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Abstract 

Typical examples, that is, examples that are representative for a particular situation 
or concept, play an important role in human knowledge representation and reasoning. 
In real life situations'more often than not, instead of a lengthy abstract characteriza
tion, a typical example is used to describe the situation. This well-known observation 
has been the motivation for various investigations in experimental psychology, which 
also motivate our formal characterization of typical examples, based on a partial order 
for their typicality. Reasoning by typical examples is then developed as a special case 
of analogical reasoning using the semantic information contained in the corresponding 
concept structures. We derive new inference rules by replacing the explicit informa
tion about connections and similarity, which are normally used to formalize analogical 
inference rules, by information about the relationship to typical examples. Using these 
inference rules analogical reasoning proceeds by checking a related typical example, 
this is a form of reasoning based on semantic information from cases. 
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3 

1 Introduction 

Human reasoning is to an extraordinary extent based on reasoning by examples and cases 
[21]. This is in sharp contrast to most systems of artificial intelligence (AI) that rely es
sentially on one kind of mechanism - namely rules combined with static facts. For these 
systems deductive calculi are an accepted theoretical basis. Although these systems are often 
adequate to solve the problems in a special domain and in particular they allow for efficient 
inference procedures for certain tasks, it is far from clear how these systems can be extended 
to the kind of reasoning patterns that rely on real world experience, such as reasoning by 
analogy, case-based reasoning or reasoning from typical examples as proposed in this paper. 

A well-known criticism of classical AI by Dreyfus and Dreyfus [6] questions this rule
based approach: they claim that especially in the highest stage of knowledge processing (the 
expert level) examples are imperative. Of course we cannot remember all examples we have 
ever encountered, but instead we extract a few typical examples that are easy to remember, 
and that are sufficient to catch important aspects of the general case. Although. the fields 
of analogical as well as case-based reasoning are both concerned with reasoning based on 
examples, surprisingly the importance of reasoning by typical examples, as for instance, 
investigated by' Rosch [21] and Lakoff [19] has nqt been elaborated. However, an attempt 
of Winston [35] was based on statistic prototypicality. In this paper we derive analogical 
reasoning patterns based on typical examples. The idea behind our approach is to replace 
some symbolic rule-based information by explicit semantic knowledge that we assume to be 
directly represented in the memory (in a computer store) by neural nets, a case base or some 
other means. This is in line with current suggestions of e.g. Halpern and Vardi [12] as well 
as of Johnson-Laird and Byrne [13] elaborating model oriented reasoning patterns. 

2 Typical Examples of Typical Examples 

In the following we shall present three cases where reasoning by typical examples is an 
essential means to draw inferences. 

2.1 Typical Birds Can Fly 

In the context of non-monotonic logic the bird Tweety, and its disputed ability to fly, is a 
paradigmatic examplei . 

Consider the following information: Typical birds can fly and Birdy is a bird, i.e. the set 
([Vx typexbird(X) ===? can..fly(x)], bird(Birdy)}, where typexy(x) represents the fact that 
x is a typical y. If there is no additional information we want to conclude (tentatively) that 

•Paradigmatic examples as a part of a scientific paradigm are introduced by Kuhn [18]. They are typical 
examples in a specific scientific context. 
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4 Typical Examples of Typical Examples 

Birdy can fly, that is, can-flyCBirdy). However if we have some knowledge that entails 
that Birdy cannot fly (for example because it has a broken wing) we want to conclude 
(definitively) that Birdy cannot fly, that is, -,can-flyCBirdy). . 

Reasoning by typical examples, we would describe the situation as follows: Suppose Birdy 
is a bird and also there is Tweety, which is a typical bird. Assume also that in addition to the 
object language (say first-order predicate logic) there is some means for the representation 
of a typical bird. This could be done in a semantic net or some frame structure or it 
could be represented in a neural net: the only formal requirement we have for this model 
representation - of which we assume that it is distinct and different form our (logical) 
object language - is that we obtain answers for certain questions. For example, the query 
can-fly (Tweety) should evaluate to true, if the representation of the typical bird Tweety 
contains the information that in fact Tweety can fly. In other words we have two different 
levels of information: the syntactic information, bird (Birdy), which is stated in the object 
language, where (deductive) inferences are drawn and the semantic information level, where 
for example a typical case of a bird, namely Tweety, is represented. If can_flyCTweety) 
evaluates to true, we tentatively conclude that Birdy can fly, too. Apparently, this procedure 
is similar to the way humans reason under these circumstances: The default knowledge is 
stored in the form of an example [23], from which the conclusion is drawn" by analogy rather 
than by an explicit rule of deductive inference - be it monotonic or not. If we want to know 
something about an arbitrary bird, for instance, if it has teeth, we have no rule.in mind like: 
"typical birds have no teeth" (and the myriad of other facts that are not the case), but we 
think of a typical representative for the concept bird and reason by analogy: Tweety has no 
teeth, hence Birdy has no teeth. 

In the following we shall discuss examples from mathematics. 

2.2 What is a Group? 

'When a teacher introduces a new concept in a math lesson, normally, she would give a 
definition, show some important properties, and above all she would give several well-chosen 
examples for this concept. Generally a student "understands" the concept only when he 
knows all these facets of the concept and not just the definition augmented by some properties 
[15]. The examples a good teacher presents to her students are well-chosen and typical: For 
instance, the concept of a group may be introduced by well-known examples like (Z, +) 
rather than the multiplication group of non-zero quaternions. Scanning some text books on 
algebrai we found in all text books, the integers (Z, +) and in all but one the symmetric 
group (S(1\t/) , 0) as examples for a group.ii 

iFischer, Godement, Kowalsky, Lang, Lipschutz, Liineburg, Oeljeklaus-Remmert, van der Waerden 
iiSimilarly, when you are asked to quickly enumerate some tools of a craftsman, almost certainly "hammer" 

will be among the first examples. Similarly a violin is a typical musical instrument. In this psychological 
sense (7l, +) and "hammer" are typical examples. 
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In addition to these findings there is empirical evidence in the context of learning that for 
tasks that are usually considered purely deductive, people often use, although formally incor
rect, a form of reasoning that exploits the typicality structure of their mental representation 
of concepts [3]. 

In the field of mathematical problem solving Cherniak [3] has found a deductive reasoning 
heuristic corresponding to Hadamard's observations [11] and P6lya's recommendation [24]: 
'When trying to discover a proof of a theorem, it is often indispensable to start the work with 
a typical example that satisfies the initial conditions. Cherniak furthermore states that the 
more complex the deductive task, the more likely subjects will decide to use the typicality 
heuristic. We experienced that the typicality heuristics works in theorem proving too: proofs 
for typical problems can guide the search for proofs of more general problems (for example 
by analogy [14, 24] or via a proof plan [2]). 

2.3 How to Prove a Theorem 

In 2.1 and 2.2 typical examples of familiar concepts have been considered within the context 
of learning and common sense reasoning. Another important field where typical examples 
play an important role is in proving mathematical theorems. Just as concepts can be defined 
with the help of typical examples, some proofs can be found with the help of proofs for typical 
cases. 

For instance, IR2 is a typical example for a finite-dimensional Euclidean vector space with 
scalar product. The proof of the orthonormalization theorem i can be obtained from the 
proof for IR2. The proof in the case of IR2 is as follows: 

Select a vector VI =f:. 0 from IR2 and define
 
WI := 11 vIII-I. VI' WI is an orthonormal basis of
 
IR1 

, which is a subspace of IR2. Since IR2 is two

dimensional, there is a vector V in IR2 which is
 
not in the one-dimensional space generated by
 
WI' vVe define V2 to be the difference of V and
 
the orthogonal projection of V on WI, that is,
 
V2 := V - (WI' v) . WI andw2 := Ilv211-I . V2'
 

{WI' W2} is an orthonormal base of IR2.
 

The induction step of the proof of the orthonormalization theorem for V proceeds ana
logously to the proof step for IR2: 

Let {WI, ... ,wn-d be the orthonormal base of an (n - 1)- dimensional subspace of a 
finitely dimensional vector space V with dim(V) > n - 1'. Since V has a dimension greater 

iTheorem: Let V be a finite-dimensional Euclidean vector space and W C V a sub-vector space, then every 
orthonormal base (WI' ... , wm ) of W can be completed to a orthonormal base (Wl' ... , W m , Wm+l, ... , wn ) 

ofV. 

In addition to these findings there is empirical evidence in the context of learning that for
tasks that are usually considered purely deductive, people often use, although formally incor-
rect, a form of reasoning that exploits the typicality structure of their mental representation
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orthonormal base (11);, . . . , wm) of W can be  completed to  a orthonormal base (w l ,  . . . , wm,  wm“ ,  . . . , w,.)
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6 Psvchological Findings 

than n - 1, there is a vector v E V which is not in the (n - 1)-dimensional space generated 
by {Wl," ., wn-d. 

As in the case of IR2 
, we define V n as the difference of v and the sum of the orthogonal 

n':"l 
projections of v on Wi, that is, v - L: (Wi, v) . Wi, and W n as Ilvnll-1

. vn . Then {Wl"'" w n } 
i=l 

is an orthogonal base of V. 

Thus, proofs for typical cases can guide the search for proofs of arbitrary models. 

3 Psychological Findings 

The typicality of examples is a well-known research area in empirical psychology [19, 22, 
25]. Rosch and Mervis [2:1.] argue in their prototype theory of mental representations for 
the importance of representative instances of a concept. In particular they evaluate the 
membership problem of a concept in terms of the resemblance of an instance to a typical 
example. 

The existence of a reproducible typicality rating that distinguishes typical examples from 
those that are are not is one of the main results, which has been interpreted and explained 
by a special memory organization that prefers typical examples [21]. Some of the important 
experimental methods for the extraction of typical examples are [19]: 

- direct rating: Subjects are asked to rate (say on a scale from one to seven) how 
representative cL given example (e.g., a robin or a chicken) is for a given category (e.g. 
bird). Typical examples are rated best, whereas atypical examples are rated least. 

- reaction time: Subjects are asked to press a button to indicate true or false in response 
to a statement of the form "An [example] is a [category name]" (e.g., "A chicken is a 
bird"). Response times are shorter for typical examples. 

- reproduction of examples: When asked to list or draw examples of category members, 
subjects are more likely to list or draw typical examples. 

- asymmetry in similarity ratings: Less typical examples are often considered to be more 
similar to a typical example than the converse. 

- generalization: Humans generalize more likely from typical examples than from arbit
rary examples. 

There is empirical evidence that all these methods extract similar ratings (for a discussion 
of the results see [19] and [26]). Generally, this rating is not identical with the set inclusion 
of properties [27]. Rosch and Mervis [21] investigated the concepts "furniture", "vehicle", 
"fruit", "weapon", "vegetable", and "clothing", and they found typicality ratings for each 
of them. vVhile most investigations· supporting the prototype theory have been made on 
natural concepts that are often not precisely definable, Armstrong et al. [1] carried out 
the same experiments as Rosch [27] for uniquely defined concepts like "odd number" and 
"grandmother". They found a typicality structure for these concepts too. 

6 . Psvchological Fincfimgs
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These psychological findings are a motivation and a legitimation for our formal approach, 
as all of these results suggest the existence of the notion of typicality. vVe shall represent 
typicality as a partial order C on the set of instances of a concept C and in the following we 
assume C to be a given partial order induced by the typicality rating. We take this partial 
order C on a concept C as given - as difficult as it may be, to determine it in a specific 
setting. 

We fix the following notation (a more formal definition is given in section 4 below): 
A typical example of a concept C is an example that is particularly representative for C; 

. that is, it rates best under the assumed partial order of a typicality rating. 

The following case is used as a point of reference for typical examples throughout this 
paper. Consider the concept of an "apple" which consists of the set of elements 

each of which is a representation of a specific apple and hence an instance of the general 
notion of an apple. Apples have the properties colour, taste, age, shape, and ripeness. 
Every specific apple is characterized by certain property values, where knowledge may be 
incomplete as in the case of apple all1, where the colour is not known. Correspondingly, we 
shall consider only partial interpretations in our formal treatment in section 4. The figure 
below displays each apple by a circle, inside of which is its name, e.g. all' Along with each 
apple we list its properties, e.g. red, sweet, fresh, oval, ripe in the case of apple all. The edges 
indicate the typicality rating, that is, all is less typical than apple a~. Typical examples are 
marked by an asterisk. 

red, sweet, fresh green, sweet, fresh 
a* a*

1 round',rIpe 3 round, ripe 

red, sweet, fresh green, sour, fresh green, sour, fresh green, sweet 

oval, ripe round, unripe round, ripe ripe 

sweet green, sour, old green, red, fresh 
a2ll a221 

round oval, unripe oval, ripe 

Generally speaking, examples may be represented in different ways. For instance, Tweety 
could be represented as a neural net, the typical example for a group, i.e. the integers (71, +), 
could be given as the integer data-structure in a programming language and so on. 

These psychological findings are a motivation and a legitimation for our formal approach,
as all of these results suggest the existence of the notion of typicality. We shall represent
typicality as a partial order I: on the set of instances of a concept C and in  the following we
assume [ t o  be' a. given partial order induced by the typicality rating. We take this partial
order C on a concept C as given —- as difficult as i t  may be, to  determine it in a specific
setting.

We fix the following notation (a more formal definition is given in section 4 below):
A typical example of a concept C is an example that is particularly representative for C ,

“that 1s, i t  rates best under the assumed partial order of a typicality rating.
The following case is used as a point of reference for typical examples throughout this

paper. Consider the concept of an “”apple which consists of the set of elements
* * tsupple !=  {61,011,  a111‚a2aa21 ,a211 ,a22 ,  a221, 03 ,1131}

each of which is a representation of a specific apple and hence an instance of the general
notion of an apple. Apples have the properties colour, taste, age, shape, and ripeness.
Every specific apple is characterized by certain property values, Where knowledge may be
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a'pple we list its properties, e.  g. red, sweet, fresh, oval, ripe in the case of apple an .  The edges
indicate the typicality rating, that 1s, an is less typical than apple “1- Typical examples are
marked by an asterisk.

©red ,  sweet, fresh green, sour,  fresh @ green, sweet, fresh
a
1 round,  ripe oval, unripe round, ripe

@)  r ed ,  sweet, fresh green, sour,  fresh green, sour,  fresh green, sweet
11 _ . . .oval, ripe round,  unnpe round, r ipe  ripe

green, sour, old green, red, freshOsweet
0111

round \

Generally speaking, examples may be  represented in different ways. For instance, Tweety
could be  represented as a neural net ,  the typical example for a group, i.e. the integers (Z ,  + ) ,
could be  given as the integer  data—structure i n  a programming language and so on.

oval, unripe oval, r ipe
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4 

Formal Treatment 

The apple examples are represented as lists of properties, as this makes it easy to commu
nicate these properties in a paper (such as this). Our formalism however is not committed to 
a particular means of representation for the typical examples (sub-symbolic by neural nets or 
such like or symbolic by frames, semantic nets, a programming language, a data base etc.), 
as long as this representation. obeys certain very general properties. One important require
ment is the decidability of whether or not an example is a typical example for a concept. 
Another one is the existence of a partial interpretation of formulae in the examples. 

Forn~al Treatment 

In this section we shall develop the first steps toward a hybrid computational approach of
 
reasoning by typical examples. Our starting point is the notion of an agent.
 

Definition (Agent): An agent A is a pair consisting of a knowledge base KB and a
 
reasoner, by which knowledge can be inferred from KB. A reasoner is a set of inference
 
rules along with some means of their control.
 

These rules of inference may be classified as deductive, inductive, and abductive (as proposed
 
by Ch. S. Peirce). In addition there is a special rule of inference, called analogical reasoning
 
by typical examples, as defined in the next section. The knowledge base KB = (r, E, I) itself
 
is a triple consisting of a set of logical formulae r, a set of partially ordered sets of examples
 
Elt, each of which with at least one element (non-emptiness), and a partial interpretation
 
function I. The elements e E E"" are called examples and the interpretation function I and
 
these examples are connected in the following way: I is defined such that for some constants
 
Ci in r, namely for the names of examples in Elt, we have I(Ci) = ei, where Ci is a constant
 
and ei the corresponding explicit representation of the example ei in Elt. Since we consider
 
only one agent at a time for the purpose of this paper we fix I without subscript.
 

The set of logical formulae r is stated in a sorted first-order logic .c, although the basic
 
approach of this paper would remain valid for any arbitrary logic with model theoretic
 
semantics.
 

Typical examples occur in many disguises: typical examples of concepts (such as a violin,
 
a hammer or an apple above), as typical examples of situations (such as Schank's script of
 
eating in a restaurant, opening a door), as typical examples of a proof for a theorem or as a
 
typi<;al example for a plan. Since most psychological investigations on mental representations
 
have been restricted to concepts, we confine our treatment to concepts too (as a starting
 
point in this paper), and represent them as sorts Ki. For instance, a sorted formula is:
 
"Ix: apple red(x) =? sweet(x).
 

For sorted logics comp¥e e.g. [31,29]. We do not consider typical examples for any arbitrary
 
formula, but only for fixed sorts in our sorted logic. As usual constants and variables of sort
 
K are interpreted in a universe 'D,. such that Elt is a non-empty subset of'D",. For instance,
 
constants of sort apple are interpreted in a universe 'Da.pple of all apples. A subset Ea.pple of
 

8 ' . Formal Treatment

The apple examples are represented as lists of properties, as this makes it easy to  commu-
nicate these properties in  a paper (such as this).  Our formalism however is not committed to
a particular means of representation for the typical examples (sub-symbolic by neural nets or
such like or symbolic by frames, semantic nets, a programming language, a data base etc.),
as long as this representation. obeys certain very general properties. One important require-
ment is the decidability of whether or not an example is a typical example for a concept.
Another one is the existence of a partial interpretation of formulae in the examples.

4 Formal Treatment

In this section we shall develop the first steps toward a hybrid computational approach of
reasoning by typical examples. Our starting point is the notion of an agent.
Definition (Agent ) :  An agent A is a pair consisting of a knowledge base KB and a
reasoner, by which knowledge can be  inferred from KB.  A reasoner is a set of inference
rules along with some means of their control.
These rules of inference may be  classified as deductive, inductive, and abductive (as proposed
by Ch.  S .  Peirce). In addition there is a special rule of inference, called analogical reasoning
by typical examples, as defined in  the next section. The knowledge base KB = (I‘, S ‚ I  ) itself
is a. triple consisting of a set of logical formulae P , a set of partially ordered sets of examples
€,“ each of which with at least one element (non-emptiness), and a partial interpretation
function I. The elements e € Em are called examples and the interpretation function I and
these examples are connected in  the following way: I is  defined such that for some constants
c,- i n  I‘, namely for the names of examples i n  5'“, we have 1 ( a )  = ei, where c.- is  a constant
and e; the corresponding explicit representation of the example e; in 8‘. Since we consider
only one agent at a time for the purpose of this paper we fix I without subscript.
The set of logical formulae 1" is stated in a sorted first-order logic £ ,  although the basic
approach of this paper would remain valid for any arbitrary logic with model theoretic
semantics.
Typical examples occur in many disguises: typical examples of concepts (such as a violin,
a. hammer or an apple above), as typical examples of situations (such as Schank’s script of
eating in a restaurant, opening a door), as typical examples of a proof for a theorem or as a
typical example for a plan. Since most psychological investigations on mental representations
have been restricted to  concepts, we confine our treatment to  concepts too (as a starting
point in this paper), and represent them as sorts m.. For instance, a sorted formula is:
Vz : apple red(a:) => sweet(a:).
For sorted logics compare e.g. [31, 29]. We do not consider typical examples for any arbitrary
formula, but only for fixed sorts in our sorted logic. As usual constants and variables of sort
fc are interpreted in  a universe Dr, such that €,; is  a non-empty subset of 'Dn. For instance,
constants of sort apple are interpreted in a universe Dappze of all apples. A subset apple of
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'Dapple is represented in the knowledge base of A, it contains all examples for apples, which 
are remembered by A. On each £~ we assume a given partial order C~, which is defined 
by the typicality rating. The interpretation function I is a partial function from constant 
symbols, function symbols (e.g. of sort 11:1 x ... X II:n --+ 11:) and predicate symbols to the 
corresponding elements, functions (e.g. from £~1 x ... X £~n to £~) and relations. 

Definition (Concept): A pair (£~, C~), where £~ is a set of examples and c~ is a partial 
order on £~ (the typicality rating) is called a concept and denoted by C~. 

If there is no danger of confusion we write C instead of c~ and C instead of C~. 

An example e E £~ of sort 11: is called an exception if it is not comparable to any other 
example of £K, (that is, if there is no e' E £K, with e' C e or e C e'). 

Definition (Typical Example): An example e E £~ of sort 11: is called a typical example 
for 11: if it is maximal (that is, there is no e' which e C e') and if it is not an exception. vVe 
write typexK,(e) or typex(e), iff e is a typical example. 

We assume that the interpretation I is extended to arbitrary formulae as usual and that 
the assignment e[x +- e] is equal to the assignment eexcept for all free occurrences of x, 
where x is· mapped to e. Since I is a partial function the interpretation of a formula may 
evaluate to true, to false, or to undefined. 

The following definition captures the connection between the formulae in r and the ex
amples in £. 

Definition (Example for a Formula): Let H be a formula in £, with at most one free 
variable XK, of sort 11:. An example e E £~ of sort 11: is called an example for H if Ie[x_e] (H) = 
true. We say H is valid in e, er--H and define er--H := Ierx-e] (H). 

Definition (Relevant Validity): A formula HE£' with at most one free variable x of 
sort 11: is said to be relevantly valid in an example e E £K, iff er--H and for all e' E £K, with 
e' C e, e'r--H is true or undefined. \Ve write er--rH. 

Remark: If we want to know for a formula H and an example e whether er--rH holds, it 
is a priori necessary to scan the whole data base of examples. This of course is not the 
intention of reasoning with typical examples: The very idea is to check only a few typical 
examples and to avoid checking all the others. Hence, for efficiency reasons, relevancy should 
be explicitly integrated into the representation of a typical example. An alternative to the 
definition above is to introduce a higher-order relation "relevant" as done by Gentner [7], [8] 
or Winston [36]. 

Example: In the apple example we have: typex(an, but not typex(all)' air--r sweet(x), 
airvr red(x), but ailfr round(x). Relevancy of features is important .for reasoning by ex
amples, in particular, for analogical reasoning. For instance, it is not reasonable to analo
gically infer that if an apple x is round then it is sweet, but it is reasonable (for the above 
apple examples) to infer that if x is red then it is sweet. 

Dupple is represented in the knowledge base of A ,  i t  contains all examples for apples, which
are remembered by A .  On  each & we assume a given partial order En ,  which is  defined
by the typicality rating. The interpretation function I is a partial function from constant
symbols, function symbols (e.g. of sort 14,1 x x n„ ——> 19) and predicate symbols to the
corresponding elements, functions (e.g. from €,el x . . .  x 8,," to  &)  and relations.

Definit ion (Concep t ) :  A pair (5”, : 5 ) ,  where 63',‘ is a set of examples and [„  is a partial
order on SK (the typicality rating) is called a concept and denoted by CE.

If there is no danger of confusion we write I: instead of II,c and C instead of CE.

An example e € €,; of sort n is called an exception if i t  is  not comparable to any other
example of En (that is, if there is no 8’ € & with e’ E e or e L: e’).

Definition (Typical Example):  An example 6 E & of sort Is: is called a typical example
for h: if it is maximal (that is, there is no e’ which 6 I: e’) and if it  is not an exception. We
write typex„(e) or typex(e), iff e is a typical example.

We assume that the interpretation I is extended to arbitrary formulae as usual and that
the assignment 6L1: +— e] is. equal to the assignment £ except for all free occurrences of a:,
where :1: is 'mapped to  6. Since I is a partial function the interpretation of a formula may
evaluate to  t rue ,  to f a l s e ,  or  t o  undef ined.

The following definition captures the connection between the formulae in I‘ and the ex—
amples in  8 .

Definit ion (Example for a Formula): Let H be  a formula in £ with at most one free
variable 23,, of sort It. An example e € & of sort K. is called an example for H if I€[‚__e](H ) =
true. We say H is valid in e, elvH and define el~H :=  IE[„._„](H).
Definition (Relevant Validity): A formula H E £ with at most one free variable a: of
sort K. is said to be relevantly valid in an example 8 € €,‘ iff (&l and for all 6' € 8,, with
8’ |: e, e"|~H is true or undefined. We write ele.
Remark: If we want to know for a formula H and an example e whether efe holds, it
is a priori necessary to  scan the whole data base of examples. This of course is not the
intention of reasoning'with typical examples: The very idea is to  check only a few typical
examples and to  avoid checking all the others. Hence, for efficiency reasons, relevancy should
be explicitly integrated into the representation of a. typical example. An alternative to  the
definition above is to introduce a higher-order relation “relevant” as done by Gentner [7], [8]
or Winston [36].

Example: In the apple example we have: typex(a{), but not typex(an), a ;  l‘r sweet(z),
a;  F», red(m), but a;  hör round(a;). Relevancy of features is important for reasoning by ex-
amples, in particular, for analogical reasoning. For instance, i t  is not reasonable to  analo-
gically infer that if an apple :1: is round then it is sweet, but i t  is reasonable (for the above
apple examples) to  infer that if :c is red then it is sweet.
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5 Analogical Reasoning with Typical Examples 

In this section we assume a fixed agent and we shall discuss different reasoning patterns by 
analogy for this agent. These analogical reasoning patterns are then modified in order to 
incorporate reasoning by typical examples. 

5.1 A General Inference Rule for Analogical Reasoning 

Analogical reasoning is a form of reasoning that is heavily based on some background know
ledge [28, 33, 10]. In the following, we assume the reader to,be familiar with the mainstream 
work on analogical reasoning and just recall some basic notions; for a detailed discussion see 
for example [20, 28]. 

Generally speaking, analogical reasoning transfers of a property from a known base ex
ample to a partially unknown target example, if the base and the target are similar with 
respect to some other property. Later on we shall call these properties that establish the 
similarity between base and target aspects. Analogical reasoning is based on knowledge 
about a causal or another connection between properties (aspects) of examples. Such a 
connection is for instance that, "if two cars are built in the same year and have the same 
make, then their price will probably be the same." The two cars do not necessarily have to 
c9rrespond in other properties (e.g. colour). These connections are part of an agent's exper
ience and belong to its knowledge base, as argued in [28]. Connections can be represented 
as ordered pairs of properties. For a more general treatment of analogical reasoning, the 
notion "properties" has to be replaced by the more general notion of an "aspect" including 
for instance causes and effects. Hence, in our approach, a connection is represented as the 
pair [AI, A2] of aspects. Our notion of connection subsumes the determinations [5], causal 
rules [4, 16], schemata [9], and abstractions [10]. 

Example: Let S denote the aspect "structure". Let h be a certain example of the concept 
"house". Then S(h) is an £-formula describing the structure of the house h. Let c be an 
example of the concept "car". Then S(c) may be a totally different formula describing the 
structure of the car c. 

The experience "the structure of an example determines the function of the example" is 
encoded in a connection [structure, function]. Often this connection is not given explicitly 
for all examples. But, from the connection [structure, function] one can infer analogically 
that if two examples band t are similar with respect to their structure then they may 
correspond with respect to their function too. 

Definition (Aspect): An aspect A is a partial function mapping the examples e of Cl> to 
non-tautological L:-formulae H with at most one free variable of sort "-, such that er--H. If 
e is an example and A is an aspect then A(e) is the £-formula describing A in e. 

Example: For the aspect "colour" in our apple example we have colour(a;)=green(x) and 
colour(a221) = (green(x )t\ red(x)). 
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5 Analogical Reasoning With Typical Examples

In this section we assume a fixed agent and we shall discuss different reasoning patterns by
analogy for this agent. These analogical reasoning patterns are then modified in order to
incorporate reasoning by typical examples.

5 .1  A General Inference Rule for Analogical Reasoning

Analogical reasoning is a form of reasoning that is heavily based on some background know-
ledge [28, 33, 10]. In the following, we assume the reader to.be familiar with the mainstream
work on analogical reasoning and just recall some basic notions; for a detailed discussion see
for example [20, 28].

Generally speaking, analogical reasoning transfers of a property from a known base ea:-
ample to a partially unknown target example, if the base and the target are similar with
respect to  some other property. Later on we shall call these properties that establish the
similarity between base and target aspects. Analogical reasoning is based on knowledge
about a causal or another connection between properties (aspects) of examples. Such a
connection is for instance that ,  “if two cars are built in the same year and have the same
make, then their price will probably be the same.” The two cars do not necessarily have to
correspond in other properties (e.g. colour). These connections are part of an agent’s exper-
ience and belong to its knowledge base, as argued in [28]. Connections can be represented
as ordered pairs of properties. For a more general treatment of analogical reasoning, the
notion “properties” has to be replaced by the more general notion of an “aspect” including
for instance causes and effects. Hence, in our approach, a connection is represented as the
pair [A1, A2] of aspects. Our notion of connection subsumes the determinations [5], causal
rules [4, 16], schemata [9], and abstractions [10].
Example:  Let S' denote the aspect “structure”. Let h be a certain example of the concept
“house”. Then S (h) is an E-formula describing the structure of the house h. Let c be an
example of the concept “car”. Then S (c) may be a totally different formula describing the
structure of the car c.
The experience “the structure of an example determines the function of the example” is
encoded in a connection [structure, function]. Often this connection is not given explicitly
for all examples. But ,  from the connection [structure, function] one can infer analogically
that if two examples 6 and t are similar with respect t o  their structure then they may
correspond with respect to their function too.
Definit ion (Aspect ) :  An aspect A is a partial function mapping the examples e of C,; to
non-tautological £-formulae H with at most one free variable of sort n,  such that e]vH. If
e is an example and A is an aspect then A(e) is the L—formula describing A in 3.
Example: For the aspect “colour” in our apple example we have colour(a;)=green(m) and
colour(a221)=(green(z)/\ red(x)).



11 

Definition (Analogical Inference): Let the base b be a (sufficiently) known example and 
the target t be an at least partially unknown example. Let AI, A z be aspects.
 

An inference rule that is based on the similarity of band t, with respect to an aspect Al
 
(i.e., on AI(b) {::} AI(t)), and on a connection [AI, Az], that results in a correspondence of
 
A z(b) and A z(t) is said to be an inference by analogy. The base b is called an analogue of
 
the target t with respect to the connection [AI, Az].
 
The inference rule is expressed formally as:
 

AI(t) {::} AI(b), [All Az](AN) 
Az(t) := Az(b) 

That means, if the values of the aspect Al are equivalent for band t, and there is a 
connection [AI, Az] then we define Az for t as Az(t) := Az(b). In particular it follows that 
Az(b) is hypothesized valid for t (with a justification depending on the justification of the 
connection [AI, Az]). 

Elsewhere one of us distinguished several modes of analogical inference [20]: typical
example-based (shortly "typex-based"), schema-based, and theory-based. In this paper we 
are interested in the typex-based mode only and for this the general inference pattern (AN) 
has to be modified accordingly. The typex-based reasoning to be formalized below, can be 
stated informally as follows: given a base and a target example where both the base and the 
target are examples of the same concept, and furthermore if the target is in some sense less 
typical but still within the range of the base, then some properties may be transferred from 
the base to the target example. 

In order to formalize this typex-based analogical inference, we have to introduce the 
notion of relevancy of an aspect.
 

Definition (Relevancy of an Aspect): An aspect A is said to be relevant in an example
 

e E £K if A(e) is relevantly valid in e. We write relevant(A, e).
 

Example: In the apple example we have relevant(colour, a~). 

5.2	 Inference Rules for Analogical Reasoning with Typical Ex
amples 

Restrictions have to be imposed on the above rule (AN) for typex-based analogical inference: 
Normally, connections as complicated as [structure, function] are based on generalizations of 
several examples (that is, these connections are schema-based or theory-based in the sense 
of [20]). In the typex-based analogical inference mode we just want to use one example, the 
typical one, and therefore we do not need any explicit information on connections. Hence, 
one of the prerequisites of the above (AN) rule, which requires the connection [AI, Az], is 
not necessary and can be replaced by other information. However, it is necessary that the 
aspects Al and A z are relevant for the typical example b* (the base). Else any formula"that 
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Definit ion (Analogical Inference): Let the base b be a (sufficiently) known example and
the target t be  an at least partially unknown example. Let A1, A2 be aspects.
An inference rule that is based on the similarity of b and t ,  with respect to  an aspect A1
(i.e., on A1(b) © A1(t)), and on a connection [A1, A2], that results in a correspondence of
A2(b) and A2(t) is said to  be an inference by analogy. The base b is called an analogue of
the target t with respect to  the connection [A1,A2].
The-inference rule is expressed formally as:

A1(t) @ A1(b‘), [A1,A2] /
A2“)  :=  A2(b)(AN)

That means, if the values of the aspect A1 are equivalent for b and t ,  and there is a.
connection [A1,A2] then we define A2 for t as A2(t) :=  A2(b). In particular it follows that
A2(b) is hypothesized valid for t (with a justification depending on the justification of the
connection [Ah/12]).

Elsewhere one of us distinguished several modes of analogical inference [20]: typical-
example—based (shortly “typex-based”), schema—based, and theory-based. In this paper we
are interested in the typex-based mode only and for this the general inference pattern (AN)
has to  be  modified accordingly. The typex-based reasoning to  be formalized below, can be
stated informally as follows: given a base and a target example where both the base and the
target are examples of the same concept, and furthermore if the target is in some sense less
typical but still within the range of the base, then some properties may be transferred from
the base to  the target example. '

In order to formalize this typex—based analogical inference, we have to  introduce the
notion of relevancy of an aspect.
Definition (Relevancy of an Aspec t ) :  An aspect A is said to  be  relevant in an example
e E €,; if A(e) is relevantly valid in e. We write relevant(A, e).
Example:  In the apple example we have relevant(colour, a i ) .

5 .2  Inference Rules for Analogical Reasoning with Typical Ex-
amples

Restrictions have to  be  imposed on the above rule (AN) for typex—based analogical inference:
Normally, connections as complicated as [structure, function] are based on generalizations of
several examples (that is,  these connections are schema~based or theory-based in the sense
of [20]). In the typex—based analogical inference mode we just  want to use one example, the
typical one, and therefore we do not need any explicit information on connections. Hence,
one of the prerequisites of the above (AN) rule, which requires the connection [A1,A2], is
not necessary and can be replaced by other information. However, i t  is necessary that the
aspects A1 and A2 are relevant for the typical example b“ ( the base). Else any formula’that
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is valid in b* could be inferred because of an irrelevant or accidental correspondence between 
b* and t.
 
Example: Looking at the apple example, let round(x) be valid in t. Without the constraint
 
on relevancy it is possible to infer sweet(x) to be valid in t by analogy.
 

Now we are going to modify (AN) for typex-based analogical inference. Let b* and t be 
examples, i.e. elements, of a concept C, and let Al and A2 be aspects. Assuming 

(i) AI(t) {;} AI(b*), relevant(Al, b*), relevant(A2 , b*), typex(b*). 

Then relevant(A1, b*), relevant(Az, b*), and typex(b*) supports the connection [AI, Az]. 
Hence, from (i) follows 

(ii) A1(t) {;} AI(b*), [AI, A2 ]. 

Because of (ii) and the inference rule (AN) we have 

(iii) Az(t) := Az(b*). 
That is, we have the permission to define Az for t by Az(b*) if this is consistent with the
 
previous knowledge about t.
 
The inference rule for examples b* and t of a concept C expressed formally is:
 

AI(t) {;} AI(b*), relevant(AI, b*), relevant(A2 , b*), typex(b*)
(TYPl) 

Az(t) := Az(b*) 

This is our first inference rule for typex-based analogical reasoning. 

Example: Ifcolour(a;) {;} colour(t), relevant(colour,a;), relevant(taste,a;), and typex(a;)
 
then it is permissible to define the taste for t by
 

taste(t) := taste(a;) = sour(x). In other words, we hypothesize tf-vsour(x).
 

As the above mentioned experiments in empirical psychology have shown, people often 
transfer knowledge from a typical example to another example by an explicit use of the 
typicality rating. To model this, our second modification of (AN) uses the relation c 
explicitly. "Ve restrict this modification to cases where typex( e) and el C e implies the 
existence of an aspect A such that relevant(A,e) and A(el) {;} A(e). This restriction is not 
really very severe and in accordance with psychological findings, see e.g.. [32]. 

Assuming that Az is an aspect, which is still undefined for t, and that b* and tare 
examples of C, and assume 

(i) typex(b*), t C b*, relevant(A2 , b*). 
From t C b* follows by the above restriction that there is an aspect Al with relevant(Al, b*), 
and AI(t) {;} Al(b*) Hence, we have 

(ii) AI(t) {;} AI(b*), relevant(A1, b*), relevant(A2 , b*), typex(b*). 
Inference rule (TYPl) and (ii) together yield 

(iii) Az(t) := A2(b*). 
Now, (i) and (iii) together give our second inference rule expressed formally as: 
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is valid in b" could be inferred because of an irrelevant or accidental correspondence between
b‘ and t .
Example: Looking at the apple example, let round(a:) be valid in t .  Without the constraint
on relevancy it is possible to infer sweet(z) to be valid in t by analogy.

Now we are going to  modify (AN) for typex—based analogical inference. Let b" and t be
examples, i .  e .  elements, of a concept C,  and let A1 and A2 be  aspects. Assuming

(i) A1(t) 4:) A1(b*), relevant(A1, b"), relevant(A2, b*), typex(b*).
Then relevant(A1,b“), relevant(A2,b*), and typex(b"‘) supports the connection [Ah/12].
Hence, from (i) follows

(ii) A1(t) 4:) A1(b*), [A1,A2].
Because of (ii) and the inference rule (AN) we have

(iii) A2“)  == A201")- .
That is, we have the permission to define A2 for t by A2(b*) if this is consistent with the
previous knowledge about t .
The inference rule for examples b’“ and t of a concept C expressed formally is:

A1(t) (:) A1(b"‘), re‘levant(A1,b"),relevant(A2, b”), typex(b*)
A2(t) :=  A2(b*)

This is  our first inference rule for typex—based analogical reasoning.

(TYPl)

Example: If colour(a;) 4:) colour(t), relevant(colour,a;), relevant(taste, a3), and typex(a;)
then i t  is permissible to  define the taste for t by
taste(t) :=  taste(a;) = sour(a:). In other words, we hypothesize tlvsour(:v).

As the above mentioned experiments in empirical psychology have shown, people often
transfer knowledge from a typical example to  another example by an explicit use of the
typicality rating. To model this, our second modification of (AN) uses the relation E
explicitly. We restrict this modification to  cases where typex(e) and 61 E 6 implies the
existence of an aspect A such that relevant(A, e) and A(el) 4:) A(e). This restriction is not
really very severe and in accordance with psychological findings, see e.g._ [32].

Assuming that A2 is an aspect,  which is  still undefined for t ,  and that b" and t are
examples of C ,  and assume

(i) typex(b*), t C b", relevant(A2,b*).
From t I: 6" follows by the above restriction that there is an aspect A1 with relevant(A1,  b‘),
and A1(t) @ A1(b*) Hence, we have

(ii) A1(t) 1:) A1(b"), relevant(A1, b"), relevant(A2, b“), typex(b*).
Inference rule (TYPl)  and (ii) together yield

(iii) A2(t) :=  A2(b*).
Now, (i) and (iii) together give our second inference rule expressed formally as:
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typex(b"'), t C b*, relevant(A2 , b*)
(TYP2) A 2 (t) := A2 (b*) 

For the aspect A2 and examples b* and t of C, this second pattern of typex-based analo
gical inference expresses a permission to define A2 for t, if that is consistent with the previous 
knowledge about t. 

Example: Because of typex(an, aUI C a]", and relevant(colour, a]") it is allowed to define 
colour(aUI) as red(x). 

Based on the two inference rules (TYP1) and (TYP2) our reasoner has two procedures 
for checking an example t: 

1. Analogical reasoning can proceed according to (TYP1) for a target example t of a concept 
C (which is not completely known) in the following way: 

Find some appropriate non-tautological formula HI with tr--HI, which is rel

evantly valid in a typical example b*.
 
From another formula H2 , relevantly valid in b*, hypothesize tr--H2 by (TYP1).
 

Example: Consider again the apple example. For an example t with tr--sour(x) and a 
still unknown C-relationship one can hypothesize tr--green(x), because of a;r--rgreen(x) and 
a;r--rsour(x). For a t with tr--green(x) one can hypothesize tr--sour(x) as well as tr--sweet(x). 

2. For a partially known target example t already integrated into the concept structure of 
C, the analogical inference is not necessarily based on the indirect mode via a formula HI' 
A simpler and more natural procedure for typex-based analogical reasoning results from the 
pattern TYP2. In this case analogical reasoning proceeds for such a target example t of a 
concept C according to the following process: 

Look for a typical example b* of C with t C b*. 
Look for a formula H relevantly valid in b*. 
Then hypothesize analogically tr--H according to TYP2. 

Example: In the apple example, because of aUI C ai,air--rred(x) the hypothetical validity 
of red(x) in aUI can be established. 

This procedure is a more semantically oriented way of analogical reasoning that approx
imates human analogical reasoning by typical examples. It does not explicitly consider 
connections. 

It is however interesting to note for both kinds of typex-based analogical reasoning, that 
several condit'ions of (AN) do not explicitly occur in (TYP1) and (TYP2), and hence we 
do not need to compute them explicitly. They are given implicitly by the concept structure 
and the typicality of b*. In particular, connections and in (TYP2) the computation of 
the similarity of b* and t can be avoided. This is an important advantage of reasoning by 
examples. 
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6 Conclusion 

The particular kind of analogical reasoning that is presented in this paper is based on se
mantic information about concept structures and typical examples. Relevant properties are 
transferred from a typical example to another similar case. Based on this procedure it is 
inter alia possible to model certain aspects of human reasoning that are not rule-based per 
se. 

There is related work: Winston's analogy model [34] and [35] explicitly preferred pro
totypical aspects of the target. Prototypical information is statistically determined for a 
certain class of examples. However, the statistical approach contradicts the current view of 
prototypicality. Johnson-Laird and Byrne [13] have developed a procedure based on model
checking of constructed (not necessarily typical) models. They incorporate non-monotonic 
aspects of human reasoning. In our approach non-monotonicity emerges as we refer to in
formation about typical examples as a kind of default. We might have to withdraw some 
formulae, that are hypothesized to b~ true for a given example if we get further informa
tion about the example or the rating. Shoham's approach [30] for describing non-monotonic 
logics seems to be well suited for formally describing this procedure. 

We have confined our treatment to typical examples of a concept only. This can be gener
alized by considering also typical examples b* of a property (of an aspect A). Then similarity 
classes consist of examples b with values A(b) similar or equal to A(b*). An appropriately 
generalized inference rule (TYP2) can be used in the second analogical reasoning procedure. 

Our approach is open for using modal operators. For instance, relevancy could be stated 
as a modality and it would be interesting to investigate the relationship to possible world 
semantics [17]. Halpern and Vardi [12] constructed possible world semantics for model check
ing and they compared the complexity of deduction and model-checking. They found that 
one determinant the complexity of model-checking depends on, is the size of the Kripke 
structure. Our approach uses a heuristic that restricts the number of considered possible 
situations and ignores the rest. In addition, the complexity is limited by focusing the atten
tion on relevant features only. This could be a good basis for further discussion: There is 
something afoot demanding for hybrid systems. 
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