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" Abstract

Termination is an important property for programming and particularly for term rewriting systems. The
well-known polynomial orderings can be used for proving the termination of term rewriting systems. The
proof of the positiveness of a polynomial presents a crucial point concerning polynomial orderings. There
exists a powerful non-deterministic method for performing such proofs that has been developed by BenCher-
ifa and Lescanne. We describe some observations on the time complexity of this approach. In addition,
a deterministic version is presented which has the same power as the original one. We also deal with a ’
modification for signatures which do not contain any constant symbols. Finally, we discuss an improvement
of the non-deterministic method.
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2 NOTATIONS

1 Introduction

Term rewriting systems (TRS, for short) provide a
powerful tool for expressing non-deterministic com-
putations. As programs they have a very simple syn-
tax and their semantic is based on equalities that are
used as reduction rules with no explicit control. For
this purpose it is essential that a TRS has the prop-
-erty of termination.

There exist various methods for proving termi-
nation of TRS. Most of these are based on reduction
orderings which are well-founded, compatible with
the structure of terms and stable with respect to
(w.r.t., for short) substitutions. The notion of re-
duction orderings leads to the following description
of termination of TRS (see [Lan77]):

A TRS R terminates if, and only i,
there ezists a reduction ordering > such
that | > r for each rulel — 7 of R.

One way of constructing reduction orderings con-
sists of the specification of a well-founded set (W, >)
and a mapping ¢ (called termination function) from
the set of terms intn W, such that ¢(s) > »(t) when-
ever t can be derived from s ([MN70}). The well-
known Knuth-Bendix orderings ({[KB70]) are thus
defined using W := IN, >:=>1 and ¢ as the so-
called weight function. Polynomial orderings pro-
posed by Lankford ([Lan75a},[Lan79]) are based on
the set of polynomials over IN (representing W)
where o denotes a polynomial interpretation (also
called norm function, and > represents an order-
ing on polynomials (which is, in the case of ground
terms, equivalent to >).

The use of polynomial orderings reduces the
proof of termination of TRS to finding appropriate
interpretations orienting the given system, on the
one hand, and to deciding whether a given polyno-
mial is greater than another one, on the other hand.
The first problem is treated, for example, in [Ben86)
and [Ste91]. The topic of this paper concerns the
second problem. In the literature, there exist a few
methods ([Lan79], [BL87], 'Rou88] and [Rou91], for
example) for handling the proof of whether a polyno-
mial is greater than zero. In this report, we present

Dn this paper, > represents the natural ordering on IN.

(s >t

some modifications of the technique contained in
[BL87].

In the following section we briefly recapitulate
the most essential notions used in connection with
TRS and termination?). Section 3 deals with the de-
scription of the constructive factors concerning the
technique of BenCherifa and Lescanne ([BL87]). An
examination of this method, related to the time com-
plexity, is given in section 4. In section 5, we pro-
vide a modification for signatures which do not con-
tain any constant symbols. A deterministic version
of [BL87] is presented in section 6. It is based on
the transformation of a polynomial into a set of lin-
ear inequalities (according to the coefficients of the
polynomial) which can be solved by applying, for
example, the first phase of the well-known Simplex
algorithm. The most important reason for the devel-
opment of this technique lies in the fact, that it can
be used for (automatically) generating a polynomial
interpretation for a given TRS (see [Ste91], [SZ90])
whereas the technique of [BL87] cannot. Section 7
contains a brief description of the first phase of the
Simplex algorithm. Subsequently, we deal with the
time complexity of the Simplex method because the
Simplex method forms the main part of .he approach
given in section 6. Finally, we present an improve-
ment of the BenCherifa/Lescanne technjque.

2 Notations

We assume familiarity with the standard definitions
of the set of function symbols (or operators) F and
their arities®), the set of variables X, the set of terms
T(F,X), the set of ground terms G(F) as well as
with the definition of a substitution to of a term t
and rewriting systems R = {I; — r; | i € I}9.

A partial ordering > is a transitive and irreflex-
ive binary relation. It is said to be well-founded
if there exists no infinite descending sequeunce. A
partial ordering on T(F,X) is called a term or-
dering. A reduction orderirig > is a well-founded
term ordering which is stable w.r.t. substitutions

~+ so > to) and monotonic w.r.t. (or

%)For details see, for example, [HO80] and [Der87].

3)An operator with no arguments (i.e. whose arity is zero)
is called a constant (symbol).

Y1 is a set of indices.







2 NOTATIONS

compatible with) the structure of terms {s > ¢t ~
Floos )= S t0).

Polynomial orderings are special reduction or-
derings and have been studied by Manna & Ness
([MN70]), Lankford ([Lan75a], [Lan75b], [Lan76],
[Lan79]), Dershowitz ([Der79], [Der83], [Der87]),
Huet & Oppen ([HO80]), BenCherifa & Lescanne
([Ben86], [BL87]) and Rouyer ([Rou88], [Rou9l]).
-Manna & Ness, Lankford, Huet & Oppen and
BenCherifa & Lescanne have proposed a method
which maps the set of terms into a well-founded
set by attaching monotonic functions to operators®).
Let us now describe this technique.

T he set of all polynomzials with an arbitrary num-
ber of variables and with coefficients from IN is de-
noted by Pol(IN). A polynomial is composed of a
sum of monomials®) Ory o 21 ot p(Z1, .., Z0)
represents the polynomial )N T LRI 1A
based on n distinct variables. The ordering >pron
on two monomials is defined as”)

Qi in -:1;'11 e 'x:{' >MON ajl---j,.,x{l . z{ln
if, and only if, (¢1,...,%x) >L, (1., 7n)

Since every gro ial is eque! to a nat- |
Since every ground polynomial is eque

ural number, we will identify the set of ground poly-
nomials with IN. A polynomial p possesses a strict
arity n if n variables occur in p that differ by pairs.

Definition 2.1 A polynomial interpretation [.]: FU
X +— Pol(IN) (for vcriable terms) maps each n-
ary function symbol f € F into a polynomial p €
Pol(IN) of strict arity n and each variable ¢ € X
over terms into a.variable X € V over IN. This
mapping can be extended to [.]: T(F,X') — Pol(IN)
by defining [f(t1,. .., ta)] = [f)((ta],- - -, [ta])-

Definition 2.2 ([Lan75a]) Let M be any non-
empty set such that [G(F)] C M C INy. The polyno-
mial ordering =por on two terms s and * is defined
as

5) Dershowitz uses an arbitrary set by requiring the functions
to possess the subterm property.

$)We often use ar, .., for teferring to the exponents of the
variables (e.g., a2102%y + a10122).

)The ordering >J., denotes the lexicographical extension
of > to tuples of n natural numbers.

s >porl <= [S] 3 [t]
with®) p 3 ¢ <=

(VXl,...,‘Xn € M)p(Xl,...,Xn) > q(Xl,...,Xn)

Example 2.1 We prove the termination of

’R:{ fzy) - g(z.9)
9(h(z),y) — h(f(=z,y))

by using > por, based on the interpretations

[FIX,Y) = 2X+Y +1
[g(X,Y) = 2X+Y
R(X) = X+2

Note that [f(z,y)}(X,Y) = 2X + Y + 1 end
lo(z, (X, Y) = 2X +, [g(h(z), )}(X,¥) = 2X +
Y + 4 and [A(f(z,y))(X,Y) = 2X + Y + 3. Since
R contains no constant symbols, the non-empty set
M can arbitrarily be chosen. We have to show that
VX, Y e M)2X+Y +1>2X+Y A 2X+Y +4 >
2X +Y + 3 which is valid for any M C IN,.

If F contains at least one ccistant symbol.

G(F) # 9, the polynomial ordering >por
strongly depends on [G(F)] since definition 2.2 re-
quires [G(F)] C M. Because of the interpretations
of ground terms being natural numbers, M has a
unique minimal (w.r.t. > on IN) element. In the re-
maining part of this paper, the minimum of the set
M is denoted by pu.

i.e.

Remark 2.1 Note that p = min{[c]() | c.is a con-
stant symbol of F} if there exists at least one con-
stant symbol in F. If p is strictly greater than the
minimal interpretation of all constant symbols, the
induced polynomial ordering might no longer be sta-
ble w.r.t. substitutions and, as a consequence, does
not need to be well-founded. This can be illustruted
by a simple ezample: Let [g)(z) = 22, [ANz) =z + 1
and [a)() = 1. Then,

g(z) >por Mz) if p=2

ka) >por g(a)

8)Note that [s] and [t] are polynomials. Thus, 71 is an or-
dering on polynomials (p, q).
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The stability of »>por must guarantee that
g(a) »por h(a) holds if g(z) »por h(z). It is ob-
vious that the system {g(z) — h(z), h(a) — g(a)}
dves not terminate. Anyway, the above condition
concerning pu must be guaranteed (which implies that
g(z) and h(z) are incomparcble w.r.t. >por).

Instead of using the set M, we require J to be
.defined as p 3 ¢ iff (VX; > p) p(X1,...,Xn) >
g(Xi,...,Xy). In the remaining part of this paper,
we no longer differentiate between capital letters for
denoting variables of polynomials and lower case for
representing variables of terms. We adopt the lower
case form for simplicity.

3 The Method of BenCherifa and
Lescanne

The use of polynomial orderings reduces the proof
of termination of TRS to finding appropriate inter-
pretations orienting the given system, on the one
hand, and to deciding whether a given polynomial
is greater than another one, on-the other hand. In
general, the comparison of two polynomials (p-3 ¢q)
is reduced to the proof of the positiveness of just
one polynomial (p — ¢ 1 0). The problem whether a
given polynomial in n variables is positive over real
numbers is generally decidable, although in exponen-
tial time ([Tar51], [Col75]). However, if we restrict
the domain of a polvnomial to a proper subset of
IR, such as IN, the problem is generally undecidable
([Dav73]). There are a few well-known approaches
concerning this problem (see for example [Lan79),
[B.87], [Rou88] and [Rou91]). In this section, we
briefly present the technique of [BL87).

The main -idea of the method. proposed by
BenCherifa and Lescanne is to prove p 1 0 by find-
ing polynomials py,...,p, such that

p=podprd...Jp 0.

The positiveness of p,, is checked by a basic principle
like "all coefficients are positive’. The transformation
of p; into p;4; is performed by merging a negative
monomial and an appropriate positive one. This pro-
cess consists of two tasks. Firstly, we have to choose
a pair of monomials, one having a positive and the
other one containing a negative coefficient. Seconaly,

we must transform the negative and the positive one
into one singular monomial. Since these two proce-
dures, named CHOOSE and CHANGE, are the es-
sential points Jf the problem, we will discuss them in
detail after the presentation of the whole algorithm.

Algorithm 3.1 (|[BL87]) We assume that a poly-
nomial can be represented as a set of monomials each
realized as a tuple (0te, . ., ,€1...€,) where e; stands
Jor the exponent of the variable z; and o, ., for

the coefficient of the monomial. Figure 1 represents
algorithm POSITIVE of [BL87].

As noted previously, the main idea of the proce-
dure POSITIVE is to consider a monomial N with
a negative coefficien* and try vo find a monomial M
with a positive coefficient which is an upper bound
of it. When such a monomial M is found, we divide
it into two parts M; and My with M; + My, < M
such that M, forms an upper bound of N. Thus,
the positiveness of the whole polynomial p can be
guaranteed by proving the positiveness of a polyno-
mial p’, which is derived from p by replacing the
monomials N and M by M,. For example, we prove

. 2zy — zy — z .0 be positive py transforming 2zy to

ry + zy, replacing 2zy and —zy by zy, and proving
zy — z to be positive.

We now discuss procedure CHANGE. As men-
tioned in section 2, the realization of CHANGE
strongly depends on the minimum of the interpre-
tations of the constant symbols contained in F. In
[BL87], the constants will be interpreted as natu-
ral numbers greater than or equal to® 2. Thus, a
monomial M having a.,. ., as positive coefficient
forms an upper bound of a monomial N consist-
ing of the coefficient ay, _ (which is negative) if
Qey.ep * 22 (ei=fi) > lees, . 52119 If M is not an up-
per bound of N, this number can be added to ay, s,
to minimize the negative coefficient!?).

Algorithm 3.2 ([BL87]) Analogous with algo-
rithm 3.1, let ae, ., (of,. 1, , respectively) be the

®)This implies that M represents the set {k|k € N,k > 2},
le. p=2.

19)Note that (Vi € [1,n])e; > fi. This condition is required
in POSITIVE.

" For example, p’ + z2y — 4zy will lead to p' — 2zy if p = 2,
since z2y > 2zy.
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POSITIVE = proc (p : polynomial) returns
while there erists a negative coefficient in
if

(string)
p do

there exist ., ., > 0 and ay, 5, <0 with (Vi € [1.n1)e; > f,

then (0. .., .., ) = CHOOSE(p)

('H-ANgg(ael enyQfy . fn )
else return ('no answer’)
end
return (’positive’)
end ‘

Figure 1: Procedure POSITZIVE of [BL87)

C'HAN(]E = Proc(Qe, . e, Oy fn -

monomial)

if Qey.en > OS5 10 2z(f'“"')|

then o, ., =ae. ¢, + ay. 5, L2 (fimei)
of . g, =0 \

else ay 5. =0 5, + Qe e, .92 ei—fi)
Ay ey = 0

end

Figure 2: Procedure CHANGE of [BL87]

representation of a monomial. Procedure CHANGE
is contéined in figure 2.

It is obvious that algorithm 3.1 can be adapted
to a general minimum g of M. Then, all the integers
’2" of procedure CHANGE will have to be replaced
by p. By increasing p, this method becomes more
powerful. However, remember that x is bounded by
the minimum of the interpretations of all constant
symbols.

Remark 3.1

A general version of procedure CHANGE transforms
the monomials a., ., (positive) and ay, 5, (nega-
tive) in the following way:

(ael censy & fy . fn ) =

(g + 0fy . gop2tfi=e) 0)
if Qeyen > Iafl‘,.fmuZ(f;—e.-)l

(0) afl'--fn + ael -..e‘,,ll’z(ei—fi))
[ otherwise

After merging two monomials, an increase of u
would lead to a greater positive coefficient (a smaller.

negative coefficient, respectively). More precisely:
For compactness, let a = e, ¢,, b = oy, 5, and
= Y(fi —e). Then, a +bui > a+ bp§ if
a > |bui| A 1 > pg as well asb+api® < b+ap;©
ifa < |buf| A py > pe. Thus, the greater the p is,
the more powerful procedure POSITIVE will be.

Before discussing procedure CHOOSE we illus-
trate the steps, presented up to now, by an example.

Example 3.1 Suppose we have to prove that a term
s is greater than a term t w.r.t. >por based on a
polynomial interpretation [.] such that:

[s] = 32%y+6zy?,
[#] 2z% 4+ 6y + 12zy + 9z + 9y and
i 3. g

If we want to show [s] 1 [t], we need to check the
positiveness of the polynomial p = [s] — [t]. Consider
the two sequences o, “gure 3, both starting with p.
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- /
Il

Po =
J m 322y + 5xy? — 227
J p; = 32% +4axy? — 222
3 ps 3x2y — 2x2 — 6y?
3 pi = fPy-642

[s]=[t] = 3%y + 6xy? — 222 — 6y% — 12zy — 9x — 9y
- 6y® — 12zy — 9y
- 6y% — 12xy

Note that we do not have any chance to show the positiveness of py (p, respectively). However, consider

the following sequence:

3z%y + 6xy2 — 222 — 6y2 — 127y — 9z — 9y
3x%y + 4zy? — 2x% — 12¢y — 9z — 9y
%x2y + 4xy2 —12xy — 9z - 9y

P = P =
3 M
4 p2 =
3 p3 = gxiy-—9x-9y
3 ps = $xPy-9y
2 ps = 32ty

Note that ps 3 0 holds since all coefficients are positive.

Figure 3: The sequences corresponding to example 3.1

Procedure CHOOSE realizes a heuristic for find-
:1g an appropriate positive moaomial for each nega-
tive monomial. At the end of this section, we present
the version of CHOOSE as it is contained in [Ben86]
and implemented in the REVE system. CHOOSE
selects the greatest (w.r.t. >aon) negative mono-
mial as well as the greatest (w.r.t. >pon) positive
monomial such that the set of variables is minimal
w.r.t. the negative monomial. For example, con-
sider the polynomial p = z3yz + z2y? — 2%y — zy?2.
First of all, we merge the monomials z?y? and —z2y
since 2%y >amon zy?z and the number of vari-
ables of z%y? is smaller than that of z3yz (although
z3yz = pmon Ty? holds). :

Algorithm 3.3 ([Ben86]) Analogous with algo-
rithm 3.1, we assume that a polynomial can be repre-
sented as a set of monomials each realized as a tuple
(ctey...en 1 €1-.-€n) where e; stands for the exponent
of the variable z; and a., ., for the coefficient of the
monomial. Procedure SORT -MON receives a list
of riono ~als as input and returns a sorted (w.r.t.

>MON, « descending order) copy of it. Procedure
CHOOSE is featured by figure 4.

Example 3.2 (Example 3.1 revisited) By using
procedure CHOOSE, the sequence of figure 5, stari-
ing with the polynomial p of erxample 3.1, will
be generated. Note that the length of such a
sequence po,p1,... strongly depends on procedure
CHOOSEY), For example, the length of the success-
ful sequence presented in example 3.1 is § whereas
CHOOSE generates a sequence of length 6.

4 Towards the BenCherifa and
Lescanne Approach

In this section, the empirical time complexity of pro-
cedure POSITIVE is discussed. Note that it is very
difficult to give an exact complexity result since it de-
pends on (the relationships betwee 1) the coefficients
of the positive and the negative monomials. For the
remaining part of this section, we assume that al-
gorithm POSITZIVE contains a backtracking com-
ponent which will be-employed whenever the chosen
sequenr= rannot prove the positiveness of the given

polyno: ..

12)and thus on the values of the coefficients
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N

CHOOSE = proc(p : polynomial) returns (monomials)
NL : Negative-Monomial-List := ()
while there ezists a negative monomial ay, s, in p do
NL := NL o ef, .1,

end
NL := SORT-MON (NL)
a.f1~~fn = NL[]‘]

PL : Positive-Monomial-List := ()
while there ezists a positive monomial a., ., in p do
if (Vie[l,n])e; > f;
then PL:=PLo a.,. .,
end
PL := SORT-MON (PL) :
Qc, .., = PL[i] such that i and Y "(ex — fx) are minimal
return (o, .c,,f,..s,)
end

Figure 4: Procedure CHOOSE of [Ben86]

p = po = 3x2y+6zy?—2x2 -6y’ —12zy -9z — 9y
d m = %xzy + 6zy? — 6y® — 12xy — 9z — 9y
J p, = 6xy2-6y?—5xy—9z-9y
J ps = Pxy?-6y°-9x-9y
1 p = Rxy?-ey?-9y
J ps = #xyZ-9y
-3 ps = jzy’

Figure 5: The sequence, helonging to example 3.2, generated by CHOOSE
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As we have seen in the last section (example 3.1
and example 3.2), there exist different possibilities
to choose negative and positive monomials. These
waltiple choices can be described by a tree!® of
which the nodes represent the polynomials p; gen-
erated from a given polynomial p.

e The number II(p) of paths (i.e. the number of
leaves) in this tree stands for the number of dif-
ferent sequences from p to the result 'positive’
or 'no answer’, which procedure POSITIVE
returns.

e The number &(p) of nodes (except the root)
represents the number of computations of the
sum of two monomials (i.e. it is identical'®) to

the number of calls of procedure CHANGE).

Example 4.1 (Example 3.1 revisited) Figure §
illustrates the number of polynomials which can be
created when starting with the polynomial p of ezam-
ple 3.1. Due to the difficulty of graphically display-
ing all nodes, we present their numbers (beginning
at level 4), only. Totally, 768 paths through this tree
erist (although p is a relatively simple polynomial)
of which 212 cannot be us:d to show the positiveness
of p. Note that ®(p) = 1967.

The best case!®) for the complexity of procedure
POSITIVE is n, where n represents the number of
negative monomials occurring in p. This complex-
ity can only be achieved if p is a polynomial such
that each positive monomial can cover all negative
monomials, i.e.

e the exponent of each positive monomial is
greater than or equal to the exporent of each
negative monomial (for all variables) and

e each positive coefficient is greater than the sum
(w.r.t. p) of a'l negative monomials.

More formally: Let p = 3 (i, ., — Biy..in) * i -
..z such that ey 5, 20, Bi,..i, 2 0and &, 4, -

13)One and the same polynomial can appear more than once
in the tree.

1IN ste that thi; - =ction is based on algorithm POSI7
including backtracking. '

15)independent of CHOOSE, i.e. regardless of the chosen
sequence

Biy.in = 0'). Then, the following two conditions
must hold:

o (Vai, i, > 0)(VWjp.jn > O)VE € [1,n])ik 2
Jk

o (Vay,. .5, > 0) iy ip > ¥ p2oUix—ix) * Biy.iin

A tvpical polynomial, fulfilling these conditions,
is considered in example 4.2.

Example 4.2 Let p = 3z%y + 6zy — 4z — 5y — 2
and p = 2. Fach positive monomial can cover all
negative monomials since 3 > 4-27245.27242.273
and 6 >4-2"145.2"142.272,

The worst case for procedure POSITIVE will
occur if p is not greater than zero'”) and the corre-
sponding tree is maximal. Furthermore, the expo-

“nents of each positive monomial have to cover those

of every negative one. The tree will be maximal if
it is of the form presented in figure 7. Let n be the
number of negative monomials, m be the number of
positive monomials occurring in a polynomial p and
wlog. letn=m+k, k> 018), Figure 7 represents
the number of nodes at each level of the tree which
corresponds to p. First of all, the number of nega-
tive monomials must!®) be reduced to the number of
positive monomials (since n > m). Then, n and m
must be alternately decreased by 129). Note that, in
figure 7 we will select m instead of n if n = m holds.

Lemma 4.1 Let p be a polynomial with m pusitive
monomials and n negative monomsals. For the worst
case of algorithm POSITIVE, Ii(p) and ®(p) are

as follows:

I(p)
o(p) =

(m!)3 . n!.mr-m-1
n-—m

.nt. m?
m - n! EO moy t
J:

w5 [ m = [5)m - 14)

1) The condition @iy...infiy..in = 0 provides a normalized

“polynomial where, for example, 2z2y—zy+...is not allowed.

") This fact leads to the examination of all nodes of the cor-
responding trec

%)see lemma 4.1

19)in crder to acaieve the worst case

20)This condition has to be guaranteed since for each real
number a > 0, the following fact holds: (Vb # 0) a® > (a —
b)(a + 3), since (a — b)(a + b) = a® — B2,
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3z%y + 6zy? — 2% — 6y® — 122y — 9z — 9y
. "

8

/N AACA AN AN AL

35 12 25 25 32 24 25 25 203
109 24 64 64 91 54 64 64 534
162 24 91 91 148 54 87 87 744
124 0 43 43 96 6 59 59 430

The following diagram provides a more detailed representation of the above tree. The nodes (i.e. the
polynomials of a sequence) are identified by numbers. Each number of a node corresponds to its occurrence
w.r.t. the tree. Thus, two identical numbers characterize the same subtree. The trees corresponding to the
bold typed numbers are ezplicitly given, whereas the trees corresponding to the normal typed numbers are
only pointed to. The vertical bars separate classes of subtrees belonging to different roots. The sign & (6)
stands for a leaf of a successful (non-provable) vath w.r.t. POSITIVE.

[¢]
123345866
11 1212181 - 18 15| 21 222222 |12 32 33 34 35 38 | 13 21 34 34 44 46 45 | 14 35 35 44 54 54 | 15 22 30 45 54 66

111 112 113 113 (121 122 123 124 128 | "11 123 123 133 134 134 | 124 124 133 143 143 | 113 125 134 143 155 | 211 211 211 | 211 222 222 | 222 222
832 | 122 332 333 334 | 123 222 333 344 3485 | 124 334 344 384 | 125 322 345 354 | 133 344 344 | 134 211 345 454 455 | 143 354 543 544 | 155 222 455 544

1111 1112 1112 | 1111 1122 1122 | 1112 1122 1138 | 1122 12132 | 1221 1322 1223 | 1281 1222 1233 1334 | 1223 1233 1348 | 1212 1234 1243 | 1233 1233
11112 1234 1343 1344 | 1243 1433 O | 1133 1344 © | 2111 2111 ) 2111 2322 | 2222 2222 | 8331 2222 | 1222 3321 8883 | 1223 3333 | 1233 3333 | 1234 2222
3453 | 1243 3542 | 3453 3453 1543 | 1344 2111 4588 | 1432 3542 | ©

11111 11111 | 11111 111232 | 112321 | 11122 11221 | 13131 11221 | 13211 11221 [ 12211 @ | 11122 @ | 11111 12121 | @ | 12121 13342 | © | 184381 12342 |
11122 13442 |6 | © | 0| © | @ | 12342 34532 | © | 13442 34532

olelololslololele

. Figure 6: Number of paths for the polynomial of example 4.1






4 TOWARDS THE BENCHERIFA AND LESCANNE APPRUACH

1

nm
nam(n — 1)m

am(n — 1)m(n — 2)m

nm(n—-)m(n—2)m-... - (n —k)m =:{
1. (m—-1)m

I-(m~1m(m-1)(m~-1)
L{im—mm-1D(m-1)-.... (m—i)(m—1i)
L-(m=1)m(m—-1)(m—1)...- (m—i)}(m —i)(m —i—1)(m —i)

lm=Dm(m—1)(m-1)-...-(m=i)(m=i)(m—i—Ym=)(m—~i-1)(m—i-1)

Afm-Dmm-1)m-1)-...-.(m—i}(m—i)m—-i-1)(m—-t)(m—i-{m—-i-1)-...-1-1

Figure 7: The worst case for procedure POSITIVE
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5 THE 'NO CONSTANTS’-CASE.

‘These‘e two expressions are valid if n > m. In
order to get II(p) and ®(p) for m > n, we have to
interchange the values of m and n, only.

A polynomial composed of 4 negative and 3 pos-
itive monomials can correspond to a tree with 5184
leaves and 13729 nodes (in the worst case). A typi-
cal example of a tree for representing the worst case
-of algorithm POSITIVE is the following one.

Example 4.3 Let p = 3z%y + 3zy? — 4zy - 8z — 8y
and g = 2. The symmetric tree of figure 8 corre-
sponds to p. Note that all paths end with 0, i.e. p
has a root at the position (2,2) and thus p 7/ 0 for
H = 2. !

The following lemma provides a rough lower and
a rough upper bound for the number ®(p) of nodes
determined in lemma 4.1.

Lemma 4.2 Let ®(p) be defined as in lemma 4.1.
Then,

P(p)=1 . fn=m=1or
2[I(p) £ ®(p) < 3Ii(p) otherwise.

The bounds of lemma 4.2 define the time
complexity (for the worst case) of procedure
POSITIVE (with backtracking) as O(m! - n! -
m™ ™). By using the formuia of Stirling?!), the com-
plexity changes to O((mn)™).

We believe that, in many cases, procedure
CHOOSE will directly generate a successful se-
quence proving the positiveness of a polynomial p if
p is positive. In these cases, the time complexity of
procedure POSITIVE is O(k-logk) where k repre-
sents the nuniber of monomials occurring in p. More
precisely, the number of calls of procedure CHANGE
lies between n and m+n—1 (where n and m are the
numbers of negative and positive monomials). The
case m+n—1 will be achieved if m—1 posi‘ive mono-
mials are covered by a part of the negative ones and
the m* positive monomial covers the remaining neg-
ative monomials. Procedure SORT-MON?? has
the complexity®® (n-logn + m-togm)- v where v
is the number of different variables occurring in p.

Win! (2)" - V2mn.
*2)which represents the main part of procedure CHOOSE
23)if, for example, a heap sort algorithm is used

11

Note that this complexity can only be achieved if
procedure CHOOSE directly finds a successful path
through the corresponding tree of the polynomial.
However, it is obvious that there exist positive poly-
nomials (in the sense of POSITIVE with back-
tracking) that cannot be proved positive (without
backtracking) by use of CHOOSE:

Example 4.4 Let p = z'y? + 3z3yz — 823 — 42%y?
and p = 2. Procedure CHOOSE creates the sequence
po = xty? 43z3yz - 8x3 — 422y

p1 = 3zdyz — 4z2y?

such that p; cannot be proved to be positive. ITow-
ever, the sequence

po = xty2 4323yz - 823 - 4x2y-2
n o= 3x3yz — 8x3 !
pr = 2%z

ends with a polynomial which is obviousiy positive.

5 The ’No Constants’-Case

This section deals with the effect of signatures with-
out constant symbols on algorithm POSITIVE.
As mentioned in section 2, the constants of F are
strongly influencing the applicatior of polynomial
crderings in general, as well as that of method
POSITIVE in particular (see remark 2.1). For
example, increasing the interpretations of constant
symbols can lead to the orientation of an equation
or to an easier interpretation of other operators.

Example 5.1 Let

R={(zy)oz— z(yo2)}

and p = 1. With the help of the interpretations
[o](z,y) = =2y and [)(z,y) = = + 2y, R can be ori-
ented in the presented way. However, setting p to
2, the interpretations [o](z,y) = zy and [](z,y) =
z + 2y are sufficient. Note that the latter interpreta-
tions cannot orient R if p = 1.

In the case of R not containing an: constants,
algorithm POSITTIVE requires the minimum p?%)
to be set. However, if algorithm POSITIVE is
changed such that g is no longer considereu, the re-
sulting method is not only more efficient, but also
more powerful. The improvement is based on the
following observation.

24)Remember that the original method sets p to 2.






5 THE 'NO CONSTANTS’-CASE

x y+33y

12

/M/”//\m\ 3=2y + :y2

NN, N, AN, AN K]
AAAAAAAAAAAAAAAAALAARAAA
1RSI IS N RIRIBIR IS IO IRIRI RN IR NIl

Figure 8: The paths for the polynomial of example 4.3

Remark 5.1 The monomial z%y is greater than the
monomial 100zy since there exists a p (= 101) such
that (Vz,y > p)z®y > 100zy. Thus, the knowledge
of the existence of such a p is sufficient to guaran-
tee the positiveness.

The following definition generalizes the brief
comment of remark 5.1.

Definition 5.1 (Ordering on polynomials)

o Letmy = aqz(-...xir and my = qu’f‘ . -zﬁ"

be two monomials such that ay,aq > 0. Then,

my »pm ma iff
(V] 153 [l,n]) 1,2k A (3 e [l,n],) 1>k
or (Vje[l,n]) ij=kj A oq >0

my =pm ma iff
(V] € [l,n]) 1] = kJ AN a3 =y

o Let py =] ;‘=1 my; and py = 2521 my; with
myj, M2; being monomials with non-negative
coefficients. Then?),

7 Jpp2 iff -

{mlla' "’mlll} M {m21,"'7m215}

In order to prove the positiveness of a polynomial
p, we consider p of the form ¢ — r where both ¢
and r are two polynomials with positive coefficients,
exclusively. This way, p is positive, if ¢ Jp r.

2’y + zy? and py =
Then, py Jp p; since z2y >p

Example 5.2 Let py(z,y) =
2 + 3zy + 5y°.

2°)The ordering >> denotes the multiset extension ~f >

222, 2%y »-ps 3zy and zy? > 5y%. Note that algo-
rithm POSITIVE cunnot prove the positiveness of
m—p2ifp <5

The most important feature of the definition of
Jp is that it does not use y, explicitly?®). However,
if there exists just one constant symbol in R, then y
has to be set to a value and we have to check p > 0
w.r.t. p. Thus, Jp can only be applied if R does
not contain any constants:

Lemma 5.1 The ordering > p defined by s >p t iff
(s] Op [t] is a reduction ordering on T(F,X) if no
constant symbols in F exist.

Jp is a generalization of the ordering realized by
algorithm POSZITIVE ii no constant symbols ex-
ist (see example 5.2). Therefore, the occurrence of
constants reduces the power of polynomial orderings.
With the help of this observation, one could replace
all constant symbols by new??) variables before ap-
plying the polynomial ordering. This pre-processing
is always helpful if the constant symbols occur in the
presumably greater sides of the rules, only. Consider
the following example.

Example 5.3 Let R be composed of the simple rules

0+y (*)

s(:r.u) +y —

-y
s{(z +y)

specifying the addition on natural numbers. The in-
terpretations [-+](z,y) = 2z + v and [0]() = 1 enable

26) Definition 5.1 implicitly‘depends on the erzistenceof a p.

2" concerning each rule
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the orientation of the above rules. The same inter-
pretation (with the same p, which is equal to 1) can
also orient R if (*) is replaced by z + y — y.

The replacement of constants, occurring on the
presumably smaller sides c f the rules, by variables?®)
can lead to the necessity of changing certain inter-
pretations to more complex ones.

Example 5.4 Consider the rule

divp(z,y) — rem(z,y) =0

which can be oriented using [rem|(z,y) =z +y, [=
l(z,y) = z+y, [0)() = 1 and [divp](z,y) =z +y+2.

[divp](z,y) has o be set to z+2y+1 if O is replaced
by y.

In some cases, the substitution of coastants, that
occur on the presumably smaller sides of the rules,
by variables can generate rules which can no longer
be oriented:

Example 5.5 Let R be

v f(zz) - k3,
h(e) - f(a,b) }.

With the help of the interpretations [f](z,y) = zy +
1,[A)(z) =-2%,[a]() = 2 and [b]() = 1, the rules can
be directed in the desi.red way. However, tn order to
replace the constants of the second rule by variables,
we have to use the substitution 0 = {a — z,b — z}.
Thus, the new rules of R cannot be oriented in the
required directions since {f(z,z) — h(z),h(z) —
f(z,2)} is not terminating®®.

Note that it is always more convenient to ap-
ply 3p (i.e. definition 5.1) instead of algorithm
POSITIVE to asystem R containing no constants
on the presumably smaller sides, since definition
5.1 is more powerful (in this case) than algorithm
POSITIVE (even with backtracking) as well as
more efficient.

28)of the presumably greater sides

“%igee also {f(a) — F(b)}.

approach are the following ones:

13

\

6 A Modification of the Ap-
proach of BenCherifa and Les-
canne

In this section, we present a deterministic version of
the technique contained in [BL87]. The backtracking
component will be replaced by a set of constraints.
The reasons for modifying the BenCherifa/Lescanne
Since there exist
only heuristics for procedure CHOOSE we possibly
need to backtrack in order to find a successful path
(and this considerably extends the time complexity
of algorithm POSITIVE, see section 4). Another
more important aspect concerns the generation of an
interpretation for a given RS (see [Ste91]). More
precisely, given vuriable interpretations® and rules
l; — r;, we have to choose the right coefficients
such that [Ij] — [r;] 3 0 holds. This problem can-
not directly be solved with the help of algorithm
POSITIVE of section 3, but by using the following
algorithm. First of all, we illustrate the basic ideas
of our derived algorithm.

¢ One of the main features of our algorithm is
identical to the basic idea of the BenCherifu
and Lescanne method:
l.’]‘l N zﬁﬂ Z ﬂz(ki—ij) . m;l .
if (V5)k;2 i
This inequality is used in ii) of the following
item.

. gin
STy

¢ The algorithm transforms a polynomial p (that
we want to be proved positive) into a set of
linear3!) inequalities. Let p = Y (ay,.i, —
Biy.in) - T ... - T such that Qi . >
0,06i..in, 2 0 and a;, 4, - Biy.in = 0. The
transformation is based on the following steps:

i) Dividing: Each positive coefficient o;,_;,
will be split into a sum of new variables
Vizewing, .k, ©VeT IN (or IR) such that each
item of the sum corresponds to a negative
coefficient By, .k, if, and only if, i; > k;

39)j.e. polyromials ¢ which the coefficients are also variables
31)The inequalities are of linear form if the interpretations
are given, i.e. if the coefficients are not variables.
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positive monomials oy, . i,

see | 4

+| |+

(4

W
x*
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negative monomials Bx, . &,

- | 000 | —
A L

-
v

ky

p

A positive monomial is represented by whereas [—] stands for a negative monomial. Each (i.e. the

coefficient of each [+ |} is able to cover those [=], of which the exponents (of the corresponding variables)
are not greater (¢; > k;). Thus, we divide the coefficient of each into variables, where each variable
corresponds to a negative monomial [~] (which is coverable by .

Figure 9: Division process of algorithm 6.1

holds for all j. Figure 9 provides a graph-
ical illustration of this process.

ii) Dist_ributing: For each negative coeffi-
cient S, .k, we create an inequality of the
form

E#E(U_k.}) - 7i1--~ink1 ...kn Z /Bkl-"kn'

Note that Vireinky .. kn is part of the posi-
tive monomial o;, ;.. It has been gener-
ated for covering fy,. k.. Because of the
fact that ¢; > k; holds (see i)), we may
multiply 7i,..ins,. , Py the difference of
the exponents of a;, _;, and B, ,-

iii) Solving: The set of the inequalities
generated in i) and ii) can be solved
or disproved by applying a decision
procedure®? for linear inequalities. For
solving linear inequalities we can use,
‘for example, the first phase of the Sim-
plex method (see, for example, [Mit76],
[Thi79], [Chv83]) or any other, more effi-
cient and adequate technique.

The formal description of the above ideas can be
found in algorithm 6.1 which is contained in figure
10. A detailed example, illustrating the steps of this
algorithm, is presented in figure 11.

32)This procedure eventually generates values for the vari-
ab’_. '

33)gee e

VO nky kg
ition 2.2

3%)We do not need to explicitly compute a solution of the
set of inequalities. It is sufficient to know that there exists a
solution.

The additional condition /"~ I = I U... of
step 1. in algorithm 6.1 refers to the case that a pos-
itive monomial can cover only one negative mono-
mial. For example, the polynomial

p=2r2 45y -3z -2

implies that y? covers only —2. Then, the al-
gorithm generates the sets I; = {2 > 73, +
V2000 » T02¢g = B} and L := {p - 7120,, 2 3, 4%
Y2000 + 47 -5 2 2}

Example 6.2 We once again consider ezample {.4.
It has been shown that the polynomial

p=ziy? + 323yz — 823 — 422y?

cannot be proved to be positive w.r.t. p = 2 with the
Lelp of procedure CHOOSE . It is very easy to prove
the positiveness of p by using algorithm 6.1:

L = {12 742050 + 74205505
V311300 = 3 }

87420300 + 47311300 = 8
4742000 > 4 }

1 = ¥420300 + V420220 + U1,
V311300 = 3

279420000 + 3 = 2 + w2,
V420250 = 1 + u3,
uy+ug+uz > 0 }

V420300 = 0a742022o = L, 781150 = 3y = 0,up =
1,u3 = 0 represents a solution of I.

Iz = {

I = {

In . :p 3. of agorithm 6.1, a strict inequality
(w1 + u2 + ... > 0) must be added to I. Unfor-
tunately, the Simplex method cannot directly deal
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Algorithm 6.1 This algorithm determines whether a polynomial p is poéitive in the sense of 1%, Let

p=Y( in—Biy i) TP

-zip such that &i, i, 20,8 i 2 0,0,.i0Bi-in = 0 and let Yy 1y, .

v, be new variables over R. As usual, p der otes the minimum of M.

1. Dividing: Let Iy 1= {@i,..in 2 2 Yiyoingg kn | Figecin > 0, Bky. k0 > 0}

ky<iy

IfFL=1 U {aiin 2 Viroing s, } then let Iy := I} U {¥iyingy 4y 7= @iroda}-

2. Distributing: Let I; := { )3 /Lz(kl—i’) Vhyekniy i 2 Biy.in | Bis.in > 0,0k, &, > 0}

k, >i,

3. Solving: LetI:={l;=r;+u; |l; > r € LUL}U{y,. inky. kn 2 0,8 20, > u; > 0}. Generatiné the

values for Virwsinky . kn ?
w.r.t. p if I has a solution.

u; of I with the help of a decision procedure for linear inequalities®®. p 30

3

Figure 10: Deterministic version of algorithm POSITIVE

with such inequalities. Thus, an implementation of
algorithm 6.1 has to take this fact into consideration,
and must

transform #y 4 us+...>0
into uy +ug+...2Ipf

where Ipf (i.e. least-positive-floai) represents the
positive floating-point number closest in value to
(but not equal to) zero (provided by the implemen-
tution).

Theorem 6.1 Aigorithm 6.1 always terminates. If
it does not fail®), p 1 0 holds.

Our technique enables the generation of a cor-
rect sequence p = pp J p; I ... J pp 1 0 for the
BenCherifa & Lescanne approach. The deduced so-
lution U{7k1-~-kne1....-,.} of algorithm 6.1 will be used
in the following way: The part Vki . kniy . in of ag, . i,
will be taken to cover §;; .., i.e. each element of
the set U{'Ykl---kn.',i..;,.} will be considered. Each
item Vhyokniy in 0 corresponds to a transition
p; — Pj+1 Where the negative monomial 3;, ;. and
the positive monomial ag,. x, will be added. Figure
12 contains a successfui sequence for the polynomial
already considered in example 6.1. This sequence is
constructed by algorithm 6.1.

33) Alg thm 6.1 will fail, if there is no solution for the set T
of part 3.

36)This implies splitting 3z%y into 1x2y + 22%y.

3)We skip over 721,, since its value is zero.

It is obvious that the more zeros the solu-
tion vector of algorithm 6.1 contains3®) the shorter
the associated sequence, generated by algorithm
POSITIVE, will be. )

Note that the technique of BenCherifa and Les-
canne with backtracking and the algorithm of this
section have the same power, i.e. whenever a poly
nomial can be proved to be positive using procedure
POSITIVE it can also be proved positive with the
help of algorithra 6.1, and vice versa. In general,
algorithm 6.1 is more powerful than the BenCher-
ifa & Lescanne approach without backtracking (see
example 6.2).

7 A Modified Simplex Algorithm

An important part of algorithm 6.1 consists of solv-
ing linear inequalities. In this section we give an
informal description of a special version of the well-
known Simplex method to solve this problem. The
Simplex method®®) minimizes (or maximizes) a lin-
ear expression constricted by linear equalities (or
linear inequalities) that are sometimes called con-
straints. Such problems have come to be known
as Linear Programming. The following approach
is taken from [Thi79], [Mit76] and [Chv83] and the

38): =
)l.e- 7k1.nknil...in =0

proposed by Dantzig in 1947

39)
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Example 6.1 (Example 3.1 revisited) In order to prove p = 3z%y + 6zy? — 222 — 6y* — 122y — 9z ~ 9y
to be positive w.r.t. p = 3, we perform the following actions:

1. Dividing:

L:={ 3 2 va15 + Y21, + Y2110 + Y2105 Consider the first inequality of I;: The coefficient

6 > Y1202 + N21 + V1210 + V1201 } of the positive monomial 3z2y is split into the sum
Y2150 + - - - because £2y can cover the negative mono-
mials 222, 12zy, 9z and 9y.

2. Distributing:

I .= { 372120 > 2, We dgscribe the first ine_qua.lity of Is: The variable
37120, > 6, 7215, 15 part of the coefﬁcner}t that cmfresponds to ?he
3 +3 S 12 monomial 3z2y (see I)). It is responsible for covering
V211 Mz, = ! the coefficient of —2z%. Since the variable y of 3z2%y
92150 + M2 2 9, does not occur in —2z2, v31,, can be multiplied by

210 + 9120y = 9} u(=3).

3. Solving:

I:={ 3=1215 + Y2133 + Y2100 + ’72101 + Uy, A decision procedure for linear inequalities solves the

union I; U I3. In order to guarantee p J 0 (not only

-6= Uz, . .
V202 + M1z + N2yo T N2y + 02 p 3 0), at least one inequality of I; U I, must be

2120 = 2+u, a proper one. Thus, each inequality I; > r; will be
V202 = 2+ uy, transformed into I; = r; + u; such that }_ u; > .0
72111 + 712“ = 4 + Uus, holds.

Y2110 + Y1210 = 14 ue,
Ya101 + Y1201 = 14 uy,
Yije > 0,

Ug Z 0)
uy+ur+...+ur > 0}

A solution of I includes the following values: us = 1, (Vi € {1,2,4,5,6,7})u; = 0, Y21, = 1,
Yo,y =0, Y210 = 1 Y2100 = 1 M20 =2, M2 =4 Y1200 = 0, M2, = 0.

Figure 11: The application of algorithm 6.1 to the example of section 3
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Example 6.3 (Example 6.1 revisited) Let p = 3z%y + 6zy? — 222 — 6y% — 122y — 9z — 9y and p = 3
as given in the examples 3.1 and 6.1. Furthermore, we use the following solution created in example 6.1:

Y2150 = 1 y Y215, = 0 y V2130 = 1 y V210, = la T129; = 2a Y125, = 4 sy Y1210 = 0 y V1207 — 0
This solution implies the following sequence associated to the BenCherifa/Lescanne approach:

Po = 3z%y + 6zy? — 222 — 6y? — 122y — Or -9y
’U’ Y210 = 136)
po = X2y + 2z%y + 6xy? — 2x% — 6y% — 122y — 9z — Oy
p1 = 32y + 222y + 6zy% — 6y — 122y — 9z — 9y
U 72110 = 137) .
P =32y + x2y + %y + 6zy? — 6y — 122y —9x — 9
p2 = 527y + 22y + 62y* — 6y? — 122y — 9y
JvL Y2101 = 1
p2 = 322y + x%y + 6zy® — 6y% — 12zy — 9y
pPa = %1:211 + 62y% — 6y% — 122y
b 12y, =2
p3 = Lo%y + 2xy? + 4zy? — 6y% — 122y
ps = 1z%y + 4zy? — 122y
4 72, =4
ps = 1%y + 4xy? — 12xy
Ps = %xzy

vFigure 12: Merging algorithm 6.1 and procedure POSITIVE
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reader is referred to these references for a more de-
tailed description. The Simplex method can cope
with *he following problem:

Minimize i 6T (1)
i=1

Subject to Y a;jz; < b (i €[1,m])
=1 |
zj 20 (7 € [1,n])

For simplicity of exposition we shall restrict our-
selves to the form (1). It is not difficult to transform
a more general form (in which equations of the form
Ya;;z; = b; as well as inequalities like Ya;;z; > b;
are possible) into the one used in (1). The problem
of transforming a strict inequality u; < b; into the
form of (1) can be solved by adding the arithmetic
inaccuracy®®) Ipf of the used computer: u; < b; ~»
ui +1Ipf < bio

To transform (1) into an equivalent form in which
the inequalities are replaced by equalities, m so-
called slack variables z,,41,...,Zn4m are introduced.
Note that these have to be distinct from the n so-
called decision variables in which the problem is
defined*V: ‘ i

n
z= 3 g
1=1

Subj.. Y ai;jz; + oy =b; (i €[1,m])
1=1
zj 20 (7 € [1,2 + m])

Min. (2)

In a linear prcrramming problem, the linear
function 2z to be optimized is called the objective
function. Any tuple (z,,...,z,) with non-negative
coordinates that satisfies the system of constraints is
called a feasible solution to the problem. Thus, the
basic problem is to determine, from among the set
of all feasible solutions, a tuple that minimizes the
objective function. The Simplex method can decide
whether a problem has, in fact, any feasible solution
and, in addition, whether the objective function ac-
tually assumes a minimal value. Note, however, that
the problem occurring in algorithm 6.1 consists of
finding any solution of a system of linear equalities,

*Jsee section 6

*UMultiply the i-th equation on both sides by —1, if b; is
negative. As a result of this, all the right-hand constants in
the equality constraints become non-negative.

18
i.e. we shall only study the system
n
Y aiizi +Tapi = b (1€ [1,m]) (3
J=1

.’L’J'ZO (je[l’n+m])

Solving such systems is no more difficult than
solving lisear prcgramming problems: To find a so-
lution of (3), or to establish its non-existence, we
only need to consider the following problem descrip-
tion:

Min.
Subj.

z=1zp
n

(4)

@i;T; + Tpgi — o = b; (1 € [1,m)])
1

(j € [0,n +m))

j=
z; >0

The basic step of the Simplex method is derived
from the familiar pivot operation used to solve linear
equations. The pivot operation consists of replacing
a system of equations with an equivalent system in
which a selected variable is eliminated from all but
one of the equations. '

Definition 7.1 (Pivoting) Let

n

Y GgjT; + Topk — To = by
Jj=1

 be the k-th equality of (4). We choose any z, (p €

1,n]) and rewrite it in terms of .k, t.e.
’ +

>,

‘ %525)/ Qkp
i=1,3#p

Tp = (bk — Tn4k + To —

Substituting T, in the other equations, a new set

cf equations is obtained. This operation represents a
change of state and will be denoted by pivot(p, k).

It is easy to show that the solution set of the sys-
tem of equations resulting from the pivot operation
is identical to that of the original system. In gen-
eral, repeated use of pivoting can lead to a system
of equations whose solution set is obvious. Such a
cystem (called canonical form) consists of n equa-
tions with n unknowns where each variable appears
in one and orly one equation, and has in that equa-
tion, one as its coefficient. However, in attempting
to put the constraint system into canonical form, an
arbitrary selection of decision variables could easily
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lead to a system with negative constant terms and
thus to an associated solution that is not even feasi-
"ble. Therefore, for solving the problem of section 6,
it is not sufficient to arbitrarily use pivot operations
(like in Gaussian elimination). The Simplex method
cleverly applies a convenient pivot operation at the
right time.
For this purpose, a technique for determining an
“initial feasible solution for an arbitrary system of
equations must be developed?. The basic idea be-
hind the method used vo solve this problem is sim-
ple. We introduce a sufficient number of variables,
called artificial variables, to put the system of con-
straints into canonical form with these variables as
the decision variables. Then, we apply the Simplex
method to a new objective function defined in such a
way that its minimal value corresponds to a feasible
solution of the original problem. :

Definition 7.2 (Introducing artificial variables) 8 Integrating

The transformation of system (4) into the fol-
lowing system containing the artificial variables

Tntm+ls- -y Tnt2m will be denoted by canonical
transformatior. ) ‘
n
L ijT; + Tngi — To + Tnpmti = b (5)
=1 ’
(i € [1,m])
o =z .
m n m
-2 (X aijzj + Tnpi —T0) = w— 3 b;
1=1 ]:1 1=1

Note that the system of constraints of (5) is
canonical with the artificial variables as decision
variables. The new ob jective function w = pyme1+
.e.+ Tpyom 1S transformed into canonical form by
subtracting each equation of the system of con-
straints from w.

If the pivot operations dictated by the problem of
minimizing w are simultaneously perfoinied on the
equation z, which defines the original objective func-
tion, this function will be expressed in each step in
terms of variables, which ar. not decision variables.
Thus, if an initial basic feasible solution is found for
w the Simplex method can immediately be applied
to z.

*2)The procedure for solving this problem is often called
Phase 1 of the Simplex method.

19

Figure 13 contains algorithm 7.1 representing the
steps of the first phase of the Simplex method, start-
ing with a problem in canonical form (see (5)).

The original problem has a basic feasible solution
if, and only if, the minimum value of w is zero. Note
that p could be any column with a negative c; term.
The smallest ¢; can reduce the total number of steps
necessary to complete the problém. Furthermore, if
the minimum of b;/a;, is attained in several rows, a
simple instruction (such as choosing that row with
the smallest index) can be used to determine the
pivoting row.

The Simplex method presented in algorithm 7.1
is correct and terminates. However, certain com-
plications can occur during the application of this
procedure. For compactness, we would like to refer
to the literature for a detailed description of these
problems.

the Simplex
Method into Algorithm 6.1

In section 7 we have presented the various methods
needed for finding a solution of a ystem of linear
equations. Before applying these methods to an ex-
ample, we will construct an algorithm solving our
problem of section 6. This algorithm is contained in
figure 14.

Note that in algorithm 8.1, we omit the original
objective fun :tion 2 = zq. This function’s only use is
to justify the employment of the Simplex method for
solving systems of linear inequalities. It is irrelevant
for producing a basic solution of our problem.

At each step of the Simplex method, it is suffi-
cient to know the coefficienis of the variables in the
system of equations. In particular, for computation
by hand or simple computer implementations it is
favourable to record this information, only. A rep-
resentation known as Contracted Tableau or Tucker-
Diagram is of the following form:

T1  To Tn,
an  ap amn | b
m1  Am2 Amn | bm

. C1 (o] Cn [
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Algorithm 7.1 (Phase 1 of the Simplex algorithm)

SIMPLEX = proc (system in canonical form) returns (string)
stop := false
while (not stop) do
if (Vie[l,n+m])ec; >0
then stop := true
return ’success’
else if (Jje(l,n+m])(Vie[l,m])c; <O0Aa; <0
then stop := true
return ’fatlure’
else pivot(p, k)
such that p represents the column with the smallest negative c;
and k is chosen such that by [ax, = min{b;/a;p | aip > O}
end
end

Figure 13: The 1°¢ phase of the Simplex method

Algorithm 8.1

n

n .
SOLYVE =proc (Y aj;z; =bi,i=1,...,m—1 : equation set, ) am;z; > 0 : inequality)
=1 i=1

Introducing slack variables (see ({)): Zn: a;jz; —zo="b; fori€[l,m—1]
=1

n
Y amjTj + 21— 20 = Ipf
J=1

Canonical transformation (see (5)): Y 0ijTj — 2o+ Tpnymsi = b fori € [1,m — 1]
7=1
= :
2 QmjiT; + T1 — To + Tnyom = Ipf

-
1l

1
m—1

n n m—1
- Zl (}:1 aijTj — To) — (21 @t + 1 —20) = —Ipf = ¥ b;
=1 j= 1= =1

Applying algorithm 7.1
end

Figure 14: Connection between algorithm 6.1 and ‘ae Simplex method
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The first m rows correspond to the system of
constraints with the constant terms given in the last
column. The last row corresponds to the equation
defining the objective function with the constant
term (on the right-hand side of that equation) in the
last column. The z tern: of the objective function
is suppressed from the tableau as it remains fixed
throughout the application of the Simplex method.

Appendix B contains an application of the Sim-
plex method to the set of inequalities of example 6.1,
generated by the first two steps of algorithm 6.1.

The time complexity of algorithm 6.1 is mainly
influenced by that of the Simplex method (i.e. al-
gorithm 8.1). Obviously, the time complexity of the
Simplex method strongly depends on the number of
different variables as well as on the number of in-
equalities. The set of inequalities generated by algo-
rithm 6.1 is of the form presented in figure 15.

As it is widely known, the time behaviour of the
Simplex method is, in the worst case, exponential.
However, we quote from [Sha87]44):

Remark 8.1 (Time complexity)

Efficiency is usually measured for the Simplex mr:éthod:

as the number of pivot steps (iterations) it requires
to solve a problem, expressed as a function of the di-
mensions of the problem|...]. Here and throughout, we
denote the dimensions of the problems differently for

each form, in such a way that the following convention
holds:

(1) n is the total number of inequalities (includ-
ing nonnegativity constraints but not including
equality constraints).

(2) d is the number of variables in an equivalent pre-
sentation of the problem without equality con-
straints]...].

(3)y m:=n-d
We shall usually deal with the LPP (i.e. Linear Pro-

gramming Problem) in the form

min ch

such that aiTbei, i=1,..
x>0

.,m,

*3)Note that all items of each matrix A; are greater than or
equal to zero.
1) Additional explanations are added in italic type.

21

Let n, (m,) be the number of negative (positive)
monomials occurring in a given polynomial p. Then,
the number m of inequalities generated by algorithm
6.1 is equcl to n, + my + 1 (I, contains m, inequal-
ities, I contains n, inequalities and I = UL, U
{u1 +uz+...> 0}). Therefore, whenever m is used
in the remaining part of this section, m is identical
to the number of monomials of a polynomial plus 1.

[...]This function (which usually measures the effi-
ciency of the Simplez method), as observed by LP (i.e.
linear progrrmming) practitioners, is a low degree
polynomial and perhaps even linear on most real-life
problems|...]. Wolfe and Cutler (1963) experimented
with nine 'real’ LP problems. The average number of
phase | iterations was 1.69m when a full artificial basis
was used as a startirg base, together with the steep-
est descent pivoting rule. When better starting bases
were chosen, utilizing the sparsity of the data, that av-
erage went down to 0.56m. For the total number of
iterations required, they obtained an average iterations
count varying between 1.71m and 0.98m, depending on
phase | and the pivoting rules. They concluded that the
rule of '2m iterations’ from folklore is fairly good, and
that an estimate of between m and 3m iterations will
almost be -orrect|...]. Rec_atly, Ho and Loute (1983)
reported on a set of experiments carried out with 30
large-scale problems]...]. So we see that these results,
for problem dimensions in the thousands, still conform
with the '2m iterations folklore’, although there is some
indication that the number of vanables also influences
the number of pivots[...]. We can summarize the ob-
served behaviour of the Simplex method by the follow-
ing recent words of Dantzig (1979). This appears to
be a revision of his earlier summary, in view of the new
evidence accumulated in 16 years that passed between
the two quotations. Dantzig: " The expected number
of steps to find a feasible solution to a linear program
using phase | of the Simplex method, for moderately
s'zed problems, is conjectured to be, of the order a-m
steps where m is the number of equations and « is typi-
cally 2-to 3 (or 4 to 6 for an optimal solution using both
phase | and phase Il). Thousands of linear programs
are solved each day using some variant of the Simplex
method - a value of & > 4 is rarely seen[...]". This can
be viewed as a summary on the average performance
of the Simplex method on both real-life problems and
artificially distributed ones.
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Vi1 ingy kg

1...1 1
1...1

a‘ll ....‘l“
%421 412
i3 --03n
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-1 3*11'“
-1 By, ...

kin
k2n

1| Prpy - okmn

9...0]0...010...0] ... ]0...0V1 1

T ... 1] 1 i ... 1 1pt

The diagram contains only the non-zero numbers.

The upper part represents the division operation,

whereas the middle sector describes the distribution. Each A; is a matrix of the following form: Each row
contains at most one item which is not equal to zero, whereas each column contains exactly one non-zero

item*3). All other items are equal to zero.

Figure 15: The set of inequalities generated by algorithm 6.1

Note that only the time complexity of the first
phase of the Simplex method is relevant for that of
algorithm 6.1. However, the time complexity of the
Simplex method mainly depends on that of the sec-
ond phase.

9 Improving the BenCherifa and
Lescanne Method

Weliave implemented the method of [BL87] and in-
tegrated it in our completion environment COMTES

([AMS89))#5). A series of 320 experiments consider-

ing more than 1700 rules occurring in the literature
has been conducted (see also [SK90]). Most of these
rule systems can be proved to be terminating by
applying the method of BenCherifa and Lescanne.
Certain examples require a more powerful ordering

on polynomials. This can be illustrated by a simple
TRS.

Example 9.1 Let R be

I: (z*y)*z —zx(y+*2)

20 zx(y+2) - (zxy)+(z*2)

3 h(z)+h(y) mz*y
In order to orient rule 2, [*|(z,y) needs to be mized
and thus [+](z,y) must be of linear form*®) (see sug-

" n i iplementation of the approach contained in [Rou88]
1> also available. .

©)p(z1,...,2n) is linear iff p(z1,...,zs) = S aizi + 8.
p(z1,...,2s) is mixed iff there exists at least one monomial

gestion 3.2.10 of [SZ90]). For ezample, [*](z,y) =
zy + * and [+](z,y) = = + y + 2 will prove the ter-
mination of the first two rules if p = 3 (by using
the method of /BL87]). This way, rule 8 cannot be
oriented using the meth~d of [BL87] (independent of
[h](z)). Assuming the interpretation of h as z?, the
polynomial

—zy—z+y? 42

has to be greater than zero. However, this cannot
be proved with the help of [BL87] since there is no
positive monomial which covers —zy.

The proof of 22 — zy — z + y2 + 2 1 0 can be
performed with the help of the fact z2 + y? > 2z,
which is equivalent to (¢ — y)? > 0. The following
lemma generalizes this inequality.
vemma 9.1 Let o, B, z; > 0. Then,

oz, .zl 4 ﬂz{_‘ .. .-.:z:i;"/ > 2vaf - ¥ zhn
if (Vie[l,n])k = ﬂiilL
Example 9.2 The above lemma can, for example,
prove the following inequalities:
e 2?4+ y? > 22y
o 2y > iyl

o 2923 2ty z > 2:2y?2?

containing at least two different variables.
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o 2 4 4y > 4ay

Procedure POSITIVE cannot show the validity of
tanese inequalities. Note that it is possible to repeat-
edly apply lemma 9.1:

\

x4+y4+222 z4+y4+2z2
> 2

2x2y2 4+ 222 xt+2vV2.y22
> >

4ryz 2/2v2 - :c"’yz'iT

The basic idea of lemma 9.1 can be extended in
another way. The following lemma describes a situ-
ation where a nearl - arbitrary number of monomials
for covering one monomial is admitted.

Lemma 9.2 Let n > m > 1. Then, for all z; > 0:

k|

tn.
T’ > m- ) kn

STy

if (ell,n)k=2. i":l i,
=

The application of lemma 9.2 is based on the
followingv-consideration If we want to cover a mono-
wial m- z’f‘ -...-z¥n a polynomial p consisting of m

" monomials inust exxst Furthermore, the arithmetic
mean of the sum of all exponents of p w.r.t. the

variable z; have to be identical to k;.

Example 9.3 The following znequalztzes can be
proved by using lemma 9.2:

o 3+ 43+ 23> 3zyz
o 3y + ylz 4+ 22 > 3zyz
o 22yz 4+ y2zu? > 2z4%2u

The class of polynomials that is successfully man-
aged by the method corresponding to lemma 9.2
overlaps with that of lemma 9.1 (see example 9.2 and
example 9.3) as well as with that of the BenCher-
ifa & Tescanne algorithm. However, the combina-
these processes is far more powerful than
each method by itself. More precisely, the functions
POSITIVE, CHOOSE and CHANGE should be

Eluil .

23

extended by incorporating a test embodying lemma
9.2 (and/or lemma 9.1). Note that the condition
(Vi € [Ln))ki = L - T, 4, of lemma 9.2 can be
achieved by substituting :: for each additional vari
able and splitting monomials w.r.t. coefficients*?).
For example, let g = 2. Then, z2y + y? > 2zy since
Py+y? = Jalytalyty? 2 Jetytat gt a4yt 2
18) 92y and %zzy > 0.

Example 9.4 Let p = 2. We show that p = 223 +
222 4 y2? — 22 — 3zyz — 2yz 11 0 holds.

p=po = 2x3 +y +yz —z? —3xyz-2yz
Qp149).—:c+ 2,2 _ 32 — 2yz
3 p _ol
Jdps = 328

The sequence 213 + y222 + y2? — 2% — 3xyz —
2yz 2x3 - yz +yz°—x - 3zyz,32° + Jy° +
yz? - dryz, 5 2234 922 4+ yz — 3zyz, ;.1:3 ts also suc-
cessful.

A reduction of the time complexity of the ex-
tended procedure POSITIVE can be achieved by
only applying the part corresponding to lemnma 9.2
(lemma 9.1) in case the original algorithm fails (sce
example 9.4).

As we have seen (in example 9.1), lemma 9.2 (as
well as lemma 9.1) extends the power of procedure
POSITIVE. In addition, its use can sometimes
simplify the form of the interpretations of operators
needed for a termination proof. Let us consider an
example: '

Example 9.5 The TRS

v

I (z*xy)*z s z+(y*2)
R=< 2. i(zxy) —i(y)*i(z)
3 z)+i(y) »z+*y

needs a mized interpretation foi the operator * which
implies that [+](z,y) must also be mized for applying
the original algorithm POSITIVE. For example,
the interpretations

[¥)(z,y) = 2zy + z,[i)(z) = zz‘andﬁ[+](z,y) =zy

47)

nualogous considerations are also helpful for lemma 9.1.
48)pecause of lemma 9 2
9since 31222 >1 y 22 +y*z and z° 4+ 2z + y2° > 3zyz.
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will orient R with the help of POSITIVE if p.=
2. The interpretation of [+](z,y) can be replaced
by 2z + y (which is simpler than zy) if we use the
cxtendc { vers” - of POSTITIVE. ’

Lemma 9.1 and lemma 9.2 provide a theoretical
framework for extending procedure POSITIVE. A
thorough investigation of its effect on practical appli-
. cations is part of future plans. It is obvious, that this
examination presumes detailed considerations about
the combination of lemma 9.2 (, lemma 9.1) and pro-
cedure POSITIVE for an efficient implementation.

24
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A Appendix : Proofs

- Lemma A.1 Let p be a polynomial with m positive monomials and n negative monomials. For the worst
case of algorithm POSITIVE, lI(p) and ®(p) are defined as foilows:

M(p) = (m!)3. n!.mr—m"1

n—m .oy —m+1 2m=-2 J i “,
@@)=1mm £0g;y+"&4;-;Lgm—bbm—bn

These two ezpressions are valid if n > m holds. In order to get II(p) and &(p) for m > n, we have to
tnterchange the values of m and n, only.

Proof A.1 The number II(p) of paths in the tree corresponding to p is equivalent to the number of leaves
in the tree. Therefore, according to figure 7,

l-(m=1)m{m~-1)}(m—-1)-...-(m—i}{m—i)m—i—-1){m —i)(m—-i-1)(m—i—-1)-1-1 with

nm{n-1)mn-2)m....-(n—k)m and k=n-m

(p)
{

[]]

The non-italic expressions represent the number w.r.t. n°°). Thus, there are two sequences (i.e. products)
of numbers (one sequence w.r.t. n and one sequence w.r.t. m):

P1
P2

nn=1)(n—~-2)-...-(n—k)n—k=1)n—k-1)-... . (n~k—=d)(n—k—14)-...-1 and
m* m(m-1)(m—-1)-...-(m—d)(m—-4)-...-1

~ Pl=al-(n-k-1)!=n!(m-1)!
P2=m*t .. (m- 1) =m " . m!. (m—1)
~ M@E)=P1-P2=n!-(m-—1).m"~™H m' (m =1} =n!. (m!)>. mn—m+1-2
The number % (p) of nodes corresponds to the sum of all levels (except the first one) of ~gure 7. We split
the sum (as well as the diagram) into two parts:

51 == nm4+nam(n-1)m+...+nom(n-)mn—-2)m.....(n —k)m '
.82 = l(m—l)m+l(m—1)m(m—1)(m-—l)+ Alm=-1m(m—-1)(m—-1)-...-1-1
~ E((H("—’)) mitt) = E( ._]_1)- -m*l) = m-al. Z ﬁﬁy

3=0 =0

In order to compute S2 we set it to S2:=1-S52' and further split each item. of S2' into two products:

| i [ 1t Part of §2' [ 2™ Part of S |
1| (m-1) m
2l (m-1) (m-1) (m-1) m
3 || (m-2) (m-1)(m-1) (m-1) (m-1)m .
4| (m2) (m2)(m)im) | (me2) (m1)(m Djm
| 5 || (m-38) (m-2)(m-2)(m-1)(m-1) | (m-2) (m-2)(m-1)(m-1)m

The bold expressions are of the forms (m — [%]) and (m — |_%_|) and therefore

sw:z(mmﬁwm 5,1)

_.1 =1

%0 Note that m —i =n — k — 1.
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It is obvious that | = mFt? .nl/(n — k — 1)! = m"~™+1 . nl/(m — 1)! which leads to the final result

nemtl oy 2m—~2 j i i1y
52 = .52 = =g El (il;ll(m—fﬂ)(m—lﬂ/) and

®(p) = S1+52

.Lemma A.2 Let ®(p) be defined as in lemma 4.1. Then, ®(p) =1 ifn=m =1 or 2ll(p) < &(p) <
3M(p), otherwise.

Proof A.2 The case n = m = 1 is obvious." Therefore, letn=m+k, k>0 and not both m = 1 and
k = 0. Furthermore, let ,

H(p) = (mH3-al-mr—m"1

(I)(p) —\m-n!~:i=::ﬁﬁ + —(ﬁ’}"‘xﬂ Z H(m—f])(m—[%J)

i=1 =1

1. We show that 21I(p) < ®(p):

e k=0, m > 1: Note that this implies n = m.

SN

I . ) (m!)s(m—l)!
o o . (m!)3(m‘—- !

The last two levels of the tree contain
n—m-+1 ‘2 . .
7;:1{— 4! (m-J31)m—13)) = (m!)*-(m—-1)! and
mn—m+1 m=—3 . . .
nst. T m= TEDm = 1) = (b (m - 1

nodes (see the ezpressions for II(p) and ®(p) of lemma 4.1).
~ 9(p) > 21(p)

e k> 0: Assume that m = 1.
~ M(p) = n! and

n—-1

1
Q(P)="!’Eom—n (n__lTT+(n—'ﬂ"+ +317+~01-!)

~ B(p) > 20! = 20(p)

The proof of the case "m > 1" can be performed analogous to that of the case "k =0, m > 17

(see figure).

2. We prove that ®(p) < 3II(p). This inequality is equivalent to the following one:






A APPENDIX : PROOFS 29

n—m !

Zn—L:J-lV 2m—-2 j . . !
S X, IL(m = [§)(m = 15)) < 3

Gn!)J,mn—m—Z + ((m-.l)!)3~m! =

With the help of the fact that
"fﬂm =[3Dm - 13) = 2:’1;1'13(m ~[ED(m = (3]) = (m—-1))*-m!

we have to prove that

n—m 2m—4 R . !
1 1 i _ ]
X e b G 2 (M [zD(m—13]) <1
Note that
Zm—4 i 1 m—1)1)%m!
o T (m=T§)(m=3)) = (o=
J . ,
[T{m=13D(m-13])
i‘=1 < l
I+l . . - 2
[T m-T31(m-15])
i=1
1 C 1 — 1.
A P y 1 ( Py e 2 i ) L (et Bl ey y e S

and the smallest

n—m
o The division of the greatest item of the sum ]go (n_j_l)!'((m-}),)3.,1,‘._,,,_,“

2m—-4 J . .
item of the sum,m—, -y ll[(m —[$])(m — | £]) has the value
) ! =1 4=l

1 . m-—1)-m _ 1
((m-1))m * ((m-1))3m! =~ (m-1)m <

151)
2

These four results directly imply the following fact:

m-1)1)%-m!
¥(p) < 2 iy (! = a

Lemma A.3 The ordering >p defined by s >p t iff [s] Jp [t] is a reduction ordering on T(F,X) if no
constant symbols in F exist.

Proof A.3 By the definition of >p, for each m; >=p m; there exists a p;; such that m; J m; w.r.t.

!
M = {klk 2 pij}. Letpi = Y- pij. This implies that m; 3 Y m; holds if (V5 € [1,1]) m; J m,;.
mizpmm; ] i=1
mult mult
Let p = 1+ max; p;. Then, m! 3 5 m; if U mi>»>pm U m;. O

Theorem A.l Algorithm 6.1 always terminates. If it does not foiP?, »p 30 holds.

1)if m > 2. The case m =1 is obvious.
*2) Algorithm 6.1 will fail, if there is no solution for the set I of part 3.
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Proof A.4 The proof of the termination is obvious. The correctness of the algorithm is guaranteed since
the inequality gk ke > pl-)gh L gin if (V5) k; > i is valid and as the decision procedure
for linear inequalities provides a correct solution. a

Lemma A.4 Let a,3,z; > 0. Then,

aa:'}-...-xf{‘-}-ﬁz’ll-...-x{;"22'\/a_?'xf‘-...-xﬁ"
if (V1 € [L,n]) by = 3

‘Proof A.5 azi -...-zir 4+ B} ... ..zl 22\/55-1:11“-...-:121‘,"

= 4] —‘niin

oxl ..oz + BT -T2 2/af 2,0 .. ozn 2

. it

since (V1€ [1,n]) k= 134

= ‘ . . 1

oz ..oz 4 B 2l 2 2 (azy oLl alr)2 (Bl 2ln)2

Letay = az} -... -z}, ag = Bz}’ -...-zl*. Then, we have to show:

11
ay+az 2 2-afaj
— ' .
3(a1 4 a3) > (a1a9)2

This relation is valid since it is a special case (r = 2) of the arithmetic-mean-geometric-mean inequality
for r non-negative numbers ay,...,a,

r

LA L
Prye > (Jle
t=

1=1

which is proved, for ezxample, in [HLP52). O

Lemma A.5 Letn > m > 1. Then, for all z; > 0:

m tn.
> :c;l’ Tp? > m a:'f‘ :vf;'
=
' Y
if (Vl € [1,n]) ki = poegly E 1,
R i=1

Proof A.6 The proof is based on the arithmetic-mean-geometric- nean inequality:
For any non-negative numbers a,,...,a,,

| u . 1 ’ :
1.5 ai > (] ai)v holds. (*)
: =1 =1
Letn > m. .
mooqp in,
~ le’-...-znn’ > m-zf . ghe \
=1
e
m il 1 L
Y z,’ n’ + X z’f‘ gk > m.gho gk 4 T a:lfl zkn
= j=m+1 r=m 4l
A
m Iy T n
lej-...-z,:’ + Y xfl-.,_-zﬁ" > n-zlf‘m..-zﬁ" (**)
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Let (Vjve [m+1,n]) (VI € [1,n]) 4, = ki.

- k)

=

n i1, in. .

Y2y ez’ > omezi o ghn (FH)
J=

CLet(Vlel,n]) ar=xyt ..ot
~ (*¥¥)

<~

n %Zh], % i2] %Einj
YSa;>n-z, T oz, T oz,
=1

n m
since (Ml €[l,n])k = ;11-121 i, (because m-k; = 21 i
= =
n
implies n -k = 3 1, since (VI €[m+ 1,n]) (W €[1,n]) i, = k)
' J=1

<

n n 1

Y a; 2 n-(]] a5)

since (Ve [l,n])ay =2yt -... - zn

This inéquality is identical to (*) which is proved to be valid.
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B An Example

This section deals with the proof of the positiveness of the polynomial p,= 3z%y + 6zy% — 2% — 6y?
12zy — 9z — 9y given in examples 3.1, 3.2 and 6.1. We apply tl:e Simplex method to the result generated
in example 6.1. The following transformations will be carried out:

Input for algorithm 8.1:

-

il

( Y21y + V211 F V2100 + Y210, + Ut
N202 + T1211 + N1210 + V120, T U2
32130 — U3
Y124, — U4
Y2111 + Y12y — Us
Y2130 + V1250 — U6

Y210y t Y120y — U7 .
up +uy+uztug+ us +ug +ur >

ft
D= A NN W

N—

i

Introducing slack variables (without z,):

Vi1 Snky kg Y £ b
1 1 1 1 1 3
1 1 1 1 1 6
3 1 2
1 1 2
1 1 1 "
1 1 1 3
1 1 1 1
1 1 1 1 R EUa
3 - 3
Canonical transformation:
Wy ing ky, uy £ Tntmti b
1 1 11 - 1 1 3
111 g 1 1 6
3 -1 1 2
1 1 1 2
1 1 1 t 4
1 1 -1 1 1
1 1 -1 1 1
11 1 1 11 1] 1 s
[ R T A N I e ) 1 36
Pivoting:
p=1Lk=3
Yiyoing  kp ] 71 Frbmi b
T =
1 1 1 1 3 1 3 5
111 1 1 s
: -4
: 4 by :
1 1 -1 1 4
1 1 -1 1 1
1 1 1 ! 1 1
11 1 1 1 1 1l 1 1
2 2 -2 2 -2 2 2|2 -2 -% E) =3
p=2,k=1

%3)In this example we have chosen 1 instead of Ipf.
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o
-

Yiy ...im . kp ) Fn4dmti

-
p
-
-
|
o
o
.
-
Lﬁ-—-——wnwmm

&
5
3
3
&

n

N
~
{

p=5k=4
My ingy k, uy % Tnimii b
11 1 1 3 1 -1 4
11 1 1 1 1 a1 1
1 -4 % 2
1 -t 1 2
a1 1 1 -% -1 1 4 1 3
1 -1 1 1
1 1 »1 1 1
1 1 1 1 1 1 1 1 1
2 2 -2 -2 -4 .2 [ 2 € 2 -
p=6,k= 5
Viy itk kn i | £ Tngmdi b

-
-
-
R
-
-
[
e
'W
o
-
-
-
o ! 1
G-
.
-
[
—
Lﬁuunmuw

.
~
.
~
.
~
.
~
.
~
.
~
1
bt
.
~
,
~
.
ol
~
(]
|

p=3,k=6:
Tiy gk u 1  Ingm4i b
1 1 -1 1 1 1 - ~1
1 11 1 1 01 1 11 - a1 -1 a1
1 -3 )
1 - 1 2
-1 11 -1 -4 a1 -1 3 1 1 %
1 1 -1 1 1
1 1 -1 1 1
11 1 101 1 % 1 1 1
[ -2 2|2 2 -} 2 2 2 -1 ) 2 2 2 -1
p=4,k="T
Ty lingy kg ug o Fnpmti b
1 1 a1 | 1 11 1 - 1 -1
11 1 1 1 1 T 1 - IS TS TS
1 -3 )
1 -1 1 2
11 1 |- -1 1 a1 a1 -1 4 1 1 1 W
1 1 1 1 1
1
1
-1
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Yy dngy  ky ug £ Fnimii by
1 1 1 : 1 . T 1 °
11 11 1 R S 1 a1 .1 -

: 4 5 !

1 1 1 2

11 1 1 -3 1 -1 1 3+ 11 1 u

1 1 1 1

1 1 -1 1 1

2 1 1 11 1 1 ]| %

% 1| 2 2 4 -%

p=11,k=8

"‘1---."'&...1:" g 71 Tntm4s b;
' N bl 8 % -3 b -3 -F -k o
11 1 1 1 1| - - - - - - - Py
: 1 1 Fl-s 4§ OF F 8 F
111 g IR I S B S B S D 2 B 2
1 1 1 1 1
1 1 1 1 1
x 313 -3 0+ & 3 8 3 sl
1 1 1 1 1 1 1 1 (]

A feasible solution is of the form (1,0,1,1,2,4,0,0,0,0,1,0,0,0,0). This vector leads to the following
values: , )
V21 = 1, Y21y, = 0, Y20 = 1, T210; = 1, Y12, = 2, Y125, = 4, Y1250 = 0, T2 = 0, u3 =1 and
(Vi€ {1,2,4,5,6,7})u; = 0.




