
C
._®

._.30_m
._®

m
0v

O
Ü

N
O

ID

03m
zo

o
—

‚E
o

n
—

59392029.
#93525

xzoE
B

E
 20659.00“.

Planning for Autonomous
Cooperating Agents

Peter Breuer

SEKI Report SR—91-2 (SFB)

detub.1rtS
.1Dn.lyduL

...
SeSaCA

E
O

a
m

E
-

_
v_

m
_

m

A Case Study in Distributed Planning
for Autonomous Cooperating Agents

Peter Breuer

Department of Computer Science

University of Kaiserslautern

P.O. Box 3049

0-6750 Kaiserslautem

Germany

Abstract

A distributed solution is appropriate for many planning and search problems where large
search spaces occur. These search spaces often cannot be bounded with adequate global
heuristics, so "traditional" strategies may become very expensive.
We show that a distributed setting, where problem knowledge and information about the
domain is decomposed among individual entities, can cope with such snags in a natural
way. Simple local heuristics suffice to achieve good global solution. .
This thesis gives an overview about the basic methodology of Distributed Artificial
Intelligence. In order to clarify the intentions a larger sample scenario will be discussed in
detail, a distributed realization of the "Towers of Hanoi" puzzle. The results support the
feasibility of this approach.

Viele Planungs- und Suchprobleme mit riesigen Suchraumen konnen verteilt angemes
sener gelOst werden. Oftmals ist es nicht moglich, diese Suchraume mit globalen
Heuristiken zu beschranken, weshalb "traditionelle" Strategien sehr kostenintensiv wer
den k6nnen.
Wir zeigen, daB ein verteilter Zugang in natUrlicher Weise Abhilfe schaffen kann. Hierzu
wird das Problemlosungswissen und die Informationen Gber die Problemwelt verteilt auf
einzelne Bestandteile des Szenarios. Einfache lokale Heuristiken genGgen, urn eine gute
globale LOsung zu erreichen. ..
Oiese Arbeit gibt zunachst einen Uberblick Gber die grundlegenden Begriffe und
Methoden der "verteilten KUnstlichen lntelligenz". An der Realisation eines verteilten
"TGrme von Hanoi"-Spiels sollen die Ideen dann klargemacht werden. Die Ergebnisse
untermauern die Eignung dieses Ansatzes.

Thanks to all who helped me with this paper, especially Hans Jtirgen Ohlbach for various discussions and
good proposals on the topic, and, of course, my girl friend Micha for the "mental" support she gave to me
during some hard periods.

A Case Study in Distributed Planning
for Autonomous Cooperat ing Agents

Peter Breuer

Department of Computer Science
University of Kaiserslautern

PO. Box 3049
D-6750 Kaiserslautern

Germany

Abstract

A distributed solution is appropriate for many planning and search problems where large
search spaces occur. These search spaces often cannot be bounded with adequate global
heuristics, so “traditional” strategies may become very expensive.
We show that a distributed setting, where problem knowledge and information about the
domain is decomposed among individual entities, can cope with such snags in a natural
way. Simple local heuristics suffice to achieve good global solution. '
This thesis gives an overview about the basic methodology of Distributed Artificial
Intelligence. In order to clarify the intentions a larger sample scenario will be discussed in
detail, a distributed realization of the “Towers of Hanoi” puzzle. The results support the
feasibility of this approach.

Viele Planungs- und Suchprobleme mit riesigen Suchräumen können verteilt angemes-
sener gelöst werden. Oftmals ist es nicht möglich, diese Suchräume mit globalen
Heuristiken zu beschränken, weshalb „traditionelle“ Strategien sehr kostenintensiv wer-
den können.
Wir zeigen, daß ein verteilter Zugang in natürlicher Weise Abhilfe schaffen kann. Hierzu
wird das Problemlösungswissen und die Informationen über die Problemwelt verteilt auf
einzelne Bestandteile des Szenarios. Einfache lokale Heuristiken genügen, um eine gute
globale Lösung zu erreichen. __
Diese Arbeit gibt zunächst einen Überblick über die grundlegenden Begriffe und
Methoden der „verteilten Künstlichen Intelligenz“. An der Realisation eines verteilten
„Türme von Hanoi“—Spiels sol len die ldeen dann klargemacht werden. Die Ergebnisse
untermauem die Eignung dieses Ansatzes.

Thanks to all who helpcd me with this paper, especim Hans Jürgen Ohlbach for various discussions and
good proposals on the topic, and, of course, my gtrl friend Micha for the “mental” support she gave to me
during some hard periods.

"

Table of Contents

1, Introduction 1

2. Distributed Artificial Intelligence. " , .3

2.1. Why Distribution? 4

2.2. Real World Applications 5

2.3. Agents and the System: The Individual in the Mass 9

2.4. Cooperation 10

2.5. Communication 13

2.6. Synchronization 17

2.7. Planning 18

2.7.1. Traditional Planning 19

2.7.2. Multi-Agent Planning 21

2.7.3. Distributed Planning 21

2.8. Architectures 23

3. Problem Solving Techniques Revised for OAI...... . 26

3.1. Search 26

3.2. Constraints 28

3.3. Heuristics 29

3.4. Uncertainty
"

31

3.5. Negotiation 32

3.6. Eco-Problem Solving 34

4. The Towers of Hanoi - A Distributed Planning Scenario 38

4.1. Description of the Scenario 39

4.2. Why Not Conventional Planning? '" 42

4.3. Common Aspects of the Realization 45

4.4. The Sequential Version : TOHSEQ 47

4.4.1. General Phenomena 47

4.4.2, Architecture 48

4.4.2.1. Abstract View 49

4.4.2.2. Concrete Realization " 50

4.4.3. Heuristics I 55

4.4.4. Benchmarks 59

4.5. The Parallel Version: TOHPAR 66

4.5.1. General Phenomena 66

4.5.2. Architecture 67

4.5.2.1. Abstract View 67

4.5.2.2. Concrete Realization 71

Table o f Contents

1. In t roduct ion ... 1

2. Distributed Artificial Intelligence . 3
2.1. Why Distribution ? .4
2.2. Real World Applications . 5
2.3. Agents and the System : The Individual in the Mass . 9

2.4. Cooperation . 10

2.5. Communication . 13

2 .6 . Synchroniza t ion . 17
2.7. Planning . 18

2.7.1. Traditional Planning ... 19

2.7.2. Multi—Agent Planning . 21
2.7.3. Distributed Planning . 21

2.8. Architectures . 23
3. Problem Solving Techniques Revised for DAI .. 26

3.1. Search . 26

3.2. Constraints ... '................... 28
3.3. Heuns t r c s29
3.4. Uncertainty . . ‘31

3.5. Negotiation . 32
3.6. Eco-Problem Solving . 34

4. The Towers of Hanoi - A Distributed Planning Scenario . 38
4.1. Description of the Scenano39
4.2. Why Not Conventional Planning ? 42
4.3. Common Aspects of the Realization .. 45
4.4. The Sequential Version : TOHSEQ ... 47

4.4.1. General Phenomena . 47
4.4.2. Architecture . -. 48

4.4.2.1. Abstract View . 49
4.4.2.2. Concrete Realization . 50

4 .4 .3 . Heur i s t i c s . ., 55
4.4.4. Benchmarks . 59

4.5. The Parallel Version : TOHPAR . 66
4.5.1. General Phenomena . 66
4.5.2. Architecture . 67

4.5.2.1. Abstract V iew . 67

4.5.2.2. Concrete Realization . 71

4.5.3. Heuristics 95

4.5.4. Benchmarks 97

4.6. Comparison of Sequential And Parallel Version 100

4.7. A Model For The Agents' Behaviour 102

4.8. Open Problems 105

.'i. The Towers of Hanoi in the General DAI Framework , 106

5.1. Embedding In DAI Terminology and Classification 106

5.2. Relations To Other Scenarios and Further Work 108

6. Conclusion 109

7. References 111

Appendix: Implementation 115

11

4 .5 .3 . Heur i s t i c s . 95

4.5.4. Benchmarks . 97

4.6. Comparison of Sequential And Parallel Version . 100
4.7. A Model For The Agents’ Behaviour . 102

4 .8 . Open Prob lems . 105
5. The Towers of Hanoi in the General DAI Framework . 106

5.1. Embedding In DAI Terminology and Classification 106
5.2. Relations To Other Scenarios and Further Work . 108

6 . Conc lus ion . 109
7. References . 111

Appendix: Implementation . l 15

l. Introduction

Distributed Artificial Intelligence (DAI) is a pretty young research area in the wide field of

Artificial Intelligence. If offers many appealing viewpoints and methods to tackle old and

matured problems in a new and surprisingly successful manner.

A good example is the well known AI discipline planning. The traditional setting is that a

distinguished planner must find a sequence of actions which transforms a given start

situation into a desired goal situation. Assume, you have to plan a complicate process,

e.g. a machine is to be assembled, a puzzle is to be solved, or a schedule of charges in a

transport agency is to be found. A centralized planner must know everything about the

scenario a priori. The methods ("how to do something"), the desired and possible

configurations ("what to do") and the order and the dependencies of the various actions

("when and why to do"). All knowledge and all experience have to be concentrated in the

plan"ner.

Alternatively consider the scenario where each involved part has some small amount of

knowledge. Each (simulated) part of the machine, for instance, knows its desired

position and other positions where it may be ..ored intermediately. The parts can send

messages to each other and thus cause other parts to help them reaching their goals. Then

planning is distributed and restricted, all parts of the whole process are planners for their

own sake, altogether they may fulfil the common goal. This is a sketch of our proposal

which will be discussed in detail.

In this diploma thesis a sample scenario for DAI planning shall be introduced and

embedded in the overall terminology.

Therefore in the second chapter the basic termini of OAI are introduced. Especially the

subchapter about planning shows the fundamental differences to "traditional" AI plan

ning. Other important aspects are cooperation and communication.

The third chapter provides a foundation for the tools to solve DAI planning problems. We

lay our emphasis on "Heuristics" and "Eco-Problem Solving", which both have much

influence on the practical implementation.

Due to the limited space, the relevant issues can only be sketched in these two chapters.

However, references to the literature are given to encourage further studies.

The main part of this work comprises chapter 4. It introduces the practical implemen

tations to show the capabilities of distributed planning. I implemented extended versions

of the well known puzzle of the "Towers of Hanoi", a children game which appears at

first glance quite simple. But it is not as it seems; for a general configuration no optimal

global algorithm does exist. When the disks, however, are all individual agents which try

to reach their individual goals, the scenario comes to a pretty good solution.

l . Introduct ion

Distributed Artificial Intelligence (DAI) is a pretty young research area in the wide field of
Artificial Intelligence. If offers many appealing viewpoints and methods to tackle old and

matured problems in a new and surprisingly successful manner.
A good example is the well known AI discipline planning. The traditional setting i s that a

distinguished planner must find a sequence of actions which transforms a given start
situation into a desired goal situation. Assume, you have to plan a complicate process,
e. g. a machine is to be assembled, a puzzle is to be solved, or a schedule of charges in a

transport agency is to be found. A centralized planner must know everything about the

scenario a prion“. The methods (“how to do something”), the desired and possible
configurations (“what to do”) and the order and the dependencies of the various actions

(“when and why to do”). All knowledge and all experience have to be concentrated in the
planner.
Alternatively consider the scenario where each involved part has some small amount of
knowledge. Each (simulated) part of the machine, for instance, knows its desired
position and other positions where it may be -.ored interrnediately. The parts can send

messages to each other and thus cause other parts to help them reaching their goals. Then
planning is distributed and restricted, all parts of the whole process are planners for their
own sake, altogether they may fulfil the common goal. This i s a sketch of our proposal
which will be discussed in detail.
In this diploma thesis a sample scenario for DAI planning shall be introduced and
embedded in the overall terminology.
Therefore in the second chapter the basic termini of DAI are introduced. Especially the
subchapter about planning shows the fundamental differences to “traditional” AI plan-
nin g. Other important aspects are cooperation and communication.
The third chapter provides a foundation for the tools to solve DAI planning problems. We
lay our emphasis on “Heuristics” and “Eco-Problem Solving”, which both have much
influence on the practical implementation.
Due to the limited space, the relevant issues can only be sketched in these two chapters.
However, references to the literature are given to encourage further studies.
The main part of this work comprises chapter 4. It introduces the practical implemen—
tations to show the capabilities of distributed planning. I implemented extended versions
of the well known puzzle of the “Towers of Hanoi”, a children game which appears at
first glance quite simple. But it is not as it seems; for a general configuration no optimal
global algorithm does exist. When the disks, however, are all individual agents which try
to reach their individual goals, the scenario comes to a pretty good solution.

Two versions were realized, one with sequential message passing, and one allowing

parallel exchange of information and contemporary actions. In chapter 4 first the common

aspects and then each version is described in detail. Especially the ideas for the parallel

version are discussed thoroughly.

In the end the realized scenarios are embedded in the overall DAI terminology and a short

T)rospectus to future work is given.

This thesis proves the feasibility of the distributed planning approach in general. Even if

most decisions depend on heuristics, the tests provide promising results. Furthermore the

potential power of parallel acting can be foreseen.

The substance of this work is the investigation, which kind of local information must be

exchanged and evaluated between distributed entities to guarantee a coherent global

behaviour of the system. There are some general principles for a large class of "distribut

ed problems", independent from special scenarios.

"

2

Two versions were realized, one with sequential message passing, and one allowing
parallel exchange of information and contemporary actions. In chapter 4 first the common

aspects and then each version is described in detail. Especially the ideas for the parallel
version are discussed thoroughly.

In the end the realized scenarios are embedded in the overall DAI terminology and a short
r i rospectus to future work is given.

This thesis proves the feasibility of the distributed planning approach in general. Even if
most decisions depend on heuristics, the tests provide promising results. Furthermore the
potential power of parallel acting can be foreseen.
The substance o f this work is the investigation, which kind of local information must be

exchanged and evaluated between distributed entities to guarantee a coherent global
behaviour of the system. There are some general principles for a large class of “distribut-
ed problems”, independent from special scenarios.
Ix

.)

'.

2. Distributed Artificial Intelligence

About 10 or 15 years ago, a new branch of research in Artificial Intelligence (AI) came

up, Distributed Artificial Intelligence (DAI). Meanwhile the field has matured enough to

reach a certain consensus about its main characteristics and principles [Ca88].

Some authors [Ch81, De87] still distinguish the term Distributed Artificial Intelligence

from "distributed problem solving", which is more special in their opinion. We do not

make this distinction, but define DAI according to Huhns and Castillo Hem [Hu87,

Ca88]:

DAI is concerned with the cooperative solution of problems by a decentralized group of

agents. These agents are loosely coupled, but at least logically independent from one

another. Agents display sophistication in the AI sense with a capability for reasoning,

-- Iplanning, and communicating.

This definition reveals all of the central aspects of DAI. We will soon investigate them

exhaustively. Different authors put different emphasis on (he topics of OAT. Decker

[De87] suggests to view the field along the following dimensions:

- the level of decomposition

- the distribution of expertise

- the methods for achieving distributed control

- the process of communication

Castillo Hem [Ca88] suggests as the "main issues":

- Global coherence

- Knowledge representation

- Communication

In the sequel, these items will appear many times. The next subchapters describe them in

the context of the basic mechanisms of Distributed Artificial Intelligence. First the term

agent with respect to the community of agents (Le. the whole system) are explained and

the essentials cooperation, communication, and synchronization are discussed. Next the

traditional approaches of planning are compared with the new fields of Multi-Agent

Planning and distributed planning. The planning aspect, though naturally inherent in

DAI, shall gain a certain emphasis throughout this work. Principles of architectures close

this introduction into the methodology of DAI.

But we start with two motivational subchapters: First some good reasons for considering

DAI are given. Then several real world problems are introduced which cry for an

intelligent distributed solution, and, furthermore, a collection of DAI systems which are

currently at the threshold from research to application, is presented.

3

2. Distributed Artificial Intelligence

About 10 or 15 years ago, a new branch of research in Artificial Intelligence (AI) came

up, Distributed Artificial Intelligence (DAI). Meanwhile the field has matured enough to

reach a certain consensus about its main characteristics and principles [Ca88].

Some authors [Ch8l, De87] still distinguish the term Distributed Artificial Intelligence

from “distributed problem solving”, which is more special in their opinion. We do not

make this distinction, but define DAI according to Huhns and Castillo Hem [Hu87,
Ca88]:

DAI is concerned with the cooperative solution of problems by a decentralized group of

agents. These agents are loosely coupled, but at least logically independent from one
another. Agents display sophistication in the AI sense with a capability for reasoning,
planning, and communicating.

This definition reveals all of the central aspects of DAI. We will soon investigate them

exhaustively. Different authors put different emphasis on the topics of DAI. Decker
[De87] suggests to view the field along the following dimensions:
- the level of decomposition
- the distribution of expertise
- the methods for achieving distributed control
- the process of communication
Castillo Hem [Ca88] suggests as the “main issues”:
- Global coherence
- Knowledge representation
- Communication

In the sequel, these items will appear many times. The next subchapters describe them in
the context of the basic mechanisms of Distributed Artificial Intelligence. First the term
agent with respect to the community of agents (i.e. the whole system) are explained and
the essentials cooperation, communication, and synchronization are discussed. Next the

traditional approaches of planning are compared with the new fields of Multi-Agent-
Planning and distributed planning. The planning aspect, though naturally inherent in
DAI, shall gain a certain emphasis throughout this work. Principles of architectures close
this introduction into the methodology of DAI.
But we start with two motivational subchapters: First some good reasons for considering
DAI are given. Then several real world problems are introduced which cry for an
intelligent distributed solution, and, furthermore, a collection of DAI systems which are
currently at the threshold from research to application, is presented.

2.1. Why Distribution ?

The distribution of problem solving as the general paradigm of DAI provides appealing

prospects for the solution of various hard nuts. Starting with the hypothesis that "All real

problems are distributed" (quoted by [De8?]) and the observation how communities of

humans solve large tasks, we get a feeling for the demand of research in DAI.

Reasons for work in and study of DAI: 1

- DAI provides insights and understanding about infonnation processing phenomena

occurring in the real world. Especially interactions among human societies are heavily

investigated. But also models for the behaviour of a single individual may be found,

models for the brain or models for perfonning unconscious movements, like walking.

Distribution is a natural approach for large, evolutionary systems. These systems

should be "open" for extensions and adoptions. Modularity facilitates the handling of

such systems.

The cooperation among multiple expert systems with different (but possibly

overlapping) expertise can provide a solution for problem", whose domains are not

contained in one expert system.

Distribution is a useful means to control complexity. "Large" problems can be

decomposed and broken down into multiple cooperating subsystems to bec0n:te

feasible.

DAI is the most appropriate solution when the problem itself is inherently distributed

(e.g. distributed sensor nets).

Due to their parallelism, distributed systems are potentially more efficient. They better

exploit resources and solve problems faster.

Distributed systems normally have a certain amount of redundancy. That is, some

agents can solve the same tasks as others or pieces of infonnation are known by

several agents. Hence the systems become more robust against exterior influences or

breakdowns of own agents. Generally, the prospectus for a graceful degradation

("soft fail") increases and the system can guarantee a higher reliability.

The distribution of control avoids bottlenecks, which may occur when a central

instance must take care for the needs of a multitude of agents.

A distributed system with intelligent agents has a higher flexibility concerning

changing problem classes. The wider the spectrum of all the agents' expertise is, the

more different the analyzed problems can be. A further improvement are agents

capable of learning.

A small independent expert system could be a part of many large distributed systems.

This reusability facilitates the exploitation of already matured tools for new systems.

1The following arguments are collected from the introducing papers [Ch81], [De8?], [Hu8?]
(Foreword), [Ca88J, and [Mi86].

4

2.1. Why Distribution ?

The distribution of problem solving as the general paradigm of DAI provides appealing
prospects for the solution of various hard nuts. Starting with the hypothesis that “All real

problems are distributed” (quoted by [De87]) and the observation how communities of
humans solve large tasks, we get a feeling for the demand of research in DAI.
Reasons for work in and study of DAI: 1

DAI provides insights and understanding about information processing phenomena

occurring in the real world. Especially interactions among human societies are heavily
investigated. But also models for the behaviour of a single individual may be found,
models for the brain or models for performing unconscious movements, like walking.
Distribution is a natural approach for large, evolutionary systems. These systems
should be “open” for extensions and adoptions. Modularity facilitates the handling of

such systems.
The cooperation among multiple expert systems with different (but possibly

overlapping) expertise can provide a solution for problems whose domains are not
contained in one expert system.
Distribution is a useful means to control complexity. “Large” problems can be
decomposed and broken down into multiple cooperating subsystems to become

feasible. '
DAI is the most appropriate solution when the problem itself is inherently distributed

" (e.g. distributed sensor nets).
Due to their parallelism, distributed systems are potentially more efficient. They better
exploit resources and solve problems faster.
Distributed systems normally have a certain amount of redundancy. That is, some
agents can solve the same tasks as others or pieces of information are known by
several agents. Hence the systems become more robust against exterior influences or
breakdowns of own agents. Generally, the prospectus for a graceful degradation
(“soft fail”) increases and the system can guarantee a higher reliability.
The distr ibution o f control avoids bottlenecks, which may occur when a central

instance must take care for the needs of a multitude of agents.
A distributed system with intelligent agents has a higher flexibility concerning
changing problem classes. The wider the spectrum of all the agents’ expertise is, the
more different the analyzed problems can be. A further improvement are agents
capable of learning.
A small independent expert system could be a part of many large distributed systems.
This reusability facilitates the exploitation of already matured tools for new systems.

lThe following arguments are collected from the introducing papers [Ch81], [De87], [Hu87]
(Foreword), [Ca88], and [Mi86l.

'.

Besides saving time for new research this could put forward a desired standardization

of certain tools.

- Research in DAI yields a mutual stimulation of research in "traditional AI". Important

fields are: knowledge representation, fonnal specification in general, reasoning about

knowledge and belief, and planning.

- Last, not least, DAI is a challenging area for interdisciplinary approaches. For the first

time, theories from biology, sociology, psychology, philosophy, linguistics, and

other research areas, may provide a direct and fruitful impetus to computer science.

But we are still standing at the beginning of this evolution. Before exploiting the benefits

just discussed, the foundations must be settled. Also distribution of problem solving is

not gratis, the price to pay is a much more complicated organization and the costs for

tami~~ individualism. But the prospects promise it is worth the efforts.

2.2. Real World Applications

In order to get an impression about the kind of problems people think: OAI can solve, we

present some scenarios which have been mentioned in the literature. Then some real

existing systems are briefly described to give a feeling for the capabilities of current DXI

research. Maybe some of the systems will become commercial soon.2

OAI in working cells

In [ME90] an interesting scenario is outlined (see Figures 2.1. and 2.2). In a car factory a

working cell for painting cars looks as follows: The whole working space consists of

four limited areas. The areas are connected by corridors. Three painting robots shall paint

80 cars; 50 cars shall get white colour, 18 red, and 12 blue. The order and the place for

painting them is not limited, however, there must always be enough space to move. After

the painting is finished, all cars must be arranged such that as long as there are some, a

car with a certain colour can be accessed.

This is an excellent example for a OAI problem. The goal state is specified and the task is

to plan the motions of the cars and robots. Planning must obey rules of coordination.

Infonnation about others' intentions must be gathered by communication. Behind all

activity an amount of uncertainty remains. Not each robot can always know what every

other robot did, does, and will do in future.

Analog examples would be any other working cells in factories, or bureau organizations

working towards a comraon goal.

2It is a pity that most of the work in DAI seems to be very interesting for military use (and thus it is heavily
sponsored). I hope there will never be an opportunity to test such (sulI hypothetical) systems in "real world
applications" .

5

Besides saving time for new research this could put forward a desired standardization

of certain tools.
— Research in DAI yields a mutual stimulation of research in “traditional AI”. Important

fields are: knowledge representation, formal specification in general, reasoning about
knowledge and belief, and planning.

— Last, not least, DAI is a challenging area for interdisciplinary approaches. For the first

time, theories from biology, sociology, psychology, philosophy, linguistics, and
other research areas, may provide a direct and fruitful impetus to computer science.

But we are still standing at the beginning of this evolution. Before exploiting the benefits
just discussed, the foundations must be settled. Also distribution of problem solving i s
not gratis, the price to pay is a much more complicated organization and the costs for
taming individualism. But the prospects promise it is worth the efforts.

2.2. Real Wor ld Applicat ions

In order to get an impression about the kind of problems people think DAI can solve, we
present some scenarios which have been mentioned in the literature. Then some real

existing systems are briefly described to give a feeling for the capabilities of current DÄI
research. Maybe some of the systems will become cormnercial soon.2
DAI in working cells
In [ME90] an interesting scenario i s outlined (see Figures 2.1. and 2.2). In a car factory at

working cell for painting cars looks as follows: The whole working space consists of
four limited areas. The areas are connected by corridors. Three painting robots shall paint
80 cars; 50 cars shall get white colour, 18 red, and 12 blue. The order and the place for

painting them is not limited, however, there must always be enough space to move. After
the painting is finished, all cars must be arranged such that as long as there are some, a

. car with a certain colour can be accessed.

This is an excellent example for a DAI problem. The goal state is specified and the task is
to plan the motions of the cars and robots. Planning must obey rules of coordination.
Information about others’ intentions must be gathered by communication. Behind all
activity an amount of uncertainty remains. Not m robot can Ms know what every
other robot did, does, and wi l l do in future.

Analog examples would be any other working cells in factories, or bureau organizations
working towards a common goal.

2I t is a 1:13 that most of the work in DAI seems to be very interesting for military use (and thus it is heavil
sportsor. . I hope there Will never be an opportunity to test such (sull hypothetical) systems in "real worl
app rcauons .

•
c=}t}:?{ro workbenches

V2ZZ1 walls

I

I
Filiure t 1. : A car painting scenario (according to [ME90D

~-:-:< .

e&i:J·"'·'···I.'·"·..·..··.··.. ::;::-.... ,.'-:::::>"

".::>. ,::::

~
~
@

CHti;:::@:}fD workbenches I
VZ?7A walls

Figure 2.2. : Painting robots at their work

DAI for managing resource conflicts

Common problems of computer science (especially for operating systems, cf.[Ne86]) are

those where resource conflicts occur. There are more requests for a resource than can be

granted in one moment. For instance, [Ca88] introduces the well-known setting of the

"Dining Philosophers" from a DAI perspective.

The distributed approach with its inherent communication metaphor may provide means

for elegant solutions. Communication facilitates negotiation, which could solve resource

conflicts.

6

.-
VII/IA

„©. ‚an «an—&
„&..., „&. „aß—„ua:
«& „& ‚&...-®»;-
m „Em „am.

was». „& wärs-ers
mm. as... „&:

a?» «a wasyes. m *m
„& was. ano—„%
w... „a.. «&»;q»»»-n- wm»
57% am @@ m walls
547% „&. MW
&; „®:—ms

Figure 2 1 A car painting scenario (according to [ME90])

I w .
°?“ "% “?““? '„mw ‚im. ‚das.—&

"“ vi“- ‚?“-"ä“

; von. um. @@
' „®— em. «area

„ces—= „aa—‚=

r“- "'— ***-®-‚& ‚vomrevet—

* *m workbenches
Wm»

© @@ 'Wflfl smana—
% „@mmfi s

Figure 2.2. : Painting robots at their work

DAI for marßging resource conflicts

Common problems of computer science (especially for operating systems, cf.[Ne86]) are

those where resource conflicts occur. There are more requests for a resource than can be

granted in one moment. For instance, [C388] introduces the well—known setting of the
“Dining Philosophers” from a DAI perspective.
The distributed approach with its inherent communication metaphor may provide means
for elegant solutions. Communication facilitates negotiation, which could solve resource

conf l ic ts .

New approaches

Up to now the problems show configurations where it was a priori clear which part is

active (the actors which plan and must be coordinated) and which part are passive (the

resources which constrain the planning). A new and attractive approach is to make all

parts of the scenario potentially active, in particular the resources. These participate in

plaGning and negotiations, arguing from their very own positions.

A planning system organized in this way can generate a possible s)lution without the help

of a supervisor who knows everything. The local knowledge of the "agents" suffices.

Especially for problems where large global search spaces but no suitable global heuristics

exist, this approach seems to be appropriate. The main phenomenon is that large global

search spaces are broken down into relative small individual search spaces of each agent.

Each agent can find its solution very quickly, the overall solution of the system must then

be attained by negotiation and conflict resolution strategies.

Consider the car painting scenario above. In order to achieve a real distributed scenario

we regard not only the robots as autonomous agents (this remains an almost centralistic

view), but also the cars, the colours, the workbenches, and so on. A goal of e "'~r looks

like "I want to be painted red"; colours and workbenches wish to be used as often as

possible. Note that all scenarios are simulations to find an optimal plan, no one wants to

teach real cars or colours to send messages.
11

A further example for such scenarios could be a shunting-station, where locomotives,

wagons, parts of the rail and the track switches are intelligent, active parts of the

scenario. Now suppose that the wagons only get their individual goal description and

have to take care for themselves how to reach it. A wagon would send a message to any

of the locomotives: "Come here, and pull me to position XY". But surely other wagons

would also like to "possess" the locomotive, so a negotiation must take place. Also

ordering constraints are important.

The same way many ocher applications can be modelled, for instance a loading yard of a

transport agency, or assembly processes. The central issues are to provide the agents

with some local knowledge concerning themselves, their nearer environment and their

exact individual goals. Then they will pursue these goals alone.

This will be exactly our approach, introduced in a larger example in chapter 4.

Now to some already existing DAr systems.

Hearsay IT (revised in [De87])

Developed in the mid 1970's as a speech understanding system at Carnegie Mellon

University, it became a "classical" foundation for many later DAr systems. Though firstly

not distributed, it is obvious that it can be. The ideas of several knowledge sources, a

blackboard, a priority based scheduler and a focussing mechanism for meta-Ievel control

7

New appmgches
Up to now the problems show configurations where it was a priori clear which part is
active (the actors which plan and mus t be coordinated) and which part are passive (the

resources which constrain the planning). A new and attractive approach is to make all

parts of the scenario potentially active, in particular the resources. These participate in
planning and negotiations, arguing from their very own positions.
A planning system organized in this way can generate a possible s)lution without the help
of a supervisor who knows everything. The local knowledge of the “agents” suffices.

Especially for problems where large global search spaces but no suitable global heuristics
exist, this approach seems to be appropriate. The main phenomenon is that large global
search spaces are broken down into relative small individual search spaces of each agent.
Each agent can find its solution very quickly, the overall solution of the system must then
be attained by negotiation and conflict resolution strategies.
Consider the car painting scenario above. In order to achieve a real distributed scenario
we regard not only the robots as autonomous agents (this remains an almost centralistic
view), but also the cars, the colours, the workbenches, and so on. A goal of a car looks
like “I want to be painted red”; colours and workbenches wish to be used as often as
possible. Note that all scenarios are simulations to find an optimal plan, no one wants to
teach real cars or colours to send messages.
A further example for such scenarios could be a shunting—station, where locomotives,
wagons, parts of the rail and the track switches are intelligent, active parts o f the
scenario. Now suppose that the wagons only get their individual goal description and
have to take care for themselves how to reach it. A wagon would send a message to any
of the locomotives: “Come here, and pull me to position XY”. But surely other wagons
would also like to “possess” the locomotive, so a negotiation must take place. Also
ordering constraints are important.
The same way many other applications can be modelled, for instance a loading yard of a
transport agency, or assembly processes. The central issues are to provide the agents
with some local knowledge concerning themselves, their nearer environment and their
exact individual goals. Then they will pursue these goals alone.
This will be exactly our approach, introduced in a larger example in chapter 4.

Now to some already existing DAI systems.
Hearsay II (revised in [De87])
Developed in the mid 1970’s as a speech understanding system at Carnegie Mellon
University, it became a “classical” foundation for many later DAI systems. Though firstly
not distributed, it is obvious that it can be. The ideas of several knowledge sources, a
blackboard, a priority based scheduler and a focussing mechanism for meta—level control

were so well accepted, that "Hearsay II" became a metaphor more for the architecture

than for the system itself.

Air Traffic Control Systems ([CaMcSt83])

Several researchers at the Rand Corporation, California, USA, are engaged in studies

about air traffic control. Their domain is a simulated airspace with planes arriving at fixed

entry and exit points. Several different organizational policies are taken into account to

handle, for instance, the scheduling of planes and the satisfaction of fuel demands.

Vehicle Monitoring

The Distributed Vehicle Monitoring Testbed (DVMT) (revised by [Ca88, De87]; see also

chapter 2.8.) is a simulated environment with moving vehicles making sound that can be

picked up by electronic sensors. The goal is to create a dynamic map of the area

monitored by the sensors to enable traffic supervision and control. The DVMT is based

on the I-Iearsay II architecture (see above).

YAMS ([Pa87])

Parunak introduces YAMS ("yet another manufacturing svstem") as a factory control

system for discrete manufacturing (opposed to continuous process control). Interesting

aspects are the separation between control medium (YAMS) and performance medium

(the working cells), the real time constraints for the performance medium and its

activeness (compared to passive sensors in "normal" sensor nets).

MINDS ([HuMuStBo87])

Apother interesting application is distributed document retrieval to facilitate the expensive

but unavoidable search for documents in bureaux. Huhns et al. developed the system

MINDS as "a distributed collection of knowledge based systems for efficiently managing

and retrieving documents in an office environment of networked workstations".

Especially knowledge and tasks are shared among the workstations. Document retrieval

can be customized for each user by learning document distribution patterns as well as

user interests during operation. Heuristics are employed for these learning procedures

and also for self-initializing the system.

further application examples

- Context free parsing of formal languages. In [Sr87], parallel versions of the recog

nition algorithms of Cocke-Kasami-Younger and Earley are introduced. One result

was that the implementations revealed more parallelism than was apparent at first

glance.

- Real time dialogue systems as examples for participant systems [Ch87]. The simple

system Cantata allows the exchange of messages between many users in real time. The

emphasis lies on communication and synchronization, no cooperative work is regar

ded directly.

- The management of hospitals [Mc84].

8

were so well accepted, that “Hearsay II” became a metaphor more for the architecture
than for the system itself.
Air Traffic Control §ystems ([CaMcSt83])

Several researchers at the Rand Corporation, California, USA, are engaged in studies

about air traffic control. Their domain is a simulated airspace with planes arriving at fixed
entry and exit points. Several different organizational policies are taken into account to
handle, for instance, the scheduling of planes and the satisfaction of fuel demands.
Vehicle Monitoring
The Distributed Vehicle Monitoring Testbed (DVMT) (revised by [Ca88, De87]; see also

chapter 2.8.) is a simulated environment with moving vehicles making sound that can be
picked up by electronic sensors. The goal is to create a dynamic map of the area
monitored by the sensors to enable traffic supervision and control. The DVMT is based
on the Hearsay II architecture (see above).
ms ([Pa87l)
Parunak introduces YAMS (“yet another manufacturing system”) as a factory control

system for discrete manufacturing (opposed to continuous process control). Interesting

aspects are the separation between control medium (YAMS) and performance medium

(the working ce l l s) , the real time constraints for the performance medium and i t s

activeness (compared to passive sensors in “normal” sensor nets). ,

MINDS ([HuMuStBo87])
Another interesting application i s distributed document retrieval to facilitate the expensive
but unavoidable search for documents in bureaux. Huhns et al. developed the system
MINDS as “a distributed collection of knowledge based systems for efficiently managing
and retrieving documents in an office environment of networked workstations”.
Especially knowledge and tasks are shared among the workstations. Document retrieval
can be customized for each user by learning document distribution patterns as well as
user interests during operation. Heuristics are employed for these learning procedures
and also for self-initializing the system.
Further application examples
- Context free parsing of formal languages. In [Sr87], parallel versions of the recog-

nition algorithms of Cocke-Kasami-Younger and Barley are introduced. One result
was that the implementations revealed more parallelism than was apparent at first
glance.

- Real time dialogue systems as examples for participant systems [Ch87]. The simple
system Cantata allows the exchange of messages between many users in real time. The
emphasis lies on communication and synchronization, no cooperative work is regar-
ded directly. '

- The management of hospitals [Mc84].

- Knowledge based vision tasks. In [LaChRoMc89] a method for automatic detection

and classification of objects and shadows contained in image data is presented. These

image data are provided by an active sector scanning sonar system, which itself then is

a part of a much larger system for distributed problem solving tasks. The final goal of

the overall project is to build an unmanned, free swimming submersible vehicle for

offshore energy exploz"_tion and production activities.

All these applications show possible utilizations of DAI methods. There will be even

more chances, if problems are tackled from new perspectives, far away from old and

matured methods. Maybe some nuts can be handled more natural in the light of

distribution, remember: All real problems are distributed!

2.3. Agents and the System : The Individual in the Mass

In the DAI terminology, an agent has nothing to do with agents from the KGB or 007

James Bond. An agent simply is the smallest entity in a system that causes effects.3

Agents are autonomous, when they have their own goals, capabilities and knowledge

[KrMa90]. This means that such agents act with their own responsibility. Agents are also

known as actors, node processors, knowledge sources, etc.

Important attributes of autonomous agents are therefore a certain degree of freedom and

the consciousness for their actions. They are only loosely coupled with others, thus

forming a network of relations. But at least they must be logically distributed, i.e.

independent. Furthermore, if they are also physically separated from one another, we

speak of decentralized agents.

An important characterization of multi agent systems is the granularity. This describes the

ratio between the capabilities of a single agent with respect to the capabilities of the whole

system.

Fine grained systems are constituted from a mass of dumb agents which can perform

only simple, uniform tasks. Examples are models of connectionism (cf. [Sh87]) or

distributed sensor nets. The intelligence becomes apparent only in the behaviour of the

whole system.

At the other side of the spectrum, there are coarse grained systems. Here an agent has

many capabilities, can perform various tasks and covers a broad spectrum of abilities.

Each agent alone can already be regarded as intelligent. The whole systems then is a

3Agents need not have a sex. They may be arbitrary entities in a scenario, e.g. expert-systems, robots,
humans, s~nsors, or blqck~ In a Blocks World. So they are referred in the following as an' it", which may
be unfaITIlhar at the begmnmg.

9

- Knowledge based vision tasks. In [LaChRoMc89] a method for automatic detection
and classification of objects and shadows contained in image data is presented. These
image data are provided by an active sector scanning sonar system, which itself then is
a part of a much larger system for distributed problem solving tasks. The final goal of

the overall project is to build an unmanned, free swimming submersible vehicle for
offshore energy exploration and production activities.

All these applications show possible utilizations of DAI methods. There will be even
more chances, if problems are tackled from new perspectives, far away from old and
matured methods. Maybe some nuts can be handled more natural in the light of
distribution, remember: All real problems are distributed!

2.3.xgents and the System : The Individual in the Mass

In the DAI terminology, an agent has nothing to do with agents from the KGB or 007
James Bond. An agent simply is the smallest entity in a system that causes effects.3
Agents are autonomous, when they have their own goals, capabilities and knowledge

[KrMa90]. This means that such agents act with their own responsibility. Agents are also
known as actors, node processors, knowledge sources, etc. '
Important attributes of autonomous agents are therefore a certain degree of freedom and
the consciousness for their actions. They are only loosely coupled with others, thus
forming a network of relations. But at least they must be logically distributed, i.e.
independent. Furthermore, if they are also physically separated from one another, we
speak of decentralized agents. "
An important characterization of multi agent systems is the granularity. This describes the
ratio between the capabilities of a single agent with respect to the capabilities of the whole
system.
Fine grained systems are constituted from a mass of dumb agents which can perform
only simple, uniform tasks. Examples are models of connectionism (cf. [Sh87]) or
distributed sensor nets. The intelligence becomes apparent only in the behaviour of the
whole sys tem.

At the other side of the spectrum, there are gogse grained systems. Here an agent has
many capabilities, can perform various tasks and covers a broad spectrum of abilities.
Each agent alone can already be regarded as intelligent. The whole systems then i s a

3Agen t s need not have a sex. They max/be arbitrary entities in a scenario, e.g. expert-systems, robots.
humans, sensors, or blocks m a Blocks orld. So they are referred in the following as an it", which may
be unfamiliar a t the beginning.

-

collection of "experts". So the typical example for agents in a coarse grained system are

not surprisingly - expert systems. But also flexible robots are imaginable.

Both extremes have their pros and cons. Fine grained systems may be easier (and

cheaper) to build and to maintain, but the task of decomposition for the simple processing

units will probably be very complicated. Also the class of problems which can be handled

at all, is restricted. Coarse grained systems are expensive. When single agents are

complex, relations between them will be even more. Each agent must also have its well

defined and widely disjoint competence areas, otherwise long discussions and

negotiations may occur.

Castillo Hem [Ca88] suggests a framework to describe and compare different approaches

of DAr systems. He distinguishes between the "System Conceptual Model" to

characterize the overall system and the "Agent Conceptual Model" for the individual

entities. The following dimensions are proposed:

System Conceptual Model Agent Conceptual Model

- Structure - Structure

- Knowledge Organization - Knowledge Organization

- Coherent Cooperation - Action

- Communication - Perception of the Environment

- System Reliability

- Result Formation

Some of these points shall be discussed in more detail.

2.4. Cooperation

The paradigm of distributed problem solving is applicable to various problems. But none

of the problems discussed above can be solved only by decomposing the problem, allo

cating subtasks to the distributed problem solvers and at last assembling the partial

results. Problems like these (and many other interesting problems for DAr) have some

common characteristics: Simple decomposing and isolated salving on distributed nodes is

not sufficient. To solve the tasks, a node needs more information about its environment;

"which are my neighbours ?", "what information do they have ?"

Consider the Distributed Vehicle Monitoring Testbed (DVMT [De87, DuLeC087], see

also chapter 2.2). A single sensor has to monitor its well defined area. Well, one might

say, that is fine. Each sensor has its own subregion, all sensors may assemble the results

and, finally, the whole region is known. But this is impractical. A sensor alone cannot

10

collection of “experts”. So the typical example for agents in a coarse grained system are -

not surprisingly - expert systems. But also flexible robots are imaginable.
Both extremes have their pros and cons. Fine grained systems may be easier (and
cheaper) to build and to maintain, but the task of decomposition for the simple processing
units will probably be very complicated. Also the class of problems which can be handled
at all, i s restricted. Coarse grained systems are expensive. When single agents are
complex, relations between them will be even more. Each agent must also have its well-
defined and widely disjoint competence areas. otherwise long discussions and
negotiations may occur.
Castillo Hem [Ca88] suggests a framework to describe and compare different approaches
of DAI systems. He distinguishes between the “System Conceptual Model” to
characterize the overall system and the “Agent Conceptual Model” for the individual

‘ entities. The following dimensions are proposed:

System Conggptual nel Agent Conceptual Model

- Structure - Structure
- Knowledge Organization - Knowledge Organization

- Coherent Cooperation - Action
- Communication - Perception of the Environment ‚‘
- System Reliability
- Result Formation

Some of these points shall be discussed in more detail.

2.4. Coope ra t i on

The paradigm of distributed problem solving is applicable to various problems. But none
of the problems discussed above can be solved only by decomposing the problem, allo-
cating subtasks to the distributed problem solvers and at last assembling the partial
results. Problems like these (and many other interesting problems for DAI) have some
common characteristics: Simple decomposing and isolated solving on distributed nodes is
not sufficient. To solve the tasks, a node needs more information about its environment;
“which are my neighbours ?”, “what information do they have ?”
Consider the Distributed Vehicle Monitoring Testbed (DVMT [De87, DuLeC087], see

also chapter 2.2). A single sensor has to monitor its well defined area. Well, one might
say, that is fine. Each sensor has its own subregion, all sensors may assemble the results
and, finally, the whole region is known. But this is impractical. A sensor alone cannot

10

produce sound results. Its measures may be inexact or disturbed. The sensor may be

interrupted for some time or break down completely.

Now we could try to use algorithms from image processing to improve the quality of the

sensor data, however, this is not appropriate. A vehicle may have an arbitrary trajectory.

There are no straight lines, which a computer vision algorithm would detect. So the

correct solution must be found in the moment when the -mage data is created. An

outcome of this problem is to let a sensor "get in contact" to its neighbours and thus try to

get more information about its own measures. If one or more other sensors confirm the

opinion of the first, the probability of the data increases considerably.

In human organizations we call this phenomenon cooperation. We regard cooperation as

an interaction of at least two co-actors resulting in a benefit for at least one of them.

Without this interaction the benefit could not have been achieved.

Cooperation is a natural way to tackle large problems, e.g. the interacting of a human

group' of experts [DaSm83]. Because of the kind of problems - as in the example - in

DAI, it is one of the very principles to find a solution at all. Cammarata et al. rCaMcSt83]

see the expertise of a DAI system in its cooperative strategies.

Without cooperation each node would stick on its limited view, see only its limited

problems and thus produce limited solutions. An overall result as a synergy effect of the

work of all nodes would be almost impossible.

I
I

Werner calls goals of agents in distributed settings as introduced in chapter 2.2. social

g~als [We88, We89]. He argues that social goals are not achievable by one agent alone,

bu't only by a group of cooperating agents. These goals cannot be decomposed into

separate subgoals that are achievable independently of the other agents activities. One

agent cannot simply proceed to perform its action without considering what other agents

are doing. So, in this terminology, the monitoring of vehicles with distributed sensors is

a social goal.

Because of its importance for DAI we must take a closer look to the principles of

cooperation. We said, cooperation is necessary to achieve social goals. But often also the

quality of the solution is important, too. A distributed system, which spends such a long

time with communication that nobody is interested in the solution anymore, is worthless.

Two new aspects become evident. The demand for coherence [DaSm83, Ca88] and the

impact of time [KrW089].

A successful cooperation strategy must ensure a steady convergence towards a solution.

The system must not move around and come to no end, a coherent behaviour should be

achieved. Since each action takes time, methods are to prefer which involve actions as

short as possible. Consider distributed sensor nets which monitor dangerous processes in

a factory. Surely time for cooperation is limited in an emergency case. For the sake of

simplicity, the aspects of tense are not treated in the further work. In [KrW089] some

11

produce sound results. Its measures may be inexact or disturbed. The sensor may be

interrupted for some time or break down completely.

Now we could try to use algorithms from image processing to improve the quality of the
sensor data, however, this is not appropriate. A vehicle may have an arbitrary trajectory.
There are no straight lines, which a computer vision algorithm would detect. So the

correct solution must be found in the moment when the image data i s created. An

outcome of this problem is to let a sensor “get in contact” to its neighbours and thus try to
get more information about its own measures. If one or more other sensors confirm the

opinion of the first, the probability of the data increases considerably.

In human organizations we call this phenomenon cooperation. We regard cooperation as

an interaction of a t least two co-actors resulting in a benefit for at least one of them.
Without this interaction the benefit could not have been achieved.
Cooperation is a natural way to tackle large problems, e.g. the interacting of a human
group of experts [DaSm83]. Because of the kind of problems - as in the example - in
DAI, it is one of the very principles to find a solution at all. Cammarata et al. [CaMcSt83]
see the expertise of a DAI system in its cooperative strategies.
Without cooperation each node would stick on its limited view, see only its limited
problems and thus produce limited solutions. An overall result as a synergy effect of the

work of all nodes would be almost impossible. .

Werner calls goals of agents in distributed settings as introduced in chapter 2.2. sociai
goals [We88, We89]. He argues that social goals are not achievable by one agent alone,
but only by a group of cooperating agents. These goals cannot be decomposed into
separate subgoals that are achievable independently of the other agents activities. One
agent cannot simply proceed to perform its action without considering what other agents
are doing. So, in this terminology, the monitoring of vehicles with distributed sensors is
a social goal.
Because of its importance for DAI we must take a closer look to the principles of
cooperation. We said, cooperation is necessary to achieve social goals. But often also the
quality of the solution is important, too. A distributed system, which spends such a long
time with communication that nobody is interested in the solution anymore, i s worthless.
Two new aspects become evident. The demand for coherence [DaSm83, Ca88] and the
impact of ti_m§ [KrW089].

A successful cooperation strategy must ensure a steady convergence towards a solution.
The system must not move around and come to no end, a coherent behaviour should be
achieved. Since each action takes time, methods are to prefer which involve actions as
short as possible. Consider distributed sensor nets which monitor dangerous processes in
a factory. Surely time for cooperation is limited in an emergency case. For the sake of
simplicity, the aspects of tense are not treated in the further work. In [KrW089] some

11

relationships between temporal interval relations and multi agent scenarios are sketched.

The principles of temporal relations were presented by Allen [AI84].

Based on the previous work in this area (e.g. [We88, We89, DuLeC087, CoMiCa90])

we distinguish the following spectrum of social intentions:

Co-existence. The agents do not interact, but solve their problem independently. So no

cooperation is necessary. Since we consider "social goals", this case is not relevant for

OAI.

Malevolence. Agents do not cooperate, they even work actively against each other

(preventing them from reaching their goals). This is a typical competition situation, e.g.

when a resource is heavily demanded and neither a priority order for the agents is given

nor a fair mediator resolves the conflicts. We will not regard such anarchic scenarios in

the further work because in total commensurability only stochastic observations are

pos~ipl~.

Self-Interest. Cooperation is strived for only if agents regard a cooperative action as

beneficial for their own interest. All agents which engage in cooperative acting expect

advantages for themselves. Consider an agent which wants another (an obstac!e\ !o go

away. The latter will only follow the demand, if it can do something for itself at the same

time (e.g. coming nearer to its goal).

Benevolence. Agents also engage in cooperation when no direct use for them is in reach.
I

They would, for instance, even conform to wishes of others, when they do not come

nearer towards their own goal nor gain any other advantage. But a delineation to altruism

m'ust be made. Agents will only remain cooperative as long as they do not suffer any

negative influence.

Altruism. Agents act always cooperatively, despite of the consequences for their own

interests. An example is a (human!) parent-child relationship, where the parent does

everything for hislher child. These relationships hardly occur in the DAI literature.

Because we are interested only in those agents which have a certain will to attain their

goals, we do not regard altruism any further.

Thus especially the spectrum self-interest - benevolence is relevant for cooperation

strategies in DAI. This should be regarded as a continuum, no strict separations can be

made. In groups of humans the behaviour may change, e.g. dependent from different

tasks or moods. Though we do not intend to provide artificial agents with moods, their

behaviour also may not keep static for an observer. We must keep in mind that the last

categorization was a descriptive one. Self-interest, benevolence, etc. can only be noticed

with respect to the agent's actual intentions, it cannot be an absolute characteristic.

12

relationships between temporal interval relations and multi agent scenarios are sketched.
The principles of temporal relations were presented by Allen [A184].
Based on the previous work in this area (e.g. [We88, We89, DuLeCo87, CoMiCa90])
we distinguish the following spectrum of social intentions:
Co—existence. The agents do not interact, but solve their problem independently. So no
cooperation is necessary. Since we consider “social goals”, this case is not relevant for
DAI.
Malevolenge. Agents do not cooperate, they even work actively against each other
(preventing them from reaching their goals). This is a typical competition situation, e. g.
when a resource is heavily demanded and neither a priority order for the agents is given
nor a fair mediator resolves the conflicts. We will not regard such anarchic scenarios in
the further work because in total commensurability only stochastic observations are

possible.
Self-interest. Cooperation is strived for only if agents regard a cooperative action as
beneficial for their own interest. All agents which engage in cooperative acting expect
advantages for themselves. Consider an agent which wants another (an obstacle‘ to go
away. The latter will only follow the demand, if i t can do something for itself at the same

time (e.g. coming nearer to its goal).
Benevolence. Agents also engage in cooperation when no direct use for them is in reach.

They would, for instance, even conform to wishes of others, when they do not come
nearer towards their own goal nor gain any other advantage. But a delineation to altruism
must be made. Agents will only remain cooperative as long as they do not suffer any
negative influence.
Mm. Agents act always cooperatively, despite of the consequences for their own
interests. An example i s a (human!) parent-child relationship, where the parent does

everything for his/her child. These relationships hardly occur in the DAI literature.
Because we are interested only in those agents which have a certain will to attain their
goals, we do not regard altruism any further.
Thus eSpecially the spectrum self-interest - benevolence is relevant for cooperation
strategies in DAI. This should be regarded as a continuum, no strict separations can be
made. In groups of humans the behaviour may change, e.g. dependent from different
tasks or moods. Though we do not intend to provide artificial agents with moods, their
behaviour also may not keep static for an observer. We must keep in mind that the last
categorization was a descriptive one. Self-interest, benevolence, etc. can only be noticed
with respect to the agent’s actual intentions, it cannot be an absolute characteristic.

12

Types of cooperation are adjacent to social interactions as described above. These

describe the kind of relation between the (usually two) parties involved in a direct

cooperation task. Again we introduce a range of classifications [We88, We89,

CoMiCa90]:

Accidental cooperation. The parties act independently and unwittingly in favour of at least

one of them. Example: One agent moves to a certain position and provides thus a desired

support. for another which wants to act. The latter one has not explicitly demanded this

support.

Master-slave relationship. An agentforces a second one to do something for it (the fIrst).

The "master" alone has control of the proceeding.

One-way cooperation. An agent asks another agent for cooperation (also known as

"bidding"). The other may agree or may not. The task is necessary only for the fIrst

...	 agent, but the second keeps its autonomy when serving the request.

Mutital·cooperation. The task is benefIcial for both parties. By exchange of information

they resume their proceeding (for negotiation cf. chapter 3.5.).

Cooperative goal adoption (proposed by [CoMiCa90]). Not only information about the

task which shall satisfy the goals of the parties is exchanged. Moreover, information

about the goals is communicated and the goals are mutually adopted. A task which

formerly would not have met both intentions, eventually satisfies the (new) goals.
I

Example (from a Blocks World): Agent A's goal is "go to position X,Y". Agent B's goal

is "Build a blue tower at position X' Y"'. If the goal can be slightly modified to A: "go to

position X',y'" and B: "Build a tower at position X' Y"', a move from A to X' Y' would

be the basis for the mutual satisfaction of the new goals. But the problem is to let the

agents find a common basis for the goal adoption. This is not trivial.

What we have seen is that some amount of knowledge of one agent must necessarily be

known by the other to achieve a successful cooperation. How can this exchange of

information be achieved? The key issue is communication. Like Wemer states [We88]

"No cooperation without communication!" (though it is not overall accepted), we will

follow this paradigm.

2.5. Communication

In the previous chapter the importance of shared information to cooperate effectively was

outlined. We will now argue that communication is an appropriate means to achieve that.

Communication shall be regarded as the exchange of information between at least two

agents. Both the partners are aware of the situation, at least one of them wants to gain

benefits.

13

Types of cooperation are adjacent to social interactions as described above. These

describe the kind of relation between the (usually two) parties involved in a direct

cooperation task. Again we introduce a range of classifications [We88, We89,

CoMiCa90]:
Accidental gmmgation. The parties act independently and unwittingly in favour of at least
one of them. Example: One agent moves to a certain position and provides thus a desired
support for another which wants to act. The latter one has not explicitly demanded this

support.
Lia—steam; An agent forces a second one to do something for it (the first).
The “master” alone has control of the proceeding.
One-way cooperation. An agent asks another agent for cooperation (also known as
“bidding”). The other may agree or may not. The task is necessary only for the first

— agent, but the second keeps its autonomy when serving the request.
Mutual'cmperag'on. The task is beneficial for both parties. By exchange of information
they resume their proceeding (for negotiation cf. chapter 3.5.).

Cooperative goal adoption (proposed by [CoMiCa90]). Not only information about the
task which shall satisfy the goals of the parties is exchanged. Moreover, information
about the goals is communicated and the goals are mutually adopted. A task which
formerly would not have met both intentions, eventually satisfies the (new) goals.
Example (from a Blocks World): Agent A’s goal is “go to position X,Y”. Agent B’s goal
is “Build a blue tower at position X' Y'”. If the goal can be slightly modified to A : “go to
position X‘,Y"’ and B: “Build a tower at position X ' Y'”, a move from A to X' Y' would
be the basis for the mutual satisfaction of the new goals. But the problem i s to let the
agents find a common basis for the goal adoption. This is not trivial.
What we have seen is that some amount of knowledge of one agent must necessarily be
known by the other to achieve a successful cooperation. How can this exchange of
information be achieved ? The key issue i s communication. Like Werner states [We88]
“No cooperation without communication!” (though i t i s not overall accepted), we will
follow this paradigm.

2 .5 . Communica t ion

In the previous chapter the importance of shared information to cooperate effectively was
outlined. We will now argue that communication is an appropriate means to achieve that.
Communication shall be regarded as the exchange of information between at least two
agents. Both the partners are aware of the situation, at least one of them wants to gain
benefits.

13

.'

Wemer introduces the spectrum of approaches made to communication [We88, We89]:

No communication. Agents rationally infer the other agents' intentions. One example of

this approach is the use of decision matrices as proposed in [Gi87, RoBr89] and used in

game theory: The agents always have as much information as possible about the next

move in a global decision matrix. So they can compute what is best for them with respect

to the next move of the oL~~r agent. Communication is unnecessary.

.' ..i v;,ntages of this approach are:

- Avoidance of communication costs. No communication channels need to be estab

lished and to be maintained. No synchronization procedures are necessary.

- Computation may be faster than communication, if otherwise many intermediate

results must be exchanged [DaSm83].

- Errors due to unsafe communication are avoided.

.- But on the other hand a lot of drawbacks appear:

- I(each agent computes all results on its own, the whole society works very redun

dantly. The communication of complete results might be faster in the case when

computations are complex.

- In many situations the agents must have information about the other agents' beliefs.

Without verifying these beliefs by asking about their status, but only relying on own

information, infinite nestings of belief may evolve. Agent A forms its beliefs based on
//

the beliefs of agent B. This in turn relies on the information it has about agent A, and

,;so forth. How should possible changes of belief reach the other agent without

,communication ?

Because of its costs communication should be restricted to a minimum. For simple or

standardized information exchange, rational deduction may be appropriate. A robot A,
for instance, gets the information of another robot B that B carries a certain chest. If A is

sure that 13 has not moved in the meantime nor any supernatural things have happened, it

needs not to communicate again about the "carry" fact, but can deduce it rationally from

its own information.

But this is not the case for the exchange of high level information, e.g. the information

about complex goals.

Primitive communication. Communication is restricted by a finite set of fixed information

signals with fixed interpretations. The possible effects of these means are limited, for

instance simple coordination tasks between sequential processes can be achieved.

Complex commands cannot be represented, let alone arbitrarily syntactic constructs. The

number of representable information entities is fixed, so sophisticated cooperative action

is virtually impossible.

For fine-grained DAI systems this may be a proper way to allow communication between

the nodes. Where only simple information must be exchanged, flexible channels and

14

Werner introduces the spectrum of approaches made to communication [We88, We89]:
No communication. Agents rationally infer the other agents’ intentions. One example of
this approach is the use of decision matrices as proposed in [Gi87, RoBr89] and used in
game theory: The agents always have as much information as possible about the next
move in a global decision matrix. So they can compute what is best for them with respect
to the next move of the other agent. Communication is unnecessary.
.‘ iv:~.ntages of this approach are:
- Avoidance of communication costs. No communication channels need to be estab-

lished and to be maintained. No synchronization procedures are necessary.
- Computation may be faster than communication, if otherwise many intermediate

results must be exchanged [DaSm83].
- Errors due to unsafe communication are avoided.
But on the other hand a lot of drawbacks appear:
- If each agent computes all results on its own, the whole society works very redun-

dantly. The communication of complete results might be faster in the case when

computations are complex.
- In many situations the agents must have information about the other agents’ beliefs.

Without verifying these beliefs by asking about their status, but only relying on own
information, infinite nestings of belief may evolve. Agent A forms its beliefs based on,

the beliefs of agent B. This in turn relies on the information it has about agent A, and

so forth. How should possible changes of belief reach the other agent without
"communication ?

Because of its costs communication should be restricted to a minimum. For simple or
standardized information exchange, rational deduction may be appropriate. A robot 8.,
for instance, gets the information of another robot ß that B carries a certain chest. If A is
sure that 3 has not moved in the meantime nor any supernatural things have happened, it
needs not to communicate again about the "carry" fact, but can deduce it rationally from
its own information.
But this i s not the case for the exchange of high level information, e.g. the information
about complex goals. .
Primitive communication. Communication is restricted by a finite set of fixed information
signals with fixed interpretations. The possible effects of these means are limited, for
instance simple coordination tasks between sequential processes can be achieved.
Complex commands cannot be represented, let alone arbitrarily syntactic constructs. The
number of representable information entities is fixed, so sophisticated cooperative action
is virtually impossible.
For fine—grained DAI systems this may be a proper way to allow communication between
the nodes. Where only simple information must be exchanged, flexible channels and

14

sophisticated nodes in coarse grained systems are not exploited adequately. Complex

nodes like expens systems should not be limited to a finite set of possible messages. The

format may be restricted, but the content must be free to permit the nodes the exchange of

flexible and wonhwhile chunks of information.

Plan and information passing. The agents mutually exchange their final plans. Whichever

plan arrives first is accepted. Despite of the fact that such a proceeding is extremely

expensive (costs of communication), there are still more disadvantages: No guarantee can

,be given that the "winning" plan is optimal (or at least acceptable) for both panies. A

funher problem is (as we will discuss funher in chapter 2.7.) that total plans normally

cannot be formulated in advance, especially not in real world applications.

High-level communication. This is a field at the frontier to linguistics; for instance, much

has been done in speech act planning. To exploit the work of linguists and cognitive

sci~~tists a more formal approach is necessary. An anificial agent cannot understand

arbitrary syntactic information, it needs cenain rules to interpret language, as well as a

human does. This is not apparent when we use our native language, but the less

expe-ience we have in a foreign language, the more we consciou<;!:, stick to the rules we

have learned. An anificial agent has no knowledge a priori. It must completely rely on

rules. Therefore a formalized approach to communication is necessary. The advantages of

high-level communication are evident:

- Flexibility of expressions, almost all communication situations are covered.
"

- :. It is better to understand by humans (humans may even be directly involved in the

.communication process).

- Social, cognitive, and linguistic theories and results may become applicable.

High-level communication, which is strictly formalized, shall be called conversation

[KrMa90, WoKr89, KrW088]. The processes which are incorporated, the conversational

processes, shall now be investigated funher. As we mentioned above, these processes

have to be formalized that agents are able to interpret, say, a bitstream of '0' and '1' as a

cenain message. Protocols [KrMa90] are an appropriate means to this end. We define a

protocol rather informally. It determines the message types, the states, and perhaps also

the roles of the panies involved. Message types outline the allowed formats of the

messages, the arguments, etc. States panition the whole conversation process into

discrete steps. In each state alternative branches to proceed are normally given. Roles

install social structures [We89] which may further restrict the conversation.

Example: A protocol for robbery.

Message type: give_money
Format: "give <requestor: agent> <addressee: agent> <budget: integer>O> $"
States: Before: requestor has not enough money, addressee has money

After: requestor has more money, addressee has less money
Roles: requestor: master; addressee: slave

15

sophisticated nodes in coarse grained systems are not exploited adequately. Complex

nodes like experts systems should not be limited to a finite set of possible messages. The

format may be restricted, but the content must be free to permit the nodes the exchange of

flexible and worthwhile chunks of information.
Elan and information passing. The agents mutually exchange their final plans. Whichever

plan arrives first is accepted. Despite of the fact that such a proceeding is extremely

expensive (costs of communication), there are still more disadvantages: No guarantee can
_be given that the “winning” plan is optimal (or at least acceptable) for both parties. A

further problem is (as we will discuss further in chapter 2.7.) that total plans normally

cannot be formulated in advance, especially not in real world applications.
High-level communication. This i s a field at the frontier to linguistics; for instance, much

has been done in speech act planning. To exploit the work of linguists and cognitive
scientists a more formal approach i s necessary. An artificial agent cannot understand
arbitrary syntactic information, it needs certain rules to interpret language, as well as a
human does. This is not apparent when we use our native language, but the less
experience we have in a foreign language, the more we consciously stick to the rules we
have learned. An artificial agent has no knowledge a priori. It must completely rely on
rules. Therefore a formalized approach to communication is necessary. The advantages of
high-level communication are evident: „
- Flexibility of expressions, almost all communication situations are covered.
-_ It is better to understand by humans (humans may even be directly involved in the
I : communication process).

- Social, cognitive, and linguistic theories and results may become applicable.

High-level communication, which is strictly formalized, shall be called 993mm
[KrMa90, WoKr89, KrWo88]. The processes which are incorporated, the conversational
processes, shall now be investigated further. As we mentioned above, these processes
have to be formalized that agents are able to interpret, say, a bitstream of ‘0’ and ‘1’ as a
certain message. Protocols [KrMa90] are an appropriate means to this end. We define a
protocol rather informally. It determines the message types, the states, and perhaps also
the roles of the parties involved. Message types outline the allowed formats of the
messages, the arguments, etc. States partition the whole conversation process into
discrete steps. In each state alternative branches to proceed are normally given. Roles
install social structures [We89] which may further restrict the conversation.
Example: A protocol for robbery.
Message type: give_money
Format: “give (requestor: agent) (addressee: agent) < budget: integer>0> $”
States: Before: requestor has not enough money, addressee has money

After: requestor has more money, addressee has less money
Roles: requestor: master; addressee: slave

15

Some researchers propose a mediator as a special agent only for conversational processes

[KrMa90, WoKrS9, KrWoSS]. The mediator monitors the conversations and maintains

the communication channels. The other agents can save their resources for private tasks,

they do not have to cope with conversational problems. A mediator furthennore is

suitable to break up the complicate multi-lateral conversation into a set of bilateral

conversations.

In [KrWoSr], mediators are defined as "fully automated pseudo-users, which supply

precisely defined services within conversations of certain types".

How will communication then in fact be perfonned ? Actually, there are two principles

for the realization: Infonnation can be exchanged via regions of shared memory, or

through message passing [KrMa90].
::	

A typical example for communication by means of shared memory is the blackboard

mechanism. This was already used in Hearsay II ([DeS7, DuLeCoS7]; cf. also chapter

2.2.). A blackboard can be conceived as the name suggests, it is a common "structure",

where all authorized agents can concurrently write u~on or read from [NiAiRiS9]. In

principle, an infonnation on the blackboard is accessible by all agents (we say, the

infonnation is broadcasted). This can be restricted by delineating the groups of agents

which are explicitly allowed to read (analogous for write). The infonnation on the
f

blackboard nonnally resides in several levels of abstraction. The advantage is that the

ag7nt can decide, how fine (or coarse, respectively) the infonnation must be for it.
::	 The realization of a blackboard is quite simple, just some areas of common access must

be provided. These may be common chunks of storage, or (more abstractly, but at last

the same) data structures which all involved parties may access.

Message passing [KrMa90] is the other paradigm. The exact realization can vary

considerably. The spectrum ranges from collecting arriving messages in mailboxes and

processing them when enough time is left, to a direct return of an answer (e.g. as a

remote procedure call, see chapter 4.4.1.). Unlike in a blackboard setting where broad

casting is essential, the general principle is the individual addressing of a message. A

message nonnally has exact one recipient (selective communication). It enhances the

knowledge of the receiver or causes it something to do. Broadcasting can only be

achieved by dull copying the message and sending it to all.

The infonnation communicated has, as mentioned above, influence on the knowledge

state of the receiver. But it can be further categorized by three aspects [DuLeCoS7]:

- Relevance. Describes the amount of infonnation in the message that is consistent with

the solution.

16

Some researchers propose a mediator as a special agent only for conversational processes

[KrMa90, WoKr89, KrWo88]. The mediator monitors the conversations and maintains

the communication channels. The other agents can save their resources for private tasks,
they do not have to cope with conversational problems. A mediator furthermore i s

suitable to break up the complicate multi-lateral conversation into a set of bilateral
conversations.
In [KrWoSS], mediators are defined as “fully automated pseudo-users, which supply

precisely defined services within conversations of certain types”.

How will communication then in'fact be performed ? Actually, there are two principles

for the realization: Information can be exchanged via regions of w, or
through message passing [KrMa90].

‘ A typical example for communication by means of shared memory is the blackboard
mechanism. This was already used in Hearsay II ([De87, DuLeCo87]; cf. also chapter
2.2.). A blackboard can be conceived as the name suggests, it i s a common “structure”,
where all authorized agents can concurrently write upon or read from [NiAiRi89]. In
principle, an information on the blackboard is accessible by all agents (we say, the
information i s broadcasted). This can be restricted by delineating the groups of agents
which are explicitly allowed to read (analogous for write). The information on the,
blackboard normally resides in several levels of abstraction. The advantage is that the
agent can decide, how fine (or coarse, respectively) the information must be for it.
The realization of a blackboard i s quite simple, just some areas of common access must
be provided. These may be common chunks of storage, or (more abstractly, but at last
the same) data structures which all involved parties may access. _
Message passing [KrMa90] is the other paradigm. The exact realization can vary
considerably. The spectrum ranges from collecting arriving messages in mailboxes and
processing them when enough time i s left, to a direct return of an answer (e.g. as a

remote procedure call, see chapter 4.4.1.). Unlike in a blackboard setting where broad-
casting is essential, the general principle is the individual addressing of a message. A
message normally has exact one recipient (selective communication). It enhances the
knowledge of the receiver or causes it something to do. Broadcasting can only be
achieved by dull copying the message and sending it to all.

The information communicated has, as mentioned above, influence on the knowledge

state of the receiver. But it can be further categorized by three aspects [DuLeCo87]:
- Relevance. Describes the amount of information in the message that is consistent with

the solution.

16

- Timeliness. Measures the extent to which a transmitted message will influence the

current activity of the receiver.

- Completeness. Describes the fraction of the complete solution which is represented by

the message.

At last, a few words about levels of communication. It rray be convenient to exchange

information not only about the world states, or the intentions and abilities of the agents,

but also information about this information.

How is the information organized, where does it come from, where is it stored ? Also

facts about the processes of cooperation and communication can be of interest: What is

the actual role of an agent, which states does it aspire next?

Consider an agent who knows not only the intentions of another, but also how the latter

cam~ ~? these intentions. The first one knows considerably more about the other and may

possibly deduce the next reactions and thus save the costs for communication.

This form of communication is known as meta-Ievel communication [DuLeC087]. It

concerns primarily planning aspects, where agents have to reflect about future intentions

of their co-actors in the scenario (see chapter L..7.).

2.6. Synchronization

Ih systems with distributed activity, especially if parallel processes are involved, certain

uncomfortable problems may arise: Processes overtake or cross each other, causing

inconsistencies or d~adlocks [KrMa90]. It is even more difficult to monitor the effects of

various processes if the scenario has no global clock and thus no global states. thus

synchronization is crucial for DAI scenarios.

Synchronization shall be regarded as the policy to prevent inconsistencies and deadlocks

by detecting mutual dependencies, possible conflicts, and hazardous behaviour of

involved parts of the system.

For the multi-agent scenarios, this implies that the acting of the respective agents must be

coordinated4 such that the effects mentioned above cannot occur.

There are three basic ways to realize synchronization:

- The agents alone are responsible for a coordinated behaviour. They must come to an

agreement (mostly by negotiation) and furthermore control the execution of their

actions. Hence the typology of messages must be augmented by synchronization

messages.

4Though not fully identical, we will assume that synchronization and coordination have the same intention
and do not distinguish between them.

17

- Timeliness. Measures the extent to which a transmitted message will influence the

current activity of the receiver.
- Completeness. Describes the fraction of the complete solution which is represented by

the message.

At last, a few words about levels of communication. It may be convenient to exchange

information not only about the world states, or the intentions and abilities of the agents,

but also information about this information.
How is the information organized, where does i t come from, where is i t stored ? Also

facts about the processes of cooperation and communication can be of interest: What is
the actual role of an agent, which states does it aspire next ?
Consider an agent who knows not only the intentions of another, but also how the latter
came to these intentions. The first one knows considerably more about the other and may

possibly deduce the next reactions and thus save the costs for communication.
This form of communication i s known as meta-level communication [DuLeCo87]. I t

concerns primarily planning aspects, where agents have to reflect about future intentions
of their co-actors i n the scenario (see chapter 4.7.).

2.6. Synchroniza t ion

Iii systems with distributed activity, especially if parallel processes are involved, certain
uncomfortable problems may arise: Processes overtake or cross each other, causing
inconsistencies or deadlocks [KrMa90]. I t is even more difficult to monitor the effects of
various processes if the scenario has no global clock and thus no global states. Thus
synchronization is crucial for DAI scenarios.
Synchronization shall be regarded as the policy to prevent inconsistencies and deadlocks
by detecting mutual dependencies, possible conflicts, and hazardous behaviour of
involved parts of the system.
For the multi-agent scenarios, this implies that the acting of the respective agents must be
coordinated4 such that the effects mentioned above cannot occur.
There are three basic ways to realize synchronization:
- The agents alone are responsible for a coordinated behaviour. They must come to an

agreement (mostly by negotiation) and furthermore control the execution of their
actions. Hence the typology of messages must be augmented by synchronization
messages.

4Though not fully identical, we will assume that synchronization and coordination have the same intention
and do not distinguish between them.

17

- Another agent, which is not a "nonnal" acting agent, ensures coordinated processing

[KrMa90]. Such a mediation through a coordination agent must not be dictated to the

other agents. They may bring in their proposals and the mediator may either "have the

final word" or go on in mediation until a compromise is reached.

We prefer this issue, because a coordination agent can release itself from any local

agent's view and come to a more comprehensive Lnschauung of the world.

Furthermore expensive communication can be reduced to information of the

coordination agent.

A drawback is the problem of a possible bottleneck [DaSm83], which the coordination

agent as a unique node may produce.

- A total order of the agents with respect to attached priority values is possible in

advance. In each conflict situation synchronization can automatically be managed by

using the priority order. An improvement of this inflexible solution would be an
..~ .-.

effectively computable priority function depending on the situation the agents are

involved in at the moment.

Abstractly spoken, a coordination agent has always to detect negative relationships

between the planned actions of different agents [KrMa90]. These relations disturb or

prevent the actions of at least one of the agents. Another word for negative relationship,s

is conflicts.

T'f0 basic types of conflicts may occur:
.'	

Conflicts through incompatible wishes.

Example: An agent A wants to go to a certain place X. This is not possible because

agent B is located at X and cannot go away.

- Conflicts through overlapping wishes (including resource conflicts).

Example: Both agents A and B want to go to place X. Which of them will win?

We have introduced the principles of cooperation, communication, and synchronization.

All these aspects mentioned in the last three ch?pters shall be exemplified in chapter 4,

where a sample scenario is introduced.

2.7. Planning

Planning is an essential human problem solving method. Whenever a problem is worth

the effort, i.e. it is complex and we are interested how to come to the solution, we

develop a plan. A plan describes a way from the actual state to a future situation, where

the desired solution is attained. Developing a plan in "normal life" often occurs informal

and by no means spectacular. But because of its use for humans it has been heavily

18

- Another agent, which is not a “normal” acting agent, ensures coordinated processing

[KrMa90]. Such a mediation through a coordination agent must not be dictated to the

other agents. They may bring in their proposals and the mediator may either “have the
final wor ” or go on in mediation until a compromise is reached
We prefer this issue, because a coordination agent can release itself from any local
agent’s view and come to a more comprehensive anschauung of the world.

Furthermore expensive communication can be reduced to information of the

coordination agent. '
A drawback is the problem of a possible bottleneck [DaSm83], which the coordination

agent as a unique node may produce.
- A total order of the agents with respect to attached priority values i s possible in

advance. In each conflict situation synchronization can automatically be managed by
using the priority order. An improvement of this inflexible solution would be an

effectively computable priority function depending on the situation the agents are
involved in at the moment.

Abstractly spoken, a coordination agent has always to detect negative relationships

between the planned actions of different agents [KrMa90]. These relations disturb or

prevent the actions of at least one of the agents. Another word for negative relationships
is conflicts.
Two basic types of conflicts may occur:
- ' Conflicts through incompatible wishes.

Example: An agent A wants to go to a certain place X. This is not possible because
agent B is located at X and cannot go away.

— Conflicts through overlapping wishes (including resource conflicts).
Example: Both agents A and B want to go to place X. Which of them will win ?

We have introduced the principles of cooperation, communication, and synchronization.
All these aspects mentioned in the last three chapters shall be exemplified in chapter 4 ,
where a sample scenario is introduced.

2 .7 . P lann ing

Planning is an essential human problem solving method. Whenever a problem is worth
the effort, i.e. it i s complex and we are interested hm to come to the solution, we
develop a plan. A plan describes a way from the actual state to a future situation, where
the desired solution is attained. Developing a plan in “normal life” often occurs informal
and by no means spectacular. But because of its use for humans it has been heavily

18

investigated in AI. Since the beginning of AI research, the automated generation of plans

is a "classic" goal. Thus it is also desirable to fonnalize the intuitive understanding of

that, what planning is or may be.

One of the first approaches was the General Problem Solver (GPS) of Newell, Shaw and

Simon which was presented in the early 1960's. This was an attempt to model universal

human problem solving, but due to its generality 5 the solution of complex planning tasks

was infeasible [Ni80, Ri83, He86].

The tendency from general approaches to domain dependent systems after these

experience is an evidence for the complexity of real world applications. Today it is well

accepted that planners must comprise a cenain amount of domain specific knowledge to

cope with interesting problems [He86]. The DAI metaphor provides new ways for

planning: Multi-agent planning and distributed planning. These proposals try to avoid

someofthe shortcomings of "traditional approaches".

2.7.1. Traditional Planning

In the traditional approach, one planner creates the whole plan for the entire environment

to be planned. We assume the following: The planner has collected all the knowledge
I

he/she/it needs to be able to take all possibilities into account and to ensure that the plan is

appropriate. Funhennore the environment is good-natured, Le. only the effects caused

explicitly by the plan will occur. In particular, there are no interferences which could

endanger the plan's execution.

Planning itself is regarded as finding a sequence of actions that transfonn a given start

state into a desired goal state. States are (partial) descriptions of the world, actions

perfonn changes in this world. Actions are usually represented with three lists:

PRECOND, the list of all conditions in the world which must be true to enable the

execution; ADD, the list of all what becomes true after the execution; DELETE, list of all

facts which are no longer true and thus must be deleted. In the rest of this paragraph we

will briefly sketch the main aspects of traditional planning (the material is mainly taken

from [He86, He89, He90, St87, Ri83], where the traditional approaches are exhaustively

described).

A plan is fonned for a singLe actor, e.g. a robot. Thus the sequence of actions must be

linear. The technique of non-linear pLanning tries to delay this linearization as long as

possible to avoid unnecessary restrictions. One-LeveL pLanning resides at the level of

elementary operations. For instance, in the Blocks World a plan is built up with actions

like: ... STACK(B,A), PICKUP (C), STACK(C,B), PICKUP(D), ...etc. In large

5And, of course, because of the lack of sufficient computer power in these days.

19

investigated in AI. Since the beginning of AI research, the automated generation of plans

is a “classic” goal. Thus it is also desirable to formalize the intuitive understanding of
that, what planning is or may be.

One of the first approaches was the General Problem Solver (GPS) of Newell, Shaw and

Simon which was presented in the early 1960’s. This was an attempt to model universal

human problem solving, but due to its generality 5 the solution of complex planning tasks
was infeasible [Ni80, Ri83, He86].

The tendency from general approaches to domain dependent systems after these
experience is an evidence for the complexity of real world applications. Today it is well

accepted that planners must comprise a certain amount of domain specific knowledge to
cope with interesting problems [He86]. The DAI metaphor provides new ways for

planning: Multi-agent planning and distributed planning. These proposals try to avoid

some of _the shortcomings of “traditional approaches”.

2.7.1. Trad i t iona l P l ann ing

In the traditional approach, one planner creates the whole plan for the entire environment

to be planned. We assume the following: The planner has collected all the knowledge
he/she/it needs to be able to take all possibilities into account and to ensure that the plan is
appropriate. Furthermore the environment i s good-natured, i.e. only the effects caused
explicitly by the plan will occur. In particular, there are no interferences which could
endanger the plan’s execution.
Planning itself is regarded as finding a sequence of actions that uansform a given start
state into a desired goal state. States are (partial) descriptions of the world, actions
perform changes in this world. Actions are usually represented with three lists:
PRECOND, the list of all conditions in the world which must be true to enable the
execution; ADD, the list of all what becomes true after the execution; DELETE, list of all
facts which are no longer true and thus must be deleted. In the rest of this paragraph we
will briefly sketch the main aspects of traditional planning (the material i s mainly taken
from [He86, He89, He90, St87, Ri83], where the traditional approaches are exhaustively
described).
A plan i s formed for a single actor, e.g. a robot. Thus the sequence of actions must be
linear. The technique of non-linear planning tries to delay this linearization as long as
possible to avoid unnecessary restrictions. One—level planning resides, at the level of
elementary operations. For instance, in the Blocks World a plan is built up with actions
l i ke : . . . STACK(B,A) , P ICKUP (C) , STACK(C,B) , P ICKUP(D) , . . . e t c . In large

5And , of course, because of the lack of sufficient computer power in these days.

19

planning problems this view is too limited. It will be more convenient to plan fIrst "larger

steps" and then refine the plan more and more by reducing the stepwidth (replacing of

"abstract actions" by more "concrete" ones). Finally the level of elementary operations is

reached. This stepwise decrease of abstraction is known as hierarchical planning.

Another approach is interval-based planning, where aspects of time are modelled more

naturally. Meta-planning comprises "normal" actions, which change the world, as well as

plan-changing actions, which are used to plan the planning process. This abstraction

allows more flexibility in plan generating.

After all, two issues hold for traditional planning:

- There is a strict separation between plan generation and plan execution. Before

executed, the plan is created explicitly and handed out to the executor.

- Strictly spoken, planning is nothing but search. How else should the planner find a

sequ~nce of actions? Therefore it is interesting to consider some basic aspects of

search separately (cf. chapter 3.1.).

STRIPS [Ni80] is the prototyp~ of all traditional planners. It pIano;; -:.;equences of actions

for manipulating, for instance, objects in a Blocks World. It has the current state of the

world in its database and a goal description on a goal stack. Using search methods, the

entries of the goal stack are successively removed by the preconditions of appropriat9

actions, until all entries of the goal stack match entries in the database. This implies, the

sequence of actions (the plan) has achieved the transformation of the start state to the goal

state.

Several problems arise when real world scenarios are to be planned.

The frame problem, for instance, asks for the constant frame which stands "behind" the

actual effects of an action. On transforming a state description into a description of the

successor state, one has to specify not only the effects which are caused by an action

(ADD-, DELETE-lists), but also the facts which are not altered. STRIPS uses a

simplifying assumption (known as "STRIPS assumption"), which generally expects that

actions modify only the things explicitly mentioned in their ADD- and DELETE-lists. In

complex applications where each modification may cause arbitrary side effects, this

assumption cannot be uphold any longer.

Furthermore, there is the problem of subgoal interaction. If a certain subgoal if reached, a

solution for another subproblem may undo the fIrst solution. This is not a trivial problem

because of the requirement for linearization. STRIPS uses a simple model to overcome it.

After reaching the final goal, it tries to attain possible undone subgoals anew. This is a

rather coarse and unfounded way and may result in endless loops.

The strict separation between planning and execution must be weakened. Real world

problems cannot be planned fully in advance. An usual human way to plan is : Create

20

planning problems this view is too limited. It will be more convenient to plan first “larger

steps" and then refine the plan more and more by reducing the stepwidth (replacing of
“abstract actions” by more “concrete” ones). Finally the level of elementary operations is
reached. This stepwise decrease of abstraction is known as hierarchical planning.
Another approach is interval-based planning, where aspects of time are modelled more
naturally. Meta-planning comprises “normal” actions, which change the world, as well as
plan-changing actions, which are used to plan the planning process. This abstraction
allows more flexibility in plan generating.
After all, two issues hold for traditional planning:
- There is a strict separation between plan generation and plan execution. Before

executed, the plan is created explicitly and handed out to the executor.
- Strictly spoken, planning i s nothing but search. How else should the planner m a

sequence of actions ? Therefore i t is interesting to consider some basic aspects of

search separately (cf. chapter 3.1.).

STRIPS [N180] is the prototype of all traditional planners. It plans sequences of actions

for manipulating, for instance, objects in a Blocks World. It has the current state of the
world in its database and a goal description on a goal stack. Using search methods, the
entries of the goal stack are successively removed by the preconditions of appropriate
actions, until all entries of the goal stack match entries in the database. This implies, the

sequence of acu'ons (the plan) has achieved the transformation of the start state to the goal

state.
Several problems arise when real world scenarios are to be planned.
The frame problem, for instance, asks for the constant frame which stands “behind” the

actual effects of an action. On transforming a state description into a description of'the
successor state, one has to specify not only the effects which are caused by an action

(ADD-, DELETE-lists), but also the facts which are n_o_t altered. STRIPS uses a
simplifying assumption (known as “STRIPS assumption”), which generally expects that
actions modify only the things explicitly mentioned in their ADD— and DELETE-lists. In
complex applications where each modification may cause arbitrary side effects, this
assumption cannot be uphold any longer.
Furthermore, there i s the problem of subgoal interaction. If a certain subgoal if reached, a
solution for another subproblem may undo the first solution. This i s not a trivial problem
because of the requirement for linearization. STRIPS uses a simple model to overcome it.
After reaching the final goal, it tries to attain possible undone subgoals anew. This is a
rather coarse and unfounded way and may result in endless loops.
The strict separation between planning and execution must be weakened. Real world
problems cannot be planned fully in advance. An usual human way to plan i s : Create

20

some steps, look what you have caused (acquisition of new information!) and then go on

with planning. This interweaving of planning and executing facilitates the reaction upon

hazards occurring during the execution. They may be caused by environmental factors,

by faults in planning, or by inexact execution.

The frame problem is inherent in the specification of actions. So it will not vanish in new

approaches, except a specification of ill consequences of an action is attempted. But no

appropriate formalism has yet bt:en found. The last mentioned problems, however, are

tackled in the approaches of distributed planning, whereas multi-agent planning merely

avoids problems of linearization.

2.7.2. Multi-Agent Planning
-.

Multi-agent planning tries to avoid the demand of a strict linearization of non-linear plans.

If there are many agents in the scene which may carry out the planned actions, there is no

need for a total order of actions anymore. However, the principles of traditional planning

are mostly preserved. There is still only one planner, which must have all the knowledge

that is necessary. Non-linear, complete plans are created and distributed adequately

among the agents.

The big advantage is the potential increase in performance through parallel execution'.

Also the use of resources can be optimized (agents receive just the tasks where they are

specialists for). Linearization needs only be performed, when there are more parallel

subtasks than available agents at one instant of time. However, the problem of an

adequate task decomposition gains importance. If it is too complicated, the advantages of

multi-agent planning may be compensated.

There are only occasional approaches to multi-agent planning in the literature. Katz and

Rosenschein propose the following - roughly sketched - proceeding [KaRo89]: First of

all, they represent "traditional" non-linear plans graphically in special directed acyclic

graphs. The relation induced by this partial order is called a "plan-like relation". This

relation must then be tested to be "valid", which means informally that the plan is

executable and can be distributed to the agents.

2.7.3. Distributed Planning

In distributed planning not only the execution is partitioned over the agents, but also the

planning process. Usually, the acting agents are a subset of the agents which plan. Thus

the agent plan for themselves. Also the strict separation between planning and acting is

weakened, normally a turn in turn change between these phases takes place.

21

some steps, look what you have caused (acquisition of new information!) and then go on

with planning. This interweaving of planning and executing facilitates the reaction upon
hazards occurring during the execution. They may be caused by environmental factors,

by faults in planning, or by inexact execution.
The frame problem i s inherent in the specification of actions. So i t will not vanish in new

approaches, except a specification of gl consequences of an action is attempted. But no

appropriate formalism has yet been found. The last mentioned problems, however, are

tackled in the approaches of distributed planning, whereas multi-agent planning merely
avoids problems of linearization.

2.7.2. Multi-Agent Planning

Multira‘gent planning tries to avoid the demand of a strict linearization of non-linear plans.
If there are many agents in the scene which may carry out the planned actions, there is no
need for a total order of actions anymore. However, the principles of traditional planning
are mostly preserved. There i s still only one planner, which must have all the knowledge
that i s necessary. Non-linear, complete plans are created and distributed adequately
among the agents.

The big advantage is the potential increase in performance through parallel execution’.
Also the use of resources can be optimized (agents receive just the tasks where they are
specialists for). Linearization needs only be performed, when there are more parallel
subtasks than available agents at one instant of time. However, the problem of an
adequate task decomposition gains importance. If it is too complicated, the advantages of
multi-agent planning may be compensated. “
There are only occasional approaches to multi-agent planning in the literature. Katz and
Rosenschein propose the following - roughly sketched - proceeding [KaRo89]: First of
all, they represent “traditional” non-linear plans graphically in special directed acyclic
graphs. The relation induced by this partial order i s called a “plan-like relation”. This
relation must then be tested to be “valid”, which means informally that the plan i s
executable and can be distributed to the agents.

2.7.3. D i s t r i bu t ed P l ann ing

In distributed planning not only the execution is partitioned over the agents, but also the
planning process. Usually, the acting agents are a subset of the agents which plan. Thus
the agent plan for themselves. Also the strict separation between planning and acting is
weakened, normally a turn in turn change between these phases takes place.

21

"

The main advantages for distributed planning overlap with the general advantages for

DAI mentioned in chapter 2.1. Especially for the planning aspect, the handling of control

and data must be cited: No central instance must cope anymore with all the complex

interdependencies and mutual influences of the subtasks or of the respective agents. The

control is distributed; via cooperation strategies and communication facilities the agents

themselves are responsible for their acting. The complex knowledge can also reside

appropriately distributed among the agents. Each individual agent merely has a small

portion of the big knowledge cake. This way, special features like expertise can be

modelled, but also uncertainty has its natural place in the scenario: All the facts, which the

agent does not know (not in its knowledge base) and also cannot guess (inference fails),

must be asked from other agents.

As mentioned above, planning and execution alternate nonnally. The proceeding can be
.

sketched as follows:

CD Each agent creates a limited plan from its very own point of view. This may comprise

one or more of the next actions to perform, actions either of its own or also of other

agents.

@ In order to maximize parallelism and performance, the individual plans must be

coordinated. Conflicts have to be detected and to be resolved. Thus some agents

probably must perform step CD several times.

@ After all conflicts are resolved, the agents act according to their plans. For the next

,fictions they continue with step <D.

Durfree and Lesser call this proceeding partial global planning [DuLe89], because

different parts of the scenario plan to achieve more global goals (in the end the overall

goal of the planning process).

Current research [CoMeP089] tries to find out methods to determine the non-local impact

of local decisions in distributed planning. This is a very important issue to avoid subgoal

interactions and ensure global coherence of the plan.

The price to pay for the flexibility and the potential perfonnance increase in distributed

planning as well as in parallel computing anyway is an effective problem decomposition

and the costs for communication and coordination. Hence we promote the distributed

planning paradigm especially in problem domains where a distribution of control and

knowledge is inherent and a centralized approach would be complicated or even infeasible

(cf. examples in chapter 2.1. and 2.2.). Later, in chapter 4., we will introduce a special

scenario to discuss the aspects of distributed planning in detail.

22

The main advantages for distributed planning overlap with the general advantages for
DAI mentioned in chapter 2.1. Especially for the planning aspect, the handling of control
and data must be cited: No central instance must cope anymore with all the complex
interdependencies and mutual influences of the subtasks or of the respective agents. The
control i s distributed; via cooperation strategies and communication facilities the agents
themselves are responsible for their acting. The complex knowledge can also reside
appropriately distributed among the agents. Each individual agent merely has a small
portion of the big knowledge cake. This way, special features like expertise can be
modelled, but also uncertainty has its natural place in the scenario: All the facts, which the
agent does not know (not in its knowledge base) and also cannot guess (inference fails),

must be asked from other agents.
As mentioned above, planning and execution alternate normally. The proceeding can be

‘ sketclleclfis follows:
(D Each agent creates a limited plan from its very own point of view. This may comprise

one or more "of the next actions to perform, actions either of i ts own or also of other
agents.

® In order to maximize parallelism and performance, the individual plans must be
coordinated. Conflicts have to be detected and to be resolved. Thus some agents
probably must perform step (D several times. „

@ After all conflicts are resolved, the agents act according to their plans. For the next
actions they continue with step @.

Durfree and Lesser call this proceeding partial global planning [DuLe89], because
different parts of the scenario til—an to achieve more gl_o_bgl goals (in the end the overall
goal of the planning process).
Current research [CoMePo89] tries to find out methods to determine the non-local impact
of local decisions in distributed planning. This is a very important issue to avoid subgoal
interactions and ensure global coherence of the plan.
The price to pay for the flexibility and the potential performance increase in distributed
planning as well as in parallel computing anyway is an effective problem decomposition
and the costs for communication and coordination. Hence we promote the distributed
planning paradigm especially in problem domains where a distribution of control and
knowledge is inherent and a centralized approach would be complicated or even infeasible
(cf. examples in chapter 2.1. and 2.2.). Later, in chapter 4., we will introduce a special
scenario to discuss the aspects of distributed planning in detail.

22

2.8. Architectures

In this chapter some principle architectures for DAI systems shall be presented and

compared. These systems are general in the sense that they need not be bound to a certain

application domain a priori. However, there are tendencies insofar, that a system which,

say, allows only rather simple nodes cannot represent a network of expert systems. The

survey comprises "classical" DAI systems like DVMT, Contract Net and MACE, and a

new approach, RATMAN. We begin with an overview of common principles for all DAI

architectures.

Generally, a system which models a distributed society of agents should provide the

following issues:

-- parallel behaviour of agents is possible

- the agents can improve their information status via communication or inference

- tasks are decomposed, distributed to agents, solved, and the results are synthesized

again (this process may need many cycles)

Depending on the active influence onto its environment, a multi-agent system is

characterized either as behaviour-based or as knowledge-based system. We say

behaviour-based, when the agents merely react upon their environment. They adapt their

behaviour to a changing world like ants in an ant-heap. On the other hand, knowledg~

based agents have own goals, which they actively pursue. They plan in advance, hence

they can be regarded as more "intelligent" than reactive agents. A group of experts would

fit in with this category.

The Distributed Vehicle Monitoring Testbed DVMT [Ca88] is used in distributed sensor

net domains. The DVMT is a collection of complex problem-solving agents, where each

of them resembles a Hearsay 11 (cf. chapter 2.2.) blackboard architecture system. The

agents cooperate to interpret signals from a sensor array. Therefore they can communicate

hypotheses, goals and meta-Ievel information to other agents.

Each agent has then an individual blackboard, i.e. a common data structure where

tentative hypotheses and subgoals are written upon. The blackboard is common to several

knowledge sources (KS) which generate new hypotheses, and a goal processor which

tries to match the hypotheses against goals, thereby building actual knowledge source

instances (KSI).

The KSI's together with information about long-tenn and medium-tenn strategies of the

agents are given to a planning component, which builds a plan queue in order to modify

the old knowledge sources. This process is repeated many times, until all goals are

satisfied.

23

2 .8 . Arch i tec tures

In this chapter some principle architectures for DAI systems shall be presented and

compared. These systems are general in the sense that they need not be bound to a certain

application domain a priori. However, there are tendencies insofar, that a system which,
say, allows only rather simple nodes cannot represent a network of expert systems. The
survey comprises “classical” DAI systems like DVMT, Contract Net and MACE, and a
new approach, RATMAN. We begin with an overview of common principles for all DAI

architectures.

Generally, a system which models a distributed society of agents should provide the
following issues:

- parallel behaviour of agents is possible
- the agents can improve their information status via communication or inference
- tasks are decomposed, distributed to agents, solved, and the results are synthesized

again (this process may need many cycles)
Depending on the active influence onto its environment, a multi-agent system i s
characterized either as behaviour-based or as knowledge-based system. We say
behaviour-based, when the agents merely react upon their environment. They adapt their
behaviour to a changing world like ants in an ant-heap. On the other hand, knowledge

based agents have own goals, which they actively pursue. They plan in advance, hence
they can be regarded as more “intelligent” than reactive agents. A group of experts would
fi t in with this category. ' I

The Distributed Vehicle Monitoring Testbed DVMT [Ca88] i s used in distributed sensor
net domains. The DVMT is a collection of complex problem-solving agents, where each
of them resembles a Hearsay II (cf. chapter 2.2.) blackboard architecture system. The
agents cooperate to interpret signals from a sensor array. Therefore they can communicate
hypotheses, goals and meta-level information to other agents.
Each agent has then an individual blackboard, i.e. a common data structure where
tentative hypotheses and subgoals are written upon. The blackboard is common to several
knowledge sources (KS) which generate new hypotheses, and a goal processor which
tries to match the hypotheses against goals, thereby building actual knowledge source
instances (KSI) .

The KSI’s together with information about long-term and medium-term strategies of the
agents are given to a planning component, which builds a plan queue in order to modify
the old knowledge sources. This process is repeated many times, until all goals are
satisfied.

23

--

The Contract Net [DaSm83, Ca88] is a collection of agents that cooperate through

communication to perform a given task. The negotiation (see also chapter 3.5.) is guided

by a protocol, it is mainly used for task distribution.

The principle is as follows: One agent can broadcast the availability of a task to other

agents. This agent is then the "manager" of the task. Other agents which want to perform

the tasks may send "bids" to the manager and the manager will eventually award the task

to the agent with the favourite bid. The chosen agent becomes the "contractor". The

manager is responsible for the task and monitors the execution, which is performed by

the contractor alone.

The contract holds as long as the tasks lasts. Afterwards the two agents can engage in

new negotiations. Each agent can send several task announcements and also several bids

to different managers. The decision whether a contract is built up, lies both by manager

and contractor. There is no force to find an agreement.

One central use of the Contract Net is to ensure the equal distribution of workload among

the agents.

While the two architectures (systems) introduced so far predetermine the kind of joint

problem solving, i.e. the principles of cooperation and coordination are built in, the next

two systems provide a large degree of freedom to specify how a society of agents should

work together in order to solve a common problem. Also the granularity of the systems "

c~n be individually selected. Such systems which have many parameters that may be

adjusted to desired configurations, and provide furthermore instruments to measure the

behaviour of agents, are called testbeds.

The Multi-Agent Computing System MACE [Ga88] is such a testbed. It is designed to

support experimentation with different styles of distributed AI systems, at different levels

of complexity. The dominant metaphor of MACE is a collection of intelligent, semi

autonomous agents interacting in organized ways and communicating via messages. Each

agent has a model of other agents it knows in the world, called acquaintances. Agents can

build organizations (groups or coalitions), they behave social in nature. An organization

is a structure of expectations and commitments to behaviour; it exists only directly

through the commitments and expectations of its members. The term organization refers

to an abstraction which allows agents to treat a collection of activities as being part of a

known concerted effort.

MACE must be instantiated to a concrete multi-agent scenario by exactly defining the

agents (attributes, skills), their acquaintances, their goals and the message types allowed.

24

The Contract Net [DaSm83‚ Ca88] i s a collection o f agents that cooperate through

communication to perform a given task. The negotiation (see also chapter 3.5.) is guided

by a protocol, it is mainly used for task distribution.
The principle i s a s follows: One agent can broadcast the availability of a task to other

agents. This agent is then the “manager” of the task. Other agents which want to perform
the tasks may send “bids” to the manager and the manager will eventually award the task
to the agent with the favourite bid. The chosen agent becomes the “contractor”. The

manager is responsible for the task and monitors the execution, which is performed by
the contractor alone.
The contract holds as long as the tasks lasts. Afterwards the two agents can engage in

new negotiations. Each agent can send several task announcements and also several bids
to different managers. The decision whether a contract is built up, lies both by manager
and contractor. There is no force to find an agreement.
One. central use of the Contract Net is to ensure the equal distribution of workload among
the agents.

While the two architectures (systems) introduced so far predetermine the kind of joint
problem solving, i.e. the principles of cooperation and coordination are built in, the next
two systems provide a large degree of freedom to specify how a society of agents should
work together in order to solve a common problem. Also the granularity of the systems
can be individually selected. Such systems which have many parameters that may be
adjusted to desired configurations, and provide furthermore instruments to measure the
behaviour of agents, are called testbeds.

The Multi—Agent Computing System MACE [Ga88] i s such a testbed. It is designed to
support experimentation with different styles of distributed AI systems, at different levels
of complexity. The dominant metaphor of MACE is a collection of intelligent, semi-
autonomous agents interacting in organized ways and communicating via messages. Each
agent has a model of other agents it knows in the world, called acquaintances. Agents can
build organizations (groups or coalitions), they behave social in nature. An organization
is a structure of expectations and commitments to behaviour; it exists only directly
through the commitments and expectations of its members. The term organization refers
to an abstraction which allows agents to treat a collection of activities as being part of a
known concerted effort.
MACE must be instantiated to a concrete multi-agent scenario by exactly defining the
agents (attributes, skills), their acquaintances, their goals and the message types allowed.

24

"

Another approach to a universal multi-agent testbed is RATMAN [BUMU90]. The new

and interesting idea is to model an agent as a hierarchical knowledge base completely in

terms of logic, The whole system consists of four modules: the specification kit is the

user interface to define the agents and the strategies desired; the agent toolbox provides

the hierarchical knowledge base as mentioned above for each agent; a special application

domain is defined in the current world scenario, which has a blackboard as a

c,Jmmunication platform for the agents and the user; and at last, the status sequence and

statistics box to analyze effectively what goes on in the scenario.

A few words more to the agents in RATMAN. The hierarchy of their knowledge bases is

constituted as follows: At the lowest level, the sensoric knowledge is represented (e.g.

the information about an agent's hand or foot etc. (if it has some at all.. .). On the second

level, a knowledge base in the us-ual sense is located. Four modules contain knowledge

abou~ ~pace, time, common sense and special expertise, respectively. The next level

defines the actions an agent can carry out, the communication level follows which uses

grammatical principles to facilitate an almost natural exchange of information. The highest

levels are a planner component and two meta-knowledge bases introspe _'non and partner

modelling and learner, where models about knowledge of others are and ways to achieve

this are stored.

After all, this is an approach which may show a way to the desirable formalization of
If

multi-agent scenarios.

25

Another approach to a universal multi-agent testbed is M [BüMü90]. The new

and interesting idea is to model an agent as a hierarchical knowledge base completely in
terms of logic. The whole system consists of four modules: the specification kit i s the
user interface to define the agents and the strategies desired; the agent toolbox provides
the hierarchical knowledge base as mentioned above for each agent; a special application
domain i s defined in the current world scenario, which has a blackboard as a
communication platform for the agents and the user; and at last, the status sequence and
statistics box to analyze effectively what goes on in the scenario.
A few words more to the agents in RATMAN. The hierarchy of their knowledge bases is
constituted as follows: At the lowest level, the sensoric knowledge i s represented (e.g.
the information about an agent’s hand or foot etc. (if i t has some at all. . .) . On the second

level, a knowledge base in the usual sense is located. Four modules contain knowledge
' about space, time, common sense and special expertise, respectively. The next level

defines the actions an agent can carry out, the communication level follows which uses
grammatical principles to facilitate an almost natural exchange of information. The highest
levels are a planner component and two meta-knowledge bases introspe ;tion and partner
modelling and learner, where models about knowledge of others are and ways to achieve
this are stored. '
After all, this i s an approach which may show a way to the desirable formalization of
multi-agent scenarios.

25

3. Problem Solving Techniques Revised for DAI

The investigation of problem solving techniques is the central issue of Artificial Intelli

gence. Several paradigms have evolved and some of them have matured enough to be

regarded as foundations of AI. This tendency now begins also for OAI. However, it is

more natural to exploit the basic techniques of AI than to discover the wheel anew.

We first introduce four essential nrinciples of AI, search, the use of constraints, the need

for heuristics, and how to deal with uncertainty. Each will be discussed first from the

general point of view, and then in the light of the DAI setting.

After this two paradigms will be presented which are of interest for distributed

approaches. Negotiation is already a well accepted issue, whereas eco-problem solving is

a pretty new concept.

3.1. Search

Search is one of the essential techniques for solving problems of any kind. A basic

principle herein is the antagonism between the efforts for pure search and the amount of

knowledge about the problem under investigation. It is obvious that more knowledge

means less search.

An example. Suppose you come to the city of Kaiserslautern and you want to meet a

f~end in a certain street. It depends on the knowledge you have about the streets, places,

buildings, etc. how long the search will take (assumed there is nobody whom you could

ask for the way and you have no road map, too). If you are a stranger in the town, you

will probably have to try many streets and ways until your reach your goal. In the worst

case you run through the whole town - your friend may become nervous...

But assume, you have been here some years ago, say, as a student. You have lost the

details of the town map, but you still remember some landmarks: salient buildings or

characteristic corners. You know, the street you look for, is near by the city hall. You

may go straight there (the building is high enough to capture permanently) and thus

restrict your "search space" considerably. Even if you have to check the whole region

near by the city hall, this is much less work than running through the whole town.

The other extreme is you have perfect knowledge about Kaiserslautern. In this case you

do not need any search at all, because you already know the solution of your problem.

This example reveals some of the issues of search problems. We will only sketch them

here. Good introductions are given in [Ni80, Ri83, Ri89].

The focus of interest shall comprise "large" problems with incomplete knowledge. For

the other cases, e.g. when all possible outcomings can easily be enumerated, we do not

need AI techniques.

26

3. Problem Solving Techniques Revised for DAI

The investigation of problem solving techniques is the central issue of Artificial Intelli-
gence. Several paradigms have evolved and some of them have matured enough to be
regarded as foundations of AI. This tendency now begins also for _DAI. However, it is
more natural to exploit the basic techniques of AI than to discover the wheel anew.
We first introduce four essential principles of AI, search, the use of constraints, the need
for heuristics, and how to deal with uncertainty. Each will be discussed first from the

general point of view, and then in the light of the DAI setting.
After this two paradigms will be presented which are of interest for distributed
approaches. Negotiation is already a well accepted issue, whereas eco-problem solving is

a pretty new concept.

3 .1 . Search

Search is one of the essential techniques for solving problems of any kind. A basic
principle herein i s the antagonism between the efforts for pure search and the amount of
knowledge about the problem under investigation. It is obvious that more knowledge
means less search. ;
An example. Suppose you come to the city of Kaiserslautern and you want to meet a
friend in a certain street. It depends on the knowledge you have about the streets, places,
buildings, etc. how long the search will take (assumed there i s nobody whom you could
ask for the way and you have no road map, too). If you are a stranger in the town, you
will probably have to try many streets and ways until your reach your goal. In the worst
case you run through the whole town - your friend may become nervous. . .
But assume, you have been here some years ago, say, as a student. You have lost the
details of the town map, but you still remember some landmarks: salient buildings or

characteristic corners. You know, the street you look for, i s near by the city hall. You

may go straight there (the building i s high enough to "capture permanently) and thus

restrict your “search space” considerably. Even if you have to check the whole region
near by the city hall, this is much less work than running through the whole town.
The other extreme is you have perfect knowledge about Kaiserslautern. In this case you
do not need any search at all, because you already know the solution of your problem.
This example reveals some of the issues of search problems. We will only sketch them
here. Good introductions are given in [Ni80, Ri83, Ri89].
The focus of interest shall comprise “large” problems with incomplete knowledge. For
the other cases, e.g. when all possible outcomings can easily be enumerated, we do not
need AI techniques.

'.

This implies, AI techniques are suited for search problems, where the search space is

infeasible large, too large for an exhaustive testing of all alternatives. Without any

information about the domain, also AI techniques will fail. Thus even very little

knowledge must be well exploited.

We distinguish between irrevocable techniques that do not permit a correction of a once

selected way and those which do, known as tentative or backtrcddng strategies. All these

strategies .1eed at least two possible measures: One to assess the status of the current

(intermediate) solution and one to get information about the next step to take. Whereas the

value of the intermediate solution often can be determined (almost) exactly, this is not the

case for the values to rank the alternatives for the next step. Since normally only

estimations are possible here, heuristic functions have to be used. These should be simple

enough to ensure efficiency, but on the other hand preserve an acceptable solution.

Es~e_ci_ally when the optimal solution is not explicitly required, this may be a possible

strategy. It reveals again the tradeoff between quality demand for the solution and

efficiency threads for the search process (for a closer look at heuristics cf. chltoter 3.3.).

So far the short excursus about search in the traditionl1 AI view. Where are the relations

toDAI?

Well, as mentioned above, knowledge is important to shorten the search process and (or)

prune the search space. We argue, the distributed approach has the potential power t?

facilitate the unavoidable search. Provided an adequate distribution of knowledge both

apout the domain and about individual skills among the agents, search strategies may

better be fine-tuned than it were possible from a central perspective.

Each agent may be equipped with individual search strategies, heuristics, and rating

functions about the status of the scenario. The next steps of the search can be discussed

and estimated from various points of view.

A general phenomenon seems to be that the individual search spaces of the agents are

considerably smaller than the global search space. The local knowledge about own

preferences, but also information about wishes of others (constraints for own decisions,

see the next chapter) reduces the possible alternatives for the next step. A global planner

cannot respect all these local dependencies, he/she/it must concentrate on the entities of

the scenario which are able to act at all.

In this context, a criterion for distributed planning systems arises. If the search space is

represented only in one central structure, planning is not really distributed, even: in a

multi-agent setting. Distributed planning takes place when also the representation of the

search space is distributed, Le. there are many "small" structures, where search can be

performed much faster and cheaper.

27

This implies, AI techniques are suited for search problems, where the search space is

infeasible large, too large for an exhaustive testing of all alternatives. Without any
information about the domain, a lso AI techniques wil l fai l . Thus even very little

knowledge must be well exploited.
We distinguish between irrevocable techniques that do not permit a correction of a once

selected way and those which do, known as tentative or backtracking strategies. All these

strategies need at least two possible measures: One to assess the status of the current
(intermediate) solution and one to get information ab0ut the next step to take. Whereas the
value of the intermediate solution often can be determined (almost) exactly, this is not the
case for the values to rank the alternatives for the next step. Since normally only

estimations are possible here, heuristic functions have to be used. These should be simple
enough to ensure efficiency, but on the other hand preserve an- acceptable solution.

Especially when the optimal solution is not explicitly required, this may be a possible

strategy. It reveals again the tradeoff between quality demand for the solution and
efficiency threads for the search process (for a closer look at heuristics cf. chapter 3.3.).
So far the short excursus about search in the traditional AI view. Where are the relations
to DAI ?
Well, as mentioned above, knowledge i s important to shorten the search process and (or)
prune the search space. We argue, the distributed approach has the potential power t?
facilitate the unavoidable search. Provided an adequate distribution of knowledge both
about the domain and about individual skills among the agents, search strategies may
better be fine-tuned than it were possible from a central perspective.
Each agent may be equipped with individual search strategies, heuristics, and rating
functions about the status of the scenario. The next steps of the search can be discussed
and estimated from various points of view. _
A general phenomenon seems to be that the individual search spaces of the agents are
considerably smaller than the global search space. The local knowledge about own
preferences, but also information about wishes of others (constraints for own decisions,

see the next chapter) reduces the possible alternatives for the next step. A global planner
cannot respect all these local dependencies, he/she/it must concentrate on the entities of
the scenario which are able to act at all.

In this context, a criterion for distributed planning systems arises. If the search space is
represented only in one central structure, planning is not really distributed, even in a
multi-agent setting. Distributed planning takes place when also the representation of the
search space is distributed, i.e. there are many “small” structures, where search can be
performed much faster and cheaper.

27

3.2. Constraints

Formally, constraints in AI applications are nothing but n-ary relations P(XI,... ,Xn) with a

special interpretation in the actual domain [Ri89]. They may be represented in a network

in order to symbolize their mutual dependencies.

Constraints are very important in search processes (and thus in planning) because they

are a useful means to keep the search space small. Only those vallles, which satisfy all

constraints, are potential candidates for search. There are two ways of constraint

propagation (in the following shortened CP) throughout the network, constructive CP

and destructive CP. Constructive CP starts by calculating the values in some starting

nodes. From these nodes the adjacent nodes are investigated. Thus, turn in turn, all

nodes get appropriate sets of values. Sometimes assumptions about possible values must

- be made. These can be "backtracked" and replaced by new assumptions.

DestrUctive CP proceeds from the opposite direction. Here it is preliminary supposed that

all values of the respective domains hold for all constraints. After successive checking of

de~endencies, more and more values are excluded; in the end only the valid values remain

in the set. The results of constructive and destructive CP should be identical.

A multi-agent scenario with distributed control can also be regarded as a constraint net.

But no rigid distinction between constructive and destructive CP can be made, because
,

the nodes of the net are active. From a more abstract level we may say, the constraints

themselves propagate through the net, no separate propagation instance is necessary.

Expressed in the common vocabulary, we identify the agents (exactly: the knowledge of

the agents) as constraints and the sending of information between them as constraint

propagation. An agent itself knows what it may do and what it may not do for any single

instant. An incoming message can restrict this possibilities, we have a destructive CP. On

the other hand, the sending agent is active in telling its wishes, demands, etc. to the other

agents. In this light we have a constructive CP.

An example [Ri83]. Consider the puzzle SEND + MORE = MONEY where each

different letter represents a different digit between 0 and 9. The rules of arithmetic (e.g.

overflows) must be obeyed. Let each different letter be an individual agent, which is

informed about these rules. The agents may communicate in order to reach a solution, i.e.

a consistent mapping from the eight letters to eighf digits. What the agents will actually do

is to propagate constraints.

Both ways mentioned above are possible. A constructive CP may begin with agent M's

perception "I am surely the number 1", which it broadcasts to the other agents. These

others need not take the' l' into consideration any longer. Sometimes tentative mappings

are necessary, for instance, when agent S sends "1 may be the number 8" after M's

message above. If later the agents stuck in contradictions, some of the tentative mappings

must be retracted, and S may say "I may be the number 9". In a destructive setting S

28

3 .2 . Constra in t s

Formally, constraints in AI applications are nothing but n-ary relations P(x1,. . .‚xn) with a
special interpretation in the actual domain [Ri89]. They may be represented in a network
in order to symbolize their mutual dependencies.
Constraints are very important in search processes (and thus in planning) because they
are a useful means to keep the search space small. Only those values, which satisfy an
constraints, are potential candidates for search. There are two ways of constraint

propagation (in the following shortened CP) throughout the network, constructive CP

and destructive CP. Constructive CP starts by calculating the values in some starting
nodes. From these nodes the adjacent nodes are investigated. Thus, turn in turn, all

nodes get appropriate sets of values. Sometimes assumptions about possible values must

be made. These can be “backtracked” and replaced by new assumptions.
Destructive CP proceeds from the opposite direction. Here it is preliminary supposed that
all values of the respective domains hold for all constraints. After successive checking of
dependencies. more and more values are excluded; in the end only the valid values remain

in the set. The results of constructive and destructive CP should be identical.
A multi-agent scenario with distributed control can also be regarded as a constraint net.
But no rigid distinction between constructive and destructive CP can be made, because
the nodes of the net are active. From a more abstract level we may say, the constraints
themselves propagate through the net, no separate propagation instance is necessary.
Eripressed in the common vocabulary, we identify the agents (exactly: the knowledge of
the agents) as constraints and the sending of information between them as constraint
propagation. An agent itself knows what it-may do and What it may not do for any single
instant. An incoming message can restrict this possibilities, we have a destructive CP." On
the other hand, the sending agent is active in telling its wishes, demands, etc. to the other
agents. In this light we have a constructive CP.
An example [R i83] . Consider the puzzle SEND + MORE = MONEY where each

different letter represents a different digit between 0 and 9 . The rules of arithmetic (e.g.
overflows) must be obeyed. Let each different letter be an individual agent, which i s
informed about these rules. The agents may communicate in order to reach a solution, i.e.
a consistent mapping from the eight letters to eight digits. What the agents will actually do
is to propagate constraints.
Both ways mentioned above are possible. A consu'uctive CP may begin with agent M’s
perception “ I am surely the number 1”, which it broadcasts to the other agents. These
others need not take the ‘ 1’ into consideration any longer. Sometimes tentative mappings
are necessary, for instance, when agent S sends “I may be the number 8” after M’s
message above. If later the agents stuck in contradictions, some of the tentative mappings
must be retracted, and S may say “ I may be the number 9”. In a destructive setting S

28

:

broadcasts "I am in the set {8, 9}" and other agents can rule out the alternatives which are

contradictory to this configuration.

We can extend the constraint paradigm of multi-agent scenarios even more. Messages,

which must obligatory be obeyed, (e.g. if the sender has a higher priority) represent hard

constraints. Hard constraints immediately prune the decision spectrum of the receiver.

Otherwise, it is possible that agents send merely advice or hints to other agents. These

messages increase the information status of the addressees, helping them in more

reflected acting. The addressees decide, after all, if they want to follow their given

advice. This type of message can be regarded as soft constraint.

In our sample scenario in chapter 4. we will employ both types of constraints.

3.3. Heuristics

We have exact algorithms for almost all planning problems.6 These guarantee to find the

optimal solution. But as mentioned in chapter 3.1. about search, this often results in giant

search spaces. We should be aware that solving the problem is not the crucial point,

provided the solutions can be effectively enumerated. The simplest method is to produce

one solution after the other and to compare each of them whether it is the desired one.

This proceeding is known as the British Museum Method, because even a crowd ot
monkeys equipped with typewriters would have once produced all books of the British

M~seum, provided they had time enough to try [Ri83].

Of course this is absurd in larger search spaces. So we introduce heuristics in order to

reach at least a pretty good solution. Heuristics are not exact algorithms, because exact

algorithms must be infallible. Intuitively, heuristics are like rules of thumb: rough,

generic principles that are not perfectly accurate, but are still accurate enough to be

convenient and useful [Ha85]. It is important to be aware that heuristics may fail to attain

the best solution. Sometimes they may find only poor results, but one characteristic of a

good heuristic should be: the average result is well acceptable, the worst cases should

never be reached.

Humans widely use heuristic procedures in normal life: Suppose you are driving to a

supermarket and therefore you need to find a parking lot. You see one, pass it (there are

surely some more nearer to the supermarket), pass the next, and so on, but once you

choose one. Even there could be still more, you decide to stop the search. You

unconsciously have calculated the tradeoff between the advantage of being nearer to the

supennarket and the risk of finding no more parking lots. This is based on heuristics, not

on exact algorithms [Ri83].

6Breadth search finds always the optimal solution if there is onc.

29

broadcasts “I am in the set {8, 9}” and other agents can rule out the alternatives which are
contradictory to this configuration.
We can extend the constraint paradigm of multi-agent scenarios even more. Messages,

which must obligatory be obeyed, (e. g. if the sender has a higher priority) represent hard
constraints. Hard constraints immediately prune the decision spectrum of the receiver.

Otherwise, it is possible that agents send merely advice or hints to other agents. These
messages increase the information status of the addressees, helping them in more
reflected acting. The addressees decide, after all, if they want to follow their given
advice. This type of message can be regarded as soft constraint.
In our sample scenario in chapter 4. we will employ both types of constraints.

‘ 3.3._ _H_e_uristics

We have exact algorithms for almost all planning problems.6 These guarantee to find the
optimal solution. But as mentioned in chapter 3.1. about search, this often results in giant
search spaces. We should be aware that solving the problem is not the crucial point,
provided the solutions can be effectively enumerated. The simplest method is to produce

.one solution after the other and to compare each of them whether it is the desired one.
This proceeding is known as the British Museum Method, because even a crowd otl
monkeys equipped with typewriters would have once produced all books of the British
Mi'rseum, provided they had time enough to try [Ri83].
Of course this is absurd in larger search spaces. So we introduce heuristics in order to
reach at least a pretty good solution. Heuristics are not exact algorithms, because exact
algorithms must be infallible. Intuitively, heuristics are like rules of thumb: rough,
generic principles that are not perfectly accurate, but are still accurate enough to be
convenient and useful [Ha85]. It is important to be aware that heuristics may fail to attain
the best solution. Sometimes they may find only poor results, but one characteristic of a
good heuristic should be: the average result is well acceptable, the worst cases should
never be reached.
Humans widely use heuristic procedures in normal life: Suppose you are driving to a
supermarket and therefore you need to find a parking lot. You see one, pass it (there are
surely some more nearer to the supermarket), pass the next, and so on , but once you
choose one. Even there could be still more, you decide to stop the search. You
unconsciously have calculated the tradeoff between the advantage of being nearer to the
supermarket and the risk of finding no more parking lots. This is based on heuristics, not
on exact algorithms [Ri83].

6Breadth search finds always the optimal solution if there is one.

29

Heuristics can be coarsely classified: On the one hand there are common sense heuristics

for problem solving, on the other hand we need special heuristics, tailored to certain

domains. Common sense heuristics, like rank all alternatives and choose the best one, are

not sufficient. Mostly not the large steps in problem solving are the hard nuts, but the fine

grained procedures. In the example above, how shall the alternatives be ranked, what is

the criterion for the best one?

In Distributed Artificial Intelligence there is a third class of heu istics. We call them social

heuristics, because their intention is to manipulate somehow the social behaviour of the

distributed agents working towards a common goal. Social heuristics do not mainly con

cern any specific domains. They model, for instance, generic ways to find a consensus in

negotiations, principles of cooperation, and society rules.

These processes are inherently of heuristical nature, no exact algorithm can be found.

Only.past processes may be empirically evaluated and statistics may be formed, which

provide a basis for a general trend prediction or an estimation of the future development.

But this is merely a conjecture with a certain likelihood attached.

Social heuristics in multi-agent systems thus should heh to simulate ~,:~an social

behaviour in order to realize certain general principles (benevolence, self-interest, ... see

chapter 2.4.). Since humans are flexible in their decisions, also these heuristics should

be. Therefore we claim as an essential feature the ability of an agent to reflect about it&

own decisions. There should be a permanent checking process in the core of each agent:

"\yhat has changed in the environment? - Are my decisions still up to date? - Shall I

correct my strategy ?".

For an operationalization of the social heuristics, especially for the aspects like

negotiations, conflict resolutions, or mutual support, an extensive interdisciplinary

approach seems to be necessary. Besides Artificial Intelligence, researchers coming from

psychology, biology, linguistics, social science and other areas should engage in

interchanging their results. Thus a concerted effort could fine-tune and revise the

heuristics.

After all, a major problem seems to linger on: How shall the human's intuition be

modelled? Often we really cannot say why we did just this, and, that is amazing, often

this step is essential to reach the solution. Minsky calls this phenomenon "thinking

without thinking" [Mi86]. He states that before humans do not really know what is going

on in their brains (or in their minds, respectively), they cannot build a machine with these

capabilities. But he does not claim that this will ever be the case.

30

Heuristics can be coarsely classified: On the one hand there are common sense heuristics
for problem solving, on the other hand we need special heuristics, tailored to certain
domains. Common sense heuristics, like rank all alternatives and choose the best one, are
not sufficient. Mostly not the large steps in problem solving are the hard nuts, but the fine
grained procedures. I n the example above, how shall the alternatives be ranked, what is

the criterion for the best one ?
In Distributed Artificial Intelligence there is a third class of heu istics. We call them social
heuristics, because their intention is to manipulate somehow the social behaviour of the
distributed agents worldng towards a common goal. Social heuristics do not mainly con-
cern any specific domains. They model, for instance, generic ways to find a consensus in
negotiations, principles of cooperation, and society rules.
These processes are inherently of heuristical nature, no exact algorithm can be found.
Only past processes may be empirically evaluated and statistics may be formed, which
provide a basis for a general trend prediction or an estimation of the future development.
But this is merely a conjecture with a certain likelihood attached.
Social heuristics in multi-agent systems thus should help to simulate hstnan social
behaviour in order to realize certain general principles (benevolence, self-interest,.. .see
chapter 2.4.). Since humans are flexible in their decisions, also these heuristics should
be. Therefore we claim as an essential feature the ability of an agent to reflect about its
own decisions. There should be a permanent checking process in the core of each agent:
“What has changed in the environment ? - Are my decisions still up to date ? - Shall I
correct my strategy ?”.
For an operationalization of the social heuristics, especially for the aspects like
negotiations, confl ict resolutions, or mutual support, an extensive interdisciplinary
approach seems to be necessary. Besides Artificial Intelligence, researchers coming from
psychology, biology, linguistics, social science and other areas should engage in
interchanging their results. Thus a concerted effort could fine-tune and revise the
heuristics.
After all, a major problem seems to linger on: How shall the human’s intuition be
modelled ? Often we really cannot say why we did just this, and, that i s amazing, often
this step is essential to reach the solution. Minsky calls this phenomenon “thinking
without thinking” [Mi86]. He states that before humans do not really know what is going
on in their brains (or in their minds, respectively), they cannot build a machine with these
capabilities. But he does not claim that this will ever be the case.

30

3.4. Uncertainty

The assumption of traditional planning approaches, that the planner knows everything

about the "world", is appropriate only in mini-worlds (e.g. the Blocks World). In real

scenarios plans must be elaborated without complete knowledge. In order to model

uncertainty explicitly, AI employs several traditional methods from mathematics and has

also proposed new ones. For instance, there are the method of the coarse sets, the

Bayesian conditional likelihoods, the "Mathematical Theory of Evidence" of Dempster

and Shafer, the theory of fuzzy sets, or the uncertainty factors of Buchannon and

Shortliffe, utilized in the expert system MYCIN (A description of these methods can be

found in [Ri89]).

To say it again, the purpose of these formalisms is an explicit modelling of uncertainty,

which mostly results in a numerical value. A dangerous trap lies in the unreflected use of

this' ~aiue for further computations, e.g. the addition of two "certainty values" to a new

one. For each special case it must be investigated what these calculations really mean.

All these issues can surely be utilized also in multi-agent scenarios. But the distributed

setting provides more features to model uncertainty:

- An agent wants to know a specific fact. If it either knows that it does not know this

fact, or if it cannot infer the fact from its own knowledge base, it has two possibilities:

a.) If it knows, which other agents might know the fact, it may ask directly.

b.) Otherwise it may broadcast the request for the fact to all the agents.

- '; An agent has a fact with an attached "certainty value" (see alx>ve). It may ask the other

agents about the fact and thus correct its information about the fact.

We see, two aspects of distribution are important for managing uncertainty. First, there

are the possibilities of exchanging the grade of uncertainty by communication and nego

tiation. Several sources of information about identical facts may considerably improve the

overall certainty even if these sources are very uncertain from their individual point of

view. The natural human exchange of uncertain knowledge in a problem solving group is

modelled appropriately. Each one knows a "little piece", together the group can solve the

whole puzzle.

On the other hand the knowledge about knowledge is of essential interest (epistemic

knowledge). When it is missing, an agent must deduce a certain fact over and over from

its knowledge base. Furthermore, the agent would not be informed about its capabilities,

i.e. it could not decide if it is a proper "expert" for the query at all. While this could still

be acceptable, some information about the other agents is absolute obligatory. This

knowledge can be obtained by information exchange or it is given a priori. Other infor

mation which an agent cannot collect must be assumed. These assumptions (or beliefs)

are valid as long as they do not contradict new facts. There are special reasoning

31

3.4. Uncertainty

The assumption of traditional planning approaches, that the planner knows everything
about the “world”, is appropriate only in mini-worlds (e.g. the Blocks World). In real

scenarios plans must be elaborated without complete knowledge. In order to model

uncertainty explicitly, AI employs several traditional methods from mathematics and has

also proposed new ones. For instance, there are the method of the coarse sets, the
Bayesian conditional likelihoods, the “Mathematical Theory of Evidence” of Dempster

and Shafer, the theory of fuzzy sets, or the uncertainty factors of Buchannon and

Shortliffe, utilized in the expert system MYCIN (A description of these methods can be

found in [Ri89]).
To say it again, the purpose of these formalisms is an explicit modelling of uncertainty,
which mostly results in a numerical value. A dangerous trap lies in the unreflected use of
this value for further computations, e.g. the addition of two “certainty values” to a new

one. For each special case it must be investigated what these calculations really mean.
All these issues can surely be utilized also in multi-agent scenarios. But the distributed
setting provides more features to model uncertainty:
- An agent wants to know a specific fact. If i t either M that it does not know this

fact, or if it cannot infer the fact from its own knowledge base, it has two possibilities:
a.) If it knows, which other agents might know the fact, it may ask directly. '
b.) Otherwise it may broadcast the request for the fact to all the agents.

- :? An agent has a fact with an attached “certainty value” (see above). It may ask the other
agents about the fact and thus correct its information about the fact.

We see, two aspects of distribution are important for managing uncertainty. First, there
are the possibilities of exchanging the grade of uncertainty by communication and nego—
tiation. Several sources of information about identical facts may considerably improve the
overall certainty even if these sources are very uncertain from their individual point of
view. The natural human exchange of uncertain knowledge in a problem solving group is
modelled appropriately. Each one knows a “little piece”, together the group can solve the
whole puzzle.
On the other hand the knowledge about knowledge is of essential interest (epistemic
knowledge). When it is missing, an agent must deduce a certain fact over and over from
its knowledge base. Furthermore, the agent would not be informed about its capabilities,
i.e. it could not decide if it i s a proper “expert” for the query at all. While this could still
be acceptable, some information about the other agents i s absolute obligatory. This
knowledge can be obtained by information exchange or it is given a priori. Other infor-
mation which an agent cannot collect must be assumed. These assumptions (or beliefs)
are valid as long as they do not contradict new facts. There are special reasoning

31

components which guard and update the assumptions and the corresponding dependen

cies, called assumption based truth maintenance systems (ATMS). There is ongoing

research interest to distribute general truth maintenance systems (TMS). One approach is

described in [HuBrAr90].

But what is more important are well-founded theories of ability, knowledge and belief of

agents. Werner's recent work tends to this area [We90]. Especi, Uy his formalization of

the principles of "can" (e.g. agent X can do the job Y) is interesting. Werner reduces

"can" to "having a strategy for" and defines a strategy as a certain mapping of information

sets'L to alternatives for'L. Information sets are sets of several relations which describe

the current status of the world. Thus the abstract can becomes a provable property. This

could be a way to make abilities effectively testable so that the agents can improve their

knowledge about their own qualifications and that of the others.

For. t!le special issue knowledge about knowledge epistemic logics have evolved from

mod3110gics. A new operator KNOWS is employed to model knowledge structures in

the world. KNOWS (A,P) means that agent A knows the fact P; KNOWS (A. KNOWS

(A,P» means: A knows that it knows the fact P; KNOWS (A, K"'J'OWS (B,P» says that

A knows that agent B knows the fact P, and su on.

3.5. Negotiation

When a group of humans is engaged in solving a problem together, normally more or

less different views about the best way to proceed collide. Each human regards the

problem from his/her individual point of view, each may have experience in different

methods and strategies to tackle tasks like that. These are by far no bad conditions, just

the opposite holds; such a setting is desired. The broader the spectrum of knowledge,

experience, and opinions is, the more aspects and varieties of the problem can be

foreseen. If all experts would have the same attitudes, the group would produce no better

results than one expert alone, the process would merely last longer. An expert group lives

through a rich spectrum of expertise. But at last a coherent solution should be presented.

This demands at least two issues:

- the will of each concerned agent to reach a compromise

- the ability to reach a compromise (despite of all different points of view, a common

basis must exist; e.g. it is problematic for a biologist and a historian to find a

constructive agreement about a theme concerning computer science)

The process to reach an agreement or to attain a compromise is negotiation. Because it is

pretty natural for human beings, it should be nearer investigated in general autonomous

agent settings. The term negotiation already occurred several times in this paper. It was

used in the context when two (or more) agents had to find a common way how to

32

components which guard and update the assumptions and the corresponding dependen-
cies, called assumption based truth maintenance systems (ATMS). There is ongoing
research interest to distribute general truth maintenance systems (TMS). One approach is
described in [HuBrAr90].

But what is more important are well—founded theories of ability, knowledge and belief of
agents. Werner’s recent work tends to this area [We90]. Especit lly his formalization of
the principles of “can” (e.g. agent X can do the job Y) is interesting. Werner reduces
“can” to “having a strategy for” and defines a strategy as a certain mapping of information
sets I to alternatives for 1. Information sets are sets of several relations which describe
the current status of the world. Thus the abstract can becomes a provable property. This
could be a way to make abilities effectively testable so that the agents can improve their
knowledge about their own qualifications and that of the others.
Forgthe special issue knowledge about knowledge epistemic logics have evolved from

modal logics. A new operator KNOWS is employed to model knowledge structures in
the world. KNOWS (A,P) means that agent A knows the fact P; KNOWS (A. KNOWS

(A,P)) means : A knows that i t knows the fact P; KNOWS (A, KNOWS (B,P)) says that

A knows that agent B knows the fact P, and so on.

3 .5 . Negot ia t ion

When a group of humans i s engaged in solving a problem together, normally more or
less different views about the best way to proceed collide. Each human regards the
problem from his/her individual point of view, each may have experience in different
methods and strategies to tackle tasks like that. These are by far no bad conditions: just
the Opposite holds; such a setting is desired. The broader the spectrum of knowledge,
experience, and opinions is, the more aspects and varieties of the problem can be
foreseen. If all experts would have the same attitudes, the group would produce no better
results than one expert alone, the process would merely last longer. An expert group lives
through a rich spectrum of expertise. But at last a coherent solution should be presented.
This demands at least two issues:
- the m of each concerned agent to reach a compromise
- the m to reach a compromise (despite of all different points of view, a common

basis must exist; e.g. it is problematic for a biologist and a historian to find a
constructive agreement about a theme concerning computer science)

The process to reach an agreement or to attain a compromise is negotiation. Because it i s
pretty natural for human beings, it should be nearer investigated in general autonomous
agent settings. The term negotiation already occurred several times in this paper. It was
used in the context when two (or more) agents had to find a common way how to

32

proceed in favor of both of them. We will now encounter a more formal definition of

negotiation.

A kind of "classical work" about this theme is an early paper of Davis and Smith

introducing the Contract Net ([DaSm83], see also chapter 2.8.). The authors define

negotiation as "discussion in which the interested parties exchange information and come

to an agreement". This is a very general definition and gives no hints to special aspects of

(artificial) multi-agent scenarios. Kreifelts and von Martial [KrMa90] come nearer to this

end: They regard negotiation as "a structured interaction by message exchange between

the partners involved in the negotiation". Here we get a first feeling for the main topics

concerned in a formal account of negotiation: messages are exchanged between the agents

in a structured, Le. formalized way. We are back again in the terms of communication

(cf. chapter 2.5.), but with one crucial addition: Negotiation must come to an end, a

reaso~~~le tradeoff between discussion of different opinions and the costs for communi

cations is desired. It is important that even if no agreement was found after a certain

amount of time, the proceeding can effectively go on.

There are different opiniuns where and how negotiations shcu'j exactly be used in multi

agent scenarios. Davis and Smith [DaSm83] claim it mainly for the distribution of tasks

which have already been decomposed. Negotiation is performed as a form of "market",

where contracts between agents are temporarily built up to allocate subtasks. The,
emphasis lies on parallel execution of tasks as an organizing principle and on the transfer

o~:control. A central goal is the uniform distribution of workload among the agents.

[KrMa90] take another point of view. They point out the need for solving conflicts in

preformed plans, that is on ensuring cooperative behaviour and to avoid interferences by

asynchronous influences, like message delays etc.

The realization of the negotiation process offers a wide potential. Negotiation is

principally a multi-lateral affair, i.e. a n:m-relationship is constructed. The Contract Net

adopts this directly by allowing a "manager" to offer a task to several potential

"contractors" and, on the opposite, allowing a potential contractor to send "bids" to

several managers (see chapter 2.8.). For the next task, managers may be contractors and

vice versa. Manager and contractor cannot force each other to a compromise, if no

contract is reached, the manager must try it anew (may be with a changed announce) or

quit.

[KrMa90] also do not use any force to reach an agreement. But here the negotiations are

broken down to bilateral relations. This is achieved by a coordination agent. Each agent

which wants to negotiate with others must get in contact with the coordination agent. The

coordination agent then will converse one by one with the agents the first wanted to

address. As mentioned above, the coordination agent cannot force any agreement, but

only make proposals to the concerned agents.

33

proceed in favor of both of them. We will now encounter a more formal definition of

negotiation.
A kind of “classical work” about this theme i s an early paper of Davis and Smith

introducing the Contract Net ([DaSm83], see also chapter 2.8.). The authors define
negotiation as “discussion in which the interested parties exchange information and come
to an agreement”. This is a very general definition and gives no hints to special aspects of

(artificial) multi—agent scenarios. Kreifelts and von Martial [KrMa90] come nearer to this

end: They regard negotiation as “a structured interaction by message exchange between
the partners involved in the negotiation”. Here we get a first feeling for the main topics
concerned in a formal account of negotiation: @@ are exchanged between the agents
in a structured, i.e. formalized way. We are back again in the terms of communication
(cf. chapter 2.5.), but with one crucial addition: Negotiation must come to an end, a
reasonable tradeoff between discussion of different opinions and the costs for communi-
cations is desired. It is important that even if no agreement was found after a certain
amount of time, the proceeding can effectively go on.
There are different opinions where and how negotiations shcu‘d exactly be used in multi-
agent scenarios. Davis and Smith [DaSm83] claim it mainly for the distribution of tasks
which have already been decomposed. Negotiation is performed as a form of “market”,
where contracts between agents are temporarily built up to allocate subtasks. The
emphasis lies on parallel execution of tasks as an organizing principle and on the transfer
of control. A central goal is the uniform distribution of workload among the agents.
[KrMa90] take another point of view. They point out the need for solving conflicts in
preformed plans, that is on ensuring cooperative behaviour and to avoid interferences by
asynchronous influences, like message delays etc. „
The realization of the negotiation process offers a wide potential. Negotiation is
principally a multi-lateral affair, i.e. a nzm-relationship i s constructed. The Contract Net
adopts this directly by allowing a “manager” to offer a task to several potential

“contractors” and, on the opposite, allowing a potential contractor to send “bids” to
several managers (see chapter 2.8.). For the next task, managers may be contractors and
vice versa. Manager and contractor cannot force each other to a compromise, if no
contract is reached, the manager must try it anew (may be with a changed announce) or
quit.
[KrMa90] also do not use any force to reach an agreement. But here the negotiations are
broken down to bilateral relations. This is achieved by a coordination agent. Each agent
which wants to negotiate with others must get in contact with the coordination agent. The
coordination agent then will converse one by one with the agents the first wanted to
address. As mentioned above, the coordination agent cannot force any agreement, but
only make proposals to the concerned agents.

33

One general demand to make negotiations possible in multi-agent scenarios is a well

defined and formal exchange of information. A negotiation protocol could achieve that.

Certain requirements to the protocol are [KrMa90]:

- it should keep communication to a minimum

- the autonomy of the agents should be respected

the resolution of conflicts must be facilitated

- it is desirable to make the protocol comprehensive for both human and artificial agents

After all, it should be obvious that negotiations cannot guarantee the optimal solution of a

given problem. On the one hand, they are normally based on heuristics, on the other hand

they manifest decisions, which may be non-optimal from a more global point of view.

But as mentioned for heuristics (cf. chapter 3.3.) it suffices to find an appropriate

consensus with reasonable effort.

3.6. Eco-Problem Solving

A challenging new perspective for multi-agent systems is to conceive them as eco

systems. An eco-system is an ecological community considered together with the non

living factors of its environment as a unit. The term "ecological" means: ofor having to

do with the environments of living things or with the pattern of relations between living"

things and their environments. 7

BJt we do not commit ourselves to biological systems, also the association with

economics shall be allowed. Abstractly we define an eco-system as a system of

individuals with certain intentions and competing demands for resources. When the

intentions can be almost overall satisfied, an equilibrium of activity will be reached after a

while. By identifying intention with (sub)goals and equilibrium with stable goal state we

get the direct connection to multi-agent systems.

Note that even if the aspects of the social behaviour and the common goals are somewhat

relaxed, we can still assert an overall system goal for the system: All individuals shall be

satisfied, i.e. the personal intentions must be fulfilled. When we now assume that in real

eco-systems (where resources are limited) normally an absolute selfish acting of the

individuals seems to be impossible, we are back again to (at least some) social aspects.

But what did we gain by the "eco" metaphor? First of all, we get a well suited model to

explain the behaviour of distributed systems without a centralized control. Movements

which appear at the first time chaotic, become explainable.

Then, and that is a hope, a new metaphor arises for a special kind of distributed problem

solving with a special class of corresponding problems. The classical distinction of OAI

7Both definitions were taken from Webster's Third New International Dictionary.

34

One general demand to make negotiations possible in multi-agent scenarios is a well-
defined and formal exchange of information. A negotiation protocol could achieve that.
Cenain requirements to the protocol are [KrMa90]:
- it should keep communication to a minimum
- the autonomy of the agents should be respected

the resolution of conflicts must be facilitated
- it is desirable to make the protocol comprehensive for both human and artificial agents
After all, it should be obvious that negotiations cannot guarantee the optimal solution of a
given problem. On the one hand, they are normally based on heuristics, on the other hand
they manifest decisions, which may be non-optimal from a more global point of view.
But as mentioned for heuristics (cf. chapter 3.3.) i t suffices to find an appropriate
consensus with reasonable effort.

3.6. Eco-Problem Solving

A challenging new perspective for multi-agent systems is to conceive them as eco-
systems. An coo-system is an ecological community considered together with the non-
living factors of its environment as a unit. The term “ecological" means: of or having to
do with the environments of living things or with the pattern of relations between living,
things and their environments. 7
Bu't we do not commit ourselves to biological systems, also the association with
economics shall be allowed. Abstractly we define an eco-system as a system of
individuals with certain intentions and competing demands for resources. When the
intentions can be almost overall satisfied, an equilibrium of activity will be reached after a
while. By identifying intention with (sub)goals and equilibrium with stable goal state we
get the direct connection to multi-agent systems.
Note that even if the aspects of the social behaviour and the common goals are somewhat
relaxed, we can still assert an overall system goal for the system: All individuals shall be

satisfied, i.e. the personal intentions must be fulfilled. When we now assume that in real
coo-systems (where resources are limited) normally an absolute selfish acting of the
individuals seems to be impossible, we are back again to (at least some) social aspects.
But what did we gain by the “eco” metaphor ? First of all, we get a well suited model to

explain the behaviour of distributed systems without a centralized control. Movements
which appear at the first time chaotic, become explainable.
Then, and that is a hope, a new metaphor arises for a special kind of distributed problem
solving with a special class of corresponding problems. The classical distinction of DAI

7Both definitions were taken from Webster's Third New International Dictionary.

34

systems between behaviour based (agent which only react upon influences from their

environment) and knowledge-based systems (intelligent agents, which actively plan their

actions) may be exposed as inappropriate. We will now try to substantiate both the theses

just mentioned.

To explain multi-agent scenarios without centralized control, Kephart et al. performed

exhaustive simulations [KeHoHu89]. The authors also use the eco-systems paradigm.

The central characteristics of "computational eco-systems", as they call their settings, are

in their opinion:

- distributed control

- asynchronism

- resource contention

- extensive communication among the agents

inC9qlplete or delayed information

All these presumptions match almost perfectly general conditions for multi-agent systems

we have mentioned in this work up to now.

The intentions of the agents in eeo-systems represent the desire to attain a specific amount

of limited resources. This is nothing but an abstract description of conflicting goals. Seen

in this light, all DAI scenarios without central control are eco-systems in any way. BU~,

this is the second step before the first is completed. As a matter of fact, Kephart et al.

fo~nd a behaviour similar to that of a living population in a real eco-system. They

distinguish three classes:

CD non-oscillatory relaxation to the equilibrium

(2) damped oscillations about the equilibrium

<ID persistent oscillations

The equilibrium can be identified with a stable state, where all agent are sufficiently

satisfied. If the eco-system has an overall social goal, a tendency as in case <ID above

should be avoided. A stable solution presupposes an equilibrium in resource consuming.

Kephart et al. [KeHoHu89] extracted two interesting conclusions from their various

measures of computational eco-systems:

- They detected long living meta-stable states for certain combinations of parameters. A

system, which appears to be stable, may rapidly jump into a real stable state. This

implies, an eco-system does not guarantee a smooth and steady behaviour, but in most

cases it conducts a such.

- Kephart et al. also provided the individual agents with more information about the

world (procedural knowledge about time sharing, etc). In contrast to their assumptions

that the perfonnance of the system increases with the increase of the local knowledge,

35

systems between behaviour based (agent which only react upon influences from their

environment) and knowledge-based systems (intelligent agents, which actively plan their

actions) may be exposed as inappropriate. We will now try to substantiate both the theses

just mentioned.
To explain multi-agent scenarios without centralized control, Kephart et al. performed

exhaustive simulations [KeHoHu89]. The authors also use the eco-systems paradigm.

The central characteristics of “computational eco-systems”, as they call their settings, are

in their opinion:
— distributed control
- asynchronism
- resource contention
- extensive communication among the agents

' - incomplete or delayed information

All these presumptions match almost perfectly general conditions for multi—agent systems
we have mentioned in this work up to now.
The intentions of the agents in eco-systems represent the desire to attain a specific amount

of limited resources. This is nothing but an abstract description of conflicting goals. Seen
in this light, all DAI scenarios without central control are eco-systems in any way. But,
this is the second step before the first is completed. As a matter of fact, Kephart et al.
found a behaviour similar to that of a living population in a real eco-system. They

distinguish three classes:
@ non-oscillatory relaxation to the equilibrium
® damped oscillations about the equilibrium
@ persistent oscillations

The equilibrium can be identified with a stable state, where all agent are sufficiently
satisfied. If the eco-System has an overall social goal, a tendency as in case @ above
should be avoided. A stable solution presupposes an equilibrium in resource consuming.

Kephart e t al. [KeHoHu89] extracted two interesting conclusions from their various
measures of computational eco-systems:
- They detected long living meta—stable states for certain combinations of parameters. A

system, which appears to be stable, may rapidly jump into a real stable state. This
implies, an eco-system does not guarantee a smooth and steady behaviour, but in most
cases it conducts a such.

- Kephart et al. also provided the individual agents with more information about the
world (procedural knowledge about time sharing, etc). In contrast to their assumptions

that the performance of the system increases with the increase of the local knowledge,

35

just the opposite happened from a certain point on: The overall results became worse,

sometimes even worse than in a system where agents have no special infonnation at

all.

The authors conclude that a distributed system without central control must not have

too intelligent individuals. A chaos may be induced by overly-clever local decision

makin~ algorithms. On the other hand the authors found that imperfect knowledge

(i.e. a higher amount of randomness) suppresses oscillatory behaviour of the system

at the expense of reducing the average performance.

We must keep in mind that all the results are based on statistics. They hold for the

average case. Each test run, however, may exhibit completely different results.

Now to the second thesis mentioned above. Ferber [Fe90] proposes a new paradigm

"eco-prpblem solving" for a certain kind of DAI scenarios and problem configurations,

especially for settings where agents have to arrange themselves in a desired manner (e.g.

Blocks World problems).

Ferber does not fOlmally define eco-systems, but he describes the attributes of the agents

("eco-agents") incorporated, i.e. their knowledge, their principles of cooperation, and

their behaviour.

A strict distinction between domain-dependent and domain-independent knowledge i~,

made. The first must be adapted anew for each scenario, whereas the other knowledge

hq~ds for all possible applications. It comprises:

an agent knows, when it has reached its goal ("satisfaction state").

- an agent knows, when other agents prevent it from acting (its "jailers").

- an agents is infonned about dependencies to other agents, i.e. if it must wait with

acting until another agent has done anything.

The latter two issues are in permanent change while the scenario runs.

The behaviour of the agents is characterized by three attributes:

- The will to reach its goal. Each agent actively works towards its satisfaction state.

Thus an eco-system is an active, not a re-active system.

- The will to be able to act. The agents permanently try to remove obstacles, which also

may be other agents.

- The obligation to flee. If an agent is an obstacle for another, and this other agent wants

to act, it sends the second one off. This is performed by message passing. The second

agent must go away, it may decide to go anywhere the first agent does not want to go.

Here we have a behaviour like in reactive systems.

36

just the opposite happened from a certain point on: The overall results became worse,

sometimes even worse than in a system where agents have no special information at

all.
The authors conclude that a distributed system without central control must not have
too intelligent individuals. A chaos may be induced by overly-clever local decision
making algorithms. On the other hand the authors found that imperfect knowledge
(i.e. a higher amount of randomness) suppresses oscillatory behaviour of the system
at the expense of reducing the average performance.

We must keep in mind that all the results are based on statistics. They hold for the
average case. Each test run, however, may exhibit completely different results.

Now to the second thesis mentioned above. Ferber [Fe90] proposes a new paradigm
' “eco-problem solving” for a certain kind of DAI scenarios and problem configurations,

especially for settings where agents have to arrange themselves in a desired manner (e. g.
Blocks World problems).
Ferber does not formally define eco-systems, but he describes the attributes of the agents
(“eco-agents”) incorporated, i.e. their knowledge, their principles of cooperation, and
their behaviour.
A strict distinction between domain-dependent and domain-independent knowledge is
made. The first must be adapted anew for each scenario, whereas the other knowledge
holds for all possible applications. It comprises:
- an agent knows, when i t has reached its goal (“satisfaction state”).

- an agent knows, when other agents prevent it from acting (its “jailers”).
- an agents is informed about dependencies to other agents, i.e. if it must wait with

acting until another agent has done anything. I
The latter two issues are in permanent change while the scenario runs.

The behaviour of the agents is characterized by three attributes:
- The will to reach its goal. Each agent actively works towards its satisfaction state.

Thus an eco-system is an @, not a re—active system.
- The will to be able to act. The agents permanently try to remove obstacles, which also

may be other agents.
- The obligation to flee. If an agent is an obstacle for another, and this other agent wants

to act, it sends the second one off. This is performed by message passing. The second
agent must go away, it may decide to go anywhere the first agent does not want to go.
Here we have a behaviour like in reactive systems.

36

Provided with these means, knowledge about the initial configuration and informed about

the desired goal, each agent tries to reach satisfaction. It is characteristic that through the

messages used to send other agents away, dependencies are constructed. These depen

dencies prevent the agents sent off (slaves) from reaching their final goals before the

agent, which announced the message (their master) has reached its goal. So, if the final

situation can be characterized by a partial order of dependencies (the order, in which the

agents may reach satisfaction), there is good hope that the overall solution will be found

and eco-problem solving will tenninate.

Ferber characterizes eco-problems (problems which can be adequately solved by eco

agents) as those which can be described through a triple (A,8,Cl), where A is the set of

agents, with both domain specific and "basic" knowledge, 8 is the start configuration, Cl

is the goal configuration, and 8 and Cl are individually ascribed to each agent.

- As a conclusion we state that the paradigm of eco-problem solving seems to be well

suited for problems, where the goal situation can be a priori decomposed to all individual

parts of the problem. If these parts then get the capability mentioned above, they will find

the way to the solution alone, if possible at all. Hence the eco agents perform also

distributed planning and acting alternatively. The planning part lies mainly in the decision

where to go, when sent off by another agent. There could be some intelligence in this

step (but maybe not too much, see the results of [KeHoHu89] above I).

We introduced eco-problem solving broadly,because it is just the way how we realized

o~r sample scenario in chapter 4. Amazingly, we used almost the same "framework" like

Ferber, without knowing his paper or having ever heard the term eco-problem solving.

But, alas, Ferber named it as such and we consider it useful.

At last, an interesting prospectus from [KeHoHu89] shall be mentioned: Biological eco

systems can adopt to a changing environment through feedback mechanisms. It would be

a challenge to transform these abilities also to computational eco-systems. Feedback must

therefore induce an adaptive behaviour, like learning. Thus it may be possible toevoke an

"evolutionary process" and to come to better problem solving techniques for multi-agent

systems.

37

Provided with these means, knowledge about the initial configuration and informed about
the desired goal, each agent tries to reach satisfaction. It is characteristic that through the
messages used to send other agents away, dependencies are constructed. These depen-
dencies prevent the agents sent off (slaves) from reaching their final goals before the
agent, which announced the message (their master) has reached its goal. So, if the final
situation can be characterized by a partial order of dependencies (the order, in which the
agents may reach satisfaction), there i s good hope that the overall solution will be found
and eco-problem solving will terminate.
Ferber characterizes eco-problems (problems which can be adequately solved by eco-

agents) as those which can be described through a triple (A35), where ‚Ä is the set of
agents, with both domain specific and “basic” knowledge, 8 is the start configuration, &
is the goal configuration, and S and 6, are individually ascribed to each agent.
As a conclusion we state that the paradigm of eco-problem solving seems to be well

suited for problems, where the goal situation can be a priori decomposed to all individual
parts of the problem. If these parts then get the capability mentioned above, they will find

the way to the solution alone, if possible at all. Hence the eco agents perform also
distributed planning and acting alternatively. The planning part lies mainly in the decision
where to go, when sent off by another agent. There could be some intelligence in this
step (but maybe not too much, see the results of [KeHoHu89] above !).

We introduced eco-problem solving broadly,because it i s just the way how we realized
our sample scenario in chapter 4. Amazingly, we used almost the same “framework” like
Ferber, without knowing his paper or having ever heard the term eco-problem solving.

But, alas, Ferber named it as such and we consider it useful.
At last, an interesting prospectus from [KeHoHu89] shall be mentioned: Biological eco-
systems can adopt to a changing environment through feedback mechanisms. It would be
a challenge to transform these abilities also to computational eco-systems. Feedback must

therefore induce an adaptive behaviour, like learning. Thus it may be possible toevoke an
“evolutionary process” and to come to better problem solving techniques for multi-agent
systems.

37

4. The Towers of Hanoi . A Distributed Planning Scenario

The scenario we have experimented with is a variation of the well-known puzzle of the

Towers of Hanoi. At a first glance this appears rather simple. Every computer scientist

has to learn the short recursive "Towers of Hanoi" algorithm in one of his first lessons.

algorithm Towers_oCHanoi (no_oCdisks, start, goal, aux)

(if no_oCdisks > 0

then (Towers_oCHanoi (no_oCdisks - 1, start, aux, goal)

Print ("Agent from ", start, " to ", goal)

Towers of Hanoi (no of disks - 1, aux, goal, start)} }

- But this is not our approach. On the one hand we extend the scenario by increasing the
~ ~ ~-

number of available sticks which makes the algorithm given above no longer optimal, on

the other hand we leave the global view and distribute control and information. Decisions

an~ made decentral and their impact on the global situation i;, ;artly unknown. We are

directly confronted with a DAI problem.

The Towers of Hanoi scenario (in the following shortened ToH scenario) covers several

of the aspects mentioned in the last two chapters. An emphasis will be laid on heuristics,
11

negotiation, and eco-problem solving, besides the more technical details of the

realization. The scenario is simply enough to overlook but nevertheless should prove

sufficiently complex to reveal clearer insight into important concepts of DAI.

r

2

Figure 4.1 : Start situation of a possible ToH scenario

38

3 4

4. The Towers of Hanoi - A Distributed Planning Scenario

The scenario we have experimented with is a variation of the well-known puzzle of the
Towers of Hanoi. At a first glance this appears rather simple. Every computer scientist
has to learn the short recursive “Towers of Hanoi” algorithm in one of his first lessons.

algorithm Towers_of_Hanoi (no_of_disks, start, goal, aux)
{ i f no_of_disks > 0

then {Towers_of_Hanoi (no_of_disks —] , start, aux, goal)

Print (“Agent from start, “ to ”, goal)
Towers_of_Hanoi (no_of_disks — 1, aux,goal, start” }

But this is not our approach. On the one hand we extend the scenario by increasing the

number of available sticks which makes the algorithm given above no longer optimal, on
the other hand we leave the global view and distribute control and information. Decisions

arr made decentral and their impact on the global situation is partly unknown. We are
directly confronted with a DAI problem.
The Towers of Hanoi scenario (in the following shortened ToH scenario) covers several

of the aspects mentioned in the last two chapters. An emphasis will be laid on heuristics,”
negotiation, and eco-problem solving, besides the more technical details of the

realization. The scenario is simply enough to overlook but nevertheless should prove
sufficiently complex to reveal clearer insight into important concepts of DAI.

V/ÄQ
‘ \ ‘ ‘

I I I / I I I
\ \ \ \ \ \ \

I I I I I I.. |. . L _ . .

3

Figure 4.1 : Start situation of a possible ToH scenario

38

4.1. Description of the Scenario

Essentially we have to explain two topics. First of all, how the ToH scenario can be

regarded as a multi-agent scenario, and secondly, why it is an example for planning.

Figure 4.1 shows a sketch of the world we are going to talk about.

Each of the moveable disks shall be seen as an individual agent with own knowledge,

own abilities and own task... (resp. goals). The knowledge comprises very local

knowledge (who is directly over me? - where am I now? - what do I have to do next?

...) and knowledge about the access to more global information (do other agents interfere

with me ? - can I reach my desired goal ? - what are the best alternatives for the next

move ? ..). The abilities of the agents are mainly sending messages to other agents and

acting if all obstacles are removed. Note: The agents are able to move themselves, no

- other agent (e.g. like the "hand" in the Blocks World) is necessary.

The principles of the problem solving process resemble the aspects of eco-problem

solving (cf. chapter 3.6.). The agents are egocentric, they try to make their way straight

to their desired goals. On this way they are confronted with two types of obstacles:

- An "upper neighbour" U might lie upon a w..~mg-to-actagent A..
In this case A. (whose next goal is place X) will send the message "Leave your place,

but do not go to place X" to U .This simply avoids a further confrontation between A.
I

and U at place X.

- Another agent:B with a lower priority than A. might be situated at A's next attempted

:place, say X, and thus prevent A. from going there.

A. (who now resides at place Y) sends the following message to B : "Leave your

place, but do not go to place Y". B shall not block A as an upper neighbour.

The message "Leave your place, but do not go to place..." is the central concept of this

approach. The agents force others to step aside to pave the way for their very own goals.

But we should be aware that the execution of such an order is not deterministic at all.8

This is the key issue to intelligence. The possibility of free choices offers chances to

bring in decision procedures and other auxiliary facilities, like heuristics, which will

speed up the problem solving process.

We consider the ToH world as a sample for distributed planning. The agents have to

coordinate their next moves, clashing subgoals must be resolved. As we have just heard

some sophistication can also be put into decisions where better not to go. All this strongly

touches aspects of planning. The identity of planner and actor is typical for distributed

planning (cf. chapter 2.7.3.). Each single agent plans its very own next steps within its

8This is true for a ToH world with at least four places. It is clear that in the case of three places (the
"standard scenario") no option remains. At onc place the agent resides momentarily, one other place is
forbidden by the orderer of the "leave-message". finally, the third place must be chosen for the next step.
Hence the three-place ToH problem has a deterministic solution and does not require intelligence.

39

4.1. Description of the Scenario

Essentially we have to explain two topics. First of all, how the ToH scenario can be
regarded as a multi-agent scenario, and secondly, why it is an example for planning.
Figure 4.1 shows a sketch of the world we are going to talk about.

Each of the moveable disks shall be seen as an individual agent with own knowledge,
own abilities and own tasks (resp. goals). The knowledge comprises very local
knowledge (who i s directly over me ? - where am I now ? - what do I have to do next ?

...) and knowledge about the access to more global information (do other agents interfere
with me ? - can I reach my desired goal ? - what are the best alternatives for the next

move ?. . .). The abilities of the agents are mainly sending messages to other agents and
acting if all obstacles are removed. Note: The agents are able to move themselves, no

- other agent (e. g. like the “hand” in the Blocks World) is necessary.
The principles of the problem solving process resemble the aspects of eco-problem

solving (cf. chapter 3.6.). The agents are egocentric, they try to make their way straight

to their desired goals. On this way they are confronted with two types of obstacles:
- An “upper neighbour” u might lie upon a w..ilng~to-act agent ‚il.

In this case A. (whose next goal is place X) will send the message “Leave your place,
but do not go to place X” to it .This simply avoids a further confrontation between A

and u. at place X. ‘
- Another agent ZB with a lower priority than Ä. might be situated at Ä’s next attempted

gplace, say X, and thus prevent A from going there.

(

Ä. (who now resides at place Y) sends the following message to B : “Leave your
place, but do not go to place Y”. B shall not block Ä as an upper neighbour.

The message “Leave your place, but do not go to place.. .” i s the central concept of this
approach. The agents force others to step aside to pave the way for their very own goals.
But we should be aware that the execution of such an order is not deterministic at all.8
This is the key issue to intelligence. The possibility of free choices offers chances to
bring in decision procedures and other auxiliary facilities, like heuristics, which will
Speed up the problem solving process.
We consider the ToH world as a sample for distributed planning. The agents have to
coordinate their next moves, clashing subgoals must be resolved. As we have just heard
some sophistication can also be put into decisions where better not to go. All this strongly
touches aspects of planning. The identity of planner and actor is typical for distributed
planning (cf. chapter 2.7.3.). Each single agent plans its very own next steps within its

8Thi s is true fora ToH world with at least four laces. It is clear that in the case of three places (the
"standard scenario") no option remains. At one p ace the agent resides momentarily, one other place is
forbidden by the orderer of the "leave-message", finally, the third place must be chosen for the next step.
Hence the three-place ToH problem has a deterministic solution and does not require intelligence.

39

partial world view. After planning (which can only be partial) the agents try to fulfil their

restricted plans. Later we will see more detailed how such a plan could look like.

But also social capabilities are demanded, the willingness to help each other in the sense

of a social system (cf. chapter 2.4.). The ToH scenario provides facilities for help re

quests and gives priority to attempt a satisfaction of this requests before trying other

alternatives.

These are the aspects of the ToH scenario under investigation:

Agents: Each disk is an intelligent, active agent. The agents are unique and identifiable by

their names. Their number is unlimited, but fixed. All agents have got a different priority

value (their "size"). Furthermore they have knowledge about their goals and also partial

knowledge about the world. If necessary, they may get further, more global information.

Places: The number of places (Le. sticks) is unlimited but fixed. The smallest possible

number, however, is three, otherwise no reasonable moves can be made. The places are

not an active part of the scenario, the agents must take care for correct moves and update

the ulaces, too.

Positions: The term "position" shall denote the position of an agent in the stack at a

certain place. The agent on the bottom of the stack has got position 1, the next upon it

position 2 and so forth. Thus the maximum number is the total number of agents in the

scenario.
I

I

~: At the start of the problem solving process all agents who are involved in the [mal

co~figuration must have received their final goals. Only the individual agent knows his

sp~cial goal.

An important presumption is also the demand of compatibility and consistence of the

subgoals with respect to the global goal. The global goal (generally more than the sum of

its subgoals, cf. chapter 2.) cannot be achieved unless all subgoals can be reached. This

implies a full check for consistence through an external instance before the detailed

subgoals are given to the agents.

Parallelism: The ToH problem is in a class of problems, which can inherently be solved

in parallel. The agents may pursue their (sub)goals contemporary and may try to perform

actions always when they think it is possible.

Constraints: No agent can "hang in the air" except in the moment when it is acting. We

have to obey the simple physical laws like gravity, uniqueness in the parts of space which

are covered by the agents, etc. The main aspect is that the agents need permanent support.

This is achieved either by other agents which tolerate them or by the "ground" which

supports everyone.

Constraints are also important to restrict the search space for the next decision of each

agent. All information an agent has about the intentions of others, constrains its own

choice.

40

partial world view. After planning (which can only be partial) the agents try to fulfil their
restricted plans. Later we will see more detailed how such a plan could look like.
But also social capabilities are demanded, the willingness to help each other in the sense
of a social system (cf. chapter 2.4.). The ToH scenario provides facilities for help re-
quests and gives priority to attempt a satisfaction of this requests before trying other
alternatives.
These are the aspects of the ToH scenario under investigation:
gen—ts: Each disk is an intelligent, active agent. The agents are unique and identifiable by
their names. Their number is unlimited, but fixed. All agents have got a different priority
value (their “size”). Furthermore they have knowledge about their goals and also partial
knowledge about the world. If necessary, they may get further, more global information.

flees: The number of places (i.e. sticks) i s unlimited but fixed. The smallest possible
' number, however, is three, otherwise no reasonable moves can be made. The places are

not an aetive part of the scenario, the agents must take care for correct moves and update
the places, too.

mm;: The term “position” shall denote the position of an agent in the stack at a
certain place. The agent on the bottom of the stack has got position 1, the next upon it

position 2 and so forth. Thus the maximum number is the total number of agents in the
scenario. ,

Qns: At the start of the problem solving process all agents who are involved in the final
configuration must have received their final goals. Only the individual agent knows his
special goal.
An important presumption is also the demand of compatibility and consistence of the
subgoals with respect to the global goal. The global goal (generally more than the sum of
its subgoals, cf. chapter 2.) cannot be achieved unless all subgoals can be reached. This
implies a full check for consistence through an external instance before the detailed
subgoals are given to the agents.
Parallelism: The ToH problem is in a class of problems, which can inherently be solved
in parallel. The agents may pursue their (sub)goals contemporary and may try to perform

actions always when they think it is possible.
Constraints: No agent can “hang in the air” except in the moment when it is acting. We
have to obey the simple physical laws like gravity, uniqueness in the parts of space which
are covered by the agents, etc. The main aspect is that the agents need permanent support.

This is achieved either by other agents which tolerate them or by the “ground” which
supports everyone.
Constraints are also important to restrict the search space for the next decision of each
agent . A l l information an agent has about the intentions of others, constrains i ts own

choice.

40

Capabilities of agents: The agents send messages to themselves and to other agents. The

primary purpose is to inform about their own intentions, but also to remove obstacles and

to negotiate about conflicts emerged. Last not least, the abilities to perform the planned

moves and to do the bookkeeping shall not be forgotten.

Behaviour: The agents send off those agents, who prevent them from reaching their

goals. The latter have certain deg. ~es of freedom to choose a place where they could flee.

Into this choice as much intelligence as possible must be brouglit in. The behaviour is

always motivated. Either the agents pursue their own goals or they act in order to obey

other agents' wishes. Though especially big ToH scenarios (many agents and places)

often resemble somewhat the behaviour of ants in an ant heap, every single decision is

well-founded and correct from the individual's point of view.

Priority: Each agent has got a unique priority value, so all agents are in a linear priority

order. Especially all agents are comparable. In fact, the "bigger" the agent is, the larger is
-.".....

its priority value.

Toleration: An agent which wants to go onto another agent, must be sure that the second

one tolerates itself. Another term would be "capable to carry". 11 the ToH scen~:J agents

tolerate others if and only if they have a higher priority.

Heuristics: Because the choice of the agents sent off is non-deterministic, heuristics are a

convenient way to find a good solution. We will make an exhaustive use of heuristics and,
try to prove the appropriateness in benchmark tests.

S~fial aspects: The final goal to build a new tower on a different place is a social goal

[We88] in that the agents with lower priority depend on the foundation of the "higher"

agents and, on the other hand, the bigger agents must hope that the smaller agents really

go away if they are obstacles.

The foundation of benevolence is built in the ToH scenario. Orders of other agents ("go

away, but avoid...") are always obeyed and wishes and petitions as much as possible.

Help requests are considered privileged by ranking the alternatives (in TOHPAR). But

the agents are not altruistic at all. In doubtful situations, if they cannot combine

benevolence with their very own intentions, they act selfish. This is a key issue to force

the aspiration to reach the goal.

41

Capabilities of agents: The agents send messages to themselves and to other agents. The

primary purpose i s to inform about their own intentions, but also to remove obstacles and

to negotiate about conflicts emerged. Last not least, the abilities to perform the planned

moves and to do the bookkeeping shall not be forgotten.
Behaviour: The agents send off those agents, who prevent them from reaching their

goals. The latter have certain deg. ees of freedom to choose a place where they could flee.

Into this choice as much intelligence as possible must be brought in. The behaviour i s

always motivated. Either the agents pursue their own goals or they act in order to obey
other agents’ wishes. Though especially big ToH scenarios (many agents and places)
often resemble somewhat the behaviour of ants in an ant heap, every single decision is
well-founded and correct from the individual’s point of view.
Priority: Each agent has got a unique priority value, so all agents are in a linear priority

' orde_r._ Especially all agents are comparable. In fact, the “bigger” the agent is, the larger is
its priority value.
mm: An agent which wants to go onto another agent, must be sure that the second

one tolerates itself. Another term would be “capable to carry”. In the ToH SCCn'JJ:J agents

tolerate others if and only if they have a higher priority.
Heuristics: Because the choice of the agents sent off is non-deterministic, heuristics are a
convenient way to find a good solution. We will make an exhaustive use of heuristics and”
try to prove the appropriateness in benchmark tests.
mm: The final goal to build a new tower on a different place i s a social goal
[We88] in that the agents with lower priority depend on the foundation of the “higher”
agents and, on the other hand, the bigger agents must hope that the smaller agents really
go away if they are obstacles.
The foundation of benevolence is built in the ToH scenario. Orders of other agents (I‘go
away, but avoid...”) are always obeyed and wishes and petitions as much as possible.
Help requests are considered privileged by ranking the alternatives (in TOHPAR). But
the agents are not altruistic at all. In doubtful situations, if they cannot combine
benevolence with their very own intentions, they act selfish. This is a key issue to force
the aspiration to reach the goal.

41

• ••••

4.2. Why Not Conventional Planning?

We could try to plan the way from the start situation to the goal situation in the Tower of

Hanoi scenario with conventional methods of planning (traditional planning, cf. [St87,

He89]). It seems to be straightforward to construct fIrst a graph of all possible states (see

Figure 4.2) with the start confIguration as start node and the respective transitions as

edges, and then look for the node representing the fInal state. Dijkstra's algorithm returns

the shortest path between the states. But taking a second glance onto the extension of the

graph reveals problems. The absolute number of states S is fInite, however, it grows

exponential. Let n be the number of disks and m be the number of sticks, then we have S

= mn. For n = 10, m =4: S =410 =210*210 = 1024*1024> 1,000,000! And this is a

very small configuration. Higher parameter values soon exceed the storage capacity of

: any computer.

start situation goal situation

Figure 4.2 : The search graph of the ToH problem is infeasibly large

Another method is search [Ni80]. If we use simple hill-climbing methods, we lack of a

pretty good heuristic function, which estimates the difference between the actual state and

the goal state. Some very special rules of thumb are possible, like "one disk at its goal

stick in the correct position is better than none" or "try to remove the obstacles from the

largest disk which is not yet at its goal". But most of all adjacent states cannot be

compared, let alone be ranked by a function using more abstract principles.

So, what still remains is graph-search (see Figure 4.3). For the same reasons as

mentioned above for hill-climbing, the branching rate can hardly be restricted. Also best

first strategies are infeasible therefore. Let us investigate the possibilities for depth-first

and breadth-first search. What is the average branching factor? If the towers are high, it

tends to m-I, otherwise, when all disks are distributed among the sticks it is n*(m-l)

42

4.2. Why Not Conventional Planning ?

We could try to plan the way from the start situation to the goal situation in the Tower of
Hanoi scenario with conventional methods of planning (traditional planning , cf. [S t87 ,

He89]). It seems to be straightforward to construct first a graph of all possible states (see
Figure 4.2) with the start configuration as start node and the respective transitions as
edges, and then look for the node representing the final state. Dijkstra’s algorithm returns
the shortest path between the states. But taking a second glance onto the extension of the
graph reveals problems. The absolute number of states 8 is finite, however, it grows
exponential. Let n be the number of disks and m be the number of sticks, then we have S
= m". For n = 10, m = 4; s = 410 = 210*210 = 1024*1024 > 1,000,000! And this is a
very small configuration. Higher parameter values soon exceed the storage capacity of

_ any computer.

start situation goal situation ’

Figure 4.2 : The search graph of the ToH problem is infeasibly large

Another method i s search [Ni80]. If we use simple hill-climbing methods, we lack of a
pretty good heuristic function, which estimates the difference between the actual state and

the goal state. Some very special rules of thumb are possible, like “one disk at its goal
stick in the correct position is better than none” or “try to remove the obstacles from the

largest disk which i s not yet at its goal”. But most of all adjacent states cannot be

compared, let alone be ranked by a function using more abstract principles.

So, what still remains i s graph-search (see Figure 4.3). For the same reasons as
mentioned above for hill-climbing, the branching rate can hardly be restricted. Also best-

first strategies are infeasible therefore. Let us investigate the possibilities for depth-first

and breadth-first search. What is the average branching factor ? If the towers are high, it
tends to m—l, otherwise, when all disks are distributed among the sticks it i s n*(m—1)

42

without parallel moves (n : no. of agents, m : no. of sticks, like above). A coarse estima

tion for the average factor is (n*m)/2, which is rather too low because of the various

combinations of parallel moves.

If we now try breadth-first search, we must take into account the total number of

expanded nodes N (breadth-first will surely find the solution, the question is for what

costs ?). If we assume that the solution is found in d steps in the best :~ase, the search tree

..:omprises about N =(n*mi2)d nodes.

An example: Let n = 10 and m = 4 as in the example above. We take d = 50 as an

empirical value from test runs. Then we get N = (10*4/2)50 = 2050 which is absolute

infeasible.

Depth-first search as an alternative is also impossible, because the depth of each branch is

not finite. Testing whether some configuration has already appeared before, would cut

the br!U1ches. But this is expensive both in time and storage. The whole branch must be

stored and one by one compared with a new node.

lli.L

~

Al.il aLJl
~....\ 1....\

iJ.il ~&ill =.JJJ. *JJl ..LJ.l:....

Figure 4.3 : Branching of the search-tree can hardly be restricted. It grows enormously.

After all, the search problem of the Towers of Hanoi cannot be tackled with conventional

methods. We must find better solutions.

If we distribute control among the disks themselves and let them make decisions which

are optimal from their local point of view (ongoing with negotiations and conflict

resolution strategies) we rid ourselves from the burden of finding a global ranking

function for the states.

43

without parallel moves (n : no. of agents, m : no. of sticks, like above). A coarse estima-
tion for the average factor is (n*m)/2, which is rather too low because of the various
combinations of parallel moves.
If we now try breadth-first search, we must take into account the total number of
expanded nodes N (breadth-first will surely find the solution, the question is for what
costs ?). If we assume that the solution is found in d steps in the best case, the search tree
comprises about N = (n*m/-2)d nodes.
An example: Let n = 10 and m = 4 as in the example above. We take d = 50 as an
empirical value from test runs. Then we get N = (10"‘4/2)so = 2050 which is absolute
infeasible.
Depth-first search as an alternative is also impossible, because the depth of each branch is
not finite. Testing whether some configuration has already appeared before, would cut

' the branches. But this is expensive both in time and storage. The whole branch must be
storedahd one by one compared with a new node.

I
I

éLLL éLLLéLLL

Figure 4.3 : Branching of the search-tree can hardly be restricted. I t grows enormously.

After all, the search problem of the Towers of Hanoi cannot be tackled with conventional
methods. We must find better solutions.
If we distribute control among the disks themselves and let them make decisions which
are opt imal from their local poin t o f view (ongoing with negotiations and conflict-
resolution strategies) we n'd ourselves from the burden of finding a global ranking
function for the states.

43

Important properties which guarantee the feasibility of multi-agent planning in the ToH

scenario are:

- The search space in confluent, i.e. each two branches from an arbitrary node can be

joint again. This is because each configuration can be constructed from each other and

everything may be reversed again.

A consequence is that backtracking is obsolete. We do not need to go back in the

search graph, but may attain the same result by going forward and simply performing

just the opposite moves as before. As in "real life", wrong moves ("deeds",

"behaviours", ...) must be actively cured or improved, they cannot simply be

"withdrawn", as if they had never occurred.

This implies the possibility of interweaving search and moving, in other words of

planning and execution. It is characteristic for multi-agent planning, that a plan

normally is not completely developed and afterwards executed. In the ToH scenario

the extreme of planning only one (i.e. the next) step with following execution is

promoted.

- The common goal can be efficiently decomposed into individual subgoals, that if each

agent (disk) has reached its personal goal, the overall goal is satisfied.

- Even if the disks directly perform their planned moves towards the goal, this may be

regarded as a proposal. If these steps are recorded, post-optirnizing becomes possible,:

which may delete unnecessary cycles or enhance the parallelism.

For these reasons we model the ToH problem as a multi-agent planning approach.

Essentially, it is an example for classic heuristical planning. What is new and challenging

is that the heuristics (and the rest of knowledge) is not any longer concentrated in Qne

central instance, but distributed among the entities, which are in the scenario themselves.

Thus we could regard our agents as "experts" for their very own limited domain.

The ToH scenario is realized in two versions which succumb distinct paradigms: One

uses sequential message passing whereas the other allows for parallel sending of

messages. In the sequel both versions shall be considered in some detail. After

introducing common aspects, the sequential version TOHSEQ and the parallel version

TOHPAR are described. Next the versions are compared with respect to their test results,

their costs and their adequacy for modelling the scenario. At last some implementation

details are presented.

We will lay emphasis on the parallel version, after all it is the aim of all our

investigations. So all prior results may prepare the way for the parallel scenario.

44

Important properties which guarantee the feasibility of multi-agent planning in the ToH

scenario are:
- The search space in confluent , i .e. each two branches from an arbitrary node can be

joint again. This is because each configuration can be constructed from each other and
everything may be reversed again.
A consequence is that backtracking is obsolete. We do not need to go back in the

search graph, but may attain the same result by going forward and simply performing
just the opposite moves as before. As in “real life”, wrong moves (“deeds”,
“behaviours”,. . .) must be actively cured or improved, they cannot simply be

“withdrawn”, as i f they had never occurred.

This implies the possibility of interweaving search and moving, in other words of
planning and execution. It i s characteristic for multi-agent planning, that a plan
normally is not completely developed and afterwards executed. In the ToH scenario
the extreme of planning only one (i.e. the next) step with following execution i s
promoted.

— The common goal can be efficiently decomposed into individual subgoals, that if each
agent (disk) has reached its personal goal, the overall goal is satisfied.

- Even if the disks directly perform their planned moves towards the goal, this may be

regarded as a proposal. If these steps are recorded, post-optimizing becomes possible”
which may delete unnecessary cycles or enhance the parallelism.

For these reasons we model the ToH problem as a multi-agent planning approach.
Essentially, it is an example for classic heuristical planning. What is new and challenging
is that the heuristics (and the rest of knowledge) is not any longer concentrated in one
central instance, but distributed among the entities, which are in the scenario themselves.

Thus we could regard our agents as “experts” for their very own limited domain.

The ToH scenario i s realized in two versions which succumb distinct paradigms: One
uses sequential message passing whereas the other allows for parallel sending of
messages. In the sequel both versions shall be considered in some detail. After
introducing common aspects, the sequential version TOHSEQ and the parallel version
TOHPAR are described. Next the versions are compared with respect to their test results,
their costs and their adequacy for modelling the scenario. At last some implementation
details are presented.
We will lay emphasis on the parallel version, after all it i s the aim of all our
investigations. So all prior results may prepare the way for the parallel scenario.

44

4.3. Common Aspects of the Realization

First of all, some general principles of DAI problems like the ToH scenario shall be

outlined. In each state of the problem solving process, each of the components (Le.

agents) has got an individual goal, but only a subset of the components is really able to

act. The elements of this subset can mostly decide what to do next by choosing one next

goal out of a set of possible alternatives. These decisions should be as clever as possible;

not only the individual situation should be taken into consideration, but also the goals and

the intentions of other agents.

In the ToH world we have (and presume, respectively) some issues, which provide

simplifications for otherwise very complicated settings:

- If a component finally has reached its goal, it surely has not to leave again 9.

- - Actions and planning is performed synchronized, i.e. all agents need exactly the same

amount of time for these two phases, no agent can overtake another. This implies we

have discrete states and discrete transitions between the states, too.

- The agents behave cooperatively and try to help others as much as possible.

The sequential and the parallel version of the ToH scenario are based on a uniform

implementation environment, i.e .. the same language and the same machine. Hence we

have a solid base for developments from one into the other and also for comparisons. Fot

the user both versions appear almost identical except that some parallel moves now and

then occur, which are not possible in the sequential version. Anyhow, often the parallel

moves are only perceived in slow-motion. But under the surface the realizations differ

considerably. Well, what is common?

Programming paradigm: We use an object-oriented programming paradigm. That means

that entities in the scenario are regarded as instances of object classes. Each object class

has certain methods attached, which serve as the procedural knowledge of the members

of the class. The declarative knowledge is stored in slots of the instances, the slot names

are defined with the objects class. More mathematically, an object instance can be seen as

a n-tuple, where each component has a specified range of possible values.

Modelling of the agents: Each agent is considered as an instantiated n-tuple (Al:VI, ... ,

An:vn). The names Ai of the components shall be called slots. Each slot can be

instantiated with a certain value Vi, which is either an element of the range of Ai, or NIL

(Le. no actual specific value given). The slots represent the entries to the knowledge

base. Strictly spoken, each agent is a knowledge base with procedural attachment, the

methods. An individual agent is created by making a new tupie "agent" and filling the

9Assumed wc have a "traditional ToH problem" like "Move the whole tower from A to Boo. In a seuing
wher~ the g,?a1 configuration comprises more towers, the disks probably have to leave sometimes their final
posluon agam.

45

4.3. Common Aspects of the Realization

First of all, some general principles of DAI problems like the ToH scenario shall be

outlined. In each state of the problem solving process, each of the components (i.e.
agents) has got an individual goal, but only a subset of the components is really able to
act. The elements of this subset can mostly decide what to do next by choosing one next
goal out of a set of possible alternatives. These decisions should be as clever as possible;
not only the individual situation should be taken into consideration, but also the goals and
the intentions of other agents.
In the ToH world we have (and presume, respectively) some issues, which provide
simplifications for otherwise very complicated settings:
- If a component finally has reached its goal, it surely has not to leave again 9.

- Actions and planning is performed synchronized, i.e. all agents need exactly the same
amount of time for these two phases, no agent can overtake another. This implies we

have discrete states and discrete transitions between the states, too.
- The agents behave cooperatively and try to help others as much as possible.

The sequential and the parallel version of the Toll scenario are based on a uniform
implementation environment, i.e._ the same language and the same machine. Hence we
have a solid base for developments from one into the other and also for comparisons. Pot
the user both versions appear almost identical except that some parallel moves now and

then occur, which are not possible in the sequential version. Anyhow, often the parallel
moves are only perceived in slow-motion. But under the surface the realizations differ

considerably. Well, what is common ?
Programming paradigm: We use an object—oriented programming paradigm. That means
that entities in the scenario are regarded as instances of object classes. Each object class
has certain methods attached, which serve as the procedural knowledge of the members
of the class. The declarative knowledge i s stored in slots of the instances, the slot names

are defined with the objects class. More mathematically, an object instance can be seen as
a n—tuple, where each component has a specified range of possible values.
Modelling of the agents: Each agent is considered as an instantiated n-tuple (A1:v1,...,
Anzvn). The names Ai of the components shall be called slots. Each slot can be
instantiated with a certain value vi, which is either an element of the range of Ai, or NIL
(i.e. no actual specific value given). The slots represent the entries to the knowledge
base. Strictly spoken, each agent is a knowledge base with procedural attachment, the
methods. An individual agent is created by making a new tuple “agent” and filling the

9Assumed we have a "traditional ToH problem" like "Move the whole tower from A to B". In a setting
where the goal configuration comprises more towers, the disks probably have to leave sometimes their final
posruon again.

45

slots properly. The number of slots is fixed, hence the aspects and the amount of

knowledge are inherently restricted. As mentioned above, not each slot must have a

specific value, NlL-entries indicate either ignorance or a lack of interest for certain

aspects. IO An agent owns at least these aspects of world knowledge:

tuple AGENT: (name, place, position, blocker)

name	 : unique identification

: actual place
 ~.

poSlUon : exact position at place
blocker : actual agent which is located on the instance itself

Example (ToH): (name: agent-4, place: 3, position: 2, blocker: agent-7)

The P!ocedural knowledge (hidden in the methods) comprises infonnation about when

and how to get more global information. This will be discussed separately for both

ve::-sions later.

User dialoj;ue: The user is asked to start the scenmo. He mt:-jt declare the nu ..lber of

agents, the number of places, whether he wants a statistic evaluation, the starting place,

the place to finish and the degree of slow motion. Changing the direction of the output

(information about status and action resp. statistic information) is also possible. Furthe~,

parameters depend on the versions.

Graphic outPut: Principally the graphic output is identical in both versions. The agents

appear as black rectangles and perform moves in three steps (up - to new place - down).

The places are perpendicular lines to sketch the "sticks".

I Orhese kinds of uncertainty do not yet emerge in the current model of the ToH scenario. But a missing of
a goal, for instance, is already integrated. Agent without goals would only passively react to orders of
others.

46

slots properly. The number of slots is fixed, hence the aspects and the amount of
knowledge are inherently restricted. As mentioned above, not each slot must have a
specific value, NIL-entries indicate either ignorance or a lack of interest for certain
aspects.10 An agent owns at least these aspects of world knowledge:

tuple AGENT: (name, place, position, blocker)

mme : unique identification
place. ractual 9139sposition : exact position at place _ _
locker : actual agent which lS located on the mstance itself

Example (ToH): (name: agent-4, place: 3 , position: 2 , blocker: agent-7)

. The procedural knowledge (hidden in the methods) comprises information about when
and how to get more global information. This will be discussed separately for both
versions later.
mm: The user i s asked to start the scenario. He mu :;t declare the nunber of

agents, the number of places, whether he wants a statistic evaluation, the starting place,
the place to finish and the degree of slow motion. Changing the direction of the output
(information about status and action resp. statistic information) is also possible. Further,
parameters depend on the versions.
Wm: Principally the graphic output is identical in both versions. The agents
appear a s black rectangles and perform moves in three steps (up - to new place - down).

The places are perpendicular lines to sketch the “sticks”.

10I‘hese kinds of uncertainty do not yet emcrge in the current model of the Tol-l scenario. But a missing of
alfioal, for instance, IS already integrated. Agent Without goals would only passwely react to orders of
o ers.

46

4.4. The Sequential Version TOHSEQ

4.4.1.	 General Phenomena

In the sequential ToH scenario TOHSEQ there are some inherent simplifications with

respect to a parallel version.

At each instant of time only one agent can be active, the rest is "f:-ozen" and does nothing.

The common goal is built up stepwise; the correct order of the subgoals is implicitly

given by the priority of the respective agents. It is impossible that Agent "x" is able to go

to its [mal goal unless Agent "x-I" has already reached its.

The priority of the agents corresponds to their size (a total order). First the biggest agent

(Agent "I") receives its goal and pursues it by sending 5locking agents off. Agent "I"

- owns the highest priority. After it has reached its goal position, the next agent (Agent

"2"fs:taits active working. This principle is also used recursively when sent-off agents

pursue any subgoals (where they want to flee) and therefore send other agents off, which

are obstacles for them. Thus in the moment one agent A. succeeds in reaching a

goal/subgoal just the one which previously caused A. to act, can go on in working

towards its next goal.

For the aspect of control, at each moment at most one agent, say A, really pursues its

original goal, all others stick on subgoals to pave the way for A. When A. reaches its'

goal, the next agent - the one who waited for A's completion - may act. Control passes

over if one agent invokes a method from one other. Thus we have an implicit control

flow in TOHSEQ, guided by the priority of the agents.

_	 Sending of messages (evoking of methods from another agent) actually works like a

remote procedure call: The addressee will carry out the ordered "service" at once but the

sender must always wait for completion. Figure 4.4 shall clear this up (according to

[Ne86]).

If an agent has decided where to go next (new subgoal), it may wait until all obstacles are

removed. This "removing of obstacles" does not concern the agent in any way; especially

it does not interfere with the agent's planned move.

As a consequence, there is only one task to perform at each instant of time. No internal

conflicts about goals occur, because an agent pursues maximal one goallsubgoal.

If an agent is able to act from its local view, this holds also for the global point of view

because no parallel action can interfere with the agent. This implies that no external

conflicts (conflicts with other agents) are possible. Hence no external component to

manage these conflicts is necessary.

Conflicts thus do not appear obviously. The strategy of conflict resolution is built into the

heuristics employed. By exploiting the maxim of "most intelligent decisions possible

from each agents point of view" the heuristics are founded on preventing conflicts.

47

4.4. The Sequential Version : TOHSEQ

4 .4 .1 . Genera l Phenomena

In the sequential ToH scenario TOHSEQ there are some inherent simplifications with
respect to a parallel version.

At each instant of time only one agent can be active, the rest is “frozen” and does nothing.
The common goal is built up stepwise; the correct order of the subgoals is implicitly
given by the priority of the respective agents. It is impossible that Agent “x” is able to go
to its final goal unless Agent “x-l” has already reached its.
The priority of the agents corresponds to their size (a total order). First the biggest agent
(Agent “1”) receives its goal and pursues it by sending blocking agents off. Agent “ l”

— owns the highest priority. After it has reached its goal position, the next agent (Agent
“2”):sitairts active working. This principle is also used recursively when sent-off agents
pursue any subgoals (where they want to flee) and therefore send other agents off, which

are obstacles for them. Thus in the moment one agent A succeeds in reaching a
goal/subgoal just the one which previously caused A. to act, can go on in working

towards its next goal.
For the aspect of control, at each moment at most one agent, say Ä, really pursues its
original goal, all others stick on subgoals to pave the way for A . When A reaches its,
goal, the next agent - the one who waited for A’s completion - may act. Control passes
ovhr if one agent invokes a method from one other. Thus we have an implicit control
flow in TOHSEQ, guided by the priority of the agents.
Sending of messages (evoking of methods from another agent) actually works like a
remote procedure call: The addressee will carry out the ordered “service” at once but'the
sender must always wait for completion. Figure 4.4 shall clear this up (according to
[Ne86]).
If an agent has decided where to go next (new subgoal), it may wait until all obstacles are
removed. This “removing of obstacles” does not concern the agent in any way; especially
it does not interfere with the agent’s planned move.
As a consequence, there is only one task to perform at each instant of‘time. No internal
conflicts about goals occur, because an agent pursues maximal one goal/subgoal.
If an agent is able to act from its local view, this holds also for the global point of view
because no parallel action can interfere with the agent. This implies that no external
conflicts (conflicts with other agents) are possible. Hence no external component to
manage these conflicts is necessary.
Conflicts thus do not appear obviously. The strategy of conflict resolution is built into the
heuristics employed. By exploiting the maxim of “most intelligent decisions possible
from each agents point of view” the heuristics are founded on preventing conflicts.

47

••

Agents are sent off only in the case if no other alternative has remained, and moreover,

only those agents which really are obstacles. Thus silly conflicts are avoided. Conflicts

concerning the order of the goals or the priority of the agents are excluded from the first

because of the reasons mentioned above.

To draw a conclusion, the main facility for control and conflicts in TOHSEQ is the

princi~le of sequentiability. We do not have to take care, for instan(~e, for coordination

,m~ synchronization aspects. This issue will dramatically chan&e in the parallel ToH

scenario.

Agent A AgentB

agent A halts and
gIVes control to B

..~ method_b: start
•••••

•-
•

endagent B is ready and
gives control back to Atime

•end

method_a: start

•••

rr-,......,..,--,,,,;,,,,,;,,;;;,;=;,,,;,;,;;,,;;;,,,,, -----~

Figure 4.4 : Message Passing as a Remote Procedure Call

4.4.2. Architecture

We consider architecture as "the structure and team-work of the particular components of

the entire system". This concerns primarily the structure of the procedural knowledge of

the agents besides the declarative aspects like the knowledge bases mentioned above. It is

important to know how the agents' methods interact, what they cause and how they are

invoked. The scenario is started from outside, however, once it runs, the agents rely

completely on their procedural knowledge to solve the problem. So it is absolutely

necessary to get a thorough understanding of the system architecture to be able to follow

the agents' decisions. There are two points of view regarding methods and sending of

messages, an abstract one and a concrete one (Figure 4.5).

48

Agents are sent off only in the case if no other alternative has remained, and moreover,

only those agents which really are obstacles. Thus silly conflicts are avoided. Conflicts

concerning the order of the goals or the priority of the agents are excluded from the first
because of the reasons mentioned above.

To draw a conclusion, the main facility for control and conflicts in TOHSEQ i s the

principle of sequentiability. We do not have to take care, for instance, for coordination
and Synchronization aspects. This issue will dramatically change in the parallel ToH

scenario.

Agent A Agent B

method_a: start
I

: agent A halls and
gives control to B

call of method_ b at B —> method_ b: start
:
I
I
I
I
I
I
I

: agent B rs ready and end
. gives control back to A /

end

Figum 4.4 : Message Passing as a Remote Procedure Call

4 .4 .2 . Arch i t ec tu re

We consider architecture as “the structure and team-work of the particular components of
the entire system”. This concems primarily the structure of the procedural knowledge of

the agents besides the declarative aspects like the knowledge bases mentioned above. It is
important to know how the agents’ methods interact, what they cause and how they are
invoked. The scenario i s started from outside, however, once it runs, the agents rely

completely on their procedural knowledge to solve the problem. So it is absolutely
necessary to get a thorough understanding of the system architecture to be able to follow
the agents’ decisions. There are two points of view regarding methods and sending of
messages, an abstract one and a concrete one (Figure 4.5).

48

'.

abstract view concrete realization

methods
Abilities of an agent
to solve a certain
well-defined problem

procedures which cause
side-effects (mostly in
changing slot-values)

sending of
messages

Sending of information
to another agent, make
use of the abilities of
whom (use a service
like a client)

Remote procedure
call (interrupt of
the sending proce
dure)

Fi~ure 4.5 : The abstract and the concrete view of messages

4.4.2.1. Abstract View

Each agent merely needs a very simple control structure to execute a given task. It

consists of four steps, which are iteratively performed until the agent has reached its goal:,

CD Determine the next (sub)goal

@: Try to become able to act (remove obstacles)

@ Reflect about your decision and perhaps modify your subgoal

® Perform the action

Constraints are the basis for the decisions in step CD and @. An agent knows its own

goal, but has also information about the wishes of other agents. This can be regarded as a

transmission of the constraints of the other agents to the first one. Because of its cooper

ative behaviour, the agent tries to obey the others' intentions as much as possible.

In step @ an agent sends orders to go away to agents, which are obstacles for it. The

agent hopes that it can act when these obstacles have left their place. But because of its

limited view, this cannot be guaranteed. Possible side effects must be restricted, this is

another duty of constraints. An order in step @ has informally a format like "go away,

but do not go to place X, because I want to go there". Thus the new constraint is "place

X is forbidden".

Step @ only occurs in the most sophisticated heuristic. In this case, the steps @,@ build

a loop, which lasts until the agent really can act. For the other heuristics, step @ is

omitted and the agents wait in step @ until their obstacles have gone away.

49

abstract view concrete realization

Abilities of an agent procedures which cause
methods to solve a certain side-effects (mostly m

well-defined problem changing slot-values)

Sending of information Remote procedure. to another agent, make all ' term t o f
äggggegf use of the abilities of She nldinggmce-g whom (use a service dure)

like a client)

figure 4.5 : The abstract and the concrete view of messages

4 .4 .2 .1 . Abst rac t View

Each agent merely needs a very simple control structure to execute a given task. It
consists of four steps, which are iteratively performed until the agent has reached its goal:‘
© Determine the next (sub)goal
®.. Try to become able to act (remove obstacles)
©, Reflect about your decision and perhaps modify your subgoal
© Perform the action

Constraints are the basis for the decisions in step (D and @. An agent knows its own
goal, but has also information about the wishes of other agents. This can be regarded as a
transmission of the constraints of the other agents to the first one. Because of its cooper-
ative behaviour, the agent tries to obey the others’ intentions as much as possible.
In step ® an agent sends orders to go away to agents, which are obstacles for it. The
agent hopes that it can act when these obstacles have left their place. But because of its
limited view, this cannot be guaranteed. Possible side effects must be restricted, this i s

another duty of constraints. An order in step ® has informally a format like “go away,
but do not go to place X, because I want to go there”. Thus the new constraint i s “place
X is forbidden”.
Step @ only occurs in the most sophisticated heuristic. In this case, the steps ®,® build
a loop, which lasts until the agent really can act. For the other heuristics, step ® is
omitted and the agents wait in step ® until their obstacles have gone away.

49

Heuristics are used in all steps except step @, where no decision has to be made

anymore.

The result of the whole proceeding (the simulation of the agents) is a sequential plan.

This plan can either be used directly, or be post-opiimized in order to find possible

parallel moves.

4.4.2.2. Concrete Realization

TOHSEQ utilizes directly the facilities of sequential message passing. Sending of

messages works like a remote procedure call: The addressee will carry out the ordered

"service" at once but the sender must always wait for completion.

.- The format of the messages is a list consisting of addressee, message type, and n

parameters par] . . .parn with n ~ O. The actual parameter of addressee must be an instance

of the class of agents where the message type is attached to.

We use message passing with the objective to implement the central idea of the agents'

desire to cause blocking agents to flee: "Leave, but do not go to the place where you

would block me again".

The sequential scenario TOHSEQ consists of one main function "hanoi" which starts the"

scenario and several methods which are called from the main function and from other

methods or agents, respectively.

The call structure of TOHSEQ is depicted in Figure 4.6 (note: hano; is a function, all

other identifiers denote methods).

go_aw~~__~_p_d_at_e_gr_a_p_h_iC_s __71aoo
Figure 4.6: Call Structure ofTOHSEQ (especially hanoi)

50

Heuristics are used in all steps except step @, where no decision has to be made
anymore.
The result of the whole proceeding (the simulation of the agents) i s a sequential plan.
This plan can either be used directly, or be post-optimized in order to find possible
parallel moves.

4 .4 .2 .2 . Concre te Rea l i za t i on

TOHSEQ utilizes directly the facilities of sequential message passing. Sending of
messages works like a remote procedure call: The addressee will carry out the ordered
“service” at once but the sender must always wait for completion.

- The format of the messages is a list consisting of addressee, message type, and n

parameters par]. . par" with n 2 0. The actual parameter of addressee must be an instance
of the class of agents where the message type is attached to.
We use message passing with the objective to implement the central idea of the agents’
desire to cause blocking agents to flee: “Leave, but do not go to the place where you
would block me again”.

The sequential scenario TOHSEQ consists of one main function “hanoi” which starts the"
scenario and several methods which are called from the main function and from other
meihods or agents, respectively.
The call structure of TOHSEQ is depicted in Figure 4 .6 (note: hanoi i s a function, all
other identifiers denote methods).

hanoi

/) i‘m—\

go_away_buwgraphics seek_best_place

Figure 4.6 : Call Structure of TOHS EQ (especially hanoi)

In the following we present the sequential TOHSEQ system by means of flow diagrams

(Figures 4.7 - 4.10). The arrows stand for control flow and the bold rectangles

symbolize the sending of a message (The control passes over to the called method, it

comes out again from the bold rectangle and goes further into the next arrow when the

stop-label of the called method is reached). The technical methods update and graphics

are :1ot decomposed further.

initialize scenario

decompose goal and
choose the first agent

Provide this agent with
its goal description and
cause it to pursue this

goal

take the next agent

£x.p[a11Gtion

I I :
--.....,~ : COfiJI,~ flow

call of a new method
, Ill switch ofcontrol

for each agent in the scenario:
invoke method go_'0 at this

make statistic evaluation
ifdesired

Figure 4.7: Top Level of TOHSEQ

51

In the following we present the sequential TOHSEQ system by means of flow diagrams

(Figures 4.7 - 4.10). The arrows stand for control flow and the bold rectangles

symbolize the sending of a message (The control passes'over to the called method, it

comes out again from the bold rectangle and goes further into the next arrow when the
stop-label of the called method i s reached). The technical methods update and graphics
are not decomposed further.

ini . l ' .
o Explanation

1 _» : corm .1 flow
: call of a new method

woompose cal and swrtch of omtrol
choose the 1rst agent

Provide this agent with
its goal description and_ _ for each agent in the scenario:
cause n to pursue uns invoke method go_to at this

- make stausnc evaluationthere size:}: agents if I . l

take the next agent a

Figure 4.7 : Top Level of TOHSEQ

51

try to go to 'your goal
agam

yes

invoke method
go away but avoid at upper neighbour

cal;>e upQer neighbour
~---..~ to leave, forbid your goal

invoke method go /()
at yourself -

yes act
go to your desired goal

invoke methods update
and graphics at yourself

calculate new position
(height at desired place)

look for the best place
to cause an agent to flee

Ulvoke method
seekJor_bestylace at yourself

Figure 4.8 : Method goJO

52

yes

invoke method
go away bu! avoid at upper neighbour

came up r neighbour
to leave, orbtd your goal

calculate new_ position try to go to'your goal
(hetght at desnred place) agam

invoke method go_lo
i at yourself

act: _
go to your desued goal

invoke methods update
and graphics at yourself

look for the best place
to cause an agent to flee

mvoke method
seekjor_best _place at yourself

Figure 4.8 : Method go_to

52

>__....~ no intelligence required;
choose the only possibility

choose next place depen
ding on the heurisucs

go to the choosen place invoke method go to
at yourself -

Figure 4.9 : Method go_away_but_avoid

~<Eventual1y a call of the methods update and display (i.e. to perfonn a move) might

happen. In this case the method go_away_but_avoid ends after the perfonned move.

53

'ß
the number . . .

no mtelllgence requlred;
0f Käfig? SW“) choose the only posibility

choose next place depen-
ding on the heunsucs

invoke method go_ta
at yourself

Figure 4.9 : Method go_away_but_avoid

956Eventually a call of the methods update and display (Le. to perform a move) might
happen. In this case the method go_away_but_avoid ends after the performed move.

53

yes try to fmd a better
alternative

ID

ID

look for the most appropri
ate agent to send off

..--_..._--.. *
cause this agent to flee

go to the first choosen
place

invoke method go_togo to this alternative
at yourself..._-...-_..

invoke method go to

at yourself -

Figure 4.10 : Method seek_bestylace

* invoke method go away but avoid
at the agent who isto send 0([

54

start

is the
choosen place yes md a better

selected te7matively try ‘äänmve

m

was a
m bena- alter-

nativeqfound

look for the most appro '- .
ate agent to send oftpn yes

* ' vokemethod go tocause this agent to flee go to tins alternative 8! yourself _

I

go to the first choosenplace end

invoke method go_lo ** invoke method go_away_but avoid
at yourself at the agent who is to send off

Figur; 4.10 : Method seek_best_place

54

4.4.3. Heuristics

All heuristics described in this chapter manage the decision where to go, when an agent

receives the message "Leave your place, but do not go to ...". There is the opportunity to

bring in some kind of intelligence, the agents normally have certain degrees of freedom to

make their new choice.

The heuristics used in the sequential version TOHSEQ are structured hierarchically. The

user selects one out of seven heuristics, which are identified by an associated integer

(I, ... ,7). As a principle, heuristic i is founded on heuristic i-I, Le. it has all the capabil

ities the former heuristic has. This implies, all tests and considerations which are provid

ed by heuristic i-I are also employed by heuristic i, even if not explicitly mentioned in the

description below. Thus if we present the features of a heuristic, it is a presumption that

-,	 all knowledge of the poorer heuristics is at hand. The "higher heuristics" should therefore

be more ~ sophisticated than the "lower" ones. Generally this should result in steadily

improved benchmark results for increasing numbers of heuristics. The actual results are

given in the next chapter. We will now describe the heuristics in some detail.

Heuristic 0 (in method go_away_but_avoid)11.

As mentioned above, the user can choose a heuristic between I and 7. Heuristic 0,

however, is switched on automatically if TOHSEQ is started merely with three places'

(towers). Then all sophisticated considerations are in vain, there is no free hand for

deCisions at all. Every heuristic would behave identically and thus all would show the

same performance.

To save computation time, heuristic 0 is added. In the method go_away_but_avoid it

directly calculates the only place which is left to go for each agent which is sent off. This

reduces the decision where to go into a quick computation. The results must be equal to

the recursive ToH algorithm which surely cannot be improved.

Heuristic 0 "do not use heuristics, if not necessary"

In a deterministic scenario (no alternatives), heuristics for decisions are unnecessary. Do

not think deeper and take the only possibility left to go on.

If there are cheap exact algorithms, exploit them as much as possible.

11 In the following we will annotate in brackets in which methods the heuristics operate.

55

4 .4 .3 . Heur i s t i c s

All heuristics described in this chapter manage the decision where to go, when an agent

receives the message “Leave your place, but do not go to. . .”. There is the opportunity to

bring in some kind of intelligence, the agents normally have certain degrees of freedom to
make their new choice.
The heuristics used in the sequential version TOHSEQ are structured hierarchically. The

user selects one out of seven heuristics, which are identified by an associated integer

(1,. . .,7). As a principle, heuristic i is founded on heuristic i—l, i.e. i t has all the capabil-
ities the former heuristic has. This implies, all tests and considerations which are provid-
ed by heuristic i—l are also employed by heuristic i, even if not explicitly mentioned in the
description below. Thus if we present the features of a heuristic, it i s a presumption that

. all knowledge of the poorer heuristics is at hand. The “higher heuristics” should therefore
be more? sophisticated than the “lower” ones. Generally this should result in steadily
improved benchmark results for increasing numbers of heuristics. The actual results are
given in the next chapter. We will now describe the heuristics in some detail.

Heuristic 0 (in method ga_away_but_avoid) “ .
As mentioned above, the user can choose a heuristic between 1 and 7 . Heuristic 0,
however, is switched on automatically if TOHSEQ is started merely with W'
(towers). Then all sophisticated considerations are in vain, there is no free hand for
decisions at all. Every heuristic would behave identically and thus all would show the
same performance.
To save computation time, heuristic 0 is added. In the method go—away_but_avoid it
directly calculates the only place which is left to go for each agent which is sent off. This
reduces the decision where to go into a quick computation. The results must be equal to
the recursive ToH algorithm which surely cannot be improved.

Heuristic 0 “do not use heuristics, if not necessary”
In a deterministic scenario (no alternatives), heuristics for decisions are unnecessary. Do

not think deeper and take the only possibility left to go on.
If there are cheap exactélgg‘ithms, exploit them as much as possible.

1 1In the following we will annotate in brackets in which methods the heuristics operate.

55

- --

- --

'!euristic 1 (in method go_away_but_uvoid).

Comprises the fundamental principle of all higher heuristics. For each agent and each

decision situation the set P of all places (towers) is divided into disjunct subsets, the set

A. of "allowed places" and the set F of "forbidden places" with respect to the next move

of each agent. F consists of at most two places; the next subgoal of the agent's "lower

rr' ;hbour" just below itself, and the actual place of another agent, which causes the agent

to leave.

From the set of allowed places one element is selected at random. To flee from the

momentary place to the selected place becomes the new subgoal.

Heuristic I "the selected alternative must be allowed"

Partition the set of all alternatives into a set of allowed alternatives A and a set of

forbidden alternatives 1', according to the actual constraints. Select one element out of A

at random and make it your new subgoal.

Heuristic 2 (in method go away but avoid).

Forces the willingness and straightness to reach the final goal and avoids needless

stepping around. Before selecting any alternative for the next action the agent checks

whether it already can reach its final goal within the next move. In this case no other

alternatives have to be regarded any longer. Three conditions must be fulfilled :

- The goal place is an allowed place.

- The goal place is attainable.

- The agent is not blocked by other agents.

Heuristic 2 "preserve some self-interest"

Fonn the sets A and l' as in heuristic 1. Check whether your final goal is in A and if

you can reach it within your next action. In this case go directly to the goal place, other

wise proceed like in heuristic 1.

Heuristic 3 (in method go away but avoid).

If the test in heuristic 2 does not return true (i.e. the goal is not attainable in one step),

consider all allowed places where you could go (a C A). These are places which are

either unoccupied or where an agent with a higher priority is situated on top of the stack.

Select the place with the flattest stack out of a . If there is more than one, take the first.

The basic idea is to cause as few blockings as possible. Again, this will be a foundation

for the following heuristics.

S6

I i eu r i s t i c 1 (in method go_away_but_uvoid).
Comprises the fundamental principle of all higher heuristics. For each agent and each
decision situation the set :P of all places (towers) is divided into disjunct subsets, the set
A of “allowed places” and the set F of “forbidden places” with respect to the next move
of each agent. ZF consists of at most two places; the next subgoal of the agent's “lower
‚„- ghbour” just below itself, and the actual place of another agent, which causes the agent

to leave.
From the set of allowed places one element is selected at random. To flee from the
momentary place to the selected place becomes the new subgoal.

Heuristic l “the selected alternative must be allowed”
Partition the set of all alternatives into a set of allowed alternatives A. and a set of
forbidden alternatives F , according to the actual constraints. Select one element out of Ä
at random and make igour new subgoal.

Heuristic 2 (in method go_away_but_avoid).
Forces the willingness and straightness to reach the final goal and avoids needless
stepping around. Before selecting any alternative for the next action the agent checks
whether it already can reach its final goal within the next move. In this case no other
alternatives have to be regarded any longer. Three conditions must be fulfilled :

- The goal place is an allowed place.
- The goal place is attainable.
- The agent is not blocked by other agents.

Heuristic 2 “preserve some self-interest”
Form the sets A and F as in heuristic 1. Check whether your final goal is in ‚Ä. and if
you can reach it within your next action. In this case go directly to the goal place, other-
wise proceed like in heuristic 1.

Heuristic 3 (in method go_away_but_avoid).
If the test in heuristic 2 does not return true (i.e. the goal is not attainable in one step),
consider all allowed places where you could go (G C A). These are places which are
either unoccupied or where an agent with a higher priority is situated on top of the stack.
Select the place with the flattest stack out of a . If there is more than one, take the first.
The basic idea is to cause as few blockings as possible. Again, this will be a foundation
for the following heuristics.

56

Heuristic 3 "look for proper alternatives"

Build the set (l of possible alternatives for the next action as a subset of A. Find a subset

1"1. of (l where each element promises minimal blockage for later actions (domain

specific). Choose the first element of 1"1. as the next subgoal.

Heuristic 4 (in method go_away_but_avoid).

Is similar to heuristic 3 except the selection criterion. The next subgoal is selected by

accident.

Heuristic 4

Proceed the same way as in heuristic 3 and build the set n . Use a random selection

_ function which guarantees equallikelihoods for all alternatives in order to determine the

next-subgoal.

Heuristic 5 (in method go_away_but_avoid).

The local knowledge of the agents shall be augmented in the way that more information

about the wishes and intentions of the other agents will be at their disposal.

Actually an agent which is sent off will get the additional advice where other agents want

to go after it has left. Thus the agent can try to obey other agents' wishes when making'

the decision where to go next. In detail this may sound as follows: "Leave your place

now, but avoid to go to place Z, because I want to go there. Furthermore I heard that

other agents want to go to the places Y}, ... ,Yn. Try to stay away from these, too." The

receiver of this message will do its best to keep the advice and selects the first place from

set 1"1. (see heuristic 3) where no agent wants to go. If there is no such place, it uses the

selection criterion of heuristic 3.

This proceeding can be regarded as the combination of constraints given by other agents,

which are still blocked.

Heuristic 5 "combine constraints"

Try to take as much intentions of co-actors as possible into consideration. If you cannot

go along with their wishes, i.e. each alternative in the set n (see heuristic 3) is objected

by some agent, use the selection criterion of heuristic 3: Choose the first element ofn as

the next subgoal. Otherwise take the first detected alternative out of n which does not

interfere with any agent's intention.

57

Heuristic 3 “look for proper alternatives”
Build the set Ci of possible alternatives for the next action as a subset of A. Find a subset
% of & where each element promises minimal blockage for later actions (domain

specific). Choose the first element of M as the next subgoal.

Heuristic 4 (in method go_away_but_avoid).
Is similar to heuristic 3 except the selection criterion. The next subgoal is selected by

accident.

Heuristic 4
Proceed the same way as in heuristic 3 and build the set M, . Use a random selection
function which guarantees equal likelihoods for all alternatives in order to determine the
next'subggal.

Heuristic 5 (in method go_away_but__avoid).
The local knowledge of the agents shall be augmented in the way that more information
about the wishes and intentions of the other agents will be at their disposal.
Actually anagent which is sent off will get the additional advice where other agents want
to go after it has left. Thus the agent can try to obey other agents’ wishes when making’
the decision where to go next. In detail this may sound as follows: “Leave your place
now, but avoid to go to place 2, because I want to go there. Furthermore I heard that
other agents want to go to the places Y1,. . .‚Yn. Try to stay away from these, too.” The
receiver of this message will do its best to keep the advice and selects the first place from
set T1 (see heuristic 3) where gg agent wants to go. If there i s no such place, i t uses the
selection criterion of heuristic 3.

This proceeding can be regarded as the combination of constraints given by other agents,
which are still blocked.

Heuristic 5 “combine constraints”
Try to take as much intentions of co-actors as possible into consideration. If you cannot
go along with their wishes, i.e. each alternative in the set fl (see heuristic 3) is objected
by some agent, use the selection criterion of heuristic 3: Choose the first element of % as
the next subgoal. Otherwise take the first detected alternative out of M which does not
interfere with any agent’s intention.

57

- --Heuristic 6 (in method go away but avoid).

Likewise heuristic 5, but with a selection function analogous to heuristic 4.

Heuristic 6

Proceed like in heuristic 5. If the known intentions of the agents cannot be protected,

,-hoose an alternative in n at random.

Heuristic 7 (in methods go_to, go_away_but_avoid , seek_bestylace).

The agents decide where to go next often long before they really can act. All the agents

lying on them and blocking them fIrst have to go away. In the heuristics up to now the

agents' decision was fixed. Once made, it will be carried out, no maner what happened in

_ the meantime. But this time interval can be considerably long, the world may have

changed.remarkable. The decision made a long time ago is hardly up to date. Perhaps

better alternatives have emerged.

UIJi 1ce in the prior heuristks where the agents stick tightly to ~r.~ir decisions, heuristic 7

makes reflections and corrections possible. On the basis of the situation in the moment

when the agents really can act, they try to find a better alternative for the decision made.

If they cannot find any, they will pursue the prior subgoals.

A few technical difficulties arise by realizing the idea. The heuristic not only concerns a'r

decision at the time when the agent is sent off (in the method go_away_but_avoid),

moreover it has influence on the method go_to which is involved in the moment the

agents can act. Therefore also the selection function seek_bestylace must be reviewed.

Some details: The next subgoal is chosen like in heuristic 5 but gets a mark "tentative".

Additionally, the place where the agent shall go by no means is memorized. This is done

in the method go_away_but_avoid. Later, when the agents really can move, only in the

case the decided goal is occupied the agents behaviour changes with respect to heuristic

5. Otherwise the goal will normally be pursued. These tests are made in the method

go_to. If the place is occupied, however, the agents try to find a bener alternative, namely

an allowed place where they can go (method seek_bestylace). If there are more such

places the one with the minimum number of places is chosen (see arguments from

heuristic 3) and, if there is more than one, just the first one.

Heuristic 7 "reflect about your decision"

Select one alternative for the next action like in heuristic 5. At the moment you can really

act (all obstacles are removed) make a test: Is the chosen alternative still appropriate? If

yes, go on as usual. Otherwise reflect your decision and try to find a better alternative. If

you find one, pursue it. If not, proceed like in heuristic 5 (stick to your prior choice).

58

Heuristic 6 (in method g0_away_but_avoid).
Likewise heuristic 5 , but with a selection function analogous to heuristic 4.

Heuristic 6
Proceed like in heuristic 5 . If the known intentions of the agents cannot be protected,

choose an alternative in 11 at random.

Heuristic 7 (in methods go_to, go_away_but_avoid , seek_best_place).
The agents decide where to go next often long before they really can act. All the agents
lying on them and blocking them first have to go away. In the heuristics up to now the
agents’ decision was fixed. Once made, it will be carried out, no matter what happened in

_ the meantime. But this time interval can be considerably long, the world may have
changedremarkable. The decision made a long time ago is hardly up to date. Perhaps
better alternatives have emerged.
Unlike in the prior heuristics where the agents stick tightly to th air decisions, heuristic 7
makes reflections and corrections possible. On the basis of the situation in the moment
when the agents really can act, they try to find a better alternative for the decision made.
If they cannot find any, they will pursue the prior subgoals.
A few technical difficulties arise by realizing the idea. The heuristic not only concerns a ,
decision at the time when the agent is sent off (in the method g0_away_but_avoid) ,
moreover it has influence on the method go_to which is involved in the moment the
agents can act. Therefore also the selection function seek_best_place must be reviewed.
Some details: The next subgoal is chosen like in heuristic 5 but gets a mark “tentative”.
Additionally, the place where the agent shall go by no means is memorized. This is done
in the method go_away_but_avoid . Later, when the agents really can move, only in the
case the decided goal is occupied the agents behaviour changes with respect to heuristic
5 . Otherwise the goal will normally be pursued. These tests are made in the method
go_to. If the place is occupied, however, the agents try to find a better alternative, namely
an allowed place where they can go (method seek_best_place). If there are more such
places the one with the minimum number of places i s chosen (see arguments from
heuristic 3) and, if there i s more than one, jus t the first one.

Heuristic 7 “reflect about your decision”
Select one alternative for the next action like in heuristic 5 . At the moment you can really
act (all obstacles are removed) make a test: Is the chosen alternative still appropriate ? If
yes, go on as usual. Otherwise reflect your decision and try to find a better alternative. If
you find one, pursue it. If not, proceed like in heuristic 5 (stick to your prior choice).

58

The next chapter will prove the capabilities of the heuristics. We performed some

benchmark tests concerning the number of moves of the agents (corresponding to the

number of nodes expanded in graph search!) and measuring the absolute run time.

4.4.4. Benchmarks

The sequential version TOHSEQ allows for the choice of seven heuristics with increasing

power, as we have seen in the prior chapter. For heuristics with non-detenninistic

decisions 12 we give three test results. An upper and an lower bound for the number of

actions performed by the agents until they all reached their final goal is surely interesting

to rank the heuristics.

- The maximum number cannot be determined. Like stupidity is (almost) infinite, a silly

heun~ic:could produce an arbitrary number of moves. The minimum number of moves

as an upper bound for the quality of a heuristic is much more interesting. It depends on

the number of places in the scenario.

Let a be the number of agents in the scenario, p the number of places. There exist two

extreme conditions:

CD P =3

Proposition

In asequential ToH scenario with p=3 places, starting place * goal place, and a agents,

the minimal total number of moves is 2(:1. - 1.

Proof: (based in the principle of the recursive ToH algorithm) By induction over a.

a=O, 0.=1 ok.

a ~ a+1: Let 1 be the starting place, 2 the goal place. We proceed the following way:

1.) a agents move from place 1 to place 3: 2(:1. - 1 moves (induction assumption).

2.) 1 agent moves from place 1 to place 2: 1 move.

3.) a agents move from place 3 to place 2: 2(:1. - 1 moves (induction assumption).

Thus for a+1 agents we have 2(:1. - 1 + 1 + 2(:1. - 1 =2(:1.+1 - 1 moves.

@ p ~o.+1

Proposition

In a sequential ToH scenario with a agents and at least a+1 places the minimal total

number of moves is 2a - 1.

12These are the heuristics 1,2,4, and 6.

59

The next chapter will prove the capabilities of the heuristics. We performed some

benchmark tests concerning the number of moves of the agents (corresponding to the
number of nodes expanded in graph search!) and measuring the absolute run time.

4 .4 .4 . Benchmarks

The sequential version TOHSEQ allows for the choice of seven heuristics with increasing

power, as we have seen in the prior chapter. For heuristics with non-deterministic
decisions 12 we give three test results. An upper and an lower bound for the number of

actions performed by the agents until they all reached their final goal is surely interesting
to rank the heuristics.
The maximum number cannot be determined. Like stupidity is (almost) infinite, a silly
heuristiccould produce an arbitrary number of moves. The minimum number of moves

as an upper bound for the quality of a heuristic is much more interesting. It depends on
the number of places in the scenario.
Let a be the number of agents in the scenario, p the number of places. There exist two

extreme conditions:

@ p = 3
Proposition
In a sequential ToH scenario with p=3 places, starting place at goal place, and a agents,
the minimal total number of moves is 2“ — 1.
Proof: (based in the principle of the recursive ToH algorithm) By induction over a .
(1:0, 0:1 ok.
a —> a+1z Let 1 be the starting place, 2 the goal place. We proceed the following way :
1.) a agents move from place 1 to place 3: 2“ — 1 moves (induction assumption).
2.) 1 agent moves from place 1 to place 2: 1 move.
3.) or agents move from place 3 to place 2: 2° — 1 moves (induction assumption).
Thus for (1+1 agents we have 2“— 1 + 1 + 2“ — 1 = 2“+1 — 1 moves.

C2) p 2 a+1
Proposition
In a sequential ToH scenario with or agents and at least n+1 places the minimal total
number of moves is 2a -— 1.

12These are the heuristics 1,2,4, and 6.

59

Proof: Let 1 be the starting place, 2 the g::-,q c ._;;e. The biggest agent must be free to go

from 1 to 2.

1.) a-l agents move away from 1 to free places between 3, ... ,p. (There are at leasta-l

places for free choice): a-l moves.

2.) 1 agent moves from place 1 to place 2: 1 move.

3.) a-l agents move to place 1: a-l moves.

Thus for a agents we have a-l + 1 + a-l =2a -1 moves.

The proof for @ can be directly translated into a simple algorithm based on the principle

of "fIrst unstack each agent on places different from the goal place, then move the biggest

agent to the goal and stack the others again on the goal".

- Now -we. have manifested the spectrum of upper bounds for TOHSEQ. As a quality

critenon for heuristics we demand the 2a - 1 result as mandatory for a scenario with p=3

places (towers) and the 2a +1 result for a scenario with at least a+l places.l 3

Furthermore a good and stable heuristic must not produce worse results if the number of

places is increased.

Thus the results of the tests should be in the interval 19 (2a +1),... ,1023 (2a - 1), where

a=10 agents are in the scenario. The results are depicted in diagrams (Figures 4.11 -,,
4.15). On the left diagrams the total number of moves needed by each heuristic is shown.

On the right diagrams corresponding time measures are given, for non-deterministic

heuristics a minimum time and a maximum time. Each pair of diagrams represents the

results for a certain number of places. The number of agents is always 10.

250
7 __

200
6

<Il
(I)

<Il

0 150

:>

E ~5=~L: 4 53,1
0

::J
(I)0 100

c: ~3.__
2 ~rtIA!FlId 76,250

46

F4J.- 62,9
o

o 80

Figure 4.11 : Results for 10 agents and 4 places

13For a number of places between 4 and n see the considerations in the appendix of this chapter.

60

2 3 456 7

Heuristics
20 40 60

time (sec)

Proof: Let 1 be the starting place, 2 the gn- , Mac. The biggest agent must be free to go
from 1 to 2.
l .) a—l agents move away from 1 to free places between 3,. . . ,p . (There are at least “—1
places for free choice): a-l moves.
2.) 1 agent moves from place 1 to place 2: 1 move.
3.) a—l agents move to place l : a—l moves.
Thus for- 13 agents we have a—l + 1 + 0-1 = 2a —l moves.

The proof for ® can be directly translated into a simple algorithm based on the principle
of “first unstack each agent on places different from the goal place, then move the biggest
agent to the goal and stack the others again on the goal”.

Now_ „we. have manifested the spectrum of upper bounds for TOHSEQ. As a quality
criterion for heuristics we demand the 2° — 1 result as mandatory for a scenario with p=3
places (towers) and the Zn +1 result for a scenario with at least n+1 places.l3
Furthermore a good and stable heuristic must not produce worse results if the number of

places is increased.
Thus the results of the tests should be in the interval 19 (2a +1),. . .,1023 (2“ — 1), where
a=10 agents are in the scenario. The results are depicted in diagrams (Figures 4.11 7
4.15). On the left diagrams the total number of moves needed by each heuristic i s shown.

On the right diagrams corresponding time measures are given, for non-deterministic
heuristics a minimum time and a maximum time. Each pair of diagrams represents the
results for a certain number of places. The number of agents is always 10.

26,4
6 WWW/aaa 32,9

(» i 28,8
a) : m
> 1 u 5

c. ! „“-’ 7///)}.’/}‚’f‚’//)7////}71>:11 2» 53 ,1° ; 4

€ g
«
.
.
,
1
1
1
»
I
a
» 7//////7////Ä‘7)7//Ä?76&;1-:;;Z;L;y;;.;;;‚;;: 75,2

fV/Aé7)W//7//////7)7//22222::
4

_.

o 20 40 60 80
Heur i s t i c s t ime (s ee)

Figure 4.11 : Results for 10 agents and 4 places

13For a number of places between 4 and n see the considerations in the appendix of this chapter.

60

60

50

UI 40
CD
:>
0

E 30
0

e:i
c 20

10

-0
2 3 4 5 6 7

Heur1st1cs

Fi~ure 4.12: Results for 10 agents and 6 places

50

40

UI
CD
:>- 30

0

E
0 20
e:i
c

10

0
2 3	 4 5 6 7

Heur1st1cs

7

6

~5 ••••••
::;
UI
L: 4
:::J

CD

::I: 3 •••••

19,7
2

••	21,1

o	 4 8 12 16 20 24

t1me (sec)

7.__.
6

~ 5 ••••••• ...
UI 4
L:
:::J

~ 3 ••••••••

2

o '2 4 6 6 10 12 14 16

t1me (sec)

Figure 4.13 : Results for 10 agents and 8 places

61

„. 3’

g ' £
2 ' =.. l =
o l g

€ | =

1 2 3 4 5 6 7 0 4 8 12 16 20 24

Heuristics t ime (sec)

Figur; 4.12 : Results for 10 agents and 6 places

9

50

4O

ä 30 §
O 0-1E 2
" ‘ " z,. =
o '. 13;

cs 20 ' 3. .}. ==
c : 32 v

10 '

0 ‘234567 01246810121416
Heurisucs time (s ec)

Figgre 4.13 : Results for 10 agents and 8 places

61

30
28
26
24
22

VJ 20
~ 18
o 16
E.... 14
o 12
g 10

8
6
4
2

-. -0
2 3 4 S 6 7

Heunstics

Fi~re 4.14 : Results for 10 agents and 10 places

30
28
26
24
22

VJ
Q)

20
:> 18
0

E	 16
....	 14
0

12ci
c:	 10

8
6
4
2
0

2	 3 4 S 6 7

Heuristic

7_---
6

~S •••••••••
,.J

i:
VJ	

4
:::J

Q)

x 3 ••••••
10,1

2

10,1

o	 2 4 6 8 10 12

time (sec)

7

6

(.)S	 .._

:;:;
-c	 4
:::J
Q)

x 3 ••••••

10,4
2

o	 2 4 6 8 10 12

time (sec)

Figure 4.15 : Results for 10 agents and 11 places

62

.»

I
‘ 1

If
I

g I
> I
OE I
- I
°. I
2 I

I
I
Il. .

l 2 3 4 5 6 7
Heuristics

Em 4.14 : Results for 10 agents and 10 places

30
28
26 ..
24
22

g 20
g 18
E 16
‘6 ‘ 4 .
°. 12 : .
= 1° : $ I. i=1:8 f“ 222%

6 '3 Ei? ‚-4 - E. I," >“.
2 f“ =: : -

0
1 2 3 4 5 6 7

Heur is t i c

Figur; 4.15 : Results for 10 agents and l l places

62

H
eu

ri
st

ic
s

H
eu

ri
st

ic

0 2 4 6 8 10 12

time (sec)

7

6

5 9,5
4 8 ,9

3 8,8
’//////////////'‚'///Z'‚’f’//////?/:if"/" 1 0,4

7///////7////////'7////7//7///

100 2 4 6 8 12
time (sec)

Critique of the heuristics with respect to their test results

All heuristics produce optimal results for p=3 places (not given in diagrams). That is not

surprising since the scenario is deterministic. Heuristic 0 prevents each chosen heuristic

from unnecessary computations. The agent must produce the same result as the recursive

ToH algorithm. For p =a+1 (i.e. 11) places, the heuristics 1 to 4 fail to satisfy the

quality criterion mentioned abuve. Just the augmented knowledge about the agents'

intentions (beginning with heuristic 5) guarantees the optimal solution. In general we

found the intended improvement of the heuristics with refined considerations.

CD only Heuristic 1:

+ +	 simple computation

+	 for "many" places acceptable results

in other cases catastrophic results

__ wide variance for calls with identical parameters

@ Heuristics 1 and 2:

+ - variation narrower than in CD

in relation to CD and the results inadequate expensive

Reasons for the poor results: Heuristic 2 covers only a very rare condition. But this

condition is a useful basis for the further heuristics to avoid very stupid moves.

@ Heuristics 1 through 3: I
I

+ +	 for p=4 places remarkable good results

+ - balanced ratio between effort and results

the more places in the scenario the worse become the results, relatively

for p=a+1 (11) places an unacceptable bad result

® Heuristics 1 through 4:

+ + only a bit more expensive than @ but significant better results

+	 narrow variance

not optimal for p=a+1 (11) places

CID Heuristics 1 through 5:

+	 for p=a+1 (11) places optimal results, otherwise not really better than ®

+ - solid results, but increasing costs

® Heuristics 1 through 6:

+	 almost each result is better than CID, but not much more expensive

+	 very narrow variation

inexplicable break-in for p=4 places

(f)	 Heuristics 1 through 7 (all heuristics) :

+ + the very best results

+ + seems to be near to the optimal results in a certain range of p, cf. appendix

the price to pay for the quality is the much more complicated control flow

63

Critique of the heuristics with respect to their test results
All heuristics produce optimal results for p=3 places (not given in diagrams). That is not
surprising since the scenario is deterministic. Heuristic 0 prevents each chosen heuristic
from unnecessary computations. The agent must produce the same result as the recursive
ToH algorithm. For p = a+ l (i.e. 11) places, the heuristics 1 to 4 fail to satisfy the
quality criterion mentioned above. Just the augmented knowiedge about the agents’
intentions (beginning with heuristic 5) guarantees the optimal solution. In general we
found the intended improvement of the heuristics with refined considerations.
(D only Heuristic 1:

+ + simple computation
+ for “many” places acceptable results
— — in other cases catastrophic results

.. .—_ — wide variance for calls with identical parameters
® Heuristics 1 and 2:

+ — variation narrower than in (D
— — in relation to @ and the results inadequate expensive

Reasons for the poor results: Heuristic 2 covers only a very rare condition. But this
condition is a useful basis for the further heuristics to avoid very stupid moves.
® Heuristics 1 through 3: ,

+ + for p=4 places remarkable good results
+ — balanced ratio between effort and results
— the more places in the scenario the worse become the results, relatively
- — for p=a+1 (11) places an unacceptable bad result

© Heuristics 1 through 4:
+ + only a bit more expensive than @ but significant better results
+ narrow variance
— not optimal for p=a+1 (11) places

@ Heuristics 1 through 5 :
+ for p=a+1 (11) places optimal results, otherwise not really better than @
+ — solid results, but increasing costs

© Heuristics 1 through 6:
+ almost each result is better than @, but not much more expensive
+ very narrow variation
— — inexplicable break-in for p=4 places

® Heuristics 1 through 7 (all heuristics) :
+ + the very best results
+ + seems to be near to the optimal results in a certain range of p , cf. appendix
— the price to pay for the quality is the much more complicated control flow

63

Appendix

We present a sequential ToH algorithm that provides an upper bound for the number of

moves in a restricted range of the number of places, p. This range shall be called "linear

range".

Proposition

Let a be the number of agents and p the number of places in a sequential ToH scenario.

If a lies in the range between p and 2p -3 (linear range), the total number of moves is

not worse than 4a - 2p + 1.

Proof: An algorithm with just this complexity14 is introduced.

- Algorithm for the linear range

Preconditions

- a : number of agents, p : number of places, p :s; a :s; 2p - 3

- the agents are numbered with running integers 1,... where agent 1 is the biggest.

- the order of the moves in lists in the algorithm is mandatory !

Procedure

<D:	 Unstack p-l agents arbitrarily onto the free places. Do not put agent p-I on the

goal place (agent p-l will be moved, because at most 2p - 3 - (p-I) =P -2 agents

are still at the starting place).

~ p - 1 moves

@	 Stack a - p + 1 agents from the ones which were unstacked in step <D.

Agent p onto agent p-I, agent p+1onto agent p,.. 0' agent a onto agent a-I

~ a-p + 1 moves

@	 There are a - p + 1 agents not yet moved and still on the starting place (follows

from <D: a - (p-I) =a - p + 1). Furthermore a - p + I places are free (follows

from @).

Unstack a - p agents (a - p + 1,... ,2) from the start place onto arbitrary places,

but not onto the goal place.

~ a-p moves

@	 Move agent 1 from the starting place to the goal place.

lIT 1 move

@ Stack the agents 2, .. .,a - p + I onto the goal place.

lIT a- p moves

14The number of moves shall be the only factor for complexity.

64

Appendix

We present a sequential ToH algorithm that provides an upper bound for the number of
moves in a restricted range of the number of places, p . This range shall be called “linear
range”.

Proposition
Let a be the number of agents and p the number of places in a sequential 'I‘oH scenario.
If a lies in the range between p and 2p —3 (linear range), the total number of moves is
not worse than 401 — 2p + l . .
Proof: An algorithm with just this complexity14 is introduced.

Algorithm for the linear range

Preconditions
- a : number of agents, p : number of places, p $ a $ 2p — 3
- the agents are numbered with running integers 1, . . . where agent 1 is the biggest.
- the order of the moves in lists in the algorithm is mandatory ! '

Procedure
© , Unstack p—l agents arbitrarily onto the free places. Do not put agent 33—1 on the

" goal place (agent p—l will be moved, because at most 2p — 3 — ())—1) = p —2 agents
are still at the starting place).
I? p — 1 moves

® Stack a —- p + 1 agents from the ones which were unstacked in step @.
Agent p onto agent p—l , agent p+1 onto agent p , . . . , agent a onto agent w—l
1'? a — p + 1 moves

@ There are a — p + 1 agents not yet moved and still on the starting place (follows
from (D: a — (p—l) = a — p + 1). Furthermore a — p + 1 places are free (follows
from ®) .
Unstack a — p agents (a — p + 1,. . .,2) from the start place onto arbitrary places,
but not onto the goal place.
W a — p moves

@ Move agent 1 from the starting place to the goal place.
IG? 1 move

@ Stack the agents 2,. . . , a — p + 1 onto the goal place.
I? a— p moves

14The number of moms shall be the only factor for complexity.

64

®	 Stack the agents a - p + 2, a - p + 3, .. .,p - 2 onto the goal place (These were

unstacked in step CD and not stacked again in step @).

Q'" 2p - a - 3 moves

®	 There are still a--p + 2 agents stacked on one place, namely p-l,..., a (follows

from @). Unstack a-p + 1 agents on arbitrary places (there are p-2 free places

and at most (2p - 3) - P + 1 =P - 2 agents to unstack).

Q'" a - p + 1 moves

@	 Stack the agents p-l, p, ..., a--l, a onto the goal stack. READY.

Q'" a - p + 2 moves

The total sum of moves is:

p-l + a--p+1 + tr-p + 1 + a--p + 2p-a.-3 + tr-p+1 + tr-p+2 =4a -2p + 1 moves.

65

© Stack the agents a — p + 2, a — p + 3,...,p — 2 onto the goal place (These were
unstacked in step @ and not stacked again in step ©).
“’ 2p —a— 3 moves

® There are still a—p + 2 agents stacked on one place, namely p—1,..., a (follows
from ®) . Unstack 0—1) + 1 agents on arbitrary places (there are p~—2 free places

and at most (2p — 3) - p + 1 = p — 2 agents to unstack).
G“ a — p + 1 moves
Stack the agents p—l, p , . . ., “—1, (1 onto the goal stack. READY.
Wa—p+2moves

The total sum of moves is:
19.1 + q—p+1 + (1—3) + l + a—p + 2p-a—3 + a—p+1 + a—p+2 = 4a—2p +1 moves.

65

4.5. The Parallel Version TOHPAR

4.5.1. General Phenomena

Nearly everything changes in the parallel realization of the ToH scenario. The founda

tions and basic ideas, however, remain the same (cf. chapters 4.1., 4.2.).

The agents pursue their goals in parallel, i.e. they decide about their next subgoals as well

as execute the planned actions contemporary. In such a context conflicts inherently occur.

At each instant of time, an agent has to find the right next action; it must decide either to

attempt its own goal, or to act in favour of someone else. On the other hand, two or more

agents may try to reach the same or overlapping goals. In this case an agreement must be

found in order to avoid deadlock situations. Later we will call the fIrst mentioned class of

conflicts internal conflicts and the latter class external conflicts. Heuristics are widely

use<ho'resolve both types of conflicts.

2 3 4

2 3 4

Fi~ure 4,16: Parallel acting may speed up the process of problem solving

66

4 .5 . The Paral le l Version : TOHPAR

4.5 .1 . General Phenomena

Nearly everything changes in the parallel realization of the ToH scenario. The founda-

tions and basic ideas, however, remain the same (cf. chapters 4.1., 4.2.).
The agents pursue their goals in parallel, i.e. they decide about their next subgoals as well

as execute the planned actions contemporary. In such a context conflicts inherently occur.
At each instant of time. an agent has to find the right next action; it must decide either to

attempt its own goal, or to act in favour of someone else. On the other hand, two or more
agents may try to reach the same or overlapping goals. In this case an agreement must be
found in order to avoid deadlock situations. Later we will call the first mentioned class of
conflicts internal conflicts and the latter class external conflicts. Heuristics are widely
used-to‘resolve both types of conflicts.

Figure 4.16 : Parallel acting may speed up the process of problem solving

66

Tn a parallel scenario certain uncon:f""-"':>le phenomena may arise which are naturally

inhibited by sequentiality. These are, for instance, synchronization needs, resource

conflicts, priority clashes, unpredictable influences of the parallel acting for the individual

subplans and subgoals of the agents, and the need for negotiation.

The reward received for the attainment of parallelism is twofold. First, the simulation

b~r0mes more natural. We can really speak: of eco-problem solv~ng and transfer the

employed techniques to real world applications. Second, parallelism accommodates the

chances of speeding up the problem solving process (cf. Figure 4.16). But these chances

must be exploited, careless decisions and heuristics may also cause a degradation with

respect to the sequential proceeding.

In the following we will start analogously to the sequential version with presenting the

architecture and a chapter about the heuristics employed. Additionally, a theoretical model

- of the agents behaviour in form of a finite automaton is presented and, after all, open

problems are discussed.

4.5.2. Architecture

The agents themselves may still be identified with mathematical tuples as in chapter 4.3.

These tuples must be augmented with components for storing decisions or intentions in,

order to detect and resolve possible conflicts. Furthermore information about the inner

status must be at hand, Le. an agent has to signal itself or others whether it is just

waiting, in a conflict situation, perhaps able to act, or ordered to leave its place. In the

sequel the agents shall also be regarded as knowledge bases with attached procedural

knowledge.

4.5.2.1. Abstract View

The abstract view of TOHPAR comprises the behaviow of the agents which is modelled

in the control flow of the concrete realization. The central concept still comprises the urge

of the agents to reach their goal and thus the demand to cause those agents to step aside,

which hinder them: "Leave your place, but do not go to the place where you would block

me again."

But now the agents receive their goals all at the same time. All agents have their final goal

in mind, not only just one, all agents must permanently rank their personal interest of

pursuing their very own goal and the interest of others that they go away.

67

in a parallel scenario certain uncomfemble phenomena may arise which are naturally
inhibited by sequentiality. These are, for instance, synchronization needs, resource
conflicts, priority clashes, unpredictable influences of the parallel acting for the individual
subplans and subgoals of the agents, and the need for negotiation.
The reward received for the attainment of parallelism is twofold. First, the simulation
becomes more natural. We can really speak of eco-problem solving and transfer the
employed techniques to real world applications. Second, parallelism accommodates the
chances of speeding up the problem solving process (cf. Figure 4.16). But these chances
must be exploited, careless decisions and heuristics may also cause a degradation with
respect to the sequential proceeding. '
In the following we will start analogously to the sequential version with presenting the
architecture and a chapter about the heuristics employed. Additionally, a theoretical model
of the agents behaviour in form of a finite automaton is presented and, after all, open
problems are discussed.

4 .5 .2 . Arch i t ec tu re

The agents themselves may still be identified with mathematical tuples as in chapter 4.3.

These tuples must be augmented with components for storing decisions or intentions in!
order to detect and resolve possible conflicts. Furthermore information about the inner
status must be at hand, i.e. an agent has to signal itself or others whether i t i s just
waiting, in a conflict situation, perhaps able to act, or ordered to leave its place. In the
sequel the agents shall also be regarded as knowledge bases with attached procedural
knowledge.

4 .5 .2 .1 . Abs t r ac t V iew

The abstract view of TOHPAR comprises the behaviow of the agents which is modelled
in the control flow of the concrete realization. The central concept still comprises the urge
of the agents to reach their goal and thus the demand to cause those agents to step aside,
which hinder them: “Leave your place, but do not go to the place where you would block
me again.”
But now the agents receive their goals all at the same time. fl agents have their final goal
in mind, not only just one, all agents must permanently rank their personal interest of
pursuing their very own goal and the interest of others that they go away.

67

--

We distinguish between internal and external conflicts.

Internal conflicts arise when the decision about the next step is to make, obeying and

weighting all known intentions of other agents. Decision rules supply means for solving

these conflicts.

External conflicts, however, are caused by other agents who e.g. have selected the same

goal (remember: all decisions. un in parallel) or have just forbidden the selected goal.

These conflicts are resolved by negotiation. The agents exchange public information via a

blackboard where also suggestions for solutions are written upon. If no solution for all

involved agents can be found, some of them must retract their wish to act. Decision rules

and the negotiation protocol heavily depend on good heuristics.

The knowledge of the agents can be distinguished analogously.

The individual knowledge is written on each agent's private knowledge base, which

""	 contains, besides information about current position and upper neighbour etc. each

agentis 'agenda. The agenda serves as a kind of mailbox, or better, as a working desk.

New messages permanently arrive like new notes fluttering through an open window.

These notes must be evaluated, ordered, or sometimes thrown into the waste paper

basket. They may comprise information about the agent's personal goal, about a subgoal

which is next to encounter, alternatives for the next subgoal, and orders from the other

agents to flee. At least the personal goal must be steadily kept on the agenda, all other
I

entries are permanently in exchange. Finally, when the agent has reached its desired goal,

it ~eletes the whole agenda which indicates the new status "ready".

Public knowledge is information concerning all agents. For the sake of simplicity,

efficiency and consistency it is not sent to each individual agent, but "broadcasted" to all

other agents via a blackboard. All agents must permanently have a look onto. the

blackboard to check whether they still conform with other agents' intentions. Each agent

may perform only two operations with blackboard entries, assert and retract, and

moreover, these operations are only allowed on entries they wrote themselves. Agents

write messages on the blackboard to inform the others about their intentions. Two

message types are promoted: Wish-messages: "I tell other agents what is my wish for

my own next step" and help-messages: "I wonder, if anyone can give me support under

the position I want to go next".

The whole scenario and especially the subpart where the agents really act is mediated and

moderated by a special agent, which does not belong to the class of "normal" agents. The

mediator is an instance of the class INFO-AGENT and shall be called "Big-Brother".

Big-Brother subsumes all global knowledge about the parallel hanoi world in its

knowledge base. If the agents want to know any global fact about the momentary

situation which is not in their individual knowledge base, they may ask Big-Brother for

information.

68

We distinguish between internal and external conflicts.
Internal conflicts arise when the decision about the next step i s to make, obeying and
weighting all known intentions of other agents. Decision rules supply means for solving
these conflicts.
External conflicts, however, are caused by other agents who e. g. have selected the same
goal (remember: all decisions . un in parallel) or have just forbidden the selected goal.
These conflicts are resolved by negotiation. The agents exchange public information via a
blackboard where also suggestions for solutions are written upon. If no solution for all
involved agents can be found, some of them must retract their wish to act. Decision rules
and the negotiation protocol heavily depend on good heuristics.
The knowledge of the agents can be distinguished analogously.
The individual knowledge is written on each agent’s private knowledge base, which
contains, besides information about current position and upper neighbour etc. each
ageritfi‘sva‘ genda. The agenda serves a s a kind o f mailbox, or better, as a working desk.

New messages permanently arrive like new notes fluttering through an open window.
These notes must be evaluated, ordered, or sometimes thrown into the waste paper
basket. They may comprise information about the agent’s personal goal, about a subgoal

which i s next to encounter, alternatives for the next subgoal, and orders from the other

agents to flee. At least the personal goal must be steadily kept on the agenda, all other
entries are permanently in exchange. Finally, when the agent has reached its desired goal,
it deletes the whole agenda which indicates the new status “ready”.
Public knowledge is information concerning all agents. For the sake of simplicity,
efficiency and consistency it is not sent to each individual agent, but “broadcasted” to all
other agents via a blackboard. All agents must permanently have a look ontoflthe
blackboard to check whether they still conform with other agents’ intentions. Each agent

may perform only two operations with blackboard entries, assert and retract, and
moreover, these operations are only allowed on entries they wrote themselves. Agents
write messages on the blackboard to inform the others about their intentions. Two
message types are- promoted: Wish-messages : “ I tell other agents what is my wish for
my own next step” and help—messages : “ I wonder, if anyone can give me support under
the position I want to go next”.
The whole scenario and especially the subpart where the agents really act is mediated and
moderated by a special agent, which does not belong to the class of “normal” agents. The
mediator is an instance of the class INFO-AGENT and shall be called “Big-Brother”.
Big—Brother subsumes all global knowledge about the parallel hanoi world in its
knowledge base. If the agents want to know any global fact about the momentary
situation which is not in their individual knowledge base, they may ask Big-Brother for
information.

68

In Figure 4.17 a very coarse presentation -::f the overall TOHPAR system from the

abstract point of view is given (in each box of the flow diagram the agents may act in

parallel).

This diagram is the foundation of the system. It reveals the abstract architecture (abstract

system design) and will be refined and made more concrete in the following chapters.

Also a sketch of the scheduling lies herein.

select a new subgoal

present your new
intentions

detect conflicts and solve
them eventually

yes

agents which can act,
00 so - others wait

Il)

Figure 4.17 : Abstract system design of TOHPAR

69

In Figure 4.17 a very coarse presentation of the overall TOHPAR system from the
abstract point of view is given (in each box of the flow diagram the agents may act in
parallel).
This diagram is the foundation of the system. It reveals the abstract architecture (abstmct
system design) and will be refined and made more concrete in the following chapters.
Also a sketch of the scheduling lies herein.

select a new subgoal

present your new
intentions

i
detect conflicts and solve .

them eventually ’

a ems which can act,
0 so - others want

Figure 4.17 : Abstract system design of TOHPAR

69

The abstract world (Le. the parallel ToH scenario, Figure 4.18) which is only modelled

in TOHPAR must be depicted in quite another manner than the system design. Actually,

the blackboard is also integrated in Big-Brother's knowledge base. But this does not

matter.

----_.
Global Blackboard

Figure 4.18 : The abstract world of parallel acting agents in a ToH scenario

70

The abstract world (i.e. the parallel Tol-I scenario, Figure 4.18) which is only modelled
in TOHPAR must be depicted in quite another manner than the system design. Actually,
the blackboard is also integrated in Big-Brother’s knowledge base. But this does not
matter.

Global Blackboard ______

Big Brother

scenario

other information:
-techmca_l details

- statistics

Figure 4.18 : The abstract world of parallel acting agents in a ToH scenario

70

4.5.2.2. Concrete Realization

The next two subchapters present the general system design starting from the top-level

function hanoi-parallel and a detailed discussion of the "modules" of the system, where

the aspects decision planning, conflict resolution, and negotiation will be emphasized.

General System Design

The top-level function hanoi-parallel calls methods of the agents or methods of the

information agent. It provides the core for the simulation of the parallel scenario, and, on

the other hand reveals the central ideas of tackling the problems which arise when

-- information can be exchanged in parallel. We will give the flow-diagram in Figure 4.19,

which isjust a refinement of the abstract system design in the prior chapter. The names of

the methods are almost self-explaining, at least they evoke a feeling what is desired. The

methods represent a kind of modules of the system. They will be described in some detail

below.

Heuristics are employed in all methods except the first. Strictly spoken, the whole

approach of modelling the parallel ToH scenario is heuristical and does not claim to be the

only one.

-- AS we now have got a first insight in the framework of TOHPAR we present the types of

agents in the scenario. The normal agents, which really act in the scenario belong to the

type AGENT of tuples. The other type is INFO-AGENT with only one instance, Big

Brother, the mediator and source of information for the other agents.

Well, how are the tuples defined ?

tuple AGENT:

name
~.
posluon
blocker

agenda
act-flag
conflict-flag
wail-flag
go_away-flag

(name, place, position, blocker, agenda, act-flag, conflict-flag,
wait-flag, go_away-flag)

: unique identification
: actual place
: exact position at place
: actual agent which is located on lhe instance itself

: list of next goals. alternatives. orders to flee •...
: indicates whelher agent lhinks that it can act
: . . . agent was in a conflict situation
: .. . agent waits for lhe olher agents

agent is sent off by anolher agent

71

4 .5 .2 .2 . Concre te Rea l i za t i on

The next two subchapters present the general system design starting from the top-level
function hand-parallel and a detailed discussion of the “modules” of the system, where
the aspects decision planning, conflict resolution, and negotiation will be emphasized.

General System Design

The top-level function hanoi-parallel calls methods of the agents or methods of the
information agent. It provides the core for the simulation of the parallel scenario, and, on
the other hand reveals the central ideas of tackling the problems which arise when
information can be exchanged in parallel. We will give the flow-diagram in Figure 4.19,
which is just a refinement of the abstract system design in the prior chapter. The names of
the methods are almost self-explaining, at least they evoke a feeling what is desired. The
methods represent a kind of mgules of the system. They will be described in some detail
below.
Heuristics are employed in all methods except the first. Strictly spoken, the whole
approach of modelling the parallel Tol-I scenario is heuristical and does not claim to be the
only one. '

A's we now have got a first insight in the framework of TOHPAR we present the types of
agents in the scenario. The normal agents, which really act in the scenario belong to the
type AGENT of tuples. The other type is INFO-AGENT with only one instance, Big-
Brother, the mediator and source of information for the other agents. "
Well, how are the tuples defined ?

tuple AGENT: (name, place, position, blocker, agenda, act-flag, conflict-flag,
wait-flag, go_away-flag)

name : unique identification
_ : actual place

srtion : exact posruon at place _
locker : actual agent whrch is located on the mstance itself

agenda : listof next oals, alternatives, orders to flee,...
act-flag : Indicates w cther agent thinks that tt can act .
conflict-flag : . . . agent was m a conflict Situation
wait-flag : . . . agent waits for the other agents
go_away—flag : agent 15 sent off by another agent

71

yes

ro

conflict-resolution-l

synchronize

invoked at
Big-Brother

invoked at
each agent

invoked at
each agent

invoked at
each agent

invoked at
Big-Brother

invoked at
Big-Brother

invoked at
Big-Brother

negotiation cycle

Figure 4.19 : The top level function Iulnoi-parallel and the called methods

72

start

. invoked atlmualme_scenan0 Big—Brother

invoked atcreate_next_goal each agent

. invoked atmfonn_olher_agems eachflgmt

conflict-resolution—l 1.22m _ _
negouanon cycle

_ did
yes conflicts, (type Ü

anse
?

. - invoked at= confllct-resoluuon-Z Big-Brother

. invoked atsynchromze Big-Brother

' invoked axcause_l0_act Big-Blower

Figure 4.19 : The top level function hanoi-parallel and the called methods

72

tuple INFO-AGENT:

blackboard

agentarray
pIacearray
aetarray

(blackboard, agentarray, placearray, actarray)

; actual agent which is located on the instance itself

; array of all agents in the scenario
; actual configuration in the ToH world
; agents, whicb actually want to act

Thus the instances of the tuples AGENT and INFO-AGENT comprise all of the declar

ative knowledge of TOHPAR. The control and data flow (Le. the procedural knowledge

how to tackle certain situations) lies inherent in the order of called methods each with a

subtree of called auxiliary functions (see "The Modules of the System").

- It is of central interest that all the agents can try to get more infonnation by asking Big

Brother::Up to now no authentication and access control is built in. Four slots of Big

Brother are of predominant importance:

- blackboard: tile only structure for the agents to exchange public information

- agentarray: makes access to all other agents feasible

- placearray : an inner model of the outer real configuration of the ToH scenario.

- actarray : information about agents willing to act will be gathered for later

synchronization

Fo~ the tuple AGENT some attributes (slots) from the sequential version TOHSEQ have

been adopted. New slots are the entries for the agenda and four flags which reveal the

actual status the agent is in. agenda is merely a list of messages managed by certain

priority and generation rules (ef. "Creating New Goals"). The three status-flags indicate

prior, contemporary, and future urges for the agent:

act-fla~

Shows if the agent still believes it can act, but gives no guarantee whether it is really so.

The act-flag must be reset, when the agent retracts his wish and finds no alternative.

conflict-fla~

Has the agent been involved in conflicts15 ? If it has, it must inform the others about its

possibly changed new decisions.

wait-fla~

The agent shows that it does not conuibute in negotiations any longer. There are two

possibilities to do this. First, the agent may have realized that it can act by no means.

Either it is blocked by an "upper neighbour" or the goal place is not attainable, even if the

agent there on the top would flee. Second, the agent has elected a (sub)goal where it does

151n conflicts of "type I" as we will see later.

73

tuple INFO-AGENT: (blackboard, agentarray, placearray‘, actarray)

blackboard : actual agent which is located on the instance itself

entarray : array of all agents in the scenario
y ; actual cont“: urauon in the ToH world

actanay : agents, who actually want to act

Thus the instances of the tuples AGENT and INFO-AGENT comprise all of the declar-
ative knowledge of TOHPAR. The control and data flow (i.e. the procedural knowledge

how to tackle certain situations) lies inherent in the order of called methods each with a
subtree of called auxiliary functions (see “The Modules of the System”).

It is of central interest that all the agents can try to get more information by asking Big—
Brother-I-"Up to now no authentication and access control is built in. Four slots of Big-
Brother are of predominant importance:
- blackboard : the only structure for the agents to exchange public information

- agentarray : makes access to all other agents feasible
— placearray : an inner model of the outer real configuration of the ToH scenario.

- actarray : information about agents willing to act will be gathered for later
I

synchronization

For the tuple AGENT some attributes (slots) from the sequential version TOHSEQ have
been adopted. New slots are the entries for the agenda and four flags which reveal the
actual status the agent is in. agenda is merely a list of messages managed by certain
priority and generation rules (cf. “Creating New Goals”). The three status-flags indicate
prior, contemporary, and future urges for the agent:

@
Shows if the agent still believes it can act, but gives no guarantee whether it is really so.
The act-flag must be reset, when the agent retracts his wish and finds no alternative.

conflictflag
Has the agent been involved in conflicts15 ? If it has, it must inform the others about its
possibly changed new decisions.
wait-flag

The agent shows that it does not contribute in negotiations any longer. There are two
possibilities to do this. First, the agent may have realized that it can act by no means.
Either it is blocked by an “upper neighbour” or the goal place i s not attainable, even if the
agent there on the top would flee. Second, the agent has elected a (sub)goal where it does

15In conflicts of "type l " as we will see later.

73

not interfere with others. It waits for the othl.;s to finish their negotiation and to start the

joint acting. If one of the agents in negotiations selects a new subgoal which then

interferes with the waiting agent, however, the wait-flag must be reset again, the fonner

waiting agent is tom back to negotiations.

gQ. away-flag

It has the duty to memorize that the agent once was send off. It ensures that such orders

will not be forgotten in later considerations and forces the concerned agents to keep busy.

The messages which are written on any agenda or the blackboard, respectively, must

have a predefined format that all addressees can interpret them. Two remarks hold for all

types of messages: status can take a value REQUEST(ED) or RETRACf(ED), depending

on whether the message is new or unrivalized, or whether the message had to be

- withdnnvn caused by negotiations. position often gets the value NIL, mostly only the

place is interesting, the exact position on that place is not important.

The messages for the bbckboard are:

wish-messages

Agents which believe that they can act, infonn the others about their plans. The next

desired subgoal is brought into discussion in this manner.

Format: (wish <place> <pos> <name> <status», which means:

"I wish to go to place <place> (exact position <pos». My name is <name>. The message

is ;<status>."

help-messages

Agents which are not blocked, but with a still unattainable subgoaP6 may send help

requests to the society of agents. Later, agents selecting alternatives will favor s.uch

which satisfy help requests of others.

Fonnat: (help <support place> <support posl1> <name> <status18», which means:

"I need~. Please support me at place <support place> (exact position <support pos».

My name is <name>. The message is <status>."

Messages written on the agendas of individual agents:

goal-messages

Infonnation about the final goal given to the agents at the start of the scenario. This

message is the only one which must permanently reside at the agenda until its intention is

fulfilled.

Format: (goal <goal place> <goal position» , which means:

"My final goal is place <goal place> with exact position <goal position>."

16[n the ToH scenario: the existing "lower" is nm yet high enough.

17One below the position really attempted by the sender.

18Thc status-flag is not yet employed for help-messages. Il is permanently set to "REQUEST".

74

not interfere with others. It waits for the othLm‘" to finish their negotiation and to start the

joint acting. If one of the agents in negotiations selects a new subgoal which then
interferes with the waiting agent, however, the wait-flag must be reset again, the former
waiting agent is torn back to negotiations.
go, away—flag
It has the duty to memorize that the agent once was send off. It ensures that such orders
will not be forgotten in later considerations and forces the concerned agents to keep busy.

The messages which are written on any agenda or the blackboard, respectively, must
have a predefined format that all addressees can interpret them. Two remarks hold for all
types of messages: status can take a value REQUEST(ED) or RETRACI‘ (ED), depending
on whether the message i s new or unrivalized, or whether the message had to be
withdrawn caused by negotiations. position often gets the value NIL, mostly only the
place is‘interesting, the exact position on that place is not important.
The messages for the bl ckboard are:
wish-messages
Agents which believe that they can act, inform the others about their plans. The next

desired subgoal is brought into discussion in this manner.
Format: (wish (place) <pos> (name) (status)) , which means: „
“ I lis_h_ to go to place (place) (exact position <pos>). My name is (name). The message
i s ; status>.”

help-messages
Agents which are not blocked, but with a still unattainable subgoal“s may send help-
requests to the society of agents. Later, agents selecting alternatives will favor such
which satisfy help requests of others.
Format: (he lp (support place) (support posl") (name) <statusls>) ‚which means:

“I need mm. Please support me at place <support place> (exact position (support pos>).
My name is <name>. The message is <status).”

Messages written on the agendas of individual agents:
goal-messages
Information about the final goal given to the agents at the start of the scenario. This
message is the only one which must permanently reside at the agenda until its intention is
fulfilled. '
Format: (goa l (goal place) (goal position)) , which means:
“My final goal is place (goal place) with exact position (goal position).”

16In the ToH scenario: the existing “tower’ is not yet high enough
{20m below the position really attempted by the sender.
18The status- flag 1s not yet employed for help-messages. It 1s permanently set to "REQUEST".

74

leave-messages

Implementation of the central idea "go away, but avoid..." as mentioned above several

times. This order is sent from the agent which is direct below the addressee or from an

agent which wants to go just there where the addressee is situated.

Format: (1eave <place> <sender> <status», which means:

"Go away, but avoid <pIal-C>. My name is <sender>. The message is <status>:'

messages about the next goal

This is rather an information than a message because an agent writes this entry on its own

agenda. It is the conclusion of the application of a set of rules to the entries of the agenda

and the considerations about the actual situation. The decision what to do next has the

highest priority on the so modified agenda.

Format: (next_goal <place> <position», which means:

"My next subgoal is place <place> with exact position <position>."
~ -...

Messages about alternatives

Also this is an important information for situations where agents must reflect about their

decisions and try to find new (better) issues. The list of alternatives contains those places

which are not forbidden for the agent and still potential candidates for the next move. It is

by no means ensured that the agents can really go there in the next move.

Format: (a1 t e rnat i ves <list of places>) , which means:

"My actual alternatives are: <list of places>."

Now after a first insight into the structure and principles of the system, the principal way

of discourse of the agents shall be enlightened. But before doing that, we introduce a few

convenient definitions for making the further aspects more precise and shorten ~he

terminology .

Definition

An agent believes that it can act iff (i) it is not blocked and (ii) either the place of the next

goal is attainable or would be attainable if another agent there would flee at the same time.

Definition

Conflicts are of type 1 iff they are caused by "leave-messages", which collide with own

intentions (i.e. if new forbidden goals are in the list of alternatives or especially the next

desired goal is suddenly forbidden).

Definition

Conflicts are of type 2 iff they are caused by incompatible wishes of other agents with

respect to the own intentions.

Both types of conflicts are external conflicts in the terminology mentioned above.

75

leave-messages
Implementation of the central idea “go away, but avoid. . .” as mentioned above several
times. This order is sent from the agent which is direct below the addressee or from an
agent which wants to go just there where the addressee is situated.
Format: (l e ave (place) (sender) (status>) , which means:
“Go away, but avoid <place>. My name is (sender). The message is (status>.”
mes a th n oal
This is rather an information than a message because an agent writes this entry on its own
agenda. It is the conclusion of the application of a set of rules to the entries of the agenda
and the considerations about the actual situation. The decision what to do next has the
highest priority on the so modified agenda.
Format: (nex t_goa l <place> <position>) , which means:
“My next subgoal is place <place> with exact position (position).”

Also this is an important information for situations where agents must reflect about their

decisions and try to find new (better) issues. The list of alternatives contains those places
which are not forbidden for the agent and still potential candidates for the next move. It is
by no means ensured that the agents can really go there in the next move.
Format: (a l t e rna t i ve s (list of places>) , which means: ,
“My actual alternatives are: (list of places) .”

Now after a first insight into the structure and principles of the system, the principal way
of discourse of the agents shall be enlightened. But before doing that, we introduce a few
convenient definitions for making the further aspects more precise and shorten the
terminology .
Definition
An agent believes that it can act iff (i) it is not blocked and (ii) either the place of the next
goal is attainable or would be attainable if another agent there would flee at the same time.
Definition
Conflicts are of type 1 iff they are caused by “leave-messages”, which collide with own
intentions (i.e. if new forbidden goals are in the list of alternatives or especially the next
desired goal is suddenly forbidden).
Definition
Conflicts are of type 2 iff they are caused by incompatible wishes of other agents with
respect to the own intentions.
Both types of conflicts are external conflicts in the terminology mentioned above.

75/’—/

Which strategy do the agents pursue ~ _..vill sketch it here in natural language. The

more technical aspects can be found in the chapter "The Modules of the System".

Proceeding of the agents

CD (the infonnation agent)

Big-Brother initializes the scenario, creates the agents, fills the slots properly and hands

over the orders where to go.

@ (internal evaluation of all agents)

The agents modify their agendas and create new subgoals.

@ (external message broadcasting)

The agents present their intentions or post help-requests. Only the agents still potentially

capable to act can do the first, the others resign and wait until the acting is finished.

@ (internal evaluation of the agents which believe they can act)

, The agents which believe they can act, try to detect conflicts of type 1. If there is one,
. ~ '"

they set the conflict-flag and go back to @. Other agents wait until all conflicts are

resolved.

@ (the infonnation agent)

Big-Brother synchronizes and mediates the acting of the ag~nts left. The maximum

number of parallel moves is performed. Acting agents delete their agenda except the final

goal. After each acting cycle the blackboard is completely cleared.

®
If all agents are now on their final goal, the scenario will stop. Otherwise step @ is

::
perfonned again.

The genuine negotiation cycle lies hidden between the steps @ and @. It shall be pointed

out further in the following.

Negotiation cycle

The negotiation has the duty to solve conflicts of type 1. Thus when we say "conflicts" in

this paragraph, we always refer to conflicts of type 1.

The negotiation cycle starts with publishing the wishes of those agents which believe they

can act. This provides a basis for the agreement. It is important that the other agents,

which by no means can act, do not take part in negotiations. They are not concerned. so

they remain idle until the next parallel acting is performed.

Then each negotiating agent tests whether conflicts occur with respect to its individually

planned next action. If there are still alternatives left, an agent involved in a conflict will

select one and present it as a new suggestion. If no alternative remains and the conflicts

are not resolved, the agent says "good bye" and leaves the negotiation cycle.

76

Which strategy do the agents pursue " - will sketch it here in natural language. The
more technical aspects can be found in the chapter “The Modules of the System”.
Proceeding of the agents
(D (the information agent)
Big-Brother initializes the scenario, creates the agents, fills the slots properly and hands
over the orders where to go.
® (internal evaluation of all agents)
The agents modify their agendas and create new subgoals.
© (external message broadcasting)
The agents present their intentions or post help-requests. Only the agents still potentially
capable to act can do the first, the others resign and wait until the acting is finished.
@ (internal evaluation of the agents which believe they can act)
The agents which believe they can act, try to detect conflicts of type 1. If there is one,

they‘lsetflthe conflict—flag and go back to @. Other agents wait until all conflicts are
resolved.
@ (the information agent)
Big—Brother synchronizes and mediates the acting of the agents left. The maximum
number of parallel moves is performed. Acting agents delete their agenda except the final
goal. After each acting cycle the blackboard is completely cleared.
©
If all agents are now on their final goal, the scenario will stop. Otherwise step ® is

I

performed again.

The genuine negotiation cycle lies hidden between the steps @ and @. It shall be pointed
out further in the following.
Neggg’ation cycle .
The negotiation has the duty to solve conflicts of type 1. Thus when we say “conflicts” in
this paragraph, we always refer to conflicts of type 1 .
The negotiation cycle starts with publishing the wishes of those agents which believe they
can act. This provides a basis for the agreement. It is important that the other agents,
which by no means can act, do not take part in negotiations. They are not concerned, so
they remain idle until the next parallel acting is performed.
Then each negotiating agent tests whether conflicts occur with respect to its individually
planned next action. If there are still alternatives left, an agent involved in a conflict will
select one and present it as a new suggestion. If no alternative remains and the conflicts
are not resolved, the agent says “good bye” and leaves the negotiation cycle.

76

For each agent in negotiation the cycle of retracting and making new suggestions lasts

until it either must cancel the negotiations because of a lack of alternatives or it is not in

conflicts any longer. The whole cycle ends when all conflicts are solved.

One more issue is interesting: Agents, which solved their conflicts by detecting a suitable

alternative can eventually be torn back into negotiations by others whose new decisions

cause conflicts again.

At last few annotations to the blackboard architecture. The main advantages of a black

board as a medium for exchanging public information between all agents are:

- Efficiency: Redundant copying and distributing messages to all agents is expensive

concerning both temporal and storage aspects.

- Consistency: Once written on the blackboard, all agents have access to the same (and

ne~est) information. Complicate validating and updating procedures are unnecessary.

The principle of broadcasting can be adequately realized with a blackboard architecture.

The Modules of The System

The methods called from the top level function hanoi-parallel shall be called modules. We
\

will present these modules in detail here, laying our emphasis on the conditions which

ho~d before and after a method (or a subfunction) is performed. For each method the call

strUcture is given, but not all called functions are considered particularly further)9

Initialization

Method: initialize_scenario attached to type INFO_AGENT

Parameters: number of agents, number of places, starting place, goal place

Call structure: initialize_scenario
initialize_agents
initialize_window

Preconditions: none 20

Postconditions:

- The output window is correctly initialized.

- The configuration of all agents on their start position is visible.

- Instances of the class AGENT are created with properly filled slots.

19For a thorough understan~ng of the i!TIplcmentation it is reco~mended to consult at least partlr the listing
of the programs. The descnpuons proVide a more abstract overview about the "what" and "why' the listing
will evolve the "how". '
20A fonnal precondition is "true" or T.

77

For each agent in negotiation the cycle of retracting and making new suggestions lasts
until it either must cancel the negotiations because of a lack ‚of alternatives or it is not in
conflicts any longer. The whole cycle ends when all conflicts are solved.
One more issue is interesting: Agents, which solved their conflicts by detecting a suitable

alternative can eventually be torn back into negotiations by others whose new decisions
cause conflicts again.

At last few annotations to the blackboard architecture. The main advantages of a black-

board as a medium for exchanging public information between all agents are:
- Efficiency: Redundant copying and distributing messages to all agents is expensive

concerning both temporal and storage aspects.
- Consistency: Once written on the blackboard, all agents have access to the same (and

newest) information. Complicate validating and updating procedures are unnecessary.
The principle of broadcasting can be adequately realized with a blackboard architecture.

The Modules of The System

The methods called from the top level function hanoi-parallel shall be called modules. We .
will present these modules in detail here, laying our emphasis on the conditions which,
hol_d before and after a method (or a subfunction) is performed. For each method the call
strticture is given, but not all called functions are considered particularly further.19

Initialization

Methgiz i n i t i a l i ze_s cenario attached to type INFQ_AGENT

Parameters: number of agents, number of places, starting place, goal place
Call structure: initialize_scenario

initialize_agents
initialize_window

Preconditions: none 20
Postconditions:
- The output window is correctly initialized.
- The configuration of all agents on their start position i s visible.
- Instances of the class AGENT are created with properly filled slots.

19For a thorough understanding of the implementation it is recommended to consult at least partly the listing
of ltlhe prlograhms'.‘r}'he'descnpuons prowde a more abstract overview about the "what" and "why' , the listing-w1 evo ve e ow .
20A formal precondition is "true" or T.

77

- The message about the final goal is the only (-,~0'. on each agent's agenda

- The slots of Big-Brother are updated with actual parameters. The blackboard is empty,

especially.

Description of the method:

The dynamic window parameters (see Appendix (8.» are computed. Big-Brother's

information is updated. New agents are created and their knowledge bases are filled with

information about both start and goiil position. The output window is created and the start

configuration is displayed: agents, places (sticks), the headline.

Creating New Goals

. Method: create_next_goal attached to type AGENT

Parameters: none

c"n Stfllcture: create_next~oal

rule-l

rule-2

rule-3

rule-4

modify_agenda_of

plan_*leave*
make_new_decision

plan_*alternatives*
find_heuristically_besCalternative

seleccheuristically_besCalternative
update_agents

plan_*next~oal*
plan_*goal*

Preconditions:

- Blackboard is empty

- State of agenda21 : ([(goal x y)] [(leave...)]* [(nexcgoal...)] [(alternatives (...))]),

arbitrary order of entries

- The current place is not in the list of alternatives, nor the prior chosen next goal

- The list of alternatives is not NIL

Postconditions:

- State of agenda : ([(next~oal a b)] [(goal x y)]) or

([(next~oal a b)] [(goal x y)] [(alternatives list)])

- not both a=x and b=y hold

- a is no element of list

- the order of goals at the agenda is mandatory

2IThe meta-notation is like follows: [..] means 0 or I times; [..]* means 0 or more times; [..]n means
exactly n times and Iseparates alternatives to choosc.

78

- The message about the final goal is the only c ".try on each agent’s agenda.

- The slots of Big-Brother are updated with actual parameters. The blackboard is empty,
especially.

Description gf the method:
The dynamic window parameters (see Appendix (8.)) are computed. Big-Brother’s
information is updated. New agents are created and their knowledge bases are filled with
information about both start and goal position. The output window is created and the start
configuration is displayed: agents, places (sticks), the headline.

Creating New Goals

Mam: create_next_goal attached to type AGENT

Em: none
9311 structure: create_next_goal

rule-1
rule-2
rule-3
rule-4
modify_agenda_of .

plan_*1eave* ,
make_new_decision

plan_*alternatives*
find_heuristically_best_altemative

select_heuristically_best_altemative
update_agents

plan_*next_goal*
plan_*goal*

n " ns:

- Blackboard is empty
- State of agenda21 : ([(goal x y)] [(leave...)]* [(next_goal...)] [(alternatives (...))]),

arbitrary order of entries
- The current place is not in the list of alternatives, nor the prior chosen next goal
- The list of alternatives is not NIL
Pgstcgnditions:
- State of agenda : ([(next_goal a b)] [(goal x y)]) or

([(next_goal a b)] [(goal x y)] [(altematives list)])
- not both a=x and b=y hold
— a is no element of list
- the order of goals at the agenda is mandatory

21The meta-notation is like follows:_[..] means 0 or 1 times; [..]* means 0 or more times; [..]n means
exactly n times and lseparates altemauves to choose.

78

Description of the method:

The method can be divided into three parts. First, four rules are applied to the agenda to

eliminate redundancies and inconsistencies on the agenda. These rules are based on

heuristics. The effect is a generalization in such a way that all decisions about next goals

are retracted. Each element in the set of alternatives has potentially the identical likelihood

to become a candidate for the next choice.

Second the leave-entries are investigated and evaluated. This is the duty of the function

modify_agenda_of.

At last the decision must be performed. The function make_new_decision copes with

that.

Function: rule-l of method create_nexcgoal

- Parame~r: agenda

Value: modified agenda

Preconditions: see method create_next~oal

Postcondition: no pairs of leave-orders with identical forbidden place exist on the agenda

Description of the function:

Performs the application of the rule

(leave x agent-i), (leave x agent-j ...), priority (agent-i) > priority (agent-j) -+

(leave x agent-i) to the agenda

H~uristic: The higher the priority of an agent, the higher is the priority of its leave-orders.

Function: rule-2 of method create_next~oal

Parameter: agenda

Value: modified agenda

Precondition: rule-l was applied

Postcondition: no forbidden place is a desired next~oal

Description of the function:

Performs the application of the rule

(leave x agent-i ...), (next.....goal x y) -+ (leave x agent-i ...) to the agenda

Heuristic: A forbidden subgoal must not be selected for the next move

Function: rule-3 of method create_nexcgoal

Parameter: agenda

Value: modified agenda

Precondition: rule-2 was applied

79

Desgn'ption of the method:
The method can be divided into three parts. First, four rules are applied to the agenda to
eliminate redundancies and inconsistencies on the agenda. These rules are based on
heuristics. The effect is a generalization in such a way that all decisions about next goals
are retracted. Each element in the set of alternatives has potentially the identical likelihood
to become a candidate for the next choice.
Second the leave-entries are investigated and evaluated. This is the duty of the function
modify_agenda_of.
At last the decision must be performed. The function make_new_decision copes with
that.

Fu ngtign: ru le— 1 of method create_next__goal
° Em: agenda

ME modified agenda
Preconditions: see method create_next_goal
Posmonditign: no pain of leave—orders with identical forbidden place exist on the agenda
Description of the function:
Performs the application of the rule
(leave x agent-i . . .) , (leave x agent-j . . .), priority (agent-i) > priority (agent-j) —» .,

(leave x agent—i . . .) to the agenda.
Heuristic: The higher the priority of an agent, the higher is the priority of its leave-orders.

Function: ru l e -2 of method create_next_goal

m: agenda
V_a1_l._l§: modified agenda

Prgondition: rule-l was applied
Postcgndition: no forbidden place i s a desired next _goal
Desgriptign of the fgngtign:
Performs the application of the rule
(leave x agent-i . . .), (next_goal x y) —> (leave x agent-i . . .) to the agenda
Heuristic: A forbidden subgoal must not be selected for the next move

Function: ru l e—3 of method create_next_goal
Pameter: agenda
Value: modified agenda
Pregondition: rule-2 was applied

/‚/‚79///

Postconditions:

- No forbidden place is an element of the list of alternatives

- No list of alternatives is an empty list

Description of the function:

Perfonns the following rules in the denoted order:

1.) (leave x a), (alternatives (x» (leave x a)

2.) (leave x a), (alternatives list) (leave x a), (alternatives list-(x})

Heuristic: A forbidden place cannot be an alternative for the next move

Function: rule-4 of method create_nexcgoal

Parameter: agenda

Value: modified agenda-

Precondition: rule-3 was applied

Postconditions:

- no entry (next~oal ...) will be on the agenda, if there are alternatives

- State of agenda: ([(goal x y)] [(alternatives list) I (next~oal a b)] [(leave ...)]*)

- infonnation on agenda is consistent, all preconditions of rule-I,... ,rule-4 hold

Description of the function:

IPerfonns the following rules in the denoted order:
I

1.) (next~oal x), (alternatives list), x element of list (alternatives list)

2.) (next~oal x), (alternatives list), x not element of list -+ (alternatives list u (x})

Heuristic: If you have other alternatives, reflect about your fonner decision. Therefore

reduce your prior chosen next goal to a normal alternative

Remarks to rule-l, rule-4

The functions do not modify the agendas destructively. They are all based on certain

heuristics and hence disputable. Each rule fires as long as its precondition can be

satisfied. The order of the application must not be changed, otherwise inconsistencies

may occur.

Example:

Let an agenda consist of entries (leave x a s), (alternatives (x y», (next~oal x z). The

correct result returned after application of the four rules should be: ((leave x as),

(alternatives (y») which means: I have the order to leave my place, but I must not go to

place x. The only alternative is place y.

But an application of rule-3 first and the rule-4 would return ((leave x as), (alternatives

(x y»). The forbidden goal, however, cannot be a pennitted alternative. rule-3 has to be

applied a second time. To avoid these inconsistencies, it is essential that first the powerful

heuristic of rule-2 is employed to remove fonner decisions which cannot be uphold.

80

Pmtconditions:
- No forbidden place is an element of the list of alternatives
- No list of alternatives is an empty list
Description of the function:
Performs the following rules in the denoted order:
1 .) (leave x a . . .) , (alternatives (x)) -> (leave x a . . .)

2.) (leave x a . . .) , (alternatives list) -> (leave x a . . .) , (alternatives list—[x})
Heuristic: A forbidden place cannot be an alternative for the next move

Function: ru le—4 of method create_next_goal
Parameter: agenda
Mare: modified agenda
Prggondjtion: rule-3 was applied
Post: on-d'itions:
— no entry (next _goal. . .) will be on the agenda, if there are alternatives

- State of agenda : ([(goal x y)] [(altematives list) ! (next_goal a b)] [(leave . . .)]*)

— information on agenda is consistent, all preconditions of rule-1,. ..,rule-4 hold

Descripg'gn Qf the fungi on:

Performs the following rules in the denoted order: ,
1.) (next_goal x . . .) , (alternatives list), x element of list -> (alternatives list)

2.) (next_goal x . . .), (alternatives list), x not element of list -> (alternatives list U (x))

Heuristic: If you have other alternatives, reflect about your former decision. Therefore
reduce your prior chosen next goal to a normal alternative

Remarks to ru l e—1, r u l e -4

The functions do not modify the agendas destructively. They are all based on certain

heuristics and hence disputable. Each rule fires as long as its precondition can be
satisfied. The order of the application must not be changed, otherwise inconsistencies

may occur.
Example:

Let an agenda consist o f entries (leave x a s), (alternatives (x y)), (next_goal x 2). The
correct resul t retumed after application o f the four rules should be: ((leave x a s) ,

(alternatives (y))) which means: I have the order to leave my place, but I must not go to

place x. The only alternative is place y.
But an application of rule-3 first and the rule-4 would return ((leave x a 's), (alternatives
(x y))). The forbidden goal, however, cannot be a permitted alternative. rule-3 has to be
applied a second time. To avoid these inconsistencies, it is essential that first the powerful
heuristic of rule-2 is employed to remove former decisions which cannot be uphold.

80

FunctiQn: modi fy_agenda_of Qf methcx:l create_nexc.gQal

Parameter: agent (actual parameter SELF)

Value: Qnly side-effects are Qf interest

Precondition: rule-I, ... ,rule-4 appliec

Postconditions:

- No leave-entries on the agenda

- State of agenda: ([(goal x y)] [(alternatives list) I (nexcgoal a b)])

Description Qf the function:

modify_agenda_ofevaluates the leave-entries of the agenda. These entries are cQnsistent

with respect to possible next-goals or alternative entries, ensured by rule-l, ...rule-4. So

if there are Qther entries than (goal ...) Qr (leave .. .), the leave-entries may be deleted.

Their intentional restrictions are obeyed.
" In ~~: o:t~er case, a new entry (nextJoal ...) must be generated. There will be no prQb

lem, if some place where the agents could flee is not forbidden. These places are collected

in the list of alternatives.

A harder task is a restriction for all places. The agent cannot obey all orders, it must flee

from its place and therefore violate at least one leave-order. An agent uses the heuristic

function plan *leave* to decide whose leave-order is to be ignored.

Function: make_new_decision ofmethcx:l create_next~oal

P'¥"ameters: agent (actual parameter SELF)

'.	

Value: only side-effects are of interest

Preconditions: mcx:lify_agenda_of applied to agent

Postconditions: see methcx:l create_next~oal

Description of the function:

After modifying and generalizing the entries on the agenda, the new decision is to pro

duce. An agent has the highest degree of freedom in the case it has a list of alternatives as

a basis for its free choice. The functions plan_*alternatives* covers this case.

If there is an entry (next_goaL.) on the agenda, the agent will employ the function

plan_*next_goal*, and in the case that (goal. . .) is the Qnly entry on the agenda, the func

tion plan_*goal* is invoked.

Function: plan_ * leave * of function modify_agenda_of

Parameters: agent (actual parameter SELF)

Value: only side-effects are of interest

Preconditions:

- rule-I, ... ,rule-4 were applied

- all potential places to flee are forbidden

81

Funeg'en: modi f y_agenda__of of method create_next_goal
Parameter: agent (actual parameter SELF)
@: only side-effects are of interest
Preconditien: rule- 1,. . . ,rule-4 applied

Posteonditigns:
- No leave-entries on the agenda
— State of agenda : ([(goal x y)] [(altematives list) I (next_goal a b)])
Descg'ptien 9f the feneg'm:
modify_agenda_of evaluates the leave-entries of the agenda. These entries are consistent
with respect to possible next—goals or alternative entries, ensured by rule—1... .rule—4. So
if there are other entries than (goal . . .) or (leave ...), the leave-enu'ies may be deleted.
Their intentional restrictions are obeyed.
In the other case, a new entry (next __goal . . .) must be generated. There will be no prob-
lem,if some place where the agents could flee is not forbidden. These places are collected
in the list of alternatives.
A harder task is a restriction for all places. The agent cannot obey all orders, it must flee
from its place and therefore violate at least one leave-order. An agent uses the heuristic
function plan_*leave* to decide whose leave-order is to be ignored.

Funeg'en: make__new_deci s ion of method create_next_goal
Emm: agent (actual parameter SELF)

yelee: only side-effects are of interest
Prggendig'ens: modify_agenda_of applied to agent

Postcenditjensz see method create_next_goal

Descripg'en 9f the function:
After modifying and generalizing the entries on the agenda, the new decision is to pro-
duce. An agent has the highest degree of freedom in the case it has a list of alternatives as
a basis for its free choice. The functions plan_*alternatives* covers this case.
If there i s an entry (next_goal...) on the agenda, the agent will employ the function
plan_*next_goal*, and in the case that (goal. . .) i s the only entry on the agenda, the func-
tion plan_*goal* is invoked. ‘

Funetion: p l an_* l eave * of function modify_agenda_of
Parameters: agent (actual parameter SELF)
V_alu_e: only side—effects are of interest

Preconditions:
- rule-1,. . .,rule-4 were applied
— all potential places to flee are forbidden

81

'.

- no (alternatives .. .) and no (next-E0al ...) entry is on the agenda

Postconditions:

A new entry (next~oal x NIL) is generated and written on the agenda, where x is a place

which is actually forbidden, but the order is disobeyed.

Description of the function: Proceeding:

1. Build the set a of "good places"; these are places where the agent could go (they are

not occupied by an agent with lower priority). Ifa is empty, nothing can be done for the

moment. The agent becomes idle until the next cycle of the top level function.

2. Find the agent with the least priority of all on the top of the places in a .This agent has

a priority just higher than the one of SELF.

3. Create the entry (next~oal x NIL) and write it on the agenda. x is the place of that

agent found in 2.

Heuris~i~~ If you cannot help but block any agent, choose the one with the least priority of

all potential candidates to flee. The disobeyed order of an agent, not to go there, can be

possibly corrected later.

Function: plan_*alternatives* of function make....;new_decision

Parameters: agent (actual parameter SELF)

Value: only side-effects are of interest

Preconditions:

- ro leave entries on the agenda

- entry (alternatives list) on the agenda, where list '# NIL

Postconditions: see method create_nexcgoal, especially:

- Either a new entry (next_goal x NIL) is on the agenda, where x is the place decided to

go, or an attainable final goal

Description of the function:

If the final goal was reached, the agent is ready and it may stop. If the final goal is

attainable, it becomes the next subgoal. The agents attempt to act.

In all other cases the function find_heuristically_best_alternative is called, which is the

central planning function of the whole system.

Function: plan *next_goal* of function make_new_decision

Parameter: agent (actual parameter SELF)

Value: only side-effects are of interest

Preconditions:

- modify_agenda_ofwas applied to agent.

- no alternatives-entry is on the agenda

- entry (next_goal. . .) is on the agenda

82

- no (alternatives . . .) and no (next _goal . . .) entry is on the agenda
Postconditions:
A new entry (next_goal x NIL) is generated and written on the agenda, where x is a place
which is actually forbidden, but the order is disobeyed.
Description of the function: Proceeding:
1. Build the set 5 of “good places”; these are places where the agent could go (they are
not occupied by an agent with lower priority). If 6 is empty, nothing can be done for the
moment. The agent becomes idle until the next cycle of the top level function.
2. Find the agent with the least priority of all on the top of the places in Ci . This agent has
a priority just higher than the one of SELF.
3. Create the entry (next_goal x NIL) and write it on the agenda. x is the place of that

agent found in 2.
Heuristic _: If you cannot help but block any agent, choose the one with the least priority of
all potential candidates to flee. The disobeyed order of an agent, not to go there, can be

possibly corrected later.

Function: p lan_*a l te rna t ives * of function make_new__decision
m: agent (actual parameter SELF)
mtg: only side-effects are of interest „
Preconditions:
- no leave entries on the agenda
- entry (alternatives list) on the agenda, where list :6 NIL
Posteonditigns: see method create_next_goal, especially:
- Either a new entry (next_goal x NIL) is on the agenda, where x i s the place decided. to

go, or an attainable final goal
Description of the function:
If the final goal was reached, the agent i s ready and it may stop. If the final goal i s
attainable, it becomes the next subgoal. The agents attempt to act.
In all other cases the function find_heuristically_best_alternative i s called, which is the

central planning function of the whole system.

Function: p lan_*nex t_goa l * of function make__new_decision
Parameter: agent (actual parameter SELF)

flug: only side-effects are of interest
Preconditions:
— m0dify__agenda__0f was applied to agent.
- no altematives—entry is on the agenda
- entry (next_goal. . .) is on the agenda

82

Posteonditions: see method create_nex': -.;; ..:, especially:

- No alternatives-entry is on the agenda

Description of the function:

plan_*next_goal* is called if and only if there is an entry (nexcgoal.. .), but no

alternative-entry on the agenda. This implies the agent cannot find a better alternative for

its prior choice, it must pursue the same one. Before doing that. the agent checks whether

it can perhaps reach its final goal within the next step, or whether it is already on this

goal. In case two the agents clear their agendas and stop to do anything. In the other case,

the subgoal (next_goal...) is forgotten and thus deleted.

If the final goal is neither already reached nor attainable within the next step, the entry

(next~oal. ..) will be checked similarly: Already reached? ok. - Attainable? - show that

you want to act - Not attainable? change to status "waiting" until the next cycle.

Function: plan_ *goal * of function make_new_decision

Parameters: agent (actual parameter SELF), place of final goal, position of final goal

Value: only side-effects are of interest

Preconditions:

- modify_agenda_ofwas applied to parameter agent

- exact one entry on agenda: (goal...)

Postconditions: see method create_nexcgoal, especially:

- :, agenda unchanged, agent believes it can act

Description of the function:

A very simple function. The agents test whether they are already on the goal specified in

the call. If so, the agendas are cleared and the agents become idle. Otherwise the agents

show they can act if their goal places are perhaps attainable.

Function: find_heuristically_best_alternative of function plan_*alternatives*

Parameters: agent (actual parameter SELF), list of alternatives

Value: only side-effects are of interest

Preconditions: see function plan_*alternatives*, especially:

- the [mal goal is not yet reached and also not attainable within the next step

Postconditions: see function plan_*alternatives*, plus:

- a new entry (next-.Eoal. ..) is on the agenda

Description of the function (domain specific features) :

From the list of alternatives (which is merely a list of places) several sets are fonned

which have got a different priority. In descending order priority:

1. empty_places+help unoccupied places with corresponding help-request

2. good_places+help occupied, surely attainable places with COIT. help-requests

83

Posmnditigns: see method create_nexq _, --}, especially:
- No altematives-entry is on the agenda
Description of the function:

plan_*next_goal* is called if and only if there is an entry (next_goal. . .), but no
altemative-entry on the agenda. This implies the agent cannot find a better alternative for
its prior choice, it must pursue the same one. Before doing that. the agent checks whether
it can perhaps reach its final goal within the next step, or whether it is already on this
goal. In case two the agents clear their agendas and stop to do anything. In the other case,
the subgoal (next_goal. . .) is forgotten and thus deleted.
If the final goal is neither already reached nor attainable within the next step, the entry
(next_goal. . .) will be checked similarly: Already reached ? ok. — Attainable ? — show that
you want to act - Not attainable ? change to status “waiting” until the next cycle.

Fungi. tign: plan_* goal * of function make_new_decision
Paran_me5: agent (actual parameter SELF), place of final goal, position of final goal

ME: only side-effects are of interest

Preconditions:
- modifi_agenda_of was applied to parameter agent
— exact one entry on agenda: (goal. . .)
Postggngfig'onsz see method create_next_goa1, especially:
- :. agenda unchanged, agent believes it can act
Description of the function:
A very simple function. The agents test whether they are already on the goal specified in
the call. If so, the agendas are cleared and the agents become idle. Otherwise the agents
show they can act if their goal places are perhaps attainable.

Function: find_heurist ically_best_alternative of function plan_*a1tematives*
Parameteg: agent (actual parameter SELF), list of alternatives
M: only side-effects are of interest
mm: see function plan_*altematives*, especially:
- the final goal i s not yet reached and also not attainable within the next step
Postggnditigns: see function plan_*altematives*, plus:
- a new entry (next _goal. . .) is on the agenda
Desgg'ption of the function (domain specific features) :
From the list of alternatives (which is merely a list of places) several sets are formed
which have got a different priority. In descending order priority:
1. empty_places+help unoccupied places with corresponding help-request
2. good_places+help occupied, surely attainable places with corr. help-requests

83

3. empty_places unoccupied places without corresponding help-requests

4. good_places like 2., but without corresponding help-requests

5. may_be~ood_places places which were attainable, if the "top agent" would leave

in parallel

6. flattescplaces places, which are by no means attainable within the next

move. In this set the places with the momentary minimum

number of agents are gathered.

The sets are filled up with elements in exactly this order. If a place does not fit in the set

of level i., it is tested whether it fits in i+1. Then the function seleccheuristically_besC

alternative is called to decide what to do next. It is the heuristic core of the whole system.

Heuristic: The main idea is to collect candidates for the next decision in sets of different

priority. First help-requests shall be obeyed. Then the amount of blockings must be

- restric.te4 as much as possible. The choice shall be flexible.

Function: select_heuristically_best_alternative of function fmd_heuristically ...

Parameters agent (actual parameter SELF), the six sets built in function find_heuris

tically_besCalternative

Value: only side-effects are of interest

Preconditions: see function find_heuristically_besCalternative, plus:

- the six sets are built correctly

PO,stconditions: see function find_heuristically_besCalternative

Description of the function:

To guarantee a flexible behaviour and a maximal prevention from deadlocks, the sets are

not always proceeded in the same order. First the two sets with the highest priority which

are not empty are selected. Then one of the two is chosen at random. At last one element

of the chosen set is picked out. This picking out may be performed also at random

(emptyylaces+help, emptyylaces) or directed (the other sets). Directed simply means

that the set is chosen where an agent with minimal priority would be blocked.

Heuristics: The priority of sets must be obeyed sufficiently. The two sets with the highest

priority are chosen a priori. But the decision for one of them shall be flexible in that way,

that, for instance, in a deadlock situation not always the same fatal decision will be made.

So the set with higher priority gets the weight 5 and the other the weight 1. This 5: 1 ratio

implies that the likelihood to select the set with higher priority is five times as high as the

other.

Example: Assume we have elements in the sets goodylaces+help, may_be~oodylaces

and flattestylaces. The selection of the set of candidates takes place between

goodylaces+help and may_be_good_places with the weight 2:1. Let

may_be_goodylaces be selected despite the lower likelihood. The very place is chosen

84

3. empty_places unoccupied places without corresponding help-requests
4. good_places like 2., but without corresponding help-requests
5. may_be_good_places places which were attainable, if the “top agent” would leave

in parallel

6. flattest_places places, which are by no means attainable within the next
move. In this set the places with the momentary minimum
number of agents are gathered.

The sets are filled up with elements in exactly this order. If a place does not fit in the set
of level i., i t is tested whether it fi ts in i+ l . Then the function select_heuristically_best_—
alternative is called to decide what to do next. It i s the heuristic core of the whole system.

Heuristic: The main idea is to collect candidates for the next decision in sets of different
priority. First help-requests shall be obeyed. Then the amount of blockings must be

restricted as much as possible. The choice shall be flexible.

function: select_heuristically_best__alternative of function find_heuristically. . .
W agent (actual parameter SELF), the six sets built in function find__heuris—

tically_best_altemative
flue: only side-effects are of interest
Prgggngitiong: see function find_heuristically_best_altemative, plus: ,
- the six sets are built correctly
mm: see function find_heuristically_best_a1temative
Description of the function:
To guarantee a flexible behaviour and a maximal prevention from deadlocks, the sets are
not always proceeded in the same order. First the two sets with the highest priority which
are not empty are selected. Then one of the two is chosen at random. At last one element
of the chosen set is picked out. This picking out may be performed also at random
(empty _places+help, empty_places) or directed (the other sets). Directed simply means
that the set is chosen where an agent with minimal priority would be blocked. .
Heuristics: The priority of sets must be obeyed sufficiently. The two sets with the highest
priority are chosen a priori. But the decision for one of them shall be flexible in that way,
that, for instance, in a deadlock situation not always the same fatal decision will be made.
So the set with higher priority gets the weight 5 and the other the weight 1. This 5:1 ratio
implies that the likelihood to select the set with higher priority is five times as high as the
other.
Example: Assume we have elements in the sets good_places+help, may_be_good_places
and flat test_places. The selection of the set of candidates takes place between
good_p laces+he1p and may_be_good_p laces with the weight 2:1. Let
may_be_good_places be selected despite the lower likelihood. The very place is chosen

84

now, where the agent with the lowest priorit)' j~ under the interesting position. This

ensures the prevention of blocking important agents. The lastly found element becomes

the new subgoal of the seeking agent.

Informetion

Method: inform_other_agents attached to type AGENT

Parameters: none

Call structure: inform_other_agents
inspeccplace

Preconditions:

- .E~c.!t .~gent has found the best next goal from its individual point of view

- State of agenda: ([(next~oal a b)] [(goal x y)]) or «nexcgoal a b) [(goal x y)])

(alternatives list», where not both a=x and b=y hold and a is not in list

- just this order of goal on the agenda

- blackboard is either empty or has the newest entries from the actual negotiation cycle

- either method create_next-Eoa1 or method conflict-resolution-l executed

- if a conflict did occur in the prior negotiation cycle, the agent had surely believed it,

could act.

Po~tconditions:

- Agents which are obstacles for others have received individual messages (leave...) on

their agendas

Agents which are not blocked and believe they can act, wrote their wish (Le. Pie

desired next move) on the global blackboard

- Agents which are not blocked, but cannot reach the goal because it is too high, wrote

help-requests on the blackboard.

- The agent thinks that no conflict has emerged.

Description of the method:

If the agent is not idle and has still (sub)goals on its agenda, the method

inform_other_agents must do something.

If a conflict did occur in the last negotiation cycle, the agent has already written a new

decision on its agenda. The former wish at the blackboard is now retracted, and if the

agent believes it can reach the new goal, the new wish will be claimed on the agenda. In

the other case, when the agents realizes the desired places is attainable by no means

within the next move, the agents starts a finer survey of the constellation at the place of

the goal. This is performed by the function inspectylace.

85

now, where the agent with the lowest priority is under the interesting position. This
ensures the prevention of blocking important agents. The lastly found element becomes
the new subgoal of the seeking agent.

Information

Method: in f orm__ot he r_a gents attached to type AGENT

Parameters: none
W: inform_other_agents

inspect_place
Qconditions:

- Each agent has found the best next goal from its individual point of view
- State of agenda: ([(next_goal a b)] [(goal x y)]) or ((next_goal a b) [(goal x y)])

(alternatives list))‚ where not both a=x and b=y hold and a is not in list
just this order of goal on the agenda
blackboard is either empty or has the newest entries from the actual negotiation cycle
either method create_next_goal or method conflict—resolution-I executed
i f a conflict did occur in the prior negotiation cycle, the agent had surely believed it,
could act.

Postconditigns:

- Agents which are obstacles for others have received individual messages (leave...) on
their agendas

- Agents which are not blocked and believe they can act, wrote their wish (i.e. the
desired next move) on the global blackboard

- Agents which are not blocked, but cannot reach the goal because it is too high, wrote
help-requests on the blackboard.

— The agent thinks that no conflict has emerged.
Description of the methgi:
If the agent is not idle and has still (sub)goals on its agenda, the method
inform_other_agents must do something.

If a conflict did occur in the last negotiation cycle, the agent has already written a new
decision on its agenda. The former wish at the blackboard i s now retracted, and if the
agent believes it can reach the new goal, the new wish will be claimed on the agenda. In
the other case, when the agents realizes the desired places is attainable by no means
within the next move, the agents starts a finer survey of the constellation at the place of
the goal. This isperformed by the function inspect_place.

85

--

Mostly an agent will not be be involved into conflicts. The first it must check then is: Am

I blocked by an "upper neighbour" ? If it is so, that obstacle is sent off and the agent itself

shows that it cannot act yet. In the case the agent is free and nothing is known that

prevents it from acting, it writes its wish on the agenda.

In the case the agent is free, however, and does not want to act, the reason for that must

be investigated closer. This happens in the function inspectylac~? again.

Let us summarize some important facts for the method inform_other_agents. Here the

negotiation cycle starts with the active sending of information about the next step

planned. Remember that only agents, which believe they can act, may take part in

negotiations and also only these are permitted to write wish-entries on the agenda. All

other agents may - at best - ask for help one time and send leave-messages to each

hindering agent.

Function: inspectylace of method inform_othecagents

Parameters: agent (actual parameter SELF), place to inspect, position to inspe':t

Preconditions: see method inform_othecagents, plus:

- the agent knows for sure that it cannot act within the current cycle

Postconditions: see method inform_othecagents, especially:

- blocking agents are sent off

- a help-request to reach goals which are yet too high is written on the blackboard

De~criptiQn Qf the function (dQmain specific features) :

-- The exact gQal may be nQt in reach, if the precise pQsitiQn is specified. In this situation a

help-request is written Qn the agenda which orders an agent as support just below the

position desired. In all other cases just the agent which is an Qbstacle is sent Qff (if there

were none, the function would not have been called).

In particular, if no position is mentioned, not the agent on top of the stack is directly

ordered to flee, but the agent which is upon the first agent (seen from the tQp) having a

higher priority than the Qne Qne whQ called inspectylace. This implies, if this detected

agent has left its place, all the Qther above it naturally must have left their place earlier~

The way is then paved for the calling agent.

It is impQnant to realize the consequences of changing decisions, when Qthers may have

tuned their behaviour tQ the fQrmer subgoals. Agents, which believe they can act and

have already changed to the status "idle" to wait fQr the acting cycle, must be tQrn back

into negotiations again.

86

Mostly an agent will not be be involved into conflicts. The first it must check then is: Am
I blocked by an “upper neighbour” ? If it is so, that obstacle i s sent off and the agent itself

shows that it cannot act yet. In the case the agent is free and nothing is known that
prevents it from acting, it writes its wish on the agenda.
In the case the agent is free, however, and does not want to act, the reason for that must
be investigated closer. This happens in the function inspect_place again.
Let us summarize some important facts for the method irtform_other_agents. Here the
negotiation cycle starts with the active sending of information about the next step
planned. Remember that only agents, which believe they can act, may take part in
negotiations and also only these are permitted to write wish-entries on the agenda. All
other agents may - at best - ask for help one time and send leave-messages to each
hindering agent.

Function? in spect _place of method inform_other_agents
Parameters: agent (actual parameter SELF), place to inspect, position to inspect
Prgonditions: see method inform_other_agents, plus:
- the agent knows for sure that it cannot act within the current cycle
Postcong' t_i on 5: see method inform_other_agents, especially:
— blocking agents are sent off
- a help-request to reach goals which are yet too high is written on the blackboard
Description of the function (domain specific features) :

The exact goal may be not in reach, if the precise position is specified. In this situation a
help-request is written on the agenda which orders an agent as support just below the

position desired. In all other cases just the agent which is an obstacle is sent off (if there

were none, the function would not have been called).

In particular, if no position is mentioned, not the agent on top of the stack is directly
ordered to flee, but the agent which is upon the first agent (seen from the top) having a
higher priority than the one one who called inspect _place. This implies, if this detected

agent has left its place, all the other above it naturally must have left their place earlier.

The way is then paved for the calling agent.
It i s important to realize the consequences of changing decisions, when others may have
tuned their behaviour to the former subgoals. Agents, which believe they can act and
have already changed to the status “idle” to wait for the acting cycle, must be torn back
into negotiations again.

86

Conflict resolution

Method: conflict-resolution-l attached to type AGENT

Parameters: none

Call structure: conflict-resolution-l
deteccleave30nflicts
plan_*altematives*

fmd_heuristically_besCalternative
seleccheuristically_besCalternative

update_agents

Preconditions:

- The agents are completely infonned about the others intentions after their last reflection

about the current situation

- State of agenda: ([(next~oal a b)] [(goal x y)] [(leave...)]*) or «next~oal a b) [(goal

x y)]) (alternatives list) [(leave...)]*), where not both a=x and b=y hold and a is not in

list

- State of blackboard: ([(wish...)]* [(help...)]*), arbitrary order of entries

- All agents which believe they can act are still in the negotiation cycle, all others are idle

Postconditions:

- The agents in negotiations checked whether their desired goals are compatible with the

prohibitions of the other agents

- The status of the agents which were in negotiations may be info.mally described as

follows:

idle: this implies that no conflicts occurred, the agents just wait to act in parallel with

the others

conflict: the agents' fonner decisions collides with the orders to flee of other agents

(conflicts of type 1, see above). The agent has already tried to find a new decision. It

indicates whether it has found one. Anyhow, agents in conflicts must later infonn the

other agents once again.

- The leave-entries are not removed from the agendas (this does not care...)

Description of the method:

If the agent is not idle and believes it can act and funhennore has at least one order to

leave its place on its agenda, the method conflict-resolution-l must actually do

something.

First the leave-orders are soned with respect to the priority of the sender of the leave

messages.

Then the subfunction detect_leave_conflicts evaluates these ordered lists and returns a

possibly modified set of alternatives. These function produces a very imponant side

effect: It marks whether a conflict has occurred, i.e. whether the personal next goal of the

agent under consideration cannot be arranged with the orders to leave of other agents (for

87

Conflict resolution

Method: con f l i c t - r e so lu t i on - l attached to type AGENT

Parameters: none

Call sflgLure: conflict—resolution-l
detect_leave_conflicts
plan_*altematives*

flnd_heuristically_best_alternative
select_heuxistically_best_altemative

update_agents
mm:
- The agents are completely informed about the others intentions after their last reflection

about the current situation
- State of agenda: ([(next_goal a b)] [(goal x y)] [(leave. . .)]*) or ((next_goal a b) [(goal

x y)]) (alternatives list) [(leave. . .)]*), where not both a=x and b=y hold and a is not in

list
- State of blackboard: ([(wish. . .)]* [(help. . .)]*), arbitrary order of entries
- All agents which believe they can act are still in the negotiation cycle, all others are idle

Postcondig'gns:
- The agents in negotiations checked whether their desired goals are compatible with the

prohibitions of the other agents
- The status of the agents which were in negotiations may be info.mally described as

follows:
an;: this implies that no conflicts occurred, the agents just wait to act in parallel with

the others
conflict: the agents’ former decisions collides with the orders to flee of other agents

(conflicts of type 1, see above). The agent has already tried to find a new decision. It
indicates whether it has found one. Anyhow, agents in conflicts must later inform the

other agents once again.
- The leave-entries are not removed from the agendas (this does not care. . .)
Description of the methm:
If the agent is not idle and believes it can act and furthermore has at least one order to
leave its place on its agenda, the method conflict-resolution-I must actually do
something.
First the leave-orders are sorted with respect to the priority of the sender of the leave-
messages.
Then the subfunction detect_leave_confl£cts evaluates these ordered lists and returns a
possibly modified set of alternatives. These function produces a very important side-
effect: It marks whether a conflict has occurred, i.e. whether the personal next goal of the
agent under consideration cannot be arranged with the orders to leave of other agents (for

87

more details, see detect_leave_conflicts). The modified set of alternatives represents exact

these places where the agents still could go. It must be a subset of the former set of

alternatives in the entry (alternatives.. .).

Now there are two possibilities: Alternatives are still left: The agents calls the function

plan_*alternatives* to select heuristically the most appropriate one (plan_*alternatives* is

"l. U a subfunction of create_next-!oal, see above for the descript~on). Otherwise, if no

alternative remains, the agent knows that it cannot act for sure, it will indicate this and

then leave the negotiation.

In the case that no conflict was detected, the agent needs not to change its decision.

However, some alternatives may have become void because other agents with higher

priority insist on going there. The agent must thus update the entry (alternatives...) on its

agenda according to this new situation.

Method: conflict-resolution-2 attached to type INFO-AGENT (Big-Brother)

Parameters: none

Call structure: conflict-resolution-2

Preconditions:

- agents have finished the negotiations. Le. all conflicts of type 1 have been resolved

- agents either believe they can act (these are interesting for the method) or they surely

cannot

- State of agenda: ([(next~oal a b)] [(goal x y)] [(leave...)]*) or «next-goal a b) [(goal

x y)]) (alternatives list) [(leave...)]*), where not both a=x and b=y hold and a is not in

list

- State of blackboard: ([(wish...)]* [(help...)]*)

Postconditions:

- conflicts of type 2 are resolved, Le. no contradictions between the agents' wishes exist

anymore

- retracted wishes are marked "canceled" on the blackboard

- the data structure actarray (slot of INFO-AGENT) is preliminary instantiated. This

structure later coordinates and synchronizes the parallel moves.

Description of the method (domain specific features) :

There are two main loops performed by the method: Loop-l tests the agents whether they

believe they can act. If so, all agents which want to go to place i are stored in the actarray

in a list at place i. Especially not the agent itself is stored in the list, merely information

about it in the form (X Y). Y is the agent's identifier (name) and X is the exact desired

position. In most times X will first be NIL, but will be specified later to guarantee the

scheduled acting. Loop-2 must coordinate the wishes of the agents. It is obvious that

88

more details, see detect_leave_conflicts). The modified set of alternatives represents exact
these places where the agents still could go. It must be a subset of the former set of
alternatives in the entry (alternatives. . .).
Now there are two possibilities: Alternatives are still left: The agents calls the function
plan__*alternatives* to select heuristically the most appropriate one (plan_*altematives* is
"'..u a subfunction of create_next_goal, see above for the description). Otherwise, if no
alternative remains, the agent knows that it cannot act for sure, it will indicate this and
then leave the negotiation.
In the case that no conflict was detected, the agent needs not to change its decision.
However, some alternatives may have become void because other agents with higher
priority insist on going there. The agent must thus update the entry (alternatives...) on its
agenda according to this new situation.

Mm: con f l i c t—reso lu t ion-2 attached to type INFO-AGENT (Big-Brother)

Pmmetgg: none

M: conflict-resolution-Z
Preconditions:
- agents have finished the negotiations. i.e. all conflicts of type I have been resolved
- agents either believe they can act (these are interesting for the method) or they surely

cannot
- State of agenda: ([(next_goal a b)] [(goal x y)] [(leave. . .)]*) or ((next_goal a b) [(goal

x y)]) (alternatives list) [(leave. . .)]*)‚ where not both a=x and b=y hold and a is not in
list

- State of blackboard: ([(wish. . .)]* [(help. . .)]*)
Pgstcondig‘gns:
- conflicts of type 2 are resolved, i.e. no contradictions between the agents’ wishes exist

anymore
- retracted wishes are marked “canceled” on the blackboard
- the data structure actarray (slot of INFO-AGENT) i s preliminary instantiated. This

structure later coordinates and synchronizes the parallel moves.

Description of the mhod (domain specific features) :
There are two main loops performed by the method: Loop-l tests the agents whether they
believe they can act. If so, all agents which want to go to place i are stored in the actarray
in a list at place i. Especially not the agent itself is stored in the list, merely information
about it in the form (X Y). Y is the agent’s identifier (name) and X is the exact desired
position. In most times X will first be NIL, but will be specified later to guarantee the
scheduled acting. Loop-2 must coordinate the wishes of the agents. It is obvious that

88

conflicts of type 2 only occur if at least one agent .,,:;ists on its exactly specified position

at the place of the next goal it must reach. Otherwise. if no agent which wants. say. to go

to place i, must obey an exact objective for the position, no problem arises: The agents

can simply be rearranged in each list of actarray accordi::g to their priority.

How does Loop-2 proceed? For each entry in actarray, the list is ordered by descending

priority of the agents. If the first entry of each pair in the lists is NIL (no position

specified) nothing remains to do. The agents could act in the new order. Otherwise the

first pair in a list with a specification of the position is selected. The denoted agent can act

(at least it believes so), so all agents with a higher priority must be inhibited to act. We

use the heuristic rule, that a wish to act with specified height at the desired place has a

higher priority that a wish without such a specification. So all the agents which have a

higher priority but no specified position are stopped and will not perform their planned

action. If they would, the agent with the exact specification surely misses its goal. All

stopped agents are deleted from the actarray then and furthermore, their wish at the

blackboard is marked as "caliC'eled".

The next agents in the queue are checked then. All of them with a specified position must

also be stopped, because they do not reach their desired position always. This is because

all agents which want to go to the same place must have almost the same position

specification22, if they have got one at all. This follows from the fact that the agents under

consideration believe they can act.

At last all agents either have retracted their wish or a preliminary coordination of those

which still believe they can act is accomplished in actarray.

Function: detect_leave_conflicts of method conflict-resolution-l

Parameters: agent (actual parameter SELF), place of next goal, actual list of alternatives

Value: The new list of alternatives. Side-effect: Indication whether a conflict has occurred

Preconditions: like conflict-resolution-l, plus:

- Tested agents believe they can act and are not idle

- There are leave-orders on the agenda

- The leave-subgoals are ordered by priority of the orderer

Postconditions:

- The list of alternatives (return value) is manipulated correctly

- Possible conflicts of type I are indicated

Description of the function:

Each leave-order is processed separately. If the forbidden place in the leave-order is just

the place the agent is heading to, a conflict has emerged. The function sets a flag to

indicate that. In the other case, the alternatives must be checked. If the agent which sent

22The same position, or one below, or onc above.

89

conflicts of type 2 only occur if a t least one agent .nsists on its exactly specified position
at the place of the next goal it must reach. Otherwise, if no agent which wants, say, to go
to place i, must obey an exact objective for the position, no problem arises: The agents
can simply be rearranged in each list of actarray according to their priority.
How does Loop—2 proceed ? For each entry in actarray, the list is ordered by descending

priority of the agents. If the first entry of each pair in the lists i s NIL (no position

specified) nothing remains to do. The agents could act in the new order. Otherwise the
first pair in a list with a specification of the position is selected. The denoted agent can act
(at least it believes so), so all agents with a higher priority must be inhibited to act. We
use the heuristic rule, that a wish to act with specified height at the desired place has a
higher priority that a wish without such a specification. So all the agents which have a
higher priority but no specified position are stopped and will not perform their planned
action. If they would, the agent with the exact specification surely misses its goal. All
stopped agents are deleted from the actarray then and furthermore, their wish at the

blackboard is marked as “canceled”.
The next agents in the queue are checked then. All of them with a specified position must
also be stopped, because they do not reach their desired position always. This i s because
all agents which want to go to the same place must have almost the same position
specification”, if they have got one at all. This follows from the fact that the agents under
consideration believe they can act.
At last all agents either have retracted their wish or a preliminary coordination of those
which still believe they can act is accomplished in actarray.

Function: de t e ct_l eave_c onf l i c t 3 of method conflict-resolution-l
1221291215.: agent (actual parameter SELF), place of next goal, actual list of alternatives

flue: The new list of alternatives. Side-effect: Indication whether a conflict has occurred
Preconditions: like conflict-resolution-l, plus:
- Tested agents believe they can act and are not idle
- There are leave-orders on the agenda
— The leave-subgoals are ordered by priority of the ordercr
Postggnditigns:
- The list of alternatives (return value) i s manipulated correctly

- Possible conflicts of type 1 are indicated
Degription of the fungg'on:
Each leave-order i s processed separately. If the forbidden place in the leave-order is just
the place the agent is heading to, a conflict has emerged. The function sets a flag to
indicate that. In the Other case, the alternatives must be checked. If the agent which sent

22The same position, or one below, or one above.

89

the order to flee has a higher priority than the agent under consideration or there are still

other alternatives, the forbidden place will be removed from the set of alternatives.

Function: plan_ *alternatives* of method conflict-resolution-l

see function plan_*altematives* of function make_new_decision (paragraph creating new

goals).

Method: synchronize attached to type INFO_AGENT

Parameters: none

Call structure: synchronize

Preconditions:

the slot actarray is preliminary filled with inforrr..ation abollt the schedule c~ !..1.e agents

which believe they can act in parallel

- no conflicts of type I and type 2 exist yet

- the state of agendas and blackboard do not interest anymore

PQstconditions:

- ~he entries in actarray are modified in such away. that no agent which is in the queue

to go to place X. but still at place Y. would be blocked by another agent in the queue

of place Y, which acts earlier than the first agent

Description of the method:

Synchronize tests whether an agent A which is in a rear position of a queue, momentary

is located at a place p. where other agents want to go. If nothing would be done, at least

the first of the other agents willing to go to place P would block A so that its plans to

move are frustrated. Big-Brother detects these situations and inserts delay-entries (NIL's)

at the beginning of the list at just that entry of actarray that corresponds to place P. The

number of delay-entries depends on the position of A in the queue and the number of

delays already inserted at entry P of the actarray. More details are omitted, the method is

not complicated. but rather technical.

90

the order to flee has a higher priority than the agent under consideration or there are still
other alternatives, the forbidden place will be removed from the set of alternatives.

gum: p lan__*a l t e rna t ive s * of method conflict-resolution-l

see function plan_*a1tematives* of function make_new_decision (paragraph creating new
goals).

Acting

Mm: synch ron ize attached to type INFO_AGENT

Parameters: none
Sid—1M2: synchronize

fiecgnditions:
the slot actarray is preliminary filled with information about the schedule of the agents
which believe they can act in parallel

- no conflicts of type l and type 2 exist yet
- the state of agendas and blackboard do not interest anymore
Pgstgonditions:
- The entries in actarray are modified in such a way, that no agent which is in the queue

to go to place X, but still at place Y, would be blocked by another agent in the queue
of place Y, which acts earlier than the first agent

Description of the method:
Synchronize tests whether an agent A which is in a rear position of a queue, momentary
is located at a place P, where other agents want to go. If nothing would be done, at least
the first of the other agents willing to go to place P would block A so that its plans to
move are frustrated. Big-Brother detects these situations and inserts delay—entries (NIL’s)
at the beginning of the list at just that entry of actarray that corresponds to place P. The
number of delay-entries depends on the position of A in the queue and the number of
delays already inserted at entry P of the actarray. More details are omitted, the method is
not complicated, but rather. technical.

90

Method: cause to act attached to type INFO_AGENT (i.e. Big-Brother)

Parameters: pause; the degree of slow motion for graphic output

Call structure: cause_to_act
tescactin~capability

withdrawal
perform_paralleCmove

graphics
show_move_up
show_move_horizontal
show_move_down
display_message

update
update_info-agent-slots
update_agent-slots

resecflags
check_deadlock_condition

Preconditions:

- synchronize has eliminated the major scheduling clashes

- The information up to now about the schedule of the agents which believe they can act

is stored in actarray

Postconditions:

- The blackboard is empty

- The agendas of those agents which really acted contain only the final goal if they did

not reach it within the move

- The agendas of the agents on their final goal place is empty

- The agendas of the other agents, which did not act, remain unchanged

- The move was shown graphically

- The knowledge bases of the agents are updated adequately

- Possible deadlocks after the performed moves are checked

Description of the method (domain specific features) :

The body of the method is an endless loop which must be exited explicitly. In each cycle

the first elements of the lists in the entries of actarray are regarded, because they are the

potential candidates for one parallel move. At the end of the cycle these first elements are

removed.

In cause_to_act the first thing to do is to verify whether the agents which have. announced

that they can act and still believe it, really can. Finally in this moment it is clear whether

an agent, which should leave its place to give place for another agent willing to go right

there, actually will leave. Up to now the agents believed they can go, now they are going

to know it exactly.

The function test_acting_capability performs these tests and, furthermore, some

sophisticated synchronization tasks. After this the order and the parallelism of one joint

move is fixed. All agents which are at first position of their lists in the respective entries

91

Mm: cause_to_act attached to type lNFO_AGENT (i.e. Big-Brother)

Parameters: pause; the degree of slow motion for graphic output

Call suctum: cause_to_act
test_acting_capability

withdrawal
perform_parallel_move

graphics
show_move_up
show_move_hori zontal
show_movc_down
display__message

update
update_info—agent-slots
update_agent-slots

rcset_flags
check_deadlock_condition

mm:
- synchronize has eliminated the major scheduling clashes
— The information up to now about the schedule of the agents which believe they can act

is stored in actarray

Mm:
- The blackboard is empty
- The agendas of those agents which really acted contain only the final goal if they did

not reach it within the move
- The agendas of the agents on their final goal place is empty
- The agendas of the other agents, which did not act, remain unchanged
- The move was shown graphically
- The knowledge bases of the agents are updated adequately

- Possible deadlocks after the performed moves are checked
Description of the method (domain specific features) :
The body of the method is an endless loop which must be exited explicitly. In each cycle
the first elements of the lists in the entries of actarray are regarded, because they are the
potential candidates for one parallel move. At the end of the cycle these first elements are
removed.
In cause_to_act the first thing to do is to verify whether the agents which have announced
that they can act and still believe it, really can. Finally in this moment it i s clear whether
an agent, which should leave its place to give place for another agent willing to go right
there, actually will leave. Up to now the agents believed they can go, now they are going
to know it exactly.
The funct ion tes t_acr ing_capabi l i ty performs these t es t s and , furthermore, some

sophisticated synchronization tasks. After this the order and the parallelism of one joint
move is fixed. All agents which are at first position of their lists in the respective entries

91

of actarray. will act in parallel. If there;' ~..uL at this position. no agent will go to the

corresponding place at this instance of moving.

Then the exact new position of the agents is detennined and written at the first position of

the pairs in actarray (see above). This is especially important when an agent flees from

the goal place of another. There may be a big surprise when the second agent realizes that

it gets a position which it had not foreseen.

A list is built consisting of just the agents which can perform one parallel move.

Then the function performyarallelJnove is invoked with this "actlist" as an argument.

This function manages the technical details of the moves. the graphical display and

updates the knowledge bases of the information agent as well as the concerned other

agents.

The loop of acting runs as long as there are still non-NIL entries in the actarray.

In the end the flags of ID! agents are reset as a basis for a new cycle beginning with the

reflection about new/old goals (create_next....B0al. see above). The blackboard is cleared.

At last. possible deadlock situations are detected and the reasons therefore are eliminated

(see function check_deadlock_condition for a closer description).

Function: test_acting_capability of method cause_to_act

Parameters: info-agent (Le. Big-Brother)

Value: only side-effects are interesting

Preconditions: see method cause_to_act. plus:

- actarray (slot of info-agent) is not empty

Postconditions:

- only agents which really can act are denoted in actarray

Description of the function (domain specific features) :

Only the first elements of the lists in the entries of actarray are regarded. The proceeding

for each place (each entry in actarray. respectively) is as follows.

The agent represented by the first element of the list under consideration in an entry of

actarray is called "testagent". The agent on top of the goal place of testagent is

"agencacgoalplace". The main work is to do. in case agent_at_goalplace exists. Le. the

goal is occupied. and this agent does not tolerate testagent.

Now agent_at....Boalplace must also be denoted in actarray to let testagent a chance to act.

A search is started.

If an agent_at_goalplace is actually found in actarray, a double-index memorizes its

position: (x y), where x is the index of actarray and y is the position in the current list in

entry x. There are two possibilities:

92

of actarray, will act in parallel. If there ?- .‘JIL at this position, no agent will go to the
corresponding place at this instance of moving.
Then the exact new position of the agents is determined and written at the first position of
the pairs in actarray (see above). This i s especially important when an agent flees from

' the goal place of another. There may be a big surprise when the second agent realizes that
it gets a position which it had not foreseen.
A list is built consisting of just the agents which can perform one parallel move.
Then the function perform_parallel_move is invoked with this “actlist” as an argument.
This function manages the technical details of the moves, the graphical display and

updates the knowledge bases of the information agent as well as the concerned other
agents.
The loop of acting runs as long as there are still non-NIL entries in the actarray.
In the end the flags of Q agents are reset as a basis for a new cycle beginning with the
reflection about new/old goals (create_next_goal, see above). The blackboard is cleared.

At last, possible deadlock situations are detected and the reasons therefore are eliminated

(see function check_deadlock_condition for a closer description).

Funetien: t es t_ac t ing_capabi l i t y of method cause_to_act
Parameters: info-agent (i.e. Big-Brother)
Me: only side-effects are interesting
mm: see method cause_to_act, plus:
- actarray (slot of info-agent) is not empty
Postconditions:
- only agents which really can act are denoted in actarray
Deseriptign 9f the funetien (domain specific features) :
Only the first elements of the lists in the entries of actarray are regarded. The proceeding
for each place (each entry in actarray, respectively) is as follows.
The agent represented by the first element of the list under consideration in an entry of

actarray is called “testagent”. The agent on top of the goal place of testagent is
“agent_at_goalplace”. The main work is to do, in case agent_at_goalplace exists, i.e. the
goal is occupied, and this agent does not tolerate testagent.
Now agent_at_goalplace must also be denoted in actarray to let testagent a chance to act.
A search is started.
If an agent_at_goalplace is actually found in actarray, a double-index memorizes its
position: (x y), where x is the index of actarray and y is the position in the current list in
entry x. There are two possibilities:

92

y is zero, which implies agent_atJoalplace wants to act in parallel with testagent. That is

fine, the only problem is: agent_atJoalplace itself may not know if it really can act. Thus

it possibly depends on a third agent. The chain of dependencies is recorded in a data

structure. If the last agent in that chain fails to keep on acting, all others must reject to act,

too.

If y is not zero, things become harder. agent_atJoalplace will act. but unfortunately later

than testagent. Then we use a tricky heuristic: We know that agent_atJoalplace is flot

blocked and that testagent would tolerate it (because this does !lQ1 hold vice versa).

testagent and agent_atJoalplace can in fact act in parallel, namely if agent_at.-Boalplace

goes to testagent's former place. This is possible because the agent under testagent will

surely tolerate agent_at_goalplace. Later agent_at_goalplace may pursue its genuine

subgoal. We call this heuristic the concept of "acting pairs", because two agents join to

make a deal with advantages for both.

Now to the case agent_at_goalplace must leave (from testagent's point of view) but has

no ambitions to act. Then intentions to act of testagent must be frustrated, and so all the

other agents which perhaps depend on testagent's leaving.

Another basic situation emerges when agent_atJoalplace tolera[es testagent This seems

to be harmless and not wonh to be regarded. But what to do if agent_at-.B0alplace wants

to act later than testagent ? testagent cannot move, agent_atJoalplace would surely be

blocked. testagent also cannot be delayed (as in synchronize) anymore, because all

dependencies of delays would be confused. We preliminary have chosen the safest way:

testagent resigns and cancels its ambitions to act.

Function: perform_parallel_move of method cause_to_act

Parameters: info-agent (i.e. Big-Brother); actlist: list of parallel acting agents; pause

Value: only side-effects are interesting

Preconditions:

- Exact positions of the goal places of the moving agents are calculated and enscribed in

the parameter actUst.

Postconditions:

- One parallel move (all agents that could act contemporary) was displayed on the output

window

- The knowledge bases of the respective agents are updated accordingly

Description of the function:

Despite of all tests to ensure a "perfect" schedule of the moving agents there are still rare

configurations, where mutual influences and effects of action might produce forbidden

93

y is zero, which implies agent_at_goalplace wants to act in parallel with testagent. That is
fine, the only problem is: agent_at_goalplace itself may not know if it really can act. Thus
it possibly depends on a third agent. The chain of dependencies is recorded in a data
structure. If the last agent in that chain fails to keep on acting, all others must reject to act,
too.

If y is not zero, things become harder. agent_at_goalplace will act, but unfortunately later
than testagent. Then we use a tricky heuristic: We know that agent_at_goalplace is not
blocked and that testagent would tolerate it (because this does not hold vice versa).

testagent and agent_at_goalplace can in fact act in parallel, namely if agent_at_goalplace

goes to testagent's former place. This is possible because the agent under testagent will
surely tolerate agent_at_goalplace. Later agent_at_goalplace may pursue its genuine
subgoal. We call this heuristic the concept of “acting pairs”, because two agents join to
make a deal with advantages for both.
Now to the case agent_at_goalplace must leave (from testagent’s point of view) but has
no ambitions to act. Then intentions to act of testagent must be frustrated, and so all the
other agents which perhaps depend on testagent’s leaving.
Another basic situation emerges when agent_at_goalplace tolerates testagent. This seems
to be harmless and not worth to be regarded. But what to do if agent_at_goalplace wants
to act later than testagent ? testagent cannot move, agent_at_goalplace would surely be
blocked. testagent also cannot be delayed (as in synchronize) anymore, because all

dependencies of delays would be confused. We preliminary have chosen the safest way:
testagent resigns and cancels its ambitions to act.

Fggnctign: pe r fo rm __paral l e l__move of method cause_to_act
Parametefiz info-agent (i.e. Big-Brother); actlist: list of parallel acting agents; pause
MEI only side-effects are interesting
Preconditions:
-. Exact positions of the goal places of the moving agents are calculated and enscribed in

the parameter actlist.
P s c i ' ns:
— One parallel move (all agents that could act contemporary) was displayed on the output

window
- The knowledge bases of the respective agents are updated accordingly
Descg'ptign of the function:
Despite of all tests to ensure a “perfect” schedule of the moving agents there are still rare
configurations, where mutual influences and effects of action might produce forbidden

93

moves. To avoid exhaustive and cumbersome in ~~rigations, a last check is performed at

the beginning ofpeiformyarallel_move: Can the agent really, really, really act? If not, it

is retracted from actlist, no more fuss.

Then the functions graphics and update are called. We will not discuss them further in

details here (for graphics see Appendix (6». update not only changes the knowledge

bases of the agents which act and that of Big-Brother. It must also take under

consideration the knowledge of those agents which had been under the moved agents and

of those which are now under them. The information about the upper neighbours must be

updated.

Function: check. deadlock._ condit ion of method cause_to_act

Parameters: info-agent (i.e. Big-Brother)

Value: only side-effects are interesting

Preconditions:

- All moves are performed, displayed and the knowledge bases of the agents are

updated correctly

- Especially: Agents which acted have at most their personal goals at their agenda, the

agendas of the other agents remain unchanged

Postconditions:

- Unless all agents are at their final goals at least one agent is active and attempts to

reach a goal in the next reflection/acting cycle

Description of the function:

A special kind of deadlock may occur, if the agents have perfonned their moves. We call

it "goal deadlock", A goal deadlock demands several contextual factors:

- All agents have either an empty agenda or (goal. . ,) is the only entry

- Not all agents have reached their goals

- No agent can reach its goal within the next move, so no one realizes the necessity to

send another agent off

All agents will stay inactive, according to the paradigm of eco-problem solving: "I will do

nothing unless I am forced to."

This situation is detected by Big-Brother, it will intervene and force the agent with the

highest priority of the ones which did not reach their goal yet, to become active.

94

moves. To avoid exhaustive and cumbersome in estigations, a last check is performed at
the beginning of perform_parallel__move: Can the agent really, really, really act ? If not, it
is retracted from actlist, no more fuss.
Then the functions graphics and update are called. We will not discuss them further in
details here (for graphics see Appendix (6)). update not only changes the knowledge
bases of the agents which act and that of Big-Brother. It must also take under
consideration the knowledge of those agents which had been under the moved agents and
of those which are now under them. The information about the upper neighbours must be
updated.

Function: check_dead lock__cond i t i on of method cause__to_act
m: info-agent (i.e. Big-Brother)

M: only side-effects are interesting
MM:
- All moves are performed, displayed and the knowledge bases of the agents are

updated correctly
— Especially: Agents which acted have at most their personal goals at their agenda, the

agendas of the other agents remain unchanged
Postgongfig’gns:
- Unless all agents are at their final goals at least one agent is active and attempts to

reach a goal in the next reflection/acting cycle

mm:
A special kind of deadlock may occur, if the agents have performed their moves. We call
it “goal deadlock”. A goal deadlock demands several contextual factors:
- All agents have either an empty agenda or (goal. . .) is the only entry
- Not all agents have reached their goals
~ No agent can reach its goal within the next move, so no one realizes the necessity to

send another agent off
All agents will stay inactive, according to the paradigm of eco-problem solving: “I will do
nothing unless I am forced to.”
This situation is detected by Big-Brother, it will intervene and force the agent with the
highest priority of the ones which did not reach their goal yet, to become active.

94

4.5.3. Heuristics

In this chapter we want to point out the special heuristics employed in TOHPAR and

interpret them from a more abstract point of view. The heuristics are an important part of

the procedural knowledge of the agents. They may roughly be divided into two main

groups, where each group cOi.sists of two subgroups. The main groups are:

- Planning the next action of each agent

- Handling of conflicts

In the following the heuristics have got a number. This number is only used for identifi

cation, it has no meaning for the actual run of TOHPAR.

Planning the next action

This means pursuing the way to the goal and evolving suitable strategies to find good

candidates for the next move.

1. Modifying and preparing the current knowledge

Heuristic 1 (rule-I; method create_next...,goal)

If you have some identical orders from different senders, act in favor of the sender

with the highest priority.

Heuristic 2 (rule-2; method create_next...,goal)

If a former chosen but not yet performed action is suddenly forbidden, it must be

discarded at once.

Heuristic 3 (rule-3; method create_nexc.goal)

If a possible alternative is suddenly forbidden, it also must be discarded immediately.

Heuristic 4 (rule-4; method create_nexc.goal)

To provide a basis for a new and unbiased decision of the next action, all prior

decisions must be retracted and joint with the rest of alternatives.

Heuristic 5 (plan_*leave*; method create_nexc.goal)

If all alternatives are forbidden, ignore the sender has the lowest priority if this

alternative is achievable. Senders with higher priority will not be hindered.

95

4.5.3. Heurist ics

In this chapter we want to point out the special heuristics employed in TOHPAR and
interpret them from a more abstract point of view. The heuristics are an important part of

the procedural knowledge of the agents. They may roughly be divided into two main
groups, where each group corsists of two subgroups. The main groups are:
- Planning the next action of each agent
- Handling of conflicts
In the following the heuristics have got a number. This number is only used for identifi-
cation, it has no meaning for the actual run of TOHPAR.

Planning the next agtign
This means pursuing the way to the goal and evolving suitable strategies to find good
candidates for the next move.

1 . Modifying and preparing the current knowledge

Heuristic l (rule-1; method create_next_goal)
If you have some identical orders from different senders, act in favor of the sender
with the highest priority.

Heuristic 2 (rule-2; method create_next_goal)

If a former chosen but not yet performed action is suddenly forbidden, it must be
discarded at once.

Heuristic 3 (rule-3; method create_next_goal)
If a possible alternative is suddenly forbidden, it also must be discarded immediately.

Heuristic 4 (rule—4; method create_next__goal)
To provide a basis for a new and unbiased decision of the next action, all prior
decisions must be retracted and joint with the rest of alternatives.

Heuristic 5 (plan_*leave*; method create_next_goal)
If all alternatives are forbidden, ignore the sender has the lowest priority if this
alternative is achievable. Senders with higher priority will not be hindered.

95

2. Making the decision what to do neXt

Heuristic 6 (plan_*alternatives*, plan_*nexcgoal*; method create_next~oal)

If your personal goal is reached or at least attainable, pursue it and forget all the other

subgoals.

Heuristic 7 (find - / seleccheuristically_besCalternative; method create_next~oal,

conflict-resolution-I)

To select one from several alternatives build disjunct sets of decreasing priority.

These sets must be subsets of the current set of alternatives. Then take the two sets

which are not empty and have the highest priority. Choose one of both, where the

weighted likelihood for the better alternative is 5: 1.

From the chosen set select one alternative with an appropriate selection function.

Heuristic 8 (plan_*next~oal*; method create_next~oal»

If there is still only one alternative and nothing new has evolved, keep on pursuing

this alternative. May be it works this time.

Conflict handling

Conflicts are pretty frequent phenomena in parallel scenarios. The hard task is to detect

them. Once detected, an appropriate means to eliminate them should be not far away.

I . Conflicts concerning the decisions about the next action to perform

Heuristic 9 (methods conflict-resolution-I, conflict-resolution-2)

Conflicts with forbidden goals are resolved in negotiations, whereas conflicts

emerging from clashing subgoals are solved by appropriate retracting of wishes

(decisions) to act.

Heuristic 10 (deteccleave30nflicts; method conflict-resolution-I)

If a forbidden alternative is equal to the newest subgoal, a conflict (of type 1, see

above) has emerged. Otherwise taboos which occur during negotiations are only

obeyed if either alternatives would be left or the sender has a higher priority than the

receiver of the taboo.

96

Making the decision what to do next

Heuristic 6 (plan_*altematives*, plan_*next_goal*; method create_next_goal)
If your personal goal is reached or at least attainable, pursue it and forget all the other

subgoals.

Heuristic 7 (find - / select_heuristically_best_altemative; method create_next_goal,
conflict—resolution—l)
To select one from several alternatives build disjunct sets of decreasing priority.

These sets must be subsets of the current set of alternatives. Then take the two sets
which are not empty and have the highest priority. Choose one of both, where the
weighted likelihood for the better alternative is 5:1.
From the chosen set select one alternative with an apgoflate selection function.

Heuristic}, (plan_*next_goal*; method create_next__goal))
If there is still only one alternative and nothing new has evolved, keep on pursuing

this alternative. MaLbe it works this time.

i h lin

Conflicts are pretty frequent phenomena in parallel scenarios. The hard task is to detect
them. Once detected, an appropriate means to eliminate them should be not far away.

1 . Conflicts concerning the decisions about the next action to perform

Heuristic 9 (methods conflict-resolution-l, conflict-resolution-Z)
Conflicts with forbidden goals are resolved in negotiations, whereas conflicts
emerging from clashing subgoals are solved by appropriate retracting of wishes

(decisions) to act.

Heuristic 10 (detect_leave_conflicts; method conflict-resolution-l)
If a forbidden alternative is equal to the newest subgoal, a conflict (of type 1, sec
above) has emerged. Otherwise taboos which occur during negotiations are only
obeyed if either alternatives would be left or the sender has a higher priority than the
receiver of the taboo.

96

Heuristic 11 (method conflict-resolution-2)

Wishes with full specification of the goal have a higher priority than those with only a

,partial specification.

2. Conflicts emerging from scheduling clashes

Heuristic 12 (method synchronize)

If an action causes a blockage of a potential future actor, these action must be delayed

appropriately. The actions must be performed at least in paralleL

Heuristic 13 (tescactin~capability; method cause_to_act)

If an action cannot be performed because another future actor is an obstacle, try to

build "acting pairs". Cause the obstacle first to make an intermediate action to give

place for yourself under the premise that the other agent can later perform its planned

actior. without problems.

Heuristic 14 (tesLactin~capability; method cause_to_act)

If an action cannot be performed because the actor would block a future actor

(synchronization effects may have been compensated), the action is cancelled.

Heuristic 15 (check_deadlock_condition; method cause_to_act)

If no agent wants to do something, the one with the highest priority of those which

have not reached their goals yet, is forced to become active.

4.5.4. Benchmarks

TOHPAR gives no options to choose different heuristics. So the results are preliminary

presented solely with a comparison to the result of the best sequential heuristics of

TOHSEQ (A more abstract comparison of the two scenarios is made in chapter 4.6.).

The implementation of the parallel scenario produces no deterministic behaviour. If an

agent has more than one alternative and cannot decide the very best, it will choose its next

goal at random. Each alternative has an identical likelihood. But a decision among

alternatives, which do not differ from a local point of view, may convey global

consequences. So the results may differ significantly.

The results are given in Figure 4.20 as follows: We always have n=lO agents, the num

ber of places varies (first diagram x-axis, second diagram y-axis). The first ten bars in the

upper diagram (the total number of moves) represent ten ordered test results, the 11 th bar

97

Hegg'stic 11 (method conflict-resolution-Z)

Wishes with full specification of the goal have a higher priority than those with only a

partiaLspecification.

2 . Conflicts emerging from scheduling clashes

Heuristic 12 (method synchronize)

If an action causes a blockage of a potential future actor, these action must be delayed

appropriately The actions must bejerformed at least in parallel.

Heuristic 13 (test_acting_capability; method cause__to_act)
If an action cannot be performed because another future actor is an obstacle, try to
build “acting pairs”. Cause the obstacle first to make an intermediate action to give
place for yourself under the premise that the other agent can later perform its planned
action withoutproblems.

Heuristic 14 (test_acting_capability; method cause_to__act)
If an action cannot be performed because the actor would block a future actor

L(§ynchronizau'on effects may have been compensated), the action is cancelled.

Heuristic 15 (check_deadlock_condition; method cause_to_act)
If no agent wants to do something, the one with the highest priority of those which
have not reached theirjoals yet, i s forced to become active.

4 .5 .4 . Benchmarks

TOHPAR gives no options to choose different heuristics. So the results are preliminary
presented solely with a comparison to the result of the best sequential heuristics of
TOHSEQ (A more abstract comparison of the two scenarios is made in chapter 4.6.).
The implementation of the parallel scenario produces no deterministic behaviour. If an
agent has more than one alternative and cannot decide the very best, i t will choose its next
goal a t random. Each alternative has an identical likelihood. But a decision among
alternatives, which do not differ from a local point of view, may convey global
consequences. So the results may differ significantly.
The results are given in Figure 4.20 as follows: We always have n=10 agents, the num-
ber of places varies (first diagram x-axis, second diagram y—axis). The first ten bars in the
upper diagram (the total number of moves) represent ten ordered test results, the 11th bar

97

the average of them, and the 12th bar represents llle result of the best sequential heuristic.

The second diagram reveals time measures, a minimum time and a maximum time for

each configuration are presented.

130

120

110

100

90

Cl) 80

CD

:>

0 70

E

60

0 -
0 SO
c

40

30

20

10

0

4 6
 8 10 11

no. of pleces

11

10
en
CD
(.)
«10

a. 8-0

0
c

6

4

o 4 8 12 16 20 24 26 32

• min time
• mex time

·32,4

36 40

time (sec)

Figure 4.20 : Benchmark results for TOHPAR

98

the average of them, and the 12th bar represents ine result of the best sequential heuristic.
The second diagram reveals time measures, a minimum time and a maximum time for
each configuration are presented.

130
120
HO
100

no
.

O
f

m
ov

es

n o . Of 910603

' mintime
I max time

no
.

of

pl
ac

es

' I ' I fi Ij ! l I ' .

0 4 8 12 16 20 24 26 32 36 40

t ime (s ec)

Figure 4.20 : Benchmark results for TOHPAR

98

To make hard statistic statements, a mu1t;tl1rl~ of tests would be necessary. Then we

suppose that a Gaussian distribution would emerge.

What is already significant at the results presented here, that TOHPAR achieves its best

results when there are many agents in relation to few places. The more places the

configuration gets, the worse become the results compared to the best results of

TOHSEQ.

Summaty of the Test Results

It is very impressive that the distributed implementations produce such good results.

Compared with the information about the effort of traditional search (cf. capter 4.2.),

where, for instance, in a scenario with n=1O agents and m=4 places 410 different states

potentially must be traversed and a search tree for "brute force" breadth fIrst search

comprises about 2050 expanded nodes. If we really would proceed in this way, the

"agents" would perform 2050 moves until they reach the goal state. In this perspective the

results ranging from 50 to 229 moves for the parameters above are indescribably better.

And consider the amount of time which would be necessary for 2050 moves, which is a

number almost beyond our conception. The time results of a few seconds (see above)

hence also show the feasibility of the distributed approach.

The results must also be seen in the light that only very simple local heuristics were used

to facilitate the decisions of the agents. These coarse "rules of thumb" suffice to come

very close to the optimum and also generate satisfying solutions were no optimum is

known at all. This is a promising experience in order to cope with large search spaces

where no global strategies are possible. From another point of view, from the local and

distributed perspective, certain problems may become manageable.

99

To make hard statistic statements, a multitude of tests would be necessary. Then we

suppose that a Gaussian distribution would emerge.
What is already significant at the results presented here, that TOHPAR achieves its best
results when there are many agents in relation to few places. The more places the
configuration gets, the worse become the results compared to the best results of
TOHSEQ.

Summm ef the Test Results

It i s very impressive that the distributed implementations produce such good results.
Compared with the information about the effort of traditional search (cf. capter 4.2.),
where, for instance, in a scenario with n=10 agents and m=4 places 410 different states
potentially must be traversed and a search tree for “brute force” breadth first search
comprises about 2050 expanded nodes. If we really would proceed in this way, the
“agents” would perform 2050 moves until they reach the goal state. In this perspective the
results ranging from 50 to 229 moves for the parameters above are indescribably better.
And consider the amount of time which would be necessary for 2050 moves, which is a
number almost beyond our conception. The time results of a few seconds (see above)
hence also show the feasibility of the distributed approach.

The results must also be seen in the light that only very simple local heuristics were used
to facilitate the decisions of the agents. These coarse “rules of thumb” suffice to come
very close to the optimum and also generate satisfying solutions were no optimum is
known at all. This is a promising experience in order to cope with large search spaces
where no global strategies are possible. From another point of view, from the local and
distributed perspective, certain problems may become manageable.

99

4.6. Comparison of Sequential And Parallel Version

The parallel version TOHPAR is P"'uch more complicated than the sequential version

TOHSEQ. Do the results substantiate the efforts? At a fIrst glance this does not seem to

be so. The results of TOHPAR are pretty often even worse compared to the best heuris

tics of TOHSEQ. We will now try to explain this apparently strange behaviour and then

argue why the parallel version is of principal importance after all.

TOHPAR provides a non-detenninistic behaviour. The problems going along with that

and with the parallelism (cf. chapter 4.8.) have a larger impact on the result, if the

problem must be solved almost sequential ("many places, few agents"). Then a wrong or

short-sighted local decision can hardly be compensated by effective parallel moves,

because these are not often possible.

So the restriction to sequential execution of actions becomes an advantage and, on the

other hand, the amount of freedom lying in decisions and possible parallel moves grows

to a major drawback.

A observer of the parallel scenario who is unfamiliar with the principles of the behaviour

of the agents will perhaps be disappointed .of the average amount of parallelism in

TOHPAR. He watches the proceeding and wonders why many agents which have

perfonned an action often remain idle a long time, whereas only a few really act. They

argue that these idle agents could better have rearranged in parallel so that, for instance,

more places become free and other agents with a higher priority may go t' .ere.

This is a good idea, but it cannot be executed within the paradigms we presumed for

multi-agent scenarios.

First, the knowledge of the agents is restricted. They only know their personal situation,

the wishes and orders of the other agents. But to recognize that it is, e.g. convenient to

build an intennediate stack to clear as much places as possible demands a huge portion of

global view and global problem solving strategies. Also planning more steps into the

future could support a more rational behaviour.

Second, the agents are rather passive than busy per se. This is an intrinsic issue of the

strategy of eco-problem solving we adopted for our scenario. If the agents are not

blocked, but cannot reach their desired goal, they do nothing unless they are ordered to

go away. They simply wait either for a kick or that their goal becomes attainable. But

when they receive an order to flee, this radically changes. They become active until this

order is fulfilled. Blocked agents also begin to do something, and that is to send

messages to order their upper neighbour to go away. So the central message type "go

away but avoid..." causes agents to become active when their genuine goals are out of

reach. But after the agent has sent off all obstacles and perfonned its move, it will stay

100

4.6. Comparison of Sequential And Parallel Version

The parallel version TOHPAR is much more complicated than the sequential version
TOHSEQ. Do the results substantiate the efforts ? At a first glance this does not seem to
be so. The results of TOHPAR are pretty often even worse compared to the best heuris-
tics of TOHSEQ. We will now try to explain this apparently strange behaviour and then
argue why the parallel version is of principal importance after all.
TOHPAR provides a non-deterministic behaviour. The problems going along with that
and with the parallelism (cf. chapter 4.8.) have a larger impact on the result, if the
problem must be solved almost sequential (“many places, few agents”). Then a wrong or
short-sighted local decision can hardly be compensated by effective parallel moves,
because these are not often possible.
So the restriction to sequential execution of actions becomes an advantage and, on the
other hand, the amount of freedom lying in decisions and possible parallel moves grows
to a major drawback.
A observer of the parallel scenario who is unfamiliar with the principles of the behaviour
of the agents will perhaps be disappointed _of the average amount of parallelism in
TOHPAR. He watches the proceeding and wonders why many agents which have
performed an action often remain idle a long time, whereas only a few really act. They
argue that these idle agents could better have rearranged in parallel so that, for instance,
more places become free and other agents with a higher priority may go t‘ .ere.
This is a good idea, but it cannot be executed within the paradigms we presumed for
multi-agent scenarios.
First, the knowledge of the agents is restricted. They only know their personal situation,
the wishes and orders of the other agents. But to recognize that it is, e.g. convenient to
build an intermediate stack to clear as much places as possible demands a huge portion of
global view and global problem solving strategies. Also planning more steps into the
future could support a more rational behaviour.
Second, the agents are rather passive than busy per se. This is an intrinsic issue of the
strategy of eco-problem solving we adopted for our scenario. If the agents are not
blocked, but cannot reach their desired goal, they do nothing unless they are ordered to
go away. They simply wait either for a kick or that their goal becomes attainable. But
when they receive an order to flee, this radically changes. They become active until this
order is fulfilled. Blocked agents also begin to do something, and that is to send
messages to order their upper neighbour to go away. So the central message type “go
away but avoid...” causes agents to become active when their genuine goals are out of
reach. But after the agent has sent off all obstacles and performed its move, it will stay

100

idle until either its lower neighbour wants to act or :l:1other agent tries to occupy the ftrst

agent's location.

The parallel scenario TOHPAR is worth the effort put in it. Many procedures merely have

the duty to provide the pseudo-parallelism. Thus in some sense we make a huge effort in

creating effects (e.g. parallel interferences) where we must elaborate more issues to tame

them again (negotiation, synchronization). But just these effects enrich the study of

TOHPAR. They naturally cannot occur in the sequential setting. In detail, we are

confronted with:

- Incompatibilities of concurrent decisions

- Interferences by parallel acting

- The demand for negotiation

- Conflict-solving strategies

- The possibility to ask for help

All these items either are not relevant in TOHSEQ or do simply not emerge. But natural

multi-agent scenarios heavily cope with these aspects. Thus TOHPAR may provide a

basis for further work in DAI planning concerning the behaviour oi more natural Multi

Agent worlds.

The sequential version cannot achieve this. Its relevance was to get a ftrst feeling for the

scenario to be modelled and to find some elementary heuristics. Also this objective was

accomplished.

101

idle until either its lower neighbour wants to act or another agent tries to occupy the first
agent’s location.
The parallel scenario TOHPAR is worth the effort put in it. Many procedures merely have
the duty to provide the pseudo-parallelism. Thus in some sense we make a huge effort in
creating effects (e. g. parallel interferences) where we must elaborate more issues to tame
them again (negotiation, synchronization). But just these effects enrich the study of
TOHPAR. They naturally cannot occur in the sequential setting. In detail, we are
confronted with:

- lncompatibilities of concurrent decisions
- Interferences by parallel acting
- The demand for negotiation
- Conflict-solvin g strategies
- The possibility to ask for help
All these items either are not relevant in TOHSEQ or do simply not emerge. But natural
multi-agent scenarios heavily cope with these aspects. Thus TOHPAR may provide a
basis for further work in DAI planning concerning the behaviour or" more natural Multi-
A gent worlds.
The sequential version cannot achieve this. Its relevance was to get a first feeling for the
scenario to be modelled and to find some elementary heuristics. Also this objective was
accomplished.

101

4.7. A Model For The Agents' Behaviour

In this chapter we want to provide a more fonnal model of the agents' behaviour in the

parallel realization TOHPAR. We use the means of a non-detenninistic fmite automaton

to reveal the changes of the inner states of the agents which act in the scenario.

The agents use four flags in their knowledge base to control their behaviour and to show

in which inner state they are. Despite of the explanation of the meaning of the flags in

"General System Design" (see chapter 4.5.2.), they were not explicitly mentioned when

describing the procedural knowledge of the agents ("The Modules Of The System").

Figure 4.21 shows the graph of the automaton. As usual, nodes represent states and

edges represent changes of states. There are four types of edges, corresponding to the

execution of four main modules of TOHPAR:

CD: create_nexcgoal @: infonn_other_agents

@: conflict-resolution-l @: cause_to_act

The other methods between @ and @ do not change the states anymore, they are omitted

for the sake of a comprehensible notation. Also the elimination of "goal conflicts" after

performing the parallel moves does not have an explicit corresponding edge. It causes the

effect of a way via edge @ to state 0 and then via CD to state 8.

The states got a running number by interpreting the four flags as a four bit integer ("+"

means 1, "-" means 0; the first flag is the min-bit). The states 6,7,14, and 15 cannot

oc~ur because the conflict-flag and the wait-flag are never set simultaneously. 23

The traversal of the graph allows sequences of edges in the fonn [CD [@ @]+@]*, where

*,+,[,] are the usual meta-symbols. These possible sequences correspond to the general

system design. ill - @ is the overall "reflecting/acting" loop, lasting until each agent has

reached its goal. @,@ is the negotiation cycle, where conflicts must be resolved.

It is very obvious when agents are really involved in negotiations and when they are only

waiting for others to finish them. Changes of states following @- or @-edges indicate

there is a new decision born or a decision must be corrected. On the other hand @,@

edges going back to the same state show: This agent does not join the negotiations at the

the moment, it is idle. There are two cases: "idle-" : The agent waits for a complete new

loop of the scenario, because it cannot act in the current cycle. "idle+" : The agent waits

for the other agents which may act in parallel with it. It believes that it can act. In this

situation a very special change of state, marked with a "*,, at the respective edges, may

take place. An agent believes it can act, but another agent frustrates this believe by

changing its decision. This is the case when a corrected decision blocks the wishes of

other agents. These other agents are then back in negotiations again. The edge marked

23 An agent cannot be waiting when it is involved in a conflict The conflict has to be resolved at once.

102

4.7. A Model For The Agents’ Behaviour

In this chapter we want to provide a more formal model of the agents’ behaviour in the
parallel realization TOHPAR. We use the means of a non-deterministic finite automaton

to reveal the changes of the inner states of the agents which act in the scenario.
The agents use four flags in their knowledge base .to control their behaviour and to show
in which inner state they are. Despite of the explanation of the meaning of the flags in
“General System Design” (see chapter 4.5.2.), they were not explicitly mentioned when
describing the procedural knowledge of the agents (“The Modules Of The System”).
Figure 4.21 shows the graph of the automaton. As usual, nodes represent states and
edges represent changes of states. There are four types of edges, corresponding to the
execution of four main modules of TOHPAR:

©: create_next_goal ©: inform_other_agents
®: conflict-resolution-l @: cause_to_act

The other methods between © and @ do not change the states anymore, they are omitted
for the sake of a comprehensible notation. Also the elimination of “goal conflicts” after
performing the parallel moves does not have an explicit corresponding edge. It causes the
effect of a way via edge @ to state 0 and then via (D to state 8.
The states got a running number by interpreting the four flags as a four bit integer (“+”
means 1, “—” means 0; the first flag is the min-bit). The states 6,7,14, and 15 cannot
occur because the conflict-flag and the wait-flag are never set simultaneously. 3
The traversal of the graph allows sequences of edges in the form [© [@ ®]+©]*‚ where
*,+,[,] are the usual meta-symbols. These possible sequences correspond to the general
system design. © — ® is the overall “reflecting/acting” loop, lasting until each agent has
reached its goal. ®,® is the negotiation cycle, where conflicts must be resolved.
It is very obvious when agents are really involved in negotiations and when they are only
waiting for others to finish them. Changes of states following ®- or ©-edges indicate
there i s a new decision born or a decision must be corrected. On the other hand ®,®-
edges going back to the same state show: This agent does not join the negotiations at the
the moment, it is idle. There are two cases: “idle—” : The agent waits for a complete new
loop of the scenario, because it cannot act in the current cycle. “idle+” : The agent waits
for the other agents which may act in parallel with it. It believes that it can act. In this

“*”situation a very special change of state, marked with a at the respective edges, may
take place. An agent believes it can act, but another agent frustrates this believe by
changing its decision. This is the case when a corrected decision blocks the wishes of
other agents. These other agents are then back in negotiations again. The edge marked

23An agent cannot be waiting when it is involved in a conflict. The conflict has to be resolved at once.

102

CD : create_npvt croal
@ : inform_Other_agents
@ : conflict-resolution-l
@ : cause_to_act

CD

Number of state
act-flag
conflict-flag
wait-flag
go_away-flag

posssible traversal
of the graph

+ : flag is set
- : flag is reset

* :@ from other
agents

start/end
state

conflict
state

state of
possible
acting

Figure 4.21 : The Graph of the Automaton Model

103

® : create)?“ onal

® : inform_omer_agents
@ : conflict-resolution-l posssible traversal
@ : cause_to_act of the graph

Number of state
act-flag
conflict-flag
wait-flag
go__away-flag

©

start/end

+ : flag i s set
- : flag is reset

* : @ from other
agents

(D

start/end
state

conflict
state

state of
possible
acting

Figure 4.21 : The Graph of the Automaton Model

103

with a "*,, represents the only change of state (internal knowledge) which is not induced

by the agent itself but by another one.

Much could be said about the implicit information lying in the graph. But this would

likely become a boring repetition of the exhaustive descriptions above. After all the model

provides a concentrated and informative overview about the possible behaviour of each

individual agent.

104

“*”with a represents the only change of state (internal knowledge) which is not induced
by the agent itself but by another one.
Much could be said about the implicit information lying in the graph. But this would
likely become a boring repetition of the exhaustive descriptions above. After all the model
provides a concentrated and informative overview about the possible behaviour of each

individual agent.

104

4.8. Open Problems

The benchmark results prove the potential capabilities of the parallel version TOHPAR,

but also the current handicaps (cf. cl}apter 4.4.4. and 4.5.4. for detailed benchmarks).

Two major research areas still have to be tackled, the heuristics and the problem of

parallelism per se.

For the heuristics, exhaustive validation tests must be conducted. Each heuristic must

possibly be refined or changed. The next step would be to parametrize the heuristics and

provide the agents with the feasibility of learning. They could memorize which heuristic

worked well in what special situation or vary the utilization of heuristics when a solution

does not come nearer over a series of cycles.

Parallelism conveys several classes of problems. First, an adequate simulation

environment must be installed. Although there has been much effort put in TOHPAR to

provide pseudo-parallelism, it cannot be as flexible and natural as a system with real

parallel processes. Especially the static system design with the sequence of the module

executions inhibits many interesting effects: Asynchronism, critical races of messages,

temporal dependencies. On the other hand the realization in TOHPAR lets many agents

spend much time in waiting for others to negotiations or actions. Simple delays where the

agents would do absolute nothing, could otherwise be possibly used for estimating and

evaluating future actions, or helping others by, say, extensive computations.

Another issue is the prediction of the effects of parallel acting. In fact there is still the

possibility of everlasting loops of actions. Because the agents only have a restricted

world view, one single decision may appear optimal, whereas a collection of decisions

during a parallel move need not be beneficial for all. Goals of one agent may be frustrated

by moves of other agents. If these interferences occur frequently, a loop may emerge

which cannot be exited. This problem is hard to handle.

One solution, which was already tested with good results, is the probabilistic selection of

an alternative. We do not use always the same decision criteria, but allow some

exceptions from the - normally - best choice. The best choice gets the weight 5:1 with

respect to the next good choice. But if there is only one choice, this idea cannot work.

Bookkeeping procedures to detect loops in behaviour are another means. But this would

bring an enourmous overhead of data to store. Also the search for actions already

performed in the past, will last longer from move to move. So this "brute force" method

seems to be inappropriate.

A formalism to detect and eliminate such loops should be developed. It could be leaning

on related work on deadlocks in operating systems [Ne86].

105

4.8. Open Problems

The benchmark results prove the potential capabilities of the parallel version TOHPAR,
but also the current handicaps (cf. chapter 4.4.4. and 4.5.4. for detailed benchmarks).
Two major research areas still have to be tackled, the heuristics and the problem of

parallelism per se.
For the heuristics, exhaustive validation tests must be conducted. Each heuristic must
possibly be refined or changed. The next step would be to parametrize the heuristics and
provide the agents with the feasibility of learning. They could memorize which heuristic

worked well in what special situation or vary the utilization of heuristics when a solution

does not come nearer over a series of cycles.
Parallelism conveys several classes of problems. First, an adequate simulation
environment must be installed. Although there has been much effort put in TOHPAR to
provide pseudo-parallelism, it cannot be as flexible and natural as a system with real

parallel processes. Especially the static system design with the sequence of the module
executions inhibits many interesting effects: Asynchronism, critical races of messages,
temporal dependencies. On the other hand the realization in TOHPAR lets many agents

spend much time in waiting for others to negotiations or actions. Simple delays where the

agents would do absolute nothing, could otherwise be possibly used for estimating and
evaluating future actions, or helping others by, say, extensive computations.
Another issue is the prediction of the effects of parallel acting. In fact there is still the
possibility of everlasting loops of actions. Because the agents only have a restricted
world view, one single decision may appear optimal, whereas a collection of decisions
during a parallel move need not be beneficial for all. Goals of one agent may be fnistrated
by moves of other agents. If these interferences occur frequently, a loop may emerge
which cannot be exited. This problem is hard to handle.
One solution, which was already tested with good results, is the probabilistic selection of
an alternative. We do not use always the same decision criteria, but allow some
exceptions from the - normally - best choice. The best choice gets the weight 5:1 with
respect to the next good choice. But if there is only one choice, this idea cannot work.
Bookkeeping procedures to detect loops in behaviour are another means. But this would
bring an enourrnous overhead of data to store. Also the search for actions already
performed in the past, will last longer from move to move. So this “brute force” method
seems to be inappropriate.
A formalism to detect and eliminate such loops should be developed. It could be leaning
on related work on deadlocks in operating systems [Ne86].

105

5. The Towers of Hanoi in the General DAI Framework

5.1. Embedding In DAI Terminology and Classification

The scenario of the Towers of Hanoi shall be characterized now in the light of the overall

DAI tenninology. First of all, it must be mentioned that the implementation of TOHPAR
was made rather straightforward and the whole project is surely still a prototype.

Therefore a classification must strictly distinguish between general aspects and special

ToH features of the system. We want to point out the general DAI aspects in the

following.

The kind of problem solving fits perfectly in Ferber's paradigm of eco-problem solving

([Fe90J, see also chapter 3.6.). The agents proceed in pursuing their goals, thereby

sending other agents as obstacles off. These agents obey the order and leave their place;

after finding an alternative to move, they go on with their own goals. Due to the local

decisions and to some aspects of non-deterministic choice, the visible behaviour

resembles sometimes a natural population of dumb individuals like ants.

The eco-metaphor implies in some sense that the agents tend to be more re-active than

active in their world. They act only when they can reach their goal in one step or when

they are sent off by other agents. Their decisions comprise no difficult planning in

advance, only the actual situation of the scenario is regarded and perhaps one possible

next step of other agents is taken into consideration. Though each agent has a small and

restricted knowledge base, it is more appropriate to characterize the ToH-agents as

behaviour-based (Le. reactive) than as knowledge-based.

Embedded in the general characterization of eco-problem solving is the proceeding to

determine the next move of each agent. This is done by heuristical plannin~. where the

heuristics are strictly local and employed from the agent's individual point of view.

Because planning and execution are steadily interweaved, Le. after one planning step

follows (at most) one action, the ToH scenario is an example for distributed planning,

where planners and actors are identical.

The agents behave cooperative to a considerable extent, benevolence would be an almost

too weak classification. In fact, when an agent sends another one off, a temporary

master-slave relationship is established. The agent, which is sent off (the slave) must

obey the order of its master. After it has done this (or while doing this), the slave may

build up dependencies to other agents where it is then the master.

The communication is performed either by direct message passing (writing on one other's

agenda) or by broadcasting via a blackboard. The messages are fonnalized and are

implicitly processed according to their types. There is no explicit communication

protocol.

106

5 . The Towers of Hanoi in the General DAI Framework

5.1. Embedding In DAI Terminology and Classification

The scenario of the Towers of Hanoi shall be characterized now in the light of the overall
DAI terminology. First of all, it must be mentioned mat the implementation of TOHPAR
was made rather straightforward and the whole project i s surely still a prototype.
Therefore a classification must strictly distinguish between general aspects and special
ToH features of the system. We want to point out the general DAI aspects in the
following.
The kind of problem solving fits perfectly in Ferber’s paradigm of eco-problem solving
([Fe90], see also chapter 3.6.). The agents proceed in pursuing their goals, thereby
sending other agents as obstacles off. These agents obey the order and leave their place;
after finding an alternative to move, they go on with their own goals. Due to the local
decisions and to some aspects of non-deterministic choice, the visible behaviour
resembles sometimes a natural population of dumb individuals like ants.
The eco-metaphor implies in some sense that the agents tend to be more mile than

active in their world. They act only when they can reach their goal in one step or when
they are. sent off by other agents. Their decisions comprise no difficult planning in
advance, only the actual situation of the scenario i s regarded and perhaps one possible
next step of other agents is taken into consideration. Though each agent has a small and
restricted knowledge base, it is more appropriate to characterize the ToH-agents as
mhavigur-based (i.e. reactive) than as knowledge-based.
Embedded in the general characterization of eco—problem solving i s the proceeding to
determine the next move of each agent. This is done by heuristical planning, where the
heuristics are strictly local and employed from the agent’s individual point of view.
Because planning and execution are steadily interweaved, i.e. after one planning step
follows (at most) one action, the ToH scenario i s an example for distributed planning,

where planners and actors are identical.
The agents behave cooperative to a considerable extent, benevolence would be an almost
too weak classification. In fact, when an agent sends another one off, a temporary
master-slave relationship i s established. The agent, which i s sent off (the slave) must

obey the order of its master. After it has done this (or while doing this), the slave may
build up dependencies to other agents where it is then the master.
The mmmunicatign is performed either by direct message passing (writing on one other’s
agenda) or by broadcasting via a blackboard. The messages are formalized and are
implicitly processed according to their types. There i s no explicit communication
protocol.

106

Negotiations are performed by fixed rules and priority relations. They occur in certain

conflict situations and can be always resolved.

The whole actual situation in the scenario is known by the agents. Thus there does not

exist any uncertainty about the environment. Only the intentions of other agents are not

transparent at all. They only announce one single next step in the moment they believe

they can act. Thus a certain amOu"1t of uncertainty about the inner status of other agent

remains, the "why does an agent act like that" is normally unknown to others. More

knowledge of the other agents' intentions would supply more constraints for an agent's

next decision. Up to now three main types of constraints exist:

- physical constraints: an agent cannot reside somewhere in the air, according to the law

of gravitation it needs permanent support (except it is just acting)

- general laws/rules of the scenario: an agent must not go to a place where it is not

tolerated (for ToH: where a smaller agent is already located)

- transient constraints: temporary restrictions to move to certain places (for ToH: "go

away, but do not go to X" implies place X is forbidden for the next move)

At last, some words about the system conception. The scenario is implemented in a

synchronous manner, Le. all the problems with asynchronism like message delays,

message crossing, inconsistent states, etc. do not occur. A global blackboard and a global

model of the environment is managed by a single informatior agent, to whom all

"normal" agents have access. Furthermore all agents have individual agendas to handle

the local decisions. The system thus is a blackboard/agenda system.

In [Hu87] eight dimensions to classify DAI systems are presented. We apply this char

acterization also to the TOHPAR system. Though it cannot be objective and may further

be confusing in some aspects, it gives a coarse overview of some features of TOHPAR

with respect to other systems. The "A"-mark indicates the circa-position of TOHPAR.

Dimension

System Model

Grain

System scale

Agent Dynamism

Agent Autonomy

Agent Resources

Agent Interaction

Result Formation

Spectrum of Values

Individual... . ..Committee...
A
Fine... . ..Medium...

A
Small... . ..Medium...

Fixed......Programmable......Teachable...
A

Controlled... ., .Interdependent. ..

Restricted...

Simple...

By Synthesis...
- not relevant

. ..Society

. ..Coarse

...Large
A

Autodidactic

. ..Independent

. ..Ample

. ..Complex

. ..By Decomposition

107

Negotiations are performed by fixed rules and priority relations. They occur in certain

conflict situations and can be always resolved.
The whole actual situation in the scenario is known by the agents. Thus there does not
exist any uncertainty about the environment. Only the intentions of other agents are not
transparent at all. They only announce one single next step in the moment they believe
they can act. Thus a certain amount of uncertainty about the inner status of other agent
remains, the “why does an agent act like that” i s normally unknown to others. More
knowledge of the other agents’ intentions would supply more constraints for an agent’s
next decision. Up to now three main types of ggnsgaints exist:
- physical constraints: an agent cannot reside somewhere in the air, according to the law

of gravitation it needs permanent support (except it i s just acting)
- general laws/rules of the scenario: an agent must not go to a place where it is not

tolerated (for ToH: where a smaller agent is already located)
- transient constraints: temporary restrictions to move to certain places (for ToH: “go

away, but do not go to X” implies place X is forbidden for the next move)

At last, some words about the system conception. The scenario is implemented in a
synchronous manner, i.e. all the problems with asynchronism like message delays,
message crossing, inconsistent states, etc. do not occur. A global Mai and a global
model of the environment is managed by a single inforrnatior agent, to whom all
“normal” agents have access. Furthermore all agents have individual agendas to handle
the local decisions. The system thus is a blackboard/agenda system.

In [Hu87] eight dimensions to classify DAI systems are presented. We apply this char-
acterization also to the TOHPAR system. Though it cannot be objective and may further
be confusing in some aspects, it gives a coarse overview of some features of TOHPAR
with respect to other systems. The “A”-mark indicates the circa—position of TOHPAR.

Dimension Spectrum of Xalugs

System Model Individual... . . .Committee.Society

Grain fine... „.Medium.. ...Coarse

System scale Small. . . „Medium.Large

Agent Dynamism Fixed... ...Programmable Teachable... Autodidactg

Agent Autonomy Controlled.Interdependent.Independent

Agent Resources Restricted. . . A . . .Ample

Agent Interaction Simple... A . . ‚Complex

Result Formation By Synthesis... A . . .By Decomposition
- not relevant -

107

5.2. Relations To Other Scenanos and Further Work

The Towers of Hanoi scenario may be a nice setting to demonstrate the capabilities and

foundations of multi-agent problem solving and distributed planning. But after all, it is

only a toy example, applications of practical relevance seem to be far away. We will now

in"estigate which steps are necessary to come to real world scenarios.

One central condition for problems which can be adequately modelled in the paradigm of

eco-problem solving like the ToH problem is that all components of the scenario must be

known in advance. All parts have determined positions, attributes and perhaps a priority

value. Furthermore, the "goal" of the system must be individually, consistently, and

simply decomposable to each concerned part.24 When each part is at its goal place, the

overall goal is fulfilled. Presuming these preconditions and an adapted version of the

heuristics presented so far, the parts of the problem become the active agents, which will

pursue their own goals without central control and thus at last attain the overall system

goal.

At a first glance, these preconditions seem to be very restrictive demands. But it is

astonishing how large the class of problems is, which can be handled. Arrangement-,

soning-, and assembly-problems. All have in common that the components have an exact

initial state (position, attributes) and a well-defined goal (normally the position). The way

from start to goal is difficult and relevant because of large search spaces, insufficient

global knowledge and heuristics (see chapter 4.2.).

But how to achieve the modelling of such problems? First of all, the heuristics employed

in the ToH scenario have to be thoroughly investigated and generalized. Also the relevant

attributes have to be abstracted.

A first step would be a Blocks World scenario. A wider variety of agents has to be

represented, different "skills" and different attributes must be regarded. But the Blocks

World is not too far away from the Towers of Hanoi. A straightforward implementation

can be achieved soon. But then a generalization is absolutely necessary. It could end in a

prototype of a simple multi-agent shell to provide a framework for problems like those

mentioned above.

The results gained should put forward the implementation of real world scenarios.

Examples are (cf. chapter 2.2.) a shunting station and a loading yard of a transpon

agency. In both settings all imponant parts are modelled as autonomous agents. This will

prove the feasibility of the multi-agent approach to more complicate scenarios.

There is a good hope that the new paradigm of eco-problem solving might pass the

border of toy applications to really relevant problems.

24This is nOl possible for puzzles like "wngramm", where the goal decomposition is the genuine problem
and the way from slart to the decomposed goal is trivial.

108

5 .2 . Relations To Other Scenarios and Further Work

The Towers of Hanoi scenario may be a nice setting to demonstrate the capabilities and
foundations of multi-agent problem solving and distributed planning. But after all, it is
only a toy example, applications of practical relevance seem to be far away. We will now
investigate which steps are necessary to come to real world scenarios.
One central condition for problems which can be adequately modelled in the paradigm of
eco-problem solving like the ToH problem is that all components of the scenario must be
known in advance. All parts have determined positions, attributes and perhaps a priority
value. Furthermore, the “goal” of the system must be individually, consistently, and
simply decomposable to each concerned part.“ When each part is at its goal place, the
overall goal is fulfilled. Presuming these preconditions and an adapted version of the
heuristics presented so far, the parts of the problem become the active agents, which will
pursue their own goals without central control and thus at last attain the overall system
goal.
At a first glance, these preconditions seem to be very restrictive demands. But it is
astonishing how large the class of problems is, which can be handled. Arrangement-,
sorting-, and assembly-problems. All have in common that the components have an exact
initial state (position, attributes) and a well-defined goal (normally the position). The way
from start to goal is difficult and relevant because of large search spaces, insufficient
global knowledge and heuristics (see chapter 4.2.).
But how to achieve the modelling of such problems ? First of all, the heuristics employed
in the ToH scenario have to be thoroughly investigated and generalized. Also the relevant
attributes have to be abstracted.
A first step would be a Blocks World scenario. A wider variety of agents has to be
represented, different “skills” and different attributes must be regarded. But the Blocks

World is not too far away from the Towers of Hanoi. A straightforward implementation
can be achieved soon. But then a generalization is absolutely necessary. It could end in a
prototype of a simple multi-agent shell to provide a framework for problems like those
mentioned above.
The results gained should put forward the implementation of real world scenarios.

Examples are (cf. chapter 2.2.) a shunting station and a loading yard of a transport
agency. In both settings all important parts are modelled as autonomous agents. This will
prove the feasibility of the multi-agent approach to more complicate scenarios.
There is a good hope that the new paradigm of coo-problem solving might pass the
border of toy applications to really relevant problems.

24This is not possible for uzzles like “tangrarnm’_’, where the goal decomposition is the genuine problem
and the way from start to e decomposed goal IS tnvtal.

108

6. Conclusion

We have introduced some central concepts of Distributed Artificial Intelligence and

implemented a Tower of Hanoi scenario in the eco-problem solving metaphor. The

aspects of this implementation were exhaustively outlined.

The ToH scenario was only a first step to get experience in multi-agent systems, insight

into the problems of parallelism, and an understanding of the capabilities of local

heuristics. This step was successful. It was shown that rather simple local heuristics can

produce a considerably good global result

The most important next step is to distinguish between special issues which are tailored to

the ToH setting and general ideas which are usable for more universal multi-agent

settings. The long-term goal is to construct a multi-agent shell or workbench where

several different scenarios can be modelled and tested.

It must not be forgotten that certain serious problems of multi-agent interaction are not

treated in the ToH implementation: Asynchronism is avoided, so very hard problems

concerning time and consistency simply cannot occur. The subgoals do not interact, so a

solution can always be found. But what is in the opposite case?

To find answers to questions like these and to provide a test environment is the goal of a

new project of the German Research Center on AI (DFKI). It was outlined in the

proposal for a multi-agent workbench, RATMAN ([BtiMti90], see also chapter 2.8.). In

'the end .. wide variety of different multi-agent systems will be able to be modelled with

RATMAN. The results and the expertise gained in various simulations will guide the

further work.

To better understand the potential of a society of agents, an interdisciplinary approach

seems to be urgent. Researches from various disciplines should engage in concerted

studies. Social scientists, linguists, cognitive scientists, psychologists, philosophers, and

biologists may bring together their knowledge in order to find the foundations why, for

instance, human societies function as well as they actually do.

But it is doubtful whether human societies should really be the goal of modelling multi

agent communities. I have the feeling that this is not desirable at all. Why should we

simulate humans, as long as we have real human experts? This question may sound

heretical, but it is meant as follows: It may be not an appropriate (even not a possible)

way to take the position that agents must be made more and more "intelligent", so that at

last, the society of agents resembles a society of humans with respect to certain problem

configurations. Perhaps the unbounded enhancement of individual expertise concerning

problem domains will come soon to a limit, where no progress is achievable anymore. As

seen in chapter 3.6. the power of the overall system decreases when the agents become

locally too intelligent. A possible consequence is that it is useless that agents augment

their expert knowledge if their "social knowledge" does not increase. Social knowledge

109

6 . Conc lus ion

We have introduced some central concepts of Distributed Artificial Intelligence and

implemented a Tower of Hanoi scenario in the eco-problem solving metaphor. The

aspects of this implementation were exhaustively outlined.

The ToH scenario was only a first step to get experience in multi-agent systems, insight

into the problems of parallelism, and an understanding of the capabilities of local
heuristics. This step was successful. It was shown that rather simple local heuristics can
produce a considerably good global result.
The most important next step is to distinguish between special issues which are tailored to
the ToH setting and general ideas which are usable for more universal multi-agent
settings. The long-term goal is to construct a multi-agent shell or workbench where
several different scenarios can be modelled and tested.
It must not be forgotten that certain serious problems of multi—agent interaction are not

treated in the ToH implementation: Asynchronism is avoided, so very hard problems
concerning time and consistency simply cannot occur. The subgoals do not interact, so a
solution can always be found. But what is in the opposite case ?
To find answers to questions like these and to provide a test environment is the goal of a

new project of the German Research Center on Al (DFKI). It was outlined in the
proposal for a multi-agent workbench, RATMAN ([BüMü90], see also chapter 2.8.). In
the end :. wide variety of different multi-agent systems will be able to be modelled with
RATMAN. The results and the expertise gained in various simulations will guide the
further work.
To better understand the potential of a society of agents, an interdisciplinary approach
seems to be urgent. Researches from various disciplines should engage in concerted
studies. Social scientists, linguists, cognitive scientists, psychologists, philosophers, and
biologists may bring together their knowledge in order to find the foundations why, for
instance, human societies function as well as they actually do.
But it is doubtful whether human societies should really be the goal of modelling multi-
agent communities. I have the feeling that this is not desirable at all. Why should we
simulate humans, as long as we have real human experts ? This question may sound
heretical, but it i s meant as follows: It may be not an appropriate (even not a possible)
way to take the position that agents must be made more and more “intelligent”, so that at
last, the society of agents resembles a society of humans with respect to certain problem
configurations. Perhaps the unbounded enhancement of individual expertise concerning
problem domains will come soon to a limit, where no progress i s achievable anymore. As
seen in chapter 3.6. the power of the overall system decreases when the agents become
locally too intelligent. A possible consequence i s that i t is useless that agents augment
their expert knowledge if their “social knowledge” does not increase. Social knowledge

109

comprises, for instance, the will and the ability to leach a quick and good compromise. It

is easy to imagine endless discussions of human experts, say surgeons about the

explanation of seldom symptoms, when the opinions differ. Such a system is not

efficient.

I propose to restrict on problems where complex global strategies can be broken up into

simple local strategies (heuristics). This could put forward a new AI paradigm, resem

bling Minsky's society of mind [Mi86]. Then a complex system like the human would be

completely built up by simple local processes, which are by far not exact, but heavily

communicative in order to reach quite a good global solution25: the human behaviour.

But, as mentioned above, a copy of the human (a "humunculus") should not be the goal

. of DAI research, nor a copy of the human's societies. Surely there is a lot to learn from a

collection of such "meat-machines", this may be an impetus for research in the next

years.

DAr research has now to prove that the ambitious goal of realizing the fIrst real world

scenarios and thus gaining practical relevance can be attained

25Conceming the average case...

110

comprises, for instance, the will and the ability to teach a quick and good compromise. It

is easy to imagine endless discussions of human experts, say surgeons about the
explanation of seldom symptoms, when the opinions differ. Such a system is not
efficient.
I propose to restrict on problems where complex global strategies can be broken up into
simple local strategies (heuristics). This could put forward a new AI paradigm, resem-
bling Minsky’s society of mind [Mi86]. Then a complex system like the human would be
completely built up by simple local processes, which are by far not exact, but heavily
communicative in order to reach quite a good global solution”: the human behaviour.
But, as mentioned above, a copy of the human (a “humunculus”) should not be the goal

' of DAI research, nor a copy of the human’s societies. Surely there is a lot to learn from a
collection of such “meat-machines”, this may be an impetus for research in the next
years.
DAI research has now to prove that the ambitious goal of realizing the first real world
scenarios and thus gaining practical relevance can be attained

25Conceming the average case...

110

.., References

[Al84] James F. Alien

Towards a General Theory of Action and Time

Anificial Intelligence 23 (2) 1984 pp.123-154

[BiAIFoLeBa87] R. Bisiani, F. Alleva, A. Forin, R. Lerner, M. Bauer
The Architecture of the Agora Environment
in [Hu87] pp. 99-117

[B ~ ~ J Alan H. Bond
The Cooperation of Ex~rts in Engineering Design
in: [GaHu89] pp. 463-484

[CaMcSt83] Stephanie Cammarata, David McArthur, Randall Steeb
Strategies of Coo~rationin Distributed Problem Solving
in: Proceedings of UCAl 1983 pp.767-770

[CaB8] Luis Eduardo Castillo Hem
On distributed artificial intelligence
in: Knowledge Engineering Review Vol.3 No. 1 (March 1988) pp.21-57

rCh81] B. Chandrasekaran
Natural and Social System Metaphors for Distributed Problem Solving: Introduction to the Issue
in: IEEE Transactions on systems, man, and cybernetics
Vol. SMC-11 No.l (January 1981) pp. 1-5

[Ch87] Ernest Chang
Participant Systems for Cooperative Work
in: [Hu87] pp. 311-339

[CoMeP089] S.E. Conry, R.A. Meyer, R.P. Pope
Mechanisms for Assessing Nonlocal Impact of LOcal Decisions in Distributed Planning
in: [GaHu89] pp. 245-258

[CoMiCa90] Rosaria Conte, Maria Miceli, Cristiano Castelfranchi
Limits and Levels of Cooperation: Disentangling Various Types of Prosocial Interaction
in [MA90] pp. 207-217

[DaSm831 Randall Davis, Reid G. Smith
Negotiation as a Metaphor for Distributed Problem Solving
in: ArtificiallntelIigence 20 (1983) pp.63-109

[DeS7] Keith S. Decker
Distributed Problem-Solving Techniques: A Survey
in: IEEE Transactions on systems, man, and cybernetics
Vol. SMC-17 No.5 (September/October 1987) pp.729-740

[DuLe89] Edmund H. Durfree, Victor R. Lesser
Negotiating Task Decom{X>sition and Allocation Using Partial Global Planning
in: lGaHu89] pp. 229-243

[DuLeCo87] Edmund H. Durfree, Victor R. Lesser, Daniel D. Cotkill
Cooperation Through Communication in a Distributed Problem Solving Network
in: [Hu87] pp. 29-58

[Fe90] Jacques Ferber
The Framework of Ecc-Problem Solving
in: [MA90] pp. 103-114

[FiL086] Nicholas V. Findler, Ron Lo
An Examination of Distributed Planning in the World of Air Traffic Control
in: Journal of Parallel and Distributed Computing 3 (1986) pp.411-431

[Ga89] Les Gasser
MACE: High-Level Distributed Objects in a Flexible Testbcd for Distributed Al Research
ACM SIGPLAN Workshop on Object-Based Concurrent Programming, San Diego,USA
SIGPLAN Notices Vol.24 NoA (April 1989) pp.108-11O

[GaBrHe87] Les Gasser, Carl Braganza, Nava Hennan
MACE: A Flexible Testbcd for Distributed AI Research
in [Hu87] pp. 119-152

[GaHu89] Les Gasser, Michael M. Huhns (eds.)
Distributed Anificial Intelligence (Volume II)
London: Pitrnan 1989

111

7 . References

[A184] James F. Allen _
Towards a General Theo of Action and Time
Artificial Intelligence 23 2) 1984 pp.123-154

[BiAlFoLeBa87] R. Bisiani, F. Alleva, A . Forin, R. Lerner. M. Bauer
The Architecture of the Agora Environment
in [Hu87] pp. 99-117

[B.-“91 Alan H. Bond . . _ _
The C ration of Experts in Engineering Desrgn
in: [G u89] pp. 463-484

gCaMcSt83] Stephanie Carnmarata, David McArthur. Randall Steeb
uategies of Cooperation in Distributed Problem Solvmg

in: Proceedings of IJCAI 1983 pp.767-770

Ca88] Luis Eduardo Castillo Hem
distributed artificial intelli ertce

in: Knowledge Engineering eview Vol.3 No.1 (March 1988) pp.21-57

EtI] B. Chandrasekaran _ _ _ _
atural and Social System Metaphors for Distributed Problem Solvrng: Introduction to the Issue

in: IEEE Transactions on systems. man. and cybemetics
Vol. SMC- l l No.1 (January 1981) pp.l-5

[Ch87] Ernest Chang
Participant Systems or Cooperative Work
in: [Hu87] pp. 311-339

[CoMePo89] S.E. Conry, R.A. Me er, R.P. Pope _ _ _ _ _ _
Mechanisms for Assessin Nonl Impact of Local Decrsrons in Distributed Planning
in: [GaHu891PP- 245-25

[CoMiCa90] Row-ia Come, Maria Miceli, Cristiano Castelt‘ranchi _ _
Limits and Levels of Cooperation : Disentanglrng Various Types of Prosocral Interaction
m [MA90] pp. 207-217

[DaSm83] Randall Davis, Reid G. Smith _
Negotiation as a Metaphor for Distributed Problem Solvrng
in: Artificial Intelligence 20 (1983) pp.63-109

[De8_7] Keith S. Decker _
Distributed Problem-Solving Techniques : A Survey _
in: IEEE Transactions on systems, man, and c bemetics
Vol. SMC-17 No.5 (September/October 1987 pp.729-740

DuLe_89] Edmund H. Durfree, Victor R. Lesser _ _ _
e tiatin Task Decomgosition and Allocation Usrng Partial Global Planning

in: GaHu 9] pp. 229-24

DuLeCo87] Edmund H. Durfree, Victor R. Lesser, Daniel D. Corkill
ration Through Communication in a Distributed Problem Solving Network

in: u87] pp. 29- 8

[Fc90] Jacques Ferber
e Framework of Eco-Problem Solving

in: [MA90] pp. 103-114

[FiL086] Nicholas V. Findler. Ron L_o .
An Examination of Distributed Plannin in the World of Air Traffic Control
in: Journal of Parallel and Distributed omputing 3 (1986) pp.4l 1—431

[Ga89 Les Gasser _ _ _ _
MA : Hi h-Level Distributed Objects in a Flexrble Testbed for Distributed AI Research
ACM SIG LAN Worksho on Ob ect-Based Concurrent Programming, San Diego,USA
SIGPLAN Notices Vol.24 0.4 (pnl 1989) pp.108-110

[GaBrI-[e87] Les Gasser, Carl Braganza, Nava Herman
MACE : A Flexible Testbed for Distributed AI Research
in [Hu87] pp. 119-152

[GaHu89] Les Gasser, Michael M. Huhns ;)eds.)
Distributed Artificial Intelligence (Volume 1
London: Pitrnan 1989

111

[GaHu89a] Les Gasser, Michael M. Huhns
Themes in Distributed Artificial Intelligence Research
in: [GaHu89] pp. VII-XV

rGi~7J Matthew L. Ginsberg
beclslon Procedures
in: [Hu87] pp. 3-28

[Gr87] Peter E. Green
AF : A Framework for Real-Time Distributed Cooperative Problem Solving
in: [Hu87] pp. 153-175

[Ha851 John Haugeland
Artificiallntelligence - The very Idea
Cambridge,MA: MITPress 1985

[He86] Joachim Hertzberg
Planerstellungs-Methoden der Kunstlichen Intelligenz
in: lnfonnatiK-Spektrum (1986) 9: pp. 149-161

[He89] Joachim Hertzberg
Planen
BI-Wissenschaftsverlag 1989

[He90] Joachim Hertzberg
KI-Lexikon : Planen
in: KI 1/90 p.22

[Hu8?] Michael M. Huhns (ed.)
Distributed Artificial Intelligence
London: Pitman 1987

[HuBrAr901 Michael M. Huhns, David M. Bridgeland, Natraj V. Ami
Distributed truth Maintenance
in [MC90]

\
[HuMuStBo87] Michael M. Huhns, Uuam Mukhopadhyay, Larry M. Stephens, Ronald D. Bonnell
DAI for Document Retrieval: The MINDS Project
in: [Hu87] pp. 249-283

[JaDe87] V. Jagannathan, Rajendra Dodhiawala
Distributed Artificial Intelligence: An Annotated Bibliography
in: [HuS7] pp. 341-390

[KaR089] Matthew J. Katz, Jeffrey S. Rosenschein
Plans for Multiple Agents
in: [GaHu89] pp. 197-228

[KeHoHu89] J.O. Kephart, T. Hogg, RA. Hubennann
Dynamics of Computational Ecosystems: Implications for DAI
in: [GaHu89] pp. 79-95

[KK89]
KK-Lisp-Manual
AG Siekmann, FB Informatik, University of Kaiscrslautem 1989

[KoPo89] Kurt Konolige, Martha E. Pollack
Ascribing Plans to Agents (Preliminary Report)
SRI Imernational, Menlo Park, USA 1989

[KrMa90] Thomas Kreifelts, Frank von Martial
A Negotiation Framework for Autonomous Agents
in: [MA90] pp. 169-182

[KrViWoWoi89] Thomas Kreifelts, Frank Victor, Gerd Woetzel, Michael Woitass
A Design Tool for Autonomous Group Agents
in: Proc. of the First European Conference on Computer Supported Cooperative Work
Gatwick, London, UK 13.-15.9.89

[KrWo88] Thomas Kreifelts, Gerd Woetzel
Conversational Systems: A cOlceptual model for off-line group support systems
in: Proc. Australian Comp. Conf. '88, Symposium 3: Computer Support for Groups,
Sydney Australia 21.-23.9.1988

[LaChRoMc89] D.M. Lane, MJ. Chantler, E.W. Robertson, A.G. McFadzean
A Distributed Problem Solving Architecture for Knowledge Based Vision
in: [GaHu89] pp. 433-462

112

[gaHuSQa] Les_Gasser‚ Michael M. Huhns .
emes m Distributed Artificial Intelligence Research

in: [Gal-lu89] pp. VII-XV

[£187] Matthew L. Ginsberg
. lSlOn Procedures
m: [Hu87] pp. 3-28

[Gr87] Peter E. Green _
_AF : A Framework for Real-Time Distributed Cooperative Problem Solvmg
m: [Hu87] pp. 153-175

[H2185] John Haugeland
Artificial Intelligence - The v Idea
CambridgeMA: MITPress 19 5

[H686] Joachim Hertzberg _
PlanerstellglrltES-Methoden der Künstlichen Intelligenz
in: Inform ' -Spektrum (1986) 9: pp.l49-161

[He89] Joachim Hertzberg
Planen
BI-Wissenschaftsverlag 1989

[He90] Joachim Hertzberg
KI-Lexikon : Planen
in: KI 1/90 p.22

[Hu87] Michael M. Huhn; (ed.)
Distributed Artificial Intelligence
London: Pitman I987

[HuBrAr90 Michael M. Huhns, David M. Bridgeland, Natraj V. Ami
Distributed ruth Maintenance
in [MC90]

[HuMuStBoS’7] Michael M. Huhns, Uttam Mukhopadhyay, Larry M. Stephens. Ronald D. Bonnell
DAI for Document Retrieval : The MINDS Project
in: [Hu87] pp. 249-283

gaDo87] V. JagiannathanJajendra Dodhiawala _ _
_ tstnbuted Am ctal Intelligence : An Annotated Bibliography
m: [Hu87] pp. 341-390

LKaR089 Matthew J. Katz. Jeffrey S . Rosenschein
lans for ultiple A ems

in: [GaHu89] pp. 19 -228

[KeHol-Iu89] J .0 . Kephart, T. Hogg, B.A. Hubermann
Dynamics of Com utational Ecosystems : Imphcauons for DAI
in: [Gal-M89] pp. 9-95

[KK89]
KK-Lis Manual .
AG Sie ann, FB Informatik, University of Kaiserslautern 1989

[KoP089] Kurt Konolige, Martha E. Pollack
Ascribmg Plans to Agents (Prehmin Report)
SRI international, Menlo Park, USA 989

[KrMa9Q] Thomas Kreifelts, Frank von Martial
A Negotiation Framework for Autonomous Agents
tn: [A90] pp. 169-182

[KrViWoWoi89] Thomas Kreifelts, Frank Victor, Gerd Woetzel, Michael Woitass
A Design Tool for Autonomous Group Agents _
in: Proc. of the First Euro an Conference on Computer Supported Cooperauve Work
Gatck, London, UK l .-lS.9.89

[KrWo88] Thomas Kreifelts. Gerd Woetzel _
Conversational Systems: A cor-ceptual model for off-ltne group support systems
tn: Proc. Australian Com . Conf. ’88. Symposrum 3: Computer Support for Groups.
Sydney Australia 2l . -23. .1988

[LaChRoMc89] D.M. Lane, M.] . Chantler, E.W. Robertson, A.G. McFadzean
A Distributed Problem Solving Architecture for Knowledge Based Vision
in: [GaHu89] pp. 433-462

112

[LeC081] VictorR. Lesser, Daniel D. Corkill
Functionally Accurate, Cooperative Distributed Systems
in: IEEE Transactions on systems, man, and cybernetics
Vol. SMC-ll No.l (January 1981) pp.81-96

[MA90]
Proceedings of the 2nd European Workshop on Modelizing Autonomous Agents and Multi-Agent-Worlds
(MAAMAW '90); Saint Quentin en Yvelines, France 13.-10.8.1990
Organized by ONERA, BP 72, F-92322 Chatillon Cedex

[Ma90] Frank von Martial
A Conversational Model for Resolving Conflicts among Distributed Office hctivities
in: COlS 90 - Conference on Office mfonnation Systems, Cambridge-MIT
New York: ACM 1990

[Mc841 Bonnie McDaniel
Issues m Distributed Artificial Intelligence
in: International Conference on Dataengineering, Los Angeles 1984
IEEE Comp. Soc. Press 1984 pp. 293-297

1ME90] MEDLAR Group Linz
toy Examples of Multitasking Problems
RISC-Linz, 1990

[MC90] MCC (Microelectronics and Computer Technology C~tion)
Proceedings of the 10th International Worishop on Distributed Artificial Intelligence
Bandera, Texas; October 23-27,1990 (MCC Technical Report ACT-AI-355-90)

[Mi86] Marvin Minsky
The Society of Mind
New ':'ork: Simon & Schuster 1986

[Ne86] Jiirgen Nehmer
Betriebssysteme
Script, FB Infonnatik, University of Kaiserslautem 1986

[Ni80] Nils J. Nilsson
Principles of Artificial Intelligence
Palo Alto: Tioga Publishing 1980

[1"IAiRi89] H. Penny Nii, Nelleke Aiello, James Rice
EXJ)eriments on Cage and Poligon : Measuring the Perfonnance of Parallel Blackboard Systems
in: [GaHu89] pp. 319-383

[Pa871 H. Van Dyke Parunak
Manufacturing Experience with the Contract Net
in: [Hu87] pp. 285-310

[Ri83] EIaine Rich
Artificial Intelligence
New York: McGraw Hill 1983

[Ri89] Michael M. Richter
Prinzipien der Kiinstlichen Intelligenz
Stuttgart; Teubner 1989

[RoBr89] Jeffrey S. Rosenschein, John S. Breese
Communication-Free Interaction among Rational Agents: A Probabilistic Approach
in: [GaHu89] pp. 99-118

lRoSySaFo90] Stephen F. Roth, Katia P. Sycara, Nonnan Sadeh, Mark Fox
Distributed Constramt-directed Search in Resource-limited Domains
in [MA90] pp. 207-217

[Sh87] Lokendra Shastri
A Connectionist Encoding of Semantic Networks
in: [Hu87] pp. 177-202

[Sr87] N.S. Sridharan
Semi-Applicative Programming: Examples of Context Free Recognizers
in: [Hu87] pp. 203-245

[St871 S. Steel
The Bread and Butter of Planning
in: Artificial Intelligence Review (I) 1987 pp. 159-189

113

[LeCo81] Victor R. Lesser, Daniel D. _Co_rkill
Functionally Accurate, Cooperative Distributed Systems
in: IEEE Transactions on systems, man and cybemetics
Vol. SMC-ll No.l (January 1981) win-96

[MA90] .
Proceedinäsvof the 2nd European Workshop on Modelizin% Autonomous Agents and Muln-Agent—Worlds
MAAMA '90 ; Saint Quentin en Yvelines, France 13.-l ‚8.1990
rganized by 0 RA, BP 72, F-92322 Chatillon Cedex

[Ma90] Frank von Martial _ _ . _ _ _
A Conversational Model for Resolvmg Conflicts among Distributed Office !“.CllVllleS
in: COIS 90 - Conference on Office Information Systems, Cambridge-MIT
New York: ACM 1990

[Mc84] Bonnie McDaniel _ _
Issues in Distributed Artificial Intelli ence
in: International Conference on Data 'neering. Los Angeles 1984
IEEE Comp. Soc. Press 1984 pp. 293- 97

&ME90] MEDLAR Group I_‚inz
0 Examples of Multitasking Problems

RI C-Linz, 1990

|MC90I_MCC (Microelectronics and Com uter Technolo Common) _
s of the 10th International Wor hc? on Distn ted ficral Intellr

Bandera, exas; October 23-27, 1990 (MCC echnical Report ACT-AI-355-)

[Mi86] Marvin Minsky
The Socrety of Mind
New York: Simon & Schuster 1986

[Ne86] Jürgen Nehmer
Betriebs steme
Script, Informatik, University of Kaiserslautem 1986

[N_i8(_)] Nils]. Nilsson _
Pnnciplles of Arnficral Intelli ence
Palo to: Tioga Publishing 980

[1.1AiRi89] H. Penny Nii, Nelleke Aiello, James Rice
Experiments on Ca e and Poligon : Measunng the Performance of Parallel Blackboard Systems
m: [GaHu89] DP. 3 9-383

$21187} H. Van Dyke Panmak
_ u acturing Ex 'ence with the Contract Net
1n: [Hu87] pp. 28 -310

[Ri83] Elaine Rich
Artificial Intelligence
New York : McGraw Hill 1983

[R189] Michael M. Richter
Prinzipien der Künstlichen Intelligenz
Stuttgart; Teubner 1989

gloBr891 Jeffreyzs. Rosenschein, John S. Breese
_ ommunrcatron- ree Interaction among Rational Agents : A Probabilistic Approach
in: [GaHu89] pp. 99-118
g§oSy)SaFo90] StephenF. Roth, Katia P. Sycara, Norman Sadeh, Mark Fox

rstri uted Constraint-directed Search in Resource-limited Domains
in [MA90] pp. 207-217

[Sh87] Lokenglra Shasufi
A Connectiomst Encoding of Semantic Networks
m: [I-Iu87] pp. 177-202

Sr87]AN.S_. Sridhgan E l fC F
emr- icauve 0 min : xam es 0 ontext ree Reco izers

in: [Hu] pp. 203—255 g p gn

[51.87] S. Steel
The Bread and Butter of Planning
m: Artrficral Intelligence Review (1) 1987 pp. 159-189

113

[StGfi84] Herbert Stoyan, GtiOler Gilrz

LISP· Eme Einfiihrung in die Programmierung

Berlin,Heidelberg,New York,Tokio: Springer 1984

[Sy86a] Symbolics Inc.

User's GUide to Symbolics Computers (1)

Cambridge, MA 1986

[Sy86b] Symbolics Inc.

PrOgrammmg the User Interface Volume B (7B)

cambridge,~1986

£TeM089] Moshe Tennenholtz, Yoram Moses

On Cooperation in a Multi-Entity Model (Preliminary Report)

Weizmann Institute of Science; Rehovot, Israel 1989

[We88] Eric Werner

Toward a Theory of Communication and Cooperation for Multiagent Planning

in: Theoretical Aspects of Reasoning about Knowledge: Proceedings of the 2nd Conference; Mosche Y.

Vardi (ed.)

Morga'l K'aufman Publishers 1988 pp. 129-143

[We89] Eric Werner

Cooperating Agents: A Unified Theory of Communication and Social Structure

in: [GaHu89] pp. 3-36

[We891 Eric Werner

A Unified View Of Information, Intention and Ability

in: [~90] pp. 69-83

rwoKrf,S] Gerd Woetzel, Thomas Krt;ifelts

Deadlock freeness and consistency in a conversational system

in: Proc. IFIP WG 8.4 Working ConE. on Office-Information-Systems : The design process; Linz, Austria

15.-17.8.1988 B. Pernici, A.A. Verrijn-Stuart (OOs.)

[YaHuSt85] Ju-Yuan DavidYang, Michael N. Huhns, Larry M. Stephens

An Architecture for Control and Communications in Distributed Artificial Intelligence Systems

in: IEEETransactions on systems, man, and cybernetics

Vol. SMC-15 No.3 (May/June 1985) pp.316-326

114

[$10584] Herbert Stoyan, Günter Götz
LISP - Eine Einführung in die Programmierung
Berlin,Heidelberg,New York‚Tokio: Springer 984

[Sy86a] Symbolics Inc. _
User's Guide to nbolics Computers (l)
Cambridge, MA 1 86

£386” Symbgilictsci rf V 1 B(7B)grammm c ser nte acc oumeCambridge, Em 1986

56‘3“” ““"-° “12°???" Yfiäi‘däfif- - R)n . ooperauon m a u ti- nut imm eport
Weizmann Institute of Scrence; YIchovot. Israel 19383

[We88] Eric Werner . .'_I‘oward a Theo of Communication and Cooläration for Multiagent Planning
n11: ”gigoretical ts of Reasoning about owledge : Proceedings of the 2nd Conference; Mosche Y.

ar .
Morgan aufman Publishers 1988 pp. 129-143

[We89] Eric Werner
Coo tin Agents: A Unified Theory of Communication and Social Structure
in: [aHu] PD. 336

[Wc8_9 Eric Werner
A Um led View Of Information, Intention and Ability
in: [MA90] pp. 69-83

oKrSB‘] Gerd Woetzel, Thomas Krcifelts _
_ dlock freencss and mussten in a conversational system _ _ .
in: Proc. IFIP WG 8.4 Working on_f‚ on Office-Infomation-Systems : The deSign process; Linz. Austria
15.- l7 .8 . l988 B . Pemici, A.A. Vemjn-Stuart (eds.)

[YaHuSt_8511u-Yuan David‘Yan , Michael N. Huhns, Larry M. Ste hens .
An Architecture for Control and mmunications in Distributed icral Intelligence Systems
in: {BEE-Transactions on systems, man, and c bemeues
Vol. SMC-15 No.3 (May/ une 1985) pp.316- 26

114

Appendix: Implementation

We do not go too deep into technical details. The two versions TOHSEQ and TOHPAR

are implemented without language hacks or the utilization of special machine features.

This should make it easy to transfer both systems to other environments. Only the aspects

concerning graphic output require some caution. Here the special programming language

has facilitated the implementation considerably.

(1) Details of TOHSEQ

The flow diagrams in chapter 4.4.2.2. which point out the "concrete realization" of

TOHSEQ r~veal most of its implementation. Because we used object-oriented program

ming features, especially in the paradigm of sequential message passing, the concrete

realization can be regarded as corresponding to the implementation. In other words, the

flow diagrams are translated straightforward onto the machine. 1 nis seem to be obvious

and rather natural, but in the parallel version TOHPAR this will be no longer the case.

We have defmed the tuple AGENT in a "defstruct-form" with some additional entries:

(defstruct (agent : named)
name ; identifier of each agent integer 1•...
place ; actual place (tower): integer 1,...
position ; actual position (height) in tower: integer 1•...
goal place ; final goal place: analog "place"
goal-position ; final goal position: analog "position"
forbidden_place ; place forbidden for next move 26 :analog "place"
blocker) ; "upper neighbour" of agent: instance of AGENT

TOHSEQ is started with the call of the top-level function hano;::

(hanoi <number of agents: integer 1•... : default 3>
<number of places: integer 3•... : default 3>

from <starting place: integer 1.....no of places: default 1>
to <goal place; integer 1,... ,no of places: default 2>
heurist ic <choose heuristic (cr. 4.4.3.); integer 1.....7; default 1>
graphics <request graphic output; t/nil; default t>
s tat i s tics <request statistic evaluation; t/nil; default nil>
pause <"slow motion" of the moves (delay in sec.); default 0.3»

26The heuristic~ of TOHSEQ mainly operate in the method go away but avoid which decides where to go
when an agent IS sent off by another one. Only heuristic 7 draws wiaer Circles (er. chapter 4.4.3.). Because
of the P'?sslble.reflection all;d correction of an agent's intention. it must memorize where the one wanted to
go which preViously sent him off. The entry "forbidden place" fulfills this need and is reset to zero when
an agent really has performed an action.

115

Appendix: Implementation

We do not go too deep into technical details. The two versions TOHSEQ and TOHPAR

are implemented without language hacks or the utilization of special machine features.
This should make it easy to transfer both systems to other environments. Only the aspects
concerning graphic output require some caution. Here the special programming language
has facilitated the implementation considerably.

(1) Details of TOHSEQ

The flow diagrams in chapter 4.4.2.2. which point out the “concrete realization” of
TOHSEQ reveal most of its implementation. Because we used object-oriented program-
ming features, especially in the paradigm of scqmntial message passing, the concrete
realization can be regarded as corresponding to the implementation. In other words, the
flow diagrams are translated straightforward onto the machine. 'Inis seem to be obvious
and rather natural, but in the parallel version TOHPAR this will be no longer the case.

We have defined the tuple AGENT in a “defstnrct-forrn” with some additional entries:

(de f s t ruc t (agent :named)
name ; identifier of each agent: integer 1,. . .
p lace ; actual place (tower): integer 1,. . .
pos i t i on ; actual position (height) in tower: integer 1....
goa l_p lace ; final goal place: analog “place”
goa l_po s i t i on ; final goal position: analog “position"
fo rb idden_p l a ce ; place forbidden for next move 26 :analog “place"
b lo c ke r) 4- “u per neighbour” of agent : instance of AGENT

TOHSEQ is started with the call of the top-level function harlot:

(ha no i <number of agents; integer 1,. ..; default 3>
<number of places; integer 3... .; default 3>
' f rom <starting place; integer I,no of places: default 1>

to <goal place; integer l,. . . ‚no of places: default 2>
heur i s t i c <choose heuristic (cf. 4.4.3.); integer 1,....7; default 1>
graph i c s <request graphic output; t/nil; default t>
s ta t i s t i c s <request statistic evaluation; t/nil; default nil>
pause <“slow motion” of the moves (delay in sec.); default 0‚3>)

26The heuristics of TOHSEQ mainly operate in the method äro away but avoid which decides where to go
when an agent rs sent off by another _one. Only heuristic 7 _a'ws wider c‘lrcles (cf. chapter 4.4.3.). Because
of the possrblereflectton and correction of an agent’s rntenuon, it must memorize where the one wanted to
go Wth prevrously sent hrm off. The entry “forbrddcn_p1ace" fulfills this need and is reset to zero when
an agent really has performed an action.

115

(2) Details of TOHPAR

The step from the implementation !,'vel to the conceptional level in TOHPAR provides a
higher abstraction level compared to the sequential version. Whereas the sending of a

message in TOHSEQ really could be accomplished by a simple message passing

mechanism and thus the whole paradigm was realized straightforward. we now

rigorously separate "message passing" on the conceptual level and "message passing" in

the implementation.

The overview in Figure A.I gives only a coarse overview of the gap between conception

and implementation of the parallel scenario.

Conceptional View Implementation Comments

agents Instantiated
tupel AGENT

Instantiated
defstruct object

Similar to
TOHSEQ

messa-

Information from
other agents or from
an external mediator

messages: lists with
a special format

agendas. blackboards:
No isomorphism
between message

passing and ! alling
a method like in

TOHSEQ

ges as entries in private
agendas or public

lists of messages
message passing:

blackboards appending messages
to lists

me
thods

Units of scheduling
the scenario, granting

the chance to do some
thing. Strictly spoken,

transparent at the
conceptual level

Realized by the LISP
features defmethod
and send Methods

may call further
submethods

On the conceptual
level the term

method is unknown

acting,
schedu

ling

No limitation to
parallelism. Each

agent can try to act
each time

Fixed scheduling
algorithms settled

by the framework of
the call-structure of the

methods.

The interferences
of parallelism are

simulated as
thoroughly as

possible

Figure A.I : Some aspects of TOHPAR

116

(2) Details

The step from the implementation level to the conceptional level in TOHPAR provides a
higher abstraction level compared to the sequential version. Whereas the sending of a
message in TOHSEQ really could be accomplished by a simple message passing
mechanism and thus the whole paradigm was realized straightforward, we now
rigorously separate “message passing” on the conceptual level and “message passing” in

of TOHPAR

the implementation.

The overview in Figure A.] gives only a coarse overview of the gap between conception
and implementation of the parallel scenario.

Conceptional View Implementation Comments

agents Instantiated Instantiated Similar to
tupel AGENT defstruct object TOHSEQ

-. messages: lists with
Ogilozngtgnotr‘rggim a special format No isomorphism

messa- an extetgnal mediator agenda; blackheads: between message
ges - - - lists of messages passing and ! alling

2:233:32 83,1%? message passing: a method like in
blackboards appendtiggigntsessages TOHSEQ

Units of scheduling .- - Realized by the LISP
me- tägifääfig’gilggä features defmethod On the conceptual

thods thin Strictl s oken and send Methods level the term
“g. y, p ’ may call further method is unknownansparent at the b thod
conceptual level su me 5

. . . Fixed scheduling The interferences
acting. Iminliiitanogggh algorithms settled of parallelism are

FChOdU- p t e sm. t ct by the framework of simulated as
ling agenéatn glg/“CO a the call-structure of the thoroughly as

c methods. possible

Figure A. l : Some aspects of TOHPAR

116

The agents - conceptionally regarded as mathem"ti,::al tuples - are implemented like

follows:

(defstruct (agent
name
place
position
blocker
agenda
act-flag
conflict-flag
wait-flag
qO awav-flaq)

: named)
; identifier of each agen t: integer 1•...
; momentary place (lOwer): integer 1•...
; momentary position (height) in tower: integer 1•...
; "upper neighbour" of agent: instance of class AGENT
; list of next goals. alternatives. orders to flee•...
; indicates inner status: t/nil (explanation see above)
; analog to oct-flag
; analog to oct-flag
. analog to act-flag

(defstruct (info-agent : named)
blackboard
number of agents
number=of=places
agentarray
pi.acearray
actarrav)

; list of entries in a fIXed format. information for all agents
; parameter from the function call
; parameter from the function call
; array O..number_oCagents - 1 of agent
; array O..numbccoC.places - 1 of list (of agcu)
; array O..number of _places - 1 of list (of list)

The top-level function "hanoi-parallel" is called by the user with the following arguments:

(hanoi-parallel
<number of agents; integer I, ; default 3>
<number of places; integer 3, ; default 3>

f ram <starting place; integer 1•...•no of places: default 1>
t a <goal place; integer 1•...•no of places: default 2>
stat ist ics <request statistic evaluation; t/nil; default nil>
pause <"slow motion" of the moves (delay in sec.); default 0.3»

The graphic display is obligatory, heuristics cannot be chosen any longer - the best will

always be employed.

(3) Parallelism is Simulated in TOHPAR

An ideal parallel scenario (cf. Figure A.2) with no restrictions behaves completely asyn

chronous and has no global states. Temporal aspects are fundamental. To model and to

formalize this likely chaotic behaviour would be a hard task, even on machines which

offer massive parallelism.

117

The agents - conceptionally regarded as mathematical tuples - are implemented like

follows:

(de f s t ruc t (agen t : named)
name identifier of each agent: integer 1,...
p l a ce ; momentary place (tower): integer 1 , . . .
po s i t i on ; momentary position (height) in tower. integer 1,. . .
b l oc ke r ; “upper neighbour” of agent : instance of class AGENT
agenda ; list of next goals, alternatives. orders to nee,. . .
a c t - f l ag ; indicates inner status: t/nil (explanation see above)
con f l i c t—f lag ; analogtoact—flag
wa i t—f lag ; analogtoact-flag
go away- f lag} " analog team-flag

(de f s t ruc t (i n fo—agent : named)
b lackboa rd ; list of entries in a fixed format. information forall agents
number__of_agent s ; parameter from the function call
number_of_places ; parameter from the functioncall
agen ta r r ay ; array 0..number_of_agents - 1 of agent
p l a cea r r ay ; array O..numbcr_of_places - 1 of list (of agent)
ac t a r r ay) ; array 0..numbg_of_places - 1 of list(of list)

The top-level function “hanoi-parallel” is called by the user with the following arguments:

(hano i—para l l e 1
<numbcr of agents; integer 1,. . . ; default 3>
<numbcr of places; integer 3,. . . ; default 3>

f rom <starting place; integer 1,. . „110 of places: default l>
t o <goal place; integer l,...,no of places: default 2>
s ta t i s t i cs <rcquest statistic evaluation; t/nil; default nil>

: pause <“slow motion” of the moves (delay in sec.); default 0‚3>)

The graphic display is obligatory, heuristics cannot be chosen any longer - the best will
always be employed.

(3) Para l l e l i sm is S imula t ed i n TOHPAR

An ideal parallel scenario (cf. Figure A.2) with no restrictions behaves completely asyn-
chronous and has no global states. Temporal aspects are fundamental. To model and to
formalize this l ikely chaot ic behaviour would be a hard task, even on machines which

offer massive parallelism.

117

o
o

Figure A.2 : Parallel Exchange of Infoffilation

In TOHPAR we are mainly constrained by a one-processor machine, so we must

simulate the parallelism. This "pseudo-parallelism" is achieved under several strict

presumptions.

Perfect synchronism

Different agents which perform the same part of action need exactly the same amount of

time. Agents which do not act in the moment delay themselves for the time the others act.

This implies that it is impossible that one agent ovenakes an other.

A mediator

The information agent Big-Brother recognizes possible clashes when the agents after all

try to act. It synchronizes and takes care for the maximum amount of parallelism.

Fixed scheduling for all agents

This ensures a very limited interaction and interference between the agents. When agents

do not get in conflicts with their actions, the order of acting is not substantial.

Two aspects of parallelism in the scenario shall be investigated. The "fundamental

parallelism" and the visible parallel performing of moves.

The fundamental parallelism concerns the whole proceeding. The point here is the simu

lation of an almost parallel behaviour in all steps of problem solving. We achieve this by

cutting up the scenario-model into the modules presented in chapter 4.5.2. Each of these

modules is executed by each agent in the order Agent' 1', Agent '2', Agent 'n'. This

can be regarded as a special kind of a fixed "round robin" scheduling [Ne86]. For exam

ple: After Big-Brother has initialized the scenario, Agent' l' creates its new goal, then

Agent '2', then Agent '3' and so forth. After Agent 'n' has created its new goal, the next

module (inform_other_agents) is invoked from Agent '1' again.27 These real sequential

27IncidentalIy, this provides global states: From the parallel point of view the module the system is in for
the moment represents the state, or seen from the rcallmplementation, which of the agents is Just operating.

118

O
O

figm A.2 : Parallel Exchange of Information

In TOHPAR we are mainly constrained by a one-processor machine, so we must
simulate the parallelism. This “pseudo-parallelism” is achieved under several strict
presumptions.
Perfect anghmnism
Different agents which perform the same part of action need exactly the same amount of

time. Agents which do not act in the moment delay themselves for the time the others act.
This implies that i t i s impossible that one agent overtakes an other.
A mgg'ator
The information agent Big-Brother recognizes possible clashes when the agents after all
try to act. It synchronizes and takes care for the maximum amount of parallelism.
Fix 5 h lin for all a ents
This ensures a very limited interaction and interference between the agents. When agents
do not get in conflicts with their actions, the order of acting is not substantial.

Two aspects of parallelism in the scenario shall be investigated. The “fundamental
parallelism” and the visible parallel performing of moves.
The fundamental parallelism concerns the whole proceeding. The point here i s the simu-

lation of an almost parallel behaviour in all steps of problem solving. We achieve this by
cutting up the scenario-model into the modules presented in chapter 4.5.2. Each of these
modules i s executed by each agent in the order Agent ‘1’, Agent ‘2’, . . . , Agent ‘n’. This
can be regarded as a special kind of a fixed “round robin” scheduling [Ne86]. For exam-
ple: After Big-Brother has initialized the scenario, Agent ‘1’ creates i ts new goal, then
Agent ‘2’, then Agent ‘3 ’ and so forth. After Agent ‘n’ has created its new goal, the next

module (inform_other_agents) is invoked from Agent ‘1’ again.” These real sequential

”Incidentally, this provides global states: From the parallel point of view the module the system is in for
the moment represents the state, or seen from the real implementation, which of the agents 15 just operating.

118

sub-actions of the agents are regal t:·-· .lld conceptualized as completely parallel. All

agents create their new goals, all agents inform the others about their new intentions,...

But to make this approach sound, the sequential evaluation may by no means produce

results different to those which would have been produced by parallel processing. How

can we achieve this demand ?

The modules were formed in such a way that a strict separation between internal and

external processing is promoted. This changes turn in turn, if one module is processed

internally by all agents, the next will be processed externally.

Figure A.3 shows this symbolized. At the right margin the respective modules are de

noted, the graphics depict the abstract ToH world. Bold arrows indicate how the modules

are possibly traversed. The exchange of information (message passing) is represented by

thin arrows. If an arrow points to the same agent where it started, it works only

"internal". Arrows pointing to the blackboard symbolize "writing" and, vice versa, those

which start at the blackboard mean "reading".

"Internal" means entire working on the agent's own agenda. No messages are posted to

other agents, nothing causes changing influence from the environment. It is quite obvious

that a sequential internal processing must produce the same results as a theoretical parallel

one.

When agents proceed externally, things become harder. They send messages to other

agents. The order (and thus the sequence) does not matter, because the agents receive all

what comes in without evaluating it. Evaluation follows later in the nf At internal step.

They write messages on the blackboard. Also the order is not substantial, sequential

processing produces the same results as parallelism.

Hence the strict separation of external proceeding is the foundation of the simulation of

parallel behaviour.

At a first glance all problems concerning the simulation of parallelism seem to be solved.

But a closer look to the negotiation cycle (especially conflict-resoLution-I) reveals certain

problems:

- When agents change their decision, the time they do it can be very important for other

agents which depend on these agents in any way.

- When agents ask for help or generate new orders to cause others to flee, the order may

influence succeeding agents in the sequence.

These influences and effects must be excluded! The strict separation of internal and

external proceeding is a solid base, but not sufficient. Additionally, certain testing

routines must be built into the procedural knowledge of the agents. For instance, it must

be checked whether agents, which are concerned by a changed decision eventually must

be tom back into negotiations again. Or it must be ensured that really all agents recognize

all changes, thus certain routines are evaluated several times.

119

sub-actions of the agents are regaxdv ' nd conceptualized as completely parallel. fl

agents create their new goals, a_ll agents inform the others about their new intentions,. . .
But to make this approach sound, the sequential evaluation may by no means produce

results different to those which would have been produced by parallel processing. How
can we achieve this demand ?
The modules were formed in such a way that a strict separation between internal and
external processing is promoted. This changes turn in turn, if one module is processed
internally by all agents, the next will be processed externally.
Figure A.3 shows this symbolized. At the right margin the respective modules are de—
noted, the graphics depict the abstract ToH world. Bold arrows indicate how the modules
are possibly traversed. The exchange of information (message passing) i s represented by
thin arrows. If an arrow points to the same agent where it started, it works only
“internal”. Arrows pointing to the blackboard symbolize “writing” and, vice versa, those
which start at the blackboard mean “reading”.
“Internal” means entire working on the agent’s own agenda. No messages are posted to
other agents, nothing causes changing influence from the environment. It i s quite obvious
that a sequential internal processing must produce the same results as a theoretical parallel

one. ‘
When agents proceed externally, things become harder. They send messages to other
agents. The order (and thus the sequence) does not matter, because the agents receive all

what comes in without evaluating it. Evaluation follows later in the ne xt internal step.
They write messages on the blackboard. Also the order i s not substantial, sequential
processing produces the same results as parallelism.
Hence the strict separation of external proceeding is the foundation of the simulation of
parallel behaviour.
At a first glance all problems concerning the simulation of parallelism seem to be solved.
But a closer look to the negotiation cycle (especially conflict-resolution-I) reveals certain
problems:
- When agents change their decision, the time they do it can be very important for other

agents which depend on these agents in any way.
- When agents ask for help or generate new orders to cause others to flee, the order may

influence succeeding agents in the sequence.
These influences and effects must be excluded! The strict separation of internal and
external proceeding is a solid base, but not sufficient. Additionally, certain testing
routines must be built into the procedural knowledge of the agents. For instance, it must
be checked whether agents, which are concerned by a changed decision eventually must
be torn back into negotiations again. Or it must be ensured that really all agents recognize
all changes, thus certain routines are evaluated several times.

119

• • • •

Blackboard

• • • •

Agent 1 Agent 2 Agent n

t

external inform_other_agents

Agent 1 Agent 2 Agentn

t
Blackboard

Blackboard

internal conflict-resoiution-l

Agent 1 Agent 2 Agent n

Synchronisation & Acting

Fi ~ure A.3 : The exchange between internal and external behaviour of the agents

120

Agent 1

Agent l

Agent 1

m A.3 :The exchange between internal and external behaviour of the agents

Blackboard

Agent 2

Agent 2

Blackboard —

Q)
Agent 2

V
Synchronisation & Acting

120

% % %W
Agent n

Agent n

Agent n

extcmal Wonn_0ther_agents

internal corgflict-resoluabn-I

The other aspect of parallelism comprises the visible simultaneous acting (moving) of the

agents. This is the part of TOHPAR where the user is directly confronted with

parallelism. Here the module graphics is, strictly spoken, cut up further. If every agent,

which is in the set of the joint actors would proceed graphics solely, a illusion of

parallelism could not be constructed. We use another way: graphics is called with a list of

agent-names and for each element of the list, a substep is perfonned and displayed:

1.	 All agents (disks) in the list are lifted (really: one is lifted after the next).

2.	 All agents of the list move to their new places (again, really one after ...) and

analogously for the move down. The speed of computation evokes the illusion of

parallelism.

For further information about graphics see chapter (6) in this appendix.

(4) The Implementation Language

TOHPAR and TOHSEQ are implemented in KK-LISp28 [KK89], which is mainly based

on Common LISP.

KK-LISP consists of the Common LISP kernel and some additional features like module

oriented trace and check facilities. Features which cannot be easily implemented in other

LISP	 dialects are intentionally excluded. Especially things like coroutines and

multitasking are not supported. This is a main drawback when implementing parallel

scenarios. Therefore parallelism must be simulated in KK-LISP. On the other hand

portability to other LISP dialects or even other languages increases.

KK-LISP recognizes special declaration in both interpreted and compiled code and

eliminates thus this potential source of incompatibility. Interpreted programs return

identical values with respect to their compiled equivalents. KK-LISP consists of a rich

. amount of program and control constructs to assist the writing of a compact and readable

code.

Some differences to Common LISP are:

- a more powerful, but Common LISP incompatible defstruct form.

- the window system

- additional iteration functions

- additional functions in the field of list processing

The efficiency of compiled KK-LISP code is only restricted by the underlying LISP

implementation.

28KK-LISP is an acronym for "Karlsruhc & Kaiserslautcm LISP".

121

The other aspect of parallelism comprises the visible simultaneous acting (moving) of the
agents. This is the part of TOHPAR where the user is directly confronted with
parallelism. Here the module graphics is, strictly spoken, out up further. If every agent,
which is in the set of the joint actors would proceed graphics solely, a illusion of
parallelism could not be constructed. We use another way: graphics is called with a list of
agent—names and for each element of the list, a substep is performed and displayed:
1. All agents (disks) in the list are lifted (really: one is lifted after the next).
2 . All agents of the list move to their new places (again, really one after . . .) and

analogously for the move down. The speed of computation evokes the illusion of

parallelism.
For further information about graphics see chapter (6) in this appendix.

(4) The Implementation Language

TOI-IPAR and TOHSEQ are implemented in KK-LISP28 [KK89], which is mainly based
on Common LISP.
KK-LISP consists of the Common LISP kernel and some additional features like module
oriented trace and check facilities. Features which cannot be easily implemented in other
LISP dialects are intentionally excluded. Especially things like coroutines and
multitasking are not supported. This is a main drawback when implementing parallel
scenarios. Therefore parallelism must be simulated in KK-LISP. On the other hand
portability to other LISP dialects or even other languages increases.
KK-LISP recognizes special declaration in both interpreted and compiled code and
eliminates thus this potential source of incompatibility. Interpreted programs return
identical values with respect to their compiled equivalents. KK-LISP consists of a rich

— amount of program and control constructs to assist the writing of a compact and readable
code.

Some differences to Common LISP are:
— a more powerful, but Common LISP incompatible defstruct form.
- the window system
- additional iteration functions
- additional functions in the field of list processing
The efficiency o f compiled KK-LISP code is only restricted by the underlying LISP
implementation.

28KK-LISP is an acronym for "Karlsruhe & Kaiserslautern LISP".

121

(5) Machines

The two versions of the ToH scenario were implemented on a Symbolics 3640 work

station [Sy86a]. This is a LISP machine with some special architecture features:

- tagged architecture

- multiple caches

- hardware stack management

- pipelined instruction cycles

- parallel processing (but no parallel LISP features, unfonunately)

- hardware assisted garbage collection

The Symbolics software environment is called "Genera" and provides comfortable

programming tools like mouse-sensitive parts of the screen, menus, and a window

system. Several windows for special use are predefined. There are, for instance, editor,

me system, LISP interpreter, terminal emulation, debugging tools, and a mail system. All

may be arbitrarily selected and left.

(6) Graphics

We exploit the features of the window system of the Symbolics software environment

Genera 7.1 [Sy86b].

The function t v: make-window to generate the static window is in the packag~ "tv".

To invoke the graphic output, several messages can be send to the created window

object. From KK.-LISP the function sys: send therefore must be employed, send

isolated works only for defstruct objects. Following methods of the window-object are

involved:

: draw-rectangle : lets the "agents" appear or vanish
: draw-line : draws the ground and the places
:set-cursorpos : output of textual information
:clear-rest-of-line : dto.
: string-out : dto.

The principle of the graphical output is like follows:

1.) Initialization

Draw the agents at their start positions, draw the ground and the "places" (sticks).

2.) Parallel move

a. - let all moving agents vanish on their old place

- draw all moving agents "in the air" just above their old place

- pause

122

(5) Machines

The two versions of the ToH scenario were implemented on a Symbolics 3640 work-
station [Sy86a]. This is a LISP machine with some special architecture features:

- tagged architecture
- multiple caches
- hardware stack management
- pipelined instruction cycles
- parallel processing (but no parallel LISP features, unfortunately)
- hardware assisted garbage collection

The Symbolics software environment is called “Genera” and provides comfortable
programming tools like mouse-sensitive parts of the screen, menus, and a window
system. Several windows for special use are predefined. There are, for instance, editor,
file system, LISP interpreter, terminal emulation, debugging tools, and a mail system. All
may be arbitrarily selected and left.

(6) Graphics

We exploit the features of the window system of the Symbolics software environment
Genera 7.1 [Sy86b].
The function t v : make-window to generate the static window i s in the package “tv”.
To invoke the graphic output, several messages can be send to the created window
object. From KK-LISP the function sys : send therefore must be employed, s end
isolated works only for defstruct objects. Following methods of the window-object are
involved:

: draw—re c t ang l e : lets the “agents” appear or vanish
: draw—line : draws the ground and the places
: se t —cursorpos : output of textual information
: c l ea r—res t—of—l ine : dto.
: s t r i ng -ou t : dto.

The principle of the graphical output is like follows:
l .) Initialization

Draw the agents at their start positions, draw the ground and the “places” (sticks).

2.) Parallel mgvg
a . - let all moving agents vanish on their old place

- draw all moving agents “in the air” just above their old place
- pause

122

b. - let all moving agents vanish

- draw all moving agents "in the air" just above their goal place

c.

- pause

- let all moving agents vanish

- draw all moving agents on their goals

- ready

The three substeps of a., b., and c. must be performed very fast to give the illusion of

movement and parallelism.

What parameters do influence the shape of the output-window? First, there are static

parameters implemented as global values. They determine the outer fonn (size and

position) of the window and will never be changed (The values denote the number of

pixels).

height of window 700 --> size of window
breadth of window HID --> dto.
upper margIn 300 --> partition of window
lower-marqin 75 --> dto.

Dynamic parameters are computed at run time because they depend on the number of

agents and places (Their values are numbers of pixels, too). They take care for a

convenient pictorial representation of the output window, e.g. the ratio breadth/height of

the "agents" must be tolerable. Furthermore, the exact positions of each agent have to be

computed pretty fast.

distance of places --> the gap between the sticks
height of agents --> self-explaining
dif of-breadth --> difference in length between adjacent agents
min-breadth of aqents --> self-exvlaininl!. arbitrary fix value (here: 10)

The breadth (also in pixels) of each agent is stored in a slot of the class AGENT having

the same name.

The dynamic parameters are computed as follows:

distance_oCplaces = [* breadth_oCwindow*/no_oCplaces]

heighcoCagents = [(*heighcoCwindow* - *uppecmargin* - *bwecrmrgin*)I

no_oCagents]

diCoCbreadth = [(distance_oCplaces - min_breadth_oCagents) /

(no_oCagents - 1)]

123

b. - let all moving agents vanish
- draw all moving agents “in the air” just above their goal place

- pause
c . - let all moving agents vanish

- draw all moving agents on their goals
- ready

The three substeps of a., b., and c. must be performed very fast to give the illusion of
movement and parallelism.

What parameters do influence the shape of the output-window ? First, there are static
parameters implemented as global values. They determine the outer form (size and
position) of the window and will never be changed (The values denote the number of
pixels).

he ight__of_window 700 --> size of window
breadth__o f_window 1000 --> dto.
*upper_marg in * 300 --> partition of window
*lower mamin" 75 --> dto.

Dynamic parameters are computed at run time because they depend on the number of
agents and places (Their values are numbers of pixels, too). They take care for a
convenient pictorial representation of the output window, e.g. the ratio breadth/height of
the “agents” must be tolerable. Furthermore, the exact positions of each agent have to be
computed pretty fast

d i s t ance__of_p laces --> the gapbetween the sticks
he igh t_o f_agent s --> self-explaining
d i f_o f_b r e ad t h --> difference in length between adjacent agents
min b read th o f agen t s -—> self-explaining. whim fix value (here: 10) ‘

The breadth (also in pixels) of each agent is stored in a slot of the class AGENT having
the same name.

The dynamic parameters are computed as follows:
distance_of_places [*breadth_of_window*lno_of_places]

height_of_agents = [(*height__of_window* - *upper_margin* - *lower_n'atgin*)l
no_of_agents]

dif_of_breadth = [(distance_of_places - min_breadth_of_agents)/
(no_of_agents - 1)]

123

	1991.pdf
	1991-2

