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Abstract:

This paper investigates some special cases of graphs with a small number of vertices or edges where a
characteristic property of the vertices and edges already determines the graph up to isomorphism. We
also present counterexamples that show the limits of this approach to the graph isomorphism problem.
The main interest in graph isomorphism for automated deduction lies in the fact that the problem of
deciding whether a clause is a variant of another clause is a generalization of the graph isomorphism
problem.



1. Introduction 

For a deduction system the detection of equivalence or entailment of two clauses is very useful [Ei8]]. 

Since equivalence as well as entailment of two clauses is undecidable in general, other concepts that are 

stronger than equivalence and implication have been used in automated theorem proving, e.g. the notion 

of subsumption of two clauses [CL73]. In [S087] the concept of a variant of a clause, a specialization of 

general equivalence, is investigated. It is easy to see that the decision whether a clause is a variant of 

another clause is a generalization of the graph isomorphism problem: 

The problem to decide whether the clauses 

C = {Pxy, Pyz, Pxz} and D = {Pvu, Pwu, Pvw} 

are variants of each other, is equivalent to the following isomorphism problem for directed graphs: 

In a similar way ,clauses whose literals all have the same predicate symbol with arity m~ correspond to 

so called m-grllphs, that~e sets of m-tuples. In order to treat clauses containing different predicate 

symbols we introduce so called labeled graphs in chapter 4. 

The graph isomorphism problem can be solved in the following standard way: possible pairings of 

vertices (i.e. bijective mappings from the vertices of the first graph to the vertices of the second) are 

tested, whether they yield a graph isomorphism. The (exponential) number of possible pairings is 

restricted by the fact that graph isomorphisms must preserve some properties of vertices and edges. 

Several properties that may be useful to restrict the set of possible bijective mappings have been 

proposed [Dn64], [Kn71]. But not all of these can be generalized to m-graphs. One of those properties, 

which can be used also for m-graphs, is the characteristic function of a graph [S087] that assigns to each 

vertex the pair <number of incoming arcs, number of outgoing arcs>. Another advantage of the 

characteristic is its easily being computable. 

In this paper we investigate certain special cases of m-graphs with a small number of vertices or arcs 

where the agreement of the two m-graphs with respect to their characteristics is already a sufficient 

condition for isomorphism. Of course those cases are not representative for most of the usual cases 

where graph isomorphism problems arise. But in the field of automated deduction clauses with only 

three variables or three literals are not rare. 

2. Notation 

An m-graph G is a pair G = (V,E) where V is a finite set of vertices and E is a set of m-tuples of 

elements of V (called edges) such that no edge has a multiple occurrence of a vertex. (For m=2 this 

corresponds to a directed graph). Since no confusion can arise, we simply use the term graph. We call m 

the degree of the m-graph G and write m=deg(G). 

Let G=(V,E) and H=(W,F) be m-graphs. A graph isomorphism from G onto H is a bijective 

mapping a:V-:;W such that (vl' ...,vm)EE implies (v1a,... ,Vma)EF. We write G::H, if there is a graph 

isomorphism from G onto H. 

For each VE V let v* be the characteristic of v, i.e. the m-tuple (VI *,... ,vm*) where vt is the number 
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1. Introduction

For a deduction system the detection of equivalence or entailment of two clauses is very useful [Ei8 II.].
Since equivalence as well as entailment of two clauses is undecidable in general, other concepts that are
stronger than equivalence and implication have been used in automated theorem proving, e. g. the notion
of subsumption of two clauses [CL73]. In [3087] the concept of a variant of a clause, a Specialization of
general equivalence, is investigated. It is easy to see that the decision whether a clause is a variant of
another clause is a generalization of the graph isomorphism problem:
The problem to decide whether the clauses

C = {n, Pyz, s }  and D = {Pvu, Pwu, v}
are variants of each other, is equivalent to the following isomorphism problem for directed graphs:

In a similar wayclauses whose literals all have the same predicate symbol with arity mZZ correspond to
so called _m-gr_apl_1_s, that 5%136....S9!§.. of mztuples. In order to treat clauses containing different predicate
symbols we introduce so called labeled graphs in chapter 4.
The graph isomorphism problem can be solved in the following standard way: possible pairings of
vertices (Le. bijective mappings fiom the vertices of the first graph to the vertices of the second) are
tested, whether they yield a graph isomorphism. The (exponential) number of possible pairings is
restricted by the fact that graph isomorphisms must preserve some properties of vertices and edges.
Several properties that may be useful to restrict the set of possible bijective mappings have been
proposed [Un64], [K1171]. But not all of these can be generalized to m—graphs. One of those preperties,
which can be used also for m—graphs, is the characteristic function of a graph [8087] that assigns to each
vertex the pair <number of incoming arcs, number of outgoing arcs>. Another advantage of the
characteristic is its easily being computable.
In this paper we investigate certain special cases of m—graphs with a small number of vertices or arcs
where the agreement of the two m—graphs with respect to their characteristics is already a sufficient
condition for isomorphism. Of course those cases are not representative for most of the usual cases
where graph isomorphism problems arise. But in the field of automated deduction clauses with only
three variables or three literals are not rare.

2 .  Notation

An m-graph G is a pair G = (V,E) where V is a finite set of vertices and E is a set of m-tuples of
elements of V (called edges) such that no edge has a multiple occurrence of a vertex. (For m=2 this

corresponds to a directed graph). Since no confusion can arise, we simply use the term graph. We call m
the degree of the m-graph G and write m=deg(G).
Let G=(V,E) and H=(W,F) be m-graphs. A graph isomorphism from G onto H is  a bijective
mapping o:V—>W such that (v1,...,vm)e E implies (v10,...,vm0')e F. We write GEH, if there is a graph
isomorphism from G onto H.
For each ve V let v*  be the characteristic of v ,  i.e. the m~tup1e (v1*,...,vm*) where vi* is  the number



of occurrences ofv at coordinate position i inm-tuples ofE. We defme y* := {v* IveV}.
 

For each e=(v1,...,vm)eE let e* be the mxm-matrix (eit) where eit is the number of occurrences ofvj
 

at coordinate position i in m-tuples ofE. We defme E* := {e* 1eeE}
 

3. Graph Isomorphism 

In the following G=(V,E) and H=(W,F) are connected m-graphs with IVI=IWI and IEI=IFI. 

The main results of this chapter are: 

- in the case IVIS3 the characteristics of the vertices determine a graph up to isomorphism, Le. Y*=VV 

implies G=H. 

- in the case IEIS3 the characteristics of the vertices together with the characteristics of the edges 

determine a graph up to isomorphism. 

As all m-graphs with m=1 and equal number of vertices are isomorphic we consider only the case m~. 

Since no vertex occurs more than once in one edge, we have the following 

3.1 Lemma: 

If IVI=3, then mS3 and 

OS vt S 2 holds for all ve Y, ISi $m • 
'3.2 Lemma: 

Let IVI=3 with V={ x,y,z} and Y*=W*. If x*=y* and all components of z* are even then G and H are 

isomorphic. 

Proof: 

Let W={u,v,w} with u*=v*=x*=y* and w*=z*. First we remark that from 2.1 follows zt =0 or zi*=2 

for each ISi$m; the same holds for w. Let cr:V-:;W be defined by xcr=u, ycr=v, zcr=w. 

a) Let e be an element ofE that contains z at position L Then zt=2. Hence there must be another element 

fe E that contains z at position L It is easy to see that if x occurs at a position j:;t:i in e then y must occur a 

the same position in f and vice versa. Analogously there must be e', f in F containing w at position i, 

and if u occurs at position j:;t:i in e' then v must occur at position j in f and vice versa. Hence ecr=el or 

ecr=f; in both cases ecreF. 

b) Let g be an element of E that does not contain z. From a) and the fact that IEI=IFI follows that there is 

an element g' in F that does not contain w. This is only possible if m=2. Thus we can assume w.l.o.g. 

that g=(x,y). Let E'=E\{eeEI e contains z}. Let G' =(v\{z}, E'). Since according to a) for each element 

of E that contains z and x there is a corresponding element that contains z and y, the characteristics of x 

and y with respect to G' must be equal, too. This implies that h:=(y,x) e E. The same argument shows 

that (u,v)eF and (v,u)eF. Hence gcreF. • 

3.3 Lemma:
 

Let IVI=3, Y*=W*. Ifvi=1 for all ve V and iSm, then G and H are isomorphic.
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of occurrences of v at coordinate position i in m-tuples of B. We define V* := {v* | ve V}  .

For each e=(v1..,...,vm)e E let e* be the mxm-matrix (eh-*) where eij“ is the number of occurrences of vj

at coordinate position i in m-tuples of E. We define E* := {e*  I ee E}

3. Graph Isomorphism

In the following G=(V,E) and H=(W,F) are connected m-graphs with |V|=|W| and |E|=IFL
The main results of this chapter are:
- in the case IVIS3 the characteristics of the vertices determine a graph up to isomorphism, i.e. V*=W

implies GEH.
- in the case |E|_<_3 the characteristics of the vertices together with the characteristics of the edges

determine a graph up to isomorphism.
As all m-graphs with m=1 and equal number of vertices are isomorphic we consider only the case mZZ.

Since no vertex occurs more than once in one edge, we have the following

3.1 Lemma'

If |V|=3, then mS3 and

0 S vi* S 2 holds for all ve V, ISi Sm I

“3.2 Lemma;
Let |V|=3 with V=={x,y,z} and V*=W*. If x*=y* and all components of z* are even then G and H are
isomorphic.

Proof:
Let W={u,v,w} with u*=v*=x*=y* and w*=z*. First we remark that from 2.1 follows zi* =0 or zi*=2
for each ISi_<_m; the same holds for w.  Let o:V——>W be defined by xo=u, yo=v, zo=w.
a) Let c be an element of E that contains z at position i. Then zi*=2. Hence there must be another element
fe E that contains 2 at position i. It is easy to see that if x occurs at a position j¢i in e then y must occur a
the same position in f and vice versa. Analogously there must be e', f in F containing W at position i ,
and if u occurs at position ti in e' then v must occur at position j in f and vice versa. Hence come’ or
eo=f; in both cases eoe F.
b) Let g be an element of E that does not contain z. From a) and the fact that |E|=|FI follows that there is
an element g’ in F that does not contain w. This is only possible if m=2. Thus we can assume w.l.o. g.
that g=(x,y). Let E'=E\{ee El e contains 2} . Let G’ = (V\{z} , E'). Since according to a) for each element
of E that contains z and x there is a corresponding element that contains z and y, the characteristics of x
and y with respect to 6 '  must be equal, too. This implies that h:=(y,x) e E. The same argument shows
that (u,v)e F and (v,u)e F. Hence gO'e F. I

Let |V|=3, V*=W*. If vi=l for all ve V and i_<_m, then G and H are isomorphic.



Proof:
 

Let V:={x,y,z}. In the case m=2 one of the edges (x,y) and (x,z) must be in E. W.l.o.g. let (x,y) be in
 

E. It is easy to see that the only possibility for E is E={ (x,y),(y,z),(z,x)}. Analogously one of (u,v) and
 

(u,w) must be in F, say (u,v). Then F must be {(u,v),(v,w),(w,u)}. Hence G and H are isomorphic. In
 

the case m=3 one of the edges (x,y,z) or (x,z,y) must be in E, let (x,y,z) be that edge. Then we obtain
 

E={(x,y,z),(y,z,x),(z,x,y)}. Analogously if the edge (u,v,w) is in F, then we obtain
 

F={(u,v,w),(v,w,u),(w,u,v)} and again G and H are isomorphic. _
 

3.4 Lemma:
 

If IVI=3 and IV*I=3, i.e. the v* are pairwise different, then G is isomorphic to H iff V*=W*.
 

Proof: 

Suppose V*=W* and let V={x,y,z} and W={u,v,w} such that x*=u*, y*=v* and z*=w*. The elements 

x*, y* and z* are pairwise different. Define the mapping <p by x<p=u, y<p=V, z<p=w. 

a) Letm=2. We show that eEE implies e<pEF. 

Let e=(x,y).We show that e<p=(u,v)E F. Suppose (u,v)~ F. We have xl *~I and yz"'~I, hence also 

u I*~I and Vz*~1. Since (u,v)~ F, (u,w) and (w,v) must be in F. This implies that zl*~I and Zz*~1. If 

(X,Z)E E, then Xl *~2, which implies u I*~, and then (u,v) must be in F. If (z,y) is in E, then yz*~2 

which implies Vz *~ and then (u,v) must be in F, too. If neither (x,z) nor (z,y) is in E, then (y,z) and 

(z,x) must be in E. IfE={ (x,y), (y,z), (z,x)} then x*=y*. So there must be at least one more element in 

E, say (y,x). Then YI*~' whence vI*~ and xz*~' whence Uz*~' Then (v,w) and (w,u) must be in 

F. Since z*=w* this shows that (z,y) and (x,z) must be in E. But then E={ (x,y), (y,x), (y,z), (z,y),
 

(x,z), (z,x) }and x*=y*=z* which is a contradiction.
 

b) Let m=3. We show that eE E implies ecpE F.
 

Let e=(x,y,z). We show that e<p=(u,v,W)EF. We have xI*~l, yz*~I, z3*~I, hence uI*~I, vz*~l,
 

w3*~1. Suppose (u,v,w)~ F. Since u must occur at first position in F, v at second and w at third
 

position, (u,w,v), (w,v,u) and (v,u,w) must be in F. Since u* *- v* there must be at least one more
 

element in F, say (w,u,v). Hence v3 *~ and therefore Y3 *~. But this implies that (z,x,y) and (x,z,y)
 

must be in E, hence also xI*~' From this follows uI*~2, which says that (u,w,v) and (u,v,w) are in F
 

which is a contradiction. Hence (u,v,w)EF.
 

3.5 Theorem:
 

IfIVI=3 then G is isomorphic to H iffV*=W*.
 

Proof:
 

Let V={x,y,z} and e:=IEI. If G is isomorphic to H then clearly V*=W*. Now suppose V*=W*. We
 

have to show that G and H are isomorphic.
 

It is easy to verify that the following conditions must hold:
 

(1) x/+Yi* +zi* = e for I::;;i $m 

(2) xi* + Yi* - 2::;; ~* for any pair (i,k) with i*-k 

a) Letm=2. 

If all the v* for VE {x,y,z} are different, then G and H are isomorphic by 3.4. So we assume that at least 

two of the v* are equal, say x*=y*. Then (I) yields 
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Proof:
Let V:={x,y,z}. In the case m=2 one of the edges (x,y) and (x.z) must be in E. W.l.o.g. let (x,y) be in
E. It is easy to see that the only possibility for B is &{(x,y),(y,z),(z,x)}. Analogously one of (u,v) and
(u,w) must be in F, say (u,v). Then F must be {(u,v),(v,w),(w,u)}. Hence G and H are isomorphic. In
the case m=3 one of the edges (x,y,z) or (x,z,y) must be in E,  let (x,y,z) be that edge. Then we obtain
E:{(x,y,z) , (y ,z ,x) , (z ,x ,y)  } .  Analogously if the edge (u,v,w) is in F, then we obtain
F={(u,v,w),(v,w,u),(w,u,v)} and again G and H are isomorphic. I

3,4  Lemma; .

If IVI=3 and |V*l=3‚ i.e. the v* are pairwise different, then G is isomorphic to H iff V*=W*.

Proof:
Suppose V*=W* and let V={x,y,z} and W={u,v,w} such that x*=u*, y*=v* and z*=w*. The elements
11*, y*  and 2* are pairwise different. Define the mapping (p by xcp=u, ycp==v, c=w.
a) Let m==2. We show that ee E implies ecpe F.
Let e=(-x;y). We show ---that e(p=(-u,v-)e F. Suppose (u,v)e F. We have . . . x1*21  and yzill, hence also
111*21 and v2*21. Since (u,v)e F, (u,w) and (w,v) must be in F. This implies that 21*21 and 22*21. If
(x,z)e E,  then x1*22, which implies u1*22, and then (u,v) must be  in F. If (z,y) is in B, then y2*_.>_2

which implies v2*22 and then (u,v) must be in F, too. If neither (x,z) nor (z,y) is  in E, then (y,z) and
(2,11) must be in E. If E={(x,y), (y,z), (z,x)} then x*=y*. So there must be at least one more element in
E, say (y,x). Then y1*22, whence v1*22 and x2*22, whence 112*22. Then (v,w) and (w,u) must be in
F. Since z*=w* this shows that (z,y) and (x,z) must be in E. But then &{(x,y) ,  (y,x), (y,z), (z,y),
(x,z), (z,x)}and x*=y*=z* which is a contradiction.

b) Let 111:3. We show that ee E implies ecpe F.

Let e=(x,y,z). We show that e(p=(u,v,w)eF. We have x1*21, y2*21, 23*21, hence u1*_>.l, v2*21,
W3 *21. Suppose (u,v,w)e F. Since 11 must occur at first position in F, v at second and w at third
position, (u,w,v), (w,v,u) and (v,u,w) must be in F. Since u* # v*  there must be at least one more
element in F, say (w,u,v). Hence v3*22 and therefore y3 *22. But this implies that (z,x,y) and (x,z,y)
must be in E, hence also x1*22. From this follows u1*22‚ which says that (u,w,v) and (u,v,w) are in F
which is a contradiction. Hence (u,v,w)e F.

3.5 Theorem:
If IVI=3 then G is isomorphic to H iff V*=W*.

Proof:
Let V={x,y,z} and e:=|E|. If G is isomorphic to H then clearly V*=W*. Now suppose V*=W*. We
have to show that G and H are isomorphic.
It is  easy to verify that the following conditions must hold:
(1) xi*+yi* +zi* = e for ISi Sm
(2) xi* + yi* - 2 $ zk* for any pair (i,k) with ii]:
a) Let m=2.

If all the v*  for ve {x,y,z} are different, then G and H are isomorphic by 3.4. So we assume that at least
two of the v* are equal, say x*=y*. Then (1) yields



(1') 2x * +z * - 2x * +z * I I - Z z· 
Case 1: xl*=2. Then 2xz*+ZZ*-zl*=4 => 2xz*~4-zz*~ => Xz*~1. IfXz*=1, then Zz*-zt=2 which is 

only possible for Zz*=2 and zl*=0. If Xz*=2 then Zz*-zl*=0, i.e. zl*=zz*. From (2) we obtain Zz*=2, 
hence also zl*=2. In both cases zl* and Zz* are even, thus G and H are isomorphic according to 3.1. 

Case 2: xl*=1. Ifxz*=2, then we have a situation analogous to Case 1. So let xz*=1. Then either 

zl*=zz*=1 and G and H are isomorphic according to 3.2 or zl*=zz*=2 and then zl * and Zz* are even 

and again G and H are isomorphic. Ifxz*=O' then zl*+2=zz*' This is only possible for zz*=2, zl*=O, 

so zl* and Zz* are even and G and H are isomorphic. 

b) Letm=3. As in a) let x*=y*. 

Case 1: Xl*=2. Then from (2) follows Zz* = z3* = 2. Furthermore from (1) follows zl*=2xz*-2, hence 

zl* is even. In this case all zt are even and the assertion follows from 3.1. 

Case 2: Xl*=1. If Xz *= 2 or x3* = 2 then an analogous argument to Case 1 proves the assertion. If 

x2*=0 then (1) yields 2+z1*=zz* which can only occur if Zz*=2 and zl *=0. Then z3 *=2-x3* is even. 

Analogously if x3*=0 it follows that all zi* are even. Now let Xz*=x3*=1. Then from (1) follows 

zl*=zz*=z3*. If zl*=1 then lemma 3.2 proves the assertion, if zl *=2 then the assertion follows from 

lemma 3.1 • 

The following example shows that in the case of a graph with four vertices the characteristics of the 

vertices do not characterize the graph up to isomorphism: 

3.6 Example:
 

Con~ider the following graphs:
 

p q 

r s 

The equalities 

x* = p*, y* = q*, z* = r* and u* = s* 

hold but nevertheless the two graphs are not isomorphic. 

For the case of graphs with less than four edges the characteristics of the vertices together with the 

characteristics of the edges are needed to determine the graph uniquely. 

3.7 Theorem:
 

If IEI=3 then G is isomorphic to H iffV*=W* and E*=F*.
 

Proof:
 

We show that any bijective mapping cp:E~F with (ecp)*=e* for all eEE induces a bijective mapping from
 

VtoW.
 

Let E={el'eZ,e3} and F={fI ,f2,f3 }
 

Let XE V. If there is no yE V with y*=x*, then there must be exactly one a*E W* with x*=a*. Then cp
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(1’) 2x1* +zl* = 2x2* +z2* ,
Case 1: x1*=2. Then 2x2*+zz*-zl*=4 => 2x2*24-zz*22 => x2*21. Ifx2*=l, then zz*-zl*=2 which is
only possible for z2*=2 and z1*=0. If x2*=2 then z2*-z1*=0, i.e. z1*=z2*. From (2) we obtain z2*=2,
hence also zl*=2. In both cases 21°" and 22* are even, thus G and H are isomolphic according to 3.1.
Case 2: x1*=l.  If x2*=2, then we have a situation analogous to Case 1. So  let x2*=1. Then either
z1*=z2*=1 and G and H are isomorphic according to 3.2 or zl*=z2*=2 and then 21* and 22* are even
and again G and H are isomorphic. If x2*=0‚ then z1 *+2=z2*. This is only possible for z2*=2, z1*=0,
so 21* and 22* are even and G and H are isomorphic.
b) Let m==3. As in a) let x*=y*.
Case 1 :  x1*=2. Then from (2) follows 22* = 23* = 2. Furthermore from (1) follows zl*=2x2*-2, hence

z1* is even. In this case all 21* are even and the assertion follows from 3.1.
Case 2: x1*=1. If x2 *= 2 or x3* = 2 then an analogous argument to Case 1 proves the assertion. If
x2*=0 then (1) yields 2+z1*=z2* which can only occur if z2*=2 and z1*=0. Then z3*=2—x3* is  even.
Analogously if x3*=0 i t  follows that all zi* are even. Now let x2*=x3*=l. Then from (1) follows
z1*=z2*=z3*. If z1*=1 then lemma 3.2 proves the assertion, if zl*=2 then the assertion follows from
lemma 3.1 -' .

The following example shows that in the case of a graph with four vertices the characteristics of the
vertices do not characterize the graph up to isomorphism:

3.6 Example:
Consider the following graphs:

y —> z p ' q

The equalities

hold but nevertheless the two graphs are not isomorphic.

For the case of graphs with less than four edges the characteristics of the vertices together with the
characteristics of the edges are needed to determine the graph uniquely.

m
If |El=3 then G is isomorphic to H iff V*=W* and E*=F*.

Proof:
We show that any bijective mapping (p:E—>F with (e(p)*=e* for all ee E induces a bijective mapping fiom
V to W.
Let E={e1,e2,e3} and F={f1,f2,f3}
Let xe  V.  If there is no ye V with y*=x*, then there must be exactly one a*e W* with x*=a*. Then (p



induces a mapping <p' with xcp'=a. 

Let there be a yE V with y*=x*. W.I.o.g we assume that x occurs in the fIrst 3 positions, 

Case 1: Exi*=3. Then Ey/=3. Since IEI=3, xi:S1 and yi:S1 for all i. This means that there must be 

distinct elements e1=(x,.,.,..), e2=(.,x,.,..) and e3=(. •. ,x...) in E. The same elements with y instead of 

x must be in E, too. There are only two possibilities: Either 

E={ (x,y,u, ..),(v,x,y,..),(y,w,x, ..)} or
 

E={ (y,x,u,.. ),(v,y ,x, ..),(x,w,y,.. )}.
 

W.l.o.g. we assume that E={(x,y,u,..),(v,x,y,..),(y,w,x,..)}.
 

Case 1.1: If u=v=w, then all elements in E* have the following form:
 

1 1 1 

1 1 1 

1 1 1 

Since E*=F* there must be elements a,b,c in W such that F={(a,b,c,.. ), (c,a,b,..), (b,c,a,..)}. Now it is
 

easy to see that any bijectivemappingcpfrom E to F with (ecp)*=e* inciuces a bijective mapping cp' from
 

V to W. (E.g. if (x,y,u,..)<p= (a,h,c,..), (u,x,y,..)<p= (c,a,b,..), (y,u,x, ..)cp= (b,c,a,..), then xcp'=a,
 

ycp'=b, ucp'=c.).
 

Case 1.2: If u;t:v, then E={ (x,y,u,..), (v,x,y,..), (y,w,x,..)} and the elements in E* have the following
 

form:
 

11* 

11" 

11" 

,. 1 1 

,. 1 1 

,. 1 1 

1 ,. 1 

1 ,. 1 

1 * 1 

where in each matrix at least one of the asterisks is equal to O. From this follows that the ei* are pairwise 

different. Since E*=F*, there must be a,bE W with F={ (a,b,..), (.,a,b,..), (b,.,a, ..)}. Any bijective 

mapping cp from E to F with (ecp)*=e* must map (x,y,u,..) to (a,b,.. ), (v,x,y,..) to (.,a,b,..) and 

(y,w,x,..) to (b,.,a,..) and hence induces a mapping cp':V"'-:'W with xcp'=a, ycp'=b. 

Case 2: E~=2. Then EYi=2 and all the Xi and Yi are 1. E must be one of the following sets: 

2.1 {(x,y,..), (y,x,..),(u,v,..)} 

2.2 {(x,y,..), (u,x,..), (y,v, ..)}, where u;t:v 

2.3 {(x,y,..), (u,x,..), (y,u, ..)} 

In case 2.1, E* has the following form: 

11.] [1 1.] [1 0']
[1 '. 1 " 0 , 

.. .. .. .. . .. 

Since F*=E*, there must be elements a,b,e,dE W such that F={ (a,b,..), (b,a,..), (c,d,..)}. Any bijective
 

mapping cp from E to F with (ecp)*=e* for all eE E induces a mapping cp':V-'tW with xcp'=a, ycp'=b or
 

xcp'=b, ycp'=a.
 

In case 2.2, E* has the following form:
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induces a mapping (p' with xcp'za.
Let there be a ye  V with y*=x*. W.l.o.g we assume that it occurs in the first 3 positions.
Case 1 :  Exi*=3. Then Eyi*=3. Since |E|=3‚ xiSI and yiSI for all i .  This means that there must be
distinct elements e1=(x,.,....), e2=(.,x,.,..) and e3=(.,.,x,..) in E. The same elements with y instead of
it must be in E, too. There are only two possibilities: Either

E={(x,y,u,..),(v,x‚y,..),(y‚w,x,..)} or
E={(y,x,u, . .) ,(v,y,x, . . ) ,(x,w,y, . .)} .

W.l.o.g. we assume that E={(x‚y,u,..),(v,x,y‚..),(y,w,x,..)}.
Case 1 .1: If u=v=w, then all elements in E* have the following form:

F1 1 1 . '

Since E*=F* there must be elements a,b,c in W such that F={(a,b,c,..), (c,a,b,..), (b,c,a,..)}. Now it is
easy .to see that any bijectiye._mapping „(p...fmm E „to F with (C<P)*=°* induces a bijective mapping (P' from
V to W. (E. g. i f  (x,y,u,..)<p= (a,b,c‚..), (u,x,y...)¢= (c,a,b,..), (y,u,x,..)(p= (b,c,a,..), then xcp'=a,

y<p'=b‚ u<p'=c.) .

Case 1.2: If mtv, then E={(x‚y,u‚..)‚ (v,x,y,..), (y,w,x,..)} and the elements in E* have the following
form:

l 11* . l l *11 . ' l 1*1 . '
11* .  *11 .  1*1 .

11* . '*11 . '1*1 .

where in each matrix at least one of the asterisks is equal to 0. From this follows that the ef‘ are pairwise
different. Since E*=F*, there must be a ,beW with F={(a,b,..), (.,a,b,..), (b,.,a,..)}. Any bijective
mapping (p from E to F with (etp)*=e*' must map (x‚y,u‚...) to (a,b,..), (v,x,y,..) to (.,a,b,..) and
(y,w,x,..) to (b,.,a,..) and hence induces a mapping <p':V-—9W with xtp'za, y<p'=b.
Case 2: 2x52. Then Zyi=2 and all the xi and yi are 1. E must be one of the following sets:

2.1 {(x,y,..), (y,x,..),(u,v,..)}
2.2 {(x,y,..), (u,x,..). (y,v...)}, where mtv
2.3 {(x,y,..), (u,x,..), (y,u,..)}

In case 2.1, E* has the following form:

[??E]~l??}}l??l
Since F*==E*‚ there must be elements a,b,c,de W such that F={(a,b,..), (b,a,..), (c,d,..)}. Any bijective

mapping (p fiom E to F with (etp)*=e* for all ee E induces a mapping (p':V—>W with X(p'=a, y(p'=b or
X(p'=b, ycp'=a.
In case 2.2 ,  E* has the following form:



F* has the same form and this can only be the case, if F={(a,b,..), (c,a, ..), (b,d, ..)} for some
 

a,b,c,deW. Any bijective mapping cp from E to F with (ecp)*=e* for all eeE must map (x,y, ..) to
 

(a,b, ..), (u,x, ..) to (c,a,..) and (y,v,..) to (b,d,..) and hence induces a mapping cp':V-7W with xcp'=a,
 

ycp'=b.
 

In case 2.3, all elements of E* have the following form:
 

All elements of F* have the same form and this can only be the case, if F={ (a,b,..), (b,c,..), (c,a, ..)}
 

for some a,b,ce W. Now it is easy to see that any bijective mapping cp from E to F with (ecp)*=e* for all
 

ee E induces a bijective mapping cp' from V to W.
 

Now we have establiShed fot an Cases that E*=F* implies that G and H are isomorphic. _
 

The following example shows that even for graphs with only two edges the premise E*=F* of theorem
 

3.7 cannot be dropped.
 

3.8 Example:
 

Let G=(V,E) and H=(V,F) with V={x,y,z,u,v,w}, W={x',y',z',u',v',w'}
 

E = {(x,u,y,v), (w,x,z,y)}, F = {(x',u',v',y'), (w',x',y',z')}. 

The two graphs G and H are not isomorphic although V*=W* holds. 

4. Labeled Graphs 

M-graphs correspond to clauses C={Ll'... ,Ln} where all literals Li have the same predicate symbol. In 

order to generalize some of the above results to arbitrary clauses we introduce the notion of simultaneous 

isomorphism of graphs: A clause C whose literals may have different predicate symbols from a set P 

corresponds to a family q = (G(p) IPe P) of graphs G(p) = (V, E(P)) over the same set V of vertices. 

The main result of this chapter are: 

in the case IVI$3 the characteristics of the vertices determine a labeled graph up to isomorphism, if
 

there is no graph G(p) in which the characteristics of the three vertices are equal.
 

in the case where each 1E(P)1$2 the characteristics of the vertices together with the characteristics
 

the edges determine a labeled graph up to isomorphism.
 

4.1 Defmition: 

(i) Let P:= U neN P where each Pn is a f"mite set of n-place labels and V a f"mite set of vertices.n 

A labeled graph is a family q =(G(p) IPe P) of graphs G(p) =(V, E(P)) where deg(G(p))=m, 
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I 

liétléétlfil
F* has the same form and this can only be the case, if F={(a,b,..), (c,a,..), (b,d,..)} for some
a,b,c,de W. Any bijective mapping (9 from E to F with (ecp)*=e* for all ee E must map (x,y‚..) to

(a,b,..), (u,x,..) to (c,a,..) and (y,v,..) to (b,d,..) and hence induces a mapping (p':V-—>W with xq>'=a‚

Y<P'=b-
In case 2.3, all elements of E* have the following form:

[???]
All elements of F* have the same form and this can only be the case, if F={(a ,b , . . ) ,  (b,c, . .) ,  (c,a,..)}

for some a,b,ce W. Now it is easy to see that any bijective mapping (p from E to F with (etp)*=e* for all
ee E induces a bijective mapping (p' from V to W.
Now we haire established'for all cases that E*'1="F* implies that G and H are isomorphic. I

The following example shows that even for graphs with only two edges the premise E*=F* of theorem
3 .7 cannot be dropped.

3.8 Example:
Let G=(V,E) and H=(V,F) with V={x,y,z,u,v,w}, W={x',y',z',u',v',w']

E = {(x,u,y,v), (W‚x‚z‚y)}‚ F = {(X'‚U'‚V'sY')‚ (W'‚X'‚y'‚Z')}—
The two graphs G and H are not isomorphic although V*=W* holds.

4 .  Labeled Graphs

M-graphs correspond to clauses C={L1,...,Ln} where all literals Li have the same predicate symbol. In
order to generalize some of the above results to arbitrary clauses we introduce the notion of simultaneous
isomorphism of graphs: A clause C whose literals may have different predicate symbols from a set T
corresponds to a family g = (G(P) I Pe ?) of graphs G(P) = (V, E(P)) over the same set V of vertices.
The main result of this chapter are:
- in the case IVIS3 the characteristics of the vertices determine a labeled graph up to isomorphism, if

there is no graph G(P) in which the characteristics of the three vertices are equal.
- in the case where each |E(P)|52 the characteristics of the vertices together with the characteristics .

the edges determine a labeled graph up to isomorphism.

4.1 Definition:
(i) Let 1’ := Une-N % where each 911 is a finite set of n-place labels and V a finite set of vertices.

A labeled graph is  a family g = (G(P) | PE EP) of graphs G(P) = (V, E(P)) where deg(G(P))=m,



I(ii) ~;e::·(V, E) and !J{= (W, F) be labeled graphs. A graph isomorphism from (j to !J{is a bijective 

mapping 0:V....:itW that induces a graph isomorphism from G(p) onto H(P) for each Pe P. 

4.2 Definition:
 

I

I 

For each veV and Pe Pm let vP be the m-tuple (vt,...,vm 
P) where ViP is the nwnberofoccurences ofv
 

at coordinate position i in all edges of E(P). Let vP := {vp I ve V}. Let v* = {(P,vP) I Pe P}and
 

V*={v* I veV}.
 

4.3 Example:
 

The clause {Qyxz, Pxz, Pyz} corresponds to the family (G(Q),G(p» of graphs:
 

y'P 
G(p) G(Q)z x ••---.,;;p;...-~ zx 

Q 

In the following (J =(V, E(P) I Pe P) and 9f= (W, F(P) IPe P) are labeled graphs with IVI = IWI and 

IE(P)I = IF(P)I for each Pe P. 

4.4 Lemma:
 

If IVI=3 and '{vP I ve V} 1=3 for all Pe P, then (J is isomorphic to 1f. iff V* =W*.
 

Proof:
 

The generalization of the proof of lemma 3.4 to prove 4.4 is tedious but straightforward.
 • 
4.5 Lemma:
 

Let IVI=3 and V={x,y,z}. Suppose xP=yP:;t:zP for all PeP. Then (Jis isomorphic to 9fiffV* =W*.
 

Proof:
 

For each meN and Pe Pm the equations
 

(1) xt+yt+zt= IE(P)I for l::;i $m 

(2) xt + yt -2 ::; ~P for any pair (i,k) with i:;t:k
 

must hold. The proofof 3.5 shows that all components of zP must be even. Then an argument analogous
 

to that of the proof of 3.2 proves that (J is isomorphic to !Jf. •
 

4.6 Lemma:
 

Let IVI=3, V={x,y,z}. Suppose that xP=yP:;t:zP for some Pe P, and xQ:;t:yQ for some Qe P.
 

Then (Jis isomorphic to !J-(iffVP = wP for all Pe P.
 

Proof:
 

Since xQ:;t:yQ we have x*:;t:y* and since xP= yP:;t:zP we have x*:;t:z* and y*:;t:z*. Let W={u,v,w} with
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iff P6 1’ .m

(ii) Let (} = (V, E) and H = (W, F) be labeled graphs. A graph isomorphism from g to if is a bijective
mapping 6:V—-—>W that induces a graph isomorphism from G(P) onto H(P) for each Pe EP.

.4.2 Definition;
For each ve V and Pe i’m let vP be the m-tuple (VIP....,v) where viP is the number of occurences of v
at coordinate position i in all edges of E(P). Let VP := {vP I ve V}. Let v* = {(P.vP) | Pe  an} and
V*={v* | ve V}.

4.3 Example:
The clause [nz, s, Pyz} corresponds to the family (G(Q)‚G(P)) of graphs:

! y
' PG(P) z G(Q) P \

x l———> z

Q

In the following g = (V, ECP) 1 P6 1’) and H = (W, F(P) | Pe 51?) are labeled graphs with IVI = IWI and
|E(P)l = |F(P)l for each Pe :P.

4.4 Lemma;
If IVI-:3 and |{vP I ve V}|=3 for all Pe EE, then gis  isomorphic to % iff V* = W*.

Proof:

The generalization of the proof of lemma 3.4 to prove 4.4 is tedious but straightforward. I

4.5 Lemma:
Let IV|=3 and V={x,y,z}. Suppose xP=yP¢zP for all PE 1?. Then 9 is isomorphic to Hiff V* = W*.

Proof:
For each me N and P6 EPm the equations
(1) xiP+yiP+ziP = IE(P)I for ISi Sm
(2) X? + yiP - 2 S s for any pair (i,k) with iatk
must hold. The proof of 3.5 shows that all components of zP must be even. Then an argument analogous
to that of the proof of 3.2 proves that g is  isomorphic to if I

4.§ Lemma:
Let lVl=3, V={x,y,z}. Suppose that xP=yPaf£zP for some Pe ?, and qtyQ for some Q6 Q7.
Then @ is isomorphic to Hiff VP = WP for all Pe 9?.

Proof:
Since véyQ we have x*¢y* and since KP: ypvtzP we have x*¢z* and y*;tz*. Let W= {u,v ,w} with



x*=u*, y*=v* and z*=w*. We define a:V-:;W by xa==li, ya=v, za=w. Again all components of zP 

must be even. The proof of lemma 3.2 now shows that a is an isomorphism from q onto !Jl • 

4.7 Corollary: 

Let IVI=3, V={x,y,z}. Suppose that there is no PE Psuch that xP=yP=zp. Then (iis isomorphic to :J-{iff 

V*=W* • 

The complete analogon of 3.5, however, does not hold for labeled graphs: 

4.7 Example: 

The two labeled graphs (i and :J-{ belonging to the clauses 

C={Pxy, Pyz, Pzx, Qxy, Qyz, Qzx} 

D={Puv,Pvw,Pwu,Qvu, Qwv,Quw} 

satisfy V*=W* but they are not isomorphic. In this case xP=yP=zP holds. 

Since E(Pl=F(Pl and E(Q)Q=F(Q)Q holds for the above example, it shows also that theorem 3.7 can 

not be completely generalized to labeled graphs. But there is a weaker version of 3.7 for labeled graphs: 

4.8 Lemma:
 

If IE(P)I ~ 2 for all PE P
 

then G is isomorphic to H iff V*=W* and E(Pl=F(Pl for all PE P.
 

Proof: 

For each PE P let <Pp be a bijective mapping <Pp:E(P)-:;F(P) with (e<ppl=eP for all eEE(p). Let <p be the 

composition of all <pp. We show that we can choose the <Pp in such a way that <p induces a bijective 

mapping from V to W. 

According to theorem 3.7 each bijective mapping <pp:E(P)-:;F(P) induces a bijective mapping <p'p from V 

to W. We only have to show that the <Pp can be chosen such that <p'p == <p'Q for all P, QE P. 

IfXE V such that there is no yE V with x*=y*, then there is exactly one aE W such that x*=a*. Let PE P. 

Either there is no yE V with xP=yP and then x<p'p = a must hold. If on the other hand there is an yE V 

with xP=yP then there are a,bE W such that xP=aP=bP. Then x*=a* or x*=b*. Let x*=a*. For E(P) only 

case 2.1 of the proof of 3.6 is possible. But then one can choose the mapping <Pp such that x<p'p = a. If 

there are x, yE V with x*=y* then xP=yP must hold for each PE P and then there are a,bE W with a*=b* 

and one can choose the mappings <Pp such that x<p'p=a for all PE P. This shows that the mappings <pp can 

be chosen in such a way that x<pp = x<PQ holds for all XE V and all P,QE P. • 

Acknowledgement 
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x*=u*, y*=v* and z*=w*. We define o:V—>W by xo=u, yo=v, zo=w. Again all components of zP
must be even. The proof of lemma 3.2 now shows that 0' is an isomorphism fi'om g onto .91 I

4.7 Corolla_ry:
Let |VI=3, V={x,y,z} . Suppose that there is no Pe {Psuch that xP=yP=zP. Then @ is isomorphic to Hiff
V*=W* I

The complete analogon of 3.5, however, does not hold for labeled graphs:

4.7 Example:
The two labeled graphs (j and fl belonging to the clauses

C={n, Pyz, s ,  Qxy, Qyz, s}
D={Puv, v ,  Pwu, Qvu, Qwv, Quw}

satisfy V*=W* but they are not isomorphic. In this case xP=yP= P holds.

Since E(P)P---=F(P)P and E(Q)Q=F(Q)Q holds for the above example, it shows also that theorem 3.7 can
not be completely generalized to labeled graphs. But there is a weaker version of 3.7 for labeled graphs:

4.8 Lemma:

lflE(P)| s 2 for all Fe 1?
then G is isomorphic to H iff V*=W* and E(P)P=F(P)P for all Pe EP.

Proof:
For each Fe 1’ let gap be a bijective mapping (pP:E(P)—)F(P) with (ecpp)P=eP for all ee E(P). Let (p be the
composition of all (pp. We show that we can choose the (9? in such away that (p induces a bijective
mapping fiom V to W.
According to theorem 3.7 each bijective mapping (pP:E(P)—>F(P) induces a bijective mapping (p'P from V
to W. We only have to show that the (pp can be chosen such that (p'P _=. (p'Q for all P, Qe ?.
If xe V such that there is no ye V with x*=y*, then there is exactly one ae W such that x*=a*. Let Pe 1’.
Either there is no ye V with xP=yP and then xcp'P = a must hold. If on the other hand there is an ye V
with xP=yP then there are a,be W such that xp: P=bP. Then x*=a* or x*=b*. Let x*=a*. For E(P) only
case 2.1 of the proof of 3.6 is  possible. But then one can choose the mapping (pp such that x(p'P = a. If
there are x, ye V with x*=y* then xPr-yP must hold for each Pe ? and then there are a,be W with a*=b*
and one can choose the mappings (pp such that xcp'P=a for all Pe 1’. This shows that the mappings (pp can
be chosen in such a way that xcpp = xc holds for all xe V and all P,Qe LP. I

Acknowledgement
I wish to thank my colleagues Hans-Jürgen Bürckert and Christoph Lingenfelder who read and
improved an earlier draft of this paper.
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