wiainpisiasioy 09/9-d

6v70¢ YODHSOd
UISINDISIOSIOY JOLISIOAIUN

MIHOULIOM| Yolelaqyon

Orderings

]. Steinbach & M. Zehnter
SEKI Report SR-90-03

=
&
o
c
Loy
o
-
oo
S
£
=
o
¥
&
¥
.
4
>

1IOdd - IAFS

Vade-mecum
of
Polynomial Orderings

Joachim Steinbach
Michael Zehnter

Universitat Kaiserslautern
Fachbereich Informatik
Postfach 3049
D-6750 Kaiserslautern
F.R.G.

e-mail: steinba®@informatik.uni-kl.de

This research was supported by the Deutsche Forschungsgemeinschaft, SFB 314 (D4)

Abstract

Orderings on polynomial interpretations of operators represent a powerful
technique for proving the termination of rewrite systems. We discuss most of
the well-known features concerning this method including heuristics for the
generation of adequate interpretations orienting a given system, strategies for
deciding the positiveness of a polynomial, restricted interpretations to guarantee
E-termination and some improvements (such as the Cartesian product of
polynomials). This report is a detailed source of examples that illustrate the
uncertainties of polynomial orderings. Furthermore, we develop new aspects
involving two approaches that are suitable to simple implementations, a few
suggestions for producing adequate interpretations [(e.g., a technique for
automatically generating linear polynomials), some new orderings handling
underlying theories, a new improved version of polynomial orderings (based on
the Knuth-Bendix ordering with status) as well as a detailed comparison of the
various approaches together with path and decomposition orderings. Thus, the
report in hand is a kind of vade-mecum of most of the known as well as new
results concerned with polynomial orderings.

Keywords E-compatible, E-termination, Homeomorphic embedding, Inter-
pretation, Knuth-Bendix ordering, Lexicographical ordering,
Monomial, Multiset ordering, Path and decomposition orderings,
Polynomial, Simplification ordering, Status, Termination, Term
rewriting system, Well-founded ordering

Contents 1 Introduction and Notation ... 1
2 An Approach to Polynomial Orderings ... 6
3 How to Choose the Interpretations ..., 24
4 How to Check the Positiveness of Polynomials ... 55
5 Polynomial Orderings Modulo Theories ..., 68
6 An Improved Polynomial Ordering ... 105
7 Comparison with Other Orderings ..., 18
8 CONCIUSION ..ottt e 125
Acknowledgement & RefEIeNCEeScoccooiiioieecemeeeeeeeeeeeeeeeeeeeeees e 129
APPENALRE: PIOOIS niumumunmuemmmmmsmmmmmssrssmmssrarsmsrssiississss s sssssss 138

Vade-mecum of Polynomial Orderings 1

1 Introduction and Notation

Polynomial orderings represent an approach for proving the termination of term
rewriting systems. Dealing with so-called termination orderings presumes a
familiarity with the basic concepts of term rewriting systems as well as the
special notation used on this subject. In the following pages we give a brief
summary of what term rewriting systems are and introduce the notations that
are essential for the remainder of this paper.

11 MOETVALIONY oo s s 005 R S5t EE 5 emsrsasnenense Ase e mens s s aensmt e oo s e rearassensesnsresae 2

§ U2 \\ [e] A= % A U o RSO SrUSr OO OSSO ST S Us O O O Or TSSOSO S 4

1 Introduction and Notation 2

1.1 Viotivation

Term rewriting systems provide a powerful tool for expressing non-deterministic
computations and as a result they have been widely used in formula-manipulation
and theorem-proving systems. Moreover, there exists the potential for their
application in many other areas of computer science and mathematics such as
abstract data type specifications and program verification.

As programs they have a very simple syntax and their semantic is based on
equalities that are used as reduction rules with no explicit control. For this it
is essential that term rewriting systems have two main properties: confluence
and termination. A non-confluent term rewriting system may sometimes be
transformed into a confluent one using the Knuth-Bendix completion procedure
((KB701). However, termination is the crucial point in the realization of this
algorithm which tests the local confluence and requires termination for inferring
the total confluence.

There exist various methods for proving termination of rewrite systems. Most of
them have in common the main idea of embedding the reduction relation =g
(induced by the rule system R) into a well-founded ordering >. To check the
inclusion =5y < >' all infinitely possible derivations must be tested. The key
idea is to restrict this infinite test to a finite one by requiring > to be a
reduction ordering. This means that, in addition to the well-foundedness, >
must have the replacement property (also called compatibility with the structure
of terms) and the stability by instantiations.

One way of constructing reduction orderings was proposed by the authors
(Knuth and Bendix) of the completion procedure ([KB701) and so are called
Knuth-Bendix orderings. They joined two general principles each of which
has been extended in the following years. Firstly, the idea of giving an ordering
on the set of function symbols and comparing terms by comparing the function
symbols they are composed of, led to the so-called path orderings that realize
a more syntactical comparison of terms.

The second component of Knuth-Bendix orderings is a mapping of the function
symbols to the naturals (a so-called weight function or termination function)
that is extendable to terms by adding the weights of the function symbols
they contain. By modifying this termination function such that the image of the
set of function symbols is a subset of all polynomials over the reals, one
virtually gets the polynomial orderings ([La79]). Contrary to path orderings
(and Knuth-Bendix orderings) polynomial orderings are not based on precedence
orderings over the function symbols.

11 Motivation 3

The object of this paper is to give a survey of both well-known and new facts
connected with proving termination using polynomial orderings. In the next
chapter we introduce a general definition of polynomial orderings. Following
this theoretical result we show how to get easily implementable, restricted
versions of this definition that unify all implementations known to us. Several
well-known heuristics for finding well-suited interpretations for certain function
symbols are collected in chapter 3 ([Be86], [BL87]). Moreover, we present some
new heuristics as well as a test for the complexity that polynomials,
interpreting a certain function symbol, must have. Finally, we describe an
algorithm based on the Simplex method for finding an interpretation to a given
rule system provided this system can be oriented using linear polynomials.

The use of polynomial orderings as reduction orderings in the completion
procedure requires methods of proving the positiveness of polynomials. In
chapter 4 two of these well-known methods are illustrated ([BL87], [Ro881J).
Chapter 5 deals with polynomial orderings that are suitable to prove the
termination of term rewriting systems based on underlying equational
theories. In addition to well-known orderings ([Be861), some new ones are
presented here.

Taking a pattern by the Knuth-Bendix orderings with status it is possible to
extend a polynomial ordering by introducing a precedence ordering on the set
of function symbols. This new approach called improved polynomial ordering
(and some other well-known ones, [La79]) is introduced in chapter 6. Finally,
a conclusive comparison of the various kinds of polynomial orderings presented,
including path and decomposition orderings, as well as the Knuth-Bendix
ordering will be given.

1 Introduction and Notation 4

1.2 Notation

Here we briefly recapitulate the most essential notions, used in connection with
term rewriting systems, that are found in this paper. The reader can find a more
detailed presentation in [AM89] [HO80] or [JL871

Let § be a set of function symbols possessing fixed arity and X some
denumerable infinite set of variables, then I' denotes the set of all terms over §
and ¥ whereas [is the set of all ground terms over J. The set of all variables
of a term t will be denoted by V(t]. The leading function symbol and the tuple
of the (direct] arguments of a term t are referred to by top(t)] and args(t),
respectively. The empty term will be denoted by .

A substitution o is defined as an endomorphism on I' with the finite domain
{x | o[x) # x} , i.e. o simultaneously replaces all variables of a term by terms.
We use the formalism of positions of terms which are sequences of non-negative
integers. The empty sequence is denoted by s The set of all positions of a term
t is called the set of occurrences and its abbreviation is O[t). We write tlues]
to denote the term that results from t by replacing t/u (the subterm of t at
occurrence u € O(t)) by s.

A term rewriting system (TRS, for short] R over T is a finite or countably
infinite set of rules each of the form 1 —x I where 1 and r are terms in I' such
that every variable that occurs in r also occurs in 1

The binary relation generated by a TRS R on I' is named =. The transitive
closure of = is denoted by é&ﬁ whereas the transitive and reflexive closure
of =3 is denoted by ==

A binary relation > on a set M is said to be well-founded if there are no
infinite descending chains of the form m, > m, > .. with m; € M. Analogous
with M, a TRS R is well-founded if there exists no sequence (called derivation)
to =x t1 =g ty =y -- that is infinitely descending.

A partial ordering is a transitive and irreflexive binary relation. A partial
ordering » on § is called a precedence and a partial ordering on I' is called a
term ordering.

An example for a partial ordering on terms is the irreflexive part 1 of the
so-called homeomorphic embedding relation 2 that is defined by

=t iff (1) f=gands; a2t foralli€ {I..,n}
or (2] s; 2t for at least one i € {1,..n}

We will use this simplified version of 2 since we are only faced with function
symbols having fixed arity, here. The main point of the homeomorphic embedding
relation is the fact that a partial ordering > is well-founded if it contains 2 ((De82]).

1.2 Notation 5

On the other hand, we have that each non-terminating (i.e. non-well-founded)
partial ordering is self-embedding ((De82]). That means that each infinite
descending chain t; > t, > .. contains tit with i < j and tj 3ty

As previously noted, a reduction ordering > is a well-founded and stable (by
instantiations) partial ordering that is compatible with the structure of terms
(it has the replacement property). That means, t, > t, implies tluet,] > tluet,]
for any t,t,t,€ T and u € O[t). In other words, decreasing a subterm decreases
any superterm containing it.

One special class of reduction orderings is that of the simplification orderings
(lDe821). The key idea of the concept of simplification orderings is to guarantee
the well-foundedness of an ordering > by requiring the so-called subterm
property (which in turn ensures that 1 is contained in >). An ordering > on terms
is said to have the subterm property if for every term t and for every function
symbol f, f(...t,..) > t holds. Since every simplification ordering is well-founded,
every simplification ordering is a reduction ordering.

The main advantage of introducing simplification orderings is that the test for
the subterm property provides a very handy criterion for the test of
well-foundedness.

Vade-mecum of Polynomial Orderings 6

2 An Approach to Polynomial
Orderings

In this chapter we investigate whether the image of a polynomial interpretation
must be a well-founded subset of R or the interpreting polynomials must have
a kind of subterm property inducing the corresponding ordering to be a
simplification ordering. We introduce a formal definition of polynomial orderings
which enables us to state whether a polynomial is appropriate as an interpretation
for a function symbol.

In addition to this (theoretical] result we propose a more restrictive version
of polynomial orderings that generalizes those given in [De87], [La79], [BL87],
[Be86], [Pa89], [Ze89] and [MN701. It provides a simple technique for implementing
polynomial orderings.

21

2.2

2.3

2.4

25

DefINILIOINIS .ottt bbbt 7
Polynomial Orderings on Ground TeIMS ... 8
Polynomial Orderings on Variable TeIMS ... 15
EXAINPLES. ovisioscoussussmsmssesrsmsmsssssssomsuss ormssssuss sveisssissmaies sy i o s 18
DISCUSSION ..ottt ss ettt 23

2 An Approach to Polynomial Orderings 7

2.1 Definitions

Let ry,..In € lNo (= N v {0}) and ¢ € R. A monomial in R" of degree r = 1, + .. + I'n
is a function m : R® = R with (X;...X,) = ¢X,1X32 .. X;®. A polynomial of
degree r over R” is a sum of monomials of degree less than or equal to r with
at least one monomial having degree r. This means that a polynomial p of degree
r is of the form

p:R" - R
plXynXp) = = Cr,...rnxfl .. X;® with I+ 4T ST
Iy rn€ INO
Thus, m(X,Y,2) = 56X2YZ% is a monomial in R3 of degree 7 and p(X.Y.Z) =
3X2Z2 + Y - 4X%Y is a polynomial in R3 of degree 5.

A polynomial p will have strict arity n if there occur n variables in p that differ
by pairs.

The set of all polynomials p : R® — R with coefficients c; € R is denoted by
Pol(R). A polynomial p : R® = R whose n variables are all instantiated by real
numbers is called a ground polynomial or constant polynomial. For example,
3 %1562 x 22 + [-1) - 4 * 1.5% x [-1] is the ground polynomial one obtains by
substituting the variables (X,Y,Z] of the previous polynomial by (1.5, -1, 2).

Since every ground polynomial is equal to a real number we will identify the
set of ground polynomials with R. The set of variables over R that occur in
polynomials of Pol(R) is named B. To distinguish variables over I‘G and variables
over R we use capital letters for elements of V.

It is apparent that the relations between Pol[R), R and B are similar to the
relations between I, [and ¥.

2 An Approach to Polynomial Orderings 8

2.2 Polynomial Orderings on Ground Terms

Polynomial orderings have been studied by Manna/Ness ([MN70]), Lankford
(tLa75], [La79]), Dershowitz ([De83], [De87]) and Ben Cherifa/Lescanne ([Be86]
[BL85], [BL86], [BL87]). Manna/Ness, Lankford and Ben Cherifa/Lescanne proposed
a method which maps the set of terms to a well-founded set by attaching
monotonous functions to operators. Dershowitz’s technique uses an arbitrary
ordered set by requiring the monotonous functions to possess a kind of subterm
property ([De79]). In this chapter we present an approach similar to that of
Dershowitz. The main difference to his technique is the fact that we use a
weaker version of the subterm property by allowing identity functions as
interpretations.

In order to get an ordering > on ground terms, we map these terms to R by a
so-called polynomial interpretation [..]. On R we have the natural ordering >.

Definition 2.2.1

A polynomial interpretation for ground terms [..]: § = Pol[R) maps each
n-ary function symbol f € § to a polynomial p € Pol(R] with strict arity n.
Each polynomial interpretation [..] for ground terms can be extended to
[.]: T — R by [flt,,..t)] = [f1((t,]...[t]) defining an ordering >, on
I by

$ ot iff [s] > [t]

where > is the usual ordering on R. On I, there is an equivalence
relation =, defined by s =, t iff [s] = [t] .

As usual, s 3 5; t means s 3o, t Or s =4 t

Note that the transfer of the total ordering > on R to I as by defining s > t
itf [s] > [t] is not total. Let, for example, [..] be defined as [a](])=2, [f](x.y])=xy
and [g](x.y)=x+y. Then, we have [g(a.a]] = 4 = [f(a,a]]. Thus, g(a.a) and f(a.a) are
incomparable w.rt. >4, .

We will denote the set of polynomials that are attached to any f € § by a
polynomial interpretation [..] by [§]. Note that [§] is a proper and finite (since
3 is finite] subset of Pol(R). According to [§] [I;] is the set of real numbers
that are the image of any ground term under [..].

Since we are interested in reduction orderings on terms we need to check the
compatibility with the structure of terms of >; on the one hand and the
well-foundedness on the other hand. Let us first discuss the compatibility. The
use of polynomials defining orderings on ground terms requires the monotony

2.2 Polynomial Orderings on Ground Terms 9

of the interpreting polynomials to guarantee the compatibility of the
corresponding ordering >, ;. From analysis we know that a function, and
especially a polynomial, is monotonous if all its first derivatives are positive.
This means that the first derivative dp(X,...X_)/dX, for each variable X,
(1 < i < n) occurring in p is positive for each instantiation of the X; to real
numbers. However, do we really need the monotony over the whole interval R ?
The following example provides an answer to this issue.

Example 2.2.2

Let [ol() = 2
[slx)] = X2
[+)x.y) = X3y - X

This interpretation defines an ordering >, on [that is compatible with
the structure of terms, although, X2Y - X is not monotonous since the
first derivative for X at point (X,Y) =(0.5,0.5), d(X2Y - X)/dX = 2XY -1:=-0.5,
is negative.

This is derived from the fact that [t] > 2 for all terms t € I X2Y - X
is monotonous for all instantiations of X and Y by real numbers greater
than or equal to 2 since the partial derivatives of X2Y - X (2XY-1 and X2)
are positive if XY 2 2. .

By analyzing these facts we can weaken the request for the monotony of the
interpreting polynomials in the following way: Each polynomial has to be
monotonous only for instantiations which map the variables to real numbers
contained in [I4]

In example 222, [T4] is {2,4,6,14,16,..}. We have to guarantee that, for example,
X2Y - X at (4.4) is greater than X2Y - X at (4,2). But we do not have to prove
that it is greater at (4,4) than at (4,3) since 3 4 [[5] This property is called
monotony w.ur.t. [I’ 1. The following lemma shows that this criterion is both
necessary as well as sufficient.

Lemma 2.2.3

Let [..] be a polynomial interpretation for ground terms.

Then, the corresponding ordering *por. O I is compatible with the
structure of terms if and only if each polynomlal p € [8] is monotonous
wrt [[5] .

2 An Approach to Polynomial Orderings 10

The most difficult problem arising from this lemma is that of deciding whether
a certain polynomial is monotonous wrt [[4] It is the whole set [§] of
polynomials attached by [..] to the set of function symbols § that we have to
take into account. Particularly, the values attached to the constants have a
significant influence on our decision.

More precisely, we first have to define [..] by constituting the polynomials of
each function symbol. Secondly, the fixation of [[] will describe the set of
reals that could be the image of any ground term. Finally, we have to verify
that each polynomial in [§] is monotonous wrt. [T5]

Computing [I‘G] as well as proving a polynomial to be monotonous on a subset
of R can be rather tedious. Moreover, since this problem generally invokes
proving a polynomial with domain D C R is greater than O, it is in general
undecidable (for more details about this point, see chapter 4).

In summary, it can be stated that the criterion given in lemma 2.2.3 for the
compatibility of >, is not particularly useful and so we need to develop a
more appropriate check.

As a result we will restrict the set of potentially interpreting polynomials from
Pol(R) to Pol(R*), the set of polynomials that have positive real coefficients.
This restriction guarantees that each ground term is mapped to a real number
greater than zero (see lemma 2.2.4)]. So, [I‘G] is implicitly computed to be a
subset of R* when choosing the interpreting polynomials.

Lemma 2.2.4 ([Ze89])

Let [..] be a polynomial interpretation for ground terms that attaches a
strict n-ary polynomial p € Pol[R*) to each n-ary function symbol {f € §.
Then,

[t] > O for all terms t € Iy .

From this fact and since each polynomial p € Pol(R*) will be monotonous if we
restrict its domain to R*, the following lemma holds.

Lemma 2.2.5 ((Ze89])

Let [..] be a polynomial interpretation for ground terms that attaches a
strict n-ary polynomial p € Pol[R*) to each n-ary function symbol f € §
Then, the corresponding ordering >por. 1S a partial ordering on [being
compatible with the structure of terms. "

2.2 Polynomial Orderings on Ground Terms 1

Example 2.2.6

Let [oll) = 2
[s1(x) = X2
[+lx.y) = X2Y

As a result of lemma 224, [t] > O for all t € [. Therefore, the
corresponding ordering >poL is a partial ordering on I‘G being compatible
with the structure of terms. -

Note that the requirement of the coefficients being positive is a significant
restriction. However, a less restrictive characterization for monotonous inter-
pretations would be too complex and intractable for unfamiliar users.

Let us now consider the termination property. Our approach is similar to that
of guaranteeing the compatibility. Firstly, we will describe the set of polynomials
in question for a noetherian polynomial ordering on terms that is compatible.
This means that we have to give sufficient and necessary constraints for these
polynomials. Analogous with the compatibility, this most general criterion is
quite unhandy. Therefore, we will give a characterization of a class of
polynomials leading to reduction orderings that is of great importance for
practical application since the user is able to determine directly whether a
polynomial belongs to this class. The decisions in this connection are based on
the following theorem.

Theorem 2.2.7 ({De82])

Any total monotonous ordering > on Iy over a finite set § of fixed-arity
function symbols is well-founded if and only if it possesses the subterm
property.]

Since we consider here monotonous orderings on [over finite sets § of
fixed-arity function symbols, this theorem is of significant importance for our
analysis of polynomial orderings. The reason why we were unable to directly
make use of theorem 227 is that polynomial orderings, as noted previously,
are not total on I'y. Thus, we have to adapt it to our necessities.

Suppose there exists a polynomial p € [§] such that t;> p(..t;..]) for any t,
Since p is monotonous w.r.t. [[4] (to guarantee the compatibility of >,] it holds
that p(..t;,..] > p(...p(..t;..}..] > .. and so >or 1S not well-founded. Thus, we
have to exclude so-called diminishing polynomials. In detail, we will only need
the property of being non-diminishing on [I‘G].

2 An Approach to Polynomial Orderings 12

Definition 2.2.8

A polynomial p(X,,..X,) is non-diminishing on D C R if for all i € {1,..,n}
and for all t; € D it holds that p[..t;,..] = t. .

Theorem 2.2.9

Let [..] be a polynomial interpretation for ground terms.

Then, the corresponding ordering >,,; on I is compatible with the
structure of terms and well-founded if and only if each polynomial
p € [3] is monotonous and non-diminishing on [IT4] .

As done before when discussing the compatibility we cannot decide if a
polynomial leads to a well-founded ordering >, 5; by just looking at this
certain polynomial. Again, it is the whole set [§] we have to take into account
and even more this decision depends on the values attached to the constants
since the smallest value interpreting a constant is the lower bound of [I’G] (if
the polynomials are monotonous and non-diminishing).

Defining a well-founded polynomial ordering that is compatible with the
structure of terms consists of three steps:

(1) Fixing the polynomials to be attached to each function symbol,

(2) Computing [T4] and

(3) Verifying that all polynomials p € [§] are monotonous and non-diminishing
on [I4]

It should be noted that there does not exist a characterization of the set of
polynomials leading to well-founded and compatible polynomial orderings that
is more general than that given in theorem 2.2.89.

Unfortunately, this characterization is not entirely convenient for computer
implementation. However, we will now show that it is easy to deduce a more
restrictive as well as feasible characterization from this theorem.

LLemma 2.2.10

Let Pol(R*!) be the set of all polynomials p : R® — R of any arity n € N,
that have coefficients of [1,o]. Let [..] be a polynomial interpretation for
ground terms that attaches to each n-ary function symbol f € § a strict
n-ary polynomial p € Pol(R>1).

Then, the corresponding ordering >, is well-founded and compatible
with the structure of terms. "

2.2 Polynomial Orderings on Ground Terms 13

The proof is straightforward utilizing theorem 2.2.9. Note that the restriction to
‘Dn[[!REI] can .easily be weakened by adding some additional constraints as
shown in the following lemma.

Lemma 2.2.11
Let [..] be a polynomial interpretation for ground terms that attaches

(1) a value C € R to each constant function symbol ¢ € § such that
C=z1

(2) a strict n-ary polynomial p to each n-ary (n > O) function symbol
f € § such that

r

p(Xy..Xp) = = R LI &

I

such that for each i (Isisn] X ¢, > 1
ri>o 1...1’n
ry,....Tn €Ng

Then, the corresponding ordering >,; on I, is a reduction ordering. =

The condition (2) requires that the sum of the coefficients of those monomials
containing X, (with an exponent greater than O) has to be greater than or equal
to 1 for each variable X,. For example, the polynomial p(X,Y) = 0.56X2Y + 0.5XY2
fulfils this condition.

The proof is also straightforward with theorem 2.2.9. Since all polynomials of
Pol(R>!) fulfil the conditions above, this lemma is a strict generalization of
lemma 2.2.10.

Note that, following lemma 2.2.11, only the coefficients of polynomials having an
arity greater than O can potentially be less than 1.

In summary, for a definition of a reduction ordering on polynomial interpretations
it is not necessary

(1) to restrict the domain of the polynomials to N or another well-founded
subset of R or

(2) to restrict the subset of R, the coefficients belong to, to N or

(3) to require the subterm property of the polynomials.

We only have to guarantee that the polynomials are

monotonous Ww.r.t. [I‘G] and
non-diminishing on [T,]

2 An Approach to Polynomial Orderings 14

whereby the similarity of the subterm property and the property 'non-
diminishing' is obvious. In fact, each polynomial ordering having the subterm
property is defined by non-diminishing polynomials but the converse does not
hold.

Theorem 2.2.9 and even lemmata 2.2.10 and 2.2.11 generalize all versions of defining
polynomial orderings we know ((La79], [Be86], [BL87], [Ze89], [Pa89] [De87],
[MN701).

2 An Approach to Polynomial Orderings 15

2.3 Polynomial Orderings on Variable
Terms

Working with the completion procedure requires reduction orderings on terms
containing variables. In this section we give a formal definition of polynomial
orderings on variable terms.

To lift polynomial orderings to variable terms we must extend definition 221
in such a way that it maps variable terms to variable polynomials.

Definition 2.3.1

A polynomial interpretation for variable terms [..] : § — Pol(R)

¥—
maps each n-ary function symbol f € § to a polynomial p € Pol(R)
of strict arity n and each variable x € £ over terms to a variable X € Q

over R.
This mapping can be extended to [..] : T — %Pol(R] by defining
[ilt,,...t)] =[£It 0 0e 0. .

We now show that it is possible to extend the orderings presented in section
2.2 to variable terms by using polynomial interpretations for variable terms
instead of polynomial interpretations for ground terms. As a result we have to
distinguish two kinds of ground substitutions: ground substitutions on terms
like o : £ = I and ground substitutions on polynomials like op : B = R. Ground
substitutions on polynomials simply map variables over R to real numbers.

Firstly, we define an ordering on variable polynomials depending on the
underlying polynomial interpretation.

Lemma 2.3.2 ((zeg89])

Let [..] be a polynomial interpretation of variable terms and r.q € Pol(R).
By defining

I > q ift op(r) > oplql for all ground substitutions op on
polynomials with op[X] € [T4] for
each variable X

we get an ordering >, on [I'] ¢ Pol(R] that is stable by instantiations op
which guarantee op(X) € [T 4] for all X € B. "

2.3 Polynomial Orderings on Variable Terms 16

We will call substitutions op that guarantee op(X] € [I5] for all X € B
[[g]-substitutions.

Note that this definition of an ordering on variable polynomials takes into
account that there is no need to compare all ground substitutions of the
polynomials. For example, if [..] maps all ground terms t to real numbers
greater than 2, it will not be necessary to guarantee the stability of >, against

the ground substitution Op X = -2.

Now we are able to extend the ordering on ground terms defined in theorem
2.2.9 to variable terms.

Theorem 2.3.3

Let [..] be a polynomial interpretation for variable terms that maps §
to Pol(R).
The ordering defined by

S »port iff [s] > [t]

is a reduction ordering on I' that is stable by instantiations if and only
if each polynomial p € [] is monotonous and non-diminishing on [I[4].a

Comparing two terms s,t reduces to the comparison of two polynomials [s][t]
that are monotonous and non-diminishing on [I“G] and this in turn reduces to
comparing all [I“G]-substitutions op[[s]], op[[t]].

Thus, if we want to orient a certain set of rules by using a polynomial ordering
we have to perform the following steps:

(1) Fixing the polynomials to be attached to each function symbol,

(2) Computing [T,]

(3] Verifying that all polynomials p € [§] are monotonous w.r.t. [Tes).

(4) Verifying that all polynomials p € [§] are non-diminishing on [Tg] and

(6) Proving that op[[1]) > op([r]) for each rule 1 = r and each [T]-substitution
-

In the following lemma we present a restricted version of theorem 2.3.3 that
can more readily be applied (cf. section 2.2).

Lemma 2.3.4

Let [..] be a polynomial interpretation for variable terms that maps § to
Pol[R=1).

2 An Approach to Polynomial Orderings 17

The ordering defined by
s por t iff [s] > [t]

is a reduction ordering on I' that is stable by instantiations. "

By using this lemma a given rule system can be oriented by merely

(1) finding appropriate polynomials and

(2) proving that op([1]) > op[[r]] for each rule 1—r and each R*!-substitution
Op-

The second step indicates that the problem of quantifying over all ground

substitutions on terms is reduced to the problem of quantifying over certain

ground substitutions on polynomials.

Note that this definition of polynomial orderings reveals the close connection
between the interpretation of constant function symbols on the one side and the
test of comparability of two terms, by inserting real numbers starting at a
certain point S (here: S=1), on the other side. This starting point S has to be the
smallest real number that is attached by [..] to a constant of §.

The reader should recognize that we are only interested in the smallest value
of [I‘G] and that we wish to test the comparability of two polynomials by
comparing all R*!-substitutions instead of all [[]-substitutions, although
[I‘G] C R*. Since the methods of comparing polynomials are based on analytical
arguments this difference does not matter. This even holds for [1‘0] ¢ NN. For
more details about how to compare two polynomials, see chapter 4.

2 An Approach to Polynomial Orderings 18

2.4 Examples

In order to illustrate the power as well as the difficulty encountered in the
handling of polynomial orderings we will demonstrate several examples.

The polynomial ordering as presented in this chapter is implemented as part of
the COMTES-system ([AMS89], [St89c], [Pa89], [AGGMS87]). COMTES is an
extended Knuth-Bendix completion procedure and can be viewed as a parametric
system that is particularly suited for efficiency experiments. Besides different
reduction strategies and critical pair criteria, the parameters also include
various termination methods.

The following examples have been tested by COMTES. Each of them contains an
initial specification R and an interpretation [if possible] which causes the
termination of }. Moreover, the interpretation is sufficient for completing R and
thus it computes a canonical system (that is not explicitly given here).

Let us note that in the remaining part of this report, we no longer differentiate
between capital letters for denoting variables of polynomials and small letters
for representing variables of terms. Henceforth, we will only use lower cases.

Example 2.4.1 Loops
R: x*x[x\y] = y
(x/y)*»y — x
1 * x - X
x *1 > X
[1]() = 1

Nix.y) = x+vy
[/lx.y) = x+y
[*][x‘y] = X+y =

Example 2.4.2

R: (x xy)*xz — x [y *z)
1 * x - X
i[x) * x - 1
x/y = x * i(y]
[11() = 2
[*1x.y) = 2xy + x
[il(x) = x2
[/1(x,y) = 2xy2 + x + 1 .

2.4 Examples

19

Example 2.4.3

R: f(f(x.y).z)
flg(x]). aly))

Associativity and endomorphism

- f(x, (y.z])
- gli(x.y])

flglx). flgly).2)) — filglt(x.y]). 2]

[f1(x. y)
[glx)

X +1

Example 2.4 .4

R: f(0) - 1

Xy + X

f(s(x])] — glf(x)]
glx)] —= x+s(x)

[o]() = 2
(11() = 2
[£1(x) = x2
[s1(x) = 2%
[gllx] = 3x +1
[+1x.y)] = x+y

Example 2.4.5

R: if(true, x,y)
if(false, x,y)
not(x])
and(x,y)
or(x,y)
imply(x,y)
equiv(x,y)
equiv(x, x)

[truel()
[false]()
Lifl(x.y.z)
[not](x)
[and](x,y)
[orl(x,y)
[imply](x.y)
lequiv](x,y)

KX XK X KX ==

+ + + + + +

(CMu8o0])

X
y

if(x, false, true)
if(x,y, false)
if(x,true,y)
if(x,y,true)
if(x,y.not(y])
true

R 20 20 20 2

NN < WO
+ o+ o+ +
NN N

N
<
+

NN

2 An Approach to Polynomial Orderings 20

Example 2.4.6

R: if(true, x,y) - ¥
if(false, x,y) -y
if(x,y.y) -y
if(if(x,y.2z),u,v] — if(x,if{y,u,v), if(z, u,v])
[truel() = 1
[false]() |
[if](x,y.2) = Xy + xz + X .
Example 2.4.7 (tch89])
R f(f(x.y).2) — f(x, i(y.z))
flegyl =y for all j € [1,n],n > 2
f[X,Ij[X]] — &
[fllx.y) = 2xy + x
[e]) = 2 j €01,n]
[i,1(x) = ®e
[1](x] = 5x2 + 1 j €[2,n] .
Example 2.4.8 ([Ma87])
R: (x * y) + [x * z) — x * [y + 2]
(x +y) + 2z — x + [y + 2)
(x xy)+((x*2)+u) = [x*(y+2)]+u
[+llx.y) = xy+x
[*lx.y)] = x+y
Note that the system R cannot be oriented in the desired way with
the help of the recursive path ordering. "

Example 2.4.9 Flattening

R: nil - y -y
(x.y) - z — x.[y - z]
flatten(nil) — nil.nil
flatten(x.y) — flatten(x) - flatten(y)
macflatten(nil,y] — nil.y

macflatten(x.y,z) — macflatten(x, macflatten(y,z))

2.4 Examples

21

[ni1]()
[.1(x,y)
[-1(x.y)
[flatten](x

[macflatten](x, y)

)

1]
[\

2%

4x
3x

Example 2.4.10

R: f(white,red] —
f(blue, red) -

Dutch national flag ([De87])

f(red, white)
f(red, blue)

f(blue, white] — f(white, blue)
[white](] = 2
[red]() =1
[bluel(] = 3
[fllx,y] = 2x+y
Example 2.4.11 (IKi90])
R: p(0) - 0
p(s(x]) - X
s(x) > O — true
0>y — false
s(x] >sly] — x>y
0=0 —> true
0 = s(y) — false
s(x] =0 — false
s(x) =sly] — x=y
if(true, x,y)] — x
if(false,x,y] — y
s(x) >y — if(y = 0,true,x > p(y))
x > s(y] — if(x = 0,false,p(x) > y)
[p1(x] = X +1
[s1(x] = 2x + 4
[>1(x.y) = xy + 1
[=1(x.y) = Xy
lifl(x,y.2) = x+y+z
[o]() = 1
[truel() = 1
[false](] = 1

This rule system cannot be oriented with

ordering.

the help of

any path

2 An Approach to Polynomial Orderings

22

Example 2.4.12

R: x * (y ¢+ z)

(x + y) *z
(x +y)+z
0 +1
1+ (0 + 2)
1+ (2+2)
1+ 2

R

(x x y) + (x * 2)
(x * 2] « [y * 2)
x+ [y +2)
1+0
o+(1+2)

2+ 1+ 2)

2 +(a+1)

Note that there is no polynomial ordering which can guarantee the
termination of R (cf. 6.4).

2 An Approach to Polynomial Orderings 23

2.6 Discussion

In this chapter we have analyzed some properties of polynomial orderings.
Motivated by the lack of a (general) formal definition for polynomial orderings
we have attempted to unify the existing approaches by determining the
necessary criteria for polynomial orderings to be reduction orderings.
Consequently, the two traditional ways of defining polynomial orderings, by
restricting the domain of the polynomials to IN or requiring the subterm property,
have turned out to be special cases of the one described here.

Besides this theoretical result we have shown that it is very easy to deduce a
more restrictive, but, simultaneously feasible characterization from this definition.
We have proposed an extended version of the polynomial orderings described
in [Be86] and [BL87] that allows polynomials to range over R*! Instead of
possessing the subterm property those polynomials have to be non-diminishing.

An interesting result is that, although we have a general characterization of all
potential interpretations we have not found a way to extend the existing
versions by, for example, allowing negative coefficients without simultaneously
complicating the test for suitability of a polynomial. Thus, from a practical
point of view we believe that lemma 2.210 should form the basis for future
studies of polynomial orderings.

Vade-mecum of Polynomial Orderings 24

3 How to Choose the Interpretations

One of the main problems concerning polynomial orderings is to choose the
right interpretation for a given rewrite system. It is very difficult to develop
techniques for solving this problem. In this chapter we present some well-known
heuristics of [Be86] and several new ones. Also, an algorithm for choosing
appropriate linear polynomials is given. This method is based on the Simplex
algorithm which will be explained in 3.4.

Note that all results presented in this chapter refer to polynomial interpretations
that attach coefficients, taken from the set of natural numbers, to polynomials.

31 Some Well-KnowWn HeEUTISTICS ..ottt 25
3.2 Several NEeW HEUTISEICS .ot 28
3.3 A Method for Linear Polynomials ... 37
3:4 The SimplexX AlGOTITIIN wrieionsvmmmmmossmmsmmmms om0 s s s T s 47

BB DISCUSSION ettt et e et et ettt et e e st et e et e et et eteeeeeae et eet et et e et et ere et renene et ene 54

3 How to Choose the Interpretations 25

3.1 Some Well-kxrnown Heuristics

In this section, we give some suggestions for finding an appropriate interpretation
which proves the termination of a given rewrite system. These kinds of heuristics
are described in [Be86l During experiments the main method used there was
by "trial and error” and for this the help of the REVE-system was essential. The
polynomial orderings are implemented as simplification orderings and their
coefficients are natural numbers (which are greater than 0). In order to illustrate
the suggestions we will apply them to an example (31.8) at the end of this
section.

Suggestion 3.1.1
Consider the rules of the form
t = t/u

where u € O(t]\ {e}
Any interpretation of the function symbols guarantees the termination of
such a rule since the polynomial ordering has the subterm property. L]

Suggestion 3.1.2

Assuming there is an operator which occurs in only one (a few, resp.)

rule(s).
These kinds of function symbols cannot endanger the termination of the
whole system. Therefore, a simple interpretation suffices. .

Suggestioﬁ 3.1.3
The interpretation of each constant symbol will be 2:

(ve € §) [cl) = 2. .

This proposal is based on a method for comparing two polynomials (see
section 4.2). The assignment will improve the technique.

Suggestion 3.1.4

Orienting an associativity law like

fli(x.y). 2] = f(x. 1y, z2])

3.1 Some Well-known Heuristics 26

there are two different interpretations of f:

fi(x.y).2) = f(x.fy. 2]) .
if [fllx.y) =axy + x or [fl(x,.y)=Dbx!+y
The basic idea is to give more "weight” to the first argument.

f(x. iy, z])] = f(i(x.y). 2] .
it [fllx.y) =axy +y or [fllx,y]=x + by!

such that a is an arbitrary integer and b >1 v i > 1 .

It is noteworthy that the polynomials interpreting the operator f of the last
suggestion could be generalized by adding any constant.

Suggestion 3.1.5
For all rules
B |

defining an operator f where t does not contain any occurrence of f, let us
use the following interpretation:

[f][xl,...,xn] = [t] + 1

Note that t could reduce the set of variables of f[t,,...,tn]. To preserve the
monotony of f we have to add the missing variables to [f]:
[E1(%,0x) = [t] + 1+ ?I X;. .

Suggestion 3.1.6
Consider the class of rules
fglty). t5) = glilt,. t,)).
To guarantee the termination of such rules use
[fl(x.y) = xy and [gllx)=x+a

such that a is an arbitrary integer. Note that this suggestion depends on the
requirement that the value of the interpretation of a variable or a constant
symbol is at least 2 (see 3.1.3). .

3 How to Choose the Interpretations

27

Suggestion 3.1.7

The rule system contains a rule defining a homeomorphism:

glf(t,....t)] = flglt,)....glt,)).

If we take

= %x. and [gl(x]) = xi*

(j is an arbitrary positive integer] the termination of such rules will be

guaranteed.

Example 3.1.8

In order to illustrate the power of the suggestions, we will apply them to
the following pragmatic rule system:

x+0
O+y
1 vy
x * 1
f(x) * f(y)
-(x +y)

Z

glx * y.y]

h(1,y)

<< X

X
f{x * y)

x * [y * z)
(-x] + (-y)
h(x * y, x]
y

R 2R 2 2 A A

(R1]
(R2)
(R3]
(R4)
(R6)
(R6)
(R7)
(R8)
(R9]

(R1) - (R4]) and (R9) are terminating due to the suggestion 3.11, [R5) due to
31.2, (R6] due to 314, (R8) due to 315 and (R7) due to 317. These
considerations lead to the following interpretations:

[ol()
[11()
[£1(x)
[-1(x)
[+1(x.y]
[*1(x.y)
[gl(x.y])
[h1(x.y)

3 How to Choose the Interpretations 28

3.2 Several new Heuristics

We have integrated the polynomial orderings in our completion system COMTES
(see [AMS89], [St89c], [Pa89], [AGGMS87]). A series of about 300 experiments
has been conducted to gain more insight into the choice of interpretations (see
[SK90]1). A preliminary summary of the main results is given in the following
table:

%
Total number of rule systems tested 303 100
Canonical rule systems generated : 225 74
Completion processes diverge (the termination can be 28 9
guaranteed with a polynomial ordering)
Completion processes stop with failure, but the initial 20 7
rule systems are orientable with a polynomial ordering
Rule systems which cannot usefully be oriented wu.t. 30 10
any polynomial ordering

The table indicates that the polynomial orderings provide a powerful technique
for proving termination of term rewriting systems (since three quarters of the
303 examples are orientable). However, we cannot infer heuristics for generating
adequate interpretations from these statistics. Therefore, we shall refine this
diagram by splitting the examples into various classes and provide some
assertions about the interpretations we will need to use. The next definition
will classify the possible interpretations:

Definition 3.2.1
Let p(x;..x,) be any polynomial over R®, a,,c € R.

. p[x],...,xn] is linear

n :
iff plxy..x.) = i§1 a;x; + C
eg.: 5x; + 3x, *+ Xg

p[xl,...,xn] is super-linear

n
iff p(x,..x,) = Z a;x; + ¢ such that a, € {0,1}

eg.: X; * Xg+1

3.2 Several new Heuristics

29

- plx,....x,) is separate

iff each monomial of p[xi,....xn] consists of one variable, only

. 3 2
eg.: 2% + 3X, * X3

. p[xl,.‘.,xn] is mixed

iff p(x,..x,) contains at least one monomial which is based on more

than one variable
. 2 3
eg. X{ * X XzXy + 2

The following table lists different interpretations employed for the orientation
classes of
interpretations, e.g. if a system can either be oriented with the help of a separate

of the examples. We made great efforts to develop minimal

or a linear interpretation we will prefer the linear one.

%
Total number of rule systems oriented 273 100
Rule systems oriented using super-linear interpretations 89 33
Rule systems oriented using linear but not super-linear 104 38
interpretations
Rule systems oriented using separate but not linear 16 6
interpretations
Rule systems oriented using mixed interpretations 64 23

The tested examples belong to several domains. The list of these classes will
be given including typical representatives and appropriate interpretations.

® Algebraic structures: Groups, Rings, etc.

Example 3.2.2 Taussky group

x*[y*z]—)[x*y]*z
1 %1 - 1
x * i(x) - 1
glx »y.y] = f(x *y x)
f1.y) =3 ¥

3 How to Choose the Interpretations

30

[+1(x.y)
[f1(x.y)
[gl(x.y)
[i](x])
[11()

® Boolean theories:
structures.

Example

]
<<
bl

X

[+1(x.y]
[*1(x.y)
[21(x.y)
[vl(x,y)
[=1(x.y]
[-1(x)
(110)

2Xy + Yy

X +y

2xy2 + y2 + x + 1

2

2]

This class is closely connected with that of algebraic

3.2.3 Boolean ring

(x * y) + (x+1]
(x * y) + (x +y)
x+(y+1)

X + 1

X+y
X+y

2x + y + 2

2x + 2y + 1

X+y+2

X + 2

1]

Arithmetic theories: Addition, Multiplication, etc.

Example

x+0

x + s(y]
double(0)
double(s(x])
02

(s(x))2

[+1(x.y)
[s1(x)
[double](x])
[2](x)
[ol()

3.2.4 Square number

- X
- s(x +y]

- 0

— s(s[double(x]])

— 0

— x2 + s(double(x])

= X + 2y

= X+ 3

= 3x

= Xz

s 2 []

3.2 Several new Heuristics 31

e Lists: Append, Reverse, Flatten, etc.

Example 3.2.5 Ilterative version of the reverse function ([HO80])

nil - y -y

(x.y) - z - x.(y - 2]
rev(nil) — nil

rev(x.y) — rev(y]) o (x.nil)
reviter(nil,y] — vy
reviter(x.y,z] — reviter(y,x.z)
(x o y) -z - x - [y~ 2)
rev(x) o vy — reviter(x,y)
rev(x) — reviter(x, nil)
[.1(x.y] = Xy +y+1
[-1(x.y) = Xy + X

[rev](x) = 2x2
[reviter](x,y) = xy + x

[nill() = 2 »

e String rewriting systems: A Thue system & over a set of strings Z* is a
finite set of rules, each of the form 1 — r, where 1 and r are words in =*
=* is the monoid freely generated by a finite alphabet Z under the operation
of concatenation. ‘A close relation between term rewriting and Thue systems
will exist if monadic terms are used only. A monadic term only contains
unary function symbols and either a constant or a variable. The subset of
the monadic terms without constants can unequivocally be transformed into
strings and vice versa.

Example 3.2.6 Fibonacci group with five elements

¢ — ab

d — bc

e — cd

de — a

ea — b
[alx) = x +1
[bl(x) = 2x + 4
[cllx) = 2x + 6
[dl(x) = 4x +17

[el(x) 8x + 41 .

3 How to Choose the Interpretations 32

e Other systems: Systems that are not part of the five former classes.

Example 3.2.7

glx.y] — h(x,y)
h(f(x).y] — ftlglx.y])

(£1(x) = X+ 2
[gllx.y) = 2x + y + 1
[h](x.y]) =

2x + y .

The next diagram presents a refinement of the statistics on the number of
orientable examples based on the given classes.

Diagram 3.2.8 Evaluation of the tested examples

OPPEEEEEE®

Algebraic structures 60 23 70 8 17 5 12 26 4 58

Boolean theories 28 43 | 64 21 0 15 46 | 17 12 25
Arithmetic theories 69 65 | 73 4 o 23 | 21 51 13 | 15
Lists 36 72 | 81 8 8 3 20 46 | 3 31

String rewrite systems | 30 | 53 | 83 7 3 0] 43 | 57 | O o)

Other systems 80 58 | 76 11 5 8 54 34 | 4 8

All numbers (except those of the first column) of the above diagram represent
the percentages wur.t. the first column. The encircled quantities have the
following meanings:

(\D Total number of rule systems tested

(@ Initial rule systems are confluent

(xg) Canonical rule systems generated

f’4 Completion processes diverge (the termination can be guaranteed with
(\ a polynomial ordering)

3.2 Several new Heuristics 33

Completion processes stop with failure but the initial rule systems
are orientable with a polynomial ordering

Rule systems which cannot usefully be oriented w.r.t. any polynomial
ordering

@

The following categories relate the different interpretations to the classes of
orientable rule systems.

Rule systems oriented using super-linear interpretations
Rule systems oriented using linear but not super-linear interpretations
Rule systems oriented using separate but not linear interpretations

Rule systems oriented using mixed interpretations .

@eEE

The most important results of this diagram can be summarized as follows:

- In contrast to the other classes, only a small quantity of initial systems in
the class of algebraic structures is directly confluent. Moreover, the number
of mixed interpretations needed is relatively big (nearly 60%).

- The proofs of the termination of the examples on lists and strings can
often be successful conducted by using polynomial orderings. However, while
lists require more than 30% of mixed interpretations, the string rewriting
systems can be oriented with the help of linear interpretations, only (a
possible explanation is that the string systems possess an easier structure).

- For the orientation of examples belonging to arithmetic theories mixed
interpretations do not seem to be needed very often. Unfortunately, this
does not agree with reality since only three quarters of the rule systems
belonging to arithmetic theories are orientable.

- It is significant that three quarters of the general systems ['other systems')
can be oriented. Furthermore, this orientation has been carried out using
almost linear interpretations, only. It could be a lucky chance.

Based on the experience with the examples several new heuristics have been
developed for the choice of useful interpretations.

3 How to Choose the Interpretations 34

Suggestion 3.2.9 Arithmetic theories

In order to prove the termination of arithmetic specifications it is profitable
if the complexity hierarchy of the interpretations reflects the complexity
hierarchy of the corresponding function symbols (cf. 3.2.4). .

For example, [+]1(x.y) = xy « x, [*I(x.y) = x2y + xy2 [expllx.y) = [x + y)* is
based on suggestion 3.2.9.

The following suggestion provides a test for deciding whether a mixed
interpretation is necessary for orientation.

Suggestion 3.2.10 Mixed interpretations

Let 1 = {(s,,...s,,) = glt;,...t) = 1 be a rule such that m >1,n > 1. There exists
no separate interpretation [f] such that 1>, 1 if

(3s) V(s,) n ,-:Q,-ﬁ Vis) = @

A (Gu €0(r)) r/u = fls),..s;) A s 25
A V(r[ui « A1) n V[Si] + O =

The first condition requires that the variables of s; do not occur elsewhere in L
The last requirement means that at least one variable of V[si] occurs in r
outside of s|. We now demonstrate the use of this test with the help of an
example.

Example 3.2.11 Binomial coefficients

The following rule system represents a complete specification of the
binomial coefficients:

b(0, s(y)) - 0
b(x, 0) — s(0)
b(s(x),s(y)])] — b(x.s(y]) + b(x.y)

There exists no separate interpretation of b which orients the last rule. Let

1

b(s(x).sly)) . r = b(x.s(y]]) + b(x,y)
i s(y)
r/u b(x.s(y])

[]
n

Note that all conditions of 3.2.10 are valid: y does not occur elsewhere in I,

3.2 Several new Heuristics 35

s, = sly) © s(y) = s} and V(b(x,X)+b[x,y]] n V(s(y]] = {y}. Therefore, we need a
mixed interpretation of b to prove the termination of the system:

[bl(x.y) = xy + x

[+«J(x.y] = x+y

[s1(x]) = 2x

[0][] = 2 []

Approximately 20% of the 273 systems orientable w.r.t. polynomial orderings
require mixed interpretations. The criterion above can be applied to nearly
50% of these cases as, for example, to the distributivity axiom.

During experimentation the combination of the distributivity and the associativity
proved to be problematic. The following suggestion can sometimes decide the
termination of a system containing these two rules.

Suggestion 3.2.12 Distributivity axioms
Let *x,+ €8 , ¢ be a constant symbol and
Rp: x*[y+2) = [x*y)+(x*2)

(x+yl*xz = [x*2) + [y *z)

* The termination of R can be proved with the help of

["][X.Y] = X + y+]
[x1(x,y) = xy
[cl() > 2

The system
Rpopulx+(y+z)=>(x+y]+z

terminates if

[+]lx,y)] = x+2y +1
[x1(x.,y)] = =xy
[cI() > 2

- The rule system
Rp vilx xy) xz—xx(y=z)}

can be oriented using the following interpretations:

3 How to Choose the Interpretations 36

[+1x,y) = x+y=+2
[«l(x.y) = =xy+x
Lcl(]) > 3

In order to achieve the termination of

Ry vilx+ylrz = x+(y=+2)

[x*y]*z—)x*[y*z]}

we use the interpretations

[«lx.y)] =.2x+y+4
[*1(x.y] = xy+x
[C][] 2 b .

Finally, we deal with a large and wide-spread area: group theory. As mentioned
previously (see 3.2.8), this class mainly requires mixed interpretations which
are considerably harder to obtain.

Suggestion 3.2.13 Group theory
Let *,i,e € §. Furthermore, let E be a set of group axioms including

(x * y) * z and
ily) * i(x).

x * [y * 2)
i(x * y)

An appropriate and relatively simple interpretation for orienting E is the
following one:

[(*1[x.y) = 2xy + x [or 2xy + V]
[il(x) = x2
Lel() =2

Note that no system specifying a group can be oriented using separate
interpretations, only. .

3 How to Choose the Interpretations 37

3.3 A Method for Linear Polynomials

In the last two sections we have presented several suggestions for choosing
the interpretations of function symbols. The disadvantage of these techniques
is that

- they are very vague and incomplete and
- it is hard to combine them,

i.e. an automatic method would be inefficient since it must be able to back-
track.

To partially overcome these problems we have developed a procedure that
mechanically generates interpretations of operators such that a given rule system
terminates. This technique is restricted to special polynomials, i.e. the following
proce&lure can only handle linear interpretations. This restriction is derived from
the fact that it is very difficult to check whether a general polynomial is
greater than O [cf. chapter 4). Since 71% of the interpretations used for the
examples are linear (see section 3.2) we consider it to be a valid restriction.

Example 3.3.1
Let s = f(g(g(x]),y) and t = f(g(x]),f(x,y)) be two terms. Furthermore, let
[fl(x.y) =ax + by + ¢ and [g](x) =dx + e
be two classes of linear interpretations for f and g, respectively. Then,

[s] = ad?x + by + ade + ae + ¢,
[t] =(ad + ab)x + b2y + ae + bc + C.

Thus, proving s >, t requires the proof of [s] > [t] .

Lemma 3.3.2

n
o and b = i2=:1 b;x; + by be linear polynomials with
(vi € [1,n]) a;.b; = O. Then,

n
Let a=Zaix.+a
i=1 i

a 2 b
if (vi €[0,n]] a, =2 b, .

1 1

3.3 A Method for Linear Polynomials ‘ 38

Example 3.3.3 (Example 3.31 continued)

[s] > [t]
if ad? > ad + ab

A b > b2

A ade + ae + ¢ = ae + bc + ¢

Note that we have to compare sums of products. There is a relatively simple
algorithm, the so-called Simplex method (see 3.4), for deciding whether a
system of linear inequalities has a solution. Unfortunately, we do not have
linear inequalities, in general. Consequently, we shall present a method for
transforming such an expression [a sum of products] into a linear polynomial. s

Given an inequality of the form used in lemma 3.3.2, its transformation to a
linear inequality is based on the following ideas:

- approximating each side of the inequality to a product and then
applying a logarithmic function to these products.

The following lemmata provide the theoretical framework for the procedure.

Lemma 3.3.4

n n
II a; 2 > a;
i=1 i=1

if (vi €[1,n]) a, =2 .

1
Lemma 3.3.5

n
a, =2 X a,
1 i=1 1

fom

n-
i

"
-

it (vi€lt.nl)] a;=21 .

Lemma 3.3.6

WMz
o
N
=]
o
o=

1.
n

if (vi €[1,n])] a, =20

1

This inequality is called the arithmetic-mean-geometric-mean inequality for
n numbers. .

3 How to Choose the Interpretations

39

The combination of these three lemmata leads to the method of transforming

an inequality (of lemma 3.3.2) into an inequality of only two products:

Lemma 3.3.7

Let a; = 1 and b, > 1. Then,

n m
>a, 2 X b,
iz 1 i=1 1

n m .
if i] n®-MMa, > IOIbY A (Viel,m]] b, =22
i=1 1 j=1 1 i
n m
or ii) n® - MDa, > m™ II bM

.
n
-
-
.
]
-
.

Example 3.3.8 [(Example 3.3.3 continued)

We have to verify that ad® = ad + ab , b = b2
ade + ae + ¢ 2 ae + bc + c:

i] ad2 = ad + ab will be transformed into
ad?2 > a2bd A ad =2 A ab=:>2
or ad? > 2a2bd

ii) b = b2 will be transformed into
b=>b%2 A b2:22
or b =2 b2

iii] ade + ae + ¢ > ae + bc + ¢ will be transformed into

27a2%cde? = a3b3c®e3 A ae =22 A bcz=2 A c2=22
or 27a2cde? > 27a3p3cCe3

Remarks 3.3.9

and

The inequality of the first transformation (i) of the example above could be
weakened by dividing it by its greatest common factor:

ad?2 2ad+ab ~> d2>2d+b ~> d2:=bd 4
or d2 > 2bd

- If n = m =1 the first possibility (i] of lemma 3.3.7 of transforming an
inequality is more restricted than the second one (cf. ii) of example 3.3.8):

1] a1 2 b-l A bl 2 2
or ii) a, 2 b,

Therefore, if there is only one product on both sides of the inequality,
we do not need any transformation.

3.3 A Method for Linear Polynomials 40

- The inequality of the third transformation (iii) of the example above
could be weakened by subtracting the greatest common part:

ade +ae +¢c =2 ae +bc+c ~>» ade = bc n

Notation 3.3.10

The transformation according to lemma 3.3.7 of an inequality to an inequality
where both sides contain only one product will be denoted by 'red"
red(Za; = Zb,). .

In order to use the Simplex method, we have to map red(Za; = b, into a
linear inequality. For this purpose we exploit a special property of logarithmic
functions:

log(Ila,) = Z log(a,].

Furthermore, log is monotonous if a; 2 1 Note that, for guaranteeing the
monotony of the polynomial orderings on linear interpretations, all coefficients
must be greater than or equal to 1. Therefore, the condition a;, > 1 is always
fulfilled.

For eliminating exponents we utilize the law log(u®) = n-log(u). According to
lemma 3.3.7 it is convenient to apply the binary logarithm /b since inequalities
of the form a; > 2 can then be transformed into lb[ai] > 1

IL.Lemma 3.3.11

Notation 3.3.12

The transformation due to lemma 3.311 of an inequality of two products into
a linear inequality is denoted by 'lin": lin(Ila; = MIb,). .

With the help of the transformation functions red and lin we are able to reduce
an inequality (relative to linear interpretations) to a linear inequality. Therefore,
the test whether a term s is greater than a term t (wur.t. polynomial
orderings) produces a set of linear inequalities. For deciding whether such a set

3 How to Choose the Interpretations 4]

has a solution the Simplex method can be applied. If the set of inequalities has
a solution and we are not only interested in a solution, we have to reverse

the effect of the logarithmic transformation by applying lin~! to the result:
= Iblaj) | = lb[bi]]

1lin™!(Z 1b(a;) = = 1b(b,)] = (2 2

Algorithm 3.3.13

We present an algorithm to determine whether a finite set of rewrite rules
R=1{, =1 | i € (1,n)} can be ordered by a polynomial ordering on linear
interpretations on function symbols.

The algorithm is presented by using inference rules of the form

A

cond
B

which means that B is valid if A and cond are true.

(1) Transforming the rules (R) into inequalities (I}

Ruvll—>r1 |, 1

R . Toifl]> [

This step will be executed until R is empty, i.e. I contains all inequalities.
This transformation must combine the coefficients of common variables.

(2) Splitting the inequalities w.r.t. the coefficients of common variables [cf.
lemma 3.3.2)

n n
Ivu {E1 a;x; +ag > Ej bixi + bo}

Iufa; by | i€ .j1j1..n0 v la > by
(3) Simplifying the inequalities (cf. remarks 3.3.9)

Iu{x+2aizx+2bi}

1u{Za; > Zb;}

3.3 A Method for Linear Polynomials

42

Ivu {Zx-ai > Zx-by}

uiZa, > Zb)

I vi{a =0}

(4) Eliminating the addition (cf. lemma 3.3.7 and notation 3.3.10)

I uvifa 2 b}

I u {red(a 2 b}

if a or b contain +

(6) Reducing a product to a linear polynomial (cf. lemma 3311 and

notation 3.3.12)

I vi{a =2 b}

I v {lin(a 2 b})}
(6) Renaming the logarithm functions

I v {Za;lb(x;] = Zb,1b(y,)}

lLvi{Zax; > b, yi'}
(7) Applying the Simplex method
I

Il

(8) Reversing the logarithm mapping

[Lvi{Za;x{ > Zb;y}}

Lo {m2®.x, > M2y,

if a and b do not contain +

if a; and bi are constants

if I' is the output of the
application of the Simplex
algorithm to the set I of linear
inequalities

if a;,b; are constants and I
contains the solution [provided
the Simplex method has found

one] .

In order to improve the efficiency of this algorithm we apply the criterion of
section 3.2 (cf. 3.210) to the rules of the rule system. That way, systems which
require mixed interpretations can be excluded straight away.

3 How to Choose the Interpretations 43

Examples 3.3.14

i)

We would like to guarantee the termination of the rule (example 3.31)
t(glg(x)). y) — #lg(x]. f(x. y)):

Let [fl(x.y) =ax + by + ¢ and [gllx] = dx + e.

(1) 1

(2) 1

{ad?x + by + ade + ae + ¢ > [ad + ab)x + b2y + ae + bc + ¢}

{ad2 >ad +ab, b>b2,ade +ae+c = ae + bc + ¢}

(31 ={d2=2d+b,12b, ade = bc}

(4)1 ={d2=2bd,.b=22,d=22,12b, ade = bc}

Producing this set of inequalities we tried the first alternative of
lemma 3.3.7. But this set does not have any solution since the subset
{b 22,12 Db} is unsolvable. Thus, we use the second transformation
of lemma 3.3.7:

{d2>22bd,1 =2b, ade = bec}

—
n

{21b(d) = 1 + 1b[(b) + Ib(d) , O = 1b(b) .
1b(a) + 1b(d) + 1b(e]) = 1b[b] + 1b(c)}

—
n

(5)

Note that if there is any inequality like x < 1, then the value of x
has to be set to 1 since the precondition requires x 2 1, for all x.
Furthermore, substitute all occurrences of x by 1.

(6) 1 ={2d'21+Db'+d ,02Db',a' +d +e' 2b'+c"

(7) A possible solution of this set of linear inequalities is the following
one:
b'=0,d =1,a'=¢c =¢e":=0

Note that the last inequality (a' + d' + e' >.b' + ¢'] is the proper
inequality which is needed (cf. (2] of algorithm 3.3.13).

(8 b=29=1,d=2"=2,a=¢c=¢e:=20:=1

These assignments generate the interpretations for f and g in the
following way: [fl(x.y]) = x + vy + 1, [gllx) = 2x + 1. With the help
of these interpretations, f(g(g(x]],y) por. flglx]).f(x.y])) since
[flalg(x)).y)] = 4x + y + 4 > 3x + y + 3 = [f[g(x]). f(x, y)]].

3.3 A Method for Linear Polynomials 44

ii) We would like to prove the termination of the Fibonacci function:

fib(0) - 0
fib(s(0]) — 5(0]
fib(s(s(x]))]) — ftib(s(x]]) + fib[x]

Let be [0]()] = a , [sllx)] = bx + ¢ ., [fib][x] = dx + e and
[+1(x.y) = px + qy + I.

(1) 1

{ad +e>a,abd+cd+e>ab+c, b2dx + bcd + cd + e >
(bdp + dq)Jx + cdp + ep *+ eq + 1}

{fad + e >a, abd + cd + e >ab + ¢, b%d = bdp + dq ,
bcd + cd + e 2 cdp + ep + eq + 1}

(2)

—
n

{ad +e>a,abd+cd+e>ab+c,b2>2bp=+q.
bcd + cd + e 2 cdp + ep + eq + 1}

(3)

—
"

{4ade > a2 , 27abcd?e > 8a3b3c¢3 |, b2 = 2bpq .,
27bc?d?%e > 64¢3d3e8p®q3r3}

(4) 1

{2 + 1b(a) + 1b[d) + 1b(e) > 21b[a) , 1b(27) + 1b(a) + 1b[b] + 1b(c])
21b(d) + 1b(e) > 3 + 31b(a) +« 31b(b) + 31b(c) , 21b[b) = 1 + 1b(b) -+
1b(p) + 1b(q) . 1b(27) + 1b(b) + 21b(c) + 21b(d) + Ib(e] = 6 +31b(c) +
31b(d) + 61b(e) + 61b(p) « 31b(q) + 31b(r)}

(8) 1

{2 +a' +d +e' >2a",1b[27) +a' + b' + ¢ +2d" + e >
3+3a'"+3b'+3c'",2b'21+Db'+p'+q,
Ib(27) + b' + 2¢' + 2d' + €' = 6 + 3c' + 3d' + 6e' + 6p' + 3q" + 3r")

(6)

—
n

(7) The set of inequalities of (6) is unsolvable. Therefore, this method
cannot prove the termination of the Fibonacci function. L]

Theorem 3.3.15

The algorithm 3.3.13 always terminates. If it does not fail]} can be ordered
by a polynomial ordering (using only linear polynomials). .

The power of the presented method strongly depends on transformation (4], i.e.
on lemma 3.3.7. This lemma approximates each side of an inequality to a product
such that the following relations hold: Find a = IIc; and b = IId; with

a, 2 a =2 b =2 Zb..

1 1

Accordingly, the better the approximations are the more powerful the algorithm

3 How to Choose the Interpretations 45

will be.

Note that it is possible to simplify the inequalities generated by step (4] with
the rules of step (3). Therefore, we can merge step (3) and step (4).

Another improvement is the extension of transformation (3) which is used to
simplify an inequality. The following rules can in some cases avoid the algorithm
to stop unsuccessfully:

n
Iuv{ll aisl}
i=1

lufa; =111i€[l,n]
TLudfa =1}

e if I' results from I by substituting a; by 1
I'v {a; = 1

Iui{Za; 2 Zby}
) it (Imymy)(Vi)(3e) an (i) = broiy-C
I

By way of illustration, the last rule removes for example a,c; + a,C, 2 a; + a,
from the set of inequalities since it always holds.

The three transformations above extend the presented method. Furthermore,
there is another simplification rule which sometimes improves the technique:

if (3t € §.n > 0) [fl(x,.... x,) = Tagx; ¢ a,
Ivu {ao = 0}

With the help of this condition, the transformation red of lemma 3.3.7 can be
described more precisely. Consider for example the Fibonacci function of 3.3.14 ii):

(2) 1 = fad +e>a,abd +cd+e>ab+c, b%d = bdp + dq.
bcd + cd +e =2cdp + ep + eq + 1}

(31 ={d>1,d>1,b22bp+q,c=0,e=0,r1 =0}

(4) I = {d>1,d>1, b2 > 2bpq}

(5) 1

{Ib(d) > 0, Ib(d) > O, 21b[b) =1 + 1b(b) + 1b(p) + 1b(q)}

3.3 A Method for Linear Polynomials 46

(6) 1 = {d'>0,d >0,2b' >21+b'+p +q
(7) A feasible solution of I is the following one:
b'=1,d =1,p'=0,q =0

(8 a=1,b=2,¢c=0,d=2,e=0,p=1,qg=1andr =0 which lead to
the interpretations [0](]) =1, [sl(x) = 2x , [fibl(x) = 2x , [+)x.y) = x + y
which prove the termination of the three rules describing the Fibonacci
function.

3 How to Choose the Interpretations 47

3.4 The Simplex Algorithm

In 3.3 an algorithm has been presented which computes appropriate linear
polynomials for guaranteeing the termination of rule systems for which linear
interpretations suffice. An important part of this algorithm consists of solving
linear inequalities. In the present section we give an informal description of a
special version of the well-known Simplex method to solve this problem.

In 1947, Dantzig first proposed the Simplex method whereby a linear form could
be minimized (or maximized) subject to linear equalities (or inequalities] that
are sometimes called constraints. Such problems have come to be known
as 'Linear Programming'. The following approach is taken from [Th79], [Ch83]
and [Mi76] and the reader is referred to these references for a more detailed
description.

The Simplex method can handle the following problem:

n
Minimize 2 C; X,

)

n
Subject to jZ agX b, (i

n
.

X, = 0 §

For simplicity of exposition we shall restrict ourselves to the form above. It is
not difficult to transform a more general form (in which equations of the form
Za;.x; = b; as well as inequalities like Zaijx. z b, are possible) into the one used

1575 J
here.

-To transform this problem into an equivalent form in which the inequalities are
replaced by equalities, m so-called slack variables x_,,..x . are introduced
as distinct from the n so-called decision variables in which the problem is

defined:

n
Minimize z = Z C;Xy
i=1
n
Subject to j§1 agX; * X,y 7 by (i=1..m)
Xy = 0 (j =1,..n+m)

J

In a linear programming problem, the linear function z to be optimized is called
the objective function. Any point [xl,...,xn] with non-negative coordinates that
satisfies the system of constraints is called a feasible solution to the problem.
Thus, our basic problem is to determine, from among the set of all feasible
solutions, a point that minimizes the objective function. The Simplex method
can decide whether a problem has, in fact, any feasible solution and in addition
whether the objective function actually assumes a minimum value. Note, however,
that the problem appearing in the algorithm of section 3.3 consists of finding

3.4 The Simplex Algorithm 48

any solution of a system of linear equalities, i.e. we shall only study

(x)

n .
ZoagX; * Xp,y 7 by (i =1,..m)

j

Solving such systems is no more difficult than solving linear programming
problems: to find a solution of (*), or to establish its non-existence, we only

need

Minimize Z = Xgq
Subject to j% ajXj * Xn.y - X = by (i =1..,m)
Xo2 O
Fig. 1

The basic step of the Simplex method is derived from the familiar pivot operation
used to solve linear equations. The pivot operation consists of replacing a system
of equations with an equivalent system in which a selected variable is
eliminated from all but one of the equations.

Definition 3.4.1 Pivoting

n
Let JE.] ApjXj * X - Xo T b, be the k-th equality of figure 1. We choose
any x, [p € [1,n]) and rewrite it in terms of Rpager 158

n

X, = [by -

B 1%~ Xnek * xo]/akp

2z a
j=Lj*p

Substituting Xp in the other equations a new equation set is obtained. This
operation represents a change of state and will be denoted by pivot(p.k). =

It is easy to show that the solution set of the system of equations resulting
from the pivot operation is identical to the solution set of the original system.
In general, repeated use of pivoting can lead to a system of equations whose
solution set is obvious. Such a system [(called canonical form) consists of n
equations with n unknowns where each variable appears in one and only one
equation, and in that equation has coefficient one. However, in attempting to
put the constraint system into canonical form, an arbitrary selection of decision
variables could easily lead to a system with some negative constant terms
and thus to an associated solution that is not even feasible. Therefore, for
solving the problem of 3.3, it is not sufficient to use only pivot operations

3 How to Choose the Interpretations 49

(like in Gaussian elimination) in some way. The Simplex method cleverly applies
a convenient pivot operation at the right time.

What must be developed is a technique for determining an initial feasible
solution for an arbitrary system of equations. The basic idea behind the method
used to solve this problem is simple. We introduce a sufficient number of
variables, called artificial variables, to put the system of constraints into
canonical form with these variables as the decision variables. Then, we apply
the Simplex method to a new objective function defined in such a way that its
minimum value corresponds to a feasible solution of the original problem.

Definition 3.4.2 Introducing artificial variables

The transformation of the system (see figure 1)

n
j;z:] aX; * X,y - Xg = by (i =1..m)
Xog = 2
into the system containing the artificial variables x__X ,5m
n .
J'Z:laijxj *Xnei T X0 ' Xnemei T bi (i =1..m]
Xog = 2
m n] rzl:‘l
_iz=;1 [j§1 3%y * Xpy - %o = w- oz b,
Fig. 2
will be denoted by canonical transformation. .

Note that the system of constraints of figure 2 is canonical with the artificial
variables as decision variables. The new objective function w = x_ ..+ ..+ X o
is transformed into canonical form by subtracting each equation of the system

of constraints from w = x + X

+
n+m-+1 n+2m’

If the pivot operations dictated by the problem of minimizing w are
simultaneously performed on the equation z which defines the original objective
function, this function will be expressed in each step in terms of variables
which are no decision variables. Thus, if an initial basic feasible solution is
found for w, the Simplex method can be initiated immediately on z.

3.4 The Simplex Algorithm 50

We now present the steps of the Simplex algorithm, starting with a problem
in canonical form:

Minimize Crmet¥met * = * CpXn, = 2
Subject to x,; + AmeXme -t Xy = Dby
g * 8om+1¥m+1 * 8xpX, T Dby
*m " mma¥ma t ot @mn¥n * bm

Algorithm 3.4.3 Simplex algorithm

stop <« false

repeat
if (Vj €Elm+1,n)] ¢ = O
then stop <« true ﬁsuccess]
else if (3j € Im+1,n)(Vi € [1, m]) ;<0 A a; < O
then stop < true (failure)
else pivot(p. k)
with p < column with the smallest negative C;
k such that bk/akp = min{bi/aip I a;, > 0}
until stop .

Note that p could be any column with a negative c; term. The smallest ¢; can
reduce the total number of steps necessary to complete the problem. Furthermore,
if the minimum of bi/aip is attained in several rows, a simple rule (such as
choosing that row with the smallest index) can be used to determine the
pivoting row.

The Simplex method presented in 3.4.3 is correct and terminates. There are some
specific complications while applying this procedure. For compactness we would
like to refer to literature for a detailed description of these problems.

Until now we have presented the various devices needed for solving the problem
of finding a solution of a system of linear equations. Before applying these
methods to an example we will construct an algorithm from them that can
solve our problem of section 3.3.

Algorithm 3.4.4

n
Input: j§1 a;%; < Db (i =1..m)

3 How to Choose the Interpretations 51

il Introducing slack variables (figure 1)

n .

j§1 8jjXj * Xne ~ Xo b, (i =1,..,m)
lL Canonical transformation [Definition 3.4.2)

n

j§1 85X * Xnei ~ X0 * Xnemai = b, [i=1..m]

m m _ n]

& P T iz=:1[j§1 815%5 * Xn.a T Xol T W

<U> Applying the Simplex method for generating
a basic feasible solution (Algorithm 3.4.3)

Output: Values for x,,..x, that solve the input problem
or Failure]

Note that in algorithm 3.4.4, we reject the original objective function z = Xo
This function's only use is to justify the employment of the Simplex method for
solving systems of linear inequalities, only. It is irrelevant for producing a basic
solution of our problem.

The following example is intended to demonstrate the essential steps of the
algorithm above. It is a slight modification of an example contained in [Th79l.
Example 3.4.5

We are interested in a solution for the following system of linear inequalities:

x1—2x2—3x3—2x4 = 3
Xy - X, *2x3+x4sn

Adding slack variables

-xo+x1-2x2—3x3-2x4—x5 = 3
-x 1

"

0 "X T Xy *2Xz * X, * Xg

Introducing artificial variables

3.4 The Simplex Algorithm 52
—xo¢x1-2x2—3x3—2x4 Xg * X = 3
“Xg * Xy - X, +2x3+x4 * Xg * Xg = 1
Xoy *+ Xg = W
Canonical transformation
—xo+x,—2x2—3x3—2x4—x5 * X = 3
- Xg * X - Xy +2x3+x4 * Xg ~x8=11
2x0-2x1*3x2'rx:3 * Xy * Xg - Xg = w - 14
Simplex method: x; = 3 + Xy *+ 2X, + 3xX5 + 2X, * Xg - X,
—xo+x1-2x2—3x3—2x4-x5 * X = 3
x2+6x303x4+x5+x6—x7+x8=8
-x2—5x3—3x4—x5—x6+2x7 = w -8
Simplex method: X, = 8 .ly -3y, - =Xg = =X, + =X, - —X
P X375 T5%2 " 5%a 5 6 7 8
- _ 2 _1 _ 2 3 3 - 38
xo * X1 5x2 5x4 gx5 * 5X6 * X7 * 5X8 - 5
1 3, .1 1, 1, 1, . 8
5X2" X3’5X4 5X5*5X6 X7“5Xa s
Xyt Xg = W
Now, let the slack variables as well as the artificial variables be of value zero.

This implies the following equalities:

7 1
X, - =X - =X
1 572 574
1 3
sX2 " Xa * 5¥4
The easiest solution is Xy T ?, X,

consists of the vector (19,8, 0, 0).

0. Another one

X4=

At each step of the Simplex method it is sufficient to know only the coefficients
of the variables in the system of equations. In particular, for computation by

3 How to Choose the Interpretations 53

hand or simple computer implementations it is favourable to record this
information, only. A representation known as Contracted Tableau or Tucker-

diagram is of the following form:

%y Xz ... X
a1 33 a;n | b

. . . - Tableau
a1 qmz - - - qmnl Pm
6 By c, c

The first m rows correspond to the system of constraints with the constant terms
given in the last column. The last row corresponds to the equation defining the
objective function with the constant term (on the right-hand side of that
equation) in the last column. The z term of the objective function is suppressed
from the tableau as it remains fixed throughout the Simplex method.

There are two other forms of tableau representations known as Extended
tableau and Tucker-Beale form. The reader is referred to [Mi76] for a formal
description of these diagrams and to other publications in the field of linear
programming for more details about the Simplex algorithm.

3 How to Choose the Interpretations 54

3.5 Discussion

This chapter dealt with strategies for the generation of appropriate
interpretations which guarantee the termination of a given rule system.

First of all, we presented some heuristics by Ben Cherifa ([Be861) including
suggestions for orienting associative laws, rules that define operators
(f(t,...t] = t such that t does not contain f] and homeomorphism rules.

Section 3.2 contains some new suggestions about arithmetic theories,
distributivity axioms and group theories. Furthermore, we presented a criterion
by which the necessity of mixed interpretations can sometimes be detected. All
these insights have been gained from an analysis of about 300 examples.
Detailed statistics on these examples can also be found in this section.

A partial improvement of the heuristics presented in the sections 3.1 and 3.2 is
contained in 3.3. It is a procedure that mechanically generates interpretations
of operators. This technique is restricted to linear interpretations (note that
nearly three quarters of the interpretations used to orient the 300 examples
have a linear form). The basic ideas of the algorithm are the following ones:

- transforming the rules into inequalities by using interpretations with
variables as coefficients

- approximating each side of the inequalities to a product

- applying a logarithm function to these products (note that we now have
linear inequalities])

- using the Simplex method [(see section 3.4) for solving these linear
inequalities

Note that the algorithm of section 3.3 cannot directly be transformed to general
interpretations since it is very difficult to generalize lemma 3.3.2. We believe
that it is possible to extend this technique to separate interpretations.
Furthermore, this method can be improved by incorporating the heuristics of
sections 3.1 and 3.2.

Vade-mecum of Polynomial Orderings 55

4 How to Check the Positiveness of
Polynomials

The use of polynomial orderings reduces the proof of termination of rewrite
systems to appropriate interpretations orienting the given system on the one
hand and to whether a given polynomial is greater than another one on the
other hand.

In the last chapter we discussed heuristics and an algorithm for finding
appropriate polynomials based on a given set of rules.

The basis of this chapter is the presentation of two well-known procedures
(BL87], [Ro88]) for deciding the positiveness of polynomials. This is equivalent
to decide whether one of two given polynomials is greater than the other.

41 The PRODYEIN s s st s sssesssesneesesssestotebstasensopsisssass 56
4.2 Comparing Polynomials by Comparing MonomialS ..o, 57
43 Comparing Polynomials by Comparing Signs ..., 62

4.4 DIESCUSSION oottt et e e s s e e s e e e e ee et e 67

4 How to Check the Positiveness of Polynomials ' 56

4 .1 The Problem

The proof of a given polynomial in n variables being positive over real numbers
is generally decidable even though in exponential time ([Ta51], [Co751). However,
if we restrict the domain of the polynomial to a proper subset of R, such as N,
the problem is generally undecidable ([Da73]). Nevertheless, since we are
interested in whether a polynomial has a root in [I‘G] it is to be expected that
a decision procedure, to our problem, will not be found.

Instead of trying to solve inequalities it would be more convenient to search
for appropriate algorithms that check the properties which insure the wanted
inequalities. This can be done in various ways, as will be shown.

Let us first look at [[4] Since we are primarily concerned with theorem 234,
[T] is a proper subset of R>!. Our first simplification will be to test the
positiveness of a polynomial on R*! instead of [I5] It should be noted that this
requirement is sufficient albeit unnecessary.

In the following pages we propose two different algorithms (see [BL87], [Ro88])
to perform this task. Both of these techniques originally presume [§] to be a
subset of Pol[N], the set of polynomials having coefficients of IN, although they
can also be used for proving the positiveness of polynomials over R

The computations associated with the first method of Ben Cherifa and Lescanne
utilize an elementary and basic principle to devise a simple and efficient
implementation ([BL87]).

The second more powerful method of Rouyer utilizes a more analytical procedure
which is based on the theorem of Sturm ([Ro88] [Du60]).

4 How to Check the Positiveness of Polynomials 57

4. 2 Comparing Polynomials by Comparing
Monomials

The following method is that proposed by Ben Cherifa and Lescanne ([BL87]).
The main idea is to prove p > O by finding polynomials p,,p,,...p, such that
P=Po 2Py 2.. 2P, >0 The positiveness of p, is supposed to be checked by
a basic principle like 'all coefficients are positive'

To illustrate how this method works let us have a look at the following example.

Example 4.2.1

Suppose we have to prove that a term s is greater than a term t wirt. a
polynomial interpretation [..] such that

x2y2 + 4y2 + 2xy2 and
x2y2 + y2 + xy + 2y + x.

[s]
[t]

If we want to orient the equation s =t to s = t, we need to check the
positiveness of the polynomial

p = [s] - [t] = x2y2 + 4y2 + 2xy? - x%y2 - y2 - xy - 2y - x

3y2 + 2xy2 - xy - 2y - X

This can be done by finding for each monomial m, of p having a negative
coefficient, a monomial m, whose value is greater than or equal to the
absolute value of m, for all instantiations of x and y. If m, has this
property (m, = Im,| for all instantiations of x and y) it is said to bound
m,. Clearly, a monomial m; can be bounded only by a monomial m,
containing each variable occurring in m, in at least the same power as in
m,.

Since we consider polynomials over R*!, 3y2 bounds -2y. Now there are
-xy and -x left to be bounded by 2xy2. If we split 2xy2 into xy2 + .xy2
we see that the first xy2 bounds -xy and the second one bounds -x.

In summary, we have

p =[s]-[t] = x2y2 + 4y2 + 2xy2 - x2y2 - y2 - xy - 2y - x
= 3y2 + 2xy2 - xy - 2y - X
> 2xy? - xy - x since 3y2 > |-2y]|
= xy2 + xy% - xy - X
> xy2 - x since xy2 2 |-xy|
> 0 since xy? > |-x|

Note that the strict inequality p > O only holds since 3y2 > |-2y|. If we
had [s] = x2y2 + 3y2 + 2xy? and, therefore, p = 2y2 + 2xy2 - xy - 2y - X

4.2 Comparing Polynomials by Comparing Monomials 58

we could not prove the positiveness of p in the same manner since for
X =y =1we have [s] = 6 = [t] .

This last remark provides a convenient starting point for the presentation of the
algorithm.

Whereas in the second chapter we gave a definition of polynomial orderings
by restricting the set of interpretations as little as possible, we now wish to
work in the opposite direction by requiring any constant ¢ to be mapped to a
real number C = 2 by every polynomial interpretation [..]. This implies, we exclude
interpretations [...] with [c] < 2 for any constant c.

The reason for this apparent requirement is readily understood. Since all

polynomials are non-diminishing, it follows that [t] = 2 for each t € T and thus,

for each monomial m = Cy X/ Xi® it holds that c , X/L.X{L.XP 2
- In i n

2'crl___rnXI’...X?i—l...xgn. For example, x2 > 2x > x and x%y 2 2xy > Xy.

1

It should be noted that, by increasing the lower bound for the interpretation
of constants, this method becomes more powerful, although this needs to be
postponed.

There are two main problems encountered. Firstly, we have to choose a pair of
monomials, one having a positive and the other one containing a negative
coefficient. Secondly, we must set the negative one against the positive one.
Since these two procedures, named CHOOSE and CHANGE, are the essential
points of the problem, we will discuss them in detail after the presentation of
the whole algorithm.

We assume that the polynomial can be represented as a set of monomials each
realized as a tuple (c,, .,.€;-.€,) Where the e;'s stand for the exponents of
the variables x; and c., ., for the coefticient of the monomial.

Algorithm 4.2.2 (tBL87])

POSITIVE = proc (P : polynomial] returns (string)
while there exists a negative coefficient do
if there exist Ceten > 0 and cy 4 <O
with ei = fi for all 1 € {1,.,n}
then CHOOSE[Cel...en'cf],..fn]
CHANGE[CeL..en ! cf]..
else return ("no answer”)

.fn

end
return ("positive”)
end .

4 How to Check the Positiveness of Polynomials 59

As noted in the example the main idea of the procedure POSITIVE is to consider
a monomial with a negative coefficient, say m, and to try to find a monomial
with a positive coefficient, say m'' which bounds it. When such a monomial
m' is found we divide it into two parts m; and m; with m; + m; < m' such
that m; bounds m.

Thus, to prove the positiveness of the whole polynomial p we can replace the
monomials m and m' by m; getting p' and prove the positiveness of p' For
example, we prove 2xy - Xy - X to be positive by transforming 2xy to xy + xy,
replacing 2xy and -xy by xy and proving Xy - x to be positive.

We now propose the function CHANGE. As mentioned previously the realization
of CHANGE depends heavily on the lower bound for the interpretation of the
constants. In the following, we take for granted that the constants will be
interpreted by real numbers greater than or equal to 2 (cf. suggestion 3.1.3).

Thus, a monomial m having Cei.en @S coefficient bounds a monomial m'

consisting of the coefficient ¢, .. exactly if ¢,y -2°17f1 . .gen-tn 1o |
If m does not bound m', this number can be added to ¢, .. to minimize the
negative coefficient. Since we can describe each monomial by its coefficient
CHANGE could be defined as follows:

CHANGE = proc(cyy on:Cs_tn : monomial)

it Cel..en ~ Icﬂ...fn il pfReR

then cel...en = cel...en * cﬂ...fn'zﬂ-&1 v fn-en
Cs.gn = O

else C; i, T Cy n * Coy en 2% T T ORTIR
Cel...en =0

end

Let us now consider the function CHOOSE. Given a polynomial consisting of a
set of positive and a set of negative monomials, CHOOSE realizes a heuristic for
finding an appropriate positive monomial for each negative monomial. This
means that, for example, to attach the positive monomial x2 instead of 2x2y to
the negative monomial -x of p = 2x2y + x2 + 1 - x - 2y. If we use 2x%y we
cannot prove the positiveness of p. Whereas, choosing x2 leads to 2x2y + 1 - 2y
that can readily be proved to be greater than 1. This choice establishes the
positiveness of p.

This example shows that the success of the algorithm heavily depends on the
realization of CHOOSE. Since in [BL87] the only remark on the implementation
of CHOOSE is not particularly useful, we will discuss an extended version
proposed in [Pa89l

4.2 Comparing Polynomials by Comparing Monomials 60

CHOOSE first searches for a negative monomial that can be bounded by just
one of the positive monomials. If so, these two monomials are taken. Otherwise,
CHOOSE searches for a positive monomial that covers one negative monomial.
If both conditions do not hold any pair of a negative and a positive monomial
will be taken if the positive one contains each variable occurring in the negative
one in, at least, the same power.

CHOOSE = proc(C.; on:Cu. tn ° monomial)

if (there exists Cg1.gn < O and c¢,, 4, is the only positive
monomial with hi > gi for all i € {1,...n}}
or ‘
(there exists Chi.hn > 0 and ¢y g I8 the only negative
monomial with hi > gi for all i € {1,...,n})
or .
(there exists ¢,; ,,, > O and ¢
with hi > gi for all i € {1,..n})

then ¢
c

gl..gn <0

el..en = Chl...hn

f1...fn = cgl...gn
end

Example 4.2.3 (tPa89])

Let p = x3yz + uz + 4x%u + z - x2 - xXu - 2u - Xz

CHOOSE will return the pairs [-xu,4x%u) since no other positive
monomial can bound -xu.

v
~> o p, F x3yz+uz+§x2u+z—x2-2u—xz

For the same reason we get the pair [-xz,x3yz)

7 7
~> Py = gx%yz s uz ¢ ox%u ez - X% - 2u

uz cannot cover any negative monomial except -2u

2 2

~> p. o= Zx3yz + Zx2u sz - x
3 " 8 2

Neither the first nor the second condition holds, so the first possible
monomial [%x:"yz] is chosen to bound -x2

2

3
> pn=—x3yz+§xu¢z s

4

4 How to Check the Positiveness of Polynomials 61

The two first conditions checked in CHOOSE guarantee that the most appropriate
pair of monomials is chosen if one of the conditions holds. This means that, if
the algorithm fails because of a 'wrong' choice this wrong choice must be made
at another point. Experiments showed that in practice nearly every time one of
the two first conditions hold.

Finally, we propose that it should be quite simple to extend this algorithm in
such a way that it automatically computes the lower bound of [[5] wrt. a
given interpretation and uses this value instead of 2 in the procedure CHANGE.
This would enable a user to measure the influence of this value on the results
of the algorithm.

4 How to Check the Positiveness of Polynomials 62

4 3 Comparing Polynomials by Comparing
Signs

The basic concept of this method of Rouyer (see [Ro88]) for proving a polynomial
to be positive over a real interval is the fact that a polynomial p(x), w.rt. one
variable x, has the root x, with multiplicity one if, and only if, it changes its
sign at x,. This fact, for example, can be used to determine whether a linear
polynomial equals zero in the interval [a,b]. This would be true if the sign of
pla) is not equal to that of p(b).

Since
(Vv k-fold root x, of p(x]] plxg) = p'lxg) = .. = p¥(x,) = 0

(for which the exponent k describes the k-fold derivative of p] this idea can
be extended and applied to the case of higher degree polynomials.

Starting with the polynomial to be analyzed one can build a so-called Sturm
sequence of polynomials (py.p;....P,) by

Po = Plx]
p; = p'x]
Pi.z = -(p; mod py] 120

where p; mod p,,, represents the rest when dividing p; by p, ;. In the following
theorem the idea mentioned above is formalized.

Theorem 4 .3.1

Let a,b € R with a < b.
Np[a] [Np[b], resp.)] denotes the number of sign changes in the Sturm
sequence py(x)..p,(x) for x = a (x = b, resp.].

Then, the number of real roots in [a,b] is Np[a] - Np[b]. .

If, for example, pi[a] > 0 for all i € {1,..,n} and py(b) < O for all i € {1,..n}, then
the number of real roots in [a,b] will be O - 0 = O.

Since the calculation of a Sturm sequence in the above manner is costly (because
of the Euclidian division] it is a significant step to explore a procedure for
calculating Sturm sequences starting with p and p' that does not need any
division (see [Du60]). The polynomials p; computed by this method only differ
to those computed using the first method by a positive factor and therefore
could be used in connection with theorem 4.31.

4.3 Comparing Polynomials by Comparing Signs 63

In the following we describe the application of this method to our problem of
proving a polynomial p(x) to be positive on a real interval (see [Ro88]).
1

n n-
- - - - - -i-1
Let po[x] = p(x] = anixn ! and p,(x] = p'(x) = i=20 b, x?~1-1

Firstly, we will record the coefficients of p, and p,; in a table:

Then, we calculate a third and a fourth line in the following manner:

(vi € [O,n-1]) ¢, := boa iy - 85D,

i i+1

(Vi € [0,n-2]) d; = ¢oby,y - byciyg
The d,'s are the coefficients of the polynomial p, we searched for. Using p, and
p, as p, and p, before, we again compute a line of c;/s and a line of ds
which will represent p;. This procedure will continue until one line consists
only of zeros.

Example 4.3.2 ([Ro88])

Let polx] = %3 -2x2 +x+1
p,(x) = 3x2% - 4x +1

1 Po 1 -2 1 1

2 Py 3 -4 1

3 -2 2 3

4 Ps 2 -1

) 25 2

6 P3 -279

We get p,(x] = 2x - 11
pylx) = -279

Note that for computing line five we use line two and line four. "

To get the number of real roots of p(x) that are greater than one, we will
record the signs of p,(1) and p,(+w) for i = 0,1,2,3:

4 How to Check the Positiveness of Polynomials 64

1 ©
0 + +
1 (0] +
2 - +
3 - -
Np | 1 1

Since Np(1) - Np(+w) =1 -1 = 0 and p(w) > O it is proved that p(x) > O for x > 1.

Until now we were engaged in proving the positiveness of a polynomial in one
variable. Is it possible to transfer this procedure to polynomials in n variables ?
We will proceed in a way similar to that when defining partial derivatives of
functions.

Given a polynomial p(x1,..Xn) in n variables we treat x2,.,Xn as constants and
get a polynomial p(x1) in one variable. For example, let p(x,y) = x2 + y2 - 2xy + 1.
Then, p(x.y) = p(x) = 1-x2 + (-2y)x + (y2 + 1) such that 1, -2y, y2 + 1 are the
coefficients of p(x). Thus, proving p[x,y] to be positive is reduced to prove
p(x) to be positive.

Now we have the fact that p(x) = = aix"“i > 0 for all x € [1,[if, and only if,
plec) > O and p(x) does not equal to zero in [1,o[. The first of these two
conditions can readily be checked. The second one is an application of what
we have introduced before. Let us consider the following example.

Example 4.3.3 (Ro881J)

Let plx,y) = x2 + y2 - 2xy + 1.
Then, p(x.y) = plx) = 1.x2 + [-2y)x + [y2 + 1)

Proving p(x) to be positive over [1, o[requires p(w) to be positive and
p(x) to be not equal to zero in [1, [

Since p(w) > O, it is left to show that p(x]) is not zero in [1,o[. This could
be done by building a Sturm sequence as described previously:

Pg 1 -2y y2 + 1

4.3 Comparing Polynomials by Comparing Signs 65

This diagram implies the sign variation table

1 %

0 sg(y® + 2 -2y) .

1 sg(2 - 2y] .

2 - =
?

N, 1

To get an answer to the question for the sign of p(1) we have to apply again
our method to y2 + 2 - 2y and to 2 - 2y. Clearly, we are hoping to find
sg(y? + 2 - 2y) = + or sg(2 - 2y) = - (otherwise, the technique is unsuccessful).
In that case Np(1] would be 1 and, therefore, we would have proved p(x,y) to
be positive.

(a) qgly) = y2+2-2y qdo | 1 -2 2
qly) = 2y -2 q, 2 -2
-2 4
-4
1 ©
0] + +
1 0 .
2 - -
Ng 1 1

Thus, y2 + 2 - 2y has no sign change in [1,«[. Since qolw) > O we have
sg(y? + 2 - 2y) = =

(b) ro[y] = -2y + 2 Io -2 2

nly] = -2 Iy -2
-4
I, 0

1)

0 - -

1 = =

2 0 0

N, 0 0

4 How to Check the Positiveness of Polynomials 66

Since -2y + 2 has no sign change in [1,o[and ryleo) < O we have
sg(-2y + 2] = -

We could now complete the above sign variation table for p(x]:

1 ©
0 + +
1 - +
2 = =
Np 1 1

It is Np[l] - Np[oo] = 0 and therefore p(x) is not zero in [1,o[. In addition,
plo) > O which causes the positiveness of p(x,y). .

Similar to the method proposed in 4.2 it is possible to extend this method by
attaching a dummy value instead of real values to the constants. This means
that the algorithm could test if the given rule system could be oriented by
increasing the lower bound of [[,]

Probably this could lead to interesting information about the dependence of
the comparison of polynomials on the values attached to the constants while
leaving the remaining interpretation unchanged.

4 How to Check the Positiveness of Polynomials 67

4 4 Discussion

In this chapter we have described two well-known procedures ([BL87], [Ro88])
for proving the positiveness of a polynomial. They both originally presume [J]
to be a subset of Pol(N] but they can also be used for proving the positiveness
of polynomials over R

The first technique is based on the idea of finding a polynomial that is smaller
than the given one but simultaneously positive ([BL871).

The second one makes use of several fundamental analytical theorems ([Ro88],
[Du60]). It appears to be more powerful but since we have not implemented
this method in our COMTES-system, we cannot yet verify this opinion by
experiments.

Both techniques have in common a remarkable dependance on the smallest
value interpreting a constant. And both techniques will gain’ more power by
increasing the lower bound of [[] We think that an analysis of this
dependency and especially an investigation as to whether a given polynomial
ordering could be strengthened by manipulating (increasing) the coefficients
could lead to more powerful methods for proving the positiveness of polynomials
as well as new heuristics for finding appropriate interpretations.

Vade-mecum of Polynomial Orderings 68

5 Polynomial Orderings
Modulo Theories

The use of term rewriting systems based on an additional underlying theory E
presumes a special termination property. Here, we consider various theories and
define appropriate polynomial orderings that can be used to prove E-termination.
Some of these orderings are well-known ([Be861), but we also present some new

ones.

51

5.2

53

5.4

5.6

5.6

5.7

5.8

5.9

5.10

5.11

5.12

513

514

E-TermMINAtION ..ottt s bbb anes 69
Proving E-Termination Using Polynomial Orderings ... 72
ASSOCIALIVILY ettt 73

COMMUEATIVITY occuincssivsmsnssniasenssessessessssssssss s s mass s s adaitintanssseasessssssassonsassssasssassossaisdsivess 74
DISEtIIDULIVILY ettt 77
ENdOMOIPRISIN .ottt 79
[AEMIPOLEIICY visismisssarmmsanmssismismmss s s 53655405 5515 se e eesnassasrasessssnssssas sassanssssansosassases 81

IMHIDYUS oottt ettt 82
PermutatiVIty o 83
TranSILIVILY ettt 84
UNIPOLEIICY ettt ettt 85
Combinations Of TREOTIES ... 86
SPECIAl TREOTIESooooii s 99
DISCUSSION ..ottt a ettt 104

5 Polynomial Orderings Modulo Theories 69

6.1 E-Termination

The basic concept of term rewriting systems is to convert an equation into a
directed rewrite rule by comparing both sides w.r.t. an ordering. However, there
exist equations which are incomparable in any case. For example, a rewriting
system containing the commutativity axiom Xx+y = y+X as a rule is
non-terminating. If the termination property is not satisfied, the set of axioms
can be split into two parts: The axioms causing non-termination are used as
equations E while the others are used as rewrite rules R. An appropriate
reduction relation allows reductions modulo the equations in E. The effective
computation with this relation presumes

a complete unification algorithm for the equational theory E and
the E-termination, i.e. there is no infinite sequence of terms of the
formt, = t) =g t, =g t, =R - -

Several methods extending the classical Knuth-Bendix completion procedure
have been developed. Some of them are described in [PS81] [Jo83] and
[(JK861

Since this paper mainly deals with termination we adapt the general results on
termination to the case of equational term rewriting systems [see, for example,
[(BP85], [De87], [Hu80bl, [JM84], [LB77al, [LB77b] and [LB77c]).

An equational term rewriting system terminates if there is an ordering > which
contains the rewrite relation =—R/E - =g ' —x ' —g The test of this inclusion
requires all derivations of the form s =5 o t to be checked. This requirement
can be refined:

Lemma 5.1.1 ([BP85]]

If > is E-compatible, then

> contains =g . iff > contains 59% ' .

Definition 5.1.2

An ordering > is E-compatible

iff

implies >

51 E-Termination 70

If a reduction ordering > is E-compatible and ofl) > ofr] for every rule 1 =g, r
and every substitution o, then the equational term rewriting system R/E
terminates (see [BP85]).

Obviously, E-termination strongly depends on the given underlying theory E.
For example, E must satisfy the following two conditions in order to prevent
infinite derivations (see [JM841]):

- Ifs=1t € E then the set of variables of both terms must be identical.
Otherwise, there will be loops since we may instantiate the additional
variable by an instance of a left-hand side of a rule of R. By rewriting
the term with the rule and by then applying the 'starting equation' twice,
the term will be derived from itself.

For example,
R x*1—>x
E: x*0=0
O=p(x*1)*»0=53 x*0=0

- Furthermore, E-termination cannot be satisfied if there is an equation
of the form t =5 x such that x has more than one occurrence in t. In
this case a left-hand side 1 of a rule of R is E-equal to a term with
several occurrences of 1. Therefore, we can rewrite one of these and start
the process again.

For example,
R --x = x
E: xAax=Xx
"X =p 77X oA X =>9i X A 77X =g X A [ﬂ-'x A ﬂ-X] :?’m
X A [x a-x) =g .

Hence, the use of an ordering > for rewriting systems modulo a theory E
presumes the E-compatibility of >. There exist only a few orderings which have
this property. Most of them are only compatible w.ur.t. associative and
commutative (AC, for short] theories.

For example, associative path orderings (see [Gn88] [GL86], [BP85] and [DHJP83])
extend the recursive path orderings to AC-congruence classes. They are based
on flattening and transforming the terms by a rewriting system with rules similar
to the distributivity axioms. Furthermore, the precedence on the operators has to
satisfy a property called associative pair condition. A disadvantage of the
associative path ordering is its inefficiency which results from the demand that
two terms must be pre-processed (flattened and transformed w.rt. the
distributivity axioms) before they are compared. [St89d] and [St90b] contain an
application of an extension (the embedding of status) of the associative path

5 Polynomial Orderings Modulo Theories 71

orderings to several path and decomposition orderings. Since these orderings are
stronger than the recursive path ordering, the corresponding orderings restricted
to AC-theories are more powerful than the associative path ordering.

A new class of orderings compatible with AC has been introduced in [St89b]
and [St90al. It is based on the Knuth-Bendix ordering with status (KBOS, see
[St89al). A modification of this ordering (called associative-commutative
Knuth-Bendix ordering, ACK] causes its AC-commutation (which is weaker
than the AC-compatibility), a property introduced by Jouannaud and Munoz
([JM841). The most important aspects of this ordering are i] Multiset status is
assigned to each commutative function symbol, ii) The weight of each associative
operator which has to be minimal wur.t. the precedence is zero and iii) The
terms only have to be partly flattened to be compared. A major advantage of
this technique is the possibility of applying the algorithm of [Ma87] to find a
useful weight function for proving the termination of a given rewrite system.
The power of the ordering is nearly the same as that of the Knuth-Bendix
ordering with status.

5 Polynomial Orderings Modulo Theories 72

6.2 Proving E—-—-Termination Using Poly-
nomial Orderings

It is well-known that polynomial orderings can also be restricted to AC-theories
(see [Be86], [BL87], [BL86]). In order to guarantee the AC-compatibility the
interpretations of AC-operators must be of a special form. The following lemma
generalizes this concept:

IL.Lemma 5.2.1

>por 1S E-compatible if
(vs.t €T) s =t ~> s =por t .

This property allows the handling of many different theories, apart from AC.
Ben Cherifa ([Be86]) tests a few theories for their compatibility. This chapter
deals with the extension of her catalogue [including all results of [Be86]). In
the rest of this chapter we present the conditions for the interpretations of
E-operators under which the induced polynomial ordering is E-compatible. For
simplicity, we use abbreviations for the theories:

Definition 5.2.2

Let f,g.1 € 3

Associativity - A[f) iff f(x.1(y.z)) = f({(x,y).2)
Commutativity . Cf) iff f(x.y) = f(y.x)

Left Commutativity : Cplf) iff f(f(x.y).z) = f(f(x,z].y)
Right Commutativity : Cglf] itt f(x.1(y.z)) = f(y.f(x.2])

Left Distributivity . Dylf.g] it flglxy)z) = glf(x.z).f(y.2))
Right Distributivity . Dglt.g) it f(x.gly.z]] = glt(x.y).i(x.2))
Endomorphism . E(f.g) iff f(g(x.y]) = glf(x).f(y))
Idempotency - 1) iff f(x,x) = K

Minus . M(f) ift f(f(x)) 2 X
Permutativity . P[f) iff f(x,,..x) = (X1} Xne(n))
Transitivity . T(f.g) itf f(g(x.y)gly.z)] = flglx.y).alx.z]))
Left Unipotency 2 U () iff f1,x) = X

Right Unipotency . Uglf1) iff f(x.1) = X .

These theories were adopted from [Si89]. Combinations of these theories are
given in 5.12. Furthermore, assertions about special theories like special groups,
rings, etc. are contained in 5.13.

5 Polynomial Orderings Modulo Theories 73

5.3 Associativity

Lemma 5.3.1 ([BL87])

Alf) if [flx.y) = ajxy + a,(x + y) + ag

and aag + a, = a2 .
Special cases: - [flx,y) = axy (if a5, =ag=0)
for arbitrary values of a
- [fllx.y) = x+y +c (if 2, =0 4+ a,=1)

for arbitrary values of ¢

Example 5.3.2 ([KS83])
R (x/x)/(lysyl7y) =y
(x7y)/(z/y) - x/z
X/X - 1
1/x - i(x]
x/i(y) — X *y
E [x*xy)*xz = xx*(y=*2z]
L [10) = 1
[il(x) = x2
[71(x.y) = 2xy2 + x + y2 + 1

[x1(x.y) 2xy + X + y .

5 Polynomial Orderings Modulo Theories 74

54 Commutativity

There are three kinds of commutativity axioms, the [classical) commutativity,
the left and the right commutativity.

LLemma 5.4.1

c(f) it [fllx,y) = izj a;;x'y)
A (vi,j) a;; = ay "

Special cases: - [fllx.y) = a xPy™+ . +axy+ag
for arbitrary values of a_,..a and n
[fllx.y) = alx « y)”
for arbitrary values of a and n

Lemma 5.4.2
There is no interpretation of f such that

Clt) A [Hlilx.y).2) >pop flx.fly.2)) v fx.fly.2]) >pq, ff(x.y]). 2]] .

Due to the lemma, it is impossible to guarantee the termination of a system
containing the associativity law modulo C wur.t. a polynomial ordering. In
general, the combination of an associativity rule and the commutativity equation
is not allowed since it leads to the following infinite derivation (see [Av89]):
f(i(x.y).z) =5 flz.f(x.y]) > f(f(z,x).y) = f(y.f(x.2]] > {(f[y.x].2] = f(f(x.,y).z). Therefore,
the underlying theory of the next example consists of both commutativity as
well as associativity since an abelian group possesses both proper<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>