
aces—
tom

__
5595525

o
cean

—
=

n
v

„u
w

-„m
am

m
—E

o
n

—
:5 ;

E
.

„__—
‚czm

cuz.
zany—

HES?—

m
m

:—
Z

: .E
ccw

m
m

:
km

h
—

23:22 :

Knowledge
Mannfred Kerber

SEKI Report SR—91-06 (SFB)

d

m
m

„„ .m
‚ aem
m

e
ahm

m
a

fM
arm

‚m
m

tel

w
a

t
n

m
eP

a
r

‚m
p

„ ae
sR

U

S
h

am
an

ic—
m

m

Useful Properties of a Frame-Based

Representation of Mathematical Knowledge

Manfred Kerber

Fachbereich Informatik, Universitat des Saarlandes

D-6600 Saarbriicken, Germany

kerber@cs.uni-sb.de

Abstract

To prove difficult theorems in a mathematical field requires substantial knowl

edge of that field. In this paper a frame-based knowledge representation formalism

is presented, which supports a conceptual representation and to a large extent guar

antees the consistency of the built-up knowledge bases. We define a semantics of

the representation by giving a translation into the underlaying logic.

Keywords: frames, consistency, conservative extension, conceptual representation

Tota methodus consistit in ordine et dispositione
eorum ad quae mentis acies est convertenda, ut
aliquam veritatem inveniamus.
Rent~ Descartes, Regula V
REGULiE AD DIRECTIONEM INGENII

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2,D3)

Useful Propert ies of a Frame-Based

Representation of Mathematical Knowledge

Manfred Kerber
Fachbereich Informatik, Universität des Saarlandes

D-6600 Saarbrücken, Germany
kerber@cs.uni-sb.de

Abstract

To prove difficult theorems in a mathematical field requires substantial knowl—
edge of that field. In this paper a frame-based knowledge representation formalism
is presented, which supports a conceptual representation and to a large extent guar—
antees the consistency of the built-up knowledge bases. We define a semantics of
the representation by giving a translation into the under-laying logic.

Keywords: frames, consistency, conservative extension, conceptual representation

Tota methodus consistit in ordine et dispositione
eorum ad quae ment is acies est convertenda, u t
aliquam veritatem inveniamus.
René Descartes, Regula V
REG ULÄS AD DIRECTIONEM IN GENII

This work was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D2,D3)

mailto:kerber@cs.uni-sb.de

2

1

Introduction

Introduction

In this paper we are going to describe how to represent mathematical "factual" knowledge

for automated theorem proving. Guideline is knowledge like that of a mathematical

dictionary. In particular we are here not interested in heuristic knowledge as described

in [15, 16, 17, 7, 18]. The main means for our representation is higher-order logic. Indeed

one may ask why such a powerful logic is not sufficient for the description of the factual

knowledge of mathematics, because logic has been developed in the last hundred years

for that purpose. The answer is that it is possible to find many extra-logical features

in the presentation of mathematics, in mathematical text books for instance, and that

these features are essential for mathematical activities like theorem proving.

What are the shortcomings of logic that make a mathematical knowledge represen

tation necessary? One main point is, that the basic notion of logic is that of a formula,

but that in mathematics different kinds of formulae are distinguished, namely axioms,

definitions, and theorems and we will subdivide these kinds even more. Furthermore in

mere logic a knowledge base consists of an unstructured set of formulae, whereas text

books are well-structured and mathematicians spend a lot of time in the final presen

tation of the mathematical content. In addition there are constraints - which are not

present in logic - in the procedure of stating theorems or defining concepts. The most

important constraint for definitions is, that all concepts which are used in the definition

- with the exception of the definiendum of course - must already be known. Analogously

all concepts in theorems must be known. But even if all concepts are known, a definition

has to fulfil further extra-logical requirements, for example, it is normally given in a form

as abstract as possible.

Perhaps the main difference between logic and mathematics can be seen in the con

ceptual representation in mathematics. The standard schema of this procedure in math

ematical text books is: "definition", "example", "theorem", "proof". \Vhen we look

closer at this procedure, we see that the introduction of a concept is not terminated by

giving a definition, but that examples, counter-examples, and lemmata about the intro

duced concept immediately belong to the concept. They do that in such an extent that it

is possible to say: you have not understood the concept if you know only the definition,

but you have not seen any examples and you do not know the simple properties of it.

Another great difference between logic and mathematics is that in mathematics it

is always assumed - even if it cannot be proved - that a knowledge base is consistent,

whereas by logic certain formulae are related, but it does not matter whether the pre

conditions are fulfilled or not. (This mathematical assumption is also the main reason

for the completeness of the set-of-support strategy in resolution theorem proving.)

vVhich requirements should a knowledge representation formalism for mathematics

satisfy? There are the following properties we would like to see:

- The knowledge base should be consistent and the representation formalism should

2 Introduction

1 Introduct ion

In this paper we are-going to describe how to represent mathematical “factual” knowledge
for automated theorem proving. Guideline is knowledge like that of a mathematical
dictionary. In particular we are here no t interested in heuristic knowledge as described

in [15, 16 , 17 , 7,, 18]. The main means for our representation is higher-order logic. Indeed

one may ask why such a powerful logic is not sufficient for the description of the factual

knowledge of mathematics, because logic has been developed in the last hundred years
for that purpose. The answer is that 'it is possible to find many extra-logical features
in the presentation of mathematics, in mathematical text books for instance, and that
these features are essential for mathematical activities like theorem proving.

What are the shortcomings of logic that make a mathematical knowledge represen-
tation necessary? One main point is, that the basic notion of logic is that of a formula,
but that in mathematics different kinds of formulae are distinguished, namely axioms,
definitions, and theorems and we will subdivide these kinds even more. Furthermore in
mere logic a knowledge base consists of an unstructured set of formulae, whereas text
books are well-structured and mathematicians spend a lot of time in the final presen-
tation of the mathematical content. In addition there are constraints - which are not
present in logic — i n the procedure of stating theorems or defining concepts. The most
important constraint for definitions is, that all concepts which are used in the definition
— with the exception of the definiendum of course —- must already be known. Analogously
all concepts in theorems must be known. But even if all concepts are known, a definition
has t o fulfil further extra-logical requirements, for example, it is normally given in a form
as abstract as possible.

Perhaps the main difference between logic and mathematics can be seen in the con—
ceptual representation in mathematics. The standard schema of this procedure in math-
ematical text books is: “definition”, “example”, “ theorem”, “proof”. When we look
closer at th is procedure, we see t ha t t he introduction of a concept is not terminated by
giving a definition, but that examples, counter-examples, and lemmata about the intro-
duced concept immediately belong to the concept. They do that i n such an extent that it
is possible t o say: you have not understood the concept if you know only the definition,
bu t you have not seen any examples and you do not know the simple properties of i t .

Another great difference between logic and mathematics is that i n mathematics i t
is always assumed — even if i t cannot be proved — that a knowledge base is consistent ,
whereas by logic certain formulae are related, bu t i t does not matter whether the pre-
conditions are fulfilled or no t . (This mathematical assumption is also the main reason
for t he completeness of the set—of-support strategy in resolution theorem proving.)

Which requirements should a knowledge representation formalism for mathematics
satisfy? There are the following properties we would like to see:

— The knowledge base should be consistent and the representation formalism should

3

support to keep it consistent.

The representation formalism should reflect the different types of knowledge, that

is, axioms, definitions, and theorems should be distinguished.

The knowledge base should be redundancy free.

It should not be possible to use unknown concepts.

It should be possible that the knowledge can be represented in a conceptual, struc

tured way.

The representation formalism should be powerful enough in order to represent the

knowledge easily.

The formalism should have a clear semantics.

Now we discuss to what extent we can realize the requirements above.

The consistency of a knowledge base is of particular interest, because otherwise it is

possible to derive anything of it. Unfortunately it cannot be shown in general because of

GOD EL'S incompleteness result [5], when a representation language such as first-order or

higher-order logic is used. But we can restrict the possibilities where inconsistencies may

be imported: definitions and theorems should not lead to any inconsistencies, because

definitions form conservative extensions and theorems are proved to be consequences. So

only axioms can cause any trouble. Of course we cannot guarantee that the definitions of

concepts are correct, that is, in accordance with the general use of them. We can define

the concept "group" as something quite different from the general use, but because we

cannot import contradictions by a definition, other parts of the knowledge base not using

this concept cannot be concerned with such a non-standard definition. (The importance

of this fact for automated theorem proving is already noted by ROBERT S. BOYER and

J STROTHER MOORE in [3, p.13].)

The distinction of the three different kinds of knowledge is very important for con'

sistency: If we guarantee that definitions are really definitions and that theorems are

proved, we have to be careful only with the axioms. Therefore we will use in the follow

ing three different basic knowledge units, one for axioms, one for definitions, and one for

theorems.

The redundancy freeness can partially be guaranteed by preventing that concepts

are defined twice, but to some extent it will be left to the user of a system.

If we have a knowledge base t. and we want to a.dd a new knowledge unit {), a check

of the signatures of the knowledge base and the newly introduced unit can gua.rantee

that all concepts used in {), with the exception of a newly defined one, are already in t..

When introducing concepts we do not want to spread the knowledge about these

concepts all over the whole knowledge base. Hence a concept should not just consist of

support to keep it consistent.

— The representation formalism should reflect the different types of knowledge, that
is, axioms, definitions, and theorems should be distinguished.

-— The knowledge base should be redundancy free.

— It should not be possible to use unknown concepts.

—- It should be possible that the knowledge can be represented in a conceptual, struc-
tured way.

- The representation formalism should be pOWerful enough in order to represent the

knowledge easily.

— The formalism should have a clear semantics.

Now we discuss to what extent we can realize the requirements above.

The consistency of a knowledge base is of particular interest, because otherwise it is
possible to derive anything of it. Unfortunately it cannot be shown in general because of
GÖDEL’S incompleteness result [5], when a representation language such as first-order or
higher-order logic is used. But we can restrict the possibilities where inconsistencies may
be imported: definitions and theorems should not lead to any inconsistencies, because
definitions form conservative extensions and theorems are proved to be consequences. So
only axioms can cause any trouble. Of course we cannot guarantee that the definitions of
concepts are correct, that is, in accordance with the general use of them. We can define
the concept “group” as something quite different from the general use, but because we
cannot import contradictions by a definition, other parts of the knowledge base not using
this concept cannot be concerned with such a non—standard definition. (The importance

of this fact for automated theorem proving is already noted by ROBERT S. BOYER and
J STROTHER Moons in [3, p.13].)

The distinction of the three different kinds of knowledge is very important for con-
sistency: If we guarantee that definitions are really definitions and that theorems are
proved, we have to be careful only with the axioms. Therefore we will use in the follow-
ing three different basic knowledge units, one for axioms, one for definitions, and one for
theorems.

The redundancy freeness can partially be guaranteed by preventing that concepts
are defined twice, but to some extent it will be left to the user of a system.

If we have a knowledge base A and we want to add a new knowledge unit 19, a check
of the signatures of the knowledge base and the newly introduced unit can guarantee
that all concepts used in 19, with the exception of a newly defined one, are already in A .

When introducing concepts we do not want to spread the knowledge about these
concepts all over the whole knowledge base. Hence a concept should not just consist of

4

2

The Representation Language

its actual logical definition, but simple consequences, examples, or alternative definitions

should immediately be associated with this concept. Therefore we introduce in the

following a formalism to represent mathematical concepts, such that the knowledge

associated with an object is representationally attached to that object.

Now we present a frame-based representation of mathematical knowledge, intro

ducing it by examples as we go along. Then we give a formal definition, discuss the

properties of such knowledge bases and finish by some considerations on the advantages

and disadvantages of the chosen formalism.

The Representation Language

In this section we introduce our representational formalism. We use the frame repre

sentation of MARVIN MINSKY [13]. The original idea is to represent knowledge in an

object-oriented way and to simulate thereby the knowledge organisation as it is pre

sumably organized in the ,mind (of a mathematician). The frames should structure the

knowledge and contain in particular the information how to use this knowledge. Al

though introduced in opposition to the logicistic wing of the AT community, a frame can

(more or less) be viewed as a certain way of arranging predicate logical facts [8], [14,
chap.7]. Since our facts are predicate logical expressions, in our case this corresponds

to meta-logical facts. A frame consists of a name, slots, and fillers. Slots correspond to

certain meta-predicates and the fillers are arguments of these predicates. The syntactical

surface is that of a box, as in figure 1.

We will use as the heart of the representation sc Alonzo Church's theory of types [4]
with the following three extensions. For further details see [10]. We shortly introduce

the extensions now.

Optional Parameters

The first extension is that of optional parameters. In order to define a group we need

indeed only two parameters: a set and a binary operation on that set. If these two

parameters are given, it is well defined whether or not the pair (G, +) is a group, that

is, that group(G, +) holds, provided we have the corresponding definitions. We do not

need to know the name of the neutral element or the name of the inverse function.

But these names may become important later on. In order to express that (G, +) is a

group with neutral element 0, we want to use the same predicate symbol group and say

group(G, +,0). Optional parameters are allowed only in predicate constants. \,Ve allow

them by a declaration of the arity of a predicate symboll ::; arity(P) ::; m (with l,m

explicit natural numbers). For instance:

2::; arity(group) ::; 4 or 2:::; arity(ex_lefLneutraLelement) :::; 3.

For the definition of a predicate constant P with arity 1 ::; arity(P) :::; m every for

mula <p containing P(t ll ... , tk) with 1 ::; k ::; m is an abbreviation for <p with P(t1 , ... , tk)

4 The Representation Language

i t s actual logical definition, but simple consequences, examples, or alternative definitions
should immediately be associated with this concept. Therefore we introduce in the
following a formalism to represent mathematical concepts, such that the knowledge
associated with an object is representationally attached to that object.

Now we present a frame-based representation of mathematical knowledge, intro-
ducing it by examples as we go along. Then we give a formal definition, discuss the
properties of such knowledge bases and finish by some considerations on the advantages
and disadvantages of the chosen formalism.

2 The Representation Language

In this section we introduce our representational formalism. We use the frame repre-
sentation of MARVIN MINSKY [13]. The original idea is to represent‘knowledge in an
object-oriented way and to simulate thereby the knowledge organisation as it is pre-
sumably organized in the \mind (of a mathematician). The frames should structure the
knowledge and contain in particular the information how to use this knowledge. A1—
though introduced in opposition to the logicistic wing of the AI community, a frame can
(more or less) be viewed as a certain way of arranging predicate logical facts [8], [14,
chap.7]. Since our facts are predicate logical expressions, in our case this corresponds
t o meta-logical facts. A frame consists of a name, slots, and fillers. Slots correspond to

certain meta-predicates and the fillers are arguments of these predicates. The syntactical
surface is that of a box, as in figure 1.

We will use as the heart of the representation sc Alonzo Church’s theory of types [4]
with the following three extensions. For further details see [10]. We shortly introduce
the extensions now.

Opt iona l Parameters

The first extension is that of optional parameters. In order to define a group we need
indeed only two parameters: a set and a binary operation on that s e t . If these two
parameters are given, i t is well defined whether or not the pair (G,-F) is a g roup , that
is, that group(G’,+) holds, provided we have the corresponding definitions. We do not
need to know the name of the neutral element o r t he name of t he inverse function.
But these names may become important later on. In order to express that (G ,+) is a
group wi th neutral element 0 , we want t o use the same predicate symbol group and say
g roup(G ,+ , 0) . Optional parameters are allowed only in predicate constants. We allow
them by a declaration of the arity of a predicate symbol l S a r i t y (P) 5 m (wi th l ,m
explicit natural numbers). For instance:
2 S arity(group) 5 4 or 2 $ arity(e.7:-left_neutral-element) S 3.

For the definition of a predicate constant P with arity l 5 ar i ty(P) g m every for-
mula (p containing P (t1 , . . . ‚ t k) wi th l S k 5 m is an abbreviation for (,9 wi th P (t1 , . . . , t k)

5

Variable Sorts

For the representation of certain concepts it is useful to have variable sorts. For instance

if we want to define the concept group, we want to say "VG: (t -+ 0) V+: (G X G -+

G) group(G, +) {:::::} ...", that is, we want to use the predicate variable G as a sort

symbol. We allow such an expression as abbreviation for the corresponding relativization,

that is,

VG : (t -+ 0) V+: (G X G -+ G) group(G, +) {:::::} ... is the abbreviation for

VG:(t -+ 0) V+:(t X [, -+ t) function(+,G x G -+ G) => (group(G,+) {:::::} ...). We

write Vx: C P(x) as abbreviation for Vx C(x) => P(x). In general we write unary

predicates in a sort like manner, but we always use them only as abbreviation for the

corresponding relativization. By function we mean the following predicate:

function(f, XIX ... x X m -+ Y) {:::::}

(VXl X 1(Xl) => (,,,Vxm Xm(Xm) => Y(f(Xl,""Xm))"'))'

Constructors

A common way of introducing concepts is via an inductive definition. Higher-order logic

is rich enough to cover this situation, but because of the particular importance of this,

we will provide special facilities for defining concepts by mathematical induction. The

standard example is that of the PEANO axioms for axiomatizing the natural numbers.

Instead of giving these axioms we write shortly the data structure IN (compare e.g. [9]):

data structure IN : (t -+ 0)

constructors base(O: IN) In general we can introduce a data structure by:

step(s : (IN -+ IN))

P : (K -+ 0) with K :j:. 0

(Cj : P) for 1 ~ j ::; n, the Cj are called constructor constants.

(fi : (P X.K~ X... x Kt -+ P)) for 1 ~ i ~ rn, the fi are called constructor functions.

This data structure has the following meaning:

There is a constant P : (K -+ 0).

For all constructor constants Cj, there are constants of sort P and for all constructor

functions fi, there are constants of sort (P XK~ X.. ,x Kt -+ P)).

- No constructor constant is in the range of any constructor function.

- All constructor functions are injective.

replaced by (321,“, . . . ,zm P(t1, . . . ‚tk, zk+1‚ . . . , zm)).

Variable Sorts

For the representation of certain concepts it is useful to have variable sorts. For instance
if we want to define the concept group, we want to say “VG : (L —> o) V+ : (G x G —>
G') group(G,+) <=» . . .”, that is, we want to use the predicate variable G as a sort
symbol. We allow such an expression as abbreviation for the corresponding relativization,
that is,
VG’ : (1, —> 0) V+ : (G X G —+— G) group(‚G,+) {=> is the abbreviation for
VG:(1‚ —> 0) V+:(L x l. _» L) function(+,G X G —-+ G) => (group(G',+) (=> . .). We
write Va: :C P(a:) as abbreviation for V1: C(m) => P(:c). In general we write unary
predicates in a sort like manner, but we always use them only as abbreviation for the

corresponding relativization. By function we mean the following predicate:
function(f,X1 x - -- X Xm —> Y) =>

(Val X1(:c1) => (-- -m Xm(a:m) => Y(f (z1 , . . . ,xm))-- -)).

Constructors

A common way of introducing concepts is via an inductive definition. Higher-order logic
is rich enough to cover this situation, but because of the particular importance of this,
we will provide special facilities for defining concepts by mathematical induction. The
standard example is that of the PEANO axioms for axiomatizing the natural numbers.
Instead of giving these axioms we write shortly the data structure]N (compare e.g. [9]):

data structure 1N : (L —+ o)
constructors base(0 : IN) In general we can introduce a data structure by:

step(s : (IN ——> IN))

— P:(n——>o) wi thnaéo

— (cJ- : P) for 1 g j 5 11, the Cj are called constructor constants .

— (f,- : (P x_l—:‘i x - - »xni‘. _» P)) for 1 5 i S m, the f.- are called constructor functions.

This data structure has the following meaning:

— There is a constant P : (n —> o).

— For all constructor constants c5, there are constants of sort P and for all constructor
functions f;, there are constants of s'ort (P x Ki x - — . >< nib -> P)) .

-— No constructor constant is in the range of any constructor function.

— All constructor functions are injective.

6 The Representation Language

The ranges of the constructor functions are disjoint.

The induction principle holds.

Examples

Now we begin the proper part of the description of the representation formalism. We

introduce it with the help of examples and begin with the definition of the concept

"associative". This definition could be given in an extended sorted higher-order logic as:

VC:(t,-o) Vf:(CxC-C) associative(C,J) ~

Vx,y,z:C fU(x,y),z) == f(x,j(y,z)).
and this is now represented in a frame in figure 1 below. Every frame belongs to one

of the three kinds: definition, axiom, or theorem. The kind is here indicated by the

keyword "Definition:" The name of the introduced concept follows after a colon. In this

case it is "associative". In the upper right corner we give the type of the definition.

The entry "property" means that the whole concept models a property; a standard

translation of a "property definition" into predicate logic can be done by mapping it

into a predicate symbol. A "property definition" represents the relationship between its

parameters. (The other type of a concept definition is that of a "mapping concept". In

this case a new object is created, of which an example is given in figure 4 below.)

Now the slots and the slot-fillers of the frames are introduced:

Definition: associative property

parameters:

definition:
context:

C :(£'-0)
f :(C x C.- C)
'ix, y, z:C f(f(x, y), z) == f(x, fey, z))
basic algebra

Figure 1

The argument of the binary property associative is given in the slot "parameters".

The number of parameters corresponds to the arity of the predicate symbol defined in the

frame. In the slot "parameters" the formal parameters and their sorts are written and

when using the defined object elsewhere they are then bound to the actual parameters.

In the slot "definition" we find a (higher-order) logical definition of the concept. In

the case of a property definitioIl, the entry consists of the part of the definition that

follows the equivalence sign "~".

The slot "context" is provided for structuring the whole knowledge base into different

modules. If we introduce a partial order among these contexts, we have the usual

taxonomical hierarchy. (Here more details may become necessary, for example, which

information may be used by other modules.) For instance we might structure a large

knowledge base as in figure 2. This example is taken from the algebra text-book of

BARTEL L. VAN DER WAERDEN [19, p.xi]. Such a structure is standard in all fields of

6 The Representation Language

— The ranges of the constructor functions are disjoint.

—- The induction principle holds.

Examples

Now we begin the proper part of the description of the representation formalism. We
introduce i t with the help of examples and begin with the definition of the concept

“associative”. This definition could be given in an extended sorted higher-order logic as:
VC:(L —-» o) Vf:(C X C —> C) associative(C, f) <=)

Vz,y , z :C f(f (:c ,y) ,z) '_—‘ f (a : , f (y ,z)) .
and this is now represented in a frame in figure 1 below. Every frame belongs to one
of the three kinds: definition, axiom, or theorem. The kind is here indicated by the
keyword “Definition:” The name of the introduced concept follows after a colon. In this
case it is “associative”. In the upper right corner we give the type of the definition.

The entry “property” means that the whole concept models a property; a standard
translation of a “property definition” into predicate logic can be done by mapping it
into a predicate symbol. A “property definition” represents the relationship between its
parameters. (The other type of a concept definition i s that of a “mapping concept”. In

this case a new object is created, of which an example is given in figure 4 below.)

Now the slots and the slot-fillers of the frames are introduced:

Defini t ion: associative property

parameters: C : (t —v o)
f : (C x C —— C)

context: basic algebra

Figure 1

The argument of the binary property associative is given in t he slot “parameters”.
The number of parameters corresponds t o the arity of the predicate symbol defined in the
frame. In the slot “parameters” the formal parameters and their sorts are written and
when using the defined object elsewhere they are then bound to t he actual parameters .

In the slot “definition” we find a (higher-order) logical definition of the concept. In
t he case of a property definition, t he entry consists of the par t of t he definition that
follows the equivalence sign “:>”.

The slot “context” is provided for structuring the whole knowledge base i n to different
modules. If we introduce a partial order among these contexts , we have t he usual
taxonomical hierarchy. (Here more details may become necessary, for example, which
information may be used by other modules.) For instance we might, s t ructure a large
knowledge base as in figure 2. This example is taken from the algebra text-book of
BARTEL L. VAN DER WAERDEN [19, p.x.i]. Such a structure is standard in all fields of

7

mathematics, therefore we have to provide a possibility for representing it. How this

information can be used is discussed below.

Figure 2

Now we shall introduce the second kind of frame, namely that of an axiom frame.

In order to do so we take the first four axioms of GODEL'S set a.xioms [6].

Axiom: set

aXIOms:

consequences:
signature_ext:

context:

'Ix: Set Class(x)
'IX, Y:Class X E Y => Set(X)
'IX, Y:Class (Vu:Set u E X ~ u E Y) => X:: Y
Vx,y:Set 3z:Set (Vu:Set uEz ~ (u::xVu::y)"

1) 'Ix, y:Set yE {x} <==> x:: y <proof-set-cons-1>
Classr;l
Setr;Class
E: (Set x Class 0)
{.,.} : (Set x Set Set)
sets

Figure 3

"The existence of the variable z of sort Set can be written by the Skolem function {x, y}. As usual

{x,x} is abbreviated to {x}.

mathematics, therefore we have to provide a possibility for representing i t . How this

information can be used is discussed below.

sets

L
groups

l
rings

1
vectors

j
groups polynomial infinite
(cont.) sets

1 1 L
_ fields infinitesalons "— . fields

theory 1

real
fields

f———__—______1
linear ideal value

algebra algebras theory fields
L—‘# ¢—|—; i—l—L

represent. int. eig. polynomial algebraic t«0901090111

theory quantities ideals functions algebra

Figure 2

Now we shall introduce the second kind of frame, namely that of an axiom frame.

In order to do so we take the first four axioms of GÖDEL’S set axioms [6]

Axiom: set

axioms:

consequences: 1)
signature .ext:

con tex t :

Vz:$e t Class (z)
VX,Y:CIass X6Y=>Se t (X)
VX,Y:Clas s (Vu :Se t ueX <= uEY)=>XEY
Vz,y:Set 3z:Set (Vqet 1162 <= (uEzVuEy)) '
Vz, y :Se t y € {1:} <= z 2—: y <proof-set-cons-1>
Glas.—JE;
SeiEClass
€ : (Set x Class .. o)
{., .} ; (Set x Set —-> Set)
se t s

Figure 3

'The existence of the variable z of sort Set can be written by the Skolem function {z ,y} . As usual
{z, 3} is abbreviated to {z}.

8 The Representation Language

While definitions are always of the form "Vparameters definiendum(parameters) <==}

formula", the slot "axioms" in contrast can contain arbitr~ry formulae, stating the

properties of one or more function and/or predicate constants. If these constants are

newly introduced by the frame, they have to be explicitly summarized in the slot "sig

nature_ext". The slot "consequences" contains lemmata about the concepts introduced

by the axioms. Such consequences must be proved; in <proof-set-cons-l> a pointer to

such a proof is stored.

The logics £, are ~xpressible enough to give any of the standard axiomatizations of

set theory such as ZFC, but for most cases it is sufficient to use sets of a certain sort K,

as an abbreviation for a predicate of the sort (K, -+ 0). If one follows this simple notion

of a set, it is not possible to have elements of different types in one single set.

Now we give an example for a "mapping concept" and define a "pair".

Definition: pair mapping

parameters:

definition:
sort:
main_property:
context:

x :Set
y :Set
{x,{x,y}}
Set
'Vx,y,u,v:Set {x,y}=={u,v} <=> x==ul\y==v
sets

< proof-pair-sort>
<proof-pair-main_prop>

Figure 4

"\iVe write (x, y) instead of pair(x, y). The concept "pair" is an example where the

entry in the definition slot itself is less important and indeed it is never used again. The

definition is only given in order to have a set theoretical foundation of the concept as

(a, b) := {a, {a, b}}. The concept is closely related to a "main_property"; almost the only

thing one has to know about the concept "pair" is: they are equal if and only if they

agree on all arguments. In order to model main properties we introduce a corresponding

new slot with this statement as filler. Another view of a main property is that this is

the intrinsic meaning of the concept and that the definition is only an implementation

of the concept in logic.

In the next concept we use an "optional" parameter, which corresponds to the op

tional parameters of predicates as introduced above. The name "neutral-element" is a

selector of the tuple (C,f,O).

Definition:

parameters:

(optional)
definition:
context:

ex.left..neutraLelement

C
f
o
'Vx:C f(O, x) == x
basic algebra

:(I~O)

:(C x C -+ C)
:C

property

(called neutral-element)

Figure 5

8 The Representation Language

While definitions are always of the form “Vparameters definiendum(parameters) 4:»

formula”, the slot “axioms” in contrast can contain arbitrary formulae, stating the

properties of one or more function and/ or predicate constants . If these constants are

newly introduced by the frame, they have to be explicitly summarized in the slot “sig-

nature_ext”. The slot “consequences” contains lemmata about the concepts introduced

by the axioms. Such consequences must be proved; in <proof-set—cons-1> a pointer to
such a proof i s stored.

The logics £ are expressible enough to give any of the standard axiomatizations of

set theory such as ZFC, but for most cases i t is sufficient to use sets of a certain sort n

as an abbreviation for a predicate of the sort (It —> 0). If one follows this simple notion
of a se t , i t is not possible t o have elements of different types in one single set .

Now we give an example for a “mapping concept” and define a “pair”.

Definition: pair . mapping

parameters: z :Se t
y :Set

definition: { x , {:c, y}}
sort: Se t <proof-pair-sort>
maimproperty: VI, 3/, u , 0:59.11 (2:, y) E (u, v) (=> 1: E u A y E u <proof-pair-main_prop>
context: sets

Figure 4

We write (a:,y) instead of pair(a:,y). The concept “pair” is an example where the
entry in the definition slot itself is less important and indeed it is never used again. The
definition is only given in order t o have a set theoretical foundation of the concept as
(a, b) :E {a , {a , b}}. The concept is closely related to a “main.property”; almost the only
thing one has to know about the concept “pair” is: they are equal if and only if they
agree on all arguments. In order to model main properties we introduce a corresponding
new slot with this statement as filler. Another view of a main property is that this is
the intrinsic meaning of the concept and that the definition is only an implementation
of the concept in logic.

In the next concept we use an “optional” parameter, which corresponds t o the op-
tional parameters of predicates as introduced above. The name “neut ra l .e lement” is a
selector of the tuple (C, f , 0) .

Defini t ion : exJeftJieutralnzlement property

parameters: C :(L — o)
f : (C x C —-> 0)

(optional) 0 :C (called neutraLelement)
definition: sC f(O, :) E z
context: basic algebra

Figure 5

9

Together with the similarly definable concept "exJleutraLelement" and "exJnverse"

it is now possible to introduce the concept "group".

TRUE
1) associative(G, +)
2) ex_neutraLelement(G, +, 0)
3) ex-:inverse(G,+,O,-)
1) associative(G,+) /\

ex_lefLneutraLelement(G, +,0) /\
exJeft.inverse(G, +,0, -)

2) associative(G, +) /\
ex_righLneutraLelement(G, +, 0) /\
ex_righLinverse(G, +,0, -)

1) (Int, +, 0, -) model Integers
2) (Rat, +, 0, -) model Rationals
3) (Rat\{O},., 1,-1) model Rationals

basic algebra

Definition:

parameters:

(optional)
(optional)

definition:
superconcepts:

equivalences:

examples:

context:

group

G

+
°

:(t-+o)
:(G x G -+ G)
:G
:(G -+ G)

property

(called carrier)
(called operation)
(called neutral...element)
(called inverse)

<proof-group-equ-1 >

< proof-group-equ-2>

Figure 6

The slot "superconcepts" expects slot-fillers that are generalizations of the actual

concept. For instance every group is especially an associative structure. TRUE in

the definition slot means that the concept is fully defined by the conjunction of its

superconcepts.

The slot "equivalences" contains logical expressions that are necessary and sufficient

to define the concept, that is, they are logically equivalent to the conjunction of the "def

inition" slot-filler and the "superconcepts" slot-fillers and form an alternative definition

of the concept. In order to guarantee that the filler is really equivalent to the defini

tion of the concept there must be a proof, which can be found in <proof-group-equ-l>.

Although the different definitions of a concept are equivalent, they can be of different

use in different context. For example, if one wants to prove that a certain object is a

group, it is easier to use one of the two equivalent formulations, because then one has less

to prove (e.g. exJefLneutraLelement(G, +,0) instead of ex_neutraLelement(G, +, 0)).

The definition itself may be preferable if it is used as a premis, because then one can im

mediately use the property ex_righLneutraLelement(G, +, 0) without proving it first.

In principle the frame approach is flexible enough to store such meta knowledge. But

that is not integrated, in particular it is necessary to have a formal language to express

meta knowledge. We can see an important difference between our epistemological term

"property" and the logical term "predicate": The conceptual representation allows to

make some assertions about the concepts (as for instance to use a certain variallt of

the definition in some situation). This would be difficult if we had mere predicates and

distributed the knowledge in a whole set of formulae. Whether and how this can be used

Together with the similarly definable concept "‘ex_rieutral.element” and “exinverse”

i t is now possible t o introduce the concept “group”.

Definit ion: group property

parameters: G :(l. -> 0) (called carrier)
+ :(G x G —> G) (called operation)

(optional) 0 :G (called neut ra lx lement)
(optional) - :(G -» G) (called inverse)

definition: TR UE
superconcepts: 1) aasociative(G‚ +)

2) ez-neutral.element(G, + , 0)
3) ez.jnvcrse(G‚ + , 0, —)

equivalences: 1) associative(G,+) A
etc- lef tmeutrahelemenflG,+, 0) A
ezJef t Jnverse(G, + , O, —) <proof-group—equ-1)

2) associat ive(G,+) A
ea;.r igteutraLelemenKG, + , 0) A
ez_right_inverse(G, + , 0, —) <proof-group—equ-2>

examples: 1) (I n t , + , 0 , _) model Integers
2) (Ra t ,+ ,0 , -) model Rationals
3) (Rai\{0}‚ -, 1,’1) model Rationals

context: basic algebra

Figure 6

The slot “superconcepts” expects slot-fillers that are generalizations of the actual
concept. For instance every group is especially an associative structure. TRUE i n

the definition slot means that the concept is fully defined by the conjunction of its
superconcepts.

The slot “equivalences” contains logical expressions that are necessary and sufficient
t o define the concept , that is , they are logically equivalent t o the conjunction of the “def—
inition” slot—filler and the “superconcepts” slot-fillers and form an alternative definition
of the concept. In order to guarantee that the filler is really equivalent to the defini—
tion of the concept there must be a proof, which can be found in <proof-group-equ-1>.
Although the different definitions of a concept are equivalent, they can be of different
use in different context . For example, if one wants t o prove tha t a certain object is a

group, i t is easier to use one of the two equivalent formulations, because then one has less
to prove (e.g. ea:_left-neutral_element(G, + , 0) instead of ez-neutral-element(G, + , 0)).
The definition itself may be preferable if it is used as a premis, because then one can im-
mediately use the property ea:_righi .-neuiral_element(G,+, 0) wi thout proving i t fi r s t .
In principle the frame approach is flexible enough to store such meta knowledge. Bu t
that is not integrated, in particular it is necessary to have a formal language to express
meta knowledge. We can see an important difference between our epistemological term
“property” and the logical term “predicate”: The conceptual representation allows to
make some assertions about the concepts (as for instance t o use a certain variant of
the definition in some situation). This would be difficult if we had mere predicates and
distributed the knowledge in a whole set of formulae. Whether and how this can be used

10 The Representation Language

for actually guiding a theorem prover is a difficult question and not yet investigated

deeply.

In the slot "examples" we can find a reference to a model of the corresponding

concept. How examples can be represented and how it can be proved that an example

is really an example is not investigated in this paper.

We could have also given another definition for the concept "group" by writing the

following formulae into the "definition" slot:

Vx,y,z:G (x+y)+z=x+(y+z)/\

3x:G Vy:G x+y=y=y+x(/\x=O)/\

Vx:G 3y:G x+y=O=y+x(/\y=-x)

But this is not as appropriate as the above formulation, because it is less structured.

We want to formulate the concepts as abstract as possible for several reasons. If we

formulate abstractly, we have the chance to find proofs also at a more high, abstract

level. There is also the chance to find analogies or to use some special purpose algorithms

that are defined for a special concept. For instance when the concept "group" is given,

one might want to have a special treatment for the "+" as an associative operation.

That could be done by not expanding the definition of associativity but by using a

special equality reasoning procedure for associative function symbols, for instance, an

A-unification algorithm.

So far we have given only examples for simply defined or axiomatized concepts. The

next example is about inductively defined concepts. To this end we use the constructors

introduced above.

We show how one can axiomatize the natural numbers with the constructors 0 and

s.

Axiom: Nat

aXlOm: base
step

signature_ext:

(0 : IN)
(8 : (IN - IN))
IN:(t-o)
0: IN

context:
8: (IN - IN)
numbers

Figure 7

The key words "base" and "step" correspond to the induction base and the induction

step, respectively. In this example the induction base says that 0 is a natural number.

The step case means that all natural numbers are constructed from 0 by the constructor

function s.

Of course we could give second-order formulae in order to introduce the natural num

bers, but because of its particular importance, we provide special facilities for inductively

defined or axiomatized concepts.

10 The Representation Language

for actually guiding a theorem prover is a difficult question and not yet investigated
deeply. _

In the slot “examples” we can find a reference to a model of the corresponding
concept. How examples can be represented and how i t can be proved that an example
is really an example is not investigated in this paper.

We could have also given another definition for the concept “group” by writing the
following formulae into the “definition” slot:

Vz ,y ,z :G (m+y)+zEz+ (y+z) / \
5!s VyzG m+yEyEy+z(Am.= :0)A
sG 3y:G z+y505y+x(An—z)

But this is not as appropriate as the above formulation, because it is less structured.
We want to formulate the concepts as abstract as possible for several reasons. If we
formulate abstractly, we have the chance to find proofs also at a more high, abstract

level. There is also the chance to find, analogies or to use some special purpose algorithms
that are defined for a special concept. For instance when the concept “group” is given,
one might want t o have a special treatment for the “+” as an associative operation.
That could be done by not expanding the definition of associativity but by using a
special equality reasoning procedure for associative function symbols, for instance, an
A—unification algorithm.

So far we have given only examples for simply defined or axiomatized concepts. The
next example is about inductively defined concepts. To this end we use the constructors
introduced above.

We show how one can axiomatize the natural numbers wi th the constructors 0 and

Axiom: Nat

axiom: base (0 : IN)
step (.9 : (IN —-> 1N))

signaturexxt:]N : (I, —> a)
0 : IN
3 : (1N -—> 1N)

con text: numbers

Figure 7

The key words “base” and “step” correspond to t he induction base and the induction
s tep , respectively. In this example t he induction base says tha t 0 is a natural number .
The step case means t ha t all natural numbers are constructed from 0 by the constructor
function s .

Of course we could give second-order formulae in order to introduce t he natural num-
bers, but because of its particular importance, we provide special facilities for inductively
defined or axiomatized concepts.

11

Now we can define the function + for natural numbers.

Definition: +IN mapping

parameters:

sort:
definition:

context:

n
m

:IN
:IN

IN
base Vn:lN n +IN 0 =: n
step "In, m:lN n +IN s(m) =: s(n +IN m)

numbers

<proof-+IN-sort>

< proof-+IN-def>

Figure 8

In this definition frame "base" and "step" correspond as in the axiom frame to the.

induction base and the induction step. For an inductive definition it must be shown

that it is a definition indeed, that is, that all cases are covered and that the step case is

well-founded (see e.g. [9]).

The next example shows an implicit definition. It is the general case of a definition

and subsumes all previous cases as special cases. An implicit definition consists of an

arbitrary formula set that uniquely characterizes the concept.

Definition:

parameters:
sort:
definition:

context:

JR.
"Ix, y:lR exp(x + y) =: exp(x)· exp(y)
exp(l)=:e
continous(exp, lR)
real functions

exp

x :lR

mapping

<proof-exp-sort>

<proof-exp-def>

Fignre 9

In order to make sure that it is a valid definition, the existence and uniqueness of

the concept must be proved in <proof-exp-def>.

Partial functions can be defined in the following form:

Definition: reciprocal

parameters:
preconditions:
sort:
definition:
context:

x

x¥o
lR
reciprocal(x) . x =: 1
real functions

:lR

mapping

<proof-reciprocal-sort>
<proof-reciprocal-def>

Figure 10

The slot "preconditions" contains formulae, which must be satisfied, for the definition

to make sense. A correct treatment of the preconditions requires partial functions.

However we do not consider them in the following, because they require an essential

11

Now we can define the function + for natural numbers.

Definit ion: +“ mapping

parameters: n :IN
m :lN

sort: IN <proof-+m—sort>
definit ion: base Vn:]N n +“ 0 E n -

step Vn, m:lN n +1" s(m') a 3(u +1" m) <proof—+m-def>
context: numbers

Figure 8

In this definition frame “base” and “step” correspond as in the axiom frame to the.
induction base and the induction step. For an inductive definition it must be shown
that it is a definition indeed, that is, that all cases are covered and that the step case is

well-founded (see e.g. [9]).
The next example shows an implicit definition. It is the general case of a definition

and subsumes all previous cases as special cases. An implicit definition consists of an

arbitrary formula set that uniquely characterizes the concept.

Definition: exp mapping

parameters: z: :]R
sort: 1R <proof-exp—sort>
definition: V2, y l exp(z + y) E exp(z) - exp(y)

exp(1) E e
cont inous(exp, IR) <proof—exp—def>

contex t : real functions

Figure 9

In order to make sure that it is a valid definition, the existence and uniqueness of
the concept must be proved in <proof-exp-def>.

Partial functions can be defined in the following form:

Defini t ion: reciprocal mapping

parameters: z :lR
preconditions: 9: $ 0
sort: IR <proof—reciprocal-sort)
definition: reciprocal(z) - a: E 1 <proof-reciprocal-def)
context: real functions

Figure 10

The slot “preconditions” contains formulae, which must be satisfied, for the definition
to make sense. A correct treatment of the preconditions requires partial functions.
However we do not consider them in the following, because they require an essential

12 The Representation Language

extension of the logics ,en, as for instance a transition from two-valued to three-valued

logics. In particular we cannot translate them adequately into first-order (two-valued)

logic. For an overview of partial logics see [2, 11].

The concepts introduced so far are ordered by the fillers of the slot "superconcepts",

which induce a transitive network of concepts with inheritance. That is, every concept

inherits all definitions, consequences, equivalences, and counter-examples of its super

concepts. A superconcept itself inherits all examples of its subconcepts. A small section

of this net can be seen in the following figure:

De!: associative De!: ex..neuLelem De!: ex.Jnverse

pa.rameters: parameters:pa.rameters:

De!: groupDe!: commutative

pa.rameters:pa.rameters:

~ /
De!: abelian_group De!: distribu tive

parameters: parameters:..... .

/
~
Def: field

parameteu:...

Figure 11

The edges in the network are labeled with the corresponding parameters in the "super

concepts" slot. In figure 11 we have omitted the labels for simplicity reasons. For in

stance, the edge from "field" to "abeliaILgroup" expresses that a field (F, +, 0, -",1, -1)
is an abelian group with respect to the addition, that is, (F, +, 0, -) is an abelian group;

whereas it is only a group with respect to the multiplication, that is, (F\ {O},', 1, -1) is
a group.

Finally we give an example for a theorem frame. We use CANTOR'S theorem that

the power-set of a set has greater cardinality than the set itself in the formulation of

ANDREWS [1, p.184].

12 The Representation Language

extension of the logics £“ , as for instance a transition from two-valued to three-valued
logics. In particular we cannot translate them adequately into first-order (two-valued)
logic. For an overview of partial logics see [2, 11].

The concepts introduced so far are ordered by the fillers of the slot “superconcepts”,
which induce a transitive network of concepts with inheritance. That is, every concept
inherits all definitions, consequences, equivalences, and counter-examples of its super-
concepts. A superconcept itself inherits all examples of its subconcepts. A small section
of this net can be seen in the following figure: V

Def: associative Def: ex_neuLelem Def: exjnverse

parameters : parameters: pa rame te r s :

/
Def: groupDef: commutative

paramete r s : pa rame te r s :
.

\ /
Def: abeliangroup Def: dis t r ibut ive
pa rame te r s : pa rame te r s :

a o

\ /
Def: field

porn -ne t OI" :
.

Figure 11

The edges in the network are labeled with the corresponding parameters in t he “super-
concepts” slot. In figure 11 we have omitted the labels for simplicity reasons. For in-
stance, the edge from “field” t o “abelian.group” expresses that a field (F, + , 0 , —, -, 1 , "1)
i s an abelian group with respect t o t he addit ion, tha t is, (F , + , 0 , —) is an abelian group;
whereas it is only a group with respect to the multiplication, that is, (F\{0}, -, 1, ' 1) is
a group.

Finally we give an example for a theorem frame. We use CANTOR’S theorem that
the power-set of a set has greater cardinality than the set itself in the formulation of
ANDREWS [1, p.184].

13

3

Theorem:

theorem:
status:
proof:
context:

Cantor theorem

'v's:(t o) -,3g:(t (t o» 'v'f:(t o) f~s===>(3j:t s(j)f\g(j)=f)
"proved"
<proof-Cantor>
sets

Figure 12

The filler of the slot "theorem" is an arbitrary closed formula of £n.

The "status"-slot records whether the theorem is "proved", "conjectured", or "re

jected" .

In "proof" a pointer to a proof is given, if the status of the theorem is "proved" or

"rejected" .

After this informal introduction to our frame-based representation language, we shall

now give a formal definition in the next section.

Formal Treatment

Now we define a general syntax of the three different kinds offrames. Their semantics is

then given via translations into the underlying higher-order logic. The following frame

shows all the different slots and possible fillers in a definition frame.

Definition: <Name> property I mapping

{ #)
{ #)
{ #)
{ #)

<proof-<Name>-def>
<proof-<Name>-def>

. [parameters:
[{ (optional)
[preconditions:
definition:

base
step

[defined .symbols:
[superconcepts: {#)
[sort:
[main_property:
[consequences:
[equivalences:
[examples:
[counter_ex:
[used..in:
[subconcepts:
context:

{<variable.symbol> :<sort.symbol> [(called <name» 1}
<variable.symbol> :<sort.symbol> [(called <name» 1} 11
{ <formula> }]
{ <formula> } I
{ <term>} I
{ <formula> }
{ <formula> }
{ <formula> }
{ <Name> }]
<concept> ({ <variable.symbol> }) } 1
<sort.symbol> <proof-<Name>-sort> 1
<formula> <proof-<Name>-main_prop> 1
<formula> <proof-<Name>-cons-#> }]
<formula> <proof-<Name>-equ-#> } 1
<pointer_to..model> <proof-<Name>-ex-#> }]
<pointer_to..model> <proof-<Name>-counter_ex-#> }]
{ <Name> }]
{ <concept> }]
<ContextName>

Figure 13

We use the extended BACKUS-NAUR form (EBNF) in the following 'way:

[.] stands for no or one occurrence, { } for one or more repetitions, <.> for

non-terminal symbols, and I for "or".

13

Theorem: Cantor theorem

theorem: Vs:(L -> o) fiBg: (L —-+ (:, —> a)) Vf:(z—> o) f g 3 => (s t 3(j) Ag(j) = f)
status: “proved”
proof: <proof-Cantor>
contex t : sets

Figure 12

The filler of the slot “theorem” is an arbitrary clos'ed formula of L".

The “status”-slot records whether the theorem is “proved”, “conjectured”, or “re-
jected”.

In “proof” a pointer to a proof is given, if the status of the theorem is “proved” or
“rejected”.

After this informal introduction to our frame-based representation language, we shall
now give a formal definition in the next section.

3 Formal Treatment

Now we define a general syntax of the three different kinds of frames. Their semantics is
then given via translations into the underlying higher-order logic. The following frame
shows all the different slots and possible fillers in a definition, frame.

Definition: <Name> property |mapping

'[parametersz { <variable.symbol> :<sort.symbol> [(called <name>)] }
[{ (optional) <variable.symbol> :<sort_symbol> [(called <name>)] }]]
[preconditionsz { <formula> }]
definition: { <formula> } I

{ <term> } |
base { <formula> }
step { <formi11a> } <proof-<Name>-def> I

{ <formula> } <proof-<Name>-def>
[definedsymbols: { <Name> }]
[superconceptsz { #) <concept>({ <variable.symbol> }) }]
[sort: <sort.symbol> <proof—<Name>-sort>]
[main-property: <formula> <proof-(Name>-ma.in_prop>]
[consequencesz { #) (formula) <proof-(Name>-cons—#>)]
[equivalencesz { #) <formula> <proof-(Name>-equ-#> }]
[examples : { #) <pointer-to.model> <proof—(Name>-ex -#> }]
[counter.ex: { #) <pointer.to.model> <proo{-<Name>-counter.ex-#> }]
[used.in: { <Na.me> }]
[subconceptsz { <concept> }]
context: <ContextName>

Figure 13

We use the extended BACKUS-NAUR. form (EBNF) in the following ‘way:
[.] stands for no 'or one occurrence, { . } for one or more repetitions, <.> for
non-terminal symbols, and | for “or”.

14 Formal Treatment

1 Definition (Definition Frame): A definition frame (written 1?) is a list of the

following elements:

1.	 "parameters" IS of a list of variable-symbols with sorts and optionally selector

names.

2. "preconditions" is a list of £-formulae.

3. "definition" is	 either a simple definition, an inductive definition, or an implicit

definition. If it is a simple definition it consists of an £-formula or an £-term

corresponding to the type of the frame (property or mapping). The defined concept

must not occur in that formula or term.

In case of an inductive definition two slots must be filled, one for the base case and

another for the step case, both with £-formulae. For every constructor constant

Cj the base case contains a formu!a of the form:

'v'Xl, ... ,Xm <Name>(Cj,Xl, ... ,Xm) ~ 'l/;j, where the defined concept must

not occur in 'I/; (see definition of axiom frame, definition 4).

For every constructor function Ji the step case contains a formula of the form

'v'XI, ... , xm'v'y, YI,···, Yki <Name>(Ji(Y, Yl,·· ., YkJ, Xl,···, Xm) ~ 'l/;i where

in 'l/;i no constructor function occurs. (In the case of a mapping concept "~ '1/;"

is replaced by":: t" .)

Implicit definitions consist of sets of formulae and a proof that the defined object

exists and is unique.

4. "defined-symbols" is	 the list of symbols that are defined in an implicit definition,

if more than one symbol is defined. In all other cases just the symbol <Name> is

defined.

5.	 "superconcepts" is a list of atomic £-formulae.

6.	 "sort" is a sort symbol that shows the sort of a concept of type "mapping". This

slot must be filled when a definition of type "mapping" is given.

7.	 "main_property" is an £-formula. The proof must show that the formula in this

slot follo\\'s from the definition.

8.	 "consequences" and "equivalences" are lists of £-formula.e. The proofs show that

the formulae are consequences or equivalences of the definition, respectively.

9. "examples"	 and "counter_ex" are lists of £-structures, which are models or no

models of the concept, respectively.

10.	 "usedJn" is a list of axioms, definitions, a.nd theorems. "subconcepts" is a list of

axioms and definitions. These slots can be filled automatically, since the "usedJn"

14 Formal Treatment

1 Definition (Definition Frame): A definition frame (written 19) is a list of the
following elements:

1.

10.

“parameters” is of a list of variablesymbols with sorts and optionally selector
names .

. “preconditions” is a list of .C-formulae.

. “definition” is either a simple definition, an inductive definition, or an implicit

definition. If it i s a simple definition i t consists of an L-formula or an ‚C-term
corresponding to the type of the frame (property or mapping). The defined concept
must not occur in that formula or term.

In case of an inductive definition two slots must be filled, one for the base case and

another for the step case, both with .C—formulae. For every constructor constant

Cj the base case contains a formula of the form:
Vm1, . . . ,xm <Name>(c‚°,a:1,. . . ‚mm) <=} %, where the defined concept must

not occur in «p (see definition of axiom frame, definition 4).
For every constructor function f,- the step case contains a formula of the form

V231,. . . ,my ,y1 , . . . ,yk, <Name>(f,~(y,y1, . . . ,yki),a:1,. . . , mm) (Er 1/1,- where
in zb,- no constructor function occurs. (In the case of a mapping concept “ <=) 1/)”
is replaced by “E t”.)

Implicit definitions consist of sets of formulae and a proof that the defined object
exists and is unique.

. “defined_symbols” is the list of symbols that are defined in an implicit definition,
if more than one symbol is defined. In all other cases just the symbol <Name> is
defined.

. “superconcepts” is a list of atomic L-formulae.

“sort” is a sort symbol that shows the sort of a concept of type “mapping”. This
slot must be filled when a definition of type “mapping” is given.

“main.property” is an ‚C,-formula. The proof must show that the formula in this
slot follows from the definition.

“consequences” and “equivalences” are lists of £-formulae. The proofs show that
the formulae are consequences or equivalences of the definition, respectively.

“examples” and “counter.ex” are lists of C-structures, which are models or no
models of the concept, respectively.

“used..in” is a list of axioms, definitions, and theorems. “sub'concepts” is a list of
axioms and definitions. These slots can be filled automatically, since the “usedJn”

15

slot is only a book-keeping slot and "subconcepts" is the inverse slot to the "su

perconcept" slot.

11. "context" is a name for a theory.

The frame must not contain any free variable except the variables of the slot "parame

ters". <Name> is a constant symbol of sort (KI X ... X Km -+ K), where Ki is the sort of

the i-th parameter and K is the entry of the "sort" slot for a mapping frame and equal

to 0 for a property frame.

2 Definition (Semantics of a Definition Frame): We fix the semantics of a defini

tion frame by giving a logi~al translation. We begin with the translation of the parts 1

through 5 of definition 1. Let Xl, ... ,Xm be the variables of the parameter slot, PI, ... ,PI

be the list of preconditions, <P be the entry of the definition slot and SI, ... , Sk be the

entries of the superconcepts slot. The logical translation of a simple definition of type

property is then:

'v'XI, ... ,Xm PI I\. ... I\. PI ===> «Name>(XI, ... , Xm) <==* (SI I\. ... I\. Sm I\. <P)).

The Xl, ... , X m are the only free variable symbols in Pi, Si, and <po Optional parameters

are treated in the same manner as above. If the slot "preconditions" ~r "supercon

cepts" is unfilled it is translated by the same formula. Recall that an empty conjunction

evaluates to TRUE.

In the case of a mapping frame the translation is:

'VXI, ... ,Xm PI I\. ... /\ PI ===> «Name>(XI,'" ,Xm) == s),

where S is an .c-term. The "sort" slot entry K is translated as (s : K) or K(s).

In the case of an inductive or an implicit definition the translation is equivalent to:

'v'XI, ... , X m PI /\ ... /\ PI ===> <PI /\ ... /\ <Pm,

where the <Pi are the entries of the definition slot.

The other slots contain theorems, models, or structuring information.

The slot "consequences" contains theorems Ci that belong to the concept. The proved

theorems are translated by the formulae itself, that is, by Ci for all i.*

The semantic status of an entry of the slot "main_property" is the same as that of an

entry of the "consequences" slot.

Entries 'If; of the slot "equivalences" are translated to:

'v'XI"",xm PI/\ ···/\PI ===> «Name>(Xl,""Xm) <==* 'ljJ).

"subconcepts" is the inverse slot of "superconcepts". That means, whenever we make

an entry in the "superconcepts" slot of concept A, that B is a superconcept of A, the

slot "sub concepts" of B is automatically filled by the filler A. (Parameters are neglected

in the "subconcepts" slot.) This slot - as well as the "usedJn" and "context" slot - is

not translated into logic, that is, it has no semantics and is only for pragmatic use.

*For instance if the union of sets is defined, we should write into this slot, that the union is associative,

commutative, and idempotent.

15

slot is only a book-keeping slot and “subconcepts” is the inverse slot t o the “su-

perconcept” slot.

11. “context” is a name for a theory.

The frame must not contain any free variable except the variablesof the slot “parame-
t e rs” . <Name> i s a constant symbol of sort (n l X - - - x Em —-> Ist), where It,- is t he sort of

the i—th parameter and K, is the entry of the “sort” slot for a mapping frame and equal
to 0 for a property frame.

2 Definition (Semantics of a Definition Frame): We fix the semantics of a defini-
tion frame by giving a logical translation. We begin with the translation of the parts 1
through 5 of definition 1. Let m1, . . . , mm be the variables of the parameter slot, p l , . . . , p;
be the list of preconditions, (‚9 be the entry of the definition slot and 31, . . . ‚sk be the
entries of the superconcepts slot. The logical translation of a simple definition of type
property is then:
Vz l , . . . , zm pl A . . . / \ p1=> (<Name>(a:1,...,wm) = (51 A. . . Asm A<p)).

The 3:1, . . . , xm are the only free variable symbols in p‚-, 35, and qp. Optional parameters

are treated in the same manner as above. If the slot “preconditions” or “supercon-
cepts” is unfilled i t is translated by the same formula. Recall that an empty conjunction
evaluates to TRUE.

In the case of a mapping frame the translation is:
V31,...,a:m pl A Ap1=>(<Name>(a :1 , . . . , : cm)E s) ,
where s is an £-term. The “sort” slot entry K. is translated as (s : K) or n(s).
In the case of an inductive or an implicit definition the translation is equivalent to:
Vx1, . . . , a :m p1 A . . .Ap1 => go lA . . .Acpm,
where the (p.- are the entries of the definition slot .

The other slots contain theorems, models, or structuring information.

The slot “consequences” contains theorems c; that belong to the concept. The proved
theorems are translated by the formulae itself, tha t is, by c,- for all i . ‘

The semantic s ta tus of an entry of the slot “main-property” is t he same as that of an
entry of the “consequences” slot.

Entries 1!) of t he slot “equivalences” are translated to :
V531,” . ‚wm p1 A Ap1=> (<Name>(z1 , . . . , xm) = ab).

“subconcepts” is the inverse slot of “superconcepts”. That means, whenever we make
an entry in the “superconcepts” slot of concept A , that B is a superconcept of A , t he
slot “subconcepts” of B is automatically filled by the filler A. (Parameters are neglected
in the “subconcepts” slot.) This slot - as well as the “usedJn” and “context” slot — is
not translated into logic, that is, i t has no semantics and is only for pragmatic use.

"For instance if t he union of sets is defined, we should wri te into this s lo t , that t he un ion is associative,
commutative, and idempotent.

16 Forinal Treatment

The semantics of the slots "examples" and "counter-ex" is defined by the logical model

relation, that is, M is an example iff fi..1 I=<Name>(xl,"" x m), and M is a counter

example iff M ~<Name>(xb ... ,Xm)'

3 Remark: Superconcepts provide an inheritance relation, for instance "group" is a

superconcept for "associative". So every example for a group is in particular an example

for an associative structure. On the other hand "associative" is a subconcept of "group".

So every consequence in the "associative"-frame is also a consequence for the "group"

frame.

Analogously one can define axiom frames and theorem frames. All frame types have a

"consequence" and a "context" slot.

In the next figure all different slots of an axiom frame are shown:

Axiom: <Name>

axioms:

[signature..ext:
[consequences:
[examples:
[counter..ex:
[usedin:
context:

{ <form~la>} I
base { <term..declaration> }
step { <term..declaration> }

[{<constant..symbol>
{ #) <formula>
{#) <pointer_to_model>
{#) <pointer_to_model>

{ <name> }]
<ContextName>

:<sort..symbol>}]]
<proof-<Name>-cons-#> }]
<proof-<Name>-ex-#> }]
<proof-<Name>-counter..ex-#> }]

Figure 14

4 Definition (Axiom frame): An axiom frame (also written as '19) is a list of the

following elements: "axioms", "signature_ext", "consequences", "examples", "counter_

ex", "usedJn", and "context" with:

1.	 The slot "axioms" contains either a set of formulae as simple axioms or new con

structor symbols (compare page 5) are introduced. In the latter case the name

of the. axiom is a new predicate symbol. In the "base"-subslot the constructor

constants of this new sort are declared in the form of term declarations. In the

"step"-subslot the constructor functions are declared in the same manner. These

symbols have to occur also in the slot "signature_ext".

2.	 "signature_ext" contains the axiomatized constants, if they are new.

3. All other slots are similar to the corresponding slots of a definition frame.

5 Definition (Semantics of an Axiom Frame): The semantics of an axiom frame is

also given by the translation to £.. In the case of simple a..xioms it is translated into the

conjunction of the formulae itself. In the case of inductive axioms they are translated

16 Formal Treatment

The semantics of the slots “examples” and “counter.ex” is defined by the logical model
relation, that is, M is an example iff M |=<Name> (x1, . . . ‚mm), and M is a counter—

example iff M laé<Name>(x1, . . . ‚mm).

3 Remark: Superconcepts provide an inheritance relation, for instance “group” is a

superconcept for “associative”. So every example for a group is in particular an example
for an associative structure. On the other hand “associative” is a subconcept of “group”.
So every consequence in the “associative”-frame is also a consequence for the “group”-
frame.

Analogously one can define axiom frames and theorem frames. All frame types have a
“consequence” and a “context” slot.

In the next figure all different slots of an axiom frame are shown:

Axiom: <Name>

axioms: { <formula> } I
base { <term.decla.ration> }
step { <term_declaration> }

[signaturexxn [{ <constant.symbol> :<sort.symbol> }]]
[consequencesz { #) <formula> <proof-<Name>—con5o#> }]
[examplesz { #) <pointer_to.model> <proof-<Na.me>-ex—#> }]
[countenexz { #) <pointer.to.model> <proof-<Name>-counter.ex—#> }]
[used.in: { <name> }]
context: ' <ContextName>

Figure 14

4 Definition (Axiom frame): An aziom frame (also written as 19) is a list of the
following elements: “axioms”, “signature.ext”, “consequences”, “examples”, “counter.-
ex” “used_in” and “context” with:’ ’

1. The slot “axioms” contains either a set of formulae as simple axioms or new con-
structor symbols (compare page 5) are introduced. In the latter case the name
of the, axiom is a new predicate symbol. In the “base”-subslot the constructor
constants of this new sort are declared in the form of term declarations. In the
“step”-subslot the constructor functions are declared in the same manner. These
symbols have to occur also in the slot “signature_ext”.

‘2. “signature.ext” contains the axiomatized constants, if they are new.

3. All other slots are similar to the corresponding slots of a definition frame.

5 Definition (Semantics of an Axiom Frame): The semantics of an axiom frame is
also given by the translation to [I. In the case of simple axioms it is translated into the
conjunction of the formulae itself. In the case of inductive axioms they are translated

17

into the corresponding data structure, which in turn can be translated as shown on page

5.

Finally we show what a theorem frame looks like in general:

Theorem: <Name> [<theoremtype>]

[assumptions:
theorem:
status:
[proof:
[consequences:
context:

<closed formula>]
<closed formula>
"proved" I "conjectured" I "rejected"
<proof>]

{ #) <formula> <proof-<Name>-cons-#> }]
<ContextName>

Figure 15

6 Definition (Theorem Frame): A theorem frame (also written as 'l?) is a list of:

"assumptions", "theorem", "status", "proof", "consequences", and "context" with:

1.	 "assumptions" is a list of formulae, which are preconditions for the theorem.

2.	 "theorem" is a formula.

3.	 "status" is either "proved", "conjectured", or "rejected".

4.	 "proof" is a pointer to a proof in the case that the status of the frame is "proved".

It is a pointer to a counterexample in the case that the status is "rejected".

5.	 the other slots are just as above.

The <theoremtype> is used for the classification of the theorem as "lemma", "theorem",

"main theorem", or "corollary".

7 Definition (Semantics of a Theorem Frame): The semantics of a theorem frame

with entries <pI, •.. ,<Pm as assumptions an<;l. 'l/J as theorem is again given by a translation.

In the case of the status "proved" it is: rp1 1\ ... 1\ rpm ===? 'l/J, otherwise, it is: TRUE.

8 Definition (Signature of a Frame): The signature of a frame 'l? is the set of all

constants in the terms and formulae in 'l? (Recall that we have no free variables in the

frames, except the variables introduced in the "parameters"-slot.)

9 Definition (Extension of a Frame): A frame-extension 'l?' of a frame 'l? is a frame

with the same name and classification, where all slot-fillers but the slots mentioned below

are Identical. The fillers of the slots consequences, equivalences, examples, counter_ex,

and usedJn can differ in the form, that the fillers of'l? are sublists of the corresponding

fillers of 'l?'; the slot main.property can differ, if it is not filled in (). The status of a

theorem frame may be changed from "conjectured" to "proved" or "rejected". In both

cases the proof slot must be filled.

So far we have considered single frames, in the next section we discuss when many

such frames form a knowledge base.

17

into the corresponding data structure, which in turn can be translated as shown on page
5.

Finally we show what a theorem frame looks like in general:

Theorem: <Name> [<theoremtype>]

[assumptions: (closed formula>]
theorem: (closed formula>
status: “proved” | “conjectured” | “rejected”
[proof: <proof>]
[consequences: { #) <formula> <proof-<Name>-cons-#> }]
context: <ContextName>

Figure 15

6 Definition (Theorem Frame): A theorem frame (also written as 19) is a list of:
“assumptions”, “theorem”, “status”, “proof”, “consequences”, and “context” with:

1 . “assumptions” is a list of formulae, which are preconditions for the theorem.

2 . “theorem” i s a formula.

3 . “status” is ei ther “proved”, “conjectured”, or “rejected”.

4. “proof” is a pointer to a proof in the case that the status of the frame is “proved”.
I t i s a pointer t o a counterexample in the case that t he status is “rejected”.

5 . the other slots are just as above.

The <theoremtype> i s used for t he classification of the theorem as “lemma” , “theorem”,
“main theorem”, or “corollary”.

7 Definit ion (Semantics of a Theorem Frame): The semantics of a theorem frame
with entries (pl, . . . , «pm as assumptions and zb as theorem is again given by a translation.
In t he case of the s ta tus “proved” i t is: cpl A . . . A 99m => w, otherwise, i t is: TRUE.

8 Defini t ion (Signature of a Frame): The signature of a frame 19 is the set of all
constants in the terms and formulae in 19. (Recall that we have no free variables in the
frames, except t he variables introduced in the “parameters”-slot .)

9 Defini t ion (Extension of a Frame): A frame-extension 19' of a frame 19 is a frame
with t he same name and classification, where all slot-fillers bu t t he slots mentioned below
are identical. The fillers of t he slots consequences, equivalences, examples, counter .ex,
and usedJn can differ in the form, that the fillers of 19 are sublists of the corresponding
fillers of 19' ; the slot main.property can differ, if i t is not filled in :9. The s ta tus of a
theorem frame may be changed from “conjectured” to “proved” or “rejected”. In both
cases the proof slot must be filled.

So far we have considered single frames, in the next section we discuss when many
such frames form a knowledge base. „.

18 Building up a Knowledge Base

4 Building up a Knowledge Base

In this section we define the notion "knowledge base" and consider the consistency of

knowledge bases. In particular we discuss the conditions when a definition forms a

conservative extension and therefore does not endanger the consistency of a knowledge

base. A knowledge base is defined inductively: to the empty knowledge base we can add

frames under certain conditions.

10 Definition (Knowledge Base): A knowledge base ~ over £, is defined inductively:

as the empty knowledge base ~9l = 0, or

an immediate extension of a knowledge base.

~ is called an immediate extension of a knowledge base ~' iff

~ = ~' U {'I9} with axiom frame, definition frame, or theorem frame '19 relative to

the knowledge base ~', or

- it is equal to a knowledge base ~' for all but one entry and this entry is a frame·

extension of the other. Formally ~ \ {'I9} = ~'\ {'I9'} and '19 is a frame-extension of

'19'.

The transitive closure of this relation is called an extension.

The signature of a knowledge base ~ is the union of all signatures of the frames contained

in ~. The logic with this signature is denoted by £'(~).

Now we define frame relative to a knowledge base:

A theorem frame '19 is called a theorem frame relative to a knowledge base ~ if it

is a theorem frame, its signature is a subset of the signature of ~. Furthermore if

the status is "proved" or "rejected", the slot proof must contain a proof for "~ ~

(assumptions ==> theorem)", respectively a counterexample for this relation. The

entries in the "consequences" slot must be proved too.

An axiom frame '19 is called an axiom frame relative to a knowledge base ~ if it is

an axiom frame and all occurring constants in the frame are either in the signature

of .6. or in the slot "signature_ext" of fJ. The signature of ~ must be disjoint from

the elements in "signature_ext". Lemmata in the frame must fulfill the condition

for a theorem frame above.

A frame fJ is a definition frame relative to a knowledge base .6. if it is a definition

frame, the defined concept name(s) is (are) not in the signature of ~, but all

other constant symbols are. Lemmata in the frame must fulfill the condition for a

theorem frame above.

18 Building up a Knowledge Base

4 Building up a Knowledge Base

In this section we define the notion “knowledge base” and consider the consistency of
knowledge bases. In particular we discuss the conditions when a definition forms a
conservative extension and therefore does not endanger the consistency of a knowledge
base. A knowledge base is defined inductively: to the empty knowledge base we can add
frames under certain conditions.

10 Definition (Knowledge Base) : A knowledge base A over (3 is defined inductively:

— as the empty knowledge base A¢ = @, or

— an immediate extension of a knowledge base.

A is called an immediate extension of a knowledge base A’ if

— A = A’ U {19} with axiom frame, definition frame, or theorem frame 19 relative to
the knowledge base A’, or

— i t is equal to a knowledge base A ' for all but one entry and this entry is a frame—
extension of the other. Formally A\{i9} = A’ \{19’ } and 19 is a frame-extension of
19’.

The transit ive closure of th is relation i s called an extension.

The signature of a knowledge base A is the union of all signatures of the frames contained
in A . The logic with this signature is denoted by C(A).

Now we define frame relative to a knowledge base:

-— A theorem frame 19 is called a theorem frame relative to a knowledge base A if i t
is a theorem frame, its signature is a subset of the signature of A . Furthermore if
the status is “proved” or “rejected”, the slot proof must contain a proof for “A I:
(assumptions = theorem)”, respectively a counterexample for this relation. The
entries in the “consequences” slot must be proved too.

— An axiom frame 19 is called an axiom frame relative to a knowledge base A if i t is
an axiom frame and all occurring constants in the frame are either in the signature
of A or in the slot “signature_ext” of 2?. The signature of A must be disjoint from
the elements in “signature.ext”. Lemmata in the frame must fulfill the condition
for a theorem frame above.

- A frame 19 is a definition frame relative to a knowledge base A if it is a definition
frame, the defined concept name(s) is (are) not in the signature of A , but all
other constant symbols are. Lemmata in the frame must fulfill t he condition for a

‘ theorem frame above.

19

For the following we need the notion of semantic consequence. A formula rp follows

semantically (weakly/strongly) from a knowledge base 6. (6. 1= rp or 6. 1= rp), iff the

translation of 6. into logic entails rp (weakly/strongly).

11 Definition (Consistency): A knowledge base 6. is called (weakly/strongly) con

sistent iff there is no formula rp so that 6. 1= rp and 6. 1= -.rp (or 6. 1= rp and 6. 1= -'rp,

respectively).

12 Definition (Conservativity): An extension 6. of a knowledge base 6.' is called

(weakly/ strongly) conservative iff for all formulae rp holds: If rp E £(6.') then 6.' 1= rp iff

6. 1= rp (or with 1= instead of 1=, respectively).

13 Remark: In particular by a conservative extension we cannot import any contra

diction. If the knowledge base 6.' is consistent and 6. is a conservative extension of 6.',

then 6. is also consistent, because otherwise we could deduce from 6. a formula rp and

its negation -.cp and by this any formula in £(6.), and hence any in £(6.'), so we would

have 6. 1= rp and 6. 1= -'rp.

14 Definition (Definition-Conservativity): A knowledge base is called definition

conservative iff every definition is a conservative extension.

15 Remark: We would expect now that the logics £n are definition-conservative. Un

fortunately due to our definition of higher-order logics and their semantics this is not

the case in general as can be seen in the next example.

16 Example: Let 6. consist of the following axioms:

- a: t, b : t, R: (t ---. 0)

- 'VP:(t x t ---. 0) 'Vx,y:t P(x,y) 0{:::=} P(y,x)

- R(a) 1\ -.R(b)

These axioms are consistent since we can give a weak model: 1JL = {1,2}, 1J(LXL-+O)

consists only of the binary relations that map everything to T. .:I(a) = 1, .:I(b) = 2

.:I(R)(l) = T, .:I(R)(2) = F. This is of course no longer a model if we "define" a new

binary predicate Q by 'Vx,y Q(x,y): 0{:::=} R(x) 1\ -.R(y) and add this to our knowledge

base. We have Q(a, b) since R(a) and ..R(b). On the other hand by the commutativity

axiom we get Q(b,a), hence ..R(a) and R(b). That is, now we have a contradiction in

our knowledge base. Hence £n is not definition-conservative for n > 1. This cannot

happen if we have all comprehension axioms in the knowledge base (compare definition

18).

17 Definition (Extensionality Axioms): The extensionality axioms:::: are the fol

lowing formulae:

19

For the following we need the notion of semantic consequence. A formula go follows
semantically (weakly/strongly) from a'knowledge base A (A I: cp or A E (,9), iff the
translation of A into logic entails (‚p (weakly/ strongly).

11 Definition (Consistency): A knowledge base A is called (weakly/strongly) con-
sistent iff there is no formula (‚9 so that A I: go and A }: -:go (or A E (p and A E mp,
respectively).

12 Definition (Conservativity): An extension A of a knowledge base A’ is called
(weakly/strongly) conservative iff for all formulae 99 holds: If go e £(A’) then A’ I: go iii
A I: (,9 (or with E instead of |=, respectively).

13 Remark: In particular by a conservative extension we cannot import any contra-
diction. If the knowledge base A’ is consistent and A is a conservative extension of A’,
then A is also consistent, because otherwise we could deduce from A a formula cp and
its negation -<p and by this any formula in [.(A), and hence any in [,(A’), so we would
haveAf=cpandA|=-go.

14 Definition (Definition-Conservativity): A knowledge base is called definition-
conservatz've ifi' every definition is a conservative extension.

15 Remark: We would expect now that the logics £" are definition-conservative. Un-
fortunately due to our definition of higher-order . logics and their semantics this is not
the case in general as can be seen in the next example.

16 Example: Let A consist of t he following axioms:

— a :L ,b :L ,R : (L—>o)

— VP:(L x l. —> o) Vm,y:L P (z ,y) «=> P (y , a :)

— R(a) A -R(b)

These axioms are consistent since we can give a weak model: 'DL = {1 ,2} , Dom—+0)

consists only of the binary relations that map everything to T. J (a) = 1, .7(b) = 2
.7(R)(l) = T, J(R)(2) = F. This is of course no longer a model if we “define” a new
binary predicate Q by V$,y Q(z ,y) : :} R(z) A HR(y) and add this to our knowledge
base. We have Q(a‚b) since R(a) and —:R(b). On the other hand by the commutativity
axiom we get Q(b,a), hence -R(a) and R(b). That is, now we have a contradiction in
our knowledge base. Hence C" is not definition-conservative for n > 1. This cannot
happen if we have all comprehension axioms in the knowledge base (compare definition
18).

17 Definition (Extensionality Axioms): The extensionalz‘ty axioms E are the fol—
lowing formulae:

20 Building up a Knowledge Base

=/	 For all function symbols f, g of type I = (11 X X I m - 0"), 0" f:. 0:

Vf Vg (VX T1 · 00 VX Tm f(XTl'''' ,XTm) == g(xTp , XTm » ===* f == 9

3 P For all predicate symbols p, q of type I = (11 X .•• X I m - 0):

Vp Vq (VX T1 ,,,VXTm p(XTl'oo.,XTm) {=} q(XTl' ... ,XTm»===*p==q

18 Definition (Comprehension Axioms): The comprehension axzoms Y are the

following formulae:

T f	 For every term t of type I f:. 0 of which the free variables are at most the different

variables XI, .•• , Xm , YI, .. " Yk of type 11,·.·, Im,(TI,···, (Tk:

VYI .,. VYk 3f(T1 X'''XTm-T) VXI ... VXm (J(XI, ..• ,Xm) == t).

TP	 For every formula rp of which the free variables are at most the different variables

Xl, .. ' ,Xm, YI, •.. , Yk of type /1,···, Im,(TI,···, (Tk:

VYI'" VYk 3p(-rIX"'XTm-o) VXI ... VXm (P(XI,'" ,Xm) ~ rp).

19	 Lemma: Every knowledge base .6. is definition-conservative for implicit definitions.

Proof:This lemma holds trivially because we have required for implicit definitions that

they must contain a proof that the defined objects exist and are unique. _

20	 Lemma: £1 is definition-conservative.

Proof: Inductive definitions are not possible in £1, hence we have to show the property

only for simple definitions. Let .6. be given and '13, the extending frame of .6., may be

equivalent to VXI, ... , X m <Name>(xI, ... , X m) {=} SI 1\ ..• 1\ Sm 1\ rp where rp is the

formula in the definition slot of the frame and the Si are the entries of the superconcepts

slot. So we can replace any instance of <Name>(xI,"" x m) by the corresponding

instance of SI 1\ .•. 1\ Sm 1\ rp. Since the two formulations are equivalent, the extension is

conservative. In the case of a mapping definition the defined term is substituted instead

of the formula. Of course we can make this replacement also, when preconditions are

present. -
21 Lemma: If a knowledge base ~ contains the comprehension axioms T, then it zs

definition-conservative for simple definitions. *

Proof: Let S' be the signature of b.' and S = S' U {<Name>} be the signature of

.6.' U {'13}. '13 is equivalent to VXI, ... , x m <Name> (Xl,' .. , X m) {=} Sl 1\ ... 1\ Sm 1\ rp

·We do not need such axioms if we use for our higher-order logic the .A-calculus, since we get the

corresponding constant simply by .A-abstraction. The comprehension axioms cannot explicitly be in

our knowledge base, because we have not provided facilities for introducing axiom schemata, but it

can be easily tested whether a formula is a comprehension axiom or not.

20 Building up a Knowledge Base

Elf For all function symbols f‚_q of type T = (1-1 X - ~ . x rm —> a) , o 75 o:

Vf Vg (Va,1 . . .Vwm f(z,l , . . . ,z7m) E g(m‚1,...,z‚„_)) = f E g_

3” For all predicate symbols p,q of type T = (7'1 _x - - - X Tm ~——> o):
Vp Vq (Va,1 „ .m p(:c„,. ..,a:„„) (=» q(:c.‚1, . . . ,z„„)) => p 5 q

18 Definition (Comprehension Axioms): The comprehension axioms T. are the
following formulae:

Tf For every-term t of type T 96 o of which the free variables are at most the different
variables ml, . . . ,:cm,y1,. . . ‚ yk of type 1'1, . . . , ‘ rm,o1, . . . , a ; , :

Vyl . . .Vyk 3f(.„ x...,„‚„_„.) V31 . . .Vzm (f(z1, . . . ‚mm) ?: t) .

TP For every formula (‚0 of which the free variables are at most the different variables
ml , . . . , z ‚n ,y1 , . . . , yk of type ‘71,.. . ,Tm,0’1,. . . ,a’k:
Vial-”V311: anguish“) Van . . .m (P($1,-- . ‚mm) =» so).

19 Lemma: Every knowledge base A is definition-conservative for implicit definitions.

Prooshis lemma holds trivially because we have required for implicit definitions that

they must contain a proof that the defined objects exist and are unique. I

20 Lemma: [,1 is definition—conservative.

Proof: Inductive definitions are not possible in ‚Cl, hence we have to show. t he property
only for simple definitions. Let A be given and 29, the extending frame of A , may be
equivalent t o Vx1,. . . , zm<Name>(z1 , . . . ‚mm) (=> s1 A . . . A sm A cp where go is t he
formula in the definition slot of t he frame and the s,- are the entr ies of the superconcepts
slot . So we can replace any instance of <Name>(:c1‚ . . . ,a:m) by the corresponding
instance of 81 A . . . A sm A cp. Since the two formulations are equivalent, the extension is
conservative. In the case of a mapping definition the defined term is subst i tuted instead
of t he formula. Of course we can make this replacement also, when preconditions are
present . I

21 Lemma: If a knowledge base A contains the comprehension axioms T , then i t is
definition-conservative for simple definitions.‘

Proof: Let 8’ be the signature of A’ and S = S’ U {<Name>} be the signature of
A 'U {19}. 19 is equivalent to Vz1,...,a:m <Name>(z1‚...,mm) (=> s1 A . . . A sm A cp

'We do not need such axioms if we use for our higher-order logic the A-calculus, since we get the
corresponding constant simply by A—abstraction. The comprehension axioms cannot explicitly be in
our knowledge base, because we have not provided facilities for introducing axiom schemata, bu t i t
can be easily tested whether a. formula is a comprehension axiom or not.

21

where cp is the formula in the definition slot of the frame and the Si are the entries

of the superconcepts slot. By a comprehension axiom we get a predicate P so that

\ix}, ... ,xmP(x}, ... ,xm) ~ Sl/\ ... /\ Sm /\ cp. So we can replace any instance of

<Name>(xll""xm) by the corresponding instance of P(X1"'.'Xm).

For definitions of the type "mapping" we can proceed analogously.	

22 Lemma: If a knowledge base .6. contains the comprehension axioms 1, then it is

definition-conservative for inductive definitions.

Proof: Let .6. be given and {j be an inductive definition. Let Q be the m + I-place

predicate (m ~ 0) of sort (I>: X 1t1 X .•• X I>:m- 0) that is defined per induction on the

first argument, then the inductive definition is of the form:

base:	 \iX1,"" Xm Q(Cj, Xl,' .. , xm) ~ 'l/Jj for j = 1, ... , n where Cj are all constructor

symbols of sort I>: for the inductively introduced concept 1>:.

step:	 V'X1, ... ,XmV'Y,Y1, ... ,Yki Q(Ji(Y,Y1, ... ,Yk,),Xt, ... ,xm) ~ 'l/Jiforallconstruc

tor functions fi where in the 'l/Ji no constructor function can occur.

Now we have to show that there is exactly one predicate Q that satisfies this definition.

By inductively applying the defining equiva.lences we get that for all constants d of

sort 1>:, we can equivalently replace Q(d, Xl, .• . , x m) by an expression not containing

Q. Consequently for all elements d of sort I>: there is a simple definition of Q for this

element as argument. Hence we can conclude that the general definition of Q forms a

conservative extension. _

Summarizing we have:

23 Lemma: If a knowledge base .6. contains the comprehension axioms 1', then it is

definition-conservative.

24 Lemma: If .6. is a consistent knowledge base and {j a theorem relative to .6., then

.6. U {'l?} is consistent.

Proof: Because the deductive closures of .6. and .6. U {{j} are the same, the theorem
holds trivially. _

25 Lemma: The empty knowledge base .6.0 is consistent.

Proof: Since for all formulae cp with 6. 0 1= cp, <p is a tautology and ep and -.<p cannot be

tautologies at once, .6.0 must be consistent. _

26 Theorem: If .6. is a consistent knowledge base that contains the comprehension

axioms l' and {j is a concept definition relative to .6. or a theorem relative to 6., then

.6. U {'l?} is consistent.

21

where so is the formula in the definition slot of the frame and the s.- are the entries

of the superconcepts s lot . By a comprehension axiom we get a predicate P so that

t . . . , s (a :1 , . ‚.,:cm) <=» .91 A . . . A sm A cp. So we can replace any instance of

<Name>(:_z:1, . . . ‚mm) by the corresponding instance of P(a:1,. . . , ccm).

For definitions of the type “mapping” we can proceed analogously. I

22 Lemma: If a knowledge base A contains the comprehension axioms T , then it is
definition-conservative for inductive definitions.

Proof: Let A be given and 19 be an inductive definition. Let Q be the m + l-place
predicate (m Z 0) of sort (I; X til x -- - x 1cm _—> 0) that is defined per induction on the
first argument, then the inductive definition is of the form:

base: Va l , . . . ‚wm Q(c‚-,:cl,. . . ‚mm) =» ¢j for j = 1 , . . . , n where Cj are all constructor

symbols of sort it for the inductively introduced concept It.

step: Van . . . ,mmVy,y1, . . . ,yk‘. Q(f,-(y,y1, . . . ‚pm), :::1, . . . , wm) «=> 11); for all construc-
tor functions f,- where in the w.- no constructor function can occur.

Now we have t o show that there is exactly one predicate Q that satisfies this definition.
By inductively applying the defining equivalences we get that for all constants d of

sort n , we can equivalently replace Q(d ,x1 , . . . , zm) by an expression no t containing
Q. Consequently for all elements d of sort K there is a. simple definition of Q for this
element as argument. Hence we can conclude that the general definition of Q forms a
conservative extension. I

Summarizing we have:

23 Lemma: If a knowledge base A contains the comprehension axioms T , then i t is
definition-conservative.

24 Lemma: If A is a consistent knowledge base and 19 a theorem relative to A , then
A U {19} is consistent.

Proof: Because the deductive closures of A and A U {19} are the same, the theorem
holds trivially. I

25 Lemma: The empty knowledge base A4, is consistent.

Proof: Since for all formulae cp with Ag, l: 99, (‚o is a tautology and 99 and -<‚a cannot be
tautologies at once, A¢ must be consistent. I

26 Theorem: If A is a consistent knowledge base that contains the comprehension
axioms T and i9 is a concept definition relative to A or a theorem relative to A, then
A U {19} is consistent. '

22

5

Critique of the Frame Approach

Proof: This follows immediately from the fact that concept definitions form conservative

extensions and by conservative extension no contradiction can be imported, and by

lemma 24. •
27 Remark: In our considerations we have neglected the "context" slot. It could be

integrated by defining a partial order on the contexts and by sharpening the definition

of a frame relative to a knowledge base (compare definition 10) in that way that the

required properties have not to hold only for the whole knowledge base ~ and 7J, but

even for that subpart of the knowledge base that consists of those modules, which are

in the reflexive, transitive closure of the module, to which 7J belongs.

Critique of the Frame Approach

In this section ,we summarize the advantages of frames for the representation of mathe

matical concepts and state the main disadvantage.

The first reason why we use frames is the concept oriented way of representation.

Frames enable us to represent the knowledge in such a way that everything what belongs

immediately to a concept is represented in the concept. In other words the concept is not

given by a mere definition of it, but by a definition plus a set of important properties.

Definitions and theorems need not be distributed over the knowledge base, but are

structured. If we wrote our definitions and theorems in logic itself, we would have no

structure facilities. The frames provide this structure facilities.

By the frame approach we can distinguish so-called primitives, that are, axioms,

definitions,and theorems. Every primitive has its own status, in logic we only have

formulae and do not distinguish between axioms, definitions, and theorems. These are

meta-logical features of formulae. Here we have the possibility to require a special form

for definitions, so that they are really definitions and cannot import any contradictions

into a knowledge base. Theorems can be arbitrary formulae, but in contrast to axioms,

they must be proved in order to be used in the proofs of other theorems. Furthermore

we can guarantee that we use only defined concepts and exclude the case of "ignotum

per ignotum". The consistency of knowledge bases is widely ensured.

Frames have the necessary strength to represent the required properties. For instance

KL-ONE is not strong enough to represent a concept hierarchy, where an "abelian_group"

is a superconcept of "field", since it is necessary to specify parameters, relative to which

the hierarchic relation holds. Furthermore we can choose our slots, that is, primitives

for describing concepts in an adequate way.

We can give (and have given) to the frames a clear semantics, what is important

if one compares it to the situation of semantic networks, where years after building up

large knowledge bases the untenability of the approach had to be stated, because it was

impossible to give a clear semantics for the is-a hierarchy as long as "is-a" was used for

E and ~.

22 Critique of the Frame Approach

Proof: This follows immediately from the fact that concept definitions form conservative

extensions and by conservative extension no contradiction can be imported, and by

lemma 24. I

27 Remark: In our considerations we have neglected the “context” slot . I t could be

integrated by defining a partial order on the contexts and by sharpening the definition
of a frame relative to a knowledge base (compare definition 10) in that way that the
required properties have not t o hold only for the 'whole knowledge base A and 19, but

even for that subpart of the knowledge base that consists of those modules, which are
in the reflexive, transitive closure of the module, to which 19 belongs.

5 Critique o f the Frame Approach

In this section ‚we summarize the advantages-of frames for the representation of mathe—
matical concepts and state the main disadvantage.

The first reason why we use frames is the concept oriented way of representation.

Frames enable us to represent the knowledge in such a way that everything what belongs
immediately t o a concept is represented in the concept. In other words the concept is not

given by a mere definition of i t , bu t by a definition plus a set of important properties.
Definitions and theorems need not be distributed over the knowledge base, but are
structured. If we wrote our definitions and theorems in logic itself, we would have no
structure facilities. The frames provide th i s structure facilities.

By the frame approach we can distinguish so—called primitives, that are, axioms,
definitions, and theorems. Every primitive has its own status, in logic we only have
formulae and do not distinguish between axioms, definitions, and theorems. These are
meta-logical features of formulae. Here we have the possibility t o require a special form
for definitions, so tha t they are really definitions and cannot impor t any contradictions
into a knowledge base. Theorems can be arbitrary formulae, bu t in contrast t o axioms,
they must be proved in order t o be used in the proofs of other theorems. Furthermore
we can guarantee that we use only defined concepts and exclude the case of “ignotum
per ignotum”. The consistency of knowledge bases is widely ensured.

Frames have t he necessary strength to represent t he required properties. For instance
KL-ONE is not strong enough to represent a concept hierarchy, where an “abelian.group”
is a superconcept of - “field”, since i t is necessary t o specify parameters, relative t o which
the hierarchic relation holds. Furthermore we can choose our slots, tha t is, primitives
for describing concepts i n an adequate way.

We can give (and have given) to the frames a clear semantics, what is important
if one compares i t to the situation of semantic networks, where years after building up
large knowledge bases the untenability of the approach had to be s ta ted, because i t was
impossible to give a clear semantics for the is-a hierarchy as long as “is-a” was used for
€ and g .

23 References

Another advantage compared to most other representation formalisms is the flexibil

ity of frames, that is, it is easily possible to add new features to the frames. In particular

it will be necessary to add meta-knowledge how to use all this knowledge. The usage

of the knowledge in the frames is of course a very difficult problem, which will be left

to the user for the beginning. Some heuristic information about the usage belongs to

the concept. How this knowledge can be represented has to be cleared in the context of

higher problem solving methods Eke proof planning and tactical theorem proving.

The main disadvantage of the proposed representation formalism is, that structuring,

modularization, and classifications must be done by the user. Almost no automation

can be expected in such a general approach.

Acknowledgement

I like to thank to all persons which supported me writing my Ph.D.thesis, of which

this paper is one part. Especially I like to thank Prof. JORG H. SIEKMANN for many

motivating talks. Many improvements of this thesis are due to his suggestions. :For the

strenuous work of reading drafts of this part of my thesis I have to thank MICHAEL

KOHLHASE and AXEL PRACKLEIN. Their suggestions lead to several improvements. Of

course, all remaining errors are mine.

DIRK SCHRODER and RALF KOERSTEIN worked on building up a knowledge base and

used this knowledge for proving theorems with the Markgraf Karl Refutation Procedure

[12]. Since at that time the theory was not yet clear this work was not always easy, but

helped much in developing our theory.

References

[1]	 Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To

Truth through Proof Academic Press, Orlando, Florida, USA, 1986.

[2J	 Stephen Blarney. Partial logic. In D. Gabbay and F. Guenthner, editors, Handbook

of Philosophical Logic, chapter IlLl, pages 1-70. D.Reidel Publishing Company,

Dodrecht, Netherlands, 1986. Volume Ill: Alternatives to Classical Logic.

[3]	 Robert S. Boyer and J Strother Moore. A Computational Logic. Academic Press,

New York, USA, 1979.

[4J	 Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic

Logic, 5:56-68, 1940.

[5J	 Kurt Godel. Uber formal unentscheidbare Satze del' Principia Mathematica und

verwandter Systeme 1. Monatshefte fur Mathematik und Physik, 38:173-198, 1931.

References _ 23

Another advantage compared t o most other representation formalisms is the flexibil-
i ty of frames, that is, i t is easily possible to add new features t o the frames. In particular

i t will be necessary to add meta-knowledge how to use all th is knowledge. The usage

of the knowledge in the frames is of course a very difficult problem, which will be left
t o the user for the beginning. Some heuristic information about the usage belongs to
the concept. How this knowledge can be represented has t o be cleared in the context of
higher problem solving methods like proof planning and tactical theorem proving.

The main disadvantage of the proposed representation formalism is, that structuring,
modularization, and classifications must be done by the user . Almost no automation
can be expected in such a general approach.

Acknowledgement

I like to thank to all persons which supported me writing my Ph.D.thesis, of which
this paper is one part . Especially I like to thank Prof. JÖRG H. SIEKMANN for many
motivating talks. Many improvements of this thesis are due to his suggestions. For the
strenuous work of reading drafts of this part of my thesis I have to thank MICHAEL
KOH LHASE and AXEL PRÄCKLEIN. Their suggestions lead to several improvements. Of
course, all remaining errors are mine.

DIRK SCHRÖDER and RALF KOERSTBIN worked on building up a knowledge base and
used this knowledge for proving theorems with the Markgraf Karl Refutation Procedure
[12]. Since at that t ime the theory was not yet clear this work was not always easy, but
helped much in developing our theory.

References

[1] Peter B. Andrews. An Introduction to Mathematical Logic and Type Theory: To
Truth through Proof. Academic Press, Orlando, Florida, USA, 1986. '

[2] Stephen Blamey. Partial logic. In D. Gabbay and F . Guenthner, editors, Handbook
of Philosophical Logic, chapter III.1, pages 1—70. D.Reidel Publishing Company,
Dodrecht, Netherlands, 1986. Volume III: Alternatives to Classical Logic.

[3] Robert S . Boyer and J Stro ther Moore. A Computational Logic. Academic Press,
New York, USA, 1979.

[4] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, 5 :56-68, 1940.

[5] Kurt Gödel. Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I . Monatshefte für Mathematik und Physik, 38:173—198, 1931.

24 References

[6]	 Kurt Godel. The Consistency of the Axiom of Choice and of the Generalized

Continuum-Hypothesis with the Axioms of Set Theory, volume 3 of Annals of Mathe~

matics Studies. Princeton University Press, Princeton, New Jersey; eighth printing

1970, 1940.

[7]	 Jacques Hadamard. The Psychology of Invention in the Mathematical Field. Dover

Publications, New York, USA; edition 1949, 1944.

[8]	 Patrick J. Hayes. The logic of frames. In Ronald J. Brachman and Hector J.

Levesque, editors, Readings in Knowledge Representation, chapter 14, pages 287

295. Morgan Kaufmann, 1985, San Mateo, California, USA, 1979. also in: Frame

Conceptions and Text Understanding, p.46-61, D. Metzing, editor, Berlin, Germany,

Walter de Gruyter.

[9]	 Dieter Hutter. Vollstandige Induktion. In Karl Hans' Biasius and Hans-Jiirgen

Biirckert, editors, Dedukionssysteme - Automatisierung des logischen Denkens, chap

ter V, pages 153-172. Oldenbourg, Miinchen, Germany, 1987.

[10]	 Manfred Kerber. On the Representation of Mathematical Concepts and their Trans

lation into First Order Logic. PhD thesis, Fachbereich Informatik, Universitat Kai

serslautern, Kaiserslautern, Germany, 1992, forthcoming.

[11]	 Lothar Kreiser, Siegfried Gottwald, and Werner Stelzner, editors. Nichtklassische

Logik, volume 1. Akademie Verlag, Berlin, Germany, 1990.

[12]	 Karl Mark GRaph. The Markgraf Karl Refutation Procedure. Technical Report

Memo-SEKI-MK-84-01, Fachbereich Informatik, Universitat Kaiserslautern, Kai

serslautern, Germany, January 1984.

[13]	 Marvin Minsky. A framework for representing knowledge. In Patrick Henry 'Vin

ston, editor, The Psychology of Computer Vision. McGrq,w-Hill, New York, USA,

197.5. also in: Mind Design, pages 9.5-128, J. Haugeland, editor, Cambridge, Mas

sachusetts, USA, MIT-Press, 1981, and Readings in Knowledge Representation,

pages 245-262, chapter 12, Ronald J. Brachman and Hector J. Levesque, editors,

San Mateo, California, USA, Morgan Kaufmann, 1985.

[14]	 Nils J. Nilsson. Principles of Artificial Intelligence. Morgan Kaufman, San Mateo,

California, USA, 1980.

[1.5]	 George P6lya. How to Solve It. Princeton University Press, Princeton, New Jersey,

USA, also as Penguin Book, 1990, London, United Kingdom, 1945.

[16]	 George P6lya. Mathematics and Plausible Reasoning. Princeton University Press,

Princeton, New Jersey, USA, 1954. Two volumes, VoU: Induction and Analogy in

Mathematics, Vo1.2: Patterns of Plausible Inference.

24 References

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Kurt Gödel. The Consistency of the Axiom of Choice and of the Generalized
Continuum-Hypothesis with the Axioms of Set Theory, volume 3 of Annals of Mathe-
matics Studies. Princeton University Press, Princeton, New Jersey; eighth printing

1970, 1940.

Jacques Hadamard. The Psychology of Invention in the Mathematical Field. Dover

Publications, New York, USA; edition 1949, 1944.

Patrick J . Hayes. The logic of frames. In Ronald J . Brachman and Hector J .
Levesque, editors, Readings in Knowledge Representation, chapter 14 , pages 287-
295. Morgan Kaufmann, 1985, San Mateo, California, USA , 1979. also in: Frame
Conceptions and Text Understanding, p.46—61, D. Metzing, editor, Berlin, Germany,
Walter de Gruyter.

Dieter Hutter. Vollständige Induktion. In Karl Hans.” Bläsius and Hans-Jürgen
Biirckert, editors, Dedukionssysteme - Automatisierung des logischen Denkens, chap-
ter V , pages 153—172. Oldenbourg, München, Germany, 1987.

Manfred Kerber. On the Representation of Mathematical Concepts and their Trans-
lation into First Order Logic. PhD thesis, Fachbereich Informatik, Universität Kai-
serslautern, Kaiserslautern, Germany, 1992, forthcoming.

Lothar Kreiser, Siegfried Gottwald, and Werner Stelzner, editors. Nichtklassische
Logik, volume I . Akademie Verlag, Berlin, Germany, 1990.

Karl Mark G Raph. The Markgraf Karl Refutation Procedure. Technical Report
Memo-SEKI-MK-84-01, Fachbereich Informatik, Universität Kaiserslautern, Kai—

serslautern, Germany, January 1984.

Marvin Minsky. A framework for representing knowledge. In Patrick Henry Win-
ston, editor, The Psychology of Computer Vision. McGraW-Hill, New York, USA,
1975. also in: Mind Design, pages 95—128, J . Haugeland, edi tor , Cambridge, Mas-
sachusetts , USA , MIT-Press , 1981, and Readings in Knowledge Representation,
pages 245—262, chapter 12 , Ronald~ J . Brachman and Hector J . Levesque, editors,
San Mateo, California, USA , Morgan Kaufmann, 1985.

Nils J . Nilsson. Principles of Artificial Intelligence. Morgan Kaufman, San Mateo,
California, USA , 1980.

George P61ya. How to Solve It. Princeton Universi ty Press, Princeton, New Jersey,
USA , also as Penguin Book , 1990, London, Uni ted Kingdom, 1945.

George Pölya. Mathematics and Plausible Reasoning. Princeton Universi ty Press,
Princeton, New Jersey, USA , 1954. Two volumes, Vol.1: ' I nduc t ion and Analogy in
Mathematics, Vol.2: Patterns of Plausible Inference.

25 References

[17]	 George palya. Ma.thematical Discovery - On understanding, learning, and teach

ing problem solving. Princeton University Press, Princeton, New Jersey, USA,

1962/1965. Two volumes, also as combined edition, 1981, John Wiley and Sons,

New York, USA.

[18]	 Bartel1. van der Waerden. Wie der Beweis der Vermutung von Baudet gefunden

wurde. Abh. Math. Sem. Univ. Hamburg, 28:6-15, 1964.

[19]	 Bartel L. van der Waerden. Algebra I, volume 12 of Heidelberger Taschenbiicher.

Springer Verlag, Berlin, Germany, eighth, edition, 1971.

References 25

[17] George Pölya. Mathematical Discovery — On understanding, learning, and teach-
ing problem solving. Princeton University Press , Princeton, New Jersey, USA,
1962/1965. Two volumes, also as combined edition, 1981, John Wiley and Sons,
New York, USA.

[18] Bartel L. van der Waerden. Wie der Beweis der' Vermutung von Baudet gefunden
wurde. Abh. Math. Sem. Univ. Hamburg, 2826-15, 1964.

[19] Bartel L. van der Waerden. Algebra I, volume 12 of Heidelberger Taschenbücher.
Springer Verlag, Berlin, Germany, eighth edition, 1971.

