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Preface
 

The sUbgroups 1.2.1 Deduction Systems and 2.1.3 Implementation of Programming 
Languages of the Gesellschaft ftir Informatik arranged their first workshop" Term 
Rewriting: Theory and Application" from March 6 to March 8, 1989 at the 
University of Kaiserslautern. 
The aim of the workshop was to bring together theorists and practitioners on 
Term rewriting systems, completion algorithms, narrowing approaches, completion 
theorem provers etc. from the German speaking countries. 43 participants from 
Germany and Austria have got an interesting overview of the actual rewrite 
activities within 27 talks. The talks are separated into blocks of: 

conditional term rewriting 
inductive proofs via completion 
functional programming and	 rewrite systems 
applica tions of rewriting techniques 
special strategies 
theoretics within equational	 theories. 

There also was a system demonstration and poster section where 10 systems 
were presented. 
The workshop has shown how broad the applications of term rewriting techniques 
have became. Special fields as program specification and verification, automated 
translation of languages, code generators, automated theorem proving, logical
functional programming languages and simulation of parallel processes were 
considered. 

This report will give a brief overview on the topics of the workshop. The extended 
abstracts are [almost) arranged in groups of their special fields. 

March 1989	 Jtirgen Mtiller [University of Kaiserslautern) 
Harald Ganzinger [University of Dortmund) 
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Abstract 

Algebraische Spezifikationssprachen gewinnen in den letzten Jahren in der Forschung immer 
mehr an Bedeutung. Sie ermoglichen die formale Beschreibung von Datentypen und Soft
waresystemen unabhangig von ihrer konkreten Reprasentation und ohne Beziehung zu speziellen 
Eigenschaften einer Programmiersprache oder eines Betriebssystems. Ihre mathematisch klar 
definierte Semantik machen sie unabhangig von technologischen Veranderungen und zu einer 
zuverlassigen Grundlage der Dokumentation und Implementierung von Softwaresystemen. 

Die Compilation wird als ein Verfahren zur effizienten Auswertung von ausfiihrbaren Gleichungs
Spezifikationen mit initialer Semantik vorgestellt. Dieses Verfahren verbessert die Verwend
barkeit dieser Spezifikationen als Prototyp der spezifizierten Software. 

Termersetzung wird dazu verwendet, einen Reprasentanten der durch die Spezifikation definierten 
Kongruenzklasse eines Terms zu bestimmen. Die Ersetzungsregeln miissen bestimmten Kriterien 
geniigen, damit die Termination des Verfahrens und die Eindeutigkeit des Resultats sichergestellt 
sind. 

Bei der Compilation wird ein Termersetzungssystem in mehreren Phasen in eine Menge von 
Entscheidungsbaumen, in eine Menge von Funktionsdefinitionen, in den Code einer abstrakten 
Maschine, und schliefilich in ausfiihrbaren Maschinencode transformiert. 

Ersetzungsrelationen auf partiellen Termen und Eigenschaften verschiedener Ableitungsstrate
gien werden vorgestellt. Ein Termersetzungs-Algorithmus mit "lazy"-Strategie wirdangegeben, 
seine Korrektheit und Termination wird bewiesen. 

Der Algorithmus wird, entsprechend den einzelnen Compilationsphasen, schrittweise konkretisiert. 
Die Korrektheit der Transformationen wird diskutiert. 

Die abstrakte Termersetzungs-Maschine LATERM wird definiert. Diese Maschine ermoglicht 
Ableitungen bez. der "lazy"-Strategie mit zwei unterschiedlichen Verfahren und kann zusatzlich 
innermost-Ableitungen effizient durchfiihren. 
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Abstract

Algebraische Spezifikationssprachen gewinnen in den letzten Jahren in der Forschung immer
mehr an Bedeutung. Sie ermöglichen die formale Beschreibung von Datentypen und Soft-
waresystemen unabhängig von ihrer konkreten Repräsentation und ohne Beziehung zu speziellen
Eigenschaften einer Programmiersprache oder eines Betriebssystems. Ihre mathematisch klar
definierte Semantik machen sie unabhängig von technologischen Veränderungen und zu einer
zuverlässigen Grundlage der Dokumentation und Implementierung von Softwaresystemen.

Die Compilation wird als ein Verfahren zur effizienten Auswertung von ausfiihrbaren Gleichungs-
Spezifikationen mit initialer Semantik vorgestellt. Dieses Verfahren verbessert die Verwend—
barkeit dieser Spezifikationen als Prototyp der spezifizierten Software.

Termersetzung wird dazu verwendet, einen Repräsentanten der durch die Spezifikation definierten
Kongruenzklasse eines Terms zu bestimmen. Die Ersetzungsregeln miissen bestimmten Kriterien
genügen, damit die Termination des Verfahrens und die Eindeutigkeit des Resultats sichergestellt
sind.

Bei der Compilation wird ein Termersetzungssystem in mehreren Phasen in eine Menge von
Entscheidungsbäumen, in eine Menge von Funktionsdefinitionen, in den Code einer abstrakten
Maschine, und schließlich in ausfiihrbaren Maschinencode transformiert.

Ersetzungsrelationen auf partiellen Termen und Eigenschaften verschiedener Ableitungsstrate—
gien werden vorgestellt. Ein Termersetzungs-Algorithmus mit ”lazy”-Strategie wirdmangegeben,
seine Korrektheit und Termination wird bewiesen.

Der Algorithmus wird, entsprechend den einzelnen Compilationsphasen, schrittweise konkretisiert.
Die Korrektheit der Transformationen wird diskutiert.

Die abstrakte Termersetzungs-Maschine LATERM wird definiert. Diese Maschine ermöglicht
Ableitungen bez. der ”lazy”-Strategie mit zwei unterschiedlichen Verfahren und kann zusätzlich
innermost-Ableitungen effizient durchführen.
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1 . Introduction 
Based on the work of Musser [Mus80], Goguen [Gog80], Huet & Hullot [HH82J, Jouannaud & Kounalis 

[JK86] and others, we have shown in Hofbauer & Kutsche [HK88] how to prove inductive theorems over a term 

rewriting system under certain conditions by just applying rewrite steps between distinguished pairs of terms. Our 

results allow to weaken the premises of both (ground) confluence and termination: Only critical pairs of the 

underlying system on the rules to be proved have to be considered. Secondly we split the set of those rules into 

two parts, one of which has to fulfill certain termination requirements, but the other does not. Furthermore we 

allow the use of (already proved) lemmata, splitted in the same manner. 

Here I want to stress the pragmatical aspects of proving inductive theorems, based on some experience in 

applying our results to a Jew examples, cf. again [HK88]. My emphasis lies on pointing out severe difficulties, 

arising if one wants to proceed fully automatically, rather than giving a solution of them. My demand is for 

human-oriented interactive systems. to integrate the users expertise and intuition of a theorem and its possible 

proof with the speed of a computer system to perform necessary but tedious computations. 

2 . Basic theory 
We assume the reader to be familiar with basic notations for term rewriting systems, as given e.g. in [Huet80] 

and many others, and just recall a few definitions and our main theorem from [HK88]. 

Definitions
 

Let R be a TRS. The set of equations ITh(R) := { s=t I sO' f-*R~ to' for all ground substitutions O'}
 

is called inductive theory of R. (For convenience we often speak: of a set of rules to be in the inductive theory
 

of a TRS, always meaning the associated set ofequations.)
 

A term t is called ground-reducible (or: quasi-reducible) under R iff to' is R-reducible for all ground
 

substitutions 0', a TRS R' is ground-reducible under R iff the left-hand side of every rule in R' is ground


reducible under R.
 

Theorem 3 (from Hofbauer & Kutsehe 1988)
 

Let R. I, E, A, L be TRS's such that
 

(1) AuL ~ ITh(R) ("lemmata") 

(2) RuIuA is terminating 

(3)	 IuE is ground reducible under R
 

c p
 

(4) for every critical pair <c,p> of R on I : RuIuAJ. *	 * J.RuIuA 

c 

(5) for every critical pair <c,p> of R on E : RuIuAJ. * 

Then IuE ~ ITh(R). ("inductive theorems") 
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1 . Introduction ,
Based on the work of Musser [Mus80], Goguen [Gog80], Huet & Hullot [HI-182], Jouannaud & Kounalis

[IK86] and others, we have shown in Hofbauer & Kutsche [I-IK8 8] how to prove inductive theorems over a term

rewriting system under certain conditions by just applying rewrite steps between distinguished pairs of terms. Our
results allow to weaken the premises of both (ground) confluence and termination : Only critical pairs of the
underlying system on the rules to be proved have to be considered. Secondly we split the set of those rules into
two parts, one of which has to fulfill certain termination requirements, but the other does not. Furthermore we

allow the use of (already proved) lemmata, splitted in the same manner.
Here I want to stress the pragmatical aspects of proving inductive theorems, based on some experience in

applying our results to a-v—few examples, of. again [HK88]. My emphasis lies-on-pointing out severe difficulties,

arising if one wants to proceed fully automatically, rather than giving a solution of them. My demand is for
human—oriented interactive systems, to integrate the users expertise and intuition of a theorem and its possible
proof with the speed of a computer system to perform necessary but tedious computations.

2 . Basic theory
We assume the reader to be familiar with basic notations for term rewriting systems, as given e. g. in [Huet80]

and many others, and just recall a few definitions and our main theorem from [I-IK88].

Definit ions
Let R be a TRS. The set of equations lTh(R) := { s=t | SC <—*R——> to for all ground substitutions 0' }

is called inductive theory of R . (For convenience we often speak of a set of rules to be in the inductive theory
of a TRS, always meaning the associated set of equations.)
A term t is called ground-reducible (or: quasi-reducible) under R iff to is R-reducible for all ground
substitutions G , a 'IRS R' is ground-reducible under R iff the left-hand side of every rule in R' is ground-
reducible under R .

Theorem 3 (from Hofbauer & Kutsche 1988)

Let R ,  I, E,  A, L be TRS‘s such that

(1) AUL ; ITh(R) ("lemmata")
(2) RUIUA is terminating

(3) IUE is ground reducible under R

C P
(4) for every critical pair <c,p> of R on I : RuIvAJ‚ * * ¢RqA

' _=E—Ö ' (_'*L_> '

c
(5) for every critical pair <c,p> of R on E : RqA~L *

' _=E'_) ' **L“)  I)

Then IUE ; ITh(R). ("inductive theorems”)





The proof of this theorem is found in [HK88]. Meanwhile, we know that again some weakening of the premises 

is possible: In (4) resp. (5) only those critical pairs with rules R' ~ R have to be considered, which are needed 

for the assertion of ground reducibility. Furthermore, also in (4) resp. (5) only certain occurencies of 1- (E- resp.) 

left hand sides have to be taken into account for critical pairs, namely if there are inductive complete positions, 

i.e. occurencies that guarantee ground reducibility under R again. Of course, reducing once more the number of 

critical pairs seems helpful to succeed in inductive proving. Nevertheless, basic problems remain in the process, 

as we show in our case study. 

3. A case study: Proving properties of binomial coefficients 
We assume a standard specification ARITH of natural numbers arithmetic, defming addition, multiplication and 

powers, recursively on the fIrst argument, based on 0 and successor. Applying two special cases of theorem 3, 

we can easily prove lemmata like (al') x+O ~ x, (al') x+s(y) ~ s(x+y) , the commuted versions of 

our original rules, as well as associativity ~md commutativity (for addition), to be in the inductive theory of 

ARITH. 

Now we define binomial coefficients by addition, in order to avoid fractions arising from the factorial defmition: 

BIN: (bI) ( 0 ) ~ 0	 , (b2) ( :) ~ s(O) , (b3) (::~) ~ (s~») + (:) . 
s(k) 

k 
We further include the sum of binomial coefficients with fixed n into our definition, writing L n for .f (~ ):

J=O J 
s(k) ( n) k 

SUM: Lo n (no)' (s2) L n ~ s(k) + L n .(sI) ~ 

Our goal is to prove the theorem	 .Ln (n). = 2n, formalized as rule: (*) L 
n 

n ~ s(s(O»n. 
J=O J 

Let R:= ARITH u BIN u SUM . We prove a few elementary properties of binomial coefficients fIrst, for 

later use as lemmata. Start with 

(b4) ( n+;m») ~ 0 , which easily turns out to be in ITh(R), using A:= {al'r} , Le. (al') in reverse 

direction. (Check for termination !) However, we have to separate this proof from the following of (b5) and (b6) , 

(b5) ( :) ~ s(O), (b6) (s~») ~ 0 , because (b6) requires some assistance by (al') and (81') 

and their reverses, together with (b4), which on its part needs several reduction steps with ARITH and (al'r). One 

succeeds in choosing L = {aI', al', M}, which allows to apply (aI') and (al') in either direction, mixed with one 

required (b4)-step. 

Now we can proceed with some inductive properties of binomial sums, simultaneously proving 

k	 k k k(n)
(s3) L 0 ~ s(O), (s4) k + L s(n) ~ L n + L n' and (*) , which is our goal. 

With L = {M, b5, M, aI', 81', ass, comm} we choose a non-terminating auxiliary set again, furthermore E = 0 

and A = {M, b5, b6, ass} , and apply theorem 3. Another problem occurs during the reduction of some critical 

pairs: One can happen to fail with that proof if one proceeds too far reducing with RuluA. So it is necessary 

to check for L -equivalence during intermediate steps as well . 

The proof of this theorem is found in [HK88]. Meanwhile, we know that again some weakening of the premises
is possible : In (4) resp. (5) only those critical pairs with rules R' ; R have to be considered, which are needed

for the assertion of ground reducibility. Furthermore, also in (4) resp. (5) only certain occurencies of I— (E- resp.)
left hand sides have to be taken into account for critical pairs, namely if there are inductive complete positions,
i.e. occurencies that guarantee ground reducibility under R again. Of course, reducing once more the number of

critical pairs seems helpful to succeed in inductive proving. Nevertheless, basic problems remain in the process,
as we show in our case study.

3. A case study : Proving properties of binomial coefficients
We assume a standard specification ARITH of natural numbers arithmetic, defining addition, multiplication and

powers, recursively on the first argument, based on 0 and successor. Applying two special cases of theorem 3,
we can easily prove lemmata like (31') x+0 ——> x , (a2') x+s(y) ——> s(x+y) , the commuted versions of
our original rules, as well as associativity and commutativity (for addition), to be in the inductive theory of
ARITH.
Now we define binomial coefficients by addition, in order to avoid fractions arising from the factorial def'mition :

BN 1 ° 2 (") ° 3(3‘”) (") (”). ( “ (%)—> ‚ (b )  o —>s(>. (b) 80,) —> sac) + k .

k
We further include the sum of binomial coefficients with fixed n into our definition, writing Zn  for J2,for“ ) :

0 (n )  80:) (n )  k
SUM: (sl) Zn—> 0 , (s2) 2 , , »  s(k) +211 -

' . n n n . n . nOur goal 1s to prove the theorem Z = 2 , formalized as rule : (*) Z n —> s(s(0))
i=0 j

Let R := ARITI-I U BIN U SUM . We prove a few elementary properties of binomial coefficients first, for
later use as lemmata. Start with

(b4) (n+sn(m) ) -—> 0 ‚which easily turns out to be 'm ITh(R), using A :=  {a2‘r } , Le. (32') in reverse

direction. (Check for termination !) However, we have to separate this proof from the following of (b5) and (b6) ,

) —> 0 ‚because (b6) requires some assistance by (31') and (32')
11(b5) ( „ ) —-> s(0) . (b6) ( nSon)

and their reverses, together with (M), which on its part needs several reduction steps with ARI'IH and (aZ'r). One
succeeds in choosing L = {al',  a2', b4} , which allows to apply (al') and (a2') in either direction, mixed with one
required (b4)-step.

Now we can proceed with some inductive properties of binomial sums, simultaneously proving
it n k k k

(S3) 2 o —> S(0) . (S4) [ k ) + Z 501) ——> Z n + Z n , and (*) , which is our goal.

With L = {b4, b5, b6, al ' ,  a2', ass, comm} we choose a non-terminating auxiliary set again, furthermore E = @
and A = {b4, b5, b6, ass} , and apply theorem 3 . Another problem occurs during the reduction of some critical
pairs : One can happen to fail with that proof if one proceeds too far reducing with RqA . So  it is necessary
to check for L -equivalence during intermediate steps as well .





4 . Discussion of problems and consequences 
As we could see in our example, several decisions have to be made during the proof process. We sketch a few 

of them: (1) When do we have to prove theorems simultaneously, when hierarchically? 

(2) How do we group them into the sets I and E, how the lemmata into A and L? 

(3) How far can we simply apply reduction, and when do we have to check for L -equivalence? 

(4) How do we find appropriate lemmata ? 

(5) How do we :fmd sufficiently strong induction hypotheses ? 

Of course, one can hope to automatize parts of those problems by improvements in theory: E.g. further 

reduction of the number of critical pairs might help in some cases; likewise the use of unfailing Knuth-Bendix, 

automatic generation of termination orderings, etc. Also clever heuristics to obtain ideas for lemmata from the 

Knuth-Bendix process can be useful, as well as clever heuristics to generalize induction hypotheses. The author is 

aware that lots of work into these directions has been or is currently being done. 

Nevertheless, there are lots of well-known reasons (e.g. no recursive enumerability, high complexity) to 

believe that there will be little chance to write automatic induction procedures for a wider class of inductive 

theorems. From our examples I could learn about the high vulnerability of a possibly automatized proof 

procedure. It often needs human interaction, or the process will fail. 

So I demand a different way of looking on the things: as in software development a bunch of helpful tools 

exists, I want to have proof development tools which highly interact with the human expert upon the area of 

proofs to be given. The system should provide the user with useful information of a running proof in easy 

readible (or better: visible) form, especially the book-keeping about the proof up to now. It should allow manual 

interaction at any point, and it should be able to assist the users intuition by concretely computed suggestions, say 

for induction hypotheses, lemmata structuring and others. Since both of them, computers and humans, have 

certain strong capabilities (most of them complementary), but their weaknesses in other aspects too, it seems to 

me most promising for such a hardly accessible area like inductive proofs, to establish a methodology of 

information exchange, and to build systems based on interaction rather than fully automatized black boxes. 

Literature 
[Gog80]	 Goguen, J. How to prove algebraic inductive hypotheses without induction, with applications to 

the correctness of data type implementation, Lecture Notes in Comput. Sci., Vo1.87, Springer

Verlag (1980), pp.356-73. 
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Introduction 

The inductive theory of a set of (first order) equations, Le. the set of equations valid in the 
initial model, is not easily accessible by proof theoretic means. "Inductionless induction" 
refers to a class of approaches which reduce this problem to well developed concepts for 
term rewriting systems such as (ground) confluence, temination and ground reducibility (cf. 

Jouannaud & Kounalis [JK86]). If such methods are formulated not aiming at the use of 
completion procedures (Hofbauer & Kutsche [HK88]) , it turns out that some conditions 
posed on the underlying set of equations can be weakend. 

The following example shows, how an extension of the language by second order variables 
enables inductive proofs which would have failed otherwise. Equations with second order 
variables are used as a finite description of an infinite set of first order equations. 

Example 

Let the term rewriting system (TRS) R consist of the rules 

o~ 0 ~ true 0 ~ s(y) ~ true 

sex) ~ 0 ~ false sex) ~ s(y) ~ x ~ Y 

if true then x else y ~ x if false then x else y ~ y 

Suppose we want to prove the inductive theorem 
if x ~ y then f(x, y) else fey, x) = if Y~ x then fey, x) else f(x, y) (*) 

(where f is a binary operation symbol). Replacing the equality symbol by "~" we get a 
nonterminating rewrite rule. We thus could try to use the following 

Equational Proofs by Induction
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Introduction

The inductive theory of a set of (first order) equations, i.e. the set of equations valid in the
initial model, is not easily accessible by proof theoretic means. "Inductionless induction"
refers to a class of approaches which reduce this problem to well developed concepts for
term rewriting systems such as (ground) confluence, temination and ground reducibility (cf.
Jouannaud & Kounalis [IK86]). If such methods are formulated not aiming at the use of
completion procedures (Hofbauer & Kutsche [HK88]) , it turns out that some conditions
posed on the underlying set of equations can be weakend.

The following example shows, how an extension of the language by second order variables
enables inductive proofs which would have failed otherwise. Equations with second order
variables are used as a finite description of an infinite set of first order equations.

Example

Let the term rewriting system (TRS) R consist of the rules
OSO—at rue  OSs (y )—9t rue
s (x )$0  —> false s (x )$s (y )  —> xSy

iftrue thenxelsey —> x iffalsethenxelsey + y

Suppose we want to prove the inductive theorem
if x Sy  then f(x, y) else f(y, x) = if y SX then f(y, x) else f(x, y) (*)

(where f is a binary Operation symbol). Replacing the equality symbol by "—>" we get a
nonterminating rewrite rule. We thus could try to use the following





Theorem [HK88] 
Let R and E be TRS's such that R is tenninating, every left hand side of a rule in E 

is ground reducible under R, and for every critical pair < c, p > of R on E we have 

* - * c ~R ~E ~R P . 
Then E (if read as a set of equations) is in the inductive theory of R . 

Using a completion approach to generate an appropriate set E would yield the infinite set of 

equations 
if x ~ y then f( si(x), si(y» else f( si(y), si(x) ) = 
if y::=; x then f( si(y), si(x» else f( si(x), si(y) ) ( iE IN: ) 

But after a closer look at R and at equation (*) one could guess that even 
if x::=; y then t[x, y] else t[y, x] = if y::=; x then t[y, x] else t[x, y] 

holds as an inductive theorem for all "context terms" t. This is a proper generalization of 
(*). It can easily be written as an equation with a binary second order variable F: 

if x::=; y then F(x, y) else F(y, x) = if Y::=; x then F(y, x) else F(x, y) (**) 

Trying now to use the above theorem to prove (**) as an inductive consequence of R 
(meaning that every fIrst order instance of (**) is an inductive theorem of R) we are 
considering critical pairs of R on the left hand side of (**). The most interesting 
superposition is the term if s(x)::=;s(y) then F(s(x), s(y)) else F(s(y), sex)) 
which yields the critical pair < c, P > where 

c = if x::=;y then F(s(x), s(y)) else F(s(y), sex)~ and 

p -7R if y:::;X then F(s(x), s(y» else F(s(y), sex)~ := p' . 

The substitution (j = [ F ] is a match of c by the left hand side of (**) . 
AVW. F(s(v),s(w» 

We thus can apply the rewrite rule that corresponds to (**) and reduce c to p' ,joining the 
critical pair as required. The other possible critical pairs! as well as the other premises in 
the above theorem cause no problems. 

Conclusion 

There are several possibilities in order to cope with situations where infInitely many (fIrst
 
order) equations (or rules) occur, e.g. during a completion like process:
 
- Introducing new operation symbols and extending the set of rules accordingly (see M.
 

Hennann [Her88] ), even generating such an extension automatically (K.-P. Jantke & M. 

Thomas [ITS?] ) 

1Note that it suffices to look at critical pairs arising from superposition of R on the subterm x~y in (**). 

Theorem [HKSS]
Let R and E be TRS's such that R is terminating, every left hand side of a rule in B
is ground reducible under R , and for every critical pair < c, p > of R on E we have

c -i)R --=—)E <i>R p ,

Then E (if read as a set of equations) is in the inductive theory of R .

Using a completion approach to generate an appropriate set E would yield the infinite set of
equations

if x S y then f( si(x), si(y) ) else f( si(y)‚ si(x) ) =
if y _<_ x then f( si(y), si(x) ) else f( si(x)‚ si(y) ) ( ie 1H )

But after a closer look at R and at equation (*) one could guess that even
if x S y then t[x‚ y] else t[y, x] = if y s x then t[y, x] else t[x, y]

holds as an inductive theorem for all "context terms" t . This is a proper generalization of
(*) . It can easily be written as an equation with a binary second order variable F :

if x S y then F(x, y) else F(y, x) = if y S x then F(y, x) else F(x, y) (**)

Trying now to use the above theorem to prove (**) as an inductive consequence of R
(meaning that every first order instance of (**) is an inductive theorem of R ) we are
considering critical pairs of R on the left hand side of (**). The most interesting
superposition is the term if s(x)Ss(y) then F(s(x), s(y)) else F(s(y), s(x))
which yields the critical pair < c, p > where

c = if xSy then F(s(x), s(y)) else F(s(y), s(x)) and
p "’R if n then F(s(x), s(y)) else F(s(y), s(x)) := p' .

F

7tvw. F(s(v),s(w))
We thus can apply the rewrite rule that corresponds to (**) and reduce c to p' , joining the
critical pair as required. The other possible critical pairs1 as well as the other premises in
the above theorem cause no problems.

The substitution 6 = [  ] is a match of 0 by the left hand side of (**) .

Conclusion

There are several possibilities in order to cope with situations where infinitely many (first
order) equations (or rules) occur, e.g. during a completion like process :
- Introducing new operation symbols and extending the set of rules accordingly (see M.

Hermann [Her88] ) ,  even generating such an extension automatically (K.—P. J antke & M.
Thomas [J T87] )

1Note  that it suffices to look at critical pairs arising fiom superposition of R on the subterm xSy in (**) .





• Using the concept of metarules and metavariables ofH. Kirchner [Kir87] 

The use of second order variables however seems to be most natural in a number of 
examples (cf. B. Gramlich [Gra88], who applies results on unifiability of second order 
terms to analyse the divergence behaviour of completion). Even though there are some 
severe difficulties in developing this approach. Unification of second order terms is 
undecidable in general (W. Goldfarb [Go181]) and most general unifiers need not to exist 
(cf. G. Huet [Hu75]). In this context one would benefit from results on syntactically 
restricted subclasses of second order terms with decidable unification problem. 
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Extended Abstract 

We present a brief overview on completion based inductive theorem 

proving techniques, point out the key concepts for the underlying "proof by 

consistency" - paradigm and try to get an abstract description of what is 

necessary for an algorithmic realization of such methods. 

In particular, we give several versions of proof orderings, which 

under certain conditions - are well-suited for that purpose. Together with 

corresponding notions of (inductive) covering sets (cf. [Ba88]) we get 

abstract "positive" and "negative" characterizations of inductive validity. 

This leads to a better understanding of various sufficient operational 

characterizations of inductive validity in a static sense (cf. [JoK086], 

[K087], [HoKu88]). It provides a straightforward generalization of an 

inductive validity criterion of [K087] to the case where some of the 

equational conjectures may not be orientable. To be' a little bit more 

precise concerning the "positive" and "negative" approach, let us assume 

that we have given an equational theory presented by a ground convergent, 

Le. terminating and ground confluent term rewriting system R, and a set C 

of (equational) inductive conjectures of R. Then, proving inductive validity 
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We present a brief overview on completion based inductive theorem

proving techniques, point out the key concepts for the underlying "proof by

consistency" - paradigm and try to get  an abstract description of. what is

necessary for an algorithmic realization of such methods.

In  particular, we give several versions of proof orderings, which -

under certain conditions - are well-suited for that purpose. Together with

corresponding notions of (inductive) covering sets (of. [Ba88]) we get

abstract “positive" and “negative" characterizations of inductive validity.

This leads to a better understanding o f  various sufficient Operational

characterizations of inductive validity in  a static sense (cf. [JoK086],

[Kü87], [HoKu88]). I t  provides a straightforward generalization of an

inductive validity criterion of [Kü8—7] to the case where some of the

equational conjectures may not be  orientable. To be‘ a little bi t  more

precise concerning the "positive" and "negative" approach, let us assume

that we have given an equational theory presented by a ground convergent,

Le. terminating and ground confluent term rewriting system R, and a set C

of (equational) inductive conjectures of R.  Then, proving inductive validity
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of C from a positive point of view amounts to replacing all C-steps by 

R-steps in every ground proof using R union C. In the negative case the aim 

consists in transforming the potentially inconsistent set· C into a provably 

inconsistent one by deducing appropiate (inductive) consequences from R 

union C (cf. [Ba88]). Inductive validity of C is guaranteed if potential 

inconsisteny is impossible due to verifiable consistency. In both cases 

appropiate proof orderings assure that the necessary proof transformation 

process turns into a terminating proof simplification process. 

Furthermore we consider several refinements and optimizations of 

completion based inductive theorem proving techniques. In particular, 

sufficient criteria for being a covering set including restrictions of 

critical pairs (cf. [G08S], [Fr86], [K087], [Ba88]) and the usage of 

non-equational inductive knowledge (cf. [HuH080], [Pa84]) are discussed. 

Moreover a couple of lemma generation methods are brietly 

summarized, most of which are known from classical inductive theorem 

proving using induction schemes (cf. [BoM079]). Techniques of save 

generalization (cf. [Gr8S], [JaTh88]) are particularly interesting, since 

they provide means for syntactic generalizations, Le. simplifications, of 

conjectures without loosing semantic equivalence. To be more precise, an 

equation s' = t' is a save generalization of s = t, if s = t is an instance 

of s' = t' and s = t, s' = t' are equivalent concerning inductive validity 

W.r.t. R. 

Finally we present the main features and characteristics of UNICOM, an 

inductive theorem prover with refined unfailing completion techniques and 

built on top of TRSPEC, a term rewriting based system for algebraic 

specifications (cf. [AvBeGoMa86], [Sc88]). 
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Many-sorted logic programming is discussed in the literature in various directions. There is work 
aiming at an improvement of Prolog by augmenting it with sorts in order to relieve the task of 
software engineering. Other approaches are aiming at bringing in "is-a"-structures to close the gap 
between programming and knowledge representation. 

In this short note I want to report an observatjon we made during the work on combining logic and 
functional languages: 
If one chooses equations, e.g. term rewriting systems as a functional language, it is very easy to use 
this functional part of the combined language to define and to handle sorts and "is-a"-taxonomies. 
As in (Ait-Kaci, Nasr 86) all this can be done within the unification procedure, but we do not have 
to give any sophisticated semantics. The semantics of the sorted language is exactly the same as 
the semantics of the combined language. 

It is important to note that the method proposed in this paper is best suited within a framework, 
in which the decision for the use of a combined logic and functional language has been made 
nevertheless. In other words: if one uses a term-rewrite system as a functional language within 
logic our mechanism of bringing in sorts can be seen as a very cheap byproduct. At least it gives a 
formal semantic of order-sorted logic programming which can be run on a Hornclause interpreter. 

Equational logic programs 

We will use in the following equationallogic programs, Le. pairs (R,P) where R is a rewrite system 
and P is a set of Hornclauses. We assume that P does not contain the 2-ary predicate symbol '=', 
Le. there is no equality built-in in P. The following is a simple example: 

R: O+X=X. 
seX) + Y = sex +Y). 

P: nodes(nil, 0). 
nodes(t(L, N, R), (NL + N R) + s(O» 
nodes(L,NL), 
nodes(R,NR). 

: 

1
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Many-sorted logic programming is discussed in the literature in various directions. There is work
aiming at an improvement of Prolog by augmenting it  with sorts in order to relieve the task of
software engineering. Other approaches are aiming at bringing in ”is—a”-structures to  close the gap
between programming and knowledge representation.

In this short note I want to report an observation we made during the work on combining logic and
functional languages:
If one chooses equations, e.g. term rewriting systems as a functional language, it is very easy to use ,
this functional part of the combined language to  define and to  handle sorts and ”is—a”—taxonomies.
As in (Ait-Kaci, Nasr 86) all this can be done within the unification procedure, but we do not have
to give any sophisticated semantics. The semantics of the sorted language is exactly the same as
the semantics of the combined language.

It is important to note that the method proposed in this paper is  best suited within a framework,
in which the decision for the use of a combined logic and functional language has been made
nevertheless. In other words: if one uses a term-rewrite system as a functional language within
logic our mechanism of bringing in sorts can be seen as a very cheap byproduct. At least it gives a
formal semantic of order-sorted logic programming which can be run on a Hornclause interpreter.

Equational logic programs

We will use in the following equational logic programs, i.e. pairs (R,  P )  where R is a rewrite system
and P is a set of Hornclauses. We assume that P does not contain the 2-ary predicate symbol ’2’,
i.e. there is no equality built-in in P .  The following is a simple example:

R:  0+X=X.
s (X)+Y=s(X+Y) .

P : nodes(m'l, 0).
nodes(t(L, N,  R),  (NL + NR) + 3(0)) : —
nodes(L, NL) ,
nodes(R, NR).





2 

Following an approach from (Holldobler 88) we assume a complete unification procedure UR, which 
recursively enumerates a complete set of R-unifiers, i.e. unifiers for the theory defined by R. Then 
we can use SLDE-resolution to interpret equationallogic programs; SLDE-resolution is simply like 
SLD-resolution with the exception, that is uses UR to interpret the P-part of a program (R, P). The 
following strong completeness result is the base for the interpretation of equationallogic programs. 

Theorem 1 (Holldobler) Let (R,P) be an equationallogic program and UR a complete unifica
tion procedure for R. For every correct answer substitution (J' for (R, P) and goal statement D there 
exists a computed answer substitution () for P U D wrt to SLDE-resolution with arbitrary selection 
function, such that () :5:R (J'. 

For the implementation of the extended unification procedure one can use the paramodulation rule 
which is proven complete in this context in (Furbach et al 88). 

Sorts 

To introduce sorts we simply assume that a subset Sof the function symbols is used as sort symbols 
and that a partial order -< over S is given. For the ease of notation we write functional applications 
with sort symbols", as t : ", instead of ",(t). 
Furthermore we agree on stating the fact that a term t has sort ", by defining the equation t : ", = t 
in R, abbreviating this as t : "" too. Finally we use equations of the form x : ~ : ", = x : ~ to express 
that ~ -< ", holds. 

Using these conventions we can give a sorted version of the previous example: 

R: 
o: nat 
sex) : nat = (x : nat) 
0+ x: nat = x 
sex : nat) + y : nat = sex + y) 

P: 
nodes(nil, 0). 
nodes(maketree(L,N: nat,R),(NL +NR) +s(O)):
nodes(L,NL), 
nodes(R, N R). 

The following theorem states, that our mechanism 'really works'. 

Theorem 2 If TJ and ~ are two different sort-symbols and t is a term, then t : ", is a logical 
consequence of t : ~, ~ -< ", and R for a given sorted equational program (R, T). 

A typical example for the use of 'is-a'-hierarchies is the following simple program, which can be 
used to answer questions like? - eats(Tom, J erry). 
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R: 
cats ~ carnivorous 
omnivorous ~ carnivorous 
omnivorous ~ herbivorous 
mice ~ herbivorous 
humans ~ omnivorous 
gorillas ~ omnivorous 
Tom: cats 
Jerry : mice 

P: 
eats(x : carnivorous, y : herbivorous). 
eats(x : herbivorous, y : plants). 

We have implemented this approach as a part of the ALPES-Prolog environment within ESPRIT 
P973. We have given up occur-check, as Prolog did, to maintain execution time in acceptable 
limits. In this prototype we have choosen a method which generates in a pre-processing step a pure 
Prolog-program for a given equationallogic program (R, P). For this the term-rewrite system R is 
transformed into a set of Prolog-clauses which is the extended unification procedure. 

For a more efficient implementation one could use the framework for SLDE-paramodulation from 
(Furbach et al. 89), which allows to seperate the inferences which deal with sorts from the rest of 
the term rewrite system. Then the handling of sorts can be done by a special purpose unification 
procedure. 
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SLDE-Paramodulation 

Ulrich Furbach 1), Steffen Holldobler 2), Joachim Schreiber 3) 

Recent interest in combined functional and logic programming languages has led to nume

rous proposals for the integration of equational and logic languages based on linear paramod

ulation. In order to increase efficiency various restrictions for paramodulation such as nar
rowing were proposed. However, the applicability of narrowing is limited, since narrowing is 

only complete if the equational theory is confluent and terminating. For example, if we want 

to compute with sets via the operation "u" then, of course, we have to specify that "u" is as

sociative, commutative, and idempotent. Unfortunately, such an equational theory is no 
longer terminating. On the other hand, unification under associativity, commutativity, and 
idempotence is fmitary and a type conformal unification algorithm exists. Should we not 

build such a theory-unification algorithm into the narrowing procedure? Though Jouannaud 
et al. (1983) showed that narrowing modulo equality is sound and complete if the theory in 
consideration is confluent, coherent, and terminating modulo equality, many questions are 
still open. Is narrowing modulo equality also independent of a selection function? Can we 
generalize these results to conditional equational theories? Can we restrict the application of 
narrowing modulo equality to socalled basic occurrences? 

In Furbach et al. (1989) and Holldobler (1989) we proved the strong completeness of 

linear paramodulation for Horn equational theories and demonstrated how various conditions 
imposed one-by-one on the equational theory restrict the search space and allow to apply 

special forms of paramodulation. The goal of this paper is to show that this framework can 

be generalized to SLDE-paramodulation, Le paramodulation modulo equality, in much the 
same way as SLD-resolution can be generalized to SLDE-resolution. 

Throughout this paper we consider equational programs, Le. Horn clauses with the only 
one predicate symbol == written infix. Since we intend to build parts of the theory into the 
unification algorithm we partition an equational program into the parts E and EP. E will be 
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Theorem: 
If [Q] is an element of the least jixpoint of TE,EP, then there exists a refutation of 

EPu{<=Q} with respect to SWE-i-paramodulation and SWE-reflection. 

Lifting this result yields a completeness result for our calculus. In analogy to (Holldobler 

1989) we can proof a switching lemma and, thus, we obtain the strong completeness of 

SLDE-i-paramodulation and SLDE-reflection. 

Theorem: 
Let R be a computation rule. For each correct answer substitution cr for E,EP 

and <=F there exists an R-computed answer substitution e obtained by a refuta

tion of EPu{<=F} with respect to SWE-i-paramodulation and SWE-reflection 

such that e is not less than cr modulo E. 

We proceed as usual and impose conditions on our equational program in order to restrict 

the search space. If the equational program is confluent modulo E then program clauses may 

be used only in one direction without loosing completeness. The next step is to look for con

ditions such that we have to apply paramodulation only upon non-variable subterms. In the 

case where E=0 these conditions were the restriction to term rewriting systems and to nor

malized answer substitutions. However, if E:t:0 then we must also require that E is regular 

and E-normal form preserving, Le. whenever a term s is in normal form with respect to a 

term rewriting system and S=Et, then t is also in normal form. By splitting goal clauses into a 

skeleton and an environment part we obtain a strong completeness result for basic SLDE

narrowing and SLDE-reflection. 

There are other interesting aspects: Our work demonstrates how special unification algo

rithms can be combined with universal unification procedures based on paramodulation or 

special forms of it. Furthermore, applying the proof technique developed in (Holldobler 

1989) allows to view unification problems under a special equational theory as constraints 

and to force or delay the solution of these constraints according to an overall strategy. 

Finally, since SLDE-paramodulation is sound and strongly complete, combining it with the 

lazy resolution rule yields a sound and strongly complete set of inference rules for equational 

logic programs. 
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Theorem:

If [Q] is an element of the leastfixpoint of TEEP, then there exists a refutation of
EPU{<=Q} with respect to SLDE-i-paramodulation and SLDE—reflection.

Lifting this result yields a completeness result for our calculus. In analogy to (Hölldobler
1989) we can proof a switching lemma and, thus, we obtain the strong completeness of
SLDE-i-paramodulation and SLDE—reflection.

Theorem:
Let R be a computation rule. For each correct answer substitution 0' for E,EP
and ¢=F there exists an R-computed answer substitution 9 obtained by a refuta-
tion of EPU{<=F} with respect to SLDE-i-paramodulation and SLDE-reflection
such that 9 is not less than c modulo E .

We proceed as usual and impose conditions on our equational program in order to restrict
the search space. If the equational program is confluent modulo E then program clauses may
be used only in one direction without loosing completeness. The next step is to look for con-
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handled by the unification algorithm used by the paramodulation rule, which is applied upon 
clauses from EP. For example, E may contain the axioms of associativity, commutativity, and 
idempotence for a set operator, which can be used within EP, or the equations defming order

sorted operators for a typed program EP. 

An equational program E,EP admits a least Herbrand E-model over the Herbrand E-uni

verse, Le. the quotient of the Herbrand universe modulo the finest congruence generated by 

E. 

In the sequel we assume that whenever l==r{:::F is an element of EP then r==l{:::F is also an 

element of EP, where F denotes a set of equations; this is a technicality allowing us to apply 

paramodulation only from left-to-right. 

As an intermediate step towards the intended completeness result for SLDE-paramod

ulation we give a :f1xpoint characterization of the least Herbrand E-model using the function 

TE,EP(I) = {[t==t] I t is a ground term} 
u { [Q] I there exists an occurrence n in Q and a ground instance l==r{:::F 

of a clause in EP such that [Qlnl] = [1] and {[F]}u{[Qln~rl]} cl}, 

where [Q] denotes the congruence class containing the equation Q, [F] = {[Q]/QeF}, and 

Qlnl denotes the subterm of Q at n. Along the lines of (Furbach et al. 1989) we can show 

that TE,EP admits a least fixpoint which is equal to the least Herbrand E-model. 

Turning to the proof theoretic aspects we assume the reader to be familiar with basic 

notions from logic programming and universal unification (for a thorough treatment see e.g. 

Lloyd 1984 and Siekmann 1986). In the sequel we suppose to have a correct and complete 
E-unification procedure UP:E for the equational theory E at our disposal. 

Let {:::Fu{Q} be a goal clause, Q be the selected equation, l==r{:::F' be a new variant of a 

program clause, and n be an occurrence of Q. If Qlnl and I are E-unifiable with (j e 
UPE(Qlnl,I), then {:::(j(FuF'u{Qln~rl}) is called SLDE-paramodulant. 

Instead of adding the axiom of reflexivity to our equational program we use the following 
inference rule to terminate paramodulation proofs successfully. Let {:::Fu{s == t} be a goal 
clause and s==t be the selected equation. If s and t are E-unifiable with (j e UP:E(s,t), then 
{:::(jF is an SLDE-reflectant. 

We demonstrated in (Furbach et al. 1989) that linear paramodulation is only complete if 

we add the functional reflexive axioms to the equational program. The same effect can be 
achieved if we allow to instantiate goal clauses before performing a paramodulation step. We 
call such a step an SLDE-i-paramodulation step. 

By relating applications of TE,BP with SLDE-i-paramodulation resp. SLDE-reflection steps 
in the usual way we obtain 
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Extended Abstract 

During the last years there has been an i"ncreasing interest in the combination of logic 

and (first order) functional programming. While some authors in a more pragmatic 

approach propose a synthesis of existing programming languages like Prolog and Lisp, 

others develop the idea of logic-functional programming on a more theoretical level. 

It has turned out that term rewriting and narrowing in conditional equational theories 

provide a nice theoretical framework for the integration of logic and functional 

programming. In this approach a logic-functional program is a set of conditional 

equations. As conditional rewrite rules these equations may be employed for the 

simplification or evaluation of terms ("functional programming"), whereas in the 

conditional narrowing process, which can be seen as a generalization of Prolog's 

SLD-resolution, the same equations are used for the solution of goals or equations 

("logic programming"). 

From a theoretical point of view, narrowing provides a complete unification procedure 

for any equational theory that can be defined by a canonical term rewriting system 

(without extravariables in the conditional case). For practical applications however, 

narrowing in its original form is much too inefficient. 

For functions inductively defined over some set of constructors C - the~e are typical 

functional programs - the narrowing algorithm enumerates the whole constructor term 

algebra T(C,X). Moreover there are serious inefficiencies in this enumeration process: 

the same substitutions are generated in many different ways. This means that the 

narrowing algorithm behaves worser than a trivial generate-and-test algorithm. 
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Extended Abstract

During the last years there has been an increasing interest in the combination of logic
and (first order) functional programming. While some authors in a more pragmatic
approach propose a synthesis of existing programming languages like Prolog and Lisp,
others develop the idea of logic-functional programming on a more theoretical level.

It has turned out that term rewriting and narrowing in conditional equational theories
provide a nice theoretical framework for the integration of logic and functional
programming. In this approach a logic-functional program is a set of conditional
equations. As conditional rewrite rules these equations may be employed for the
simplification or evaluation of terms ("functional programming"), whereas in the
conditional narrowing process, which can be seen as a generalization of Prolog's
SLD-resolution, the  same equations are used for the solution o f  goals o r  equations
("logic programming").

From a theoretical point of view, narrowing provides a complete unification procedure
for any equational theory that can be defined by a canonical term rewriting system
(without extravariables in the conditional case). For practical applications however,
narrowing in its original form is much too inefficient.

For functions inductively defined over some set of constructors C — these are typical
functional programs — the narrowing algorithm enumerates the whole constructor term
algebra T(C,X). Moreover there are serious inefficiencies in this enumeration process:
the same substitutions are generated in many different ways. This means that the
narrowing algorithm behaves worser than a trivial generate-and-test algorithm.
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In order to improve this poor behaviour many optimizations have been proposed. 

Usually they restrict the set of occurrences at which a narrowing step is performed 

(basic narrowing, innermost narrowing, outermost narrowing, selection narrowing) and 

normalize the goal after each narrowing step (normal narrowing). But even the most 

sophisticated narrowing procedure is inadequate to solve for example a system of 

linear equations. However, such equations occur very often in practical applications. 

It is therefore necessary to incorporate special theories and their unification algorithms 

into the general narrowing process. This can be done using narrowing modulo an 

equality theory E. Building-in equality theories may reduce the search space of the 

narrowing algorithm dramatically. The main difficulty is that the E-unification algorithms 

must be able to deal with additional free function symbols. 

A logic-functional programming language without built-in theories will not meet the 

requirements of practical applications. 
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In order to improve this poor behaviour many optimizations have been proposed.
Usually they restrict the set of occurrences at which a narrowing step is performed
(basic narrowing, innermost narrowing, outermost narrowing, selection narrowing) and
normalize the goal after each narrowing step (normal narrowing). But even the most
sophisticated narrowing procedure is inadequate to solve for example a system of
linear equations. However, such equations occur very often in practical applications.

It is therefore necessary to incorporate special theories and their unification algorithms
into the general narrowing process. This can be done using narrowing modulo an
equality theory E. Building—in equality theories may reduce the search space of the
narrowing algorithm dramatically. The main difficulty is that the E-unification algorithms
must be able to deal with additional free function symbols.

A logic-functional programming language without built-in theories will not meet the
requirements of practical applications.
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[BK86] and [DOS88] classify approaches to conditional rewriting with regard to the 
way the conditions are evaluated. This suggests starting out from a notion of goal 
reduction and deriv'ing from that the notion of conditional term reduction. (Goals are 
sets of atomic formulas; H denotes the empty goal; for further basic notions used here, 
cf. [Pad88J, Sect. 2.) 

Given a set R of conditional equations of the form usu'{:::::~ (with goal ~), let us first 
follow [Kap84] and define the goal reduction relation recursive1y (as the limit of 
approximating relations I-rR,i): 

1 ~rR l' <=>def	 3 i~o s. t. 1 ~rR, i l' 
1 ~rR,O l' <=>def	 3 normal atom p : 1 = 1'U{P} or 

3 u=u' € R, 8,x,f : 1 = 8[u[f]!x], l' = 8[u'[f]!x] 

1 ~rR,i+ 1 l' <=>def	 1 ~rR,i l' or 
3 u=u'<=.a € R, 8,x,f : 1 = 8[u[f]!x], l' = 8[u'[f]!x], .a[f] ~rR,i* Z. 

If the only predicate symbols of the underlying specification are equality predicates, 
the set NA of normal atoms is usually chosen as the set of reflexive equations tst. But 
even in the equationa1 case, other definitions of normal atoms make sense as well. For 
instance, the normal-join systems of [DOS88] correspond to the restriction of I'JA to 
equations tst where t is irreducible w.r.t. R. Reducibility, however, refers to the term 
reduction relation ~rR, which can be derived from the goal reduction relation I-rR: 

t ~rR t' <=>def {t=x} ~rR {t'=x}. 

Another definition of normal atoms admits non-reflexive equations or even non
equat i ona1 atoms, whi ch belong to some base theory (cf. [Pad88J, Sect. 7). 

In the book just cited we have defined goal reduction non-recursive1y, with the help 
of two inference rules: 

Goal Reduction Rule	 8[u[f]!x] 

8[u'[f]!X] u ~[f] 

Reflection Rule 1 u {p}
 

p normal
 

1
 

Let us denote the correspond'ing 'inference relation by I-R. (Since inference relations are 
per se transitive, we need not write I-R*.) Based on this notion, the term reduction 
relation is defined as follows: 

t ~R t' <=>def 3 u=u'<=~ € R, c,x,f : t = c[u[f]!x], t' = c[u'[f]!x], ~[f] ~R z. 
With respect to successful derivation sequences, both notions of goal reduction 
coi nci de: 

Proposit ion 1:	 '1 ~R Z iff 1 ~rR* Z. 

Following [BDH86], we say that')' has a rewrite proof Hf 'I I-R H. An 'immediate 
consequence of Prop. 1 is 
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[BK86 ]  and [D0888 ]  c l ass i f y  approaches t o  conditional r ewr i t i ng  w i t h  regard t o  the
way the condi t ions are evaluated. Th i s  suggests s ta r t i ng  out f r om a no t ion  o f  goa l
reduct ion and der iv ing f rom tha t  the  no t ion  o f  condi t ional  term reduct ion. (Goals are
sets o f  atomic fo rmulas ;  3 denotes the empty goal,- f o r  f u r the r  basic not ions used here,
cf.  [Pad88], Sect. 2.)

Given a se t  R o f  cond i t i ona l  equa t i ons  o f  t he  f o rm  u-=-u'<=o (w i t h  goa l  o ) ,  l e t  us  f i r s t
f o l l ow  [Kap84 ]  and def ine  the goal reduc t ion  re l a t i on  recurs ive ly  (as the  l im i t  of
approximating relations l—rR,i):

‚. l—rR 
g" <=>def El i.>.0 s.t. 9’ t-rR,i ?"

? l—rR‚o ?" <=>def El normal atom p : 2' = ‘3"U{D} or
El UEU' € R, 6,x,f : 2' = 8 [u [ f ] / x ] ,  7' = 8[u ’ [ f ] /x ]

'3' FrR , i+ l  ?" <=>clef '? | - rR, i  7' °F
El usu'e—wo € R, 6,x,f : 7 = SEUEfJ/x], g" = 8Eu'[f]/x], on]  l—rR,i* 3.

I f  t he  on l y  p red i ca te  symbo l s  o f  t he  unde r l y i ng  spec i f i ca t i on  a re  equa l i t y  p red i ca tes ,
t he  se t  NA o f  no rma l  a toms  i s  usua l l y  chosen as  t he  se t  o f  re f lex ive  equa t i ons  t a t .  Bu t
even i n  the equational case, other de f in i t ions  o f  normal atoms make sense as we l l .  For
instance, :the normal- jo in  sys tems of  [D0888 ]  correspond t o  the res t r i c t i on  of NA to
equa t i ons ta t  whe re  t i s  i r reducible w . r . t .  R. Reduc ib i l i t y ,  howeve r ,  re fe rs  t o  t he  term
reduc t i on  re l a t i on  ——>.—R, wh i ch  can  be  de r i ved  f rom the  goal  r educ t i on  re l a t i on  l—rR:

t —-)rR t '  (==>d {tax} l-rR {t'EX}.

Ano the r  de f i n i t i on  o f  no rma l  a toms  adm i t s  non - re f l ex i ve  equa t i ons  o r  even  non—
equat iona l  a toms ,  wh i ch  be long  t o  some base  t heo ry  ( c f .  [Pad88 ] ,  Sec t .  7 ) .

I n  t he  book j us t  c i t ed  we  have de f i ned  goa l  r educ t i on  non - recu rs i ve l y ,  w i t h  t he  he lp
o f  two  inference ru les:

Goal Reduction Rule 8EuEf1/x]
UEU'<=8 € R

8[u ' [ f ] / x ]  u »3Ef]

Ref lec t ion  Rule 2' u {p}
p normal

7

Le t  us  denote  t he  co r respond ing  i n fe rence  re l a t i on  by  I-—R. (S ince  i n fe rence  re l a t i ons  are
pe r  se  t r ans i t i ve ,  we  need no t  w r i t e  l—R*.) Based on  t h i s  no t i on ,  t he  te rm reduc t i on
re la t ion  i s  defined as fo l l ows :

t —>R t '  <=>def El usu'<=o € R, c,x,f : t = cEfJ /x ] ,  t '  : c [u ' [ f ] / x ] ‚  «SETJ l—R .9'.

With respect  t o  success fu l  de r i va t ion  sequences, both  not ions o f  goal reduct ion
co inc ide :

Proposit ion 1: wl—RB' i f f  ???-rl?" ‚ß'.

Following [BDH86], we say that 7 has a rewr i te  proof i f f  ? l—R H. An immediate
consequence o f  Prop. 1 i s





Proposi tion 2: t ~R t' iff t ~rR t'. 

We remind of the fact that goal and term reduction depend on the choice of normal 
atoms. In the sequel, I et us suppose that these atoms are exactly the refl exi ve 
equations (see above). Then goal reduction and term reduction are related to each other 
as follows: 

Proposi t ion 3: {t=:t'} I-R g iff t ~R* u and t' ~R* u for some u. 

So one may switch between the recursive and the non-recursive view on goal 
reduction. However, given that R is f'inite, it is easy to decide whether I-R is applicable 
to 1, while the reducibility of 1 w.r.t. I-rR is in general undecidable. [Kap871 [JW861 
[D0588J overcome this problem by requiring R to be simplifying, reductive or 
decreasing, respectively. All these notions include the existence of a Noetherian term 
ordering> that conta'jns ~R. The notions differ with respect to further conditions on >. 
The question remains whether these conditions are necessary. Let us approach it from 
another side. The actual purpose of goal reduction is to use it for proving 
(unconditional) theorems. Of course, I-R is sound: 

Proposition 4: 11-R g implies Mod(R) 1= 1. 

The completeness of I-R agrees with the Church-Rosser property of R: R is called 
Church-Rosser if 

Mod(R) 1= '1 implies 11-R g. (eR) 

In the unconditional case, it is well-known that the Church-Rosser property of R is 
equivalent to the confluence of ~R*. This result remains valid for conditional 
equations, although the proof must proceed somewhat differently. One cannot conclude 
from l1od(R) F tat' that there is a sequence of reductions of the form 

t =tt~-U1~*t2*~-U2~*t3 '" tn-t~-un_1~*tn = t' 

(and then derive tat' ~R JJ, i.e., by Prop. 3, t---7R*U and t'---7R*U, by induction on n). 
Instead, one may induce on the length of a shortest paramodulating derivation from tst' 
to 15 whose existence follows from l1od(R) F tat' (cf. [Pad881 Thm. 5.3.5). 

So we have to look for decidable criteria for the confluence of ~R*. In the 
unconditional case, the Knuth-Bendix theorem tells us that the confluence test can be 
reduced to f'initely many critical pairs, provided that ---7R is Noetherian. Other 
confluence criteria avoid this assumption, but require that R be non-ambiguous (cf. 
[Hue801 [BK86]). However, all criteria rely on the assumption that the infinite set of 
independent reductions need not be considered becalJse they are confluent in any case. 
Unfortunately, this does not hold in the conditional case, as the following argument 
shows. 

Given tat'*=U=U' € R and a reduction f~R 9 such that uCfJ=u'Cf] I-R 15, one obtains 
the independent reduct ions 

c[t[f]/x] ~R c[t'[f]/x] and c[t[f]/x] ~R c[t[g]/x]. (1) 

Of course, c[t'CfJ/xJ can be reduced into c[t'[g]/x]. However, c[t[g]/x] need not be 
reducible into this term because uCfJ=u'CfJ f-R 15 need not imply u[gJ=u'[g] I-R if. 

On the other hand, by Prop. 3, uCf]=u'CfJ I-R if is equi val ent to: 

u[f] ~R* v and u'[f] ---7R* v for some v. 

Thus we have the "branchings" 

Proposi t ion 2: t—>Rt '  i f f  t——>rRt’.

We rem ind  o f  t he  f ac t  t ha t  goa l  and t e rm  reduc t i on  depend on t he  cho i ce  o f  no rma l
a toms .  I n  t he  seque l ,  l e t  us  suppose  t ha t  t hese  a toms  a re  exac t l y  t he  re f l ex i ve
equations (see above). Then goal reduct ion and te rm reduct ion are re la ted  t o  each other
as fo l l ows :

Proposi t ion 3:  {tst'H—RB’ i f f  t——>R*uand t '—>R*u fo r  some u.

80 one may sw i t ch  be tween the  recurs ive  and the  non- recurs ive  v i ew  on goal
reduction. However, given t ha t  R i s  f i n i t e ,  i t  i s  easy t o  decide whether  I—R i s  applicable
to y,  while the reducibi l i ty of 9' w.r.t. I—rR i s  i n  general undecidable. [Kap87]. [JM/66],
[ 00388 ]  ove rcome  th i s  p rob lem by  requ i r i ng  R t o  be  s imp l i f y i ng ,  r educ t i ve  o r
decreasing, respect ive ly .  A l l  these not ions include the existence o f  a Noetherian term
o rde r i ng  > t ha t  con ta i ns  —>R. The  no t i ons  d i f f e r  w i t h  r espec t  t o  f u r t he r  cond i t i ons  on >.
The  ques t i on  rema ins  whe the r  t hese  cond i t i ons  a re  necessa ry .  Le t  us  approach  i t  f r om
ano the r  s i de .  The  ac tua l  pu rpose  o f  goa l  r educ t i on  i s  t o  use  i t  f o r  p rov ing
(uncond i t i ona l )  t heo rems .  Of cou rse ,  Hg i s  sound:

Propos i t i on  4: 7 I-R B’ imp l i es  Mod(R) != 7.

The comp le teness  o f  He agrees w i t h  the  Church-Rosser property o f  R: R i s  called
Chu rch -Rosse r i f

Mod(R)I=7 implies all—R ß’. (CR)

In  t he  uncond i t i ona l  case ,  i t  i s  we l l - known  tha t  t he  Chu rch -Rosse r  p rope r t y  o f  R i s
equ i va len t  t o  t he  con f l uence  o f  ——>R*. Th i s  r esu l t  r ema ins  va l i d  f o r  cond i t i ona l
equa t i ons ,  a l t hough  t he  p roo f  mus t  p roceed  somewha t  d i f f e ren t l y .  One canno t  conclude
f rom Moda?) l= t s t ' t ha t  t he re  i s  a sequence o f  r educ t i ons  o f  t he  f o rm

t = t.‚*<—-u1—>*t2*<——u2——>*t3 t,,_1*<—-u,,_..,—>*"tn = t '

(and then derive t.--=t‘ l—R 2313.,  by Prop. 3,  t—>R*u and t'—>R*u, by induction on n).
Instead, one may induce on the length o f  a shortest  paramodulat ing der iva t ion  f rom ta t '
to z whose existence fol lows from Mod(R) l= t s t ' ( c f .  [Pad88], Thm. 5.3.5).

80  we  have  t o  l ook  f o r  dec idab le  c r i t e r i a  f o r  t he  con f l uence  o f  —>R*.  I n  t he
uncond i t i ona l  case ,  t he  Knuth-Bend ix  theorem te l l s  us  t ha t  t he  con f l uence  t es t  can be
reduced t o  f i n i t e l y  many c r i t i ca l  pai rs,  provided t ha t  ——>R i s  Noetherian. Other
confluence c r i t e r i a  avoid t h i s  assumption, but  require t ha t  R be non-ambiguous (cf .
EHueBO]. EBK86J). However, a l l  cr i ter ia rely on the assumption that the inf in i te set of
independent reduct ions need no t  be considered because they are conf luent  i n  any case.
Unfor tunate ly ,  t h i s  does no t  hold i n  the condit ional case, as the  f o l l ow ing  argument
shows.

Given tEt'<=UEU' € R and a reduction f——>R g such that uEf]:—:u'[f] I—R 2’, one obtains
t he  independent  r educ t i ons

cEtEfJ/x] —>R c [ t ' [ f ] / x ]  and c [ t | I f ] /x ]  —>R cEtEgZI/x]. ( I )

Of course, cEt 'EfJ/x]  can be reduced i n to  cEt'EgZI/xl However, cEtIIgII/x] need not be
reducible into this term because uEfJäu'Ef] I—R E need not imply u[g]au'[g] l—R E.

0n the other  hand, by Prop. 3 ,  uEfJEu'EfJ I—R H i s  equivalent to:
uEf] ——>R* v and u'Ef] —>R* v for some v.

Thus we have the "branchings"





(2) 

and 
u'[t] -7R* v, u'[f] -7R u'[gl (3) 

If there would be a l'Joetherian term ordering> such that c[t[f]/x] is greater than u[f] 
and u'[f] w.r.t. >, we could apply the induction hypothesis and deduce that (2) and (3) can 
be made confl uent, i.e., 

v -7R* v', u[g] -7R* v', v -7R* v", u'[g] -7R* v" 

for so me vI,v". If wee0 u1d f urt her assumethat u[f] > v, the n wee 0 u1d apply the 
induction hypothesis once more and infer that the two reductions starting from v can be 
made confluent as well, i.e., 

for some vo' Putting together these reductions, we would obta'in 

u[g] -7R* VO and u'[g] -7R* VO 

and thUS, by Prop. 3, u[g]=u'[g] I-R H, so that (1) can be made confluent. 

We conclude that the confluence of independent reductions is guaranteed only if some 
Noetherian term ordering> satisfies the following property: 

(A)	 For all t=t'~.a € R With, say, .a = {U1=U1',...,un=un'}, substitutions f, terms c, x € var(c) and 1iim, 
.a[t] I-R If implies c[t[f]/x] » {c[t'[t]/x], uj[f], uj'[f]} (where» is the multiset extension of ». 

Only the further requirement that c[t[f]/x] be greater than uJf] and uj'[f] even if .a[f] 

has no rewrite proof ensures that reducibility w.r.t. R is decidable (cf. the proof of 
[DOS881 Prop. 4). This strengthen'ing of (A) reads precisely as follows: 

(6)	 For all t=t'~.a € R with, say,.a ={U1=U1',...,Un=un'}, substitutions f, terms c, x € var(c) and liiin, 
~[t[f]/x] » {u;[f], uj'Ef]} and .a[t] I-R If implies c[t[t]/x] >c[t'[f]/xl 

(B) and (CR) ensure that the equational theory of Mod(R) is decidable. For weakening (B), 
one has to change the definition of goal and term reduction. So far, two modifications 
have been proposed. 

In [Pad881 we have restricted the set of normal atoms to those reflexive equations 
t=t where t is irreducible w.r.t. R. Under this assumption, the above argument on 
independent reductions proceeds differently: v becomes irreducible and thus v, v' and v" 
are all the same so that we onl y need c[t[f]/xJ > (u[flu'[f]J for concl udi ng that 
u[g]=u'[g] has a rewrite proof. Indeed, the reference to > can be avoided completely 
because the induction step can now be justified by the fact that the shortest proof of 
(1) is longer than the shortest proofs of (2) and (3). Thi s is essential for establ i shi ng 
the strong-confluence criterion [Pad881 Thm. 9.6.1, which does not presuppose any 
Noetherian term ordering (and which generalizes [Hue801 Lemma 3.3, to conditional 
equations). The restriction of normal atoms to irreducible equations, however, entails 
that (CR) can be guaranteed only for normalizable equations, i.e., for equations t=t' such 
that t~R u and t'~R u' for some irreducible terms u,u'. (The details of this approach 
are given in [Pad881 Sect. 7). 

A second approach for weakeni ng (B) stems from the concept of unfailing completion 
(cf. [HR87]). It starts out from the observation that goal and term reduction need only 
be defined on ground, i.e. variable-free, goals and terms, respectively. This holds true 
because soundness and completeness of the cut calculus w.r.t. Mod(R) (cf. [Pad881 Thm. 

u[ f ]  —>R* v, u [ f ]  '—’R u[g] (2)
and

u ' [ f ]  —+R* v, u ' [ f ]  ——>R u'Eg]. . (3)

I f  there would be a Noetherian term ordering > such that c [ t [ f ] / x ]  i s  greater than u [ f ]
and u'Ef] w.r.t. >, we could apply the induction hypothesis and deduce that (2) and (3) can
be made  con f l uen t ,  i .e . ,

v —a»|a* v', u[g] —>R* v', v —>_R* v", u'Eg] ->R* v"
f o r  some  v ' , v " .  I f  we  cou ld  f u r t he r  assume  tha t  u [ f ]  > v ,  t hen  we  cou ld  app ly  t he
induct ion hypothesis once more and i n fe r  tha t  the two  reduct ions s ta r t i ng  f rom v can be
made con f l uen t  as  we l l ,  i .e. ,

v' —>R* vo and v" —>R* v0

f o r  some  vo.  Pu t t i ng  t oge the r  t hese  reduc t i ons ,  we  wou ld  ob ta i n
u[g]  —->R* vo and u'[g] —>R* vo

and thus, by Prop. 3, u[glau'Eg] l—R H, so that (1) can be made confluent.
We conclude tha t  the confluence of  independent reduct ions i s  guaranteed only i f  some

Noetherian term ordering > sa t i s f i es  the fo l low ing  property:
(A) For a l l  t-=-t'<=-8 <-: R w i th ,  say, «3 = {u1au1',...,unsun'}, substitutions f ,  terms c, x € var(c) and lsisn,

oEf]  l -R  ß' implies c [ t [ f ] / x ]  >> {cEtTfJ/x], uiEf], ui'EfJ} (where >> i s  the mult iset extension of >).

Only the further requirement that c [ t [ f ] / x ]  be greater than uiEf] and ui'Ef] even i f  BU ]
has  no  rewr i t e  p roo f  ensu res  t ha t  r educ ib i l i t y  w . r . t .  R i s  dec idab le  ( c f .  t he  p roo f  o f
[D0588], Prop. 4). This strengthening of (A) reads precisely as follows:
(B) For  a l l  tat '<=o e R w i t h ,  say, «8 = {u1au1'‚„.‚u„au„'}‚ subst i tu t ions  f ,  t e rms  c ,  x € var(c) and ls isn ,

cEtEfJ/x] >> {uilifl ui'EfJ} and «SEfJ FR .8' implies cEtEfJ/x] > cEt'EfJ/xl

(B) and (CR) ensure tha t  the equational theory o f  Mod(R) i s  decidable. For weakening (B),
one has  t o  change t he  de f i n i t i on  o f  goal  and t e rm  reduc t i on .  So  fa r ,  two  mod i f i ca t i ons
have been proposed.

I n  [PadBB] ,  we  have res t r i c t ed  t he  se t  o f  no rma l  a toms  t o  t hose  re f l ex i ve  equat ions
t a t  where  t i s  i r reduc ib le  w. r . t .  R. Under t h i s  assumpt ion,  the  above argument on
i ndependen t  r educ t i ons  p roceeds  d i f f e ren t l y :  v becomes i r r educ ib l e  and t hus  v ,  v '  and v "
are a l l  the same so that we only need c[t[fJ/x] > (u[f],u'[f_7} f o r  concluding that
uEgIIäu'Eg] has  a r ewr i t e  p roo f .  Indeed,  t he  re fe rence  t o  > can  be avo ided  comp le te l y
because the induct ion s tep can now be j us t i f i ed  by the f ac t  t ha t  the shor test  proof of
( l )  i s  longer than the shor test  proofs o f  (2)  and (3). Th is  i s  essent ia l  f o r  establ ishing
t he  s t r ong—con f l uence  c r i t e r i on  [PadBB] ,  Thm.  9 .6 .1 ,  wh i ch  does  no t  p resuppose any
Noetherian term ordering (and which generalizes [HueBO], Lemma 3.3, to conditional
equa t i ons ) .  The  res t r i c t i on  o f  no rma l  a toms  t o  i r r educ ib l e  equa t i ons ,  howeve r ,  en ta i l s
t ha t  (CR) can be guaranteed on l y  f o r  normal izable equa t i ons ,  i .e . ,  f o r  equa t ions  t a t ‘  such
tha t  t—>R u and t'—>R u '  f o r  some  i r r educ ib l e  t e rms  u,u' .  (The  de ta i l s  o f  t h i s  approach
are given i n  [PadBB], Sect. 7).

A second approach f o r  weaken ing  (B )  s t ems  f r om the  concep t  o f  un fa i l i ng  comp le t i on
(c f .  [HR87]) .  I t  s t a r t s  out  f rom the observation tha t  goal and te rm reduct ion need only
be defined on ground, i .e. var iab le- f ree ,  goals and te rms,  respect ive ly .  Th is  holds t rue
because soundness and completeness of the cut calculus w.r.t. Mod(R) (cf. [PadBB], Thm.





4.2.2) i mmedi atel y i mpl y: 
Mod(R) 1= '1 iff Mod(R) 1= '1' 

where l' is 1 with all variables be replaced by different Skolem constants. The term 
orderi ng > is now buil t into the defi nit ions of goal and term reduction: the Goal 
Reduction Rule becomes: 

S[t/x] u=u'~.a or u'=u~~ € R 

t = c[u[f]/y] > c[u'[fJ/y] = t' 

S[t'/x] u .a[fJ t has no proper superterm in S[t/x] 

Accordingly, the term reduction relation is now def'ined as follows: 

t ~R t' <=>def 3 u=u'~.a or u'=u~~ € R, c,x,f : t = c[u[f]/x] > c[u'[fJ/x] = t', .a[f] r-R If. 

The conditions on > are that> is Noetherian on ground terms (including Skolem 
constants) and 

(C)	 for all t=t'~.a € R with, say,.a = {U1=u1', ... ,un=un '}, ground substitutions f, terms c, x € var(c) and' 
Is.is.n, c[t[f]/x] » {uJfJ, Uj'[fJ} and .a[fJ r-R If implies c[t[fJ/x] > c[t'[fJ/x] or c[t'[f]/x] > c[t[f]/x]. 

(C) yields both that (CR) is equivalent to the confluence of ---7R* (for ground goals and 
terms and w.r.t. the new definitions of I-R and ---7R) and that the equational theory of 
Mod(R) is decidable. 

This approach shifts the descent property from a condition on R to a feature of 
rewrite proofs via R. It admits generalizations to non-equational and inductive theories 
that will be worked out in a forthcoming paper. 
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An algorithm for testing sufficient completeness of a simple class of conditional specifica
tions 
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The following is an extended abstract of [RUBB], which has been written by Jean - Luc 
Remy and me at CRIN in Nancy (France). We assume familiarity with the basic notions 
of term rewriting. 

i.Introduction: Sufficient completeness of equational specifications is a well - known prere

quisite for proof by consistency. We present a method for testing sufficient completeness of 

a simple class of conditional specifications which can be looked upon as special reductive 

conditional term rewriting systems (CTRSs for short). Such a CTRS consists of a finite 

set of rules p::l -+ r over a signature L, L being devided in a set C of constructors and a 

set D of defined operators. p is a conjunction of boolean terms (called literals) and I a 

rooted term, i.e. a term t=f(t1, ... ,tn), where feD and all subterms are constructor-terms 

(t is also called f - rooted). Former algorithms (as [ZhB4]) made use of inductively defined 

test sets: For every term in such a set there must be at least one rule, that can be applied. 

The method, which is described here, uses a different strategy, consisting in two steps: the 

test of half- spannedness and the test of well - spannedness. 

2.Half- spannedness: Let (L, R) be a CTRS and fe D. f is said to be half-spanned, if for 

every ground - term t = f(ul""'un) (ui being a constructor term for every i, l~i~n) there 

exists a rule p: :l-+r and a ground - substitution a, such that a(l) = 1. (L, R) is called 

half - spanned, if every fe D is half - spanned. Let now G(t) denote the set of all ground

instances of term t (wrt C) and G({t1 , ... ,tn}) the set G(t1)U ...UG(n)' The method for test

ing half - spannedness is an extension to the multi - sorted case of a method presented in 

[ThB4] and [LLTB 7] . Its theoretical background is shortly presented here: The method 
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makes use of complements of terms, a complement of a term tE T c (Tc == set of all con

structor ground - terms) being a finite set T of terms, such that T c == G(t)U*G(T) (U* 

"denoting the disjoint union). For linear terms this complement can easily be constructed 

(see [Th84], [LLT87], [RU88]). These notions are extended to linear substitutions in such 

a way, that: 

Theoreml: Every rooted term t and "every linear substitution s, such that domain of s 

equals the set of variables of t, verify: 

G(t) G({;(t)! r E complement of s}) U* G(s(t» 0 

Let now a semi -linear term t be a term, such that every variable of sort s in t, where 

there exists only a finite set of ground - terms for s, appears exactly once in t. The main 

theorem is the following: 
--..... 

Theorem2: Assume A is an unambiguous set of linear rooted terms (the terms in A share 

no ground - instances), B is a set of rooted terms, such that the set of all f - rooted terms 

in B)s/semi -linear for every fE D, that appears as root in B. YeA) and V(B) are the vari

ables that appear respectively in A and B and X == XAU*XB is a partition of the variables, 

such that V(A)g(A and V(B)~XB' used for the construction of the complements in A and 

B respectively. Then B covers A (that means G(A)~G(B» "iff one of the following assertions 

is true: 

A ... 0; 

There exists a substitution a that unifies a in A and b in B, i.~. a(a) == a(b),
 

such that a(a) is linear, and: (B - {b}) U {r(b)lr E compI. of a'b}
 

covers (A - {a}) U {r(a)1 r E campI. of a'a}, where a'a (resp. a'b)
 

denotes the restriction of a to Var(a)nDom(a) (resp. Var(b)nDom(a»,
 

such that all variables of the image of a'a (resp. a'b)
 

have been isomorphically renamed by variables of X A - YeA) (resp. X B - V(B». 0
 

' makes use of complements of terms, a complement of a term te  TC (TC=set  of all con-

structor ground—terms) being a finite set T of terms, such that TC=G(t)U"_‘_G(T) (U*

" denoting the disjoint union). For linear terms this complement can easily be constructed

(see [Th84], [LLT87], [RU88]). These notions are extended to linear substitutions in such

a way, that:

Theoreml: Every rooted term t and "every linear substitution 3, such that domain of s '

equals the set of variables of t ,  verify:

G(t) = G({r(t)| r e complement of 3}) U* G(s(t)) o

Let now a semi- l inear  term t be  a term, such that every variable of  sort s in t ,  where

there exists only a finite set of  ground —terms for s ,  appears exactly once in t .  The main

theorem is the following:
‚ . . . . . .

Theorem2: Assume A is an unambiguous set of linear rooted terms (the terms in A share

no ground—instances), B is a set  of  rooted terms, such that the set o f  all f - roo ted  terms

in B, is’semi -linear for every fe D ,  that appears as "root in B.  V(A) and V(B) are the vari-

ables that appear respectively in A and B and X = XAU*XB is a partition of the variables,

such that V(A)SXA and V(B)§XB, used for the construction of the complements in A and

B respectively. Then B covers A (that means G(A)EG(B)) iff one of the following assertions

is true: _ -- .

— A == @;

- There exists a substitution 0' that unifies a in A and b in B, i.e—. 0(a) = o(b),

such that 0(a) is linear, and: (B — {b}) U {r(b)lr e compl. of cr’b}

covers (A - {a}) U {r(a)l r e compl. of o’a}, where o’a (resp. o’b)

denotes the restriction of a to Var(a)flDom(o) (resp. Var(b)flDom(o)),

such that all variables of  the image of  o’a  (resp. o’b)

have been isomorphically renamed by variables of XA— V(A) (resp. XB —V(B)). O





The algorithm itself is now an implementation of the above result, where for every fe D A 

is initialized by {f(Xl"" ,xn)} and B by the set of all f - rooted lefthand - sides of (I, R). 

3.Well- spannedness: Considering lite:rals as boolean atoms, we form for every lefthand

side in R the disjunction of the preconditions of all rules with this lefthand - side. Then we 

test, if this disjunction is logically equal to true. This can be done by some propositional 

calculus ([RU88]) or using the rewriting system given in (Hs85]. The system (I, R) is 

called well- spanned, if this test is successfull for all lefthand - sides in R and if (I, R) is 

half - spanned. If (I, R) is a well- spanned, reductive, left - rooted and semi -linear 

CTRS, then it is sufficiently complete wrt C. 

4.Conclusion: The algorithm, developped according to the above mentioned results applies 

to a wide class of CTRSs. It is more efficient for this class as algorithms based on the con
--~_.. ~ .-,.' 

struction of inductive test sets and we think that further investigation in the method could 

lead to the solution of some of the problems inherent to the "test set" - method (see f. ex. 

[Zh84]).
/ ..../ 
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Abstract 

Order-sorted specifications can be transformed into equivalent many-sorted 
ones by using injections to implement subsort relations. 

In this paper we improve a result of Goguen. Jouannaud. and Meseguer about 
the relation between order-sorted and many-sorted rewriting. 

We then apply recent techniques in completion of maIJ-y-sorted conditional 
equations to systems obtained from translating order-sorted conditional 
equations. 

Emphasis will be on ways to overcome some of the problems with non-sort
decreasing rules. 
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Einleitung 

Dies ist ein sehrkurz geha.ltencr Versuc1l eines lJberblicks liber eine laufende Arbeit zur Ver
vollstandigung von Horn-Klausel Progra,ulluen an der Universitat Dortmund. Da diese Ar
beiten noch nicht a.bgcschlosscn sind, wcrrlcn in dicscm lTberblick die Ansatzpunkte del' Arbeit 
thesenartig vorgestellt. uncl einige Iclccn und Konzepte a.n einfachen Beispielen nicht vollstandig 
formal eingefiihrt.. 

Seit mehreren Jahren a.rbcitet die Dort.munder Gruppe des ESPRIT-Projekts PROSPEC
TRA an del' Entwick]ung und Implementierung von Konzepten del' "Knuth-Bendix"-Vervoll
standigung von bcdjngten Gleichungssystcmen. \N~ihrend diesel' Zeit veroffentlichte Arbeiten 
sind in del' Literaturlistc angegeben. 

Im RiickbLick crweisen side aJs wichtigste Iclccn diesel' Arbeiten das Konzept del' sog. 
"nicht-operationalen" Glcichungcn vgl. et.wa [Ga.n88a], we1ches jiingst verallgemeinert wurde 
auf das Konzept del' "anwendungs-eingeschranktcn" Gleichungen [BG8S]. Letzteres wiederum 
erlaubt veral1ge.rllcincrte J\onzcpte hcclingter Tenncrsetzung, vg!. etwa das Konzept der 
"quasi-reduktivcn" Ersetzungsregel, ehen Calls ill [11G88]. Mit IIiIfe dieser Konzepte kann ein 
Standa.rdproblcrn bediug\:er Tcrrnersel.zlI Itg, J\~i.Jnlich c1aJ3 bedillgte Gleichungen mit "Extra"
Variablen in den Beclingungen nicht zugelassen werden konnen, behandelt werden. BeispieIs
weise kann del' Vervollstiindigungspl'ozeH so gesteuert wel'den, daB im finalen System von 
Gleichungen Gleichllllgen mit. "Extra"-Vari ablen eUminiert werden konnen. Die Transi
tivitatsden.nition 

(:I; < JI)=il'1.le, (y < z)=f.rne :::} (x < z)=-irue 

ist ein Beispiel einer Gleicllllng lTlit ciner " Extr(l."-Variablen, namlich del' Variablen y. 
In unserer ClltueDen Arbeit yersllchr;n wir einc Zusammenschau der bisherigen Ergeb

nisse untel' einer neuen Sicht. von "J\l111 t h-Benclix"-Vcrvollsta.ndigung, die allgemeinere An
wendungseinschra.nkullgen von Gleichungen beriicksichtigt. Diese kann auf den allgemeinen 
Horn-Klausel Fall erwcitert werden. 

'Uberlegungen ZI.! dieser Arheil. cnbl,;"nclcn im }lahmen des ESPRIT-Projekt.s PROSPECTRA, ref#390. 

1
 

Velvollständioung von Hom 1 (1a.1.1sel11 Programmen mit
eingeschräarlkten Anwendbarke1tse1ge11sc1’1aft611*

Hubert Bcrthng
Fachbereich Informatik, U niversität Dortmund

13-4600 Dor tmund  50, W.  Germany
uucp, bitnet: 111.11;1e1't.@1111ic1015

l 8. M 1112- ]- 989

1 Einleitung
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weise kann den Vewo] 1111;111:111'1g1111gsp1ozefl so gesteuelt welden,  daß im finalen System von
Gleichungen Gleichungen 11111. ”4111.121. -\"a..11a.111e11 eliminielt \nzerden können. Die Transi-
tivitätsdefinition

(_:1: < y)i11'-11.e,(:1/ < .::]iime => (3: < z)étrue
ist ein Beispiel einer Gleiclmng mit ei 111-11° ” Ext1‘11.”-V 21.111211311311, nämlich der Variablen y.

In unserer aktuellen Arbeit. versuchrm. wir 1111.111 Z1.1.sa.111111e11scl1a,u der bisherigen Ergeb—
nisse unter einer ‚neuen. Sicht von ”Hnufh—Bendix”-Vervollständigung, die allgemeinere An-
we11d1111gsei11sch15,11[(111.1n von Gleichungen beti.’u.cksichtigt. Diese kann auf den allgemeinen
Horn-Klausel Fa.“. erweitert; wen-1111.11.

*Überlegungen zu dieser Arbeit. 0111.51.11.11111111 im Rahmen des ESPRIT-Projekts PROSPECTRA, ref#390.





2 Skizze des Ansatzes 

Der Ansatz kanll durch foJgenc1e Thesen grab skizziert werden: 

1.	 vVie im unbedingten Gleichungsfa,ll ist del' grundsatzliche Mechanismus del' Ver
vollsta,ndigung cler, "kritische Konseqenzcn (Paarc)" (Gleichungen bzw. Klauseln) zur 
betrachteten KlauseJnmengemengc hi.nzuznfugen uncl zu uberprufen, ob sie simplifiziert 
bzw. eliminicrt werden konnen. 

2. Simplifikation hzw. Eli rninatioD gclten jedoch Hir den	 bedingten Gleichungsfall wie fUr 
den allgemeinen Horn-KJauscl FaJJ iiber die Simplifikation bzw. Elimination durch Ter
mersetzung, \vie sic fuel' den unbedingten Gleichungsfall iiblich ist, hinaus. Dieser 
allgemeinere SimpJiGzicr- und Eliminierbarkeitsbegriff von Klauseln ist im allgemeinen 
nicht entschcid ba.r. Ci 11 konkretes Vcrvollstiinc1igungssystem wird daher moglichst viele 
entscheidbare Fiille van Simplifizier- und Eliminierba,rbarkeit untersuchen. Der allge
meinere Simplifizier- unci Eliminierbarkeitshegriff von Klauseln ist desweiteren abhangig 
von den betrachteten Anwcndungsein,schriinl\ungen. ,le restriktiver die Anwenclungsein
schraenkungen desto Sdl\viicher die Simplifizier- uncl Eliminierbarkeitsvoraussetzungen. 

3. Die SimpJifizicr-	 EJirninierbarkcit von l{Jauscln im finalen System von Klauseln ist 
clurch geeignele Addition "zusiilzlicher kritischer Konsequenzen" beeinflufibar. D.h. 
falls gev,:isse "kritische Konsequenzen" wiiJuend del' Vervollstancligung acldiert wer
clen, kann die Elinlinierharkeit gewisser Klallseln im fina.len System garantiert werden. 
Diese Beobachtung wird angewelldet bei del' Behandlung del' oben erwahnten nicht
operati onaJen Glei chll ngen. 

4.	 In Verallgemeinerung des vOl'igen Punktes konnen gewisse Anwenclungen einer Klausel 
im finalen Systenl von Kla.uscln "iiherfliissig" gemacht werden durch Acldition gewisser 
"kritische KonseqLLenzen" wiihrend del' VervolJstii,ndigung. Anclere Anwenclungen der
selben J{Jausel wereIen im finaJcn System von Klauseln nicht "uberfiussig" sein. 

5. Es	 konnen wie im umbedingtell GleichungsfaJl eine fa,iling und eine unfailing Ver
vo11sta,11 dig11 ngsva,ri'l.l1 te llll tcrschicden werden. 

6.	 In cler unfailing Va,ria,nte becleutet die VervoJlstaudigung nichts ancleres als clie Wieder
hersteUung del' VoUstiindig.keit Line;l,ren Bcweisens, d.ie moglicherweise clurch die Ein
schra,nkullg a111' re(lul,tivcs H"cfutat.jonsbeweiscn verloren wurde. 

7. Die ArguTllEmf;n,tionstechnik flil' lInserer Aussagen ist die Bachmair'sche Beweistransfor
mationstechn il:: ZlISrl.mmell mi1, cl01! noetherschen J3eweisordnungen. 

3 Begriffe erlautert arn Beispiel 

Einen Eindrud del' oben gCJnachten A lIssagen moge das folgende Beispiel geben. Wir be
trachten Refutationsbewcise mit del' Resolutionsregel aJs einiigen Inferenzregel. Desweiteren 
wircl nur del' GnlJl(HaJl bet.rachtet (keine Varia.blcn). Der allgemeine Fall ist sehr viel kom
plizierter, foIgt aber derseJben Idee. Wir werclen einige fi.ir den a11gemeineren Fall konzipierten 
Begriffe nur eingeschriinkt ,un Beispid cinfiihren. 

P(t1,t2, ... t,J hei13t ein A/;0177, faJJs p cin Prii.dikatensymbol uncl tl,t2, ... tn Terme liber 
einer betrachtcten Signatm' sind. Eine Kla1/.,sel ist ein Paar von Mengen van Atomen, 
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2 Sk izze  des  Ansatzes

Der Ansatz kann durch fo] gende T hesen grob skizziert werden:

1.

r"

Wie im 11.111'Jedingten Gleichungsfa].l ist der grundsätzliche Mechanismus der Ver-
vollständigung der, ”kritische Konseqenzen (Pa.a.re)” (Gleichungen bzw. Klauseln) zur
betrachteten Klausel nmengem enge hinzuzufügen und zu überprüfen, ob sie simplifiziert
bzw. eliminiert werden können.

Simplifikation bzw. Elimi.n_a.tio.l.1 gehen. jedoch für den bedingten Gleichungsfall Wie für
den allgemeinen I-Iorn-Klausel Fa...“ iiber die Simplifikation bzw. Elimination durch Ter-
mersetzung, wie. sie fuer den. unbedingten Gleichungsfall üblich ist, hinaus. Dieser
allgemeinere Simplifizier- und Eliminierbarkeitsbegriff von Klauseln ist im allgemeinen
nicht entscheidbam. Ein konkretes \i'ervollstéindigungssystem Wird daher möglichst Viele
entscheidbam Fälle von Simplifizier- und 13313111}nierbarbarkeit untersuchen. Der allge—
meinere Simplifizier- und Eliminieflvarkeits'begriff von Klauseln ist desweiteren abhängig
von den betrachteten Anwendun gsei1.1.schrä.n_].<11.11g‘en. J e restriktiver die Anwendungsein—
schraenkungen des to  schwiiciher die Simplifizier- und Eliminierbarkeitsvoraussetzung‘en.

. Die  Simphfizier— E]i1:1:1.iniezrbarkeit. von Klauseln im finalen System von Klauseln ist
durch geeignete Addition “zusätzlicher kritischer Konsequenzen” beeinflußbar. D.11.
falls gewisse ”kritische Konsequenzen” \.väilwend der Vervollständigung addiert Wer-
den, kann die Elimj11.3:31'1-)21.:‘]<eit gewisser Klauseln. im finalen System garantiert werden.
Diese Beobachtung wird. angewendet bei. der Behandlung der oben erwähnten nicht-
op  erati cm.].en Glei c.".hu n gen..

In Verallgemeinewng des \f'origen Punktes  ‚können gewisse Anwendungen einer Klausel
im finalen System von Klauseln ” überflüssig” gemacht werden durch Addition gewisser
”kritische Konsequenzen” während. der Vervollständigung. Andere Anwendungen der-
selben K].a.1_1_sel. warden im finalen System von Klauseln nicht ” überflüssig” sein.

Es können wie im. 1.1 mbedjngten GJ.eic11ungsfa,]l eine failing und eine unfailing Ver-
vollstämdigungsvaria'nlge u n 13(21‘801130den werden.

. In der trufajling "al-iante bedeutet die Verve]Istéindigung nichts anderes als die Wieder-
herstellung der \f'ollsti-indigkeit ]..ineg-Lren Beweiseus, die möglicherweise durch die Ein—
schränkung 3.1.q 'L‘ecl‘z:]<13i\.-'(-:s liefutationsbeweisen verloren wurde.

. Die Argumentaizionstechnjk für tmscrer Aussagen ist die Bachmair’sche Beweistransfor—
mationstechnik zusammen mi t  don noetherschen Bcweisordnungen.

3 Begriffe erläutert am Beispiel.

Einen Eindruck der oben gemachten Aussagen möge das folgende Beispiel geben. Wir be-
trachten Refutationsbcweise mit der Resolutionsregel als einzigen Inferenzregel. Desweiteren
wird nur der Grundfal]. betraclutet ( keine Variablen). Der allgemeine Fall ist sehr viel kom—
plizierter, folgt ab er  derselben ldee.  W ir werden einige für den allgemeineren Fall konzipierten
Begriffe nur eingesclm'inkt am. Beispiel einführen..

p(t1,tg‚ . . pin) heißt ein j-ltom3 falls 3) ein Prädikatensymbol und t1,t2, .  . . t n  Terme über
einer betrachteten. Signatmr sind. Eine Maus-el ist ein Paar von Mengen von Atomen,





geschrieben als r =? 6. Klausel r =? 6, die h6chstens eln Atom in del' Konklusion .6
besitzen, heifien Horn-J(fO'llseln. Horn-l\Ja.useln mit nicht leerer Konklusion heifien aueh 
Progmmm-I<lovscln, w~i.hrend Horn-I\la.useln luit Jeerer Konklusioll Ziel-Klauseln heifien. Flir 
unser Beispiel bctrachten wir nllr die Rcsollltionsregel: 

f l :::} J1 B, rz :::} .6. zResolution : r1o:,r2 (T =? .6. 2a 

wobei a ein mgu von A. a.nd B ist. \Vi r sagen, die Kla.usel r 1 :::} A wird angewandt auf 

die Klausel B,r2 =? .6.2. 8ei > eine Rcduktionsonlnnng a.uf Atomen mit zusatzliehen hier 
nieM naher spezifizierten Einschriinkungcn del' Vergleichbarkeit von Gleiehheitsatomen und 
anderen Atomen. Die Anwendung duel' Klausel AI," . ,An =? B unter Substitution a hei:Bt 
reduktiv, falls Ba > Aw, ], :S i :S n. Eine Klausel AI, ... ,An =? B heifit reduktiv, falls 
B > Ai, 1 :Si :S n. Redllkt.ivc l\lallscln sind in jcder Anwendung reduktiv. Reduktive 
Anwendungen von Klr.w.scln wirken zielrecll1z1erencl. 

Beispie13.1 G'egeben dos Horn-J{lallscI Programm N == {A,B :::} C, => A, => B} mit 

C> B> A. 
A,B => CC:::} 

:::}A A,B=>
(P) : 

(P) beweist, da.f3 C eln log. Konsequenz in jV ist. (P) ist reduktiv, da nur reduktive 
Klauseln angewandt. werden . .Jeclcr Scll1'ltl; ist hncar, d.h. die angewandte Klausel ist Element 
von N, und zielrechJzierend: C:::} ~ A,B :::} ~B =? ~ =>, wobei ~ die Multisetfortset

zung von > ist. 
Bezeichne R, die Anwcndungseisch1'ii.nkung: "A,B :::} C sei lllcht-operational", d.h. 

A, B :::} C soIl lLicht angewa.ndt werden m usseu. Dann ist N nieht vollstandig bzgl. R, da 
es keine lineare Alt.ernative Z111' Anwenc1ung von /1, B =? C flir den Beweis von C gibt. Dureh 
Addition del' krit£.schen J(onsequenz A :::} Coder J3 :::} C' odeI' beider Konsequenzen erlangen 
wir Vollsta.ndigkeii; bzgl. R. 80wo111 A :::} C wie allch B :::} C sind Resolventen zwisehen 
den Programmklauseln =? B unci A, 13 :::} C bzw. zwischen den Programmklauseln => A 
und A,B :::} C. 80wo111 die J\rIenge N, = (J'V - {A,B => C}) U {A =? C} wie aueh die 
Menge N2 = (JV - {A,B =? C}) U {B =? C} is!; 'llollslandig bZfjl. R. D.h in NI wie auch 
in Nz ist clieselhe Menge VOll Zielen linear bcwcisbar wie in N, jedoeh ohne A, B :::} C an
wenden zu miissen. In heldcn Jll()glichen ftna1en Systemen NI odeI' N 2 konnte deshalb die 
nieht-operationale Klausel 11, B :::} C elinlinie1't \Vcrden. Beispielsweise ist in NI => C linear 
beweisba.r clureh (Pd und in N 2 dlJ.1'ch (P2) 

A. :::} CC:::} 
:::} A A. :::} 

Wir beobachten, daB cs nicht n0t.wend.ig ist, allc Konsequenzen zu addieren, um 
Vollstandigkcit, 211 erlangcll. \Vir bezeichuell daher {A =? C} bzw. {B => C} bzw. {A =? 

C, B :::} C} als fail'(:; SelekUonen von J(onsequcn:;en von N. 
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geschrieben als F => A .  Klausel I‘ => A ,  die. höchstens ein Atom in der Konklusion A
besitzen, heißen. [Korn—Klauseln. Horn-Klauselgn mit nicht leerer Konklusion heißen auch
Programm-Klausel-m, während Horn—Klan].seln mit leerer Konklusion Ziel-Klauseln heißen. Für
unser Beispiel be t rachten  wir nu r  die Resolutionsregel:

F1  => A B , I ‘2  => A2
Resolut ion :

P]_q‚ rgc f  => A20

wobei q ein mgu von. A and B ist. Wi r sagen., die Klausel T1 => A wird angewandt auf
die Klausel B,I‘g => Ag.  Sei > eine Reduktionsordnung auf Atomen mit zusätzh'chen hier
nicht näher spezifizierten. Einschränkmlgen der Vergleichbarkeit von Gleichheitsatomen und
anderen Atomen. Die Anwenchmg einer Klausel A1, . .  . ‚An  => B unter Substitution cr heißt
reduktz'v, falls 130 > Am., 1 g i g n.. E ine  Klausel  ‚#11 , . . . ,An  => B heißt recluktz'v, falls

B > Ag, 1 g 7? 5 n .  Reduktive Klauseln sind in jeder Anwendung reduktiv. Reduktive
Anwendungen von Klauseln wirken zielmcluzieren(1.

Beispiel 3 .1  Gegeben dag Hor-zz-Iflauscl Prog-zmmn N : {A ,B  => C, => A, => B} mit
C>B>A

A_,_B => C C =>
:A  aß?

:B  B¢
=>

(P) =

(P)  beweist, (laß C ein log. Konsecmenz in N ist. (P )  ist reduktiv, da  nur reduktive
Klauseln angewamtt werden. Jeder Schritt, ‚ist linear, d.h. die angewandte Klausel ist Element
von N , und zielrecluzierend: C => >> A.._B => >>B => >> => , wobei > die Multisetfortset-
zung von > ist.

Bezeichne 7?, die  Anwendungseisch.riinkung: ”A ,B  => C sei nicht-operational”, d.h.
A,B => C soll nicht, a,}.lgewandt werden müssen. Dann ist N nicht vollständig bzgl. 72, da,
es keine lineare Alternative zur Anwendung von A,  B => C für den Beweis von C gibt. Durch
Addition der kritischen Konsequenz A => C oder B => C Oder beider Konsequenzen erlangen
wir Vollständigkeit bzgl. “R. Sowohl A => C wie auch B :> C sind Resolventen zwischen
den Programmklauseln => B und A,  B => C bzw. zwischen den Programmklauseln => A
und A‚B :> C. Sowohl die Menge _j'\-*'1_ : (N  —— {A ,B  => C}) U {A => C} wie auch die
Menge Ng : (N — {A.,}? => [}}  U {B :?» C} ist; uolls-Ländig bzgl. R. D.11 in NI wie auch
in Ng is t  dieselbe Menge von Zielen Jimm- beweisbax wie in  N , jedoch ohne A ,B  => 0 an-
wenden zu müssen.. In. beiden möglichen finalen Systemen NI oder Ng konnte deshalb die
nich't—Operationale Klausel [LB => C e].in.1..i.11.iert werden. Beispielsweise ist in N1 => C linear
beweisbax durch („l-?,) und. in N.; durch (Pg)

A:>CC=> B = > C C = >
(P1) : => A A @ (‚P-3) : © B B =>

=> =>

Wir beobachten, daß es nicht notwendig ist., alle Konsequenzen zu addieren, um
Vollständigkeit zu. erlangen.. Wir bezeiclmen daher {A  => C} bzw. {B => C} bzw. {A :>
C, B => C}  als flair-e: .S'elektim'zen van fi’onsequensen van N .





4 Anwendungseinschra.nkungen 

Hinter jeder Art von "Knuth-Benclix"-Vervollsti1cligung steht die Einschrankung beliebiger 
Beweise auf rcc1uktive Bcweise. (Genaner: nul' Rcflltatiollsbeweise ohne Ermittlung von 
Losungssubstitutionen fiir Ziele \Verden a,u [' ReduktivHa,t eillgeschrii.nkt.) Diese Einschrankung 
bestimmt noch keLne cindeutigcn Beweisformen, siehe obiges Beispiel: alle drei Beweise 
(P),(P1 ),(P2 ) sind rcduktiv. frher Einsclll'iinkllngen cler Anwcndung von Hom-Klauseln wer
den weitere ]~inschraJlkungcJl reduktivel' Beweise definiert. "Einschrankung der Anwendung 
von Horn-Klause1n" becleutct die 1tIengc del' Snbstitutionen, unter der die Klausel in Refuta
tionsbeweisen angcwandt wcrclen darf, eiuzusclll'ii,nken. Dabei ist zu beachten: 

1.	 Nur Horn-Kla,useln r ~ ~ mit JLicht 1eerer Bedingung r dlirfen libel' die Reduktivitat 
hinaus eingeschriinkt werden (unf<'ijling Variallte), nul' reduktive Horn-Klauseln r :::} D.
mit nicht lccrcr Hec1ing1.lng r diirf('fl weiter eingesehrankt werden (failing Variallte). 

2.	 Termersetzung mit ErsetzungsregeJn im konventione11en Sinn kann als spezie11e Ein
schrankung a,l.lfgefaflt werclen: "Nur Klauscln, die unter a.llen Substitutionen reduktiv 
sind, diirfen angewanclt werclen." 

Eigenschaften fairer Selektionen 

1.	 Eine Selektion von l\onscquenzcn ist eine Tei1menge del' Menge a11er Resolven
ten/Pararnodula.ntcn zwisehen Programmklauseln N. 

2.	 Eine fa.ire Selektion g;:)rantiert die Transformierbarkeit bzgl. n unzulassiger reduktiver 
Bewei se in ,mhi.ssige red nk ti ve un cl linea,re Beweise. Der Begriff der fail'en Selektion 
wird iiber diese Eigenscha,ft clefiniert. UntcI' Transformierbarkeit wi1'd hie1' die Anwend
barkeit einer Beweistr;:),nsforlna.tionsrcgel a:us ciner fest gegebenen Menge soIcher Regeln 
verstanden. Beispiel cin er solchcn Hewe.ist1'(1.11 s[orrnationsregel (Schema.) ist die folgende: 

A,r ~ CC=> 
~ /l ;1, r => 

f=> r~ 

Beweise auf del' TeeMen Seite cler TransfoI'mationsregel zers1.oren moglicherweise die 
Linearit~i.t. Diesist d;wH der Fall, ,vcnn woder r ~ C in N ist noeh es einen alternativen 
lineal'en 'R.-eingeschr~ll1<ten Beweis flil' den Subbewcis 

gibt. OITcnsichtlich hiingt dicF'a.iI'l1ess eineI' Selektion van der Anwendungsein
schriinkung R rI-b. 

3. Die :Mengc	 aBeT moglichen Reso]venten/Paralllodulanten zwischen Programmklauseln 
in Nicht- Variablen-Pos.itionen ist ciue faire Selektion van Konsequenzen. Diese ist 
endlich, vcrgleichbar del' endlichcn ]'v[engen kr,itisehcr Paare in der konventionellen Ver
vol1sti.i.ncl ignng. 
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4 Anwendu.ngseinschränkungen

Hinter jeder Art von ”K1111th-Bendix”-Verv0115tiidigung steht die Einschränkung beliebiger
Beweise auf reduktive Beweise. (Genauer: nur Refutationsbeweise ohne Ermittlung von
Lösungssubstitutionen für Ziele werden am [' Reduktivitäi eingeschränkt.) Diese Einschränkung
bestimmt noch keine eindeutigen Beweisformen, siehe obiges Beispiel: alle drei Beweise
(P) ,  (P1)‚(P2) sind redullitiv. Über Einschränkungen der Anwendung von Horn-Klauseln Wer—
den weitere Einsclhränkungen. reduktiver Beweise definiert. ”Einschränkung der Anwendung
von Horn—Klauseln” bedeutet die Menge. der Substitutionen, unter der die Klausel in Refuta-
tionsbeweisen angewandt werden darf, ei.112115011ränken. Dabei ist zu beachten:

1. Nur Horn-Klauseln. I‘ => & mi t  nicht leerer Bedingung I‘ dürfen über die Reduktivität
hinaus ei11gesc1n‘ä:n_lst werden (unzfajling Variante), nur reduktive Horn-Klauseln I‘ => A
mit nicht leerer Bedingung I‘ dürfen weiter eingeschränkt werden (failing Variante).

2. Termersetzung mit Ersetzungsrege}1.1. im konventionellen Sinn kann als spezielle Ein-
schränkung aufgefagßt werden: ”Nur Klauseln, die unter allen Substitutionen reduktiv
sind, dürfen angewandt werden.”

Eigenschaften. fairer Selekt ionen

1. Eine Selektion. von. Konsequenzen ist eine Teilmenge der Menge aller Resolven—
ten  / Paramod I:1.la..nte11 zwischen. Prograanmklauseln N .

2.  Eine faire Selektion garantiert die  Transformierbarkeit bzgl. 'R, unzulässiger reduktiver
Beweise in zulässige redaktive und lineare Beweise. Der Begriff der fairen Selektion
wird über  diese Eigenschaft definiert. Unter Transformierbarkeit wird hier die Anwend-
barkeit einer Beweis t rw  31I'or1tr:1.a..t.ionsregel aus einer fest gegebenen Menge solcher Regeln
verstanden. Beispiel. einer solchen Jfleweistransfonmtionsregel (Schema) ist die folgende:

A.„]?=>C C=> =>A A,1‘=>C
=> .s’l AJ“  @ I‘ => C C =>

_‘ =>
1=>  I‘=>

Beweise auf der rechten Seite der Transform ationsregel zerstören möglicherweise die
Linearität .  Dies ist dann. der Fall, wenn wed cr 1‘ => C in N i s t  noch es einen alternativen
linearen ”la-eingeschränkten Beweis “für den Subb eweis

I.“ :> C C :>
]_‘=>

gibt. Offensic.]:ltlich hängt die ‚Fairness einer Selektion von der Anwendungsein-
schränkung 7?, ab .

3. Die Menge aller möglichen Reso] “von 1;e11/Pa.ra.n:10dulanten zwischen Programmklauseln
in Nicht-\f'a.r_iaihilen-‘Positionen i s t  eine fair-e Selektion von Konsequenzen. Diese ist
endlich, vergleichbar cler endliclxen hrliengen kritischer Paare in  der konventionellen Ver—
vollständigung.

£].





4.	 Sei Seine fairc Selektion . .o(\.nn ist auch jede Obermenge 8 U 8' eine faire Selektion. 

5.	 In del' Pra,xis wircl man Selektionen wi:ihlen, deren Fairnefieigenschaft entscheidbar ist. 
Sie weI'den iln allgemeinen nicht minimal sein. 

5 Kriterium fiir Vollstandigkeit 

Failing VaI'iante: R ist EinschI'a,nkung rl,uf Anwendung (quasi)-I'eduktiver Klauseln. Ein 
Klauselprogranul1 N ist vollsta,nc1ig bzgl. der Anwendungseinschrankung n und der durch 
> induzieI'ten Beweisorclnung >p, fans 

1.	 die Teilmcnge del' nicht reduktivcn unbed.ingten Klauselll U ~ N von N - U subsumiert 
wird bzgl. >p und R. 

2.	 8n(N) eine faire SeJektion. van Konsequcnzen in N fi.ir n ist und 

3.	 8n(N) von N subsumicrt wiI'd bzgL >p uncI R. 

1m Beispiel wird die faire Selehion {A :::} C} VOll del' 11nalen Klauselmenge {A :::} C, ::} A, ::} 
B,} subsumiel't bzgl. >p und Rn Aufgrllnd del' AnwenclullgseinschI'allkullg n und del' Fairnefi 
del' Selektioll Sn(N) J:onnell wir schlieJ3cn, da.B auc]} ;1, B ::} C von N subsumiert wird.bzgl. 
>p und R. Der Su bsulnptionsbegriff ist a.bgestiitzt a.nf del' zugrundeliegenden Beweisordnung, 
die wiederum van del.' zugrundeliegendcn Reduktionsordnung illduziert wird. Daruberhinaus 
ist er abhangig VOll. cler betra.chtcten AnwelldungseinschI'ankung n. Es soUllier nicht naher 
darauf eingegangen werden. 

6 Abstrakte Vervollstandigung 

Die von uns allgestI'ebte Vervollst~i.nc1igllngstechnik la,fit sich durch die folgenden abtI'akten 
Inferenzregeln beschreibcn. 

Abstrakte Addition: 

N 
faJJs r:::} 6 E Sn(N)

NU {r :::} 6} 

Abstrakte Elimination: 

NU{f::}t:.} 
falls f :::} 6. sllbsllmiert WilY! von N bzg!. >p und n

N 

Abstrakte Simplifikation: 

NU {r1 :::} t:.d 
lofl.e; ]'J :::} 61 svbsllmie1't win! van NU {r2 ::} 62} bzgl >p und n

NU {f2 :::} 62} 

8n(N) ist eille Tcilmenge aller Pa,I'a.moc1ula.nten/Resolventen in N. In konkreten Ver
vollstandigungssytemen sind diesc a,bstra.kten RegeJn clurch Mengen konkreter Regelll fur jede 
abstrakte Regel ersetzt. Chancen fiir erfolgreichc VervolJstii.ndigungen konnen durch die Wahl 
moglichst Ideiner fa.irer Selektionen \Vie a.uch clurch cine "machtige" Menge von Simplifikations
unc1 Elimina.tionsrcgcln, die die SimpJifizier- unci Eliminierba.rkeit in moglichst vielen Fallen 
aufdecken, verbessert. wcrclen. 
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4.  Sei .5' eine [ai 1c Selektion. ‚Dann ist auch jede Obermenge .5' U 5" eine faire Selektion.

5 .  In der Praxis wird 111121.11 Selektionen wählen, deren Fairneßeigenschaft entscheidbar ist.
Sie werden im allgemeinen. nicht minimal sein.

5 Kriterium. für Vollständigkeit

Failing Variante: 7?. ist Einschränkung auf Anwendung (qua.si)—1‘eduktiver Klauseln. Ein
Klauselprogramm N ist vollständig bz g1. der Anwenclungseinschränkung ’R, und der durch
> induzierten Beweisordnung >p‚  falls

1. die Teilmenge der 11.3 chi; reduktiven 11.11bedi11gte11 Klauseln U (_: N von N —- U subsumiert
wird bzgl. >7: und  R.

2. SR(N) eine “faire Selektion. von Konsequenzen. in. N für 72 ist und

3. 573(N) von N subsumiert wird bzgl.. >12 und R.

Im Beispiel wird. die “faire Selektion {A :> C} von der finalen Klauselmenge {A => 0, => A, :>
B ‚ }  subsumiert bzgl. >72 und, R .  Aufgru 11d der Anwendungseinschränkung 7?, und der Fairneß
der Selektion .5‘7;(N) können wir schließen., daß auch A, B => C von N subsumiert wird.bzgl.
>7; und R.  Der Su bsu'zgnp t ionsbegrifi  i s t  abgestützt  auf der zugrundeliegenden Beweisordnung,
die wiederum von der zugru1.1cleliege11de11 Reduktionsordnung induziert wird. Darüberhinaus
ist er abhängig von. der betrachteten Anwendungseinschränkung 72. Es soll hier nicht näher
darauf eingegangen.} werden.

6 Abstrakte Vervollständigung

Die von uns angestrebte Vervollständigungstechnik läßt sich durch die folgenden abtrakten
Inferenzregeln "b eschreibcn.

Abs t rak te  Add i t i on :

N'
. f TN U {T :> &} falls F => A E 573(A)

Abst rak te  E l imina t ion :

N 1‘ => A . . .
U{1\I } falls 11 => A subsumzer! wz'rd von N €)n . >‘p und R

Abstrakte Simplifikat ion:

AT U {P1  © Al}
N U {T2 :> A2}  falls ].“; => A1 subsumiert wird von N U {F2 :> A2}  bzgl >?  und 'R

SRUV) ist eine Teilmenge aller Paramodulanten/Resolventen in N . In konkreten Ver—
voflsténdigungssy11611116311 sind diese abstrak ten Regeln durch Mengen konkreter Regeln für jede
abstrakte Regel ersetzt. Chancen für erfolgreiche Vervoflständigungen können durch die Wahl
möglichst klein er fairer Selektionen wie auch. durch eine ”mächtige” Menge von Simpfifikations—
und Elimina.tionsregeln_‚ die die Simpfizfizier— und Eliminierbarkeit in möglichst vielen Fällen
aufdecken, verbessert. werden.

U
!
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Unification in Monoidal Theories 

WERNERNUTT 

Deutsches Forschungsinstitut fur Kunstliche Intelligenz (DFKI), 
6750 Kaiserslautern, West Germany 

1. Introduction 

We introduce a class of equational theories by which we generalize several well-known 
theories for which unification problems have been studied. Among them are the theories 
of commutaive monoids (AC), commutative idempotent monoids (ACI), and abelian 
groups (AG). These theories have the common characteristic that unification algorithms 
for them basically consist in solving some kind of linear equation system. 

The same is true of monoidal theories. Every monoidal theory determines canonically 
a semiring, an algebraic structure that can be thought of as a generalized ring. Then 
every unification problem can be translated into a linear equation system and vice versa. 

Having established this correspondence between unification and linear algebra, we are 
able to characterize the unification type (unitary, finitary, infinitary, nullary) ofmonoidal 
theories in algebraic terms. For instance, an application of Hilbert's Basis Theorem gives 
a sufficient criterion for a monoidal theory to be unitary. 

Monoidal theories can be characterized in categroical terms: The category consisting 
of finitely generated algebras as objects and homomorphisms as arrows is semi-additive. 
On the other hand, if for an equational theory this category is semi-additive, then by a 
signature transformation the theory can be turned into a monoidal theory. Thus monoidal 
theories cover the same subject as the commutative theories defined in (Baader 1989). 

In the sequel, we give a short account on the basic defintions and results concerning 
monoidal theories. A detailed presentation is given in (Nutt 1989). 

2. Monoidal Theories and Selllirings 

Terms, substitutions, equational theories, algebras and other basic notions of unification 
theory are defined as usual (Kirchner 1989). 

An equational theory e. is monoidal if its signature I:: consists of a constant 0, a 
binary symbol +, and a finite number of unary symbols, such that + is associative and 
commutative, 0 is the identity for +, and every unary symbol h is a homomorphism for 
+ and 0, i.e. e. contains the equalities h(x + y) == h(x) + h(y) and h(O) == O. 

Obviously, the theories of commutaive monoids (AC), commutative idempotent 
monoids (ACI) , and abelian groups (AG) are monoidal. Generally, monoidal theories 
describe varieties of abelian monoids with homomorphisms. 

A semiring is a tuple (S, +, 0,.,1) such that (S, +, 0) is an abelian monoid, (S,·, 1) 
is a monoid, and all a, f3, 'Y E S satisfy the equalities (a + (J) . 'Y = a . 'Y + f3 . 'Y, 
a . (f3 + 'Y) = a· f3 + a . 'Y, and 0 . a = a . 0 = 0 

1 

Unification in Monoidal Theories

WERNER NUTT

Deutsches Forschungsinsiiiui für Künstliche Intelligenz (DFKI),
6750 Kaiserslautern, West Germany

1. Introduction

We introduce a class of equational theories by which we generalize several well-known
theories for which unification problems have been studied. Among them are the theories
of commutaive monoids (AC), commutative idempotent monoids (ACI), and abelian
groups (AG). These theories have the common characteristic that unification algorithms
for them basically consist in solving some kind of linear equation system.

The same is true of monoidal theories. Every monoidal theory determines canonically
a semiring, an algebraic structure that can be  thought of as a generalized ring. Then
every unification problem can be  translated into a linear equation system and vice versa.

Having established this correspondence between unification and linear algebra, we are
able to characterize the unification type (unitary, finitary, infinitary, nullary) of monoidal
theories in algebraic terms. For instance, an application of Hilbert’s Basis Theorem gives
a sufficient criterion for a monoidal theory to be  unitary.

Monoidal theories can be  characterized in categroical terms: The category consisting
of finitely generated algebras as objects and homomorphisms as arrows is semi—additive.
On the other hand, if for an equational theory this category is semi—additive, then by a
signature transformation the theory can be turned into a monoidal theory. Thus monoidal
theories cover the same subject as the commutative theories defined in (Baader 1989).

In the sequel, we give a short account on the basic defintions and results concerning
monoidal theories. A detailed presentation is given in (Nutt 1989).

2 .  Monoidal Theories and Semirings

Terms, substitutions, equational theories, algebras and other basic notions of unification
theory are defined as usual (Kirchner 1989).

An equational theory 8 is monoidal if its signature 2 consists of a constant 0 ,  a
binary symbol + ,  and a finite number of unary symbols, such that + is associative and
commutative, 0 is the identity for + ,  and every unary symbol h is a homomorphism for
+ and 0, Le. 8 contains the equalities h(:r + y) i h(a:) + h(y) and [1(0) é 0.

Obviously, the theories of commutaive monoids (AC), commutative idempotent
monoids (ACI), and abelian groups (AG) are monoidal. Generally, monoidal theories
describe varieties of abelian monoids with homomorphisms.

A semiring is a tuple (S ,+ ,0 ,  o, 1) such that ( 8 ,+ ,0 )  is an abelian monoid, (8, - ,1)
is a monoid, and all a ,  ß, 7 E 8 satisfy the equalities (a  + ß) « 7 = a ~ 7 + [3 - 7,
a - (ß+7) : : a -ß+a -7 ,  andO-azao0=0
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We call the binary operations + and· the addition and the multiplication, respectively, 
of the semiring. A semiring is commutative if its multiplication is commutative. Semir
ings are different from rings in that they need not be groups with respect to addition. 

Examples. The set N of natural numbers with usual addition and multiplication is 
a semiring. Every ring is a semiring. In particular, the integers Z with usual addition 
and multiplication form a semiring. The set {a, l} becomes a semiring SACI if we define 
1+1 := 1 and extend addition and multiplication as required by the axioms for a semiring. 

Analogously to fields, for every semiring S we can define S-modules as generalized 
vector spaces and linear mappings between S-modules. Especially, the cartesian product 
sn becomes an S-module if addition and scalar multiplication are defined pointwise. 

As usual, a linear map u: srn -+ sn between free S-modules can be described by an 
n x m-matrix Cq with entries from S, and every such matrix defines a linear mapping. 
The transpose ut of u is the linear mapping corresponding to the transpose C~ of the 
matrix Cq • 

Every monoidal theory £ defines a semiring Se as follows: Let 1 be a variable symbol. 
Then the carrier of Se is .:Fe(l), the free i-algebra over {I}, addition and zero are 
inherited from .:Fe(l), the unit is r, i.e. the £-equivalence-classe 1, and multiplication of 
two £-classes of terms s,t is defined as s· t:= (1 ~ t}s, i.e. the product is obtained by 
replacing all occurrences of 1 in s with t. 

The semiring Se mirrors properties of £. A monoidal theory is a theory of groups if 
for some term t it contains the equation x + t == O. Intuitively, this means that there 
exist inverse elements for the addition. A monoidal theory is a theory with commuting 
homomorphisms if for all h, hi E 1£ it contains the equation h(h'(x) == h'(h(x». 

THEOREM 2.l. 

1. Se is a ring if and only if £ is a theory of groups. 
2. Se is commutative ifand only if £ is a theory with commuting homomorphisms. 

Next we show that it is just a matter of perspective whether one views an algebraic 
structure as an £-algebra or as an Se-module. Let A be an £-algebra and a E A. 
Evaluation in a is defined as the unique homomorphism E:a:TE(l) -+ A from ~-terms ov 
er 1 to A satisfying E:a(l, a) =a. Then A can be turned into an Se-module by defining the 
scalar multiplication as sa := E:a(s) for sESe and a EA. On the other hand, every Se
module M can be turned into an £-algebra by interpreting every unary function symbol 
h as the function hM(m) := h(l). m for mE M. 

Switching from £-algebras to Se-modules and backwards turns homomorphisms into 
linear mappings and linear mappings into homomorphisms. In particular, the free algebra 
on n generators .:Fe(Xl , ... ,xn) viewed as a module is isomorphic to the module sn, and 
VIce versa. 

3. Unification Problems in Monoidal Theories 

Our view of unification is slightly more abstract than the usual one. An £-unification 
problem is given by two homomorphisms (i.e. substitutions) u,r: .:Fe(X) -+ .:Fe(Y) 
between finitely generated free £-algebras. A unifier of u and r is a homomorphism 
8: .:Fe(Y) -+ .:Fe(Z) such that 8u =8r. 
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We call the binary operations + and - the addition and the multiplication, respectively,
of the semiring. A semiring is commutative if its multiplication is commutative. Semir-
ings are different from rings in that they need not be  groups with respect to addition.

Examples. The set N of natural numbers with usual addition and multiplication is
a semiring. Every ring is a semiring. In particular, the integers Z with usual addition
and multiplication form a semiring. The set {0, 1} becomes a semiring SACI if we define
1+1  := 1 and extend addition and multiplication as required by the axioms for a semiring.

Analogously to fields, for every semiring 8 we can define S—modules as generalized
vector spaces and linear mappings between S—modules. Especially, the cartesian product
8” becomes an S—module if addition and scalar multiplication are defined pointwise.

As usual, a linear map 018'” ———> S" between free 8-modules can be  described by an
n x m-matrix 0,, with entries from 8 , and every such matrix defines a linear mapping.
The transpose at of 0' is the linear mapping corresponding to the transpose C; of the
matrix Ca.

Every monoidal theory 8 defines a semiring &}; as follows: Let 1 be a variable symbol.
Then the carrier of 85 is .730), the free E-algebra over {1}, addition and zero are
inherited from 173(1), the unit is T, i.e. the guequivalence-classe 1, and multiplication of
two 8-classes of terms 3'}. is defined as “s’- f :=  (1  <— t)s ,  i.e. the product is obtained by
replacing all occurrences of 1 in 3 with t .

The semiring 85 mirrors properties of E.  A monoidal theory is a theory of groups if
for some term t it contains the equation a: + t =' 0.  Intuitively, this means that there
exist inverse elements for the addition. A monoidal theory is a theory with commuting
homomorphism if for all h, H G 'H it contains the equation h(h’(a:)) i 11’ (12(3))

THEOREM 2.1.
1. Sg is a ring if and only if 8 is a theory of groups.
2. 85 is commutative if and only if 8 is a theory with commuting homomorphism.

Next we show that it is just a matter of perspective whether one views an algebraic
structure as an E-algebra or as an S.;-module. Let A be  an 8—algebra and a E A.
Evaluation in a is defined as the unique homomorphism 5,: 73(1) -——> A from E—terms ov
er 1 to  A satisfying 53(1, a)  = (.1. Then A can be  turned into an Sg-module by defining the
scalar multiplication as 321 :: sa (s) for .'9' E 8;; and a e A .  On  the other hand, every 85-
module M can be turned into_a_n_ E-algebra by interpreting every unary function symbol
h as the function hM(m) :=  h(1) - m for m E M.

Switching from 8—algebras to S‘s—modules and backwards turns homomorphisms into
linear mappings and linear mappings into homomorphisms. In particular, the free algebra
on n generators Jig-(:81, . . . , as”) viewed as a module is isomorphic to the module 8” ,  and
vice versa.

3. Unification Problems in Monoidal Theories

Our view of unification is slightly more abstract than the usual one. An S-unification
problem is given by two homomorphisms (i.e. substitutions) 037': ‚FAX ) —> fg(Y)
between finitely generated free E-algebras. A unifier of a' and 7' is a homomorphism
6: .773(Y) —> Ira-(Z) such that 60' = 6T.





Now the instance relation on homomorphisms ("6 is more general than 7]"), complete 
and minimal complete sets of unifiers as well as most general unifiers can be defined as 
usual. 

When we are considering a monoidal theory e, we can view free algebras as modules 
Se and homomorphisms as linear mappings. Therefore we can treat unification problems 
in the framework of linear algebra over semirings. 

Let rr, T:s1- Se be linear. The kernel of u and T is the set ker(u,T) := {a E Sk I 
u(a) = T(a)}. The kernel of rr and T is a submodule of s1. The image of u is the set 
imu:= {b E Sr 13a E S1.rr(a) = b}. The image of u is a submodule of Sr· 

The next theorems are the basic results on monoidal theories. They relate unification 
properties to algebraic properties. The first theorem characterizes the instance relation. 

THEOREM 3.1. Let 6: Se - Se and 7]: Se - S~ be linear mappings. Then 6 is more 
general than 7] if and only if im 7]t ~ im 6t • 

Unifiers can be characterized in terms of images and kernels. 

THEOREM 3.2. Let rr,T: S1 - Se and 15: Se - Se be linear mappings. Then the 
following equivalences hold: 

1.	 15 is a unmer of rr and T ~ im c5 t ~ ker(ut, Tt) 
2.	 15 is a most general unmer ofu and T ~ imc5t = ker(ut ,Tt). 

The type of a unification problem depends, loosely speaking, on the size of the kernel 
of the two linear mappings. 

THEOREM 3.3. Let U,T: s1- Sr be linear mappings. 
1.	 There exists a most general unifier of u and T if and only if ker(ut l Tt) is finitely 

generated. 
2. For every unifier 7] of u and T there exists a more general unmer 15 if and only if 

ker(ut, Tt) is not finitely generated. 

Since a unification problem in a monoidal theory is either of type unary or of type 
finitary, the same is true of the whole theory. 

COROLLARY 3.4. (1-0-Alternative) A monoidal theory is either of unification type 1 or 
of type O. 

A sufficient criterion for a monoidal theory to be unitary follows from Theorem 3.3. 

COROLLARY 3.5. Let e be a monoidal theory. If Fe(l) is finite, then e is of unification 
type 1. 
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Now the instance relation on homomorphisms ( “5  is more general than 77”), complete
and minimal complete sets of unifiers as well as most general unifiers can be defined as
usual.

When we are considering a monoidal theory 8 , we can view free algebras as modules
82 and homomorphisms as linear mappings. Therefore we can treat unification problems
in the framework of linear algebra over semirings.

Let 0, 7:82 -—> 82“ be linear. The kernel of 0' and 1' is the set ker(0',7') := {a E 82- |
0(a) = r(a)}. The kernel of 0' and 7- is a submodule of 82. The image of 0' is the set
imo := {b E S? | 3a 6 890(0) = b}. The image of 0' is a submodule of 83".

The next theorems are the basic results on monoidal theories. They relate unification
properties to algebraic properties. The first theorem characterizes the instance relation.

THEOREM 3.1. Let 5:8}? ——+ 82' and 17:82“ —-—+ 82 be linear mappings. Then 6 is more
general than n if and only ifim n‘ g im 6*.

Unifiers can be characterized in terms of images and kernels.

THEOREM 3.2. Let 0,7351. -—* SE." and 6:83“ ——+ 82 be linear mappings. Then the
following equivalences hold:

1. 5 is a unifier of0' and T <=> imö‘ ; ker(a*, 'rt)
2. 6 is a most general unifier do  and T (:> imé‘ : ker(0'*, 7").
The type of a unification problem depends, loosely speaking, on the size of the kernel

of the two linear mappings.

THEOREM 3.3. Let 0,1': S}; ——+ 8? be linear mappings.
1 .  There exists a most general unifier of 0' and r if and only if ker(0'i, 1") is finitely

generated.
2. For every unifier n of 0' and 1' there exists a more general unifier ö if and only if

ker(0", 7") is not finitely generated.
Since a unification problem in a monoidal theory is either of type unary or of type

finitary, the same is true of the whole theory.

COROLLARY 3.4. (1-0-Alternative) A monoidal theory is either of unification type 1 or
of type 0.

A sufficient criterion for a monoidal theory to be  unitary follows from Theorem 3.3.

COROLLARY 3.5. Let 8 be a monoidal theory. If .750) is finite, then £ is of unification
type 1.
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Extended Abstract
 

There are two possible ways of using finite canonical rewrite systems to solve word
 

problems for semigroup varieties. On the one hand we may consider term rewrite sys


tems (TRS ) which realize associativity by rules. On the other hand we may reduce
 

modulo associativity, Le. consider words instead of terms. In this case we have word
 

rewrite systems ( WRS ).
 

Advantages of TRS over WRS are:
 

1) For a finite, tenninating TRS the confluence property ~s decidable. One has to check
 

only finitely many critical pairs. Since associative unification is infinitary there may be
 

infinitely many critical pairs obtained by superposition of two rules of a WRS.
 

2) The Knuth-Bendix Algorithm may be used to complete a given TRS.
 

Example 1. Consider RB = { x·(y·z) = (x·y)-z, x·(y·x) = x }.
 

The TRS R = { (x·y)·z -7 x·(y·z), x·(y·x) -7 X } tenninates but is not confluent since the
 

tenns x·z and x·(y·z) are R-irreducible and RB-equivalent.
 

The Knuth-Bendix Algorithm yields the canonical system
 

S = { (x'y)-z -7 x·z, x·(y·z) -7 x·z, x·x -7 X } 

forRB. 

But there are semigroup theories which have finite canonical word rewrite systems and 

do not have finite canonical tenn rewrite systems. 

Example 2. Consider LR = { x·(y·z) = (x·y)·z, x·x = x, x·(y·x) = x·y }. 

R = {xx -7 x, xyx -7 xy } is a finite canonical WRS for LR but there is no finite canonical 

TRS for LR. The Knuth-Bendix Algorithm generates the following infinite canonical TRS 

forLR: 
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Extended Abstract

There are two possible ways of using finite canonical rewrite systems to solve word
problems for semigroup varieties. On the one hand we may consider term rewrite sys-
tems (TRS ) which realize associativity by rules. On the other hand we may reduce
modulo associativity, i.e. consider words instead of terms. In this case we have word
rewrite systems ( WRS ).

Advantages of TRS over WRS are:

1) For a finite, terminating TRS the confluence property is decidable. One has to check
only finitely many critical pairs. Since associative unification is infinitary there may be
infinitely many critical pairs obtained by superposition of two rules of a WRS.
2) The Knuth-Bendix Algorithm may be used to complete a given TRS.

Example 1. Consider RB = { x-(y-z) = (x-y)vz, x-(yox) = x }.

The TRS R = { (x-y)oz ——> xly-z), x-(y-x) —> x ] terminates but is not confluent since the

terms x-z and x-(y-z) are R—irreducible and RB-equivalent.

The Knuth-Bendix Algorithm yields the canonical system

S = { (x-y)-z —> x-z, x-(y-z) —> x-z, x-x ——> x }

for RB.

But there are semigroup theories which have finite canonical word rewrite systems and
do not have finite canonical term rewrite systems.

Example 2. Consider LR = { x-(y-z) = (x-y)-z, xx = x, x-(y-x) = x-y }.

R = { xx ——) x, xyx —> xy } is a finite canonical WRS for LR but there is  no finite canonical
TRS for LR. The Knuth-Bendix Algorithm generates the following infinite canonical TRS
for LR: '
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{ (X·y)·z ~ X·(y·z), X'X ~ x, 

XI'(~'(",(Xn_t"(Xn'XI»"'» ~ X1'(Xi("'(Xn_I'Xn)",», 

Xt"(X2·(,.. (X _t"(X!,X » ...» ~ x!'(xi(...(xn_t"x )...»; n ~ 2 }n n n

We may now ask whether there is a semigroup variety with decidable word problem but 

without f1nite canonical WRS ( TRS ). The lattice of all varieties of idempotent semi

groups yields countably many natural examples of that kind. 

Theorem 

1) There are countably many varieties of idempotent semigroups and they all have decid

able word problem (Blljukov (1970), Fennemore (1971), Gerhard (1970) ).
 

2) There are only three varieties of idempotent semigroups with finite canonical TRS and
 

nine varieties of idempotent semigroups with finite canonical WRS ( Baader (1989) ).
 

The proof of 2) for WRS is rather involved. It requires a thorough knowledge of the solu

tion of the word problem for varieties of idempotent semigroups. The proof of 2) for TRS 

uses the fact that canonical term rewrite systems for regular semigroup theories are of a 

very specific fonn. Regular means that the variables occurring on the left side or right side 

of an identity are the same. Thus LR is regular but RB is not regular. 

Lemma 

Let E be a regular semigroup theory and let R be a canonical TRS for E. Then there is a 

reduction chain (x·y)·z ~ R x·(y·z) or x·(y·z) ~ R (x·y)·z. If, in addition, R is reduced 

then ( modulo variable renaming) (x·y)·z ~ x'(y'z) E R U R-I. 

The reduced canonical system S for RB shows that the condition tiE regular" is necessary. 

Now the following may be proved, using the fact that for all n the identity 

xI,(xi(",(xn_I,(xn,(xI,(x2,(",(xn_I"xn)"'»»)"'» =xI,(x2,(",(xn_l,xn)"'» 

is valid in any idempotent semigroup. 

Proposition 

Let E be a regular semigroup theory defining a variety of idempotent semigroups. Then 

there does not exist a finite canonical TRS for E. 

{ (x-y)—z _) x-(y-z), x-x ——> x,

xl-(xz-(u.(xn_1-(xn«x1))...)) --> x1-(xz-(...(xn_l-xn)...)),

x1-(x2-(...(xn_1-(x1-xn))...)) —> Xl ' (x2° ( ‘ " (xn -1 'Xn) ' "» ;  n 2 2 }

We may now ask whether there is a semigroup variety with decidable word problem but

without finite canonical WRS ( TRS ). The lattice of all varieties of idempotent semi-
groups yields countably many natural examples of that kind.

Theorem

1) There are countably many varieties of idempotent semigroups and they all have decid-

able word problem ( Birjukov (1970), Fennemore (1971), Gerhard (1970) ).

2) There are only three varieties of idempotent semigroups with finite canonical TRS and
nine varieties of idempotent semigroups with finite canonical WRS ( Baader (1989) ).

The proof of 2) for WRS is rather involved. It requires a thorough knowledge of the solu—
tion of the word problem for varieties of idempotent semigroups. The proof of 2) for TRS
uses the fact that canonical term rewrite systems for regular semigroup theories are of a
very specific form. Regular means that the variables occuning on the left side or right side
of an identity are the same. Thus LR is regular but RB is not regular.

Lemma

Let E be a regular semigroup theory and let R be a canonical TRS for E. Then there is a

reduction chain (x-y)-z i>R x-(y-z) or x-(y-z) j'—>R (x-y)-z. If, in addition, R is reduced

then (modulo variable renaming ) (x-y)-z —) x-(y-z) e R U R’l.

The reduced canonical system S for RB shows that the condition "E regular" is necessary.
Now the following may be proved, using the fact that for all n the identity

‘x l - (x2o ( . . . ( xn_1- (xn - (x1 - (x2 - ( . . . ( xn -1 -xn ) . . . ) ) ) ) ) . . . ) )  = xl-(xz-(...(xn_l-xn)...))

is valid in any idempotent semigroup.

Proposition
Let E be a regular semigroup theory defining a variety of idempotent semi groups. Then
there does not exist a finite canonical TRS for E.
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Let m be a monoid that is given through a finite string-rewriting system 
S on alphabet ~. One way to attempt to solve the word problem for m 
consists in trying to determine a finite canonical string-rewriting system 
R on ~ that is equivalent to S by way of completion. However, even if 
the word problem for m is decidable, there may not exist a finite 
canonical system R that is equivalent to S as exemplified by the system 
S = {[aba.bab]} [2]. In some cases introducing additional letters as ab
breviations for certain words from ~* will help to overcome this difficulty, 
but this does not always work, either. In fact, there exist finitely presented 
monoids with decidable word problem that cannot be presented by any 
fini te canonical string-rewriting system, no matter which finite set of 
generators we use [4]. On the other hand, every finitely generated 
monoid with a decidable word problem can be embedded into a monoid 
that is presented by a finite string-rewriting system which is canonical 
on the embedded monoid [1]. Here we are concerned with a decision 
problem that is closely related to this embedding theorem, and which 
we call the PROBLEM OF RESTRICTION; 
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Le t  M be  a mono id  t ha t  i s  g iven  th rough  a f i n i t e  s t r i ng—rewr i t i ng  sys t em
S on a lphabe t  2 .  One  way  to  a t t emp t  t o  so lve  t he  word  p rob lem fo r  SR
cons i s t s  i n  t ry ing  to  de t e rmine  a f i n i t e  canon ica l  s t r i ng - r ewr i t i ng  sys t em
R on  Z t ha t  i s  equ iva l en t  t o  S by  way  of comple t i on .  Howeve r ,  even  if
t he  word  p rob lem for am i s  dec idab le ,  t he re  may  no t  ex i s t  a f i n i t e
canon ica l  sy s t em R t ha t  i s  equ iva l en t  t o  S a s  exempl i f i ed  by  the  sys t em
S = { [aba ,bab ]}  [ 2 ] .  In  some  case s  i n t roduc ing  add i t i ona l  l e t t e r s  a s  ab -
brev i a t i ons  fo r  ce r t a in  words  f rom 2*  wi l l  he lp  t o  ove rcome  th i s  d i f f i cu l ty ,
bu t  t h i s  does  no t  a lways  work ,  e i t he r .  I n  f ac t ,  t he re  ex i s t  f i n i t e ly  p re sen t ed
mono ids  w i th  dec idab le  word  p rob lem tha t  canno t  be  p re sen t ed  by  any
f in i t e  canon ica l  s t r i ng—rewr i t i ng  sys t em,  no  ma t t e r  wh ich  f i n i t e  s e t  of
gene ra to r s  we  use  [4]. On the  o the r  hand ,  every f i n i t e ly  gene ra t ed
mono id  w i th  a dec idab le  word  p rob lem can  be  "embedded  in to  a mono id
t ha t  i s  p r e sen t ed  by  a f i n i t e  s t r i ng - r ewr i t i ng  sys t em wh ich  i s  canon ica l
on  the  embedded  mono id  [I].  He re  we a re  conce rned  wi th  a dec i s ion
prob lem tha t  i s  c lo se ly  r e l a t ed  t o  t h i s  embedd ing  theo rem,  and  wh ich
we  ca l l  t he  PROBLEM OF RESTRICTION:





INSTANCE:	 A finite string-rewriting system R1 on alphabet L1 such 
that the word problem for R1 is decidable, and a finite 
string-rewriting system Rz on alphabet LZ~ L1. 

QUESTION:	 Is <-*->R1 = <-*->Rzl~1X~*' Le., is the congruence <-*->R1 
the restriction of the congruence <-*->RZ to L; ? 

The following	 results have been obtained.
 

Theorem 1. The following restricted version of the PROBLEM OF RESTRIC

TION is undecidable in general:
 
INSTANCE: A finite, length-reducing, and confluent string-rewriting
 

system R on	 alphabet LZ' and a subalphabet L1 ~ LZ' z 
QUESTION: Is <-*->Rzl~ix~* = id~t ? 

Here a string-rewriting system R is called length-reducing if III > Irl
 
holds for each rule (1 -> r] of R. It is called monadic if it is length

reducing, and also r E L u {e} holds for each rule (1 -> r] of R.
 

Theorem 2. The following restricted version of the PROBLEM OF RESTRIC

TION is undec idable in general:
 
INSTANCE: A finite monadic string-rewriting system Rz on alphabet
 

LZ such that the word problem for R is decidable, andz 
a sUbalphabet L1 ~ LZ' 

QUESTION: Is <-'*->Rzl~ix~*= id~* ? 

Theorem 3. The PROBLEM OF RESTRICTION is decidable, if Rz is being 
restricted to finite, monadic, and confluent string-rewriting systems. 

The combinatorial restrictions of Theorem 3 can be relaxed somewhat 
if algebraic restrictions are placed on the monoids presented. 

Theorem 4. The following variant of the PROBLEM OF RESTRICTION is 
decidable: 
INSTANCE: A finite string-rewriting system R1 on alphabet L such

1 
tha t the word problem for R1 is decidable, and the 
monoid ID11 := L;/ <----.!..->R1 is a group, and a finite monadic 
string-rewriting system Rz on alphabet LZ ~ L such that1 

is confluent on [e]R 'Rz z 
QUESTION: IS <-->R1'* -- <-->'* RZ I~ix~* ?. 
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INSTANCE:  A f i n i t e  s t r i ng - r ewr i t i ng  sys t em R1 on  a lphabe t  21 such
t ha t  t he  word  p rob lem fo r  R1 i s  dec idab le ,  and  a f i n i t e
s t r i ng—rewr i t i ng  sys t em R2  on  a lphabe t  22 ;  21.

are _ are . - areOUESTION: I s  < >RI - < >R2 ???-2T" 1.e.‚ IS t he  congruence  < >R1

the restriction of the congruence < * >32 to 2;" ?

The  fo l l owing  r e su l t s  have  been  ob t a ined .

Theorem 1. The  fo l l owing  r e s t r i c t ed  ve r s ion  of t he  PROBLEM OF RESTRIC-
TION i s  undec idab le  i n  gene ra l :
INSTANCE:  A f i n i t e ,  l eng th—reduc ing ,  and  con f luen t  s t r i ng—rewr i t i ng

sys t em R2  on  a lphabe t  222, and  a suba lphabe t  21 7Q 22 .
- _ate : ' ält— ?OUESTION. I s  < >R2 |z fxz i t  ld;1 .

Here a s t r ing-rewri t ing system R is  called length-reducing if Ill > lrl
ho lds  fo r  each  ru l e  [1  ——> r ]  o f  R .  I t  i s  c a l l ed  monadic  i f  i t  i s  l eng th—
r educ ing ,  and  a l so  I € 2 u {e} ho lds  for each  ru l e  [1 —> r] of R.

Theorem 2. The  fo l l owing  r e s t r i c t ed  ve r s ion  of t he  PROBLEM OF RESTRIC-
TION i s  undec idab le  i n  gene ra l :
INSTANCE: A f in i te  monad ic  s t r ing—rewri t ing sys t em R2  on  a lphabe t

22  such  tha t  t he  word  problem for R2  i s  dec idab le ,  and
a suba lphabe t  21 7C, 22 .

- __ale : ' in 9QUESTION.  IS  < >R2 |Efx2 f  1(112l .

Theorem 3. The PROBLEM OF RESTRICTION i s  dec idab le ,  if R2  i s  be ing
re s t r i c t ed  t o  f i n i t e ,  monad ic ,  and  con f luen t  s t r i ng—rewr i t i ng  sys t ems .

The  combina to r i a l  r e s t r i c t i ons  of Theo rem 3 can  be  r e l axed  somewha t
if a lgeb ra i c  r e s t r i c t i ons  a r e  p l aced  on  the  mono ids  p re sen t ed .

Theorem 4 .  The  fo l l owing  va r i an t  of t he  PROBLEM OF RESTRICTION i s
dec idab le :
INSTANCE:  A f i n i t e  s t r i ng - r ewr i t i ng  sys t em R1 on  a lphabe t  21 such

tha t  t he  word  p rob lem for  R1 i s  dec idab le ,  and  the
monoid am! == Z?/< * >R1is a group, and  a finite monadic
s t r i ng - r ewr i t i ng  sys t em R2  on  a lphabe t  22  ; 21 such  tha t
R2 i s  con f luen t  on  [ e ]Rz .

. * _. _* ‚„ 9QUESTION. Is < >31 - < >R2|zfl





Additional algebraic restrictions allow to even consider non-monadic 
string-rewriting systems R2 . 

Theorem 6. The following variant of the PROBLEM OF RESTRICTION is 
decidable: 
INSTANCE: A finite Noetherian string-rewriting system R1 on alphabet 

L1 such that R1 is confluent on [eJR l' and such that the 
monoid m11 := L:/<-*->R1 is a group, and a finite, weight
reducing, and confluent string-rewriting system R2 on 
alphabet L 2 ~ L1 such that the monoid m12 := L; / <-*->R2 

is a group. 
QUESTION: Is <-*->R1 = <-*-> R21~ix~t ? 

The	 proofs of Theorems 1 to 3 can be found in [3]. 
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Addi t i ona l  a lgeb ra i c  r e s t r i c t i ons  a l l ow  to  even cons ide r  non—monad ic
s t r i ng—rewr i t i ng  sys t ems  R2 .

Theorem 5. The  fo l l owing  va r i an t  of t he  PROBLEM OF RESTRICTION i s
dec idab le :
INSTANCE:  A f i n i t e  Noe the r i an  s t r i ng—rewr i t i ng  sys t em R1 on  a lphabe t

21 such  tha t  R1 i s  conf luent  on [eJRP and  such  tha t  the
monoid xml ==: Ef/< * >R1 is  a group, and  a finite. weight -
r educ ing ,  and  con f luen t  s t r i ng - r ewr i t i ng  sys t em R2  on
alphabet 22 ; 21 such that the monoid mg == 2: /<—*—>R
i s  a g roup .

QUESTION: Is < * >R1 = <

2

*-
>Rz |E i "x  * ?

The proofs of Theorems 1 to  3 can be  found in [3].
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1. Introduction 

Deciding equality is the following problem
 
INPUT: E, a set of equational axioms, and two terms s,t.
 
QUESTION: Does s =E t hold?
 

The rewriting approach to this problem is first to transform E into a convergent
 
term rewriting system R. If this is successful then E-equality can be tested by
 
rewriting: s =E t iff ~ = t where ~ and t are the unique R-normal forms of sand
 
t. 
Unfortunately, the Knuth-Bendix completion procedure - which transforms E 
into R - may fail because i) it produces an infinite number of rules or ii) it en
counters equations that cannot be ordered by the reduction order in use. We 
are interested in tools to overcome these problems for special axiom systems 
expressing generalized associativity and generalized commutativity. Both 
schematas of axioms allow only finite congruence classes, so the E-equality is 
decidable. But preprocessing E into R will increase the efficiency. Such problems 
appear when one uses globally finite rewriting systems instead of rewriting 
modulo a congruence, see [Gobel 1987]. 

2. Generalized associativity 

Intuitively, by an equation expressing generalized associativity we 
equations of the form 

f[[f[xl,x2,x3)' x4' x5) = f(xl' f(x2,x3'x 4 J. x5) or 

mean 

g(g[xl'x2J. g[x3,x4)) = 9'(xl' 9'(x2' g[x3,x4))) 
One characteristic of such an equation s = t is that sand t, expressed as trees, 
have the same frontier. Another characteristic is that they are length-equal. 

Definition: Let T[F, V) be the set of terms built with operators in F and variables
 
in V, let s, t E T(F, V)
 
a) s, t are leaf-equal if frontier(s) = frontier( t)
 
b) s,t are length-equal if Isl F = ItlF and Isl x for all x E V.
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1. In t roduc t ion

Dec id ing  equa l i t y  i s  t he  fo l l owing  p rob lem
INPUT: E,a  s e t  o f  equa t iona l  ax ioms ,  and  two  t e rms  s , t .
QUESTION: Does  s =E t ho ld  ?

The r ewr i t i ng  approach  to  th i s  p rob l em i s  f i r s t  t o  t rans form E i n to  a conve rgen t
t e rm  r ewr i t i ng  sys t em R .  If t h i s  i s  succes s fu l  t hen  E—equa l i t y  can  be  t e s t ed  by
rewr i t i ng :  s =E t iff € E ’t whe re  Q and  ? are  t he  un ique  R-no rma l  fo rms  of s and
t..
Unfor tuna t e ly ,  t he  Knu th -Bend ix  comple t i on  p rocedure  - which  t r ans fo rms  E
i n to  R - may f a i l  because  i ]  i t  p roduces  an  i n f in i t e  number  of ru l e s  o r  i i ]  i t  en-
coun te r s  equa t ions  t ha t  c anno t  be  o rde red  by  the  r educ t ion  o rde r  i n  u se .  We
are  i n t e r e s t ed  i n  t oo l s  t o  ove rcome  these  p rob lems  fo r  spec i a l  ax iom sys t ems
expre s s ing  gene ra l i zed  a s soc ia t iv i ty  and  gene ra l i zed  commuta t iv i ty .  Both
schema ta s  of ax ioms  a l l ow  on ly  f i n i t e  congruence  c lasses ,  so  t he  E -equa l i t y  is
dec idab le .  Bu t  p r ep roces s ing  E i n to  R wi l l  i nc rea se  t he  e f f i c i ency .  Such  p rob lems
appea r  when  one u se s  g loba l ly  f in i t e  r ewr i t i ng  sys tems  in s t ead  of r ewr i t i ng
modu lo  a congruence .  s ee  [Göbe l  1987].

2. General ized associat ivi ty

In tu i t ive ly ,  by  an  equa t ion  express ing  gene ra l i zed  a s soc i a t i v i t y  we mean
equa t ions  of t he  fo rm

f[[f[x1,x2,x3], x4,  x5] = f[x1, f[x2,x3,x4], x5] or

g[g [x1 .x2 ] .  g[x3.x4]] = g'[x1. gixz. g[x3.x4]]] .
One  cha rac t e r i s t i c  of such  an  equa t ion  s = t i s  t ha t  s and  t ,  exp re s sed  a s  t r ee s ,
have  t he  s ame  f ron t i e r .  Ano the r  cha rac t e r i s t i c  i s  t ha t  t hey  a r e  l eng th -equa l .

Defini t ion:  Le t  ".I.‘[F,V] be  t he  se t  of t e rms  bu i l t  w i th  opera to r s  in  F and  va r i ab l e s
in  V, l e t  s , t  € T[F‚V]
a ]  s , t  a r e  leaf-equal  if f ront ier [s]  E f ront ier [ t ]
b] s,t a re  length-equal if | l  = ItIF and  lslx for a l l  x E V.

—1-—





The key observation of our approach is 

Lemma 1: The Knuth-Bendix completion procedure started with a leaf- (resp. a 
length-) equal set of equations produces only leaf- (resp. length-) equal rules 
and equations. 

So, to avoid abortion of the Knuth-Bendix procedure when started with a set of 
leaf-equal equations. one has to construct a reduction ordering which is total 
on leaf-equal terms. To do so, we start with a total precedence .> on F and 
denote by n (s) the multiset of leaves of term s (where s is represented as a 
tree). 

Definition: Length order >L 
s == f( s l ...·. sm) >L t == g(t1,..·,tn ) 

iff lexicographically (0:) n(s) -;. n(t) or (~) Isl > It 1 

or (1') f .> g or (3) (sl.· ... sn) >L.lex (t1.···.tn ) 

Lemma 2: >L is a reduction order and total on leaf-equal terms. 

This together with Lemma 1 gives an unfailing Knuth-Bendix completion procedure 
for leaf-equal equational systems E as input. It can be used as an decision 
procedure for E-equality if E is leaf- and length-equal. For. in this case one can 
produce during completion the rules in increasing length and stop for the problem 
"s =E t ?" as soon as all rules I -> r with length III ,;: Isl are produced. 

Theorem: The Knuth-Bendix completion procedure working with a length order 
does not abort for leaf-equal equational systems E as input. It gives a decision 
procedure for E-equality if E is both leaf- and length-equal. 

3. Generalized Commutativity 

By a permutation equation we mean an equation of the form 

f(xl'''''x n ) = f(X1t(l)· ..··x1t(n)) 
where 1t is a permutation. We write f(x) = f(1t(xJ) in this case. 
The problem now is to solve E-equality "s =E t ?" for 

E = {f(x) = f(1ti(x)); i = 1, .... k} . 

Of course. no permutation equation can be oriented by a reduction order. So 
one may start the unfailing Knuth-Bendix procedure. But it will generate too 
much equations, namely O(n !) equations in many cases. 

We notice 
a) applying f(x) = f(1t(xJ) to f(t1..... t ) results in the transformation ofn

[ = t1' .... t into 1t(f) or 1t-1(f).n 
b) f(x1 ..... xn) =E f(x1t[l) ...·.x1t(n)) iff 1t E G, where G = <1tl ..... 1tk> is the sub

group of the full permutation group <Sn generated by 1t1' .... 1tk. 
c) f( t1 ... ·. t n ) =E f(sl.· ... sn) iff for some 1t E G ti =E s1t(i) for i = 1..... n. 
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The  key  obse rva t ion  of ou r  app roach  i s

Lemma 1: The Knuth-Bendix  comple t ion  p rocedure  s t a r t ed  w i th  a leaf— [resp. a
length-] equa l  s e t  of equa t ions  p roduces  on ly  l ea i -  [ r e sp .  l eng th—]  equa l  ru l e s
and  equa t ions .

So ,  t o  avo id  abo r t i on  of t he  Knu th—Bend ix  p rocedure  when  s t a r t ed  w i th  a s e t  of
l ea f - equa l  equa t ions ,  one  has  to  cons t ruc t  a r educ t ion  o rde r ing  which  i s  to ta l
on l ea f - equa l  t e rms .  To do  so,  we  s t a r t  wi th  a to t a l  p recedence  -> on  F and
deno te  by  t l : [s]  t he  mu l t i s e t  of l e aves  of t e rm  5 [whe re  s i s  r ep re sen t ed  a s  a
t r ee ] .

Definit ion:  Leng th  o rde r  >L

s E f[sl,„.‚sm] >L t E g[t1,...,tn]
i i i  l ex icograph ica l ly  [a ]  n[s]  _; u [ t ]  or  [ß] lsl > ltl

o r  [7]  f -> g or [8] [sl‚...‚sn] >L‚ Iex  [t1,...,tn]

Lemma 2: >L i s  a r educ t ion  o rde r  and  to t a l  on leaf—equal t e rms .

This  t oge the r  w i th  Lemma 1 gives an  un fa i l i ng  Knu th—Bend ix  comple t i on  p rocedure
fo r  l e a f—equa l  equa t iona l  sy s t ems  E as  i npu t .  I t  c an  be  u sed  a s  an  dec i s ion
p rocedure  fo r  E—equa l i t y  if E i s  leaf— and  l eng th—equa l .  For ,  i n  t h i s  ca se  one  can
p roduce  du r ing  comple t i on  t he  ru l e s  i n  i nc rea s ing  l eng th  and  s top  fo r  t he  p rob lem
"5  =E t ?-" a s  soon as  a l l  r u l e s  1 ——> r wi th  l eng th  Ill S Isl a r e  p roduced .

Theorem: The  Knu th -Bend ix  comple t i on  p rocedure  work ing  wi th  a l eng th  o rde r
does  no t  abo r t  fo r  l e a fuequa l  equa t iona l  sy s t ems  E as  i npu t .  I t  g ives  a dec i s ion
p rocedure  fo r  E -equa l i t y  if E i s  bo th  l ea f -  and  l eng th -equa l .

3. General ized Commutativity

By a pe rmuta t i on  equa t ion  we  mean  an  equa t ion  of t he  fo rm
f[x1‚...‚xn] = {[xn1]'°"'x1t[n]]

where  1t i s  a pe rmuta t ion .  We  wr i t e  {[325 = Hub—(]] i n  t h i s  case.
The  p rob lem now i s  t o  so lve  E-equa l i ty  " s  E t ?” for

E = {fh—c] = f[ni[ä]]; i = 1 ..... k} .

Of cou r se ,  no  pe rmuta t i on  equa t ion  can  be  o r i en t ed  by  a r educ t ion  o rde r .  So
one  may  s t a r t  t he  unfa i l ing  Knuth—Bendix p rocedure .  Bu t  i t  w i l l  gene ra t e  too
much equations,  namely O[n !] equations in  many cases.

We no t i ce
a ]  app ly ing  f[>_c] = f[1c[)'<]] t o  f[t1,...,tn] r e su l t s  i n  t he  t r ans fo rma t ion  of

t- = t1....,tn i n to  rc[f] o r  at'1[’r.'].
b ]  f_[x1,...‚xn] =E { [xn [1 ] ‚ . . . ‚ xn [n ] ]  i i i  ‘11: E G.  where G = <1c1,...,rck> i s  t he  sub-

group  of t he  fu l l  pe rmu ta t i on  g roup  @n gene ra t ed  by  1:1,...,rtk.
c]  f[t1,...,tn] "'E {[sl‚...,sn] iff for some 71? E G t i  =E Sufi ]  for i = 1,...,n.

_2_ .





There are polynomial time algorithms to transform U = {rc1 ..... n:k} into V = {Cl1' .... Cl m} 
such that a = <U> = <V> and the problem" n: Ea?" can be solved in time O(nJ, 
see [FUrst et al 1980]. This algorithm can be used to order sequences a = aV.. an 
with ai :I: aj for i :I: j modulo a in polynomial time. Le. to compute the lexico
graphical minimal n:[a) = an:[1) ...an:[n) among all n: E a. 

The permutations Cli in the transformed set V of generators for a can directly 
be translated into a set of rewrite rules which rewrite the term f[a1' ..... a n ) into 
the minimal term f[an:(1) ..... an:[n]) in its E-congruence class. 

In general one can solve the problem "t = f[t1...·.tn ) =E s = f[s1 ..... sn) ?" by sorting 
both terms bottom up modulo a. Then s =E t iff the sorted forms are identical. 
Unfortunately. to do so we need sorting modulo a also if some element ai in 
the sequence a = a1..... an appear more than once. and in this case the above 
mentioned sorting algorithm becomes non-deterministic. Even worse. this 
generalized problem of sorting modulo a is NP-hard. see [Babai and Luks 1983]. 
But nevertheless. this approach of sorting modulo a leads in general to more 
efficient algorithms then computing all permutations in a. And this basically 
is what the unfailing Knuth-Bendix procedure does. For example. from V one 
can see whether a = en' In this case sorting modulo a is the normal sorting 
and can be done in time O[n·log n). 
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i s  wha t  t he  un fa i l i ng  Knu th -Bend ix  p rocedure  does .  Fo r  example ,  f rom V one
can  see  whe ther  G = ©n° In  t h i s  case so r t ing  modulo  G i s  t he  normal  sorting
and  can  be  done  in  t ime  O[n-log n].
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Rewriting in abelian monoids as an appropriate means for the 

simulation of Petri nets 1 

Harald - Reto Fonio 

GMD, Institut fUr Systemtechnik, 5205 St Augustin; email fonio@gmdzi.uucp 

Among the specification tools for the design of distributed systems Petri nets are getting more and 

more important. One of the reasons for this fact is that the constructive characteristics of the theory of 

Petri nets can be understood also as a graphical paradigm and hence be applied as an advantageous 

support for the intuition when specifying parallel processes. For the analysis of the total behaviour of 

distributed systems it is necessary to describe the local characteristics and the parts of these systems 

and to relate them with each other. It is characteristical for these systems that processes can be 

executed concurrently or be started in conflict with each other. But it is also of some importance that 

the data to be processed as well as the processes can be specified locally. But then the localisation of 

partial aspects in distributed systems requires to work out the interdependencies of the system parts 

using them as characteristics for the scheduling of these system parts. All these aspects are covered in 

a natural way by Petri nets, for example by high level nets. 

Working with high level nets means to specify both the data and the processes which manipulate 

the data. The data being described for example initially by abstract data types, this suggests to 

combine the expressive power of Petri nets with the theory of abstract data types. First valuable steps 

into this direction have been shown up in lKra 89/ and in /Sch 89/. But albeith Petri nets are to be 

understood 'quite easily' it was surprisingly difficult to fit Petri nets into such an algebraic context 

which were able to reflect the cited aspects of locality in its own light. An appropriate description of 

the data space had to be found which provides the states space over which the actions of the Petri nets 

could be defined. One of the reasons for these efforts was of course to open the specification of 

distributed systems towards the methodology of abstract data types and to use the term rewriting 

methods being developed in the ADT - context for the analysis and for the simulation of these 

systems. In this context it was a useful hint that Petri nets themselves are already substitution 

systems. 

A satisfactory solution of this problems has been given by Meseguer and Montanari in a brilliant 

paper (/MeMo 88/). Also Kaplan has already worked into this direction (lKa 87/). Independently of 

these authors I have introduced abelian additive monoids allowing cancellation, shortly AC 

monoids, for spanning up the states space. The cancellation property together with the addition 

operation allows for a unique algebraic representation of the substitution mechanism within these 

monoids, a point where associative and commutative term rewriting techniques come in quite 

naturally. Combinations of cancelling and adding items within terms of such monoids are nothing else 

This work was performed in the frame of the ESPRIT Project 125 - GRASPIN. 
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executed concurrently or be started in conflict with each other. But it is also of some importance that
the data to be processed as well as the processes can be specified locally. But then the localisation of
partial aspects in distributed systems requires to work out the interdependencies of the system parts
using them as characteristics for the scheduling of these system parts. All these aspects are covered in
a natural way by Petri nets, for example by high level nets.
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the data. The data being described for example initially by abstract data types, this suggests to
combine the expressive power of Petri nets with the theory of abstract data types. First valuable steps
into this direction have been shown up in [Km 89/ and in /Sch 89]. But albeith Petri nets are to be
understood 'quite easily’ it was surprisingly difficult to fit Petri nets into such an algebraic context
which were able to reflect the cited aspects of locality in its own light. An appr0priate description of

. the data space had to be found which provides the states space over which the actions of the Petri nets
could be defined. One of the reasons for these efforts was of course to open the specification of
distributed systems towards the methodology of abstract data types and to use the term rewriting
methods being developed in the ADT - context for the analysis and for the simulation of these
systems. In this context it was a useful hint that Petri nets themselves are already substitution
systems.

A satisfactory solution of this problems has been given by Meseguer and Montanari in a brilliant
paper {/MeMo 88/). Also Kaplan has already worked into this direction (/Ka 87/). Independently of
these authors I have introduced abelian additive monoids allowing cancellation, shortly AC -
monoids, for spanning up the states space. The cancellation property together with the addition
operation allows for a unique algebraic representation of the substitution mechanism within these
monoids, a point where associative and commutative term rewriting techniques come in quite
naturally. Combinations of cancelling and adding items within terms of such monoids are nothing else
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than rewrite rules for these structures. Thus the cancellation/addition combinations form the algebraic 

link between the rewrite rules mentioned above and the firing rules of Petri nets. This provides the 

bridge for the algebraic simulation of Petri nets by associative commutative term rewriting within 

freely generated abelian structures. 

AC - monoids, which are decomposable into direct sums, allow to describe local aspects using the 

injections and projections. Here we think for example of sequential and parallel composition of local 

steps. AC - monoids can be generated freely over sets of interesting data where the latter can be 

presented for example by initial abstract data types. Essentially the free construction guarantees the 

invariance, the logical independence of the description of the data with respect to the substitution steps 

in the underlying monoid. 

Now an abelian monoid freely generated over some set is nothing else than the class of multisets 

(bags) defined with respect to that set, and there is a uniquely defined injective embedding of this set 

into the monoid generated over it. It can be specified by a parameterized specification using. the 

embeddings as copy operations and interpreting the set of the data as the actualization of the 

parameter. In this context the cancellation/addition combinations appear as rules for such 

specifications. This opens the way towards specifying Petri nets and their behaviours by ADTs. 

It remains to single out the class of Petri nets which we are going to treat: the high level nets. This 

will be done in three conceptional steps. We remind of Kowalski's paradigm "ALGORITHM = 
LOGIC + CONTROL" which must be a guide line for the specification of a distributed system,too. 

Thus we speak on one hand about the states as objects within a state space spanned up by the data and 

on the other hand about the actions on these states as state manipulating actions leaving the data 

invariant. 

The Petri net realization begins with a triple N =(S, T, F) of sets S of S-elements, T of T-elements 

and F of directed arcs connecting only S- and T-elements such that these sets obey the Petri net 

axioms (/BeFe 86/). There is a well defmed 'projection' <p:F-S. A resource R is associated to the 

net N which is a family R ={Mslse S of at most countable sets of "token types". Markings of the net N are 

functions Jl: S- Us 9l1(Ms) 1 such that Jl(s)e 9d"(Ms) for any SE S. 
SE 

Labels of the net N are functions A.:F-~ 5\1{M<P(t) such that A.(f)E 5\1{M<P(f) for any feP. A capacity 

K on the netNis a function K: ~ {s}xMs-IN 2 such that for any seS K(s,x)e {O, oo} for all but finitely 

many xeMs; we call a token type xEMs K-finite ifK(s,x) < 00 and nontrivial if0 < K(s,x). A marking J! is K

admissible if for any seS and xeMs #(x,Jl(s»:S; K(s,x). This closes the first step of the definition. 

The K-complementation of the net N is a net NK := (SK, T, FK) which contains the net N, where SK\S consists 

of all those complements .s of Se S such that Ms allows for nontrivial K-finite token types x, and FK\F contains for 

n 
%(A) denotes for any set A the class of finite multisets over A. and i'!"t ni.ai for naturaIs ni and aiE A 

denotes the multiset containing each ai ni-times. For any multiset m and xem #(x,m) is the number of 
occurrences of x in ffi. 

2 IN denotes the naturals together with 00. f(x) =00 for some function f: A - IN means that f is 
undefined on x. 
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than rewrite rules for these structures. Thus the cancellation/addition combinations form the algebraic
link between the rewrite rules mentioned above and the firing rules of Petri nets. This provides the
bridge for the algebraic simulation of Petri nets by associative commutative term rewriting within
freely generated abelian structures.

AC - monoids, which are decomposable into direct sums, allow to describe local aspects using the
injections and projections. Here we think for example of sequential and parallel composition of local
steps. AC - monoids can be generated freely over sets of interesting data where the latter can be
presented for example by initial abstract data types. Essentially the free construction guarantees the
invariance, the logical independence of the description of the data with respect to the substitution steps

in the underlying monoid.
Now an abelian monoid freely generated over some set is nothing else than the class of multisets

(bags) defined with respect to that set, and there is a uniquely defined inj ective embedding of this set
into the monoid generated over it. It can be specified by a parameterized specification using- the
embeddings as my Operations and interpreting the set of the data as the actualization of the
parameter. In this context the cancellation/addition .combinations appear as  rules for such
specifications. This opens the way towards specifying Petri nets and their behaviours by ADT's.

It remains to single out the class of Petri nets which we are going to treat: the high level nets. This
will be done in three conceptional steps. We remind of Kowalski's paradigm "ALGORITHM ==
LOGIC + CONTROL" which must be a guide line for the specification of a distributed system,too.
Thus we speak on one hand about the states as objects within a state space spanned up by the data and
on the other hand about the actions on these states as state manipulating actions leaving the data
invariant.

The Petri net realization begins with a triple N = (S, T, F) of sets S of S-elements, T of T—elements
and F of directed arcs connecting only S- and T—elements such that these sets obey the Petri net
axioms (IBeFe 86/). There is a well defined 'projection' q) :F  -—--- S. A resource R is associated to the
net N which is a family R ={Ms}se S of at most countable sets of "token types". Markings of the net N are

functions it : S-——'- skejs ill/[(M5) 1 such that u(s)e ill/[(M3) for any se S.

Labels of the net N are functions 7t. : F—-- % fMCMcpm) such that M05 EM(M<p(f)) for any fe F. A capacity

K on the net N is a function K : SEKJS {s}><Ms—-—'- N 2 such that for any se S K(s,x)e {0, 0°} for all but finitely

many xe Ms; we call a token type xe Ms K—finite if K(s,x) < 00 and nontrivial if 0 < K(s,x). A marking p. is K—
admissible if for any se S and xe Ms #(x,u(s)) $ K(s‚x). This closes the first step of the definition.

The K—complementation of the net N is a net NK := (SK, T, FK) which contains the net N, where SK\S consists
of all those complements s of se S such that Ms allows for nontrivial K-finite token types it, and FK\F contains for
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anyteT all those (£,t) (resp. (t,s») for which (t,s)eF (resp. (s,t)eF). The resource R is complemented to RK:= 

{Ms}se SK where M~ consists of the nontrivial K-finite token types of Ms . The label Ais complemented to AK by 

extending A by AK((.s.,t» := A((t,S» and AK((t,s» := A((S,t» for £e SK\S. K-admissible markings ~ are 

complemented to K-admissible markings ~K by extending ~ by ~KW := ( +M KCs.,x).x)\,J.(s) for ~e SK\S (the 
XE I 

sums involved are finite). Given a K-admissible marking ~ or the complemented marking ~K we define for any 

T-element t a firing rule t : ~ ---~' or tK : ~K - Jl'K by extending the corresponding definitions from 

place/transition nets (/BeFe 861) to our case. We say that aT-element t or the corresponding firing rule of t has 

concession in a K-admissible marking ~ if for all SE SK and aE FK with a = (s,t) the relation AK(a) k ~K(S) 

holds. We apply firing rules only in the case ofconcession. The reason for K-complementations is to avoid dealing 

explicitly with the postconditions in the definition ofconcession. Thus the second step ofthe definition is perfonned, 

and in the sequal we deal only with K-complete nets in the sense ofthe definition above. 

The marldngs stand for the states; they are generated over the resources distributed over the S-elements. The state 

changing actions are realized by the firing rules. Oearly they do not interfere with any internal structure on the sets 

Ms . Thus Petri net specifications meet Kowalski's paradigm. 

The token types represent the data which are processed by applying the firing rules of the Petri net For the third 

step leading to the definition ofhigh level nets we assume SPEC =0:, EQ) to be a computable specification for a 

signature L =(SO, OP) over sets SO ofsorts and OP of operation symbols as well as a set EQ ofequations together 

with a SO-sorted family X ={Xso}soe SO of sets Xso of so-sorted variables. We say that the specification SPEC is 

computable if it allows for a convergent set RU of rewrite rules reflecting all the equations generated by the set EQ. 

We split the resource R ={Ms} SE S into two resources RG ={MG,s} SE S and RX ={MX,s} SE S where the 

members MG,s (resp. MX,s ) are sets of ground tenns TI:,so (resp. tenns with/without variables TI:(X)so for the 

same S-element s and the same sort so ! ) over sorts so of interest in L . We redefme moreover markings over 

ground tenns as ~: 5 - ~ 9vl(MG,s) as well labels over all the tenns as A : F - ~ !M(MX,<i>(t) . But 

then the concession checks require equation solving via suitable ground substitutions, and the applications of the 

firing rules are done with respect to the ground substitutions detennined occasionally in the co~cession checks. It 

turns out again that the firing rules leave the description ofthe data invariant. 

The result of these three steps are S-sorted families ofmultisets or abelian monoids. Taking finally the coproduct 

over these families we get the total abelian monoids providing the algebraic states spaces for the distributed systems. 
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concession in a K—admissible marking u if for all se SK and ae FK with a = (s,t) the relation “((a) g uK(s)

holds. We apply firing rules only in the case of concession. The reason for K—complementations is to avoid dealing
explicitly with the postconditions in the definition of concession. Thus the second step of the definition is performed,

and in the sequal we deal only with K-complete nets in the sense of the definition above.

The markings stand for the states; they are generated over the resources distributed over the S—elements. The state

changing actions are realized by the firing rules. Clearly they do not interfere with any intemal structure on the sets

MS . Thus Petti net specifications meet Kowalski's paradigm.
The token types represent the data which are proCessed by applying the firing rulés of the Petri net. For the third

step leading to the definition of high level nets we assume SPEC = (2, EQ) to be a computable specification for a
signature 2‘. = (SO, OP) over sets SO of sorts and OP of operation symbols as well as a set EQ of equations together

with a SO—sorted family X ={Xso}soe so of sets Xso of so—sorted variables. We say that the specification SPEC is
computable if it allows for a convergent set RU of rewrite rules reflecting all the equations generated by the set EQ.

We split the resource R = {M3} SG 3 into two resources RG = [MG,s}se s and Rx = {MX,S} se s where the
members Me’s (resp. MX,s ) are sets of ground terms T2,“, (resp. terms with/without variables T2;(X)so for the
same S-element s and the same sort so ! ) over sorts so of interest in 2 . We redefine moreover markings over

ground terms as u :  S ——* U MMQS) as well labels over all the terms as 7t. : F——+ g: MMXJND) . Butse S

then the concession checks require equation solving via suitable ground substitutions, and the applications of the

firing rules are done with respect to the ground substitutions determined occasionally in the concession checks. It

turns out again that the firing rules leave the description of the data invariant.
The result of these three steps are S-sorted families of multisets or abelian monoids. Taking finally the coproduct

over these families we get the total abelian monoids providing the algebraic states spaces for the distributed systems.
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Abstract 

The Knuth-Bendix procedure for the cnmpletion of a rewrite rule system a.nd 
the Buchberger algorithm for computing a Gr6bncr basis of a polynomia.l idea.l are 
very simila.r in t.wo respects: t.hey 1J,)th sta,rt with an a.rbitra.ry specification of an 
algebraic structure (axioms for an pquat.i,'naJ t.heory and a basis for (l. polynomial 
ideal, respectively) which is transformed to a very special specification of this 
algebraic structure (a complete rt>.vvrite rule system and a Grobner basis of the 
polynomial ideal, respectively). This special specificat.ion allows to decide many 
problems concerning the given aJgebraic structure. Moreover, both algorithms 
achieve their goals by employing t.he salne basic concepts: formation of critical 
pairs and completion. 

i\lth()ugb the two methods arr (lbviously related, the exa.ct nature of this 
relation remains to be clarified·. Hasrrl rm previous work we show how the K nuth·· 
Bendix procedure a.nd t.he Buchberger a.Jgorit.hm ca.n be seen as special cases of 
a Inore general complet.ion procedure. 

1. Introduction 

The Buchberger a.lgorithm BlT has heen int,roduced by B. Buchberger in 196.5 [Bu 65]' 
[Bu 85a] and it solves the following prn hlp1Tl: 

given a. finite set F of lllultiva.ratc PolYllf1mials over a field, construct Cl- finite set 

F ' of multiva..riate polynomials s1Ich that ''';; F'" :=F' and -4 F' is Clmrch-Rosser. 

Here, ffJr a set F of polylloll1ia.ls, ;c: T-' is 1.Iw iele'1-l cOll,gruence l11odulo theidea,l generated by 
F' (i.e . .f "C:'F' g <==-> .f -- g ( idcal(F)) and 'p is a. certain Noctherian reduction relation on 
pnlynornialr; incluc;ed by'" [Ell 8.1<1] wit,h t.11P. prf)j)f'rf,y t.ha.t <--->p (the f!;CHexive-synurletrjc-
tra.nsitive closure of ---+ F) is equal to '.cC F. If F I =,. BU( F), then t.he Church-Rosser property 
guarantees, that. for a.rbitra.ry pol.Vll()miClls I, g the congrnence f ==p 9 can be d.ecided by 
computing norma.l forms of f and g lIWdulo .-' 1'" and checking for synt.actic equality. A 
ba.sis F ' with t.his property is usually called <l GTobner ba..sis [Bu 8.5a]. 

"') \V0rk reported herein ha~ l:wen suppnrl.~d hy l,h", F(lnd8 Z1/,r Porrler l l71,Q der 1lJissen8chaftlich.cn 

Fnr.~,·h1ln..Q under puyjed NI'. P676:1. 
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Abs t rac t

The Knuth—Bendix procedure for the completion of a rewrite rule system and
the Buchberger algorithm for computing; a Grobner  basis of a polynomial ideal are
very similar in  two respec t s :  t hey  both.  s t a r t  With an arbitrary specification of  an
algebraic structure (axioms for an eq1.1a.ti(mal theory and a basis for a polynomial.
ideal, respectively) which is transformed to  a very special. specification. of this
algebraic structure (a complete rewrite rule system and a. Grobner basis of. the
polynomial ideal, respectively). This  special specification. allows to decide many
problems concerning the  given algebraic s t ructure .  Moreover, both algorithms
achieve their goals by employing the  same basic concepts: formation of critical
pairs and. completion.

Although the  two methods are  rLi'ILn-riously related, the exact nature of this
relaticm remains t o  be  clarified: Based on previous work we Show how the  K n.uth.~-—-
Bendix procedure and the  Buchberger algorithm can be  seen as special cases of
a more general completion procedure.

1 . In t roduct ion

The Buchberger algorithm BU has been introduced by B. Buchberger in 1965 [Bu 65],
[Bu 85a] and i t  solves the  following prr'iblem:

given a finite s e t  F of mult ivarate polynumiials over a field, cons t ruc t  a f ini te  s e t
F ' of multivariate polyncunials such tha t  -'—;.- p :: -:—;—._p» and ——-> F: is Church—Rassen

Here ,  for a s e t  F of  polyncunials. ‘«:~: p is t he  ideal eitn‘igruence modulo  the  ideal generated by
F ( i s .  f 5—75}? g “::—“> f "g  E?- iclcal(F)_l and ‘p  is a certain Noetherian reduction relation on
po lynomia l s  induced by F [Bu 85a] with the property that ++}; (the reflexive-sym.metric---
transitive closure of —««>p) is equal. to p .  i t  F '  ::::— BU(F), then the Church—Rosser property
guarantees, that  for arbitrary polynomials f _, g the congruence f sap g can be  decided by
computing normal forms of f and g modulo --—\ p" and checking for syntactic equality. A
basis F'  with this property is usually called a Grcibner basis [Bu 85a].

*) Work repor ted  herein has  been suppor ted  by the  Fonds zur Fé'rder-rmg der  wissenschafi l ichcn
Forschnng unde r  projec t  Nr. 196763.
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Such a Grobner basis can be computed by the Buchberger algorithm BU in the fol
lowing way: 

F ' (- BU(F); 
[F and F I are finit.e sets of mult.ivariClt(' polynomials over a. field. 
=F = :== F' and --+ F' is Church-Rnssp.r.! 
F ' ~- F; 
while not all critical pairs ofF' are considered do 
(*) choose a critical pair (PI,PZ) of Ft; 

reduce (PI, pz) to normal forms (qJ, q2) modulu-t FI ; 
(**) if ql =I q2 then F ' <c-- FILl {qI _.- go;} endif 
endwhile 11 

The two basic strategies of the aJg()rithm are t,he formation of critical pairs in (*) and 
t.he successive completion step (**). A crit.i(~a] pair f){ pI is const.ructed in t.he following 
way: choose two different polynomials f, g in F I

; reduce the least common multiple of t.he 
leading terms of f and 9 by f, getting PI, and by g, getting P2; then (PI, P2) is a critical 
pair of F I Instead of reducing (PI, P2) t.o normal forms (ql' qz) and checking for synt.actic • 

equa.lity, one could reduce PI--- P2 a.nd check for equality to o. The polynomial PI . P2 
is usually called the S-polynomia.l nf f and g [Bu 8530]. Buchberger has sho"vn [Bu 6.51, 
[Bu 8530] that this algorithm terminates for all inputs and computes a. Grobner basis for 
idea-I(F). 

The same basic strategies ha.ve heen used independently by D.E. I<nuth and P.B. 
Bendix [KB 67] in the context of an eq uationaJ theory T over an algebra 1" of first.-order 
t.erms. The Knuth-Benclix procedure solves the following problem: 

given a Dnite set E of equations behreen Brst-order terms, construct a Bnite set 
E' of equations such that ::.::' 5 :·,·co {(I <l.nd.:· 5' is Church-Rosser and Noetherian. 

Here, for a. set E of first-order equations [HO ROL ==-13 is the equational t.heory genera.ted 
by E, i.e. t.he set of all equat.ions oS ~O. t \vhieh can be derived from E, E ~- .5 = t [BL 
83]. ---> 13 is the reduction rela.tion on t.erms induced by E viewed as a system of rewrite 
rules with =13 = <--t'E. Again, the Church··H.osser property guara.ntees t.hat. oS =13 t can 
he decided by reducing .5 and t to normal f()rrns modulo _.-7 E' a.nd checking for syntactic 
equality. A finite set of equations E, viewed as a. system of rewrite rules, such tha.t --+ E is 
Church-Rosser and Noet.herian is called a. caTJ,oniCf],1 rewrite rule system. 

The Knuth-Bendix procedure KB attempts to compute a ca.nonical rewrit.e rule system 
in the following way: 

El (- KB(E); 
[E and El a.re finite sets of equations of first-order terms "vhieh can be viewed 
as Noet.herian rewrite rule systems. 
'-':: E :..-, =' {;;' and ---\ E' is Church-RnC's"l' [ 
E' "-- E; 
while not. all crit.ical pairs of .E' are considered do 

"hoose a critical pair (Cl, C2) of El: 
reduce (C\,C2) to normal forms (d"el2) module> --7E'; 

if ell =I d2 then 

Such a Grobner basis can be  computed by the  Buchberger algorithm. BU in  the fol-
lowing way:

F'  4—- BU(F);
[F  and F '  are finite sets of multivariate polynomials over a field.
EF  :: EF :  and -——>pr is Church—Rttisserl
F '  +- F ;
while not all critical pairs of F '  are considered do
(*] choose a critical pair (pl,  p2) of F ' ;

reduce (p1, p2) to  normal. forms (gl , gg) modulo -——> F”;
(**) i f  q1 # (12 t hen  F '  +—-— “ LJ {gr-1 gg} end i f
endwhile  u

The two basic strategies of the algorithm are the formation of critical. pairs in (*) and.
t he  successive completion s tep  (**). ‚A critical pair of F '  is constructed in the  following
way: choose two different polynomials f ,  g in F” ; reduce the  least common multiple of the
leading terms of f and g by f ,  gett ing p l ,  and by g ,  getting p2; then (phpg)  is a critical
pair of F ' .  Instead of reducing (p l ,  1:72) t o  normal forms (91,412) and checking; for syntactic
equality, one could reduce pl  p2 and check for equality t o  0. The polynomial p l  p;
is usually called the S-polynomial of f and. g [Bu 85a]. Buchberger has shown [Bu 65L
[Bu 85a] that this algorithm terminates for all inputs and computes a Grobner basis for
ideal(F  )

The same basic strategies have been used. independently by D.E.  Knuth and PB.
Bendix l KB 67] in. the context of an. equaticmal theory T over an algebra ll of first—order
terms.  The  Knuth-Bendix procedure solves the  following problem:

given a finite set E of equations between first—order terms, construct a finite set
E” of equa t ions  such  tha t  235: E ::— 3:": a" and Ey is Oh urch—Rosser and N oetherian.

Here, for a set E of first—order equations [H0  80], as}; is the equational theory generated
by E ,  i e .  the set of all. equations .9 :::. t which can be  derived from E ,  E t“ s : 25 [BL
83]. -—+ E is the  reduction relation on terms induced. by E viewed. as a system of rewrite
rules with EB :: Hg.. Again, the  Cl;111rc}_1-—»R.osser property guarantees that 3 SEE t can
be  decided by reducing s and t t o  normal. .lttu'ms modulo “>13: and checking for syntactic
equality. A finite set of equations E , viewed as a system of rewrite rules, such that  “>13 is
Church—Rosser and Noetherian is  called a {camp-mim! rewrite rule system.

The Knuth-Bendix procedure KB a t tempts  to  compute a canonical rewrite rule system
in the following way:

E '  +— KB(E) ;
[E and E’ are finite sets of equations of first—order terms which can be viewed
as N oetherian rewrite rule systems.
::..":EE :: Hip}! and  MAE! i s  CillllI‘Cl’P-"ROSSI‘I‘l

E" 4.... E ;
while not all. critical. pairs of E '  are considered do

choose a critical pair (c1, c2] of E '  ;
reduce (61,62) to  normal. forms (111412) Il'ltf)d11lf) ——> E‘;
if (11 a d2 thenI
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if -+E'U{d 1 =dd is Noetherian then E' +- E' U {d1 = d2 } 

elsif -+E'U{d~=dd is Noetherian then El +- El U {d2 == d1 } 

else exit with failure 
endif 

elldwhile 11 

For the notion of a critical pair we refer tor:> [BL 83J. \f.,le say t.hat a.n equa.tion .5 -::: t 
can be viewed a.s a rewrit.e rule .5 .._; t. if every varia,ble occurring in t also occurs in s. 
A set of equat.ions E = {SI == i1, ... , .511. ~=: In} can be viewed as a rewrit.e rule system 
{SI -+ t1 , .. ·, Sn -+ in} if every equa.tion ,Si = t i in it. ca.n be viewed a.s a. rewrite rule 
Si -> k In contrast to the Buchberger algorithm there are situations in ""hich the Knuth
Bendix procedure ma.y terminate with failure or run forever. 

Cert.ain types of equations cannot. bE' handled by t.he Knuth-Bendix procedure: ;1. 

commutativity axiom immediately destroys t.hlO' Noetherianity of the reduction, and an a,s 
sociativity axiom together with other equations can cause the procedure to run indefinitely. 
Peterson and Sticke1 [PS 81] ha.ve proposed to keep such equations in an equa.tional theory 
T (the equations in T are not viewed as rewrite rules) and do a.ll the computa.tions inKB 
modulo this equationa.l theory T, i.e. not terms t in T are reduced but equiva.lence classes 
[th in TIT. This approach works whenever a, complete unifi.ca,tion algorithm modulo this 
theory T exists. For technical reasons the equational t.heory E ha,s to be modified so that, 
it be<.~omes T-compatible. For theories T c(lTlsisting of commutativity and associat.ivity 
axioms this is a straightforwa.rd process. 

The st.riking similarity between the Buchherger a.lgorithm and the Knllth-Bendix pro
"edure have heen ohserved in [1,0 81], [BL R3], [Bu R5b]. Llopis de Trias [Ll 83] and 
Kandri-H.ody and Kapur [KK 83] have made first attempts to cla.rify the relationship be
t.ween t.he t.wo methods. The problem with ILl R:3] is t.hat. is does not deal adequately with 
the arithmetic on the coefficients of t.he polyn()mials in the Buchberger algorithm. In [I(K 
83] the llseful idea. of separa.ting simpliflcation of coefficient.s from reduction of polynomia.ls 
is introduced. The problem with [KK 8~)1 is t.hat it does not really show t.hat the two meth
ods can be viewed as special Cases of a general procedure, but that the correet.ness proofs 
can be arranged in similar wa.ys. Le Chenandec [Le 86] gives a completion algorithm for 
commutative polynomia.ls over rings generated by a finite set G of generators. His method 
does not apply to the case where the base crwfficients belong to a. field, since fields cannot 
be described eql1ati'mally. In [\Vi 84] varinllS ideas of t.hese papers t.ogether with [Hu 80] 
have heen used for demonst.rating the exa,d, nature nf thl:' relationship between BU and 
KD. 

2. Theoretical results 

In the following we suppose that 1~1 is an arbitrary set,-.. a, Noetherian relation on 
1\,1, and =:} a Noetherian confluent relat.ion on id. By ;r, y, z, u, v, w we denot.e elements of 
.AI. ~--, f--->, -++, --~* are the inverse, the symmetric closure, the transitive closure, a.nd 
the reflexive-transitive closure of -.., respeet.ively. 

Def.: -.. is con.f1.1l.ent mod71.lo :::} iff for all ;r, y, ;7;' ,y' such t.ha.t x' +- * x .;::}* y -~ * y' there are 

/ 

if “*E'uwizdz} is Noetherian then  E” <—— . '" Ll {dl : d2}
elsif ~—->E:._.{d2=d1} is Noetherian then  E'  <—-— E” U {d2 :: (11}
else exit  with failure

end i f
enclwhile II

For t he  notion of a critical pair we. refer t o  [BL 83]. We say that an equation .9 ::: t
can be  viewed as a rewrite rule .5 ————--> i. if every variable occurring in i. also occurs in s .
A set of equations E = {.31 :: h , . . . ‚ sn  ;: i n}  can be  viewed as a rewrite rule system
{.51 ——> h ,  . . . , . sn  ——> t n}  if every equation s,; ;: ta- in  i t  can be  viewed as a rewrite rule
s,; —-ä t,;. In contrast to  the  Buchberger algorithm. there  are situations in  which the Knuth-—
Bendix procedure may terminate with. failure or run forever.

Iertain types of equations cannot be handled by the  Knuth.—-Bendix procedure: a
commutativity axiom immediately destroys the Noetherianity of the reduction, and an as-
sociativity axiom together with other equations can cause the procedure to  run indefinitely.
Peterson and Stickel [PS 81] have proposed to keep such equations in an equational theory
T (the equations in T are not Viewed as rewrite rules) and do all the computations in KB
modulo this equational theory T ,  i.e. not  terms t in T are reduced but  equivalence classes
[flq in  T /T .  This approach works whenever a complete unification algorithm modulo this
theory T exists. For technical reasons the  equational theory E has to be  modified so that
i t  beComes T~compatible For theories T consisting of commutativity and associativity
axioms this is a straightforward process.

The striking similarity between. the  Buchberger algorithm and the  Knuth—Bendix pro-
cedure have been observed in [Lo 81], [BL 83], [Bu 85b]. Llopis de Trias [Ll 83] and
Kandri~Rody and Kapur [KK 83] have made first at tempts to  clarify the relationship be-
tween. the two methods. The problem with [Ll 83] is that is does not deal adequately with
the arithmetic on the coefficients of the  polynomials in the Buchberger algorithm. In [K K
83] the useful idea of separating simplification of coefficients from reduction of polynomials
is introduced. The problem with [KK 83] is that it does not really show that the two moth-
ods can be  viewed as special cases of a general procedure, but  tha t  the correctness proofs
can be arranged in similar ways. Le Chenandec [Le 86] gives a completion algorithm for
commutative polynomials over rings generated by a finite set G of generators. His method
does not apply to the  case where the  base coefficients belong to a field, since fields cannot
be described equationally. In [VVi 84:] varirms ideas of. these papers together with [Hu 80]
have been used for demcmstrating the exact na ture  of the  relationship between BU and
KB.

2 .  Theoret ical  resul ts

In the following we suppose tha t  M is an arbi t rary set, --—~) a Noetherian r'elaticm. on
M,  and ::?» a Noetherian confluent relation on A:! . By m, y, an ,  1:, w we denote elements of
NI. +», +-—>, ——>+, ———+* are t he  inverse, t he  symmetric closure, the  transitive closure, and
the  reflexive—transitive closure of -—>_, respectively.

Defi :  ——> is confluent modulo ::? iff for all :)}, y, 33', y '  such that  512' <————* a". <=?” y “f y '  there are
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lx", y" such that x' --+* x" ,~* y" ~-_.'" y' (i.e., since::::} is confluent, x' --+* x" JJ-* y" +--* V') . 

• 
Lernma 2.1: Let --+ be confluent In,)d1.11,) --;" Then for a.ll :r-, y, Z such that y(~, U (- )"':r --+* 

z and V is irreducible modulo _.) U c:->· and;:; is irreducible modulo .-7, we have z =~.* y. I!ll 

La.ter on we will separate the reduction -. of polynomiaJs in the Grobner ba.sis a.lgo
rithm from the simplification => of the coC::'fficients in the polynomials. What we ultima.tely 
want to achieve is that the combination -~ u-·~· is a confluent relation. As the following 
theorem shows, it is enough to guarantee confluence of --+ modulo =>. 

Theorem 2.2: If --+ is confluent modulo =>, t.hen --+ U --:-- is confluent. 

Proof: Let, _...~ be confluent mod1.1lo :-::-:':-, SUPPCIS(' x, y, z are s1.1.ch that y( {=: U +-- )*x( -~ U -::::})* z. 
Let. ;1".' he a normal fonn of x mocl1.1lo ....... and JI', z.' lw normal forms of y, z modulo _..~ 1.I :=>, 
respectively. Then by Lemma. 2,} Vi '~' .. '" :r' ';-'" ;:;'. Since y' and z' (l.re also in normal form 
module, -::::} a.nd => is confluent, we have y':= Z'. (See Figure 2.1) IIll 

Fignrf~ 2.1 

It is essential for a.n effective compld.ion procecbJrc t,hat. the confluence property of 
I; he reduetim) rda.tion under consideral;j"n can be checked loca.lly. This program ca.n also 
l)e carried out for the notion of confl.uence Illfldulo .co:,'> • 

DeL	 ._-~ is locally confiv,ent modnlo-:::· ifF 
(1,1)	 for all x, y, z with y ~. x-* .z th",re are y', ;:' such tha.t y .-.) * y I v11 *,z ,--'* z a..nc1 

(1,2)	 for a.ll x, y, z with z +.. :r -\" y t.here iHe y', ;:;' such t.hn.t. z ..-.* zllj.* Vi .--* y. 

DeL	 => is orthogonal to --+ iff 
(01)	 for all x, y, y' with ;z; -> Y -:' -/- y' th ere are XII, yll such t.hat. x .. _) -f x" .U. '" yll (-" y' 

and 
(02)	 for all x,y,x' with x' t---+ X"::;, y t.here ;l!'C ;t",y" sllch t.hat. x' --.... * :r." .1).'" yll +--'" y. JlII 

With	 these definitions we get the following thcorern. 

Theorem 2.3: Let -7 U -=? be Noethe-rjan, and ~~. nrt.hogonal t.o ..... Then-· IS confluent 
modlllo => if and only if ----4 is locally conflucnt, l1loc!1.I1o ~'. llIl 

'Ve are especially interest.ed in the case' where' t.he reduction relat.ion ....., is induced hya. 
rewrite rn.le system R, i.e .....~ '- .._) R, (lJ1 ;1. Sf7't. nf tenns ml)dll.lo an associative-commut.ative 
theory. 

Theorem 2.4: Let T be an equational theory over the term algebra. 'l, RaT-compatible 
rewrit.e rule system, oc> n. Noetherian confluent. relabon on 'lIT which is stable and corn .. 

‘ -  . I I I .

3 ; " ,3 , ”  such that 33' ——+* :13” —<:>* y"  +.---‘* y '  (1.6;.‚ Since @ IS confluent ,  :c' ———>* :1," U3“ y"  +—* y’).
ll

Lelnma 2 .1 :  Let ——> be  confluent modulo "2». Then for all. m, y, z such. that  y( <::: LJ <———)*:r. ———+*
z and y is  irreducible modulo ~—--.~ LJ 2*.» and  :: is irreducible modulo ———+, we have 2: :::—°" y. In

Later on we Will separate the reduction 4 of polynomials in the Grobner basis algo-
r i thm from the simplification :> of the  coefli cients in  t he  polynomials. What We ultimately
want to achieve is that the combination »+ U 22’.» is a confluent relation. As the following
theorem shows, it is enough to  guarantee confluence of ——> modulo =>.

Theorem 2.2: If ——> is confluent modulo ä . ,  then. ~—> U 3, is confluent.

Proof: Let ~-——> be confluent modulo 2:». Suppose 91,3}, :; are such. that y(«-..*:: LJ +—)*:c(~-+ Ll :> )*z.
Let :r.’ be  a normal. harm. of m modulo -.....«. and y ' ,  z' be  norm al forms of y, z modulo —--—> LI" 1

respectively. Then by Lemma. 2.], y '  of" :r!’ :‘;—'" 2.". Since y’ and z '  are also in normal form
modulo :> and => is confluent, we have y' :2 :5". (See Figure 2.1) [I

Figure 2.1

I t  is essential. for an effective completion. procedure that  the confluence pr0perty of
the  rec-luction relation. under  consideration can be checked locally. This program can also
be carried out  for the  notion of confluence mocl.ulr.:> :::».

Defiz  Ma is  locally confluent modulo :2?» ifl.’
(L1) for all rc, y, z with y h- :r. -—-—+ .z there are y’, 2’ such that 3} -->* ' JJ.* z <~——* z and
(L2) for all 33, y, 3 With z +»— .r 42:» 3; there are 31’. :5' such tha t  2: ...__.* z '  .U.* y '  +-—-* y. I!

€

Def . :  2;» is orthogonal to "+ ifl.7
( 01 )  for all a : , y ‚y '  wi th  ;z: 2.» y ~---->+ y '  t he re  are :o” ,y”  such  tha t  :7: «mil 3:.” ..U* 3,“ «f.-* y’

and
(02) for all 33,3}, :E' with :r’ <—~-—+ :r. :2:- 11 there are ;r.”‚y” such that m’ ——-:»*mu „+  y”  (has: y H

With these definitions we get the following theoren'i..

Theorem 2.3:  Let -—+U2¢> be  Noetherian, and :...-- orthogonal t o  m}. Then -—-- is confluent
modulo => if and only if ——+ is locally confluent modulo 2:». n

we are especially interested in t he  case where the  reduction relation --—> is induced by a
rewrite rule system R ,  i e .  »» --—-> n ,  on a set of terms modulo an associative—commutative
theory.

Theorem 2.4: Let T be  an equation  al theory over the term algebra T ,  R a Tucompatible
rewrite rule system, :2» a N oetheriau confluent relation on i l l /T  which is stable and com—
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patihle (i.e. if [.5]T => [i]T, CT a. substit.ution, p a.n occurrence in u, then [CT(S)]T => [CT(t)]T 
a.nd [u[p +- .5]]T => [u[p +- t]]T) such tha.t --, nU=> is Noetherian and => is orthogonal to 
·~R· 

Then -'> R is confluent modulo => if and only if for all critical pairs ([8 ]T, [t]T) of R modulo 
T there are [s'lT, [t'lT such that [S]T --'T, [8'17' -U* [t'lT t-R[t]T. III 

Theorem 2.4 immediately leads to the following genera.l completion procedure: 

RI +- COMPLETE(R, T, =-c;»;
 
[R is a finite Noetherian rewrite rule system over the term algebra T,
 
T an equational theory for which there exists a complete unification algorithm,
 
=> a. Noetherian confluent stable and cnmpatible relation over TIT,
 
such that -'> R U =-.> is Noetherian and -=:- is orthogona.l to --t R.
 

R' is a finite Noetherian rewrite rule system such that
 
(---4 R U =»* = (-4 R' 1--' -::c?)* and---' R' is confluent modulo =>.]
 
R' +--- T -compatihle extension of R;
 
while not all critical pairs of RI have been considered do
 

choose a critical pair (Cl, cz) of R';
 
reduce (Cl, cz) to normal forms (dl , dz ) modulo-~ R' U =};
 
if d1 f- dz t.hen
 

if	 terms s, t can be cClIlstruct.ed such that d l a.nel d2 

have a common successor modulo --~ R'u{s~t} U => and 
--t R'U{s->f.} u:::,.' is Noet.herian 

then RI f-- T--compatihd extension of R' U {s --7 t} 
else exit with failure 
endif 

endif
 
endwhile _
 

3. A COIDrnon ancestor to BTJ and KB 

The procedure COMPLETE can be specia.lized both to the Knuth-Bendix procedure 
and to the Bllchberger algorithm. We get KB from COMPLETE by letting ---7- be the 
identity a.nd T = 0. 

It is a little bit more complicated in specirt.lize COMPLETE to BU _Wf> have to meet, 
the following requirements: 
(Cl) give a.n injedive mapping from the polynomial ring K[Xl" .. ,;r,nl into some term 

algebra T modulo an equational theory T,
 
(C2) give a simplifica.tion rela.tion=> (,n TIT,
 

(C3) construct a rewrite rule syster:n R fnr rt given basis F of a polynomial ideal
 

stlch that. 

(P-I) ---' 1'1') c:? sinnJlat.es-> F', Le. ('very J"'dudion st.ep modulI) -4 F can be considered as 
1]. series of reduction st.eps moduk),,,,II:c:>,
 

(P2) t.here exist,s a. finik cnmplet.e uniJicrdion algorithm f')r 1',
 

patible (i.e. if [S]?“ 3 ltlT: a a substitutirm, 7.) an occurrence in u, then [0(s)]T => [cr(t)]T
and [u,[p +— s]]T ==> [u.[p 4—— tHT) such that  mug LJ => is  Noetherian and => is orthogonal. to
._ . ._)R.

Then _?»R is confluent modulo ::,» if and only if for all critical pairs (MT, ltlT) of R modulo
T there are [s']T, ltllT such that [S]-T m} [317' .U.* ltllT am} MT. !

Theorem 2.4 immediately leads to  the  following general completion procedure:

R' +— COMPLETE(R,  T, sie) ;

[R is a finite N oetherian rewrite rule system over the term algebra. l“,
T an equational theory for which there exists a complete unification algorithm,
=> a Noetherian confluent stable and compatible relation over ll /T‚
such that "+12 U ::} is Noetherian and ::.?— is orthogonal to  —> R-
R'  i s  a fini te  Noetherian rewrite ru le  sys tem such. tha t
(-—~—>Rl,lr::>)* :: (we R' Isl-178* and --—> R,  is confluent modulo =>.]
R' em ill—compatible extension of H;
While not  all critical pairs of .R' have been considered do

choose a critical pair (c l ,  c2) of R'  ;
reduce (c1, c2) to normal. forms (d1 _‚ d2) modulo ----> R' U =>;
if  d1 3% (12 t hen

if terms s , t  can be  constructed such that  dl and dz
have a common. successor modulo ---+ Rfu{s__.t} U :=? and
“’Rfuh—n} L12: is Noetlierian

then  R' e— T—-compatibel extension of R' U {s  ——> 15}
else exit with. failure
end i f

endif
endwhile l

3 .  A common  ances tor  t o  BU and  KB

The procedure COMPLETE can be  specialized both  to  the Knuth—Bendix procedure
and to  the Buchberger algorithm. We get KB from COMPLETE by lett ing ä, be  the
identity and T : 0).

It is a. little bit more complicated t o  specialize COMPLETE to  BU. We have to  meet
the following requirements:
(C l )  give an injective mapping from the  polynomial. ring Elm-1,. . . ,mn] i n to  some term

algebra ll modulo an equational theory T ,
((32) give a simplification relation tb» on ill/T.
(C3) construct a. rewrite rule system I? for a given basis F of a. polynomial ideal

such  tha t

(P l )  --~-Rl..|r°:.1~ s imu la t e s  --—>p‚ i .e. every  reduct ion.  s tep  modulo  ~~>p~ can be  cons idered  as
a series of reduction steps 1n<,:n.l1.1lo A R I...! :--.-::..‘--,

(P2) there exists a finite complete unification algorithm for T ,





(P3) R is a finite Noetherian rewrite rule system, 
(P4) =} is a Noetherian confluent stable and compatible relation over TIT, 
(P5) -+ R U =? is Noetherian, 
(P6) =} is orthogonal to -+ R. 

Ad (Cl): The term algebra T contains the binary function symbols ,I',> , the unary func
tion symbol·, " the constants XI, ... ,.Y 11 and a for every a E K, and the denumerable set of 
variables V = {xo,x}, ... } (for convenience 'vc denote the first variables by x,y,z,'W, ... , 
similarly for the constants Xi).A.s the equational theory T we choose the associative
commutative theory of i and :.', i.e. a basis for T is 

{;r,,!,y=yll:x, (x'!:y)'i'z=x i (y' z), :1~y=y.'X, (x~'y)· z=x·(y z)}. 

· 1 f ", m.	 ,-e', '-P:' cl t th . 1 JA, nonzero po1ynomJa., =: LJi=1a7/1.,' ... ..\.~.'n IS mappe , on 0 e eqmva ence cass 
of .51 '+: (052 ,j, ••• '.1' (.5m._l i 05111,)"') moeluln T, where .si is the obvious description of 
aiXr' ... X~in in T. The zero polynomial is mapped onto the constant O. This mapping 
is called term. We let ,.\ have higher precedence than' i_" so that we can omit parentheses 
because of the associativity of the operators. So, for instance, the polynomial 3X 2 y 2 - 

2x 2 y + 4x - 5 E Q[x, y] is mapped onto the equivalence class [3 i.' X:-: X·· y.) Y il· (-2)-" 
X I.', X I" y, I' 4 i .. X, I, (--.5)]T. term is an injective mapping from K[x}, .. . ,xn ] onto liT. 

Ad (C2): The simplification relation ~. on T /T is defined in such a way that it simulates 
the operations involving the constants of the coefficient field K. 

[.s]T =," [tlT :<====;'>	 there are Si =C.T S, t' =T t, such that 

t l = S/[p ~-"uJ for sc'me occurrence pin 51 and sip '-----t u, 

where for coefficients 0.1,0.2 E: !{ and terms oS 1-.: T: 
0.1 ,'.:, 0.2 ,-,-t o,J . 0,2	 0,1 "0.2 ,----t 0.1 + 0.2 

i '0.1 ,----t -- 0.1	 (0,1 .• .s) '---t (-- a'I)' 05 

0.1 '':' oS' i· 0,2 ,:.\.<; '-----t (0.1 + 0,2)' .~ (I al': .5 '-.-t 0.1 !·'.5 

o!.:- oS '--, 0 

The relation =? is	 well-defined on TIT' 

Ad (C3): We start with the rules of the canonical rewrite rule syst.em for the ring structure 
modulo the AC-theory T which are not. already incorporated in =>, i.e. 

x ':-:' (y (I z) ----t (x :. y), i> (x' z) (x) --·t x 
(xi' y) --} ( x) i ( Y) .I~ (y) -+ (x' y) 

'Ve c<Jll this rewrite rule system R7" 

For every polynomial .f in the idea.l basis F Wf~ include the following rule in the rewrite 
sytem RF : 

terrn(lt(.f)) --> tel'm(red(f)), 

where It(.f) is the	 leading term of f and l' p dU) is the redl.lctum of f. 

We let the rewrit.e rule system R be the uniun of R r· and Rp.	 .. 
This completes the simulation (~1)-- (C3). Nmv it can be shown that (PI) ----- (P6) 

hold [Wi 84]. 'Ve illustrate this simulatlnn of BU by the following example. 
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(P3 )  R i s  a finite Noetherian rewrite ru le  sys tem,
(P4 )  2%- is a Noetherian. confluent stable and compatible relation over "IF/%
(P5) —+RU=> is Noetherian,
(P6) =? is orthogonal to ——>R.

Agl (C l  !: The term algebra. T contains the  binary function. symbols (El), '1- , the  unary func-
tion symbol -- .=, the constants  X“  . . . ‚.X„_ and a. for every (1 E K,  and the denumerable set  of
variables V r: {mm, m1, . . . }  (for convenience we denote the  firs t  variables by a:,y_, z„ w, . . .‚
similarly for the  constants  Yr). As the equational theory T We choose the associative—-
commutative theory of ä and f—‘r, i e .  a basis for T is

{»y=yl (y )  me (y » z,) wu (mw—_ „......(y a)}.

. m. . n -  „_ .  . .A nonzero polynomial. f : 22-21 (‚l,-‚1.Ä-;"--\;"“ is mapped. onto the  equivalence class
of 51-12 (.32 (3 '  -E (sm__1 'E sm)  - - ) modulo  T ,  where  ‚s,; i s  t he  obvious  description of
(L.,;Xf“ - - - X3“ in  T .  The zero polynomial is mapped onto the  constant 0. This mapping
is called term. We let (.43 have higher precedence than (“i-I, so that we can omit parentheses
because of the  associativity of the operators.  So, for instance, the polynomial 3332312 ——
2:323; + 4x — 5 E Q[m‚ y] is mapped onto the equivalence class [3 X if} X Y 1-1.- Y ('I' (—32)
X m X ( Y (E14  ‚X = (——5)]T. t e rm is an injective mapping from Klan ,  . . . ,azn] onto ".*/T.

Ad (021: The simplification relation :3 on LT  is defined in such. a way that  i t  simulates
the operations involving the constants of the coefficient field K .

l'SlT ==>— ltlT :<i.::,> there are 5' 33T  s ,  t’ ET t ,  such that
f f ' f ft =: s [p e—--- u] for some occurrence p m s and. 5/10 H u,

where for coefficients (1,1, 0.2 EEE K and terms 3 if, T:
(L]. ‘5'7‘ G2 “*** @] ' a2  ‘1-1 (12 “* G1 + 662

(‘ «1.1 f—---+ -——a1 ‘(al 51 .9) "--—-2+ (mal) ‘- s
a]  "‘; s (E) (12 s „_, (a1 + e2) '- s (l E (1.1 s we» a.; .s
0 fif‘: s ‘—-> 0

The relation. :3: is wellwdefined on ill“ „w.

Ad (C3): We s tar t  with the  rules of t he  canonical rewrite rule system. for the ring structure
modulo the AC—-theory T which are not already incorporated in =>, i.e.

:r. (y dä z) ———> (:1: 1"?- y) (if! (a: : )  ( .33) “+ e
"(rc ' zu) "> ( (I?) ‘ ( y) (‘- ( 31) "> (in * y)

We call this  rewrite rule system H}.

For every polynomial f in the ideal basis ‚F we include the following rule in the rewrite
sytem RF:

term.(lt(:f)) —+ terrin,[:'7’€d(f)).

Where l t ( f )  is t he  leading term of f and r ed“ )  is the  reductum of f .

We let t he  rewrite rule system R. be  the unirm of RT. and Rp .  !

This completes the simulation. (C11) ((33). Now it can. be shown that (P  1) (P6)
hold [Wi 84.]. We illustrate this simulation of BU by the following example.
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Example: We consider the ideal ba.sis 

F = {x 2 
y - x 2 + 2xy, y2 -- Y + I} ~ Q[x,y]. 

" 'V ( '---v--'" 

h h 

The power products are ordered acc0rcling to the gra.dlla.ted lexicographic ordering. First. 
there is only one critical pair of F, narnely t.he one resulting from the reduction of X 

2 y 2 

moelulo.fI and h, respectively. 
2 2 2.f1 ~ x y - 2xy2 -~ ft' 2:t:y2 j- ;r - 2x,!! ---+ h :7.: - 4xy + 2x 

2 2 x y C 
L~ 2 2h x y - X-,,> ft'- 2:ry 

So we a.dd h = x 2 
- 2xy + 2;r. to the ideal basis and proceed. All the other critical 

pairs lead to common suCCeSSi)fS, so {.fl, h, f;>.} is a. Cirobner basis for the ideal 

The rewrite rule system corresp(~)nding t( I P if> 

x (····2) X 
"V""
 

51
 1'1 

Applying the procedure COMPLETE to R H,- U Rp, \VC first have to construct a T-c:c 

compatible extension Reof R. Because T is an AG--theory, this means adding a new rule 
U 0.5 - 7}, 0 t (u a new variable) for every rule s -) t \vith outermost operator 0 E ff" .. }. 

R' =Re 
::= R r U R~ U RpU 

{ 7f. X '.'X . Y--qt. ()( y; (-,- 2) .Y Y), v Y . Y .---* v ,. (Yi' (-1 ))) . 
~----~",'----' ~----~v-------'( "----v-' ''---"".----

r t e 
I 2 

------------------~..v-------------------' 

The only interesting critical pa.ir results from unifying s~ and s~ by the uniJier (J = {u ~
Y, V f- X ,: X}. F()~ brevity, we will omit. t.he operator .' '. from now on. 

[a(,sO]r == [XSYY]T ::=: [(J(.sz)]T 

(le~_.-"--- ~(2e)~ 
[y( ...Y X !f\ (-2)XY)]T - R 

r 
[XX(y·i. (-1))]'1' ---~ R 

r
 

[X_XY 'I' (-2)XYY]r ---)(1) [x.yy I' (---l)XXI'1' -*(1)
 

[XX '1' (-2)XY'1; (--2)XYYjT ---·(2) lX.\' .. (-2)XY (-1)XX]'1' =>*
I 

[X X .I' (-2)XY ,[, (-2).YY i (--2)( - 1)X]T .,:-* [( --2)XY]T 
[X.X I' (-4)XY <I, 2X]T 

"Ve add the new rule (3): .\X ·2.YF (--2)X to R' in order to guarantee a 
comrnon successor of the two norm.aJ forms of IX XYYh· modulo - R' U =? We also have 
t.o add the extended rule, so that. R' remains T-compat.ible. 

All the other critical pa.irs of R' lwvc c,-']J]JUOll successors. So __,'H with R' ==: Rr U 
R; U {( l), (2), (3)} U {(1"), (2 e 

), (3 P 
)} is confluent. I1J odulr:,:;-. '" 

We wa.nt to pClint out that wc do not claim or intend t.o be able to improve the 
efficiency of BU or KB by such a simulation. H01vever, we think that the genera.l completion 

Example:  We consider the ideal basis

F = {fg —— 332 + 233.2, 3/2 -— y+1,}E l ay l -
V

f1 f2

The power products are ordered according to  the  graduated lexicographic ordering. First
there is only one critical pair of F ,  namely the  one resulting from the  reduction of 3:2
modulo fl and fg,  respectively.

fl 17323] —— 2333/2 “ff.. “23:3;2 J- .322 — 2333] —>f2 3.32 ~— 4xy + 2.13
822%,?  ‚flflflrflpflflaflf;‚

f2 \  $2y  __ 132 _ t  
""—233?!

So  we add f3 °: :32 —— 23:3; + 23: to  the  ideal basis and proceed. All the  other critical
pairs  lead to  common successors, so {fl , f2,  fg}  is a. Gröbner basis for the  ideal.

The rewrite rule system corresponding to  F is

Rp := {(1): .X--:X Y X X - (--—-2J .. X - 3:, (2):  }" . Y Y é-(——-«—1)}-

51  11  S?  t ?

Applying the procedure COMPLETE to R Rs U RF, we first have to construct a 77—-
compatible extension Reof R .  Because T is an AG—theory, this means adding a new rule
a o s ——> 'u. o t  (u a new variable) for every rule 5 -—> t with outermost operator o E {eig ..-‚._}

‚R' :Rß  :: 12,, LI Rf; LI RFU

{Er -v )?  X 1':--—-t (‚X - .X." ;- (--—2") X }" ) ,v  .- }" X" --—~Xv=:-*(Y=-i~--X(-—1))}.
__V-  \__ ‘ _“  ' j W \ _  j

E ES 3 S e1 i"! 2 132
\._ I—' "'N’

?
F??

The only interesting critical pair results from unifying sf and s ;  by the unifier a =: {u  4-—

Y, 1) 4—— .X." X}.  For brevity, we will ornil t he  ope ra to r5  from now on.
Jabs? )e ._ [X XX XJr  ==J (sah—

(1°W„„wf*” /  \ (2=)

[“ («X X ”(““  2V“ )lT we [X XÜ ““““( l l l l r  “‘12
[XXX i=(—— marry—Xi] “4(1) [XXi ---(—J)X"XJT _..(,,

[X X ‚.‚-‚_( 2)X ( )};a „;(-F) _ [XX -2( 2)X _. ...—( 1)XY]T—_‚
[X’X- ' ( 2)X [ ( 2)  “ ' ( “2  ( [.)XIT "4“" l("""2)XYlT
lX15X “( )“; *1e

We add the new rule (3) : XX > 2XY ( 2) \  to  R'  in order  to  guarantee a
common. successor of the  two normal. forms of  IX 'XYt  modulo ———> R' Uzi». We also have
to add the extended rule, so that R '  remains T—compatible.

All the other critical pairs of Ii” have cmrlmon successors. So "—9,? with R' :=: R,. |__..|
Rf. U {(1), (2), (3)} U {(13), (2"), ( ? )}  is confluent modulo in

We want t o  point ou t  that  we do not claim or intend to  be  able to  improve the
efficiency of BU or KB by such. a simulation. However, we think that  t he  general completirtm
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procedure COMPLETE might help to understand the intricate relationship between two 
important algorithmic concepts for wnst.ructing canonical rewrite systems. 
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Critical Pairs of Reduction Schemes 

Werner Th. WOLFF 
Lochhamer Str. 39 
0-8032 LOCHHAM (W.Germany) 

By generalizing the Knuth-Bendix procedure to reduction modulo a 

compatible equational theory we will come across reduction 

schemes quite naturally. A reduction scheme stands for a recur

sively enumerable set of reduction rules which are summarized in 

a rule with condition. When superponing such schemes their 

conditions get only partially instantiated by unification, so 

that we obtain terms connected with a hypothesis. Such terms 

reduce w.r.t. "normal" rules by passing along their hypothesis, 

and w.r.t. schemes by means of a consistency checker. To prove 

the confluence of a system with schemes, we must also look at 

cri:tical pairs of "terms under hypothesis". 

1.	 Theory 

Consider a noetherian relation of reduction ---7 and a 

equivalence relation -. 

1.1.	 Def: ---7 is confluent modulo - :iff Xl ~* X - Y --7* yl 

implies Xl ~~ Yl {mod -}, where Xl ~~ Yl (mod -) : iff 

exist x', y' s.t.: Xl ---+* X' - y' ~* Yl. 0 

1.2.	 Def: --7 is locally confluent modulo - :iff 

(a)	 y ~ X --7 Z implies y -7~ Z (mod -) and 

{b} y X --7 Z implies y ~~ z (mod -). 0
 

We have the following result (cf. [1], Lemma 7):
 

1.3.	 Theorem: --7 is confluent modulo - iff it is locally 

confluent modulo -. 0 

Let T be the set of terms over function symbols in F and 

variables in X. To deal with term rewriting, we introduce 
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By generalizing the Knuth—Bendix procedure to reduction modulo a

compatible equational theory we will come across reduction

schemes quite naturally. A reduction scheme stands for a recur—

sively enumerable set of reduction rules which are summarized in

a rule with condition. When superponing such schemes their

conditions get only partially instantiated by unification, so

that we obtain terms connected with a h y p o t h e s i s .  Such terms

reduce w.r.t. "normal" rules by passing along their hypothesis,

and w . r . t .  schemes by means o f  a c onsistency c h e c k e r .  To prove

the confluence of a system with schemes. we must also look at

critical pairs of "terms under hypothesis".

1 .  Theory

Consider a noetherian relation of reduction -—9 and a

equivalence relation “.

1.1. Qgäi ——9 is confluent modulo " :iff X1 é——* X'” y ——9* y1

implies X1 —9e— y1 (mod "), where X1 —96— y; (mod ") :iff

exist x', y '  s.t.: X1 -—9* x '  " y '  é——* y1. E]

1.2. Egg; ——9 is locally confluent modulo " :iff

(a) y e—— x ——% z implies y —96— 2 (mod ' )  and

(b) y " x —-9 z implies y —96- 2 (mod "). []

We have the following result (cf. [ 1 ] ,  Lemma 7):

1.3. Theorem: ——ä i s  confluent modulo " iff it is locally

confluent modulo “ .  [|

L e t  T be t h e  s e t  o f  terms over function symbols in F and

v a r i a b l e s  i n  X .  To d e a l  with term r e w r i t i n g ,  we introduce





1.4.	 Def: - is a compatible simplification :iff - is an equi

valence relation s.t.: for all s, t, tl, tz £ T 

(a)	 s - t implies a(s)- aft) for any substitution a, and 

(b) tl - tz implies s Iu ~ tl]- S [u f- tz ] for any tree 

node u in s (subterm replacement). 0 

For a term rewriting system R that generates the noetherian 

relation ~R on T, and a simplification - which is compa

tible with the terms of T we get (cf.[3], Satz 7.4): 

1.5.	 Theorem: If ~R and - fulfill condition (b) of Def.1.2, 

then: ~R is locally confluent modulo iff for all 

critical pairs (p, q) of R: p ~~R q (mod -). 0 

Cf. [2), p.12, for orthogonality of two relations of 

reduction which gives a restriction similar to (bl of 1.2. 

2.	 Implementation 

To handle this kind of confluence mechanically, I implemen

ted the extension of the Knuth-Bendix procedure to reduction 

schemes and terms under hypothesis in the simple case of 

conditions which involve an ordering >. Let Th> be the 

theory of > and Subst = fa:X --7 T I dom(a) finitel U {~l. 

2.1.	 Def: a ---7 b : - P is a reduction scheme : iff a---7b E Rand 

P E Th>, while its application to terms is defined by 

s reduces to t w.r.t. a ~ b :- P :iff there exists redex 

u in s w.r.t. a ---7 b s.t.: t = s[u ~ a(b)] and 

prove ( 0, P } *=~, where a is the match of s/uand a. 

prove(a:Subst, A:Th» :Subst can be defined by the rules 

prove CL, A} ---7~, prove (0, true) ---7 0, 

prove(a, tl = tz) ---7 unif(a, tl, tz), 

prove(o,.tl > :tz) ---7 a .. - a(ttl > a(tz), 
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1 .4 . Def: " is a compatible simplification :iff ” is an equi-

valence relation s.t.: for al l s ,  t ,  t1, tz s T

(a) s " t implies o(s) ’ o(t) for any substitution a, „ a n d

( b )  t1 " t2 implies s t u  (v t1] * s [ u  é- tz] for any tree

node u in s (subterm replacement). []

For a term rewriting system R that generates the noetherian

relation ——+: on T ,  and a simplification ” which is compa—

‘ t i b l e  with the terms of T we get (cf.[3], Satz 7.4):

Theorem: If —-9n and “ fulfill condition (b) of Def.1.2,

then: “—93 is locally confluent modulo " iff for all

critical pairs ( p ,  q )  of R :  p —+é—R q (mod “). []

C f .  [2], p.12‚ for orthogonality o f  two relations of

reduction which gives a restriction similar to ( b )  of 1.2.

Implementation

To handle this kind of confluence mechanically, I implemen—

ted the extension of the Knuth-Bendix procedure to reduction

Schemes“ and terms under hypothesis in the simple case of

conditions which involve an ordering >. Let Th) be the

theory of > and Subst = {0:X -—9 T | dom(o) finite) U {1}.

Egg; a ——9 b :- P is a reduction scheme :iff a——9b a R and

P a Th5, while i t s  application to terms i s  defined by

s reduces to t w.r.t. a ——9 b : —  P :iff there exists redex

u in s w.r.t. a ——9 b s.t.: t = s[u é- o(b)] and

prove( o, P ) ¢= i, where o is the match of s/u .and a.

prove(o:Subst, A:Th>):Subst can be defined by the rules

prove(1g_A) -—9 JJ prove(o, true) —-9 o,

prove(o. t1 = t 2 )  -—9 unif(o, t1, t2).

p.rove(o,..t1 > t2) _). o -::- 0(t1) >6(tz)‚





prove (0, [&]) --7 0 (empty conjunction), 

prove (0, [& A B]) ~ prove ( prove(o,A), [& B] ). 0 

2.2.	 Def: A term under hypothesis is a pair (t, H) ET X Th>. 

(s,H) reduces to (t,H ' ) w.r.t. a ~ b:- P :iff there 

exists redex u in s s.t.: t = s[u f- match(s/u,a) (b)] and 

H' = prove_consistency ( [& P match(s/u,a) (H)] ) 4= 1.. 0 

The consistency checker for Th> is based on the principles: 

x > X resp. [& X>Y Y>X] are inconsistent, return~. 

If [&	 X>Y Y>Z] is consistent, then so is [& X>Y Y>Z X>Z] . 

Finally, to superpone reduction schemes we must have 

2.3.	 Def: (p,H) and (q,H) are a critical pair w.r.t. R :iff 

exist at --7bt : -Pt, az ~bz : -pz E R, node u in at, and 

~ = unif (id,at /u,az) =1=.1.. s.t.: (i) p = IJ (at) [u f- IJ (bz)] 

and q = ~(bt) form a critical pair, 

(ii) H = prove_consistency([& IJ(Pt) IJ(Pz)]) *= L' 0 

If one (or both) rules are reductions we may assume the 

corresponding condition P to be true, so that the task of 

proving consistency becomes trivial. 

2.4.	 Def: A critical pair (p,H), (q,H) is confluent :iff 

(p,H) ~lI: (p',Ht), (q,H) ~lI: (q',H2), and 

prove_consistency ([& Ht H2]) 4=.1... 0 
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prove(o, [&1) ——9 o (empty conjunction),

prove(o, [& A B]) -—9 prove( prove(o,A), [& B] ). []

2.2. D e f :  A term_under hypothesis is a pair (t, H )  s T x Th).

(s,H) reduces to (t,H') w.r.t. a -—9 b :— P :iff there

exists redex u in s s.t.: t = s[u e— match(s/u,a)(b)] and

H' = prove_consistency( [& P match(s/u,a)(H)] )-#=_i. []

The consistency checker for Th, i s  based on the principles:

X > X resp. [& X>Y Y>X] are inconsistent, return_L.

I f  [ &  X > Y  Y>Z] i s  consistent, then s o  is [ &  X > Y  Y > Z  X>Z].

Finally, to superpone reduction schemes we must have

2.3. D e f :  (p,H) and (q,H) are a critical pair w.r.t. R :iff

exist a1——9b1:-P1, a2-—9b2:-P2 a R, node u in a;, and

u = unif(id,a1/u,a2) #=_i_s.t.: (i) p = u(a1)[u é- u(bz)]

_and q = u(b1) form a critical pair,

(ii) H = prove_consistency([& u(P1) u(Pz)]) $=_i‚ []

If one (or both) rules are reductions we may assume the

corresponding condition P to be true, s o  that the task of

proving consistency becomes trivial.

2.4. D e f :  A critical pair (p,H), (q,H) is confluent :iff

( P : H )  “*** (P ' ‚H1 ) .  (q ffl )  -—9* (Q',H2). and.

prove_consistency([& H1 H2]}-#=_L. E]
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1. Introduction 

It is quite usual for work on the theory of term rewriting to presuppose (or to test) the 

confluence of the rewrite relation under consideration. But, under certain circumstances, term 

rewriting can be quite interesting even without this precondition. In particular, results for such 

systems are valuable for modelling nondeterministic computations. Besides that, the question 

may be of theoretical interest which results depend essentially on the confluence condition and 

which do not. 

The work presented here came out of a thesis on the extension of algebraic specifications to 

nondeterminism ([Hussmann 88]). Based on the semantic framework of [Nipkow 86] and 

[Hesselink 88], non-confluent term rewriting can be seen as a specification language and a 

calculus for specifications of nondeterministic data types. 

Below we skectch a model-theoretic semantics for non-confluent term rewriting systems and 

give correctness and (weakened) completeness results for rewriting as a calculus. It turns out 

that the "narrowing" method ([Hullot 80D can be easily transferred to the case of non-confluent 

rewriting. 

The results presuppose a special shape of the rewriting rules which is sometimes called 

"constructor-based". A large number of specifications occurring in practice are subsumed by 

this type of rules. In contrast to other approaches, no further preconditions (termination, 

constructor-completeness) are made. 

2. Constructor-Based Rewrite Systems 

For our purposes, the standard notion of term rewriting systems can be loosened somewhat by 

omitting all variable restrictions. For instance, a rule 
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1. Introduction

It is quite usual for work on the theory of term rewriting to presuppose (or to test) the
confluence of the rewrite relation under consideration. But, under certain circumstances, term

rewriting can be quite interesting even without this precondition. In particular, results for such
systems are valuable for modelling nondeterministic computations. Besides that, the question
may be of theoretical interest which results depend essentially on the confluence condition and
which do not.

The work presented here came out of a thesis on the extension of algebraic specifications to
nondeterminism ([Hussmann 88]). Based on the semantic framework of [Nipkow 86] and
[Hesselink 88], non-confluent term rewriting can be seen as a specification language and a
calculus for specifications of nondeterministic data types.

Below we skectch a model-theoretic semantics for non-confluent term rewriting systems and
give correctness and (weakened) completeness results for rewriting as a calculus. It turns out
that the "narrowing" method ([Hullot 80]) can be easily transferred to the case of non-confluent
rewriting.

The results presuppose a special shape of the rewriting rules which is sometimes called
"constructor-based". A large number of specifications occurring in practice are subsumed by
this type of rules. In contrast to other approaches, no further preconditions (termination,
constructor-completeness) are made.

2. Constructor-Based Rewrite Systems

For our purposes, the standard notion of term rewriting systems can be loosened somewhat by
omitting all variable restrictions. For instance, a rule
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some ~x 

where x is a variable and some a constant, will be considered as a correct rewrite rule. 

We assume a signature L = <S, F> to be given where a subset C k: F of constructor function 

symbols is designated. Tl;(X) means the set of terms over L and a variable set X, Tc(X) is the 

subset ofconstructor terms. A term rewrite system R is called constructor-based iff for all rules 

I ~ r in R the left hand side is of the special form 

I = f(tl, ... , t:n) where feF\C and all tie Tc(X). 

3. Model-theoretic Semantics 

The notion of a multialgebra generalizes algebras to the case of set-valued operations, Le. an 

operation yields an element of the powerset of the corresponding carrier as its result. If the rank 

of fe F is f: SI x ... X sn ~ s, then 

fA. A x A th( A)• SIX ... sn ~ ()V S • 

A subset CA c FA of constructor operations exists also in A: 

CA= {feFA I feC}; 

and all constructor operations are allowed only to have singleton sets as results: 

if cAe CA then I cA(al, ... , an) I = 1. 

This means, the operations within an algebra as defined above may be partial and non

deterministic, constructor operations are forced to be deterministic and total. 

A valuation ~ of the variables in a multialgebra A is defmed as usual. The interpretation of a 

term te Tl;(X) of sort s in a multialgebra A under a valuation ~ is defined by additive extension: 

IA[x](~) = {~(x)} (if x is a variable), IA[f(tI. ... , tn)](~) = {aefA(aI. ... , an) I aieIA[ti](~)} (if 

feF). 

A term rewrite rule I ~ r is calledvalid in a multialgebra A (denoted by A 1= I ~ r) iff 

'if valuations~: IA[l](f3) ~ IA[r](f3). 

A is called a model of the rewrite system R iff all rules in R are valid in A. We write R 1= 1~ r 

iff A 1= I ~ r for all models A ofR. 

4. Rewriting without a Confluence Condition 

The usual notion of rewriting is generalized to constructor-based rewriting by 

tl ~c t2 iff there is an occurrence u in tl, a rule I ~ r in R and a constructor 

substitution a such that tl/u = aI, t2 = a(t1[urr]). 

(A constructor substitution means a substitution assigning only constructor terms to variables.) 

some —-> x

where x is  a variable and some a constant, will be considered as a correct rewrite rule.

We assume a signature Z = <S,  F> to be given where a subset C g F of constructor function
symbols is designated. Tz(X) means the set of terms over 2 and a variable set X, TC(X) is the

subset ofconstructor terms . A term rewrite system R is called constructor-based iff for all rules
1 —'> r in R the left hand side is of the special form

1 = f(t1, . .  . ,  tn) where fe RC and all tie TCCX).

3. Model-theoretic Semantics

The notion of a multialgebra generalizes algebras to the case of set—valued operations, i.e. an

operation yields an element of the powerset of the corresponding carrier as its result. If the rank
o f f eF i s  f: s1 >< >< sn «> s, then

fA131A >< X snA —> p(sA).
A subset CA g FA of constructor operations exists also in A:

CA = {fe FA I fe C};
and all constructor operations are allowed only to have singleton sets as results:

if cAe CA then | cA(a1, . . . ,  an) I = 1.

This means, the Operations within an algebra as defined above may be partial and non-
deterministic, constructor operations are forced to be deterministic and total.

A valuation ß of the variables in a multialgebra A is  defined as usual. The interpretation of a
term te T};(X) of sort 3 in a multialgebra A under a valuation [3 is  defined by additive extension:
IAlX] (B) = {[300} (if x is a variable), IA[f(t1. ..., m)](ß) = {ae fA(a1‚ . . . ,  an) I ate IA[ti](ß)} (if
fe F) .

A term rewrite rule 1 —> r is calledvalid in a multialgebra A (denoted by A != l ——> r) iff
V valuations ß: IA[1](ß) ; IA[r](|3).

A is called a model of the rewrite system R iff all rules in R are valid in A. We write R I: 1 —> r
iff A l= l  —> r for all models A of R.

4. Rewriting without a Confluence Condition

The usual notion of rewriting is generalized to constructor-based rewriting by
t1  —>C t2 iff there is  an occurrence u in t1, a rule 1 —> r in R and a constructor

substitution 0 such that t1/u = 01, t2 = o(tl [u<—r]).

(A constructor substitution means a substitution assigning only constructor terms to variables.)





In a constructor-based rewrite-system R we have for all terms t1, t2e T:E(X) the correctness 

result: 

d --tC* t2 => R 1= t1 --t t2. 

We have also a completeness result under the restriction that t2 has to be a constructor term, Le. 

for all tIe T:E(X), t2e Tc(X): 

R 1= d --t t2 => d --tC* t2. 

5. Narrowing without a Confluence Condition 

The "narrowing" technique can be adapted to constructor-based rewriting in a quite 

straightforward way: 

d-N--tcr t2 iff there is a non-variable occurrence u in d, a rule 1 --t r in R and a 

constructor substitution (J' such that (J' is the most general unifier of d/u 

and 1, t2 = (J'(tl[u~r]). 

This kind of narrowing corresponds to constructor-based rewriting in the following sense: 

Let R be a constructor-based rewrite system, Q = [d --t t2] a given query in R. Then for a 

constructor substitution cr, cr is a solution of Q (Le. at1 --tC* at2) if and only if there are 

constructor substitutions A, cr' and a term t2' such that cr = Acr', t1-N~cr'* t2' and Ais a 

unifier of cr' t2 and t2'. 
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In a constructor—based rewrite-system R we have for all terms t1, tZE T};(X) the correctness

result:
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5. Narrowing without a Confluence Condition
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Introduction: The efficiency of algorithms on AC-terms (classes of terms 
modulo associativity and commutativity) depends heavily on the under
lying data structure. After discussing commonly used implementations of 
AC-terms by terms and by canonical forms, we present a partial ordering 
on AC-terms, the AC preference ordering, and demonstrate how it can be 
used to implement AC-terms efficiently. 

Basic algebraic properties: Given a signature E = (S, F, r), the term 
algebra 1E(V) is the free E-algebra over the set of variables V. Therefore 
substitutions, endomorphisms on 1E(V), are uniquely determined by their 
restriction to V. Any set of equations e ~ Tl;(V)2 induces a congruence 
relation ~ with e ~ ~ ~ Tl;(V)2, the equational theory of e. We get a 
L.:-algebra 1i;(V)/~ which, in the case of collaps free theories, forms the 
free algebra over V in the e-variety. In this case, endomorphisms (substi
tutions) of the term algebra can be extended in a natural way to endo
morphisrns on Tl;(V)/~, which we also call substitutions. The AC-theory, 
consisting of associativity and commutativity laws for some operators, is a 
permutative theory, therefore the quotient algebra 7i;(V)AC, the AC-term 
algebra, consists of finite classes of terms which are called AC-terms. 

Implementation of AC-terms: An AC-operator which may be re
garded as having arbitrary arity (exploiting associativity) permits permu
tation of its argument AC-terms (exploiting associativity and commuta
tivity). Thus, an AC-term, which is constructed by an AC-operator, can 
be represented by a multiset of AC-terms. The implementation of this 
multiset affects the efficiency of algorithms on 1i;(V). We shall demon
strate this by a closer look at two basic algorithms, namely comparison 
of AC-terms (congruence classes) and substitution. Usually the multi
sets are implemented as lists (i.e. an AC-term is represented by any term 
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Introduction: The efficiency of algorithms on AC-terms (classes of terms
modulo associativity and commutativity) depends heavily on the under-
lying data structure. After discussing commonly used implementations of
AC-terms by terms and by canonical forms, we present a partial ordering
on AC—terms, the AC preference ordering, and demonstrate how it can be
used to implement AC-terms efficiently.

Basic algebraic properties: Given a signature 2 = (S, F, T), the term
algebra 7:20)) is the free E-algebra over the set of variables V. Therefore
substitutions, endomorphisms on ??;(V), are uniquely determined by their
restriction to V. Any set of equations 8 9 73:0?)2 induces a congruence
relation ß with 8 ; R'! ; %(VP,  the equational theory of 8 . We get a
E-algebra 733(1));g which, in the case of collaps free theories, forms the
free algebra over V in the (‘)—variety. In this case, endomorphisms (substi-
tutions) of the term algebra can be extended in a natural way to endo-
morphisms on TE(V)/„, which we also call substitutions. The AC-theory,
consisting of associativity and commutativity laws for some operators, is a
permutative theory, therefore the quotient algebra IgG/’)Ac, the AC-term
algebra, consists of finite classes of terms which are called AC-terms.

Implementation of  AC-terms: An AC—operator which may be re—
garded as having arbitrary arity (exploiting associativity) permits permu—
tation of its argument AC-terms (exploiting associativity and commuta-
tivity). Thus, an AC-term, which is constructed by an AC-operator, can
be represented by a multiset of AC-terms. The implementation of this
multiset affects the efficiency of algorithms on CEO/). We shall demon-
strate this by a closer look at two basic algorithms, namely comparison
of AC-terms (congruence classes) and substitution. Usually the multi—
sets are implemented as lists (i.e. an AC—term is represented by any term





of its congruence class). For example the congruence class of the term 
*(y,*(*(2,x),-(y))) has a representation (* y 2 x (- V»~. Substitution can 
be performed easily by substituting the term which represents the con
gruence class, but comparison is costly: two terms have to be tested for 
"equality under permutation". To improve the latter algorithm, AC-terms 
could be implemented by canonical forms, e.g. by an ordered list. This 
yields the following representation: (* 2 x y (- y»). Now comparison of 
AC-terms can be reduced to comparison of terms, which is very fast, but 
substitution is costly: the canonical form is not preserved in general. A 
way out of this dilemma could be an ordering which is "stable under sub
stitution", i.e. tt 0" -< t 20" follows from tt -< t2 for all AC-terms tt, t2 and 
all substitutions 0". 

The AC preference ordering: First it has to be remarked that an 
ordering on AC-terms which is stable under substitution cannot be total. 
Our goal is to find a partial ordering which, besides being efficient, is "as 
large as possible". This can be achieved by extending a total ordering 
(:::;, F) on the operator symbols to the partial AC preference ordering 
(~, ~(V)AC) on AC-terms in the following way: 

1.	 f < g:
 

f( ... ) < g( ...)
 

2.	 f is not an AC-operator:
 
f(tl, ... , tn) -< f(ti,···, t~) {:} (tl, ... , tn) -<-<lex (ti, ... , t~)
 

3.	 f is an AC-operator, tt = f(· .. ), t2 = f(· .. ):
 
tt ~ t 2 {:} M f( tt) -<-<mult M JC t2),
 

where the multiset of an AC-term t is defined by 

M (t) = { Mf(t') + Mj(t"), if t = f(t', t") 
f { t }, otherwise. 

The orderings -«lex and -«mult are recursively defined as the lexicographic 
resp. multiset extension of (~, ~(V)AC)' Variables are excluded from or
dering. (-<, 'li:(V)AC) is stable under substitution and, as a preference 
ordering, it is very efficient (compared to the recursive path ordering, for 
example). Furthermore, it can be shown that ~ cannot be extended with
out loosing stability under substitution or getting complicated to compute. 

Implementation using the AC preference ordering: Like in the 
case of canonical forms, where the ordered list reflects the total ordering 
on AC-terms, we can use the partial AC preference ordering to construct a 

of i ts congruence class). For example the congruence class of the term
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be performed easily by substituting the term which represents the con—
gruence class, but comparison is costly: two terms have to be tested for
“equality under permutation”. To improve the latter algorithm, AC-terms
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yields the following representation: (* 2 :c y (— y)). N ow comparison of
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way out of this dilemma could be  an ordering which is “stable under sub-
stitution”, i.e. tlo‘ —< 1520' follows from tl -< t2 for all AC-terms 731,252 and
all substitutions 0'.

The AC preference ordering: First it  has to be remarked that an
ordering on AC-terms which is stable under substitution cannot be  total.
Our goal is to  find a partial ordering which, besides being efficient, is “as
large as possible”. This can be achieved by extending a total ordering
(S ,  F) on the operator symbols to the partial AC preference ordering
( j ,  ’12-;(11) AC)  on AC-terms in the following way:

1. f < 9:
f(-~) < gm

2. f is not an AC-operator:
f ( t 1 , . . . , t n )  j f ( t { , . . . , t : , )  @ ( t1 , . . . , t„)  51336 ; , ”  „ im

3. f is an AC—operator, tl = f ( .  . .), t2 = f( .  . .:)
t l  j tz @ Mf(t1 )  _‘iimuzt Mj( t2 )a

where the multiset of an AC-term t is defined by

__ MfÜ')  + MW).  if t = f (t’, t")

Mia)  _ { { t} ,  otherwise.

The orderings film. and 1%i are recursively defined as the lexicographic
resp. multiset extension of ( j ,  7502),“). Variables are excluded from or—
dering. (j,’]:g(V)Ao) is stable under substitution and, as a preference
ordering, it is very efficient (compared to the recursive path ordering, for
example). Furthermore, it can be shown that j cannot be extended with—
out loosing stability under substitution or getting complicated to compute.

Implementation using the AC preference ordering: Like in the
case of canonical forms, where the ordered list reflects the total ordering
on AC—terms, we can use the partial AC preference ordering to construct a





data strueturefor AC-terms. For example, the multiset Mf(t) can be par
titioned into maximal antichains of AC-terms, i.e. multisets of AC-terms 
which are pairwise uncomparable. This data structure improves the per
formance of the substitution algorithm compared to canonical forms, but 
does not behave significantly worse with respect to the algorithm compar
ison of AC-terms. It can be shown, in an algebraic complexity modell and 
by implementing the different data structures, that the implementation 
based on the AC preference ordering behaves favourably compared to the 
implementations by terms resp. by canonical forms. 

Literature: Basic algebraic properties of equational theories are dis
cussed in [1],[2], multiset orderings in [4]. In [3] an algebraic modell for 
implementations is presented which also serves as a complexity modell. 
Evaluation of the different data structures for AC-terms can be found in 
[2]. 
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We consider strategies for the Knuth-Bendix completion procedure ([KB70]) that constructs canonical term rewriting 

systems (1RS) for equational theories. In contrast to the critical pairs criteria «(BW83], [Kiichlin85], [KMS88]) and to 

completion strategies, that minimize the size of axioms and rules with respect to the number of function symb()ls 

([KiicWin82], [Wagner86]), we investigate heuristic completion strategies, that estimate during the completion process. 

which of the generated axioms and rules will be contained in Roo
, the lRS generated for the given equational theory. 

Our approach is justified by the fact. that the result of the KB procedure is uniquely determinated by the input (up to 

variable renaming). 

Theorem! [Metivier83] If R and R' are two reduced canonicallRS for an equational theory E. and if R, R' are 
both contained in some reduction ordering >. then Rand R' are equal (up to variable renaming). A lRS R is called 

reduced. if for any rule 1~ rE R the right-hand side r is not reducible in R and the left-hand side 1is not reducible in 

R\{l ~ r). 

Note: Any canonical TRS R can be reduced to a reduced canonicallRS R' with ~R = +-!-+R' and -+R' £ -+-+R. 

Most of the implemented completion procedures generate reduced lRS. 

As a consequence, the result of the KB procedure can be characterized as follows: 

Proposition 1 If> is a reduction ordering, E an equation theory and R a reduced canonical lRS for E. then: 

a) for any rule 1~ r E R the following is true: 

i) r is a least element of its congruence class, i.e. t E [r]E implies t> r or t = r 

ii) all proper subterms of1are least elements of their congruence classes. 

b) for any term t with I [t]E1> 1 there is a rule 1 ~ rE R, such that not r > t 

We use Proposition 1 to d~fine a heuristic merit ordering on the rules generated during the completion process 

estimating. which of the rules have the best chance to lie in R
oo

• 

Definition If > is a reduction ordering then the merit ordering >h(» !; T~: (V)2 x TL. (V)2 is defined by 

f(tl'· ··,tu),r1) >h(» (g(sl.···'sm),r2) iff {t1.···.fu) » {sl'· ...sm) or {t1'· ··.fu} =set {s1.···'sm} and r1 > r2 • 

where » denote the extension of> to a multiset ordering and =set equality on sets. 
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We consider strategies for the Knuth-Bendix completion procedure ([KB70]) that constructs canonical term rewriting

systems (TRS) for equational theories. In contrast to the critical pairs criteria ([BW83], [KüchlinSS], [KMSSSD and to
completion strategies, that minimize ”the size of axioms and rules with respect to the number of function symbols
([KfichlinSZ], [Wagner86]), we investigate heuristic completion strategies, that estimate during the completion process,

which of the generated axioms and rules will be contained in R°°, the TRS generated for the given equational theory.
Our approach is justified by the fact, that the result of the KB procedure is uniquely determinated by the input (up to
variable renaming).

Theoreml [Metivier83] If R and R’ are two reduced canonical TRS for an equational theory E,  and if R, R' are
both contained in some reduction ordering >, then R and R’ are equal (up to variable renaming). A TRS R is called
reduced, if for any rule 1 —> r e R the right-hand side r is not reducible in R and the left-hand side 1 is not reducible in
R\{1—-> r} .

Note: Any canonical TRS R can be reduced to a reduced canonical TRS R’ with <—*->R = «BE—mo and "*R" g '+"’R°
Most of the implemented completion procedures generate reduced TRS.

As a consequence, the result of the KB procedure can be characterized as follows:

Proposition 1 If > is a reduction ordering, E an equation theory and R a reduced canonical TRS for B,  then:

a) for any rule 1 —-> r e R the following is true:
i) r is a least element of its congruence class, i.e. t e [rJE implies t > r or t = r
ii) all proper subterms o f l  are least elements of their congruence classes.

b) for any term twith | [t]EI > 1 there is a rule 1 ——> r e R, such that not r > t.

We use Proposition 1 to define a heuristic merit ordering on the rules generated during the completion process
estimating, which of the rules have the best chance to lie in R°°.

Definition If > is a reduction ordering then the merit ordering >h(>)  ; T2(V)2 x T2(V)2 is defined by
f(t1,.. . ,tn),1'1) >h(>) (g(sl , . . . ,sm),r2) lff [ t1 , . . . , tn}  >> {S l , . . . , Sm}  01° { t1 , . . . , tn}  =set {S l , . . . , Sm]  and 1'1 >1‘2 ,

where >> denote the extension of > to a multiset ordering and =set equality on sets.
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Heuristic Huet's completion procedure 

KB(E: set of equation, >: reduction ordering): TRS; 

begin 

EO := E; RO:= ~; i := 0; p := 0; 

loop 

while Ei :I:- ~ do
 

choose an equation t1 = 12 in Ei; renwve t1 = 12from Ei; (t1 ',12 ') := (t1.L R .,tz.LR .);
 

if t1':I:- 12' then 
1 1
 

case (t1 ',12 ') of
 

t1' > 12' : (l,r) := (t1 ',12');
 
t1' < tz' : (l,r) := (tz' ,t1');
 

else : exit with failure endcase;
 

Ei+1 := Ei U (1"= r' 11' .... r' € Ri' 1"= l'''-Ri\(l' .... r') u(1 ....r}}; p:= p + 1; 
Ri+1 := (k:1'.... r"l k:l'.... r' € Ri, l' irreducible in Ri \(1' .... r') u {I .... r}, r" = r'.LRi u (1 .... r)} 

u (p:l .... r}; i:= i +1; 

endif;
 

endwhile;
 

if rill rules in ~ are marked then exit with Ri as canonical TRS for E
 

else choose an unmarked rule k:1 .... r in Ri- which is minimal with respect to >h(»
 

Ei+1 := {p = q IP= q critical pair of rule k:l .... r with rule k':l' .... r' in Ri and k'::; k};
 

mark rule k:l .... r in Ri; i:= i + 1; endif
 

endloop 

end KB; 

As pointed out in [Huet81] we have to guarantee the fairness of the heuristic completion procedure, Le. any rule in 

R00 := u i n j~ Rj has to be chosen for the creation of critical pairs in some iteration of the outer loop. 

Proposition 2 If~h(» is a globally finite well quasi ordering on T"L(V)2 then the heuristic completion procedure 

is fair. Here ~h(» denotes the reflexive closure of >h(» and a reflexive, transitive relation ~ (quasi ordering) on a set 

Mis called 

globally finite iff for any x in M the set x~:= {y E M I x ~ y } is finite. 

•	 awell quasi ordering (wqo) iff ~ is well founded (i.e. there exist no infinite descending sequences x1 ~ x2 ~ ... 

such that Xi $ xi+l for each i ~ I) and each set ofpairwise incomparable elements in M is finite. 

Note: Huet's completion procedure generates variant free TRS's Ri' Hence for the fairness of KB procedure it is 

sufficient, that ~h(» is a globally finite wqo on each variant free subset R of T"L(V)2. 

Lemma 1 If a:V 1-+ T"L(V) is a substitution such that for all x E V a(x) = y for some y E V, ~ a globally finite 

wqo on T"L«(y})2,then 

a) ~[>] defined by (t1,12) ~[>] (t1',12) iff 

i) (t1,tz)a > (t1 ',tz )a or
 

ii) (t1,tz.)a := (t1 ',12)a and (t1.tz.)a >h(» (t1',12 )a
 
is a globally finite wqo on each variant free subset R ofT"L(V)2, where:= :=;;:: f'l ::; •
 

b) If;;::h(» is wqo on T"L«(y})2 then ;;::[>] defined by 

(t1,12) ;;::[>] (t1',tz ) iff (t1,tz.)a ;;:: (t1',12 )a and (t1,tz.)a ;;::h(» (t1',tz )a 
is a globally finite wqo on each variant free subset R of T"L(V)2. 

Heuristic Huet’s completion procedure
KB(E: set of equation, >: reduction ordering): TRS;

beg in
EO :=E ;R0 :=  ¢; i :=0 ;p  := 0;
loop

while Ei # ß do

choose an equation I = in E-; remove t = from E-; (t ', ’) := (t l ., l. _ ;ml’flz’then 1 t2 1 t2 1 1‘2 1R1t2 R1)

case (tl 'Jg') Of
t l ’  > tg’ : (1r) ==(t1’.tg’);
‘1' < tg’ : (LI) := (r211);
e l se  : exit with failure endcase;
Ei+l == Ei U {1"= 1"1 '  “> I" € Ri , 1"= l1121\{1' „> r'} um er} }; 13 == p + 1;
Ri +1 := [k:1'—> r"! k:1'—-> r’ e Ri , 1’ irreducible in Ri\{l’  —> r’] u{1—> r}, r” =r’lRi U {1-) Ü}

U {p:1—> r} ;  i := i+1 ;
endif;

endwhile;
if all rules in Ri are marked th’en exit with Ri as canonical TRS for E

else choose an unmarked rule kzl --> r in Ri, which is minimal with respect to >h(>)

Ei+1 := {p = q Ip = q critical pair ofrule k:1—> r with rule k’:l’ -> r'  in Ri and k's k};
mark rule k:1—> r in Ri; i := i + 1; endif

endloop
end KB ;

As pointed out in [Huet81] we have to guarantee the fairness of the heuristic completion procedure, i.e. any rule in
R°° := Ui  njzj Rj has to be chosen for the creation of critical pairs in some iteration of the outer loop.

Proposition 2 If 2h(>) is a globally finite well quasi ordering on TECV)2 then the heuristic completion procedure
is fair. Here 2h(>) denotes the reflexive closure of >h(>) and a reflexive, transitive relation 2 (quasi ordering) on a set
M is called
- globally finite iff for any x in M the set x2: {y e M I x z y ] is finite.
- a well quasi ordering (wqo) iff 2 is well founded (i.e. there exist no infinite descending sequences x l  2 x2 2 .  ..

such that xi $ xi+1 for each i 2 1) and each set of pairwise incomparable elements in M is finite. .

Note: Huet's completion procedure generates variant free TRS 's Ri' Hence for the fairness of KB procedure it is
sufficient, that ->-h(>) is a globally finite wqo on each variant flee subset R of T2002.

Lemma 1 If 0':V t—> TEN) is a substitution such that for all x e V (f(x) = y for some y e V, 2 a globally finite
wqo on TZ({y})2,then
a) zb] defined by (tZ) _>_[>] (tl’JQ’) iff

i) (t1,t2)0' >(t1’,b2’)6 or
ii) (t1,t2)o :=: (tl',t2’)o and (t1,t2)o' >h(>) (tl’,t2’)o

is a globally finite wqo on each variant free subset R of T2(V)2, where x := 2 n s .

b) If 2h(>) is wqo on Tz({y})2 then zb] defined by
(121,12) _>_[>] (tl'J/Z') iff (t1,t2)0' ?. (t1„f2')6 and (t1,|'2)6 2h(>) (t1 11236

is a globally finite wqo on each variant free subset R of T2002.





Empirical Results 

Based on the system documented in [Dietrich85] an experimental implementation of the heuristic completion 

procedure was developed. Since the KB Algorithm implemented there is a variant of the [H080] KB procedure, we use 

>h(>)to choose an axiom, which then is turned into a rule. Following Lemma la we extend >h(» to a globally [mite 

wqo on variant free subsets of TI,(V)2. As globally fInite wqo on TI,({y})2 we take the termsize ordering ~s(n) 
divided by n. More formally: (l,r) ~ts(n) (1',r') iff ( IOcc(l)I+ IOcc(r)1 ) + n ~ ( IOcc(l')1 + IOcc(rjl ) + n, where + 

denotes the integer division. Some examples from [KB70J were run so far. 

Orientation of pairs through KBO ordering; heuristic completion strategy (smallest 
component strategy) 

Example matches rewrites unifications pairs 
steps 
completion 

perfonned perfonned performed generated 

14382 195 449 117I-group 15 
(15) (17711) (233) (473) (134) 

17 135235r-group 17275 512 
(19) (182)(28843) (348) (673) 

15 21461lr-group 308 549 149 
(15) (361)(28595) (570) (163) 

69231 776rl-group 1102 31722 
(81946) (843) (1176) (343)(22) 
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procedure was developed. Since the KB Algorithm implemented there is a variant of the [I-IO80] KB procedure, we use
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:A.-rewriting combines :A.-calculus with (one-sorted) term rewriting, but in a less general 
way than Klop's combina.tory reduction systems, see [KIo 80]. Three types of such com
binations are studied - each type being a special case of its successor. 

Type 1, add term rewriting to A-calculus (or vice versa) 

In some sense, type 1 is the least calculus comprising :A.-calculus and term rewriting. 
From the programmer's point of view, it is similar to functional programming languages 
with pattern matching (e.g. ML [HMM 86]). From a theoretical point of view it is a spe
cial case of the M-calculus [Bar 84] and Hindley's :A.(a)-calculus [Hin 78] is very similar. 

Terms of type 1 are extended by abstractions (w.r.t. TRS) or by function symbols (w.r.t. 
:A.-calculus). Left-hand sides of type 1 rules are restricted to (the curryfied form of) terms 
allowed to be on the left-hand side of an ordinary TRS-rule. Right-hand sides are not 
restricted. Substitution has to be defined slightly more general than for TRS or :A.-calcu
lus, but more similar to substitution in the :A.-calculus, because it has to take care of name 
conflicts. 

Evaluation (called J3o-reduction) is a mixture of J3-reduction (:A.-ealculus) and the relation 
defmed by the rules, the o-reduction. For any rule left ---t right, any context C and any 
substitution sub the term C [sub (left) ] a-reduces to C [sub (right) ]. So the defini
tion is the same as for ordinary TRS, if one ignores the more general definitions of terms 
and substitutions. 

The particularity of type 1 systems can be shown by an example: 

add O---t:A.x . x 

add (succ x) ---t:A. y . succ (add x y) 

mul O---t:A.x . 0 

mul (succ x) ---t:A. y . add (mul x y) y 

The A-rewriting system above is one of several possibilities to define addition and multi
plication on natural numbers where a natural number n is represented as succn(zero). 
Different from TRS and from functional programming languages with super-combinator 
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h—rewritin g combines l—calculus with (one-sorted) term rewriting, but in a less general
way than Klop’s combinatOry reduction systems, see [Klo 80]. Three types of such com-
binations are studied — each type being a special case of its successor.

Type 1, add term rewriting to k-calculus (or vice versa)

In some sense, type 1 is the least calculus comprising l—calculus and term rewriting.
From the programmer’s point of View, it is similar to functional programming languages
with pattern matching (e. g. ML [HMM 86]). From a theoretical point of view it is a spe-
cial case of the iii-calculus [Bar 84] and Hindley’s k(a)-calculus [Hin 78] is very simflar.

Terms of type 1 are extended by abstractions (w.r.t. TRS) or by function symbols (w.r.t.
l—calculus). Left-hand sides of type 1 rules are restricted to (the curryfied form of) terms
allowed to be on the left-hand side of an ordinary TRS-rule. Right-hand sides are not
restricted. Substitution has to be defined slightly more general than for TRS or l—calcu-
lus, but more similar to substitution in the l—calculus, because it has to take care of name
conflicts.

Evaluation (called BEE-reduction) is a mixture of B—reduction (A-calculus) and the relation
defined by the rules, the S-reduction. For any rule l e f t  _) right, any context C and any
substitution sub the term C [ sub  ( l e f t )  ] ö-reduces to C [sub (right) ] .  So the defini-
tion is the same as for ordinary TRS, if one ignores the more general definitions of terms
and substitutions.

The particularity of type 1 systems can be shown by an example:

add 0 ——> 7L x . x

add (succ x)  —> l y . succ  ( add  x y )

mul  0 ——> 9L x . 0

mul (succ x)  -—> 7t y . add (mu l  x y )  y

The x-rewn'tin g system above is one of several possibilities to define addition and multi-
plication on natural numbers where a natural number 11 is represented as succn( zero).
Different from TRS and from functional programming languages with super-combinator





implementations [Tur 79, Joh 85] is the evaluation of functions. For example the system 
above evaluates (Le. f3o-reduces) the term mul (suee (suce zero» to the normal 
form AX . add x x: 

mul(suee(suce 0» 
To the right there is a possible f3o-reduc Ay.add(mul(suee 0) y) y
tion sequence (here innermost-fIrst evalu Ay.add«Ay.add(mul 0 y) y) y) y
ation strategy) of the fIrst term in 7 steps. Ay.add( (Ay.add( (AX.O) y) y) y) y
All the 3 f3-reductions in the example have Ay.add( (Ay.add 0 y) y) y
reduced non-closed terms inside of ab Ay.add( (Ay. (AX.X) y) y) y
stractions. In functional programming lan Ay.add( (Ay.y) y) y
guages this is unusual. Ay. add y y 

Some results and observations about type 1 A-rewriting (LRS) are the following: 

• For confluent TRS mapped through currying to LRS (where each function symbol has a 
unique arity): 

-	 o-reduction remains to be confluent, but it is not isomorphic to TRS-reduction 
because of currying, some more terms can be o-reduced. 

- f3o-reduction is confluent, if the TRS is additionally left-linear. 

•	 ~-transformation: the rule a x ---7 b, such that a and b are terms and x is a variable 

not occurring free in a, can be ~-transformed into the rule a ---7 A x. b. A LRS is ~

normal, ifno rule can be ~-transformed. For example, the addmul-LRS is C-normal. 

- if X is a LRS and X' has been yielded by some ~-transformations from X, then f3o(X) 
is a subre1ation of f3o(X').
 

- in general, confluence of f3o-reduction is lost by ~-transformation.
 

•	 f3oT\-reduction on ~-norma1 LRS: 

- satisfies extensionality. 

- unlike A-calculus, the normal form property of f3BT\- and f3o-reduction differs, because 
T\-reduction can introduce B-redexes.
 

- is confluent if f3o-reduction is.
 

Type 2, rewriting A.-calculus terms 

LRS of type 2 deal with the same terms as type 1, but the rules are more general. Here 
the rules are not restricted on their left-hand sides, and altogether only by the usual 
restriction for term rewriting rules, that is FV(left)::)FV(right) for rules 

left ---7 right, where FV denotes the set of free variables in a term. Whereas a con
fluent LRS of type 1 only equalises the non-A-calculus part of the terms and hence per
forms a consistent theory [Bar 84], type 2 is more powerful, but it is harder to prove sev
eral properties for LRS of type 2. 

Type 2 rules can express A-calculus' T\-reduction: 

AX.yX---7y 

To do this in the A-calculus, it is necessary to require xe FV(y). For A-rewriting of type 2 
this condition holds implicitly by the definition of B-reduction. In particular, the rule above 

implementations [Tur 79, Joh 85] is the evaluation of functions. For example the system
above evaluates (i.e. [SS-reduces) the term mul  ( succ  ( succ  ze ro ) )  to the normal
form 7 tx . add  x x :

_ mul (succ (succ 0)  )
To the right there is a poss1b1e ßö-reduc- l y . add (mul ( succ  0 )  y )  y
tion sequence (here innermost-first evalu- Qty _ add( (1y _ add (mu 1 0 Y) y)  Y) Y
ation strategy) of the first term in 7 steps. ÄY-  add( (Ry.  add (  (Rx. 0)  y )  y )  Y) y
All the 3 B-reductions in the example have KY . add (  (hy . add 0 y )  y )  Y
reduced non—closed terms inside of ab- Ay _ add( (Ky . ( 1x _ x)  y )  y )  y
stractions. In functional programming lan- KY _ add( (Ay ‚y )  y)  y
guages this is unusual. hy .  add y y

Some results and observations about type 1 A—rewriting (LRS) are the following:

° For confluent TRS mapped through currying to LRS (where each function symbol has a
unique arity):

- ö—reduc—tion remains to be con-fluent, but it is not isomorphic to TRS-reduction -
because of currying, some more terms can be 8—reduced.

- BEE-reduction is confluent, if the TRS is additionally left-linear.

° C—transformation: the rule a x -—> b ,  such that a and b are terms and x is a variable

not-occurring free in a ,  can be C—transformed into the rule a -—> JL x . b.  A LRS is C-
normal, if no rule can be C—transfonned. For example, the addmul-LRS is C—normal.

— if X is a LRS and X’  has been yielded by some C—transformations from X, then [38(X)
is a subrelation of [58(X’).

- in general, confluence of BEE-reduction is lost by C-transformation.

° Ban-reduction on C—normal LRS:

- satisfies extensionality.
- unlike l-calculus, the normal form property of [3811-- and [id-reduction differs, because

n—reduction can introduce S-redexes.
- is confluent if BEE-reduction is.

Type 2, rewriting l—calculus terms

LRS of type 2 deal with the same terms as type 1, but the rules are more general. Here
the rules are not restricted on their left-hand sides, and altogether only by the usual
restriction for term rewriting rules, that is FV(left);FV(right) for rules
l e f t  —> r ight ,  where FV denotes the set of free variables in a term. Whereas a con-
fluent LRS of type 1 only equalises the non-l—calculus part of the terms and hence per—
forms a consistent theory [Bai- 84], type 2 is more powerful, but it is harder to prove sev-
eral properties for LRS of type 2.

Type 2 rules can express A—calculus’ n-reduction:

l x . y x +9 y

To do this in the R—calculus, it is  necessary to require Xe FV(y). For A—rewriting of type 2
this condition holds implicitly by the definition of ö-reduction. In particular, the rule above





does not fit to the term A.x. x x, because there is no substitution to make it equal to the 
left-hand side - as in A.-calculus, substitutions have to take care of name conflicts. 

Type 3, extensions 

There are several possibilities to make further extensions. Type 3 works with an extend
ed set of terms. The idea is: rules are partial functions on terms - functions are abstrac
tions - abstractions are terms - consequently rules are terms. Basically a term (a~b) c 

(where a, b and c are arbitrary terms) can be reduced to sub (b) if sub is a substitution, 
such that sub (a) =c. In fact this idea has been the starting point of the work on A.-rewrit
ing presented here. The most general understanding of this idea leads to a non-confluent 
reduction, i.e. even for empty databases evaluation would not be determined. For exam
ple, evaluating the term (x y~x) ( (x~x) (a b)) can produce a as well as x~x. 

Therefore, the abstractions of type 3 are restricted on their left-hand sides to curryfied 
forms of linear TRS-terms. 

Another possible extension of type 2 LRS would be to choose a different notion of reduc
tion for type 2 rules. Consider the following rule of type 2: 

A. x . f	 a ~ S (A. x . f) (A. x • a) 

It is one of the 3 rules to map A.-calculus into combinatory logic, but for type 2 o-reduction 
it only works incompletely, because it o-reduces only those abstractions where the 
abstracted variables do not occur freely in the body. This behaviour is more restricted 
than necessary, because the variables f and a occur on the right-hand side in the same 
context of bound variables as on the left-hand side. A more liberal notion of reduction can 
be treated formally by introducing another kind of substitution. This new substitution 
does not care about name conflicts for a certain set of variables, i.e. these variables will 
not be renamed in a conflict situation. 
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Jungle Evaluation for Efficient Term Rewriting 1
 

(Extended Abstract) 2 

Berthold Hoffmann and Detlef Plump, Universitiit Bremen 3 

In a straightforward implementation of term rewriting, terms are represented by 
trees, and rewriting is realized by subtree replacement. Unfortunately, this may 
be very expensive, both in time and space: the application of a rule may require 
large subterms to be copied, and each copy of a term must be evaluated anew. 

Jungle evaluation ([HKP 88], [HP 88]) provides an improved model for implement~ 

ing term rewriting by graph rewriting where these sources of inefficiency can be 
avoided: 

•	 Jungles are acyclic hypergraphs which allow terms to be represented such 
that multiple occurrences of a subterm can be shared. Acyclicity ensures that 
each jungle node represents a unique term and that structural induction on 
jungle nodes is available. 

•	 Rewriting is performed by (hyper-)graph replacement, specified by evalua
tion rules according to the algebraic theory of graph grammars (see, e.g., 
[Ehr 79]). By applying these evaluation rules, new references to existing 
subterms are introduced instead of copying subterms. 

•	 Additional hypergraph rules for folding multiple occurrences of terms allow 
each term in a jungle to be represented only once, so multiple evaluation can 
be avoided. 

Example: Computation of Fibonacci Numbers 

Consider the term rewrite rules 

fib(O) --+ ° 
fib(succ(O)) --+ succ(O) 

fib(succ(succ(x))) --+ fib(succ(x)) + fib(x) 

specifying a function fib that computes Fibonacci Numbers, based on natural 
numbers with the constant 0, successor function succ, and addition +. 

IThis work is partly supported by the Commission of the European Communities under Con
tract 390 (PROSPECTRA Project) in the ESPRIT Programme. 

2For a full paper see [HP 88]. 

3 Address: Fachbereich Mathematik und Informatik, Universitat Bremen, Postfach 330 440, 
D-2800 Bremen 33. Usenet: {hof ,det}%Informatik. Uni-Bremen.de 

Jungle Evaluation for Efficient Term Rewriting 1
(Extended Abstract) 2

Berthold Hofmann and Detlef Plump, Universität Bremen 3

In a straightforward implementation of term rewriting, terms are represented by
trees, and rewriting is realized by subtree replacement. Unfortunately, this may
be very expensive, both in time and space: the application of a rule may require
large subterms to  be copied, and each copy of a term must be evaluated anew.

Jungle evaluation ([HKP 88], [HP 88]) provides an improved model for implement-
ing term rewriting by graph rewriting where these sources of inefficiency can be
avoided:

o Jungles are acyclic hypergraphs which allow terms to  be  represented such
that multiple occurrences of a subterm can be  shared. Acyclicity ensures that
each jungle node represents a unique term and that structural induction on
jungle nodes is available.

0 Rewriting is performed by (hyper—)graph replacement, specified by evalua-
tion rules according to the algebraic theory of graph grammars (see, e.g.,
[Ehr 79]). By applying these evaluation rules, new references to  existing
subterms are introduced instead of copying subterms.

. Additional hypergraph rules for folding multiple occurrences of terms allow
each term in a jungle to  be represented only once, so  multiple evaluation can
be avoided.

Example: Computation of Fibonacci Numbers

Consider the term rewrite rules

fib(0) —+ o
f ib(succ(0))  ——> succ(0)

fib(succ(succ(x))) «+ f ib(succ(x))  + f ib(x)

specifying a function f ib  that computes Fibonacci Numbers, based on natural
numbers with the constant 0 ,  successor function succ,  and addition +.

1Th i s  work is partly supported by the Commission of the European Communities under Con-
tract 390 (PROSPECTRA Project) in the ESPRIT Programme.

2For a full paper see [HP 88].
3Address :  Fachbereich Mathematik und Informatik, Universität Bremen, Postfach 330 440,
D-2800 Bremen 33. Usenet: {hof,det}'/.Informatik.Uni—Bremen.de





The first two steps for computing the Fibonacci Number of 4 by term rewriting 
are: 

fib(succ4 (O)) 

---+ fib(succ3 (O)) + fib(succ 2(O)) 

---+ fib(succ2 (O)) + fib(succ(O)) + fib(succ2 (O)) 

In both steps, subterms of the arguments of fi b are copied. Furthermore, the re
sulting term contains two copies of fi b(succ2

( 0)); each of them must be rewritten 
anew. As a consequence, rewriting a term fib(succn(O)) to normal form requires 
space and a number of steps exponential in n. 

Below we show corresponding jungle evaluation steps and a subsequent folding 
step. (=} and =} denote the application of an evaluation and a folding rule, re

£: F 
spectively. ) 

:::::} :::::}=>
£ £ :F 

The evaluation steps do not copy the arguments of fib, but merely introduce new 
references to them. Moreover, after the folding step the subterm fib(succ2(O)) is 
represented just once and thus has to be evaluated only once. 

When performing evaluation and folding steps in this order, the evaluation of a 
term fib(succn(O)) requires only a number of steps and space linear in n. 

Results 

Fully Collapsed Jungles: For each finite set of terms there is a (up to isomorphism) 
unique minimal jungle representing these terms most efficiently. Given an arbitrary 
jungle, the equivalent fully collapsed jungle can be generated by application of 
folding rules which eliminate multiple occurrences of terms. 

The first two steps for computing the Fibonacci Number of 4 by term rewriting
are:

fib(succ4(0))
——> fib(succ3(0)) + fib(succ2(0))
—> fib(succ2(0)) + fib(succ(0)) + fib(succ2(0))

In both steps, subterms of the arguments of f i b  are copied. Furthermore, the re-
sulting term contains two copies of f ib(succ2(0)); each of them must be rewritten
anew. As a consequence, rewriting a term fib(  succ”(0)) to  normal form requires
space and a number of steps exponential in n.
Below we show corresponding jungle evaluation steps and a subsequent folding
step. (=8> and ?> denote the application of an evaluation and a folding rule, re—
spectively.)

The evaluation steps do not copy the arguments of f ib ,  but merely introduce new
references to  them. Moreover, after the folding step the subterm fib(succ2(0)) is
represented just once and thus has to  be evaluated only once.
When performing evaluation and folding steps in this order, the evaluation of a
term fib(succ"(0)) requires only a number of steps and space linear in 77..

Results

Fully Collapsed Jungles: For each finite set of terms there is a (up to isomorphism)
unique minimal jungle representing these terms most efliciently. Given an arbitrary
jungle, the equivalent fully collapsed jungle can be  generated by application of
folding rules which eliminate multiple occurrences of terms.





Correctness: The translation of term rewrite rules into evaluation rules is correct 
in the sense that each application of an evaluation rule to a jungle rewrites the 
represented terms according to the underlying term rewrite rule. In general, a 
single evaluation step performs sequences of term rewrite steps in parallel. 

Normal Forms: Exhaustive application of the evaluation rules to some jungle J 
yields a jungle J which represents normal forms of the terms represented by J, 
provided that the given rewriting system is left-linear. Moreover, the restriction 
of left-linearity can be dropped by allowing folding steps to be performed between 
evaluation steps. 

Termination: Termination of term rewriting implies termination of jungle eval
uation without restriction, even if folding is allowed. The proof of this result is 
nontrivial since for jungle evaluation, in contrast to term rewriting, "garbage" has 
to be considered (as the nodes representing succ4

( 0) and succ3
( 0) in the rightmost 

jungle of the above example) which may lead to additional evaluation steps. 

Confluence: Unlike termination, confluence of term rewriting does not carry over 
to jungle evaluation. However, if the given rewriting system is terminating and 
confluent, then jungle evaluation is terminating and confluent too, provided the 
garbage produced by evaluation steps is ignored. Jungle evaluation without folding 
turns out to be strongly confluent for non-overlapping rewrite systems, where 
termination or left-linearity needs not to be required. 
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Correctness: The translation of term rewrite rules into evaluation rules is correct
in the sense that each application of an evaluation rule to  a jungle rewrites the
represented terms according to  the underlying term rewrite rule. In general, a
single evaluation step performs sequences of term rewrite steps in parallel.

Normal Forms: Exhaustive application of the evaluation rules t o  some jungle J
yields a jungle 7 which represents normal forms of the terms represented by J,
provided that the given rewriting system is left-linear. Moreover, the restriction
of left-linearity can be  dropped by allowing folding steps to be performed between
evaluation steps.

Termination: Termination of term rewriting implies termination of jungle eval—
uation without restriction, even if folding is allowed. The proof of this result is
nontrivial since for jungle evaluation, in contrast to term rewriting, “garbage” has
to be  considered (as the nodes representing succ4(0) and succ3(0) in the rightmost
jungle of the above example) which may lead to  additional evaluation steps.
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I. Motivation 

Using recent advances in executable specification languages and proof techniques, we 

approach an unsolved problem in the area of compiler construction: to provide high-level tools for 

the production of reliable code generators. Machine code generation appears to be a well-suited field 

for the application of algebraic specification techniques for two reasons: 

Target machine instruction sets, expecially with ClSC architectures, are rather sizable data 

types. An (order-sorted) signature for the MC68000, for example, uses 42 sorts and 181 

operators. Clearly, this calls for mechanical support, for checking the specification's 

consistency and completeness over several development steps. 

Most of a target machine description is plain syntax, and basic code selction can be done by 

pattern matching techniques. However, target machine programs must also satisfy certain 

context-sensitive constraints (regarding addressability of operands in the context of certain 

instructions, the number of registers used, etc.). These constraints seem quite independent, but 

may interact in a relatively complex fashion. This interaction, known as the danger of 

"semantic blocking" (in [GrGl??] and subsequent approaches), has so far not been captured in 

a satisfactory way. 

Our approach is to describe the context sensitive properties of machine programs and code selection 

indpendently. Then we describe transformations that turn an (illegal) target program t into another 

target program t', such that 

t and t' are both correct target programs for the same intermediate program,
 

t' satisfies a particular constraint,
 

constraints already satisfied by t still hold for t'.
 

These are the properties of correctness, efficacy and invariance of the code generator specification, 

which are to be proved with equational proof methods. Together, they guarantee the absence of 

semantic blocking, i.e. the completeness of the code generator specification. 

The study reported here was performed for a small, but nontrivial target language, consisting 

of 5 instructions and 4 address modes, combined in a totally non-orthogonal way. 

2. An Algebraic Model ofCode Generation 

In our model, a code generator specification consists of five order-sorted specifications: 

BS	 defmes certain basic data types by (conditional) equational axioms, including Booleans, 

integers, but also machine specific ones like register numbers, register class identifiers, word 

length indicators, etc. 
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1.  Motivation
Using recent advances in executable specification languages and proof techniques, we

approach an unsolved problem in the area of compiler construction: to provide high-level tools for
the production of reliable code generators. Machine code generation appears to be a well-suited field
for the application of algebraic specification techniques for two reasons:

- Target machine instruction sets, expecially with CISC architectures, are rather sizable data
types. An (order-sorted) signature for the MCGSOOO, for example, uses 42 sorts and 181
operators. Clearly, this calls for mechanical support, for checking the specification's
consistency and completeness over several deve10pment steps.

- Most of a target machine description is plain syntax, and basic code selction can be done by
pattern matching techniques. However, target machine programs must also satisfy certain
context- sensitive constraints (regarding addressability of operands in the context of certain
instructions, the number of registers used, etc.). These constraints seem quite independent, but
may interact in a relatively complex fashion. This interaction, known as the danger of
"semantic blocking" (in [GrGl77] and subsequent approaches), has so far not been captured in
a satisfactory way.

Our approach is to describe the context sensitive properties of machine programs and code selection
indpendently. Then we describe transformations that turn an (illegal) target program t into another
target program t’, such that

- t and t’ are both correct target programs for the same intermediate program,
- t' satisfies a particular constraint,

- constraints already satisfied by I still hold for t'.
These are the properties of correctness, efi‘icacy and invariance of the code generator specification,
which are to be proved with equational proof methods. Together, they guarantee the absence of
semantic blocking, i.e. the completeness of the code generator specification.

The study reported here was performed for a small, but nontrivial target language, consisting
of 5 instructions and 4 address modes, combined in a totally non-orthogonal way.

2 .  An Algebraic Model of Code Generation

In our model, a code generator specification consists of five order- sorted specifications:
BS  defines certain basic data types by (conditional) equational axioms, including Booleans,

integers, but also machine specific ones like register numbers, register class identifiers, word
length indicators, etc.
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IL defines the intermediate language, extending BS by cell constructors, used by the compiler 

front-end to replace the source program variables by address subtrees according to the 

compiler's virtual machine. 

1L defines the syntax of target programs, by extending BS. TL does not include any new 

axioms. Its sorts represent the address modes and operand classes of the target machine, its 

constructors model instructions and address calculations. 

1M completes the target language description by enriching TL with predicates, (separately) 

describing operand binding restrictions, word length compatability laws, temporary register 

limits, and other peculiarities of the target machine. (See Example 1.) 

D is the code selection specification. It enriches the union of IL and TL by one polymorphic 

operation dd, translating target programs into intermediate programs. The axioms defining dd 

must be in the form of (order-sorted) derivor equations. 

For simplicity, we assume in the sequel that there are only two wellformedness-predicates specified 

by TM, wb and wt (for well-bound and well-typed). Now, the task of code generation can be 

specified formally as: 

For a ground IL-term q (the given intermediate program) and a variable z of a suitable sort from 

TL, solve the equation system 

dd(z) =q, 

wt(z) =true, 

wb(z) = true. 

In principle, this could be solved by narrowing, but without some strategy tailored to the structure 

of the specification, this would be prohibitively expensive. 

3. Making the Specification (More) Operational 

The first equation, dd(z) =q, can be solved efficiently by using pattern matching techniques 

for derivor inversion, as explained in [GiSc88]. Applying the generated pattern matcher to q will 

yield a (generally infinite) stream of target programs t1, t2, ... from TTL(V), ideally in the order of 

increasing cost (but we do not discuss this aspect here). They contain variables from V, for word 

lengths associated with instructions, or registers numbers yet to be assigned. In many situations, 

there exists a substitution 0" such that wb(tiO") =true and wt(tiO") = true for some small value of i. 

However, where wellformedness requires extra coercion instructions or loading of registers, 

such a substitution does not exist for many a ti. (See Example 2.) One could consider disregarding 

ti and continuing with ti+l, etc. This, however, would give us no clue as to whether a solution 

exists at all. So instead, we further enrich the specification by "transformation" operators mk_wb, 

mk_wt, with the intent that if wb(t) = true has no solution, wb(mk_wb(t)) = true will have one. 

(See Example 3.) 

4. Verification 

Up to this point, developing the specification using a tool like the CEC system [BGS88] has 

been a mere convenience. Now, to verify our last development step, the following equational 
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IL defines the intermediate language, extending BS by cell constructors, used by the compiler
front-end to replace the source program variables by address subtrees according to the
compiler's virtual machine.

TL defines the syntax of target programs, by extending BS .  TL does not include any new
axioms. Its sorts represent the address modes and Operand classes of the target machine, its
constructors model instruCtions and address calculations.

'IM completes the target language description by enriching TL with predicates, (separately)
describing operand binding restrictions, word length compatability laws, temporary register
limits, and other peculiarities of the target machine. (S ee Example 1.)

D is the code selection specification. It enriches the union of IL and TL by one polymorphic
operation dd, translating target programs into intermediate programs. The axioms defining dd
must be in the form of (order-sorted) derivor equations.

For simplicity, we assume in the sequel that there are only two wellformedness-predicates specified
by TM, wb and wt (for well-bound and well-typed). Now, the task of code generation can be
specified formally as:
For a ground ISL-term q (the given intermediate program) and a variable 2 of a suitable sort from
TL, solve the equation system

dd(Z) = q,
wt( Z) = true,

wb(z) = true.
In principle, this could be solved by narrowing, but without some strategy tailored to the structure
of the specification, this would be prohibitively expensive.

3. Making the Specification (More) Operational
The first equation, dd(z) = (1, can be solved efficiently by using pattern matching techniques

for derivor inversion, as explained in [GiS c8 8]. Applying the generated pattern matcher to q will
yield a (generally infinite) stream of target programs t1, t2, from TTL(V), ideally in the order of

increasing cost (but we do not discuss this aspect here). They contain variables from V, for word
lengths associated with instructions, or registers numbers yet to be assigned. In many situations,
there exists a substitution cr such that what-a) = true and wt(ti0') : true for some small value of 1'.

However, where wellformedness requires extra coercion instructions or loading of registers,
such a substitution does not exist for many a ti. (See Example 2.) One could consider disregarding

t,- and continuing with ti+ 1, etc. This, however, would give us no clue as to whether a solution

exists at all. So  instead, we further enrich the specification by "transformation" operators mk__wb,
mk__wt, with the intent that if wb(t) = true has no solution, wb(mk_wb(t)) = true will have one.
(See Example 3.)

4 .  Verzfication

Up to this point, developing the specification using a tool like the CEC system [BGSS8] has
been a mere convenience. Now, to verify our last development step, the following equational
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theorems have to be proved: 

Efficacy: wt(mk_wt(z)) =true 

wb(mk_wb(z)) = true 

Correctness: dd(mk wt(z)) = dd(z) 

dd(mk_wb(z)) = dd(z)
 

Mutual Invariance: wb(z) =wb(mk wt(z))
 

wt(z) =wt(mk_wb(z))
 

Efficacy means that it is always possible to satisfy each constraint by an equivalent target 

program, where target programs are equivalent when mapped to the same IL-program by dd . This 

we call correctness of the transformations. Invariance says that mk_wt does not destroy the 

achievements of mk_wb, and vice versa. (There are weaker formulations of invarance, which make 

transformations easier to write, but are harder to prove mechanically.) 

Inductionless induction [HuHu80], as available by the completion procedure of the 

CEC-system, is sufficient to prove these theorems, basically since the transformations have a rather 

local effect, and so is their effect on the constraints, although it extends a little further. Without 

mechanical aid, it would be rather error-prone to carry out the neceessary proofs, even for a small 

target language as used in this study. 

5. Conclusions 

1. The application of our approach to code generator descriptions of realistic size may currently 

be out of reach for current proof systems (because of efficiency problems resulting from sheer 

specification size), but not without the reach of current proof techniques. 

2. Striving for good code, when writing the transformations one intuitively makes use of 

properties of the intermediate language (such as commutativity of operations or the possibility to 

interchange two statements without harm). Not all of them may be implied by the axioms specified 

with IL. This deficiency is demonstrated by non-termination of the correctness proof, but 

sometimes in an obscure way. 

3. This study was concerned with developing a form of code generator specification whose 

completeness could be verified mechanically. For a practical code generator generation tool, code 

selection, constraint checking and transformation should proceed in an interleaved fashion. To 

achieve this from a given specification, without sacrificing its provable completeness, is a 

challenging problem by itself. 
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Efficacy means that it is always possible to satisfy each constraint by an equivalent target
program, where target programs are equivalent when mapped to the same IL-program by dd . This
we call correctness of the transformations. Invariance says that mk_wt does not destroy the
achievements of mk_wb, and vice versa. (There are weaker formulations of invarance, which make
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mechanical aid, it would be rather error-prone to carry out the neceessary proofs, even for a small
target language as used in this study.
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Appendix: Examples 

Example] 

For a 2-address add-to-register-instruction, our specification contains, among others, the following 

equations: (The small letters are variables, the rest is a mixfix notation for TL terms, and == is 

equality of register numbers or word length indicators like B(yte) or W(ord).) 

wb(ADDR.!] Ri.lO Rj.l] opd) = (i ==j)
 

wt( ADDR.l Ri.lO Rj.!] opd) = ((I == la) and (I == I]) and (I == oplength(opd»))
 

Example 2 

For dd(z) = R].L := R2 B + ], code selection would construct, among others, the solutions 

z <--ADDR.l R].L R2B #], and 

z <-- MOV.l Ri.lO R2B; ADDR.13 R].L Ri.lO #], 

where for any instantiation of register number and word length variables, the second target program 

will not be well-typed, and the first will neither be well-typed nor well-bound. 

Example 3 

The transformation that yields a well-typable solution from the second one in Example 2 would be 

specified by an equation 

I] < la => mk_wt(MOVE.l Ri.lO Rj.l]) =SEXT.lO.I] RUO Rj.l] 

Note that if wb specifies SEXT.lO.!] (sign extension from the shorter I] to the longer la) to be a 

I-address instruction(while MOVE, of course, is 2-address), it will not be possible to prove mk_wt 

invariant with respect to wb. 
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Appendix: Examples

Example I
For a 2—address add-to-register—instruction, our specification contains, among others, the following
equations: (The small letters are variables, the rest is  a mixfix notation for TL terms, and == is
equality of register numbers or word length indicators like B(yte) or W(ord). )

wb(ADDR. l} Ri.  lo Rj. !] opd)= ( i :  j=)

wt(ADDR.l R1210 RjJI opd)=(( ==  lo) and(l== ll)and(l==oplength(opd)))

Example 2
For dd(z) = R1.L := R23 + I , code selection would construct, among others, the solutions

2 <--  ADDRJ RIL  R23 #1, and

z <--  MOVJ Rilo R23; ADDRJ3 RIL  RiJo #],

where for any instantiation of register number and word length variables, the second target program
will not be well-typed, and the first will neither be well-typed nor well-bound.

Example 3
The transformation that yields a well-typable solution from the second one in Example 2 would be
specified by an equation

I] < lo =>  mk_wt(MOVE.l Rilo Rj.l 1 ) = SEXTJoJ] Ri.l0 RjJI

Note that if wb specifies SEXT.1011 (sign extension from the shorter I] to the longer 10) to be a
1-address instruction(while MOVE, of course, is 2—address), it will not be possible to prove mk__wt
invariant with respect to wb.
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1) Introduction 

The tennination of the transfer process is an important question in Machine Translation (MT) and this 

paper makes a proposal of how to formulate transfer rules, which are in fact term-rewrite rules, in a way 

that the transfer process will terminate. The level of transfer in the project KIT-FAST 1 at the Technical 

University of Berlin is a semantic representation for sentences which expresses the logical relations 

within a sentence. Such logical relations are among others functor-argument relations, e.g. between the 

verb and its associated noun phrases. Thus the level of transfer is called Functor-Argument Structure 

(FAS). A FAS expression for a sentence is a derivation tree generated by a context-free grammar with 

complex symbols as non-terminals called FAS categories. A FAS category consists of a main category 

and a set of pairs of features and values. A(t) is used to denote the value of the feature f of the FAS 

category A. 

Since the transfer process is to be formulated as a term-rewrite system, the FAS expressions have to be 

mapped into FAS terms. Therefore a signature of a term algebra for the FAS expressions of the source 

and target language is defined. Now the transfer rules can be formulated as term-rewrite rules and a 

term-rewrite system can be used to transfer the source FAS terms into target FAS terms, which again 

can be mapped into target FAS expressions with the help of the given signature. 

2) An Ordering on FAS terms 

In order to guarantee that the term-rewrite system terminates, a well-founded (partial) ordering >PAS on 

the set of source and target FAS terms has to be defined which does not allow infinite descending 

sequences of those FAS terms. In order to defme a well-founded ordering >PAS, the FAS categories of the 

source and target FAS grammar, henceforth source and target FAS categories respectively, are 

distinguished such that every source FAS category A and every target FAS category B share a common 

feature 'lang(uage)' where A(lang) ::1= BOang). 2 

1	 This work has been developed in the project KIT-FAST (KIT =Kiinstliche Intelligenz und Textverstehen (Artificial 

Intelligence and Text Understanding); FAST =Functor-Argument Structure for Translation), which constitutes the Berlin 

component of the complementary research project of EUROTRA-D. It receives grants by the Federal Minister for 

Research and Technology under contract 1013211. 

2	 In the following for all source FAS categories A(lang) =s and for all target FAS categories B(lang) =t is defined. 
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1) Introduction

The termination of the transfer process is an important question in Machine Translation (MT) and this

paper makes a pr0posal of how to formulate transfer rules, which are in fact term-rewrite rules, in a way

that the transfer process will terminate. The level of transfer in the project KIT-FAST 1 at the Technical

University of Berlin is a semantic representation for sentences which expresses the logical relations

within a sentence. Such logical relations are among others functor—argument relations, e.g. between the

verb and its associated noun phrases. Thus the level of transfer is called Functor-Argument Structure

(FAS). A FAS expression for a sentence is a derivation tree generated by a context-free grammar with

complex symbols as non-terminals called FAS categories. A FAS category consists of a main category

and a set of pairs of features and values. A(f) is used to denote the value of the feature f of the FAS

category A.

Since the transfer process is to be formulated as a term-rewrite system, the FAS expressions have to be

mapped into FAS terms. Therefore a signature of a term algebra for the FAS expressions of the source

and target language is defined. Now the transfer rules can be formulated as term-rewrite rules and a

term-rewrite system can be used to transfer the source FAS terms into target FAS terms, which again

can be mapped into target FAS expressions with the help of the given signature.

2) An Ordering on FAS terms

In order to guarantee that the term-rewrite system terminates, a well-founded (partial) ordering >m on

the set of source and target FAS terms has to be defined which does not allow infinite descending

sequences of those FAS terms. In order to define a well—founded ordering >FAS, the FAS categories of the

source and target FAS grammar, henceforth source and target FAS categories respectively, are

distinguished such that every source FAS category A and every target FAS category B share a common

feature 'lang(uage)' where A(lang) # B(lang). 2

1 This work has been developed in the project KIT-FAST (KIT = Künstliche Intelligenz und Textverstehen (Artificial
Intelligence and Text Understanding); FAST == Functor—Argument Structure for Translation), which constitutes the Berlin
component of the complementary research project of EURO'IRA-D. It receives grants by the Federal Minister for
Research and Technology under contract 1013211.

2 In the following for all source FAS categories A(lang) = s and for all target FAS categories B(Iang) = t is defined.
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With this distinction the derivation sequence t5 ---7 t1 ---7 ••• ---7 1:" ---7 h contains hybrid FAS telIDs ti where 

1 ::;; i ::;; n and t5 and h are the source and target FAS telIDs respectively. The FAS telIDs 1:; are hybrid 

because source FAS categories as well as target FAS categories occur in them. Before the definition of 

the well-founded ordering can be given, the set Set) of all source FAS categories and the set T(t) of all 

target FAS categories have to be defmed. C(t) is used to denote the set of all FAS categories occuring in 

the telID t. 

Definition 1: Set) = {A E C(t)I A(lang) = s} and T(t) = {B E C(t)IB(lang) = t} where Set) n T(t) = 0 

and C(t) =Set) u T(t). 

Definition 2a: Let t,u be FAS terms without variable occurrences then t >PAS u if and only if (S(u) c 

Set»~ v (S(u) =Set) /\ T(u) c T(t». 

The transfer rules may contain variables and in order to fmd out whether a given set of transfer rules is 

terminating or not, the above ordering >PAS on FAS telIDs has to be "lifted" to an ordering on FAS telIDs 

with variables. Vet) is used to denote the set of all variables occuring in the telID t. 

Definition 2b: Let t,u be FAS terms with variable occurrences, then t >PAS u if and only if definition 2a 

holds and additionally V(u) c Vet). 

Theorem 1: A transfer system R over a set of FAS terms is terminating if and only if A, >PAS P for each 

transfer rule A, ---7 P in R. 

Thus the transfer rules have to be defined according to the well-founded ordering >PAS' i.e. the right-hand 

sides (rhs) of all transfer rules have to contain less source FAS categories than the corresponding left

hand sides (lhs) or, if the set of source FAS categories is equal on both sides, at least one of the target 

FAS categories has to be deleted, and every variable occuring on the rhs occurs too on the lhs. These 

conditions can be checked in preprocessing. 

3) The Transfer System 

A desirable feature of the transfer system would be that it works message-driven, i.e. it runs through the 

input structure and applies every possible transfer rule. Unfortunately, the lhs of the transfer rules are not 

necessarily local structures and therefore the transfer system has to work rule-driven, i.e. after each 

reduction it has to check every transfer rule for application. Additionally, the set of transfer rules need 

not be confluent, i.e. for a given source FAS telID there may be one or more target FAS telIDS. For these 

reasons, the intrinsic application order of the transfer rules is made explicit in a preprocessing step, i.e. if 

the rhs of a transfer rule r and the lhs of a transfer rule r' share some non-variable common subterm, then 

With this distinction the derivation sequence ts ——> t1 —> —-> t“ —> tT contains hybrid FAS terms ti where

1 S i s n and t8 and t-r are the source and target FAS terms respectively. The FAS terms ti are hybrid

because source FAS categories as well as target FAS categories occur in them. Before the definition of

the well-founded ordering can be given, the set S(t) of all source FAS categories and the set T(t) of all

target FAS categories have to be defined. C(t) is used to denote the set of all FAS categories occuring in

the term t.

Definition 1: S(t) = {A e C(t)|A(1ang) = s} and T(t) = {B e C(t)lB(lang) = t}  where S(t) (“\ T(t) = @

and C(t) = S(t) U T(t).

Definition 2a: Let t,u be FAS terms without variable occurrences then t >m u if and only if (S(u) c

S(t)) v (S (u) = S(t) A T(u) c T(t)).

The transfer rules may contain variables and in order to find out whether a given set of transfer rules is

terminating or not, the above ordering >12,“ on FAS terms has to be "lifted” to an ordering on FAS terms

with variables. V(t) is used to denote the set of all variables occuring in the term t.

Definition 2b: Let t,u be FAS terms with variable occurrences, then t >FAS u if and only if definition 2a

holds and additionally V(u) ; V(t).

Theorem 1 : A transfer system R over a set of FAS terms is terminating if and only if 2. >12“ p for each

transfer rule it —> p in R.

Thus the transfer rules have to be defined according to the well-founded ordering >m, i.e. the right—hand

sides (rhs) of all transfer rules have to contain less source FAS categories than the corresponding left-

hand sides (lhs) or, if the set of source FAS categories is equal on both sides, at least one of the target

FAS categories has to be deleted, and every variable occuring on the rhs occurs too on the lhs. These

conditions can be checked in preprocessing.

3) The Transfer System

A desirable feature of the transfer system would be that it works message-driven, i.e. it runs through the

input structure and applies every possible transfer rule. Unfortunately, the lhs of the transfer rules are not

necessarily local structures and therefore the transfer system has to work rule-driven, i.e. after each

reduction it has to check every transfer rule for application. Additionally, the set of transfer rules need

not be confluent, i.e. for a given source FAS term there may be one or more target FAS terms. For these

reasons, the intrinsic application order of the transfer rules is made explicit in a preprocessing step, i.e. if

the rhs of a transfer rule r and the lhs of a transfer rule r' share some non-variable common subterm, then





rule r has to be applied before rule r' (r >,pp rt). If the lhs of a transfer rule r and the lhs of a transfer rule r' 

share some non-variable common subterm, then rule r and rule r' can be alternatively applicable (r valtr'). 

Before a formal defInition can be given, some notations have to be introduced: 

• U: unification of two terms. The result is the minimal unifier. 

• Mlu: non-variable subterm of the term M. 

Now the formal def'Initions of the two relations >.pp and V alt can be given. Let R be the set of all transfer 

rules. V r,r' E R where r = (A ~ p) and r' = (A'~ p'): 

• superposition of the Ihs of r' with the rhs of r: (A'/u U p # 0) v (pIu U A' '# 0) => r >app r'. 

• superposition of the lhs of r' with the lhs of r: (A'/u UA# 0) v CA/u UAt # 0) => r V alt r'. 

• else: r and r' are independent of each other and may be applied in any order. 

With the help of the relation >app the application sequence of the transfer rules can be computed taking 

into consideration the fact that >,pp also may contain cycles. The relation V all is used to admit an 

alternative application of transfer rules only where necessary. In that way an effIcient transfer algorithm 

can be defined which has been implemented. at the Technical University of Berlin. 
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One of the main application areas for term rewriting techniques is automa

ted theorem proving. Theorem proving, again, is especially suitable for the 

proofs of assertions arising in program verification, since these proofs are sel

dom of great mathematical depth and do not require mUch ingenuity. 

So, it is not astonishing that there are already some applications of rewrit 

ing techniques in program verification, e.g. in the Boyer-Moore prover <Cf. 

[Boyer/Moore 79]} or in SPADE (cf. [O'Neill et al. 88])' These systems have in 

common that they are used in a highly interactive way; the proofs must be 

directed by the user (e.g. by adding new lemmas in the Boyer-Moore system or 

by choosing a nlle that shall be applied in SPADE>. 

We want to present an approach to program verification that also makes use 

of term transformations but works mostly non-interactive. We think that this 

is a sensible way of running a program verifier because it delivers the user 

from waiting in front of the terminal the whole proof long (which can be a 

very long time indeed). 

Our method is situated in the scope of VDM (the "Vienna Development 

Method", cf. [VDM 87], [VDM 88]). Actually, the "programs" we want to verify 

are specifications written in an essentially .functional subset of META IV, the 

VDM specification language of VDM. This subset is, nevertheless, so general 

that most imperative or functional languages contain a subset that is equivalent. 

A program to be verified mllst be given as a system of recursive function 

definitions. The language elements that may be used inside a function are con

ditional expressions, sequences ("exPl ; eXP2"), constant declarations ("let Id = 
eXPl in eXP2") and function calls. There are no loop constructs; loops can, how

ever, be expressed via recursion. 
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One of the main application areas. for term rewriting techniques is automa-
ted theorem proving. Theorem proving, again, is  especially suitable for the

proofs of  assertions arising in program verification, since these proofs are sel—
dom of great mathematical depth and do not require much ingenuity.

So ,  it is not astonishing that there are already some applications o f  rewrit-

ing techniques in program verification, e.g. in the Boyer—Moore prover (cf.
[Boyer/Moore 79]) or in SPADE (cf. [O'Neill et. a1. 88]) .  These systems have in
common that they are used in a highly interactive way; the proofs must be
directed by the user  (e .g .  by adding new lemmas in the Boyer-Moore system or

by choosing a rule that shal l  be applied in SPADE).

We want to present an approach to program verification that a l so  makes use

of  term transformations but works mostly non-interactive. We think that this
i s  a sensible way of  running a program verifier because it delivers the user

from waiting in front of  the terminal the whole proof long (which can be a
very long time indeed).

Our method is  situated in the scope of  VDM (the "Vienna Development
Method", cf.  [VDM 87],  [VDM 88]) .  Actually, the "programs" we want to verify
are specifications written in an essentially functional subset of  META IV, the
VDM specification language of  VDM. This subset is ,  nevertheless, so  general
that most imperative or  functional languages contain a subset  that is equivalent.

A program to be verified must  be given as a system o f  recursive function
definitions. The language elements that may be  used inside a function are con-

ditional expressions,  sequences ("€*p ; expg"), constant declarations ("Lag Id =
expl jg expz") and function ca l l s .  There are no loop constructs; l oops  can, how—

ever, be expressed via recursion.





Each of the functions defined must be equipped with a pair of pre- and 

postconditions. These form the invariants that are needed for the inevitably 

inductive proof of the "recursive program". Of course, they must be formulated 

strong enough, since otherwise, the proof will fail. The aim is to prove each 

function partially correct w.r.t. its pre- and postcondition. Unlike in the Boyer

Moore system, we do not have to set up a new induction scheme for each 

proof. One scheme, the correctness of which is proved once and for all before

hand, can be used for all proofs. 

The assertions arising during the proofs are rewritten using term transforma

tion rules that must be given as an input to the proof system. The proof has 

succeeded if the constant term true can be reached. The rules are directed, 

conditional and ordered rules; in contrast to usual rewrite rules, they may con

tain also higher order terms (a source for this complication is the denotational 

definition of programming language semantics). 

We require the usual properties of correctness, confluence and termination. 

Without the first one, the proofs generated are incorrect as well, and without 

the others, there is a chance that correct assertions cannot be proved. The 

rules arise from generally valid laws ~from arithmetic and logiC>, from the 

specification of primitive functions and from assumptions valid at the moment, 

Le. from the induction hypotheses and from the conditions leading to the 

branch of a function under consideration at the moment. This last point makes 

it difficult to apply the usual algorithms for completion and termination check

ing, since they had to be applied over and over again at every change of the 

rules. So, for the time being, we do not check confluence and termination but 

assume that these properties are fulfilled. 

We have implemented our method in a system called PAMELA (= "Proof 

Assistant for META IV-like Languages") which is a generalized version of the 

PACS system ("Proof Assistant for Code Generator Specifications", cf. [Buthl 

Buth 88]), As an example, we have chosen code generator specifications used 

in the CAT compiler generating system (cf. [Schmidt/Voller 87]). These speci

fications are the basis for parts of compilers that are industrially used by 

Norsk Data. 

Up to now, we have made the experience that we have not yet encountered 

an error in the specifications that could not be found. It is, however, ex

tremely important to put up suffiCiently strong invariants for the proof. But 

the definition of pre- and postconditions seems to be a quite natural way to 

Each of  the functions defined must be equipped with a pair o f  pre— and

postconditions. These form the invariants that are needed for the inevitably
inductive proof of  the "recursive program". Of  course,  they must be formulated
strong enough, sinCe otherwise, the proof will fail. The aim is to  prove each
function partially correct w.r . t .  its pre- and postcondition. Unlike in the Boyer—
Moore system, we do not have to set  up a new induction scheme for each
proof. One scheme, the correctness o f  which is proved once and for all  before—

hand, can be used for a l l  proofs.

The assertions arising during the proofs are rewritten using term transforma-

tion ru les  that must be given as an input to the proof system. The proof has

succeeded i f  the constant term true can be reached. The rules are directed,

conditional and ordered rules; in contrast to usual rewrite rules,  they may con—
tain a lso higher order terms (a source for this complication is the denotational
definition of programming language semanticsl.

We require the usual properties of  correctness, confluence and termination.
Without the first one, the proofs generated are incorrect as Well, and without
the others, there is a chance that correct assertions cannot be proved. The
rules arise from generally valid laws (from arithmetic and logic), from the
specification of  primitive functions and from assumptions valid at the moment,
i.e. from the induction hypotheses and from the conditions leading to the
branch of  a function under consideration at the moment. This last point makes
it difficult to  apply the usual  algorithms for cOmpletion and termination check—
ing, since they had to.  be applied over and over again at every change of the
rules.  So ,  for the time being, we do not check confluence and termination but

assume that these properties are fulfilled.

We have implemented our method in a system called PAMELA (= "Proof
Assistant for META IV-like Languages") which is a generalized version of  the
PACS system ("Proof Assistant  for Code Generator Specifications", cf.  [Buth/
Buth 88 ] ) .  As  an example,  we have chosen code generator specifications used

in the CAT compiler generating system (cf. [Schmidt/Völler 87 ] ) .  These speci—

fications are the basis for parts of  compilers that are industrially used by
Norsk Data.

Up to now, we have made the experience that We have not yet encountered
an error in the specifications that could not be  found. I t  i s ,  however, ex-
tremely important to put up sufficiently strong invariants for the proof.  But
the definition of  pre- and postconditions seems to be a quite natural way to





provide the invariants; therefore, it is not so very difficult to make them strong 

enough which means nothing else than to completely describe the behaviour of 

a function. 
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Introduction 
EQTHEOPOGLES (german acronym for Theorem Prover for First Order Polynomial 
Equations with EQuality) is an automated theorem prover for first order predicate 
logic with equality. It's main feature is the use of rewriting techniques, e.g. reduction 
and critical pair completion, as inference rules on a two level Knuth- Bendix 
Completion Procedure. Using EQTHEOPOGLES without equality (the THEOPOGLES 
system [Mu 88J, [De 87], [DM 87J) means working with a variation of the methods 
of Hsiang [Hs 85J, Kapur and Narendran [KN 8SJ and Bachmair, Dershowitz 
[BD 87J. That is, a first order formula F to be proved valid is transformed into a 
system E of polynomial equations, s.th. F is valid iff E is unsolvable. The ideas to 
handle equality with EQTHEOPOGLES stems from approaches of Hsiang [Hs 87J and 
Rusinowitch [Ru 87]. But as in the definition for pure first order calculus 
EQTHEOPOGLES avoids the use of unnecessairy inference steps. In general E is 
divided into a system (~,R) of polynomial equations ~ and term rewrite rules R. Some 
equations of ~ are also used as rewrite rules for polynomials. Completion is 
performed separately on ~ and R, and special inference rules are applied on elements 
of ~ and R to get the connection of the whole system. 
In the following we will give a sketch of the theoretical technicalities, e.g. the 
inference rules, of EQTHEOPOGLES. 
Details can be found in [Mu 87], [Mu 88], [De 88J for the theoretical aspects 
especially the completeness proofs, and in [De 87J, [DM 87J for technical 
descriptions of the system. 
EQTHEOPOGLES is implemented on an APOLLO-Workstation in Common-Lisp. 

Theoretics 
Polynomial equations are of the form ml +m2+ +mk=0, where + is the operation XOR 
and the monomials mi are conjunctions Ll*L2* *Ln of atoms Lj- Given a formula F, 
it can be transformed into a set E ={Pi=O}i=l..n of polynomial equations, s.th. F is 
valid iff E has no solution, Le. there is no interpretation I,s.th. r(p)=false for all 
p=O EE. 
EQTHEOPOGLES divides the equational system E into two sets e.. and R. ~ represent 
the polynomial system and R the term rewrite system. An equation p =0 E E is 
transformed in a rule s~t in R, if p=EQ(s,t)+l and s > t for a simplification ordering 
> on terms. All other equations in E belong to the polynomial system e... In e.. every 
equation of the form m=O, EQ*m+m=O, L+I=O or L*m+m=O (where m a monomial, 
EQ an equality atom and L a non-equality atom) is used as rewriting rule on 
polynomial level : m~O, EQ*m~m, L~l or L*m~m. 

E QT HE OPC) GLE S

A Theorem Prove r  for  F i r s t  Orde r  P red i ca t e
Log ic  w i th  Equal i ty

based  on  Rewr i t e  —Techn iques

J .  Denzinger

Department of Computer Science
University of Kaisers lautern
6750 Kaiserslautern [FRG]

Introduction
EQTHEOPOGLES (german acronym for Theorem Prover for First Order Polynomial
Equations with EQuality) is an automated theorem prover for first order  predicate
logic with equality. It’s main feature is the use  o f  rewriting techniques, e .g .  reduction
and crit ical  pai r  complet ion,  as  inference ru les  on  a two level  Knuth—Bendix
Completion Procedure. Using EQTHEOPOGLES without equality (the THEOPOGLES
system [Mü 88] ,  [De  87],  [DM 87]] means working with a variation of the methods
of Hsiang [Hs 85], Kapur and Narendran [KN 85]  and Bachmair, Dershowitz
[BD 87]. That  i s ,  a f irst  o rde r  formula F t o  be  p roved  val id  is  t ransformed into a
system E of polynomial equations, s.th. F is valid iff E is unsolvable. The ideas to
handle equality with EQTHEOPOGLES stems from approaches of Hsiang [Hs 87]  and
Rusinowitch [Ru 87 ] .  But as in the definition for pure first order  calculus
EQTHEOPOGLES avoids the use  of unnecessairy inference s t eps .  In general  E is
divided into a sys tem (£,R) of polynomial equations a and t e rm rewri te  rules R.  Some
equations of a a re  a l so  used  as rewrite rules  for polynomials.  Completion is
performed separa te ly  on a and R,  and special  inference rules a re  applied on e lements
of a and R t o  ge t  the connection of the whole sys tem.
In the following we wil l  give a sketch of the theoret ical  technicalities,  e.g.  the
inference ru les ,  of EQTHEOPOGLES.
Details can be found in [Mii 87], [Mü 88], [De 88] for the theoretical aspects
especially the completeness proofs, and in [De  87],  [DM 87]  for technical
descriptions of the sys tem.
EQTHEOPOGLES is implemented on an APOLLO-Workstation in Common—Lisp.

Theoretic:
Polynomial equations a re  of  the form m1+m2+...+mk=0, where + is the Operation XOR
and the monomials mi a r e  conjunctions L1*L2*...*Ln of a toms Lj .  Given a formula F,
it can be  t ransformed into a s e t  E={Pi=0} i=1 . . n  of  polynomial equations, s . th .  F is
val id  iff E has no solution, i .e .  there is no interpretat ion I ,  s . th .  I lp )=fa l se  for a l l
p=OeE.
EQTHEOPOGLES divides the equational sys t em B into two se t s  a and R.  5 represent
the polynomial sy s t em and R the t e rm  rewri te  sys tem.  An equation p=0  e E is
t ransformed in a rule  s -> t  in R ,  if pEEQ(s , t )+ l  and s > t for a s implif icat ion ordering
> on  t e rms .  A l l  o ther  equations in E belong to  the polynomial  sy s t em a .  In :5 every
equation of the form m=0, EQ*m+m=O, L+1=O or L*m+m=0 (where m a monomial,
EQ an equality a tom and L a non-equality a tom) is used  as rewriting rule on
polynomial level  : m->0, EQaKm->m, L->1  or Diem-9m.





As usual these rewrite rules are used for mutual normalization and to simplify the 
polynomials in ~. The term rewrite rules in R reduce the terms of the atom 
arguments in ~ and they are also used for the interreduction of R itself 
(TES-Reduction). This constitutes the first class of inference rules. Note that the 
rewrite rules are very simple and can be efficiently implemented. On the other hand 
they are strong enough to reduce the search space for the (more expensive) critical 
pair generation drastically. 
The second class of inference rules for (~,R) is the critical pair generation. Let PEQ 
denote polynomials consisting of EQ-Atoms and/or the atom 1. Then we have 

•	 Sunernosition of one atom in m from an equation of the form m*PEQ =0 with an 
atom of another equation in ~. 

•	 Paramod-Superposition with EQ from an equation of the form EQ*Pl +P2 =0 with a 
term in an atom of another equation in ~. 

•	 Factorization of equations of the form m*PEQ =0 in ~. 

•	 Standard superposition of rules inR (Crit-Pair-Inference). 
Superposition of a rule in R and a term of an atom of an equation in ~ 

(TES-Paramod-Superposition). 

These superpositions for critical pair generation together with the simplification with 
polynomial rules and with term rewriting rules present the complete theorem prover 
EQTHEOPOGLES. The domains of every inference rule of EQTHEOPOGLES is shown 
below. 

~ 

Polynomial- ( 

Reduction l ! EQ*m~m 

ml+m2+···+mk=O 
Superposition, 
Paramod-Superposition 

m~O 

L~l 

L*m~m 

TES-Reduction TES-Paramod-
SuperpositionT


TES-Rednction CI 
s:. I ) Crit-Parr-Inference 

Now we want to compare EQTHEOPOGLES with other methods for the first order 
predicate logic with equality. 

The application of the critical pair generation is very restricted compared with 
other methods. For example, the first superposition rule might save an exponential 
factor relative to Hsiangs approach. 

- We use two kinds of reduction relations and minimize both sets, ~ and R with these 
relations. So we always get a minimal representation of the system. Nevertheless 
we proved the soundness and completeness of EQTHEOPOGLES. 
Many authors (for example [Ru 87], [WRCS 67]) showed the advantages of an 
inference rule for the equality that is similar to the critical pair generation in the 

As usual these  rewri te  ru les  a r e  used  for mutual normalization and to  simplify the
polynomials in £ .  The  t e rm rewri te  rules in R reduce the t e rms  of  the a tom
arguments in a and they a r e  a l so  used  for the interreduction of R i tself
(TBS-Reduction). This consti tutes the first  c l a s s  of inference ru les .  Note  that the
rewri te  ru les  a r e  very s imple  and can be  efficiently implemented.  On the other  hand
they a re  s t rong enough to  reduce the s ea rch  space  for the (more  expensive)  cr i t ica l
pair generat ion dras t ica l ly .
The second c l a s s  of inference rules for [E.,R) is the cr i t ical  pair  generation.  Le t  PEQ
denote polynomials  consisting o f  EQ-Atoms and/or the a tom 1 .  Then we have

- Superposition of one atom in m from an equation of the form malepEQ=0 with an
a tom of  another equation in a .

- Paramod-Supermit ion with EQ from an equation o f  the form EQaep1+p2=O with a
t e rm  in an a tom of another equation in £.

- Factorizat ion of equations of the form mflépEQ=0 in E.
- Standard superposition of  ru les  i n .R  (Cri t-Pair-Inference).
- Superposition of a rule in R and a t e rm of an atom of an equation in a

CTES-P-aramend-Superposition).

These superpositions for cri t ical  pair generation together with the simplification with
polynomial rules and with t e rm  rewriting rules present  the complete  theorem prover
EQTHEOPOGLES. The  domains of every inference rule of  EQTHEOPOGLES is shown
be low.
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R
TBS-Reduction C

s -> t  ’ Cri t—Pair—Inference

Now we want to  compare EQTHEOPOGLES with other methods for the first order
predicate  logic with equality.
- The application of  the cr i t ica l  pair generation i s  very re s t r i c t ed  compared with

other  methods.  For example ,  the first superposition rule might save an exponential
factor  re la t ive  t o  Hsiangs approach.

— We use  two kinds of reduction re la t ions  and minimize both  s e t s ,  E and R with these
re la t ions .  So  we  a lways ge t  a minimal representat ion of the sys tem.  Never theless
we proved the soundness and completeness  of EQTHEOPOGLES.

- Many authors [for example [Ru 87] ,  [WRCS 67])  showed the advantages of an
inference rule for the equality that is similar to  the cr i t ical  pa i r  generat ion in the





Knuth-Bendix-Procedure, if the two involved clauses or polynomials are unit 
EQ-facts. As R is a term rewriting system and is completed by a 
Knuth-Bendix-Procedure (Crit-Pair-Inference), EQTHEOPOGLES includes these 
advantages. 

- Instead of trying to find one general inference rule for the equality like 
paramodulation ([RW 69J) or Para-Superposition ([Hs 87J) we install three disjunct 
inference rules (Paramod-Superposition, Crit-Pair-Inference, TES-Paramod
Superposition). Therefore we get the possibility to prefer one rule over another. For 
example, we prefer the Crit-Pair-Inference over the Paramod-Superposition, because 
a uniquely terminated term rewriting system R (which is possibly generated) is very 
useful. Other preferences are also possible. 

- The whole theory of term rewriting systems can be used to avoid unnessary 
Crit-Pair-Inferences or guide the choosing of "good" critical pairs. For example, the 
criteria of Kapur ([KMN 88J) or Winkler ([Wi 84]) can be integrated in 
EQTHEOPOGLES to reduce the number of inferences. 
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