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Review 

Medical properties, market potential, and microbial 
production of golden polyketide curcumin for food, 
biomedical, and cosmetic applications☆ 

Selma Beganovic and Christoph Wittmann   

Curcumin, a potent plant polyketide in turmeric, has gained 
recognition for its outstanding health benefits, including anti- 
inflammatory, antioxidant, and anticancer effects. Classical 
turmeric farming, which is widely used to produce curcumin, is 
linked to deforestation, soil degradation, excessive water use, 
and reduced biodiversity. In recent years, the microbial 
synthesis of curcumin has been achieved and optimized 
through novel strategies, offering increased safety, improved 
sustainability, and the potential to revolutionize production. 
Here, we discuss recent breakthroughs in microbial engineering 
and fermentation techniques, as well as their capacity to 
increase the yield, purity, and cost-effectiveness of curcumin 
production. The utilization of microbial systems not only 
addresses supply chain limitations but also helps meet the 
growing demand for curcumin in various industries, including 
pharmaceuticals, foods, and cosmetics. 
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Introduction 
Curcumin is the principal curcuminoid produced from 
the popular Indian spice turmeric (Curcuma longa L.), a 
member of the ginger family [1,2]. Chemically, the 
molecule contains two phenolic rings connected by a 

seven-carbon linker, which is responsible for the anti-
oxidant properties of curcumin (Figure 1). Methoxy 
groups are attached to the rings, which contribute to the 
compound’s solubility and influence its overall re-
activity. As demonstrated by recent studies, curcumin 
has multiple benefits [3•]. In regard to human health, 
curcumin limits the growth of food pathogens [4], allows  
[3•] individuals to monitor food spoilage through color 
changes [5], and provides a bright yellow color to various 
foods [6,7]. In addition, numerous studies have reported 
that curcumin exhibits antioxidant [8], anti-inflammatory  
[9], anticancer [10], neuroprotective [11], and anti-
microbial [12] effects (Figure 1). 

Economically, curcumin has commercial value in the 
pharmaceutical, food, and cosmetics industries, as de-
monstrated by the US$ 70 million in market value in 
2022. The market is expected to more than double over 
the next 8 years, underlining that importance of curcumin 
will substantially increase (https://www.gminsights.com/ 
industry-analysis/curcumin-market). Today, curcumin is 
almost exclusively obtained from turmeric plants through 
classical farming, followed by extraction and purification 
of the compound from the powdered turmeric rhizome 
(Figure 1). The global production of fresh turmeric rhi-
zomes is estimated to reach 1.1 million metric tons per 
year, and India represents 80% of the global market [14]. 
Fresh rhizome contains 2–5% curcumin (depending on 
the growing season) [13], leading to an annual production 
volume of approximately 22,000–55,000 tons of curcumin. 

The average yield of the spice is approximately 3.8 tons 
ha−1, and 10% of the harvest must be stored as a seed 
material for the next farming season [15]. Unfortunately, 
turmeric farming raises environmental concerns, as the 
plants occupy valuable agricultural land (380 000 ha) and 
require intensive watering, which can lead to water 
scarcity in arid areas. Furthermore, these large mono-
cultures can be infected by plant-parasitic nematodes  
[16], fungi [17], bacteria [18], and insects [19], necessi-
tating massive use of pesticides and, inter alia, posing 
high risks of harvest loss.   
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Curcumin can be chemically synthesized, but the yields 
are low; in addition, the products are contaminated with 
organic reagents, complicating their safe use in food and 
therapy [20]. 

Classical manufacturing involves obvious drawbacks, 
including the need for alternative routes that are more 

efficient and sustainable. In this work, after updating the 
applications and market potential of curcumin, we re-
view novel strategies that harness synthetic biology and 
systems metabolic engineering [21–23] to breed micro-
bial cell factories for curcumin synthesis. Building upon 
our present knowledge of the underlying biochemistry 
and metabolic pathways involved, we showcase several 

Figure 1  
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From nature to applications: the curcumin value chain. Curcumin compounds are obtained from farmed turmeric plants and are extracted from the 
dried rhizome and formulation. Conventional extraction methods, such as solideliquid and Soxhlet extraction [92], are easily performed but suffer from 
low efficiency, time exhaustion, and nonselectivity [20,93]. New methods that rely on ultrasound [94], electromagnetic waves [95], enzymes [96], 
supercritical fluids [97], pressurized liquids [98], and green solvents [99] offer more ecofriendly and efficient curcumin purification methods but remain 
in their infancy. Medically, curcumin is known to modulate various cellular pathways, and its mode of action has been intensively studied; curcumin 
molecules perform relevant interactions with transcription factors, proteins, cytokines, and inflammatory mediators, thereby providing protection 
against oxidation, inflammation, cancer, neurodegenerative diseases, and infections [100].   
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successful examples of curcumin synthesis in bacteria, 
fungi, and yeasts and anticipate a more sustainable fu-
ture for curcumin manufacturing. 

Market potential and applications of curcumin 
Curcumin was awarded the generally regarded as safe 
(GRAS) status by the United States Food and Drug 
Administration and is used in various applications in the 
food, medical, and cosmetic industries (Figure 1). Ex-
tensive research efforts in recent years have led to tre-
mendous growth in terms of market applications and 
commercial value of curcumin. In the food industry, cur-
cumin is marketed as Natural Yellow 3, diferuloylmethane, 
CI 75300, or E100 [24]. Due to its pronounced yellow 
color, curcumin is a common dye for baked goods, dairy 
products, mustard, beverages, ice cream, and salad dres-
sings [25]; thus, curcumin offers a beneficial replacement 
to synthetic yellow dyes that are unsafe [26]. Due to its 
pH-dependent color change [27], curcumin has been ap-
plied as a pH biosensor for monitoring food spoilage [28]. 

Owing to its antimicrobial and antioxidant activities, 
curcumin is also used to preserve green food [29] and has 
gained increasing attention for its ability to extend the 
shelf life of food [30]. Notably, when excited with visible 
light within 400 to 500 nm, curcumin is photoactivated 
and drives the formation of reactive oxygen species, such 
as singlet oxygen, superoxide anions, and hydroxyl ra-
dicals [31,32]. These factors, in turn, reduce the growth 
of prevalent food pathogens, including Staphylococcus 
aureus [33], Listeria monocytogenes [34], Listeria innocua  
[35], Escherichia coli O157:H7 [35], and Salmonella typhi-
murium [36], in fresh meat. Moreover, curcumin limits 
the growth of food-borne fungi, such as Aspergillus flavus 
in maize kernels [37], Penicillium expansum [38], and 
Botrytis cinerea in apples [39], and inactivates enzymes 
responsible for browning and deteriorating fruits [40,41]. 

Medically, curcumin has a range of health benefits and 
promotes well-being (Figure 1). Based on recent find-
ings, curcumin suppresses cancer growth [10,42,43], 
protects against inflammation [9,44], and fights and 
prevents infectious and noninfectious diseases, in-
cluding malaria, tuberculosis [45–47], diabetes [48,49], 
Alzheimer’s disease [50,51], and Parkinson’s disease  
[52,53]. Furthermore, curcumin actively supports wound 
healing [54,55] and helps achieve appropriate immune 
system modulation [56,57], leading to a wide range of 
therapeutic applications. As reported in the PubMed 
database, 268 clinical trials involving curcumin (Feb-
ruary 2024) have been conducted since 2019 and have 
demonstrated the numerous health benefits of curcumin, 
highlighting the great potential of the compound. For 
example, oral administration of curcumin significantly 
reduced the progression of prostate-specific antigen, a 
biomarker for prostate cancer [58]; knee injury and 

osteoarthritis outcome scores [59]; and serum levels of 
islet amyloid polypeptide, a hallmark of insulin re-
sistance [60]. Therefore, curcumin exhibits anticancer, 
anti-inflammatory, and antidiabetic properties in 
humans. 

Biochemistry of curcumin synthesis in plants 
As a polyketide, curcumin and its derivatives are syn-
thesized from CoA thioesters, namely, one molecule of 
malonyl-CoA and two molecules of aromatic CoA [61•] 
(Figure 2). The latter compounds are formed by CoA- 
mediated activation of hydroxycinnamate intermediates 
of the phenylpropanoid pathway [62]; normally, this 
pathway supplies precursors for the biosynthesis of 
lignin, a major structural component of the cell wall in 
higher terrestrial plants [63,64], and other metabolites, 
such as flavonoids [65]. 

The biosynthetic route exhibits promiscuity and accepts 
different aromatic CoA thioesters. Curcumin is formed 
from two molecules of feruloyl-CoA, whereas partial or 
exclusive incorporation of p-coumaroyl-CoA results in 
the demethoxy analogs demethoxycurcumin and bisde-
methoxycurcumin. The signature enzyme of the 
pathway is a type III polyketide synthase (PKS), which 
catalyzes the decarboxylative condensation of the aro-
matic CoA thioester with malonyl-CoA as the extender 
unit. CUS was originally discovered in rice (Oryza sativa 
L.), although the plant tissue does not contain curcu-
minoids in vitro [66] or in vivo [67]. Notably, OsCUS 
exhibits differential affinities for cinnamoyl-CoA, p- 
coumaroyl-CoA, and feruloyl-CoA; in contrast, OsCUS 
strongly prefers p-coumaroyl-CoA as a substrate, strongly 
impacting the curcuminoid spectrum [42]. 

Inspired by the findings for rice, researchers subse-
quently revealed the biosynthesis of curcuminoids in 
turmeric (C. longa), revealing a striking difference 
(Figure 3a). In turmeric, the following type III PKSs are 
collaboratively involved in the biosynthesis of curcumi-
noids: diketide-CoA synthase (DCS; BAH56225) and 
curcumin synthase (CURS) [68]. The DCS enzyme 
drives the formation of the diketide-CoA intermediate 
from malonyl-CoA and either p-coumaroyl-CoA or fer-
uloyl-CoA. CURSs perform dual functions, as they cat-
alyze the hydrolysis of diketide-CoA to β-keto acid and 
perform condensation with the second hydro-
xycinnamoyl-CoA thioester. Further studies of native 
curcuminoid pathways have revealed three different 
variants (CURS1, 2, and 3; BAH56226, BAH85780, and 
BAH85781, respectively) [69]. CURS1 exhibits a pre-
ference for feruloyl-CoA, although it accepts p-cou-
maroyl-CoA [68]; CURS2 exhibits a preference for 
feruloyl-CoA; and CURS3 exhibits similar affinities for 
feruloyl-CoA and p-coumaroyl-CoA [69]. In principle, 
differential expression of the three CURSs and 
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availability of the building blocks define the curcumi-
noid spectrum (Figure 3b) [44,69,70]. 

Upstream of the biosynthetic pathway, feruloyl-CoA and 
p-coumaroyl-CoA are derived from ferulate and p-cou-
marate, respectively, by the enzyme p-coumaroyl-CoA 
ligase (4CL) [61]. Ferulate is formed by the enzymatic 
modification of p-coumarate via caffeate as an inter-
mediate [71••]. Notably, p-coumarate is synthesized 
directly via deamination of ʟ-tyrosine or hydroxylation of 
cinnamate, which is produced by deamination of ʟ- 
phenylalanine (Figure 3a) [72]. 

Briefly, in vitro studies of chalcone synthase from ginger 
(Zingiber officinale L.; GenBank: DQ486012.1) using 
feruloyl-CoA, p-coumaroyl-CoA, and cinnamoyl-CoA 
yielded curcumin, bisdemethoxycurcumin, and di-
cinnamoylmethane, respectively [73] (Figure 2). How-
ever, further testing has not been performed with the 
enzyme [74]. 

Pioneering synthesis of curcumin in Escherichia coli 
using rice-and turmeric-based heterologous pathways 
The identification of curcuminoid synthase activity in 
rice (OsCUS) and the demonstration of its functional 
operation in vitro [66,67] set the stage for heterologous 
curcumin production in microbes (Figure 4). To this 
end, E. coli BLR (DE3) was constructed with a plasmid- 
based heterologous pathway to convert the precursor 
ferulate into curcumin. The designed artificial bio-
synthesis-related gene cluster included four genes, in-
cluding os07g17010 from rice, which encodes OsCUS; 
4cl1, which encodes 4-coumarate-CoA ligase 1 (from 
Lithospermum erythrorhizon, purple gromwell); accBC; 
dtsR1, which encodes acetyl-CoA carboxylase subunit α; 
and a homolog of the β subunit (from Corynebacterium 
glutamicum). 

The recombinant E. coli BLR (DE3) strain that ex-
presses these genes was tested in a two-step culture 
process. After large amounts of biomass were formed in 

Figure 2  
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In vitro biosynthesis of curcumin and curcuminoid derivatives by curcuminoid synthase (CUS) from rice (Oryza saiva, Os). The gene os07g17010, 
encoding CUS from rice (OsCUS), was identified while researchers screened for putative type III PKS activity in rice. The enzyme catalyzes a three- 
step reaction from a phenylpropanoid-derived aromatic CoA thioester via diketide-CoA and β-keto acid intermediates to the corresponding 
curcuminoid molecule. Functional studies of a putative type III PKS, encoded in the rice genome, surprisingly revealed the synthesis of curcumin and 
bisdemethoxycurcumin, as well as related derivatives from CoA-based precursors [66] (Figure 2). Given its activity, the enzyme was named 
curcuminoid synthase (CUS). Rice-based enzymes (OsCUSs) function in a nontraditional ‘head-to-head’ fashion [101], thereby forming diketide-CoA. 
Subsequently, the intermediate is hydrolyzed to the corresponding β-ketoacid in a reaction catalyzed by the same enzyme [66]. In addition to other 
PKSs, OsCUS uses β-ketoacid as a second extender substrate and condenses the compound with another phenylpropanoid-derived CoA thioester  
[101]. In this manner, a single enzyme catalyzes the correspondingly ‘one-pot’ synthesis of curcuminoids [72]. In vitro feeding of malonyl-CoA and 
different aromatic CoA thioesters enabled the production of the natural curcuminoids curcumin, demethoxycurcumin, and bisdemethoxycurcumin; in 
addition, new, more unpolar derivatives were generated, such as dicinnamoylmethane and cinnamoyl-p-coumaroylmethane. Regarding selectivity, 
OsCUS exhibits a preference for p-coumaroyl-CoA but also accepts cinnamoyl-CoA and feruloyl-CoA, enabling the synthesis of asymmetrical 
curcuminoids (demethoxycurcumin and cinnamoyl-p-coumaroylmethane). When OsCUS was subsequently expressed in E. coli BLR (DE3), it enabled 
the formation of all curcuminoids in vivo.   
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complex nutrient broth, the cells were transferred to 
mineral media. The setup contained 40 g l−1 glucose (as 
a growth substrate) and 1 mM ferulate (as a bio-
transformation precursor). Within 60 hours, the re-
combinant strain formed 113 mg l−1 of curcumin in a 
yield of 0.61 mol (mol ferulate)−1 [67] (Figure 4). Sub-
sequently, the artificial pathway was extended further 
expressing phenylalanine ammonia-lyase (PAL) from 
the yeast Rhodotorula rubra, which enabled isopropyl β- 
D-1-thiogalactopyranoside-inducible production from ʟ- 
phenylalanine and ʟ-tyrosine in the corresponding four- 
plasmid mutant (Figure 4). The same study produced 
curcumin from rice bran pitch, a ferulate-rich agricultural 
waste that is generated during rice milling [67]. 

Subsequently, the researchers induced the functional ex-
pression of the dcs and curs1 genes from turmeric with E. 
coli K-12 using isopropyl β-D-1-thiogalactopyranoside-in-
ducible medium- and high-copy-number plasmids [75] 
(Figure 4). Additionally, 4cl1 from tale cress (Arabidopsis 
thaliana (L.), Heyn.) was expressed on a low-copy-weight 
plasmid, and the three-plasmid host formed 69 mg l−1 

curcumin in a yield of 0.18 mol (mol ferulate)−1. A two- 
stage process was used for production. Elevated levels of 
glucose (40 g l−1) and ferulate (2 mM) were contained in 
the medium during the production phase. Additional stu-
dies suggested that the turmeric-based pathway, which 
consists of 4CL1 from A. thaliana and DCS and CURS1 
from C. longa [75], exhibited greater efficiency than that of 
the rice-based pathway described previously, comprising 
4CL from L. erythrorhizon, CUS, and the overexpression of 
acetyl-CoA carboxylase from C. glutamicum [67]. 

Strikingly, the chosen host substantially affected produc-
tion (Figure 4). Recombinant E. coli BL21 (DE3) accu-
mulated 301 mg l−1 of curcumin in a ferulate- 
supplemented one-step process in terrific broth (TB), far 
more than the K-12 MG1655 (DE3) and K-12 JM109 
(DE3) strains that expressed the same genes on the same 
vectors [76]. In contrast to the K-12 lineage, the BL21 
(DE3) strain (as with other strains from the B lineage) lacks 
two major proteases, Lon and OmpT; thus, the strain can 
better express foreign proteins from cloned genes [77]. 
Furthermore, E. coli BL21 (DE3) exhibited a mutation in 
the hsdSB gene, reducing plasmid degradation [78]. 

Furthermore, the host benefited from streamlined meta-
bolism because it exhibited an increased capacity to re-
metabolize secreted acetate; as a result, the host tolerated 
higher glucose levels and grew to higher cell concentra-
tions than those of E. coli K-12 [79,80]. This metabolic 
property was linked to the upregulation of the tricarboxylic 
acid cycle and the glyoxylate shunt, which is involved in 
acetate metabolism, at the transcriptional level. 

A range of medium tests were performed to explore the 
effects caused by nutrient availability and buffer capa-
city. This led to a two-step fermentation process (cell 
growth in Luria-Bertani (LB) and curcumin production 
in M9), which yielded 353 mg l−1 curcumin at a yield of 
0.95 mol (mol ferulate)−1 [76] (Figure 4). 

Furthermore, curcuminoids were synthesized from ʟ-tyr-
osine via the caffeate pathway, although at substantially 
lower levels than those of the two-step fermentation [75] 
(Figure 4). This synthesis involved the utilization of tyr-
osine ammonia lyase (TAL) from the yeast Rhodotorula 
glutinis and 4-coumarate 3-hydroxylase (C3H) from the 
soil bacterium Saccharothrix espanaensis to produce caffeate 
from ʟ-tyrosine. Subsequently, caffeoyl-CoA 3-O-me-
thyltransferase (COMT) from lucerne (Medicago sativa L.) 
was employed to convert caffeoyl-CoA into feruloyl-CoA, 
a critical step in the production process. 

Increased curcumin production in recombinant 
Escherichia coli using fine-tuned and extended 
biosynthetic pathways and novel coculture concepts 
Research on microbial curcumin synthesis has in-
tensified over the past 5 years. For example, in a range of 
studies, researchers explored new concepts to increase 
the production of curcumin in recombinant E. coli to a 
new level. Impressively, curcumin was generated from 
glucose through microbial de novo synthesis first time 
using the genomic expression of six genes in the tyr-
osine-overproducing derivative of E. coli C41; in this 
process, the need for antibiotics was eliminated [81••] 
(Figure 4). The biosynthetic genes were organized into 
two separate operons (modules). The ferulate-producing 
module (encompassing tal and c3h from S. espanaensis 
and comt from M. sativa) was integrated into the bioC 
locus of the host, while the curcumin-producing module 

Metabolic pathways associated with the heterologous production of curcumin and related curcuminoids in microbes. The figure illustrates the native 
biosynthetic machinery from the turmeric plant (a) and the corresponding kinetic properties of the CURS1, CURS2, and CURS3 enzymes (b). The 
phenylpropanoid pathway is initiated by deamination of the aromatic amino acids ʟ-phenylalanine and ʟ-tyrosine by the enzymes PAL and TAL, 
yielding cinnamate and p-coumarate, respectively. Additionally, p-coumarate can be synthetized from ʟ-phenylalanine via cinnamate by PAL and C4H. 
The final product of the phenylpropanoid pathway is ferulate, which is synthesized from p-coumarate via caffeate by C3H and COMT. The first 
committed reaction of the curcuminoid biosynthetic pathway is catalyzed by 4CL, which produces CoA-activated forms of phenylpropanoids. 
Subsequently, DCS elongates feruloyl-CoA or p-coumaroyl-CoA to form one acetate unit from malonyl-CoA, resulting in the formation of β-keto acids. 
Finally, CURS catalyzes the condensation of β-keto acids with one additional molecule of feruloyl-CoA or p-coumaroyl-CoA. Depending on the 
combination of starter and elongation units, curcumin, demethoxycurcumin, or bisdemethoxycurcumin can be produced. Abbreviations: C4H: 
cinnamate 4-hydroxylase; CCoAOMT: caffeoyl-CoA O-methyltransferase; CURS: curcumin synthase [70]; Km: Michaelis–Menten constant; Kcat: 
turnover number; Kcat/Km: catalytic efficiency.   
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(containing the 4cl2 from Nicotiana tabacum L., dcs and 
curs1 from C. longa) was inserted into the lacZ locus. 
Each gene was flanked by a ribosomal binding site and a 
T7 terminator sequence and expressed under the control 
of a viral T7 promoter. The authors were able to ap-
propriately balance the expression levels [82] within the 
six-enzyme pathway by comprehensively screening a 
library that contained 5′-untranslated region sequence 
mutants obtained using multiplexed automated genome 
engineering. Among the variants generated, one mutant 
called 6M08rv exhibited a remarkable 38.2-fold im-
provement in curcumin production compared with that 
of the original parental strain. Notably, this improve-
ment was achieved even though the calculated expres-
sion levels of two critical enzymes within the pathway 
(4CL and DCS) were significantly lower in 6M08rv than 
in the parental strain. Although the final curcumin titer 
(3.8 mg l−1) was much lower than that obtained from 
ferulate-based processes, this approach is inspiring and 
provides an excellent starting point for creating stream-
lined de novo synthetic strains. 

Following their previous work on E. coli BL21 (DE3), 
Rodrigues et al. systematically fine-tuned and extended 
the biosynthetic route to curcumin [71••] (Figure 4). 
Various plasmid combinations were tested, and the 
conversion of ferulate to feruloyl-CoA was optimized 
(module 1). Subsequently, the conversion of the latter 
compound into curcumin was evaluated (module 2). The 
best genetic layout included the combined expression of 
dcs and curs1 from turmeric on a high-copy-number 
plasmid plus the expression of 4cl1 from A. thaliana from 
a low-copy-weight plasmid and the production of 
563 mg l−1 curcumin within 63 hours, which is the 
highest titer reported thus far. When both modules were 
combined in one single host, curcumin was obtained 
from ʟ-tyrosine; however, the level attained was much 
lower (6.4 mg l−1), suggesting that imbalances remain, 
and further engineering efforts are needed. 

An interesting solution to this problem was provided in 
the same work [71••]. Using a novel approach, the 

synthesis of curcumin was performed by two different 
producers (Figure 4). The strategy was based on a co-
culture in which one recombinant host carried synthetic 
module 1 to synthesize ferulate from L-tyrosine, 
whereas the second recombinant host expressed module 
2 and used ferulate as a substrate to produce curcumin 
(Fig. S1). 

For this purpose, the first host expressed tal from R. 
glutinis, c3h from S. espanaensis, and comt from A. thaliana, 
while the second host expressed 4cl1 from A. thaliana as 
well as dcs and curs1 from C. longa. In this manner, the 
number of heterologous genes in each strain was re-
duced from six to three, ultimately resulting in the for-
mation of 15.9 mg l−1 curcumin, the highest known titer 
of curcumin produced from ʟ-tyrosine. 

Increased membrane fluidity supports high-level 
production in Escherichia coli BW25113 
Another study yielded a remarkable titer of 537 mg l−1 

and successfully expanded the panel of producers using 
E. coli BW25113 as a host [83••] (Figure 5). E. coli 
BW25113 is a derivative of E. coli K-12 that has become 
the parent strain for the single-gene deletion Keio col-
lection and is extensively employed for systematic 
phenotypic surveys and synthetic biology efforts. This 
study utilized the rice-based route and ferulate as a 
biotransformation precursor. Another important finding 
of this work was that increasing membrane fluidity pro-
vided a beneficial effect on cell production cells, which 
reduced the toxic effects caused by the product. 

Given its pronounced hydrophobic nature, curcumin 
may be anchored within the phospholipid bilayer, af-
fecting its fluidity [84]. The exposure of E. coli to cur-
cumin resulted in reduced membrane fluidity [83••]. 
Interestingly, this drawback could be partially reversed 
by pretreating the cells with unsaturated fatty acids, 
such as palmitoleate and oleate, which simultaneously 
promoted the production of curcumin [83••]. In con-
trast, adverse effects were observed when saturated fatty 
acids were added. The available knowledge was 

Overview of the microbial-based bioprocesses used to produce curcumin from caffeate, ferulate, and feruloyl-N-acetylcysteamine. The data are 
displayed regarding pioneering studies (above the dashed line) and recent work from the past 5 years (below the dashed line). From top to bottom the 
following hosts were used: E. coli K12 producing from p-coumarate (P-COU) and caffeate (CAF) via the turmeric pathway [75], E. coli BLR (DE3) 
producing from ferulate (FER) via the rice-based pathway [67], E. coli K12 from FER via the rice-based pathway and the turmeric pathway [75], E. coli 
BL21 (DE3) from FER via the turmeric route [76], E. coli BL21 (DE3) from CAF via the turmeric pathway [71], E. coli BW25113 from FER via the rice- 
based route [83••], E. coli BL21 (DE3) from FER via the turmeric route [71], S. cerevisiae By4741 from FER via the turmeric route [61], and A. oryzae 
RIB40 from FER-NAC via the rice-based pathway [91]. Given that curcumin production by A. oryzae was carried out on agar plate cultures [91], we 
estimated the achieved titer by assuming a volume of agar of 20 ml, which is routinely applied to grow such microbes. In established bioprocesses, 
curcumin is typically extracted from acidified whole-cell broth (pH = 3) using polar solvents, such as ethyl acetate, followed by drying. The recovered 
curcumin is subsequently resuspended in solvents, such as dimethyl sulfoxide [67], acetonitrile [71,75,76], and methanol [81,91], and analyzed via 
high-performance liquid chromatography via ultraviolet detection at 425 nm. Abbreviations: CAF: caffeate; FER: ferulate; FER-NAC: feruloyl-N- 
acetylcysteamine; CCoAOMT: caffeoyl-CoA O-methyltransferase; CUS: curcuminoid synthase; CURS: curcumin synthase; ACC: acetyl-CoA 
carboxylase; Al: A. laidlawii; At: A. thaliana; Cl: C. longa; Ms: Medicago sativa; Nt: Nicotiana tabacum: Os: O. sativa; Pp: P. paucimobilis; Rg: R. glutinis; 
Se: S. espanaensis; Cg: C. glutamicum. 1: ΔsnfA; 2: ΔsnfA ΔSCAP; 3: ΔpoxB ΔadhE ΔfabF ΔcurA; 4: ΔpoxB ΔadhE ΔfabF ΔcurA ↑acs; 5: Δfdc. 
For details about curcumin production from glucose, ʟ-tyrosine, and p-coumarate, refer to Figure S1.   
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Figure 5  
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System-level engineering of E. coli to produce curcumin. The comprehensive strategy used comprised (1) directed evolution and expression of the 
improved rice-based cus gene, (2) inactivation of poxB, adhE, fabF, and curA, (3) overexpression of acetyl-CoA-forming acs, (4) supplementation of 
unsaturated palmitoleate, and (5) enlargement of the membrane surface by overexpression of MGS from A. laidlawii [83••]. Abbreviations: ACET: 
acetate; Et-OH: ethanol; PYR: pyruvate; Ac-CoA: acetyl-CoA; Mal-CoA: malonyl-CoA; Mal-ACP: malonyl-ACP; CUS: curcuminoid synthase.   
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subsequently merged into a comprehensive strategy that 
involved the following methods: (1) performing directed 
evolution and expressing the improved rice-based cus 
gene; (2) inactivating pyruvate dehydrogenase (poxB), 
alcohol dehydrogenase (adhE), 3-oxoacyl-[acyl carrier 
protein] synthase 2 (fabF), and curA (curcumin re-
ductase, which catalyzes the reduction of curcumin to 
dihydrocurcumin); (3) overexpressing acetyl-CoA syn-
thase (acs), which results in the formation of acetyl-CoA; 
(4) adding unsaturated palmitoleate; and (5) enlarging 
the membrane surface and storage capacity of curcumin 
through overexpressing monoglucosyl-diacylglycerol 
synthase (MGS) from Acholeplasma laidlawii (Figure 5). 
After an incubation was performed with 4 mM ferulate 
as a biotransformation precursor in minimal medium, the 
titer of the metabolically engineered strain reached 
537 mg l−1. The accumulation of curcumin exerts toxic 
effects on the host, limiting overall production perfor-
mance; this limitation is a relevant challenge in in-
dustrial bioproduction [85–87]. Here, membrane 
engineering may offer a valuable tool for overcoming 
storage bottlenecks. 

Yeast and fungi fail as alternative hosts in the 
competitive production of curcumin 
E. coli has become a prominent host for microbial cur-
cumin production, similar to many other plant-based 
metabolites [88]. However, recent studies have aimed to 
implement alternative, GRAS microbes, which are at-
tractive for addressing industrial markets in food, cos-
metics, and medicine. Prominent candidates included 
Aspergillus oryzae [89] and Saccharomyces cerevisiae [90]. 

A metabolically engineered A. oryzae mutant that geno-
mically expressed cus from rice but lacked the genes snfA 
and SCAP successfully formed curcumin when grown on 
MPY-based agar plates in the presence of feruloyl-N- 
acetylcysteamine, an analog of feruloyl-CoA [91•]. The 
strain accumulated 404.2 µg of curcumin per plate at a 
yield of 0.53 mol (mol feruloyl-N-acetylcysteamine)−1. As 
no liquid cultures were performed, it was difficult to 
evaluate the achieved performance, but the general 
possibility of using fungi for production is interesting. 

Additionally, heterologous synthesis of curcumin was 
recently established in baker’s yeast through episomal 
expression of dcs and curs1 from turmeric and ferA, which 
encodes feruloyl-CoA synthase enzyme (ferA), from 
Pseudomonas paucimobilis [61•]. Importantly, the native 
gene fdc, which encodes ferulate decarboxylase, was in-
activated to prevent decarboxylation of ferulate to 4-vi-
nylguaiacol. The mutant formed 3 mg l−1 of curcumin in 
a biotransformation setup from ferulate. 

Conclusions 
Recent efforts have led to microbial strains that produce 
the plant polyketide curcumin at the milligram scale 

through streamlined heterologous pathways. Enabled by 
progress in recent years, a promising era in microbial 
curcumin production is near. However, much process 
optimization is needed to reach a viable curcumin fer-
mentation industry. Several challenges must be ad-
dressed to unlock the full potential of microbial 
curcumin production and harness the benefits of cur-
cumin for industry, health, and the environment. To 
improve economic factors, microbial strains and fer-
mentation processes must be further optimized to attain 
higher curcumin yields and greater purity while mini-
mizing byproducts and waste. In addition, downstream 
processing of curcumin, which is conventionally ex-
tracted from total cell broth using polar solvents, might 
be of interest for optimization. These achievements may 
be crucial for attaining scalable curcumin production 
with attractive carbon footprints and resource con-
sumption levels. The inhibitory effects of curcumin re-
ported thus far vary greatly. For E. coli, the minimum 
inhibitory concentration (MIC) ranges between 160 and 
2000 µg ml−1, depending on the strain and test condi-
tions used [12,102,103]. For yeast, the MIC can even 
differ by more than 100-fold [12,103]. At this point, 
forming a clear conclusion about the extent to which 
strain limitations have been reached is difficult. More 
work is needed to clarify this topic. Notably, scientific 
and technical developments should accompany reg-
ulatory and safety considerations to ensure the quality 
and safety of microbial curcumin for consumer use. 
Therefore, regions that rely heavily on curcumin pro-
duction for their livelihoods should receive equitable 
access to microbial curcumin technology. 
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