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, Abstract 

Termination is an important property for programming and particularly for term rewriting systems. The 
well-known polynomial orderings can be used for proving the termination of term rewriting systems. The 
proof of the pbsitiveness of a polynomial presents a crucial point concerning polynomial orderings. There 
exists a powerful non-deterministic method for performing such proofs that has been developed by BenCher
ifa and Lesn.nne. We describe some observations on the time complexity of this approach. In addition, 
a deterministic version is presented which has the same power as the original one. We also deal with a 
modification for signatures which do not contain any constant symbols. Finally, we discuss an improvement 
of the non-deterministic method. 

\ Abst rac t

Termination is an important  property for programming and particularly for term rewriting systems. The
well-known polynomial orderings can be  used for proving the  termination of term rewriting systems. The
proof of the  pesitiveness of a polynomial presents a crucial point concerning polynomial orderings. There
exists a powerful non—deterministic method  for performing such proofs tha t  has been developed by BenCher-
ifa and Lescanne. We describe some observations on the  t ime complexity of this approach. In addition,
a deterministic version is presented which has the  same power as the  original one. We also deal with a '
modification for signatures which do not  contain any constant symbols. Finally, we discuss an improvement
of t he  non-deterministic method.
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2 NOTATIONS 

1 Introduction 

Term rewriting systems (TRS, for short) provide a 
powerful tool for expressing non-deterministic com
putations. As programs they have a very simple syn
tax and their semantic is based on equalities that are 
used as reduction rules with no explicit control. For 
this purpose it is essential that a TRS has the prop
erty of termination. 

There exist various methods for proving termi
nation of TRS. Most of these are based on reduction 
orderings which are well-founded, compatible with 
the structure of terms and stable with respect to 
(w.r.t., for short) substitutions. The notion of re
duction orderings leads to thl' following description 
of termination of TRS (see [Lan77]): 

A TRS Rterminates if, and only if, 
there exists a reduction ordering r such 
that l r r for each rule l -- r of R. 

One way of constructing reduction orderings con
sists of the specification of a well-founded set (W, r) 
and a mapping ep (called termination function) from 
the set of terms int') W, such that <p( s) r p(t) when
ever t can be derived from s ([MN70]). The well
known Knuth-Bendix orderings ([KB70J) are thus 
defined using W := :IN, r:= >1) and ep as the so
called weight function. Polynomial orderings pro
posed by Lankford ([Lan75a],[Lan79]) are based on 
the set of polynomials over :IN (representing W) 
where ep denotes a polynomial interpretation (also 
called norm function) and r represents an order
ing on polynomials (which is, in the case of ground 
terms, equivalent to ». 

The use of polynomial orderings reduces the 
proof of termination of TRS to- finding appropriate 
interpretations orienting the given system, on the 
one ~and, and to deciding whether a given polyno
mial is greater than another one, on the othPr hand. 
The first problem is treated, for example, in [Ben86] 
and [Ste91]. The topic of this paper concerns the 
second problem. In the literature, there exist a few 

2 

some mOdifications of the technique contained III 

[BT,87]. 
In the following section we briefly recapitulate 

the mo~~ essential notions used in connection with 
TRS and. termination2). Section 3 deals with the de
scription of the constructive factors concerning the 
technique of BenCherifa and Lescanne ([BL87]). An 
examination of thi:> method, related to the time com
plexity, is given in section 4. In section 5, we pro
VIde a modification for signatures which do not con
tain any constant symbols. A deterministic version 
of [BL87] is pres'ented in section 6. It is based on 
the transformation of a polynomial into a set of lin
ear inequalities (according to the coefficients of the 
polynomial) which can be solved by applying, for 
example, the first phase of the well-known Simplex 
algorithm. The most important reason for the devel
opment of this technique lies in the fact, that it can 
be used for (automatically) generating a polynomial 
interpretation for a. given TRS (see [Ste91], [SZ90]) 
whereas the technique of [BL87] cannot. Section 7 
contains a brief description of the first phase of the 
Simplex algorithm. Subsequently, we deal with the 
time complexity of the Simplex method because the 
Simplex method forms the main part of ,he approach 
given in section 6. Finally, we present an improve
ment of the BenCherifa/Lescanne techn~que. 

2 Notations 

We assume familiarity with the standard definitions 
of the set of function symbols (or operators) F and 
their arities3 ), the set of variables X, the set of terms 
T(F, X), the set of ground terms 9(F) as well as 
with the definition of a substitution ta of a term t 
dnd rewriting systems R = {li -- r i liE I}4) . 

A partial ordering r is a transitive and irrefiex
ive binary relation. It is said to be well-founded 
if there exists no infinite descending sequence. A 
partial ordering on T(F, X) is called a term 01'

dering. A. reduct~on ~rderirig r is a well-~ou~ded 
term ordenng whIch IS stable W.Lt. substitutIOns 

methods ([Lan79], [BL87], fRou88] and [Rou91], for' (s r t "-+ sa r ta) and monotonic w.r.t. (or 

example) fot handling the proof of whether a polyno- 2)For details see, for example, [H080] and [Der87]. 

mial is greater than zero. In this report, we present 3) An operator with 11" arguments (i.e. whose arity is zero) 
is called a constant (symbol).

l)In this pa.per, > represents the natural ordering on IN. 
~)I is a. set of indices. 
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1 Introduction

Term rewriting systems (TRS, for short) provide a
powerful tool for expressing non-deterministic com-
putations.  As programs they have a very simple syn-
tax and their  semantic is based on  equalities that  are
used as reduction rules with no explicit control. For
this  purpose i t  is essential that  a TRS has the  prop-

_-erty of termination.
There exist various methods for proving termi-

nation of TRS. Most of these are based on reduction
orderings which are well—founded, compatible with
the  s t ruc ture  of terms and stable with respect t o
(w.r.t., for short) substitutions. The notion of re-
duction orderings leads to  tho following description
of termination of TRS (see [Lan77]):

A TRS 'R. terminates if, and  only if,
there exists a reduction ordering > such
that I > r for each rule l _» r of’R.

One way of constructing reduction orderings con-
sists of the specification of a well-founded set (W,  > )
and a mapping (p (called termination function) from
the set of terms into W, such that <p(s) > -',o(t) when-
ever t can be derivedfrom s ([MN70]). The well-
known Knuth-Bendix orderings ([KB70]) are thus
defined using W :=  N ,  > :=  >“  and cp as the so-
called weight function. Polynomial orderings pro-
posed by Lankford ([Lan75a],[Lan79]) are based on
the  set  of polynomials over lN (representing W)
where (p denotes a polynomial interpretation (also
called norm function } and > represents an order-
ing on polynomials (which is, in the case of ground
terms, equivalent to >) .

The use of polynomial orderings reduces the
proof of termination of TRS to  finding appropriate
interpretations orienting the  given system, on  the
one hand,  and to  deciding whether a given polyno-
mial is greater than another one. on the other hand.
The first problem is treated, for example, in [Ben86]
and [Ste91]. The topic of this paper concerns the
second problem. In the  literature, there exist a few
methods ([Lan79], [BL87], r.Rou8‘8] and [Rou91], for
example) foi‘ handling the proof of whether a polyno-
mial is greater than zero. In this report, we present

1’ In  this paper, > represents the natural ordering on IN.
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some modifications of the, technique contained in
[BL87].

In the following section we briefly recapitulate
the most essential notions used in connection with
TRS and termination”. Section 3 deals with the de-
scription of the constructive factors concerning the
technique of BenCherifa and Lescanne ([BL87]). An
examination of this  method, related t o  the  time com-
plexity, is given in section 4. In section 5, we pro-
vide a modification for signatures which do not con-
tain any constant symbols. A deterministic version
of [BL87] is presented in section 6. It is based on
the transformation of a polynomial into a set of lin-
ear inequalities (according to  the coefficients of the
polynomial) which can be solved by applying, for
example, t he  firs t  phase of the  well-known Simplex
algorithm. The most important reason for the devel—
opment of this  technique lies in the fact, that i t  can
be used for (automatically) generating a polynomial
interpretation for a. given TRS (see [Ste91], [5290])
whereas the technique of [BL87] cannot. Section 7
contains a brief description of the  first  phase of the
Simplex algorithm. Subsequently, we deal with the
time complexity of the Simplex method because the
Simplex method forms the main part of the approach
given in section 6 .  Finally, we present an improve-
ment of the BenCherifa/Lescanne technique.

2 Notations

We assume familiarity with the standard definitions
of the set of function symbols (or operators) .7-' and
their aritiesal, the  set of variables X , the set  of terms
T(T ,X) ,  the set of ground terms GL?) as well as
with the definition of a substitution to of a term t
and rewriting systems 7?, = {1,- —> T; | i E 1}“.

A partial ordering >- is a transitive and irreflex—
ive binary relation. It is said t o  be well-founded
if there exists no infinite descending sequence. A
partial ordering on TU: ‚X  ) is called a term or-
dering. A reduction ordering > is a well-founded
term ordering which is stable w.r.t. substitutions

«» sa  > to )  and monotonic w.r.t. (or
2)For  details see, for example, [H080] and [Del-87].
3)An  operator with no  arguments (i.e. whose arity is zero)

is called a constant (symbol).
‘)I  is a set of indices.





2 NOTATIONS 3
 

compatible with) the structure of terms (s ~ t "-+ 

1(···,8, ...) ~ I(·.·,~,···))· 
Polynomial orderings are special reduction or

derings and have been studied by Manna & Ness 
([MN70]), Lankford ([Lan75a], [Lan75b], [Lan76], 
[Lan79]), Dershowitz ([Der79], [Der83], [Der87]), 
Huet & Oppen ([H080]), BenCherifa & Lescanne 
([Ben86], [BL87]) and Rouyer ([Rou88], [Rou91]). 

. Manna & Ness, L'ankford, Huet & Oppen and 
BenCherifa & Lescanne have proposed a method 
which maps the set of terms int<:> a well-founded 
set by attaching monotonic functions to operators5). 

Lr>t us now describe this technique. 
1 he set of all polynomials with an arbitrary num

ber of variables and with coefficients from N is de
noted by Pol(N). A polynomial is composed of a 
sum of m.onomials6 ) O:'Tl ...Tn ·X~I ••• •·x~n. p( Xl, ••• , x n ) 

represents the polynomial 1: O:'TI •..Tn X~l ••• , • x~n 

based on n distinct variables. The ordering ~ MON 

on two monomials is defined as7) 

0:" , ·x· l . ·x in '-MON "", . Xii xJn
.I .. ·.n I . . . n'-- ....Jl ···In I ..... n
 

if, and only if, (il,"" in) >kx (jll'" ,in).
 

s ~POL t {=::> [s]:J [t] 

with8 ) p:::J q ~ 

CiXI"",Xn E M)p(XI, ... ,Xn ) > q(XI, ... ,Xn ) 

Example 2.1 We prove the termination of 

I(x, y) -> g(x, y)R={ g(h(x), y) -> h(J(x, y)) 

by using ~ POL based on the interpretations 

[fl(X,Y) 2X +Y +1 
[g](X,Y) 2X+Y 
[h](X) X+2. 

Note that [J(x, y)](X, Y) = 2X + Y + 1 and 
[g(x, y)](X, Y) = 2X +Y, [g(h(x), y)](X, Y) =2X + 
Y + 4 and [h(f(x,y))](X, Y) = 2X +Y + 3. Since 
R contains no constant symbols, the non-empty set 
M can arbitrarily be chosen. We have to show that 
(VX, Y EM) 2X +Y +1 > 2X +Y 1\ 2X +Y +4 > 
2X +Y + 3 which is valid for any M ~ N +. 

Since every ground polynomial is equc: to ~ nat- '. If F contains at least one Cl'lstant symbol. 
ural number, we will identify the set of ground poly
nomials with N. A polynomial p possesses a strict 
arity n if n variables occur in p that differ by pairs. 

Definition 2.1 A polynomial interpretation [.]: Fu 
X 1-+ Pol(N) (for v(riable terms) maps each n
ary function symbol I E F into a polynomial p E 
Pol(N) of strict arity n and each variable X E X 
over terms into a. variable X E V over N. This 
mapping can be extended to [.}: T(F, X) 1-+ 'Pol(N) 
by defining [J(tl,"" tn )] = [J]([tl], . .. , [t n ]). 

Definition 2.2 ([Lan75a]) Let M be any non
empty set such that [9(F)] ~ M ~ N+. The polyno
mial ordering ~ POL on two terms sand' is defined 
as 

5)Dershowitz uses an arbitrary set by requiring the functions 
to possess the subterm property. 

6)vVe often use O'r, ... r n for t~ferring to the exponents of the 
variable~ (e.g., 0'210x2y + O'lOlXZ), 

7)The ordering >kz denotes the lexicographical extension 
of > to tuples of n natural numbers. . 

1."'. Q(F) f:. 0, the polynomial ordering ~POL 
strongly depends on [Q(F)] since definition 2.2 re
quirts [Q(F)] ~ M. Because of the interpretations 
of ground, terms being natural numbers, M has a 
unique minimal (w.r.t. > on N) element. In the re
maining part of this paper, the minimum of the set 
M is denoted by J.l. 

Remark 2.1 Note that J.l = min{[c]O I cis a con
stant symbol of F} if thete exists at least one con
stant symbol in F. If J.l is strictly greater than the 
minimal interpretation of all constant symbols, the 
induced polynomial ordering might no longer be sta
ble w. r. t. substitutions and, as a consequence, does 
not need to be well-founded. This can be illustrated 

2by a simple example: Let [g]( x) = x , [h1( x) = x +1 
and [a]O = 1. Then, 

g(x) ~POL hex) if J.l = 2 
h,(a) ~POL g(a) 

8)Note that [s] and [t] are polynomials. Thus,:J is an or
dering on polynomials (p, q). 

2 NOTATIONS

compatible with) the structure of terms (5 > t «»
f ( . . . , s , . . . )  >— f ( . . . , t , . . . ) ) .

Polynomial orderings are special reduction or-
derings and have been studied by Manna & Ness
([MN70]), Lankford ([Lan75a], [Lan75b], [Lan76],
[Lan79]), Dershowitz ([Der79], [Der83], [Der87]),
Huet & Oppen ([H080]), BenCherifa & Lescanne
([Ben86], [BL87]) and Rouyer ([Rou88], [Rnu91]).

~ Manna & Ness, L'ankford, Huet & Oppen and
BenCherifa & Lescanne have proposed a method
which maps the set of terms into a. well-founded
set by attaching monotonic functions to  Operator-ss).
Let us now describe this technique.

'1 he set of all polynomials with an arbitrary num-
ber of variables and with coefficients from lN is de-
noted by 'Pol(lN ) A polynomial is composed of a
sum  of monomialsö) a„__„.„-z?-. . .»:cz". p(:v1, . . .,a:,,)
represents the  polynomial 20%. . “ i  - an;"
based on  n distinct variables. The ordering >MON
on two monomials is defined as"

Gi lmin  " ( t ?  ' . . . - 32:," >MON a j lu - jnwä l  . _ _ _ . 3.71::

if, and only if, (n , .  . . , z„ )  >?“ (31,, _ „h ) -

Since every ground polynomial is equal to a nat- ,
ural number, we will identify the set of ground poly—‘
nomials with N .  A polynomial p possesses a strict
arity n if n variables occur in p that  differ by pairs.

Definition 2 .1  A polynomial interpretation [.]: .7:U
X I—> ’Pol(lN) (for vcriable terms) maps each n-
ary  function symbol f E .? into a polynomial p E
’Pol(lN) of strict arity n and each variable cc E X
over terms into a.variable X € V over N.  This
mapping can be extended to [.]. TU: , X ) H ’Pol(lN)
by  defining [ f ( t l a  - - ' 7 t n ) l  : [ f ] ( [ t 1 ]1  . ' -1 [ t nD '

Definition 2.2 ([Lan75a]) Let M be any non-
empty set such that [ga-')] Q M Q lN+. The polyno-
mial  ordering >p0L  on  two terms 3 and  ' is defined
as

5)Der showi t z  uses an arbitrary set  by requiring the  functions
t o  possessAthe  subterm proper ty .

6)We  often use ar,...r,, for referring to  the exponents of the
variables (e.g.‚ anozzy  + amlz z ) .

7)The  ordering >?“ denotes the lexicographical extension
of > to  tuples of n natural numbers.

.5. >120], t <=> [S] :l [ t]

withsl p :] q =>
(VX1 , . . . ,X„  € M)p(X1‚ . . ,Xn )  > Q(X1 , . . . ,Xn)

Example 2 .1  We prove the termination of

72:{ f(z.y) —> g(z‚y)

9(h($)ay) "' h( f ($a3 / ) )

by using >—p0L based on the interpretations

[fl(XaY) = 2X+Y + 1
[g](x‚.Y) = 2X + Y
[h](X) „= X + 2.

Note that [f(:c,y)](X,Y) = 2X + Y + 1 and
[g(w‚y)l(X‚Y) = 2X+Y.  {901073}. y)](X‚ Y)  = 2X+

Y + 4 and [h(f(z,.y))](X,Y) = 2X + Y + 3. Since
"R. contains no  constant symbols, the non—empty set
M can arbitrarily be chosen. We have to show that
(VX,Y & M)2X+Y+1  > 2X+Y A 2X+Y+4  >
2X + Y + 3 which is valid for any  M Q lN+.

If .? contains at least one cv'istant symbol.
GU?) # 9, the polynomial ordering >-po—L

strongly depends on [GU-')] since definition 2.2 re-
quires MB] 9 M. Because of the interpretations
of ground-terms being natural numbers, M has a
unique minimal (w.r.t. > on IN) element. In the re—
maining part of this paper, the minimum of the set
M is denoted by u .

i.°.

Remark 2.1 Note that a = min{[c]() | e i s  a con-
stant symbol of f}  if there exists a t  least one con-
s tant  symbol in .7-' . If # is strictly greater than the
minimal interpretation of all constant symbols, the
induced polynomial ordering might no longer be sta-
ble w.r.t. substitutions and, as a consequence, does
not  need to be well-founded. This can be illustrated
by a simple example: Let [g](:c) = x2, [h‘(z) = :|: + 1
and [a]() = 1. Then,

g(a:) >p0L h(:c) i f p=2
h‚(a) >“POL 9(a)

8)No te  that [s] and [t] are polynomials. Thus, : l ' is  an or-
dering on polynomials (p, q).
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3 THE METHOD 0.r' BENCHERIFA AND LESCAANE	 4 

The stability of 'rPOL must guarantee 'that 
g(a) 'rPOL h(a) holds if g(x) 'rPOL h(x). It is ob
vious that the system {g( x) ---+ h(x) , h(a) ---+ g(a)} 
dues not terminate. Anyway, the above condition 
concerning I" must be guaranteed (which impt.es that 

g(x) and hex) are incompart~ble w.r.t. 'rPOL). 

Instead of. using the set M, we require :::J to be 
,defined as p :::J q iff (VXi 2: 1") p(Xt, ... ,Xn) > 
q(Xt, ... ,Xn ). In the remaining part of this paper, 
we no longer differentiate between capital letters for 
denoting variables of' polynomials and lower case for 
representing variables of terms. We adopt the lower 
case form for simplicity. 

The Method of Be'nCherifa and 
Lescanne 

The use of polynomial orderings reduces the proof 
of termination of TRS to finding appropriate inter: 
pretations orienting the given system, on the one 
hand, and to deciding whether a given polynomial 
is greater than another one, on'the other hand. In 
general, the comparison of two polynomials (p":::J q) 

we must transform the ~egative and the positive one 
into one singular monomial. Since these two proce
dures, named CHOOSE and CHANgE, are the es
sential points vf the problem, we will discuss them in 
detail after the presentation of the whole algorithm. 

Algorithm 3.1 ([BL87]) We assume that a poly
nomial can be represented as a set of monomials each 
realized as a tuple (ae1 ...e , et ... en) where ei stands n 

for the exponent of the variable Xi and a e1 ...en for 
the coeffir:ient of the monomial. Figure 1 represents 
algorithm POSITIVE of {BL87}. 

As noted previously, the main idea of the proce
dure POSITIVE is to consid~r a monomial N with 
a negative coefficien+ and try ~o find a monomial M 
with a positive coefficient which is an upper bound 
of it. When such a monomial M is found, we divide 
it into two parts M t and M 2 with M t + M 2 ~ M 
such that M t forms an upper bound of N. Thus, 
the positiveness of the whole polynomial P can be 
guaranteed by proving the positiveness of a polyno
mial pi, which is derived from p by replacing the 
monomials N and M by M2 • For example, we prove 

is reduced to the proof of the positiveness of just, 2xy - xy - x .0 be positive [)y transforming 2xy to 
one polynomial (p - q :J 0). The problem whether a 
given polynomial in n variables is posithre over real 
numbers is generally decidable, although in exponen
tial time ([Tar5i], [Col75]). However, if we restrict 
the domain of a polynomial to a proper subset of 
JR, such as N, the problem is generally undecidable 
([Dav73]). There are a few well-known approaches 
concerning this problem (see for example [Lan79] , 
[B.u87], [Rou88] and [Rou9i]). In this section, we 
briefly present the technique of [BL87]. 

The main' idea of the method proposed by 
BenCherifa and Lescanne is to prove p:::J 0 by find
ing polynomials Pt, ... ,Pn such that 

P = Po ~ Pt ~ ... ~ Pn :::J O. 

The positiveness of Pn is checked by .a basic principle 
like 'all coefficients are positive'. The transformation 
of Pi into PHt is performed by merging a negative 
monomial and an appropriate positive one. This pro
cess consists of two tasks. Firstly, we have to choose 
a pair of monomials, one having a positive and the 
other one containing a negative coefficient. Sf'mnaly, 

xy + xy, replacing 2xy and -xy by xy, and proving 
xy - x to be positive. 

We now discuss procedure CHANgE. As men
tioned in section 2, the realization of CHANgE 
strongly depends on the minimum of the interpre
tations of the constant symbols contained in :F. In 
[BL87], the constants will be interpreted as natu
ral numbers greater than or equal t09) 2. Thus, a 
monomial M having a e1 ...en as positive coefficient 
forms an upper bound of a monomial N consist
ing of the coefficient aft !n (which is negative) if 
a e1 ...en · 2l)ei-f;) > laft !n'l tO). If M is not an up-
per bound of N, this number can be added to aft ...In 
to m-inimize the negative coefficielltll). 

Algorithm 3.2 ([BL87]) Analogous with algo

rithm 3.1, let a e1 ...en (aft ...In , respectively) be the 

9)This implies tha.t M represents the set {k IkEN, k :::: 2}, 
i.e.	 J1 = 2. 

IDlNote tha.t (Vi (' [1, n]) et :::: k This condition is required 
in 'POSITIVE. 

ll)For example, p' + x 2 y - 4xy will lead to p' - 2xy if J1 =2, 
since x 2 y :::: 2xy. 
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The stability of >p0L must guarantee ‘that
g(a) >~p0L h(a) holds ifg-(z) >p0L h(:z:). It is ob-
vious that the system {g(:c) —> h(z) , h(a) —> g(a)}
does not terminate. Anyway, the above condition
concerning a must be guaranteed (which implies that
9(a) and h(z) are incomparable w.r.t. >POL).

Instead of , using the set M,  we require :1 to be
. defined  as p 3- q iff (VX.- Z „)  p(X1‚. . . ,X„) >
q(X1,  . . . ,Xn) .  In the remaining part of this paper,
we no longer differentiate between capital letters for.
denoting variables of" polynomials and lower case for
representing variables of terms. We adopt the lower
case form for simplicity.

3 The Method of Be‘n'Cherifa and
Lescanne

The use of polynomial orderings reduces the  proof
of termination of TRS to  finding appropriate inter;
pretations orienting the given system, on the  one
hand, and to deciding whether a given polynomial
is greater than another one, on‘the other hand. In
general, the comparison of two polynomials (ps:! q)
is reduced to  the  proof of the positiveness of just
one polynomial (p— q j 0) .  The problem whether a
given polynomial in n variables is positive over real
numbers is generally decidable, although in exponen-
tial time ([Tar51], [Col75]). However, if we restrict
the domain of a polynomial t o  a proper subset of
IR, such as ]N, the  problem is generally undecidable
([Dav73]). There are a few well—known approaches
concerning this problem (see for example [Lan79],
[Bu87], [Rou88] and [Rnu91]).. In this section, we
briefly present the technique of [BL87].

The main ‘ idea. of the  method. proposed by
BenCherifa and Lescanne is t o  prove p 3 0 by find-
ing polynomials p1, . . . , pn such that

p=P02p1; l - . . 2p„30 .

The positiveness of pn is checked by _a. basic principle
like ’all coefficients are positive’. The transformation
of p,- into pi.“ is performed by merging a negative
monomial and an appropriate positive one. This pro-
cess consists of two tasks. Firstly, we have t o  choose
a pair of monomials, one having a positive and the
other one containing a negative coefficient. Secondly,

we must transform the negative and the positive one
into one singular monomial. Since these two proce-
dures, named CHOOSE and CHANQE, are the es-
sential points of the problem, we will discuss them in
detail after the presentation of the whole algorithm.

Algorithm 3.1 ([BL87]) We assume that a poly-
nomial can be represented as a set of monomials each
realized as a tuple (aelmen , el . . .en) where e,- stands
for the exponent of the variable x,- and an . . . “  for
the coefficient of the monomial. Figure 1 represents
algorithm POSITIVE of [BL87].

As noted previously, the main idea of the proce-
dure POSITIVE is to  considnr a monomial N with
a negative coefficien‘ and try to find a monomial M
with a positive coefficient which is an upper bound
of it .  When such a monomial M is found, we divide
it into two parts M1 and M2 with M1 + M2 S M
such that M1 forms an upper bound of N .  Thus,“
the  positiveness of the  whole polynomial p can be
guaranteed by proving the positiveness of a polyno-
mial p’, which‘ is derived from p by replacing the
monomials N and M by M2. For example, we prove

. 22y  — my — a: .0 be positive 9y transforming 22y  to
my + my, replacing 22:31 and —zy by xy ,  and proving
xy —- 3: to be positive.

We now discuss procedure CHANGE. As men-
tioned in section 2, the realization of CHANGE
strongly depends on the minimum of the interpre-
tations of the constant symbols contained in f .  In
[BL87], the constants will be interpreted as natu-
ral numbers greater than or equal to9l 2. Thus, a
monomial M having an . . . “  as positive coefficient
forms an upper bound of a monomial N consist-
ing of the coefficient “fl-„fu (which is negative) if
an . . . ”  - 229“” > |ahmfn~|1°). If M is not an up-
per bound of N ,  this number can be added to  a h..- f”
to minimize the negative coefficient“).

Algorithm 3.2 ([BL87]) Analogous with algo-
rithm 3.1, let ae1 . . . e , .  (“hu—fu ‚ respectively) be the

9)This  implies that M represents the set {k | I: E ]N, I: 2 2},
Le. 11 = 2 .

1“)No te  that (Vi ('- [1, 11]) e.- 2 „f.-. This condition is required
in POSITIVE.

11)For  example, p’ + z ’ y  —4zy will lead to p' - 2 zy  if u = 2,
since z’y Z 22y.
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POSITIVE = proc (p : polynomial) returns (string) 
while	 there exists a negative coefficient in p do 

if there exist a e1 ...en > 0 and a fJ .. .In < 0 1!';fh CVi E [1 111 ) ei 2: fi 

then (ae1 ...en,afJ .. .fn):= C1f.OOSE(p) 
('1f.AJl9E( a e1 ...en , a fJ .. .fn) 

else return ('no answer')
 
end
 
return ('positive')
 

end 

Figure 1: Procedure POSITIVE of [BL87] 

C1f.AJl9E = proc(ae1 ...en,afJ .. .fn : monomial) 

if a q > lafJ .. .fn· 2l:(J;-e;) Ien 
then a e1 en := a e1 ...en + afJ .. .fn ·2l:(Ji-e;) 

afJ· fn := r 
else afJ fn := afJ ... fn + a e1 ... en .2l::ei - fd 

ae1' en := 0 
end 

Figure 2: Procpdure C1f.AN9E of [BL87] 

representation of a monomial. Procedure C1f.AN9E 
is confliined in figure 2. 

It is obvious that algorithm 3.1 can be adapted 
to a general minimum p. of M. Then, all the integers 
'2' of procedure C1f.AN9E will have to be replaced 
by JL. By increasing JL, this method becomes more 
powerful. However, remember that JL is bounded by 
the minimum of the interpretations of all constant 
symbols. 

Remark 3.1 
A general version of procedure C1f.AN9r transforms 

the monomials a e1 ...en (positive) and aiJ ... fn (nega
tive) in the following {flay: 

(ere1 ...en,aiJ .. .fn) = 

!
a + a 1Il:(Ji-e;) 0)(. el .. ·en iJ .. ·fnr . ' . 

If a e1 ".en > !afJ ... fnJLl:(J·-e')1 

(0 a + er '1Il:(ei-f;»),fJ .. .fn el .. ·enr 

l otherwise 

negative coefficient, respectively). More precisely: 

For compactness, let a = a e1 ...en , b = a fJ ... fn and 
c = l:(fi - ei). Then, a + bJLI > a + bJL2 if 

a > IbJLil A JLl > JL2 as well as b + aJLl c < b+aJL"i
c 

if a ~ IbJLil 1\ JLl > JL2. Thus, the greater the JL is, 
the more powerful procedure POSITIVE will be. 

Before discussing procedure C1f.OOSE we illus
trate the steps, presented up to now, by an example. 

Example 3.1 Suppose we have to prove that a tam 
s is greater than a term t w. r. t. r POL based on a 

polynomial interpretation [.] such that'

[s] 3x2y +6xy2, 

[t] 2x2 +6y2 + 12xy + 9x +9y and 

JL = 3. 

If we want to show [s] =:J [t], we need to check the 
positiveness of the polynomial p = [s] - [t]. Consider 
the two sequences (lj ';'gure 3, both starting with p. 

After merging two monomials, an increase of JL 
would lead to a greater positive coefficient (a smaller 
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7308171118: proc (p :  polynomial) returns (string)
while there exists a negative coefficient in p do

if there exist as ,”  _„e > 0 and a„_ _f„ < 0 1 I1 fh  (Vi € [I. 111) e,__> f,-
then (ac‚___‚„,af‚___f„):-_ CH0088(p)

(‚HANGÖTQQ men , af .  „J.. )
else return ( ’no answer’)

end
return (’positive’)

end

Figure 1: Procedure 'POSITIVE of [BL87]

CHANGE:  proc(ae‚__ {Man Ju:
> lan. ...f 22m“) !

:= as . . . “  + af‚...f‚. 22‘"'°"
’ if  Game“

then an . . . “

a;‚'____;‚_ :=  ("

else af1—--fn  :=  a l l -„ fu  + ae iu -en

ae f . . . e„  1:  0
end

monomial)

.2Z'Fi—fi)

Figure 2: Procedure C HAN(‚78 of [BL87]

representation of a monomial. Procedure CHANGE
is contfiined in figure 2.

It is obvious that algorithm‘3.1 can be adapted
to a general minimum ;: of M.  Then, all the integers
’2’ of procedure GHANQé' will have to be replaced
by a .  By increasing a ,  this method becomes more
powerful. However, remember that p is bounded by
the minimum of the interpretations of all constant
symbols.

Remark 3 .1
A general version of procedure C HAN g € ' transforms
the monomials ach," (positive) and af‚___f„ (nega-
tive) in the following way:
(ae l . . . e„a  a l lmfn)  :

(acknen  + af l . . . f „„z ( f i_e i )  7 0)

i f  ae‚...„„ > |a;....f„/tz(f"°"l

“” aha- f"  + an  ___épEÜi—flh

:?" otherwise

After merging two monomials, an  increase of a
would lead to a greater positive coefl‘icient (a smaller

negative coefficient, respectively). More precisely:
For compactness, let a = a„‚___‚„‚ b = a l l -„ f . .  and

= ZU,- — eg). Then, a + bu‘f > a + bug if
a > lbafl A m > pg as well as b+aaf°  < b+ap§c
if a g Ibufl A m > #2. Thus, the greater the p is,
the more powerful procedure POSITIVE will be.

Before discussing procedure CHOOSS we illus-
trate the  steps, presented up to  now, by an example.

Example 3 .1  Suppose we have to prove that a term
8 is greater than a term t w.r.t. > p01, based on a
polynomial interpretation [.] such that\

[s] =, 3x2y+6rcy2,
[t] = 251:2 + 63/2 + 12:1:y + 92: + 9y and
a = 3. '

If we want to show [5] :] [t], we need to check the
positiveness of the polynomial p = [s] — [t]. Consider
the two sequences Oj ‘igure 3, both starting with p.
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.P Po [s] - I:t] = 3x2y +6xy2 - 2x2 - 6y2 - 12xy - 9x - 9y 

:::J PI 3x2.y +5xy2 - 2x2 - 61;2 - 12xy - 9y 

:::J P2 3x2y +4xy2 - 2x2 - 6y2 - 12x~' 

:::J P3 3x2y - 2x2 - 6y2 

:::J ~x2y _ 6y2P4 

.Note that we do not have any chance to show the positiveness of P4 (p, respectively). However, consider 
the following sequence: 

P Po 3x2y +6xy2 - 2x2 - 6y 2 - 12xy - 9x - 9y 

:::J PI 3x2y +4xy2 - 2x2 - 12xy - 9x - 9y 

:::J P2 ~x2y +4xy2 - 12xy - 9x - 9y 
72 

~:::J P3 ~x Y - 9x - 9Y 

::J P4 ~x2y - 9y
 

:J ~x2y
Ps = 

Note that Ps ::J 0 holds since all coefficients are positive. 

Figure 3: The sequences corresponding to example 3.1 

Procedure C1l00SE realizes a heuristic for find Example 3.2 (Example 3.1 revisited) By using 

lUg an approprIate positive m01lomial for each nega procedure C1l00SE, the sequence of figure 5, stalL
tive monomial. At the end of this section, we present ing with the polynomial p of example 3.1, will 
the version of C1l00SE as it is contained in [Ben86] be generated. Note that the length oj such a 
and implemented in the REVE system. C1l00SE: sequence Po, PI,·" strongly depends on procedure 
selects the greatest (w.r.t. >-MON) negative mono C1l00SE I2 ). For example, the length of the success
mial as well as the greatest (w.r.t. >-MON) positive ful sequence presented in example 3.1 is 5 whereas 
monomial such that the set of variables is minimal C1l00SE generates a sequence of length 6. 
w.r.t. the negative monomial. For example, con
sider the polynomial P = x3yz + x 2y2 - x 2y...,. xy2z. 4 

2 2 Towards the BenCherifa andFirst of all, we merge the monomials x y2 and _x y 

since x 2y >- MON xy2 z and the number of vari Lescanne Approach 
ables of x 2y2 is smaller than that of x3 yz (although 

3 In this section, the empirical time complexity of prox yz >-MON x 2y2 holds). 
cedure POSITIVE is discussed. Note that it is very 
difficult to give an exact complexity result since it deAlgorithm 3.3 ([B,.m86]) Analogous with algo
pends on (the rela.tionships betwe( 1) the coefficientsrithm 3.1, we assume that a polynomial can be repre
of the positive and the negative monomials. For thesented as a set of monomials each realized as a tuple 
remaining part .of this section, we assume that al(ue1 ...en , el ... en) where ei stands for the exponent 

of the variable Xi and U e1 ...en for the coefficient of the gorithm POSITIVE contains a backtracking com
ponent which will be employed whenever the chosenmonomial. Procedure SORT-MON receives a list 

of mono ":als as input and returns a sorted (w.r.t. sequenra ('annot prove the positiveness of the given 
polyIrOJ'..l.>-MON, ,n descending order) copy of it. Procedure 

C1l00SE is featured by figure 4. 
12) and thus on the values of the coefficients 
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.“
 

,

l P0 =

Q p1 3n  + 5xy2 — 2172
; P2 31%; + 4xy2 — 2x?
2 pa = 3x2y — 2x2 — 63/2
;] p4 = gzgy — 6y2  '

[5] _ [i] = 393231 + 6Xy2 _ 232 - 692  —12$y — 9x _ 9y
— 637’ — 12mg — 9y
— 63/2 — 12xy

_Note that 'we do not have any chance to show the positiueness of p4 (p, respectively). However, consider
the following sequence:

32:23; + fixy2 _ 222 — 6y2 — 1223/ — 9x — 9y
3x2y + 42:1,,2 — 2x2 — 12zy — 91: — 9y
gzzy + 4xy2 — 12xy — 9:2: — 93/

P = P0 =

2 P1
2 P2 =
;! Pa —- %xzy—sx—gy
; p4 = %xzy—9y
; P5 = %w

Note that 115 j 0 holds since all coefficients are positive.

Figure 3: The sequences corresponding to  example 3.1

Procedure CHOOSE realizes a heuristic for. find-
mg an appropriate positive monomial for each nega-
t ive monomial. At the  end of this section, we present
the version of CHOOSE as it is contained in [Ben86]
and implemented in the  REVE system. CHOOSS
selects the greatest (w.r.t. >-M0N) negative mono-
mial as well as the  greatest (w.r . t .  >‘MON) positive
monomial such that the set of variables is minimal
w.r.t. the negative monomial. For example, con-
sider the polynomial p : $3312 + x2y2 —- 3:23; ": mgr/22.
First of all, we merge the monomials 3:23;2 and —z2y
since zzy  >M0N avg/22 and the number of vari—
ables of $2312 is smaller than that of 133/2 (although
z3yz >‘MON x2312 holds). -

Algorithm 3.3 ([Ben86]) Analogous with algo-
rithm 3.1, we assume that a polynornial can be repre-
sented as a set of monomials each realized as a tuple
(aelmen , el . . . en )  where e;  stands for the exponent
of the variable x,- and an  men for the coefiicient of the
monomial. Procedure SORT—MON receives a list
of mono “Rats as input and returns a sorted (w.r'.t.
>‘MON, in descending order) copy of i t .  Procedure
CHOOSE is featured by figure 4.

Example 3.2 (Example 3.1 revisited) By using
procedure 6110088 , the sequence of figure 5, start-
ing with the polynomial p of example 3.1, will
be generated. Note that the length of such a
sequence po ,p1 , . . .  strongly depends on procedure
CHOOSE 12) .  For example, the length of the success-
ful sequence presented in example 3.1 is 5 whereas
CHOOSE generates a sequence of length 6.

4 Towards the BenCherifa and
Lescanne Approach

In this section, the empirical t ime complexity of pro-
cedure 1708171118 is discussed. Note that it is very
difficult to  give an exact complexity result since it de-
pends on (the relationships betwee \ )  the coefficients
of the positive and the negative monomials. For the
remaining part of this section, we assume that al-
gorithm POSITIVE contains a. backtracking com-
ponent which will be'employed whenever the chosen
sequence cannot  prove the positiveness of the  given
polynm ";1.

12)a.nd thus on the values of the coefficients
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CHOOSE = proc(p : polynomial) returns (monomials) 
NL : Negative-Monomial-List := () 
while there exists a negative monomial CY.ft •••Jn in p do 

NL := NL 0 CY.ft .. .In 

end 
NL := S01lT-MON(NL) 
CY. fJ .. .In := NL[I]
 
PL : Positive-Monomial-List := ()
 
while there exists a positive monomial CY.e1 ...enin P do
 

if (Vi E [1, n]) ei ~ fi
 
then PL:= PL 0 CY. e1 ...en
 

end
 
PL:= SORT-MON(PL)
 
CY.e1 ...en := PL[i] such that i and Lk(ek - ik) are minimal
 
return (CY. e1 ...en 'CY.ft .. .In)
 

end 

Figure 4: Procedure CHOOSE of [Ben86] 

P Po = 3x2y +6xy2 - 2x2 - 6y2 - 12xy - 9x - 9y 

:::J PI ix2y +6xy2 - 6y2 - 12xy - 9x - 9y 

~ P2 = 6xy2 - 6y2 - 5xy - 9x - 9y 

:::J P3 !jxy2 - 6y2 - 9x - 9y 

:::J P4 = Jjxy2 - 6y 2 - 9y 

:::J i x y 2 - 9yPs
 
:::J P6 = ~xy2
 

Figure 5: The sequenr.e, helonging to example 3.2, generated by CHOOSE 

4 TOWARDS THE BENCHERIFA AND LESCANNE APPROACH

CHOOSE = proc {p : polynomial) returns (monomials)
NL : Negative—Monomial—List :: ()
while there exists a negative monomial 0%a in  p do

NL :=  NL 0 a i l - " In

end
NL := SÖRT—MON(NL}
a l l . -„ fu  : :  NL[1]
PL : Positive-Monomial—List := (}
while there exists a positive monomial ache" ‘ in  p do

if (Vi E [1,n]) e,- 2 f.-
then  PL := PL o a„‚„‚„

end
PL “:= SÜRT—MON(PL) *
ache” :=  PL[i] such that i and Zk(ek — fk) are minimal
return (Gel...cn,af1...fn)

end

Figure 4: Procedure (3110088 of '[Ben86]

p — po = 3x2y + 69:3]2 — 2x2 — 6y2 — 121:3] -- 9:1: — 9y
2 P1 = %xzy  + 69:342 — 63;2 — 12xy — 9a: — 9y
;! P2 = 6xy2 — 6y2 - 5xy — 92: —- 9y

;] P3 = lgiixy2 — 6y2 — 9x — 9y
;I p4 = ä‘lxy2 — eyz — 9y

;! P5 = %xyz — 9y

- ;! P6 = #63?

Figure 5: The sequence, hellonging to example 3.2, generated bv CHOOSE
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As we have seen in the last section (example 3.1 
and example 3.2), there exist different possibilities 
to choose negative and positive monomials. These 
:aultiple choices can b~ described by a tree13

) of 
which the nodes represent the polynomials Pi gen
erated from a given polynomial p. 

•	 The number II(p) of paths (Le. the n-q,mber of 
leaves) in this tree stands for the number of dif
ferent sequences from p to the result 'positive' 
or 'no, answer', which procedure POSITIVe 
returns. 

•	 The number ~(p) of nodes (except the root) 
represents the number of computations of the 
sum of two monomials (Le. it is identical14) to 
the number of calls of procedure CHANge). 

= 016f3i l ...in ). Then, the following two conditions 
must hold: 

•	 (Vail,.,in > O)(V!Jil ...in > O)(Vk E [1, n]) ik ~ 

Jk 

•	 ("la' , > 0) a' , > '" ,;I:(i/c-i/c) . (.I, .'l""n II···ln ,-,,... fJ11· ..1n 

A t~'pical polynomial, fulfilling these conditions, 
is considered in example 4.2. 

Example 4.2 Let p = 3x2 y + 6xy - 4x - 5y - 2 
and JL = 2. Each positive monomial can cover all 
negative monomials since 3 > 4.2:-2+5.2-2 +2.2-3 

and 6> 4.2-1 +5 .2-1 +2 .2-2 • 

The worst case for procedure POSITIVe will 
occur if p is not greater than zerol7) and the corre
sponding tree is maximal. Furthermore, the expo

Example 4.1 (Example 3.1 revisited) Figure 6 "nents of each positive monomial have to cover those 
illustrates the' number of polynomials which can be 
created when starting with the polynomial p of exam
pie 3.1. Due to the difficulty of graphically display
ing all nodes, we present their numbers (beginning 
at level 4), only. Totally, 768 paths through this tree 
exist (although p is a relatively simple polynomial) 
of which 212 cannot be us:::d to show the positivene~s 
of p. Note that ~(p) = 1967. 

The best case15) for the complexity of procedure 
POSITIVe is n, where n represents the number of 
negative monomials occurring in p. This complex
ity can only be achieved if p is a polynomial such 
that each positive monomial can cover all negative 
monomials, Le. 

•	 the exponent of each positive monomial is 
greater than or equal to the expoI'ent of each 
negative monomial (for all variables) and 

• each positive coefficient is greater than the sum 
(w.r.t. JL) of a~l negative monomials. 

More formally: Let p = I:{nil .. .in - (3il ...in )· X;l . 

. . . ' x~n such that ail ...in ~ 0 , (3il, ..in ;::: 0 and ail ...in . 

13)O!le and the same polynomial can appear more tha.n once 
in the tree. 

I~! \i jte t.hat thi; : ection is based on algorithm 1'OSI7 
inclUding backtracking. 

15)indej>endent of C1tOOS[, i.e. regardless of the chosen 
sequence 

of every ne~ative one. The tree will be maximal if 
it is of the form presented in figure 7. Let n be the 
number of negative monomials" m be the number of 
positive monomiaIs occurring in a polynomial p and 
w.l.o.g. let n = m +k , k ;::: 018). Figure 7 represents 
the number of nodes at each level of the tree which 
corresponds to p. First of all, the numLer of nega
tive monomials must19) be reduced to the number of 
positive monomials (since n ~ m). Then, n and m 
must be alternately decreased by 120). Note that, in 
figure 7 we will select m instead of n if n = m holds. 

Lemma 4.1 Let p be a polynomial with m pvsitive 
monomials and n negative monomials. For the worst 
case of algorithm P("SITIVe, ll(p) and CJ(p) are 
as follows: 

II(p) 

~(p) = 

16)The ..:~ndition ai 1 ... i n {3i 1 ... i n = 0 provides a. normalized 
/polynomial where, for example, 2x2Y_x2 y+ ... is not allowed. 

17)This fact leads to the exaMination of all nodes of the cor
responding trer 

18)see lemma 4.1 

19)in order to a.cnieve the .vorst case 
2°)This condition has to be guaranteed since for each real 

2number a > 0, the following fact holds: (Vb =I: 0) a > (a 
b)(a + :"), since (a -b)(a + b) = a2 _ b2 

• 
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As we have seen-in the last section (example 3.1
and example 3.2),  there exist different possibilities
to choose negative and positive monomials. These
multiple choices can be described by a tree”) of
which the nodes represent the polynomials p.- gen-
erated from a given polynomial p.

o The number II(p) of paths (i.e. the number of
leaves) in this tree stands for the number of dif-
ferent sequences from p to  the result 'positive’
or ’no, answer’, which procedure POSITIVE
re turns .

. The number <I>(p) of nodes (except the root)
represents the  number of computations of the
sum of two monomials (i.e. it is identical“) to
the number of calls of procedure CHANgé').

Example 4.1_ (Example 3.1 revisited) Figure 6
illustrates the number of polynomials which can be
created when starting with the polynomial p of exam-
ple 3.1. Due to the difl‘iculty of graphically display-
ing all nodes, we present their numbers (beginning
a t  level 4), only. Totally, 768 paths through this tree
exist (although p is a relatively simple polynomial)
of which 212 cannot be used to show the positiveness
of p. Note that <I>(p)'= 1967.

The best case”) for the complexity of procedure
POSITIV£ is n ,  where n represents the number of
negative monomials occurring in p. This complex—
i ty  can only be achieved if p is a polynomial such
that each positive monomial can cover all negative
monomials, i.e.

. the exponent of each positive monomial is
greater than or equal to the exponent of each
negative monomial (for all variables) and

o each positive coefficient is greater than the  sum
(w.r.t. p )  of all negative monomials.

More formally: Let p = :(‘aglmin — ß;‚__„-„) ~ z?  -
...-233." such that a t l a s "  Z 0 , flaunt. Z 0 and %....3.‘

13)One  and the same polynomial can appear more than once
in the tree.

“Wate that this : action is based on algorithm POSI7 '
including backtracking. ‘

15) independent  of 0110088 , i .e.  regardless of the chosen
sequence

ß;„„;„ = 016). Then, the following two conditions
must hold:

° (Vai....in > 0)(Vßjl. . . j„ > 0)(Vk € [LnDi/e 2
jk

‘ (Vai‚...i„ "> 0)a i1 . . . i ‚ .  > Ellyn—l") 'ßj,...j‚.

A typical polynomial, fulfilling these conditions,
is considered in example 4.2.

Example 4 .2  Let p = 32:2y + 62y  - 4a: — 5y - 2
and u = 2. Each positive monomial can cover all
negative monomials since 3 > 4-2—'2+.5v2‘2+2-2'3
and6  > 4 -2"1  +5-2 ‘1 '+2 -2 ‘2 .

The worst case for procedure POSITIVE will
occur if p is not greater than zero") and the corre-
sponding tree is maximal. Furthermore, the expo-
" nents of each positive monomial have to  cover those
of every negative one. The tree will be maximal if
it is of the form presented in figure 7. Let n be the
number of negative monomials,-m be the number of
positive monomials occurring in a polynomial p and
w.l.o.g. let n = m+lc  , k 2 013). Figure 7 represents
the number of nodes at each level of the tree which
corresponds to  p. First  of all, the number of nega-
tive monomials must”) be reduced to  the number of
positive monomials (since it 2 m).  Then, n and m
must be alternately decreased by 12°). Note that, in
figure 7 we will select m instead of n if n = m holds.

Lemma 4.1 Let p be a polynomial with m positive
monomials and n negative monomials. For the worst
case of algorithm POSITIVE, Il(p) and ‘I>(p) are
as follows:

“(p) = (ml)3 . n!  . mn—m—l

Np) = m-n!- jg 6%; +

"!?—"1"? '25! fl (m — rimm —‚ Lil)
j =1  t=1

“)The condition nr.-‚_...‘„ßa„..i„ = 0 provides a normalized
r/polynomial where, for example, 2z2y—zzy+  . . . is not allowed.

1”This fact leads to the examination of all nodes of the cor-
responding trer

18)see  lemma 4 .1
1” in  order t o  achieve the  worst case
2”This condition has t o  be guaranteed since for each real

number a > 0, the following fact holds: (Vb # 0) a2 > (a —
b)(a + 5), since (a —"b)(a + b) = a2 - ba.





• • • • • • • • 

•••••••••••••••••••••••••••••••••••••••••••••••• 
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The following diagram provides. a more detailed representation of the above tree. The nodes (i.e. the 
polynomials of a sequence) are identified by numbers. Each number of a node corresponds to its occurrence 
w.r.t. the tree. Thus, two identical numbers characterize the same subtree. The trees corresponding to the 
bold typed numbers are explicitly given, whereas the trees corresponding to the normal typed numbers are 
only pointed to. The vertical bars separate classes of subtrees belonging to different roots. The sign Efl (8) 
stands for a leaf of a successful (non-provable) vath w.r.t. POSITIVE. 

o 

123341166 

11 12 12 13 1· 111 15 1 21 222222 11232 aa 34 311 36 11321 34 34 44 411 45 114 35 35 U &4 54 115 22 3~ 45 5466 

111 112 113 113 1121 122 123124 1211 I '.11 123 123 133 134 134 1124 124 133 143 143 1113 125 134 143 11111 1211 211 211 1211 222 222 1222222 
322 1122 332388 334 1123222 333 344 3411 I 124 334 3U 3114 1 125322345 354 1133 3H 3B 1134 211 ~45 4114 41111 I 143 354 1143 1144 1155 222 455 5H 

1111 11121112 11111 11221122111121122 1133 11122 1212 11221 1222 1223 11231 122212331234112231233 1243 11212 1234 1243 11233 1233 
j1112 1234 1343 1344 11243 1432 e 11133 13U e 1 :1111 2111 12111 2222 122222222 I 3321 22~2 11222 3321 3333 112233333 112333333 11234 2222 

34113 11243 3&42 I 3453 3453 1:>43 I 13U 2111 411113 I 1432 3542 I e 
11111 11111 111111 11122 111221 11112211221 I nUl 11221 112211 11221 112211 Ell 111122 Ell 111111 12121 I Ell 112121 12341 le 113431 12342 1 

11122 13442 1 e I e 1 e I e I Ell 112342 341132 I e I 13H2 34532 

Ell I Ell 1Ell I Ell I Ell I Ell 1Ell I Ell) Ell 

Figure 6: Number of paths for the pol~'nomial of example 4.1 

3x2 y +6xy2 - 2x2 - 6y2 - 12xy - 9x - 9y
• 

/.\ A A A /.\ A A A
 
35 12 25 25 32 24 25 25 

109 24 64 64 91 54 64 64 
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32:23; + 6:1:y2 — 2:02 — 6y2 - 12mg - 92 -— 9y
.

AAA/ \AAAA
35 12 25 25 32 24 25 25 203

109 " 24 64 1 64 91 54 64 64 534
162 24 91 91 148 54 87 87 744
124 0 43 43 _ 96 6 59 59 430

The following diagram providesa more detailed representation of the above tree. The nodes (Le. the
polynomials of a sequence} are identified by numbers. Each number of a node corresponds to its occurrence
w,r.t. the tree. Thus, two identical numbers characterize the same subtree. The trees corresponding to the
bold typed numbers are explicitly given, whereas the trees corresponding to the normal typed numbers are
only pointed to. The vertical bars sepamte classes of subtrees belonging to different roots. The sign ® (6)
stands for a leaf of a successful (non-provable) oath w.r. t. ‘POSITZ V8 .
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[1112  1234  1848  1844  | 1243  1482  e I 1133  1344  e I 2111  2111  I2111  2222  I 2222  2222  I 8821  2222  I 1222  3321 8888 I 1223  3333 [1233  3333 [1234  2222

8488  I 1243  8842  [3453  3453 1343  I 1344  2111  4888  | 1432  3542  I e

11111 11111 | 11111  11122|11221 | 11122 11221 nun  11221 |12211 11221 [12211 $ [11122 e | 11111 12121 [9  | 12121 11342 l e  | 13431 12342|
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Figure 6: Number of paths for the polynomial of example 4.1
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nm
 

nm(n -1)m
 

nm(n - 1)m(n - 2)m
 

nm(n - l)m(n - 2)m ..... (n - k)m =: 1 

1·(m-1)m 

I· (m..,.. l)m(m - l)(m - 1) 

/ . (m - 1)m(m-l)(m-I) ..... (m - i)(m - i)
 

I· (m -l)m(m -l)(m - 1)· ... · (m - i)(m - i)(m - i -l)(m - i)
 

I . (m - 1)m(m-l)(m-I) ..... (m - i)(m - i)(m - i - 1 )(m - i)(m - i-l)(m - i-I)
 

. /. (m -1)m(m - 1)(m - 1) ..... (m - i) (m - i) (m - i - 1)(m - i)(m - i - l)(m - i-I) · ... ·1·1 

Figure 7: The .worst case for .I?rocedure POSITIVE 
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1

nm

nm(n — 1)m

nm(n — l )m(n — 2)m

nm(n—-l)m(n——2)m-...~(n——lc)m=:l

‘l-(m—l)m

Iv(m—.-l)m(m—1)(m-1)

l-(m—l)m(m——l)(m-1)-. . . -(m-i)(m—i)

I-(m—l)m(m—1)(m—1)-...-(m—i)(m—i)(m—i—1)(m—-i)

I-(m-l)m(m—-1)(m-1)-...»(m-i)(m—i)(m—i—‘)(m—-£)(m-—i——1)(m—i-1)

-l-(m—1)m(m—1)(m—1)-...-(m—i)(m—i)(m-—i—1)(m—i)(m—i—1)(m—i—1)-...‘1'1

Figure 7: The yvorgt case for procedure POSITIVE

10





5 11 THE 'NO CONSTANTS'-CASE 

. These two expressions are valid if n ~ m. In 
order to get n(p) and cI>(p) for m > n, we have to 
interchange the values of m and n, only. 

A polynomial composed of 4 negative and 3 pos
itive monomials can correspond to a tree with 5184 
leaves and 13729 nodes (in the worst case). A typi
cal example of a tree for representing the worst case 
'of algorithm POSITIVe is the following one. 

Example 4.3 Let p = 3x2y + 3xy2 - 4xy - 8x :.... 8y 
ar:td Jl = 2. The symmetric tree of figure 8 corre
sponds to p. Note that all paths end with 0, i.e. p 
has a root at the position (2,2) and thus p ;;1 0 for 

Jl = 2. 

The following lemma provides a rough lower and 
a rough upper bound for the number cI>(p) of nodes 
determined in lemma 4.1. 

Lemma 4.2 Let cI>(p) be defined as in lemma 4.1. 
Then, 

cI>(p) = 1 ifn = m = 1 or 
2II(p) ~ cI>(p) ~ 3II(p) otherwise. 

The bounds of lemma 4.2 define the time 
complexity (for the worst case) of procedure 
POSITIV£ (with backtracking) as Q(m! . n! . 
mn-m). By using the formula of Stirling2t ), the com
plexity changes to Q«mn)n). 

We believe that, in many cases, procedure 
CHOOS£ will directly generate a successful se
quence proving the positiveness of a polynomial p if 
p is positive. In these cases, the time complexity of 
procedure POSITIVe is O(k·logk) where k repre
sents the number of monomials occurring in p. More 
precisely, the number of calls of procedure CH.A.N"9£ 
lies between n and m +n - 1 (where n and m are the 
mlmbers of negative and positive monomials). The 
case m +n -1 will be achieved if m - 1 posi' ive mono
mials are covered by a part of the negative ones and 
the m th positive monomial covers the remaining neg
ative monomials. Procedure SORT-MoN22) has 
the complexity23) (n· log n + m· log m) . v where v 
is the number of different variables occu~ring in p. 

21)n! ::::: (~)n. V27rn.
 

22)which represents the main part of procedure C1f.OOS£
 
23)if, for example, a heap sort algorithm is used
 

Note that this complexity can only be achieved if 
procedure CHOOS£ directly finds a successful path 
through the corresponding tree of the polynomial. 
However, it ia obvious that there exist positive poly
nomials (in the sense of POSITIVe with back
tracking) that cannot be proved positive (without 
backtracking) by use of CHOOS£: 

Example 4.4 Let P = x 4 y2 +3x3 yz - 8x3 - 4X2 y2 

and Jl = 2. Procedure CHOOS£ creates the sequence 
4Po ;;:= x y 2 +3x3 yz - 8x3 - 4x2 y2. 

Pt = 3x3 yz - 4x2 y2 

such that Pt cannot be proved to be positive. I!ow
ever, the sequence 

4Po x y 2 +3x3 yz - 8x3 - 4x2y 2 

Pt 3x3yz - 8x3 

3
P2 x yz 

ends with a polynomial which is obviousLY ·positiv.e. 

5 The 'No Constants'-Case 

This section deals with the effect of signatures with
out constant symbols on algorithm POSITIVe. 
As mentioned in section 2, the constants of Fare 
strongly influencing the applicatiOl' of polynomial 
c. rderings in general, as well as that of method 
POSITIVe in particular (see remark 2.1). For 
example, increasing the interpretations of constant 
symbols can lead to the orientation of an equation 
or to an easier interpretation of other operators. 

Example 5.1 Let 

R = ((x.y) 0 Z -4 x.(y 0 z)} 

and Jl = 1. Wilh the help of the interpretations 
2[o](x, y)= x y and [.](x, y) = x +2y, R can be ori

ented in the presented way. However, setting Jl to 
2, the interpretations [o](x, y) = xy and [.l(x, y) = 
x +2y are sufficient. Note that the latter interpreta
tions cannot orient R if JL = 1. 

In t.he case of R not containing an:. constants, 
algorithm POSITIVe requires the minimum JL24) 
to be set. However, if algorithm POSITIVe is 
changed such that JL is no longer considereu, the re
sulting method is not only more efficient, but also 
more powerful. The improvement is based on the 
following observation. 

24)Remember that the original method sets p. to 2. 

5 THE ’NO CONSTANTS’-CASE.

; These two expressions are valid if n 2 m.  In
order to "get  .II(p) and @(p) for m > n, we have to
interchange the values of m and 11, only.

A polynomial composed of 4 negative and 3 pos-
itive mo'nomials can correspond to  a tree with 5184
leaves and 13729 nodes (in the worst case). A typi—
cal example of a tree for representing the worst case

:of algorithm POSITIVE is the following one.

Example 4.3 Let p = 3:02;; + 323/2 -— 4mg -— Sa: ‘— 8y
and u = 2 .  The symmetric tree of figure 8 corre-
sponds to  p.  Note that all paths end with 0, i .e .  p
has a root at the position (2,2) and thus p Z 0 for
[l. = 2 .  .1

The following lemma provides a rough lower and
a rough upper bound for the number <I>(p) of nodes
determined in lemma 4.1.

Lemma 4.2  Let <I>(p) be defined as in  lemma 4.1.
Then,

Q(p)=l  ‘_ i f n=m=10r
2H(p) S §(p)  S 3II(p) otherwise.

The bounds of lemma 4.2 define the time
complexity (for the worst case) of proc'edure
POSITIVE (with backtracking) as 0 (m!  - n! -
mn‘m). By using the formula of Stirling”), the com-
plexity changes to  0( (mn)") .

We believe that ,  i n  many cases, procedure
CHOOSE will directly generate a successful se—
quence proving the  p-ositiveness of a polynomial p if
p is positive. In these cases, the time complexity of
procedure POSITIVE is 0 (k - log  k )  where k repre-
sents the number of monomials occurring in p. More
precisely, the  number of calls of procedure CHANGE
lies between n and m+ n— 1 (where n and m are the
numbers of negative and positive monomials). The
case m+n—1 will be achieved if m— 1 posi‘ive mono-
mials are covered by a part of the  negative ones and
the m‘h positive monomial covers the  remaining neg-
ative monomials. Procedure SORT—MOM” has
the complexity”) (n  - logn + m - tog m)  - v where v
is the  number of different variables occurring in  p.

21)n !  z (E)" - \ / 21rn .
22)which  represents the main part of procedure CHOOSE
23l i t ,  for example, a heap sort algorithm is used

11

Note that  this  complexity can only be achieved if
procedure CHOOSE directly finds a successful path
through the corresponding tree of the  polynomial.
However, it is obvious that there exist positive poly-
nomials (in the sense of POSITIVE with back-
tracking) that cannot be proved positive (without
backtracking) by use of CHOOSE:

Example 4.4 Let p = :::“y2 + 31:33]: — 833 - 4223/2
and u = 2.  Procedure CHOOSE creates the sequence
po = 1:4y2 + 32:3yz — 8x3 — 422g”-
pl = 333313 - 4223/2

such that pl cannot be proved to be positive. How-
ever, the  sequence

p0 = X“)!2 + 3133/2 — 82:3 — 4x2y-2
pl = 3x3yz -- 8x3 > ’
p2 = 333/2

ends with a polynomial which is obviously/positive.

5 The ’No  Constants’—Case

This section deals with the efl'ect of signatures with-
out constant symbols on algorithm POSITIVE.
As mentioned in  section 2 ,  the  constants of .7: are
strongly influencing the application of polynomial
crderings in general, as well as that of method
”POSITIVE in particular (see remark 2.1). For
example, increasing the  interpretations of constant
symbols can lead to  the orientation of an equation
or to  an easier interpretation of other operators.

Example 5.1 Let

R = {(x.y) o z -> a:.(y o z)}

and u = 1. With the help of the interpretations
[o](z,y) = 323; and [.](z,y) = a; + 2g, 12. can be ori-
ented in the presented way. However, setting u to
2, the interpretations [‘o](a:,y) = my and [.](m,y) =
a: +2y  are sufl‘icient. Note that the latter interpreta-
tions cannot orient ’R. if u = 1.

In the case of R not containing an). constants,
algorithm POSITIVE requires the minimum [424)
t o  be set. However, if algorithm POSITIVE is
changed such that p is no longer considered, the re-
sulting method is not only more efficient, but also
more powerful. The  improvement is based on the
following observation.

2”Remember that the original method sets u to  2.
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%2 11 + 3%11 2	 3%2 11 +%112% 1I+3%1I2~~~3%211+%1I
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AAAAAAAAAAAAAAAAAAAAAAAA
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Figure 8: The paths for the polynomial of example 4.3 

Remark 5.1 The monomial x2y is greater than the 2x2, x2y ~ M 3xy and xy2 ~ M 5y2. Note that algo

monomial100xy since there exists a p (= 101) such rithm POSITIVr cunnot jJrove the positiveness of
 
that ("Ix, y ~ p) x2y > lOOxy. Thus, the knowledge Pt - P2 if P $,5.
 
of the existence of such a p is sufficient to guaran

tee the positiveness. The most important feature of the definition of 

:Jp is that it does not use p, explicitly26). However, 
The following definition generalizes the brief if there exist:> just one constant symbol in 'R, then p 

comment of remark 5.1.	 has to be set to a value and we have to check P > 0 / 
w.r.t. p. Thus,:Jp can only be applied if'R	 does 

Definition 5.1 (Ordering on polynomials) not contain any constants: 

•	 Let mt = atx~l .. . ..x~n and m2 = a2x~1 .....x~n 
Lemma 5.1 The ordering 'rp defined by s ~p t iffbe two monomials such that at, a2 2: O. Then, 
[s] :Jp [t] is a reduction ordering on T(F, X) if no 

mt ~M m2 iJJ constant symbols in F exist. 
(Vj E [1, n]) ij 2: kj /\ (31 E [1, n]) iz > kz 
or	 (Vj E [1,n]) ij =kj /\ at> a2 :Jp is a generalization of the o£dering realized by 

algorithm POSITIV£ ii no constant symbols ex
mt =M m2 iJJ ist (see example 5.2). Therefore, the occurrence	 of
(Vj E [l,n]) ij = kj /\ 0t = 02 

constants reduces the power of polynomial orderings. 
With the help of this observation, one could replace • Let Pt = 2:-1=t mtj and P2 = 2:-~~t m2j with 

mtj, m2j being monomials with non-negative	 all constant symbols by new27) variables before ap

coefficients. Then25),	 plying the polynomial ordering. This pre-processing 
is always helpful if the constant symbols occur in the 
presumably greater sides of the rules, only. Consider 

Pt :Jp P2 iJJ . the following example. 
{mll, ... ,mllJ ~'rM {m21, ... ,m2z~} 

Example 5.3 Let'R be composed of the simple rules In order to prove the positiveness of ~ polynomial 
P, we consider P of the form Q - r where both q O+y --+ y (*) 
and r are two polynomials with positive coefficients, s(x) + y -+ s(x + y)
exclusively. This way, P is positive, if q :Jp r. 

specifying the addition on natural numbers. The in
2Example 5.2 Let Pt (x, y) = x y + xy2 and P2 = terpretations [-r}( x, y) = 2x + y and [0]0 = 1 enable 

2x2 + 3xy + 5y2. Then, Pt :Jp P2 since x 2 y 'rM 
26)Oefinition 5.1 implicitlydepends on the existence of a. /S.
 

25)The ordering >->- denotes the multiset extension 'f >-. 27)concerning euh rule
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Figure 8: The paths for the polynomial of example 4.3

Remark 5.1 The monomial 2:23] is greater than the
monomial 10033] since there exists a p (= 101) such
that (Vz,y 2 a) way > 100.12g. Thus, the knowledge
of the existence of such a a is sufl‘icient to guaran-
tee the positiveness.

The following definition generalizes the brief
comment of remark 5.1'.

Definition 5.1 (Ordering on polynomials)

. Let m1 = (‚um?-. . „wir and mg = 9;n“. . :15,"
be two monomials such that aha;  _>_ 0 .  Then,

ml  >M m2 ill

(Vj €" [1 ,n ] )  ij Z kj A (31€ [1 ,n ] . ) i 1>  k;
or (Vj E [1,n]) i,- = kj A al > 02

m1 =M ma ill

(Vj € [1 ,n ] )  ij : kj [\ (11 = (12

Let p1 = 2.21:1 m1, and p; = 253:1i with
ml j ,m2 j  being monomials with non-negative
coefficients. Then”),

Pi 3P  P2 'ifi' -
{ml la  ' ' ' 7m1l1 }  >>“M {m217  ' ' ' 1  "1215}

In order to prove the positiveness of a polynomial
p, we consider p of the form a — r where both q
and r are two polynomials with positive coefficients,
exclusively. This way, p is positive, if q :lp 1‘.

Example 5.2 Let p1(a:,y) = 22y + 2:312 and pg
222 + 3mg + 5312. Then, pl :]p 1); since 32y FM

25)The  ordering >>— denotes the multiset extension ‘f >-.

222,233; >M 32y and zyz >M 5312. Note that algo-
rithm ’POSITIW cannot prove the positiveness of
111 —p2 i fu 5.5-

The most important feature of the definition of
3}: is  that i t  does not use a ,  explicitly”). However,
if there exists just one constant symbol in R ,  then ;;
has to be set to  a value and we have to check p > 0 ‚
w.r.t. n .  Thus, 3p  can only be applied if R does
not contain any constants:

Leinma 5.1 The ordering >}: defined by s >? t 117
[5] 3}) [t] is a reduction ordering an TU: , X) if no
constant symbols in }" exist.

Zip is a generalization of the ordering realized by
algorithm 'POSITZVS if no constant symbols ex-
ist (see example 5.2).  Therefore, the occui'rence of
constants reduces the power of polynomial orderings.
With the help of this observation, one could replace
all constant symbols by new”) variables before ap-
plying the polynomial ordering. This pre-processing
is always helpful if the constant symbols occur in the
presumably greater sides of the rules, only. Consider
the following example.

Example 5.3 Let 'R, be composed of the simple rules

0 + y —+ y (*)
3(a) + y —+ s(a: + y)

specifying the addition on natural numbers. The in-
terpretations [-i—](a:, y) = 2x + y and [0]() = 1 enable

26)Detinition 5.1 implicitly'depends on the existence of a 5;.
27)concerning each rule
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the orientation of the above rules. The sf'me inter
pretation (with the same p, which is equal to 1) can 
also orient n if (*) is replaced by x + y -+ y. 

The replacement of constants, occurring on the 
presumably smaller sides c f the rules, by variables28) 

can lead to the necessity of changing certain inter
pretations to more complex ones. 

Example 5.4 Consider the rule 

divp(x, y) -+ rem(x, y) == 0 

which can be oriented using [rein]( x, y) = x + y, [== 
](x, y) = x +y, [0]0 = 1 and [divp](x,y) =x +y+ 2. 
[divp](x, y) has 0 be set to x +2y+ 1 if 0 is replaced 
by y. 

In some cases, the substitution of cOllstants, that 
occur on the presumably smaller sides of the rules, 
by variables can generate rules which can no longer 
be oriented: 

Example 5.5 Let n be 

\.	 f(x,x) -+ l.:x ), 
h(a) -+ f(a, b) }. 

With"the help of the interpretations [f](x, y) = xy + 
1,[h]{x) =x2 ,[a]0 = 2 and [b]O'= 1, the rules can 
be directed in the desired way. However, in order to 
replace the constants of the second rule by variables, 
we have to use the substitution (7 = {a +- x, b +- x}. 
Thus, the new rules of n cannot be oriented in the 
required directions since {f(x, x) -+ h(x), h(x) -+ 

f( x, x)} is not terminating29). 

Note that it is always more convenient to ap
ply ~p (Le. definition 5.1) instead of algorithm 
POSITIVE to a system n containing no constants 
on the presumably smaller sides, since definition 
5.1 is more powerful (in this case) than algorithm 
POSITIVE (even with backtracking) as well as 
more efficient. 

28)of the presumably greater sides
 
l&)~ee also {f(a) -+ f(b)}.
 

6	 A Modification of the Ap
proach of BenCherifa and Les
canne 

In this section, we present a deterministic version of 
the technique contained in [BL87]. The backtracking 
component will be replaced by a set of constraints. 
The reasons for modifying the BenCherifa/Lescanne 
.approach are the following ones: Since there exist 
only heuristics for procedure CHOOSE we possibly 
need to backtrack in order to find a successful path 
(and this considerably extends the time complexity 
of algorithm POSITIVE, see section 4). Another 
more important aspect concerns the generation of an 
interpretation for a given "'RS(see [Ste91]). More 
precisely, given v...riable interpretations30) and rules 
li -+ ri, we have to choose the right coefficients 
such that [li] - [ri] ~ 0 holds. This problem can
not dirtctly be solved with the help of algorithm 
POSITIVE of section 3, but by using the following 
algorithm. First of all, we illustrate the basic ideas 
of our derived algorithm. 

• One	 of the main features of our algorithm if' 
identil-al to the basic idea of the BenCherif<1 
and Lescanne method: 

X~l	 .... ' x~n ~ p'E<kj-ij). X;l ..... x~n 
if (Vj) kj ~ i j 

This inequality is used in ii) of the following 
item. 

•	 -The algorithm transforms a polynomial p (that 
we want to be proved positive) into a set of 
linear31) inequalities. Let p = 'E(G:i1 i n 

{3il ...i n) . X;l such that G:il i~ ~. .... x~n 
0, {3i1 ,..in ~ 0 and G:il,..in • {3i1 •••in = O. The 
transformation is based on the following steps: 

i) Dividing: Each positive coefficient G:i l ...i n 

will be split into a sum of new variables 
')'il ...inkl".kn over:IN (or lR.) such that each 
item of the sum corresponds to a negative 
coefficient {3kl ...kn if, and only if, ij ~ kj 

30)i.e. polynomials c .v hich the coefficients are also variables 
31)The inequalities are of linear form if the interpretations 

are 'given, i.e. if the coefficients are not variables. 
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the orientation of the above rules. The same inter-
pretation (with the same a ,  which is equal to I)  can
also orient R if (*) is replaced by a: + y ——> y.

The replacement of constants, occurring on the
presumably smaller sides c fthe rules, by variables”)
can lead to the necessity of changing certain inter-
pretations to  more complex ones.

' Example 5 .4  Consider the rule

divp(z,  y) —> rem(z ,  y) E 0

which can be oriented using [rein](:c,y) := a: + y, [E
](w 1!) — z+  % [010 — 1 and [divpKw y )  =‘x +y+2-
[divp](z, y) has a be set to z +2y+  1 if 0 is replaced
by  y

In some cases, the substitution of constants, that
occur on the presumably smaller sides of the  rules,
by variables can generate rules which can no longer
be  oriented:

Example 5 .5  Let 'R be

I f ( $ ,$ )  "> b i z ) ;

h(a)  -> f(a,b) }-
Withfilhe help of the interpretations [f](a:, y) = mg +
1, [h,](x) 2-222 ,  [a]() = 2 and [b]()= 1, the rules can
be directed in the desired way. However, in order to
replace the constants of the second rule by variables,
we have to use the substitution 0 = {a <— cc,b <— a:}.
Thus, the new rules of R, cannot be oriented in the
required directions since {f(:v,z) —-> h(z),h(a:) —>
f(a:,1:)} is not terminating”).

Note that i t  is  always more convenient to  ap-
ply :lp (i.e. definition 5.1) instead of algorithm

'POSITIVS to a system R containing no constants
on the presumably smaller sides, since definition
5.1 is more powerful (in this case) than algorithm
'POSITIVE (even with backtracking) as well as
more efficient.

2”o f  the presumably greater sides

also {f(a) _ m)}-

)
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6 A Modification of  the Ap-
proach of BenCherifa and Les-
canne

In this section, we present a deterministic version of
the technique contained in [BL87]. The backtracking
component will be replaced by a set of constraints.
The reasons for modifying the BenCherifa/Lescanne
approach are the following ones: Since there exist
only heuristics for procedure CHOOSE we possibly
need to backtrack in order to  find a successful path
(and this considerably extends the time complexity
of algorithm POSITIVE, see section 4).  Another
more important aspect concerns the generation of an
interpretation for a given "‘RS {5% [Ste91]). More
precisely, given variable interpretations”) and rules
l; —+ r,-, we have to choose the right coefficients
such that [l.—] — [rg] j 0 holds. This problem can-
not directly be  solved with the help of algorithm
'POSITIVS of section 3 ,  but by using the following
algorithm. First of all, we illustrate the basic ideas
of our derived algorithm.

0 One of the main features of our algorithm is
identical t o  the basic idea of the BenCherifa
and Lescanne method:
3’1“ . _ _ . . 1-5." Z „E(k j ' i j )  ‚3?  .

if 011')i i j

This inequality is used in ii) of the following
item.

. i n.:1:„

. The algorithm transforms a_ polynomial _p (that
we want to  be proved positive) into a set of
linear“) inequalities. Let p -— zw.-‚_ _,-„ —
ß;‚_„.-„) - at? - - ml," such that a‚-‚_ _‚-„ 2

Ovßi1 . . . i „  Z 0 and a i1 . . . i n 'fl i 1 . . . i n  = 0-  The
transformation is based on the following steps:

i)  Dividing: Each positive coefficient a;‚___‚-„
will be split into a sum of new variables
Win- inn . . .“  over ]N (or R.) such that each
item of the sum corresponds to a negative
coefficient ßk‚___k„ if, and only if, i,- 2 kj

3" ) i . e .  polynomials c which the coefficients are also variables
31)The  inequalities are of linear form if the interpretations

are given, i.e. if the coefficients are not variables.
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positive monomiaIs ai, ... i .. negative monomials {3Ie, ... Ie .. 

+ 

LU~··~··· 
ij ~ lej 

A positive monomial is represented by [±] whereas EJ stands for a negative monomial. Each [±] (i.e. the 
. coefficient of each [±]) is able to cover those a, of w~ich the exponents (of the corresponding variables) 
are not greater (ij ~ kj). Thus, we divide the coefficient of each [±] into variables, where each variable 

corresponds to a negative monomial B (which is coverable by 8. 
Figure 9: Division process of algorithm 6.1 

holds for all j. Figure 9 provides a graph
ical illustration of this process. 

ii) Distributing: For each negathe coeffi
cient fhl ...kn we create an inequality ofthe 
form 

"HL(ij-kj) . "V" > a
L ' ,.. I II .. ·lnlel ... len - !Jkl ...k n • 

Note that /il ...inlel ... len is part of the posi
tive monomial 0il ..•i n • It has been gener
ated for covering fikl ...kn Because of the • 

fact that ij ~ kj holds (see i», we may 
multiply /il ...inlel ... len by the difference of 
the expon.ents of ail ...in and (3kl ...kn • 

iii) Solving: The set of the inequalities 
generated in i) and ii) can be solved 
or disproved by applying a decision 
procedure32) for linear inequalities. For 
solving linear inequalities we can use, 

'for example, the first phase of the Sim
plex method (see, for example, [Mit76], 
[Thi79], [Chv83]) or any other, more effi
cient and adequate technique. 

The formal description of the above ideas can be 
found in algorithm 6.1 which is contained in figure 
10. A detailed example, illustrating the steps of this 
algorithm, is presented in figure 11. 

32)This procedure eventually genera.tes values for the va.ri

al-~_,· ~1'l' .. 'nA:l ...kft' 

33)5'-'" .1,.. Ition 2.2 
30)We do not need to explicitly compute a solution of the 

set of inequalities. It is sufficient to know tha.t there exists a. 
solution. 

The additional condition '1" 11 = Ii u ...' of 
step 1. in algorithm 6.1 refers to the case that a pos
itive monomial can cover only one negative mono
mial. For example, the polynomial 

p = 2x2 +5y2 ....,. 3x - 2 

implies that y2 covers only -2. Then, the al
gorithm generates the sets It := {2 ~ / 2010 + 
/2000 , /0200 := 5} and h := {J.L' 1'2010 ~ 3, J.L2 • 

1'2000 + J.L2. 5 ~ ..:}. 

Example 6.2 We once again consider example 4+ 
It has been shown that the polynomial 

p = x 4 y2 +3x3 yz _ 8x3 _ 4x2 y2 

cannot be proved to be positi:Je w.r.t. J.L = 2 with the 
helpof procedure C1{OOse. It is very easy to prove 
the positiveness of p by using algorithm 6.1: 

11 • - {	 1 ~ 1'420:300 +1'42~20' 
/311300 := 3 } 

12 .- {	 81'420300 + 41'311300 ~ 8 , 
4/42~20 ~ 4 } 

I .- {	 1 = /420:300 + 1'42~20 +ull
 

/311300 = 3,
 
21'420300 +3 = 2 + 'U,2,
 

/42~20 = 1 + u3,
 
Ul +U2 +U3 > 0 }
 

1'420:300 = 0,1'420220 = 1,1'311300 = 3, Ul = 0, U2 = 
1, U3 = 0 represents a sol!;tion of I. 

In . .;p 3. of rt.Lgorithm 6.1, a strict inequality 
(Ul + U2 + ... > 0) must be added to I. Unfor
tunately, the Simplex method cannot directly deal 
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positive monomials' at ,  „i , .

+ + on‘+

14

negative monomials ßk ,  „Ju.

— no  —

A ll
A positive monomial is represented by whereas [EI stands for a negative monomial. Each (i.e. the

' coefficient of each . }  is able to cover those E], of which the exponents (of the corresponding variables)
are not greater (ij 2 k,—). Thus, we divide the coefficient of each into variables, where each variable
corresponds to a negative monomial EJ (which is coverable by . .

Figure 9: Division process of algorithm 6.1

holds for all j .  Figure 9 provides a graph-
ical illustration of this process.

ii) Distributing: For each negative coeffi-
cient ,mkn we create an inequality of the
form

2112944") ‘ 7i1...i,.,,1m,,,_ Z flame.-
! Note that “winkt . . .“  is part of the posi-

tive monomial a.-1___,-„. It has been gener-
ated for covering fihmkn. Because of the
fact that ij 2 k,- holds (see i)), we may
multiply 7‚-I‚__‚-„‚‘l___k„ by the difference of
the exponents of a;‚__„—„ and film-kn.

iii) Solving: The set of the inequalities
generated in i) and ii) can be solved
or disproved by applying a decision
procedure”) for linear inequalities. For
solving linear inequalities we can use,

'for example, the first phase of the Sim-
plex method (see, for example, [Mit76],
[Thi79], [Chv83]) or any other, more effi-
cient and adequate technique.

The formal description of the above ideas can be
found in algorithm 6.1 which is contained in figure
10. A detailed example, illustrating the steps of this
algorithm, is presented in figure 11.

3”This procedure eventually generates value: for the vari-
al'.-.- 7‘1~- - ‘nk; - - -kn‘  '

33) Ition 2.2
3”We do  not need to  explicitly compute a solution of the

set of inequalities. It is sufficient to know that there exists a
solution.

see  " a”

The additional condition ’1 ' I; = I; U . . .’ of
step 1. in algorithm 6.1 refers to the case that a pos-
itive monomial can cover only one negative mono-
mial. For example, the polynomial

p=2z2+5y2—.3z—2

implies that 1/2 covers only —2. Then, the al-
gorithm generates the sets 11 :=  {2  2 720,0 +
7200.. , 70200 == 5}  and 12 == {Il ' 72010 2 3 ,112  °
720.. +u2 - 5 z 4} .

Example 6 .2  We once again consider example 4.4.
It has been shown that the polynomial

p = 234312 + 3333/2 ~— 8:1:3 —- 412312

cannot be proved to be positive w.r.t. p = 2 with the
helpof procedure CHOOSE. It is very easy to prove
the positiveness of p by using algorithm 6.1:

11 -'= { 1 Z 742030., + 7420220;
7311300 :=  3 }
87420300 + 47311300  Z 8 :
47420220 Z 4 }
1 = 7420300 + 74mm + "1»
7311300 = 3 .

27420300 + 3 = 2 + ua ,

7420;» = 1 + 113;

'11 + "2 + “3 > 0 }
7420300 = 0:7420220 = 117311300  : 3’"1  = 0,112 =
1,113 = 0 represents a solution of I .

12 .'= {

I :={

In . ep 3. of algorithm 6.1,  a strict inequality
(ul + U; + > 0) must be added to I.  Unfor-
tunately, the Simplex method cannot directly deal
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Algorithm 6.1 This algorithm determines whether a polynomial P is positive in the sense of :J33). Let 

P = '\"(a' . - a. .) ·xil . ·x in such that a' . > 0 a. . > 0 o· '. a. . - 0 and let 'VI Io tt···a" }J1I ...an 1'· .• n &l···ln - ,l-'ll··· l n - , 'l.·· l n fJs" ..•I n - I 1··· nkt ... kn' 

11, 0,; new variables over JR. As usual, J.l del otes the minimum of M. 

1.	 Dividing: Let 11 := {Oil ...in ~ L. "Iil .. .inkl .. kn I ail ... in > O,(lkl ...kn > O}.
kJ$lj 

If It = I~ U {Oil ...in ~ "Iil ...inkl ... kn} then let It := I~ U hil ... inkl kn := Oil ...i n }. 

2.	 Distributing: Let h := { L J.lL(kJ-ij). "Ikl ...kn ' l :"' ~ (lil ...in I (lil in > 0, Okl ...kn > O} 
kJ?i J

n 

3. Solving: Let 1:= {li = ri +Ui Ili ~ ri E It u I 2 } Uhil . inkl ... k ~ 0, Ui ~ 0, L Ui > a}. Generating the n 

values for "Iil ... inkl .. kn ' Ui of I with the help of a decision procedure for line~r inequalitie?4). p:J a 
w. r. t. J.l if I has a solution. 

Figure 10: D~terministic version of algorithm POSITIVE 

with such inequalities. Thus, an implementation of It is obvious that the more zeros the solu
algorithm 6.1 has to take this fact into consideration, tion vector of algorithm 6.1 contains38) the shorter 
and must the associated sequence, generated by algorithm 

POSITIVE, will be.	 .transform Ul +U2 + > a 
Note that the technique of BenCherifa and Lesinto Ul + U2 + ;;:: lpf 

canne with b:o..cktracking and	 the algorithTl' of this 
whele lpf (i.e. least-positive-floaL) represents the section have the same" power, i.e. whenever a poly 
positive floating-point number closest in value to nomial can be proved to be positive using procedure 
(but not equal to) zero (provided by the implemen POSITIVE it can also be proved positive with the 
to.l.tion). help of algorithm 6.1, and vice versa. In general, 
Theorem 6.1 Algorithm 6.1 always terminates. If algorithm 6.1 is more powerful than the BenCher
it does not faif35), p:J a holds. ifa & Lescanne approach without backtracking (see 

example 6.2). 
Our technique enables the generation of a cor

rect sequence p = Po ~ PI ~ ... ~ Pn :J 0 for the 
BenCherifa & Lescanne approach. The deduced so- 7 A Modified Simplex Algorithm 
lution Uhkl ...kn .} of algorithm 6.1 will be used 

'l""n An important part of algorithm 6.1 consists of solvin the following way: The part "Ikl ...kn ' "" of 0k1 ...knnl	 ing linear inequalities. In this section we give anwill be taken tu cover (lij ...i n , i.e. each element of 
informal description of a special version of the wellthe set Uhkl ...kn'l ...~n} will be considered. Each 
known Simplex method to solve this problem. Theitem "Ikl ...kn ' l "" n > 0 cvrresponds to a transition 
Simplex method39) minimizes (or maximizes) a linPi -+ Pi+l where the negative monomial (lil ... in and 
ear expression constricted by linear equalities (or the positive monomial akl ...k n will be added. Figure 
linear inequalities) that are sometimes called con12 contains a successful sequence for the polynomial 
straints. Such problems have come to be knownalready considered in example 6.1. This sequence is 

constructed by algorithm 6.1. as Linear Programming. The following approach 
is taken from [Thi79], [Mit76] and [Chv83] and the 

J',) Al~ ," 1hm 6.1 will fail, if there is no solution for the set I -
of part 3. 38)i.e. 1'k l ... k n . . = 0

·l····n
36)This implies splitting 3x2 y into lx2 y + 2x2 y. 39)proposed by Dantzig in 1947
 
37)We skip over 1'21 11 since its value is zero.
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Algorithm 6 .1  This algorithm determines whether a polynomial p is positive in the sense of 333). Let
P = Z(ai‚....‘‚. _ flame.) - $?  -.
u ,  b.:

url," such that anus“  Z 0‚ß i , . . . i , .  Z 0 ,011 . . . . 3 .  'ßi-...i,.
new variables over IR. As  usudl, p der otes the minimum of M.

= 0 and  l e t  7h . . . 1nk1  . . . kn ,

1 .  Dividing: Let II := {a„___‚„ 2 2_7 i1 - - - i nk , . . . k . .  | rig-1...;n > 0,ßk‚___k„ > 0} .
13 !

If 11 = If U {0min Z 'Yi,...i„„‚___‚.„} then let Il == Ii U {751...i„‚.„__.„ ==ai ,  min}-

2.  Distributing: Let [2 :={Ic Z 1120‘: ")'.7k1..k...-1 ‚n _>ß,'‚__ „_ |,ß,'‚__ _,„ >0 ,  ak‚__ *„ > 0}
k) >‘J

3 .  Solving: Let I : :  { l , - :  r.-+ut | I > 1', € 11UI2}U{7„_ in,“ „_ > 0 ,  u ,_> 0 ,211 ,  > 0} .  Generating the
values for 7;‚__ _,„k ..„k , u ,  of I with the help of a decision procedure for linear inequalities“) p 3 0
w. r. t .  a if I has a solution.

Figure 10: Deterministic version of algorithm ‘POSITIVS

with such inequalities. Thus,  an implementation of
algorithm 6.1 has to take this fact into consideration,
and must

transform u l  +u2  + > 0
into u1+u2+. . . 21p f_

where 11) f (i.e. least—positive—float) represents the
positive floating-point number closest in value to
(but not equal to)  zero (provided by the implemen-
tat ion) .

Theorem 6 .1  Algorithm 6.1 always terminates. If
it does not fail”), p j 0 holds.

Our technique enables the generation of a cor-
rect sequence p : po Q pl ; . Q p„ '_'l 0 for the
BenCherifa & Lescanne approach. The deduced so-
lution U{7k1-~ -knq . . . . - , . }  of algorithm 6.1 will be used
in  the following way: The part 7k1- - - k" i1 .„ i„  of “lamb.
will be taken to  cover ß„__ _,-‚„ i..e each element of
the‘ set Ui7kl...k„.‚__‚. }  will be  considered. Each
i tem 7k1-uknal...an > 0 corresponds to  a transition
p,- —> pj+1 where the negative monomial ‚ß;‚___,-„ and
the  positive monomial Ohmic“  will be added. Figure
12 contains a successful sequence for the polynomial
already considered in example 6.1. This sequence is
constructed by  algorithm 6.1.

“)Alg  »rtthm 6.1  will fail, if there is no solution for the  set I
of part 3 .

36)This  implion splitting 3x23; into 1x2)! + 21:23}.
37)We  skip over 721n since its value is zero.

It is obvious that the more zeros the solu-
tion vector of algorithm 6.1 contains”) the shorter
the associated sequence, generated by algorithm
POSITIVE, will be.

Note that the technique of BenCherifa and Les-
canne with backtracking and the algorithm of this
section have the  same” power, i .e .  whenever a poly
nomial can be proved to  be positive using procedure
’POSIT 1V8 it can also be proved positive with the
help of algorithm 6.1, and vice versa. In general,
algorithm 6.1 is more powerful than the BenCher-
ifa & Lescanne approach without backtracking (see
example 6.2).

7 A Modified Simplex Algorithm

An important part of algorithm 6.1 consists of solv-
ing linear inequalities. In this section we give an
informal description of a special version of the well-
known Simplex method to solve this problem. The
Simplex method”) minimizes (or maximizes) a lin-
ear expression constricted by linear equalities (or
linear inequalities) that are sometimes called con-
straints. Such problems have come to be  known
as Linear Programming. The following approach
is taken from [Thi79], [Mit76] and [Chv83] and the

as)-
INC 7k1 -  kn . ‚_  ‚ i n  =0

39)proposed by Dantzig in 1947
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Example 6.1 (Example 3.1 revisited) In order to'prove p = 3x2 y +6xy2 - 2x2 - 6y2 -12xy - 9x - 9y 
to be positive w.r.t. J.I. = 3, we 'perform the following actions: 

1. Dividing: 
11 := { 3 > /2120 + /2111 + /2110 + /2101 , Consider the first inequality of h: The coefficient 

of the positive monomial 3x2y is split into the sum6 > /1202 + /1211 + /1210 + /1201 } 2')'21,0 +... because x y can cover the negative mono
mials 2x2 , 12xy, 9x and 9y. 

2. Distributing: 
12 := {. 372120 > 2,	 We describe the first inequality of 12 : The variable 

')'21,0 is part of the coefficient that corresponds to the
3/1202 > 6, 

monomial3x2y (see h). It is responsible for covering 
3/2111 +3/1211 :> 12, 

the coefficient of -2x2 . Since the variable y of 3x2y 
9/2ho + 9/1210 > 9, does not occur in -2x2 , ')'21,0 can be multiplied by 
9/2101 +9/1201 > 9} j1. (= 3). 

3. Solving: 
1:= { 3 = /2120 -1- 12111 + /2110 + /2101 + UlI	 A decision procedure for linear inequalities solves the 

union h U 12 • In order to guarantee p ::::J 0 (not only - 6 = 11202 + /1211 + /1210 +11201 +U2, 
p ;! 0), at least one inequality of 11 U 12 must be 

31'2120 = 2 + U3, a proper one. Thus, each inequality la ~ Ta will be 
11202 2 +U4, transformed into la = Ta + Uj such that :L U a >0 

holds.12111 + ~/1211 4 +Us, 

12ho +11210 1 +U6,
 

/2101 + 11201 1 + U1,
 

lij,c1 > 0,
 
Ui > 0,
 
U1 + U2 +... +U1 > O}
 

A solution of 1 includes the following value.>: U3 = 1, (Vi E {I, 2, 4, 5, 6, 7}) Ui = 0, /2120 1, 
/2111 =0, / 2110 ;:: 1, /2101 = 1, /1202 = 2, /1211 = 4, / 1210 = 0, 1 1201 = 0. 

Figure 11: The application of algorithm 6.1 to the example of section 3 
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Example 6.1 (Example 3.1 revisited) In order to'prove p = 3323/ + 633/2 — 2x2 — 6y2 — 122:3] -— 9:1: - 93;
to be positive w.r.t. p = 3, we'perform the following actions:

1.  Dividing:
11 !=  { 3 Z 72120 + 721“ + 72110 + 7210,, Consider the first inequality of II: The coefficient

6 Z 71202 + 712“ + 712“ + 712m } of the positive monomial 31:21; is split into the sum
721,“ + . . . because way can cover the negative mono-
mials 21:2, 1233/, 9:1: and 9y.

2.  Distributing:
I2 :=  { 372120

371202
2 ,  We describe the first inequality of I2: The variable
6,  721” is part of the coefficient that corresponds to the

monomial 3223/ (see I1 ). It is responsible for covering

IV
IVlV

'I
V

IV

3721“ + 3712" 12’  the coefficient of —2:r2. Since the variable y of 32:23;
972110  + 971210  9 ;  does not occur in —2:rz, 721,0 can be multiplied by
972101 + 971201 9 } „ (= 3).

_3. Solving: ..
I :=  { 3 = 72120 + 3121“ + 72110 + 72101 + ul ,  A decision procedure for linear inequalities solves the

- 6 = + + + + u union I; U 12. In order to guarantee 1) :| 0 (not only
712” 71211 712"  712‘" 2’  p ; 0), at least one inequality of I; U I: must be

372130 = 2 + "3’ a proper one. Thus, each inequality 1,- 2 r,- will be
‘71202 = 2 + “4;  transformed into I.- : r,- + u.- such that Eu.-  > .0
72111 + 712“ = 4 + u5, holds.

721", + 71210 = 1 + us ,

72101  + 71201 = 1 + "'7;

m“ 2 0 ,

“ i  Z 0)

u1+u2+ ,_ ,+u7  > 0}

A solution of I includes the following values: u3 = 1, (Vi E {1,2,4,5,6,  7}) u,- = 0, 72120 = 1,
721“ =0 ,  72110 -= 1;  7210, = 1;  71202 = 2, 712“ = 4;  71210 = 0 ,  7120, = 0.

Figure 11: The application of algorithm 6.1 to the example of section 3
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Example 6.3 (Example 6.1 revisited) Let P = 3x2y + 6xy2 - 2x2 - 6 y2 -:- 12xy - 9x - 9y and J.L = 3 
as given in the examples 3.1 and 6.1. Furthermore, we use the following solution created in example 6.1; 

1'2120 = 1 , 1'21 11 = 0 , 1'2110 = 1 , 1'2101 = 1 , 1'1202 = 2, 1'1211 = 4 , 1'1210 = 0, 1'1201 = 0 

This solution implies the following sequence associated to the BenCherifa/Lescanne approach: 

Po = 3x2y + 6xy2 - 2x2 - 6 y2 - 12xy - 9r - 9y 
, 11 'V - 136) . 

'V' ,2120
2Po = x y +2x2y + 6xy2 - 2x2 - 6 y2 - 12xy - 9x - 9y
 

PI = ~x2y +2x2y +6xy2 - 6y2 - 12xy ,- 9x - 9y
 
11 'V - 137)

'IJ' ,2110

2PI = ~x2y +x y + x 2.y +6xy2 - 6y2 - 12xy -9x - 9y
 
P2 = ~x2y + x 2y +6xy2 - 6y2 - 12xy - 9y
 

JJ. 1'2101 = 1
 
P2 = ~x2y +x 2y +6xy2 - 6y2 - 12xy - 9y
 

]J3 = ~X21J +6xy2 - 6y2 - 12xy
 

,~ 1'1202 = 2
 
P3 = ~:r2y +2xy2 +4xy2 - 6y 2 - 12xy
 

P4 = ~x2y +4xy2 - 12xy
 

JJ. 1'1211 = 4
 
P4 = ~x2y +4xy2 - 12xy
 

. Ps = ~x2y
 

Figure 12: Merging algorithm 6.1 and procedure POSITIVE 
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Example 6.3 (Example 6.1 revisited) Let p = 31:23] + 63312 — 22:2 —— 6y2 ‚— 12my — 92: — 93) and p = 3
as  given in the examples 3.1 and 6.1. Furthermore, we use the following solution created in example 6.1:

72120  = 1 1 72111  = 0 ,  721m = l v 72101  = 1 a 71202 = 2a  71211  = 41  71210  = 0»  71201 = 0

This solution implies the following sequence associated to the BenCherifa/Lescanne approach:

_31  y+özy  —2a:2 —6y2 —12zy— 9217931
1} 721202136)

po=x2y+2x2y+63y2 —2x2 —6y2 —12a:y—9:c——9y
p1=lz2y+2x2y+6ésy2 —-6y2 —12:ry.—9m—9y

ll 721m=1372
pl =-a:  2y+1x22y+z2 -y+6zy2  —6y2 —12my— 9x— 9y

p2 =—:c222y+zy+6zy  -6y2  ——l2:cy— 9y
'U' 72101  = 1

P2 z2y+ lx22y+6zy2  —6y2 ~12wy— 9y
3,)3: %21: 11+  623/2 —6y— 123:3;

U‘ 71202_" 2
p3-— —:r 2y+  2xy2 +4zy2  — 6y2 — 12mg

p., = —:c 2y+4my2  — 122g
SU 712“—— 4

p4 = %xzy + 4xy2 — 12xy
‘P5 = Eli-”€211

'Figure 12: Merging algorithm 6.1 and procedure ’P-OSITIVE
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reader is referred to these references for a more de
tailed description. The Simplex method can cope 
with "he f0llowing problem: 

n 
Minimize E CiXi (1) 

i=l 
n 

Subject to '" a"x' < b· (iE[1,m])l.J ') ) - , 
i=l 
x· > 0 (j E [1, n])) -

For simplicity of exposition we shall restrict our
selves to the form (1). It is not difficult to transform 
a more general form (in which equations of the form 
?,aiixi = bi as well as inequalitleE like Eaiixi ~ bi 
are possible) into the one used in (1). The problem 
of transforming a strict inequality Ui < bi into the 
form of (1) can be solved by adding the arithmetic 
inaccuracy40) lp! of the used computer: Ui < bi "-+ 

Ui + lpf ~ bi. 
To transform (1) into an equivalent form in which 

the inequalities are replaced by equalities, m so
called slack variables Xn+1, ... , Xn+m are introduced. 
Note that these have to be distinct from the n so
called decision variables in which the problem is 
defined41): 

Min. z = 
n
E CiXi (2)
i=l 

Subj. 
n 

E aiixi +Xn+i = bi (iE[1,m]) 
i=l 
xi ~ 0 (j E [1, n +m]) 

In a linear prc "';ra:mmh1g problem, the linear 
function z to be optimized is called the objective 
function. Any tuple (Xl, . .. , x n) with non-negative 
coordinates that satisfies the system of constraints is 
called a feasible solution to the problem. Thus, the 
basic problem is to determine, from among the set 
of all feasible solutions; a tuple that minimizes the 
objective function. The Simplex method can decide 
whether a problem has, in fact, any feasible solution 
and, in addition, whether the objective function ac
tually assumes a minimal value. Note, however, that 
the problem occurring in algorithm 6.1 consists of 
finding any solution of a system of linear equalities, 

• ,) see section 6 
41)Multiply the i-th equation on both sides by -1, if b. i", 

negative. As a result of thiS, all the right-hand constants i~ 

the equality constraints become non-negative. 

I.e. we shall only study the system 

n 
E aiixi +xn+i = bi (iE[1,mD (3) 

i=l 
x· > 0 (jE[1,n+mD) -

Solving such systems is no more difficult than 
solving lil1ear prcgramming problems: To find a so
lution of (3), or to establish its non-existence, we 
only need to consider the following problem descrip
tion: 

Min. z = xo (4) 
n 

Subj. Eaiixi+xn+i-Xo=bi (iE[1,mD
i=l 
xi ~ 0 (j E [O,n+mD 

The basic step of the Simplex method is derived 
from the familiar pivot operation used to solve linear 
equations. The pivot operation consists of replacing 
a system of equations with an eCfuivalent system in 
which a selected variable is eliminated from all but 
one of the equations. 

Definition 7.1 (Pivoting) Let 

n 

E akixi + Xn+k - Xo = bk 
i=l 

be the k-th equality of (4). We choose any x p (p E 

[1, nD and rewrite it in terms of Xn+k, i.e. 

n 

Xp = (bk - Xn+k +Xo - E "kixi)/akp
i=l,J#p 

Substituting x p in the other equations, a new set 
of equations is oMained. This operation represents a 
change of state and will be denoted by pivot(p, k). 

It is easy to show that the solution set of the sys
tem of equations resulting from the pivot operation 
is identical to that of the original system. In gen
eral, repeated use of pivoting can lead to a system 
of equations whose solution set is obvious. Such a 
,--ystem (called canonical form) consists of n equa
tions with n unknownswhef(~ each variable appears 
in one an~ only one equation, and has in that equa
tion, one as its coefficient. However, in attempting 
to put the constraint system into canonical form, an 
arbitrary selection of decision variables could easily 
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reader is referred to  these references for a more de-
tailed description. The Simplex method can cope
with the following problem:

Minimize Z": (:.-z.- (1 )
€ : ]

Subject to i ag,-mi S b.- (i € [l,m])
i=11‘12 0 (1' € Und)

For simplicity of exposition we shall restrict our-
selves to the form (1). It  is not difficult to transform
a more general form (in which equations of the form
Eaüxj  : b,- as well as inequalities like Eagjzj  2 bi.

are possible) into the one used in (1). The problem
of transforming a strict inequality u.- < b.- into the
form of (1) can be solved by adding the arithmetic
inaccuracy”) lpf’  of the used computer: u,- < b.- «»
u ;  +1Pf S b.":

To transform (1) into an equivalent form in which
the  inequalities are replaced by equalities, m so-
called slack variables 2 "“ ,  . . . , wn+m are introduced.
Note that these have to  be  distinct from the n so-
called decision variables in which the problem is
defined“): ‘ "

n

Min.  2 = E 652.-
i=1

(2)
Sub j .  Zn: aij i t j  +zn+ i  = b i  ( "  € l l aml )

1:1

(j e [1,n+ ml)(c , -20

In a linear prc tramming problem, the linear
function 2 to  be optimized is called the objective
function. Any tuple (a,-1, . . .,:vn) with non-negative
coordinates that satisfies the system of constraints is
called a feasible solution t o  the  problem. Thus, the
basic problem is to determine, from among the set
of all feasible solutions, a tuple that minimizes the
objective function. The Simplex method can decide
whether a problem has, in fact ,  any feasible solution
and, in addition, whether the objective function ac-
tually assumes a minimal value. Note, however, that
the problem occurring in algorithm 6.1 consists of
finding any solution of a system of linear equalities,

‘ ”see section 6
“)Multiply the i-th equation on both sides by —1‚ if b.— is

negative. As a result of this, all the right-hand constants in
the equality constraints become non-negative.

18

i.e. we shall only study the system

n

Z aijl‘j + In+ i  = b i  (i € [1,m]) (3
i=1
45:20 ( je[1,n+m])

Solving such systems is no more difficult than
solving linear programming problems: To find a so-
lution of (3), or to establish its non—existence, we
only need to consider the following problem descrip-
t ion:

Min. z = mo (4)
Sub j .  2 agjzcj + 13n+i - 2:0 = b," (1: € [ l ,m] )

i=1
W20 (jEMn+mD

The basic step of the Simplex method is derived
from the familiar pivot operation used to solve linear
equations. The pivot operation consists of replacing
a system of equations with an equivalent system in
which a selected variable "is eliminated from all but
one of the equations. '

Definition 7.1 (Pivoting) Let

n

2 (may + zn+k - 2:o = bk

i=1
. be the k-th equality of (4). We choose any 3,, (p €

[1,n]) and rewrite it in terms of an” ,  i.e.

i_ "Wü/ak»
J=1 ‚#P

xp  : (bk  _ zn+k  + 30  _

Substituting mp in the other equations, a new set
of equations is obtained. This operation represents a
change of state and will be denoted by pivot(p,k) .

It  is easy to  show that the solution set of the sys-
t em of equations resulting from the pivot operation
is identical to that of the original system. In gen-
eral, repeated use of pivoting can lead to a system
of equations whose solution set  is  obvious. Such a
system (called canonical form) consists of n equa-
tions with n unknowns "where each variable appears
in one and only one equation, and has in that  equa-
tion,  one as i t s  coefficient. However, in attempting
to  put the constraint system into canonical form, an
arbitrary selection of decision variables could easily





8 INTEGRATING THE SIMPLEX METHOD INTO ALGORIT1IM 6.1 19 

lead to a system with negative constant terms and 
thus to an associated solution that is not even feasi

. ble. Therefore, for solving the problem of section 6, 
it is not sufficient to arbitrarily use pivot operations 
(like in Gaussian elimination). The Simplex method 
cleverly applies a convenient pivot operation at the 
right time. 

For this purpose, a technique for determining an 
. initial feasible solution for an arbitrary system of 

equations must be developed42). The basic idea be
hind the method used \'0 solve this problem is sim
ple. We introduce a sufficient number of variables, 
saIled artificial variables, to put the system of con-. 
straints into canonical form with these variables as 
the decision variables. Then, we apply the Simplex 
method to a new objective function defined in such a 
way that its minimal value corresponds to a feasible 
solution of the original problem. 

Figure 13 contains algorithm 7.1 representing the 
steps ()f the· first phase of the Simplex method, start
ing with a problem in canonical form (see (S)). 

The ori6inal problem has a basic feasible solution 
if, and only if, the minimum value of w is zero. Note 
that p could be any column with a negative c; term. 
The smallest Cj can reduce the total number of steps 
necessary to complett: the probl~m. Furthermore, if 
the minimum of bi!aip is attained in several rows, a 
simple instruction (such as choosing that row with 
the smallest index) can be used to determine the 
pivoting row. 

The Simplex method presented in algorithm 7.1 
is correct and terminates. However, certain com
plications can occur during the application of this 
procedure. For compactness, we would like to refer 
to the literature for a detailed description of these 
problems. 

Definition 7.2 (Introducing artificial variables) 8 Integrating the Simplex 
The transformation of system (4) into the fol
lowing system containing the artificial variables 

Xn+m+l' ... , x n+2m will be denoted by canonical 
transformatior. 

n 

L aijXj + xn+i - Xo +xn+m+i (5) 
j=l 

(iE[l,m]) 
Xo 

m n 

- L (L: aijXj +Xn+i - xo) 
i=l j=l 

Note that. the system of constraints of (5) is 
canonical with the artificial variables as decision 
variables. The new objective function w = Xn+m+l + 
... + Xn+2m is tre,tnsformed into canonical form by 
subtracting each equation of the system of con
straints from w. 

If the pivot operations dictated by the problem of 
minimizing ware simultaneously perfOl med on the 
equation z, which defines the original objective func
tion, this function will be expressed in each step in 
terms of variables, which aI',· not decision variables. 
Thus, if an initial hasic feasible solution is found for 
1/' the Simplex method can immediately be applied 
to z. 

42)The procedure for solving this problem is often called 
Pha3e 1 of the Simplex method. 

Method into Algorithm 6.1 

In section 7 we have presented the various methods 
needed for finding a solution of a ystem of liner. I' 
equations. Before applying these methods to an ex
ample, we will construct an algorithm solving our 
problem of section 6. This algorithm is contained in 
figure 14. 

Note that in algorithm 8.1, we omit the original 
objective fun :tion z = XQ. This function's only use is 
to justify the employment of the Simplex method for 
solving systems of linear inequalities. It is irrelevant 
for producinr a basic solution of our problem. 

At each step of the Simplex method, it is suffi
cient to know the coefficien~s of the variables in the 
system of equations~ In particular, for computation 
by hand or simple computer implementations it is 
favourable to record this information, only. A rep
resentation known as Contracted Tableau or Tucker

Diagram is of the following form: 

Xl X2 ... Xn 
all 

amI 

al2 

am2 

., . 

... 

aln 

amn 

bl 

bm 
Cl C2 ... Cn C 
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lead to a system with negative constant terms and
thus t o  an associated solution that  is not even feasi-

‘ ble. Therefore, for solving the  problem of section 6 ,
it is not  sufficient to arbitrarily use pivot operations
(like in Gaussian elimination). The Simplex method
cleverly applies a convenient pivot operation at the
right t ime.

For this purpose, a technique for determining an
: initial feasible solution for an arbitrary system of
equations must be developed“). The basic idea be-
hind the method used to solve this problem is sim-
ple. We introduce a sufficient number of variables,
called artificial variables, t o  pu t  the system of con-_
straints into canonical form with these variables as
the decision variables. Then, we apply the Simplex
method to  a new objective function defined in such a
way that its minimal value corresponds to  a feasible
solution of the original problem.

Definition 7.2 (Introducing artificial variables) 8 Integrating
The transformation of system (4) into the fol-
lowing system containing the artificial variables
rn+m+1, .  . ,xn+2m will be denoted by canonical
transformatior.

(5)z] a i j z j  + xn+ i  _ $0  + $n+m+i  = b i

J : ]

(i € [1‚ml)
1‘0 = Z \ _

' EQ) “ii-”j +mn+i"-TO) = w— ‚ zb i
i=1  j=1  i=1

Note that. the system of constraints of (5) is
canonical with the artificial variables as decision
variables. The  new objective function w : zn+m+1 +
. .  + zn+2m is transformed into canonical form by

subtracting each equation of the system of con-
straints from w.

If the  pivot operations dictated by the problem of
minimizing w are simultaneously perfox med on the
equation 2, which defines the original objective func-
tion, this function will be expressed in each step in
terms of variables, which ar  .- not decision variables.
Thus ,  if an initial basic feasible solution is found for
w the  Simplex method can immediately be  applied
t o  2 .

42’The  procedure for solving this problem is often called
Phase 1 of the Simplex method.

19

Figure 13  contains algorithm 7.1  representing the
steps of the'first phase of the Simplex method, start.-
ing with a problem in canonical form (see (5)).

The original problem has a basic feasible solution
if, and only if, the minimum value of w is zero. Note
t ha t  p could be  any column with a negative c term.
The smallest C, can reduce the total number of steps
necessary to complete the problem. Furthermore, if
t he  minimum of ();/ag„ is  at tained 1n several rows, a
simple instruction (such as choosing that row with
the smallest index) can be used to determine the
pivoting row.

The Simplex method presented in algorithm 7.1
is correct and terminates. However, certain com-
plications can occur during the application of this
procedure. For compactness, we would like to  refer
to  the literature for a detailed description of these
problems.

the  Simplex
Method into Algorithm 6 .1

In section 7 we have presented the various methods
needed for finding a solution of a ystem of linear
equations. Before applying these methods to an ex-
ample, we will construct an algorithm solving our
problem of section 6. This algorithm is contained in
figure 14.

Note that in algorithm 8.1,  we omit the original
objective fun :tion z = 1:0. This function’s only use is
to  justify the employment of the Simplex method'for
solving systems of linear inequalities. It is irrelevant
for producing a basic solution of our problem.

At each s tep  of the Simplex method, i t  is suffi-
cient to know the  coefficients of the variables in the
system of equations; In particular, for computation
by hand or simple computer implementations it is
favourable to  record this information, only. A rep-
resentation known as Contracted Tableau o r  Tucker-
Diagram is of the following form:

31  $2  $"
a11  (112 a lu  b l

. aml  am2  amn  bm

, 61 £2 cn  C
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Algorithm 7.1 (Phase 1 of the Simplex algorithm) 

SIMP£EX = proc (system in canonical form) returns (string) 
stop := false 
while (not stop) do 

if (Vj E [1, n + m]) Cj ? 0 
then stop:= true 

return 'success' 
else if (3j E[l, n +m])(Vi E [1, m]) Cj < 0/\ aij ~ 0 

then stop := true 
ret urn 'failure' 

else pivot(p, k) 
such that p represents the column with the smallest negative Cj 
and k is chosen such that bk/akp = min{bifaip I aip > O} 

end 
end 

Figure 13: The 1st phase of the Simplex method 

Algorithm 8.1 

SO£VE 
n n 

= proc (l: aijXj = bi, i = 1, ... , m-I: equation set, l: amjxj > 0 : inequality)
j=l j=l 

n 
Introducing slack variables (see (4)): l: aijXj - :<:0 = bi 

j=l 
for i E [1, m-I] 

n 

l: amjxj +Xl - Xo = lpf
j=l 

Canonical transformation (see (5)): 
n 

l: aijXj - Xo + Xn+m+i = bi 
j=l 

for i E [1, m-I] 

n 
l: amjxj + Xl - Xo + Xn+2m = lpf
j=l 

m-I n n m-I 

- l: (l: aijXj -
i=l j=l 

XO) - (l: amjXj +Xl -
j=1 

XO) = -lpf  l: bi 
i=1 

Applying algorithm 1.1 
end 

Figure 14: Connection between algorithm 6.1 ant: ~ ;le Simplex method 
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Algori thm 7 .1  (Phase 1 of t he  Simplex algorithm)

SIM'PCSX : pro'c (system in canonical form) returns (string) ,
stop := false
while (not stop) do

if (Vj € [1 ,n+  m]) c‚' 2 0
then stOp : :  true

return ’success’
else if (Elj E [ l , n+  m])(Vi € [1,m]) Cj < 0 A aij S 0

then stop :: true
return ’failure’

else pivot(p, k )
such that p represents the column with the smallest negative c,-
and k is chosen such that bk/akp = min{b;/a,-p | ag„ > 0}

end
end

Figure 13: The 1“ phase of the Simplex method

Algorithm 8 .1

n , n

SOLVE = proc (2  (1.313 = (),-‚i = 1,.  . . ,m  —1 : equation set, E am,-z," > 0 : inequality)
j= l  j=1

Introducing slack variables (see M)}: Zn: agjxj —— x0 = b,- fori E [1,m - 1]
i=1

2 amjmj  +901 — wo = lpf

i=1
Canonical transformation (see (5)): Z 0,;i -— zu + xn+m+g = b,- fori € [1,m— 1]

j= l„ .
21 “mit," + $1  _ 230 + $n+2m =1Pf

Jurn—l  n n m- l
— Z (Z  a i j$ j  - zo )  - (Z  amjwj  + $1  _ 560) = _ l  _ E b i

:1  3 :1  1 : !  i=1
Applying algorithm 7.. 1

end

Figure 14: Connection between algorithm 6.1 and ine  Simplex method
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The first m rows correspond to the system of 
constraiats with the constant terms given in the last 
column. The last row corresponds to the equation 
defining the objective function with the constant 
term (on the right-hand side of that equation) in the 
last column. The z tern ~ of the objective function 
is suppressed from the tableau as it remains fixed 
throughout the application of the Simplex method. 

Appendix B contains an application of the Sim
plex method to the set of inequalities of example 6.1, 
generated by the first two steps of algorithm 6.l. 

The time complexity of algorithm 6.1 is mainly 
influenced by that of the Simplex method (i.e. al
gorithm 8.1). Obviously, the time complexity of the 
Simplex method strongly depends on the number of 
different variables as well as on the number of in
equalities. The se,t of inequalities generated by algo
rith,m 6.1 is of the form presented in figure 15. 

As it is widely known, the time behaviour of the 
Simplex method is, in the worst case, exponential. 
However, we quote from [Sha87]44): 

Remark 8.1 (Time complexity)
 
Efficiency is usually measured for the Simplex method'
 
as the number of pivot steps (iterations) it requires
 
to solve a problem ,expressed as a function of the di

mensions of the problem[...]. Here and throughout, we
 
denote the dimensions of the problems differently for
 
each form, in such a way that the following convention
 
holds:
 

(1)	 n is the total number of inequalities (includ
ing nonnegativity constraints but not including 
pquality constraints). 

(2)	 d is the number of variables in an equivalent pre
sentation of the problem without equality con
straints[...]. 

(3)	 m :=n - d. 

We shall usually deal with the Lpp (i.e. Linear Pro
gramming Problem) in the form 

min cTx 

such that a!x ~ bj, i = 1, ... ,m, 
x ~ 0 

i3JNote that all items of each matrix Ai are greater than or 

equal to zero. 
if) Additional explanations are added in italic type. 

Let np (mp ) be the number of negative (positive) 
monomials occurring in a given polynomial p. Then, 
the number m of inequalities generated by algorithm 
6.1 is equd to 1tp +m p + 1 (11 contains mp inequal
ities, 12 co;ntains np inequalities and I = 11 U 12 U 
{UI +u2 +... > O}). Therefore, whenever m is 'Used 
in the remaining part of this section, m is identical 
to the number of monomials of a polynomial plus 1. 

[...]This function (which usually measures the effi
ciency of the Simplex method), as observed by LP (i.e. 
linear progrromming) practitioners, is a low degree 
polynomial and perhaps even linear on most real-life 
problems[.. .]. Wolfe and Cutler (1963) experimented 
with nine 'real' LP problems. The average number of 
phase I iterations was 1.69m when a full artificial basis 
was used as a startirg base. together with the steep
est descent pivoting rule. When better starting bases 
were chosen, utilizing the sparsity of the data, that av
erage went down to O.56m. For the total number of 
iterations re,quired, they obtained an average iterations 
count varyi~lg between l.71m and Q.98m, depending on 
phase I and the pivoting rules. They concluded that the 
rule of '2m iterations' from folklore is fairly good, and 
that an estimate of between m and 3m iterations will 
almost be ,-.,rrect[...]. ;:~ec-.ltly, Ho and Loute (1983) 
rep.:>rted on a set of experiments carried out with 30 
large-scale problems[...]. So we see that these results, 
for problem dimensions in the thousands, still conform 
with the '2m iterations folklore', although there is some 
indication that the number of variables also influences 
the number of pivots[...]. We can summarize the ob
served behaviour of the Simplex method by the follow
ing recent words of Dantzig (1979). This appears to 
be a revision of his earlier summary, in view of the new 
evidence accumulated in 16 years that passed between 
the two quotations. Dantzig: "The expected number 
of $tepsto find a feasible solution to a linear program 
using phase I of the Simplex method, for moderately 
s;zed problems, is conjectured to be, of the order Q. m 
steps where m is the number of equations and Q is typi
cally 2,to 3 (or 4 to 6 for an optimal solution using both 
phase I and phase 11). Thousands of linear programs 
are solved each day using some variant of the Simplex 
method - a value of Q > 4 is rarely seen[...]". This can 
be viewed as a sum mary on the average performance 
of the Simplex method on both real-life problems and 
artificially distributed ones. 

8 INTEGRATING THL SIMPLEX METHOD INTO ALGORITHM' 6.1

The first  m rows correspond to  the system of
constraints with the constant terms given in the last
column. The last row corresponds to  the  equation
defining the objective function with the  constant
term (on the right-hand side of that equation) in the
last column. The 2 tern-. of the objective function
is suppressed from the tableau as it  remains fixed
throughout t he  application of the Simplex method.

Appendix B‘ contains an application of the Sim—
plex method to  the set of inequalities of example 6.1,
generated by the first two steps of algorithm 6.1.

The time complexity of algorithm 6.1 is mainly
influenced by that of the Simplex method (i.e. al-
gorithm 8.1). Obviously, the time complexity of the
Simplex method strongly depends on the number of
different variables as well as on the number of in-
equalities. The set of inequalities generated by algo-
rithm 6.1 is of the form presented in figure 15.

As it is widely known, the time behaviour of the
Simplex method is, in the worst case, exponential.
However, we quote from [Sha87]44):

Remark 8 .1  (Time complexity)
Efficiency is usually measured for the Simplex method
as the number of pivot steps (iterations) it requires
t o  solve a problem,‘expressed a s  a function of the di-
mensions of the problem[...]. Here and throughout, we
denote the dimensions of the  problems differently for
each form, in such a way that the following convention
holds:

(1) n is the total number of_inequalities (includ-
ing nonnegativity constraints but not including
equa l i ty  constraints).

(2) d is the number of variables in an equivalent pre-
sentation of the  problem without equality con-
straints[...].

(3) m :=  ”n - d.
We shall usually deal with the ' LPP  (i.e. Linear Pro-
gramming Problem) in the form

min  c
such that  aiTbi, i=1 , . . . ,m ,

x 2 0

“”Note that all i tems of each matrix A ;  are greater than or
equal to  zero.

“)Additional explanations are added in italic type.
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Let np (mp ) be the number of negative (positive)
monomials occurring in a given polynomial p .  Then,
the number m of inequalities generated by algorithm
6.1 is equal to up + m1, + 1 (I1 contains mp inequal~
ities, 12 contains n„ inequalities and I = 11 U lg U
{ul + U2 + . . . > 0}) Therefore, whenever m is used
in the remaining part of this section, m is identical
to  the number of monomials of a polynomial plus 1.

[...]This function (which usually measures the effi-
ciency of the Simpler: method), as observed by LP ( i.e.
linear progrr'mming) practitioners, is a low degree
polynomial and perhaps even linear on most real-life
problems[...]. Wolfe and Cutler (1963) experimented
with nine 'real' LP problems. The average number of
phase I iterations was 1.69m when a full artificial basis
was used as a startirg base together with the steep-
est descent pivoting rule. When better starting bases
were chosen, utilizing the sparsity of the data,  that av-
erage went down to 0.56m. For the total number of
iterations required, they obtained an average iterations
count varying between 1.71m and 0.98m, depending on
phase I and the pivoting rules. They concluded that the
rule of '2m iterations' from folklore is fairly good, and
that an estimate of between m and 3m iterations will
almost be r a r r ec t [ . . . ] .  Rec_.itly, Ho and Loute (1983)
reported on a set of experiments carried out with 30
large-scale problems[...]. So we see that these results,
for problem dimensions in the thousands, still conform
with the '2m iterations folklore’, although there is some
indication that  the number of variables also influences
the number of pivots[...]. We can summarize the ob-
served behaviour of the Simplex method by the follow-
ing recent words of Dantzig (1979). This appears to
be a revision of his earlier summary, in view of the new
evidence accumulated in 16 years that  passed between
the two quotations. Dantzig: "The  expected number
of steps " to  find a feasible solution to a linear program
using phase I of the Simplex. method, for moderately
sized problems, is conjectured to be, of the order a -  m
steps where m is the number of equations and a is typi-
cally 2*to 3 (or 4 t o  6 for an  optimal solution using both
phase I and phase ll). Thousands of linear programs
are solved each day using some variant of the Simplex
method — a value of a > 4 is rarely seen[...]". This can
be viewed as a summary on the average performance
of the Simplex method on both real—life problems and
artificially distributed ones.
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-1 
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1 

fJk~, ...k mn 
Ipf 

The diagram contains only the non-zero numbers. The upper part represents the division operation, 
whereas the middle sector describes the distribution. Each Ai is a matrix of the following form: Each row 
contains at most one item which is not equal to zpro, whereas each column contains exactly one non-zero 
item43). All other items are equal to zero. 

Figure 15: The set of inequalities generated by algorithm 6.1 

:Kote that only the time complexity of the first 
phase of the Simplex method is relevant for that" of 
algorithm 6.1. However, the time complexity of the 
Simplex method mainly depends on that of the sec
ond phase. 

Improving the BenCherifa an<l 
Lescanne Method 

We'·\have implemented the method of IBL87] and in
tegrated it in our completion environment COMTES 
([AMS89])45). A series of 320 experiments consider

ing more than 1700 rules occurring in the literature 
has been conducted (see also [SK90]). Most of these 
rule systems can be proved to be terminating by 
applying the method of BenCherifa and Lescanne. 
Certain examples require a more powerful ordering 
on polynomials. This can be illustrated by a simple 
TRS. 

Example 9.1 Let'R be 

1: (x*y)*z -+x*(y*z) 
2: x*(y+z) -+(x*y)+(x*z) 
3:· h(x)+h(y)-+x*y 

In order to orient rule 2, [*](x, y) needs to be mixed 
a'nd thus [+](x, y) must be of linear form46) (see sug

, n i lplementation of the approach contained in [Rou88] 
i" also available. 

•6)p(Xl'''''Xn ) is linear iff p(Xl, ... ,Xn) = LQ'iXi + {1. 
p(XI, ••• , X n) is mixed iff there exists at, least one monomial 

gestion 3.2.10 of [SZ90]). For example, [*](x, y) = 
xy + 'l; and [+](x, y) = x +y +2 will prove the ter
mination of the first two rules if J.I. = 3 (by using 
the method of [BL87]). This way, rule 3 cannot be 
oriented using the meth'd of [BL87J (independent of 
[h](x)). Assuming the interpretation of h as x2, the 
polynomial 

x2 - xy - x + y2 + 2 

has to be gr:-ater than zero. Howe~er, this ca.nnot 
be ~~ved wlth t.he he~p of [BL87J smce there tS no 

_posttme monomtal whtch covers -xy. 

The proof of x 2 - xy - X + y2 + 2 ::I 0 can be 
performed with the help of the fact x 2 + y2 ~ 2xy, 
which is equivalent to (x - y)2 ~ O. The following 
lemma generalizes this inequality. 

.uemma 9.1 Let a, f3, Xl > O. Then, 
k""XiI.... 1 ' •.• •·xin n + j3xi1 xinn' > 2 r;:;;7!. X1- ••••• VUfJ 1 

1 ' •• •• xknn 

if (Vl E [1,11.]) kl = il~il 

Example 9.2 The above lemma can, for example, 
prove the following inequalities: 

• x2 + y2 > 2xy 

• x 3 + y3 > 2X 2 
3 

y2 
3 

2• x yz3 + x'J.y~ Z ~ 2x2 y2z2 

containing at least two different variables. 
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A1 A2  A3  . . . Al

The diagram contains only the non-zero numbers.
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The upper part represents the division operation,
whereas the. middle sector describes the distribution. Each A,- is a matrix of the following form: Each row
contains at most one item which is not equal to  zero, whereas each column contains exactly one non-zero
item“). All other items are equal to zero.

Figure 15: The set of inequalities generated by algorithm 6.1

Note that only the time complexity of the first
phase of the Simplex method is relevant for that'of
algorithm 6.1. However, the time complexity of the
Simplex method mainly depends on that of the sec-
ond phase.

9 Improving the BenCherifa aml
Lescanne Method

Wei-have implemented the method of ‚ [BL87]  and in-
tegrated it in our completion environment COMTES
([AM589])45). A‘ series of 320 experiment-s consider- _
ing more than 1700 rules occurring in the literature
has been conducted (see also [SK90]). Most of these
rule systems can be proved to be terminating by
applying the method of BenCherifa and Lescanne.
Certain examples require a more powerful ordering
on polynomials. This can be illustrated by a simple
TRS.

Example 9 .1  Let 'R. be

1: (:1:*y)*z —>z*(y*z)
2: :r*(y+z)  —>(z*y)+(z*z)
3:~ h(1:)+h(y)—>z*y

In order to orient rule 2, [*](x,y) needs to be mixed
and thus [+](z, y) must be of linear form”) (see sug-

‘ n i 1plementation of the approach contained in [Rou88]
is also available. ‘

46)p(n_‚. . . ,z„) is linear iff p (z ; , . . . , z , . )  = Ema.-  + ß.
p(z ; ,  . . . , z „ )  is mixed iff there exists at. least one monomial

gestion 3.2.10 of [5790]). For example, [*](z,y) =
my + r and [+](z,y) = z _+ y + 2 will prove the ter-
mination of the first two rules if u = 3 (by using
the method of [BL87]). This way, rule‘3 cannot be
oriented using the method of [BL87] ( independent of
[h](a:)). Assuming the interpretation of h as 22, the
polynomial

x’—xy—:c+y2+2

has to be greater than zero. However, this cannot
be proved with the help of [BL87] since there is no
positive monomial which covers —:ry.

The proofof 2:2 — my — z + y2 + 2 :| 0 can be
performed with the help of the fact 1:2 + y2 2 21in ,
which is equivalent to (a: — y)2 Z 0. The following
lemma generalizes this inequality.

uemma 9 .1  Le ta ,  5 ,  an > 0 .  Then,

am? u .  „wir + ßzi‘ ._ . {wir 2 2%.  zf‘ -. . :25"
if (VI € [1 ,n ] )k1=  iii-24“-

Example 9 .2  The above lemma can, for example,
prove the following inequalities:

' z2+y2 2 23:31
3 3

' $3+3 I3  Z 2353 /5

o $2yz3+x23rz 2 2323,1222

containing at least two different variables.





9 IMPROVING THE BENCHERIFA AND LESCANNE METHOD 23
 

• x 2 + 4y2 ~ 4xy 

Procedure POSITIVE cannot ~how the validity of 
t,'u'se ineQualities. Note that it is possible to repeat
edly apply lemma 9.1: 

x4 +y4 +2z2 x 4 +y4 + 2z2
 

> >
 
2x2y 2 +2z2 x4 +2V2 .y2z
 

> >
 
4xyz 2V2v'2. x2yzt 

The basic idea of lemma 9.1 can be extended in 
another way. The following lemma describes a situ
ation where a near! . arbitrary number of monomials 
for covering one monomial is admitted. 

Lemma 9.2 Let n 2: m ~ 1. Then, for all Xi > 0: 

m i 1j i nj k1 knLXI · ... ·xn ~ m,x I · ... ·xn 
j=l 

if (VI E [1, n]) kl = ~ . E
m 

il j
j=l 

The application of lemma 9.2 is based on the 
following' consideration: If we want to cover a mono
hlial m· X~1 •••• ' x~n, a polynomial p consisting of m 
monomials must exist. Furthermore, the arithmetic 
mean of the sum of all exponents of p w.r.t. the 
variable Xi have to be identical to ki. 

beExample 9.3 The following inequalities can 
proved by using lemma 9.2: 

• x3 + y3 + z~ ~ 3xyz 

• x3y+y2z + z2 ~ 3xyz 

• x 2yz + y3zu2 2': 2xy2zu 

The class of polynomials that is successfully man
aged by the method' correspQndingto lemma 9.2 
overlaps with that oflemma 9.1 (see example 9.2 and 
example 9.3) as well as with that of the BenCher
:h El T~scanne algorithm. However, the combina
tiull ,. these processes is far more powerful than 
each method by itself. More precisely, the functions 
POSITIVE, CHOOSE and CHANgE should be 

extended by incorporating a test embodying lemma 
9.2 (and/or lemma 9.1). Note that the condition 
(VI E [1, n]) kl = ~ . LT=1 il j of lemma 9.2 can be 
achieved by 31..:bstituting :' for each additional vari 
able and splitting. monomials w.r.t. coefficients41). 

For example, let JL = 2. Then, x 2y + y2 > 2xy since 
x 2y+y2 = ~x2y+~x2y+y2 2': ~x2y+x2+y2, x2+y2 2': 
48) 2xy and ~x2y > O. 

Example 9.4 Let JL = 2. We show that p = 2x3 + 
y2z2 + yz2 - x 2 - 3xyz - 2yz :J 0 holds. 

p:..:. Po
 
;;;;! P149)
 

;;;;! P2 
;;;;! P3 

The sequence 2x3 + y2z2 + yz2 - x 2 - 3xyz 
2yz, 2x3 -'- !y2 z2 + yz?' _ x 2 - 3xyz, ~x3 + ~y2 z2 + 
yz2 -' 3xyz, \x3 + y2 z + yz2 - 3xyz, ~x3 is also suc
cessful. <. 

A reduction of the time complexity of the ex
tended procedure POSITIVE can be achieved by 
only applying the part corresponding to lemma 9.2 
(lemma 9.1) in case the original algorithm fails (sLe 
example 9.4). 

As we have seen (in example 9.1),lenima 9.2 (as 
well as lemma 9.1) extends the power of procedure 
POSITIVE. In addition, its use can sometimes 
simplify the form of the interpretations of operators 
n,eeded for a termination proof. Let us consider an 
example: 

Example 9.5 The TRS 

I' (x*y)*z -+x*(y*z) 
'R = 2: i(x * y) -+ iCy) * i(x)

{ 3: i(x)+i(y)-+x*y 

needs a mixed interpretation f01 the operator * w~ich 

implies that [+J(x,y) must also be mixed for applying 
the original algorithm POSITIVE. For example, 
the interpretations 

H(x, y) = 2xy -1- x, [i)(x) = x2 andJ+](x, y) = xy 

H) ....HalOgOUS conSiderations are also helpful for lemma 9,1.
 

U)because of lemma 9.2
 
.9)since y2 z2 ~ t y2 z2 + y2 z and x 3 + y2 z + yz2 ~ 3xyz.
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. z2+4y2 Z 4mg

Procedure POSITIV£ cannot show the validity of
these ineaualities. Note that it is possible to repeat-
edly apply lemma 9.1:

\

x4+y4+2z2  z41+y4+2zz

Z Z
x22y +2z2 x4+2\ /2 -y2z

Z Z
4zyz 2 .2\/2 - z2yzi

The basic idea of lemma 9.1 can be extended in
another way. The following lemma describes a situ-
ation where a near] arbitrary number of monomials
for covering one monomial is admitted.

Lemma 9 .  2 Let n > m > 1. Then, for all a:; > 0:

k‚_in .
zn’  Zm-ar:1 "".-:1:,,

if (w e [1,n])k1 = #- £11,,
1::

The application of lemma 9.2 is based on the
following-consideration: If we want to  cover a mono-
mial m ~ zf‘ 01k" , a  polynomial p consisting of m

' monomials must exist Furthermore, the arithmetic
mean of the sum of all exponents of p w.r.t. the
variable a:.— have to  be identical t o  kg.

Example 9 .  3 The following inequalities can be
proved by using lemma 9. 2:

om3+f+fi2Mw

o may + 3,22 + 22 2 3:1:yz

. :c2yz + 3132112 2 2zy2zu

The class of polynomials that is successfully man-
aged by the method’ corresponding , t o  lemma 9.2
overlaps with that of lemma 9.1 (see example 9.2 and
example 9.3) as well as with that of the BenCher-
Sfa & Tescanne algorithm. However, the combina-

these processes is far more powerful than
each method by itself. More precisely, the functions
’POSITIVé', CHOOSE and CHM/98 should be

tion . .
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extended by incorporating a test embodying lemma
9.2 (and/or lemma 9.1). Note that the condition
(W € [1,n])k, = %; - m;. 51,- of lemma 9.2 can be
achieved by substituting ; :  for each additional vari
able and splitting. monomials w.r.t. coefficients").
For example, let p = 2. Then, $231 + 1/2 > 2331 since
zzy+y2 = %wzwä-‘r‘ywz Z %fßzy+a=’+yz‚w2+y2 2
48)2:1:_1/ and %m2y > 0.

Example 9. 4 2Let a :  2. We show that p = 21:3 +
3/222 +3122 —-x2 —3zyz—2yzjl)holds.

p 2 po = 2x3 +y:z 22+yz  —:1:2 -3xyz—2yz
; lp149).=231+y22z —£c2 —2yz
2 P2 = x3 _xz
2 P3 = %33

The sequence 2:1:3 + y2z 2 2+ yz2 — (1:2 — 1333/2 —
2yz, 2x3 -—' 1312322 +22yz —x2 —3zyz,%z3 +% y2z2+
yz2—‘-3:1:yz,-z3+ y2 z + yz2 — 3:1:yz, %23 is also suc-
cessful.

A reduction of the time complexity of the ex-
tended procedure POSITIV£ can be achieved by
only applying the part corresponding to lemma 9.2
(lemma 9.1) in case the original algorithm fails (See
example 9.4).

As we have seen (in example 9.1),lemma 9,2 (as
well as lemma 9.1) extends the power of procedure
POSITIVE . In addition, its use can sometimes
simplify the form of the interpretations of operators
needed for a termination proof. Let us consider an
example: '

Example 9 .5  The TRS \

1: ( z*y )*z  —>z*(y*z)
'R. = 2: i(z * y) _» i(g) * i(a:)

3: i(:1:) + i(y) —+ :1: *3]

needs a mixed interpretation for the operator * which
implies'that [+](:1:,y) must also be mixed for applying
the original algorithm POSITIVE . For example,
the interpretations

., max) = .2‘.„d_[+1(.‚ y) = „,[*](x. y)  = 2x?! +
47)Analogous considerations are also helpful for lemma 9.1.
“)because of lemma 9.2
49)since 31212 2 %fzz + 112: and :3  + f :  + 3122 2 My:.
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will orient R with the help of POSITIVE if J.l= 
2. The interpretation of [+](x, y) can be replaced
 
by 2x + y (which is simpler than xy) if we use the
 
cxtend({ verE: ,~of POSITIVE.
 

Lemma 9.1 and lemma 9.2 provide a theoretical
 
framework for extending procedure POSITIVE. A
 
thorough investigation of its effect on practical appli

. cations is part of future plans. It is obvious, that this 
examination presumes detailed considerations about 
the combination oflemma9.2 (, lemma 9.1) and pro
cedure POSITIVE for an efficient implementation. 

9 IMPROVING THE BENCHERIFA AND LESCANNE METHOD

will orient 'R, with the help of 'POSITIVS if}; ‚=
2. The interpretation of [+](z,y) can be replaced
by 23: + 3/ (which is simpler than zy} if we use the
cztendt 'l vers: of 'POSITIVC. '

Lemma 9.1 and lemma 9.2 provide a theoretical
framework for extending procedure POSZTI V8  . A
thorough investigation of its effect on practical appli-

.. cations is part of future plans. It is obvious, that this
examination presumes detailed considerations about
the combination of lemma.9.2 ( ,  lemma 9.1) and pro-
cedure POSITIVS for an efficient implementation.
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A Appendix: Proofs 

Lemma A.I Let p be a polynomial with m positive monomials and n negative monomials. For the worst 
case of algorithm POSITIV£, II(p) and c}(p) are defined as fnilows: 

II(p) = (m!)3. n! . m n-m-l
 

n-m
 
Jc}(p) , " + n!.m~m,+J. 21:

2 fi (m - ril)(m - Li J)mm· n.· .'-- (n-j-l)! (m 1). .. 2 2 
)=0	 )=1 ,=1 

These twiJ expressions are valid if n ~ m holds. In order to get II(p) and c}(p) for m > n, we have to 
interchange the values of m and n, only. 

Proof A.I The number.II(p) of paths in the tree corresponding to p is equivalent to the number of leaves 
in the tree. Therefore, according to figure 7, 

ll(p) = I· (m - l)m(m - l)(m - 1)· .... (m - i){m - i)(m - i - l){m - i)(m - i ~ l)(m - i-I). 1 . 1 with
 
I = nm(n - l)m(n - 2)m ..... (n - k)m and k =n - m
 , 

The non-italic expressions represent the number w.r.t. n50). Thus, there are two sequences (i.e. products) 
of numbers (one sequence w.r.t. n and one sequence w.r.t. m): 

PI := n(n-I)(n-2)· ... ·(n-k)(n-k-I)(n-k-I)· .... (n-k-i)(n-k-i)· ... · 1 and
 
P2 := m k+1m(m - I)(m - 1)· ... · (m - i)(m - i) .... ·1
 

........	 PI = n!· (n - k - I)! = n!· (m - I)!
 
P2 =m k +1 ·.m!· (m - I)! = mn-m+l . m!· (m - I)!
 
II(p) = PI· P2 = n! . (m ~ I)!· mn-m+l . m!· (m - I)! = n!. (m!)3 . m n-m+1-2
 

The number ((p) of nodes corresponds to the sum of all levels (except the first one) of .':gure 7. We split 
the sum (as well as the diagram) into two parts: 

SI nm + ~m(n - I)m + ... + nm(n - I)m(n - 2)m· .... (n - k)m 
•	 S2 l(m -I)m + l(m - I)m(m - I)(m -I) + ... + l(m - I)m(m -I)(m - 1)· ... · I· 1
 

k J k n-m .
 
SI =	 L:«il(n - i». mi+J) = L:«n '.r I)! . m i +1

) = m· n!· E (n jJ I)! 
)=0 1=0 )=0	 )=0 

In order to compute S2 we set it to 82 := I . S2' and further split each item· of 82' into two products: 

[J] 1at Part of 82'	 I 2nd Part of 82' 

1 (m-I) m 
2 (m-I) (m-l) (m-I) m 

3 (m-2) (m-l)(m-l) (m-I) (m-l)m 

-4 (m-2) (m-2)(m-l)(m-l) (m-2) (m-l)(m~1}m 

5 (m-3) (m-2)(m-2)(m-l)(m-l) (m-2) (m-2)(m-l)(m-l)m 

The bold expressions are of the forms (m - r~1) and (m - L~ J) and therp:fore 

S2' 

50)Note that m - i = n - k - i. 
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A Appendix :  Proofs

) Lemma A.1  Let p be a polynomial with m positive monomials and n negative monomials. For the worst
case of algorithm 'PÜSITIVE, 11(1)) and <I>(p) are defined as follows:

Imp) = onna n!-m"-m-1
mn— —m+14’00) = m "' JED („-,—m + W 21g: 

i1:1("1-1%  !)(m— 1%1)
These two expressions are valid if n 2 m holds. In order to get II(p) and <I>(p) for m > n,  we have to

interchange the values of m and n,  only.

Proof A.1  The number.l'[(p) of paths in  the tree corresponding to p is equivalent to the number of leaves
in the tree. Therefore, according to figure 7,

l - (m—l)m(m—1) (m—l) - . . .—(m—i) (m—i) (m—i—1) (m—i) (m—i—.1) (m—i—l ) - l - lw i th
nm(n—1)m(n—2)m- . . . - (n - k )m  and k=n—m

I I (p )

l ll
 I

I

The non-italic expressions represent the number w.r. t .  n50). Thus, there are two sequences (i.e. products)
of numbers (one Sequence w.r.t .  n and one sequence w.r.t.  m):

P1:
P2:

n(n—l ) (n—2) - . . .A (n—lc ) (n—lc—1) (n—k—l)« . . .~ (n -—lc—i ) (n—k—i) ' . . . - l  and
mk+lm(m—l)(m—l)- . . . . (m—-i) (m—i)- . . . - l

M P1=n!—(n—k—l)!=n!-(m—l)!
P2 =m"+1  m! -  (m  — l)!._- m"""+1 m! -  (m  — l)!

«» I I (p ) :  P l  P2—_ n1-(m - l)! m"_'"+l m.!- (m — 1)!= n! (m!)3- rn""""!'l_2

The number ‘I—(p) of nodes corresponds to the sum of all levels (except the first one) of figure 7. We split
the sum (as well as the diagram) into two parts:

S]  := nm+nm(n  -— 1 )m+ . .  .+nm(n— 1)m(n—2)m.  (n—k)m '
\ 52 = l (m—1)m+l (m—1)m(m—1)(m-—1)+ . .  .+l(m—1)m(m—1)(m—1)—...-1—1

«» 51 :  au f? - i ) )  m1“): gym mi“) = m n! Z fi r

In order to compute S2  we set it to S2 := l - 52’ and further split each item- of S2' into two products:

| ij] ITPurt of 52' J 2'"! Part of 52' j
I (m- l )  m
2 (m- l )  (rn-1) (m—l) m
3 (m-2)  (m—1}(m-1)V (m- l )  (m-1}m _
4(mnmomomw (mnmvmwm
5 (m-3) {m-2)(m-2)(m-1)(m-1) (m-2) (m-2)(m-1)(m-1)m

The hold expressions are of the forms (m  — [%]) and (m  —— [%]) and therefore

ST=zgmmrmm—s

so )No te  tha t  m—i=n—lc—i .
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It is obvious that I = mk+1 • n!/(n - k - I)! = mn-m+! . n!/(m - I)! which leads to the final result 

2m-2 j . . 
52 1·52' = m(:::'~);n!. L: Ol(m-rtl)(m-l~J)) and 

)=1 1=1 

c)(p) = 51 +52 
o 

. Lemma A.2 Let c)(p) be defined as in lemma 4.1. Then, ~(p) = 1 if n = m = 1 or 2II(p) $ c)(p) < 

. 3II(p), otherwise. 

Prool A.2 The case n = m = 1 is obvious.\. Therefore, let n= m + k, k ~ 0 and not ~th m = 1 and 
k = 0. Furthermore, let 

II(p) = (m!)3. n! . m n-m-l 

n-m 
Jc)(p) - m. n'." m- \ ·.LJ (n-j-l)!

J=O 

1. We show that 2II(p) $ ~(p): 

• k =0, m > 1: Note that this implies n =m. 

• • i (m!)3(m - I)!

I I• •	 • (m!)3(m-1)! 

The last two levels of the tree contain 

n!{~n:;)~l .2jt(m _r~l)(m - l~J) = (m!?· (m - 1)1 and 
\=1 

n!.~:;;~l .2lr(m - r~1)(m - l~J) ~ (m!)3. (m - I)! 

nodes (see the expressions for II(p) an~ ~(p) of lemma 4.1).
 
'"'-"" c)(p) ~ 2II(p)
 

•	 k > 0: Assume that m =1.
 
'"'-+ II(p) = n! and
 

n-l 
c)(p) = n'. " 1 r ( 1 + 1 1 1) 

. ~ (n-j-l)! n . . '0(n-I)! (n-2)! +... + 11 + Of 
J=O
 

'"'-+ c)(p) > 2n! = 2II(p)
 

The proof of the case" m > 1" can be performed analogous to that of the case" k = 0, m > 1" 
(see figure). 

2. We prove that ~(p) $ 3II(p). This inequality is equivalent to the following one: 
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It is obvious that I = m"'H - nl/(n — k — 1)! = m"""'H - nl/(m — 1)! which leads to the final result

52 1.52: = %gfggljßm—raXm—Läß) and
<1>(p) = $1+S2 “

:Lemma A.  2 Let <I>(p) be defined as in lemma 4..1 Then, {>(p) -_ 1 i fn_- = 1 or 2H(p) $ <I>(p) s
311(1)), otherwise.

ProofA .  2 The case n = m = 1 is obvious. Therefore, let n = m + k ,  k > 0 and not both m—_ 1 and
k:  0 .  Furthermore, let .

H(p) = (m!)3 - n! - m""'"”1

up) .m-n!-'fi"‘z;$m+ 7,—7— >:f1(m—r;1)(m—L;J)
J=0  j= l  l= l

1. We show that 2II(p) $ (I>(p):

o k = 0, m > 1: Note that this implies n = m.

./.T.\. , ‚
i 0| o (m!)3(m—1)!

The last two levels of the tree contain

' (m!)3(m.— 1)!

731% II (m-mxm— L51) = (m!)3-(m—1)! and

% ill 3 (m“  !ä!)(m— [%J) ‘= (m!)3-(m— 1)!

nodes (see the expressions for 11(1)) and ¢I>(p) of lemma 4.1).
M @(p) 2 211(9)

o k > 0:  Assume that m = 1.
~> II(p) = n! and

%) = "' :3; (Ti-1): = "' Whit—527+- +ili+ölT)

~> <I>(p)>_ 2n! = 2H(p)

The proof of the case ”m > 1” can be performed analogous to that of the case ”k  = 0, m > 1”
(see figure).

2. We prove that (I>(p) g 3H(p). This inequality is equivalent to the following one:
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2m-2 j . .! 
1 

«m-l)!)3·m! L I1(m- r~l)(m- LH) < 3 
j=1 i=1 : . 

With the help of the fact that 

2m-2 . . 2m-3 . . 

I1 (m-r~l)(m-L~J) = Dl (m - r~l)(m - L~J) 
i=1 

we have to prove that 

n-m 2m-4 . .! 
?=o (n-j-l)!.«m-~)!)3.mn )+1 + «m-l)!)3.m!· ?= (m - r~l)(m - L~J) < 1m
 
]= ]=1
 

Note that 

2m-4 . . 
• I1 (m - r1.l)(m - L1.J). 2 2 

s=1 .' 

) . . 
U(m-rtl)(m-ltJ) 
i=1 < 1 

• i+l - "2
I1 (m-r~ 1)(m-l~J) 
,=1 

• 1 ..1 1 < 1, 
•(n-j-l)!.«m-l)!)3.mn m )+1 (n-j-2)!'«m-l)!)3.mn m ) (n-j-l).m - 2
 

n-m
 
• The division of the greatest item of the sum ~ (n-j-l)!.«m_~)!)3""ln-m )+1 and the smallest 

]=0 
2m-4 j . .
 

item of the sum «m-l)!)3.m! . ?=. ,I1(m- r~l)(m- LH) has the value
 
]=1 s=1 

1 . (m-l)·m _ 1 < 151)
«m-l)!)4·m . «m-l)!)3·m! - (m-l)·m - 2 

These four results directly imply the following fact: 

~( ) < 2. 1 . «m-l)!)3·m! 1p - «m-l)!)3·m! 2 
o 

Lemma A.3 The ordering 't- p defined by s 't- p t iff [s] :Jp [t] is a reduction ordering on 7(F, X) if no 
constant symbols in F exist. 

Proof A.3 By the definition of 't-M, for each mi tM mj there exists a flij such that mi ~ mj w. r. t. 
I 

M = {klk ~ flij}. Let fli = L flij. This implies that mi ~ L mj holds if(Vj E [l,l])mi ~ mj. 
m;t:Mmi j=1 

m-ult mult 
Let fl = 1 + maXi fli· Then, L mi :J L mj if U mi 't-'t-M U mj. o 

, 
T}.eo~em A.1 Algorithm 6.1 always terminates. If it does not fo.i[52), p:J 0 holds. 

.l)if m> 2. The case m = 1 is obvious.
 
52) Algorithm 6.1 will fail, if there is no solution for the set I of part 3.
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‚gap—mr
WW--. + „„,_‚1„„.„„ '3; {1:1}? — raven — [%]) é 3

With the help of the fact that

”Em — rämfn — [%]) = ”lfm — rämm — [%J) = ((m — IMP - m! '
we have to prove that

"im 
(„j—1)l((m_1)c)smn—m—:+1 + W'  (ZZ—14% '|)(m— [%]) g 1

Note that

. 'fi (m—r;1>(m—[;J)= “LD—'"

H“(m-f%1)(m-[%J)
. —- < %

l'I(m-[%1)(m-[%J)
i=1

1 ' . .1- _ 1 _ .
. (fl-J'--1)'((m-1)')""I'M"~J+1 ‘ (n-.i-2)'((m-1)')s 'N‘—"‘" _ ( " - i - l lm  “<- 2

. The division of the greatest item of the sum "in 
(„__ j_1 ) ‚  ((m-1)' )3 ”WW,“ and the smallest

item of the “mW—! - 2754 [ [ (m — [%] )(m — [%]) has the value
j= l  (=1

51)jm—  l ) -m 1 <
((m-1)')m [(m-1)')3'H'=W-1)‘m _

M
in

-l

These four results directly imply the following fact:

m— !3-m!° (P )S2 'W'  12 =1 Ü

Lemma A.3 The ordering >12 defined by s >}: t ifi‘ [s] :|}: [t] is a reduction ordering on T(.F , X ) if no
constant symbols in f exist.

Proof A .3  By the definition of >‘M, for each m,- EM mj there exists a m,- such that m,- ; mj w.r.t.
1

M : {klk 2 pg}. Let p.- = ): ag .  This implies that m:- ; 2 m,- holds if (Vj € [1,l])m:- :_l mj.
mgtumj  _ j= l

mal t  mult
Le tp  = 1+max‚-p‚-. Then, Emi  :! Emj  if U m£>>M U mj .  El

Theorem A .1  Algorithm 6.1 always terminates. If it does not fail”), p :] O holds.

“if "m 2 2. The case m = 1 is obvious.
52)Algor i thm 6.1 will fail, if there is no solution for the set I of part 3.
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Proof AA The proof of the termination is obvious. The correctness of the algorithm is guaranteed since 
the inequality X~I ..••. x~n ~ J.lL)k)-i)x~I ..... x~n if (Vj) k j ~ i j is valid and as the decision procedure 
for linear inequalities provides a correct solution. o 

Lemma AA Let Q, /3, Xl > O. Then, 

kl x kni ....• xjn > 2 r;;;7! 1 n"'Xii.... ..... xinn + /3x jl1 n _ V ufJ' x ..•.. 

if (VI E [1, n]) kl = i';1I 

. Proof A.S aX~1 ....• x~n + /3X{1 ••... x~n ~ 2.;arJ. X~I ..... x~n 

~ .
 

. . '. ~!ll.±.in.
 
11 In + /3 JI ]n > 2 r.:::7! 2 2QX l ..... Xn Xl' .•.. Xn _ VafJ' Xl ..... Xn 

since (VI 'E [1, n]) kl = il;h 
{:=:} 

axil ..... x~n + /3X{1 ..... x~n ~. 2 . (ax~1 •.•.. x~n ) t (/3X{1 ..... x~n) t
 
Let al = ax~1 ...•. x~n, a2 = /3X{1 .•.•. x~n. Then, we have to show:
 

I I 

al +a2 .~ 2· af a~ 
~ 

Ha~+ a2) ~ (ala2)t 

This relation is valid since it is a special case (r = 2) of the arithmetic-mean-geometric-mean inequality 
for r non-negative numbers aI, ... ,ar 

r r I 

~ . L ai ~ (n ai)r 
i=l i=l 

which is proved, for example, in [HLP52). o 

Lemma A.S Let n ~ m ~ 1. Then, for all Xi > 0: 

if (VI E [1, n]) kl = l . L
m 

il 
. m j=l ) 

Proof A.6 The proof is based on the arithmetic-mean-geometric- nean inequality:
 
For any non-negative numbers aI, ... , ar ,
 

r r I 

~ . L ai > (TI ai)r holds. (*) 
i=l i=l 

Let n > m .. 
in

"-+ ~ xiij. . x ) '>L... 1 ... n 
j=l 

~ 

f X~I) ..... x~) + f: X~I ..... X~'? > m· X~I •.... x~n + 
=1 j=m+1 

~ 
m' .
 
'"" I} j 1n j

L... Xl . '" 'Xn + f: X~I ..... x~n > n· X~I ..... x~n (**) 
j=l j=m+1 
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Proof AA The pmof of the termination is obvious. The correctness of the algorithm is guaranteed since
the inequality xi“ - . . . - 3:5" 2 ‚1209431? - . . . - mit" if (Vj)k‚< Z i,- is valid and as the decision procedure
for linear inequalities provides a correct solution. El

Lemma A.4  Let a ,ß , z ,  > 0 .  Then,

ax i1 - . . .—xf ‚"+ßz j l - . . . x ln>2g  xl; ick"
if (VI € [1, n])k1=

3ProofA .5 -aa : ' i ‘  -...—zf‚"+ßz{‘ „..-1:33 2 2W4?  „..-2:5"
<=, 1+1] "n i i t !
az ' ln .  -xi"+ß$" Jänf z fn>2m 3:13 -...-:r:„2
since (VI 6 [1, n]) In :
€»  ' l ' Iaz‘l' - . .  -x'" +ßz”  - 4:1" > 2-(am? v . . . -m;? )flßzä l  „..-mg")?
Let a1 -_ am; - .  . ..1:„" , az -_ ßzj‘ - -‚w i r .  Then, we have to show:

A 1
al +a2  2 2-a1’a2.. 1 ‘

%(01—+ a2)  Z (0102)5

This relation is valid since it is a special case (r = 2 } of the arithmetic-mean-geometric-mean inequality
for r non-negative numbers a l ,  . . . ‚ a ,

which is proved, for example, in  [HLP52]. EJ

Lemma A .5  Let n 2 m 2 1.  Then, for all a:; > 0:

"‘ i i  in -  ‚„J ] 1 k5 1:1 - . . . - 1 :„  Zmo  2:1 . . . - x„"

if (w e [1,n])k, = # . E ‚y,.
. j=1

Proof A.6  The proof is based on the arithmetic-mean-geometric- nean inequality:
For any non-negative numbers a l ,  . . . , a„

T 7' l . _' in ;  2 (ua.)? holds. (*)
‘ i=1  {:1

Le tn>m.
- I I«» l ’  -...-:v„"’ 2 m-z’f‘-...~z:" ‘

‚=>

m. i 1  i n n
) : z l ’ - . . . ' z„"’  + z zf‘-...-zfi'‚' 2 m zkl—„nz‘fi“ + z min-”um?

__:1  J=m+1  ' : r r+ l

{=>
m ‚'1_ i -  n
2w1’- . . . -z„"’ + 2 mil-„ua:? Z n-x'f‘-..._-a:fi" (**)
j=1  j=m+l
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Let ('Vj E [m + 1, n]) ('VI E [1, nJ) ill = k,.
 
'-+ (**)
 
~ 

~ i l ] i nj > kl knf.J xl ' ..•• X n _ n· Xl •.... X n 
i:l 

(\.JI []) ill i nl,Let v E 1, n a, = Xl ..... X n . 

"'" (***) 
~ 

n n n
 
I"" I"" I""
 n nL-,'l} , nL.J 12J nw'nJ" 

'" a' > n· x ]=1 j=I.. j=1f.J J _ 1 . x 2 • •• X n 
i:l 

since ('VI E [1, n]) k, = 1 l:
n 

i,. (because m· k, = L
m 

i, 
n i:l ] i:l ] 

implies n . k, = l:
n 

h, since ('VI E [m + 1, n]) ('VI E [1, nJ) i'j = k,) 
. i=l ] 

n n 1 

L, ai > n· (Il ai)Fi 
i=l j=l 

since' ('VI E [1, nJ) a, = X~II ••••• x~nl 

This inequality is identical to (*) which is proved to be valid. 
o 

A APPENDIX : I'ROOFS

Let ( l  E [m+ 1,n]) (VI 6 [1,n]) i„ = k,.
V (** )

<=> .

f: m;" -...-z:."’ 2 n-zf‘ „..-zii" (***)
j=1

._ Let (V! € [1,n]) a1 = $1" - wei-;".

M {***}

(=>

„ %2‘5.  #25, 52%
E aj 2 n-x l  ”1  4:2 ’“ °.. .-z„’=l
j= l

».  m

since (VI € [1,n]) k; = % Z i,]. (because m- In:  Z i;‚
j=l j=1

implies n - k; = i it], since (VI 6 [m+ 1,n]) (VI € [1,n]) iz]. = k1)
‘ j=1

€:?
".  n l

_2 %" 2 WU] “i)“J=1  J=1  . .
since ' (VI € [1,n]) a, = 3:1" - . . . - 2:"

This inéquality is identical to ( *} which is proved to be valid.
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B An Example 

This section deals with the proof of the positiveness of the polynomial Pt = 3x2y + 6xy2 - 2x2 - 6y2 

12xy - 9x - 9y given in examples 3.1, 3.:./. and 6.1. We a.pply t~:e Simplex method to the result generated 
in example 6.1. The following transformations will be carried ont: 

Input for algorithm 8.1: 

;2120 + ;2111 + /2110 + ;2101 +U1 3
 

/1202 + ;1211 + ;1210 +;12(11 +U2 = 6
 
3;2120 - U3 = 2
 
/1202 - U4 2
 

;2111 + ;1211 - Us = 4
 
/2110 + ;1210 - U6 1
 

. ;2101 + ;1201 - U7 = 1
 
U1 +U2 +U3 + U4 +Us +U6 +U7 > 0
 

Introducing slack variables (without xo): 

-r'l"""k, ... k" 
u, '>:1 b, 

1 1 

3 

1 

1 1 
1 1 1 1 

1 
1 

1 1 
1 1 

1 
1 

-1 

1 1 1 

-1 
-1 

-1 
-1 

1 1 1 1 

3 
6 
2 
2

•
1 
1 

153) -
Canonical transfo;mation: 

-',~ ... ink ...k" 
u, '>:1 .:J:n+m+i b, 

1 1 1 1 1 1 3 
1 1 1 1 1 1 6 

3 -1 1 2 

1 
1 

1 
1 

1 

·1 
-1 

.1 

1 
1 

1 

2

•
1 

1 1 -1 1 1 .. -2 -2 -2 -2 -2 -2 -2 
1 

-2 
1 
-2 

1 1 1 1 1 1 
-1 

1 1 
-20 

Pivoting: 

p = 1, k = 3: 

1
 

·1
 

1
 

·2
 

-r' .
·1 .. ··"k, ... k" 
1 1 

1 1 1 1 

1 
1 

1 1 
1 1 

-2 ·2 .2 -2 -2 -2 

p = 2, k =·1: 

u, 
1 

1 

1 

1 

t 
-t 

1 

-1 

1 

-1 

1 

·1 

1 
·1 
1 

.2 -2 -~ 

53)In this example we have chosen 1 instead of Ipf. 

'>:1 

1 
-1 

'>:.,+m+' b·, 
1 

1 
-=t 
! 

.1-' 

, 

1 
1 

1 
1 

1 

t 
6 

i 
2

•
1 
1 
1 

-¥ 
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32

This section deals with the proof of the positiveness of the polynomial p , :  32:23] + 61m2 -— 2:62 — 6:1;2 —
'1'2zy -— 9:1: — 9y given in examples 3.1, 3.2 and 6.1. We apply the Simplex method to the result generated
in example 6.1. The following transformations will be carried out:

Input for algorithm 8.1:

72130  + 72111  + 72110  + 721“ + “1

71202 + 712,1 + 71210 + 71201 + “2
372120 _ “3
71202 '- “4
721,, + 712“ - 715

721,0 + 712m — "6
„ 72101 + 71201 '— “7

m+w+w+w+w+w+w

Introducing'slack variables (without wo):

I I
IIHI IIIII

"

D
H

H
-B

N
h

D
O

äO
-v

“ l "Jma  “1‘ =1 "."
1 l l l 3

1 1 1 1 e3 -1 2
1 . 1  21 1 . 1  11 1 . 1  1

1 1
1 1 1 1 1 1537__

Canomcal transformation:
1 ‘1" - "" |h . . . k3  “ i  ' 1  bi

! 1 1 I l l 31 1 1 1 ss _1 1 21 -1 2
1 1 11 11 1

1 1 1 1 1 1
1 2 2 . 2  2 2 .2 z -1 .20

Pivotmg: '

p = 1, k = 3

Win-"M1 . . . “  "‘ ’1 bi ‘
1 1 1 1 % 1 %

1 1 1 & s
‘ 1  ...1 .1 %

l 1 g

1 1
1 11 1 1 1 1 1

2 2 . 2  z 2 . 2  . 2  _ }  .1 ‚ja

p :  2, k=—1:

53 ‚ In  this example we have chosen 1 instead of (pf.
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I 

I 

'Y. . 
'I ····nk ... k n 

I I 
I 1 I I 

I 

-I .1 1 
1 1 

1 1 

-2 -2 -2 ·2 

p =5, k =4: 

ui 

1 t 
1 

-t 
-I 

-I -! -I 
-I 

-I 
1 1 1 1 1 1 1 

-2 -f 

2:1 

1 
1 

I -I 

1 I
 
-I I 2 

-t 

t 
, 

f 

bizn+m+, 

t 
i 

1 2 
1 i 

1 1 
1 1 

1 1 

-¥ 

ui 2:1 bi"'n+m+i'Yi 1 ··· i "I<, ... I<.. 

1 1 1 1 t 1 -t 
-! 

1 -I1 1 1 t1 1 

i! 
-1 1 

! 
21 

.1 t 1-I -I 1 -I -I-t 
1 I -I 1 1 

1 1 -I 1 1 
1 1 1 1 1 1 1 1 1 1 

-2 -2 -2 -2 -f ·2 2 2·1 t -"'" 
p =6, k = 5: 

Ui ,bi"'1 "'..+m+i..,il···'''·I<, ... k.. 

J
I 

1 1 I 1 1 

1 1 1 I 1 1 1 1 1 1 .1 -I=Jt f 
-! 

-1I 1 
-1 -I 1 -I 1·1 -I f t 
1 1 -I 1 1 

1 1 -I 1 1 
1 1 1 1 1 1 1 1 1 1 

-2 -2 -2 -2 -2 -2 -2 -2 ! 2 2-I -41'-~ 

p =3, k =6: 

b,ui "'1""Yit···inlc "'n+m+i... 1<.. 
1 1 -I 1 J 1 1 -I 

1 1 1 1 1 1 1 1 1 -I -I -I=.t ,t t 
1 -1 1 

-I 1 1 -I -I -I -I 1 1-t t ! 
1 1 -1 1 1 

1 1 -I 1 1 
1 1 1 1 1 1 1 1 1 1 

-2 -2 -2 -2 -! -2 -2 -2 -I ! 2 2 2 -If 

p =4, k =7: 

J
u, bi"'1 .....+m+i""1':""1<, ... 1<.. 

1 -I -I 1 1 1 1 -I -I 

1 1 1 1 1 1 1 1 -I ·1 -I -I=Jt f 
1 -I 

! 
1 i

1 1 1 -I -t -I -I ·1 -I 1 1 1 1f 
1 1 -I 1 1 

1 1 -I 1 1 
1 1 1 1 1 1 1 1 1 

-2 -2 -t -2 -2 -2 -2 -I 2 2 2 2 -tt 

p = 9, k = 2: 

1 

33AN EXAMPLE

.,. u -  :1  1’l''1 "m. 11L '1 1 1 1 &1 1 1 1 1 61 &1 " 2-1 . 1  1 . 1  | -1 i»
1 . 1  1 1

1 l " l1 1 1 1 1 1
-2 -2 .2 .2 .2 . z . -

p = 5 ,  k = 4 :

“1  ing lm "‘  11 W1 1 1 ‘ 1 g1 1 1 1 x ‘1 i1 " 2-1 .1 1 '1 '1 &1 1 -1 1 1
1 1 -1 1

1 1 1 1 1 1 1
.2  . :  . 2  . 2  -2 -1 2 "

p = 6, k = 5:

m ...im, I: “‘ ‚ ‘  
bi

‚ . . .  ‚.
1 1 _ 1 1

1 1 1 1 l ‘ ‘ 1
1

1 " 2_1 . 1  1 -1 '1 i-1 . 1  1 1
1 1 . 1  1

1 1 1 1 1 1. ;  .2 . 2  . 2  -2 -2 -2 ' _}
p = 3 ,  k -—— 6 :

'Tl'l...t'n "‘  
31  "’k,...kn , ,1 1 . 1  1 1 .1

1 1 1 1 1 1 1 '1
1

1 " 2-1 1 1 -1 I1  -1 1 &
1 1 -1 1 1

1 1 .1 1
1 1 1 1 1 1 1. 2  .2 . 2  ;? .2 . 2  -2 . 1  2 fif-

p = 4', k = 7 :
„

7114.1t ...k ‚ "; 11  b1

1 „1 -1 1 1 1 '1
1 1 1 1 1 1 '1

1
1 -1 2

1 1 1 -1 -1 . 1  -1 ‘ 13"
1 1 .1 1 1

1 1 .1 1
1 1 1 1 1 1 1
.2 Li  . 2  _ :  -2 -2 _-1 z “j“

p = 9 ,  k = 2 :
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"'i1 ...•nk! ... k n 
ui %1 %n+m+i bi 

1 

1 
1 

1 
1 

1 

·1 

1 
1 

·1 

1 

1 

·1 
1 1 

- ! 

t 
-t 
-t· 

~ 

·1 
1 

·1 

·1 
1 

-I 

1 

·1 
-I 

1 

·1 

-I 
1 

1 

·1 

·1 
1 

-I 

-t 
t 
t 

~ 

1 1 

·1 ·1 

1 
1 

, 
1 1 

·1 

1 
1 

1 

·1 

1 

1 
1 1 

0 

t 
2 

If 
1 

i 
-t -I 2 2 t -t 

p =11, k =8: 

%1 bi"i %n+m+i"Y'l .. ·ink ... fen 
1 -I ·1 -I -I -1 -I 1 1 

1 1 ·1 1 1 1 0-! 
0 

t -! -! -! -t -t -t}!1 1! -t ! ! ! f f f 
-1 11 2 

1 1 1 -I -I -I ·1 t-~ -t ! t ~ ~ t tt 
-I1 1 

1 1 -I 
1 1~* -* -* * * .1* 

1 

* 
1 

* 
1
1 

1 1 1 1 1 1 1 0 

A feasible sollltion is of the form (1,0,1,1,2,4,0,0,0,0,1,0,0,0,0). This vector leads to the following 
values:
 

/2120 = 1, / 21 11 = 0, / 2110 = 1 , / 2101 = 1, /1202 = 2, / 1211 === 4, / 1210 = 0: 1'1201 = 0, u3 = 1 and
 
(Vi E {I, 2, 4, 5, 6, 7}) Uj =0.
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Viruimmkn v." =1 $n+m+a  bi

! l l l 1 g» 1111  1 1 1 1l —§» ‘1 11 . 1  1 o‚ -1 1 i1 -1 1 2
1 1 1 1 —§. 1 -1 1 & 1 1 1 151

1 1 -1 1 1
1 1 -1 1 1

} 1 1 4 1 1 1 1 1 j
_} 2 2 4; —i

p=11 ,k=8:
7‘1""m. - .kn  ".“ I: =n+m+i °.“

' 141:"5711—11'1—1- ‘1—‘1—1—1—13
. 1 1 1 -1 —1 1 g 1 1 1 l ;

1 1 1 .1 1 1 1 } -3— —§ } } 3- % 3- } ‘
l 1 ‘ 1 ‘ 1 I 1 l

1 3 3% 3°- J j J j % % I1 1 1 1 1 ‚1 1 1 o

A feasible solgtion is of the form (1 ,0 ,  1 , 1 ,2 ,4 ,0 ,0 ,0 ,0 ,  1 ,0 ,0 ,  O, 0). This vector leads to  the following
values: _ €
72120 = 11  72111 = 01  72110 = 1 1 72101 = l a  712,02 = 21  712" = 41  712m = 01  71201 = 01  "3 = 1 and
(Vi € {1,2,4,  5, 6, 7}) u; = 0.


