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Preface

The subgroups 1.2.1 Deduction Systems and 2.1.3 Implementation of Programming
Languages of the Gesellschaft fiir Informatik arranged their first workshop " Term
Rewriting: Theory and Application” from March 6 to March 8, 1989 at the
University of Kaiserslautern.
The aim of the workshop was to bring together theorists and practitioners on
Term rewriting systems, completion algorithms, narrowing approaches, completion
theorem provers etc. from the German speaking countries. 43 participants from
Germany and Austria have got an interesting overview of the actual rewrite
activities within 27 talks. The talks are separated into blocks of:

- conditional term rewriting

- inductive proofs via completion

- functional programming and rewrite systems

~ applications of rewriting techniques

- special strategies

- theoretics within equational theories.

There also was a system demonstration and poster section where 10 systems
were presented.

The workshop has shown how broad the applications of term rewriting techniques
have became. Special fields as program specification and verification, automated
translation of languages, ¢ode generators, automated theorem proving, logical-
functional programming languages and simulation of parallel processes were
considered.

This report will give a brief overview on the topics of the workshop. The extended
abstracts are [almost) arranged in groups of their special fields.

March 1889 Jurgen Miiller [University of Kaiserslautern]
Harald Ganzinger (University of Dortmund)
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Abstract

Algebraische Spezifikationssprachen gewinnen in den letzten Jahren in der Forschung immer
mehr an Bedeutung. Sie ermoglichen die formale Beschreibung von Datentypen und Soft-
waresystemen unabhingig von ihrer konkreten Reprisentation und ohne Beziehung zu speziellen
Eigenschaften einer Programmiersprache oder eines Betriebssystems. Ihre mathematisch klar
definierte Semantik machen sie unabhingig von technologischen Verinderungen und zu einer
zuverldssigen Grundlage der Dokumentation und Implementierung von Softwaresystemen.

Die Compilation wird als ein Verfahren zur effizienten Auswertung von ausfithrbaren Gleichungs-
Spezifikationen mit initialer Semantik vorgestellt. Dieses Verfahren verbessert die Verwend-
barkeit dieser Spezifikationen als Prototyp der spezifizierten Software.

Termersetzung wird dazu verwendet, einen Repréasentanten der durch die Spezifikation definierten
Kongruenzklasse eines Terms zu bestimmen. Die Ersetzungsregeln miissen bestimmten Kriterien
geniigen, damit die Termination des Verfahrens und die Eindeutigkeit des Resultats sichergestellt
sind.

Bei der Compilation wird ein Termersetzungssystem in mehreren Phasen in eine Menge von
Entscheidungsbdumen, in eine Menge von Funktionsdefinitionen, in den Code einer abstrakten
Maschine, und schliefilich in ausfithrbaren Maschinencode transformiert.

Ersetzungsrelationen auf partiellen Termen und Eigenschaften verschiedener Ableitungsstrate-
gien werden vorgestellt. Ein Termersetzungs-Algorithmus mit "lazy”-Strategie wird angegeben,
seine Korrektheit und Termination wird bewiesen.

Der Algorithmus wird, entsprechend den einzelnen Compilationsphasen, schrittweise konkretisiert.
Die Korrektheit der Transformationen wird diskutiert.

Die abstrakte Termersetzungs-Maschine LATERM wird definiert. Diese Maschine erméglicht
Ableitungen bez. der "lazy”-Strategie mit zwei unterschiedlichen Verfahren und kann zusétzlich
innermost-Ableitungen effizient durchfiihren.
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1. Introduction ,

Based on the work of Musser [Mus80], Goguen [Gog80], Huet & Hullot [HH82], Jouannaud & Kounalis
[JK86] and others, we have shown in Hofbauer & Kutsche [HK88] how to prove inductive theorems over a term
rewriting system under certain conditions by just applying rewrite steps between distinguished pairs of terms. Our
results allow to weaken the premises of both (ground) conflnence and termination : Only critical pairs of the
underlying system on the rules to be proved have to be considered. Secondly we split the set of those rules into
two parts, one of which has to fulfill certain termination requirements, but the other does not. Furthermore we
allow the use of (already proved) lemmata, splitted in the same manner.

Here I want to stress the pragmatical aspects of proving inductive theorems, based on some experience in
applying our results to a-few examples, cf. again [HK88]. My emphasis lies on-pointing out severe difficulties,
arising if one wants to proceed fully automatically, rather than giving a solution of them. My demand is for
human-oriented interactive systems, to integrate the users expertise and intuition of a theorem and its possible
proof with the speed of a computer system to perform necessary but tedious computations.

2. Basic theory
'We assume the reader to be familiar with basic notations for term rewriting systems, as given e.g. in [Huet80]
and many others, and just recall a few definitions and our main theorem from [HK88].

Definitions

Let R be a TRS. The set of equations ITh(R) := { s=t | so <*p— to for all ground substitutions & }
is called inductive theory of R . (For convenience we often speak of a set of rules to be in the inductive theory
of a TRS, always meaning the associated set of equations.)

A term t is called ground-reducible (or: quasi-reducible) under R iff to is R-reducible for all ground
substitutions ¢ ,aTRS R' is ground-reducible under R iff the left-hand side of every rule in R' is ground-
reducible under R.

Theorem 3 (from Hofbauer & Kutsche 1988)
LetR,LE, A,L be TRS's such that
(1) AUL c ITh@R) ("lemmata™)
(2) RUIUA is terminating
(3) IUE is ground reducible under R

¢ p

(@) for every critical pair <c,p>of Ron1: RUIUA | * * JRUIVA
. —=E—) ] (__*L_) .
c

(5) for every critical pair <c,p> of RonE : RUIVAY *

L —-=E-——) . (__.*L_) p
Then IUE c ITh(R). ("inductive theorems")






The proof of this theorem is found in [HK88]. Meanwhile, we know that again some weakening of the premises
is possible : In (4) resp. (5) only those critical pairs with rules R' € R have to be considered, which are needed
for the assertion of ground reducibility. Furthermore, also in (4) resp. (5) only certain occurencies of I- (E- resp.)
left hand sides have to be taken into account for critical pairs, namely if there are inductive complete positions,
i.e. occurencies that guarantee ground reducibility under R again. Of course, reducing once more the number of
critical pairs seems helpful to succeed in inductive proving. Nevertheless, basic problems remain in the process,
as we show in our case study.

3. A case study : Proving properties of binomial coefficients

We assume a standard specification ARITH of natural numbers arithmetic, defining addition, multiplication and
powers, recursively on the first argument, based on O and successor. Applying two special cases of theorem 3,
we can easily prove lemmata like (al) x+0—x, (a2) x+s(y) = s(x+y) , the commuted versions of
our original rules, as well as associativity and commutativity (for addition), to be in the inductive theory of
ARITH.
Now we define binomial coefficients by addition, in order to avoid fractions arising from the factorial definition :

m: o () o0 2o e () (4) ()
;oD »S(k)]—> co (oo o )0 L)L)

k k
We further include the sum of binomial coefficients with fixed n into our definition, writing >, , for X ! ) :
=0\j

0 n s(k) n k
SUM: (s1) Z“_)(o)’ (2) X, > S + g .

' . & |n n . & ' n
Our goal is to prove the theorem Y, = 2" ,formalizedasmale: (*) X, — ssO)".
=\

]
Let R:= ARITHuU BINuU SUM . We prove a few clementary properties of binomial coefficients first, for
later use as lemmata. Start with

n

(b4) (n+s @) ) — 0 , which easily turns out to be in ITh(R) , using A := {a2'r} , i.e. (a2") in reverse

direction. (Check for termination !) However, we have to separate this proof from the following of (b5) and (b6) ,
n
n
®) () » 5o, @9 ( o
and their reverses, together with (b4), which on its part needs several reduction steps with ARITH and (a21). One
succeeds in choosing L = {al’, a2', b4}, which allows to apply (al") and (a2") in either direction, mixed with one
required (b4)-step.

) — 0 , because (b6) requires some assistance by (al’) and (a2

Now we can proceed with some inductive properties of biromial sums, simultaneously proving
k n k k k
3) Xo - s0), 9 ( , ) + Xsm) = 2n + Xp. and (*), which is our goal.

With L = {b4, b5, b6, al’, a2', ass, comm} we choose a non-terminating auxiliary set again, furthermore E = @
and A = (b4, b5, b6, ass} , and apply theorem 3 . Another problem occurs during the reduction of some critical
pairs : One can happen to fail with that proof if one proceeds too far reducing with RUIUA . So it is necessary
to check for L -equivalence during intermediate steps as well .






4 . Discussion of problems and consequences
As we could see in our example, several decisions have to be made during the proof process. We sketch a few
of them : () When do we have to prove theorems simultaneously, when hierarchically ?
(2) How do we group them into the sets Iand E, how the lemmatainto A and L ?
(3) How far can we simply apply reduction, and when do we have to check for L -equivalence ?
)] How do we find appropriate lemmata ?
(5) How do we find sufficiently strong induction hypotheses ?

Of course, one can hope to automatize parts of those problems by improvements in theory : E.g. further
reduction of the number of critical pairs might help in some cases ; likewise the use of unfailing Knuth-Bendix,
automatic generation of termination orderings, etc. Also clever heuristics to obtain ideas for lemmata from the
Knuth-Bendix process can be useful, as well as clever heuristics to generalize induction hypotheses. The author is
aware that lots of work into these directions has been or is currently being done.

Nevertheless, there are lots of well-known reasons (e.g. no recursive enumerability, high complexity) to
believe that there will be little chance to write automatic induction procedures for a wider class of inductive
theorems. From our examples I could learn about the high vulnerability of a possibly automatized proof
procedure. It often needs human interaction, or the process will fail.

So I demand a different way of looking on the things : as in software development a bunch of helpful tools
exists, I want to have proof development tools which highly interact with the human expert upon the area of
proofs to be given. The system should provide the user with useful information of a running proof in easy
readible (or better: visible) form, especially the book-keeping about the proof up to now. It should allow manual
interaction at any point, and it should be able to assist the users intuition by concretely computed suggestions, say
for induction hypotheses, lemmata structuring and others. Since both of them, computers and humans, have
certain strong capabilities (most of them complementary), but their weaknesses in other aspects too, it seems to
me most promising for such a hardly accessible area like inductive proofs, to establish a methodology of
information exchange, and to build systems based on interaction rather than fully automatized black boxes.
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Introduction

The inductive theory of a set of (first order) equations, i.e. the set of equations valid in the
initial model, is not easily accessible by proof theoretic means. "Inductionless induction”
refers to a class of approaches which reduce this problem to well developed concepts for
term rewriting systems such as (ground) confluence, temination and ground reducibility (cf.
Jouannaud & Kounalis [JK86]). If such methods are formulated not aiming at the use of
completion procedures (Hofbauer & Kutsche [HK88]) , it turns out that some conditions
posed on the underlying set of equations can be weakend.

The following example shows, how an extension of the language by second order variables

enables inductive proofs which would have failed otherwise. Equations with second order
variables are used as a finite description of an infinite set of first order equations.

Example

Let the term rewriting system (TRS) R consist of the rules

0<0 - true 0<s(y) — true
s(x) <0 — false sX)<s(y) = x<y
if true thenxelsey — x if falsethenxelsey — y

Suppose we want to prove the inductive theorem

if x <y then f(x,y) else f(y,x) = if y<x then f(y, x) else f(x,y) (*)
(where f is a binary operation symbol). Replacing the equality symbol by "—" we geta
nonterminating rewrite rule. We thus could try to use the following






Theorem [HK88]
Let R and E be TRS's such that R is terminating, every left hand side of a rule in E
is ground reducible under R, and for every critical pair <c,p> of R on E we have
C -L>R -—=—>E (l>R P .
Then E (if read as a set of equations) is in the inductive theory of R.

Using a completion approach to generate an appropriate set E would yield the infinite set of
equations

if x <y then f(si(x), si(y)) else f(si(y),si(x)) =

if y<x then f(si(y), si(x)) else f( si(x), si(y)) (iel)

But after a closer look at R and at equation (*) one could guess that even

if x<y then t[x,y] elset[y,x] = if y<x then t[y, x] else t[x, y]
holds as an inductive theorem for all "context terms” t. This is a proper generalization of
(*) . It can easily be written as an equation with a binary second order variable F:

if x <y then F(x,y) else F(y,x) = if y<x then F(y, x) else F(x, y) (%)
Trying now to use the above theorem to prove (*#) as an inductive consequence of R

(meaning that every first order instance of (x#*) is an inductive theorem of R ) we are
considering critical pairs of R on the left hand side of (¥#*). The most interesting

superposition is the term if s(x)<s(y) then F(s(x), s(y)) else F(s(y), s(x))
which yields the critical pair <c, p> where

¢ = if x<y then F(s(x), s(y)) else F(s(y), s(x)) and

p —y if ysx then F(s(x), s(y)) else F(s(y),s(x)) :=1p'.

F

Avw. F(s(v),s(w))
We thus can apply the rewrite rule that corresponds to (*) and reduce ¢ to p', joining the
critical pair as required. The other possible critical pairs! as well as the other premises in
the above theorem cause no problems.

The substitution & = { } is amatch of c by the left hand side of (*#) .

Conclusion

There are several possibilities in order to cope with situations where infinitely many (first

order) equations (or rules) occur, e.g. during a completion like process :

- Introducing new operation symbols and extending the set of rules accordingly (see M.
Hermann [Her88] ), even generating such an extension automatically (K.-P. Jantke & M.
Thomas [JT87])

TNote that it suffices to look at critical pairs arising from superposition of R on the subterm x<y in (**) .






- Using the concept of metarules and metavariables of H. Kirchner [Kir87]

The use of second order variables however seems to be most natural in a number of
examples (cf. B. Gramlich [Gra88], who applies results on unifiability of second order
terms to analyse the divergence behaviour of completion). Even though there are some
severe difficulties in developing this approach. Unification of second order terms is
undecidable in general (W. Goldfarb [Gol81]) and most general unifiers need not to exist
(cf. G. Huet [Hu75]). In this context one would benefit from results on syntactically
restricted subclasses of second order terms with decidable unification problem.
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Extended Abstract

We present a brief overview on completion based inductive theorem
proving techniques, point out the key concepts for the underlying "proof by
consistency” - paradigm and try to get an abstract description of what is
necessary for an algorithmic realization of such methods.

In particular, we give several versions of proof orderings, which -
under certain conditions - are well-suited for that purpose. Together with
corresponding notions of (inductive) covering sets (cf. [Ba88]) we get
abstract "positive" and "negative" characterizations of inductive validity.
This leads to a better understanding of various sufficient operational
characterizations of inductive validity in a static sense (cf. [JoKo086],
[Ki87], [HoKu88]). It provides a straightforward generalization of an
inductive validity criterion of [KU87] to the case where some of the
equational conjectures may not be orientable. To be a little bit more
precise concerning the "positive" and "negative" approach, let us assume
that we have given an equational theory presented by a ground convergent,
i.e. terminating and ground confluent term rewriting system R, and a set C

of (equational) inductive conjectures of R. Then, proving inductive validity
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of C from a positive point of view amounts to replacing all C-steps by
R-steps in every ground proof using R union C. In the negative case the aim
consists in transforming the potentially inconsistent set C into a provably
inconsistent one by deducing appropiate (inductive) consequences from R
union C (cf. [Ba88]). Inductive validity of C is guaranteed if potential
inconsisteny is impossible due to verifiable consistency. In b“oth cases
appropiéte proof orderings assure that the necessary proof transformation
process turns into a terminating proof simplification process.

Furthermore we consider several refinements and optimizations of
completion based inductive theorem proving techniques. In particular,
sufficient criteria for being a covering set including restrictions of
critical pairs (cf. [G685], [Fr86], [Ki87], [Ba88]) and the usage of
non-equational inductive knowledge (cf. [HuH080], [PaB84]) are discussed.

Moreover a couple of lemma generation methods are briefly
summarized, most of which are known from classical inductive theorem
proving using induction schemes (cf. [BoMo079]). Techniques of save
generalization (cf. [Gr85], [JaTh88]) are particularly interesting, since
they provide means for syntactic generalizations, i.e. simplifications, of
conjectures without loosing semantic equivalence. To be more precise, an
equation s'= t' is a save generalization of s=t, if s=1t is an instance
of s'=1t" and s=1, s'= t' are equivalent concerning inductive validity
w.r.t. R.

Finally we present the main features and characteristics of UNICOM, an
inductive theorem prover with refined unfailing completion techniques and
built on top of TRSPEC, a term rewriting based system for algebraic
specifications (cf. [AvBeG6Ma86], [Sc88]).
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Many-sorted logic programming is discussed in the literature in various directions. There is work
aiming at an improvement of Prolog by augmenting it with sorts in order to relieve the task of
software engineering. Other approaches are aiming at bringing in "is-a”-structures to close the gap
between programming and knowledge representation.

In this short note I want to report an observation we made during the work on combining logic and
functional languages:

If one chooses equations, e.g. term rewriting systems as a functional language, it is very easy to use
this functional part of the combined language to define and to handle sorts and ”is-a”-taxonomies.
As in (Ait-Kaci, Nasr 86) all this can be done within the unification procedure, but we do not have
to give any sophisticated semantics. The semantics of the sorted language is exactly the same as
the semantics of the combined language.

It is important to note that the method proposed in this paper is best suited within a framework,
in which the decision for the use of a combined logic and functional language has been made
nevertheless. In other words: if one uses a term-rewrite system as a functional language within
logic our mechanism of bringing in sorts can be seen as a very cheap byproduct. At least it gives a
formal semantic of order-sorted logic programming which can be run on a Hornclause interpreter.

Equational logic programs

We will use in the following equational logic programs, i.e. pairs (R, P) where R is a rewrite system
and P is a set of Hornclauses. We assume that P does not contain the 2-ary predicate symbol ’=’,
i.e. there is no equality built-in in P. The following is a simple example:

R: 0+X=X.
s(X)+Y = s(X +Y).

P : nodes(nil,0).
nodes(t(L,N,R),(NL+ NR) + s(0)) : —
nodes(L,NL),
nodes(R, NR).
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Following an approach from (Hélldobler 88) we assume a complete unification procedure Ug, which
recursively enumerates a complete set of R-unifiers, i.e. unifiers for the theory defined by R. Then
we can use SLDE-resolution to interpret equational logic programs; SLDE-resolution is simply like
SLD-resolution with the exception, that is uses Ug to interpret the P-part of a program (R, P). The
following strong completeness result is the base for the interpretation of equational logic programs.

Theorem 1 (Hoélldobler) Let (R, P) be an equational logic program and Ug a complete unifica-
tion procedure for R. For every correct answer substitution o for (R, P) and goal statement D there
ezists a computed answer substitution 0 for PU D wrt to SLD E-resolution with arbitrary selection
function, such that § <p o.

For the implementation of the extended unification procedure one can use the paramodulation rule
which is proven complete in this context in (Furbach et al 88).

Sorts

To introduce sorts we simply assume that a subset Sof the function symbols is used as sort symbols
and that a partial order < over S is given. For the ease of notation we write functional applications
with sort symbols 7 as t : 7 instead of 7(2).

Furthermore we agree on stating the fact that a term ¢ has sort 7 by defining the equation ¢t : n =1
in R, abbreviating this as ¢ : 7, too. Finally we use equations of the form z : £ : § = z : £ to express
that £ < n holds.

Using these conventions we can give a sorted version of the previous example:

R:
0 : nat
s(z) : nat = (z : nat)
O+z:nat=2
s(z :nat)+y:nat = s(z+y)
P:

nodes(nil,0).

nodes(maketree(L, N : nat,R),(NL+ NR) + s(0)) : —
nodes(L,NL),

nodes(R,NR).

The following theorem states, that our mechanism ’really works’.

Theorem 2 If n and £ are two different sort-symbols and t is a term, then t : 5 is a logical
consequence of t : {, £ < 1 and R for a given sorted equational program (R,T).

A typical example for the use of ’is-a’-hierarchies is the following simple program, which can be
used to answer questions like ? — eats(Tom, Jerry).






cals < carnivorous
oMmnIvVorous < carnivorous
omnivorous < herbivorous
mice < herbivorous
humans < omnivorous
gorillas < omnivorous
Tom : cats

Jerry : mice

eats(z : carnivorous,y : herbivorous).
eats(z : herbivorous,y : plants).

We have implemented this approach as a part of the ALPES-Prolog environment within ESPRIT
P973. We have given up occur-check, as Prolog did, to maintain execution time in acceptable
limits. In this prototype we have choosen a method which generates in a pre-processing step a pure
Prolog-program for a given equational logic program (R, P). For this the term-rewrite system R is
transformed into a set of Prolog-clauses which is the extended unification procedure.

For a more efficient implementation one could use the framework for SLDE-paramodulation from
(Furbach et al. 89), which allows to seperate the inferences which deal with sorts from the rest of
the term rewrite system. Then the handling of sorts can be done by a special purpose unification
procedure.
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SLDE-Paramodulation

Ulrich Furbach , Steffen Holldobler 2, Joachim Schreiber >

Recent interest in combined functional and logic programming languages has led to nume-
rous proposals for the integration of equational and logic languages based on linear paramod-
ulation. In order to increase efficiency various restrictions for paramodulation such as nar-
rowing were proposed. However, the applicability of narrowing is limited, since narrowing is
only complete if the equational theory is confluent and terminating. For example, if we want
to compute with sets via the operation "U" then, of course, we have to specify that "U" is as-
sociative, commutative, and idempotent. Unfortunately, such an equational theory is no
longer terminating. On the other hand, unification under associativity, commutativity, and
idempotence is finitary and a type conformal unification algorithm exists. Should we not
build such a theory-unification algorithm into the narrowing procedure? Though Jouannaud
et al. (1983) showed that narrowing modulo equality is sound and complete if the theory in
consideration is confluent, coherent, and terminating modulo equality, many questions are
still open. Is narrowing modulo equality also independent of a selection function? Can we
generalize these results to conditional equational theories? Can we restrict the application of
narrowing modulo equality to socalled basic occurrences?

In Furbach et al. (1989) and Holldobler (1989) we proved the strong completeness of
linear paramodulation for Horn equational theories and demonstrated how various conditions
imposed one-by-one on the equational theory restrict the search space and allow to apply
special forms of paramodulation. The goal of this paper is to show that this framework can
be generalized to SLDE-paramodulation, i.e paramodulation modulo equality, in much the
same way as SLD-resolution can be generalized to SLDE-resolution.

Throughout this paper we consider equational programs, i.e. Horn clauses with the only
one predicate symbol = written infix. Since we intend to build parts of the theory into the
unification algorithm we partition an equational program into the parts E and EP. E will be
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Theorem:
If [O] is an element of the least fixpoint of TE EP, then there exists a refutation of
EPU{<Q} with respect to SLDE-i-paramodulation and SLDE-reflection.

Lifting this result yields a completeness result for our calculus. In analogy to (Holldobler
1989) we can proof a switching lemma and, thus, we obtain the strong completeness of
SLDE-i-paramodulation and SLDE-reflection.

Theorem:
Let R be a computation rule. For each correct answer substitution ¢ for E,EP
and <F there exists an R-computed answer substitution © obtained by a refuta-
tion of EPU{<F?} with respect to SLDE-i-paramodulation and SLDE-reflection
such that 0 is not less than 6 modulo E.

We proceed as usual and impose conditions on our equational program in order to restrict
the search space. If the equational program is confluent modulo E then program clauses may
be used only in one direction without loosing completeness. The next step is to look for con-
ditions such that we have to apply paramodulation only upon non-variable subterms. In the
case where E=(J these conditions were the restriction to term rewriting systems and to nor-
malized answer substitutions. However, if E#J then we must also require that E is regular
and E-normal form preserving, i.e. whenever a term s is in normal form with respect to a
term rewriting system and s=gt, then t is also in normal form. By splitting goal clauses into a
skeleton and an environment part we obtain a strong completeness result for basic SLDE-
narrowing and SLDE-reflection.

There are other interesting aspects: Our work demonstrates how special unification algo-
rithms can be combined with universal unification procedures based on paramodulation or
special forms of it. Furthermore, applying the proof technique developed in (Holldobler
1989) allows to view unification problems under a special equational theory as constraints
and to force or delay the solution of these constraints according to an overall strategy.
Finally, since SLDE-paramodulation is sound and strongly complete, combining it with the
lazy resolution rule yields a sound and strongly complete set of inference rules for equational
logic programs.
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handled by the unification algorithm used by the paramodulation rule, which is applied upon
clauses from EP. For example, E may contain the axioms of associativity, commutativity, and
idempotence for a set operator, which can be used within EP, or the equations defining order-
sorted operators for a typed program EP.

An equational program E,EP admits a least Herbrand E-model over the Herbrand E-uni-
verse, i.e. the quotient of the Herbrand universe modulo the finest congruence generated by
E.

In the sequel we assume that whenever 1=r=F is an element of EP then r=1<F is also an
element of EP, where F denotes a set of equations; this is a technicality allowing us to apply
paramodulation only from left-to-right.

As an intermediate step towards the intended completeness result for SLDE-paramod-
ulation we give a fixpoint characterization of the least Herbrand E-model using the function
Tered) = { [t=t] |tis a ground term}

v { [Q] | there exists an occurrence 7 in Q and a ground instance 1=r<F
of a clause in EP such that [Q|r[] = [1] and {[FI}U{[QIr<1{1} <1},
where [Q] denotes the congruence class containing the equation Q, [F] = {[Q]|QeF}, and
Q|r| denotes the subterm of Q at w. Along the lines of (Furbach et al. 1989) we can show
that Tg Ep admits a least fixpoint which is equal to the least Herbrand E-model.

Turning to the proof theoretic aspects we assume the reader to be familiar with basic
notions from logic programming and universal unification (for a thorough treatment see e.g.
Lloyd 1984 and Siekmann 1986). In the sequel we suppose to have a correct and complete
E-unification procedure UPE for the equational theory E at our disposal.

Let &<FU{Q} be a goal clause, Q be the selected equation, 1=r<=F’ be a new variant of a
program clause, and © be an occurrence of Q. If Qx| and 1 are E-unifiable with ¢ €
UPE(Q|ntl,), then <=c(FUFU{Q|n¢rl}) is called SLDE-paramodulant.

Instead of adding the axiom of reflexivity to our equational program we use the following
inference rule to terminate paramodulation proofs successfully. Let <=FU{s=t} be a goal
clause and s=t be the selected equation. If s and t are E-unifiable with ¢ € UPE(s,t), then
<=0F is an SLDE-reflectant.

We demonstrated in (Furbach et al. 1989) that linear paramodulation is only complete if
we add the functional reflexive axioms to the equational program. The same effect can be
achieved if we allow to instantiate goal clauses before performing a paramodulation step. We
call such a step an SLDE-i-paramodulation step.

By relating applications of Tg,EP with SLDE-i-paramodulation resp. SLDE-reflection steps
in the usual way we obtain
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Extended Abstract

During the last years there has been an increasing interest in the combination of logic
and (first order) functional programming. While some authors in a more pragmatic
approach propose a synthesis of existing programming languages like Prolog and Lisp,
others develop the idea of logic-functional programming on a more theoretical level.

It has turned out that term rewriting and narrowing in conditional equational theories
provide a nice theoretical framework for the integration of logic and functional
programming. In this approach a logic-functional program is a set of conditional
equations. As conditional rewrite rules these equations may be employed for the
simplification or evaluation of terms ("functional programming"), whereas in the
conditional narrowing process, which can be seen as a generalization of Prolog's
SLD-resolution, the same equations are used for the solution of goals or equations
("logic programming").

From a theoretical point of view, narrowing provides a complete unification procedure
for any equational theory that can be defined by a canonical term rewriting system
(without extravariables in the conditional case). For practical applications however,
narrowing in its original form is much too inefficient.

For functions inductively defined over some set of constructors C — these are typical
functional programs — the narrowing algorithm enumerates the whole constructor term
algebra T(C,X). Moreover there are serious inefficiencies in this enumeration process:
the same substitutions are generated in many different ways. This means that the
narrowing algorithm behaves worser than a trivial generate-and-test algorithm.
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In order to improve this poor behaviour many optimizations have been proposed.
Usually they restrict the set of occurrences at which a narrowing step is performed
(basic narrowing, innermost narrowing, outermost narrowing, selection narrowing) and
normalize the goal after each narrowing step (normal narrowing). But even the most
sophisticated narrowing procedure is inadequate to solve for example a system of
linear equations. However, such equations occur very often in practical applications.

It is therefore necessary to incorporate special theories and their unification algorithms
into the general narrowing process. This can be done using narrowing modulo an
equality theory E. Building-in equality theories may reduce the search space of the
narrowing algorithm dramatically. The main difficulty is that the E-unification algorithms
must be able to deal with additional free function symbols.

A logic-functional programming language without built-in theories will not meet the
requirements of practical applications.
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On Goal and Term Reduction Calculi for Conditional Rewriting
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[BK86] and [DOS88] classify approaches to conditional rewriting with regard to the
way the conditions are evaluated. This suggests starting out from a notion of goal
reduction and deriving from that the notion of conditional term reduction. (Goals are
sets of atomic formulas; & denotes the empty goal; for further basic notions used here,
cf. [Pad88], Sect. 2.)

Given a set R of conditional equations of the form u=u'&d (with goal &), let us first
follow [Kap84] and define the goal reduction relation recursively (as the limit of
approximating relations kg i):

¥R % <=>def 3208t 9 rR,i V'
? FrR,0 7' <{=>def 3 normal atomp : 9 = ¥'u{p} or
Ju=u'eR, 8,%,f:7=8[ulfl/x], ' = 8[w[f1/x]
?HrR,i+1 ¥ <=>def ¥ FrR,i 9'or
Jusu'ed eR, 8,x,1: 9 = SLulfl/x], y' = 8[W[f1/x], 8[f] -rR,i* &.
If the only predicate symbols of the underlying specification are equality predicates,
the set NA of normal atoms is usually chosen as the set of refliexive equations t=t. But
even in the equational case, other definitions of normal atoms make sense as well. For
instance, the normal-join systems of [DOS88] correspond to the restriction of NA to
equations t=t where t is jrreduciblie w.r.t. R. Reducibility, however, refers to the term
reduction relation — g, which can be derived from the goal reduction relation g :

t—rpt <=def  {t=x) R {t'=X)

Another definition of normal atoms admits non-reflexive equations or even non-
equational atoms, which belong to some base theory (cf. [Pad88], Sect. 7).

[n the book just cited we have defined goal reduction non-recursively, with the help
of two inference rules:

Goal Reduction Rule 8[ulf1/x]
_ usu'<4g ¢R
S[u'lt]/x] u 9Lf]
Reflection Rule 7 u {p}
p normal
?

Let us denote the corresponding inference relation by g. (Since inference relations are
per se transitive, we need not write r*.) Based on this notion, the term reduction
relation is defined as follows:

t DRt <=def Jusu'ed eR,cexf:t=clulfl/x], t'=c[ulfl/x], S[f] R 2.
With respect to successrul derivation sequences, both notions of goal reduction
coincide:
Proposition 1: R & iff 9 HrR* 9.
Following [BDH861, we say that y has a rewrite proof iff 3 —r &. An immediate
consequence of Prop. 1 is






Proposition 2: t DRt iff t—rpt.
We remind of the fact that goal and term reduction depend on the choice of normal
atoms. In the sequel, let us suppose that these atoms are exactly the reflexive
equations (see above). Then goal reduction and term reduction are related to each other
as follows:

Proposition 3: {t=t"t R & iff t—R*uandt' —R™ uforsome u.

So one may switch between the recursive and the non-recursive view on goal
reduction. However, given that R is finite, it is easy to decide whether |~ is applicable
to 9, while the reducibility of 9 w.rt. g is in general undecidable. [Kap87], [Jw86],
[D0OSB8] overcome this problem by requiring R to be simplifying, reductive or
decreasing, respectively. All these notions include the existence of a Noetherian term
ordering > that contains —R. The notions differ with respect to further conditions on>.
The question remains whether these conditions are necessary. Let us approach it from
another side. The actual purpose of goal reduction is to use it for proving
(unconditional) theorems. Of course, - is sound.

Proposition 4: PR & implies Mod(R) E 7.

The completeness of ~g agrees with the Church-Rosser property of R: R is called
Church-Rosser if

Mod(R) = ¢ implies 9 IR 9. (CR)
in the unconditional case, it is well-known that the Church-Rosser property of R is
equivalent to the confluence of —R*. This result remains valid for conditional
equations, although the proof must proceed somewhat differently. One cannot conclude
from Mod(R) = t=t'that there is a sequence of reductions of the form

t= X e-u = e ¥ty Lt e — R 2

(and then derive t=t' g 4, i.e., by Prop. 3, t—g™u and t'—g*u, by induction on n).
Instead, one may induce on the Tength of a shortest paramodulating derivation from t=t'
to & whose existence follows from Mod(R) F t=t'(cf. [Pad88], Thm. 5.3.5).

So we have to look for decidable criteria for the confluence of —Rg*. In the
unconditional case, the Knuth-Bendix theorem tells us that the confluence test can be
reduced to finitely many critical pairs, provided that —pg is Noetherian. Other
confluence criteria avoid this assumption, but require that R be non-ambiguous (cf.
[HueB80], [BK861]). However, all criteria rely on the assumption that the infinite set of
independent reductions need not be considered because they are confluent in any case.
Unfortunately, this does not hold in the conditional case, as the following argument
shows.

Given t=t'<u=u' € R and a reduction f—g g such that ulfl=u'lf] gr &, one obtains
the independent reductions
c[tlfl/x] —Rr c[t'[f1/x] and c[t[f1/x] —Rr c[t[gl/x]. (n

Of course, c[t'[f]/x] can be reduced into c[t'[g]l/x]. However, c[t[g]/x] need not be
reducible into this term because ulfl=u'lf] r # need not imply ulgl=u'lg] R 4.

On the other hand, by Prop. 3, ulfl=u'lf] g & is equivalent to:
ulf] —R*v and u[fl]—R*v forsomev.

Thus we have the "branchings”






ulfl] —R* v, ulf] —R ulg] (2)
and
u'lf] —g*v, vlfl —pulgl : (3)
If there would be a Noetherian term ordering > such that c[t[f1/x] is greater than ulf]
and u'[f] w.r.t. >, we could apply the induction hypothesis and deduce that (2) and (3) can
be made confluent, i.e.,
v —=R* v, ulg]l »R* v, v —R* v", u'lg]l —R* v"
for some v',v". If we could further assume that ulf] > v, then we could apply the
induction hypothesis once more and infer that the two reductions starting from v can be
made confluent as well, i.e.,
v' —=R* v, and v' —R* v,
for some v,. Putting together these reductions, we would obtain
uLgl —R* vo and u'[gl —R* v,
and thus, by Prop. 3, ulgl=u'lg] R &, so that (1) can be made confluent.

We conclude that the confluence of independent reductions is guaranteed only if some
Noetherian term ordering > satisfies the following propertuy:

(A) For all t=t'ed € R with, say, ¥ = {uy=uy',...,.u,=u,'}, substitutions f, terms ¢, x € var(c) and 1¢i¢n,
SLf1 R & implies c[t[f1/x] » {c[t'[f1/x], u;[f], u[T]} (where >> is the multiset extension of »).
Only the further requirement that c[t[f]/x] be greater than u;[f] and u;'[f] even if 9[f]
has no rewrite proof ensures that reducibility w.r.t. R is decidable (cf. the proof of

[D0S88], Prop. 4). This strengthening of (A) reads precisely as follows:

(B) For all t=t'«<=9 € R with, say, 8 = {u,=u,,..,u,=uy,'}, substitutions f, terms c, x € var(c) and 1<icn,
cLtlf1/x1>> {uLf], u'[f1} and S[f] R & implies c[t[f1/x] > c[t'[f1/x].

(B) and (CR) ensure that the equational theory of Mod(R) is decidable. For weakening (B),

one has to change the definition of goal and term reduction. So far, two modifications

have been proposed.

In [Pad88], we have restricted the set of normal atoms to those reflexive equations
t=t where t is irreducible w.r.t. R. Under this assumption, the above argument on
independent reductions proceeds differently: v becomes irreducible and thus v, v' and v"
are all the same so that we only need c[t[r]/x] > (u[r1u'[f]} for concluding that
ulgl=u'lg] has a rewrite proof. Indeed, the reference to > can be avoided completely
because the induction step can novw be justified by the fact that the shortest proof of
(1) is longer than the shortest proofs of (2) and (3). This is essential for establishing
the strong-confluence criterion [Pad88], Thm. 9.6.1, which does not presuppose any
Noetherian term ordering (and which generalizes [Hue80], Lemma 3.3, to conditional
equations). The restriction of normal atoms to irreducible equations, however, entails
that (CR) can be guaranteed only for normalizable equations, i.e., for equations t=t' such
that t—>r u and t'—pg u' for some irreducible terms u,u'. (The details of this approach
are given in [Pad88], Sect. 7).

A second approach for weakening (B) stems from the concept of unrailing completion
(cf. [HR871). It starts out from the observation that goal and term reduction need only
be defined on ground, i.e. variable-free, goals and terms, respectively. This holds true
because soundness and completeness of the cut calculus w.r.t. Mod(R) (cf. [Pad88], Thm.






4.2.2) immediately imply:
Mod(R) = g iff Mod(R) = '

where 9' is ¥ with all variables be replaced by different Skolem constants. The term
ordering > is now built into the definitions of goal and term reduction: the Goal
Reduction Rule becomes:
8[t/x] u=su'e4gd or u'sued €R
t = clulf1/y] > cfu'lfl/y]l =t
8Lt'/x]u B[f] t has no proper superterm in 8[t/x]
Accordingly, the term reduction relation is now defined as follows:
t—pt  <=>def Fusuw'edoru'suesd eR, ekl t=clulfl/x]> c[ulfl/x]=t', S[f] R #.
The conditions on > are that > is Noetherian on ground terms (including Skolem
constants) and
(C) for all t=t'&4 € R with, say, 9 = {u4=uy',..,u,=u,'}, ground substitutions f, terms ¢, x € var(c) and -
1¢ien, c[tlf1/x] >> {u,Lf], u;'[f]} and S[f] R & implies c[tLf1/x] > c[t'[T1/x] or c[t'[T1/x] > c[t[f1/x].

(C) yields both that (CR) is equivalent to the confluence of —R* (for ground goals and
terms and w.r.t. the new definitions of g and —Rg) and that the equational theory of
Mod(R) is decidable.

This approach shifts the descent property from a condition on R to a feature of
rewrite proofs via R. 1t admits generalizations to non-equational and inductive theories
that will be worked out in a forthcoming paper.
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The following is an extended abstract of [RU88], which has been written by Jean - Luc
Rémy and me at CRIN in Nancy (France). We assume familiarity with the basic notions
of term rewriting.
1.Introduction: Sufficient completeness of equational specifications is a well - known prere-
quisite for proof by consistency. We present a method for testing sufficient completeness of
a simple class of conditional specifications which can be looked upon as special reductive
conditional term rewriting systems (CTRSs for short). Such a CTRS consists of a finite
set of rules p::1 » r over a signature X, X being devided in a set C of constructors and a
set D of defined operators. p is a conjunction of boolean terms (called literals) and | a
rooted term, i.e. a term t=f{ty,...,t;), where feD and all subterms are constructor — terms
(t is also called f-rooted). Former algorithms (as [Zh84]) made use of inductively defined
test sets: For every term in such a set there must be at least one rule, that can be applied.

The method, which is described here, uses a different strategy, consisting in two steps: the

test of half - spannedness and the test of well — spannedness.

2.Half — spannedness: Let (£, R) be a CTRS and feD. f is said to be half - spanned, if for
every ground - term t=f(u,,...,u,) (u; being a constructor term for every i, 15iSn) there
exists a rule p::lor and a ground - substitution o, such that o(l)=t. (Z, R) is called
half - spanned, if every feD is half - spanned. Let now G(t) denote the set of all ground —
instances of term t (wrt C) and G({ty,...,t,}) the set G(t))U...UG(,). The method for test-
ing half - spannedness is an extension to the multi ~ sorted case of a method presented in

[Th84] and [LLT87]. Its theoretical background is shortly presented here: The method
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" makes use of complements of terms, a complement of a term teT; (T;=set of all con-
structor ground - terms) being a finite set T of terms, such that Tg=G(t)U*G(T) (U*
"denoting the -disjoint union). For linear terms this complement can easily be constructed

(see [Th84], [LLT87], ([RUB88]). These notions are extended to linear substitutions in such

a way, that:

Theoreml: Every rooted term t and ‘every linear substitution s, such that domain of s

equals the set of variables of t, verify:

G(t) = G({Ii(t)l r ¢ complement of s}) U* G(s(t)) ©

Let now a semi - linear term t be a term, such that every variable of sort s in t, where
there exists only a finite set of ground - terms for s, appears exactly once in t. The main

theorem is the following:

P

Theorem2: Assume A is an unambiguous set of linear rooted terms (the terms in A share
no ground - instances), B is a set of rooted terms, such that the set of all f-rooted terms
in B is“semi - linear for every feD, that appears as “root in B. V(A) and V(B) are the vari-
;bles that appear respectively in A and B and X = X,U*Xy is a partition of the variables,
such that V(A)SX, and V(B)SXj;, used for the construction of the complements in A and
B respectively. Then B covers A (that means G(A)SG(B)) iff one of the following assertions
is true: o |
- A=209
— There exists a substitution ¢ that unifies a in A and b in B, i.e. g(a) = o(b),

such that o(a) is linear, and: (B - {b}) U {r(b)|r ¢ compl. of o’}

covers (A - {a}) U {r(a)| r e compl. of o’,}, where ¢’, (resp. o’y)

denotes the restriction of o to Var(a)NDom(c) (resp. Var(b)NDom(c)),

such that all variables of the image of ¢’, (resp. o’y)

have been isomorphically renamed by variables of X, - V(A) (resp. Xz- V(B)). ©






" The algorithm itself is now an implementation of the above result, where for every feD A

is initialized by {f(xs,...,x,)} and B by the set of all f-rooted lefthand - sides of (Z, R).

S.Weﬂ—spanﬁedness: Considering literals as boolean atoms, we form for every lefthand -
side in R the disjunction of the preconditidns of all rules with this lefthand - side. Then we
test, if this disjunction is logically equal to true. This can be done by some propositional
calculus (([RUB88]) or using the rewriting system given in [Hs85]. The system (I, R) is
called well — spanned, if this test is successfull for all lefthand -~ sides in R and if (Z, R) is
half —spannea. If (X, R) is a well - spanned, reductive, left —rooted and semi - linear

CTRS, then it is sufficiently complete wrt C.

4.Conclusion: The algorithm, developped according to the above mentioned results applies
to a wide class of CTRSs. It is more efficient for this class as algorithms based on the con-
struction of inductive test sets and we think that further investigation in tfl-emzr‘l:elthod could
lead to the solution of some of the problems inherent to the "test set” — method (see f. ex.

[Zh84])..

e
»
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Abstract

Order-sorted specifications can be fransformed into equivalent many-sorted
ones by using injections to implement subsort relations.

In this paper we improve a result of Goguen, Jouannaud, and Meseguer about
the relation between order-sorted and many-sorted rewriting.

We then apply recent techniques in completion of many-sorted conditional
equations to systems obtained from translating order-sorted conditional

equations.

Emphasis will be on ways to overcome some of the problems with non-sort-
decreasing rules.
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1 Einleitung

Dies ist ein sehr kurz gehaltener Versuch eines Uherblicks iiber eine laufende Arbeit zur Ver-
vollstandigung von Horn-Klausel Programmen an der Universitdt Dortmund. Da diese Ar-
beiten noch nicht abgeschlossen sind, werden in diesem Uberblick die Ansatzpunkte der Arbeit
thesenartig vorgestellt und einige Ideen und Konzepte an einfachen Beispielen nicht vollstialndig
formal eingefiihrt.

Seit mehreren Jahren arbeitet die Dortmunder Gruppe des ESPRIT-Projekts PROSPEC-
TRA an der Entwicklung und Implementierung von Konzepten der ”Knuth-Bendix”-Vervoll-
stindigung von bedingten Gleichungssystemen. Wihrend dieser Zeit vertffentlichte Arbeiten
sind in der Literaturliste angegeben.

Im Riickblick erweisen sich als wichtigste Ideen dieser Arbeiten das Konzept der sog.

"nicht-operationalen” Gleichungen vgl. etwa [Gan88a], welches jiingst verallgemeinert wurde
auf das Konzept der "anwendungs-eingeschrankten” Gleichungen [BG88]. Letzteres wiederum
erlaubt vera]]gmncincrtc Konzepte bedingter Termersetzung, vgl. etwa das Konzept der

”quasi-reduktiven” Ersetzungsregel, ebenlalls in [BG88]. Mit Hilfe dieser Konzepte kann ein
Standardproblem bedingter Termersetzung, ndmlich dab bedingte Gleichungen mit ”Extra”-
Variablen in den Bedingungen nicht zugelassen werden kénnen, behandelt werden. Beispiels-
weise kann der Vervollstindigungsprozefl so gesteuert werden, dafl im finalen System von
Gleichungen Gleichungen wit ”Extra’-Vatiablen eliminiert werden konnen. Die Transi-
tivitdtsdefinition

(2 < y)=true, (y < 2)=lrue = (z < z)=true

ist ein Beispiel einer Gleichung mit einer "IExtra”-Variablen, ndmlich der Variablen y.

In unserer aktuellen Arbeit versnchen wir eine Zusammenschau der bisherigen Ergeb-
nisse unter einer neuen Sicht von ?Knnth-Bendix”-Vervollstindigung, die allgemeinere An-
wendungseinschrankungen von Gleichungen beviicksichtigt. Diese kann auf den allgemeinen
Horn-Klausel Fall erweitert werden.

*Uberlegungen zu dicser Arbeit entstanden im Rahmen des ESPRIT-Projekts PROSPECTRA, ref#390.
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Skizze des Ansatzes

Der Ansatz kann durch folgende Thesen grob skizziert werden:

3
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i

(S,

1. Wie im unbedingten Gleichungslall ist der grundsitzliche Mechanismus der Ver-

vollstdndigung der, "kritische Konseqenzen (Paare)” (Gleichungen bzw. Klauseln) zur
betrachteten Klauselnmengemenge hinzuzuliigen und zu iberpriifen, ob sie simplifiziert
bzw. eliminiert werden konnen.

Simplifikation bzw. Elimination gehen jedoch fiir den bedingten Gleichungsfall wie fiir
den allgemeinen Horn-Klausel IFall iiber die Simplifikation bzw. Elimination durch Ter-
mersetzung, wie sic fuer den unbedingten Gleichungsfall {iblich ist, hinaus. Dieser
allgemeinere Simplifizier- und Eliminierbarkeitsbegriff von Klauseln ist im allgemeinen
nicht entscheidbar. Ein konkretes Vervollstindigungssystem wird daher moglichst viele
entscheidbare Féalle von Simplifizies- und Eliminierbarbarkeit untersuchen. Der allge-
meinere Simplifizier- und Eliminierbarkeitshegrifl von Klauseln ist desweiteren abhangig
von den betrachteten Anwendungseinschrankungen. Je restriktiver die Anwendungsein-
schraenkungen desto schwicher die Simplifizier- und Eliminierbarkeitsvoraussetzungen.

3. Die Simplifizier- Eliminierbarkeit von Klauseln im finalen System von Klauseln ist

durch geeignete Addition “zusidtlzlicher kritischer Konsequenzen” beeinfluibar. D.h.
falls gewisse “kritische Konsequenzen” wihrend der Vervollstindigung addiert wer-
den, kann die Eliminierbarkeit gewisser Klauseln im finalen System garantiert werden.
Diese Beobachtung wird angewendet bei der Behandlung der oben erwdhnten nicht-
operationalen Gleichungen.

In Verallgemeinerung des vorigen Punktes konnen gewisse Anwendungen einer Klausel
im finalen System von Klauseln ”iiberfliissig” gemacht werden durch Addition gewisser
?kritische Konsequenzen” wahrend der Vervollstindigung. Andere Anwendungen der-
selben Klausel werden im finalen System von Klauseln nicht ”iiberfliissig” sein.

Es konnen wie im umbedingten Gleichungsfall eine failing und eine unfailing Ver-
vollstdndigungsvariante unterschicden werden.

6. In der unfailing Variante hedeutet die Vervollstdndigung nichts anderes als die Wieder-

herstellung der Vollstandigkeit linearen Beweisens, die moglicherweise durch die Ein-
schrankung aul veduktives Refutationsbeweisen verloren wurde.

7. Die Argumentationstechnik filr nnsecrer Aussagen ist die Bachmair’sche Beweistransfor-

mationstechnik zusammen mit den noetherschen Beweisordnungen.

Begriffe erlautert am Beispiel

Einen Eindruck der oben gemachten Aussagen moge das folgende Beispiel geben. Wir be-
trachten Refutationsheweise mit der Resolutionsregel als einzigen Inferenzregel. Desweiteren
wird nur der Grundfall betrachtet (keine Variablen). Der allgemeine Fall ist sehr viel kom-
plizierter, folgt aber derselben Idee. Wir werden einige fiir den allgemeineren Fall konzipierten
Begriffe nur eingeschrinkt am Beispiel cinfithren.

p(t1,t2,...1,) beift ein Atom, falls p cin Pradikatensymbol und tq,1z,...t, Terme iiber

einer betrachteten Signatur sind. Eine Klausel ist ein Paar von Mengen von Atomen,






geschrieben als I' = A. Klausel ' = A, die hochstens ein Atom in der Konklusion A
besitzen, heifilen Horn-Klauseln. Horn-Klauseln mit nicht leerer Konklusion heiflen auch
Programm-Klauseln, wihrend Horn-Klauseln mit Jeerer Konklusion Ziel-Klauseln heiflen. Fiir
unser Beispiel betrachten wir nur die Resolutionsregel:

I'i1= A B,T2= A,
Iho,Teo = Ago

Resolution :

wobei ¢ ein mgu von A and B ist. Wir sagen, die Klausel I'y = A wird angewandt auf
die Klausel B, T2 = As. Sei > eine Reduktionsordnung auf Atomen mit zusétzlichen hier
nicht naher spezifizierten Einschrankungen der Vergleichbarkeit von Gleichheitsatomen und
anderen Atomen. Die Anwendung einer Klausel 4;,...,A4, = B unter Substitution o heifit
reduktiv, falls Bo > A;o, 1 < i < n. Fine Klausel A1,...,A, = B heifit reduktiv, falls
B > A;, 1 < i< n. Reduktive Klauseln sind in jeder Anwendung reduktiv. Reduktive
Anwendungen von Klauseln wirken zielrednzierend.

Beispiel 3.1 Gegeben das ITorn-Klausel Programm N = {A,B = C, = A, = B} mit

C>B>A.
A,B=>C C=>

(P): = A A, B =
’ = B B =
=

(P) beweist, daB C' ein log. Konsequenz in N ist. (P) ist reduktiv, da nur reduktive
Klauseln angewandt werden. Jeder Schritt ist linear, d.h. die angewandte Klausel ist Element
von N, und zielreduzierend: ¢ = > 4. B = >B = > =, wobei > die Multisetfortset-
zung von > ist.

Bezeichne R die Anwendungseischrinkung: 7A,B = C sei nicht-operational”, d.h.
A,B = C soll nicht angewandt werden missen. Dann ist N nicht wollsténdig bzgl. R, da
es keine lineare Alternative zur Anwendung von A, B = C fiir den Beweis von C gibt. Durch
Addition der kritischen Konsequenz A = (' oder B3 = (' oder beider Konsequenzen erlangen
wir Vollstandigkeit bzgl. R. Sowobl A = C wie auch B = C sind Resolventen zwischen
den Programmklauseln = B und A, B = C bzw. zwischen den Programmklauseln = A
und A,B = C. Sowohl die Menge Ny = (N — {A,B = C}H U{4A = C} wie auch die
Menge N2 = (N — {4, B = C}) U {B = C} ist wvollslindig bzgl. R. D.h in Ny wie auch
in Ny ist dieselbe Menge von Zielen lincar heweishar wie in NV, jedoch ohne A, B = C an-
wenden zu miissen. In beiden moglichen finalen Systemen N; oder N; konnte deshalb die
nicht-operationale Klausel A, B = (' eliminiert werden. Beispielsweise ist in Ny = C linear
beweisbar durch (P;) und in Ny durch ()

A=C C= B=C C=
(P1) : = A A= (Pg) : = B B=
= =

Wir beobachten, dafl es nicht notwendig ist, alle Konsequenzen zu addieren, um
Vollstindigkeit zu erlangen. Wir bezeichuen daher {4 = C} bzw. {B = C} bzw. {4 =
C, B = C} als faire Selektionen von Konsequenzen von N.






4 Anwendungseinschrankungen

Hinter jeder Art von "Knuth-Bendix”-Vervollstiidigung steht die Einschrinkung beliebiger
Beweise auf reduktive Beweise. (Genauer: nur Refutationsbeweise ohne Ermittlung von
Losungssubstitutionen {iir Ziele werden anf Reduktivitit eingeschrinkt.) Diese Einschrinkung
bestimmt noch keine eindeutigen Beweisformen, siche obiges Beispiel: alle drei Beweise
(P),(P1),(Py) sind reduktiv. Uber Einschrinkungen der Anwendung von Horn-Klauseln wer-
den weitere Einschrankungen reduktiver Beweise definiert. ”Einschrinkung der Anwendung
von Horn-Klauseln” bedeutet die Menge der Substitutionen, unter der die Klausel in Refuta-
tionsbeweisen angewandt werden darf, einzuschrinken. Dabei ist zu beachten:

1. Nur Horn-Klauseln T' = A mit nicht leerer Bedingung I' diirfen iiber die Reduktivitit
hinaus eingeschrankt werden (unfailing Variante), nur reduktive Horn-Klauseln I' = A
mit nicht leerer Bedingung I' diivfen weiter eingeschrankt werden (failing Variante).

2. Termersetzung mit Ersetzungsregeln im konventionellen Sinn kann als spezielle Ein-
schrankung aufgefaBt werden: "Nuwr Klauseln, die unter allen Substitutionen reduktiv
sind, diirfen angewandt werden.”

Eigenschaften fairer Selektionen

1. Eine Selektion von Konsequenzen ist eine Teilmenge der Menge aller Resolven-
ten/Paramodulanten zwischen Programmklauseln N.

2. Eine faire Sclektion garantiert die Transformierbarkeit bzgl. R unzuléssiger reduktiver
Beweise in zuldssige reduktive und lineare Beweise. Der Begriff der fairen Selektion
wird iber diese Eigenschaft definiert. Unter Transformierbarkeit wird hier die Anwend-
barkeit einer Beweistransformationsregel aus einer fest gegebenen Menge solcher Regeln
verstanden. Beispiel einer solchen Beweistransformationsregel (Schema) ist die folgende:

ATl =C C= =2 A AT =>C
= A Al = '=s<C C =
B =
= I'=>

Beweise auf der rechten Seite der Transformationsregel zerstéren moglicherweise die
Linearitat. Dies ist dann der Fall, wenn weder I' = C'in N ist noch es einen alternativen
linearen R-eingeschrinkten Bewejs {iir den Subbeweis

I's(C C=
I'=

gibt.  Offensichtlich hingt die [Fairness einer Selektion von der Anwendungsein-
schrankung R ab.

3. Die Menge aller moglichen Resolventen/Paramodulanten zwischen Programmklauseln
in Nicht-Variablen-Positionen ist eine faire Selektion von Konsequenzen. Diese ist
endlich, vergleichbar der endlichen Mengen kritischer Paare in der konventionellen Ver-
vollstandignng.
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4. Sei 5 eine faire Selektion. Dann ist auch jede Obermenge § U S eine faire Selektion.

5. In der Praxis wird man Sclektionen wéahlen, deren Fairnefeigenschaft entscheidbar ist.
Sie werden im allgemeinen nicht minimal sein.

5 Kriterium fiir Vollstandigkeit

Failing Variante: R ist Einschrinkung auf Anwendung (quasi)-reduktiver Klauseln. Ein
Klauselprogramm N ist vollstindig bzgl. der Anwendungseinschrinkung R und der durch
> induzierten Beweisordnung >p, falls

1. die Teilmenge der nicht reduktiven unbedingten Klauseln U C N von N — U subsumiert
wird bzgl. >p und R.

2. Sr(N) eine faire Selektion von Konsequenzen in N fir R ist und

3. Sp(N) von N subsumiert wird bzgl. >p und R.

Im Beispiel wird die faire Selektion {4 = C} von der finalen Klauselmenge {A = C, = A, =
B, } subsumiert bzgl. >» und K. Aufgrund der Anwendungseinschrdnkung R und der Fairnef§
der Selektion Sk(N) konnen wir schlieflen, dal anch A, B = C von N subsumiert wird.bzgl.
>p und R. Der Subsumptionsbegriff ist abgestiitzt auf der zugrundeliegenden Beweisordnung,
die wiederum von der zugrundeliegenden Reduktionsordnung induziert wird. Dariiberhinaus
ist er abhingig von der betrachteten Anwendungseinschrinkung R. Es soll hier nicht n&her
darauf eingegangen werden.

6 Abstrakte Vervollstandigung

Die von uns angestrebte Vervollstdndigungstechnik 148t sich durch die folgenden abtrakten
Inferenzregeln beschreiben.

Abstrakte Addition:
N
NUu{l = A}

falls T = A € Sr(V)

Abstrakte Elimination:

NuU{l = A}
N

falls ' = A subsumierl wird von N bzgl. >p und R

Abstrakte Simplifikation:

NU {Pl = Aq}
J\TU{I‘Q = Ag}

falls Ty = Ay subsumiert wird von N U{Ty = Aq} bzgl >p und R

Sr(N) ist eine Teilmenge aller Paramodulanten/Resolventen in N. In konkreten Ver-
vollstindigungssytemen sind diese abstrakten Regeln durch Mengen konkreter Regeln fiir jede
abstrakte Regel ersetzt. Chancen fiir erfolgreiche Vervollstindigungen kénnen durch die Wahl
moglichst kleiner fairer Selektionen wie auch durch eine ”machtige” Menge von Simplifikations-
und Eliminationsregeln, die die Simplifizier- und Eliminierbarkeit in moglichst vielen Fillen
aufdecken, verbessert werden.

(s}
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Unification in Monoidal Theories
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1. Introduction

We introduce a class of equational theories by which we generalize several well-known
theories for which unification problems have been studied. Among them are the theories
of commutaive monoids (AC), commutative idempotent monoids (ACI), and abelian
groups (AG). These theories have the common characteristic that unification algorithms
for them basically consist in solving some kind of linear equation system.

The same is true of monoidal theories. Every monoidal theory determines canonically
a semiring, an algebraic structure that can be thought of as a generalized ring. Then
every unification problem can be translated into a linear equation system and vice versa.

Having established this correspondence between unification and linear algebra, we are
able to characterize the unification type (unitary, finitary, infinitary, nullary) of monoidal
theories in algebraic terms. For instance, an application of Hilbert’s Basis Theorem gives
a sufficient criterion for a monoidal theory to be unitary.

Monoidal theories can be characterized in categroical terms: The category consisting
of finitely generated algebras as objects and homomorphisms as arrows is semi-additive.
On the other hand, if for an equational theory this category is semi-additive, then by a
signature transformation the theory can be turned into a monoidal theory. Thus monoidal
theories cover the same subject as the commutative theories defined in (Baader 1989).

In the sequel, we give a short account on the basic defintions and results concerning
monoidal theories. A detailed presentation is given in (Nutt 1989).

2. Monoidal Theories and Semirings

Terms, substitutions, equational theories, algebras and other basic notions of unification
theory are defined as usual (Kirchner 1989).

An equational theory £ is monoidal if its signature ¥ consists of a constant 0, a
binary symbol +, and a finite number of unary symbols, such that + is associative and
commutative, 0 is the identity for +, and every unary symbol h is a homomorphism for
+ and 0, i.e. £ contains the equalities h(z + y) = h(z) + h(y) and ~(0) = 0.

Obviously, the theories of commutaive monoids (AC), commutative idempotent
monoids (ACI), and abelian groups (AG) are monoidal. Generally, monoidal theories
describe varieties of abelian monoids with homomorphisms.

A semiring is a tuple (8§,+,0,-,1) such that (5,+,0) is an abelian monoid, (S,-,1)
is a monoid, and all o, B, v € 8§ satisfy the equalities (a +3) - vy = a-v+ 8- 7,
a-(f+v)=a-B+a-v,and0-a=a-0=0

1






We call the binary operations + and - the addition and the multiplication, respectively,
of the semiring. A semiring is commutative if its multiplication is commutative. Semir-
ings are different from rings in that they need not be groups with respect to addition.

Examples. The set N of natural numbers with usual addition and multiplication is
a semiring. Every ring is a semiring. In particular, the integers Z with usual addition
and multiplication form a semiring. The set {0,1} becomes a semiring Sacg if we define
141 := 1 and extend addition and multiplication as required by the axioms for a semiring,.

Analogously to fields, for every semiring S we can define S-modules as generalized
vector spaces and linear mappings between S-modules. Especially, the cartesian product
8" becomes an S-module if addition and scalar multiplication are defined pointwise.

As usual, a linear map o: S™ — S™ between free S-modules can be described by an
n X m-matrix C, with entries from &, and every such matrix defines a linear mapping.
The transpose o of ¢ is the linear mapping corresponding to the transpose C! of the
matrix C,.

Every monoidal theory £ defines a semiring Sg as follows: Let 1 be a variable symbol.
Then the carrier of Sg is Fg(1), the free £-algebra over {1}, addition and zero are
inherited from Fg(1), the unit is T, i.e. the £-equivalence-classe 1, and multiplication of
two E-classes of terms 5,f is defined as 5-7 := (1 — t}s, i.e. the product is obtained by
replacing all occurrences of 1 in s with ¢.

The semiring Sg mirrors properties of £. A monoidal theory is a theory of groups if
for some term t it contains the equation z + ¢t = 0. Intuitively, this means that there
exist inverse elements for the addition. A monoidal theory is a theory with commuting
homomorphisms if for all h, b’ € H it contains the equation h(h/(z)) = A’'(h(z)).

THEOREM 2.1.
1. S¢ is a ring if and only if € is a theory of groups.
2. 8¢ is commutative if and only if € is a theory with commuting homomorphisms.

Next we show that it is just a matter of perspective whether one views an algebraic
structure as an £-algebra or as an Sg-module. Let A be an £-algebra and a € A.
Evaluation in a is defined as the unique homomorphism ¢,: 75;(1) — A from T-terms ov
er 1 to A satisfying £4(1, a) = a. Then A can be turned into an Sg-module by defining the
scalar multiplication as Sa := g,(s) for § € S¢ and a € 4. On the other hand, every Sg-
module M can be turned into an £-algebra by interpreting every unary function symbol
h as the function ™ (m) := h(1) -m for m € M.

Switching from &-algebras to Sg-modules and backwards turns homomorphisms into
linear mappings and linear mappings into homomorphisms. In particular, the free algebra
on n generators Fe(zy,...,2,) viewed as a module is isomorphic to the module §7, and
vice versa.

3. Unification Problems in Monoidal Theories

Our view of unification is slightly more abstract than the usual one. An £-unification
problem is given by two homomorphisms (i.e. substitutions) o,7: Fg(X) — F(Y)
between finitely generated free £-algebras. A unifier of ¢ and 7 is a homomorphism
8: Fe(Y) — Fe(Z) such that 6o = 7.






Now the instance relation on homomorphisms (“§ is more general than n”), complete
and minimal complete sets of unifiers as well as most general unifiers can be defined as
usual.

When we are considering a monoidal theory £, we can view free algebras as modules
S2 and homomorphisms as linear mappings. Therefore we can treat unification problems
in the framework of linear algebra over semirings.

Let o, 7: S, — ST be linear. The kernel of ¢ and  is the set ker(o,7) := {a € S} |
o(a) = 7(a)}. The kernel of ¢ and 7 is a submodule of S;. The image of o is the set
imo = {b € SP | Ja € S%.0(a) = b}. The image of o is a submodule of SP*.

The next theorems are the basic results on monoidal theories. They relate unification
properties to algebraic properties. The first theorem characterizes the instance relation.

THEOREM 3.1. Let §: S — S2 and n: 8P — SE be linear mappings. Then § is more
general than 7 if and only if imn' C imé*.

Unifiers can be characterized in terms of images and kernels.

THEOREM 3.2. Let 0,7: S, — SP and 6:ST — S7 be linear mappings. Then the
following equivalences hold:

1. § is aunifierof ¢ and 7 <= imé* C ker(o?,7)

2. § is a most general unifier of ¢ and 1 <= imé* = ker(o?, 1%).

The type of a unification problem depends, loosely speaking, on the size of the kernel
of the two linear mappings.

THEOREM 3.3. Let o,7: St — SP* be linear mappings.
1. There exists a most general unifier of o and 7 if and only if ker(o?, %) is finitely
generated.
2. For every unifier n of ¢ and T there exists a more general unifier § if and only if
ker(ot, %) is not finitely generated.

Since a unification problem in a monoidal theory is either of type unary or of type
finitary, the same is true of the whole theory.

COROLLARY 3.4. (1-0-Alternative) A monoidal theory is either of unification type 1 or
of type 0.

A sufficient criterion for a monoidal theory to be unitary follows from Theorem 3.3.

COROLLARY 3.5. Let £ be a monoidal theory. If F¢(1) is finite, then € is of unification
type 1.
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Extended Abstract

There are two possible ways of using finite canonical rewrite systems to solve word
problems for semigroup varieties. On the one hand we may consider term rewrite sys-
tems ( TRS ) which realize associativity by rules. On the other hand we may reduce
modulo associativity, i.e. consider words instead of terms. In this case we have word
rewrite systems ( WRS ).

Advantages of TRS over WRS are:

1) For a finite, terminating TRS the confluence property is decidable. One has to check
only finitely many critical pairs. Since associative unification is infinitary there may be
infinitely many critical pairs obtained by superposition of two rules of a WRS.

2) The Knuth-Bendix Algorithm may be used to complete a given TRS.

Example 1. Consider RB = { x-(y-z) = x-y)z, x-(yx) =x }.
The TRS R = { (x'y)z = x-(y-2), x-(y'x) — x } terminates but is not confluent since the
terms x-z and x-(y-z) are R-irreducible and RB-equivalent.
The Knuth-Bendix Algorithm yields the canonical system
S={ xy)z—>xzx(yz) > XZ XX =X}
for RB.

But there are semigroup theories which have finite canonical word rewrite systems and
do not have finite canonical term rewrite systems.

Example 2. Consider LR = { x:(y-z) = X-y)z, xx =X, X (yX) =Xy }.
R = { xx — X, xyx — xy } is a finite canonical WRS for LR but there is no finite canonical

TRS for LR. The Knuth-Bendix Algorithm generates the following infinite canonical TRS
for LR: '


mailto:baader@infonnatik.uni-erlangen.de




{ &y)z-—x(yz),xx X,

xl-(xz-(...(xn_l-(xn~x1))...)) — xl-(x2-(...(xn_l-xn)...)),

X (K (e (X (X X)) = X (KB X)) n2 2 )

We may now ask whether there is a semigroup variety with decidable word problem but
without finite canonical WRS ( TRS ). The lattice of all varieties of idempotent semi-
groups yields countably many natural examples of that kind.

Theorem

1) There are countably many varieties of idempotent semigroups and they all have decid-
able word problem ( Birjukov (1970), Fennemore (1971), Gerhard (1970) ).

2) There are only three varieties of idempotent semigroups with finite canonical TRS and
nine varieties of idempotent semigroups with finite canonical WRS ( Baader (1989) ).

The proof of 2) for WRS is rather involved. It requires a thorough knowledge of the solu-
tion of the word problem for varieties of idempotent semigroups. The proof of 2) for TRS
uses the fact that canonical term rewrite systems for regular semigroup theories are of a
very specific form. Regular means that the variables occurring on the left side or right side
of an identity are the same. Thus LR is regular but RB is not regular.

Lemma
Let E be a regular semigroup theory and let R be a canonical TRS for E. Then there is a

reduction chain (x-y)-z i>R x:(y-z) or x:(yz) j'—>R (x-y)-z. If, in addition, R is reduced

then ( modulo variable renaming ) (x-y)-z = x-(y-z) € RuU R1L

The reduced canonical system S for RB shows that the condition "E regular” is necessary.

Now the following may be proved, using the fact that for all n the identity
4x1-(x2-(...(xn_1-(xn-(xl-(x2-(...(xn_l-xn)...)))))...)) = x1~(x2-(...(xn_1-xn)...))

is valid in any idempotent semigroup.

Proposition
Let E be a regular semigroup theory defining a variety of idempotent semigroups. Then
there does not exist a finite canonical TRS for E.
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Let M be a monoid that is given through a finite string-rewriting system
S on alphabet Z. One way to attempt to solve the word problem for MM
consists in trying to determine a finite canonical string-rewriting system
R on Z that is equivalent to S by way of completion. However, even if
the word problem for M is decidable, there may not exist a finite
canonical system R that is equivalent to S as exemplified by the system
S = {[aba,bab]} [2]. In some cases introducing additional letters as ab-
breviations for certain words from I* will help to overcome this difficuity,
but this does not always work, either. In fact, there exist finitely presented
monoids with decidable word problem that cannot be presented by any
finite canonical string-~rewriting system, no matter which finite set of
generators we use [4]. On the other hand, every finitely generated
monoid with a decidable word problem can be embedded into a monoid
that is presented by a finite string-rewriting system which is canonical
on the embedded monoid [1]. Here we are concerned with a decision
problem that is closely related to this embedding theorem, and which
we call the PROBLEM OF RESTRICTION:






INSTANCE: A finite string-rewriting system R, on alphabet 2, such
that the word problem for R, is decidable, and a finite
string-rewriting system R, on alphabet 3,3 3,.

* - * : : *

QUESTION: Is < >Ry T T TRy|zpkmp 164 18 the congruence < >Ry

*

the restriction of the congruence < >ry, t0 Zf ?

The following results have been obtained.

Theorem 1. The following restricted version of the PROBLEM OF RESTRIC-

TION is undecidable in general:

INSTANCE: A finite, length-reducing, and confluent string-rewriting
system R, on alphabet Z,, and a subalphabet 2, < 2,

. _*_ = j * 9
QUESTION: Is < >Rz|2i"><21* 1d21 ;
Here a string-rewriting system R is called length-reducing if [1| > |r]
holds for each rule (1 —> 1] of R. It is called monadic if it is length-
reducing, and also r € = u {e} holds for each rule [l —> 1] of R.

Theorem 2. The following restricted version of the PROBLEM OF RESTRIC-

TION is undecidable in general:

INSTANCE: A finite monadic string-rewriting system R, on alphabet
2, such that the word problem for R, is decidable, and
a subalphabet Z, S 2,

. _* =i * 9
QUESTION: Is < >R2|ET’<ZI* ldz1 :

Theorem 3. The PROBLEM OF RESTRICTION is decidable, if R, is being
restricted to finite, monadic, and confluent string-rewriting systems.

The combinatorial restrictions of Theorem 3 can be relaxed somewhat
if algebraic restrictions are placed on the monoids presented.

Theorem 4. The following variant of the PROBLEM OF RESTRICTION is

decidable:

INSTANCE: A finite string-rewriting system R; on alphabet %, such
that the word problem for R; is decidable, and the
monoid M, := Z;"/< x >Rlis a group, and a finite monadic
string-rewriting system R, on alphabet £, 2 3, such that
Ro is confluent on [elg,.

. * - * - L]
QUESTION:  Is <=, = < >g |srs;







Additional algebraic restrictions allow to even consider non-monadic
string-rewriting systems R,

Theorem b. The following variant of the PROBLEM OF RESTRICTION is

decidable:

INSTANCE: A finite Noetherian string-rewriting system R, on alphabet
%, such that R; is confluent on [e]Rl, and such that the
monoid M, = £F/<—*—>p, is a group, and a finite, weight-
reducing, and confluent string-rewriting system R, on
alphabet 2, 3 %, such that the monoid M, = 27 /<—F—>g
is a group.

. * = <X * e
QUESTION: Is < >Ry T € > Ro| = ?

The proofs of Theorems 1 to 3 can be found in [3].
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1. Introduction

Deciding equality is the following problem
INPUT: E,a set of equational axioms, and two terms s,t.
QUESTION: Does s = t hold ?

The rewriting approach to this problem is first to transform E into a convergent
term rewriting system R. If this is successiul then E-equality can be tested by
rewriting: s = t iff 8 = f where 8 and t are the unique R-normal forms of s and
t.

Unfortunately, the Knuth-Bendix completion procedure - which transforms E
into R - may fail because i} it produces an infinite number of rules or ii] it en-
counters equations that cannot be ordered by the reduction order in use. We
are interested in tools to overcome these problems for special axiom systems
expressing generalized associativity and generalized commutativity. Both
schematas of axioms allow only finite congruence classes, so the E-equality is
decidable. But preprocessing E into R will increase the efficiency. Such problems
appear when one uses globally finite rewriting systems instead of rewriting
modulo a congruence, see [Gobel 1987].

2. Generalized associativity

Intuitively, by an equation expressing deneralized associativity we mean
equations of the form
f((f{x).x0.x3), g, x5) = f{x, f{x0,x3.%x4]), x5) or

9[9[X1,X2]y Q[X3.X4]] = 9'[X1, Q'[Xz, Q[X3-X4]]] .
One characteristic of such an equation s = t is that s and t, expressed as trees,
have the same frontier. Another characteristic is that they are length-equal.

Definition: Let T(F,V] be the set of terms built with operators in F and variables
in V, let s;t € T(F,V]

a) s,t are leaf-equal if frontier(s] = frontier(t]

b] s,t are length-equal if |slz = |t|p and [sly forall x € V.
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The key observation of our approach is

Lemma 1: The Knuth-Bendix completion procedure started with a leai- (resp. a
length-] equal set of equations produces only leaf- (resp. length-] equal rules
and equations.

So, to avoid abortion of the Knuth-Bendix procedure when started with a set of
leaf-equal equations, one has to construct a reduction ordering which is total
on leaf-equal terms. To do so, we start with a total precedence > on F and
denote by t(s) the multiset of leaves of term s [where s is represented as a
tree).

Definition: Length order >y
s = {(sg,..5p) >p t = gltg.ty)
iff lexicographically (a] #(s] 2 a(t) or (B) Is| > |t
or [v] f > g or (8] [sq,..5p) >1 lex (tgtp)

Lemma 2: >; is a reduction order and total on leaf-equal terms.

This together with Lemma 1 gives an unfailing Knuth-Bendix completion procedure
for leaf-equal equational systems E as input. It can be used as an decision
procedure for E-equality if E is leai- and length-equal. For, in this case one can
produce during completion the rules in increasing length and stop for the problem
"s =g t ?” as soon as all rules 1 —> r with length 1l < |s| are produced.

Theorem: The Knuth-Bendix completion procedure working with a length order
does not abort for leaf~equal equational systems E as input. It gives a decision
procedure for E-equality if E is both leaf- and length-equal.

3. Generalized Commutativity

By a permutation equation we mean an equation of the form
flxy...xq) = flxg ]],...,X.n.[n]]
where & is a permutation. We write f[iH = f(x(%X]]) in this case.
The problem now is to solve E-equality "s =g t ?” for
E = {f{&] = f[m;(x]); i = 1, Kk} .

Of course, no permutation equation can be oriented by a reduction order. So
one may start the unfailing Knuth-Bendix procedure. But it will generate too
much equations, namely O[n !] equations in many cases.

We notice

a) applying f(x] = {[=(X]] to f[tl,...,tn] results in the transformation of
t = ty,...t, into n(t]} or (T ).

b] flxq,..x,]) =g f[xn[l]""'xn[n]] iff m € G, where G = <my,..,m> is the sub-
group of the full permutation group &, generated by my,...my.

c) f(ty,...ty] =g f(sy....sp) iff for some w € G t; = Sp(i) for i = L..n.
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There are polynomial time algorithms to transform U = {“1-~--"tk} into V = {oy,...0,}
such that G = <U> = <V> and the problem "® € G ?” can be solved in time O[n),
see [Fiirst et al 1980]. This algorithm can be used to order sequences a = ay,...ap
with a; # a; for i + j modulo G in polynomial time, i.e. to compute the lexico-
graphical minimal n(a) = an(1)-@r(n) @mong all © € Q.

The permutations o; in the transformed set V of generators for G can directly
be translated into a set of rewrite rules which rewrite the term f(a;,...a,] into

the minimal term f[an[l] ..... an[n]] in its E-congruence class.

In general one can solve the problem "t = f(ty,...t) =g s = f[sq,...s;) ?" by sorting
both terms bottom up modulo G. Then s =g t iff the sorted forms are identical.
Unfortunately, to do so we need sorting modulo G also if some element a; in
the sequence a = ay..a, appear more than once, and in this case the above
mentioned sorting algorithm becomes non-deterministic. Even worse, this
generalized problem of sorting modulo G is NP-hard, see [Babai and Luks 1983].
But nevertheless, this approach of sorting modulo G leads in general to more
efficient algorithms then computing all permutations in G. And this basically
is what the unfailing Knuth-Bendix procedure does. For example, from V one
can see whether G = &,. In this case sorting modulo G is the normal sorting
and can be done in time O[nlog nj.
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Among the specification tools for the design of distributed systems Petri nets are getting more and
more important. One of the reasons for this fact is that the constructive characteristics of the theory of
Petri nets can be understood also as a graphical paradigm and hence be applied as an advantageous
support for the intuition when specifying parallel processes. For the analysis of the total behaviour of
distributed systems it is necessary to describe the local characteristics and the parts of these systems
and to relate them with each other. It is characteristical for these systems that processes can be
executed concurrently or be started in conflict with each other. But it is also of some importance that
the data to be processed as well as the processes can be specified locally. But then the localisation of
partial aspects in distributed systems requires to work out the interdependencies of the system parts
using them as characteristics for the scheduling of these system parts. All these aspects are covered in
a natural way by Petri nets, for example by high level nets.

Working with high level nets means to specify both the data and the processes which manipulate
the data. The data being described for example initially by abstract data types, this suggests to
combine the expressive power of Petri nets with the theory of abstract data types. First valuable steps
into this direction have been shown up in /Kra 89/ and in /Sch 89/. But albeith Petri nets are to be
understood 'quite easily' it was surprisingly difficult to fit Petri nets into such an algebraic context
which were able to reflect the cited aspects of locality in its own light. An appropriate description of
the data space had to be found which provides the states space over which the actions of the Petri nets
could be defined. One of the reasons for these efforts was of course to open the specification of
distributed systems towards the methodology of abstract data types and to use the term rewriting
methods being developed in the ADT - context for the analysis and for the simulation of these
systems. In this context it was a useful hint that Petri nets themselves are already substitution
systems.

A satisfactory solution of this problems has been given by Meseguer and Montanari in a brilliant
paper (/MeMo 88/). Also Kaplan has already worked into this direction (/Ka 87/). Independently of
these authors I have introduced abelian additive monoids allowing cancellation, shortly AC -
monoids, for spanning up the states space. The cancellation property together with the addition
operation allows for a unique algebraic representation of the substitution mechanism within these
monoids, a point where associative and commutative term rewriting techniques come in quite
naturally. Combinations of cancelling and adding items within terms of such monoids are nothing else

1 This work was performed in the frame of the ESPRIT Project 125 - GRASPIN.
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than rewrite rules for these structures. Thus the cancellation/addition combinations form the algebraic
link between the rewrite rules mentioned above and the firing rules of Petri nets. This provides the
bridge for the algebraic simulation of Petri nets by associative commutative term rewriting within
freely generated abelian structures.

AC - monoids, which are decomposable into direct sums, allow to describe local aspects using the
injections and projections. Here we think for example of sequential and parallel composition of local
steps. AC - monoids can be generated freely over sets of interesting data where the latter can be
presented for example by initial abstract data types. Essentially the free construction guarantees the
invariance, the logical independence of the description of the data with respect to the substitution steps
in the underlying monoid.

Now an abelian monoid freely generated over some set is nothing else than the class of multisets
(bags) defined with respect to that set, and there is a uniquely defined injective embedding of this set
into the monoid generated over it. It can be specified by a parameterized specification using. the
embeddings as copy operations and interpreting the set of the data as the actualization of the
parameter. In this context the cancellation/addition combinations appear as rules for such
specifications. This opens the way towards specifying Petri nets and their behaviours by ADT's.

It remains to single out the class of Petri nets which we are going to treat: the high level nets. This
will be done in three conceptional steps. We remind of Kowalski's paradigm "ALGORITHM =
LOGIC + CONTROL" which must be a guide line for the specification of a distributed system,too.
Thus we speak on one hand about the states as objects within a state space spanned up by the data and
on the other hand about the actions on these states as state manipulating actions leaving the data
invariant.

The Petri net realization begins with a triple N = (S, T, F) of sets S of S-elements, T of T-elements
and F of directed arcs connecting only S- and T-elements such that these sets obey the Petri net
axioms (/BeFe 86/). There is a well defined 'projection’ ¢ : F— S. A resource R is associated to the
net N which is a family R ={Mjg}se s of at most countable sets of "token types". Markings of the net N are

functions pL:S— sek)S MMg) 1 such that p(s)e M(Mj) for any se S.

Labels of the net N are functions A : F— ka{. M(Meg)) such that MDe MM(p(t)) for any feF. A capacity

K on the net N is a function K : seLJS {(spMg—= N 2 such that for any se S K(s,x)e {0, oo} for all but finitely

many xe Mg; we call a token type xe Mg K-finite if K(8,x) < e and nontrivial if 0 < K(s,x). A marking j is K-
admissible if for any se S and xeMg #(x,ju(s)) < K(s,x). This closes the first step of the definition.

The K-complementation of the net N is a net Nx := (Sg;, T, Fg) which contains the net N, where SK\S consists
of all those complements s of se S such that Mg allows for nontrivial K-finite token types X, and FK\F contains for

n

1 M(A) denotes for any set A the class of finite multisets over A, and i-—_'-l n;.a; for naturals n; and a;e A
denotes the multiset containing each a; nj-times. For any multiset m and xem #(x,m) is the number of
occurrences of x inm. .

2 IN denotes the naturals together with oo, f(x) = o for some function f ;: A—— IN means that f is
undefined on x.
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any te T all those (s,t) ( resp. (t.8)) for which (t,s)e F ( resp. (s,t)c F) . The resource R is complemented to R :=
{Ms} se sg where M consists of the nonirivial K-finite token types of M . The label A is complemented to A by
extending A by Ag((s,t)) := A((t.s)) and Ag((t,8)) := A((s;t)) for se SK\S. K-admissible markings p are
complemented to K-admissible markings [k by extending [ by UK (s) = (x;';d K(s,%).x)\u(s) for se SK\S (the

3
sums involved are finite). Given a K-admissible marking yt or the complemented marking pg we define for any

T-element t a firing rule t : p— W' or tK : uK — WK by extending the corresponding definitions from
place/transition nets (/BeFe 86/) to our case. We say that a T-element t or the corresponding firing rule of t has
concession in a K-admissible marking p if for all se Sk and ae Fg with a = (s,t) the relation Ag(a) < LK(S)
holds. We apply firing rules only in the case of concession. The reason for K-complementations is to avoid dealing
explicitly with the postconditions in the definition of concession. Thus the second step of the definition is performed,
and in the sequal we deal only with K-complete nets in the sense of the definition above.

The markings stand for the states; they are generated over the resources distributed over the S-elements. The state
changing actions are realized by the firing rules. Clearly they do not interfere with any intemnal structure on the sets
M . Thus Petri net specifications meet Kowalski's paradigm.

The token types represent the data which are processed by applying the firing rules of the Petri net. For the third
step leading to the definition of high level nets we assume SPEC = (Z, EQ) to be a computable specification for a
signature Z = (SO, OP) over sets SO of sorts and OP of operation symbols as well as a set EQ of equations together
with a SO-sorted family X ={Xgo}soe SO Of sets Xgo Of so-sorted variables. We say that the specification SPEC is
computable if it allows for a convergent set RU of rewrite rules reflecting all the equations generated by the set EQ.
We split the resource R = { M} se s into two resources RG = {MGs}se§ and Rx = {Mx s}ses where the
members MG s (tesp. Mx s ) are sets of ground terms T 5o (resp. terms with/without variables Tyx(X)go for the
same S-element s and the same sort so ! ) over sorts so of interest in . We redefine moreover markings over

ground terms as p.: S—— M(MG ) as well labels over all the terms as A : F— f\e)F MMX (5 - But

seS
then the concession checks require equation solving via suitable ground substitutions, and the applications of the
firing rules are done with respect to the ground substitutions determined occasionally in the concession checks. It
tums out again that the firing rules leave the description of the data invariant.
The result of these three steps are S-sorted families of multisets or abelian monoids. Taking finally the coproduct
over these families we get the total abelian monoids providing the algebraic states spaces for the distributed systems.
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Abstract

The Knuth-Bendix procedure {or the completion of a rewrite rule system and
the Buchberger algorithm for computing a Grobuner basis of a polynomial ideal are
very similar in two respects: they both start with an arbitrary specification of an
algebraic structure (axioms for an equational theory and a basis for a polynomial
ideal, respectively) which is transformed to a very special specification of this
algebraic structure (a complete rewrite rule system and a Grébner basis of the
polynomial ideal, respectively). This special specification allows to decide many
problems concerning the given algebraic structure. Moreover, both algorithms
achieve their goals by employing the same basic concepts: formation of critical
pairs and completion.

Although the two methods are obviously related, the exact nature of this
relation remains 1o be clarified. Based on previous work we show how the Knuth-
Bendix procedure and the Buchberger algorithm can be seen as special cases of
a more general completion procedure.

1. Introduction

The Buchberger algorithm BU has heeun introduced by B. Buchberger in 1965 [Bu 65],

[Bu 85al] and it solves the following problem:

given a finite set F' of multivarate polynomials over a field, construct a finite set
F' of multivariate polynomials such that =p = =g and —p is Church—Rosser.

Here, for a set F' of polynomials, =25 is the ideal congruence modulo the ideal generated by
Fie f=pgis f—g¢ideal(F))and g isacertain Noetherian reduction relation on
polynomials induced hy F' [Bu 85a] with the property that —7% (the reflexive-symmetric-
transitive closure of — ) is equal to = p. 1 F' == BU(F'), then the Church-Rosser property
guarantees, that for arbitrary polynomials f, g the congruence f =r g can be decided by
computing normal forms of f and g module -——p/ and checking for syntactic equality. A
basis F' with this property is usually called a Grébner basis [Bu 85a.
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Such a Grobner basis can be computed by the Buchberger algorithm BU in the fol-
lowing way:

F' «— BU(F);
[F' and F' are finite sets of multivariate polynomials over a field.
=p = =m and — g is Church—-Rosser |
F' — F,
while not all critical pairs of F' are considered do
(*) choose a critical pair (p1, pg) of I'';
reduce (p;, pz) to normal forms (q;,g2) modulo —pi;
(**}if q; # ¢ then F' — F'il{qy —~ go} endif
endwhile L]

The two basic strategies of the algorithm are the formation of critical pairs in (*) and
the successive completion step (**). A critical pair of F' is constructed in the following
way: choose two different polynomials f, g in F'; reduce the least common multiple of the
leading terms of f and g by f, getting p;, and by g, getting p>; then (py, p2) is a critical
pair of F'. Instead of reducing (p;, p2) to normal forms (¢, q;) and checking for syntactic
equality, one could reduce p; — p2 and check for equality to 0. The polynomial p; - p,
is usually called the S-polynomial of f and ¢ [Bu 85a]. Buchberger has shown [Bu 65],
[Bu 85a] that this algorithm terminates for all inputs and computes a Grobner basis for

ideal(F).

The same basic strategies have heen used independently by D.E. Knuth and P.B.
Bendix [KB 67] in the context of an equational theory T over an algebra T of first—order
terms. The Knuth—Bendix procedure solves the following problem:

given a finite set E of equations between first-order terms, construct a finite set
E' of equations such that =g = = and - g is Church-Rosser and Noetherian.

Here, for a set E of first~order equations [HO 80], =g 1s the equational theory generated
by E, i.e. the set of all equations s = t which can be derived from E, F + s = t [BL
83). —pg is the reduction relation on terms induced by E viewed as a system of rewrite
rules with =g = <7%. Again, the Church-Rosser property gnarantees that s =g # can
be decided by reducing s and t to normal forms module — g and checking for syntactic
equality. A finite set of equations E, viewed as a system of rewrite rules, such that — 5 is
Church-Rosser and Noetherian is called a canonical rewrite rule system.

The Knuth-Bendiz procedure KB attempls to compute a canonical rewrite rule system
in the following way:

E' — KB(E);
[£ and E’ are finite sets of equations of first—order terms which can be viewed
as Noetherian rewrnite rule systems.
=g = = and —pois Church-Rosser |
E — FE;
while not all critical pairs of £' are considered do
choose a critical pair (cy, cp) of B
reduce (c1, cz) to normal forms (d,, dy) modulo — g/

if Cll =3 dz then

7






if = piugd,=d,} is Noetherian then E' — E'U {d; = d5}
elsif — g1 gq,~4,} 1s Noetherian then E' « E'U{dy =4d,}
else exit with failure

endif
endwhile |
For the notion of a critical pair we refer to [Bl, 83]. We say that an equation s = {
can be viewed as a rewrite rule s — 1 il every variable occurring in { also occurs in s.
A set of equations F = {87 = 11,...,8n = In} can be viewed as a rewrite rule system
{s7 = t1,...,8n — t,} if every equation s; = ¢; in it can be viewed as a rewrite rule

s; — t,;. In contrast to the Buchberger algorithm there are situations in which the Knuth-
Bendix procedure may terminate with failure or run forever.

Certain types of equations cannot be handled by the Knuth-Bendix procedure: a
commutativity axiom immediately destroys the Noetherianity of the reduction, and an as
sociativity axiom together with other equations can cause the procedure to run indefinitely.
Peterson and Stickel [PS 81} have proposed to keep such equations in an equational theory
T (the equations in T are not viewed as rewrite rules) and do all the computations in KB
modulo this equational theory T, i.e. not terms ¢ in T are reduced but equivalence classes
[t]7 in T p. This approach works whenever a complete unification algorithm modulo this
theory T exists. For technical reasons the equational theory E has to be modified so that
it becomes T~compatible. For theories T' cousisting of commutativity and associativity
axioms this is a straightforward process.

The striking similarity between the Buchherger algorithm and the Knuth~Bendix pro-
cedure have heen observed in [Lo 81], [BL 83], [Bu 85b]. Llopis de Trias [L1 83] and
Kandri-Rody and Kapur [KK 83] have made first attempts to clarify the relationship be-
tween the two methods. The problem with [L1 83] is that is does not deal adequately with
the arithmetic on the coeflicients of the polynomials in the Buchberger algorithm. Tn [KK
83] the useful idea of separating simplification of coefficients from reduction of polynomials
is introduced. The problem with [KK 83] is that it does not really show that the two meth-
ods can be viewed as special cases of a general procedure, but that the correctness proofs
can be arranged in similar ways. Le Chenandec [Le 86] gives a completion algorithm for
commutative polynomials over rings generated by a finite set G of generators. His method
does not apply to the case where the base coeflicients belong to a field, since fields cannot
be described equationally. ITn [Wi 84] various ideas of these papers together with [Hu 80]
have heen used for demaonstrating the exact nature of the relationship between BU and

KB.

2. Theoretical results

In the following we suppose that Al is an arbitrary set, —» a Noetherian relation on
M, and = a Noetherian confluent relation on M. By «,y, z,u, v, w we denote elements of
M. -, e, —1  —* are the inverse, the symmetric closure, the transitive closure, and
the reflexive—transitive closure of —, respectively.

Def.. — is confluent modulo = iff for all #,y, 2", y' such that 2’ «* 2z &* y —* ' there are






z",y" such that o' —* 2" «* ¢ «* ¢’ (i.e., since => is confluent, =’ —* 2" §I* y" «* o).

Lemma 2.1: Let — be confluent modulo —-. Then for all #,y, z such that y(<= U« )*r -~

*

z and y is irreducible modulo - U= and z is irreducible modulo —, we have z =" y.

Later on we will separate the reduction - of polynomuials in the Grobner basis algo-
rithm from the simplification = of the coeflicients in the polynomials. What we ultimately
want to achieve is that the combination -» U= i1s a confluent relation. As the following
theorem shows, it is enough to guarantee confluence of — modulo =.

Theorem 2.2: If — is confluent modulo =, then — U= is confluent.

Proof: Let - be confluent modulo = . Suppaose #,y, = are such that y(«= U« ) z(— U=)*z.
Let =" he a normal form of 2 modulo —s and ', 2 he normal forms of y, 2 modulo — L=,

!

respectively. Then by Lemma 2.1 ' +.* 2’ -+* z'. Since y' and 2z’ are also in normal form

module = and = is confluent, we have y' == z'. (See Figure 2.1) m

i
N
* "/l/* <
& N

y Z
L., L il
Lremmg/ Nepe
*\H, *l:*
y' = 2

Figure 2.1

It 1s essential for an effective completion procedure that the confluence property of
the reduction relatirn under consideration can be checked locally. This program can also
be carried out for the notion of confluence modulo =.

Def.: — 1s locally confluent modulo = il
(L1) for all z,y, 2z with y «— = ~» z there are y', 2’ such that y - y' |}* 2’ «-* z and
(L2) for all z,y,z with z «- » 43> y there are y', 2" such that z —* 2/ |J* y’ «* ¢ »

Def.: = 1s orthogonal to — iff

(O1) for all z,y,y" with z = y -»F ¢ there are 2", 3" such that @ —* 2" [|* " -y
and

(02) for all z,y, =’ with ' «T 2 = y theve are 2" y" such that #' —* 2" II* 3" —* y. m

!

With these definitions we get the following theorem.

Theorem 2.3: Let — = be Noetherian, and =2 orthogonal to —. Then -+ is confluent
modulo = if and only if — is locally confluent modulo =-. L]

We are especially interested in the case where the reduction relation — is induced by a
rewrite rule system R, 1.e. - - > p, on a set of terms modulo an associative-commutative
theory.

Theorem 2.4: Let T be an equational theory over the term algebra T, R a T—compatible
rewrite rule system, => a Noetherian confluent relation on T, which is stable and com-







patible (i.e. if [s]7 = [t]7, 0 a substitution, p an occurrence in u, then [o(s)]r = [o(#)]r
and [u[p « s|]r = [u[p < tl]7) such that -» U= is Noetherian and = is orthogonal to
N

Then — g is confluent modulo = if and only if for all critical pairs ([s]7, [t]T) of R modulo
T there are [s']|7, [t']T such that [s]p -~% [s'|7 U™ [t']7 ~% [t ]

Theorem 2.4 immediately leads to the {ollowing general completion procedure:

R' « COMPLETE(R,T,=);
[R is a finite Noetherian rewrite rule system over the term algebra T,
T an equational theory for which there exists a complete unification algorithm,
=> a Noetherian confluent stable and compatible relation over T,
such that — U=+ is Noetherian and = is orthogonal to —g.
R' is a finite Noetherian rewrite rule system such that
(—rU=) = (—pU=)" and - p is confluent modulo =]
R' « T-compatible extension of R;
while not all critical pairs of B’ have been considered do
choose a critical pair (cy, cz) of R';
reduce (c1,cz) to normal forms (di,dz) modulo — g U =>;
if (11 ?é (‘lz then
if terms s,t can be constructed such that dy and ds
have a common successor modulo - gy s—1} L= and
— prufs—13 U= 1s Noetherian
then R' « T-compatibel extension of B' U{s — t}
else exit with failure
endif
endif
endwhile |

3. A common ancestor to BU and KB

The procedure COMPLETE can he specialized both to the Knuth-Bendix procedure
and to the Buchberger algorithm. We get KB from COMPLETE by letting = he the
identity and T = 0.

It 1s a little bit more complicated to specialize COMPLETE to BU. We have to meet
the following requirements:
(C1) give an injective mapping from the polynomial ring K[zy,...,z,] into some term
algebra T modulo an equational theory T,
(C2) give a simplification relation = on T /7.
(C3) construct a rewrite rule system I for a given basis F' of a polynomial ideal

such that

(P1) ~»pgll-> simulates -=p, i.e. every reduction step modulo —» 5 can be considered as
a series of reduction steps modulo s it
(P2) there exists a finite complete unification algorithm for T,
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(P3) R is a finite Noetherian rewrite rule system,

(P4) = is a Noetherian confluent stable and compatible relation over T 7,
(P5) —grU=>is Noetherian,

(P6) = is orthogonal to —g.

Ad (C1): The term algebra T contains the binary function symbols %, | the unary func-
tion symbol - :, the constants Xq,...,.X,, and a for every ¢ € K, and the denumerable set of
variables V' = {z,,z;,...} (for convenience we denote the first variables by z,y,z,w, ...,
similarly for the constants X;). As the equational theory T we choose the associative-
commutative theory of | and !, i.e. a basis for T is

{ely=yte (@by)iz=2i(y 2),» y=yz (zy)z=22(y 2)}

. m. rE; - . .
A nonzero polynomial f = > .7, a;A7" --- X[i* is mapped onto the equivalence class
of sy b (sz 0 - b (Sme1 T 8m)---) modulo T, where s; is the obvious description of

a; X7 - Xfim in T. The zero polynomial is mapped onto the constant 0. This mapping
is called ferm. We let . have higher precedence than -, so that we can omit parentheses
because of the associativity of the operators. So, for instance, the polynomial 322y? —
2%y + 42 — 5 € Q[z,y] is mapped onto the equivalence class [32 X v X ¥ ¥ 1 (=2)
XX aY 4 X ot (—5)]r. term is an injective mapping from K[z, ..., z,] onto T /7.

Ad (C2): The simplification relation = on T,7 is defined in such a way that it simulates
the operations involving the constants of the coefficient field K.

|s]r = [t]7 4= there are &' =27 s,t' =7 1, such that

i ! : 1 i
t' = s'[p « u| for some occurrence p in s and S1p U,

where for coefficients ay,ay ¢ K and terms s & T:

g ¢ @y < Ay - ay ap a4z > ap +ap

i@y e —ay (ay @ 8) = (~ay) " s
a; s ay s (a; - az) s 0 'a) se>a;is
05— 0

The relation = 1s well-defined on T 7.

Ad (C3): We start with the rules of the canonical rewrite rule system for the ring structure
modulo the AC—theory T which are not already incorporated in =, i.e.

zi(ydoz) = (zoy) (e z) ( z)—=
Az ty) (=) ( ) m (y)— (z-y)

We call this rewrite rule systemn R,.

For every polynomial f in the ideal basis F' we include the following rule in the rewrite

sytem Rp:
term(lt(f)) — term(red([)),

where [t(f) is the leading term of f and red(f) is the reductum of f.

We let the rewrite rule system R be the union of R, and Rp. n

This completes the simulation (1) - (C'3). Now it can be shown that (P1) — (P6)






Example: We consider the 1deal basis

F={z’y—2*+2zy, v' —y+1} CQ[z,yl.
h fa

The power products are ordered according to the graduated lexicographic ordering. First
there is only one critical pair of F, namely the one resulting from the reduction of z%y?
modulo f; and f;, respectively.

f1 ziy — 2zy® o 2wyt b et -2y oy, 27 —day + 20
fz\" gty — et oy -lwy

So we add f3 = 22 — 2zy + 2z to the ideal basis and proceed. All the other critical
pairs lead to common successors, so {f1, f2, fa} is a Grobner basis for the ideal.

The rewrite rule system corresponding to F is

Rp={1): X "X . Ya X" X (=2). X .Y, (2):¥V ¥V (-D}

51 1 s2 1o

Applying the procedure COMPLETE to R == R, lJ Rp, we first have to construct a T-
compatible extension R°of R. Because T' is an AC-theory, this means adding a new rule
vos — uot (uanew variable) for every rule s — ¢ with outermost operator o € {:i>, ' }.
R =R® = R, UR:\IRplJ

{fuw XX oY wu (XX (-2) X V)uo VoV (Yi(-1)}.

£ - s 2
1 i 2 15

|

n

The only interesting critical pair results from unifying s and s5 by the unifier ¢ = {u -
Y, v &« X = X}. For brevity, we will omit the operator ** from now on.

oot = YNy = eleglin
(le).e/ ””””” o \(2’)

V(XX P (=2)XY)]r —g, (XX (=1)]r ~r,
wxrr( X7Vl —qy [XXY b (~1)X X7 —q

[XX 0 (=2)XY i (=~ XYYYW ”Wm [XX - (=2)XY «(-1)XX]r =
[YX (=2)XY 0 (=2)XY 1 (=2)(- )X = [(-2)XYp

XX 1 (—4) XY 12X

We add the new rule (3) : XYY 2%} (-2)X to R in order to guaranteec a
common successor of the two normal forms of |[X XYYy modulo — g U=. We also have
to add the extended rule, so that R' remains T-compatible.

All the other critical pairs of R' have common successors. So 2% with R’ = R, L

REU{(1),(2),(3) U {(1%),(29),(37)} is confluent modulo =, -

We want to point out that we do not claim or intend to be able to improve the
efficiency of BU or KB by such a simulation. However, we think that the general completion






procedure COMPLETE might help to understand the intricate relationship between two
important algorithmic concepts for constructing canonical rewrite systems.
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Critical Pairs of Reduction Schemes
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Lochhamer Str. 39

D-8032 LOCHHAM (W.Germany)

By generalizing the Knuth-Bendix procedure to reduction moduleo a
compatible equational theory we will come across reduction
schemes quite naturally. A reduction scheme stands for a recur-
sively enumerable set of reduction rules which are summarized in
a rule with condition. When superponing such schemes their
conditions get only partially instantiated by wunification, so
that we obtain terms connected with a hypothesis. Such terms
reduce w.r.t. '"normal” rules by passing along their hypothesis,
and w.r.t. schemes by means of a consistency checker. To prove
the confluence of a system with schemes, we must also look at

critical pairs of "terms under hypothesis”.

1. Theory

Consider a noetherian relation of reduction — and a
equivalence relation ~.

1.1. Def: —> is confluent modulo ~ :iff X1 —* X "y —* w1

implies X1 —¢ yi1 (mod "), where x1 —¢ y: (mod ~) :iff

exist x', y' s.t.: x1 —>* x' y' «—* vi. O

1.2. Def: — is locally confluent modulo ~ :iff

(a) v ¢— x —> z inmplies y — ¢ z (mod ") and
(b) yv ~ x — z implies y = z (mod 7). [
We have the following result (cf. [1], Lemma 7):
1.3. Theorem: —> 1is confluent modulo ~ iff it is 1locally
confluent modulo ~. []
Let T be the set of terms over function symbols in F and

variables in X. To deal with term rewriting, we introduce






1.4.

Def: is a compatible simplification :iff ~ is an equi-

valence relation s.t.: for all s, t, t1, tz ¢ T

(a) s 7 t implies o(s) 7 o(t) for any substitution o, and
(b) ti1 ~ tz implies s[u ¢ ti1] 7 s[u ¢« tz] for any tree
node u in s (subterm repl;cement). O

For a termgrewriting system.R that generates the noetherian

relation —r on T, and a simplification which is compa-

vtible with the terms of T we get (cf.[3], Satz 7.4):

Theorem: If —>r and ~ fulfill condition (b) of Def.1.2,
then: —-——r 1is 1locally confluent modulo ~ iff for all
critical pairs (p, q) of R: p == gq (mod ~). O

cf. [2], p.l2, for orthogonality of two vrelations of

reduction which gives a restriction similar to (b) of 1.2.

Implementation

To handle this kind of confluence mechanically, I implemen-
ted the extension of the Knuth-Bendix procedure to reduction
SChemesn and terms under hypothesis in the simple case of
conditions which 1involve an ordering >. Let Th, be the

theory of > and Subst = [0:X — T | dom(c) finite} U {{}.

Def: a — b :- P is a reduction scheme :iff a—>b &¢ R and
P ¢ Thy, while its application to terms is defined by

s reduces to t w.r.t. a —» b :—= P :iff there exists redex

uins w.r.t. a — b s.t.: t = sfu & o(b)] and
prove{ o, P ) #= |, where o is the match of s/u and a.

prove(c:Subst, A:Th>):Subst can be defined by the rules

prove(}, A) — |, prove{o, true) — o,
prove(o, ti1 = tz) —> unif(o, ti, tz),

prove(o, . t1 > tz) — o = olt1) > o(tz2),






prove(oc, [&]) —™ o (empty conjunction),

prove(c, [& A B]) — prove( provel(o,d), [& B] ). 0O

2.2. Def: A term under hypothesis is a pair (t, H) ¢ T x Th,.

{s,H) reduces to (t,H') w.r.t. a — b :~ P :iff there

exists redex u in s s.t.: t = s[u ¢« match(s/u,a)(b)] and
H' = prove_consistency( [& P match(s/u,a)(H)] ) #= |. O

The consistency checker for Th, is based on the principles:
X > X resp. [& X>Y Y>X] are inconsistent, return |.

If [& X>Y Y>Z] is consistent, then so is [& X>Y Y>Z X>Z).

Finally, to superpone reduction schemes we must have

2.3. Def: {p,H) and (g,H) are a critical pair w.r.t. R :iff

exist ai1—b1:-P1, az—>bz:-Pz ¢ R, node u in a1, and
g = unif(id,ai/u,az) #¥= | s.t.: (i) p = plar)lu &« p(bz)]
and q = p(b1) form a critical pair,

(ii) H = prove_consistency([& p(P:) p(Pz)]) #= |. O

If one (or both) rules are reductions we may assume the
corresponding condition P to be true, so that the task of

proving consistency becomes trivial.

.4. Def: A critical pair (p,H), (g,H) is confluent :iff

(le) —>* (p'lHl)l (qu) —>* (q',HZ)p and

prove_consistency([& H: Hz]) = . O
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1. Introduction

It is quite usual for work on the theory of term rewriting to presuppose (or to test) the
confluence of the rewrite relation under consideration. But, under certain circumstances, term
rewriting can be quite interesting even without this precondition. In particular, results for such
systems are valuable for modelling nondeterministic computations. Besides that, the question
may be of theoretical interest which results depend essentially on the confluence condition and
which do not.

The work presented here came out of a thesis on the extension of algebraic specifications to
nondeterminism ([Hussmann 88]). Based on the semantic framework of [Nipkow 86] and
[Hesselink 88], non-confluent term rewriting can be seen as a specification language and a
calculus for specifications of nondeterministic data types.

Below we skectch a model-theoretic semantics for non-confluent term rewriting systems and
give correctness and (weakened) completeness results for rewriting as a calculus. It turns out
that the "narrowing" method ([Hullot 801) can be easily transferred to the case of non-confluent
rewriting.

The results presuppose a special shape of the rewriting rules which is sometimes called
"constructor-based". A large number of specifications occurring in practice are subsumed by
this type of rules. In contrast to other approaches, no further preconditions (termination,
constructor-completeness) are made.

2. Constructor-Based Rewrite Systems

For our purposes, the standard notion of term rewriting systems can be loosened somewhat by

omitting all variable restrictions. For instance, a rule
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some — X
where x is a variable and some a constant, will be considered as a correct rewrite rule.

We assume a signature ¥ = <S, F> to be given where a subset C ¢ F of constructor function
symbols is designated. Ts(X) means the set of terms over X and a variable set X, Tc(X) is the
subset ofconstructor terms . A term rewrite system R is called constructor-based iff for all rules
1 > rinR the left hand side is of the special form

1=1®1,....,t5) where fe \C and all tje TcX).

3. Model-theoretic Semantics

The notion of a multialgebra generalizes algebras to the case of set-valued operations, i.e. an
operation yields an element of the powerset of the corresponding carrier as its result. If the rank
of feFis f:s1 X ... X sy —> s, then

fA: s1A X ... X sp® = P (sA).
A subset CA < FA of constructor operations exists also in A:

CA= [feFA|feC};
and all constructor operations are allowed only to have singleton sets as results:

if cAeCA then I cA(ay, ..., an) I = 1.

This means, the operations within an algebra as defined above may be partial and non-
deterministic, constructor operations are forced to be deterministic and total.

A valuation P of the variables in a multialgebra A is defined as usual. The interpretation of a
term te Tx(X) of sort s in a multialgebra A under a valuation B is defined by additive extension:
TAIX](B) = {B(x)} (if x is a variable), A[£(ty, ..., t)](B) = (ac fAGay, -.., an) | 2ic TATGI(B))} Gif
fe F).

A term rewrite rule 1| — r is calledvalid in a multialgebra A (denoted by A I=1 — 1) iff

V valuations B: TA[1I(B) 2 TA[XI(B).
A is called a model of the rewrite system R iff all rules in R are valid in A. We write RI=1—r
iff A I=1— r for all models A of R.

4. Rewriting without a Confluence Condition

The usual notion of rewriting is generalized to constructor-based rewriting by
tl —ct2 iff there is an occurrence u in tl, a rule 1 — r in R and a coastructor

substitution o such that t1/u = ol, t2 = o(t1[u«r]).

(A constructor substitution means a substitution assigning only constructor terms to variables.)






In a constructor-based rewrite-system R we have for all terms t1, t2e Tx(X) the correctness

result:
tl 5c*t2 = Ri=tl - 2.

We have also a completeness result under the restriction that t2 has to be a constructor term, i.e.
for all tle Tg(X), t2e Te(X):
Ri=tl -2 = tl 5c*2

5. Narrowing without a Confluence Condition

The "narrowing" technique can be adapted to constructor-based rewriting in a quite
straightforward way:
tl N—gt2  iff there is a non-variable occurrence uintl, arulel - rinR and a
constructor substitution ¢ such that ¢ is the most general unifier of t1/u
and 1, 12 = o(t1[uer)).

This kind of narrowing corresponds to constructor-based rewriting in the following sense:

Let R be a constructor-based rewrite system, Q = [t1 — t2] a given query in R. Then for a
constructor substitution o, ¢ is a solution of Q (i.e. 6tl —¢* ot2) if and only if there are
constructor substitutions A, 6° and a term t2° such that ¢ = A6’ t1 N—g>* t2° and A is a
unifier of 6’ t2 and t2°.
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Introduction: The efficiency of algorithms on AC-terms (classes of terms
modulo associativity and commutativity) depends heavily on the under-
lying data structure. After discussing commonly used implementations of
AC-terms by terms and by canonical forms, we present a partial ordering
on AC-terms, the AC preference ordering, and demonstrate how it can be
used to implement AC-terms efficiently.

Basic algebraic properties: Given a signature ¥ = (5, F, 7), the term
algebra Tg(V) is the free T-algebra over the set of variables V. Therefore
substitutions, endomorphisms on T(V), are uniquely determined by their
restriction to V. Any set of equations £ C 7z(V)? induces a congruence
relation & with £ C ~ C T5(V)?, the equational theory of £. We get a
T-algebra T5(V)/~ which, in the case of collaps free theories, forms the
free algebra over V in the £-variety. In this case, endomorphisms (substi-
tutions) of the term algebra can be extended in a natural way to endo-
morphisms on 73(V),x, which we also call substitutions. The AC-theory,
consisting of associativity end commutativity laws for some operators, is a
permutative theory, therefore the quotient algebra 75(V) ¢, the AC-term
algebra, consists of finite classes of terms which are called AC-terms.

Implementation of AC-terms: An AC-operator which may be re-
garded as having arbitrary arity (exploiting associativity) permits permu-
tation of its argument AC-terms (exploiting associativity and commuta-
tivity). Thus, an AC-term, which is constructed by an AC-operator, can
be represented by a multiset of AC-terms. The implementation of this
multiset affects the efficiency of algorithms on 73(V). We shall demon-
strate this by a closer look at two basic algorithms, namely comparison
of AC-terms (congruence classes) and substitution. Usually the multi-
sets are implemented as lists (i.e. an AC-term is represented by any term







of its congruence class). For example the congruence class of the term
*(y,*(#(2,z),—(y))) has a representation (* y 2 z (— y)). Substitution can
be performed easily by substituting the term which represents the con-
gruence class, but comparison is costly: two terms have to be tested for
“equality under permutation”. To improve the latter algorithm, AC-terms
could be implemented by canonical forms, e.g. by an ordered list. This
yields the following representation: (¥ 2 z y (— y)). Now comparison of
AC-terms can be reduced to comparison of terms, which is very fast, but
substitution is costly: the canonical form is not preserved in general. A
way out of this dilemma could be an ordering which is “stable under sub-
stitution”, i.e. ;0 < ty0 follows from t; < ¢, for all AC-terms ¢;,%; and
all substitutions o.

The AC preference ordering: First it has to be remarked that an
ordering on AC-terms which is stable under substitution cannot be total.
Our goal is to find a partial ordering which, besides being efficient, is “as
large as possible”. This can be achieved by extending a total ordering
(<, F) on the operator symbols to the partial AC preference ordering
(=2,7:(V)ac) on AC-terms in the following way:

1. f<g

fl..)<g(...)
2. f is not an AC-operator:

F(, .o tn) 2, 0 t) € (B tn) Riee (85445 10)
3. f is an AC-operator, t; = f(...), ta = f(...):

1 Rty & My(ty) K My(t2),

where the multiset of an AC-term ¢ is defined by

] M)+ M), it = f(E, )
My () = { {t}, otherwise.

The orderings =<e; and =<,,.1: are recursively defined as the lexicographic
resp. multiset extension of (X, 7z(V)4c). Variables are excluded from or-
dering. (=,7s(V)ac) is stable under substitution and, as a preference
ordering, it is very efficient (compared to the recursive path ordering, for
example). Furthermore, it can be shown that < cannot be extended with-
out loosing stability under substitution or getting complicated to compute.

Implementation using the AC preference ordering: Like in the
case of canonical forms, where the ordered list reflects the total ordering
on AC-terms, we can use the partial AC preference ordering to construct a







data structure for AC-terms. For example, the multiset M;(t) can be par-
titioned into maximal antichains of AC-terms, i.e. multisets of AC-terms
which are pairwise uncomparable. This data structure improves the per-
formance of the substitution algorithm compared to canonical forms, but
does not behave significantly worse with respect to the algorithm compar-
ison of AC-terms. It can be shown, in an algebraic complexity modell and
by implementing the different data structures, that the implementation
based on the AC preference ordering behaves favourably compared to the
implementations by terms resp. by canonical forms.

Literature: Basic algebraic properties of equational theories are dis-
cussed in [1),[2], multiset orderings in [4]. In [3] an algebraic modell for
implementations is presented which also serves as a complexity modell.
Evaluation of the different data structures for AC-terms can be found in

[2].
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Springer, 1985
[2] Fortenbacher, A.: Effizientes Rechnen in AC-Gleichungstheorien,
Dissertation, Universitat Karlsruhe, 1989

[3] Goguen, J.A., Thatcher, J.W. und Wagner, E.G.: An initial algebra
approach to the specification, correciness and implementation of ab-
stract data types, in: Current Trends in Programming Methodology,
4, Prentice Hall, 1978

[4] Jouannaud, J.-P., Lescanne, P.: On muliiset orderings, in: Informa-
tion Processing Letters, Vol. 15, No. 2, 1982
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We congider strategies for the Knuth-Bendix completion procedure ([KB70]) that constructs canonical term rewriting
systems (TRS) for equational theories. In contrast to the critical pairs criteria ((BW83], [Kiichlin85], [KMS88]) and to
completion strategies, that minimize the size of axioms and rules with respect to the number of function symbols
([Kiichlin82], [Wagner86]), we investigate heuristic completion strategies, that estimate during the completion process,
which of the generated axioms and rules will be contained in R™, the TRS generated for the given equational theory.
Our approach is justified by the fact, that the result of the KB procedure is uniquely determinated by the input (up to
variable renaming).

Theorem1 [Metivier83] If R and R are two reduced canonical TRS for an equational theory E, and if R, R” are
both contained in some reduction ordering >, then R and R” are equal (up to variable renaming). A TRS R is called

reduced, if for any rule 1 — r € R the right-hand side r is not reducible in R and the left-hand side 1 is not reducible in
R\l — r].

Note: Any canonical TRS R can be reduced to a reduced canonical TRS R” with «*»R = «*>p-and “R- € '+"R'
Most of the implemented completion procedures generate reduced TRS.

As a consequence, the result of the KB procedure can be characterized as follows:

Proposition 1 If > is a reduction ordering, E an equation theory and R a reduced canonical TRS for E, then:
a) for any rule 1 - r € R the following is true:

i) r is a least element of its congruence class, i.e. t € [r]g impliest>rort=r1

ii) all proper subterms of 1 are least elements of their congruence classes.

b) for any term t with | [t]EI >1thereisarulel — reR, such that notr > t.

We use Proposition 1 to define a heuristic merit ordering on the rules generated during the completion process
estimating, which of the rules have the best chance to lie in R™,

Definition If > is a reduction ordering then the merit ordering >h(>) € TE(V)2 X TZ(V)Z is defined by
f(ty,..otp)r) >h>) (8815 esSprp) Iff {ty,e-0ity} >> {81,008 ) or {ty..0,0,) =ce¢ {87.....8) and 1 >19,

where >> denote the extension of > to a multiset ordering and =¢,, equality on sets.
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Heuristic Huet’s completion procedure
KB(E: set of equation, >: reduction ordering): TRS;
begin
Eg:=ERyi=981:=0;p:=0;
loop
while E; # ¢ do
choose an equation t) =ty in Ej; remove t) =t from E;; (t17,ty7) = (tllRi,QlRi);
if t;" # " then
case (t;"ty") of
1> A0 =0
1 <ty (LD =t )
else : exit with failure endcase;
Bip1 =B "=~ re Ry, I"=llpnr s 1y uion i p=p+ I
Ri,1=(kl>r1kl> 1" e Ri, " imeducible in RiM{l'> 1} U{l> 1}, 17 = r’.LRi U{lo r}}
U {plo1}; i=is+l;
endif;
endwhile;
if all rules in R; are marked then exit with R; as canonical TRS for E
else choose an unmarked rule k:1- 1 in Ry, which is minimal with respect to >h(>)
E; ;= {p=qlp=qcritical pair of rule k:1 » r withrule k1> r" inR; and k"< k};
mark rulek:l-> 1 inR;; i:=i+ 1; endif
endloop
end KB ;

As pointed out in [Huet81] we have to guarantee the fairness of the heuristic completion procedure, i.e. any rule in
R%:= UiNixi Rj has to be chosen for the creation of critical pairs in some iteration of the outer loop.

Proposition 2 If 2h(>) is a globally finite well quasi ordering on Ty(V )2 then the heuristic completion procedure

is fair. Here 2h(>) denotes the reflexive closure of >h(>) and a reflexive, transitive relation > (quasi ordering) on a set

M is called

. globally finite iff for any x in M the setx;:= {y e M Ix 2y } is finite.

. a well quasi ordering (wqo) iff 2 is well founded (i.e. there exist no infinite descending sequences X1 2% 2.
such that x; % x;,; for eachi > 1) and each set of pairwise incomparable elements in M is finite.

Note: Huet’s completion procedure generates variant free TRS’s R;. Hence for the faimess of KB procedure it is
sufficient, that —>-h(>) is a globally finite wqo on each variant free subset R of TE(V)Z.

Lemma 1Ifc: Ve TZ(V) is a substitution such that for all x € V o(x) = y for some y € V, 2 a globally finite
W(o on TZ({y})z,then
a) 275 defined by (t1.%)) 2[5 (t; ") iff

) (ty.p)0 > (4 )o or

i) (tj.n)0 = (41" )0 and (t1.H)o >he) K)o

is a globally finite wgo on each variant free subset R of Tz(V)Z, wherez :=2n <,

b) Iy iswgoon Ty((y) )2 then 21,1 defined by

is a globally finite wqo on each variant free subset R of Ty:(V. )2.






Empirical Results

Based on the system documented in [Dietrich85] an experimental implementation of the heuristic completion
procedure was developed. Since the KB Algorithm implemented there is a variant of the [HO80] KB procedure, we use
>h(>)t° choose an axiom, which then is turned into a rule. Following Lemma 1a we extend >p(>) toa globally finite
wqo on variant free subsets of TZ(V)Z. As globally finite wgo on Tz({y})2 we take the termsize ordering Zts(n)
divided by n. More formally: (Ny] Zts(n) Q" x) iff (10cc) + 10cc(@) ) +n = ([Occd) + 10cc(r) ) + n, where =
denotes the integer division. Some examples from [KB70] were run so far.

Orientation of pairs through KBO ordering; heuristic completion strategy (smallest
component strategy)
Example | completion | matches Tewrites unifications | pairs
steps performed performed performed generated
1-group 15 14 382 195 449 117
(15) (17711) (233) 473) (134)
r-group 17 17275 235 512 135
(19) (28 843) (348) (673) (182)
Ir-group 15 21461 308 549 149
(15) (28 595) (361) 570) (163)
rl-gromp 2 | 69231 776 1102 317
@) | (81946) (843) (1176) (343)
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A-rewriting combines A-calculus with (one-sorted) term rewriting, but in a less general
way than Klop’s combinatory reduction systems, see [Klo 80]. Three types of such com-
binations are studied - each type being a special case of its successor.

Type 1, add term rewriting to A-calculus (or vice versa)

In some sense, type 1 is the least calculus comprising A-calculus and term rewriting.
From the programmer’s point of view, it is similar to functional programming languages
with pattern matching (e.g. ML [HMM 86]). From a theoretical point of view it is a spe-
cial case of the A8-calculus [Bar 84] and Hindley’s A(a)-calculus [Hin 78] is very similar.

Terms of type 1 are extended by abstractions (w.r.t. TRS) or by function symbols (w.r.t.
A-calculus). Left-hand sides of type 1 rules are restricted to (the curryfied form of) terms
allowed to be on the left-hand side of an ordinary TRS-rule. Right-hand sides are not
restricted. Substitution has to be defined slightly more general than for TRS or A-calcu-
lus, but more similar to substitution in the A-calculus, because it has to take care of name
conflicts.

Evaluation (called p&-reduction) is a mixture of B-reduction (A-calculus) and the relation
defined by the rules, the §-reduction. For any rule left — right, any context C and any
substitution sub the term C[sub (left) ] d-reduces to C[sub (right) ]. So the defini-

tion is the same as for ordinary TRS, if one ignores the more general definitions of terms
and substitutions.

The particularity of type 1 systems can be shown by an example:

add 0 - A x . X

add (succ x) = Ay . succ (add x y)
mul 0 - A x . 0

mul (succ X) > Ay . add (mul x y) y

The A-rewriting system above is one of several possibilities to define addition and multi-
plication on natural numbers where a natural number n is represented as succ™zero).
Different from TRS and from functional programming languages with super-combinator






implementations [Tur 79, Joh 85] is the evaluation of functions. For example the system
above evaluates (i.e. Bd-reduces) the term mul (succ (succ zero)) to the normal
form Ax.add x x:

mul (succ(succ 0))
To the right there is a possible B&-reduc- Ay .add (mul (succ 0) y) y
tion sequence (here innermost-first evalu- Ay.add((\y.add(mul 0 y) y) ¥) v
ation strategy) of the first term in 7 steps. ;. 244 ( (Ay.add ( (Ax.0) y) V) y) y
All the 3 B-reductions in the example have Ay.add((Ay.add 0 y) y) v
reduced non-closed terms inside of ab- Ay.add ((Ay. (Ax.%) y) ¥) v
stractions. In functional programming lan- Ay.add ((Ay.y) ¥)
guages this is unusual. Ay.add v y

Some results and observations about type 1 A-rewriting (LRS) are the following:
+ For confluent TRS mapped through currying to LRS (where each function symbol has a
unique arity):
- 8-reduction remains to be confluent, but it is not isomorphic to TRS-reduction -
because of currying, some more terms can be §-reduced.
- B&-reduction is confluent, if the TRS is additionally left-linear.

 {-transformation: the rule a x — b, such that a and b are terms and x is a variable
not -occurring free in a, can be {-transformed into the rule a — A x. b. A LRS is ¢
normal, if no rule can be {-transformed. For example, the addmul-LRS is {-normal.

-ifXisa LRS and X’ has been yielded by some {-transformations from X, then B3(X)
is a subrelation of B5(X’).

- in general, confluence of B3d-reduction is lost by {-transformation.
* Bdn-reduction on {-normal LRS:

- satisfies extensionality.

- unlike A-calculus, the normal form property of Bén- and Bd-reduction differs, because
n-reduction can introduce §-redexes.

- is confluent if Bd-reduction is.

Type 2, rewriting A-calculus terms

LRS of type 2 deal with the same terms as type 1, but the rules are more general. Here
the rules are not restricted on their left-hand sides, and altogether only by the usual
restriction for term rewriting rules, that is FV(left)DFV(right) for rules
left — right, where FV denotes the set of free variables in a term. Whereas a con-
fluent LRS of typé 1 only equalises the non-A-calculus part of the terms and hence per-

forms a consistent theory [Bar 84], type 2 is more powerful, but it is harder to prove sev-
eral properties for LRS of type 2.

Type 2 rules can express A-calculus’ n-reduction:
AX .y xSy

To do this in the A-calculus, it is necessary to require x& FV(y). For A-rewriting of type 2
this condition holds implicitly by the definition of §-reduction. In particular, the rule above






does not fit to the term Ax.x x, because there is no substitution to make it equal to the
left-hand side - as in A-calculus, substitutions have to take care of name conflicts.

Type 3, extensions

There are several possibilities to make further extensions. Type 3 works with an extend-
ed set of terms. The idea is: rules are partial functions on terms - functions are abstrac-
tions - abstractions are terms - consequently rules are terms. Basically a term (a—b) ¢
(where a, b and c are arbitrary terms) can be reduced to sub (b) if sub is a substitution,
such that sub (a) =c. In fact this idea has been the starting point of the work on A-rewrit-
ing presented here. The most general understanding of this idea leads to a non-confluent
reduction, i.e. even for empty databases evaluation would not be determined. For exam-
ple, evaluating the term (x y—x) ((x-x) (a b)) can produce a as well as x—x.
Therefore, the abstractions of type 3 are restricted on their left-hand sides to curryfied
forms of linear TRS-terms.

Another possible extension of type 2 LRS would be to choose a different notion of reduc-
tion for type 2 rules. Consider the following rule of type 2:

Ax . fa—>5 Ox. =) (hx . a)

It is one of the 3 rules to map A-calculus into combinatory logic, but for type 2 §-reduction
it only works incompletely, because it &-reduces only those abstractions where the
abstracted variables do not occur freely in the body. This behaviour is more restricted
than necessary, because the variables £ and a occur on the right-hand side in the same
context of bound variables as on the left-hand side. A more liberal notion of reduction can
be treated formally by introducing another kind of substitution. This new substitution
does not care about name conflicts for a certain set of variables, i.e. these variables will
not be renamed in a conflict situation.
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Jungle Evaluation for Efficient Term Rewriting !
(Extended Abstract) 2
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In a straightforward implementation of term rewriting, terms are represented by
trees, and rewriting is realized by subiree replacement. Unfortunately, this may
be very expensive, both in time and space: the application of a rule may require
large subterms to be copied, and each copy of a term must be evaluated anew.

Jungle evaluation ((HKP 88], [HP 88]) provides an improved model for implement-
ing term rewriting by graph rewriting where these sources of inefficiency can be

avoided:
e Jungles are acyclic hypergraphs which allow terms to be represented such
that multiple occurrences of a subterm can be shared. Acyclicity ensures that

each jungle node represents a unique term and that structural induction on
jungle nodes is available.

e Rewriting is performed by (hyper-)graph replacement, specified by evalua-
tion rules according to the algebraic theory of graph grammars (see, e.g.,
[Ehr 79]). By applying these evaluation rules, new references to existing
subterms are introduced instead of copying subterms.

e Additional hypergraph rules for folding multiple occurrences of terms allow
each term in a jungle to be represented only once, so multiple evaluation can
be avoided.

Example: Computation of Fibonacci Numbers

Consider the term rewrite rules
£ib(0) — 0
fib(succ(0)) — succ(0)
fib(succ(suce(x))) — fib(succ(x)) + £ib(x)

specifying a function fib that computes Fibonacci Numbers, based on natural
numbers with the constant 0, successor function succ, and addition +.

1This work is partly supported by the Commission of the European Communities under Con-
tract 390 (PROSPECTRA Project) in the ESPRIT Programme.

2For a full paper see [HP 88].

3Address: Fachbereich Mathematik und Informatik, Universitit Bremen, Postfach 330 440,
D-2800 Bremen 33. Usenet: {hof,det})Informatik.Uni-Bremen.de






The first two steps for computing the Fibonacci Number of 4 by term rewriting
are:

fib(succ*(0))
—  fib(succ®(0)) + £ib(succ?(0))
—  fib(succ?(0)) + £ib(succ(0)) + £ib(succ?(0))

In both steps, subterms of the arguments of £ib are copied. Furthermore, the re-
sulting term contains two copies of £ib(succ?(0)); each of them must be rewritten
anew. As a consequence, rewriting a term fib(succ™(0)) to normal form requires
space and a number of steps exponential in n.

Below we show corresponding jungle evaluation steps and a subsequent folding
step. (=£> and 2 denote the application of an evaluation and a folding rule, re-

spectively.)

The evaluation steps do not copy the arguments of £ib, but merely introduce new
references to them. Moreover, after the folding step the subterm fib(succ?(0)) is
represented just once and thus has to be evaluated only once.

When performing evaluation and folding steps in this order, the evaluation of a
term fib(succ™(0)) requires only a number of steps and space linear in n.

Results

Fully Collapsed Jungles: For each finite set of terms there is a (up to isomorphism)
unique minimal jungle representing these terms most efficiently. Given an arbitrary
jungle, the equivalent fully collapsed jungle can be generated by application of
folding rules which eliminate multiple occurrences of terms.






Correctness: The translation of term rewrite rules into evaluation rules is correct
in the sense that each application of an evaluation rule to a jungle rewrites the
represented terms according to the underlying term rewrite rule. In general, a
single evaluation step performs sequences of term rewrite steps in parallel.

Normal Forms: Exhaustive application of the evaluation rules to some jungle J
yields a jungle J which represents normal forms of the terms represented by J,
provided that the given rewriting system is left-linear. Moreover, the restriction
of left-linearity can be dropped by allowing folding steps to be performed between
evaluation steps.

Termination: Termination of term rewriting implies termination of jungle eval-
uation without restriction, even if folding is allowed. The proof of this result is
nontrivial since for jungle evaluation, in contrast to term rewriting, “garbage” has
to be considered (as the nodes representing succ*(0) and succ?(0) in the rightmost
jungle of the above example) which may lead to additional evaluation steps.

Confluence: Unlike termination, confluence of term rewriting does not carry over
to jungle evaluation. However, if the given rewriting system is terminating and
confluent, then jungle evaluation is terminating and confluent too, provided the
garbage produced by evaluation steps is ignored. Jungle evaluation without folding
turns out to be strongly confluent for non-overlapping rewrite systems, where
termination or left-linearity needs not to be required.
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1. Motivation

Using recent advances in executable specification languages and proof techniques, we
approach an unsolved problem in the area of compiler construction: to provide high-level tools for
the production of reliable code generators. Machine code generation appears to be a well-suited field
for the application of algebraic specification techniques for two reasons:

- Target machine instruction sets, expecially with CISC architectures, are rather sizable data
types. An (order-sorted) signature for the MC68000, for example, uses 42 sorts and 181
operators. Clearly, this calls for mechanical support, for checking the specification's
consistency and completeness over several development steps.

- Most of a target machine description is plain syntax, and basic code selction can be done by
pattern matching techniques. However, target machine programs must also satisfy certain
context-sensitive constraints (regarding addressability of operands in the context of certain
instructions, the number of registers used, etc.). These constraints seem quite independcnt; but
may interact in a relatively complex fashion. This interaction, known as the danger of
"semantic blocking" (in [GrGl177] and subsequent approaches), has so far not been captured in
a satisfactory way.

Our approach is to describe the context sensitive properties of machine programs and code selection
indpendently. Then we describe transformations that turn an (illegal) target program ¢ into another
target program ¢’, such that

- tand ¢ are both correct target programs for the same intermediate program,

- t'satisfies a particular constraint,

- constraints already satisfied by ¢ still hold for #'.
These are the properties of correctness, efficacy and invariance of the code generator specification,
which are to be proved with equational proof methods. Together, they guarantee the absence of
semantic blocking, i.e. the completeness of the code generator specification.

The study reported here was performed for a small, but nontrivial target language, consisting

of 5 instructions and 4 address modes, combined in a totally non-orthogonal way.

2. An Algebraic Model of Code Generation
In our model, a code generator specification consists of five order-sorted specifications:

BS defines certain basic data types by (conditional) equational axioms, including Booleans,
integers, but also machine specific ones like register numbers, register class identifiers, word
length indicators, etc.
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II.  defines the intermediate language, extending BS by cell constructors, used by the compiler
front-end to replace the source program variables by address subtrees according to the
compiler's virtual machine.

TL  defines the syntax of target programs, by extending BS. TL does not include any new
axioms. Its sorts represent the address modes and operand classes of the target machine, its
constructors model instructions and address calculations.

TM completes the target language description by enriching TL with predicates, (separately)
describing operand binding restrictions, word length compatability laws, temporary register
limits, and other peculiarities of the target machine. (See Example 1.)

D is the code selection specification. It enriches the union of IL. and TL by one polymorphic
operation dd, translating target programs into intermediate programs. The axioms defining dd
must be in the form of (order-sorted) derivor equations.

For simplicity, we assume in the sequel that there are only two wellformedness-predicates specified

by TM, wb and wt (for well-bound and well-typed). Now, the task of code generation can be

specified formally as:

For a ground IL-term g (the given intermediate program) and a variable z of a suitable sort from

TL, solve the equation system

dd(z) = q,
wi(z) = true,
wb(z) = true.

In principle, this could be solved by narrowing, but without some strategy tailored to the structure
of the specification, this would be prohibitively expensive.

3. Making the Specification (More) Operational

The first equation, dd(z) = g, can be solved efficiently by using pattern matching techniques
for derivor inversion, as explained in [GiSc88]. Applying the generated pattern matcher to ¢ will
yield a (generally infinite) stream of target programs ¢}, £, ... from Ty (V), ideally in the order of
increasing cost (but we do not discuss this aspect here). They contain variables from V, for word
lengths associated with instructions, or registers numbers yet to be assigned. In many situations,
there exists a substitution ¢ such that wh(1j0) = true and we(t;o) = true for some small value of i.

However, where wellformedness requires extra coercion instructions or loading of registers,
such a substitution does not exist for many a 7;. (See Example 2.) One could consider disregarding
t; and continuing with #;4 7, etc. This, however, would give us no clue as to whether a solution

exists at all. So instead, we further enrich the specification by "transformation" operators mk_wb,
mk_wt, with the intent that if wb(z) = true has no solution, wb(mk_wb(t)) = true will have one.
(See Example 3.)

4. Verification
Up to this point, developing the specification using a tool like the CEC system [BGS88] has

been a mere convenience. Now, to verify our last development step, the following equational
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theorems have to be proved:

Efficacy: wi(mk_wi(z)) = true
wb(mk_wb(z)) = true
Correctness: dd(mk_wt(z)) = dd(z)

dd(mk_wb(z)) = dd(z)
Mutual Invariance: wb(z) =wb(mk_wi(z))
wi(z) = wi(mk_wb(z))

Efficacy means that it is always possible to satisfy each constraint by an equivalent target
program, where target programs are equivalent when mapped to the same IL-program by dd . This
we call correctness of the transformations. Invariance says that mk_wt does not destroy the
achievements of mk_wb, and vice versa. (There are weaker formulations of invarance, which make
transformations easier to write, but are harder to prove mechanically.)

Inductionless induction [HuHu80], as available by the completion procedure of the
CEC-system, is sufficient to prove these theorems, basically since the transformations have a rather
local effect, and so is their effect on the constraints, although it extends a little futther. Without
mechanical aid, it would be rather error-prone to carry out the neceessary proofs, even for a small
target language as used in this study.

5. Conclusions

1. The application of our approach to code generator descriptions of realistic size may currently
be out of reach for current proof systems (because of efficiency problems resulting from sheer
specification size), but not without the reach of current proof techniques.

2. Striving for good code, when writing the transformations one intuitively makes use of
properties of the intermediate language (such as commutativity of operations or the possibility to
interchange two statements without harm). Not all of them may be implied by the axioms specified
with IL. This deficiency is demonstrated by non-termination of the correctness proof, but
sometimes in an obscure way.

3. This study was concerned with developing a form of code generator specification whose
completeness could be verified mechanically. For a practical code generator generation tool, code
selection, constraint checking and transformation should proceed in an interleaved fashion. To
achieve this from a given specification, without sacrificing its provable completeness, is a

challenging problem by itself.
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Appendix: Examples

Example 1
For a 2-address add-to-register-instruction, our specification contains, among others, the following
equations: (The small letters are variables, the rest is a mixfix notation for TL terms, and == is
equality of register numbers or word length indicators like B(yte) or W(ord).)

wb(ADDR.l] Rilp Rjl; opd)=(i==j) ‘

wt( ADDR.I Rilp Rj.l] opd)=((l==1Ip)and(l==1])and (Il == oplength(opd)))

Example 2

For dd(z) = R1.L := R2.B + 1, code selection would construct, among others, the solutions
z<--ADDR.I RIL R2B #I, and
z<--MOV. Rilp R2B;ADDR.I3 RIL Rilp #I,

where for any instantiation of register number and word length variables, the second target program
will not be well-typed, and the first will neither be well-typed nor well-bound.

Example 3
The transformation that yields a well-typable solution from the second one in Example 2 would be
specified by an equation
l; <lp =>mk_wt(MOVE.l Ri.lp Rjlj)=SEXT.Ipgly Rilp Rj.lj
Note that if wb specifies SEXT.lp.l; (sign extension from the shorter /7 to the longer /p) tobe a

1-address instruction(while MOVE, of course, is 2-address), it will not be possible to prove mk_wt
invariant with respect to wb.
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1) Introduction

The termination of the transfer process is an important question in Machine Translation (MT) and this
paper makes a proposal of how to formulate transfer rules, which are in fact term-rewrite rules, in a way
that the transfer process will terminate. The level of transfer in the project KIT-FAST ! at the Technical
University of Berlin is a semantic representation for sentences which expresses the logical relations
within a sentence. Such logical relations are among others functor-argument relations, e.g. between the
verb and its associated noun phrases. Thus the level of transfer is called Functor-Argument Structure
(FAS). A FAS expression for a sentence is a derivation tree generated by a context-free grammar with
complex symbols as non-terminals called FAS categories. A FAS category consists of a main category
and a set of pairs of features and values. A(f) is used to denote the value of the feature f of the FAS
category A.

Since the transfer process is to be formulated as a term-rewrite system, the FAS expressions have to be
mapped into FAS terms. Therefore a signature of a term algebra for the FAS expressions of the source
and target language is defined. Now the transfer rules can be formulated as term-rewrite rules and a
term-rewrite system can be used to transfer the source FAS terms into target FAS terms, which again

can be mapped into target FAS expressions with the help of the given signature.

2) An Ordering on FAS terms

In order to guarantee that the term-rewrite system terminates, a well-founded (partial) ordering >g.s on
the set of source and target FAS terms has to be defined which does not allow infinite descending
sequences of those FAS terms. In order to define a well-founded ordering >g,s, the FAS categories of the
source and target FAS grammar, henceforth source and target FAS categories respectively, are
distinguished such that every source FAS category A and every target FAS category B share a common

feature ‘lang(uage)' where A(lang) # B(lang). 2

! This work has been developed in the project KIT-FAST (KIT = Kiinstliche Intelligenz und Textverstehen (Artificial
Intelligence and Text Understanding); FAST = Functor-Argument Structure for Translation), which constitutes the Berlin
component of the complementary research project of EUROTRA-D. It receives grants by the Federal Minister for
Research and Technology under contract 1013211.

2 In the following for all source FAS categories A(lang) = s and for all target FAS categories B(lang) = t is defined.
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With this distinction the derivation sequence ts — t, — ... = t, — tr contains hybrid FAS terms t; where
1 <i<n and ts and t; are the source and target FAS terms respectively. The FAS terms t; are hybrid
because source FAS categories as well as target FAS categories occur in them. Before the definition of
the well-founded ordering can be given, the set S(t) of all source FAS categories and the set T(t) of all
target FAS categories have to be defined. C(t) is used to denote the set of all FAS categories occuring in

the term t.

Definition 1: S(t) = {A e C(t)| AQang) = s} and T(t) = {B e C(t)| B(lang) =t} where S(t) N T(t) = &
and C() = S U T().

Definition 2a: Let t,u be FAS terms without variable occurrences then t >pas u if and only if (S(u) ©
S®) v (S(u) = S(t) A T(u) < T(t)).

The transfer rules may contain variables and in order to find out whether a given set of transfer rules is
terminating or not, the above ordering >pas 0n FAS terms has to be "lifted” to an ordering on FAS terms

with variables. V(t) is used to denote the set of all variables occuring in the term t.

Definition 2b: Let t,u be FAS terms with variable occurrences, then t >, u if and only if definition 2a

holds and additionally V(u) < V(t).

Theorem 1: A transfer system R over a set of FAS terms is terminating if and only if A >g,s p for each

transfer rule A — p in R.

Thus the transfer rules have to be defined according to the well-founded ordering >g;, i.e. the right-hand
sides (rhs) of all transfer rules have to contain less source FAS categories than the corresponding left-
hand sides (lhs) or, if the set of source FAS categories is equal on both sides, at least one of the target
FAS categories has to be deleted, and every variable occuring on the rhs occurs too on the lhs. These

conditions can be checked in preprocessing.

3) The Transfer System

A desirable feature of the transfer system would be that it works message-driven, i.e. it runs through the
input structure and applies every possible transfer rule. Unfortunately, the lhs of the transfer rules are not
necessarily local structures and therefore the transfer system has to work rule-driven, i.e. after each
reduction it has to check every transfer rule for application. Additionally, the set of transfer rules need
not be confluent, i.e. for a given source FAS term there may be one or more target FAS terms. For these
reasons, the intrinsic application order of the transfer rules is made explicit in a preprocessing step, i.e. if

the rhs of a transfer rule r and the lhs of a transfer rule r' share some non-variable common subterm, then






rule r has to be applied before rule r' (r >, r'). If the lhs of a transfer rule r and the lhs of a transfer rule r'
share some non-variable common subterm, then rule r and rule r' can be alternatively applicable (r v, r").

Before a formal definition can be given, some notations have to be introduced:

s | I: unification of two terms. The result is the minimal unifier.

« M/u: non-variable subterm of the term M.

Now the formal definitions of the two relations >,,, and v,, can be given. Let R be the set of all transfer

rules. Vr,r' e Rwherer=(A — p)andr'= (A'— p'):

« superposition of the lhs of r' with the ths of 1 A/uldp 2 @) v pullX' 2By =1>,,1.
» superposition of the lhs of r' with the lhs of : A/ulUA =) v Aul A 2= D) = v, 1.

« else: r and r' are independent of each other and may be applied in any order.

With the help of the relation >, the application sequence of the transfer rules can be computed taking
into consideration the fact that >, also may contain cycles. The relation v,, is used to admit an
alternative application of transfer rules only where necessary. In that way an efficient transfer algorithm

can be defined which has been implemented at the Technical University of Berlin.
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One of the main application areas for term rewriting techniques is automa-
ted theorem proving. Theorem proving, again, is especially suitable for the
proofs of assertions arising in program verification, since these proofs are sel-

dom of great mathematical depth and do not require much ingenuity.

So, it is not astonishing that there are already some applications of rewrit-
ing techniques in program verification, e.g. in the Boyer-Moore prover (cf.
[Boyer/Moore 791} or in SPADE (cf. [O'Neill et al. 881). These systems have in
common that they are used in a highly interactive way; the proofs must be
directed by the user (e.g. by adding new lemmas in the Boyer-Moore system or
by choosing a rule that shall be applied in SPADE).

We want to present an approach to program verification that also makes use
of term transformations but works mostly non-interactive. We think that this
is a sensible way of running a program verifier because it delivers the user
from waiting in front of the terminal the whole proof long (which can be a

very long time indeed).

Our method is situated in the scope of VDM (the "Vienna Development
Method", cf. [VDM 871, [VDM 881). Actually, the "programs” we want to verify
are specifications written in an essentially functional subset of META IV, the
VDM specification language of VDM. This subset is, nevertheless, so general

that most imperative or functional languages contain a subset that is equivalent.

A program to be verified must be given as a system of recursive function
definitions. The language elements that may be used inside a function are con-
ditional expressions, sequences ("exp, ; exp,"), constant declarations ("let Id =
exp, in exp,"') and function calls. There are no loop constructs; loops can, how-

ever, be expressed via recursion.






Each of the functions defined must be equipped with a pair of pre- and
postconditions. These form the invariants that are needed for the inevitably
inductive proof of theé "recursive program”. Of course, they must be formulated
strong enough, since otherwise, the proof will fail. The aim is to prove each
function partially correct w.r.t. its pre- and postcondition. Unlike in the Boyer-
Moore system, we do not have to set up a new induction scheme for each
proof. One scheme, the correctness of which is proved once and for all before-

hand, can be used for all proofs.

The assertions arising during the proofs are rewritten using term transforma-
tion rules that must be given as an input to the proof system. The proof has
succeeded if the constant term true can bé reached. The rules are directed,
conditional and ordered rules; in contrast to usual rewrite rules, they may con-
tain also higher order terms (a source for this complication is the denotational

definition of programming language semantics).

We require the usual properties of correctness, confluence and termination.
Without the first one, the proofs generated are incorrect as well, and without
the others, there is a chance that correct assertions cannot be proved. The
rules arise from generally valid laws (from arithmetic and logic), from the
specification of primitive functions and from assumptions valid at the moment,
i.e. from the induction hypotheses and from the conditions leading to the
branch of a function under consideration at the moment. This last point makes
it difficult to apply the usual algorithms for completion and termination check-
ing, since they had to be applied over and over again at every change of the
rules. So, for the time being, we do not check confluence and termination but

assume that these properties are fulfilled.

We have implemented our method in a system called PAMELA {= "Proof
Assistant for META [V-like Languages”) which is a generalized version of the
PACS system ("Proof Assistant for Code Generator Specifications”, cf. [Buth/
Buth 881). As an example, we have chosen code generator specifications used
in the CAT compiler generating system (cf. [Schmidt/V&ller 87]). These speci-
fications are the basis for parts of compilers that are industrially used by
Norsk Data.

Up to now, we have made the experience that we have not yet encountered
an error in the specifications that could not be found. It is, however, ex-
tremely important to put up sufficiently strong invariants for the proof. But

the definition of pre- and postconditions seems to be a quite natural way to






provide the invariants; therefore, it is not so very difficult to make them strong
enough which means nothing else than to completely describe the behaviour of

a function.
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Introduction

EQTHEOPOGLES (german acronym for Theorem Prover for First Order Polynomial
Equations with EQuality) is an automated theorem prover for first order predicate
logic with equality. It’s main feature is the use of rewriting techniques, e.g. reduction
and critical pair completion, as inference rules on a two level Knuth-Bendix
Completion Procedure. Using EQTHEOPOGLES without equality (the THEOPOGLES
system [Mi 88], [De 87], [DM 87]) means working with a variation of the methods
of Hsiang [Hs 85], Kapur and Narendran [KN 85] and Bachmair, Dershowitz
[BD 87]. That is, a first order formula F to be proved valid is transformed into a
system E of polynomial equations, s.th. F is valid iff E is unsolvable. The ideas to
handle equality with EQTHEOPOGLES stems from approaches of Hsiang [Hs 87] and
Rusinowitch [Ru 87]). But as in the definition for pure first order calculus
EQTHEOPOGLES avoids the use of unnecessairy inference steps. In general E is
divided into a system (&,R) of polynomial equations & and term rewrite rules R. Some
equations of & are also used as rewrite rules for polynomials. Completion is
performed separately on & and R, and special inference rules are applied on elements
of & and R to get the connection of the whole system.

In the following we will give a sketch of the theoretical technicalities, e.g. the
inference rules, of EQTHEOPOGLES.

Details can be found in [Miu 87], [Mi 88], [De 88] for the theoretical aspects
especially the completeness proofs, and in [De 87], [DM 87] for technical
descriptions of the system.

EQTHEOPOGLES is implemented on an APOLLO-Workstation in Common-Lisp.

Theoretics

Polynomial equations are of the form m;+m,+...+m =0, where + is the operation XOR
and the monomials m; are conjunctions LyxL,*..xL, of atoms Lj. Given a formula F,
it can be transformed into a set E={pj=0}i=; , of polynomial equations, s.th. F is
valid iff E has no solution, i.e. there is no interpretation I, s.th. I(p)=false for all
p=0¢E.

EQTHEOPOGLES divides the equational system E into two sets & and R. & represent
the polynomial system and R the term rewrite system. An equation p=0 ¢ E is
transformed in a rule s>t in R, if p=EQ(s,t)+1 and s > t for a simplification ordering
> on terms. All other equations in E belong to the polynomial system &. In & every
equation of the form m=0, EQ*m+m=0, L+1=0 or L*m+m=0 (where m a monomial,
EQ an equality atom and L a non-equality atom) is used as rewriting rule on
polynomial level : m—=>0, EQ*m>m, L>1 or L¥m->m.






As usual these rewrite rules are used for mutual normalization and to simplify the
polynomials in & The term rewrite rules in R reduce the terms of the atom
arguments in & and they are also used for the interreduction of R itself
(TES-Reduction). This constitutes the first class of inference rules. Note that the
rewrite rules are very simple and can be efficiently implemented. On the other hand
they are strong enough to reduce the search space for the (more expensive) critical
pair generation drastically.

The second class of inference rules for (&R) is the critical pair generation. Let PEQ
denote polynomials consisting of EQ-Atoms and/or the atom 1. Then we have

- Superposition of one atom in m from an equation of the form m*prqg=0 with an
atom of another equation in &.

- Paramod-Superposition with EQ from an equation of the form EQ¥p;+p,=0 with a
term in an atom of another equation in &.

- Factorization of equations of the form m*pgqg=0 in &.

- Standard superposition of rules in R (Crit-Pair-Inference).

- Superposition of a rule in R and a term of an atom of an equation in &
(TES-Paramod-Superposition).

These superpositions for critical pair generation together with the simplification with
polynomial rules and with term rewriting rules present the complete theorem prover
EQTHEOPOGLES. The domains of every inference rule of EQTHEOPOGLES is shown
below.

&

. m1+m2+...+mk=0 .
Polynomial- Superposition,

Reduction EQ*m-=m Paramod-Superposition

m-=0
L->1
Lxm->m

TTES—ReductiOn TES-Paramod-

Superposition
R
TES-Reduction C

s>t ’ Crit-Pair-Inference

Now we want to compare EQTHEOPOGLES with other methods for the first order

predicate logic with equality.

- The application of the critical pair generation is very restricted compared with
other methods. For example, the first superposition rule might save an exponential
factor relative to Hsiangs approach.

- We use two kinds of reduction relations and minimize both sets, & and R with these
relations. So we always get a minimal representation of the system. Nevertheless
we proved the soundness and completeness of EQTHEOPOGLES.

- Many authors (for example [Ru 87], [WRCS 67]) showed the advantages of an
inference rule for the equality that is similar to the critical pair generation in the







Knuth-Bendix-Procedure, if the two involved clauses or polynomials are unit
EQ-facts. As R is a term rewriting system and 1is completed by a
Knuth-Bendix-Procedure (Crit—Pair—Inference), EQTHEOPOGLES includes these
advantages.

Instead of trying to find one general inference rule for the equality like
paramodulation ({(RW 69]) or Para-Superposition {((Hs 87]) we install three disjunct
inference  rules (Paramod-Superposition, Crit-Pair-Inference, TES-Paramod-
Superposition). Therefore we get the possibility to prefer one rule over another. For
example, we prefer the Crit-Pair-Inference over the Paramod-Superposition, because
a uniquely terminated term rewriting system R (which is possibly generated) is very
useful. Other preferences are also possible.

The whole theory of term rewriting systems can be wused to avoid unnessary
Crit-Pair-Inferences or guide the choosing of "good” critical pairs. For example, the
criteria of Kapur ([(KMN 88]) or Winkler ([Wi 84]) can be integrated in

EQTHEOPOGLES to reduce the number of inferences.
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