
Models and Simulations
in the Semantic Web

Dissertation zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften
der Naturwissenschaftlich–Technischen Fakultät
der Universität des Saarlandes

von Moritz Stüber

Saarbrücken, 2023

Tag des Kolloquiums
2023-12-21

Dekan
Prof. Dr. Ludger Santen

Mitglieder des Prüfungsausschusses
Prof. Dr.-Ing. Andreas Schütze Vorsitz

Prof. Dr.-Ing. Georg Frey Gutachter

Prof. Dr.-Ing. Mike Barth Gutachter

Dr.-Ing. Sophie Nalbach akademische Mitarbeiterin

This work © 2023 by Moritz Stüber is licensed under
Attribution 4.0 International (CC BY 4.0).

To view a copy of this licence, visit
http://creativecommons.org/licenses/by/4.0/.

https://orcid.org/0000-0002-4006-8582
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Thea Stüber
1923–2022

In loving memory of

Abstract

Models of the dynamic behaviour of mechatronic systems and their simula-
tion provide a helpful way of dealing with the systems’ inherent complexity
during both development and operations. However, the current state of
technology has two significant shortcomings with respect to the use and
reuse ofmodels and simulations in a distributed setting: a lack of Findability,
Accessibility, Interoperability, Reusability (FAIRness) and the heterogeneity
of the models’ interfaces. We explored the use of SemanticWeb concepts
and -technologies to provide modelling and simulation (M&S) entities and
-capabilities as a service. Specifically, they were made available through a
hypermedia application programming interface (API)—a service that fully
implements the architectural style of theWeb, Representational State Trans-
fer (REST). This thesis shows that the approach makes sense; that it is
new with respect to its specific focus; feasible; and directly useful. It is
found that the approach increases the FAIRness of the exposed M&S entit-
ies and -capabilities and enables software agents to use them without being
specifically programmed to do so on a syntactic level. Consequently, the
problems caused by the interface heterogeneity of models are alleviated. In
conclusion, the approach promotes the reuse of system models by multiple
stakeholders for the development of systems as well as for the operations
of distributed processes, and leads to interesting applications and further
research.

Kurzfassung

Modelle des dynamischen Verhaltens mechatronischer Systeme sowie de-
ren Simulation sind hilfreich, um die Komplexität der Systeme während
Entwicklung und Betrieb beherrschen zu können. Allerdings werden mit
dem aktuellen Stand der Technik zwei wesentliche Aspekte hinsichtlich Ver-
wendung undWiederverwendung derModelle nicht ausreichend abgedeckt:
die Auffindbarkeit, Zugänglichkeit, Interoperabilität undWiederverwend-
barkeit (FAIRness) sowie die Formenvielfalt der Modellschnittstellen.Wir
haben die Anwendung von Konzepten und Technologien des SemanticWeb
für die Bereitstellung von Modellen und Simulationen als Service unter-
sucht. Konkret wurden diese durch eine Hypermedia API bereitgestellt—
einen Service, der denArchitekturstil desWeb, Representational State Trans-
fer (REST), vollständig umsetzt. Die Dissertation zeigt, dass der Ansatz Sinn
ergibt; sowie hinsichtlich seines Fokus neu; machbar; und direkt anwend-
bar ist. Es wurde demonstriert, dass der Ansatz die FAIRness der Modelle
und Simulationen erhöht und Softwareagenten in die Lage versetzt, die-
se zu nutzen, ohne auf syntaktischer Ebene dafür programmiert worden
zu sein. Letzteres ist eine Lösung für die aufgrund der Formenvielfalt der
Modellschnittstellen entstehenden Probleme. Zusammenfassend fördert
der gewählte Ansatz die Wiederverwendung von Systemmodellen durch
verschiedene Interessierte für Entwicklung und Betrieb verteilter Syste-
me; und ist anschlussfähig durch wissenschaftliche Fragestellungen und
Anwendungen.

Summary

Models of the dynamic behaviour of technical systems and their simula-
tion are ubiquitous in engineering because they provide a helpful way of
dealing with the complexity of today’s mechatronic systems during both
development and operations. Using and reusing models independently of
the M&S specialists that originally created them is desirable because both
development processes and the systems themselves are frequently distrib-
uted in nature, often across organizational boundaries. One example of
this is ensuring that the requirements of a complex machine which is con-
structed using components provided by different manufacturers, such as
the envisioned driving range of a battery electric vehicle (BEV), are met dur-
ing development. Another example is creating forecasts for the generation
and consumption of energy by technical systems, such as photovoltaic (PV)
systems or energy storage systems, as an essential input to the control pro-
cesses of smart grids. Additionally, models can be seen as both an asset
because of the insight they can provide, and as an investment because their
creation and validation takes expertise and time. This further stresses the
importance of reusing them.

However, the current state of technology has two significant short-
comings with respect to the use and reuse of models and simulations in a
distributed setting: a lack of FAIRness and the heterogeneity of the mod-
els’ interfaces. The Findable, Accessible, Interoperable, Reusable (FAIR)
principles outline a technology-independent path to improving the chances
that both human and software agents learn about the existence and con-
tents of digital assets in a way that enables them to decide whether they
are relevant for their goals. Interface heterogeneity is inherent to models
as each model exposes different parameters, inputs, and outputs. This res-
ults in manual programming effort for every model to be used—unless an
alternative approach can be found.

Two additional aspects that ought to be improved are the coupling
characteristics of interfaces and means to establish trust in models and
simulation results. The coupling characteristics of the interface define in
how far the independent evolution of individual systems is possible without
breaking a system that is built as a combination of smaller systems. Because
the adherence to exactly one, tightly specified interface cannot be enforced
when the overall system is distributed across several organizations, it is
desirable to support loose coupling. Not knowing the origins and scope of
a model threatens its usability; therefore, measures that can inspire trust,
such as providing metadata and provenance information, are desirable.

We explored the use of SemanticWeb concepts and -technologies to
provide M&S entities and -capabilities as a service. Specifically, models,

model instances, simulations and simulation results were made available
through a hypermedia API, in other words a service that fully implements
the constraints of the architectural style of theWeb, REST. On the technical
side, the work is based on the Functional Mock-up Interface (FMI) stand-
ard for model exchange and co-simulation. The technical work comprises
devising and implementing ontologies and a parser to create represent-
ations of Functional Mock-up Units (FMUs) in the Resource Description
Framework (RDF) data model; a cloud-native M&S service conforming to
REST using recommended technologies for the Semantic Web; and use
cases (UCs) to show feasibility and usefulness. Moreover, the Pragmatic
Proof Algorithm (PPA) by Verborgh et al. was selected to demonstrate the
use of the service by a generic software agent. It was implemented and
extended to cope with requirements on requests that only become known
at run-time. The implemented software is published under an open-source
licence. Characteristics of the approach are analysed from an abstract
systems engineering (SE) perspective, focusing on concepts and patterns
instead of the proof-of-concept software developed as part of this work.

This thesis shows that the approach is reasonable in a number of
ways; that it is new with regard to its specific focus and the technologies
used; that it feasible; and that it can be immediately applied. This is done by
motivating the concept in detail; describing its realization; demonstrating
the functionality through UCs; reviewing the achieved characteristics; and
putting them into context through a review of related literature.

It is found that the approach increases the FAIRness of the exposed
M&S entities and -capabilities and enables software agents to use them
without being specifically programmed to do so on a syntactic level. Con-
sequently, the problems caused by the interface heterogeneity of models
is alleviated. Furthermore, finding models through semantic queries is en-
abled. The desirable characteristics loose coupling and horizontal scalability,
as well as providing provenance information, are supported as a result of
the software’s design.

In conclusion, the selected approach promotes the reuse of system
models by multiple stakeholders for the development of systems as well
as for the operations of distributed processes. It is feasible to realize the
conceptual design choices with the selected technology stack. The UCs
demonstrate that there are several cases in which the approach is useful.

It is expected that both useful direct applications and interesting
research questions emerge as a result of this work. Possible direct ap-
plications include using the software as a building block for applications
that require M&S capabilities in a service-oriented architecture (SOA); man-
aging and developing collections of data sets and models centred around a
topic, for example by research groups; and exploiting parallelization and
load-dependent horizontal scaling when searching for optimal configura-
tions. From an academic perspective, it would for example be interesting to
explore ontology-driven modelling; the composability of models; and the
potential of the approach for realizing useful digital twins.

Acknowledgements

Starting at the very beginning, this research project originated in me seeing
a job offer on “Model and Simulation as a Service” as part of the project
“Designetz” in the context of energy systems that feature large amounts
of renewable and therefore weather-dependent energy sources. Curious
about how modelling and simulation of technical systems, a major topic of
my master’s in mechatronics at Vorarlberg University of Applied Sciences,
might benefit from their provisioning as a service, I applied and got accepted.
A time-consuming journey ensued, involving learning how to build cloud-

Consequently, this work
was partly supported
by the SINTEG-project
“Designetz” funded by the
German Federal Ministry
of Economic Affairs and
Energy (BMWi) under grant
03SIN224.

native applications and how to represent knowledge in the SemanticWeb;
learning to balance project work, research, and teaching; as well as learning
how to get your point across in meetings with people that have a wide range
of professional backgrounds and agendas. While working on Designetz,
ideas for a dissertation related to—but extending far beyond—the project
deliverables formed.

Prof. Dr.-Ing. Georg Frey ensured that I could indeed turn these ideas
into my dissertation. I would like to express my gratitude for providing an
environment in which following one’s curiosity and working independently,
based on trust rather than formalities and pressure, was encouraged; and
for reviewing intermediate results; publications; and this thesis.

Beyond Prof. Frey, the people at the Chair of Automation and Energy
Systems (AES) at Saarland University also deserve a wholehearted “Thank
you!”. I had the pleasure to collaborate with Lukas Exel, Florian Wagner,
Christian Wolf, Christian Siegwart, Danny Jonas, Felix Felgner and Felix
Scherhag. By discussing bothmajor concepts andminor implementation de-
tails, I benefited from their knowledge and perspective. Josef Meiers knew
everything about the innerworkings of AES. Thank you, RehanKhalid, Daud
Minhas and Elham Abohamzeh for occasionally sharing your perspective
on academia and everything else, brightening up everyday life in the of-
fice. Gisela Kempka and Robert Florange deserve a special thank you for
administrative support; access to the workshop; and a genuine interest in
the humans at AES and their occupations outside work.

A few people not related to systems engineering also helped with realizing
this thesis and overcoming associated challenges. Klara proofread import-
ant texts and understands the highs and lows of pursuing a PhD. Svenja
listened to my stories about working in academia and shared some of her
own, while solvingmany bouldering problems of increasing difficulty. Luisa
helped with developing strategies for balancing research and life on beauti-
ful hikes in the mountains. Christian always finds the right words, even in
difficult situations that emerge without warning. Thank you very much!

Last, but not least, I would like to thank my family for their unwavering
support throughout the emotional roller coaster this project turned out to
be; believing that I would eventually finish this thesis; and pushing me to
continue working on it. Thank you, Nina, for seeing the good in me even
when I could not, and being with me since we both decided that this is just
too good to not try.

Contents

List of Figures 13

List of Tables 14

List of Listings 15

List of Acronyms 16

1 Introduction 19
1.1 Context and Basic Idea . 19
1.2 Research Questions and Thesis Outline 22
1.3 Contributions . 23
1.4 About This Document . 24

2 Fundamental Concepts 25
2.1 Data—Information—Knowledge and FAIRness 25
2.2 Formal Representations of Data and Knowledge 29

2.2.1 Equation-based Representation of Knowledge 30
2.2.2 Triple-based Representation of Knowledge 32

2.3 Successful Distributed Software Systems 37
2.3.1 Quality Attributes for Software Systems 38
2.3.2 TheWeb . 44
2.3.3 The SemanticWeb 47

2.4 Relevant Aspects of Software Engineering 48

3 Models, Simulations, and theWeb 53
3.1 Modelling and Simulation as a Service (MSaaS) 53
3.2 Ontologies and Model-based Systems Engineering 57
3.3 Hypermedia APIs and M&S 59
3.4 Research Gap . 60

4 Thesis Concept and -Hypotheses 63
4.1 Issues and Desirables . 63
4.2 High-level Design Choices 66
4.3 Hypotheses . 68
4.4 Conceptual Overview . 71

5 Software Design and -Realization 75
5.1 The FMI- and SMS-Ontologies 76

5.1.1 Ontologies . 76
5.1.2 The fmi2rdf-Parser 78

5.2 The M&S hypermedia API: Concept 79

5.2.1 Interface Design . 80
5.2.2 Resource Modelling 83
5.2.3 Advertising Service Capabilities 86

5.3 The M&S hypermedia API: Realization 93
5.3.1 Software Architecture 93
5.3.2 Restrictions on Supported FMUs 95
5.3.3 DevOps . 95

5.4 The Pragmatic Proof Algorithm 98
5.4.1 The Original Pragmatic Proof Algorithm 98
5.4.2 The Extended Pragmatic Proof Algorithm 100

6 Applications 103
6.1 Finding Relevant Models . 105
6.2 Simulating Models in the Cloud 108

6.2.1 Requests Programmed at Design-Time 108
6.2.2 Requests Constructed at Run-Time 112

6.3 A Systems Engineering Knowledge Graph 115

7 Discussion and Outlook 123
7.1 Evaluation of Hypotheses and Research Questions 123
7.2 Opportunities for FurtherWork 132

8 Conclusion 135

References 137

Appendices 147

A Supplemental Content 147
A.1 Glossary . 147
A.2 Details on the Evaluation of FAIRness and Loose Coupling . . 148

B Publications and Software 150
B.1 Publications Related to This Thesis 150
B.2 Developed Software . 152

List of Figures

2.1 Statements about a resource, visualized as graph 35
2.2 Facets of coupling . 44

4.1 Use cases of the service as UML sequence diagram 73

5.1 Main concepts and roles of FMI- and SMS-ontology 77
5.2 Possible resource states and transitions between them 82
5.3 SHACL shapes graph and its corresponding data graph 92
5.4 Software architecture of the MSaaS-implementation 94
5.5 Pragmatic Proof Algorithm 99

6.1 Software architecture for running scenarios 104
6.2 Thermistor network . 110
6.3 Import pipeline for exemplary SE knowledge graph 117

7.1 Coupling characteristics of the M&S hypermedia API 127
7.2 FAIRness characteristics for different access mechanisms . . 129

List of Tables

2.1 List of the 15 FAIR guiding principles 29

4.1 Overview of design choices made 72

5.1 URLs and repositories for ontologies/fmi2rdf 79
5.2 Overview of the service interface 82

6.1 Possible ontologies for representing SE data 116

7.1 Measures to achieve CNA characteristics 125

A.1 Glossary . 147
A.2 Achieved FAIRness: aspects F, A 148
A.3 Achieved FAIRness: aspects I, R 149
A.4 Observed coupling characteristics 149

B.1 Developed Software . 152

List of Listings

2.1 Statements about a resource, serialized using Turtle 35

5.1 TriG-serialization of a model representation (abbreviated) . . 85
5.2 Excerpt of the OpenAPI Specification 88
5.3 RESTdesc rules for two resources 91

6.1 Excerpt of a KG containing provenance data 107
6.2 N3 filter rule encoding a goal state 114
6.3 Excerpt of an SE knowledge graph 118

List of Acronyms

AAA anyone can say anything about any topic

ADS architecture design space

API application programming interface

BEV battery electric vehicle

BPS building performance simulation

CFD computational fluid dynamics

CI/CD continuous integration/continuous deployment

CLI command-line interface

CNA cloud-native application

CNS cloud-native simulation

CoAP Constrained Application Protocol

CPU central processing unit

CSP cloud service provider

CSV comma-separated values

DAE differential-algebraic equation

DEAP Distributed Evolutionary Algorithms in Python

DeMO Discrete-event Modeling Ontology

DevOps software development and -operations

DIK Data—Information—Knowledge

DIKW Data—Information—Knowledge—Wisdom

DL Description Logics

EOOL equation-based, object-oriented modelling language

EYE Euler Yet another proof Engine

FAIR Findable, Accessible, Interoperable, Reusable

FAIRness Findability, Accessibility, Interoperability, Reusability

FEM finite element method

FLOSS free/libre and open-source software

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

FOL first-order predicate logic

GA genetic algorithm

HATEOAS hypermedia as the engine of application state

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

IaC Infrastructure as Code

IDE integrated development environment

iff if and only if

IO input-output

IOF Industrial Ontologies Foundry

IP intellectual property

IS information science

JSON JavaScript Object Notation

JSON-LD JSON-based Serialization for Linked Data

KG knowledge graph

LCIM Levels of Conceptual Interoperability Model

LDP Linked Data Platform

LOT Linked Open Terms

LRU least recently used

MBSE Model-based Systems Engineering

MIMO multiple-input/multiple-output

MSaaS Modelling and Simulation as a Service

M&S modelling and simulation

NATO North Atlantic Treaty Organization

N3 Notation3

NWP numerical weather prediction

OAS OpenAPI Specification

OS operating system

OSLC Open Services for Lifecycle Collaboration

OWA open-world assumption

OWL Web Ontology Language

PDE partial differential equation

PII personally identifiable information

POA plane of array

PPA Pragmatic Proof Algorithm

PROV-O The PROVOntology

pURL persistent URL

PV photovoltaic

QPF Quad Pattern Fragment

RDF Resource Description Framework

RDFS Resource Description Framework Schema

REST Representational State Transfer

RIF Rule Interchange Format

RMSE root-mean-square error

RPC remote procedure call

SaaS Software as a Service

SE systems engineering

SHACL Shapes Constraint Language

SIMaaS Simulation as a Service

SLR systematic literature review

SMS Systems, Models, Simulations

SNAF Scoped Negation as Failure

SOA service-oriented architecture

SOAP Simple Object Access Protocol

SOSA Sensors, Observations, Samples, Actuators

SPARQL SPARQL Protocol and RDF Query Language

SPDX Software Package Data Exchange

SSP System Structure and Parameterization

TTL time to live

TPF Triple Pattern Fragment

UC use case

UI user interface

UML Unified Modeling Language

URI Uniform Resource Identifier

URL Uniform Resource Locator

VCS version control system

WAMS Web Architecture for Modelling and Simulation

WBS Web Based Simulation

W3C WorldWideWeb Consortium

XML Extensible Markup Language

XSD XML Schema Definition

YAML YAML Ain’t Markup Language

19

1. Introduction

Canmodelling and simulation benefit from SemanticWeb concepts?

Both research fields, modelling and simulation (M&S) and the Semantic
Web, concern themselves with formalisms for representing and sharing
knowledge as well as algorithms for deriving new information from what
is already known. This research argues that combining concepts and tools
from both fields by providing models, simulation results and the ability to
perform simulations in the SemanticWeb, is logical and promising because
the underlying ideas and approaches to solving problems are similar. Addi-
tionally, it is argued that this combination is also novel with regard to the
specific focus and concepts chosen; feasible; and directly useful.

1.1 Context and Basic Idea
In this section, basic
terms and ideas are briefly
defined informally, without
literature references, to
provide an overview and to
enable the formulation of
high-level research ques-
tions. Detailed definitions
and references follow in
chapter 2.

In the context of this work, the term modelling refers to the collection of
relevant knowledge about certain aspects of a system in the form of physical
laws expressed using mathematical equations. A model is the unambiguous
representation of this knowledge in a formal language, that can thus be acted
upon by algorithms executed on a computer. The numerical approximation
of the set of model equations by means of an algorithm given start values
and boundary conditions is called simulation. For such dynamic system
models, the result of the simulation is a trajectory of values over time.

Despite the features of equation-based, object-oriented modelling
languages (EOOLs) that facilitate the reuse of model code for building hier-
archical models within the confines of the modelling language ecosystem,
and despite the existence of widely supportedmodel exchange formats such
as Functional Mock-up Interface (FMI), the Findability, Accessibility, Interop-
erability, Reusability (FAIRness) of models in general is poor and hinders the
reuse of the knowledge that the models encode.

The Web is a vast collection of interlinked documents or web pages
made accessible on the internet, a communication network of computers
around the world. TheWeb containsmassive amounts of information which
can be accessed by human users because they are capable of intuitively
navigating web pages by following links to achieve their goals. Moreover,
human users typically understand the consequences of actions on theWeb
without executing them—for example, that clicking a button labelled “buy
now” in a web shop most likely results in the exchange of the user’s money
for things or services offered through the web shop.

The degree to which the information present on the Web can be
used by software agents to solve tasks without human intervention is limited

20 1. Introduction

because they lack the aforementioned abilities. Today, Web application pro-
gramming interfaces (APIs) are the means by which functionality is exposed
to software on the Web and the web pages humans see are often merely
views on the functionality provided through the underlyingWeb APIs. How-
ever, using aWeb API can be compared to memorizing the exact Uniform
Resource Locators (URLs) and mouse movements required to achieve a cer-
tain task on a website and then executing them blindfolded: a change in a
URL or the layout or structure of a page breaks the application. Moreover, it
is impossible for today’s software agents to answer certain types of questions
such as “which model was simulated to show that a design meets this re-
quirement and which parameter set was used?”; to discover related content
that is not explicitly listed; and to reason about the provided information
and infer new information based on what is already known. Therefore, it is
argued that the full potential of the Web cannot be realized unless software agents
are enabled to do so.

The Semantic Web describes an extension of theWeb which provides
information about the semantics of data and the semantics of API inter-
actions in a machine-readable form. Essentially, this requires a shared
language for representing the meaning and interrelations of things, namely
the Web Ontology Language (OWL), as well as a distributed data model that
uses this language to specify the semantics of data and its relation to other
data, namely the Resource Description Framework (RDF).

Performing work using software running on a digital computer re-
quires implementing algorithms using a programming language and repres-
enting the data the algorithms operate on in a machine-processable format.
The term software architecture denotes the internal structure of such pro-
grams. Typically, software is written in a layered fashion by extensively
reusing established software libraries and even entire programs to build an
application. Thus, defining the software architecture involves choosing a
suitable technology stack for the task at hand.

Comparable to the categorization of buildings based on their archi-
tectural style, architectural styles in software design have been identified
based on commonalities of specific software architectures. Certain archi-
tectural styles have been found to adequately account for the requirements
of a class of systems with similar characteristics. Two architectural styles
relevant to distributed software systems are REST and SOA: Representa-
tional State Transfer (REST) has been identified as the architectural style
underlying robust and scalable distributed hypertext systems such as the
Web; and service-oriented architecture (SOA; an architectural style des-
pite its name) has been found suitable to realize immensely complex and
high-performing applications on theWeb, such as Netflix or Amazon. To
emphasize that SOAs work best when services are responsible for a single
task only and the overall functionality is achieved by combining services,
the term microservices is often used. Typically, microservices are realized as
REST-basedHTTP-APIs, in other words APIs that are accessed viaHypertext
Transfer Protocol (HTTP) and that are designed based upon—but do not
fully implement—the constraints defined by REST.

For systems of systems that are distributed across organizational

1.1 Context and Basic Idea 21

boundaries and for which there is thus no central authority that can en-
force exactly one way of creating interoperable interfaces, it is desirable
to strive for loose coupling between systems. Loose coupling facilitates the
independent evolution of subsystems and thereby the robustness of the
overall system as well as its ability for growth.

If and only if (iff) all constraints that define the architectural style
REST are realized in a specific software, then the software supports its use
in loosely coupled systems. Web APIs that fully implement REST are called
hypermedia APIs because the term “RESTful” is frequently misused.

In addition to facilitating the creation of loosely coupled systems,
hypermedia APIs also facilitate their use by software agents that are not
specifically programmed for a certain API, which are called generic or in-
telligent software agents. One task that these agents need to solve is which
requests need to be sent in which sequence in order to reach a goal, given
a set of hypermedia APIs. For this, the Pragmatic Proof Algorithm (PPA) by
Verborgh et al. can be used.

The discipline and activity of identifying requirements, defining a
software architecture capable of satisfying these requirements and imple-
menting software to realize a certain functionality is denoted software engin-
eering. A systematic approach to software engineering and thoughtful design
of a software’s architecture are immensely helpful when attempting to cre-
ate large, complicated software systems such as a suite of microservices
providing M&S-capabilities in the SemanticWeb. Consequently, software
engineering represents an important part of this work.

The design and realization of applications that run “in the cloud” is a
question of software engineering. Cloud computing describes the desired
characteristics for providing software as a Service over the internet, as well
as the practice of doing so. Cloud-native applications (CNAs) are applications
that are specifically designed to run in the cloud and consequently realize
the defining characteristics.

To summarize, the research presented in this thesis is an interdisciplinary
endeavour at the intersection of three fields of research: through software
engineering, capabilities of modelling and simulation as a branch of systems
engineering (SE) shall be made available in the Semantic Web, which is a
branch of computer science.

22 1. Introduction

1.2 Research Questions and Thesis Outline

The core idea of this thesis is that a hypermedia API as an exemplary inter-
face to RDF data; the PPA as an example of a generic software agent; and
the realization of the hypermedia API as a CNA could be suitable design
choices to address the lack of FAIRness and machine-actionability of M&S
resources. Specifically, complete and valid system models in the form of
Functional Mock-up Units (FMUs); their simulation; and the corresponding
simulation results are considered. This idea raises four questions:

Q1. Can the FAIRness ofM&S entities and -capabilities improve by provid-
ing them through a hypermedia API that exposes RDF representa-
tions of its resources?

Q2. Does this hypermedia API enable the use of M&S capabilities by an
implementation of the PPA as an example of a generic software agent?

Q3. Does this hypermedia API support its use in loosely coupled systems?
Q4. Which other benefits or drawbacks arise from the chosen approach?

In order to answer these questions, a concise explanation of the funda-
mental concepts is provided in chapter 2. Based on definitions for data,
information, knowledge, and FAIRness, triple-based and equation-based
formal representations of data and knowledge are introduced. Then, quality
attributes for (distributed) software systems are summarized and the main
concepts of theWeb and the SemanticWeb are introduced. Last, aspects of
software engineering that are relevant to this thesis are briefly summarized.

In chapter 3, the academic literature on the combination of concepts
fromM&S with theWeb and the SemanticWeb is reviewed; resulting in the
formulation of a research gap.

Based on issues with the reusability of M&S resources observed with
current tooling and the formulation of desirable characteristics, the hypo-
theses that detail the research questions are developed in chapter 4. The
combination of concepts chosen for demonstrating that the approach is
feasible and useful is explained in a technology-independentmanner. A con-
ceptual overview is given to summarize the intended interplay of concepts
and technologies.

The design and implementation of all software components, such
as the hypermedia API that exposes M&S resources and -capabilities in the
Semantic Web, is presented in chapter 5. This includes the design of two
ontologies and a parser necessary to represent and reason about the chosen
model format (FMI) and systems,models and simulations on amore abstract
level using the RDF datamodel. Moreover, the Quad Pattern Fragment (QPF)
interface; RESTdesc; and the PPA as necessary building blocks to validate
the hypotheses of this work are explained.

Next, applications that demonstrate that the chosen approach can be
useful for finding models, simulating models in the cloud and integrating
models and simulations in a SE knowledge graph (KG) are summarized in
chapter 6.

In chapter 7, the research questions and hypotheses are evaluated,
and possible directions for further research are outlined. Chapter 8 provides

1.3 Contributions 23

a summary and concludes the thesis.
The appendices A and B contain additional details, such as a glossary

(table A.1), and a list of publications and software created in the context of
this thesis (appendix B.1.)

Many interesting aspects and questions are out of scope for this thesis.
Specifically, this includes…

– other definitions of the terms modelling and simulation—only the defini-
tions outlined above, which reflect the use of the terms in the context
of working with the EOOL Modelica, apply;

– computational fluid dynamics (CFD) and finite element method (FEM)
models—from a mathematical point of view, only systems that can be
represented using differential-algebraic equations (DAEs) (not partial
differential equations (PDEs)) are in scope;

– co-simulation and the use of other modelling languages and exchange
formats—only the use of Modelica and FMI for modelling and sim-
ulating the dynamic behaviour of technical systems using a single
solver per simulation are regarded;

– digital twins—an investigation of the aspects specific to models de-
signed to accurately represent and interact with real systems over
their entire life cycle is out scope; and

– user interfaces for human users including concepts and tools for the
visualization and analysis of simulation results.

1.3 Contributions

From the author’s point of view, the following contributions to the scientific ▼ [94, section 6.2]
discourse on providing and using M&S capabilities in distributed systems
of systems were made:

– it was shown that the chosen approach can increase the FAIRness
and improve the machine-actionability of M&S capabilities in a way
that supports loose coupling, and reasons for why these goals are
desirable were given;

– a proof-of-concept implementation of a hypermedia API that exposes
M&S functionality in the SemanticWebwas published as open-source
software, and adetailed descriptionof design concept and implement-
ation was provided;

– the FMI-ontology and the fmi2rdf-parser used to build representa-
tions of FMUs in the RDF data model were made available openly;

– an extension of the PPA to support user inputwhichhas requirements
that only become known at run-time was suggested; and

– an open-source implementation of the PPA as well as an example
demonstrating its robustness against changes in the service interface
were published.

▲

24 1. Introduction

1.4 About This Document

This document contains text and figures that have already been published
as part of scientific papers written for communicating aspects of the work
presented.

This practice is known as text recycling, which is defined as

“[…] the reuse of textual material (prose, visuals, or equations) in
a new document where (1) the material in the new document is
identical to that of the source (or substantively equivalent in both
form and content), (2) the material is not presented in the new docu-
ment as a quotation (via quotation marks or block indentation), and
(3) at least one author of the new document is also an author of the
prior document” [38]

Reasons for recycling text include

– describing recurring aspects of research, such as the description of
methods used, consistently;

– avoiding superficial changes that are intended to disguise an existing
text as a newone, such as rearranging sentences and using synonyms;

– improving thequality of thedocument by reusing text that has already
been proofread by reviewers and co-authors.

However, text recycling can be problematic iff is it is not disclosed to readers
(falsely implying novelty); breaks contracts with publishers; or creates an
unfair advantage in a competitive setting.

To mitigate these problems, best practices for text recycling are suggested:

– Hall, Moskovitz and Pemberton [38] stress that text should be re-
cycled ethically and appropriately (only if accurate and effective in
new context; to ensure consistency); legally (compliant with copy-
right agreements); and transparently (proactively and openly commu-
nicated).

– Meinel [61] highlights that the lack of attribution is what causes most
problems and makes specific suggestions on how to alert readers to
recycled text in different circumstances.

It is attempted to realize these suggestions in this document. Specifically, …

– this section communicates that parts of this thesis can also be found
in other scientific publications of which I am the first and corres-
ponding author;

– in appendix B.1, there is a list of these publications including com-
ments pointing out their relation to each other and to this thesis;

▼ [..., section x.y] – throughout the document, longer sections of text (possibly including
tables or figures) that are recycled from other documents are pointed
out through margin notes (as shown to the left).▲

It is possible that minor edits to the recycled passages were made to ensure
good readability.

25

2. Fundamental Concepts

“Model-based Systems Engineering (MBSE) is the formalized application of
modeling to support system requirements, design, analysis, verification and
validation activities beginning in the conceptual design phase and continu-
ing throughout development and later life cycle phases” [98]. Alternatively,
Zeigler, Mittal and Traore [126] more briefly state that “Model-based Sys-
tems Engineering employs model-based practices to engineer IT-enabled
systems”.

But what are systems, what are models, and what is their relation
to data, information and knowledge? Cellier and Kofman [21, section 1.2]
define amodel as the result of “extraction of knowledge from the physical
plant to be simulated, organizing that knowledge appropriately, and rep-
resenting it in some unambiguous fashion”. Systems are seen as a part of
the world that is currently of interest, defined by separating it from its en-
vironment through the definition of inputs and outputs [20, section 1.1].
From a different angle, systems can also be seen as “a potential source of
data”; leading to the definition of experiments as “the process of extracting
data from a system by exerting it through its inputs”. In turn, simulation
then “concerns itself with performing experiments on the model to make
predictions about how the real system would behave if these very same
experiments were performed on it” [21, section 1.2].

In this chapter, definitions for data, information and knowledge are provided
and the so-called FAIR principles are summarized. Then, two ways to repres-
ent knowledge in a way that allows computing new information from what
is already known, namely equation-based and triple-based, are introduced.

Moreover, quality attributes for distributed software systems such as
dependability and security, trust and loose coupling are discussed followed by
outlining the core concepts and technologies of the Web and the Semantic
Web. Last, cloud computing, SOA, and DevOps are briefly introduced as they
represent aspects of software engineering relevant to this thesis.

2.1 Data—Information—Knowledge and FAIRness

Three concepts fundamental to the scientific field information science (IS)
as well as to this thesis are data, information and knowledge. However, there
aremany definitions of these concepts that vary in their approaches, content
and applicability in computer science as well as their inclusion or omission
of related concepts such as ‘signals’ and ‘wisdom’. Typically, data, informa-
tion, knowledge and wisdom are seen as hierarchical concepts and are thus
denoted Data—Information—Knowledge—Wisdom (DIKW) pyramid or wisdom
hierarchy. Higher levels in the hierarchy are associated with increasing

26 2. Fundamental Concepts

structure, meaning and context, but decreasing actionability by machines.
Levels are often defined with respect to lower levels but the transformation
processes from one level to another are not always clear.

Rowley [82] analyses definitions provided in textbooks relevant to
information systems and knowledge management. She retraces the defin-
itions by pointing out commonalities and differences and discusses key
aspects in terms of the relationships and transformation processes as well
as the variables that change between concepts [82, section 6]. Her conclu-
sions are that even though there is consensus about the hierarchical nature
of the concepts, the distinction between them needs further clarification,
among other dimensions with respect to whether or not a concept can be
represented in systems or solely exists in the minds of humans. Further-
more, it is noted that wisdom is discussed in significantly less detail than
data, information, and knowledge despite its position at the top of the DIKW
pyramid.

Zins [127] states and analyses the definitions of data, information
and knowledge provided by 45 expert researchers in the field of IS. In his
own definitions [127, p. 486] and his identification of different models for
defining Data—Information—Knowledge (DIK) [127, p. 488], he offers an
answer to whether or not information and knowledge can only exist in
the human mind by distinguishing between the subjective domain and the
universal or collective domain. Subjective knowledge refers to the knowledge
of and inseparable from an individual and can contain both private and
public elements. In contrast, universal knowledge denotes knowledge that
exists independent of individuals. Zins provides the following definition
of DIK in the universal domain: “in the objective domain data are sets of
signs that represent empirical stimuli or perceptions, information is a set of
signs, which represent empirical knowledge, and knowledge is a set of signs
that represent the meaning (or the content) of thoughts that the individual
justifiably believes that they are true”, prepended by the statement that
“data, information, and knowledge are human artefacts […] represented
by empirical signs” [127, p. 487]. This definition emphasizes that while
the distinction between DIK is a construct of humans, sets of observable
signs can be used to represent DIK in the universal domain. Also, it sees
information as a type of knowledge that is empirical, in other words “derived
from or guided by direct experience or by experiment, rather than abstract
principles or theory” [23].

In alignment with Zins’ definition and its underlying view that DIK
exist both in the subjective and the universal domain, I use the terms Data—
Information—Knowledge as follows within the context of this work:

Anything related towisdom
is out of scope.

Data denotes representations of observations or properties of thingswithout
a context that gives themmeaning. Things can be the source of data
if they are observed, and they can be both real-world entities such as
a specific photovoltaic (PV) system or virtual entities such as a model
that represents it. Examples for data include a cell in a table, or an
arbitrary key/value-pair in a JavaScript Object Notation (JSON) object.
The sets of signs used to encode data are unambiguous so that they
can be acted upon algorithmically.

2.1 Data—Information—Knowledge and FAIRness 27

Metadata
is data that “describes, annotates, or gives information about other
data, including but not limited to tags in a programming code, in-
formation about a digital file’s characteristics, or a library catalogue
showing the location and call number of books” [24].

Information
is an intentional selection of data within a context and therefore
meaningful to an agent. It can be seen as the answer to a question
expressed as a subset of the available data and thus as empirical know-
ledge. For example, information could be a row, column or single
cell of a table including the context of what kind of data is stored in
the table and what the respective column headers and/or row indices
are; it could the value of a specific key in a JSON document; or a set
of triples about an entity.

Knowledge
is seen as a representation of something that an agent justifiably
believes to be true within a context. In contrast to information, rep-
resentations of knowledge can include non-empirical data such as
general interrelations between concepts or specific relationships
between individuals. Examples for such knowledge include an on-
tology that defines terms to describe a domain of interest as well as
their relations; a representation of a general concept inclusion; or
a system of equations describing the dynamic behaviour of a tech-
nical component. Knowledge allows inferring new data from what is
already known, for example by means of reasoning or simulation.

The purpose of this clarification on the three terms is to enable a concise
description of the scope of the technological building blocks described in
following sections. It can also serve as one criterion for discussing the
possible value of the solutions developed using these building blocks.

Another criterion for evaluating the properties of the devised solutions
are the so-called “FAIR Guiding Principles for scientific data management and
stewardship”. In the initial publication of these principles [125], the authors
motivate and propose 15 specific requirements for maximizing the value of
data sets through facilitating reuse, especially in a scientific context.

FAIR stands for Findable, Accessible, Interoperable, Reusable. The FAIR
principles are suggested as a high-level answer to what constitutes good data
management that is independent of a specific domain or implementation.
The scope of the principles explicitly includes research output in general,
for example information about steps leading to the creation of data, such as
procedures, (software) tools and algorithms [125, p. 1].

The target audience for FAIR data comprises both human users and
software agents. Wilkinson et al. motivate their emphasis on machine-
actionability by an increasing need for software support for finding, re-
trieving and analysing data relevant to a certain purpose due to the ever-
increasing volume, complexity and variety of formats of data [125, p. 3].

Machine-actionability is seen as the ability of a software agent to
make correct andmeaningful choices when faced with data that it has never

28 2. Fundamental Concepts

encountered before [125, pp. 3]. In order to achieve this, software agents
need to be enabled to identify the structure and intent of the data in ques-
tion; to decide whether it is useful for the task at hand and only subject
to constraints that can be met; and finally to learn about their options for
acting on the data. Information on these subtasks provided in a well-known
format is what enables their solution; consequently, machine-actionability
is not either realized completely or not realized at all, but realized gradually
subject to the amount of information useful to software agents that is avail-
able. This is emphasized by the fact that this information could be provided
for none, either, or both of contextual metadata and the data itself.

In table 2.1, the individual FAIR guiding principles are listed along
with their nature (technical (t), organizational (o), (meta)data modelling
(m)) and an association of each principle to one or more of the following
dimensions:

D1: (Meta)data Modelling
Theseprinciples aremostly aboutwhat kindof data shouldbeprovided
and what high-level features need to be supported by the formalisms
used to do so. Note that making a data set FAIR means that metadata
and links to other data need to be curated and provided in addition to
the data itself.

D2: Alignment with SemanticWeb Technologies
Principles marked with D2 align well with the SemanticWeb because
the requirements they suggest are realized by technologies that are
part of the Semantic Web software stack (compare section 2.3.3).
For example, A1, A1.1 and A1.2 demand that resources should be
available using a universally implementable protocol that is openly
standardized, free and supports authentication. Hypertext Transfer
Protocol Secure (HTTPS) as one of the pillars of the Web and the
SemanticWeb fulfils these demands.

D3: Responsibility for Ownership
D3 is intended to point out that there are principles which require
special care and a sense of responsibility on the side of the provider in
order to achieve the intended consequences. As examples, consider
A2 and the use of persistent identifiers (F1), which mandate a long-
term commitment to the continued FAIRness of a data set.

Wilkinson et al. hope that by providing data in a FAIRmanner, not only users
but also the creators and other stakeholders such as institutions or funding
agencies benefit: in addition to its vastly improved findability, FAIR data can
be cited and thus provides a measure for its contribution to the scientific
discourse and recognition for the effort put into creation and publication.
For a given data set, better FAIRness would likely lead to a higher impact
and, seen from an economical perspective, better return on investment.

The GO FAIR initiative was formed to promote the creation of FAIR
data sets by communicating their potential; training stakeholders; and
building standards, best practices and tooling to support researchers. In
January 2020, broad support for the goals of the GO FAIR initiative was
expressed by representatives of major research networks by signing the
“Sorbonne declaration on research data rights” [91].

2.2 Formal Representations of Data and Knowledge 29

Id Principle Nature D1 D2 D3

F1 (Meta)data are assigned a globally unique and persistent identifier. t, o ◆ ◆ ◆
F2 Data are described with rich metadata (defined by R1 below). m ◆ ◆
F3 Metadata clearly and explicitly include the identifier of the data theydescribe. m ◆
F4 (Meta)data are registered or indexed in a searchable resource. o ◆
A1 (Meta)data are retrievable by their identifier using a standardised commu-

nications protocol.
t ◆

A1.1 The protocol is open, free, and universally implementable. t ◆
A1.2 The protocol allows for an authentication and authorisation procedure,

where necessary.
t ◆

A2 Metadata are accessible, even when the data are no longer available. o, t ◆
I1 (Meta)data use a formal, accessible, shared, and broadly applicable language

for knowledge representation.
t ◆ ◆

I2 (Meta)data use vocabularies that follow FAIR principles. o, m ◆ ◆
I3 (Meta)data include qualified references to other (meta)data. m ◆
R1 (Meta)data are richly described with a plurality of accurate and relevant

attributes.
m ◆

R1.1 (Meta)data are released with a clear and accessible data usage licence. m ◆ ◆
R1.2 (Meta)data are associated with detailed provenance. m ◆ ◆
R1.3 (Meta)data meet domain-relevant community standards. m ◆ ◆

Table 2.1: List of the 15 FAIR Guiding Principles. A detailed explanation of the principles including examples and hints regarding
implementation can be found on the website https://www.go-fair.org/fair-principles. The content of the columns
‘Id’ and ‘Principle’ are copied verbatim from this website; the other columns are added by me.

2.2 Formal Representations of Data and Knowledge

Today’s industrial systems are complex mechatronic systems, integrating ▼ [94, section 1]
mechanical, electrical and computational elements. In this context, formal
models are used that describe the dynamic behaviour of systems by means
of equations. From a mathematical point of view, a system of differential-
algebraic equations (DAEs) is created that implements the laws of physics,
supported by empirical data such as look-up tables if a physics-based mod-
elling approach is infeasible. The approximation of this system of DAEs by
means of numerical integration algorithms is called simulation. For models
of the dynamic system behaviour, the result of a simulation is a trajectory
of values over time.

In the context of the Semantic Web, formal models are ontologies.
Ontologies encode concepts, roles, and their interrelations; computational
reasoning is the process by which satisfiability, classification, axiom entail-
ment, instance retrieval et cetera are computed.

Both types of models—ontologies and systems of DAEs—are a useful
tool for the design, analysis and understanding of complex systems. Import-
antly, they are also abstractions of the domain of interest, meaning that a
distinction between relevant and irrelevant aspects with respect to the inten-
ded purpose of the model was necessarily made by the humans who created
the model. Moreover, the models have to be encoded in a formal language
such as the Web Ontology Language (OWL) for ontologies or Modelica for
DAEs in order to enable algorithms to operate on them.

As a consequence of the choice for a specific modelling language, a
limit in scope and expressivity is imposed on the modelling process. This
means that the types of problems that can be solved using the chosen lan-
guage, including its ecosystem such as model libraries, integrated develop-

https://www.go-fair.org/fair-principles

30 2. Fundamental Concepts

ment environments (IDEs) and expert communities, are limited.
The limit that a modelling language imposes is not a problem if the

modelling task at hand fits the capabilities of the language well. However, it
is an interesting question whether two modelling approaches with different
purposes and capabilities can bemeaningfully combined in order to support
the investigation of other types of problems, drawing on the respective
strengths of the individual approaches and alleviating their disadvantages.▲

This section explains the fundamentals of equation-based and triple-based
representation of knowledge as used in systems of DAEs and ontologies,
respectively.

2.2.1 Equation-based Representation of Knowledge

In engineering, models and simulations are ubiquitous and used in many▼ [94, section 1.1]
steps of a product’s lifecycle. Reasons to use modelling and simulation
(M&S) [20, p. 10 f.] [84, p. 4] include that the feasibility of a design with
respect to requirements, safe operating conditions, and the sizing of com-
ponents can be evaluated. “What if?”-questions can be analysed faster and
safer than if they were executed on real systems. Moreover, models allow
access to internal states that could not be measured easily in reality, and
they also allow the computational search for optimal configurations. During
development, models facilitate the parallel development of different parts
of a system by different people, such as different physical components; the
physical component and its control strategy; or training operators before
the real system becomes available. During operations, M&S can be used
for fault detection, as a virtual sensor, or as an essential building block for
realizing the ideas for optimizing a system’s behaviour summarized under
the term “digital twin”.

For coping with the multitude of questions to be answered by M&S,
different approaches exist: finite elementmethod (FEM) and computational
fluid dynamics (CFD)methods are used to analyse phenomena that vary both
over time and location, such as the distribution ofmechanical stress inside a
component or the flow of air around an object. Event-based approaches are
used for queueing situations or crowd simulations; agent-based approaches
can for example model economic questions and other interactions between
distinct entities with different agendas.

In this work, we focus on dynamic models for the time-varying beha-
viour of quantities in technical, multi-domain systems that can be represen-
ted as a system of DAEs. This focus is consistent with clusters of competence
in industry and academia and caters to a large, relevant class of problems.
Other uses of the terms modelling and simulation are equally valid in their
respective contexts, but out of scope for this work.

However, evenwithin this scope, despite the similarity of the underly-
ing mathematical problems to solve and as a consequence of both different
requirements for different applications and historical reasons, many form-
alisms and corresponding ecosystems exist today. They range from the use
of general-purpose programming languages (such as Python); via modelling
languages explicitly designed to support multi-domain models as well as to

2.2 Formal Representations of Data and Knowledge 31

support language features that facilitate the development of robust, well-
structured models; to highly specialized languages and tools for specific
applications. ▲

In order to assist users with managing the complexity inherent to
modelling cyber-physical systems, modelling languages such asModelica
[66] provide mechanisms for structuring larger models as a hierarchical
collection of submodels that can be developed independently. Specifically,
the mechanism that enables the use of independently developed submodels
or components, is the so-called acausal formulation of the model, meaning
that the question “which variable gets calculated in which equation, and in
which order do the resulting assignments need to be evaluated?” is answered
by an algorithm instead of the human creating the model. Moreover, state-
of-the art modelling languages provide mechanisms for reusing parts of the
model code and facilitating the development of model libraries, for example
object-orientation.

The first step in creating a model is finding an abstraction of a system that ▼ [94, section 2.1]
is suitable for the purpose of the model. In-depth domain knowledge is
required in order to understand and describe the relevant properties of the
system at hand. Second, the model needs to be implemented in a formal
modelling language, which requires expertise in the modelling formalisms,
languages and algorithms used because attention to the numerical proper-
ties of the model and the use of structuring mechanisms that ensure the
reusability of the model must be paid. M&S environments such as Dymola1

provide support regarding the implementation of the models by checking
for syntactic mistakes, providing access to model libraries, offering the
possibility to graphically create models by assembling component models,
translating the models to executable form, triggering their execution and
allowing users to analyse the results. However, it remains the user’s respons-
ibility tomake sense of the calculated trajectories and to ensure that they are
valid. In practice, obtaining accurate parameter values and measurement
data for verification and validation of developed models represents a major
challenge. ▲

Unfortunately, models encoded in different languages are generally not
interoperable. Interoperability denotes the degree to which systems can ▼ [94, section 2.1]
work together; the different “levels that need to be aligned in order to make
systems meaningfully interoperate with each other” can be expressed using
the Levels of Conceptual Interoperability Model (LCIM) [106, p. 6]. For
the combination of models, conceptual interoperability (the highest level
of interoperability according to the LCIM) is required. Through the term
conceptual interoperability, it is expressed that the abstractions made in
the creation of the models must align in order to get meaningful output
from the combined models. In other words, a “state ensuring the consistent
representation of truth in all participating systems” is necessary, which is
the definition of composability suggested by Tolk [106, p. 7]. ▲

The lack of interoperability is problematic for several reasons. From ▼ [94, section 1.1]
a practical perspective, the lack of interoperability hinders and slows down

1 https://www.3ds.com/products-services/catia/products/dymola/

https://www.3ds.com/products-services/catia/products/dymola/

32 2. Fundamental Concepts

the development of complex systems that use components by othermanufac-
turers, such as cars. From an economic perspective, the lack of reusability
resulting from the limited interoperability is also problematic because mod-
els can represent valuable assets: the creation and validation of models
requires resources, time and expertise which can be a significant invest-
ment. The value of this investment is maximized if the model is reused
often, also outside the context for which it was originally created.

To solve the problem of syntactic interoperability, the Functional
Mock-up Interface (FMI) standard [65] was developed. FMI is a tool-inde-
pendent, open standard for model exchange that defines the interface, cap-
abilities and format of so-called Functional Mock-up Units (FMUs), which
is the name for models that are compliant with the FMI standard. There
are two variants: FMUs for model exchange only contain the model equa-
tions and require an external solver for simulation. In contrast, FMUs for
co-simulation contain a solver and can thus be used both as a standalone
executable form of amodel as well as in conjunctionwith other FMUs for co-
simulation. In this work, co-simulation is out of scope; only the simulation
of a single model/FMU with a single solver is considered.

From a technical point of view, FMUs are archives containing a de-
scriptive Extensible Markup Language (XML)-file, platform-specific binar-
ies, C-code and optional additional files stored as a .fmu-file. FMI is widely
adopted and supported by more than 150 tools to varying extent1.▲

2.2.2 Triple-based Representation of Knowledge

One way to convey the meaning of a construct such as a series of characters,
for example “s, e, n, s, o, r”, is to simply acknowledge that this construct is
a symbol that refers to a thing in the world, in this case a sensor (referential
semantics) [1, p. 31]. In the context of the (Semantic) Web (section 2.3.2,
section 2.3.3), things in the world are seen as resources; consequently, a way
to make statements about resources is required.

The RDF Data Model and -Serializations

The Resource Description Framework (RDF) is a data model that allows
Amore detailed introduc-
tion to RDF is provided in
[87].

making statements about resources. These statements always take the form
of simple sentences consisting of a subject, an object, and a predicate that
connects the subject to the object.

Predicate: “one of the two
main parts of a sentence,
containing the verb and
any of its objects, modifi-
ers, or other completions,
and generally express-
ing an action, state, or
condition” [25]

These so-called subject–predicate–object triples result in the data
structure of a directed graph with labelled edges. As an example, consider
the graph visualized in figure 2.1. It contains nodes (visualized as circles)
connected by edges that have a direction (arrows); both nodes and arrows
can be named. Moreover, a dashed box around a node denotes that the node
is an instance of a class; and there are some literals (values), such as the
string “°C”. In tabular form, the same graph would look like this:

1 https://fmi-standard.org/tools/

https://fmi-standard.org/tools/

2.2 Formal Representations of Data and Knowledge 33

Subject Predicate Object

10704 is a weather station
10704 hosts t_2m
t_2m is a sensor
t_2m observes air temperature at 2m above ground
… … …

As shown, the graph could imply the following: weather station 10704 ,
attributed to Germany’s National Meteorological Service (DWD), hosts a
sensor t_2m that observes the air temperature at 2m above ground. The
latest measurement taken by this sensor reveals that the temperature was
10.3 °C; the measurement process is also associated with DWD.

Each triple asserts something that is believed to be true. However,
strings like “10704” which label nodes and edges carry no inherent mean-
ing; if at all, they only make sense locally/to the person who created the
graph. This means that data from different sources could not be merged
automatically; but, since theWeb is distributed, the data model needs to
account for this.

By using Uniform Resource Identifiers (URIs) for subjects, predicates
and objects (objects can be literal values, too), they become globally unique.
For example, consider changing the sentences “ 10704 is a weather station”
and “ 10704 hosts t_2m ” as follows:

<https://example.com/weather-stations/10704>
<https://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<https://dbpedia.org/resource/Weather_station> .

<https://example.com/weather-stations/10704>
<http://www.w3.org/ns/sosa/hosts>
<https://example.com/sensors/t_2m> .

Now, anyone can say anything about any topic (AAA) [1, p. 35] and when the
same URIs are used, they refer to the same thing. Furthermore, different
data sets can be merged by simply concatenating them.

When the URIs are also Uniform Resource Locators (URLs) (com-
pare section 2.3.2), their meaning/definition can be looked up. For example,
https://www.w3.org/1999/02/22-rdf-syntax-ns#type indicates
that the subject is an instance of a class indicated by the object of the triple,
and the documentation for http://www.w3.org/ns/sosa/hosts tells
us that this predicate expresses the “relation between a Platform and a
Sensor, Actuator, Sampler, or Platform, hosted or mounted on it”.1

To export, transfer and import graph data structures used in software, seri-
alization formats are needed. The simplest serialization for RDF is called
N-Triples [6] (shown above).

To reduce verbosity and size and to facilitate reading by humans,
alternative syntaxes have been defined. One used in later chapters is called
Turtle [7]. Most prominently, Turtle allows abbreviating URIs using the

1 https://www.w3.org/TR/vocab-ssn/#SOSAhosts

https://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://www.w3.org/TR/vocab-ssn/#SOSAhosts
https://www.w3.org/TR/vocab-ssn/#SOSAhosts

34 2. Fundamental Concepts

@prefix and @base keywords; also, objects of triples that share the same
subject and predicate can be listed separated by commas and predicates and
objects connected to the same subject can be listed separated by semicolons
(listing 2.1). The letter a further abbreviates rdf:type . In lines 21 to 24,
a blank node is used as the object. Blank nodes are nodes that do not have a
globally unique identity.

An RDF document can contain zero ormore named graphs in addition
to exactly one default graph [57, section 4]. For serializing the resulting
subject–predicate–object–graph quads, alternative syntaxes such asN-Quads
[17] (similar to N-Triples) or TriG [13] (similar to Turtle) are required. In
TriG, named graphs are enclosed in curly braces.

Using graphs to store assertions about entities that belong to a domain of
interest results in knowledge graphs (KGs). KGs are defined as “a graph of
data intended to accumulate and convey knowledge of the real world, whose
nodes represent entities of interest and whose edges represent potentially
different relations between these entities” by Hogan et al. [45, p. 2].

Querying graphs to retrieve answers to semantic queries, in other
words finding entities based on their relations to other entities, is enabled
through the SPARQL Protocol and RDF Query Language (SPARQL) [41].

Ontologies based on RDFS and OWL

In the running example, RDF has so far been used to make statements
about specific entities (instances of classes). However, it is also possible
to express relationships between classes, or properties of predicates; for
example: sosa:Observation rdfs:subClassOf prov:Activity . Class

The terms concept and
role are sometimes used
instead of class and predic-
ate.

expressions, predicate expressions and individual assertions (an entity is an
instance of a class; two instances are linked through a predicate; two entities
are equal/not equal) form the basis of ontologies.

Ontologies are consistent specifications of concepts relevant to a domain▼ [94, section 2.1]
of interest and their interrelations in a formal language. In addition to this
conceptual representation of knowledge, in other words being a “model of”
some domain with the intent to facilitate its description, ontologies are also
a “model for” systems to be built and are thus of normative nature too [44].

With respect to what is modelled by an ontology, we follow the con-
ceptualization of Hofmann, Palii and Mihelcic [44, p. 136] and distinguish
between methodological and referential ontologies. Methodological onto-
logies describe (“model of”) methods or formalisms such as FMI, which
are usually consistent and free of conflicting definitions of concepts. This
facilitates their modelling as an ontology and as a result, the ontology has
a high potential for adoption in implementing systems (normative aspect,
“model for”) [44, pp. 136, 138 f.]. In contrast, referential ontologies attempt
to model what is and what is not important to describe a part of the real
world, which generally represents a more diverse, inconsistent and ambigu-
ous domain than a human-made concept such as a modelling formalism.
Consequently, referential ontologies are less likely to be reused outside their
original context [44, pp. 136, 143].

2.2 Formal Representations of Data and Knowledge 35

hosts

observes
observed property

made by sensor

has result
generated by

was associated
with

value
unit

label

was attributed to

Weather station
Platform

Sensor

air temperature at
2m above ground

latest
measurement

DWD

Observation

"Deutscher Wetterdienst" (de)

"Germany's National Meteorological Service" (en)

10704

t_2m

"°C" 10.3

Figure 2.1: Statements about a resource, in this case a weather station, visualized as graph

1 @prefix rdf: <https://www.w3.org/1999/02/22-rdf-syntax-ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
3 @prefix dbr: <https://dbpedia.org/resource/> .
4 @prefix sosa: <http://www.w3.org/ns/sosa/> .
5 @prefix qudt: <http://qudt.org/schema/qudt/> .
6 @prefix unit: <http://qudt.org/vocab/unit/> .
7 @prefix prov: <http://www.w3.org/ns/prov#> .
8 @base <http://example.com> .
9

10 </weather-stations/10704> a dbr:Weather_station, sosa:Platform ;
11 sosa:hosts </sensors/t_2m> ;
12 prov:wasAttributedTo </agents/dwd> .
13
14 </sensors/t_2m> a sosa:Sensor ;
15 sosa:observes </weather/t_2m> .
16
17 </measurements/latest> a sosa:Observation ;
18 prov:wasAssociatedWith </agents/dwd> ;
19 sosa:madeBySensor </sensors/t_2m> ;
20 sosa:observedProperty </weather/t_2m> ;
21 sosa:hasResult [
22 qudt:numericValue 10.3; qudt:unit unit:degC ;
23 prov:wasGeneratedBy </measurements/latest>
24] .
25
26 </agents/dwd> rdfs:label "Deutscher Wetterdients"@de ,
27 "Germany's National Meteorological Service"@en .

Listing 2.1: Statements about a resource, serialized using Turtle

36 2. Fundamental Concepts

The value of ontologies in the domain of M&S is expected to manifest
itself by facilitating knowledge exchange and reuse; by helping with the
resolution of compatibility questions; through their support for reasoning;
and their role in querying data sets with respect to their semantics [44,
p. 138 f.]. Specific mechanisms by which these are facilitated include the
precise definition of terms; the resolution of ambiguity of terms through
namespacing; serving as a consistent and shared (mental) model used by
researchers in a topic area; and the ontologies’ foundation in formal logic
[110, p. 68 f.].▲

For the Semantic Web, Resource Description Framework Schema (RDFS)
[14] and the Web Ontology Language (OWL) [86] provide the modelling
constructs (class and role definitions using URIs) to implement ontologies
that capture knowledge about entities and their interrelations in RDF.

Reasoning under the Open-world Assumption

The class and predicate assertions as well as equality or inequality state-
ments that are made explicitly when creating a representation of an entity in
RDF are in general incomplete. This is because it cannot be known a priori
which statements will be needed and which ontologies are expected to en-
code them, in other words which path through a graph will be taken when
answering queries; and because it simply does not make sense to manually
add assertions and statements if and only if (iff) they can be derived via reas-
oning. For example, one might be interested in which agent the platform
that the sensor t_2m is hosted by, is attributed to. In SPARQL, this query
could be formulated as follows:

SELECT ?agent WHERE {
<t_2m> sosa:isHostedBy ?platform .
?platform prov:wasAttributedTo ?agent .
?agent rdf:type prov:Agent .

}

However, neither the triples in the first line nor in the third line of the
query are contained in listing 2.1. Taking into account additional class- and
predicate expressions, they can however be deduced.

prov:wasAttributedTo rdfs:range prov:Agent .
sosa:hosts owl:inverseOf sosa:isHostedBy .

The first triple entails that </agents/dwd> rdf:type prov:Agent and
from the second line follows that

</sensors/t_2m> sosa:isHostedBy </weather-stations/10704> .

This is called reasoning. With reasoning, the query can be resolved.

At its core, reasoning allows clients to infer facts from other facts. Common
reasoning tasks [83, section 7] include deciding whether…

– a KG is free of contradictions/consistent (satisfiability);

2.3 Successful Distributed Software Systems 37

– a statement is true given a KG (axiom entailment);
– a class can have instances (concept satisfiability);
– retrieving instances of a class from the KG (instance retrieval); and
– calculating the hierarchy of classes (classification).

OWL is based on Description Logics (DL), which is the name for decidable
fragments of first-order predicate logic (FOL) [83, section 1.2]. Multiple

A comprehensive intro-
duction to Description
Logics is provided in [83].

DLs exist, which differ in the supported modelling constructs and, con-
sequently, in their expressivity and scalability/computational complexity
[83, pp. 79, 96]. Likewise, OWL profiles were created with the intention to
provide subsets of OWL that are particularly suited for specific tasks (such as
satisfiability and class hierarchies; query answering; or scalable reasoning);
that are, in contrast to OWL 2 Full, decidable; and that keep the computa-
tional complexity within reasonable bounds at the expense of limiting the
allowed modelling constructs [see 69, section 5].

One important characteristic of DL and, consequently, OWL and its
subsets, is the so-called open-world assumption (OWA). Under the OWA,
facts which cannot be deduced from a KG are seen as unknown [83, sec-
tion 6.10]. However, sometimes it is useful to assume that something not
explicitly stated to be true is false. Therefore, mechanisms to do so were
proposed—including Scoped Negation as Failure (SNAF), for example as
part of Notation3 (N3) [81, section 3.10.4], and RDF Surfaces [43].

2.3 Successful Distributed Software Systems

It was estimated that in 2022, 5.3 × 109 people or 66% of the world’s popula-
tion used the internet [59]; likely, they also used the Web.

Although frequently used interchangeably, there is an important
distinction to be made between the internet and the Web1. The internet
is “the global system of interconnected computer networks that uses the
Internet protocol suite […] to communicate between networks and devices”
[124], whereas theWeb is “an information space in which the items of interest,
referred to as resources, are identified by global identifiers called Uniform
Resource Identifiers” [46, emphasis added]. This means that the entireWeb
is on the internet; but also that there are applications on the internet that
are not part of theWeb (such as e-mail).

Considering its size, its effect on people’s lives, and the fact that the
Web already exists for more than 30 years, it can undoubtedly be seen as an
immensely successful distributed software system.

In explaining the success of such systems, identifying their architec-
tural style is helpful. An architectural style is “a coordinated set of architec-
tural constraints that restricts the roles/features of architectural elements
and the allowed relationships among those elementswithin any architecture
that conforms to that style” [30, section 1.5]. The architectural style of the
Web is called Representational State Transfer (REST).

Humans cannot process data at the same speed and volume as ma-
chines. However, theWeb is primarily intended for humans using a browser

1 https://www.w3.org/help/#webinternet

https://www.w3.org/help/#webinternet

38 2. Fundamental Concepts

to access its contents. The Semantic Web is an extension of theWeb, adher-
ing to the same architectural style, that enables software agents to support
humans in achieving their goals.

In this section, work on general quality attributes for software systems; the
Web and REST; the SemanticWeb; and intelligent software agents is briefly
summarized with the intent to facilitate understanding of the following
chapters.

2.3.1 Quality Attributes for Software Systems

Intuitively, software users expect that a program returns correct results to
their input within a reasonable amount of time. Furthermore, it is expec-
ted that a user interface remains responsive to input and that there are no
unintended side effects. However, even seemingly simple programs are
in fact quite complex: a programming language depends at least on the
corresponding compiler or interpreter, but typically, many additional soft-
ware libraries are used when developing a program using a programming
language. These libraries in turn may have dependencies on their own and
programs get released in versions, of which severalmight be used in practice
even though only the latest version should be used. The existence and use
of such a hierarchical collection of libraries enables quick development of
high-level functionality, but it makes it effectively impossible for developers
to fully understand every detail of what they create. In theory, it might
be possible (but laborious) to read all the source code iff only open-source
libraries are used; but as soon as closed-source components are used, it
becomes actually impossible to understand a program completely.

Consequently, one can only hope that the components used to create
a program are of high quality. But what does ‘high quality’mean for software,
and what are criteria for evaluating software quality?

From a user’s perspective, functionality, user interface and perceived
performance suggest themselves, but they are only sufficient iff there are only
very minor consequences should they not be met. For example, this might
be the case for a free, open-source game that does not require or collect
any information about its users and does not require or use a connection
to the internet. As soon as there are more severe consequences in case
of failures, either because the user invests into a software in the form of
continued commitment to its use or the payment of license fees, or because
the software processes data that is not intended to be shared with the whole
world, such as personally identifiable information (PII), a software should
also provide its functionality in a dependable and secure manner. Moreover,
interoperability with other systems, in other words the “ability to exchange
information and to use the data exchanged in the receiving system” [107,
p. 686] is often desired and seen as a facet of software quality.

From a provider’s perspective, changes in either the program’s en-
vironment and dependencies or the program itself are unavoidable if a
program is not provided for a single use only, but for recurring use over a
period of time. Therefore, it is desirable to systematically avoid or at least
reduce problems caused by these environmental changes, for example by

2.3 Successful Distributed Software Systems 39

aiming for loose coupling with third-party dependencies. Problems can also
occur if a program is intended to be used by several remote users and there
is no adequate strategy for realizing scalability (the ability to increase per-
formance, possibly beyond the resources of a single computer) and elasticity
(the ability to scale up and down according to demand).

The main aspects of dependability and security as the core indicator
for software quality; the concept of trust as accepted dependence; as well as
loose coupling as a concept central to the architectural style of the (Semantic)
Web are summarized in more detail below.

Trust

Reusing content provided by others raises the question of trust: do we
believe that an interaction with something that we place our trust in will
work out despite the uncertainty inherent to the interaction? If so, to what
extent and why?

Sources for the uncertainty of the outcome of an interaction include
remote access to resources; capabilities provided by others; and the existence
of several possible alternatives. First, for resources only accessible remotely,
there is a risk that malicious agents or network failures alter or inhibit the
transfer of content over the network or that the behaviour of remote services
simply doesn’t match the expectations. Moreover, resources may only be
available to a limited audience, either for functional reasons or because
some clearance is needed to access them, which requires identification. By
somemeans, trust in claims of identity and access rightsmust be established.
Second, using content provided by others requires trust simply because
it is out of one’s own control: claims could be wrong or incomplete and
their origin and possible underlying assumptions are likely intransparent to
users. Third, any search resulting inmore than one result requires choosing
between options. These optionsmight only be provided by different entities,
but they might also present differing or even contradicting data. Evaluat-
ing the options with regard to their trustworthiness offers one strategy for
choosing between them.

In their 2007 survey on trust in computer science [3], Artz and Gil
identify and summarize four directions of research: Policy-based approaches
apply rules to the existence, nature and/or absence of credentials in order to
establish trust in the context of a specific interaction. In contrast, reputation-
based approaches infer trustworthiness from a history of prior interactions
and/or experience by others. Strategies for deciding on trust in information
resources include explicit provenance information, content analysis and
analysis of metadata such as hyperlinks and site design. Work on general
models of trust is intended to foster understanding of the concept “trust”
itself and its applicability in computational contexts. At a very abstract level,
a distinction between basic trust over all contexts, general trust between
individuals independent of the context and situational trust between indi-
viduals in a specific context as different types of trust is made. Artz and Gil
[3, section 7] conclude that an evaluation of trust comprises the questions of
which entity’s trustworthiness is evaluated (target); how trust is represented
(representation); how trust is evaluated (method), managed (management)

40 2. Fundamental Concepts

and computed (computation); and what this evaluation is used for (purpose).
One way to evaluate the trustworthiness of an entity could be to

evaluate its dependability and security.

Dependability and Security

Avizienis et al. [4] identify, define and explain attributes of dependable and
secure computing; provide a categorization of threats to dependability and
security; discuss general means to mitigate these threats; and highlight
meaningful relations between the concepts. They provide two definitions of
dependability [4, section 2.3]: first, it is seen as “the ability to deliver service
that can justifiably trusted” with trust, in turn, being defined as “accepted
dependence”. Second, dependability of a system can also be seen as “the
ability to avoid service failures that are more frequent andmore severe than
is acceptable”.

Dependability comprises five primary attributes: availability, reliab-
ility, safety, integrity and maintainability [4, section 2.3]. Likewise, security
is also a composite concept comprising the primary attributes availability,
integrity and confidentiality. Because dependability and security share the
aspects availability and integrity, they are seen as related concepts that
should be considered jointly when developing and operating software.

When a desired functionality is provided by a service as intended, it
The term ‘service’ will be
introduced in detail in
section 2.4. For now, a
service can be seen as a
synonym of ‘software’.

operates correctly as observable through its external state, in other words
at its service interface. A service failure occurs iff the external state exposes
incorrect behaviour. Service failures are the result of errors propagated to
the service interface that are caused by faults [4, section 3.5]. In other words,
faults manifest themselves as errors which may lead to service failures iff
they affect the external state of a program.

Avizienis et al. [4, section 3.2] identify 16 elementary fault classes
and 31 likely combinations thereof that can, on a high-level, be grouped
in development faults, physical faults and interaction faults. Examples of
these fault classes include external human-made malicious deliberate faults
during operation such as intrusion attempts (interaction); internal human-
made non-malicious, non-deliberate development faults due to incompetence
such as allowing direct, unguarded use of text provided by users because
the developer is unaware this represents a serious risk (development); or
internal natural non-malicious non-deliberate faults during operation such as
the failure of a hard disk (physical).

Severe development faults could lead to complete or partial devel-
opment failures, meaning that a developed software is put to use only with
limited functionality, too late, or not at all due to the developers incapabil-
ity to meet budget and/or schedule constraints or because even though a
specification is implemented correctly, the specification did not capture the
desired functionality.

In case the software does get used, failures can be categorized with
respect to their domain (for examplewrong content orwrong timing); detect-
ability (signaled/unsignaled); consistency (reproducible, non-reproducible);
and the severity of their consequences (fromminor to catastrophic).

There are four basic strategies for minimizing the existence and con-

2.3 Successful Distributed Software Systems 41

sequences of faults on the dependability and security of services: first, the
use of development methodologies, associated tools and general engineer-
ing strategies such as modularization is aimed at fault prevention. Second,
mechanisms to detect and, if possible, recover from errors so that they do
not lead to failures are fault tolerance techniques. Examples would be the
automatic rollback to an earlier version in case severe failures occur after
deploying an update; or automatic switching to a battery as power supply in
case of a grid outage. Fault removal [4, section 5.3] as the third strategy com-
prises identification and removal of faults both during development as well
as during use. During development, verification denotes the processes used
to make sure that an implementation matches its specification ; whereas

Verification is typically
done using testswhen
developing SaaS, but more
formal approaches such as
model checking could be
used in general.

validation denotes the evaluation in how far the implemented software real-
izes its intended functionality, which may or may not be captured by the
specification. Fault removal during use represents two out of four forms
of maintenance, namely corrective maintenance in case the fault to be re-
moved was active and detected, and preventive maintenance in case the
fault was dormant but still recognized. The other forms of maintenance are
adaptive maintenance (reaction to changes in the software’s environment)
and augmentative maintenance (adding of new features) [4, figure 3]. The
fourth basic strategy against threats to dependability and security is fault
forecasting. Fault forecasting can comprise both qualitative and quantitative
evaluations of a specific service in question, as well as general knowledge
about typical threats or expert opinions.

In practice, the mental framework provided by the article by Avizienis et
al. can be used to perform a dependability and risk analysis. This analysis
combines fault forecasting and fault removal techniques with the intent to
confidently arrive at the conclusion that a dependable service can be de-
livered [4, section 5.5]. Typically, applicable risks to the primary attributes
of dependability and security are identified and quantified in a way that ac-

This identification could for
example be based on the
OWASP Top 10 in combina-
tion with experiencemade
in the target environment
for a software.

counts for both their entry probability and the severity of the consequences
in the event that a fault leads to a failure: the higher the probability and the
higher the consequences, the higher the value associated with a specific risk.
Usually, this analysis results in a set of dependability and security provisions
to be followed during development and operations because a risk is seen
as acceptably low iff a countermeasure is taken and as too high otherwise.
Here, best practices such as those outlined by “IT-Grundschutz”1, should be
followed because they cover the most important aspects and can therefore
even be useful in case a full dependency and security analysis cannot be
performed due to insufficient resources and/or capabilities.

In an ideal world, software would be free of faults. However, the
second definition and the notion of trust as accepted dependence as well
as the explanations in section 5.5 of [4] emphasize that implementing a
fully dependable and secure software is impossible. The result of analysing
dependability and security and specifying measures aimed at achieving
it therefore can only lead to fault acceptance, which is ideally based on a
quantified estimation and therefore justifiable.

1 https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.
html

https://owasp.org/Top10/
https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html
https://www.bsi.bund.de/EN/Topics/ITGrundschutz/itgrundschutz_node.html

42 2. Fundamental Concepts

For the software presented in this thesis, a detailed upfront consideration
of dependability and security are out of scope because the main purpose of
the software is to demonstrate feasibility (proof of concept). However, this
doesn’t mean that dependability and security are disregarded: straightfor-
wardmeasures such as input validation are usually implemented and adding
more elaborate countermeasures such as authentication are supported by
design, but not implemented. Details on the strategies adopted with the
intent of aiding in the creation of dependable and secure software can be
found in section 5.3.3.

Loose Coupling

There are two approaches to designing a system of systems with regard to
how interoperability shall be achieved. The first approach is to enforce ex-
actly one world view across all interfaces of individual systems. By limiting
the choices system developers can make to those allowed by a central entity,
efficient and safe connections between a limited number of systems within
a closed context [76, pp. 913, 919] can be realized. The interfaces follow a lo-
gically consistent pattern and any given interface is either compliant or not
compliant with the specification. However, defining the scope and specifics
of such a centralized design is likely non-trivial and, more importantly, it
makes adaptive maintenance harder because of the high number of inter-
dependencies: if a breaking interface change becomes necessary, then all
systems need to update their implementation; ideally, all at the same time.
This problem gets worse if changes in the environment are incompatible
with the assumption on which the enforced world view is based.

The second approach is to acknowledge that in general, developers
are faced with “an open world of uncertainty and conflicting concepts” [76,
p. 913] and to therefore minimize the assumptions made about others. Inev-
itably, this leads to systems of less constrained and more diverse systems.
However, because only minimal interdependencies between systems exist,
changes in individual systems should only have limited effects on other
systems, therefore facilitating a more independent evolution that is cheaper
and contributes to better scalability.

The term loose coupling is used to denote the positive aspects of the
second approach. Comparable to dependability and security, it is defined
in terms of different facets. Pautasso andWilde [76] provide definitions for
each facet and characterize what constitutes loose and tight coupling for
each of the facets. They also point out that loose coupling is not inherently
better than tight coupling even though it is frequently used as if it were
in arguments about system design—instead, each approach represents a
decision to be made consciously when designing the software architecture
for solving specific problems [76, p. 919].

Intuitively, theWeb’s open and diverse nature as a global system of
systems with millions of stakeholders could be seen as an argument for
aiming for loose coupling when designing for theWeb. Alternatively, the
relatively loose coupling promoted by the architectural style of the web [76,
p. 919] can be seen as the reason for its success; suggesting that all software
developed to become part of the (Semantic) Web should also aim for loose

2.3 Successful Distributed Software Systems 43

coupling. Either way, the facets put forth by Pautasso andWilde [76] in their
analysis of loose coupling are relevant for this work because they can serve
both as a guideline during development as well as as criteria for evaluating
relevant concepts and the implemented software.

Figure 2.2 graphically summarizes the facets of coupling and the
possible extent of each facet. The facets are applicable to architectural
styles in general; to specific system architectures; and to the interaction
between two specific systems. A distinction is made between loose coupling
(closest to the center), design-specific coupling and tight coupling (farthest
from the center). The notion of ‘design-specific coupling’ allowsmeaningful
analyses of architectural styles or architectureswhich do not unambiguously
define the realization of a facet [76, p. 918]. For example, the architectural
style REST does not specify the granularity of exposed resources, meaning
that whether or not a specific RESTful implementation is tightly or loosely
coupled with respect to granularity cannot be said in general.

From figure 2.2 and the explanations by Pautasso andWilde [76] fol-
low requirements for the design and implementation of loosely coupled
systems. First, it must be possible for loosely coupled systems to discover
each other by referral instead of through a centralized registry. With regard
to the information model, the facet (data) model implies that messages must
not be serializations of a shared application-specific data model, but instead
documents that do not make any assumption about the receiver except that
it can read the serialization format. Furthermore, it is suggested that less
service interactions required to achieve a goal, facilitated bymore extensive
message contents, lead to more loose coupling (granularity). The facets
interaction, state and conversation further specify that loosely coupled sys-
tems must support the asynchronous exchange of stateless messages that
allow discovering the correct sequence of interactions in a conversation at
run-time. Stateless messages are messages for which the receiver does not
require knowledge about the history of prior interactions in order to un-
ambiguously interpret it. When coupling software systems (services), each
service has an internal representation of data and internal identifiers for
accessing specific entities and functionalities. In loosely coupled systems,
global names such as URIs are used for identification at the service interface;
and the binding from an internal representation of a functionality to its
specific implementation is done as late as possible. From the principle of
late binding follows that loosely coupled systems do not make use of static
code generation at design-time or of libraries that provide a programming
language-specific interface to an application programming interface (API)
instead of calling the API directly (interface orientation). With regard to evolu-
tion of their service interface, services that aim to be part of loosely coupled
systems take special care not to introduce breaking changes. Last, loosely
coupled systems are not required to run on the same platform, which could
be ensured by using the openly standardized technology of theWeb inmany
cases, but might be more difficult in cases where the individual systems are
either incapable of using this stack or unwilling to.

To conclude, if the realization of an application as a composition of several
systems can be seen as a source of faults threatening its maintainability

44 2. Fundamental Concepts

Discovery

Platform

Interaction

Data ModelGranularity

State

Evolution

Generated
Code

Conversation

referral

centralized

global

early; at design-time
/deployment

late; at
run-time

dependent independent

horizontal

vertical
self-descriptive
messages

shared
data model

fine

coarse

stateless

stateful

breakingcompatible

none/
dynamic

static; against
service descr.

reflective

registration
explicit;
ahead of time

Identification
/Naming

Binding

Interface Orientation

asynchronous

synchronous

Figure 2.2: Facets of Coupling in Systems of Systems

and availability (especially if parts of the resulting system of systems are
operated by others), an architecture realizing loose coupling can then be
seen as design choice aimed at minimizing the occurrence and implications
of these faults. One such architecture is that of theWeb—its architectural
style REST can be implemented such that loose coupling is fully supported
[76, p. 919].

2.3.2 The Web

From a technical point of view, theWeb is defined through three comple-
An excellent introduction
to the Web, adopting a
much broader point of
view, is freely available
through the slides of the
Web Fundamentals course
by Ruben Verborgh.

mentary technologies that constitute its software architecture: Uniform
Resource Identifiers (URIs) and Uniform Resource Locators (URLs); Hyper-
text Transfer Protocol (HTTP); and hypertext.

– A URI is “a compact sequence of characters that identifies an abstract
or physical resource” [9]. URL “refers to the subset of URIs that,
in addition to identifying a resource, provide a means of locating
the resource by describing its primary access mechanism (e.g., its
network ‘location’)” [9, section 1.1.3].

– HTTP is “a stateless application-level protocol for distributed, col-
laborative, hypertext information systems” [32], used for retrieving
representations of resources identified and located through URLs.

– Hypertext is understood as “the simultaneous presentation of inform-
ation and controls such that the information becomes the affordance
through which the user (or automaton) obtains choices and selects
actions. Hypermedia is just an expansion on what text means to

https://rubenverborgh.github.io/WebFundamentals/
https://rubenverborgh.github.io/WebFundamentals/
https://rubenverborgh.github.io/WebFundamentals/

2.3 Successful Distributed Software Systems 45

include temporal anchors within a media stream; most researchers
have dropped the distinction.” [31, comment 3].

Fielding, one of the authors of both the URI and HTTP specifications, ana-
lysed the architectural style underlying theWeb that, in combination with
its consequently open and collaborative nature, made its success possible.
He denoted it Representational State Transfer (REST) [30].

Representational State Transfer
▼ [94, section 1.2]
Technically, REST can
be realized using other
protocols such as Con-
strained Application Pro-
tocol (CoAP).

From a practical perspective, REST can be roughly summarized as follows
(see [118] for a detailed explanation): a service exposes a set of concep-
tual resources. These resources are identified and located by URLs. As a
reaction to the application of HTTP verbs (GET , POST , …), a representa-
tion of the resource (typically hypertext/hypermedia) is returned. Clients ▲
navigate between resources by selecting controls provided in the resource
representations.

REST applies to client-server systems, based on the idea that the result- ▼ [92, section 3.2]
ing separation of concerns facilitates scalability and longevity. The con-
straints characterizing REST concern the identification of resources, the
manipulation of resources through representations, the exchange of self-
descriptivemessages and the use of hypermedia as the engine of application
state (HATEOAS); they are intended to result in a uniform interface [118, sec-
tion 3.3]. ▲

▼ [92, section 3.2]
– Services adhering to REST give access to a set of resources that are
uniquely identified by URIs. Resources are unique conceptual en-
tities of the service interface; the semantics of a resource always
remains the same. Conceptual entities of the application domain are
mapped to resources when defining the service functionality. De-
pending on themeaning of a resource, it is possible that thismapping
changes over time. For example, a resource that represents the most
recent version of a virtual representation of a specific system may
point to differentmodel instances as the understanding of the system
and its parameters evolves.

– Interaction with resources occurs by using one of few predefined
methods on them, such as the verbs defined by the HTTP specifica-
tion. Applying anHTTP-verb to a resource results in a transaction of a
resource representation that is defined by themedia type or hypermedia
type agreed upon by the service participants through a mechanism ▲
called content negotiation [32, section 12]. Typically, browsers ask for
anHyperTextMarkupLanguage (HTML) representation of a resource
which they then render as a web page for humans (as originally in-
tended upon the invention of theWeb). However, many other media
types [32, section 8.3.1] exist. This enables supporting different needs,
such as providing HTML for humans and JSON-representations for
software [118, section 3.3.2].

– In REST-based services, all service interactions must be stateless:
in other words, it must be possible to determine the results of a

46 2. Fundamental Concepts

request solely based on the information contained within the request
message, resulting in an exchange of self-descriptive messages.
Stateless here refers to the application state, in other words the pro-
gress and history of the interaction between service consumer and
-provider. However, service interactions have an effect; this effect is
stored in the resource state [112, page 11].▼ [94, section 1.2]

– Last, it is an essential constraint of REST that the interaction between
user and service is driven by the selection of choices provided in
the resource representations [31], such as links and forms. This
constraint is calledHATEOAS, and humansmake use of this principle
successfully every day when browsing theWeb to achieve their goals
without first reading documentation on how to navigate a website.▲

The success of the Web and its age show that REST is indeed “software
design on the scale of decades: every detail is intended to promote software
longevity and independent evolution” [31, comment 8].

Web APIs

Application programming interfaces (APIs)—as their name suggests—are
both a specification for how software can use other software, and an offer
to do so. They are one of two ways to use software at all; the other being
user interfaces (UIs) for human users. APIs allow implementing high-level
functionality by composition while hiding low-level details (encapsulation).

Software use through APIs can occur locally, on the same computer
and operating system (OS), or remotely on a different computer connected
via a network such as the internet. Different approaches to designing such
remote APIs exist, resulting in different coupling characteristics [76]. When
using HTTP to communicate over the network, remote APIs are calledWeb
APIs [120, section 3.1].▼ [94, section 1.2]

Web APIs are often based on REST such that they expose resources of
which JSON-representations are transferred as reaction to HTTP requests,
but do not fully implement the REST constraints. Specifically, instead of
relying on HATEOAS, the possibilities to interact with a service are commu-
nicated through a static service interface description such as the OpenAPI
Specification (OAS). Programmers then construct requests specific to a
certain version of the API at design-time.

This is not RESTful because HATEOAS is an essential constraint in
the sense that if it is not realized, a system cannot be RESTful [31, 118, p.
243 f.]. It also does not support loose coupling because horizontal interface
orientation, a shared data model, breaking evolution, static code generation
and explicit conversation are promoted, which indicate tight coupling [76].

APIs for software clients that are accessible over the internet and fully
implement the REST constraints are called hypermedia APIs [117, section
3]. Frequently, REST-based HTTP-APIs are mislabelled as “RESTful” [80,▲
section 5.2], therefore the term hypermedia API is used to denote APIs that
realize all REST constraints, including HATEOAS.

Most websites adhere to REST, and humans successfully use links
and controls provided in HTML representations of resources to drive their

2.3 Successful Distributed Software Systems 47

application state every day. However, realizing HATEOAS for software cli-
ents is much harder to achieve. Humans are excellent at figuring out the

Websites can be seen as
hypermedia APIs with re-
source representations
tailored to humans; in-
versely, hypermedia APIs
can be seen as websites for
software agents.

meaning of controls and their potential role in achieving a goal based on
natural language, context, and experience. Software clients are not; but
they can process data at a much higher speed. This leads to the idea of the
SemanticWeb.

2.3.3 The Semantic Web

The core idea of the Semantic Web is to be explicit about the meaning of
entities, including links, in order to improve the accessibility of content to
intelligent software agents [37]. Intelligent software agents are defined as “a
computerised entity that: is able to reason (rational/cognitive), to make
its own decisions independently (autonomous), to collaborate with other
agents when necessary (social), to perceive the context in which it operates
and react to it appropriately (reactive), and finally, to take action in order to
achieve its goals (proactive)” by Cardoso and Ferrando [16]. Consequently,
the idea of the SemanticWeb raises the questions of how to make the mean-
ing of data explicit; and how to enable the creation of intelligent software
agents that use this data to achieve their goals.

In the 2001 article that presented the vision for the Semantic Web,
it was made clear that the SemanticWeb is meant to be a part of theWeb;
consequently, URIs are used to identify things and HTTP is used to transfer

“The Semantic Web is not
a separate Web but an
extension of the current
one, in which information
is given well-defined
meaning, better enabling
computers and people
to work in cooperation.”
[10, p. 37]

representations of resources.
However, HTML is not designed to encode semantics and facilitate

processing by software, and thus not useful for resource representations
in the SemanticWeb. Instead, based on the fact that links relate sources to
targets, RDF as a data model that relates subject nodes to object nodes via
predicates, was developed. Subjects and predicates in RDF are URIs; objects
are URIs or literals (ignoring blank nodes for simplicity). Serializations
of RDF such as Turtle, TriG or JSON-based Serialization for Linked Data
(JSON-LD) are used for representations of resources.

RDF and its serializations are the first building blocks of the Semantic
Web from a technical perspective; they are complemented by RDFS and
OWL for building ontologies; SPARQL for querying RDF graphs; and the
(rarely adopted [42, p. 79]) Rule Interchange Format (RIF). All of these are
developed and standardized by the WorldWideWeb Consortium (W3C).

With ontologies defined using RDFS and OWL, and RDF and its seri-
alization formats to represent both ontological knowledge and specific data,
the question of how to design interfaces to RDF datasets that facilitate the
creation of intelligent agents remains. Options include SPARQL endpoints;

Linked Data documents
contain triples in which an
entity is either the subject
or the object.

Web APIs; Triple Pattern Fragments (TPFs) (discussed in section 5.2.1);
Linked Data documents; and data dumps [120, section 3].

In this thesis, a hypermedia API that uses serializations of the RDF
data model for its resource representations is used. It is a REST-compliant
service in the SemanticWeb. The expressivity of its interface lies between
that of a SPARQL endpoint and a data dump; but, importantly (and in con-
trast to Linked Data documents and Triple Pattern Fragment (TPF)), it is not
restricted to read-only access as all HTTP methods can theoretically be sup-

48 2. Fundamental Concepts

ported. Details on why this approach was chosen; on how software agents
are enabled to choose between controls in the resource representations;
and on how it was implemented are given in section 4.2, section 5.2.3 and
section 5.3, respectively.

Review articles on the history and state of the Semantic Web detail ap-
plication areas, research topics and -methodologies, and achievements of
the SemanticWeb community; also, it is noted that the SemanticWeb has
become an established field of research [37, 42]. With regard to future devel-
opments, Hitzler [42, page 83] states “one of the key quests is about finding
out how to piece together contributions […] in order to provide applicable
solutions”; while Verborgh and Vander Sande [116, section 8] more spe-
cifically urge to re-focus research efforts on theWeb aspect, in other words
distributed semantics and “a lot of small data sets instead of a few large ones,
and […] heterogeneity instead of homogeneity”.

Kirrane details her analysis
of obstacles to the imple-
mentation of intelligent
agents using the Semantic
Web in [48], summarizing
requirements and core
architectural components
as well as literature on
Semantic Web agents and
their potentials. While very
interesting, the article is far
beyond the scope of this
thesis.

With regard to intelligent software agents, Kirrane and Decker [49]
point out that even though intelligent agents always were part of the Se-
manticWeb vision, there are still significant open research challenges from
a data management perspective, from an application perspective and from
a best practices perspective. The authors call for basing the development of
intelligent agents on the FAIR principles since they see a “strong connection
between said principles and SemanticWeb technologies and Linked Data
principles” [49, p.3].

2.4 Relevant Aspects of Software Engineering

The purpose of the software implemented as part of this thesis is—first
and foremost—to demonstrate the feasibility of the ideas; but also to aid
in understanding them. With regard to the expected quality, the software
should be seen as a proof of concept. Nonetheless, it is a goal to align the
implementation with the current state of technology and thereby ensure
that, if the software were to be used in production systems, there are no
design choices that contradict achieving expected characteristics.

Software that realizes today’s expected non-functional characteristics
forWeb APIs is known as a cloud-native application (CNA); entailing that
the software is provided as a service.

This section defines the core terms to describe service-orientation, an ar-
chitectural style for structuring complex distributed applications in a way
that is manageable and scalable; and introduces the key ideas followed to
ensure that the developed M&S hypermedia API is a CNA.

▼ [94, section 3.1]
Service-oriented Architecture (SOA)

Service-oriented architecture is a “paradigm for organizing and utiliz-
ing distributed capabilities that may be under the control of different
ownership domains” [75, line 128 f.]. Services are seen as “the mech-
anism by which needs and capabilities are brought together” [75, line
174]; in other words, a service describes the capability, the specific-
ation and an offer to perform work for someone. service-oriented

2.4 Relevant Aspects of Software Engineering 49

architectures (SOAs) are seen as a way of structuring and offering
functionality that promotes reuse, growth and interoperability [75,
line 175] by focusing on tasks and business functions and acknow-
ledging the existence of ownership boundaries.
The OASIS Reference Model for Service Oriented Architecture [75]
is intended to provide a foundation for analysing and developing
specific SOAs by giving definitions, explanations and examples of
relevant aspects in a technology-independentmanner. The reference
model identifies six major concepts pertaining to services: visibility,
service description, interaction, contracts and policies, real-world
effect and execution context. Achieving a real-world effect, which can
either be the retrieval of information or changes to the shared state
(the knowledge that service provider and service consumer share),
is the reason for using a service. Using a service means interacting
with it through the service interface, typically by exchanging mes-
sages. The specifics of how to interact with a service are detailed
in the service description. Interaction is only possible iff the service
is visible to consumers. Visibility comprises awareness, willingness
and reachability. Assuming that potential consumers are aware of
the service’s existence, reachability is defined by the execution context
(the “set of infrastructure elements [...] that forms a path between
those with needs and those with capabilities” [75, line 720 ff.]). Will-
ingness to interact is governed by the contracts agreed upon by the
service participants and/or the policies enforced by policy owners. ▲
From a more practical point of view, the microservice architectural
style has been found helpful to implement scalable solutions. It is
defined as “an approach to developing a single application as a suite of
small services, each running in its own process and communicating
with lightweightmechanisms, often anHTTP resourceAPI” by Fowler
and Lewis [35]. The authors further point out that “these services are
built around business capabilities and independently deployable by
fully automated deployment machinery. There is a bare minimum
of centralized management of these services, which may be written
in different programming languages and use different data storage
technologies”.

In this thesis, the terms
service andmicroservice
are used interchangeably,
in the sense explained in
detail in [35].

Central to (micro-)services is the definition of the service interface
because it is the only means by which a consumer interacts with the
service. The REST constraints can be seen as guiding constraints
to create interfaces that support loose coupling, keeping longevity
in mind; and SOA can be seen as a way for the service provider to
structure applications such that they are scalable and maintainable.

▼ [93, section 1]
Cloud Computing

The term cloud computing denotes a set of desirable characteristics
for accessing a set of computing resources over the internet, as well
as characteristic service models and deployment models [62]. From
a user’s point of view, the essential characteristics are that software
or computing resources are available as a service via the internet,
meaning that the resources are readily available without the need

50 2. Fundamental Concepts

for manual installation of hardware and/or software. Consumers can
use services without the need for human activity on the side of the
provider (on-demand self-service), often without apparent limitations,
and they have access to metrics for their service usage (measured
service). Users are billed according to service usage in terms of these
metrics (pays-as-you-go cost model).▲
In alignment with the defining characteristics of cloud computing,
Kratzke and Quint [52] propose the following definition for CNAs: “A
CNA is a distributed, elastic and horizontal scalable system composed
of (micro)services which isolates state in a minimum of stateful com-
ponents. The application and each self-contained deployment unit
of that application is designed according to cloud-focused design
patterns and operated on a self-service elastic platform”.

DevOps
This definition of CNAs contains aspects pertaining to their software
development and -operations (DevOps): cloud-focused design patterns;
self-contained deployment units; and deployment on elastic platforms.
DevOps is “a collaborative and multidisciplinary effort within an or-
ganization to automate continuous delivery of new software versions,
while guaranteeing their correctness and reliability” [29]. Central
ideas of DevOps are that the people who develop software, should
also run it in production to facilitate software maintenance; and that
testing, building and deploying software should be automated to
facilitate frequent software updates (continuous integration/continu-
ous deployment (CI/CD)). Core technical aspects/phases of DevOps
include source code management; the build process; continuous
integration; deployment automation; monitoring and logging; and
knowledge sharing among relevant actors [29, table 4]. Details on the
DevOps process for developing software as part of this thesis can be
found in section 5.3.3.
A specific set of cloud-focused design patterns used in this work are
known as the “twelve-factor app” methodology [123]. The twelve
factors are best practices for providing Software as a Service (SaaS),
synthesized from experience. Nine of the factors are about details
of software development; whereas three factors concern themselves
with build processes and -environments as well as admin processes.
They are independent of any specific software or programming lan-
guages, but nonetheless very useful when implementing cloud ser-
vices. Examples include using exactly one version-controlled code-
base; explicitly declaring dependencies; storing configuration in the
environment; and exposing services via port binding.
As self-contained deployment units, containers1 are typically used.
Container images bundle the application code and all of its depend-
encies; thereby, they are guaranteed to run on any computer which
features a matching container engine, while being less resource-
intensive than virtual machines, but still providing isolation from

1 https://www.docker.com/resources/what-container/

https://www.docker.com/resources/what-container/

2.4 Relevant Aspects of Software Engineering 51

other software running on the server, thus enabling better resource
utilization.

Containers can be seen as
the common denominator
for deploying software on
cloud infrastructure.

Containers also form the basic building block for deploying applica-
tions on clustered elastic platforms such as Kubernetes1, which allow
scaling the available computing power beyond the capabilities of a
single machine.

1 https://kubernetes.io/docs/concepts/overview/

https://kubernetes.io/docs/concepts/overview/

53

3. Models, Simulations, and the Web

Currently, factors that prevent amore widespread use ofmodelling and sim- ▼ [92, section 2]
ulation amongst engineers include a lack of knowledge regarding concepts,
modelling languages, algorithms and tools, the cost of tools andmodel librar-
ies as well as problems with the usability of user interfaces and data formats.
Also, current M&S environments are not designed to be used as part of a
larger process. Factors preventing the general public from using model-
ling and simulation include missing awareness of its capabilities, missing
background knowledge, missing feeling for the steps required to arrive at a
solution and the challenge of using complex M&S software environments.

Modelling and Simulation as a Service (MSaaS) is an umbrella term
for efforts attempting to address the aforementioned issues by combining
the concepts and tools of SOA and cloud computing with the functional-
ity of M&S. Thereby, it is hoped to help a wide audience make informed
decisions when confronted with complex questions: the various methods,
languages and tools summarized under the term modelling and simulation
allow finding quantitative information about the behaviour of a system by
numerically approximating the behaviour of a virtual representation of that
system; SOA and cloud computing allow users to access this capability over
the internet. Different acronyms are sometimes used to point out the focus ▲
of an implementation in the context of MSaaS; for example, Simulation
as a Service (SIMaaS) is used to emphasize that the service is more about
simulation than it is about models or modelling. ▼ [94, section 2.1]

Similar to the aforementioned idea of combining M&S with theWeb,
there have been attempts to combine ideas and tools resulting from research
on the SemanticWebwith those ofM&S for almost as long as the vision of the
SemanticWeb exists. Many authors have focused on the use of ontologies for
improving and supporting MBSE. Applications range from general process
support aimed at better integrating knowledge from different sources, over
working on the question of interoperability and composability of models, to
model generation based on ontological system descriptions. Fewer work
has been published on the use of hypermedia APIs in conjunction withM&S.

▲

In this chapter, the literature on Modelling and Simulation as a Service, the
use of ontologies for MBSE, and the use of hypermedia APIs in conjunction
with M&S is summarized to the extent it relates to the ideas investigated in
this thesis. At the end of the chapter, a list of research gaps is formulated.

3.1 Modelling and Simulation as a Service (MSaaS)

MSaaS is defined as a “means of delivering value to customers to enable or ▼ [92, section 2]

54 3. Models, Simulations, and the Web

support modelling and simulation (M&S) user applications and capabilities
as well as to provide associated data on demand without the ownership of
specific costs and risks” by the specialist teamMSG-131 at North Atlantic
Treaty Organization (NATO) [70]. Cayirci [19] sees MSaaS as a “model for
provisioning modelling and simulation (M&S) services on demand from a
cloud service provider (CSP), which keeps the underlying infrastructure,
platform and software requirements/details hidden from the users”, which
aligns well with the previous definition but highlights the use of cloud com-
puting technologies. This aspect is important for distinguishing the current
research activities from earlier attempts, summarized under the termWeb
Based Simulation (WBS), as retraced byWang andWainer [121, section 2].
Consequently, MSaaS is one form of SaaS [19, 58] that “inherits” the general
benefits and challenges of cloud computing, but also offers opportunities
peculiar to the field of M&S.

The proposed value of MSaaS [19, 70, section 2.6] lies in an increase
in usability and functionality on the one hand and a possible decrease in
costs on the other hand. Increased usability and functionality are expected
to stem from better accessibility of M&S resources, their reuse for reprodu-
cing results and the creation of new functionality through composition of
resources:

– The accessibility ofM&S resources is increased throughbroadnetwork
access that allows on-demand self-service while having very light
requirements on the client (hardware, OS, software).

– Accessible resources that hide their complexity and implementation
from the user (encapsulation) make the reuse of knowledge possible,
for example the provision of product models by companies.

– Also, providing an interface to an operational simulation environ-
ment can enhance the credibility of a simulation study by ensuring
its replayability and makes sure that a user can always access the
latest version of the software.

– Implementing new functionality by composition of services is facil-
itated by provisioning M&S resources as a service. Composition
can reduce the time and effort needed for implementation and ex-
tend the scope of M&S resources by using them in conjunction with
functionality that is not normally available in an M&S environment.
Moreover, an increased value of M&S resources could stem from new
use cases (UCs) and target audiences for M&S technology. One ex-
ample of added value through composition of services is using M&S
functionality from within online training and learning resources: by
accessing M&S services in the background, learning resources are
enriched by the possibility to interact with simulations [103].

A decrease in costs can be achieved by measuring the service usage, which
allows pay-per-use options, by scaling the infrastructure according to de-
mand and by increasing the degree of capacity utilization through resource
pooling. Furthermore, the service consumer does not need to invest in
hardware, software and personnel, which could increase the willingness of
companies to try to integrate M&S into their workflow.

3.1 Modelling and Simulation as a Service (MSaaS) 55

Researchers have worked on combining M&S with web technologies for
more than 20 years by imagineering the possibilities [33, 58], proposing
architectures for implementation [22, 128, 79, 89], pondering risk, trust
and accountability [18] and investigating the composability of M&S services
[106, 109]. In section 4 of the article “‘Grand challenges for modeling and ▲
simulation: simulation everywhere—from cyberinfrastructure to clouds
to citizens’” published in 2015, Tolk analyses the technical and conceptual
requirements for cloud-based M&S from a high-level perspective. The

“ To capture the conceptu-
alization underlying the
simulation system and
make them accessible to
ensure composable M&S
services in a cloud is one of
the grand challenges that
needs to be addressed […]”
[101]

technical requirements are seen as challenging, but manageable using ap-
proaches established in the context of systems engineering (SE) and software
engineering [101, section 4.2]. In contrast, the composability (consistent rep-
resentation of truth) of M&S services is seen as an open research problem
which is unique to MSaaS (meaning that MSaaS is not just an instance of
Software as a Service, but a distinct direction of research). Both methodolo-
gical and conceptual metadata (compare section 2.2.2) are seen as required
to enable composability; but overall, creating composable M&S services is
put forward as an unsolved grand challenge of M&S.

As for the technical challenges of realizing cloud-based M&S, three re- ▼ [93, section 2]
cent reviews on MSaaS outline the design space and identify high-level
requirements and architectural choices that should guide the design and
implementation of specific MSaaS solutions.

First, Shahin, Babar and Chauhan map out the architecture design
space (ADS) for MSaaS by presenting the results of a systematic literature
review (SLR) performed with the aim to identify and describe the state
of the art [88]. They categorize the primary studies considered according
to different criteria such as the architectural style, the main drivers for
architectural decisions, and quality attributes. Additionally, they ponder
the implications of the chosen architectures and identify strengths and
weaknesses. The authors conclude that MSaaS-realizations most often use
a layered approach to build applications; that containerization is employed
to improve deployability; and that effective interfaces for end users that hide
complexity and technicalities motivate their development [88, section 5].

Second, Hannay et al. [40] reason about the infrastructure capabilities
they deem necessary for realizing entire MSaaS ecosystems at scale. Based
on “a systematization of concepts from ongoing deliberations onMSaaS” [40,
section 3], the authors first review the service concepts of the NATOMSaaS
reference architecture [39] and then elaborate on the functionality required
for realizing MSaaS ecosystems. Their reasoning is structured around the
themes data management, service description and -discovery, composition and
interoperability and the management of different components. The findings
are mostly conceptual in nature, useful for verbalizing and contextualizing
design questions and -decisions when faced with implementing specific
SOAs containing M&S capabilities. The authors also note that solutions for
supporting, yet—from an operational perspective—highly relevant function-
ality such as logging, metering and monitoring are readily available.

Third, Kratzke and Siegfried [53] focus on the consequences expected
from leveraging the cloud for M&S services. Using their work on and defini-
tion of CNAs [52] as a basis, they propose a definition for what cloud-native

56 3. Models, Simulations, and the Web

simulations (CNSs) are in terms of a textual definition [53, section 4.3], a
cloud-native simulation stack and a cloud simulation maturity model. They
summarize the software engineering trends in cloud computing as the evol-
ution of deployment strategies to maximize resource utilization (smaller
deployment units, elasticity); the use of microservices as an architectural
style that supports the aforementioned; and the emergence of microservice
engineering ecosystem components for container orchestration, monitor-
ing, et cetera. The authors conclude that the same trends are to be expected
for CNS architectures and that, like CNAs in general, CNSs should strive to
isolate state in a minimum of stateful components.▲

As stated in section 1.2, the work presented in this thesis focuses on mod-
els and simulations as understood in the context of the equation-based,
object-oriented modelling language (EOOL) Modelica and the FMI stand-
ard. Consequently, previous work on providing MSaaS in the Modelica
community is summarized next.▼ [93, section 5.1]

Tiller [102] motivates the use of web technologies for the design of
engineering tools in general, detailing potential benefits for non-expert
users. The FMQ platform and its HTML5-based interface for human users
are outlined; the use of a hypermedia API as the backend of theFMQ platform
is hinted at, but no details are given. The FMQ platform also uses FMUs as
an executable form of a single model to be simulated using a single solver.
It is a proprietary product of Xogeny, Inc.

In their 2017 presentation of the modelica.university platform,
Tiller andWinkler [103] motivate the high-level requirements for and archi-
tecture of the Aperion platform by Xogeny, Inc (presumably the successor
of the FMQ platform) in addition to presenting the modelica.university
website itself. With regard to concepts and the chosen technology stack, the
Aperion platform seems to be very similar to the work presented in this
paper, but it is a commercial product and specifics are consequently not
available publicly. This also applies to the use of truly RESTful technologies
such as hypermedia representations and generic software clients that use
them.

Bittner, Oelsner and Neidhold [12] outline work on a web application
based on FMI 1.0 for co-simulation. Compared at a high level, the applica-
tion’s architecture is similar to what is presented in section 5.3.1 as there
is also at least a conceptual separation between API, storage, simulation
components and front-end. The provided UI directly supports ranges for
setting parameter values and seems to be intended for use by engineers.
Details or source code are not readily available.

FMIGo!1 is a set of software tools for executing several coupled FMUs
over the internet. It is described in a paper by Lacoursière and Härdin [55]
and available2 under the MIT licence. In contrast to the concepts of the
MSaaS-implementation explained in section 5.2 and the design concepts of
the FMQ platform, FMIGo! choses not to make use of the design principles
of the web (REST) and instead expose the capabilites of FMI withouth fur-
ther abstraction through the use of (low-level) message passing protocols.

1 https://www.fmigo.net
2 https://mimmi.math.umu.se/cosimulation/fmigo

https://www.fmigo.net
https://mimmi.math.umu.se/cosimulation/fmigo

3.2 Ontologies and Model-based Systems Engineering 57

Lacking the simplification of seeing an FMU as nothing but an executable
formof onemodel with one solver, FMIGo! allows/demands chosingmaster
algorithms for co-simulation and exposes necessary numerical details; but
this clearly makes it a specialized tool for simulation experts.

Elmqvist, Malmheden and Andreasson [28] present the Web Archi-
tecture for Modelling and Simulation (WAMS) in terms of several use cases,
the corresponding web application aimed at engineers with training inM&S
and a very brief overview of its software architecture. FMUs are used for
simulation using PyFMI and it is claimed that a REST API is used for expos-
ing capabilities of the server, but the extent to which the REST constraints
are realized remains unclear. It appears that WAMS is an internal project of
Modelon AB.

Since version 0.2.25 (released in November 2020), FMPy features the
possibility to expose the UI of FMPy including the ability to simulate FMUs
as a web application. Consequently, this approach falls in line with the
WAMS web application, also intended to be used by engineers, and thus
caters to use cases different to those that motivate the work presented in
this thesis. ▲

3.2 Ontologies andModel-basedSystemsEngineering

Successful applications of ontologies in conjunction with M&S have been ▼ [94, section 2.1]
reported in three main categories:

Support for Model-based Systems Engineering
There is data that is essential to theMBSE process, but not a model or
simulation per se, such as requirements, changes, and configurations.
This data is the focus of the OASIS Open Services for Lifecycle Collab-
oration (OSLC) specifications. OSLC aims to “enable integration of
federated, shared information across tools that support different, but
related domains” [72, sec. 2]. Technically, OSLC is based on the W3C
recommendation Linked Data Platform (LDP) and consequently the
exchange of RDF resource representations over HTTP. A core spe-
cification defining features of compliant interfaces is complemented
by application-specific specifications; currently, the specifications
for the query language used, requirements management and change
management were published as OASIS standards1. There is no spe-
cification directly targeting M&S. In contrast to the work presented
in this paper, which emphasizes support for generic software agents,
OSLC has a strong focus on human end-users, as for example shown
through the ‘resource preview’ [73] and ‘delegated dialogues’ [74]
features.
El-khoury [47] reviews the adoption of OSLC in commercial software
packages and summarizes the functionality as well as the envisioned
consequences of the chosen software architecture from a practical
perspective. The author concludes that the software architecture
of OSLC allows for scalable, decentralized solutions in a heterogen-

1 https://open-services.net/specifications

https://open-services.net/specifications

58 3. Models, Simulations, and the Web

eous environment that changes with time by adhering to the REST
constraints and using RDF as a data model that relies on interlink-
ing entities and communicates their semantics without requiring
adherence to a fixed schema of supported data fields [47, p. 25 f.].
Consequently, OSLC is seen as useful for tracing lifecycle information
such as requirements across applications. The creation of the links
that encode this trace, facilitated through delegated dialogues and
resource preview, is identified as the most commonly implemented
functionality [47, tbl. 7, p. 25].
König et al. [50] present a proof of concept-implementation that al-
lows tracing virtual test results over simulation results and models
back to the requirements which are evaluated through the virtual
tests. The solution is based on OSLC and traceability information is
sent from the different applications used to an OSLC server (denoted
as daemon) via HTTP, but all applications including the daemon run
locally only. The traceability information is mostly created automat-
ically and stored in RDF in a graph database against which queries
in the database-specific query language can be evaluated. Mechan-
isms for including traceability information provided by others are
provided during startup of an instance running locally. Furthermore,
some information can be extracted from git history for tools which
store their state in textual form. It is concluded that the approach is
well-suited for projects that require documentation of links between
MBSE artefacts, as for example in safety-critical applications [50, p.
176].

Interoperability and Composability
Hofmann et al. anticipate that “for many technical domains and arti-
ficial systems, ontologies will be able to ensure the interoperability
of simulation components developed for a similar purpose under
a consensual point of view of the world” [44, p. 142], but point out
that difficulties are expected for non-technical systems. Axelsson [5]
relates each of the LCIM levels to the SemanticWeb technology stack
with a special focus on the RDF data model, gives specific examples
and also concludes that RDF is suited to resolve interoperability prob-
lems.
The use of ontologies to improve the MBSE process with a focus
on enforcing consistent views on a product among its developers
is investigated in detail by Tudorache [110]. The work is based on
the observation that the different syntaxes involved; the different
views on a product and its semantics; and the lack of formal model
transformations between different modelling formalisms lead to a
risk for inconsistencies and misunderstandings, and makes tracing
changes as well as the algorithmic, combined use of models in sev-
eral formalisms difficult. Tudorache provides a formal definition
of ‘consistency’; defines ontologies that enable encoding different
views on a system based on high-level patterns in system design
(part-whole relations, connections, constraints, …); and provides a
framework for consolidating viewpoints as well as an algorithm that

3.3 Hypermedia APIs and M&S 59

evaluates their consistency. It is concluded that the use of ontologies
can lead to higher quality models and a better MBSE process. How-
ever, challenges are expected when introducing the use of ontologies
at scale.

Ontology-driven Modelling
denotes the idea of first using referential ontologies to describe the
logical structure and component functionality of a system and then
inferring the simulation topology as a composition of component
models via reasoning. For this, domain concepts are mapped to their
representation in amodel, which are described usingmethodological
ontologies.
For example, Mitterhofer et al. [64] create a system model from a
system description that encodes project-specific information using
an appropriate ontology in the context of building performance sim-
ulation (BPS). This is enabled by annotating the component models
with model-specific and domain-specific information and then using
a reasoner to infer connections betweenmodels. Wiens et al. present
similar work for creating digital twins of wind turbines as an example
of large, modular multi-domain systems [122]. Both base their imple-
mentations on FMI as the format for the component models and the
System Structure and Parameterization (SSP) standard [67] for the
specification of the topology, in other words the connections between
the FMUs. Neither details how the KGs used are populated and to
which extent the triples are derived automatically; and both describe
a local, non-distributed process. The approach is seen as promising
in both publications.

However, there are limitations to the usefulness of ontologies in general.
First, Hofmann, Palii and Mihelcic [44, pp. 139–141] point out that any
language is insufficient for representing reality, and that the meaning of
relations cannot always be grounded in logic. Second, the descriptive and
normative nature of ontologies need to be balanced, which is expected to
be especially difficult for non-technical systems [44, p. 144 f.]. Third, the
value of using ontologies depends in part on their adoption in the M&S
community—the more ontologies are used, reused and interlinked, the
more useful they can become [108, p. 134]. ▲

3.3 Hypermedia APIs and M&S

As for the use of hypermedia APIs for exposing, querying and using M&S ▼ [94, section 2.2]
capabilities, only a few lines of work were found.

First, Bell et al. [8] motivate the use of a methodological ontology
combined with referential ontologies to discover and retrieve models from
distributed sources for local aggregation and simulation in standard simula-
tion environments. They summarize their reasoning and implementation
process using the discrete-event-based simulation of a supply chain as an
example. A KG is built—using the Discrete-eventModeling Ontology (DeMO)
[90] as the methodological ontology and an application-specific referential
ontology—which is then used for answering instance retrieval queries in a

60 3. Models, Simulations, and the Web

way that both exact matches and, through reasoning, possible alternatives
are returned. The results are links tomodels which can then be downloaded
for inspection or use in a local simulation. The developed framework con-
sists of several services, but is ultimately used by humans; generic software
agents are only mentioned in the “related work”-section.

Second, Tiller andWinkler outline the motivation for and use of a
hypermedia API to build a framework acting as a “content-management
system for scientific and engineering content” [103]. However, details about
the implementation, source code or insight into the observed benefits and/or
drawbacks of using a hypermedia API over a plainWeb API are not available
publicly.▲

3.4 Research Gap

In chapter 2 and the previous sections of this chapter, both the broad con-
cepts and specific publications related to thisworkwere surveyed to properly
ground this thesis within previous work in the scientific community. Be-
low, the research gaps identified while reviewing relevant publications are
stated.

– SemanticWeb concepts and -technologies were mostly combined
with M&S with the focus on using ontologies to describe models,
not on providing models and simulations as part of the Semantic
Web.

– Only a few of the papers found discussed using ontologies for im-
proving the findability of models in a distributed setting.

– It is not clear from the publications on ontology-driven modelling
using FMUs [64, 122] in how far the representations of FMUs in RDF
are generated automatically. No open-source software or ontolo-
gies were published and only local, not distributed, processes were
described.

– No open-source parsers or ontologies for creating representations
of FMUs in RDF were found.

– No explicit consideration of the FAIRness for M&S entities and cap-
abilities in the context of dynamic system simulation usingModelica
and/or FMI was found. The goals of providing MSaaS are in fact sim-
ilar to those of the FAIR principles, but to the best of our knowledge,
the principles have not been applied to M&S resources and capabilit-
ies in the Modelica/FMI community.

– Nowork that explicitlymakes loose coupling adesigngoal forprovid-
ingMSaaSwas found. The exception is [103], but the paper only hints
at this aspect and discusses the developed solution from a practical,
less conceptual perspective.

– No discussion of the consequences of fully realizing the REST con-
straints for providing MSaaS was found. Bell et al. [8] and Tiller and
Winkler [103] describe applications that involve hypermedia APIs for
accessing M&S entities. However, advantages or disadvantages of

3.4 Research Gap 61

their use are not discussed in detail and no open-source software is
available.

– No studies on the use of generic agents for achieving tasks involving
M&S were found.

– No applications of the Pragmatic Proof Algorithm (PPA) beyond the
examples discussed in the publications presenting it were found.

– The original version of the PPA is unable to reliably account for
requirements on requests that only become known at run-time.

To summarize, there are promising results on using ontologies forMBSE and
on exposing M&S resources and capabilities as a service, but the potential
of using hypermedia APIs for exposing M&S functionality in a FAIR and
loosely coupled manner has not been explored in detail yet.

63

4. Thesis Concept and -Hypotheses

In general, the resources (source code, data) and capabilities (solver, soft-
ware, expertise) required to solve tasks in a MBSE context are distributed
bothwith respect to their ownership by organizations or organizational units
and their physical location. For example, resources could be models, para-
meter sets, input data, simulation results, system properties, and data sets
for evaluation as well as requirements for and changes to the task at hand.
Activities involving the use of these resources include the instantiation and
simulation of a model, querying for specific information or retracing the
role of resources and activities in the overall MBSE process. Model, para-
meter set and the ability to run simulations could be owned by a supplier of
components, whereas another company is using the results of simulations
of the componentmodel with their own input data in amodel-based process
to evaluate the fitness of a design for a given purpose.

For a specific instance of such a problem, it would be a straightfor-
ward, in other words a matter of “just programming”, to implement some
mechanism that allows the stakeholders to share the necessary resources
and activities. However, an application-specific solution is unlikely to have
a value beyond its original purpose.

Therefore, it is aimed at providing a reusable building block for SOAs
that acknowledges that the consumers of a service and their intentions
are in general unknown. The concept for this building block is to address
core issues that hinder reusability of M&S resources and capabilities and
to aim for desirable characteristics that support it, which are presented in
the following subsection. Next, approaches that might be suitable, but have
not been explored in detail yet, are identified. Then, hypotheses for the
resulting characteristics of their combined application to providing M&S
capabilities in a distributed system are formulated.

4.1 Issues and Desirables

Based on my understanding of howmodels are created and used to solve
tasks, I see three issues that unnecessarily complicate or even prevent their
reuse—both the intentional and the serendipitous reuse—and thus limit their
value: knowledge that is inaccessible; a lack of Findability, Accessibility,
Interoperability, Reusability (FAIRness) and machine-actionability; and the
heterogeneity of interfaces when exposed as a service.

Lack of FAIRness
Even if models are interoperable because they are implemented in
the same modelling language, finding, accessing and reusing them is
challenging in practice, even for humans.

64 4. Thesis Concept and -Hypotheses

For example, searching for models to reuse is typically a manual,
time-consuming process. When using Modelica, models are organ-
ized in libraries. There is a search engine1 [104] and a manually
maintained list of libraries2 that can be used for searching libraries
which might contain a certain model, but the search is limited to
the exact words used in the title and description of the library (for
example, searching for “PV” returns two libraries, whereas search-
ing for “photovoltaic” returns five). Then, one needs to manually go
through the libraries and look for models based on the model name
and its documentation. In other words, searching formodels is based
on their syntax and implicit or non-structured data. Searching for
models based on their semantics would facilitate the process. The
current best practice for accessingmodels written inModelica is that
they are hosted in a git-repository which is then manually installed
by cloning. Reuse is often facilitated by supplying a licence for the
repository.

Interface Heterogeneity
Heterogeneous interfaces that are not self-explanatory for software
agents may not be a problem per se, but it means that programmers
are required to create or change client applications every time there is
a change in the service interface or anewservice interfaceneeds to be
used. Therefore, using many interfaces could become prohibitively
expensive.
Models and simulations exposed through a non-self-explanatory API
essentially result in a different interface for every model, model instance
and simulation because each model exposes different parameters,
inputs, outputs, and other settings.
It might be possible to find a very abstract interface that is the same
for every model; but this would likely require more external docu-
mentation and complicate the implementation of the API, among
other reasons because implementing input validation becomes la-
borious. Therefore, an interface that is too abstract is undesirable.

Inaccessible Knowledge
Knowledge about models that is not implemented as the model equa-
tions themselves is typically only accessible to a certain degree (usu-
ally lower rather than higher). Reasons for this include that docu-
mentation is only available in natural language; that the documenta-
tion is not directly part of the model and can therefore get separated
from it; that it is only documented partially; et cetera.
Examples for the type of knowledge that often only exists in theminds
of those who originally created the model include knowledge about
the model’s experimental frame, in other words the conditions for
which a model returns valid results; knowledge about the achieved
accuracy; about data and results used for validation; the origin of
model equations, default values and lookup tables; successful or
unsuccessful uses of the model; how to test for regression; and more.

1 https://impact.github.io/
2 https://modelica.org/libraries/

https://impact.github.io/
https://modelica.org/libraries/

4.1 Issues and Desirables 65

In addition to these core issues, I see desirable functional andnon-functional
characteristics that a solution providing access to M&S resources and cap-
abilities in a distributed setting should exhibit.

Querying
Having the ability to query available resources on a semantic level,
in other words by the meaning and interrelations of entities, directly
improves findability and traceability.

Reasoning
The ability to reason about available data has several advantages:

– it allows filling knowledge gaps—this is crucial because it does
not make sense to explicitly add every possible triple when
creating an RDF representation of something;

– it improves querying because more query formulations lead
to results; and

– it adds functionality such as determining whether two models
are composable.

Traceability
The ability to reliably and explicitly connect M&S entities to require-
ments; changes; and provenance data as well as the ability to retrace
the origin of some piece of data are useful for creating reliable sys-
tems in general. Moreover, building trust into information found is
facilitated by enabling subsequent querying for provenance inform-
ation describing this information. Therefore, traceability is often
required in safety-critical applications.

Declarative Problem Formulation
A declarative problem formulation, in other words the ability to de-
scribe the task to be solved in a way that is independent of how it is
solved, is desirable. The reasons for this are that such separation
between problem formulation and the applied algorithm accelerates
finding solutions and eliminates a source of errors (users do not need
to know anything about the specifics of a solver). It also allows exper-
imenting with different solvers (some solvers might perform better
than others).

Loose Coupling
The devised software is intended to be used in a distributed setting
without a centralized authority that can enforce an interface to be
used. Moreover, it is intended to be used by consumers that are un-
known at design-time for purposes that are also unknown. Therefore,
it is desirable that the software supports its use in loosely coupled
systems of systems (compare section 2.3.1).

State of the Art
From a non-functional perspective, the implementation should rep-
resent the state-of-the-art for servicesmade available via the internet.
This includes the defining characteristics of cloud computing (on-
demand self-service, horizontal scalability, …; see section 2.4) and
the use of a modern, adequate technology stack.

66 4. Thesis Concept and -Hypotheses

4.2 High-level Design Choices

Seen from an abstract perspective, it is the hypothesis of this thesis that a
specific set of high-level design choices is suitable to address the issues outlined
in the previous section, such that the desired characteristics can be realized.
Furthermore, it is hypothesized that the approach has not been investigated
in detail before and that the resulting software can be useful in specific
situations.

The goal of this work is to provide M&S capabilities in a way that the FAIR-▼ [94, section 3.1]
ness and actionability by generic software agents improve and that loose
coupling is supported (section 1.2). The FAIR-principle A1 demands that
“(Meta)data are retrievable by their identifier using a standardized commu-
nications protocol”. Therefore, the first design choice made is to provide
M&S capabilities as a service, meaning that the capabilities are intended
to be used within a SOA. Alternatives to a SOA, such as spawning local
instances of simulation environments for each user or exposing technical
interfaces remotely (as opposed to more abstract interfaces that directly
provide business value), were disregarded because they contradict the ideas
and goals of this work.

The second design choice made is to design the service for the Se-
mantic Web as the intended execution context. The reasons for this are
that the FAIR-principle I1 demands the use of a “formal, accessible, shared,
and broadly applicable language for knowledge representation”, as well as
the overall similarity of the FAIR-principles and Semantic Web concepts
and technologies [49, p. 3]. An alternative would have been to develop the
service for use within a custom platform/ecosystem that demands adher-
ence to a centralized definition of interfaces and semantics. However, this
would have contradicted the goal of achieving loose coupling; might have
prevented the reuse of concepts, technologies and software components
developed in the SemanticWeb community; and limited the usefulness of
the developed solution to said custom platform. The choice for the Semantic
Web as the intended execution context entails the use of specific techno-
logies to connect service instances and consumers: first, the access to the
service via the internet and the corresponding protocol stack; second, the
use of HTTP, URLs and hypermedia as core mechanisms of theWeb; third,
the use of a graph data model in conjunction with a corresponding schema
language and query language to represent all (meta)data, restrictions on
and subsets of it; and fourth, the use of ontologies based on DL to represent
knowledge. The recommendations for specific technologies by the W3C are
followed, meaning that RDF, RDFS, Shapes Constraint Language (SHACL)
[51], SPARQL, and OWL are used.

The service interface is the only means through which consumers
can interact with a service. Therefore, the service interface defines the level
of abstraction at which consumer and provider interact; it defines what
interaction means (for example, the exchange of RDF-serializations using
HTTP); what requirements must be fulfilled by consumers; and, import-
antly, the characteristics of the service with respect to coupling. For this
work, loose coupling and the service’s use by generic software agents are

4.2 High-level Design Choices 67

desired. Realizing the architectural style of the web, REST, can result in
loosely coupled systems [76, p. 919]. Therefore, it was decided that the
service interface should be realized as a hypermedia API, in other words
an interface that fully realizes the REST constraints and uses serializations
for resources that are machine-actionable. Alternatives would have been
to base the interface on REST, but not realize the HATEOAS-constraint and
rely on a static service interface description instead; or to realize a Simple
Object Access Protocol (SOAP) or remote procedure call (RPC)-style inter-
face. However, neither of these supports loose coupling ([76, p. 919], also
compare figure 7.1).

Having decided on realizing a hypermedia API intended to be used
in the Semantic Web as the execution context, the questions “which con-
sequences do these choices entail for the representations of resources?”
and “how to realize the HATEOAS constraint?” arise. Both HATEOAS and
the exchange of self-descriptive messages required by REST imply that the
service description must be included in the resource representations trans-
ferred as the reaction to HTTP requests by consumers. This means that,
in addition to the data itself, resource representations should also contain
metadata, context and controls [113]. Metadata can be about the triples that
represent the resource exposed, as well as about the resource representation.
It contributes to answering the question “what is this resource?”. Context
is created by providing qualified references to the resource itself and to
other resources; it answers the questions “where am I?” and “what else may
be interesting?”. Controls provide answers to the questions “what can I do
with this resource?” and “where can I go from here?”. They are actionable
and provide specific information on how to construct executable requests;
thereby enabling the HATEOAS principle.

REST-based HTTP-APIs typically exclusively provide data in their
resource representations, but software agents need—and thus should have
access to—metadata, context, and controls even more than humans brows-
ing theWeb because they are far worse at interpreting contextual clues or
relying on experience with similar websites, as humans do. However, if
triples that encode metadata about the resource representation, context
or controls were included in the same graph as the data triples, the use of
the RDF graph by clients would be unnecessarily complicated since clients
likely would want to separate the different parts, for example for counting
howmany items there are in a collection [113]. This problem is avoided if
the data is put in the default graph and the other parts in dedicated separate
graphs, whichmandates the use of an RDF serialization that supports quads.
An example will be discussed in section 5.2.2.

To summarize, the decisions to provide functionality as a service within the
Semantic Web through a hypermedia API mean that consumers interact
with the service by exchanging resource representations in serializations of
the RDF data model that support named graphs via HTTP messages. These
messages are independent of any possible prior messages, in other words
self-descriptive, and they containmetadata, context and controls in addition
to the actual data in order to support the HATEOAS principle and in order
to facilitate the service’s composition and execution by generic software

68 4. Thesis Concept and -Hypotheses

agents. For this work, it is assumed that consumers are aware of the service’s
existence and that the service participants are willing to interact with each
other without restrictions: in other words, service discovery as well as the
negotiation of contracts or the enforcement of policies are out of scope
because they are irrelevant to the research questions.▲

4.3 Hypotheses

Based on the issues, desirables and research gaps as well as the high-level
design choices, a set of hypotheses were formulated that define the scope of
the research presented. There are two types of hypotheses: the four main

Compare “Is This Really
Science? The Semantic
Webber’s Guide to Evaluat-
ing Research Contributions”
by Bernstein and Noy [11,
sections 2.5, 3.2, 3.3 and
3.4].

hypotheses H1–H4 try to establish the relevance of the pursuit. In other
words, they address the questions “so what?” and “who cares?”, independent
of how the problem is solved. In contrast, the hypotheses on the second
level are intended to establish the technical merit of the proposed solution,
meaning that they represent aspects that are only relevant to those who care
about how the result is achieved. Because the corresponding implementa-
tions are made available openly, these second-level hypotheses can also be
seen as technical contributions.

The hypotheses are amended by outlines of how they are intended
to be verified or falsified as well as threats to their validity in order to better
define their scope and to critically review their quality.

H1. Representing M&S entities in RDF using the newly proposed and
established ontologies enables advanced querying that was not pos-
sible using open-source components before.
To verify this hypothesis, an exemplary KG is built containing triples
about models and their context. Then, knowledge queries (queries
about entities and their relations to other entities) are answered both
with and without deriving additional data by means of reasoning
about the explicitly added triples.
The validity of this approach is threatened by the possibility that there
are other approaches to execute such queries; or that the queries
chosen as examples are irrelevant in practice.

H1.1. Researchers and softwareengineers canuse theFMI-ontology
and thefmi2rdf softwarepackage to representFMUs inRDF,
for which there was no open-source solution before.
This hypothesis is not validated thoroughly, as for example by
means of a survey among users. Instead, the publication of
ontology and software under an open-source licence is seen
as validation for enabling others to use it. The use of both as
part of the M&S hypermedia API proves their functionality.
Due to testing the developed software with a limited set of
FMUs only, it is possible that faults that prevent the software
from working reliably for any valid FMU remain undetected.

H2. Theuseof ahypermediaAPI to exposeM&Sentities and -capabilities
increases their FAIRness compared to the current standard for ex-
changing dynamic systemmodels.

4.3 Hypotheses 69

This hypothesis is evaluated by classifying the degree of realization
for each of the 15 principles for both amodel as a FMUand as exposed
through the M&S hypermedia API. If the latter achieves a higher
degree of FAIRness, the hypothesis is seen as validated.
However, the validity of this approach can be questioned for several
reasons: first, there are usually more than one requirement per FAIR
principle. Second, the principles’ meanings are not always entirely
clear. Third, the classification for a given principle might depend on
implementation details, the modelling of resources exposed by the
API and/or data supplied (or omitted) by users.
Moreover, the evaluation is only done by me, based on the FMI spe-
cification and the characteristics of the developed software. It is
consequently unknown whether other researchers would arrive at
identical classification results.

H2.1. M&S engineers can use the implemented service to enable
non-specialist users to generate simulation results using user-
supplied data; and to provide immutable references to their
models, model instances and simulation results.
It is further anticipated that…

– due to its scope and publication under an open-source
licence, the service fills a gap in the landscape of tools
for the distributed simulation of FMUs; and

– the implementation exhibits the defining characterist-
ics of cloud computing and matches the state of the art
from a DevOps perspective.

This hypothesis is evaluated qualitatively by observing the
characteristics of the implemented software, which is made
available openly.

H2.2. A M&S hypermedia API supports its use in loosely coupled
systems.
For evaluation of this hypothesis, the characteristics of the
M&S hypermedia API for each of the coupling facets identified
by Pautasso andWilde [76] are determined and compared to
its REST-based (but not RESTful) predecessor.
Compared to the evaluation of the FAIRness, the categoriza-
tion is less subjective, but there is still room for interpretation
as well as a dependence on specific implementation details.

H2.3. The machine-actionability of M&S entities and -capabilities
improves compared to the current best practice.
Here, an increased FAIRness and the successful use of the API
by the PPA are seen as observations that validate the hypo-
thesis.
No generic software agents other than the PPA are tested.

H3. In combination, the M&S hypermedia API and the extended PPA
decrease the programming effort necessary to use M&S as a service
compared to the current best practice.
For validation, the simulation of two different models with different
parameters and/or inputs are given as goals to an implementation

70 4. Thesis Concept and -Hypotheses

of the PPA. If it correctly determines and executes the necessary
requests without any code specific to the chosen API or models, then the
hypothesis is seen as validated because the current best practice, a
REST-based HTTP-API, would require programming for each model
used. Note that for this test, it is assumed that input data is readily
available in the correct format.

H3.1. Researchers and software engineers can use the implementa-
tion of the PPA to declaratively solve hypermedia API compos-
itionproblemswhen thehypermediaAPIs providesRESTdesc
descriptions to communicate possible state transitions and
the resulting public changes to the shared state. No open-
source implementation of the PPA was available before.
Like the ontologies and the fmi2rdf-parser, there is no sur-
vey or similar to empirically verify these claims. Instead, the
implementation’s use for the applications presented in sec-
tion 6.2.2 is seen as validation for their proper functionality
and its release under an open-source licence for the possible
use by researchers and software engineers.
Threats to the validity of this hypothesis are that the PPA-
implementation was only tested against two different hyper-
media APIs and that not finding an open-source implement-
ation resulted in claiming there was none (instead of, for ex-
ample, contacting the authors to verify).

H3.2. The proposed extension to the PPA allows properly hand-
ling request bodies which have requirements that are only
communicated at run-time, which was not possible before.
An example for requirements on request bodies that only be-
come known at run-time would be setting the parameters for
a model just added to an instance of the M&S hypermedia API
by a user. More specifically, consider a model containing a
mass: the requirements would for example communicate that
its weight needs to be set; that the value’s unit is kg; and that
negative values are not allowed.
Consequently, this information is essential for constructing
valid and complete requests to the API. In the original publica-
tions of the PPA [112, 119], this was not accounted for. Without
modification of the PPA, it would thus be impossible to reliably
construct valid and complete requests.
The proposed extension to the PPA to address this issue is
presented in section 5.4.2.

H4. A cloud-native implementation of the M&S hypermedia API com-
bined with the extended PPA-implementation and a KG about M&S
entities and their context improves the quality and/or speed of solu-
tion for realistic MBSE UCs.
Several UCs were devised and implemented in order to provide evid-
ence for the validity of this thesis; they are presented in chapter 6.
Specifically, they intend to show that the approach…

4.4 Conceptual Overview 71

– enables finding models by their meaning and interrelations
instead of by keyword only;

– enables the parallel execution of independent simulations in
the cloud;

– allows solving declaratively formulated MBSE tasks;
– allows combining knowledge about models and model in-
stances with their broader context; and

– can facilitate trust in the results obtained using M&S entities
and -processes.

There is a possibility that the UCs might be better solved using a
different approach; that they are not representative of typical tasks
in a MBSE context; or that engineers/programmers do not care about
improved quality and/or speed because neither are relevant issues in
practice.

For all hypotheses, there is a risk that relevant literature was not found and
thus excluded from the literature review. Furthermore, there is a risk that
even though the implemented software is intended to be independent of the
UCs (or be generalizable in a straightforward manner), there are aspects
specific to the UCs (or missing whatsoever) which have not been discovered
due to limited testing.

The overall approach, namely deriving the hypotheses fromperceived issues
anddesirables aswell as the identified research gap, is based on assumptions.
The first assumption is that the lack of FAIRness and machine-actionability
of M&S entities and resources is indeed a problem worth solving. Second, it
is assumed that the increased use of the (Semantic) Web by software agents
performing tasks to support human users indeed allows realizing unfulfilled
potential. Third, it is assumed that there are uses of M&S when exposed
through a M&S hypermedia API that we don’t even know of yet; meaning that
is valuable to aim for creating a reusable building block supporting loose
coupling instead of implementing a one-off solution tailored to a specific
application. This further implies that it is valuable to think about relevant
best practices; uses in conjunction with other services; and real-world UCs.

For all three assumptions, there are no references given. Instead,
they are based on the author’s understanding of the field and profession,
which is limited and may or may not accurately reflect reality or omit im-
portant aspects. This possibility further threatens the soundness of the
approach in addition to the threats to validity for the individual hypotheses
stated above. Nonetheless, to the best of the author’s knowledge, the as-
sumptions have a good chance of holding up against the reality of MBSE
practices.

4.4 Conceptual Overview

The design choices made to arrive at a service that provides both the de- ▼ [94, section 3.3]
sired functionality (access to systemmodels and their simulation, semantic
search; both accessible to generic software agents) and the desired charac-
teristics (FAIRness, loose coupling) are summarized in table 4.1.

72 4. Thesis Concept and -Hypotheses

Functionality,
High-Level Aspect

Concept for Realization Possible Alternatives
with Respect to Choice

Resulting (or Chosen)
Technologies

Software as a Service;
service-oriented
architecture

microservices local instances sim-
ulation environment
for each user; remote
access technical inter-
face

Node.js with Express.js
for API; Python with
FMPy for worker; Cel-
ery with RabbitMQ,
Redis for queue

intended execution
context

SemanticWeb custom/proprietary
platform

HTTP(S), URLs, hy-
permedia; explicit
semantics; graph data
model

knowledge
representation

graph data model + schema
language; DL-based ontologies

consequence of choice
for Semantic Web

RDF, RDFS, SPARQL,
SHACL, OWL

service interface
concept

hypermedia API → client-server
constraints, uniform interface
constraints: identification re-
sources, manipulation through
resources, self-descriptive mes-
sages, HATEOAS

REST-based HTTP-API
+ OAS; SOAP; RPC

—

resource
representations

self-descriptive representations
containing data and explicitly
separated metadata, context,
controls

data, metadata, con-
text, controls in same
graph

—

service interface func-
tionality

resource representations in
RDF-serializations transferred
to consumer as response to
HTTP-request

consequence of choice
for hypermedia API in
Semantic Web

RDF-serializations sup-
porting named graphs,
e.g. TriG, JSON-LD, …

semantic search Triple Pattern Fragments SPARQL server; no
query interface at all

Linked Data Fragments
Server.js

exposed
resources

immutable models, instances,
simulations, results; models
persistent, others subject to
TTL/LRU caches

more technical in-
terface (FMU, …); all
resources persistent

—

supported
model type

complete dynamic systemmod-
els as causal MIMO-block; para-
meters can be set

incomplete
(component-) mod-
els; acausal models

FMI 2.0 for co-simula-
tion as executable

contracts/policies;
awareness;
willingness

out of scope contract negotiation
/policy enforcement
through additional
service(s) or manual
implementation

—

service composition/-
execution by generic
software agent

Pragmatic Proof Algorithm +
extension

out of scope own implementation in
Python using EYE,
requests, rdflib

enable
planning

rules communicate state trans-
itions and public changes to
shared state

consequence of choice
for PPA

RESTdesc descriptions
(N3 rules)

non-functional
characteristics

cloud-native application → on-
demand self-service, measured,
pay-as-you-go, horizontal scalab-
ility, …

disregard expected
/proven characterist-
ics and corresponding
best practices

12factor-app; contain-
erization; clustered
elastic platform; sep-
aration API/worker
through queue; …

Table 4.1: Summary of the design aspects, chosen concepts, alternatives and chosen technologies for implementation. Design
choices are set in bold; the em-dash — is used to denote that something is not applicable. The chosen technologies listed in the
last column will be discussed in section 5.3.

4.4 Conceptual Overview 73

:main service
interface

:model format
 to RDF*

:simulation
engine*

:query
engine

:TPF
interface

some
agent

C. run SPARQL
query against

service interface

B. execute
simulation of

model instance

A. register model
with service

instance

add (model)
(model)

return
(representation)return

(link to m.)

add (spec)
(model, spec)

run (query)

return (query results)
return (TPF)

return (repr. sim. result)

(TPF request)

return
(link to s.)

Figure 4.1: High-level sequence diagram for three main use cases of the service. Objects marked with an asterisk are specific to a
certain model format such as FMI 2.0 for co-simulation.

To summarize how the design choices translate to the implemented soft-
ware system, figure 4.1 visualizes three exemplary interactions between
consumer and provider as a Unified Modeling Language (UML) sequence
diagram. The objects and corresponding swim lanes refer to high-level parts
of the software and not to specific technologies, therefore the diagram is
intended to serve as a technology-neutral system overview. The first use
case depicted (A) is the addition of a model to an instance of the service:
the agent interacts with the main service interface to add the model, for
example a FMU; in the background, an RDF representation of the model is
generated and then integrated in the representation of the newly generated
resource. The translation of the supported model format to RDF is depend-
ent on the model format and therefore marked with an asterisk; the service
interface is independent of the model format. The second use case (B) is
the simulation of a specific model instance with specific initial conditions
and inputs. Again, the agent sends the specification of the simulation to
the main service interface. Specification and model are then passed on to
the simulation engine which calculates the result. Third, the agent runs
a SPARQL query in use case C. Since the service does not support SPARQL
directly, the query is decomposed into a series of TPF requests by a query
engine (not part of the service), which are sent to the service’s TPF interface.
The answers to these TPF requests are then combined to form the result of
the original SPARQL query, which is sent back to the agent. ▲

75

5. Software Design and -Realization

The goals for the development of the M&S hypermedia API are to provide
models and model instances over the internet; to allow the simulation of
instances and provide access to the simulation results; as well as to enable
querying the data held by a service instance. As motivated in the preceding
chapter, the core design choices are to fully implement the REST constraints
and to realize the characteristics expected by CNAs. The semantics of entit-
ies are to be made explicit by using the SemanticWeb technology stack with
the aim of showing the potential of the outlined approach to increase the
FAIRness of M&S capabilities and to enable their use by generic software
agents.

Seen from a high-level perspective, the tasks to be solved by a M&S hyper-
media API are…

– to represent the capabilities of the application domain in terms of
resources and applicable methods;

– to communicate these capabilities as well as the specifics of interac-
tions to possible clients; and

– to build representations of resources in the supported formats.

The formats chosen for serializing resource representations define which
information required by consumers can be communicatedwithin the repres-
entations themselves and which aspects need to be communicated through
additional documentation.

To demonstrate the advantages of an API that realizes all REST con-
straints and is built using the SemanticWeb technology stack, two versions
of the service exist. The first one is based on REST, but does not implement
theHATEOAS constraint. This version is consequently denoted “REST-based
HTTP-API”; it represents what is usually done when developing web applic-
ations and serves as the baseline for evaluating the advantages of the second
version by comparison. The second version realizes all REST constraints, is
thus denoted “hypermedia API”, and uses the RDF data model.

76 5. Software Design and -Realization

5.1 The FMI- and SMS-Ontologies

As a prerequisite for implementing the M&S hypermedia API, the ability
to represent the entities of the application domain in RDF is required. Spe-
cifically, it is necessary to represent concepts of the modelling formalism
used, such as FMI, in RDF; as well as to name (parts of) systems, models
and simulations on a more abstract level, independent of the modelling
formalism, and relate them to each other. Moreover, it is desirable to enable
inferring more abstract representation frommore specific ones via reason-
ing, in other words to encode data in terms of models and simulations from
data about FMUs. For example, it should be possible to infer that a FMU
is a sms:Model because all instances of type fmi:FMU are also of type
sms:Model . Last, the representations should be derived automatically as
far as possible, for example using a parser that reads the model format and
outputs an RDF representation, also using a reasoner to infer additional
triples.

5.1.1 Ontologies

Three ontologies were developed using the Protégé editor [71]: the FMI-▼ [94, section 4.1]
ontology allows describing FMUs in RDF; the Systems, Models, Simulations
(SMS)-ontology allows relating (parts of) systems to (parts of) models; and
the SMS-FMI-ontology captures the interrelations of concepts defined in
the individual ontologies in order to enable a reasoner to infer triples using
the SMS-ontology from triples about FMUs.

None of the developed ontologies contain individuals, in other words
assertions about specific entities. These are intended to be created as part of
a KG or as part of an application such as an instance of theM&S hypermedia
API. A fictional excerpt of such a KG is shown in figure 5.1 with the intent
to visualize the main concepts and roles of the FMI- and SMS-ontologies.

First and foremost, the ontologies are intended to allow unambigu-
ously naming relevant entities and relationships in the context of the work
presented in this thesis, in other words they are intended to serve as a vocab-
ulary. So far, the ontologies are not developed and tested for the purpose
of supporting ontology-driven modelling or drawing detailed conclusions
about them via reasoning. Therefore, only little semantics is defined in
terms of concept hierarchies or complex OWL statements at this point in
time.

FMI-Ontology
The FMI-ontology is essentially a transcription of definitions in the
FMI standard document [65] to RDF and OWL. Only minimal rela-
tionsbetweenconcepts and roles are definedand the rdfs:comment -
annotations are mostly verbatim copies from the standard.
Despite the simplicity of the FMI-ontology, it allows declaring FMUs
and their variables including inputs, outputs, and parameters; as
well as specifying their type and unit. Moreover, constraints on vari-
ables such as minimal, maximal or nominal values and the (limited)
metadata specified in the FMI standard can be expressed.

5.1 The FMI- and SMS-Ontologies 77

sms:realizes

sms:represents

sms:defines

sms:approximates sms:resultsIn

sms:simulates
sms:hasParametersms:hasProperty

sms:instanceOf

sms:hasInput
fmi:hasInput

a sms:ClassOfSystems

a sms:Context

a sms:SystemProperty

a sms:System

a sms:SystemBehaviour a sms:SimulationResult

a sms:Simulation

a sms:ModelInstance

a sms:ModelInput,
 fmi:Input

a sms:ModelParameter,
 fmi:ParameterNonFree

a sms:Model, fmi:FMU

RealOrEnvisioned Virtual

Figure 5.1: The FMI- and SMS-ontologies allow relating abstract entities of the M&S-domain to their counterparts in the real (or
envisioned) world, as shown by this graph visualization.

SMS-Ontology
The core purpose of the SMS-ontology is to link the real (or envi-
sioned) world in terms of systems, context, initial state et cetera to
their abstract representations as model instances, input data, initial
conditions et cetera, respectively.
Additionally, knowledge about possible relations between entities is
captured,mainly in the formof the concept hierarchy anddisjointness-
and domain/range-statements.
For example, ModelParameterNonFree is a UserInput and dis-
joint with ModelParameterFree , which is a ModelParameter be-
longing to the Virtual realm, as opposed to the RealOrEnvisioned
realm.
The RDF descriptions enabled through the use of the SMS-ontology
are independent of any specific modelling formalism such as FMI.

SMS-FMI-Ontology
The purpose of this ontology is to enable deriving statements us-
ing the SMS-ontology from triples about FMUs encoded using the
FMI-ontology. There are several reasons for specifying the relation-
ships between concepts of the FMI-ontology and the SMS-ontology
in a third ontology instead of as part of the SMS-ontology. Most im-
portantly, it should be possible to develop and use the individual
ontologies without unnecessary complexity/clutter, especially since
a more widespread uptake of the FMI-ontology is expected than it is
for the SMS-ontology—users might want to choose different ontolo-
gies for the description of systems, models and simulation whereas
there is no reason to have several ontologies for describing FMUs
in RDF (other than quality issues). Also, having separate ontologies

78 5. Software Design and -Realization

helps to keep the complexity both with respect to the mental load on
developers and the computational effort for reasoners minimal.

▲
The implementation of the ontologies is based on the best practices for
designing FAIR ontologies suggested by Garijo, Corcho and Poveda-Villalón
as part of their FOOPS! ontology pitfall scanner [36].

5.1.2 The fmi2rdf-Parser
▼ [94, section 4.1] Given a FMU, its description in RDF should be created automatically for all

triples that can be inferred from either the FMU itself or through reason-
ing. For this purpose, the fmi2rdf-package was implemented. fmi2rdf
creates an RDF representation of the FMU based on the information in the
model description, which includes metadata, variables, and parameters,
including their associated types and units. Moreover, the representation
created includes SHACL shapes graphs that specify the requirements for
instantiating and simulating a model in terms of the requirements for an
RDF graph that contains the required parameter- and input values.

In more detail, fmi2rdf works as follows: the modelDescription.xml
file contained in eachFMUspecifies its content, structure and somemetadata
in a structured format. Moreover, structure and semantics of this file are
defined through the FMI standard [65] and corresponding XML Schema
Definition (XSD)files. Consequently, this file is used as the input offmi2rdf.
The function to read the descriptive XML file into a Python object provided
by FMPy1 is used as a starting point. From this object, the RDF representa-
tion of the FMU is built.

First, each variable, unit and type are given a URI relative to the
URI of the FMU itself. Concept assertions using the appropriate concept
defined in the FMI-ontology are made and, if applicable, available variable
names and descriptions are captured using the predicates rdfs:label
and dct:description , respectively. The metadata fields defined in the
FMI standard are parsed to RDF literals with the appropriate data type using
the roles defined in the FMI-ontology.

Second, assertions are made for each variable: it is linked to its
declared type and unit, and additional information such as minimal/max-
imal/nominal or start values are captured. If a variable is declared as input
or output of the FMU, this is asserted through rdf:type -statements as well
as by pointing to them from the FMU explicitly using the fmi:hasInput
and fmi:hasOutput roles.

Third, the parameters of the model that are intended to be exposed
to the user are identified using one of three strategies:

– Only those parameters are selected that start with a certain string,
such as the name of a group of parameters intended to be set by a
user.

– Only parameters are selected that do not contain a dot in their name,
which selects only top-level parameters iff a hierarchical naming
scheme using dot-notation is used inside the FMU.

1 https://github.com/CATIA-Systems/FMPy

https://github.com/CATIA-Systems/FMPy

5.2 The M&S hypermedia API: Concept 79

Code Persistent URL Repository

fmi2rdf — https://github.com/UdSAES/
fmi2rdf

FMI-ontology https://purl.org/fmi-ontology https://github.com/UdSAES/
fmi2rdf

SMS-ontology https://purl.org/sms-ontology https://github.com/UdSAES/
sms-ontology

SMS-FMI-ontology https://purl.org/sms-ontology/fmi https://github.com/UdSAES/
sms-ontology

Table 5.1: Persistent URLs and repositories for the developed ontologies and the fmi2rdf-parser

– Alternatively, all parameters are selected.

Fourth, shapes that specify requirements on parameters, inputs and sim-
ulation settings are generated from relevant information contained in the
model description using the SHACL ontology.

Last, a reasoner might be used to infer additional triples using on-
tologies that capture interrelations of concepts and roles specified in the
FMI-ontology with other ontologies, such as the SMS-FMI-ontology. How-
ever, this is not the responsibility of fmi2rdf, but an additional step.

The fmi2rdf-parser is implemented in Python, using FMPy for reading
FMU properties and rdflib1 for representing and serializing the graph
built. It can be used through a command-line interface (CLI) as well as from
Python code and is released under the MIT licence on GitHub. Similarly,
the ontologies are also released under the MIT licence on GitHub; find the
links in table 5.1.

Note that the ontologies were given persistent URLs via the PURL
service2, which establishes a redirect currently pointing to the serialization
of the ontology on the main branch in the GitHub-repository. ▲

5.2 The M&S hypermedia API: Concept

From a conceptual point of view, creating a cloud-native hypermedia API
requires finding answers to the following questions:

The last question is of high
importance for a produc-
tion environment. For a
proof of concept software
in a testing environment,
one might get away with ig-
noring the need for proper
handling of incorrect user
input and service failures.
Therefore, only the first
three questions are dis-
cussed in detail below.

– Which conceptual resources should be exposed?
– Which datamodel should be used, andwhich data should be included
in the resource representations?

– How to communicate the service interface and intended real-world
effect to possible users?

– How to respond to incorrect requests sent by users and what to do in
case internal errors propagate to the service interface?

However, first a decision on the functionality to be exposed must be made,
both on an abstract level and with respect to possible technical restrictions
such as the choice for a specific model type to be supported. ▼ [94, section 3.2]

1 https://rdflib.readthedocs.io/en/stable/
2 https://purl.archive.org/help

https://github.com/UdSAES/fmi2rdf
https://github.com/UdSAES/fmi2rdf
https://purl.org/fmi-ontology
https://github.com/UdSAES/fmi2rdf
https://github.com/UdSAES/fmi2rdf
https://purl.org/sms-ontology
https://github.com/UdSAES/sms-ontology
https://github.com/UdSAES/sms-ontology
https://purl.org/sms-ontology/fmi
https://github.com/UdSAES/sms-ontology
https://github.com/UdSAES/sms-ontology
https://rdflib.readthedocs.io/en/stable/
https://purl.archive.org/help

80 5. Software Design and -Realization

With respect to the core functionality, it was decided to allow the
registration of complete and valid system models with the service; their instan-
tiation by setting the model parameters; their simulation subject to initial
conditions and inputs; and the retrieval of simulation results.

From a technical point of view, it was decided to support causal
multiple-input/multiple-output (MIMO) blocks for which the parameters can
be set. Specifically, FMUs for co-simulation according to version 2.x of the
FMI standard are supported for registration with the developed hypermedia
API. The exposed resources (models, model instances, simulations and
simulation results) are immutable in order to facilitate their integration
in higher-level applications. However, model instances, simulations and
simulation results are not stored within a service instance indefinitely (in
contrast to models), but instead subject to time to live (TTL) and least re-
cently used (LRU) caches to avoid indefinite growth of the storage allocated
by an instance. Incomplete models or acausal models as well as causal
MIMO blocks in non-FMU form are not supported because FMI represents
the de facto standard for model exchange in the context of dynamic system
simulation. This ensures widespread compatibility and allows reusing tool-
ing created for handling FMUs, which facilitates the implementation of the
software necessary to answer the research questions. Version 2.x of the FMI
standard is used because FMI 3.0 had not been released at the time that the
software was implemented.▲

5.2.1 Interface Design

The entities and capabilities of the application domain M&S that are to be
exposed through the service interface are complete systemmodels with or
without set parameters; the definition and execution of simulation runs;
and the retrieval of simulation results. Additionally, an interface to the
information held by a service instance is required.

Main Functionality

In a RESTful system, these entities and capabilities need to be expressed
in terms of uniquely identifiable conceptual resources that constitute the
service interface [118, p. 240]. The chosen conceptual resources to be ex-
posed by the M&S hypermedia API are models, model instances, simulations,
and simulation results.▼ [93, section 2]

Models
are well-posed systemmodels that could be simulated once all para-
meters are set; but the parameters are not set yet.

These definitions should
be seen as specific to the
developed software.

Model instances
are systemmodels that do have all parameters set (either explicitly
or by relying on default values) and could be simulated as soon as
initial conditions and input values are provided. The parameters of a
model instance cannot be changed; a change in parameters always
leads to a new model instance.

Simulations
combine a model instance with initial conditions, input trajectories,

5.2 The M&S hypermedia API: Concept 81

a solver and the corresponding solver settings. They also have a state,
for example new , running or finished , and link to their result
iff it exists. Like model instances, simulations cannot be changed
once they are created.

Simulation results
contain the actual results of exactly one specific simulation. They
cannot be updated either.

▲
Having decided which resources to expose, it must be decided which HTTP
methods to allow on them. In table 5.2, themain part of the service interface
in terms of meaningful combinations of resources and methods is shown.
Because HTTP only offers a limited set of methods (to support the desired
self-descriptiveness of messages in RESTful systems, [118, p. 242]) and be-
cause assigning URLs to actions contradicts the idea of using resources, the
processes of instantiating a model instance or simulating it are triggered in
the background as a result of creating a newmodel instance or defining a
new simulation.

Both instantiation and simulation require inputs; specifically, the
parameters of a model instance or the input trajectories, simulation set-
tings and initial conditions that define a simulation. They are expected to
be supplied by the service consumer in the body of the respective POST
requests. Figure 5.2 visualizes the life cycle of the API’s resources as well as
the indented flow of interaction between service and service consumer. The
numbers marking the transitions correspond to the last column of table 5.2.

Query Interface: Quad Pattern Fragments

Since the FAIR principle F4 asks that “(meta)data are registered or indexed ▼ [94, section 3.1]
in a searchable resource”, it was decided to make the service itself a search-
able resource for the data that it holds. Without a dedicated interface for
this, there is no possibility to query the information held by an instance
of the M&S hypermedia API other than retrieving all available resource
representations, combining the responses into a graph and querying this
graph locally. This is both inconvenient and inefficient.

Verborgh et al. [120] developed Triple Pattern Fragments (TPFs) as
one specific interface that supports online querying, but keeps the cost
of providing the interface low. They base their work on the observation
that KGs are either not published in a queryable form (data dumps only)
or subject to issues frequently observed on SPARQL endpoints, such as low
discoverability, inconsistent support for all SPARQL features, high variability
in query execution performance and low availability [15].

All triples matching the pattern ?subject ?predicate ?object ,
where all, none, or some of the terms can be specified, are exposed by a TPF
interface. The representations transferred as the result of a TPF request
contain a subset of the matching triples as data (pagination is used to limit
the size of the response); an approximation of the total number of matching
triples as metadata; as well as a hypermedia control explaining clients how
to retrieve other triple patterns of the same data set.

82 5. Software Design and -Realization

Method Resource Description Id

OPTIONS * Retrieve RESTdesc descriptions inN3 serialization 0
POST /models Add a newmodel to the API-instance 1
GET /models/{model-id} Retrieve a model representation from the API 2
DELETE /models/{model-id} Delete a model representation from the API 3
POST /models/{model-id}/instances Instantiate a model for a specific system 4
GET /models/{model-id}/instances

/{instance-id}
Get a representation of a specific model instance 5

POST /models/{model-id}/instances
/{instance-id}/simulations

Trigger the simulation of a model instance by de-
fining a simulation

6

GET /models/{model-id}/instances
/{instance-id}/simulations
/{simulation-id}

Retrieve a representation of a specific simulation
definition and its status

7

GET /models/{model-id}/instances
/{instance-id}/simulations
/{simulation-id}/result

Retrieve a representation of the results of a spe-
cific simulation run

8

GET /knowledge-graph?subject=…
&predicate=…&object=…&graph=…

Query API-instance via Quad Pattern Fragment-
interface

—

Table 5.2: Overview of the service interface in terms of HTTP methods, exposed resources and their meaningful combinations
(incomplete)

service
ready

model
exists

instance
exists

simulation
defined

result
calculated

POST (FMU) POST (spec) POST (spec)

1 4

5

6

82 73

LRU cache full TTL cache expired TTL cache expired

simulation successful

0

Figure 5.2: New resources are created by sending their specifications to the service instance; except for the simulation result
which is added as soon as it becomes available. Its calculation is triggered when a new simulation is specified. Model instances,
simulations and simulation results are not stored indefinitely to keep storage requirements limited.

5.2 The M&S hypermedia API: Concept 83

Clients can still use SPARQL to formulate their queries; however, a
query engine needs to decompose the SPARQL query into requests to the
TPF endpoint and combine the results of these individual queries to obtain
the final result [120, p. 192 ff.]. This means that the load for computing the
results of a query is distributed between more intelligent clients and less
powerful services compared to using a SPARQL endpoint directly.

Several advantages of the TPF interface have been observed [120, p.
203]: a reduced load on the server; better support for more clients sending
requests simultaneously; and increased potential for benefiting from HTTP
caches. The time to resolve a query increased, but typically stayed below 1 s
until the first results were retrieved, which the authors used as the threshold
for validating their hypothesis on “sufficiently fast” query execution [120,
p. 186]. Moreover, TPFs are compliant with REST and thus well suited for
integration into a hypermedia API. Consequently, it was decided that the
service exposes a TPF interface to support querying instead of a SPARQL
interface. TPFshave since been extended toQuadPatternFragments (QPFs) ▲
[99]. Since QPFs are supported by the software package used, they are used
instead of TPFs.

5.2.2 Resource Modelling

Given the conceptual resources of the service interface and themethods that
are allowed to be applied to them, the question “Which data to include in the
resource representations?” arises. It is an important question because data
that is not there cannot be used, neither for acting upon it nor for improving
the FAIRness of the exposed resource, but it is also ambiguous. Moreover,
from this question also directly follows the question “Which formats for
representing the resources can be requested by clients?”.

The straightforward approach to answering this question would be to use an
application-specific key/value data model with a simple text-based serializa-
tion format, such as comma-separated values (CSV) or JSON; and to tailor
the content of the resource representation to a specific application. The
advantages of this approach are that it facilitates implementation; that it is
the approach that web developers are used to; and that these simple serial-
ization formats are natively supported by almost every software package
and programming language. It is the approach taken for the REST-based
HTTP-API variant of the developed API, but the rest of this section focuses
on the design of the hypermedia representations required to implement all
REST constraints.

There are two drawbacks of using an application-specific key/value
datamodel and a simple serialization format. First, it is a defining character-
istic of both SOAs and FAIRness that the service consumers are unknown at
design-time. Therefore, the resource representations should not be tailored
to one specific application. Second, simple serialization formats such as
JSON are unable to meet the requirements posed on resource represent-
ations that are intended to facilitate FAIR resources and the API’s use by
generic software agents.

Specifically, the requirements ondatamodel and serialization formats

84 5. Software Design and -Realization

are that labelled links are supported (clients decide which links to follow
based on link label); that formal language for knowledge representation can be
used (required by FAIR principle I1); and that it is possible to separate the
actual data from auxiliary data (facilitates implementation of clients).

A graph as the data model using RDF in conjunction with OWL onto-
logies, in other words using the SemanticWeb technology stack, can meet
all these requirements iff a serialization that supports quads, such as TriG
or JSON-LD, is used.

But what about the content of the resource representations? Con-▼ [94, section 4.2.2]
sidering three topics of data (the resource itself, data about the resource,
pointers to related resources) and two sources of data (the humans that
create a digital asset such as a dynamic systemmodel or the software used
to process it), two strategies for adding relevant triples to resource repres-
entations emerge.

First, triples that canbe generated automatically, should be generated
automatically. This likely concerns triples encoding the data itself or triples
encodingmetadata that is already available or gets created as part of a digital
process. The ontologies used are likely of methodological (for example the
FMI-ontology) or descriptive nature (DCT, The PROVOntology (PROV-O)1,
…); the level of detail is chosenby the programmers. For example, data about
the origin of a simulation result should be recorded throughout the different
parts of the developed software solution as suggested in [60]. Specifically,
it might be interesting to know that a certain version of FMPy was used for
simulation on behalf of a certain version of the worker component, which
could be encoded using PROV-O.

Second, triples that cannot readily be generated from source files
such as additional metadata; knowledge that only exists in the minds of
humans; and pointers to related relevant knowledge should be added by
the human that created, in this case, the model to be exposed through the
developed hypermedia API. The level of detail depends on the envisioned
applications; questions that could guide users include “what does the model
represent?”; “which question(s) was it intended to solve?”; “where does the
knowledge encoded (equations, parameters, defaults) come from?”; and
“what other resources might future users of the model want to look at?”. To
encode such information, ontologies to link the virtual world to the real
or envisioned world such as the SMS-ontology and referential ontologies
such as the Sensors, Observations, Samples, Actuators (SOSA)-ontology2

in conjunction with DBpedia3 would likely be useful. Technically, these
triples could be stored inside the FMU as vendor annotations [65, sec. 2.2.6]
and then added to the representation of the FMU in RDF by the fmi2rdf-
package.▲

The content of a resource representation can be categorized in data, con-
trols, context and metadata [113]. The differences between these categories
are explained using an (abbreviated) exemplary representation of a model
resource, serialized using the TriG syntax [13], shown in listing 5.1. The▼ [94, section 4.2.2]

1 http://www.w3.org/TR/prov-o/
2 https://www.w3.org/TR/vocab-ssn/
3 https://www.dbpedia.org/

http://www.w3.org/TR/prov-o/
https://www.w3.org/TR/vocab-ssn/
https://www.dbpedia.org/

5.2 The M&S hypermedia API: Concept 85

1 @prefix api: <http://example.com/vocabulary#> .
2 @prefix dct: <http://purl.org/dc/terms/> .
3 @prefix fmi: <https://purl.org/fmi-ontology#> .
4 @prefix foaf: <http://xmlns.com/foaf/0.1/> .
5 @prefix hydra: <http://www.w3.org/ns/hydra/core#> .
6 @prefix prov: <http://www.w3.org/ns/prov#> .
7 @prefix sh: <http://www.w3.org/ns/shacl#> .
8 @prefix sms: <https://purl.org/sms-ontology#> .
9 @prefix spdx: <http://spdx.org/rdf/terms#> .

10 @prefix var: <http://example.com/models/6157f34f/variables#> .
11 @base <http://example.com/models/6157f34f> .
12
13 # Data and metadata (about the resource itself, in the default graph)
14 <> a fmi:FMU, sms:Model ;
15 fmi:hasInput var:temperature, var:windSpeed, ... ;
16 fmi:hasOutput var:powerDC, var:totalEnergyDC, ... ;
17 fmi:hasParameter var:panelArea, var:panelTilt, ... ;
18 fmi:modelName "PhotoVoltaicPowerPlantFMU" ;
19 fmi:fmiVersion "2.0"^^xsd:normalizedString ;
20 prov:wasAttributedTo <https://orcid.org/0000-0002-4006-8582> ;
21 spdx:declaredLicense <http://spdx.org/licenses/MIT> ;
22
23 # Context and controls (in dedicated named graph(s))
24 <#about> {
25 # Context: Metadata about the resource representation
26 <#about> foaf:primaryTopic <> .
27 <> dct:created "2021-11-29T12:31:01Z" .
28
29 # Controls: What can I do with this resource?
30 <> hydra:supportedOperation [
31 a hydra:Operation ; hydra:method "DELETE" ; ...
32] ,
33
34 # Controls: Links _within_ API-instance; to enable HATEOAS
35 <> api:home </> ;
36 hydra:collection </models> ; api:allModels </models> ;
37 hydra:collection </models/6157f34f/instances> ;
38 api:allInstances </models/6157f34f/instances> ;
39 sms:instantiationShape <#shapes-instantiation> ;
40
41 # Context: Suggestions for related resources outside API-instance
42 <> prov:influenced <http://doi.org/10.3389/fenrg.2021.639346> ;
43 }
44
45 <#shapes> {
46 <#shapes-instantiation> a sh:NodeShape ; sh:targetNode [] ;
47 sh:property [...] ;
48 }

Listing 5.1: TriG-serialization of a model representation (abbreviated)

86 5. Software Design and -Realization

triples that encode that the resource identified by the URI of this document
is a fmi:FMU and a sms:Model and link it to its inputs, outputs and para-
meters (line 14 to 17), represent the data part of the resource representation.
The triples in line 18 to 21 can be seen as both metadata because they de-
scribe the FMU and as data because they are part of the conceptual resource
that is exposed.

In the example, the separate graph used to distinguish data from
metadata, context and controls, is named <#about>. In it, first some
metadata about the resource representation is provided, such as when the
resource was created (context). Next, possibilities for interacting with this
specific resource are communicated to the client using elements of the Hy-
dra core vocabulary [56] in lines 30 to 32. Then, links to related resources
provided by the same the API instance are offered to the client in lines 35
to 39 (controls). Hydra is used as one example of how these controls might
be encoded. Last, non-committal suggestions for resources outside the
API’s context that might also be of interest are made in line 42; these im-
plement the FAIR principle I3, “(Meta)data include qualified references to
other (meta)data”, and provide more context.

In general, more detailed resource representations would increase
the possibilities for finding and interacting with resources. Currently, more
elaborate strategies to provide “rich” metadata, such as the automatic re-
cording of a provenance trail, are not implemented. However, even resource
representations that are not very detailed suffice to validate the hypotheses
of this work as shown in chapter 6 and section 7.1. Note that due to the
ambiguity of the question of which triples to provide in a given resource
representation, it was aimed to provide at least one meaningful statement
for each category at this point in time.▲

5.2.3 Advertising Service Capabilities

When navigating websites, humans rely on expectations based on exper-▼ [94, section 3.2]
ience and intuition to decide which controls offered by the website will
most likely lead them to their goal [112, p. 39]. In other words, humans
establish a plan based on implicit information, hoping and assuming that it
will successfully resolve. Software agents require a plan based on explicit
information to determine if they can meet their goal [112, p. 40]. One▲
goal for the M&S hypermedia API is increased machine-actionability (H2.3).
Consequently, relying on the intuition of humans is not an option. In this
section, two approaches for advertising the capabilities and describing the
interface of a service are shown.

The first approach is the use of a commonly agreed upon format for
describing a service interface, such as the OpenAPI Specification (OAS)1.
This represents the state of technology for APIs in theWeb, and it is used
by the REST-based HTTP-API variant of the service. However, it promotes
tight coupling and is not compliant with the REST constraints.▼ [94, section 1.2]

The programming of clients against a static service interface descrip-
tion at design-time is especially problematic when exposing M&S capabilit-

1 https://www.openapis.org/what-is-openapi

https://www.openapis.org/what-is-openapi

5.2 The M&S hypermedia API: Concept 87

ies through an API: for every model, the parameters for instantiation and
simulation are different. Static service interface descriptions consequently
either have to be kept so generic that they cannot realize their usefulness,
or be re-generated every time a model is added to an instance of the API
[93, p. 395]. This would entail that programmers had to first add a model to
the API instance they plan to use before they could program the subsequent
requests, which is inefficient and would make the use of the API for a large
number of different models prohibitively expensive. ▲

The second approach is to not have a separate documentation of the
service interface, but to integrate metadata, context and controls into the
resource representations, as discussed in the previous section. This enables
the HATEOAS principle and loose coupling.

The service interface consists of controls which allow consumers to
interact with the service; however, consumers need to know which effect
using a control will have in order to decide whether to use it. Next, means
to communicate the available controls are discussed first before elaborating
on how to communicate their effects to potential service consumers. Last,
encoding requirements on data to be sent as part of requests is discussed.
All discussions focus on the second approach and only briefly mention the
use of the OAS because the latter is not suitable to attain the goals of this
work and only serves as a baseline for comparison.

Communicating Controls

In the OAS document, each applicable HTTP-method is documented in
terms of request parameters and expected responses for every resource
(listing 5.2).

For the hypermedia API variant of the service, there are different ways of
communicating the available controls within the resource representations.
All of them must enable the service consumer to create a fully specified
HTTP request, which consists of the HTTP method, the request URL, head-
ers, authorization information and possibly parameters in the body and/or
path of the request. Additionally, a hint at the consequences of using a
control should be given.

The simplest case of a control is a link that is intended to be derefer-
enced, in other words a fully specified URL which is intended to be used
in a GET request. For example, the triple in line 42 of listing 5.1 points
to a research paper that was influenced by the model. The nature of the
resource to be resolved is indicated by the link relation. For humans, the
link relation corresponds to the label of the link (for example: in a list of
articles, an article’s title links to the full version); for software agents, the
predicate that relates a subject node to an object node encodes the link
relation. Commonly used link relations are specified in the Hydra Core
Vocabulary [56]. For example, the predicate hydra:collection points to
“collections somehow related to this resource”1. However, more specific
predicates might be required to guide a client through the use of a hyper-
media API. For example, it might be necessary to distinguish between a

1 https://www.hydra-cg.com/spec/latest/core/#hydra:collection

https://www.hydra-cg.com/spec/latest/core/#hydra:collection

88 5. Software Design and -Realization

1 {
2 "paths": {
3 "/models/{model-id}": {
4 "get": {
5 "summary": "Retrieve a model representation from the API",
6 "responses": {
7 "200": { "$ref": "#/components/responses/ModelRepresentation" },
8 "400": { "$ref": "#/components/responses/SchemaValidationFailed" }
9 }

10 },
11 "parameters": [{ "$ref": "#/components/parameters/ModelId" }]
12 }
13 },
14 "components": {
15 "parameters": {
16 "ModelId": {
17 "name": "model-id",
18 "in": "path",
19 "required": true,
20 "example": "29dc05e6-1e05-4076-bbe5-79d4e0d2770c",
21 "schema": { "$ref": "#/components/schemas/ModelId" }
22 }
23 },
24 "responses": {
25 "ModelRepresentation": {
26 "description": "A representation of a model",
27 "content": {
28 "application/json": {
29 "schema": { "$ref": "#/components/schemas/Model" }
30 },
31 "application/octet-stream": {
32 "schema": { "type": "string", "format": "binary" }
33 }
34 }
35 }
36 },
37 "schemas": {
38 "ModelId": {
39 "description": "The UUIDv4 of the model",
40 "type": "string",
41 "pattern": "^[0-9A-Za-z]{8}-[0-9A-Za-z]{4}-4[0-9A-Za-z]{3}-[89AB..."
42 },
43 "Model": {
44 "type": "object",
45 "properties": {
46 "modelName": { "type": "string" },
47 "description": { "type": "string" },
48 "fmiVersion": { "type": "string" },
49 "generationTool": { "type": "string" },
50 "generationDateAndTime": { "type": "string" }
51 }
52 }
53 }
54 }
55 }

Listing 5.2: Excerpt of the OAS (serialized as JSON). In natural language, it can be summarized as follows: for retrieving a
representation of a model from the API, a GET request needs to be sent to /models/{model-id}. The model identifier is
a string that matches the pattern for a UUIDv4. The response to a successful request is either a binary representation of the
model or a JSON-representation, depending on the hypermedia type requested. The JSON-representation consists of five string
properties (lines 46 to 50). If the consumer sends a bad request, a response with the code 400 will be sent (details not shown in
the excerpt).

5.2 The M&S hypermedia API: Concept 89

collection of models and a collection of model instances. To do so, it was
decided to use a vocabulary specific to the developed API, exposed as part
of the API at /vocabulary# , as shown in lines 36 to 38 in listing 5.1.

In addition to specifying common link relations, the Hydra Core
Vocabulary also allows encoding controls, as briefly demonstrated in lines
30 to 32 in listing 5.1. A third alternative for encoding controls is provided
by the HTTP-ontology1, which is used within the RESTdesc descriptions
described next.

Communicating the Effect of Controls (RESTdesc)

Deliberately interacting with controls offered by a service is only possible
when their effects are known before and without executing them.

For the REST-based HTTP-API variant, these consequences of using
a control are explained to humans in natural language as part of the OAS
(listing 5.2, line 5). The level of detail depends on the programmer writing
the OAS, and may or may not include information about the role a resource
can play in interacting with the service.

For communicating the effect of controls to software agents, link relations
alone do not allow to predict the effect of state-changing operations such
as POST requests. In other words, controls answer the question of how
to leave one state, but not what the next state will be. Consequently, a ▼ [94, section 3.2]
description is needed that communicates which transitions are possible in
a given application state and what the effects of these transitions in terms of
changes to the shared state are. The PPA relies on RESTdesc descriptions to
communicate this information; therefore, the choice for RESTdesc is a direct
result of the choice for using the PPA and alternatives, such as ontologies
for service description, were not regarded. ▲

RESTdesc descriptions are N3 [81] rules that communicate the ex-
istence and form of an HTTP request that allows transitioning from one
resource state, the precondition, to another resource state, the postcondi-
tion. Syntactically, the format

{ <precondition> } => { <HTTP-request> <postcondition> }.

is used to encode this information. ▼ [94, subsection 4.2.3]
By means of a formal proof, it can be shown that a goal can be

achieved without executing any of the requests (instead, the proof assumes
that they succeed). In addition to determining the achievability of a goal,
the proof also shows which requests out of all possible requests by all avail-
able hypermedia APIs contribute to achieving the goal, thus representing a
high-level plan.

As an example, see the RESTdesc description for retrieving a TriG-
serialization of a model representation shown in listing 5.3. Line 11 states
the precondition, followed by the description of the HTTP request in lines
15 to 21 that, iff successful, will result in the postcondition (lines 23 to
27). The RESTdesc description contains universally quantified variables,

1 http://www.w3.org/2011/http

http://www.w3.org/2011/http

90 5. Software Design and -Realization

prefixed by a question mark, and existentially quantified variables using
_: as prefix. Universally quantified variables in the request description
and the postcondition must also occur in the precondition and thus will
be known when the rule is about to be applied. In contrast, existentially
quantified variables in the postcondition convey an expectation of what the
API’s response will contain. For a detailed formal definition of RESTdesc,
please refer to Verborgh et al. [119, section 4.3].

In natural language, the first rule shown in listing 5.3 reads as fol-
lows: “Given a URI denoting a sms:Model (line 11), a representation of the
model can be obtained by sending a GET request to the model’s URI with
the Accept header set to the media type application/trig (lines 15 to
21). The model representation returned as a response will link the model to
a node via an api:allInstances predicate and to another node through a
sms:instantiationShape predicate (lines 23 to 24). At this point, we
do not know anything about the nature of the first node, but we know
that the second node will be a sh:NodeShape with a third node (unspe-
cified for now) as target node (line 27)”. The predicates api:allInstances
and sms:instantiationShape and the nodes they point to gain meaning
through their use in other RESTdesc descriptions as this use explains their
role in transitioning between different application states.

Note that most rules cannot be directly instantiated because values
for variables in the RESTdesc description only become known at run-time.
This is a desired characteristic: the rules are only for high-level planning and
determining whether a goal can be achieved in principle. The postcondition
is an incomplete viewon the resource representation to be expected, focused
only on triples relevant to guiding clients through the application (“what
terms are needed for triggering state transitions?”). The specific interaction
between a client and the service is then driven by client selection of service-
provided options (“what are the values of the needed terms?”) at run-time
as intended in RESTful systems according to the HATEOAS constraint.

For new hypermedia APIs, the RESTdesc rules are written by the program-
mers. Once they exist, the question becomes how to communicate their
content to potential clients with minimal overhead. HTTP provides the
OPTIONS method, which “allows a client to determine the options and/or
requirements associated with a resource, or the capabilities of a server,
without implying a resource action” [32, section 9.3.7]. It is specific to the
URL towhich theOPTIONS requestwas sent, but the specification also states
that an “OPTIONS request with an asterisk (”*”) as the request-target […]
applies to the server in general rather than to a specific resource”. Con-
sequently, the M&S services created in the context of this thesis serve the
RESTdesc rules for all relevant interactions in one N3 document transferred
as the response to an OPTIONS request at the path * .▲

Requirements on Request Bodies

If there is a request body to be sent, there are typically restrictions posed
on its content which should be checked upon retrieval by an API, and the
request should get rejected if the restrictions are not fulfilled. The require-

5.2 The M&S hypermedia API: Concept 91

1 @prefix http: <http://www.w3.org/2011/http#> .
2 @prefix sh: <http://www.w3.org/ns/shacl#> .
3
4 @prefix fmi: <https://purl.org/fmi-ontology#> .
5 @prefix sms: <https://purl.org/sms-ontology#> .
6 @prefix api: </vocabulary#> .
7
8
9 # Get a model representation

10 {
11 ?model a sms:Model .
12 }
13 =>
14 {
15 _:request http:methodName "GET" ;
16 http:requestURI ?model ;
17 http:headers [
18 http:fieldName "Accept" ;
19 http:fieldValue "application/trig"
20] ;
21 http:resp [http:body ?model] .
22
23 ?model api:allInstances _:allInstances .
24 ?model sms:instantiationShape _:instantiationShape .
25
26 _:instantiationShape a sh:NodeShape ;
27 sh:targetNode _:parameterSet .
28 } .
29
30
31 # Instantiate a model
32 {
33 ?model a sms:Model ;
34 api:allInstances ?allInstances ;
35 sms:instantiationShape ?instantiationShape .
36
37 ?instantiationShape sh:targetNode ?parameterSet .
38 }
39 =>
40 {
41 _:request http:methodName "POST" ;
42 http:requestURI ?allInstances ;
43 http:body ?parameterSet ;
44 http:headers [
45 http:fieldName "Accept" ;
46 http:fieldValue "application/trig"
47] ;
48 http:resp [http:body ?modelInstance] ;
49 http:resp [http:headers [
50 http:fieldName "Location" ;
51 http:fieldValue ?modelInstance
52]] .
53
54 ?modelInstance a sms:ModelInstance ;
55 sms:instanceOf ?model .
56 } .

Listing 5.3: RESTdesc descriptions for retrieving a model representation and instantiating a model

92 5. Software Design and -Realization

<#shapes-instantiation> a sh:NodeShape ;
 sh:targetNode :parameterSet ;
 sh:property [
 sh:path :latitude ;
 sh:node [
 a sh:NodeShape ;
 sh:property [
 sh:path sms:isValueFor ;
 sh:hasValue var:latitude ;
] ;
 sh:property [
 sh:path qudt:numericValue ;
 sh:maxInclusive 90 ;
 sh:minInclusive -90 ;
] ;
] ;
 sh:minCount 1 ; sh:maxCount 1 ;
]
.

:parameterSet a sms:ParameterSet ;
 :latitude [
 sms:isValueFor var:latitude ;
 qudt:numericValue 49.31659 ;
 qudt:unit unit:DEG
] ;
 :longitude [..] ;
 :panelArea [..] ;
 :
 :
.

data graphshapes graph

Figure 5.3: The excerpt of a SHACL shapes graph on the left communicates that its target node must point to exactly one object
node via the :latitude -predicate. This object node must point to var:latitude via sms:isValueFor and to a

numeric value in the range −90 to 90 via the qudt:numericValue -predicate. On the right, the corresponding data graph is
shown.

ments on the request body can be encoded on a syntactical level or on a
semantic level.

For HTTP-APIs documented according to the OAS, JSON Schema1

is used to encode requirements on request bodies on the syntactical level.
There is no example of this in listing 5.2 because the shown request doesn’t
require a body to be sent; however, the schemata in lines 37 to 53 provide
an example of the syntax used.

For the Semantic Web, the W3C recommends the use of the Shapes Con-
straint Language (SHACL) [51] for imposing constraints on graphs. A shapes
graph encodes the requirements on the data graph; the sh:targetNode -
predicate is used to point from the shapes graph to the data graph (figure 5.3).

The existence of requirements on request bodies in the form of
SHACL shapes graphs is integrated in the RESTdesc description as follows:
the triples

?model sms:instantiationShape ?instantiationShape .
?instantiationShape sh:targetNode ?parameterSet .

in the precondition of a rule in conjunction with the triple

_:request http:body ?parameterSet .

in the specification of theHTTP request to be sent (in the same rule; lines 35,▼ [94, section 4.3]
37 and 43 in listing 5.3) communicate that some content ?parameterSet is
to be sent as the request body, and that there is a sh:targetNode relation
from some node ?instantiationShape to the content. This relation im-

1 https://json-schema.org/,
https://spec.openapis.org/oas/latest.html#schema-object

https://json-schema.org/
https://spec.openapis.org/oas/latest.html#schema-object

5.3 The M&S hypermedia API: Realization 93

plies that ?instantiationShape is a SHACL shape, and that the content
is specified by and must conform to the constraints contained in this shape.

Note that the actual specification of the shape is never included in
the RESTdesc rules. The shape is generated by the service upon addition of
a model, and it is then communicated at run-time as part of the resource
representations exchanged: it depends on the resources, therefore it cannot
be known at design-time when the RESTdesc rules are formulated by the
programmers implementing the service. ▲

However, the RESTdesc descriptions need to communicate which re-
source representation contains the definition of the shapes graph, such that
the PPA can obtain the shapes graph before preparing the data accordingly
as part of the service interaction (see section 5.4.2). For this example, this
is done in the RESTdesc rule for retrieving a model representation (lines 24
to 27, listing 5.3).

5.3 The M&S hypermedia API: Realization

Although the implementation of software is prone to take a considerable
amount of effort and time, it is not always interesting from an academic
point of view. Mostly, software stack and supporting technology already are
established. Programming is necessary to show feasibility of one’s ideas,
but it is only a tool.

Nonetheless, the choices with regard to software architecture, imple-
mentation strategy, and operations affect the characteristics of the software
and are thus importantwhen attempting to implement a CNA. Consequently,
the chosen software architecture for the MSaaS-implementation; require-
ments on the FMUs supported; and the chosen approach to software devel-
opment and -operations (DevOps) are outlined in this section.

5.3.1 Software Architecture

The implementation of the service’s functionality is structured in fourmain ▼ [94, section 4.2.1]
parts (figure 5.4): the API component exposes the service interface and
handles incoming requests by passing them on to the actual implementa-
tion of functionality as well as by sending representations of the resources
in the desired format. The worker component performs all tasks that are
specific to a model format, such as generating an RDF representation from
a FMU that includes the SHACL shapes graphs for instantiation and sim-
ulation or the actual simulation. API and worker are connected by a task
queue consisting of amessage broker that transfers task representations from
the API to available worker instances and a result backend that propagates
serializations of the task results back to the API. ▲

▼ [93, section 3.1]The specific software components and libraries used for implement-
ation were chosen based on the criteria that they are well-suited for the job;
free/libre and open-source software (FLOSS); represent the state of the art;
and that their use avoids re-implementing functionality that already has
stable implementations.

The HTTP-API possibly receives many requests at once, most of
which result in requests to storage or other services which are operations

94 5. Software Design and -Realization

reverse
proxy

NGINX

Linked
Data
Fragments
Server

message
broker

RabbitMQ

result
backend

Redis

worker1

worker2

workern

APIagents HTTP

HTTP

HTTP

amqp amqp

RESP

RESP
HTTPS

Figure 5.4: The implementation is structured in distinct API- and worker components which exchange data via queues; a reverse
proxy provides a HTTPS connection to users. An instance of https://github.com/LinkedDataFragments/Server.js
enables querying (proxied through the API).

that are very slow compared to pure computations, meaning that signific-
ant amounts of time are spent waiting. Therefore, Node.js1 was chosen as
the programming language as it provides excellent support for non-blocking
input-output (IO) operationsusingpromises and theasync/await-syntax.
Also, it is commonly used for implementingHTTP-APIs and consequently of-
fers many useful libraries that support implementation, such as the Express-
framework2 and the openapi-backend3. Incoming requests are checked
for validity against their schema in the OAS. Valid requests are then propag-
ated to the appropriate handlers, which alter or retrieve resource state and
enqueue simulation requests if necessary.

The internal representation of a simulation job couples the worker
implementation to the API. Workers retrieve these representations from
the task queue, which is implemented using Celery4, using RabbitMQ5 as
the message broker. As a result of only coupling API and worker through
the task representation, the workers can use Python6 as programming lan-
guage. This enables the use of the pandas7 package for representation and
manipulation of time series, and allows using FMPy for simulating FMUs.

FMPywas chosen because it can be used natively from within a Py-
thon environment; because it is actively maintained and developed under
an open-source licence; and because FMPy and its dependencies can be
installed easily, also as part of a container image.

Worker instances can be added or destroyed according to demand
and jobs are automatically distributed across all worker instances that are
available. Upon finishing a simulation job, the results are propagated back
to the API component using Redis8 as the result backend.▲

▼ [94, section 2.2] There are several desirable consequences of this separation of con-
cerns. First, the computing power can be scaled by adding more worker

1 https://nodejs.org
2 https://expressjs.com
3 https://github.com/anttiviljami/openapi-backend
4 https://github.com/celery/celery
5 https://www.rabbitmq.com
6 https://www.python.org
7 https://pandas.pydata.org
8 https://redis.io

https://github.com/LinkedDataFragments/Server.js
https://nodejs.org
https://expressjs.com
https://github.com/anttiviljami/openapi-backend
https://github.com/celery/celery
https://www.rabbitmq.com
https://www.python.org
https://pandas.pydata.org
https://redis.io

5.3 The M&S hypermedia API: Realization 95

instances and the existence of a queue enables “shaving” peaks in demand.
Second, producer and consumer of tasks can be implemented in differ-
ent languages to account for the different nature of their respective pur-
pose. API and worker are available at https://github.com/UdSAES/
simaas-api andhttps://github.com/UdSAES/simaas-worker, re-
spectively; subject to the conditions of the MIT licence.

To support querying, aQPF interface providing read-only access to all
triples relating to models, model instances and their properties is exposed
at /knowledge-graph . It is implemented as follows: the API component
adds new triples to a file acting as a triple store. This triple store is read by
an instance of the Linked Data Fragments Server1, to which the API
proxies requests at the path /knowledge-graph . ▲

5.3.2 Restrictions on Supported FMUs

In order to facilitate the implementation of the envisioned software, ad- ▼ [93, section 3.2]
ditional restrictions are imposed on the FMUs concerning their paramet-
erization; the supported platforms for which binaries must exist; and the
definition of inputs, outputs and parameters to be exposed via the API. Note
that none of these restrictions impose limits on the actual models or their
simulation; they merely represent a concretization of the format supported
by the developed software.

Schmitt et al. [85] investigated different possibilities to parameterize
models in Dymola with respect to their subsequent export as FMU. In their
paper, they describe a method that “becomes favourable if the user wants to
exchangewhole data sets of one and the samemodel” [85, section 3.3], which
is exactly the case for the SIMaaS-implementation. In short, parameters
inside the model are set by inter-component references to a record. This
record has a parameter filename, which must be set to the path of a file
containing the values. All actual model parameters are set by reading this
file during model initialization. This can, for example, be achieved using
the DataFiles package distributed with Dymola or one of the functions
provided in Modelica.Utilities.

The second requirement is that inputs and outputs of the models
must be listed as such in the modelDescription.xml file of the FMU
because the generation of the schemata for the trajectories that a service
consumer needs to supply/can expect as a result, which are both part of the
OAS (as JSON schemata) and part of the RDF-based resource representations
(as SHACL shapes graphs), relies on this information.

Last, the FMUmust contain binaries for GNU/Linux as the containers
are intended to be deployed on GNU/Linux host systems. ▲

5.3.3 DevOps

The software developed as part of this thesis is not intended for production
environments, but for demonstrating feasibility. Nonetheless, the DevOps
mindset was adopted because it is a proven approach to dealing with the

1 https://github.com/LinkedDataFragments/Server.js

https://github.com/UdSAES/simaas-api
https://github.com/UdSAES/simaas-api
https://github.com/UdSAES/simaas-worker
https://github.com/LinkedDataFragments/Server.js

96 5. Software Design and -Realization

complexity of developing CNAs in a SOA; an agile approach to project man-
agement was taken because it is suitable for projects with high uncertainty;
and best practices were incorporated because they help with getting things
right from the start.

Obviously, setting up processes and tools to manage DevOps requires
work. However, it was found that this workwas helpful and valuable because
it fosteredunderstanding challenges associated toCNAs; it inspired confidence
in the chosen setups; and it documented the configurations in an executable
manner, making them reproducible.

The specific measures taken to support DevOps and facilitate the creation
of high-quality software are briefly listed below, with the intent to give a
high-level overview without going into details.

– All source code is versioned using git1 as the version control system
(VCS). This ensures that changes to the source code can be tracked,
and it can be used to ensure that only “clean” versions of a software
(without any unregistered changes) are deployed.

– A feature branch workflow2 is adopted to facilitate parallel develop-
ment of different features; and to help with releasing versions. For
example, all changes integrated into the dev -branch get automatic-
ally deployed privately, whereas only changes merged into the main
branch get deployed on the public server and tagged as a versioned
release.

– Semantic versioning3 is used for all software and ontologies.
– It is attempted to provide good README documents4 in all public
repositories.

– Licences are declared using Software PackageData Exchange (SPDX)5

identifiers and roughly following the suggestions of the REUSE initi-
ative6.

– All dependencies of a software are explicitly declared in dependency
manifests, such as package.json for Node.js, requirements.txt
for Python, and build instructions (Dockerfile).

– All source code is automatically formatted (using black7 for Python
and JavaScript Standard Style8 forNode.js) to ensure a consistent read-
ing experience and to follow best practices for a given programming
language.

– All configuration is stored in environment variables, never in the
source code. This enables changing the configuration for different
deployments/environments without changing the code; and it en-
sures that secrets, such as access tokens or passwords, are not leaked
by committing them in the VCS.

1 https://git-scm.com/
2 https://www.atlassian.com/git/tutorials/comparing-workflows/
feature-branch-workflow

3 https://semver.org/
4 https://www.makeareadme.com/
5 https://spdx.dev/
6 https://reuse.software/
7 https://github.com/psf/black
8 https://standardjs.com/

https://git-scm.com/
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow
https://semver.org/
https://www.makeareadme.com/
https://spdx.dev/
https://reuse.software/
https://github.com/psf/black
https://standardjs.com/

5.3 The M&S hypermedia API: Realization 97

– Relevant events that occur while running a software (start up; file
access; incoming/outgoing requests; …) are written to stdout in
a structured form, for example as JSON objects. In other words, log
entries directly expose fields such as time, role (API/worker), severity
level, HTTP request parts, hostname/container identifier, …. This
means that these can be directly used for filtering when reviewing
logs instead of relying on parsing or just reading textual logmessages
for finding relevant information.

– Logs are picked up by fluentd1 as a log collector and then stored in
an instance of Elasticsearch2, which is accessedby aKibana3-instance
that allows human users to display, filter and visualize logs across all
deployed software instances on all servers.

– Important parts of the software are tested through both unit and API
tests.

– The software and all of its dependencies are packaged into container
images which can then be executed as containers (in other words,
the images built represent the executable form of the software; a
running instance is called container). An image registry is used to
store and distribute images for deployment.

– The two available servers are configured such that they provide a
development/staging environment which is not accessible publicly,
and a production environment which is accessible from the outside
world. In the private environment, the newest versions of the services
aswell as auxiliary services such as theCI/CD server, a container image
registry, an instance of the log stack et cetera, are deployed. In the
production environment, more stable versions of the service are
made available publicly.

– Given a GNU/Linux OS installation on the servers, all additional soft-
ware installation and -configuration is managed using ansible4. Es-
sentially, this means that the desired state of a software is defined de-
claratively in text files using theYAMLAin’tMarkupLanguage (YAML)
syntax5, and ansible then ensures that the actual state of a server
matches the desired state. This documents the configuration; makes
it reproducible; and facilitates that development/staging and produc-
tion environment are as similar as possible (dev/prod parity). All files
used by ansible are managed in a git repository. This approach is
known as Infrastructure as Code (IaC).

– ansible is also used for deploying all services; and for defining and
storing different configurations for different environments. These
deployment instructions are accessed by the CI/CD server.

– In addition to the recommendations of the twelve-factor app meth-
odology [123] already addressed (config; structured logs; dev/prod
parity), also the recommendations for handling backing services; pro-
cesses; concurrency; disposability; port binding; separating build,

1 https://www.fluentd.org/
2 https://www.elastic.co/elasticsearch/
3 https://www.elastic.co/kibana
4 https://www.ansible.com/overview/how-ansible-works
5 https://yaml.org/

https://www.fluentd.org/
https://www.elastic.co/elasticsearch/
https://www.elastic.co/kibana
https://www.ansible.com/overview/how-ansible-works
https://yaml.org/

98 5. Software Design and -Realization

release, and run stages of CI/CD pipelines; and admin processes are
realized.

– From a project management perspective, the work was organized in
an agile manner, inspired by the Scrum framework1 and supported
by the Taiga2 web app.

To summarize, software development and -operations was guided by the
twelve-factor app best practices, building upon state-of-the-art open-source
components and libraries. Containers were used as deployment units, bund-
ling the software and its explicitly declared dependencies. Upon each com-
mit to the main branches of the VCS, a pipeline that automatically tests,
builds and deploys the software was triggered. Structured logs were col-
lected and stored in a way that allowed searching, filtering and reviewing
them efficiently. Two servers were used, serving both as separate private
development environment and public production environment, and as the
constituents of a clustered elastic platform. The setup and deployment of
all software was managed declaratively. Almost all developed software was
released under a permissive open-source licence (see section B.2).

5.4 The Pragmatic Proof Algorithm
▼ [94, section 3.2] In the hypotheses of this work, it is suggested that the service concept

described in section 4.2 leads to increased machine-actionability (H2.3)
and FAIRness (H2) of the exposed M&S capabilities. The former of these
hypotheses is validated by example, meaning that H2.3 is validated iff a
generic software agent is able to achieve a goal by using the developed ser-
vice without being specifically programmed to the service interface. The
algorithm implemented by the generic software agent itself is not the focus
of this work; it is just a means to demonstrate the validity of H2.3. The
requirements on this algorithm are that it has been shown to successfully
compose and execute hypermedia APIs, and that it is described in enough
detail that it can be implemented. The Pragmatic Proof Algorithm by Ver-
borgh et al. [119] fulfils these requirements and was thus chosen for this
work without performing an in-depth literature research on other possible
algorithms first.▲

5.4.1 The Original Pragmatic Proof Algorithm

Creating a proof from all RESTdesc descriptions, the goal to be achieved▼ [94, section 4.3]
and the initial knowledge may show that the goal can be reached, but it is
not sufficient for actually achieving the goal. An algorithm is needed that, in
addition to triggering the creation of the proof, also executes fully specified
HTTP requests in the correct order; parses the responses and matches
the obtained knowledge with the high-level plan in form of the proof (in
other words replaces the variables in the RESTdesc rules with values once
they become known). This is what the Pragmatic Proof Algorithm (PPA)

1 https://scrumguides.org/
2 https://taiga.io/

https://scrumguides.org/
https://taiga.io/

5.4 The Pragmatic Proof Algorithm 99

generate pre-proof: goal achievable?

how o�en are rules r in R applied in the pre-proof?

execute ground HTTP-request from proof

parse API response as G;
amend initial state with gained knowledge

generate post-proof: progress made?

how o�en are rules r in R applied in the post-proof?

Failure

Success

initial state H; goal state g; description formulas R; background knowledge B

no

yes (proof found)

npre > 0

solve
(H, g, R\r, B)

npost = 0

solve
(H ∪ G, g, R, B)

npre = 0

npost ≥ npre
0 < npost < npre

Figure 5.5: The Pragmatic Proof Algorithm (PPA) [119] solves hypermedia API composition
problems.

by Verborgh et al. [119, p. 34] does. Moreover, it needs to be ensured that
correctly shaped input data is provided iff necessary.

The PPA is visualized in figure 5.5. It can be summarized as follows:
first, the initial stateH, the goal state g, the set R of all RESTdesc description
formulas r1 . . . ri and, optionally, background knowledge B are collected.
Initial state and background knowledge are collections of triples; they could
be general or domain-specific. The goal state is an N3 filter rule. Filter rules
are instructions for an N3 reasoner to find all triples matching the pattern
in the first part of the filter rule and to represent them according to the
pattern in the second part of the rule, meaning that both parts of the rule
can be identical [112, p. 51]. Together,H, g, R, and B form anAPI composition
problem [119, p. 22] (see section 6.2.2 for examples). After collecting the
constituents of the composition problem, the initial pre-proof is generated.
If a proof is found, the goal is seen as achievable, and it is counted how
many times RESTdesc rules are applied in the proof, which corresponds to
the number of requests necessary to achieve the goal if all requests succeed.
To begin moving towards the goal, the first fully specified request found
in the proof is executed, and the response is parsed as a graph G. Since
requests can fail or return content irrelevant to achieving the goal despite
their RESTdesc description, a post-proof is generated to check the progress
towards meeting the goal. If the number of rule applications in the post-
proof is lower than in the pre-proof, progress was made and the post-proof
is used as the pre-proof in the next iteration. If not, the rule that describes
the request made is eliminated and the response is disregarded in the next
iteration. The PPA terminates if either no proof can be found (failure) or no
rule is applied in the pre-proof, which is the case if the proof shows that the
goal was already met (success).

100 5. Software Design and -Realization

Note that no part of the PPA is specific to any hypermedia API: given
the RESTdesc rules, a goal, an initial state and a live hypermedia API in-
stance, a PPA-implementation should be able to reach the goal. In conjunc-
tion with the assumption that the RESTdesc descriptions can be obtained
through an OPTIONS * request, this means that only knowledge of REST-
desc, RDF and HTTP are assumed and any hypermedia API using these
technologies can be used for achieving goals without programming.

To the best of the author’s knowledge, there was no FLOSS-imple-
mentation of the PPA available. Thus, it was implemented. Python was used
as the programming language, using the rdflib and requests libraries
for graph manipulation/querying and sending HTTP requests, respectively.
The EYE reasoner [115] is used for creating the necessary proofs. The source
code for the PPA-implementation is released under the MIT licence on Git-
Hub at https://github.com/UdSAES/pragmatic-proof-agent.

5.4.2 The Extended Pragmatic Proof Algorithm

The original version of the PPA does not account for user input which has
requirements that only become known at run-time, such as the parameters
for the instantiation of a model just added. In an RDF hypermedia API,
this could manifest itself in endpoints that require RDF graphs with certain
properties as input, equivalent to forms on a web page.

These requirements on input data have to be communicated at run-
time, but at the same time, the PPA needs to know about the fact that input
conforming to a schema will be required eventually so it is enabled to pre-
pare complete/valid requests when they become relevant. We propose the
following solution as an extension of the PPA: independent of any specific
interaction, the existence of constraints on user-supplied input is commu-
nicated in the corresponding RESTdesc rule, as described earlier.

When attempting to generate the initial pre-proof, it needs to be
established that the precondition can be met. Therefore, it must be com-
municated that the definition of the shape will be communicated as part
of the interaction between service and consumer, which is expressed in
the postcondition of the RESTdesc rule describing the effects of the cor-
responding request. As an example, consider lines 26 to 27 in listing 5.3.
Their meaning is that “there is a node which is a SHACL shapes graph that
has a target node”. Input conforming to the shapes graph cannot be pre-
pared yet because the shapes graph is empty. In order to proceed anyway,
it is assumed that matching input will be available when needed as fol-
lows: for each shape identified in the rules, its target node (an existentially
quantified variable in the RESTdesc description, _:parameterSet in the
example) is replaced with a link to an empty file. The subject of the triple
(_:instantiationShape in this case) is kept as a variable and the triple
_:instantiationShape sh:targetNode <file:///tmp/input_00.n3>
is added as background knowledge to the API composition problem. As
soon as a response contains the definition of the shape, in which the target
node is an empty blank node, the variable is replaced by the URI of the
shape so that the extended PPA arrives at a triple which states that the target
node of the shapes graph specified in an API response is the empty file

https://github.com/UdSAES/pragmatic-proof-agent

5.4 The Pragmatic Proof Algorithm 101

(<file:///tmp/input_00.n3> in this case).
When the PPA comes to the point where the next request to be sent

includes a body and the term identifying the body is specified through a
shape, the extended PPA asks its user to supply input conforming to the
shape in the previously empty file before proceeding. The user here is a
higher-level agent responsible for providing meaningful input, for example
by querying a KG based on the shapes graph and then selecting exactly one
query result. This step requires knowledge and algorithmswhich are outside
the scope of the PPA and are thus excluded from the PPA-implementation. ▲

103

6. Applications

In the preceding chapters, the motivation for combining the modelling and
simulation of technical systems with the SemanticWeb and the expected
benefits from this combination as suggested in the literature were outlined.
In the last chapter, an in-depth look at the design of the developed M&S
hypermedia API with respect to its software architecture and -engineering
as well as the resource modelling was taken. This included the design
of the FMI- and SMS-ontologies as well as their application to represent
dynamic systemmodels in the RDF data model. Then, necessary building
blocks for dealing with the questions that govern the interaction between
service provider and service consumer were identified and possible specific
solutions to these questions were explained.

Now, it is demonstrated that the previously discussed selection/com-
bination of concepts, architectures and algorithms can be useful in specific
situations. First, an overview of all deployed implementations of concepts,
architectures and algorithms is given. Then, exemplary specific uses of
these software components are summarized; their observed characterist-
ics are analysed; and possible generalizations and other uses which could
benefit from the observed characteristics are outlined.

In all scenarios, it is assumed that ready-to-use models including in-
formation on what the model represents exist in the form of a FMU because
the creation ofmodels is outside the scope of the developedM&Shypermedia
API.

In figure 6.1, an overview of the deployed services aswell as their consumers
is presented. Two services are deployed: obviously, an instance of the M&S
hypermedia API provides access to M&S capabilities. The service interface
can be viewed from three distinct perspectives: first, there is a QPF interface
that allows searching for knowledge about models and model instances that
the service instance holds. Then, there are the resources and operations that
expose the actual capabilities and data (models,model instances, simulations,
simulation results). Last, a description of the service is exposed in the form
of RESTdesc descriptions as well as a static interface description according
to the OAS.

Additionally, an instanceof theLinked Data Fragments Server
provides aQPF interface to an exemplary SE knowledge graph. TheKGholds
knowledge about the context in which the M&S resources are used. For ex-
ample, it contains triples on systems represented through model instances;
persons involved in the creation and use of models; data sets for validating
simulation results; as well as scientific publications for whichmodels and/or
data sets were used.

104 6. Applications

clustered elastic platform

re
ve

rs
e p

ro
xy

thin client

RESTdesc

OAS, /ui

resources

QPF

QPF

Comunica

.sparql

.trig .trig

.trig

.n3

LDF
server

API

PPA

hard-coded
script:
ensemble
forecast; GA

query
engine

LDF
server

worker 1

worker 2

worker 3

worker n

HTTP

HTTP

HTTPS

HTTPS

HTTPS

HTTP

HTTP

HTTP

M&S Hypermedia API

EYE
reasoner

Knowledge Graph

Figure 6.1: For running the scenarios that are intended to demonstrate the usefulness of the chosen approach, an instance of the
M&S hypermedia API and a systems engineering knowledge graph are deployed on a Kubernetes cluster which manages several
powerful servers. The consumers can run on thin clients and interact with the services through a reverse proxy, which encrypts
the connection from the cluster to the users.

6.1 Finding Relevant Models 105

Three exemplary consumers use the services to implement the chosen
scenarios.

– The Comunica framework [100] is used as the query engine that
translates SPARQL queries to the necessary requests to one or more
QPF interfaces, executes them and combines the responses to form
the answer to the original SPARQL query.

– A script written in Python serves as an example of a software client
that is using requests which are hard-coded at design-time against a
specific API version to achieve a goal.

– In contrast, an implementation of the Pragmatic Proof Algorithm is
used as an example of a generic software agent that uses the REST-
desc descriptions of the API to determine whether its goal can be
achieved using the available hypermedia APIs and then constructs
the necessary requests based on the information contained in the
resource representations obtained at run-time to realize the goal.

The services are deployed on a Kubernetes-installation as an example of a
clustered elastic platform. This means that the computing resources, such
as the number of central processing unit (CPU) cores that can be used by
the services, can exceed the capabilities of a singlemachine because several
physical machines are combined into a pool of resources. The details of
addressing and allocating these resources are handled by Kubernetes trans-
parently, in other words it is not necessary to account for this complexity as
part of the service implementation.

6.1 Finding Relevant Models

The first group of scenarios is concerned with finding models that are relev-
ant in a given situation. For example, one might want to choose models to
use; to retrace the provenance of a model; or to identify models which were
used in a certain context.

The data necessary to answer such queries is directly associated with
the models or model instances themselves, either included in the format
chosen for encoding a model, such as metadata included in a FMU, or
automatically derived from themodel format, such as data on the inputs and
outputs of a FMU. Formally, this data is encoded in theRDFdatamodel using
the FMI-, SMS- and other ontologies upon addingmodels ormodel instances
and stored by an instance of the developed M&S hypermedia API. Access to
the resulting KG is provided through service’s QPF interface. For now, this
is the only source of data used for answering queries. Broader queries that
can be answered by combining the data on models with additional context
will be discussed in section 6.3.

Consider the excerpt of a KG held by an instance of the M&S hypermedia
API visualized in listing 6.1. There are three models. For each model, there
are some triples that encode descriptive metadata, basic provenance in-
formation, explicit statements about what a model represents, as well as
triples about inputs/outputs as derived from the model. This enables quer-
ies based on the properties of the models themselves; their history and

106 6. Applications

organizational context; and the role that they can or do assume in an MBSE
context. Several specific examples are shown next in terms of the question
in natural language, the SPARQL query that implements the question and
the result of running the query against the KG shown in listing 6.1.

Models Representing Classes of Systems
Which models represent PV systems or wind turbines in general?

SELECT ?model ?classOfSystems WHERE {
VALUES ?classOfSystems {
<http://dbpedia.org/resource/Photovoltaic_system>
<http://dbpedia.org/resource/Wind_turbine>

}
?model rdf:type sms:Model .
?model sms:represents ?classOfSystems .

}

?model ?classOfSystems

<m2> dbpedia:Photovoltaic_system
<m3> dbpedia:Photovoltaic_system

Model Provenance
What is knownabout theprovenanceofmodelm3? Specifically, which
entities is it derived from through which activities, and by whom?

SELECT ?parent ?activity ?child ?author WHERE {
?child prov:wasAttributedTo ?author .
?child prov:wasGeneratedBy ?activity .
?activity prov:endedAtTime ?date .

OPTIONAL {
?child prov:wasDerivedFrom ?parent .

}
}
ORDER BY ASC (?date)

?parent ?activity ?child ?author

<m2> :modelExport_m3 <m3> ppl:Moritz
<m1> :implementation_m2 <m2> ppl:Moritz

:implementation_m1 <m1> ppl:Danny

Models Linked to Publications
Are there any models which are associated with scientific publica-
tions?

SELECT ?model ?publication WHERE {
?model a sms:Model .
?publication a bibo:AcademicArticle .
?model prov:influenced ?publication .

}

6.1 Finding Relevant Models 107

1 @prefix dct: <http://purl.org/dc/terms/> .
2 @prefix fmi: <https://purl.org/fmi-ontology#> .
3 @prefix sms: <https://purl.org/sms-ontology#> .
4 @prefix prov: <http://www.w3.org/ns/prov#> .
5 @prefix bibo: <http://purl.org/ontology/bibo/> .
6 @prefix qk: <http://qudt.org/vocab/quantitykind/> .
7
8 @prefix ppl: <http://example.com/people/> .
9 @prefix lang: <http://example.com/languages/> .

10 @prefix : <http://example.com/> .
11
12 @base <http://example.com/models/> .
13
14 <m3> a fmi:FMU, sms:Model, prov:Entity ;
15 fmi:hasInput [qk:quantitykind qk:Irradiance],
16 [qk:quantitykind qk:Temperature], [qk:quantitykind qk:Speed], ...
17 fmi:hasOutput [qk:quantitykind qk:Power] ;
18 sms:represents <http://dbpedia.org/resource/Photovoltaic_system> ;
19 sms:formalismUsed lang:FMI ;
20 prov:wasAttributedTo ppl:Moritz ;
21 prov:wasDerivedFrom <m2> ;
22 prov:wasGeneratedBy :modelExport_m3 ;
23 prov:influenced <http://doi.org/10.3389/fenrg.2021.639346> ;
24 ...
25
26 <m2> a sms:Model, prov:Entity ;
27 sms:represents <http://dbpedia.org/resource/Photovoltaic_system> ;
28 sms:formalismUsed lang:Modelica ;
29 prov:wasAttributedTo ppl:Moritz ;
30 prov:wasDerivedFrom <m1> ;
31 prov:wasGeneratedBy :implementation_m2 ;
32 ...
33
34 <m1> a sms:Model, prov:Entity ;
35 sms:formalismUsed lang:Fortran ;
36 prov:wasAttributedTo ppl:Danny ;
37 prov:wasGeneratedBy :implementation_m1 ;
38 prov:influenced <http://doi.org/10.18086/eurosun2018.02.16> ;
39 ...
40
41 :modelExport_m3 a prov:Activity; prov:endedAtTime "2022-03-07" .
42 :implementation_m2 a prov:Activity; prov:endedAtTime "2020-12-24" .
43 :implementation_m1 a prov:Activity; prov:endedAtTime "2019-11-12" .
44
45 <http://doi.org/10.3389/fenrg.2021.639346> a bibo:AcademicArticle ; ...
46 <http://doi.org/10.18086/eurosun2018.02.16> a bibo:AcademicArticle ; ...

Listing 6.1: The excerpt of a knowledge graph shown includes provenance data about several models, such as their time of
creation, interrelations, and responsible persons.

108 6. Applications

?model ?publication

<m1> doi:10.18086/eurosun2018.02.16
<m3> doi:10.3389/fenrg.2021.639346

From these exemplary queries, it is concluded that representing data about
models in RDF and making them available for querying is useful for two
main reasons:

– searching for entities based on their meaning and/or relations to
other entities is enabled; and

– implicit knowledge is made explicit.

This is even the case when only relatively few triples such as those shown in
listing 6.1 (basic metadata, basic provenance, …) are available.

Beyond the specific examples shown, it is suspected that everyone involved
inMBSE could benefit from better findability ofmodels, especially if the cre-
ation of componentmodels is not the focus of the work, but only a necessary
step to arrive at systemmodels used for analysing system behaviour.

Making knowledge that is typically only available implicitly (in un-
structured documents or the memories of people involved) explicit could
make a lot of sense in environments with a very large body of knowledge
distributed across several organizational units; as well as for making or-
ganizations more resilient against changes in personnel and the loss of
knowledge associated with it.

6.2 Simulating Models in the Cloud

The second group of scenarios concern themselves with using the developed
service to execute simulations in the cloud. Two approaches are taken:
initially, the necessary requests are programmed at design-time against the
documentation of the service interface. The focus is on the execution of
hundreds of simulations and the achieved characteristics for running them.
Programming the requests at design-time is straightforward from both the
conceptual and the practical perspective, meaning that it is easy to integrate
into larger processes. However, the approach has drawbacks—programmers
are required each time a newmodel needs to be used or the service interface
changes.

Then, the requests are constructed at run-time based on the informa-
tion provided in the resource representations—in other words, hypermedia
is used as the engine of application state.

6.2.1 Requests Programmed at Design-Time

To demonstrate that a cloud-native, open-source implementation of the
MSaaS-concept can be useful, the generation of an ensemble forecast for

The content of this subsec-
tion was presented at the
Modelica conference 2021
[93].

the power generated by a PV system as well as the component selection
for a thermoelectric circuit by means of a genetic algorithm (GA) were
implemented.

6.2 Simulating Models in the Cloud 109

For both scenarios, it is assumed that the model, its parameters, in-
puts and simulation settings as well as an instance of the service are given.
The HTTP requests necessary are programmed manually, before running
the scenario. In case sequences of requests are necessary to implement a
functionality, for example POST ing a representation of a simulation and
then repeatedly polling its status to eventually retrieve the simulation res-
ults using GET -requests, the requests are executed in order. Requests and
requests sequences that are independent of each other are executed in par-
allel whenever possible—for example, the request sequences for simulating
two different model instances are executed concurrently.

Ensemble Forecast
The PV systemmodel calculates the power and energy generated by
a PV system subject to the environmental conditions at the site. It
comprises the calculation of the generated power from the global
irradiance in the plane of array (POA), the air temperature and the
wind speed; as well as the transformation of the horizontal irra-
diance (which is typically provided by numerical weather predic-
tions (NWPs)) into the POA, including the calculation of the sun’s
position relative to the system’s position, which is required for this
conversion.

Details can be found in a
publication on the forecast
quality achieved using an
instance of the model [97,
section 3.1].

The motivation for generating an ensemble forecast is that plotting
a single trajectory of values over time does not represent the uncer-
tainties inherent to M&S . It implies that the solution was exact as it

Uncertainties arise from
the chosen abstraction
and its formalization; para-
meter values; input data;
numerical approximation;
et cetera.

neither shows any information about the uncertainty of the result,
nor about its confidence levels. As a consequence, the plots can be
misleading, which frequently results in misinterpretations [105]. An
ensemble forecast, in other words plotting several simulation res-
ults for which one or several of model, parameterization, input data
and simulation settings are slightly varied, is one way to more ac-
curately communicate the meaning of simulation results, including
their uncertain nature.
Forecasting the power generation of a PV system with the different
members of an ensemble NWP as input represents a case where the
same model instance is simulated many times with different input
trajectories.
Compared to simulating a FMU using fmpy directly, the use of the
MSaaS-implementation reduces the complexity for executing sim-
ulations from interfacing specialized software in a programming
language locally to sending HTTP requests in the correct order. This
enhances the accessibility of the functionality “executing simulations
using FMUs”, and thus facilitates reuse, repeatability of simulation
studies and composition of M&S resources. For example, the PV fore-
cast could be part of a distributed, recurring process which provides
the necessary information for supervising and controlling smart
grids. In this scenario, a utility company would require forecasts for
many systems every few hours. Using a MSaaS-instance instead of
creating the forecasts locally would mean that the utility company
does not need to invest in hardware, software and personnel, which

110 6. Applications

R1 R2

R3 R4

TH1 TH2

p1

p2

n1

heatport

Figure 6.2: A thermistor bridge can be used to compensate for changes in the temperature at
which a circuit operates.

is likely outside their core business model. Instead, they could pay
but for exactly the simulations that they require; benefit from the
expertise of the service provider and focus on their core task.

Component Selection
The computational search for the optimal sizing of components in
a system model represents a case in which many model instances
need to be simulated with the same initial conditions and inputs.
For example, consider the temperature-dependent electrical circuit
shown in figure 6.2. The purpose of the simulations is to find a good
set of component values for the resistors and thermistors, given a
desired voltage at the junction p2 over the temperature range from
−10 °C to 60 °C.
Assuming that there are nine possible values for both the resistance
at reference temperature and the temperature coefficient B of the
two thermistors, and assuming that each resistor can take one of the
70 values of the E24-series between 300Ω and 220 kΩ, there are 704 ·
92 · 92= 157 529 610 000 possible combinations. If it took a CPU time
of 0.05 s to simulate one variant, testing every permutation would
require roughly 250 years of computing time.
An alternative approach is to use a genetic algorithm (GA) to find a
good solution without trying every permutation, as suggested for this
problem in an article on edn.com [27].▼ [93, section 4.2]
Each possible combination of component values is seen as an in-
dividual. The fitness of an individual is evaluated by how close

A genetic algorithmmimics
the ‘survival of the fittest’
principle—see [77] for an
introduction.

the voltage at p2matches the desired voltage over the relevant tem-
perature range, for example in terms of the root-mean-square er-
ror (RMSE). Because the determination of the fitness of an individual
is independent of other individuals, the fitness values for an entire
generation can be evaluated in parallel. After the fitness of each
individual in a population is determined, the best results are recor-
ded and the next generation is created by cross-over and mutation
(subject to user-defined probabilities). The algorithm is terminated

https://www.edn.com/genetic-algorithm-solves-thermistor-network-component-values

6.2 Simulating Models in the Cloud 111

by setting a threshold for either an acceptable fitness value or a fixed
number of generations.
This example represents a situation where different model instances
are simulated with the same input. For finding good solutions, a
few hundred simulations are likely required, many of which can
be executed in parallel given a sufficiently high number of worker
instances. Using a MSaaS-instance deployed on a clustered elastic
platform instead of running the GA locally becomes really benefi-
cial iff the number of individuals in a generation is higher than the
number of CPUs available locally.
Because the example ismerely intended to serve as a proof of concept,
no detailed analysis of the performancewas carried out—neitherwith
respect to the speed-up achieved, nor with respect to the overhead
introduced by the additional software layers and the exchange of data
over the network.

For implementationof theGA, theDistributedEvolutionaryAlgorithms
in Python (DEAP) framework [34] was used. A tiny Modelica pack-
age containing the necessary models and an example ready to be
simulated in Dymola is included in the simaas-demo-repository1. ▲

In conclusion, the scenarios are intended to highlight two aspects of provid-
ing M&S-functionality as a cloud-native service: from a user’s perspective,
the requirements on the environment that the user has to provide and the
overall complexity to achieve a goal are decreased. The technical prowess
necessary to run the simulations is hidden from the user and the reduction
of the interface complexity facilitates the use of simulations at the expense
of less fine-tuned control over the simulations themselves.

From a provider’s perspective, the applications show that the imple-
mentation realizes some of the defining characteristics of cloud computing.
Specifically, the functionality is offered to consumers as an on-demand
self-service without apparent limitations on the available computing power.
Many requests can be received in a short amount of time and still worked
on in a robust manner due to the asynchronous implementation of the API
component and the distribution of computing intensive tasks to available
workers via a queue. Deploying several worker instances enables the execu-
tion of mutually independent simulations in parallel. When deployed on a
clustered elastic platform, the worker instances can be added or removed
automatically in response to the current demand.

Due to the achieved characteristics, it is suspected that using a cloud-native
implementation of theMSaaS-concept is beneficial in situationswheremany
simulations need to be evaluated as a whole and it is desirable to keep the
time they take to complete low. For example, tens of simulations might
be necessary for displaying ensemble forecasts on websites, for which it is
important to keep the time it takes to create them low in order to not lose the
user’s attention. Hundreds of simulations may be necessary for parameter

1 https://github.com/UdSAES/simaas-demo

https://github.com/UdSAES/simaas-demo

112 6. Applications

fitting or sensitivity analyses; as well as for choosing a configuration of
available subcomponents that fit a customer’s requirements best.

6.2.2 Requests Constructed at Run-Time

The core hypothesis of using an implementation of the PPA as the consumer
of a hypermedia API is that no programming specific to the API used is ne-
cessary. Instead, the goal to be achieved is formulated as an N3 rule and
initial knowledge as well as (optional) background knowledge are defined.
Then, the PPA determines whether the goal is achievable given the available
hypermedia APIs based on the RESTdesc descriptions they provide. If the
goal is achievable, the correct sequence and -form of the requests to be
sent is figured out based on the hypermedia representations of resources
retrieved from the APIs. In case the API requires input according to a spe-
cific shape which only becomes known at run-time, the extended version of
the PPA identifies these shapes and asks a higher-level user to supply the
matching input when required.

Two examples were implemented to demonstrate the combined func-
tionality of hypermedia API and the Pragmatic Proof Algorithm. Initially,
the image-resizing example used by Verborgh et al. to explain RESTdesc and
the PPA [119, section 4] was repeated to verify that our PPA-implementation
functions correctly. Then, addition, instantiation and simulation of a FMU
and the retrieval of the simulation results were specified as the goal for
the PPA-implementation. In contrast to the first example, here the agent is
required to provide input matching a shape which is only communicated at
run-time as part of the interaction.

Three software components are involved to implement the scenarios:
the M&S hypermedia API (resources exposing capabilities and RESTdesc
descriptions); a PPA-implementation including the necessary instance of
the Euler Yet another proof Engine (EYE) reasoner acting as the service
consumer; and a higher-level user which supplies correctly shaped input to
the PPA-implementation at run-time if and when required. Here, a simple
script which hard-codes the data for the chosen example is used because a
more sophisticated solution is considered out of scope.

Resizing an Image
Consider a hypermedia API that generates a low-resolution thumb-
nail of an image. There are two requests necessary to obtain the
thumbnail, which is explained using two RESTdesc rules. First, an im-
age of type dbpedia:Image can be uploaded in the body of a POST -
request to /images . As the reaction to a successful upload, the API
provides a link to the thumbnail. Second, the thumbnail itself can be
downloaded through a GET request to this link, and the original im-
agewill be linked to the thumbnail via the dbpedia-owl:thumbnail -
relation.
Now, given an instance of the hypermedia API; the initial knowledge
<example.png> a dbpedia:Image ; and the goal state

6.2 Simulating Models in the Cloud 113

@prefix dbpedia-owl: <http://dbpedia.org/ontology/>.

{ <example.png> dbpedia-owl:thumbnail ?thumbnail. }
=>
{ <example.png> dbpedia-owl:thumbnail ?thumbnail. }

in the form of an N3 filter rule, the PPA can infer the necessary
requests to achieve this goal and execute them in the correct order.
Additionally, the example was extended such that the paths at which
the resources are exposed canbe changed, for example to theGerman
translation /bilder/<id>/miniaturbild . Essentially, this results
in three (English, German, French) versions of the hypermedia API.
Requests hardcoded against oneof the versions at design-timewill fail
with the other versions, whereas the PPA works without modification
for every version because it realizes the HATEOAS principle, con-
structing the requests at run-time based on the information provided
during the service interaction.

▼ [94, section 5.1]
Simulating a Model

Assume that a forecast for the power producedby a specific PV system
for the next day is required. For example, the forecast might be
used for optimizing the energy consumption in a microgrid with the
objective of maximizing the local (own) use of the generated energy.
To create the desired forecast, access to a model representing PV
systems with an adequate accuracy, and the means to simulate it
are required. If a user lacks one or both, a service that provides
themmust be used, such as the M&S hypermedia API. The service
consumer then needs to provide parameters (panel area, panel ori-
entation, system location,…); external conditions in the formof input
time series (irradiance, temperature, wind speed, …); and simulation
settings (start and stop time, temporal resolution, …). Of these con-
sumer inputs, some are required while others are optional because
sensible default values can be used. Provided that the consumer
has the necessary data, the correct sequence of requests needs to be
identified, and the input data likely has to be reshaped such that it
matches the expectations of the API.
In terms of the conceptual resources exposed by the API, the model
needs to be uploaded and then instantiated before the simulation
using thismodel instance can be specified and, eventually, the simula-
tion results canbe retrieved. This is expressed through the goal state g
(listing 6.2). The triple <file:///tmp/model.fmu> a fmi:FMU is
the initial knowledge H.
With this and a live M&S hypermedia API-instance, the PPA-imple-
mentation can be started. As the first step, the RESTdesc descrip-
tions are downloaded through an OPTIONS request to * . Then, it is
checked whether any shapes are expected to specify requirements
on data to be uploaded. In this case, two shapes are found: one for
instantiating a model and one for specifying the simulation to be
run. The expectations are added to the API composition problem as

114 6. Applications

1 @prefix sms: <https://purl.org/sms-ontology#> .
2
3 {
4 ?modelInstance sms:instanceOf ?model .
5 ?simulation sms:simulates ?modelInstance .
6 ?simulationResult sms:resultOf ?simulation .
7 }
8 =>
9 {

10 ?modelInstance sms:instanceOf ?model .
11 ?simulation sms:simulates ?modelInstance .
12 ?simulationResult sms:resultOf ?simulation .
13 } .

Listing 6.2: An N3 rule expresses that the results of a simulation of an instance of a model are
the goal to be achieved by the Pragmatic Proof Algorithm.

background knowledge.
Next, the PPA-implementation attempts to create the initial pre-proof
using the EYE reasoner. A proof is found, therefore the goal is achiev-
able. The request in the RESTdesc rule for adding the FMU to the API
instance through a POST request to /models is fully specified (no
unknown universally quantified variables), so it is executed. The PPA
learns that </models/6157f34f> rdf:type sms:Model through
the response, so the precondition in the first rule in listing 5.3 is
now met and, as a consequence, the request fully specified. The
request is executed next, after it was confirmed that the initial POST
request contributed to achieving the goal by generating a post-proof
and recognizing that the number of remaining requests decreased
compared to the pre-proof.▲
The response to the GET request to /models/6157f34f contains
the definition of /models/6157f34f#shapes-instantiation for
creating an instance of a model.
Through the extension of the PPA, the background knowledge is now
updated to contain the triple

</models/6157f34f#shapes-instantiation>
sh:targetNode
<file:///tmp/input_00.n3> .

Before executing the request POST /models/6157f34f/instances ,
which is now fully specified because the triple listed above is known,
the higher-level user of the PPA-implementation is asked to supply
the input data to be sent as the body of this request inside the file
/tmp/input_00.n3 . The contents of the file are then sent as the
body of the request.
The remaining requests are identified and executed in the sameman-
ner until the simulation result is retrieved, and a proof confirms that
the goal has been achieved.

Successfully running the examples using the same, unaltered implement-

6.3 A Systems Engineering Knowledge Graph 115

ation of the PPA demonstrates that the developed M&S hypermedia API is
indeed usable by generic software agents. Both examples are included in the
repositoryhttps://github.com/UdSAES/pragmatic-proof-agent.

Only few assumptions aremade, which are considered reasonable for
a proof of concept implementation: the URLs of the available hypermedia
APIs must be supplied; the hypermedia APIs must transfer the RESTdesc
descriptions as the response to a OPTIONS -request to * ; and the HTTP-
ontology1 must be used to communicate the existence and form of HTTP
requests that allow transitioning between resource states inside the REST-
desc descriptions.

Previously, it was necessary to program a client for every model to be
used with a non-hypermedia implementation of the MSaaS-concept. Now,
one client can use all capabilities of all hypermedia APIs that meet the
assumptions outlined above. This includes combinations of different hyper-
media APIs, in other words automatic mash-ups. A declarative formulation
of goals to be achieved using services becomes possible, which makes the
manual implementation of requests obsolete. Moreover, clients become
robust against changes in the service interface because they no longer rely
on information hard-coded at design-time.

The value of these gained capabilities is expected to manifest itself in dis-
tributed systems of systems which include many entities such as sensors,
models and actuators, likely subject to frequent reconfiguration.

For example, Arndt et al. [2] describe such a system in the context
of patient care in hospitals and outline the use of N3 rules very similar to
RESTdesc that describe the effect of possible sensor queries; ontological
knowledge about the context; individuals instantiating classes defined in
the ontologies; and generating proofs via reasoning to identify sensors and
threshold values relevant to a certain goal. The authors explicitly state that
the rules to describe the effect of sensor queries can be combined with
RESTdesc rules that describe the effect of hypermedia APIs [2, section 5].

6.3 A Systems Engineering Knowledge Graph

Hypermedia representations that contain links of one piece of data to other
pieces of data are a core mechanism of the Web: the existence of links
enables both using the representations themselves for advancing the applic-
ation state and the serendipity, in other words “the faculty or phenomenon of
finding valuable or agreeable things not sought for” [63], which has become
characteristic for browsing theWeb. Both are seen as core reasons for its
success.

Consumers usually depend on links provided by the services they use;
which is why the FAIR-principles recommend that “(meta)data are richly
described with a plurality of accurate and relevant attributes” including a
“clear and accessible data usage license” and “detailed provenance” (prin-
ciples R1, R1.1, R1.2; see table 2.1). In the context of the Semantic Web,
the data model of choice to be used by software agents to consume such

1 http://www.w3.org/2011/http#

https://github.com/UdSAES/pragmatic-proof-agent
http://www.w3.org/2011/http#

116 6. Applications

Prefix URL Purpose/Topic

bibo http://purl.org/ontology/bibo/ Bibliographic details
dcat http://www.w3.org/ns/dcat# Description of data sets
dct http://purl.org/dc/terms/ Basic metadata
foaf http://xmlns.com/foaf/0.1/ Persons and their relationships
geo http://www.w3.org/2003/01/geo/wgs84_pos# Encoding locations
prov http://www.w3.org/ns/prov# Encoding of provenance data
qudt http://qudt.org/schema/qudt/ Encoding of physical quantities
unit http://qudt.org/vocab/unit/ Encoding of units
sosa http://www.w3.org/ns/sosa/ Sensors, Observations, Samples, Actuators
spdx http://spdx.org/rdf/terms# Licensing information
time http://www.w3.org/2006/time# Encoding time data

Table 6.1: There are many ontologies that can be used to represent data in a systems engineering context in an RDF graph; this
table shows those used in the exemplary KG created as part of this thesis.

data is RDF; in its role as a foundational building block of the Semantic
Web it can be seen as the lowest common denominator that participants
of a conversation have to agree on in order to enable the exchange of data.
Consequently, it means that the data to which links are given should also
be available in RDF to allow the traversal and exploration of a domain of
interest.

To demonstrate that the availability of triples about a MBSE context
allows answering meaningful questions that could not be answered pro-
grammatically before, an exemplary systems engineering knowledge graph
was populated and then used to answer SPARQL queries in conjunction with
the QPF endpoint of the M&S hypermedia API.

The content of the KG is themed around the PV performance forecast ex-
ample introduced earlier: it includes power measurements taken at two
PV systems and the systems’ properties; data about weather stations in the
vicinity of these systems, including weather measurements and -forecasts;
statements about people and organizations involved in the systems’ oper-
ation and use; as well as bibliographic information on related scientific
publications and the ORCiD-records of involved persons. Moreover, some
statements were manually added to tie different data sets together, such as
owl:sameAs -statements for entities that were identified differently in dif-
ferent data sources, or more details on the data’s context. For representing
all the above in RDF, established ontologies could be used, which are listed
in table 6.1.

In figure 6.3, the pipeline used to populate the KG from the different
data sets is visualized. The steps taken are based on Ruben Verborgh’s
pipeline for creating an RDF-representation of his personal website [111].
To begin, for data that exists in semi-structured form such as CSV or JSON,
theRML1 mapping language [26] was used to define how elements of this data
shall be represented as RDF triples. The actual translation is then executed
by an instance of RMLMapper2.

Some services directly provideRDF representations of their resources
through content negotiation. For example, when the Accept -header is

1 https://rml.io/
2 https://github.com/RMLio/rmlmapper-java

http://purl.org/ontology/bibo/
http://www.w3.org/ns/dcat#
http://purl.org/dc/terms/
http://xmlns.com/foaf/0.1/
http://www.w3.org/2003/01/geo/wgs84_pos#
http://www.w3.org/ns/prov#
http://qudt.org/schema/qudt/
http://qudt.org/vocab/unit/
http://www.w3.org/ns/sosa/
http://spdx.org/rdf/terms#
http://www.w3.org/2006/time#
https://rml.io/
https://github.com/RMLio/rmlmapper-java

6.3 A Systems Engineering Knowledge Graph 117

import
RDF data

compute
entailments

mapping CSV/
JSON to RDF

expose via
QPF interface

remove
clutter

.ttl

.xml
.n3
.ttl

.csv

.json

– ORCiD-records
– bibliographic info
– licence details
– Zenodo-records
– output fmi2rdf
– ...

– weather stations
– weather forecasts
– PV measurements

+ mapping rules for
each source file

inference rules for...
– rdfs:domain
- rdfs:range
– owl:sameAs
 :
 + manually added
 triples/assertions

RMLMapper rdflib EYE egrep

Comunica
(as consumer)

HTTP

.ttl .nt

Figure 6.3: Data from semi-structured sources is transformed to RDF via RML-mappings; some sources directly provide triples.
After import using rdflib, the EYE reasoner applies rules to infer additional triples. Of these, some that do not add relevant
information are removed again using the command-line tool egrep before storing all triples and exposing them through a QPF
interface such that agents can query the data using Comunica.

set to text/turtle instead of text/html , sending a GET -request to
https://doi.org/10.3389/fenrg.2021.639346 results in a docu-
ment containing an RDF-representation of the article’s bibliographic details
serialized in the Turtle language instead of the HTML version rendered as a
website by browsers1. The dblp computer science bibliography and ORCiD
are other examples of services that provide RDF representations of the data
that they hold.

Next, the EYE reasoner is used to compute entailments, in other
words to explicitly list all triples that can be inferred from applying know-
ledge encoded in the ontologies used to the triples that are generated directly.
Thereby, the KG explicitly contains most of the links that might be required
when answering queries. This decision to collect all data in one triple store
and to perform reasoning during import does not reflect the distributed
nature of the SemanticWeb, but it simplifies the realization of the scenarios
and was thus chosen for implementation. All triples are stored in a file
which acts as the triple store. The triples are made accessible through a
QPF server; requests to it are generated from SPARQL queries through the
Comunica framework.

The queries used as examples were chosen such that they represent three
different aspects of using a KG: first, there are queries for discovering the
content of the KG and finding specific information. Second, some queries
might help with deciding to which extent a resource can be trusted. Third,
information on the use of models such as the prerequisites for simulating
them (required parameters, input trajectories) can be obtained from the KG.
As in section 6.1, they are discussed in terms of their formulation in natural
language and SPARQL; the results when executed against the KG of which
an excerpt is shown in listing 6.3; and remarks if applicable. The difference
to section 6.1 is that now data on a much broader context, beyond the data
known to an instance of the M&S hypermedia API, is available.

1 https://citation.crosscite.org/docs.html

https://doi.org/10.3389/fenrg.2021.639346
https://citation.crosscite.org/docs.html

118 6. Applications

1 @prefix var: </models/6157f34f/variables#> .
2 @base <http://example.com> .
3
4 </agents/swsls> a prov:Agent, prov:Organization ;
5 rdfs:label "Stadtwerke Saarlouis GmbH"@de ;
6 foaf:homepage <https://www.swsls.de> ;
7 prov:influenced </activities/provide-data-pv-swsls>, </systems/swsls-sw>,
8 </systems/swsls-sw/behaviour>;
9

10 </activities/provide-data-pv-swsls> a prov:Activity ;
11 prov:generated </systems/swsls-sw/behaviour>, ... ;
12 prov:wasAssociatedWith </agents/swsls> ;
13
14 </systems/swsls-sw> a geo:SpatialThing, prov:Entity, sosa:Platform ;
15 dct:title "Photovoltaikanlage Stadtwerke Saarlouis"@de ;
16 geo:lat "49.319986" ; geo:long "6.746344" ; geo:alt "181" ;
17 prov:wasAttributedTo </agents/swsls> ;
18 foaf:based_near </weather-stations/10704>;
19
20 </weather-stations/10704> a geo:SpatialThing, prov:Entity, sosa:Platform ;
21 geo:lat "49.264019" ; geo:long "6.686793" ; geo:alt "363" ;
22 dct:title "Berus"@de ; foaf:based_near </systems/swsls-sw> ;
23 sosa:hosts </weather-stations/10704/sensors/t_2m>,
24 </weather-stations/10704/sensors/ws_10m>, ... ;
25
26 </systems/swsls-th/behaviour> a dcat:Dataset, prov:Collection, prov:Entity ;
27 dct:date "2019-05-28"^^xsd:date ;
28 dct:publisher </agents/swsls> ;
29 prov:wasInfluencedBy </activities/provide-data-pv-swsls>, </agents/swsls> ;
30 dcat:temporalResolution "PT15M"^^xsd:duration ;
31 sosa:isFeatureOfInterestOf [a prov:Activity, sosa:Observation;
32 sosa:hasResult [
33 a qudt:QuantityValue; qudt:numericValue 600.1; qudt:unit unit:W
34]; sosa:phenomenonTime [a time:Instant, time:TemporalEntity;
35 time:inXSDDateTimeStamp "2019-03-15T06:45:00+0000"^^xsd:dateTimeStamp
36]], [...];
37
38 </models/6157f34f> a fmi:FMU, sms:Model, sms:Virtual ;
39 fmi:modelName "PhotoVoltaicPowerPlantFMU" ;
40 fmi:hasParameter var:latitude, var:longitude, var:elevation,
41 var:environmentAlbedo, var:panelArea, var:panelAzimuth, ... ;
42 fmi:hasInput var:temperature, var:windSpeed,
43 var:diffuseHorizontalIrradiance, var:directHorizontalIrradiance;
44 fmi:hasOutput var:angleOfIncidence, var:angleOfSunAboveHorizon,
45 var:powerDC, var:totalEnergyDC ;
46 prov:wasAttributedTo <https://orcid.org/0000-0002-4006-8582> ;
47 spdx:declaredLicense <http://spdx.org/licenses/MIT> ;
48
49 var:environmentAlbedo a fmi:Parameter, fmi:ScalarVariable,
50 sms:ModelParameter, sms:ModelParameterNonFree, sms:UserInput, ... ;
51 dct:description "Albedo for estimation of irradiance by reflection" ;
52 fmi:max 1.0 ; fmi:min 0.0 ; sms:isParameterOf </models/6157f34f> .
53
54 <https://orcid.org/0000-0002-4006-8582> a dct:Agent, geo:SpatialThing,
55 prov:Agent, prov:Person, foaf:Agent, foaf:Person ;
56 foaf:name "Moritz Stüber" ;
57 owl:sameAs <http://id.crossref.org/contributor/moritz-stuber-aq5hb6p5uld>,
58 </agents/moritz-stueber>, <https://orcid.org/0000-0002-4006-8582> ;
59 foaf:publications <https://orcid.org/0000-0002-4006-8582#workspace-works> .

Listing 6.3: Excerpt of an SE knowledge graph, serialized using the Turtle language. For readability, most prefix definitions were
omitted (see table 6.1); and URLs were shortened/made relative.

6.3 A Systems Engineering Knowledge Graph 119

Content-specific Queries
Whichdatasets are available andwhat basicmetadata do theyprovide?

CONSTRUCT {
?dataset rdf:type dcat:Dataset ;

dct:title ?title ;
dct:type ?type ;
... .

}
WHERE {

?dataset rdf:type dcat:Dataset.
OPTIONAL {?dataset dct:title ?title}
OPTIONAL {?dataset dct:type ?type}
OPTIONAL {...}

}

<doi:10.5281/zenodo.4392849> a dcat:Dataset ;
dct:title "UdSAES/pv-systems: v0.9.0" ;
dct:creator <https://orcid.org/0000-0002-4006-8582> ;
dct:type <http://purl.org/dc/dcmitype/Software> ;
dct:issued "2020-12-24"^^xsd:date;
dct:publisher </agents/zenodo> ;
dcat:keyword "Modelica", "PV Modeling" .

</systems/swsls-sw/behaviour> a dcat:Dataset ;
dct:issued "2019-05-28"^^xsd:date ;
dct:publisher </agents/swsls> .

...

Which sensors are available at the weather station based near the PV
systems operated by SWSLS?

The abbreviation SWSLS
stands for “Stadtwerke
Saarlouis”, a local utility
company.

SELECT DISTINCT ?station ?sensor
WHERE {

</agents/swsls> prov:influenced ?system.
?system rdf:type sosa:Platform.
?system foaf:based_near ?station.
?station rdf:type sosa:Platform.
?station sosa:hosts ?sensor.
?sensor rdf:type sosa:Sensor.

}

The relation foaf:based_near was added manually, as part of the
custom triples used to meaningfully combine the data from different
sources.

?station ?sensor

</weather-stations/10704> </weather-stations/10704/sensors/t_2m>
</weather-stations/10704> </weather-stations/10704/sensors/ws_10m>
… …

120 6. Applications

Facilitating Trust

Which activities by SWSLS that generated a data set are known to
have resulted in the publication of a journal article?

SELECT ?activity ?dataset ?doi ?journal_title
WHERE {
?activity rdf:type prov:Activity.
?activity prov:wasAssociatedWith </agents/swsls>.
?activity prov:generated ?dataset.
?dataset prov:influenced ?publication.
?publication bibo:doi ?doi.
?publication dct:isPartOf ?journal.
?journal rdf:type bibo:Journal.
?journal dct:title ?journal_title

}

…resulting in: </activities/provide-data-pv-swsls> generated
the data set </systems/swsls-sw/behaviour> , which influenced
the article <doi:10.3389/fenrg.2021.639346> , published in the
journal “Frontiers in Energy Research”.

Prerequisites for Using Models
What are the parameters of my model?

SELECT ?model ?description WHERE {
?model rdf:type fmi:FMU .
?model fmi:hasParameter ?parameter .
?parameter dct:description ?description .

}

Note that this first formulation resolves without reasoning as the
relevant triples are generated by fmi2rdf; whereas the query for-
mulation below (like all the other queries in this section) relies on
triples added through reasoning to resolve.

SELECT ?model ?description WHERE {
?model rdf:type sms:Model .
?model sms:hasParameter ?parameter .
?parameter dct:description ?description .

}

?model ?description

<m1> Latitude in decimal degrees
<m1> Longitude in decimal degrees
<m1> Overall surface area of all panels (combined)
<m1> Surface tilt in degree (Horizontal equals 0°, vertical equals 90°)
… …

6.3 A Systems Engineering Knowledge Graph 121

For which entities in the KG do we know their location?

SELECT ?thing ?latitude ?longitude ?altitude
WHERE {

?thing rdf:type geo:SpatialThing.
?thing geo:lat ?latitude.
?thing geo:long ?longitude.
OPTIONAL {?thing geo:alt ?altitude}.

}

?thing ?latitude ?longitude ?altitude

</weather-stations/10704> 49.264019 6.686793 363
</systems/swsls-sw> 49.319986 6.746344 181
… … … …

In conclusion, an RDF-based KG containing statements about systems, mod-
els and related entities including their interconnections can make implicit
knowledge accessible. Previously unconnected, but related entities can be
linked explicitly and entities in the real or envisioned world can be mapped
to their virtual counterparts and vice versa. Thereby, agents are enabled to
explore the world under consideration and to draw conclusions from known
facts, in other words to apply the knowledge encoded in the ontologies to the
individuals relevant in a given setting via reasoning. Meaningful knowledge
queries, including such that may help with fostering trust in resources, can
be answered algorithmically which would have not been possible before.

123

7. Discussion and Outlook

At the beginning of this thesis, the question “CanM&Sbenefit fromSemantic
Web concepts?” was asked. After discussing fundamental concepts; review-
ing related work; stating thesis concept and -hypotheses; and presenting
realization and applications, this chapter attempts to provide an answer to
this question.

To do so, it is first evaluated whether the expectations set forth in
the hypotheses could be realized. Then, opportunities for applications and
further research based on the work presented in this thesis are outlined.

7.1 Evaluation of Hypotheses andResearchQuestions

For each of the main hypotheses H1–H4, the technical contributions are
discussed first, as their implementation is a prerequisite for validating or
falsifying the main hypotheses.

New Ontologies and the fmi2rdf-Parser (H1.1)
The FMI-ontology captures concepts and roles defined in the FMI
standard; the fmi2rdf-parser makes use of these concepts and roles
to create representations of FMUs in RDF. The representations con-
tain information about the models inputs, outputs, and parameters
including their respective types, units and associated limitations.
Moreover, the requirements for instantiating a model as well as sim-
ulating a model instance are captured in the form of SHACL shape
graphs.
The FMI-ontology was used as part of the hypermedia API and to
build exemplary KGs, using the fmi2rdf-parser to generate the rep-
resentations. Using fmi2rdf is faster than a manual process, and
it is less error-prone. However, there are many opportunities for re-
fining the proof-of-concept implementation. First, the test coverage
should be extended both with respect to the competency questions
used and by testing onmore FMUs. Second, details of the implement-
ation such as type casting for enumerations and the generation of
shapes graphs should be revised, and data provided by the creator
of the FMU as vendor annotations should be integrated. Third, the
FMI-ontology and fmi2rdf should be updated to version 3.x of the
FMI standard. Because the FMI-ontology is a methodological onto-
logy, ontology and parser have a high potential for adoption in the
community.
In contrast, the SMS-ontology is a referential ontology. Its potential
for uses other than referring to (parts of) models, independent of
their modelling language, and indicating which classes of systems a

124 7. Discussion and Outlook

model represents, is yet to be explored. Interesting UCs are expected,
such as ontology-driven modelling; however, reasoning under SNAF
is likely necessary.
Both ontologies are given a persistent URL (pURL) to give them a
persistent identifier and -locator, and it is attempted to realize best
practices for developing FAIR ontologies (demanded by FAIR prin-
ciple I2). Ontologies and parser are published under the MIT licence
on GitHub; detailed README-documents give an overview on scope
and usage. Some unit tests allow for regression testing and further
document the software. Consequently, H1.1 is seen as validated.

Representation of FMUs in RDF (H1)
To validate H1, two KGs were built and then used to answer semantic
queries about their content. First, each instance of the M&S hyper-
media API collects data about its models and model instances and ex-
poses it through a QPF interface. Second, a SE KG themed around PV
forecastingwas created by collecting data fromvarious sources; trans-
forming them to RDF; and employing a reasoner to derive additional
triples that make knowledge encoded in the concept expressions
and -inclusions of the ontologies used explicit. For both, semantic
queries were formulated, encoded in SPARQL and run against the
KGs as shown in section 6.1 and section 6.3, respectively.
The successful resolution of the queries shows that representing
FMUs and related data in RDF enables advanced querying which,
to the best of my knowledge, was not possible using open-source
components before. This validates H1. Using RDF provides one way
of amending models with knowledge that is formally encoded (both
by humans and as part of software processes). Importantly, RDF and
the related tooling are both well-founded in theory (section 2.2.2)
and established in practice, facilitating both the implementation of
software and its integration in a larger context.

Cloud-native Implementation of the MSaaS-Concept Based on FMI (H2.1)
Essentially, two variants of a servicemakingM&S entities and capabil-
ities available via the internet were realized as part of this work. Both
expose the same functionality. Specifically, models of the dynamic
behaviour of systems, exported as FMU as a stand-alone executable
model format, are supported. In other words, this means that causal
MIMO blocks that are integrated with a solver can be used with the
developed software.

The two variants of the service differ in the characteristics of the
service interface and their degree of novelty. From a technical per-
spective, this manifests itself in resource representations with differ-
ent expressivity and in different ways of communicating the effects
that requests have. However, the underlying implementation, except
for the generation of resource representations, is the same for both
variants.
The first version of the service is based on REST, but does not imple-

7.1 Evaluation of Hypotheses and Research Questions 125

Characteristic Architecture & Implementation Deployment & Operations

Broad network access as a Service in the (Semantic) Web;
12factor app

automated build, release, run-pipeline
(container-based)

On-demand self-service as a Service in the (Semantic) Web;
12factor app

automated build, release, run-pipeline
(container-based)

Resource pooling microservices; state only stored in API containerization; infrastructure as code
Rapid elasticity decoupling API/worker; state only

stored in API; caching; 12factor app;
async/await

containerization; deployment on
clustered elastic platform

Measured service logging; authentication; usage metrics log collection; monitoring; enforcing
usage policies; billing based on metrics

Table 7.1: Realizing the defining characteristics of cloud computing requires measures at the level of the software’s architecture;
its implementation; and its deployment. For the developed software, all characteristics except “measured service” were realized;
measures yet to be implemented are marked accordingly.

ment the HATEOAS constraint. It uses JSON for its resource repres-
entations, and documents the service interface according to the OAS.
Technically, it is similar to what others have done before. Within the
Modelica community, it distinguishes itself from other lines of work
through the focus on complete systemmodels instead of more tech-
nical interfaces to the underlying FMUs, and also because it does not
provide a UI since it is intended as a building block for applications
and not an end-user facing application itself. This variant is new and
useful [93, section 6] and represents the current best practice for
providing APIs in theWeb.
The second version of the service additionally realizes the HATEOAS
constraint and is therefore denoted “M&S hypermedia API”. It uses
serializations of the RDF data model for the resource representations
and explains the effect of state-changing operations throughmachine-
actionable RESTdesc descriptions. To the best of my knowledge, it is
the first realization of the MSaaS idea as a hypermedia API which is
based on FMI as well as made available openly and documented in
detail [93, 94, this thesis].
Both variants improve the accessibility of M&S entities and capab-
ilities by providing them as a service. For the service provider, this
has the main advantages of increased outreach and insight into the
usage of their assets while protecting their intellectual property (IP),
at the cost of the effort for DevOps and ensuring dependability and
security. The service consumers benefit from better accessibility;
an interface tailored to their needs (in this case, whole systemmod-
els instead of FMI functions); the ability to embed simulations into
larger processes; virtually unlimited computing power; and no in-
stallation/software requirements. In exchange, the consumers have
to accept a dependency on the service provider and, consequently,
less control over functionality and availability.

Four of the five defining characteristics for CNAs were realized in the
developed service (table 7.1). The key aspects to achieve this are…

– to structure the software as a composition of microservices
and to decouple the API from the worker components;

126 7. Discussion and Outlook

– to adhere to the best practices for building SaaS known as the
“twelve-factor app”; and

– to use containers as deployment units.

There are two reasons why the “measured service”-characteristic
was not implemented. First, it is not required for demonstrating
the functionality of the service, but would require both the defini-
tion and implementation of appropriate usage metrics as the basis for
monitoring service instances and billing service consumers and an
authentication procedure as the basis for enforcing usage policies
and billing. Second, such features relating to reliability, observability
and security, are mostly independent of the application logic. There-
fore, they should likely be implemented using sidecar containers that
form a service mesh [68] and not as part of the service implementation
itself.▼ [94, section 7]
Regarding support for tracing and managing requirements, changes,
configurations et cetera, the immutability of the exposed resources
(none of models, instances, simulations or simulation results can
be modified after their creation) facilitates their integration into a
management system at a higher level. If necessary, relevant triples
could be added to the resource representations, but this is currently
not implemented.▲
There are some implementation details that ought to be addressed
before running the service in a production environment. Most im-
portantly, these are the lack of an explicit threat model/consideration
of security and dependability aspects; the lack of a mechanism for
enforcing usage policies; and a possible scalability bottleneck be-
cause the API component is not designed to scale by deploying more
instances. Still, H2.1 is seen as valid and idea and existence of the
software were communicated in the Modelica community [93].

▼ [94, section 6.1.3]
Support for Loose Coupling (H2.2; Q3)

The result of analysing theREST-basedHTTP-API and theM&Shyper-
media API with respect to coupling according to the facets suggested
by Pautasso andWilde [76] (see section 2.3.1) is visualized in figure 7.1.

Note that the axis is re-
versed compared to the
visualizations in [76] for
better consistency within
this document.

The detailed assessment can be found in table A.4 in appendix A.
The same value is assigned for both variants for the facets discov-
ery (referral), identification/naming (global), platform-dependency
(independent), interaction (synchronous), granularity (depends on
implementation) and state (stateless). This is the consequence of
basing the design of both alternatives on REST, specifically the use of
URLs, server/client interaction via HTTP and the exchange of state-
less messages.
The only facets for which the hypermedia API is not classified as sup-
porting loose coupling are granularity and interaction. Granularity
is defined as “the design trade-off between the number of interac-
tions that are required to provide certain functionality to service a
large client community, and the complexity of the data parameters
(or operation signatures) to be exchanged within each interaction”,

7.1 Evaluation of Hypotheses and Research Questions 127

1

2

3
hypermedia API

HTTP-API
Discovery

Binding

Platform

Interaction

Interface Orientation

Data Model

Identification
/Naming

Granularity

State

Evolution

Generated
Code

Conversation

Figure 7.1: In contrast to a non-RESTful HTTP-API, the M&S hypermedia API supports loose
coupling according to all but one facet. The numerical value 1 indicates tight coupling; 2
means design-specific, in other words dependent on specific implementations; and 3 indicates
loose coupling.

and it is argued that fewer interactions through more coarse-grained
interfaces result in more loosely coupled systems [76, p. 916]. The
M&S hypermedia API offers both a relatively fine-granular interface
through its choice of resources to be exposed and a coarse grained
QPF interface for read-only access. It is thus classified as ‘design-
specific’ since it depends on how a client interacts with the API. The
interaction-facet is classified as synchronous and therefore ‘tight’:
both the client and instance of the API need to be available at the
same time for a successful interaction. This constraint is relaxed
by several factors: first, the queue enables successful completion
of requests even though no worker might be available temporarily.
Second, the API’s ability to decouple the successful completion of
a request resulting in a time-consuming job from execution of said
job, as for example when triggering a simulation by a POST request
which immediately returns with a 201 Created pointing to a re-
source which is being created in the background, can be seen as
asynchronous. Third, Pautasso andWilde [76, p. 915] suggest that
caching also decreases coupling with respect to the interaction-facet
through non-blocking (but still synchronous) interaction. ▲

▼ [94, section 6.1.2]
Improved Machine-actionability (H2.3; Q2)

The machine-actionability of the exposed M&S capabilities is eval-
uated qualitatively only: the PPA-implementation is able to use the
M&S hypermedia API without being explicitly coded against it, as
described in section 6.2.2. This successful use is seen as an indication
of increased machine-actionability (H2.3). Moreover, since the FAIR

128 7. Discussion and Outlook

principles explicitly include machine clients as their target audience,
the increased FAIRness is also seen as a sign of increased machine-
actionability. The fact that the PPA-implementation needs to ask a
higher-level user for input that is compliant to certain shapes at run-
time is not seen as an argument against machine-actionability for
two reasons: first, the higher-level user could be software. Second,
the user input has to be supplied eventually.▲

▼ [94, section 6.1.1]
Improved FAIRness (H2; Q1)

The FAIRness of the M&S capabilities exposed as resources of a spe-
cific instance of the M&S hypermedia API are evaluated by compar-
ison against theFAIRness of a .fmu-file and theREST-basedHTTP-API
exposing JSON representations that preceded the hypermedia API
implementation.
For each of the 15 FAIR principles, the respective solution is clas-
sified as not supported (numerical value 1), supported (2), partially
implemented (3) or implemented (4). ‘Not supported’ means that a
principle is not achievable due to conceptual discrepancies between
the chosen architecture and the requirements of the principle. In
contrast, ‘supported’ means that the principle is achievable, but not
currently realized, either because it is not implemented; because it
represents organizational issues (such as commitment to the long-
term availability of metadata); or because it depends on user input.
A score of ‘partially implemented’ means that either not all parts of a
FAIR principle with multiple dimensions are realized; or that more
could be done, for example by providing more detailed metadata,
provenance information, or similar. Principles that are fully realized
in the given implementation are classified as ‘implemented’.
The categorization was done based on the FMI specification and the
characteristics of the developed service. For example, principle I1
(formal language for knowledge representation) was categorized as
‘not supported’ for FMUs and ‘implemented’ for model representa-
tions of the hypermedia API: FMUs do not use a formal language
for knowledge representation, whereas RDF is the data model re-
commended by the W3C for knowledge representation in the Se-
mantic Web. As a second example, take principle R1 (richly de-
scribed (meta)data): metadata could be added to FMUs as part of
the .modelDescription.xml-file, but they are not required by
the FMI standard and thus not always included in models that are
exported as FMU. In the representations ofmodels exposed in the hy-
permedia API, some metadata was added. Consequently, the values
‘supported’ and ‘partially implemented’ were assigned.
The results of the evaluation are visualized in figure 7.2. In the visual-
ization, a higher value, plotted farther from the centre, corresponds
to a higher degree of FAIRness. Figure 7.2 shows that there is no
change in FAIRness for principles F2, F3 and R1.3 when comparing
an FMU to the hypermedia API. F2 demands that “Data are described
with rich metadata (defined by R1 below)”, which is partially imple-
mented in all variants: both an FMU and their representations as re-

7.1 Evaluation of Hypotheses and Research Questions 129

F1
F2

F3

F4

A1

A1.1

A1.2

A2I1

I2

I3

R1

R1.1

R1.2

R1.3

1

2

3

4
hypermedia API

HTTP-API
FMU

Figure 7.2: The FAIRness of M&S resources increases when exposed through a hypermedia
API both compared to a .fmu-file and a non-RESTful HTTP-API.

sources contain somemetadata;more “rich”metadata could be added
through vendor annotations inside an FMU or by addingmore triples
to a hypermedia representation, but neither is currently implemen-
ted. R1.3 asks that “(Meta)data meet domain-relevant community
standards”. FMI is the community standard for model exchange and
co-simulation. Since all variants expose the metadata specified in
the standard and allow downloading the original .fmu-file, R1.3 is
classified as ‘implemented’.
The M&S hypermedia API fully implements principles F3 (explicit
link between metadata and data), A1/A1.1 (open protocol), I1 (know-
ledge representation) and R1.3 (community standard). These are
technical aspects that can be seen as the result of using the Semantic
Web technology stack and basing the implementation on FMI.
Supported, but not even partially implemented, are principles A2
(long-lived metadata) and I3 (references to other (meta)data). Both
depend on the application and context for which M&S capabilities
are used and are potentially laborious; and neither is necessary for
the applications presented in chapter 6.
All other aspects are partially implemented in the M&S hyperme-
dia API, which shows the potential for reaching a high degree of
FAIRness using the chosen approach. The classification is subjective
and thus debatable; therefore details of the evaluation, including the
notes on why a certain score was given, can be found in table A.2 and
A.3 in appendix A.2. The principle I2, “(Meta)data use vocabularies
that follow FAIR principles”, represents an exception: here, the FAIR-
ness of the FMI- and SMS-ontologies is evaluated using the FOOPS!
ontology pitfall scanner [36]. The other used ontologies were not

130 7. Discussion and Outlook

evaluated because they cannot be influenced and because they are
mostly well-known ontologies.
The REST-basedHTTP-API also shows improved FAIRness compared
to a .fmu-file due to the use of URLs to identify resources and mak-
ing them available over HTTP (A1.x). However, FAIRness cannot be
reached because no formal language for knowledge representation
is used. It thus becomes hard to explicitly link metadata to the data it
is about (F3 not supported); and to provide provenance and licensing
information in a machine-readable way.
In conclusion, the FAIRness of M&S capabilities increases when ex-
posed through a hypermedia API, both compared to not using an
API and a REST-based HTTP-API. The FAIRness could be improved
further, especially through organizational commitment and in-depth
data modelling. Both are seen as beyond the scope of a proof of
concept-implementation.▲

Open-source PPA-implementation and -extension (H3.1)
Because it was needed to demonstrate the improved machine-ac-
tionability of the M&S capabilities and -entities exposed through
the hypermedia API, the Pragmatic Proof Algorithm (section 5.4) by
Verborgh et al. was implemented based on [119, 112, 117]. In these
publications, using the PPA to generate thumbnails of images by post-
ing them to a corresponding hypermedia API, served as an example
to explain the algorithm. To verify that my implementation works
correctly, this example was repeated.
Moreover, the example was modified such that the hypermedia API
for thumbnail generation can expose its resources under different
paths, essentially resulting in three different hypermedia APIs with
the same functionality. Using the PPA-implementation without modi-
fication on these APIs demonstrates that the use of HATEOAS, in
other words the generation of requests at run-time based on inform-
ation obtained as part of the service interaction, makes clients more
robust against changes in the service interface (as expected).
The source code was published on GitHub under the MIT licence;
thus, others are granted the right to use the implementation for their
own work. A README-document briefly explains usage as well as
known issues. Consequently, H3.1 is seen as validated.

Proposed Extension of the PPA (H3.2)
Using the PPA as an agent to solve tasks involving models and their
simulation necessitates that data conforming to requirements that
depend on the models, and therefore only become known at run-
time, are sent as part of requests. Therefore, a need for an extension
of the PPA to account for this arises.
I devised and implemented an extension that depends on the ex-
istence of shape hints in the RESTdesc descriptions of the API (sec-
tion 5.4.2). For example, the information “the body to be sent with
this request is linked to a SHACL shapes graph (which is currently
unknown)” is communicated in one RESTdesc rule, and the inform-

7.1 Evaluation of Hypotheses and Research Questions 131

ation “the response to this request contains the definition of this
shapes graph” in another. With this information, the PPA can create
the necessary proofs to make sure that its goal is reachable without
knowing what exactly is needed, and then ask a higher-level user for
input at run-time after the shapes graph specifying the requirements
was contained in the response to an earlier request. The extension is
part of the published PPA-implementation and was first documented
in [94, section 4.3.2].
Characteristics of the extended algorithm with regard to complexity
and termination were not considered. Moreover, the implementa-
tion of asking a higher-level user for input must be improved as a
workaround is currently used. For example, it should be possible to
generate queries to a KG based on the shapes graphs.
Nevertheless, the extension presents one possible solution to an as-
pect that was not previously discussed. It works and H3.2 is therefore
seen as validated.

Decreased Programming Effort (H3; Q4)
The programming effort decreases when asking the PPA to figure
out requests and request sequence instead of manually coding them:
When using the PPA to simulate a model instance, it is necessary to
supply the URL of a M&S hypermedia API instance; the goal state;
and the initial knowledge. Additionally, inputs matching the shapes
must be provided when asked. In contrast, when using the REST-
based HTTP-API, one first needs to instantiate amodel; then read the
OAS which has been re-generated to include the newly added model
instance; and implement the request accordingly for every model
used.
There are two main issues with the current state of the developed
software. First, it is problematic that the simulation-resources ▼ [94, section 6.2]
need to be polled in order to learn about the existence of a simu-
lation result, especially in combination with an implementation of
the PPA as the service consumer: if the simulation takes longer to
complete than it takes the PPA to request a representation of the
simulation-resource, the resource representation will not contain
the link to the result as expected due to the corresponding RESTdesc
rule. Therefore, the execution of the request will not bring the PPA
closer to reaching its goal. Consequently, the PPA will disregard the
rule in future iterations and thus be unable to reach the goal even
though it would have been possible had the request been sent after
the simulation run completed. Second, the software was only tested ▲
to a limited extent.
Nonetheless, having an agent that can “operate” theM&Shypermedia
API at run-time enables its use at scale, in other words with many dif-
ferentmodels that would each have requiredmanual implementation
before.

Value for MBSE Use Cases (H4; Q4)
To show that the concept of this work is both feasible and useful, a num-

132 7. Discussion and Outlook

ber of tasks from a MBSE context were solved using the developed
software (chapter 6). Specifically, it was demonstrated that…

– a KG containing representations of FMUs in RDF allows find-
ing models through semantic queries;

– the MSaaS-implementation facilitates integration of simulation
in distributed control processes;

– the MSaaS-implementation enables the parallel execution of
simulations on a horizontally scalable set of computing resources
(ensemble forecast, component selection; section 6.2.1);

– the PPA-implementation works (thumbnail generation; sec-
tion 6.2.2)

– the PPA-implementation in conjunction with the M&S hyper-
media API allows solving declaratively formulated MBSE tasks
(section 6.2.2); and

– a SE KG allows answering semantic queries about models and
their context (section 6.3).

To conclude, the three issues that “unnecessarily complicate or even pre-
vent” the reuse of models (section 4.1) were addressed as follows:

1. the FAIRness improved by providing them as a service, using the
SemanticWeb as execution context;

2. the interface heterogeneity as an obstacle to using the service at scale
can be mitigated through the improved machine-actionability and
loose coupling;

3. reducing the amount of inaccessible knowledge is facilitated and
encouraged through the use of the RDF data model and an ecosystem
of existing ontologies.

Moreover, the characteristics put forth as “desirable” were addressed as
well. Data model and ontologies enable reasoning and knowledge queries
and also facilitate encoding provenance data that is essential for traceability.
Loose coupling and a declarative problem formulation are supported as
a consequence of realizing the REST constraints. Last, the design of the
service as a CNA and a methodological approach to DevOps represent the
state of the art for developing SaaS.

7.2 Opportunities for Further Work

Despite the positive results discussed in-depth in the previous section, these
results form but the basis for many interesting questions. Some directions
for further research are outlined below. They are structured similarly to
the hypotheses, focusing first on the individual building blocks (ontologies,
parser; M&S hypermedia API; the PPA as a generic software agent) before
turning to MBSE KGs and the wider MBSE context.

Ontologies to represent and reason about dynamic systemmodels
Three perspectives on the further development of the suggested on-
tologies and the fmi2rdf-parser suggest themselves.

7.2 Opportunities for Further Work 133

The first perspective is improving their functionality and robustness,
as well as facilitating interoperability with higher-level ontologies.
Measures to achieve this include…

– using a structured approach to ontology engineering, such as
the Linked Open Terms (LOT) methodology [78];

– revising and extending both textual definitions and the axio-
matization of classes;

– explicitly stating the allowed OWL constructs, in other words
deciding on an OWL profile and its associated complexity;

– improving test coverage of fmi2rdf and upgrading to version
3.x of the FMI standard;

– revising the handling of units and types, building upon exist-
ing approaches; and

– facilitating interoperability by aligning the ontologies with
mid-level engineering ontologies (and, by extension, a top-
level ontology) serving as a proven mental framework, such
as the Industrial Ontologies Foundry (IOF) core ontology [54].

Second, adoption and reuse of the ontologies should be inspired
through demonstrating their value by using them. For example, as-
pects that ought to be addressed are…

– building a collection of models that explicitly provide inform-
ation about their purpose and conditions for which they are
valid;

– executing semantic queries on such a collection of models;
– using reasoning to handle automatic alignment and conver-
sion of types and units; and

– investigating questions of consistency and composability for
FMUs by means of reasoning, as for example discussed in
detail by Tudorache [110].

Third, it would be interesting to explore ontology-driven modelling
on the basis of the FMI- and SMS-ontologies by means of UCs. Most
likely, these would raise the issue of reasoning under SNAF as well
as the need for methodological ontologies for related standards such
as SSP [67].

Hypermedia APIs to expose/access M&S entities and -capabilities
For the M&S hypermedia API, realizing more of its potential through
applications and moving towards a more dependable and more se-
cure implementation are logical next steps.
For direct application, the following scenarios are suitable:

– use as a building block in a SOA in which M&S capabilities are
required;

– exploiting parallelization and dynamic, horizontal scaling for
parameter fitting and optimization problems;

– managing anddeveloping a collectionofmodels centred around
a topic, for example by research groups to facilitate the con-
tinuity of their work; and

134 7. Discussion and Outlook

– use as a backend to realize human-facing web applications,
such as supporting house owners with investment decisions
regarding the supply of electric and thermal energy using
renewable sources, tailored to their specific prerequisites and
needs.

Regarding the robustness of the service implementation, an ana-
lysis of threats to dependability and security should reveal the next
steps to moving from a proof-of-concept to production-ready soft-
ware. Regarding features, lifting restrictions on FMUs (section 5.3.2);
implementing the “measured service” characteristics (likely using
sidecar containers) in conjunction with usage policies and access
control; as well as implementing a provenance trail throughout the
application should provide additional value for both service provider
and -consumer.▼ [94, section 7]
In this work, dynamic systemmodels and their simulation were fo-
cused. However, it should be possible to extend the ideas of this work
and the service concept to other types of models. The prerequisite
for direct integration into the developed hypermedia API is that it
must be possible to meaningfully represent these models and their
simulation through the conceptual resources chosen as the service in-
terface. If this is the case, implementation should be straightforward
because of the distinction between the format-independent API com-
ponent and the format-dependent worker implementations: for new
model formats, new worker implementations, including the creation
of a representation of the model format in RDF, are required—but
no changes to the API component.▲

PPA and RESTdesc to realize generic software agents
As shown in [119, 2], N3 rules and proof-based algorithms such as
the PPA show potential for solving problems in complex, frequently
changing environments. Consequently, it would be interesting to
devise and implement UCs that benefit from the approach and com-
bine hypermedia APIs, sensors, and actuators with generic software
agents.
Moreover, these environments would be well suited to put into prac-
tice the feature-based approach to API development [114] and, con-
sequently, the creation of agents that use them.

Knowledge graphs in MBSE
Last, besides the straightforward uses of KGs, an MBSE KG suggests
itself for finding parameters formodel instances or input data sets for
simulations, possibly based on the shapes communicated by theM&S
hypermedia API at run-time. Moreover, it could help with making
MBSE processes traceable.

135

8. Conclusion

Thework presented in this thesis explores the use of SemanticWeb concepts
and -technologies to provide M&S entities and -capabilities as a service. The
approach is seen as one possible way to address two core problems that
hinder a more widespread reuse of models and their simulation: a lack
of FAIRness and the heterogeneity of model interfaces (which makes the
reuse at scale expensive through the programming effort necessary). This
chapter concludes the research project by summarizing from a high-level
perspective its hypotheses and achievements; the opportunities for further
work; and its contributions.

First and foremost, it was hypothesized that a cloud-native implementation
of the MSaaS-concept based on FMI in the form of a hypermedia API would
lead to improved FAIRness and facilitate the use of M&S in distributed
settings at scale through improvedmachine-actionability. Froma conceptual
point of view, the design of the service interface would allow the service’s
use in loosely coupled systems. The representation of FMUs in RDF would
enable answering semantic queries on them, which was not possible using
open-source components before. Furthermore, UCs would point out the
potential value of the approach for MBSE.

All hypotheses could be validated by implementing the necessary
ontologies and software and using them to realize the UCs. Researchers and
software engineers are enabled to review and reuse the developed source
code because it is released publicly under permissive open-source licences.

Four directions for further work suggest themselves:

– demonstrating the value of the created building blocks as they are,
with the intent of inspiring reuse and adoption by others (building a
model collection; using the service in a SOA (exploiting paralleliza-
tion/horizontal scaling; as backend); using the PPA-implementation;
building useful KGs; …);

– analyzing threats to dependability and security of the software, as a
first step towards production-readiness;

– adding and refining functionality (axiomatization and reasoning;
representation/conversion of units; alignment with mid-level ontolo-
gies; service metrics; provenance data; …); and

– further research (determining composability of models through
semantics and reasoning; ontology-driven modelling; using self-
descriptive hypermedia APIs and -sensors in changing environments
in conjunction with generic software agents, such as the PPA, as well
as knowledge graphs; …).

136 8. Conclusion

Because of the positive results and promising directions to further develop
the underlying ideas based on these results, the approach can be seen as
both interesting and relevant for practice and research. Overarching topics
that the work is related to—and could contribute to—include distributed
MBSE processes; breaking up knowledge silos and working together inter-
disciplinarily; realizing the potential of M&S; and the FAIRness of digital
assets in general.

However, technical and organizational challenges are expected when
attempting to implement the approach of this thesis outside academia. Tech-
nical challenges that are likely to occur are bringing together data from
various sources in a coherent, sustainable way (raising the question of which
ontologies to use); and making all software dependable and secure. Given
the necessary expertise, these challenges are solvable. In contrast, it could
be more difficult to overcome organizational hurdles, which include convin-
cing non-technical stakeholders to commit to the approach by explaining its
benefits in an understandable way; establishing processes to make implicit
knowledge that typically only exists in the minds of developers/engineers,
explicit; and facilitating the change in mindset required from programmers
(from fixed contracts to a graph data model and queries, [112, p. 97]).

To conclude, this thesis showed that the chosen approach is indeed logical
and promising; novel; feasible; and directly useful. It is logical and prom-
ising because the FAIR principles are widely accepted as desirable, and
SemanticWeb technologies suggest themselves for improving the FAIRness
of digital assets. Moreover, CNAs represent the state of technology for realiz-
ing services in theWeb, and their defining characteristics are now expected
by users. In my eyes, dynamic systemmodels and their simulation should
not be excluded from these developments. It is new because, to the best
of my knowledge, the chosen combination of concepts and technologies
has not been investigated in detail before. The UCs show feasibility and
usefulness.

Personally, I believe that the approach should be applied to solve real-world
problems for three main reasons. First, I think that self-descriptive hy-
permedia APIs and generic software agents provide a level of abstraction
that is suitable to deal with complex, frequently changing systems of in-
terconnected systems that involve sensors, actuators, models, and simula-
tions. Moreover, SOA and REST account for the fact that reality is an open
world distributed among many stakeholders, which makes enforcing cent-
ralized interface designs impossible and aiming for loose coupling desirable.
Through the use of a distributed data model and ontologies, the need for
integrating data and processes that are based on different perspectives and
possibly incompatible assumptions can be met. Consequently, I suspect
that the approach investigated in this work can help with realizing MBSE
processes that are traceable, explainable, secure, and dependable.

Perhaps others also see value in the ideas underlying this thesis, and build
upon my work with their own unique background and perspective.

References

[1] Dean Allemang and James Hendler. Semantic Web for the Working Ontologist: Modeling in RDF,
RDFS and OWL. Morgan Kaufmann Publishers, 2009. ISBN: 978-0-12-373556-0.

[2] Dörthe Arndt et al. “SENSdesc: Connect Sensor Queries and Context”. In: Proceedings of the
11th International Joint Conference on Biomedical Engineering Systems and Technologies - AI4Health,
INSTICC. SciTePress, 2018, pp. 671–679. DOI: 10.5220/0006733106710679.

[3] Donovan Artz and Yolanda Gil. “A survey of trust in computer science and the SemanticWeb”. In:
Journal of Web Semantics 5.2 (2007). Software Engineering and the SemanticWeb, pp. 58–71. ISSN:
1570-8268. DOI: 10.1016/j.websem.2007.03.002. URL: http://www.sciencedirect.
com/science/article/pii/S1570826807000133.

[4] Algirdas Avizienis et al. “Basic Concepts and Taxonomy of Dependable and Secure Computing”.
In: IEEE Trans. Dependable Secur. Comput. 1.1 (Jan. 2004), pp. 11–33. ISSN: 1545-5971. DOI: 10.
1109/TDSC.2004.2.

[5] Jakob Axelsson. “Achieving System-of-Systems Interoperability Levels Using Linked Data and
Ontologies”. In: INCOSE International Symposium 30.1 (2020), pp. 651–665. DOI: 10.1002/j.
2334-5837.2020.00746.x.

[6] David Beckett. RDF 1.1 N-Triples. A line-based syntax for an RDF graph. W3C Recommendation.
W3C, 25th Feb. 2014. URL: http://www.w3.org/TR/2014/REC-n-triples-20140225/.

[7] David Beckett et al. RDF 1.1 Turtle. Terse RDF Triple Language. W3C Recommendation. W3C,
25th Feb. 2014. URL: http://www.w3.org/TR/2014/REC-turtle-20140225/.

[8] David Bell et al. “Service-oriented simulation using web ontology”. In: International Journal of
Simulation and Process Modelling 7.3 (2012), pp. 217–227. DOI: 10.1504/IJSPM.2012.049148.

[9] Tim Berners-Lee, Roy T. Fielding and Larry M. Masinter. Uniform Resource Identifier (URI):
Generic Syntax. Request for Comments (RFC) 3986. Jan. 2005. DOI: 10.17487/RFC3986. URL:
https://www.rfc-editor.org/info/rfc3986.

[10] Tim Berners-Lee, James Hendler and Ora Lassila. “The SemanticWeb”. In: Scientific American
284 (May 2001), pp. 35–43. DOI: 10.1038/scientificamerican0501-34. URL: https:
//lassila.org/publications/2001/SciAm.html.

[11] Abraham Bernstein and Natasha Noy. Is This Really Science? The Semantic Webber’s Guide to
Evaluating Research Contributions. Tech. rep. IFI-2014.02. 2014, pp. 1–18. URL: https://www.
merlin.uzh.ch/contributionDocument/download/6915 (visited on 03/08/2023).

[12] Stefan Bittner, Olaf Oelsner and Thomas Neidhold. “Using FMI in a cloud-basedWeb Application
for System Simulation”. In: Proceedings of the 11th International Modelica Conference, Versailles,
France, September 21-23, 2015. Linköping University Electronic Press, 18th Sept. 2015. DOI: 10.
3384/ecp15118845.

[13] Chris Bizer and Richard Cyganiak. RDF 1.1 TriG. RDF Dataset Language. W3C Recommendation.
W3C, 25th Feb. 2014. URL: https://www.w3.org/TR/2014/REC-trig-20140225/.

[14] RDF Schema 1.1. W3C Recommendation.W3C, 25th Feb. 2014. URL: http://www.w3.org/TR/
2014/REC-rdf-schema-20140225/.

https://doi.org/10.5220/0006733106710679
https://doi.org/10.1016/j.websem.2007.03.002
http://www.sciencedirect.com/science/article/pii/S1570826807000133
http://www.sciencedirect.com/science/article/pii/S1570826807000133
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1109/TDSC.2004.2
https://doi.org/10.1002/j.2334-5837.2020.00746.x
https://doi.org/10.1002/j.2334-5837.2020.00746.x
http://www.w3.org/TR/2014/REC-n-triples-20140225/
http://www.w3.org/TR/2014/REC-turtle-20140225/
https://doi.org/10.1504/IJSPM.2012.049148
https://doi.org/10.17487/RFC3986
https://www.rfc-editor.org/info/rfc3986
https://doi.org/10.1038/scientificamerican0501-34
https://lassila.org/publications/2001/SciAm.html
https://lassila.org/publications/2001/SciAm.html
https://www.merlin.uzh.ch/contributionDocument/download/6915
https://www.merlin.uzh.ch/contributionDocument/download/6915
https://doi.org/10.3384/ecp15118845
https://doi.org/10.3384/ecp15118845
https://www.w3.org/TR/2014/REC-trig-20140225/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/
http://www.w3.org/TR/2014/REC-rdf-schema-20140225/

[15] Carlos Buil-Aranda et al. “SPARQLWeb-Querying Infrastructure: Ready for Action?” In: The Se-
mantic Web – ISWC 2013. Ed. byHarith Alani et al. Berlin, Heidelberg: Springer Berlin Heidelberg,
2013, pp. 277–293.

[16] Rafael C. Cardoso and Angelo Ferrando. “A Review of Agent-Based Programming forMulti-Agent
Systems”. In: Computers 10.2 (2021). ISSN: 2073-431X. DOI: 10.3390/computers10020016.
URL: https://www.mdpi.com/2073-431X/10/2/16.

[17] RDF 1.1 N-Quads. A line-based syntax for RDF datasets. W3C Recommendation.W3C, 25th Feb.
2014. URL: http://www.w3.org/TR/2014/REC-n-quads-20140225/.

[18] Erdal Cayirci. “A joint trust and risk model for MSaaS mashups”. In: 2013 Winter Simulations
Conference (WSC). IEEE, Dec. 2013, pp. 1347–1358. DOI: 10.1109/WSC.2013.6721521.

[19] Erdal Cayirci. “Modeling and simulation as a cloud service: A survey”. In: 2013Winter Simulations
Conference (WSC). IEEE, Dec. 2013, pp. 389–400. DOI: 10.1109/wsc.2013.6721436.

[20] François E. Cellier. Continuous System Modeling. Springer Science+Business Media Inc., 1991.
ISBN: 978-0-387-97502-3. DOI: 10.1007/978-1-4757-3922-0.

[21] François E. Cellier and Ernesto Kofman. Continuous System Simulation. Springer Science+Busi-
ness Media Inc., 2006. ISBN: 978-0-387-26102-7. DOI: 10.1007/0-387-30260-3.

[22] RobertM. Cubert and Paul A. Fishwick. “A Framework for Distributed Object-orientedMultimod-
eling and Simulation”. In: Proceedings of the 29th Conference on Winter Simulation.WSC ’97. Atlanta,
Georgia, USA: IEEE Computer Society, 1997, pp. 1315–1322. DOI: 10.1145/268437.268777.

[23] Empirical. In: Dictionary.com online dictionary. Ed. by Dictionary.com. URL: https://www.
dictionary.com/browse/empirical (visited on 29/06/2023).

[24] Metadata. In: Dictionary.com online dictionary. Ed. by Dictionary.com. URL: https://www.
dictionary.com/browse/metadata (visited on 29/06/2023).

[25] Predicate. In: Dictionary.com online dictionary. Ed. by Dictionary.com. URL: https://www.
dictionary.com/browse/predicate (visited on 25/10/2023).

[26] Anastasia Dimou et al. “RML: A Generic Language for Integrated RDF Mappings of Heterogen-
eous Data”. In: Proceedings of the Workshop on Linked Data on the Web co-located with the 23rd
International World Wide Web Conference (WWW 2014), Seoul, Korea, April 8, 2014. Ed. by Christian
Bizer et al. Vol. 1184. CEURWorkshop Proceedings. CEUR-WS.org, 2014. URL: http://ceur-
ws.org/Vol-1184/ldow2014%5C_paper%5C_01.pdf.

[27] EDN, ed.Genetic algorithm solves thermistor-network component values. 19thMar. 2008. URL:https:
//www.edn.com/genetic-algorithm-solves-thermistor-network-component-
values (visited on 08/05/2021).

[28] Hilding Elmqvist, Martin Malmheden and Johan Andreasson. “AWeb Architecture for Modeling
and Simulation”. In: Proceedings of the 2nd Japanese Modelica Conference Tokyo, Japan, May 17-18,
2018. Linköping University Electronic Press, 21st Feb. 2019. DOI: 10.3384/ecp18148255.

[29] Leonardo Ferreira Leite et al. “A Survey of DevOps Concepts and Challenges”. In:ACMComputing
Surveys 52 (Nov. 2019), pp. 1–35. DOI: 10.1145/3359981.

[30] Roy T. Fielding. “Architectural Styles and the Design of Network-based Software Architectures”.
PhD thesis. Irvine, CA, USA: University of California, Irvine, 2000. URL: https://roy.gbiv.
com/pubs/dissertation/top.htm.

[31] Roy T. Fielding. REST APIs must be hypertext-driven. 20th Oct. 2008. URL: https : / / roy .
gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven (visited on
11/01/2022).

https://doi.org/10.3390/computers10020016
https://www.mdpi.com/2073-431X/10/2/16
http://www.w3.org/TR/2014/REC-n-quads-20140225/
https://doi.org/10.1109/WSC.2013.6721521
https://doi.org/10.1109/wsc.2013.6721436
https://doi.org/10.1007/978-1-4757-3922-0
https://doi.org/10.1007/0-387-30260-3
https://doi.org/10.1145/268437.268777
https://www.dictionary.com/browse/empirical
https://www.dictionary.com/browse/empirical
https://www.dictionary.com/browse/metadata
https://www.dictionary.com/browse/metadata
https://www.dictionary.com/browse/predicate
https://www.dictionary.com/browse/predicate
http://ceur-ws.org/Vol-1184/ldow2014%5C_paper%5C_01.pdf
http://ceur-ws.org/Vol-1184/ldow2014%5C_paper%5C_01.pdf
https://www.edn.com/genetic-algorithm-solves-thermistor-network-component-values
https://www.edn.com/genetic-algorithm-solves-thermistor-network-component-values
https://www.edn.com/genetic-algorithm-solves-thermistor-network-component-values
https://doi.org/10.3384/ecp18148255
https://doi.org/10.1145/3359981
https://roy.gbiv.com/pubs/dissertation/top.htm
https://roy.gbiv.com/pubs/dissertation/top.htm
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven
https://roy.gbiv.com/untangled/2008/rest-apis-must-be-hypertext-driven

[32] Roy T. Fielding, Mark Nottingham and Julian Reschke. HTTP Semantics. Request for Comments
(RFC) 9110. June 2022. DOI: 10.17487/RFC9110. URL: https://www.rfc-editor.org/
info/rfc9110.

[33] Paul A. Fishwick. “Web-based Simulation”. In: Proceedings of the 29th Conference on Winter Simula-
tion. WSC ’97. Atlanta, Georgia, USA: IEEE Computer Society, 1997, pp. 100–102. DOI: 10.1145/
268437.268457.

[34] Félix-Antoine Fortin et al. “DEAP: Evolutionary Algorithms Made Easy”. In: Journal of Machine
Learning Research 13.70 (July 2012), pp. 2171–2175. URL: http://jmlr.org/papers/v13/
fortin12a.html.

[35] Martin Fowler and James Lewis. Microservices. A definition of this new architectural term. 25th Mar.
2014. URL: https://martinfowler.com/articles/microservices.html (visited on
01/11/2023).

[36] Daniel Garijo, Oscar Corcho and Marıa Poveda-Villalón. “FOOPS!: An Ontology Pitfall Scanner
for the FAIR Principles”. In: CEURWorkshop Proceedings 2980 (2021). URL: http://ceur-
ws.org/Vol-2980/paper321.pdf.

[37] Birte Glimm and Heiner Stuckenschmidt. “15 Years of SemanticWeb: An Incomplete Survey”. In:
KI – Künstliche Intelligenz 30.2 (June 2016), pp. 117–130. ISSN: 1610-1987. DOI: 10.1007/s13218-
016-0424-1.

[38] Susanne Hall, Cary Moskovitz and Michael Pemberton. Text Recycling. TRRP Best Practices for Re-
searchers. Apr. 2021. eprint: https://textrecycling.org/files/2021/04/TRRP_Best-
Practices-for-Researchers.pdf. URL: https://textrecycling.org/resources/
best-practices-for-researchers/.

[39] Jo Erskine Hannay and Tom van den Berg. “The NATO MSG-136 Reference Architecture for
M&S as a Service”. In: Proceedings of the NATO modelling and simulation group symposium on M&S
technologies and standards for enabling alliance interoperability and pervasive M&S Applications
(Lisbon, Portugal, 19th–20th Oct. 2017). STO-MP-MSG-149. Oct. 2017, p. 3.

[40] Jo Erskine Hannay et al. “Modeling and Simulation as a Service infrastructure capabilities for dis-
covery, composition and execution of simulation services”. In: The Journal of DefenseModeling and
Simulation. Applications, Methodology, Technology (2020). DOI: 10.1177/1548512919896855.

[41] SPARQL 1.1 Query Language. W3C Recommendation.W3C, 21st Mar. 2013. URL: http://www.
w3.org/TR/2013/REC-sparql11-query-20130321/.

[42] Pascal Hitzler. “A Review of the SemanticWeb Field”. In: Communications of the ACM 64.2 (Feb.
2021), pp. 76–83. ISSN: 0001-0782. DOI: 10.1145/3397512.

[43] Patrick Hochstenbach, Jos De Roo and Ruben Verborgh. “RDF Surfaces: Computer Says No”. In:
Proceedings of the 1st Workshop on Trusting Decentralised Knowledge Graphs and Web Data. May 2023.
arXiv: 2305.08476.

[44] M. Hofmann, J. Palii and G. Mihelcic. “Epistemic and normative aspects of ontologies in model-
ling and simulation”. In: Journal of Simulation 5.3 (Aug. 2011), pp. 135–146. DOI: 10.1057/jos.
2011.13.

[45] Aidan Hogan et al. “Knowledge Graphs”. In: ACM Computing Surveys 54.4 (July 2021). ISSN:
0360-0300. DOI: 10.1145/3447772.

[46] Ian Jacobs and Norman Walsh. Architecture of the World Wide Web, Volume One. W3C Recom-
mendation. W3C, 15th Dec. 2004. URL: https://www.w3.org/TR/2004/REC-webarch-
20041215/.

https://doi.org/10.17487/RFC9110
https://www.rfc-editor.org/info/rfc9110
https://www.rfc-editor.org/info/rfc9110
https://doi.org/10.1145/268437.268457
https://doi.org/10.1145/268437.268457
http://jmlr.org/papers/v13/fortin12a.html
http://jmlr.org/papers/v13/fortin12a.html
https://martinfowler.com/articles/microservices.html
http://ceur-ws.org/Vol-2980/paper321.pdf
http://ceur-ws.org/Vol-2980/paper321.pdf
https://doi.org/10.1007/s13218-016-0424-1
https://doi.org/10.1007/s13218-016-0424-1
https://textrecycling.org/files/2021/04/TRRP_Best-Practices-for-Researchers.pdf
https://textrecycling.org/files/2021/04/TRRP_Best-Practices-for-Researchers.pdf
https://textrecycling.org/resources/best-practices-for-researchers/
https://textrecycling.org/resources/best-practices-for-researchers/
https://doi.org/10.1177/1548512919896855
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
http://www.w3.org/TR/2013/REC-sparql11-query-20130321/
https://doi.org/10.1145/3397512
https://arxiv.org/abs/2305.08476
https://doi.org/10.1057/jos.2011.13
https://doi.org/10.1057/jos.2011.13
https://doi.org/10.1145/3447772
https://www.w3.org/TR/2004/REC-webarch-20041215/
https://www.w3.org/TR/2004/REC-webarch-20041215/

[47] Jad El-khoury.An Analysis of the OASIS OSLC Integration Standard, for a Cross-disciplinary Integrated
Development Environment: Analysis of market penetration, performance and prospects. Tech. rep.
KTH, Mechatronics, 2020, p. 55. URL: http://urn.kb.se/resolve?urn=urn:nbn:se:
kth:diva-272834.

[48] Sabrina Kirrane. “Intelligent software web agents: A gap analysis”. In: Journal of Web Semantics
71 (2021), p. 100659. ISSN: 1570-8268. DOI: 10.1016/j.websem.2021.100659. URL: https:
//www.sciencedirect.com/science/article/pii/S1570826821000342.

[49] Sabrina Kirrane and Stefan Decker. “Intelligent Agents: The Vision Revisited”. In: Proceedings of
the 2nd Workshop on Decentralizing the Semantic Web co-located with the 17th International Semantic
Web Conference, DeSemWeb@ISWC 2018, Monterey, California, USA, October 8, 2018. Ed. by Ruben
Verborgh, Tobias Kuhn and Tim Berners-Lee. Vol. 2165. CEURWorkshop Proceedings. CEUR-
WS.org, 2018. URL: http://ceur-ws.org/Vol-2165/paper2.pdf.

[50] Christian König et al. “Traceability in the Model-based Design of Cyber-Physical Systems”. In:
Proceedings of the American Modelica Conference 2020, Boulder, Colorado, USA, March 23-25, 2020.
Linköping University Electronic Press, Nov. 2020. DOI: 10.3384/ecp20169168.

[51] Dimitris Kontokostas and Holger Knublauch. Shapes Constraint Language (SHACL). W3C Re-
commendation. W3C, July 2017. URL: https://www.w3.org/TR/2017/REC-shacl-
20170720/.

[52] Nane Kratzke and Peter-Christian Quint. “Understanding cloud-native applications after 10
years of cloud computing - A systematic mapping study”. In: Journal of Systems and Software
126 (2017), pp. 1–16. ISSN: 0164-1212. DOI: 10.1016/j.jss.2017.01.001. URL: http:
//www.sciencedirect.com/science/article/pii/S0164121217300018.

[53] NaneKratzke andRobert Siegfried. “Towards cloud-native simulations – lessons learned from the
front-line of cloud computing”. In: The Journal of Defense Modeling and Simulation. Applications,
Methodology, Technology 18 (1 2021), pp. 39–58. DOI: 10.1177/1548512919895327. URL:
https://journals.sagepub.com/doi/10.1177/1548512919895327.

[54] Boonserm Kulvatunyou et al. “The Industrial Ontologies Foundry (IOF) Core Ontology”. en.
In: Formal Ontologies Meet Industry (FOMI) 2022. Tarbes, France, Sept. 2022. URL: https:
//tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935068.

[55] Claude Lacoursière and Tomas Härdin. “FMI Go! A simulation runtime environment with a
client server architecture over multiple protocols”. In: Proceedings of the 12th International Model-
ica Conference, Prague, Czech Republic, May 15-17, 2017. Linköping University Electronic Press,
4th July 2017. DOI: 10.3384/ecp17132653.

[56] Markus Lanthaler.Hydra Core Vocabulary. A Vocabulary for Hypermedia-DrivenWeb APIs. Tech. rep.
Version Unofficial Draft 13 July 2021. July 2021. URL: http://www.hydra-cg.com/spec/
latest/core/.

[57] Markus Lanthaler, DavidWood and Richard Cyganiak. RDF 1.1 Concepts and Abstract Syntax.W3C
Recommendation.W3C, 25th Feb. 2014. URL: https://www.w3.org/TR/2014/REC-rdf11-
concepts-20140225/.

[58] D.W. McKee et al. “The Internet of Simulation, a Specialisation of the Internet of Things with
Simulation and Workflow as a Service (SIM/WFaaS)”. In: 11th IEEE International Symposium
on Service-Oriented System Engineering (SOSE 2017). IEEE, Jan. 2017. URL: http://eprints.
whiterose.ac.uk/111418/.

[59] Measuring digital development: Facts and Figures 2022. Report. International Telecommunication
Union (ITU), 30th Nov. 2022. URL: https://www.itu.int/itu-d/reports/statistics/
facts-figures-2022/.

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-272834
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-272834
https://doi.org/10.1016/j.websem.2021.100659
https://www.sciencedirect.com/science/article/pii/S1570826821000342
https://www.sciencedirect.com/science/article/pii/S1570826821000342
http://ceur-ws.org/Vol-2165/paper2.pdf
https://doi.org/10.3384/ecp20169168
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://www.w3.org/TR/2017/REC-shacl-20170720/
https://doi.org/10.1016/j.jss.2017.01.001
http://www.sciencedirect.com/science/article/pii/S0164121217300018
http://www.sciencedirect.com/science/article/pii/S0164121217300018
https://doi.org/10.1177/1548512919895327
https://journals.sagepub.com/doi/10.1177/1548512919895327
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935068
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935068
https://doi.org/10.3384/ecp17132653
http://www.hydra-cg.com/spec/latest/core/
http://www.hydra-cg.com/spec/latest/core/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://eprints.whiterose.ac.uk/111418/
http://eprints.whiterose.ac.uk/111418/
https://www.itu.int/itu-d/reports/statistics/facts-figures-2022/
https://www.itu.int/itu-d/reports/statistics/facts-figures-2022/

[60] Ben De Meester et al. “Detailed Provenance Capture of Data Processing”. In: Proceedings of the
First Workshop on Enabling Open Semantic Science (SemSci). 2017, pp. 31–38. URL: https://ceur-
ws.org/Vol-1931/paper-05.pdf.

[61] Christoph Meinel. ‚Selbstplagiat’ und gute wissenschaftliche Praxis. Aug. 2013. DOI: 10.13140/
RG.2.2.30238.46406.

[62] Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. NIST Special Publication
800-145. National Institute of Standards and Technology, 2011. DOI: 10.6028/NIST.SP.
800-145. URL: https://www.nist.gov/publications/nist-definition-cloud-
computing.

[63] Serendipity. In: Merriam-Webster.com Dictionary. Ed. by Merriam-Webster. URL: https://www.
merriam-webster.com/dictionary/serendipity (visited on 18/07/2023).

[64] Matthias Mitterhofer et al. “An FMI-enabled methodology for modular building performance
simulation based on Semantic Web Technologies”. In: Building and Environment 125 (2017),
pp. 49–59. ISSN: 0360-1323. DOI: 10.1016/j.buildenv.2017.08.021. URL: http://www.
sciencedirect.com/science/article/pii/S0360132317303736.

[65] Modelica Association. Functional Mock-up Interface for Model Exchange and Co-Simulation Version
2.0.2. Tech. rep. Linköping: Modelica Association, Dec. 2020. URL: https://fmi-standard.
org.

[66] Modelica Association. Modelica – A Unified Object-Oriented Language for Systems Modeling. Lan-
guage Specification Version 3.5. Tech. rep. Linköping: Modelica Association, Feb. 2021. URL:
https://specification.modelica.org/maint/3.5/MLS.html.

[67] Modelica Association. System Structure and Parameterization Version 1.0. Tech. rep. Version 1.0.
Modelica Association, Mar. 2019. URL: https://ssp-standard.org/.

[68] WilliamMorgan. The Service Mesh: What Every Software Engineer Needs to Know about the World’s
Most Over-Hyped Technology. 9th Nov. 2019. URL: https://buoyant.io/service-mesh-
manifesto (visited on 07/05/2021).

[69] OWL 2 Web Ontology Language Profiles (Second Edition). W3C Recommendation.W3C, 11th Dec.
2012. URL: http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.

[70] Specialist TeamMSG-131.Modelling and Simulation as a Service: New Concepts and Service-Oriented
Architectures. Final Report AC/323(MSG-131)TP/608. North Atlantic Treaty Organization NATO,
2015.URL:https://www.sto.nato.int/publications/STO%20Technical%20Reports/
STO-TR-MSG-131/$$TR-MSG-131-ALL.pdf.

[71] Mark A. Musen. “The Protégé Project: A Look Back and a Look Forward”. In: AI Matters 1.4 (June
2015), pp. 4–12. ISSN: 2372-3483. DOI: 10.1145/2757001.2757003.

[72] OASIS. OSLC Core Version 3.0. Part 1: Overview. OASIS Standard. OASIS, 26th Aug. 2021. URL:
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/oslc-
core.html.

[73] OASIS.OSLC Core Version 3.0. Part 3: Resource Preview. OASIS Standard. OASIS, 26th Aug. 2021. URL:
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/resource-
preview.html.

[74] OASIS. OSLC Core Version 3.0. Part 4: Delegated Dialogs. OASIS Standard. OASIS, 26th Aug. 2021.
URL: https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/dialogs.
html.

[75] OASIS. Reference Model for Service Oriented Architecture 1.0. OASIS Standard. OASIS Open, 12th Oct.
2006. URL: http://docs.oasis-open.org/soa-rm/v1.0/.

https://ceur-ws.org/Vol-1931/paper-05.pdf
https://ceur-ws.org/Vol-1931/paper-05.pdf
https://doi.org/10.13140/RG.2.2.30238.46406
https://doi.org/10.13140/RG.2.2.30238.46406
https://doi.org/10.6028/NIST.SP.800-145
https://doi.org/10.6028/NIST.SP.800-145
https://www.nist.gov/publications/nist-definition-cloud-computing
https://www.nist.gov/publications/nist-definition-cloud-computing
https://www.merriam-webster.com/dictionary/serendipity
https://www.merriam-webster.com/dictionary/serendipity
https://doi.org/10.1016/j.buildenv.2017.08.021
http://www.sciencedirect.com/science/article/pii/S0360132317303736
http://www.sciencedirect.com/science/article/pii/S0360132317303736
https://fmi-standard.org
https://fmi-standard.org
https://specification.modelica.org/maint/3.5/MLS.html
https://ssp-standard.org/
https://buoyant.io/service-mesh-manifesto
https://buoyant.io/service-mesh-manifesto
http://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
https://www.sto.nato.int/publications/STO%20Technical%20Reports/STO-TR-MSG-131/$$TR-MSG-131-ALL.pdf
https://www.sto.nato.int/publications/STO%20Technical%20Reports/STO-TR-MSG-131/$$TR-MSG-131-ALL.pdf
https://doi.org/10.1145/2757001.2757003
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/oslc-core.html
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/oslc-core.html
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/resource-preview.html
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/resource-preview.html
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/dialogs.html
https://docs.oasis-open-projects.org/oslc-op/core/v3.0/os/dialogs.html
http://docs.oasis-open.org/soa-rm/v1.0/

[76] Cesare Pautasso and ErikWilde. “Why is theWeb Loosely Coupled? A Multi-Faceted Metric for
Service Design”. In: 18th International World Wide Web Conference. Apr. 2009, pp. 911–920. URL:
http://www2009.eprints.org/92/.

[77] Martin Pelikan. “Genetic Algorithms”. In: Wiley Encyclopedia of Operations Research and Manage-
ment Science. American Cancer Society, 2011. DOI: 10.1002/9780470400531.eorms0357.

[78] María Poveda-Villalón et al. “LOT: An industrial oriented ontology engineering framework”.
In: Engineering Applications of Artificial Intelligence 111 (2022), p. 104755. ISSN: 0952-1976. DOI:
10.1016/j.engappai.2022.104755. URL: https://www.sciencedirect.com/
science/article/pii/S0952197622000525.

[79] Judicaël Ribault and Gabriel Wainer. “UsingWorkflows andWeb Services to Manage Simulation
Studies”. In: Proceedings of the 2012 Symposium on Theory of Modeling and Simulation - DEVS
Integrative M&S Symposium. TMS/DEVS ’12. Orlando, Florida: Society for Computer Simulation
International, 2012, 50:1–50:6. URL: http://dl.acm.org/citation.cfm?id=2346616.
2346666.

[80] CarlosRodríguez et al. “RESTAPIs: ALarge-ScaleAnalysis of CompliancewithPrinciples andBest
Practices”. In:Web Engineering: 16th International Conference, ICWE 2016, Lugano, Switzerland, June
6-9, 2016. Proceedings. Ed. by Alessandro Bozzon, Philippe Cudre-Maroux and Cesare Pautasso.
Cham: Springer International Publishing, 2016, pp. 21–39. DOI: 10.1007/978-3-319-38791-
8_2.

[81] Jos De Roo and Patrick Hochstenbach.Notation3 Language.W3C Community Group Draft Report.
W3C, 23rd Oct. 2023. URL: https://w3c.github.io/N3/spec/.

[82] Jennifer Rowley. “The wisdom hierarchy: representations of the DIKWhierarchy”. In: Journal of
Information Science 33.2 (2007), pp. 163–180. DOI: 10.1177/0165551506070706.

[83] Sebastian Rudolph. “Foundations of Description Logics”. In: ReasoningWeb. Semantic Technologies
for the Web of Data: 7th International Summer School 2011, Galway, Ireland, August 23-27, 2011,
Tutorial Lectures. Ed. by Axel Polleres et al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011,
pp. 76–136. ISBN: 978-3-642-23032-5. DOI: 10.1007/978-3-642-23032-5_2.

[84] Thomas Schmitt andMarkus Andres.Methoden zur Modellbildung und Simulation mechatronischer
Systeme. Bondgraphen, objektorientierte Modellierungstechniken und numerische Integrationsver-
fahren. Springer Vieweg, 2019. ISBN: 978-3-658-25088-1. DOI: 10.1007/978-3-658-25089-8.

[85] Thomas Schmitt et al. “A Novel Proposal on how to Parameterize Models in Dymola Utilizing
External Files under Consideration of a Subsequent Model Export using the Functional Mock-Up
Interface”. In: Proceedings of the 11th InternationalModelica Conference, Versailles, France, September
21-23, 2015. LinköpingUniversity Electronic Press, 18th Sept. 2015. DOI:10.3384/ecp1511823.
URL: https://2015.international.conference.modelica.org/proceedings/
html/errata/errata_SchmittAndresZieglerDiehl.pdf. Revised version.

[86] Michael Schneider. OWL 2 Web Ontology Language. RDF-Based Semantics (Second Edition). W3C
Recommendation.W3C, 11th Dec. 2012. URL: http://www.w3.org/TR/2012/REC-owl2-
rdf-based-semantics-20121211/.

[87] RDF 1.1 Primer. W3CWorking Group Note.W3C, 24th June 2014. URL: http://www.w3.org/
TR/2014/NOTE-rdf11-primer-20140624/.

[88] Mojtaba Shahin, M. Ali Babar and Muhammad Aufeef Chauhan. “Architectural Design Space
for Modelling and Simulation as a Service: A Review”. In: Journal of Systems and Software 170
(24th July 2020), p. 110752. ISSN: 0164-1212. DOI: 10.1016/j.jss.2020.110752. URL:
http://www.sciencedirect.com/science/article/pii/S0164121220301746.

http://www2009.eprints.org/92/
https://doi.org/10.1002/9780470400531.eorms0357
https://doi.org/10.1016/j.engappai.2022.104755
https://www.sciencedirect.com/science/article/pii/S0952197622000525
https://www.sciencedirect.com/science/article/pii/S0952197622000525
http://dl.acm.org/citation.cfm?id=2346616.2346666
http://dl.acm.org/citation.cfm?id=2346616.2346666
https://doi.org/10.1007/978-3-319-38791-8_2
https://doi.org/10.1007/978-3-319-38791-8_2
https://w3c.github.io/N3/spec/
https://doi.org/10.1177/0165551506070706
https://doi.org/10.1007/978-3-642-23032-5_2
https://doi.org/10.1007/978-3-658-25089-8
https://doi.org/10.3384/ecp1511823
https://2015.international.conference.modelica.org/proceedings/html/errata/errata_SchmittAndresZieglerDiehl.pdf
https://2015.international.conference.modelica.org/proceedings/html/errata/errata_SchmittAndresZieglerDiehl.pdf
http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
http://www.w3.org/TR/2012/REC-owl2-rdf-based-semantics-20121211/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
http://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
https://doi.org/10.1016/j.jss.2020.110752
http://www.sciencedirect.com/science/article/pii/S0164121220301746

[89] Shashank Shekhar et al. “A simulation as a service cloud middleware”. In: Annals of Telecommu-
nications 71.3 (Apr. 2016), pp. 93–108. ISSN: 1958-9395. DOI: 10.1007/s12243-015-0475-6.

[90] Gregory A. Silver et al. “DeMO: An Ontology for Discrete-event Modeling and Simulation”. In:
SIMULATION 87.9 (2011). PMID: 22919114, pp. 747–773. DOI: 10.1177/0037549710386843.

[91] Sorbonne declaration on research data rights. Jan. 2020. URL: https://www.leru.org/files/
Sorbonne-declaration.pdf.

[92] Moritz Stüber, Lukas Exel and Georg Frey. “Using Modelling and Simulation as a Service (MSaaS)
for Facilitating Flexibility-based Optimal Operation of Distribution Grids”. In: Proceedings of the
15th International Conference on Informatics in Control, Automation and Robotics - Volume 2: ICINCO.
INSTICC. SciTePress, 2018, pp. 613–620. DOI: 10.5220/0006899106230630.

[93] Moritz Stüber and Georg Frey. “A Cloud-native Implementation of the Simulation as a Service-
Concept Based on FMI”. In: Proceedings of 14th Modelica Conference 2021, Linköping, Sweden,
September 20-24, 2021. Linköping University Electronic Press, Sept. 2021. DOI: 10 . 3384 /
ecp21181393.

[94] Moritz Stüber and Georg Frey. “Dynamic systemmodels and their simulation in the Semantic
Web”. In: Semantic Web Journal (June 2023). Ed. by Bahar Aameri et al., pp. 1–36. DOI: 10.3233/
sw-233359.

[95] Moritz Stüber and Georg Frey. “FAIRness für Modelle und Simulationen”. In: atp magazin 63.10
(Oct. 2022), pp. 58–65. DOI: 10.17560/atp.v63i10.2626.

[96] Moritz Stüber and Georg Frey. “FAIRness in der Automatisierungstechnik am Beispiel Model-
lierung und Simulation”. In: Automation 2022. VDI Verlag, 2022, pp. 343–354. DOI: 10.51202/
9783181023990-343.

[97] Moritz Stüber et al. “Forecast Quality of Physics-Based and Data-Driven PV Performance Models
for a Small-Scale PV System”. In: Frontiers in Energy Research 9 (2021), p. 108. ISSN: 2296-598X.
DOI: 10.3389/fenrg.2021.639346. URL: https://www.frontiersin.org/article/
10.3389/fenrg.2021.639346.

[98] Systems Engineering Vision 2020. Tech. rep. INCOSE-TP-2004-004-02. Version 2.03. International
Council on Systems Engineering INCOSE, Sept. 2007. URL: https://sdincose.org/wp-
content/uploads/2011/12/SEVision2020_20071003_v2_03.pdf.

[99] Ruben Taelman. Quad Pattern Fragments. A low-cost, queryable Linked Data Fragments interface
supporting quads. Unofficial Draft. 14th Sept. 2020. URL: https://linkeddatafragments.
org/specification/quad-pattern-fragments/.

[100] Ruben Taelman et al. “Comunica: a Modular SPARQL Query Engine for theWeb”. In: Proceedings
of the 17th International Semantic Web Conference. Oct. 2018. URL: https://comunica.github.
io/Article-ISWC2018-Resource/.

[101] Simon J. E. Taylor et al. “Grand challenges formodeling and simulation: simulation everywhere—
from cyberinfrastructure to clouds to citizens”. In: SIMULATION 91.7 (2015), pp. 648–665. DOI:
10.1177/0037549715590594.

[102] Michael Tiller. “Vehicle Thermal Management – A Case Study inWeb-Based Engineering Ana-
lysis”. In: Proceedings of the 10th InternationalModelica Conference;March 10-12; 2014; Lund; Sweden.
96. Linköping University Electronic Press, 2014, pp. 1073–1079. DOI: 10.3384/ecp140961073.

[103] Michael Tiller and DietmarWinkler. “modelica.university: A Platform for Interactive Modelica
Content”. In: Proceedings of the 12th International Modelica Conference, Prague, Czech Republic, May
15-17, 2017. Linköping University Electronic Press, 4th July 2017, pp. 725–734. DOI: 10.3384/
ecp17132725.

https://doi.org/10.1007/s12243-015-0475-6
https://doi.org/10.1177/0037549710386843
https://www.leru.org/files/Sorbonne-declaration.pdf
https://www.leru.org/files/Sorbonne-declaration.pdf
https://doi.org/10.5220/0006899106230630
https://doi.org/10.3384/ecp21181393
https://doi.org/10.3384/ecp21181393
https://doi.org/10.3233/sw-233359
https://doi.org/10.3233/sw-233359
https://doi.org/10.17560/atp.v63i10.2626
https://doi.org/10.51202/9783181023990-343
https://doi.org/10.51202/9783181023990-343
https://doi.org/10.3389/fenrg.2021.639346
https://www.frontiersin.org/article/10.3389/fenrg.2021.639346
https://www.frontiersin.org/article/10.3389/fenrg.2021.639346
https://sdincose.org/wp-content/uploads/2011/12/SEVision2020_20071003_v2_03.pdf
https://sdincose.org/wp-content/uploads/2011/12/SEVision2020_20071003_v2_03.pdf
https://linkeddatafragments.org/specification/quad-pattern-fragments/
https://linkeddatafragments.org/specification/quad-pattern-fragments/
https://comunica.github.io/Article-ISWC2018-Resource/
https://comunica.github.io/Article-ISWC2018-Resource/
https://doi.org/10.1177/0037549715590594
https://doi.org/10.3384/ecp140961073
https://doi.org/10.3384/ecp17132725
https://doi.org/10.3384/ecp17132725

[104] Michael Tiller and DietmarWinkler. “Where impact got Going”. In: Proceedings of the 11th In-
ternational Modelica Conference, Versailles, France, September 21-23, 2015. Linköping University
Electronic Press, 18th Sept. 2015. DOI: 10.3384/ecp15118725.

[105] Alexander Toet, Susanne Tak and Jan Erp. “Visualizing uncertainty. Towards a better under-
standing of weather forecasts”. In: Tijdschrift voor Human Factors 41 (Apr. 2016), pp. 9–14.

[106] Andreas Tolk. “Interoperability, Composability, and Their Implications for Distributed Simula-
tion: Towards Mathematical Foundations of Simulation Interoperability”. In: Proceedings of the
2013 IEEE/ACM 17th International Symposium on Distributed Simulation and Real Time Applications.
DS-RT ’13. Washington, DC, USA: IEEE Computer Society, 2013, pp. 3–9. DOI: 10.1109/DS-
RT.2013.8.

[107] Andreas Tolk. “The Elusiveness of Simulation Interoperability—What is Different From Other
Interoperability Domains?” In: 2018 Winter Simulation Conference (WSC). Gothenburg, Sweden,
Dec. 2018, pp. 679–690. DOI: 10.1109/WSC.2018.8632363.

[108] Andreas Tolk and John A. Miller. “Enhancing simulation composability and interoperability
using conceptual/semantic/ontological models”. In: Journal of Simulation 5.3 (Aug. 2011), pp. 133–
134. DOI: 10.1057/jos.2011.18.

[109] Andreas Tolk and Saurabh Mittal. “A Necessary Paradigm Change to Enable Composable Cloud-
Based M&S Services”. In: Proceedings of the 2014 Winter Simulation Conference. WSC ’14. Savannah,
Georgia: IEEE Press, 2014, pp. 356–366.

[110] Tania Tudorache. “Employing Ontologies for an Improved Development Process in Collaborative
Engineering”. PhD thesis. Berlin, Germany: Technische Universität Berlin, Nov. 2006. DOI:
10.14279/depositonce-1477.

[111] Ruben Verborgh. “Piecing the puzzle — Self-publishing queryable research data on theWeb”.
In: Proceedings of the 10th Workshop on Linked Data on the Web. Ed. by Sören Auer et al. Vol. 1809.
CEURWorkshop Proceedings. Apr. 2017. URL: https://ruben.verborgh.org/articles/
queryable-research-data/.

[112] Ruben Verborgh. “SerendipitousWeb Applications through Semantic Hypermedia”. PhD thesis.
Ghent, Belgium: Ghent University, Feb. 2014. URL: https://ruben.verborgh.org/phd/
ruben-verborgh-phd.pdf.

[113] Ruben Verborgh. Turtles all the way down. APIs are more than just data: context and controls also
belong in the message. 6th Oct. 2015. URL: https://ruben.verborgh.org/blog/2015/10/
06/turtles-all-the-way-down/ (visited on 12/01/2022).

[114] Ruben Verborgh and Michel Dumontier. “AWeb API ecosystem through feature-based reuse”.
In: Internet Computing 22.3 (May 2018), pp. 29–37. DOI: 10.1109/MIC.2018.032501515. URL:
https://ruben.verborgh.org/articles/web-api-ecosystem/.

[115] Ruben Verborgh and Jos De Roo. “Drawing Conclusions from Linked Data on theWeb: The EYE
Reasoner”. In: IEEE Softw. 32.3 (2015), pp. 23–27. DOI: 10.1109/MS.2015.63.

[116] Ruben Verborgh and Miel Vander Sande. “The Semantic Web identity crisis: in search of the
trivialities that never were”. In: Semantic Web Journal 11.1 (Jan. 2020), pp. 19–27. DOI: 10.3233/
SW-190372. URL: https://ruben.verborgh.org/articles/the-semantic-web-
identity-crisis/.

[117] Ruben Verborgh et al. “Linked Data and Linked APIs: Similarities, Differences, and Challenges”.
In: The Semantic Web: ESWC 2012 Satellite Events. Ed. by Elena Simperl et al. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2015, pp. 272–284.

https://doi.org/10.3384/ecp15118725
https://doi.org/10.1109/DS-RT.2013.8
https://doi.org/10.1109/DS-RT.2013.8
https://doi.org/10.1109/WSC.2018.8632363
https://doi.org/10.1057/jos.2011.18
https://doi.org/10.14279/depositonce-1477
https://ruben.verborgh.org/articles/queryable-research-data/
https://ruben.verborgh.org/articles/queryable-research-data/
https://ruben.verborgh.org/phd/ruben-verborgh-phd.pdf
https://ruben.verborgh.org/phd/ruben-verborgh-phd.pdf
https://ruben.verborgh.org/blog/2015/10/06/turtles-all-the-way-down/
https://ruben.verborgh.org/blog/2015/10/06/turtles-all-the-way-down/
https://doi.org/10.1109/MIC.2018.032501515
https://ruben.verborgh.org/articles/web-api-ecosystem/
https://doi.org/10.1109/MS.2015.63
https://doi.org/10.3233/SW-190372
https://doi.org/10.3233/SW-190372
https://ruben.verborgh.org/articles/the-semantic-web-identity-crisis/
https://ruben.verborgh.org/articles/the-semantic-web-identity-crisis/

[118] Ruben Verborgh et al. “The fallacy of the multi-API culture: Conceptual and practical benefits of
Representational State Transfer (REST)”. In: Journal of Documentation 71.2 (2015), pp. 233–252.
DOI: 10.1108/JD-07-2013-0098.

[119] Ruben Verborgh et al. “The Pragmatic Proof: Hypermedia API Composition and Execution”. In:
Theory andPractice of Logic Programming 17.1 (2017), pp. 1–48. DOI:10.1017/S1471068416000016.
URL: http://arxiv.org/pdf/1512.07780v1.pdf.

[120] Ruben Verborgh et al. “Triple Pattern Fragments: a Low-cost Knowledge Graph Interface for the
Web”. In: Journal ofWeb Semantics 37–38 (Mar. 2016), pp. 184–206. ISSN: 1570-8268. DOI:10.1016/
j.websem.2016.03.003. URL: http://linkeddatafragments.org/publications/
jws2016.pdf.

[121] SixuanWang and Gabriel Wainer. “Modeling and simulation as a service architecture for de-
ploying resources in the Cloud”. In: International Journal of Modeling, Simulation, and Scientific
Computing 07.01 (Mar. 2016). DOI: 10.1142/s1793962316410026.

[122] MarcusWiens, Tobias Meyer and Philipp Thomas. “The Potential of FMI for the Development
of Digital Twins for Large Modular Multi-Domain Systems”. In: Linköping Electronic Conference
Proceedings. Linköping University Electronic Press, Sept. 2021. DOI: 10.3384/ecp21181235.

[123] AdamWiggins. The Twelve-Factor App. 12th July 2023. URL: https://12factor.net/ (visited
on 27/08/2023).

[124] Wikipedia contributors. Internet. In: Wikipedia, The Free Encyclopedia. URL: https://en.
wikipedia.org/w/index.php?title=Internet&oldid=1179338793 (visited on
18/10/2023).

[125] Mark D. Wilkinson et al. “The FAIR Guiding Principles for scientific data management and
stewardship”. In: Scientific Data 3.1 (Mar. 2016). DOI: 10.1038/sdata.2016.18. URL: https:
//www.nature.com/articles/sdata201618.

[126] Bernard P. Zeigler, Saurabh Mittal and Mamadou Kaba Traore. “MBSE with/out Simulation:
State of the Art and Way Forward”. In: Systems 6.40 (2018). ISSN: 2079-8954. DOI: 10.3390/
systems6040040. URL: http://www.mdpi.com/2079-8954/6/4/40.

[127] Chaim Zins. “Conceptual approaches for defining data, information, and knowledge”. In: Journal
of the American Society for Information Science and Technology 58.4 (2007), pp. 479–493. ISSN:
1532-2890. DOI: 10.1002/asi.20508.

[128] Khaldoon Al-Zoubi and Gabriel Wainer. “Distributed Simulation Using RESTful Interoperability
Simulation Environment (RISE) Middleware”. In: Intelligence-Based Systems Engineering. Ed. by
Andreas Tolk and Lakhmi C. Jain. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 129–
157. ISBN: 978-3-642-17931-0. DOI: 10.1007/978-3-642-17931-0_6.

https://doi.org/10.1108/JD-07-2013-0098
https://doi.org/10.1017/S1471068416000016
http://arxiv.org/pdf/1512.07780v1.pdf
https://doi.org/10.1016/j.websem.2016.03.003
https://doi.org/10.1016/j.websem.2016.03.003
http://linkeddatafragments.org/publications/jws2016.pdf
http://linkeddatafragments.org/publications/jws2016.pdf
https://doi.org/10.1142/s1793962316410026
https://doi.org/10.3384/ecp21181235
https://12factor.net/
https://en.wikipedia.org/w/index.php?title=Internet&oldid=1179338793
https://en.wikipedia.org/w/index.php?title=Internet&oldid=1179338793
https://doi.org/10.1038/sdata.2016.18
https://www.nature.com/articles/sdata201618
https://www.nature.com/articles/sdata201618
https://doi.org/10.3390/systems6040040
https://doi.org/10.3390/systems6040040
http://www.mdpi.com/2079-8954/6/4/40
https://doi.org/10.1002/asi.20508
https://doi.org/10.1007/978-3-642-17931-0_6

A. Supplemental Content

A glossary of the core technical terms used in this thesis is provided in
table A.1 (the explanations aim to be understandable rather than precise).
In table A.2, table A.3 and table A.4, details on the evaluation of the de-
veloped solutions with respect to FAIRness and coupling are documented.
In these tables, the term FMU is used to denote a .fmu-file;HTTP-API repres-
ents the non-RESTful HTTP-API; and hypermedia API represents the M&S-
capabilities exposed through the hypermedia API.

The content of this appendix was originally published in [94].

A.1 Glossary

Term Explanation

CNA cloud-native application — applications that are specifically designed such that they
exhibit the characteristics of cloud computing, such as on-demand self-service, meas-
ured service, pay-as-you-go, horizontal scalability et cetera [52]

FAIR Findable, Accessible, Interoperable, Reusable — technology-independent guiding
principles for data publishing with the intent to maximize accessibility and reuse,
both for humans and machines [125]

FMI Functional Mock-up Interface — open standard for the exchange and co-simulation
of dynamic systemmodels [65]

FMU Functional Mock-up Unit — model exported according to the FMI standard
generic software agent software that solves tasks that it has not been programmed for at a syntactic level [16]
HATEOAS hypermedia as the engine of application state — essential constraint of the archi-

tectural style REST, roughly summarized as “client selection of options provided by
service in-band” [118, sec. 3.3.4]

hypermedia API application programming interfaces for software clients that are accessible over the
internet and fully implement the REST constraints [117, p. 276]

MSaaS Modelling and Simulation as a Service — umbrella term for efforts attempting tomake
M&S capabilities available as a service

PPA Pragmatic Proof Algorithm — algorithm that can compose and execute hypermedia
APIs for which RESTdesc descriptions exist [119]

RDF Resource Description Framework — distributed data model [57]
REST Representational State Transfer — architectural style underlying theWeb [118]
RESTdesc format for describing which transitions are possible in a given application state and

what the effects of these transitions in terms of changes to the shared state are [119,
sec. 4.3]

SOA service-oriented architecture — architectural style for creating manageable, large-
scale distributed applications [75]

TPF Triple Pattern Fragment — query interface for RDF data; triples only [120]
QPF Quad Pattern Fragment — query interface for RDF data; quads supported

Table A.1: Glossary

A.2 Details on the Evaluation of FAIRness and Loose
Coupling

FAIR Principle Interface Value Reason

F1. (Meta)data are assigned a
globally unique and persistent
identifier.

FMU 2 supported via field guid in
modelDescription.xml (inside .fmu-file)

HTTP-API 3 URLs globally unique;
persistence not guaranteed but possible

hypermedia API 3 URLs globally unique;
persistence not guaranteed but possible

F2. Data are described with rich
metadata (defined by R1 below).

FMU 3 basic metadata specified, more possible via
vendor annotations

HTTP-API 3 part of resource representations
hypermedia API 3 part of resource representations

F3. Metadata clearly and
explicitly include the identifier
of the data they describe.

FMU 4 metadata within modelDescription.xml
clearly about the FMU

HTTP-API 1 not possible to explicitly link metadata to data;
only through hierarchy

hypermedia API 4 ensured by use of RDF

F4. (Meta)data are registered or
indexed in a searchable
resource.

FMU 2 (meta)data could be indexed by crawlers
HTTP-API 2 (meta)data could be indexed by crawlers
hypermedia API 3 indexation possible; searchable via TPF inter-

face

A1. (Meta)data are retrievable
by their identifier using a
standardized communications
protocol.

FMU 1 not retrievable through identifier
HTTP-API 3 documents containing (meta)data can be

resolved via HTTP
hypermedia API 4 all URLs resolve via HTTP

A1.1 The protocol is open, free,
and universally implementable.

FMU 1 —
HTTP-API 4 HTTP(S) is open, free,

universally implementable
hypermedia API 4 HTTP(S) is open, free,

universally implementable

A1.2 The protocol allows for an
authentication and
authorization procedure, where
necessary.

FMU 1 —
HTTP-API 3 supported by HTTP(S), currently not used
hypermedia API 3 supported by HTTP(S), currently not used

A2. Metadata are accessible,
even when the data are no
longer available.

FMU 1 —
HTTP-API 1 metadata in JSON representations only
hypermedia API 2 currently not implemented; organizational

aspect

Table A.2: Details on the evaluation regarding the FAIR principles: aspects Findability, Accessibility

FAIR Principle Interface Value Reason

I1. (Meta)data use a formal,
accessible, shared, and broadly
applicable language for
knowledge representation.

FMU 1 not supported
HTTP-API 1 not supported
hypermedia API 4 RDF/OWL/SHACL are W3C recommendations

I2. (Meta)data use vocabularies
that follow FAIR principles.

FMU 1 —
HTTP-API 1 —
hypermedia API 3 reuse of well-known ontologies; evaluated via

FOOPS! scanner for new ones
I3. (Meta)data include qualified
references to other (meta)data.

FMU 1 not supported
HTTP-API 1 not supported
hypermedia API 2 supported, partly user input; only exemplary

triples implemented
R1. (Meta)data are richly
described with a plurality of
accurate and relevant attributes.

FMU 2 supported via vendor annotations
HTTP-API 2 theoretically possible (requires programming)
hypermedia API 3 partly implemented; ambiguous; more to be

added
R1.1 (Meta)data are released
with a clear and accessible data
usage licence.

FMU 2 supported (field in modelDescription.xml)
HTTP-API 2 possible, requires programming
hypermedia API 3 work in progress

R1.2 (Meta)data are associated
with detailed provenance.

FMU 1 maybe through vendor annotations?
HTTP-API 1 not supported
hypermedia API 3 work in progress; not yet automated

R1.3 (Meta)data meet
domain-relevant community
standards.

FMU 4 FMI is the community standard
HTTP-API 4 FMI is the community standard;

FMU can be downloaded
hypermedia API 4 FMI is the community standard;

FMU can be downloaded

Table A.3: Details on the evaluation regarding the FAIR principles: aspects Interoperability, Reuse

Coupling Facet Interface Value Reason

Discovery HTTP-API 3 referral supported
hypermedia API 3 referral supported

Identification/Naming HTTP-API 3 global; via URLs
hypermedia API 3 global; via URLs

Binding HTTP-API 1 early; against OpenAPI Specification
hypermedia API 3 late; through HATEOAS

Platform HTTP-API 3 independent
hypermedia API 3 independent

Interaction HTTP-API 1 synchronous; client and server must be online
hypermedia API 1 synchronous; client and server must be online

Interface Orientation HTTP-API 1 horizontal; hardcoded requests
hypermedia API 3 vertical; requests generated at run-time

Data Model HTTP-API 1 application-specific; communicated via OAS
hypermedia API 3 self-descriptive: RDF, OWL, SHACL

Granularity HTTP-API 2 depends on what part of the API is used
hypermedia API 2 both: resource representations fine, TPF coarse

State HTTP-API 3 stateless messages
hypermedia API 3 stateless messages

Evolution HTTP-API 2 depends on programmers
hypermedia API 3 compatible through self-descriptiveness/late binding

Generated Code HTTP-API 1 static; against OAS
hypermedia API 3 dynamic; at run-time

Conversation HTTP-API 1 explicit; hardcoded at design-time
hypermedia API 3 reflective → Pragmatic Proof Algorithm

Table A.4: Details on the evaluation regarding the coupling facets according to [76]

B. Publications and Software

This appendix provides annotated lists of the publications and software
created as part of the work presented in this thesis.

B.1 Publications Related to This Thesis

First, the scientific publications are listed in reverse chronological order
and their individual focus as well as their interrelations are outlined.

[94]: Journal article in Semantic Web—Interoperability, Usability, Applica-
tions1 (impact factor 3.105) by IOS Press.
The article presents the motivation for and design concept of the de-
velopedM&S hypermedia API in detail; describes its implementation
with a focus on resource modelling and advertising service capabil-
ities; presents the proposed extension to the PPA and evaluates the
achieved FAIRness and coupling characteristics.

Moritz Stüber and Georg Frey. “Dynamic systemmodels and their simulation
in the Semantic Web”. In: Semantic Web Journal (June 2023). Ed. by Bahar
Aameri et al., pp. 1–36. DOI: 10.3233/sw-233359

[95]: Article in atp magazin2 by Vulkan-Verlag GmbH (in German).
The article argues that the FAIR principles should be applied to the
domain of M&S and why. The architecture of the hypermedia API
is outlined, and it is shown that the FAIRness of M&S entities and
capabilities increases iff they are exposed through this API. Neither
intelligent software agents such as the PPAor coupling characteristics
are discussed. This article is a revised and slightly extended version of
[96].

Moritz Stüber and Georg Frey. “FAIRness für Modelle und Simulationen”.
In: atp magazin 63.10 (Oct. 2022), pp. 58–65. DOI: 10.17560/atp.v63i10.
2626

[96]: Article in the proceedings of the conference AUTOMATION 2022
published by VDIWissensforum GmbH (in German). The contents
were presented at the conference in Baden-Baden/Germany. The
article was published in revised and extended form as [95].

Moritz Stüber and Georg Frey. “FAIRness in der Automatisierungstechnik
am Beispiel Modellierung und Simulation”. In: Automation 2022. VDI Verlag,
2022, pp. 343–354. DOI: 10.51202/9783181023990-343

1 https://www.iospress.com/catalog/journals/semantic-web
2 https://atpinfo.de/atp-magazin/

https://doi.org/10.3233/sw-233359
https://doi.org/10.17560/atp.v63i10.2626
https://doi.org/10.17560/atp.v63i10.2626
https://doi.org/10.51202/9783181023990-343
https://www.iospress.com/catalog/journals/semantic-web
https://atpinfo.de/atp-magazin/

[93]: Article in the proceedings of the 14th Modelica Conference 2021
published by Linköping University Electronic Press. The contents
were presented at the conference (online).
This article describes the cloud-native, non-RESTful HTTP-API that
preceded the M&S hypermedia API. Concepts, software architecture
and limitations as well as two exemplary applications and related
work in the Modelica-community are presented.

Moritz Stüber and Georg Frey. “A Cloud-native Implementation of the Simu-
lation as a Service-Concept Based on FMI”. in: Proceedings of 14th Modelica
Conference 2021, Linköping, Sweden, September 20-24, 2021. Linköping Univer-
sity Electronic Press, Sept. 2021. DOI: 10.3384/ecp21181393

[97]: Journal article in the “Smart Grids” section of Frontiers in Energy
Research1 (impact factor 3.858).
This article presents an investigation of the forecast quality achieved
for predicting the power output of a small-scale PV system using
both a physics-based and a data-driven approach. The non-RESTful
HTTP-API was used for the simulations of the physics-based models,
which represents another application of the developed software for
simulatingmodels in the cloud using requests programmed at design-
time (compare section 6.2.1). Other than that there is no connection
to the line of work presented in this thesis.
The paper is the result of a collaboration with authors working at the
German Research Center for Artificial Intelligence2. I implemented
the physics-based PV performance model in Modelica, designed,
implemented and carried out the data analysis using Python and
pandas, and wrote the paper including all figures except section 3.2.

Moritz Stüber et al. “Forecast Quality of Physics-Based and Data-Driven PV
Performance Models for a Small-Scale PV System”. In: Frontiers in Energy
Research 9 (2021), p. 108. ISSN: 2296-598X. DOI: 10.3389/fenrg.2021.
639346. URL: https://www.frontiersin.org/article/10.3389/
fenrg.2021.639346

[92]: Article in the proceedings of the 15th International Conference in
Control, Automation and Robotics (ICINCO) 2018 published by SCITE-
PRESS. The contents were presented at the conference in Porto/Por-
tugal.
The article describes the concept of exposing M&S as a service and
outlines a possible use case (determination of the flexibility of a
power-to-heat system).

Moritz Stüber, Lukas Exel and Georg Frey. “Using Modelling and Simulation
as a Service (MSaaS) for Facilitating Flexibility-based Optimal Operation of
Distribution Grids”. In: Proceedings of the 15th International Conference on
Informatics in Control, Automation and Robotics - Volume 2: ICINCO. INSTICC.
SciTePress, 2018, pp. 613–620. DOI: 10.5220/0006899106230630

1 https://www.frontiersin.org/journals/energy-research/sections/
smart-grids

2 https://www.dfki.de/en/web/research/research-departments/
cognitive-assistants

https://doi.org/10.3384/ecp21181393
https://doi.org/10.3389/fenrg.2021.639346
https://doi.org/10.3389/fenrg.2021.639346
https://www.frontiersin.org/article/10.3389/fenrg.2021.639346
https://www.frontiersin.org/article/10.3389/fenrg.2021.639346
https://doi.org/10.5220/0006899106230630
https://www.frontiersin.org/journals/energy-research/sections/smart-grids
https://www.frontiersin.org/journals/energy-research/sections/smart-grids
https://www.dfki.de/en/web/research/research-departments/cognitive-assistants
https://www.dfki.de/en/web/research/research-departments/cognitive-assistants

B.2 Developed Software

URL Content Language(s)

/UdSAES/fmi2rdf FMI-ontology; fmi2rdf-parser RDF(S); OWL; Python
/UdSAES/sms-ontology SMS-ontology; SMS-FMI-ontology RDF(S); OWL
/UdSAES/simaas-api M&S hypermedia API (interface) Node.js
/UdSAES/simaas-worker M&S hypermedia API (worker) Python
/UdSAES/simaas-demo Examples ensemble forecast PV power generation,

component selection via GA
Python

/UdSAES/pragmatic-proof-agent PPA-implementation;
example thumbnail generation

Python; Node.js

/UdSAES/pv-systems Model library for calculating the power generated
byPVsystemsbased on irradiance in thehorizontal
plane, temperature, wind speed

Modelica

Table B.1: Overview on the developed software; all URLs are relative to https://github.com.

https://github.com/UdSAES/fmi2rdf
https://github.com/UdSAES/sms-ontology
https://github.com/UdSAES/simaas-api
https://github.com/UdSAES/simaas-worker
https://github.com/UdSAES/simaas-demo
https://github.com/UdSAES/pragmatic-proof-agent
https://github.com/UdSAES/pv-systems
https://github.com

	Abstract
	Kurzfassung
	Summary
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	Introduction
	Context and Basic Idea
	Research Questions and Thesis Outline
	Contributions
	About This Document

	Fundamental Concepts
	Data—Information—Knowledge and FAIRness
	Formal Representations of Data and Knowledge
	Equation-based Representation of Knowledge
	Triple-based Representation of Knowledge

	Successful Distributed Software Systems
	Quality Attributes for Software Systems
	The Web
	The Semantic Web

	Relevant Aspects of Software Engineering

	Models, Simulations, and the Web
	Modelling and Simulation as a Service (MSaaS)
	Ontologies and Model-based Systems Engineering
	Hypermedia APIs and M&S
	Research Gap

	Thesis Concept and -Hypotheses
	Issues and Desirables
	High-level Design Choices
	Hypotheses
	Conceptual Overview

	Software Design and -Realization
	The FMI- and SMS-Ontologies
	Ontologies
	The fmi2rdf-Parser

	The M&S hypermedia API: Concept
	Interface Design
	Resource Modelling
	Advertising Service Capabilities

	The M&S hypermedia API: Realization
	Software Architecture
	Restrictions on Supported FMUs
	DevOps

	The Pragmatic Proof Algorithm
	The Original Pragmatic Proof Algorithm
	The Extended Pragmatic Proof Algorithm

	Applications
	Finding Relevant Models
	Simulating Models in the Cloud
	Requests Programmed at Design-Time
	Requests Constructed at Run-Time

	A Systems Engineering Knowledge Graph

	Discussion and Outlook
	Evaluation of Hypotheses and Research Questions
	Opportunities for Further Work

	Conclusion
	References
	Appendices
	Supplemental Content
	Glossary
	Details on the Evaluation of FAIRness and Loose Coupling

	Publications and Software
	Publications Related to This Thesis
	Developed Software

