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SUMMARY 

Crosslinking (CXL), Autologous Serum (AS), Amniotic Membrane Suspension 

(AMS) and Amniotic Membrane Homogenate (AMH): Promising Tools to 

Improve Corneal Wound Healing? 

 

Background and Purposes: Migration and proliferation of corneal epithelial cells are 

one of the most fundamental processes during corneal wound healing. Corneal limbal 

stem cells keep proliferating, differentiating and centripetally migrating to renew the 

epithelium. CXL, AS and amniotic membrane extract have been reported to support 

corneal epithelialization and wound healing and contain several growth factors.   

The purposes of our studies were: 

 To evaluate the effect of keratocyte supernatant after CXL (harvesting time, 

riboflavin concentration and UVA-light illumination) on migration and 

proliferation of human corneal epithelial cells (HCECs), in vitro. 

 To study and compare the dose-dependent effects of AS and FBS on HCEC 

migration, proliferation and viability in vitro, and to determine the concentrations 

and effects of KGF, FGFb, HGF and TGF-β1 in AS. 

 To analyze the effects of different concentrations of AMS and AMH on HCEC 

viability, migration and proliferation in vitro, and to determine the concentrations 

and the influence of KGF, FGFb, HGF and TGF-β1 concentration in AMS and 

AMH. 

Methods:  

 Primary human keratocytes isolated from 8 normal and 6 keratoconus corneas were 

cultured. Thereafter, keratocytes in 0%, 0.05% or 1% riboflavin solution were split 

into samples without and with 370 nm UVA-light-illumination. After removal of 

the riboflavin solution, keratocytes were incubated in the mentioned keratocyte 

culture medium at 37 °C and keratocyte supernatant was harvested after 5 and 24 

hours, respectively. Keratocyte supernatant without riboflavin and UVA treatment, 

was used as control. HCECs were cultured in DMEM/F12 with 5% FBS, 0.5% 
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DMSO, 10 ng/mL human epidermal growth factor, 1% insulin-transferrin-selenium, 

until reaching confluence, the HCEC culture medium was replaced by the 

keratocyte supernatant and HCEC migration was analyzed using wound healing 

assay. HCEC proliferation was determined by the cell proliferation ELISA BrdU 

(colorimetric) kit. Statistical analysis was performed using a linear mixed model in 

the framework of a Generalized Estimating Equations (GEE) approach to analyze 

the effect of harvesting time, riboflavin concentration and UVA-light illumination. 

 AS was prepared from 13 patients according to the regulations of the LIONS Cornea 

Bank Saar-Lor-Lux, Trier/Westpfalz. HCECs were firstly cultured as described 

above, then were incubated in serum media which was consisting of DMEM/F12 

supplemented by 5%, 10%, 15% or 30% AS or FBS for 24 hours. Thereafter, HCEC 

viability was analyzed using Cell Proliferation Kit XTT, HCEC migration and 

proliferation was analyzed as described above. KGF, FGFb, HGF and TGF-β1 in 

AS was measured by ELISA. Statistical analysis was performed using generalized 

linear models to analyze the effect of AS and FBS, and to analyze the responses of 

HCEC viability, migration and proliferation to concentrations of KGF, FGFb, HGF, 

TGF-β1 in AS. 

 Amniotic membranes of 13 placentas were prepared and thereafter stored at -80°C 

using the standard methods of the LIONS Cornea Bank Saar-Lor-Lux, 

Trier/Westpfalz. For AMS preparation, following defreezing, AM pieces were 

inserted in a 6-well plate and 5 ml DMEM/F12 (with 5% FBS) per gram tissue was 

added for 96 hours of incubation. After removal of the amniotic membrane, the 

remaining supernatant was collected for experiments. For AMH preparation, 

following defreezing, amniotic membranes were first homogenized in liquid 

nitrogen. After liquid nitrogen evaporated, 5 ml DMEM/F12 (with 5% FBS) per 

gram tissue was added. Following centrifugation (1000 rpm for 5 min), the 

supernatant was collected for experiments. HCECs were firstly cultured as 

described above, then were incubated in culture medium using DMEM/F12, 5% 

FBS supplemented by 15%, 30% or 100% AMS or 15% or 30% AMH. Thereafter, 

HCEC viability, migration and proliferation were analyzed as described above. KGF, 

FGFb, HGF and TGF-β1 in AS and AMH were measured by ELISA. Comparison 

to the control group was performed using Mann-Whitney U test, generalized linear 

model was used to analyze the responses of HCEC viability, migration and 
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proliferation to concentrations of KGF, FGFb, HGF, TGF-β1. 

Results  

 Riboflavin concentration, UVA-light illumination and harvesting time of normal or 

keratoconus keratocyte supernatant had no significant impact on HCEC 

proliferation (P > 0.10). Riboflavin concentration did no show significant impact 

on HCEC migration using normal or keratoconus keratocyte supernatant (P > 0.10). 

However, longer harvesting time of normal or keratoconus keratocyte supernatant 

significantly increased (P = 0.01 for both) and UVA-light illumination of 

keratoconus keratocyte supernatant (P < 0.001) significantly decreased HCEC 

migration. 

 HCEC viability was the highest at 30% AS or 15% FBS and the lowest at 10% AS 

or 30% FBS application. HCEC migration was the quickest through 30% AS or 30% 

FBS and the slowest through 5% AS or 5% FBS concentrations. Proliferation was 

the most increased through 15% AS or 5% FBS and the least increased through 30% 

AS or 30% FBS concentrations. HCEC viability at 10% and 15% AS was 

significantly worse (P = 0.001, P = 0.023) compared to baseline and significantly 

better at 15% FBS (P = 0.003) concentrations. HCEC migration was significantly 

worse (P ≤ 0.007) and HCEC proliferation significantly better (P < 0.001) in all 

concentration groups compared to baseline. 

 HCEC viability remained unchanged using 15% or 30% AMS (P = 1.0 for both), 

however, it decreased significantly using 100% AMS (P < 0.001) or 15% (P = 0.041) 

or 30% AMH (P < 0.001), compared to controls. Using 15% or 30% AMS, HCEC 

migration increased significantly (P < 0.001 for both). Using 15% or 30% AMH (P 

= 0.153; P = 0.083), HCEC migration remained unchanged and 100% AMS 

inhibited HCEC migration (P < 0.001). 15% and 30% AMS had no effect on HCEC 

proliferation (P = 0.454 and P = 0.119), but 100% AMS (P < 0.001) and 15% (P = 

0.002) and 30% AMH (P = 0.001) inhibited HCEC proliferation significantly. 

 

Conclusions  

 Harvesting time, riboflavin concentration and UVA-light illumination of normal 

and keratoconus keratocyte cultures has no impact on proliferation of HCECs, in 

the short term. However, 24 hours harvesting time (both for normal and 

keratoconus keratocytes) increases and UVA-light-illumination of keratoconus 
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keratocyte cultures decreases HCEC migration. 

 HCEC viability is mostly increased through 30% AS or 15% FBS, migration 

through 30% AS or 30% FBS and proliferation through 15% AS or 5% FBS. In 

addition, AS better supports HCECs viability and migration than FBS. 

 With unchanged HCEC viability and proliferation and increased HCEC migration, 

15% and 30% AMS application seems to be the most appropriate method to support 

epithelial healing. 
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ZUSAMMENFASSUNG 

Crosslinking (CXL), autologes Serum (AS), Amnionmembran Suspension (AMS) 

und Amnionmembran Homogenat (AMH): Vielversprechende Wekzeuge zur 

Verbesserung der Wundheilung des Hornhautepithels? 

 

Hintergrund / Ziele: Die Migration und Proliferation spielt eine entscheidende Rolle 

in der kornealen Wundheilung. Korneale limbale Stammzellen sorgen für eine ständige 

Erneuerung des Epithels durch Proliferation, Differenzierung und Migration. CXL, AS 

und Amnionmembran enthalten verschiedene Wachstumsfaktoren, die die 

Wundheilung des kornealen Epithels unterstützen. 

Die Ziele dieser Studie waren: 

 Den Effekt von Zellkulturüberständen von Keratozyten nach CXL 

(Abnahmezeitpunkt, Riboflavin-Konzentration und UVA-Licht Einfluss) 

hinsichtlich der Migration und Proliferation humaner kornealer 

Epithelzelllinien (HCEC) in vitro zu untersuchen. 

 Der Vergleich Dosis-abhängiger Effekte von AS und FBS auf die Migration, 

Proliferation und Viabilität von HCEC’s in vitro, sowie die Bestimmung der 

Konzentrationen und Effekte von KGF, FGFb, HGF und TGF-β1 im 

autologen Serum. 

 Den Effekt unterschiedlicher Konzentrationen von AMS und AMH auf die 

Migration und Proliferation von HCEC’s in vitro, sowie die Bestimmung der 

Konzentration und Effekte von KGF, FGFb, HGF und TGF-β1 Konzentration 

in AMS und AMH. 

Methoden:  

 Primäre humane Keratozyten wurden von 8 gesunden und von 6 Patienten mit 

diagnostiziertem Keratokonus isoliert und kultiviert. Die Keratozyten wurden 

mit einer Riboflavin-Lösung der Konzentrationen 0%, 0,05% und 0,1% 

versehen. Eine Gruppe wurde mit einer Wellenlänge von 370 nm UVA-Licht 

bestrahlt, eine Gruppe blieb unbestrahlt. Nach der Bestrahlung wurde die 

Riboflavin-Lösung entfernt und durch Kulturmedium ersetzt. Nach jeweils 5 
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Stunden und 24 Stunden Inkubation wurde das Kulturmedium entnommen. Als 

Kontrolle dienten Kulturüberstände ohne Riboflavin und ohne Bestrahlung. 

HCEC’s wurden in DMEM/F12 supplementiert mit 5% FBS, 0,5% DMSO, 10 

ng/mL humanem Epidermal Growth Factor, 1% Insulin-Transferrin-Selenium 

bis zur Konfluenz kultiviert. Das Medium wurde gegen die 

Zellkulturüberstände der Keratozytenkulturen ersetzt. Die Migration wurde mit 

einem Scratch-Assay analysiert, die Bestimmung der Proliferation erfolgte 

kolorimetrisch. Die statistische Auswertung erfolgte mit einem linearen 

generalisierten Modell (GEE), um die Einflussgrößen der Inkubationszeit, der 

Riboflavin-Konzentration und des UVA-Lichts unabhängig voneinander zu 

bestimmen.  

 Das autologe Serum von 13 Patienten wurde nach den Richtlinien der LIONS 

Hornhaut Bank Saar-Lor-Lux, Trier/Westpfalz präpariert. HCEC’s wurden wie 

beschrieben kultiviert und für 24 Stunden mit DMEM/F12 supplementiert 

entweder mit 5%, 10%, 15% und 30% AS oder FBS inkubiert. Die Viabilität 

der HCEC’s wurde mit einem XTT Zellproliferations-Test Kit kolorimetrisch 

erfasst. Die Migration und Proliferation wurden wie bereits beschrieben 

analysiert. Die Konzentration von KGF, FGFb, HGF und TGF-β1 in AS wurde 

mit einem ELISA gemessen. Die Statistische Analyse erfolgte mit einem 

linearen generalisiertem Modell um den Einfluss von AS und FBS auf die 

Viabilität, Migration und Proliferation in Abhängigkeit von KGF, FGFb, HGF, 

TGF-β1 in AS zu erfassen. 

 Amnionmembranen von 13 Patientinnen wurden nach den Richtlinien der 

LIONS Hornhautbank Saar-Lor-Lux, Trier/Westpfalz präpariert und bei -80°C 

tiefgefroren. Für die Präparation der AMS wurden die Membranen in kleine 

Stücke geschnitten und mit 5ml DMEM/F12 (+ 5% FBS) pro Gramm Gewebe 

für 96 Stunden inkubiert. Das Medium ohne Amnionmembran wurde für die 

Testansätze verwendet. Für die Präparation des AMH wurden die Membranen 

in flüssigem Stickstoff homogenisiert und das Homogenat in 5ml DMEM/F12 

(+ 5% FBS) pro Gramm Gewebe aufgenommen. Für die Experimente wurde 

der Überstand des Homogenates verwendet. Die HCEC’s wurden wie schon 

beschrieben kultiviert und mit DMEM/F12, 5% FBS und jeweils 15%, 30% 

oder 100% AMS, oder 15% oder 30% AMH inkubiert und die Migraton und 
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Proliferation bestimmt. Die Messung der Konzentrationen von KGF, FGFb, 

HGF and TGF-β1 in AMS und AMH erfolgte mit einem ELISA.Die Vergleiche 

zu den Kontrollgruppen wurden mit dem Mann-Whitney U-Test analysiert, ein 

lineares generalisiertes Model diente zur Erfassung der Einfluss von KGF, 

FGFb, HGF, TGF-β1 auf die Migration und Proliferation der HCEC’s. 

Ergebnisse:  

 Die Riboflavin-Konzentration, UVA-Bestrahlung und Abnahmezeit des 

Mediums von normalen oder Keratokonus-Keratozyten zeigen keinen Einfluss 

auf die Proliferation der HCEC’s (P > 0,1). Die Riboflavin-Konzentration im 

Medium von normalem oder Keratokonus-Keratozyten hatte keinen Einfluss 

auf die Migration der HCEC’s (P > 0,1), eine spätere Abnahme-Zeit des 

Mediums von normalen und Keratokonus-Keratozyten erhöhte die 

Migrationsrate der HCEC‘s (P = 0,01). Die Bestrahlung der Keratokonus-

Keratozyten mit UVA-Licht  hingegen verlangsamte die Migration der 

HCEC’s (P < 0,001). 

 Die Viabilität der HCEC’s zeigte die höchsten Werte bei dem Einsatz von 30% 

AS und 15% FBS, die niedrigsten Werte bei 10% AS und 30% FBS. Die 

Migrationsrate war bei Verwendung von 30% AS und 30% FBS am höchsten 

und zeigte bei 15% AS und 5% FBS die geringsten Migrationsraten. Die 

Proliferationsrate war bei einem Einsatz von 15% AS und 5% FBS am höchsten 

und zeigte unter Verwendung von 30% AS und 30% FBS die geringsten 

Proliferationsraten. Die Viabilität der HCEC’s zeigte die schlechtesten Werte 

bei Verwendung von 10% und 15% AS (P = 0,001, P = 0,023) im Vergleich zur 

Basislinie und die besten Werte bei Einsatz von 15% FBS (P = 0,003). Die 

Migration der HCEC’s zeigte in allen Gruppen signifikant schlechtere Werte (P 

≤ 0,007), die Proliferation hingegen signifikant bessere Werte (P < 0,001) im 

Vergleich zur Basislinie. 

 Die Viabilität der HCEC’s zeigte keine Veränderung bei Verwendung von 15% 

und 30% AMS (beide P = 1,0). Eine signifikant schlechtere Viabilität zeigt sich 

unter Verwendung von 100% AMS (P < 0,001) und 15% bzw. 30% AMH (P < 

0,001), im Vergleich zur Kontrolle. Bei Einsatz von 15% und 30% AMS steigt 

die Migrationsrate der HCEC’s signifikant an (P < 0,001 für beide). Die 

Migration zeigt keinen Unterschied bei Einsatz von 15% und 30% AMH (P = 



ZUSAMMENFASSUNG                                           XVIII 

  

0,153, P = 0,083), zeigt jedoch eine erniedrigte Migrationsrate bei Einsatz von 

100% AMS (P < 0,001). Auf die Proliferation der HCEC’s zeigt der Einsatz von 

15% und 30% AMS keinen Effekt (P = 0,454, P = 0,119), wird jedoch bei 

Verwendung von 100% AMS (P < 0,001) und 15% und 30% AMH (P = 0,002, 

P = 0,001) signifikant inhibiert. 

Zusammenfassung:  

 Der Abnahmezeitpunkt des Mediums bei normalen und Keratokonus-

Keratozyten, Riboflavin-konzentration und UVA-Licht haben keinen Einfluss 

auf die Proliferation von HCEC’s. Eine Abnahme des Mediums nach 24 

Stunden von normalen und Keratokonus-Keratozyten steigert jedoch die 

Migrationsrate, während der Einsatz von UVA-Licht die Migrationsrate der 

HCEC’s hemmt. 

 Die Viabilität der HCEC’s ist am höchsten unter Verwendung von 30% AS und 

15% FBS, die Migrationsrate bei Einsatz von 30% AS und 30% FBS und die 

Proliferation bei Verwendung von 15% AS und 5% FBS.  

 Betrachtet man die unveränderte Viabilität und Proliferation der HCEC’s bei 

erhöhter Migrationsrate, zeigt die Verwendung von 15% und 30% AMS das 

beste Resultat um die epitheliale Wundheilung zu unterstützen. 
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1    INTRODUCTION 

Corneal epithelium is the outermost layer of the cornea, consisting of stratified cells 

with constant self-renewal. The regenerative capacity of the corneal epithelium is 

retained in its basal cell layer, which consists of two different cell populations: stem 

cells and transient amplifying cells [1, 2]. The epithelial stem cells reside in their niches, 

which are in the limbal corneal region called palisades of Vogt [3]. Asymmetric division 

of limbal stem cells give rise to transient amplifying cells, which can migrate towards 

the central cornea to compensate epithelial cell loss by desquamation [4, 5]. 

When corneal epithelial wound healing is initiated, asymmetric division of limbal stem 

cells will launch numerous transient amplifying cells that migrate centripetally in 

direction of the wound edge, followed by proliferation, differentiation, stratification and 

adhesion until the wound is closed [6, 7]. Cell migration and proliferation have a crucial 

role in corneal epithelial wound healing; these processes are regulated by growth factors 

and cytokines. 

To facilitate corneal epithelial wound healing, many in part novel methods may be 

tested such as corneal crosslinking (CXL), application of autologous serum (AS) or 

amniotic membrane extract (AME). 
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1.1    Growth factors regulating corneal epithelial wound healing 

1.1.1   Growth factors produced by keratocytes, supporting epithelial healing 

Several growth factors and cytokines influence proliferation and migration of corneal 

epithelial cells. However, especially following corneal abrasion, growth factors and 

cytokines produced by keratocytes play a critical role, and influence epithelial cell 

proliferation and migration in a paracrine fashion [8].  

Keratinocyte growth factor (KGF) and hepatocyte growth factor (HGF) are secreted 

through keratocytes and influence the epithelium [9, 10]. A corneal epithelial wound 

will stimulate up-regulation of HGF and KGF mRNA in keratocytes, while HGF and 

KGF receptor mRNA are up-regulated in the corneal epithelium [11]. 

In an in vitro experiment [9], KGF mRNA was shown to be expressed in rabbit 

keratocytes but not in corneal epithelial cells (CECs), while KGF receptor mRNA was 

expressed in CECs but not in keratocytes. An animal experiment [12] and in vitro 

experiments [9, 13] suggested that KGF enhanced CEC proliferation, accelerated 

corneal epithelial wound healing, but did not affect motility. 

HGF at the ocular surface is mainly produced by the lacrimal gland [14], but HGF 

mRNA is also expressed in keratocytes, corneal endothelial cells and at a low level in 

CECs [10]. Previous experiments suggested that HGF promoted CEC migration, 

proliferation and inhibited apoptosis [15-18]. However, it was also reported that HGF 

delayed while KGF accelerated corneal epithelial wound healing [19]. 

The expression of FGFb is weak in the normal cornea, but strong at the wound edge of 

the corneal epithelium, stroma and endothelium [20]. In human studies, FGFb was 

reported to promote human corneal epithelial cell (HCEC) proliferation and accelerate 

wound healing and in an animal study to promote canine CEC viability [21-23]. 

1.1.2   TGF-β as the inhibitory factor 

Three isoforms of TGF-β and their receptors are expressed in CECs and keratocytes 

[24]. In an uninjured mouse cornea, TGF-β1 is detected inside epithelial cells, but not 
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secreted, while the isoforms TGF-β2 and β3 are present in the extracellular environment. 

Through stimulus of a corneal wound, all three isoforms of TGF-β are secreted into the 

subepithelial stroma [25]. In human and equine experiments, TGF-β1 was reported to 

inhibit both HCEC and keratocyte proliferation [21, 26]. TGF-β1 and β2 were reported 

to antagonize the effects of other growth factors in vitro and inhibited rabbit CEC 

proliferation promoted by KGF, HGF and epidermal growth factor (EGF) [27]. 

In some other studies, TGF-1 was reported to promote keratocyte proliferation although 

delayed keratocyte migration [28, 29]. TGF-β is a crucial factor regulating 

fibroproliferative processes in the eye, including corneal scarring [30]. O’Kane et al. 

suggest that by manipulating isoforms of TGF-β (particularly by reducing the relative 

level of TGF-β1), corneal scarring can be reduced [31]. 

1.2    Photo-oxidative corneal crosslinking 

1.2.1   Mechanisms of CXL 

In the corneal stroma, collagen fibrils are synthesized by keratocytes and following their 

secretion are assembled into collagen fibres in the extracellular matrix [32]. Covalent 

crosslinkages between collagen fibres are necessary to maintain the stability and 

stiffness of the corneal stroma. Under physiological conditions, these crosslinkages 

between corneal collagens are produced by an enzymatic oxidation reaction catalyzed 

by lysyl oxidase [33]. 

Besides, there are also nonenzymatic methods resulting in crosslinkages between 

corneal collagens, including photochemical reaction or the use of chemical agents such 

as glutaraldehyde or aldehyde sugars [34]. 

During the so called crosslinking (CXL) therapy the photosensitizer riboflavin (vitamin 

B2) and UVA-light illumination are used, in means of a photochemical reaction. 

Riboflavin is excited through UVA-light-illumination and following relaxation this 

photochemical reaction generates free oxygen radicals. Thereafter,  amino acids along 

the collagen molecular chains react with each other under the effect of oxygen radicals 
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and covalent crosslinkages between collagens are formed [35]. 

1.2.2   Applications and safety of CXL 

CXL was first reported to stop the progression of keratoconus in 2003 in a clinical pilot 

trial [36]. As it can enhance corneal stiffness, CXL is usually used in treatment of 

keratoconus or ectatic corneal disease [37, 38]. Clinical corneal CXL is performed as 

Figure 1. 

 

 

 

Figure 1. Corneal CXL with riboflavin and UVA-light illumination [36]. 

 

 

The successful application of CXL in recent years has also been reported in treatment 

of resistant bacterial, fungal and acanthamoeba keratitis [39-41]. In addition, CXL has 

been used in treatment of corneal melting and to successfully support corneal 

epithelialization and wound healing [42, 43]. 

During the CXL process, keratocytes, corneal limbal epithelial stem cells, and in 

transepithelial CXL the entire epithelium, may be jeopardized by the DNA damage 

effect of the UVA-light [44] and radicals released from riboflavin [45]. 
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Following CXL, the density of keratocytes in the anterior stroma usually decreases 

significantly in vivo and it may take even 12 months for the keratocytes to recover [46-

51]. Animal experiments reported that the keratocyte damage is inducible through 

0.5mW/cm2 or more UVA irradiance, which is lower than the 3mW/cm2 irradiance used 

with standard CXL [52, 53]. 

Interestingly, most clinical studies describe corneal re-epithelialization within 3-4 days 

after CXL [54-61], but the corneal epithelium removed in CXL might not restore its 

thickness until three month [62] and apoptosis of epithelial cells following 

transepithelial CXL may happen [49]. The effects of CXL on CEC functions, like 

migration and proliferation, have not been thoroughly analyzed yet. It is only known 

that CXL may inhibit the regeneration of human limbal epithelial cells [63]. 

1.3    Autologous serum  

1.3.1   Autologous serum as a natural substitute of tears 

Tear film is a fluid layer essential for ocular surface lubrication, immune protection and 

nutrition [64]. Abnormal tear film results in keratoconjunctivitis sicca (KCS) or dry eye, 

which is most commonly treated by lubricating artificial tears [65]. However, the 

components of the tear film, including electrolytes, proteins, lipids and mucins are 

hardly compensated by the single use of lubricants [64]. 

Human peripheral blood serum is a natural substitute of tears. Serum has similar pH 

and osmolality to tears. Furthermore, it contains many identical components with tears, 

such as EGF, nerve growth factor (NGF), insulin-like growth factor (IGF), platelet-

derived growth factor (PDGF), TGF-β, lysozyme, Ig A, albumin, vitamin A, substance 

P, etc. [66]. In 1984, the beneficial effect of AS, as artificial tear KCS patients was 

firstly reported by Fox et al [67]. Thereafter, serum eye drops, mostly autologous and 

sometimes allogeneic, were used in various ocular surface diseases such as KCS, 

Sjögren’s syndrome, persistent corneal epithelial defects, chemical eye burn and 

neurotrophic keratitis [68-73]. 
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1.3.2   Effects and safety of autologous serum 

Like many other materials, autologous serum (AS) may only be safe and optimal to 

HCECs in a certain concentration range. In 2001, using an in vitro cell culture model, 

Geerling et al. found that 50% and 100% AS were toxic to HCECs [74]. A few years 

later, Liu et al. found that 100% human serum supported better migration than 25% 

human serum diluted with isotonic saline [75]. Later they found that the relative cell 

growth of HCECs was best supported with human serum diluted to 12% [76]. Besides 

these in vitro studies, Akyol-Salman found that 100% AS could accelerate rabbit 

corneal wound healing more than 20% AS [77]. 

Nowadays, 20% may be the most commonly used concentration of AS in both clinical 

and experimental settings [72, 78-82]. However, there is still no international consensus 

on AS preparation and application and concentration of AS can vary from 20% to 100% 

among different institutions [66, 83]. 

Recently, AS has also been recommended as an alternative of fetal bovine serum (FBS) 

for culturing and expansion of human corneal limbal epithelial cells in vitro for in vivo 

transplantation to devoid animal-derived products [84]. 

In some previous studies, CECs cultivated in AS and FBS supplemented media 

demonstrated similar morphology and expression patterns of intercellular junction 

proteins, basement membrane proteins and tissue-specific keratins. Likewise, BrdU 

ELISA cell proliferation assay and colony-forming efficiency analysis did not 

demonstrate significant difference between those CECs [85, 86]. 

Considering the complicated effects of AS on HCECs, and the inconsistency of AS 

application, the dose-dependent effects of this promising material, and the growth 

factors which may play key roles in effects of AS, should be studied in detail.  

1.4    Amniotic membrane extraction  

1.4.1   Amniotic membrane  

Amniotic membrane (AM) is the innermost layer of fetal membranes, which contacts 
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the amniotic fluid like the developing fetus. AM comprises a monolayer of cuboidal 

epithelial cells, a thick basement membrane and an avascular stroma. 

Fresh AM is rich of various growth factors, such as HGF, KGF, TGF-β, FGFb, EGF, 

PDGF, IGF and vascular endothelial growth factor (VEGF) etc. [87-89]. All these 

growth factors give AM a variety of biological characteristics, such as support of 

epithelialization, anti-inflammation and anti-angiogenesis [90]. 

The basement membrane of the AM consists of collagen, fibronectin and laminin, and 

it is one of the thickest membranes of the human body, with satisfactory elasticity and 

strength [91]. Moreover, human AM is an immune-privileged tissue despite its 

expression of human leukocyte antigen (HLAs). One hypothesis is that amniotic cells 

are apoptotic, therefore easy to disappear without causing immunologic rejection [92]. 

1.4.2   Novel approach in corneal application of AM  

AM had been used for ocular surface reconstruction as early as 1940s [93], and gained 

popularity since it was reintroduced by Kim and Tseng in 1995 [94]. AM is usually 

transplanted to the cornea as a patch (onlay), as graft (inlay) or as multilayers 

(“sandwich”) [95]. 

However, to avoid the disadvantages of AM transplantation, like surgical 

contraindications, suture-related complications and cost of hospitalization, efforts had 

been made to seek a new form of AM therapy. By using an AM extract [96-98], or 

supernatant collected from an amniotic cell culture [99-101], beneficial effects were 

observed such as support of corneal healing, suppression of neovascularization and 

inflammation and amelioration of symptoms in patients [102, 103] with chemical burn, 

corneal ulcer, dry eye or previous keratoplasty, etc. 

Guo Q et al. [104] compared a homogenate of AM to AM transplantation using a rabbit 

model, and found that the AMH was as effective as AM transplantation in promoting 

corneal healing. 

In the limited number of previous studies, preparation methods of amniotic membrane 

extraction (AME) were not completely identical. In general, the AMs were 
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homogenized and centrifuged to release the containing beneficial biochemical factors. 

However, whether change in concentrations or preparation methods of AME could lead 

to different therapeutic outcome, and which biochemical factors in the AME effect the 

HCEC functions, have not been studied, yet. 

In our present study, we prepared AME using two different methods, which we defined 

as amniotic membrane suspension (AMS) and amniotic membrane homogenate (AMH). 



INTRODUCTION                                                   9 

  

1.5    Thesis aims 

Migration and proliferation of CECs are one of the most fundamental processes during 

corneal wound healing. The corneal limbal stem cells keep proliferating and 

centripetally migrating to renew the epithelium. CXL, AS, AME have been reported to 

support corneal epithelialization and wound healing.  

The purposes of our studies were: 

 To evaluate the effect of keratocyte supernatant after CXL (harvesting time, 

riboflavin concentration and UVA-light illumination) on migration and 

proliferation of human corneal epithelial cells (HCECs), in vitro. 

 To study and compare the dose-dependent effects of AS and FBS on HCEC 

migration, proliferation and viability in vitro, and to determine the concentrations 

and effects of KGF, FGFb, HGF and TGF-β1 in AS. 

 To analyze the effects of different concentrations of AMS and AMH on HCEC 

viability, migration and proliferation in vitro, and to determine the concentrations 

and effects of KGF, FGFb, HGF and TGF-β1 in AMS and AMH. 
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2    MATERIALS AND METHODS 

2.1    Reagents 

DMEM/F12 (Life technologies, Paisley, UK), fetal bovine serum (FBS) (Life 

technologies, Paisley, UK), penicillin-streptomycin (P/S) (Sigma-Aldrich, USA), 

dimethylsulfoxide (DMSO) (Central Chemical Storage of Saarland University, 

Saarbruecken, Germany), human epidermal growth factor (hEGF) (Biochrom, Berlin, 

Germany), insulin-transferrin-selenium (Life technologies, Paisley, UK), trypsin-

EDTA solution (Sigma-Aldrich, USA), collagenase A (Roche, Mannheim, Germany), 

riboflavin 5’-phosphate sodium salt hydrate (Sigma-Aldrich, China), dextran (Sigma-

Aldrich, Denmark), Culture Medium I (Biochrom GmbH, Berlin, Germany), BSS 

(Pharmacy of Saarland University Medical Center), benzylpenicillin (InfectoPharm, 

Heppenheim, Germany), streptomycin (X-GEN Pharmaceuticals, New York, USA), 

Cysto-Myacyne N (NEWBON, Berlin, Germany), amphotericin B (Bristol-Myers 

Squibb, München), glycerin (Pharmacy of Saarland University Medical Center), cell 

proliferation ELISA BrdU (colorimetric) kit (Roche, Mannheim, Germany), sulfuric 

acid (Titrisol, Darmstadt, Germany), phosphate-buffered saline (PBS) (Sigma-Aldrich, 

Steinheim, Germany), Cell Proliferation Kit XTT (AppliChem, Darmstadt, Germany), 

Human KGF/FGF-7 DuoSet (R & D systems, Minneapolis, USA), Human FGF basic 

DuoSet (R & D systems, Minneapolis, USA), Human HGF DuoSet (R & D systems, 

Minneapolis, USA), Human TGF-beta 1 DuoSet (R & D systems, Minneapolis, USA). 

2.2    Isolation of keratocytes 

Eight human corneas (78 ± 12 years, 62.5% male) were obtained from the LIONS 

Cornea Bank Saar-Lor-Lux Trier/Westpfalz (these donor corneas were not suitable for 

transplantation because of low endothelial cell count) and 6 keratoconus corneas (26 ± 

4 years, 50% male) were obtained from keratoconus patients from planned penetrating 

keratoplasties.  

Keratocytes were isolated as described previously [105]. In short, the human 

corneoscleral buttons from the Cornea Bank or pieces from the explanted keratoconus 
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corneal buttons were aseptically rinsed in PBS before removal of the endothelium 

including Descemet’s membrane by sterile surgical disposable scalpel. In case of 

Cornea Bank corneas a central corneal button with epithelium was cut using a 8.0 mm 

Barron’s trephine. Thereafter, donor and keratoconus corneal button pieces were 

incubated in culture medium containing 2.4 U/ml Dispase II for 4 hours at 37 °C. In the 

following, the corneal button was washed with PBS for several times and the already 

loose corneal epithelium was removed with surgical disposable scalpel. The remaining 

corneal stroma was incubated in culture medium with 1.0 mg/ml collagenase A for 8-

10 hours at 37 °C. The digested tissue and cells were pipetted three times and 

centrifuged at 800 g for 7 minutes and finally resuspended in 1.0 ml culture medium, 

which consisted of basic medium (DMEM/F12) supplemented with 10% FBS and 1% 

P/S. The cell suspension was seeded in 6-well plates and the medium was changed 24 

hours after seeding. Medium was changed every 2 to 3 days until keratocytes reached 

confluence. The cells were subcultured in 25 cm2 culture flasks after 5 to 10 days 

following dispersal with 0.05% trypsin-EDTA for 3 to 5 minutes and the passage 2 to 

5 of cells was used for experiments. 

2.3    Keratocyte culture 

Cultured keratocytes showed typical morphologic characteristics of corneal stromal 

cells. After the proliferation period had started, a confluent monolayer was generally 

reached between day 3 and 5. Keratocytes were used at this stage for further 

experiments. 

2.4    CXL/ Riboflavin-UVA photodynamic inactivation 

Human keratocytes were seeded in 6-well tissue culture plates and were allowed to 

grow for 48 hours before photodynamic treatment. Cells were washed three times with 

PBS once before riboflavin-5-phosphate was added. The concentration of riboflavin-5-

phosphate was 0%, 0.05% and 0.1% and it was diluted in 20% Dextran-PBS. Thereafter, 

the cells were exposed directly to UVA light (375 nm) for 4 minutes 10 seconds (2 

J/cm2). Following illumination, the riboflavin-5-phosphate solution was removed, cells 

were washed three times with PBS, fed with 4ml/well culture medium and cultivated at 

37 °C for 5 hours or 24 hours before removal of 2 ml/well supernatant. The supernatant 
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was collected and stored until epithelial cell experiments at -20°C (maximal for 6 

weeks).  

In summary, the cells were treated with the following combinations: 0.05% and 0.1% 

riboflavin-5-phosphate-UVA, 0.05% and 0.1% riboflavin-5-phosphate only, UVA only. 

The control cells were incubated only in the dark for 4 minutes 10 seconds.  

2.5    Preparation of autologous serum  

AS was obtained from 13 patients (5 females, 69±16 (41 to 92) years) with the diagnosis 

corneal ulcer (6 patients), corneal erosion (4 patients), Salzmann’s nodular 

degeneration (1 patient), Sjögren`s syndrome (1 patient), systemic lupus erythematosus 

(1 patient). 5 of the patients had previous penetrating keratoplasty. Serological tests for 

hepatitis B, hepatitis C, HIV, cytomegalovirus and syphilis were all negative. To 

prepare the AS, peripheral blood was obtained by vein puncture, was stored for 1 to 3 

hours at room temperature, then centrifuged at 3000 rpm (855 g) for 15 minutes. 

Thereafter, under laminar flow, serum was pipetted into a sterile container and 1.5 to 2 

ml aliquots of serum were filtered and injected into 5 ml sterile dropper bottles via a 

disposable filter connected to a syringe. The serum was stored at -20 °C for maximal 3 

months. 

2.6    Preparation of amniotic membrane suspension and amniotic 

membrane homogenate  

Thirteen placentas were obtained from cesarean deliveries of 20 to 40 years old females 

after informed consent. Serological tests for hepatitis B, hepatitis C, HIV, 

cytomegalovirus and syphilis were all negative. Amniotic membranes were prepared 

using the standard methods of the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz. 

Briefly, under laminar flow, amniotic membranes were bluntly separated from chorion, 

rinsed in BSS containing 0.05mg/ml benzylpenicillin, 0.05 mg/ml streptomycin and 

0.01 mg/ml amphotericin B, were placed epithelial side up on nylon membranes, were 

divided into 3 × 3 cm2 slices and then cryopreserved at -80 °C in Culture Medium I 

containing 0.1 mg/ml Cysto-Myacyne N, 0.05 mg/ml benzylpenicillin, 0.05 mg/ml 

streptomycin, 0.01 mg/ml amphotericin B and 50% glycerin. 

For AMS preparation, following defreezing, amniotic membrane pieces were inserted 
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in 6-well plates and 5 ml DMEM/F12 (with 5% FBS) per gram tissue was added for 96 

hours incubation at 37 °C. After removal of the amniotic membrane, the remaining 

supernatant was collected for experiments. 

For AMH preparation, following defreezing, amniotic membranes were first 

homogenized in liquid nitrogen. After evaporation of liquid nitrogen, 5 ml DMEM/F12 

(with 5% FBS) per gram tissue was added. Following centrifugation (1000 rpm for 5 

min), the supernatant was collected for experiments. 

2.7    Culture of human corneal epithelial cells  

SV40-Adeno vector transformed human corneal epithelial cells (Cell No. RCB2280) 

were obtained from RIKEN BioResource Center, Ibaraki, Japan. For the following 

experiments, HCECs were first expanded using DMEM/F12 culture medium with 5% 

FBS, 5 μg/ml Insulin, 10 ng/ml hEGF and 0.5% DMSO. 

2.8    Wound healing assay of human corneal epithelial cells 

HCEC migration was determined by the wound healing assay. HCECs were seeded in 

6-well plates and were allowed to grow until reaching confluence. Thereafter, culture 

medium was removed, cells were rinsed twice with PBS and HCECs were incubated at 

37°C for 20 minutes with 

1. the collected keratocyte supernatant; each HCEC culture was given a supernatant of 

a separate keratocyte culture; 

Or 2. “serum media”, which again consisted of DMEM/F12 supplemented by 5%, 10%, 

15%, 30% AS or FBS; 

Or 3. the above described AMS or AMH containing media. 

Then, HCEC monolayers were scratched by 200 μl yellow pipette tips (Eppendorf AG, 

Hamburg, Germany). Thereafter, 3 to 5 images of each scratch wound were taken at the 

beginning and after 9 hours incubation (Figure 2). 
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Figure 2. HCEC monolayers were scratched by 200 μl yellow pipette tips. Thereafter, 3 to 5 images 

of each scratched wound were taken at the beginning and after 9 hours of incubation. 

 

 

As a first step, the areas of the scratched wound areas on the images were measured by 

the GNU Image Manipulation Program in pixels. Then, the sum of the pixel width was 

converted into average wound width in micrometers for each image and each time-point. 

At last, an average wound width was calculated for each scratch wound from the 5 

images taken at one time-point. Thereafter, we analyzed statistically the width of the 

scratched wound for all epithelial cell cultures for each time-point. 

2.9    Determination of human corneal epithelial cell proliferation 

HCEC proliferation was determined using the cell proliferation ELISA-BrdU kit. This 

measurement analyzed BrdU incorporation into the newly synthesized cellular DNA of 

HCECs. The test was performed according to the manufacturer’s protocol. 

1. To evaluate the effect of keratocyte supernatant after CXL, HCECs were first 

suspended in standard keratocyte culture medium (consisting of DMEM/F12, 10% FBS 

and 1% P/S); 

Or 2. To study the effect of AS, HCECs were first suspended in growth factor-free 

medium (consisting of DMEM/F12, 5% FBS and 1%P/S) to avoid the effect of growth 

factors; 

Or 3. To study the effects of AMS and AMH, HCECs were also first suspended in growth 

factor-free medium. 

Thereafter HCECs were seeded at 3 × 103 (for CXL or AS experiments) or 9 × 103 (for 

0 hour 9 hours 
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AMS and AMH experiments) HCECs/cm2 (100μL/96-well) in 96-well plates and were 

cultured for 24 hours until adherence. 

Then, the medium was replaced by 

1. the earlier (following CXL) collected keratocyte supernatant. Each HCEC culture 

was given a supernatant of a separate keratocyte culture; 

Or 2. the “serum media”; 

Or 3. the above described AMS or AMH containing media. 

After culturing the HCECs for 24 hours, 10 μl/well BrdU labeling solution was added 

and the tissue plates were incubated at 37 °C for 3 h (BrdU incorporation). After 

removal of the culture medium, the cells were fixed with FixDenat (provided with the 

test kit) followed by incubation with anti-BrdU-POD (monoclonal antibody to the 

thymidine-analogue 5-bromo-2’-deoxyuridine Fab fragments with peroxidase 

conjugated) (100 µl/well) for 90 minutes, which binds the incorporated DNA. 

Following removal of the solution, HCEC-96-well-plates were rinsed 3 times with PBS 

and 100 μl/well tetramethyl-benzidine substrate solution was added until color 

development was sufficient for photometric detection (10-30 minutes). Thereafter, 25 

μl/well 1-N-sulfuric acid was added and mixed thoroughly by shaking for 1 minute. 

Thereafter, the 96-well plates were measured using a 96-well microplate reader (Tecan 

Infinite Reader, TECAN Deutschland GmbH, Crailsheim, Germany) at 450 nm 

(reference wavelength: 690 nm). 

2.10    Determination of human corneal epithelial cell viability 

HCEC viability was determined using the Cell Proliferation Kit XTT. This 

measurement was based on the activity of mitochondria in the living cells to change the 

tetrazolium salt XTT to the orange colored compounds of formazan. The test was 

performed according to the manufacturer’s protocol. 

In short, to avoid the effect of growth factors in the culture medium, HCECs were first 

suspended in growth factor-free medium (consisting of DMEM/F12, 5% FBS and 

1%P/S). Thereafter, HCECs were seeded at 9×103 cells/cm2 (100μL/96-well) in 96-well 

plates and were cultured for 24 hours until adherence. Then, the medium was replaced 

by 

1. the 5, 10, 15 or 30% AS or FBS containing medium, called later in the text “serum 

media”. 
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Or 2. the AMS or AMH containing media which were consisting of DMEM/F12, 5% 

FBS supplemented by 15%, 30% or 100% AMS or 15% or 30% AMH. 

After culturing the HCECs for 24 hours, 50 μl/ well XTT-containing reaction solution 

was added and the cells in 96-well plates were incubated at 37 °C for 2 h. Thereafter, 

the 96-well plates were measured immediately using a 96-well microplate reader 

(Tecan Infinite Reader, TECAN Deutschland GmbH, Crailsheim, Germany) at 450 nm 

wavelength (reference wavelength: 690 nm). 

2.11   Measurement of KGF, FGFb, HGF and TGF-β1 in autologous 

serum, amniotic membrane suspension and amniotic membrane 

homogenate 

KGF, FGFb, HGF and TGF-β1 concentrations in AS, or in 100% AMS in 2 of the used 

amnion donors and in 100% AMH in 6 of the used donors, were measured by taking a 

100 μl aliquot.  

The measurements were performed following the manufactures’ ELISA-protocols. The 

growth factor concentrations were quantified by using a human recombinant KGF, 

FGFb, HGF and TGF-β1 as standard. The absorbance was measured at 450 nm (Tecan 

Infinite Reader, TECAN Deutschland GmbH, Crailsheim, Germany). Measurement 

ranges were the following: KGF: 16–2000 pg/ml, FGFb: 8–1000 pg/ml, HGF: 60–8000 

pg/ml and TGF-β1: 31–2000 pg/ml. Measured concentrations below the above values 

were considered as zero. 

2.12    Statistical analysis 

Statistical analysis was performed using the SPSS Statistics 22.0. P < 0.05 was 

considered statistically significant. 

 

For statistical analysis we used a linear mixed model in the framework of Generalized 

Estimating Equations (GEE) approach to analyze the effect of harvesting time, 

riboflavin concentration, UVA-light illumination and CXL on HCEC migration and 

proliferation in cooperation with the Institute of Medical Biometry, Epidemiology and 

Medical Informatics, Saarland University Medical Center, Homburg/Saar, Germany. A 

GEE is used to estimate the parameters of a generalized linear model with a possible 
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unknown correlation between outcomes. Parameter estimates from the GEE are 

consistent even when the covariance structure is misspecified under mild regularity 

conditions. The focus of the GEE is on estimating the average response over the 

population ("population-averaged" effects) rather than the regression parameters that 

would enable prediction of the effect of changing one or more covariates on a given 

individual.  

 

In addition, Mann-Whitney test was used to 

1. compare viability, migration and proliferation of HCECs using AS and FBS with the 

same concentration. 

2. compare HCEC cultures treated by AMS or AMH. 

 

Generalized linear model (GLM) was used to analyze 

1. the effects of different concentrations of AS and the impact of growth factor 

concentrations in AS on HCEC viability, migration and proliferation.  

2. the effects of growth factor concentrations in AMS and AMH on HCEC viability, 

migration and proliferation. 

For this model, we calculated the concentration of the growth factors from the 

concentration measurement results of 100% AS, 100% AMS and AMH, but we did not 

perform new growth factor concentration measurements for 5, 10, 15 and 30% AS, or 

for 15% and 30% AMS and AMH. Even though we know that the growth factor ELISA 

measurement curves are in part non-linear, we still found this method a good estimate. 
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3    RESULTS 

3.1    Effect of keratocyte supernatant on HCEC migration and 

proliferation after CXL 

Results of HCEC migration and proliferation after CXL are displayed in Tables 1-4 

and Figures 3-5. 

HCEC migration was 141 ± 21 µm after 9 hours using normal keratocyte supernatant 

harvested after 5 hours, without application of riboflavin and UVA light. Using UVA 

light and 0.1% riboflavin concentration for the same conditions, HCEC migration was 

128 ± 14 µm.  

HCEC migration was 159 ± 31 µm after 9 hours using keratoconus keratocyte 

supernatant harvested after 24 hours, without application of riboflavin and UVA light. 

Using UVA light and 0.1% riboflavin concentration for the same conditions, HCEC 

migration was 131 ± 26 µm. 

Using a linear mixed model in the framework of a Generalized Estimating Equations 

(GEE), riboflavin concentration did not show significant impact on HCEC migration 

using normal or keratoconus keratocyte supernatant (P > 0.10), however, longer 

harvesting time of normal or keratoconus keratocyte supernatant significantly increased 

(P = 0.01 for both) and UVA-light illumination of keratoconus keratocytes (P < 0.001) 

significantly decreased HCEC migration. 

Riboflavin concentration, UVA-light illumination and harvesting time of normal or 

keratoconus keratocyte supernatant had no significant impact on HCEC proliferation 

P > 0.10). 
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Table 1. HCEC migration and proliferation using normal keratocyte supernatant harvested after 

5 hours. Values indicate mean ± 95% confidence intervals. 

treatment 
HCEC migration (μm) HCEC proliferation 

(absorbance) 3h 6h 9h 

-UVA + 0% riboflavin 66 ± 9 108 ± 14 141 ± 21 0.33 ± 0.16 

-UVA + 0.05% riboflavin 58 ± 9 90 ± 18 129 ± 27 0.37 ± 0.08 

-UVA + 0.10% riboflavin 61 ± 12 100 ± 12 137 ± 14 0.38 ± 0.10 

+UVA + 0% riboflavin 70 ± 14 99 ± 17 132 ± 17 0.42 ± 0.12 

+UVA + 0.05% riboflavin 59 ± 12 99 ± 14 133 ± 14 0.43 ± 0.15 

+UVA + 0.10% riboflavin 61 ± 11 95 ± 13 128 ± 14 0.41 ± 0.11 

 

 

 

Table 2. HCEC migration and proliferation using normal keratocyte supernatant harvested after 24 

hours. Values indicate mean ± 95% confidence intervals. 

 

treatment 
HCEC migration (μm) HCEC proliferation 

(absorbance) 3h 6h 9h 

-UVA + 0% riboflavin 73 ± 21 116 ± 28 152 ± 25 0.46 ± 0.16 

-UVA + 0.05% riboflavin 70 ± 9 111 ± 15 152 ± 15 0.45 ± 0.19 

-UVA + 0.10% riboflavin 66 ± 9 107 ± 9 147 ± 10 0.45 ± 0.19 

+UVA + 0% riboflavin 66 ± 15 109 ± 17 145 ± 21 0.41 ± 0.17 

+UVA + 0.05% riboflavin 70 ± 15 112 ± 10 151 ± 12 0.45 ± 0.19 

+UVA + 0.10% riboflavin 61 ± 11 0.41 ± 0.11 128 ± 14 0.41 ± 0.11 
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Table 3. HCEC migration and proliferation using keratoconus keratocyte supernatant harvested 

after 5 hours. Values indicate mean ± 95% confidence intervals. 

treatment 
HCEC migration (μm) HCEC proliferation 

(absorbance) 3h 6h 9h 

-UVA + 0% riboflavin 52 ± 25 100 ± 21 133 ± 20 0.34 ± 0.17 

-UVA + 0.05% riboflavin 64 ± 15 97 ± 16 130 ± 16 0.26 ± 0.14 

-UVA + 0.10% riboflavin 59 ± 16 108 ± 18 132 ± 15 0.27 ± 0.10 

+UVA + 0% riboflavin 65 ± 12 99 ± 9 134 ± 14 0.30 ± 0.09 

+UVA + 0.05% riboflavin 60 ± 15 86 ± 10 115 ± 14 0.28 ± 0.10 

+UVA + 0.10% riboflavin 57 ± 14 91 ± 20 123 ± 24 0.26 ± 0.09 

 

 

Table 4. HCEC migration and proliferation using keratoconus keratocyte supernatant harvested 

after 24 hours. Values indicate mean ± 95% confidence intervals. 

treatment 
HCEC migration (μm) HCEC proliferation 

(absorbance) 3h 6h 9h 

-UVA +0% riboflavin 68 ± 22 125 ± 29 159 ± 31 0.32 ± 0.07 

-UVA +0.05% riboflavin 67 ± 13 116 ± 11 144 ± 9 0.25 ± 0.07 

-UVA +0.10% riboflavin 77 ± 15 117 ± 16 147 ± 13 0.25 ± 0.08 

+UVA +0% riboflavin 64 ± 9 99 ± 8 135 ± 11 0.24 ± 0.06 

+UVA +0.05% riboflavin 54 ± 5 98 ± 16 131 ± 17 0.25 ± 0.06 

+UVA +0.10% riboflavin 61 ± 11 95 ± 20 131 ± 26 0.28 ± 0.16 
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Figure 3. HCEC migration 3, 6 and 9 hours following scratch, using supernatant of normal (A, B) 

or keratoconus keratocytes (C, D), 5 (A, C) or 24 hours (B, D) after treatment. 
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Figure 4. HCEC migration 0, 3, 6 and 9 hours following scratch, using supernatant of normal (A, 

B) or keratoconus keratocytes (C, D) 5 (A, C) or 24 hours (B, D) after treatment. 
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Figure 5. HCEC proliferation using supernatant of normal (A, B) or keratoconus keratocytes (C, 

D), 5 (A, C) or 24 hours (B, D) after treatment. Using a linear mixed model in the framework of a 

Generalized Estimating Equations (GEE) approach, riboflavin concentration, UVA-light 

illumination and harvesting time of normal or keratoconus keratocyte supernatant had no significant 

impact on HCEC proliferation (P > 0.10). 

 

3.2   Effect of autologous serum and fetal bovine serum on human 

corneal epithelial cell viability, migration and proliferation 

Viability, migration and proliferation of HCECs using different concentrations of AS 

and FBS are displayed in Table 5 and Figures 6-9. 
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Table 5. Viability, migration and proliferation of human corneal epithelial cells (HCECs) using 

different concentrations of autologous serum (AS) and fetal bovine serum (FBS). Values 

indicate mean ± 95% confidence intervals. 

 concentration 
Viability 

(absorbance) 

Migration 

(μm) 

Proliferation 

(absorbance) 

AS 

5% 0.2423 ± 0.0318 132 ± 11 0.2609 ± 0.0290 

10% 0.1965 ± 0.0358 133 ± 15 0.2665 ± 0.0318 

15% 0.2171 ± 0.0403 136 ± 12 0.2837 ± 0.0295 

30% 0.2687 ± 0.0370 166 ± 10 0.0969 ± 0.0632 

FBS 

5% 0.1891 ± 0.0223 109 ± 7 0.2805 ± 0.0375 

10% 0.1893 ± 0.0155 120 ± 10 0.2484 ± 0.0426 

15% 0.2233 ± 0.0275 128 ± 10 0.2589 ± 0.0427 

30% 0.1766 ± 0.0329 144 ± 9 0.1302 ± 0.0527 

 

 

 

Figure 6. Human corneal epithelial cell (HCEC) viability using different concentrations of 

autologous serum (AS) and fetal bovine serum (FBS). 
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Figure 7. Human corneal epithelial cell (HCEC) migration using different concentrations of 

autologous serum (AS) and fetal bovine serum (FBS). 

 

 

Figure 8. Human corneal epithelial cell (HCEC) migration using different concentrations of 

autologous serum (AS) and fetal bovine serum (FBS), 0 and 9 hours following scratch. 
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Figure 9. Human corneal epithelial cell (HCEC) proliferation using different concentrations of 

autologous serum (AS) and fetal bovine serum (FBS). Mann-Whitney test was used to compare AS 

and FB groups with the same concentration. 

 

3.2.1   Effect of different concentrations of autologous serum and fetal bovine 

serum on human corneal epithelial cell viability, migration and proliferation 

Effect of different concentrations of AS or FBS on HCEC viability, migration and 

proliferation analyzed by a generalized linear model are shown in Table 6. 

HCEC viability was the highest at 30% AS or 15% FBS and the lowest at 10% AS or 

30% FBS application. HCEC migration was the quickest through 30% AS or 30% FBS 

and the slowest through 5% AS or 5% FBS concentrations. Proliferation was the most 

increased through 15% AS or 5% FBS and the least increased through 30% AS or 30% 

FBS concentrations. 

HCEC viability at 15% AS was significantly worse (P = 0.023) compared to baseline 

(30%) and significantly better using 15% FBS (P = 0.003), as 30% FBS concentrations. 

HCEC migration was significantly worse (P ≤ 0.007) and HCEC proliferation 

significantly better (P < 0.001) in all concentration groups compared to baselines (30% 

AS and 30% FBS). 
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Table 6. Effect of different concentrations of autologous serum (AS) or fetal bovine serum (FBS) 

on human corneal epithelial cell (HCEC) viability, migration and proliferation analyzed by a 

generalized linear model. The values at 30% AS and 30% FBS were used as baselines (in italic). 

R.C. = regression coefficient. P < 0.05 was considered statistically significant, compared to 

baseline. 

 
concentration 

viability migration proliferation 

 R.C. P value R.C. P value R.C. P value 

AS 

5% 
-0.026 0.244 -34.319 <0.001 0.164 <0.001 

10% 
-0.072 0.001 -33.595 <0.001 0.170 <0.001 

15% 
-0.052 0.023 -30.583 <0.001 0.187 <0.001 

30% 
0 - 0 - 0 - 

FBS 

5% 
0.013 0.428 -34.154 <0.001 0.150 <0.001 

10% 
0.013 0.423 -23.084 <0.001 0.118 <0.001 

15% 
0.047 0.003 -15.365 0.007 0.129 <0.001 

30% 
0 - 0 - 0 - 

 

 

3.2.2   Effect of autologous serum and fetal bovine serum with the same 

concentration on human corneal epithelial cell viability, migration and 

proliferation 

Results of the Mann-Whitney test to compare viability, migration and proliferation of 

HCECs in AS and FBS groups with the same concentration are shown in Table 7 and 

Figures 6-9. 

Viability and migration was significantly higher using 5% AS than 5% FBS (P = 0.015, 

P < 0.001). Viability and migration were also significantly higher using 30% AS than 

30% FBS (P < 0.001, P = 0.002). Proliferation did not differ significantly between AS 

and FBS groups with the same concentration (P > 0.096). 
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Table 7. Mann-Whitney test was used to compare viability, migration and proliferation of human 

corneal epithelial cells (HCECs) in autologous serum (AS) and fetal bovine serum (FBS) groups 

with the same concentration. P values are shown (significant values in bold). 

 concentration viability migration proliferation 

AS 

vs 

FBS 

5% 
0.015 0.001 0.159 

10% 
0.397 0.077 0.626 

15% 
0.980 0.457 0.174 

30% 
0.001 0.002 0.096 

 

 

 

 

 

 

 

 

3.2.3    Effect of growth factors in autologous serum on viability, migration and 

proliferation of human corneal epithelial cells 

Concentrations of KGF, FGFb, HGF and TGF-β1 in AS of 13 patients are shown in 

Table 8. The effect of FGFb, HGF and TGF-β1 concentrations in AS on HCEC viability, 

migration and proliferation using a generalized linear model is displayed in Table 9. 

Effect of KGF on HCEC viability, migration and proliferation was not considered in 

Table 9, since KGF was only measurable in one AS sample. 

Concentration of the measured growth factors did not effect HCEC viability (P > 0.590). 

However, FGFb and HGF concentrations had a positive effect (P < 0.001 for both) on 

HCEC migration and FGFb and TGF-β1 concentrations a negative effect (P = 0.006, P 

= 0.008) on HCEC proliferation. 
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Table 8. Growth factor concentrations in autologous serum (AS) of 13 patients. 

patient No. 
growth factors (pg/mL) 

KGF FGFb HGF TGF-β1 

1 0 202 139 2928 

2 0 204 1115 2928 

3 0 130 1884 2313 

4 0 122 2888 3426 

5 0 56 1272 3955 

6 0 0 2784 16767 

7 0 300 628 28906 

8 106 136 5964 28218 

9 0 58 1426 28873 

10 0 0 1182 26046 

11 0 130 308 25075 

12 0 96 661 25781 

13 0 131 1715 35045 

median 0 130 1272 25075 

 

 

Table 9. Effect of FGFb, HGF and TGF-β1 concentrations in autologous serum (AS) on human 

corneal epithelial cell (HCEC) viability, migration and proliferation using a generalized linear 

model. Effect of KGF on HCEC viability, migration or proliferation was not considered in the 

following table, as KGF was only measurable in one AS sample. R.C. = regression coefficient. P 

< 0.05 was considered statistically significant, compared to baseline. 

growth factor 
viability migration proliferation 

R.C. P value R.C. P value R.C. P value 

FGFb 3.3×10-4 0.590 0.623 <0.001 -0.002 0.006 

HGF 1.74×10-6 0.945 0.024 <0.001 -8.02×10-5 0.086 

TGF-β1 2.30×10-6 0.666 3.14×10-4 0.808 -1.50×10-5 0.008 
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3.3    Effect of amniotic membrane suspension and amniotic 

membrane homogenate on human corneal epithelial cells 

3.3.1    Effect of amniotic membrane suspension and amniotic membrane 

homogenate on human corneal epithelial cell viability, migration and proliferation 

HCEC viability, migration and proliferation are displayed in Table 10 and Figures 10-

13. HCEC viability remained unchanged using 15% or 30% AMS (P = 1.0 for both). 

However, it decreased significantly using 100% AMS (P < 0.001) or 15% AMH (P = 

0.041) or 30% AMH (P < 0.001), compared to controls.  

Analyzing HCEC migration, using 30% AMH containing media, two membrane groups 

had to be excluded from further cell migration analysis, causing severe HCEC 

detachment. Data using only the remaining groups are described below. 

Using 15% or 30% AMS, HCEC migration increased significantly (P < 0.001 for both), 

compared to controls. Using 15% or 30% AMH (P = 0.153; P = 0.083), HCEC 

migration remained unchanged and 100% AMS inhibited HCEC migration (P < 0.001).  

15% and 30% AMS had no effect on HCEC proliferation (P = 0.454 and P = 0.119), 

but 100% AMS (P < 0.001) and 15% (P = 0.002) and 30% AMH (P = 0.001) inhibited 

HCEC proliferation significantly, compared to controls.  

There was no significant difference in HCEC viability, migration and proliferation 

comparing 15% and 30% AMS or 15% and 30% AMH (P > 0.248). 
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Table 10. Human corneal epithelial cell (HCEC) viability, migration and proliferation using 

amniotic membrane suspension (AMS) or amniotic membrane homogenate (AMH) containing 

media (values indicate mean ± SD). A culture medium containing DMEM/F12 + 5% FBS + 1% 

P/S was used as control. Analyzing HCEC migration, using 30% AMH containing media (italics), 

two membrane groups had to be excluded from further cell migration analysis, causing severe 

HCEC detachment. Data using only the remaining groups are described below. 

 
HCEC viability 

(absorbance) 

HCEC migration 

(μm) 

HCEC proliferation 

(absorbance) 

control 0.2988 ± 0.0902 121 ± 20 0.4186 ± 0.1029 

15% AMS 0.2961 ± 0.0562 171 ± 18 0.3372 ± 0.1266 

30% AMS 0.2951 ± 0.0534 173 ± 28 0.3468 ± 0.0970 

100% AMS 0.0976 ± 0.0448 62 ± 21 0.0514 ± 0.0524 

15% AMH 0.1966 ± 0.1110 133 ± 28 0.2443 ± 0.1419 

30% AMH 0.1382 ± 0.0927 141 ± 31 0.1854 ± 0.1699 

 

 

 

 

Figure 10. Human corneal epithelial cell (HCEC) viability using different concentrations of 

amniotic membrane suspension (AMS) and amniotic membrane homogenate (AMH). Significant 

differences compared to the control group are indicated. 

A culture medium containing DMEM/F12 + 5% FBS + 1% P/S was used as control. 
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Figure 11. Human corneal epithelial cell (HCEC) migration using different concentrations of 

amniotic membrane suspension (AMS) and amniotic membrane homogenate (AMH). Significant 

differences compared to the control group are indicated. A culture medium containing DMEM/F12 

+ 5% FBS + 1% P/S was used as control. Analyzing HCEC migration, using 30% AMH containing 

media, two membranes, causing severe HCEC detachment had to be excluded from the analysis. 
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Figure 12. Human corneal epithelial cell (HCEC) migration using different concentrations of 

amniotic membrane suspension (AMS) and amniotic membrane homogenate (AMH) 0 and 9 hours 

after scratch. 
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Figure 13. Human corneal epithelial cell (HCEC) migration using different concentrations of 

amniotic membrane suspension (AMS) and amniotic membrane homogenate (AMH). Significant 

differences compared to the control group are indicated. A culture medium containing DMEM/F12 

+ 5% FBS + 1% P/S was used as control. 

 

 

3.3.2   Impact of growth factor concentrations in amniotic membrane suspension 

and amniotic membrane homogenate on human corneal epithelial cell viability, 

migration and proliferation 

KGF, FGFb, HGF and TGF-β1 concentrations in 100% AMS (n = 2) or AMH (n = 6) 

are shown in Table 11. Impact of growth factor concentrations in AMS and AMH on 

HCEC viability, migration and proliferation are shown in Table 12.  

FGFb concentration had a significant negative effect on HCEC migration (P = 0.002), 

but also a significant positive effect on HCEC viability (P = 0.02) and TGF-β1 

concentration had a significant positive effect on HCEC proliferation (P < 0.001). 

Using a generalized linear model, no other significant effects of growth factor 

concentrations could be shown on HCEC viability, migration and proliferation (P > 

0.08). 
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Table 11. Growth factor concentrations in 100% amniotic membrane suspension (AMS) in 2 of the 

used amnion donors and in 100% amniotic membrane homogenate (AMH) in 6 of the used donors. 

placenta 
growth factors (pg/mL) 

KGF FGFb HGF TGF-β1 

1 (AMS) 71 299 12162 257 

2 (AMS) 62 251 11109 562 

3 (AMH) 34 320 2822 334 

4 (AMH) 240 466 8634 336 

5 (AMH) 18 361 3405 335 

6 (AMH) 185 1913 10276 468 

7 (AMH) 0 172 2848 257 

8 (AMH) 27 136 7070 270 

 

 

Table 12. Impact of FGFb, HGF, TGF-β1 concentrations in amniotic membrane suspension (AMS) 

and amniotic membrane homogenate (AMH) on human corneal epithelial cell (HCEC) viability, 

migration and proliferation (generalized linear model). 

R.C. = regression coefficient, P < 0.05 is considered statistically significant and labeled in bold. 

growth factor 

viability migration proliferation 

R.C. 
P 

value 
R.C. P value R.C. P value 

KGF 0.001 0.757 0.721 0.114 -0.003 0.221 

FGFb -4.78×10-4 0.020 -0.163 0.002 -2.01×10-4 0.456 

HGF 7.77×10-5 0.141 0.009 0.522 1.20×10-4 0.084 

TGF-β1 0.001 0.275 -0.191 0.397 0.005 <0.001 
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4    Discussion 

4.1   Effect of keratocyte supernatant on human corneal epithelial 

cell migration and proliferation after crosslinking 

Although CXL is in clinical use since several years, to the best of our knowledge, the 

impact of CXL on epithelial wound healing, has not been described, yet. It is only 

known that CXL may inhibit the regeneration of human limbal epithelial cells [63]. 

The interactions between keratocytes and CECs are decisive in wound healing and 

corneal homeostasis. Growth factors such as the HGF and KGF secreted by the 

keratocytes regulate functions of HCECs. Cytokines such as interleukin-1 (IL-1), 

produced by HCECs, influence keratocyte functions [8]. In our experimental setup, we 

tried to model the impact of keratocytes on the remaining CECs, following CXL 

treatment, in the short-term. 

The most conspicuous finding of our experimental study is that riboflavin concentration, 

UVA-light illumination of CXL and harvesting time of normal or keratoconus 

keratocyte supernatant have no significant effect on HCEC proliferation.  

Interestingly, riboflavin concentration has also no significant effect on HCEC migration 

neither using normal nor using keratoconus keratocyte supernatant.  

However, longer harvesting time of normal or keratoconus keratocyte supernatant 

significantly increased and UVA-light illumination of keratoconus keratocyte 

supernatant significantly decreased HCEC migration. 

In previous experimental studies we performed CXL of keratoconus keratocytes. 

Interestingly, CXL decreased viability, triggered apoptosis and inhibited proliferation, 

however, did not have an impact on multipotent haematopoietic stem cell 

transformation and myofibroblastic transformation of human keratoconus keratocytes 

[106]. CXL also triggered FGFb secretion of keratoconus keratocytes transiently (five 

hours), which normalized after 24 hours. However, CXL did not have an impact on 

HGF, TGFβ1, VEGF, KGF, IL-1β, IL-6, and IL-8 secretion of keratoconus keratocytes 

in the short term [106]. 

The results of these previous studies show, that normal or keratoconus keratocyte 

secretion of different growth factors changes in the short term (from 5 to 24 hours after 
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CXL), which may be related to our present findings that longer harvesting time of 

keratocyte supernatant after treatment increases significantly HCEC migration. 

This is also in accordance with the clinical observation that reepithelization may be 

promoted through CXL even in nonhealing epithelial defects [42, 43]. However, other 

still undefined factors have to be defined with effect on epithelial healing. 

Our present results, show, that UVA-light illumination of keratoconus keratocytes may 

significantly inhibit HCEC migration. It is known that UVA-light illumination itself 

may cause DNA damage of the cells [107]. Interestingly, some other authors reported 

on occurrence of early microbial keratitis after CXL therapy [108-110]. The 

significantly decreased epithelial cell migration due to the effect of UVA-light 

illumination, using keratoconus keratocytes, may be related to this clinical observation.  

Kim et al. and Kaldawy et al. [111] described that after CXL an increased percentage 

of apoptotic keratocytes is present in human keratoconus corneas compared to normal 

human controls without treatment. Macé et al. [112] suggested that cell loss resulting 

from antiproliferative and hyperapoptotic phenotypes may be responsible for the 

pathogenesis of keratoconus. In addition, changes in corneal protein pattern, increase 

in enzymatic activities and cell apoptosis are also thought to be part of keratoconus 

progression [113-115]. Chwa et al. [116] described an increased basal generation of 

reactive oxygen species and reactive nitrogen species in keratoconus keratocytes. In 

addition, it is also described that cyclobutane pyrimidine dimers are induced through 

ultraviolet light illumination of the cornea, which may lead to DNA damage [117].  

In summary harvesting time, riboflavin concentration and UV-A-light illumination of 

normal and keratoconus keratocyte cultures have no impact on proliferation of HCECs, 

in the short term. However, 24 hours harvesting time (both for normal and keratoconus 

keratocytes) increases and UVA-light illumination of keratoconus keratocyte cultures 

decreases HCEC migration. 

 

4.2   Effect of autologous serum and fetal bovine serum on human 

corneal epithelial cell viability, migration and proliferation 

AS has been used as a substitute for FBS in cultures of various cells, and supported 

better cell confluence, enhanced differentiation of bone marrow mesenchymal cells and 

increased cell proliferation rate, more compared to FBS [118-123]. However, only a 
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few studies tried to compare differences between AS and FBS in HCEC culture, and 

until now, no significant differences between both have been determined. 

In our present study, HCEC viability and migration was better using AS than FBS. 

However, concerning proliferation, no difference could be shown between both groups.  

HCEC viability and migration were the highest at 30% AS, but this group increased 

HCEC proliferation the least. 15% AS concentration led to lower HCEC viability and 

migration than 30% AS, but 15% AS resulted in the best proliferation of the HCECs. 

Based on our results, we suggest the clinical use of 30% AS, since the most important 

corneal epithelial functions in vivo are migration and viability. This concentration could 

be reached through dilution of AS in the remaining tear film of the patients. Therefore, 

application of AS eye drops should also be planned depending on individual tear film 

volume. Nevertheless, the high variability of growth factor concentrations in AS of 

different patients, should also be taken into account.  

It is already known that FGFb is a beneficial factor in CEC growth or corneal wound 

healing [23, 124], and it is also required for CEC proliferation and differentiation during 

embryonic development [125]. HGF and FGFb are both major factors initiating 

proliferation and migration in the cornea, while TGF-β in the tear film suppresses the 

proliferation at the migrating cell front [126]. 

In the present study we analyzed the effects of FGFb, HGF and TGF-β1 concentrations 

on HCEC viability, migration and proliferation. FGFb and HGF concentrations had a 

positive effect on HCEC migration, but FGFb and TGF-β1 concentrations had a 

negative effect on HCEC proliferation. In our opinion, HCEC proliferation might be 

inhibited through high concentrations of FGFb in 30% AS. 

In summary, HCEC viability is mostly increased through 30% AS or 15% FBS, 

migration through 30% AS or 30% FBS and proliferation through 15% AS or 5% FBS. 

In addition, AS better supports HCECs viability and migration than FBS. Therefore, we 

suggest the use of 30% AS in the clinical practice. Based on our experiments, we also 

suggest the use of AS instead of FBS for in vitro HCEC cultures, especially for ex vivo 

expansion of limbal stem cells. 
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4.3   Effect of amniotic membrane suspension and amniotic 

membrane homogenate on human corneal epithelial cell viability, 

migration and proliferation 

Amniotic membrane is accepted as a beneficial tissue in ocular surgery since scientists 

and physicians understood that it could promote epithelialization, inhibit fibrosis, 

reduce inflammation and angiogenesis, have antimicrobial and antiviral properties [95]. 

Amniotic membrane does not only provide a mechanical substrate for HCECs to 

migrate on, but also effect morphology [127, 128], differentiation, stratification [129, 

130], stemness [131, 132] and gene expression [133-135] of HCECs.  

Long-term follow-up of amniotic membrane transplantation shows that the ocular use 

of amniotic membrane is safe [136-138]. Clinical use of an amniotic membrane “extract” 

was also shown to be safe in previous studies and no side effects could be detected [96, 

97, 139]. 

As a positive effect, in our present study we found that both 15% and 30% AMS 

promote HCEC migration without changes in HCEC viability and proliferation. We 

suggest the future use of these concentrations in clinical practice, which could be 

reached through dilution of AMS in the tear film. 

Amniotic epithelial cells produce growth factors, such as EGF, TGF-α, KGF, HGF, 

FGFb, TGF-β1 and TGF-β2 [87], and neurotrophic factors, neurotransmitters and a so-

called pigment epithelium-derived factor (PEDF) [140-142]. These factors may also be 

detected following cryopreservation of the amniotic membrane, even though the 

amniotic epithelial cells are not present any more [143]. It is already known that HGF, 

KGF and FGF are the major factors initiating proliferation and migration of CECs, 

while TGF-β in the tear film suppresses the proliferation at the migrating cell front 

[126]. In the present study, we measured a HGF concentration above 2822 pg/mL, and 

a KGF under 240 pg/mL, FGF under 1913 pg/mL and TGF-β1 under 468 pg/mL in 100% 

AMH using ELISA. We also found that FGFb may play a negative role, while TGF-β1 

may play a positive role in regulating HCEC functions. 

Nevertheless, we have to remark, that there must be several factors, not analyzed in this 

study or even not yet known, with an impact on HCEC viability, migration and 

proliferation. These factors should be further recognized and analyzed. 

As a negative effect, 15% and 30% AMH reduces HCEC viability and inhibit 
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proliferation, while 100% AMS reduces HCEC viability and inhibits both migration 

and proliferation.  

Interestingly, some previous studies, analyzing cells not derived from the cornea, have 

also found general inhibiting effect of amniotic membrane on various cells. Amniotic 

membrane could inhibit functions of conjunctival epithelial cells [144], vascular 

endothelial cells [142] and leukocytes [145, 146]. Furthermore, amniotic membrane 

could even suppress the growth of cancer cells [147, 148]. Mamede et al. used the MTT 

assay to evaluate the effects of human amniotic membrane protein extracts on 21 cancer 

cell lines and in 14 of these, the metabolic activities were inhibited [149]. Magatti et al. 

found that amniotic mesenchymal tissue cells reduced the proliferation of cancer cell 

lines of haematopoietic and non-haematopoietic origin, in co-cultures [150]. 

These studies suggest that biochemical factors released from amniotic membranes may 

have complicated, possibly non-linear, but dose-dependent effects on HCECs. Higher 

concentration of amnion-derived biochemical factors, present at 100% AMS and after 

homogenization in AMH, could even result in inhibition of HCEC migration and 

proliferation. Nevertheless, dilution of the amnion-derived biochemical factors in 15 

and 30% AMS supports HCEC migration. The use of lower concentration of AMS or 

AMH, may reduce the potential inhibiting effect of amniotic biochemical factors on 

HCECs. However, further research is needed focusing on concentration of growth 

factors or other compounds in the amniotic membrane which may inhibit HCEC 

functions, in order to optimize “non-surgical applications” of the amniotic membrane. 

In summary, 100% AMS decreases HCEC viability, migration and proliferation. 

Fifteen% and 30% AMH decreases HCEC viability and proliferation and has no impact 

on HCEC migration. In AMS/AMH, FGFb concentration has a negative effect on 

HCEC migration, a positive effect on HCEC viability and TGF-β1 concentration has a 

positive effect on HCEC proliferation.  
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4.4    Conclusions and outlook to the future 

In our study we determined that harvesting time, riboflavin concentration and UVA-

light illumination of normal and keratoconus keratocyte cultures has no impact on 

proliferation of HCECs, in the short term. However, 24 hours harvesting time (both for 

normal and keratoconus keratocytes) increases and UVA-light-illumination of 

keratoconus keratocyte cultures decreases HCEC migration. We suggest that the 

keratoconus keratocytes may be more sensible for DNA damage. In addition, UVA 

illumination may induce cyclobutane pyrimidine dimers in the keratocyte supernatant 

added to the HCECs, and inhibit corneal epithelial migration. This should be analyzed 

in further experiments including other factors which may contribute to epithelial 

migration following UVA-light illumination. 

Our experiments show, that through CXL, epithelial wound healing could be supported 

through increased proliferation of CECs, at least in normal corneas. Therefore, CXL 

could be a potential treatment option for patients with non-healing epithelial defects. 

To prove the effect of CXL on epithelial healing, animal experiments and clinical 

studies should be performed in the future including different clinical disease entities. 

 

HCEC viability is mostly increased through 30% AS or 15% FBS, migration through 

30% AS or 30% FBS and proliferation through 15% AS or 5% FBS. In addition, AS 

better supports HCECs viability and migration than FBS. Therefore, 30% AS could be 

the best for clinical practice. Based on our experiments, we also suggest the use of AS 

instead of FBS for in vitro HCEC cultures, especially for ex vivo expansion of limbal 

stem cells. Which factors in AS support epithelial wound healing beside different 

growth factors, should be further analyzed. Animal experiments and clinical studies 

should further strengthen results of our in vitro study (at least with different 

concentrations of serum) in the future. 

 

With unchanged HCEC viability and proliferation and increased HCEC migration, 15% 

and 30% AMS application seems to be the most appropriate method to support 

epithelial healing. Which factors are decisive in AMS and AMH beside different growth 

factors for epithelial wound healing should be further analyzed. 

 

We have demonstrated that these biomaterials are promising for clinical use, and 
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pointed out their potential side effects. However, like in all in vitro studies, differences 

between the experimental setup and the human body environment are inevitable and 

should not be ignored. Further in vivo animal or human experiments should verify our 

findings. 
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