
F
a

ch
b

e
re

ic
h

In
fo

rm
a

ti
k

U
n

iv
e

rs
it

ä
t

K
oi

se
rs

la
ut

er
n

P
o

st
fa

ch30
49

S
E

K
I

-
R

E
P

O
R

T

D
—

ö
7

5
0

K
a

is
e

rs
la

u
te

rn

Completion Based Inductive Theorem
Proving: A Case Study in Verifying Sorting

Algorithms

B. Gramlic'h

SEKI Report SR-90-O4

Completion Based Inductive Theorem Proving -
A Case Study “in Verifying Sorting Algorithms

Bernhard Gramlich
Fachbereich Informatik

Universität Kaiserslautern
Postfach 3049

6750“ Kaiserslautern
West Germany

E—mail: gmmlich@uklirb.uucp

This work was supported by the Deutsche Forschungsgcmeinschaft, SFB 314 (D4)

Completion Based Inductive Theorem Proving -
A Case Study in Verifying Sorting Algorithms

Bernhard Gramlich
Fachbereich Informatik

Universität Kaiserslautern
Postfach 3049.

6750 Kaiserslautern
West Germany

Abstract

The focus of this paper lies on practical aspects of completion based inductive theorem proving in
equational theories. As domain of interest we concentrate on the mechanically supported
verification of a couple of sorting algorithms. The experiments have been performed with
UNICOM, an inductive theorem prover based on refined unfailing completion techniques. We
summarize these experiments, point out important technical and conceptual aspects and illustrate
them by numerous examples. In particular we discuss and exemplify the kind of intelligent proof
engineering required for succeeding in non-trivial verification problems.

1. Introduction

Equational reasoning is fundamental for many fields of computer science like functional
programming, abstract data type specifications, program synthesis and verifications. Within these
applications one is usually interested in a standard initial model of a given equational axiom system
and not in all its models. Proof methods for this initial model are usually based on induction
schemas, e.g. for structural induction (cf.‚ [Bu 69], [BM 79], [Au 79]).

Within the last decade an alternative approach based on rewriting and completion techniques has
been developed ([Mu 80], [Go 80], [HH 80]) and refined in many ways in the meanwhile (cf.
[JK 86], [Fr 86], [Gö 87], [Kii 87], [Ba 88]). This approach has some very attractive and
promising characteristics compared to classical approaches for explicit inductive theorem proving
based on induction schemas, which will be pointed out later on. We shall present an

implementation of this proof technique and its practical application to a couple of non-trivial
verification problems. '

. The rest of this paper is organized as follows. In chapter 2 we recall the main theoretical results
for completion based inductive theorem proving and provide an overview of UNICOM, an

2

implementation of the method. A detailed case study in verifying various sorting algorithms is

presented in chapter 3. Then we summarize the experiences gained from the experiments pointing

out important technical and conceptual aspects of intelligent proof engineering and discuss open
problems.

The appendix contains a complete listing of defining rules and inductive verification properties
for various sorting algorithms as well as of the underlying data types for boolean algebra and
natural numbers and lists.

2. Completion Based Inductive Theorem Proving

First let us recall some basic definitions and notations and the main theoretical results for

completion based inductive theorem proving. Missing details can be found in [Gr 89] (cf. also

[JK 86], [Fr 86], [Kü 87], [Ba 87] and [Ba 88]).
We are dealing with first order terms over some set of operator symbols F and some set of

variables V. We assume that F contains at least one constant. Thus the set of ground terms T is

non-empty. By t/p we denote the subterm of t at position p and by 6 t the result of applying a

substitution 6 to t. We write u[s] to indicate that the term 11 contains 5 as a subterm and

(ambiguously) denote by u[t] the result of replacing a particular occurrence of s in u by t. An

equation is a pair of terms, written s = t. By s = t we ambiguously denote s = t or t = s. A

rewrite rule is a directed equatiOn, written s —> t. A term rewriting system (TRS) R is a set of

rewrite rules. For a set E of equations we denote by E“ the symmetric closure of E. For a binary

relation —> on terms the symbols —=—>, , L), —’1‘-—> and <—> stand for the reflexive, transitive,

reflexive-transitive and symmetric closure Of ->‚ respectively. The relation <— is the inverse of —>. By

—>R we denote the reduction relation generated by R and by HE the (one-step) equality relation

induced by E. The equational theory of E is defined to be Th(E) := {s = t I 8 «LE t] and the
inductive theory is given by ITh(E) := { s = t I68 <—*—+E fi t for all ground substitutions 6 }.

Equations from Th(E) and ITh(E) are called equational and inductive theorems of B, respectively.

By CP(R,R') we denote the set of critical pairs obtained from overlapping the rules of R into

those of R'. If p is a non-variable position of a term 1 then CP(R,p,l -> r) stands for the set of critical
pairs obtained by overlapping R into 1 —> r at position p. Accordingly CP(R,P,1 -> r) denotes the set
of critical pairs obtained by overlapping R into 1—) r at all non-variable positions from P. We speak
of a critical peak (ol[or'] hrs— ol[ol’] "1->r or) when taking into account the corresponding

superposition term ol[ol'] belonging to the critical pair (ol[or'], or), too.
A TRS R is terminating if JAR is a well-founded (strict partial) ordering. R is confluent if

Rei!- . —*—>R§ LR . R<-*— and Church-Rosser if <-*—>Rs -’-"-—>R . Rei— . It. is ground
confluent (ground Church-Rosser) if it is confluent (Church-Rosser) on ground terms. Note that

the (ground) Church-Rosser property is equivalent to (ground) confluence. R is (ground)
convergent if it is terminating and (ground) confluent. A reduction ordering > is a well-founded
ordering on terms which is monotonic w.r.t. to replacement (s > t => u[s] > u[t]) and substitution

(s > t => 68 > (it). A simplification ordering is a reduction ordering that satisfies the subterm
property (s[t] 2 t).

3

By a proof in B we mean a sequence of equational replacements t0 <—->E tl <——-—>E <-———>E tn. A
proof in E U R consists of proof steps of the form ti <—>E ti+1 , ti -->R ti+1 or ti Re— ti+1. If E and R
are unimportant or clear from the context we also denote a proof of the form t0 elem], t n by the
sequence (to,. . . ,tn) of its intermediate results. Two proofs of the form 5 <-"‘—->BUR t and
u <L>E.UR. v are said to be equivalent if s E u and t E v (5 means syntactical equality). Proofs of
the form « -’!‘->R . Rei“— « are called rewrite proofs. For a proof P we denote by GP the proof
obtained from P by instantiating all intermediate results with 6 . The notion P[P'] ambiguously
indicates that P contains P' as a subproof. For a proof P = (to,. . .,tn) and a term c we denote by
c[P] the proof (c[to],. . .,c[tn]). A proof ordering is a (strict partial) ordering >> on proofs. It is said

to be a proof reduction ordering if it is well-founded and monotonic w.r.t. replacement
(P >> P ' = c[P] >> c[P']) , substitution (P >> P' => 6 P >> 6 P') and embedding

(P >> P' = Q[P] >> Q[P']). A proof P (in E U R) of the form s eiaEuR t is said to be
(equivalently) simplifiable into a proof P' (in E' U R') if P' is of the form s «li->19“. t with
P >> P' (see [Ba 87] for a more detailed introduction of equational proofs).

For a given TRS R a term s is inductively (R-) reducible iff all its ground instances are (R-)
reducible. An equation s = t is inductively (R—) reducible iff os or O't is (R-) reducible for every
ground instance as = at of s = t with as $ O't. For a given ground convergent TRS R which is
>-ordered by some reduction ordering > we say that a set C of equations (inductive conjectures) is
provably inconsistent iff C contains an equation s = t with s > t and s not inductively reducible or
an equation s = t with s $ t and s = t not inductively reducible.

Using these notions inductive validity can be characterized as follows (cf. [Gr 89]):

Theorem
Let > be a reduction ordering, R a >-ordered ground convergent TRS, L a set of inductive
theorems, i.e. L ;. ITh(R) and C a set of inductive conjectures. Then:
C E ITh(R) iff
(1) C is not provably inconsistent, and -
(2) all ground instances of critical peaks corresponding to CP(R,C“’) are equivalently

simplifiable with R U C U L (w.r.t >P°s).

Here >P°s is a proof reduction ordering which compares complexities of proofs using R U C U L
by comparing the corresponding multisets of the complexities of all occurring C-steps using the
double multiset extension >> >> of the reduction ordering > (cf. [Gr 89]). Condition (1) is
decidable and can be easily tested in theories with free constructors. F0 ‘5 F is a set of free
constructors (w.r.t. R) iff every ground term s e T(F) i s R-equivalcnt to a unique ground
constructor term s' e T(Fo). A sufficient operational criterion for condition (2) is to verify
simplifiability of the critical peaks corresponding to CP(R, C‘_’) instead of ground simplifiability.
Note that for constructing such simpler proofs also non-reducing steps (w.r.t >) are possible as
long as the resulting proof is smaller than the original one. In particular this enables reduction
modulo some set of non-orientable inductive properties, e.g. AC axioms, provided that the
reduction ordering used is compatible with the underlying theory (cf. [JK 86b]). Moreover, for

4

conjectures s = t with s > t it suffices to consider CP(R, s —> t) instead of CP(R, { s -+ t, t—> s}).
And furthermore, if for s = t e C, 1(t > s), p is an inductively complete position in S (i.e. for all
ground substitutions with ox irreducible for all x e V(S), as is reducible at position p), then the

critical pairs to be considered for s = t can be restricted to CP(R, p, s —> t) (cf. [Fr 86]). All other

critical pairs, e.g. CP(C,C), are in a sense inessential ones, but can lead to potentially useful new
conjectures and may be computed, too. Further refinements, optimizations and generalizations of

the basic technique are summarized and discussed in [Gr 89].
Completion based inductive proving roughly spoken proceeds as follows: Given a ground

Convergent base system R and a set C of inductive conjectures, C is first tested on provable
inconsistency. If it is not provably inconsistent (ground) sirnplifiability of critical pairs obtained by
overlapping R into C is tried to be established. For that purpose it may (seem to) be necessary to
add new equations (conjectures) which are recursively processed in the same way. This process

may stop successfully (all original and deduced conjectures are inductive theorems), detect a

contradiction, i.e. provable enconsistency (at least one original conjecture is not inductively valid)

or run forever. '

UNICOM: A Refined Completion Based Inductive Theorem Prover

Based on the presented theoretical framework we have implemented UNICOM, a system for

refined UNfailing Inductive COMpletion which is described in detail- in [Se 88] and [Gr 89a].

UNICOM is built on top of TRSPEC, a term rewriting based system for investigating hierarchically

structured many-sorted algebraic specifications (cf. [AGGMS 87]. TRSPEC and UNICOM are

able to treat hierarchically structured many-sorted specifications of functions (rewrite programs)

and inductive conjectures (properties to be proved). Input specifications have to satisfy the

following conditions. Constructors have to be declared and are required to be free. The left hand
sides of the definition rules for a (n-ary) non-constructor symbol f have to be of the form

f(t1,...,tn), where all ti are constructor terms. The system comprises the following tools (see

figure).

Parser } >| Checker

| Compiler | | Prover

l
The parser checks the syntax of input specifications, imports used subspecifications and produces

an internal representation.

The checker tests the function definitions for completeness and consistency using the syntactical
restrictions mentioned above. In particular, termination of the definition rules is established by
automatically generating a suitable recursive path ordering with status which is also used for
subsequent inductive proofs. Ground convergence is established by investigating critical pairs. A
special feature of the implemented completeness test allows to identify minimal complete sets of
defining rules for the same function symbol, i.e. alternative but equivalent function definitions.

The compiler provides a means for rapid prototyping by translating correct specifications (only
the definition part) into executable LISP code.

The central part of the system is the prover which tries to prove or disprove the inductive
conjectures of the actual specification. The original completion based prover of TRSPEC was
already able to handle certain non-orientable conjectures leading to globally finite instead of
terminating rewriting systems (of. [Gö 85], [Gö 87], [Gö 88]). UNICOM now admits arbitrary
possibly non-orientable conjectures. The following features are characteristic for UNICOM:
- parallel independent inductive proofs can be performed according to the different possibilities of

choosing complete positions in conjectures together with corresponding minimal complete
function definitions

- inessential critical pairs may be computed as potentially useful auxiliary conjectures
- simplification (reduction) may be performed modulo the AC—properties of some operators (cf.

[GD 88])
- a simple generalization technique (looking for minimal non-variable common subterms) is

available
- elimination of subsumed non-orientable conjectures is integrated
- non-equational inductive knowledge about free constructors is used for speeding up the proof

or disproof of conjectures _

- various user interface parameters allow for switching on/off optional features (e.g. generaliza-
tion, computation of inessential critical pairs) and enable a fully automatic or more or less
strongly user-controlled running mode.

3. A Case Study in Verifying Sorting Algorithms with UNICOM

We shall deal with the specification and verification of a couple of sorting algorithms for lists of
natural numbers equipped with their usual ordering relation .<.. The considered algorithms comprise
sorting by insertion, minimum-sort, bubble-sort, quick-sort and merge-sort. For an equational
specification of these algorithms and their (partial) correctness properties we need some basic data
types, namely for boolean algebra, for natural numbers with ordering relation and equality predicate
and for lists of natural numbers. Moreover, since sorting algorithms inherently require some kind
of conditional reasoning, we have to provide means for specifying conditional operations and

6

properties. Within this case study we restrict ourselves to purely equational reasoning by encoding

conditional constructs into unconditional ones using ternary if-then-else operations. Thus we avoid

the difficulties of properly conditional term rewriting and completion techniques. Of course, the

problems concerning conditional reasoning do not simply disappear but emerge in another form as
we shall see. If not indicated accordingly equations specifying defined functions and inductive

conjectures will always be interpreted as directed from left to right, i.e. as rewrite rules.

Furthermore we tacitly assume (sufficient) completeness and consistency of the considered

specifications. In particular, we assume the existence of appropiate reduction orderings for the

corresponding rewrite rule systems. For the sake of readability we shall make free use of a mixed

prefix and infix notation with usual priority rules for interpreting missing brackets.

3.1 Basic Data Types

Let us start with an equational specification of boolean algebra. The functions A (and), v (or) and

1 (not) are completely and consistently specified over the constant constructors t (true) and f (false)

by the following set of equations (where b is a boolean variable):

fAb = f

tAb

II aEbool: 1 f= t b

' I t= f tVb

ll

H

The usual properties of boolean algebra like associativity and commutativity (AC) of A and v are

easily shown to be inductively valid w.r.t. Ebool (cf. appendix).

Next we need a specification of natural numbers built over the constructors 0 (zero) and s

(successor) with the functions =“at (equality), S (less-or-equal) and + (addition).

Elm: o=mto = t oSn = t o+n = n
o =“ s(n) = f s(m) S o = f s(m) + n = s(m+n)

s(m) =nat o = f s(m) $ s(n) = m S n

s(m) =nat s(n) : m =nat "

Again the non-primitive functions =“, S and + are completely and consistently specified by Em.

For notational convenience we shall sometimes abbreviate -I m S n by n < m. Note that one could

also explicitely introduce a function < : nat x nat —-> bool by an appropiate recursive definition.

Then properties relating S, < and =nat like 1(m s n) = n < m or m s n = m_ < n v m =mat n

could indeed be easily verified by UNICOM. Basic inductive properties of the above specification

include the AC-axioms for +, reflexivity and transitivity of =nal and S, symmetry of =nat and
anti-symmetry of S as well as totality of 5. All these properties (and even more) are easily verified

with UNICOM. As an example let us consider transitivity of _<. expressed by

(1) n lSn2 A nZSn3 A n lSn3 = n15n2 A n25n3

Note that we have omitted the brackets for the argument of A, because as soon as the AC—properties
for some operator have been proved, we shall always work modulo these properties, i.e. equality
and rewriting steps within the simplification process are performed modulo AC.

Now, the critical pairs obtained by superposing the defining rules for 3 into (1) at the subterm
n1 s n2 occuning at an inductively complete position are

t A n2Sn3 A oSn3 = t A n2$n3

f A oSn3 A s(n1)Sn3 = f A o S n3 and
nl Sn2 A s(n2)Sn3 A s(n1)Sn3 = n l Sn2 A s(n2) Sn3 .

The first two equations can be simplified into trivial ones. For the last one which cannot be
simplified any more we choose the inductively complete position at which the subterm s(n2) $ n3
occurs for critical pair construction and obtain

n15n2 A f A s (n1)$o = n1$n2 A s(n2) So
n15n2 A n2$n3 A s(n1)Ss(n3) = nISn2 A s(n2)5s(n3)

The first critical pair is again eliminated by simplification and the latter is reduced to

n15n2 A nzsn3 A n1$n3 = n ISn2 A n.2'Sn3

and finally, using the original conjecture (l) , to the trivial equation

n15n2 A n25n3 = 111 Sn2 A n2_<.n3

which concludes the proof.

Lists of natural numbers are built up by the empty list constructor e : —> list and the binary
cons-operation c: nat x list —> list. Concatenation of lists is specified by the append-operation
app: list x list -> list with

app(c.1) =1
app(c(n.11),l2) = c(n‚app(11‚12))

Easily provable inductive properties of app are for instance

aPP(1‚«==) =1
app(app(ll,12).13) = app(11,app(12,13)).

For realizing conditional reasoning we further need ternary if-then-else operations
if-s: bool x s x s —> s for alternatives of sort s (here: for s = bool,nat,list). These operations can

be defined schematically by

if-s(f,x,y) = y

if-s(t,x,y) = x.

Basic and easily provable properties of these Operations include among others the following

if-s(b,x,x) = x
if-s(b, if-s(b,x,y),z) = if-s(b‚x‚z)
if-s(b,x,if—s(b,y‚z)) = if-s(b,x,z)
if-s(b,if-s(-Ib,x,y),z) = if-s(b,y,z)
if-s(b,x,if-s(-Ib,y,z)) = if-s(b,x,y)

and

f(...,if-s'(b,u,v),...) = if-s(b,f(...,u,...)‚f(...‚v,...))
g(. . .,if-s'(b‚u,v)‚. . .,if-s"(b‚x,y),. . .) = if—s(b,g(. . .,u, . . .,x,. . .),g(. . .,v,. . .,y‚. . .))

for every f and g with corresponding arity. For boolean sort we have in particular

if-bool(b1,b2,b3) = bl A b2 v. "b1 A b3 .

3.2 Specifying Partial Correctness of Sorting Algorithms

Assume that we are given a sufficiently complete and consistent equational specification for a

function sort: list —> list for sorting lists of natural numbers (in ascending order). Then we may ask
for a formal specification of (partial) correctness of sort. Intuitively it is clear, that correctness is

characterized by the following two properties which must hold for every list 1 of natural numbers:

(D sort(1) is ordered (ascendingly).
(H) l and sort(1) have the same multiset of elements.

These two properties may be formalized in quite different ways as we shall point out and discuss
now. For property (I) it seems natural to introduce an ordered-predicate which is modelled by a

boolean valued function ord: list —> bool and to require

ord(sort(l)) = true.

A first specification of being an ordered list then consists in defining recursively

(Ia) ord(e) = t
ord(c(n,e)) = t

9

ord(c(m,c(n‚l))) = m s n A ord(c(n,1))

But other specifications may also be conceivable and - concerning proof technical aspects - even
more advantageous. For instance we may in some sense redundantly require that the first element
of a given list is not only less than or equal to the next element (provided there exists one) but less
than or equal to all remaining list elements. This leads to the following specification with an
auxiliary operation sul: nat x list —> bool.

(Ib) ord(e) = t
ord(c(n,l)) = It 51111 A ord(l)
msn le = t
msnlc(n,l) = mSn A msnl l

Still another less explicit and not constructor based definition using the auxiliary operations 5:11 (as
above) and %1 would be

(Ic) ord(app(11,12)) = ord(ll) A ord(lz) A 1151112

ca l l = t
c(“3951112 = “511112 A1151112

It is rather straightforward to prove that the definitions (Ia), (Ib) and (Ic) are indeed equivalent. We
shall make'use of (Ia) and (Ib) and exploit (Ic) for an appropriate decomposition of the verification
problem for merge—sort.

The second (partial) correctness property (II) of sorting algorithms may be formalized in quite
different ways. A first possibility is to introduce the property that a list is a permutation of another
list via the operation perm: list x list -> bool which uses auxiliary functions del: nat x list —> list
and e : nat x list -—> bool for deleting one occurrence of an element in a given list and for
membership test, respectively:

(IIa) perm(e,e) = t
perm(e,c(n,l)) = f
perm(c(m‚11),12) = m e 12 A penn(ll,del(m,12))

m e e = f

me c(n‚l) = “‘:a v mel
del(m,e) = e .
del(m,c(n,l)) = if-list(m =nat n,l,c(n,del(m,l)))

The correctness property ([1) for sorting algorithms may then be formalized by

Perma.sort(1)) = true.

10

The above definition of perm is in a sense a strongly algorithmic one since the computation of
perm(ll,12) for concrete lists 11,12 of natural numbers proceeds by successively considering the first
element 111 of 11, testing for membership of m in 12 and deleting (the first occurrence of) min l1 and
12. Moreover the structure of the definition does not reflect the symmetrical aspect of permutative
equivalence, i.e. the property that two lists are the same up to a permutation of their arguments.
This symmetry stated by

P3111101 912) = 136111102911)

does indeed hold for the above definition, but a formal proof of it seems to be difficult.
As an alternative where symmetry becomes obvious consider the following definition using a

function oc: nat x list —> nat which counts the number of occurrences of some natural number in a
given list.

(IIb) oc(m,e) = o

oc(m,e(n,l)) = if-nat(m =mt n, s(o),o) + oc(m,l)

Then permutative equivalence of two lists 11, 12 is formalized by

oc(n,11) = oc(n,12)

To ensure that this definition is indeed equivalent to the former version using perm we have to
verify that

(L) perm(11,12) = t <=» Vn: oc(n,ll) = oc(n,12)

holds in the initial model I(E) of E with E consisting of the defining equations for all function
symbols involved. Note that (L) does not have equational form. Hence the method of completion
based inductive theorem proving is not applicable here. Instead we shall give a classical proof for
(L) based on induction over the list structure of 11. Denoting the conjecture by

P(ll) := V 1.2 : [perm(ll,12) = t «=> Vn:oc(n,11) = oc(n,12)]

we thus have to prove:

(IB) P(e) and
(IS) V11:P(ll)=> P(c(m,ll))

For the induction basis (IB) we distinguish two cases, namely 12 = e and 12 = c(m',12'): For 12 = e
we obtain

perm(e,e) = t => Vn: oc(n,e) = oc(n,e)

11

which simplifies to the trival equivalence

t = t => 0 = 0.

The second case yields

perm(e,c(m',12')) = t <=; Vn: oc(n,e) = oc(n,c(m',12'))

which is reduced to

f =t => Vn: o = if—nat(n =mal m', S(o),o) + oc(n,12')

Choosing n = m' on the right-hand side 0 = if-nat(m' =nat m', S(o),o) + oc(m',12') simplifies to
o = s(oc(m',12')) which is unsatisfiable. Thus, due to unsatisfiability of f = t, we are done. For the
induction step (IS) we have to prove

(*) I perm(c(m,11),12) = t => Vn: oc(n,c(m,11)) = oc(n,12)

for some arbitrary but fixed 11 under the induction hypothesis

V l2 [perm(11,12) = t <=» Vn: oc(n,11) = oc(n,12)] .

Using the definitions of perm and oc (*) simplifies to

In e 12 A penn(11,de1(m,12)) = t © Vn: if-nat(n am m, S(o),o) + oc(n,11) = oc(n,12).

Splitting the left-hand side conjunction and applying the induction hypothesis yields

m e 12 = t and Vn: oc(n,ll) = oc(n,del(m,12)) «=> Vn:if-nat(n=nalm,S(o),o)+oc(n,ll) = oc(n,12).

For the "=>"-direction we now use the auxiliary lemma

(LI) m e l = t => oc(n,1) = if-nat(n =mt m,s(o),o) + oc(n,de1(m,l))

for 1 = 12 suchthat

Vn: if-nat(n =-nat m,s(o);o) + oc(n,11) = oc(n,l2)

is transformed into

Vn: if-nat(n =nat m,s(o),o) + oc(n,11) = if-nat(n =mt m,s(o),o) + oc(n,de1(m,12))

12

which is trivially satisfied using the second assumption

Vn: oc(n,11) = oc(n,del(m,12)).

For the "<="-direction we first deduce m e 12 = t by substituting m for n and using lemma

(L2) s(oc(m,11)) = oc(m,12) => me l2= t .

Applying (L1) and the cancellation law for +

(L3) x+y=x+z=>y=z

to the right hand side then produces

Vn: oc(n,ll) = oc(n,del(m,12))

which remained to be shown. I

Of course, the inductive validity of the auxiliary lemmas (L1) - (L3) involved in the above proof
also has to be established. This is possible by again using structural induction.

From (L) we can easily deduce now that perm is reflexive, symmetric and transitive.
Comparing the definitions (Ila) and (IIb) concerning proof technical aspects the first one seems to
be better for such cases where we know something about the first elements of the two lists to be
compared. This comes true for instance for sorting by insertion and min-sort. Definition (IIb)
however is better suited for verifying quick-sort and merge-sort, where the first element of a sorted
list is not directly visible from the definition of sorting.

Finally, let us mention that the property of pennutative equivalence could also be specified by
explicitely computing the multiset of list elements and defining inclusion and equality for multisets
(of elements).

3.3 Completion Based Verification of Sorting Algorithms

In the following we shall present equational specifications of some sorting algorithms as well of
their corresponding correctness properties. In all cases the sets of defining equations oriented from
left to right constitute ground convergent rewrite systems. The termination property which is tacitly
assumed can be established by choosing appropiate semantical recursive path orderings (s.r.p.o.'s,
cf. [KL 80]). Roughly spoken, the semantical component of the s.r.p.o. is necessary for taking
into account the fact that the length of list arguments in recursive calls of some sorting functions is
strictly decreasing (e. g. for quick-sort).

We summarize essential steps of the verification process performed by our completion based

13

inductive theorem prover UNICOM and guided by the human user. A typical phenomenon arising
in all the examples is that a whole hierarchy of auxiliary lemmas is necessary to succeed in the
original proof. The central parts of the lemma hierarchies for the examples are depicted graphically
leaving out basic lemmas concerning boolean reasoning and the ordering relation $ (cf. the
appendix for a complete listing). Interesting steps of problem reduction by applying auxiliary
lemmas are motivated and discussed. Let us start with

3.3.1 Sorting by Insertion

The main algorithm isort: list -> list needs an auxiliary operation ins: nat x list —> list which inserts
a given natural number into a list at the "right" place w.r.t. the ordering 5. For modelling the
correctness properties we choose the variants (Ia), (Ila) (cf. section 3.2). The resulting
specification which implicitely uses the given specifications for boolean algebra and natural
numbers as subspecifications looks as follows:

(1) isort(e) = e
(2) isort(c(m,l)) = ins(m,isort(l))
(3) ins(m,e) = c(m,e)
(4) ins(m,e(n,l)) = if-list(m S n,c(m,c(n,l)),c(n,ins(m,l)))

(5) ord(e) = t

(6) ord(c(m,e)) = t

(7) ord(c(m,c(n,l))) = m S n A ord(c(n,1))
(8) perm(e,e) = t
(9) perm(e,c(m,l)) = f

(10) penn(c(m.11).12) = m e 12 A perm(lPdeltZ»
(11) m e e = f

(12) me c(n,l) = m%natn v mel
(13) del(m,e) = e
(14) del(m,e(n,l)) = if-list(m =11alt n,], c(n,del(m‚l)))

The corretness properties for isort to be proved are

(LI) ord(isona» = t, and
(L2) perm(l,isort(l) = t.

The essential part of the lemma hierarchy successfully handled by UNICOM is depicted in figure 1.
The notation L1 —5 L2 indicates that L2 is used for the proof of L1°

14

ord(isort(l)) = t perm(l‚isort(1)) = t

ord(ins(nJ» = md“) del(n,ins(n‚l)) =1 n e ins(n‚l) =t

ord(c(n,ins(m,l))) = n S m A ord(c(n,l)) n =hat n = t

Figure 1: Lemma hierarchy for isort

For illustration purposes let us pick out the left part of the lemma hierarchy. For proving (LI) we
have to consider the two critical pairs

CP(1,L1) ord(e) = t

which easily turns out to be convergent, and

CP(2,L1) ord(ins(n,isort(l))) = t.

Using the auxiliary lemma

(L,) ord(ins(n‚1)) = ord(l)

the left hand side ord(ins(n‚isort(l))) can be simplified to ord(isort(l)) and by applying (LI) to t
thus yielding inductive validity of (L1). One possibility to generate the auxiliary lemma (L3) is to
use the heuristic of cross-fertilization and subsequent generalization (cf. [BM 79], [Gr 85]).
Roughly spoken this heuristic proceeds as follows in the example. For succeeding in the "induction
step" we have to find a proof for

ord(ins(n,isort(l))) = t

under the "induction hypothesis"

ord(isort(l)) = t.

Making use of the "induction hypothesis" by applying it in reverse direction for substituting the
right hand side of the "induction step" we obtain

ord(ins(n,isort(l))) = ord(isort(l))

15

which would suffice for a proof. Now this auxiliary equation again cannot be proved directly but is
amenable to a non-trivial generlization step, namely by replacing the common subterrn isort(l) on
the left and right hand side by a new variable. This leads exactly to (L3). Note that the original
equation

ord(ins(n,isort(l))) = t

could not be generalized in such a non—trivial way because it does not have common subterms on
both sides. Of course, such generalization steps do not preserve inductive validity in general. But
when used in combination with the cross-fertilzation technique they often yield conjecures which
are indeed inductively valid and easier to prove than the original conjecture. For proving (L3) in the
example We additionally need the key lemma

(L4) ord(c(n,ins(m,l))) = n S m A ord(c(n,l))

the proof of which is technically more complicated. Here the interesting case is given by

CP(2,L4) ord(c(n,if-list(mSp,c(m,c(p,l)),c(p,ins(m,l))))) = n S m A ord(c(n,c(p,1))).

By applying defining rules for ord, boolean and schematic if-rules the left hand side simplifies to

if-bool(m S p, n S m A m S p A ord(c(p,l)), n S p A ord(c(p,ins(m,l)))).

Using (L4) again and eliminating if-bool by the basic lemma if-bool(b,b1,b2) = b A bl v n b A b2
produces

mSpA nSmA mSpA ord(c(p,l)) v p<mA nSpA pSmA ord(c(p,l))

which further simplifies to

mSpA n SmA ord(c(p,l)) v p <mA n SpA p SmA ord(c(p,l)):

by means of idempotency of A. Finally we need some inductive knowledge about S, namely the
lemmas

p<mApSm = p<m
and

nSpAp<mv nSmAmSp = nSmAnSp .

For being applicable in the above context we need these lemmas (as well as idempotency of A
above) in generalized extended form, namely as

16

bAp<mApSm = bAp<m
and

bAnSpAp<m v bAnSmAmSp = bAnSmnSp .

We shell come back to this practically important technical detail later on. Using these two lemmas
the left hand side reduces further to

n S m A n S p A ord(c(p,l))

which coincides with the simplified right hand side of CP(2‚L4) as desired.
The proof of correctness property

(LZ) perm(1,isort(l)) = t

is rather straightforword provided that the auxiliary lemmas mentioned in figure 1 are available. The
only difficulty arises in verifying

(*) del(n,ins(n,l)) = 1

which requires more knowldge over the if-then-else constructs as follows. The interesting case here
is given by overlapping the defining rule (4) into (*) which yields the critical pair '

dcl(n,if—list(n S p,c(n,c(p,1)).c(p,ins(n,1)))) = c(p,l).

Moving if-list to the top position the left hand side simplifies to

if-list(n S p, de1(n,c(n,c(p,l))), de1(n,c(p,ins(n,1))).

Application of definition rule (14) and further simplification using reflexivity of =nat and the
"induction hypothesis" (*) finally produces

if-list(n S p, c(p,l), if-list(n =nat p , ins(n,1),c(p,1))).

For reducing this term to the right hand side c(p,l) we have to exploit the intuitive argument that the
inner alternative ins(n,l) for the case n = m p = t is never relevant. Formally this is expressed by

(**) if-list(n S p, ll, if-list(n =mt p,12,l3)) = if-list(n S p, 11, 13)

which suffices for further reducing the left hand side to

if-list(n S p, c(p,l), c(p,l))

17_

and finally to c(p,l) as desired. Note that (**) is easily provable by UNICOM, for instance by
considering the critical pairs at the inductively complete position of the left hand side subterm
n =mt p. In fact (**) is a special case of a more general inductive property of if—s, namely

if-s(b,x,if-s(b',y,z)) = if-s(b,x,z)

for all b, b' such that b' implies b. Unfortunately this formulation is no langer purely equational
due to the constraints on b, b' and thus cannot be handled by the current version of UNICOM. But
nevertheless specific instances of such properties like (**) above can often be handed successfully
within the purely equational framework.

3.3.2 Minimum-Sort

Sorting by recursively computing and extracting minimal elements is specified by the main function
minsort: list —> list. The computation of minimal elements is modelled by the binary function
min: nat x list —> list which delivers the minimal element among the first argument and all elements
of the second list argument. Note that choosing this binary function min instead of the unary
minl: list + list avoids the problem of partial definitions (here: min1(e) would be undefined !). The
correctness properties are formalized using the variants (Ib), (Ila). Thus the specification looks as
follows:

(1) minsort(e) = e
(2) minsort(c(n,l)) = c(min(n,l),minsort(del(min(n,1),c(n,l))))
(3) min(n,e) = n
(4) min(n,c(m,l)) = if-nat(n S m, min(n,1)‚min(m,l))
(5) ord(e) = t '
(6) ord(c(n‚l)) = n Sm 1 A ord(l)
(7) n Sm e = t
(8) nsnlc(m,l) = nSmAnSnl l

(9) _ Penn(e‚c) = t
(10) pcrm(e‚c(n‚l)) = f
(11) perm(c(n,ll), 12) = n e 12A perm(11,del(n,12))
(12) m e e = f

(13) mec(n,l) = m=mn v me l
(14) del(m,e) = e
(15) del(m,c(n,l)) = if-list(m =nat n,],c(n,de1(m,l)))

The correctness properties for minsort to be established are

(L1) ord(minsort(1)) = t and
(LZ) penn(minsorta).1)=t.

18“

Figure 2 shows the essential part of the lemma hierarchy for proving these two properties

ord(minsort(l)) = t perm(minsort(l),1) = 1

m Sm minsort(l) = m %1 1 min(n,l) e c(n,1) = t

V
' _ - n = tm S nldel(m,l) — mSnll _ nat

mSn ‚\ m Sm de1(n,l) min(m,l) Sn | 1 = t
= mSn ‚\ 111 SM 1 /

'
mSmin(n,l) = mSn ‚\ m Snll m1n(m,l)_<_m = t

Figure 2 : Lemma hierarchy for minsor t

Let us comment some aspects of this lemma hierarchy. First of all, choosing

(L2) perm(minsort(l),1) = t

instead of the symmetric version

(Lz') perm(l,minsort(l)) = t

is better suited from a proof technical point of view. In fact the only non-trivial auxiliary lemma
needed is

min(n,l) e c(n,1) = t

whereas a proof of the second version (Lz') would be much more complicated. For verifying

PTOPCITY

(L1) ord(minson(l)) =t

19

a couple of non-trivial auxiliary lemmas has to be provided. Here the interesting proof step stems
fiom the critical pair CP(2, LI)

ord(c(min(m,l)‚minsort(del(min(m,l)‚c(m,l))))) = t.

The left-hand side successively simplifies to

min(m,l) %] minsort(del(min(m,l),c(m,l))) A ord(minsort(del(min(m,1),c(m,l))))

using definition rule (6) for ord. Applying (L1) and eliminating t yields

min(m,l) gm minsort(del(min(m.l),c(m,l)))

which reduces to

min(m,l) Sml del(min(m,l)‚c(m‚l))

by using the first structural simplification property (L3) 111 5111 minsort(1) = m 5111 1. The next
auxiliary lemma (L4) m Sn] del(m,1) = m sm] leads to

min(m,l) 5111 c(m,l)

which by definition of Sm is decomposed into

min(m,l) S m A min(m,l) Sn] 1.

Using the two lemmas (LS) min(m‚l) ‚<. 111 ‚= t and (Ls) min(m,l) 5:111 = t this term immediately
simplifies to t which was to be shown. From a conceptual point of view the lemmas (LS) and (L6)
may be considered to be logical key properties describing the connection between minimum
construction and ordering relation. On the other hand (L3) and (L4) are in a sense structural
simplification properties because they eliminate certain defined function symbols. If processed in a
bottom-up fashion all properties of the lemma hierarchy can be mechanically proved by UNICOM
with two exceptions, namely (LS) and (1.6) which require a more subtle analysis and currently have
to be supplied by the human user. The difficulties arising in verifying (LS) and (L6) are instances of

a more general phenomenon that will be discussed in detail in chapter 4.

3.3.3 Bubble-Sort

Using an imperative programming style a familiar specification of bubble-sort for an array A of
length n could look as follows:

20

Procedure bubble-sort(A)

fo r j=n-1 step -1 until 1 do
I fori = l s t ep 1 until j do

if A[i+1] <A[i] then interchange A[i] and A[i+1].

It. is obvious that after every iteration of the outer loop the element A?[i+1-] (and all elements with
greater index) remain invariant. In order to transform this specification into a purely equational
recursive one working on lists we decide to move these elements to the beginning of the list. To
obtain ascendingly ordered lists we further specify the bubbling process in such a way that minimal
instead of maximal elements are shifted towards the end of the list. As auxiliary functions for the
main operation bsort: list —> list we need the functions bubble: list —> list, last: list —> nat and
all-but-last: list —> list. The correctness properties for bsort will be formalized using variants (Ib)
and (II-b). Thus we obtain

(1) bsort(e) = e
(2) bsort(c(n,l)) = c(last(bubble(c(n,l))), bsort(all-but-last(bubble(c('n,l))))
(3) bubble(e) = e
(4) bubble(c(n,e)) = c(n,c)
(5) bubble(c(m,c(n,l))) = if-list(m s 'n, c(n‚‘bubble(c(m,l)))‚ c(m,bubble(c(n,l))))
(6) last(e) = o
(7) last(c(n,e)) = n
(8) last(c(m,c(n,l))) = last(c(n,l))
(9) all-but-last(e) = e
(10) all-but-last(c(n,e)) = e
(11) all-but-last(c(m,c(n,l))) = c(m,all-but-last(c(m,l)))
(12) ord(e) = t
(13) ord(c(m,l)) = m 5:111 A ord(l)
(14) m Sm e = t
(15) msflc (n , l)=mSnAmSml

. (16) oc(m,e) = o
(17) oc(m,e(n,l)) = oc(m,l) + if-nat(m =nat n,s(o),o)

Note that the function last has been made total by defining last(e) = o. The main correctness

properties for bsort to be established are

(LI) ord(bsort(l)) = t
(Lz) oc(n,bsort(l)) = oc(n,l).

An appropriate lemma hierarchy for proving these two properties with UNICOM is depicted in
figures 3a and 3b.

21

ord(bsort(l)) = t

\last(l) Sn] all-but—lastfl)

=last(l) Snll _m Snlbsortfl)

““ Still last(bubble(c(n,l)))
= min(n,l)

min(m,l) Sm 1= t m snllast(bubb1e(c(n,l))) ‚\

/ m Sn lall-but-last(bubb1e(c(n,1)))

min(m,l) S m = t = m Snlbubble(c(n,l))

V / \m S bubble(l) = m S 1 last(c(m,bubble(c(n,l))))
“1 “1 = last(bubble(c(n,l)))

Figure 3a: Lemma hierarchy for bsort, part I

oc(n,bsort(l)) = oc(n‚l)

/
oc(n,c(last(bubb1el(c(m‚l))),e))+ oc(n,all-but-last(bubble(c(m,l))))
= oc(n,bubble(c(m,1))) \

' oc(n,bubble(l)) = oc(n,l)

Figure 3b: Lemma hierarchy for bsort, part II

For illustration let us show how the proof of (L1) goes through making use of the mentioned
auxiliary lemmas. The only non-trivial case to be Considered stems from the critical pair
corresponding to CP(2,L1), namely

ord(c(1ast(bubb1e(c(n,1))), bsort(all-but-last(bubble(c(n,l)))))) = t

Applying definition rule (13) and (LI) the left—hand side reduces to

1ast(bubble(c(n,l))) 5:11 bsort(all-but-1ast(bubb1e(c(n,l)))).

Now we can use (LZ) m s„‚ bsort(l) = m Sn] 1 yielding

22

last(bubble(c(n,l))) snl all-but-last(bubble(c(n,l))).

Further simplification with (L3) last(1) sm all-but-last(l) =1ast(1) $1111 leads to

last(bubble(c(n,l))) 5111 bubble(c (n,l))

and by applying (L4) m 5m bubble(l) = m 511] l to

last(bubble(c(n,l))) %] c(n,l).

Exploiting (L5) last(bubble(c(n,l))) = min(n,l) we get

min(n,l) Sn] c(n,1)

which simplifies to

min(n,l) S n A min(n,l) Sm]

by definition of 5“]. Finally, by applying (L5) min(n,1) s n = t, (Iq) min(n,1) Sm] = t and boolean

simplification we obtain t which coincides with the right-hand of the critical pair as desired. Again

all lemmas presented are mechanically proved by UNICOM except (L6) and (L7).

3.3.4 Quick-Sort

We decide to. take the first element of a non-empty list to be sorted as the splitting element for the

recursive case. For specifying the main algorithm qsort: list —> list we need two auxiliary

functions lowers: nat x list —> list and greaters: nat x list -> list . Lowers(n,l) computes all

elements of l which are less than or equal to 11. And greaters(n,l) produces those elements of 1 that

are greater than n. For the correctness properties of qsort we choose the variants (Ib) and (IIb). For
proof technical reasons we augment the specification variant (Ib) for the property of being ordered

by new relations g“ and $1“. The latter relation compares whole lists whereas the first one is the

symmetric version of Sm. The resulting specification looks as follows.

(1) qsort(e) = c _
(2) qsort(c(n,l)) = app(qsort(lowers(n,1)),c(n,qsort(greaters(n,l))))

(3) lowers(n,e) = e
(4) lowers(n,e(m,l)) = if—list(m$n,c(m,]owers(n,1)),lowers(n,l))

(5) greaters(n,e) = e
(6) greaters(n,c(m,l)) = if-list(mSn,greaters(n,l),c(m,greaters(n,l)))

(7) ord(e) = t
(8) ord(c(m,l)) = “151111 A ord(l)

(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)

23

m 5111 e = t

msnlc(n,l) =mSn A msnl l
e Sm m = t
c(n, l)gl lm = nSm A 1%m
e 5111- = t ..

«moaa=haa
oc(m,e) = o
oc(m,c(n,l)) = oc(m,l) + if-nat(m =nag1,s(o),o).

The correctness properties for qsort to be verified are

(LI) ord(qsort(l)) = t and

(M1) oc(n,qsort(l)) = oc(n,l).

In this example the mechanical proofs of (LI) with UNICOM require a lot of auxiliaiy lemmas from
which we separate a basic part. These basic lemmas that concern the interplay between the
functions ord, app, Sm, Sin and Sn are the following:

(N1)
(NZ)
(N3)
(N4)
(N5)
(N6)

ord(app(11,12)) = ord(11) A ord(12) A 1151112

11%c(n,12) = 115111“ " 113112

11 5n aPP(12:13) = 1151112 " l1 S1113

3PP01»12)$u13 = 115.113 " 1251113

m Sn] app(ll,12) m Sml1 A m Sm l2
app(11,12)slnm 115mm A 12%nm.

Particularly important is (N1) which says that a list 1 obtained by concatenating two sublists l1 and
12 is ordered if and only if 11, 12 are ordered and all elements of l 1are less than or equal to all
elements of 12. Besides these easily provable properties UNICOM makes use of the lemma
hierarchy as depicted in figure 4a for verifying (LI);

The proof of (M1) is relatively easy basing on two auxiliary lemmas, cf. figure 4b.

24

ord(qsort(l)/)- — t \

qsona) S Inn /

= 1<
\Lowers)

_ lnn

,1 =

‘ lowers(n,1)/s1n = t
<ugrcaters(n) t

lfi l qsort(1')

=1 $1 1'

<nlgreaters(n,l)- — t

m > n A lowers(n,l)<_1nm
=m>n

qsort(l) S 11 1'

=]. Su].I

m S n A m sul greaters(n,1)

=m$n

L
lowers(m, l)<_lnn n _<_“1 lowcrs(m‚l) lowers(m, l) ;] l'
Agreaters(m,l) Sm n " n S n1 greaters(m,l) greaters(m,]) <1 1'

= l S l'
= l €“ n = n S nl l 11

Figure 4a: Lemma hierarchy for qsort, part I

00(n‚qsort(l)) = 00(n‚l)

oc(n,app(l‚l')) = oc(n,l) + oc(n,l')

oc(n‚lowcrs(r_n‚l)) + oc(greaters(m,l)) = oc(n‚1)

Figure 4b: Lemma hierarghy for qsort, part II

25

3.3.5 Merge-Sort

For sorting by merging we should partition every list with more than one element into two parts

approximately containing the same number of elements. For that purpose we use two auxiliary

functions Splitl, Split2: list —> list. Splitl collects the elements occurring at odd positions and

Split2 those which occur at even positions. The correctness properties for the main algorithm

msort: list -+ list are specified as for quick-sort yielding

(l) msort(e) = e
(2) msort(c(n,e)) = c(n,e)

(3) msort(c(m,c(n,l))) = merge(msort(c(m,splitl(l))),msort(c(n,split2(l))))

(4) merge(e,1) = l

(5) merge(l‚e) = 1

(6) merge (c(m,ll),c(n,12)) = if-list(mSn,c(m,merge(l1,c(n,12))),c(n,merge(c(m,l1),12)))

(7) splitl(e) = e
(8) splitl(c(m,e)) = c(m,e)
(9) splitl (c(m,c(n,1))) = c(m,split1(l))

(10) split2(e) = e
(11) split2(c(m,e)) = e
(12) Split2(c(m,c(n,1))) = c(n,sp1it2(l))

(13) ord(e) = t
(14) ord(c(m,l)) = m sm] A ord(1)

(15) m 5m e = t
(16) msmc(n,1) =mSnA msn l l
(17) oc(m,e) = o

(18) oc(m,c(n,l)) = oc(m,l) + if-nat(m =mtn,s(o),o).

The correctness properties to be established are

(LI) ord(msort(l)) = t and
(L2) oc(n,msort(l)) = oc(n,l).

The proof of (LI) is easy provided that the lemma

(L3) ord(merge(ll,12)) = ord(ll) A ord(12)

is available. (L3) corresponds closely to the intuition behind sorting by merging, namely that

merging two ordered lists again produces an ordered list. (L3) indeed contains more information

because it it also states that whenever a list 1 which is constructed by merging l1 and 12 is not

ordered then 11 or 12 is not ordered, too. For proving (L3) we need in particular some kind of

transitivity properties relating S and Sn] the proofs of which are straightforward (cf. figure 5a).

26

ord(msort(l)) = t

ord(mcrge(l‚l')) = ord(l) A ord(l')

ms merge(l,l')
“1 mSnA msnl l ansn l l

=mS lA ms l'
“1 "1 =mSnAnSnl l

V
m>nAnSl lA msnl l = m>nAmSn

11

Figure 5a: Lemma hierarchy for msort, part |

The proof of

(L2) oc(n,msort(l)) = oc(n,l)

requires two more lemmas (cf. figure 5b), namely the decomposition property

(L4) oc(n,merge(ll,12)) = oc(n,ll) + oc(n,12)

and the combination property

(LS) oc(n,split1(l)) + oc(n,split2(l)) = oc(n,l).

oc(n,msort(l)) = oc(n,l)

/ \
00(n.merge(l.l')) = OC(n.l) + oc(n‚l') oc(n‚8plit1(l)) + 00(n‚split2(l)) = 00(n‚1)

Figure 5b: Lemma hierarchy for msort, part II

27

4 Conceptual and Technical Aspects of Intelligent Proof Engineering

In the following we shall review and discuss some conceptual and proof technical aspects which
have turned out to be crucial for successfully handling non-trivial verification problems as
described. In fact we mainly presented in chapter 3 the result of an intelligent proof engineering
process for a couple of non-trivial verification problems. Many fruitless efforts and impasses have
not been mentioned. The problems that had to be tackled are essentially twofold. On the one hand
side the specification of the involved algorithms as well as of their corresponding correctness
properties has to be carefully designed. Moreover the resulting proof problems have to be
adequately structured and prepared. On the other hand the actual mechanically supported proof
process for specific conjectures may be technically quite challenging, even in the case that the
available inductive knowledge (auxiliary lemmas) in principle suffices. This problem is due to
various proof technical degrees of freedom of the underlying proof method.

4.1 Conceptual Aspects of Intelligent Proof Engineering

A rather simple but important observation is the following. Whenever we want to prove some
property of an algorithm whose specification involves supplementary functions we usually have to
exploit auxiliary knowledge about these underlying functions. This comes true in an even stronger
way when we proceed in a top-down design style. Then the supplementary functions are
constructed such that certain intended properties are indeed satisfied. Of course these properties
have to be kept in mind and probably made use of when trying to establish some verification
condition of the main algorithm. For illustration let us reconsider from this point of view the sorting

. algorithms dealt with. First we recall the central specification parts:

isort(e) = e
isort(c(n,l)) = ins(n,isort(l))

minsort(e) = e
minsort(c(n,l)) = C(min(n,1),minsort(del(min(n,l),c(n,l))))

bsort(e) = e
' bsort(c(n,1)) = c(last(bubble(c(n,l))),bsort(all-but-last(bubble(c(n,1)))))

qsort(e) = e .
qsort(c(n,l)) = app(qsort(lowers(n,l),c(n,qsort(greaters(n,l))))

msort(e) = e
msort(c(n,e)) = c(n,e)
msort(c(m,c(n,l))) = merge(msort(c(m,split1(l))),msort(c(n,split2(l)))).

Consider now for instance the specification of isort with the auxiliary function ins. For proving

28

ord(isort(l)) = t

it is clear that we have to rely on the intended behaviour of ins. Namely, it should insert a given
element into an ordered list such that this property remains invariant. In slightly generalized form
this is represented by the auxiliary lemma

ord(ins(n,l)) = ord(l).

For verifying

ord(msort(l)) = t

we have to exploit the fact that the function merge was indeed defined such that merging two
ordered lists in turn produces an ordered list which — again in slightly generalized form —- is caught
by the auxiliary lemma

ord(merge(ll,12)) = ord(ll) A ord(lz).

The main design decision for qsort was to decompose the sorting process for a non-empty list
c(n,l) into a preprocessing step computing the smaller lists lowers(n,l) and greaters(n,1) and to
concatenate the results of recursively sorting them where the splitting element is placed in between.
The properties closely corresponding to this design decision are

ord(app(ll,12)) == ord(11) A ord(12) A 11 % 12
loWers(n,l)%J1 n = t
n 5111 greaters(n,l) = t and
lowers(n,l) 511 greaters(n,l) = t

which play an central role in verifying

ord(qsort(l)) = t.

Analaogous considerations for minsort and bsort have led to the introduction of the lemmas

min(n,1) Sn = t and
min(n,1) 51111 = t.

For bsort the intention behind making bubble small elements to the right is (partially) reflected by

the lemma

last(bubble(c(n,l))) = min(n,l).

29

For successfully verifying the ordered property for the sorting algorithms considered these
straightforward supplementary lemmas do not yet suffice. We have to exploit additionally the
second correctness property, namely permutative equivalence of a list and its sorted version.
Moreover we must use the knowledge that the result of comparisons like m gm 1, 1%“ m and
11 $1112 does not depend on the order of the elements in l, 11, 12. Note that this knowledge is
implicitely visible within the definitions of < , sh and 511 due to the AC—property of boolean
conjunction. The combination of these issues clearly motivates and justifies the introduction of
subsidiary lemmas like

m sul minsort(l) = m 5:11 l
m Snl bsort(l) = m SMI or
qsort(11) su 12 = 11 511 12 .

And finally, it is not surprising that additional knowledge about the properties of < , Sm and su
and their interplay is needed for some cases, for instance transitivity properties like

mSnA msn l l A “51111: mSn A nsn l l .

The situation concerning the verification of the permutative equivalence property is quite similar. In
an analogous style most auxiliary lemmas used can be explained and motivated. In particular, the
design decision to model permutative equivalence via a counting function oc for element
occurrences is closely related to the nature of the problem to be solved. This connection is due to
the presence of the AC—operator + within the definition of oc which corresponds to the fact that the
order of elements is irrelevant when counting occurrences.

4.2 Technical Aspects of Intelligent Proof Engineering

Even in the case that a specification and verification problem has been carefully modelled and
structured the remaining proof tasks may be quite challenging. In fact, a couple of proof technical
aspects and details have turned out to be crucial for practically successful verification with a system
like UNICOM. These issues are now discussed. '

4.2.1 Improving Simplification by Using AC-Rewriting

When we started this case study in verifying sorting algorithms simplification in UNICOM was
implemented essentially by ordinary rewriting. As a consequence the mechanical proofs of even
simple inductive lemmas often were quite tedious and complicated, if not impossible, in particular
concerning boolean and natural number reasoning. This problem was due to the fact that the
AC—properties of operators like A, v and + could not be mechanically exploited for simplification.
The integration of AC-rewriting into UNICOM by means of an earlier developed and implemented
efficient algorithm. for AC-matchin g based on constraint propagation techniques (cf. [GD 88]) did

30

indeed solve this problem. An important practical aspect when incorporating AC—rcwriting into the
simplication mechanism concerns so-called extension rules which are well-known from completion
modulo AC-theories (cf. [PS 81]). Assume for illustration that we want to prove the inductive

conjecture

(C) l=r

where l is of the form f(s1,sz) with f an AC—operator, e. g. the boolean conjunction. Then within the
process of computing critical pairs with (C) and simplifying their left and right hand sides we may
get an intermediate result of the form

(*) f(681‚f(682‚83))

for some substitution 6 . Now we would like to apply (C) for further simplifying this term but (C)
is neither applicable at top position nor to the subterm f(6s2,s3). We first have to transform the term

using the AC—axioms for f, for instance into

f(f(6s1,6s2),s3)

before being able to apply (C). Technically this difficulty can be overcome by using the extended

version of (C), namely

' (Cm) f(x‚l) = f(x‚r)

where x is a new variable. (Cm) can be directly applied to reduce (*) at top level by means of

AC—matching. Thus explicit internal preprocessing transformations using AC-steps for enabling

reduction at certain subterms can be avoided by using such extension rules. What does this mean in

practice for completion based inductive theorem proving? Essentially we have two possibilities.

Instead of the inductive conjecture (C) we try to prove (C) and (Can) together using the simple
yersion of AC—rewriting. Indeed, within our domain of interest when starting only with (Cm) the
original version (C) is usually generated after one appropiate critical pair computation and

simplification step. Consider for instance an extended conjecture

(Cm) b A (51 A $2) = b A s3 .

The top position of the left hand side obviously is inductively complete and the corresponding

critical pairs with the definition rules for A are

s lAsz=tAs3 andf=fAs3 .

The latter one simplifies to the trivial equation f = f and the first one exactly to (C). The case for

boolean disjunction v is completely analogous. For the natural number AC—operator + (as well as

31

for multiplication) we again have the same situation when using for simplication the additional
non-equational cancellation law

s(m) = s(n) => m = n

for the free constructor s (for multiplication the cancellation rule m+n = m+p => n = p would be
needed). In all these cases the equations f(x,y) = f(x,z) and y = z are equivalent concerning
inductive validity whereas in general only the implication y = z => f(x,y) = f(x,z) is valid.

The second possibility is to integrate the extension rule mechanism automatically into the
simplification process. Thus the user only has to provide the original conjecture (C) whereas the
system independently uses the internally constructed corresponding extension rule for
AC—simplification. This variant is of course more comfortable for the human user because he does
not have to provide explicitely extended versions of conjectures. In UNICOM both techniques have
been implemented. _ .

It should be mentioned that sometimes extension rules are needed in a modified distributed
form. Fo’r instance, when we want to prove

(*) b 'Abv b 'A-Ib=b'

knowing that (* *) b v -1b = t holds, (*) is easily obtained from (**) by conjunctively adjoining
b' on both sides and subsequent simplification by distributing A over v (on the left hand side). That
means it may be useful to (automatically) construct (and simplify) extension rules where the top
operator of the extension rule is different from the original top operator.

4.2.2 Non-Reducing Proof Simplification Steps

According to the main theorem underlying completion based inductive theorem proving (cf. chapter
2) the essence of the method consists in assuring (ground) simplifiability of critical proofs obtained
by overlapping definition rules into conjectures. The easiest way to establish this simplifiability
property clearly consists in trying to find rewrite proofs for the corresponding critical pairs by
means of ordinary reduction to normal forms that coincide. A significant practical improvement
concerning simplification power is obtained by using AC-rewriting which can still be automatically
performed. But even this enhanced technique does not solve the problem in all cases. The reason is
that it is sometimes necessary to transform an intermediate result by applying a rewrite rule in the
inverse direction in order to enable a next reducing simplification step. Let us illustrate this
phenomenon via an interesting example mentioned in 3.3.1. For verifying the correctness of
minsort we had to use the auxiliary lemmas

(LI) min(n,l) S n = t and
(LZ) min(n‚l) Sml = t

32

which could not be proved mechanically by UNICOM. In fact we need two more properties for

establishing (LI), (L2), namely

(L3) nSm A min(n,l)Sm nSm and

(L4) n<mA min(n,l)Sm n<m.

The dependency graph is shown in figure 6.

(L1) min(n‚l) Sm] = t

/
(L2) min(n)Sn - t

(L3) mSn A min(m,l)Sn = mSn

(L4) m<n/ \ min(m,l)Sn = m<n

Figure 6 : Propert ies of min

Let us have a closer look on (L3). Here the interesting case is the critical peak obtained by

overlapping the recursive definition rule for min into (L3). The resulting critical pair is

n S m A if-nat(nSp,min(n,l),min(p,l)) S m = n S m

with corresponding superposition term n S m A min(n,c(p,1)) S m. Reducing the left hand side

leads to

n S m A if—bool(nSp,min(n,l) S m,min(p,l) S m)
and

nSmAnSpAmin(n , l)Sm v nSmAp<nAmin(p , l)Sm.

Applying (L3) using AC-matching with implicit extension rules we get

nSm A nSp v nSm A p<n A min(p , l)Sm.

Now we would like to apply (13) to the second component of the disjunction, too. But this is
impossible since the subterm p S m is missing. Nevertheless p S m is implied by the conjuncts
n S m and p < n, which is formalized by the transitivity lemma

(LS) p<n A nSmA pSm = p<n A nSm.

33

Thus, by applying this transitivity rule from right to left the missing subterm can be introduced
yielding

(*) nSmAnSp v nSmAp<n ApSmAmin(p , l)Sm.

Now, (L3) is indeed applicable leading to

nSmAnSp v n_<_mAp<nApSm.

Elimination of p S m by another application of (L5) in the "right" direction and boolean
simplification finally produce the desired result

nSm

which coincides with the right hand side of the critical pair. Hence, we are done, provided that the
intermediate "peak result" (*) is smaller than the original superposition term w.r.t .the underlying
reduction ordering. This condition is indeed satisfied when choosing an appropriate recursive path
ordering. Note that the interesting step of applying (L5) in reverse direction essentially is a
goal-directed non-trivial guessing step which enables further simplification. Currently such a kind
of reasoning with non-reducing simplification steps cannot be performed mechanically by
UNICOM. In fact the difficulties involved are quite obvious. From a theoretical point of view it has
to be verified that the overall complexity of the constructed proof is smaller than that of the critical
peak itself. And practically the question arises when and how such non-reducing guessing steps
should be performed. To be theoretically precise it must be noted that the problem of verifying
proof complexities already occurs when using AC—rewriting. Here we need AC-compatible
reduction orderings ensuring theoretical correctness. Such orderings are currently not available in
UNICOM. Nevertheless by inspecting the proofs produced it can often be verified by hand that the
relevant conditions are indeed satisfied.

4.2.3 Eliminating Simplification Indeterminism

Another practically very important and subtle point concerning completion based inductive theorem
proving is the question of how to control the simplification process. Let us again illustrate the
problem via an example. Within the proof of the correctness property

ord(bsort(l)) = t

we had to simplify the intermediate result

last(bubble(c(n,l)) Sn] all-but-lastubble(c(n,l)))

to t. Besides the corresponding definition rules a couple of auxiliary lemmas including

34

(L3) last(l) %1 all-but-last(l) = l g“ all-but-last(l)
(L4) m 5111 bubble(1) = m Sm]

(LS) last(bubble(c(n‚l)) = min(n,l)
(LG) min(n,l) $ n = t
(L,) min(n,l) 51111 = t

were available. In fact we chose (L3) for the next simplification step yielding

last(bubble(c(n,l))) Sm bubble(c(n,l))

which could finally be reduced to t as desired. Consider now what would have happened if
instead of (L3) we had chosen (LS) for the next simplification step. Indeed, the result would have

been

min(n,l) Sm all-but-last(bubble(c(n,l)))

which is irreducible with respect to the corresponding definition rules and available lemmas. Thus
the proof attempt would have failed. Obviously the final result of successive simplifications does
not have to be unique. This phenomenon is due to the fact that the rules which are used for

simplification do not constitute a confluent system in general. Whereas this property usually holds

for the set of definition rules (in most cases it is not only ground confluent but even confluent) it is
in general violated if additional inductive lemmas and conjectures are taken into account. Hence it is

very important to perform the simplification steps in an intelligent goal-directed way. One general

heuristic which has turned out to be very useful in many examples and which is implemented in

UNICOM roughly proceeds as follows. The rules available for simplification are partitioned into

definition rules, inductive lemmas and the actual conjecture. The highest priority for simplification

is assigned to the conjecture itself which corresponds to the intuition that an induction hypothesis

should be applied as early and as often as possible. Next it is checked whether a lemma can be used
for simplification. If this is not possible, too, then it is attempted to apply a definition rule for one

of the function symbols involVed. Moreover the available lemmas are ordered decreasingly with

respect to their estimated importance. This latter priority mechanism is currently realized implicitely
in UNICOM. The priority of a lemma is determined by its position within the actual specification

hierarchy which is processed bottom up.

4.2.4 How to Choose Inductively Complete Positions

For a given inductive conjecture UNICOM computes all positions which are inductively complete,

i.e. suffice for constructing critical pairs. Depending on a system parameter either all corresponding .
proof attempts are then automatically developed in parallel or the user is asked to choose one for

continuing. Whereas the fully automatic variant proceeding in parallel is theoretically quite elegant it
usually causes severe efficiency problems in practice. In many cases certain inductively complete

35

positions are completely inappropiate for the intended goal whereas other choices seem to be more
promising. For instance, when'trying to prove the inductive conjecture

mSn A msnlgreaters(n,l) = mSn

within the verification process for the quick-sort algorithm it is hopeless to choose the inductively
complete position of the left hand side subterm m S n for critical pair construction. Instead one
should try an induction over the structure of the list 1 which corresponds to choosing the position
of greaters(n,l). Within the framework of classical inductive theorem proving much work has been
devoted to recursion analysis for finding appropriate induction terms and induction schemas for a
given conjecture (of. [BM 79], [Bu 88]). We suspect that such a s0phisticated analysis can be
carried over to .the completion based approach and provide useful heuristics for supporting or even
automating an intelligent selection process for inductively complete positions. But the details
concerning this transfer of results and techniques from classical inductive theorem proving into our
context still have to be worked out.

4.2.5 Handling Conditional Reasoning

Within the presented case study in specifying and verifying a couple of sorting algorithms
conditional reasoning clearly has played an important role. Our decision to model conditional
properties and actions by encoding via ternary if-then-else Operations was mainly motivated by
pragmatic reasons. First of all there still exist various severe theoretical and practical problems
concerning rewriting and completion techniques for properly conditional systems. And secondly,
we actually wanted to find out what can be achieved within the purely equational approach when
using a powerful implementation incorporating various refinements and optimizations of the basic
method. And indeed, by making extensive use of numerous basic schematic properties of
if-then-else operations encouraging experimental results have been obtained. Nevertheless we feel
that for many problems a properly conditional approach separating the condition from the
conclusion part would be more adequate and natural. Roughly speaking the main problem
concerning the coding approach lies in its uniform mixture of conditional and unconditional
information. For instance, within a "conditional term" of the form if-s(b,sl,s2) the conditional
knowledge b = t or b = f cannot be directly made use of when trying to simplify s1 or $2,
resPectively. Further research is needed to develop a theoretically well—founded and practically
applicable extension of the underlying completion based approach for properly conditional systems
which is specialized to inductive theorem proving. Some progress along this line of research has
already been achieved, e.g. in [Ga 87], [KR 87]. '

Without claiming to be complete let us finally mention some perspectives for future research, in
particular from a practical point of view. We think that much work remains to be done concerning a
well-considered design of the whole specification and verification environment. Since a fully
automatic inductive theorem prover is not a realistic perspective the efforts should rather be
directed towards interactive systems with a high degree of mechanical support. This mechanical

36

support should especially include modern techniques for constructing, maintaining, modifying and
structuring complex data and knowledge bases from which relevant information can be easily
extracted. Moreover the system design should deal with an appropiate formalism for specifying and
incorporating special heuristics and strategies for controlling the proof process which seem to be
promising. More generally spoken higher concepts for knowledge based proof planning should be
taken into account.

5. Conclusion

We have investigated the problems arising when trying to specify and verify various sorting

algortihms within an equational framework. Using the mechanical support of UNICOM, a

completion based inductive theorem prover, we have indeed been able to prove partial correctness

of these algortihms. It has turned out that for succeeding in such non-trivial verification tasks a
substantial amount of intelligent engineering work is needed. On the one hand side this concerns a
careful modelling of the verification properties to be established as well as an appropiate structuring

and decomposition of the resulting proof problems. The original specification design decisions
have to be taken into account in order to provide enough basic knowledge for the main proofs. On

the other hand a couple of practically important proof technical and heuristic issues have been

pointed out and exemplified.

References

[Au 79] Aubin, R.: Mechanizing Structural Induction, Part I: Formal System, Part II: Strategies, TCS, Vol. 9,
1979

[AGG 87] Avenhaus, J. , Göbel, R., Gramlich, B., Madlener, K, Steinbach, J.: TRSPEC: A Term Rewriting Based
System for Algebraic Specifications, Proc. of the 1St International Workshop on Conditional Term
Rewriting Systems, Orsay, France, 1987, LNCS 308, eds. S. Kaplan, J.-P. Jouannaud, 1988

[Ba 87] Bachmair, L: Proof Methods for Equational Theories, PhD Thesis, Univ. of Illinois, Urbana Champaign,
1987

[Ba 88] Bachmair, L.: Proof by Consistency in Equational Theories, Proc. of LICS, pp. 228-233, 1988
[BM 79] Boyer, R., Moore. J.: A Computational Logic, Academic Press, 1979
[Bu 69] Burstall, R.: Proving prpoerties of programs by structural induction, Computer Journal 12/1, pp. 41-48,

1969 '
[Fr 86] Fribourg, L.: A strong restriction of the inductive completion procedure, Proc.

13‘h ICALP, Rennes, France, LNCS 226, pp. 105-116, 1986
[Ga 87] Ganzinger, H.:Ground term confluence in parametric conditional equational specifications, Proc. 4th

STACS, LNCS 247, pp. 286-298, 1987
[Go 80] Goguen, J.A.: How to prove algebraic inductive hypotheses without induction, Proc. of 5th CADE, ed.

W. Bibel and R. Kowalski, LNCS 87, pp. 356-373, 1980
[Go 85] Göbel, R.: Completion of Globally Finite Term Rewriting Systems for Inductive Proofs, Proc. of GWAI

85, Springer Verlag, 1985
[Go 87] Göbel, R.: Ground Confluence, Proc. 2“(1 RTA, Bordeaux, France, LNCS 256, 1987
[GO 88] Göbel, R.: A Completion Procedure for Generating Ground Confluent Term Rewriting Systems,

Dissertation, FB Informatik, Universität Kaiserslautern, Feb. 1988 ‘
[Gr 89] Gramlich, B.: Inductive Theorem Proving Using Refined Unfailing Completion Techniques, SEKI-Report

SR-89-14, FB Informatik, Universität Kaiserslautern
[GD 88] Gramlich, B., Denzinger, J .: Efficient AC-Matching Using Constraint Propagation, SEKI-Report

SR-88-14, FB Informatik, Universität Kaiserslautern
[Hu 80] Huet, G.: Confluent reductions: abstract properties and applications to term rewriting systems, JCSS 25,

pp. 239-266, 1982
[HI-I 80] Huet, G., Hullot, J.: Proofs by Induction in Equational Theories withConstructors, Proc. 21St FOCS,

pp. 96-107, 1980, also in JCSS 25(2), pp. 239-266, 1982

37

[HO 80] Huet, G., Oppen, D.C.: Equations and rewrite rules: A survey, in Formal Language Theory: Perspectives
and Open Problems, pp. 349—405, ed. R. Book, New York, Academic Press, 1980

[IK 86] Jouannaud, J .-P., Kounalis, E.: Automatic Proofs by Induction in Equational Theories Without
Constructors, Proc. Symb. Logic in Computer Science, pp. 358-366, Boston, Massachusetts, 1986, also
in Information and Computation, vol. 82/1, pp. 1-33, 1989

[JK 86b] Jouannaud, J.-P., Kirchner, H.: Completion of a set of rules modulo a set of equations, SIAM J . Comp.,
15/4, pp. 1155-1194, 1986

[KL 80] Kamin, S., Levy, J .-J .: Two generalizations of recursive path orderings, Unpublished Note, Dept. of
Comp. Sci., Univ. of Illinois, Urbana, IL, 1980

[KR 87] Kaplan, S., Remy, J.L.: Completion Algorithms for Conditional Rewriting Systems, Colloquium on the
Resolution of Equations in Algebraic Structures, Austin, 1987

[Kit 87] Kfichlin, W.: Inductive Completion by Ground Proof Transformation, Proc. CREAS, Lakeway, Texas,
1987 ’

[Mu 80] Musser, D.: On proving inductive properties of abstract data types, Proc. 7';h ACM Symp. on Principles
of Programming Languages, pp. 154-162, Las Vegas, Nevada, USA, 1980

[Pa 84] Paul, E.: Proof by induction in equational theories with relations between constructors, Proc. of 9th
CAAP, ed. B. Courcelle, Cambridge Univ. Press, 1984

[P185] Plaisted, D.A.: Semantic confluence tests and completion methods, Information and Control 65, pp.
182-215,]985

[PS 81] Peterson, G.E., Stickel, M.E.: Complete Sets of Reductions for Some Equational Theories, JACM 28/2,
pp.233-264‚ 1981

[Sc 88] Scherer, R.: UNICOM: Ein verfeinerter Rewrite-basierter Beweiser für induktive Theoreme, Diplomarbeit,
FB Informatik, Universität Kaiserslautern, 1988

Appendix

In this appendix we provide a complete listing of the specifications dealt with. Let us first explain
some notational conventions used subsequently. If not marked by (H) equations should always be
read from left to right, i.e. as rewrite rules. Inductive properties marked by (*) are considered to be
accepted by UNICOM without proof. The inductive lemmas are organized top-down in layers
corresponding to the structure of the hierarchical specifications as given to UNICOM. That means
when verifying some inductive pr0perty of a certain layer all lemmas from layers below have
already been proved and are available for simplification. Specification components include a name
(SPEC), usedsubsPecifications (USE), sort names (SORTS), defined operations with their arity
(OPS), constructors (CONS), definition rules (DEF) and inductive conjectures (IND).

**

SPEC
SORTS
OPS

CONS

DEF

boolean—algebra
bool
t , f : -—> bool
'1 :bool —+ bool
A‚V: bool-x bool —> bool
if-bool: bool xbool x bool —> bool
t , f

1 f = t b l= b_

1 t = f tVb = t
f A b = f if—bool(t,b1,b2) = b1

ll NU
‘t A b = b _ if-bool(f,b1‚b2)

IND

38

b=b . bAb=b
bvfib = t bA “Ib = f
' 1 (b1Ab2)= ' lb lV1b 1(b1vb2)=_-1b1 / \1b2

b l " (b2 "b3)= (b1 "b2) " (b1 "b2) b 1 A b 2 " ""blAbz = b2

if-bool(b1,b2,b3) = (bl A b2) v (w b1 A bg) if-bool(b1,b2,b2) = b2
bla b2 = b2». b1 («_») b1A(b2/\ b3) =(b1A b2)A b3 (H)
b IVbz = b2“ 'b l (H) bl"(b2"b3) =(blvb2)vb3 (H)

***********3k**

SPEC
USE
SORTS
OPS

CONS

DEF

IND

natural-numbers
boolcan algebra
nat

o : —+ nat
S : nat -> nat

+ : nat xna t -> nat

=mt: nat x nat —> bool
$: nat xna t —> bool

if-nat: nat x nat —> bool

o , s

o + n = n if-nat(f,m,n) = n

s(m) + n = s (m+ n) if-nat(t,rn,n) =
o=nmo=t oSn= t

s(m) =nato = f s (m)$o = f
o=mt s(n) = f s (m)$s(n) = mSn
s(m) :mts(n) = m=natn

m+n=n+m (<—>) n=na£n=t

(m+n)+p=m+(n+p) (<—>) nsnatn=t
if-nat(b,n,n) = n
mSnAm=natn=mSn 1(m_<..n)A m=na tn=f

mSnvm=natn=mSn mSnA-1(n5m)=w(n5m)

mSnvnSm=t 1(m5n)A1(nSm)=f

1 (mSn)v -1 (n5m)v m=natn=t

mSn A nSp A mSp = mSn A nSp
mSnA 1 (pSn)A mSp = mSnA -1(p5n)
mSnA -1(p$n)A 1(p.<_m) = mSnA w(p$n)
1(nSm) A nSp A mSp = - (n$m) A nSp
1 (nSm) A nSp A 1 (pSm) = - I (n$m) A nSp
1(nSm)A 1 (p5n)A mSp =-1 (nSm)A '1(pSn)
-1(n.<_m) A 1 (pSn) A -u (p$m) = - I (nSm) A w(p$n)

39

**

SPEC lists-of-natural—numbers

USE natural-numbers

SORTS list
OPS c : _—> list

c : nat x list -> list
app : list x list -> list
if-list : bool x list x list —> list

CONS e, c

DEF app(c,l) =]
app(0(n‚ll)‚12) = c(n.app(ll.12))

if—list(f,ll,12) = 12
if-list(t,ll,12) = 11

IND if-list(b,1,l) = 1
aPP(1‚e) = l
app(app(ll,12),l3) = app(11,app(12,l3))

**

SPEC insertion-sort
USE lists-of-natural—numbers

OPS isort : list x list —> list
ins : nat x list —> list
ord : list —> bool
perm : list x list --9 bool
e : nat x list —> bool
del : nat x list -+ list

DEF isort(e) = e
isort(c(n,l)) = ins(n,isott(l))

ins(n,e) = c(n,e)
ins(n‚c(m‚1)) = if-list(n S m, c(n,c(m,1)), c(m,ins(n,l)))

ord(e) = t

ord(c(m,e)) = t
ord(c(m,(c(n,l))) = m s n A ord(c(n,l))

pcrm(c,e) = t

perm(e,c(m,l)) = f
perm(c(m,11),12) = m e 12 A pcrm(ll,del(m,l2))

m e e = f
me c(n‚l) = m=natn v mel

dcl(m,e) = c

IND

40

del(m,c(n‚l)) = if-list(m =„at n, 1, c(n,del(m‚l)))

ord(isort(l) = t

ord(ins(n,l)) = ord(l) “

ord(c(n‚ins(m‚l))) = n s m A ord(c(n,l))

mSn A pn v mSp A pSn = mSn AmSp
ord(c(n,if-1ist(b,ll,12)) = if-bool(b,ord(c(n,ll)),ord(c(n,l)))

pcrm(l,isort(l)) = t

del(h,ins(n,l)) = 1
ne ins(n,l) = t

dcl(n,if-list(b,11,12)) = if-list(b,del(n,ll),del(n,12))
n e if-list(b,11,12) = if-bool(b,n e ll,n € 12)
if-list(m s n,11, if-list(m =mt n, 12, 13)) = if-list(m S n, 11,13)

**

SPEC
USE
OPS

DEF

minimum-sort
lists-of-natural—numbers
minsort : list % list
min : nat x list -> nat
ord : list —> bool
5m : nat x list —> bool
511 : list x list -> bool

perm : list x list -+ bool
del : nat x list —-> list
e : nat x list —> bool

minsort(e) = e _
minsort(c(n,1)) = c(min(n,1)‚minsort(de1(min(n,l),c(n,1))))
min(n,e) = n
min(n,c(m‚l)) = if—nat(n S m, min(n,l)‚min(m,l))
ord(e) = t
ord(c(n,l)) = n 5m l A ord(l)
es“ = t

c(n, l l) $1112 = n 5,11l 11 $1112

n $11 6 = t

nsmc(m,l) nSmAnsml

IND

41

pcrm(e,e) = t

perm(e‚c(n,l)) = f
perm(c(n,ll), 12) = n e 12A perm(ll,dcl(n-,12))
m e c = f
me—c(n,l) = m=natn v mel
del(m,e) = c
dcl(m,c(n,l)) = if-list(m =nat n,l,c(n,dcl(m,l)))

ord(minsort(l)) = t

m Sn] minsort(1) = m 51111
In Snl dcl(m,1) = m 51111

min(m,l) S m = t (*)
min(m,l) $1111 = t (*)

mSn A msnldel(n,l) = mSn A msnl l

mSmin(n,l) = mSnAmSml

m 5:11 if-list(b,ll,12) = if—bool(b, m Sm 11, m Sn] 12)

m=natn A b v -I(m=natn) A mSn A b = mSn A b
m s if-nat(b,n,p) = if—bool(b, m _<_ n, m S p)
mSnAnSpAb v mSpA-u(n$p)Ab = mSnAmSPAb

perm(minsort(l)‚l) = t

min(n,1) e c(n,1)

"

H
-

if-nat(b,m,n) e 1 if-bool(b, m € 1, 11 € l)
if-nat(b,m,n) =nat p = if-bool(b, m =mt p, n =nat p) .
if-bool(b,b1,b2) v if-bool(b,b3,b4) = if-bool(b, b1 v b3, b2 V b4)

**

SPEC
USE
OPS

DEF

bubble-sort
lists-of-natural—numbers
bsort, bubble, all-but-last : list —> list
last : list —> nat
ord : list —> bool
5:11 : nat x list —-> bool
0c : nat x list -a nat

bsort(e) = e
bsort(c(n,1)) = c(last(bubblc(c(n,l))), bsort(a11-but—last(bubble(c(n,l))))

IND

42

bubble(e) = c
bubb1e(c(n,e)) = c(n,e)
bubble(c(m,c(n,l))) = if-list(m S n, c(n,bubble(c(m,l))), c(rn,bubble(c(n,l))))

last(e) = O
1ast(c(n,e)) = n
last(c(m,c(n,l))) = last(c(n‚l))
all-but-last(e) = e
all-but-last(c(n,e)) = e

all-but-last(c(m‚c(n‚l))) = c(m‚all-but-last(c(m‚l)))
ord(e) = t
ord(c(m,l)) = m 51111 A ord(l)

m Sn] e = t
mSflc (n , l) = mSn A mSnl l

oc(m,c) = 0
oc(m,c(n,1)) = oc(m,l) + if-nat(m =nat n,s(o),o)

ord(bsort(l)) = t

m Sn] bsort(1) = m Snll
last(l) Snl all-but-last(l) = 1ast(1) Sml
last(bubb1c(c(n,1))) = min(n,l)
min(m,l) S m = t
min(m,1)Snll = t

m S last(bubble(c(n,l))) A m Sn1 all-but-last(bubble(c(n,1))) = m Snl bubble(c(n,1))

1ast(c(m,bubble(c(n,1)))) = last(bubble(c(n,l)))

m Sm bubb1c(1) = m Snl l

m S111 if—list(b,ll,l2) = if-bool(b, m Snl 11, m 5m 12)
m S if-nat(b,n,p) = if-bool(b,m S n, m S p)
last(if-list(b,ll,12)) = if-nat(b,last(ll), last(12))

all-but-last(if—list(b,11,12)) = if-list(b,a11—but—last(ll), all-but-last(12))

c(m,if-list(b,11,12))) = if—list(b,c(m,ll),c(m,12))

oc(n,bsort(l)) = oc(n,l)

oc(n,c(last(bubble(c(m,l))),c)) + oc(n,all-but-last(bubble(c(m,l)))) = oc(n,bubble(c(m,l)))

oc(n,bubble(l)) = oc(n‚l)
oc(n,c(last(if-list(b,ll,12)),l3)) + oc(mall-but-1ast(if-1ist(b,l1,12)))

43

= if-nat(b, oc(n,c(1ast(11),l3)) + oc(n,a11-but-last(ll)),
oc(n,c(last(12),l3)) + oc(n,all—but-last(12)))

oc(n,if-list(b,11,12)) = if-nat(b,oc(n,ll),oc(n,12))

*******3k***_***7k**********3k*1:**

SPEC
USE
OPS

DEF

IND

quick-son
lists-of—natural-numbers
qsort : list —> list
lowers, greaters : nat xl list —> list
ord : list —> bool
Sn] : nat x list —> bool
sh : list x nat —> bool
% : list x list —> bool
oc : nat x list —> nat

qsort(c) = e

qsort(c(n,l)) = app(qsort(lowcrs(n,l)),c(n,qsort(greaters(c(n,1)))))

lowers(n,e) = e
lowers(n,c(m,l)) = if—1ist(mSn,c(m,lowers(n‚l)),lowers(n,1))

greaters(n,e) = c
greaters(n,c(m,l)) = if-list(m£n,greaters(n,l),c(m,greaters(n,l)))

ord(e) = t

ord(c(m,l)) = msnll A ord(l)

m g,] e = t
msmc(n‚ l) ‚= min A msnl l

c Sm m “= t

c(n,l)$nlm = nSm A 15mm
c sul = t

c(m,11)§112 = 1115:1112 " l15-1112

oc(m,c) = o _
oc(m‚c(n,l)) = oc(m,l) + if-nat(m =natn,s(o),o)

ord(qsort(l)) = t

qsort(1) Sm n = 1SIn n

qsort(11)§112 = 11%112

11$ll qsort(12) 1151112
lowers(n,1) Sm n = t
n sul greaters(n‚l) = t
lowers(n,l) su greaters(n,l) = t

n 5m qsort(1) = n 51111

lowers(m,l) sh n A greaters(m‚l) sl“ 11 i= lsIn n
n Sm lowers(m,l) A n 5:11 greatcrs(m,1) n 5:111

lowers(m,11) %12 A greaters(m,11) 511 12 = l1 _<_ll 12
m Sn A m 5m greaters(n,l) = m Sn

1 (m S n) A lowers(n,l) sh m = 1 (m s n)

ord(app(ll,12)) = ord(11) A ord(12) A 11 Su 12
11 Suc(n,12) : 11%.“ " l151112

l1511 aPP(12s13) = 1151112 " 1151113

aPP(11’12)51113 = 11%113 " l2%113

msmappaplz) = m$1111 " “1511112
app(11‚12)shm = 11_<_1nm A 123nm.

if-list(b,ll,12) _<.ln rn = if-bool(b,11 Sm 111,12 sh m)
m Sm if-list (b‚11,12) = if-bool(b‚ m Sn] 11, m 51,112)
if-list(b,11,12) $1113 = if-bool(b,11.<_ul3,12 %13)
if-bool (b,b1,b2) A if-bool (b,b3,b4) = if-bool (b, bl A b3, b2 A b4)

oc(n,qsort(l)) = oc(n,1)

oc(n,app(11,12)) = oc(n,11) + oc(n,12)

oc(n,lowers(m,l)) + oc(n,greaters(m,l)) = oc(n,1)

oc(n,if—1ist (b,11,12)) = if-nat(b,oc(n,11),oc(n,12))

if-nat(b,m,n) + if-nat(b,p,q) = if—nat(b,m + p,n + q)

**

SPEC
USE
OPS

DEF

merge-sort
lists-of-natural—numbers
msort , splitl, split2 : list —> list
merge : list x list —> list
ord : list —> bool
g“ : nat x list —> bool
oc : nat x list —> bool

msort(e) = e

msort(c(n,e)) = c(n,c) ,
mson(c(m,c(n‚l))) = merge(msort(c(m‚split1(l))),msort(c(n,split2(l))))

merge(e‚l) = 1

merge(l,e) = l

merge (c(m,ll),c(n,12)) = if-list(m$n,c(m,mcrgc(ll,c(n,12))),c(n,mergc(c(m,ll),12)))

IND

**

45

split1(c) = c
split1(c(m,c)) = c(m,c)

split1(c(m,c(n,l))) = c(m,split1(l))

split2(c) = e
split2(c(m‚e)) = c
split2(c(m,c(n,1))) = c(n,split2(l))

ord(e) = t
ord(c(m,l)) = m $1111 A ord(l)
m Sn] = t

msmc(n , l) = m_<_n A m Sml

oc(m,c) = o
oc(m,c(n,l)) = oc(m,l) + if—nat(m =natn,s(o),o)

ord(msort(1)) = t

ord(mcrge(11,12)) = ord(ll) A ord(lz)

msnl merge(11,12) == msn l l l A msnll2
mSn A msnl l A nsn l1= mSn A n.<.nll

mn A msnl l A nsn l l =-um$n Amsnl l

ord(if-list(b,ll,12)) = if—bool(b, ord(ll), ord(l2))

m Sn] if-list(b,ll,12) = if-bool(b, m $11 l l , m Sn] 12)

oc(n,msort(l)) = oc(n,1)

oc(n,mcrge(ll,12)) = oc(n,ll) + oc(n,12)

oc(n,sp1itl(l)) + oc(n,sp1it2(l)) = oc(n,l)

oc(n,if—list(b,ll,12)) = if-nat(b,oc(n,ll),oc(n,12))

	BB_0003_1.jpg
	BB_0023.jpg

