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Abstract: Loveland & Shostak (1980) gave an algorithm for converting a decision 

procedure for ground formulae in a ftrst-order theory to a simplifter for such formulae. The 

algorithm is supposed to produce a simplest clause set among all formulae built from atoms of 

the original formula. In this paper it is shown that this method does not meet this requirement. 

Furthermore we show that theory resolution can be used to extend Quine's method to an 

algorithm that really accomplishes the task of simplifying interpreted formulae. 

1 Introduction 

The problem of simplifying logical formulae originated in the 1950s in connection with the 

problem of minimizing the number of components of a given switching circuit. Similar 

problems arose later in the areas ofprogram veriftcation and automated deduction. However, in 

these domains not only expressions of propositional logic are to be simplifted, but also 

formulae of the ftrst order predicate logic. In this paper we consider the problem of the 

representation of propositional formulae as minimal clause sets; the transformation of our 

results to the analogous situation with disjunctive normal form (which was used by Loveland & 

Shostak) is obvious. 

There is a well-known technique to minimize expressions of propositionallogic, which 

was developed by Quine (1952) and (1959). This method, the method of iterated consensus, 

when applied to a propositional formula 1'in clausal normal form, results in a set Pl'of prime 

implicants. These are the clauses, which are minimal (with respect to the subsumption order) 

among those implied by 1'. This means that each clause that is implied by g:, either is a member 

of Pl' or is subsumed by some member of P1" In general the set of prime implicants of a 

formula ~ still contains redundant clauses and therefore can be reduced to some "simplest 

equivalent" of g:, This is a minimal subset of P1" which is still logically equivalent to g:, But 

while the set of prime implicants of 1'is uniquely determined, the simplest equivalent is not. 

1.1 Example 

Consider the formula ~= (p<::::>q) 1\ (q<::::>r). It is easy to see that the set P= {--.pvq,pv--.q, 

--.pvr, pv--.r, --.qvr, qv--.r} is the set of prime implicants of g:, But the following subsets 

{--.pvq, --.qvr, pv--.r}, {pv--.q, qv--.r,--.pvr} and {--.pvq, pv--.q, --.pvr, pv--.r} of P are all 

simplest equivalents to 1'. 

The method of iterated consensus consists in the successive formation of resolvents and 

the removal of subsumed clauses. This yields the set of prime implicants of the original 

1 

Using Theory Resolution to Simplify Interpreted Formulae

Ralf Sacher—Ambrosius
Fachbereich Irgformatz'k, Universität Kaiserslautern

Poszfach 3049, D-6750 Kaiserslautern, W. Germany

Abstract: Loveland & Shostak (1980) gave an algorithm for converting a decision

procedure for ground formulae in a first-order theory to a simplifier for such formulae. The
algorithm is supposed to produce a simplest clause set among all formulae built from atoms of

the original formula. In this paper it is shown that this method does not meet this requirement.

Furthermore we show that theory resolution can be used to extend Quine’s method to an

algorithm that really accomplishes the task of simplifying interpreted formulae.

1 Introduction

The problem of simplifying logical formulae originated in the 19505 in connection with the
problem of minimizing the number of components of a given switching circuit. Similar
problems arose later in the areas of program verification and automated deduction. However, in
these domains not only expressions of propositional logic are to be simplified, but also
formulae of the first order predicate logic. In this paper we consider the problem of the
representation of propositional formulae as minimal clause sets; the transformation of our
results to the analogous situation with disjunctive normal form (which was used by Loveland &
Shostak) is  obvious.

There is a well—known technique to minimize expressions of propositional logic, which
was developed by Quine (1952) and (1959). This method, the method of iterated consensus,
when applied to a propositional formula _‘F in clausal normal form, results in a set ?,; of prime
implicants. These are the clauses, which are minimal (with respect to the subsumption order)
among those implied by £ This means that each clause that is implied by 17, either is a member
of T9» or is subsumed by some member of ??. In general the set of prime implicants of a
formula ‚’F still contains redundant clauses and therefore can be reduced to some “simplest
equivalent” of If. This is a minimal subset of {PP which is still logically equivalent to ?. But
while the set of prime implicants of 9"is  uniquely determined, the simplest equivalent is not.

l lExml

Consider the formula fa  (pczßq) A (qär). It is easy to see that the set EP: {"-:p vq, pv—q,
—.p vr, pv—qr, —.q‚ qv—vr} is the set of prime implicants of _‘T. But the following subsets
{ —.p vq, -—.q, pv—tr}, {pv—‚q, qv—.r‚—.pvr} and {—1pvq, pv—q, —_.pvr‚ pv—wr} of EP are all
simplest equivalents to IF.

The method of iterated consensus consists in the successive formation of resolvents and

the removal of subsumed clauses. This yields the set of prime implicants of the original



formula. A simplest equivalent is obtained by a selection of an appropriate subset of the prime 

implicants. 

This method has been modified by Loveland & Shostak (1980) in order to simplify 

interpreted ground formulae. These formulae contain interpreted symbols that belong to some 

theory with known decision procedure. According to this method, the formula is first 

transformed into a clause set S over some set A of atoms. Next, the decision procedure for the 

theory is used to test all 21A1 clauses that are composed solely of atoms ofA, either negated or 

unnegated, on validity in the underlying theory. The valid ones, the so called "don't-care" 

conditions, are added to the original clause set S. This extended clause set is subjected to the 

methods of iterated consensus and selection of a simplest equivalent. 

The following example is taken from Loveland & Shostak (1980). 

1.2 Example 

Let 'Tbe the theory of Presburger arithmetic (Le. the theory of real numbers together with 

addition, linear multiplication and the usual ordering relations). 

Assume the formula 1"== a S b A (C > -3/2 va+2c-b > -3) is to be simplified. If we let p,q,r 

denote the atoms a S b, c> -3/2, a+2c-b> -3, respectively, 1"can be writtenpA(qvr), or as a 

clause set S={p,qr}. 

Now all clauses pqr, pq-,r,p-.qr, ... ,-.p-,q-,r are subjected to a decision procedure for the 

theory rr, like the one developed by Shostak (1981). It turns out that only the clauses -.pq-,r 

andp-,qr are valid. This yields the extended clause set S*={p, qr, -,pq-,r,p-,qr}. The method 

of iterated consensus now yields the resolvents q-,r and q. The unit clauses p and q subsume 

all other clauses from which we obtain the set of prime implicants P= {p,q}. Moreover, as no 

proper subset of P is semantically equivalent to the original formula, P is already a simplest 

equivalent. 

This method suffers from two serious shortcomings: A technical one and another, more 

conceptual one. The technical drawback consists in the requirement that 2n clauses must be 

submitted to the decision procedure, where n is the number of different atoms of !f. However, 

the method can be improved by the observation, that it is sufficient to test those clauses that are 

not already subsumed by clauses of the original clause set. In our example only the three 

clauses -,p-.qr, -,pq-,r and -.p-,q-,r remain to be submitted to the decision procedure. The 

other deficiency of the method is its lack of satisfying results, as the following example shows: 

1.3 Example: 

a) Let 'Tbe the theory ofPresburger arithmetic and let S = {a?O, a~l}. We try to minimize S 

according to the LS-method. Let p, q denote the atoms a?O and a~l , respectively. The clause 

p-,q is the only combination of atoms of S that is valid under 'T. But this clause is subsumed 

by the clause p, hence it need not be added to the set S. Therefore the extended clause set is the 

original one and, as no resolution steps can be accomplished, the result of the LS-method is the 

original set. However, the clause a?O is obviously implied by a~l in the theory 'T. Hence the 
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formula. A simplest equivalent is obtained by a selection of an appropriate subset of the prime
implicants.

This method has been modified by Loveland & Shostak (1980) in order to simplify
interpreted ground formulae. These formulae contain interpreted symbols that belong to some
theory with known decision procedure. According to this method, the formula is first
transformed into a clause set S over some set A of atoms. Next, the decision procedure for the
theory is used to test all 2"“ clauses that are composed solely of atoms of A, either negated or
unnegated, on validity in the underlying theory. The valid ones, the so called “don’t-care”
conditions, are added to the original clause set S. This extended clause set is  subjected to the
methods of iterated consensus and selection of a simplest equivalent.

The following example is taken from Loveland & Shostak (1980).

1,2 Example

Let The the theory of Presburger arithmetic (i.e. the theory of real numbers together with
addition, linear multiplication and the usual ordering relations).
Assume the formula 9'5 a S b A (c > -3/2 v a+2c-b > -3 ) is to be simplified. If we let p,q,r
denote the atoms a S b, c > -3/2, a+2c-b > -3‚ respectively, 9' can be written pA(q), or as a

clause set S={p,qr}.
Now all clauses pqr, pq-wr,p—.qr,...,—1p—.q—.r are subjected to a decision procedure for the
theory ‘1: like the one developed by Shostak (1981 ). It turns out that only the clauses —:pq—.r
and p—qr are valid. This yields the extended clause set S*={p, qr, —pq—.r, p—qr}. The method
of iterated consensus now yields the resolvents q—tr and q. The unit clauses p and q subsume
all other clauses from which we obtain the set of prime irnplicants SP = {p,q}. Moreover, as no
proper subset of (P is semantically equivalent to the original formula, {P is already a simplest
equivalent.

This method suffers from two serious shortcomings: A technical one and another, more

conceptual one. The technical drawback consists in the requirement that Zn clauses must be
submitted to the decision procedure, where n i s  the number of different atoms of {F. However,
the method can be improved by the observation, that it is sufficient to test those clauses that are
not already subsumed by clauses of the original clause set. In our example only the three
clauses —‚p—‚qr, —-.pq——‚r and —:p——1q—-:r remain to be submitted to the decision procedure. The
other deficiency of the method is its lack of satisfying results, as the following example shows:

lEx  l '

a) Let T be the theory of Presburger arithmetic and let S = {(120, a21}. We try to minimize S
according to the LS-method. Let p, q denote the atoms (:20 and az] , respectively. The clause

p—q is the only combination of atoms of S that is valid under ‘2? But this clause is subsumed
by the clause 1), hence it need not be added to the set S. Therefore the extended clause set is the

original one and, as no resolution steps can be accomplished, the result of the LS-method is the
original set. However, the clause 6120 is obviously irnplied by a?! in the theory ‘I Hence the



set {a~l} is the desired minimal equivalent, which points out that the LS-approach does not 

yield the intended result. 

b) Let 'Tbe the theory of equality with uninterpreted function symbols and let S = {ffx=x, 

f!fx=x}. Again application of the LS-method results in the original set S. However, the set 

{jx=x} is obviously equivalent to S in the theory, which again shows that there may exist 

simpler clause sets than the LS method produces. 

This paper presents a method to simplify interpreted formulae that overcomes these 

deficiencies. Our method proceeds from the original clause set (without adding don't care 

conditions) and generates successively theory resolvents similarly to the method of iterated 

consensus. In addition, subsumed clauses (with respect to the underlying theory) are removed. 

The resulting set is the set of "theory prime implicants". In this paper it will be shown that, in 

analogy to the uninterpreted case, the prime implicants of an interpreted formula ~ are the 

minimal clauses in the deductive closure of :J. Here, "minimal" is to be understood with respect 

to implication under the given theory. From this follows that the set of theory prime implicants 

is uniquely determined by :J. Again as in the uninterpreted case the set of prime implicants of a 

formula ~ can be further reduced to some "simplest equivalent" of !F. which is not uniquely 

determined. 

Theory resolution, first proposed by M. Stickel (1985), is a generalization of ordinary 

resolution. It is based on the following idea: The literals resolved upon may not be syntactically 

complementary, it is sufficient that they are complementary in some theory. Take for instance 

the clauses C =a>b v C' and D = a::;b v D'. As a>b and aSh are complementary in the theory 

of a partial order, C and D can be resolved giving C' vD'. Resolvents of more than two 

clauses can be formed, too. An even more generalized kind of resolution is partial theory 

resolution, including total theory resolution as a special case. Suppose the literals to be resolved 

upon are complementary under some condition. Then the resolvent can be formed as above 

with the negated condition (the so called residue) added to it. For instance let C = a>b vC' and 

D = b>c vD'. The literals a>b and b>c are complementary, provided that the condition c~a 

holds. Thus c<a is a residue of the two literals and there is a partial theory resolution step 

giving c<a vC' vD'. 

We show by means of example 1.2 how the method to simplify interpreted formulae 

works: 

1.4 Example 

We have ~=a ~b 1\ (c > -3/2 va+2c-b > -3), written as a clause setS = {p, qr}. The literals 

a::;b and a+2c-b > -3 are complementary under the condition c ~ -3/2. Hence c > -3/2 is a 

residue of p and r and the appropriate theory resolution step yields the resolvent c > -3/2 

vc> -3/2, which simplifies to c > -3/2. This resolvent subsumes its parent clause c > -3/2 

va+2c-b > -3. Removing this clause we obtain a ~ band c > -3/2 as the only theory prime 

implicants of :F. 
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set {021} i s  the desired minimal equivalent, which points out that the LS-approach does not

yield the intended result.

b) Let ‘I be the theory of equality with uninterpreted function symbols and let S = {fix=x,

fijFx=x}. Again application of the LS-method results in the original set S. However, the set
[fx=x} is obviously equivalent to S in the theory, which again shows that there may exist

simpler clause sets than the LS method produces.

This paper presents a method to simplify interpreted formulae that overcomes these

deficiencies. Our method proceeds from the original clause set (without adding don’t care
conditions) and generates successively theory resolvents similarly to the method of iterated
consensus. In addition, subsumed clauses (with respect to the underlying theory) are removed.
The resulting set is the set of “theory prime implicants”. In this paper it will be shown that, in
analogy to the uninterpreted case, the prime implicants of an interpreted formula 17 are the
minimal clauses in the deductive closure of ‚‘F. Here, “minimal” is to be understood with respect
to implication under the given theory. From this follows that the set of theory prime implicants
is  uniquely determined by 9'. Again as in the uninterpreted case the set of prime implicants. of a
formula :7 can be further reduced to some “simplest equivalent” of 9', which is not uniquely

determined.

Theory resolution, first proposed by M. Stickel (1985), i s  a generalization of  ordinary
resolution. It is based on the following idea: The literals resolved upon may not be syntactically
complementary, it is  sufficient that they are complementary in some theory. Take for instance
the clauses C = a>b  v C’ and D = aSb vD' .  As a>b and (15?) are complementary in the theory
of a partial order, C and D can be resolved giving C '  vD ' .  Resolvents of more than two
clauses can be formed, too. An even more generalized kind of resolution is partial theory
resolution, including total theory resolution as a special case. Suppose the literals to be resolved
upon are complementary under some condition. Then the resolvent can be formed as above
with the negated condition (the so called residue) added to it. For instance let C = a>b v C ' and
D = b>c  v D'. The literals a>b and b>c  are complementary, provided that the condition 02a
holds. Thus c<a  is a residue of the two literals and there is a partial theory resolution step
giving c<a vC '  vD' .

We show by means of example 1.2 how the method to simplify interpreted formulae
works:

1.4 Example

We have {Fa-"a S b A (e > —3/2 va+2c-b > -3), written as a clause set S = {p, qr}. The literals
a_.<b and a+2c-b > -3 are complementary under the condition c S —3/2. Hence c > —3/2 is a
residue of p and r and the appropriate theory resolution step yields the resolvent c > —3/2
v c > -3/2, which simplifies to c > -3/2. This resolvent subsumes its parent clause c > -3/2
v a+2c-b > -3. Removing this clause we obtain a S b and c > -3/2 as the only theory prime
implicants of :}?



2 Theory Resolution 

We will assume the standard defmitions of a term, an atomicformula and a literal. We will 

consider a clause to be a set of literals. All clauses are ground clauses. Le. they do not contain 

variables. We just review the basic notions of theory resolution as it is defined by Stickel 

(1985), see also BIasius & Biirckert (1987). 

In the following 'Tis a theory which admits a decision procedure. A tT-interpretation is 

an interpretation that satisfies theory 'T. A set of clauses S is tT-unsatisfiable, iff no tT­
interpretation satisfies S. S is minimally tT-unsatisfiable, iff S but no proper subset of S is 

If-unsatisfiable. The semantic closure of S is the set of all formulae !Fsuch that Sur-,.1} is 

If-unsatisfiable. 

2.1 Definition: 

Let Cj>".Cn be nonempty clauses, let each Ci be decomposed as KivLi with unit clause Ki and 

let RJ .....Rm (m~) be unit clauses. Suppose the set of clauses K] •... .Kn.RJ, ... ,Rm is 

(minimally) If-unsatisfiable. Then the clause L] v ... vLnv-,R] v ... v-,Rm is a (partial) 'T­

resolvent of C }1 ....Cn. The clause -,R] v... v-.Rm is called the residue of the theory 

resolution operation. If the residue is the empty clause, then the If-resolvent is total. 

In order to guarantee the completeness of the procedure, we require the set of clauses 

Kb... .Kn• R], ... ,Rm to be minimally 'T-unsatisfiable. In this case the residue is the strongest 

consequence of the set Kb... .Kn and we call it a most general residue. But there may still be 

more than one most general residue, an example is provided in Stickel (1985). For our 

purposes we assume a theory 'Tthat admits only a fmite set ofmost general residues. 

Stickel (1985) distinguishes between wide theory resolution. which allows the clauses Ki 

to be arbitrary clauses and narrow theory resolution, where the Ki are unit clauses. Since only 

narrow theory resolution is considered in this paper, we simply speak of theory resolution. 

Also the exclusive use of partial theory resolution accounts for the omission of the word partial 

in this paper. 

Soundness and completeness of theory resolution are given by the following theorems 

(Stickel 1985). 

2.2 Theorem: 

Let 'Tbe a theory, S a set of clauses and Calf-resolvent of S. Then every If-interpretation ~ 

that satisfies S also satisfies C. • 

2.3 Theorem: 

Let S be a If-unsatisfiable set of clauses. Then there is a refutation of S using (partial or total) 

theory resolution with theory 'T. • 
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2 Theory Resolution

We will assume the standard definitions of a term, an atomic formula and a literal. We will
consider a clause to be a set of literals. All clauses are ground clauses, i.e. they do not contain
variables. We just review the basic notions of theory resolution as it  is defined by Stickel
(1985), see also Bläsius & Bürckert (1987).

In the following '1' is  a theory which admits a decision procedure. A ‘Z'Jinterpretation is
an interpretation that satisfies theory ‘1? A set of clauses S is  T-unsatisfiable, iff no ‘2'-
interpretation satisfies S .  S is minimally Qiunsatisfiable, iff S but no proper subset of S is
Tunsatisfiable. The semantic closure of S is the set of all formulae _‘F such that Sub-.17} is
‘Iiunsatisfiable.

21D f in i i  n '

Let C1‚..‚C„ be nonempty clauses, let each C,- be decomposed as KivLi with unit clause K‚- and
let R1,...,Rm (m20) be unit clauses. Suppose the set of clauses K1,...,Kn,R1,...,Rm is
(minimally) 'Ziunsatisfiable. Then the clause L,  v...vL„v-‚R1v.„v—.Rm is a (partial) '11
resolvent of C1,...,C,,. The clause ——.R1v...v—-.Rm is called the res idue of the theory
resolution operation. If the residue is the empty clause, then the ‘Ziresolvent is  total.

In order to guarantee the completeness of the procedure, we require the set of clauses
K1,...,K„‚ R1,...,R‚„ to be minimally T-unsatisfiable. In this case the residue is the strongest
consequence of the set K1‚...‚K„ and we call it a most general residue. But there may still be
more than one most general residue, an example is provided in Stickel (1985). For our
purposes we assume a theory T that admits only a finite set of  most general residues.

Stickel (1985) distinguishes between wide theory resolution, which allows the clauses K‚-
to be arbitrary clauses and narrow theory resolution, where the K,- are unit clauses. Since only
narrow theory resolution is  considered in this paper, we simply speak of theory resolution.
Also the exclusive use of partial theory resolution accounts for the omission of the word partial
in this paper.

Soundness and completeness of theory resolution are given by the following theorems
(Stickel 1985).

2,2 Theorem;

Let T be a theory, S a set of clauses and C a ‘Ziresolvent of S. Then every ‘liinterpretation S
that satisfies S also satisfies C. I

2,3 Theerem ;

Let S be a ‘Iiunsatisfiable set of  clauses. Then there is a refutation of  S using (partial or total)
theory resolution with theory 'I l



3	 Simplifying Interpreted Formulae 

In this section we first define some basic notions of the interpreted propositional logic. 

Then we describe the appropriate modification of the method of iterated consensus and prove 

that it produces the set of theory prime implicants of the original formula. As the underlying 

theory is always 'f, we omit the index 'Tin some notions. 

3.1 Definition (semantic notions): 

Let C and D be clauses, 'Ta theory. 

(i)	 C 'T-implies D, iff C/\---J) is 'T-unsatisfiable, which is denoted by C ~<rD. 

(ii)	 C and D are called 'T-equivalent (or semantically equivalent), iff C tf-implies D and D 

'T-implies C, which is denoted by C=,p. 

3.2 Definition (syntactic notions): 

Let C and D be clauses, 'Ta theory. 

(i)	 C 'T-subsumes D, iff for each literal L of C there exists a literal K of D such that L/\.K is 

'T-unsatisfiable, which can be recognized with the decision procedure for 'T. 
(ii)	 C'CC is called a 'T-factor of C, iff for each literal LEC\C' there is some literal KEC' such 

that L 'T-subsumes K. 

(iii)	 C is called tautological, iff -,c is 'T-unsatisfiable. 

It is easy to see that =<ris an equivalence relation and ~<r is a partial order on O=p, the set 

of all clauses modulo 'T-equivalence. In the following we always consider O=p, Le. we 

assume semantically equivalent clauses to be identical. 

In analogy to the uninterpreted case, the connection between 'T-implication and 'T­
subsumption is given by the following 

3.3 Lemma: 

Let C and D be nontautological clauses. Then C 'T-implies D, iff C 'T-subsumes D. 

Proof: Gottlob (1987) proved the following theorem for the predicate logic: If C is not self­

resolving and D is not tautological, then subsumption is equivalent to implication. This proof 

generalizes to total theory resolution. As we deal only with ground clauses, our result follows 

from the fact that nontautological ground clauses cannot be self-resolving. _ 

3.4 Definition: 

Let S be a set of clauses. A clause, which is minimal (w.r.t. the 'T-implication order) in the 

semantic closure of S is called a 'T-prime implicant of S. The set of 'T-prime implicants of S 

is denoted by Ps. 

The modified method of iterated consensus now works as follows: Let S be a set of 

clauses. The nontautological 'T-resolvents of clauses in S are formed and added to the set. Each 

clause possessing a factor is replaced by this factor. At the same time, 'T-subsumed clauses are 
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3 Simplifying Interpreted Formulae

In this section we first define some basic notions of the interpreted propositional logic.
Then we describe the appropriate modification of the method of iterated consensus and prove

that it produces the set of theory prime implicants of the original formula. As the underlying

theory is always ‘1: we omit the index ‘1'in some notions.

lDfini in  m in t in  '

Let C and D be clauses, ‘1'a theory.
(i) C ‘liimplies D ,  iff CA—.D is Tunsatisfiable, which is denoted by C STD.
(ii) C and D are called 'Iiequivalent (or semantically equivalent), iff C ’Ziimplies D and D

’liimplies C, which is denoted by Call).

W
Let C and D be clauses, ‘Ta theory.
(i) C ‘lubsumes D,  iff for each literal L of C there exists a literal K of D such that LA—IK is

T—unsatisfiable, which can be recognized with the decision procedure for ‘Z
(ii) C 'CC is called a ‘Zifactor of C, iff for each literal LeC\C' there is some literal Ke C' such

that L ‘lisubsumes K.
(iii) C is called tautological, iff ——.C is ‘IT-unsatisfiable.

It is easy to see that ail-is an equivalence relation and ST is a partial order on User, the set
of all clauses modulo rI—equivalence. In the following we always consider C/.=_.T., i.e. we
assume semantically equivalent clauses to be identical.

In analogy to the uninterpreted case, the connection between T-implication and ’1'-
subsumption is given by the following

3.3  Lemma:

Let C and D be nontautological clauses. Then C ‘liimplies D, iff C $subsumes D.

Proof: Gottlob (1987) proved the following theorem for the predicate logic: If C is not self-
resolving and D is not tautological, then subsumption is equivalent to implication. This proof
generalizes to total theory resolution. As we deal only with ground clauses, our result follows
from the fact that nontautological ground clauses carmot be self-resolving. I

3 .4  Definition:

Let S be a set of clauses. A clause, which is minimal (w.r.t. the ‘Ziimplication order) in the
semantic closure of S is called a ‘Ziprime implicant of S. The set of 'Iiprime implicants of S
is denoted by 1’s.

The modified method of iterated consensus now works as follows: Let S be a set of
clauses. The nontautological ’liresolvents of clauses in S are formed and added to the set. Each
clause possessing a factor is replaced by this factor. At the same time, Tsubsumed clauses are
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deleted. When no new clauses can be added that are not 'T-subsumed by existing clauses, the 

algorithm terminates. 

Before proving the main theorem about the correctness and termination of this method, we 

give a lemma, which is the interpreted counterpart of a well-known lemma of the uninterpreted 

propositionallogic. However, as partial theory resolution is involved, the proof is not fully 

analogous to the uninterpreted case. 

3.5 Lemma: 

Let S be a set of clauses. For each nontautological clause C in the semantic closure of S, there 

exists a clause D with D 5rrC and a deduction of D from S using 'T-resolution (not necessarily 

total). 

Proof: If C is in the semantic closure of S, then Su{-.c} is 'T-unsatisfiable and, according to 

the completeness of 'T-resolution, admits a 'T-refutation (Le. a 'T-resolution deduction of the 

empty clause). Let -e = K j 1\ ••• 1\ K n• Let S' be the set resulting from S by deleting all 

clauses that contain a literal which is 'T-subsumed by some K i and by removing from the 

remaining clauses those literals that 'T-subsume some -J(j- S'u{-.c} is still 'T-unsatisfiable, 

hence admits a refutation using total narrow 'T-resolution. We transform each total resolution 

step s of this refutation into a partial 'T-resolution step p in the following way: if s uses the 

clauses Cj, .. ,Cn, K'l'''' K'm ' with K'jE {Kl, .. ,Knl, and produces the resolvent R, then pis 

the step deriving the resolvent Rv-J('l v...v-J('m from the clauses Cb.. ,Cn. Then we obtain 

a partial 'T-resolution deduction, starting from S' and resulting in a clause C' that is a subset of 

C. Finally, we restore those original clauses that contained a literal subsuming some -J(j' This 

is done by adding those literals to the appropriate clauses in the whole deduction. Let C" be the 

set of all these clauses. Now we have obtained a 'T-deduction of a clause D :=C'cC" from the 

original set S. It is easy to see that {D,-c} is 'T-unsatisfiable, Le. D 5'1' C. • 

Example 1.2 shows that lemma 3.5 does not hold for total theory resolution. The clause 

c> -3/2 is in the semantic closure of S, but S admits no total theory resolution step at all. 

3.6 Theorem: 

Let S be a clause set and Pbe a set of clauses generated by the method of iterated consensus 

w.r.t. the theory T. Then Pis the set of 'T-prime implicants of S. 

Proof' Let {Ri / iEN} be the set of theory resolvents of clauses of S. According to lemma 3.5, 

for each nontautological clause C in the semantic closure of S there is some Rj with Rj 5 '1'C. 

Let £ be the set of all literals of S and let 9l be the finite set of all possible most general 

residues of literals from £. Furthermore, let L'Jt be the literal set of 9l. Then the clauses Ri are 

clauses over the finite literal set LuL9l, hence the set {Ri / iEN} is finite and the termination of 

the procedure is assured. It remains to show the minimality of P. From lemma 3.3 follows that 

it is sufficient to remove 'T-subsumed clauses, instead of 'T-implicated ones. This removal of 
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deleted. When no new clauses can be added that are not ‘Iisubsumed by existing clauses, the
algorithm terminates.

Before proving the main theorem about the correctness and termination of this method, we
give a lemma, which is the interpreted counterpart of a well-known lemma of the uninterpreted
propositional logic. However, as partial theory resolution is involved, the proof is not fully
analogous to the uninterpreted case.

imma;

Let S be a set of clauses. For each nontautological clause C in the semantic closure of S, there
exists a clause D with D 57C and a deduction of D from S using ‘Ziresoluti‘on (not necessarily
total).

Proof: If C is in the semantic closure of  S, then S U{—.C} is ‘liunsatisfiable and, according to
the completeness of ‘Iiresolution, admits a ‘Zirefutation (i.e. a ‘liresolution deduction of the
empty clause). Let —C = K, A A K„. Let S ' be the set resulting from S by deleting all
clauses that contain a literal which is ‘Zisubsumed by some K3 and by removing from the
remaining clauses those literals that ‘I—subsume some —.Kj. S'U{—|C} is still fliunsatisfiable,
hence admits a refutation using total narrow Tresolution. We transform each total resolution
step .9 of this refutation into a partial ’liresolution step p in  the following way: if s uses the
clauses C1,..,C,,, K3,”, K'm , with K'ie {K_‚„.‚K„}, and produces the resolvent R, then p is
the step deriving the resolvent Rv—K '} v...v—1K'‚„ from the clauses C1‚..‚C„. Then we obtain
a partial ‘Ziresolution deduction, starting from S ' and resulting in a clause C ' that is  a subset of
C. Finally, we restore those original clauses that contained a literal subsuming some _.Kj. This
is done by adding those literals to the appropriate clauses in the whole deduction. Let C " be the
set of all these clauses. Now we have obtained a ‘Iideduction of a clause D:=C'uC" from the
original set S. It is  easy to see that {D,—C} is ‘Ziunsatisfiable, i.e. D 5.1- C. l

Example 1.2 shows that lemma 3.5 does not hold for total theory resolution. The clause
c > —3/2 is in the semantic closure of S ,  but S admits no total theory resolution step at all.
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Let S be a clause set and r_Pbe a set of clauses generated by the method of iterated consensus
w.r.t. the theory I Then fl’is the set of ‘Ziprime implicants of S.

Proof: Let {Ri /  ieN} be the set of theory resolvents of clauses of S. According to lemma 3 .5 ,

for each nontautological clause C in the semantic closure of S there is  some Rj with Rj Sq—C.
Let L be the set of all literals of S and let 9? be the finite set of all possible most general
residues of literals from L. Furthermore, let Lex be the literal set of SR. Then the clauses R,- are
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the procedure is assured. It remains to show the minimality of 1’. From lemma 3.3 follows that
it is sufficient to remove ‘Zisubsumed clauses, instead of ‘Ziimplicated ones. This removal of
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subsumed clauses guarantees the desired minimality of the clause set generated by the method 

of iterated consensus. • 

In order to characterize the notion of simplest equivalent, the prime implicants are classified 

in three categories: 

3.7 Definition:
 

Let S be a clause set and Pthe set of prime implicants of S.
 

(i) PEPis a core implicant, iff P\ {P} does not imply P, Le. P\ {P}u{--J'} is tT-satisfiable. 

(ii) PE Pis an absolutely eliminable implicant, iff the set of core implicants implies P. 

(iii) PEP is an eliminable implicant, iff it is neither core nor absolutely eliminable. 

This definition includes the original defInition for the uninterpreted case, Le. for the empty 

theory. Any simplest equivalent consists of the set of core implicants and an appropriate subset 

of the eliminable implicants. The core implicants can be determined with theory resolution. 

3.8 Example:
 

This example is taken again from the theory erof Presburger Arithmetic.
 

Let S = {Cl' C2, CJ1 with Cl = a>O vb>O, C2 = b>a va>c and C3 = c>l. C2 and C3 can be
 

resolved giving C4 =b>a v a>l, which resolves with Cl to C5 =b>O v a>l. This resolvent 

subsumes its parent clause Cl' which can therefore be deleted. Having obtained the set {C2 , 

C3, C4 , C5}, all possible steps lead to resolvents that are subsumed by existing ones. Hence 

this set respresents the prime implicants of S. From all resolvents of clauses of Ps only the 

resolvent C4 of C2 and C3 is not subsumed by some element of Ps. Hence none of the clauses 

C2, C3 , C5 can be deduced from the rest, in other words these clauses are core implicants. As 

C4 is implied by the two core implicants C2 and C3, it is absolutely eliminable. Thus the set 

{C2, C3, CsJ is a simplest equivalent to S. 

The following lemma sets up the relation between our method and Loveland & Shostak's 

method. It shows that the two methods coincide, if our method is restricted to residues 

appearing as atoms in the original clause set, and if the LS-method is extended by taking into 

account tT-subsumption instead of usual subsumption. 

3.9 Lemma: 

Let S be a clause set and Pthe subset of tT-primeimplicants of S that consist only of atoms of S. 

Let Qbe the result of the LS-method applied to S. Then ~Q. 

Proof' Let IC be the method of iterated consensus, as described above. Let IC' be the variant of 

IC that takes into account only those residues that are atoms of S. Then IC' obviously produces 

the set P, when applied to S. We show that any resolvent produced by IC' is also generated by 

LS: 

Let C = PvC' and D=QvD' be clauses of S, and suppose R is a residue ofP and Q that is also 

an atom of S. Then the tT-resolvent RvC'vD' is derived by IC'. As R is a residue of P and Q, 
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subsumed clauses guarantees the desired minimality of the clause set generated by the method

of iterated consensus. .

In order to characterize the notion of simplest equivalent, the prime implicants are classified
in three categories:
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(ii) PefPis  an absolutely eliminable implicant, iff the set of core implicants implies P.
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This definition includes the original definition for the uninterpreted case, i.e. for the empty

theory. Any simplest equivalent consists of  the set of core implicants and an appropriate subset
of the eliminable implicants. The core implicants can be determined with theory resolution.

3,3 Example;

This example is taken again from the theory T of Presburger Arithmetic.

Let S = {C}, C2, C3} with C1 = a>0 vb>0‚  C2 = b>a va>c and C; = c>1. C2 and C3 can be
resolved giving C4 = b>a v a>1  , which resolves with C1 to C5 = b>0 v a>I  . This resolvent
subsumes its parent clause C1, which can therefore be deleted. Having obtained the set (CZ,
C3, C4, C5}, all possible steps lead to resolvents that are subsumed by existing ones. Hence
this set respresents the prime implicants of S. From all resolvents of clauses of 2’s only the
resolvent C4 of  C2 and C3 is not subsumed by some element of 1’s. Hence none of the clauses
C2, C3, C5 can be deduced from the rest, in other words these clauses are core implicants. As
C4 is implied by the two core implicants C2 and C 3 ,  i t  is absolutely eliminable. Thus the set
{C2, C3, C5} is a simplest equivalent to S.

The following lemma sets up the relation between our method and Loveland & Shostak’s
method. It shows that the two methods coincide, if our method i s  restricted to residues
appearing as atoms in the original clause set, and if the LS-method is extended by taking into
account ‘Zisubsumption instead of usual subsumption.

3.9 Lemma:

Let S be a clause set and SP the subset of Tprimeimplicants of S that consist only of atoms of S.
Let Qbe the result of the LS-method applied to S. Then E’QQ,

Proof: Let IC be the method of iterated consensus, as described above. Let 10 be the variant of
IC that takes into account only those residues that are atoms of S. Then IC‘ obviously produces
the set 1’, when applied to S. We show that any resolvent produced by IC' is also generated by
LS:
Let C = PvC' and D=QvD' be clauses of S., and suppose R is a residue of P and Q that is also
an atom of S. Then the ‘Ziresolvent RvC'vD' is derived by IC'. As R is a residue of P and Q,



the clause -.Pv-.QvR must be valid in rr, and is therefore added to S by LS. This enables LS 

to derive the following resolvents: -.QvRvC', -.PvRvD', RvC'vD'. Thus the tT-resolvent 

RvC'vD' is also derived by LS. The other clauses produced by LS are tT-subsumed by C and 

D, respectively. 

Even in the case, where the two methods coincide, our approach appears to be preferable: 

First, as the proof of the previous lemma showed, the LS method in general produces much 

more tT-subsumed clauses. Second, there are more clauses that have to be submitted to the 

decision procedure: The IC' method takes n literals L1,..,Ln from different clauses C1,..,Cn 
and looks for an atom A of S being a residue of Ll...,Ln. This amounts to testing (Horn) 

clauses of the form -.L1V...v-.LnvA on validity in the theory. The LS-method, on the other 

hand, has to submit not only those Horn clauses, but all different distributions of the negation 

sign on this clause, such as -.L1v...v-.Lnv-.A, L1V...vLnvA, and so on. Moreover, also 

literals of the same clause may appear among the Li. 
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