 of this thesis.

1.2 Reduction

Reduction is regarded as part of the inference system. While deduction
infers new information from given one, reduction is the part that removes
redundant information from a given set and thus helps to keep the search
space small. Experience with automated theorem provers has shown that
the derivation of redundant information is one of the greatest obstacles to
the efficiency of reasoning programs. As is the case with simplification,
reduction is required to be fast and efficient, since after each step that infers
new information, each element of the actual problem set is potentially
redundant and has thus to be subjected to the reduction procedures.

Two basic types of redundant information face automated reasoning
systems: Information can be redundant on account of its logical form, which
means that it can be removed without changing the logical value of the
given information. On the other hand, information can also be redundant,
if it cannot contribute to a proof. From the second type, only the so called
purity check has gained some attention, however, without posing greater
theoretical difficulties. In this thesis, only the first type of redundancy will be
considered.

For resolution based reasoning systems, reduction traditionally is an
operation that discards redundant clauses from a set of clauses, while
preserving the logical value of this clause set. The very general idea is the
removal of any clause that is logically implied by another already present
clause. In this generality, however, reduction is infeasible, since it is
undecidable, whether one clause implies another (Schmidt-Schaufs 1986).
Two syntactic concepts stronger than implication are commonly employed
in most reasoning systems, and most other types of reduction, like
replacement factoring or replacement resolution (Markgraf 1984) are
refinements or derivatives of these two. One is tautology, and the other is
subsumption (Robinson 1965). While tautology is most simple a concept,
and being easily recognized, subsumption is far more intricate, yet also far
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more powerful. There is a broad accordance that subsumption is essential to
solving more complicated problems (see for instance Wos (1988), Eisinger
(1981), or Markgraf (1984)). However, the subsumption test is rather
expensive, and it has to be repeated over and over again during a refutation.
The efficiency of the subsumption test thus seems decisive for its use.

Not always, however, is the use of a complete subsumption test essential
for completing proofs. There are examples, where no subsumed clauses are
generated at all (for instance, during the proof that some formula represents
a shortest axiom of equivalential calculus, subsumption did not take place at
all, see Wos et al (1984)). There are other examples, where only particular
types of subsumption occur. A frequently occurring type of subsumption is
that where two clauses are variants of each other, that is, they are just
identical up to renaming of variables. In particular, the clausal form
transformation tends to produce this type of redundancy. In chapter 4 it is
shown that the decision problem, whether a given clause is a variant of
another, amounts to a generalization of the graph isomorphism problem.
Using the well-known graph technique of characteristic matrices, the variant
test represents an efficient means to test the variant relation between
clauses. Moreover, this test can be generalized in a straightforward way to a
subsumption test that uses characteristic matrices to improve the inherently
exponential merging procedure, which is usually required by subsumption
algorithms.

Subsumption is usually classified into what is called backward sub-
sumption and forward subsumption (Overbek 1975). Backward subsumption
is a process for discarding already retained clauses, when a new clause is
derived that subsumes it. Forward subsumption is the process that removes
a newly generated clause because it is subsumed by another, already retained
clause. Backward subsumed clauses are nearly inevitable in any refutation.
For instance, any possible resolution step between clauses of the set {PQ,
-PQ, P-Q, -P-Q} derives a unit clause that (backward) subsumes two
already present clauses. Forward subsumed clauses, on the other hand,
represent a highly undesirable derivation, since the whole time required to
perform the resolution step, including unification, and to search the whole
database for the appropriate clauses to apply the inference rule is wasted
with deriving an unneeded result. Moreover, newly generated clauses must
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be processed with demodulation, term simplification, and various other
standard procedures, before they are recognized to be redundant. Finally, the
test on subsumption itself is rather expensive, as already mentioned.
Altogether, a strategy to prevent the derivation of such redundant informa-
tion would thus obviously be better than the removal of redundancy a
posteriori. It seems, however, that developing such a strategy requires a deep
understanding on how clauses can be derived that are subsumed by already
retained clauses.

In chapter 5 we isolate two typical structures that would systematically
generate subsumed clauses. One such source of redundancy consists in what
we call (forward) ancestor subsumption, which denotes the subsumption of
a newly derived clause by one of its own ancestors. A frequently occurring
case of ancestor subsumption is caused by the symmetry clause -Pxy v Pyx.
Resolving a clause C against this clause can be seen as exchanging the
arguments in a P-literal of the clause C, and performing this operation twice
obviously yields the original clause.

On closer inspection, it seems that the distinction between forward and
backward subsumption, although apparently evident at a first glance,
becomes irrelevant in many cases. While in the case of ancestor subsump-
tion the already present and the newly deduced clause can definitely be
determined, it is not that easy for the following example: Consider the set
S ={PQ, -PR, -QS}. This set admits two different derivations of the clause
RS, which could sequentially be executed. However, a distinction between
an already present clause RS and the newly derived clause RS seems
meaningless. Instead of forward or backward subsumption, one should
better speak of a parallel derivation of identical clauses in this example.

Syntactic characterizations of the ancestor subsumption structure and of
the parallel derivation of identical clauses are given in chapter 5, and it is
shown that the generation of redundancy rests on “hidden” redundancies
(partially inherent in links) that are inherited. Similar concepts of redun-
dant links and their inheritance are investigated by Walther (1981), and by
Ohlbach (1988). These characterizations lead to a strategy to prevent these
unwanted derivations.
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A better understanding of reduction for resolution based systems could be
gained by taking a look at reduction in other reasoning systems, in particular
the completion based systems, which traditionally emphasize the role of
reduction (see for instance Hsiang (1982) and (1985), Kapur & Narendran
(1985), or Miiller (1988)). The relation between the completion approach and
the resolution approach to theorem proving as revealed to some extent in
Socher (1990) and Miiller & Socher (1988), provides a means to integrate
some of the strong reduction potentials of the completion method also into
resolution based systems. One such possibility, which is further investigated
in chapter 6, consists in an extension of the resolution calculus by
equivalences. The problems caused by equivalences are already addressed in
chapter 5, and their systematic treatment in chapter 6 provides a partial
solution. A resolution calculus extended by logical equivalence is given in
this chapter, and its soundness and completeness is proved.
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2 Logical Foundations

This chapter provides the definitions for the basic notions and concepts that
are used throughout this thesis.

2.1 Terms, Substitutions, and Unifiers

2.1.1 Definition:

Given a signature F = L[| Fy of finite sets of n-ary function symbols and a

denumerable set V of variable symbols, the term set T = T(F,V) is the least
set with V ¢ T and fty...tn € T whenever fe F, and ty,...,tn € T. This set is the
carrier of the absolutely free term algebra, whose operators are the usual
term constructors induced by the function symbols.

Parentheses may be used throughout this thesis for better readibility. For
any object o containing variables we define V(o) to be the set of all variables
occurring in o. A term t is said to be ground, iff V(t)=.

2.1.2 Definition:

A substitution is an endomorphism on the term algebra, which is identical
almost everywhere on V. For a substitution ¢ we define dom(c), the domain
of o, as the set {xe V | xo#x}, and cod(o), the codomain of ¢, as the set {xo |
xe dom(o)}.

A substitution o with domain {xi,...,xp} is usually represented as a set
{x1=9X10,...,xn—>Xxn0} of argument-image pairs. The application of the
substitution ¢ to any term t is denoted by tc. The application of ¢ to any
object containing terms is defined in the obvious way.

The set & of all substitutions on the term algebra together with the
functional composition (which is formally denoted by juxtaposition of the
substitutions), constitutes a monoid with the identity substitution & as
neutral element.

2.1.3 Definition:

A permutation is an invertible substitution, i.e. ceX is a permutation, iff
there exists a 6-e X with 06~ =¢. A substitution ¢ is idempotent, iff 6o =0.

s T
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The set of permutations is denoted by £-, the set of idempotent substitutions
by =*.

It is easy to see that the permutations are just the finite automorphisms of
the term algebra. Another characterization of idempotent substitutions is
the requirement that dom(c) N V(cod(c)) =D holds for each 6 (see Herold
1983).

2.1.4 Definition:
For o0e S and VCV the restriction o ly is the substitution with dom(cly)cV
and which agrees with con V.

2.1.5 Definition:
The following relations are defined for s,te T and 6,7€£ and VCV.

s<t iff there exists ce & with t=sc (s subsumes t)1
s=t iff s<t and t<s holds (s is subsumption equivalent to t)
s=t iff there exists oe X~ with s=to (s is a variant of t)

o=1[V] iffcly=1ly
o <t[V] iff there exists Ae £ with t=cA[ V] (o subsumes 1t on V)
o=1[V] iff 6<t[V] and t<o[ V] hold
(0 is subsumption equivalent to 1)
o=t V] iff there exists Ae - with o=1A (s is a variant of t)
In the following, we will omit the suffix [V ], if V=V.

Synonyms for “s subsumes t” are “t is an instance of s” or “s is more
general than t”. Synonyms for “s is a variant of t” are “s is a copy (or a
duplicate) of t” or “s and t are equal up to renaming”. The relation = is the
equivalence relation generated by the preordering <. It can be shown that the
variant relation and the subsumption equivalence coincide for terms and
substitutions (Herold 1983). For ¢,te £ the subsumption relation 6<t can
also be defined by ot=rt.

1 Beware of the fact that the subsumption relation < is sometimes written in the opposite

direction.
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2.1.6 Definition:

A weak renaming p is a substitution with cod(p)cV. A renaming is a weak
renaming, which is injective on its domain. The set of weak renamings is

denoted by PW, the set of renamings by Pl

2.1.7 Definition:

Let s,te T. A unifier for s and t is a substitution ¢ with so =tc. A most

general unifier for s and t is a unifier, which is minimal in the set of all
unifiers of s and t. A weak unifier of s and t is a pair (6,7) with so=t1. The
terms s and t are said to be (weakly) unifiable, if there exists a (weak) unifier.

Robinson (1965) and Huet (1976) show that the most general unifier of
two unifiable terms is unique up to renaming, that is 6 =1 holds for any two
most general unifiers ¢ and © of s and t. According to Herold (1983), lemma
I11.2, one of the most general unifiers is always idempotent.

2.1.8 Definition:

Let 0,1eE". A unifier for 6 and 1 is a substitution X with cA=1A. A most
general unifier for ¢ and 1 is a unifier, which is minimal in the set of all

unifiers of ¢ and .

The substitutions ¢ and 7 are said to be compatible, iff they have a unifier A.
They are said to be strongly compatible, iff 6t =10. If 6 and 1 are compatible
substitutions, then the merge 6*1 of 6 and 7 is the substitution 6A, where A is
a most general unifier of ¢ and 7.

2.1.9 Lemma:

Let 0,1eZ". If 6 and t are strongly compatible, then they are compatible.

Proof: Take A = oT. n

The converse is not true in general, as the example o={x—y}, 1={y—2z}
shows. The substitutions ¢ and 1 are compatible, with common instance o,
but ot#tc. However, it is easy to see that for ground substitutions the
converse is true:

1 The letter P is the capital greek rho, which should not be mistaken for the latin letter P.

1
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2.1.10 Lemma:
Two ground substitutions ¢ and © are compatible, iff they are strongly
compatible.

Proof: We have only to show that compatibility implies strong
compatibility. Let 6 and © be compatible ground substitutions, that is, there is
a 0 = with 00 = 10. If x¢ dom(c)udom(r), then obviously x0T = x = xt0. If
xe dom(o)\dom(t), then x0T = X6 = x16, and similarly for xe dom(t)\dom(c),
and finally, if xe dom(6)Ndom(t), then xo1 = x6 = x08 = x10 = xT = x70. [ ]

The following lemma gives an alternative definition of weak unifiability,
which will be useful in later chapters.

2.1.11 Lemma:

For s,te T the following two assertions are equivalent:

a) s and t are weakly unifiable
b) There are peP and ceX with spo =toc.

Proof: See Eisinger (1988), Lemma 4.1.12.

2.2 Clauses and Resolution

2.2.1 Definition:

Let P = \| Pn consist of finite sets of n-ary predicate symbols. The atom set

A =AP,F,V) is the set consisting of the elements Ptj...tn for Pe P, and
ti,-,tne T. If A is an atom, then +A (usually written A) and -A (usually
written —A) are literals. The atom of the literal L is denoted by A(L), the
predicate (symbol) of L is denoted by P(L). Literals L, K with the same atom
but different sign are called complementary. As before, ground atoms, lite-
rals or clauses are objects containing no variables.

2.2.2 Definition:

A clause is a finite set of literals. The cardinality of the clause C is denoted by
ICI. A clause C with |Cl=1is called a unit (clause). As a matter of conven-
tion, the empty clause is denoted by 0.

Clauses are usually written without set braces and commas. In particular,
often we do not distinguish between a unit clause and its (single) literal. The

11
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notions defined for terms apply to atoms and literals in the obvious way.
Two literals are called (weakly) unifiable, if their signs are equal and their
atoms are (weakly) unifiable. The set of unifiers of the literals Le C and Ke D
will be denoted by uni(C,L,D,K), where the clauses C and D can be omitted.
Moreover, we define uni(C,L,D) = {ce uni(C,L.,D,K) | Ke D}. Two literals are
called (weakly) resolvable, if their signs are different and their atoms are
(weakly) unifiable. Clauses containing complementary literals are called
tautologies.

2.2.3 Definition:
Let C and D be clauses.
Cc<D iff there exists 6e X with CocD (C subsumes D)!
C=D iff C<D and C<D holds (C is subsumption equivalent to D)
Cz=D iff there exists ce £~ with C=Do (C is a variant of D)
CeD iff there exists D'cD with C=D"'
C<D iff C<D and C#D (C properly subsumes D)
Note that in particular we have 0 £ C for each clause C. Furthermore, C <0,
iff C=n.

Contrary to terms and substitutions, the variant relation for clauses does
not coincide with the subsumption equivalence. A simple counterexample
consists of the two clauses C = PxPyQz and D =PuQvQw, where C<D and
D < Cholds, but not C=D.

2.2.4 Definition:

Let C be a clause and let ¢ be a substitution such that |Col<|Cl. Then Co is
called a factor of C. A factor of C, which also subsumes C is called a
subsuming factor of C, and so is each of its variants. A clause is called

irreducible, if it possesses no subsuming factor. For any clause C, let C”
denote the irreducible subsuming factor of C.

1 Beware of the fact that some authors, for instance Loveland (1978), call this relation 8-
subsumption, whereas their term subsumption denotes implication. Sometimes the
additional condition ICI<IDI can be found in the literature, which is a technical
requirement to prevent factors of a given clause C, which are in fact subsumed by C, to be

eliminated by reduction procedures.

oo



Logical Foundations Chapter 2

In general there exist several subsuming factors of a clause. In the next
section, however, it will be shown that there always exists a unique
“smallest” subsuming factor, that is, all irreducible subsuming factors are
equal up to renaming. This justifies the definition of C".

2.2.5 Lemma:

If C' is a subsuming factor of C, then either C' & C, or there is a subsuming
factor C" of C' with C" & C.

Proof: Let C' be a subsuming factor of C. By definition, there are literals
L,KeC and oce mgu(L,K), and a substitution p such that C'=Co and C'ucC.
Then C'uoccCo=C".

Case 1: |C'ul < I C'|l. Then u must unify at least two literals of C', that is,
C'u is a factor of C'. Moreover, since C'uc c C', C'u is also a subsuming
factor of C'. Finally, C'ncC holds. Take C"=C'u.

Case 2: |C'pul =1C'l. We have C'=Cgo. Since o is idempotent, C'6=C', hence
¢ cannot unify two literals of C'. Then, a fortiori, ¢ cannot unify two literals
of C'u, which implies |C'uo| =1C'ul = 1C'|. Together with C'us cC' this
implies C'no=C'. Hence p must be injective, which implies C'=C'ucC.
Thus C' £C. »

Since irreducible clauses possess no subsuming factors, we have the
following

2.2.6 Corollary:
For any clause C, C* & C holds. n

2.2.7 Lemma:

Let C and D be clauses. Then the following conditions are equivalent:
a) C=D.
b) There are 6,7eZ with Co =Dand D1=C.

Proof: See Eisinger (1988), lemma 4.2.3. =
The next lemma gives an alternative characterization of subsumption
equivalence.
2.2.8 Lemma:

Let C and D be clauses. Then the following conditions are equivalent:
a) C=D.

13
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b)  There are subsuming factors C' of C and D' of D with C'=D".
o C'=D"

Proof: a) =>b): Let C< D and D < C. Then there are 0,17 £ with Dt ¢ C and
Co c D. From this we obtain D16 ¢ Co and Cot ¢ Dt. Continuing this way,
we obtain the following two chains:

C2 Dt 2Cotr 2o Drot o... and

D 2Co 2Dt 2Coto D...
Since the sets C and D are finite, there must be some ne N such that C(o1)i =
D1 (o1)i = D(t0)it for all j2n. Analogously there must be an me N with D(to)k
= Co(10)k = C(o1)kc for all k>m. Let r be the maximum of m and n. Let
C'=Clot)*c C and D'=D(to)*c D. Then we have C'c =D' and D't =C"
Lemma 2.2.5 now implies C'=D'.

b) = ©): follows from the fact that the irreducible factor of a clause is
unique up to renaming.

¢) = a): Let 0,1e £ with CocC and DtcD and Co = D7. There are p,p'eP
with Cop =Dt < D and D1p' = Co < C, that is C<D and D<C. |

In particular, the previous lemma implies that subsumption equivalence
and the variant relation coincide for irreducible clauses.

2.2.9 Definijtion:

a) If Cand D are clauses with V(C)NnV(D)=0, and Le C, Ke D are resolvable
with most general unifier ¢, then (C\{L})o U(D\{K})o is called a
(binary) resolvent of C and D. If R is a binary resolvent of factors C' and
D' of C and D, respectively, then R is called a resolvent of C and D.

b)  For each clause C, let L+(C) denote the set of positive literals of C. If
N,E1,...,En are variable disjoint clauses with L+(N)={L1,...,Ln}*d,
L+(Ej)=0 and Kje N;j forie{l,...,n}, and ¢ is a most general simultane-
ous unifier of L; and K for ie (1,...,n}, then

(N\P)o U kn)l Ei\{Li}
i=

14
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is called a (negative) (binary) hyperresolvent of N with {E1,...,Ep}. The
clause N is called the nucleus, the clauses D; are the electrons of the
hyperresolution step. A binary hyperresolvent of factors N', E¢',...,Ey' of
N,Ejy,...,En is hyperresolvent of N,Ej, ..., En. The definition of a positive
hyperresolvent is obtained by reverting the signs in the above
definition.

2.3 Uniqueness of the Irreducible Factor

In this section it is shown that the irreducible subsuming factor of a clause is
unique up to renaming. According to lemma 2.2.5, we can restrict ourselves
to those subsuming factors of a given clause C that are also subsets of C. In
the following such a clause DcC, which is a subsuming factor of C, will be
called a subsuming factor in C.

We consider a clause C together with the set Z¢ = {ceZ | CocC}. Obvious-
ly, Zc together with the concatenation of substitutions is a semigroup with
identy element . We define a quasiorder! ¢ on Z¢ by oct iff CocCt and an
equivalence relation = by o=1 iff Co=Cr.

From the definition of Z¢ it is clear that the mapping ®:6 - Co yields a
surjective mapping from Zc¢ on the set of all subsuming factors in C. The
equivalence relation induced by this mapping is just the relation =. Thus
there is a one-to-one correspondence between the subsuming factors in C
and the elements of Zc/=, where the irreducible factors of C correspond to
the minimal elements in X¢c/= w.r.t. C.

2.3.1 Lemma:

If T is minimal in Z¢/= w.r.t. ¢, then 1 = ot holds for each oe X¢.

Proof: Let 6e Z¢. CocC implies CotcCt, hence 61 < 1. From the minima-
lity of © w.r.t. c follows 1 = ot. ]

2.3.2 Theorem:
If both Co and Ct are irreducible factors in C, then Co=Cz holds.

1 A quasiorder is a reflexive and transitive relation.

e -
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Proof: If both Co and Cr are irreducible factors in C then both ¢ and 1 are

minimal in in ¢/~ w.r.t. <. Lemma 2.3.1 implies that T = 67 and 6 ~ 1o hold.
Hence Ct = Cot and Co = C1o. According to 2.2.7, this implies Co=Cr. |

2.4 Resolution and its Propetrties

2.4.1 Definition;

An interpretation 3 is a maximal set of ground literals, containing no pair of
complementary literals. 3 satisfies its member literals and falsifies all other
ground literals. An interpretation 3 satisfies a ground clause, if it satisfies
some literal of the clause. It satisfies an arbitrary clause, if it satisfies all of its
ground instances, and satisfies a set of clauses, if it satisfies each member of
the set. Any object is said to be satisfiable if there exists an interpretation
satisfying it, and unsatisfiable otherwise. We also write 3 = o, if 3 satisfies
the object 0. An interpretation 3 satisfying S is also called a model of S.

There is a very useful technique, which can serve various purposes, such
as proving completeness of resolution: If S is an unsatisfiable clause set, then
construct a clause set S(L) from S by removing all clauses containing the
literal L, and deleting the literal —-L from the remaining clauses. Then the
resulting clause set S(L) is also unsatisfiable, since each model S of S(L) could
easily be extended to a model 3' for S by adding the literal L. This
construction will also be used in the following.

2.4.2 Definition:

a) Let S be a set of clauses. The semantic closure of S is the set of all clause
sets §', such that 3 I= S implies 3 = S'. We write (S) for the semantic
closure of S. By abuse of notation, we write (C) for ({C}).

b) Let S and S' be clause sets. S implies S, iff S'e€(S). S is (logically)
equivalent to S, written S= S', iff S implies §' and S' implies S.

The implication relation S implies S' can also be expressed as follows:
Each model of S is also a model of S'.

2.4.3 Lemma:

Let S be a set of clauses and let C={Lj,...,Ln} be a clause. S implies C, iff
Su{=Li}u...u{-L,} is unsatisfiable.

S
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Proof: Let Ce(S), and assume SU{-L1}u...u{-Ly} has a model . Then a
fortiori 3 satisfies S, and from Ce(S) follows that 3 satisfies C. Then there is
one literal Ljof C, such that S = L, in contradiction to the fact that J I=
Su{-L1}u...U{-Lp}. Conversely, assume that SU{=L1}uU...U{-Ly} is unsatis-
fiable. Then each model of S must satisfy one element of {L1,...,.Ln}, and
hence satisfies C. n

2.4.4 Lemma:

a) Cimplies D, iff {D)c(C).

b) Cis equivalent to D, iff {C) = (D).

b) The implication relation on clauses defines a partial order.

Proof: a) If {D)c(C), then obviously {D}e{(D)c(C). Conversely, let {D}e(C),
and let Se(D). Then each interpretation 3 satisfying D also satisfies S. Let 3
be an interpretation with 3  C. Then, since {D}e{(C), 3 = D, and hence also 3
= S. As 3 was arbitrary, we have shown that Se (C). This proves (D)c(C).

b) and ¢) follow from a). n

2.4.5 Lemma:

Let C and D be clauses, and let S be a clause set.
a) IfS', S"e(S), then S'US"e(S).

b) Cimplies D, iff {C,D} = {C}.

c) IfC <D, then Cimplies D.

Proof: a) Follows from the definition.
b) If C implies D, then {D}e(C), with {C}e(C) and a) we obtain {C,D}e(C).
Furthermore {C}e(S) follows from the definition, hence we have {C,D} = {C}.
The converse is proved analogously.
¢) Assume C<D, and D={Lj,...,Ln}. According to lemma 2.3.4 we have to show
that {C}u{=Li}u...u{-Lpy} is unsatisfiable. There is a substitution ¢ such that
CocD, that is, there is k<n such that Co={L1,...,Lx}. Let Ogr be a ground
substitution with dom(o)=V(D). Then

({Colu{-Li}u...U{-Lnhgr = ((Ly,.... LidA-Li}u. .. U{~Ln}gr

is a ground instance of {C}u{=-L1}u...uU{-Ly}, which is obviously unsatis-
fiable. N

From the previous lemma, part a), follows that a clause that is implied by
another clause, can be discarded from a clause set without changing the
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logical value of this set. In particular, by part c) of the lemma, this holds for
subsumed clauses. In other words: Subsumed clauses are redundant.

2.4.6 Definition:

Let C,D,R be clauses, and let S be a clause set.

a) We write C 5pR, iff R is a resolvent of C and D. C and D are called
parents of R.

b) We write S — SU{R)}, iff there are C,De S, such that C —p R.

o) The reflexive, transitive closure of — is denoted by —*.

d) Cis called an ancestor of R in a given deduction S-S/, iff C is a parent
of R, or C is parent of some ancestor C' of R.

2.4.7 Definition:

A resolution refutation of S is a derivation S —»*S' with oeS'.

Soundness and completeness of the resolution method are stated by the
fact that a clause set is unsatisfiable, iff it admits a resolution refutation. This
classical theorem correlates the semantic notion of unsatisfiability with the
syntactic deduction relation. The proof of completeness usually divides into
two parts: A completeness proof for ground resolution and a lifting lemma
stating that each ground resolution step can be “lifted” to the appropriate
first order resolution step. Several techniques, including semantic trees, or
induction on the number of literals, to prove completeness of ground
resolution can be found in the literature (see e.g. Chang & Lee (1973),
Loveland (1978), Gallier (1988), Socher-Ambrosius (1989c)). Hyperresolution
derivations are defined similarly to resolution refutations, and they can also
be shown to be sound and complete.

As already noted, implied clauses may be discarded from clause sets
without changing the logical value of the set. Still, this does not imply that
implied clauses may be removed during a resolution refutation after each
resolution step. For instance, each resolvent is implied by its parents, but
discarding each resolvent immetiadely after its generation obviously
precludes any successful refutation. For subsumed clauses, however, it has
been shown (see Loveland (1978)), that their removal preserves complete-
ness of resolution, even if certain restrictions are imposed on the resolution
procedure.



Simplification Chapter 3

3 Simplification

This chapter provides several techniques for Boolean simplification, which
are based on the equations and rules of the theory of Boolean algebra. This
particular theory does not admit a canonical term rewriting system.
Nevertheless, there exists a normal form for Boolean algebra terms in the
following sense: There is a transformation algorithm that transforms each
Boolean algebra term t into another uniquely determined term t*, and each
term t', which is equal to t under the theory of Boolean algebra, is trans-
formed into the same term t". This normal form is called the set of prime
implicants. Historically, due to the early investigations of switching circuits,
the prime implicants have been denoted in a disjunctive form. For the
purposes of automated reasoning, however, the conjunctive form is usually
preferred.

Throughout this chapter equality under the theory of Boolean algebra will
be denoted by =, since no confusion with the variant relation can occur.

In the following the reader is assumed to be familiar with the basic
notions of (equational) term rewriting.

3.1 Boolean Algebra and Prime Implicants

3.1.1 Definition:

A Boolean algebra is an algebra (B,A,v,—) with the binary operators A,v and
the unary operator -, satisfying the following properties:
a) (B,A,v)is a distributive lattice, that is for all a,be B:

avb =bva arb =bna Commutativity

av(bvc) = (avb)vc an(bac) = (aab)ac Associativity

(avb)Ab =D (anb)vb =b Absorption

an(bve) = (aab)v(anc) av(bac) = (avb)a(avc) Distributivity
b) (ar-a)vb=Db (av-a)ab =b

The set B is called the carrier of the Boolean algebra. Henceforth we shall
denote a Boolean algebra by its carrier. The abbreviations = and < are
defined as a=b = ~avb, and a=b = a=b Ab=a. The axioms of Boolean

19
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algebra imply the following well-known properties of the operators v,A, and

-

3.1.2 Lemma:

Let B be a Boolean algebra. Then there exist 0,1e B, such that for all a,be B:
Ovaza lna=a
lva=1 Ora=z=0
ava=a arnasa Idempotency
=~(avb) = ~aan—-b -(aab) = mav-b
~—aza |

3.1.3 Lemma:

Let B be a Boolean algebra. For any a,be B:
(i) avb=0iffa=0andb=0.
(ii) aabzliffa=1and b=1. L

The simplest Boolean algebra is the algebra B with carrier {0,1}. Given a
set V of variables and a set C of constants, the set T(C,V) is the free term
algebra whose operators are the term constructors induced by the symbols
v,A, and =. The Boolean algebra B[C,V], whose carrier is T(C,V), is also called
the set of Boolean polynomials! over B. A Boolean polynomial over the
variables {x1,...,xn} can also be interpreted as a function f: B"—B[C] (Rudeanu
1974).

3.1.4 Lemma:

There is no canonical term rewriting system modulo associativity and
commutativity of A and v for the theory of Boolean algebra2.

Proof: See Appendix. |

3.1.5 Definition:

Let B be a Boolean algebra, and let s,te B.
a) We define the relation < on B by s<t, iff svt=t.

1 The Boolean polynomials are also called Boolean functions (Rudeanu 1974), or simply

Boolean terms.

2 As to the definitions of (equational) canonical term rewriting systems see for instance Huet
& Oppen (1980).
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b) The principal filter (t ) generated by t, is defined by (t )= {t'eB | t<t'}.

3.1.6 Lemma:

Let s,te B. Then the following conditions are equivalent to s<t:
a) svt=t

b) satss

¢ samt=z0

d) -svtzl

Proof: a) & b): If svt=t then s=sA(svt)=sat. The converse is proved
analogously.
b)=¢): If sat = s, then sAa-t=sata-t=0.
c)=d): If sa-t=0, then -svt=1.
d)=Db): If ~svt =1, then s = sAl = sa(-svit) = sat. n

In spite of lemma 3.1.4, there exists a normal form for Boolean algebra
polynomials, the so called set of prime implicants. In order to define the
notion of prime implicants, we first transfer the semantic notions for clauses
and clause sets to Boolean algebra polynomials.

Given a set A of ground atoms, let
BIA] = {f(A1,...,An) | A1,...,Ane A, fe B[O, V]}
Then B[A] is isomorphic! to the Boolean algebra B{A,Q]. In the following we
shall establish the relation between a given set S of ground clauses and the
Boolean algebra B[A], where A is the atom set of S.

3.1.7 Definition:
Let S be a set of ground clauses and let A=A(S) be the set of atoms occurring
in S. Let a: A—>V be an injective mapping, and let V = a(A).
We define a mapping ¢: L(S)USU25—B[@,V] as follows:
¢(+A) = Aa, for any positive literal +A

¢(-A) = ~Aq, for any negative literal -A
¢({Ly,..., Ln)) = ¢(Lv...vd(Lyn) for any clause {Ly,...,Ln}
¢({C1,....Cm}) = HCDA...AQ(Cp) for any clause set {Cy,...,.Cm}cS

1 The notion of homomorphism and isomorphism of Boolean algebras is defined in a

canonical way, see for instance, Rudeanu (1974).

-2



Simplification and Reduction for Automated Reasoning

For any object O, the polynomial $(O) will be denoted by fo. Following the
convention that a disjunction over the empty set is zero, we have fg =0. As
for clauses, the number n is called the length of fc. The objects fo will be
called literal (clause, CNF-) polynomials. CNF stands for clausal normal
form, or conjunctive normal form.

For any polynomial fo(xy,...,xn)e B[J, V], we define a term toe B[A] by
to=folxia-l,...,xno1). The objects to will be called literal (clause, CNF-) terms.
Conversely, each clause term t#1 defines a unique clause, and each CNF-
term defines a (not necessarily unique) clause set. It can be shown that each
te B[A] is equivalent to some CNF-term (see, for instance, Rudeanu (1974).1

While there exists no canonical AC-term rewriting system (that is, a
system modulo associativity and commutativity) for Boolean algebra, there
is at least a terminating (but not confluent) system, which is, however, even
confluent on clause terms.

3.1.8 Lemma:

Let AC denote the set of equations representing commutativity and
associativity of A and v, and let R be the following system of rules:
av(bac) — (avb)alave)

(aAb)vb - b

ava —a aAna —a

—ava =1 —ara —0
Iva—>1 Orhna—0
Ina—a Ova—a

-1-50 0—-1
(avb)a(-avb) - b

=(avb) = -~an-b =~(aab) - —av-b
--a — a

Then the equational system R=(AC,R) is terminating. On the set of clause
polynomials, it is even confluent.

The difference between polynomials and terms is often blurred in the literature by
regarding a term like PvQ as a polynomial in the variables P,Q. This view, however, is not
quite correct because the polynomial f(P)=P is identical to the polynomial f(Q)=Q, where-

as the clauses {P} and {Q} are different.

e
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Proof: See Appendix. |

Now let 3 be an interpretation, and let te B[A]. For any Ac A, let A(3) be
defined by A(3)=1, if the literal +A is in 3, and A(3)=0 otherwise.

3.1.9 Lemma:

Let S be a ground clause set with A(S)={A1,...,Ap}, and let 3 be an interpre-
tation. Then 3 E S iff f5(A1(3),...,AnQ)) = 1.

Proof: Obviously Le 3 iff f1.(A1(3),...,An(3))=1 holds for any literal L.
Y does not satisfy S, iff there is some Ce S with ¥ C
iff there is some CeS with Leg 3 for all LeC
iff there is some Ce S with f1.(A1(3),...,An(3))=0for all Le C
iff there is some Ce S with fc(A1(3),...,An(S8)=0

iff f5(A1(3),...,An(3))=0. n
3.1.10 Corollary:

Let S be a clause set. Then tg=0 iff S is unsatisfiable. [ ]
3.1.11 Lemma:

Let S be a ground clause, and let C = {L1,...,Ln} be a single ground clause. Then
tce (tg), iff tsA—LiA...A-Ly= 0.

Proof: We have tce(tg), iff ts<tc iff, by lemma 3.1.9, tgsa-tc =0, iff
tsA-LiA...A-Lp = 0. |

Obviously, the relation < defines an order on B. The correspondence
between the implication relation and semantic closure on the one hand and
the notions for Boolean algebra given in the previous definition, is estab-
lished by the following

3.1.12 Lemma:

Let 51 and 52 be a set of ground clauses, for i=1,2, let ti=ts;, and let C be a
ground clauses.

a) t1 <tpiff S;implies D.

b) t1 <tz iff S; implies Sy.

o (to)={tc 1 Ce(C)})

Proof: a) Follows immetiadely from the previous lemma and 2.4.3.
b) Let Sp ={D3,...,Dn}, and for i=1,...,n, let ti=tp,. We have
1<ty iff t1A-tr =0 iff

S 23
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tia(~dyv...v—dn) =0 iff
t1Ao~d1=0,...,t11A~dp =0 iff
S1 implies D1 and ... and Sp implies Dy, iff
S1 implies Sa.
o) toete) iff te<te iff C implies C' iff C'e(C). n

3.1.13 Corollary:
Let S’ and S" be ground clause sets. Then tg = tg» iff S'= S". |

According to the previous lemma, the Boolean algebra B[A] is the
Lindenbaum algebra of S (see Gallier 1988). Now suppose S and S' are first
order clause sets, and Sgr, S'gr are ground clause sets obtained from S and §'
by instantiating each variable with a new constant. If the two ground clause
sets Sgr and S'gr are logically equivalent, then the corresponding first order
clause sets S and S' are also equivalent. From the previous lemma thus
follows that transformations based on the rules of Boolean algebra on a
clause set Sgr leave the logical value of S invariant. This means that Boolean
transformations operate on clause sets (or, more generally, on arbitrary first-
order formulae) as they do on the corresponding ground objects. Hence the
transformations considered in the following chapter 3.2 will be stated for
pure propositional logic, which in fact is equivalent to the logic of ground
formulae.

3.1.14 Definition:

Let t be a Boolean algebra polynomial. Then a prime implicant of tis a
minimal clause polynomial in (t) (w.r.t. the partial order <). If ty,...,tn are the
prime implicants of t, then H(t) = tjA...Aty is called the prime polynomial of t.

3.1.15 Lemma:
For each polynomial t, #(t) =t holds.

Proof: Let (1) = f1A...Atn. First we show that t < 2(t). Since tje (t ), t<t; holds
for any ie(1,...,n}. Hence,
tv AL =tv (1A, . Aly) = (VEDA. . AltVE) = HA.. Al = K1).
Next we show that &t) <t. Let siA...Asm be a CNF-representation of t. Then,
for each je (1,...,m}, t<sj, which implies sie(t). As the tj are the minimal
clause polynomials in (t), and sj is a clause polynomial, there is some
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ie {1,...,n} with tj<sj. Thus there are t1',.. .tm'e {t1,....tn} such that tj'<s; for each
je{1,...,m}. Then we have
At) = fA. . . Atp < AL Al <S1AAS =L |

Besides the prime implicants’ minimality property, which is given by the
definition above, prime implicants also have the useful property of being
minimal w.r.t. their length. In other words, each clause polynomial in (t),
which is not a prime implicant of t, contains some superfluous literals. This
property can be used to formulate one notion of simplicity and has been the
major reason for the interest in prime implicants.

3.1.16 Definition:
Let C and D be ground clauses. Then tc subsumes tp, iff C subsumes D.

Thus the clause polynomial s subsumes the clause polynomial t, iff each
literal occurring in s also occurs in t.

3.1.17 Lemma:

Let s,t be clause polynomials with s,t #1. Then s<t iff s subsumes t.

Proof: If s subsumes t, then t is of the form svkiv...vky. Then svt =
svsvkiv...vkp =t, that is, s<t. Conversely, assume that s<t. Let s = k1v...vky and
lett = hiv...vhy. Then

kiv...vkpvhiv...vhp =hiv.. .vhy,
The term rewriting system R of lemma 3.1.8 is canonical for clause polyno-
mials. W.l.o.g. we can assume that the polynomials s and t are already
irreducible w.r.t. R. Thus we have

kiv...vknvhiv...vhpy ——);; hiv...vhm
Since s,t#1, the only rule of R applicable to the left hand side, is the
idempotency rule ava—a. Hence for each k; there is some hj with ki=kj, that
is, all literals occurring in s also occur in t. Thus s subsumes t. |

This a particular case of Gottlob’s (1987) result for first order logic on the
equivalence of subsumption and implication for non-selfresolving clauses.

Several methods to compute the prime implicants of a given ground
formula have been developed, for instance Quine’s (1959) method of iterated
consensus, or the algorithms of Tison (1967), and Slagle, Chang & Lee (1970).
They all consider clauses and clause sets instead of polynomials over a
Boolean algebra. The prime polynomial of a clause set S is thus called the set

).
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of prime implicants of S. Moreover, the sets representing clauses are written
without set braces and without separating commas. For instance, the clause
set {{P,Q},{-P,Q,R}} will be denoted simply by {PQ, -PQR}. Since these two
formulations are equivalent according to lemma 3.1.10, we will also adopt
the more convenient notation using clauses and clause sets in the following.

The method of iterated consensus appears to be the best-known technique
to generate the prime implicants of a formula. It starts from a formula given
in conjunctive normal form, that is, a set S of clauses. Then the nontautolo-
gical resolvents of clauses of S are repeatedly formed and added to S. Each
time a resolvent is generated, subsumed clauses are removed from S. When
only such new clauses can be produced that are already subsumed by existing
clauses, the set of prime implicants has been obtained. The following
example is taken from Loveland & Shostak (1980).

3.1.18 Example:
Let

S = {=PRS, -PQR-S, PQRS]}.
From the given clauses we can derive the resolvent =PQR, which subsumes
its parent clause -PQR-S, and we obtain

S1 ={-PRS, -PQR, PQRS}
In the next step we derive QRS, which subsumes its parent PQRS, and we
obtain

S> ={-PRS, -PQR, QRS}
No more resolvents can be derived from this set, which thus represents the
prime implicants of S.

Since there is only a finite set of clauses built from a given set of literals, it
is obvious that the algorithm terminates. In order to prove the algorithm’s
correctness, we first give a lemma concerning a property of resolution
derivations. One of the resolution method’s main advantages is the fact that
not all possible inferences can be drawn from a given problem set S.
However, the important inferences, namely the minimal clauses in {S) can
be derived, as is shown by the following lemma. This lemma is due to
Kowalski (1970), we will however, provide a shorter proof that basically uses
the refutation completeness of resolution.

26



Simplification Chapter 3

3.1.19 Lemma:
Let S be a set of ground clauses. For each clause Ce(S), there exists a clause D,

which subsumes C and a resolution derivation of D from S.

Proof: Let C={L1,...,Lp). If Ce(S), then by lemma 2.4.3 SU{-L1}u...U{-Ly} is
unsatisfiable. According to the construction in section 2.4 let §' =
S(=L1,...,~Lpn) be obtained from S by removing all clauses containg some -L;,
and deleting all literals Lj from the remaining clauses. Then S’ is still
unsatisfiable and thus admits a resolution refutation, that is a derivation
S'—"S", with pDe S". By adjoining the literals L back to those clauses, from
which they were removed, we obtain a resolution derivation S—* 8", with
DeS", where D is a subset of the literals {Lj,...,Ly}, thatis, D subsumes C. m

3.1.20 Corollary:

Let S be a set of ground clauses, and let  be the set of clauses constructed by

the method of iterated consensus from S. Then 2 is the set of prime impli-
cants of S.

Proof: First of all, we remark that we deal only with nontautological
clauses. As subsumption and implication coincide for nontautological
clauses (lemma 3.1.16), the prime implicants are the minimal clauses w.r.t.
the subsumption ordering. Furthermore, obviously each clause D generated
by the algorithm is in {S).

Let C be a prime implicant of S. The previous lemma guarantees that C,
which is a minimal clause in (5) w.r.t. subsumption, can be obtained by a
resolution derivation from S. Moreover, since C is minimal, no clause C'
which properly subsumes C, can be generated. Since the method produces all
possible resolvents, that are not already subsumed by existing clauses, the
clause C must be generated, if it is not already present in S. Moreover, it is
guaranteed that the generated non minimal clauses in (S) are removed
during the algorithm. n

Most of the well known techniques for generating a formula’s prime
implicants require the formula already be given in clausal form. In the next
section we will present an algorithm that generates the prime implicants of
arbitrary formulae. |
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3.2 An Optimized CNF Transformation

Most resolution based theorem proving systems require that the logical
formulae, which are to be proved, should be converted into clausal normal
form. This transformation usually takes several steps including the
elimination of implications and equivalences, skolemization and possibly
splitting into several easier to prove subformulae (Eisinger & Weigele 1983).
In any case, the procedure’s last step consists in the multiplication of
formulae in prenex negation normal form into disjunctive normal form or
into conjunctive normal form. Usually the transformation into disjunctive
form is required for formulae to be tested for splitting whereas conversion
into conjunctive form is necessary for the single splitparts. This multipli-
cation, possibly resulting in an inflation of the original formula, is the algo-
rithm’s most critical step. Multiplying a disjunctive form D to a conjunctive
form C (or vice versa), the number of subformulae of C depends exponen-
tially on the number of subformulae of D. Yet often a significant part of the
resulting formulae are redundant, as the following example shows:

3.2.1 Example:

Assume the propositional formula

F=(PARAS) v (PAQAS) v (QARAS)
is to be transformed into CNF. In the following we drop the v and write
conjunctions as sets. The first step of this transformation is a distributive
multiplication into clause form, which yields

{PPQ, PPR, PPS, PQQ, POR, PQS, PSQ, PSR, PSS,
(1) RPQ, RPR, RPS, RQQ, RQR, RQS, RSQ, RSR, RSS,

SPQ, SPR, SPS, SQQ, SQR, 5QS, SSQ, SSR, SSS}
We call this form the totally multiplied form of ¥.
Using the commutativity and idempotence of v, this clause set can be
simplified to

{PQ, PR, PS, PQ, PQR, PQS, PSQ, PSR, PS,
(2) RPQ, RP, RPS, RQ, RQ, RQS, RSQ, RS, RS,

SPQ, SPR, SP, SQ, SQR, SQ, 5Q, RQ, S}
In this formula all multiple occurrences of clauses and all clauses that are
subsumed by some other clause, are redundant. Deleting these redundant
clauses yields
@) {PQ, PR, RQ, S}

%
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In this particular example the formula ¥ to be transformed into CNF is
given in the opposite, disjunctive, normal form. The transformation bet-
ween opposite normal forms is the basic case of our algorithm and will be
dealt with first. We will only consider the conversion into CNF, the trans-
formation in the other direction is just symmetric.

The example shows that the multiplication process produces many terms
that can be deleted by subsequent simplification steps. Would it not be better
to avoid generating these redundant terms in the first place? Ideally such an
algorithm’s output should be a minimal representation of the original
formula. In this chapter we present an algorithm that multiplies formulae
into clausal normal form without producing redundant clauses. The output
P of the algorithm, given a formula ¥, is the set of prime implicants of F. In
particular, if ¥ is an unsatisfiable ground formula then P consists only of
the empty clause.

In the following we will briefly sketch the proceeding of the algorithm
using example 3.2.1.

The method can be considered as an extension of the well-known matrix
methods in automated theorem proving (Andrews 1981 and Bibel 1982).
While it is sufficient to find a spanning set of appropriate paths through the
matrix in order to refute a formula, we have to develop all paths through
the matrix in order to generate the clausal form of a formula.

We write the formula ¥ as a 3x4-matrix M, labeling the rows of M with
the variables of F and the columns of M with the numbers of the
subformulae of F. We let M(P,k)=1 if the k-th term of ¥ contains the
propositional variable P and M(Pk)=0 otherwise. This results in the
following matrix M for ¥

1 2 3
123
PI1 10
M= Qlo 01
Rj1 01
S|1111

The columns of the matrix represent the conjunctions of the original
formula ¥ and the clauses of the totally multiplied form of ¥ correspond to
the paths through the matrix. A path is obtained by taking in each column of

—_—
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M a nonzero entry and writing down the variable of the corresponding row.
Thus a path is a sequence (P1,P2, P3) where M(P,1) = M(P2,2) = M(P3,3) = 1.
For instance (P,P,Q), (P,S,R) or (S,5,5) are paths through M. We say that a
path p subsumes another path g, if all variables occurring in p also occur in g,
i.e. if the clause corresponding to p subsumes the clause corresponding to ¢.

The terms of the reduced form (2) of ¥ can be obtained by removing
multiple occurrences of variables in the paths. Then (P,Q) stands for the path
(P,P,Q) and (R,Q) corresponds to the path (R,Q,R) in M.

The terms of the totally reduced form (3) correspond to the following
subset of paths of M: If a path p of M contains two entries of the same
variable in two different columns i and j, for instance (P,P,Q), then all paths
‘differing from P only in either i or j, namely the paths (P,P,Q), (P,5,Q),
(R,P,Q) and (S,P,Q), are subsumed by (P,Q) or equal to (P,Q) up to
permutation. The generation of these redundant paths can be avoided in the
following way: Having developed a partial path (P1,P,,...,P;) as before, take
only those 1-entries in the column i+1, which are not already on the path,
that is, those entries satisfying M(Pj, i+1)=0 for all je {1,..,i}.

In our example, developing the paths beginning with the row S5, we see
that all columns except the first can be discarded. Once we have developed
the path containing only the variable S, we can cancel the whole row: all
paths starting with a different variable and containing S are subsumed by the
path (5). This is the analogon to the transformation:

(PARAS) v (PAQAS) v (QARAS) = S A ((PAR) v (PAQ) v (QAR)).

The computation of unnecessary paths can be avoided by developing first
the paths of the form (S,...): Beginning with the paths starting with P, for
instance, one obtains the paths (P,Q), (P,R), (P,S), from which (P,S) is
redundant, since it is subsumed by (S).

The computation of P from the matrix M proceeds as follows:
1. At the beginning the result set 2 is empty.
First we develop the S-row. The second and third column don’t have to be
considered, since they have a 1-entry at S. Having obtained the path (S) in
this way, we add it to P and cancel the S-row from the matrix. Now we have
P={(S)} and
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2. Next we develop the P-row obtaining the two paths (P,Q) and (P,R) (the
second column can be canceled, since it contains a 1-entry for P), add them to
the solution set and obtain P={(S),(P,Q),(P,R)}. Now the P-row can be
removed too and it remains the matrix

123
M= Qo 11
R|]101

This matrix corresponds to the formula
F =RvQv(Q AR)
Now the absorption law applies to F yielding
F =RvQ
The analogon in our procedure is the deletion of the third column of M and
hence

<

I
~ O
_ O =
o ~ INv

3. Now the only path in M is (R,Q). This path is added to the solution set and
we have obtained the result 2= { (S), (P,Q), (P,R), (R,Q)}.

This is the set of prime implicants of the original formula ¥ and since no
pair of clauses is resolvable, it is already a simplest equivalent of .

After the introductory example we provide the definitions of normal
form matrices and paths as well as some of their basic properties.
P is a set of propositional variable symbols. L is the set of all propositional
literals (P and -P).
For any object o containing variables we define P(o) as the set of all
propositional variables occurring in o. L(0) is the set of all literals occuring
in o.
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3.2.2 Definition:

A normal form matrix (NF-matrix) M is an nxk-matrix over the set {0,1}.
The rows of M are labeled with different elements from L. We write M(p,i)

for the element of M in the p-th row and the i-th column. If i is a column of
M, then we define

i =
M) M(I},/i)=1 F

to be the clause term corresponding to the column i. We define
teM) = Kt (M),
the formula in disjunctive normal form belonging to M and analogously

tp(M), the formula in conjunctive normal form belonging to M.

The notions of subsumption and tautology are then defined for columns
of NF-matrices just as for the corresponding clause terms.

3.2.3 Definition:
Let M be an NF-matrix.
(i) A complete path p through M is a sequence (Py,...,Pn) of variables such

that M(P;,i)=1 for each i. A path through M is a subsequence of a
complete path. A clause path is a path with no multiple occurrences of
variables. The concatenation of two paths p and gis denoted by p@q.
We write p(i) for the i-th element of the path p.

(ii) Let Pbe a set of paths through a matrix M. For any pe %, we define

t?r(M)= I)E\]L/'(P) p

the clause term corresponding to p, and
tc(ﬂ = PE/\T tp (M) ’

the term in conjunctive normal form belonging to P and analogously
tp(P), the term in disjunctive normal form belonging to P. We call
these terms the totally multiplied forms of M.

From the definitions it is clear that the set P of all complete paths through
an NF-matrix M represents the totally multiplied form of the term
belonging to M, i.e. tc(P) = tp(M) and tp(P) = tc(M). Again, the notions of
subsumption and tautology are defined for paths just as they are for the
corresponding clause terms. Also, the notion of a resolvent of clause paths is
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defined as for clauses. In the following we will consider only non-
tautologous paths.

It is obvious that subsumed paths and columns can be canceled without
changing the corresponding term’s value.

3.2.4 Lemma;
(i) Let P be a row of M such that M(P,1)=1. Each complete path p containing

P at a position k#lwith P%p(1) is a properly subsumed path.
(ii) Let pbe a complete path of M with p(j)=P. If there is a column i#j, such
that M(P,i)=1 and P#(i), then p is a properly subsumed path.

Proof: (i) Since M(P,1)=1, the path ¢ defined by ¢(1)=P and 4(j)=p(j) for j>1 is
a complete path of M. Since Pe L(p), L(g) = L(p) \ {p(1)} < L(p).
(ii) Since M(P,i)=1, the path ¢ defined by ¢(i)=P and q(j)=p(j) for j#i is a
complete path of M. Since PeL(p), L(g) = L(p) \ {p(i)} < L(p). |

Now we are ready to formulate the algorithm that performs an optimized
multiplication between conjunctive and disjunctive normal form.

Algorithm Transform

INPUT: An nxk-matrix M .

OUTPUT: A set P of paths through M such that tc(M) = tp(P) and tpM) = t(P)
1. P:= . Cancel all tautological columns of M.
2. Cancel all subsumed columns of M. If M is now a matrix with only
Zero entries, go to step 5.
3. Take a row P of M that has a maximal number of 1-entries and
permute the columns of M in such a way, that M(P,1) = 1. Generate all
paths of M with initial part (P) at column 2 and add them to P.
4. Cancel the row P of M and go to 2.
5. Remove properly subsumed paths from P.
6. Return 2.

Generate all paths of M with initial part ¢ at column i

INPUT: An nxk-matrix M corresponding to a formula ¥ in conjunctive
normal form, a path g, developed from column 1 to column i-1, and a
column i of M.

OUTPUT: Q = {pe P! p is output of transform and p has initial part Q}
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COMMENT: All parameters are value parameters, in particular the matrix M
is unchanged when the procedure has terminated.
1. If i is greater than the last column of M then return {g}.
2. If there is a Pe P(¢) such that M(P,i) = 1 then i:=i+1; go to 1.
3. Q=0. Let V = {QeLIM)\{=P | Pe g} | M(Q,i) = 1}. Sort V according to
the number of 1-entries in the columns i+1 to k, such that the variable

with the highest number of 1-entries in M becomes the first element.
For all Qe V do

3.1 Generate all paths of M with initial part 4&(Q) at column i+1;
3.2 Add these paths to Q;

3.3 Cancel the row Q from M.
4. Return Q,

The following example shows that step 5 of the Transform algorithm is in
fact necessary, as the paths génerated by steps 1 until 4 still may contain
redundancy:

3.2.5 Example:
Let M be the following matrix:

Il
w AL "d]
O = O e =
O O = oma N
-0 = O (w
= OO b

Then, without removing subsumed paths, the algorithm produces the paths

(,5), (P,QR), and (Q,R), from which the second path is subsumed by the
third.

In the following we consider some of the algorithm’s elementary
properties. /AM) denotes the set of paths obtained by applying the algorithm
to the matrix M. First we will show that P(M) does not contain any
redundancy.

3.2.6 Lemma:

Let p,q be paths generated by the algorithm. If p is a permutation of g, i.e. if
L(p) = L(g), then p=4.
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Proof: Suppose p#gq and j is the first index for which p(j)#4(j). Since g is a
permutation of p, there is a i#j with ¢(j)=p(i). Suppose i<j. Since j is the first
index, such that p(j)#4(j) we have ¢(j)=p(i)=4(i), but according to step 2 of the
generate algorithm, g cannot have multiple occurrences of a literal, which is
a contradiction. Hence we have i>j. In the same way we get p(j)=¢(m) for
some m>j. Therefore p and q have the following form:

1 j-1 j i
r= @O ,.., pG-1), pG),.., pi),. )
g= ED,..., pG-1, pG) ..., pG),..)
1 j-1 j m
The paths p and g both have been developed by generating all paths with
initial part (p(1),..,p(j-1)) at column j. Without loss of generality we may
assume that p was developed before g by the algorithm. Then by step 3.1 first
all paths beginning with (p(1),..,p(j-1),p(j)) have been developed, and then,
according to step 3.3, the row p(j) has been removed from M. After this
removal of p(j), however, there is no way to develop the path g, which
contains p(j), and this is a contradiction. |

Thus two different paths produced by the algorithm indeed correspond to
two different clauses.

3.2.7 Remark:

Lemmata 2.3 and 2.4 together show that for each complete path p of a matrix
M there is a path g¢ AM) with ¢<p.
Step 4 of the algorithm assures that p<g implies p=gq for arbitrary p,qe AM).

The next lemma justifies step 2 of the transformation algorithm. It says
that by developing at first a row with a maximal number of 1-entries, no
more paths are produced than by developing any other row that is not
maximal. Example 3.2.1 showed that the converse is not true in general: if
the S-row is developed at first, the result contains fewer paths than by
developing first the P-row.

3.2.8 Lemma:
Let P and Q be rows of an nxk NF-matrix M such that

CMQD< Y M0,
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Suppose Pis the set of paths obtained by developing the row P at first and Q,
is the set of paths obtained by developing the row Q at first. Then for any
Pe P, there exists some Qe Q, such that Q is only a permutation of P.

Proof. Without loss of generality we permute the columns of M in such a
way, that we have first the set C; of columns i with M(p,i)=M(q,)=1, then C
with M(p,i)=1, M(q,)=0, then C; with M(p,i)=0, M(q,i)=1, and last C4 with
M(p)=M(qD=0. From 3 ' M(Qi) < D, M(P,) follows that C2+@.
Furthermore we assume that subsumed columns in M are already deleted.
Then we can write M in the following form:

........

Let P be any path in P.

Case I: P has the form (p,q,....), where p is taken from C; and q is taken from
Ca.

Exchanging the first two elements of P by taking first q from C; and then p
from C; yields a path Qe Q, which is only a permutation of P.

Case II: P has the form (p,x1,....Xm.,y1,---.¥n), where p is taken from Cy, the x; are
taken from C3 and the yjare taken from C4. We show that the same path P is
in Q;

After the development of the p-row this row has been deleted according to
step 3. Let M' be the resulting matrix:

d |1 16 4
P11.111.110.010..0
X1 1
M= X 1
Y1 1
Yn 1
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There is only one possibility that the path P=(p,xy,...,.Xp,y1,--/Yy) i not
developed in Q; one column j of the set C3 or the set C4, from which one of
the x; or yj of P has been taken, has been canceled in step 2 of the transform
algorithm.

The subsuming column h, against which j has been canceled, must be from
Cj or Cy, since M(p,j)=0 and M(p,i)=1 for all ie C;UC,. Suppose that je C3. This
implies M(q,j)=1 and so we have M(q,j) = M(q,h). Furthermore we have
M(u,j) 2 M(u,h) for all uzq, since h subsumes j in M'. Together we have
M(u,j) 2 M(u,h) for all ueL(M), i.e. h subsumes j already in M and this is a
contradiction. Thus j must be from C4 and there must be some y, with
M(ys,j)=1. By an analogous argument h must be from Cs. There must be an x,
such that M(xy,h)=M'(x,h)=1. Since j is subsumed by h, we have M'(x,j)=1,
hence also M(xy,j)=1. Thus we have the following situation:

. h. j
Xy 1 1

M=
s 1

But in this situation the path P=(...x,...,ys,...) could not have been
developed according to step 2 of the generate algorithm. Therefore the path
P must bein Q, ™

Next we show that our algorithm produces the set of prime implicants of
the given formula.

3.2.9 Lemma:
Let p and ¢ be resolvable paths from P(M) and let R be a nontautological

resolvent of p and 4.
Then there is an R'e AAM) with R'<R.

Proof: W.lo.g. let p= (R,Ul,..,Ui,Wl,..,Wi) and q=(-R,U,..,U;,S;,..,Sy), i,j,k=
0. Then we have R= (Ul,..,Ui,Wl,..,Wj,Sl,..,Sk). We define U = (Uy,..,Uj},
S =1{54,..,.5¢) and W = {Wl,..,W]-}.
We have to show that there is a path R' in P(M) such that
L(R) c L(R) =UUWUS. Let ¢ be any column of M with M(R,c)=1. Then

—_—
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M(-R,c)=0, since otherwise the column c would be tautological. Since
=(-R,Uy,..,U;,S4,..,S¢) is a path through M and M(-R,c)=0, there must be an
Xe UuUS with M(X,c)=1.

Analogously if d is any column of M with with M(-R,d)=1, then there must
be a Ye UUW with M(Y,d)=1.

The same argument shows that for any column e with M(R,e)=M(-R,e)=0
there must be a Ze UUW with M(Z,e)=1 and a Z'€ UUS with M(Z',e)=1.

Now we have shown that for each column ¢ of M there exists a Pe UUWUS
such that M(P,c)=1. This implies that there is a complete path p through M
with P(p) € UUWUS. Together with Remark 3.2.7 this implies that there is a
path R'e P with L(R") < L(p) € UUWUS. =

Lemma 3.2.9 shows that the method of iterated consensus applied to a set
PM) does not change AM). Therefore we have the following

3.2.10 Corollary:
PAM) is the set of prime implicants of t-(M). u

Since the set of prime implicants of an unsatisfiable propositional formu-
la is empty, we have the following

3.2.11 Corollary:

Let ¥ be an unsatisfiable ground formula and M the NF-matrix of #. Then
AM)=0. ]

We described the conversion between conjunctive and disjunctive
normal form, being the basic step of the clausal normal form algorithm. The
transformation of an arbitrary formula % into clausal normal form (or
disjunctive normal form, respectively) starts with the innermost terms of ¥
and multiplies them by using successively the basic algorithm until the
desired normal form is achieved.

The algorithm described in this paper is similar to the algorithm presen-
ted in Slagle, Chang & Lee (1970). There are, however, two substantial differ-
ences between the two approaches. First, their algorithm’s basic data struc-
tures are semantic trees, while the data structures used here are matrices.
The use of matrices makes our method very suitable for application in the
matrix methods for automated theorem proving. All the features described
in this paper, like the frequency ordering of literals or the canceling of rows
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and columns under certain conditions, directly apply to the matrix approach,
resulting in simplification or avoidance of redundancy. Another improve-
ment with regard to the semantic trees method is the cancellation of sub-
sumed columns of the matrix, which is not present in Slagle, Chang & Lee’s
algorithm and which can save a considerable amount of time.

There is another method to minimize the clausal form of a formula,
which is described for instance in Lewis & Papadimitriou (1981) and Gallier
(1986). Their method is based on a linear transformation using additional
variables, and it avoids the exponential increase in the size of the formula,
when multiplied in clausal form. The issue of this thesis, however, is
deleting redundancies (i.e. subsumed clauses) rather than minimizing the
length of the resulting clause set. The removal of subsumed clauses is
usually accomplished in later stages of the proof of a formula, and it is
known to be very expensive there. These redundancies, however, are still
present in the clause set T that is produced by the linear transformation,
since all clauses of the totally multiplied form of a formula can be obtained
by resolving clauses of T.

The multiplication algorithm described in this section has been imple-
mented in the MKRP theorem prover (Raph 1984). It performs particularly
well for examples with nested equivalences, as it is the case with Andrew’s
example (Henschen 1980). For instance a formula of the form f;ef,& ..o
f,+1 with n nested equivalences will result in 27 clauses in the best case of
transformation and in 4" clauses in the worst case. Our algorithm always
produces the minimal number of 27 clauses.
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4 Eliminating Redundant Clauses

4.1 The Use of Subsumption in Automated Reasoning Systems

The derivation of redundant information is one of the greatest obstacles to
the efficiency of automated reasoning programs. Even very small problems
can become intractable due to the increasing amount of redundant clauses
during the proof. The main problem with redundant clauses is their
inheritance property. This means that any derivative of a redundant clause
itself is redundant. The following example, while being somewhat artificial,
is nevertheless very instructive.

4.1.1 Example:

Let n be any even natural number, and let S be the set consisting of the two
clauses

C1: {Px, Pfx}

Ca: {-Py, ~Pfny}
The set S is unsatisfiable, which is easily proved for n=2 or n=4. Already for
n=6, however, many redundant clauses are derived in the proof, and for n>6
the problem is nearly intractable, since the computer resources are swamped
with thousands of redundant clauses.

Many other examples show that an approach, which retains all derived
information, even the redundant one, usually results in a combinatorial
explosion or leads reasoning programs to fruitless paths by concentrating on
the redundant information. A means to detect and to discard redundant
information thus seems indispensible for solving even small problemsl.
The former task has turned out to be very difficult, and it will be the issue of
this chapter. Since in general the test on redundancy must be repeated very
often during a refutation, its efficiency is crucial for its use.

Redundant information comes under different logical forms. The two
most common types of redundancy are tautology and subsumption. Since

1 Overbeek & Wos (1989) provide a broad discussion on the value of procedures removing

redundant information, compare also Wos (1988).
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detecting tautologies causes no serious problems, we shall deal only with
subsumption. The formulation of subsumption is due to J. Robinson
(1965a), and it is assessed by Overbek & Wos (1989) to be his most important
contribution to automated reasoning, even with regard to his formulation
of binary resolution (J. Robinson 1965a) and hyperresolution (J. Robinson
1965b). In fact, practical experience over decades has shown that sub-
sumption, besides demodulation, is the most important means to discard
redundant information, such as duplicates or instances of already retained

clauses.

The subsumption test has proved to be very expensive in its most general
form. In fact, testing subsumption requires a matching process under the
theory of associativity, commutativity, and idempotence, which is NP-
complete, as Kapur & Narendran (1986) remark. Section 4.4 will give a brief
account of several subsumption algorithms that have been developed until
now. On account of the subsumption test’s complexity, several less complex
variants of subsumption can be employed in automated reasoning pro-
grams.! For instance, the potential subsumers can be restricted to unit
clauses. This is a very common variant, which comes under linear
complexity. It may also suffice, for instance, to employ the particular kind of
subsumption that merely tests whether two clauses are copies of each other.
This test will be called variant test for short. Being itself NP-complete, the
variant test nevertheless allows for refinements that are particularly
efficient for the most common cases of clauses with few variables or clauses
consisting of few literals. Such a variant test will be presented in the next
section. One of our previous results was that two clauses are subsumption
equivalent, iff their irreducible factors are variants of each other. In view of
this result, it turns out that the variant test in fact amounts to a test on
subsumption equivalence, provided that all clauses are completely reduced.
The following example shows the effect of the combined reduction to
irreducible factors and subsequent elimination of variants.

1 The question, which type of subsumption to select, however, seems by no means to be

answered, this is the issue of one of Wos’ (1988) Basic Research Problems.
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4.1.2 Example:

The multiplication of a formula to conjunctive/disjunctive normal form
may produce parts of formulae, which are equal up to renaming. In this
example the variant test suffices to remove all redundant parts.
The following formula

VX,y,Z (XSy A X<Z) v (YSX A y<2) V (2<y A 22X)
is valid in totally ordered sets. Its clausal form consists of the clauses Cy,...,Cs
with

C1 = {x<y, y<x, zsy}, Co={xsy, yx, z2x}, C3={xgy, y<z, z<y},
Cy = {xsy, ysz, zx}, Cs = {x<z, y<x, zsy}, Cg={x<z, y<x,zx},
C7 = {x<z, y<z, 25y}, Cg = {x<z, y<z, z2x}.

First of all, reducing each C; to its irreducible factor C;' yields:
C1' = {x<y, y=x}, Co' = {xgy, y<x), C3' = {y<z, zy},
Cy4' = {x<y, y<z, z<x}, Cs' = {x<z, ysx, zsy}, Ce¢' = {x<z, 2<x},
C7' = {y<z, z<y), Cg' = {x<z, z=<x].

In the next step, the variant test recognizes Cp', C3', C¢', C7', Cg' as variants of
Ci1', and Cs' as variant of C4'. Removing the redundant parts results in the
clause set

S = {{x<y, yx}, {x<y v y<z v z2x}}

An algorithm that accomplishes the task to produce the irreducible factor
of a given clause will be given in section 4.3. Finally, in section 4.4 we will
show that the notions and methods of 4.2 also prove useful for the general
subsumption test.

4.2 A Variant Test Based on Characteristic Matrices

The variant test can be seen as a generalization of the well known (directed)
graph isomorphism problem, that is, the problem to decide whether there is
a bijective homomorphism mapping one given graph to another. If a direc-
ted graph G consisting of k nodes is represented as a set of ordered pairs (i j),
with ije {1,...k}, a clause Cg corresponding to G can be constructed which
contains the literal Px;x; iff G contains the ordered pair (i,j). Then obviously
the directed graphs G and G' are isomorphic iff the corresponding clauses Cg
and Cg' are isomorphic. The most common technique to solve the graph
isomorphism problem can be sketched as follows: The basic idea is to test all
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bijective mappings ¢:{1,... k}—>{1,... k}, whether they yield a homomorphism
$:G—>G', that is, whether (i,j)e G implies (i$,jp)e G'. Since the number of
those bijective mappings is k!, heuristic techniques have been used to
restrict the number of mappings that must be considered in this problem
(see, for instance, Unger (1964), or Berztiss (1973)). This techniques all are
based on the observation that there are several invariant properties of
directed graphs that must be preserved by an isomorphism. Unger, for
instance, states that the pair (indegree, outdegree)! is such an invariant
property of the nodes.

The analogy between the graph isomorphism problem and the variant
test suggests that the well known heuristic techniques to restrict the possible
pairings of nodes could also prove useful to limit the number of pairings of
variables in the variant test. In the following we shall adopt Unger’s
invariant to develop an appropriate variant test. Throughout this section,
all occurring clauses will be assumed to be irreducible.

Three generalizations have to be made in order to extent the solution of
the graph isomorphism problem to an algorithm that detects variants: First,
the occurrence of constants and functions has to be considered; second,
literals with more than two variables have to be dealt with; and finally, one
has to take into consideration that several different predicate symbols can
occur in clauses.

Before giving the exact definitions, the basic notions and methods shall be
introduced informally by means of an example. Let C={Lj,Ly} with
L1=P(fx,gy) and Lp=Pyx, and let D = {K1 K5} with K;=P(fu,gz) and Kp=Puz. If
we want to apply the techniques to solve the graph isomorphism problem,
we first have to get rid of the function symbols. This can be done by
introducing new predicate symbols, say a binary predicate Q, such that Qvyv;
stands for P(fvy,gvz). The symbol Q represents the “term skeleton”
P(f(*),g(*)). Note, however, that the literal P(fx,gx) is transformed into a

1 Indegree means “number of incoming links”, outdegree means “number of outgoing links”.
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literal R(x) with a unary “skeleton”.l That this transformation is correct, can
be seen from the fact that two literals L and K are equal up to renaming, iff
they have the same term skeletons. In our example we obtain C*={Qxy, Pyx},
and D*={Quz, Puz}. These two clauses can be represented by two graphs,
whose arcs are labeled with the predicate symbols P and Q (see figure 4.1)

Q Q
) O y u i
P P
fig. 4.1

Next we compute for each variable ve V(C) the (characteristic) pair
xp,c(v) = (indegree(v,P), outdegree(v,P)) and xq,c(v)=(indegree(v,Q),
outdegree(v,Q)), where indegree(v,P) denotes the number of P-arcs outgoing
from v, and analogously for the other symbols. Since the clauses are variable
disjoint, the indices C and D can be omitted. Abbreviating xp c(x) by xp, we
obtain

xp =(0,1), xQ=1(1,0), yp=(1,0), yo =(0,1)

up=(1,0), ug=(1,0), zp=(0,1), zo=(0,1)
Since the two characteristic pairs for x do not match the characteristic pairs of
any variable of D, it can already be decided that the variant property does not
hold. It can, however, also be useful to define a characteristic for literals, by
just joining the characteristic pairs of the corresponding variables, which can
be represented by matrices as follows:

1A similar notion is that of the rigid part of a literal, see Nicolaita (1989). The difference
to the notion of a term skeleton is that the rigid part does not mirror multiple occurences of

variables, whence the rigid part of P(fx,gx) is P(f(*),g(*)).
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0
(Lyp=Qxylp=0TypT = [ 0] or

(Kpp = (Quz)p = [(1) ?] = (Kop

(L1)p does not match neither the characteristic matrix (K1)p nor (K2)p, which
also indicates that the variant property does not hold.

In the following the previous informal description of the algorithm shall
be made more precise.

Let L be a set of literals. For any Le £, let [L] denote the equivalence class
{L'e I L'= L}. If A is any such equivalence class, we take an arbitrary Le A.
We define the literal L* by L* = Pp(xy,...,xn), where {x1,...,xn} = V(L). For any
Ke A, we define K* = Pp(x1p,...,xnp), if p is the renaming that maps L to K.
This transformation is extended to clauses by C* = {L*| Le C}.

4.2.1 Example:

Let L = P(f(x, g(y)), h(z)), K = P(f(u, g(v)), h(w)), and M=P(f(u, g(v)), h(w)).
Since (L]=[K] = [M], we have L* = Pr)(x,y,z), and K" = P[rj(u,v,w), where P[]
can be interpreted as the term “skeleton” P(f(*, g(*)), h(*)). For the literal M
we obtain M" = Ppvy(u,v).

4272 Lemma:

Let L and K be literals, and let pe P. Then
Lp=Kiff L'p=K".

Proof: Let L* =P[L}(x1,...,Xn)- Then Lp =K iff [L] =[K] and K" =Pjxj(x1p,...,Xnp)
iff L’p =K" u

From the previous lemma follows easily that C =D holds for two clauses
C and D, if and only if C* = D* holds. L" is a positive literal without function
and constant symbols. Moreover, it has the additional property that the
variables of its argument list are pairwise distinct. Terms or literals of this
kind are also called linear. The transformation C—C" thus reduces the
problem to the elementary case of positive linear literals, and we shall
assume in the following that all occurring literals are of this particular form.

1 The operation T denotes the transposition of matrices. Transposing a row vector yields a

column vector.

45



Simplification and Reduction for Automated Reasoning

Some additional assumptions can be made for the test, whether the clause C
is a variant of the clause D. |[V(C)| = |V(D)| as well as |C|=|D| are necessary,
and also easy to test, conditions for C=D. Throughout the rest of this section,
it will thus be assumed that both conditions are satisfied. Moreover, we shall
assume that |{Le C | P(L) =P}| = |{Ke D | P(K) = P}| holds for each predicate
symbol P occurring in CuD.

The following definition introduces the notion of a characteristic function
of a clause, which will be the desired invariant analogon to the pair
(indegree, outdegree) for directed graphs.

4.2.3 Definition:

Let C and D be (not necessarily distinct) clauses.

a)  For any literal L=Pxj...xn € C we define the function
oL,c: V(C) — {0,1}n by
1 ifx=x

Loy = { 0 otherwisel
b)  For any n-ary predicate symbol P occurring in C we define the function

xp,C : V(C) - Nn by

)= Y erc),
PL)=P

where the addition on tuples is defined pointwise.
¢)  For any n-ary predicate symbol P occurring in C we define the function
XP,C\ : C > Nmxmby
xe,c(L) = (xp,cx) ... xp,clxm)T),
where L is of the form Qxi...xm.
d) We define a relation =cp on V by
x =C,D V iff xp,c (x) = xp,D (y) for all P occurring in CUD.
The relation =c,c will be written =c. Analogously, a relation =c,p can
be defined for literals, with the additional requirement that P(L) = P(K)
must hold for L=K.

The function yc is called the characteristic (function) of C. xp,c(x) is an n-
tuple of natural numbers, and the k-th component of this n-tuple denotes
the number of occurrences of the variable x in the n-th coordinate position

1 Note that aj denotes the j-th component of the vector a.
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in literals with predicate P in the clause C. Suppose the clause C contains
only one single predicte symbol P and arity(P)=2 holds. Then the first
component of xp,c(x) denotes the number of literals of the form P(x,*). In
the notation of directed graphs, this is just the number of links outgoing
from the node x. Similarly, the second component of xp c(x) denotes the
number of links incoming to the node x.

The index referring to a clause will be dropped in the following. The
relation =c p is an equivalence relation, and the equivalence class of x
modulo ~c,p will be denoted by [x]c,p.

In the following we shall use the abbreviation ¥ *a for Z?:l aj, if a is an
n-tuple (ay,...,an).

4.2.4 Example:
Let C = {Lj, Lp, L3, L4}, where L1=Pxy, Lp=Pyz, L3=Pxz, L4=Qzx.
Then we have

XP(X) = QL1(X) + QL (X) + @L3(x) = (1, 0) + (0, 0) + (1,0) = (2, 0)

and analogously xp(y) = (1, 1), xp(z) = (0, 2), xo(x) = (0, 1) etc.
The characteristics of literals are represented by matrices, for instance:

xp(L1) = [3}] , XL2) = [;g] , xp(L3) = [(ng

The characteristic function is indeed a property that is invariant under
renamings, as the following lemma shows:

4.2.5 Lemma:

Let C and D be clauses and let pe P, such that Cp=D. Then
a)  oLc() = @rp,D(xp) holds for each Le C, xe V(C).

b) x=xp holds for each xe V(C).

¢ L =Lp holds for each Le C.

Proof: a) Let L = Pxj...xn. Then Lp = Px1p...xpnp. We have
(or,cOj = 1iff x =x; iff xp = xjp iff (QLp,D(XP)); = 1.
b) follows from a) and the fact that
HLeC I P(L)=P}| = |{Ke D | P(K)=F}|
holds for each predicate symbol P occurring in CUD.
¢) follows from b) ]
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However, the characteristic function’s invariance under the renaming p is
only a necessary, but not a sufficient condition for the renaming p to map C
onto D. Consider, for instance, the clauses C = {Pxy, Pyz, Pyu, Pux} and D =
{Px'y', Py'x', Pz'u', Pu'z’}. For all v,we V(CUD) we have v=cpw, but
nevertheless there exists no renaming p such that Cp = D holds.

Under certain additional restrictions, however, the characteristic func-
tion’s invariance is also a sufficient condition for the clauses C and D to be
variants. If we require, for instance, that no two variables of C have the same
characteristic, then it suffices to compare the characteristics of the variables
of C with the characteristics of the variables of D in order to decide the
variant property. This requirement can also be formulated in the following
form: The equivalence classes of V(C) modulo = have to be singletons. The
requirement above can still be weakened, which is shown in the following
two lemmata.

For any xe V, we define O(x,C) to be the total number of occurrences of x
in C, that is, O(x,C)= ¥ ¥* oL(x).
LeC

4.2.6 Lemma:

Let C be a clause and let xe V(C). Then the total number of occurrences of
variables y=x in C is

Iixlel 3 3* xp 00,

where the first sum is taken over all predicate symbols P occurring in C.

Proof: 3* xp(x) is the number of occurrences of x in literals Le C with
P(L)=P. Then ¥ Y * yp(x) is the number of occurrences of x in all literals Le C.
P

From xp(y) = xp(x) for all y with y=x follows 3*xp(x) = 3* xp(y) for all ye [x]c,
and for each predicate P. From this follows the assertion of the lemma. =

4.2.7 Lemma:
Let C and D be irreducible clauses with |C|=ID|. Suppose |[x]lc| = 1 holds for
each xe V(C) that satisfies O(x,C)>1. Then

C=z=D, iff for each Le C there is a Ke D with L=K.

Proof: If Cp=D holds for some renaming p, then L=Lp holds for each LeC,
according to lemma 4.2.5.
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In order to prove the converse direction, we first show that under the
assumptions of the lemma the equivalence classes of C modulo = are
singletons: If this is not the case, then there are L, Ke C, with L#K but L = K,
which implies P(L) =P(K). Let P(L) =P, and let L=Pxj...xn and K=Pyj...ypn.
Then there is je {1,...,n} such that Xj# Y but Xj = Yj- W.lo.g. we can assume that
there is exactly one such je {1,...,n}. From xj=yj follows that yje [xjlc, hence
[xjlc > 1. The assumptions of the lemma imply that O(x;,C) <1, and since x;
occurs in L, we have O(x;,C) = 1. Let 1={xj—y;}. Since xj=y; holds for i#j, we
have Lt=K, and L't=L' for each L'#L, since xj& V(L") holds for L'#L. But
this implies Ct=C\{L}, which contradicts the irreducibility of C. Thus we
have proved that L=K iff L=K.
Next we construct a renaming p with Cp=D. Let L be any literal of C. Then
there is a unique literal L'e D with L'=L, and, conversely, L is the only literal
in C with L=L". The mapping Lo L' thus yields a bijective function p:C—D.
We show that p induces a renaming p:V(C)— V(D). For any variable x we
take an arbitrary literal L of C with xe V(L), say L=Pxj...xn with x=x;.
Moreover, let Ly = Py;...yn. Then we define xjp =yj. From the condition
L=Lp we obtain x;=y; for each ie{1,...,n}, that is, yp(x;) =xp(y;) for each
predicate symbol P occurring in C, and each i€ (1,...,n}. From this follows that
for any xe V(C)

lIxlc " VL) = |Ixplp A V(LP)]
that is, the total number of occurrences of variables y=x in L equals the total
number of occurrences of variables y'=xp in L{, and hence

Y Iixlcnvl = Y. lixplpnVp)l,
LeC LeC

that is, the total number of occurrences of variables y=x in C equals the total

number of occurrences of variables y'=xp in D. According to the previous

lemma, these numbers can also be computed by |[xlc|T Y*xp,c(x) and
P

IIxplclY >* xp,p(xp), respectively, from which follows that
2
Ix]cl )y xp,c) = |[xplcl DXy xP,D(Xp)

Since X* xp,c(x) =X* xp,D(xp) holds for each P, we obtain

[xlcl = lixplpl.
Now we show that p is well defined. Assume that x occurs in Lj and in Ly,
say L1=Px1...xp, and Ly =Qy1...ym with x=xj=yk. From the construction of p we
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have L3=Ljp and La=Lyp, hence x=xj=xjp and x=yx~ykp, which implies
Xjp = Y-

Case 1: If |[xjlcl =1, then also |[xjplp|=1. From the previous result follows
Xjp =ykp and p is thus well defined.

Case 2: If |[x]-]C| >1, then O(x;,C)<1, and, since xj occurs in L1, O(x;,C) =1 must
hold. Then Lj=Lj and again p is well defined.

Finally we have to show that p is a renaming, that is, p is bijective on its
domain. Since V(C) and V(D) are finite sets of equal length, it suffices to
show that p is surjective. But this is clear, since § is a bijective extension of p
on C, and if p were not surjective, then § could not be surjective either. m

Criteria that allow to replace the search for an appropriate variable pairing
by a mere comparision of the characteristics are of great value, as the
following example shows:

4.2.8 Example:
Let C={L;,L,L3}, with Li=Pxy, Lo=Pyz, L3=Pxz, and D={K1,K2,K3}, with
K1=Puv, K=Pwv, K3=Pwu. As P is the only predicate symbol, we omit the

index P from the characteristics. We have

xx)=(2,0), xy)=(,1),x2)=(0, 2),
hence the classes [x]c are singletons for all xe V(C). The conditions of the
previous lemma thus apply, and from

@ =[21] =200, x02 = [15] = xxv, 20 = [ 23] = 2k

already follows that C=D. This saves the computation of the 6 possible
variable pairings.

In the following it is shown that for clauses with a small number of
variables or clauses with few literals the comparision of the characteristic
matrices is also sufficient to test the variant property.

4.2.9 Lemma:

Let C and D be clauses. Suppose |V(C)| =2 and [V(D)| =2 hold. Then C=D, iff
{x(x) | xe V(C)} = {x(x") | x'e V(D)} holds.

Proof: Obvious. .

We will mainly consider the so called homogeneous clauses. A clause is
homogeneous, if all its literals have the same predicate.symbol. Our first
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fresult states that for homogeneous clauses with not more than three varia-
bles, the variant property can be decided by merely comparing the characte-
ristics of the variables. Before giving the theorem, we first show some

lemmata.

The following assumptions are made throughout the rest of this section:
We consider clauses C and D with corresponding variable sets V and W,
respectively. If C is homogeneous, then P is the (unique) predicate symbol
occurring in C (and also in D), and n is its arity. Since the case |V|=2 is
trivial, we can assume |V|23. In lemmata 4.2.10 to 4.2.14 we consider the case

|V|=3, and we shall always assume V ={x,y,z}.

First, we remark that a homogeneous clause with n=1 is uniquely
determined up to renaming. Only the case, where n>1 will thus be

considered in the following.

4.2.10 Lemma:
Let [V|<3. Then

a) n<3

b) 0s(p(x))i<2, for each ie{1,...,n}.

Proof: a) is clear from |V|<3 and the linearity of L.
b) From part a) follows n=2 or n=3. Suppose that (xp(x));=3 for some
ie {1,...,n}, say i=1. Then there are different literals Lq, L, L3 all of the

form P(x,*,*) orP(x,*). But this is impossible, since there are at most two
[

variables left to fill out the free positions in Ly, L, La.

4.2.11 Lemma:
Suppose {x(x) | xe V}={y(x") | x'e W}. If x=y, and all components of x(z) are

even, then C=D.

Proof: Let W= {u,v,w}, with u=x, v=y, w=2z. First we remark that
(x(2))ie {0,2} for O<isn. Let p={x—u, y—>v, zow}. We have to show that
LpeD for each Le C. Let L = Pxj...xpe C. Furthermore, let
C'={LeClzeV()}, and C"=C\C,

and let D' and D" be defined analogously.

a) Suppose ze V(L). W.l.o.g. we can assume z=x3. Then (x(z))1 =2 must hold.
Hence there must be some literal K=Pyq...yp, with K#L and z= y1. It is easy to
see, that there are only the following two possibilities: Either n=2 and L =Pzx
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and K=Pzy, or n=3 and L=Pzxy and K=Pzyx. Since (}(w))1=2, the same
must hold for w, u, and v, that is, either n=2 and L'=Pwu and K'=Pwyv are
in D, or n=3 and L'=Pwuv and K'=Pwvu are in D. In both cases, Lp=L'e D.

b) Suppose ze¢ V(L). Then V(L)={x,y}, and, since L is linear, either L=Pxy or
L=Pyx. W.l.o.g. let L=Pxy. From a) follows that Pxze C iff Pyze C, and
Pzx e C iff Pzy e C, hence xc'(x) =¢c'(y). From yxc(x) =xc(y) thus follows
xc(x)=xc"(y). Now Pxye C", hence also Pyxe C". From a) follows that
|IC'| =|D'|, hence also |C"] = |D"|, in particular, there is a literal Ke D with
we V(K). Now the same argument as before applies to D, with the result
Puve D and Pvue D, in particular Puv=LpeD. n

4.2.12 Lemma:

Suppose {x(x)|xeV}={x(x)|x'e W}. If (x(x))i=1 for all xe V, and all
ie{1,...n}, then C=D. ‘

Proof: Case 1: n=2. It is easy to see that under the assumptions of the
lemma either C={Pxy, Pyz, Pzx} or C={Pyx, Pzy, Pxz}, that is, C is determined
uniquely up to renaming. The same holds for D, hence C=D.

Case 2: n=3. It is easy to see that either C={Pxyz, Pyzx, Pzxy} or C={Pzyx, Pxzy,
Pyxz}, and again C is determined uniquely up to renaming. ]

4.2.13 Lemma:

Suppose {x(x)|xe V}={x(x")|x'e W}. If |{x(x) | xe V}| =3, that is, if the
characteristics of the variables are all distinct, then C=D.

Proof: Let W = {u,v,w} such that x=u, y=v, z=w. Let p = {x—>u, y—>v, z->w}.
We have to show that Lpe D for each Le C. '
Case 1: n=2. Let L=Pxy, and assume Puve D. From (}(x))121 and (x(y))221
follows (x(u))121 and (x(v))221. Since Puve D, Puw and Pwv must be in D.
This implies (x(w))121 and (x(w))221, hence also (x(z))121 and (x(z))221. If
Pxz would be in C, then (3x(u)); = (3(x))122, hence besides Puw there must be
another literal P(u,*)e D, but from the other choices Puve D contradicts our
assumption and Puu is impossible due to the linearity condition. Thus
Pxz¢ C. Similarly it can be shown that Pzye D. Since ze V(C), Pzx or Pyz must
be in C. In both cases the same argumentation as above applies, yielding
Pyxe C. Altogether we have excluded Pyx, Pxz, and Pzy from occurring in C.
Thus either C={Pxy, Pyz}, C={Pxy, Pzx}, or C={Pxy, Pyz, Pzx}. But in the last
case we have y(x)=x(y)=x(z), contradicting the assumption [{)(x) | xe V}|=3.
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The first two cases are variants of each other. Hence C is determined
uniquely up to renaming.

Case 2: n=3. Let L=Pxyz, and assume that Puvwe D. We have (x(x))121,
(x(y))221, and (x(z))321, hence also (x(u))121, (x(v))221, and (x(w))321. Since
Puvwe D, this is only possible, if Puwve D, Pwvue D, and PvuweD. If D
would consist only of these three literals, then we had u=v=w, which
contradicts the assumption. Thus there is some other literal, say Pwuv, in D.
Then (x(v))322, hence also (y(y))3>2. This implies Pxzye C and Pzxye C, hence
also (x(x))122. From this follows (x(u))122, that is, Puvw and Puwv must be
in D, which contradicts the assumption. Hence we have proved
Puvw=LpeD. |

4.2.14 Theorem:
C=Diff {(x(x) [ xe V}={x(x") | x'e W}.

Proof: It suffices to prove that {}(x) | xe V} = {3(x") | x’e W} implies C=D. Let

§=x(x), n=x(y), and {=x(2).
It is easy to verify that the following conditions (1) and (2) must hold:
(1) §&j+n;+i=]|C|, for eachie{l,...,n}.
(2) Ei+mi-Lk<2, for each ike(l,...,n} such that izk.
As to the inequality (2), note that &;+nj-{k is smaller than the number of
literals having x or y in position i, and having z not in position k=i, that are
those literals having x or y in position i and in position k. There are at most
two literals of this kind.
With regard to the previous lemma we can assume that |{&n,{}| <2, that is,
at least two of these characteristics are equal. W.l.o.g. we assume that £=n.
Case 1: n=2. Then (1) implies

281 +81=282+ 02,
that is,

C1-82=282-281,
hence {1-{ is even, which implies that either both {1and{, are even or
both are odd. If both are even, then we are done by lemma 4.2.11. If both are
odd, then {1={3 = 1. Then (2) implies

28j-2<1and

287-2<1.
Since &1 =&), &1 cannot be zero. Hence we have

S1=82=m=n2=01=0=1
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The assertion of the theorem now follows by lemma 4.2.12.

Case 2: n=3. As in case 1 we obtain that {;-{2 is even, {>-{3 is even, and {7 -

{3 is even. Hence either {3, {», and {3 all are even, and then we are done by

lemma 4.2.11, or all are odd, which implies {; ={» ={3= 1. Again we obtain
281-2<1,281-2<1and 283-2<1,

and the rest is analogous to case 1. =

The following example shows that an analogous theorem for clauses C
with [V(C)| =4 does not hold.

4.2.15 Example:

Consider the clauses C = {Pxy, Pxz, Pyz, Pzu, Pux} and D ={Pqr, Prq, Ppr, Pps,
Psp}. In this example arity(P) =2 holds, so that the clauses can be depicted by
directed graphs, as shown in figure 4.2.

y g——pn 2z q = T

X i4q4——nm

fig. 4.2

It is easy to verify that x=p, y=q, z=r, and u=s holds. Still, the two graphs
are not isomorphic, that is, CZD.

4.2.16 Theorem:

Let C be a homogeneous clause with |C]=3 and |[x]c|< 3 for all xe V(C).
Then C=D iff {x(x) | xe V} = {x(x) | xe W} and {3(L) | Le C} = {x(K) | Ke D}.

Proof: Let C={L1,L2,L3} and D={K1,K2,K3} such that Li=K; for i=1,2,3. Let
p:C—D be defined by Ljp =K;. We show that § induces a renaming p of V(C)
by V(D). In analogy to the proof of 4.2.7 it suffices to show that p is well
defined: Let

L1=Px1.. xn, Lo=Py1...yn, La3=Pz1...2n,

K1=Px1'...xn, K2=Py1'...yn’, K3=Pz1'...21"
Furthermore, let Aj =% (Lj), xj=x(K;) for i=1,2,3.
Let xe V, let E=y(x), and suppose x=xi=yj, for some i je {1,...,n}. Since A1=x1,
xj'=x=yj holds.
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If |[xIcl = 1, then from {x(v) | ve V}={x(v") | vie W} follows that |[x;'Ipl=1,
hence x;'=yj, that is, p is well defined for x.
Now suppose |[x]cl=2, that is, there is ye V(C) with x~y. Then x(y)=§ holds.
W.l.o.g. we assume that x (hence also y) occurs in the first three argument
positions, that is, ;=0 for i>3. First we remark that |C| =3 implies Ei+x(y)i<3,
hence 2&;<3, which in turn implies &;<1 for all i {1,...,n}.
Case 1: O(x,C) =3, that is, x occurs three times in C. Together with £;<1 for all
ie{1,...,n} we obtain &1=E;=§3=1. W.lL.o.g. we assume x=x1=y»=z3. For y we
obtain two possibilities, either y=xy=y3=21 or y=x3=y1=2z2. These two cases are
symmetric, and we just assume the first. If y1=z2=x3, then yj€ [x]c, contra-
dicting the assumption [x]c <3. Thus

L1 ={P(x,y,x3,...), La=P(y1,x,y,...), La=P(y,z2.%,...),
with y1#2z2 or y1#x3 or zp#x3, and the A; have the form

11*.. *11.. 1*1..

11¢*... 1l *11... 1*1..
M= e pR2= e q L PR3 1 q

where in each matrix at least one of the asterisks is equal to 0. Furthermore,
ki=A;j for i=1,2,3. This implies that there are x',y'e V(D) such that
K1=P(x',y'x3",...), K2=P(y1' Xx\y',...), K3 =P(y',z2' x',...).
with y1'#z2' or y1'#x3' or z2'#x3'. This shows that xp=x', yp=y' and hence p is
well defined for x (and y).
Case 2: O(x,C)=2. W.Lo.g. we assume that §1=£»=1. Then we can distinguish
two cases: Either
L1=Px,y,...), Lo=P(yx,...), and x,ye V(L3), or
L1=P(x,y,...), L2=P(u,x,...), and L3 =P(y,v,...).
In the first case, the Aj have the form

11.. 11.. 10..
M{l 1...],x_,_=[1 1...},13{ : 1]

Furthermore, xj=4; for i=1,2,3. Thus there are x',y'e V(D) such that
K1=P(xy',...), K2 =P(y',x,...), and x',y'e¢ V(K3).

This shows that xp=x', yp=y' and p is well defined for x (and y).

If, on the other hand, L1 =P(x,y,...), La=P(u,x,...), and L3 =P(y,v,...), then the A;

have the form
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11.. 11.. 17
7&1=[ 1 1...],7L2=[ * 1 ...],7\,3=[ 1 1]

where, due to the assumption [x]c < 3, the first two columns of A (and also
of A3) are different. Furthermore, xj=A; holds for i=1,2,3, hence there are
x',y'e V(D) such that

K1 =PKX,y,...), Ko=P(*x',...),and Ko =P(y'%,...),
and again p is well defined for x (and y). |

The following example shows that the condition |[x]c|<3 cannot be
dropped from the previous theorem.

4.2.17 Example:

Let C={Pxyzuvw, Pyzxvwu, Pzxywuv} and D={Px'y'z'u'v'w’', Py'z'x'w'u'v/,

Pz'x

y'v'w'u'}). Then

111000
111000

111000
XM =1 500111 | =K

000111
000111

holds for each Le C, Ke D. We have {y(x)|xeV}={x(x")]x'e W} and
{x(L) | Le C} = {x(K) | Ke D}, but C=D does not hold.

Of course, theorem 4.2.16 also holds for non homogeneous clauses,
possibly containing different predicate symbols. One might suggest that even
an anlogon of this theorem holds for clauses, where each homogeneous
subclause is of length <3. That this is not the case can be seen by the
following example:

4.2.18 Example:

Let C={Pxyzw, Pyxwz, Qxyzw, Qyxwz}, and let D={Pxyzw, Pyxwz, Qyxzw,
Qxywz}. Then

1100

1p(L) = xoL) = { (‘,3??] = xp(K) = xQ(K)

0011
holds for each Le C, Ke D. Still, C=D does not hold.

We are now able to use the previous results to define an algorithm that
decides whether two given irreducible clauses are variants of each other.
Result 4.2.5 shows that the search for the possible matches from variables of
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C to variables of D may be restricted to those matches that respect the
equivalence =. Results 4.2.7 to 4.2.16 give sufficient conditions for the
variant property for some particular cases.

For the remaining cases we use a constraint propagation procedure: First
we determine for each Le C the set [L]c,p of possible matches in D. Then the
following constraint is propagated through C: if two literals L, K share a
variable x, say at positions i and j, then the matches L' for L and K' for K
must have a common variable at positions i and j. This yields the formal
definition of what we call incompatibility of two matches for two different
literals:

Let L=Px1...xn, K=Qy1...ym be literals of C and let L'=Px1'...xn", K'=Qy1'...ym'
be possible matches for L, K, respectively. Then we call L' and K' incom-
patible, if the mapping {L—»L', K-»K'} does not induce a renaming of the
corresponding variables, that is, if x;=yj for some ie {1,...n}, je{1,...,m}, but
Xi #Yj -

Algorithm
VARIANT (C,D).
INPUT: two clauses C and D, with variable sets V and W, respectively.
OUTPUT: TRUE, if C=D, FALSE otherwise.
0. If |C|#|D|, [VIzIWI, {x(x) | xe V}#{x(x) ] x’e W} or {x(L)|LeC}
# (x(K) | Ke D}, then return FALSE.
1. If for each variable xe V that occurs more than once, [x]c is a
singleton, then return TRUE.
If C is homogeneous, then
if [V|<3, |Cl<3, or (JC|=3 and [x]c<3 for all xe V), then return
TRUE.
2. Otherwise form a queue consisting of all literals of C. For each literal
L of C compute the set of all neighbourhood literals, i.e. those literals
that have at least one variable in common with L.
3. Until the queue is empty:
3.1 Remove the first literal from the queue; this is now the current
literal.
3.1.1 Compute, if this has not yet been done, the set of all
possible matches for the current literal; i.e. the set of all lite-
rals of D with the same characteristic as the current literal.

57




Simplification and Reduction for Automated Reasoning

3.1.2 Remove all literals X from the set of possible matches
for the current literal that are incompatible with all possible
matches for a literal Y in the neighbourhood of the current
literal. If thereby the set of possible matches for the current
literal becomes empty, then return False.
3.2 If any change has occurred, then add those literals that are in
the neighbourhood of the current literal to the front of the queue.
4. Return True.

To show the termination of the algorithm, let IT =2 I[L]C,Dll where
LeC

[L]¢,p denotes the set of possible matches for L. Let Q denote the queue used
in the algorithm. It is easy to see, that the pair (T,]|Q]) decreases with respect
to the lexicographic order over the natural numbers each time the loop is
traversed.

4.2.19 Example:
Let C={Kj, Ky, K3,K4} and D = {L1, L, L3, Lg} with

L1 =Ptw, Ly = Pst, L3 = Prs, Ly = Pqgr and

K1 =Pxy, K2 =Pyz, K3 = Pzu, K4 = Puv.
C and D are homogeneous, we thus omit the index P for the characteristics
in the following. The folléwing variable characteristics (see figure 4.3) are
computed:

\Y% % w
X (1,0) lq
y,z,u |(1,1) |15t
v (0,1) |w

fig. 4.3

and the following literal characteristics (see figure 4.4)
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C X D
(117

Ky | 01 L4
T

K2, K3 11 Ly, L3
[10]

K4 | 11 Ll
fig. 4.4

Thus we have {x(x) | xe V}={x(x") | xX'e W} and {x(L) | Le C} = {x(K) | Ke D}.
Since |V|>3, |C|>3, and |[y]l >1, none of the sufficient conditions for
returning true applies.

We form the queue Q = (K1, K2, K3, K4) and remove its first literal K;. The
only possible match for Ki is Ly, that is, PM(Kj) = {Lg}. All literals in the
neighbourhood of Kj are still in the queue, so we remove the next literal,
Kp, from @ Next we compute PM(K3) = {Lp, L3}.

The only literal in the neighbourhood of Kj, for which the set of possible
matches is yet computed, is Kj. The possible match L for K3 is incompatible
with Ly, since it maps y to s. So L is canceled from PM(K>).

Now we have PM(K3) = {L3} and Q = (K3, Ky). Since a change has occurred,
we have to put the literal X1, which is in the neighbourhood to K, at the
front of the queue.

Next Kj is removed from the queue and it is easily seen that no change will
occur in this step.

The next literal, K3, is removed from the queue. We compute the set of
possible matches for K3, which is PM(K3) = {L, L3}.

The possible match L3 for K3 is incompatible with the match L3 for the
neighbourhood literal K». Therefore L3 is removed from PM(K3). Thus we
have PM(K3) = {Lp}, and @ = (K4). Now K3 has to be added again to the front
of the queue, but this will not yield a change.

Now the last element, Ky, is removed from the queue. L is the only possible
match for K4, and this match is compatible with all other matches.

Now the queue is empty; therefore C = D holds.
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4.3 An Algorithm to Produce the Irreducible Factor of a Clause

This section provides an algorithm that computes the irreducible factor of a
given clause. A first approach is suggested by the definition of a subsuming
factor. Such an algorithm, which is proposed by Joiner (1973)1, proceeds by
checking the given clause C for unifiable pairs of literals. If such a pair (LK)
is found, and the most general unifier o of L and K has the property that Co
subsumes C, then Co is a subsuming factor of C, and the procedure is repeat-
ed with Co instead of C. This is done until no more pair of unifiable literals
can be found in the actual clause. This approach’s drawback consists in the
unification procedure it involves, and, in particular, the number of expen-
sive subsumption tests. It will turn out, however, that the unification
operation is not really necessary, and, moreover, that the number of sub-
sumption tests can be significantly reduced.

By lemma 2.2.5, at least one of the irreducible factors of a clause is a subset
of this clause. Our algorithm produces such an irreducible factor. Thus C*
will always denote one of the irreducible factors of C that satisfies C'cC.

Our introductory example 4.1.2 contained the reducible clause C1={x<y,
y=<x, z<y}. Here, the fact that the subclause C' = {x<y, y<x} of C is subsumed by
C\C' = {z=y}, with the additional property that C' is invariant under the
subsumption substitution, accounts for the reducibility of C. The following
lemma, which is fundamental for our algorithm, shows that this indeed
constitutes a necessary and sufficient condition for reducibility.

4.3.1 Lemma:

The clause C has a subsuming factor C', iff there exists a substitution p with
i (C\CH)ucC and
(ii) V(C)ndom(p)=0

Proof: Suppose that conditions (i) and (ii) are satisfied. Then, by (ii),
C'w=C" holds, hence from (i) follows Cu=C'puU(C\C)u=C', which implies
that C' is a subsuming factor of C.

1 Joiner calls a subsuming factor of clause C a condensation of C, and the irreducible factor of C

the most specific condensation of C.
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Conversely, let C be reducible and let C' be a subsuming factor of C. By
lemma 2.2.5, we can assume w.l.o.g. that C'c C. Hence, there exists an
idempotent substitution p with C'=Cp c C. Then we have
(C\ChucCu=C"

Finally, if xe V(C'), then x=yu for some ye V(C). This implies
xp = yu2 =y =x, that is, xe¢ dom(p). n

4.3.2 Definition:
Let C be a clause and C',C"cC. We write
C=C'eC"
if C=C'uC" and V(C)YNV(C")Y =G. C is called connected, if it cannot be
written in the form C'@C".

4.3.3 Lemma:
If C=C1®Cy, then C7 is a subsuming factor of C iff it is subsumed by Cj.

Proof: Observe that V(C1)NV(C2) = & enforces condition (ii) of lemma
4.3.1, hence C12C> implies that C; is a subsuming factor of C. To prove the
converse direction, assume that Cp is a subsuming factor of C, that is,
Cy=Cp cC for some idempotent substitution p. If xe V(C»), then x=yu for
some ye V(C). Hence xpi=x, and we have

Co=Cu=CpuCu=CpuCs.
Hence C1u < Ca holds. ]

4.3.4 Corollary:

If C=Ci®...@®Cp such that C; is irreducible and connected for ie{1,...,n}, then
C'=M1®...&My,

where {Mj,..., My} is the set of maximal elements in {C1,...,Cn} w.r.t. the

subsumption ordering.

Proof: Follows from the previous lemma. |

The previous lemmata suggest a proceeding for computing the irreducible
factor of a given clause C as follows: First find the connected subsets
{C1,...,Cn} of C and reduce each of it to its irreducible factor. Then test each
pair of these reduced clauses on subsumption and remove the subsuming
clause, if the test was successful. If C is a connected clause, the irreducible
factor of C is produced as follows: Test for all subsets C' of C, whether (a) C
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subsumes C\C' and (b) the subsumption substitution satisfies condition (ii)
of lemma 4.3.1.

The condition xpu=x for each xe V(C)NV(C\C') provides a restriction for
the number of possible matching substitutions p. This condition can also be
expressed as follows: If x is a variable, which is shared by C' and C\C', and L
is a literal in C', such that xe L, then the search for the matching literal L' in
C\C' can be restricted to those L' that satisfy xe L'. Moreover, we can state
that the occurrences! of x in L must be the same as those of x in L'. This
allows a characterization of subclauses as potential subsumers:

4.3.5 Definition:

Let C be a connected clause, and let C'cC. A variable xe V(C")NV(C\C") is
called isolated in C', if there is Le C' with xe V(L) and xe dom(o) holds for
each oe uni(L,C\C').

4.3.6 Example:

Let C = {Pxy, Pzx, Pwy}, and let L=Pxy. Then x is isolated in C' = {L}, since
xo=z or xo=w holds for-each e uni(L,C\C'). A similar argument shows that
x is also isolated in {Pzx}. Note, however, that x is not isolated in C"={Pxy,
Pzx}, since the condition xe V(C")NV(C\C") is violated. This restricts the
potential subsuming factors to C" and C\C".

4.3.7 Lemma:

Let C be a connected clause, let C'cC. If C' is a subsuming factor of C, then
C\C' contains no isolated variables.

Proof: Since C' is a subsuming factor of C, there exists a substitution
u with (C\CHucC', and V(C')ndom(u) =G. In particular, pe uni(L,C') holds
for each Le C\C', and if xe V(C")NV(C\C'), then xe¢ dom(n) holds, which
implies that x is not isolated in C\C". N

We do not formally define the notion of an occurrence of a variable x in a term t. But it is
intuitively clear that this means the tree address of x in t. We shall rather denote the fact
that x has the same occurrences in literals L and K by x¢ dom(o) for the most general unifier
cof Land K.
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According to the previous lemma, the subsets C' may be chosen from
those subsets of C that contain no isolated variables.

In particular, if a variable x occurs exactly in the literals L and K, but with
different occurrences, then x is L-isolated and also K-isolated. This implies
that L is element of a potential subsumer if and only if K is. The variable x
will be called (L,K) isolated in this case. For instance, the variable x in
example 4.3.6 is (L,K)-isolated with L=Pxy, K=Pzx. The test on isolated
variables is mainly understood to be a test on irreducibility of the underlying
clause. As in actual problems the clauses most probably are not reducible, a
test which early detects failure, should be more valuable than a test which
assumes reducibility of the clause. We suggest that for most clauses C arising
in practice the reducibility test will fail exactly on account of (L,K)-isolated
variables for each pair (LK) of literals of C.

When checking whether a subclause C' of a connected clause C is a
subsuming factor of C, the shared variables are instantiated with “new”
constants in order to assure that the subsumption substitution p with
(C\CHugC' leaves C' invariant.

Algorithm
IRRED_FACTOR (C)
Input: A clause C
Output: The irreducible factor C* of C
1. Compute all the connected components Ci,...,Cn of C, and let
S={Cy,....Cnl-
2. Fori=1,...ndo
C; :=IRRED_CONN (Cy).
3.Fori=1,...,ndo
If C; subsumes some Cie S\{Cj}, then S:=S\{C;}.
4.C"= &Gy

Function
IRRED_CONN (C)
Input: A connected clause C
Output: The irreducible factor C* of C
1. Let S=POTENTIAL_SUBSUMERS(C).
2. If S#C then for all subsets C' of C containing some element of S do
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Let V=V(C)NV(C\C").

Let p={x—ay | xe V; ax is a constant not occurring in C}.

If C'u subsumes (C\C")u, then return IRRED_CONN(C\C').
3. Return C.

Function
POTENTIAL_SUBSUMERS (C)
Input: A connected clause C
Output: {C'cC | C' contains no isolated variable}.
1. Let C = Cq u...u Cp, where (Li,Lj) with Lie Cj, Lig Gy is unifiable iff i=j.
2. m=1. 5¢p=0. For all xe V(C) do
If x is (L, K)-isolated for some literals L, K, then
if there are i<m such that Le S; and j<m such that Ke S;, then
S]‘=SiUSj; S]‘=® else
if there is i<m such that Le S; then 5;=5;U{K} else
if there is j<m such that KeS; then Sj=5;U{L} else
Sm={L,K}; m=m+1.
If either of Si,Sj, or Sy, contains some Ck, then return C.
3. Return {S1,...,Sm}.

Next, we give some examples to demonstrate how the algorithm works.
These are clauses, which frequently occur in axiomatizations of mathema-
tical structures that avoid the use of equality. All these clauses are connected
clauses. In all examples the test on isolated variables suffices to recognize
irreducibility.

4.3.8 Examples:
a) This is the clause expressing n-fold transitivity of the P-predicate. Such a

clause can be obtained, for instance, by n-fold self-resolution of the well-
known transitivity clause PxyAPyz = Pxz. Let n be a natural number, n22,
and let Cn={L1,...,Ln,Lns+1} with
L1=-Px1x9,....Ln="Pxpxn+1, Ln+1 =Px1Xn+1-

For each ie {2,...,n}, the variable xj is (L;-1,Lj)-isolated. Thus C\{Ln4+1]} is the
smallest subset of C containing no isolated variables. Obviously, this
subclause can not subsume {Ln+1}, hence Cy is irreducible. For Joiner’s
algorithm, however, this is nearly the worst case example. Each pair (Li,Lj)
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with i,je (1,...,n} is unifiable. Thus the algorithm requires O(n2) subsumption
tests with a very unfavourable subsumer/subsumend relation of n/n+11.
b) The following two clauses represent the axiom of associativity in a
notation that avoids the use of equality.2

C1 =-Pxyu =Pyzv -Pxvw Puzw

Co =-Pxyu -Pyzv -Puzw Pxvw
The test on isolated variables yields the following result: The variable y is
isolated in the first two literals, v is isolated in -Pyzv and -Pxvw (Pxvw),
and u is isolated in =Pxyu and Puzw (-Puzw). Thus each proper subset of Cy
and Cy, respectively, contains isolated variables.

4.4 A Subsumption Algorithm Based on Characteristic Matrices

In this section it is shown that the variant test of section 4.2 can be
generalized to a subsumption algorithm that compares favorably with the
subsumption tests developed as yet. First, we shall give a brief overview on
those algorithms3. All these algorithms rely heavily on the fact that the
problem to decide whether clause C subsumes clause D is equivalent to the
decision whether C subsumes Dgy, where Dgr is obtained from D by replacing
all variables by constants not occurring in CuD. We shall thus assume
throughout this section that D is a ground clause. We shall refer to C as the
subsumer, and D will be called the subsurmend.

The search for a matching substitution yt, such that CucD, amounts to a
successive computation of matchers for literals pairs (L, K), where Le C, KeD.
In analogy to Robinson’s (1965a) unification algorithm on the one hand, and
the algorithm given by Martelli & Montanari (1982) on the other hand, there
are two different ways to find out, whether the computed substitutions are

Such a test has a worst case complexity of O((n+1)), see for instance Gottlob & Leitsch
(1985).

Axiomatizations of some mathematical theories including group theory and ring theory can
be found in Wos’s (1988) Basic Research Problems.

Gottlob & Leitsch (1985) provide a detailed discussion of the existing subsumption tests
(except Eisinger’s (1981)) and their complexity.
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compatible. The first approach, which could be compared with Robinson
unification, instantiates the remainder of the given clauses with the
substitution just found. This approach is followed by Chang & Lee (1973), by
Stillman (1973), and by Gottlob & Leitsch (1985). The first two differ in the
search strategy, while the third algorithm improves Stillman’s by exploiting
the partition of the clause C into connected components, similarly to the
algorithm given in section 4.3 of this thesis.

The second approach, followed by Eisinger (1981), first computes for each
literal of C a matcher into D and then tests these matchers on compatibility.
This subsumption test is mainly designed for use in Kowalski’s (1975)
connection graph procedurel, it is yet also applicable for resolution based
systems. In the connection graph environment, this subsumption test
profits by the explicit representation of unifiers between the literals of C and
D by so called S-links2.

Experience has shown that it is much more likely that subsumption does
not take place than the converse. Therefore it seems reasonable to look for
some easy to test criteria that preclude subsumption. One such criterion is
easily provided by the S-link test. If the subsumer contains a literal, which is
not connected to any literal in the subsumend, then subsumption cannot
take place.

As our algorithm is based on Eisinger’s, we shall provide a short
description of the S-link test. The following theorem can be found in
Eisinger’s (1981) paper.

4.4.1 Theorem:

Let C = {Ly,...,.Ln} and D be clauses. Then C subsumes D iff |C| < |D| and there
is an n-tuple (o73,...,0n) € uni(C,L1,Dgr) X...X uni(C,Ln,Dgr) such that the oj are
pairwise strongly compatible3. u

1 For a detailed account of graph based reasoning see Eisinger’s thesis (1988).
2 The algorithm is thus also called the S-link test.

3 In our particular case, where D is a ground clause, the notions of unifiers and matchers
coincide, and so do the notions of compatibility and strong compatibility (see lemma
2.1.10).
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4.4.2 Example:

Given the set {C,D1,D7,D3)} of clauses with
C ={Pxy,Qyc}, D1 ={Pac,Rbc}, D = {(Puv,Qvw}, D3 = {Pab,Pba,Qac}
one wants to find out, which clauses are subsumed by C. In fig. 4.5 the

unifiable literals are connected with links.

D, Pac | Rbe Puv Qvw Do

\//

Qyc| C

[YATAN

Pab | Pba {Qac D3

fig. 4.5

Dj can be excluded, since the literal Qyz from C is not unifiable with any
literal in D1. Dy cannot be a candidate either, since uni(C,ch,(Dz)gr)= J. For
D3 we obtain the two pairs (01,7) and (02,1), where

o1 ={x—a, y—b}, o2 ={x—b, y—a} and 1= {y—a}.
From these two pairs only (62,7) is strongly compatible and thus C subsumes
Ds.

This example shows that in order to find the clauses that are subsumed by
a given clause C={L1,...,Ln} first there is a preselection of those clauses that
are connected to every literal in C by the S-links of the connection graph. For
such a candidate clause D the subsumption algorithm is accomplished by a
test of all elements of uni(C,L1,D)x...xuni(C,L,,D) on strong compatibility.

Subsumption tests involving long clauses with more than one matching
substitution for each literal may require an expensive search of all elements
of the cartesian product. A case in point is the existence of more than one
most general unifier for two literals on account of theory unification. In this
section we shall provide an algorithm that basically employs the same
principles to restrict the search for an appropriate mapping as the variant
test of section 4.2. Subsumption can be considered a generalization of graph
homomorphism, as is the case for renaming and graph isomorphism. It goes
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without saying that the properties invariant under homomorphism are
weaker than those invariant under isomorphism. For our purposes, the
mere existence of an outgoing (incoming) link for some node will be an
appropriate invariant. The extensions of the graph algorithms in order to
include constants and functions, however, will turn out to be more compli-
cated than in section 4.2. We thus first deal with the case where the subsu-
mer is a function free clause. Constants and functions in the subsumend do
not provide any problems:

4.4.3 Definition:

Let D be a ground clause, and let T =T(D) be the set of all terms occurring as
arguments in literals of D. Let 8: T—V be injective. Then for each predicate
occurring in D, the characteristic function xp p is defined by xp,0=%P,De-

4.4.4 Example:
Let C = {L1, L2} with L1=P(fa,gb) and L2=P(gb,a). Then the terms occurring as
arguments are ti=fa, to=gb, t3=a. With 0 = {tj—xj | i=1,2,3} we obtain

11
Co= [lexz, PXQX3} , and thus XC(Ll) = [0 1]-

It is obvious that the definition of the characteristic function of D does not
depend on the particular choice of 6.

4.4.5 Lemma:

Let C be function free, and let D be a ground clause. Let 6: T(D)->V\V(C) be
injective. Then C subsumes D, iff C subsumes D8.

Proof: If Co c D, then Co0 < DO, hence C subsumes D6. If conversely
Ctc D8, then Ct6-1cD, hence C subsumes D. ]

Characteristic matrices encode variable occurrences and the test proposed
in section 4.2, whether the renaming ¢ satisfies Co=D is based on the
observation that there must be pairs of variables from the two clauses that
match in the number of occurrences, which is expressed by xc(x) = yp(xo) for
all xe V(C). One might suspect that yc(x) <yp(xo)! for all xe V(C) is the

1 The relation < on n-tuples is defined pointwise, that is, (a1,...,an)<(by,...,bn), iff aj<b; for

all ie{1,...,n}.

68



Removing Redundancy Chapter 4

appropriate condition for a subsumption substitution ¢. That this is not the
case, is shown by the clauses C=(Pxy, Pxz, Pyz} and D= {Puu}. The
substitution ¢ ={v—oul ve V(C)} satisfies CocD, but yc(x) = 2,00£(1,1) =
xD(x0). Only the following weaker condition is necessary for a subsumption
substitution o: If the variable x occurs at least once at argument position k,
that is, if (xc(x))x21, then xo must occur at the same argument position, that
is, (xp(x6))k=1. This can also be expressed by sign(xc(x))x < sign(}yp(xc))k. In
the following we shall denote sign(n) by 1.

4.4.6 Definition:

a) We define a relation £ on NxN by n< m, iff = £ m. This relation is

extended to n-tuples and matrices over N in an obvious way.

b) We define a relation £ on clauses C, D by
L = Kiff () P(L)=P(K) and (ii) xp,c(L) £ xp,p(K) holds for each predicate
symbol P occurring in CUD.

4.4.7 Lemma:

Let C be a function free clause and let D be a ground clause. If there is a
substitution ¢, such that CocD, then L £ Lo holds for each LeC.

Proof: Suppose Coc D and LeC. Let A=¥p,c(L) and B=¥p,D(Lo). Let
L =Px1...Xn, and take any ije{1,...n}. If Aj;j=0, then obviously Aj;<B;; If
Ajj=1, then there is some Ke C with K=Py1...yn such that xj=yj. Since Koe D,
we have X{0=YjO, hence Bi=1. N

The previous lemma provides a restriction on the possible matching sub-
stitutions that suffices in many cases to exclude subsumption alltogether: If
there is some literal L in C such that there exists no literal K in D with L K,
then C cannot subsume D. The following example, taken from (Gottlob &
Leitsch 1985), illustrates this enhancement of the subsumption test.

4.4.8 Example:
For any me N, let
Cm = {Pxy121, Pz1y222,.... PZm-2Ym-1Zm-1, PZm-1XZm} and
Dx = {Pabja,...,Pabga}.
Each pair (Li,Kj) € CmxDk is unifiable. Let ojj be the unifier of (Li,Kj).
a) The S-link test for subsumption needs k™ steps in the worst case and k2
steps in the best case to detect that C does not subsume D:
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For each literal Lije C, we have uni(L;,D) = {O'ij [ 1<j<k} whence [uni(L;,D)| =
k. Therefore

| X uni(L;,D)| = 1em.
The number of steps needed for the search of a strongly consistent m-tuple
(01,..,0m)e 181 uni(L;,D) depends on the ordering of the literals in Cp, and on

the search strategy. Depth-first search (with uncontrolled backtracking) will
always yield the worst case with complexity km. Breadth-first search will
yield the best case when one starts with the literals L and Ly, and the worst
case when one ends with one of the literals Li or L.

b) The test provided by lemma 4.4.7 needs at most 2 steps to establish non-
subsumption.

The characteristic matrices of the literals in C are computed as follows:

101 101 111
xp(L1)= [1 1 0}, xP(Lp = [0 1 0} forie(2,...,m-1}, and xp(Lm) = [o 1 o],
001 101 101

and for the clause D

101
xP(K):[OlO]I
101

holds for each Ke D. We have to test if y(Lj) £ x(K) holds for the three
matrices above. After at most two steps one can recognize that y(L1) £ x(K)
(respectively y(Lm) £ x(K)) does not hold. '

In order to extend the characteristic to arbitrary literals, we define the
function free form C" of a clause C as it was defined in section 4.2.

The computation of the characteristic of the clause D requires only the
consideration of those literals in D that are instantiations of some literal in
C. We write those literals with the predicate symbols occurring in C”.

4.4.9 Definition:

Let C and D be clauses. Then
M(D,C) := {L*'u | Le C, pe uni(C,L,D)}.

4.4.10 Example:

Let C ={Ly, Ly, L3} with
L1=P(x,y), L =P(f(y),d), L3 =R(a,g(x)) and
D ={P(ab), P(f(b),d), R(a,g(b))).
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For the construction of C* we introduce the new predicate symbols Q1, Q2,
Q3. Then C*'={Q1xy, Q2y, Q3x}. We have the following matchers:
uni(C,L1,D) = {u11, p12}, with py1 = {x—a, y—b}, p12={x->f(b), y—d}.
uni(C,L2,D) = {yp2}, with pop ={y—b}.
uni(C,L3,D) = {133}, with p33={x—b}.

Pxy |Pfyd Ragx Qi xy |Quy| Q3x
pi1] W2z | w33 - RIL Y N 22 33
Pab |Pfbd |Ragb Quab | Q;fbd| Q,b | Q3b
fig. 4.6

This yields
M(D,C) = {Q1ab, Qifbd, Qob, Q3b}

44.11 Lemma:
Let C and D be clauses. C subsumes D iff C* subsumes M(D,C).

Proof. Assume there is a substitution o with CocD. Let Ke C". Then there
is an Le C with L*=K. We have Ko=L"ce M(D,C), since o uni(C,L,D). Hence
C'ocM(D,C).

Now suppose there is a substitution ¢ with C'oc cM(D,C). This implies that
for each Le C there is some K* with Ke C and some te uni(C,K,D) with
L*0=K"1. This obviously implies Lo =K, which proves CocD. u

4.4.12 Corollary:
Let C and D be arbitrary clauses. If Coc D, then

xp,c*(L) < xp,MD,0)(L0)
holds for each predicate symbol P in C, and each Le C".

Now we can formulate the algorithm that improves the S-link test for C
subsumes D:
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Algorithm

SUBSUMPTION (C,D)
Input: Clauses C={L,,...,.L,} and D.
Output: True, if C subsumes D and False otherwise.
1. If there is a literal L in C that does not possess an S-link to a literal in
D, then return False.
2. For each literal L of C do begin
Compute uni(C,L,D) . If uni(C,L,D)=0, then return False end.
3. Compute C* and M(D,C) and the set of all characteristic matrices of all
literals.
4. For all Le C do begin
for all oe uni(C,L,D): If x(L")¢x(Lo), then discard ¢ from
uni(C,L,D);
if uni(C,L,D)=0, return False end
5. If there is some (671,...,0n) € 81 uni(Lj,D) such that the oj are pairwise

strongly compatible then return True, otherwise False.

In automated theorem proving subsumption tests are usually repeated
very often. Therefore the characteristic matrices for a clause C can be
computed once for many subsumption tests.

Of course one has to realize that the computation of the set S of
characteristic matrices for the clause C is an additional effort that has to be
performed by the subsumption algorithm. Thus one has to weigh the costs
of the method against its possible gains.

Finally, it should be pointed out that the occurrence of theory unifiers
causes no change in the subsumption algorithm. Theory subsumption in an
equational theory E (E-subsumption) is defined by the existence of a substi-
tution o, such that Co=¢D'cD. Lemma 4.4.11 applies to E-subsumption in
the following form: C E-subsumes D, iff C* subsumes

Mg(D,C)={L*u | Le C, pe uni(C,L,D)},
where uniz(C,L,D) denotes the set of E-unifiers of L and literals in D. Thus
E-subsumption is reduced to ordinary subsumption.
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4.4.13 Example:

Let C=(Pf(x,y), Qxz, Qzx}, and D ={Pf(a,b), Qba}, where the function symbol {
is commutative. We introduce the new predicate symbol P for Pf(*,*), and

obtain C* = {P1xy, Qxz, Qzx}. Since f is commutative,

unig(C,Pf(x,y),D) = {01,002} with

o1={x-—a, y—b} and or={x—b, y—a}.
Thus Mz(D,C) = {Pjab, P1ba, Qba}, and it remains to test whether {P1xy, Qxz,
Qzx} subsumes {P1ab, P1ba, Qba}, which is performed with the algorithm
above.

4.5 Concluding Remarks

Section 4 provides several techniques to detect redundant information,
which come under subsumption. Both the variant test and the subsumption
test are based on the notion of a characteristic matrix of a literal, which,
roughly speaking, encodes the occurrences of the literal’s variables in the
literals of the whole clause. These tests proceed from the assumption that
most probably a given clause does not subsume another one (and, a fortiori,
it is not a variant of the other), and that failure of the subsumption test often
finds is expression by clashes in variable occurrences. Thus our techniques
proceed in the spirit of Eisinger’s (1981) S-link test, by “filtering out” the
potential subsumers according to fast and successively stronger preselections
and thus postponing the expensive merging of substitutions. The particular
siginificance of the variant test is due to the fact that for many “simple”
clauses, which nevertheless frequently occur in practice, there is an algorith-
mic solution which requires no merging at all. This solution simply
amounts to a test on equality of two sets of matrices. In the case of “simple”
clauses, the corresponding set of matrices yields a unique representation.
Therefore the characteristic matrix of a clause can be used just as an indexing
scheme, that is, a single data element suffices to represent two clauses, which
are equal up to renaming.
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5 Eliminating the Derivation of Redundant Clauses

Not only the mere presence, but also the additional derivation of redundant
information is one of the greatest obstacles to the efficiency of reasoning
programs, as redundant clauses generate further redundancy. Wos (1988)
reports an attempt to prove SAM’s lemma (see Guard 1969) using hyper-
resolution, where 6000 clauses identical to retained clauses and 5000 clauses
being proper instances of retained clauses were generated. Even if these
redundant clauses can be removed after their generation, they must be
processed with demodulation, subsumption, and other standard procedures.
Moreover, the test on subsumption is rather expensive (cf section 1.2 of this
thesis). A strategy to prevent the generation of redundant clauses, or at least
to reduce the number of newly generated unneeded clauses, would thus
prove very useful for increasing the power of a reasoning system. In sections
5.3 and 5.4 we shall characterize two clause structures that admit the
systematic derivation of subsumed clauses, and in section 5.5 we show how
to cope with these structures in order to prohibit the derivation of subsumed
clauses.

Another question addressed in this chapter is closely related to the quest
for a strategy to decrease the derivation of redundant clauses. If we had a
reasonable means to completely prohibit the derivation of redundant
clauses, we could also decrease the number of necessary subsumption tests
in a significant way, since use of this means would automatically exclude the
occurrence of forward subsumed clauses. As the subsumption test is rather
expensive, it would be of great value to have a means to restrict the number
of required tests. Even if we cannot expect to find such a strategy that over-
comes the need for forward subsumption tests, the results of sections 5.2 and
5.3 will show that we can at least exclude a great part of the present clauses
from being subsumers of the newly generated clause.

The structures, which are to a part responsible for the derivation of
redundant clauses, will be described as particular clause graph structures.
Section 5.1 serves as a short introduction into the clause graph terminology.
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5.1 Clause Graphs

In the following we shall deal with finite graphs, whose nodes are labelled
with literals and whose links are R-links (i.e. links joining resolvable
literals) or S-links (i.e. links joining unifiable literals) labelled with substitu-
tions.

5.1.1 Definition:

An (un)directed clause graph is a 5-tuple G = (N,A,[N]£,Z"), where

(i) N is a finite set of literal nodes.

(ii) A < NxN is a (symmetric) relation. The elements (L, K) of A are called
links and written in the form LK.

(iii) [N] ¢ 2N is a partition of the literal nodes. The elements of [N] are
called the clause nodes of G. The clause of a literal node L is denoted by
(L)

(iv) £:N->L is a mapping, which labels each literal node L with a literal
denoted by LL such that LKe A implies that the atoms of LL and LK are
weakly unifiable.

(v) Z":A-2Z is a mapping, which labels each link with a set of substitu-

tions, such that LKe A implies Z'(LK) is the set of most general unifiers
of the atoms of LL and LK.

We do not distinguish between literal and clause nodes on the one hand
and literals and clauses on the other hand. We make the additional (purely
technical) requirement that V(C)NV(D)=@ for different clause nodes C and
D of G. The standard graph theory terminology applies to clause graphs: a
link LKe A joins the literal nodes L and K; the link LK is incident with the
literal nodes L and K and also with the clause nodes [L] and [K]; two links are
adjacent, if they are incident with a common literal node.

The following definitions and results hold equally for undirected as for
directed clause graphs. Note that according to definition 5.1.1, undirected
graphs are considered a special form of directed ones with symmetric link
relation.

5.1.2 Definition:

For a clause graph G = (N,A,[N] E£,3Y) we use the following notation:
N(G) =N, A(G) = A, CG) = [N]
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O(L) = ({L}XN)NA is the set of links outgoing from the literal L,

I(L) = (NX{L)NA is the set of links incoming to the literal L,

A(L) = I(LYVO(L) is the set of links incident with L, and likewise for clause
nodes.

A link LK is called an R-link, if the signs of L and K are different, and an S-
link otherwise.

The notions O(L), I(L), and A(L) coincide for undirected graphs. Two links
with compatible substitutions will also be called compatible. For any clause
node C, E(C) denotes the literals of C which are not incident with any
Ae A(C). If O(C)NI(D)=>, then D is called a successor of C, and C is a prede-
cessor of D.

5.1.3_Definition:
A clause graph G' is a subgraph of a clause graph G, if each link of G' is a link

of G, and each clause node of G' is a clause node of G, and the labeling
function of G' is the appropriate restriction of the labeling function of G.

Two frequently occurring types of subgraphs are obtained from a graph G
by removing a subset of A(G), or by removing a clause node of G together
with the links incident with this node, respectively: °

5.1.4 Definition:

Let G be a clause graph, let ACA(G), and let Ce C(G).
a) The subgraph GA of G is defined by

C(GA) = C(G), and A(GA) = A(G)\A
b)  The subgraph GC of G is defined by

C(GC) = C(G)\{C}, and A(GE) = A(G)\A(C)

Let A=LK be an R-link with Le C and Ke D, and let e Z*(A). Then the
resolvent along A is the resolvent R=(C\{L})ou(D\{K})o of C and D. Let
A1=MM' be an R-link with Me C\{L} and M'eE. If A1 is compatible with A,
then Mo and M’ are also resolvable. The link A1'=MoM' between the literal
Mo in R and the literal M' is called the link inherited from A1 qua A (see
figure 5.1). For any link A, we define the relation —) by C—p,AR, iff
Ae O(C)NI(D), and R is the resolvent along A.
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1~ e

U resolution

Resolvent along A A is inherited fromA1 quai

Fig. 5.1: Link Inheritance

If A={A1,...,An} is any finite set of links, then the merge of A is defined by
Z'(A) =2 (Ap)*...*xZ7(Ly), that is the set of most general common instances of
substitutions belonging to A. Note that in particular £'(J) = {id}.

5.1.5 Definition:

Let G be a clause graph and let Ae A(G). Then the derivation relation G—3G'
is defined by C(G')=C(G)U{R]}, where R is the resolvent along A, and
A(G")=A(G)UA', where A'is the set of links, which are inherited qua A.

A path from node C1 to Cn, n21, in a clause graph is an alternating
sequence (C1, A1, .....Cn-1, An-1, Cn) of clause nodes and links, such that
Aie O(C)NI(Cj41) for ie (1,...n-1}, no two links are adjacent, and the links
A1,...,An-1 are pairwise compatible. The latter condition implies that
(A, .. An1)) 2D,

The path from Cj to Cy is called weakly cyclic, if there is also a link An
from Cp to C1. A weakly cyclic path is called cyclie, if Z'({A1,... An-1,A0}) 2D. A
clause graph is called cyclic, if it contains a (weakly) cyclic path.

5.2 Redundancy Caused by Cyclic Structures

On closer inspection of the proof of SAM’s lemma it turns out that many of
the duplicates are generated by twofold application of the symmetry clause
S=-Pxy Pyx, like!

Pab —g Pba —g Pab

1 Remember the notation C—pE for the resolution step yielding resolvent E (definition 2.4.7).
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Obviously, only the symmetry clause Pxy —Pyx accounts for the derivation
of the duplicate clause Pab in this example. No matter what the other clause
looks like, the result after the second resolution step is always identical to
the original clause. This should be compared with the following two
resolution steps with the clause C = -Px Pa:

Pa —»¢cPa and Pb —¢ Pa

In this example, the derivation of a subsumed clause depends not only on
the clause C, but also on the choice of the other clause. In the following
section, we shall be concerned with structures of the first type. In this
symmetry example the resolvent is identical to its own “grandfather” in the
resolution derivation. More generally, we shall deal with resolvents that are
subsumed by some of their ancestors in a linear resolution derivation, a
phenomenon, which we shall call ancestor subsumption. Ancestor
subsumption is a particular kind of forward subsumption (Overbeek 1975),
that is the subsumption of a newly deduced clause by another, already
present clause. One of this section’s objectives is to characterize clause sets
that admit ancestor subsumption. This approach is based on the following
observation: A resolvent of two ground clauses cannot be subsumed by one
of its parent clauses (a situation, which could be called parent subsumption),
unless the other parent is a tautology. This can easily be seen: let C=L1Lj...Lp
and D =-L1Kj3...K, be ground clauses and assume, C subsumes the resolvent
R=Kj...KuLj...Ly. Then L1e R must hold and from Lig Lj...L, now follows
L1eKj...Kq. Hence D is a tautology. It will turn out in this section that cycles
are for ancestor subsumption what tautologies are for parent subsumption.
This means that a resolvent R cannot be subsumed by some ancestor C,
unless the set of ancestors of R contains a cyclel. Noncyclic clause sets thus
have the nice property of excluding ancestor subsumption. A prominent
example for this class of clause sets is Schubert’s Steamroller (see Stickel
1986).

The concept of cyclic clause sets, which accounts for ancestor subsump-
tion, proves also very useful in the context of decreasing the number of sub-
sumption tests. Such a restriction can be achieved as follows: Having

1 The notion of a cycle was introduced by Shostak (1976).
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identified the cycles in a given clause set, a comparision of the ancestors of a
given resolvent with the set of cycles suffices to possibly exclude these
ancestors from being subsumers. Applied to the simple example from above,
where R is the resolvent of two ground clauses C and D, we can state that the
tests C subsumes R and D subsumes R both are superfluous, since these tests
fail, except one of the clauses is a tautology. (We can assume, of course, that
tautologies are always removed).

In the following we give a syntactical characterization of clause sets ad-
mitting ancestor subsumption. Our main result is as follows: Clause sets
admitting ancestor subsumption possess cycles, whose elements are the far
parents of the subsumed clause. First, we establish some results for the
particular case of parent subsumption.

5.2.1 Definition:
A clause is self-resolving, if it resolves with a copy of itself.

The following lemma determines those clauses that possibly produce
subsumed resolvents.

5.2.2 Lemma:
Let C, D, and R be clauses with C—p R. If R is a variant of C, then D is self-
resolving.

Proof: For sake of simplicity we shall assume that |ICl =1D| =2 LetC =
NM and let D = LK and let ¢ be a unifier of M and -L. From the assumption
follows the existence of a renaming p with Rp = (NK)op = NM. Now either

Nop =N and Kop =M or

Nop=M and Kop=N.
Case 1: If Kop =M, then Kopo = Mo = -Lo. Let ¢ = opo. We show that there is
a renaming substitution p' and a substitution v, such that Kp'y = =Ly. Let p'
be a renaming substitution with

dom(p") = dom(c) N dom(ep) and cod(p")NV(L,K)=1.
Define the substitution y with dom(y) =dom(c)udom(p)ucod(p’) by

Vldom(@) =0,

V| dom(g)\dom(s) = ¢ and

(xp"y=xo for xp'e cod(p").
Then we have xy=xo for xe V(L) and yp'y=y¢ for ye V(K), hence Ly=Lo=K¢
= Kp'y.
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Case 2: Now we have Kopop =M, and the lemma is proved analogously to
case 1. -

The next lemma shows that clauses, which only produce parent sub-
sumed clauses, are tautologies. A tautology D with |D1=2, with linear lite-
rals], and without function symbols2 will be called an elementary tautology.

5.2.3 Lemma:
Let D be a clause.

a) Suppose for all clauses C the following holds: C ->pR implies that C
and R are variants. Then D is an elementary tautology.

b)  Suppose for all clauses C the following holds: C—>pR implies that R is
an instance of C. Then D is a tautology and DI = 2.

c) Suppose for all clauses C the following holds: C—pR implies that C
subsumes R. Then D is a tautology.

Proof: a) Let L = Pt1...ty be an arbitrary literal of D. Let C be the unit clause
consisting of the literal M=-Lp, for some variable renaming substitution p.
Then there is a resolvent R of C and D and R is a subset of D. From the
assumption follows that C is a variant of the resolvent R, that is, there is a
renaming substitution ¢, such that R=M¢ =-Lpgc. Thus C is the binary clause
LR. Let pu be the renaming substitution po. If p is not the identity, then there
is some xe V(L) such that xp=x' with x#x'. Let a be an arbitrary constant not
occurring in C nor D and let C' be the clause consisting of the literal M' =
~L{x—a}. Let R' be the resolvent of C' and D. Then, as a occurs in M', but not
in R'=-Lpu{x—a}=-Lyu, we obtain R'#M’, which is a contradiction. Hence L is
the identity and R=-L. If D contains a function symbol g, then g occurs in
both literals of D, hence also in any resolvent of D. Let C; be the unit clause
consisting of the literal Pxj..xn, with x;¢ V(D) for all ie {1..n}. Then C1 has a
resolvent Ry with D, however, as g occurs in Ry, but not in Cj, the clauses R;
and C1 cannot be variants, which is a contradiction to the assumption. Thus
D cannot contain function symbols. In a similar way it can be shown that the
literals of D are linear.

1 Remember that a literal L is called linear, iff each variable occurs at most once in L.

2 Note that this condition also precludes the occurence of constant symbols.
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b) The same argument as for the first part of a) applies, except that | is now
an arbitrary substitution, and x' must be replaced by a term t.

¢) If C is any clause resolving with D to some resolvent R, then C subsumes
R, that is, there exists some subset R' of R, which is an instance of C. The
assertion now follows from part b). N

Our goal now is to generalize lemmata 5.2.2 and 5.2.3 to ancestor sub-
sumption instead of parent subsumption, that is, we want to determine
those clause sets D, which - possibly or only - produce (ancestor) subsumed
clauses. It will turn out that the appropriate generalization of self-resolving
and tautologous clauses are cyclic clause sets in directed clause graphs.

In the following we shall deal with linear derivation without repetitions,

that are derivations A of the form
A=C —p; 3 C1 =Dy; - =Dpin Crv
where the Dj are pairwise distinct.

The number n is called the length of A. A derivation of length 0 is said to
be trivial. It will prove useful to determine the clause graph structure for
such a linear derivation. A linear derivation implies a certain direction of
resolution steps, and this direction is reflected in the representation in form
of a directed clause graph. We are thus interested in the structure of the
directed clause graph G with C(G) ={Dj,...,Dp}, where each Ae A(G) represents
a link between some clause nodes of G, which is inherited to some Xj. Note
that the links in G, which inherit to some A; are uniquely determined.

5.2.4 Definition:
Let

’ A=C -p; 4, C1 2Dy r; - 2D A, Cn
be a linear derivation without repetition. The associated clause graph G(A)

is the graph G with
C(@G) ={C,Dy,...,.Dn} and
A(G) = (Ae N(G)XN(G) | there is i€ {1,...,n}, such that A is inherited to A;
qua Ay,...,Ai1}

5.2.5 Example:

Consider the derivation A=C —p; ), C1 =D, ,C2, which is shown in the left
half of figure 5.2. The associated clause graph G(A) is shown in the right half
of figure 5.2. Both links A2’ and A" of this graph are inherited to the link A
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of A. This example shows that there can be several links in G(A), which are
inherited to the same link in the derivation A.

C =Paa D1 =—Pxy Qx Qy Paa | —Pxy |Qx Qy

/ o % ¥

- A
Cl=Qa D2 =-QuRu Qa :--‘2-—& —Qu |Ru

C2=Ra

Fig. 5.2

In the sequel we shall make frequent use of the following lemma:

5.2.6 Lemma:
Let
A=C —p; 34 C1 2DyAy - =DpAnCn
be a linear derivation, and let G be its associated clause graph. Let
oe X' (A(G)). Then there is a derivation
A'=C0 D15 11'C1 =Dyo,Az' -+ Dpoin' Cn'
with Cn'=C,,.

Proof: Follows by an induction argument on n from lemma IV.9 in
Herold (1983). (]

In the rest of section 5.2 all occurring clause graphs will be directed clause
graphs, unless stated otherwise. The following lemma shows that the
structure of the clause graph associated to a linear derivation is a tree-like
structure.

5.2.7 Lemma:
Let
A=Dg—-D;2;C1 =Dy Ag -+ 2Dpin Cn
be a linear derivation without repetition. Let G be the clause graph
associated with A. Then G is an acyclic clause graph, which satisfies:
(i) Each clause node C of G is of the following form (see figure 5.3):

82



Reducing the Derivation of Redundancy Chapter 5

- If C=Dy, then I(C)=0

- If C#£Dy, there is a literal Le C such that I(L)20, O(L)=0, and I(C)=I(L)

- No two links in O(C) are adjacent
(i) T'W)=Q

Proof: (i) Let Ce C(G). If C=Dy, then obviously I(C)=0. If C=Dj with 1<j<n,

then from the assumptions it is clear that there is some Ae A(G), which is
inherited to 4. Then Ae I(Dj), that is, I(C)#D. If there are two links A and A"
in I(C), then both are inherited qua {ll,...,kj_l} to the same link lj with
Dj-1—>c,AjDj. But this implies that Aj' and 1" are incident with the same
literal L in C, that is, Aj,Aj"e I(L). Since A;' and A;" were arbitrary, this proves
I(C)=I(L). If there were any link Le O(L), then there would be some k>j with
A=Ak. But A could not be inherited to the step k, since the literal L, which is
incident with A, is resolved away in the step j, and this is a contradiction.
This proves O(L)=. Suppose there are two links A; and Ay incident with the
same literal Ke C, and w.l.o.g. assume that k>j. But then again the link Ay
could not be inherited since the literal K is resolved away in step j.
(ii) is obvious (see, for instance, Herold (1983)). |

O(N)

Fig. 5.3: Structure of a Branching Node

A clause node, which satisfies condition (i) of the previous lemma, will be
called a branching node in the following. The literal L of the branching node
C, which satisfies I(C)=I(L) is called the I-literal, each literal of C incident
with a link in O(C) is an O-literal of C. A clause graph G satisfying conditions
(i) and (ii) of the previous lemma will be called a branching tree with root
Ds.
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5.2.8 Definition:
Let G be a branching tree and let oe *(A(G)). Then

= U
res(GG) DS E(D)o

is the residue of G.

In the following we shall prove that the residue of a branching tree G(A) is
just the last clause Cp, of the corresponding linear derivation A.

5.2.9 Lemma:
Let

A=C—-p2; C12Do2; - 2D A Cn
be a linear derivation without repetition, and let A'=Cy —p, ... 5D, Cn. Then
res(G(A)) =res(G(A")).

Proof: Let G=G(A), G'=G(A"), and let G—3,G". Then G'=(G"){C.P1}, and
2MA(G))=Z(A(G")) holds. We have to show that

U EDo=_ U ED)o,
DeC(G) D'eC(G")

Let Le E(D) in G for some De C(G), that is, L is not incident with any link in
A. Suppose there is some A'e A(G'), which is incident with L. Then A' must
be inherited from some Ae A(G), which is also incident with L. This is a
contradiction, hence L is not incident with any link in A(G') either, which

implies Le E(D) in G'. This proves Y E(D)oc Y E(Do.
DeC(G) D'eC(G)

Conversely, we can also show that Y E(D"c ¢
D'eC(G) D

implies the assertion of the lemma. N

U E(D)o, which
eC(G)

5.2.10 Example:
Let

A = PR-S -5 RwPW-5 -swPW —_wQPQ.
Then A' = PW-S »>sw PW —_wqQPQ. The corresponding branching trees
G(A) and G(A') are shown in figure 5.4. The links A;" are inherited from the
corresponding link A; qua A1.

84



Reducing the Derivation of Redundancy Chapter 5

Fig. 54

5.2.11 Corollary:
Let

A=C-p;C1-p;... 2D, Cn
be a linear derivation without repetition. Then
Cn=res(G(A)).

Proof: An induction argument using the previous lemma shows that
res(G(A)) = res(G(AN)), where A™ is the trivial derivation Cy. Thus C(G(AN)) =
{Cn} and A(G(AM) = &), which implies res(G(AM)) = E(Cp) = Chp. N

Next we shall give the characterization of ancestor subsumption for the
ground case. Ancestor subsumption is expressed by a linear derivation A =
C-p; C1—D; ... =D, Cn, where C subsumes Cp. From lemma 5.2.7 it follows
that the associated clause graph is a branching tree. In particular, if C is a unit
clause, then there is a linear derivation D1 —p, C2' =3p; ... =D, Cn', and the
branching tree associated with this derivation is G(A)C.

A semicycle G is a clause graph, which satisfies:
(i) Eachnode Ce C(G) is a branching node with |I(C)[>0 and E(C)=0.
(ii) There is a special node Cpe C(G) such that each cyclic path of G passes
Co.
(iii) All occurring substitutions are compatible, that is, Z'(A(G))=@.

It is obvious that the subgraph GICo) of a semicycle G with special node Cp
is a branching tree with root Cg. The residue of the semicycle G is defined by
the residue of the branching tree GIC0),
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The fact that each node C of a semicycle has an incoming link guarantees
the existence of a cyclic path in a semicycle. The concept of semicycles is
easily seen to be a generalization of self-resolving clauses, for a semicycle
consisting of only one clause node C forces this clause to be self-resolving.
The semicycle G is called a cycle, if |O(C) | =1 holds for each Ce C(G). It is easy
to see that a cycle is just a single cyclic path with nodes of length two,
whence condition b) of the definition of a semicycle is satisfied for each node
of a cycle.

A cycle is just what Shostak (1976) and (1979) calls a loop. This notion also
corresponds to the notion of recursive predicates in the terminology of
deductive databases (Vieille 1987, Ohlbach 1988) and logic programming.

5.2.12 Example:

The graphs G1 and Gy, which are shown in figure 5.5, are semicycles; G is a
cycle. It can be seen that each node of a cycle may be chosen to be the “special
node” Cp. As to semicycles, still several, but in general not all nodes have

this property. The clauses “R-W and -UYV, for instance, cannot be chosen to
be the special node of Go.

Fig. 5.5

5.2.13 Theorem:

Let A=C—p; C1 =D, ... 5D, Cn be a ground derivation with unit clause C,

and let G=G(A)C.

a) IfCp=C, then G is contained in a semicycle G' with special node D1 and
G = (G"){D1), '
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b) If Ch c C, then G is contained in a cyclic graph G' with C(G)=C(G') and
AG)cA(G).

Proof: a) Let C=Cp={L}. From the branching tree G we construct a semicycle

in the following way: From res(G) ={L}= Ceké)(G) E(C) we can conclude that

for each Ce C(G) either E(C)=0 or E(C)={L}. Moreover, since C is a unit
clause, the I-literal of D1 must be —-L. For each Ce C(G) with E(C)={L} let Ac =
L-L € O(C)NI(Dy). Let

"= VU
A AUCGC(C) 7\,C

Let G' be the graph with C(G')=C(G) and A(G)=A". From the construction it
is clear that G' satisfies the conditions of a semicycle and G = (G'Y{(P1).

b) Let C={L}. In a way similar to a) we conclude that {L}c c E{G) E(C), that is,
€

there exists a node Ce C(G) with Le E(C). Let A = L-L € O(C)NI(C), and define
the graph G' by C(G")=C(G) and A(G")=AU{A}. Then G’ is a cyclic graph with
AG)cAG). L

In order to generalize the previous lemma to the general nonground case,
we first have to prove some properties of substitutions.

5.2.14 Temma:
Let L and K be literals and ¢ be a substitution.
a) If Lo and Ko are weakly unifiable, then so are L and K. Moreover, there
is a substitution 6 and a renaming p, such that
Lo9 = Kpo6 and
dom(o) N V(cod(p)) = dom(p) N V(cod(o)) = O.
b) If there is a substitution ¢ and a renaming p, such that Lp¢ = K¢ holds,
then Lp'gp = Kp'p for some renaming p'.

Proof: a) see (Herold 1983), lemma II1.9.
b) see (Herold 1983), lemma III.8. =

5.2.15 Definition:

Let A,A1, A1' be R-links, such that A1 is inherited qua A to A1'. We say that Ay’
is inherited qua A solely from A1, iff there is no link A>#A1, which inherits
qua A to Aq'.
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5.2.16 Lemma:
Suppose we have clauses C, D, and E, and undirected, compatible links
A1 A(C)NA(D), Ape A(D)NA(E), which are not adjacent. Let A»' be a link in-
herited solely from A2 qua A1. If there are derivations

C—);C1—2,C and

D -3, D1\ D,
then D' & C' holds.

D
Y A
¢ D Mol K- K] E

Fig. 5.6

Proof: Let C, D, E be as in figure 5.6. For i=1,2, let oie £*(Ai), and let
o€ 61*c2. Obviously, C' and D' can also be derived as resolvents of the
clauses Co, Do, and Ec. Let C1" be the resolvent of Co and Do, then C1" =
(M1...Mg-1L2...Lp)o. From the assumption of the lemma follows that
Mjo1Ljo1 for any appropriate i,j. Suppose Ljo = ... = Lo, 2<j<n. Then

C'=My.. MkaLs...LiaKo...Kn)o
If D1" is the resolvent of Do and Eo, then D" = (L1...Lj-1K2...Km)o. Suppose
Kj0'=L1cs for some je {2,...,m}. W.l.o.g let j=m. Then

D'= Mi...Mk-113...Li1K2.. Km1)o & C'.
Otherwise, if Kjc#Ljo for all je {2,...,m}, we have D'=C". In either case D' S
C' holds. ]

In particular, if C is a unit clause, there can be no link in A(C), which is
inherited to A3', and so the last assumption of the lemma is trivially
satisfied.

5.2.17 Theorem:

Let A = C—p; C1-D, ... 2D, Cn be a derivation with unit clause C, and let

G=G(A)“.

a) If Ch=C, then G is contained in a semicycle G' with special node D1 and
G = (G"HUDD,

b) If Cy is subsumed by C, then G is contained in a weakly cyclic graph G'
with C(G)=C(G") and AG)cA(G").
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Proof: a) In view of lemma 5.2.13 the only thing we have to prove is the

compatibility of the substitutions in A=A(G'), that is, Z*(A)=0. Let

A=C-p; C1—-p;y ... =D, Cn
Since C is a unit clause, there is a derivation

A'=D1-p, C,.. .—)DnC;\
Let D=Cp, and let C—p C'. Since C is a unit clause, the previous lemma
implies that C' & Cy, and since C'#0, C'=Cp=C holds (see figure 5.7).
Thus, according to lemma 5.2.2, D is a self-resolving clause of the form
L'K7'..Kp', with a renaming p and a substitution 1, such that L't = -Kj'p7 for
each ie {1,..,n} holds. Moreover, since D=res(G(A)), we have L'=Lo and
Ki'=K;o, where L is the I-literal of D; and the Kj are the O-literals of the
predecessors of Dj. Take any Ke {Kj,..,.Kp}. We have Lot = -Kopt and from
lemma 5.2.14 a) follows that there is some substitution 6 with Lo6 = -Kp'c6
for some renaming p’, and from part b) of the same lemma follows that
Lp"06 = -Kp"c0 for some renaming p". Let A = p"c8, then A is a unifier of L
and -K, hence A is an instance of the most general unifier ¢ of L and -K. We
show that ¢ and ¢ are compatible substitutions. Let A = gA'. The renaming p"
can be chosen, such that dom(c) N V{cod(p")) = dom(p") N V(cod(c)) = O,
that is, op" = p"o. This implies

oA = op"cl = cop"8 = A = QL' = QQA' = @A,
hence ¢ and ¢ are compatible. We have shown that ¢ is compatible with the
unifier of an arbitrary link in I(Dj), that is, all occurring unifiers are
compatible and condition (iii) of the definition of a semicycle is satisfied.

b) is proved analogously to a) N
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C I/D2
|C1/D2 5
: C |/ Dn-l
D
Cn1 _p I
I/ n-1 Cn
Cn
C-o,C
C%Dl'.._bnl n D+n

Fig. 5.7

Our next goal is to identify those graphs that allow only derivations with
ancestor subsumption, corresponding to lemma 5.2.3. The possible deriva-
tions from a graph G are those derivations A, for which the associated graph
G(A) is the branching tree of any cyclic subgraph of G.

5.2.18 Theorem:
The semicycle G is a cycle, iff each cyclic subgraph of G is a semicycle.

Proof: Obviously, if G is a cycle, then each cyclic subgraph of G is also a
cycle. To prove the converse, we choose a special node Cg from G, and con-
struct inductively a subgraph of G as follows: If we have already constructed
(Co,Ag,---,Ci), then take arbitrarily any Ae O(C;j) and let C be the node of G
which satisfies Ae I(C). Set Aj=A, and Cj;+1=C. Since G is cyclic, there must be
j;)keN with j<k and Cx=C;, that is, we have constructed a cyclic path. Since
each cyclic path must pass Cg, we can w.l.o.g. assume that Cx=Cg. Moreover,
we take the smallest such k. Let G' = ({Cj[i=1,... k},{A;li=1,...k}). Assume G is
not a cycle. Then there exists a branching node Ce C(G) with (O(C)I>1.
W..0.g. we assume that this node is Cg. Since 10(Cgp)!>1, there is a link
Ae O(Cp) with A#)Ag and a Le Cp with Ae O(L), Since Cj#Cy for 0<j<k, the link
Ao is the only link in O(Co)NA(G'"), which implies Le E(Cyp) in G'. This vio-
lates the condition E(C)=0 for semicycles, which contradicts the assumption
of the lemma. Thus G must be a cycle. n
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5.2.19 Corollary:

Let G be a semicycle consisting of ground clauses. G is a cycle, iff for any

derivation A = C—p; C1 >, ... >D, Cn, where {Dj,...,Dn} are the nodes of a
cyclic subgraph of G, C = Cy, holds.

Proof: The assumption of the theorem can be stated as follows: Each cyclic
subgraph of G is a semicycle. The assertion now follows from the previous
theorem. -

Thus cycles are the only clause sets with the following property: Take any
clause node D of the cycle, and an arbitrary clause C, which resolves with D.
Construct derivations Ax = C—p; C1 9D, ... 2Dy Ck, where D1=D, and D; is
the successor of Dj.1 in the cycle. Then there is a ke N, such that Cx = C
holds.

The proof of theorem 52.12 showed that semicycles are structures that
shrink to self-resolving clauses. Those particular semicycles that can be
reduced to tautologies, are characterized by a particular property of their
substitutions:

5.2.20 Definition:

Let G be a semicycle with special node Cgp. Let oe Z*(A\I(Cp)), and let
1€ £7(1(Cp)). The semicycle G is called Co-complete, if ¢ is an instance of 7,
that is Lo = Ko holds for all literals L and K joined by a link in I(Cp). G is
called complete, iff it is complete for each choice of Cy.

Let G be a complete semicycle. Let D = (LK1..Kin)o be the residue of G. As
for each ie{1,..,m}, K; and L are complementary unifiable under 7, and ¢ is
an instance of 1, we have the following corollary:

5.2.21 Corollary:
The semicycle G is complete, iff res(G) is a tautology for any choice of the

special node of G.

Complete cycles can also be characterized in the following way: There
exists a clause C and a substitution ¢, which is the identity on C, such that all
links in the cycle become complementary pairs of literals. This is the way
Bibel (1987) defines what he calls tautological cycles.
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In analogy to elementary tautologies, complete cycles, all literals of which
are linear and function free, will be called elementary cycles.

5.2.22 Theorem:

Let G be a semicycle.
a) G is an elementary cycle, iff C = C, holds for any derivation A= C—p,
... =D, Cp, for which {Dj,...,Dn} are the nodes of a cyclic subgraph of G.

b) G is a complete cycle, iff C, is an instance of C for any derivation A =
C-p; ... =D, Cn, for which {Dy,...,Dp} are the nodes of a cyclic subgraph
of G.

o  Gis complete, iff C subsumes Cy, for any derivation A = C —p, ... 5D, Cn,
for which {Dj,...,Dp} are the nodes of a cyclic subgraph of G.

Proof: a) The cyclic structure of G is provided by corollary 5.2.19. Choose
any C to be the special node of G. As in the proof of theorem 5.2.17, let D =
(LK)o be the residue of G. Then the relation C —-pCp, implies Cp=C for each
clause C that resolves with D. From lemma 5.2.3 follows that D is a
tautology, which is function and constant free, which shows that the same
holds for L and K. As C was chosen arbitrary, all elements of C(G) are
function and constant free. Since D is a tautology, the cycle G is complete.

b) and c¢) are proved analogously. n

Note that the definition of the derivation relation —p does not capture
ancestor resolution, which is part of complete linear strategies.

Let

A=P —--prsRS --sR R 5-RT T —-T-RP "RP -Rr P
be a linear derivation with ancestor resolution and ancestor subsumption.
The corresponding graph G is shown in figure 5.8. It is easy to see that this
graph is not a semicycle. The bold faced links represent the “ancestor
resolution links”.
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—B S =S |R

"

PR |-T [¢— T|-R

Fig. 5.8

The following lemma shows that it is sufficient to look for cycles in an
initial clause set during a resolution refutation, as “new” cycles cannot be
generated by resolution. For any clause set S, R(S) denotes the resolution
closure of S, that is the smallest clause set containing S and closed under the

resolution operation.

5.2.24 Lemma:
The clause set S contains a semicycle, iff R(S) contains a semicycle.
Proof: Let R be a resolvent of clauses C and D with C, De S and assume

that R is a node of a semicycle G. We show that C and D are also nodes of a
semicycle.

k1 ... ky

11 11’ see lm

Fig.5.9

93




Simplification and Reduction for Automated Reasoning

Each link kj and ]j of G going into or coming from the node R must be
inherited from some link k;j' and 1]~', respectively, as shown in figure 5.9. The
diagram illustrates that these links are links of a semicycle G', which
contains nodes C and D. u

5.3 Redundancy Caused by Subsumed Links

On closer inspection of proofs using a deduction system consisting solely of
the resolution rule, it turns out that a lot of redundancy is produced by
permuting the order of resolution steps. For instance, it does not matter,
whether the clause -P-QR is first resolved with the clause P and then the
resolvent QR is resolved with the clause Q, or vice versa; the result always
is the clause R. This observation has led to the hyperresolution strategy
(Robinson 1965) and the UR-resolution strategy (McCharen 1976), which
both combine several resolution steps, thus abstracting from their order.
Clause graph resolution too avoids this multiple derivation of identical
clauses. There, it is a cooperation between link deletion and link inheri-
tance, which precludes one of the two resolution sequences. Link inheri-
tance denotes the fact that each resolvent inherits all its links by its parent
clauses. Deleted links thus cannot be inherited, and link deletion thus not
only prevents the single resolution step connected with the removed link,
but it also accounts for the exclusion of subsequent resolution steps
connected with inherited links. The following example illustrates this effect
of link deletion and link inheritance.

5.3.1 Example:

Consider the clauses C = PQR, Dy = -PS, and Dy = -QW (see figure 5.10).
Resolving first C with Dp along A1 yields the resolvent C1 = QRS, and the
- link A1 is removed afterwards. The resolvent Co = PRW of C and D; thus
cannot inherit A;, and there remains only one possibility to derive the
resolvent Ci12 = WRS.
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¥ - [PRE

PIQR resolution along A, Ao

A2 and deletion of A1 =5
-Q|W

] resolutionalong ip_

I:P S
e, RIS
7\,1 é "n._"-. Q
[P[QR | Ao
A2 '."'-6.-.- Not present, since),; deleted.

—QW PTWIR

Fig. 5.10: Link Inheritance and Link Deletion

In general, however, the order, in which clauses are processed in a
sequence of resolution steps, cannot simply be permuted without changing
the result. Consider for instance the clauses P¢c, =Px Pa , and -Px Pb. If Pc is
first resolved with -Px Pa and the resulting clause Pa is resolved with -Px
Pb, the clause Pb is obtained. By resolving first Pc with -Px Pb and then the
result with —-Px Pa, the clause Pa is derived.

There are, however, still other clause structures, which are invariant
under the permutation of the resolution steps” order, and to which
hyperresolution does not apply. The transitivity clause Pxy & Pyz = Pxz is a
well-known example for such structures. Suppose, we are given the unit
clauses Pab, Pbc and Pcd and the transitivity axiom holds for the predicate P.
There are two different ways to deduce the clause Pad by two applications of
the transitivity axiom, which differ only in the resolution steps’ order. Still
worse, given n clauses Pajay, Pasas, ..., Pan-1an , the number of different ways
to derive the clause Pajan amounts to 2“'1(n!)'1H£'11(2i - 1), which is of order

O(4M) (see Liineburg 1976). It is also easy to see that the clause graph mecha-
nisms of link inheritance and link deletion do not prevent the multiple
derivation of identical resolvents in this case.
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Another example for the permutability of resolution steps consists of the
clauses Pa, C1 = =Px Pf2x and Cp = -Px Pf3x. There are two ways to deduce the
clause Pf5a, which differ only in the choice of resolving Pa first with Cy or
with Co.

The difference between this example and the hyperresolution example is
revealed by considering the clause graph structure (Figure 5.11):

—Px| Pf X% o) —Px [Pf X
N
A4
Fig. 5.11

In the hyperresolution example the order, in which the electrons are
resolved against the nucleus, corresponds to the order of selecting the links
that join the nucleus with the electrons. In the last example, however, the
two different ways to produce the clause Pfx correspond to different pairs of
links: One deduction proceeds on links A1 and A, while the other uses links
A3 and A4. The very reason for the permutability of the resolution steps in
this particular example becomes clear, when we take into account that
processing link A or processing link A4 yields the same resolvent up to
renaming, namely -PxPf°x. As a natural generalization of the variant
notion these will be called variants.

More general, the subsumption relation between clauses will be extended
to links by calling those links subsumed that produce a subsumed resolvent.
In the sequel it will be shown that the type of redundancy, which is inherent
in subsumed links, is inherited via the usual link inheritance. In particular,
it will be shown that the inheritance of subsumed links accounts for the
redundancies occurring in the two introductory examples.

The syntactic description of the permutability of resolution steps by means
of subsumed links is but the first step to overcome the difficulty with the
multiple derivation of identical clauses. In this particular example it is
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rather obvious, how to cope with the problem of deducing redundant
clauses: The solution, very simply, consists in the appropriate selection of
links to process. The suitable order to proceed is resolving first on link 2 (or
4, respectively), obtaining the clause -PxPfox. Both links 2 and 4 can now be
removed, which inhibits further derivations starting from Pf2a or from Pf3a.
The only way to deduce the clause Pf>a now consists in resolving Pa with
PxPf>x. This approach is based on the observation that redundant informa-
tion, if not removed, usually causes an inflation of redundancy. This is the
case for subsumed clauses as well as for tautologous clauses: Each descendant
of such a clause is redundant, too. In the following it will be shown that the
same holds for the redundancy inherent in subsumed links. In other words,
each link, which is inherited from a subsumed link, is again subsumed.

We shall also consider a very particular kind of subsumed links, which
will be defined by symmetric clauses. A clause is symmetric, if it has literals
L and L; such that resolving on L; always yields the same resolvent as
resolving on Lj. For instance, the clause Pxy Pyx is symmetric. Symmetric
clauses are a source of redundancy very similar to clauses with subsumed
links. This section provides a complete syntactic description of symmefry,
which is the basis for an appropriate reduction consisting in the restriction
of resolution to one of the arbitrarily chosen symmetry literals.

Note that throughout this section all clause graphs are undirected graphs.

5.3.2 Definition:

Let A1, A2 be R-links, and for i=1,2, let C; be the resolvent along A;. The
subsumption and variant relations between links are defined by

A1 £ A2 (A1 subsumes Ap), iff C1 < Co

A1 = A2 (A1 is a variant of Ap), iff C1 = Ca.

Although a resolution step using a subsumed link is obviously unneces-
sary, it is not clear that the subsumed link itself can be removed, since such
removal implies the deletion of all inherited links. Our main theorem will
justify the removal of subsumed links, by showing that each link A', which
is inherited solely from a subsumed link 2, is itself subsumed. If there are,
however, other (non-subsumed) links besides A, which also inherit to A,
then A' is not subsumed. But also in this case the removal of A causes no
problems, since generation of A' is guaranteed by inheritance.
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5.3.3 Lemma:

Let C and D be clauses with C<D. If R is a resolvent of D with any other
clause, then there is a clause C' with C'<sR.

Proof: Since D is subsumed by C, it can be written in the form D = COUD".
Let E be a clause resolving with D, and let L', K be literals with most general
unifier ¢', such that R' = (D\{L'Dc'U(E\{K}Dc'". If L'e D', then

R' = (COUD'\{L'})o'U(E\K)c'= Coc'U(D'\{L'})6'U(E\K)c'
is subsumed by C. Otherwise, if L'e C6, then there is a literal Le C with L8=L,
and R' = (C\{L})oc'uD'c'U(E\K)o'. L' and K are unifiable, hence so are L
and K. Let ¢ be a most general unifier of L. and K. Since different clauses are
assumed to be variable disjoint, V(E)"dom(8)=0. Hence LO6' = L'c' = Ko' =
Koo', that is, 66'e uni(L,K), which implies 6<8¢'. Consider the resolvent R =
(C\{LDoU(E\K)o of C and E. We have

(C\ LYo U (E\K)o < (C\{L})8c' U(E\K)8c' = (C\{L}6c' U(E\K)o' =E,
and E is subsumed by R. |

5.3.5 Theorem:

Let A,A1 and Ay be R-links, such that A1<A; holds, and A is compatible with A.
If o' is inherited solely from A7 qua A, then there is a link A* which is not
inherited from A7 neither inherited qua i, with A*<i;".

Proof: For i=1,2, let Cj and Djbe the clauses incident with A, let Ej be the
resolvent along A;, and let C be incident with A (see figure 5.12). Note that
the clauses Cq, Cp, as well as the clauses D, D> need not be distinct. Then
E1<E; holds by the assumption of the lemma. Let A' be the link inherited
from A qua Ap. From lemma 5.2.16 follows that the resolvent Ep' of E; with C
subsumes the resolvent along A2', that is, A'Sky". From the previous lemma
follows that Ep' itself is subsumed either by E1 or by the resolvent of E; with
C. In the latter case there exists a link x'e A(E{)NA(C), which is inherited
from some link xe (A(C1)UA(D1))NA(C). Hence either A1<A'<Ap' or
K'SA'SA2', and both A1 and x' are not inherited from A; neither inherited qua
7»2. |
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E] ........... '..
resolv. ? M D R WK
ol F—{ 1.0
X '-.,:= —e C
D, 2 |
lz resolv.

|

Fig. 5.12: A2’ is subsumed either by Ay or by k'

5.3.6 Example:

In our introductory example the multiple derivation of identical resolvents
by the transitivity clause results from the inheritance of two internal links
A1 = A2 in the transitivity clause ~Pxy —Pyz Pxz. Both resolvents are copies of

the 3-transitivity clause -Pxy -Pyz -Pzw Pxw. Figure 5.13 shows the effect of
inheriting these variants.

[ Pab | | Poc | Pab

—Pxy [-Pyz Pxz —Pxy RPyz Pxz

Fig. 5.13: Link Inheritance From the Transitivity Clause
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A particular kind of link subsumption is symmetry. A clause D with
distinct literals Lj,Lj is called symmetric (on Lq,L), iff there is a bijective
mapping p : V(D)- V(D) with L1p =Ly, Lop =L;and Dp =D.

5.3.6 Theorem:
Let D be a clause with literals L1 and L. Then the following conditions are

equivalent:

a) - D is symmetric on Ly, Ly.

b) Ljand L, have the same predicate symbol and the same sign and A1 =%
holds for each pair (A1,12) of adjacent R-links with Aje A(L;).

Proof: Suppose there is a renaming p satisfying the symmetry condition
for D. Let C be a clause and Le C a literal, such that L and L are unifiable.
Since C and D are assumed to be variable disjoint, V(D)ndom(p)=&. Then L
and L, are unifiable, and pc is a most general unifier of (Lp,L) for any most
general unifier ¢ of (L1,L). For i=1,2, let R; be the resolvent of D with C on L;.
Then

Rz = (D\{La}UC\{Lhpo = (D\{L1}UC\{L})o = R;.
Conversely, suppose that b) is satisfied. Let D=LjL,D'. First we show that L1
and Lj are variants: W.l.o.g we assume that L; is a positive literal. Let
L1 =Pt1...tn. Since L, and L have the same predicate symbol and the same
sign, there are sj,...,sp, such that Ly =Psj...sp. Let C=-Pxj...Xn, Where
X1,-..Xn € V(D). For i=1,2, let Aje A(C)NA(L;), and let Ribe the resolvent
along Ai. Then Rj =L01 D'c1 and Ry = L1o2 D'62, where oje Z*(A;). Both o1
and 67 are renamings, thus Ry =L;D’' = D\Lj and Ry = L1D' = D\L; holds. If
L1 were not a variant of Ly, then also R could not be a variant of Ry, which
contradicts A1 =As.
We write L1 in a form P'(xq,...,xp), with {x1,...,xn} = V(L1). As L1 and L are
variants of each other, Ly can be written in the form P'(y1,...,yn)-
Let C be a unit clause -P'(cy,...,cn) with cy,...,cn are constants not occurring in
D. For i=1,2, let Aje A(C)NA(L;) with oje Z*(A;). Then o1 = {xj—¢cj | i=1,...,n}
and o2 = {yi—¢j | i=1,...,n}. Define p:V(D)—-V(D) by

zp = zo107°1 if ze V(Ly),

zp = 20767171 if ze V(L), and

zp = z otherwise.
First we have to show that p is well defined: Let ze V(L1)nV(L2). Then there
are xje V(L1) and yje V(Lp) with z=xij=yj. From the assumption follows that
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the resolvent along Ay, which is Lio2D’'c), is a renaming of the resolvent
along A1, which is Loo1D'c1. Thus we have L6171 =L102 and D'os =D'671. As
Xi=Yj, Xi02 is the constant S, which implies xj02 =yi01. Moreover, we have
L161=L202=C, which implies x;01=y;07. Hence we have

xj02617! = yjo101°1 = yj and

xi010271 = yic202°1 = ;.
Next we have to show that Lip =L» and Lyp =L1, and that D'p =D'. The
latter follows from D'cy =D’'cy, and the first equations are obtained by
L1p =L101021 =190202 1 =1y, and Lop = Lro2011 = L161017 1 = Ly, =

5.3.7 Example:

The clause C =Px Pyx is symmetric, since the renaming p = {x—y, y—x}
satisfies (Pxy)p = Pyx, (Pyx)p = Pxy and Cp =C. Resolving on the literal Pxy
always yields the same result as resolving on the literal Pyx, that is, if A1 (A2)
is a link joining the clause D with Pxy (Pyx) in C, then A1 = A3 holds.

A clause thus is symmetric, if it contains two literals, such that resolving
on one of the literals always yields the same resolvent as resolving on the
other literal. The condition that the two literals have the same predicate
symbol and polarity, guarantees the existence of a clause resolving on both
literals. Since symmetric clauses are a source of redundancy, such a charac-
terization proves useful in order to recognize symmetric clauses and to
restrict unneeded resolution steps.

Clause graph resolution provides an obvious means to cope with the kind
of redundancy, which results from subsumed links. However, the context of
this chapter is a resolution based reasoning system rather than a clause
graph based system. In the following it will be shown how the results of
section 5.2 and 5.3 can be used to reduce the derivation of redundant clauses,
without referring to link inheritance and link deletion.

5.4 Removing Cycles and Subsumed Links

As cycles and subsumed links in clause sets are responsible for the genera-
tion of redundant information, a technique to remove such structures
would prove very useful. As to cycles, a first approach to this question is due
to Bibel (1981). He showed that under certain conditions, similar to those
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allowing the deletion of tautologies in clause graphs, cycles can be removed
from clause sets. In this section, a uniform approach to cope with both cycles
and subsumed links, will be considered.

The method’s basic idea is to preclude certain resolution steps by “com-
piling” the “critical structures” into a theory serving as the basis for theory
resolution. A rather similar approach is pursued in equational reasoning,
where certain equations, like that defining commutativity, are removed
from the derivation and put into the unification procedure. Theory resolu-
tion, first proposed by Stickel (1985), is a generalization of ordinary resolu-
tion. The literals resolved upon need not be syntactically complementary, it
is sufficient for them to be complementary under some theory. For instance,
while the literals a<b, b<c, and c<a are not syntactically complementary, they
are complementary under the theory of transitivity of the symbol <. Simi-
larly, the literals Pab and -Pba are complementary under the theory of
symmetry for the predicate P. For our purpose, the basic theory is always
given by a set S of clauses, namely cyclic clause sets, or clauses containing
subsumed links. The following example illustrates that this approach
precludes the “critical” derivations.

5.4.1 Example:
Let S = {Cy,...,Cg}, with C1=PQ, C2=-PR, C3=RS, C4=QS5-W, C5=-RW, Cg=-SU
(see figure 5.14).

[QF P[] [RsPe[eW] [(HY [

RS -RU PQ  -PR
.~ \\QR/

SU -SQW —-R U

\QV( subsumed by —> }/

Fig. 5.14

The resolvent of C3 and C4 is subsumed by the resolvent of C1 and Cp, that
is, A.1<A2 holds for the appropriate links. Removing only the subsumed
clause does not preclude further derivations of subsumed clauses by
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inherited subsumed links. A case in point is the derivation of the clause
QWU (see figure 5.14).

Such redundant derivations can be avoided by using the “critical clauses”
{C3, C4} for theory resolution. Obviously, a set of literals complementary
under {C3, C4} must contain the literals =R and -5, or the literals -Q, S, and
-W. This enables, for instance, a resolution step between Cs and Cg yielding
the resolvent U (see figure 5.15). Resolution steps involving a clause of the
theory are not allowed, hence no more derivations yielding subsumed clau-
ses are possible. Figure 5.15 also illustrates why the particular kind of theory
resolution, which is defined by clause sets, is called “link resolution” by
Ohlbach & Siekmann (1988)1. The link between the literals =R and -S in the
middle of the diagram can be seen as a theory link, under the theory
generated by the clause RS.

-R U -RU
I
RS —» {RS} —» U
|
—-SU -SU
Fig. 5.15

In the following, we shall deal with so called S-theories, that are theories
generated by a finite set S of clauses. If S is any set of clauses, then the theory
of S is just the semantic closure (5) of S.

5.4.2 Definition:
Let S be a set of clauses, and let C=(Lq,...,La}€(S). Let Cj,...,Cy be clauses with
Kie Cj for ie {1,...n}. If there is a most general simultaneous unifier ¢ of

{(Lj,~Kj) li=1,...,n}, then the clause lK:Jl (C;\{LiDo is an S-resolvent of Cj,...,Cy

(using C).

1" The ancestor of the link resolution principle seems to be Wos’ et al (1984) linked inference

rules.
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Note that if the clause C in the previous definition is an elementary
tautology, then the S-resolution step is an ordinary resolution step. Since
elementary tautologies are contained in each S-theory, the concept of S-
resolution includes ordinary resolution. If the clause C is the empty clause,
then the S-resolvent using C is also the empty clause.

The definitions of the derived notions, like S-resolution refutation, are
straightforward. It is easy to see that the concept of S-resolvents is an
instance of total narrow theory resolution, where (S) is the theory, and the L;
are the key literalsl. Since theory resolution was shown to be correct and
complete, this result implies soundness and completeness of S-resolution:

5.4.3 Corollary:

Let S be a clause set, and S'cS. Then S is unsatisfiable, iff S\S' admits an S'-
resolution refutation.

In general, it is not decidable, whether a given clause C lies in the theory
(S), even if S consists of a single clause only (Schmidt-Schauf8 1986). How-
ever, it is not necessary to use all clauses in (S) for S-resolution. S-resolution
remains complete, if only the prime implicants of (S), that is, the minimal
clauses in (S) w.r.t. the subsumption order, are employed in the S-resolution
steps?. Of course, even the set of prime implicants of (S) may be an infinite
set.

5.4.4 Lemma:

Let S be a clause set, and let De (S). If there is a clause Ce (S) with C<D, then
each S-resolvent using D is subsumed by an S-resolvent using C.

Proof: Obvious. =

1 As to the notions of key literals and total vs. partial, and narrow vs. wide theory resolu-
tion, see Stickel (1985).

2 Note that the restriction to prime implicants corresponds to the requirement that the key

literals of a theory resolution step have to be minimally unsatisfiable in the basic theory.
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5.4.5 Definition:

Let S be a clause set. Then the set [S] is the set of prime implicants of (S), that
is, the set of nontautologous clauses, which are minimal in (S) w.r.t. the
subsumption order.

In contrast to the closed set (S), the set [S] of prime implicants does not
contain any tautologies. In order to remain complete, when the used clauses
are restricted to the prime implicants, the ordinary resolution steps, which
are considered S-resolution steps using an elementary tautology, have to be
explicitely admitted. Thus an [S]-resolution derivation (refutation) will be
regarded as a derivation (refutation) consisting of S-resolution steps using
clauses in [S] and of ordinary resolution steps.

5.4.6 Corollary:

Let S be a clause set, and S'cS. Then S is unsatisfiable, iff S\S' admits an
[S']-resolution refutation.

For any clause set S, the set [S] of prime implicants can be generated in the
usual way!: Form resolvents and remove subsumed clauses and tautologies.

For the class of complete semicycles, which produce only subsumed
resolvents, the set of prime implicants is finite. This is easy to see: Suppose
there is a resolution derivation from the set S of nodes of a complete semi-
cycle G. W.l.o.g the derivation can be assumed to be minimal, that is, it pro-
duces only non-subsumed resolvents. If the set of prime implicants were in-
finite, then we had an infinite resolution derivation from the nodes of a
complete semicycle G. This derivation would obviously involve a cyclic
subset of G. According to the results of the previous section, such a derivati-
on would produce a subsumed resolvent, which contradicts the assumption.

5.4.7 Examples:

a) Let S = {=Pxy Qxy, -Quv Puv}. Together with the appropriate links, S
forms an elementary cycle G, and [C(G)] = S holds, since no non-tautological
resolvents can be formed from S.

1 As in chapter 3 of this thesis. Note, however, that chapter 3 deals only with ground

clauses, where the set of prime implicants is always finite.
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b) Let S = {-Pxy Pyx}. Together with the internal link, S forms a function
free, but not complete, cycle G. However, adding a copy of -Pxy Pyx yields
the elementary cycle {-Pxy Pyx, ~Puv Pvu}. Thus [C(G)] is finite and again
[C(G)] = S holds.

) Let S = {-Pf(f(x,y), z) Pf(x,f(y,2))}. Together with the internal link, S forms a
non-complete cycle G. Then [C(G)]= S U {-P{(f(f(x,y),z),u) Pf(xf(y f(z,0))), ...} is
infinite.

In section 5.2, it was shown that cyclic structures in clause sets account for
ancestor subsumption. The strongest forms of ancestor subsumption are
caused by complete semicycles, which correspond to finite theories. These
can easily be employed for S-resolution, which thus in part overcomes the
problem with the derivation of redundant clauses.

The situation is somewhat different, however, for the problem with sub-
sumed links. The theory generated by clauses containing subsumed links,
need not be finite, as the transitivity example shows:

5.4.8 Example:

Let T3 be the transitivity clause =Px1x2 “Px2x3 Px1x3. T3 possesses two internal

links A1 and Az with A1=43. Resolving on A1 (or, equivalently, on A2) yields

the clause T4 = =Px1x2 “Px2x3 “Px3x4 Px1x4. This clause again possesses inter-

nal links, and the process continues. Proceeding this way, we obtain the set
T = {-Px1x2 “Px2X3 ... “Pxn-1Xn Px1%n | n=>3}

This admits for instance the following sequence (figure 5.16):

L .-':—:.-' % S-resolution
T3 —Pxy [—-Pyz|Pxz}--- —Pad not possible

Pab] [Pbc] [Pcd] -
o o :

S-resolution

T4 | —Pxy |=Pyz| —Pzw | Pxw —Pad

Fig.5.16
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Next we show by an example, how the information concerning cycles in
clause graphs can be used to reduce the search space in resolution theorem
proving. This example illustrates the application of S- resolution to
problems containing cyclic structures.

5.4.9 Example

Translating SAM’s lemma into a clause set, avoiding the use of the equality

predicate (see Wos 1988), results in a clause set S that consists of the follow-

ing 11 units
min(0 x 0), max (x 0 x), max(a b d1), max(cy e g), max(cy f h), min(cz b e)
min(ds ¢ 0), min(c a f), min(dy ¢1 0), min(a b d), -min(g h ¢y)

and 6 non unit clauses:

(C1) —min(x y z) min(y x z)

(Cp) ~max(x y z) max(y x z)

(C3) —min{x y u) -min(y z v) -min(x v w) min(u z w)

(C4) —min(x y u) ~min(y z v) ~min(u z w) min(x v w)

(Cs) —max(x y z) min(x z x)

(Cg) —~min(x z x) “max(x y x1) ~min(y z y1) ~max(x y1 z1) min(z x1 z1)

In the following we describe a refutation of this clause set using positive
hyperresolution together with theory resolution. The cyclic clauses C; and
Cjy, describing the symmetry of the min and max predicates, can be used for
S-resolution, as in example 5.4.8.b). The same holds for the clause Cs, which
is neither self-resolving nor a member of a cycle. The clauses C3 and Cg,
describing the associativity of the min predicate, form a cyclic structure,
which produces ancestor subsumed clauses in the following way: Let D1, Do,
D3 be clauses that resolve with C3 to the unit clause Dy4. Then (Dj, Dy, Dy)
resolves with C4 to a copy of D3. The resolution closure of the set {C3, C4} is
not finite, it thus cannot be used directly for theory resolution. But C3, C4 can
be used to derive complete cycles in a way, as shown in figure 5.17:
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[ min (<2 a ) | fmin (a b 2) |
i 1

—min (x y u) |—min (y zv) | —min (x v w) [ min (u z w) —min (c¢2 d2 w)| min( f b w)

—min (x y u) |—min (y 2 v) | min (x v w) | —~min (u z w) min (c2 d2 w)| —min( f b w)

I 1
[ min (2 a D |fmin (a b @2) |

Fig. 5.17

Only the relevant links are shown in this figure. The dotted links denote
the cyclic structure. The result of resolving {C3,C4} with the two units is a
complete cycle, which is added to the theory box. A resolution step of this
particular kind will be abbreviated by the following diagram (figure 5.18),
where a cycle is represented by an equivalence of the form A=B.

| min (2 a D |fmin a b a2) |
1 1

—min (X yu) |-min (yzv) [min(xXvw)=min(@zw) | —> min (c2 d2 w) = min( f b w)

Fig.5.18

Proceeding this way, only the clause C¢ is needed to produce “ordinary”
resolvents. Of course, there remains the possibility to produce copies of
already retained cycles. Taking into account these redundancies, a total 660
copies or instances of already present clauses are generated in the proof.

The proof of SAM’s lemma, as illustrated below, consists of 8 steps. The
bold faced links denote theory links, the used theories are denoted by their
clauses. For instance, a link numbered with C; denotes a theory link under
the theory of Cj, that is the commutativity of min.
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[ min (°2 L| [max (ab L' {x->c2, y->b, u->e, z->d1, v->b} El
| c2,c5
—vmm(xyu) —min (yzv) [ min (x vw)=min(uzw) | — min (c2 b w) = min( e d1 w)

| min(c2 b ¢) | {max(cl e g)| [min(d1 °1J [max(x 0x)| (x>, y-cl, 2->d1, y1-50, 21->¢}
c1 Tc [c |

—min(x z x) |-max(x y x1) | -min(y 2 yl) —max(x yl z1)|min(z x1 z1) | —5 | min (dle g)

[min (2 ail Irnax @b dil {x->¢2, y->a, u->f, z->d1, v->a} E2
| | cs

—min (xyu) |-min(yzv)|min(x vw)=min(uzw) | — min (c2 a w) =~ min( f dl w)

[;in (€2af) ”;n.m @b d2)_l {x->c2, y->a, u->f, z->b, v->d2} E3
| Hi
—min(xyu) {-min(yzv)|min(xvw)=mn@uzw) | — min (c2 d2 w) = min( f b w)
Fnin (2 d2 O)J r'“i“ (c2 bﬂ {x->f, y->b, u->0, z->¢2, v->e} E4
| E3 | c1
~min (X y u) | —min (y z v) [ min (x v w) = min (u z w) — min (f e w) = min(0 ¢2 w)

rmm (c2af) ”max @ ge)l
| E3 1

—min (xyu) {—min (yzv) | min (xvw)=minuzw) | —> min (f e w) = min (0 ¢2 w)

{x->f, y->d1, u->f, z->g, v->e) ES

[ max(el e g)|| max(c1 £ )| [min(0 2 0) | [max(x 0]
| cs | [ E4E5 |
—min(x z x) |[-max(x y x1) | -min(y z y1)] —max(x y1 z1)| min(z x1 z1) - min (g hcl)

{x->e, y->cl, z->dl, y1->0, z1->e}

FEero—weio] — 0O
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6 Resolution with Equivalence

As in most languages, there are many ways to represent information to an
automated reasoning program. One has, for instance, the choice between the
predicative notation Iyx = Pxye and the functional notation Pxinv(x)e,
when encoding that the product of x and its inverse is e. Similarly, the fact
that z is the product of x and y can be expressed using a predicative notation
Pxyz, or using an equality notation fxy =z. Usually the performance of a
reasoning system strongly depends on the particular choice of notation,
together with the appropriate choice of inference rule. For instance, if
resolution is the chosen inference rule, while the problem is represented in
the equality formulation, even simple problems become difficult to solve.
Wos (1988) reports a proof of the commutator theorem of group theory,
which was solved in 2 CPU seconds employing the inference rule para-
modulation (Robinson & Wos 1969). The same problem took some 100 CPU
seconds, when hyperresolution was used instead of paramodulation. In
general, there is a number of advantages of using an equality oriented
notation, together with the appropriate choice of the inference rule. It is not
only that these proofs are shorter, in particular when demodulation (Wos
1967) is employed. Moreover, these proofs are often much more natural and
easier to read. The performance of reasoning systems could thus be
considerably increased, if the inference rules of paramodulation and demo-
dulation could be made applicable also to problems that are represented in
an equality-free notation. In this chapter it will be shown that the incor-
poration of logical equivalence into clause resolution is such a way to
enhance the efficiency of automated reasoning systems.

With regard to the fact that a cycle of the form {-LjLy, -LL3,...,mLnL1}
represents a set {L1=Lp, Lo=L3,..,.Ln=>L1} of implications, which expresses
that the literals L; are pairwise logically equivalent, the incorporation of
logical equivalence thus also presents, besides the approach described in the
previous chapter, another means to overcome the problems with the
derivation of redundant clauses caused by cyclic structures in clause sets.

The approach described in this chapter is based on the correspondence
between equivalence of literals and the equality of terms. This similarity
finds expression in the fact that translating the functional expression
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fxy =fuv into predicate notation yields the logical equivalence Pxyz = Puvz.
This can be taken as a hint that equality problems, which are denoted in an
unsuited, predicative notation, admit a translation back into a better suited
equivalence notation. Moreover, a resolution calculus that is extended by
logical equivalence provides the power of paramodulation and demodula-
tion also for problems that cannot be represented in an equality notation.
For instance, the problem consisting of the axiom Vx Px=-Pfx and the
theorem Jx Px & —Pfx (see Pelletier 1986) could be equally well handled with
demodulation, even if it does not possess any corresponding equality
formulation.

What would such a resolution calculus with equivalence look like?
Consider for instance the clause set S = {Cq, Cp, C3, C4}, with C1 =PQ,
Cp=-PQ, C3 =P-Q, and C4 = -P-Q. In a pure resolution calculus, resolving
Cy with Cj3 is unnecessary, since the resolvents are tautologies, and likewise
for C1 and C4. In an extended resolution calculus, however, there is an
inference rule that derives the equivalence P=Q from C; and C3, and the
negated equivalence ~(P=Q) from C; and C4. These equivalences can be
treated like ordinary clauses, that is, the empty clause can be derived from
them. This example expresses the fact that a single equivalence P=Q or a
negated equivalence can be treated like a single literal (or a unit clause). For
instance, P =Q and ~(P =Q) can be resolved to the empty clause, which is
possible only for unit clauses. The equivalence P = Q, however, might also
be used as a demodulator! (Wos 1967) in the form P—Q or Q—P. Directing
this (ground) equivalence is arbitrary, one might employ for instance a well
founded ordering on the predicate symbols. Thus one could “normalize” the
actual clause set, after having deduced the rule P—»Q. Normalizing the
parent clauses —-PQ and P-Q yields the tautologies -QQ and Q-Q, which can
thus be removed. In fact, this is but another way to describe that P=Q
subsumes its parent clauses P = Q and Q = P. Note, however, that this
description of subsumption applies only to equivalences that can be directed
to rules. Normalizing the other clauses yields Q and -Q, and the next step

1 A demodulator is the same as a rewrite rule. The notion of a demodulator, however, is more

commonly used in the context of resolution theorem proving.
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leads to the empty clause. This derivation has an analogon on the
“resolution side”, as figure 6.1 shows:

subsumed

subsumed
replacement
rewrltmg rew riting resolution

P =P

Fig. 6.1

Replacement resolution (Markgraf 1984), is a combined resolution and
subsumption deletion step. In this example, resolving P-Q and Q yields the
unit clause P. This step is combined with the deletion of the subsumed
parent clause P-Q. In fact, this step can be considered a reduction step rather
than a deduction step, since it derives no new clause, but instead removes a
literal of the clause P-Q. Replacement resolution can thus be considered a
reduction, very similar to normalization by means of the rule P—Q.

One might argue that this example contains nothing really new. The
derivations employing the equivalence clause are rather similar to the other
ones and there seems to be no advantage in using them. In the following
example (see figure 6.2), however, the rewriting approach surpasses the pure
resolution refutation. The clause set in point is S ={-PQ, P-Q, —-PR, P-R,
QR, -Q-R}. While figure 6.2 shows a pure reduction refutation based on
demodulators, no resolution reduction rule is applicable to the initial clause
set.

-PQ P-Q —PR P-R QR —Q-R
NS oo
P-Q Q P7Q R |[Q°R
ﬂQR\}—ﬁR R R
Q-R \u/
Fig. 6.2
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While the previous example showed that literal demodulation enhances
the reduction potential of resolution inference systems, another example
demonstrates an effect of concentrating dispersed information. Refuting the
set S = {C1,Cp} with Cy = -Pax-Pyb and C; = PaxPyb requires either resolution
with factoring or otherwise six binary resolution steps. Factoring, being
necessary to guarantee completeness, is also a highly undesirable inference
rule, since its unconstrained use can lead to a growing number of redundant
clauses. (See Noll (1980) or Rabinov (1988)). Computing with equivalence
clauses condenses the information about the necessary factoring step in the
clause —(Pax = Pyb). Now only the instantiation {x—b, y—a} is needed for the
refutation.

It should, however, be mentioned that there is a certain tradeoff between
supplying more power to reduction by the new rewrite rules and enlarging
pure resolution’s search space. New resolution possibilities (the ones
resulting in equivalence literals) have to be considered besides the old ones,
yet their successful application is not warranted. Restricting the unlimited
derivation of equivalences could thus be appropriate. There are several
choices for such a restriction. One could for instance derive equivalence
clauses only if they subsume their parents (or at least one parent), such that
this operation does not increase the size of the actual data base. We will
adopt another restriction, which is based on the assumption that conditional
rewriting (see for instance Kaplan (1984) or Zhang (1984)) is far more intri-
cate than the unconditional version. In order to avoid a derivation like the
one that computes the conditional equivalence (P=Q)RS from the two
clauses “PQR and P-QS, we will allow only unit (that is, unconditional)
equivalence clauses. Recently, Zhang & Kapur (1988) have developed a first
order calculus using conditional rewrite rules. According to their calculus,
one literal of each clause is transformed into a conditional rewrite rule,
where the condition consists of the remaining literals of the clause.

6.1 The Calculus

The resolution calculus with logical equivalence requires a slight extension
of the syntax. In addition to the standard definitions of atomic formulae and
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literals, given in chapter 2 of this thesis, we will deal with atomic formulae
that consist of an equivalence.

6.1.1 Definition:

An atomic formula is either a P-atom Ptj...t,, with terms ti,...,tn and a
predicate symbol P of arity n, or it is an E-atom consisting of a pair (A,B) of
P-atoms A and B. If the pair (A,B) is ordered, then the E-atom (A,B) is also
called a rule, and written in the form A—B. If it is unordered, then it is
written in the form A=Bl. An E-literal is a literal, whose atom is an E-atom,
and an E-clause is - due to the restriction mentioned above - a unit clause
consisting of an E-literal.

The extensions of the semantic notions are straightforward:

6.1.2 Definition:

An interpretation 3 satisfies a ground E-clause (L,K), iff either 3 satisfies
both L and K, or 3 falsifies both L and K, and it satisfies an arbitrary E-clause
E, iff it satisfies all its ground instances.

From now on a clause set will be understood as consisting of usual
and/or E-clauses. The previous definition implies that the notions -(A,B),
(-=A,B) and (A,-B) are equivalent. An E-literal that is used to paramodulate
on some literal L, may thus be assumed in a form (K1,K3), where the literals
L and K; have the same sign. This avoids an awkward case analysis in the
definition of the derivation rules. For instance, the paramodulation step
between the E-clause P=Q and the clause —PR, yielding the clause -QR, will
be described with the modified E-literal -P=-Q. Thus in the following E-
literals will always be assumed to be in a form (L,K) with literals L and K.
The set A(E) of atoms of the E-literal E = (L,K) is the set {A(L),A(K)}.

6.1.3 Definition:

For any E-clause E = (L,K), the expanded form E* of E is defined as the clause
set {~LK, L-K}.

1 We shall, however, still write (A,B) for the E-atom to include both possibilities A=B and
A—B.
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6.1.4 Corollary:
The interpretation 3 satisfies the E-clause E, iff it satisfies E".

Proof: Let E'={C1,Ca). 3 satisfies (L,K), iff 3 satisfies each ground instance
of L=K, iff for each ground substitution 6, either 3 satisfies both L8 and K6 or
3 falsifies both L8 and K86, iff for each ground substitution 8, 3 satisfies both
C10 and C286, iff for each pair (81,082) of ground substitutions, 3 satisfies both
C161 and Co09, iff 3 satisfies both clauses C1 and C». [

6.1.5 Definition:

A strong reduction ordering is a well-founded! ordering & on terms and
atoms, such that for all s;tie T, s,te TUA, ce X, fe FL,UPy:

a) if s=t, then so=to (= is stable),

b) if si=t, then £(s1,...,5i,.-.,5n) € £(51,...,t,-..,Sn) (€ is monotonic),

¢) sct holds, if t contains s as a subterm (& has the subterm property),
d) = is total on ground terms.

For any objects a,b, we define a=b, iff a=b, or a=b. The ordering & can be
extended to literals and to ground clauses in a canonical way:

6.1.6 Definition:

Let = be a strong reduction ordering on TUA. For all non-E-literals L K, and
for all (arbitrary) ground clauses C and D:

a) LekK iff A(L)= AK)

b) CeD,iff C#D and for each Le C thereis a KeD with LeK.

Note that this definition implies that E-clauses are incomparable by &.
From the definition it is clear that the strong reduction ordering = on
ground clauses is stronger than the subsumption ordering and in particular,
o< C holds for arbitrary (E and non-E) ground clauses. In the sequel we shall
assume a strong reduction ordering on the set of terms and atoms. Such an
ordering allows to direct equivalences to rewrite rules. The E-clause (L,K)
will be assumed to be ordered (that is, it is a rule L—K), iff K= L holds.

Such an ordering could also be used to restrict the other inference rules
like resolution by requiring that at least one of the literals involved must be

1 An ordering = is well-founded, iff it admits no infinite descending chains t1 3 t33 ...
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maximal in its clause w.r.t. the ordering. This proceeding results in a variant
of ordered resolution, as it is described for instance by Rusinowitch (1987).
The calculus will be formulated, however, using rewrite rules only for
reduction.

An E-clause of the form A=A is called tautologous. It is obvious that
tautologous E-clauses represent tautologies and thus are redundant.

Besides the well-known resolution rule (with factoring), the calculus has
four additional deduction rules.

6.1.7 Definition:

Let C be a clause, let E' be an E-clause, and let E be an E-clause of the form

(LK), with V(C)N\V(E)=0, and V(ENV(E)=0D.

a) Let L'e C be unifiable with L with most general unifier 6. Then
(C\L"YUK)o is an ER-paramodulant of C and E.1

b) LetE'=(L'K'), and let L' be unifiable with L with most general unifier
o. Then the E-clause (Ko, K'c) is an ER-paramodulant of E and E'.23

o  If there is a substitution g with Ly = =Ky, then the empty clause O is an
ER-paramodulant of E.

The following lemma establishes the relation between ER-paramodula-
tion with an E-clause on the one hand and resolution with the clauses of the
expanded form on the other hand.

6.1.8 Lemma:

Let E, E', and C be as in the previous definition.

a) Each ER-paramodulant of C and E is a resolvent of C with a clause in
E".

b) Let E" be an ER-paramodulant of E and E' Let D"e (E")". Then D" is
resolvent of clauses D and D' with De E*, D'e (E")".

¢) If the empty clause O is an ER-paramodulant of E, then O is a resolvent
of the clauses in E".

1 ER-Resolution stands for resolution with equivalence and rewriting.
2 In the terminology of rewriting, rule a) would be called narrowing, rule b) superposition.

3 Note that ER-paramodulation is ordered, if E is a rule.
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Proof: Obvious. |

6.1.9 Definition:

Let C = LiKj and let D = L,K7 be variable disjoint clauses, and let ¢ be a
simultaneous most general unifier of (L1, -L2) and (K3, —K2). Then the E-

clause (Lyo,K10) is an ER-resolvent of C and D.

From this definition follows that {Co,Do} is the expanded form of the ER-
resolvent of C and D.

An ER-deduction step is either a usual resolution step, or an ER-paramo-
dulation step or an ER-resolution step. In addition to the common resolu-
tion reduction rules like tautology removal and subsumption deletion there
are the following reduction rules.

6.1.10 Definition:

Let E and E' be E-clauses, and let C be a non-E-clause.

a) Then E<C (E subsumes C) holds, iff D < C holds for some De E".

b) Then E<E' (E subsumes E') holds, iff there is a substitution p with
Epu=E'"

6.1.11 Definition:

Let R = L—K be a rule, let E be an E-clause of the form (L'K') with R+E, and

let C=L'C' be a clause.

a) Rreduces C to KuC, if there is a substitution p with Lu=L".

b) R reduces E to the E-clause (Ku,K"), if there is a substitution yu with
Lu=L"

A clause or rule C is called irreducible w.r.t. the set R of rules, iff no rule
of R is applicable to C. An ER-derivation is a sequence (Sjy,...,5n) of irredu-
cible clause sets, where S;,1 is obtained by reducing SijU{R;}, where R;is an
ER-resolvent or ER-paramodulant of clauses of 5;.

According to corollary 6.1.4 and lemma 6.1.8, it is clear that all the deduc-
tion and reduction rules of ER-resolution are sound. At the first glance, also

the completeness of the calculus (without reductions) seems trivial, since
ER-resolution is an extension of the resolution calculus, which itself is
lkknown to be complete. This argument, however, applies only for clause sets
\without E-clauses. For general clause sets, the completeness of the calculus

as to be proved, and this is done traditionally in two steps. First complete-
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ness for ground clauses is shown, then a lifting lemma transfers this result
to the general case.
6.1.12 Lemma:

Let S be an unsatisfiable set of irreducible ground clauses. If De S and D#0O,
then there is an ER-derivation of a non-E clause C with Ce D from S.

Proof: Let n be the number of atoms occurring in S. We proceed by
induction on n. If n=1, then S must consist of two complementary unit
clauses, which yields a resolution derivation of o and thus proves the
assertion. Now let n>1.

Case 1: D is a non-E-clause. Let Le D and let S(-L) be the set obtained from S
by removing all non-E-clauses containing the literal —L, deleting the literal L
from the remaining non-E-clauses, and replacing each E-clause of the form
(L,K) by the unit clause {-K}. Then S(-L) is also unsatisfiable,! and contains
n-1 atoms. By the induction hypothesis, S(-L) admits an ER-derivation D of
a clause C'=eD\(L}. From D we construct a derivation 2' in the following
way: we adjoin the literals L back to all clauses which were used in the
derivation D. Suppose, D contains a resolution step between C and -K
yielding the resolvent C\{K}, where the clause -K was generated from the E-
clause (L,K). The ordering = is total on ground terms, hence either L=K, or
Ke=L holds. If LeK, then this step is replaced by a reduction/paramodulation
step between C and (K,L) yielding C\{K}U{L}. If K=L, then this resolution
step is simply dropped. In the derivation D, all literals but L are reduced after
each derivation step. In the derivation D' we additionally reduce the literal
L.

It is easy to see that D' results either in the clause C=C’, or in a clause
C=C'U{K} with KeL. In both cases, CeD holds.

Case 2: D is an E-clause of the form (L,K). W.l.o.g. we assume that K=L holds.
Let S' be the clause set obtained from S by removing D and replacing all
occurrences of L (=L) by K (-K). Then §' is also unsatisfiable, and contains
n-1 atoms. By induction hypothesis, there is an ER-derivation of the empty

1 Compare the analogous construction in section 2.4 of this thesis; the argument that S(L) is

also unsatisfiable is literally the same.
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clause from §'. Since S' is obtained from S only by ER-reduction steps with
the rule D, we have an ER-derivation of o from S. n

The completeness theorem for ground clauses now immediately follows
from the previous lemma by an induction argument (note that the empty
clause is a minimal element in the set of clauses w.r.t. £).

6.1.13 Theorem:
Let S be an unsatisfiable set of ground clauses. Then there is an ER-deri-
vation of the empty clause O from S. =

Let C' and D' be instances of (E-)clauses C and D, respectively, and assume R’
is derived by an ER-derivation step from C' and D'. Then there is some
clause R, which can be derived by the same type of ER-derivation step from
C and D. Moreover, R' is an instance of R. n

The proof of this lemma is analogous to the corresponding proof for
resolution. The completeness theorem for ground ER-resolution together
with the lifting lemma proves the completeness of the ER-calculus.

~ 6.1.15 Theorem:

S is unsatisfiable, iff it admits an ER-derivation of the empty clause O. n

We have shown that the resolution calculus allows for a sound and
complete extension by equivalence literals. This extension provides part of
the power of equality reasoning techniques also for resolution provers. In
particular, it enhances the reduction part of resolution inference systems by
literal demodulation. The following example shows the striking effect that
this new reduction rule can have.

6.1.16 Example:

Let n be any even natural number and let S be the clause set {C1, Ca} with

C1 =PxPtx,

Co =-Px —Pfnx.
Except for the rather trivial cases n=2 and n=4, this clause set is not easy to
refute. For instance, the Markgraph Karl theorem prover (Markgraph 1984)

failed for numbers n>10. However, the problem has a straightforward
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solution based on literal demodulation: First, the following four resolvents
of C; and Cj are deduced:

C3 = Pfx-Pfx

Cy=-Px Pfrrlx

Cs=-Px P+lx

Cg= Px =PMm+lx
Next, the E-clause Ej: Px = Pfn+1x can be derived from Cs and Cg. No matter,
which strong reduction ordering is employed, this clause is always directed
to the rule Ry = Pf*+1x — Px. The rule R; rewrites its parent clauses Cs and Cg
to tautologies, or, in other words, it subsumes them.
In the same way, the E-clause Ej: Pfix = Pfx with the corresponding rule Ry:
Pf'x — Pfx can be derived from C3 and C4. E; subsumes C3, and Ry rewrites
Cs to Co'= -Px-Pfx. At this stage, we have the following set of clauses and
rules

C1 = Px Pfx,
Cy' =-Px -Pfx.
Cq4 =-Px Pilx
R; = Pf+lx 5 Px
Ry, = Pfhx — Pfx

The clauses Cq, Cp', and C4 are irreducible. The rule Ry, however, reduces
with Rp to Pf2x = Px, which can be directed to R;'=Pf2x — Px. Then the
repeated application of Ry’ to Ry yields finally - to be precise, after n/2 steps -
the rule Pfx — Px (note that n is even!), which in turn reduces Cy to Px and
Ca to =Px, and a last resolution step concludes the refutation.

The original clause set S with an odd number n is consistent - for instance,
the natural numbers with P being the even-predicate, and f being the
successor function is a model for this set. It is interesting to see that the same
process as above results in the final set {R}, where R is the irreducible rule
Px—-Pfx. This proves the original set’s consistency. Resolution theorem
proving, however, fails already for n=1: The clause set {PxPfx, ~Px~-Pfx}
allows for an infinite derivation of clauses —-PxPfZkx and Px-Pf2kx for all
natural numbers k, and there is no way to detect that S is satisfiable. Ordered
resolution (see Chang & Lee 1973), however, would perform analogously to
ER-resolution in this case.
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The following example illustrates the translation from a predicative into
an equivalence notation that comes very close to the equality notation.

6.1.17 Example:

Consider the axiomatization for a group (G,*), avoiding where possible the
use of equality (see Wos 1988). The equation x*y =z is represented by the
literal Pxyz, the term x*y by the term pxy.
The associativity axiom is represented by the two clauses

-Pxyu -Pyzv ~Puzw Pxvw

-~Pxyu -Pyzv -Pxvw Puzw
and the closure axiom by

P(xy,pxy)
Resolving the closure axiom against the first two literals of each of the
associativity clauses, one obtains

-P(pxy,z,w) P(x,pyz,w) and

P(pxy,z,w) ~P(x,pyz,w)
From these two clauses the E-clause P(pxy,z,w) = P(x,pyz,w) can be derived,
which is a far more useful representation for the associativity axiom.

The role of reduction for resolution based systems is traditionally under-
estimated compared with that of deduction rules and particular strategies.
Completion theorem provers like Hsiang (1982) and (1985), Kapur & Naren-
dran (1985), Miiller (1987), however, emphasize the role of reduction, which
surely accounts for their increasing success. The transformation of clauses
into rewrite rules, which is the basic feature of our approach, is also a
common principle to completion theorem proving. Thus the resolution
calculus extended by equivalence may be regarded as a partial incorporation
of principles of completion theorem proving into resolution theorem
proving.
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7 Conclusion

The basic questions like completeness largely being solved, Automated
Theorem Proving still poses intriguing problems, most of which come
under the need for efficiency. One of those issues, the derivation of un-
needed informationl, was the starting point for the second part of this thesis.
Besides the development of an efficient subsumption test in chapter 4, our
main interest was aimed at avoiding, or at least reducing, the derivation of
those useless clauses, instead of removing them after their generation. As it
is frequently the case, it turned out that the answer to this question was
relevant also to some other basic problems of automated reasoning, showing
yet again that most of these problems are deeply connected.

Among those basic research problems, which Wos (1988) ranks among the
most important challenges for reasearch in automated theorem proving, the
following questions turned out to be connected with the reduction of
redundancy.

The first question? deals with issues of choosing the appropriate
representation and inference rule. As already remarked (see chapter 6), for
many problems one has the choice between an equality representation,
permitting the use of the inference rule of paramodulation and other
equality reasoning methods, and an equality free notation, which restricts
the possible inferences to resolution and derived rules like hyperresolution.
Usually, these two approaches exhibit a disparate performance. While some
very small problems seem to favour the hyperresolution approach3, most
other problems are almost intractable when the inference rule hyperreso-
lution is employed. It is natural to ask for the reason of this different beha-
vior. It seems that the results of chapter 5 shed some light on the poor
performance of hyperresolution in those cases. At a first glance, it seems that

Compare also problem 6 in Wos (1988).
2 Compare also problems 4 and 11 in Wos (1988).

For instance, the following problem admits a short and fast solution using hyperresolution:
Given a group G, if x2=1 holds for each xe G, then G is commutative. Paramodulation, on the

other hand, performs very poorly on this problem (see Bldsius (1987)).
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equations are eliminated in the equality free formulation of those problems.
On closer inspection, however, it turns out that equalities take the form of
equivalences in all these examples. It seems that the absence of demodula-
tors accounts largely for the poor performance of hyperresolution on these
examples, and the results of chapter 5 and 6 also provide a means to employ
hyperresolution with almost the same efficiency as paramodulation on
these class of problems.

The second question reads as follows: “What is the appropriate theory for
demodulating across argument and across literal boundaries - a theory
similar to the current use of demodulation or similar to that for complete
sets of reducions - to replace certain predicates by other predicates and certain
collections of literals by other collections?” (Wos 1988). This question seems
to be answered completely by the extension of resolution with equivalence
as proposed in chapter 6.

A last problem concerns the question of how to choose the clauses a
particular inference rule like hyperresolution, or linked inference rules, is
applied to. Most of these rules rely exclusively on syntactic criteria, like
literal polarity, or clause length. As far as linked inference is concerned, the
results of chapter 5 suggest a particular choice of clauses as “nuclei” of linked
inference rules. Those clauses that represent “hidden” redundancies like
subsumed links, or complete cycles, should preferably be chosen to act as
such nudlei, in order to avoid their being involved in resolution steps.

A first step towards a satisfying solution to these problems has been made
in this thesis, however, many more questions remain unanswered. For
instance, many unneeded clauses will still be derived, even if cyclic clause
sets or subsumed links are removed. Which structures account for these
redundancies, and how could they be used to avoid redundancies? Is there
any reasonable means to completely avoid the derivation of redundant
information? It might be suspected that subsumption is irrelevant for those
approaches that entirely avoid the retention of new information like
Stickel’s (1988) Prolog technology theorem prover or the Matrix methods
developed by Andrews (1981) and Bibel (1982). These methods thus seem to
represent a means to sidestep the problem with the derivation of unneeded
information. However, as Overbeek & Wos (1989) remark, such a position is
flawed. In these approaches, subsumption comes under the form of identical
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or subsumed subgoals to solve. For instance, a logic program might first
make an attempt to solve the goal ~Pxyz, and later as a subgoal, the clause
—Pabc, and succesively numerous instances of the first subgoal. Or, in the
presence of the recursive program clause —-PxyPyx (in Prolog notation Pxy :-
Pyx), the successive subgoals might be of the form Pab, Pba, Pab, and so on.1

The problem with the derivation of redundant information is among the
most important problems for automated reasoning. It would thus be of great
value to transfer some of the results of chapter 5 to other inference rules like
paramodulation. For instance, an analogon to the inheritance of subsumed
links (compare theorem 5.3.5 of this thesis) for paramodulation is given by
the following conjecture: Suppose the paramodulant K of some literal L at
subterm u with the equation ti=tp is subsumed. Then for each descendant L'
of L, which admits a paramodulant K' at the same subterm u with the
equation tj=ty, K' is also subsumed. Of course, the notions of links and link
inheritance for paramodulation have to be made precise in order to
investigate this question.

1 Compare the discussion in section 5.2.
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Appendix: Boolean Algebra Admits no Canonical Term Rewriting
System

In the following a formal proof will be given that a canonical term rewiting
system for Boolean algebra cannot exist. First we introduce the basic notions
of equational term rewriting systems.

A.1 Definition (Equational System):

An equational system E is a set of termpairs s=t. This system generates an
equality relation =g in the following way: We define a relation =¢ bys —-Et iff
there exists an occurrence u in s, an equation s'=t' or t'=s' in E, and a
substitution o, such that s/u =s'c and t = sflu—t'c]. The relation =g is defined
as the transitive, reflexive closure of =}5. It is clear that =g is an equivalence
relation. The equivalence class of t modulo E will be denoted as [t]E.

A2 Definition (Equational Term Rewriting System):

A term rewriting system R (over T) is a set of termpairs 1—-r (the so called
rules), such that V(r)cV(1) (and LreT). A term t; R-reduces to a term tp,
written t] =R tp, iff there exists an occurrence u in tj, a rule l-rin R, and a
substitution o, such that t;/u =1o and tp = t1[u—rol.

A term t1 E,R-reduces to t2, written t; =g R to, iff there exist t'1e [t1], t'2e [t2]
with t'1 =grt'2.

=°E,R denotes the transitive, =>;:,R denotes the reflexive transitive closure of
=g,R and =g R denotes the reflexive, symmetric, and transitive closure of
=ER

The pair (E,R) is called an equational term rewriting system (ETRS). It can be
understood also as a rewriting system for T/=g = {[t] | te T}.

(E,R) is noetherian, iff there is no infinite sequence of E,R-reductions from
any term.

(E,R) is confluent iff t =>E Rtiandt =>E R t2 implies the existence of a term t3
with t1 =>E R t3and t2 =>E R t3.

A noetherian and confluent system is called convergent.

A term tj is called (E,R-)irreducible, iff there is no term tp with t] =EgR t2,
and (E,R-)reducible otherwise.
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An irreducible term t is called a normal form for ty, iff t1 =g g t.

If (E,R) is convergent, then each term t has a normal form ti, and sl=g t!
holds for each term s withs=gRrt.

A.3 Definition:

Let R be a convergent ETRS over T. Then the noetherian partial ordering

>x on T generated by R is defined by s>t iff s=>; t. In the following we shall
usually drop the index R.

A4 Lemma:

Let R be a convergent system on T with = = =E.

a) The ordering > generated by R is compatible with substitutions, that is,
s>t implies so>to for any s,te T and any substitution o.

b) Lets,teT.If s =g t and tis R-irreducible, then s>t holds.

Proof: Obvious. n

In the following let AC be the equational system
AC = {xvy = yvX, XAY = yAX, xV(yvz) = (xvy)vz; XA(YAZ) = (xAy)Az).
and ACD the system AC U {xv(yAz) = (xvy)A(xvz), xA(yvz) = (xAy)v(xAz)).

In the following we shall consider exclusively the term set T=T(Fp,V),
where Fp is the signature (A,v,~) of boolean algebra.

For ease of notation, we shall use the following convention: For any te T,
we define the dual term ¥, which is obtained from t by simultaneously
replacing each occurrence of v by A and vice versa, and each occurrence of 0
by 1, and vice versa.

In the following equality will tacitly be understood to be equality modulo
AC. As it is done in chapter 3, equality modulo BA will be denoted by =, and
terms which are equal under BA, will also be called equivalent. We will use
the customary notion of literals, clauses and a conjunctive normal form
(CNF). Recalling the notions of chapter 3, a term t is called a literal, iff it is
either of the form a, or of the form -a, with a being a constant or a variable.
The term t is a clause, if t = s1v...vsy, with pairwise distinct literals s;. A term
t is called a CNF-term, if t =s1A...Asp, where the s; are pairwise distinct
clauses. A term with topsymbol v is also called a disjunction, a term with
topsymbol A a conjunction, and a term with topsymbol ~ a negation.
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A.5 Theorem:
There exists no convergent ETRS (AC,R) such that =pc,R coincides with =.

Note that we deal exclusively with term rewriting systems over the fixed
signature Fp. There exists, for instance, a convergent system over the
extended signature (A,v,—,+,%,0,1), see Hsiang (1985).

In order to prove the theorem above, we first provide some lemmata. For
the remainder of this section, we shall assume that there exists a convergent
system R = (AC,R) for BA. Let > be the noetherian ordering associated with
R.

A.6 Lemma:
The following relations hold:
(xXvy)Ay >y
—xvx >1
XVX > X
xv0 > x
xvl >1
X > X
xvy)A(=xvy) >y

Proof: For each line, the two terms are equivalent according to definition
3.1.1 and lemma 3.1.2. Furthermore, each right hand side is obviously
irreducible, hence the assertion follows from lemma A.4.b. |

The proof of our main theorem proceeds essentially by considering a
particular term t, and proving that all terms t'=t are reducible. The
following lemmata will provide two important techniques to prove a term t
reducible, which are used heavily in the sequel. The first states that the
normal form of a symmetric term must be symmetric.

If t is a term containing the (distinct) symbols p,q, and t(p,q) = t(q,p), then
the term t is called symmetric in (p,q). t is called semi-symmetric in (p,q), iff
t(p,q) = t(q,p).
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A.7 Lemma (Symmetry Lemma):

Let x,ye V with x#y, and let t=t(x,y) be irreducible. If t is semi-symmetric in
(x,y), then t is even symmetric in (x,y).

Proof: Assume t(x,y)=t(y,x). Then we have t(x,y)>t(y,x), since the latter is
irreducible. But then, according to A.4.a also t(x,y)o>t(y,x)o for 6={x—y; y—x]},
which implies t(y,x)>t(x,y), a contradiction. : n

The symmetry lemma can also be stated as follows: If the term t is
symmetric in (x,y), then t! is also symmetric in (x,y).

The next “subterm lemma” shows that a term t is reducible, if a subterm
of t can be replaced by a shorter term, without changing the original term’s
value.

A.8 Lemma (Subterm Lemma):

Let t = s1A...ASp, with n21, and let o={x—1g} be a substitution with xe V(t) and
xe V(tg). If 516 # s1, and s10AS2A...ASp = t, then t is reducible.

Proof: Assume that t is irreducible. Let s1' = (s16){, and let t' = s1'AS2A... ASp.
Then, since 516 £ s1, and t' = t, we have t'>t. In particular, we have
t'c > to,
which implies
$1'GAS20A. . .ASRO > S]OASIOA. . .ASKG,
and, since s16 > s1'= s1'0, we have
$1'OAS20A. . .ASRO > §1'0ASIOA...AS[C,
which is a contradiction. [ |

It should be noted that the assertion of the subterm lemma also holds for
a disjunction t = s1v...vsp.

A.9 Example:

Let t = (xvy) A-x. We show that t is reducible. Let 6= {x—0}. First it is easy to
see that t = ya-x, and y = yo & (xvy). If t were irreducible, then we had
y AX > (Xvy) Ao
hence
y A=0 = (y A-x)6 > ((xvy) A-x)0 = (Ovy) A-0 >y A-0
which is a contradiction.

133



Simplification and Reduction for Automated Reasoning

A.10 Lemma:

Let t be a term with V(t) = {x1,...,xn}. Then there is a unique CNF-term t =
C1A...A Cm, where each G is a clause containing all xj's, and T = t. The term t
is called the standardized CNF of t. Each ¢; is called a standard clause of t.
The notion of a standardized DNF is defined analogously.

Proof: See, for instance, Rudeanu (1974). ]

A.11 Example:
Let t = (-xvy)A(~xv-z). Then T = (-xvyvz)A(=xvyv-z)A(~xv-yv-z) is the
standardized CNF of t.

A.12 Temma:
If t = tiA...Aln, then for each ie {1,...,n}, there are standard clauses G, ...,Cik;,
with

ti= Eilf\---/\aiki-

Moreover,

ng -~ ~ ~
Uril=l U]-_il Cij = {Cll"'l Cn}- | |

A.13 Lemma:

Let t = xvy. Then either tl =t, or tl = =(-xA-y).

Proof: Obvious. |

A.14 Temma:
Let t = (xvy) A (yvz) A (zvx). Then tle{ty,...,t3}, where
t1 = (xAy) v (yAZ) v (zAX),
ty = ~(=yv-z) v =(~xv=z) v =(=yv-x),
t3 = (xvy) A (yvz) A (zvx),
tg = ~(=yAz) A ~(=xA-Z) A (=yA-X)
ts = ~[~(yvz) v =(xvz) v ~(yvx)],
te = =[(~yA-2z) v (-xA=2) v (7yA-x)],
t7 = [(=yv-z) A (<xv-z) A (Ayv-x)],
tg = ~[~(yAz) A ~(xAzZ) A ~(yAX)].

Proof:
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a) Let t{ =s1v...vsy, and let T be the standardized DNF of t. Then
f =djvdavdsvdy, with

d1 = xAyAZ, d2 = “XAYAZ, d3 = XATYAZ, d4 = XAYAZ.
According to A.12, each s;j is equivalent to a disjunction of dj's. Moreover, tl
must be symmetric in (x,y), in (y,2), and in (x,z), and thus there are only the
following cases: Either tl = sjvsp, with s1 = dj, and s2 = davd3avdy, or tl =
s1vsavss , with the following possibilities:

s1 =dqvdy, sp = divds, s3 = dyvdy,

s1 =dqvdavds, s2 = d1vd3vdy, s3 =dpvdavds.
Let tl = s1v sp with s1 = d1, and s» = dovd3vdy, and let 6={z—1}. Then s10 #s1.
We show that sjov s2 =s1v s2: We have

S10V 82 = (XAYAZ) Vv (XAyA-z) vda vd3 =

(xAy) v da v d3 = (xAy) v (xAyA-z) vda vd3z =s1v s
Hence the subterm lemma implies that sqv s is reducible.
Let tl =sy1vspvss. If 51 = divdy = yAz, sp = dijvds = xAz, s3 = divdg = yAx, then
we have either s; =yAz, sp =xAz, s3 =xAy, and tl=tj, or s1 = =(~yv-z), s2 =
~(-xv-z), s3 = ~(7yv-x), and ti = tp.
If s3 = dyvdovds = (xvy)az, sy = dyjvdavdy = xA(yvz), s3 = d1vdavdy = yA(xvz),
then let 1={x—0}. It is easy to see that

S1TV S2V S3 = S1V SV §3,
and 517 # s;. Hence the subterm lemma implies that s1v sy v s3 is reducible.
b) Let ti = s1A...Asn. Analogously to a) it can be shown that tl e {t3,t4} in this
case.
c) Let t§ = =t', with t' = s;v...v sn. Then tl = =s1A...A=s. Let T be the
standardized CNF of t. Then T = cjAcpAC3ACy, with

C1 = XVYVZ, 22 = “XVYVZ, Z3 = XVIYVZ, Z4 = XVYV-Z.
Then each -s;j is equivalent to a conjunction of ¢j's, and analogously to part
a) it can be shown that either t{ is reducible according to the subterm
lemma, or tle {t5,ts}. The case where t' = s1A...A sp is treated analogously. =

A.15 Lemma:

If the terms xv(yAz) and xa(yvz) are both irreducible, then R is not
convergent.

Proof: The assumption of the lemma implies (xvy)Aa(xvz) > xv(yAz),
(xAy)v(xAy) > xA(yvz), and, in particular, since both yAz and yvz are
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irreducible, <(-yA-z) > yvz, and ~(—~yv-2z) > yaz. This proves all terms ty,...,tg
of the previous lemma to be reducible, hence R cannot be confluent. ]

Hence it will be assumed in the following that one of the terms xv(yaz)
and xA(yvz) is reducible. It is sufficient to assume the term xv(yAz) to be
reducible, the alternative case admitting an analogical proof. In particular,
this assumption implies that each disjunct s; of an irreducible term t =
S1V...VSp is either a negation or an atom.

A.16 Lemma:

Either the term xvy or the term xAy is reducible.

Proof: We consider the term t = (-xvy)A(-yvx)A(xvz). Since t is semi-
symmetric in (x,y), but not symmetric, t must be reducible.

a) Let tl =s1A...Asp, where the s; are not conjunctions.

If n>3, let a be an arbitrary constant and let ¢ = {x—a, y—a, z—-a}. We have t
> ti, and in particular to > tl 6, where to= (~ava)A(-ava)a(av-a), and tlo
=S10A...ASn0. From to=1 follows tlo=1, and hence sjoc=1, for each
ie {1,...,n}. Hence sjo > 1, and, since sijc is composed solely of the literals a
and -a, the last step of this derivation must be of the form av-a = 1. Thus
we have the reduction (-ava)a(-ava)a(av-a) =>;{ (mava)A...a(av—a), where
the second term has n>3 conjuncts, which obviously contradicts the finite
termination property of R.

Now let n=2, that is t{ = s1Aas). Let T be the standardized CNF of t. Then
t = c1A...Ac5, with

C1 = TXVYVZ, CQ = XVTYVZ, C3 = "XVYV™Z, ¢4 = XVIYVZ, C5 = XVYVZ.

We distinguish two cases:

Case 1: s1 is symmetric in (x,y). Then sp is also symmetric in (x,y), since tl
is. From lemma A.12 follows that s1 and s» are equivalent to conjunctions of
the cj. Taking into account the symmetry property, there remain the
following possibilities:

S1 = C1AC2, S2 = C3AC4ACS,

$1 = C3AC4, O S1 = C3AC4ACS, and $2 = C1ACIACS,

$1 = CIAC2AC3ACY, 52 = C5, S2 = C1AC2ACS, OF §2 = C3AC4ACS.
In the first line, let 6={z—0}. We have 516As2 = t, and s1 # s16. From the
subterm lemma follows that s1As2 is reducible.
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In the second line, let t={z—1}. We have s1tAsy = t, and s1 £ 516. From the
subterm lemma follows that s1As> is reducible.

In the third line, let g={x—y}. We obtain in all three cases s1As2¢ = t, and s>
# 2@, and from the subterm lemma follows that sjAsz is reducible.

Case 2: s is not symmetric in (x,y). Then s1 = s2{x—y; y—x]}, and for each ¢;
occurring in sq, ¢i{x—y; y—x} must occur in sp. Hence both s and s must
consist of at least 3 cj's, and both contain c5. We have the following
possibilities:

$1 = C]AC3ACS, 52 = CQAC4ACS,

$1 = CIAC4ACS, S2 = C2AC3ACS,

§1 = C1AC2AC3ACS, 52 = C]AC2AC4ACS,

$1 = CQAC3ACYACS, 82 = CLAC3AC4ACS.
In the first, third, and fourth line, let 6={z—1}. In either case, we have s1GAs2
= t, and s1 £ s10, hence sjAs2 must be reducible according to the subterm
lemma.
In the second line, we have s1 = (yvz)A(xv-yv-z), and sp = (xvZ)A(-xvyv-z).
Let 1={z—~x}. Since s1tAs2 = t, and s1 # 517, 51452 must be reducible according
to the subterm lemma.

b) Let tl =syv...vsp,. Let T be the standardized DNF of t. Then T = cyveyves,

with

dj = “XA=YAZ, d2 = XAYAZ, d3 = XAYAZ.
Obviously, n<3, since otherwise one s;, say s, would be redundant, that is tl
= S1V...V8p-1, which obviously contradicts the irreducibility of tl. If n=3, then
tl =syjvsyvs3, with s; = dj. But then spvs3 = xAy = —(-xv-y), hence syvs3 is
reducible.
Thus we have tl = sjvsy, where both s1 and s are negations, with the
following possibilities:

s1=d1, s1 =dyvds, orsy=dyvdy, and sp = dovds,

s1=d3, or s1 =dyvds, and sp = djvdy,

s1=dp, sp =divds,
In the first line, s = dpvds = xAy = ~(-xv=y) holds. One of the last two terms
is irreducible, hence sy = xAy, or s3 = =(-xv-y). But s is a negation, hence ti
= s1v-(-xv-y), from which follows that ~(-xv-y) is irreducible and thus xAy
is reducible.
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In both the second and the third line, let 6={z—1}. Then s16 v s = t, and

from the subterm lemma follows that sjAss is reducible.

¢) Let tl = =s. Then either tl = =(syv ... vsp), which can be treated
analogously to a), or ti = =(s1A ... Asp). In this case we obtain, similarly to b),
tl = (s1' A 82"), with s1'=d1', or s1'= di'Aa dp', or s1'=di'A d3' and sp' = do'A
d3', where
di’ = xvyv-z, d2' = ~xvayv-z, d3' = “xvoyvz.

First of all, t{ = —(s1’ A s2) implies that ~(xAy) is irreducible, hence -xv-y
is reducible. We have s’ = d'A d3' = ~xv-y, and since s2' is irreducible, sy’ =
—~(xAy). Now tl = ~(s1' A =(xAy)) implies that ~(xA-y) is irreducible, hence
-xvy is reducible. Assume that s1’' is a disjunction, say s1' = uiv...vum. Then
each uj must be an atom, since both xv(yAz) and xv-y are reducible. But it is
easy to see that there is no disjunction of the atoms x, y, and z can be
equivalent to one of the terms dj', di'A d2', or d1'A d3'. Hence si' must be of
the form s1' = -u, which implies that tl = ~(-u A =(xAy)) is irreducible.
Hence also =(=x A —y) is irreducible, which implies that xvy is reducible. =

A.17 Lemma:

Either the terms xvy and —~(xAy)A—-(xAz) are both reducible, or the terms xAy

and —~(xvy)v-(xvz) are both reducible.

Proof:According to the previous lemma, either xvy or xAy is reducible.
Case 1: xvy is reducible. Consider the term t = (=xvy)A(-yvx)A(-xv-z). Since t
is semi-symmetric in (x,y), but not symmetric, t must be reducible. Since xvy
is reducible, ti cannot be a disjunction. Hence we have either t! = sjA...Asp or
tl =-s. The first case is treated analogously to case a) of the previous lemma.
In the case, where tl =-s, we have tl = —(s1' A 57'), with s1' = dy', or s1'=dj'A
dp', or s1'= di'A d3' and s2' = d2'A d3', where

di' = =xv-yvz, d2' = xvyvz, d3' = xvyv-z.
Analogouly to case ¢) of the previous lemma, we obtain s3' = ~(-xA-y),
hence from tl = —(s1' A s3') follows that the term tp:=—(x A ~(-xA-y)) is
irreducible, which in turn implies that t1:==(xAy)A-(xAz), which is equiva-
lent to tg, is reducible.
Case 2: xay is reducible. Consider the term t = (xvyvz) A (-xv-y). Since xAy is
reducible, t is also reducible, and, moreover, ti cannot be a conjunction.
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Hence we have either t! =sjv...vsy or ti =-s. The first case is treated
analogously to case a) of the previous lemma. In the case, where t! =-s, we
have tl = ~(s1' v s3"), with si'=d1',ors1'=di'vdy,orsy’'=di'vds and sg' =
do'v d3', where

di' = "XA-YA—Z, d2' = XAYAZ, d3' = XAYA-Z.

Analogouly to case c¢) of the previous lemma, we obtain sp' = ~(-xv-y),
hence from tl = =(s1’ A s3") follows that the term tg:=-(x v ~(=xv-y)) is
irreducible, which in turn implies that t;:=—(xvy)v-(xvz), which is equiva-
lent to tg, is reducible. [ |

A.18 Corollary:

R is not confluent.

Proof: We consider again the term t = (xvy) A (yvz) A (zvx) = (xAY) v (YAZ) v
(zAax) of lemma A.14.

Case 1: The terms xvy and ~(xAy)A—(xAz) are both reducible. The reducibility
of xvy excludes ti, t2, t3, ts, te, and t7 of lemma A.14 from being irreducible,
and the reducibility of ~(xAy)Aa=(xaz) excludes both tg and tg from being
irreducible.

Case 2: The terms xAy and —(xvy)v—(xvz) are both reducible. The reducibility
of xAy excludes ti, t3, ta, te, t7, and tg of lemma A.14 from being irreducible,
and the reducibility of —(xvy)v-(xvz) excludes both t2 and t5 from being
irreducible. ' n

This corollary provides the proof of our main theorem A.5.

A.19 Temma:
Let R be the following set of rules:

rp: xvx -1

ry: Ovx = x

r3lvx -1

rg =1 —0 051
I5: XVX — X

and let R=(AC,R). Then the system R is confluent on clause terms.

Proof: 1t is easy to verify that there are no divergent critical pairs (t1,t2)
with clause terms ti, to. ™
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Special Symbols
A Set Of ALOMS «.ucueeeiecciiicccecte et e e seseasaenene 11
A(E) Set of atoms of the equivalence literal E............ccovcvucunn. 114
A(L) Atom Of the Hiteral L ....ccocoveerioncrnincencrnenener e reeeeeresccaneees 11
C@G) Clause nodes of the graph G......cccoocvueeinivecicncenninecrnnen 75
E(C) Literals of C without links......c.ccooeeervevcceecrnnesensiersecrmeresnnenas 76
F Set of function symbols ... 8
I(L) Set of links incoming to the literal L....c..cccvcinerinirennnnncn. 76
AG) Set of links of clause graph Gu.......ccoeecuecrcremeremensesnemsenensens 75
A(L) Set of links incident with the literal node L........ccccoecuune.. 76
L(o) Set of literals occurring in 0. 31
N(G) Set of nodes of the clause graph G......c.ccocecvureeirersvercinivenns 75
o) Set of links outgoing from the literal L......cccoccvversivirsurrenens 76
P Set of predicate SYMbOIS..........ccccvciviiniirinieinnninee e 11
P(L) Predicate symbol of the literal L........cocevvevveurercrrereeninininrens 11
P(o) Propositional variables 0ccurring in 0 ...ceivvceeennernninen 31
P Set Of RENAMINGS ...ccoovevererrvesrriissneneeieecsre st 10
Pw Set of weak renamings ......ccovveeeninensnininiscnienesne e 10
z Set Of SUDSHItULIONS ..uvvcvieiiiiiiccrcccr e 8
=* Set of idempotent subSHEUHONS ......ocvveivieiiniverrreeeeieniene. 9
= Set of permutations......eeeeueveii e 9
T Set Of teIMS........cciiriviiririictc et 8
\Y Set of variables ... e 8
V(o) Variables OCCUITING I O coceveevnrrercenireienrcereeseieeisessrsensessessessaens 8
Sl=o0 The interpretation 3 satisfies 0., 16
X*a Sum over the elements oOf the VECtOr a......c.cocorecerereuerenees 47
(A,B) Equivalence liferal ........ccecemccnceeeeenereereaseesemesesmnenes 114
m] EMPLY Clatse ..ottt sssnseses 11
= Equality in boolean algebra ..........ccocoiirieiniiiieniininenene 19
[L] Equivalence class of the literal L modulo =.......ccccccueucunennne. 45
(S] Set of prime implicants of (S) ......ccoueomurrerecrrermerruecsnneunn: 105
IxXlcp Equivafence class of the variable x modulo =C,D.....ccooeeenes 47
M(D,Q) (L' | LeC, ue uni(C,L,D)}.ccoviorerereerereisierereee et seseneanens 70
Mg(D,C) L' | LeC, e unig(C,LD)} . oveeeeeereereceersenieierevseeseseeeesaens 72
C-R R is resolvent along A .....cccceveeirieierevenicrieeene s 76
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Particular subgraph of G.............cccccvmvimnnne 76
Particular subgraph of G.........c..ccovinnnrneenninni s 76
Expanded form of the equivalence literal E....................... 114
R is resolvent between C and D ...c.ccoevvvvecvnvvenviiinenrieeene. 18
Characteristic function .....cocveeeieeeeneieniieesecee e, 46; 68
Irreducible factor of the clause C.....ccocevivimiiierniecinieinniiennn, 12
Clause C properly subsumes D.....cocovereeeeriicncciniinnnninnnn. 12
Link A1 is a variant of InkK Ao ..cccvcvvveeriinnreienecesenecreeeneneennns 97
Link A7 subsumes Hnk A9 .eooieeeeieieeeeiceecereeeeereee e 97
Term s is variant Of foccocveeeeieeeriicieie e eiereeeresreeee s eee e s e e 9
Term S SUDSUINES Luuevieerririeereireenrieesiresnesenssesssesessssssennsenesnes 9
Clause C s is variant of clause D.......cccceernecerecnruernnens rereerans 12
Clause C subsumes clause D.......ccovrvvicmrnieenneeirenreeieeceienen, 12
Clause C is subsumption equivalent to clause D................ 12
Prime polynomial Of t....ccoiimeieniinnieiiinieinineecee e 24
ReStriction Of G 10 Veriivvieernreeceeeeisiesreneesssesesssssessssnssnseseans 9
Set of unifiers of literal Le C with KeD.....ccccccvvvvivencniiannen 12
domain of the substitution G .....ccccevvvrienrieniicecee e, 8
codomain of the substHtUtION G ..cocoevevveereceneeciecrierer e 8
Cardinality of the clause C........ccoooimieiinieiinneeiecias 11
Number of occurrences of variable x in clause C............... 48
Resolution closure of S.... e 93
equivalence generated by charact. function.............u...... 47
Semantic closure Of S.......coovvrvcevrvvniiiecrrrrrieseerieciarsrereenns 16; 103
Principal filter generated by t.....ccoviereveevnininrccririeicriinnee, 21
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Index

ancestor 18
- resolution 92
- subsumption 78; 106
associated clause graph 81
atom 11
binary resolvent 14
boolean algebra 19
boolean simplification 19
branching node 83
branching tree 83
characteristic (function) 46; 68
clause 11

- node 75

- path 32

- term 22

- polynomial 22
clause graph 75

- resolution 94

- associated 81
CNF-term 22
CNF-polynomial 22
codomain 8
compatible 10; 76
-, strongly 10
complementary 11
complete semicycle 91
complete path 32
completion theorem proving 121
conditional rewriting 113
connected 61
copy 9
cycle 86; 111

- elementary 92; 106
cyclic 77
demodulation 74; 111
domain 8
E-atom 114
E-clause 114
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E-literal 114
electrons 14
elementary cycle 92; 106
elementary tautology 80
equivalent 16
ER-deduction 117
ER-derivation 117
ER-paramodulant 116
ER-resolvent 117
expanded form 114
factor 12
-, subsuming 12
-, irreducible subsuming 12
Factoring 113
falsifies 16
forward subsumption 78
function 8
grandparent 78
graph isomorphism problem 42
ground 8
homogeneous 50
hyperresolution 15; 74; 94
hyperresolvent 15
I-literal 83
idempotent 8
implies 16
incident 75
inherited 76
instance 9
interpretation 16
invariant properties 43
irreducible 12; 118

- subsuming factor 12
isolated in C 62
iterated consensus 25
joins 75
key literals 104
Lifting lemma 120
Lindenbaum algebra 24
linear derivation 81
link 75

Index
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deletion 94
inheritance 94
resolution 103
Subsumed 94
adjacent 75
literal 11
- demodulation 113
-node 75
logical equivalence 111
matrix methods 29
merge 77
model 16
monotonic 115
most general unifier 10
NF-matrix 32
nucleus 15
O-literal 83
P-atom 114
paramodulation 111; 125
parents 18
path 30; 32; 77
permutation 8
predecessor 76
predicate 11
prenex negation normal form 28
prime implicant 24; 25; 105
principal filter 21
R-link 76
recursive predicates 86
renaming 10
replacement resolution 112
residue 84
resolution 3; 4; 7; 11; 14; 16; 18; 26; 27; 41; 66; 78; 93; 94; 97; 101; 102; 110; 111;
112;113; 116; 118; 119; 120; 121
- ancestor 92
- clause graph 94
- ER- 117
- hyper- 74; 94
- refutation 18
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-S5-103

- theory- 102
resolvent 14; 33

- along 76
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root 83
rule 114
S-link 76
S-resolution 104
S-theories 104
SAM'’s lemma 74; 107
satisfiable 16
satisfies 16; 115
Schubert’s Steamroller 78
self-resolving 79
semantic closure 16
semicycle 85
simplification 19
solely 87; 97
special node 85; 91
stable 115
strong reduction ordering 115
strongly compatible 10
subgraph 76
substitution 8
Subsumed Link 94
subsumes 9; 11; 25; 97; 118
subsuming factor 12
subsumption 4; 5; 6; 25; 27; 32; 33; 40; 41; 42; 60; 63; 65; 66; 67; 72; 73; 74; 78;

79; 104; 111; 115; 117, 122

- equivalent 9; 12

- tests 74

- ancestor 78; 106

- forward 78
subterm property 115
successor 76
symmetric 97; 100
symmetry clause 77
tautology 12;33; 41

- elementary 80
term 8
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- skeleton 44
theory link 104
theory resolution 102
totally multiplied forms 32
transitivity clause 95; 99; 107
trivial derivation 81
unifier 10

- most general 10

- weak 10
unit 11
variable 8
variant 9; 12; 97

- test 42
weak renaming 10
weak unifier 10
weakly cyclic 77
weakly resolvable 12
weakly unifiable 12
well-founded 115
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