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Abstract: Additively manufactured soft-magnetic components are inherently bulky leading to sig-
nificant eddy current losses when applied to electrical machines. Prior works have addressed this
issue by implementing structures based on the Hilbert space-filling curve which include eddy current
suppressing gaps, thereby reducing the fill factor of the soft-magnetic component. The present
research aims at investigating a number of space-filling curves in addition to sheets in order to find
the optimal eddy current suppressing structure from an electromagnetic point of view. By means
of both analysis and finite-element simulation, it was shown that sheets are superior at minimizing
eddy current losses while space-filling curves excel at maximizing the fill factor.

Keywords: eddy current losses; soft-magnetic components; finite-element; additive manufacturing;
fill factor

1. Introduction

Additive manufacturing (AM) is a technique experiencing fast adoption in prototyping
and low-volume manufacturing. Its main benefit is the ability to directly use a computer-
aided design (CAD) model which results in fast design iteration and the possibility to
create complex geometries in a single part [1]. Additionally, material waste is greatly
reduced compared to subtractive manufacturing techniques, which instead currently excel
in high-volume production.

Although the span of AM components already ranges from purely mechanical ones [2]
to functional use such as with electronics [3] and radio frequency components [4,5], the in-
vestigation of many potential applications such as magnetic flux-guiding components has
only recently started [6]. The first application of this kind was the core of a transformer
by Plotkowski et al. in [7]. A more recent set of publications by Goodall et al. presented
an axial flux machine with an additively manufactured stator [8,9]. Both of these research
groups already addressed one of the main issues with AM-built soft-magnetic components,
namely eddy currents and their respective losses.

As the AM process is intrinsically bulky due to the deposition of one layer on top of
the other, the lack of electrical insulation enables eddy currents to flow freely, resulting in
unobstructed power losses already at low frequencies and consequently thermal issues for
the entire electrical machine. In classical manufacturing of these soft-magnetic components,
thin insulated sheets are cut to the required geometry and then stacked on top of each other.
Thus, the eddy currents are limited to the width of a single sheet. However, this process is
tedious and expensive, which are exactly some reasons one might choose AM processing
in the first place. A similar approach can be implemented by only filling regions of the bulk
component, leaving gaps between them [10]. Naturally, the gaps should be as narrow as
possible while still insulating the regions from each other. However, there are additional
aspects to consider. In the case of powder bed processes, which is the AM process used
in both [7,8], the gaps are still filled with powder once the component is finished. Thus,
the gaps have to be wide enough for the powder to be removable or the component will once
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again be quasi-bulky from an electromagnetic point of view. Additionally, the surfaces of
AM-built components are quite rough compared to conventionally manufactured parts [11].
If such surfaces are very close to each other inside a component, it is very likely that they
are connected at a number of points. These aspects have to be considered when choosing
the minimum viable gap size. An in-depth investigation of Fe-6.5 wt%Si on this latter
issue is presented in [8] resulting in a minimum gap size of 50 µm with the gap plane
perpendicular to the build plane and 250 µm when the build and gap planes are parallel to
each other. These values may be reduced by improving both the alloy properties and AM
process but still represent non-negligible regions of the soft-magnetic component which are
not soft-magnetic.

Structures already applied by different research groups in order to reduce the eddy
current losses range from interconnected sheets [12] to hexagons [13] and clock springs [7].
Despite this, every research group has ultimately chosen to use a so-called space-filling
curve (SFC). SFCs were originally investigated in mathematics with the idea of filling an
area or a volume using a one-dimensional object [14]. In order to achieve this property,
fairly simple geometries are refined over a theoretically unlimited number of iterations
according to rules specifically designed for the appropriate SFC, similar to the creation
of fractals. A small number of iterations for the Hilbert and Peano SFCs are shown in
Figure 1. Over time, a number of SFCs were developed such as the already mentioned
Hilbert and Peano curves but also the Moore curve, Lebesgue curve, Sierpiński curve and
many more [15]. Practical applications of SFCs mainly concern informatics: Their property
of creating a continuous path on higher dimensional objects is used in processing or
compressing images and optimizing search algorithms [16,17]. One of the most important
properties for these operations is locality, that is, the ratio of distance between points in the
respective space to the distance of these points along the SFC [18]. However, this aspect
is yet to be connected to magnetic performance and will therefore not be included in the
presented research.

(a) First order Hilbert (b) Second order Hilbert (c) Third order Hilbert

(d) First order Peano (e) Second order Peano (f) Third order Peano

Figure 1. SFCs with their starting curve and two iterations of refinement each. Top (a–c): Hilbert
curve. Bottom (d–f): Peano curve.

Another characteristic influencing eddy current losses is the width of the structures
between the insulating gaps, similar to the thickness of sheets in laminated soft-magnetic
components. In order to achieve minimal power losses, the minimum manufacturable thick-
ness should be implemented. However, this increases the number of gaps and consequently
the gap volume. Thus, this approach reduces the fill factor and subsequently the maximum
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magnetic flux which the component can guide. Therefore, a compromise between eddy
current losses and fill factor has to be made. The topic of fill factor is also especially interest-
ing, as research on soft-magnetic metal-polymer composites has shown a strong non-linear
connection between fill factor and magnetic properties as well as losses [19–21].

This paper provides insight into the magnetic performance of a number of eddy
current limiting structures and compares them regarding both their resulting power loss
density due to eddy currents as well as fill factor of soft-magnetic material. Section 2
recaps eddy current losses in thin sheets and introduces the finite-element (FE) model
used in the investigation. Section 3 presents the eddy current losses of structures based on
so-called space-filling curves (SFCs) and compares the respective results with the losses of
similarly sized sheets. The fill factors of the presented structures are compared in Section 4,
and Section 5 summarizes the conclusions of the research.

2. Eddy Current Losses in Sheets

Eddy currents are electrical currents induced in electrically conductive materials
experiencing a change in magnetic field. The cause of this change may be due to the
magnetic field changing, e.g., by driving a nearby coil with a sinusoidal source, or by the
material itself moving within a static magnetic field. As portrayed in Figure 2, this induced
current Ieddy circulates in a plane perpendicular to the magnetic flux denoted by the flux
density B. The current leads to ohmic losses and therefore generates heat in materials
with non-zero electrical resistivity ρel . Additionally, this current generates a magnetic field
itself which may distort the applied magnetic field. Although eddy currents are useful in
some applications such as eddy current brakes [22], in most other applications they are
undesired and means to suppress eddy currents and subsequent losses are implemented.
The most common method to reduce eddy current losses is by using electrically insulated
and stacked soft-magnetic sheets instead of bulk components.

IeddyB

Figure 2. Schema of eddy currents Ieddy (red) within the cross section of a beam due to the magnetic
field B (cyan).

A general formulation for both eddy currents and their losses have been derived in
literature such as [23] but are omitted here for reasons of brevity. Instead, a simplified esti-
mation for eddy current losses in thin sheets of thickness d in m experiencing a sinusoidal
magnetic field of frequency f in Hz as presented in [24] will be used:

W =
π2d2B2

p f
6ρelρm

, (1)
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where W is the specific loss per cycle in J
kg , Bp the peak magnetic flux density in T and ρm

the volumetric mass density of the material in kg
m3 . The specific power lost P in W

kg can be
expressed as:

P = W f =
π2d2B2

p f 2

6ρelρm
. (2)

These equations already show the effect of using thin sheets, as the square of their
thickness d is directly linked to P. Although this leads to the objective of minimizing d,
there is a practical limit to the thickness of sheets concerning both cost of production and
handling of such sensitive parts. Thus, most providers limit their regular product at around
d = 0.1 mm with thinner sheets being available for a markup.

Inserting some thicknesses d into (2) using the values presented in Table 1 leads to the
specific power losses listed in Table 2 under ’Analytical ’.

Table 1. Parameters used for analytical and FE simulation determination of eddy current losses.

Parameter Symbol Value

Frequency f 10 Hz
Peak Flux Density Bp 1 T

Electrical Resistivity ρel 89.29 nΩm
Relative Magnetic Permeability µr 4000

Volumetric Mass Density ρm 7870 kg
m3

Cube Side Length l 1 mm

Table 2. Specific eddy current losses for sheets of different thickness d.

d in mm Specific Power Losses P in mW
kg

Analytical 2D Analytical FE Simulation

1 234.09 117.05 97.84
0.5 58.52 46.82 40.01
0.25 14.63 13.77 12.33
0.1 2.34 2.32 2.20

Table 2 additionally contains loss values determined by means of FE simulation using
COMSOL Multiphysics as well as ’2D Analytical’ results which will be explained later.
As illustrated in Figure 3, the soft-magnetic component simulated is a cube with side length
l = 1 mm which itself is comprised of stacked sheets of the appropriate thickness d. Instead
of using a finite gap for electrical insulation, the sheets are electrically insulated by 2D
planes with ρel = ∞ Ωm. Thus, the specific power loss can be calculated by dividing the
total loss in the cube by its volume and mass density. The cube is surrounded by electrically
non-conducting air on four sides as well as a homogenized multi-turn coil whose current
is adjusted on a per model basis in order to create the magnetic flux density according to
Table 1. The two parallel planes of the open sides of the cube have boundary conditions
applied which only allow B-fields perpendicular and currents parallel to the respective
plane. Thus, the cube is modeled as a section of a long beam without any end effects,
reducing computational cost and time substantially and introducing negligible deviation
from a real-life configuration exhibiting end effects.

The latter assumption is especially helpful as (2) is based on an infinitely large sheet
of thickness d. However, the FE model only applies an infinite length in one dimension
instead of two which contributes to the significant deviations of results in Table 2. This
error can be reduced by extending the square in its x-axis direction such that l >> d but
this leads to highly increased computational time and, most importantly, deviates from the
square shape of the cross section. The reason for this square shape will become obvious
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in Section 3 and with the introduction of SFCs. Their resulting structures are inherently
square-shaped which requires the sheets to also fill this shape for a one-to-one comparison.

Coil

Air

Soft-Magnetic
Sheets

Symmetry
Condition

Figure 3. Model used for FE simulation: A cube made of soft-magnetic material (cyan), surrounded
by a coil (brown) driven to achieve the peak flux density Bp, as well as air (gray) outside the coil and
between the coil and the soft-magnetic material. A symmetry condition is applied to the red surface.

Instead, (2) is extended as suggested in [25] in order to include the length of the sheet:

P =
π2d2l2B2

p f 2

6(d2 + l2)ρelρm
. (3)

As (3) simplifies into (2) for l >> d, it covers all sheet lengths and will therefore be used
for all future calculations. The results of this equation are reported in the column ’2D
Analytical’ of Table 2 and are significantly closer to the ones obtained by means of FE
analysis especially for the cases where d is close to l.

Figure 4 illustrates the flux density of the cube obtained by FE analysis for
d ∈ {1, 0.5, 0.25, 0.1} mm while the current density is presented in Figure 5. These figures
show an additional aspect of eddy currents omitted until now, namely the skin effect.
As indicated by both the coloring and the arrow size of Figure 5, the current density tends
to be high at the edges of the sheets and near zero at their center. This has consequences for
the effective cross section of electrical conductors especially at high frequencies but also
affects the flux density distribution in magnetic conductors as indicated in Figure 4. In fact,
the flux density is anisotropic for all models, yet it is less so for thin sheets as the standard
penetration depth δ of the current is constant for all sheet thicknesses [26]:

δ =

√
ρel

π f µ
= 0.752 mm, (4)

where µ = µ0µr is the magnetic permeability of the material. The skin effect also explains
the remaining deviation between the analytical and simulation results in Table 2 as (2)
and (3) assume a constant flux density across the whole sheet while the targeted peak
flux density of Bp = 1 T is only achieved as a mean value in simulation. This is also
reflected in the fact that the relative error increases with d and the magnetic flux density
approaches a virtually constant value for the entire soft-magnetic component in simulation
for d = 0.1 mm.
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(a) (b)

(c) (d)

Figure 4. Flux density over the cross section of the soft-magnetic cube consisting of sheets with
varying thickness d. (a): d = 1 mm. (b): d = 0.5 mm. (c): d = 0.25 mm. (d): d = 0.1 mm.

(a) (b)

(c) (d)

Figure 5. Current density over the cross section of the soft-magnetic cube consisting of sheets with
varying thickness d. The size of the arrows is proportional to the in-plane eddy current magnitude.
(a): d = 1 mm. (b): d = 0.5 mm. (c): d = 0.25 mm. (d): d = 0.1 mm.
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3. Space-Filling Curves

Although there are a large number of SFCs, only two SFCs, the Hilbert and Peano
curves, were chosen for this investigation in which the magnetic performance will be
compared against sheets. These two SFCs, and especially the Hilbert curve, are also the
ones used in studies such as [7–9,13]. The main reasons for excluding other SFCs are either
that they do not fill a unit square which can then be replicated and adjusted to fit any area,
they are too similar to another SFC, such as the Moore curve to the Hilbert curve, or they
cannot be manufactured with a finite width without simplifying them beyond recognition,
for example the Lebesgue curve. Figure 6 shows the two chosen SFCs and their resulting
cross sections used for FE simulation. This figure also includes the Sierpiński curve to
illustrate that not every SFC is a reasonable choice for application purposes.

(a) (b) (c)

(d) (e) (f)

Figure 6. Thickened SFCs and their resulting cross sections. The nominal structural width w, gap
width wg and maximum structure width wmax of the Hilbert-based structure are shown exemplarily.
(a,d): Hilbert curve. (b,e): Peano curve. (c,f): Sierpiński curve.

As shown in Figure 6c, the Sierpiński curve cannot simply be widened to fill a finite
area without creating short circuits. Thus, in order to avoid a significantly reduced fill factor,
its geometry would have to be adapted, as illustrated in Figure 6f. Upon further inspection,
the resulting cross section is mainly made of triangles. As triangles must always have
at least two acute angles, manufacturing this structure, while respecting any minimum
viable structure width, will always fail at these corners and either create short circuits or
reduce the fill factor once again. Thus, also this variant of the Sierpiński curve is not a
worthwhile choice.

For each of the selected SFCs (Hilbert and Peano), the first three orders were in-
vestigated. As mentioned previously, the minimum reliably manufacturable gap wg for
Fe-6.5 wt%Si was found to be 50 µm for gaps parallel to the build direction with wider
gaps required in other orientations [8]. In order to simplify the calculations, only gaps
perpendicular to the build plane will be considered such that a constant wg = 50 µm can
be applied everywhere. The nominal structural width w was chosen to be 0.5 mm as this
structure width is the minimum width wmin known to be manufacturable [8]. As the param-
eters of Table 1 are applied also for these soft-magnetic components, the penetration depth
of δ = 0.752 mm applies here, too. Since this value is close to the chosen wmin = 0.5 mm
some skin effect is to be expected. The assumptions made lead to predetermined cross
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sections for each order of SFC, as shown in Figure 7 for the Hilbert curve. Analog to the
sheets, the coil current is adapted for each SFC to achieve a mean peak flux density of 1 T.
The resulting flux density distribution of select SFCs is shown in Figure 8 with the current
density presented in Figure 9.

0 105
mm

Figure 7. Cross sections of the first, second and third order o of the Hilbert curve using the gap width
wg = 50 µm and nominal structural width w = 0.5 mm.

(a) (b)
Figure 8. Flux density over the cross section of the soft-magnetic cube with structures based on SFCs.
(a): Third order Hilbert. (b): Second order Peano.

(a) (b)

Figure 9. Current density over the cross section of the soft-magnetic cube with structures based on
SFCs. (a): Third order Hilbert. (b): Second order Peano.

Similarly to Figure 4, the flux densities shown in Figure 8 are inhomogeneous. How-
ever, there is a clear difference between regions which are mostly straight and ones char-
acterized by corners. This difference can once again be explained using (4). Although the
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nominal thickness is constant for all regions, the effective cross section of corners is greater
than that of straight regions. Therefore, the constant penetration depth leads to a higher
heterogeneity of flux density in corners.

Inspecting the current density, one can spot that there are local effects around sharp
corners due to singularities. The finite element mesh at these points was refined in order
to confine the affected area. However, they likely still introduce some error. Nevertheless,
by integrating the specific losses and dividing them by the volume and volumetric mass
density ρm of the soft-magnetic component, the specific eddy current losses can be estimated
as presented in Table 3.

Table 3. Specific eddy current losses for a number of different SFCs.

SFC & Order Specific Losses P in mW
kg

FE Simulation Analytical w Analytical w

Hilbert 1 56.22 55.52 66.73
Hilbert 2 66.16 58.33 79.97
Hilbert 3 71.64 58.51 81.47
Peano 1 60.44 57.92 69.26
Peano 2 64.41 58.52 71.67
Peano 3 64.97 58.52 71.84

Analytically validating the results for eddy current losses of these models is not
straight forward as equations such as (3) assume a constant sheet thickness d, which is not
the case for the SFCs portrayed in Figure 6. Nonetheless, by inserting the nominal width w
for d and length lSFC of the SFCs for l into (3), the losses can be estimated and are provided
in the ’Analytical w’ of Table 3. These results are fairly close to the ones obtained by means
of FE simulation. However, they fail to replicate the significant differences between the
orders of the SFCs, sometimes predicting higher and sometimes lower losses than the FE
simulation. This also contradicts the values of Table 2 where the analytical results for sheets
are always higher than the ones obtained by means of FE simulation.

A significant source of this error can be extracted from Figures 8 and 9. These figures
clearly show that both the magnetic flux and the current do not follow the SFCs as derived
analytically and shown in Figure 10 in black but rather arc at every corner. Estimating these
arcs as illustrated in Figure 10 in red leads to a new curve length l∗SFC. This effective length
l∗SFC is smaller than lSFC leading to an increased mean width w calculated as:

w =
Ae f f

l∗SFC
, (5)

where Ae f f is the effective soft-magnetic area which will be derived for the investigated
SFCs in Section 4.

The respective loss densities are included in the last column of Table 3 ’Analytical w’.
These analytical results always show a higher loss density than the ones obtained by means
of FEA. Moreover, the ratio of results obtained by means of FE simulation to the ones
obtained by using w and l∗SFC is quite consistent across the different SFCs and their orders.

It is also of interest to investigate the remaining deviation as to potentially develop
models which predict the eddy current losses more accurately. For this purpose, the
first three iterations of the Hilbert curve have been examined using w ∈ [0.1; 0.2; 0.5] mm,
wg ∈ [0.01; 0.05; 0.1] mm and f ∈ [10; 50; 200] Hz. Inspecting the resulting loss densities
leads to the conclusion that the deviation mainly depends on the geometry of the respective
SFC. The resulting ratio of loss densities are illustrated in Figure 11 with the x-axis defined
by a geometric ratio γ

γ =

(
w

l∗SFC

) 1
o
, (6)
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thus also taking into account the order o of the SFC. The lines are functions obtained by
fitting the data points not showing a significant skin effect.

Figure 10. Third order Hilbert curve (black) with length lSFC and proposed curve including arcs (red)
used to estimate the effective length l∗SFC for calculating eddy currents.

The deviation in the results that do show a significant skin effect is straight forward
as the analytical results do not include this effect. Nevertheless, these loss ratios appear
to decrease systematically as illustrated in the bottom right corner of Figure 11. These
nine points represent the most extreme case of skin effect investigated (w = 0.5 mm and
f = 200 Hz) and are shifted down from their low-frequency counterparts.

Focusing on the remaining results, one can see that there are clusters of multiple points
that are slightly shifted along the y-axis. The difference between these points is the applied
frequency. Therefore, these results experience a slight skin effect as well. However, this
also implies that the frequency does not contribute to the loss ratio apart from this effect.
Therefore, the loss ratios do depend on the geometric parameters themselves.

0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32
Geometric Ratio: (w=l$SFC)1=o

0.4

0.5

0.6

0.7

0.8

0.9
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1st Order Hilbert
2nd Order Hilbert
3rd Order Hilbert

Figure 11. Ratios of loss densities obtained by means of FE analysis and (3) depending on the ratio of
the mean structure width w to the length of the SFC l∗SFC. The lines are fitted functions excluding the
data points exhibiting a significant skin effect.
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Inspecting the different orders, they each appear to create their own trend line with
an increasingly negative slope as the order increases. This is likely related to the number
of edges introduced into the geometry as this aspect is the main difference between them.
For large geometric ratios, the loss ratio of the first order Hilbert curve appears to saturate
whereas the second order Hilbert curve only starts to flatten in the provided data set.
The exact reasons for this systematic error are still unclear and necessitate an in-depth
investigation. It appears that the applied analytical model is incomplete and has to be
extended in order to correctly model these structures. Nevertheless, the applied model
consistently overestimates the losses, making preliminary calculation situationally useful.

Comparison with Sheets

In order to compare the sheet loss densities to the ones of the SFCs, the number of
sheets N and their length l is adjusted in order to fill the same area as the cube filled by
the SFC.

Therefore a modelling approach is introduced which is illustrated in Figure 12 for
the second order of the Hilbert curve and the respective packaged sheets as an example.
Depending on the order o of the Hilbert curve, a grid of 2o by 2o of squares is generated,
thus, a 4 by 4 grid for the case depicted in Figure 12. These squares have a side length
equal to the nominal structural width w. The gap between neighbouring squares is of
width wg. By strategically filling these gaps with rectangles of size w by wg, either the
Hilbert structure or the sheet-based structure can be generated. Consequently, the nominal
structural width w of the SFC and the sheet thickness d are the same with w = d = 0.5 mm.
The number of sheets N required and the length l of the sheets depend on the order o and
can be calculated by means of

N = 2o, (7)

l = 2ow + (2o − 1)wg. (8)

The Peano curve and a sheet-based component of the same area can be modeled analogously
with slight changes to the equations as each side is split into three parts per iteration instead
of two:

N = 3o, (9)

l = 3ow + (3o − 1)wg. (10)

Inserting these values into (3) leads to the loss densities in Table 4, which also includes the
loss densities for the same structures obtained by means of FE simulation.

Table 4. Specific eddy current losses obtained analytically and via FE simulation for a number of
different SFCs and sheets of thickness d = w.

SFC & Order
Specific Losses P in mW

kg
Analytical FE Simulation

SFC Sheets SFC Sheets

Hilbert 1 66.73 47.71 56.21 40.97
Hilbert 2 79.97 55.52 66.16 49.89
Hilbert 3 81.47 57.76 71.64 54.22
Peano 1 69.26 53.32 60.44 46.96
Peano 2 71.67 57.92 64.41 54.70
Peano 3 71.84 58.46 64.97 57.32

Although the before mentioned differences between the results obtained by analysis
and FE simulation are yet to be considered, both methods show the same overall result,
namely significantly lower specific losses for sheets. Nevertheless, the discussion of the
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results will focus on the ones obtained by means of FE simulation notwithstanding the fact
that the reduction in losses are in the same range.

(a) (b)
Figure 12. Illustration of the modelling approach of the second order Hilbert SFC (a) and the
respective packaged sheets (b) using squares (green) and rectangular connections (red) between them.

Compared to the Hilbert SFCs, sheets exhibit 24% to 27% lower loss densities while be-
ing between 12% and 22% lower than that of the Peano SFCs. This consistent improvement
concerning eddy current losses is quite significant, making sheets an attractive form of loss
reduction. Some implications this loss reduction leads to are that a SFC-based structure has
to be manufactured about 10% thinner in order to show the same loss density or that the
sheet-based structure can be wider and thus fill a larger area while achieving similar loss
densities. An additional benefit of sheets is that they are based on straight lines instead
of an already fixed structure. These lines can be easily adjusted to, for example, fill a
circular structure such as a rotor of an electrical machine. Nevertheless, this result is only
useful in application if a reduction in fill factor of the sheets due to insulating gaps is not
too significant.

4. Fill Factor Comparison

So far the main focus of the present research was eddy current losses, and it was
shown that sheets of the same width always exhibit lower losses than the investigated SFCs.
However, another important aspect is the fill factor

F =
Ve f f

Vtotal
, (11)

defined as the ratio of the effectively usable soft-magnetic volume Ve f f to the total volume
Vtotal such that

Ve f f = Vtotal −Vgap. (12)

Since F is directly linked to the maximum magnetic flux, maximizing it will increase the
power density of the electrical machine.

As in the investigation of the loss densities, the gap width wg is assumed to be constant.
In order to guarantee manufacturability, the components are obtained by extruding a 2D
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structure and, instead of using Ve f f and Vtotal , the effective area Ae f f , gap area Agap and
total area Atotal are introduced such that

Ve f f = Ae f f h, (13)

Vgap = Agaph, (14)

Vtotal = Atotalh, (15)

Ae f f = Atotal − Agap (16)

where h represents an arbitrary build height. This allows the comparison of the fill factor F
by means of

F =
Ae f f

Atotal
, (17)

which should be maximized. In the case of laminated sheets of thickness d, the effective
area, gap area and total area are calculated as

Ae f f , sheets = Nld, (18)

Agap, sheets = Nlwg, (19)

Atotal, sheets = Nld + Nlwg, (20)

with l being an arbitrary side length. In this case, the gap is insulation due to the sheets
being insulated before cutting and stacking them. However, at the aim of simplifying
manufacturing, AM-built sheet-based components should be printed as extruded lines of
thickness d with air gaps of thickness wg serving as insulation between them. Thus, there is
no insulation at the outer edges of the component. This leads to a modified equation of
Agap,sheets and consequently to

Atotal, AM-sheets = Nld + (N − 1)lwg. (21)

As one can see, the only difference is that the number of insulation gaps is reduced by one.
Inserting these expressions into (17) leads to:

FAM-sheets =
Ae f f , sheets

Atotal, AM-sheets
=

Nd
Nd + (N − 1)wg

, (22)

Fsheets =
Ae f f , sheets

Atotal, sheets
=

d
d + wg

. (23)

Inspecting these two fill factors it is clear that their difference decreases with an increasing
number of sheets N as presented in Figure 13.

Figure 14 shows Fsheets for a commonly available range of sheet thicknesses d as well
as a variety of gap widths wg. As Fsheets is independent of N and l, the actual geometry
is irrelevant. Instead, this figure illustrates the significant impact of wg on the fill factor.
Using wg = 50 µm, as indicated by the green line in Figure 14, thick sheets have to be used
in order to achieve reasonable fill factors above 0.9. These thicker sheets would naturally
increase the eddy current losses. Conventionally manufactured packaged sheets are more
in line with the blue line, wg = 10 µm, and show high fill factors even for quite small d.
Therefore, considerable improvements to AM-processing are required for achieving similar
fill factors.

As the presented investigation concerns additive manufacturing, the sheet thickness d
may vary depending on the desired geometry. With the aim of simplifying the subsequently
presented analysis, d and wg of all presented examples are constant and chosen in such
a way that they fill Atotal using N ∈ N sheets. Additionally, the length l of the sheets is
chosen to be the side length of the square used to investigate the SFCs. These assumptions
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make a comparison of fill factor straight-forward although they disregard any deformation
of the SFCs or AM-built sheets required to fill non-square areas.
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Figure 13. Comparison of fill factor FAM-sheets, according to (22), and fill factor Fsheets, according
to (23), with varying number of sheets N.
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Figure 14. Fill factor Fsheets of laminated sheets depending on sheet thickness d for a number of gap
widths wg. The currently available AM-based manufacturing methods are represented by the green
line, wg = 50 µm, while conventional manufacturing methods are characterized by the blue line,
wg = 10 µm.
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In order to investigate the fill factors of SFCs, let us recall the modelling approach of
the Hilbert curve with a finite gap width wg as presented in Figure 12. According to the
order o of the Hilbert curve, the number of squares ns and connections nc are

ns = (2o)2 = 4o, (24)

nc = 4o − 1. (25)

Thus, the effective area for the Hilbert curve depending on nominal structural width w,
gap width wg and order of the Hilbert curve o is defined as

Ae f f , hilbert = 4ow2 + (4o − 1)wwg. (26)

The corresponding fill factor may be calculated by applying (17) and

Atotal, hilbert = (2ow + (2o − 1)wg)
2, (27)

such that

Fhilbert =
4ow2 + (4o − 1)wwg

(2ow + (2o − 1)wg)2 . (28)

For an analytical comparison with AM-built sheets, (22) has to be modified, as the
number of sheets N is directly linked to the order of the Hilbert curve o by means of (7)
such that N = 2o. By choosing the sheet thickness d = w, this expression leads to an
equation more in line with (28) although it should be extended with its own denominator
resulting in

FAM-sheets =
2ow

2ow + (2o − 1)wg
=

4ow2 + (4o − 2o)wwg

(2ow + (2o − 1)wg)2 . (29)

One can also start with the number of squares ns and connections nc as illustrated by the
modelling approach of the sheets presented in Figure 12 which leads to the same equation.
By dividing (28) and (29), the ratio of these fill factors is obtained:

Fhilbert
FAM-sheets

=
4ow2 + (4o − 1)wwg

4ow2 + (4o − 2o)wwg
. (30)

Inserting any non-zero nominal structural width w and gap width wg into this equation
always results in a value larger than one, independent of the Hilbert order o. Thus,
the Hilbert SFC always has a higher fill factor than AM-built sheets of the same nominal
thickness w.

The same strategy may be adopted for the Peano curves. In this case, each side of the
squares is split into three instead of two per order. As the remaining derivation is analog to
the case of the Hilbert curve, it is omitted and the resulting equation for the fill factor for
the Peano SFC Fpeano is

Fpeano =
9ow2 + (9o − 1)wwg

(3ow + (3o − 1)wg)2 . (31)

Naturally, this also changes the equation for the fill factor of the AM-built sheets, as the
connection between the number of sheets N and the order o changes according to (9). Thus,
the fill factor of AM-built sheets may be calculated as

FAM-sheets =
9ow2 + (9o − 3o)wwg

(3ow + (3o − 1)wg)2 . (32)
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The resulting ratio of these fill factors is

Fpeano

FAM-sheets
=

9ow2 + (9o − 1)wwg

9ow2 + (9o − 3o)wwg
. (33)

Also in this case, the AM-built sheets show a lower fill factor for any non-zero w and
wg independent of the SFC order o of the Peano curve. Of course, if the sheets were to be
manufactured conventionally with a commonly achievable gap width wg of one fifth of the
one applied in this investigation, the fill factor would increase substantially.

Figure 15 shows the fill factor of multiple orders of the Hilbert curve based on (28)
with the respective fill factor of AM-built sheets according to (29) on the left, while the
right side shows the fill factor of the Peano curve (31) which necessitates the appropriate
equation for the fill factor of AM-built sheets (32). As the connection between order o and
number of sheets N is different for the two SFCs, the fill factor of the AM-built sheets is
not the same for both cases. As already mentioned, the AM-built sheets consistently show
a lower fill factor than the SFCs. However, the difference decreases with an increasing
order o and both SFCs as well as the AM-built sheets converge to a fill factor of 0.909. This
value is the fill factor of laminated sheets when inserting w = 0.5 mm and 50 µm into (23).
Another interesting fact is that the fill factor is highest for a low order o. A one-to-one
comparison between the SFCs is not possible as either at least one of the widths w or wg
has to be different between the SFCs or the total area filled changes. It is also clear that this
comparison would be highly dependent on the order of the SFCs. However, in a real world
application, the targeted area Atotal is usually given such that the maximum order is limited
by the smallest manufacturable structure and gap sizes. This leads to an ideal structural
width w which differs for each SFC and the respective fill factors can be calculated.
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Figure 15. Fill factors of SFCs for different orders o and AM-built sheets of thickness d = w = 0.5 mm
with a gap of wg = 50 µm. (Left) Hilbert curve, (28), and AM-built sheets, (29). (Right) Peano
curve, (31), and AM-built sheets, (32).

5. Conclusions

A number of soft-magnetic components based on space-filling curves (SFCs) were
investigated and compared to components comprised of sheets with respect to both specific
eddy current losses and fill factor. A method for estimating the eddy current loss density
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analytically was proposed, although an error based on the geometric parameters of the
structure remains and necessitates further investigation. Sheets with a thickness equal to
the nominal width of the SFC structures exhibit specific eddy current losses which are as
much as 27% lower than in the SFC structure. However, analysis has shown the fill factor
of the SFCs to be superior compared to that of sheets when filling the same volume and
while applying the same constraints concerning achievable structure and insulating gap
width. Therefore, a compromise between eddy current losses and fill factor has to be made
when designing novel soft-magnetic components for AM-built electrical machines.

A critical next step in this research topic is to experimentally investigate the proposed
structures. This will require careful planning as the components are non-standard and
some methods such as using an Epstein frame may not be feasible. Another attribute which
is yet to be investigated is the mechanical stability. Depending on the orientation of the
SFCs or sheets with air gaps as insulation, some mechanical loads may be favourable to
others. Thus, future work will investigate this and develop concepts for improving the
mechanical stability of these structures.
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