
@
Jm

_
F

SEKI Report SR-89—02

Sn
.mm‚wmAdmmm

Jürgen Müller,. Harald Ganzinger (Eds.)

m
m

g
G

um
um

‚m
„m

m

‚5%
m

m
m

m
A

m
.

m
w

59303523
83-0

„__pso_„_m
„„_%

m
„u_„fi

„_m
m

‚E.n_m
a

..
2m

m
55852.

50650200“.

Preface

The sUbgroups 1.2.1 Deduction Systems and 2.1.3 Implementation of Programming
Languages of the Gesellschaft ftir Informatik arranged their first workshop" Term
Rewriting: Theory and Application" from March 6 to March 8, 1989 at the
University of Kaiserslautern.
The aim of the workshop was to bring together theorists and practitioners on
Term rewriting systems, completion algorithms, narrowing approaches, completion
theorem provers etc. from the German speaking countries. 43 participants from
Germany and Austria have got an interesting overview of the actual rewrite
activities within 27 talks. The talks are separated into blocks of:

conditional term rewriting
inductive proofs via completion
functional programming and	 rewrite systems
applica tions of rewriting techniques
special strategies
theoretics within equational	 theories.

There also was a system demonstration and poster section where 10 systems
were presented.
The workshop has shown how broad the applications of term rewriting techniques
have became. Special fields as program specification and verification, automated
translation of languages, code generators, automated theorem proving, logical
functional programming languages and simulation of parallel processes were
considered.

This report will give a brief overview on the topics of the workshop. The extended
abstracts are [almost) arranged in groups of their special fields.

March 1989	 Jtirgen Mtiller [University of Kaiserslautern)
Harald Ganzinger [University of Dortmund)

P r e f a c e

The subgroups 1.2.1 Deduction Systems and 2.1.3 Implementation of Programming

Languages of the Gese l l scha f t fiir Informat ik a r ranged the i r f i r s t workshop " Term
Rewriting: Theory and Application" from March 6 to March 8, 1989 at the
University of Kaise r s l au t e rn .
The aim of the workshop was to bring together theorists and practitioners on

Term rewriting systems, completion algorithms, narrowing approaches, completion

theorem provers etc. from the German speaking countries. 4 3 participants from

Germany and Austria have got an interesting overview of the actual rewrite
activities within 27 talks. The talks are separated into blocks of:

- conditional term rewriting

- inductive proofs via completion

— functional programming and rewrite systems

- app l i ca t i ons of rewriting techniques

- special strategies

- theoretics within equational theories.

There also was a system demonstration and poster section where 10 systems
were presented.
The workshop has shown how broad the applications of term rewriting techniques

have became. Special fields as program specification and verification, automated
translation of languages, code generators. automated theorem proving, logical-
functional programming languages and simulation of parallel processes were
considered.

This report will give a brief overview on the topics of the workshop. The extended
abstracts are [almost] arranged in groups of their special fields.

March 1989 Jürgen Müller [University of Kaiserslautern]
Harald Ganzinger [University of Dortmund]

Compilation

von Termersetzungssystemen

Dietmar Wolz

Paul Boehm

Technische Universitiit Berlin

Fachbereich Informatik (20)

Institut iUr Software und Theoretische Informatik

FranklinstraBe 28/29, Sekr. FR 6-1

D-I000 Berlin 10

Berlin, Januar 1989

Abstract

Algebraische Spezifikationssprachen gewinnen in den letzten Jahren in der Forschung immer
mehr an Bedeutung. Sie ermoglichen die formale Beschreibung von Datentypen und Soft
waresystemen unabhangig von ihrer konkreten Reprasentation und ohne Beziehung zu speziellen
Eigenschaften einer Programmiersprache oder eines Betriebssystems. Ihre mathematisch klar
definierte Semantik machen sie unabhangig von technologischen Veranderungen und zu einer
zuverlassigen Grundlage der Dokumentation und Implementierung von Softwaresystemen.

Die Compilation wird als ein Verfahren zur effizienten Auswertung von ausfiihrbaren Gleichungs
Spezifikationen mit initialer Semantik vorgestellt. Dieses Verfahren verbessert die Verwend
barkeit dieser Spezifikationen als Prototyp der spezifizierten Software.

Termersetzung wird dazu verwendet, einen Reprasentanten der durch die Spezifikation definierten
Kongruenzklasse eines Terms zu bestimmen. Die Ersetzungsregeln miissen bestimmten Kriterien
geniigen, damit die Termination des Verfahrens und die Eindeutigkeit des Resultats sichergestellt
sind.

Bei der Compilation wird ein Termersetzungssystem in mehreren Phasen in eine Menge von
Entscheidungsbaumen, in eine Menge von Funktionsdefinitionen, in den Code einer abstrakten
Maschine, und schliefilich in ausfiihrbaren Maschinencode transformiert.

Ersetzungsrelationen auf partiellen Termen und Eigenschaften verschiedener Ableitungsstrate
gien werden vorgestellt. Ein Termersetzungs-Algorithmus mit "lazy"-Strategie wirdangegeben,
seine Korrektheit und Termination wird bewiesen.

Der Algorithmus wird, entsprechend den einzelnen Compilationsphasen, schrittweise konkretisiert.
Die Korrektheit der Transformationen wird diskutiert.

Die abstrakte Termersetzungs-Maschine LATERM wird definiert. Diese Maschine ermoglicht
Ableitungen bez. der "lazy"-Strategie mit zwei unterschiedlichen Verfahren und kann zusatzlich
innermost-Ableitungen effizient durchfiihren.

Compilation
von Termersetzungssystemen

Dietmar Wolz
Paul Boehm

Technische Universität Berlin
Fachbereich Informatik (20)

Institut für Software und Theoretische Informatik
Franklinstraße 28/29, Sekr. FR 6—1

D-1000 Berlin 10

Berlin, Januar 1989

Abstract

Algebraische Spezifikationssprachen gewinnen in den letzten Jahren in der Forschung immer
mehr an Bedeutung. Sie ermöglichen die formale Beschreibung von Datentypen und Soft-
waresystemen unabhängig von ihrer konkreten Repräsentation und ohne Beziehung zu speziellen
Eigenschaften einer Programmiersprache oder eines Betriebssystems. Ihre mathematisch klar
definierte Semantik machen sie unabhängig von technologischen Veränderungen und zu einer
zuverlässigen Grundlage der Dokumentation und Implementierung von Softwaresystemen.

Die Compilation wird als ein Verfahren zur effizienten Auswertung von ausfiihrbaren Gleichungs-
Spezifikationen mit initialer Semantik vorgestellt. Dieses Verfahren verbessert die Verwend—
barkeit dieser Spezifikationen als Prototyp der spezifizierten Software.

Termersetzung wird dazu verwendet, einen Repräsentanten der durch die Spezifikation definierten
Kongruenzklasse eines Terms zu bestimmen. Die Ersetzungsregeln miissen bestimmten Kriterien
genügen, damit die Termination des Verfahrens und die Eindeutigkeit des Resultats sichergestellt
sind.

Bei der Compilation wird ein Termersetzungssystem in mehreren Phasen in eine Menge von
Entscheidungsbäumen, in eine Menge von Funktionsdefinitionen, in den Code einer abstrakten
Maschine, und schließlich in ausfiihrbaren Maschinencode transformiert.

Ersetzungsrelationen auf partiellen Termen und Eigenschaften verschiedener Ableitungsstrate—
gien werden vorgestellt. Ein Termersetzungs-Algorithmus mit ”lazy”-Strategie wirdmangegeben,
seine Korrektheit und Termination wird bewiesen.

Der Algorithmus wird, entsprechend den einzelnen Compilationsphasen, schrittweise konkretisiert.
Die Korrektheit der Transformationen wird diskutiert.

Die abstrakte Termersetzungs-Maschine LATERM wird definiert. Diese Maschine ermöglicht
Ableitungen bez. der ”lazy”-Strategie mit zwei unterschiedlichen Verfahren und kann zusätzlich
innermost-Ableitungen effizient durchführen.

Why We Need More Interaction In Inductive Theorem Proving

RaIf-Detlef Kutsche

TU Berlin, FB Inforrnatik, FR 6-2

Franklinstr. 28/29, D-I000 Berlin 10

1 . Introduction
Based on the work of Musser [Mus80], Goguen [Gog80], Huet & Hullot [HH82J, Jouannaud & Kounalis

[JK86] and others, we have shown in Hofbauer & Kutsche [HK88] how to prove inductive theorems over a term

rewriting system under certain conditions by just applying rewrite steps between distinguished pairs of terms. Our

results allow to weaken the premises of both (ground) confluence and termination: Only critical pairs of the

underlying system on the rules to be proved have to be considered. Secondly we split the set of those rules into

two parts, one of which has to fulfill certain termination requirements, but the other does not. Furthermore we

allow the use of (already proved) lemmata, splitted in the same manner.

Here I want to stress the pragmatical aspects of proving inductive theorems, based on some experience in

applying our results to a Jew examples, cf. again [HK88]. My emphasis lies on pointing out severe difficulties,

arising if one wants to proceed fully automatically, rather than giving a solution of them. My demand is for

human-oriented interactive systems. to integrate the users expertise and intuition of a theorem and its possible

proof with the speed of a computer system to perform necessary but tedious computations.

2 . Basic theory
We assume the reader to be familiar with basic notations for term rewriting systems, as given e.g. in [Huet80]

and many others, and just recall a few definitions and our main theorem from [HK88].

Definitions

Let R be a TRS. The set of equations ITh(R) := { s=t I sO' f-*R~ to' for all ground substitutions O'}

is called inductive theory of R. (For convenience we often speak: of a set of rules to be in the inductive theory

of a TRS, always meaning the associated set ofequations.)

A term t is called ground-reducible (or: quasi-reducible) under R iff to' is R-reducible for all ground

substitutions 0', a TRS R' is ground-reducible under R iff the left-hand side of every rule in R' is ground

reducible under R.

Theorem 3 (from Hofbauer & Kutsehe 1988)

Let R. I, E, A, L be TRS's such that

(1) AuL ~ ITh(R) ("lemmata")

(2) RuIuA is terminating

(3)	 IuE is ground reducible under R

c p

(4) for every critical pair <c,p> of R on I : RuIuAJ. *	 * J.RuIuA

c

(5) for every critical pair <c,p> of R on E : RuIuAJ. *

Then IuE ~ ITh(R). ("inductive theorems")

Why We Need More Interaction In Inductive Theorem Proving

Ralf-Detlef Kutsche
TU Berlin, FB Informatik, FR 6-2

Franklinstr. 28/29, D-1000 Berlin 10

1 . Introduction ,
Based on the work of Musser [Mus80], Goguen [Gog80], Huet & Hullot [HI-182], Jouannaud & Kounalis

[IK86] and others, we have shown in Hofbauer & Kutsche [I-IK8 8] how to prove inductive theorems over a term

rewriting system under certain conditions by just applying rewrite steps between distinguished pairs of terms. Our
results allow to weaken the premises of both (ground) confluence and termination : Only critical pairs of the
underlying system on the rules to be proved have to be considered. Secondly we split the set of those rules into
two parts, one of which has to fulfill certain termination requirements, but the other does not. Furthermore we

allow the use of (already proved) lemmata, splitted in the same manner.
Here I want to stress the pragmatical aspects of proving inductive theorems, based on some experience in

applying our results to a-v—few examples, of. again [HK88]. My emphasis lies-on-pointing out severe difficulties,

arising if one wants to proceed fully automatically, rather than giving a solution of them. My demand is for
human—oriented interactive systems, to integrate the users expertise and intuition of a theorem and its possible
proof with the speed of a computer system to perform necessary but tedious computations.

2 . Basic theory
We assume the reader to be familiar with basic notations for term rewriting systems, as given e. g. in [Huet80]

and many others, and just recall a few definitions and our main theorem from [I-IK88].

Definit ions
Let R be a TRS. The set of equations lTh(R) := { s=t | SC <—*R——> to for all ground substitutions 0' }

is called inductive theory of R . (For convenience we often speak of a set of rules to be in the inductive theory
of a TRS, always meaning the associated set of equations.)
A term t is called ground-reducible (or: quasi-reducible) under R iff to is R-reducible for all ground
substitutions G , a 'IRS R' is ground-reducible under R iff the left-hand side of every rule in R' is ground-
reducible under R .

Theorem 3 (from Hofbauer & Kutsche 1988)

Let R , I, E, A, L be TRS‘s such that

(1) AUL ; ITh(R) ("lemmata")
(2) RUIUA is terminating

(3) IUE is ground reducible under R

C P
(4) for every critical pair <c,p> of R on I : RuIvAJ‚ * * ¢RqA

' _=E—Ö ' (_'*L_> '

c
(5) for every critical pair <c,p> of R on E : RqA~L *

' _=E'_) ' **L“) I)

Then IUE ; ITh(R). ("inductive theorems”)

The proof of this theorem is found in [HK88]. Meanwhile, we know that again some weakening of the premises

is possible: In (4) resp. (5) only those critical pairs with rules R' ~ R have to be considered, which are needed

for the assertion of ground reducibility. Furthermore, also in (4) resp. (5) only certain occurencies of 1- (E- resp.)

left hand sides have to be taken into account for critical pairs, namely if there are inductive complete positions,

i.e. occurencies that guarantee ground reducibility under R again. Of course, reducing once more the number of

critical pairs seems helpful to succeed in inductive proving. Nevertheless, basic problems remain in the process,

as we show in our case study.

3. A case study: Proving properties of binomial coefficients
We assume a standard specification ARITH of natural numbers arithmetic, defming addition, multiplication and

powers, recursively on the fIrst argument, based on 0 and successor. Applying two special cases of theorem 3,

we can easily prove lemmata like (al') x+O ~ x, (al') x+s(y) ~ s(x+y) , the commuted versions of

our original rules, as well as associativity ~md commutativity (for addition), to be in the inductive theory of

ARITH.

Now we define binomial coefficients by addition, in order to avoid fractions arising from the factorial defmition:

BIN: (bI) (0) ~ 0	 , (b2) (:) ~ s(O) , (b3) (::~) ~ (s~») + (:) .
s(k)

k
We further include the sum of binomial coefficients with fixed n into our definition, writing L n for .f (~):

J=O J
s(k) (n) k

SUM: Lo n (no)' (s2) L n ~ s(k) + L n .(sI) ~

Our goal is to prove the theorem	 .Ln (n). = 2n, formalized as rule: (*) L
n

n ~ s(s(O»n.
J=O J

Let R:= ARITH u BIN u SUM . We prove a few elementary properties of binomial coefficients fIrst, for

later use as lemmata. Start with

(b4) (n+;m») ~ 0 , which easily turns out to be in ITh(R), using A:= {al'r} , Le. (al') in reverse

direction. (Check for termination !) However, we have to separate this proof from the following of (b5) and (b6) ,

(b5) (:) ~ s(O), (b6) (s~») ~ 0 , because (b6) requires some assistance by (al') and (81')

and their reverses, together with (b4), which on its part needs several reduction steps with ARITH and (al'r). One

succeeds in choosing L = {aI', al', M}, which allows to apply (aI') and (al') in either direction, mixed with one

required (b4)-step.

Now we can proceed with some inductive properties of binomial sums, simultaneously proving

k	 k k k(n)
(s3) L 0 ~ s(O), (s4) k + L s(n) ~ L n + L n' and (*) , which is our goal.

With L = {M, b5, M, aI', 81', ass, comm} we choose a non-terminating auxiliary set again, furthermore E = 0

and A = {M, b5, b6, ass} , and apply theorem 3. Another problem occurs during the reduction of some critical

pairs: One can happen to fail with that proof if one proceeds too far reducing with RuluA. So it is necessary

to check for L -equivalence during intermediate steps as well .

The proof of this theorem is found in [HK88]. Meanwhile, we know that again some weakening of the premises
is possible : In (4) resp. (5) only those critical pairs with rules R' ; R have to be considered, which are needed

for the assertion of ground reducibility. Furthermore, also in (4) resp. (5) only certain occurencies of I— (E- resp.)
left hand sides have to be taken into account for critical pairs, namely if there are inductive complete positions,
i.e. occurencies that guarantee ground reducibility under R again. Of course, reducing once more the number of

critical pairs seems helpful to succeed in inductive proving. Nevertheless, basic problems remain in the process,
as we show in our case study.

3. A case study : Proving properties of binomial coefficients
We assume a standard specification ARITH of natural numbers arithmetic, defining addition, multiplication and

powers, recursively on the first argument, based on 0 and successor. Applying two special cases of theorem 3,
we can easily prove lemmata like (31') x+0 ——> x , (a2') x+s(y) ——> s(x+y) , the commuted versions of
our original rules, as well as associativity and commutativity (for addition), to be in the inductive theory of
ARITH.
Now we define binomial coefficients by addition, in order to avoid fractions arising from the factorial def'mition :

BN 1 ° 2 (") ° 3(3‘”) (") (”). (“ (%)—> ‚ (b) o —>s(>. (b) 80,) —> sac) + k .

k
We further include the sum of binomial coefficients with fixed n into our definition, writing Zn for J2,for“) :

0 (n) 80:) (n) k
SUM: (sl) Zn—> 0 , (s2) 2 , , » s(k) +211 -

' . n n n . n . nOur goal 1s to prove the theorem Z = 2 , formalized as rule : (*) Z n —> s(s(0))
i=0 j

Let R := ARITI-I U BIN U SUM . We prove a few elementary properties of binomial coefficients first, for
later use as lemmata. Start with

(b4) (n+sn(m)) -—> 0 ‚which easily turns out to be 'm ITh(R), using A := {a2‘r } , Le. (32') in reverse

direction. (Check for termination !) However, we have to separate this proof from the following of (b5) and (b6) ,

) —> 0 ‚because (b6) requires some assistance by (31') and (32')
11(b5) („) —-> s(0) . (b6) (nSon)

and their reverses, together with (M), which on its part needs several reduction steps with ARI'IH and (aZ'r). One
succeeds in choosing L = {al', a2', b4} , which allows to apply (al') and (a2') in either direction, mixed with one
required (b4)-step.

Now we can proceed with some inductive properties of binomial sums, simultaneously proving
it n k k k

(S3) 2 o —> S(0) . (S4) [k) + Z 501) ——> Z n + Z n , and (*) , which is our goal.

With L = {b4, b5, b6, al ' , a2', ass, comm} we choose a non-terminating auxiliary set again, furthermore E = @
and A = {b4, b5, b6, ass} , and apply theorem 3 . Another problem occurs during the reduction of some critical
pairs : One can happen to fail with that proof if one proceeds too far reducing with RqA . So it is necessary
to check for L -equivalence during intermediate steps as well .

4 . Discussion of problems and consequences
As we could see in our example, several decisions have to be made during the proof process. We sketch a few

of them: (1) When do we have to prove theorems simultaneously, when hierarchically?

(2) How do we group them into the sets I and E, how the lemmata into A and L?

(3) How far can we simply apply reduction, and when do we have to check for L -equivalence?

(4) How do we find appropriate lemmata ?

(5) How do we :fmd sufficiently strong induction hypotheses ?

Of course, one can hope to automatize parts of those problems by improvements in theory: E.g. further

reduction of the number of critical pairs might help in some cases; likewise the use of unfailing Knuth-Bendix,

automatic generation of termination orderings, etc. Also clever heuristics to obtain ideas for lemmata from the

Knuth-Bendix process can be useful, as well as clever heuristics to generalize induction hypotheses. The author is

aware that lots of work into these directions has been or is currently being done.

Nevertheless, there are lots of well-known reasons (e.g. no recursive enumerability, high complexity) to

believe that there will be little chance to write automatic induction procedures for a wider class of inductive

theorems. From our examples I could learn about the high vulnerability of a possibly automatized proof

procedure. It often needs human interaction, or the process will fail.

So I demand a different way of looking on the things: as in software development a bunch of helpful tools

exists, I want to have proof development tools which highly interact with the human expert upon the area of

proofs to be given. The system should provide the user with useful information of a running proof in easy

readible (or better: visible) form, especially the book-keeping about the proof up to now. It should allow manual

interaction at any point, and it should be able to assist the users intuition by concretely computed suggestions, say

for induction hypotheses, lemmata structuring and others. Since both of them, computers and humans, have

certain strong capabilities (most of them complementary), but their weaknesses in other aspects too, it seems to

me most promising for such a hardly accessible area like inductive proofs, to establish a methodology of

information exchange, and to build systems based on interaction rather than fully automatized black boxes.

Literature
[Gog80]	 Goguen, J. How to prove algebraic inductive hypotheses without induction, with applications to

the correctness of data type implementation, Lecture Notes in Comput. Sci., Vo1.87, Springer

Verlag (1980), pp.356-73.

[HuetSO] Huet, G. Confluent reductions: abstract properties and applications to term rewriting systems,

J.ACM, Vo1.27 (1980), pp.797-821.

[HH82] Huet, G.; Hullot, J.M. Proofs by induction_ in equational theories with constructors, J. Comp.

and Syst. Sci., Vo1.25 (1982), pp.239-66.

[HK88]	 Hofbauer, D.; Kutsche, R.-D. Proving Inductive Theorems Based on Term Rewriting Systems,

Proc. 1st lot. Workshop on Alg. and Logic Programming (GauBig, DDR), Akademie-Veriag,

1988. Revised version: Tech. Report 88-27, TU Berlin.

[JK86] Jouannaud, J.P.; Kounalis, E. Automatic proofs by induction in theories without constructors,

CNRS Rapport de Recherche No.295 (1986). Preliminary version in Proc. 1st LICS (1986).

[Mus80] Musser, D.R. On proving inductive properties of abstract data types, Proc. 7th ACM Symp. on

Principles ofprog.languages (1980), pp.154-62.

4 . Discussion of problems and consequences
As we could see in our example, several decisions have to be made during the proof process. We sketch a few

of them : (1) When do we have to prove theorems simultaneously, when hierarchically ?
(2) How do we group them into the sets I and E, how the lemmata into A and L ?
(3) How far can we simply apply reduction, and when do we have to check for L -equivalence ?

(4) How do we find appropriate lemmata ?

(5) How do we find sufficiently strong induction hypotheses ?

Of course, one can hope to automatize parts of those problems by improvements in theory : E.g. further
reduction of the number of critical pairs might help in some cases ; likewise the use of unfailing Knuth-B endix,
automatic generation of termination orderings, etc. Also clever heuristics to obtain ideas for lemmata from the
Knuth-Bendix process can be useful, as well as clever heuristics to generalize induction hypotheses. The author is
aware that lots of work into these directions has been or is currently being done.

Nevertheless, there are lots of well-known reasons (cg. no recursive enumerability, high complexity) to
believe that there will be little chance to write automatic induction procedures for a wider class of inductive
theorems. From our examples I could learn about the high vulnerability of a possibly automatized proof
procedure. It often needs human interaction, or the process will fail.

So I demand a different way of looking on the things : as in software development a bunch of helpful tools
exists, I want to have proof development tools which highly interact with the human expert upon the area of

proofs to be given. The system should provide the user with useful information of a running proof in easy
readible (or better: visible) form, especially the book-keeping about the proof up to now. It should allow manual
interaction at any point, and it should be able to assist the users intuition by concretely computed suggestions, say
for induction hypotheses, lemmata structuring and others. Since both of them, computers and humans, have
certain strong capabilities (most of them complementary), but their weaknesses in other aspects too, it seems to
me most promising for such a hardly accessible area like inductive proofs, to establish a methodology of
information exchange, and to build systems based on interaction rather than fully automatized black boxes.

Literature
[Gog80] Goguen, J. How to prove algebraic inductive hypotheses without induction, with applications to

the correctness of data type implementation, Lecture Notes in Comput. Sci., Vol.87, Springer-
Verlag (1980), pp.356-'73.

[Huet80] Huet, G. Confluent reductions: abstract properties and applications to term rewriting systems,
J .ACM, V0127 (1980), pp.797-821.

[HI-I82] Huet, G . ; Hullot, J.M. Proofs by induction in equational theories with constructors, J . Comp.
and Syst. Sci., Vol.25 (1982), pp.239-66.

[HK88] Hofbauer, D.; Kutsche, R.-D. Proving Inductive Theorems Based on Term Rewriting Systems,
Proc. 1s t Int. Workshop on Alg. and Logic Programming (GauBig, DDR), Akademie-Verlag,
1988. Revised version : Tech. Report 88-27, TU Berlin.

[JK86] Jouannaud, J.P.; Kounalis, E. Automatic proofs by induction in theories without constructors,

CNRS Rapport de Recherche No.295 (1986). Preliminary version in Proc. 1st LICS (1986).
[MusSO] Musser, D.R. 0n proving inductive properties of abstract data types, Proc. 7th ACM Symp. on

Principles of prog. languages (1980), pp.154-62.

Equational Proofs by Induction
using ~econd Order Variables

Dieter Hojbauer

Technische Universitiit Berlin, Fachbereich Infonnatik, FR 6-2

D-lOOO Berlin 10, FranIdinstr. '2:6/29

Extended Abstract

March 1989

Introduction

The inductive theory of a set of (first order) equations, Le. the set of equations valid in the
initial model, is not easily accessible by proof theoretic means. "Inductionless induction"
refers to a class of approaches which reduce this problem to well developed concepts for
term rewriting systems such as (ground) confluence, temination and ground reducibility (cf.

Jouannaud & Kounalis [JK86]). If such methods are formulated not aiming at the use of
completion procedures (Hofbauer & Kutsche [HK88]) , it turns out that some conditions
posed on the underlying set of equations can be weakend.

The following example shows, how an extension of the language by second order variables
enables inductive proofs which would have failed otherwise. Equations with second order
variables are used as a finite description of an infinite set of first order equations.

Example

Let the term rewriting system (TRS) R consist of the rules

o~ 0 ~ true 0 ~ s(y) ~ true

sex) ~ 0 ~ false sex) ~ s(y) ~ x ~ Y

if true then x else y ~ x if false then x else y ~ y

Suppose we want to prove the inductive theorem
if x ~ y then f(x, y) else fey, x) = if Y~ x then fey, x) else f(x, y) (*)

(where f is a binary operation symbol). Replacing the equality symbol by "~" we get a
nonterminating rewrite rule. We thus could try to use the following

Equational Proofs by Induction
using Second Order Variables

Dieter Hofbauer

Technische Universität Berlin, Fachbereich Informatik, FR 6-2

D-lOOO Berlin 10 , Franklinstr. 28/29

Extended Abstract
March 1989

Introduction

The inductive theory of a set of (first order) equations, i.e. the set of equations valid in the
initial model, is not easily accessible by proof theoretic means. "Inductionless induction"
refers to a class of approaches which reduce this problem to well developed concepts for
term rewriting systems such as (ground) confluence, temination and ground reducibility (cf.
Jouannaud & Kounalis [IK86]). If such methods are formulated not aiming at the use of
completion procedures (Hofbauer & Kutsche [HK88]) , it turns out that some conditions
posed on the underlying set of equations can be weakend.

The following example shows, how an extension of the language by second order variables
enables inductive proofs which would have failed otherwise. Equations with second order
variables are used as a finite description of an infinite set of first order equations.

Example

Let the term rewriting system (TRS) R consist of the rules
OSO—at rue OSs (y)—9t rue
s (x)$0 —> false s (x)$s (y) —> xSy

iftrue thenxelsey —> x iffalsethenxelsey + y

Suppose we want to prove the inductive theorem
if x Sy then f(x, y) else f(y, x) = if y SX then f(y, x) else f(x, y) (*)

(where f is a binary Operation symbol). Replacing the equality symbol by "—>" we get a
nonterminating rewrite rule. We thus could try to use the following

Theorem [HK88]
Let R and E be TRS's such that R is tenninating, every left hand side of a rule in E

is ground reducible under R, and for every critical pair < c, p > of R on E we have

* - * c ~R ~E ~R P .
Then E (if read as a set of equations) is in the inductive theory of R .

Using a completion approach to generate an appropriate set E would yield the infinite set of

equations
if x ~ y then f(si(x), si(y» else f(si(y), si(x)) =
if y::=; x then f(si(y), si(x» else f(si(x), si(y)) (iE IN:)

But after a closer look at R and at equation (*) one could guess that even
if x::=; y then t[x, y] else t[y, x] = if y::=; x then t[y, x] else t[x, y]

holds as an inductive theorem for all "context terms" t. This is a proper generalization of
(*). It can easily be written as an equation with a binary second order variable F:

if x::=; y then F(x, y) else F(y, x) = if Y::=; x then F(y, x) else F(x, y) (**)

Trying now to use the above theorem to prove (**) as an inductive consequence of R
(meaning that every fIrst order instance of (**) is an inductive theorem of R) we are
considering critical pairs of R on the left hand side of (**). The most interesting
superposition is the term if s(x)::=;s(y) then F(s(x), s(y)) else F(s(y), sex))
which yields the critical pair < c, P > where

c = if x::=;y then F(s(x), s(y)) else F(s(y), sex)~ and

p -7R if y:::;X then F(s(x), s(y» else F(s(y), sex)~ := p' .

The substitution (j = [F] is a match of c by the left hand side of (**) .
AVW. F(s(v),s(w»

We thus can apply the rewrite rule that corresponds to (**) and reduce c to p' ,joining the
critical pair as required. The other possible critical pairs! as well as the other premises in
the above theorem cause no problems.

Conclusion

There are several possibilities in order to cope with situations where infInitely many (fIrst

order) equations (or rules) occur, e.g. during a completion like process:

- Introducing new operation symbols and extending the set of rules accordingly (see M.

Hennann [Her88]), even generating such an extension automatically (K.-P. Jantke & M.

Thomas [ITS?])

1Note that it suffices to look at critical pairs arising from superposition of R on the subterm x~y in (**).

Theorem [HKSS]
Let R and E be TRS's such that R is terminating, every left hand side of a rule in B
is ground reducible under R , and for every critical pair < c, p > of R on E we have

c -i)R --=—)E <i>R p ,

Then E (if read as a set of equations) is in the inductive theory of R .

Using a completion approach to generate an appropriate set E would yield the infinite set of
equations

if x S y then f(si(x), si(y)) else f(si(y)‚ si(x)) =
if y _<_ x then f(si(y), si(x)) else f(si(x)‚ si(y)) (ie 1H)

But after a closer look at R and at equation (*) one could guess that even
if x S y then t[x‚ y] else t[y, x] = if y s x then t[y, x] else t[x, y]

holds as an inductive theorem for all "context terms" t . This is a proper generalization of
(*) . It can easily be written as an equation with a binary second order variable F :

if x S y then F(x, y) else F(y, x) = if y S x then F(y, x) else F(x, y) (**)

Trying now to use the above theorem to prove (**) as an inductive consequence of R
(meaning that every first order instance of (**) is an inductive theorem of R) we are
considering critical pairs of R on the left hand side of (**). The most interesting
superposition is the term if s(x)Ss(y) then F(s(x), s(y)) else F(s(y), s(x))
which yields the critical pair < c, p > where

c = if xSy then F(s(x), s(y)) else F(s(y), s(x)) and
p "’R if n then F(s(x), s(y)) else F(s(y), s(x)) := p' .

F

7tvw. F(s(v),s(w))
We thus can apply the rewrite rule that corresponds to (**) and reduce c to p' , joining the
critical pair as required. The other possible critical pairs1 as well as the other premises in
the above theorem cause no problems.

The substitution 6 = [] is a match of 0 by the left hand side of (**) .

Conclusion

There are several possibilities in order to cope with situations where infinitely many (first
order) equations (or rules) occur, e.g. during a completion like process :
- Introducing new operation symbols and extending the set of rules accordingly (see M.

Hermann [Her88]) , even generating such an extension automatically (K.—P. J antke & M.
Thomas [J T87])

1Note that it suffices to look at critical pairs arising fiom superposition of R on the subterm xSy in (**) .

• Using the concept of metarules and metavariables ofH. Kirchner [Kir87]

The use of second order variables however seems to be most natural in a number of
examples (cf. B. Gramlich [Gra88], who applies results on unifiability of second order
terms to analyse the divergence behaviour of completion). Even though there are some
severe difficulties in developing this approach. Unification of second order terms is
undecidable in general (W. Goldfarb [Go181]) and most general unifiers need not to exist
(cf. G. Huet [Hu75]). In this context one would benefit from results on syntactically
restricted subclasses of second order terms with decidable unification problem.

References

[GoI8).] Goldfarb, W. The undecidability ofthe second-order unification problem,
TCS 13 (1981)

[Gra88] Gramlich, B. Unification ofterm schemes - theory and applications,
SEKI-Report SR-88-18, UniversWit Kaiserslautern (1988).

[JK86]	 Jouannaud, J.P. and Kounalis, E. Automatic proofs by induction in theories
without constructors, CNRS Rapport de Recherche No.295 (1986).
Preliminary version in Proc. 1st LICS (1986).

[Her88] Hermann, M. Vademecum ofdivergent term rewriting systems, Research Report
CRIN 88-R-082, Nancy (1988).

[HK88] Hofbauer, D. and Kutsche, R.-D. Proving inductive theorems based on term
rewriting systems, Proc. Int. Workshop on Algebraic and Logic Programming,
Eds. J. Grabowski, P. Lescanne and W. Wechler, Akademie Verlag Berlin (1988).

[Hu75] Huet, G. A unification algorithmfor typed ..1.- calculus
TCS 1 (1975).

[IT87] Jantke, K.-P. and Thomas, M. A note on inductive inference for solving diver
gence in Knuth-Bendix-completion, unpublished (1987).

[KirS7] Kirchner, H. Schematization of infinite sets of rewrite rules. Applications to the
divergence ofcompletion processes, Proc. 2nd RTA, LNCS 256 (1987).

- Using the concept of metarules and metavariables of H. Kirchner [16:87]

The use of second order variables however seems to be most natural in a number of
examples (cf. B. Gramlich [Gra88], who applies results on unifiability of second order
terms to analyse the divergence behaviour of completion). Even though there are some
severe difficulties in developing this approach. Unification of second order terms is
undecidable in general (W. Goldfarb [G0181]) and most general unifiers need not to exist
(cf. G. Huet [Hu7 5]). In this context one would benefit from results on syntactically
restricted subclasses of second order terms with decidable unification problem.

References

[G018].] Goldfarb, W. The undecidability of the second-order unification problem,
. TGS 1.3 (19.81)

[Gra88] Gramlich, B. Unification of term schemes - theory and applications,
SEKI-Report SR-88—18, Universität Kaiserslautern (1988).

[JK86] Jouannaud, J.P. and Kounalis, E. Automatic proofs by induction in theories
without constructors, CNRS Rapport de Recherche No.295 (1986).
Preliminary version in Proc. 1st LICS (1986).

[Her88] Hermann, M. Vademecum of divergent term rewriting systems, Research Report
CRIN 88—R—082, Nancy (1988).

[HK88] Hofbauer, D . and Kutsche, R.—D. Proving inductive theorems based on term
rewriting systems, Proc. Int. Worksh0p on Algebraic and Logic Programming,
Eds. J . Grabowski, P. Lescanne and W. Wechler, Akademie Verlag Berlin (1988).

[Hu75] Huet, G. A unification algorithm for typed)1- calculus
TCS 1 (1975).

[JT87] Jantke, K.-P. and Thomas, M. A note on inductive inference for solving diver-
gence in Knuth-Bendix—completion, unpublished (1987).

[Kir87] Kirchner, H. Schematization of infinite sets of rewrite rules. Applications to the
divergence of completion processes, Proc. 2nd RTA, LNCS 256 (1987).

Inductive Theorem Proving Using Refined

Unfailing Completion Techniques

Bernhard Grarnlich

Universitat Kaiserlautern

Fachbereich Informatik

Postfach 3049

0-6750 Kaiserslautern

E-mail: gramlich@uklirb.uucp

Extended Abstract

We present a brief overview on completion based inductive theorem

proving techniques, point out the key concepts for the underlying "proof by

consistency" - paradigm and try to get an abstract description of what is

necessary for an algorithmic realization of such methods.

In particular, we give several versions of proof orderings, which

under certain conditions - are well-suited for that purpose. Together with

corresponding notions of (inductive) covering sets (cf. [Ba88]) we get

abstract "positive" and "negative" characterizations of inductive validity.

This leads to a better understanding of various sufficient operational

characterizations of inductive validity in a static sense (cf. [JoK086],

[K087], [HoKu88]). It provides a straightforward generalization of an

inductive validity criterion of [K087] to the case where some of the

equational conjectures may not be orientable. To be' a little bit more

precise concerning the "positive" and "negative" approach, let us assume

that we have given an equational theory presented by a ground convergent,

Le. terminating and ground confluent term rewriting system R, and a set C

of (equational) inductive conjectures of R. Then, proving inductive validity

Inductive Theorem Proving Using Refined

Unfailing Completion Techniques

Bernhard Grarnlich

Universität Kaiserlautern
Fachbereich Informatik

Postfach 3049
D-6750 Kaiserslautern

E-mail: gramlich@uklirb.uucp

Extended Abstract

We present a brief overview on completion based inductive theorem

proving techniques, point out the key concepts for the underlying "proof by

consistency" - paradigm and try to get an abstract description of. what is

necessary for an algorithmic realization of such methods.

In particular, we give several versions of proof orderings, which -

under certain conditions - are well-suited for that purpose. Together with

corresponding notions of (inductive) covering sets (of. [Ba88]) we get

abstract “positive" and “negative" characterizations of inductive validity.

This leads to a better understanding o f various sufficient Operational

characterizations of inductive validity in a static sense (cf. [JoK086],

[Kü87], [HoKu88]). I t provides a straightforward generalization of an

inductive validity criterion of [Kü8—7] to the case where some of the

equational conjectures may not be orientable. To be‘ a little bi t more

precise concerning the "positive" and "negative" approach, let us assume

that we have given an equational theory presented by a ground convergent,

Le. terminating and ground confluent term rewriting system R, and a set C

of (equational) inductive conjectures of R. Then, proving inductive validity

mailto:gramlich@uklirb.uucp

of C from a positive point of view amounts to replacing all C-steps by

R-steps in every ground proof using R union C. In the negative case the aim

consists in transforming the potentially inconsistent set· C into a provably

inconsistent one by deducing appropiate (inductive) consequences from R

union C (cf. [Ba88]). Inductive validity of C is guaranteed if potential

inconsisteny is impossible due to verifiable consistency. In both cases

appropiate proof orderings assure that the necessary proof transformation

process turns into a terminating proof simplification process.

Furthermore we consider several refinements and optimizations of

completion based inductive theorem proving techniques. In particular,

sufficient criteria for being a covering set including restrictions of

critical pairs (cf. [G08S], [Fr86], [K087], [Ba88]) and the usage of

non-equational inductive knowledge (cf. [HuH080], [Pa84]) are discussed.

Moreover a couple of lemma generation methods are brietly

summarized, most of which are known from classical inductive theorem

proving using induction schemes (cf. [BoM079]). Techniques of save

generalization (cf. [Gr8S], [JaTh88]) are particularly interesting, since

they provide means for syntactic generalizations, Le. simplifications, of

conjectures without loosing semantic equivalence. To be more precise, an

equation s' = t' is a save generalization of s = t, if s = t is an instance

of s' = t' and s = t, s' = t' are equivalent concerning inductive validity

W.r.t. R.

Finally we present the main features and characteristics of UNICOM, an

inductive theorem prover with refined unfailing completion techniques and

built on top of TRSPEC, a term rewriting based system for algebraic

specifications (cf. [AvBeGoMa86], [Sc88]).

References

[AvBeGoMa86] Avenhaus, J., Benninghofen, B., Gobel, R., Madlener, K.: TRSPEC: A Term

Rewriting Based System for Algebraic Specifications, Proc. 8th CADE,

Oxford,England, 1986

[Ba88] Bachmair, L.: Proof by Consistency in Equational Theories, Proc. of LICS,

1988

of C from a positive point of view amounts to replacing all C-steps by

R—steps in every ground proof using R union C. In the negative case the aim

consists in transforming the potentially inconsistent se t -C into a provably

inconsistent one by deducing appropiate (inductive) consequences from R

union C (of. [Ba88]). Inductive validity of C is guaranteed if potential

inconsisteny i s impossible due to verifiable consistency. In both cases

appropiate proof orderings assure that the necessary proof transformation

process turns into a terminating proof simplification process.

Furthermore we consider several refinements and optimizations of

completion based inductive theorem proving techniques. In particular,

suff icient cr i ter ia for being a cover ing set including restrictions of

critical pairs (of. [(36.85]. [Fr86], [K087], [Ba88]) and the usage of
non-equational inductive knowledge (of. [HuHoBO], [Pa84]) are discussed.

Moreover a couple of lemma generation methods are briefly

summarized, most of which are known from classical inductive theorem

proving using induction schemes (of. [BoMo79]). Techniques of save

generalization (of. [Gr85], [JaTh88]) are particularly interesting, since

they provide means for syntactic generalizations, i.e. simplifications, of

conjectures without loosing semantic equivalence. To be more precise, an

equation s ' = t' is a save generalization of s= t , if s= t i s an instance

of s ' = t ' and s= t , s ' = t' are equivalent concerning inductive validity

w.r.t. R.

Finally we present the main features and characteristics of UNICOM, an

inductive theorem prover with refined unfailing completion techniques and

built on top of TRSPEC, a term rewriting based system for algebraic

specifications (of. [AvBeGöMaBG], [Sc88]).

References

[AvBeGöMaSö] Avenhaus, J., Benninghofen, B . , Göbel, R., Madlener, K . : TRSPEC: A Term
Rewrit ing Based System for Algebraic Specifications, Proc. 8th CADE,
Oxford,England, 1986

[Ba88] Bachmair , L . : Proof by Consistency in Equational Theor ies, Proc . o f LICS,

1988

[BaDeHs86] Bachmair, L., Dershowitz, N., Hsiang,J.: Orderings for equational proofs,

Proc. of Symb. Logic in Computer Science, Cambridge, MA, 1986

[BoM079] Boyer, R., Moore, J.: A Computational Logic, Academic Press, 1979

[Fr86] Fribourg, L.: A strong restriction of the inductive completion procedure, Proc.

13th ICALP, Rennes, France, 1986

[G080] Goguen, J.A.: How to prove algebraic inductive hypotheses without induction,

Proc. of 5th CADE, ed. W. Bibel and R. Kowalski, LNCS 87, 1980

[G(85) Gobel, R.: A Specialized Knuth-Bendix Algorithm for Inductive Proofs, Proc.

Combinatorial Algorithms in Algebraic Structures, Universitiit Kaiserslautern,

1985

[G088] Gobel, R.: A Completion Procedure for Generating Ground Confluent Term

Rewriting Systems, Dissertation, FB Informatik, Universitiit Kaiserslautern,

Feb. 1988

[Gr85] Gramlich, B.: Zum Beweisen durch Reduktion und Induktion, Diplomarbeit,

Fakultiit fUr Informatik I, Universitiit Karlsruhe, 1985

[HsRu86] Hsing, J., Rusinowitch, M.: On word problems in equational theories, Tech.

Rep. 86/29, Dept. of Computer Science, SUNY at Stony Brook, USA

[HoKu88] Hofbauer, D., Kutsche, R.-D.: Proving inductive theorems based on term

rewriting systems, Techn. Report 88-12, TU Berlin, 1988, see also Proc. of an

International Workshop on Algebraic and Logic Programming, Gaussig, GDR,

Nov. 1988

[HuHu82] Huet, G., Hullot, J.: Proofs by Induction in Equational Theories with

Constructors, JACM 25(2), 1982

[JaTh88] Jantke, K.P., Thomas, M.: Inductive Inference for Solving Divergence in

Knuth-Bendix Completion, Tech. Rep. 88/R6, Dept. of Computer Science,

University of Glasgow, 1988

[JoK086] Jouannaud, J.-P., Kounalis, E.: Automatic proofs by induction in equational

theories without constructors, Proc. Symb. Logic in Computer Science, Boston,

Massachusetts, 1986

[Ka87] Kapur, D.: Proof by consistency, Artificial Intelligence 31, 1987

[KaNaZh86] Kapur, D., Narendran, P., Zhang, H.: Proof by induction using

test sets, Ploc. of 8th CADE, ed. J. Siekmann, LNCS 230, 1986

[Ki84] Kirchner, H.: A general inductive completion algorithm and application to

abstract data types, Ploc. of 7th CADE, LNCS 170, 1984

[Kfi87] Kuchlin, W.: Inductive Completion by Ground Proof Transformation, Proc.

CREAS, Lakeway, Texas, 1987

[Mu80] Musser, D.: On proving inductive properties of abstract data types, Proc. 7th

ACM Symp. on Principles of Programming Languages, Las Vegas, Nevada,

USA,1980

[Pa84] Paul, E.: Proof by induction in equational theories with relations between

constructors, Proc. of 9th CAAP, ed. B. Courcelle, Cambridge Univ. Press,

1984

[PI8S] Plaisted, D.A.: Semantic confluence tests and completion methods, Information

and Control 65, 1985

[Sc88] Scherer, R.: UNICOM: Ein verfeinerter Rewrite-basierter Beweiser fUr induktive

Theoreme, Diplomarbeit, FB Informatik, Universitat Kaiserslautem, 1988

[T086] Toyama, Y.: How to prove equivalence of term rewriting systems without

induction, LNCS 230, 1986

[BaDeHs86]

[BoMo79]

[Fr86]

[G080]

[G685]

[G688]

[(3:85]

[HsRu86]

[HoKu88]

[HuHu82]

[IaTh88]

[JOK086]

[Ka87]

[KaNaZh86]

[Ki84]

[K1187]

[M1180]

[Pa84]

[P185]

[8088]

[T086]

Bachmair, L., Dershowitz, N. , Hsiang,J.: Orderings for equational proofs,

Proc. of Symb. Logic in Computer Science, Cambridge, MA, 1986

Boyer, R., Moore, J.: A Computational Logic, Academic Press, 1979

Fribourg, L.: A strong restriction of the inductive completion procedure, Proc.

13th ICALP, Rennes, France, 1986
Goguen, I .A. : How to prove algebraic inductive hypotheses without induction,

Proc. of 5th CADE, ed. w. Bibel and R. Kowalski, LNCS 37, 1980
Göbel, R.: A Specialized Knuth-Bendix Algorithm for Inductive Proofs, Proc.

Combinatorial Algorithms in Algebraic Structures, Universität Kaiserslautern,

1985

Göbel, R.: A Completion Procedure for Generating Ground Confluent Term

Rewrit ing Sys tems , D i s ser ta t ion , FB Informatik, Un ive r s i t ä t Kaiserslautern,

Feb. 1988

Gramlich, B . : Zum Beweisen durch Redukt ion und Induktion, Diplomarbeit ,

Fakultät für Informatik I, Universität Karlsruhe, 1985

Hsing , J., Rusinowitch, M. : On word problems in equational theories , Tech.

Rep. 86/29, Dept. of Computer Science, SUNY at Stony Brook, USA

Hofbauer, D . , Kutsche , R.—D.: Proving induct ive theorems based on term

rewriting systems, Techn. Report 88-12, TU Berlin, 1988, see also Proc. of an

International Workshop on Algebraic and Logic Programming, Gaussig, GDR,

Nov. 1988

Huet , G . , Hul lot , I . : Proofs by Induct ion in Equational Theor ies with

Constructors, JACM 25(2), 1982

Jantke, K .P . , Thomas, M. : Induct ive Inference for So lv ing Divergence in

Knuth—Bendix Completion, Tech. Rep. 88/R6, Dept. o f Computer Science,

University of Glasgow, 1988

Iouannaud, J.-P., Kounalis, E.: Automatic proofs by induction in equational

theories without constructors, Proc. Symb. Log ic in Computer Science, Boston,

Massachusetts, 1986

Kapur, D.: Proof by consistency, Artificial Intelligence 31, 1987

Kapur, D . , Narendran, P. , Zhang, H.: Proof by induction using

test sets, Proc. of 8th CADE, ed. J. Siekmann, LNCS 230, 1986
Kirchner, H.: A general inductive completion algorithm and application to

abstract data types, Proc. of 7Lh CADE, LNCS 170, 1984

Kfichlin, W.: Inductive Completion by Ground Proof Transformation, Proc.

CREAS, Lakeway, Texas, 1987

Musser, D.: On proving inductive preperties of abstract data types, Proc. 7th

ACM Symp. on Principles of Programming Languages, Las Vegas, Nevada,

USA, 1980

Paul, E.: Proof by induction in equational theories with relations between

constructors, Proc. o f 9 th CAAP, ed . B . Courcel le , Cambridge Univ . Press ,

1984

Plaisted, D .A . : Semantic confluence tests and completion methods , Information

and Control 65, 1985

Scherer, R.: UNICOM: Ein verfeinerter Rewrite-basierter Beweiser für induktive

Theoreme, Diplomarbeit, FB Informatik, Universität Kaiserslautern, 1988

Toyama, Y.: How to prove equivalence o f term rewriting systems without

induction, LNCS 230, 1986

An equational approach to sorts for logic programming

Ulrich Furbach

March 1989

Forschungsgruppe Intellektik

Institut fur Informatik, TU Munchen

Postfach 202420, D 8000 Munchen 2

Many-sorted logic programming is discussed in the literature in various directions. There is work
aiming at an improvement of Prolog by augmenting it with sorts in order to relieve the task of
software engineering. Other approaches are aiming at bringing in "is-a"-structures to close the gap
between programming and knowledge representation.

In this short note I want to report an observatjon we made during the work on combining logic and
functional languages:
If one chooses equations, e.g. term rewriting systems as a functional language, it is very easy to use
this functional part of the combined language to define and to handle sorts and "is-a"-taxonomies.
As in (Ait-Kaci, Nasr 86) all this can be done within the unification procedure, but we do not have
to give any sophisticated semantics. The semantics of the sorted language is exactly the same as
the semantics of the combined language.

It is important to note that the method proposed in this paper is best suited within a framework,
in which the decision for the use of a combined logic and functional language has been made
nevertheless. In other words: if one uses a term-rewrite system as a functional language within
logic our mechanism of bringing in sorts can be seen as a very cheap byproduct. At least it gives a
formal semantic of order-sorted logic programming which can be run on a Hornclause interpreter.

Equational logic programs

We will use in the following equationallogic programs, Le. pairs (R,P) where R is a rewrite system
and P is a set of Hornclauses. We assume that P does not contain the 2-ary predicate symbol '=',
Le. there is no equality built-in in P. The following is a simple example:

R: O+X=X.
seX) + Y = sex +Y).

P: nodes(nil, 0).
nodes(t(L, N, R), (NL + N R) + s(O»
nodes(L,NL),
nodes(R,NR).

:

1

An equational approach to sorts for logic programming

Ulrich Furbach

March 1989

Forschungsgruppe Intellektik
Institut für Informatik, TU München
Postfach 202420, D 8000 München 2

Many-sorted logic programming is discussed in the literature in various directions. There is work
aiming at an improvement of Prolog by augmenting it with sorts in order to relieve the task of
software engineering. Other approaches are aiming at bringing in ”is—a”-structures to close the gap
between programming and knowledge representation.

In this short note I want to report an observation we made during the work on combining logic and
functional languages:
If one chooses equations, e.g. term rewriting systems as a functional language, it is very easy to use ,
this functional part of the combined language to define and to handle sorts and ”is—a”—taxonomies.
As in (Ait-Kaci, Nasr 86) all this can be done within the unification procedure, but we do not have
to give any sophisticated semantics. The semantics of the sorted language is exactly the same as
the semantics of the combined language.

It is important to note that the method proposed in this paper is best suited within a framework,
in which the decision for the use of a combined logic and functional language has been made
nevertheless. In other words: if one uses a term-rewrite system as a functional language within
logic our mechanism of bringing in sorts can be seen as a very cheap byproduct. At least it gives a
formal semantic of order-sorted logic programming which can be run on a Hornclause interpreter.

Equational logic programs

We will use in the following equational logic programs, i.e. pairs (R, P) where R is a rewrite system
and P is a set of Hornclauses. We assume that P does not contain the 2-ary predicate symbol ’2’,
i.e. there is no equality built-in in P . The following is a simple example:

R: 0+X=X.
s (X)+Y=s(X+Y) .

P : nodes(m'l, 0).
nodes(t(L, N, R), (NL + NR) + 3(0)) : —
nodes(L, NL) ,
nodes(R, NR).

2

Following an approach from (Holldobler 88) we assume a complete unification procedure UR, which
recursively enumerates a complete set of R-unifiers, i.e. unifiers for the theory defined by R. Then
we can use SLDE-resolution to interpret equationallogic programs; SLDE-resolution is simply like
SLD-resolution with the exception, that is uses UR to interpret the P-part of a program (R, P). The
following strong completeness result is the base for the interpretation of equationallogic programs.

Theorem 1 (Holldobler) Let (R,P) be an equationallogic program and UR a complete unifica
tion procedure for R. For every correct answer substitution (J' for (R, P) and goal statement D there
exists a computed answer substitution () for P U D wrt to SLDE-resolution with arbitrary selection
function, such that () :5:R (J'.

For the implementation of the extended unification procedure one can use the paramodulation rule
which is proven complete in this context in (Furbach et al 88).

Sorts

To introduce sorts we simply assume that a subset Sof the function symbols is used as sort symbols
and that a partial order -< over S is given. For the ease of notation we write functional applications
with sort symbols", as t : ", instead of ",(t).
Furthermore we agree on stating the fact that a term t has sort ", by defining the equation t : ", = t
in R, abbreviating this as t : "" too. Finally we use equations of the form x : ~ : ", = x : ~ to express
that ~ -< ", holds.

Using these conventions we can give a sorted version of the previous example:

R:
o: nat
sex) : nat = (x : nat)
0+ x: nat = x
sex : nat) + y : nat = sex + y)

P:
nodes(nil, 0).
nodes(maketree(L,N: nat,R),(NL +NR) +s(O)):
nodes(L,NL),
nodes(R, N R).

The following theorem states, that our mechanism 'really works'.

Theorem 2 If TJ and ~ are two different sort-symbols and t is a term, then t : ", is a logical
consequence of t : ~, ~ -< ", and R for a given sorted equational program (R, T).

A typical example for the use of 'is-a'-hierarchies is the following simple program, which can be
used to answer questions like? - eats(Tom, J erry).

2

Following an approach from (Halldobler 88) we assume a complete unification procedure UR, which
recursively enumerates a complete set of R—unifiers, i.e. unifiers for the theory defined by R. Then
we can use SLDE—resolution to interpret equational logic programs; SLDE-resolution is simply like
SLD-resolution with the exception, that is uses U R to interpret the P—part of a program (R, P). The
following strong completeness result is the base for the interpretation of equational logic programs.

Theorem 1 (Hölldobler) Let (R, P) be an equational logic program and U R a complete unifica—
tion procedure for R . For every correct answer substitution 0 for (R, P) and goal statement D there
exists a computed answer substitution € for P U D wrt to SLDE-resolution with arbitrary selection
function, such that 9 $ R o .

For the implementation of the extended unification procedure one can use the paramodulation rule
which is proven complete in this context in (Furbach et al 88).

Sorts

To introduce sorts we simply assume that a subset Sof the function symbols is used as sort symbols
and that a partial order < over S is given. For the ease of notation we write functional applications
with sort symbols 1] as t : 17 instead of 77(t).
Furthermore we agree on stating the fact that a term t has sort 77 by defining the equation t : 97 = t
in R, abbreviating this as t : 17, too. Finally we use equations of the form a: : E : n = :1: : £ 1:0 express
that € -< n holds.

Using these conventions we can give a sorted version of the previous example:

R :
Ozna t
s(a :) :na t= (mznat)
0+xzna t=x
s (x :na t)+y :na t=s (a :+y)

P:
n0des(nil,0).
nodes(maketree(L,N : nat,R), (NL + NR) + 3(0)) : —
nodes(L,NL),
nodes(R, NR).

The following theorem states, that our mechanism ’really works’.

Theorem 2 If 17 and f are two different sort-symbols and t is a term, then t : n is a logical
consequence of t : € , € 4 77 and R for a given sorted equational program (R, T) .

A typical example for the use of ’is-a’-hierarchies is the following simple program, which can be
used to answer questions like ? — eats(Tom, Jer ry) .

3

R:
cats ~ carnivorous
omnivorous ~ carnivorous
omnivorous ~ herbivorous
mice ~ herbivorous
humans ~ omnivorous
gorillas ~ omnivorous
Tom: cats
Jerry : mice

P:
eats(x : carnivorous, y : herbivorous).
eats(x : herbivorous, y : plants).

We have implemented this approach as a part of the ALPES-Prolog environment within ESPRIT
P973. We have given up occur-check, as Prolog did, to maintain execution time in acceptable
limits. In this prototype we have choosen a method which generates in a pre-processing step a pure
Prolog-program for a given equationallogic program (R, P). For this the term-rewrite system R is
transformed into a set of Prolog-clauses which is the extended unification procedure.

For a more efficient implementation one could use the framework for SLDE-paramodulation from
(Furbach et al. 89), which allows to seperate the inferences which deal with sorts from the rest of
the term rewrite system. Then the handling of sorts can be done by a special purpose unification
procedure.

References

Ait-Kaci,H., Nasr, R. LOGIN: A Logic Programming Language with Built-in Inheritance, Journal

of Logic Programming, 1986.

Conrad, T., Furbach, U. Sorts are nothing but Functions. An Equational Approach to sorts for

Logic Programming. FKI-89-88, TU Miinchen 1988.

Furbach, U., Holldobler, Schreiber, J. Horn Equality Theories and Paramodulation, to appear in:

Journal of Automated Reasoning, 1988.

Furbach, U., Holldobler, Schreiber, J. SLDE-Paramodulation, this volume 1989.

Holldobler, S. On the Foundations of Equational Logic Programming. Dissertation UniBw Miinchen

1988, to appear: Springer Lecture Notes in AI.

cats -< carnivorous
omnivorous -< carnivorous
omnivorous -< herbivorous
mice < herbivorous
humans -< omnivorous
gorillas % omnivorous
Tom : cats
Jerry : mice

eats(a: : carnivorous,y : herbivorous).
eats(a: : herbivorous,y : plants).

We have implemented this approach as a part of the ALPES—Prolog environment within ESPRIT
P973. We have given up occur-check, as Prolog did, to maintain execution time in acceptable
limits. In this prototype we have choosen a. method which generates in a pre-processing step a pure
Prolog—program for a given equational logic program (R, P) . For this the term—rewrite system R is
transformed into a set of Prolog—clauses which is the extended unification procedure.
For a more efficient implementation one could use the framework for SLDE-paramodulation from
(Furbach et al. 89) , which allows to seperate the inferences which deal with sorts from the rest of
the term rewrite system. Then the handling of sorts can be done by a special purpose unification
procedure.

References

Ait-Kaci,H., Nasr, R. LO GIN: A Logic Programming Language with Built—in Inheritance, Journal
of Logic Programming, 1986.

Conrad, T. , Furbach, U. Sorts are nothing but Functions. An Equational Approach to sorts for
Logic Programming. FKI—89—88, TU München 1988.

Furbach, U., Hfilldobler, Schreiber, J. Horn Equality Theories and Paramodulation, to appear in:
Journal of Automated Reasoning, 1988.

Furbach, U., Holldobler, Schreiber, J . SLDE-Paramodulation, this volume 1989.
Hiilldobler, S . On the Foundations of Equational Logic Programming. Dissertation UniBw München
1988, to appear: Springer Lecture Notes in Al.

SLDE-Paramodulation

Ulrich Furbach 1), Steffen Holldobler 2), Joachim Schreiber 3)

Recent interest in combined functional and logic programming languages has led to nume

rous proposals for the integration of equational and logic languages based on linear paramod

ulation. In order to increase efficiency various restrictions for paramodulation such as nar
rowing were proposed. However, the applicability of narrowing is limited, since narrowing is

only complete if the equational theory is confluent and terminating. For example, if we want

to compute with sets via the operation "u" then, of course, we have to specify that "u" is as

sociative, commutative, and idempotent. Unfortunately, such an equational theory is no
longer terminating. On the other hand, unification under associativity, commutativity, and
idempotence is fmitary and a type conformal unification algorithm exists. Should we not

build such a theory-unification algorithm into the narrowing procedure? Though Jouannaud
et al. (1983) showed that narrowing modulo equality is sound and complete if the theory in
consideration is confluent, coherent, and terminating modulo equality, many questions are
still open. Is narrowing modulo equality also independent of a selection function? Can we
generalize these results to conditional equational theories? Can we restrict the application of
narrowing modulo equality to socalled basic occurrences?

In Furbach et al. (1989) and Holldobler (1989) we proved the strong completeness of

linear paramodulation for Horn equational theories and demonstrated how various conditions
imposed one-by-one on the equational theory restrict the search space and allow to apply

special forms of paramodulation. The goal of this paper is to show that this framework can

be generalized to SLDE-paramodulation, Le paramodulation modulo equality, in much the
same way as SLD-resolution can be generalized to SLDE-resolution.

Throughout this paper we consider equational programs, Le. Horn clauses with the only
one predicate symbol == written infix. Since we intend to build parts of the theory into the
unification algorithm we partition an equational program into the parts E and EP. E will be

1) Forschungsgruppe Intellektik, Institut fUr Informatik, TU Miinchen, Postfach 202420,
D-8000 Miinchen, E-mail: uli@tumki.tu-muenchen.de

2) Fachgruppe Intellektik, Fachbereich Informatik, TH Dannstadt, Alexanderstr. 10, D
6100 Darmstadt, E-mail: xiisshoe@ddathd21.bitnet

3) FakulUit ffir Informatik, Universitat der Bundeswehr Miinchen, Werner-Heisenberg
Weg 39, D-8014 Neubiberg, E-mail: i21bjfs@ubw-m.uucp

SLDE-Paramodulation

Uhich Furbach 1), Steffen Hölldobler 2), Joachim Schreiber 3)

Recent interest in combined functional and logic programming languages has led to nume-
rous proposals for the integration of equational and logic languages based on linear paramod-
ulation. In order to increase efficiency various restrictions for paramodulation such as nar-
rowing were proposed. However, the applicability of narrowing is limited, since narrowing is
only complete if the equational theory is confluent and terminating. For example, if we want
to compute with sets via the Operation "U" then, of course, we have to Specify that "U" is as—
sociative, commutative, and idempotent. Unfortunately, such an equational theory is no
longer terminating. On the other hand, unification under associativity, commutativity, and
idempotence is finitary and a type conformal unification algorithm exists. Should we not
build such a theory-unification algorithm into the narrowing procedure? Though Jouannaud
et al. (1983) showed that narrown modulo equality is sound and complete if the theory in
consideration is confluent, coherent, and terminating modulo equality, many questions are
still open. Is narrowing modulo equality also independent of a selection function? Can we
generalize these results to conditional equational theories? Can we restrict the application of
narrowing modulo equality to socalled basic occurrences?

In Furbach et al. (1989) and Hölldobler (1989) we proved the strong completeness of
linear paramodulation for Horn equational theories and demonstrated how various conditions
imposed one-by-one on the equational theory restrict the search space and allow to apply
special forms of paramodulation. The goal of this paper is to show that this framework can
be generalized to SLDE-paramodulation, i.e paramodulation modulo equality, in much the
same way as SLD-resolution can be generalized to SLDE-resolution.

Throughout this paper we consider equational programs, i.e. Horn clauses with the only
one predicate symbol é written inflx. Since we intend to build parts of the theory into the
unification algorithm we partition an equational program into the parts E and EP. E will be

1) Forschungsgruppe Intellektik, Institut fiir Informatik, TU München, Postfach 202420,
D-SOOO München, E—mail: uli@tumki.tu-muenchen.de
Fach gruppe Intellektik, Fachbereich Informatik, TH Darmstadt, Alexanderstr. 10, D-
6100 Darmstadt, E-mail: xiisshoe@ddathd21.bitnet

Fakultät für Informatik, Universität der Bundeswehr München, Wemer—Heisenberg—
Weg 39, D-8014 Neubiberg, E—mail: i21bjfs@ubw-m.uucp

2)

3)

Theorem:
If [Q] is an element of the least jixpoint of TE,EP, then there exists a refutation of

EPu{<=Q} with respect to SWE-i-paramodulation and SWE-reflection.

Lifting this result yields a completeness result for our calculus. In analogy to (Holldobler

1989) we can proof a switching lemma and, thus, we obtain the strong completeness of

SLDE-i-paramodulation and SLDE-reflection.

Theorem:
Let R be a computation rule. For each correct answer substitution cr for E,EP

and <=F there exists an R-computed answer substitution e obtained by a refuta

tion of EPu{<=F} with respect to SWE-i-paramodulation and SWE-reflection

such that e is not less than cr modulo E.

We proceed as usual and impose conditions on our equational program in order to restrict

the search space. If the equational program is confluent modulo E then program clauses may

be used only in one direction without loosing completeness. The next step is to look for con

ditions such that we have to apply paramodulation only upon non-variable subterms. In the

case where E=0 these conditions were the restriction to term rewriting systems and to nor

malized answer substitutions. However, if E:t:0 then we must also require that E is regular

and E-normal form preserving, Le. whenever a term s is in normal form with respect to a

term rewriting system and S=Et, then t is also in normal form. By splitting goal clauses into a

skeleton and an environment part we obtain a strong completeness result for basic SLDE

narrowing and SLDE-reflection.

There are other interesting aspects: Our work demonstrates how special unification algo

rithms can be combined with universal unification procedures based on paramodulation or

special forms of it. Furthermore, applying the proof technique developed in (Holldobler

1989) allows to view unification problems under a special equational theory as constraints

and to force or delay the solution of these constraints according to an overall strategy.

Finally, since SLDE-paramodulation is sound and strongly complete, combining it with the

lazy resolution rule yields a sound and strongly complete set of inference rules for equational

logic programs.

References

U. Furbach,	 S. Holldobler, J. Schreiber: Horn Equality Theories and Paramodulation. To
appear in: Journal of Automated Reasoning: 1989

S.	 Holldobler: Foundations of Equational Logic Programming. Dissertation; to appear in:
Lecture Notes in Artifical Intelligence: 1989

J.	 P. Jouannaud, C. Kirchner, H. Kirchner: Incremental Construction of Unification Algo

rithms in Equational Theories. Proceedings of the 10th ICALP, LNCS 154, 361-373: 1983
J. W. Lloyd: Foundations of Logic Programming. Springer: 1984
J. Siekmann: Universal Unification. Proc. ECAI, 365-400: 1986

Theorem:

If [Q] is an element of the leastfixpoint of TEEP, then there exists a refutation of
EPU{<=Q} with respect to SLDE-i-paramodulation and SLDE—reflection.

Lifting this result yields a completeness result for our calculus. In analogy to (Hölldobler
1989) we can proof a switching lemma and, thus, we obtain the strong completeness of
SLDE-i-paramodulation and SLDE—reflection.

Theorem:
Let R be a computation rule. For each correct answer substitution 0' for E,EP
and ¢=F there exists an R-computed answer substitution 9 obtained by a refuta-
tion of EPU{<=F} with respect to SLDE-i-paramodulation and SLDE-reflection
such that 9 is not less than c modulo E .

We proceed as usual and impose conditions on our equational program in order to restrict
the search space. If the equational program is confluent modulo E then program clauses may
be used only in one direction without loosing completeness. The next step is to look for con-
ditions such that we have to apply paramodulation only upon non-variable subterms. In the
case where E=® these conditions were the restriction to term rewriting systems and to nor-
malized answer substitutions. However, if E¢® then we must also require that E is regular
and E—normal form preserving, i.e. whenever a term 3 is- in normal form with respect to a
term rewriting system and s=Et, then t is also in normal form. By splitting goal clauses into a
skeleton and an environment part we obtain a strong completeness result for basic SLDE-
narrowing and SLDE-reflection.

There are other interesting aspects: Our work demonstrates how special unification al go-
rithms can be combined with universal unification procedures based on paramodulation or
special forms of it. Furthermore, applying the proof technique developed in (Hölldobler
1989) allows to view unification problems under a special equational theory as constraints
and to force or delay the solution of these constraints according to an overall strategy.
Finally, since SLDE-paramodulation is sound and strongly complete, combining it with the
lazy resolution rule yields a sound and strongly complete set of inference rules for equational
logic programs.

References

U. Furbach, S . Hölldobler, J. Schreiber: Horn Equality Theories and Paramodulation. To
appear in: Journal of Automated Reasoning: 1989

S . Holldobler: Foundations of Equational Logic Programming. Dissertation; to appear in:
Lecture Notes in Artifical Intelligence: 1989

J. P. Jouannaud, C. Kirchner, H. Kirchner: Incremental Construction of Unification Algo-
rithms in Equational Theories. Proceedings of the 10th ICALP, LNCS 154, 361-373: 1983

J. W. Lloyd: Foundations of Logic Programming. Springer: 1984
J. Siekmann: Universal Unification. Proc. ECAI, 365-400: 1986

handled by the unification algorithm used by the paramodulation rule, which is applied upon
clauses from EP. For example, E may contain the axioms of associativity, commutativity, and
idempotence for a set operator, which can be used within EP, or the equations defming order

sorted operators for a typed program EP.

An equational program E,EP admits a least Herbrand E-model over the Herbrand E-uni

verse, Le. the quotient of the Herbrand universe modulo the finest congruence generated by

E.

In the sequel we assume that whenever l==r{:::F is an element of EP then r==l{:::F is also an

element of EP, where F denotes a set of equations; this is a technicality allowing us to apply

paramodulation only from left-to-right.

As an intermediate step towards the intended completeness result for SLDE-paramod

ulation we give a :f1xpoint characterization of the least Herbrand E-model using the function

TE,EP(I) = {[t==t] I t is a ground term}
u { [Q] I there exists an occurrence n in Q and a ground instance l==r{:::F

of a clause in EP such that [Qlnl] = [1] and {[F]}u{[Qln~rl]} cl},

where [Q] denotes the congruence class containing the equation Q, [F] = {[Q]/QeF}, and

Qlnl denotes the subterm of Q at n. Along the lines of (Furbach et al. 1989) we can show

that TE,EP admits a least fixpoint which is equal to the least Herbrand E-model.

Turning to the proof theoretic aspects we assume the reader to be familiar with basic

notions from logic programming and universal unification (for a thorough treatment see e.g.

Lloyd 1984 and Siekmann 1986). In the sequel we suppose to have a correct and complete
E-unification procedure UP:E for the equational theory E at our disposal.

Let {:::Fu{Q} be a goal clause, Q be the selected equation, l==r{:::F' be a new variant of a

program clause, and n be an occurrence of Q. If Qlnl and I are E-unifiable with (j e
UPE(Qlnl,I), then {:::(j(FuF'u{Qln~rl}) is called SLDE-paramodulant.

Instead of adding the axiom of reflexivity to our equational program we use the following
inference rule to terminate paramodulation proofs successfully. Let {:::Fu{s == t} be a goal
clause and s==t be the selected equation. If s and t are E-unifiable with (j e UP:E(s,t), then
{:::(jF is an SLDE-reflectant.

We demonstrated in (Furbach et al. 1989) that linear paramodulation is only complete if

we add the functional reflexive axioms to the equational program. The same effect can be
achieved if we allow to instantiate goal clauses before performing a paramodulation step. We
call such a step an SLDE-i-paramodulation step.

By relating applications of TE,BP with SLDE-i-paramodulation resp. SLDE-reflection steps
in the usual way we obtain

handled by the unification algorithm used by the paramodulation rule, which is applied upon
clauses from EP. For example, E may contain the axioms of associativity, commutativity, and
idempotence for a set operator, which can be used within EP, or the equations defining order-
sorted operators for a typed program EP.

An equational program E,EP admits a least Herbrand E—model over the Herbrand E-uni-
verse, 1.6. the quotient of the Herbrand universe modulo the finest congruence generated by
B.

In the sequel we assume that whenever 1=‘=r<=F is an element of EP then rél<=F is also an
element of EP, where F denotes a set of equations; this is a technicality allowing us to apply
paramodulation only from left-to-right.

As an intermediate step towards the intended completeness result for SLDE—paramod—
ulation we give a fixpoint characterization of the least Herbrand E-model using. the function
TE,EP(I) = { [tät] | t is a ground term}

U { [Q] | there exists an occurrence 1: in Q and a ground instance lér<=F
of a clause in EP such that [al] == [1] and {[F]}U{ [ece—rl]} ; I },

where [Q] denotes the congruence class containing the equation Q, [F] = {[Q]|Qe F}, and
Q|Tt| denotes the subterm of Q at n. Along the lines of (Furbach et al. 1989) we can show
that TEE? admits a least fixpoint which is equal to the least Herbrand E-model.

Turning to the proof theoretic aspects we assume the reader to be familiar with basic
notions from logic programming and universal unification (for a thorough treatment see c. g.
Lloyd 1984 and Siekmann 1986). In the sequel we suppose to have a correct and complete
E-unification procedure UP]; for the equational theory E at our disposal.

Let <=FU{Q} be a goal clause, Q be the selected equation, lér<=F’ be a new variant of a
program clause, and rc be an occurrence of Q. If Q|1t| and l are E—unifiable with 0' e
UPE(Q|1t|,1), then <=o(FuF’u{Ql1ce—r|}) is called SLDE-paramodulant.

Instead of adding the axiom of reflexivity to our equational program we use the following
inference rule to terminate paramodulation proofs successfully. Let <=FU{s i t} be a goal
clause and s i t be the selected equation. If s and t are E—unifiable with 6 & UPE(s,t)‚ then
<=oF is an SLDE-reflectant.

We demonstrated in (Furbach et a1. 1989) that linear paramodulation is only complete if
we add the functional reflexive axioms to the equational program. The same effect can be
achieved if we allow to instantiate goal clauses before performing a paramodulation step. We
call such a step an SLDE-i-paramodulation step.

By relating applications of TE,EP with SLDE—i-paramodulation resp. SLDE—reflection steps
in the usual way we obtain

Narrowing as Operational Senlan'tics for

Logic-Functional Programming

Alexander Bockmayr

Sonderforschungsbereich 314 "KOnstliche Intelligenz - Wissensbasierte Systeme"

Institut fOr Logik, Komplexitat und Deduktionssysteme

Universitat Karlsruhe, Postfach 6980, D-7500 Karlsruhe 1, F. R. Germany

e-mail: bockmayr@ira.uka.de

Extended Abstract

During the last years there has been an i"ncreasing interest in the combination of logic

and (first order) functional programming. While some authors in a more pragmatic

approach propose a synthesis of existing programming languages like Prolog and Lisp,

others develop the idea of logic-functional programming on a more theoretical level.

It has turned out that term rewriting and narrowing in conditional equational theories

provide a nice theoretical framework for the integration of logic and functional

programming. In this approach a logic-functional program is a set of conditional

equations. As conditional rewrite rules these equations may be employed for the

simplification or evaluation of terms ("functional programming"), whereas in the

conditional narrowing process, which can be seen as a generalization of Prolog's

SLD-resolution, the same equations are used for the solution of goals or equations

("logic programming").

From a theoretical point of view, narrowing provides a complete unification procedure

for any equational theory that can be defined by a canonical term rewriting system

(without extravariables in the conditional case). For practical applications however,

narrowing in its original form is much too inefficient.

For functions inductively defined over some set of constructors C - the~e are typical

functional programs - the narrowing algorithm enumerates the whole constructor term

algebra T(C,X). Moreover there are serious inefficiencies in this enumeration process:

the same substitutions are generated in many different ways. This means that the

narrowing algorithm behaves worser than a trivial generate-and-test algorithm.

Narrowing as Operational Semantics for

Logic-Functional Programming

Alexander Bockmayr
Sonderforschungsbereich 314 "Künstliche Intelligenz - Wissensbasierte Systeme"

lnstitut für Logik, Komplexität und Deduktionssysteme
Universität Karlsruhe, Postfach 6980, D-7500 Karlsruhe 1, F. R. Germany

e-mail: bockmayr@ira.uka.de

Extended Abstract

During the last years there has been an increasing interest in the combination of logic
and (first order) functional programming. While some authors in a more pragmatic
approach propose a synthesis of existing programming languages like Prolog and Lisp,
others develop the idea of logic-functional programming on a more theoretical level.

It has turned out that term rewriting and narrowing in conditional equational theories
provide a nice theoretical framework for the integration of logic and functional
programming. In this approach a logic-functional program is a set of conditional
equations. As conditional rewrite rules these equations may be employed for the
simplification or evaluation of terms ("functional programming"), whereas in the
conditional narrowing process, which can be seen as a generalization of Prolog's
SLD-resolution, the same equations are used for the solution o f goals o r equations
("logic programming").

From a theoretical point of view, narrowing provides a complete unification procedure
for any equational theory that can be defined by a canonical term rewriting system
(without extravariables in the conditional case). For practical applications however,
narrowing in its original form is much too inefficient.

For functions inductively defined over some set of constructors C — these are typical
functional programs — the narrowing algorithm enumerates the whole constructor term
algebra T(C,X). Moreover there are serious inefficiencies in this enumeration process:
the same substitutions are generated in many different ways. This means that the
narrowing algorithm behaves worser than a trivial generate-and-test algorithm.

mailto:bockmayr@ira.uka.de

In order to improve this poor behaviour many optimizations have been proposed.

Usually they restrict the set of occurrences at which a narrowing step is performed

(basic narrowing, innermost narrowing, outermost narrowing, selection narrowing) and

normalize the goal after each narrowing step (normal narrowing). But even the most

sophisticated narrowing procedure is inadequate to solve for example a system of

linear equations. However, such equations occur very often in practical applications.

It is therefore necessary to incorporate special theories and their unification algorithms

into the general narrowing process. This can be done using narrowing modulo an

equality theory E. Building-in equality theories may reduce the search space of the

narrowing algorithm dramatically. The main difficulty is that the E-unification algorithms

must be able to deal with additional free function symbols.

A logic-functional programming language without built-in theories will not meet the

requirements of practical applications.

References

[1]	 A. Bockmayr: Conditional Rewriting and Narrowing as a Theoretical Framework for
Logic-Functional Programming. Int. Ber. 10/86. Universitat Karlsruhe, Fakultat fOr
Informatik, 1986

[2]	 A. Bockmayr: Narrowing with Inductively Defined Functions. Int. Ber. 25/86.
Universitat Karlsruhe, Fakultat fOr Informatik, 1986

[3]	 A. Bockmayr: A Note on a Canonical Theory with Undecidable Unification and
Matching Problem. J. Autom. Reas. 3 (1987), 379-381

[4]	 A. Bockmayr: Narrowing with Built-in Theories. Proc. 1nl. Workshop on Logic and
Algebraic Programming, GauBig, GDR, Nov. 88. Akademie-Verlag Berlin, 1988

In order to improve this poor behaviour many optimizations have been proposed.
Usually they restrict the set of occurrences at which a narrowing step is performed
(basic narrowing, innermost narrowing, outermost narrowing, selection narrowing) and
normalize the goal after each narrowing step (normal narrowing). But even the most
sophisticated narrowing procedure is inadequate to solve for example a system of
linear equations. However, such equations occur very often in practical applications.

It is therefore necessary to incorporate special theories and their unification algorithms
into the general narrowing process. This can be done using narrowing modulo an
equality theory E. Building—in equality theories may reduce the search space of the
narrowing algorithm dramatically. The main difficulty is that the E-unification algorithms
must be able to deal with additional free function symbols.

A logic-functional programming language without built-in theories will not meet the
requirements of practical applications.

Re fe rences

[1] A. Bockmayr: Conditional Rewriting and Narrowing as a Theoretical Framework for
figic—Fulnctional Programming. Int. Ber. 10/86. Universität Karlsruhe, Fakultät für
n ormati , 1986

[2] A. Bockmayr: Narrowing with Inductively Defined Functions. Int. Ber. 25/86.
Universität Karlsruhe, Fakultät für lnformatik, 1986

[3] A. Bockmayr: A Note on a Canonical Theory with Undecidable Unification and
Matching Problem. J. Autom. Reas. 3 (1987), 379-381

[4] A. Bockmayr: Narrowing with Built—in T heories. Proc. Int. Workshop on Logic and
Algebraic Programming, Gaußig, GDR, Nov. 88. Akademie-Verlag Berlin, 1988

On Goal and Term Reduction Calculi for Conditional Rewriting

Peter Padawitz
Universitat Passau

Postfach 2540
D-8390 Passau

[BK86] and [DOS88] classify approaches to conditional rewriting with regard to the
way the conditions are evaluated. This suggests starting out from a notion of goal
reduction and deriv'ing from that the notion of conditional term reduction. (Goals are
sets of atomic formulas; H denotes the empty goal; for further basic notions used here,
cf. [Pad88J, Sect. 2.)

Given a set R of conditional equations of the form usu'{:::::~ (with goal ~), let us first
follow [Kap84] and define the goal reduction relation recursive1y (as the limit of
approximating relations I-rR,i):

1 ~rR l' <=>def	 3 i~o s. t. 1 ~rR, i l'
1 ~rR,O l' <=>def	 3 normal atom p : 1 = 1'U{P} or

3 u=u' € R, 8,x,f : 1 = 8[u[f]!x], l' = 8[u'[f]!x]

1 ~rR,i+ 1 l' <=>def	 1 ~rR,i l' or
3 u=u'<=.a € R, 8,x,f : 1 = 8[u[f]!x], l' = 8[u'[f]!x], .a[f] ~rR,i* Z.

If the only predicate symbols of the underlying specification are equality predicates,
the set NA of normal atoms is usually chosen as the set of reflexive equations tst. But
even in the equationa1 case, other definitions of normal atoms make sense as well. For
instance, the normal-join systems of [DOS88] correspond to the restriction of I'JA to
equations tst where t is irreducible w.r.t. R. Reducibility, however, refers to the term
reduction relation ~rR, which can be derived from the goal reduction relation I-rR:

t ~rR t' <=>def {t=x} ~rR {t'=x}.

Another definition of normal atoms admits non-reflexive equations or even non
equat i ona1 atoms, whi ch belong to some base theory (cf. [Pad88J, Sect. 7).

In the book just cited we have defined goal reduction non-recursive1y, with the help
of two inference rules:

Goal Reduction Rule	 8[u[f]!x]

8[u'[f]!X] u ~[f]

Reflection Rule 1 u {p}

p normal

1

Let us denote the correspond'ing 'inference relation by I-R. (Since inference relations are
per se transitive, we need not write I-R*.) Based on this notion, the term reduction
relation is defined as follows:

t ~R t' <=>def 3 u=u'<=~ € R, c,x,f : t = c[u[f]!x], t' = c[u'[f]!x], ~[f] ~R z.
With respect to successful derivation sequences, both notions of goal reduction
coi nci de:

Proposit ion 1:	 '1 ~R Z iff 1 ~rR* Z.

Following [BDH86], we say that')' has a rewrite proof Hf 'I I-R H. An 'immediate
consequence of Prop. 1 is

On Goal and Term Reduction Calculi for Conditional Rewriting
Peter Padawitz

Universität Passau
Postfach 2540
D-8390 Passau

[BK86] and [D0888] c l ass i f y approaches t o conditional r ewr i t i ng w i t h regard t o the
way the condi t ions are evaluated. Th i s suggests s ta r t i ng out f r om a no t ion o f goa l
reduct ion and der iv ing f rom tha t the no t ion o f condi t ional term reduct ion. (Goals are
sets o f atomic fo rmulas ; 3 denotes the empty goal,- f o r f u r the r basic not ions used here,
cf. [Pad88], Sect. 2.)

Given a se t R o f cond i t i ona l equa t i ons o f t he f o rm u-=-u'<=o (w i t h goa l o) , l e t us f i r s t
f o l l ow [Kap84] and def ine the goal reduc t ion re l a t i on recurs ive ly (as the l im i t of
approximating relations l—rR,i):

‚. l—rR
g" <=>def El i.>.0 s.t. 9’ t-rR,i ?"

? l—rR‚o ?" <=>def El normal atom p : 2' = ‘3"U{D} or
El UEU' € R, 6,x,f : 2' = 8 [u [f] / x] , 7' = 8[u ’ [f] /x]

'3' FrR , i+ l ?" <=>clef '? | - rR, i 7' °F
El usu'e—wo € R, 6,x,f : 7 = SEUEfJ/x], g" = 8Eu'[f]/x], on] l—rR,i* 3.

I f t he on l y p red i ca te symbo l s o f t he unde r l y i ng spec i f i ca t i on a re equa l i t y p red i ca tes ,
t he se t NA o f no rma l a toms i s usua l l y chosen as t he se t o f re f lex ive equa t i ons t a t . Bu t
even i n the equational case, other de f in i t ions o f normal atoms make sense as we l l . For
instance, :the normal- jo in sys tems of [D0888] correspond t o the res t r i c t i on of NA to
equa t i ons ta t whe re t i s i r reducible w . r . t . R. Reduc ib i l i t y , howeve r , re fe rs t o t he term
reduc t i on re l a t i on ——>.—R, wh i ch can be de r i ved f rom the goal r educ t i on re l a t i on l—rR:

t —-)rR t ' (==>d {tax} l-rR {t'EX}.

Ano the r de f i n i t i on o f no rma l a toms adm i t s non - re f l ex i ve equa t i ons o r even non—
equat iona l a toms , wh i ch be long t o some base t heo ry (c f . [Pad88] , Sec t . 7) .

I n t he book j us t c i t ed we have de f i ned goa l r educ t i on non - recu rs i ve l y , w i t h t he he lp
o f two inference ru les:

Goal Reduction Rule 8EuEf1/x]
UEU'<=8 € R

8[u ' [f] / x] u »3Ef]

Ref lec t ion Rule 2' u {p}
p normal

7

Le t us denote t he co r respond ing i n fe rence re l a t i on by I-—R. (S ince i n fe rence re l a t i ons are
pe r se t r ans i t i ve , we need no t w r i t e l—R*.) Based on t h i s no t i on , t he te rm reduc t i on
re la t ion i s defined as fo l l ows :

t —>R t ' <=>def El usu'<=o € R, c,x,f : t = cEfJ /x] , t ' : c [u ' [f] / x] ‚ «SETJ l—R .9'.

With respect t o success fu l de r i va t ion sequences, both not ions o f goal reduct ion
co inc ide :

Proposit ion 1: wl—RB' i f f ???-rl?" ‚ß'.

Following [BDH86], we say that 7 has a rewr i te proof i f f ? l—R H. An immediate
consequence o f Prop. 1 i s

Proposi tion 2: t ~R t' iff t ~rR t'.

We remind of the fact that goal and term reduction depend on the choice of normal
atoms. In the sequel, I et us suppose that these atoms are exactly the refl exi ve
equations (see above). Then goal reduction and term reduction are related to each other
as follows:

Proposi t ion 3: {t=:t'} I-R g iff t ~R* u and t' ~R* u for some u.

So one may switch between the recursive and the non-recursive view on goal
reduction. However, given that R is f'inite, it is easy to decide whether I-R is applicable
to 1, while the reducibility of 1 w.r.t. I-rR is in general undecidable. [Kap871 [JW861
[D0588J overcome this problem by requiring R to be simplifying, reductive or
decreasing, respectively. All these notions include the existence of a Noetherian term
ordering> that conta'jns ~R. The notions differ with respect to further conditions on >.
The question remains whether these conditions are necessary. Let us approach it from
another side. The actual purpose of goal reduction is to use it for proving
(unconditional) theorems. Of course, I-R is sound:

Proposition 4: 11-R g implies Mod(R) 1= 1.

The completeness of I-R agrees with the Church-Rosser property of R: R is called
Church-Rosser if

Mod(R) 1= '1 implies 11-R g. (eR)

In the unconditional case, it is well-known that the Church-Rosser property of R is
equivalent to the confluence of ~R*. This result remains valid for conditional
equations, although the proof must proceed somewhat differently. One cannot conclude
from l1od(R) F tat' that there is a sequence of reductions of the form

t =tt~-U1~*t2*~-U2~*t3 '" tn-t~-un_1~*tn = t'

(and then derive tat' ~R JJ, i.e., by Prop. 3, t---7R*U and t'---7R*U, by induction on n).
Instead, one may induce on the length of a shortest paramodulating derivation from tst'
to 15 whose existence follows from l1od(R) F tat' (cf. [Pad881 Thm. 5.3.5).

So we have to look for decidable criteria for the confluence of ~R*. In the
unconditional case, the Knuth-Bendix theorem tells us that the confluence test can be
reduced to f'initely many critical pairs, provided that ---7R is Noetherian. Other
confluence criteria avoid this assumption, but require that R be non-ambiguous (cf.
[Hue801 [BK86]). However, all criteria rely on the assumption that the infinite set of
independent reductions need not be considered becalJse they are confluent in any case.
Unfortunately, this does not hold in the conditional case, as the following argument
shows.

Given tat'*=U=U' € R and a reduction f~R 9 such that uCfJ=u'Cf] I-R 15, one obtains
the independent reduct ions

c[t[f]/x] ~R c[t'[f]/x] and c[t[f]/x] ~R c[t[g]/x]. (1)

Of course, c[t'CfJ/xJ can be reduced into c[t'[g]/x]. However, c[t[g]/x] need not be
reducible into this term because uCfJ=u'CfJ f-R 15 need not imply u[gJ=u'[g] I-R if.

On the other hand, by Prop. 3, uCf]=u'CfJ I-R if is equi val ent to:

u[f] ~R* v and u'[f] ---7R* v for some v.

Thus we have the "branchings"

Proposi t ion 2: t—>Rt ' i f f t——>rRt’.

We rem ind o f t he f ac t t ha t goa l and t e rm reduc t i on depend on t he cho i ce o f no rma l
a toms . I n t he seque l , l e t us suppose t ha t t hese a toms a re exac t l y t he re f l ex i ve
equations (see above). Then goal reduct ion and te rm reduct ion are re la ted t o each other
as fo l l ows :

Proposi t ion 3: {tst'H—RB’ i f f t——>R*uand t '—>R*u fo r some u.

80 one may sw i t ch be tween the recurs ive and the non- recurs ive v i ew on goal
reduction. However, given t ha t R i s f i n i t e , i t i s easy t o decide whether I—R i s applicable
to y, while the reducibi l i ty of 9' w.r.t. I—rR i s i n general undecidable. [Kap87]. [JM/66],
[00388] ove rcome th i s p rob lem by requ i r i ng R t o be s imp l i f y i ng , r educ t i ve o r
decreasing, respect ive ly . A l l these not ions include the existence o f a Noetherian term
o rde r i ng > t ha t con ta i ns —>R. The no t i ons d i f f e r w i t h r espec t t o f u r t he r cond i t i ons on >.
The ques t i on rema ins whe the r t hese cond i t i ons a re necessa ry . Le t us approach i t f r om
ano the r s i de . The ac tua l pu rpose o f goa l r educ t i on i s t o use i t f o r p rov ing
(uncond i t i ona l) t heo rems . Of cou rse , Hg i s sound:

Propos i t i on 4: 7 I-R B’ imp l i es Mod(R) != 7.

The comp le teness o f He agrees w i t h the Church-Rosser property o f R: R i s called
Chu rch -Rosse r i f

Mod(R)I=7 implies all—R ß’. (CR)

In t he uncond i t i ona l case , i t i s we l l - known tha t t he Chu rch -Rosse r p rope r t y o f R i s
equ i va len t t o t he con f l uence o f ——>R*. Th i s r esu l t r ema ins va l i d f o r cond i t i ona l
equa t i ons , a l t hough t he p roo f mus t p roceed somewha t d i f f e ren t l y . One canno t conclude
f rom Moda?) l= t s t ' t ha t t he re i s a sequence o f r educ t i ons o f t he f o rm

t = t.‚*<—-u1—>*t2*<——u2——>*t3 t,,_1*<—-u,,_..,—>*"tn = t '

(and then derive t.--=t‘ l—R 2313., by Prop. 3, t—>R*u and t'—>R*u, by induction on n).
Instead, one may induce on the length o f a shortest paramodulat ing der iva t ion f rom ta t '
to z whose existence fol lows from Mod(R) l= t s t ' (c f . [Pad88], Thm. 5.3.5).

80 we have t o l ook f o r dec idab le c r i t e r i a f o r t he con f l uence o f —>R*. I n t he
uncond i t i ona l case , t he Knuth-Bend ix theorem te l l s us t ha t t he con f l uence t es t can be
reduced t o f i n i t e l y many c r i t i ca l pai rs, provided t ha t ——>R i s Noetherian. Other
confluence c r i t e r i a avoid t h i s assumption, but require t ha t R be non-ambiguous (cf .
EHueBO]. EBK86J). However, a l l cr i ter ia rely on the assumption that the inf in i te set of
independent reduct ions need no t be considered because they are conf luent i n any case.
Unfor tunate ly , t h i s does no t hold i n the condit ional case, as the f o l l ow ing argument
shows.

Given tEt'<=UEU' € R and a reduction f——>R g such that uEf]:—:u'[f] I—R 2’, one obtains
t he independent r educ t i ons

cEtEfJ/x] —>R c [t ' [f] / x] and c [t | I f] /x] —>R cEtEgZI/x]. (I)

Of course, cEt 'EfJ/x] can be reduced i n to cEt'EgZI/xl However, cEtIIgII/x] need not be
reducible into this term because uEfJäu'Ef] I—R E need not imply u[g]au'[g] l—R E.

0n the other hand, by Prop. 3 , uEfJEu'EfJ I—R H i s equivalent to:
uEf] ——>R* v and u'Ef] —>R* v for some v.

Thus we have the "branchings"

(2)

and
u'[t] -7R* v, u'[f] -7R u'[gl (3)

If there would be a l'Joetherian term ordering> such that c[t[f]/x] is greater than u[f]
and u'[f] w.r.t. >, we could apply the induction hypothesis and deduce that (2) and (3) can
be made confl uent, i.e.,

v -7R* v', u[g] -7R* v', v -7R* v", u'[g] -7R* v"

for so me vI,v". If wee0 u1d f urt her assumethat u[f] > v, the n wee 0 u1d apply the
induction hypothesis once more and infer that the two reductions starting from v can be
made confluent as well, i.e.,

for some vo' Putting together these reductions, we would obta'in

u[g] -7R* VO and u'[g] -7R* VO

and thUS, by Prop. 3, u[g]=u'[g] I-R H, so that (1) can be made confluent.

We conclude that the confluence of independent reductions is guaranteed only if some
Noetherian term ordering> satisfies the following property:

(A)	 For all t=t'~.a € R With, say, .a = {U1=U1',...,un=un'}, substitutions f, terms c, x € var(c) and 1iim,
.a[t] I-R If implies c[t[f]/x] » {c[t'[t]/x], uj[f], uj'[f]} (where» is the multiset extension of ».

Only the further requirement that c[t[f]/x] be greater than uJf] and uj'[f] even if .a[f]

has no rewrite proof ensures that reducibility w.r.t. R is decidable (cf. the proof of
[DOS881 Prop. 4). This strengthen'ing of (A) reads precisely as follows:

(6)	 For all t=t'~.a € R with, say,.a ={U1=U1',...,Un=un'}, substitutions f, terms c, x € var(c) and liiin,
~[t[f]/x] » {u;[f], uj'Ef]} and .a[t] I-R If implies c[t[t]/x] >c[t'[f]/xl

(B) and (CR) ensure that the equational theory of Mod(R) is decidable. For weakening (B),
one has to change the definition of goal and term reduction. So far, two modifications
have been proposed.

In [Pad881 we have restricted the set of normal atoms to those reflexive equations
t=t where t is irreducible w.r.t. R. Under this assumption, the above argument on
independent reductions proceeds differently: v becomes irreducible and thus v, v' and v"
are all the same so that we onl y need c[t[f]/xJ > (u[flu'[f]J for concl udi ng that
u[g]=u'[g] has a rewrite proof. Indeed, the reference to > can be avoided completely
because the induction step can now be justified by the fact that the shortest proof of
(1) is longer than the shortest proofs of (2) and (3). Thi s is essential for establ i shi ng
the strong-confluence criterion [Pad881 Thm. 9.6.1, which does not presuppose any
Noetherian term ordering (and which generalizes [Hue801 Lemma 3.3, to conditional
equations). The restriction of normal atoms to irreducible equations, however, entails
that (CR) can be guaranteed only for normalizable equations, i.e., for equations t=t' such
that t~R u and t'~R u' for some irreducible terms u,u'. (The details of this approach
are given in [Pad881 Sect. 7).

A second approach for weakeni ng (B) stems from the concept of unfailing completion
(cf. [HR87]). It starts out from the observation that goal and term reduction need only
be defined on ground, i.e. variable-free, goals and terms, respectively. This holds true
because soundness and completeness of the cut calculus w.r.t. Mod(R) (cf. [Pad881 Thm.

u[f] —>R* v, u [f] '—’R u[g] (2)
and

u ' [f] —+R* v, u ' [f] ——>R u'Eg]. . (3)

I f there would be a Noetherian term ordering > such that c [t [f] / x] i s greater than u [f]
and u'Ef] w.r.t. >, we could apply the induction hypothesis and deduce that (2) and (3) can
be made con f l uen t , i .e . ,

v —a»|a* v', u[g] —>R* v', v —>_R* v", u'Eg] ->R* v"
f o r some v ' , v " . I f we cou ld f u r t he r assume tha t u [f] > v , t hen we cou ld app ly t he
induct ion hypothesis once more and i n fe r tha t the two reduct ions s ta r t i ng f rom v can be
made con f l uen t as we l l , i .e. ,

v' —>R* vo and v" —>R* v0

f o r some vo. Pu t t i ng t oge the r t hese reduc t i ons , we wou ld ob ta i n
u[g] —->R* vo and u'[g] —>R* vo

and thus, by Prop. 3, u[glau'Eg] l—R H, so that (1) can be made confluent.
We conclude tha t the confluence of independent reduct ions i s guaranteed only i f some

Noetherian term ordering > sa t i s f i es the fo l low ing property:
(A) For a l l t-=-t'<=-8 <-: R w i th , say, «3 = {u1au1',...,unsun'}, substitutions f , terms c, x € var(c) and lsisn,

oEf] l -R ß' implies c [t [f] / x] >> {cEtTfJ/x], uiEf], ui'EfJ} (where >> i s the mult iset extension of >).

Only the further requirement that c [t [f] / x] be greater than uiEf] and ui'Ef] even i f BU]
has no rewr i t e p roo f ensu res t ha t r educ ib i l i t y w . r . t . R i s dec idab le (c f . t he p roo f o f
[D0588], Prop. 4). This strengthening of (A) reads precisely as follows:
(B) For a l l tat '<=o e R w i t h , say, «8 = {u1au1'‚„.‚u„au„'}‚ subst i tu t ions f , t e rms c , x € var(c) and ls isn ,

cEtEfJ/x] >> {uilifl ui'EfJ} and «SEfJ FR .8' implies cEtEfJ/x] > cEt'EfJ/xl

(B) and (CR) ensure tha t the equational theory o f Mod(R) i s decidable. For weakening (B),
one has t o change t he de f i n i t i on o f goal and t e rm reduc t i on . So fa r , two mod i f i ca t i ons
have been proposed.

I n [PadBB] , we have res t r i c t ed t he se t o f no rma l a toms t o t hose re f l ex i ve equat ions
t a t where t i s i r reduc ib le w. r . t . R. Under t h i s assumpt ion, the above argument on
i ndependen t r educ t i ons p roceeds d i f f e ren t l y : v becomes i r r educ ib l e and t hus v , v ' and v "
are a l l the same so that we only need c[t[fJ/x] > (u[f],u'[f_7} f o r concluding that
uEgIIäu'Eg] has a r ewr i t e p roo f . Indeed, t he re fe rence t o > can be avo ided comp le te l y
because the induct ion s tep can now be j us t i f i ed by the f ac t t ha t the shor test proof of
(l) i s longer than the shor test proofs o f (2) and (3). Th is i s essent ia l f o r establ ishing
t he s t r ong—con f l uence c r i t e r i on [PadBB] , Thm. 9 .6 .1 , wh i ch does no t p resuppose any
Noetherian term ordering (and which generalizes [HueBO], Lemma 3.3, to conditional
equa t i ons) . The res t r i c t i on o f no rma l a toms t o i r r educ ib l e equa t i ons , howeve r , en ta i l s
t ha t (CR) can be guaranteed on l y f o r normal izable equa t i ons , i .e . , f o r equa t ions t a t ‘ such
tha t t—>R u and t'—>R u ' f o r some i r r educ ib l e t e rms u,u' . (The de ta i l s o f t h i s approach
are given i n [PadBB], Sect. 7).

A second approach f o r weaken ing (B) s t ems f r om the concep t o f un fa i l i ng comp le t i on
(c f . [HR87]) . I t s t a r t s out f rom the observation tha t goal and te rm reduct ion need only
be defined on ground, i .e. var iab le- f ree , goals and te rms, respect ive ly . Th is holds t rue
because soundness and completeness of the cut calculus w.r.t. Mod(R) (cf. [PadBB], Thm.

4.2.2) i mmedi atel y i mpl y:
Mod(R) 1= '1 iff Mod(R) 1= '1'

where l' is 1 with all variables be replaced by different Skolem constants. The term
orderi ng > is now buil t into the defi nit ions of goal and term reduction: the Goal
Reduction Rule becomes:

S[t/x] u=u'~.a or u'=u~~ € R

t = c[u[f]/y] > c[u'[fJ/y] = t'

S[t'/x] u .a[fJ t has no proper superterm in S[t/x]

Accordingly, the term reduction relation is now def'ined as follows:

t ~R t' <=>def 3 u=u'~.a or u'=u~~ € R, c,x,f : t = c[u[f]/x] > c[u'[fJ/x] = t', .a[f] r-R If.

The conditions on > are that> is Noetherian on ground terms (including Skolem
constants) and

(C)	 for all t=t'~.a € R with, say,.a = {U1=u1', ... ,un=un '}, ground substitutions f, terms c, x € var(c) and'
Is.is.n, c[t[f]/x] » {uJfJ, Uj'[fJ} and .a[fJ r-R If implies c[t[fJ/x] > c[t'[fJ/x] or c[t'[f]/x] > c[t[f]/x].

(C) yields both that (CR) is equivalent to the confluence of ---7R* (for ground goals and
terms and w.r.t. the new definitions of I-R and ---7R) and that the equational theory of
Mod(R) is decidable.

This approach shifts the descent property from a condition on R to a feature of
rewrite proofs via R. It admits generalizations to non-equational and inductive theories
that will be worked out in a forthcoming paper.

References

[BDH86] L. Bachmair, N. Dershowitz, 1. Hsiang, Orderings for Equational Proofs, Proc. IEEE Symp. Logic in

Computer Science (1986) 346-357

[BK86] J.A. Bergstra, J.W. Klop, Conditional Rewrite Rules: Confluence and Tennination, J. Comp. and

Syst. Sciences 32 (1986) 323-362

[DOS88] N. Dershowitz, M. Okada, G. Sivakumar, Canonical Conditional Rewrite Systems, Proc. CADE '88,

Springer LNCS 310 (1988) 538-549

[HR87] J. Hsiang, M. Rusinowitch, On Word Problems in Equational Theories, Proc. ICALP '87, Springer

LNCS 267 (1987) 54-71

[Hue80] G. Huet, Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems,

Journal ACM 27 (1980) 797-821

[JW86] J.-P. Jouarmaud, B. Waldmarm, Reductive Conditional Term Rewriting Systems, Proc. Conf. Formal

Description of Programming Concepts rn, North-Holland (1986) 223-244

[Kap84] S. Kaplan, Conditional Rewrite Rules, Theoretical Computer Science 33 (1984) 175-194

[Kap87] S. Kaplan, Simplifying Conditional Term Rewriting Systems: Unification, Termination and

Confluence, J. Symbolic Computation 4 (1987) 295-334

[Pad88] P. Padawitz, Computing in Horn Clause Theories, EATCS Monographs on Theor. Comp~ Sci.16,

Springer (1988)

4.2.2) immediately imply:
Mod(R)I= 7 iff Mod(R)l= 7 '

where 9" i s 7 wi th a l l va r i ab les be replaced by d i f f e ren t Skolem cons tan t s . The term
ordering > i s now bui l t into the definitions of goal and term reduction: the Goal
Reduction Rule becomes:

SEt/x] uau'<=e or u'au¢=o e R
t = cEf l /y] > c 'EfJ /y] = t'

sEt'lx] U «SEfJ t has no proper superterm in SEt/x]

Accordingly, the term reduction relation i s now defined as follows:
t —'>R t' <=>def a uau'{=e or u'au<==-a € R, c‚x‚f : t = cEf l lx] > c 'EfJ /x] = t', M i] He 3'.

The conditions on > are that > i s Noetherian on ground terms (including Skolem
constants) and
(C) for all tat‘<=e e R w i t h , say, a = {u1au1',...‚u„au„'}‚ ground substitutions f , terms c, x € var(c) and '

isisn, cEtEfJ/x] >> {ui[f]‚ ui'EfJ} and eEf] FR 2’ implies cEtEfJ/x] > c[t‘[f]/x] or cEt'Efl/x] > cEtEfJ/x].
(C) yields both that (CR) i s equivalent to the confluence of ——>R* (f o r ground goals and

t e rms and w.r . t . the new def in i t ions o f He and -—>R) and t ha t the equational theory of
Mod(R) is decidable.

Th is approach sh i f ts the descent property f rom a condit ion on R to a fea tu re of
rewr i te proofs v ia R. I t admi ts general izat ions to non—equational and induct ive theories
tha t w i l l be worked out in a forthcoming paper.

References

[BDH86] L. Bachmair, N. Dershowitz, J. Hsiang, Orderings for Equational Proofs, Proc. IEEE Symp. Logic'in
Computer Science (1986) 346-357

[BK86] LA. Bergstra, J.W. Klop, Conditional Rewrite Rules: Confluence and Termination, J. Comp. and
Syst. Sciences 32 (1986) 323-362

[DOS 88] N. Dershowitz, M. Okada, G. Sivakumar, Canonical Conditional Rewrite Systems, Proc. CADE ‘8 8,
Springer LNCS 310 (1988) 53 8-549

[I-IR87] J . Hsiang, M. Rusinowitch, On Word Problems in Equational Theories, Proc. ICALP '87, Springer
LNCS 267 (1987) 54—71

[Hue8 0] G. Huet, Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems,
Journal ACM 27 (1980) 797-821

[JW8 6] J.-P. Jouannaud, B. Waldmann, Reductive Conditional Term Rewriting Systems, Proc. Conf. Formal
Description of Programming Concepts III, North-Holland (1986) 223 -244

[Kap84] S. Kaplan, Conditional Rewrite Rules, Theoretical Computer Science 33 (1984) 175-194
[Kap87] S. Kaplan, Simplifying Conditional Term Rewriting Systems: Unification, Termination and

Confluence, J. Symbolic Computation 4 (1987) 295-334
[Pad88] P. Padawitz, Computing in Horn Clause Theories, EATCS Monographs on Theor. Comp. Sci. . 16 ,

Springer (1988)

An algorithm for testing sufficient completeness of a simple class of conditional specifica
tions

Stephan Uhrig
FB 10 - Informatik

U niversitat· des Saarlandes
6600 Saarbriicken 11

e-mail: stuh@sbsvax.informatik.uni-saarland.dbp.de

The following is an extended abstract of [RUBB], which has been written by Jean - Luc
Remy and me at CRIN in Nancy (France). We assume familiarity with the basic notions
of term rewriting.

i.Introduction: Sufficient completeness of equational specifications is a well - known prere

quisite for proof by consistency. We present a method for testing sufficient completeness of

a simple class of conditional specifications which can be looked upon as special reductive

conditional term rewriting systems (CTRSs for short). Such a CTRS consists of a finite

set of rules p::l -+ r over a signature L, L being devided in a set C of constructors and a

set D of defined operators. p is a conjunction of boolean terms (called literals) and I a

rooted term, i.e. a term t=f(t1, ... ,tn), where feD and all subterms are constructor-terms

(t is also called f - rooted). Former algorithms (as [ZhB4]) made use of inductively defined

test sets: For every term in such a set there must be at least one rule, that can be applied.

The method, which is described here, uses a different strategy, consisting in two steps: the

test of half- spannedness and the test of well - spannedness.

2.Half- spannedness: Let (L, R) be a CTRS and fe D. f is said to be half-spanned, if for

every ground - term t = f(ul""'un) (ui being a constructor term for every i, l~i~n) there

exists a rule p: :l-+r and a ground - substitution a, such that a(l) = 1. (L, R) is called

half - spanned, if every fe D is half - spanned. Let now G(t) denote the set of all ground

instances of term t (wrt C) and G({t1 , ... ,tn}) the set G(t1)U ...UG(n)' The method for test

ing half - spannedness is an extension to the multi - sorted case of a method presented in

[ThB4] and [LLTB 7] . Its theoretical background is shortly presented here: The method

An algorithm for testing sufficient completeness of a simple class of conditional specifica-
tions

Stephan Uhrig
FB 10 -— Informatik

Universität des Saarlandes
6600 Saarbrücken 11

e — mail: stuh@sbsvax.informatik.uni — saarland.dbp.de

The following is an extended abstract of [RU88], which has been written “by Jean — Luc
Rémy and me at CRIN in Nancy (France). We assume familiarity with the basic notions
of term rewriting.

1.1ntroduction: Sufficient completeness of equational specifications is a well -— known prere-

quisite for proof by consistency. We present a method für testing sufficient completeness of

a simple class of conditional specifications which can be looked upon as special reductive

conditional term rewriting systems (CTRSs for short). Such a CTRS consists of a finite

set of rules p::l —+ r over a signature 2 ,): being devided in a set C of constructors and a

set D of defined operators. p is a conjunction of boolean terms (called literals) and l a

rooted term, i.e. a term t= f(t1,...,tn), where RD and all subterms are constructor— terms

(t is also called f— rooted). Former algorithms (as [Zh84]) made use of inductively defined

test sets: For every term in such a set there must be at least one rule, that can be applied.

The method, which is described here, uses a different strategy, consisting in two steps: the

test of half— spannedness and the test of well — spannedness.

2.Half— spannedness: Let (Z, R) be a CTRS and fe D. f is said to be half— spanned, if for

every ground—term t=f(u1, . . . ,un) (ui being a constructor term for every i , léién) there

exists a rule p::l—rr and a ground—substitution 0, such that o(l)=t . (2, R) is called

half - spanned, if every f eD is half -— spanned. Let now G(t) denote the set of all ground —

instances of term t (wrt C) and G({t1,...,tn}) the set G(t1)U...UG(n). The method for test—

ing half -- spannedness is an extension to the multi -— sorted case of a method presented in

[Th84] and [LLT87]. Its theoretical background is shortly presented here: The method

mailto:stuh@sbsvax.informatik.uni-saarland.dbp.de

makes use of complements of terms, a complement of a term tE T c (Tc == set of all con

structor ground - terms) being a finite set T of terms, such that T c == G(t)U*G(T) (U*

"denoting the disjoint union). For linear terms this complement can easily be constructed

(see [Th84], [LLT87], [RU88]). These notions are extended to linear substitutions in such

a way, that:

Theoreml: Every rooted term t and "every linear substitution s, such that domain of s

equals the set of variables of t, verify:

G(t) G({;(t)! r E complement of s}) U* G(s(t» 0

Let now a semi -linear term t be a term, such that every variable of sort s in t, where

there exists only a finite set of ground - terms for s, appears exactly once in t. The main

theorem is the following:
--.....

Theorem2: Assume A is an unambiguous set of linear rooted terms (the terms in A share

no ground - instances), B is a set of rooted terms, such that the set of all f - rooted terms

in B)s/semi -linear for every fE D, that appears as root in B. YeA) and V(B) are the vari

ables that appear respectively in A and B and X == XAU*XB is a partition of the variables,

such that V(A)g(A and V(B)~XB' used for the construction of the complements in A and

B respectively. Then B covers A (that means G(A)~G(B» "iff one of the following assertions

is true:

A ... 0;

There exists a substitution a that unifies a in A and b in B, i.~. a(a) == a(b),

such that a(a) is linear, and: (B - {b}) U {r(b)lr E compI. of a'b}

covers (A - {a}) U {r(a)1 r E campI. of a'a}, where a'a (resp. a'b)

denotes the restriction of a to Var(a)nDom(a) (resp. Var(b)nDom(a»,

such that all variables of the image of a'a (resp. a'b)

have been isomorphically renamed by variables of X A - YeA) (resp. X B - V(B». 0

' makes use of complements of terms, a complement of a term te TC (TC=set of all con-

structor ground—terms) being a finite set T of terms, such that TC=G(t)U"_‘_G(T) (U*

" denoting the disjoint union). For linear terms this complement can easily be constructed

(see [Th84], [LLT87], [RU88]). These notions are extended to linear substitutions in such

a way, that:

Theoreml: Every rooted term t and "every linear substitution 3, such that domain of s '

equals the set of variables of t , verify:

G(t) = G({r(t)| r e complement of 3}) U* G(s(t)) o

Let now a semi- l inear term t be a term, such that every variable of sort s in t , where

there exists only a finite set of ground —terms for s , appears exactly once in t . The main

theorem is the following:
‚

Theorem2: Assume A is an unambiguous set of linear rooted terms (the terms in A share

no ground—instances), B is a set of rooted terms, such that the set o f all f - roo ted terms

in B, is’semi -linear for every fe D , that appears as "root in B. V(A) and V(B) are the vari-

ables that appear respectively in A and B and X = XAU*XB is a partition of the variables,

such that V(A)SXA and V(B)§XB, used for the construction of the complements in A and

B respectively. Then B covers A (that means G(A)EG(B)) iff one of the following assertions

is true: _ -- .

— A == @;

- There exists a substitution 0' that unifies a in A and b in B, i.e—. 0(a) = o(b),

such that 0(a) is linear, and: (B — {b}) U {r(b)lr e compl. of cr’b}

covers (A - {a}) U {r(a)l r e compl. of o’a}, where o’a (resp. o’b)

denotes the restriction of a to Var(a)flDom(o) (resp. Var(b)flDom(o)),

such that all variables of the image of o’a (resp. o’b)

have been isomorphically renamed by variables of XA— V(A) (resp. XB —V(B)). O

The algorithm itself is now an implementation of the above result, where for every fe D A

is initialized by {f(Xl"" ,xn)} and B by the set of all f - rooted lefthand - sides of (I, R).

3.Well- spannedness: Considering lite:rals as boolean atoms, we form for every lefthand

side in R the disjunction of the preconditions of all rules with this lefthand - side. Then we

test, if this disjunction is logically equal to true. This can be done by some propositional

calculus ([RU88]) or using the rewriting system given in (Hs85]. The system (I, R) is

called well- spanned, if this test is successfull for all lefthand - sides in R and if (I, R) is

half - spanned. If (I, R) is a well- spanned, reductive, left - rooted and semi -linear

CTRS, then it is sufficiently complete wrt C.

4.Conclusion: The algorithm, developped according to the above mentioned results applies

to a wide class of CTRSs. It is more efficient for this class as algorithms based on the con
--~_.. ~ .-,.'

struction of inductive test sets and we think that further investigation in the method could

lead to the solution of some of the problems inherent to the "test set" - method (see f. ex.

[Zh84]).
//

BIBLIOGRAPHY

(Hs85] : J. Hsiang: Refutational theorem proving using term rewriting systems; Artificial
Intelligence, 25, pp. 255 - 300, 1985

[LLT87] : A. Lazrek, P. Lescanne, J.]. Thiel: Proving inductive equalities, algorithms
and implementation; Rapports de Recherche No. 682, INRIA, Juin 1987

[RU88] : J.L. Remy, St. Uhrig: An algorithm for testing sufficient completeness of a
simple class of conditional specifications; CRIN Report No. 88 - R - 155, CRIN Nancy,
1988

[Th84] : J.J. Thiel: Stop losing sleep over incomplete data type specifications; Proc. of
the eleventh ACM Conference on programming languages, Salt Lake City, (Utah, USA),
1984

(Zh84] : H. Zhang: REVEUR4: Etude et mise en oeuvre de la reecriture conditionnelle,
these de 3ieme cycle, U niversite de Nancy 1, 1984

" The algorithm itself is now an implementation of the above result, where for every f eD A

is initialized by {f(x1,...,xn)} and B by the set of all f — rooted lefthand - sides of (Z, R).

3.Wel.l—spannedness: Considering literals as boolean atoms, we form for every lefthand—

side in R the disjunction of the preconditions of all rules with this lefthand — side. Then we

test, if this disjunction is logically equal to true. This can be done by some propositional

calculus ([RU88]) or using the rewriting ' s y s t em 'g iven in [Hs85]. The syStem (Z, R) is

called well—spanned, if this test is successfull for all lefthand-sides in R and if (2, R) is

half —spanned. I f (E , R) is a we l l—spanned , reductive, le f t - rooted and semi- l inear

CTRS, then it is sufficiently complete wrt C .

4.Conclusion: The algorithm, developped according to the above mentioned results applies

to a wide class of CTRSs. It is more efficient for this class as algorithms based on the con—

struction of inductive test sets and we think that fither investigation in them-method could

lead to the solution of some of the problems inherent to the ”test set” -method (see f. ex.

[Zh84])’;__.
I

BIBLIOGRAPHY \-

[H385] : J . Hsiang: Refinational theorem proving using term rewriting systems; Artificial
Intelligence, 25, pp. 255 —300, 1985

[LLT87] : A. Lazrek, P . Lescanne,].]. Thiel: Proving inductive equalities, algorithms
and implementation; Rapports de Recherche No. 682, IN RIA, Juin 1987

[RU88] : J .L . Rémy, S t . Uhrig: An algorithm for testing sufficient completeness of a
simple class of conditional specifications; CRIN Report No. 88— R- 155, CRIN Nancy,
1988 _

[Th84] : J J . Thiel: Stop losing sleep over incomplete data type specifications; Proc. of
the eleventh ACM Conference on programming languages, Salt Lake City, (Utah, USA),
1984

[Zh84] : H. Zhang: REVEUR4: Etude et mise en oeuvre de la reecriture conditionnelle,
these de 3ieme cycle, Universite de Nancy 1, 1984

Vervollst~ndlgung von ordnungssortlerten
bedlngten Glelchungen

Harald Ganzinger

Universitat Dortmund

Abteilung Informatik

Postfach 50 05 00

D - 4600 Dortmund 50

Abstract

Order-sorted specifications can be transformed into equivalent many-sorted
ones by using injections to implement subsort relations.

In this paper we improve a result of Goguen. Jouannaud. and Meseguer about
the relation between order-sorted and many-sorted rewriting.

We then apply recent techniques in completion of maIJ-y-sorted conditional
equations to systems obtained from translating order-sorted conditional
equations.

Emphasis will be on ways to overcome some of the problems with non-sort
decreasing rules.

Vervo l l s tänd lgung von o rdnungsso r t l e r t en
bed ingten Gle i chungen

Harald Ganzinger

Universität Dortmund
Abteilung Informatik
Postfach 50 05 00

D - 4000 Dortmund 50

Abstract

Order-sorted specifications can be transformed into equivalent many-sorted
ones by using injections to implement subsort relations.

In this paper we improve a result of Goguen, Jouannaud. and Meseguer about
the relation between order-sorted and many—sorted rewriting.

We then apply recent techniques in completion of many—sorted conditional
equations to systems obtained from translating order-sorted conditional
equafions

Emphasis will be on ways to overcome some of the problems with non-sort-
decreasing rules.

1

Vervollsbindigung von Horn IGauseln Prograulmen mit
eingeschrankten .All\vendbarkeitseigenschaften*

H IIbert Bertling

Fachbereich Informatik, Universit.at. Dortmund

D-4600 Dort.munc1 50, \iV. Germa.ny

UllCP, bitnet,: hllbert,@unicloi5

J8. Ma.l'z J989

Einleitung

Dies ist ein sehrkurz geha.ltencr Versuc1l eines lJberblicks liber eine laufende Arbeit zur Ver
vollstandigung von Horn-Klausel Progra,ulluen an der Universitat Dortmund. Da diese Ar
beiten noch nicht a.bgcschlosscn sind, wcrrlcn in dicscm lTberblick die Ansatzpunkte del' Arbeit
thesenartig vorgestellt. uncl einige Iclccn und Konzepte a.n einfachen Beispielen nicht vollstandig
formal eingefiihrt..

Seit mehreren Jahren a.rbcitet die Dort.munder Gruppe des ESPRIT-Projekts PROSPEC
TRA an del' Entwick]ung und Implementierung von Konzepten del' "Knuth-Bendix"-Vervoll
standigung von bcdjngten Gleichungssystcmen. \N~ihrend diesel' Zeit veroffentlichte Arbeiten
sind in del' Literaturlistc angegeben.

Im RiickbLick crweisen side aJs wichtigste Iclccn diesel' Arbeiten das Konzept del' sog.
"nicht-operationalen" Glcichungcn vgl. et.wa [Ga.n88a], we1ches jiingst verallgemeinert wurde
auf das Konzept del' "anwendungs-eingeschranktcn" Gleichungen [BG8S]. Letzteres wiederum
erlaubt veral1ge.rllcincrte J\onzcpte hcclingter Tenncrsetzung, vg!. etwa das Konzept der
"quasi-reduktivcn" Ersetzungsregel, ehen Calls ill [11G88]. Mit IIiIfe dieser Konzepte kann ein
Standa.rdproblcrn bediug\:er Tcrrnersel.zlI Itg, J\~i.Jnlich c1aJ3 bedillgte Gleichungen mit "Extra"
Variablen in den Beclingungen nicht zugelassen werden konnen, behandelt werden. BeispieIs
weise kann del' Vervollstiindigungspl'ozeH so gesteuert wel'den, daB im finalen System von
Gleichungen Gleichllllgen mit. "Extra"-Vari ablen eUminiert werden konnen. Die Transi
tivitatsden.nition

(:I; < JI)=il'1.le, (y < z)=f.rne :::} (x < z)=-irue

ist ein Beispiel einer Gleicllllng lTlit ciner " Extr(l."-Variablen, namlich del' Variablen y.
In unserer ClltueDen Arbeit yersllchr;n wir einc Zusammenschau der bisherigen Ergeb

nisse untel' einer neuen Sicht. von "J\l111 t h-Benclix"-Vcrvollsta.ndigung, die allgemeinere An
wendungseinschra.nkullgen von Gleichungen beriicksichtigt. Diese kann auf den allgemeinen
Horn-Klausel Fall erwcitert werden.

'Uberlegungen ZI.! dieser Arheil. cnbl,;"nclcn im }lahmen des ESPRIT-Projekt.s PROSPECTRA, ref#390.

1

Velvollständioung von Hom 1 (1a.1.1sel11 Programmen mit
eingeschräarlkten Anwendbarke1tse1ge11sc1’1aft611*

Hubert Bcrthng
Fachbereich Informatik, U niversität Dortmund

13-4600 Dor tmund 50, W. Germany
uucp, bitnet: 111.11;1e1't.@1111ic1015

l 8. M 1112-]- 989

1 Einleitung

Dies ist ein sehr kurz gehaltene-ar Versuch eines Überblj cks über eine laufende Arbeit zur Ver-
vofiständigung von Horn—Klausel Programmen an der Universität Dortmund. Da, diese Ar-
beiten noch nicht; abgeschlosse'n sind, werden 111 diesem Überblick die Ansatunkte der Arbeit
thesenartig vorgestellt und einige Ideen 11 11.11 Konzep Le. an einfachen Beispielen nicht vollständig
formal e1110'ef11111t.

Seit 11111111111 (.11 .1211111311 anbeitet die 1301L111u11c1e1 C1111ppe des ESPRIT- Projekts PROSPEC—
TRA an del E1.1Lwick11111g und. Implemen 1..[(:‚].11.11g von Konzepten der ”Knuth—Bendix”—Verv011-
ständigung von bedingten Gleichungssystemen. Während dieser Zeit veröfi'entlichte Arbeiten
sind 111 der Literaturliste angegeben..

Im Rückblick erweisen sich als wichtigste Ideen dieser Arbeiten das Konzept der sog.
”nicht-operatimalen” Gleiclm'ngen vgl. etwa. [6121118811.], welches jüngst verallgemeinert wurde
auf das Konzept der ”anwendmmgs—eingeschränkten” Gleichungen [B G88]. Letzteres wiederum
erlaubt veraHgs-‘nmi'ncrtc, Konzepte bedingter 'J"111.'111ersetz1111g, vgl. etwa. das Konzept der
”quasi--1‘.eduktiven’ Tmcl/uwwmgol clwnl'fllc; 111 [BGSS]. Mit Hilfe dieser Konzepte kann ein
Sta11da1dprob1e111 bedingter .1..'r.-:1111e1sel.:11111g, nämlich daß bedingte Gleichungen mit ”Extra.”-
Variablen 111 den 111011111011 11:33.11 111c111. zugelassen werden können, behandelt werden. Beispiels-
weise kann den Vewo] 1111;111:111'1g1111gsp1ozefl so gesteuelt welden, daß im finalen System von
Gleichungen Gleichungen 11111. ”4111.121. -\"a..11a.111e11 eliminielt \nzerden können. Die Transi-
tivitätsdefinition

(_:1: < y)i11'-11.e,(:1/ < .::]iime => (3: < z)étrue
ist ein Beispiel einer Gleiclmng mit ei 111-11° ” Ext1‘11.”-V 21.111211311311, nämlich der Variablen y.

In unserer aktuellen Arbeit. versuchrm. wir 1111.111 Z1.1.sa.111111e11scl1a,u der bisherigen Ergeb—
nisse unter einer ‚neuen. Sicht von ”Hnufh—Bendix”-Vervollständigung, die allgemeinere An-
we11d1111gsei11sch15,11[(111.1n von Gleichungen beti.’u.cksichtigt. Diese kann auf den allgemeinen
Horn-Klausel Fa.“. erweitert; wen-1111.11.

*Überlegungen zu dieser Arbeit. 0111.51.11.11111111 im Rahmen des ESPRIT-Projekts PROSPECTRA, ref#390.

2 Skizze des Ansatzes

Der Ansatz kanll durch foJgenc1e Thesen grab skizziert werden:

1.	 vVie im unbedingten Gleichungsfa,ll ist del' grundsatzliche Mechanismus del' Ver
vollsta,ndigung cler, "kritische Konseqenzcn (Paarc)" (Gleichungen bzw. Klauseln) zur
betrachteten KlauseJnmengemengc hi.nzuznfugen uncl zu uberprufen, ob sie simplifiziert
bzw. eliminicrt werden konnen.

2. Simplifikation hzw. Eli rninatioD gclten jedoch Hir den	 bedingten Gleichungsfall wie fUr
den allgemeinen Horn-KJauscl FaJJ iiber die Simplifikation bzw. Elimination durch Ter
mersetzung, \vie sic fuel' den unbedingten Gleichungsfall iiblich ist, hinaus. Dieser
allgemeinere SimpJiGzicr- und Eliminierbarkeitsbegriff von Klauseln ist im allgemeinen
nicht entschcid ba.r. Ci 11 konkretes Vcrvollstiinc1igungssystem wird daher moglichst viele
entscheidbare Fiille van Simplifizier- und Eliminierba,rbarkeit untersuchen. Der allge
meinere Simplifizier- unci Eliminierbarkeitshegriff von Klauseln ist desweiteren abhangig
von den betrachteten Anwcndungsein,schriinl\ungen. ,le restriktiver die Anwenclungsein
schraenkungen desto Sdl\viicher die Simplifizier- uncl Eliminierbarkeitsvoraussetzungen.

3. Die SimpJifizicr-	 EJirninierbarkcit von l{Jauscln im finalen System von Klauseln ist
clurch geeignele Addition "zusiilzlicher kritischer Konsequenzen" beeinflufibar. D.h.
falls gev,:isse "kritische Konsequenzen" wiiJuend del' Vervollstancligung acldiert wer
clen, kann die Elinlinierharkeit gewisser Klallseln im fina.len System garantiert werden.
Diese Beobachtung wird angewelldet bei del' Behandlung del' oben erwahnten nicht
operati onaJen Glei chll ngen.

4.	 In Verallgemeinerung des vOl'igen Punktes konnen gewisse Anwenclungen einer Klausel
im finalen Systenl von Kla.uscln "iiherfliissig" gemacht werden durch Acldition gewisser
"kritische KonseqLLenzen" wiihrend del' VervolJstii,ndigung. Anclere Anwenclungen der
selben J{Jausel wereIen im finaJcn System von Klauseln nicht "uberfiussig" sein.

5. Es	 konnen wie im umbedingtell GleichungsfaJl eine fa,iling und eine unfailing Ver
vo11sta,11 dig11 ngsva,ri'l.l1 te llll tcrschicden werden.

6.	 In cler unfailing Va,ria,nte becleutet die VervoJlstaudigung nichts ancleres als clie Wieder
hersteUung del' VoUstiindig.keit Line;l,ren Bcweisens, d.ie moglicherweise clurch die Ein
schra,nkullg a111' re(lul,tivcs H"cfutat.jonsbeweiscn verloren wurde.

7. Die ArguTllEmf;n,tionstechnik flil' lInserer Aussagen ist die Bachmair'sche Beweistransfor
mationstechn il:: ZlISrl.mmell mi1, cl01! noetherschen J3eweisordnungen.

3 Begriffe erlautert arn Beispiel

Einen Eindrud del' oben gCJnachten A lIssagen moge das folgende Beispiel geben. Wir be
trachten Refutationsbewcise mit del' Resolutionsregel aJs einiigen Inferenzregel. Desweiteren
wircl nur del' GnlJl(HaJl bet.rachtet (keine Varia.blcn). Der allgemeine Fall ist sehr viel kom
plizierter, foIgt aber derseJben Idee. Wir werclen einige fi.ir den a11gemeineren Fall konzipierten
Begriffe nur eingeschriinkt ,un Beispid cinfiihren.

P(t1,t2, ... t,J hei13t ein A/;0177, faJJs p cin Prii.dikatensymbol uncl tl,t2, ... tn Terme liber
einer betrachtcten Signatm' sind. Eine Kla1/.,sel ist ein Paar von Mengen van Atomen,

2

2 Sk izze des Ansatzes

Der Ansatz kann durch fo] gende T hesen grob skizziert werden:

1.

r"

Wie im 11.111'Jedingten Gleichungsfa].l ist der grundsätzliche Mechanismus der Ver-
vollständigung der, ”kritische Konseqenzen (Pa.a.re)” (Gleichungen bzw. Klauseln) zur
betrachteten Klausel nmengem enge hinzuzufügen und zu überprüfen, ob sie simplifiziert
bzw. eliminiert werden können.

Simplifikation bzw. Elimi.n_a.tio.l.1 gehen. jedoch für den bedingten Gleichungsfall Wie für
den allgemeinen I-Iorn-Klausel Fa...“ iiber die Simplifikation bzw. Elimination durch Ter-
mersetzung, wie. sie fuer den. unbedingten Gleichungsfall üblich ist, hinaus. Dieser
allgemeinere Simplifizier- und Eliminierbarkeitsbegriff von Klauseln ist im allgemeinen
nicht entscheidbam. Ein konkretes \i'ervollstéindigungssystem Wird daher möglichst Viele
entscheidbam Fälle von Simplifizier- und 13313111}nierbarbarkeit untersuchen. Der allge—
meinere Simplifizier- und Eliminieflvarkeits'begriff von Klauseln ist desweiteren abhängig
von den betrachteten Anwendun gsei1.1.schrä.n_].<11.11g‘en. J e restriktiver die Anwendungsein—
schraenkungen des to schwiiciher die Simplifizier- und Eliminierbarkeitsvoraussetzung‘en.

. Die Simphfizier— E]i1:1:1.iniezrbarkeit. von Klauseln im finalen System von Klauseln ist
durch geeignete Addition “zusätzlicher kritischer Konsequenzen” beeinflußbar. D.11.
falls gewisse ”kritische Konsequenzen” \.väilwend der Vervollständigung addiert Wer-
den, kann die Elimj11.3:31'1-)21.:‘]<eit gewisser Klauseln. im finalen System garantiert werden.
Diese Beobachtung wird. angewendet bei. der Behandlung der oben erwähnten nicht-
op erati cm.].en Glei c.".hu n gen..

In Verallgemeinewng des \f'origen Punktes ‚können gewisse Anwendungen einer Klausel
im finalen System von Klauseln ” überflüssig” gemacht werden durch Addition gewisser
”kritische Konsequenzen” während. der Vervollständigung. Andere Anwendungen der-
selben K].a.1_1_sel. warden im finalen System von Klauseln nicht ” überflüssig” sein.

Es können wie im. 1.1 mbedjngten GJ.eic11ungsfa,]l eine failing und eine unfailing Ver-
vollstämdigungsvaria'nlge u n 13(21‘801130den werden.

. In der trufajling "al-iante bedeutet die Verve]Istéindigung nichts anderes als die Wieder-
herstellung der \f'ollsti-indigkeit]..ineg-Lren Beweiseus, die möglicherweise durch die Ein—
schränkung 3.1.q 'L‘ecl‘z:]<13i\.-'(-:s liefutationsbeweisen verloren wurde.

. Die Argumentaizionstechnjk für tmscrer Aussagen ist die Bachmair’sche Beweistransfor—
mationstechnik zusammen mi t don noetherschen Bcweisordnungen.

3 Begriffe erläutert am Beispiel.

Einen Eindruck der oben gemachten Aussagen möge das folgende Beispiel geben. Wir be-
trachten Refutationsbcweise mit der Resolutionsregel als einzigen Inferenzregel. Desweiteren
wird nur der Grundfal]. betraclutet (keine Variablen). Der allgemeine Fall ist sehr viel kom—
plizierter, folgt ab er derselben ldee. W ir werden einige für den allgemeineren Fall konzipierten
Begriffe nur eingesclm'inkt am. Beispiel einführen..

p(t1,tg‚ . . pin) heißt ein j-ltom3 falls 3) ein Prädikatensymbol und t1,t2, . . . t n Terme über
einer betrachteten. Signatmr sind. Eine Maus-el ist ein Paar von Mengen von Atomen,

geschrieben als r =? 6. Klausel r =? 6, die h6chstens eln Atom in del' Konklusion .6
besitzen, heifien Horn-J(fO'llseln. Horn-l\Ja.useln mit nicht leerer Konklusion heifien aueh
Progmmm-I<lovscln, w~i.hrend Horn-I\la.useln luit Jeerer Konklusioll Ziel-Klauseln heifien. Flir
unser Beispiel bctrachten wir nllr die Rcsollltionsregel:

f l :::} J1 B, rz :::} .6. zResolution : r1o:,r2 (T =? .6. 2a

wobei a ein mgu von A. a.nd B ist. \Vi r sagen, die Kla.usel r 1 :::} A wird angewandt auf

die Klausel B,r2 =? .6.2. 8ei > eine Rcduktionsonlnnng a.uf Atomen mit zusatzliehen hier
nieM naher spezifizierten Einschriinkungcn del' Vergleichbarkeit von Gleiehheitsatomen und
anderen Atomen. Die Anwendung duel' Klausel AI," . ,An =? B unter Substitution a hei:Bt
reduktiv, falls Ba > Aw,], :S i :S n. Eine Klausel AI, ... ,An =? B heifit reduktiv, falls
B > Ai, 1 :Si :S n. Redllkt.ivc l\lallscln sind in jcder Anwendung reduktiv. Reduktive
Anwendungen von Klr.w.scln wirken zielrecll1z1erencl.

Beispie13.1 G'egeben dos Horn-J{lallscI Programm N == {A,B :::} C, => A, => B} mit

C> B> A.
A,B => CC:::}

:::}A A,B=>
(P) :

(P) beweist, da.f3 C eln log. Konsequenz in jV ist. (P) ist reduktiv, da nur reduktive
Klauseln angewandt. werden . .Jeclcr Scll1'ltl; ist hncar, d.h. die angewandte Klausel ist Element
von N, und zielrechJzierend: C:::} ~ A,B :::} ~B =? ~ =>, wobei ~ die Multisetfortset

zung von > ist.
Bezeichne R, die Anwcndungseisch1'ii.nkung: "A,B :::} C sei lllcht-operational", d.h.

A, B :::} C soIl lLicht angewa.ndt werden m usseu. Dann ist N nieht vollstandig bzgl. R, da
es keine lineare Alt.ernative Z111' Anwenc1ung von /1, B =? C flir den Beweis von C gibt. Dureh
Addition del' krit£.schen J(onsequenz A :::} Coder J3 :::} C' odeI' beider Konsequenzen erlangen
wir Vollsta.ndigkeii; bzgl. R. 80wo111 A :::} C wie allch B :::} C sind Resolventen zwisehen
den Programmklauseln =? B unci A, 13 :::} C bzw. zwischen den Programmklauseln => A
und A,B :::} C. 80wo111 die J\rIenge N, = (J'V - {A,B => C}) U {A =? C} wie aueh die
Menge N2 = (JV - {A,B =? C}) U {B =? C} is!; 'llollslandig bZfjl. R. D.h in NI wie auch
in Nz ist clieselhe Menge VOll Zielen linear bcwcisbar wie in N, jedoeh ohne A, B :::} C an
wenden zu miissen. In heldcn Jll()glichen ftna1en Systemen NI odeI' N 2 konnte deshalb die
nieht-operationale Klausel 11, B :::} C elinlinie1't \Vcrden. Beispielsweise ist in NI => C linear
beweisba.r clureh (Pd und in N 2 dlJ.1'ch (P2)

A. :::} CC:::}
:::} A A. :::}

Wir beobachten, daB cs nicht n0t.wend.ig ist, allc Konsequenzen zu addieren, um
Vollstandigkcit, 211 erlangcll. \Vir bezeichuell daher {A =? C} bzw. {B => C} bzw. {A =?

C, B :::} C} als fail'(:; SelekUonen von J(onsequcn:;en von N.

3

geschrieben als F => A . Klausel I‘ => A , die. höchstens ein Atom in der Konklusion A
besitzen, heißen. [Korn—Klauseln. Horn-Klauselgn mit nicht leerer Konklusion heißen auch
Programm-Klausel-m, während Horn—Klan].seln mit leerer Konklusion Ziel-Klauseln heißen. Für
unser Beispiel be t rachten wir nu r die Resolutionsregel:

F1 => A B , I ‘2 => A2
Resolut ion :

P]_q‚ rgc f => A20

wobei q ein mgu von. A and B ist. Wi r sagen., die Klausel T1 => A wird angewandt auf
die Klausel B,I‘g => Ag. Sei > eine Reduktionsordnung auf Atomen mit zusätzh'chen hier
nicht näher spezifizierten. Einschränkmlgen der Vergleichbarkeit von Gleichheitsatomen und
anderen Atomen. Die Anwenchmg einer Klausel A1, . . . ‚An => B unter Substitution cr heißt
reduktz'v, falls 130 > Am., 1 g i g n.. E ine Klausel ‚#11 , . . . ,An => B heißt recluktz'v, falls

B > Ag, 1 g 7? 5 n . Reduktive Klauseln sind in jeder Anwendung reduktiv. Reduktive
Anwendungen von Klauseln wirken zielmcluzieren(1.

Beispiel 3 .1 Gegeben dag Hor-zz-Iflauscl Prog-zmmn N : {A ,B => C, => A, => B} mit
C>B>A

A_,_B => C C =>
:A aß?

:B B¢
=>

(P) =

(P) beweist, (laß C ein log. Konsecmenz in N ist. (P) ist reduktiv, da nur reduktive
Klauseln angewamtt werden. Jeder Schritt, ‚ist linear, d.h. die angewandte Klausel ist Element
von N , und zielrecluzierend: C => >> A.._B => >>B => >> => , wobei > die Multisetfortset-
zung von > ist.

Bezeichne 7?, die Anwendungseisch.riinkung: ”A ,B => C sei nicht-operational”, d.h.
A,B => C soll nicht, a,}.lgewandt werden müssen. Dann ist N nicht vollständig bzgl. 72, da,
es keine lineare Alternative zur Anwendung von A, B => C für den Beweis von C gibt. Durch
Addition der kritischen Konsequenz A => C oder B => C Oder beider Konsequenzen erlangen
wir Vollständigkeit bzgl. “R. Sowohl A => C wie auch B :> C sind Resolventen zwischen
den Programmklauseln => B und A, B => C bzw. zwischen den Programmklauseln => A
und A‚B :> C. Sowohl die Menge _j'\-*'1_ : (N —— {A ,B => C}) U {A => C} wie auch die
Menge Ng : (N — {A.,}? => [}} U {B :?» C} ist; uolls-Ländig bzgl. R. D.11 in NI wie auch
in Ng is t dieselbe Menge von Zielen Jimm- beweisbax wie in N , jedoch ohne A ,B => 0 an-
wenden zu müssen.. In. beiden möglichen finalen Systemen NI oder Ng konnte deshalb die
nich't—Operationale Klausel [LB => C e].in.1..i.11.iert werden. Beispielsweise ist in N1 => C linear
beweisbax durch („l-?,) und. in N.; durch (Pg)

A:>CC=> B = > C C = >
(P1) : => A A @ (‚P-3) : © B B =>

=> =>

Wir beobachten, daß es nicht notwendig ist., alle Konsequenzen zu addieren, um
Vollständigkeit zu. erlangen.. Wir bezeiclmen daher {A => C} bzw. {B => C} bzw. {A :>
C, B => C} als flair-e: .S'elektim'zen van fi’onsequensen van N .

4 Anwendungseinschra.nkungen

Hinter jeder Art von "Knuth-Benclix"-Vervollsti1cligung steht die Einschrankung beliebiger
Beweise auf rcc1uktive Bcweise. (Genaner: nul' Rcflltatiollsbeweise ohne Ermittlung von
Losungssubstitutionen fiir Ziele \Verden a,u [' ReduktivHa,t eillgeschrii.nkt.) Diese Einschrankung
bestimmt noch keLne cindeutigcn Beweisformen, siehe obiges Beispiel: alle drei Beweise
(P),(P1),(P2) sind rcduktiv. frher Einsclll'iinkllngen cler Anwcndung von Hom-Klauseln wer
den weitere]~inschraJlkungcJl reduktivel' Beweise definiert. "Einschrankung der Anwendung
von Horn-Klause1n" becleutct die 1tIengc del' Snbstitutionen, unter der die Klausel in Refuta
tionsbeweisen angcwandt wcrclen darf, eiuzusclll'ii,nken. Dabei ist zu beachten:

1.	 Nur Horn-Kla,useln r ~ ~ mit JLicht 1eerer Bedingung r dlirfen libel' die Reduktivitat
hinaus eingeschriinkt werden (unf<'ijling Variallte), nul' reduktive Horn-Klauseln r :::} D.
mit nicht lccrcr Hec1ing1.lng r diirf('fl weiter eingesehrankt werden (failing Variallte).

2.	 Termersetzung mit ErsetzungsregeJn im konventione11en Sinn kann als spezie11e Ein
schrankung a,l.lfgefaflt werclen: "Nur Klauscln, die unter a.llen Substitutionen reduktiv
sind, diirfen angewanclt werclen."

Eigenschaften fairer Selektionen

1.	 Eine Selektion von l\onscquenzcn ist eine Tei1menge del' Menge a11er Resolven
ten/Pararnodula.ntcn zwisehen Programmklauseln N.

2.	 Eine fa.ire Selektion g;:)rantiert die Transformierbarkeit bzgl. n unzulassiger reduktiver
Bewei se in ,mhi.ssige red nk ti ve un cl linea,re Beweise. Der Begriff der fail'en Selektion
wird iiber diese Eigenscha,ft clefiniert. UntcI' Transformierbarkeit wi1'd hie1' die Anwend
barkeit einer Beweistr;:),nsforlna.tionsrcgel a:us ciner fest gegebenen Menge soIcher Regeln
verstanden. Beispiel cin er solchcn Hewe.ist1'(1.11 s[orrnationsregel (Schema.) ist die folgende:

A,r ~ CC=>
~ /l ;1, r =>

f=> r~

Beweise auf del' TeeMen Seite cler TransfoI'mationsregel zers1.oren moglicherweise die
Linearit~i.t. Diesist d;wH der Fall, ,vcnn woder r ~ C in N ist noeh es einen alternativen
lineal'en 'R.-eingeschr~ll1<ten Beweis flil' den Subbewcis

gibt. OITcnsichtlich hiingt dicF'a.iI'l1ess eineI' Selektion van der Anwendungsein
schriinkung R rI-b.

3. Die :Mengc	 aBeT moglichen Reso]venten/Paralllodulanten zwischen Programmklauseln
in Nicht- Variablen-Pos.itionen ist ciue faire Selektion van Konsequenzen. Diese ist
endlich, vcrgleichbar del' endlichcn]'v[engen kr,itisehcr Paare in der konventionellen Ver
vol1sti.i.ncl ignng.

4

4 Anwendu.ngseinschränkungen

Hinter jeder Art von ”K1111th-Bendix”-Verv0115tiidigung steht die Einschränkung beliebiger
Beweise auf reduktive Beweise. (Genauer: nur Refutationsbeweise ohne Ermittlung von
Lösungssubstitutionen für Ziele werden am [' Reduktivitäi eingeschränkt.) Diese Einschränkung
bestimmt noch keine eindeutigen Beweisformen, siehe obiges Beispiel: alle drei Beweise
(P) , (P1)‚(P2) sind redullitiv. Über Einschränkungen der Anwendung von Horn-Klauseln Wer—
den weitere Einsclhränkungen. reduktiver Beweise definiert. ”Einschränkung der Anwendung
von Horn—Klauseln” bedeutet die Menge. der Substitutionen, unter der die Klausel in Refuta-
tionsbeweisen angewandt werden darf, ei.112115011ränken. Dabei ist zu beachten:

1. Nur Horn-Klauseln. I‘ => & mi t nicht leerer Bedingung I‘ dürfen über die Reduktivität
hinaus ei11gesc1n‘ä:n_lst werden (unzfajling Variante), nur reduktive Horn-Klauseln I‘ => A
mit nicht leerer Bedingung I‘ dürfen weiter eingeschränkt werden (failing Variante).

2. Termersetzung mit Ersetzungsrege}1.1. im konventionellen Sinn kann als spezielle Ein-
schränkung aufgefagßt werden: ”Nur Klauseln, die unter allen Substitutionen reduktiv
sind, dürfen angewandt werden.”

Eigenschaften. fairer Selekt ionen

1. Eine Selektion. von. Konsequenzen ist eine Teilmenge der Menge aller Resolven—
ten / Paramod I:1.la..nte11 zwischen. Prograanmklauseln N .

2. Eine faire Selektion garantiert die Transformierbarkeit bzgl. 'R, unzulässiger reduktiver
Beweise in zulässige redaktive und lineare Beweise. Der Begriff der fairen Selektion
wird über diese Eigenschaft definiert. Unter Transformierbarkeit wird hier die Anwend-
barkeit einer Beweis t rw 31I'or1tr:1.a..t.ionsregel aus einer fest gegebenen Menge solcher Regeln
verstanden. Beispiel. einer solchen Jfleweistransfonmtionsregel (Schema) ist die folgende:

A.„]?=>C C=> =>A A,1‘=>C
=> .s’l AJ“ @ I‘ => C C =>

_‘ =>
1=> I‘=>

Beweise auf der rechten Seite der Transform ationsregel zerstören möglicherweise die
Linearität . Dies ist dann. der Fall, wenn wed cr 1‘ => C in N i s t noch es einen alternativen
linearen ”la-eingeschränkten Beweis “für den Subb eweis

I.“ :> C C :>
]_‘=>

gibt. Offensic.]:ltlich hängt die ‚Fairness einer Selektion von der Anwendungsein-
schränkung 7?, ab .

3. Die Menge aller möglichen Reso] “von 1;e11/Pa.ra.n:10dulanten zwischen Programmklauseln
in Nicht-\f'a.r_iaihilen-‘Positionen i s t eine fair-e Selektion von Konsequenzen. Diese ist
endlich, vergleichbar cler endliclxen hrliengen kritischer Paare in der konventionellen Ver—
vollständigung.

£].

4.	 Sei Seine fairc Selektion . .o(\.nn ist auch jede Obermenge 8 U 8' eine faire Selektion.

5.	 In del' Pra,xis wircl man Selektionen wi:ihlen, deren Fairnefieigenschaft entscheidbar ist.
Sie weI'den iln allgemeinen nicht minimal sein.

5 Kriterium fiir Vollstandigkeit

Failing VaI'iante: R ist EinschI'a,nkung rl,uf Anwendung (quasi)-I'eduktiver Klauseln. Ein
Klauselprogranul1 N ist vollsta,nc1ig bzgl. der Anwendungseinschrankung n und der durch
> induzieI'ten Beweisorclnung >p, fans

1.	 die Teilmcnge del' nicht reduktivcn unbed.ingten Klauselll U ~ N von N - U subsumiert
wird bzgl. >p und R.

2.	 8n(N) eine faire SeJektion. van Konsequcnzen in N fi.ir n ist und

3.	 8n(N) von N subsumicrt wiI'd bzgL >p uncI R.

1m Beispiel wird die faire Selehion {A :::} C} VOll del' 11nalen Klauselmenge {A :::} C, ::} A, ::}
B,} subsumiel't bzgl. >p und Rn Aufgrllnd del' AnwenclullgseinschI'allkullg n und del' Fairnefi
del' Selektioll Sn(N) J:onnell wir schlieJ3cn, da.B auc]} ;1, B ::} C von N subsumiert wird.bzgl.
>p und R. Der Su bsulnptionsbegriff ist a.bgestiitzt a.nf del' zugrundeliegenden Beweisordnung,
die wiederum van del.' zugrundeliegendcn Reduktionsordnung illduziert wird. Daruberhinaus
ist er abhangig VOll. cler betra.chtcten AnwelldungseinschI'ankung n. Es soUllier nicht naher
darauf eingegangen werden.

6 Abstrakte Vervollstandigung

Die von uns allgestI'ebte Vervollst~i.nc1igllngstechnik la,fit sich durch die folgenden abtI'akten
Inferenzregeln beschreibcn.

Abstrakte Addition:

N
faJJs r:::} 6 E Sn(N)

NU {r :::} 6}

Abstrakte Elimination:

NU{f::}t:.}
falls f :::} 6. sllbsllmiert WilY! von N bzg!. >p und n

N

Abstrakte Simplifikation:

NU {r1 :::} t:.d
lofl.e;]'J :::} 61 svbsllmie1't win! van NU {r2 ::} 62} bzgl >p und n

NU {f2 :::} 62}

8n(N) ist eille Tcilmenge aller Pa,I'a.moc1ula.nten/Resolventen in N. In konkreten Ver
vollstandigungssytemen sind diesc a,bstra.kten RegeJn clurch Mengen konkreter Regelll fur jede
abstrakte Regel ersetzt. Chancen fiir erfolgreichc VervolJstii.ndigungen konnen durch die Wahl
moglichst Ideiner fa.irer Selektionen \Vie a.uch clurch cine "machtige" Menge von Simplifikations
unc1 Elimina.tionsrcgcln, die die SimpJifizier- unci Eliminierba.rkeit in moglichst vielen Fallen
aufdecken, verbessert. wcrclen.

5

4. Sei .5' eine [ai 1c Selektion. ‚Dann ist auch jede Obermenge .5' U 5" eine faire Selektion.

5 . In der Praxis wird 111121.11 Selektionen wählen, deren Fairneßeigenschaft entscheidbar ist.
Sie werden im allgemeinen. nicht minimal sein.

5 Kriterium. für Vollständigkeit

Failing Variante: 7?. ist Einschränkung auf Anwendung (qua.si)—1‘eduktiver Klauseln. Ein
Klauselprogramm N ist vollständig bz g1. der Anwenclungseinschränkung ’R, und der durch
> induzierten Beweisordnung >p‚ falls

1. die Teilmenge der 11.3 chi; reduktiven 11.11bedi11gte11 Klauseln U (_: N von N —- U subsumiert
wird bzgl. >7: und R.

2. SR(N) eine “faire Selektion. von Konsequenzen. in. N für 72 ist und

3. 573(N) von N subsumiert wird bzgl.. >12 und R.

Im Beispiel wird. die “faire Selektion {A :> C} von der finalen Klauselmenge {A => 0, => A, :>
B ‚ } subsumiert bzgl. >72 und, R . Aufgru 11d der Anwendungseinschränkung 7?, und der Fairneß
der Selektion .5‘7;(N) können wir schließen., daß auch A, B => C von N subsumiert wird.bzgl.
>7; und R. Der Su bsu'zgnp t ionsbegrifi i s t abgestützt auf der zugrundeliegenden Beweisordnung,
die wiederum von der zugru1.1cleliege11de11 Reduktionsordnung induziert wird. Darüberhinaus
ist er abhängig von. der betrachteten Anwendungseinschränkung 72. Es soll hier nicht näher
darauf eingegangen.} werden.

6 Abstrakte Vervollständigung

Die von uns angestrebte Vervollständigungstechnik läßt sich durch die folgenden abtrakten
Inferenzregeln "b eschreibcn.

Abs t rak te Add i t i on :

N'
. f TN U {T :> &} falls F => A E 573(A)

Abst rak te E l imina t ion :

N 1‘ => A . . .
U{1\I } falls 11 => A subsumzer! wz'rd von N €)n . >‘p und R

Abstrakte Simplifikat ion:

AT U {P1 © Al}
N U {T2 :> A2} falls].“; => A1 subsumiert wird von N U {F2 :> A2} bzgl >? und 'R

SRUV) ist eine Teilmenge aller Paramodulanten/Resolventen in N . In konkreten Ver—
voflsténdigungssy11611116311 sind diese abstrak ten Regeln durch Mengen konkreter Regeln für jede
abstrakte Regel ersetzt. Chancen für erfolgreiche Vervoflständigungen können durch die Wahl
möglichst klein er fairer Selektionen wie auch. durch eine ”mächtige” Menge von Simpfifikations—
und Elimina.tionsregeln_‚ die die Simpfizfizier— und Eliminierbarkeit in möglichst vielen Fällen
aufdecken, verbessert. werden.

U
!

7 Veroffentlichungen

[BGS88] Bertling, H., Ganzinger, H. a.nd Scha-fers, R.: CEC: A system for conditional equa
tional completion. User Ma.nuaJ Version 1.4, PROSPECTRA-Report M.1.3-R-7.0,
U. Dortmund, 1988.

[Gan87] Ganzinger, H.: A Completion procedure for conditional equations. Report 234, U.
Dortmund, 1987, (1]so in: Proc. 1st In1.'l 'Workshop on Conditional Term Rewriting,
Orsay, 1987, Springer LNCS :308, 1988, G2-83 (revised version to appear in J. Symb.
Computa.tion).

[Gan88a.] Ganzinger, H.: Completion \Vi th. History-Dependent Complexities for Generated
Equations. In Sa.nueHa., Ta.rlecki (eels.): Recent Trends in Data Type Specifications.
Springer LNCS 332, 1988, 73-91.

[Gan88b] Ganzinger, H.: Order-Sorted Completion: The Many-Sorted Way. Report 274, FB
Informa,tik, Univ. Dortmund, 1988. Extended a.bstract to appear in Proc. TAP
SOFT(CAAP) '89, Barcelona..

[BG88] Bertl.illg, H., Ga.nzinger, H.: Completion-time optimization of rewrite-time goal solv
ing. PROSPECTRA-Bericht Ml.:3-R-12.0, 1988. (Erscheint in Proc. 3rd Int. Conf.
on R.ewriting Techniques a.nd Applications, Chapd Hill, 1989). .

6

7 Veröffentlichungen

[BGSSS]

[Ga1187]

[Ga1188a]

[Gan88b]

[BGSS]

Bertling, l"l., Ganzinger, H . and Schafers, R. : CEC: A system for conditional equa—
tional completion. User Manual. Version 1.4, PROSPECTRA-Report M.1.3—R—7.0,
U. Dortmund, 1.988.

Ganzinger, H.: A- Completion procedure for conditional equations. Report 234, U.
Dor tmund , 1987, also in : Proc . l s t Int‘l \IVorkshop on Conditional Term Rewriting,
Orsay, 1987, Springer LNCS 308, 1988, 62—83 (revised version to appear in J . Symb.
Computation).

Ganzinger, H.: Completion with History-Dependent Complexities for Generated
Equations. In Sannella, Tarlecki (eds): Recent Trends in Data Type Specifications.
Springer LNCS 332, 1988, 73—91.

Ganzinger, H.: Order-Sorted Completion: The Many-Sorted Way. Report 274, FB
Informatik, Univ. Dortmund, 1988. Extended abstract to appear in Proc. TAP—
SOFT(GAAP) ’89,. Barcelona.

Bertling, H., Ganzinger, H.: Com pletion-tinie optimization of rewrite-time goal solv-
ing. PROSPECTRA-Bericht M 1.3—R-12.U, 1988. (Erscheint in Proc. 3rd Int. Conf.
on Rewriting Tll‘echniques and Applications, Chapel Hill, 1989).

6

Unification in Monoidal Theories

WERNERNUTT

Deutsches Forschungsinstitut fur Kunstliche Intelligenz (DFKI),
6750 Kaiserslautern, West Germany

1. Introduction

We introduce a class of equational theories by which we generalize several well-known
theories for which unification problems have been studied. Among them are the theories
of commutaive monoids (AC), commutative idempotent monoids (ACI), and abelian
groups (AG). These theories have the common characteristic that unification algorithms
for them basically consist in solving some kind of linear equation system.

The same is true of monoidal theories. Every monoidal theory determines canonically
a semiring, an algebraic structure that can be thought of as a generalized ring. Then
every unification problem can be translated into a linear equation system and vice versa.

Having established this correspondence between unification and linear algebra, we are
able to characterize the unification type (unitary, finitary, infinitary, nullary) ofmonoidal
theories in algebraic terms. For instance, an application of Hilbert's Basis Theorem gives
a sufficient criterion for a monoidal theory to be unitary.

Monoidal theories can be characterized in categroical terms: The category consisting
of finitely generated algebras as objects and homomorphisms as arrows is semi-additive.
On the other hand, if for an equational theory this category is semi-additive, then by a
signature transformation the theory can be turned into a monoidal theory. Thus monoidal
theories cover the same subject as the commutative theories defined in (Baader 1989).

In the sequel, we give a short account on the basic defintions and results concerning
monoidal theories. A detailed presentation is given in (Nutt 1989).

2. Monoidal Theories and Selllirings

Terms, substitutions, equational theories, algebras and other basic notions of unification
theory are defined as usual (Kirchner 1989).

An equational theory e. is monoidal if its signature I:: consists of a constant 0, a
binary symbol +, and a finite number of unary symbols, such that + is associative and
commutative, 0 is the identity for +, and every unary symbol h is a homomorphism for
+ and 0, i.e. e. contains the equalities h(x + y) == h(x) + h(y) and h(O) == O.

Obviously, the theories of commutaive monoids (AC), commutative idempotent
monoids (ACI) , and abelian groups (AG) are monoidal. Generally, monoidal theories
describe varieties of abelian monoids with homomorphisms.

A semiring is a tuple (S, +, 0,.,1) such that (S, +, 0) is an abelian monoid, (S,·, 1)
is a monoid, and all a, f3, 'Y E S satisfy the equalities (a + (J) . 'Y = a . 'Y + f3 . 'Y,
a . (f3 + 'Y) = a· f3 + a . 'Y, and 0 . a = a . 0 = 0

1

Unification in Monoidal Theories

WERNER NUTT

Deutsches Forschungsinsiiiui für Künstliche Intelligenz (DFKI),
6750 Kaiserslautern, West Germany

1. Introduction

We introduce a class of equational theories by which we generalize several well-known
theories for which unification problems have been studied. Among them are the theories
of commutaive monoids (AC), commutative idempotent monoids (ACI), and abelian
groups (AG). These theories have the common characteristic that unification algorithms
for them basically consist in solving some kind of linear equation system.

The same is true of monoidal theories. Every monoidal theory determines canonically
a semiring, an algebraic structure that can be thought of as a generalized ring. Then
every unification problem can be translated into a linear equation system and vice versa.

Having established this correspondence between unification and linear algebra, we are
able to characterize the unification type (unitary, finitary, infinitary, nullary) of monoidal
theories in algebraic terms. For instance, an application of Hilbert’s Basis Theorem gives
a sufficient criterion for a monoidal theory to be unitary.

Monoidal theories can be characterized in categroical terms: The category consisting
of finitely generated algebras as objects and homomorphisms as arrows is semi—additive.
On the other hand, if for an equational theory this category is semi—additive, then by a
signature transformation the theory can be turned into a monoidal theory. Thus monoidal
theories cover the same subject as the commutative theories defined in (Baader 1989).

In the sequel, we give a short account on the basic defintions and results concerning
monoidal theories. A detailed presentation is given in (Nutt 1989).

2 . Monoidal Theories and Semirings

Terms, substitutions, equational theories, algebras and other basic notions of unification
theory are defined as usual (Kirchner 1989).

An equational theory 8 is monoidal if its signature 2 consists of a constant 0 , a
binary symbol + , and a finite number of unary symbols, such that + is associative and
commutative, 0 is the identity for + , and every unary symbol h is a homomorphism for
+ and 0, Le. 8 contains the equalities h(:r + y) i h(a:) + h(y) and [1(0) é 0.

Obviously, the theories of commutaive monoids (AC), commutative idempotent
monoids (ACI), and abelian groups (AG) are monoidal. Generally, monoidal theories
describe varieties of abelian monoids with homomorphisms.

A semiring is a tuple (S ,+ ,0 , o, 1) such that (8 ,+ ,0) is an abelian monoid, (8, - ,1)
is a monoid, and all a , ß, 7 E 8 satisfy the equalities (a + ß) « 7 = a ~ 7 + [3 - 7,
a - (ß+7) : : a -ß+a -7 , andO-azao0=0

1

We call the binary operations + and· the addition and the multiplication, respectively,
of the semiring. A semiring is commutative if its multiplication is commutative. Semir
ings are different from rings in that they need not be groups with respect to addition.

Examples. The set N of natural numbers with usual addition and multiplication is
a semiring. Every ring is a semiring. In particular, the integers Z with usual addition
and multiplication form a semiring. The set {a, l} becomes a semiring SACI if we define
1+1 := 1 and extend addition and multiplication as required by the axioms for a semiring.

Analogously to fields, for every semiring S we can define S-modules as generalized
vector spaces and linear mappings between S-modules. Especially, the cartesian product
sn becomes an S-module if addition and scalar multiplication are defined pointwise.

As usual, a linear map u: srn -+ sn between free S-modules can be described by an
n x m-matrix Cq with entries from S, and every such matrix defines a linear mapping.
The transpose ut of u is the linear mapping corresponding to the transpose C~ of the
matrix Cq •

Every monoidal theory £ defines a semiring Se as follows: Let 1 be a variable symbol.
Then the carrier of Se is .:Fe(l), the free i-algebra over {I}, addition and zero are
inherited from .:Fe(l), the unit is r, i.e. the £-equivalence-classe 1, and multiplication of
two £-classes of terms s,t is defined as s· t:= (1 ~ t}s, i.e. the product is obtained by
replacing all occurrences of 1 in s with t.

The semiring Se mirrors properties of £. A monoidal theory is a theory of groups if
for some term t it contains the equation x + t == O. Intuitively, this means that there
exist inverse elements for the addition. A monoidal theory is a theory with commuting
homomorphisms if for all h, hi E 1£ it contains the equation h(h'(x) == h'(h(x».

THEOREM 2.l.

1. Se is a ring if and only if £ is a theory of groups.
2. Se is commutative ifand only if £ is a theory with commuting homomorphisms.

Next we show that it is just a matter of perspective whether one views an algebraic
structure as an £-algebra or as an Se-module. Let A be an £-algebra and a E A.
Evaluation in a is defined as the unique homomorphism E:a:TE(l) -+ A from ~-terms ov
er 1 to A satisfying E:a(l, a) =a. Then A can be turned into an Se-module by defining the
scalar multiplication as sa := E:a(s) for sESe and a EA. On the other hand, every Se
module M can be turned into an £-algebra by interpreting every unary function symbol
h as the function hM(m) := h(l). m for mE M.

Switching from £-algebras to Se-modules and backwards turns homomorphisms into
linear mappings and linear mappings into homomorphisms. In particular, the free algebra
on n generators .:Fe(Xl , ... ,xn) viewed as a module is isomorphic to the module sn, and
VIce versa.

3. Unification Problems in Monoidal Theories

Our view of unification is slightly more abstract than the usual one. An £-unification
problem is given by two homomorphisms (i.e. substitutions) u,r: .:Fe(X) -+ .:Fe(Y)
between finitely generated free £-algebras. A unifier of u and r is a homomorphism
8: .:Fe(Y) -+ .:Fe(Z) such that 8u =8r.

2

We call the binary operations + and - the addition and the multiplication, respectively,
of the semiring. A semiring is commutative if its multiplication is commutative. Semir-
ings are different from rings in that they need not be groups with respect to addition.

Examples. The set N of natural numbers with usual addition and multiplication is
a semiring. Every ring is a semiring. In particular, the integers Z with usual addition
and multiplication form a semiring. The set {0, 1} becomes a semiring SACI if we define
1+1 := 1 and extend addition and multiplication as required by the axioms for a semiring.

Analogously to fields, for every semiring 8 we can define S—modules as generalized
vector spaces and linear mappings between S—modules. Especially, the cartesian product
8” becomes an S—module if addition and scalar multiplication are defined pointwise.

As usual, a linear map 018'” ———> S" between free 8-modules can be described by an
n x m-matrix 0,, with entries from 8 , and every such matrix defines a linear mapping.
The transpose at of 0' is the linear mapping corresponding to the transpose C; of the
matrix Ca.

Every monoidal theory 8 defines a semiring &}; as follows: Let 1 be a variable symbol.
Then the carrier of 85 is .730), the free E-algebra over {1}, addition and zero are
inherited from 173(1), the unit is T, i.e. the guequivalence-classe 1, and multiplication of
two 8-classes of terms 3'}. is defined as “s’- f := (1 <— t)s , i.e. the product is obtained by
replacing all occurrences of 1 in 3 with t .

The semiring 85 mirrors properties of E. A monoidal theory is a theory of groups if
for some term t it contains the equation a: + t =' 0. Intuitively, this means that there
exist inverse elements for the addition. A monoidal theory is a theory with commuting
homomorphism if for all h, H G 'H it contains the equation h(h’(a:)) i 11’ (12(3))

THEOREM 2.1.
1. Sg is a ring if and only if 8 is a theory of groups.
2. 85 is commutative if and only if 8 is a theory with commuting homomorphism.

Next we show that it is just a matter of perspective whether one views an algebraic
structure as an E-algebra or as an S.;-module. Let A be an 8—algebra and a E A.
Evaluation in a is defined as the unique homomorphism 5,: 73(1) -——> A from E—terms ov
er 1 to A satisfying 53(1, a) = (.1. Then A can be turned into an Sg-module by defining the
scalar multiplication as 321 :: sa (s) for .'9' E 8;; and a e A . On the other hand, every 85-
module M can be turned into_a_n_ E-algebra by interpreting every unary function symbol
h as the function hM(m) := h(1) - m for m E M.

Switching from 8—algebras to S‘s—modules and backwards turns homomorphisms into
linear mappings and linear mappings into homomorphisms. In particular, the free algebra
on n generators Jig-(:81, . . . , as”) viewed as a module is isomorphic to the module 8” , and
vice versa.

3. Unification Problems in Monoidal Theories

Our view of unification is slightly more abstract than the usual one. An S-unification
problem is given by two homomorphisms (i.e. substitutions) 037': ‚FAX) —> fg(Y)
between finitely generated free E-algebras. A unifier of a' and 7' is a homomorphism
6: .773(Y) —> Ira-(Z) such that 60' = 6T.

Now the instance relation on homomorphisms ("6 is more general than 7]"), complete
and minimal complete sets of unifiers as well as most general unifiers can be defined as
usual.

When we are considering a monoidal theory e, we can view free algebras as modules
Se and homomorphisms as linear mappings. Therefore we can treat unification problems
in the framework of linear algebra over semirings.

Let rr, T:s1- Se be linear. The kernel of u and T is the set ker(u,T) := {a E Sk I
u(a) = T(a)}. The kernel of rr and T is a submodule of s1. The image of u is the set
imu:= {b E Sr 13a E S1.rr(a) = b}. The image of u is a submodule of Sr·

The next theorems are the basic results on monoidal theories. They relate unification
properties to algebraic properties. The first theorem characterizes the instance relation.

THEOREM 3.1. Let 6: Se - Se and 7]: Se - S~ be linear mappings. Then 6 is more
general than 7] if and only if im 7]t ~ im 6t •

Unifiers can be characterized in terms of images and kernels.

THEOREM 3.2. Let rr,T: S1 - Se and 15: Se - Se be linear mappings. Then the
following equivalences hold:

1.	 15 is a unmer of rr and T ~ im c5 t ~ ker(ut, Tt)
2.	 15 is a most general unmer ofu and T ~ imc5t = ker(ut ,Tt).

The type of a unification problem depends, loosely speaking, on the size of the kernel
of the two linear mappings.

THEOREM 3.3. Let U,T: s1- Sr be linear mappings.
1.	 There exists a most general unifier of u and T if and only if ker(ut l Tt) is finitely

generated.
2. For every unifier 7] of u and T there exists a more general unmer 15 if and only if

ker(ut, Tt) is not finitely generated.

Since a unification problem in a monoidal theory is either of type unary or of type
finitary, the same is true of the whole theory.

COROLLARY 3.4. (1-0-Alternative) A monoidal theory is either of unification type 1 or
of type O.

A sufficient criterion for a monoidal theory to be unitary follows from Theorem 3.3.

COROLLARY 3.5. Let e be a monoidal theory. If Fe(l) is finite, then e is of unification
type 1.

References

Baader, F. (1989). "Unification in Commutative Theories", in Kirchner, C. (ed.), Special Issue
on Unification, Journal of Symbolic Computation.

Kirchner, C. (1989), editor. Special Issue on Unification, Journal of Symbolic Computation.
Nutt, W. (1989). "Unification in Monoidal Theories", SEKI Report, Universitiit Kaiserslautern,

forthcoming.

3

Now the instance relation on homomorphisms (“5 is more general than 77”), complete
and minimal complete sets of unifiers as well as most general unifiers can be defined as
usual.

When we are considering a monoidal theory 8 , we can view free algebras as modules
82 and homomorphisms as linear mappings. Therefore we can treat unification problems
in the framework of linear algebra over semirings.

Let 0, 7:82 -—> 82“ be linear. The kernel of 0' and 1' is the set ker(0',7') := {a E 82- |
0(a) = r(a)}. The kernel of 0' and 7- is a submodule of 82. The image of 0' is the set
imo := {b E S? | 3a 6 890(0) = b}. The image of 0' is a submodule of 83".

The next theorems are the basic results on monoidal theories. They relate unification
properties to algebraic properties. The first theorem characterizes the instance relation.

THEOREM 3.1. Let 5:8}? ——+ 82' and 17:82“ —-—+ 82 be linear mappings. Then 6 is more
general than n if and only ifim n‘ g im 6*.

Unifiers can be characterized in terms of images and kernels.

THEOREM 3.2. Let 0,7351. -—* SE." and 6:83“ ——+ 82 be linear mappings. Then the
following equivalences hold:

1. 5 is a unifier of0' and T <=> imö‘ ; ker(a*, 'rt)
2. 6 is a most general unifier do and T (:> imé‘ : ker(0'*, 7").
The type of a unification problem depends, loosely speaking, on the size of the kernel

of the two linear mappings.

THEOREM 3.3. Let 0,1': S}; ——+ 8? be linear mappings.
1 . There exists a most general unifier of 0' and r if and only if ker(0'i, 1") is finitely

generated.
2. For every unifier n of 0' and 1' there exists a more general unifier ö if and only if

ker(0", 7") is not finitely generated.
Since a unification problem in a monoidal theory is either of type unary or of type

finitary, the same is true of the whole theory.

COROLLARY 3.4. (1-0-Alternative) A monoidal theory is either of unification type 1 or
of type 0.

A sufficient criterion for a monoidal theory to be unitary follows from Theorem 3.3.

COROLLARY 3.5. Let 8 be a monoidal theory. If .750) is finite, then £ is of unification
type 1.

References

Baader, F . (1989). “Unification in Commutative Theories”, in Kirchner, C . (ed.), Special Issue
on Unification, Journal of Symbolic Computation.

Kirchner, C. (1989), editor. Special Issue on Unification, Journal of Symbolic Computation.
Nutt, W. (1989). “Unification in Monoidal Theories”, SEKI Report, Universität Kaiserslautern,

forthcoming.

Rewrite Systems for Semigroup Varieties

Franz Baader

IMMD 1, Universitat Erlangen-Niirnberg

MartensstraBe 3, D-8520 Erlangen (West Gennany)

E-mail: baader@infonnatik.uni-erlangen.de

Extended Abstract

There are two possible ways of using finite canonical rewrite systems to solve word

problems for semigroup varieties. On the one hand we may consider term rewrite sys

tems (TRS) which realize associativity by rules. On the other hand we may reduce

modulo associativity, Le. consider words instead of terms. In this case we have word

rewrite systems (WRS).

Advantages of TRS over WRS are:

1) For a finite, tenninating TRS the confluence property ~s decidable. One has to check

only finitely many critical pairs. Since associative unification is infinitary there may be

infinitely many critical pairs obtained by superposition of two rules of a WRS.

2) The Knuth-Bendix Algorithm may be used to complete a given TRS.

Example 1. Consider RB = { x·(y·z) = (x·y)-z, x·(y·x) = x }.

The TRS R = { (x·y)·z -7 x·(y·z), x·(y·x) -7 X } tenninates but is not confluent since the

tenns x·z and x·(y·z) are R-irreducible and RB-equivalent.

The Knuth-Bendix Algorithm yields the canonical system

S = { (x'y)-z -7 x·z, x·(y·z) -7 x·z, x·x -7 X }

forRB.

But there are semigroup theories which have finite canonical word rewrite systems and

do not have finite canonical tenn rewrite systems.

Example 2. Consider LR = { x·(y·z) = (x·y)·z, x·x = x, x·(y·x) = x·y }.

R = {xx -7 x, xyx -7 xy } is a finite canonical WRS for LR but there is no finite canonical

TRS for LR. The Knuth-Bendix Algorithm generates the following infinite canonical TRS

forLR:

Rewrite Systems for Semigroup Varieties

Franz Baader

IMMD 1, Universität Erlangen-Nürnberg

MartensstraBe 3, D-8520 Erlangen (West Germany)

E—mail: baader@ informatik.uni—erlangen.de

Extended Abstract

There are two possible ways of using finite canonical rewrite systems to solve word
problems for semigroup varieties. On the one hand we may consider term rewrite sys-
tems (TRS) which realize associativity by rules. On the other hand we may reduce
modulo associativity, i.e. consider words instead of terms. In this case we have word
rewrite systems (WRS).

Advantages of TRS over WRS are:

1) For a finite, terminating TRS the confluence property is decidable. One has to check
only finitely many critical pairs. Since associative unification is infinitary there may be
infinitely many critical pairs obtained by superposition of two rules of a WRS.
2) The Knuth-Bendix Algorithm may be used to complete a given TRS.

Example 1. Consider RB = { x-(y-z) = (x-y)vz, x-(yox) = x }.

The TRS R = { (x-y)oz ——> xly-z), x-(y-x) —> x] terminates but is not confluent since the

terms x-z and x-(y-z) are R—irreducible and RB-equivalent.

The Knuth-Bendix Algorithm yields the canonical system

S = { (x-y)-z —> x-z, x-(y-z) —> x-z, x-x ——> x }

for RB.

But there are semigroup theories which have finite canonical word rewrite systems and
do not have finite canonical term rewrite systems.

Example 2. Consider LR = { x-(y-z) = (x-y)-z, xx = x, x-(y-x) = x-y }.

R = { xx ——) x, xyx —> xy } is a finite canonical WRS for LR but there is no finite canonical
TRS for LR. The Knuth-Bendix Algorithm generates the following infinite canonical TRS
for LR: '

mailto:baader@infonnatik.uni-erlangen.de

{ (X·y)·z ~ X·(y·z), X'X ~ x,

XI'(~'(",(Xn_t"(Xn'XI»"'» ~ X1'(Xi("'(Xn_I'Xn)",»,

Xt"(X2·(,.. (X _t"(X!,X » ...» ~ x!'(xi(...(xn_t"x)...»; n ~ 2 }n n n

We may now ask whether there is a semigroup variety with decidable word problem but

without f1nite canonical WRS (TRS). The lattice of all varieties of idempotent semi

groups yields countably many natural examples of that kind.

Theorem

1) There are countably many varieties of idempotent semigroups and they all have decid

able word problem (Blljukov (1970), Fennemore (1971), Gerhard (1970)).

2) There are only three varieties of idempotent semigroups with finite canonical TRS and

nine varieties of idempotent semigroups with finite canonical WRS (Baader (1989)).

The proof of 2) for WRS is rather involved. It requires a thorough knowledge of the solu

tion of the word problem for varieties of idempotent semigroups. The proof of 2) for TRS

uses the fact that canonical term rewrite systems for regular semigroup theories are of a

very specific fonn. Regular means that the variables occurring on the left side or right side

of an identity are the same. Thus LR is regular but RB is not regular.

Lemma

Let E be a regular semigroup theory and let R be a canonical TRS for E. Then there is a

reduction chain (x·y)·z ~ R x·(y·z) or x·(y·z) ~ R (x·y)·z. If, in addition, R is reduced

then (modulo variable renaming) (x·y)·z ~ x'(y'z) E R U R-I.

The reduced canonical system S for RB shows that the condition tiE regular" is necessary.

Now the following may be proved, using the fact that for all n the identity

xI,(xi(",(xn_I,(xn,(xI,(x2,(",(xn_I"xn)"'»»)"'» =xI,(x2,(",(xn_l,xn)"'»

is valid in any idempotent semigroup.

Proposition

Let E be a regular semigroup theory defining a variety of idempotent semigroups. Then

there does not exist a finite canonical TRS for E.

{ (x-y)—z _) x-(y-z), x-x ——> x,

xl-(xz-(u.(xn_1-(xn«x1))...)) --> x1-(xz-(...(xn_l-xn)...)),

x1-(x2-(...(xn_1-(x1-xn))...)) —> Xl ' (x2° (‘ " (xn -1 'Xn) ' "» ; n 2 2 }

We may now ask whether there is a semigroup variety with decidable word problem but

without finite canonical WRS (TRS). The lattice of all varieties of idempotent semi-
groups yields countably many natural examples of that kind.

Theorem

1) There are countably many varieties of idempotent semigroups and they all have decid-

able word problem (Birjukov (1970), Fennemore (1971), Gerhard (1970)).

2) There are only three varieties of idempotent semigroups with finite canonical TRS and
nine varieties of idempotent semigroups with finite canonical WRS (Baader (1989)).

The proof of 2) for WRS is rather involved. It requires a thorough knowledge of the solu—
tion of the word problem for varieties of idempotent semigroups. The proof of 2) for TRS
uses the fact that canonical term rewrite systems for regular semigroup theories are of a
very specific form. Regular means that the variables occuning on the left side or right side
of an identity are the same. Thus LR is regular but RB is not regular.

Lemma

Let E be a regular semigroup theory and let R be a canonical TRS for E. Then there is a

reduction chain (x-y)-z i>R x-(y-z) or x-(y-z) j'—>R (x-y)-z. If, in addition, R is reduced

then (modulo variable renaming) (x-y)-z —) x-(y-z) e R U R’l.

The reduced canonical system S for RB shows that the condition "E regular" is necessary.
Now the following may be proved, using the fact that for all n the identity

‘x l - (x2o (. . . (xn_1- (xn - (x1 - (x2 - (. . . (xn -1 -xn) . . .))))) . . .)) = xl-(xz-(...(xn_l-xn)...))

is valid in any idempotent semigroup.

Proposition
Let E be a regular semigroup theory defining a variety of idempotent semi groups. Then
there does not exist a finite canonical TRS for E.

References

Baader, F. (1989). UnifIkation und Reduktionssysteme fiir Halbgruppenvarietiiten. Ph.D.

Dissertation, Universitiit Erlangen-Niirnberg.

Bitjukov, A.P. (1970). Varieties of Idempotent Semigroups. Algebra i Logika 9. English
translation in Algebra and Logic 9 (1970).

Fennemore, C.P. (1971). All Varieties of Bands I, IT. Math. Nachr. 48.

Gerhard, lA. (1970). The Lattice of Equational Classes of Idempotent Semigroups. J.
Algebra 15.

References
Baader, F. (1989). Unifikation und Reduktionssysteme für Halb gruppenvarietéiten. Ph.D.

Dissertation, Universität Erlangen-Nürnberg.
Biljukov, A.P. (1970). Varieties of Idempotent Semigroups. Algebra i Logika 9. English

translation in Algebra and Logic 9 (1970).

Fennemore, OF. (1971). All Varieties of Bands 1, II. Math. Nachr. 48.

Gerhard, LA. (1970). The Lattice of Equational Classes of Idempotent Semigroups. J.
Algebra 15.

RESTRICTIONS OF CONGRUENCES

OENER.A.TED BY FINITE

C.A.NONIC.A.L STRING-RE'V\TRITING

SYSTElVIS

- Extended Abstract

Friedrich Otto

Department of Computer Science, State University of New York,

Albany, N.Y. 12222. U.S.A.

currently visiting at

Fachbereich Informatik. UniversiUH Kaiserslautern,

6750 Kaiserslautern

E-Mail Adresse: Otto @ uklirb.uucp

Let m be a monoid that is given through a finite string-rewriting system
S on alphabet ~. One way to attempt to solve the word problem for m
consists in trying to determine a finite canonical string-rewriting system
R on ~ that is equivalent to S by way of completion. However, even if
the word problem for m is decidable, there may not exist a finite
canonical system R that is equivalent to S as exemplified by the system
S = {[aba.bab]} [2]. In some cases introducing additional letters as ab
breviations for certain words from ~* will help to overcome this difficulty,
but this does not always work, either. In fact, there exist finitely presented
monoids with decidable word problem that cannot be presented by any
fini te canonical string-rewriting system, no matter which finite set of
generators we use [4]. On the other hand, every finitely generated
monoid with a decidable word problem can be embedded into a monoid
that is presented by a finite string-rewriting system which is canonical
on the embedded monoid [1]. Here we are concerned with a decision
problem that is closely related to this embedding theorem, and which
we call the PROBLEM OF RESTRICTION;

- 1

R E S T R I C T I O N S OF CONGRUENCES
GENERATED BY FINITE

CANONICAL STRING—REWRITINC}
SYSTEMS

- Extended Abstract -

Fr i ed r i ch Ot to

Depar tmen t of Compu te r Sc ience , Sta t e Un ive r s i t y of New York ,
Albany , N.Y. 122.22, U.S.A.

cu r r en t ly v i s i t i ng a t

Fachbe re i ch In fo rma t ik , Un ive r s i t ä t Ka i se r s l au t e rn ,
6750 Kaise r s l au t e rn

E—Mail Adres se : Ot to @ uk l i rb .uucp

Le t M be a mono id t ha t i s g iven th rough a f i n i t e s t r i ng—rewr i t i ng sys t em
S on a lphabe t 2 . One way to a t t emp t t o so lve t he word p rob lem fo r SR
cons i s t s i n t ry ing to de t e rmine a f i n i t e canon ica l s t r i ng - r ewr i t i ng sys t em
R on Z t ha t i s equ iva l en t t o S by way of comple t i on . Howeve r , even if
t he word p rob lem for am i s dec idab le , t he re may no t ex i s t a f i n i t e
canon ica l sy s t em R t ha t i s equ iva l en t t o S a s exempl i f i ed by the sys t em
S = { [aba ,bab]} [2] . In some case s i n t roduc ing add i t i ona l l e t t e r s a s ab -
brev i a t i ons fo r ce r t a in words f rom 2* wi l l he lp t o ove rcome th i s d i f f i cu l ty ,
bu t t h i s does no t a lways work , e i t he r . I n f ac t , t he re ex i s t f i n i t e ly p re sen t ed
mono ids w i th dec idab le word p rob lem tha t canno t be p re sen t ed by any
f in i t e canon ica l s t r i ng—rewr i t i ng sys t em, no ma t t e r wh ich f i n i t e s e t of
gene ra to r s we use [4]. On the o the r hand , every f i n i t e ly gene ra t ed
mono id w i th a dec idab le word p rob lem can be "embedded in to a mono id
t ha t i s p r e sen t ed by a f i n i t e s t r i ng - r ewr i t i ng sys t em wh ich i s canon ica l
on the embedded mono id [I]. He re we a re conce rned wi th a dec i s ion
prob lem tha t i s c lo se ly r e l a t ed t o t h i s embedd ing theo rem, and wh ich
we ca l l t he PROBLEM OF RESTRICTION:

INSTANCE:	 A finite string-rewriting system R1 on alphabet L1 such
that the word problem for R1 is decidable, and a finite
string-rewriting system Rz on alphabet LZ~ L1.

QUESTION:	 Is <-*->R1 = <-*->Rzl~1X~*' Le., is the congruence <-*->R1
the restriction of the congruence <-*->RZ to L; ?

The following	 results have been obtained.

Theorem 1. The following restricted version of the PROBLEM OF RESTRIC

TION is undecidable in general:

INSTANCE: A finite, length-reducing, and confluent string-rewriting

system R on	 alphabet LZ' and a subalphabet L1 ~ LZ' z
QUESTION: Is <-*->Rzl~ix~* = id~t ?

Here a string-rewriting system R is called length-reducing if III > Irl

holds for each rule (1 -> r] of R. It is called monadic if it is length

reducing, and also r E L u {e} holds for each rule (1 -> r] of R.

Theorem 2. The following restricted version of the PROBLEM OF RESTRIC

TION is undec idable in general:

INSTANCE: A finite monadic string-rewriting system Rz on alphabet

LZ such that the word problem for R is decidable, andz
a sUbalphabet L1 ~ LZ'

QUESTION: Is <-'*->Rzl~ix~*= id~* ?

Theorem 3. The PROBLEM OF RESTRICTION is decidable, if Rz is being
restricted to finite, monadic, and confluent string-rewriting systems.

The combinatorial restrictions of Theorem 3 can be relaxed somewhat
if algebraic restrictions are placed on the monoids presented.

Theorem 4. The following variant of the PROBLEM OF RESTRICTION is
decidable:
INSTANCE: A finite string-rewriting system R1 on alphabet L such

1
tha t the word problem for R1 is decidable, and the
monoid ID11 := L;/ <----.!..->R1 is a group, and a finite monadic
string-rewriting system Rz on alphabet LZ ~ L such that1

is confluent on [e]R 'Rz z
QUESTION: IS <-->R1'* -- <-->'* RZ I~ix~* ?.

- 2

INSTANCE: A f i n i t e s t r i ng - r ewr i t i ng sys t em R1 on a lphabe t 21 such
t ha t t he word p rob lem fo r R1 i s dec idab le , and a f i n i t e
s t r i ng—rewr i t i ng sys t em R2 on a lphabe t 22 ; 21.

are _ are . - areOUESTION: I s < >RI - < >R2 ???-2T" 1.e.‚ IS t he congruence < >R1

the restriction of the congruence < * >32 to 2;" ?

The fo l l owing r e su l t s have been ob t a ined .

Theorem 1. The fo l l owing r e s t r i c t ed ve r s ion of t he PROBLEM OF RESTRIC-
TION i s undec idab le i n gene ra l :
INSTANCE: A f i n i t e , l eng th—reduc ing , and con f luen t s t r i ng—rewr i t i ng

sys t em R2 on a lphabe t 222, and a suba lphabe t 21 7Q 22 .
- _ate : ' ält— ?OUESTION. I s < >R2 |z fxz i t ld;1 .

Here a s t r ing-rewri t ing system R is called length-reducing if Ill > lrl
ho lds fo r each ru l e [1 ——> r] o f R . I t i s c a l l ed monadic i f i t i s l eng th—
r educ ing , and a l so I € 2 u {e} ho lds for each ru l e [1 —> r] of R.

Theorem 2. The fo l l owing r e s t r i c t ed ve r s ion of t he PROBLEM OF RESTRIC-
TION i s undec idab le i n gene ra l :
INSTANCE: A f in i te monad ic s t r ing—rewri t ing sys t em R2 on a lphabe t

22 such tha t t he word problem for R2 i s dec idab le , and
a suba lphabe t 21 7C, 22 .

- __ale : ' in 9QUESTION. IS < >R2 |Efx2 f 1(112l .

Theorem 3. The PROBLEM OF RESTRICTION i s dec idab le , if R2 i s be ing
re s t r i c t ed t o f i n i t e , monad ic , and con f luen t s t r i ng—rewr i t i ng sys t ems .

The combina to r i a l r e s t r i c t i ons of Theo rem 3 can be r e l axed somewha t
if a lgeb ra i c r e s t r i c t i ons a r e p l aced on the mono ids p re sen t ed .

Theorem 4 . The fo l l owing va r i an t of t he PROBLEM OF RESTRICTION i s
dec idab le :
INSTANCE: A f i n i t e s t r i ng - r ewr i t i ng sys t em R1 on a lphabe t 21 such

tha t t he word p rob lem for R1 i s dec idab le , and the
monoid am! == Z?/< * >R1is a group, and a finite monadic
s t r i ng - r ewr i t i ng sys t em R2 on a lphabe t 22 ; 21 such tha t
R2 i s con f luen t on [e]Rz .

. * _. _* ‚„ 9QUESTION. Is < >31 - < >R2|zfl

Additional algebraic restrictions allow to even consider non-monadic
string-rewriting systems R2 .

Theorem 6. The following variant of the PROBLEM OF RESTRICTION is
decidable:
INSTANCE: A finite Noetherian string-rewriting system R1 on alphabet

L1 such that R1 is confluent on [eJR l' and such that the
monoid m11 := L:/<-*->R1 is a group, and a finite, weight
reducing, and confluent string-rewriting system R2 on
alphabet L 2 ~ L1 such that the monoid m12 := L; / <-*->R2

is a group.
QUESTION: Is <-*->R1 = <-*-> R21~ix~t ?

The	 proofs of Theorems 1 to 3 can be found in [3].

References

1.	 G. Bauer; Zur Darstellung von Monoiden durch konfluente Regel
systeme; Ph.D. dissertation, Fachbereich Informatik, UniversiUit
Kaiserslautern, 1981.

2.	 D. Kapur, P. Narendran, A finite Thue system with decidable word
problem and without equivalent finite canonical system; Theoretical
Computer Science 35 (1985), 337-344.

3.	 F. OUo l Restrictions of congruences generated by finite canonical
string-rewriting systems; Proceedings of RTA-89, to appear.

4.	 C. Squier; Word problems and a homological finiteness condition
for monoids; Journal of Pure and Applied Algebra 49 (1987), 201-217.

- 3

Addi t i ona l a lgeb ra i c r e s t r i c t i ons a l l ow to even cons ide r non—monad ic
s t r i ng—rewr i t i ng sys t ems R2 .

Theorem 5. The fo l l owing va r i an t of t he PROBLEM OF RESTRICTION i s
dec idab le :
INSTANCE: A f i n i t e Noe the r i an s t r i ng—rewr i t i ng sys t em R1 on a lphabe t

21 such tha t R1 i s conf luent on [eJRP and such tha t the
monoid xml ==: Ef/< * >R1 is a group, and a finite. weight -
r educ ing , and con f luen t s t r i ng - r ewr i t i ng sys t em R2 on
alphabet 22 ; 21 such that the monoid mg == 2: /<—*—>R
i s a g roup .

QUESTION: Is < * >R1 = <

2

*-
>Rz |E i "x * ?

The proofs of Theorems 1 to 3 can be found in [3].

References

l . G. Bauer; Zur Dars t e l lung von Monoiden durch konf luen t e Rege l -
sys t eme ; Ph.D. d i s se r t a t i on , Fachbere ich In format ik , Un ive r s i t ä t
Ka i se r s l au te rn , 1981.

2. D. Kapur, P. Narendran. A f i n i t e Thue sys t em wi th dec idab le word
p rob lem and wi thou t equ iva l en t f i n i t e canon ica l sy s t em; Theore t i ca l
Computer Science 35 [1985], 337—344.

3. F. Ot to . Res t r i c t i ons of congruences gene ra t ed by f i n i t e canon ica l
s t r i ng - r ewr i t i ng sys t ems i P roceed ings of ETA—89, t o appea r .

4. C. Squier; Word p rob lems and a homolog ica l f i n i t enes s cond i t i on
for monoids; Journal of Pure and Applied Algebra 49 [1987], 201-217.

Deciding Equaiity under Gen.eralized
.Associative and Cor:n.r:n.utative .Axiorn.s

J. Avenhaus
I. FrobeniUS

UniversiUlt Kaiserslautern, FB Informatik
0-6750 Kaiserslautern

1. Introduction

Deciding equality is the following problem

INPUT: E, a set of equational axioms, and two terms s,t.

QUESTION: Does s =E t hold?

The rewriting approach to this problem is first to transform E into a convergent

term rewriting system R. If this is successful then E-equality can be tested by

rewriting: s =E t iff ~ = t where ~ and t are the unique R-normal forms of sand

t.
Unfortunately, the Knuth-Bendix completion procedure - which transforms E
into R - may fail because i) it produces an infinite number of rules or ii) it en
counters equations that cannot be ordered by the reduction order in use. We
are interested in tools to overcome these problems for special axiom systems
expressing generalized associativity and generalized commutativity. Both
schematas of axioms allow only finite congruence classes, so the E-equality is
decidable. But preprocessing E into R will increase the efficiency. Such problems
appear when one uses globally finite rewriting systems instead of rewriting
modulo a congruence, see [Gobel 1987].

2. Generalized associativity

Intuitively, by an equation expressing generalized associativity we
equations of the form

f[[f[xl,x2,x3)' x4' x5) = f(xl' f(x2,x3'x 4 J. x5) or

mean

g(g[xl'x2J. g[x3,x4)) = 9'(xl' 9'(x2' g[x3,x4)))
One characteristic of such an equation s = t is that sand t, expressed as trees,
have the same frontier. Another characteristic is that they are length-equal.

Definition: Let T[F, V) be the set of terms built with operators in F and variables

in V, let s, t E T(F, V)

a) s, t are leaf-equal if frontier(s) = frontier(t)

b) s,t are length-equal if Isl F = ItlF and Isl x for all x E V.

- 1

D e c i d i n g Equa l i t y unde r Gene ra l i zed .
Assoc i a t i ve and Commuta t ive Ax ioms

J. Avenhaus
I. Frobenius

Unive r s i t ä t Ka i se r s l au t e rn , FB In fo rma t ik
D-6750 Kaise r s l au t e rn

1. In t roduc t ion

Dec id ing equa l i t y i s t he fo l l owing p rob lem
INPUT: E,a s e t o f equa t iona l ax ioms , and two t e rms s , t .
QUESTION: Does s =E t ho ld ?

The r ewr i t i ng approach to th i s p rob l em i s f i r s t t o t rans form E i n to a conve rgen t
t e rm r ewr i t i ng sys t em R . If t h i s i s succes s fu l t hen E—equa l i t y can be t e s t ed by
rewr i t i ng : s =E t iff € E ’t whe re Q and ? are t he un ique R-no rma l fo rms of s and
t..
Unfor tuna t e ly , t he Knu th -Bend ix comple t i on p rocedure - which t r ans fo rms E
i n to R - may f a i l because i] i t p roduces an i n f in i t e number of ru l e s o r i i] i t en-
coun te r s equa t ions t ha t c anno t be o rde red by the r educ t ion o rde r i n u se . We
are i n t e r e s t ed i n t oo l s t o ove rcome these p rob lems fo r spec i a l ax iom sys t ems
expre s s ing gene ra l i zed a s soc ia t iv i ty and gene ra l i zed commuta t iv i ty . Both
schema ta s of ax ioms a l l ow on ly f i n i t e congruence c lasses , so t he E -equa l i t y is
dec idab le . Bu t p r ep roces s ing E i n to R wi l l i nc rea se t he e f f i c i ency . Such p rob lems
appea r when one u se s g loba l ly f in i t e r ewr i t i ng sys tems in s t ead of r ewr i t i ng
modu lo a congruence . s ee [Göbe l 1987].

2. General ized associat ivi ty

In tu i t ive ly , by an equa t ion express ing gene ra l i zed a s soc i a t i v i t y we mean
equa t ions of t he fo rm

f[[f[x1,x2,x3], x4, x5] = f[x1, f[x2,x3,x4], x5] or

g[g [x1 .x2] . g[x3.x4]] = g'[x1. gixz. g[x3.x4]]] .
One cha rac t e r i s t i c of such an equa t ion s = t i s t ha t s and t , exp re s sed a s t r ee s ,
have t he s ame f ron t i e r . Ano the r cha rac t e r i s t i c i s t ha t t hey a r e l eng th -equa l .

Defini t ion: Le t ".I.‘[F,V] be t he se t of t e rms bu i l t w i th opera to r s in F and va r i ab l e s
in V, l e t s , t € T[F‚V]
a] s , t a r e leaf-equal if f ront ier [s] E f ront ier [t]
b] s,t a re length-equal if | l = ItIF and lslx for a l l x E V.

—1-—

The key observation of our approach is

Lemma 1: The Knuth-Bendix completion procedure started with a leaf- (resp. a
length-) equal set of equations produces only leaf- (resp. length-) equal rules
and equations.

So, to avoid abortion of the Knuth-Bendix procedure when started with a set of
leaf-equal equations. one has to construct a reduction ordering which is total
on leaf-equal terms. To do so, we start with a total precedence .> on F and
denote by n (s) the multiset of leaves of term s (where s is represented as a
tree).

Definition: Length order >L
s == f(s l ...·. sm) >L t == g(t1,..·,tn)

iff lexicographically (0:) n(s) -;. n(t) or (~) Isl > It 1

or (1') f .> g or (3) (sl.· ... sn) >L.lex (t1.···.tn)

Lemma 2: >L is a reduction order and total on leaf-equal terms.

This together with Lemma 1 gives an unfailing Knuth-Bendix completion procedure
for leaf-equal equational systems E as input. It can be used as an decision
procedure for E-equality if E is leaf- and length-equal. For. in this case one can
produce during completion the rules in increasing length and stop for the problem
"s =E t ?" as soon as all rules I -> r with length III ,;: Isl are produced.

Theorem: The Knuth-Bendix completion procedure working with a length order
does not abort for leaf-equal equational systems E as input. It gives a decision
procedure for E-equality if E is both leaf- and length-equal.

3. Generalized Commutativity

By a permutation equation we mean an equation of the form

f(xl'''''x n) = f(X1t(l)· ..··x1t(n))
where 1t is a permutation. We write f(x) = f(1t(xJ) in this case.
The problem now is to solve E-equality "s =E t ?" for

E = {f(x) = f(1ti(x)); i = 1, k} .

Of course. no permutation equation can be oriented by a reduction order. So
one may start the unfailing Knuth-Bendix procedure. But it will generate too
much equations, namely O(n !) equations in many cases.

We notice
a) applying f(x) = f(1t(xJ) to f(t1..... t) results in the transformation ofn

[= t1' t into 1t(f) or 1t-1(f).n
b) f(x1 xn) =E f(x1t[l) ...·.x1t(n)) iff 1t E G, where G = <1tl 1tk> is the sub

group of the full permutation group <Sn generated by 1t1' 1tk.
c) f(t1 ... ·. t n) =E f(sl.· ... sn) iff for some 1t E G ti =E s1t(i) for i = 1..... n.

- 2

The key obse rva t ion of ou r app roach i s

Lemma 1: The Knuth-Bendix comple t ion p rocedure s t a r t ed w i th a leaf— [resp. a
length-] equa l s e t of equa t ions p roduces on ly l ea i - [r e sp . l eng th—] equa l ru l e s
and equa t ions .

So , t o avo id abo r t i on of t he Knu th—Bend ix p rocedure when s t a r t ed w i th a s e t of
l ea f - equa l equa t ions , one has to cons t ruc t a r educ t ion o rde r ing which i s to ta l
on l ea f - equa l t e rms . To do so, we s t a r t wi th a to t a l p recedence -> on F and
deno te by t l : [s] t he mu l t i s e t of l e aves of t e rm 5 [whe re s i s r ep re sen t ed a s a
t r ee] .

Definit ion: Leng th o rde r >L

s E f[sl,„.‚sm] >L t E g[t1,...,tn]
i i i l ex icograph ica l ly [a] n[s] _; u [t] or [ß] lsl > ltl

o r [7] f -> g or [8] [sl‚...‚sn] >L‚ Iex [t1,...,tn]

Lemma 2: >L i s a r educ t ion o rde r and to t a l on leaf—equal t e rms .

This t oge the r w i th Lemma 1 gives an un fa i l i ng Knu th—Bend ix comple t i on p rocedure
fo r l e a f—equa l equa t iona l sy s t ems E as i npu t . I t c an be u sed a s an dec i s ion
p rocedure fo r E—equa l i t y if E i s leaf— and l eng th—equa l . For , i n t h i s ca se one can
p roduce du r ing comple t i on t he ru l e s i n i nc rea s ing l eng th and s top fo r t he p rob lem
"5 =E t ?-" a s soon as a l l r u l e s 1 ——> r wi th l eng th Ill S Isl a r e p roduced .

Theorem: The Knu th -Bend ix comple t i on p rocedure work ing wi th a l eng th o rde r
does no t abo r t fo r l e a fuequa l equa t iona l sy s t ems E as i npu t . I t g ives a dec i s ion
p rocedure fo r E -equa l i t y if E i s bo th l ea f - and l eng th -equa l .

3. General ized Commutativity

By a pe rmuta t i on equa t ion we mean an equa t ion of t he fo rm
f[x1‚...‚xn] = {[xn1]'°"'x1t[n]]

where 1t i s a pe rmuta t ion . We wr i t e {[325 = Hub—(]] i n t h i s case.
The p rob lem now i s t o so lve E-equa l i ty " s E t ?” for

E = {fh—c] = f[ni[ä]]; i = 1 k} .

Of cou r se , no pe rmuta t i on equa t ion can be o r i en t ed by a r educ t ion o rde r . So
one may s t a r t t he unfa i l ing Knuth—Bendix p rocedure . Bu t i t w i l l gene ra t e too
much equations, namely O[n !] equations in many cases.

We no t i ce
a] app ly ing f[>_c] = f[1c[)'<]] t o f[t1,...,tn] r e su l t s i n t he t r ans fo rma t ion of

t- = t1....,tn i n to rc[f] o r at'1[’r.'].
b] f_[x1,...‚xn] =E { [xn [1] ‚ . . . ‚ xn [n]] i i i ‘11: E G. where G = <1c1,...,rck> i s t he sub-

group of t he fu l l pe rmu ta t i on g roup @n gene ra t ed by 1:1,...,rtk.
c] f[t1,...,tn] "'E {[sl‚...,sn] iff for some 71? E G t i =E Sufi] for i = 1,...,n.

2 .

There are polynomial time algorithms to transform U = {rc1 n:k} into V = {Cl1' Cl m}
such that a = <U> = <V> and the problem" n: Ea?" can be solved in time O(nJ,
see [FUrst et al 1980]. This algorithm can be used to order sequences a = aV.. an
with ai :I: aj for i :I: j modulo a in polynomial time. Le. to compute the lexico
graphical minimal n:[a) = an:[1) ...an:[n) among all n: E a.

The permutations Cli in the transformed set V of generators for a can directly
be translated into a set of rewrite rules which rewrite the term f[a1' a n) into
the minimal term f[an:(1) an:[n]) in its E-congruence class.

In general one can solve the problem "t = f[t1...·.tn) =E s = f[s1 sn) ?" by sorting
both terms bottom up modulo a. Then s =E t iff the sorted forms are identical.
Unfortunately. to do so we need sorting modulo a also if some element ai in
the sequence a = a1..... an appear more than once. and in this case the above
mentioned sorting algorithm becomes non-deterministic. Even worse. this
generalized problem of sorting modulo a is NP-hard. see [Babai and Luks 1983].
But nevertheless. this approach of sorting modulo a leads in general to more
efficient algorithms then computing all permutations in a. And this basically
is what the unfailing Knuth-Bendix procedure does. For example. from V one
can see whether a = en' In this case sorting modulo a is the normal sorting
and can be done in time O[n·log n).

References:

[R. aobel]:	 around Confluence. RTA-Conference 1987. LNCS 256, pp. 156-167.
[M.	 FUrst. J. Hopcroft. E. LuksJ: Polynomial time algorithms for permutation

groups. •FOCS-Conference 1980. pp. 36-41.
[L.	 Babai. E. LUksJ: Canonical labeling of graphs, STOC-Conference 1983. pp.

171-183.

- 3

There a re po lynomia l t ime algorithms t o t r ans fo rm U = {“ I nk} in to V = {01‚ . . . , om}

such t ha t G = <U> = <V> and the p rob lem "‘n: e G ?” can be so lved in t ime O[n],
see [Fü r s t e t a l 1980] . This a lgo r i t hm can be u sed to o rde r s equences a = a1, . . . , an
wi th a i # aj fo r i t j modulo G in po lynomia l t ime , i . e . t o compu te the lexico—
graph ica l min ima l 1t[a] = an[1]...an[n] among a l l 'n: E G.

The permuta t ions “1 i n the t r ans fo rmed se t V of gene ra to r s for G can d i rec t ly
be t ransla ted into a s e t of rewri te rules which rewri te the t e rm Hal, an] into
t he minimal t e rm f[an[l]‚„.‚an[n]] i n i t s E—congruence c lass .

In general one can solve the problem "t E i[t1,...,tn] =E s E f[s1,...,sn] ?" by sorting
both t e rms bo t tom up modulo G . Then s =E t iff t he so r t ed fo rms a r e iden t ica l .
Unfor tuna t e ly , t o do so we need so r t i ng modu lo G a l so if some e l emen t a i i n
the s equence a E a1... . ,an appea r more t han once , and in t h i s ca se t he above
men t ioned so r t i ng a lgo r i t hm becomes non -de t e rmin i s t i c . Even wor se , t h i s
gene ra l i zed p rob lem of so r t i ng modulo G i s NP—hard. s ee [Babai and Luks 1983].
But neve r the l e s s , t h i s approach of so r t i ng modu lo G l eads i n gene ra l t o more
e f f i c i en t a lgo r i t hms then compu t ing a l l pe rmu ta t i ons i n G . And th i s ba s i ca l l y
i s wha t t he un fa i l i ng Knu th -Bend ix p rocedure does . Fo r example , f rom V one
can see whe ther G = ©n° In t h i s case so r t ing modulo G i s t he normal sorting
and can be done in t ime O[n-log n].

References :

[R. Göbe l] : Ground Conf luence , ETA-Confe rence 1987, LNCS 256, pp . 156—167.
[M. Fürst, J . Hopcroft, E. Luks]: Polynomial t ime algori thms for permutation

groups , ‘Focs-Conrerence 1980, pp . 36—41.
[L. Babai, E. Luks]: Canonical labeling of graphs, STOC-Conference 1983, pp.

171-183.

Rewriting in abelian monoids as an appropriate means for the

simulation of Petri nets 1

Harald - Reto Fonio

GMD, Institut fUr Systemtechnik, 5205 St Augustin; email fonio@gmdzi.uucp

Among the specification tools for the design of distributed systems Petri nets are getting more and

more important. One of the reasons for this fact is that the constructive characteristics of the theory of

Petri nets can be understood also as a graphical paradigm and hence be applied as an advantageous

support for the intuition when specifying parallel processes. For the analysis of the total behaviour of

distributed systems it is necessary to describe the local characteristics and the parts of these systems

and to relate them with each other. It is characteristical for these systems that processes can be

executed concurrently or be started in conflict with each other. But it is also of some importance that

the data to be processed as well as the processes can be specified locally. But then the localisation of

partial aspects in distributed systems requires to work out the interdependencies of the system parts

using them as characteristics for the scheduling of these system parts. All these aspects are covered in

a natural way by Petri nets, for example by high level nets.

Working with high level nets means to specify both the data and the processes which manipulate

the data. The data being described for example initially by abstract data types, this suggests to

combine the expressive power of Petri nets with the theory of abstract data types. First valuable steps

into this direction have been shown up in lKra 89/ and in /Sch 89/. But albeith Petri nets are to be

understood 'quite easily' it was surprisingly difficult to fit Petri nets into such an algebraic context

which were able to reflect the cited aspects of locality in its own light. An appropriate description of

the data space had to be found which provides the states space over which the actions of the Petri nets

could be defined. One of the reasons for these efforts was of course to open the specification of

distributed systems towards the methodology of abstract data types and to use the term rewriting

methods being developed in the ADT - context for the analysis and for the simulation of these

systems. In this context it was a useful hint that Petri nets themselves are already substitution

systems.

A satisfactory solution of this problems has been given by Meseguer and Montanari in a brilliant

paper (/MeMo 88/). Also Kaplan has already worked into this direction (lKa 87/). Independently of

these authors I have introduced abelian additive monoids allowing cancellation, shortly AC

monoids, for spanning up the states space. The cancellation property together with the addition

operation allows for a unique algebraic representation of the substitution mechanism within these

monoids, a point where associative and commutative term rewriting techniques come in quite

naturally. Combinations of cancelling and adding items within terms of such monoids are nothing else

This work was performed in the frame of the ESPRIT Project 125 - GRASPIN.

1

1

Rewriting in abelian monoids as an appropriate means for the

simulation of Petri nets 1

Harald — Reto Fonio

GMD, Institut für Systemtechnik, 5205 St Augustin; email fonio@gmdzi.uucp

Among the specification tools for the design of distributed systems Petri nets are getting more and
more important. One of the reasons for this fact is that the constructive characteristics of the theory of
Petri nets can be understood also as a graphical paradigm and hence be applied as an advantageous
support for the intuition when specifying parallel processes. For the analysis of the total behaviour of
distributed systems it is necessary to describe the local characteristics and the parts of these systems
and to relate them with each other. It is characteristical for these systems that processes can be

executed concurrently or be started in conflict with each other. But it is also of some importance that
the data to be processed as well as the processes can be specified locally. But then the localisation of
partial aspects in distributed systems requires to work out the interdependencies of the system parts
using them as characteristics for the scheduling of these system parts. All these aspects are covered in
a natural way by Petri nets, for example by high level nets.

Working with high level nets means to specify both the data and the processes which manipulate
the data. The data being described for example initially by abstract data types, this suggests to
combine the expressive power of Petri nets with the theory of abstract data types. First valuable steps
into this direction have been shown up in [Km 89/ and in /Sch 89]. But albeith Petri nets are to be
understood 'quite easily’ it was surprisingly difficult to fit Petri nets into such an algebraic context
which were able to reflect the cited aspects of locality in its own light. An appr0priate description of

. the data space had to be found which provides the states space over which the actions of the Petri nets
could be defined. One of the reasons for these efforts was of course to open the specification of
distributed systems towards the methodology of abstract data types and to use the term rewriting
methods being developed in the ADT - context for the analysis and for the simulation of these
systems. In this context it was a useful hint that Petri nets themselves are already substitution
systems.

A satisfactory solution of this problems has been given by Meseguer and Montanari in a brilliant
paper {/MeMo 88/). Also Kaplan has already worked into this direction (/Ka 87/). Independently of
these authors I have introduced abelian additive monoids allowing cancellation, shortly AC -
monoids, for spanning up the states space. The cancellation property together with the addition
operation allows for a unique algebraic representation of the substitution mechanism within these
monoids, a point where associative and commutative term rewriting techniques come in quite
naturally. Combinations of cancelling and adding items within terms of such monoids are nothing else

1 This work was performed in the frame of the ESPRIT Project 125 - GRASPIN.

l

mailto:fonio@gmdzi.uucp

than rewrite rules for these structures. Thus the cancellation/addition combinations form the algebraic

link between the rewrite rules mentioned above and the firing rules of Petri nets. This provides the

bridge for the algebraic simulation of Petri nets by associative commutative term rewriting within

freely generated abelian structures.

AC - monoids, which are decomposable into direct sums, allow to describe local aspects using the

injections and projections. Here we think for example of sequential and parallel composition of local

steps. AC - monoids can be generated freely over sets of interesting data where the latter can be

presented for example by initial abstract data types. Essentially the free construction guarantees the

invariance, the logical independence of the description of the data with respect to the substitution steps

in the underlying monoid.

Now an abelian monoid freely generated over some set is nothing else than the class of multisets

(bags) defined with respect to that set, and there is a uniquely defined injective embedding of this set

into the monoid generated over it. It can be specified by a parameterized specification using. the

embeddings as copy operations and interpreting the set of the data as the actualization of the

parameter. In this context the cancellation/addition combinations appear as rules for such

specifications. This opens the way towards specifying Petri nets and their behaviours by ADTs.

It remains to single out the class of Petri nets which we are going to treat: the high level nets. This

will be done in three conceptional steps. We remind of Kowalski's paradigm "ALGORITHM =
LOGIC + CONTROL" which must be a guide line for the specification of a distributed system,too.

Thus we speak on one hand about the states as objects within a state space spanned up by the data and

on the other hand about the actions on these states as state manipulating actions leaving the data

invariant.

The Petri net realization begins with a triple N =(S, T, F) of sets S of S-elements, T of T-elements

and F of directed arcs connecting only S- and T-elements such that these sets obey the Petri net

axioms (/BeFe 86/). There is a well defmed 'projection' <p:F-S. A resource R is associated to the

net N which is a family R ={Mslse S of at most countable sets of "token types". Markings of the net N are

functions Jl: S- Us 9l1(Ms) 1 such that Jl(s)e 9d"(Ms) for any SE S.
SE

Labels of the net N are functions A.:F-~ 5\1{M<P(t) such that A.(f)E 5\1{M<P(f) for any feP. A capacity

K on the netNis a function K: ~ {s}xMs-IN 2 such that for any seS K(s,x)e {O, oo} for all but finitely

many xeMs; we call a token type xEMs K-finite ifK(s,x) < 00 and nontrivial if0 < K(s,x). A marking J! is K

admissible if for any seS and xeMs #(x,Jl(s»:S; K(s,x). This closes the first step of the definition.

The K-complementation of the net N is a net NK := (SK, T, FK) which contains the net N, where SK\S consists

of all those complements .s of Se S such that Ms allows for nontrivial K-finite token types x, and FK\F contains for

n
%(A) denotes for any set A the class of finite multisets over A. and i'!"t ni.ai for naturaIs ni and aiE A

denotes the multiset containing each ai ni-times. For any multiset m and xem #(x,m) is the number of
occurrences of x in ffi.

2 IN denotes the naturals together with 00. f(x) =00 for some function f: A - IN means that f is
undefined on x.

2

1

than rewrite rules for these structures. Thus the cancellation/addition combinations form the algebraic
link between the rewrite rules mentioned above and the firing rules of Petri nets. This provides the
bridge for the algebraic simulation of Petri nets by associative commutative term rewriting within
freely generated abelian structures.

AC - monoids, which are decomposable into direct sums, allow to describe local aspects using the
injections and projections. Here we think for example of sequential and parallel composition of local
steps. AC - monoids can be generated freely over sets of interesting data where the latter can be
presented for example by initial abstract data types. Essentially the free construction guarantees the
invariance, the logical independence of the description of the data with respect to the substitution steps

in the underlying monoid.
Now an abelian monoid freely generated over some set is nothing else than the class of multisets

(bags) defined with respect to that set, and there is a uniquely defined inj ective embedding of this set
into the monoid generated over it. It can be specified by a parameterized specification using- the
embeddings as my Operations and interpreting the set of the data as the actualization of the
parameter. In this context the cancellation/addition .combinations appear as rules for such
specifications. This opens the way towards specifying Petri nets and their behaviours by ADT's.

It remains to single out the class of Petri nets which we are going to treat: the high level nets. This
will be done in three conceptional steps. We remind of Kowalski's paradigm "ALGORITHM ==
LOGIC + CONTROL" which must be a guide line for the specification of a distributed system,too.
Thus we speak on one hand about the states as objects within a state space spanned up by the data and
on the other hand about the actions on these states as state manipulating actions leaving the data
invariant.

The Petri net realization begins with a triple N = (S, T, F) of sets S of S-elements, T of T—elements
and F of directed arcs connecting only S- and T—elements such that these sets obey the Petri net
axioms (IBeFe 86/). There is a well defined 'projection' q) :F -—--- S. A resource R is associated to the
net N which is a family R ={Ms}se S of at most countable sets of "token types". Markings of the net N are

functions it : S-——'- skejs ill/[(M5) 1 such that u(s)e ill/[(M3) for any se S.

Labels of the net N are functions 7t. : F—-- % fMCMcpm) such that M05 EM(M<p(f)) for any fe F. A capacity

K on the net N is a function K : SEKJS {s}><Ms—-—'- N 2 such that for any se S K(s,x)e {0, 0°} for all but finitely

many xe Ms; we call a token type xe Ms K—finite if K(s,x) < 00 and nontrivial if 0 < K(s,x). A marking p. is K—
admissible if for any se S and xe Ms #(x,u(s)) $ K(s‚x). This closes the first step of the definition.

The K—complementation of the net N is a net NK := (SK, T, FK) which contains the net N, where SK\S consists
of all those complements s of se S such that Ms allows for nontrivial K-finite token types it, and FK\F contains for

n

1 Mat) denotes for any set A the class of finite multisets over A, and iil ni.ai for naturals ni and aie A
denotes the multiset containing each ai ni-times. For any multiset m and xe m #(x,m) is the number of
_o_ccun'ences of x in m. __

2 IN denotes the naturals together with 00. f(x) = 00 for some function f : A _»- IN means that f is
undefined on x.

anyteT all those (£,t) (resp. (t,s») for which (t,s)eF (resp. (s,t)eF). The resource R is complemented to RK:=

{Ms}se SK where M~ consists of the nontrivial K-finite token types of Ms . The label Ais complemented to AK by

extending A by AK((.s.,t» := A((t,S» and AK((t,s» := A((S,t» for £e SK\S. K-admissible markings ~ are

complemented to K-admissible markings ~K by extending ~ by ~KW := (+M KCs.,x).x)\,J.(s) for ~e SK\S (the
XE I

sums involved are finite). Given a K-admissible marking ~ or the complemented marking ~K we define for any

T-element t a firing rule t : ~ ---~' or tK : ~K - Jl'K by extending the corresponding definitions from

place/transition nets (/BeFe 861) to our case. We say that aT-element t or the corresponding firing rule of t has

concession in a K-admissible marking ~ if for all SE SK and aE FK with a = (s,t) the relation AK(a) k ~K(S)

holds. We apply firing rules only in the case ofconcession. The reason for K-complementations is to avoid dealing

explicitly with the postconditions in the definition ofconcession. Thus the second step ofthe definition is perfonned,

and in the sequal we deal only with K-complete nets in the sense ofthe definition above.

The marldngs stand for the states; they are generated over the resources distributed over the S-elements. The state

changing actions are realized by the firing rules. Oearly they do not interfere with any internal structure on the sets

Ms . Thus Petri net specifications meet Kowalski's paradigm.

The token types represent the data which are processed by applying the firing rules of the Petri net For the third

step leading to the definition ofhigh level nets we assume SPEC =0:, EQ) to be a computable specification for a

signature L =(SO, OP) over sets SO ofsorts and OP of operation symbols as well as a set EQ ofequations together

with a SO-sorted family X ={Xso}soe SO of sets Xso of so-sorted variables. We say that the specification SPEC is

computable if it allows for a convergent set RU of rewrite rules reflecting all the equations generated by the set EQ.

We split the resource R ={Ms} SE S into two resources RG ={MG,s} SE S and RX ={MX,s} SE S where the

members MG,s (resp. MX,s) are sets of ground tenns TI:,so (resp. tenns with/without variables TI:(X)so for the

same S-element s and the same sort so !) over sorts so of interest in L . We redefme moreover markings over

ground tenns as ~: 5 - ~ 9vl(MG,s) as well labels over all the tenns as A : F - ~ !M(MX,<i>(t) . But

then the concession checks require equation solving via suitable ground substitutions, and the applications of the

firing rules are done with respect to the ground substitutions detennined occasionally in the co~cession checks. It

turns out again that the firing rules leave the description ofthe data invariant.

The result of these three steps are S-sorted families ofmultisets or abelian monoids. Taking finally the coproduct

over these families we get the total abelian monoids providing the algebraic states spaces for the distributed systems.

References:

/BeFe/ E. Best, C. Femandez : "Notions and Terminology on Petri Net Theory - revised version";

Petri Net Newsletter 23, aprill986.

/Ka 87/ S. Kaplan : "Rewriting with a nondeterministic choice operator" ; Paris, Univers.

Paris - Sud, TR METEOR/t4/LRI/3-6 (1987).

/Kra 89/ B. Kraemer : "Concepts, Syntax and Semantics of SEGRAS : A Specification Language for

Distributed Systems" ; to appear as GMD - Bericht, GMD - Birlinghoven, St. Augustin, FRG,

1989.

/MeMo 88/ J. Meseguer, H. Montanari : "Petri Nets Are Monoids" ; SRI International, Menlo Park

CA94025, USA, 1989.

/Sch 89/ H. W. Schmidt : "Specification and Correct Implementation of Non - Sequential Systems

Combining Abstract Data Types and Petri Nets"; GMD - Bericht 176, GMD - Birlinghoven,

St. Augustin, FRG, 1989.

3

any teT all those (‚s,t) (resp. (t,s)) for which (t,s)eF (resp. (s,t)e F) . The resource R is complemented to RK :=
{Ms} se SK where M5 consists of the nontrivial K—finite token types of Ms . The label %. is complemented to KK by

extending 7L by XK((s,t)) := 7L((t,s)) and XK((t,§)) := 7t.((s,t)) for ge SK\S. K-admissible markings p. are

complemented to K-admissible markings |J.K by extending u. by l~lK(§) := (x2114 K(§,x).x)\u(s) for ge SK\S (the
$.

sums involved are finite). Given a K-admissible marking u or the complemented marking IJK we define for any

T-element t a firing rule t : u-—> |‚L' or tK : NK ——'- UK by extending the corresponding definitions from

place/transition nets (/BeFe 86/) to our case. We say that a T-element t or the corresponding firing mle of t has
concession in a K—admissible marking u if for all se SK and ae FK with a = (s,t) the relation “((a) g uK(s)

holds. We apply firing rules only in the case of concession. The reason for K—complementations is to avoid dealing
explicitly with the postconditions in the definition of concession. Thus the second step of the definition is performed,

and in the sequal we deal only with K-complete nets in the sense of the definition above.

The markings stand for the states; they are generated over the resources distributed over the S—elements. The state

changing actions are realized by the firing rules. Clearly they do not interfere with any intemal structure on the sets

MS . Thus Petti net specifications meet Kowalski's paradigm.
The token types represent the data which are proCessed by applying the firing rulés of the Petri net. For the third

step leading to the definition of high level nets we assume SPEC = (2, EQ) to be a computable specification for a
signature 2‘. = (SO, OP) over sets SO of sorts and OP of operation symbols as well as a set EQ of equations together

with a SO—sorted family X ={Xso}soe so of sets Xso of so—sorted variables. We say that the specification SPEC is
computable if it allows for a convergent set RU of rewrite rules reflecting all the equations generated by the set EQ.

We split the resource R = {M3} SG 3 into two resources RG = [MG,s}se s and Rx = {MX,S} se s where the
members Me’s (resp. MX,s) are sets of ground terms T2,“, (resp. terms with/without variables T2;(X)so for the
same S-element s and the same sort so !) over sorts so of interest in 2 . We redefine moreover markings over

ground terms as u : S ——* U MMQS) as well labels over all the terms as 7t. : F——+ g: MMXJND) . Butse S

then the concession checks require equation solving via suitable ground substitutions, and the applications of the

firing rules are done with respect to the ground substitutions determined occasionally in the concession checks. It

turns out again that the firing rules leave the description of the data invariant.
The result of these three steps are S-sorted families of multisets or abelian monoids. Taking finally the coproduct

over these families we get the total abelian monoids providing the algebraic states spaces for the distributed systems.

References :

/BeFe/ E. Best, C. Fernandez : "Notions and Terminology on Petri Net Theory — revised version ";
Petri Net Newsletter 23, april 1986.

[Ka 87/ S . Kaplan : "Rewriting with a nondetenninistic choice operator" ; Paris, Univers.
Paris - Sud, TR METEOR/t4/LRI/3-6 (1987).

/Kra 89/ B. Kraemer : "Concepts, Syntax and Semantics of SEGRAS : A Specification Language for
Distributed Systems" ; to appear as GMD - Bericht, GMD - Birlinghoven, St. Augustin, FRG,
1989.

[MeMo 88/ J. Meseguer, H. Montanari : "Petri Nets Are Monoids" ; SRI International, Menlo Park
CA94025, USA, 1989.

[S ch 89/ H. W. Schmidt: "Specification and Correct Implementation of Non - Sequential Systems
Combining Abstract Data Types and Peui Nets"; GMD - Bericht 176, GMD — Birlinghoven,
St. Augustin, FRG, 1989.

1/Vork.shop Termer.setzung: Grundlagen und A nwendllngen , I\aiser]a.utern, March 1989

Knuth-Bendix Procedure and Buchberger AlgorithlTI.
----. A Synthesis "')

Frfl-nz H'inklcT
lnstitut. fiir 1'vIat.hema.tik and

Research Inst.it.utp for Symbolic Computation

Johannes Kepler Universita.t Linz, Austria

Abstract

The Knuth-Bendix procedure for the cnmpletion of a rewrite rule system a.nd
the Buchberger algorithm for computing a Gr6bncr basis of a polynomia.l idea.l are
very simila.r in t.wo respects: t.hey 1J,)th sta,rt with an a.rbitra.ry specification of an
algebraic structure (axioms for an pquat.i,'naJ t.heory and a basis for (l. polynomial
ideal, respectively) which is transformed to a very special specification of this
algebraic structure (a complete rt>.vvrite rule system and a Grobner basis of the
polynomial ideal, respectively). This special specificat.ion allows to decide many
problems concerning the given aJgebraic structure. Moreover, both algorithms
achieve their goals by employing t.he salne basic concepts: formation of critical
pairs and completion.

i\lth()ugb the two methods arr (lbviously related, the exa.ct nature of this
relation remains to be clarified·. Hasrrl rm previous work we show how the K nuth··
Bendix procedure a.nd t.he Buchberger a.Jgorit.hm ca.n be seen as special cases of
a Inore general complet.ion procedure.

1. Introduction

The Buchberger a.lgorithm BlT has heen int,roduced by B. Buchberger in 196.5 [Bu 65]'
[Bu 85a] and it solves the following prn hlp1Tl:

given a. finite set F of lllultiva.ratc PolYllf1mials over a field, construct Cl- finite set

F ' of multiva..riate polynomials s1Ich that ''';; F'" :=F' and -4 F' is Clmrch-Rosser.

Here, ffJr a set F of polylloll1ia.ls, ;c: T-' is 1.Iw iele'1-l cOll,gruence l11odulo theidea,l generated by
F' (i.e . .f "C:'F' g <==-> .f -- g (idcal(F)) and 'p is a. certain Noctherian reduction relation on
pnlynornialr; incluc;ed by'" [Ell 8.1<1] wit,h t.11P. prf)j)f'rf,y t.ha.t <--->p (the f!;CHexive-synurletrjc-
tra.nsitive closure of ---+ F) is equal to '.cC F. If F I =,. BU(F), then t.he Church-Rosser property
guarantees, that. for a.rbitra.ry pol.Vll()miClls I, g the congrnence f ==p 9 can be d.ecided by
computing norma.l forms of f and g lIWdulo .-' 1'" and checking for synt.actic equality. A
ba.sis F ' with t.his property is usually called <l GTobner ba..sis [Bu 8.5a].

"') \V0rk reported herein ha~ l:wen suppnrl.~d hy l,h", F(lnd8 Z1/,r Porrler l l71,Q der 1lJissen8chaftlich.cn

Fnr.~,·h1ln..Q under puyjed NI'. P676:1.

T/Vorkshop Termersetzung: Grundlagen. und Anwendungen , Kaiser lautern , March 1989

Knuth—Bendix Procedure and Buchberger Algorithm
———--— A Synthesis *)

Fro-Its 11? ulster
Inst i tut für Mathematik and

Research Inst i tute for Symbolic Computation
Johannes Kepler Universitat Linz, Austria.

Abs t rac t

The Knuth—Bendix procedure for the completion of a rewrite rule system and
the Buchberger algorithm for computing; a Grobner basis of a polynomial ideal are
very similar in two respec t s : t hey both. s t a r t With an arbitrary specification of an
algebraic structure (axioms for an eq1.1a.ti(mal theory and a basis for a polynomial.
ideal, respectively) which is transformed to a very special. specification. of this
algebraic structure (a complete rewrite rule system and a. Grobner basis of. the
polynomial ideal, respectively). This special specification. allows to decide many
problems concerning the given algebraic s t ructure . Moreover, both algorithms
achieve their goals by employing the same basic concepts: formation of critical
pairs and. completion.

Although the two methods are rLi'ILn-riously related, the exact nature of this
relaticm remains t o be clarified: Based on previous work we Show how the K n.uth.~-—-
Bendix procedure and the Buchberger algorithm can be seen as special cases of
a more general completion procedure.

1 . In t roduct ion

The Buchberger algorithm BU has been introduced by B. Buchberger in 1965 [Bu 65],
[Bu 85a] and i t solves the following prr'iblem:

given a finite s e t F of mult ivarate polynumiials over a field, cons t ruc t a f ini te s e t
F ' of multivariate polyncunials such tha t -'—;.- p :: -:—;—._p» and ——-> F: is Church—Rassen

Here , for a s e t F of polyncunials. ‘«:~: p is t he ideal eitn‘igruence modulo the ideal generated by
F (i s . f 5—75}? g “::—“> f "g E?- iclcal(F)_l and ‘p is a certain Noetherian reduction relation on
po lynomia l s induced by F [Bu 85a] with the property that ++}; (the reflexive-sym.metric---
transitive closure of —««>p) is equal. to p . i t F ' ::::— BU(F), then the Church—Rosser property
guarantees, that for arbitrary polynomials f _, g the congruence f sap g can be decided by
computing normal forms of f and g modulo --—\ p" and checking for syntactic equality. A
basis F' with this property is usually called a Grcibner basis [Bu 85a].

*) Work repor ted herein has been suppor ted by the Fonds zur Fé'rder-rmg der wissenschafi l ichcn
Forschnng unde r projec t Nr. 196763.

2

Such a Grobner basis can be computed by the Buchberger algorithm BU in the fol
lowing way:

F ' (- BU(F);
[F and F I are finit.e sets of mult.ivariClt(' polynomials over a. field.
=F = :== F' and --+ F' is Church-Rnssp.r.!
F ' ~- F;
while not all critical pairs ofF' are considered do
(*) choose a critical pair (PI,PZ) of Ft;

reduce (PI, pz) to normal forms (qJ, q2) modulu-t FI ;
(**) if ql =I q2 then F ' <c-- FILl {qI _.- go;} endif
endwhile 11

The two basic strategies of the aJg()rithm are t,he formation of critical pairs in (*) and
t.he successive completion step (**). A crit.i(~a] pair f){ pI is const.ructed in t.he following
way: choose two different polynomials f, g in F I

; reduce the least common multiple of t.he
leading terms of f and 9 by f, getting PI, and by g, getting P2; then (PI, P2) is a critical
pair of F I Instead of reducing (PI, P2) t.o normal forms (ql' qz) and checking for synt.actic •

equa.lity, one could reduce PI--- P2 a.nd check for equality to o. The polynomial PI . P2
is usually called the S-polynomia.l nf f and g [Bu 8530]. Buchberger has sho"vn [Bu 6.51,
[Bu 8530] that this algorithm terminates for all inputs and computes a. Grobner basis for
idea-I(F).

The same basic strategies ha.ve heen used independently by D.E. I<nuth and P.B.
Bendix [KB 67] in the context of an eq uationaJ theory T over an algebra 1" of first.-order
t.erms. The Knuth-Benclix procedure solves the following problem:

given a Dnite set E of equations behreen Brst-order terms, construct a Bnite set
E' of equations such that ::.::' 5 :·,·co {(I <l.nd.:· 5' is Church-Rosser and Noetherian.

Here, for a. set E of first-order equations [HO ROL ==-13 is the equational t.heory genera.ted
by E, i.e. t.he set of all equat.ions oS ~O. t \vhieh can be derived from E, E ~- .5 = t [BL
83]. ---> 13 is the reduction rela.tion on t.erms induced by E viewed as a system of rewrite
rules with =13 = <--t'E. Again, the Church··H.osser property guara.ntees t.hat. oS =13 t can
he decided by reducing .5 and t to normal f()rrns modulo _.-7 E' a.nd checking for syntactic
equality. A finite set of equations E, viewed as a. system of rewrite rules, such tha.t --+ E is
Church-Rosser and Noet.herian is called a. caTJ,oniCf],1 rewrite rule system.

The Knuth-Bendix procedure KB attempts to compute a ca.nonical rewrit.e rule system
in the following way:

El (- KB(E);
[E and El a.re finite sets of equations of first-order terms "vhieh can be viewed
as Noet.herian rewrite rule systems.
'-':: E :..-, =' {;;' and ---\ E' is Church-RnC's"l' [
E' "-- E;
while not. all crit.ical pairs of .E' are considered do

"hoose a critical pair (Cl, C2) of El:
reduce (C\,C2) to normal forms (d"el2) module> --7E';

if ell =I d2 then

Such a Grobner basis can be computed by the Buchberger algorithm. BU in the fol-
lowing way:

F' 4—- BU(F);
[F and F ' are finite sets of multivariate polynomials over a field.
EF :: EF : and -——>pr is Church—Rttisserl
F ' +- F ;
while not all critical pairs of F ' are considered do
(*] choose a critical pair (pl, p2) of F ' ;

reduce (p1, p2) to normal. forms (gl , gg) modulo -——> F”;
(**) i f q1 # (12 t hen F ' +—-— “ LJ {gr-1 gg} end i f
endwhile u

The two basic strategies of the algorithm are the formation of critical. pairs in (*) and.
t he successive completion s tep (**). ‚A critical pair of F ' is constructed in the following
way: choose two different polynomials f , g in F” ; reduce the least common multiple of the
leading terms of f and g by f , gett ing p l , and by g , getting p2; then (phpg) is a critical
pair of F ' . Instead of reducing (p l , 1:72) t o normal forms (91,412) and checking; for syntactic
equality, one could reduce pl p2 and check for equality t o 0. The polynomial p l p;
is usually called the S-polynomial of f and. g [Bu 85a]. Buchberger has shown [Bu 65L
[Bu 85a] that this algorithm terminates for all inputs and computes a Grobner basis for
ideal(F)

The same basic strategies have been used. independently by D.E. Knuth and PB.
Bendix l KB 67] in. the context of an. equaticmal theory T over an algebra ll of first—order
terms. The Knuth-Bendix procedure solves the following problem:

given a finite set E of equations between first—order terms, construct a finite set
E” of equa t ions such tha t 235: E ::— 3:": a" and Ey is Oh urch—Rosser and N oetherian.

Here, for a set E of first—order equations [H0 80], as}; is the equational theory generated
by E , i e . the set of all. equations .9 :::. t which can be derived from E , E t“ s : 25 [BL
83]. -—+ E is the reduction relation on terms induced. by E viewed. as a system of rewrite
rules with EB :: Hg.. Again, the Cl;111rc}_1-—»R.osser property guarantees that 3 SEE t can
be decided by reducing s and t t o normal. .lttu'ms modulo “>13: and checking for syntactic
equality. A finite set of equations E , viewed as a system of rewrite rules, such that “>13 is
Church—Rosser and Noetherian is called a {camp-mim! rewrite rule system.

The Knuth-Bendix procedure KB a t tempts to compute a canonical rewrite rule system
in the following way:

E ' +— KB(E) ;
[E and E’ are finite sets of equations of first—order terms which can be viewed
as N oetherian rewrite rule systems.
::..":EE :: Hip}! and MAE! i s CillllI‘Cl’P-"ROSSI‘I‘l

E" 4.... E ;
while not all. critical. pairs of E ' are considered do

choose a critical pair (c1, c2] of E ' ;
reduce (61,62) to normal. forms (111412) Il'ltf)d11lf) ——> E‘;
if (11 a d2 thenI

3

if -+E'U{d 1 =dd is Noetherian then E' +- E' U {d1 = d2 }

elsif -+E'U{d~=dd is Noetherian then El +- El U {d2 == d1 }

else exit with failure
endif

elldwhile 11

For the notion of a critical pair we refer tor:> [BL 83J. \f.,le say t.hat a.n equa.tion .5 -::: t
can be viewed a.s a rewrit.e rule .5 .._; t. if every varia,ble occurring in t also occurs in s.
A set of equat.ions E = {SI == i1, ... , .511. ~=: In} can be viewed as a rewrit.e rule system
{SI -+ t1 , .. ·, Sn -+ in} if every equa.tion ,Si = t i in it. ca.n be viewed a.s a. rewrite rule
Si -> k In contrast to the Buchberger algorithm there are situations in ""hich the Knuth
Bendix procedure ma.y terminate with failure or run forever.

Cert.ain types of equations cannot. bE' handled by t.he Knuth-Bendix procedure: ;1.

commutativity axiom immediately destroys t.hlO' Noetherianity of the reduction, and an a,s
sociativity axiom together with other equations can cause the procedure to run indefinitely.
Peterson and Sticke1 [PS 81] ha.ve proposed to keep such equations in an equa.tional theory
T (the equations in T are not viewed as rewrite rules) and do a.ll the computa.tions inKB
modulo this equationa.l theory T, i.e. not terms t in T are reduced but equiva.lence classes
[th in TIT. This approach works whenever a, complete unifi.ca,tion algorithm modulo this
theory T exists. For technical reasons the equational t.heory E ha,s to be modified so that,
it be<.~omes T-compatible. For theories T c(lTlsisting of commutativity and associat.ivity
axioms this is a straightforwa.rd process.

The st.riking similarity between the Buchherger a.lgorithm and the Knllth-Bendix pro
"edure have heen ohserved in [1,0 81], [BL R3], [Bu R5b]. Llopis de Trias [Ll 83] and
Kandri-H.ody and Kapur [KK 83] have made first attempts to cla.rify the relationship be
t.ween t.he t.wo methods. The problem with ILl R:3] is t.hat. is does not deal adequately with
the arithmetic on the coefficients of t.he polyn()mials in the Buchberger algorithm. In [I(K
83] the llseful idea. of separa.ting simpliflcation of coefficient.s from reduction of polynomia.ls
is introduced. The problem with [KK 8~)1 is t.hat it does not really show t.hat the two meth
ods can be viewed as special Cases of a general procedure, but that the correet.ness proofs
can be arranged in similar wa.ys. Le Chenandec [Le 86] gives a completion algorithm for
commutative polynomia.ls over rings generated by a finite set G of generators. His method
does not apply to the case where the base crwfficients belong to a. field, since fields cannot
be described eql1ati'mally. In [\Vi 84] varinllS ideas of t.hese papers t.ogether with [Hu 80]
have heen used for demonst.rating the exa,d, nature nf thl:' relationship between BU and
KD.

2. Theoretical results

In the following we suppose that 1~1 is an arbitrary set,-.. a, Noetherian relation on
1\,1, and =:} a Noetherian confluent relat.ion on id. By ;r, y, z, u, v, w we denot.e elements of
.AI. ~--, f--->, -++, --~* are the inverse, the symmetric closure, the transitive closure, a.nd
the reflexive-transitive closure of -.., respeet.ively.

Def.: -.. is con.f1.1l.ent mod71.lo :::} iff for all ;r, y, ;7;' ,y' such t.ha.t x' +- * x .;::}* y -~ * y' there are

/

if “*E'uwizdz} is Noetherian then E” <—— . '" Ll {dl : d2}
elsif ~—->E:._.{d2=d1} is Noetherian then E' <—-— E” U {d2 :: (11}
else exit with failure

end i f
enclwhile II

For t he notion of a critical pair we. refer t o [BL 83]. We say that an equation .9 ::: t
can be viewed as a rewrite rule .5 ————--> i. if every variable occurring in i. also occurs in s .
A set of equations E = {.31 :: h , . . . ‚ sn ;: i n} can be viewed as a rewrite rule system
{.51 ——> h , . . . , . sn ——> t n} if every equation s,; ;: ta- in i t can be viewed as a rewrite rule
s,; —-ä t,;. In contrast to the Buchberger algorithm. there are situations in which the Knuth-—
Bendix procedure may terminate with. failure or run forever.

Iertain types of equations cannot be handled by the Knuth.—-Bendix procedure: a
commutativity axiom immediately destroys the Noetherianity of the reduction, and an as-
sociativity axiom together with other equations can cause the procedure to run indefinitely.
Peterson and Stickel [PS 81] have proposed to keep such equations in an equational theory
T (the equations in T are not Viewed as rewrite rules) and do all the computations in KB
modulo this equational theory T , i.e. not terms t in T are reduced but equivalence classes
[flq in T /T . This approach works whenever a complete unification algorithm modulo this
theory T exists. For technical reasons the equational theory E has to be modified so that
i t beComes T~compatible For theories T consisting of commutativity and associativity
axioms this is a straightforward process.

The striking similarity between. the Buchberger algorithm and the Knuth—Bendix pro-
cedure have been observed in [Lo 81], [BL 83], [Bu 85b]. Llopis de Trias [Ll 83] and
Kandri~Rody and Kapur [KK 83] have made first at tempts to clarify the relationship be-
tween. the two methods. The problem with [Ll 83] is that is does not deal adequately with
the arithmetic on the coefficients of the polynomials in the Buchberger algorithm. In [K K
83] the useful idea of separating simplification of coefficients from reduction of polynomials
is introduced. The problem with [KK 83] is that it does not really show that the two moth-
ods can be viewed as special cases of a general procedure, but tha t the correctness proofs
can be arranged in similar ways. Le Chenandec [Le 86] gives a completion algorithm for
commutative polynomials over rings generated by a finite set G of generators. His method
does not apply to the case where the base coefficients belong to a field, since fields cannot
be described equationally. In [VVi 84:] varirms ideas of. these papers together with [Hu 80]
have been used for demcmstrating the exact na ture of the relationship between BU and
KB.

2 . Theoret ical resul ts

In the following we suppose tha t M is an arbi t rary set, --—~) a Noetherian r'elaticm. on
M, and ::?» a Noetherian confluent relation on A:! . By m, y, an , 1:, w we denote elements of
NI. +», +-—>, ——>+, ———+* are t he inverse, t he symmetric closure, the transitive closure, and
the reflexive—transitive closure of -—>_, respectively.

Defi : ——> is confluent modulo ::? iff for all :)}, y, 33', y ' such that 512' <————* a". <=?” y “f y ' there are

4

lx", y" such that x' --+* x" ,~* y" ~-_.'" y' (i.e., since::::} is confluent, x' --+* x" JJ-* y" +--* V') .

•
Lernma 2.1: Let --+ be confluent In,)d1.11,) --;" Then for a.ll :r-, y, Z such that y(~, U (-)"':r --+*

z and V is irreducible modulo _.) U c:->· and;:; is irreducible modulo .-7, we have z =~.* y. I!ll

La.ter on we will separate the reduction -. of polynomiaJs in the Grobner ba.sis a.lgo
rithm from the simplification => of the coC::'fficients in the polynomials. What we ultima.tely
want to achieve is that the combination -~ u-·~· is a confluent relation. As the following
theorem shows, it is enough to guarantee confluence of --+ modulo =>.

Theorem 2.2: If --+ is confluent modulo =>, t.hen --+ U --:-- is confluent.

Proof: Let, _...~ be confluent mod1.1lo :-::-:':-, SUPPCIS(' x, y, z are s1.1.ch that y({=: U +--)*x(-~ U -::::})* z.
Let. ;1".' he a normal fonn of x mocl1.1lo and JI', z.' lw normal forms of y, z modulo _..~ 1.I :=>,
respectively. Then by Lemma. 2,} Vi '~' .. '" :r' ';-'" ;:;'. Since y' and z' (l.re also in normal form
module, -::::} a.nd => is confluent, we have y':= Z'. (See Figure 2.1) IIll

Fignrf~ 2.1

It is essential for a.n effective compld.ion procecbJrc t,hat. the confluence property of
I; he reduetim) rda.tion under consideral;j"n can be checked loca.lly. This program ca.n also
l)e carried out for the notion of confl.uence Illfldulo .co:,'> •

DeL	 ._-~ is locally confiv,ent modnlo-:::· ifF
(1,1)	 for all x, y, z with y ~. x-* .z th",re are y', ;:' such tha.t y .-.) * y I v11 *,z ,--'* z a..nc1

(1,2)	 for a.ll x, y, z with z +.. :r -\" y t.here iHe y', ;:;' such t.hn.t. z ..-.* zllj.* Vi .--* y.

DeL	 => is orthogonal to --+ iff
(01)	 for all x, y, y' with ;z; -> Y -:' -/- y' th ere are XII, yll such t.hat. x .. _) -f x" .U. '" yll (-" y'

and
(02)	 for all x,y,x' with x' t---+ X"::;, y t.here ;l!'C ;t",y" sllch t.hat. x' --.... * :r." .1).'" yll +--'" y. JlII

With	 these definitions we get the following thcorern.

Theorem 2.3: Let -7 U -=? be Noethe-rjan, and ~~. nrt.hogonal t.o Then-· IS confluent
modlllo => if and only if ----4 is locally conflucnt, l1loc!1.I1o ~'. llIl

'Ve are especially interest.ed in the case' where' t.he reduction relat.ion, is induced hya.
rewrite rn.le system R, i.e~ '- .._) R, (lJ1 ;1. Sf7't. nf tenns ml)dll.lo an associative-commut.ative
theory.

Theorem 2.4: Let T be an equational theory over the term algebra. 'l, RaT-compatible
rewrit.e rule system, oc> n. Noetherian confluent. relabon on 'lIT which is stable and corn ..

‘ - . I I I .

3 ; " ,3 , ” such that 33' ——+* :13” —<:>* y" +.---‘* y ' (1.6;.‚ Since @ IS confluent , :c' ———>* :1," U3“ y" +—* y’).
ll

Lelnma 2 .1 : Let ——> be confluent modulo "2». Then for all. m, y, z such. that y(<::: LJ <———)*:r. ———+*
z and y is irreducible modulo ~—--.~ LJ 2*.» and :: is irreducible modulo ———+, we have 2: :::—°" y. In

Later on we Will separate the reduction 4 of polynomials in the Grobner basis algo-
r i thm from the simplification :> of the coefli cients in t he polynomials. What We ultimately
want to achieve is that the combination »+ U 22’.» is a confluent relation. As the following
theorem shows, it is enough to guarantee confluence of ——> modulo =>.

Theorem 2.2: If ——> is confluent modulo ä . , then. ~—> U 3, is confluent.

Proof: Let ~-——> be confluent modulo 2:». Suppose 91,3}, :; are such. that y(«-..*:: LJ +—)*:c(~-+ Ll :>)*z.
Let :r.’ be a normal. harm. of m modulo -.....«. and y ' , z' be norm al forms of y, z modulo —--—> LI" 1

respectively. Then by Lemma. 2.], y ' of" :r!’ :‘;—'" 2.". Since y’ and z ' are also in normal form
modulo :> and => is confluent, we have y' :2 :5". (See Figure 2.1) [I

Figure 2.1

I t is essential. for an effective completion. procedure that the confluence pr0perty of
the rec-luction relation. under consideration can be checked locally. This program can also
be carried out for the notion of confluence mocl.ulr.:> :::».

Defiz Ma is locally confluent modulo :2?» ifl.’
(L1) for all rc, y, z with y h- :r. -—-—+ .z there are y’, 2’ such that 3} -->* ' JJ.* z <~——* z and
(L2) for all 33, y, 3 With z +»— .r 42:» 3; there are 31’. :5' such tha t 2: ...__.* z ' .U.* y ' +-—-* y. I!

€

Def . : 2;» is orthogonal to "+ ifl.7
(01) for all a : , y ‚y ' wi th ;z: 2.» y ~---->+ y ' t he re are :o” ,y” such tha t :7: «mil 3:.” ..U* 3,“ «f.-* y’

and
(02) for all 33,3}, :E' with :r’ <—~-—+ :r. :2:- 11 there are ;r.”‚y” such that m’ ——-:»*mu „+ y” (has: y H

With these definitions we get the following theoren'i..

Theorem 2.3: Let -—+U2¢> be Noetherian, and :...-- orthogonal t o m}. Then -—-- is confluent
modulo => if and only if ——+ is locally confluent modulo 2:». n

we are especially interested in t he case where the reduction relation --—> is induced by a
rewrite rule system R , i e . »» --—-> n , on a set of terms modulo an associative—commutative
theory.

Theorem 2.4: Let T be an equation al theory over the term algebra T , R a Tucompatible
rewrite rule system, :2» a N oetheriau confluent relation on i l l /T which is stable and com—

.5

patihle (i.e. if [.5]T => [i]T, CT a. substit.ution, p a.n occurrence in u, then [CT(S)]T => [CT(t)]T
a.nd [u[p +- .5]]T => [u[p +- t]]T) such tha.t --, nU=> is Noetherian and => is orthogonal to
·~R·

Then -'> R is confluent modulo => if and only if for all critical pairs ([8]T, [t]T) of R modulo
T there are [s'lT, [t'lT such that [S]T --'T, [8'17' -U* [t'lT t-R[t]T. III

Theorem 2.4 immediately leads to the following genera.l completion procedure:

RI +- COMPLETE(R, T, =-c;»;

[R is a finite Noetherian rewrite rule system over the term algebra T,

T an equational theory for which there exists a complete unification algorithm,

=> a. Noetherian confluent stable and cnmpatible relation over TIT,

such that -'> R U =-.> is Noetherian and -=:- is orthogona.l to --t R.

R' is a finite Noetherian rewrite rule system such that

(---4 R U =»* = (-4 R' 1--' -::c?)* and---' R' is confluent modulo =>.]

R' +--- T -compatihle extension of R;

while not all critical pairs of RI have been considered do

choose a critical pair (Cl, cz) of R';

reduce (Cl, cz) to normal forms (dl , dz) modulo-~ R' U =};

if d1 f- dz t.hen

if	 terms s, t can be cClIlstruct.ed such that d l a.nel d2

have a common successor modulo --~ R'u{s~t} U => and
--t R'U{s->f.} u:::,.' is Noet.herian

then RI f-- T--compatihd extension of R' U {s --7 t}
else exit with failure
endif

endif

endwhile _

3. A COIDrnon ancestor to BTJ and KB

The procedure COMPLETE can be specia.lized both to the Knuth-Bendix procedure
and to the Bllchberger algorithm. We get KB from COMPLETE by letting ---7- be the
identity a.nd T = 0.

It is a little bit more complicated in specirt.lize COMPLETE to BU _Wf> have to meet,
the following requirements:
(Cl) give a.n injedive mapping from the polynomial ring K[Xl" .. ,;r,nl into some term

algebra T modulo an equational theory T,

(C2) give a simplifica.tion rela.tion=> (,n TIT,

(C3) construct a rewrite rule syster:n R fnr rt given basis F of a polynomial ideal

stlch that.

(P-I) ---' 1'1') c:? sinnJlat.es-> F', Le. ('very J"'dudion st.ep modulI) -4 F can be considered as
1]. series of reduction st.eps moduk),,,,II:c:>,

(P2) t.here exist,s a. finik cnmplet.e uniJicrdion algorithm f')r 1',

patible (i.e. if [S]?“ 3 ltlT: a a substitutirm, 7.) an occurrence in u, then [0(s)]T => [cr(t)]T
and [u,[p +— s]]T ==> [u.[p 4—— tHT) such that mug LJ => is Noetherian and => is orthogonal. to
._ . ._)R.

Then _?»R is confluent modulo ::,» if and only if for all critical pairs (MT, ltlT) of R modulo
T there are [s']T, ltllT such that [S]-T m} [317' .U.* ltllT am} MT. !

Theorem 2.4 immediately leads to the following general completion procedure:

R' +— COMPLETE(R, T, sie) ;

[R is a finite N oetherian rewrite rule system over the term algebra. l“,
T an equational theory for which there exists a complete unification algorithm,
=> a Noetherian confluent stable and compatible relation over ll /T‚
such that "+12 U ::} is Noetherian and ::.?— is orthogonal to —> R-
R' i s a fini te Noetherian rewrite ru le sys tem such. tha t
(-—~—>Rl,lr::>)* :: (we R' Isl-178* and --—> R, is confluent modulo =>.]
R' em ill—compatible extension of H;
While not all critical pairs of .R' have been considered do

choose a critical pair (c l , c2) of R' ;
reduce (c1, c2) to normal. forms (d1 _‚ d2) modulo ----> R' U =>;
if d1 3% (12 t hen

if terms s , t can be constructed such that dl and dz
have a common. successor modulo ---+ Rfu{s__.t} U :=? and
“’Rfuh—n} L12: is Noetlierian

then R' e— T—-compatibel extension of R' U {s ——> 15}
else exit with. failure
end i f

endif
endwhile l

3 . A common ances tor t o BU and KB

The procedure COMPLETE can be specialized both to the Knuth—Bendix procedure
and to the Buchberger algorithm. We get KB from COMPLETE by lett ing ä, be the
identity and T : 0).

It is a. little bit more complicated t o specialize COMPLETE to BU. We have to meet
the following requirements:
(C l) give an injective mapping from the polynomial. ring Elm-1,. . . ,mn] i n to some term

algebra ll modulo an equational theory T ,
((32) give a simplification relation tb» on ill/T.
(C3) construct a. rewrite rule system I? for a given basis F of a. polynomial ideal

such tha t

(P l) --~-Rl..|r°:.1~ s imu la t e s --—>p‚ i .e. every reduct ion. s tep modulo ~~>p~ can be cons idered as
a series of reduction steps 1n<,:n.l1.1lo A R I...! :--.-::..‘--,

(P2) there exists a finite complete unification algorithm for T ,

(P3) R is a finite Noetherian rewrite rule system,
(P4) =} is a Noetherian confluent stable and compatible relation over TIT,
(P5) -+ R U =? is Noetherian,
(P6) =} is orthogonal to -+ R.

Ad (Cl): The term algebra T contains the binary function symbols ,I',> , the unary func
tion symbol·, " the constants XI, ... ,.Y 11 and a for every a E K, and the denumerable set of
variables V = {xo,x}, ... } (for convenience 'vc denote the first variables by x,y,z,'W, ... ,
similarly for the constants Xi).A.s the equational theory T we choose the associative
commutative theory of i and :.', i.e. a basis for T is

{;r,,!,y=yll:x, (x'!:y)'i'z=x i (y' z), :1~y=y.'X, (x~'y)· z=x·(y z)}.

· 1 f ", m.	 ,-e', '-P:' cl t th . 1 JA, nonzero po1ynomJa., =: LJi=1a7/1.,'\.~.'n IS mappe , on 0 e eqmva ence cass
of .51 '+: (052 ,j, ••• '.1' (.5m._l i 05111,)"') moeluln T, where .si is the obvious description of
aiXr' ... X~in in T. The zero polynomial is mapped onto the constant O. This mapping
is called term. We let ,.\ have higher precedence than' i_" so that we can omit parentheses
because of the associativity of the operators. So, for instance, the polynomial 3X 2 y 2 -

2x 2 y + 4x - 5 E Q[x, y] is mapped onto the equivalence class [3 i.' X:-: X·· y.) Y il· (-2)-"
X I.', X I" y, I' 4 i .. X, I, (--.5)]T. term is an injective mapping from K[x}, .. . ,xn] onto liT.

Ad (C2): The simplification relation ~. on T /T is defined in such a way that it simulates
the operations involving the constants of the coefficient field K.

[.s]T =," [tlT :<====;'>	 there are Si =C.T S, t' =T t, such that

t l = S/[p ~-"uJ for sc'me occurrence pin 51 and sip '-----t u,

where for coefficients 0.1,0.2 E: !{ and terms oS 1-.: T:
0.1 ,'.:, 0.2 ,-,-t o,J . 0,2	 0,1 "0.2 ,----t 0.1 + 0.2

i '0.1 ,----t -- 0.1	 (0,1 .• .s) '---t (-- a'I)' 05

0.1 '':' oS' i· 0,2 ,:.\.<; '-----t (0.1 + 0,2)' .~ (I al': .5 '-.-t 0.1 !·'.5

o!.:- oS '--, 0

The relation =? is	 well-defined on TIT'

Ad (C3): We start with the rules of the canonical rewrite rule syst.em for the ring structure
modulo the AC-theory T which are not. already incorporated in =>, i.e.

x ':-:' (y (I z) ----t (x :. y), i> (x' z) (x) --·t x
(xi' y) --} (x) i (Y) .I~ (y) -+ (x' y)

'Ve c<Jll this rewrite rule system R7"

For every polynomial .f in the idea.l basis F Wf~ include the following rule in the rewrite
sytem RF :

terrn(lt(.f)) --> tel'm(red(f)),

where It(.f) is the	 leading term of f and l' p dU) is the redl.lctum of f.

We let the rewrit.e rule system R be the uniun of R r· and Rp.	 ..
This completes the simulation (~1)-- (C3). Nmv it can be shown that (PI) ----- (P6)

hold [Wi 84]. 'Ve illustrate this simulatlnn of BU by the following example.

6

(P3) R i s a finite Noetherian rewrite ru le sys tem,
(P4) 2%- is a Noetherian. confluent stable and compatible relation over "IF/%
(P5) —+RU=> is Noetherian,
(P6) =? is orthogonal to ——>R.

Agl (C l !: The term algebra. T contains the binary function. symbols (El), '1- , the unary func-
tion symbol -- .=, the constants X“ . . . ‚.X„_ and a. for every (1 E K, and the denumerable set of
variables V r: {mm, m1, . . . } (for convenience we denote the firs t variables by a:,y_, z„ w, . . .‚
similarly for the constants Yr). As the equational theory T We choose the associative—-
commutative theory of ä and f—‘r, i e . a basis for T is

{»y=yl (y) me (y » z,) wu (mw—_ „......(y a)}.

. m. . n - „_ . . .A nonzero polynomial. f : 22-21 (‚l,-‚1.Ä-;"--\;"“ is mapped. onto the equivalence class
of 51-12 (.32 (3 ' -E (sm__1 'E sm) - -) modulo T , where ‚s,; i s t he obvious description of
(L.,;Xf“ - - - X3“ in T . The zero polynomial is mapped onto the constant 0. This mapping
is called term. We let (.43 have higher precedence than (“i-I, so that we can omit parentheses
because of the associativity of the operators. So, for instance, the polynomial 3332312 ——
2:323; + 4x — 5 E Q[m‚ y] is mapped onto the equivalence class [3 X if} X Y 1-1.- Y ('I' (—32)
X m X (Y (E14 ‚X = (——5)]T. t e rm is an injective mapping from Klan , . . . ,azn] onto ".*/T.

Ad (021: The simplification relation :3 on LT is defined in such. a way that i t simulates
the operations involving the constants of the coefficient field K .

l'SlT ==>— ltlT :<i.::,> there are 5' 33T s , t’ ET t , such that
f f ' f ft =: s [p e—--- u] for some occurrence p m s and. 5/10 H u,

where for coefficients (1,1, 0.2 EEE K and terms 3 if, T:
(L]. ‘5'7‘ G2 “*** @] ' a2 ‘1-1 (12 “* G1 + 662

(‘ «1.1 f—---+ -——a1 ‘(al 51 .9) "--—-2+ (mal) ‘- s
a] "‘; s (E) (12 s „_, (a1 + e2) '- s (l E (1.1 s we» a.; .s
0 fif‘: s ‘—-> 0

The relation. :3: is wellwdefined on ill“ „w.

Ad (C3): We s tar t with the rules of t he canonical rewrite rule system. for the ring structure
modulo the AC—-theory T which are not already incorporated in =>, i.e.

:r. (y dä z) ———> (:1: 1"?- y) (if! (a: :) (.33) “+ e
"(rc ' zu) "> ((I?) ‘ (y) (‘- (31) "> (in * y)

We call this rewrite rule system H}.

For every polynomial f in the ideal basis ‚F we include the following rule in the rewrite
sytem RF:

term.(lt(:f)) —+ terrin,[:'7’€d(f)).

Where l t (f) is t he leading term of f and r ed“) is the reductum of f .

We let t he rewrite rule system R. be the unirm of RT. and Rp . !

This completes the simulation. (C11) ((33). Now it can. be shown that (P 1) (P6)
hold [Wi 84.]. We illustrate this simulation of BU by the following example.

7

Example: We consider the ideal ba.sis

F = {x 2
y - x 2 + 2xy, y2 -- Y + I} ~ Q[x,y].

" 'V ('---v--'"

h h

The power products are ordered acc0rcling to the gra.dlla.ted lexicographic ordering. First.
there is only one critical pair of F, narnely t.he one resulting from the reduction of X

2 y 2

moelulo.fI and h, respectively.
2 2 2.f1 ~ x y - 2xy2 -~ ft' 2:t:y2 j- ;r - 2x,!! ---+ h :7.: - 4xy + 2x

2 2 x y C
L~ 2 2h x y - X-,,> ft'- 2:ry

So we a.dd h = x 2
- 2xy + 2;r. to the ideal basis and proceed. All the other critical

pairs lead to common suCCeSSi)fS, so {.fl, h, f;>.} is a. Cirobner basis for the ideal

The rewrite rule system corresp(~)nding t(I P if>

x (····2) X
"V""

51
 1'1

Applying the procedure COMPLETE to R H,- U Rp, \VC first have to construct a T-c:c

compatible extension Reof R. Because T is an AG--theory, this means adding a new rule
U 0.5 - 7}, 0 t (u a new variable) for every rule s -) t \vith outermost operator 0 E ff" .. }.

R' =Re
::= R r U R~ U RpU

{ 7f. X '.'X . Y--qt. ()(y; (-,- 2) .Y Y), v Y . Y .---* v ,. (Yi' (-1))) .
~----~",'----' ~----~v-------'("----v-' ''---"".----

r t e
I 2

------------------~..v-------------------'

The only interesting critical pa.ir results from unifying s~ and s~ by the uniJier (J = {u ~
Y, V f- X ,: X}. F()~ brevity, we will omit. t.he operator .' '. from now on.

[a(,sO]r == [XSYY]T ::=: [(J(.sz)]T

(le~_.-"--- ~(2e)~
[y(...Y X !f\ (-2)XY)]T - R

r
[XX(y·i. (-1))]'1' ---~ R

r

[X_XY 'I' (-2)XYY]r ---)(1) [x.yy I' (---l)XXI'1' -*(1)

[XX '1' (-2)XY'1; (--2)XYYjT ---·(2) lX.\' .. (-2)XY (-1)XX]'1' =>*
I

[X X .I' (-2)XY ,[, (-2).YY i (--2)(- 1)X]T .,:-* [(--2)XY]T
[X.X I' (-4)XY <I, 2X]T

"Ve add the new rule (3): .\X ·2.YF (--2)X to R' in order to guarantee a
comrnon successor of the two norm.aJ forms of IX XYYh· modulo - R' U =? We also have
t.o add the extended rule, so that. R' remains T-compat.ible.

All the other critical pa.irs of R' lwvc c,-']J]JUOll successors. So __,'H with R' ==: Rr U
R; U {(l), (2), (3)} U {(1"), (2 e

), (3 P
)} is confluent. I1J odulr:,:;-. '"

We wa.nt to pClint out that wc do not claim or intend t.o be able to improve the
efficiency of BU or KB by such a simulation. H01vever, we think that the genera.l completion

Example: We consider the ideal basis

F = {fg —— 332 + 233.2, 3/2 -— y+1,}E l ay l -
V

f1 f2

The power products are ordered according to the graduated lexicographic ordering. First
there is only one critical pair of F , namely the one resulting from the reduction of 3:2
modulo fl and fg, respectively.

fl 17323] —— 2333/2 “ff.. “23:3;2 J- .322 — 2333] —>f2 3.32 ~— 4xy + 2.13
822%,? ‚flflflrflpflflaflf;‚

f2 \ $2y __ 132 _ t
""—233?!

So we add f3 °: :32 —— 23:3; + 23: to the ideal basis and proceed. All the other critical
pairs lead to common successors, so {fl , f2, fg} is a. Gröbner basis for the ideal.

The rewrite rule system corresponding to F is

Rp := {(1): .X--:X Y X X - (--—-2J .. X - 3:, (2): }" . Y Y é-(——-«—1)}-

51 11 S? t ?

Applying the procedure COMPLETE to R Rs U RF, we first have to construct a 77—-
compatible extension Reof R . Because T is an AG—theory, this means adding a new rule
a o s ——> 'u. o t (u a new variable) for every rule 5 -—> t with outermost operator o E {eig ..-‚._}

‚R' :Rß :: 12,, LI Rf; LI RFU

{Er -v)? X 1':--—-t (‚X - .X." ;- (--—2") X }") ,v .- }" X" --—~Xv=:-*(Y=-i~--X(-—1))}.
__V- __ ‘ _“ ' j W \ _ j

E ES 3 S e1 i"! 2 132
\._ I—' "'N’

?
F??

The only interesting critical pair results from unifying sf and s ; by the unifier a =: {u 4-—

Y, 1) 4—— .X." X}. For brevity, we will ornil t he ope ra to r5 from now on.
Jabs?)e ._ [X XX XJr ==J (sah—

(1°W„„wf*” / \ (2=)

[“ («X X ”(““ 2V“)lT we [X XÜ ““““(l l l l r “‘12
[XXX i=(—— marry—Xi] “4(1) [XXi ---(—J)X"XJT _..(,,

[X X ‚.‚-‚_(2)X ()};a „;(-F) _ [XX -2(2)X _. ...—(1)XY]T—_‚
[X’X- ' (2)X [(2) “ ' (“2 ([.)XIT "4“" l("""2)XYlT
lX15X “()“; *1e

We add the new rule (3) : XX > 2XY (2) \ to R' in order to guarantee a
common. successor of the two normal. forms of IX 'XYt modulo ———> R' Uzi». We also have
to add the extended rule, so that R ' remains T—compatible.

All the other critical pairs of Ii” have cmrlmon successors. So "—9,? with R' :=: R,. |__..|
Rf. U {(1), (2), (3)} U {(13), (2"), (?)} is confluent modulo in

We want t o point ou t that we do not claim or intend to be able to improve the
efficiency of BU or KB by such. a simulation. However, we think that t he general completirtm

8

procedure COMPLETE might help to understand the intricate relationship between two
important algorithmic concepts for wnst.ructing canonical rewrite systems.

References

[Bu 65] B. Buchberger: Bin AlgoTithm1/..~ ::1.l7/1. .\ n./Jinden tier Basiselempnle des Restklas.~en
Tinges nach einem n:ulldimensionnM'n Polynom,ideaJ Dissertat.ion, Univ. Innsbruck,
Austria (1965).

[Bu 85a] B. Buchberger: "Grbbner Bases: An Algorithmic Method in Polynomial Ideal
Theory". In: MuliidimensionaJ Sysf,ems Theory, N.K. Bose (ed.), 184-232, D. Reidel
Pub!. Comp. (1985).

[Bu 85b] B. Buchberger: "Basic Features a.nd Development of the Critical-·Pair/Com
pletion Procedure", Rewriting Techniques and Applications, .I .-P. .Iouannaud (eeL),
Springer Lecture Notes in Comp. Sci. 202, 1-45 (1985).

[BL 83] B. Buchberger, R.. Loos: "Algebraic Simplification", in: Compnte1' Algebra
Symbolic a,nd Algebraic Compldation, "2nd cd., Buchberger, Collins, Loos (eds.),
Springer-Verlag, 11--44 (1983).

[Ru 80] G.P. Ruet: "Confluent Reductions: Abstract. Properties and Applications to Term
Rewriting Systems", J.A CM 27/4, 797--821 (1980).

[HO 80] G.P. Huet, D.e. Oppen: "Equa1:i(ms and Re·writ.e Hules - A Survey", in: Fonnal
Language Theory, RV. Book (ecL), Academic Press, 349-405 (1980).

[KK 83] A. Kandri-Rody, D. Kapur: "On R.elationship between Buchberger's Grobner
Basis Algorithm and the Knuth·-Bendix Completion Procedure" J General Electric
Technical R.eport No. 83CRD286, Schenectady, New York (1983).

[KB 67] D.E. Knuth, P.B. Bendix: "Simple Word Problems in Universal Algebra", Proc. of
the Conf. on Comp7Ltational Problems in Abstract Algebra, Oxford, 1967J J. Leech
(eel.), Pergamon Press (1970).

[Le 86] P. Le Chenandec: Canonico,l Form.s in F'imtely Presented Algebms, PitmanJLondon
(1986).

[Ll 83] R.. Llopis de Trias: "Canonical F<)rms for Residue Classes of Polynomial Ideals and
Term Rewriting Systems", Techn. H.er., Univ. Aut.onoma de Madrid, Division de
Matemat.icas (1983).

[Lo 81] R.. Loos: "Term Reduction Syst.ems and Algebraic Algorithms", Proc. 5th Cil
Workshop on A Tt~f. lntell., Bad Honnd, Springer--·Verlag, Illfl)rmatik Fachbericht.e
47 J 214-234 (1981).

[PS 81] G.E. Peterson, M.E. Stickel: "(\lIllpJet.e Sets of HecluctioIlS for Some EquationaJ
Theories"J .I.ACAf 28/2, 2~33-264 (1981.).

[Wi 84] F. Winkler: The Church-Rosscr PropeTty in Computer Algebra and Special The
orem Proving: An InvcstigahoT/, of Critical--PaiT/Completion Algorithms. Disserta
hon, Univ. Linz (1984).

procedure COMPLETE might help t o understand the intricate relationship between. two
important algorithmic concepts for constructing canonical rewrite systems.

Refe rences

[B11 65] B. Buchberger: Ein. Algorithmus mm. .-5l-zi[finden der Basiselemente ales Restklassen-
r inges nach. e inem nulldimensionnlr-n Polynomidea l . Disse r ta t ion , Univ . Innsbruck ,
Austria (1965).

[Bu 85a] B. Buchberger: “Grobner Bases: An Algorithmic Method. in Polynomial Ideal.
Theory”. In: Multidimensional Systems Theory, N.K. Bose (ed.), 18/9232, D . Reidel
Publ. Comp. (1985).

[Bu 85b] B. Buchberger: “Basic Features and Development of the Critical~--Pair/Com—
pletion Procedure", Rewriting Techniques and Applications, ‚].-P. Jouannaud (ed.),
Springer Lecture Notes in Ccuup. Sci. 202, "ln-45 (1985).

[EL 83] B. Buchberger, R . Loos: “Algebraic Simplification”, in: Computer Algebra ——
Symbolic and. Algebraic Computation. End ed., Buchberger, Collins, Loos (eds.),
Springer—Verlag, 1 1—44 (1983).

[Hu 80] G.P. Huet: “Confluent Reductions: Abstract Properties and Applications to Term
Rewriting Systems”, JACM 27 /4 , 797—821 (1980).

[H0 80] GP . Huet, D.C. Oppen: “Equations and Rewrite Rules —-— A Survey”, in: Formal
Language Theory, R.V. Book (ed) , Academic Press, 349—6105 (1980).

[KK 83] A. Kandri—Rody, D. Kapur: “On Relationship between Buchberger’s Grabner
Basis Algorithm and the Knuth—Bendix Completion Procedure”, General Electric
Technical Report No. 83CRD286, Schenectady, New York (1983).

[KB 67] D.E. Knuth , PB . Bendix: “Simple Word Problems in Universal. Algebra”, Proc. of
the Conf. on Computational Problems in Abstract Algebra, Oxford, 1967, J . Leech
(ed) , Pergamon Press (1979).

Le 86 P . Le Chenandec: Canon ica l Forms in F in i t e l P re sen t ed A l ebras Pitman London?} 9 a :

(1986)
[L]. 83] R. Llopis de Trias: “Canonical Forms for Residue Classes of Polynomial Ideals and

Term Rewriting Sys t ems” , Techn . Rep , Un iv . Autonoma de Madr id , Divis ion de
Matematicas (1983).

[Lo 81] R. Loos: “Term Reduction Systems and Algebraic Algorithms”, Proc. 5th .?!
Wr’orkshop on Art-if. In t e l l , Bad Hormel, Springer—~~~Verlag, 11.1ft.:.>1:.n.1a.tik Fachberichte
47, 214—234 (1981).

[PS 8].] G.E. Peterson, ME. Stickel: “Complete Sets of Reducticuis fen." Some Equational
Theories”, JA CM 28 /2 , 233—264 (1.98l).

[Wi 84] F . Winkler: The Church—Rasse?" Property in Computer Algebra and Special The-
orem Proving: An Investigation of C'ritical~~Pair/Completion Algorithms. Disserta—
tion, Univ. Linz (1984).

Critical Pairs of Reduction Schemes

Werner Th. WOLFF
Lochhamer Str. 39
0-8032 LOCHHAM (W.Germany)

By generalizing the Knuth-Bendix procedure to reduction modulo a

compatible equational theory we will come across reduction

schemes quite naturally. A reduction scheme stands for a recur

sively enumerable set of reduction rules which are summarized in

a rule with condition. When superponing such schemes their

conditions get only partially instantiated by unification, so

that we obtain terms connected with a hypothesis. Such terms

reduce w.r.t. "normal" rules by passing along their hypothesis,

and w.r.t. schemes by means of a consistency checker. To prove

the confluence of a system with schemes, we must also look at

cri:tical pairs of "terms under hypothesis".

1.	 Theory

Consider a noetherian relation of reduction ---7 and a

equivalence relation -.

1.1.	 Def: ---7 is confluent modulo - :iff Xl ~* X - Y --7* yl

implies Xl ~~ Yl {mod -}, where Xl ~~ Yl (mod -) : iff

exist x', y' s.t.: Xl ---+* X' - y' ~* Yl. 0

1.2.	 Def: --7 is locally confluent modulo - :iff

(a)	 y ~ X --7 Z implies y -7~ Z (mod -) and

{b} y X --7 Z implies y ~~ z (mod -). 0

We have the following result (cf. [1], Lemma 7):

1.3.	 Theorem: --7 is confluent modulo - iff it is locally

confluent modulo -. 0

Let T be the set of terms over function symbols in F and

variables in X. To deal with term rewriting, we introduce

- 1

Critical Pairs of Reduction Schemes

Werner T h . WOLFF
Lochhamer Str. 39
D—8032 LOCHHAM (W.Germany)

By generalizing the Knuth—Bendix procedure to reduction modulo a

compatible equational theory we will come across reduction

schemes quite naturally. A reduction scheme stands for a recur—

sively enumerable set of reduction rules which are summarized in

a rule with condition. When superponing such schemes their

conditions get only partially instantiated by unification, so

that we obtain terms connected with a h y p o t h e s i s . Such terms

reduce w.r.t. "normal" rules by passing along their hypothesis,

and w . r . t . schemes by means o f a c onsistency c h e c k e r . To prove

the confluence of a system with schemes. we must also look at

critical pairs of "terms under hypothesis".

1 . Theory

Consider a noetherian relation of reduction -—9 and a

equivalence relation “.

1.1. Qgäi ——9 is confluent modulo " :iff X1 é——* X'” y ——9* y1

implies X1 —9e— y1 (mod "), where X1 —96— y; (mod ") :iff

exist x', y ' s.t.: X1 -—9* x ' " y ' é——* y1. E]

1.2. Egg; ——9 is locally confluent modulo " :iff

(a) y e—— x ——% z implies y —96— 2 (mod ') and

(b) y " x —-9 z implies y —96- 2 (mod "). []

We have the following result (cf. [1] , Lemma 7):

1.3. Theorem: ——ä i s confluent modulo " iff it is locally

confluent modulo “ . [|

L e t T be t h e s e t o f terms over function symbols in F and

v a r i a b l e s i n X . To d e a l with term r e w r i t i n g , we introduce

1.4.	 Def: - is a compatible simplification :iff - is an equi

valence relation s.t.: for all s, t, tl, tz £ T

(a)	 s - t implies a(s)- aft) for any substitution a, and

(b) tl - tz implies s Iu ~ tl]- S [u f- tz] for any tree

node u in s (subterm replacement). 0

For a term rewriting system R that generates the noetherian

relation ~R on T, and a simplification - which is compa

tible with the terms of T we get (cf.[3], Satz 7.4):

1.5.	 Theorem: If ~R and - fulfill condition (b) of Def.1.2,

then: ~R is locally confluent modulo iff for all

critical pairs (p, q) of R: p ~~R q (mod -). 0

Cf. [2), p.12, for orthogonality of two relations of

reduction which gives a restriction similar to (bl of 1.2.

2.	 Implementation

To handle this kind of confluence mechanically, I implemen

ted the extension of the Knuth-Bendix procedure to reduction

schemes and terms under hypothesis in the simple case of

conditions which involve an ordering >. Let Th> be the

theory of > and Subst = fa:X --7 T I dom(a) finitel U {~l.

2.1.	 Def: a ---7 b : - P is a reduction scheme : iff a---7b E Rand

P E Th>, while its application to terms is defined by

s reduces to t w.r.t. a ~ b :- P :iff there exists redex

u in s w.r.t. a ---7 b s.t.: t = s[u ~ a(b)] and

prove (0, P } *=~, where a is the match of s/uand a.

prove(a:Subst, A:Th» :Subst can be defined by the rules

prove CL, A} ---7~, prove (0, true) ---7 0,

prove(a, tl = tz) ---7 unif(a, tl, tz),

prove(o,.tl > :tz) ---7 a .. - a(ttl > a(tz),

- 2

1 .4 . Def: " is a compatible simplification :iff ” is an equi-

valence relation s.t.: for al l s , t , t1, tz s T

(a) s " t implies o(s) ’ o(t) for any substitution a, „ a n d

(b) t1 " t2 implies s t u (v t1] * s [u é- tz] for any tree

node u in s (subterm replacement). []

For a term rewriting system R that generates the noetherian

relation ——+: on T , and a simplification ” which is compa—

‘ t i b l e with the terms of T we get (cf.[3], Satz 7.4):

Theorem: If —-9n and “ fulfill condition (b) of Def.1.2,

then: “—93 is locally confluent modulo " iff for all

critical pairs (p , q) of R : p —+é—R q (mod “). []

C f . [2], p.12‚ for orthogonality o f two relations of

reduction which gives a restriction similar to (b) of 1.2.

Implementation

To handle this kind of confluence mechanically, I implemen—

ted the extension of the Knuth-Bendix procedure to reduction

Schemes“ and terms under hypothesis in the simple case of

conditions which involve an ordering >. Let Th) be the

theory of > and Subst = {0:X -—9 T | dom(o) finite) U {1}.

Egg; a ——9 b :- P is a reduction scheme :iff a——9b a R and

P a Th5, while i t s application to terms i s defined by

s reduces to t w.r.t. a ——9 b : — P :iff there exists redex

u in s w.r.t. a ——9 b s.t.: t = s[u é- o(b)] and

prove(o, P) ¢= i, where o is the match of s/u .and a.

prove(o:Subst, A:Th>):Subst can be defined by the rules

prove(1g_A) -—9 JJ prove(o, true) —-9 o,

prove(o. t1 = t 2) -—9 unif(o, t1, t2).

p.rove(o,..t1 > t2) _). o -::- 0(t1) >6(tz)‚

prove (0, [&]) --7 0 (empty conjunction),

prove (0, [& A B]) ~ prove (prove(o,A), [& B]). 0

2.2.	 Def: A term under hypothesis is a pair (t, H) ET X Th>.

(s,H) reduces to (t,H ') w.r.t. a ~ b:- P :iff there

exists redex u in s s.t.: t = s[u f- match(s/u,a) (b)] and

H' = prove_consistency ([& P match(s/u,a) (H)]) 4= 1.. 0

The consistency checker for Th> is based on the principles:

x > X resp. [& X>Y Y>X] are inconsistent, return~.

If [&	 X>Y Y>Z] is consistent, then so is [& X>Y Y>Z X>Z] .

Finally, to superpone reduction schemes we must have

2.3.	 Def: (p,H) and (q,H) are a critical pair w.r.t. R :iff

exist at --7bt : -Pt, az ~bz : -pz E R, node u in at, and

~ = unif (id,at /u,az) =1=.1.. s.t.: (i) p = IJ (at) [u f- IJ (bz)]

and q = ~(bt) form a critical pair,

(ii) H = prove_consistency([& IJ(Pt) IJ(Pz)]) *= L' 0

If one (or both) rules are reductions we may assume the

corresponding condition P to be true, so that the task of

proving consistency becomes trivial.

2.4.	 Def: A critical pair (p,H), (q,H) is confluent :iff

(p,H) ~lI: (p',Ht), (q,H) ~lI: (q',H2), and

prove_consistency ([& Ht H2]) 4=.1... 0

References:

1.	 HUET, G.: Confluent Reductions: Abstract Properties and Appli
cations to Term Rewriting Systems, in: 18 th IEEE Symposium
on Foundations of Computer Science (1977), pp. 30 - 45

2.	 KANDRI-RODY, A.; KAPUR, D.: On Relationship between Buch
berger's Grobner Basis Algorithm and the Knuth-Bendix
Completion Procedure, General Electric Technical Information
Series, Schenectady 1983

3.	 WOLFF, W.Th.: Ein Vervollstandigungsalgorithmus fur Termerset
zungssysteme und Polynomidealbasen, Diplomarbeit an der
Fakultat fur Mathematik der Uni Munchen, 1988

- 3

prove(o, [&1) ——9 o (empty conjunction),

prove(o, [& A B]) -—9 prove(prove(o,A), [& B]). []

2.2. D e f : A term_under hypothesis is a pair (t, H) s T x Th).

(s,H) reduces to (t,H') w.r.t. a -—9 b :— P :iff there

exists redex u in s s.t.: t = s[u e— match(s/u,a)(b)] and

H' = prove_consistency([& P match(s/u,a)(H)])-#=_i. []

The consistency checker for Th, i s based on the principles:

X > X resp. [& X>Y Y>X] are inconsistent, return_L.

I f [& X > Y Y>Z] i s consistent, then s o is [& X > Y Y > Z X>Z].

Finally, to superpone reduction schemes we must have

2.3. D e f : (p,H) and (q,H) are a critical pair w.r.t. R :iff

exist a1——9b1:-P1, a2-—9b2:-P2 a R, node u in a;, and

u = unif(id,a1/u,a2) #=_i_s.t.: (i) p = u(a1)[u é- u(bz)]

_and q = u(b1) form a critical pair,

(ii) H = prove_consistency([& u(P1) u(Pz)]) $=_i‚ []

If one (or both) rules are reductions we may assume the

corresponding condition P to be true, s o that the task of

proving consistency becomes trivial.

2.4. D e f : A critical pair (p,H), (q,H) is confluent :iff

(P : H) “*** (P ' ‚H1) . (q ffl) -—9* (Q',H2). and.

prove_consistency([& H1 H2]}-#=_L. E]

R e f e r e n c e s :

1 . HUET, G . : Confluent Reductions: Abstract Properties and Appli-
cations to Term Rewriting Systems, in: 18th IEEE Symposium
on Foundations of Computer Science (1977). pp. 30 — 4 5

KANDRI—RODY, A . ; KAPUR‚ D . : On Relationship between Buch-
berger's Gröbner Basis Algorithm and the Knuth-Bendix
Completion Procedure, General Electric Technical Information
Series, Schenectady 1983

HOLFF, W.Th.: Ein Vervollsténdigungsalgorithmus für Termerset—
zungssysteme und Polynomidealbasen, Diplomarbeit an der
Fakultät für Mathematik der Uni München, 1988

Constructor-Based Rewriting and Narrowing without a

Confluence Condition

Extended Abstract

Heinrich Hussmann
Universitat Passau

Fakultiit fUr Mathematik: und Infonnatik

Postfach 2540

D-8390 Passau

EUNet: hussmann@unipas.uucp

1. Introduction

It is quite usual for work on the theory of term rewriting to presuppose (or to test) the

confluence of the rewrite relation under consideration. But, under certain circumstances, term

rewriting can be quite interesting even without this precondition. In particular, results for such

systems are valuable for modelling nondeterministic computations. Besides that, the question

may be of theoretical interest which results depend essentially on the confluence condition and

which do not.

The work presented here came out of a thesis on the extension of algebraic specifications to

nondeterminism ([Hussmann 88]). Based on the semantic framework of [Nipkow 86] and

[Hesselink 88], non-confluent term rewriting can be seen as a specification language and a

calculus for specifications of nondeterministic data types.

Below we skectch a model-theoretic semantics for non-confluent term rewriting systems and

give correctness and (weakened) completeness results for rewriting as a calculus. It turns out

that the "narrowing" method ([Hullot 80D can be easily transferred to the case of non-confluent

rewriting.

The results presuppose a special shape of the rewriting rules which is sometimes called

"constructor-based". A large number of specifications occurring in practice are subsumed by

this type of rules. In contrast to other approaches, no further preconditions (termination,

constructor-completeness) are made.

2. Constructor-Based Rewrite Systems

For our purposes, the standard notion of term rewriting systems can be loosened somewhat by

omitting all variable restrictions. For instance, a rule

Constructor-Based Rewriting and Narrowing without a
Confluence Condition

Extended Abstract

Heinrich Hussmann
Universität Passau

Fakultät für Mathematik und Informatik
Postfach 2540
D-8390 Passau

EUN et: hussmann@unipas.uucp

1. Introduction

It is quite usual for work on the theory of term rewriting to presuppose (or to test) the
confluence of the rewrite relation under consideration. But, under certain circumstances, term

rewriting can be quite interesting even without this precondition. In particular, results for such
systems are valuable for modelling nondeterministic computations. Besides that, the question
may be of theoretical interest which results depend essentially on the confluence condition and
which do not.

The work presented here came out of a thesis on the extension of algebraic specifications to
nondeterminism ([Hussmann 88]). Based on the semantic framework of [Nipkow 86] and
[Hesselink 88], non-confluent term rewriting can be seen as a specification language and a
calculus for specifications of nondeterministic data types.

Below we skectch a model-theoretic semantics for non-confluent term rewriting systems and
give correctness and (weakened) completeness results for rewriting as a calculus. It turns out
that the "narrowing" method ([Hullot 80]) can be easily transferred to the case of non-confluent
rewriting.

The results presuppose a special shape of the rewriting rules which is sometimes called
"constructor-based". A large number of specifications occurring in practice are subsumed by
this type of rules. In contrast to other approaches, no further preconditions (termination,
constructor-completeness) are made.

2. Constructor-Based Rewrite Systems

For our purposes, the standard notion of term rewriting systems can be loosened somewhat by
omitting all variable restrictions. For instance, a rule

mailto:hussmann@unipas.uucp

some ~x

where x is a variable and some a constant, will be considered as a correct rewrite rule.

We assume a signature L = <S, F> to be given where a subset C k: F of constructor function

symbols is designated. Tl;(X) means the set of terms over L and a variable set X, Tc(X) is the

subset ofconstructor terms. A term rewrite system R is called constructor-based iff for all rules

I ~ r in R the left hand side is of the special form

I = f(tl, ... , t:n) where feF\C and all tie Tc(X).

3. Model-theoretic Semantics

The notion of a multialgebra generalizes algebras to the case of set-valued operations, Le. an

operation yields an element of the powerset of the corresponding carrier as its result. If the rank

of fe F is f: SI x ... X sn ~ s, then

fA. A x A th(A)• SIX ... sn ~ ()V S •

A subset CA c FA of constructor operations exists also in A:

CA= {feFA I feC};

and all constructor operations are allowed only to have singleton sets as results:

if cAe CA then I cA(al, ... , an) I = 1.

This means, the operations within an algebra as defined above may be partial and non

deterministic, constructor operations are forced to be deterministic and total.

A valuation ~ of the variables in a multialgebra A is defmed as usual. The interpretation of a

term te Tl;(X) of sort s in a multialgebra A under a valuation ~ is defined by additive extension:

IA[x](~) = {~(x)} (if x is a variable), IA[f(tI. ... , tn)](~) = {aefA(aI. ... , an) I aieIA[ti](~)} (if

feF).

A term rewrite rule I ~ r is calledvalid in a multialgebra A (denoted by A 1= I ~ r) iff

'if valuations~: IA[l](f3) ~ IA[r](f3).

A is called a model of the rewrite system R iff all rules in R are valid in A. We write R 1= 1~ r

iff A 1= I ~ r for all models A ofR.

4. Rewriting without a Confluence Condition

The usual notion of rewriting is generalized to constructor-based rewriting by

tl ~c t2 iff there is an occurrence u in tl, a rule I ~ r in R and a constructor

substitution a such that tl/u = aI, t2 = a(t1[urr]).

(A constructor substitution means a substitution assigning only constructor terms to variables.)

some —-> x

where x is a variable and some a constant, will be considered as a correct rewrite rule.

We assume a signature Z = <S, F> to be given where a subset C g F of constructor function
symbols is designated. Tz(X) means the set of terms over 2 and a variable set X, TC(X) is the

subset ofconstructor terms . A term rewrite system R is called constructor-based iff for all rules
1 —'> r in R the left hand side is of the special form

1 = f(t1, . . . , tn) where fe RC and all tie TCCX).

3. Model-theoretic Semantics

The notion of a multialgebra generalizes algebras to the case of set—valued operations, i.e. an

operation yields an element of the powerset of the corresponding carrier as its result. If the rank
o f f eF i s f: s1 >< >< sn «> s, then

fA131A >< X snA —> p(sA).
A subset CA g FA of constructor operations exists also in A:

CA = {fe FA I fe C};
and all constructor operations are allowed only to have singleton sets as results:

if cAe CA then | cA(a1, . . . , an) I = 1.

This means, the Operations within an algebra as defined above may be partial and non-
deterministic, constructor operations are forced to be deterministic and total.

A valuation ß of the variables in a multialgebra A is defined as usual. The interpretation of a
term te T};(X) of sort 3 in a multialgebra A under a valuation [3 is defined by additive extension:
IAlX] (B) = {[300} (if x is a variable), IA[f(t1. ..., m)](ß) = {ae fA(a1‚ . . . , an) I ate IA[ti](ß)} (if
fe F) .

A term rewrite rule 1 —> r is calledvalid in a multialgebra A (denoted by A != l ——> r) iff
V valuations ß: IA[1](ß) ; IA[r](|3).

A is called a model of the rewrite system R iff all rules in R are valid in A. We write R I: 1 —> r
iff A l= l —> r for all models A of R.

4. Rewriting without a Confluence Condition

The usual notion of rewriting is generalized to constructor-based rewriting by
t1 —>C t2 iff there is an occurrence u in t1, a rule 1 —> r in R and a constructor

substitution 0 such that t1/u = 01, t2 = o(tl [u<—r]).

(A constructor substitution means a substitution assigning only constructor terms to variables.)

In a constructor-based rewrite-system R we have for all terms t1, t2e T:E(X) the correctness

result:

d --tC* t2 => R 1= t1 --t t2.

We have also a completeness result under the restriction that t2 has to be a constructor term, Le.

for all tIe T:E(X), t2e Tc(X):

R 1= d --t t2 => d --tC* t2.

5. Narrowing without a Confluence Condition

The "narrowing" technique can be adapted to constructor-based rewriting in a quite

straightforward way:

d-N--tcr t2 iff there is a non-variable occurrence u in d, a rule 1 --t r in R and a

constructor substitution (J' such that (J' is the most general unifier of d/u

and 1, t2 = (J'(tl[u~r]).

This kind of narrowing corresponds to constructor-based rewriting in the following sense:

Let R be a constructor-based rewrite system, Q = [d --t t2] a given query in R. Then for a

constructor substitution cr, cr is a solution of Q (Le. at1 --tC* at2) if and only if there are

constructor substitutions A, cr' and a term t2' such that cr = Acr', t1-N~cr'* t2' and Ais a

unifier of cr' t2 and t2'.

References:

[Hesselink 88]
W. H. Hesselink, A mathematical approach to nondeterminism in data types, ACM
Transactions on Programming Languages and System s10 (1988) 87-117

[Hullot 80]
J. M. Hu110t, Canonical forms and unification, in: W. Bibe1, R. Kowa1ski (eds.), 5th
Conference on Automated Deduction, Lecture Notes in Computer Science 87
(Springer, Berlin, 1980) 318-334.

[Hussmann 88]
H. Hussmann, Nondeterministic algebraic specifications (in German). Ph. D. thesis,
University of Passau, 1988.

[Nipkow 86]
T. Nipkow, Nondeterministic data types: Models and implementations, Acta Informatica
22(1986) 629-661.

In a constructor—based rewrite-system R we have for all terms t1, tZE T};(X) the correctness

result:
t1 —>c*t2 => RI=t1—+t2.

We have also a completeness result under the restriction that t2 has to be a constructor term, i.e.
for all t l e Tz;(X), 1:26 TC(X):

RI=t1—>t2 => tl —>c*t2.

5. Narrowing without a Confluence Condition

The "narrowing" technique can be adapted to constructor-based rewriting in a quite
straightforward way:

t1 —N-—>5 t2 iff there is a non-variable occurrence u in t1, a rule 1 -—> r in R and a
constructor substitution 6 such that 0' is the most general uni-fier of t1/u
and 1, t2 = o(t1[u<——r]).

This kind of narrowing corresponds to constructor—based rewriting in the following sense:

Let R be a constructor-based rewrite system, Q = [tl —-> t2] a given query in R. Then for a
constructor substitution 0', o is a solution of Q (i.e. O'tl ——>C* ot2) if and only if there are
constructor substitutions ?L, 6’ and a term t2’ such that 0' = 75.0", t l —N—-—>G’* t2’ and 7L is a
unifier of 6’ t2 and t2’.

References:

[Hesselink 88]
W. H. Hesselink, A mathematical approach to nondeterminism in data types, ACM
Transactions on Programming Languages and System $10 (1988) 87-117

[Hullot 80]
J. M. Hullot, Canonical forms and unification, in: W. Bibel, R. Kowalski (eds.)‚ 5th
Conference on Automated Deduction, Lecture Notes in Computer Science 87
(Springer, Berlin, 1980) 318-334.

[Hussmann 88]
H. Hussmann, Nondeterministic algebraic specifications (in German). Ph. D. thesis,
University of Passau, 1988.

[Nipkow 86]
T. Nipkow, Nondeterministic data types: Models and implementations, Acta Informatica
22(1986) 629-661.

A Preference Ordering on AC-Terms

ALBRECHT FORTENBACHER

IBM Wissenschaftliches Zenirum,

Tiergartenstr. 15, D-6900 Heidelberg.

Introduction: The efficiency of algorithms on AC-terms (classes of terms
modulo associativity and commutativity) depends heavily on the under
lying data structure. After discussing commonly used implementations of
AC-terms by terms and by canonical forms, we present a partial ordering
on AC-terms, the AC preference ordering, and demonstrate how it can be
used to implement AC-terms efficiently.

Basic algebraic properties: Given a signature E = (S, F, r), the term
algebra 1E(V) is the free E-algebra over the set of variables V. Therefore
substitutions, endomorphisms on 1E(V), are uniquely determined by their
restriction to V. Any set of equations e ~ Tl;(V)2 induces a congruence
relation ~ with e ~ ~ ~ Tl;(V)2, the equational theory of e. We get a
L.:-algebra 1i;(V)/~ which, in the case of collaps free theories, forms the
free algebra over V in the e-variety. In this case, endomorphisms (substi
tutions) of the term algebra can be extended in a natural way to endo
morphisrns on Tl;(V)/~, which we also call substitutions. The AC-theory,
consisting of associativity and commutativity laws for some operators, is a
permutative theory, therefore the quotient algebra 7i;(V)AC, the AC-term
algebra, consists of finite classes of terms which are called AC-terms.

Implementation of AC-terms: An AC-operator which may be re
garded as having arbitrary arity (exploiting associativity) permits permu
tation of its argument AC-terms (exploiting associativity and commuta
tivity). Thus, an AC-term, which is constructed by an AC-operator, can
be represented by a multiset of AC-terms. The implementation of this
multiset affects the efficiency of algorithms on 1i;(V). We shall demon
strate this by a closer look at two basic algorithms, namely comparison
of AC-terms (congruence classes) and substitution. Usually the multi
sets are implemented as lists (i.e. an AC-term is represented by any term

A Preference Ordering on AC-Terms

ALBRECHT FORTENBACHER

IBM Wissenschaftlichcs Zentrum,
Tiergartenstr. 15, 17-6900 Heidelberg.

Introduction: The efficiency of algorithms on AC-terms (classes of terms
modulo associativity and commutativity) depends heavily on the under-
lying data structure. After discussing commonly used implementations of
AC-terms by terms and by canonical forms, we present a partial ordering
on AC—terms, the AC preference ordering, and demonstrate how it can be
used to implement AC-terms efficiently.

Basic algebraic properties: Given a signature 2 = (S, F, T), the term
algebra 7:20)) is the free E-algebra over the set of variables V. Therefore
substitutions, endomorphisms on ??;(V), are uniquely determined by their
restriction to V. Any set of equations 8 9 73:0?)2 induces a congruence
relation ß with 8 ; R'! ; %(VP, the equational theory of 8 . We get a
E-algebra 733(1));g which, in the case of collaps free theories, forms the
free algebra over V in the (‘)—variety. In this case, endomorphisms (substi-
tutions) of the term algebra can be extended in a natural way to endo-
morphisms on TE(V)/„, which we also call substitutions. The AC-theory,
consisting of associativity and commutativity laws for some operators, is a
permutative theory, therefore the quotient algebra IgG/’)Ac, the AC-term
algebra, consists of finite classes of terms which are called AC-terms.

Implementation of AC-terms: An AC—operator which may be re—
garded as having arbitrary arity (exploiting associativity) permits permu—
tation of its argument AC-terms (exploiting associativity and commuta-
tivity). Thus, an AC-term, which is constructed by an AC-operator, can
be represented by a multiset of AC-terms. The implementation of this
multiset affects the efficiency of algorithms on CEO/). We shall demon-
strate this by a closer look at two basic algorithms, namely comparison
of AC-terms (congruence classes) and substitution. Usually the multi—
sets are implemented as lists (i.e. an AC—term is represented by any term

of its congruence class). For example the congruence class of the term
(y,(*(2,x),-(y))) has a representation (* y 2 x (- V»~. Substitution can
be performed easily by substituting the term which represents the con
gruence class, but comparison is costly: two terms have to be tested for
"equality under permutation". To improve the latter algorithm, AC-terms
could be implemented by canonical forms, e.g. by an ordered list. This
yields the following representation: (* 2 x y (- y»). Now comparison of
AC-terms can be reduced to comparison of terms, which is very fast, but
substitution is costly: the canonical form is not preserved in general. A
way out of this dilemma could be an ordering which is "stable under sub
stitution", i.e. tt 0" -< t 20" follows from tt -< t2 for all AC-terms tt, t2 and
all substitutions 0".

The AC preference ordering: First it has to be remarked that an
ordering on AC-terms which is stable under substitution cannot be total.
Our goal is to find a partial ordering which, besides being efficient, is "as
large as possible". This can be achieved by extending a total ordering
(:::;, F) on the operator symbols to the partial AC preference ordering
(~, ~(V)AC) on AC-terms in the following way:

1.	 f < g:

f(...) < g(...)

2.	 f is not an AC-operator:

f(tl, ... , tn) -< f(ti,···, t~) {:} (tl, ... , tn) -<-<lex (ti, ... , t~)

3.	 f is an AC-operator, tt = f(· ..), t2 = f(· ..):

tt ~ t 2 {:} M f(tt) -<-<mult M JC t2),

where the multiset of an AC-term t is defined by

M (t) = { Mf(t') + Mj(t"), if t = f(t', t")
f { t }, otherwise.

The orderings -«lex and -«mult are recursively defined as the lexicographic
resp. multiset extension of (~, ~(V)AC)' Variables are excluded from or
dering. (-<, 'li:(V)AC) is stable under substitution and, as a preference
ordering, it is very efficient (compared to the recursive path ordering, for
example). Furthermore, it can be shown that ~ cannot be extended with
out loosing stability under substitution or getting complicated to compute.

Implementation using the AC preference ordering: Like in the
case of canonical forms, where the ordered list reflects the total ordering
on AC-terms, we can use the partial AC preference ordering to construct a

of i ts congruence class). For example the congruence class of the term
(y,=l=((2,:r),—(y))) has a representation (* y 2 a: (—-— y)). Substitution can
be performed easily by substituting the term which represents the con—
gruence class, but comparison is costly: two terms have to be tested for
“equality under permutation”. To improve the latter algorithm, AC-terms
could be implemented by canonical forms, e. g. by an ordered list. This
yields the following representation: (* 2 :c y (— y)). N ow comparison of
AC—terms can be reduced to comparison of terms, which is very fast, but
substitution is costly: the canonical form is not preserved in general. A
way out of this dilemma could be an ordering which is “stable under sub-
stitution”, i.e. tlo‘ —< 1520' follows from tl -< t2 for all AC-terms 731,252 and
all substitutions 0'.

The AC preference ordering: First it has to be remarked that an
ordering on AC-terms which is stable under substitution cannot be total.
Our goal is to find a partial ordering which, besides being efficient, is “as
large as possible”. This can be achieved by extending a total ordering
(S , F) on the operator symbols to the partial AC preference ordering
(j , ’12-;(11) AC) on AC-terms in the following way:

1. f < 9:
f(-~) < gm

2. f is not an AC-operator:
f (t 1 , . . . , t n) j f (t { , . . . , t : ,) @ (t1 , . . . , t„) 51336 ; , ” „ im

3. f is an AC—operator, tl = f (. . .), t2 = f(. . .:)
t l j tz @ Mf(t1) _‘iimuzt Mj(t2)a

where the multiset of an AC-term t is defined by

__ MfÜ') + MW). if t = f (t’, t")

Mia) _ { { t} , otherwise.

The orderings film. and 1%i are recursively defined as the lexicographic
resp. multiset extension of (j , 7502),“). Variables are excluded from or—
dering. (j,’]:g(V)Ao) is stable under substitution and, as a preference
ordering, it is very efficient (compared to the recursive path ordering, for
example). Furthermore, it can be shown that j cannot be extended with—
out loosing stability under substitution or getting complicated to compute.

Implementation using the AC preference ordering: Like in the
case of canonical forms, where the ordered list reflects the total ordering
on AC—terms, we can use the partial AC preference ordering to construct a

data strueturefor AC-terms. For example, the multiset Mf(t) can be par
titioned into maximal antichains of AC-terms, i.e. multisets of AC-terms
which are pairwise uncomparable. This data structure improves the per
formance of the substitution algorithm compared to canonical forms, but
does not behave significantly worse with respect to the algorithm compar
ison of AC-terms. It can be shown, in an algebraic complexity modell and
by implementing the different data structures, that the implementation
based on the AC preference ordering behaves favourably compared to the
implementations by terms resp. by canonical forms.

Literature: Basic algebraic properties of equational theories are dis
cussed in [1],[2], multiset orderings in [4]. In [3] an algebraic modell for
implementations is presented which also serves as a complexity modell.
Evaluation of the different data structures for AC-terms can be found in
[2].

[1]	 Ehrig, H., Mahr, B.: Fundamentals of algebraic specification, 1,
Springer, 1985

[2]	 Fortenbacher, A.: Effizientes Rechnen in A C-Gleichungstheorien,
Dissertation, Universitat Karlsrulle, 1989

[3]	 Goguen, J.A., Thatcher, l.W. und Wagner, E.G.: An initial algebra
approach to the specification, correctness and implementation of ab
stract data types, in: Current Trends in Programming Methodology,
4, Prentice Hall, 1978

[4]	 Jouannaud, J.-P., Lescanne, P.: On multiset orderings, in: Informa
tion Processing Letters, Vol. 15, No. 2, 1982

data structure for AC-terms. For example, the multiset M Je(t) can be par—
titioned into maximal antichains of AC-terms, i.e. multisets of AC—terms
which are pairwise uncomparable. This data structure improves: the per-
formance of the substitution algorithm compared to canonical forms, but
does not behave significantly worse with respect to the algorithm compar-
ison of AC-terms. It can be shown, in an algebraic complexity modell and
by implementing the different data structures, that the implementation
based on the AC preference ordering behaves favourably compared to the
implementations by terms resp. by canonical forms.

Literature: Basic algebraic preperties of equational theories are dis—
cussed in [1],[2], multiset orderings in [4]. In [3] an algebraic modell for
implementations is presented which also serves as a complexity modell.
Evaluation of the different data structures for AC—terms can be found in
[2]-

[1] Ehrig, H., Mahr, B.: Fundamentals of algebraic specification, 1,
Springer, 1985

[2] Fortenbacher, A.: Efiizientes Rechnen in AC-Gleichnngstheorien,
Dissertation, Universität Karlsruhe, 1989

[3] Goguen, J.A., Thatcher, J.VV. und Wagner, E.G.: An initial algebra
approach to the specification, correctness and implementation of ab-
stract data types, in: Current Trends in Programming Methodology,
4, Prentice Hall, 1978

[4] Jouannaud, J .-P., Lescanne, P.: On multiset orderings, in: Informa-
tion Processing Letters, Vol. 15, No. 2, 1982

An approach to goal driven strategies for the Knuth

Bendix completion procedure

Christoph Brzoska

SFB 314, "Kiinstliche Intelligenz - Wissensbasierte Systeme"

Institut fiir Logik:, Komplexitat und Deduktionssysteme,

Universitat Karlsruhe, P.Box 6980,

D-7500 Karlsruhel, ER.Germany

e-mail: brzoska@ira.uka.de

We consider strategies for the Knuth-Bendix completion procedure ([KB70]) that constructs canonical term rewriting

systems (1RS) for equational theories. In contrast to the critical pairs criteria «(BW83], [Kiichlin85], [KMS88]) and to

completion strategies, that minimize the size of axioms and rules with respect to the number of function symb()ls

([KiicWin82], [Wagner86]), we investigate heuristic completion strategies, that estimate during the completion process.

which of the generated axioms and rules will be contained in Roo
, the lRS generated for the given equational theory.

Our approach is justified by the fact. that the result of the KB procedure is uniquely determinated by the input (up to

variable renaming).

Theorem! [Metivier83] If R and R' are two reduced canonicallRS for an equational theory E. and if R, R' are
both contained in some reduction ordering >. then Rand R' are equal (up to variable renaming). A lRS R is called

reduced. if for any rule 1~ rE R the right-hand side r is not reducible in R and the left-hand side 1is not reducible in

R\{l ~ r).

Note: Any canonical TRS R can be reduced to a reduced canonicallRS R' with ~R = +-!-+R' and -+R' £ -+-+R.

Most of the implemented completion procedures generate reduced lRS.

As a consequence, the result of the KB procedure can be characterized as follows:

Proposition 1 If> is a reduction ordering, E an equation theory and R a reduced canonical lRS for E. then:

a) for any rule 1~ r E R the following is true:

i) r is a least element of its congruence class, i.e. t E [r]E implies t> r or t = r

ii) all proper subterms of1are least elements of their congruence classes.

b) for any term t with I [t]E1> 1 there is a rule 1 ~ rE R, such that not r > t

We use Proposition 1 to d~fine a heuristic merit ordering on the rules generated during the completion process

estimating. which of the rules have the best chance to lie in R
oo

•

Definition If > is a reduction ordering then the merit ordering >h(» !; T~: (V)2 x TL. (V)2 is defined by

f(tl'· ··,tu),r1) >h(» (g(sl.···'sm),r2) iff {t1.···.fu) » {sl'· ...sm) or {t1'· ··.fu} =set {s1.···'sm} and r1 > r2 •

where » denote the extension of> to a multiset ordering and =set equality on sets.

An approach to goal driven strategies for the Knuth-
Bendix completion procedure

Christoph Brzoska

SFB 314, "Künstliche Intelligenz - Wissensbasierte Systeme"
Institut für Logik, Komplexität und Deduktionssysteme,

Universität Karlsruhe, P.Box 6980,
D-7500 Karlsruhel, F.R.Germany

e-mail: brzoska@ira.uka.de

We consider strategies for the Knuth-Bendix completion procedure ([KB70]) that constructs canonical term rewriting

systems (TRS) for equational theories. In contrast to the critical pairs criteria ([BW83], [KüchlinSS], [KMSSSD and to
completion strategies, that minimize ”the size of axioms and rules with respect to the number of function symbols
([KfichlinSZ], [Wagner86]), we investigate heuristic completion strategies, that estimate during the completion process,

which of the generated axioms and rules will be contained in R°°, the TRS generated for the given equational theory.
Our approach is justified by the fact, that the result of the KB procedure is uniquely determinated by the input (up to
variable renaming).

Theoreml [Metivier83] If R and R’ are two reduced canonical TRS for an equational theory E, and if R, R' are
both contained in some reduction ordering >, then R and R’ are equal (up to variable renaming). A TRS R is called
reduced, if for any rule 1 —> r e R the right-hand side r is not reducible in R and the left-hand side 1 is not reducible in
R\{1—-> r} .

Note: Any canonical TRS R can be reduced to a reduced canonical TRS R’ with <—*->R = «BE—mo and "*R" g '+"’R°
Most of the implemented completion procedures generate reduced TRS.

As a consequence, the result of the KB procedure can be characterized as follows:

Proposition 1 If > is a reduction ordering, E an equation theory and R a reduced canonical TRS for B, then:

a) for any rule 1 —-> r e R the following is true:
i) r is a least element of its congruence class, i.e. t e [rJE implies t > r or t = r
ii) all proper subterms o f l are least elements of their congruence classes.

b) for any term twith | [t]EI > 1 there is a rule 1 ——> r e R, such that not r > t.

We use Proposition 1 to define a heuristic merit ordering on the rules generated during the completion process
estimating, which of the rules have the best chance to lie in R°°.

Definition If > is a reduction ordering then the merit ordering >h(>) ; T2(V)2 x T2(V)2 is defined by
f(t1,.. . ,tn),1'1) >h(>) (g(sl , . . . ,sm),r2) lff [t1 , . . . , tn} >> {S l , . . . , Sm} 01° { t1 , . . . , tn} =set {S l , . . . , Sm] and 1'1 >1‘2 ,

where >> denote the extension of > to a multiset ordering and =set equality on sets.

mailto:brzoska@ira.uka.de

Heuristic Huet's completion procedure

KB(E: set of equation, >: reduction ordering): TRS;

begin

EO := E; RO:= ~; i := 0; p := 0;

loop

while Ei :I:- ~ do

choose an equation t1 = 12 in Ei; renwve t1 = 12from Ei; (t1 ',12 ') := (t1.L R .,tz.LR .);

if t1':I:- 12' then
1 1

case (t1 ',12 ') of

t1' > 12' : (l,r) := (t1 ',12');

t1' < tz' : (l,r) := (tz' ,t1');

else : exit with failure endcase;

Ei+1 := Ei U (1"= r' 11' r' € Ri' 1"= l'''-Ri\(l' r') u(1r}}; p:= p + 1;
Ri+1 := (k:1'.... r"l k:l'.... r' € Ri, l' irreducible in Ri \(1' r') u {I r}, r" = r'.LRi u (1 r)}

u (p:l r}; i:= i +1;

endif;

endwhile;

if rill rules in ~ are marked then exit with Ri as canonical TRS for E

else choose an unmarked rule k:1 r in Ri- which is minimal with respect to >h(»

Ei+1 := {p = q IP= q critical pair of rule k:l r with rule k':l' r' in Ri and k'::; k};

mark rule k:l r in Ri; i:= i + 1; endif

endloop

end KB;

As pointed out in [Huet81] we have to guarantee the fairness of the heuristic completion procedure, Le. any rule in

R00 := u i n j~ Rj has to be chosen for the creation of critical pairs in some iteration of the outer loop.

Proposition 2 If~h(» is a globally finite well quasi ordering on T"L(V)2 then the heuristic completion procedure

is fair. Here ~h(» denotes the reflexive closure of >h(» and a reflexive, transitive relation ~ (quasi ordering) on a set

Mis called

globally finite iff for any x in M the set x~:= {y E M I x ~ y } is finite.

•	 awell quasi ordering (wqo) iff ~ is well founded (i.e. there exist no infinite descending sequences x1 ~ x2 ~ ...

such that Xi $ xi+l for each i ~ I) and each set ofpairwise incomparable elements in M is finite.

Note: Huet's completion procedure generates variant free TRS's Ri' Hence for the fairness of KB procedure it is

sufficient, that ~h(» is a globally finite wqo on each variant free subset R of T"L(V)2.

Lemma 1 If a:V 1-+ T"L(V) is a substitution such that for all x E V a(x) = y for some y E V, ~ a globally finite

wqo on T"L«(y})2,then

a) ~[>] defined by (t1,12) ~[>] (t1',12) iff

i) (t1,tz)a > (t1 ',tz)a or

ii) (t1,tz.)a := (t1 ',12)a and (t1.tz.)a >h(» (t1',12)a

is a globally finite wqo on each variant free subset R ofT"L(V)2, where:= :=;;:: f'l ::; •

b) If;;::h(» is wqo on T"L«(y})2 then ;;::[>] defined by

(t1,12) ;;::[>] (t1',tz) iff (t1,tz.)a ;;:: (t1',12)a and (t1,tz.)a ;;::h(» (t1',tz)a
is a globally finite wqo on each variant free subset R of T"L(V)2.

Heuristic Huet’s completion procedure
KB(E: set of equation, >: reduction ordering): TRS;

beg in
EO :=E ;R0 := ¢; i :=0 ;p := 0;
loop

while Ei # ß do

choose an equation I = in E-; remove t = from E-; (t ', ’) := (t l ., l. _ ;ml’flz’then 1 t2 1 t2 1 1‘2 1R1t2 R1)

case (tl 'Jg') Of
t l ’ > tg’ : (1r) ==(t1’.tg’);
‘1' < tg’ : (LI) := (r211);
e l se : exit with failure endcase;
Ei+l == Ei U {1"= 1"1 ' “> I" € Ri , 1"= l1121\{1' „> r'} um er} }; 13 == p + 1;
Ri +1 := [k:1'—> r"! k:1'—-> r’ e Ri , 1’ irreducible in Ri\{l’ —> r’] u{1—> r}, r” =r’lRi U {1-) Ü}

U {p:1—> r} ; i := i+1 ;
endif;

endwhile;
if all rules in Ri are marked th’en exit with Ri as canonical TRS for E

else choose an unmarked rule kzl --> r in Ri, which is minimal with respect to >h(>)

Ei+1 := {p = q Ip = q critical pair ofrule k:1—> r with rule k’:l’ -> r' in Ri and k's k};
mark rule k:1—> r in Ri; i := i + 1; endif

endloop
end KB ;

As pointed out in [Huet81] we have to guarantee the fairness of the heuristic completion procedure, i.e. any rule in
R°° := Ui njzj Rj has to be chosen for the creation of critical pairs in some iteration of the outer loop.

Proposition 2 If 2h(>) is a globally finite well quasi ordering on TECV)2 then the heuristic completion procedure
is fair. Here 2h(>) denotes the reflexive closure of >h(>) and a reflexive, transitive relation 2 (quasi ordering) on a set
M is called
- globally finite iff for any x in M the set x2: {y e M I x z y] is finite.
- a well quasi ordering (wqo) iff 2 is well founded (i.e. there exist no infinite descending sequences x l 2 x2 2 . ..

such that xi $ xi+1 for each i 2 1) and each set of pairwise incomparable elements in M is finite. .

Note: Huet's completion procedure generates variant free TRS 's Ri' Hence for the fairness of KB procedure it is
sufficient, that ->-h(>) is a globally finite wqo on each variant flee subset R of T2002.

Lemma 1 If 0':V t—> TEN) is a substitution such that for all x e V (f(x) = y for some y e V, 2 a globally finite
wqo on TZ({y})2,then
a) zb] defined by (tZ) _>_[>] (tl’JQ’) iff

i) (t1,t2)0' >(t1’,b2’)6 or
ii) (t1,t2)o :=: (tl',t2’)o and (t1,t2)o' >h(>) (tl’,t2’)o

is a globally finite wqo on each variant free subset R of T2(V)2, where x := 2 n s .

b) If 2h(>) is wqo on Tz({y})2 then zb] defined by
(121,12) _>_[>] (tl'J/Z') iff (t1,t2)0' ?. (t1„f2')6 and (t1,|'2)6 2h(>) (t1 11236

is a globally finite wqo on each variant free subset R of T2002.

Empirical Results

Based on the system documented in [Dietrich85] an experimental implementation of the heuristic completion

procedure was developed. Since the KB Algorithm implemented there is a variant of the [H080] KB procedure, we use

>h(>)to choose an axiom, which then is turned into a rule. Following Lemma la we extend >h(» to a globally [mite

wqo on variant free subsets of TI,(V)2. As globally fInite wqo on TI,({y})2 we take the termsize ordering ~s(n)
divided by n. More formally: (l,r) ~ts(n) (1',r') iff (IOcc(l)I+ IOcc(r)1) + n ~ (IOcc(l')1 + IOcc(rjl) + n, where +

denotes the integer division. Some examples from [KB70J were run so far.

Orientation of pairs through KBO ordering; heuristic completion strategy (smallest
component strategy)

Example matches rewrites unifications pairs
steps
completion

perfonned perfonned performed generated

14382 195 449 117I-group 15
(15) (17711) (233) (473) (134)

17 135235r-group 17275 512
(19) (182)(28843) (348) (673)

15 21461lr-group 308 549 149
(15) (361)(28595) (570) (163)

69231 776rl-group 1102 31722
(81946) (843) (1176) (343)(22)

References
[Brzoska88] Brzoska, C. Untersuchung von Strategienfur den Knuth-Bendix Vervollstiindigungsalgorithmus, Tech.
Report 88-12, Technical University Berlin, FB 20, 1988.

[Dietrich85] Dietrich, R. Eine Programmierumgebung fUr Termersetzungssysteme, Arbeitspapiere der GMD, Nr. 130,
1985.
[Huet81] Huet, G. A Complete Proof of Correctness of the Knuth-Bendix Completion Algorithm, J. Comp. Syst.

Sci. 23 (1981), 11-21

[H080] Huet, G. and Oppen, D. Equations and Rewrite Rules: A Survey. In Formal Languages: Perspectives and

Open Problems (R. Book, Ed.), Academic Press 1980.

[KMN88] Kapur, D. and Musser D. R. and Narendran, P. Only Prime Superpositions Need be Considered in the

Knuth-Bendix Completion Procedure, J. Symb. Comp. (1988) 6 ,19-36.

[KB70] Knuth, D. E. and Bendix, P. B. Simple Word Problems in Universal Algebra, In Computational Problems

in Abstract Algebra (J. Leech, Ed.), Pergamon 1970,263-297.

[Kuchlin82] Kuchlin, W. A Theorem Proving Approach to the Knuth-Bendix Completion Procedure, Proc. of

EUROCAM 1982, Springer Verlag 1984, LNCS 144.

[Kuchlin85] Kuchlin, W. A Confluence Criterion Based on the Generalized Newman Lemma, Proc. of EUROCAL

1985, Springer Verlag 1985, LNCS 204.

[Wagner86] Wagner, E. Strategienfur den Knuth-Bendix Algorithmus, Diplomarbeit, University Kaiserslautern, FB

Informatik, 1986.

[Metivier83] Metivier, Y. About the Term Rewriting Systems Produced by the Knuth-Bendix Completion Procedure,

Information Processing Letters 16 (1983), 31-34.

[WB83] Winkler, F. and Buchberger, B. A Criterion for Eliminating Unnecessary Reductions in the Knuth-Bendix

Algorithm, Colloquim on Algebra, Combinatorics and Logic in Computer Science (Gyor, Hungary, Sept. 12-16,

1983).

Empirical Results

Based on the system documented in [Dietrich85] an experimental implementation of the heuristic completion

procedure was developed. Since the KB Algorithm implemented there is a variant of the [I-IO80] KB procedure, we use
>h(>)to choose an axiom, which then is turned into a rule. Following Lemma l a we extend >h(>) to a globally finite
wqo on variant free subsets of T2(V)2. As globally finite wqo on Tz({y})2 we take the termsize ordering 2ts(n)

divided by n. More formally: (l,r) 2ts(n) (l',r’) iff(|Occ(l)| + IOcc(r)|) + n .>. (|0cc(1’)l + l0cc(r’)l) + n, where —:—
denotes the integer division. Some examples from [KB70] were run so far.

Orientation of pairs through KBO ordering; heuristic completion strategy (smallest
component strategy)

Example completion I matches rewrites unifications pairs
steps paformed performed performed generated

l-group 15 14 382 195 449 117
(15) (17 711) (233) (473) (134)

r—gronp 17 17 275 235 512 135
(19) (28 843) (348) (573) (182)

lr-group 15 21 461 308 549 149
(15) (28 595) (361) (570) (163)

rl—group 22 69231 776 1102 317
(22) (81 946) (843) (1176) (343)

References
[Brzoska88] . Brzoska, C . Untersuchung von Strategien für den Knuth—Bendix Vervollstdndigungsalgorithmus, Tech.
Report 88-12, Technical University Berlin, FB 20, 1988.
[Dietrich85] Dietrich, R. Eine Programmierumgebung für Termersetzungssysteme, Arbeitspapiere der GMD, Nr. 130,
1985.
[Huet81] Huet, G. A Complete Proof of Correctness of the Knuth-Bendix Completion Algorithm, J. Comp. Syst.
Sci. 23 (1981), 11-21
[H080] Huet, G. and Oppen, D. Equations and Rewrite Rules: A Survey. In Formal Languages: Perspectives and
Open Problems (R. Book, Ed.), Academic Press 1980.
[KL/[N88] Kapur, D . and Musser D. R. and Narendran, P. Only Prime Superpositions Need be Considered in the
Knuth-Bendix Completion Procedure, J . Symb. Comp. (1988) 6 ,19-36.
[KB70] Knuth, D. E . and Bendix, P . B . Simple Word Problems in Universal Algebra, In Computational Problems
in Abstract Algebra (J. Leech, Ed.), Pergamon 1970, 263-297.
[Kfichlin82] Kiichlin, W. A Theorem Proving Approach to the Knuth-Bendix Completion Procedure, Proc. of
EUROCAM 1982, Springer Verlag 1984, LNCS 144.
[Kiichlin85] Kiichlin, W. A Confluence Criterion Based on the Generalized Newman Lemma, Proc. of EUROCAL
1985, Springer Verlag 1985, LNCS 204.
[Wagner86] Wagner, E. S trategien für den K math-Bendix Algorithmus, Diplomarbeit, University Kaiserslautern, FB
Informatik, 1986.
[Metivier83] Metivier, Y. About the Term Rewriting Systems Produced by the Knuth-Bendix Completion Procedure,
Information Processing Letters 16 (1983), 31-34.
[WB83] Winkler, F. and Buchberger, B . A Criterion for Eliminating Unnecessary Reductions in the Knuth-Bendix
Algorithm, Colloquim on Algebra, Combinatorics and Logic in Computer Science (Gyor, Hungary, Sept. 12-16,
1983).

"A-rewriting
(extended abstract)

Stefan Kahrs

UniversiUit Bremen

Fachbereich Mathematik/Informatik

Postfach 330440

D-2800 Bremen

February 1989

:A.-rewriting combines :A.-calculus with (one-sorted) term rewriting, but in a less general
way than Klop's combina.tory reduction systems, see [KIo 80]. Three types of such com
binations are studied - each type being a special case of its successor.

Type 1, add term rewriting to A-calculus (or vice versa)

In some sense, type 1 is the least calculus comprising :A.-calculus and term rewriting.
From the programmer's point of view, it is similar to functional programming languages
with pattern matching (e.g. ML [HMM 86]). From a theoretical point of view it is a spe
cial case of the M-calculus [Bar 84] and Hindley's :A.(a)-calculus [Hin 78] is very similar.

Terms of type 1 are extended by abstractions (w.r.t. TRS) or by function symbols (w.r.t.
:A.-calculus). Left-hand sides of type 1 rules are restricted to (the curryfied form of) terms
allowed to be on the left-hand side of an ordinary TRS-rule. Right-hand sides are not
restricted. Substitution has to be defined slightly more general than for TRS or :A.-calcu
lus, but more similar to substitution in the :A.-calculus, because it has to take care of name
conflicts.

Evaluation (called J3o-reduction) is a mixture of J3-reduction (:A.-ealculus) and the relation
defmed by the rules, the o-reduction. For any rule left ---t right, any context C and any
substitution sub the term C [sub (left)] a-reduces to C [sub (right)]. So the defini
tion is the same as for ordinary TRS, if one ignores the more general definitions of terms
and substitutions.

The particularity of type 1 systems can be shown by an example:

add O---t:A.x . x

add (succ x) ---t:A. y . succ (add x y)

mul O---t:A.x . 0

mul (succ x) ---t:A. y . add (mul x y) y

The A-rewriting system above is one of several possibilities to define addition and multi
plication on natural numbers where a natural number n is represented as succn(zero).
Different from TRS and from functional programming languages with super-combinator

Qt—rewritin g
(extended abstract)

Stefan Kahrs
Universität Bremen

Fachbereich Mathematik/Informatik
Postfach 33 04 40
D-2800 Bremen

February 1989

h—rewritin g combines l—calculus with (one-sorted) term rewriting, but in a less general
way than Klop’s combinatOry reduction systems, see [Klo 80]. Three types of such com-
binations are studied — each type being a special case of its successor.

Type 1, add term rewriting to k-calculus (or vice versa)

In some sense, type 1 is the least calculus comprising l—calculus and term rewriting.
From the programmer’s point of View, it is similar to functional programming languages
with pattern matching (e. g. ML [HMM 86]). From a theoretical point of view it is a spe-
cial case of the iii-calculus [Bar 84] and Hindley’s k(a)-calculus [Hin 78] is very simflar.

Terms of type 1 are extended by abstractions (w.r.t. TRS) or by function symbols (w.r.t.
l—calculus). Left-hand sides of type 1 rules are restricted to (the curryfied form of) terms
allowed to be on the left-hand side of an ordinary TRS-rule. Right-hand sides are not
restricted. Substitution has to be defined slightly more general than for TRS or l—calcu-
lus, but more similar to substitution in the l—calculus, because it has to take care of name
conflicts.

Evaluation (called BEE-reduction) is a mixture of B—reduction (A-calculus) and the relation
defined by the rules, the S-reduction. For any rule l e f t _) right, any context C and any
substitution sub the term C [sub (l e f t)] ö-reduces to C [sub (right)] . So the defini-
tion is the same as for ordinary TRS, if one ignores the more general definitions of terms
and substitutions.

The particularity of type 1 systems can be shown by an example:

add 0 ——> 7L x . x

add (succ x) —> l y . succ (add x y)

mul 0 ——> 9L x . 0

mul (succ x) -—> 7t y . add (mu l x y) y

The x-rewn'tin g system above is one of several possibilities to define addition and multi-
plication on natural numbers where a natural number 11 is represented as succn(zero).
Different from TRS and from functional programming languages with super-combinator

implementations [Tur 79, Joh 85] is the evaluation of functions. For example the system
above evaluates (Le. f3o-reduces) the term mul (suee (suce zero» to the normal
form AX . add x x:

mul(suee(suce 0»
To the right there is a possible f3o-reduc Ay.add(mul(suee 0) y) y
tion sequence (here innermost-fIrst evalu Ay.add«Ay.add(mul 0 y) y) y) y
ation strategy) of the fIrst term in 7 steps. Ay.add((Ay.add((AX.O) y) y) y) y
All the 3 f3-reductions in the example have Ay.add((Ay.add 0 y) y) y
reduced non-closed terms inside of ab Ay.add((Ay. (AX.X) y) y) y
stractions. In functional programming lan Ay.add((Ay.y) y) y
guages this is unusual. Ay. add y y

Some results and observations about type 1 A-rewriting (LRS) are the following:

• For confluent TRS mapped through currying to LRS (where each function symbol has a
unique arity):

-	 o-reduction remains to be confluent, but it is not isomorphic to TRS-reduction
because of currying, some more terms can be o-reduced.

- f3o-reduction is confluent, if the TRS is additionally left-linear.

•	 ~-transformation: the rule a x ---7 b, such that a and b are terms and x is a variable

not occurring free in a, can be ~-transformed into the rule a ---7 A x. b. A LRS is ~

normal, ifno rule can be ~-transformed. For example, the addmul-LRS is C-normal.

- if X is a LRS and X' has been yielded by some ~-transformations from X, then f3o(X)
is a subre1ation of f3o(X').

- in general, confluence of f3o-reduction is lost by ~-transformation.

•	 f3oT\-reduction on ~-norma1 LRS:

- satisfies extensionality.

- unlike A-calculus, the normal form property of f3BT\- and f3o-reduction differs, because
T\-reduction can introduce B-redexes.

- is confluent if f3o-reduction is.

Type 2, rewriting A.-calculus terms

LRS of type 2 deal with the same terms as type 1, but the rules are more general. Here
the rules are not restricted on their left-hand sides, and altogether only by the usual
restriction for term rewriting rules, that is FV(left)::)FV(right) for rules

left ---7 right, where FV denotes the set of free variables in a term. Whereas a con
fluent LRS of type 1 only equalises the non-A-calculus part of the terms and hence per
forms a consistent theory [Bar 84], type 2 is more powerful, but it is harder to prove sev
eral properties for LRS of type 2.

Type 2 rules can express A-calculus' T\-reduction:

AX.yX---7y

To do this in the A-calculus, it is necessary to require xe FV(y). For A-rewriting of type 2
this condition holds implicitly by the definition of B-reduction. In particular, the rule above

implementations [Tur 79, Joh 85] is the evaluation of functions. For example the system
above evaluates (i.e. [SS-reduces) the term mul (succ (succ ze ro)) to the normal
form 7 tx . add x x :

_ mul (succ (succ 0))
To the right there is a poss1b1e ßö-reduc- l y . add (mul (succ 0) y) y
tion sequence (here innermost-first evalu- Qty _ add((1y _ add (mu 1 0 Y) y) Y) Y
ation strategy) of the first term in 7 steps. ÄY- add((Ry. add ((Rx. 0) y) y) Y) y
All the 3 B-reductions in the example have KY . add ((hy . add 0 y) y) Y
reduced non—closed terms inside of ab- Ay _ add((Ky . (1x _ x) y) y) y
stractions. In functional programming lan- KY _ add((Ay ‚y) y) y
guages this is unusual. hy . add y y

Some results and observations about type 1 A—rewriting (LRS) are the following:

° For confluent TRS mapped through currying to LRS (where each function symbol has a
unique arity):

- ö—reduc—tion remains to be con-fluent, but it is not isomorphic to TRS-reduction -
because of currying, some more terms can be 8—reduced.

- BEE-reduction is confluent, if the TRS is additionally left-linear.

° C—transformation: the rule a x -—> b , such that a and b are terms and x is a variable

not-occurring free in a , can be C—transformed into the rule a -—> JL x . b. A LRS is C-
normal, if no rule can be C—transfonned. For example, the addmul-LRS is C—normal.

— if X is a LRS and X’ has been yielded by some C—transformations from X, then [38(X)
is a subrelation of [58(X’).

- in general, confluence of BEE-reduction is lost by C-transformation.

° Ban-reduction on C—normal LRS:

- satisfies extensionality.
- unlike l-calculus, the normal form property of [3811-- and [id-reduction differs, because

n—reduction can introduce S-redexes.
- is confluent if BEE-reduction is.

Type 2, rewriting l—calculus terms

LRS of type 2 deal with the same terms as type 1, but the rules are more general. Here
the rules are not restricted on their left-hand sides, and altogether only by the usual
restriction for term rewriting rules, that is FV(left);FV(right) for rules
l e f t —> r ight , where FV denotes the set of free variables in a term. Whereas a con-
fluent LRS of type 1 only equalises the non-l—calculus part of the terms and hence per—
forms a consistent theory [Bai- 84], type 2 is more powerful, but it is harder to prove sev-
eral properties for LRS of type 2.

Type 2 rules can express A—calculus’ n-reduction:

l x . y x +9 y

To do this in the R—calculus, it is necessary to require Xe FV(y). For A—rewriting of type 2
this condition holds implicitly by the definition of ö-reduction. In particular, the rule above

does not fit to the term A.x. x x, because there is no substitution to make it equal to the
left-hand side - as in A.-calculus, substitutions have to take care of name conflicts.

Type 3, extensions

There are several possibilities to make further extensions. Type 3 works with an extend
ed set of terms. The idea is: rules are partial functions on terms - functions are abstrac
tions - abstractions are terms - consequently rules are terms. Basically a term (a~b) c

(where a, b and c are arbitrary terms) can be reduced to sub (b) if sub is a substitution,
such that sub (a) =c. In fact this idea has been the starting point of the work on A.-rewrit
ing presented here. The most general understanding of this idea leads to a non-confluent
reduction, i.e. even for empty databases evaluation would not be determined. For exam
ple, evaluating the term (x y~x) ((x~x) (a b)) can produce a as well as x~x.

Therefore, the abstractions of type 3 are restricted on their left-hand sides to curryfied
forms of linear TRS-terms.

Another possible extension of type 2 LRS would be to choose a different notion of reduc
tion for type 2 rules. Consider the following rule of type 2:

A. x . f	 a ~ S (A. x . f) (A. x • a)

It is one of the 3 rules to map A.-calculus into combinatory logic, but for type 2 o-reduction
it only works incompletely, because it o-reduces only those abstractions where the
abstracted variables do not occur freely in the body. This behaviour is more restricted
than necessary, because the variables f and a occur on the right-hand side in the same
context of bound variables as on the left-hand side. A more liberal notion of reduction can
be treated formally by introducing another kind of substitution. This new substitution
does not care about name conflicts for a certain set of variables, i.e. these variables will
not be renamed in a conflict situation.

References

[Cur 58] H. Curry, R. Feys: Combinatory Logic, Vol. I; North-Holland 1958

[Bar 84] H. P. Barendregt: The Lambda-calculus
Volume 103, Elsevier Science Publishing Company, Amsterdam 1984

[HMM86] R. Harper, D. MacQueen, R. Milner: Standard ML; Laboratory for Found. of
Computer Science - University of Edinburgh, ECS-LFCS-86-2, March 1986

[Hin 78] R. Hindley: Reductions of Residuals are Finite; Transactions of the Ameri
can Mathematical Society Vo!. 240, June 1978,345-361

[Joh 85] T. Johnsson: Lambda-lifting - Transforming Programs to Recursive Equations;
190-203 in LNCS 201

[KIo 80]	 J.W. Klop: Combinatory Reduction Systems; Mathematical Center Tracts
129, Amsterdam

[KIo 87]	 J. W. Klop: Term Rewriting Systems: a Tutorial; Bulletin of EATCS No. 32,
June 1987

[Tur79]	 D. A. Turner: A new implementation technique for applicative languages;
Software Practice and Experience, 9:31-49, 1979

does not fit to the term Ax . x x, because there is no substitution to make it equal to the
left-hand side - as in lt—calculus, substitutions have to take care of name conflicts.

Type 3, extensions

There are several possibilities to make further extensions. Type 3 works with an extend-
ed set of terms. The idea is: rules are partial functions on terms - functions are abstrac-
tions -— abstractions are terms - consequently rules are terms. Basically a term (<a—ab) c
(where a , b and c are arbitrary terms) can be reduced to sub (b) if sub is a substitution,
such that sub (a) =c . In fact this idea has been the starting point of the work on l—rewrit—
ing presented here. The most general understanding of this idea leads to a non-confluent
reduction, i.e. even for empty databases evaluation would not be determined. For exam-
ple, evaluating the term (x y—>x) ((x—9x) (a b)) can produce a as well as x—>x.
Therefore, the abstractions of type 3 are restricted on their left-hand sides to curryfied
forms of linear TRS-terms.

Another possible extension of type 2 LRS would be to choose a different notion of reduc-
tion for type 2 rules. Consider the following rule of type 2:

l x . f a—>S(l tx . f) (l x . a)

It is one of the 3 rules to map l—calculus into combinatory logic, but for type 2 ö—reduction
it only works incompletely, because it 8—reduces only those abstractions where the
abstracted variables do not occur freely in the body. This behaviour is more restricted
than necessary, because the variables f and a occur on the right-hand side in the same
context of bound variables as on the left-hand side. A more liberal notion of reduction can
be treated formally by introducing another kind of substitution. This new substitution
does not care about name conflicts for a certain set of variables, i.e. these variables will
not be renamed in a conflict situation.

References

[Cur 58] H. Curry, R. Feys: Combinatory Logic, Vol. I; North-Holland 1958

[Bar 84] H. P. Barendregt: The Lambda-calculus
Volume 103, Elsevier Science Publishing Company, Amsterdam 1984

[I-IMM 86] R. Harper, D. MacQueen, R. Milner: Standard ML; Laboratory for Found. of
Computer Science - University of Edinburgh, ECS-LFCS-86—2, March 1986

[Hin 78] R. Hindley: Reductions of Residuals are Finite; Transactions of the Ameri—
can Mathematical Society Vol. 240, June 1978, 345-361

[J oh 85] T. Johnsson: Lambda-lifting - Transforming Programs to Recursive Equations;
190-203 in LNCS 201

[K10 80] J.W. Klop: Combinatory Reduction Systems; Mathematical Center Tracts
129, Amsterdam

[K10 87] J. W. Klop: Term Rewriting Systems: a Tutorial; Bulletin of EATCS No.32,
June 1987

[Tur 79] D. A. Turner: A new implementation technique for applicative languages;
Software Practice and Experience, 9:31-49, 1979

Jungle Evaluation for Efficient Term Rewriting 1

(Extended Abstract) 2

Berthold Hoffmann and Detlef Plump, Universitiit Bremen 3

In a straightforward implementation of term rewriting, terms are represented by
trees, and rewriting is realized by subtree replacement. Unfortunately, this may
be very expensive, both in time and space: the application of a rule may require
large subterms to be copied, and each copy of a term must be evaluated anew.

Jungle evaluation ([HKP 88], [HP 88]) provides an improved model for implement~

ing term rewriting by graph rewriting where these sources of inefficiency can be
avoided:

•	 Jungles are acyclic hypergraphs which allow terms to be represented such
that multiple occurrences of a subterm can be shared. Acyclicity ensures that
each jungle node represents a unique term and that structural induction on
jungle nodes is available.

•	 Rewriting is performed by (hyper-)graph replacement, specified by evalua
tion rules according to the algebraic theory of graph grammars (see, e.g.,
[Ehr 79]). By applying these evaluation rules, new references to existing
subterms are introduced instead of copying subterms.

•	 Additional hypergraph rules for folding multiple occurrences of terms allow
each term in a jungle to be represented only once, so multiple evaluation can
be avoided.

Example: Computation of Fibonacci Numbers

Consider the term rewrite rules

fib(O) --+ °
fib(succ(O)) --+ succ(O)

fib(succ(succ(x))) --+ fib(succ(x)) + fib(x)

specifying a function fib that computes Fibonacci Numbers, based on natural
numbers with the constant 0, successor function succ, and addition +.

IThis work is partly supported by the Commission of the European Communities under Con
tract 390 (PROSPECTRA Project) in the ESPRIT Programme.

2For a full paper see [HP 88].

3 Address: Fachbereich Mathematik und Informatik, Universitat Bremen, Postfach 330 440,
D-2800 Bremen 33. Usenet: {hof ,det}%Informatik. Uni-Bremen.de

Jungle Evaluation for Efficient Term Rewriting 1
(Extended Abstract) 2

Berthold Hofmann and Detlef Plump, Universität Bremen 3

In a straightforward implementation of term rewriting, terms are represented by
trees, and rewriting is realized by subtree replacement. Unfortunately, this may
be very expensive, both in time and space: the application of a rule may require
large subterms to be copied, and each copy of a term must be evaluated anew.

Jungle evaluation ([HKP 88], [HP 88]) provides an improved model for implement-
ing term rewriting by graph rewriting where these sources of inefficiency can be
avoided:

o Jungles are acyclic hypergraphs which allow terms to be represented such
that multiple occurrences of a subterm can be shared. Acyclicity ensures that
each jungle node represents a unique term and that structural induction on
jungle nodes is available.

0 Rewriting is performed by (hyper—)graph replacement, specified by evalua-
tion rules according to the algebraic theory of graph grammars (see, e.g.,
[Ehr 79]). By applying these evaluation rules, new references to existing
subterms are introduced instead of copying subterms.

. Additional hypergraph rules for folding multiple occurrences of terms allow
each term in a jungle to be represented only once, so multiple evaluation can
be avoided.

Example: Computation of Fibonacci Numbers

Consider the term rewrite rules

fib(0) —+ o
f ib(succ(0)) ——> succ(0)

fib(succ(succ(x))) «+ f ib(succ(x)) + f ib(x)

specifying a function f ib that computes Fibonacci Numbers, based on natural
numbers with the constant 0 , successor function succ, and addition +.

1Th i s work is partly supported by the Commission of the European Communities under Con-
tract 390 (PROSPECTRA Project) in the ESPRIT Programme.

2For a full paper see [HP 88].
3Address : Fachbereich Mathematik und Informatik, Universität Bremen, Postfach 330 440,
D-2800 Bremen 33. Usenet: {hof,det}'/.Informatik.Uni—Bremen.de

The first two steps for computing the Fibonacci Number of 4 by term rewriting
are:

fib(succ4 (O))

---+ fib(succ3 (O)) + fib(succ 2(O))

---+ fib(succ2 (O)) + fib(succ(O)) + fib(succ2 (O))

In both steps, subterms of the arguments of fi b are copied. Furthermore, the re
sulting term contains two copies of fi b(succ2

(0)); each of them must be rewritten
anew. As a consequence, rewriting a term fib(succn(O)) to normal form requires
space and a number of steps exponential in n.

Below we show corresponding jungle evaluation steps and a subsequent folding
step. (=} and =} denote the application of an evaluation and a folding rule, re

£: F
spectively.)

:::::} :::::}=>
£ £ :F

The evaluation steps do not copy the arguments of fib, but merely introduce new
references to them. Moreover, after the folding step the subterm fib(succ2(O)) is
represented just once and thus has to be evaluated only once.

When performing evaluation and folding steps in this order, the evaluation of a
term fib(succn(O)) requires only a number of steps and space linear in n.

Results

Fully Collapsed Jungles: For each finite set of terms there is a (up to isomorphism)
unique minimal jungle representing these terms most efficiently. Given an arbitrary
jungle, the equivalent fully collapsed jungle can be generated by application of
folding rules which eliminate multiple occurrences of terms.

The first two steps for computing the Fibonacci Number of 4 by term rewriting
are:

fib(succ4(0))
——> fib(succ3(0)) + fib(succ2(0))
—> fib(succ2(0)) + fib(succ(0)) + fib(succ2(0))

In both steps, subterms of the arguments of f i b are copied. Furthermore, the re-
sulting term contains two copies of f ib(succ2(0)); each of them must be rewritten
anew. As a consequence, rewriting a term fib(succ”(0)) to normal form requires
space and a number of steps exponential in n.
Below we show corresponding jungle evaluation steps and a subsequent folding
step. (=8> and ?> denote the application of an evaluation and a folding rule, re—
spectively.)

The evaluation steps do not copy the arguments of f ib , but merely introduce new
references to them. Moreover, after the folding step the subterm fib(succ2(0)) is
represented just once and thus has to be evaluated only once.
When performing evaluation and folding steps in this order, the evaluation of a
term fib(succ"(0)) requires only a number of steps and space linear in 77..

Results

Fully Collapsed Jungles: For each finite set of terms there is a (up to isomorphism)
unique minimal jungle representing these terms most efliciently. Given an arbitrary
jungle, the equivalent fully collapsed jungle can be generated by application of
folding rules which eliminate multiple occurrences of terms.

Correctness: The translation of term rewrite rules into evaluation rules is correct
in the sense that each application of an evaluation rule to a jungle rewrites the
represented terms according to the underlying term rewrite rule. In general, a
single evaluation step performs sequences of term rewrite steps in parallel.

Normal Forms: Exhaustive application of the evaluation rules to some jungle J
yields a jungle J which represents normal forms of the terms represented by J,
provided that the given rewriting system is left-linear. Moreover, the restriction
of left-linearity can be dropped by allowing folding steps to be performed between
evaluation steps.

Termination: Termination of term rewriting implies termination of jungle eval
uation without restriction, even if folding is allowed. The proof of this result is
nontrivial since for jungle evaluation, in contrast to term rewriting, "garbage" has
to be considered (as the nodes representing succ4

(0) and succ3
(0) in the rightmost

jungle of the above example) which may lead to additional evaluation steps.

Confluence: Unlike termination, confluence of term rewriting does not carry over
to jungle evaluation. However, if the given rewriting system is terminating and
confluent, then jungle evaluation is terminating and confluent too, provided the
garbage produced by evaluation steps is ignored. Jungle evaluation without folding
turns out to be strongly confluent for non-overlapping rewrite systems, where
termination or left-linearity needs not to be required.

References

[Ehr 79] H. Ehrig: Introduction to the Algebraic Theory of Graph Grammars.
Proc. 1st Graph Grammar Workshop, Lecture Notes in Comp. Sci.
73, 1-69 (1979)

[HKP 88] A. Habel, H.-J. Kreowski, D. Plump: Jungle Evaluation. Proc. Fifth
Workshop on Specification of Abstract Data Types, Lecture Notes in
Comp. Sci. 332, 92-112 (1988)

[HP 88] B. Hoffmann, D. Plump: Jungle Evaluation for Efficient Term Rewrit
ing. Proc. Algebraic and Logic Programming, Akademie-Verlag, Berlin
(GDR), 191-203 (1988). Long version containing all proofs published
as Technical Report 4/88, Universitat Bremen (1988)

Correctness: The translation of term rewrite rules into evaluation rules is correct
in the sense that each application of an evaluation rule to a jungle rewrites the
represented terms according to the underlying term rewrite rule. In general, a
single evaluation step performs sequences of term rewrite steps in parallel.

Normal Forms: Exhaustive application of the evaluation rules t o some jungle J
yields a jungle 7 which represents normal forms of the terms represented by J,
provided that the given rewriting system is left-linear. Moreover, the restriction
of left-linearity can be dropped by allowing folding steps to be performed between
evaluation steps.

Termination: Termination of term rewriting implies termination of jungle eval—
uation without restriction, even if folding is allowed. The proof of this result is
nontrivial since for jungle evaluation, in contrast to term rewriting, “garbage” has
to be considered (as the nodes representing succ4(0) and succ3(0) in the rightmost
jungle of the above example) which may lead to additional evaluation steps.
Confluence: Unlike termination, confluence of term rewriting does not carry over
to jungle evaluation. However, if the given rewriting system is terminating and
confluent, then jungle evaluation is terminating and confluent too, provided the
garbage produced by evaluation steps is ignored. Jungle evaluation without folding
turns out to be strongly confluent for non—overlapping rewrite systems, where
termination or left-linearity needs not to be required.

References

[Ehr 79] H . Ehrig: Introduction to the Algebraic Theory of Graph Grammars.
Proc. l s t Graph Grammar Workshop, Lecture Notes in Comp. Sci.
73, 1—69 (1979)

[HKP 88] A. Habel, H.—J. Kreowski, D. Plump: Jungle Evaluation. Proc. Fifth
Workshop on Specification of Abstract Data Types, Lecture Notes in
Comp. Sci. 332, 92-112 (1988)

[HP 88] B. Hoffmann, D. Plump: Jungle Evaluation for Efiicient Term Rewrit-
ing. Proc. Algebraic and Logic Programming, Akademie-Verlag, Berlin
(GDR), 191-203 (1988). Long version containing all proofs published
as Technical Report 4/ 88, Universität Bremen (1988)

Specification and Correctness of Code Generators
an Experiment with the CEC-System

(Extended Abstract)

Roben Giegerich

FB Informatik - Universitat Dortmund

Postfach 500500

D-46oo Dortmund 50

I. Motivation

Using recent advances in executable specification languages and proof techniques, we

approach an unsolved problem in the area of compiler construction: to provide high-level tools for

the production of reliable code generators. Machine code generation appears to be a well-suited field

for the application of algebraic specification techniques for two reasons:

Target machine instruction sets, expecially with ClSC architectures, are rather sizable data

types. An (order-sorted) signature for the MC68000, for example, uses 42 sorts and 181

operators. Clearly, this calls for mechanical support, for checking the specification's

consistency and completeness over several development steps.

Most of a target machine description is plain syntax, and basic code selction can be done by

pattern matching techniques. However, target machine programs must also satisfy certain

context-sensitive constraints (regarding addressability of operands in the context of certain

instructions, the number of registers used, etc.). These constraints seem quite independent, but

may interact in a relatively complex fashion. This interaction, known as the danger of

"semantic blocking" (in [GrGl??] and subsequent approaches), has so far not been captured in

a satisfactory way.

Our approach is to describe the context sensitive properties of machine programs and code selection

indpendently. Then we describe transformations that turn an (illegal) target program t into another

target program t', such that

t and t' are both correct target programs for the same intermediate program,

t' satisfies a particular constraint,

constraints already satisfied by t still hold for t'.

These are the properties of correctness, efficacy and invariance of the code generator specification,

which are to be proved with equational proof methods. Together, they guarantee the absence of

semantic blocking, i.e. the completeness of the code generator specification.

The study reported here was performed for a small, but nontrivial target language, consisting

of 5 instructions and 4 address modes, combined in a totally non-orthogonal way.

2. An Algebraic Model ofCode Generation

In our model, a code generator specification consists of five order-sorted specifications:

BS	 defmes certain basic data types by (conditional) equational axioms, including Booleans,

integers, but also machine specific ones like register numbers, register class identifiers, word

length indicators, etc.

Specification and Correctness of Code Generators -
an Experiment With the CEC-System

(Extended Abstract)

Robert Giegerich

FB Informatik - Universität Dortmund
Postfach 500500

D—4600 Dortmund 50

1. Motivation
Using recent advances in executable specification languages and proof techniques, we

approach an unsolved problem in the area of compiler construction: to provide high-level tools for
the production of reliable code generators. Machine code generation appears to be a well-suited field
for the application of algebraic specification techniques for two reasons:

- Target machine instruction sets, expecially with CISC architectures, are rather sizable data
types. An (order-sorted) signature for the MCGSOOO, for example, uses 42 sorts and 181
operators. Clearly, this calls for mechanical support, for checking the specification's
consistency and completeness over several deve10pment steps.

- Most of a target machine description is plain syntax, and basic code selction can be done by
pattern matching techniques. However, target machine programs must also satisfy certain
context- sensitive constraints (regarding addressability of operands in the context of certain
instructions, the number of registers used, etc.). These constraints seem quite independent, but
may interact in a relatively complex fashion. This interaction, known as the danger of
"semantic blocking" (in [GrGl77] and subsequent approaches), has so far not been captured in
a satisfactory way.

Our approach is to describe the context sensitive properties of machine programs and code selection
indpendently. Then we describe transformations that turn an (illegal) target program t into another
target program t’, such that

- t and t’ are both correct target programs for the same intermediate program,
- t' satisfies a particular constraint,

- constraints already satisfied by I still hold for t'.
These are the properties of correctness, efi‘icacy and invariance of the code generator specification,
which are to be proved with equational proof methods. Together, they guarantee the absence of
semantic blocking, i.e. the completeness of the code generator specification.

The study reported here was performed for a small, but nontrivial target language, consisting
of 5 instructions and 4 address modes, combined in a totally non-orthogonal way.

2 . An Algebraic Model of Code Generation

In our model, a code generator specification consists of five order- sorted specifications:
BS defines certain basic data types by (conditional) equational axioms, including Booleans,

integers, but also machine specific ones like register numbers, register class identifiers, word
length indicators, etc.

R. Giegerich Correctness of Code Generators - 2

IL defines the intermediate language, extending BS by cell constructors, used by the compiler

front-end to replace the source program variables by address subtrees according to the

compiler's virtual machine.

1L defines the syntax of target programs, by extending BS. TL does not include any new

axioms. Its sorts represent the address modes and operand classes of the target machine, its

constructors model instructions and address calculations.

1M completes the target language description by enriching TL with predicates, (separately)

describing operand binding restrictions, word length compatability laws, temporary register

limits, and other peculiarities of the target machine. (See Example 1.)

D is the code selection specification. It enriches the union of IL and TL by one polymorphic

operation dd, translating target programs into intermediate programs. The axioms defining dd

must be in the form of (order-sorted) derivor equations.

For simplicity, we assume in the sequel that there are only two wellformedness-predicates specified

by TM, wb and wt (for well-bound and well-typed). Now, the task of code generation can be

specified formally as:

For a ground IL-term q (the given intermediate program) and a variable z of a suitable sort from

TL, solve the equation system

dd(z) =q,

wt(z) =true,

wb(z) = true.

In principle, this could be solved by narrowing, but without some strategy tailored to the structure

of the specification, this would be prohibitively expensive.

3. Making the Specification (More) Operational

The first equation, dd(z) =q, can be solved efficiently by using pattern matching techniques

for derivor inversion, as explained in [GiSc88]. Applying the generated pattern matcher to q will

yield a (generally infinite) stream of target programs t1, t2, ... from TTL(V), ideally in the order of

increasing cost (but we do not discuss this aspect here). They contain variables from V, for word

lengths associated with instructions, or registers numbers yet to be assigned. In many situations,

there exists a substitution 0" such that wb(tiO") =true and wt(tiO") = true for some small value of i.

However, where wellformedness requires extra coercion instructions or loading of registers,

such a substitution does not exist for many a ti. (See Example 2.) One could consider disregarding

ti and continuing with ti+l, etc. This, however, would give us no clue as to whether a solution

exists at all. So instead, we further enrich the specification by "transformation" operators mk_wb,

mk_wt, with the intent that if wb(t) = true has no solution, wb(mk_wb(t)) = true will have one.

(See Example 3.)

4. Verification

Up to this point, developing the specification using a tool like the CEC system [BGS88] has

been a mere convenience. Now, to verify our last development step, the following equational

R. Giegerich Correctness of Code Generators — 2 -

IL defines the intermediate language, extending BS by cell constructors, used by the compiler
front-end to replace the source program variables by address subtrees according to the
compiler's virtual machine.

TL defines the syntax of target programs, by extending BS . TL does not include any new
axioms. Its sorts represent the address modes and Operand classes of the target machine, its
constructors model instruCtions and address calculations.

'IM completes the target language description by enriching TL with predicates, (separately)
describing operand binding restrictions, word length compatability laws, temporary register
limits, and other peculiarities of the target machine. (S ee Example 1.)

D is the code selection specification. It enriches the union of IL and TL by one polymorphic
operation dd, translating target programs into intermediate programs. The axioms defining dd
must be in the form of (order-sorted) derivor equations.

For simplicity, we assume in the sequel that there are only two wellformedness-predicates specified
by TM, wb and wt (for well-bound and well-typed). Now, the task of code generation can be
specified formally as:
For a ground ISL-term q (the given intermediate program) and a variable 2 of a suitable sort from
TL, solve the equation system

dd(Z) = q,
wt(Z) = true,

wb(z) = true.
In principle, this could be solved by narrowing, but without some strategy tailored to the structure
of the specification, this would be prohibitively expensive.

3. Making the Specification (More) Operational
The first equation, dd(z) = (1, can be solved efficiently by using pattern matching techniques

for derivor inversion, as explained in [GiS c8 8]. Applying the generated pattern matcher to q will
yield a (generally infinite) stream of target programs t1, t2, from TTL(V), ideally in the order of

increasing cost (but we do not discuss this aspect here). They contain variables from V, for word
lengths associated with instructions, or registers numbers yet to be assigned. In many situations,
there exists a substitution cr such that what-a) = true and wt(ti0') : true for some small value of 1'.

However, where wellformedness requires extra coercion instructions or loading of registers,
such a substitution does not exist for many a ti. (See Example 2.) One could consider disregarding

t,- and continuing with ti+ 1, etc. This, however, would give us no clue as to whether a solution

exists at all. So instead, we further enrich the specification by "transformation" operators mk__wb,
mk__wt, with the intent that if wb(t) = true has no solution, wb(mk_wb(t)) = true will have one.
(See Example 3.)

4 . Verzfication

Up to this point, developing the specification using a tool like the CEC system [BGSS8] has
been a mere convenience. Now, to verify our last development step, the following equational

R. Giegerich	 Correctness of Code Generators - 3

theorems have to be proved:

Efficacy: wt(mk_wt(z)) =true

wb(mk_wb(z)) = true

Correctness: dd(mk wt(z)) = dd(z)

dd(mk_wb(z)) = dd(z)

Mutual Invariance: wb(z) =wb(mk wt(z))

wt(z) =wt(mk_wb(z))

Efficacy means that it is always possible to satisfy each constraint by an equivalent target

program, where target programs are equivalent when mapped to the same IL-program by dd . This

we call correctness of the transformations. Invariance says that mk_wt does not destroy the

achievements of mk_wb, and vice versa. (There are weaker formulations of invarance, which make

transformations easier to write, but are harder to prove mechanically.)

Inductionless induction [HuHu80], as available by the completion procedure of the

CEC-system, is sufficient to prove these theorems, basically since the transformations have a rather

local effect, and so is their effect on the constraints, although it extends a little further. Without

mechanical aid, it would be rather error-prone to carry out the neceessary proofs, even for a small

target language as used in this study.

5. Conclusions

1. The application of our approach to code generator descriptions of realistic size may currently

be out of reach for current proof systems (because of efficiency problems resulting from sheer

specification size), but not without the reach of current proof techniques.

2. Striving for good code, when writing the transformations one intuitively makes use of

properties of the intermediate language (such as commutativity of operations or the possibility to

interchange two statements without harm). Not all of them may be implied by the axioms specified

with IL. This deficiency is demonstrated by non-termination of the correctness proof, but

sometimes in an obscure way.

3. This study was concerned with developing a form of code generator specification whose

completeness could be verified mechanically. For a practical code generator generation tool, code

selection, constraint checking and transformation should proceed in an interleaved fashion. To

achieve this from a given specification, without sacrificing its provable completeness, is a

challenging problem by itself.

References
[BGS88]	 HBertling, H. Ganzinger, R. Schafers: CEC: A system for conditional equational

completion. In Kaplan, Jouannaud (Eds.): Conditional term rewriting systems.
Springer LNCS 308, 1987.

[GiSc88]	 R. Giegerich, Karl Schmal: Code selection techniques: tree parsing, pattern
matching and inversion of derivors. Proceedings ESOP '88, Springer LNCS 300,
1988.

[GrGI77] S. L. Graham, R. S. Glanville: A new method for compiler code generation.
Proceedings 5th Symposium on Principles of Programming Languages, 1977.

[HuHu80] G. Huet, f.-M. Hullot: Proofs by induction in equational theories with
constructors. Proceedings 21st SFCS, Lake Placid, 1980.

R. Giegerich Correctness of Code Generators — 3 -

theorems have to be proved:
Efficacy: wr(mk_wt(z)) = true

wb(mk__wb(z)) = true

Correctness: dd(mk__wt(z)) = dd(z)
dd(mk_wb(z)) = dd(z)

Mutual Invariance: wb(z) =wb(mk_wt(z))

wt(z) = wt(mk_wb(z))

Efficacy means that it is always possible to satisfy each constraint by an equivalent target
program, where target programs are equivalent when mapped to the same IL-program by dd . This
we call correctness of the transformations. Invariance says that mk_wt does not destroy the
achievements of mk_wb, and vice versa. (There are weaker formulations of invarance, which make
transformations easier to write, but are harder to prove mechanically.)

Inductionless induction [HuHu80], as available by the completion procedure of the
CBC-system, is sufficient to prove these theorems, basically since the transformations have a rather
local effect, and so is their effect on the constraints, although it extends a little further. Without
mechanical aid, it would be rather error-prone to carry out the neceessary proofs, even for a small
target language as used in this study.

5. Conclusions
1 . The application of our approach to code generator descriptions of realistic size may currently
be out of reach for current proof systems (because of efficiency problems resulting from sheer
specification size), but not without the reach of current proof techniques.
2 . Striving for good code, when writing the transformations one intuitively makes use of
properties of the intermediate language (such as commutativity of operations or the possibility to
interchange two statements without harm). Not all of them may be implied by the axioms specified
with IL. This deficiency is demonstrated by non-termination of the correctness proof, but
sometimes in an obscure way.

3 . This study was concerned with developing a form of code generator specification whose
completeness could be verified mechanically. For a practical code generator generation tool, code
selection, constraint checking and transformation should proceed in an interleaved fashion. To
achieve this from a given specification, without sacrificing its provable completeness, is a
challenging problem by itself.

References
[BG888] H.Bertling, H. Ganzz'nger, R. Schafers: CEC: A system for conditional equational

completion. In Kaplan, Jouannaud (Eds.): Conditional term rewriting systems.
Springer LNCS 308, 1987.

[GiSc88] R . Giegerich, Karl Schmal: Code selection techniques: tree parsing, pattern
matching and inversion of derivors. Proceedings ES OP '88, Springer LNCS 300,
1988.

[GrGl77] S. L. Graham, R. S. Glanville: A new method for compiler code generation.
Proceedings 5th Symposium on Principles of Pr0grarnrning Languages, 1977.

[HuHu80] G. Huet, J .-M. Hullor: Proofs by induction in equational theories with
constructors. Proceedings 21st SFCS, Lake Placid, 1980.

R. Giegerich Correctness of Code Generators - 4

Appendix: Examples

Example]

For a 2-address add-to-register-instruction, our specification contains, among others, the following

equations: (The small letters are variables, the rest is a mixfix notation for TL terms, and == is

equality of register numbers or word length indicators like B(yte) or W(ord).)

wb(ADDR.!] Ri.lO Rj.l] opd) = (i ==j)

wt(ADDR.l Ri.lO Rj.!] opd) = ((I == la) and (I == I]) and (I == oplength(opd»))

Example 2

For dd(z) = R].L := R2 B +], code selection would construct, among others, the solutions

z <--ADDR.l R].L R2B #], and

z <-- MOV.l Ri.lO R2B; ADDR.13 R].L Ri.lO #],

where for any instantiation of register number and word length variables, the second target program

will not be well-typed, and the first will neither be well-typed nor well-bound.

Example 3

The transformation that yields a well-typable solution from the second one in Example 2 would be

specified by an equation

I] < la => mk_wt(MOVE.l Ri.lO Rj.l]) =SEXT.lO.I] RUO Rj.l]

Note that if wb specifies SEXT.lO.!] (sign extension from the shorter I] to the longer la) to be a

I-address instruction(while MOVE, of course, is 2-address), it will not be possible to prove mk_wt

invariant with respect to wb.

R. Giegerich Correctness of Code Generators - 4 -

Appendix: Examples

Example I
For a 2—address add-to-register—instruction, our specification contains, among others, the following
equations: (The small letters are variables, the rest is a mixfix notation for TL terms, and == is
equality of register numbers or word length indicators like B(yte) or W(ord).)

wb(ADDR. l} Ri. lo Rj. !] opd)= (i : j=)

wt(ADDR.l R1210 RjJI opd)=((== lo) and(l== ll)and(l==oplength(opd)))

Example 2
For dd(z) = R1.L := R23 + I , code selection would construct, among others, the solutions

2 <-- ADDRJ RIL R23 #1, and

z <-- MOVJ Rilo R23; ADDRJ3 RIL RiJo #],

where for any instantiation of register number and word length variables, the second target program
will not be well-typed, and the first will neither be well-typed nor well-bound.

Example 3
The transformation that yields a well-typable solution from the second one in Example 2 would be
specified by an equation

I] < lo => mk_wt(MOVE.l Rilo Rj.l 1) = SEXTJoJ] Ri.l0 RjJI

Note that if wb specifies SEXT.1011 (sign extension from the shorter I] to the longer 10) to be a
1-address instruction(while MOVE, of course, is 2—address), it will not be possible to prove mk__wt
invariant with respect to wb.

Transfer in MT by Ternl-Rewriting
Wilhebn Weisweber, TU Berlin

Institute for Software and Theoretical Computer Science

Projectgroup KIT, Sekr. PR 5-12

Franklinstr. 28/29, D-1000 Berlin 10

E-mail: weisweb@dbOtui11.bitnet

1) Introduction

The tennination of the transfer process is an important question in Machine Translation (MT) and this

paper makes a proposal of how to formulate transfer rules, which are in fact term-rewrite rules, in a way

that the transfer process will terminate. The level of transfer in the project KIT-FAST 1 at the Technical

University of Berlin is a semantic representation for sentences which expresses the logical relations

within a sentence. Such logical relations are among others functor-argument relations, e.g. between the

verb and its associated noun phrases. Thus the level of transfer is called Functor-Argument Structure

(FAS). A FAS expression for a sentence is a derivation tree generated by a context-free grammar with

complex symbols as non-terminals called FAS categories. A FAS category consists of a main category

and a set of pairs of features and values. A(t) is used to denote the value of the feature f of the FAS

category A.

Since the transfer process is to be formulated as a term-rewrite system, the FAS expressions have to be

mapped into FAS terms. Therefore a signature of a term algebra for the FAS expressions of the source

and target language is defined. Now the transfer rules can be formulated as term-rewrite rules and a

term-rewrite system can be used to transfer the source FAS terms into target FAS terms, which again

can be mapped into target FAS expressions with the help of the given signature.

2) An Ordering on FAS terms

In order to guarantee that the term-rewrite system terminates, a well-founded (partial) ordering >PAS on

the set of source and target FAS terms has to be defined which does not allow infinite descending

sequences of those FAS terms. In order to defme a well-founded ordering >PAS, the FAS categories of the

source and target FAS grammar, henceforth source and target FAS categories respectively, are

distinguished such that every source FAS category A and every target FAS category B share a common

feature 'lang(uage)' where A(lang) ::1= BOang). 2

1	 This work has been developed in the project KIT-FAST (KIT =Kiinstliche Intelligenz und Textverstehen (Artificial

Intelligence and Text Understanding); FAST =Functor-Argument Structure for Translation), which constitutes the Berlin

component of the complementary research project of EUROTRA-D. It receives grants by the Federal Minister for

Research and Technology under contract 1013211.

2	 In the following for all source FAS categories A(lang) =s and for all target FAS categories B(lang) =t is defined.

Transfer in MT by Term-Rewriting
Wilhelm Weisweber, TU Berlin

Institute for Software and Theoretical Computer Science
Projectgroup KIT, Sekr. FR 5-12

Franklinstr. 28/29, D-lOOO Berlin 10
E—mafl: weisweb@db0tuill.bitnet

1) Introduction

The termination of the transfer process is an important question in Machine Translation (MT) and this

paper makes a pr0posal of how to formulate transfer rules, which are in fact term-rewrite rules, in a way

that the transfer process will terminate. The level of transfer in the project KIT-FAST 1 at the Technical

University of Berlin is a semantic representation for sentences which expresses the logical relations

within a sentence. Such logical relations are among others functor—argument relations, e.g. between the

verb and its associated noun phrases. Thus the level of transfer is called Functor-Argument Structure

(FAS). A FAS expression for a sentence is a derivation tree generated by a context-free grammar with

complex symbols as non-terminals called FAS categories. A FAS category consists of a main category

and a set of pairs of features and values. A(f) is used to denote the value of the feature f of the FAS

category A.

Since the transfer process is to be formulated as a term-rewrite system, the FAS expressions have to be

mapped into FAS terms. Therefore a signature of a term algebra for the FAS expressions of the source

and target language is defined. Now the transfer rules can be formulated as term-rewrite rules and a

term-rewrite system can be used to transfer the source FAS terms into target FAS terms, which again

can be mapped into target FAS expressions with the help of the given signature.

2) An Ordering on FAS terms

In order to guarantee that the term-rewrite system terminates, a well-founded (partial) ordering >m on

the set of source and target FAS terms has to be defined which does not allow infinite descending

sequences of those FAS terms. In order to define a well—founded ordering >FAS, the FAS categories of the

source and target FAS grammar, henceforth source and target FAS categories respectively, are

distinguished such that every source FAS category A and every target FAS category B share a common

feature 'lang(uage)' where A(lang) # B(lang). 2

1 This work has been developed in the project KIT-FAST (KIT = Künstliche Intelligenz und Textverstehen (Artificial
Intelligence and Text Understanding); FAST == Functor—Argument Structure for Translation), which constitutes the Berlin
component of the complementary research project of EURO'IRA-D. It receives grants by the Federal Minister for
Research and Technology under contract 1013211.

2 In the following for all source FAS categories A(lang) = s and for all target FAS categories B(Iang) = t is defined.

mailto:weisweb@dbOtui11.bitnet

With this distinction the derivation sequence t5 ---7 t1 ---7 ••• ---7 1:" ---7 h contains hybrid FAS telIDs ti where

1 ::;; i ::;; n and t5 and h are the source and target FAS telIDs respectively. The FAS telIDs 1:; are hybrid

because source FAS categories as well as target FAS categories occur in them. Before the definition of

the well-founded ordering can be given, the set Set) of all source FAS categories and the set T(t) of all

target FAS categories have to be defmed. C(t) is used to denote the set of all FAS categories occuring in

the telID t.

Definition 1: Set) = {A E C(t)I A(lang) = s} and T(t) = {B E C(t)IB(lang) = t} where Set) n T(t) = 0

and C(t) =Set) u T(t).

Definition 2a: Let t,u be FAS terms without variable occurrences then t >PAS u if and only if (S(u) c

Set»~ v (S(u) =Set) /\ T(u) c T(t».

The transfer rules may contain variables and in order to fmd out whether a given set of transfer rules is

terminating or not, the above ordering >PAS on FAS telIDs has to be "lifted" to an ordering on FAS telIDs

with variables. Vet) is used to denote the set of all variables occuring in the telID t.

Definition 2b: Let t,u be FAS terms with variable occurrences, then t >PAS u if and only if definition 2a

holds and additionally V(u) c Vet).

Theorem 1: A transfer system R over a set of FAS terms is terminating if and only if A, >PAS P for each

transfer rule A, ---7 P in R.

Thus the transfer rules have to be defined according to the well-founded ordering >PAS' i.e. the right-hand

sides (rhs) of all transfer rules have to contain less source FAS categories than the corresponding left

hand sides (lhs) or, if the set of source FAS categories is equal on both sides, at least one of the target

FAS categories has to be deleted, and every variable occuring on the rhs occurs too on the lhs. These

conditions can be checked in preprocessing.

3) The Transfer System

A desirable feature of the transfer system would be that it works message-driven, i.e. it runs through the

input structure and applies every possible transfer rule. Unfortunately, the lhs of the transfer rules are not

necessarily local structures and therefore the transfer system has to work rule-driven, i.e. after each

reduction it has to check every transfer rule for application. Additionally, the set of transfer rules need

not be confluent, i.e. for a given source FAS telID there may be one or more target FAS telIDS. For these

reasons, the intrinsic application order of the transfer rules is made explicit in a preprocessing step, i.e. if

the rhs of a transfer rule r and the lhs of a transfer rule r' share some non-variable common subterm, then

With this distinction the derivation sequence ts ——> t1 —> —-> t“ —> tT contains hybrid FAS terms ti where

1 S i s n and t8 and t-r are the source and target FAS terms respectively. The FAS terms ti are hybrid

because source FAS categories as well as target FAS categories occur in them. Before the definition of

the well-founded ordering can be given, the set S(t) of all source FAS categories and the set T(t) of all

target FAS categories have to be defined. C(t) is used to denote the set of all FAS categories occuring in

the term t.

Definition 1: S(t) = {A e C(t)|A(1ang) = s} and T(t) = {B e C(t)lB(lang) = t} where S(t) (“\ T(t) = @

and C(t) = S(t) U T(t).

Definition 2a: Let t,u be FAS terms without variable occurrences then t >m u if and only if (S(u) c

S(t)) v (S (u) = S(t) A T(u) c T(t)).

The transfer rules may contain variables and in order to find out whether a given set of transfer rules is

terminating or not, the above ordering >12,“ on FAS terms has to be "lifted” to an ordering on FAS terms

with variables. V(t) is used to denote the set of all variables occuring in the term t.

Definition 2b: Let t,u be FAS terms with variable occurrences, then t >FAS u if and only if definition 2a

holds and additionally V(u) ; V(t).

Theorem 1 : A transfer system R over a set of FAS terms is terminating if and only if 2. >12“ p for each

transfer rule it —> p in R.

Thus the transfer rules have to be defined according to the well-founded ordering >m, i.e. the right—hand

sides (rhs) of all transfer rules have to contain less source FAS categories than the corresponding left-

hand sides (lhs) or, if the set of source FAS categories is equal on both sides, at least one of the target

FAS categories has to be deleted, and every variable occuring on the rhs occurs too on the lhs. These

conditions can be checked in preprocessing.

3) The Transfer System

A desirable feature of the transfer system would be that it works message-driven, i.e. it runs through the

input structure and applies every possible transfer rule. Unfortunately, the lhs of the transfer rules are not

necessarily local structures and therefore the transfer system has to work rule-driven, i.e. after each

reduction it has to check every transfer rule for application. Additionally, the set of transfer rules need

not be confluent, i.e. for a given source FAS term there may be one or more target FAS terms. For these

reasons, the intrinsic application order of the transfer rules is made explicit in a preprocessing step, i.e. if

the rhs of a transfer rule r and the lhs of a transfer rule r' share some non-variable common subterm, then

rule r has to be applied before rule r' (r >,pp rt). If the lhs of a transfer rule r and the lhs of a transfer rule r'

share some non-variable common subterm, then rule r and rule r' can be alternatively applicable (r valtr').

Before a formal defInition can be given, some notations have to be introduced:

• U: unification of two terms. The result is the minimal unifier.

• Mlu: non-variable subterm of the term M.

Now the formal def'Initions of the two relations >.pp and V alt can be given. Let R be the set of all transfer

rules. V r,r' E R where r = (A ~ p) and r' = (A'~ p'):

• superposition of the Ihs of r' with the rhs of r: (A'/u U p # 0) v (pIu U A' '# 0) => r >app r'.

• superposition of the lhs of r' with the lhs of r: (A'/u UA# 0) v CA/u UAt # 0) => r V alt r'.

• else: r and r' are independent of each other and may be applied in any order.

With the help of the relation >app the application sequence of the transfer rules can be computed taking

into consideration the fact that >,pp also may contain cycles. The relation V all is used to admit an

alternative application of transfer rules only where necessary. In that way an effIcient transfer algorithm

can be defined which has been implemented. at the Technical University of Berlin.

4) Literature

[Bllisius/Biirckert 85]: K.H. Blasius, H.-J. Biirckert (eds.): "Deduktionssysteme, Automatisierung des logischen Denkens",

Oldenbourg 1987, pp. 115 - 133

[Dershowitz 82]: N. Dershowitz: "Orderings for Term-Rewriting Systems", Theoretical Computer Science 17 (1982), North

Holland, pp. 279 - 301

[Dershowitz 85]: N. Dershowitz: "Termination", in: G.Goos, J. Hartmanis (eds.): "Rewriting Techniques and Applications",

LNCS 202, Dijon, France, May 1985, pp. 180 - 224

[Ehrig/Mahr 85]: H. Ehrig, B. Mahr: "Fundamentals of Algebraic Specification 1It, Springer, Berlin 1985

[Hauenschild et al. 78]: Ch. Hauenschild, E. Huckert, R. Maier: "SALAT: Entwurf eines automatischen

Dbersetzungssystems", in: Sprache und Datenverarbeitung 1978 (2), pp. 126 - 152

[Hauenschild et al. 79]: Ch. Hauenschild, E. Huckert, R Maier: "SALAT: Machine Translation Via Semantic

Representation", in: R Bauerle, U. Egli, A. von Stechow: "Semantics from Different Points of View",

Springer 1979, pp. 324 - 352

[Hauenschild 86]: Ch. Hauenschild: "KIT/NASEV oder die Problematik des Transfers bei der Maschinellen Ubersetzung",

in: 1. Batori, HJ. Weber (eds.): "Neue Ansatze in Maschineller SprachUbersetzung: Wissensreprasentation

und Textbezug", Sprache und Information, Niemeyer 1986, pp. 167 - 196

[HauenschildlUmbach 88]: Ch. Hauenschild, C. Umbach: "Funktor-Argument-Struktur, Die satzsemantische

Reprasentations- und Transferebene im Projekt KIT-FAST", in: J. Schiitz (eel.): "Workshop Semantik und

Transfer", EUROlRA-D Working Papers No.6, Saarbriicken, Juni 1988, pp. 16 - 35

[Huet/Oppen 87]: G. Huet, D.C. Oppen: "Equations and Rewrite Rules", in: RV. Book (00.): "Formal Language Theory,

Perspectives and Open Problems", Academic Press 1980, pp. 349 - 405

rule I has to be applied before rule r' (r >‚mp r'). If the lhs of a transfer rule r and the lhs of a transfer rule r'

share some non-variable common subterm, then rule r and rule r' can be alternatively applicable (I v,“ r').

Before a formal definition can be given, some notations have to be introduced:

° Ll: unification of two terms. The result is the minimal unifier.

° M/u: non-variable subterm of the term M.

Now the formal definitions of the two relations >“, and v,It can be given. Let R be the set of all transfer

rules. V r,r' e R where r = (Z. -—> p) and r' = (}}—> p'):

' superposition of the lhs of r‘ with the rhs of r: (7L'lu L] p as @) v (p/u LI 9; ‚.* @} => r > r'.

° superposition of the lbs of r’ with the lhs of r: (R'/u LI 7L at @) v (Mu Ll 2.‘ # @) => r valt r'.

° else: r and 1" are independent of each other and may be applied in any order.

With the help of the relation >,” the application sequence of the transfer rules can be computed taking

into consideration the fact that >“, also may contain cycles. The relation v,It is used to admit an

alternative application of transfer rules only where necessary. In that way an efficient transfer algorithm

can be defined which has been implemented at the Technical University of Berlin.

4) Literature

[Bläsius/Bürckert 85]: K.H. Blasius, H.-J. Biirckert (eds .): "Deduktionssysteme, Automatisierung des logischen Denlcens",
Oldenbourg 1987, pp. 115 - 133

[Dershowitz 82]: N. Dershowitz: "Orderings for Tenn-Rewriting Systems", Theoretical Computer Science 17 (1982), North-
Holland, pp. 279 - 301

[Dershowitz 85]: N. Dershowitz: "Tennination", in: G.Goos, J. Hartmanis (eds.): "Rewriting Techniques and Applications",
LNCS 202, Dijon, France, May 1985, pp. 180 - 224

[Ehrig/Mahr 85]: H. Ehrig, B. Mahr: "Fundamentals of Algebraic Specification 1", Springer, Berlin 1985

[I-Iauenschild et al. 78]: Ch. Hauenschild, E. Huckert, R. Maier: "SALAT: Entwurf eines automatischen
Ubersetzungssystems", in: Sprache und Datenverarbeitung 1978 (2), pp. 126 - 152

[Hauenschild et al. 79]: Ch. Hauenschild, E. Huckert, R. Maier: "SALAT: Machine Translation Via Semantic
Representation", in: R. Bauerle, U. Egli, A. von Stechow: "Semantics from Different Points of View",
Springer 1979, PP- 324 - 352

[Hauenschild 86]: Ch. Hauenschild: "KIT/NASEV oder die Problematik des Transfers bei der Maschinellen Übersetzung",
in: I. Bätori, HJ . Weber (eds.): ”Neue Ansätze in Maschineller Sprachübersetzung: Wissensrepräsentation
und Textbezug", Sprache und Information, Niemeyer 1986, pp. 167 - 196

[I-Iauenschild/Umbach 88]: Ch. Hauenschild, C. Umbach: "Funktor—Argument—Struktur, Die satzsemantische
Repriisentations- und Transferebene im Projekt KIT—FAST", in: J . Schütz (ed.): "Workshop Semantik und
Transfer", EURO'IRA-D Working Papers No.6, Saarbrücken, I uni 1988, PP. 16 - 35

[Huet/Oppen 87]: G. Huet, D.C. Oppen: "Equations and Rewrite Rules", in: RV. Book (ed.): "Formal Language Theory,
Perspectives and Open Problems", Academic Press 1980, pp. 349 - 405

Term Transformations in Program Verification

- Extended Abstract

Bettina Buth, Karl-Heinz Buth

Institut fUr Informatik und Praktische Mathematik

Christian-Albrechts-UniversiUit zu Kiel

Olshausenstr. 40 - 60

D - 2300 Kiel 1

One of the main application areas for term rewriting techniques is automa

ted theorem proving. Theorem proving, again, is especially suitable for the

proofs of assertions arising in program verification, since these proofs are sel

dom of great mathematical depth and do not require mUch ingenuity.

So, it is not astonishing that there are already some applications of rewrit

ing techniques in program verification, e.g. in the Boyer-Moore prover <Cf.

[Boyer/Moore 79]} or in SPADE (cf. [O'Neill et al. 88])' These systems have in

common that they are used in a highly interactive way; the proofs must be

directed by the user (e.g. by adding new lemmas in the Boyer-Moore system or

by choosing a nlle that shall be applied in SPADE>.

We want to present an approach to program verification that also makes use

of term transformations but works mostly non-interactive. We think that this

is a sensible way of running a program verifier because it delivers the user

from waiting in front of the terminal the whole proof long (which can be a

very long time indeed).

Our method is situated in the scope of VDM (the "Vienna Development

Method", cf. [VDM 87], [VDM 88]). Actually, the "programs" we want to verify

are specifications written in an essentially .functional subset of META IV, the

VDM specification language of VDM. This subset is, nevertheless, so general

that most imperative or functional languages contain a subset that is equivalent.

A program to be verified mllst be given as a system of recursive function

definitions. The language elements that may be used inside a function are con

ditional expressions, sequences ("exPl ; eXP2"), constant declarations ("let Id =
eXPl in eXP2") and function calls. There are no loop constructs; loops can, how

ever, be expressed via recursion.

Term Transformat ions i n P rog ram Verif icat ion
- Extended Abstract -

Bettina Buth, Karl—Heinz Buth
Institut fiir Informatik und Praktische Mathematik

Christian-Albrechts—Universität zu Kiel
Olsh'ausenstr. 40 - 60

D - 2300 Kiel 1

One of the main application areas. for term rewriting techniques is automa-
ted theorem proving. Theorem proving, again, is especially suitable for the

proofs of assertions arising in program verification, since these proofs are sel—
dom of great mathematical depth and do not require much ingenuity.

So , it is not astonishing that there are already some applications o f rewrit-

ing techniques in program verification, e.g. in the Boyer—Moore prover (cf.
[Boyer/Moore 79]) or in SPADE (cf. [O'Neill et. a1. 88]) . These systems have in
common that they are used in a highly interactive way; the proofs must be
directed by the user (e .g . by adding new lemmas in the Boyer-Moore system or

by choosing a rule that shal l be applied in SPADE).

We want to present an approach to program verification that a l so makes use

of term transformations but works mostly non-interactive. We think that this
i s a sensible way of running a program verifier because it delivers the user

from waiting in front of the terminal the whole proof long (which can be a
very long time indeed).

Our method is situated in the scope of VDM (the "Vienna Development
Method", cf. [VDM 87], [VDM 88]) . Actually, the "programs" we want to verify
are specifications written in an essentially functional subset of META IV, the
VDM specification language of VDM. This subset is , nevertheless, so general
that most imperative or functional languages contain a subset that is equivalent.

A program to be verified must be given as a system o f recursive function
definitions. The language elements that may be used inside a function are con-

ditional expressions, sequences ("€*p ; expg"), constant declarations ("Lag Id =
expl jg expz") and function ca l l s . There are no loop constructs; l oops can, how—

ever, be expressed via recursion.

Each of the functions defined must be equipped with a pair of pre- and

postconditions. These form the invariants that are needed for the inevitably

inductive proof of the "recursive program". Of course, they must be formulated

strong enough, since otherwise, the proof will fail. The aim is to prove each

function partially correct w.r.t. its pre- and postcondition. Unlike in the Boyer

Moore system, we do not have to set up a new induction scheme for each

proof. One scheme, the correctness of which is proved once and for all before

hand, can be used for all proofs.

The assertions arising during the proofs are rewritten using term transforma

tion rules that must be given as an input to the proof system. The proof has

succeeded if the constant term true can be reached. The rules are directed,

conditional and ordered rules; in contrast to usual rewrite rules, they may con

tain also higher order terms (a source for this complication is the denotational

definition of programming language semantics).

We require the usual properties of correctness, confluence and termination.

Without the first one, the proofs generated are incorrect as well, and without

the others, there is a chance that correct assertions cannot be proved. The

rules arise from generally valid laws ~from arithmetic and logiC>, from the

specification of primitive functions and from assumptions valid at the moment,

Le. from the induction hypotheses and from the conditions leading to the

branch of a function under consideration at the moment. This last point makes

it difficult to apply the usual algorithms for completion and termination check

ing, since they had to be applied over and over again at every change of the

rules. So, for the time being, we do not check confluence and termination but

assume that these properties are fulfilled.

We have implemented our method in a system called PAMELA (= "Proof

Assistant for META IV-like Languages") which is a generalized version of the

PACS system ("Proof Assistant for Code Generator Specifications", cf. [Buthl

Buth 88]), As an example, we have chosen code generator specifications used

in the CAT compiler generating system (cf. [Schmidt/Voller 87]). These speci

fications are the basis for parts of compilers that are industrially used by

Norsk Data.

Up to now, we have made the experience that we have not yet encountered

an error in the specifications that could not be found. It is, however, ex

tremely important to put up suffiCiently strong invariants for the proof. But

the definition of pre- and postconditions seems to be a quite natural way to

Each of the functions defined must be equipped with a pair o f pre— and

postconditions. These form the invariants that are needed for the inevitably
inductive proof of the "recursive program". Of course, they must be formulated
strong enough, sinCe otherwise, the proof will fail. The aim is to prove each
function partially correct w.r . t . its pre- and postcondition. Unlike in the Boyer—
Moore system, we do not have to set up a new induction scheme for each
proof. One scheme, the correctness o f which is proved once and for all before—

hand, can be used for a l l proofs.

The assertions arising during the proofs are rewritten using term transforma-

tion ru les that must be given as an input to the proof system. The proof has

succeeded i f the constant term true can be reached. The rules are directed,

conditional and ordered rules; in contrast to usual rewrite rules, they may con—
tain a lso higher order terms (a source for this complication is the denotational
definition of programming language semanticsl.

We require the usual properties of correctness, confluence and termination.
Without the first one, the proofs generated are incorrect as Well, and without
the others, there is a chance that correct assertions cannot be proved. The
rules arise from generally valid laws (from arithmetic and logic), from the
specification of primitive functions and from assumptions valid at the moment,
i.e. from the induction hypotheses and from the conditions leading to the
branch of a function under consideration at the moment. This last point makes
it difficult to apply the usual algorithms for cOmpletion and termination check—
ing, since they had to. be applied over and over again at every change of the
rules. So , for the time being, we do not check confluence and termination but

assume that these properties are fulfilled.

We have implemented our method in a system called PAMELA (= "Proof
Assistant for META IV-like Languages") which is a generalized version of the
PACS system ("Proof Assistant for Code Generator Specifications", cf. [Buth/
Buth 88]) . As an example, we have chosen code generator specifications used

in the CAT compiler generating system (cf. [Schmidt/Völler 87]) . These speci—

fications are the basis for parts of compilers that are industrially used by
Norsk Data.

Up to now, we have made the experience that We have not yet encountered
an error in the specifications that could not be found. I t i s , however, ex-
tremely important to put up sufficiently strong invariants for the proof. But
the definition of pre- and postconditions seems to be a quite natural way to

provide the invariants; therefore, it is not so very difficult to make them strong

enough which means nothing else than to completely describe the behaviour of

a function.

References:

EBoyer/Moore 79], Boyer, R.S., Moore,].S., A Computational Logic, Academic
Press, 1979

[Ruth/Buth 88]: Buth, B, Buth, K.-H., "Correctness Proofs for META IV
Written Code Generator Specifications Using Term Rewriting", in [VDM 88],
pp. 406-433

[O'Neill 88]: o'Neill, I.M. et aI., "The Formal Verification of Safety Critical
Assembly Code", in: Ehrenberger, W.D. (edJ, Proc. of the SAFECOMP '88,
IFAC Proceedings Series, Nr. 16, pp. 115-120

[Schmidt/Voller 87]: Schmidt, U., Voller, R., "Experience With VDM in Norsk
Data", in [VDM 87], pp. 49-62

[VDM 87]: Bj0rner, D. et al. (edsJ, Proc. of the VDM-Europe Symposium 1987,
Springer, LNCS 252, 1987

[VDM 88]: Bloomfield, R. et al. (edsJ, Proc. of the VDM-Europe Symposium
1988, Springer, LNCS 328, 1988

provide the invariants; therefore, it i s not so very difficult to make them strong

enough which means nothing e l s e than to completely describe the behaviour of

a function.

References:

[Boyer/Moore 79] , Boyer, R.S. , Moore, J.S.‚ A Computational Logic, Academic
Press , 1979

[Buth/Buth 88] : Buth, B , Buth, K . -H . , "Correctness Proofs for META IV
Written Code Generator Specifications Using Term Rewriting", in [VDM 88] ,
pp. 406—433

[O'Neill 88] : O'Neill , LM. et a l . , "The Formal Verification of Safety Critical
Assembly Code", in: Ehrenberger, W.D. (ed.), Proc. of the SAFEC'OMP ’88 ,
IFAC Proceedings Series , Nr. 16, pp . 115-120

[Schmidt/Völler 87]: Schmidt, H., Völler , R., "Experience With VDM in Norsk
Data", in [VDM 87], pp. 49—62

[VDM 87] : Bjorner, D. et a l . (eds.), Proc. of the VDM—Europe Symposium 1987,
Springer, LNCS 252, 1987

[VDM 88] : Bloomfield, R. et a l . (eds.), Proc. of the VDM—Europe Symposium
1988, Springer, LNCS 328 , 1988

EQTHEOPOGLES

.A Theore:J:n. Prover Cor First Order Predicate
Logic ","ith E qu.ality

based on. Re","rite -Tech.n.iques

J. Denzinger

Department of Computer Science

University of Kaiserslautern

6750 Kaiserslautern (FRG)

Introduction
EQTHEOPOGLES (german acronym for Theorem Prover for First Order Polynomial
Equations with EQuality) is an automated theorem prover for first order predicate
logic with equality. It's main feature is the use of rewriting techniques, e.g. reduction
and critical pair completion, as inference rules on a two level Knuth- Bendix
Completion Procedure. Using EQTHEOPOGLES without equality (the THEOPOGLES
system [Mu 88J, [De 87], [DM 87J) means working with a variation of the methods
of Hsiang [Hs 85J, Kapur and Narendran [KN 8SJ and Bachmair, Dershowitz
[BD 87J. That is, a first order formula F to be proved valid is transformed into a
system E of polynomial equations, s.th. F is valid iff E is unsolvable. The ideas to
handle equality with EQTHEOPOGLES stems from approaches of Hsiang [Hs 87J and
Rusinowitch [Ru 87]. But as in the definition for pure first order calculus
EQTHEOPOGLES avoids the use of unnecessairy inference steps. In general E is
divided into a system (~,R) of polynomial equations ~ and term rewrite rules R. Some
equations of ~ are also used as rewrite rules for polynomials. Completion is
performed separately on ~ and R, and special inference rules are applied on elements
of ~ and R to get the connection of the whole system.
In the following we will give a sketch of the theoretical technicalities, e.g. the
inference rules, of EQTHEOPOGLES.
Details can be found in [Mu 87], [Mu 88], [De 88J for the theoretical aspects
especially the completeness proofs, and in [De 87J, [DM 87J for technical
descriptions of the system.
EQTHEOPOGLES is implemented on an APOLLO-Workstation in Common-Lisp.

Theoretics
Polynomial equations are of the form ml +m2+ +mk=0, where + is the operation XOR
and the monomials mi are conjunctions Ll*L2* *Ln of atoms Lj- Given a formula F,
it can be transformed into a set E ={Pi=O}i=l..n of polynomial equations, s.th. F is
valid iff E has no solution, Le. there is no interpretation I,s.th. r(p)=false for all
p=O EE.
EQTHEOPOGLES divides the equational system E into two sets e.. and R. ~ represent
the polynomial system and R the term rewrite system. An equation p =0 E E is
transformed in a rule s~t in R, if p=EQ(s,t)+l and s > t for a simplification ordering
> on terms. All other equations in E belong to the polynomial system e... In e.. every
equation of the form m=O, EQ*m+m=O, L+I=O or L*m+m=O (where m a monomial,
EQ an equality atom and L a non-equality atom) is used as rewriting rule on
polynomial level : m~O, EQ*m~m, L~l or L*m~m.

E QT HE OPC) GLE S

A Theorem Prove r for F i r s t Orde r P red i ca t e
Log ic w i th Equal i ty

based on Rewr i t e —Techn iques

J . Denzinger

Department of Computer Science
University of Kaisers lautern
6750 Kaiserslautern [FRG]

Introduction
EQTHEOPOGLES (german acronym for Theorem Prover for First Order Polynomial
Equations with EQuality) is an automated theorem prover for first order predicate
logic with equality. It’s main feature is the use o f rewriting techniques, e .g . reduction
and crit ical pai r complet ion, as inference ru les on a two level Knuth—Bendix
Completion Procedure. Using EQTHEOPOGLES without equality (the THEOPOGLES
system [Mü 88] , [De 87], [DM 87]] means working with a variation of the methods
of Hsiang [Hs 85], Kapur and Narendran [KN 85] and Bachmair, Dershowitz
[BD 87]. That i s , a f irst o rde r formula F t o be p roved val id is t ransformed into a
system E of polynomial equations, s.th. F is valid iff E is unsolvable. The ideas to
handle equality with EQTHEOPOGLES stems from approaches of Hsiang [Hs 87] and
Rusinowitch [Ru 87] . But as in the definition for pure first order calculus
EQTHEOPOGLES avoids the use of unnecessairy inference s t eps . In general E is
divided into a sys tem (£,R) of polynomial equations a and t e rm rewri te rules R. Some
equations of a a re a l so used as rewrite rules for polynomials. Completion is
performed separa te ly on a and R, and special inference rules a re applied on e lements
of a and R t o ge t the connection of the whole sys tem.
In the following we wil l give a sketch of the theoret ical technicalities, e.g. the
inference ru les , of EQTHEOPOGLES.
Details can be found in [Mii 87], [Mü 88], [De 88] for the theoretical aspects
especially the completeness proofs, and in [De 87], [DM 87] for technical
descriptions of the sys tem.
EQTHEOPOGLES is implemented on an APOLLO-Workstation in Common—Lisp.

Theoretic:
Polynomial equations a re of the form m1+m2+...+mk=0, where + is the Operation XOR
and the monomials mi a r e conjunctions L1*L2*...*Ln of a toms Lj . Given a formula F,
it can be t ransformed into a s e t E={Pi=0} i=1 . . n of polynomial equations, s . th . F is
val id iff E has no solution, i .e . there is no interpretat ion I , s . th . I lp)=fa l se for a l l
p=OeE.
EQTHEOPOGLES divides the equational sys t em B into two se t s a and R. 5 represent
the polynomial sy s t em and R the t e rm rewri te sys tem. An equation p=0 e E is
t ransformed in a rule s -> t in R , if pEEQ(s , t)+ l and s > t for a s implif icat ion ordering
> on t e rms . A l l o ther equations in E belong to the polynomial sy s t em a . In :5 every
equation of the form m=0, EQ*m+m=O, L+1=O or L*m+m=0 (where m a monomial,
EQ an equality a tom and L a non-equality a tom) is used as rewriting rule on
polynomial level : m->0, EQaKm->m, L->1 or Diem-9m.

As usual these rewrite rules are used for mutual normalization and to simplify the
polynomials in ~. The term rewrite rules in R reduce the terms of the atom
arguments in ~ and they are also used for the interreduction of R itself
(TES-Reduction). This constitutes the first class of inference rules. Note that the
rewrite rules are very simple and can be efficiently implemented. On the other hand
they are strong enough to reduce the search space for the (more expensive) critical
pair generation drastically.
The second class of inference rules for (~,R) is the critical pair generation. Let PEQ
denote polynomials consisting of EQ-Atoms and/or the atom 1. Then we have

•	 Sunernosition of one atom in m from an equation of the form m*PEQ =0 with an
atom of another equation in ~.

•	 Paramod-Superposition with EQ from an equation of the form EQ*Pl +P2 =0 with a
term in an atom of another equation in ~.

•	 Factorization of equations of the form m*PEQ =0 in ~.

•	 Standard superposition of rules inR (Crit-Pair-Inference).
Superposition of a rule in R and a term of an atom of an equation in ~

(TES-Paramod-Superposition).

These superpositions for critical pair generation together with the simplification with
polynomial rules and with term rewriting rules present the complete theorem prover
EQTHEOPOGLES. The domains of every inference rule of EQTHEOPOGLES is shown
below.

~

Polynomial- (

Reduction l ! EQ*m~m

ml+m2+···+mk=O
Superposition,
Paramod-Superposition

m~O

L~l

L*m~m

TES-Reduction TES-Paramod-
SuperpositionT

TES-Rednction CI
s:. I) Crit-Parr-Inference

Now we want to compare EQTHEOPOGLES with other methods for the first order
predicate logic with equality.

The application of the critical pair generation is very restricted compared with
other methods. For example, the first superposition rule might save an exponential
factor relative to Hsiangs approach.

- We use two kinds of reduction relations and minimize both sets, ~ and R with these
relations. So we always get a minimal representation of the system. Nevertheless
we proved the soundness and completeness of EQTHEOPOGLES.
Many authors (for example [Ru 87], [WRCS 67]) showed the advantages of an
inference rule for the equality that is similar to the critical pair generation in the

As usual these rewri te ru les a r e used for mutual normalization and to simplify the
polynomials in £ . The t e rm rewri te rules in R reduce the t e rms of the a tom
arguments in a and they a r e a l so used for the interreduction of R i tself
(TBS-Reduction). This consti tutes the first c l a s s of inference ru les . Note that the
rewri te ru les a r e very s imple and can be efficiently implemented. On the other hand
they a re s t rong enough to reduce the s ea rch space for the (more expensive) cr i t ica l
pair generat ion dras t ica l ly .
The second c l a s s of inference rules for [E.,R) is the cr i t ical pair generation. Le t PEQ
denote polynomials consisting o f EQ-Atoms and/or the a tom 1 . Then we have

- Superposition of one atom in m from an equation of the form malepEQ=0 with an
a tom of another equation in a .

- Paramod-Supermit ion with EQ from an equation o f the form EQaep1+p2=O with a
t e rm in an a tom of another equation in £.

- Factorizat ion of equations of the form mflépEQ=0 in E.
- Standard superposition of ru les i n .R (Cri t-Pair-Inference).
- Superposition of a rule in R and a t e rm of an atom of an equation in a

CTES-P-aramend-Superposition).

These superpositions for cri t ical pair generation together with the simplification with
polynomial rules and with t e rm rewriting rules present the complete theorem prover
EQTHEOPOGLES. The domains of every inference rule of EQTHEOPOGLES is shown
be low.

“' +\m1+m2+...+mk=0
Polynomial- Superposition,
Reduction EQalém % m Paramod-Superposition

m + O
L +1

Läém -> m +}

TTES-Reduction TES-Paramod-
Superposition

R
TBS-Reduction C

s -> t ’ Cri t—Pair—Inference

Now we want to compare EQTHEOPOGLES with other methods for the first order
predicate logic with equality.
- The application of the cr i t ica l pair generation i s very re s t r i c t ed compared with

other methods. For example , the first superposition rule might save an exponential
factor re la t ive t o Hsiangs approach.

— We use two kinds of reduction re la t ions and minimize both s e t s , E and R with these
re la t ions . So we a lways ge t a minimal representat ion of the sys tem. Never theless
we proved the soundness and completeness of EQTHEOPOGLES.

- Many authors [for example [Ru 87] , [WRCS 67]) showed the advantages of an
inference rule for the equality that is similar to the cr i t ical pa i r generat ion in the

Knuth-Bendix-Procedure, if the two involved clauses or polynomials are unit
EQ-facts. As R is a term rewriting system and is completed by a
Knuth-Bendix-Procedure (Crit-Pair-Inference), EQTHEOPOGLES includes these
advantages.

- Instead of trying to find one general inference rule for the equality like
paramodulation ([RW 69J) or Para-Superposition ([Hs 87J) we install three disjunct
inference rules (Paramod-Superposition, Crit-Pair-Inference, TES-Paramod
Superposition). Therefore we get the possibility to prefer one rule over another. For
example, we prefer the Crit-Pair-Inference over the Paramod-Superposition, because
a uniquely terminated term rewriting system R (which is possibly generated) is very
useful. Other preferences are also possible.

- The whole theory of term rewriting systems can be used to avoid unnessary
Crit-Pair-Inferences or guide the choosing of "good" critical pairs. For example, the
criteria of Kapur ([KMN 88J) or Winkler ([Wi 84]) can be integrated in
EQTHEOPOGLES to reduce the number of inferences.

References
[BD 87J	 Bachmair,L.; Dershowitz,N. Inference Rules for Rewrite-Based

First-Order Theorem Proving, 2nd LICS, 1987.
[De 87J	 Denzinger ,J. Implementation of a Theorem Prover Based on

Rewriting-Techniques (in German), project-report, University of
Kaiserslautern.

[De 88J Denzinger,J. : EQTHEOPOGLES (in German), M.S. thesis, University of
Kaiserslautern.

[DM 87J Denzinger,J.; Miiller,J. THEOPOGLES user manual, University of
Kaiserslautern.

[Hs 85J Hsiang,J. : Refutational Theorem Proving using Term Rewriting systems,
AI 25, 1985, pp. 255-300.

[Hs 87J Hsiang,J. : Rewrite Method for Theorem Proving in First Order Theory
with Equality, J. of Symb. Comp., 1987.

[KMN 88J	 Kapur,D.; Musser,D.R.; Narendran,P. : Only Prime Superpositions Need be
Considered in the Knuth-Bendix Completion Procedure, J. of Symb. Comp.
6, 1988, pp. 19-36.

[KN 85J	 Kapur,D.; Narendran,P. : An Equational Approach to Theorem Proving in
First-Order Predicat Calculus, 84CRD322, GEC Research and Dev.
Report, Schenactady, N.Y., 1985.

[Mii 87J	 Miiller ,J. : THEOPOGLES - A Theorem Prover Based on First-Order
Polynomials and a Special Knuth-Bendix Procedure, Proc. 11th GWAI,
1987, Spinger IFB 152.

[Mii 88J	 Miiller,J. Theorem Proving with Rewrite-Techniques, Methods,
Strategies and Comparisons - (in German), Ph.D. Thesis, University of
Kaiserslautern, 1988.

[Ru 87J Rusinowitch,M. : Demonstration automatique par des techniques de
reecriture, These de Doctorat d'Etat en Mathematique, Nancy, 1987.

[RW 69J Robinson,G.; Wos,L. : First-order Theorem Proving with Equality, Mach.
Intelligence, vol. 4, Edinburgh, 1969, pp. 135-150.

[Wi 84 J	 Winkler ,F.: The Church-Rosser Property in Computer Algebra and Special
Theorem Proving an Investigation of Critical Pair Completion
Algorithms, Ph.D. Thesis, J.-Kepler University Linz, 1984.

[WRCS 67J Wos,L.; Robinson,G.; Carson,D.; Shalla,L. : The Concept of Demodulation
in Theorem Proving, J. of ACM 14, 1967, pp. 698-709.

Knuth-Bendix—Procedure, if the two involved c lauses or polynomials a re unit
EQ- fac t s . As R i s a t e rm rewriting sys t em and is comple ted by a
Knuth-Bendix-Procedure (Crit—Pair—Inference), EQTHEOPOGLES includes these
advantages .
Instead of trying to find one general inference rule for the equality like
paramodulation ([RW 69]) or Para-Superposition ([Hs 87]) we install three disjunct
inference rules (Paramod-Superposition, Crit—Pair-Inference, TES-Paramod"
Superposit ion). Therefore we ge t the possibility to prefer one rule over another. For
example , we prefer the Crit—Pair-Inference over the Paramod-Superposit ion, because
a uniquely terminated t e rm rewriting sys tem R (which is possibly genera ted) is very
useful . Other p re fe rences a r e a l so possible.
The whole theory of t e rm rewriting sys tems can be used to avoid unnessary
Cri t -Pai r - Inferences o r guide the ch00sing o f "good" c r i t i ca l pa i r s . For example , the
criteria of Kapur ([KMN 88]) or Winkler ([Wi 84]) can be integrated in
EQTHEOPOGLES to reduce the number of inferences.

References
[BD 87] Bachmair ,L. ; Dershowitz ,N. : Inference Rules for Rewri te-Based

Fi r s t -Order Theorem Proving, 2nd LICS , 1987 .
[De 87] Denzinger,J. : Implementation of a Theorem Prover Based on

Rewriting-Techniques (in German), project—report, University of
Kaisers lau te rn .

[De 88] Denzinger,J. : EQTHEOPOGLES [in German), M.S. thesis, University of
Kaisers lautern .

[DM 87] Denzinger,J.; Müller,]. : THEOPOGLES user manual, University of
Kaiserslautern.

[Hs 85] Hsiang,J. : Refutational Theorem Proving using Te rm Rewriting sys tems,
AI 25, 1985, pp . 255—300.

[Hs 87] Hsiang,J . :_ Rewri te Method for Theo rem Proving in First Orde r Theory
with Equality, J . of Symb. Comp., 1987.

[KMN 88] Kapur,D.; Musser ,D.R. ; Narendran,P. : Only Prime Superpositions Need be
Considered in the Knuth-Bendix Completion Procedure , J . of Symb. Comp.
6 , 1988 , pp . 19—36.

[KN 85] Kapur,D.; Narendran,P. : An Equational Approach to Theorem Proving in
First—Order Predicat Calculus, 84CRD322 , GEC Research and Dev .
Repor t , Schenactady, N .Y . , 1985 .

[Mii 87] Müller,]. : THEOPOGLES - A Theorem Prover Based on First-Order
Polynomials and a Specia l Knuth-Bendix Procedure , P roc . l l th GWAI,
1987, Spinger IFB 152.

[Mii 88] Müller,]. : Theorem Proving with Rewrite-Techniques, - Methods,
St ra teg ies and Comparisons - (in German), Ph.D. Thesis , University of
Kaise r s l au t e rn , 1988 .

[Ru 87] Rusinowitch,M. : Demonstrat ion automatique pa r des techniques de
r eec r i tu re , These de Doc to ra t d’Etat en Mathematique, Nancy, 1987 .

[RW 69] Robinson,G. ; Wos ,L . : Firs t—order Theorem Proving with Equali ty, Mach .
Intel l igence, vo l . 4 , Edinburgh, 1969, pp . 135-150.

[Wi 84] Winkler,F.: The Church—Rosser Property in Computer Algebra and Special
Theorem Proving : an Invest igat ion o f Cr i t i ca l Pa i r Comple t ion
Algor i thms, Ph .D . Thes i s , J . -Kep le r University Linz, 1984 .

[WRCS 67] Wos ,L . ; Robinson,G.; Ca r son ,D . ; Sha l l a ,L . : The Concept o f Demodula t ion
in Theorem Proving, J . of ACM 14 , 1967, pp. 698—709.

	SR-1989.pdf
	neu
	neu-1

