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以一生一世来铸就的事业，非旁人能理解，寂寞必然，

浪漫也必然，因为爱足以遮蔽一切艰辛。如果仍觉艰

辛，那就是爱得不够。

——小思《一瓦之缘》

A career built for a lifetime can be hardly comprehended

by others. Loneliness is inevitable, but so is romance, for

love has the power to conceal arduousness completely. If

arduousness is still palpable, then love is not enough.

— Xiao Si, Once Seeing a Tile





Abstract

In our modern life, network communication has become one of the primary mediums for

information transmission, e.g., instant messaging, online shopping, and video conferencing.

In order to protect the security of information transmitted over networks, real-world

applications are often equipped with cryptographic communication protocols. While some

of these protocols are built from small cryptographic primitives and expected to offer strong

security guarantees based on some intuition or informal arguments, their comprehensive

formal analyses are however missing. A natural question arises: whether these protocols

really satisfy their expected security guarantees?

This thesis presents the provable security analysis of five cryptographic primitives

and large-scale communication protocols: (1) one of the most efficient digital signature

implementations Ed25519, (2) the generic authenticated encryption with associated data

scheme, (3) the latest version of passwordless authentication standard FIDO2, (4) the

popular video conferencing library Zoom, and (5) our own proposal of extended secure

messaging protocol eSM. Moreover, this thesis highlights their essential security features

in theory and provides suggestions for their practical deployments. In the end, this thesis

addresses common obstacles to (large-scale) protocol designs and provable security analyses,

provides intuition on the feasibility, and leaves a complete and provable solution as my

future work.



Zusammenfassung

In unserer modernen Welt ist die Kommunikation über Netzwerke ein wichitiges Mittel

zur Übertragung von Informationen. Um die Sicherheit der über Netzwerke übertragenen

Informationen zu gewährleisten, werden reale Anwendungen oft mit kryptografischen

Kommunikationsprotokollen ausgestattet. Einige dieser Protokolle werden aus kleinen

kryptografischen Grundelementen entwickelt und sollen aufgrund von informellen Argu-

menten starke Sicherheitsgarantien bieten. Dennoch fehlen umfassende formale Analysen

für diese Protokolle. Eine naheliegende Frage lautet: Erfüllen diese Protokolle tatsächlich

ihre Sicherheitsgarantien?

Diese Arbeit präsentiert die nachweisbare Sicherheitsanalyse von fünf kryptografis-

chen Grundlagen und Kommunikationsprotokollen: (1) eine der effizientesten digitalen

Signaturen Ed25519, (2) das generische Authenticated Encryption with Associated Data

Schema, (3) die neueste Version des kennwortlosen Authentifizierungsstandards FIDO2,

(4) die beliebte Videokonferenzbibliothek Zoom, und (5) unseren eigenen Vorschlag für ein

erweitertes sicheres Nachrichtenprotokoll, eSM. Zudem hebt diese Arbeit ihre wesentlichen

Sicherheitsmerkmale in der Theorie hervor und gibt Empfehlungen für ihre praktische

Implementierung. Abschließend behandelt diese Arbeit häufig auftretende Hindernisse bei

groß Protokolldesigns sowie deren nachweisbare Sicherheitsanalysen, bietet Einblicke in

die Durchführbarkeit und lässt eine vollständige und nachweisbare Lösung als zukünftige

Arbeit offen.
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Chapter 1

Introduction

In our modern life, network communication has become one of the primary mediums for

information transmission and provides people great convenience, e.g., private messages can

be delivered over messaging apps instantly; video/audio conferencing can be held remotely;

business services can be provided online. However, the sensitive information transmitted

over insecure network channels suffers from the risk of exposure. In order to protect

the security of information transmitted over networks, real-world applications are often

equipped with cryptographic communication protocols. While some of these protocols are

built from small cryptographic primitives and expected to offer strong security guarantees

based on some intuition or informal arguments, their comprehensive formal analyses are

however missing. A natural question arises: do these protocols really satisfy their expected

security guarantees?

This thesis presents five projects during my doctoral studies, within a wide scope of

applied cryptography that can be roughly categorized into (1) the security analysis of

fundamental cryptographic primitives, including one of the most efficient digital signature

implementations Ed25519 and the generic authenticated encryption with associated data

scheme, and (2) the analysis and design of large-scale communication protocols, including

the latest version of passwordless authentication standard FIDO2, the popular video

conferencing library Zoom, and our own proposal of extended secure messaging protocol

eSM.

(1) The Security Analysis of Fundamental Cryptographic Primitives. In

the first project in my doctoral studies, we analyze the security of Ed25519, a popular

instantiation of a novel digital signature scheme EdDSA. A standard requirement for a

signature scheme is existential unforgeability (EUF-CMA), alongside other properties of

interest such as strong unforgeability (SUF-CMA) and resilience against key substitution

attacks. While Ed25519 is one of the most efficient signature schemes, and different

instantiations of Ed25519 are widely used in protocols such as SSH, Tor, ZCash, and

WhatsApp/Signal, no detailed proofs have ever been given for it or any of its variants. We

observe that the differences between these instantiations are subtle and that several proofs
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of protocol security simply assume the EUF-CMA or SUF-CMA security of Ed25519,

based on some informal arguments. In this project, we provide the first detailed analysis

and security proofs of Ed25519 signature schemes. While the designs of the schemes follow

the well-established Fiat-Shamir paradigm, which should guarantee EUF-CMA security,

we find that the security guarantees provided by different instantiations are diverse, e.g.,

while Ed25519-IETF and -libsodium versions both additionally offer SUF-CMA security,

only Ed25519-libsodium version provides strong message- and key-binding properties. Our

work provides the scientific rationale for choosing among several Ed25519 variants and

understanding their properties, fills a much-needed proof gap in modern protocol proofs

that use these signatures, and supports further standardisation efforts.

In my second project, we analyze the security of Authenticated Encryption (optionally

with Authenticated Data, AEAD for short) that is used in many modern security protocols

such as TLS, WPA2, WireGuard, and Signal. AEADs are usually built from symmet-

ric encryption schemes and additionally provide authentication. While this additional

requirement may seem to be straightforward, it has in fact turned out to be complex:

many different security notions for AEADs are still being proposed, and many recent

protocol-level attacks exploit subtle AEAD behaviours and complicate the edge cases of

AEAD guarantees and assumptions. This further causes the divergent landscape of AEAD

definitions and their mismatch to real-world attack scenarios. To address this, we revisit

several recent cryptographic AEAD definitions, extract collision resistance as a new core

requirement for a generic computational AEAD model, and prove new results about their

relations. Our generic computational AEAD model enables us to develop a family of

symbolic AEAD models that can be used with symbolic protocol analysis tools, e.g., the

Tamarin prover, for further case studies or independent research interests.

(2) The Analysis and Design of Large-scale Communication Protocols. Sup-

ported by the Microsoft identity project research grant “Developing Post-Quantum (PQ)

Secure Identity Services” from Microsoft Security Response Center (MSRC), in my third

project we focus on a two-party synchronous authentication protocol: FIDO2. The FIDO2

protocol is a globally used standard for passwordless authentication, building on an alliance

between major players in the online authentication space. While already widely deployed,

the standard is still under active development. Since version 2.1 of its CTAP sub-protocol,

FIDO2 can potentially be instantiated with PQ secure primitives. We provide the first

formal security analysis of FIDO2 with the CTAP 2.1 and WebAuthn 2 sub-protocols.

Our security models build on work by Barbosa et al. for their analysis of FIDO2 with

CTAP 2.0 and WebAuthn 1, which we extend in several ways. First, we provide a more

fine-grained security model that allows us to prove more relevant protocol properties,

such as guarantees about token binding agreement, the None attestation mode, and user

verification. Second, we prove PQ security for FIDO2 under certain conditions and minor
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protocol extensions. Finally, we show that for some threat models, the downgrade resilience

of FIDO2 can be improved, and show how to achieve this with a simple modification.

During the Covid-19 pandemic, video conferencing apps like Zoom enabled multi-party

synchronous communication and facilitated people’s work in home office. So far, video

conferencing apps have hundreds of millions of daily users, making them a high-value

target for surveillance and subversion. While such apps claim to achieve some forms

of End-to-End Encryption (E2EE), they usually assume an incorruptible server that is

able to identify and authenticate all the parties in a meeting. Concretely this means

that, e.g., even when using the “end-to-end encrypted” setting, malicious Zoom servers

could eavesdrop or impersonate in arbitrary groups. In my fourth project, we show how

security against malicious servers can be improved by changing the way in which such

protocols use passwords and integrating a password-authenticated key exchange (PAKE)

protocol. To formally prove that our approach achieves its goals, we formalize a class of

cryptographic protocols suitable for this setting, and define a basic security notion for

them, in which group security can be achieved assuming the server is trusted to correctly

authorize the group members. We prove that Zoom indeed meets this notion. We then

propose a stronger security notion that can provide security against malicious servers, and

propose a transformation that can achieve this notion. We show how we can apply our

transformation to Zoom to provably achieve stronger security against malicious servers,

notably without introducing new security elements.

E2EE is a modern requirement for communication in not only synchronous but also

asynchronous settings. In my fifth project, we explore two-party secure messaging, an

essential topic in the asynchronous communication domain. Recent years have seen many

advances in designing secure messaging protocols, aiming at provably strong security

properties in theory or high efficiency for real-world practical deployment. However,

important trade-off areas of the design space inbetween these elements have not yet been

explored. In this work, we design the first provably secure protocol eSM that at the same

time achieves (i) strong resilience against fine-grained compromise, (ii) temporal privacy,

and (iii) immediate decryption with constant-size overhead, notably, in the PQ setting.

Besides these main design goals, we introduce a novel definition of offline deniability

suitable for our setting, and prove that our protocol meets it, notably when combined

with a PQ offline deniable initial key exchange.
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The extended abstracts of these projects appear in the proceedings of IEEE Symposium

on Security and Privacy and Usenix Security Symposium, as follows1.

• Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. ”The Provable

Security of Ed25519: Theory and Practice,” 2021 IEEE Symposium on Security and

Privacy (SP), San Francisco, CA, USA, 2021.

• Cas Cremers, Alexander Dax, Charlie Jacomme, and Mang Zhao. Automated Analysis

of Protocols that use Authenticated Encryption: Analysing the Impact of the Subtle Dif-

ferences between AEADs on Protocol Security. In USENIX Security 2023 (Distinguished

Paper Award winner).

• Nina Bindel, Cas Cremers and Mang Zhao, “FIDO2, CTAP 2.1, and WebAuthn 2:

Provable Security and Post-Quantum Instantiation,” in 2023 2023 IEEE Symposium on

Security and Privacy (SP), San Francisco, CA, US, 2023 .

• Cas Cremers, Eyal Ronen, and Mang Zhao, “Multi-Stage Group Key Distribution

and PAKEs: Securing Zoom Groups against Malicious Servers without New Security

Elements”, in 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA,

US, 2024.

• Cas Cremers and Mang Zhao, “Secure Messaging with Strong Compromise Resilience,

Temporal Privacy, and Immediate Decryption”, in 2024 IEEE Symposium on Security

and Privacy (SP), San Francisco, CA, US, 2024.

The provable security analyses in these projects are conducted in a conventional three-

steps methodology: (1) first formally model the desired security requirements, (2) then

propose novel or recall existing protocols, and (3) finally claim and prove that these

protocols are secure in the threat models. However, such a conventional methodology lacks

of generality and often requires high efforts on the similar or repeated proofs. This thesis

further explains how this observation motivates my invention of a novel and more efficient

methodology for security analyses and design, and leaves a complete and provable solution

as my future work.

1In the research domain of these works, alphabetic author order is common, and the position of an
author is not indicative of their contribution.
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1.1 Overview

Chapter 2 introduces the notations and necessary cryptographic primitives as well as

their associated security definitions.

Chapter 3 presents our formal analysis of three popular implementations of digital

signature Ed25519, figures out the subtle differences between their designs, and clarifies

the huge impacts on the final security guarantees.

Chapter 4 proves various missing or previously conjectured relations for authenticated

encryption with associated data (AEAD) schemes with respect to privacy, integrity, and

collision resistance, completing the picture in this domain.

Chapter 5 formally proves the security of the latest version of passwordless authentication

protocol FIDO2, provides instantiations for its post-quantum security, and proposes

improvements against a novel type of downgrade attack.

Chapter 6 develops a solution to improve the security of Zoom-like apps against malicious

servers without introducing new security elements, formally proves our solution, and

illustrates how to efficiently apply it to the Zoom version 4.0 protocol.

Chapter 7 proposes the first provably secure messaging protocol that simultaneously

satisfies (1) immediate decryption with constant-size overhead, (2) temporal privacy,

and (3) resilience against fine-grained compromise. Our proposal additionally achieves

post-quantum security and a novel flavor of offline deniability, becoming a suitable

PQ-secure candidate for Double Ratchet in Signal.

Chapter 8 completes this thesis by a brief summary of contributions and an open

challenges.
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Chapter 2

Background

2.1 Notations

We use PPT to denote the Probabilistic Polynomial Time and QPT to denote Quantum

Polynomial Time. In this thesis, all algorithms are executed in PPT. We restrict

the attackers’ complexity Compl to be PPT in Chapter 3, Chapter 4, and Chapter 6.

In Chapter 5 and Chapter 7, we assume all attackers’ complexity to be Compl = QPT,

unless stated otherwise. We write PQ in place of “post-quantum”, meaning that the

attackers have QPT complexity while the target protocols and network transmission have

only PPT complexity.

We assume that each algorithm A has a security parameter λ and a public parameter

pp as implicit inputs. We say a function is “negligible” a shorthand for “negligible with

respect to the security parameter”, unless stated otherwise.

We write y ← A(x) for running a deterministic algorithm A with input x and assigning

the output to y. We write y $←− A(x; r) for a probabilistic algorithm A using randomness r,

which is sometimes omitted when it is irrelevant. Furthermore, AO(x) denotes that A has

access to the oracle O during its execution on input x. For variables x, y, we denote by

y ← x, the assignment of value x to y and by s $←− D we denote the sampling of an element

x from the probability distribution D; for simplicity, we denote the uniform sampling

of an element x from a set X by x $←− X. Security experiments Exprsec-propΠ (A) describe
the run of an Compl attacker A against the security property sec-prop of a cryptographic

scheme Π parametrized by an implicit input pp, if the complexity Compl ∈ {PPT,QPT} is
unambiguous from the context. We use ϵsecΠ to denote the advantage of any Compl attacker

that breaks sec security of Π protocol.

Let (·) and {·} respectively denote an ordered tuple and an unordered set. We use

{0, 1}⋆ to denote the set of all strings with finite length. For any positive integer n, let

[n] denote the set of integers from 1 to n, i.e., [n] = {1, ..., n}. We use D to denote a

dictionary that stores values for each index and D[·]← ⊥ for the dictionary initialization.

The functionality of symbol | · | is diverse in this thesis: For a set X, |X| denotes the

cardinality of X; For a number x, |x| denotes the absolute value of x; For a string s, |s|
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denotes the bit-length of s. To avoid duplicating some longer variable names, we use

some update-based variants of common operators: For a number x, we write x++ as a

shorthand for x← x+ 1. For a set S and an element x, we write S
+← x for S ← S ∪ {x},

and S
−← x for S ← S \ {x}.

Let ⊥ denote an special reserved symbol that is not included in any set in this paper.

All undefined variables are initialized with ⊥. We write ⊤ to denote the empty string,

and write x ∥ y to denote the concatenation of strings x and y. We use to denote a

variable that is irrelevant. We use 1 to represent the Boolean value True, and 0 for False.

By JstatementK, we denote the Boolean evaluation of statement. Within algorithms or

oracles, we write “require C” to denote that C is a requirement: if the condition C is

not met, then the algorithm or oracle containing this keyword is exited with output ⊥
and all actions in this invocation are undone.

2.2 Cryptographic Primitives

In this section, we recall the necessary definitions of cryptographic primitives and security

models. Our presentation of some related security definitions follows the style of the

textbook by Katz and Lindell [124] with security defined in the concrete setting which

explicitly specifies the amount of time and resources needed (cf. [124, Sec. 3.1]). For

simplicity, we define other related security notions in a rough setting without specifying

the amount of time and resources needed, but only expect them to be in polynomial with

respect to the implicit security parameter.

2.2.1 Security Assumptions on Cyclic Groups

Definition 1 (sCDH). Let G = ⟨g⟩ denotes a cyclic group of prime order q with generator

g. We say the computational Diffie-Hellman (CDH) problem is ϵCDH
G,g hard if for all PPT

attackers A it holds that

Pr[gab ← A(G, g, ga, gb) : a, b $←− Zq] ≤ ϵCDH
G,g

We say the strong CDH (sCDH) problem is ϵsCDH
G,g hard if for all PPT attackers A the

CDH problem is ϵCDH
G,g = ϵsCDH

G,g hard even when A has access to an oracle Oa(·, ·) that inputs
Y, Z ∈ G and outputs whether Y a = Z.

2.2.2 Pseudorandom and Hash Functions

Definition 2. Let H :M→O denote a function that maps from a message spaceM to

an output space O. We say H is ϵ-collision resistant, if for any attacker A it holds that,

Advcoll-resH (A) := Pr[(m1,m2)
$←− A such that m1,m2 ∈M,m1 ̸= m2,H(m1) = H(m2)] ≤ ϵ
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Definition 3. Let F : R → O denote a function that maps a random string r ∈ R to

an output y ∈ O. We say F is ϵ-prg secure if for any variable X that follows uniform

distribution over R and any variable Y that follows uniform distribution over O, we have

AdvprgF (D) :=
∣∣∣Pr[D(F(X)) = 1]− Pr[D(Y ) = 1]

∣∣∣ ≤ ϵ

Definition 4. Let F : K ×M→ O be a function that maps a key k ∈ K and a message

m ∈ M to an output y ∈ O. We say F is ϵ-prf secure, if for any attacker A and any

k $←− K, there exists a truly random function R :M→O, it holds that,

AdvprfF (A) :=
∣∣Pr[AF(k,·) = 1]− Pr[AR(·) = 1]

∣∣ ≤ ϵ

Moreover, we say F is ϵ-swap secure, if the function F̄ defined below is ϵ-prf secure.

F̄ :M×K → O, F̄(m, k) := F(k,m)

We say F is ϵ-dual secure, if F is both ϵ-prf and ϵ-swap secure.

Definition 5. Let m ≥ 2. Let F : K1 × ... × Km → O be a function that maps m keys

ki ∈ Ki for 1 ≤ i ≤ m to an output y ∈ O. We say F is ϵ-mprf-secure if all of the functions

Fi(ki, (k1, ..., ki−1, ki+1, ..., km)) := F(k1, ..., km) is prf-secure.

The mprf secure function can be easily construction from dual-secure functions. In

this thesis, we only makes use of a mprf-secure KDF for m = 3. Below, we present the

instantiation and prove the security.

Theorem 1. Let F1 : K1 × K2 → O1 and F2 : O1 × K3 → O2 be two functions. If

F1 and F2 both are ϵ-dual-secure, then the function F′(k1, k2, k3) := F2(F1(k1, k2), k3) is

ϵ′-3prf-secure such that ϵ′ ≤ qϵ, where q denotes the number of queries by any attacker

against 3prf-security of F′.

Proof. We first show that F̄1(k1, (k2, k3)) := F′(k1, k2, k3) = F2(F1(k1, k2), k3) is prf-secure.

We prove this by game hopping. Let q denote the number of queries that an attacker A
makes. Let Advi denote the advantage of A in winning game i.

Game 0. This game is identical to the experiment. And we have that Adv0 := ϵ′

Game 1. In this game, whenever A queries (k2, k3), the challenger samples a random

y1 and replaces F̄1(k1, (k2, k3)) = F2(F1(k1, k2), k3) by F̄1(k1, (k2, k3)) = F2(y1, k3). If the

attacker A can distinguish Game 0 and Game 1, then we can easily construct an attacker

that breaks the prf security of F1. Thus, Adv0 − Adv1 ≤ ϵ.

Game 2. In this game, whenever A queries (k2, k3), the challenger samples a random

y1 and replaces F̄1(k1, (k2, k3)) = F2(y1, k3) by F̄1(k1, (k2, k3)) = y2.

If the attacker A can distinguish Game 0 and Game 1, then we can easily construct

an attacker that breaks the prf security of at least one of q F2. Thus, Adv0 − Adv1 ≤ qϵ.
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ExprbindcPRF:

1 (k1,m1, k2,m2)
$←− A()

2 (r1, t1)← cPRF(k1,m1), (r2, t2)← cPRF(k2,m2)

3 return Jt1 = t2K

Figure 2.1: bind experiment for a cPRF function.

Now, in Game 2 the challenger always simulates the random function. Thus, A cannot

distinguish it, and we have that ϵ ≤ (q + 1)ϵ.

The analysis for the prf-security of F̄2(k2, (k1, k3)) :=F′(k1, k2, k3) = F2(F1(k1, k2), k3)

and F̄3(k3, (k1, k2)) := F′(k1, k2, k3) = F2(F1(k1, k2), k3) is similar.

Definition 6. Let F : K ×M→ O be a function that maps a key k ∈ K and a message

m ∈M to an output y ∈ O. We say F is ϵ-prp secure, if

1. for any k ∈ K, F is bijective fromM to O, this indicates that O =M

2. for any k ∈ K, F(k,m) can be evaluated in polynomial time for any m ∈M

3. for any k ∈ K, the inversion F−1(k, y) can be evaluated in polynomial time for any y ∈ O

4. for any attacker A and any k $←− K, there exists a truly random invertible permutation

f :M→O with inversion f−1 : O →M, it holds that

AdvprpF (A) :=
∣∣Pr[AF(k,·),F−1(k,·) = 1]− Pr[Af(·),f−1(·) = 1]

∣∣ ≤ ϵ

We recall a primitive called committing PRF and its simplified binding security, which

was first defined in [27].

Definition 7. Let cPRF : K ×M→ R× T denote a deterministic function inputs a key

k ∈ K and a message m ∈ M and outputs r ∈ R and t ∈ T . We say cPRF is ϵ-binding

(or ϵ-bind) secure, if the below defined advantage of any attacker A against ExprbindcPRF

experiment in Figure 2.1 is bounded by:

AdvbindcPRF(A) := Pr[ExprbindcPRF(A) = 1] ≤ ϵ

2.2.3 Symmetric Key Encryption

Definition 8. A symmetric key encryption scheme over key space K, message space

M, randomness space R, and ciphertext space CT , is a tuple of algorithms SKE =

(SKE.Enc, SKE.Dec) as defined below.

• Encryption c $←− SKE.Enc(k ,m): takes as input a symmetric key k and a message

m and outputs a ciphertext c. We write c $←− SKE.Enc(k ,m; rEnc) if the random coins

rEnc ∈ R is specified.
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ExprIND-CPA
SKE (A):

1 b $←− {0, 1}
2 K $←− SKE.KGen()

3 b′ $←− AOEnc()

4 return Jb = b′K

OEnc(m0,m1):

5 c $←− SKE.Enc(k ,mb)

6 return c

Figure 2.2: IND-CPA experiment for a SKE = (SKE.KGen, SKE.Enc,SKE.Dec) scheme.

• Decryption m ← SKE.Dec(k , c): takes as input a symmetric key k and a ciphertext c

and outputs either a message m or an error symbol ⊥.

We say a SKE is δ-correct if for every k $←− K and every message m ∈M, we have

Pr[m ̸= SKE.Dec(k , SKE.Enc(k ,m))] ≤ δ

In particular, we call a SKE (perfectly) correct if δ = 0.

In terms of the security, we first recall the standard indistinguishability under chosen

plaintext attacks (IND-CPA).

We say a SKE is δ-strongly correct if for every k $←− K, every message m ∈ M, and

every rEnc ∈ R, we have

Pr[m ̸= SKE.Dec(k , SKE.Enc(k ,m; rEnc))] ≤ δ

Compared to the conventional correctness, the strong correctness requires that the

encrypted message can be correctly recovered for every randomness coins involved during

the encryption. In particular, we call a SKE (perfectly) strongly correct if δ = 0.

Definition 9. Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec) be a symmetric key encryption

scheme with symmetric key space K. We say SKE is ϵ-IND-CPA secure, if the blow defined

advantage of every (potential quantum) attacker A against ExprIND-CPA
SKE experiment in

Figure 2.2 is bounded by,

AdvIND-CPA
SKE (A) :=

∣∣∣Pr[ExprIND-CPA
SKE (A) = 1]− 1

2

∣∣∣ ≤ ϵ

Then, we recall two notions, the one time IND-CPA (IND-1CPA) security [76] and

indistinguishability under one-time chosen and then random plaintext attack (IND-1$PA)

security [20].

Definition 10. Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec) be a symmetric key encryption

scheme with symmetric key space K. We say SKE is ϵ-IND-1CPA secure, if the blow

defined advantage of every (potential quantum) attacker A against ExprIND-1CPA
SKE experiment

in Figure 2.3 is bounded by,

AdvIND-1CPA
SKE (A) :=

∣∣∣Pr[ExprIND-1CPA
SKE (A) = 1]− 1

2

∣∣∣ ≤ ϵ
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ExprIND-1CPA
SKE (A):

1 b $←− {0, 1}
2 K $←− SKE.KGen()

3 (m⋆
0,m

⋆
1)

$←− A()
4 if |m⋆

0| ≠ |m⋆
1|

5 return 0

6 c⋆ $←− SKE.Enc(K,m⋆
b)

7 b′ $←− A(c⋆)
8 return Jb = b′K

ExprIND-1$PA
SKE (A):

1 b $←− {0, 1}
2 K $←− SKE.KGen()

3 (m⋆
0,m

⋆
1)

$←− A()
4 if |m⋆

0| ≠ |m⋆
1|

5 return 0

6 c⋆ $←− SKE.Enc(K,m⋆
b)

7 b′ $←− ARand(c⋆)

8 return Jb = b′K

Rand(l):

9 m′
0,m

′
1

$←− {0, 1}l

10 c′ $←− SKE.Enc(K,m′
b)

11 return (m′
0,m

′
1, c

′)

Figure 2.3: IND-1CPA and IND-1$PA experiments for a SKE = (SKE.KGen,SKE.Enc, SKE.Dec)
scheme.

Definition 11. Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec) be a symmetric key encryption

scheme with symmetric key space K. We say SKE is ϵ-IND-1$PA secure, if the blow

defined advantage of every (potential quantum) attacker A against ExprIND-1$PA
SKE experiment

in Figure 2.3 is bounded by,

AdvIND-1$PA
SKE (A) :=

∣∣∣Pr[ExprIND-1$PA
SKE (A) = 1]− 1

2

∣∣∣ ≤ ϵ

Finally, we recall the indistinguishability under one-time chosen ciphertext attacks

(IND-1CCA) in [12]. In this security notion, the attacker is allowed to query the encryption

oracle OEnc at most once. However, the attacker can have access to the decryption

oracle ODec with arbitrary times. We in particular define the IND-1CCA experiment with

simplified SKE definition, i.e., SKE = (SKE.Enc, SKE.Dec).

We particularly stress that the difference between IND-1CPA and IND-1CCA security.

On the one hand, while the goal of attackers in IND-1CPA experiment is to distinguish two

plaintexts (this is defined in a so-called “left-or-right” manner), the goal of attackers in

IND-1CCA experiment is to distinguish a real ciphertext from a random ciphertext (this is

defined in a so-called “real-or-random” manner). On the other hand, while the attackers

in IND-1CCA experiment have access to the decryption oracle, the ones in IND-1CPA have

none.

Definition 12. Let SKE = (SKE.Enc, SKE.Dec) be a symmetric key encryption scheme

with symmetric key space K and ciphertext space C. We say SKE is ϵ-IND-1CCA secure, if

the blow defined advantage of every (potential quantum) attacker A against ExprIND-1CCA
SKE

experiment in Figure 2.4 is bounded by,

AdvIND-1CCA
SKE (A) :=

∣∣∣Pr[ExprIND-1CCA
SKE (A) = 1]− 1

2

∣∣∣ ≤ ϵ
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ExprIND-1CCA
SKE (A):

1 b $←− {0, 1}
2 k $←− K
3 c⋆ ← ⊥
4 b′ $←− AOEnc,ODec()

5 return Jb = b′K

OEnc(m):

1 require c⋆ = ⊥
2 if b = 0

3 c⋆ $←− SKE.Enc(k ,m)

4 else

5 c⋆ $←− C
6 return c

ODec(c):

7 if c = c⋆ or b = 1

8 return ⊥
9 return SKE.Dec(k , c)

Figure 2.4: IND-1CCA experiment for a SKE = (SKE.Enc,SKE.Dec) scheme.

2.2.4 Authenticated Encryption with Associated Data

Definition 13 ([163]). Let K, N , H, M, CT respectively denote the space of keys,

nonces, headers (aka. header), messages, and ciphertexts. An authenticated encryption

with associated data scheme AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec)1 is a tuple of

algorithms where

• AEAD.KGen the key generation algorithm outputs a symmetric key k ∈ K, i.e., k $←−
AEAD.KGen().

• AEAD.Enc the encryption algorithm inputs a key k ∈ K, a nonce n ∈ N , a header

h ∈ H, and a message m and (deterministically) outputs a ciphertext c, i.e., c ←
AEAD.Enc(k , n, h,m).

• AEAD.Dec the decryption algorithm inputs a key k ∈ K, a nonce n ∈ N , a header h ∈ H,
and a ciphertext c ∈ CT and deterministically outputs a message m ∈ M ∪ {⊥}, i.e.,
m ← AEAD.Dec(k , n, h, c).

Each AEAD scheme is assumed to be defined with a length function ℓ such that

|AEAD.Enc(k , n, h,m)| = ℓ(|m|) for all (k , n, h,m) ∈ K ×N ×H×M.

We say an AEAD scheme is ϵ-correct if for all (n, h,m) ∈ N × H ×M and k $←−
AEAD.KGen() it holds that

Pr[m ′ ← AEAD.Dec(k , n, h,AEAD.Enc(k , n, h,m)) : m ̸= m ′] ≤ ϵ

In particular, we say AEAD is perfect correct if ϵ = 0.

We say an AEAD scheme is tidy if for each (k , n, h, c) ∈ K×N ×H×CT it holds that

⊥ ≠ m ← AEAD.Dec(k , n, h, c) =⇒ c ← AEAD.Enc(k , n, h,m)

Over such schemes, the n, h and ciphertext c need to be sent over the network2, and

the correctness of the scheme requires that the decryption of a ciphertext with the same

1Note the fact that most popular AEAD constructions generate keys by simply sampling bit strings
from key space uniformly at random. We sometimes also omit the key generation algorithm and simply
write AEAD = (AEAD.Enc,AEAD.Dec), in particular, in Chapter 6.

2We stress that AEAD schemes can be used offline in practice, where nonces and headers both are
hidden from attackers’ view. However, this paper focuses on a more common case where the attackers
might have access to the nonce and headers, e.g., which are transmitted over network.
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ExprIND$-CPA
AEAD :

1 b $←− {0, 1}
2 LOEnc

← ∅
3 k $←− AEAD.KGen()

4 b′ $←− AOEnc,ODec()

5 return Jb = b′K

OEnc(n, h,m):

6 require (n, , , ) /∈ LOEnc

7 if b = 0

8 c← AEAD.Enc(k ,n, h,m)

9 else c $←− {0, 1}ℓ(|m|)

10 LOEnc

+← (n, h,m, c)

11 return c

Figure 2.5: IND$-CPA experiment for an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) scheme.

ExprCTI-CPAAEAD :

1 Lc ← ∅
2 k $←− AEAD.KGen

3 (n, h, c) $←− AOEnc()

4 require c /∈ Lc

5 return JAEAD.Dec(k ,n, h, c) ̸= ⊥K

OEnc(n, h,m):

6 c← AEAD.Enc(k ,n, h,m)

7 Lc
+← c

8 return c

Figure 2.6: CTI-CPA experiment for an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) scheme.

parameters n, h, k indeed returns the plaintext. We assume that the decryption with

inputs outside the corresponding spaces must output ⊥.
The two core security guarantees are integrity and privacy.

Definition 14 (Privacy [163]). We say an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec)

is ϵ-IND$-CPA secure, if the below defined advantage of any attacker A against ExprIND$-CPA
AEAD

experiment in Figure 2.5 is bounded by:

AdvIND$-CPA
AEAD := |Pr[ExprIND$-CPA

AEAD (A) = 1]− 1

2
| ≤ ϵ

Definition 15 (Integrity [163]). We say an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec)

is ϵ-CTI-CPA secure, if the below defined advantage of any attacker A against ExprCTI-CPAAEAD

experiment in Figure 2.6 is bounded by:

AdvCTI-CPAAEAD := Pr[ExprCTI-CPAAEAD (A) = 1] ≤ ϵ

Both for integrity and privacy, we can define two security variants, CTI-CCA and

IND$-CCA, based on whether the attacker also has access to a decryption oracle during

the experiment, see e.g., the definition of the experiment for CTI-CCA in Figure 2.6.

We start with the confidentiality notion IND$-CPA and extend it to IND$-CCA in a

natural way.

Definition 16. We say an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) is ϵ-IND$-CCA

secure, if the below defined advantage of any attacker A against ExprIND$-CCA
AEAD experiment

in Figure 2.7 is bounded by:

AdvIND$-CCA
AEAD := |Pr[ExprIND$-CCA

AEAD (A) = 1]− 1

2
| ≤ ϵ
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ExprIND$-CCA
AEAD :

1 b $←− {0, 1}
2 LOEnc

,LODec
← ∅

3 k $←− AEAD.KGen

4 b′ $←− AOEnc,ODec()

5 return Jb = b′K

OEnc(n, h,m):

6 require (n, , , ) /∈ LOEnc

7 require (n, h,m, ) /∈ LODec

8 if b = 0

9 c← AEAD.Enc(k ,n, h,m)

10 else c $←− {0, 1}ℓ(|m|)

11 LOEnc

+← (n, h,m, c)

12 return c

ODec(n, h, c):

13 require (n, h, , c) /∈ LOEnc

14 m ← AEAD.Dec(k ,n, h, c)

15 if m ̸= ⊥

16 LODec

+← (n, h,m, c)

17 return m

Figure 2.7: IND$-CCA experiment for an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) scheme.
Note that we assume “nonce-respecting”, which means the encryption oracle cannot be repeatedly
queried with same nonces.

ExprCTI-CCAAEAD :

1 Lc ← ∅
2 k $←− AEAD.KGen()

3 (n, h, c) $←− AOEnc,ODec()

4 require c /∈ Lc

5 return JAEAD.Dec(k ,n, h, c) ̸= ⊥K

OEnc(n, h,m):

6 c ← AEAD.Enc(k ,n, h,m)

7 Lc
+← c

8 return c

ODec(n, h, c):

9 return AEAD.Dec(n, h, c)

Figure 2.8: CTI-CCA experiment for an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) scheme.
Note that we assume “nonce-respecting”, which means the encryption oracle cannot be repeatedly
queried with same nonces.

Definition 17. We say an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) is ϵ-CTI-CCA

secure, if the below defined advantage of any attacker A against ExprCTI-CCAAEAD experiment

in Figure 2.8 is bounded by:

AdvCTI-CCAAEAD := Pr[ExprCTI-CCAAEAD (A) = 1] ≤ ϵ

Other than privacy and integrity, Bellare and Hoang [27] observe that the commitment

is an essential security property for AEAD.

Definition 18. We say an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) is ϵ-CMT-l

secure for l ∈ {1, 3, 4}, if the below defined advantage of any attacker A against ExprCMT-l
AEAD

experiment in Figure 2.9 is bounded by:

AdvCMT-l
AEAD := Pr[ExprCMT-l

AEAD (A) = 1] ≤ ϵ

Definition 19. We say an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) is ϵ-CMTD-l

secure for l ∈ {1, 3, 4}, if the below defined advantage of any attacker A against ExprCMT-l
AEAD

experiment in Figure 2.9 is bounded by:

AdvCMTD-l
AEAD := Pr[ExprCMTD-l

AEAD (A) = 1] ≤ ϵ
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ExprCMT-l
AEAD :

1

(
(k1,n1, h1,m1), (k2,n2, h2,m2)

)
$←− A()

2 if ⊥ ∈ {k1,n1, h1,m1, k2,n2, h2,m2}
3 return 0

4 if WiCl(k1,n1, h1,m1) = WiCl(k2,n2, h2,m2)

5 return 0

6 c1 ← AEAD.Enc(k1,n1, h1,m1)

7 c2 ← AEAD.Enc(k2,n2, h2,m2)

8 return Jc1 = c2K

ExprCMTD-l
AEAD :

1

(
c, (k1,n1, h1,m1), (k2,n2, h2,m2)

)
$←− A()

2 if ⊥ ∈ {k1,n1, h1,m1, k2,n2, h2,m2}
3 return 0

4 if WiCl(k1,n1, h1,m1) = WiCl(k2,n2, h2,m2)

5 return 0

6 m ′
1 ← AEAD.Dec(k1,n1, h1, c)

7 m ′
2 ← AEAD.Dec(k2,n2, h2, c)

8 return Jm1 = m ′
1K and Jm2 = m ′

2K

l 1 3 4
WiCl(k , n, h,m) k (k , n, h) (k , n, h,m)

Figure 2.9: CMT-l and CMTD-l experiments for an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec)
scheme, where l ∈ {1, 3, 4}.

In the literature, there are a number of other related strong security notions. The key

committing KC security [10] says that different keys but same nonce indicate the different

ciphertexts. The multi-key collision resistance (MKCR) [135] says that no attacker can

forge any nonce-header-ciphertext tuple (n, h, c) that can be decrypted to a valid message

under any key from a attacker-chosen key space with certain minimal cardinality.

Definition 20. We say an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) has (q, ϵ)-key

commitment (or is (q, ϵ)-KC secure), if the below defined advantage of any attacker A
against ExprKCAEAD,q experiment in Figure 2.10 is bounded by:

AdvKCAEAD,q := Pr[ExprKCAEAD,q(A) = 1] ≤ ϵ

In particular, we say AEAD is ϵ-KC for short, if AEAD is (q, ϵ)-KC secure for any q ≥ 2.

Definition 21. We say an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) with key space

K has (κ, ϵ)-multi-key collision resistance (or is (κ, ϵ)-MKCR secure) for some parameter

κ > 1, if the below defined advantage of any attacker A against ExprMKCR
AEAD,κ experiment

in Figure 2.11 is bounded by:

AdvMKCR
AEAD,κ := Pr[ExprMKCR

AEAD,κ(A) = 1] ≤ ϵ

In particular, we say AEAD is ϵ-MKCR for short, if AEAD is (κ, ϵ)-MKCR secure for κ = 2.

Definition 22. An AEAD can be extended to (compactly) commiting AEAD (ccAEAD) if

two additional algorithms are defined. Let VK denote the space of verification key.

• AEAD.openCommit the open commitment algorithm inputs a key k ∈ K, a nonce n ∈ N ,

a header h ∈ H, and a ciphertext c ∈ CT and (deterministically) outputs a verification

key kf ∈ VK ∪ {⊥}, i.e., kf ← AEAD.openCommit(k , n, h, c)
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ExprKCAEAD,q:

1 L ← ∅, n← 0

2 ()← AOEnc,ODec()

3 foreach (k1,n1, h1,m1, c1), (k2,n2, h2,m2, c2) ∈ L
4 if k1 ̸= k2 and n1 = n2 and c1 = c2 ̸= ⊥ and m1 ̸= ⊥ and m2 ̸= ⊥
5 return 1

6 return 0

OEnc(k ,n, h,m):

7 c ← AEAD.Enc(k ,n, h,m)

8 if n < q

9 L ← L ∪ (k ,n, h,m, c)

10 n← n+ 1

11 return c

ODec(k ,n, h, c):

12 m ← AEAD.Dec(k ,n, h, c)

13 if n < q

14 L ← L ∪ (k ,n, h,m, c)

15 n← n+ 1

16 return m

Figure 2.10: KC experiment for an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) scheme.

ExprMKCR
AEAD,κ:

1 (K∗,n⋆, h⋆, c⋆) $←− A()
2 if |K⋆| < κ

3 return 0

4 foreach k ∈ K⋆

5 if AEAD.Dec(k ,n⋆, h⋆, c⋆) = ⊥
6 return 0

7 return 1

Figure 2.11: MKCR experiment for an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) scheme.

• AEAD.vrfyCommit the commitment verification algorithm inputs a verification key kf ∈
VK , a nonce n ∈ N , a header h ∈ H, a message m, and a ciphertext c ∈ CT and (de-

terministically) outputs a boolean value v ∈ {true, false}, i.e., v ← AEAD.vrfyCommit(kf ,

n, h,m, c).

In the realm of ccAEAD, there are two important notions: sender binding s-BIND

and receiver binding r-BIND [97]. While the s-BIND property ensures that the attacker

cannot forge any (k , h, c) tuple such that the decrypted message can be verified using the

opened verification key. The r-BIND ensures that each ciphertext is bound to the same

nonce-header-message tuple.

Definition 23. We say an ccAEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec,AEAD.openCommit,

AEAD.vrfyCommit) has ϵ-sender binding (or is ϵ-s-BIND secure), if the below defined ad-

vantage of any attacker A against Exprs-BINDAEAD experiment in Figure 2.12 is bounded by:

Advs-BINDccAEAD := Pr[Exprs-BINDccAEAD(A) = 1] ≤ ϵ
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Definition 24. We say an ccAEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec,AEAD.openCommit,

AEAD.vrfyCommit) has ϵ-receiver binding (or is ϵ-r-BIND secure), if the below defined ad-

vantage of any attacker A against Exprr-BINDAEAD experiment in Figure 2.13 is bounded by:

Advr-BINDccAEAD := Pr[Exprr-BINDccAEAD(A) = 1] ≤ ϵ

Exprs-BINDccAEAD:

1 (k ,n, h, c) $←− A()
2 m ← AEAD.Dec(k ,n, h, c)

3 kf ← AEAD.openCommit(k ,n, h, c)

4 if m = ⊥
5 return 0

6 if AEAD.vrfyCommit(kf ,n, h,m, c)

7 return 0

8 return 1

Figure 2.12: s-BIND experiment for an ccAEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec,
AEAD.openCommit,AEAD.vrfyCommit) scheme.

Exprr-BINDccAEAD:

1

(
c, (kf 1,n1, h1,m1), (kf 2,n2, h2,m2)

)
$←− A()

2 if ⊥ ∈ {k1,n1, h1,m1, k2,n2, h2,m2}
3 return 0

4 if (h1,m1) = (h2,m2)

5 return 0

6 if AEAD.vrfyCommit(kf 1,n1, h1,m1, c) and AEAD.vrfyCommit(kf 2,n2, h2,m2, c)

7 return 1

8 return 0

Figure 2.13: r-BIND experiment for an ccAEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec,
AEAD.openCommit,AEAD.vrfyCommit) scheme.

From an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec), we can easily extend to an

ccAEAD[AEAD] = (AEAD.KGen,AEAD.Enc,AEAD.Dec,AEAD.openCommit,AEAD.vrfyCommit)

using “traditionally committing encryption” approach [97], such that

AEAD.openCommit(k , n, h, c) := k

AEAD.vrfyCommit(k , n, h,m, c) := Jm = AEAD.Dec(k , n, h, c)K

2.2.5 Digital Signature Schemes

Definition 25 (Digital Signature scheme). A digital signature (DS) scheme DS =

(DS.KGen,DS.Sign,DS.Vrfy) over message spaceM and randomness space R is a tuple of

algorithms as defined below.
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Key Generation (vk , sk) $←− DS.KGen(pp): inputs the public parameter pp and outputs

a public verification and private signing key pair (vk , sk).

Signing σ $←− DS.Sign(sk,m): inputs a signing key sk and a message m ∈M and outputs

a signature σ. We write σ $←− DS.Sign(sk,m; rSign), if the random coins rSign ∈ R is

specified.

Verification true/false← DS.Vrfy(vk ,m, σ): inputs a verification key vk , a message m,

and a signature σ and outputs a boolean value either true true or false. Note that we

sometimes also denote true by 1 and false by 0.

We say a DS is δ-correct if for every (vk , sk ) $←− DS.KGen() and every message m ∈M,

we have

Pr[false← DS.Vrfy(vk ,m,DS.Sign(sk ,m))] ≤ δ

In particular, we call a DS (perfectly) correct if δ = 0.

We say a DS is δ-strongly correct if for every (vk , sk ) $←− DS.KGen(), every message

m ∈M, and every rSign ∈ R we have

Pr[false← DS.Vrfy(vk ,m,DS.Sign(sk ,m; rSign))] ≤ δ

Compared to the conventional correctness, the strong correctness requires that the

signed message-signature pair be correctly verified for every randomness coins involved

during the signing. In particular, we call a DS (perfectly) strongly correct if δ = 0.

The standard notion for security of signature schemes is that of (single-user) existential

unforgeability under chosen message attacks. Intuitively, this guarantees that for a fixed

public verification key, an attacker A cannot generate a valid signature on a new message,

for which it has not seen a valid signature before. A stronger definition of security is that

of (single-user) strong unforgeability, which will also play a role later. Here, the attacker

is not restricted to forging signatures on new messages for a fixed public key but may

also generate a signature on a message on which it has seen (other) signatures. Both of

these notions can then be transferred to the multi-user setting, where there is not just a

single public key generated by the challenger but multiple honestly generated keys. The

attacker’s goal is then to (existentially or strongly) forge a signature under any of these

keys.

Definition 26 (EUF-CMA and SUF-CMA security). Let DS = (DS.KGen,DS.Sign,DS.Vrfy)

be a digital signature scheme. Consider the security experiments Expreuf-cma
DS and Exprsuf-cma

DS

as defined in Figure 2.14. We say that a digital signature scheme DS is (t, ϵ, QS)-EUF-CMA-

secure or existentially unforgeable under chosen message attacks, if for any attacker A
running in time at most t, making at most QS queries to the signing oracle, the advantage

AdvEUF-CMA
DS (A) := Pr[ExprEUF-CMA

DS (A) = 1] ≤ ϵ
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Expreuf-cma
DS (A):

1 LSign ← ∅
2 (vk , sk) $←− DS.KGen(pp)

3 (m⋆, σ⋆) $←− AOSign(vk)

4 return JDS.Vrfy(vk , σ⋆,m⋆)∧m⋆ ̸∈ LSignK

OSign(m):

5 σ $←− DS.Sign(sk ,m)

6 LSign ← LSign ∪ {m}
7 return σ

Exprsuf-cma
DS (A):

1 LSign ← ∅
2 (vk , sk) $←− DS.KGen(pp)

3 (m⋆, σ⋆) $←− AOSign(vk)

4 return JDS.Vrfy(vk , σ⋆,m⋆)∧ (m⋆, σ⋆) ̸∈ LSign K

OSign(m):

5 σ $←− DS.Sign(sk ,m)

6 LSign ← LSign ∪ {(m,σ)}
7 return σ

Figure 2.14: EUF-CMA experiment (left) and SUF-CMA experiment (right) of a DS = (DS.KGen,
DS.Sign,DS.Vrfy) scheme with differences highlighted in gray.

Analogously, we say that DS is (t, ϵ, QS)-SUF-CMA-secure or strongly unforgeable under

chosen message attacks, if the advantage

AdvSUF-CMA
DS (A) := Pr[ExprSUF-CMA

DS (A) = 1] ≤ ϵ

For simplicity, we sometimes omit the measure on the running time and the total number

of queries, if they are only required to be in polynomial with respect to the implicit security

parameter pp.

Definition 27 (Multi-UserMU-EUF-CMA andMU-SUF-CMA security). Let DS = (DS.KGen,

DS.Sign,DS.Vrfy) be a digital signature scheme. Consider the security games Exprmu-euf-cma
DS

and Exprmu-suf-cma
DS as defined in Figure 2.15. We say that a digital signature scheme DS

is (t, ϵ, N,QS)-MU-EUF-CMA-secure or multi-user existentially unforgeable under chosen

message attacks, if for any PPT attacker A running in time at most t, making at most

QS queries to the signing oracle, given N public keys, the probability

Pr
[
Exprmu-euf-cma

DS (A, N) = 1
]
≤ ϵ.

Analogously, we say that a signature scheme is (t, ϵ, N,QS)-MU-SUF-CMA-secure or multi-

user strongly unforgeable under chosen message attacks.

For simplicity, we sometimes omit the measure on the running time and the total

number of queries, if they are only required to be in polynomial with respect to the implicit

security parameter pp.

2.2.6 Key Encapsulation Mechanisms

Definition 28. A key encapsulation mechanism scheme over (secret) decapsulation key

space DK, (public) encapsulation key space EK, randomness space R, symmetric key space

K, and ciphertext space CT , is a tuple of algorithms KEM = (KEM.KGen,KEM.Encaps,

KEM.Decaps) as defined below.

21



Exprmu-euf-cma
DS (A, N ):

1 LSign ← ∅

2 for i = 1, . . . , N

3 (vk i, sk i)
$←− DS.KGen(pp)

4 ( i⋆ , σ⋆,m⋆) $←− AOSign( vk1, . . . , vkN )

5 return JDS.Vrfy( vk⋆
i , σ⋆,m⋆) ∧ ( i⋆ ,m⋆) ̸∈ LSignK

OSign( i ,m):

6 σ $←− DS.Sign( sk i ,m)

7 LSign ← LSign ∪ {( i ,m)}
8 return σ

Exprmu-suf-cma
DS (A, N):

1 LSign ← ∅
2 for i = 1, . . . , N

3 (vk i, sk i)
$←− DS.KGen(pp)

4 (i⋆, σ⋆,m⋆) $←− AOSign(vk1, . . . , vkN )

5 return JDS.Vrfy(vk⋆
i , σ

⋆,m⋆) ∧ (i⋆,m⋆, σ⋆) ̸∈ LSignK

OSign(i,m):

6 σ $←− DS.Sign(sk i,m)

7 LSign ← LSign ∪ {(i,m, σ)}
8 return σ

Figure 2.15: Multi-user MU-EUF-CMA experiment (top) and MU-SUF-CMA experiment (bottom)
of a DS = (DS.KGen,DS.Sign,DS.Vrfy) scheme with differences to the single-user security notions
highlighted in gray for the EUF-CMA case.

• Key Generation (ek , dk) $←− KEM.KGen(pp): takes as input the public parameter pp

and outputs a public-secret key pair (ek , dk) ∈ EK ×DK .

• Encapsulation (c, k) $←− KEM.Encaps(ek): takes as input a public key ek ∈ EK
and outputs a ciphertext c ∈ CT and a symmetric key k ∈ K. We write (c, k) $←−
KEM.Encaps(ek ; rEncaps) if the random coins rEncaps ∈ R is specified.

• Decapsulation k ← KEM.Decaps(dk , c): takes as input a secret key dk ∈ DK and a

ciphertext c ∈ CT and outputs either a symmetric key k ∈ K or an error symbol ⊥.

We say a KEM = (KEM.KGen,KEM.Encaps,KEM.Decaps) is δ-correct if for every

(ek , dk) $←− KEM.KGen(), we have

Pr[k ̸= KEM.Decaps(dk , c) : (c, k) $←− KEM.Encaps(ek)] ≤ δ.

In particular, we call a KEM (perfectly) correct if δ = 0.

We say a KEM is δ-strongly correct if for every (ek , dk ) $←− KEM.KGen() and every

rEncaps ∈ R, we have

Pr[k ̸= KEM.Decaps(dk , c) : (c, k) $←− KEM.Encaps(ek ; rEncaps)] ≤ δ

Compared to the conventional correctness, the strong correctness requires that the

encapsulate keys can be correctly recovered for every randomness coins involved during

the encapsulation. In particular, we call a KEM (perfectly) strongly correct if δ = 0.

We define the min-entropy αek of public keys ek and αc of the ciphertext c by

αek := − log max
ek ′∈EK

Pr[ek ′ = ek : (ek , dk) $←− KEM.KGen()]

αc := − log max
c′∈CT

Pr
(ek ,dk)

$←−KEM.KGen()
[c = c ′ : (c, k) $←− KEM.Encaps(ek)]
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ExprIND-CPA
KEM (A):

1 b $←− {0, 1}
2 (ek , dk ) $←− KEM.KGen()

3 (c⋆, k⋆
0 )

$←− KEM.Encaps(ek )

4 k⋆
1

$←− K
5 b′ $←− A(ek , c⋆, k⋆

b )

6 return Jb = b′K

ExprIND-CCA
KEM (A):

1 b $←− {0, 1}
2 (ek , dk ) $←− KEM.KGen()

3 (c⋆, k⋆
0 )

$←− KEM.Encaps(ek )

4 k⋆
1

$←− K
5 b′ $←− AODecaps(ek , c⋆, k⋆

b )

6 return Jb = b′K

ODecaps(c):

7 if c = c⋆

8 return ⊥
9 k ′ ← KEM.Decaps(dk , c)

10 return k ′

Figure 2.16: IND-CPA and IND-CCA experiments for a KEM = (KEM.KGen,KEM.Encaps,
KEM.Decaps) scheme.

In terms of the security notions, we recall the standard indistinguishability under

chosen plaintext/ciphertext attacks (IND-CPA/IND-CCA). The IND-CPA security prevents

an attacker from distinguishing the encapsulated symmetric key of a challenge ciphertext

from a random one. The IND-CCA security additionally allows the attacker to access a

decapsulation oracle.

Definition 29. Let KEM = (KEM.KGen,KEM.Encaps,KEM.Decaps) be a key encapsulation

mechanism scheme with symmetric key space K. We say KEM is ϵ-IND-CPA secure, if

the below defined advantage of every (potential quantum) attacker A against ExprIND-CPA
KEM

experiment in Figure 2.16 is bounded by,

AdvIND-CPA
KEM (A) :=

∣∣∣Pr[ExprIND-CPA
KEM (A) = 1]− 1

2

∣∣∣ ≤ ϵ

Definition 30. Let KEM = (KEM.KGen,KEM.Encaps,KEM.Decaps) be a key encapsula-

tion mechanism scheme with symmetric space K. We say KEM is ϵ-IND-CCA secure, if

the below defined advantage of every (potential quantum) attacker A against ExprIND-CCA
KEM

experiment in Figure 2.16 is bounded by,

AdvIND-CCA
KEM (A) :=

∣∣∣Pr[ExprIND-CCA
KEM (A) = 1]− 1

2

∣∣∣ ≤ ϵ

2.3 The Random Oracle Methodology

This random oracle model was first introduced by Bellare and Rogaway [34] and enabled

security proofs for many efficient schemes that previously had eluded the provable security

paradigm. It does so by representing a hash function in a cryptographic scheme as an

idealized random function (the random oracle). With this idealization in place, an attacker

can only evaluate the hash function H on input x, if it queries this random oracle on x. It

is no longer able to simply evaluate the hash function locally. In particular, this allows

us to “peek” at the attacker’s inputs to the hash function, a property of the model that

is often referred to as extractability. When queried on input x, the random oracle then

23



returns uniformly random answers from the range of H for each input. For each new query

a fresh uniformly random output is sampled, but just like for real hash functions, repeated

queries are answered consistently, i.e., the same inputs yield the same outputs. Another

essential property of the random oracle is programmability : if the attacker queries some

input x for the first time, we can set the value H(x) to a specific, freely-chosen output value

y as long as it is correctly distributed and does not collide with previously set outputs.

Note that when our proofs are in the random oracle model for hash function H, the

security notions introduced previously get the extra query parameter QH of the maximal

number of queries the attacker makes to the random oracle.
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Chapter 3

Provable Security of Ed25519

This chapter is based on the paper:

Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. ”The Provable Security

of Ed25519: Theory and Practice,” 2021 IEEE Symposium on Security and Privacy (SP),

San Francisco, CA, USA, 2021, pp. 1659-1676. DOI: 10.1109/SP40001.2021.00042.

This paper was joint work with my co-authors Jacqueline Brendel, Cas Cremers, and

Dennis Jackson. All authors actively contributed to the completion of this work.
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3.1 Introduction

The Ed25519 signature scheme was introduced in 2011 by Bernstein, Duif, Lange, Schwabe,

and Yang in the paper “High-speed high-security signatures” [43]. The efficiency of the

scheme has led to a global uptake in modern applications, and it is now used in SSH, Tor,

ZCash, and messaging protocols based on the Signal protocol such as WhatsApp.

For modern digital signature schemes the quintessential property is existential unforge-

ability under chosen message attacks (EUF-CMA) [94]. This property basically requires

that an attacker cannot construct a signature for a message that the key owner did not

sign previously.

A stronger property that can be met by signature schemes, is that of strong unforgeability

under chosen message attacks (SUF-CMA). This property additionally requires that the

attacker cannot construct an alternative signature for a given signed message. A high-profile

example exploiting the absence of this property is the Mt. Gox attack on Bitcoin [129].

In this attack, signatures on transactions were mauled by an adversarial recipient before

being stored on the blockchain. The recipient would then claim that the transaction failed.

The sender would check the blockchain, and would indeed not find their exact signature

(due to mauling), conclude that it apparently failed, and start a new transfer. Yet both

signatures would be valid and the recipient would thus receive the double amount. This

attack would not have been possible with a strongly unforgeable (SUF-CMA) signature

scheme as this notion prohibits malleability.

Additionally, in many practical systems, it is highly desirable that signature schemes

resist key substitution attacks [117, 158]. In such attacks the attacker computes specific

public keys, e.g., based on observed signatures of honest signers, such that these honest

signatures can also be verified under the attacker’s new public keys. This has been shown

to lead to attacks on protocols such as Let’s Encrypt Certificate Issuance and SOAP’s

WS-Security [117].

Surprisingly, full proofs of any of these security properties have never been given for

Ed25519. The original publications [43, 44] focused on efficiency of computation, and do

not contain a precise statement on the security property that is offered by the scheme,

which in the following we will refer to as Ed25519-Original. Because the scheme is said to

be constructed via the Fiat-Shamir transform, it should follow that Ed25519-Original at

least provides EUF-CMA security, but full details were never provided. The papers do

refer to malleability and argue that is not relevant for the standard definitions of signature

scheme security, but their definition of malleability does not agree with the common usage

of the term. It also transpires that, whilst the source code presented alongside the paper

accepts mangled signatures (hence is not SUF-CMA), the additional check included in the

paper’s description but not the source code, is actually sufficient to prove SUF-CMA, as
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DS.KGen(pp):

1 k $←− {0, 1}b

2 h← H(k)

3 s← 2n +
∑n−1

i=c 2ih[i]

4 A← sB

5 return (A, k)

DS.Sign(k,m):

6 h← H(k)

7 s← 2n +
∑n−1

i=c 2ih[i]

8 r ← H(h[b], . . . , h[2b− 1],m)

9 R← rB

10 S ← (r + H(R,A,m)s) mod L

11 return σ = (R,S)
DS.Vrfy(A, σ = (R,S),m):

12 Check R,A ∈ E

13 Variant Specific Checks

14 return Checks succeed ∧ J2cSB = 2cR+ 2cH(R,A,m)AK

Figure 3.1: Generic description of the Ed25519 signature scheme algorithms DS =
(DS.KGen,DS.Sign,DS.Vrfy). Note that the highlighted Line 13 varies depending on the version
of Ed25519 and the appropriate check is listed in Table 3.1.

Ref Scheme Variant Specific Checks EUF-
CMA
(Thm. 4)

SUF-
CMA
(Thm. 5)

S-UEO
(Thm. 6)

MBS
(Thm. 7)

M-S-
UEO
(Thm. 8)

[42] Ed25519-Original S ∈ {0, ..., 2b − 1} ✓ × ✓ × ×
[121] Ed25519-IETF S ∈ {0, ..., L− 1} ✓ ✓ ✓ × ×
[119] Ed25519-LibS S ∈ {0, ..., L−1} ∧ |R| ⩾ L ∧ |A| ⩾

L
✓ ✓ ✓ ✓ ✓

Table 3.1: Ed25519 Schemes. To form each variant, replace the highlighted section in Figure 3.1
with the text presented here. Note that 2b−1 > L (see Table 3.2) so the latter checks are stricter.
EUF-CMA: Existential Unforgeability; SUF-CMA: Strong Unforgeability; S-UEO and M-S-UEO
denote resilience against key substitution attacks; MBS: Message Bound Security, ensuring a
signature verifies a unique message, even for malicious keys.

we will show. This further adds to the confusion around the security properties enjoyed

by Ed25519.

While the original papers came with a full implementation of Ed25519-Original, later

implementations made various modifications. Notably, the Ed25519-IETF version that was

standardized by the Internet Engineering Task Force (IETF) in [121] includes a check

that is claimed to prevent malleability, thereby implicitly suggesting that Ed25519-IETF is

strongly unforgeable (SUF-CMA). Later versions, such as the ones used by LibSodium [119]

and ZCash [108] included additional group element checks. We return to the details of

these differences in Section Section 3.4.1. This leads to the obvious question: which

exact properties are actually provided by the various Ed25519 schemes? This question is

especially timely as Ed25519 is currently proposed for inclusion in the USA’s National

Institute of Standards and Technology (NIST) standard for Digital Signature Schemes [145,

146, 147] and was recently included in the TLS 1.3 standard [161].

Over the last years, several published works reported security proofs of systems that

use Ed25519, but require specific cryptographic security notions from their signature
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Parameter Description Instantiation for Ed25519

q The finite field size q 2255 − 19

n Secret scalars are n+ 1-bits 254

b The public key bit-length 2b−1 > q 256

a, d Curve parameters in Fq −1,−121665/121666

B A generator of the prime order subgroup of E (x, 4/5), x > 0

c The log2 of curve cofactor c = 3

L The prime generator order LB = 0 and 2cL = |E| 2252 + 27742 . . . 8493

H Secure hash function producing 2b-bit output SHA-512

EC Curve equation in Twisted Edwards form x2 + y2 = 1 + dx2y2

Table 3.2: Parameters for Ed25519 signatures as described in Figure 3.1.

schemes, such as computational proofs of TLS 1.3’s properties [47, 48, 84, 131]. These

proofs assume that Ed25519-IETF satisfies EUF-CMA, leaving a proof gap. A claimed

computational proof of SSH [37] requires that all supported signature schemes provide SUF-

CMA. However, SSH implementations also allow the use of the malleable Ed25519-Original,

which leads to a counterexample to the security statement. The Signal protocol library

implements yet another variant of the Ed25519 signature scheme. Adding to the confusion,

a recent work [100] claims that the results on Schnorr signatures in prime order groups

implies Ed25519-Original enjoys SUF-CMA and resistance to key substitution attacks. We

will see in Section 3.5.4 that this is not the case.

In this work we remedy these proof gaps, and establish further properties of Ed25519

signature schemes. As we will see, the devil is in the detail: the specific details of Ed25519

(e.g., small subgroup elements, scalar clamping) require subtle tailoring of the proof details,

and lead to mismatches such as the lack of SUF-CMA security for Ed25519-Original despite

its similarities to Fiat-Shamir applied to the Schnorr identification scheme, which ‘should’

imply that SUF-CMA security holds. These subtleties also manifest themselves in the

requirements of various checks. Thus, our work not only fills these highly-needed proof

gaps, but also provides additional insight into the subtle differences between Ed25519

schemes which are summarized in Table 3.1.

Our main contributions are the following.

• We provide the first detailed proof that Ed25519-Original [43] is indeed EUF-CMA secure.

• We provide the first proof that Ed25519-IETF [121] is actually SUF-CMA secure.

• We prove that all Ed25519 schemes are resilient against key substitution attacks, and

that if small subgroup keys are rejected as in LibSodium, a signature uniquely identifies

a message, even for malicious keys.

• In a wider sense, our results retroactively support the standardisation of Ed25519-IETF,

and support the ongoing standardisation by NIST.
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Overview: In Section 3.2 we present related work. Section 3.4 presents Ed25519 signature

schemes and their subtle differences from Schnorr identification schemes. We provide the

security analysis in Section 3.5 and we conclude in Section 3.6. In Section 3.7, we give the

full proofs for all lemmas and theorems in this chapter.

3.2 Related Work

3.2.1 History of EdDSA and Ed25519

Ed25519-Original is just one instantiation of the more general EdDSA signature scheme,

which was introduced in the same paper [43, 44]. EdDSA is itself a variant of the well-

known Schnorr signature scheme [166, 167]. Ed25519 is EdDSA instantiated over curve

Edwards25519 [43] and remains by far the most popular instantiation of EdDSA, despite

its later extension to support alternative curves [45, 121].

EdDSA instantiations such as Ed25519-Original can sign and verify signatures sub-

stantially faster than almost all other signatures schemes at similar security levels. For

schemes that have comparable speeds, Ed25519-Original further provides considerably

smaller signatures, producing 64-byte signatures and 32-byte public keys. Additionally,

EdDSA is widely considered to provide better resistance to side-channel attacks than

alternative schemes. However, the original papers [43, 44] contain no formal statements

(and consequently, no actual proofs) of its security properties.

By virtue of its outstanding performance with respect to efficiency and bandwidth,

EdDSA was standardised by the IETF between 2015 and 2017 [121]. In 2019, EdDSA

was proposed to also be adopted as part of NIST’s Digital Signature Standard (DSS) [145,

146]. In early 2020, the public call for comments was closed [147], but as of writing, no

new version has appeared.

3.2.2 Related Proofs

The Fiat-Shamir paradigm was proposed by Fiat and Shamir [90] as a generic approach to

derive a secure signature scheme from a canonical identification schemes (CID). A vast

body of work followed this seminal result and the aforementioned Schnorr signatures [166,

167], on which EdDSA was built, is probably one of the most famous examples of the

transform’s power to build efficient and provably-secure signatures. Here we merely present

some of the many milestones related to Fiat-Shamir that are most relevant for our work.

While the original presentation [90] lacked security proofs, Pointcheval and Stern [156, 157]

closed this gap by providing proofs in the (then) relatively new random oracle model [34].

Abdalla et al. [1] indicated the minimal conditions for the underlying identification scheme

to prove Fiat-Shamir transformed signatures to be EUF-CMA secure. In 2016, Kiltz et al.
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[125, 126] provided a concrete and modular security analysis of Fiat-Shamir signatures in

both the single-user and multi-user setting, closing the tightness gap of the reduction.

The treatment of the multi-user setting is especially interesting as in practical applica-

tions there exist many different public keys for an attacker to attack. In 2002, Galbraith,

Malone-Lee, and Smart [92] considered security of signatures in this multi-user setting.

They showed that if an attacker were to attack N keys at once, its advantage can increase

only at most by a factor of N (this is often referred to as the generic bound). Their second

result claimed that for Schnorr-like signatures one can do even better and achieve a tight

reduction between single-user and multi-user security. Much later, Bernstein [40] exposed a

flaw in this tight proof that to this date could not be resolved. However, Bernstein [40] was

able to show that one can achieve a tight reduction between single-user security of Schnorr

signatures and multi-user security of key-prefixed Schnorr signatures. Key prefixing had

been introduced earlier by Menezes and Smart [170] in the context of key-substitution

attacks, where they also (controversially) claimed that it is not necessary to actively miti-

gate key-substitution attacks for Schnorr signatures. In contrast, the designs of Ed25519

signatures [43, 121] nevertheless employ key-prefixing. Kiltz et al. [125] show that if the

underlying canonical identification scheme achieves random self-reducibility in the random

oracle model, then a tight reduction between multi-user and single-user security can be

achieved without key prefixing. In Section 3.5.3, we briefly discuss multi-user security in

light of these results.

3.2.3 Computational Proofs of Systems that Use Ed25519

Because of its performance and conjectured security, EdDSA’s Ed25519 instantiation over

Edwards25519 has become one of the most popular digital signature schemes, appearing

in innumerable applications and protocols including TLS 1.3 [161], SSH [143], Tor, ZCash,

and the Signal protocol [151].

Regarding such systems, there exists numerous security proofs which hold only when

the deployed digital signatures satisfy certain conditions. For example, Bhargavan et al.

[47] developed the first machine-checked cryptographic proof for TLS 1.3 draft-18 using

the verification tool CryptoVerif, thereby assuming that Ed25519-IETF meets EUF-CMA.

Similarly, [84] proved the security of session resumption in the TLS 1.3 draft-05 full

handshakes and [131] proved the security of (a slightly modified version of) the ephemeral

Diffie-Hellman handshake of TLS 1.3 with unilateral authentication. Kobeissi, Bhargavan,

and Blanchet [130] analyzed a model of the Signal protocol in CryptoVerif assuming

EUF-CMA security of Signal’s X-Ed25519 scheme. However, none of these schemes have

actually been proven to achieve EUF-CMA security.
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FS.KGen():

1 (pk , sk) $←− CID.KGen()

2 return (pk , sk)

FS.Sign(sk ,m):

3 (com, st) $←− CID.P1(sk)

4 ch $←− H(com,m), rsp $←− CID.P2(ch, st), σ ← (com, ch, rsp)

5 return σ
FS.Vrfy(pk ,m, σ):

6 (com, ch, rsp)← σ

7 return Jch = H(com,m) ∧ CID.V2(pk , com, ch, rsp)K

Figure 3.2: Signature scheme FS [CID,H] = (FS.KGen,FS.Sign,FS.Vrfy) resulting from the (tran-
script variant of) Fiat-Shamir applied to the canonical identification protocol CID = (CID.KGen,
CID.P,CID.V).

In 2014, SSH was proven to be secure even when the same signing key is used across

multiple ciphersuites, assuming that the underlying signature is strongly unforgeable [37]1.

However, SSH implementations may use the originally-proposed version Ed25519-Original

(e.g., [149]), which does not satisfy SUF-CMA. This yields a counterexample in their

security model: mauling a signature in an otherwise honest session allows a session-key

reveal on the peer, as the sessions no longer match. Thus, their proof does not apply

as-is to SSH implementations that use Ed25519-Original. [100] claims that the results

on Schnorr signatures in prime order groups imply that Ed25519 enjoys SUF-CMA and

resistance to key substitution attacks, which, as we will see in Section 3.5.4 is not the case.

3.2.4 The Fiat-Shamir Transform

Finally, we review the Fiat-Shamir transform [90] which allows to transform passively-

secure (interactive) identification protocols into (non-interactive) signature schemes which

are secure against active attackers.

We follow the approach by Abdalla et al. [1] when applying the Fiat-Shamir transform,

i.e., we start from a canonical identification protocol that is secure against impersonation

under passive attack and model the hash function as a random oracle (cf. Section 2.3) to

show the existential unforgeability of the resulting signature scheme.

Let CID = (CID.KGen,CID.P,CID.V) be an IMP-PA-secure canonical identification

protocol and let H : {0, 1}⋆ → {0, 1}n be a cryptographic hash function with out-

put length n modeled as a random oracle. Then the signature scheme FS [CID,H] =

(FS.KGen,FS.Sign,FS.Vrfy) constructed as described in Figure 3.2 is existentially unforge-

able under chosen message attacks.

Note that there are different variants of the Fiat-Shamir transform in terms of how the

signatures are constructed. The transform shown in Figure 3.2 is of the transcript variant

as used, e.g., by Pointcheval and Stern [156], where the signature consists of the entire

conversation of the identification scheme.

1The full version of the paper [38] explicitly uses the definition for strong unforgeability, even though
both versions use a “euf-cma” shorthand.
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CID.KGen(pp):

1 a $←− Fq

2 A← ga

3 return (A, a)

CID.P1(a):

4 r $←− Fq

5 R← gr

6 return (R, a)

DS.KGen(pp):

1 a $←− Fq

2 A← ga

3 return (A, a)

DS.Vrfy(A,m, σ = (ch, S)):

4 R′ ← gS ·A−ch

5 ch′ ← H(R′,m)

6 return Jch′ = chK

CID.V1:

7 ch $←− Fq

8 return ch

CID.V2(A,R, ch, S):

9 R′ ← gS ·A−ch

10 return JR′ = RK

CID.P2(ch, a):

11 S ← (R+ ch · a) mod q

12 return S

DS.Sign(a,m):

13 r $←− Fq

14 R← gr

15 ch← H(R,m)

16 S ← (R+ ch · a) mod q

17 return σ ← (ch, S)

Figure 3.3: Schnorr signature scheme DS = FS [CID,H] = (DS.KGen,DS.Sign,DS.Vrfy) (right)
resulting from the Fiat-Shamir transform applied to the Schnorr identification protocol CID =
(CID.KGen,CID.P,CID.V) (left).

Example 1 (Schnorr Signatures). Schnorr signatures are a prime example of the way

secure signatures can be constructed via the Fiat-Shamir transform from secure identification

protocols. [166]. They achieve short, efficient signatures that are provably secure in the

random oracle model, assuming the hardness of the discrete logarithm problem in the

underlying group. The underlying Schnorr identification scheme, as well as the resulting

signature scheme when the Fiat-Shamir transform is applied, are depicted in Figure 3.3.

Here, pp = (G, q, g) denote the public parameters of the scheme where G is a cyclic group

of prime order q with generator g.

Schnorr signatures as described in Example 1 are of the challenge variant where

the signature consists only of the challenge and the response, i.e., σ ← (ch, rsp). This

requires that there exists an algorithm that can reconstruct the commitment com from the

public key, the challenge, and the response. Further signatures that are of the challenge

variant are the original work by Fiat and Shamir, GQ signatures [99] and Okamoto

signatures [148]. An in-depth treatment of these variants, including a third variant, the

commitment variant, can be found in Backendal et al. [16]. As we will later see, Ed25519

signatures are a deterministic variant of Schnorr signatures but in the commitment-variant

of the Fiat-Shamir transform. In order to make Fiat-Shamir signatures as described

in Figure 3.2 deterministic, CID.P1 is derandomized by using H(sk ,m) as randomness

during commitment generation.

3.3 Additional Preliminaries

Notations: For an integer q, we denote by Fq the finite field with order q. For a bit

string h and an integer i, we let h[i] denote the i-th bit of h. Overloading notation, we
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write a for the bitstring encoding of a, where a can be an integer or a curve point. We

later describe the details of these encodings at the start of Section 3.4.

3.3.1 Elliptic Curves

We briefly recap the main theory of elliptic curves. For a more in-depth treatment of

specific concepts and constructions, we refer the interested reader to, e.g., [71, 102]. We

begin by defining elliptic curves over a finite field Fq, which are the most common types of

elliptic curves in cryptography:

Definition 31 (Elliptic curve). Let q ≥ 5 be a prime. An elliptic curve EC defined over

the finite field Fq is an equation of the form

y2 = x3 + ax+ b (3.1)

with a, b ∈ Fq such that 4a3 + 27b2 ̸= 0.

In elliptic-curve cryptography, the group in question is the set of points on the elliptic

curve EC.

Definition 32 (Points on EC). Let EC(Fq) be the set of pairs (x, y) ∈ Fq × Fq satisfying

the elliptic curve equation. Let O denote a special point, the so-called point at infinity.

Then the set

EC(Fq) := {(x, y)|x, y ∈ Fq ∧ y2 = x3 + ax+ b} ∪ {O}

denotes the points on the elliptic curve EC.

With an adequately defined addition operation “+” EC(Fq) forms a group with neutral

element (0, 1). The multiplication of a curve point P with an integer n is defined as adding

P n times to itself, i.e.,

nP := P + P + · · ·+ P︸ ︷︷ ︸
n times

,

where 0P := O.
For brevity, we often write EC instead of EC(Fq) if the underlying field is clear from

context.

Further Definitions The number of points on an elliptic curve EC over Fq is called

the order of the curve and is denoted by |EC(Fq)|. We call an element B that generates

a cyclic subgroup the base point and write P ∈ ⟨B⟩ to indicate that P is an element of

the subgroup generated by B. For an element B, we overload notation and write |B| to
denote its order, i.e., the smallest integer n such that nB = O. If B generates a subgroup

of EC(Fq), we define the cofactor to be the integer |EC(Fq)|
|B| .
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3.3.1.1 Twisted Edwards Curves and Discrete-Log Problem

There exist several different forms of elliptic curve equations, such as Weierstraß, Mont-

gomery or Edwards form. Most relevant for this paper are twisted Edwards curves [41]

which are defined over a finite field Fq with q > 3 prime with additional parameter a (the

twist) via the curve equation

ECTEd : ax
2 + y2 = 1 + dx2y2,

where a, d ∈ Fq with a, d ̸= 0 and a ̸= d.

Addition “+” on ETEd(Fq) is defined as follows. Let P = (x1, y1), Q = (x2, y2) ∈
ECTEd(Fq), then P +Q = (x3, y3) is defined as

x3 =
x1y2 + x2y1
1 + dx1x2y1y2

, y3 =
y1y2 − ax1x2

1− dx1x2y1y2
.

Note that if a is a square in Fq and d is non-square in Fq, then the addition operation is

complete and (ETEd(Fq),+) is a group with neutral element (0, 1). The inverse −P of a

point P = (x, y) ∈ ETEd(Fq) is (−x, y).
The twisted Edwards curve EC underlying the Ed25519 constructions, which we discuss

in more detail in the next section, is birationally equivalent to curve25519 introduced

by Bernstein [39], which is of the Montgomery form and due to its efficient arithmetic

implementation yields very performant constructions. curve25519 is defined over the

finite field Fq with q = 2255 − 19 prime via the curve equation

curve25519 : y2 = x3 + 486662x2 + x.

Definition 33 (ECDLP). Let EC be an elliptic curve defined over a finite field Fq and

let B ∈ EC(Fq) be a point of order n. Let P ∈ ⟨B⟩. Then the elliptic curve discrete-log

problem is to find an integer 0 ≤ k < n such that P = kB. We say that EC is (t, ϵ)-hard

on EC if for any algorithm A running in time at most t the probability of solving ECDLP

is at most ϵ.

3.3.2 Secure Canonical Identification Protocols

Canonical Identification (CID) protocols allow a so-called prover CID.P that holds a secret

key sk to authenticate to a verifier CID.V who holds the corresponding public key vk .

CID protocols consist of three moves: The prover CID.P sends a commitment com to the

verifier CID.V. The verifier CID.V then samples a random challenge ch and sends it to

CID.P. Finally, CID.P sends a response rsp to CID.V, whose decision is then a deterministic

function of their conversation (com, ch, rsp) and CID.P’s public key. More formally:
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Definition 34 (Canonical identification protocol). A canonical identification (CID) pro-

tocol CID = (CID.KGen,CID.P = (CID.P1,CID.P2),CID.V = (CID.V1,CID.V2)) is a triple of

algorithms:

Key Generation CID.KGen takes as input the public parameters pp and outputs a public

key pk and a secret key sk, i.e., (pk , sk) $←− CID.KGen(pp).

The prover CID.P = (CID.P1,CID.P2) is a two-stage algorithm that takes as input a

secret key sk. CID.P1 takes as input sk and outputs a commitment com as well as some

state st. CID.P2 takes as input the challenge ch (sent by the verifier CID.V1) as well as

state st and outputs a response rsp.

The verifier CID.V = (CID.V1,CID.V2) is a two-stage algorithm that is initialized with

a public key pk. CID.V1 selects a random challenge ch and sends it to the prover.

CID.V2 takes as input the public key, the com, ch and rsp and outputs 1 if it accepts the

conversation (com, ch, rsp) for pk or 0 if it rejects.

For all (pk , sk) $←− CID.KGen(pp), we require that if CID.P(sk) and CID.V(pk) inter-

act honestly within an instance of the protocol, then the verifier accepts. I.e., for

(com, st) $←− CID.P1(sk), ch
$←− CID.V1, and rsp $←− CID.P2(com, ch, st), we have verifier

Pr[1← CID.V2(pk , com, ch, rsp)] = 1.

We sometimes denote the interactive run of the identification protocol CID between

the prover and the verifier by CID.P ⇆ CID.V or CID.P(sk) ⇆ CID.V(pk). We write

Trans [CID.P(sk) ⇆ CID.V(pk)] to denote a conversation (com, ch, rsp) resulting from the

interaction between CID.P and CID.V and identify CID.V2(pk , com, ch, rsp) with the final

decision ∈ {0, 1} of the verifier. If 1← CID.V2(pk , com, ch, rsp), we say that (com, ch, rsp)

is an accepting conversation for pk , or simply a valid conversation.

Intuitively, the basic security of identification protocols is defined in terms of the

inability of an attacker A to impersonate the prover towards an honest verifier without

knowledge of the prover’s secret key. This can be in the setting where A only has access

to the public key of the prover (called IMP-KOA for security against impersonation under

key-only attacks), or in the stronger setting, where A can observe honest conversations

between the prover and the verifier (IMP-PA for security against impersonation under

passive attacks):

Definition 35 (IMP-KOA and IMP-PA security). Let CID = (CID.KGen,CID.P,CID.V) be a

canonical identification protocol. Consider the security experiment ExprIMP-KOA
CID as defined

on the left in Figure 3.4. We say that CID is (t, ϵ)-secure against impersonation under

key-only attacks, or simply (t, ϵ)-IMP-KOA-secure, if for any PPT attacker A running in

time at most t the probability

Pr
[
ExprIMP-KOA

CID (A) = 1
]
≤ ϵ.
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ExprIMP-KOA
CID (A):

1 (pk , sk) $←− CID.KGen()

2 ch $←− CID.V1

3 (com, st) $←− A(pk)
4 rsp $←− A(ch, st)
5 return JCID.V2(pk , com, ch, rsp)K

ExprIMP-PA
CID (A):

1 (pk , sk) $←− CID.KGen()

2 ch $←− CID.V1

3 (com, st) $←− A(pk)

4 rsp $←− A OTrans (ch, st)

5 return JCID.V2(pk , com, ch, rsp)K

OTrans:

6 return Trans [CID.P(sk) ⇆ CID.V(pk)]

Figure 3.4: IMP-KOA and IMP-PA experiments for a CID = (CID.KGen,CID.P,CID.V) scheme
against impersonating attackers A with differences highlighted in gray.

Similarly, consider the experiment ExprIMP-PA
A as defined on the right in Figure 3.4.

We say that CID is (t, ϵ, QT )-secure against impersonation under passive attacks, or simply

(t, ϵ, QT )-IMP-PA-secure, if for any PPT attacker A running in time at most t and with at

most QT queries to the oracle OTrans, the probability

Pr
[
ExprIMP-PA

CID (A) = 1
]
≤ ϵ.

To argue about the security of canonical identification protocols CID, it is useful to talk

about the min-entropy of an identification scheme as well as the notion of honest-verifier

zero-knowledge, or HVZK, for short. The former notion captures the unpredictability of

commitments in the protocol, whereas HVZK formalizes the property that an attacker A
gains no additional knowledge from honest interactions CID.P ⇆ CID.V, since A could

generate such conversations on its own.

This is done by showing that there exists an algorithm Sim, that only takes as input the

public key and can output conversations that are indistinguishable from real interactions

CID.P(sk) ⇆ CID.V(pk).

Definition 36 (Min-entropy of identification scheme). We say that a canonical identifi-

cation protocol CID = (CID.KGen,CID.P,CID.V) has α bits min-entropy if the probability

over the choice (pk , sk) $←− CID.KGen(pp), that the commitment generated by CID.P1(sk)

is from a distribution with at least α bits of min-entropy, is at least 1− 2α. Recall that

a discrete random variable X has α bits of min-entropy, denoted by H∞(X) := α, if

max
x

(Pr[X = x]) = 2−α.

Definition 37 (Honest-verifier zero-knowledge). Let CID = (CID.KGen,CID.P,CID.V) be

a canonical identification protocol. We say that CID is ϵhvzkCID -honest-verifier zero-knowledge,

or ϵhvzkCID -HVZK for short, if there exists a PPT algorithm Sim, called the simulator, such

that for all (pk , sk) $←− CID.KGen(pp), the outputs of Sim(pk) can only be distinguished

from real conversations CID.P(sk) ⇆ CID.V(pk) with probability at most ϵhvzkCID .
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We recall two important properties of CID protocols. The first one is commitment

recoverable, which means that commitments can be efficiently and publicly computed from

the public key, the challenge, and the response. The second one is (computationally)

unique responses, meaning that for a fixed instance of the protocol and commitments

and challenges, there exists at most one response such that the verifier will accept the

conversation (or a second response is computationally infeasible to find). More formally:

Definition 38 (Commitment-recoverability CR). Let CID = (CID.KGen,CID.P,CID.V) be

a canonical identification protocol. We say that CID is commitment-recoverable, or CR,

for short, if for any (pk , sk) $←− CID.KGen(pp), ch $←− CID.V1, rsp
$←− CID.P2(ch, st), there

exists a unique com such that CID.V2(pk , com, ch, rsp) = 1 and this com can be efficiently

computed given only (pk , ch, rsp).

Definition 39 ((Computationally) unique responses CUR). Let CID = (CID.KGen,CID.P,

CID.V) be a canonical identification protocol. We say that CID has ϵcurCID-computationally

unique responses or CUR, if for any (pk , sk) $←− CID.KGen(pp), com $←− CID.P1(sk) and

ch $←− CID.V1 the probability of an attacker being able to output two responses rsp and rsp′

such that CID.V2(pk , com, ch, rsp) = 1 and CID.V2(pk , com, ch, rsp′) = 1 is at most ϵcurCID. If

ϵcurCID = 0 we say that CID has unique responses.

3.4 Ed25519 Signatures

In this section we describe how the Ed25519 [43, 121] signature scheme operates in detail,

unravel its relationship with Schnorr signatures and why proofs for Schnorr are not directly

applicable to Ed25519. We also describe several of the proposed variants of Ed25519, which

target stronger security properties than provided by the original formulation.

We define the generic signature scheme Ed25519 in Figure 3.1. Part of the generic

scheme description, highlighted on line 13 in Figure 3.1, is replaced in the variant schemes.

We summarise these variations in Table 3.1 and discuss them further below. The various

parameters common to all variants are listed in Table 3.2. These parameters include those

necessary to define the elliptic curve EC over which the signature scheme operates and the

hash function used.

Encodings Integers mod L are encoded as as b-bit strings in little endian format. Elliptic

curve points (x, y) are encoded as a (b− 1)-bit little-endian encoding of y, followed by a

sign bit which is 1 if and only if x is negative. We note an oft-omitted property of the

encoding scheme: the field element that represents y is encoded as a (b − 1) = 255-bit

string, but the size of the field is q = 2255 − 19, yielding a larger space of encodings than

actual elements. Similarly, the S part of the signature is expected to be a b-bit integer,

but is necessarily reduced mod L prior to use in the signature verification. These details

turn out to have substantial consequences when showing security of the scheme and we
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will highlight this in the respective proofs. In places, the original presentation [43] and

its accompanying source code disagree on the necessary tests, e.g., the range of L. As

the source code is the basis of the most popular Ed25519 implementations, we treat it as

authoritative.

3.4.1 Variants of Ed25519

Recall that we refer to the original, and currently most widely deployed formulation of

Ed25519 as Ed25519-Original. Several alternative specifications have also been published

which largely maintain wire compatibility with Ed25519-Original, but substantially alter

the security properties of the scheme. In particular, variants have been published by the

IETF [121], NIST [70], and the ZCash Foundation [108]. Furthermore, LibSodium [119],

one of the most popular cryptographic libraries, uses a set of additional checks that render

it a de-facto standard.

Another variant is the use of Ristretto encodings [162] for Ed25519. Whilst this appears

promising, the draft RFC [96] is still under active development and we do not analyze it

here.

We note that the Signal Foundation [151] have also proposed a variant with enhanced

resistance to side-channel attacks and fault resistance during signature generation. However,

this variant operates similarly to Ed25519-Original with regards to signature verification

and consequently we do not treat it separately.

3.4.1.1 Pre-Hashing Variants

The IETF-standardised RFC 8032 [121] and the NIST draft standard [70] support a

pre-hashing mode for their variants. This mode allows implementations to sign large

messages whilst only needing to perform a single pass over the message. The signed

message value m is replaced with the pre-hash PH(m), where PH is a hash function. The

IETF specification explicitly recommends against the use of this mode, stressing it is

included only to support legacy signing interfaces. Consequently, we do not discuss it

further.

3.4.1.2 Bounds Checking Variants

Some variants of Ed25519 require an additional check on the received alleged signatures

during verification. In particular, this is enforced by the IETF standard [121] and proposed

in the NIST draft standard [70]. In these variants, implementers are required to reject

signatures whose S parameter is equal to or larger than L, where L is the order of the

prime-order subgroup. Contrastingly, Ed25519-Original implementations merely check

S is a 256-bit integer. We refer to such implementations as Ed25519-IETF. This is

claimed to have a substantial impact and achieve strong unforgeability. We investigate
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this further in Section 3.4 but already note that, contrastingly to Ed25519-IETF variants,

Ed25519-Original implementations simply reduce the received signature element S mod L

during signature verification, thereby immediately ruling out SUF-CMA security.

3.4.1.3 Point and Bound Checking Variants

Some popular implementations of Ed25519, such as LibSodium [119], perform the bounds

check on S values in addition to point validation. Specifically, Ed25519-LibS ensures that

received elements are canonically encoded and have order ⩾L. This check means that

certain R values, which are low order points on the curve, are rejected during verification

as well as low order public keys. Additionally, R values and public keys which have

y-coordinates above q are also rejected to ensure unique encodings. We see the impact of

these decisions in Section 3.5.4.

3.4.2 Differences from Schnorr Signatures

Ed25519 has several notable features which differentiate it from traditional Schnorr signa-

tures. The original Schnorr signature scheme and its underlying identification protocol can

be recalled in Example 1. In particular, private keys in Ed25519 are clamped to a specific

format, signature nonces are chosen deterministically, and signed messages are prefixed

with public keys. As indicated before, these differences impact the security of the overall

signature scheme and our analysis. We next discuss these alterations in more detail.

3.4.2.1 Group Structure

Ed25519’s curve is of order 8L for L a large prime defined in Table 3.2. Contrastingly,

Schnorr signatures are typically constructed over prime order groups and implementations

are assumed to reject the identity element.

Non-prime order groups contain a more complex group structure than prime order

groups. In particular, non-prime order groups entail the presence of additional subgroups,

whose elements lie outside the intended prime order subgroup. Performing group operations

on these elements can lead to surprising results, including confinement under exponentiation,

where they map to a small range of elements and leakage, where performing exponentiation

with a private scalar leaks information about that scalar. The original paper [43] allowed

Ed25519 implementations to optionally include multiplication by the cofactor in the

verification equation. Including the cofactor makes the verification function strictly more

permissive and we assume it is present so that our proofs carry over to the cofactorless

case.

Proofs about systems defined over prime order groups do not necessarily hold if the

system is implemented with non-prime order groups, even when the proof does not explicitly

rely on the prime order structure. For example, proofs typically assume that any group
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element can be written as the exponentiation of a fixed generator, or that exponentiation

of an element is uniformly distributed over the group. In the non-prime order case, neither

assumption is true in general.

3.4.2.2 Group Element Checks

The question of how values should be decoded and parsed is often omitted from academic

papers. Ed25519-Original and Ed25519-IETF are of particular interest in this regard as it

is explicitly argued that elements do not need to be checked to ensure they belong to the

prime order subgroup. This means any group element, including small order elements, the

identity element and elements of order 8L will be accepted. We discussed variants that

mandate this check in Section 3.4.1.3. The related Diffie-Hellman function X25519 also

omits these checks which has previously led to otherwise avoidable attacks on protocols

employing it [77].

A related issue is whether elements are checked to ensure they lie on the intended curve,

rather than its twist. Whilst X25519 does not reject elements on the twist, Ed25519-Original

explicitly mandates that points are checked to ensure they do belong to EC. This is checked

during the decompression of received points prior to signature verification. We assume

all implementations uphold this requirement as otherwise point addition during signature

verification is not necessarily defined.

3.4.2.3 Private Key Clamping

In part due to the non-prime order nature of the curve and the lack of group element

validation, Ed25519 mandates the use of key clamping which involves the bitwise manipu-

lation of private keys prior to use in signing. The rationale behind this requirement has

been the subject of much debate [57, 142]. The original Ed25519 paper defines private

keys, without discussion, such that a high bit is always set and three low bits are cleared.

All subsequent variations have kept the same requirement. There are two rationales for

clamping:

• Setting the high bit ensures that some deficient point multiplication implementations,

which have variable execution time with respect to the position of the highest set bit in

the scalar, become constant time [110].

• Clearing the low bits ensures that the scalar is a multiple of the cofactor. This ensures

that the result of applying the scalar to any group element results in an element in

the prime order subgroup. This avoids key leakage attacks, although these attacks

are not relevant for Ed25519 signature schemes as private keys are never applied to

attacker-provided group elements. However, as implementers may wish to re-use keys in

both X25519 and Ed25519, this choice provides defence in depth.
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As we will see later, the use of clamping complicates our security proofs. This is because

not every element in the prime order subgroup is also a valid public key as produced

by the key generation algorithm. Consequently, when providing reductions which must

manipulate public keys, e.g., blinding them, there is a small chance an invalid public key

is produced and the reduction must abort.

3.4.2.4 Key Prefixing

Unlike traditional Schnorr signatures, Ed25519 uses key prefixing, where the signature

scheme, prior to signing or verification, prepends the public key to the message. This choice

has also been the subject of much debate [40, 111, 112, 125] as to whether it provides a

substantial improvement in security. Much of the discussion has revolved around multi-user

security and whether key prefixing improves security in the presence of an attacker who is

satisfied to break some subset of witnessed multiple keys, rather than one key in particular.

We discuss the multi-user security of Ed25519 in more detail in Section 3.5.3. It transpires

that key prefixing also has benefits when considering lesser-known multi-user security

properties such as message key substitution attacks, as we show in Section 3.5.4.

3.4.2.5 Deterministic Nonce Generation

Signature schemes require the use of a nonce with each signed message. This has historically

been an area prone to subtle implementation mistakes leading to critical real world

vulnerabilities [14]. Ed25519 uses deterministic signing which removes the need for

fresh random numbers during the signing process. This does not lead to any particular

consequences for our security analysis since we model the key derivation function as a

random oracle. However, it is well known not to reduce security [33].

3.5 The Security of Ed25519

We now present our security results for Ed25519-Original and Ed25519-IETF signatures.

As suggested by earlier works that informally discuss the security of these schemes, we use

the Fiat-Shamir approach. However, as elaborated in Section 3.4.2, there exist marked

differences between Schnorr signatures and Ed25519 signatures such that the established

security results for Schnorr do not hold without careful adjustment to the Ed25519 setting.

We close this gap by proving both the existential unforgeability of Ed25519-Original and

show that due to the additional check on the value S, Ed25519-IETF and Ed25519-LibS

achieve strong unforgeability. As is common for signature proofs, we assume idealized

versions of hash functions (random oracles), but do not make any strong assumptions on

the properties of the underlying elliptic curve group. Tighter security bounds may be

possible in the so-called generic group model (cf., e.g., [24, 125]), however we explicitly
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CID.KGen(pp):

1 k $←− {0, 1}b

2 h← H(k)

3 s← 2b−2 +
∑b−3

i=3 2
ih[i]

4 A← sB

5 return (A, k)

CID.P1(k):

6 h← H(k)

7 s← 2b−2 +
∑b−3

i=3 2
ih[i]

8 st← s

9 r $←− {0, 1}2b

10 R← rB

11 return (R, st)

CID.V1:

12 ch $←− {0, 1}2b

13 return ch

CID.P2(ch, st):

14 S ← (r + ch · st) mod L

15 return S

CID.V2(A,R, S, ch):

16 Check R,A ∈ E

17 Variant Specific Checks

18 return J8SB = 8R+ 8chAK

Figure 3.5: Canonical identification protocol CID = (CID.KGen,CID.P = (CID.P1,CID.P2),
CID.V = (CID.V1,CID.V2)) underlying Ed25519-Original in Figure 3.1. Note that the high-
lighted Line 17 varies depending on the version of Ed25519 and the appropriate check is listed
in Table 3.1.

want to explore security in a setting where the attacker may take advantage of, e.g.,

encoding details.

We recall that, in the following, EC refers to the twisted Edwards curve underlying

Ed25519 (cf. Table 3.2) and analogously EC(Fq) denotes the set of elements on the curve

which forms a group with point addition, as defined in Section 3.3.1.

3.5.1 Existential Unforgeability of Original Ed25519

We start by showing EUF-CMA security of Ed25519-Original specifically by means of the

Fiat-Shamir transform. We first define an appropriate canonical identification protocol

CID in Figure 3.5 to which the transform can be applied, then show that CID satisfies

the necessary prerequisites in Theorem 2 and Theorem 3 and finally apply the transform

in Theorem 4 to establish existential unforgeability of the resulting signature scheme.

We note that with the additional check in Line 17 of CID in Figure 3.5, the proof of

EUF-CMA security directly carries over to Ed25519-IETF and with the further check

described in Table 3.1 also to Ed25519-LibS.

To get from CID in Figure 3.5 to the Ed25519-Original in Figure 3.1, we apply a variant

of Fiat-Shamir, denoted by FSkp
det, that captures deterministic signing and key-prefixing.

Deterministic signing is achieved by deterministically deriving the randomness r of

CID.P1 in the signing algorithm via r ← H(h[b], ..., h[2b− 1],m), where m is the message

to be signed, and, as before, h[i] denotes the i-th bit of h. The de-randomization of signing

by computing the randomness deterministically as some H(sk ,m) is common and in our
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case does not impact the security of the resulting signatures, assuming H is at least a

pseudorandom function (cf., e.g., [33]).

Recall that key-prefixing, on the other hand, describes the derivation of the challenge

ch by the prover during signature generation as H(R,A,m) instead of H(R,m), i.e., by

also including the public key into the hash function. It will become clear from the proof

that this additional input to the random oracle H does not impact security, since this

solely relies on R being sufficiently unpredictable in honest signature generations.

3.5.1.1 Security of the underlying identification protocol

We show that the underlying CID is secure against impersonation attacks by passive

attackers (IMP-PA security, cf. Definition 35). We do this in a two-step process by first

showing in Theorem 2 that CID is secure against impersonating attackers that only have

access to the public key (IMP-KOA security). To lift this result to the setting of passive

impersonating attackers, we then only need to be able to simulate queries to the oracle

OTrans, which can be achieved by the HVZK property of CID. Thus, in Lemma 1 we show

that CID is HVZK and, combined with the IMP-KOA security, we achieve IMP-PA security.

Theorem 2 (CID is IMP-KOA secure). Let CID = (CID.KGen,CID.P,CID.V) be the identi-

fication protocol as defined in Figure 3.5. If ECDLP is (t, ϵDLP
EC )-hard on EC(Fq), then CID

is (t′, ϵ′)-IMP-KOA secure, where

t ≈ 2t′ and
1

8

(
ϵ′ − 1

L

)2

≤ ϵDLP
EC .

Before we prove the theorem below, we want to recall that secret keys in the key

generation of CID are clamped, which in particular means that an element A ∈ EC(Zq) is

not necessarily a valid public key output of DS.KGen. The reduction in the proof accounts

for this and therefore loses a factor of 8. Furthermore, note again that the hardness

of ECDLP on EC(Zq) as used in Ed25519 carries over from the respective hardness on

curve25519 due to their birational equivalence [44].

Proof Sketch. The full proof can be found in the Section 3.7.1. We notice the first marked

difference to proofs of Schnorr signatures. While in the latter, we have a straightforward

reduction to ECDLP using the rewinding technique [157], we now need to account for the

secret key clamping in Ed25519. The clamping causes that an element A ∈ EC(Fq) is

not necessarily a valid public key output of DS.KGen and thus cannot be relayed by the

reduction to the IMP-KOA attacker A, resulting in the loss of a factor of 2b−5

L
. As in the

Schnorr setting, the reduction exploits the property that from two valid conversations

(R⋆, ch1, S1) and (R⋆, ch2, S2) for the public key A with ch1 ≠ ch2 (mod L), we can extract

the value s = S1−S2

ch1−ch2 mod L such that A = sB. The Reset Lemma [32] which is the

analogue of the Forking Lemma [157] for identification protocols instead of signatures,
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Sim(A):

1 ch $←− {0, 1}2b

2 s̃ $←− {0, 1}2b

3 S ← s̃ mod L

4 R ← (SB − chA)
mod L

5 return (R, ch, S)

Figure 3.6: Simulator Sim for CID = (CID.KGen,CID.P = (CID.P1,CID.P2),CID.V = (CID.V1,
CID.V2)) underlying Ed25519-Original.

ensures that two such conversations can be found with probability at least (ϵ′− 1
L
)2, where

ϵ′ is the success probability of A. We note the hardness of ECDLP on EC(Fq) as used in

Ed25519 carries over from the respective hardness on curve25519 due to their birational

equivalence [44, 121].

As mentioned before, we now lift this result to show that an attacker cannot impersonate

the prover, even when given access to an oracle OTrans, that outputs valid accepting

conversations Trans [CID.P ⇄ CID.V]. This is due to the fact, that the underlying canonical

identification protocol CID is ϵhvzkCID -HVZK, i.e., there exists a simulator Sim which takes

as input only the public key vk outputs conversations (com, ch, rsp) which are ϵhvzkCID -

indistinguishable from real conversations CID.P(sk) ⇆ CID.V(pk). The simulator Sim(vk)

for CID is defined in Figure 3.6 and exploits the fact that commitments can be recovered

from the public key, the challenge, and the response.

Lemma 1. Let CID = (CID.KGen,CID.P,CID.V) be as defined in Figure 3.5. Then CID is

HVZK with ϵhvzkCID = 0.

Theorem 3 (CID is IMP-PA secure). Let CID = (CID.KGen,CID.P,CID.V) be the ϵhvzkCID -

HVZK and (t, ϵ)-IMP-KOA-secure identification protocol as defined in Figure 3.5. Then

CID is (t′, ϵ′, QT )-IMP-PA-secure with

t ≈ t′ and ϵ′ ≤ ϵ.

3.5.1.2 Applying the Fiat-Shamir transform

Now that we have shown that the identification protocol satisfies the prerequisites for the

Fiat-Shamir transform, we can apply the transform to show that Ed25519 is existentially

unforgeable.

We state the theorem in terms of the most basic version Ed25519-Original. For

Ed25519-IETF and thus Ed25519-LibS the proof below only needs to account for the

difference in the verification algorithm.

45



Theorem 4 (Ed25519-Original is EUF-CMA secure). Let CID = (CID.KGen,CID.P,CID.V)

be the (t, ϵ, QT , (QH +Qκ +Qβ))-IMP-PA-secure identification protocol as defined in Fig-

ure 3.5 with H : {0, 1}⋆ → {0, 1}2b modeled as a programmable random oracle and α

bits min-entropy. Then Ed25519-Original = FSkp
det[CID,H] as defined in Figure 3.1 is

(t′, ϵ′, QS, (Q
′
H +Qκ +Qβ))-EUF-CMA secure, where

t ≈ t′ and ϵ′ ≤ Q′H · (ϵ+QSQ
′
H2
−α +Qκ2

−b)

for QS = QT and Q′H = QH + 1, where Qκ and Qβ refer to random oracle queries of a

certain format (details in proof.)

3.5.2 Strong Unforgeability of Standardized Ed25519

Our previous results confirm that for a target public key, the attacker is not able to forge

a signature on a message m for which it has not seen valid signatures beforehand. In a

real-world scenario, the security provided by existential unforgeability may be insufficient,

as we have mentioned before, e.g., regarding Bitcoin transaction security or SSH multi-

ciphersuite security. Another commonly named example is that of blocking certain

public-key certificates. This could be achieved by storing the hash of the certificate in a list

and comparing incoming certificates with this list. Here, a certificate can simply be viewed

as a signature over a message, i.e., the contents of the certificate. An attacker wanting

to bypass this blocking mechanism may create a new valid signature on the certificate,

thereby altering its hash value that made the certificate efficiently recognizable by the

filter. This is not prevented by existential unforgeability.

The security notion that bars attackers from forging new signatures on known (message,

signature)-pairs is that of strong unforgeability, or SUF-CMA security, which is closely

related to the concept of malleability. Malleable signatures retain their validity even if they

are slightly changed, for example, by some bits being flipped. Obviously such signature

schemes cannot hope to achieve strong unforgeability.

As mentioned earlier, Ed25519-Original without the check of S ∈ {0, . . . , L− 1} during
signature verification is not strongly unforgeable as any S ′ ← S +mL with integer m also

satisfies the verification equation.

For Ed25519-IETF and Ed25519-LibS, this is avoided by additionally requiring that the

decoded S already be reduced modulo L, leading to the rejection of values S ′ ← S +mL

during signature verification. The property that results from this additional check on

the CID level is that of (computationally) unique responses of the identification protocol.

Recall that this property guarantees that for a given commitment com and ch in the

interaction CID.P ⇆ CID.V, there exists (at most) one response rsp such that (com, ch, rsp)

is an accepting conversation (or a second response is only possible to find with probability

at most ϵcur).
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For the identification protocol underlying Ed25519-IETF, we in fact even have ϵcur = 0,

i.e., for all (A, k) $←− CID.KGen, (R = rB, s) ← CID.P1(k; r) and ch $←− {0, 1}2b, there
exists only at (most) one valid response S. This confirms the RFC’s argumentation that

“Ed25519 [. . . ] signatures are not malleable due to the verification check that decoded S is

smaller than L” [121]. On an Ed25519-IETF signature level this then means that given a

(message,signature)-pair (m, (R, S)) there exists no second signature (R, S ′) with S ′ ̸= S

as we will show in the next theorem. Furthermore, we will argue that there also cannot

exist a second valid signature (R′, S ′) with R′ ̸= R with S ′ different or equal to S.

Theorem 5 (Ed25519-IETF is SUF-CMA secure). Let Ed25519-IETF be the (t, ϵ, QS, QH)-

EUF-CMA secure signature scheme derived by applying the Fiat-Shamir transform to

the identification protocol CID given in Figure 3.5 with the check in Line 17. Then

Ed25519-IETF is (t′, ϵ′, Q′S, Q
′
H)-SUF-CMA secure with t ≈ t′ and ϵ′ ≤ ϵ.

3.5.3 Multi-User Security

We recall that a flaw in the tight reduction from multi-user security of signatures to

the single-user case in [92] was exposed by Bernstein [40], who then was able to give an

alternative tight reduction from the multi-user security of key-prefixed Schnorr to the

single-user security of standard Schnorr. This result was taken as a justification for the

much-debated employed key prefixing in Ed25519 signatures. Shortly after the result by

Bernstein, Kiltz et al. [125] were able to provide a tight reduction in the random oracle

model for general Fiat-Shamir signatures, assuming the property of random self-reducibility

of the underlying identification protocol, further fueling the debate (though at this time

the IETF standardisation of Ed25519-IETF had already been completed). Interestingly,

when trying to apply either of the above results to Ed25519 signatures specifically, several

peculiarities arise. The result by Bernstein [40] is transferable to Ed25519 signatures, but

loses tightness. As explained in [40, Sec. 5.3] this is due to the clamping of secret keys

in Ed25519 which yields an additional failure case in the reduction. The more general

result by Kiltz et al. [125] on the other hand is not applicable at all, although Ed25519 is a

Fiat-Shamir transformed signature scheme. This is precisely due to the key prefixing as this

prohibits the achievement of the necessary random self-reducibility property. Consequently,

only the non-tight bounds in [40, Sec. 5.3] apply to Ed25519.

3.5.4 Key Substitution Attacks

Key Substitution Attacks (KSA) were first introduced by Blake-Wilson and Menezes [52]

and later formalized by Smart and Menezes [170]. Informally, KSA cover the scenario

where an attacker learns one or more (message,signature)-pairs for a given public key, and

wishes to find a different public key and message such that one of the valid signatures

verify under the attacker’s new public key. Maliciously generated public keys fall outside
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the traditional notions for signature security such as existential unforgeability. However,

these attacks have practical consequences in real-world contexts: examples include an

attack on the popular Let’s Encrypt Certificate Issuance protocol that allowed an attacker

to impersonate any website, compromise of confidentiality in the WS-Security Standard,

and attacks on the well known Station to Station protocol [117].

Comparatively few publications have investigated key substitution attacks and how

they apply to different signature schemes. Consequently, many signature schemes are

vulnerable. For example, [170] described a KSA on the Gennaro-Halevi-Rabin signature

scheme [93] and the standard-model secure scheme by Boneh and Boyen [56] also proved

to be vulnerable [54]. While these schemes are more of an academic interest, [52, 54]

also showed that under certain conditions the widely-deployed RSA, DSA, and ECDSA

signatures are insecure against KSA attackers. Menezes and Smart also highlighted the

relevance of key-substitution [170] to the multi-user setting.

In [100], a practical scheme for email authentication is proposed that requires the

underlying signature scheme to be resistant to key substitution attacks. In this paper, it is

stated that Schnorr signatures in prime order groups achieve SUF-CMA and resistance to

key substitution attacks. The paper goes on to claim these results transfer to a variant of

Ed25519 without key prefixing. We have already seen that this is not true in general and

we also point out that it is not correct for their modified form of Ed25519. In particular,

absent key prefixing, an attacker can submit a mangled public key lying outside the

prime order group which is a distinct bitstring from the ‘honest’ signature yet passes the

verification checks. Later in this section we consider Ed25519 with key-prefixing and find

the opposite result, that this attack is provably prevented.

In the following, we investigate the resistance of Ed25519 against various exclusive

ownership definitions from [158] which rule out multiple key substitution attacks. Theo-

rem Theorem 6 shows that Ed25519 achieves this stronger version, cf. Definition 40, where

the attacker is allowed to adaptively query the signing oracle to learn (message,signature)-

pairs of its choice and may choose which signature to attack. Furthermore, we show

in Theorem 7 that Ed25519 has so-called message-bound signatures (cf. Definition 41),

i.e., that there exist no two distinct messages for which the same signature would verify

with respect to a given (potentially maliciously generated) public key. Lastly, Theorem 8

shows that if small order elements are rejected, even malicious strong universal exclusive

ownership guarantees are provided.

Firstly, we find that an attacker cannot substitute an alternative public key to verify

against an honest party’s signature in any of the Ed25519 variants we have discussed.

Definition 40 (Strong Universal Exclusive Ownership). Let DS = (DS.KGen,DS.Sign,

DS.Vrfy) be a signature scheme. Consider the security experiment ExprS-UEODS as defined

in Figure 3.7. We say that a signature scheme DS is (t, ϵ, QS)-S-UEO-secure or achieves
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ExprS-UEODS (A):
1 (vk , sk) $←− DS.KGen(pp)

2 ((m, σ), vk ′,m ′) $←− AOSign(vk)

3 return J(m, σ) ∈ LSign ∧ vk ̸= vk ′ ∧ DS.Vrfy(vk ′, σ,m ′)K

OSign(m):

4 σ $←− DS.Sign(sk ,m)

5 LSign ← LSign ∪ {(m, σ)}
6 return σ

Figure 3.7: S-UEO experiment for a DS = (DS.KGen,DS.Sign,DS.Vrfy) scheme.

ExprMBS
DS (A):

1 (vk , σ,m,m′) $←− A()
2 return Jm ̸= m′ ∧ DS.Vrfy(vk , σ,m) ∧ DS.Vrfy(vk , σ,m′)K

Figure 3.8: MBS experiment for a DS = (DS.KGen,DS.Sign,DS.Vrfy) scheme.

strong universal exclusive ownership if for any PPT attacker A making at most QS queries

to the signing oracle, the probability

Pr
[
ExprS-UEODS (A) = 1

]
≤ ϵ.

Theorem 6 (Ed25519-Original achieves S-UEO). Let Ed25519 = (DS.KGen,DS.Sign,

DS.Vrfy) be as defined in Figure 3.1, where H : {0, 1}⋆ → {0, 1}2b is modelled as a

random oracle. Then Ed25519 is (ϵ, QS, QH)-S-UEO secure,

ϵ ≤ 2 ·QH · ⌈
22b

L
⌉ · 2−2b

where QS and QH are the maximum number of queries to OSign and H.

We also find that, even when the signer is dishonest, Ed25519 schemes which reject

public keys and signatures with low order elements, ensure that for a particular public

key, signatures can only verify under a single message. However, if low order elements are

accepted, an attacker can submit a low order element as their public key and any value

for their signature such that SB = R. The resulting signature verifies under any message.

This was pointed out in [43] but deemed unproblematic.

Definition 41 (Message Bound Signatures). Let DS = (DS.KGen,DS.Sign,DS.Vrfy) be a

signature scheme. Consider the security experiment ExprMBS
DS as defined in Figure 3.8. We

say that a signature scheme DS is ϵ-MBS-secure or achieves message bound signatures if

for any PPT attacker A the probability:

Pr
[
ExprMBS

DS (A) = 1
]
≤ ϵ.

Theorem 7 (Ed25519-LibS achieves MBS). Let Ed25519 = (DS.KGen,DS.Sign,DS.Vrfy)

be as defined in Figure 3.1 and the hash function H : {0, 1}∗ → {0, 1}2b is a random oracle.

If the small subgroup elements are rejected, then DS is ϵ′-MBS-secure with
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ExprM-S-UEO
DS (A):

1 (vk , vk ′, σ,m,m′) $←− A()
2 return Jvk ̸= vk ′ ∧ DS.Vrfy(vk , σ,m) ∧ DS.Vrfy(vk ′, σ,m′)K

Figure 3.9: M-S-UEO experiment for a DS = (DS.KGen,DS.Sign,DS.Vrfy) scheme.

ϵ′ ≤ ⌈2
2b

L
⌉ · 2−2b · (QH + 2)2,

where QH is the maximal number of queries to the random oracle.

We now consider a stronger variant of S-UEO where the attacker collaborates or

compromises with the signer, in order to generate a signature valid under two distinct

public keys. Provided small subgroup elements are rejected, this property also holds.

However, there is a straightforward attack if they are accepted where the attacker chooses

its public key to be two distinct low order elements.

Definition 42 (Malicious Strong Universal Exclusive Ownership). Let DS = (DS.KGen,

DS.Sign,DS.Vrfy) be a signature scheme. Consider the security experiment ExprM-S-UEO
DS

as defined in Figure 3.9. We say that a signature scheme DS is ϵ-M-S-UEO-secure or

malicious strong universal exclusive ownership if for any PPT attacker A the probability:

Pr
[
ExprM-S-UEO

DS (A) = 1
]
≤ ϵ.

Theorem 8 (Ed25519-LibS achieves M-S-UEO). Let DS = (DS.KGen,DS.Sign,DS.Vrfy) be

as defined in Figure 3.1, with the Ed25519-LibS variant and the hash function H : {0, 1}∗ →
{0, 1}2b is a random oracle. Then DS is ϵ′-M-S-UEO-secure with ϵ′ ≤ ⌈22b/L⌉

22b
·Qh

2.

3.6 Conclusions

We proved that Ed25519 achieves its goal of existential unforgeability (EUF-CMA), as is

assumed by many published works. While Ed25519 seems similar to Fiat-Shamir applied

to the Schnorr identification scheme, the devil is in the detail. We took into account the

non-prime order group, the clamping of private scalars and many other details.

Moreover, we also proved that Ed25519-IETF achieves SUF-CMA. We proved that all

Ed25519 schemes resilient against key substitution attacks, however, we also showed that

rejecting small order elements does yield additional properties, enabling Ed25519-LibS to

achieve an even stronger form of key substitution resilience as well as message bound

security.

Our results, summarized in Table 3.1 on page 28, thereby provide not only theoretical

foundations, but also meaningful insights for choosing among the variants.
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3.7 Full Proofs

Below, we provide details proofs for all lemmas and theorems in this chapter.

3.7.1 Proof for Theorem 2

Proof. Assume there exists an attacker A against the (t′, ϵ′)-IMP-KOA security of CID.

From this we then construct another attacker B, the reduction, that can solve the (t, ϵDLP
EC )-

ECDLP on EC(Fq). Since we assume ECDLP to be hard to break with non-negligible

probability ϵDLP
EC in any reasonable amount of time t, this then leads to a contradiction,

yielding IMP-KOA security. B is constructed as follows: B gets as input the base point

B ∈ EC(Fq) of order L, as well as a random point A ∈ ⟨B⟩. Then, B runs A on input A.

We first analyze the probability of the received value A falling into the subset of correctly

distributed public keys to invoke A. Note that the public key A in the identification

protocol is computed as A← sB with an s ∈ {2b−2, 2b−2 +8, . . . , 2b−1− 8}. We claim that

for any public keys A1 = s1B,A2 = s2B with s1, s2 ∈ {2b−2, 2b−2+8, . . . , 2b−1−8}, A1 = A2

if and only if s1 = s2. Note that for above s1, s2, there must exist i1, i2 ∈ {0, ..., 2b−5 − 1}
such that s1 = 2b−2 + 8i1 and s2 = 2b−2 + 8i2. Since L > 2b−5 is a prime, it holds that

A1 = A2 ⇔ s1B = s2B

⇔ s1 = s2 mod L

⇔ 2b−2 + 8i1 = 2b−2 + 8i2 mod L

⇔ i1 = i2 mod L

⇔ i1 = i2

⇔ 2b−2 + 8i1 = 2b−2 + 8i2

⇔ s1 = s2

The above claim indicates that the cardinality of the set of valid public keys equals

2b−5. Recall that the point A ∈ ⟨B⟩ is uniformly at random. The probability of A

being a valid public key from A’s view is therefore bounded by 2b−5

L
. In particular,

substituting the instantiation of Ed25519 for the corresponding parameters, it holds

that2
b−5

L
= 2251

2252+27742...8493
≈ 1

2
, which is obviously non-negligible.

Challenge: At some point A outputs a commitment R⋆ to its challenger. B then chooses

a random challenge ch1
$←− {0, 1}2b and sends ch1 to A. Finally, A terminates with output

S1.

Resetting the attacker: Then, B resets A’s internal state back to the point just after

which it generated R⋆ and returns a newly sampled challenge value ch2
$←− {0, 1}2b to A

with ch1 ̸= ch2 mod L.
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Finally, again, A will output a response S2. B verifies whether (R⋆, ch1, S1) and

(R⋆, ch2, S2) both are accepting conversations with ch1 ≠ ch2 (mod L), and aborts

if this condition is not satisfied.

By the so-called Reset Lemma [32], we know that ifA can find an S1 such that (R⋆, ch1, S1)

is an accepting conversation with probability ϵ′, then a reset of A with the same random

tape will output an accepting conversation (R⋆, ch2, S2) for ch1 ̸= ch2 (mod L) with

probability at least (ϵ′ − 1
L
)2.

B then outputs s = S1−S2

ch1−ch2 mod L.

Assume that (R⋆, ch1, S1) and (R⋆, ch2, S2) are accepting conversations with ch1 ≠ ch2

(mod L). In particular, it holds that Si ∈ {0, ..., L − 1} and 8SiB = 8R⋆ + 8chiA for

i ∈ {1, 2}, which implies that

8(S1 − S2)B = 8(ch1 − ch2)A

⇔ (S1 − S2) · (ch1 − ch2)
−1B = A

Therefore, s = S1−S2

ch1−ch2 mod L is the desired solution to the ECDLP instance (B,A).

Regarding the time complexity, it holds that t ≈ 2t′, as B rewound A’s internal state

once. Finally, we can deduce that the probability of B successfully extracting the discrete

logarithm is at least 2b−5

L
(ϵ′ − 1

L
)2.

3.7.2 Proof for Lemma 1

Proof. We must show that the conversations (R, ch, S) $←− Sim(A) are distributed identically

to Trans [CID.P(k) ⇆ CID.V(A)] in honest executions of CID.

In the following let (com, ch, rsp) be a valid honest execution between the prover and

the verifier. It holds that com is the encoding of an element rB in the elliptic curve group

with r $←− {0, 1}2b, ch $←− {0, 1}2b and rsp is the encoding of an element in {0, ..., L− 1} of
the form (r + ch · s) mod L, with s implicitly fixed by the decoding of A = sB.

Clearly, the challenges are distributed identically in both conversations. The (decoded)

simulated responses S ← s̃ with s̃ $←− {0, 1}2b are also distributed identically to real

responses rsp = (r + ch · s) mod L, with r, ch $←− {0, 1}2b. The same holds for the

(decoded) simulated commitments R← (SB − chA) mod L = (S − ch · s)B mod L and

the real commitments com, since the latter are in the elliptic curve group of the form

com← rB with r $←− {0, 1}2b, which is equivalent to r′B with r′ ← r mod L.

3.7.3 Proof for Theorem 3

Proof. We have shown in Lemma 1 that CID is ϵzk-HVZK with ϵzk = 0. Since Sim(pk) uses

public information only, any resulting conversations could also have been computed by

A itself. A therefore learns nothing from the interaction of CID.P ⇆ CID.V via OTrans
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(replaced by Sim). Thus, for canonical identification protocols that are HVZK, IMP-PA

security is equivalent to IMP-KOA security and we have ave ϵ′ ≤ ϵ and t ≈ t′ plus the

running time of the Sim at most QT times. Since t is dominated by t′, we simply write

t ≈ t′.

3.7.4 Proof for Theorem 4

Proof. In the following we assume without loss of generality, that the attacker A never

queries the same message twice to the oracle OSign, since Ed25519-Original is deterministic

and thus A does not gain any advantage in doing so.

Assume there exists a (t′, ϵ′, QS, (Q
′
H+Qκ+Qβ))-attackerA against the unforgeability of

the signature scheme Ed25519-Original. We show that this immediately implies a successful

(t, ϵ, QT , (QH + Qκ + Qβ)) attacker B against the IMP-PA security of the underlying

identification scheme CID. The reduction B receives as input a public key A. B then runs

A on input A as follows.

We note that the relevant random oracle queries of A can take three distinct and

distinguishable forms: the most relevant to the reduction are those of the form (com, A,m),

i.e., a b-bit string followed by the encoding A, and some arbitrary-length bit-string m.

The second distinct case are those queries of length exactly b bits. Any other query can be

interpreted as a query of the form (β,m) with β a b-bit string and m some arbitrary-length

bit-string.

Random oracle queries of the form κ: Let κ be a b-bit string. Let Qκ be the max-

imum number of queries of the form κ that A makes to H. The reduction B simply

forwards these queries to H and returns the answer to A.

Random oracle queries of the form (β,m): Let β be a bit string of length b and let

Qβ be the number of queries of the form (β,m) that A makes to H. Again, B simply

relays these queries between H and A.

Random oracle queries of the form (com, A,m): Let Q′H be the (maximal) number

of queries of this form that A makes to the random oracle H. B guesses the query

i ∈ {1, 2, . . . , Q′H} for which A will eventually output the signature forgery, resulting in a

loss of a factor Q′H.

For every of the other QH = Q′H − 1 queries j ∈ {1, 2, . . . Q′H} with j ̸= i to H, B simply

relays the queries between A and H.

When the attacker A asks the i-th query, say on (com′, A,m′), B forwards com′ as its

commitment to its own challenger. The challenger will then send a challenge ch⋆ $←−
{0, 1}2b to B, which B returns as response to A.
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Signing queries: For every of the QS signing queries of A, B runs its own OTrans oracle

to obtain an accepting conversation (R, ch, S). In order for (R, S) to be a valid signature

on m, B must ensure that ch = H(R,A,m), i.e., the reduction programs the random

oracle on these values to return ch.

Note that for each commitment value R that was output by OTrans, the probability

that the value H(R,A,m) had been set by a previous query of A to the random oracle

H, and thus that A could detect the inconsistency in the patched random oracle, is

upper bounded by Q′H2
−α, where α is the min-entropy of the identification scheme. The

distribution of commitments has α bits of min-entropy for α = − log2

(
⌈22b−1

L
⌉ · 2−2b

)
due to the bias introduced by sampling first a uniformly random 2b-bit string and then

reducing it modulo L.

If this happens, the reduction B aborts, the probability of which is thus upper bounded

by QSQ
′
H · 2−α.

Furthermore, note that this also implies that the value R provided by the simulation via

OTrans is with high probability different from the deterministic value R′ with R′ = r′B

that would be generated in the real signing process of the message m with secret key

k belonging to the public key A. However, A is not able to compute the deterministic

commitment value R′ by itself unless it can guess the correct value k to determine

h[b], ...h[2b− 1] of h← H(k) and thus r′, the probability of which is bounded by Qκ2
−b.

Note that it does not help A in detecting the simulation to guess the values h[b], ...h[2b−1],
as A has no way of checking that these are the correct values leading to the “real” r′

without also guessing k.

Existential Forgery: At some point A terminates with a forgery output (m⋆, σ⋆ =

(R⋆, S⋆)) with R⋆ = com′ and m⋆ = m′. If this is not the case, B aborts with probability
1
Q′

H
since it has wrongly guessed the index i for which the forgery will take place. Assuming

this is a valid forgery in the EUF-CMA game, it holds thatm′ has not been queried to OSign.

In particular this means that the output of H(com′, A,m′) has not been re-programmed

in A’s view by B to a value other than ch⋆. Furthermore, CID.V2(A, com
′, ch⋆, S⋆) = 1

holds such that when B forwards S⋆ to its own challenger as final output of its game, B
will also be successful.

The running time t of B is that of A plus the time it takes to query the random oracle

H (Q′H + Qκ + Qβ) times, the time it takes to query its challenger, and to query OTrans

QT = QS times. As before, we write t ≈ t′ since the running time of the reduction is

dominated by the running time t′ of A. If A outputs a forgery with probability ϵ′, then B
will be able to impersonate the prover with probability ϵ′

Q′
H
−QSQ

′
H · 2−α −Qκ2

−b.
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3.7.5 Proof for Theorem 5

Proof. We recall that the games of EUF-CMA and SUF-CMA only differ in the winning

condition for the attacker A: EUF-CMA forbids that the attacker has queried the signing

oracle OSign on the message m⋆ for which it outputs the forgery, whereas SUF-CMA allows

this and only requests that the signature forgery σ⋆ differs from the signature σ that was

output by OSign(m
⋆).

We therefore focus on the case that the attacker A on input an Ed25519-IETF public

key A outputs a valid strong forgery (m⋆, σ⋆ = (R⋆, S⋆)) with probability ϵ′ such that

there exists an entry (m⋆, σ′ = (R′, S ′)) ∈ LSign of recorded OSign queries of A, such that

σ⋆ ̸= σ′. Since encodings are deterministic and unique 2, we omit them in the following

discussion. Naturally, there are two ways in which σ⋆ = (R⋆, S⋆) ̸= σ′ = (R′, S ′) for the

same message m⋆:

Case 1 R⋆ ̸= R′: In this case, we can immediately build a reduction B against the

EUF-CMA security of Ed25519-IETF. The reduction B gets as input a public key A

and invokes the SUF-CMA attacker A(A). For any of the maximal Q′S signing queries of

A on message m, B simply uses the strategy of the simulator Sim (cf. Fig. Figure 3.6) to

obtain valid conversations (R, ch, S) and patches the random oracle H to return ch on

input (R,A,m). As before, this programming ensures that the response (R, S) to A is

a valid signature from A’s point of view. The at most Q′H random oracle queries of A
are simulated by B relaying queries to the “real” random oracle H on any inputs that

had not been patched by a signature query, the latter are answered consistently with the

patching. Note that to run the simulation of A, B has made no signing query to its own

OSign. Thus, once A outputs its strong forgery (m⋆, σ⋆), B can immediately output the

same pair as its existential forgery. Note that since R⋆ ̸= R′, H has not been patched by

B on (R⋆, A,m⋆).

Case 2 S⋆ ̸= S ′: This leaves the possibility that R⋆ = R′, but S⋆ ̸= S ′, i.e., the strongly

forged signature is of the form (R′, S⋆). We will argue that this also is not possible,

as this contradicts the uniqueness of the underlying identification protocol: For CID it

holds that there is only (at most) one valid response S for all (A, k) $←− CID.DS.KGen,

(R = rB, s) ← CID.P1(k; r) and ch $←− {0, 1}2b. Assume otherwise, i.e., there exist

S ̸= S ′ such that both (R, ch, S) and (R, ch, S ′) are valid conversations wrt. the public

key A. To pass verification via CID.V2 it must hold that S, S ′ ∈ {0, ..., L − 1} and

furthermore 8SB = 8R+ 8chA and 8S ′B = 8R+ 8chA, or, equivalently, 8SB = 8S ′B,

contradicting the assumption that S ̸= S ′. Since verification of an Ed25519-IETF signature

2Note that there is a very small probability that there exist two different encodings R1, R2 such that
they decode to the same element R. This is due to the fact that elements in EC(Fq) are encoded as b bit
strings with a (b− 1)-bit encoding for the y coordinate, plus one bit for the sign of x. Thus the entire
valid encoding space for the y coordinate encompasses integers from 0 to 2b−1 − 1 = 2255 − 1, whereas Fq

contains only the integers from 0 to 2255 − 20. Nevertheless, Case 1 in the reduction also captures this.
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(R, S) on message m for public key A is just executing the verifier CID.V2 on input

(A,R,H(R,A,m⋆), S) it is clear by the same argument that there cannot be a strong

forgery with S⋆ ̸= S ′.

To conclude, since the probability of computing non-unique responses in CID is 0 and

the signature scheme does not admit existential forgeries with non-negligible probability,

the probability of an attacker A succeeding against the strong unforgeability is also

negligible.

3.7.6 Proof for Theorem 6

Proof. Assume there exists an attacker A that can break the (ϵ, QS)-S-UEO security of

Ed25519. This means that for an honestly generated key pair (A, k) $←− DS.KGen, given

the public key A, A can output ((m,σ = (R, S)), A′,m′) such that:

1. σ ← Sign(k,m) for one of the QS signing queries of A. In particular, we have 8SB =

8R + 8H(R,A,m)A.

2. A′ ̸= A, which means that A′ ̸= A.

3. Verification DS.Vrfy(A′, σ,m′) holds, i.e., 8SB = 8R + 8H(R,A′,m′)A′.

Let ch ← H(R,A,m) and ch′ ← H(R,A′,m′). Observing property 2, properties 1)

and 3) can only hold simultaneously if and only if one of the following (distinct) cases

arises:

Case 1: It holds that SB = R in property 1). Then A can simply output a low order

point A′, i.e., with |A′| ≤ L and m′ = m, which causes property 3) to also collapse to

SB = R, irrespective of the value ch′. This can only happen in property 1) if ch = 0

(mod L) or ch = s−1 (mod L) for A = sB. But since H is a random oracle, this happens

only with probability at most 2 ·QH ·
(
⌈22b

L
⌉ · 2−2b

)
. So in the following we have SB ̸= R.

Case 2 A can guess A′ ̸= A with |A′| ≥ L and m′ such that ch′A′ = chA. But, again,

since H is a random oracle, the probability of this succeeding, accounting for the attacker’s

ability to repeat the process, is bounded by QH · ⌈2
2b

L
⌉ · 2−2b.

3.7.7 Proof for Theorem 7

Proof. Let A denote an attacker against (ϵ′)-MBS security of Ed25519. We then give the

concrete upper bound of ϵ′ in the random oracle model. Assume that A terminates with

(vk = A, σ = (R, S),m,m′) and wins the MBS experiment in Fig. 3.8. Then, it holds

that m ̸= m′, 8SB = 8R + 8H(R,A,m)A, and 8SB = 8R + 8H(R,A,m′)A, which further
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implies that 8H(R,A,m)A = 8H(R,A,m′)A. Note that A is not a small subgroup element,

it must hold that

H(R,A,m) = H(R,A,m′) mod L, m ̸= m′. (3.2)

Obviously, we have ϵ′ ≤ Pr[Eq.(3.2) holds]. Note that the random oracle in the MBS

experiment will evaluate at most (QH + 2) different inputs, where at most QH ones are

queried by A and two are queried by the challenger for final verifications. Moreover,

Eq. (3.2) holds only if there exists two outputs of the random oracle on different inputs

such that the outputs are congruent modulo L, which occurs with probability from above

bounded by ⌈22b
L
⌉ · 2−2b · (QH + 2)2. Hence, it holds that ϵ′ ≤ ⌈22b

L
⌉ · 2−2b · (QH + 2)2.

3.7.8 Proof for Theorem 8

Proof. It follows from the verification equation that:

8H(R, vk ′,m′)vk ′ = 8H(R, vk ,m)vk

It then follows that from the rejection of small subgroup elements that:

H(R, vk ′,m′)a′ = H(R, vk ,m)a mod L (3.3)

As a is in the range 1, . . . , L and thus coprime to L it follows that

H(R, vk ′,m′)a′(a)−1 = H(R, vk ,m) mod L (3.4)

We fix a,m′, a′, then for a particular m, H(R, vk ,m) is in the range 0, . . . , 22b of which

there are at most ⌈22b/L⌉ values such that the equation holds. Consequently a given

guess has probability ⌈2
2b/L⌉
22b

of fulfilling the equation. However, the attacker can also vary

m′ and consequently perform a collision attack. Notice that the attacker can make up

to Qh queries and consequently the overall probability of success is bounded above by
⌈22b/L⌉

22b
·Qh

2
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Chapter 4

Exploration of AEAD Landscape

This chapter is based on the paper:

Cas Cremers, Alexander Dax, Charlie Jacomme, and Mang Zhao. Automated Analysis

of Protocols that use Authenticated Encryption: Analysing the Impact of the Subtle

Differences between AEADs on Protocol Security. In USENIX Security 2023, 2023 Aug 9.

This paper won the “Distinguished Paper Award” in Usenix 2023. I lead the research

on the generalization of AEAD collision resistance and its relations to other security

properties in the computational model in this paper and the substantial contributions in

this chapter are my own.

My co-authors Cas Cremers, Alexander Dax, and Charlie Jacomme principally contributed

to the initial conception of the work, the further exploration in the symbolic model, and

the write up of the connection between computational and symbolic analyses.
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4.1 Introduction

Authenticated Encryption (AE) and Authenticated Encryption with Associated Data

(AEAD) are some of the most commonly used cryptographic building blocks. AEAD prim-

itives are built from symmetric encryption primitives and augmented with authentication

mechanisms. Their applications include the vast majority of encrypted internet data, such

as in TLS, WPA2 from IEEE 802.11 (WiFi), WireGuard, and by messaging apps such

as Signal or WhatsApp. For example, in TLS, TLSCiphertext is constructed from an

AEAD applied to a header and payload: both are authenticated, but only the payload is

encrypted, and the plaintext header includes the content type and the ciphertext length.

Historically, AEAD was formally introduced by Rogaway [163] to entwine privacy and

authenticity for both messages and headers in a single and compact mode. The definition

of AEAD is given in the nonce-based pattern, where the nonce is named after the number

that are supposed to be used only once. The nonce-based AEADs are expected to relax

the security requirements of the randomized or counter-based pattern – ensuring no reuse

of the nonce during the encryption is sufficient for privacy and authenticity. Moreover,

Bellare and Hoang [27] initialized the study on binding keys and other optional inputs to

the ciphertexts.

While AEADs are ubiquitous in modern secure communications, there is no commonly

agreed “strong” security notion that they should satisfy. In fact, the current landscape

of security notions for AEADs is rather divergent and chaotic: there are many proposed

frameworks and security notion variants [4, 10, 11, 23, 27, 31, 55, 67, 82, 97, 98, 135, 163,

168]. For some of these notions, their implication relations are known [23], but many of

them are hard to compare for technical reasons.

To address this, we revisit several recent cryptographic AEAD definitions, extract

the core requirement collision resistance for a generic computational AEAD model, and

illustrate how satisfying collision resistance implies that many existing security notions are

met. Our generic computational AEAD model enables us to develop a family of symbolic

AEAD models that can be used with symbolic protocol analysis tools, e.g., the Tamarin

prover, for further case studies or independent research interests.

Contribution Our main contributions are the following:

• We formally prove some well-known but merely conjectured relations for AEAD between

the fundamental privacy and integrity.

• We formally prove the missing or conjectured relations between existing AEAD security

notions w.r.t. collision resistance, completing the picture in the domain.

Overview We first prove some well-known but merely conjectured relations for AEAD

between the fundamental privacy and integrity in Section 4.2. Then, we define and
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generalize a novel collision resistance notion and show its relationship with other existing

security notions in Section 4.3. We conclude in Section 4.4 and give the full proofs of all

theorems in this chapter in Section 4.5.

4.2 Relations between Privacy and Integrity

The canonical privacy and integrity notions are IND$-CPA and CTI-CPA, which are respec-

tively extended to IND$-CCA and CTI-CCA security, as we introduced in Section 2.2.4.

The relation among them has been explored in [23]. Below, we recall the results.

Theorem 9 ([23]). Let AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) be an authenticated

encryption with associated data. It holds that:

1. [23, Proposition 1]: If AEAD is ϵ-CTI-CPA secure, then AEAD is also ϵ-CTI-CCA secure,

and vice versa.

2. [23, Theorem 6]: If AEAD is ϵind$-cpaAEAD -IND$-CPA secure and ϵcti-cpaAEAD -CTI-CPA secure, then

AEAD is also ϵind$-ccaAEAD -IND$-CCA secure such that

ϵind$-ccaAEAD ≤ 2(ϵind$-cpaAEAD + ϵcti-cpaAEAD )

Moreover, we also have some trivial results for the missing relations between the privacy

and authenticity notions. We illustrate the full relations between privacy and integrity

in Figure 4.1.

Theorem 10. Let AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) be an authenticated

encryption with associated data. Then, it holds that:

1. If AEAD is ϵ-IND$-CCA secure, then AEAD is also ϵ-IND$-CPA secure.

2. [23]: If AEAD is ϵ-IND$-CPA secure, then AEAD might not be ϵ′-IND$-CCA secure for

any negligible ϵ′.

3. If AEAD is ϵ-IND$-CPA secure, then AEAD might not be ϵ′-CTI-CPA secure for any

negligible ϵ′.

4. If AEAD is ϵ-CTI-CPA secure, then AEAD might not be ϵ′-IND$-CPA secure for any

negligible ϵ′.

5. If AEAD is ϵ-IND$-CCA secure, then AEAD might not be ϵ′-CTI-CPA secure for any

negligible ϵ′.

6. If AEAD is ϵ-CTI-CPA secure, then AEAD might not be ϵ′-IND$-CCA secure for any

negligible ϵ′.
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IND$-CPA

CTI-CPA

CTI-CCA

Thm. 9 Thm. 9

Thm. 10 Thm. 10 IND$-CCA
Thm. 9

Thm. 10

Thm. 10

Thm. 10

Thm. 10

Figure 4.1: The relations between integrity and privacy for AEAD.

4.3 Generalizing AEAD Collision Resistance and Re-

lations

4.3.1 Generalizing AEAD collision resistance

We consider the CMT-4 definition in [27] as a natural definition for full collision resistance.

Roughly speaking, full collision resistance means that each AEAD ciphertext can only

be computed by unique input. Moreover, we define variants of full collision resistance,

denoted by X-CR, where X ⊆ (k , n, h,m)1 denotes the input portions that are unique for

computing an AEAD ciphertext. In particular, the (k , n, h,m)-CR security is identical to

full-CR security2.

Additional Notation. For any X ⊆ (k , n, h,m), we define a class of projection functions

fX : K ×N ×H×M→ dom(X), where dom(X) denotes the domain of X. The function

inputs a tuple (k ,n, h,m) and outputs the values that X projects to. For instance,

fk(k , n, h,m) = k and f(k ,n,h,m)(k , n, h,m) = (k , n, h,m).

Definition 43. We say an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) is ϵ-X collision

resistant (or ϵ-X-CR ) for X ⊆ (k , n, h,m), if the below defined advantage of any attacker

A against ExprX-CRAEAD experiment in Figure 4.2 is bounded by:

AdvX-CRAEAD(A) := Pr[ExprX-CRAEAD(A) = 1] ≤ ϵ

In particular, we say an AEAD is ϵ-full collision resistant (or ϵ-full-CR), if AEAD is

ϵ-(k , n, h,m)-CR secure.

Definition 44. We say an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) has ϵ-X input

bound ciphertext (or ϵ-X-IBC ) for X ⊆ (k , n, h,m), if the below defined advantage of any

attacker A against ExprX-IBCAEAD experiment in Figure 4.3 is bounded by:

AdvX-IBCAEAD(A) := Pr[ExprX-IBCAEAD(A) = 1] ≤ ϵ
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ExprX-CRAEAD:

1

(
(k1,n1, h1,m1), (k2,n2, h2,m2)

)
$←− A()

2 if ⊥ ∈ {k1,n1, h1,m1, k2,n2, h2,m2}
3 return 0

4 if fX(k1,n1, h1,m1) = fX(k2,n2, h2,m2)

5 return 0

6 c1 ← AEAD.Enc(k1,n1, h1,m1)

7 c2 ← AEAD.Enc(k2,n2, h2,m2)

8 return Jc1 = c2K

Figure 4.2: X-CR security for an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) scheme. fX is a
projection function maps inputs to the subset indicated by X. In particular, the (k ,n, h,m)-CR
security is also named as full-CR security.

ExprX-IBCAEAD:

1

(
c, (k1,n1, h1,m1), (k2,n2, h2,m2)

)
$←− A()

2 if ⊥ ∈ {k1,n1, h1,m1, k2,n2, h2,m2}
3 return 0

4 if fX(k1,n1, h1,m1) = fX(k2,n2, h2,m2)

5 return 0

6 m ′
1 ← AEAD.Dec(k1,n1, h1, c)

7 m ′
2 ← AEAD.Dec(k2,n2, h2, c)

8 return Jm1 = m ′
1K and Jm2 = m ′

2K

Figure 4.3: X-IBC security for an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) scheme. fX is a
projection function maps inputs to the subset indicated by X.

The above X-CR and X-IBC security notions for X ∈ {k , (k ,n, h), (k ,n, h,m)} are

respectively identical to the security notions CMT-l and CMTD-l for l ∈ {1, 3, 4} in [27]

(also see Definition 18 and Definition 19). More precisely, we have that

1. k -CR = CMT-1

2. (k , n, h)-CR = CMT-3

3. (k , n, h,m)-CR = CMT-4

4. k -IBC = CMTD-1

5. (k , n, h)-IBC = CMTD-3

6. (k , n, h,m)-IBC = CMTD-4

1Here, we slightly abuse notation and use (·) to denote a set. Thus, by X ⊆ (k ,n, h,m) we mean that
X is a subset of the set (k ,n, h,m). For a single element set, we sometimes also omit the parenthesis and
regard it as a single element. For instance, we write k ∈ X⇔ (k) ⊆ X.

2In Theorem 13 we will show that (k ,n, h,m)-CR implies all variants, which motivated our choice to
abbreviate (k ,n, h,m)-CR to full-CR.
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Other interesting notions are the full robustness FROB and its extension eFROB, which

were first defined for the randomized AEAD. In this paper, we define a generalized FROB

for nonce-based AEAD.

Definition 45. We say an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) has ϵ-X full

robustness (or ϵ-X-FROB ) for X ⊆ (k ,n, h,m), if the below defined advantage of any

attacker A against ExprX-FROB
AEAD experiment in Figure 4.4 is bounded by:

AdvX-FROB
AEAD (A) := Pr[ExprX-FROB

AEAD (A) = 1] ≤ ϵ

ExprX-FROB
AEAD :

1

(
c, (k1,n1, h1), (k2,n2, h2)

)
$←− A()

2 if ⊥ ∈ {k1,n1, h1, k2,n2, h2}
3 return 0

4 m1 ← AEAD.Dec(k1,n1, h1, c)

5 m2 ← AEAD.Dec(k2,n2, h2, c)

6 if fX(k1,n1, h1,m1) = fX(k2,n2, h2,m2)

7 return 0

8 return Jm1 ̸= ⊥K and Jm2 ̸= ⊥K

Figure 4.4: X-FROB security for an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) scheme. fX is
a projection function maps inputs to the subset indicated by X.

The above (k , n)-FROB for nonce-based AEAD is defined in a similar way as the FROB

definition for the randomized AEAD in [89]. The above (k , n, h,m)-FROB for nonce-based

AEAD is defined in a similar way as the eFROB definition for the randomized AEAD in [97].

4.3.2 Overview of Relationship between Collision Resistance and
Existing Frameworks

It turns out that this notion of collision resistance, while straightforward, is enough to

cover in practice multiple notions of the literature from [10, 27, 89, 97, 135]. Informally,

these notions are:

• tidyness - for a fixed key, is the encryption function the inverse of the decryption one? It

implies that collisions over encryptions or decryptions are equivalent.

• commitment (CMT-l and CMTD-l for l ∈ {1, 3, 4} [27]) - can we find collisions either

over the encryption or the decryption, with different parts of the inputs being allowed to

stay fixed based on l? In order to capture more variants in this property class that are

not included in [27], in this paper we rename CMT-l to collision resistance (X-CR) and

CMTD-l to input bound ciphertexts (X-IBC), where X ⊆ (k ,n, h,m) denotes the inputs

that a AEAD scheme commits to.
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• full robustness (FROB [89]) and even fuller robustness (eFROB [97]) - is any attacker able

to compute a ciphertext that decrypts correctly under two distinct inputs? This notion

was initially defined for randomized AEADs. In this paper, we extend the robustness

notions FROB and eFROB for randomized AEADs to a unified notion X-FROB for nonce-

based AEADs in Definition 45, where X ⊆ (k , n, h,m) denotes the degree of robustness.

Moreover, we prove that X-FROB is equivalent to X-IBC in Theorem 14.

• key committing KC security [10] - is any attacker able to compute a ciphertext that

decrypts correctly under different keys but same nonce? In this paper, we recall the

KC definition in Definition 20 and show that X-FROB with k ∈ X implies KC, while the

reverse does not hold, in Theorem 15.

• multi-key collision resistance (MKCR) [135] - is any attacker able to compute a ciphertext

that decrypts correctly under multiple keys but same nonce and header? The MKCR

is parameterized by the number of distinct keys κ ≥ 2. In this paper, we focus on the

simplified case where κ = 2. We recall the MKCR definition in Definition 21 and show

that KC implies the simplified MKCR, while the reverse does not hold, in Theorem 16.

• receiver binding (r-BIND) [97] - is any attacker able to compute a ciphertext that can be

verified under the different header and message? This notion was initially defined for a

variant of compactly committing AEAD (ccAEAD), and showed how it can be instantiated

for instance with an Encrypt then Mac construction3. Note that [97] also introduces how

to transform any AEAD to ccAEAD by a “traditionally committing encryption” approach

(ccAEAD[AEAD]). In this paper, we recall the r-BIND definition in Definition 24 and show

its relations with other security notions (in this list) in Theorem 17 and Theorem 18.

We provide an overview for the full relations between the above notions in the theorem

below, which is illustrated in Figure 4.5. We will unfold the formal theorems in Section 4.3.4

and give the detailed proofs in Section 4.5. While some of the relations were conjectured

before ([27]), we are the first to provide the full proofs, as well as provide generalizations

of some notions to enable a comparison.

Theorem 11 (Informal). For any AEAD scheme, we have that

1. X-FROB implies X-CR for any X ⊆ (k , n, h,m). If AEAD is tidy, the reverse also holds.

See Theorem 12.

2. X-FROB/X-CR/X-IBC resp. implies X′-FROB/X′-CR/ X′-IBC for any X′ ⊆ X ⊆ (k , n, h,m).

See Theorem 13.

3. X-FROB and X-IBC are equivalent for any X ⊆ (k , n, h,m). See Theorem 14.

3 [97] proposes to use HMAC-SHA256 to instantiate a keyed random oracle, which is technically false
without an additional assumption, as HMAC(k,m) = HMAC(H(k),m) whenever k is bigger than 256
bits.
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X-FROB

X-IBC

Thm. 14 Thm. 14

X-CR

Thm. 12 Thm. 12

Thm. 13

KC

r-BIND

k ∈ X Thm. 15

k ∈ X Thm. 15

(h,m) ⊆ X Thm. 17

X ⊆ (h,m) Thm. 17

Thm. 18 Thm. 18

MKCR
Thm. 16

Thm. 16
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Figure 4.5: The relation between collision related properties for AEAD with key space K. The
black arrow → indicates the general implication. The purple dash-dotted arrow indicates
the implication for tidy AEAD. The orange dash-dot-dotted arrow indicates the implication
for ccAEAD[AEAD]. The X in the figure is a subset of (k ,n, h,m), i.e., X ⊆ (k ,n, h,m). The
theorems highlighted with red color are claimed or proven in other papers. The theorems
highlighted with green color are part of our contributions.

4. k -FROB implies KC but not in reverse. See Theorem 15.

5. KC implies MKCR but not in reverse. See Theorem 16.

6. (h,m)-FROB of AEAD implies r-BIND of ccAEAD[AEAD]. r-BIND of ccAEAD[AEAD]

implies X-FROB of AEAD for any X ⊆ (h,m). See Theorem 17.

7. Neither KC nor MKCR of AEAD implies r-BIND of ccAEAD[AEAD]. The reverse is same.

See Theorem 18.

Note that Theorem 12 was proven in [27]. Theorem 15 and Theorem 17 were respectively

claimed in [27] and [97] without giving any proofs. Proofs for Theorem 13, Theorem 14,

Theorem 16 and Theorem 18 are part of our contribution. Recall that we have (k , n, h,m)-

CR = full-CR in this figure. This theorem indicates that the full collision resistance implies

all other existing notions in this figure under the tidyness assumption, which is in fact

met by all classical constructions.

4.3.3 Collision attacks on deployed AEADs

In general, any kind of collision between two ciphertexts can lead to a security issue,

and we will advocate that general use AEADs should be fully resistant to collisions.

However, many popular deployed AEADs do not meet the full collision resistance, as

shown in Table 4.1. Below, we recall the known attacks against various kinds of collision

resistances of different AEAD schemes in the literature.

1. r-BIND: [97] shows a generic attack against any EtM construction with unrelated keys

by finding the second key that causes collision by . This attack also applies to real-world

modes using Carter-Wegman MACs, e.g., GCM and ChaCha20-Poly1305. [82] shows a

concrete attack against AES-GCM and OCB by finding the nonce that causes collision

and sketches an faster attack by doing birthday attack on keys. Moreover, at the hand of
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Concrete AEAD Integrity and Privacy Full Collision Resistance

XSalsa20-Poly1305 • ✗ [10]
AES-GCM ✓ [115, 139] ✗ [82]
ChaCha20-Poly1305 ✓ [159] ✗ [10]
OCB3 ✓ [49, 132] ✗ [10]
EtM (unrelated keys) ✓ [163] ✗ [97]3

AES-CCM ✓ [91, 120] •
AES-EAX ✓ [35, 141] •
EtM (related keys) ✓ [163] ✓ [97]
CAU-C4 ✓ [27] ✓ [27]
AES-GCM-SIV ✓ [98, 116] ✗ [10]
CAU-SIV-C4 ✓ [27] ✓ [27]

✓ : proven in the cited work(s). • : we conjecture that this holds, but do not know of a proof.
✗ : does not hold, with reference or explanation of counterexample.

Table 4.1: AEADs (in)-security guarantees: Integrity and Privacy refers to IND$-CPA and
CTI-CPA. Full Collision Resistance refers to Definition 38.

a corollary of Theorem 1 in [164], [82] claims that this attack also applies to any so-called

rate-1 AEAD, that is, “one blockcipher call per block of message” [82]. This potentially

indicates the vulnerability of AES-GCM-SIV and ChaCha20-Poly1305 and any EtM

constructions.

2. KC: [10] extends the known attack in [82] against AES-GCM to new proof-of-concept

attacks against several commonly used AEAD, including AES-GCM, ChaCha20-Poly1305,

AES-GCM-SIV, and OCB3. This attack shows how to create ciphertext collision on two

distinct keys. Then, [10] also shows that their new attacks also make impacts in some

real-world scenarios, such as the binary polyglots setting.

3. MKCR: [135] shows a novel partitioning oracle attack that feasibly breaks the MKCR

security with parameter κ ≥ 2 of widely used AEAD schemes, including AES-GCM,

AES-GCM-SIV, ChaCha20-Poly1305, and XSalsa20-Poly1305.

4. X-CR and X-IBC: [27] finds that all above attacks also break the k -CR and -IBC security

of respective AEAD schemes. Thus, AES-GCM, AES-GCM-SIV, XSalsa20-Poly1305, and

ChaCha20-Poly1305 and OCB are all k -CR insecure, i.e., CMT-1-insecure in [27].

4.3.4 Theorems for Relationships between Collision Resistance
and Existing Frameworks

We first recall the conclusion in [27] that X-IBC implies X-CR. Moreover, these two notions

are equivalent if the AEAD is tidy.

Theorem 12 ([27, Appendix A]). Let AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) be

an authenticated encryption with associated data scheme. Then, it holds that:
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1. If AEAD is ϵ-X-IBC secure, then AEAD is also ϵ-X-CR secure.4

2. If AEAD is ϵ-X-CR secure and tidy, then AEAD is also ϵ-X-IBC secure.5

3. If AEAD is ϵ-(k , n, h,m)-IBC (resp. CR) secure, then AEAD is ϵ-(k , n, h)-IBC (resp. CR)

secure, and vice versa.

4. If AEAD is ϵ-(k , n, h)-IBC (resp. CR) secure, then AEAD is ϵ-k-IBC (resp. CR) secure.

For X-CR, X-IBC, and X-FROB, we can have following trivial conclusion that generalizes

Theorem 12.

Theorem 13. Let AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) be an authenticated

encryption with associated data. If AEAD is ϵ-X-CR (resp. X-IBC or X-FROB), then it is

also ϵ-X′-CR (resp. X′-IBC or X′-FROB) for any X′ ⊆ X.

Notably, we find that X-FROB and X-IBC are identical.

Theorem 14. Let AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) be an authenticated

encryption with associated data. If AEAD is ϵ-X-FROB secure for X ⊆ (k ,n, h,m), then

AEAD is also ϵ-X-IBC secure, and vice versa.

Interestingly, [27] has the following observations without giving formal proof. We

hereby provide the proof below.

Theorem 15. Let AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) be an authenticated

encryption with associated data with key space K. Then, it holds that:

1. If AEAD is ϵ-k-FROB secure, then AEAD is ϵ-KC secure.

2. If AEAD is ϵ-KC secure, then AEAD might not be ϵ′-k-FROB secure for any negligible ϵ′.

Moreover, we also find that KC security implies MKCR security, while the reverse

direction does not hold.

Theorem 16. Let AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) be an authenticated

encryption with associated data with key space K. Then, it holds that:

1. If AEAD is ϵ-KC secure, then AEAD is ϵ-MKCR secure.

2. If AEAD is ϵ-MKCR secure, then AEAD might not be ϵ′-KC secure for any negligible ϵ′.

It is interesting to observe that any ccAEAD[AEAD] is s-BIND secure. Moreover, it

is stated in [97] that the r-BIND security for the randomized “traditionally committing

encryption” AEAD can be implied by eFROB but cannot be implied by the standard FROB

security without including headers. In terms of our syntax, we have similar conclusions.

4We stress that although [27, Appendix A] only proves the theorem for X ∈ {k , (k ,n, h), (k ,n, h,m)},
the proof for all other X ⊆ (k ,n, h,m) can be easily given in a similar way.

5Similar to above, the proof for all other X ⊆ (k , n, h,m) can be easily given in a similar way as in [27,
Appendix A].
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Theorem 17. Let AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) be an authenticated

encryption with associated data. Let ccAEAD[AEAD] denote the compactly committing

AEAD derived from AEAD using “traditionally committing encryption” approach. Then, it

holds that:

1. ccAEAD[AEAD] is 0-s-BIND secure.

2. If AEAD is ϵ-X-FROB secure for (h,m) ⊆ X, then ccAEAD[AEAD] is also ϵ-r-BIND secure.

3. If ccAEAD[AEAD] is ϵ-r-BIND secure, then ccAEAD[AEAD] is also ϵ-X-FROB secure for

X ⊆ (h,m).

Moreover, we also observe that neither KC nor MKCR security of AEAD implies the

r-BIND security of ccAEAD[AEAD]. Conversely, the r-BIND security of ccAEAD[AEAD]

does not imply KC or MKCR security.

Theorem 18. Let AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec) be an authenticated en-

cryption with associated data scheme. Let ccAEAD[AEAD] denote the compactly committing

AEAD derived from AEAD using “traditionally committing encryption” approach. Then, it

holds that:

1. If AEAD is ϵ-KC secure, then ccAEAD[AEAD] might not be ϵ′-r-BIND secure for any

negligible ϵ′.

2. If AEAD is ϵ-MKCR secure, then ccAEAD[AEAD] might not be ϵ′-r-BIND secure for any

negligible ϵ′.

3. If ccAEAD[AEAD] is ϵ-r-BIND secure, then ccAEAD[AEAD] might not be ϵ′-KC secure for

any negligible ϵ′.

4. If ccAEAD[AEAD] is ϵ-r-BIND secure, then ccAEAD[AEAD] might not be (κ, ϵ′)-MKCR

secure for any κ ≥ 2 and any negligible ϵ′.

4.4 Conclusions

We recalled the standard privacy and integrity of AEAD and provided missing proofs for

some widely acknowledged relations between them. In addition, we defined a novel (full)

collision resistance and generalize it with various variants. We proved the relations between

(full) collision resistance and several related notions in the literature, e.g., robustness, key

committing, and receiver binding, completing the picture in this domain. In particular,

our novel full collision resistance implies all these related notions, which makes it to be

the “strongest” security notion in this domain.
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4.5 Full Proofs

4.5.1 Proof of Theorem 10

Proof. We prove each of these statements in turn.

1. Statement 1: This statement can be proven by a trivial reduction. If there exists an

attacker A that breaks IND$-CPA security of AEAD, then we can construct an attacker

B that breaks IND$-CCA security of AEAD by invoking AEAD. B simply invokes A,
forwards all A’s queries to its challenger and returns the responses to A, and finally

outputs A’s decision. We observe that B wins if and only if A wins, which concludes the

proof.

2. Statement 2: See [23, Lemma 2].

3. Statement 3: We prove this statement by counter example. Let AEAD1 = (AEAD1.KGen,

AEAD1.Enc,AEAD1.Dec) and AEAD2 = (AEAD2.KGen,AEAD2.Enc,AEAD2.Dec) denote

two independent ϵ-IND$-CPA secure authenticated encryption with associated data

schemes with the same message spaceM. We then construct AEAD′ = (AEAD′.KGen,

AEAD′.Enc,AEAD′.Dec) from AEAD1 and AEAD2 as follows:

• AEAD′.KGen(): runs k1
$←− AEAD1.KGen() and k2

$←− AEAD2.KGen() followed by

outputting k ′ := k1 ∥ k2.
• AEAD′.Enc(k ′, n, h,m): first parses k1 ∥ k2 ← k ′ and then runs c1 ← AEAD1.Enc(k1,

n, h,m) and c2 ← AEAD2.Enc(k2, n, h,m), followed by outputting c ′ := c1 ∥ c2.
• AEAD′.Dec(k ′, n, h, c′): parses k1 ∥ k2 ← k ′ and c1 ∥ c2 ← c ′, followed by outputting

AEAD.Dec(k1, n, h, c1).

It is straightforward to prove that AEAD′ is 2ϵ-IND$-CPA secure by reduction. If there

exists an attacker A that breaks the IND$-CPA security of AEAD′, then we can construct

an attacker B that breaks the IND$-CPA security of AEAD1 or AEAD2.

However, AEAD′ is not CTI-CPA secure. An attacker can queries OEnc(n, h,m) for

any n, h,m for a ciphertext c ′ = c1 ∥ c2 such that c1 ≠ c2, followed by outputting

c ′′ = c1 ∥ c1. It is easy to see that c′′ /∈ LOEnc
since c′ ̸= c′′ and AEAD′.Dec(k , n, h, c ′′) =

AEAD′.Dec(k , n, h, c′) = m ̸= ⊥. Thus, this attacker always win the CTI-CPA experiment.

4. Statement 4: We prove this statement by counter example. Let AEAD = (AEAD.KGen,

AEAD.Enc,AEAD.Dec) denote an ϵ-CTI-CPA secure authenticated encryption with associ-

ated data scheme with the message spaceM. We then construct AEAD′ = (AEAD′.KGen,

AEAD′.Enc,AEAD′.Dec) from AEAD as follows:

• AEAD′.KGen(): is identical to k $←− AEAD.KGen().

• AEAD′.Enc(k ,n, h,m): runs c ← AEAD.Enc(k ,n, h,m) followed by outputting

c ′ := c ∥ c.
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• AEAD′.Dec(k , n, h, c ′): first parses c1 ∥ c2 ← c ′ and outputs ⊥ if c1 ̸= c2. Otherwise,

outputs AEAD.Dec(k , n, h, c1).

It is straightforward to prove that AEAD′ is ϵ-CTI-CPA secure by reduction. If there

exists an attacker A that breaks the CTI-CPA security of AEAD′, then we can construct

an attacker B that breaks the CTI-CPA security of AEAD.

However, AEAD′ is not IND$-CPA secure since an attacker can easily distinguish any

ciphertext c′ = c ′1 ∥ c′2 of AEAD′ from a random string of the same length by checking

whether c ′1 = c ′2.

5. Statement 5: We prove this statement by counter example. Let AEAD = (AEAD.KGen,

AEAD.Enc,AEAD.Dec) denote an ϵ-IND$-CCA secure authenticated encryption with as-

sociated data scheme with message space M, nonce space N , and header space H,
and ciphertext space CT . In particular, let ñ ∈ N and h̃ ∈ H denote two arbitrary

strings in the respective domains. We then construct AEAD′ = (AEAD′.KGen,AEAD′.Enc,

AEAD′.Dec) from AEAD as follows:

• AEAD′.KGen(): runs k $←− AEAD1.KGen() and samples r $←− M followed by out-

putting k ′ := k ∥ r.

• AEAD′.Enc(k ′, n, h,m): first parses k ∥ r ← k ′ and then outputs c as a string of l(|m|)
zero bits if r = m, n = ñ and h = h̃. Otherwise, outputs c ← AEAD.Enc(k , n, h,m).

• AEAD′.Dec(k ′,n, h, c): first parses k ∥ r ← k ′, followed by outputting r if c is a

string of l(|m|) zero bits, n = ñ and h = h̃. Otherwise, outputs AEAD.Dec(k , n, h, c).

It is straightforward to prove that AEAD′ is (ϵ + q
|M|)-IND$-CCA secure by reduction,

where q denotes the number of queries that A can make in polynomial time. If there

exists an attacker A that breaks the IND$-CCA security of AEAD′, then we can construct

an attacker B that breaks the IND$-CCA security of AEAD.

However, AEAD′ is not CTI-CPA secure since a string of l(|m|) zero bits is always a

ciphertext, which can be decrypted to a message r ∈ M for any k ∈ K, n = ñ, and

h ∈ h̃.

6. Statement 6: This statement is implied by Statements 1 and 4.

4.5.2 Proof of Theorem 13

Proof. This theorem can by proven by three trivial reductions. Here, we only give the

trivial reductions for CR security, the reductions for IBC and FROB can be given in a

similar way.
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Let A denotes an attacker that breaks X′-CR security of AEAD. We define an attacker

B that invokes A and outputs same as A. Note that fX is a projection function that

maps inputs to the subset indicated by X. By X′ ⊆ X, we have that fX′(k ,n, h,m) is a

subset of fX(k ,n, h,m). This indicates that fX′(k1,n1, h1,m1) ̸= fX′(k2,n2, h2,m2) =⇒
fX(k1,n1, h1,m1) ̸= fX(k2,n2, h2,m2). Thus, B wins X-CR security experiment of AEAD

whenever A wins.

4.5.3 Proof of Theorem 14

Proof. Suppose that A can break the ϵ-X-IBC security of AEAD. Then we can con-

struct an attacker B that breaks the ϵ-X-FROB security of AEAD. When A outputs(
c, (k1,n1, h1,m1), (k2,n2, h2,m2)

)
, B simply outputs

(
c, (k1,n1, h1), (k2,n2, h2)

)
. If A

wins, then it must hold that

1. ⊥ /∈ {k1, n1, h1,m1, k2, n2, h2,m2}. In particular, this implies that⊥ /∈ {k1, n1, h1, k2, n2, h2},
m1 ̸= ⊥, and m2 ̸= ⊥

2. fX(k1, n1, h1,m1) = fX(k2, n2, h2,m2)

3. AEAD.Dec(k1, n1, h1, c) = m1. In particular, this implies that AEAD.Dec(k1, n1, h1, c) ̸= ⊥

4. AEAD.Dec(k2, n2, h2, c) = m2. In particular, this implies that AEAD.Dec(k2, n2, h2, c) ̸= ⊥

This implies that B also wins.

In reverse, suppose that A can break the ϵ-X-FROB security of AEAD. Then we can

construct an attacker B that breaks the ϵ-X-IBC security of AEAD. When A outputs(
c, (k1,n1, h1), (k2,n2, h2)

)
, B simply computes m1 ← AEAD.Dec(k1,n1, h1, c) and m2 ←

AEAD.Dec(k2, n2, h2, c) and outputs(
c, (k1, n1, h1,m1), (k2, n2, h2,m2)

)
.

If A wins, then it must hold that

1. ⊥ /∈ {k1, n1, h1, k2, n2, h2}

2. fX(k1, n1, h1,m1) = fX(k2, n2, h2,m2)

3. m1 ̸= ⊥

4. m2 ̸= ⊥

This implies that ⊥ /∈ {k1, n1, h1,m1, k2, n2, h2,m2}. Then, B always wins, which concludes

the proof.
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4.5.4 Proof of Theorem 15

Proof. We prove each of these statements in turn.

1. Statement 1: Suppose that A can break the (q, ϵ)-KC security of AEAD for any q ≥ 2.

Then we can construct an attacker B that breaks the ϵ-k -FROB security of AEAD. B
initializes an empty list L and simulates experiment ExprKCAEAD,q to A. When A terminates,

B checks there exist entries (k1, n1, h1,m1, c1), (k2, n2, h2,m2, c2) ∈ L such that

(a) k1 ̸= k2

(b) c1 = c2 ̸= ⊥

(c) m1 ̸= ⊥

(d) m2 ̸= ⊥

If such entries do not exist, B aborts. Otherwise, B outputs
(
c1, (k1, n1, h1), (k2, n2, h2)

)
.

If A wins, then such entries must exist, which further implies that B wins. The proof is

concluded.

2. Statement 2: We prove this statement by giving a counter-example. Let SKE =

(AEAD′.KGen,AEAD′.Enc,AEAD′.Dec) be an one-time pad with spaces K′ =M′ = {0, 1}t

for some t > 0. Let cPRF : K′×H → K′×T denote a ϵbindcPRF-bind secure function for some

spaces H and T . We then construct an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec)

with spaces K = N = K′ =M′ = {0, 1}t from SKE and cPRF as follows:

(a) AEAD.KGen(): is identical to AEAD′.KGen()

(b) AEAD.Enc(k , n, h,m): computes (y, y′)← cPRF(k⊕n, h) and c′ ← AEAD′.Enc(y,m⊕
n), followed by outputting c = (c ′, y′).

(c) AEAD.Dec(k ,n, h, c): parses (c′, y′) ← c and verifies whether (y, y′) = cPRF(k ⊕
n, h) for some y. If the verification fails, then outputs ⊥. Otherwise, outputs

AEAD′.Dec(y, c ′)⊕ n.

We first prove that AEAD is ϵKCAEAD-KC secure for any q ≥ 2, where ϵKCAEAD ≤ ϵbindcPRF .

Suppose an attacker A that breaks the KC security of AEAD, then we can construct

an attacker B that breaks bind security of the underlying cPRF. B simply invokes A
and honestly simulates the KC experiment to A. If A wins, then there must exist

(k1, n1, h1,m1, c1), (k2, n2, h2,m2, c2) ∈ L such that

(a) k1 ̸= k2

(b) n1 = n2

(c) c1 = c2 ̸= ⊥

(d) m1 ̸= ⊥ and m2 ̸= ⊥
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This implies that (k1⊕n1, h1) ̸= (k2⊕n2, h2). Moreover, for c1 = (c′1, y
′
1) and c2 = (c′2, y

′
2),

the condition c1 = c2 implies that y′1 = y′2. Then, B can simply checks all elements in

the list L for such k1, k2, n1, n2, y
′
1, y
′
2 and outputs (k1 ⊕ n1, y

′
1, k2 ⊕ n2, y

′
2). After that, B

wins whenever A wins.

We then prove that AEAD is not ϵ′-k -FROB for any negligible ϵ′. An attacker A can

simply execute following steps:

(a) samples k1, k2
$←− K such that k1 ̸= k2, n1

$←− N , h1 = h2
$←− H

(b) computes n2 = k1 ⊕ k2 ⊕ n1

(c) picks any message m ∈M and computes c ← AEAD(k1, n1, h1,m)

(d) outputs
(
c, (k1, n1, h1), (k2, n2, h2)

)
It is straightforward that for k1 ̸= k2, m1 = m ̸= ⊥, and m2 = m1 ⊕ n1 ⊕ n2 ̸= ⊥ for

m1 ← AEAD.Dec(k1, n1, h1, c) and m2 ← AEAD.Dec(k2, n2, h2, c). Thus, A always wins.

4.5.5 Proof of Theorem 16

Proof. We prove each of these statements in turn.

1. Statement 1: We prove this statement by reduction. If there exists an attacker A that

breaks the MKCR security of AEAD with probability ϵ, then we can construct an attacker

B that breaks the KC security of AEAD also with probability ϵ. The attacker B simply

invokes A. When A outputs (K⋆,n⋆, h⋆, c⋆), B picks two arbitrary k1, k2 ∈ K⋆ with

k1 ̸= k2. Then, B queries ODec oracle twice, respectively with inputs (k1,n
⋆, h⋆, c⋆) and

(k2, n
⋆, h⋆, c⋆). If A wins, then it must hold that ⊥ ≠ m1 = AEAD.Dec(k1, n

⋆, h⋆, c⋆) and

⊥ ≠ m2 = AEAD.Dec(k2, n
⋆, h⋆, c⋆). Thus, B always wins.

2. Statement 2: We prove this statement by giving a counter-example. Let SKE =

(AEAD′.KGen,AEAD′.Enc,AEAD′.Dec) be an one-time pad with spaces K′ =M′ = {0, 1}t

for some t > 0. Let cPRF : K′×N → K′×T denote a ϵbindcPRF-cPRF secure function for some

spaces N and T . We then construct an AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec)

with spaces K = h from SKE and F as follows:

(a) AEAD.KGen(): is identical to AEAD′.KGen()

(b) AEAD.Enc(k , n, h,m): computes (y, y′)← cPRF(k⊕h, n) and c′ ← AEAD′.Enc(y,m),

followed by outputting c = (c ′, y′).

(c) AEAD.Dec(k ,n, h, c): parses (c′, y′) ← c and verifies whether (y, y′) = cPRF(k ⊕
h,n) for some y. If the verification fails, then outputs ⊥. Otherwise, outputs

AEAD′.Dec(y, c ′).
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We first prove that AEAD is ϵ-MKCR secure, where ϵ = ϵbindcPRF . Suppose an attacker A
that breaks the MKCR security of AEAD, we then construct an attacker B that breaks

the bind security of the underlying cPRF. B simply invokes A and honestly simulates the

MKCR experiment for κ = 2. The attacker A wins if it can output (K⋆, n⋆, h⋆, c⋆) such

that

(a) |K⋆| ≥ 2, and

(b) AEAD.Dec(k , n⋆, h⋆, c⋆) ̸= ⊥ for all k ∈ K⋆

Then, B simply picks any k1 ̸= k2 from space K⋆. It must hold that (k1 ⊕ h⋆,n⋆) ̸=
(k2⊕h⋆, n⋆). The decryption AEAD.Dec(k1, n

⋆, h⋆, c⋆) ̸= ⊥ and AEAD.Dec(k2, n
⋆, h⋆, c⋆) ̸=

⊥ indicates that the verification inside the decryption never fails. This means, for

(y1, y
′
1)← cPRF(k1 ⊕ h⋆, n⋆) and (y2, y

′
2)← cPRF(k2 ⊕ h⋆, n⋆) it must hold that y′1 = y′2.

Thus, B always wins if it outputs (k1 ⊕ h⋆, n⋆, k2 ⊕ h⋆, n⋆).

Then, we prove that AEAD is not ϵ′-KC secure for any non-negligible ϵ′. An attacker

A can simply pick arbitrary (k1,n1, h1,m) ∈ K ×N ×H×M and invokes OEnc oracle

with the input (k1, n1, h1,m) for a ciphertext c1. Then, A invokes ODec oracle with input

(k2,n2, h2, c2) for m2 such that k1 ≠ k2, k2 ⊕ h2 = k1 ⊕ h1, n1 = n2, and c1 = c2. It is

straightforward that m1 = m2 ̸= ⊥ and A always wins, which concludes the proof.

4.5.6 Proof of Theorem 17

Proof. We prove each of these statements in turn.

1. Statement 1: For any (k , n, h, c) output by A and m ← AEAD.Dec(k , n, h, c), A can win

only when

(a) m ̸= ⊥, and

(b) m ̸= AEAD.Dec(k , n, h, c).

The second condition contracts to the fact that m ← AEAD.Dec(k ,n, h, c). Thus, A
always loses.

2. Statement 2: We prove this claim by reduction. If there exists an attacker A that

breaks the ϵ-r-BIND security of ccAEAD[AEAD], then we can construct an attacker B
that breaks the ϵ′-X-FROB security of AEAD for (h,m) ⊆ X and ϵ′ = ϵ. When A outputs(
c, (k1, n1, h1,m1), (k2, n2, h2,m2)

)
, A wins if

(a) ⊥ /∈ {k1, n1, h1,m1, k2, n2, h2,m2}

(b) (h1,m1) ̸= (h2,m2)

(c) m1 = AEAD.Dec(k1, n1, h1, c)
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(d) m2 = AEAD.Dec(k2, n2, h2, c)

This in particular indicates that

(a) ⊥ /∈ {k1, n1, h1, k2, n2, h2},

(b) m1 = AEAD.Dec(k1, n1, h1, c)

(c) m2 = AEAD.Dec(k2, n2, h2, c)

(d) fX(k1, n1, h1,m1) ̸= fX(k2, n2, h2,m2) for any (h,m) ⊆ X

(e) m1 ̸= ⊥ and m2 ̸= ⊥

Thus, B can simply output
(
c, (k1, n1, h1), (k2, n2, h2)

)
and win whenever A wins.

3. Statement 3: We prove this claim by reduction. If there exists an attacker A that

breaks the ϵ-X-FROB security of ccAEAD[AEAD] for X ⊆ (h,m), then we can construct

an attacker B that breaks the ϵ′-r-BIND security of ccAEAD[AEAD] and ϵ′ = ϵ. When A
outputs

(
c, (k1, n1, h1), (k2, n2, h2)

)
, A wins if

(a) ⊥ /∈ {k1, n1, h1, k2, n2, h2},

(b) for m1 := AEAD.Dec(k1,n1, h1, c) and m2 := AEAD.Dec(k2,n2, h2, c) it holds that

fX(k1, n1, h1,m1) ̸= fX(k2, n2, h2,m2) for any X ⊆ (h,m)

(c) m1 ̸= ⊥ and m2 ̸= ⊥

This in particular indicates that

(a) ⊥ /∈ {k1, n1, h1,m1, k2, n2, h2,m2}

(b) (h1,m1) ̸= (h2,m2)

(c) m1 = AEAD.Dec(k1, n1, h1, c)

(d) m2 = AEAD.Dec(k2, n2, h2, c)

Thus, B can simply output
(
c, (k1, n1, h1,m1), (k2, n2, h2,m2)

)
, wherem1 := AEAD.Dec(k1,

n1, h1, c) and m2 := AEAD.Dec(k2, n2, h2, c), and win whenever A wins.

4.5.7 Proof of Theorem 18

Proof. We prove each of these statements in turn.

1. Statement 1 and 2: We prove these statements by a counter-example AEAD, which is

identical to the one in the proof of Statement 2 in Theorem 15. As shown in Theorem 15,

we know that AEAD is KC secure. By Theorem 16, we know that AEAD is also MKCR

secure. Below, we prove that ccAEAD[AEAD] is not ϵ′-r-BIND secure for any negligible ϵ′.
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An attacker A can simply pick arbitrary k1, k2 ∈ K, n1, n2 ∈ N , h1, h2 ∈ H, m1 ∈M such

that k1 ̸= k2, n2 = n1⊕ k1⊕ k2, h1 = h2. Then, A computes c ← AEAD.Enc(k1, n1, h1,m1)

and m2 ← AEAD.Dec(k2,n2, h2, c). It holds that m2 = m1 ⊕ n1 ⊕ n2. By k1 ̸= k2, we

know that m2 = m1 ⊕ n1 ⊕ n2 = m1 ⊕ k1 ⊕ k2 ̸= m1 and therefore (h1,m1) ̸= (h2,m2).

Finally, A outputs
(
c, (k1, n1, h1,m1), (k2, n2, h2,m2)

)
and always wins.

2. Statement 3: We prove this statement by a counter-example ccAEAD[AEAD]. Let SKE =

(AEAD′.KGen,AEAD′.Enc,AEAD′.Dec) denote one-time pad with spaces K′ = M′ =

{0, 1}t for some t > 0. We then define AEAD = (AEAD.KGen,AEAD.Enc,AEAD.Dec)

with space K = {0, 1}t and M = {0, 1} t
2 from SKE and a collision-resistant function

F : H×M→ T for some space T as follows:

• AEAD.KGen(): identical to k $←− AEAD′.KGen().

• AEAD.Enc(k ,n, h,m): runs c ′ ← AEAD′.Enc(k ,m ∥ m) and t← F(h,m), followed

by outputting c ← c ′ ∥ t.
• AEAD′.Dec(k ,n, h, c): parses c ′ ∥ t ← c and runs m ∥ m ′ ← AEAD.Dec(k , c′),

followed by outputting ⊥ if t ̸= F(h,m) and m otherwise.

We first prove that ccAEAD[AEAD] is r-BIND: Note that an attacker A can break the

r-BIND security of AEAD only when A outputs (h1,m1) ̸= (h2,m2). By the collision

resistance of the underlying F, we know that F(h1,m1) ̸= F(h2,m2) except negligible

probability. This further implies that for any c = c′ ∥ t, at least one of the conditions

t = F(h1,m1) and t = F(h2,m2) cannot hold except negligible probability. Thus, A can

never win the r-BIND experiment with non-negligible probability.

Below, we prove that ccAEAD[AEAD] is not ϵ′-KC secure for any negligible ϵ′. An attacker

A can simply pick arbitrary (k1,n1, h1,m1) ∈ K ×N ×H×M and invoke OEnc oracle

with input (k1,n1, h1,m1) for a ciphertext c. Then, A sets k2 identical to k1 except

flipping the final bit, n2 = n1, and h2 = h1, followed by querying ODec oracle with input

(k2,n2, h2, c) for a message m2. It is straightforward that m2 = m1 ̸= ⊥ and A always

wins.

3. Statement 4: We prove this statement by a counter-example ccAEAD[AEAD], which

is identical to the one in above proof of Statement 3. From the above statement, we

know that ccAEAD[AEAD] is r-BIND secure. Below, we prove that ccAEAD[AEAD] is not

ϵ′-MKCR secure for any κ ≥ 2 and any negligible ϵ′.

An attacker A can easily pick (k ⋆,n⋆, h⋆,m⋆) ∈ K × N × H ×M and compute c⋆ ←
AEAD.Enc(k ⋆, n⋆, h⋆,m⋆). Next,A setsK⋆ = {k : k and k ⋆ have the same first half bits}.
Finally,A outputs (K⋆, n⋆, h⋆, c⋆). We have that for any k ∈ K⋆, AEAD.Dec(k , n⋆, h⋆, c⋆) =

m⋆ ≠ ⊥. Moreover, recall that K = {0, 1}t andM = {0, 1} t
2 for arbitrary t > 0. For any

κ ≥ 2, A can always find suitable t > 0 such that |K⋆| = 2
t
2 ≥ κ. Thus, A always wins,

which concludes the proof.
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Chapter 5

Provable Security of FIDO2,
CTAP2.1, and WebAuthn 2

This chapter is based on the paper:

Nina Bindel, Cas Cremers and Mang Zhao, “FIDO2, CTAP 2.1, and WebAuthn 2:

Provable Security and Post-Quantum Instantiation,” in 2023 2023 IEEE Symposium

on Security and Privacy (SP), San Francisco, CA, US, 2023 pp. 1471-1490. DOI:

10.1109/SP46215.2023.00039, URL: https://doi.ieeecomputersociety.org/10.1109/

SP46215.2023.00039

This paper was joint work with Nina Bindel and Cas Cremers. All authors actively

contributed to the completion of this work. The contributions in this chapter related

to CTAP, the security proofs for WebAuthn, and the provable security analysis of the

composition of CTAP and WebAuthn are my own. In the case of WebAuthn, the security

model, the discovery of the downgrade attack, and its resolution were the result of

collaborative research efforts.
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5.1 Introduction

One of the largest projects globally to mitigate the problems of weak passwords is the

FIDO protocol by the Fast Identity Online (FIDO) Alliance. The alliance has brought

together over forty key companies in the online authentication space, including Amazon,

Apple, Google, Intel, Microsoft, RSA, VISA, and Yubico, and has brought security devices

to the wider public to improve the security of important logins.

The FIDO2 standard – the latest of the protocols – is built around two sub-protocols

that are critical for enabling security-device supported logins. The first one is WebAuthn,

which is a protocol between web applications, web browsers, and authenticator hardware

tokens. At its core, WebAuthn allows a website (a Relying Party) to perform a passwordless

challenge-response protocol with a token (an Authenticator) – where the browser acts as

an intermediary – and challenges are signed by credential keys generated and stored in the

token. The protocol supports multiple optional modes and features, such as attestation

and user involvement.

The second relevant protocol is CTAP (Client To Authenticator Protocol), which is a

protocol between an authenticator (e.g., a hardware security token) and a client (e.g., a

browser). The goal of the protocol is to bind (and thus to restrict) which clients can use

the authenticator’s API (Application Programming Interface). To enable API access, the

client asks the user to enter the authenticator’s PIN; this PIN is checked by the token,

and a shared secret is established that represents the binding and is used to authenticate

all subsequent client accesses to the authenticator.

The FIDO2 standard, while already widely deployed, is subject to ongoing development.

Previous versions of these standards have been studied. However, as we will see later, the

main study has made strong assumptions that do no hold for the majority of deployed

systems, such as relying on the attestation1 mode to prove core properties. Moreover, the

recently proposed CTAP 2.1 [59] includes a completely new base protocol that has not yet

been analyzed in any framework.

Notably, the most recent version of the FIDO2 standard with CTAP 2.1 and WebAu-

thn 2 [107] appears to be “post-quantum ready”, because it enables a mode of operation

that only uses on symmetric cryptographic primitives, digital signatures, and KEMs (Key

Encapsulation Mechanisms). However, no post-quantum instantiations have been proposed,

nor has the CTAP 2.1 protocol received any analysis. In this work we set out to fill this

gap: analyse the newest version and assess its post-quantum security.

1In the context of WebAuthn, “attestation” means identification of device type/manufacturer, and
notably does not imply any check of the software that is being executed.
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Contributions

1. We prove that FIDO2 with WebAuthn 2 and CTAP 2.1 is provably secure against classical

attackers in a fine-grained security and protocol model. Our security models are more

fine-grained or cover other aspects than previous versions such as [21, 103]. For example,

we add important aspects such as algorithm negotiation, required user actions, and token

binding. For CTAP 2.1, our security proofs confirm the stronger containment properties

(reduced “blast radius”) offered by the protocol compared to CTAP 2.0. Our analysis of

WebAuthn 2 also has new implications for WebAuthn 1: we provide the first guarantees

of the most widely used None attestation mode, user verification, user presence, and

token binding.

2. We prove that if FIDO2 with WebAuthn 2 and CTAP 2.1 is instantiated with post-

quantum (PQ) secure KEMs and signatures, then it is secure against quantum attackers

in the same model. We give concrete suggestions for PQ secure algorithm and negotiation

design choices, including classical-PQ hybrids as suggested by standardization agencies,

such as NIST (National Institute for Standards and Technology) [69].

3. We propose a simple improvement to WebAuthn 2 that improves its resilience to certain

types of downgrade attack. While these can only occur for strong threat models, these

improvements yield stronger classical security against broken cryptographic primitives,

and are even more relevant for their PQ instantiations.

Overview

We provide a high-level background on FIDO2’s CTAP and WebAuthn protocols, and pre-

vious analysis models, in Section 5.2. Next, we define additional notions and preliminaries

in Section 5.3. Afterwards, we first present the analysis of WebAuthn 2 in Section 5.4,

and then that of CTAP 2.1 in Section 5.5. We prove the security of their composition

in FIDO2 in Section 5.6. We then return to related work in Section 5.7, and describe

limitations and future work in Section 5.8. Finally, we give the full proofs of all theorems

in this chapter in Section 5.9.

5.2 Background

5.2.1 High-level overview of FIDO2

The FIDO2 protocol incorporates the two sub-protocols WebAuthn and CTAP, and

involves four main types of parties: relying parties (e.g., a server, online service, or an

operating system feature), authenticators (e.g., token or security key), clients (e.g., web

browsers or other applications), and users. WebAuthn typically leaves the users implicit

in the description of the authenticator.
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Figure 5.1: The main message flow of FIDO2 with WebAuthn 2 with attestation type None is
shown in black. The blue flows indicate interaction with the third CTAP 2.1 phase (i.e. after
CTAP 2.1’s setup and binding phases.) The user is left implicit in the flow of the authenticator
token. For registration, the server generates a challenge. This is forwarded through the client
to the token (possibly authorized through CTAP 2.1), which returns a public credential key
and additional data, which is stored by the server. Afterwards, for each authentication, a
similar process occurs, but the token now signs challenge and data with the with the signing key
corresponding to the public credential key that was registered previously.

Initially, the client and authenticator run the setup and binding phase of the CTAP 2.1

protocol. Once this is completed, relying parties can register and authenticate authen-

ticators by running WebAuthn 2 through CTAP 2.1, which we depict in Figure 5.1.

WebAuthn 2 is used in two phases: in the registration phase, an authenticator produces a

fresh credential key pair whose public key is sent to the relying party and stored. Afterwards,

each time the relying party wants to authenticate a user, it performs a challenge-response

protocol with the authenticator who signs the challenge using the credential private key,

which is then verified by the relying party. We next expand the two protocols in more

detail.

5.2.1.1 WebAuthn

The goal of WebAuthn is to enable relying parties to authenticate users through authenti-

cator tokens using a challenge-response protocol. WebAuthn is specified as an API rather

than as a protocol; in practice, a common scenario is that the relying party is an online

service with server backend code and Javascript running in the browser, and the server’s

Javascript then uses the WebAuthn API supported by the browser to communicate with
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the token. The first interaction, when the server communicates with the token, is called

registration phase. In this phase, the server S sends a challenge message (mrch) to the

token through the client C. This challenge contains a random nonce, parameters such

as whether user verification (UV ) is required, and optionally a value tb that uniquely

identifies the underlying channel (in practice typically identifying a unique Transport

Layer Security (TLS) connection, which can provide channel binding to prevent some

types of man-in-the-middle attacks).

The client C parses the challenge message and turns it into a command message (mrcom)

and a client message (mrcl), and forwards the command message to the token T . The

token T produces a credential public-private key pair, which is bound to the server S and

enables S to perform verification during the following authentication phase, and outputs a

response message (mrrsp). The client then returns this together with the client message to

the server S. The response message specifies the type of “attestation statement” selected

by the token, which enables the server S to perform verification during the registration

phase, and includes the credential public key. WebAuthn 2 supports five attestation types;

these include Basic and None2. Tokens that support type Basic are equipped with an

attestation key pair, which is specific to the token model, but not unique: by design,

the attestation key pair is shared by a batch of tokens3. The None mode provides no

token-specific information and is supported by all tokens.

The authentication phase is executed after the completion of the registration in a

slightly different way. When the client parses the challenge message (mach) from the server

S and turns it into a command message (macom) and a client message (macl), followed by

sending the command message to the token T . The token T produces a response message

(marsp) signed using the credential private key, and bound to the server S. The server S

finally accepts a response message and a client message only when they pass verification

using the corresponding credential public key.

5.2.1.2 CTAP

The CTAP protocol allows the client (e.g., a browser) to communicate with the authen-

ticator. Using only WebAuthn, any application might try to access a token to request

credential keys or responses to challenges. In practice, we would like to limit the client

applications that are allowed to use the token’s API. One of the goals of the CTAP protocol

is to limit this access.

CTAP proceeds in three phases. In the setup phase, a client C ′ initializes a PIN,

which is collected from the user, into the token T . In the binding phase, the client C (not

necessarily same as C ′) and the token T exchange a shared binding state, if the client C

2The remaining three modes are: Self, AttCA, and AnonCA, which are less common and out of scope
of this work.

3The number of tokens in each batch is at least 100,000, cf. [107, Section 14.4.1].
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is able to provide information about the PIN stored on the token T . The binding state

is expected to uniquely bind the client C to the token T . If the client C fails 3 times

consecutively, the token T is rebooted and all previously established binding states are

reset. If the client C fails 8 times in total, the token T is blocked. When the above

preparation is done, the client C authorizes any command message by outputting a tag

t, which is forward to the token T along with the command message itself. The token T

only proceeds upon the positive decision d from the user, e.g., by pressing a button, and

then validates the command message and the tag. In particular, a token only produces a

response message in WebAuthn when its validation process in CTAP succeeds. Note that

the binding state is repeatedly used during a period, the length of which depends on the

concrete CTAP version and the type of token devices, and will be blocked afterwards.

5.2.2 Previous analysis by Barbosa et al. [20, 21]

Barbosa et al. [20, 21] gave the first formal analysis of FIDO2, and in particular the version

with CTAP 2.0 and WebAuthn 1. We recall some important conclusions.

1. WebAutnn: Barbosa et al. formalize WebAuthn 1 as a passwordless authentication

(PlA) protocol. Assuming the uniqueness of each attestation key pair, they then prove that

WebAuthn 1 with attestation type Basic provides secure passwordless authentication.

However, since each attestation key pair is in fact necessarily shared by a large batch

of tokens (often called batch attestation), their main theorem establishes uniqueness

properties of partnering for each batch of tokens that share the same attestation key pair

instead of each single token. Moreover, their analysis has no clear implications for the

None mode.

2. CTAP: Barbosa et al. formalize CTAP 2.0 as a PIN-based access control for authentica-

tors (PACA) protocol. Then, they prove the Unforgeability with trusted binding (UF-t) of

CTAP 2.0. In Section 5.7.1 we show that the difference between CTAP 2.0 and CTAP 2.1

is substantial, which means the previous results cannot simply be translated.

Thus, Barbosa et al. [20] provided the first formal analysis of FIDO2 with CTAP 2.0

and WebAuthn 1, which was ground-breaking in many ways, but as a first attempt also

left open many questions and subtle proof issues. We provide a detailed comparison

between [20] and our work in Section 5.7.2.

5.3 Additional Preliminaries

5.3.1 Additional Security Definitions

We define a new customized notion for SKE: the IND-CPA security with respect to function

H (IND-1CPA-H). Compared to IND-1CPA security, the attacker additionally obtains a
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challenge tag that is produced by applying H to both a symmetric key, which is same as

the one used by the SKE, and the challenge ciphertext.

Definition 46. Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec) be a symmetric key encryption

scheme with symmetric key space K. We say SKE is ϵ-one time IND-CPA secure with

respect to function H (denoted by IND-1CPA-H) secure, if the blow defined advantage of

every (potential quantum) attacker A against ExprIND-1CPA-H
SKE experiment in Figure 5.2 is

bounded by,

AdvIND-1CPA-H
SKE (A) :=

∣∣∣Pr[ExprIND-1CPA-H
SKE (A) = 1]− 1

2

∣∣∣ ≤ ϵ.

We further extend IND-1$PA security to a new notion IND-1$PA-LPC that additionally

gives the attacker the access to a challenge plaintext checking oracle, which returns whether

the input ciphertext can be decrypted to the challenge plaintext.

Definition 47. Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec) be a symmetric key encryption

scheme with symmetric key space K. We say SKE is ϵ-IND-1$PA-LPC secure, if the

blow defined advantage of every (potential quantum) attacker A against ExprIND-1$PA-LPC
SKE

experiment in Figure 5.2 is bounded by,

AdvIND-1$PA-LPC
SKE (A) :=

∣∣∣Pr[ExprIND-1$PA-LPC
SKE (A) = 1]− 1

2

∣∣∣ ≤ ϵ.

ExprIND-1CPA-H
SKE (A):

1 b $←− {0, 1}
2 K $←− SKE.KGen()

3 (m⋆
0,m

⋆
1)

$←− A()
4 if |m⋆

0| ≠ |m⋆
1|

5 return 0

6 c⋆ $←− SKE.Enc(K,m⋆
b)

7 t⋆ ← H(K, c⋆)

8 b′ $←− A(c⋆, t⋆)
9 return Jb = b′K

ExprIND-1$PA-LPC
SKE (A):

1 b $←− {0, 1}
2 K $←− SKE.KGen()

3 (m⋆
0,m

⋆
1)

$←− A()
4 if |m⋆

0| ≠ |m⋆
1|

5 return 0

6 c⋆ $←− SKE.Enc(K,m⋆
b)

7 b′ $←− ARand,Lpc(c⋆)

8 return Jb = b′K

Rand(l):

9 m′
0

$←− {0, 1}l

10 m′
1

$←− {0, 1}l

11 c′ $←− SKE.Enc(K,m′
b)

12 return (m′
0,m

′
1, c

′)

Lpc(c):

13 if c = c⋆

14 return 0

15 return Jm⋆
0 = SKE.Dec(K, c)K

Figure 5.2: IND-1CPA-H and IND-1$PA-LPC experiments for a SKE = (SKE.KGen,SKE.Enc,
SKE.Dec) scheme.

5.3.2 CBC Mode and IND-1$PA-LPC Security

The Cipher Block Chaining (CBC) mode is a block cipher mode of operation invented by

Ehrsam et al. in 1976 [87]. The CBC can be divided into two categories: CBC0, whose

initial vector is a string of zero bits, and CBCR, whose initial vector is a random bit string.

We first recall CBC as an instance of symmetric key encryption. Let K := {0, 1}f1(λ),
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M := {0, 1}f2(λ), andO := {0, 1}f2(λ) respectively denote the symmetric key space, message

space, and output space of an invertible function F : K×M→ O, where f1 and f2 denote

arbitrary polynomial functions. Then, both CBC0 and CBCR are defined in Figure 5.3.

Here, we simply assume that the input message m of the encryption algorithm always

has the length of a multiple of f2(λ). It is straightforward that CBC0 is a deterministic

encryption scheme.

SKE.KGen(1λ):

1 K $←− K
2 return K

SKE.Enc(K,m):

1 x1 ∥ ... ∥ xn ← m s.t. |xi| = f2(λ) ∀i ∈ [n]

2 y0
$←− SetIV()

3 for i = 1, ..., n

4 yi ← F(K, yi−1 ⊕ xi)

5 y ← y0 ∥ · · · ∥ yn
6 return y

SKE.Dec(K, c):

1 y0 ∥ ... ∥ yn ← c s.t. |yi| = f2(λ) ∀i ∈ [n]

2 for i = 1, ..., n

3 xi ← yi−1 ⊕ F−1(K, yi)

4 m← x1 ∥ · · · ∥ xn

5 return m

Figure 5.3: CBC mode SKE = (SKE.KGen, SKE.Enc,SKE.Dec) with symmetric key space K :=
{0, 1}f1(λ) for arbitrary polynomial function f1. If SKE = CBC0, then SetIV() outputs a string of
zero bits of length f2(λ). If SKE = CBCR, then SetIV() outputs a random string of length f2(λ).

The IND-1$PA security of the deterministic CBC0 was proven by Barbosa et al. [20].

Moreover, the IND-CPA security of the randomized CBCR was proven by Bellare et al. [25].

Below, we prove the IND-1$PA-LPC security of both CBC0 and CBCR based on above two

security conclusions.

Theorem 19 (IND-CPA =⇒ IND-1$PA). Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec)

denote a symmetric encryption scheme. If SKE is ϵind-cpaSKE -IND-CPA secure, then SKE is

ϵind-1$paSKE -IND-1$PA secure such that ϵind-1$paSKE ≤ ϵind-cpaSKE .

Theorem 20 (IND-1$PA =⇒ IND-1$PA-LPC). Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec)

denote CBC0 or CBCR. If SKE is ϵind-1$paSKE -IND-1$PA secure and the underlying func-

tion F : {0, 1}f1(λ) × {0, 1}f2(λ) → {0, 1}f2(λ) is ϵprpF -prp secure, then SKE is ϵind-1$pa-lpcSKE -

IND-1$PA-LPC secure such that

ϵind-1$pa-lpcSKE ≤ 2ϵprpF + qLpc2
−f2(λ) + qRand⌈

lmax

f2(λ)
⌉2−f2(λ) + ϵind-1$paSKE

where qO denotes the maximal number of queries to O ∈ {Rand,Lpc} oracles and lmax

denotes the maximal input to the Rand oracle.
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5.4 WebAuthn 2 and Extended Passwordless Authen-

tication Protocols

For our analysis of WebAuthn 2 and its PQ instantiation, we follow the high-level approach

from [20, 21], which proposed the class of PlA protocols that generalizes WebAuthn 1,

and proposed a corresponding security notion. We provide a more fine-grained model of

WebAuthn 2, notably including the default mode None in which no attestation is performed,

as well as the user presence and user verification checks, and a stronger threat model. We

compare the details in our work and [20] in Section 5.7.2 These aspects and their security

cannot be captured in the PlA class without modification. In this section, we therefore

first extend [20]’s formalisation and propose the extended PlA (ePlA) protocol class, and

instantiate WebAuthn 2 as an ePlA protocol. We then introduce our new model to define

secure passwordless authentication (auth) for ePlA protocols and prove that WebAuthn 2

satisfies it. We then show how to instantiate PQ-WebAuthn 2. Our proof of auth implies

PQ security against a QPT attacker if the schemes used in a session are PQ secure. We

return to downgrade attacks in Section 5.4.6.

5.4.1 Extended Passwordless Authentication Protocols (ePlA)

Similar to the PlA model from [20], we define our extended passwordless authentication

protocol ePlA by two phases, Register and Authenticate:

Register: a two-pass challenge-response protocol run between a token T , a client C, and

a server S, which is run at most once per tuple (T, S) (i.e., not for additional clients).

At the end, both T and S hold registration contexts, which are relevant for subsequent

authentications. Register can be decomposed into the following algorithms:

rChall: inputs a server S, a token binding state tb, and a user verification condition UV ∈
{true, false}, and outputs a challenge message mrch, i.e., mrch

$←− rChall(S, tb,UV ).

rCom: inputs the intended server identity idS, a challenge message mrch, and a token

binding state tb, and outputs a client message mrcl and a command message mrcom,

i.e., (mrcom,mrcl)← rCom(idS,mrch, tb).

rRsp: inputs a token T and a command message mrcom and outputs a response mes-

sage mrrsp and an token-associated registration context rcT , i.e., (mrrsp, rcT )
$←−

rRsp(T,mrcom).

rVrfy: inputs a server S, a client message mrcl, and a response message mrrsp, and

outputs a server-associated registration context rcS and a decision bit d ∈ {0, 1} to
indicate whether the registration request was accepted (d = 1) or not (d = 0), i.e.,

(rcS, d)← rVrfy(S,mrcl,mrrsp).
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Authenticate: a two-pass challenge-response protocol run between a token T , a client C,

and a server S after a successful run of Register, in which both T and S generated their

registration contexts. At the end, S either accepts or rejects the authentication attempt.

Similarly to Register, Authenticate can be decomposed into four algorithms:

aChall: inputs a server S, a token binding state tb, and a user verification condition UV ∈
{true, false}, and outputs a challenge message mach, i.e., mach

$←− aChall(S, tb,UV ).

aCom: inputs the intended server identity idS, a challenge message mach, and a token

binding state tb, and outputs a client message macl and a command message macom,

i.e., (macl,macom)← aCom(idS,mach, tb).

aRsp: inputs a token T along with its associated registration context rcT , and a command

message macom, and outputs a response message marsp and the updated registration

context rcT , i.e., (marsp, rcT )
$←− aRsp(T, rcT ,macom).

aVrfy: inputs a server S along with its associated registration context rcS, a client

message macl, and a response message marsp, and outputs the updated registration

context rcS and a decision bit d ∈ {0, 1} indicating whether the authentication

request was accepted by the user (output 1) or not (output 0), i.e., (rcS, d) ←
aVrfy(S, rcS,macl,marsp).

To model concurrent or sequential sessions of a server S (associated with ID idS) and

sequential sessions of a token T , we use πi
S and πj

T to denote their i-th and j-th instances

respectively, i.e., S = {πi
S}i and T = {πj

T}j . Our new abstraction retains the black message

flow from Figure 5.1.

5.4.2 WebAuthn 2 is an ePlA Protocol

We use the following session variables for WebAuthn 2.

πi
S.ch : challenge nonce sampled in this session

πi
S.uid : user identifier sampled in this session

πi
S.tb : token binding state used in this session

πi
S.UV : user verification condition, indicating whether the user should be verified, e.g.,

via PIN or Biometrics

πi
S.UP : user presence condition, indicating whether the presence of the user is sufficient;

constant true value

πi
S.pkCP : list of digital signature schemes accepted by S

πj
T .suppUV : indicates whether T supports user verification

πi
S.stexe, π

j
T .stexe ∈ {⊥, running, accepted} : execution state of each session
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πi
S.agCon, π

j
T .agCon : the content that is expected to be agreed with other parties. These

variables are protocol-specific. In WebAuthn 2, both variables include the server identifier,

the hash of the client messages, the UP and UV conditions, and other session-specific

data.

πi
S.sid, π

j
T .sid : session identifiers. Two distinct sessions that have communicated with

each other are expected to own the identical session identifiers.

These variables are protocol-specific. In WebAuthn 2, both variables include the hash of

the server identifier and other session-specific data.

WebAuthn 2 Protocol Intuition. Intuitively, the registration phase starts with the

execution of rChall algorithm, where the server S samples random challenge nonce πi
S.ch

and user identifier πi
S.uid, initializes the user verification condition πi

S.UV , and outputs

the challenge message mrch, which includes the above data as well as the server domain idS

and accepted list πi
S.pkCP. Additionally, the server also stores the token binding states

πi
S.tb, which is shared with a client. Receiving mrch, the client is supposed to verify the

server domain followed by computing the hash value h of the client message mrcl := (ch, tb).

Compared with mrch, the output command message mrcom replaces ch with h and add

a constant user presence condition UP := true. Receiving mrcom, the token T picks a

suitable signature scheme DS in the list pkCP (if available) and checks whether the user

verification mechanism is supported (if required). After that, T samples a public-private

key pair (vk , sk) of DS and a credential identifier cid, followed by initializing the associated

registration context rcT [idS] and the agreed content πj
T .agCon. The session identifier πj

T .sid

is set to the hash of the server domain, the credential identifier, and the initial counter

n := 0. The output response message mrrsp includes the session identifier πj
T .sid as well

as vk ,DS,UP and UV . The server S finally inputs both mrcl and mrrsp and executes a

number of checks. If all checks pass, S also initializes its associated registration context

rcS[cid] and the agreed content πi
S.agCon. The session identifier πi

S.sid is identical to πj
T .sid.

The authentication phase is very similar. The crucial difference is that the token

outputs a signature, which signs the πi
S.agCon-relevant data using the private key sk of

DS. Moreover, the session identifiers of token and servers additionally include the hash of

the client message macl.

We give the concrete definition of algorithms of WebAuthn 2 with the default attestation

type None in Section 5.4.3.

5.4.3 Detailed Description of WebAuthn 2

In Figure 5.4, the security parameter λ = 128. For each server S, the associated identifier

idS is its effective domain. The official supported signature algorithms are RSASSA–

PKCS1–v1 5 and RSASSA–PSS. Later in Section 5.4.5, we will show that the list of
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Register

rChall(πi
S , tb, UV ): // 1. Server

1 πi
S .ch

$←− {0, 1}≥λ, πi
S .tb← tb, πi

S .UV ← UV

2 πi
S .uid

$←− {0, 1}≤4λ

3 mrch ← (idS , π
i
S .ch, π

i
S .uid, π

i
S .pkCP, π

i
S .UV )

4 πi
S .stexe ← running

5 return mrch

rCom(idS ,mrch, tb): // 2. Client

6 (id, ch, uid, pkCP,UV )← mrch

7 if id ̸= idS : return ⊥
8 mrcl ← (ch, tb)

9 UP ← true, h← H(mrcl)

10 mrcom ← (id, uid, h, pkCP,UP ,UV )

11 return (mrcom,mrcl)

rRsp(πj
T ,mrcom): // 3. Token

12 (id, uid, h, pkCP,UP ,UV )← mrcom

13 if at least one algorithm in pkCP is supported

14 DS← pkCP[i] with smallest i possible

15 else return (⊥,⊥)
16 if πj

T .suppUV = false and UV = true

17 return (⊥,⊥)
18 (vk , sk) $←− DS.KGen(), cid $←− {0, 1}≥λ, n← 0

19 mrrsp ← (H(id), n, cid, vk ,DS,UP ,UV )

20 hCP ← H(pkCP)

21 rcT [id]← (uid, cid, sk , n,DS, hCP )

22 πj
T .agCon← (id, h, cid, n, pkCP, vk ,DS,UV ,UP)

23 πj
T .sid← (H(id), cid, n)

24 πj
T .stexe ← accepted

25 return (mrrsp, rcT )

rVrfy(πi
S ,mrcl,mrrsp): // 4. Server

26 (ch, tb)← mrcl, (h, n, cid, vk ,DS,UP ,UV )← mrrsp

27 if h ̸= H(idS) or n ≠ 0 or ch ̸= πi
S .ch or tb ̸= πi

S .tb or
DS ̸∈ πi

S .pkCP or UP ̸= true or UV ̸= πi
S .UV

28 return (⊥, 0)

29 hCP ← H(πi
S .pkCP)

30 rcS [cid]← (πi
S .uid, vk , n,DS, hCP )

31 πi
S .agCon← (idS ,H(mrcl), cid, n, π

i
S .pkCP, vk ,DS,UV ,UP)

32 πi
S .sid← (H(id), cid, n)

33 πi
S .stexe ← accepted

34 return (rcS , 1)

Authenticate

aChall(πi
S , tb, UV ): // 1. Server

35 πi
S .ch

$←− {0, 1}≥λ, πi
S .tb← tb, πi

S .UV ← UV

36 mach ← (idS , π
i
S .ch, π

i
S .UP , πi

S .UV )

37 πi
S .stexe ← running

38 return mach

aCom(idS ,mach, tb): // 2. Client

39 (id, ch,UV )← mach

40 if id ̸= idS : return ⊥
41 macl ← (ch, tb)

42 UP ← true, h← H(macl)

43 macom ← (id, h,UP ,UV )

44 return (macom,macl)

aRsp(πj
T , rcT ,macom): // 3. Token

45 (id, h,UP ,UV )← macom

46 if rcT [id] = ⊥: return (⊥, rcT )
47 if πj

T .suppUV = false and UV = true

48 return (⊥, rcT )
49 rcT [id].n← rcT [id].n+ 1

50 ad← (H(id), rcT [id].n,UP ,UV )

51 σ $←− rcT [id].DS.Sign(rcT [id].sk , (ad, h))

52 marsp ← (rcT [id].cid, ad, rcT [id].hCP, σ, rcT [id].uid)

53 πj
T .agCon← (id, h, rcT [id].n, rcT [id].hCP, UV ,UP)

54 πj
T .sid← (H(id), rcT [id].cid, h, n)

55 πj
T .stexe ← accepted

56 return (marsp, rcT )

aVrfy(πi
S , rcS ,macl,marsp): // 4. Server

57 (ch, tb)← macl, (cid, ad, hCP, σ, uid)← marsp

58 (h, n,UP ,UV )← ad

59 if rcS [cid] = ⊥: return (rcS , 0)

60 if hCP ̸= rcS [cid].hCP: rcS [cid]← ⊥ and return (rcS , 0)

61 if πi
S .ch ̸= ch or πi

S .tb ̸= tb or h ̸= H(idS)
or UP ̸= true or UV ̸= πi

S .UV or
rcS [cid].DS.Vfy(rcS [cid].vk , (ad,H(macl)), σ) = 0 or
n ≤ rcS [cid].n: return (rcS , 0)

62 rcS [cid].n← n

63 πi
S .agCon← (idS ,H(macl), n, hCP, UV ,UP)

64 πi
S .sid← (h, cid,H(macl), n)

65 πi
S .stexe ← accepted

66 return (rcS , 1)

Figure 5.4: Instantiation of ePlA = (Register,Authenticate) with WebAuthn 2 (and WebAuthn 2+

that includes boxed operations) with attestation type None, where Register = (rChall, rCom,
rRsp, rVrfy) and Authenticate = (aChall, aCom, aRsp, aVrfy). Recall that λ is the implicit security
parameter.

signature schemes can be extended by PQ compatible hybrid signature scheme. The

underlying hash function H is SHA-256. We assume that each token has a unique user

and can be registered at most once per server. The Register = (rChall, rCom, rRsp, rVrfy)

sub-protocol is executed as follows.

• rChall(πi
S, tb,UV ): The server S samples a random challenge nonce πi

S.ch and a user

identifier πi
S.uid and initializes the token biding state πi

S.tb and user verification condition

πi
S.UV . Finally, S sets πi

S.stexe to running and outputs a challenge message, see Line 3.
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• rCom(idS,mrch, tb): The client parses mrch into a server identifier id, a challenge nonce

ch, a user identifier uid, a supported signature list pkCP and a user verification condition

UV . Next, the client aborts if id ̸= idS. Otherwise, the client sets the user presence

condition UP to true and computes the hash h of client message mrcl, which is defined

in Line 8. Finally, the client outputs the client and command messages mrcl and mrcom,

respectively, see Line 10.

• rRsp(πj
T ,mrcom): The token T first parses mrcom into a server identifier id, a user identifier

uid, a hash value h, a signature list pkCP, and the user presence and user verification

conditions UP and UV , respectively. Next, T picks one supported signature scheme DS

in pkCP with the highest preference, i.e., with the smallest index possible. Afterwards, T

checks whether it can support the required user verification condition UV . If either step

fails, the token aborts. Otherwise, T generates a public-private key pair using the key

generation algorithm of DS, initializes the counter n to 0, samples a random credential

identifier cid, and sets its execution state to accepted. Finally, T extends the registration

context as in Line 21, and outputs it together with a response message mrrsp, as defined

in Line 19. The agreed content includes the server identifier id, the hash value h, the

credential identifier cid, the counter n, the list pkCP, the public key vk , the signature

scheme DS, and the user presence UP and verification UV conditions. The session

identifier is the tuple of the hash of server identifier id, the credential identifier cid, and

the counter n.

• rVrfy(πi
S,mrcl,mrrsp): The server S parses the client messagemrcl and the response message

mrrsp and executes a few checks as in Line 27. It outputs abort and decision d = 0 if

any check fails. Otherwise, S sets the execution state to accepted. Finally, S extends

the registration context as in Line 30 and outputs it together with decision d = 1. The

agreed content and the session identifier are defined as the ones in the rRsp algorithm.

Authenticate = (aChall, aCom, aRsp, aVrfy) is defined next.

• aChall(πi
S, tb,UV ): The server S samples a random challenge nonce πi

S.ch and initializes

its token binding state πi
S.tb and user condition πi

S.UV . Finally, S sets πi
S to running

and outputs a challenge message, see Line 36.

• aCom(idS,mach, tb): The client parses mach into an identifier id, a challenge nonce ch,

and user verification condition UV . Next, the client aborts if id ̸= idS. Otherwise, the

client sets the user presence condition UP to true and compute the hash h of the client

message macl, which is defined in Line 41. Finally, the client outputs the client message

macl and command message macom, see Line 43.

• aRsp(πj
T , rcT ,macom): The token T first parses the command message macom into a server

identifier id, a hash value h, and user presence and user verification conditions UP and

UV . Next, T checks whether the corresponding registration context exists and whether
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it can satisfy the user verification requirement. T aborts if either of the above steps fails.

Then, T increments the counter rcT [id].n by 1 and defines the associated data ad that

includes the hash of id, the counter rcT [id].n, and the conditions UP and UV , followed

by computing a signature σ on ad and h using the signing key rcT [id].sk . Finally, T sets

its execution state to accepted and outputs the response message marsp defined in Line 52

along with rcT . The agreed context is defined as the tuple of the server identifier id, the

value h, the counter rcT [id].n, and the user conditions UV and UP . The session identifier

is defined as the tuple of the hash of the server identifier id, the credential identifier

rcT [id].cid, the hash value h, and the counter n.

• aVrfy(πi
S, rcS,macl,marsp): The server S parses the client message macl and the response

message marsp and executes checks as in Line 61 if the corresponding registration context

exists. It aborts and produces decision d = 0 if any check fails. Otherwise, S updates the

counter in the registration context and sets the execution state to accepted and outputs

rcS together with decision d = 1. The agreed context and the session identifier are the

same as in aRsp.

5.4.4 Security Experiment for ePlA

The desired security property is that a server accepts an authentication response if and

only if it was generated by a unique honest partnered token session. We capture it by our

auth security experiment in Figure 5.5.

Threat Model To closely capture the official security statement4, we assume that all

communication channels in the registration phase are authenticated. In contrast, there are

no security assumptions on the communication channels between token, client, and server

in the authentication phase. We assume that the users always provide the user presence

or user verification confirmation when it is required and leave the users implicit in the

security model. We assume the identifier idS of each server S is unique. Unlike [20], we do

not assume tokens to be “tamper-proof”, i.e., the attacker is allowed to corrupt locally

stored registration contexts.

Oracles During the game execution the attacker A can create new servers and tokens

through the oracles NewS and NewTPlA. In particular, the attacker can customize the

concrete setting of the created parties, i.e., the supported signature list of the server and

whether the token supports user verification. By invoking the Register oracle, A is able

to eavesdrop on honest registrations between servers and tokens of its choice. Moreover,

via the oracles Challenge, Response and Complete, A can actively interfere during

authentication. Note that sessions which have accepted or rejected can no longer be

4“Under the assumption that a registration ceremony is completed securely, and that the authenticator
maintains confidentiality of the credential private key, subsequent authentication ceremonies using that
public key credential are resistant to man-in-the-middle attacks” [107, Section 13.4.4]
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queried. Furthermore, the attacker A can also query the Corrupt oracle to reveal a

token’s registration context related to a server.

Session Partnering Partnering identifies token and server sessions that are successfully

communicating with each other as expected, and is encoded through matching session

identifiers. More precisely, we say a server session πi
S partners with a token session πj

T if

and only if πi
S.sid = πj

T .sid ̸= ⊥. We say a server session πi
S partners with a token T if it

partners with one of T ’s sessions. We say a token T is the registration partner of a server

S, if the registration context of T at S has been set, i.e., rcT [idS] ̸= ⊥.

Winning Conditions We call a server session a test session if it accepts a response

message. We say that the secure passwordless authentication for an ePlA holds if for all

test sessions πi
S none of the following winning conditions holds:

1. the non-⊥ session identifiers of two token sessions collide.

2. the non-⊥ session identifiers of two server sessions collide.

3. πi
S does not partner with T and Corrupt(S, T ) was not queried (i.e., the registration

context of T at S has not been revealed), where T is any registration partner of S.

4. the agreed contents of a pair of partnered server session πi′

S′ and token sessions πj′

T ′ are

distinct and Corrupt(S ′, T ′) has not been queried.

Definition 48 (Secure passwordless authentication (auth) for ePlA). Let Compl ∈ {PPT,
QPT}. Let ePlA = (Register,Authenticate) be an extended passwordless authentication

protocol. We say that ePlA provides secure passwordless authentication, or auth for short,

if for all Compl attackers A the advantage

AdvauthePlA(A) := Pr
[
ExprauthePlA(A) = 1

]
in winning the game ExprauthePlA defined in Figure 5.5 is negligible in the implicit security

parameter λ.

Conversely, we say a Compl attacker A breaks the secure passwordless authentication

of ePlA for some test session π, if A wins ExprauthePlA game via π.

In the following theorem, we show that WebAuthn 2 satisfies the defined security

property auth. We sketch the proof here and give the full proof in Section 5.9.3.

Theorem 21 (PPT/QPT security of WebAuthn 2). Let Compl ∈ {PPT,QPT}. Let

ePlA = (Register,Authenticate) denote the WebAuthn 2 protocol depicted in Figure 5.4.

Assume that the underlying function H is ϵcoll-resH -collision resistant. If there exists a Compl

attacker A that breaks the secure passwordless authentication of ePlA for a test session
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ExprauthePlA(A):
1 Lfrsh ← ∅
2 win-auth← 0

3 () $←− AO()
4 return win-auth

regPartner(S):

5 if ∃T such that rcT [idS ] ̸= ⊥
6 return T

7 return ⊥

Win-auth(S, i):

8 if ∃(T1, j1), (T2, j2) such that (T1, j1) ̸= (T2, j2) and πj1
T1
.sid = πj2

T2
.sid ̸= ⊥ : return 1

9 if ∃(S1, i1), (S2, i2) such that (S1, i1) ̸= (S2, i2) and πi1
S1
.sid = πi2

S2
.sid ̸= ⊥ : return 1

10 T ← regPartner(S)

11 if (S, T ) ∈ Lfrsh and ¬∃j such that πi
S .sid = πj

T .sid: return 1

12 if ∃(S′, i′), (T ′, j′) such that πi′

S′ .sid = πj′

T ′ .sid ̸= ⊥ and (S′, T ′) ∈ Lfrsh and πi′

S′ .agCon ≠

πj′

T ′ .agCon: return 1

13 return 0

Register((S, i), (T, j), tb, UV ):

14 if pkCPS = ⊥ or suppUVT = ⊥ or πi
S ̸= ⊥ or πj

T ̸= ⊥ or rcT [S] ̸= ⊥
15 return ⊥
16 πi

S .pkCP← pkCPS

17 πj
T .suppUV← suppUVT

18 mrch
$←− rChall(πi

S , tb, UV )

19 (mrcom,mrcl)← rCom(idS ,mrch, tb)

20 (mrrsp, rcT )
$←− rRsp(πj

T ,mrcom)

21 (rcS , d)
$←− rVrfy(πi

S ,mrcl,mrrsp)

22 Lfrsh ← Lfrsh ∪ {(S, T )}
23 return (mrch,mrcl,mrcom,mrrsp, d)

NewS(S, pkCP):

24 if pkCPS ̸= ⊥
25 return

26 pkCPS ← pkCP

27 return

NewTPlA(T, suppUV):

28 if suppUVT ̸= ⊥
29 return

30 suppUVT ← suppUV

31 return

Challenge((S, i), tb, UV ):

32 if pkCPS = ⊥ or πi
S ̸= ⊥

33 return ⊥
34 πi

S .pkCP← pkCPS

35 mach ← aChall(πi
S , tb, UV )

36 return mach

Response((T, j),macom):

37 if suppUVT = ⊥ or πj
T ̸= ⊥

38 return ⊥
39 πj

T .suppUV← suppUVT

40 (marsp, rcT )
$←− aRsp(πj

T , rcT ,macom)

41 return marsp

Complete((S, i),macl,marsp):

42 if πi
S = ⊥ or πi

S .stexe ̸= running

43 return ⊥
44 (rcS , d)

$←− aVrfy(πi
S , rcS ,macl,marsp)

45 if d = 1

46 win-auth←Win-auth(S, i)

47 return d

Corrupt(S, T ):

48 if rcT [S] = ⊥
49 return ⊥
50 Lfrsh ← Lfrsh \ {(S, T )}
51 return rcT [S]

Figure 5.5: auth security experiment for extended Passwordless Authentication Protocols ePlA =
(Register,Authenticate), where O = {NewS,NewTPlA,Corrupt,Register,Challenge,
Response,Complete} and Compl ∈ {PPT,QPT}. We highlight the difference to PlA from [20]
in blue. The variables agCon and sid are instance-specific, see Section 5.4.2.
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π and the digital signature scheme DS used in π is ϵeuf-cma
DS -euf-cma secure against Compl

attackers, then it holds that

AdvauthePlA(A) ≤
(
qRegister

2

)
2−λ +

(
qChallenge

2

)
2−λ + ϵcoll-resH + 2qRegisterϵ

euf-cma
DS

where qO denotes the number of A’s queries to O ∈ {Register,Challenge}.

Proof Sketch. Notice that the token session identifiers include credential identifiers, which

are sampled of length ≥ λ for different tokens only in the Register queries, and a counter

n, which is incremented in each sessions of the same token. The attacker A cannot win via

winning condition in Line 8 except probability
(
qRegister

2

)
2−λ. Note that the server session

identifiers include the hash of server id, which is assumed to be unique for each server. Note

also that the server session identifiers in the authentication phases additionally includes

the hash of the token binding state tb and challenge nonces ch, which are of length ≥ λ

and sampled only in the Challenge queries. The attacker A cannot win via winning

condition in Line 9 except with probability
(
qChallenge

2

)
2−λ + ϵcoll-resH . Finally, observe that

the registration phases are authenticated and that the identifier of each server session

in the authentication phases is set only when the corresponding server session accepts a

signature, which signs the hash of the unique server id, the counter n, the hash of the

client message macl, UP , and UV . Moreover, there are at most qRegister private signing

keys in the experiment. The winning conditions in Line 11 and Line 12 indicate that the

attacker A can forge any signature of DS without corrupting the private signing key of

any token, which happens with probability at most 2ϵeuf-cma
DS for each token and thus in

total 2qRegisterϵ
euf-cma
DS .

Theorem 21 shows that no polynomial-time attackers against WebAuthn 2 in the auth

experiment can trigger any winning condition, through which the following aspects are

captured. Conditions 1 and 2 capture the uniqueness of each session identifiers. i.e., if two

sessions are partnered with each other, they are each other’s unique partners. Condition 3

encodes the official security statement (see footnote 4). Condition 4 ensures that under

the same assumption, the token and server sessions in the subsequent authentication

ceremonies using that public key credential must agree on the server identifier idS, the

hash value H(ch, tb), the local counter n, and the user presence UP and verification UV

conditions. As a corollary, if the underlying hash function H is collision resistant, then the

token and server sessions also implicitly agree on the token binding state tb.

5.4.5 Post-Quantum Instantiation of WebAuthn 2

To add the ability to authenticate using PQ or hybrid signature schemes with minimal

changes to the WebAuthn 2 protocol, we propose to only extend the supported digital
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signature list pkCP (encoding an “or” choice) and explicitly allowing hybrid schemes (to

encode “and”, e.g., for classical and PQ schemes).

Following the WebAuthn 2 specification, the server has the option to include RSASSA–

PKCS1–v1 5, RSASSA–PSS [123], or/and ECDSA–P256 [165] in pkCP, see Section 5.2 for

an explanation of pkCP. Recall that the auth security of the WebAuthn 2 is proven in the

standard model in Theorem 21. Therefore, the auth security for WebAuthn 2 also holds

against quantum attackers, assuming that ϵcoll-resH and ϵeuf-cma
DS are sufficiently small against

quantum attackers, i.e., are instantiated with PQ secure algorithms. Instead of accepting

only plain PQ signatures schemes, the server could also select hybrid signature schemes

for pkCP as below.

Let DS1 and DS2 be signature schemes. We write C[DS1,DS2] = (DSC.KGen,DSC.Sign,

DSC.Vrfy) for the hybrid signature schemes constructed from DS1 and DS2
5. DSC.KGen

simply returns the concatenation of the two ingredient public and secret keys. Similarly,

the signature returned by DSC.Sign is the concatenation of the ingredient signatures over

the same message. DSC.Vrfy returns 1 if and only if both ingredient signatures are valid.

Otherwise it returns 0. The ingredient schemes could either be instantiated with different

PQ (PQ-PQ hybrid), or with one classical and one PQ signature scheme (classical-PQ

hybrid). Note that many other combiners exists, such as nested approaches that have been

formalized in [51], which are particularly well suited to achieve backwards compatibility

in, e.g., X.509 certificates.

In case of WebAuthn 2, backwards compatibility is important as not all authen-

ticators, e.g., USB tokens, can be updated to support new algorithms via software

updates. To offer backwards compatibility, the server includes classical algorithms in

pkCP as less preferred algorithms and PQ/hybrid schemes with higher preference, e.g.,

pkCP = {DS1 = C[DS2,DS3],DS2,DS3} with DS3 ∈ {RSASSA–PKCS1–v1 5, RSASSA–

PSS, ECDSA–P256}. Then, the (honest) token would always choose the more preferred

hybrid or PQ algorithms for the PQ security, unless they are not supported.

5.4.6 Stronger Downgrade Protection

Our WebAuthn 2 results in the previous sections assume that the registration phase is

authenticated (as in the standard), which means that the supported schemes list cannot

be modified, and thus basic scheme downgrade attacks are impossible. On the other end

of the spectrum, if an active attacker interferes continuously with all phases, we cannot

detect or prevent downgrades.

However, there is an intermediate threat model, for which WebAuthn 2 could, but

does not, provide downgrade protection. Note that the (ordered) list of the relying party’s

accepted signature algorithms πi
S.pkCP is sent in plain from the relying party to the

5This description can easily be extended to more than two ingredient schemes.
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authenticator via the client (see Figure 5.4). The credential keys are then generated using

the first algorithm in the received pkCP that is supported by the authenticator, see [107,

Section 6.3.2.7.1]. During rVrfy, the relying party checks that the used signature scheme DS

is in πi
S.pkCP. Hence, if the communication in the registration phase is not authenticated,

an attacker can easily change the list pkCP during transmission to the authenticator. For

example, during the PQ transition, ideally security is based on classical and PQ algorithms

in a backwards compatible way. While we explain how to achieve backwards compatibility

with authenticators that only support classical algorithms in Section 5.4.5, a quantum

attacker is able to break RSA or ECDSA might change pkCP such that the authenticator

only has the choice between classical algorithms.

Consider an attacker that can forge signatures of one of the accepted and supported

algorithms. Moreover, assume this attacker is able to compromise the browser or control the

network used during registration but not the ones used for authentication, e.g., in an internet

cafe a compromised machine is used for registration but others for authentication. Then

tricking the authenticator to choose the vulnerable algorithm (and create a corresponding

credential key pair) is beneficial because it allows the attacker to forge authentications

later on even if they do not control the network anymore.

If the attacker has permanent control of the machine used for registration and au-

thentication, and can forge signatures of an algorithm that is accepted and supported

by the relying party and the authenticator, respectively, this attack cannot be prevented.

Moreover, it is impossible to prevent the authenticator being tricked into using a less

preferred algorithm without substantial changes to the WebAuthn 2 protocol and the

public-key infrastructure within. However, we suggest changes that enable detecting such

an event with high probability, calling the resulting protocol WebAuthn 2+, if at least

one message without interference of the attacker is sent. We depict the changes as boxed

operations in Figure 5.4. Essentially, the idea is to include the hash hCP of the received

list of accepted algorithms pkCP′ during registration, in the authentication response. The

relying party compares H(pkCP) with hCP to detect whether authenticator and relying

party agree on the list of algorithms. To enable the above changes, both the relying

party and the authenticator must store respective lists; we suggest to include them in the

registration context.

If an attacker changed the list pkCP during registration in WebAuthn 2+, the attacker

would need to change the value hCP during every authentication response to avoid detection

of the attack. We stress that it would not be sufficient to only reject authentications

when such an attack is detected, since the honest authenticator would then be unable

to communicate with the relying party due to the disagreement on the list pkCP. Even

worse, only those authentication responses in which the attacker successfully switched

the value hCP would be accepted. Thus, the detection of this downgrade attack should
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ExprAlgAgree
WebAuthn 2+

(A):
1 (S, i, T, j, tb,UV ) $←− AO()

2 m⋆
ach

$←− Challenge((S, i), tb,UV )

3 (m⋆
acom,m

⋆
acl)← aCom(idS ,m

⋆
ach, tb)

4 m⋆
arsp

$←− Response((T, j),m⋆
acom)

5 d⋆a
$←− Complete((S, i),m⋆

acl,m
⋆
arsp)

6 Supp← list of supported algorithms by T

7 d⋆T,S ← J(pkCPS ∩ Supp)[1] ̸= rcT [S].DSK
8 return [d⋆(T,S) = 1 ∧ d⋆a = 1]

rChallenge((S, i), tb, UV ):

9 if pkCPS = ⊥ or πi
S ̸= ⊥

10 return ⊥
11 πi

S .pkCP← pkCPS //ordered list of accepted algorithms

12 mrrsp ← rChall(πi
S , tb, UV )

13 return mrrsp

rResponse((T, j),mrcom):

14 if suppUVT = ⊥ or πj
T ̸= ⊥

15 return ⊥
16 πj

T .suppUV← suppUVT

17 (mrrsp, rcT )
$←− rRsp(πj

T ,mrcom)

18 return mrrsp

rComplete((S, i),mrcl,mrrsp):

19 if pkCPS = ⊥ or πi
S = ⊥

or πi
S .stexe ̸= running : return ⊥

20 (rcS , d)
$←− rVrfy(πi

S ,mrcl,mrrsp)

21 return d

Figure 5.6: Game ExprAlgAgree
WebAuthn 2+

and oracles rChallenge, rResponse, rComplete; note
that NewS, NewTPlA, Challenge, Response, and Complete are given in Figure 5.5.

trigger deregistering the authenticator by the relying party and notifying the user (ideally

out-of-band).

More formally, we say that WebAuthn 2+ satisfies our property Algorithm Agreement

(AlgAgree) against Compl ∈ {PPT,QPT} attackers A if the advantage

AdvAlgAgree
WebAuthn 2+

(A) := Pr
[
ExprAlgAgree

WebAuthn 2+
(A) = 1

]
in winning the game ExprAlgAgree

WebAuthn 2+
(defined in Figure 5.6) is negligible in the implicit

security parameter λ. We view WebAuthn 2+ as an instantiation of an ePlA and give the

attacker access to the following oracles: rChallenge, rResponse, and rComplete

given in Figure 5.6, and NewS, NewTPlA, Challenge, Response, and Complete

given in Figure 5.5.

The attacker wins the game ExprAlgAgree
WebAuthn 2+

if the generated key pair is not of the

most preferred server’s algorithm that is supported by the token (i.e., it is not the first

element in the intersection of the supported and the preferred algorithms, see line 7 in

Figure 5.6), and honestly generated authentications are always accepted by the server (see

line 5 in Figure 5.6). It is important to emphasize that our threat model here is different

than the one for Section 5.4.4. Namely, we assume that the communication channels in

the registration and authentication phase are unauthenticated with one exception. We

assume that there is at least one honest authentication, i.e., during this one authentication

the attacker does not actively interfere with the communication between the three parties.

We can show that WebAuthn 2+ satisfies the above property if H is a collision resistant

hash function. The proof sketch is as follows. Assume the attacker A wins ExprAlgAgree
WebAuthn 2+
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(i.e., d⋆(T,S) = 1 and d⋆a = 1). This implies that the attacker is able to successfully register

the token T at server S such that the chosen signature algorithm is supported by the

token, accepted by the server, and not the most preferred algorithm in the intersection

of supported and accepted algorithms. Furthermore, it means that line 60 in Figure 5.4

holds, i.e., that the hash value hCP over the received list pkCP′ (computed and sent by the

token) is the same as the hash value rcS[cid].hCP over the original pkCP. This contradicts

the collision-resistance of H, as pkCP ̸= pkCP′.

5.5 CTAP 2.1 and Extended Pin-based Access Con-

trol for Authenticator Protocols

In this section, we first define the extended PIN-based Access Control for Authenticators

(ePACA) protocol following [20] and describe CTAP 2.1 as an ePACA instance. Next,

we present a variant of the strong unforgeability with trust-binding (SUF-t′) experiment.

Finally, we extend CTAP 2.1 for PQ compatibility and formally prove the SUF-t′ security

of the extension.

5.5.1 Extended Pin-based Access Control for Authenticator Pro-
tocols

An extended PIN-based Access Control for Authenticators protocol ePACA = (Reboot,

Setup,Bind,Auth,Validate) is an interactive protocol between a client C, an authenticator

token T , and a user U , specified by the following algorithms:

Reboot(T ): runs at each power-up of the token T and initializes the inherent state with a

mandatory user interaction. This algorithm is expected to be invoked to power up T

and initialize the local state before the execution of any other algorithms on T .

Setup(T,C, U): inputs a token T , a client C, and a user U and outputs the transcript trans.

During this interactive sub-protocol, U securely transfers the PIN to T via C. Note that

this algorithm is invoked on each token T at most once. We write trans $←− Setup(T,C, U).

Bind(T,C, U): During this interactive sub-protocol, the client C is bound to the token

T under the confirmation of the user U . This sub-protocol is further divided into two

algorithms:

Bind-C(C,U,m): inputs a client C, a user U , and an incoming message m and outputs an

outgoing message m′. During this algorithm, C processes m under the confirmation

from U . We write m′ $←− Bind-C(C,U,m).

Bind-T(T,m): inputs a token T and an incoming message m, and outputs an outgoing

message m′. We write m′ $←− Bind-T(T,m).
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Auth(C,M): inputs a client C and a command M , and outputs both the command M

and its authorization tag t. We write (M, t) $←− Auth(C,M).

Validate(T,M, t, d): inputs a token T , a command M , an authorization tag t, and a user

decision d ∈ {accepted, rejected}, and outputs status ∈ {accepted, rejected} indicating
whether the authorization can be verified or not. We write status $←− Validate(T,M, t, d).

5.5.2 CTAP 2.1 is an ePACA protocol

CTAP 2.1 [59] is a substantial change from CTAP 2.0 [60] in terms of generalization

and modularity. More concretely, CTAP 2.1 makes use of a generic stateful so-called

Pin/Uv Auth Protocol puvProtocol = (initialize, regenerate, resetpuvToken, getPublicKey,

encapsulate, decapsulate, encrypt, decrypt, authenticate, verify), which can be instantiated

using puvProtocol1 and puvProtocol2 from the standard that we depict in Section 5.5.4.

Additionally, we here propose a third instantiation puvProtocol3 that allows for PQ security

in Section 5.5.5. Each puvProtocol has its internal state including a public-private key

pair (pk , sk) and a string pt .

Similar to the treatment in Section 5.4, we use πi
T and πj

C to denote token T ’s i-th and

client C’s j-th instance respectively. In addition, each T has a token-associated state stT

that is shared by all of T ’s instances. Namely, we have T = {stT} ∪ {πi
T}i and C = {πj

C}j .
We use pinU to denote U ’s unique PIN. In addition, we define the following variables for

tokens T or clients C:

stT .version ∈ {2.0, 2.1}: denotes the CTAP version.

stT .puvProtocol: denotes a stateful Pin/Uv Auth Protocol.

stT .puvProtocolList: denotes the list of Pin/Uv Auth Protocol instantiations that T sup-

ports.

stT .pinHash ∈ {0, 1}⋆ ∪ {⊥}: denotes the hash of a user PIN. This variable is expected to

be set during Setup.

stT .pinRetries ∈ {0, ..., pinRetriesMax}: denotes the number of remaining tries for clients

to deliver a pinHash, where pinRetriesMax denotes the maximal number of tries.

stT .m ∈ {0, ..., 3}: denotes the remaining consecutive tries for clients to deliver pinHash.

πi
T .stexe, π

j
C .stexe ∈ {waiting, bindStart, bindDone,⊥}: denotes the execution state of a to-

ken/client session.

πi
T .bs, π

j
C .bs ∈ {0, 1}⋆ ∪ {⊥}: denotes the binding state. This variable is expected to be

set during Bind.

πi
T .sid, π

j
C .sid ∈ {0, 1}⋆ ∪ {⊥}: denotes the session identifiers; defined as the full transcript

of the Bind execution.
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Figure 5.7: CTAP 2.1 is an ePACA = (Reboot,Setup,Bind,Auth,Validate) protocol. All algorithms
are formally defined in Section 5.5.3.

πj
C .selectedpuvProtocol: denotes the puvProtocol instantiation chosen by the client.

πj
C .k ∈ {0, 1}⋆ ∪ {⊥}: denotes the shared key with a token.

CTAP2.1 Protocol Intuition. Next, we formalize CTAP 2.1 as an ePACA protocol.

Overall CTAP 2.1 includes 12 algorithms6. We depict the communication flow of CTAP 2.1

in Figure 5.7. Intuitively, the Reboot algorithm initializes the underlying puvProtocols and

resets the remaining consecutive tries stT .m to 3.

In the Setup interaction, the token T first outputs its information info, which in-

cludes the supported list stT .puvProtocolList. Next, the client selects and initializes one

6Similar to the treatment in [20], we omit the algorithms for PIN reset and leave it for future work.
The suffix -T and -C in the names of algorithms indicates the algorithm executor to be either a token or a
client. The suffix -start and -end indicates that this algorithm is the first or the final step in an interactive
execution.
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πj
C .selectedpuvProtocol from the received list followed by sending its choice back to T .

Then, the token T returns the public key pk of the chosen stT .puvProtocol. Afterwards,

the client runs the encapsulation of its πj
C .selectedpuvProtocol upon pk for a key πj

C .k ,

which is then used to encrypt and authenticate the PIN pinU collected from user U , and

forwards all derived ciphertexts and tags to T . The token T finally decapsulates the key,

followed by verifying the ciphertext, and recovers pinU . The local stT .pinHash stores the

hash of pinU and the remaining retries stT .pinRetries is set to pinRetriesMax.

The Bind interaction is identical to Setup until the client derives the key πj
C .k . Then, the

client uses πj
C .k to encrypt the hash of the user pin pinU and sends the ciphertext to T . If

stT .pinRetries does not reach 0, the token decapsulates the key and recovers a pinHash. If the

pinHash does not match the hash of the local stT .pinHash, the underlying stT .puvProtocol

re-generates the public key pk . If the remaining consecutive retries meanwhile arrive at 0,

the token is forced to reboot. If the pinHash matches the hash of the local stT .pinHash, the

remaining retries stT .m and stT .pinRetries are reset to their maximal values. The pts of all

underlying stT .puvProtocol are re-sampled. The token finally sets the binding state πi
T .bs

to the pt of the current stT .puvProtocol, which is then encrypted using the decapsulated

key. The client eventually recovers the pt and sets it to πj
C .bs.

After the negotiation for the binding states, the client can invoke Auth algorithm to

authorize command M using its binding state πi
T .bs. Similarly, the token can invoke the

Validate algorithm to verify the authorized command using πj
C .bs.

Below, we give the detailed description of the 12 algorithms in the following Section 5.5.3

and the official instantiations of Pin/Uv Auth Protocol in Section 5.5.4.

5.5.3 Description of CTAP 2.1 Algorithms

authPowerUp-T : inputs a token state stT and resets each underlying Pin/Uv Auth Protocol

puvProtocol. The counter m for the consecutive tries for binding phase is set to its

maximum of 3.

getInfo-T : inputs a token session πi
T and outputs its version and the list of the supported

Pin/Uv Auth Protocol. We write info← getInfo-T (πi
T ).

obtainSharedSecret-C-start: inputs a client session πj
C and token information info =

(version, puvProtocolList) and aborts if version = 2.0. Otherwise, the client session πj
C

selects a Pin/Uv Auth Protocol puvProtocol from the list puvProtocolList and initial-

izes it locally. The execution state of πj
C is set to waiting. Finally, this algorithm

outputs the selected Pin/Uv Auth Protocol puvProtocol. We write puvProtocol $←−
obtainSharedSecret-C-start(πj

C , info).

obtainSharedSecret-T : inputs a token session πi
T and a Pin/Uv Auth Protocol puvProtocol

aborts if puvProtocol is not supported by the token T . Otherwise, this algorithm simply

outputs the public key of the local instance of puvProtocol. During the execution, the
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authPowerUp-T (stT ):

22 foreach puvProtocol ∈ stT .puvProtocolList

23 stT .puvProtocol.initialize()

24 stT .m← 3

obtainSharedSecret-C-start(πj
C , info):

25 Parse (version, puvProtocolList)← info

26 if version = 2.0

27 return ⊥
28 select puvProtocol ← puvProtocolList

29 πj
C .selectedpuvProtocol← puvProtocol

30 πj
C .selectedpuvProtocol.initialize()

31 πj
C .stexe ← waiting

32 πj
C .sid← πj

C .sid ∥ info ∥ puvProtocol
33 return puvProtocol

obtainSharedSecret-T (πi
T , puvProtocol) :

34 if puvProtocol /∈ stT .puvProtocolList

35 return ⊥
36 pkT ← stT .puvProtocol.getPublicKey()

37 πi
T .stexe ← waiting

38 πi
T .sid← πi

T .sid ∥ puvProtocol ∥ pkT

39 return pkT

obtainSharedSecret-C-end(πj
C , pk) :

40 (c,K) $←− πj
C .selectedpuvProtocol.encapsulate(pk)

41 πj
C .k ← K

42 πj
C .sid← πj

C .sid ∥ pk ∥ c
43 return c

setPIN-C(πj
C , pin) :

44 if pin /∈ PIN
45 return ⊥
46 cp

$←− πj
C .selectedpuvProtocol.encrypt(π

j
C .k , pin)

47 tp
$←− πj

C .selectedpuvProtocol.authenticate(π
j
C .k , cp)

48 return (cp, tp)

setPIN-T (πi
T , puvProtocol, c, cp, tp):

49 if puvProtocol /∈ stT .puvProtocolList or stT .pinHash ̸= ⊥
50 return ⊥
51 K ← stT .puvProtocol.decapsulate(c)

52 if K = ⊥ or stT .puvProtocol.verify(K, cp, tp) = false

53 return ⊥
54 pin ← stT .puvProtocol.decrypt(K, cp)

55 if pin /∈ PIN
56 return ⊥
57 stT .pinHash← H(pin)

58 stT .pinRetries← pinRetriesMax

59 return accepted

getInfo-T (πi
T ):

60 info← (stT .version, stT .puvProtocolList)

61 πi
T .sid← πi

T .sid ∥ info
62 return info

obtainPinUvAuthToken-C-start(πj
C , pin):

63 pinHash← H(pin)

64 cph
$←− πj

C .selectedpuvProtocol.encrypt(π
j
C .k , pinHash)

65 πj
C .stexe ← bindStart

66 πj
C .sid← πj

C .sid ∥ cph
67 return cph
obtainPinUvAuthToken-T (πi

T , puvProtocol, c, cph):

68 if puvProtocol /∈ stT .puvProtocolList or stT .pinRetries = 0

69 return (⊥, false)
70 K ← stT .puvProtocol.decapsulate(c)

71 if K = ⊥
72 return (⊥, false)
73 stT .pinRetries← stT .pinRetries− 1

74 pinHash← stT .puvProtocol.decrypt(K, cph)

75 if pinHash ̸= stT .pinHash

76 stT .puvProtocol.regenerate()

77 if stT .m = 0

78 authPowerUp-T (stT )

79 return (⊥, true)
80 stT .m← 3, stT .pinRetries← pinRetriesMax

81 foreach puvProtocol′ ∈ stT .puvProtocolList

82 stT .puvProtocol
′.resetpuvToken()

83 πi
T .bs ← πi

T .puvProtocol.pt

84 cpt
$←− stT .puvProtocol.encrypt(K,πi

T .bs)

85 πi
T .stexe ← bindDone

86 πi
T .sid← πi

T .sid ∥ puvProtocol ∥ c ∥ cph ∥ cpt ∥ false
87 return (cpt , false)

obtainPinUvAuthToken-C-end(πj
C , cpt):

88 πj
C .bs ← πj

C .selectedpuvProtocol.decrypt(π
j
C .k , cpt)

89 πj
C .stexe ← bindDone

90 πj
C .sid← πj

C .sid ∥ c
91 return

auth-C(πj
C ,M):

92 t $←− πj
C .selectedpuvProtocol.authenticate(π

j
C .bs,M)

93 return (M, t)

validate-T (πi
T ,M, t, d):

94 if stT .puvProtocol.verify(π
i
T .bs,M, t) = true

95 return d

96 return rejected

Figure 5.8: CTAP 2.1 is an ePACA = (Reboot, Setup,Bind,Auth,Validate) protocol. The flow of
ePACA protocol is given in Figure 5.7.

status of the token session is set to waiting. We write pk ← obtainSharedSecret-T (πi
T ,

puvProtocol).

obtainSharedSecret-C-end: inputs a client session πj
C and a public key pk . During the

execution, the client session produces a shared secret K and a ciphertext c, followed by
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storing the secret K locally in πj
C .k . This algorithm outputs the ciphertext c. We write

c $←− obtainSharedSecret-C-end(πj
C , pk).

setPIN-C: inputs a client session πj
C and a PIN pin and aborts if pin is not in the PIN

domain PIN . Otherwise, πj
C encrypts this pin and authenticates the encryption using the

selected Pin/Uv Auth Protocol and the locally stored shared secret πj
C .k . This algorithm

outputs the ciphertext c and the authentication tag t. We write (c, t) $←− setPIN-C(πj
C , pin).

setPIN-T : inputs a token session πi
T , a Pin/Uv Auth Protocol puvProtocol, two ciphertexts

c and cp, and an authentication tag tp. It aborts if puvProtocol is not supported or the

local pinHash has been set. Then, the token decapsulates c for a shared secret K and

verifies the ciphertext cp and tag t using K. If K cannot be correctly decapsulated or

the verification falls, then this algorithm aborts. If a PIN pin can be correctly decrypted,

then the local pinHash πi
T .pinHash is set to hash of pin and the local counter pinRetries

is set to the maximum. Otherwise, this algorithm aborts. In the end, this algorithm

outputs a status status ∈ {accepted, rejected} indicating success or failure. 7 We write

status← setPIN-T (πi
T , puvProtocol, c, cp, tp).

obtainPinUvAuthToken-C-start: inputs a client session πj
C and a PIN pin. The client

session πj
C computes the hash of pin and encrypts it using the selected Pin/Uv Auth

Protocol and the locally stored share secret πj
C .k . This algorithm outputs the encryption

c. During the execution, the status of the client session is set to bindStart. We write

c $←− obtainPinUvAuthToken-C-start(πj
C , pin).

obtainPinUvAuthToken-T : inputs a token session πi
T , a Pin/Uv Auth Protocol puvProtocol,

and two ciphertexts c and cph. It aborts if puvProtocol is not supported by T or if the

local counter pinRetries is 0. Otherwise, session πi
T decapsulates c for a key K and aborts

if a failure happens during the decapsulation. Then, πi
T decrements the counter pinRetries

by 1 and decrypts cph using K for a hash value pinHash. If pinHash matches the locally

stored stT .pinHash, then the counter m and pinRetries is set to their maximum. Otherwise,

the local instance puvProtocol regenerates its key pair. If the counter for the consecutive

retries reaches 0, then the token is rebooted. In all cases, the token resets the pts in all

Pin/Uv Auth Protocol instances. Then, the session πi
T sets the pt underlying puvProtocol

as the binding state πi
T .bs and encrypts it using K for a ciphertext cpt. This algorithm

outputs cpt and a boolean value calledReboot indicating whether authPowerUp-T is invoked

or not. After the successful completion, the status of the token session is set to bindDone.

We write (cpt, calledReboot)
$←− obtainPinUvAuthToken-T (πi

T , puvProtocol, c, cph).

obtainPinUvAuthToken-C-end: inputs a client session πj
C and a ciphertext cpt. During the

execution, the client decrypts the binding state πj
C .bs from cpt and the status of the client

session is set to bindDone.

7In practice, the user confirmation is required in this step. Here, we simply assume the user confirmation
and omit it in the algorithm.
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initialize1():

97 regenerate1()

98 resetpuvToken1()

regenerate1():

99 (pk , sk) $←− ECDH.KG()

resetpuvToken1():

100 pt $←− {0, 1}µλ
encapsulate1(pk

′):

101 Z ← XCoordinateOf(sk · pk ′)

102 K ← H1(Z)

103 c← pk

104 return (c,K)

decapsulate1(c):

105 Z ← XCoordinateOf(sk · c)
106 K ← H1(Z)

107 return K

getPublicKey1():

108 return pk

encrypt1(K,m):

109 c← SKE1.Enc(K,m)

110 return c

decrypt1(K, c):

111 m← SKE1.Dec(K, c)

112 return m

authenticate1(K
′,m):

113 t← H2(K
′,m)

114 return t

verify1(K
′,m, t):

115 t′ ← H2(K
′,m)

116 return Jt = t′K

Figure 5.9: The first instantiation of PIN/UV Auth Protocol puvProtocol1. The operation ·
denotes scalar multiplication.

auth-C: inputs a client session πj
C and a command M . The client session authenticates

M using the selected Pin/Uv Auth Protocol and the local binding state for a tag t. This

algorithm then outputs M and an authorized tag t8. We write (M, t) $←− auth-C(πj
C ,M).

validate-T : inputs a token session πi
T , a command M , an authorized tag t, and a user

decision d ∈ {accepted, rejected}, and outputs status status = accepted if d = accepted

and M and t can be verified using the binding state πi
T .bs and the Pin/Uv Auth Protocol,

which is specified by the tag t (See Footnote 8); and rejected otherwise.

5.5.4 Official Instantiations of Pin/Uv Auth Protocol

CTAP 2.1 officially introduces two instantiations of Pin/Uv Auth Protocol puvProtocol, as

in Figure 5.9 and Figure 5.10. The first, puvProtocol1, runs initialize1 by simply invoking

regenerate1 and resetpuvToken1, which further samples a public-private key pair from

ECDH over curve NIST P-256 and samples a random pt with length µλ for µ ∈ {1, 2} and
λ = 128 bits. getPublicKey1 outputs the internal public key pk . encapsulate1 computes

the key exchange using as input ECDH public key and its internal private key and applies

H1 = SHA-256 to the x-coordinate of the key exchange result for a shared K, followed by

outputting its internal public key and K. decapsulate1 recovers the shared secret K from

ciphertext c using its internal private key sk . encrypt1 encrypts a message m using SKE1

and a symmetric key K, where SKE1 denotes AES-256-CBC encryption using an all-zero

initial vector IV. decrypt1 recovers the message from ciphertext c by using SKE1 and key

8In practice, this authorized tag t also includes information that specifies the index of Pin/Uv Auth
Protocol. Here, we omit this.
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initialize2():

117 regenerate2()

118 resetpuvToken2()

regenerate2():

119 (pk , sk) $←− ECDH.KG()

resetpuvToken2():

120 pt $←− {0, 1}2λ
encapsulate2(pk

′):

121 Z ← XCoordinateOf(sk · pk ′)

122 K1 ← H3(Z, “CTAP2 HMAC key”)

123 K2 ← H3(Z, “CTAP2 AES key”)

124 K ← (K1,K2)

125 c← pk

126 return (c,K)

decapsulate2(c):

127 Z ← XCoordinateOf(sk · c)
128 K1 ← H3(Z, “CTAP2 HMAC key”)

129 K2 ← H3(Z, “CTAP2 AES key”)

130 K ← (K1,K2)

131 return K

getPublicKey2():

132 return pk

encrypt2(K,m):

133 Parse (K1,K2)← K s.t. |K1| = 2λ

134 c← SKE2.Enc(K2,m)

135 return c

decrypt2(K, c):

136 Parse (K1,K2)← K s.t. |K1| = 2λ

137 m← SKE2.Dec(K2, c)

138 return m

authenticate2(K
′,m):

139 Parse (K ′
1,K

′
2)← K ′ s.t. |K ′

1| = 2λ

140 t← H4(K
′
1,m)

141 return t

verify2(K
′,m, t):

142 Parse (K ′
1,K

′
2)← K ′ s.t. |K ′

1| = 2λ

143 t′ ← H4(K
′
1,m)

144 return Jt = t′K

Figure 5.10: The second instantiation of PIN/UV Auth Protocol puvProtocol2. The operation ·
denotes the scalar-multiplication.

K. authenticate1 authenticates a message m using K ′ by applying H2 to both, where H2

runs HMAC-SHA-256 and truncates the result to the first 128 bits. verify1 outputs true if

t = H2(K
′,m), and false otherwise9.

The second instantiation puvProtocol2 runs initialize2, regenerate2, and getPublicKey2

identical to the ones in puvProtocol1. The resetpuvToken2 algorithm outputs a pt with fixed

256 bits length. The algorithm encapsulate2 first computes the x coordinate of the ECDH

exchange of input public key and internal private key, denoted by Z, followed by applying

H3 to Z and “CTAP2 HMAC key” for a HMAC key K1 and to Z and “CTAP2 AES key”

for a AES key K2. Finally, encapsulate2 outputs its internal public key as ciphertext as

well as K1 and K2. decapsulate2 recovers HMAC key K1 and AES key K2 from the input

ciphertext c using its internal private key. encrypt2 splits the input K into two sub-keys K1

and K2 where K1 has length of 256 bits. Then, it encrypts a message m using SKE2 on key

K2, where SKE2 denotes AES-256-CBC encryption using a randomized initial vector IV.

decrypt2 recovers the message m from ciphertext c using the key K2, where K2 discards the

first 256 bits of K. authenticate2 applies H4 to key K ′1 and a message m to produce a tag t,

where H4 denotes HMAC-SHA-256 and K ′1 is the first 256 bits of the input K ′. verify2 on

a key K ′, a message m, and a tag t, verifies whether the tag t matches H4(K
′
1,m), where

9In practice, if K ′ = pt , then verify1 also outputs fails if pt is not in-use. Note that the usage time of
the pt is out of the scope of this paper. We omit this here and in the following verify2 in puvProtocol2.
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initialize3():

145 regenerate3()

146 resetpuvToken3()

regenerate3():

147 (pk1, sk1)
$←− ECDH.KG()

148 (pk2, sk2)
$←− KEM.KGen()

149 pk ← (pk1, pk2)

150 sk ← (sk1, sk2)

encrypt3(K,m):

151 (K1,K2)← K s.t. |K1| = µ′λ

152 c← SKE3.Enc(K2,m)

153 return c

decrypt3(K, c):

154 (K1,K2)← K s.t. |K1| = µ′λ

155 m← SKE3.Dec(K2, c)

156 return m

authenticate3(K
′,m):

157 (K ′
1,K

′
2)← K ′ s.t. |K ′

1| = µ′λ

158 t← H7(K
′
1,m)

159 return t

verify3(K
′,m, t):

160 (K ′
1,K

′
2)← K ′ s.t. |K ′

1| = µ′λ

161 t′ ← H7(K
′,m)

162 return Jt = t′K

getPublicKey3():

163 return pk

resetpuvToken3():

164 pt $←− {0, 1}µ′λ

encapsulate3(pk
′):

165 (pk ′
1, pk

′
2)← pk ′

166 (sk1, sk2)← sk

167 Z1 ← XCoordinateOf(sk1 · pk ′
1)

168 (c2, Z2)← KEM.Encaps(pk ′
2)

169 Z ← H5(Z1, Z2)

170 K1 ← H6(Z, “CTAP2 HMAC key”)

171 K2 ← H6(Z, “CTAP2 AES key”)

172 K ← (K1,K2)

173 c← (pk , c2)

174 return (c,K)

decapsulate3(c):

175 Parse (c1, c2)← c

176 Parse (sk1, sk2)← sk

177 Z1 ← XCoordinateOf(sk1 · c1)
178 Z2 ← KEM.Decaps(sk2, c2)

179 Z ← H5(Z1, Z2)

180 K1 ← H6(Z, “CTAP2 HMAC key”)

181 K2 ← H6(Z, “CTAP2 AES key”)

182 K ← (K1,K2)

183 return K

Figure 5.11: The third instantiation of PIN/UV Auth Protocol puvProtocol3. The operation ·
denotes the scalar-multiplication.

K ′1 is the first 256 bits of K ′.

5.5.5 Our Post-Quantum Instantiation of CTAP 2.1

We propose a third instantiation of the Pin/Uv Auth Protocol in Figure 5.11 that aims

at PQ compatibility in a hybrid manner. Compared to puvProtocol2, the most important

changes made to achieve PQ security are as follows. First, in addition to an ECDH

(over curve NIST P-256) key pair, a key pair of a PQ secure KEM is sampled during

regenerate3. Second, the algorithm encapsulate3 executes both the ECDH key exchange and

the encapsulation of the PQ KEM to derive a hybrid ciphertext c and key K = (K1, K2).

Finally, the algorithm decapsulate3 correspondingly recovers the hybrid key K = (K1, K2)

from the ciphertext c.
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5.5.6 Security Model of ePACA Protocols

Moving forward, we model the security of ePACA protocols as security experiment

ExprSUF-t
′

ePACA. The security goal is to ensure that a token can only accept a command

that has been authorized by a trusted client under user permission.

Trust Model Similarly to [20], we assume ”trust-on-first-use”, which means that the

interactive execution of Setup is authenticated without any active interference of an

eavesdropping attacker. Moreover, we assume no active attacks against clients during

the interactive execution of Bind, while active attacks against tokens are allowed. More

concretely, active attacks against clients are allowed only when the execution state of the

clients turns from waiting to bindStart. However, active attacks against tokens are allowed

even if the execution state of tokens is still waiting. We further assume that each user

holds a unique PIN pinU that is independently sampled from the domain PIN 10 following

some distribution D with min-entropy αD. All tokens are assumed to share a common

pinRetriesMax. We assume that each ECDH point is bijective to its x-coordinate.

Experiment-specific Variables Each session π is associated with a variable isValid ∈
{true, false,⊥} that denotes whether the session is still accessible (by users or attackers)

or not. Each token session πi
T is associated with a variable pinCorr ∈ {true, false} that

indicates whether the setup user PIN of T has been corrupted.

Oracles The oracles in our security experiment (see Figure 5.12) are defined similarly to the

ones in [20]. More concretely, the oracles NewT and NewU create new tokens and users,

respectively. In particular, the attacker can customize the token with specific initial data

when querying NewT. The Reboot(T ) oracle invokes Reboot and marks all previously

established sessions of T as invalid. The oracle Setup runs the authenticated interaction of

Setup. The oracle Execute captures that the Bind interaction is partially authenticated

until the client’s execution state is set to bindStart and the remaining interaction of

Bind is not authenticated, as the attacker can deliver messages to token and client by

Send-Bind-T and Send-Bind-C oracles respectively. The Auth and Validate oracles

simulate the Auth and Validate execution of clients and tokens, respectively. Furthermore,

querying CorruptUser and Compromise reveals a user’s PIN and a client’s binding

state, respectively. Notably, whenever Reboot or Bind are completed on a token T , we

mark all of T ’s previously established sessions as invalid.

Session Partnering Partnering identifies the sessions of a token T and a client C that

successfully completed Bind(T,C, U) for some user U . We call a token session πi
T partnered

with a client session πj
C if and only if πi

T .sid = πj
C .sid ̸= ⊥.

10In practice, each PIN must have a maximal length of 63 bytes and a minimal length of four code
points (on tokens) or four unicode characters (on client).
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ExprSUF-t
′

ePACA(A):
1 LAuth ← ∅
2 win-SUF-t′ ← 0

3
(
) $←− AO()

4 return win-SUF-t′

bindPartner(T, i):

5 if ∃(C, j) s.t. πi
T .sid = πj

C .sid

6 return (C, j)

7 return (⊥,⊥)

Win-SUF-t′(T, i,M, t, d):

8 if d ̸= accepted: return 1

9 if ∃(C1, j1), (C2, j2) s.t. (C1, j1) ̸= (C2, j2) and πj1
C1

.stexe =

πj2
C2

.stexe = bindDone and πj1
C1

.sid = πj2
C2

.sid: return 1

10 if ∃(T1, i1), (T2, i2) s.t. (T1, i1) ̸= (T2, i2) and πi1
T1
.stexe =

πi2
T2
.stexe = bindDone and πi1

T1
.sid = πi2

T2
.sid: return 1

11 (C, j)← bindPartner(T, i)

12 if (C, j,M, t) /∈ LAuth

13 if (C, j) = (⊥,⊥) or πj
C .compromised = false

14 if πi
T .pinCorr = false: return 1

15 return 0
NewT(T, initialData):

16 if stT ̸= ⊥: return ⊥
17 (version, puvProtocolList)← initialData

18 stT .version← version

19 stT .puvProtocolList← puvProtocolList

20 Reboot(stT )

21 return

NewU(U):

22 if pinU = ⊥
23 pinU

$←− PIN
24 return

CorruptUser(U):

25 corrU ← true

26 return pinU

Compromise(C, j):

27 if πj
C = ⊥ or πj

C .stexe ̸= bindDone

28 return ⊥
29 πj

C .compromised← true

30 return πj
C .bs

Reboot(T ):

31 if stT = ⊥
32 return

33 foreach i s.t. πi
T ̸= ⊥

34 πi
T .isValid← false

35 Reboot(stT )

36 return

Setup(T, i, C, j, U):

37 if stT = ⊥ or πi
T ̸= ⊥ or

πj
C ̸= ⊥ or pinU = ⊥

38 return ⊥
39 πi

T ← stT

40 trans $←− Setup(πi
T , π

j
C , pinU )

41 πi
T .isValid, π

j
C .isValid← false

42 stT .user← U

43 return trans

Send-Bind-T(T, i,m):

44 if stT = ⊥ or πi
T = ⊥

or πi
T .stexe ̸= waiting or

πi
T .isValid = false

45 return ⊥
46 πi

T .pinCorr← corrstT .user

47 m′ $←− Bind-T(πi
T ,m)

48 cpt ∥ calledReboot← m′

49 if calledReboot = true

50 foreach i′ s.t. πi′

T ̸= ⊥
51 πi′

T .isValid← false

52 elseif πi
T .stexe = bindDone

53 foreach i′ ̸= i and πi
T ̸= ⊥

54 πi′

T .isValid← false

55 return m′

Send-Bind-C(C, j,m):

56 if πj
C = ⊥ or πj

C .stexe ̸=
bindStart or πj

C .isValid = false

57 return ⊥
58 return Bind-C(πj

C ,m)

Execute(T, i, C, j, U):

59 if stT = ⊥ or πi
T ≠ ⊥ or πj

C ̸=
⊥ or pinU = ⊥

60 return ⊥
61 πi

T ← stT

62 trans,mC ← ⊥
63 while πj

C .stexe ̸= bindStart

64 mT
$←− Bind-T(πi

T ,mC)

65 mC
$←− Bind-C(πj

C , U,mT )

66 trans← trans ∥ mT ∥ mC

67 return trans
Auth(C, j,M):

68 if πj
C = ⊥ or πj

C .stexe ̸= bindDone

69 return ⊥
70 (M, t) $←− auth-C(πj

C ,M)

71 LAuth ← LAuth ∪ {(C, j,M, t)}
72 return (M, t)

Validate(T, i,M, t, d):

73 if πi
T = ⊥ or πi

T .stexe ̸= bindDone or πi
T .isValid = false

74 return ⊥
75 status← validate-T (πi

T ,M, t, d)

76 if status = accepted

77 win-SUF-t′ ←Win-SUF-t′(T, i,M, t, d)

78 return status

Figure 5.12: Security experiment for extended PIN-based Access Control Authenticators Protocol
for ePACA = (Reboot,Setup,Bind,Auth,Validate), where O = {NewT,NewU,Compromise,
CorruptUser,Reboot,Setup,Execute,Send-Bind-T,Send-Bind-C,Auth,Validate}.
We highlight differences to the SUF-t security game from [20] in blue.
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Winning Conditions We call a token session test session if it accepts an authorized

command-tag pair under some user decision. An attacker A wins ExprSUF-t
′

ePACA if there exists

a test session πi
T that accepts an authorized command (M, t) with user decision d and any

of the following conditions holds:

1. the user decision d ̸= accepted.

2. two distinct client sessions that completed Bind have the same session identifiers.

3. two distinct token sessions that completed Bind have the same session identifiers.

4. (M, t) was not output by any of πi
T ’s uncompromised valid partners πj

C before the

corruption of the user PIN that was setup on the token T .

Definition 49 (SUF-t′ security of ePACA). Let Compl ∈ {PPT,QPT}. Let ePACA =

(Reboot, Setup,Bind,Auth,Validate) be an extended PIN-based Access Control for Authen-

ticators protocol. We say that ePACA is strongly unforgeable with trusted binding, or is

SUF-t′-secure for short, if for all Compl attackers A

AdvSUF-t
′

ePACA(A) := Pr[ExprSUF-t
′

ePACA(A) = 1]

in winning the game ExprSUF-t
′

ePACA as described in Figure 5.12 is negligible in the implicit

security parameter λ.

5.5.7 Security Conclusions for CTAP 2.1

After having defined security for ePACA protocols above, we now present the security

statements for CTAP 2.1. We give the full proofs of our two theorems (against PPT and

QPT attackers) in Section 5.9.4 and Section 5.9.5.

Our first theorem shows the SUF-t′ security of CTAP 2.1 against PPT attackers.

Theorem 22 (PPT security of CTAP 2.1). Let ePACA = (Reboot, Setup,Bind,Auth,

Validate) denote the CTAP 2.1 protocol described in Section 5.5.2. Assume that ePACA

supports puvProtocoli for i ∈ {1, 2, 3}. If the hash function H is ϵcoll-resH collision resistant,

Hi : {0, 1}⋆ → {0, 1}li is modeled as independent random oracle for i ∈ {1, ..., 7}, SKE1 is

ϵind-1cpa-H2

SKE1
-IND-1CPA-H2 and ϵind-1$pa-lpcSKE1

-IND-1$PA-LPC secure, SKEi is ϵind-1cpaSKEi
-IND-1CPA

and ϵind-1$pa-lpcSKEi
-IND-1$PA-LPC secure for i ∈ {2, 3}, and the sCDH problem over ECDH

with prime order q is ϵsCDH
ECDH hard, then the advantage of any PPT attacker A that breaks
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SUF-t′ security of ePACA is bounded by

AdvSUF-t
′

ePACA(1
λ) ≤(qSetup + qExecute)ϵ

sCDH
ECDH + ϵcoll-resH

+

(
qSetup + qExecute

2

)
(22−min(l1,l3,l5,l6) + 21−q)

+qNewU2
−αD +

(
qSend-Bind-T

2

)
2−min(µ,2,µ′)λ

+qSetup max(ϵind-1cpa-H2

SKE1
, ϵind-1cpaSKE2

, ϵind-1cpaSKE3
)

+qExecute max(ϵind-1$pa-lpcSKE1
, ϵind-1$pa-lpcSKE2

, ϵind-1$pa-lpcSKE3
)

+qSetuppinRetriesMax2−αD

+qValidate2
−min(µλ,2λ,µ′λ,l2,l4,l7)

where qO denotes the number of queries to O = {Setup,Execute,Validate} and qi

denotes the number of queries to random oracle Hi for i ∈ {1, ..., 7}.

Proof Sketch. The proof is divided into the following steps: (1) By the random oracle Hi

for i ∈ {1, 3, 5, 6} and the sCDH assumption on the underlying ECDH, all keys K derived

from the encapsulation of the underlying puvProtocol in the obtainSharedSecret-C-end

algorithm, which is only invoked in the Setup and Execute oracles, are distinct except

probability (qSetup + qExecute)ϵ
sCDH
ECDH +

(
qSetup+qExecute

2

)
22−min(l1,l3,l5,l6). (2) By the entropy of

the user PIN αD, none of the user PIN sampled in NewU oracle is predicable except

with probability qNewU2
−αD . (3) By the collision-resistance of H and the entropy of

the Diffie-Hellman public keys 2q and of pt values 2max(µ,2,µ′)λ, we have the all H(pin),

Diffie-Hellman public keys, pt values, are respectively distinct except probability in total

ϵcoll-resH +
(
qSetup+Execute

2

)
21−q +

(
qSend-Bind-T

2

)
2−min(µ,2,µ′)λ. (4) By the IND-1CPA-H2 security of

SKE1 and the IND-1CPA security of SKE2 and SKE3, the pins encrypted by the underlying

puvProtocol in the setPIN-C algorithm, which is only invoked in the Setup oracle, are

indistinguishable from random except probability qSetup max(ϵind-1cpa-H2

SKE1
, ϵind-1cpaSKE2

, ϵind-1cpaSKE3
).

(5) By the IND-1$PA-LPC security of SKEi for i ∈ {1, 2, 3}, the pinHashs encrypted

by the underlying puvProtocol in the obtainPinUvAuthToken-C-start algorithm, which is

invoked only in the Execute oracle, are indistinguishable from random except probability

qExecute max(ϵind-1$pa-lpcSKE1
, ϵind-1$pa-lpcSKE2

, ϵind-1$pa-lpcSKE3
).

Finally, the attacker A cannot trigger the flip of the win-SUF-t′ predicate in Figure 5.12

via condition (i) in Line 8, due to the design of CTAP 2.1, see validate-T algorithm in

CTAP 2.1. (ii) in Line 9, due to the distinction of Diffie-Hellman public keys, (iii) in

Line 10, due to the distinction of Diffie-Hellman public keys and pts, (iv) in Line 11-14,

since A obtains no information about pins or pts and can only win by randomly guessing

the pin in the Setup oracle maximal pinRetriesMax times for each token session, or the

pt values or the tags t in the Validate algorithm in the Validate oracle, which happens

with probability except qSetuppinRetriesMax2−αD + qValidate2
−min(µλ,2λ,µ′λ,l2,l4,l7) in total,

modeling H7 as a random oracle.
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The above theorem proves that CTAP 2.1 only accepts messages under the user’s

approval, which is captured by winning condition 1. Winning conditions 2 and 3 capture

the uniqueness of each session identifiers: if two sessions are partnered with each other,

then they are each other’s unique partners. Condition 4 ensures the token only accepts

the authorization from a client that it binds to if (1) the binding phase is trusted, (2) the

binding state (on the client side) is not compromised if available, and (3) the user PIN

that sets up the token is not corrupted.

As is to be expected, the above theorem only holds when the token’s user PINs have

large enough entropy. If a user PIN is predictable, the attacker can perform active attacks

and authorize malicious commands towards the token.

Moving to the security guarantees against quantum attackers, we note that the asym-

metric cryptographic primitives in puvProtocol1 and puvProtocol2 are simply ECDH, which

is quantum-vulnerable. Therefore, A can trivially win SUF-t′ experiment by selecting the

Pin/Uv Auth Protocol in a test session to be puvProtocol1 or puvProtocol2. The theorem

below suggests the security of the test session if puvProtocol3 is selected as instantiation.

Theorem 23 (QPT security of CTAP 2.1). Let ePACA = (Reboot, Setup,Bind,Auth,

Validate) denote the CTAP 2.1 protocol described in Section 5.5.2. Assume that the

underlying H is ϵcoll-resH -collision resistant, H5 is ϵswapH5
-swap secure, Hi is ϵprfHi

-prf secure for

i ∈ {6, 7}, SKE3 is ϵind-1cpaSKE3
-IND-1CPA and ϵind-1$pa-lpcSKE3

-IND-1$PA-LPC secure, and that the

KEM in puvProtocol3 with public-key entropy αpk and ciphertext entropy αc is ϵind-ccaKEM -

IND-CCA secure. If there exists a QPT attacker A that breaks the SUF-t′ security of ePACA

for a test session π that uses puvProtocol3, then we have that

AdvSUF-t
′

ePACA(A) ≤(qSetup + qExecute)(ϵ
ind-cca
KEM + ϵswapH5

+ ϵprfH6
)

+

(
qSetup + qExecute

2

)
21−l6 + ϵcoll-resH + qNewU2

−αD

+

(
qSend-Bind-T

2

)
2−µ

′λ +

(
qExecute

2

)
(2−αpk + 2−αc)

+qSetupϵ
ind-1cpa
SKE3

+ qExecuteϵ
ind-1$pa-lpc
SKE3

+qSetuppinRetriesMax2−αD +

(
qExecute

2

)
(2−αpk + 2−αc)

+qValidate(2
−µ′λ + ϵprfH7

+ 2−l7)

where qO denotes the number of queries to O = {Setup,Execute,Validate}.

Proof Sketch. The proof is similar to the one for Theorem 22 and consists of following

steps: (1) By the IND-CCA security of KEM, the swap security of H5, and the prf security

of H6, all keys K derived in from the encapsulation of the underlying puvProtocol in the

obtainSharedSecret-C-end algorithm, which is only invoked in the Setup and Execute

oracles, are distinct except probability (qSetup+qExecute)ϵ
sCDH
ECDH+(qSetup+qExecute)(ϵ

ind-cca
KEM +
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ϵswapH5
+ ϵprfH6

) +
(
qSetup+qExecute

2

)
21−l6 . (2) By the entropy of the user PIN αD, none of the user

PIN sampled in NewU oracle is predicable except with probability qNewU2
−αD . (3) By the

collision-resistance of H and the entropy 2−µ
′λ of pt values sampled in the Send-Bind-T

oracle, we have all H(pin) and pt values respectively distinct except probability in total

ϵcoll-resH +
(
qSend-Bind-T

2

)
2−µ

′λ. (4) By the IND-1CPA security of SKE3, the pins encrypted by the

underlying puvProtocol3 in the setPIN-C algorithm, which is only invoked in the Setup

oracle, are indistinguishable from random except probability qSetupϵ
ind-1cpa
SKE3

. (5) By the

IND-1$PA-LPC security of SKE3, the pinHashs encrypted by the underlying puvProtocol3

in the obtainPinUvAuthToken-C-start algorithm, which is invoked only in the Execute

oracle, are indistinguishable from random except probability qExecuteϵ
ind-1$pa-lpc
SKE3

.

Finally, the attacker A cannot trigger the flip of the win-SUF-t′ predicate in Figure 5.12

via condition (i) in Line 8, due to the design of CTAP 2.1, see validate-T algorithm in

CTAP 2.1, (ii) in Line 9, since the collision of KEM public keys or ciphertexts with entropy

αpk or αc happens at most
(
qExecute

2

)
(2−αpk + 2−αc), (iii) in Line 10, due to the pairwise

distinct KEM public keys and pts in the tokens’ session identifiers, (iv) in Line 11-14, since

A obtains no information about pins or pts and can only win by randomly guessing the

pin in the Setup oracle maximal pinRetriesMax times for each token session, or the pt

values or the tags t in the Validate algorithm in the Validate oracle, which happens with

probability except qSetuppinRetriesMax2−αD + qValidate2
−µ′λ + ϵprfH7

+ 2−l7 in total, assuming

the prf security of the underlying H7.

As such, we suggest to add our PQ instantiation puvProtocol3 of CTAP 2.1 to the

specifications. Below, we give the suggestions on concrete candidates for primitives in

puvProtocol3.

Instantiation: We suggest to instantiate the underlying KEM with any Round 3 Finalist

nominated by NIST and the SKE3 with AES-512-CBC with randomized initial vector.

The underlying functions Hi : {0, 1}⋆ → {0, 1}li for i ∈ {5, 6, 7} can be instantiated with

HMAC-SHA-512. Moreover, we suggest to increase the security parameter from 256 to 512

to against Grover’s attack and to achieve 256-bits security against quantum attackers.

5.6 FIDO2 Composition

In this section, we analyze the security of the composition of WebAuthn 2 and CTAP 2.1. To

provide a more generalized result, we first define the user authentication (ua) security model

for the composition of any ePlA and ePACA protocols, which we refer to as ePlA+ePACA.

Then, we formally reduce the ua security of ePlA+ePACA to the auth security of the

underlying ePlA (see Section 5.4.4) and the SUF-t′ security of the underlying ePACA

protocols (see Section 5.5.6). In this section, we respectively use π̄ and π to denote the

ePlA and ePACA session, respectively, to distinguish them clearly.
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5.6.1 Security Model of ePlA+ePACA

As before, to define the ua security property, we start with describing the trust model,

oracles, and winning conditions. Trust Model The trust model for ua covers both the

ones for auth and for SUF-t′. Additionally, we assume a server-to-client authenticated

channel, which is in practice guaranteed by a TLS connection. As before, we assume

“trust-on-first-use”, which means, the Setup phase and the initialization of the Bind phase

in ePACA and the Register phase in ePlA are authenticated.

Oracles During the execution of the ua experiment, the attacker A has access to all oracles

defined in the SUF-t′ experiment except Auth and Validate. Furthermore, A is allowed

to query NewS, NewTPlA, and Corrupt from the auth experiment, in addition to the

following oracles:

Register((S, i), (T, j, j′), (C, k), tb,UV , d): This oracle simulates the honest registration

between server S and token T via client C. This oracle is the same as the one in the

auth experiment except that after the invocation of (mrcom,mrcl)← rCom(idS,mrch, tb),

additionally (mrcom, t) ← Auth(C, k,mrcom) and status ← Validate(T, j′,mrcom, t, d)

are queried. Moreover, the game aborts if status ≠ accepted. Here, Auth and Validate

are defined in the SUF-t′ experiment.

Challenge((S, i), (C, k), tb,UV ): This oracle simulates the process of the server S gen-

erating a challenge nonce and sending it to the client C in an authenticated channel.

This oracle is the same as in the auth experiment except that after the invocation of

(mrcom,mrcl)← rCom(idS,mrch, tb) we additionally query (mrcom, t)← Auth(C, k,mrcom)

and status← Validate(T, j′,mrcom, t, d), and append tag t to the output.

Response((T, j, j′),macom, t, d): This oracle simulates the token receiving messages from

a client and producing its response. This oracle is the same as the one defined in the

auth experiment except that we additionally query status← Validate(T, j′,mrcom, t, d),

and abort if status ̸= accepted.

Complete((S, i),macl,marsp): This oracle simulates the server verifying the response mes-

sage and the client message. This oracle is the same as in the auth experiment except

that the winning predicate is Win-ua defined in Figure 5.14.

It is important to note that Auth and Validate (from the SUF-t′ experiment) are

embedded in the Register, Challenge, and Response oracles in Figure 5.13.

Winning Conditions We say user authentication (ua) holds, if all of the following

conditions hold when an ePlA server session π̄i
S accepts a client message macl and a

response message marsp:

1. The non-⊥ session identifiers of the ePlA token (resp., server) sessions do not collide with

each other, see Line 37 - 40 in Figure 5.14.
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ExpruaePlA+ePACA(A):
1 Lfrsh,LAuth ← ∅ //as in auth and SUF-t′ experiments

2 LRegister,LChallenge,LResponse ← ∅
3 win-ua← false

4 () $←− AO()
5 return win-ua

Register((S, i), (T, j, j′), (C, k), tb, UV, d):

6 if pkCPS = ⊥ or suppUVT = ⊥ or π̄i
S ̸= ⊥ or π̄j

T ̸= ⊥ or rcT [S] ̸= ⊥: return ⊥
7 π̄i

S .pkCP← pkCPS , π̄
j
T .suppUV← suppUVT

8 mrch
$←− rChall(π̄i

S , tb, UV )

9 (mrcom,mrcl)
$←− rCom(idS ,mrch, tb)

10 (mrcom, t)← Auth(C, k,mrcom)

11 status← Validate(T, j′,mrcom, t, d)

12 if status ̸= accepted: return (mrch,mrcl,mrcom, t,⊥,⊥)
13 (mrrsp, rcT )

$←− rRsp(π̄j
T ,mrcom)

14 (rcS , d
′)← rVrfy(π̄i

S ,mrcl,mrrsp)

15 Lfrsh ← Lfrsh ∪ (S, T )

16 LRegister ← LRegister ∪ {(S, i, T, j, j′, C, k,mrch,mrcl,mrcom, t,mrrsp)}
17 return (mrch,mrcl,mrcom, t,mrrsp, d

′)

Challenge((S, i), (C, k), tb, UV ):

18 if pkCPS = ⊥ or π̄i
S ̸= ⊥: return ⊥

19 π̄i
S .pkCP← pkCPS

20 mach
$←− aChall(π̄i

S , tb, UV )

21 (macom,macl)← aCom(idS ,mach, tb)

22 (macom, t)← Auth(C, k,macom)

23 LChallenge ← LChallenge ∪ {(S, i, C, k,mach,macl,macom, t)}
24 return (mach,macl,macom, t)

Response((T, j, j′),macom, t, d):

25 status← Validate(T, j′,macom, t, d)

26 if status ̸= accepted: return ⊥
27 if suppUVT = ⊥ or π̄j

T ̸= ⊥: return ⊥
28 π̄j

T .suppUV← suppUVT

29 (marsp, rcT )
$←− aRsp(π̄j

T , rcT ,macom)

30 LResponse ← LResponse ∪ {(T, j, j′,macom, t, d,marsp)}
31 return marsp

Complete((S, i),macl,marsp):

32 if π̄i
S = ⊥ or π̄i

S .stexe ̸= running: return ⊥
33 (rcS , d)

$←− aVrfy(π̄i
S , rcS ,macl,marsp)

34 if d = 1: win-ua←Win-ua(S, i)

35 return d

Figure 5.13: ua security experiment for a ePlA+ePACA protocol. The winning condition Win-ua
is defined in Figure 5.14. The Auth and Validate oracles are defined in ExprSUF-t

′

ePACA,Compl

experiment in Figure 5.12.
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Win-ua(S, i):

36 //The non-⊥ session identifiers of ePlA token (resp. server) sessions do not collide with each other

37 if ∃(T1, j1), (T2, j2) s.t. (T1, j1) ̸= (T2, j2) and πj1
T1
.sid = πj2

T2
.sid ̸= ⊥

38 return 1

39 if ∃(S1, i1), (S2, i2) s.t. (S1, i1) ̸= (S2, i2) and πi1
S1
.sid = πi2

S2
.sid ̸= ⊥

40 return 1

41 //In ePlA, the partnered session have the identical agreed content unless the registration context on the token is corrupted

42 if ∃(S′, i′), (T ′, j′) s.t. π̄i′

S′ .sid = π̄j′

T ′ .sid ̸= ⊥ and (S′, T ′) ∈ Lfrsh

and π̄i′

S′ .agCon ̸= π̄j′

T ′ .agCon: return 1

43 //The non-⊥ session identifiers of ePACA token (resp. client) sessions that completed Bind algorithm don’t collide with each other

44 if ∃(C1, k1), (C2, k2) s.t. (C1, k1) ̸= (C2, k2) and πk1

C1
.stexe =

= πk2

C2
.stexe = bindDone and πj1

C1
.sid = πj2

C2
.sid: return 1

45 if ∃(T1, j
′
1), (T2, j

′
2) s.t. (T1, j

′
1) ̸= (T2, j

′
2) and π

j′1
T1
.stexe =

= π
j′2
T2
.stexe = bindDone and π

j′1
T1
.sid = π

j′2
T2
.sid: return 1

46 //The ePlA or ePACA sessions used in the registration phase must partner with each other.

47 foreach (S′, x, T ′, y, y′, C ′, z,mrch,mrcl,mrcom, trcom,mrrsp) ∈ LRegister

48 if π̄y
T ′ .sid ̸= π̄x

S′ .sid: return 1

49 (C ′′, z′)← bindPartner(T ′, y′)

50 if (C ′′, z′,mrcom, trcom) /∈ LAuth and
(
(C ′′, z′) = (⊥,⊥)

or πz′

C′′ .compromised = false
)
and πy′

T ′ .pinCorr = false: return 1

51 //A response message marsp must be output by T that registered with S, unless T ’s registration context of S is corrupted

52 T ← regPartner(S, i)

53 if ̸ ∃j s.t. π̄i
S .sid = π̄j

T .sid

54 if (S, T ) ∈ Lfrsh: return 1

55 elseif ̸ ∃(j′,macom, t, d,marsp) s.t. (T, j, j
′,macom, t, d,marsp) ∈ LResponse

56 return 1

57 //Above marsp must be output under user approval

58 elseif d ̸= accepted: return 1

59 else

60 //Above marsp must be output after above T validates above message-tag pair (macom, t), which encodes mach output by session π̄i
S

61 (C, k)← bindPartner(T, j′)

62 if (C, k,macom, t) /∈ LAuth

63 if (C, k) = (⊥,⊥) or πk
C .compromised = false

64 if πj′

T .pinCorr = false: return 1

65 elseif ̸ ∃(mach,macl) s.t. (S, i, C, k,mach,macl,macom, t) ∈ LChallenge

66 return 1

67 return 0

Figure 5.14: The Win-ua in ua security experiment for ePlA+ePACA. The regPartner and
bindPartner predicates are defined in Figure 5.5 and Figure 5.12, respectively.

2. The partnered token and server sessions must have the identical agreed content unless

the registration context on the token is corrupted, see Line 42 in Figure 5.14.

3. The non-⊥ session identifiers of the ePACA token (resp., client) sessions that completed
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Bind, do not collide with each other, see Line 44 - 45 in Figure 5.14.

4. During registration, the ePlA token and server sessions must partner with each other

and the authorized command message and tag must have been output by one of the

non-compromised partners of the ePACA token session without corrupting its setup user,

see Line 47 - 50 in Figure 5.14.

5. The token T that has been registered with S, must own an ePlA session π̄i
T that is

partnered with π̄i
S and produce a response message unless T ’s registration context of S

is corrupted, see Line 52 - 56 in Figure 5.14.

6. The above response message must be produced after an ePACA session πj′

T validates some

authorized command macom and tag t with the approval from the user, see Line 58 - 58

in Figure 5.14.

7. The above command macom and tag t must be authorized by a client ePACA session πk
C

that is partnered with πj′

T for some challenge message mrch that has been produced by

the ePlA session π̄i
S, unless π

k
C is compromised or the PIN that sets up token T has been

corrupted, see Line 61 - 66 in Figure 5.14.

Definition 50 (ua security for ePlA+ePACA). Let Compl ∈ {PPT,QPT}, ePACA be an

extended PIN-based access control for authenticators protocol, and ePlA be an extended

passwordless authentication protocol. We say that the composition ePlA+ePACA has user

authentication, or is ua-secure for short, if for all Compl attackers A the advantage

AdvuaePlA+ePACA(A) := Pr[ExpruaePlA+ePACA(A) = 1]

in winning the game ExpruaePlA+ePACA as described in Figure 5.13 is negligible in the implicit

security parameter λ.

We can reduce the security of the ePlA+ePACA protocol to the security of the ePlA and

the ePACA protocol as stated in the next theorem. We give the full proof in Section 5.9.6.

Theorem 24 (PPT/QPT security of the composition). Let Compl ∈ {PPT,QPT}. Let Σ

denote an ePlA protocol and Π denote an ePACA protocol. If there exists a Compl attacker

A that breaks the ua security of the composition Σ + Π, then there must exist Compl

attackers A1 and A2 that respectively break the auth security of Σ and the SUF-t′ security

of Π such that

AdvuaΣ+Π,Compl(A) ≤ AdvauthΣ,Compl(A1) + AdvSUF-t
′

Π,Compl(A2).

In particular, the winning condition 1 and 3 capture the uniqueness of each WebAuthn 2

and CTAP 2.1 session identifiers. If two sessions are partnered with each other, then they

are each other’s unique partners. The winning condition 2 ensures that if the credential

private key between the partnered token and server sessions is not corrupted, then both
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sessions must agree on the server identifier idS, the H(ch, tb) hash of the challenge nonce

and the token binding states, the local counter n, and the user presence UP and verification

UV conditions. Furthermore, if the underlying hash function H is collision resistant, the

token and server sessions also implicitly agree on the token binding state tb. Our theorem

proves partnership of WebAuthn 2 sessions in the authenticated registration phase and

the resilience of man-in-the-middle attacks against WebAuthn 2 in the authentication

phase unless the corruption of the registration context on the token, which are captured

by winning conditions 4 and 5. The messages between every partnered token and server

session in WebAuthn 2 must be authorized by the client, which is connected to the server

over an authenticated channel in WebAuthn 2 and bound to the token in CTAP 2.1 unless

the attacker make certain corruptions, which is captured by wining conditions 4, 6, and 7.

5.7 Related Work

The only published in-depth formal analysis of FIDO2 is Barbosa et al. [20], which we

address in-depth. We note that a recently released manuscript [103] also analyzes aspects

of FIDO2, but their work focuses on WebAuthn’s privacy aspects, and introducing the

possibility of revocation, notably in the context of cryptocurrency wallets. Our work is

essentially orthogonal to [103] in terms of focus, and we consider the newer versions of

both sub-protocols.

To provide context for our comparison to [20], we first revisit the largest changes in

CTAP 2.1 compared to CTAP 2.0.

5.7.1 Comparison between CTAP 2.0 and CTAP 2.1

Compared to the expired proposed standard of CTAP 2.0 [60], the latest draft review of

CTAP 2.1 [59] has a number of differences, mainly from the following four aspects:

1. The definition of CTAP 2.0 is directly based on the concrete primitives such as the

Diffie-Hellman key exchange and hash functions, while CTAP 2.1 is based on a so-called

”PIN/UV Auth Protocol” abstract scheme, denoted by puvProtocol for short, which leads

CTAP 2.1 to be PQ ready. Up to date, two instantiations of puvProtocol are officially

announced, where CTAP 2.1 instantiated by the puvProtocol1 is close to CTAP 2.0. In

particular, CTAP 2.1 instantiated with our hybrid construction puvProtocol3 proposed

in Section 5.5.5 is provably PQ secure, as proven in Theorem 23.

2. In CTAP 2.0, the binding state that is used for the client’s authorization and the token’s

validation is defined as so-called pinToken, which has the length of multiple of 128 bits

and can be of unlimited length. In CTAP 2.1, the binding state is defined as so-called

pinUvAuthToken, the length of which is however fixed: either 128 or 256 bits.
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3. In CTAP 2.0, the pinToken is sampled during the reboot phase and then repeatedly re-

used until the next invocation of the reboot algorithm. In contrast, the pinUvAuthToken

in CTAP 2.1 is one-time – it is re-sampled after every usage. This difference exerts a

great influence on the security: While CTAP 2.0 only satisfies UF-t security as proven by

Barbosa et al. [20], CTAP 2.1 provably satisfies SUF-t′ security, see Theorem 22.

4. CTAP 2.0 allows tokens and clients to share a pinUvAuthToken only when the users

provide their correct pin, which is called clientPIN method. Instead, CTAP 2.1 additionally

enables users to input their biometric information such as fingerprint if the built-in on-

device user verification is physically supported by the token, which is called built-in

user verification method. Notably, the built-in user verification method is always the

preferred option when it is supported by the token. The biometric information is assumed

to be unique and unpredictable for each user and is input to the token without any

intermediary (therefore, the transmission can be considered to be authenticated). In

our model, built-in user verification can be viewed as the simplified CTAP 2.1 using

clientPIN method without the transmission of the encryption of pinHash.

5.7.2 Comparison with Barbosa et al. [20]

As mentioned before, our work builds on the first formal FIDO2 analysis in [20], and we

compare several aspects.

WebAuthn comparison

1. Different analysis target: The analysis of [20] assumes attestation type Basic such

that “the server is assumed to know the attestation public key that uniquely identifies

the authenticator” [20]. However, the token’s attestation key pair is generated in the

factory and at least 100,000 tokens should share same attestation key pair to ensure

privacy ([18, Section 14.4], [107, Section 14.4.1]). Thus, Barbosa et al.’s analysis indeed

proves the security of a batch of tokens that share the same attestation key pair instead

of a single token. In contrast, we investigate WebAuthn with the default attestation type

None, and our Theorem 21 also applies to WebAuthn with attestation type Basic. In

particular, our analysis focuses on the security of each single token rather than a batch

of tokens.

2. Fine-grained abstraction: Our WebAuthn abstraction is more detailed than [20].

For example, we include the supported signature list pkCP of the server, the optional

UV -support of the token, and the token binding state tb. Our theorem implies that

the server and token ultimately agree on these values, which is crucial for the desired

security. Furthermore, the supported schemes list enables us to to exhibit a downgrade

attack against WebAuthn and specify a security notion “Algorithm Agreement” for the

corresponding protection.
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3. Active interference: The security model of WebAuthn in [20] seems to allow active

interference during the registration. This is true in [20]’s model because it assumes that

each token has a unique attestation key pair and the server knows in advance which

public key to use for signature verification; yet this is not true in practice by design, as

mentioned previously. The official specification [107, Section 13.4.4] clearly acknowledges

the MitM attack on registration, contradicting the implication of [20].

4. Stronger attacker capability: Barbosa et al. assume the tokens to be tamper-proof,

i.e., the attacker is prevented from corrupting the internal state of any token. Our model,

instead, includes a corruption oracle that enables an attacker to reveal the private signing

key, capturing the real world scenario in which some tokens might be stolen and the

private keys compromised.

CTAP comparison

1. Different analysis target: Barbosa et al. analyzed CTAP 2.0 [60], while we investigate

CTAP 2.1 [59]. As explained in Section 5.7.1, these two versions have numerous differences.

Our paper carefully explores the abstraction gaps between CTAP 2.0 and CTAP 2.1.

2. Improved security model: We refine Barbosa et al.’s PACA security model. For

example, the token binding states may be reset in Reboot or Send oracle. However,

Barbosa et al. only mark the token sessions invalid in the Reboot oracle but forgot the

ones in the Send oracle11. Furthermore, the PACA definition of invalidity is not suitable

for CTAP 2.1, as the previous binding states of a token are reset after not only reboot

but also the establishment of a new session. In this work, we define a code-based SUF-t′

security, which refines and generalizes SUF-t security in [20].

3. Proof gaps: Although Barbosa et al. proved the security of CTAP 2.0, their proof has

several technical gaps. To address this, we base the SUF-t′ security of CTAP 2.1 on novel

assumptions and provide a detailed proof.

The Composition of WebAuthn and CTAP

1. Different security model: The security of the composition of WebAuthn 2 and

CTAP 2.1 relies on the respective security guarantees. The differences between the syntax

and the security models of both WebAuthn and CTAP compared to [20] propagate into

a different security model for the composition, and we provide a fully detailed proof.

11Recall that [20] defines the invalidity of a session such that ”if a token is rebooted, its binding states
got reset and hence become invalid” [20]
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5.8 Limitation and Future Work

While our work covers many core aspects of CTAP and WebAuthn beyond the state-of-

the-art, it remains an abstraction. Some of our main current limitations include that we

do not yet model some of the new CTAP 2.1 features for enterprise customers, and do not

make formal statements about the unlinkability of credentials or other detailed privacy

statements. We leave the proof methodology for tighter upper bounds in all theorems in

our paper as an open question.

5.9 Full Proofs

5.9.1 Proof of Theorem 19

Proof. The proof is given by a simple reduction. If there exists an attacker A that breaks

IND-1$PA security of SKE, then we can construct another attacker B that breaks IND-CPA

security of SKE as follows:

1. B invokes A.

2. When A outputs (m⋆
0,m

⋆
1), B returns 0 if m⋆

0 and m⋆
1 do not have the same length.

Otherwise, B forwards (m⋆
0,m

⋆
1) to its OEnc oracles, and returns the response to A.

3. Whenever A queries Rand oracle with input l, B first samples m′0,m
′
1

$←− {0, 1}l. Then, B
sends (m′0,m

′
1) to its OEnc oracle and receives response c′. Finally, B returns (m′0,m

′
1, c
′)

to A.

4. When A outputs b′, B also outputs b′.

It is straightforward that B perfectly simulates IND-1$PA experiment to A and B wins

if and only if A wins. Thus, we have that

ϵind-1$paSKE ≤ ϵind-cpaSKE

5.9.2 Proof of Theorem 20

Proof. The proof is given by a sequence of games. Let Advi denote the attacker A’s
advantage in winning Game i. It is straightforward that the attacker A can win only by

random guessing if it outputs m⋆
0 = m⋆

1, which yields the advantage 0. So, in the proof

below, we assume m⋆
0 ̸= m⋆

1. Let i
⋆ denote the smallest index such that the i⋆-th block of

m⋆
0 does not equal the one of m⋆

1.

Game 0. This game is identical to the original IND-1$PA-LPC experiment defined in

Definition 47. Thus, we have that

Adv0 = ϵind-1$pa-lpcSKE
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Game 1. This game is identical to Game 0 except the following modification:

1. The challenger C samples a random invertible permutation f : {0, 1}f2(λ) → {0, 1}f2(λ) in
advance,

2. Whenever C needs to execute the encryption SKE.Enc(K, ·) on some messages, C replaces

the underlying computation of F(K, ·) by f(·), and F−1(K, ·) by f−1(·).

It is straightforward that if A can distinguish Game 0 and Game 1, then there exists an

attacker B1 that can break the prp security of F. Thus, we have that

Adv0 − Adv1 ≤ ϵprpF

Game 2. In this game, the challenger aborts and let A immediately win if A can

query Lpc with input c such that m⋆
0 = SKE.Dec(K, c) but c ̸= c⋆. Let n · f2(λ) denote

the length of m⋆
0 for n ≥ 1. We parse m⋆

0 into n blocks such that m⋆
0 = x⋆

1 ∥ · · · ∥ x⋆
n.

Similarly, we parse c⋆ = y⋆0 ∥ · · · ∥ y⋆n and c = y0 ∥ · · · ∥ yn. Note that the condition c ̸= c⋆.

We use j⋆ to denote the smallest index such that yj⋆ ̸= y⋆j⋆ .

We separate the analysis into the following two cases.

If b = 0 In this case, m⋆
0 = SKE.Dec(K, c) = SKE.Dec(K, c⋆) but c ̸= c⋆. We first claim

that j⋆ = 0. Suppose that j⋆ > 0, which means y0 = y⋆0. Note that m
⋆
0 = SKE.Dec(K, c) =

SKE.Dec(K, c⋆), which implies that

x⋆
i = yi−1 ⊕ f−1(yi) = y⋆i−1 ⊕ f−1(y⋆i ),∀i ∈ {1, · · · , n}

In particular,

x⋆
1 = y0 ⊕ f−1(y1) = y⋆0 ⊕ f−1(y⋆1)

By y0 = y⋆0, we can observe that y1 = f(x⋆
1 ⊕ y0) = f(x⋆

1 ⊕ y⋆0) = y⋆1. Repeating the steps

above, we can further observe that yi = y⋆i for i = 1, 2, ..., n step by step. This contradicts

to our condition c ̸= c⋆.

Now, we focus on the first two blocks of the ciphertext c and c⋆. By the equation

above, m⋆
0 = SKE.Dec(K, c) = SKE.Dec(K, c⋆) in particular implies that y1 = f(x⋆

1⊕ y0) =

f(f−1(y⋆1)⊕ y⋆0 ⊕ y0). Recall that f is a random permutation as defined in Game 1 and

that A has no access to f or f−1. Unless the permutation f has applied to f−1(y⋆1)⊕y⋆0⊕y0
in the Rand oracle, which happens with probability at most qRand⌈ lmax

f2(λ)
⌉2−f2(λ), where

lmax denotes the maximal input of the queries to Rand oracle, the attacker has no

information about y1 and can guess y1 only by random guessing, which happens at most

2−f2(λ) per query. Note that A can query Lpc at most qLpc times, by union bound

theorem, we know that the attacker can win by query Lpc oracle with probability at most

qLpc2
−f2(λ) + qRand⌈ lmax

f2(λ)
⌉2−f2(λ).

If b = 1 In this case, the attacker needs to forge the ciphertext c that can be decrypted

to m⋆
0 by himself. In particular, the attacker A needs to forge the (i⋆-1)-th and i⋆-th
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blocks of the ciphertext such that yi⋆ = f(yi⋆-1 ⊕ x⋆
i⋆). Unless the permutation has applied

to yi⋆-1 ⊕ x⋆
i⋆ , which happens with probability at most qRand⌈ lmax

f2(λ)
⌉2−f2(λ), the attacker

receives no information about yi⋆ and can only randomly guess, which happens with

probability 2−f2(λ) per query. Note that A can query Lpc at most qLpc times, by union

bound theorem, we know that the attacker can win by query Lpc oracle with probability

at most qLpc2
−f2(λ) + qRand⌈ lmax

f2(λ)
⌉2−f2(λ).

To sum up, we have that

Adv1 − Adv2 ≤ qLpc2
−f2(λ) + qRand⌈

lmax

f2(λ)
⌉2−f2(λ)

Game 3. This game is identical to Game 2 except the following modification:

1. Whenever the attacker A queries Lpc with some input c, the challenger C simply returns

1 if c = c⋆, and 0 otherwise.

Recall that we ensure that the attacker A cannot query Lpc with any input c such that

m⋆
0 = SKE.Dec(K, c) but c ̸= c⋆. So, Game 2 and Game 3 look identical from the

attacker’s view and we have that

Adv2 = Adv3

Game 4. This game is identical to Game 3 except the following modification:

1. Whenever C needs to execute the encryption SKE.Enc(K, ·) on some messages, C replaces

the underlying computation of f(·) by F(K, ·) , and f−1(·) by F−1(K, ·).

It is straightforward that if A can distinguish Game 3 and Game 4, then there exists

an attacker B2 that can break the prp security of F. Thus, we have that

Adv3 − Adv4 ≤ ϵprpF

Final Analysis. In the end, we analyze the attacker A’s advantage in winning Game 4

by reduction. Namely, if A can break Game 4, then we can construct an attacker B3 that

breaks IND-1$PA security of SKE = CBC0 as follows:

1. B3 invokes A.

2. When A outputs (m⋆
0,m

⋆
1), B3 forwards it to its challenger. Later, when B3 receives c⋆

from its challenger, B3 forwards c⋆ to A.

3. When A queries Rand(l), B3 forwards this query to its challenger and the response back

to A.

4. When A queries Lpc(c), B3 returns 1 if c = c⋆ and 0 otherwise.

5. When A outputs a bit b′, B3 forwards b′ to its challenger.
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It is straightforward that B3 perfectly simulates Game 4 to A and B3 wins if and only if

A wins. Thus, we have that

Adv4 ≤ ϵind-1$paSKE

Combing the statements above, the proof is concluded by

ϵind-1$pa-lpcSKE ≤ 2ϵprpF + qLpc2
−f2(λ) + qRand⌈

lmax

f2(λ)
⌉2−f2(λ) + ϵind-1$paSKE

5.9.3 Proof of Theorem 21

Proof. The proof is given by a sequence of games. Let Advi denotes the advantage of the

Compl attacker A in winning Game i.

Game 0. This game is identical to the original experiment depicted in Figure 5.5. It

holds that

Adv0 = AdvauthPlA (A)

Game 1. This game is identical to Game 0 except that the game aborts and lets A
immediately win if there exist two credential identifiers that collide with each other. By

this, we ensure that all credential identifiers are distinct. Note that cids are only sampled

in the token’s registration response rRsp algorithm and that the rRsp algorithm is invoked

only when the attacker A queries Register oracle, which happens at most qRegister times,

there are maximal
(
qRegister

2

)
pairs of cids. Note also that each cid is independently sampled

from the set {0, 1}≥λ. The collision of cids happens with probability
(
qRegister

2

)
2−λ. Hence,

it holds that

Adv0 − Adv1 ≤
(
qRegister

2

)
2−λ

Game 2. This game is identical to Game 1 except that the challenger aborts the game

and let A immediately win if there are two challenge nonces ch during the authentication

phases that collide. By this, we ensure that all challenges nonce ch sampled in the

authentication phases are distinct. Note that chs in the authentication phase are only

sampled in the server’s authentication challenge aChall algorithm and that the aChall

algorithm is invoked only when the attacker A queries Challenge oracle, which happens

at most qChallenge times. There are maximal
(
qChallenge

2

)
= qChallenge(qChallenge−1)

2
pairs of chs

in the authentication phases. Note also that each ch is independently sampled in the set

{0, 1}≥λ. The collision of such chs happens with probability at most
(
qChallenge

2

)
2−λ. Hence,

it holds that

Adv1 − Adv2 ≤
(
qChallenge

2

)
2−λ
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Game 3. This game is identical to Game 2 except that the game aborts and the

attacker A immediately wins if there exist two hash values H(x1) = H(x2) that collide on

different inputs x1 ̸= x2. Note that this is in fact captured by the collision resistance of

the underlying H by definition. Thus, we have that

Adv2 − Adv3 ≤ ϵcoll-resH

Final Analysis. Now, we analyze the probability that A wins Game 3. Note that

A can win only when if one of the following conditions holds when a server πi
S accepts a

response message in the Complete oracle,

1. if ∃(T1, j1), (T2, j2) such that (T1, j1) ̸= (T2, j2) and πj1
T1
.sid = πj2

T2
.sid ̸= ⊥

2. if ∃(S1, i1), (S2, i2) s.t. (S1, i1) ̸= (S2, i2) and πi1
S1
.sid = πi2

S2
.sid ̸= ⊥

3. if (S, T ) ∈ Lfrsh and ̸ ∃j such that πi
S.sid = πj

T .sid for T ← regPartner(S)

4. if ∃(S ′, i′), (T ′, j′) such that πi′

S′ .sid = πj′

T ′ .sid ≠ ⊥ and (S ′, T ′) ∈ Lfrsh and πi′

S′ .agCon ≠

πj′

T ′ .agCon

Let Adv3.1, Adv3.2, Adv3.3, and Adv3.4 respectively denote the advantage of A in winning

Game 3 via condition (1), (2), (3), or (4). Thus, we have that

Adv3 ≤ max(Adv3.1,Adv3.2,Adv3.3,Adv3.4)

*Case (1) Note that the session identifier of the token sessions πj
T .sid for any (T, j) includes

the credential identifier cid, which is sampled by the token at the registration phase and

then stored in the registration context. Note also that we have ensured that all cids

sampled by tokens are distinct in Game 1. So, no session identifiers can be identical

across the token sessions that uses different registration contexts.

Note that the identifier of a token sessions at the registration phase include the counter

n = 0. Note also that the identifier of a token session at the authentication phase includes

the counter n, which is stored in the registration context and incremented by 1 before the

session identifiers are set. This means, no session identifiers of different token sessions that

makes use of the same registration context collide due to the increment of counter n.

To sum up, we have that

Adv3.1 = 0

*Case (2) First, we can observe that the session identifiers of each server session πi
S includes

H(idS). Note that we assume the identifier idS of each server S is unique and that we have

ensured no collision of the hash output on different inputs. So, no session identifiers can

be identical across different servers.

Note that the session identifier of a server session at the registration phase does not

include the H(mrcl), while the one of a server session at the authentication includes H(macl).
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The session identifiers of server sessions at the registration phase and the authentication

phases can be easily distinguished. Note also that we have ensured that all chs are distinct

in Game 2 and that no collision of the hash output on different inputs exists in Game 3.

This means, no session identifiers of different sessions of the same server can be identical.

To sum up, we have that

Adv3.2 = 0

*Case (3) Note that server session πi
S accepts the response message only when rcS[cid] ̸= ⊥

for some cid. Note also that rcS[cid] ̸= ⊥ is set only in the registration phase and that

all cids are sampled by the tokens followed by sending to the server session over an

authenticated channel. There must be a token T that registers with the server S, which

further implies that there must exist a token T such that rcT [S] ̸= ⊥. Thus, we have

T = regPartner(S, i) ̸= ⊥.
Then, we compute the probability of the occurrence of Case (3) by reduction. We

construct an attacker B that breaks the euf-cma security of DS, which is invoked in the

Complete oracle, by invoking A. Note that A can query Register oracle at most

qRegister times. B first guesses an index y such that the y-th Register query inputs

((S, πi
S.regIndex), (T, j), tb,UV ) and that the attacker A can finally wins condition (3)

due to Win-auth(S, i). Note that each session can be constructed at most once. So, the

existence of such y-th query is well-defined and unique. It’s obvious that B guesses correctly

with probability at least 1
qRegister

.

Next, B receives a public verification key vk from his challenger and honestly simulates

Game 3 to A except when answering the following queries:

• The y-th query Register((S, i), (T, j), tb,UV ): B3 honestly simulates this oracle except

that he directly uses vk , the public verification key from his challenger, in the rRsp

algorithm instead of sampling it by himself. Moreover, B records S̃ := S and T̃ := T .

• Response((T, j),macom), where macom = (id, h,UV ,UP) for id = idS̃, T = T̃ , and some

h, UV , UP : B honestly simulates this oracle except that he queries his signing oracle on

(ad, h) for the signature σ instead of computing it by himself.

• Corrupt(S, T ): If (S, T ) ̸= (S̃, T̃ ), B simply returns the rcT [S].sk . Otherwise, B aborts

the simulation.

Recall that the server’s session at the authentication phase is set to accepted only

in the Complete oracle. If B guesses the index y correctly, in order to trigger the

winning condition, then A must query Complete((S̃, i),macl,marsp) at some point for

some macl = (ch, tb) and marsp = (cid, ad, σ, uid). Moreover (S̃, T̃ ) ∈ Lfrsh indicates that

the attacker A has never queried Corrupt(S̃, T̃ ), which further means that the abortion

never happens.
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Then, assume that A can win via the Complete((S̃, i),macl,marsp) query for some

i, macl, and marsp. B outputs (m′, σ′) where m′ = (ad,H(macl)) and σ′ = σ. It is

straightforward that B perfectly simulates Game 3 to A if B guesses the index y correctly.

Note that the session identifier of each token at the authentication phase is part of the

marsp that it produced. The condition ̸ ∃j such that πi
S̃
.sid = πj

T̃
.sid indicates that suchmarsp

must not be produced by any token sessions. Further, this also implies that the message

m′ = (ad, h) has never been sent to the signing oracle. Moreover, πi
S.stexe = accepted

implies that DS.Vfy(vk ,m′, σ′) = 1. To sum up, B will always win the euf-cma experiment.

Thus, we have that

Adv3.3 ≤ qRegisterϵ
euf-cma
DS

*Case (4) First, by Case (1) and (2) we know that there are no two distinct token (resp.

server) sessions that have the identical non-⊥ session identifiers. Thus, if there exist

(S ′, i′), (T ′, j′) such that πi′

S′ partner with πj′

T ′ , then they are each other’s unique partner.

Second, we first consider the registration phase. Note that the registration phase is over

an authenticated channel. In each registration query Register((S ′, i′), (T ′, j′), tb,UV )

for some tb and UV , πi′

S′ will partner with πj′

T ′ if no abortion happens. Moreover, each

message sent by the server session πi′

S′ will then arrive at the token session πj′

T ′ , which

trivially indicates that πi′

S′ .agCon = πj′

T ′ .agCon.

Finally, we consider the authentication phase. If πi′

S′ .sid ≠ ⊥ is set during the authenti-

cation phase, then the session πi′

S′ must accepts a response message via the Complete

oracle. By Case (3), we know that πi′

S′ partner with πj
T , where T is the registration partner

of S ′, except probability at most Adv3.3. Recall that π
i′

S′ and πj′

T ′ are each other’s unique

partner. We have that (T, j) = (T ′, j′) except probability at most Adv3.3.

Note that πi′

S′ .sid = πj′

T ′ .sid ̸= ⊥ indicates that πi′

S′ and πj′

T ′ agree on the hash of the

server identifier H(idS), the credential identifier cid, the hash of the client message H(macl),

and the counter n. Recall that the we ensure that the hash values will not collie on different

input. So, the agreement on the hash of the server identifier H(idS) indicates the agreement

on the server identifier idS. The attacker A can wins via Case (4) only when πi′

S′ and πj′

T ′

do not have agreement on the UP and UV conditions. However, note that UP and UV

are included in the associated data, which is an input of the digital signature verification

algorithm in the aVrfy algorithm. By applying a reduction similar to the one in Case (3),

we know that the attacker can win with probability at most Adv3.3 ≤ qRegisterϵ
euf-cma
DS .

To sum up, the attacker A can wins Case (4) with advantage:

Adv3.4 ≤ Adv3.3 + Adv3.3 ≤ 2qRegisterϵ
euf-cma
DS

Merging the statements above, we have that

Adv3 ≤ max(Adv3.1,Adv3.2,Adv3.3,Adv3.4) ≤ 2qRegisterϵ
euf-cma
DS
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The proof is concluded by

AdvauthPlA (A) ≤
(
qRegister

2

)
2−λ +

(
qChallenge

2

)
2−λ + ϵcoll-resH + 2qRegisterϵ

euf-cma
DS

5.9.4 Proof of Theorem 22

Proof. We give the proof by a sequence of games. Each game is simulated between a

challenger C and an attacker A. Let Advi denote the attacker A’s advantage in winning

game i. Let (pkT,i, skT,i) denote the ECDH public key pair owned and used by πi
T . Let

(pkC,j, skC,j) denote the ECDH public key pair owned and used by πj
C .

Game 0. This game is identical to the ExprSUF-t
′

PACA experiment. Hence, it holds that

Adv0 = AdvSUF-t
′

ePACA(A)

Game 1. This game is identical to Game 0 except the following modifications:

1. At the beginning of this game, the challenger C sets up two lists L1
sCDH and LH1 , which

are initialized to ∅.

2. When the attacker A queries Setup and Execute oracles such that the challenger C
needs to run encapsulate1(pk

′) of a stateful Pin/Uv Auth Protocol puvProtocol1, C first

looks up whether there exists a value K̃ such that (pk ′, puvProtocol1.pk , K̃) ∈ L1
sCDH.

If such value does not exist, C then checks for all (u, v) ∈ LH1 such that u is the

x-coordinate of any ECDH point P whether (pk ′)puvProtocol1.sk = P . If any such check

succeeds, the challenger sets K̃ ← v and adds (pk ′, puvProtocol1.pk , K̃) into list L1
sCDH.

Otherwise, C simply samples K̃ $←− {0, 1}l1 uniformly at random and adds the tuple (pk ′,

puvProtocol1.pk , K̃) into list L1
sCDH.

Finally, the challenger replaces the computation of Line 101 and Line 102 in Figure 5.9

by

K ← K̃

3. When the attacker A queries Setup and Send-Bind-T oracles such that the challenger

C needs to run decapsulate1(c) of a stateful Pin/Uv Auth Protocol puvProtocol1, C first

looks up whether there exists a value K̃ such that (puvProtocol1.pk , c, K̃) ∈ L1
sCDH.

If such value does not exist, C then checks for all (u, v) ∈ LH1 such that u is the x-

coordinate of any ECDH point P whether cpuvProtocol1.sk = P . If any such check succeeds,

the challenger sets K̃ ← v and adds (puvProtocol1.pk , c, K̃) into list L1
sCDH.

Otherwise, C simply samples K̃ $←− {0, 1}l1 uniformly at random and adds (puvProtocol1.pk ,

c, K̃) into list L1
sCDH.
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Finally, the challenger replaces the computation of Line 105 and Line 106 in Figure 5.9

by

K ← K̃

4. Whenever the attacker A queries random oracle H1 with input u and the random oracle

outputs v, the challenger adds (u, v) into LH1 .

We compute the probability that the attacker A can distinguish Game 0 and Game 1

by n1,1 hybrid games, where n1,1 denotes the number of ECDH public keys that underlie

the stateful Pin/Uv Auth Protocol puvProtocol1 of any token and are sent to the attacker

A. Let (pk y
token, sk

y
token) denote the y-th ECDH key pair that are sampled by the underlying

stateful Pin/Uv Auth Protocol puvProtocol1 of any token and are sent to the attacker A
for y ∈ [n1,1]. Recall that the same ECDH key pairs of tokens might be repeatedly used by

different sessions and the attacker knows the public keys of each token’s or client’s session

only by querying Setup and Execute oracles. Each hybrid game hy.y for y ∈ [n1,1] is

simulated as following:

Game hy.0. This game is identical to Game 0 except that at the beginning of this game

the challenger C sets up two lists L1
sCDH and LH1 , which are initialized to ∅. Whenever

the attacker A queries random oracle H1 with input u and the random oracle outputs

v, the challenger adds (u, v) into LH1 . The list L1
sCDH is never used. This is indeed the

modification 1 and 4 in Game 1. Obviously, Game 0 and Game hy.0 are identical from

the attacker’s view, and we have:

Adv0 = Advhy.0

Game hy.y. This game is identical to Game hy.(y-1) except the following modifications:

1. When A sends any query Setup or Execute on input (T, i, C, j, U) such that the

underlying Pin/Uv Auth Protocol protocol of session πi
T is a puvProtocol1 with

(pkT,i, skT,i) = (pk y
token, sk

y
token), the challenger has to execute encapsulate1(pkT,i).

Instead of invoking encapsulate1(pkT,i) directly, C first looks up whether there exists

a value K̃ such that (pkT,i, pkC,j, K̃) ∈ L1
sCDH.

If such value does not exist, C then checks for all (u, v) ∈ LH1 such that u is the

x-coordinate of any ECDH point P whether pk
sky

token
C,j = P . If any such check succeeds,

the challenger sets K̃ ← v and adds (pkT,i, pkC,j, K̃) into list L1
sCDH.

Otherwise, C simply samples K̃ $←− {0, 1}l1 uniformly at random and adds (pkT,i,

pkC,j, K̃) into list L1
sCDH.

Finally, the challenger replaces the computation of Line 101 and Line 102 in

Figure 5.9 by

K ← K̃
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2. When A sends the query Send-Bind-T on input (T, i,m) such that (pkT,i, skT,i) =

(pk y
token, sk

y
token) and that m = c ∥ cph, the challenger first checks whether there

exists a value K̃ such that (pkT,i, c, K̃) ∈ L1
sCDH.

If such value does not exist, C then checks for all (u, v) ∈ LH1 such that u is the

x-coordinate of any ECDH point P whether c = P . If any such check succeeds, the

challenger sets K̃ ← v and adds (pkT,i, c, K̃) into list L1
sCDH.

Otherwise, C simply samples K̃ $←− {0, 1}l1 uniformly at random and adds (pkT,i, c,

K̃) into list L1
sCDH.

Finally, the challenger C is supposed to execute decapsulate1(c). Instead of invoking

decapsulate1(c) directly, C replaces the computation of Line 105 and Line 106 in

Figure 5.9 by

K ← K̃

Let event E1 denote the probability that the attacker A can distinguish Game hy.(y-1)

and Game hy.y. Note that the modifications between every two adjacent hybrid games

are independent. It holds that

Advhy.(y-1) − Advhy.y ≤ Pr[E1],∀y ∈ [n1,1]

Then, we analyze the probability of the occurrence of E1 by reduction. Namely, if E1

occurs, then we can construct an attacker B1 that breaks sCDH assumption over ECDH

by invoking A. On inputs (ECDH, A = ga, B = gb), B1 sets the y-th ECDH public key

pk y
token among all ECDH public key underlying any puvProtocol1 of all tokens to be A = ga.

Then, B1 simulates Game hy.(y-1) honestly, except the following modifications:

1. When A sends B1 the w-th query Setup or Execute on input (T, i, C, j, U)

for w ≥ 1 such that pkT,i is supposed to be pk y
token, B1 first samples rw ← Zq,

where q is the prime order of the the underlying cyclic group of ECDH and sets

pkC,j ← B · grw = gb+rw in the obtainSharedSecret-C-end algorithms. Next, when B1
needs to run encapsulate1(pkT,i) algorithm in obtainSharedSecret-C-end algorithm,

B1 first looks up whether there exists a value K̃ such that (pkT,i, pkC,j, K̃) ∈ L1
sCDH.

If such value does not exist, for all (u, v) ∈ LH1 such that u is the x-coordinate of

any ECDH point P , B1 queries its Oa oracle on (pkC,j, P ). If any response is true,

the challenger sets K̃ ← v and adds (pkT,i, pkC,j, K̃) into list L1
sCDH.

Otherwise, B1 simply samples K̃ $←− {0, 1}l1 uniformly at random and adds (pkT,i,

pkC,j, K̃) into list L1
sCDH.

Finally, B1 honestly performs the remaining execution except replacing the compu-

tation of Line 101 and Line 102 in Figure 5.9 by

K ← K̃
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2. When A sends the query Send-Bind-T on input (T, i,m) such that pkT,i = A =

ga and m = c ∥ cph, B1 first checks whether there exists a value K̃ such that

(pkT ′,i′ , c, K̃) ∈ L1
sCDH.

If such value does not exist, for each tuple (u, v) ∈ LH1 such that u is the x-coordinate

of any point P on ECDH, B1 queries Oa to its challenger on input (c, P ). If any

response from the challenger is true, B1 uses the corresponding value v as the hash

H1 of x-coordinate of the Diffie-Hellman exchange of pkT,i and c for the subsequent

computation.

If no response from the challenger is true, this means, cph is a random ciphertext

that is produced by A without knowing the correct symmetric key K. B1 simply

samples K̃ $←− {0, 1}l1 uniformly at random and adds (pkT,i, c, K̃) into list L1
sCDH.

Finally, B1 simply uses K̃ as the hash H1 of x-coordinate of the Diffie-Hellman

exchange of pkT,i and c for the subsequent computation.

3. Finally, A terminates at some point and is expected to distinguish Game hy.(y-1)

from Game hy.y. For all (u, v) ∈ LH1 such that u is the x-coordinate of some ECDH

point P and all rw sampled above, B1 queries Oa(B · grw , P ) to its challenger. If

any response is true, B1 returns P · A−rw to its challenger. Otherwise, B1 outputs a

random cyclic group element on ECDH.

Obviously, B1 simulates Game hy.(y-1) and Game hy.y to A perfectly. From the attacker

A’s view, the only difference between Game hy.(y-1) and Game hy.y is whether the key

K̃ is computed from the hash H1 of the x-coordinate of the real Diffie-Hellman exchange

or sampled uniformly at random. If A can distinguish Game hy.(y-1) from Game hy.y

effectively, A must have queried the x-coordinate of the real Diffie-Hellman exchange of

A and B · grw to the random oracle H1 for some w. This means, B1 can always return

P · A−rw = (B · grw)a · A−rw = gab+arw−arw = gab to its challenger. Thus, it holds that

Pr[E1] ≤ ϵsCDH
ECDH

Furthermore, Game hy.n1,1 have replaced all shared symmetric key K produced by

honest clients in encapsulate1 algorithm with a random key K̃. Thus, Game hy.n1,1 is

identical to Game 1 and we have:

Adv1 = Advhy.n1,1

Combing the statements above, we have that

Adv0 − Adv1 ≤ n1,1ϵ
sCDH
ECDH

For now, we continue to use the term n1,1 and will reduce it in the subsequent games.
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Game 2. This game is identical Game 1 except that the challenger C aborts the

simulation and let A immediately win if there exists collision between K̃ sampled in

Game 1. Recall that K̃s are sampled at most n1,1 times. Note that the collision happens

between every two keys with probability at most 2−l1 and that there exists at most
(
n1,1

2

)
pairs. We have that

Adv1 − Adv2 ≤
(
n1,1

2

)
2−l1

Game 3. This game is identical to Game 2 except the following modifications:

1. At the beginning of this game, the challenger C sets up two lists L2
sCDH and LH3 , which

are initialized to ∅.

2. When the attacker A queries Setup and Execute oracles such that the challenger

C needs to run encapsulate2(pk
′) of a stateful Pin/Uv Auth Protocol puvProtocol2, C

first looks up whether there exists values K̃1 and K̃2 such that (pk ′, puvProtocol2.pk ,

K̃1, K̃2) ∈ L2
sCDH.

If such value does not exist, C then checks for all ((u, u′), v) ∈ LH3 such that u is the

x-coordinate of any ECDH point P and u′ ∈ {“CTAP2 HMAC key”, “CTAP2 AES key”}
whether (pk ′)puvProtocol2.sk = P . If any such check succeeds, the challenger queries random

oracle H3 and sets K̃1 ← H3(u, “CTAP2 HMAC key”) and K̃2 ← H3(u, “CTAP2 AES key”)

and adds (pk ′, puvProtocol2.pk , K̃1, K̃2) into list L2
sCDH.

Otherwise, C simply samples K̃1, K̃2
$←− {0, 1}l3 uniformly at random and adds (pk ′,

puvProtocol2.pk , K̃1, K̃2) into list L2
sCDH.

Finally, the challenger replaces the computation of Line 121 - 123 in Figure 5.10 by

K1 ← K̃1, K2 ← K̃2

3. When the attacker A queries Setup and Send-Bind-T oracles such that the challenger C
needs to run decapsulate2(c) of a stateful Pin/Uv Auth Protocol puvProtocol2, C first looks
up whether there exists values K̃1 and K̃2 such that (puvProtocol2.pk , c, K̃1, K̃2) ∈ L2

sCDH.

If such value does not exist, C then checks for all ((u, u′), v) ∈ LH3 such that u is the

x-coordinate of any ECDH point P and u′ ∈ {“CTAP2 HMAC key”, ”CTAP2 AES key”}
whether cpuvProtocol2.sk = P . If any such check succeeds, the challenger queries random ora-

cle H3 and sets K̃1 ← H3(u, “CTAP2 HMAC key”) and K̃2 ← H3(u, ”CTAP2 AES key”)

and adds (pk ′, puvProtocol2.pk , K̃1, K̃2) into list L2
sCDH.

Otherwise, C simply samples K̃1, K̃2
$←− {0, 1}l3 uniformly at random and adds the tuple

(puvProtocol2.pk , c, K̃1, K̃2) ∈ L2
sCDH into list L2

sCDH.

Finally, the challenger replaces the computation of Line 127- 129 in Figure 5.10 by

K1 ← K̃1, K2 ← K̃2
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4. Whenever the attacker A queries random oracle H3 with input u and the random oracle

outputs v, the challenger adds (u, v) into LH3 .

Similar to Game 1, we can compute the probability that the attacker A can distinguish

Game 2 and Game 3 by n1,2 hybrid games, where n1,2 denotes the number of ECDH

public keys that underlie the stateful Pin/Uv Auth Protocol puvProtocol2 of any token

and are sent to the attacker A. Thus, we can easily have that

Adv2 − Adv3 ≤ n1,2ϵ
sCDH
ECDH

Game 4. This game is identical Game 3 except that the challenger C aborts the

simulation and lets A immediately win if there exists collision between K̃1 or collision

between K̃2 sampled in Game 3. Recall that K̃1 and K̃2 both are sampled at most n1,2

times. Note that the collision happens between every two keys with probability at most

2−l3 and that there exists at most
(
n1,2

2

)
pairs. We have that

Adv3 − Adv4 ≤ 2

(
n1,2

2

)
2−l3 =

(
n1,2

2

)
2−l3+1

Game 5. This game is identical to Game 4 except the following modifications:

1. At the beginning of this game, the challenger C sets up two lists L3
sCDH and LH5 , which

are initialized to ∅.

2. When the attacker A queries Setup and Execute oracles such that the challenger C
needs to run encapsulate3(pk

′) of a stateful Pin/Uv Auth Protocol puvProtocol3, where

pk ′ = (pk ′1, pk
′
2), C first executes (c2, Z2)← KEM.KEM.Encaps(pk ′2) and looks up whether

there exists a value Z̃ such that (pk ′1, puvProtocol3.pk 1, Z2, Z̃) ∈ L3
sCDH.

If such value does not exist, C then checks for all ((u, u′), v) ∈ LH5 such that u is the

x-coordinate of any ECDH point P and u′ = Z2 whether (pk ′1)
puvProtocol3.sk1 = P . If any

such check succeeds, the challenger sets Z̃ ← v and adds (pk ′1, puvProtocol3.pk 1, Z2, Z̃)

into list L3
sCDH.

Otherwise, C simply samples Z̃ $←− {0, 1}l5 uniformly at random and adds the tuple (pk ′1,

puvProtocol3.pk 1, Z2, Z̃) into list L3
sCDH.

Finally, the challenger replaces the computation of Line 167 - 169 in Figure 5.11 by

Z ← Z̃

3. When the attacker A queries Setup and Send-Bind-T oracles such that the challenger

C needs to run decapsulate3(c) of a stateful Pin/Uv Auth Protocol puvProtocol3, where

c = (c1, c2), C first executes Z2 ← KEM.KEM.Decaps(puvProtocol3.sk 2, c2) and looks up

whether there exists a value Z̃ such that (puvProtocol3.pk 1, c1, Z2, Z̃) ∈ L3
sCDH.
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If such value does not exist, C then checks for all ((u, u′), v) ∈ LH5 such that u is the

x-coordinate of any ECDH point P and u′ = Z2 whether (c1)
puvProtocol3.sk1 = P . If any

such check succeeds, the challenger sets Z̃ ← v and adds (puvProtocol3.pk 1, c1, Z2, Z̃)

into list L3
sCDH.

Otherwise, C simply samples Z̃ $←− {0, 1}l5 uniformly at random and adds (puvProtocol3.pk 1,

c1, Z2, Z̃) into list L3
sCDH.

Finally, the challenger replaces the computation of Line 177 - 179 in Figure 5.11 by

Z ← Z̃

4. Whenever the attacker A queries random oracle H5 with input u and the random oracle

outputs v, the challenger adds (u, v) into LH5 .

Similar to Game 1, we can compute the probability that the attacker A can distinguish

Game 4 and Game 5 by n1,3 hybrid games, where n1,3 denotes the number of ECDH

public keys that underlie the stateful Pin/Uv Auth Protocol puvProtocol3 of any token

and are sent to the attacker A. Thus, we can easily have that

Adv4 − Adv5 ≤ n1,3ϵ
sCDH
ECDH

Game 6. This game is identical Game 5 except that the challenger C aborts the

simulation and let A immediately win if there exists collision between Z̃ sampled in

Game 5. Recall that Z̃s are sampled (either uniformly at random or from the random

oracle) at most n1,3 times. Note that the collision happens between every two keys with

probability at most 2−l5 and that there exist at most
(
n1,3

2

)
pairs. We have that

Adv5 − Adv6 ≤
(
n1,3

2

)
2−l5

Game 7. This game is identical Game 6 except that the challenger C aborts the

simulation and let A immediately win if there exists collision between K1s or collision

between K2s derived in encapsulate3. Recall that K1s and K2s both are produced by

H6(Z̃, “CTAP2 HMAC key”) in encapsulate3 at most n1,3 times and that Z̃s are assumed

to be distinct from each other in Game 6. Note that the collision happens between every

two keys with probability at most 2−l6 and that there exists at most
(
n1,3

2

)
pairs. We have

that

Adv6 − Adv7 ≤ 2

(
n1,3

2

)
2−l6 =

(
n1,3

2

)
2−l6+1

Recall that the honest public keys of tokens (resp. the ones of clients) used in the

encapsulatei and decapsulatei for i ∈ {1, 2, 3} are sent to attacker A in obtainSharedSecret-T

(resp. obtainSharedSecret-C-end) algorithm only when answering the Setup and Execute

oracles. So, we have that n1,1 + n1,2 + n1,3 ≤ qSetup + qExecute.
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Merging the statements above, we can state the upper bound as:

Adv0 − Adv7 ≤(n1,1 + n1,2 + n1,3)ϵ
sCDH
ECDH +

(
n1,1

2

)
2−l1 +

(
n1,2

2

)
2−l3+1

+

(
n1,3

2

)
(2−l5 + 2−l6+1)

≤(qSetup + qExecute)ϵ
sCDH
ECDH +

(
qSetup + qExecute

2

)
22−min(l1,l3,l5,l6)

Game 8. In this game, the challenger C aborts the game and lets the attacker A
immediately win if there exist two inputs pin and pin′ during C’s execution such that

H(pin) = H(pin′). This violates the collision resistance of H by definition. Since H is

assumed to be ϵcoll-resH -collision resistant, we have that

Adv7 − Adv8 ≤ ϵcoll-resH

Game 9. In this game, the challenger C aborts the game and lets the attacker A
immediately win if the challenger honestly samples two identical ECDH public keys of

tokens or of clients and sends them to the attacker. Recall that each sampled ECDH

public keys are sent to the attacker only in Setup or Execute oracles. And one newly

sampled ECDH keys of tokens and one of clients are sent to the attacker in both Setup

and Execute queries. In total, there are at most (qSetup + qExecute) ECDH public keys of

tokens and (qSetup+ qExecute) ECDH public keys of clients. Note that the collision happens

between every two public keys with probability at most 2−q, where q denote the prime

order of the underlying ECDH group, and that there exist at most
(
(qSetup+qExecute)

2

)
pairs of

tokens (resp. of clients). We have that

Adv8 − Adv9 ≤ 2

(
(qSetup + qExecute)

2

)
2−q ≤

(
(qSetup + qExecute)

2

)
21−q

Game 10. This game is identical to Game 9 except that the following modifications:

1. The challenger C samples a random p̃in $←− D at the beginning of the game but never

uses it. The challenger aborts and lets A immediately win if p̃in collides with any user

pin pinU for any user U .

2. Whenever the attacker A queries oracle Setup inputting any (T, i, C, j, U), the challenger

replaces pin ← stT .puvProtocol.decrypt(K, cp) in the setPIN-T algorithm by

pin ← pinU

3. The challenger aborts the game and lets A immediately win if there exits a collision

between pts used in Send-Bind-T oracles.
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Note that the Setup phase is assumed to be authenticated. The user U ’s pin pinU ,

which was encrypted by the client, can always be decrypted by the token.

Moreover, note that the attacker can query NewU at most qNewU times and each user

pin is sampled from distribution D with min-entropy αD. The probability that p̃in collides

with any other user pin pinU is bounded by qNewU2
−αD .

Furthermore, note that the pts are random strings of length µλ, 2λ, µ′λ respectively

in puvProtocol1, puvProtocol2, and puvProtocol3. Note also that pts are used only in

Send-Bind-T oracles. The collision between pts happens with probability at most(
qSend-Bind-T

2

)
2−min(µ,2,µ′)λ.

So, we have that

Adv9 − Adv10 ≤ qNewU2
−αD +

(
qSend-Bind-T

2

)
2−min(µ,2,µ′)λ

Game 11. This games is identical to Game 10 except the following modification:

1. Whenever A queries Setup(T, i, C, j, U) and the challenger sets the selected Pin/Uv

Auth Protocol of the client session πj
C to be πj

C .selectedpuvProtocol = puvProtocol1 during

the execution, the challenger replaces cp = SKE1.Enc(K̃, pinU) in the setPIN-C(πj
C , pinU)

by c̃p ← SKE1.Enc(K̃, p̃in), where p̃in was sampled in Game 10.

We prove that Game 10 and Game 11 are indistinguishable from A’s view by n2,1

hybrid games, where n2,1 denotes the number of K̃ sampled in Setup oracle when the

underlying Pin/Uv Auth Protocol is puvProtocol1. Let K̃
y denotes the y-th K̃ sampled

by the challenger C in Setup oracle when the underlying Pin/Uv Auth Protocol is

puvProtocol1. The hybrid game hy.y for y ∈ [n2,1] is defined below.

Game hy.0. This game is identical to Game 10 and we have that:

Adv10 = Advhy.0

Game hy.y. This game is identical to Game hy.(y-1) except the following modifications:

1. When A queries Setup(T, i, C, j, U) and that will produce the y-th K̃y during the

game, the challenger replaces cp = SKE1.Enc(K̃
y, pinU ) in the setPIN-C(πj

C , pinU ) by

c̃p ← SKE1.Enc(K̃
y, p̃in).

Let event E2 denote the probability that the attacker A can distinguish Game hy.(y-1)

and Game hy.y. Note that the modifications between every two adjacent hybrid games

are independent. It holds that

Advhy.(y-1) − Advhy.y ≤ Pr[E2],∀y ∈ [n2,1]

Then, we analyze the probability of the occurrence of E2 by reduction. Namely, if

E2 occurs, then we can construct an attacker B2 that breaks IND-1CPA-H2 security of
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SKE1 by invoking A. B2 simulates Game hy.(y-1) honestly, except for the query to

the Setup(T, i, C, j, U) that will produce the y-th K̃y during the game. To handle this

query, B2 executes following step:

1. B2 sends (pinU , p̃in) to its challenger and obtains (c, t). Then, B2 sets (c, t) as the

output of setPIN-C(πj
C , pinU) algorithm.

Note that we have ensured that all sampled ECDH public keys are distinct in Game 9

and that all sampled K̃s in L1
sCDH are distinct in Game 2. It’s easy to observe

that B2 perfectly simulates Game hy.(y-1) or Game hy.y. Moreover, B2 simulates

Game hy.(y-1) if (c, t) = (SKE1.Enc(K̃
y, pinU),H2(K̃

y, c)) and Game hy.y if (c, t) =

(SKE1.Enc(K̃
y, p̃in),H2(K̃

y, c)). Thus, B2 can win IND-1CPA-H2 experiment whenever A
can distinguish Game hy.(y-1) and Game hy.y. Thus, we have that

Pr[E2] ≤ ϵind-1cpa-H2

SKE1

Moreover, Game hy.n2,1 have replaced all cp in the Setup oracles whenever the client

chooses puvProtocol1. Thus, Game hy.n2,1 is identical to Game 11 and we have

Adv11 = Advhy.n2,1

Note that all hybrid games are independent. Combing the statements above, we have

that

Adv10 − Adv11 ≤ n2,1ϵ
ind-1cpa-H2

SKE1

Here, we simply keep using the number n2,1, which would be helpful for us to tighten

our security upper bound in the following games.

Game 12. This games is identical to Game 11 except the following modification:

1. When A queries Setup(T, i, C, j, U), where pinU is not corrupted, and the challenger sets

the selected Pin/Uv Auth Protocol of the client session πj
C to be πj

C .selectedpuvProtocol =

puvProtocol2 during the execution, the challenger replaces cp = SKE2.Enc(K̃2, pinU) in

the setPIN-C(πj
C , pinU ) by c̃p ← SKE2.Enc(K̃2, p̃in), where p̃in was sampled in Game 10.

We prove that Game 11 and Game 12 are indistinguishable from A’s view by n2,2

hybrid games, where n2,2 denotes the number of K̃2 sampled in Setup oracle when the

underlying Pin/Uv Auth Protocol is puvProtocol2. Let K̃
y
2 denote the y-th K̃2 sampled

in Setup oracle when the underlying Pin/Uv Auth Protocol is puvProtocol2. The hybrid

game hy.y for y ∈ [n2,2] is defined below.

Game hy.0. This game is identical to Game 11 and we have:

Adv11 = Advhy.0
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Game hy.y. This game is identical to Game hy.(y-1) except the following modifications:

1. WhenA queries Setup(T, i, C, j, U) that will make use of the y-th K̃y
2 for puvProtocol2

during the game, the challenger replaces cp = SKE2.Enc(K̃
y
2 , pinU) in the execution

setPIN-C(πj
C , pinU) by c̃p ← SKE2.Enc(K̃

y
2 , p̃in).

Let event E3 denote the probability that the attacker A can distinguish Game hy.(y-1)

and Game hy.y. Note that the modifications between every two adjacent games are

independent. It holds that

Advhy.(y-1) − Advhy.y ≤ Pr[E3],∀y ∈ [n2,2]

Then, we analyze the probability of the occurrence of E3 by reduction. Namely, if E3

occurs, then we can construct an attacker B3 that breaks IND-1CPA security of SKE2

by invoking A. B3 simulates Game hy.(y-1) honestly, except for the query to the

Setup(T, i, C, j, U) and that will produce the y-th K̃y
2 for puvProtocol2 during the game.

To handle this query, B3 executes the following steps:

1. B3 sends query(pinU , p̃in) to its challenger and obtains c. Then, B3 sets c as the first
output of setPIN-C(πj

C , pinU) algorithm.

Note that we have already ensured that all ECDH public keys are distinct in Game 9

and that all used K̃2 are distinct in Game 4. It’s easy to observe that B3 perfectly

simulates Game hy.(y-1) or Game hy.y. Moreover, B3 simulates Game hy.(y-1) if

c = SKE2.Enc(K̃
y
2 , pinU) and Game hy.y if c = SKE2.Enc(K̃

y, p̃in). Thus, B3 can win

IND-1CPA experiment whenever A can distinguish Game hy.(y-1) and Game hy.y. Thus,

we have that

Pr[E3] ≤ ϵind-1cpaSKE2

Moreover, Game hy.n2,2 have replaced all cp in the Setup oracles whenever the client

chooses puvProtocol2. Thus, Game hy.n2,2 is identical to Game 12 and we have

Adv12 = Advhy.n2,2

Combing the statements above, we have that

Adv11 − Adv12 ≤ n2,2ϵ
ind-1cpa
SKE2

Here, we simply keep using the number n2,2, which would be helpful for us to tighten

our security upper bound in the following games.

Game 13. This games is identical to Game 12 except the following modification:
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1. When A queries Setup(T, i, C, j, U) and the challenger sets the selected Pin/Uv Auth

Protocol of the client session πj
C to be πj

C .selectedpuvProtocol = puvProtocol3 during

the execution, the challenger replaces cp = SKE3.Enc(K2, pinU) in setPIN-C(πj
C , pinU) by

c̃p ← SKE3.Enc(K2, p̃in), where p̃in was sampled in Game 10.

Let n2,3 denote the number of K2 sampled in Setup oracle when the underlying Pin/Uv

Auth Protocol is puvProtocol3. Similar to the analysis in Game 12, we can easily have

that

Adv12 − Adv13 ≤ n2,3ϵ
ind-1cpa
SKE3

Note that n2,1, n2,2, and n2,3 respectively denote the number of symmetric encryp-

tion keys produced by puvProtocol1, puvProtocol2, and puvProtocol3 in the Setup ora-

cle. Moreover, our CTAP 2.1 only supports these three versions. This implies that

n2,1 + n2,2 + n2,3 ≤ qSetup. Further, we have that

Adv10 − Adv13 ≤ n2,1ϵ
ind-1cpa-H2

SKE1
+ n2,2ϵ

ind-1cpa
SKE2

+ n2,3ϵ
ind-1cpa
SKE3

≤ qSetup max(ϵind-1cpa-H2

SKE1
, ϵind-1cpaSKE2

, ϵind-1cpaSKE3
)

Game 14. This game is identical to Game 13 except the following modification:

1. Whenever the attacker A queries Send-Bind-T(T, i,m) oracle, instead of checking

the decrypted pinHash ̸= stT .pinHash in the obtainPinUvAuthToken-T algorithm, the

challenger checks whether pinHash ̸= H(pinstT .user)

Note that stT .pinHash = H(pinstT .user). Game 13 and Game 14 are indeed identical

and we have that:

Adv13 = Adv14

Game 15. This games is identical to Game 14 except the following modification:

1. When A queries Execute(T, i, C, j, U) and the challenger sets the selected Pin/Uv

Auth Protocol of the client sessions πj
C to be πj

C .selectedpuvProtocol = puvProtocol1, the

challenger replaces cph = SKE1.Enc(K̃,H(pinU )) in the obtainPinUvAuthToken-C-start(πj
C ,

pinU ) by c̃ph ← SKE1.Enc(K̃,H(p̃in)), where K̃ is the underlying symmetric key produced

by puvProtocol1 and that p̃in was sampled in Game 10.

We prove that Game 14 and Game 15 are indistinguishable by n3,1 hybrid games,

where n3,1 denotes the number of K̃ sampled in Execute oracle when the underlying

Pin/Uv Auth Protocol is puvProtocol1. Let K̃
y denotes the y-th K̃ sampled in Execute

oracle when the underlying Pin/Uv Auth Protocol is puvProtocol1. The hybrid game hy.y

for y ∈ [n3,1] is defined below.
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Game hy.0. This game is identical to Game 14 and we have:

Adv14 = Advhy.0

Game hy.y. This game is identical to Game hy.(y-1) except the following modifications:

1. WhenA queriesExecute(T, i, C, j, U) that will produce the y-th K̃y for puvProtocol1,

the challenger replaces cph = SKE1.Enc(K̃
y,H(pinU )) in obtainPinUvAuthToken-C-start(πj

C ,

pinU) by c̃ph ← SKE1.Enc(K̃
y, p̃in).

Let event E4 denote the probability that the attacker A can distinguish Game hy.(y-1)

and Game hy.y. It holds that

Advhy.(y-1) − Advhy.y ≤ Pr[E4]

Then, we analyze the probability of the occurrence of E4 by reduction. Namely, if E4

occurs, then we can construct an attacker B4 that breaks IND-1$PA-LPC security of SKE1

by invoking A. B4 simulates Game hy.(y-1) honestly, except for the following queries:

1. When A sends Execute(T, i, C, j, U) that will produce the y-th K̃y for puvProtocol1

in this phase. To handle this query, B4 sends (H(pinŨ ),H(p̃in)) to its challenger and

obtains c̃. Then, B4 sets c̃ as the output of obtainPinUvAuthToken-C-start(πj
C , pinŨ )

algorithm. The reaming of this query is answered honestly.

2. When A queries Send-Bind-T(T, i,m) following the above Execute(T, i, C, j, U)

query, B4 separate the cases depending on whether m = pkC,j ∥ c̃ph.

(a) If stT .user ̸= U , then B4 simply performs as if the decrypted pinHash is unequal

to H(pinstT .user).

(b) If stT .user = U and m = pkC,j ∥ c̃ph, then B4 queries Rand with input

µλ to its challenger and obtains (pt0, pt1, c̃
′). Then, B4 sets (c̃′, false) as the

output of obtainPinUvAuthToken-T (πi
T , puvProtocol1, c, cph). Meanwhile, B4 sets

πi
T .bs = pt0.

(c) If stT .user = U but m = pkC,j ∥ cph for cph ̸= c̃ph, then B4 queries Lpc(cph) to

its challenger. If the response is false, then B4 performs as if the decrypted

pinHash does not match H(pinstT .user). Otherwise, B4 queries Rand with input

µλ to its challenger and obtains (pt0, pt1, c̃
′). Then, B4 sets (c̃′, false) as the

output of obtainPinUvAuthToken-T (πi
T , puvProtocol1, c, cph). Meanwhile, B4 sets

πi
T .bs = pt0.

3. When A afterwards sends Send-Bind-C(C, j,m) following the above Execute(T,

i, C, j, Ũ) and Send-Bind-T(T, i,m) queries without abortion, B sets πj
C .bs = pt0

if m = c̃′, and πj
C .bs = pt1 otherwise.
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It’s easy to observe that B4 perfectly simulatesGame hy.(y-1) if cph = SKE1.Enc(K̃
y,H(pinU ))

and Game hy.y if cph = SKE1.Enc(K̃
y,H(p̃in)). Thus, B4 can win IND-1$PA experiment

whenever A can distinguish Game hy.(y-1) and Game hy.y. Thus, we have

Pr[E4] ≤ ϵind-1$pa-lpcSKE1

Moreover, Game hy.n3,1 have replaced all cph in the Execute oracles whenever the

client chooses puvProtocol1. Thus, Game hy.n3,1 is identical to Game 15 and we have

Adv15 = Advhy.n3,1

Note that we have assumed all K̃ of puvProtocol1 are distinct in Game 2 and all above

hybrid games are independent. Combing the statements above, we have that

Adv14 − Adv15 ≤ n3,1ϵ
ind-1$pa-lpc
SKE1

Similar as before, we simply keep using the number n3,1, which would be helpful for us

to tighten our security upper bound in the following games.

Game 16. This game is identical to Game 15 except the following modification:

1. When A queries Execute(T, i, C, j, U) and the challenger sets the Pin/Uv Auth Protocol

of the client session πj
C to be πj

C .selectedpuvProtocol = puvProtocol2, the challenger

replaces cph
$←− SKE2.Enc(K̃2,H(pinU )) in the obtainPinUvAuthToken-C-start(πj

C , pinU ) by

c̃ph
$←− SKE2.Enc(K̃2,H(p̃in)), where K̃2 is the underlying symmetric key produced by

puvProtocol2 and that p̃in was sampled in Game 10.

Similar to the analysis in Game 15, let n3,2 denotes the number of K̃2 of authenticate2

that are generated in Execute(T, i, C, j, U) oracles. We can easily have the equation

below by a sequence of hybrid games.

Adv15 − Adv16 ≤ n3,2ϵ
ind-1$pa-lpc
SKE2

Game 17. This games is identical to Game 16 except the following modification:

1. When A queries Execute(T, i, C, j, U) and the challenger sets the Pin/Uv Auth Protocol

of the client session πj
C to be πj

C .selectedpuvProtocol = puvProtocol3, the challenger

replaces cph
$←− SKE3.Enc(K2,H(pinU )) in the obtainPinUvAuthToken-C-start(πj

C , pinU ) by

c̃ph
$←− SKE3.Enc(K2,H(p̃in)), where K2 is the underlying symmetric key produced by

puvProtocol3 and that p̃in was sampled in Game 10.
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Similar to the analysis in Game 16, let n3,3 denotes the number of K2 of authenticate3

that are generated in Execute(T, i, C, j, U) oracles. We can easily have the equation

below by a sequence of hybrid games.

Adv16 − Adv17 ≤ n3,3ϵ
ind-1$pa-lpc
SKE3

Note that there are only 3 kinds of puvProtocols. We have n3,1 + n3,2 + n3,3 ≤ qExecute.

It holds that

Adv14 − Adv17 ≤n3,1ϵ
ind-1$pa-lpc
SKE1

+ n3,2ϵ
ind-1$pa-lpc
SKE2

+ n3,3ϵ
ind-1$pa-lpc
SKE3

≤qExecute max(ϵind-1$pa-lpcSKE1
, ϵind-1$pa-lpcSKE2

, ϵind-1$pa-lpcSKE3
)

Game 18. In this game, the challenger C aborts the game and let A immediately win

if there exists a token session πi
T that accepts a malicious cph sent by A via Send-Bind-T

query without corrupting the pin of the user stT .user. More formally and concretely, the

challenger C aborts the game and let A immediately win if there exists a token session πi
T

such that

1. the attacker has queried Send-Bind-T(T, i,m) such that m = pk ∥ cph is not included

in the output of any query Execute(T, i, C, j, U) for any C, j, U .

2. πi
T .pinCorr = false

3. πi
T .stexe = bindDone and πi

T .bs ̸= ⊥

In this case, the input message m of Send-Bind-T is forged by A. Note that all

the transcripts of a token T that A eavesdrops are independent of pinU with pinU ̸= p̃in

and that A is not allowed to corrupt the user pin pinstT .user that setups token T . The

condition “πi
T .stexe = bindDone and πi

T .bs ≠ ⊥” indicates that the attacker A must encrypt

H(pinstT .user). Recall that the pinU of any honest users U are sampled randomly following

distribution D with min-entropy αD and that A can try at most pinRetriesMax times

for each token session πi
T . A can guess the pinstT .user for each token session πi

T correctly

with probability at most pinRetriesMax2−αD . Note also that tokens can be set pin only in

Setup oracles, which happens at most qSetup times. By union bound, we have that

Adv17 − Adv18 ≤ qSetuppinRetriesMax2−αD

Final Analysis. Now, let’s finally check A can satisfy the winning conditions.

Note that the win-SUF-t′ is set to true in the Validate(T, i,M, t, d) query only when

at least one of the following four winning conditions

1. the user decision d ̸= accepted, or

2. two distinct client sessions that completed Bind have the same session identifiers, or

3. two distinct token sessions that completed Bind have the same session identifiers, or
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4. (M, t) was not output by any of πi
T ’s uncompromised valid partners πj

C before the setup

user of token T is corrupted

However, we can observe that

1. d ̸= accepted: This is always false by definition, see validate-T algorithm in Figure 5.8.

2. ∃(C1, j1), (C2, j2) such that (C1, j1) ̸= (C2, j2) and πj1
C1
.stexe = πj2

C2
.stexe = bindDone and

πj1
C1
.sid = πj2

C2
.sid : Recall that the client sends the randomly sampled puvProtocoli.pk ,

which includes ECDH public key, to the tokens in the Execute oracles. Recall also that

we have ensured that all honestly sampled ECDH public keys are distinct and that the

session identifier is defined as the full transcript during the execution of Bind algorithm.

This means, two client sessions can never have the same identifier (not matter whether

they are valid or not). Thus, this condition is always false.

3. ∃(T1, i1), (T2, i2) such that (T1, i1) ̸= (T2, i2) and πi1
T1
.stexe = πi2

T2
.stexe = bindDone and

πi1
T1
.sid = πi2

T2
.sid: Note that session identifiers of token sessions includes the token’s public

key pk , the client’s encapsulation c, the encryption of pinHash cph, and the encryption

of pt cpt. Then, πi1
T1
.sid = πi2

T2
.sid holds only when (pk 1, c1, c1ph, c

1
pt) = (pk 2, c2, c2ph, c

2
pt),

where (pk 1, c1, c1ph, c
1
pt) is included in the πi1

T1
.sid and (pk 2, c2, c2ph, c

2
pt) is included in the

πi2
T2
.sid. In particular, (pk 1, c1) = (pk 2, c2) indicates that c1pt and c2ph are encrypted under

the same symmetric key. Moreover, in Game 10 we ensured that there exists no collision

between pts, which further implies that c1pt ̸= c2pt if the underlying symmetric encryption

is correct. Thus, this condition is always false.

4. for (C ′, j′)← bindPartner(T, i), all of the following conditions must hold: (a) (C ′, j′,M, t) /∈
LAuth, (b) π

j′

C′ = (⊥,⊥) or πj′

C′ .compromised = false, (c) πi
T .pinCorr = false : According

to the condition (2), we know that the attacker A is not allowed to compromise the

binding state of any client (C ′, j′) such that πj′

C′ .bs = πi
T .bs According to the condition

(3)πi
T .pinCorr = false and Game 18, we know that the attacker A cannot execute active

attack against token to obtain the token biding state πi
T .bs. Thus, the attacker A has no

idea about the πi
T .bs.

According to the condition (1) (C ′, j′,M, t) /∈ LAuth, we know that (M, t) was never

output by any of the session πi
T ’s partner. The attacker therefore has to forge the

message-tag pair (M, t). Recall that the tag t is computed by applying random oracles

H2, H4, and H7 to the corresponding binding state πi
T .bs and message M , respectively in

puvProtocol1, puvProtocol2, and puvProtocol3. The attacker can only guess the either the

tag directly or the toke binding state πi
T .bs. Moreover, recall that:

(a) If the underlying authProtocol is puvProtocol1, then the attacker A can guess πi
T .bs

with probability 2−µλ and tag t with probability 2−l2
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(b) If the underlying authProtocol is puvProtocol2, then the attacker A can guess πi
T .bs

with probability 2−2λ and tag t with probability 2−l4 .

(c) If the underlying authProtocol is puvProtocol3, then the attacker A can guess πi
T .bs

with probability 2−µ
′λ and the tag with probability 2−l7 .

Thus, the probability that A finds can forge tag t for any message M in each Validate

query is bounded by

max(2−µλ, 2−l2 , 2−2λ, 2−l4 , 2−µ
′λ, 2−l7) = 2−min(µλ,2λ,µ′λ,l2,l4,l7)

Note that the attacker A can attempts only in Validate oracle, which can be invoked

at most qValidate times. By union bound, we have that

Adv18 ≤ qValidate2
−min(µλ,2λ,µ′λ,l2,l4,l7)

Combing all statements above, the proof is concluded by:

AdvSUF-t
′

ePACA(A) ≤(qSetup + qExecute)ϵ
sCDH
ECDH + ϵcoll-resH

+

(
qSetup + qExecute

2

)
(22−min(l1,l3,l5,l6) + 21−q)

+qNewU2
−αD +

(
qSend-Bind-T

2

)
2−min(µ,2,µ′)λ

+qSetup max(ϵind-1cpa-H2

SKE1
, ϵind-1cpaSKE2

, ϵind-1cpaSKE3
)

+qExecute max(ϵind-1$pa-lpcSKE1
, ϵind-1$pa-lpcSKE2

, ϵind-1$pa-lpcSKE3
)

+qSetuppinRetriesMax2−αD

+qValidate2
−min(µλ,2λ,µ′λ,l2,l4,l7)

5.9.5 Proof of Theorem 23

Proof. We give the proof by a sequence of games. Each game is simulated between a

challenger C and an attacker A. Let Advi denote the attacker A’s advantage in winning

game i.

Game 0. This game is identical to the ExprSUF-t
′

ePACA experiment. Hence, it holds that

Adv0 = AdvSUF-t
′

ePACA(A)

Game 1. This game is identical to Game 0 except that the following modifications:

1. Whenever a client executes puvProtocol3.encapsulate3 on a token’s public key pk ′, the

challenger C executes the following steps:

(a) Parse (pk ′1, pk
′
2)← pk ′
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(b) Run (c2, Z2)
$←− KEM.KEM.Encaps(pk ′2)

(c) Sample a random Z̃2 in the key space of KEM

(d) Replace Z2 by Z̃2 for the subsequent execution.

(e) Finally, output a ciphertext c = (c1, c2) for some c1.

2. Whenever a token holding pk ′′ = (pk ′′1, pk
′′
2) such that pk ′2 = pk ′′2 and needs to execute

decapsulate3 on c′′ = (c′′1, c
′′
2) such that c′′2 = c2, the challenger executes decapsulate3

honestly except that C directly sets Z2 ← Z̃2.

We prove that A cannot distinguishable Game 0 and Game 1 by n hybrid games,

where n denotes the number of encapsulations that was output by all tokens in the Setup

and Execute oracles. Then, we have that n ≤ qSetup + qExecute. Let (sk
y
T , pk

y
T ) denote

the y-th KEM public-private key pair among all tokens. The Game hy.y for y ∈ [n] is

defined as follows:

Game hy.0 . This game is identical to Game 0 and we have that

Adv0 = Advhy.0

Game hy.y . This game is identical to Game hy.(y-1) except that the following modifi-

cations:

1. Whenever A queries Setup and Execute oracles where C needs to returns y-th

KEM public key pk y
T among all tokens and executes KEM.Encaps(pk y

T ), the challenger

executes (c2, Z2)
$←− KEM.Encaps(pk y

T ) and samples Z̃2 in the key space of KEM.

Next, C replaces Z2 by Z̃2 for the subsequent execution.

2. Whenever C needs to execute KEM.Decaps(sk y
T , c2), it directly uses Z2 ← Z̃2 for the

subsequent execution instead of computing Z2 using KEM.

If A can distinguish Game hy.y from Game hy.(y-1), then we can construct an

attacker B1 that breaks IND-CCA security of KEM. The IND-CCA experiment executes

(pk , sk) $←− KEM.KGen() and (c⋆, k⋆
0)

$←− KEM.Encaps(pk) honestly and samples b $←− {0, 1}
and k⋆

1 from the key space K randomly. On input (pk , c⋆, k⋆
b), B1 runs Game hy.(y-1)

honestly except the following modification:

1. When the algorithm obtainSharedSecret-T needs to output y-th KEM public key pk y
T , B1

uses pk y
T ← pk instead of sampling it using KEM.KGen()

2. When B1 needs to execute KEM.Encaps(pk y
T ) in encapsulate3, B1 simply uses (c2, Z2)←

(c⋆, k⋆
b) for the subsequent execution.

3. When B1 needs to execute Z2 ← KEM.Decaps(sk y
T , c) in decapsulate3 algorithm, B1 does

not know sk y
T and performs as follows instead:
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• If c = c⋆, then B1 simply uses Z2 ← k⋆
b.

• If c ̸= c⋆, then B1 queries its decapsulation oracle ODecaps on c. When receiving an

answer k, B1 sets Z2 ← k for the remaining computation.

It is straightforward that B1 perfectly simulates Game hy.(y-1) if b = 0 and Game hy.y

if b = 1. So, B1 can win IND-CCA experiment whenever A can distinguish Game hy.(y-1)

and Game hy.y. Thus, it holds that

Advhy.(y-1) − Advhy.y ≤ ϵind-ccaKEM

Moreover, when all the encapsulated keys of KEM are replaced by random keys,

Game hy.n is identical to Game 1. Then, we have that

Advhy.n = Adv1

Note that all hybrid games above are independent, by union bound, we have that

Adv0 − Adv1 ≤ nϵind-ccaKEM ≤ (qSetup + qExecute)ϵ
ind-cca
KEM

Game 2. This game is identical to Game 1 except the following modification:

1. The challenger replaces each function H5(·, Z̃2) by a truly random function fZ̃2
, where

Z̃2s are sampled in Game 1.

We can easily reduce the indistinguishability between Game 1 and Game 2 to the

ϵswapH5
-swap security of H5 in n hybrid games, where n denotes the number of Z̃2 in Game 1.

Obviously, it holds that n ≤ qSetup + qExecute. Thus, we have that

Adv1 − Adv2 ≤ (qSetup + qExecute)ϵ
swap
H5

In particular, for any Z̃ ← fZ̃2
(Z1), we know that Z̃ is uniformly at random, since fZ̃2

is a truly random function for any Z̃2 that is sampled by the challenger in Game 1 and

not leaked to the attacker A.
Game 3. This game is identical to Game 2 except the following modification:

1. The challenger replaces each function H6(Z̃, ·) by a truly random function f ′
Z̃
, where Z̃s

are derived in Game 2.

Similarly to Game 2, we can easily reduce the indistinguishability between Game 2

and Game 3 to the ϵprfH6
-prf security of H6 in n hybrid games, where n denotes the number

of Z̃ produced in Game 2. Obviously, we have that n ≤ qSetup + qExecute. Thus, we have

that

Adv2 − Adv3 ≤ (qSetup + qExecute)ϵ
prf
H6

146



In particular, for anyK1 ← f ′
Z̃
(“CTAP2 HMAC key”) andK2 ← f ′

Z̃
(“CTAP2 AES key”),

we know that K1s and K2s are uniformly at random, since f ′
Z̃
is a truly random function

in Game 2 and Z̃s are not leaked to the attacker A.
Game 4. In this game, the challenger C aborts and lets A immediately win if there

exists collision between K̃1s or K̃2s in Game 3. Note that K̃1 as well as K̃2 is derived

only in the Setup and Execute oracles. So, there are at most qSetup + qExecute keys

and
(
qSetup+qExecute

2

)
pairs. The collision of every two keys happens K̃1 with probability 2−l6 .

The same holds for K̃2.

Thus, we have that

Adv3 − Adv4 ≤
(
qSetup + qExecute

2

)
21−l6

Game 5. In this game, the challenger C aborts and lets A immediately win if there

exists two distinct inputs pin, pin′ during C’s execution such that H(pin) = H(pin′). Note

that this abortion indicates the violation of collision resistance of H by definition. Since H

is ϵcoll-resH -collision resistant, we have that

Adv4 − Adv5 ≤ ϵcoll-resH

Game 6. This game is identical to Game 5 except that the following modifications:

1. The challenger C samples a random p̃in $←− D at the beginning of the game but never

uses it. The challenger aborts and lets A immediately win if p̃in collides with any user

pin pinU for any user U .

2. Whenever the attacker A queries oracle Setup inputting any (T, i, C, j, U), the challenger

replaces pin ← stT .puvProtocol.decrypt(K, cp) in the setPIN-T algorithm by

pin ← pinU

3. The challenger aborts the game and lets A immediately win if there exits a collision

between pts used in Send-Bind-T oracles.

The analysis for this game is also identical to the Game 10 in the proof of Theorem 22.

The only difference is that each pt is sampled only in {0, 1}µ′λ and there are at most(
qSend-Bind-T

2

)
pairs of used pts.

So, we have that

Adv5 − Adv6 ≤ qNewU2
−αD +

(
qSend-Bind-T

2

)
2−µ

′λ

Game 7. This game is identical to Game 6 except the following modification:

1. WhenA queries Setup(T, i, C, j, U) and the challenger C replaces cp ← SKE3.Enc(K2, pinU )

in setPIN-C(πj
C , pinU ) by c̃p ← SKE3.Enc(K2, p̃in), where K2 is the corresponding random

key derived in Game 3 and p̃in is sampled in Game 6.
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Similar to the discussion in Game 13 in the proof of Theorem 22, we have that

Adv6 − Adv7 ≤ qSetupϵ
ind-1cpa
SKE3

Game 8. This game is identical to Game 7 except the following modification:

1. WhenA queriesExecute(T, i, C, j, U), the challenger replaces cph ← SKE3.Enc(K2,H(pinŨ ))

in obtainPinUvAuthToken-C-start by c̃ph ← SKE3.Enc(K2,H(p̃in)), where K2 is the corre-

sponding key computed in Game 3 and p̃in is the one sampled in Game 6.

Similar to the discussion in Game 17 in the proof of Theorem 22, we have that

Adv7 − Adv8 ≤ qExecuteϵ
ind-1$pa-lpc
SKE3

Game 9. In this game, the challenger C aborts the game and let A immediately win if

there exists a token session πi
T that accepts a malicious cph sent by A via Send-Bind-T

query without corrupting the pin of the user stT .user. More formally and concretely, the

challenger C aborts the game and let A immediately win if there exists a token session πi
T

such that

1. the attacker has queried Send-Bind-T(T, i,m) such that m = pk ∥ cph is not included

in the output of any query Execute(T, i, C, j, U) for any C, j, U .

2. πi
T .pinCorr = false

3. πi
T .stexe = bindDone and πi

T .bs ̸= ⊥

The analysis for this game is identical to the one inGame 18 in the proof of Theorem 22.

Thus, we can easily have that

Adv8 − Adv9 ≤ qSetuppinRetriesMax2−αD

Final Analysis. Now, let’s finally check A can satisfy the winning conditions.

Note that the win-SUF-t′ is set to true in the Validate(T, i,M, t, d) query only when

at least one of the following four winning conditions

1. the user decision d ̸= accepted, or

2. two distinct client sessions that completed Bind have the same session identifiers, or

3. two distinct token sessions that completed Bind have the same session identifiers, or

4. (M, t) was not output by any of πi
T ’s uncompromised valid partners πj

C before the setup

user of token T is corrupted

However, we can observe that

1. d ̸= accepted: This is always false by definition, see validate-T algorithm in Figure 5.8.
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2. ∃(C1, j1), (C2, j2) such that (C1, j1) ̸= (C2, j2) and πj1
C1
.stexe = πj2

C2
.stexe = bindDone and

πj1
C1
.sid = πj2

C2
.sid: Recall that the client receives the honest token’s public key and

sends the encapsulation to the tokens in the Execute oracles. Note that the KEM

has public key entropy αpk and ciphertext entropy αc. Note also that Execute can be

invoked at most qExecute times, which means there are at most
(
qExecute

2

)
public key and

encapsulation pair. The attacker can win via this condition with probability at most(
qExecute

2

)
(2−αpk + 2−αc).

3. ∃(T1, i1), (T2, i2) such that (T1, i1) ̸= (T2, i2) and πi1
T1
.stexe = πi2

T2
.stexe = bindDone and

πi1
T1
.sid = πi2

T2
.sid: Recall that the session identifier of token sessions includes the token’s

public key and the client’s encapsulation. πi1
T1
.sid = πi2

T2
.sid indicates that πi1

T1
and πi2

T2

agree on the token’s public key and the client’s encapsulation, which further implies

the agreement on the symmetric encryption key of pt . For the correct symmetric key,

this further indicates that the πi1
T1

and πi2
T2

produces the same pt , which violates the

assumption that there are no collision between the used pts in Game 6. Thus, this

condition is always false.

4. for (C ′, j′)← bindPartner(T, i), all of the following conditions must hold: (a) (C ′, j′,M, t) /∈
LAuth, (b) π

j′

C′ = (⊥,⊥) or πj′

C′ .compromised = false, (c) πi
T .pinCorr = false : According

to the condition (2), we know that the attacker A is not allowed to compromise the

binding state of any client (C ′, j′) such that πj′

C′ .bs = πi
T .bs According to the condition

(3)πi
T .pinCorr = false and Game 9, we know that the attacker A cannot execute active

attack against token to obtain the token biding state πi
T .bs. Thus, the attacker A has no

idea about the πi
T .bs.

According to the condition (1) (C ′, j′,M, t) /∈ LAuth, we know that (M, t) was never

output by any of the session πi
T ’s partner. The attacker therefore has to forge the

message-tag pair (M, t). Recall that the tag t is computed by applying a function H7 to

the corresponding binding state πi
T .bs and message M . The attacker can only guess the

either the tag directly or the toke binding state πi
T .bs. Moreover, recall that:

(a) The binding state πi
T .bs is sampled from {0, 1}µ′λ. The attacker A can guess πi

T .bs

with probability 2−µ
′λ.

(b) The tag is computed by t ← H7(π
i
T .bs,M) for some message M chosen by the

attacker A. Unless the attacker A can guess the token binding state πi
T .bs correctly,

it is random from the attacker’s view, which further implies that t indistinguishable

from a random string due to the ϵprfH7
-prf security of H7. Thus, the attacker can guess

tag t correctly with probability at most 2−l7 .

Thus, the probability that A finds can forge tag t for any message M in each Validate

query is bounded by

2−µ
′λ + ϵprfH7

+ 2−l7
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Note that the attacker A can attempts only in Validate oracle, which can be invoked

at most qValidate times. By union bound, the advantage that the attacker A wins via

condition 4) is bounded by

qValidate(2
−µ′λ + ϵprfH7

+ 2−l7)

To sum up, we have that

Adv9 ≤
(
qExecute

2

)
(2−αpk + 2−αc) + qValidate(2

−µ′λ + ϵprfH7
+ 2−l7)

Combing all statements above, the proof is concluded by:

AdvSUF-t
′

ePACA(A) ≤(qSetup + qExecute)(ϵ
ind-cca
KEM + ϵswapH5

+ ϵprfH6
)

+

(
qSetup + qExecute

2

)
21−l6 + ϵcoll-resH + qNewU2

−αD

+

(
qSend-Bind-T

2

)
2−µ

′λ +

(
qExecute

2

)
(2−αpk + 2−αc)

+qSetupϵ
ind-1cpa
SKE3

+ qExecuteϵ
ind-1$pa-lpc
SKE3

+qSetuppinRetriesMax2−αD +

(
qExecute

2

)
(2−αpk + 2−αc)

+qValidate(2
−µ′λ + ϵprfH7

+ 2−l7)

5.9.6 Proof of Theorem 24

Proof. The proof is given by reduction. If A can break the ua security of Σ + Π, then

there must exist attackers A1 against auth security of Σ and A2 against SUF-t′ security of

Π such that either or both can win. Let C1 and C2 respectively denote the challengers in

auth and SUF-t′ experiments. The attackers A1 and A2 simulate the ua experiment to A
as follows:

1. A1 and A2 initialize lists Lfrsh, LAuth, LRegister, LChallenge, and LResponse to ∅.

2. When A queries Register((S, i), (T, j, j′), (C, k), tb,UV , d), A1 first sends the query

Register((S, i), (T, j), tb,UV ) to C1 and receives (mrch,mrcl,mrcom,mrrsp, d
′). Then,

A2 sends its challenger C2 the queries (mrcom, t) ← Auth(C, k,mrcom) and status ←
Validate(T, j′,mrcom, t, d). Finally, A1 and A2 add (S, i, T, j, j′, C, k,mrch,mrcl,mrcom,

t,mrrsp) into LRegister and return (mrch,mrcl,mrcom, t,mrrsp, d
′).

3. When A queries Challenge((S, i), (C, k), tb,UV ), the attacker A1 first queriesmacom
$←−

Challenge((S, i), tb,UV ) to C1 followed by executing (macom, t)← aCom(idS,mach, tb).

Then, A2 sends its challenger C2 the query (macom, t)← Auth(C, k,macom). Finally, A1

andA2 add (S, i, C, k,mach,macl,macom, t) into LChallenge and return (mach,macl,macom, t).
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4. When A queries Response((T, j, j′),macom, t, d), the attacker A2 first queries status←
Validate(T, j′,macom, t, d) to its challenger C2 and directly returns ⊥ if status ≠ accepted.

Then, A1 queries marsp
$←− Response((T, j),macom) to its challenger C1. Finally, A1 and

A2 add (T, j, j′,macom, t,marsp) into LResponse and return marsp.

5. When A queries Complete((S, i),macl,marsp), the attacker A1 forwards this query to

its challenger C1 and receives a boolean value d. If d = 1, then A1 additionally sets the

winning predicate win-ua to be Win-ua(S, i) and returns d.

6. For all other queries from A, A1 and A2 simply forward them to C1 or C2 depending

whether they are defined in auth or SUF-t′ experiment and return the results back to A.

7. When A terminates at some point, A1 and A2 both terminate.

Now, we analyze the winning probability of A1 and A2 when A wins. Note that A can

win by violating one of the following cases:

1. The non-⊥ session identifiers of ePlA token (resp. server) sessions do not collide with

each other, see Line 37 - 40 in Figure 5.14.

In this case, A1 also wins by Line 8 - 9 in Figure 5.5.

2. The partnered token and server sessions must have the identical agreed content unless

the registration context on the token is corrupted, see Line 42 in Figure 5.14.

In this case, A1 also wins by Line 12 in Figure 5.5.

3. The non-⊥ session identifiers of ePACA token (resp. client) sessions that completed Bind

algorithm do not collide with each other, see Line 44 - 45 in Figure 5.14.

In this case, A2 also wins by Line 9 - 10 in Figure 5.12.

4. During the registration interaction, The ePlA token and server sessions must partner

with each other and the authorized command message and tag must have been output

by one of the non-compromised partners of the ePACA token session without corrupting

its setup user, see Line 47 - 50 in Figure 5.14.

In this case, we separately consider the case whether the condition regarding PlA or PACA

sessions is violated. For each (S ′, x, T ′, y, y′, C ′, z,mrch,mrcom, trcom,mrrsp) ∈ LRegister

(a) If π̄x
S.sid ̸= π̄y

T ′ .sid, this is impossible since it is orthogonal to the definition of session

partner (and session identifiers). Recall that partnering identifies token and server

sessions that are successfully communicate with each other and is achieved via the

coincidence of the session identifiers, as described in Section 5.4.4.

(b) Otherwise, A2 can trivially win by the Line 11 - 14 in Figure 5.12.
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5. The token T that was registered with S, must own an ePlA session π̄i
T that is part-

nered with π̄i
S and produce a response message unless T ’s registration context of S is

corrupted,see Line 52 - 56 in Figure 5.14.

In this case, we separately consider whether there exists j such that π̄i
T is partnered with

π̄i
S.

(a) If such j does not exist, then A can win only when (S, T ) ∈ Lfrsh. This means, A1

can also win auth experiment by Line 8 - 8 in Figure 5.12.

(b) Otherwise, such j exists. This means, the attacker A1 must have queried the oracle

Response(T, j,macom) to its challenger C1 for some command messagemacom. Recall

that such query can only be made when A queries Response((T, j, j′),macom, t, d)

for some (j′,macom, t, d). So, the attacker A wins by the condition ̸ ∃(j′,macom, t, d,

marsp) such that (T, j, j′,macom, t, d,marsp) ∈ LResponse with probability 0.

6. The above response message must be produced after an ePACA session πj′

T validates some

authorized command macom and tag t with the approval from user, see Line 58 - 58

in Figure 5.14.

In this case, the attacker A2 can trivially win SUF-t′ experiment by Line 8 - 8 in Fig-

ure 5.12.

7. The above command macom and tag t must be authorized by a client ePACA session πk
C

that is partnered with πj′

T for some challenge message mrch that was produced by the

ePlA session π̄i
S, unless πk

C is compromised or the PIN that sets up token T has been

corrupted, see Line 61 - 66 in Figure 5.14.

We separately consider the cases whether macom and tag t are authorized by a client

ePACA session πk
C that is partnered with πj′

T :

(a) If (C, k,macom, t) /∈ LAuth for (C, k)← bindPartner(T, j′), then A2 can trivially win

the SUF-t′ experiment by the Line 11 - 14 in Figure 5.12.

(b) Otherwise (C, k,macom, t) ∈ LAuth. Note that Auth oracle is only queried by

A2 when A queries Challenge or Register oracles and that macom is the

command message at authentication phase. This means, A must have queried

Challenge((S ′, i′), (C, k), tb,UV ) for some (S ′, i′, tb,UV ) that outputs macom and

t. Moreover, recall that A has queried Response((T, j, j′),macom, t, d). By the

definition of PlA session identifiers, we have that π̄j
T .sid = π̄i′

S′ .sid. Furthermore,

recall that π̄j
T .sid = π̄i

S.sid. It then holds that

π̄i
S.sid = π̄j

T .sid = π̄i′

S′ .sid

Recall that we have ensured that the non-⊥ session identifiers of PlA token (resp.

server) sessions do not collide with each other in the Condition 1. So, it holds that

(S ′, i′) = (S, i).

152



This means, A has queried Challenge((S, i), (C, k), tb,UV ) for some tb and UV .

Consequently, there must exist (S, i, C, k,mach,macl,macom, t) ∈ LChallenge for some

mach and macl. The attacker A wins via this case with probability 0.

To sum up, when every Compl attacker A wins ua experiment against the composition

of the ePlA scheme Σ and the ePACA scheme Π, then the Compl attackers A1 or A2 must

be able to win in the auth experiment against the underlying ePlA scheme Σ or in the

SUF-t′ experiment against the underlying ePACA scheme Π, which implies the following

inequality and concludes the proof.

AdvuaΣ+Π(A) ≤ AdvauthΣ (A1) + AdvSUF-t
′

Π (A2)
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Chapter 6

Provable Security of Zoom and Full
End-to-End Security

This chapter is based on the paper:

Cas Cremers, Eyal Ronen, and Mang Zhao, “Multi-Stage Group Key Distribution and

PAKEs: Securing Zoom Groups against Malicious Servers without New Security Elements”,

in 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, US, 2024.

This paper was joint work with Cas Cremers and Eyal Ronen. I lead the research on

this paper and the substantial contributions in this chapter are my own. My co-authors

principally contributed to the initial conception of the work and the final write up of the

paper.
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6.1 Introduction

Video conferencing apps such as Zoom are globally used by hundreds of millions of users

on a daily basis [109], and aim to use cryptographic protocols to achieve some forms of

end-to-end encryption. While there have been many recent advancements in highly-secure

messaging protocols such as Signal, their core protocols are typically not suitable for

real-time group applications, such as video conferencing, which have have fundamentally

different requirements involving real-time constraints, robustness, and usability.

In practice, real-time group protocols used in real-world widely deployed applications

such as Zoom incorporate design choices based on real-time requirements that include

assigning a group leader role to some participants, relying on key distribution instead

of key agreement, and using simplified key evolution mechanisms. These design choices

improve features like robustness and usability, and enable real-time communication, at

the cost of lower security guarantees compared to some state-of-the-art secure messaging

protocols.

Nevertheless, many real-time group protocols explicitly claim that they can provide a

form of end-to-end security. For example, in Zoom’s case, the ‘end-to-end security’ option

in the app’s settings is explained as “Encryption key stored on your local device. No

one else can obtain your encryption key, not even Zoom.” However, it was shown that a

malicious Zoom server can eavesdrop or impersonate in groups [113, 114]. The underlying

reason is that in practice, a Zoom server acts as the sole root of trust for the authenticity

of users’ public keys and messages, and implicitly to those that are used to distribute

group-specific public keys, which in turn are used by the leader to distribute the group

key. Thus, if the Zoom server replaces some of these public keys, it can in fact learn your

encryption key.

In this work, we propose a transformation to improve the security of a class of protocols

against malicious servers, without introducing new security elements or even new message

flows. We achieve this by reworking the way in which such protocols use passwords

(known as passcodes in Zoom). In the Zoom protocol, the server inherently needs to know

the group password and uses it to enforce access control for the group. We propose a

modification in which the server no longer knows the password, which is distributed only

to the group members and is used by them directly for access control. These passwords can

be distributed as one would have done currently (e-mail, messaging app, phone, calendar

appointment).

In our new threat model, we can no longer rely on the server providing a priori

secure channels between group members. Instead, we employ password-authenticated key

exchange to prevent offline guessing attacks on the protocol. We then formally prove that

the transformed Zoom protocol achieves a strong form of security even in the presence of

malicious servers.
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At the technical level, we develop syntax and security notions for multi-stage group

key distribution protocols, of which Zoom can be seen as an instance. We show under

which assumptions the Zoom protocol (version 4.0) can be proven secure in our multi-stage

group key distribution model, and how the known attacks fit into this picture. We design a

generic transformation that can turn any protocol in our class into a more secure protocol,

for which we define a stronger security notion. We show that our transformation preserves

the original security property, and provides security against malicious servers. We apply

our transformation to the Zoom protocol, resulting in the ZoomPAKE protocol. We also

show how the ZoomPAKE protocol prevents the attacks possible on the Zoom protocol.

Our main contributions are:

• We develop a solution to improve the security of Zoom-like apps against malicious servers,

without introducing new security elements. The core observation is that Zoom already

uses group-specific passwords, but they are by design known to the server. By leveraging

techniques from password-authenticated key exchange, we can get rid of the reliance on

the server for trusted channels.

• To formally prove the security of our solution, we need to develop substantial machinery.

We propose a formal model and syntax of multi-stage group key distribution protocols,

called mGKD, of which Zoom can be seen as an instance. For such protocols, we develop

a basic security notion Sec-mGKD-pki, which assumes the server did not interfere with

the public keys of a group’s participants, and prove that Zoom meets this notion. We

show how real-world attacks manifest in this basic notion and notably how malicious

zoom servers can manipulate groups.

• We formally prove that our transformation turns a protocol that is Sec-mGKD-pki secure

into one that is also secure in a model that makes no assumptions on the server but only

on the password, which we call Sec-mGKD-pw.

• We show how to efficiently apply our transformation to the Zoom version 4.0 protocol to

obtain the ZoomPAKE protocol, in which the server no longer knows the password, and

groups are protected against malicious servers.

Outline We discuss related work in Section 6.2 and additional preliminaries in Sec-

tion 6.3. In Section 6.4 we present our syntax for multi-stage group key distribution

(mGKD) protocols and three security notions: basic Sec-mGKD-pki security, full end-to-end

Sec-mGKD-pw security, and the combined Sec-mGKD-pw+ security. We show in Section 6.5

that the Zoom library can be modeled as a mGKD protocol and provably satisfies the basic

Sec-mGKD-pki security, and show how impersonation attacks prevent it from satisfying

the stronger Sec-mGKD-pw notion. In Section 6.6, we develop a generic transformation on

any Sec-mGKD-pki secure mGKD protocol to achieve Sec-mGKD-pw and Sec-mGKD-pw+

security and apply it to Zoom. We compare our work with the the concurrent work
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in Section 6.7 and offer a technical summary in Section 6.8. We provide full proofs of all

theorems in this chapter in Section 6.9.

6.2 Related Work

While there is a lot of adjacent related work that we will mention below, it turns out that

there is surprisingly little directly related work in analysis of real-time group protocols. A

number of surveys [58, 133, 140, 144, 155, 160] examine numerous historical designs for

secure group key establishment in different application scenarios. We identify following

three categories:

• centralized group key management/distribution protocols, where each group has a single

trusted authority for group key generation and distribution.

• (continuous) group key agreement and distributed key management protocols, where

every party in a group contributes to the group key generation and distribution.

• multi-factor key agreement and password-authenticated key exchange protocols, where the

group key generation and distribution relies only on a secret that is used for authorization

to a group.

We review each of these categories below.

6.2.1 Centralized Group Key Management Protocols

A centralized group key management (CGKM) protocol starts every group with a trusted

authority, often referred to as the “Key Distribution Center” (KDC). The KDC is respon-

sible for controlling for the whole group, e.g., member authentication, access control, and

group key generation and distribution.

One of the first CGKM schemes is [104, 105]. In this approach, the KDC creates a

“Group Key Packet” (GKP) for encrypting the communication payload with the help from

the first group participant. The KDC sends the GKP to every party that wants to join the

group and encrypts the new GKP to all group participants using the old one. To achieve

forward secrecy, the KDC has to recreate the group whenever a participant leaves the

group. After that, numerous tree-like CGKM constructions [95, 136, 137, 169, 176, 177]

were proposed to reduce computation cost. In these approaches, all trust resides in the

KDC, which forms a single point of failure for compromise.

6.2.2 (Continuous) Group Key Agreement

Two important canonical group key agreement protocols are [127, 150]. Their constructions

have a binary tree-like hierarchy, where the keying material of each party is a leaf node at

the bottom of the tree and the shared group key is the top node of the tree. Every party
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can compute the key material on the path from its associated leaf node to the top using

Diffie-Hellman Exchange (DHE). However, these designs are inherently synchronous: the

initialization of the tree requires all parties to be online.

In the asynchronous secure messaging context, where participants might be offline

and group keys need to be evolved, this approach does not work without modification.

These drawbacks were lifted by the design in [74], leading to a line of papers in the

continuous GKA (CGKA) domain, including [13, 22, 128] that focus on continuously

evolving (ratcheting) group keys after the group establishment.

In general, ratcheting-like protocols such as CGKAs are impractical for real-time group

applications, as they have to tolerate high amounts of packet loss and still being able to

continue immediately when some packets arrive on time.

6.2.3 Multi-factor Key Agreement and Password-Authenticated
Key Exchange

Multi-factor key agreement protocols often rely on three classes of human authentication

factors: (1) something you know, e.g., passwords, (2) something you have, e.g., secure

devices, and (3) something you are, e.g., biometric date. Among them, the password is

possibly one of the most convenient means for sharing in practice, as it can be easily sent

out-of-band, e.g., via email, in letters, or even in-person.

The human-chosen passwords are often low-entropy rather than uniformly at random.

The Password-Authenticated Key Exchange (PAKE) protocols are designed to allow some

parties to establish a high-entropy session key with authentication based on a low-entropy

shared password without being subject to offline guessing attacks. There are numerous

modern and efficient 2-party PAKE constructions in the literature, such as CPace [7,

101] and SPAKE2 [2, 3, 9]. The are also several known group PAKE protocols [5, 6, 8,

66]. However, the existing group PAKE protocols always require multiple rounds for the

key agreement and is restricted to static groups. Thus, these group PAKE protocols are

impractical for the real-time group applications, where the participants can freely join and

leave the groups.

6.2.4 Existing Security Analysis for Zoom

In [113, 114], the authors describe several specific classes of impersonation attacks on

end-to-end Zoom (version 2.3.1). First, a malicious meeting participant can impersonate

any other participant inside this group, since there is no entity authentication in a group

meeting. Second, the Zoom server can replay some messages and impersonate a legitimate

user for a meeting. Third, if multiple users share a device, the Zoom server colluding with

any user can impersonate any other users on the same device. Moreover, the authors also

present a tampering attack based on potential implementation flaws and a Denial-of-Service
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attack. [113, 114] provide feasible countermeasures for each of above specific attacks.

However, more general impersonation attacks by a malicious server are not considered

in [113, 114].

We notice a recent concurrent work [83] that formally analyzes the security of the

end-to-end Zoom protocol assuming the existence of a trusted PKI. This work captures

various frameworks underlying the Zoom protocol, including joining and leaving a group,

a so-called “heartbeat” liveness mechanism, and change of group leader/host. We give a

more detailed comparison between our work and [83] in Section 6.7.

6.3 Additional Preliminaries

6.3.1 lr-prf-ODH Assumption

We recall the generic lr-prf-ODH definition in [64].

Definition 51. Let ECDH denote a cyclic group G with order q over an elliptic curve

EC with a generator g. Let H : G × {0, 1}⋆ → {0, 1}lH denote a function. We define a

generic security notion lr-prf-ODH which is parameterized by l, r ∈ {n, s,m} indicating how

often the attacker is allowed to query a certain “left” resp. “right” oracle (ODHu resp.

ODHv) where n indicates that no query is allowed, s that a single query is allowed, and m

that multiple (polynomially many) queries are allowed to the respective side. Consider the

following security game Exprlr-prf-ODH
ECDH,H between a challenger C and a PPT attacker A.

1. The challenger C samples u $←− Zq and provides G, g, and gu to the attacker A.

2. If l = m, A can issue arbitrarily many queries to the following oracle ODHu.

ODHu oracle. On a query of the form (S, x), C first checks if S /∈ G and returns ⊥ if

this is the case. Otherwise, it computes y ← H(Su, x) and returns y.

3. Eventually, A issues a challenge query x⋆. On this query, C samples v $←− Zq and a

bit b $←− {0, 1} uniformly at random. It then computes y⋆0 = H(guv, x⋆) and samples

y⋆q
$←− {0, 1}lH uniformly at random. The challenger returns (gv, y⋆b) to A.

4. Next, A may issue (arbitrarily interleaved) queries to the following oracles ODHu and

ODHv (depending on l and r).

ODHu oracle. The attacker A may ask no (l = n), a single (l = s), or arbitrarily many

(l = m) queries to this oracle. On a query of the form (S, x), the challenger first

checks if S /∈ G or (S, x) = (gv, x⋆) and returns ⊥ if this is the case. Otherwise, it

computes y ← H(Su, x) and returns y.
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ODHv oracle. The attacker A may ask no (r = n), a single (r = s), or arbitrarily many

(r = m) queries to this oracle. On a query of the form (T, x), the challenger first

checks if T /∈ G or (T, x) = (gu, x⋆) and returns ⊥ if this is the case. Otherwise, it

computes y ← H(T v, x) and returns y.

5. At some point, A stops and outputs a guess b′ ∈ {0, 1}.

We say that the attacker wins the lr-prf-ODH game if b′ = b. We say the lr-prf-ODH

problem is ϵ-hard over ECDH and H, if the advantage of any PPT attacker A that wins

above Exprlr-prf-ODH
ECDH,H experiment is bounded by ϵ.

In this chapter, we only need the mn-prf-ODH assumption.

6.3.2 Password-Authenticated Key Exchange

The password-authenticated key exchange (PAKE) protocols allow two parties to establish

a high-entropy key over an insecure channel using a shared low-entropy password. Below,

we first define a weak security (w-PAKE) security model against a PAKE protocol. This

model is weaker than and therefore implied by the security model defined in [2, 3, 7]. Thus,

some modern and widely used PAKE schemes, including CPace [101] or SPAKE2 [9] that

are respectively proven secure in [7] and [2, 3], are provably secure in this w-PAKE model.

Protocol Members. This weak semantic security model only considers the two-party

setting. I.e., the PAKE protocol has only two members: either an initiator init or a

responder resp.

The initiator init indeed captures the behaviors of (all) participants in each group gid

in our mGKD protocol. The responder resp indeed captures the behaviors of the (unique)

leader in each group gid in our mGKD protocol.

Long-Lived Keys / Passwords. The initiator init and the responder resp hold

the same password pw , which is sampled from a distribution D. In many literature, the

password is also called the “long-lived key”.

Protocol Execution. The interaction between an attacker A and the protocol members

occurs only via oracle queries, which model the attacker capabilities in a real attack.

During the execution, the attacker may create several instances of a member. We consider

the concurrent model, i.e., several instances may be active at any given time. Let U id

denote the instance with identifier id of a member U . Let b ∈ {0, 1} be a bit chosen

uniformly at random. The attacker A can query following three oracles:

• SendPAKE(U id ,m): This query models an active attack, in which the attacker may

tamper with the message being sent over the public channel. The output of this query is

the message that the member instance U id would generate upon receipt of message m.
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• CompromisePAKE(U id): This query models the misuse of session keys by a member.

If a session key is not defined for instance U id or if a TestPAKE query was asked to

either U id or to its partner, then return ⊥. Otherwise, return the session key held by the

instance U id .

• TestPAKE(U id): This query tries to capture the attacker’s ability to tell apart a real

session key from a random one. If no session key for instance U id is defined or U id is not

fresh (which is defined below), then return the undefined symbol ⊥. Otherwise, return

the session key for instance U id if b = 1 or a random key of the same size if b = 0.

Notation. We say an instance U id opened if a query CompromisePAKE(U id) has been

made by the attacker. We say an instance U id is unopened if it is not opened. We say an

instance U id tested if a query TestPAKE(U id) has been made by the attacker. We say

an instance U id is untested if it is not tested. We say an instance U id has accepted if it

goes into an accept mode after receiving the last expected protocol message.

Session Identifiers and Partnering. We define the session identifiers (sid) as the

transcript of the conversation between the initiator and the responder instances before

acceptance.

We say two instances initid1 and respid2 to be partners if the following conditions are

met:

(a) Both initid1 and respid2 accept, and

(b) Both initid1 and respid2 share the same identifiers sid.

Freshness. The notion of freshness is defined to avoid cases in which attacker can trivially

break the security of the scheme. The goal is to only allow the attacker to ask TestPAKE

queries to fresh oracle instances. More specifically, we say an instance U id is fresh if it has

accepted and if both U id and its partner are unopened and untested.

Semantic Security. Consider an execution of the above experiment for an attacker A
against a PAKE protocol Π. The attacker A wins the experiment if and only if A guesses

b′ = b, where b is the hidden bit used by the TestPAKE oracle. The advantage of A
breaking the weak security of Π is defined as

Advw-PAKEΠ,D (A) := |Pr[A wins]− 1

2
|

We say that Π is ϵw-PAKEPAKE,D-w-PAKE secure if for any PPT attackers A it always holds

that

Advw-PAKEΠ,D (A) ≤ ϵw-PAKEΠ,D
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6.4 Multi-stage Group Key Distribution Protocols

In this section, we define our syntax for multi-stage Group Key Distribution mGKD

protocols. Our class of mGKD protocols covers behaviors of a party for using real-time

group services, such as long-term identity information generation, joining groups, group

key rotation, and leaving groups. Then, we propose three security models that capture

distinct security guarantees for real-time group services.

6.4.1 mGKD Definition

mGKD protocols are stateful interactive group communication protocols executed by a set

of parties P. Each party P ∈ P must be uniquely identified by an identifier idP . Each

group is uniquely identified by an identifier gid. In each group, one party performs the

leader role; all other group members perform the participant role. The role of each party

in different groups might be distinct: a party can be leader in one group and participant

in others. In practice, the leader is typically the so-called host that initiated the group.

In this paper, we assume that each group gid is associated with a unique leader and that

the group’s leader stays in the group for its entire duration. While one can in theory

implement changing leaders by starting a new group, we leave the modeling and efficient

implementation of multiple and changing leaders to future work.

Definition 52. A multi-stage group key distribution protocol mGKD = (SignUp, Schedule,

Register, Join, Leave,KeyRotat) consists of the following algorithms:

Sign Up: mSignUp
$←− SignUp(P ) allows a (stateful) party P to initialize a long-term

identity information for signing up. The private portion is locally stored. The public

portion is output as an outgoing sign-up message mSignUp.

Group Schedule: mgid
GSch

$←− Schedule(P, gid, gs) allows a (stateful) party P to take the

role of the leader for scheduling a group gid using a group secret gs. The output is an

outgoing group schedule message mgid
GSch for the server. The group secret gs is expected to

be sent to authorized participants over secure out-of-band channels.

Register: Register = (Register-L,Register-P) consists of two sub-algorithms depending on

the role of the caller:

• m ′ $←− Register-L(P, gid, gs ,m) (resp. m ′ $←− Register-P(P, gid, gs ,m)) allows a (state-

ful) party P to register for a group gid as leader (resp. participant) using a group

secret gs and an incoming message m followed by group initialization. The output

is an outgoing message m ′.

Participant Join: Join = (Join-L, Join-P) allows a participant to interact with a leader

for joining a group. This interactive phase consists of two sub-algorithms depending on

the role of the caller:
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• m ′ $←− Join-L(P, idP ′ , gid, gs ,m) (resp. m ′ $←− Join-P(P, idP ′ , gid, gs ,m)) allows a

leader P (resp. a participant P ) of the group gid to input a group secret gs and

an incoming message m and to output an outgoing message m ′ for the participant

(resp. the leader) P ′.

Member Leave: Leave = (Leave-L, Leave-P) consists of two sub-algorithms depending on

the role of the caller:

• Leave-L(P, gid, idP ′) (resp. Leave-P(P, gid, idP ′)) allows the leader (resp. a partici-

pant) P of the group gid to react to a party P ′’s leaving. If idP = idP ′, the leader

(resp. the participant) P leaves the group gid and erases the corresponding state

information.

Key Rotation: KeyRotat = (KeyRotat-L,KeyRotat-P) consists of two sub-algorithms de-

pending on the role of the caller:

• mKRot
$←− KeyRotat-L(P, gid,m) allows the leader P of the group gid to input an

incoming message m and to locally update the group key. The output is an outgoing

message mKRot that enables all participants of the same group gid to update group

keys correspondingly.

• mKRot
$←− KeyRotat-P(P, gid,m) allows a participant P of the group gid to input

an incoming message m and to locally update the group key. The output is an

(optionally empty) outgoing message mKRot.

We assume all incoming and outgoing messages of an mGKD protocol are publicly

accessible; we leave this implicit as the concrete mechanisms can differ substantially

between protocols, but could for example be a PKI or a “bulletin board” on the server.

In contrast, the input group secret gs of the Schedule algorithm is expected to be chosen

by the leader and be sent to authorized parties for joining the group over secure out-of-

band channels. Before a party P joins a group gid, P has to register for this group, no

matter whether P has previously joined the group gid and left. The Member Leave phase

enables every party P to react to a participant P ′ leaving the group, notably, without any

additional incoming message. This captures the scenario where the server might notify

group members that a participant has left the group without sending any leave request

due to unexpected network disconnection. The KeyRotat algorithm enables every party to

update their group key, the execution frequency of which can be decided in advance, in a

regular schedule and/or when a party joins or leaves the group.

To model concurrent or sequential groups of a party P , let πgid
P denote party P ’s session

with respect to the short-term group gid. In addition, each party P has an associated

long-term state stP that is shared by all of P ’s sessions.
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Definition 53. In a mGKD protocol, each party P has the following state variables. The

long-term state variables are initialized during the Sign Up phase:

• stP .id: the associated and unique identifier of the party P . In this paper, we assume it

equal to idP .

• stP .isk : the identity secret key of the party P .

• stP .ipk: the identity public key of the party P .

The short-term per-group state variables are initialized during the Register phase:

• πgid
P .sk: the group-specific secret key of the party P for joining the group gid.

• πgid
P .pk: the group-specific public key of the party P for joining the group gid.

• πgid
P .gk: the current group key used by party P , which is supposed to be shared by all

parties in the group gid. This variable is initialized with ⊥.

• πgid
P .gkid: the index of the current group key of the party P in the group gid. This variable

is initialized with 0.

• πgid
P .GP: The set of all parties in the group gid. This variable is initialized with the empty

set ∅.

• πgid
P .status ∈ {⊥, registered, joined}: the status that indicates whether the party P has

initialized the state for (but not yet registered for), or registered for (but not yet joined),

or joined the group gid. This variable is ⊥ by default.

Definition 54 (Correctness). Consider any group gid with an associated leader P , any

sequence of parties {P i}i, and a sequence of executions that includes the following (perhaps

not consecutive) algorithms: i) a Sign Up of the leader P or a participant P i for any i,

ii) a Group Schedule of the group gid and the leader P , iii) a Register of the leader P

or a participant P i for any i to the group gid, iv) a successful Participant Join between

the leader P and a participant P i for any i, v) a Leaving of participant P i for any i

to all other parties in the group gid, vi) a successful Key Rotation for the leader P and

every participant P i in the group gid, i.e., πgid
P i .status = joined. Correctness requires that

πgid
P .gkid = πgid

P i .gkid and πgid
P .gk = πgid

P i .gk for any P i with πgid
P i .status = joined at any time.

6.4.2 A Generic Security Model

We next define a generic Sec-mGKD-X security model. By presenting different instantiations

of the freshness conditions that the attacker must obey and of the winning conditions

that the attacker must pursue, we then introduce three distinct concrete models for

X ∈ {pki, pw, pw+} in Section 6.4.3, Section 6.4.4, and Section 6.4.5.

Trust Model. We assume that all parties’ sampled randomness is independent, uniform,

and unpredictable. For simplicity, we assume every leader samples group secret from a
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same distribution D (according to the underlying protocol). We assume that every party

joins every group at most once. We assume that every leader stays in the corresponding

group for the entire duration and leaves only when all other participants have left. This

means, once the leader leaves the corresponding group, this group is immediately marked as

“invalid” and no party is allowed to register for or join this group anymore. We assume that

every party can send register request for every group at most once. Our model assumes a

single shared group key for communication. Thus, impersonation attacks between parties

inside the group is out of scope of this work.

Threat Model. We allow the attacker to have full control over the network and can

eavesdrop, drop, and insert messages during all phases. We allow the attacker to corrupt

the long-term state stP for any participant P to capture the real-world scenarios where

the hardware devices might be stolen. Moreover, we allow attackers to compromise the

short-term per-group state πgid
P for any participant P after joining any group gid to capture

attacks during the ongoing communications. We also allow attackers to leak arbitrary

group keys (to analyze the impact on the security of previous and future group keys). We

allow attackers to reveal the group secret for any group to capture the real-world scenarios

where the the out-of-band channels might be vulnerable.

Security Experiment. The security experiment is conducted between a challenger C
and an attacker A against a mGKD protocol Π. At the beginning of the experiment,

the challenger C samples a random challenge bit b ∈ {0, 1}. During the experiment,

C produces two sequences of variables {GP (gid,gkid)}gid,gkid and {gk (gid,gkid)
P }gid,gkid,P . The

variable GP (gid,gkid) aims to record the identifier of every party that is expected to know

the gkid-th group key in the group gid from the leader’s view. The challenger C monitors

the states of the leader P of any group gid. Whenever πgid
P .GP changes, C records

GP (gid,πgid
P .gkid) ← GP (gid,πgid

P .gkid)∪πgid
P .GP . The variable gk

(gid,gkid)
P records the gkid-th group

key derived by any party P in the group gid. Whenever πgid
P .gkid changes for any party P

and group gid during the experiment, C stores the new group key gk
(gid,πgid

P .gkid)

P ← πgid
P .gk .

The attacker A can interact with C by querying the following oracles, where C responds

according to Π. To simplify the explanation, we partition the oracles into categorizes.

Oracle Category 1: Setup of groups and parties. This category includes a

NewParty oracle that simulates the Sign Up phase of a party, a NewGroup that

simulates the Group Schedule phase of a group, and a Auth oracle that simulates the

group secret transmission from the leader to the authorized participants over out-of-band

channels.

• NewParty(idP ): This oracle can be queried at most once on each input. The challenger

C initializes a state stP by setting stP .id ← idP . Then, C runs mP
SignUp

$←− SignUp(stP )

and followed by forwarding the sign-up message mP
SignUp to A. The party P is marked as

“created”.
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• NewGroup(idP , gid): This oracle can be invoked at most once for each gid. The input

party P must be marked as “created”. The challenger C samples the secret of the group

gid by gsgid $←− D and runs mgid
GSch

$←− Schedule(P, gid, gsgid) for an associated outgoing

message mgid
GSch. Then, C marks the group gid as “created” and “valid” and marks P as

the leader of the group gid and “authorized”. Finally, C returns mgid
GSch to A.

• Auth(gid, idP ): The group gid must be marked as both created and valid and the party P

must be marked as created and have not registered for the group gid, i.e., πgid
P .status = ⊥.

The challenger C marks P as authorized for the group gid.

Oracle Category 2: Register phase. This category includes a RegisterAuth oracle,

which simulates that an authorized party registers for a group using honest group secret,

and a RegisterInject oracle, which simulates that an unauthorized (malicious) party

registers for a group with an input using some chosen group secret.

• RegisterAuth(idP , gid,m): This oracle can be queried at most once for each tuple

(idP , gid). The group gid must be marked as both created and valid and the party P

must be authorized for the group gid. The challenger C runs Register-L(P, gid, gsgid,m) if

P is the leader of the group gid and Register-P(P, gid, gsgid,m) otherwise. In both cases,

C forwards the output message m ′ to A.

• RegisterInject(idP , gid, gs ,m): This oracle can be queried at most once for each tuple

(idP , gid). The group gid must be marked as both created and valid and the party P

must be unauthorized for the group gid. The challenger C runs Register-P(P, gid, gs ,m)

and forwards the output message m ′ to A.

Oracle Category 3: Participant Join phase. This category includes a SendJoinAuth

oracle, which simulates that an authorized party (as either leader or participant) sends

messages to another party (either authorized or unauthorized) during the Participant Join

phase in the group, and a SendJoinInject oracle, which simulates that an unauthorized

(malicious) participant sends messages (to the leader) during the Participants Join phase

in the group.

• SendJoinAuth(idP , idP ′ , gid,m): The challenger C first checks

– whether gid is marked as created and valid,

– whether P is authorized for this group gid,

– whether both parties P and P ′ have been created and registered for this group,

– whether either P or P ′ is the leader of the group gid,

– whether the leader of the group, either P or P ′, has joined the group, and that the

other party hasn’t joined the group yet.
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If any of the check fails, C directly returns ⊥ to A. Otherwise, C runs Join-L(P, idP ′ ,

gid, gsgid,m) if P is the leader of the group gid or Join-P(P, idP ′ , gid, gsgid,m) if P is a

participant. Then, the output message m ′ of either Join-L or Join-P is returned to A.

• SendJoinInject(idP , idP ′ , gid, gs ,m): The challenger C first checks

– whether gid is marked as created and valid,

– whether P is unauthorized for the group gid,

– whether P ′ is the leader of the group gid,

– whether the participant P has been created and registered for this group gid but

has not joined the group yet, and

– whether the leader P ′ has joined the group gid.

If any of the check fails, C directly returns ⊥ to A. Otherwise, C runs Join-P(P, idP ′ , gid,

gs ,m) and returns the output message m ′ of Join-P to A.

Oracle Category 4: Member Leave phase. This category includes a SendLeave

oracle, which simulates that a party notices another party leaving the group gid, and an

EndGroup oracle, which simulates that a leader leaves and ends the group.

• SendLeave(idP , gid, idP ′): The challenger C aborts if

– the gid is not marked as both created and valid, or

– the leaving party P ′ is the leader of the group gid, or

– the party P has not joined the group.

Otherwise, C runs Leave-L(P, gid, idP ′) if P is the leader of the group gid and Leave-P(P, gid, idP ′)

otherwise.

• EndGroup(gid): The challenger C first checks

– whether the group gid is created and valid, and

– whether the leader P of the group gid is the unique party in his local party list, i.e.,

πgid
P .GP = {idP}.

If either check fails, C aborts. Otherwise, C runs Leave-L(P, gid, idP ) and marks the group

gid as “invalid”.

Oracle Category 5: Key Rotation phase. This category includes only one oracle

SendKeyRotat that simulates the process where a party updates their local group key.
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• SendKeyRotat(idP , gid,m): The party P must have joined the group gid. The chal-

lenger C runs KeyRotat-L(P, gid,m) if P is the leader of the group gid and KeyRotat-P(P,

gid,m) otherwise. The output message of either KeyRotat-L or KeyRotat-P is returned to

attacker A.

Oracle Category 6: Secret information leakage. This category includes four

oracles Corrupt, Compromise, Leak, and Reveal, that respectively simulates that

the attacker A knows the long-term state of a party, the short-term per-group of a party

for a group, a group key of a party in a group, and the group secret of a group.

• Corrupt(idP ): The challenger C first checks whether the party P is created. If the

check fails, C simply returns ⊥. Otherwise, C returns stP to the attacker A and marks

stP as “corrupted”.

• Compromise(idP , gid): The challenger C checks whether the party P has joined the group

gid, i.e, πgid
P .status = joined. If the check fails, C simply returns ⊥. Otherwise, C returns

πgid
P to the attacker A, followed by marking πgid

P as “compromised” and gk
(gid,πgid

P .gkid)

P as

“leaked”.

• Leak(idP , gid, gkid): The challenger C checks whether gk (gid,gkid)
P has been set. If gk

(gid,gkid)
P =

⊥, then C simply returns ⊥. Otherwise, C marks gk
(gid,gkid)
P as “leaked” and returns

gk
(gid,gkid)
P to A.

• Reveal(gid): If the group gid is not created, then the challenger C simply returns ⊥.
Otherwise, C marks gid as “revealed” and returns gsgid to A.

Oracle Category 7: Test challenge bit. This category includes only one Test oracle

that returns either a real group key if the challenge bit b = 0, or a random key if b = 1.

• Test(idP , gid, gkid): This oracle can be queried at most once. If the party P is authorized

for the group gid and the party P has produced gkid-th group key, i.e., gk
(gid,gkid)
P ≠ ⊥,

then the challenger C returns gk
(gid,gkid)
P to A if the challenge bit b = 0, or a random key

from the same space if b = 1. Then, C further marks the party P , the group identifier

gid, and the group key index gkid as “tested”. Otherwise, C immediately returns ⊥.

Advantage Measures. In the end, the attacker A outputs a bit b′ ∈ {0, 1}. Under

two freshness conditions frshSec-mGKD-X
KAuth and frshSec-mGKD-X

KPriv that prevent the attacker A from

trivially winning the experiment for X ∈ {pki, pw, pw+}, we say the attacker A wins the

experiment Sec-mGKD-X against a mGKD protocol Π for X ∈ {pki, pw, pw+}, if either of
the following events is triggered:
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1. [Event EKAuth] there exists any group gid with the leader P gid, any party P ′ that is

authorized for the group gid, and any group key index gkid, such that gk
(gid,gkid)
P ′ ≠ ⊥ but

gk
(gid,gkid)

P gid ̸= gk
(gid,gkid)
P ′ , without violating the freshness condition frshSec-mGKD-X

KAuth (idP ′ , gid, gkid).

2. [Event EKPriv] b = b′ without violating the freshness condition frshSec-mGKD-X
KPriv (idP ′ , gid, gkid),

where P ′, gid, and gkid are respectively the tested party, group identifier, and group key

index.

We define AdvSec-mGKD-X
Π (A) as the advantage that A can win the Sec-mGKD-X experi-

ment against a mGKD protocol Π for X ∈ {pki, pw, pw+}, namely,

AdvSec-mGKD-X
Π (A) := max

(∣∣Pr[EKPriv]−
1

2

∣∣,Pr[EKAuth]
)
.

Definition 55 (Sec-mGKD-X). We say that a mGKD protocol Π is Sec-mGKD-X-secure

for X ∈ {pki, pw, pw+}, if the above defined advantage AdvSec-mGKD-X
Π (A) is negligible for

any PPT attacker A.

6.4.3 The Sec-mGKD-pki Security Model

Our basic security model Sec-mGKD-pki captures the following security guarantees for an

authorized party in a group assuming the honest distribution of long-term sign-up message

of all parties within this group. Note that this basic model guarantees that only group

members can learn the key, and where group membership is determined by the server. In

reality, and in our model, the server may insert group members that are not authorized by

the leader and do not know the passcode.

1. (Implicit) Group Key Authentication: If a group member accepts a group key, then

the leader must have produced the same group with the same group key index.

2. Group Key Secrecy: If a group member accepts a group key, then an attacker cannot

derive this key, even if it knows other group keys.

3. Perfect Forward Secrecy: An attacker that compromises a party’s long-term keys,

can not learn the group keys of any group the party was previously in.

Definition 56 (Sec-mGKD-pki Freshness Conditions). We say the freshness condition

frshSec-mGKD-pki
KAuth (idP ′ , gid, gkid), where gid has a unique leader P gid, holds if and only if

1. the per-group states πgid
P gid and πgid

P ′ are not compromised,

2. the long-term states stP gid and stP ′ are not corrupted before P gid and P ′ joined the group

gid, and

3. the sign-up messages mP gid

SignUp and mP ′

SignUp of P gid and P ′ are honestly delivered to the

other.
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We say the freshness condition frshSec-mGKD-pki
KPriv (idP ′ , gid, gkid) holds if and only if

1. the group key gk
(gid,gkid)
P is not leaked for all parties P in the group gid with idP ∈

GP (gid,gkid),

2. the short-term state πgid
P is not compromised for all parties P in the group gid with

idP ∈ GP (gid,gkid),

3. the long-term state stP gid of the leader P gid in the group gid is not corrupted before all

parties P with idP ∈ GP (gid,gkid) joined the group gid,

4. the long-term state stP of all participants P in the group gid with idP ∈ GP (gid,gkid) is not

corrupted before P joined the group gid, and

5. the sign-up messages mP
SignUp of all parties P with idP ∈ GP (gid,gkid) are honestly distributed

within the group gid.

Conclusion. Our Sec-mGKD-pki security model captures all guarantees listed at the

beginning of this subsection:

1. (Implicit) Group Key Authentication: If authentication does not hold, the attacker

A can win via EKAuth.

2. Group Key Secrecy: The attacker is allowed to leak arbitrarily many group keys

except for the tested one. If group key secrecy does not hold, A can win via EKPriv.

3. Perfect Forward Secrecy: The attacker is allowed to corrupt the long-term state of

the tested party. If perfect forward secrecy does not hold, A can win via EKPriv.

6.4.4 The Sec-mGKD-pw Security Model

The basic Sec-mGKD-pki model has two restrictions:

• First, both freshness conditions frshSec-mGKD-pki
KPriv and frshSec-mGKD-pki

KAuth require the honest

distribution of the sign-up messages. Since the sign-up messages are distributed by

servers or by PKI in practice, this restriction is also known as “trusted PKI” assumption

in the related literature. In the full end-to-end setting, i.e., no trusted PKI or server exists,

a Sec-mGKD-pki secure mGKD protocol might still suffers from machine-in-the-middle

attacks such that the attacker can easily impersonate any participant towards the group

leader and impersonate any group leader towards any participant.

• Second, both freshness conditions frshSec-mGKD-pki
KPriv and frshSec-mGKD-pki

KAuth allow the attacker to

reveal all group secrets but do not prevent unauthorized parties from knowing the group

keys. Thus, this Sec-mGKD-pki model does not capture the security benefit provided by

the group secret transmitted over secure out-of-band channels.
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The goal of the Sec-mGKD-pw security model is to preserve the guarantees achieved

in Sec-mGKD-pki model and to capture the following additional security guarantee, while

getting rid of the “trusted PKI” assumption.

4. (Implicit) Group Member Authentication: If any party produces a same group key

as the leader of a group, then this party must be authorized for this group, as long as

the group secret is not revealed.

We replace the “trusted PKI” assumption with the arguably simpler assumption of

a shared “secure (short) group secret”. We assume that (short) group secrets (such as

passwords or pin codes) can be distributed over out-of-band secure channels, e.g., by

email, encrypted messaging application (e.g., Signal), or even in person. In fact, a similar

passcode mechanism has been widely deployed in real life by many service providers such

as Zoom for access control management (see Section 6.5.1). The only difference is that

the current Zoom passcode mechanism hands over passcode and the rule of verifying it to

the (possibly) untrusted server, while in our model the group secret is known only to the

participants.

Definition 57 (Sec-mGKD-pw Freshness Conditions). We say the freshness condition

frshSec-mGKD-pw
KAuth (idP ′ , gid, gkid), where gid has a unique leader P gid, holds if and only if

1. the per-group states πgid
P gid and πgid

P ′ are not compromised,

2. the long-term states stP gid and stP ′ are not corrupted before P gid and P ′ joined the group

gid, and

3. the group gid is not revealed.

We say the freshness condition frshSec-mGKD-pw
KPriv (idP ′ , gid, gkid) holds if and only if

1. the group key gk
(gid,gkid)
P is not leaked for all authorized parties P in the group gid with

idP ∈ GP (gid,gkid),

2. the short-term state πgid
P is not compromised for all authorized parties P in the group gid

with idP ∈ GP (gid,gkid),

3. the long-term state stP gid of the leader P gid in the group gid is not corrupted before all

authorized parties P with idP ∈ GP (gid,gkid) joined the group gid,

4. the long-term state stP of all authorized participants P in the group gid with idP ∈
GP (gid,gkid) is not corrupted before P joined the group gid, and

5. the group gid is not revealed.

Conclusion. Note that Sec-mGKD-pki and Sec-mGKD-pw models share the same oracles

and similar freshness conditions. Thus, it is straightforward that our Sec-mGKD-pw model
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also satisfies all guarantees listed in Section 6.4.3. However, we stress two main distinctions

of the freshness conditions in Sec-mGKD-pw and Sec-mGKD-pki models that make the

security guarantees provided by these two models very different.

1. [Full End-to-End Security] Both frshSec-mGKD-pw
KAuth and frshSec-mGKD-pw

KPriv allow attackers to

manipulate the transmission of all messages, including the sign-up messages of all parties

in any group, which are forbidden by frshSec-mGKD-pki
KAuth sub-point 3) and frshSec-mGKD-pki

KPriv

sub-point 5). Instead, frshSec-mGKD-pw
KAuth sub-point 3) and frshSec-mGKD-pw

KPriv sub-point 5) require

no leakage of the group secrets. This indicates that our Sec-mGKD-pw security model

captures the full end-to-end security, i.e., against a malicious server. Consequently, this

new Sec-mGKD-pw model solves the first restriction of Sec-mGKD-pki model.

2. While the frshSec-mGKD-pki
KPriv (idP ′ , gid, gkid) condition sub-points 1) - 4) require no group key

leakage, no short-term per-group state compromise, and no long-term state corruption for

all parties P in the group with idP ∈ GP (gid,gkid), our new frshSec-mGKD-pw
KPriv (idP ′ , gid, gkid)

condition has the same requirements in sub-points 1) - 4) but only for the authorized

parties in every group. By this, our Sec-mGKD-pw model captures the following property:

• (Implicit) Group Member Authentication: The attacker can leak arbitrarily

many group keys of any unauthorized party in the tested group. If an unauthorized

party can successfully produce a same group key as a leader, then the attacker can

test this leader, leak the group key of this unauthorized party, and win via the event

EKPriv.

6.4.5 The Sec-mGKD-pw+ Security Model

Note that the Sec-mGKD-pki and Sec-mGKD-pw models rely on different assumptions:

trusted PKI and secure group secret. We then define a third Sec-mGKD-pw+ model that

incorporates the above two models. The goal of the Sec-mGKD-pw+ model is to capture

the security of a mGKD protocol if either the “trusted PKI” or the “secure group secret”

assumption holds.

Definition 58 (Sec-mGKD-pw+ Freshness Conditions). We say the freshness condi-

tion frshSec-mGKD-pw+
KAuth (idP ′ , gid, gkid) holds if and only if frshSec-mGKD-pki

KAuth (idP ′ , gid, gkid) or

frshSec-mGKD-pw
KAuth (idP ′ , gid, gkid) holds.

We say the freshness condition frshSec-mGKD-pw+
KPriv (idP ′ , gid, gkid) holds if and only if

frshSec-mGKD-pki
KPriv (idP ′ , gid, gkid) or frshSec-mGKD-pw

KPriv (idP ′ , gid, gkid) holds.

The following corollary is straightforward by definition:

Corollary 1. Let Π denote a mGKD protocol. If Π is Sec-mGKD-pki and Sec-mGKD-pw

secure, then Π is also Sec-mGKD-pw+ secure, and vice versa.
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6.5 Zoom’s Protocol is a mGKD Protocol

The Zoom library allows parties to establish end-to-end group meeting communication. In

this section, we first introduce the Zoom overview [53] (version 4.0) in Section 6.5.1. Then,

we show that Zoom library is Sec-mGKD-pki secure in Section 6.5.2 but not Sec-mGKD-pw

secure in Section 6.5.3.

6.5.1 The Zoom End-to-End Connection Overview

For end-to-end encrypted meetings, Zoom only supports connecting from installed clients:

Browser-based connections are not supported. Zoom distinguishes between users and

devices by non-cryptographic user identifiers uid and hardware identifiers hid. We model the

identifier of each party P by a pair of user and hardware identifiers, i.e., idP = (uidP , hidP )

and assume that party identifiers are unique1.

Zoom deploys two infrastructures for transmitting cryptographic primitives: an identity

management system and a multimedia router (MMR). While the identity management

system distributes cryptographic public keys generated by individual clients, the MMR

distributes cryptographic messages between parties in a meeting. The connection between

parties and servers are established on TLS-tunnels over TCP and are encrypted with

AES in GCM mode. In this paper, we assume the existence of Zoom servers but do not

explicitly model them, because our goal is to consider them attacker-controlled. Zoom

allows every party to set up a group meeting. Groups are uniquely identified by their

group identifiers gid. Each group meeting is equipped with a specific “bulletin board”,

where all parties can post (their own) and retrieve (others’) cryptographic messages. The

server is able to control and tamper with the bulletin boards.

Below, we first recall the cryptographic algorithms ZSign and ZBox underlying the

Zoom library in Section 6.5.1.1. Then, we introduce the Zoom end-to-end protocol

in Section 6.5.1.2.

6.5.1.1 Cryptographic Algorithms

The Zoom library makes use of the interface and implementation of two building blocks

in the NaCl [88]-inspired libsodium library [79]: Signing and Authenticated Public-Key

Encryption (aka. Box).

Zoom Signing Algorithm: The construction of the Zoom Signing algorithm ZSign =

(ZSign.KGen,ZSign.Sign,ZSign.Vrfy) is depicted in Figure 6.1.

• The key generation algorithm ZSign.KGen simply generates and outputs a DS key pair.

1The Zoom white-paper [53] states that the user identifiers uid are assigned by servers and the hardware
identifiers hid are randomly sampled. Based on this, we assume that they are unique in practice.
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ZSign.KGen:

1 (pkZSign, skZSign)
$←− DS.KGen()

2 return (pkZSign, skZSign)

ZSign.Sign(skZSign, ctxt,m):

3 m ′ ← H1(ctxt) ∥ H1(m)

4 σ ← DS.Sign(skZSign,m
′)

5 return σ

ZSign.Vrfy(pkZSign, σ, ctxt,m):

6 m ′ ← H1(ctxt) ∥ H1(m)

7 return DS.Vrfy(pkZSign,m
′, σ)

Figure 6.1: The Zoom-Signing algorithm ZSign. Zoom instantiates H1 with SHA256 and DS
with EdDSA over Ed25519.

ZBox.KGen():

1 (pkZBox, skZBox)
$←− ECDH

2 return (pkZBox, skZBox)

ZBox.Enc(skS
ZBox, pk

R
ZBox, ctxtH2

, ctxtCipher,Meta,m):

3 nonce $←− {0, 1}l

4 K ′ ← skS
ZBox · pk

R
ZBox

5 K ← H2(K
′, ctxtH2)

6 h ← H1(ctxtCipher) ∥ H1(Meta)

7 c′ ← AEAD.Enc(K, nonce, h,m)

8 c← (c′, nonce)

9 return c

ZBox.Dec(skR
ZBox, pk

S
ZBox, ctxtH2

, ctxtCipher,Meta, c):

10 Parse (c′, nonce)← c

11 K ′ ← skR
ZBox · pk

S
ZBox

12 K ← H2(K
′, ctxtH2

)

13 h ← H1(ctxtCipher) ∥ H1(Meta)

14 m ← AEAD.Dec(K, nonce, h, c′)

15 require m ̸= ⊥
16 return m

Figure 6.2: The Zoom-Box algorithm ZBox. We have that l = 192, and the underlying function
H1 denotes SHA256. The function H2 denotes HKDF (using an empty salt parameter). ECDH
is performed on Curve25519. “·” denotes scalar multiplication. The AEAD is instantiated with
xchacha20poly1305.

• The signing algorithm ZSign.Sign inputs a secret key skZSign, a context ctxt, and a message

m. The ZSign.Sign first computes the hash function H1 over respective context ctxt and

message m, followed by concatenating them. Then, the ZSign.Sign computes and outputs

the signature of the concatenation using DS upon the input secret key skZSign.

• The verification ZSign.Vrfy algorithm inputs a public key pkZSign, a signature σ, a context

ctxt, and a message m. This ZSign.Vrfy algorithm simply computes the concatenation as

in the signing algorithm and outputs the DS verification result DS.Vrfy upon the public

key pkZSign, the signature σ, and the concatenation.

Zoom Authenticated Public-Key Encryption (aka. Box) Algorithm: The Zoom

Box algorithm ZBox = (ZBox.KGen,ZBox.Enc,ZBox.Dec) is depicted in Figure 6.2.

• The key generation algorithm ZBox.KGen samples and outputs a Diffie-Hellman key pair

over an elliptic curve ECDH.

• The encryption algorithm ZBox.Enc takes as inputs a sender’s secret key skS
ZBox, a

receiver’s public key pkR
ZBox, two contexts ctxtH2 and ctxtCipher, a meta data Meta, and

a message m. It first samples a random nonce of bit length l. Next, it computes the

Diffie-Hellman exchange of skS
ZBox and pkR

ZBox, which is combined with the context ctxtH2
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and used as input to the hash function H2 for a key K. Then, it computes the header

h by concatenating H1(ctxtCipher) and H1(Meta). The output is the nonce nonce and an

AEAD ciphertext produced from the key K, nonce nonce, data h, and message m.

• The decryption algorithm ZBox.Dec takes as input a receiver’s secret key skR
ZBox, a sender’s

public key pkS
ZBox, two contexts ctxtH2 and ctxtCipher, a meta data Meta, and a ciphertext

c. This algorithm parses the nonce nonce from the ciphertext c, computes the key K

and the header h as in the encryption algorithm, and executes the AEAD decryption. If

the AEAD outputs a message m ̸= ⊥, this algorithm simply outputs this m, and aborts

otherwise.

6.5.1.2 The Zoom End-to-End Protocol

The end-to-end secure Zoom library consists of six phases following the mGKD protocol

syntax2, of which we give an overview in Figure 6.3. For domain separation, Zoom uses

hardcoded context strings (ctxt1,ctxt2,ctxt3).

Sign Up SignUp(P ): During the Sign Up phase, every party P samples an identity

public-private ZSign key pair and stores them into the long-term state stP . The party P

outputs the identity public key to the server as the sign-up message. This algorithm is

executed only once for each party, i.e., each user on each hardware device.3

Group Schedule Schedule(P, gid, gs): During the Group Schedule phase, the leader P

parses a passcode pcgid from the input gs . The leader P sends pcgid to not only the server

as the group schedule message mgid
GSch for the access control management, but also to the

authorized participants for joining the group over out-of-band channels, e.g., email.

Register Register = (Register-L,Register-P): The Register phase enables every party P to

register for joining the meeting gid. We separate the description for Register-P(P ′, gid, gs ,m),

where the P ′ is a participant of the group gid, and for Register-L(P, gid, gs ,m), where P

the leader of the group gid.

• Register-P(P ′, gid, gs ,m): The input message m is given by the server and should be

correctly parsed as a special mUUID string. The mUUID string is a server-generated

per-group-instance random string that the individual parties cannot control. Moreover,

the participant P ′ also inputs a group secret gs that can be correctly parsed as a passcode

pcgid. This algorithm first samples a public-private per-group ZBox key pair and stores

them into the state πgid
P ′ . Next, it computes BindinggidP ′ , which is the concatenation of the

group identifier gid, server-generated random string mUUID, as well as the party P ′’s

2The official Zoom white-paper [53] only sketches the re-joining mechanism informally, and does not
specify any mechanism to change leaders. We leave the analysis both functionalities to future work.

3The Zoom library also supports anonymous log-in: people without a Zoom account can also join a
group meeting as a “guest participant” (note that the guest cannot play the role of leader). Before a guest
joins a group, the Sign Up algorithm is always executed. This prevents other parties from tracing them
across meetings by noticing when a long-term key is reused [53].
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Leader P , idP = (uidP , hidP ) Participant P ′, idP ′ = (uidP ′ , hidP ′ )Server

SignUp(P ): SignUp(P ′):

(pkZSign, skZSign)
$←− ZSign.KGen (pk ′

ZSign, sk
′
ZSign)

$←− ZSign.KGen
Sign
Up

stP .isk ← skZSign, stP .ipk ← pkZSign stP ′ .isk ← sk ′
ZSign, stP ′ .ipk ← pk ′

ZSign

mP
SignUp = stP .ipk mP ′

SignUp = stP ′ .ipk

Schedule(P, gid, gs):

Group
Schedule

Parse ( pcgid , pwgid )← gs, mgid
GSch ← pcgid

gid, mgid
GSch

gid, gs (over an out-of-band channel)

Register-L(P, gid, gs,m): Register-P(P ′, gid, gs,m):

Parse mUUID← m, Parse ( pcgid , pwgid )← gs Parse mUUID← m, Parse ( pcgid , pwgid )← gs

(pkZBox, skZBox)
$←− ZBox.KGen (pk ′

ZBox, sk
′
ZBox)

$←− ZBox.KGen

πgid
P .sk ← skZBox, π

gid
P .pk ← pkZBox πgid

P ′ .sk ← sk ′
ZBox, π

gid
P ′ .pk ← pk ′

ZBox

BindinggidP ← gid ∥ mUUID ∥ uidP ∥ hidP ∥ stP .ipk ∥ πgid
P .pk Bindinggid

P ′ ← gid ∥ mUUID ∥ uidP ′ ∥ hidP ′ ∥ stP ′ .ipk ∥ πgid
P ′ .pkRegister

σgid
P ← ZSign.Sign(stP .isk , ctxt1,Binding

gid
P ) σgid

P ′ ← ZSign.Sign(stP ′ .isk , ctxt1,Binding
gid
P ′ )

πgid
P .status← joined, πgid

P .GP
+← idP πgid

P .status← registered

πgid
P .gk $←− {0, 1}256, πgid

P .gkid← 1 Run first pass of PAKEPP(pw
gid) for c

(P ′,gid)
PP,1

pcgid , m
(P,gid)
Reg = (πgid

P .pk , σgid
P ) pcgid , m

(P ′,gid)
Reg = (πgid

P ′ .pk , σ
gid
P ′ ), c

(P ′,gid)
PP,1Server rejects if

mgid
GSch ̸= pcgid

Join-L(P, idP ′ , gid, gs,m): Join-P(P ′, idP , gid, gs,m):

Parse (mUUID,mP ′
SignUp,m

(P ′,gid)
Reg , c

(P ′,gid)
PP,1 )← m Parse (mUUID,mP

SignUp,m
(P,gid)
Reg , cgid

P ′ , c
(P ′,gid)
PP,2 , nonceP

′
PP )← m

Parse ( pcgid , pwgid)← gs Parse ( pcgid , pwgid)← gs

Run second pass of PAKEPP(pw
gid) for k

(P ′,gid)
PP and c

(P ′,gid)
PP,2 Run PAKEPP(pw

gid) for k
(P ′,gid)
PP

nonceP
′

PP
$←− {0, 1}lPP , Store k

(P ′,gid)
PP

cgid
P ′ ← AEADPP.Dec(k

(P ′,gid)
PP , nonceP

′
PP , (m

P
SignUp,m

P ′
SignUp), c

gid
P ′ )

Parse ipkP ′ ← mP ′
SignUp, (pk

gid
P ′ , σ

gid
P ′ )← m

(P ′,gid)
Reg require cgid

P ′ ̸= ⊥, Store k
(P ′,gid)
PP

Bindinggid
P ′ ← gid ∥ mUUID ∥ uidP ′ ∥ hidP ′ ∥ ipkP ′ ∥ pkgid

P ′ Parse ipkP ← mP
SignUp, (pk

gid
P , σgid

P )← m
(P,gid)
Reg

Participant
Join

BindinggidP ← gid ∥ mUUID ∥ uidP ∥ hidP ∥ ipkP ∥ pk
gid
PZSign.Vrfy(ipkP ′ , σ

gid
P ′ , ctxt1,Binding

gid
P ′ )

Meta← gid ∥ mUUID ∥ uidP ∥ uidP ′ ZSign.Vrfy(ipkP , σgid
P , ctxt1,Binding

gid
P )

cgid
P ′

$←− ZBox.Enc(πgid
P .sk , pkgid

P ′ , ctxt2, ctxt3,Meta, (πgid
P .gk , πgid

P .gkid)) Meta← gid ∥ mUUID ∥ uidP ∥ uidP ′

cgid
P ′ ← AEADPP.Enc(k

(P ′,gid)
PP , nonceP

′
PP , (m

P
SignUp,m

P ′
SignUp), c

gid
P ′ ) (gk , gkid) $←− ZBox.Dec(πgid

P ′ .sk , pk
gid
P , ctxt2, ctxt3,Meta, cP ′ )

πgid
P .GP

+← idP ′ , Store pkgid
P ′ πgid

P ′ .gk ← gk , πgid
P ′ .gkid← gkid, πgid

P ′ .status← joined, Store pkgid
P

idP ′ , cgid
P ′ , c

(P ′,gid)
PP,2 , nonceP

′
PP

KeyRotat-L(P, gid,m): KeyRotat-P(P, gid,m):

require m = ⊤ (cgid
P ′ , nonceP

′
PP )← m

πgid
P .gk $←− {0, 1}256, πgid

P .gkid++ cgid
P ′ ← AEADPP.Dec(k

(P ′,gid)
PP , nonceP

′
PP , (m

P
SignUp,m

P ′
SignUp), c

gid
P ′ )

foreach idP ∈ πgid
P .GP and idP ̸= idP : require cgid

P ′ ̸= ⊥
Key

Rotation

cgid
P

$←− ZBox.Enc(πgid
P .sk , pkgid

P
, ctxt2, ctxt3,Meta, (πgid

P .gk , πgid
P .gkid)) (gk , gkid) $←− ZBox.Dec(πgid

P ′ .sk , pk
gid
P , ctxt2, ctxt3,Meta, cgid

P ′ )

noncePPP
$←− {0, 1}lPP require πgid

P ′ .gkid < gkid

cgid
P
← AEADPP.Enc(k

(P,gid)
PP , noncePPP, (m

P
SignUp,m

P
SignUp), c

gid

P
) πgid

P ′ .gkid← gkid, πgid
P ′ .gk ← gk

m
(P,gid)
KRot = {idP , cgid

P
, noncePPP }P cgid

P ′ , nonceP
′

PP

Leave-L(P, gid, idP ′′ ): Leave-P(P ′, gid, idP ′′ ):Member
Leave if idP ′′ = idP : πgid

P ← ⊥ else πgid
P .GP

−← idP ′′ if idP ′′ = idP ′ : πgid
P ′ ← ⊥

Figure 6.3: Overview of the Zoom protocol and our modified ZoomPAKE protocol. The boxes
of the form added denote the additions from our transformation for ZoomPAKE, i.e., which
are not in current Zoom. Note we do require any additional message flows. The boxes of the
form redundant denote the elements that become redundant in our PAKE-based design: thus, for
ZoomPAKE, we can essentially set pcgid to the empty string, and still obtain the same guarantees,
effectively replacing the old passcode by the new PAKE password. We recall the cryptographic
algorithms ZSign and ZBox from the Zoom library in Section 6.5.1.1.
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identifier idP ′ = (uid, hid), identity public key stP ′ .ipk , and per-group public key πgid
P ′ .pk .

Then, it signs the binding information BindinggidP ′ for a signature σgid
P ′ using ZSign.Sign

algorithm, the identity secret key stP ′ .isk , and a context string ctxt1. The passcode pcgid

and the output register message m
(P ′,gid)
Reg consisting of the per-group public key πgid

P ′ .pk

and the signature σgid
P ′ is sent to the server. The server adds m

(P ′,gid)
Reg to the “bulletin

board” of the group gid, if the passcode pcgid matches the group schedule message mgid
GSch

received from the group leader, and rejects it otherwise. The status πgid
P ′ .status of the

participant P ′ in the group gid is set to registered.

• Register-L(P, gid, gs ,m): If the party P is the leader of the group gid, P runs the same

execution as a participant except for setting the status πgid
P .status to joined rather than

registered. Moreover, the leader P initializes the group by sampling the first group key

πgid
P .gk of bit length 256 and sets the group key index πgid

P .gkid to 1. The identifier idP is

added into the local party set πgid
P .GP .

Participants Join Join = (Join-L, Join-P): The Zoom library executes this interactive

sub-protocol between the leader P and a participant P ′ only one-pass:

• Join-L(P, idP ′ , gid, gs ,m): When the leader P notices the joining request of a new par-

ticipant P ′, P retrieves an incoming message m from the server and the group gid’s

“bulletin board” followed by parsing it into: (1) a server-generated randomness mUUID,

(2) the participant P ′’s sign-up message mP ′

SignUp, and (3) the participant P ′’s register

message m
(P ′,gid)
Reg . Next, the leader P parses the participant P ′’s identity public key ipkP ′ ,

per-group public key pk gid
P ′ , and per-group signature σgid

P ′ from the incoming message,

followed by using them to produce the participant’s binding information BindinggidP ′ . If

the binding information cannot pass the verification ZSign.Vrfy upon the participant’s

identity public key ipkP ′ , signature σgid
P ′ , and the context ctxt1, then the leader aborts

and undoes the previous executions. Otherwise, the leader creates a meta data Meta by

concatenating the group identifier gid, server-generated randomness mUUID, the leader’s

user identifier uidP , and the participant’s user identifier uidP ′ . Finally, the leader P

encrypts the current group key πgid
P .gk as well as the index πgid

P .gkid using the ZBox.Enc

encryption algorithm and the leader P ’s per-group secret key πgid
P .sk , the participant

P ′’s per-group public key πgid
P ′ .pk , and auxiliary information ctxt2, ctxt3, and Meta. The

identifier of the participant P ′ and the ZBox ciphertext cgidP ′ are send to P ′ via the server.

The leader P stores the identifier idP ′ of the participant P ′ into the local party set

πgid
P .GP and stores the participant’s per-group public key pk gid

P ′ .

• Join-P(P ′, idP , gid, gs ,m): When a participant P ′, who registered for a group gid, receives

an incoming message m that includes (1) a server-generated randomness mUUID, (2) the

leader P ’s sign-up message mP
SignUp, (3) the leader P ’s register message m

(P,gid)
Reg , and

(4) the leader’s reply cgidP ′ , P ′ first parses the incoming message, creates the leader’s
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binding information, and verifies it using ZSign.Vrfy algorithm, similar to the leader’s

execution. Then, P ′ also generates the meta data Meta and uses it together with its own

per-group secret key πgid
P ′ .sk , the leader’s per-group public key pk gid

P , and the contexts

ctxt2 and ctxt3, to decrypt the ciphertext cgidP ′ . If any error occurs during above steps, then

the participant P ′ aborts and undoes the previous executions. Otherwise, the participant

P ′ stores the decrypted group key as well as the associated index into the per-group

state πgid
P ′ .gk and πgid

P ′ .gkid, followed by setting the status πgid
P ′ .status to joined. Moreover,

P ′ stores the leader P ’s per-group public key into the state. 4

Key Rotation KeyRotat = (KeyRotat-L,KeyRotat-P): The execution of this algorithm

is distinct according to the caller P ’s role: a leader or a participant. We separate the

description for KeyRotat-L(P, gid,m), where P is the leader of the group gid, and for

KeyRotat-P(P ′, gid,m), where P ′ is a participant of the group gid.

• KeyRotat-L(P, gid,m): The leader P of the group gid executes this algorithm without

any auxiliary incoming input, i.e., m = ⊤. The leader P samples a new group key πgid
P .gk

of bit length 256 and increments the corresponding index πgid
P .gkid by 1. Similar to the

encryption during the Participant Join phase, the leader encrypts the new group key and

index for each party in its local party set πgid
P .GP except for himself. The output is a

ciphertext bundle that includes the identifiers of each participant and the customized

ciphertexts.

The server is expected to split the ciphertext bundles and to send each ciphertext to

the specified participant.

• KeyRotat-P(P ′, gid,m): The participant P ′ of the group gid first parses the incoming

message m from the server to an ZBox ciphertext ctgidP ′ . Then, P ′ decrypts the new group

key gk and index gkid as during the Participant Join phase. If any error occurs in the

above steps or the decrypted group key index is smaller than or equal to the local one,

then the participant P ′ aborts and undoes the previous executions. Otherwise, P ′ simply

overwrites the local group key as well as the index by the new ones.

Member Leave Leave = (Leave-L, Leave-P): The execution of this algorithm is dis-

tinct according to the caller P ’s role: a leader or a participant. We separate the de-

scription for Leave-L(P, gid, idP ′′), where the P is the leader of the group gid, and for

Leave-P(P ′, gid, idP ′′), where P ′ is a participant of the group gid.

4In practice, Zoom has an independent mechanism for leader P to synchronize the party set πgid
P .GP

with every participant P ′. We omit it here since, this does not impact Zoom security analysis in our
models.
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• Leave-L(P, gid, idP ′′): If idP = idP ′′ , i.e., the leader P wants to leave the group gid, then

P erases the per-group instance πgid
P . Otherwise, the leader P notices a party P ′′ leaving

the group gid, P simply removes the identifier of the participant idP ′′ from the local party

set πgid
P .GP .

• Leave-P(P ′, gid, idP ′′): If idP ′ = idP ′′ , i.e., the participant P ′ wants to leave the group gid,

then P ′ erases the per-group instance πgid
P ′ . Otherwise, P ′ performs no action.

Instantiations. Underlying the ZSign and ZBox algorithms, the key derivation function

H1 is SHA256 and H2 is HKDF algorithm (using an empty salt parameter). The length l

underlying ZBox algorithm is 192. The elliptic curve ECDH underlying Diffie-Hellman key

exchange is Curve25519. The ZSign algorithm relies DS on EdDSA over Ed25519. The

AEAD algorithm is xchacha20poly1305.

6.5.2 Zoom is Sec-mGKD-pki secure

We omit the correctness analysis of the Zoom library. Below, we investigate the provable

security of the Zoom library. The proof of the following theorem is give in Section 6.9.1.

Theorem 25. Let Π denote the end-to-end Zoom protocol in Section 6.5.1. Assume the

ϵcoll-resH1
-collision resistance of the underlying H1, the ϵeuf-cma

DS -EUF-CMA security of DS, the

ϵ
(n,m)-frob
AEAD -(n,m)-FROB security, ϵind$-ccaAEAD -IND$-CCA security, and ϵcti-cpaAEAD -CTI-CPA security

of the AEAD. Assume the ϵmn-prf-ODH
ECDH,H2

hardness of the mn-prf-ODH problem over ECDH and

function H2. The advantage of any PPT attacker A that breaks the Sec-mGKD-pki security

of Π is bounded by,

AdvSec-mGKD-pki
Π (A) ≤ϵcoll-resH1

+ qNewPartyϵ
euf-cma
DS + cmaxRegqNewGroup

(
ϵcti-cpaAEAD + ϵ

(n,m)-frob
AEAD +

c
(nparty−1)
maxReg (nparty − 1)(ϵmn-prf-ODH

ECDH,H2
+ ϵind$-ccaAEAD )

)
where cmaxParty denotes the maximal number of parties in every group, cmaxReg denotes the

maximal number of register requests for every group, nparty ≤ cmaxParty denotes the number

of parties in the set GP (gid,gkid) for tested group identifier gid and group key index gkid,

and qO denote the maximal number of the queries to any oracle O.

Proof Sketch. By the collision resistance of H1, the DS scheme underlying ZSign algorithm

never signs two identical input. The euf-cma security of DS then ensures that all parties

obtains other parties’ honest sign-up messages in every group. Then, we consider two

cases. If A can win via the event EKAuth, then we can easily guess the group identifier

g̃id with some leader P g̃id and party P̃ that trigger A to win with probability at least

1/cmaxRegqNewGroup. By mn-prf-ODH security of ECDH and H2 underlying ZBox algorithm,

the key of AEAD between P g̃id and P̃ is indistinguishable from random. If A can win via
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the event EKAuth, then the attacker must be able to either forge a ciphertext or a nonce of

AEAD, which breaks either the CTI-CPA security of (n,m)-FROB security of AEAD.

If A win via the event EKPriv, then we can easily guess the group identifier g̃id with

some leader P g̃id and the identifier of all parties in the set GP (g̃id,g̃kid) for the tested group

key index g̃kid with probability at least 1/cmaxPartyc
(nparty−1)
maxReg qNewGroup. By a sequence of

(nparty − 1) hybrid games, we know that all keys and ciphertext of AEAD between every

participant in g̃id and the leader P g̃id should be indistinguishable from random due to the

mn-prf-ODH security of ECDH and H2 and ind$-cca security of AEAD. Thus, A cannot

win via EKPriv.

Note that H1 = SHA256 provides an expected collision resistance of 128 bits [78]. The

EUF-CMA security of Ed25519 was proven in [61]. The security of xchacha20poly1305 was

discussed in [15]. The maximal number of parties per meeting is cmaxParty = 1000 [53]. The

above theorem shows that the end-to-end Zoom library provably provides Sec-mGKD-pki

security and satisfies all properties listed in Section 6.4.3.

Remark 1. Theorem 25 shows that Zoom achieves Sec-mGKD-pki independent of the

passcode: the passcode is only used implicitly for access control by honest servers.

6.5.3 Zoom is not Sec-mGKD-pw secure

Recall that the Sec-mGKD-pki model has two restrictions in Section 6.4.3. A natural

question arises whether these restrictions apply to the Sec-mGKD-pki secure Zoom library.

Does Zoom Provide Trusted PKI? The PKI is expected to “enable users of an

insecure public network such as the Internet to securely and privately exchange data

through the use of a public and a private cryptographic key pair that is obtained and shared

through a trusted authority” [174, Charpter 1]. As we mentioned in Section 6.5.1, all public

keys of all parties in the Zoom library are uploaded to an infrastructure, called “identity

management system”, that is fully controlled by Zoom. The identity management system

distributes the identity public keys. While Zoom claims the end-to-end security, the goal

of which is to protect the secrecy and integrity of the exchanged content between every two

parties against all third parties including the service providers, assuming Zoom-controlled

PKI trusted is controversial and doubtful. Considering a malicious server, the server can

easily perform the “machine-in-the-middle” attack by forging the sign-up messages and

impersonate any party towards others.

Although there do exist other group meeting providers, such as Cisco WebEx and

Skype, that employ a third-party PKI, such as Microsoft Certificate Authority (CA), we

stress that the reliability of PKI is still imperfect. Eckersley and Burns [86] revealed that

14 CAs had been compromised. Moreover, a number of attacks that successfully break
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several CAs, including DigiNotar, Comodo, GlobalSign, StartSSL, and TurkTrust, have

been publicly noticed [171]. It is prudent to consider the potential PKI compromise.

Does Zoom Provide (Implicit) Group Member Authentication? Unfortunately,

this does not hold for Zoom. Although the end-to-end Zoom library asks every leader to

create every new group together with an associated passcode, the leaders hand over the

power of passcode verification to the untrusted server. By colluding with the untrusted

server, an unauthorized (and malicious) party can join every group without the knowledge

of any passcode. The consequence is that nobody in the group (including the leader)

can distinguish authorized participants from the others, in particular, in the end-to-end

setting.

6.6 A Generic Approach to Sec-mGKD-pw Security:

Password-Protected Transformation

If we could assume that each group gid has a unique high-entropy group secret gsgid only

shared by the leader and authorized participants of the group gid, we could design a

trivial construction that meets the Sec-mGKD-pw security. We can simply use a message

authentication code MAC with the group secret gsgid as key to sign and verify all outgoing

and incoming messages.

However, in practice we use low-entropy passwords for usability, allowing the passwords

to be shared over various out-of-band channels. For instance, real-world service providers

often support only short passwords5. This restricts the upper bound of the password

entropy and enables attackers to perform dictionary attacks on the password, e.g., by

brute force guessing.

In this section, we introduce a generic Password-Protected (PP) transformation that

provably transforms any Sec-mGKD-pki secure mGKD protocol Π to another Sec-mGKD-pw

secure Π′ = PP[Π,PAKEPP,AEADPP] protocol by using a password-authenticated key

exchange PAKEPP and an authenticated encryption with associated data AEADPP. We

also prove that the PP transformation preserves Sec-mGKD-pki security, i.e., if Π is

Sec-mGKD-pki secure, so is Π′. In this sense, Π′ satisfies stronger security Sec-mGKD-pw+,

due to Corollary 1. Finally, we illustrate how to apply our PP transformation to the Zoom

library, and provide efficient instantiations for PAKEPP and AEADPP, without causing

additional message flows.

5For instance, meeting passcodes in Zoom are 1-16 digit numeric lock codes; the default meeting
password in Cisco WebEx has ≥ 11 characters.
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6.6.1 The Generic Transformation

The goal of our PP transformation is to ensure that only the authorized parties that

know the group secret can recover any group key, even if the server is malicious. The

high-level overview of our PP transformation is to (1) let the leader and every participant

run a PAKEPP protocol upon a new password (included in the group secret) to produce

a symmetric key kPP during the Participant Join phase, and (2) use the key kPP and an

AEADPP scheme to encrypt/decrypt the original transcript of the mGKD protocol Π during

the Participant Join and Key Rotation phases. Note that every participant has to first

register for a group before joining it. To avoid introducing additional message flows, we

design our PP transformation to shift the first pass of PAKEPP to the participant’s Register

phase. We give the formal definition of our PP transformation below.

Definition 59. Let Π = (SignUp, Schedule,Register, Join, Leave,KeyRotat) denote a multi-

stage group key distribution protocol. Let PAKEPP denote a password-authenticated key

exchange scheme. Let AEADPP denote an authenticated encryption with associated data.

We define the password-protected (PP) transformation PP[Π,PAKEPP,AEADPP] that outputs

Π′ = (SignUp′, Schedule′,Register′, Join′, Leave′,KeyRotat′) as follows:

Sign Up SignUp′(P ): Run mP
SignUp

$←− SignUp(P ) and stores mP
SignUp locally into the long-

term state stP .

Group Schedule Schedule′(P, gid, gs): Parse (gsgidΠ , pw gid)← gs, run mgid
GSch

$←− Schedule(P,

gid, gsgidΠ ), and output mgid
GSch. The full group secret gs is sent to authorized parties over

out-of-band channels.

Register Register′ = (Register-L′,Register-P′): We define the sub-algorithms as follows:

• Register-L′(P, gid, gs ,m): Parse (gsgidΠ , pw gid) ← gs, run m ′ $←− Register-L(P, gid,

gsgidΠ ,m), and output m ′.

• Register-P′(P, gid, gs ,m): First, parse (gsgidΠ , pw gid) ← gs. Next, execute m ′ $←−
Register-P(P, gid, gsgidΠ ,m). Then, run the first pass of PAKEPP upon the password

pw gid for a ciphertext c
(P,gid)
PP . Finally, output (m ′, c

(P,gid)
PP ).

Participant Join Join′ = (Join-L′, Join-P′): This phase consists of two steps. In either

step, if any error occurs during this algorithm, the caller P aborts and undoes the

executions. In the first step, the leader and the participant run PAKEPP until PAKEPP

outputs a key kPP.

• Join-L′(P, idP ′ , gid, gs ,m) or Join-P′(P, idP ′ , gid, gs ,m): The caller P first parses

(gsgidΠ , pw gid)← gs from the group secret and other necessary information for running

PAKEPP from the input message m. Then, P runs the next pass of PAKEPP on

pw gid. If the key kPP is still unavailable, P directly outputs the outgoing message of

PAKEPP. Otherwise, the key kPP is stored into the per-group state πgid
P .
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If the leader and the participant have computed the key kPP before this algorithm invocation

or in the first step in this invocation, they execute the following second step.

• Join-L′(P, idP ′ , gid, gs ,m): The leader P first parses (gsgidΠ , pw gid) ← gs from the

group secret. If the original Join-L algorithm needs any incoming information from

the participant P ′, then the leader P extracts an AEADPP ciphertext and an AEADPP

nonce from the input m. Next, the leader P decrypts the AEADPP ciphertext using

the key kPP, the AEADPP nonce, and an header consisting of both parties’ sign-up

messages, and obtains a message m1. Then, the leader P extracts other necessary

information m2 from the input m for running m ′ $←− Join-L(P, idP ′ , gid, gsgidΠ ,m1 ∥
m2). After that, P encrypts m ′ using the AEADPP key kPP, a random nonce, and an

header consisting of both parties’ sign-up messages. Finally, the leader P outputs

the AEADPP ciphertext and nonce.

• Join-P′(P, idP ′ , gid, gs ,m): The participant P first parses (gsgidΠ , pw gid) ← gs from

the group secret. If the original Join-P algorithm needs any incoming informa-

tion from the leader P ′, then the participant P extracts an AEADPP ciphertext

and an AEADPP nonce from the input m. Next, the participant P decrypts the

AEADPP ciphertext using the key kPP, the AEADPP nonce, and an header con-

sisting of both parties’ sign-up messages, and obtains a message m1. Then, the

participant P extracts other necessary information m2 from the input m for run-

ning m ′ $←− Join-P(P, idP ′ , gid, gsgidΠ ,m1 ∥ m2). After that, P encrypts m ′ using the

AEADPP key kPP, a random nonce, and an header consisting of both parties’ sign-up

messages. Finally, the participant P outputs the AEADPP ciphertext and nonce.

Member Leave Leave′ = (Leave-L′, Leave-P′): These algorithms are identical to the orig-

inal Leave = (Leave-L, Leave-P). Note that if a per-group state is erased, then the stored

key kPP must also be erased.

Key Rotation KeyRotat′ = (KeyRotat-L′,KeyRotat-P′): We define the sub-algorithms as

follows. If any error occurs during the above execution, then the caller aborts and undoes

the executions in this invocation.

• KeyRotat-L′(P, gid,m): The leader P first runs the original mKRot
$←− KeyRotat-L(P,

gid,m). Then, the leader P extracts the portion cP in mKRot that is specific to

every participant P in the group gid, followed by encrypting it using the stored

corresponding AEADPP key kPP, a random nonce, and an header consisting of both

parties’ sign-up messages as in the Participant Join phase. Finally, the leader P

outputs the AEADPP ciphertext and nonce for every participant P in the group gid.

• KeyRotat-P′(P, gid,m): The participant P first extracts an AEADPP ciphertext and

an AEADPP nonce from the input m. Next, P recovers a message m1 from the

AEADPP ciphertext using the stored corresponding AEADPP key kPP, the AEADPP
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nonce, and an header consisting of both parties’ sign-up messages as in the Partici-

pant Join phase. Then, the participant P extracts other necessary information m2

from the input m for running mKRot
$←− KeyRotat-P(P, gid,m1 ∥ m2) and outputting

mKRot.

For brevity we omit the correctness analysis. The theorem below shows that our

PP transformation provably turns a Sec-mGKD-pki secure Π into a Sec-mGKD-pw secure

Π′ = PP[Π,PAKEPP,AEADPP] protocol. We give the theorem’s proof in Section 6.9.2.

Theorem 26. Let Π denote a mGKD protocol. Let PAKEPP denote a password-authenticated

key exchange scheme. Let AEADPP denote an authenticated encryption with associated data

scheme. Let Π′ = PP[Π,PAKEPP,AEADPP]. Let D = DΠ × Dpw denote the distribution

of the group secrets. Assume the ϵw-PAKEPAKEPP,Dpw
-w-PAKE security of the underlying PAKEPP,

the ϵd-frobAEADPP
-d -FROB security, ϵind$-ccaAEADPP

-IND$-CCA security, and ϵcti-cpaAEADPP
-CTI-CPA security

of AEADPP. If there exists any PPT attacker A that breaks the Sec-mGKD-pw security of

Π′, then there must exist a PPT attacker B that breaks the Sec-mGKD-pki security of Π

such that

AdvSec-mGKD-pw
Π′ (A) ≤qNewGroup

(
ϵw-PAKEPAKEPP,Dpw

+ ϵd-frobAEADPP

+ cmaxReg(ϵ
cti-cpa
AEADPP

+ ϵind$-ccaAEADPP
) + AdvSec-mGKD-pki

Π (B)
)

where cmaxReg denotes the maximal number of register requests for every group and qO

denotes the maximal number of queries to any oracle O.

Proof Sketch. We can easily guess the group g̃id that enables A to win with probability

at least qNewGroup. Due to the w-PAKE security of the PAKEPP scheme with Dpw , we can

ensure that the keys k
(P ′,g̃id)
PP of all authorized participants P ′ in the group g̃id, which

are output by PAKEPP of and will be used for AEADPP, are random. Moreover, the key

k
(P ′,g̃id)
PP produced by the leader P g̃id of the group g̃id is either same as the one produced

by the corresponding authorized participant P ′ or independently random. By cmaxReg

hybrid games on the CTI-CPA security of AEADPP, all authorized parties P ′ in the group

g̃id must agree on all AEADPP ciphertexts with the leader P g̃id. By d -frob security of

AEADPP, agreeing ciphertexts indicates that agreeing on the header, i.e., sign-up messages.

Moreover, by the ind$-cca security of AEAD AEADPP, all AEADPP ciphertexts produced by

P g̃id for any unauthorized party are indistinguishable from random and therefore leaks no

information about any group keys. Finally, if A win via the event EKAuth or EKPriv against

Π′, then A can also win the same event against Π’s Sec-mGKD-pki security.

Below, we further show that our PP transformation preserves the Sec-mGKD-pki security

of the original mGKD protocol Π. We give the theorem’s proof in Section 6.9.3.
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Theorem 27. Let Π denote a mGKD protocol. Let PAKEPP denote a password-authenticated

key exchange scheme. Let AEADPP denote an authenticated encryption with associated

data. Let Π′ = PP[Π,PAKEPP,AEADPP]. If there exists any PPT attacker A that breaks

the Sec-mGKD-pki security of Π′, then there exists another PPT attacker B that breaks the

Sec-mGKD-pki security of Π such that

AdvSec-mGKD-pki
Π′ (A) ≤ AdvSec-mGKD-pki

Π (B)

Proof Sketch. The proof can be easily given by a reduction. The attacker B can easily

simulates the real Sec-mGKD-pki game against Π′ to A by sampling all passwords for all

groups and runs the PP transformation by himself. All information that B needs can be

obtained by querying its challenger. Finally, B forwards the bit output by A and wins

whenever A wins.

Combining these two theorems, our PP transformation provably endows a Sec-mGKD-pki

secure mGKD protocol Π with Sec-mGKD-pw security while preserving the original one,

i.e., Sec-mGKD-pw+ security due to Corollary 1.

6.6.2 Application to the Zoom Library

Then, we illustrate how to apply our PP transformation to the Zoom library in Section 6.5.1

by using a 2-pass PAKEPP scheme and an AEADPP scheme. We call the transformed version

ZoomPAKE and show the resulting protocol in Figure 6.3, where we use boxes to indicate

the modifications. Note that Zoom achieves Sec-mGKD-pki security without relying on

passcodes, as stated in Remark 1. The passcodes for the server’s access control underlying

Zoom are redundant in the stronger threat model, and can therefore be set to the empty

string without impacting Sec-mGKD-pw security. In the following we assume that the

passcode is set to the empty string, which amounts to replacing the passcode with the

new PAKE password computations.

The Sign Up and Member Leave phases are unchanged.

ZoomPAKE Group Schedule Phase: This algorithm is nearly identical to the original

one except that the leader sends the new password to authorized parties over an out-of-band

channel instead of sending the passcode to the server.

ZoomPAKE Register Phase: Similar to the previous, parties no longer need to send

the passcode to the server. Then, each participant P ′ runs the first pass of PAKEPP on the

password pw gid for a ciphertext c
(P ′,gid)
PP,1 and outputs both the original outgoing messages

and c
(P ′,gid)
PP,1 .

ZoomPAKE Participant Join Phase: Our PP transformation modifies both leaders’

and participants’ execution.
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From the leader P ’s side, P firsts parses an additional PAKEPP ciphertext c
(P ′,gid)
PP,1 from

the input, and uses the group secret as the password pw gid. Next, the leader P runs the

second pass of PAKEPP with necessary input for a key k
(P ′,gid)
PP and a ciphertext c

(P ′,gid)
PP,2 .

Then, P stores k
(P ′,gid)
PP and samples a random nonce of length lPP uniformly at random.

After that, P executes the original computation. When the ZBox encryption cgidP ′ is derived,

the leader P further re-encrypts it using the key k
(P ′,gid)
PP , the random nonce nonceP

′

PP, and

the header consisting both parties’ sign-up messages. The PAKEPP ciphertext c
(P ′,gid)
PP,2 and

the AEADPP ciphertext are output.

From the participant P ′’s side, P ′ first parses two more components from the input

messages: a PAKEPP ciphertext c
(P ′,gid)
PP,2 and a nonce nonceP

′

PP. The participant P ′ also uses

the group secret gs as the password pw gid. Note that the original ciphertext cgidP ′ is not the

one of ZBox anymore but the one of AEADPP. Next, P ′ runs PAKEPP for a key k
(P ′,gid)
PP

and decrypts the AEADPP ciphertext cgidP ′ using the key k
(P ′,gid)
PP , the nonce nonceP

′

PP, and

the header consisting of the leader P ’s and the participant P ′’s sign-up messages, for the

original ZBox ciphertext. If any error occurs during this step, the participant P ′ simply

aborts. Otherwise, the key k
(P ′,gid)
PP is stored locally. The remaining computation of P ′

remains the same.

ZoomPAKE Key Rotation Join Phase: The key rotation phase is very similar to the

original one. The only difference from the leader P ’s side is that P has to encrypt the ZBox

ciphertext using AEADPP for every participant P in his local party set, i.e., idP ∈ πgid
P .GP

and idP ̸= idP , using the stored key k
(P ,gid)
PP , output by PAKEPP, a independently random

nonce noncePPP, the header consisting of the sign-up messages of P and P . The output

is a ciphertext bundle that includes AEADPP ciphertexts rather than the original ZBox

ciphertexts.

When receiving the AEADPP ciphertext, a participant P ′ first decrypts it by using the

stored key k (P ′,gid) for a ZBox ciphertext cgidP ′ . Then, P ′ simply runs the original KeyRotat-P

algorithm using the new ciphertext cgidP ′ .

Instantiation Suggestions. We suggest to instantiate the underlying PAKEPP with

CPace [101] or SPAKE2 [9] for the w-PAKE security, see Section 6.3.2. The AEADPP can be

instantiated with CAU-C4 or CAU-SIV-C4 [28] for the d -FROB security, see Section 2.2.4.

6.7 Comparison with Concurrent Work [83]

The concurrent work [83] and this paper both analyze the security of the end-to-end secure

Zoom library while having different focuses. The analysis in this paper and [83] mainly

has differences from three aspects.

1. Different Protocol Abstraction: [83] abstracts the Zoom library as a novel leader-

based continuous group key agreement with liveness (LL-CGKA) scheme, that takes the
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full “leader-participant-list” mechanism, the “heartbeat” mechanism, and liveness into

account. By this, their analysis additionally captures that all members in a group agree

on a group roster, i.e., a list including the identifiers of all group members. Moreover,

their Zoom protocol considers the change of group leader in Zoom.

However, their Zoom protocol assumes a PKI that “provides to each long-term identity id

their respective private signing key isk”, while our protocol lets every party generate their

own identity key pair, which is closer to the white-paper [53, Section 7.6]. Besides, their

Zoom protocol omits the group secret generation and distribution, which is mentioned

in [53, Section 2, Section 7.11], and therefore does not formally distinguish the roles

“participants”, i.e., the parties that are authorized for a group, from the “insiders”, i.e.,

who develop and maintain Zoom’s server infrastructure and its cloud providers. Our

protocol captures the “group secret” mechanism. Moreover, their Zoom protocol does

not include an independent key rotation phase but embed it into the member leaving

phase. However, the member leaving in Zoom does not always trigger the key rotation,

e.g., within 15 seconds of the previous member leaving [53, Section 7.6.6]. Our protocol

has an independent Key Rotation phase to capture the group key update.

2. Different Security Models: The model in [83] and our Sec-mGKD-pki model respec-

tively capture the characteristic features of their LL-CGKA scheme and our mGKD

protocol. Apart from this, there are still following differences:

On the one hand, their model considers the change of group leader and rejoining a group

after leaving. Instead, our model only considers the unique leader of a group and prevent

a party from rejoining a group after leaving.

On the other hand, their model considers a globally trusted PKI that honestly distributes

the identity public keys for all parties in the world. However, our model only assumes the

honest sign-up messages distribution for any target group that will lead the attacker to

win. Moreover, the attacker in their model has to corrupt each party’s long-term private

key and all alive per-group states at the same time. Our model partitions the oracle for

state leakage into two: the corruption oracle that returns the long-term state of a party,

and the compromise oracle that returns a per-group state of a party. By this, our model

captures the fact that the leakage of a party’s per-group state in one group does not

influence the security of another alive group.

3. Different Protocol Optimization: [83] improves the security of Zoom library by

importing a new “period” term. The leader in their optimization can opt not to sample

a new group key but simply ask every participant derives the next group key from their

local state. This improves the efficiency while preserving forward secrecy.

Our optimization however has a totally different focus. Our PP transformation aims to

provide the security against “insiders”, i.e., the security for authorized parties holds even

though no trusted PKI exists.
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6.8 Technical Summary

In this paper, we propose a new mGKD protocol that captures the behaviors of the Zoom

library and three associated security models: the basic Sec-mGKD-pki model considers

restricted end-to-end encrypted security assuming the existence of a trusted PKI; the

Sec-mGKD-pw model captures full end-to-end encrypted security without any trusted PKI;

and the Sec-mGKD-pw+ that combines the Sec-mGKD-pki and Sec-mGKD-pw models. We

proved that the Zoom library version 4.0 satisfies the basic Sec-mGKD-pki, but does not

provide end-to-end Sec-mGKD-pw security.

To improve the Sec-mGKD-pki security of any mGKD protocol (including the Zoom

library) to the Sec-mGKD-pw+ security, we propose a novel PP transformation that makes

use of the group secret transmitted over out-of-band channels and cryptographic primitives

PAKE and AEAD. Intuitively, to get the group keys that encrypts the real messages in the

group chat, every participant must first additionally execute PAKE with the group leader

for a shared key. This shared key is peer-wise independent: the group leader knows all

shared keys and the participant only knows the one that it produces. Whenever the leader

needs to rotate and distribute a new group key, the leader must additionally “wrap” the

original ciphertext, i.e., encrypt it using the shared keys and AEAD, and every participant

needs to first unwrap the original ciphertext in order to recover the real group keys. In

particular, the application of our PP transform to the Zoom library is very efficient in

terms of the communication rounds, as it does not cause any additional round trip time.

6.9 Full Proofs

6.9.1 Proof of Theorem 25

Proof. We give the proof of Zoom’s security in Sec-mGKD-pki as a sequence of games. Let

Advi(A) denote the advantage of an attacker A in winning Game i.

Game 0: This game is identical to the original Sec-mGKD-pki experiment. Thus, we have

that

Adv0(A) = AdvSec-mGKD-pki
Π (A)

Game 1: This game is identical to Game 0, except that the challenger C let the attacker

A immediately win if there exists collision on function H1. That is, there exists two distinct

inputs m1 and m2 such that H1(m1) = H1(m2). By this, we ensure that there exists no

collision on the function H1 in the following games. Due to the collision resistance of H1,

we can easily have that:

Adv0(A) ≤ Adv1(A) + ϵcoll-resH1

Game 2: This game is identical to the Game 1 except the following modification:
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• The challenger C aborts the game if A can trigger the following event:

Event E1: There exists any party P 1, any party P 2, and any group identifier gid such

that

– the long-term state stP 1 is not corrupted before P 1 and P 2 both joined the

group gid,

– the sign-up messages, i.e., the identity public keys stP 1 .ipk = ipkP 1 of P 1 is

honestly delivered to P 2 in the Participant Join phase between P 1 and P 2 for

the group gid, and

– P 1 and P 2 have disagreement on the binding information BindinggidP 1 .

By this, we ensure that in the following games, if the sign-up message of a party P 1 is

delivered to another party P 2 before the corruption of the long-term state stP 1 in any

group gid, then P 2 and P 1 must agree on the Binding information BindinggidP 1 .

Obviously, it holds that

Adv1 ≤ Adv2(A) + Pr[E1]

Below, we analyze the probability that A can trigger E1 by reduction. If the attacker A
can trigger the event E1, then we construct an attacker B1 that breaks the euf-cma security

of the underlying DS scheme. The attacker B1 receives a public verification key vk ⋆ and

honestly initializes Game 1. Moreover, B1 guesses the index i⋆of one NewParty query

that will create the party P 1 in the event E1. Note that there are at most NewParty

queries in the game. B1 guesses correctly with probability at least 1
qNewParty

. Then, B1
honestly answers A’s queries except the following ones:

• NewParty(idP ): If this is the i⋆-th query, then B1 initializes a state stP by setting

stP .id←idP . Then, C sets stP .ipk to vk ⋆ that is given by its challenger. Finally, B1
forwards mP

SignUp = vk ⋆ to A and marks P as “created”.

For other queries to this oracle, B1 executes them honestly.

• RegisterAuth(idP , gid,m): If the input party P is created via the i⋆-th query to the

NewParty oracle, then B1 honestly executes the checks. If no error occurs, B1 honestly

produces its binding information Bindingg̃idP and send H1(ctxt1) ∥ H1(Binding
g̃id
P ) to its DS

signing oracle. Then, B1 receives a signature σg̃id
P and use it as the output of the ZSign

signature. The rest of this query is honestly executed.

For other queries to this oracle, B1 executes them honestly.

• RegisterInject(idP , gid, gs ,m): If the input party P is created via the i⋆-th query to the

NewParty oracle and gid = g̃id, then B1 honestly executes the checks. If no error occurs,

B1 honestly produces its binding information Bindingg̃idP and send H1(ctxt1) ∥ H1(Binding
g̃id
P )

to its DS signing oracle. Then, B1 receives a signature σg̃id
P and use it as the output of

the ZSign signature. The rest of this query is honestly executed.
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For other queries to this oracle, B1 executes them honestly.

• SendJoinAuth(idP , idP ′ , gid,m): If the input party P ′ is created via the i⋆-th query

to the NewParty oracle, then B1 extracts the binding information Bindingg̃idP ′ and a

signature σg̃id
P ′ . If σg̃id

P ′ is not output by any RegisterAuth or RegisterInject ora-

cle for the binding information Bindingg̃idP ′ but the verification DS.Vrfy(vk ⋆,H1(ctxt1) ∥
H1(Binding

g̃id
P ′ ), σ

g̃id
P ′ ) = true passes, then B1 immediately returns (H1(ctxt1) ∥ H1(Binding

g̃id
P ′ ),

σg̃id
P ′ ) to its challenger and aborts the experiment.

In all other cases inside this query or for other queries to this oracle, B1 executes them

honestly.

• SendJoinInject(idP , idP ′ , gid, gs ,m): If the input party P is created via the i⋆-th query

to the NewParty oracle, then B1 extracts the binding information Bindingg̃idP ′ and a

signature σg̃id
P ′ . If σg̃id

P ′ is not output by any RegisterAuth or RegisterInject ora-

cle for the binding information Bindingg̃idP ′ but the verification DS.Vrfy(vk ⋆,H1(ctxt1) ∥
H1(Binding

g̃id
P ′ ), σ

g̃id
P ′ ) = true passes, then B1 immediately returns (H1(ctxt1) ∥ H1(Binding

g̃id
P ′ ),

σg̃id
P ′ ) to its challenger and aborts the experiment.

In all other cases inside this query or for other queries to this oracle, B1 executes them

honestly.

• Corrupt(idP ): If the input party P is created via the i⋆-th query to the NewParty

oracle, B1 aborts. Otherwise, B1 honestly executes this oracle.

If the attacker A can trigger the event E1 and B1 guesses the oracle that creates party

P 1 correctly, then A must trigger the event E1 before querying the Corrupt that causes

the abortion. Moreover, there must also exist a group identifier gid and a party P 2 such

that

1. P 2 receives the honest sign-up message stP 1 .ipk = ipkP 1 of the the party P 1 in the group

gid,

2. the long-term state stP 1 is not corrupted before P 1 and P 2 joined the group gid, and

3. the parties P 1 and P 2 have disagreement on P 1’s binding information BindinggidP 1 .

This means, B1 can always win in the SendJoinAuth or SendJoinInject oracle.

Note also that the event “the attacker A can trigger event E1” and the event “B1
guesses correctly” are independent. Thus

ϵeuf-cma
DS ≥Pr[B1 wins]

≥Pr[A can trigger event E1 and B1 guesses correctly]

≥Pr[A can trigger event ] · Pr[B1 guesses correctly]

≥Pr[E1] ·
1

qNewParty
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The above equation can be rewritten as:

Pr[E1] ≤ qNewPartyϵ
euf-cma
DS

Thus, we have that

Adv1(A) ≤ Adv2(A) + qNewPartyϵ
euf-cma
DS

Game 3: This game is identical to Game 2 except the at the beginning of the experiment

the challenger C guesses a group identifier g̃id, whose associated leader is denoted by P g̃id,

that will lead A to win, and lets A immediately lose if the guess is wrong. By this, we

ensure that the attacker A can win only by triggering one of the events as follows:

• [In the case of event EKAuth] there exists any party P ′ that is authorized for the group

g̃id and any group key index gkid such that gk
(g̃id,gkid)
P ′ ≠ ⊥ but gk

(g̃id,gkid)

P g̃id
≠ gk

(g̃id,gkid)
P ′ ,

without the violation of the freshness condition frshSec-mGKD-pki
KAuth (idP ′ , g̃id, gkid), or

• [In the case of event EKPriv] A will query Test oracle with input (idP ′ , g̃id, gkid) for some

party identifier P ′ and some group key index gkid and correctly guess the challenge bit

b = b′, without violation of the freshness frshSec-mGKD-pki
KPriv (idP ′ , g̃id, gkid).

Note that each group must be created via NewGroup oracle. There are at most

qNewGroup groups in the experiment. Thus, the guess is correct with probability at least
1

qNewGroup
. Note that whether A wins in Game 2 and whether the challenger guesses

correctly in Game 3 is independent. We have that

Adv2(A) ≤ qNewGroupAdv3(A)

Below, we analyze the advantage that A wins in Game 3 by case distinction, i.e.,

whether A wins by triggering EKAuth in Case 1, the advantage of which is denoted by

AdvC1
3 , or by triggering EKPriv in Case 2, the advantage of which is denoted by AdvC2

3 .

Thus, we have that

Adv3(A) := max
(
AdvC1

3 (A),AdvC2
3 (A)

)
Case 1: A wins by triggering event EKAuth.

In this case, due to the winning conditions and the freshness requirement, we know that

for the group identifier g̃id with a leader denoted by P g̃id, there must exist an authorized

party P ′ and a group key index gkid such that:

1. gk
(g̃id,gkid)
P ′ ̸= ⊥ and gk

(g̃id,gkid)

P g̃id
̸= gk

(g̃id,gkid)
P ′ ,

2. neither πg̃id
P ′ nor πg̃id

P g̃id
is compromised,

3. the long-term states stP ′ and st
P g̃id are not corrupted before P ′ and P g̃id both joined the

group g̃id, and
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4. the sign-up messages, i.e., the identity public keys stP ′ .ipk = ipkP ′ and st
P g̃id .ipk = ipk

P g̃id ,

of P ′ and P g̃id both honestly arrive at the other.

By Game 2, it must further hold that P ′ and P g̃id agree on each other’s binding

information Bindingg̃idP ′ and Bindingg̃id
P g̃id

, which include:

• the group identifier g̃id,

• the server-controlled randomness mUUID,

• both parties’ identifier (uid
P g̃id , hidP g̃id) and (uidP ′ , hidP ′),

• both parties’ identity keys ipk
P g̃id and ipkP ′ , and

• both parties’ per-group public key pk g̃id

P g̃id
and pk g̃id

P ′ .

Game C1.4: This game is identical to Game 3 except the following modification:

• The challenger guesses the index of query to the RegisterAuth or RegisterInject

oracle, which creates the per-group state πg̃id
P ′ in the winning event EKAuth, at the beginning

of the experiment and aborts the game if the guess is wrong.

Note that there are at most cmaxReg register queries to the group g̃id via theRegisterAuth

or RegisterInject oracles in the game. The probability that C guesses correctly is at

least 1
cmaxReg

. Thus, we have that

AdvC1
3 (A) ≤ cmaxRegAdv

C1
4 (A)

Note that the challenger C will know the identifier of the party P ′ in the winning event

EKAuth at the time of receiving the guessed query to RegisterAuth or RegisterInject

oracle. In the following games, we denote the party P ′ in the winning event EKAuth with P̃ .

Game C1.5: This game is identical to the Game C1.4 except the following modifications:

• At the beginning of the experiment, the challenger C samples a random K̃ of bit length

lH2 .

• When the leader P g̃id of the the group g̃id needs to compute the output K of the Hash

function H2 over a Diffie-Hellman exchange key K ′, which is computed by the leader’s

identity private key πg̃id

P g̃id
.sk and the party P̃ ’s public key pk g̃id

P̃
, and a constant ctxtH2 in

Line 5 in Figure 6.2 during the Participant Join phase and the Key Rotation phase of P̃ ,

C replaces K with K̃.

• When P̃ needs to compute the output K of the Hash function H2 over a Diffie-Hellman

exchange key K ′, which is computed by the party P̃ ’s identity private key πg̃id

P̃
.sk and

the leader P g̃id’s public key pk g̃id

P g̃id
, and a constant ctxtH2 in Line 12 in Figure 6.2 during

the Participant Join phase and the Key Rotation phase with the leader of the group g̃id,

C replaces K with K̃.
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We analyze the gap between Game C1.4 and Game C1.5 by reduction to the hardness

of mn-prf-ODH problem over ECDH and H2. If the attacker A can distinguish Game C1.4

and Game C1.5, then we can construct another attacker B2 that breaks mn-prf-ODH

assumption over ECDH and H2.

The attacker B2 receives the ECDH parameters and U = gu for some unknown u. Next,

B2 immediately issues a challenger query x⋆ = ctxtH2 to its challenger and receives a tuple

(V = gv, y⋆) for some unknown v. Then B2 invokes A and simulates Game C1.4 honestly,

except for answering the queries to the following oracles.

• RegisterAuth(idP , gid,m): If the input party P is the leader of the group g̃id, i.e.,

P = P g̃id, and the group identifier gid = g̃id, then B2 does not sample the ZBox key

pair uniformly at random. Instead, B2 replaces πg̃id

P g̃id
.pk with U = gu that is given by

challenger. The rest of this query is executed honestly.

If the input party P is the participant that is guessed in Game C1.4, i.e., P = P̃ , and

the group identifier gid = g̃id, then B2 does not sample the ZBox key pair uniformly at

random. Instead, B2 replaces πg̃id

P̃
.pk with V = gv that is given by challenger. The rest

of this query is executed honestly.

For the other queries to this oracle, B2 executes them honestly.

• RegisterInject(idP , gid, gs ,m): If the input party P is the participant that is guessed

in Game C1.4, i.e., P = P̃ , and the group identifier gid = g̃id, then B2 does not sample

the ZBox key pair uniformly at random. Instead, B2 replaces πg̃id

P̃
.pk with V = gv that is

given by challenger. The rest of this query is executed honestly.

For the other queries to this oracle, B2 executes them honestly.

• SendJoinAuth(idP , idP ′ , gid,m): If the input party P = P g̃id, the group identifier

gid = g̃id, and ZBox public key pk included in the fourth input m equals V = gv that is

given by the challenger, then B2 does not compute the the Diffie-Hellman exchange in

Line 4 and the computation of H2 in Line 5 in Figure 6.2. Instead, B2 replaces the output
of H2 with y⋆ that is given by the challenger. The rest of this query is executed honestly.

If the input party P = P g̃id, the group identifier gid = g̃id, and ZBox public key pk

included in the fourth input m does not equal to V = gv that is given by the challenger,

then B2 does not compute the the Diffie-Hellman exchange in Line 4 and the computation

of H2 in Line 5 in Figure 6.2. Instead, B2 queries its ODHu oracle with input (pk , ctxtH2)

for a reply y, followed by replacing the output of H2 with the reply y. The rest of this

query is executed honestly.

If the input party P = P̃ , the group identifier gid = g̃id, and ZBox public key pk included

in the third input m equals U = gu that is given by the challenger, then B2 does not

compute the the Diffie-Hellman exchange in Line 11 and the computation of H2 in Line 12
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in Figure 6.2. Instead, B2 replaces the output of H2 with y⋆ that is given by the challenger.

The rest of this query is executed honestly.

For the other queries to this oracle, B2 executes them honestly.

• SendJoinInject(idP , idP ′ , gid, gs ,m): If the input party P = P̃ , the group identifier

gid = g̃id, and ZBox public key pk included in the fifth input m equals U = gu that is

given by the challenger, then B2 does not compute the the Diffie-Hellman exchange in

Line 11 and the computation of H2 in Line 12 in Figure 6.2. Instead, B2 replaces the

output of H2 with y⋆ that is given by the challenger. The rest of this query is executed

honestly.

For the other queries to this oracle, B2 executes them honestly.

• SendKeyRotat(idP , gid,m): Note that this oracle requires that the P must have

already joined the group gid. In particular, B2 must have already computed the output of

H2 for every communication between the leader of the group gid and the participants. In

this oracle, B2 does not re-compute the Diffie-Hellman exchange and the computation of

H2. Instead, B2 simply reuses the corresponding values derived in the SendJoinAuth

or SendJoinInject oracles.

The rest of this oracle is executed honestly.

• Compromise(idP , gid): If the first input party P = P g̃id or P = P̃ and the second input

gid = g̃id, then B2 aborts.

The rest of this oracle is executed honestly.

Note that if the attacker A can trigger the winning event EKAuth without violating

the freshness condition, then neither πg̃id

P g̃id
nor πg̃id

P̃
is allowed to be compromised due to

the freshness condition frshKAuth. This game abortion in the Compromise oracle will not

happen.

If the attacker A is able to distinguish Game C1.4 and Game C1.5, then the attacker

B2 returns to 0 to its challenger if the A thinks this is Game C1.4 and 1 to its challenger

if the A thinks this is Game C1.5.

Note that B2 perfectly simulates Game C1.4 if y⋆ = H2(g
uv, ctxtH2) and Game C1.5

if y⋆ is sampled uniformly at random. B2 wins whenever A can distinguish the games.

Thus, we have that

AdvC1
4 (A) ≤ AdvC1

5 (A) + ϵmn-prf-ODH
ECDH,H2

Final Analysis for Case 1: Finally, we analyze the advantage that A can win by

triggering EKAuth. This means, there exists any group key index gkid such that

• gk
(g̃id,gkid)

P̃
̸= ⊥ and gk

(g̃id,gkid)

P g̃id
̸= gk

(g̃id,gkid)

P̃
,
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• P̃ and P g̃id agree on each other’s binding information Bindingg̃id
P̃

and Bindingg̃id
P g̃id

in the

Participant Join phase, and

• the per-group states πg̃id

P̃
and πg̃id

P g̃id
are not compromised.

From Game C1.5, we know that P̃ and P g̃id shares the same random key K̃ for

computing AEAD. From gk
(g̃id,gkid)

P̃
≠ ⊥, we know that P̃ must receives a AEAD nonce and

ciphertext tuple (nonce, c), which is decrypted to (gk
(g̃id,gkid)

P̃
, gkid) ̸= (gk

(g̃id,gkid)

P g̃id
, gkid) for

some gkid. We consider the following four cases:

• Case 1: gk
(g̃id,gkid)

P g̃id
= ⊥. In this case, the leader P g̃id has not generated the gkid-th group

key. This mean, the tuple (nonce, c) must be forged by A. Note that the AEAD header h

is known by A. If A can trigger this case, then we can easily construct an attacker B3
that breaks the CTI-CPA security of the underlying AEAD.

• Case 2: gk
(g̃id,gkid)

P g̃id
̸= ⊥ and c is not produced by P g̃id. Similar to the above, if A can

trigger this case, then we can easily construct an attacker B3 that breaks the CTI-CPA

security of the underlying AEAD.

• Case 3: gk
(g̃id,gkid)

P g̃id
≠ ⊥ and c is produced by P g̃id but the nonce nonce is not produced by

P g̃id for this gk
(g̃id,gkid)

P g̃id
. Let nonceg̃id denote the nonce produced by P g̃id for this gk

(g̃id,gkid)

P g̃id
.

IfA can trigger this case, we can easily construct an attacker B3 that breaks the customized

(n,m)-FROB security of AEAD by outputting
(
c, (K̃, nonce, h), (K̃, nonceg̃id, h)

)
.

• Case 4: gk
(g̃id,gkid)

P g̃id
≠ ⊥ and (nonce, c) is produced by P g̃id for this gk

(g̃id,gkid)

P g̃id
. This case is

impossible due to the perfect correctness.

Merging the cases analysis above, it holds that

AdvC1
5 (A) ≤ max

(
ϵcti-cpaAEAD , ϵ

(n,m)-frob
AEAD

)
≤ ϵcti-cpaAEAD + ϵ

(n,m)-frob
AEAD

We further have that

AdvC1
3 ≤ cmaxReg(ϵ

mn-prf-ODH
ECDH,H2

+ ϵcti-cpaAEAD + ϵ
(n,m)-frob
AEAD )

Case 2: A wins by triggering event EKPriv.

In this case, due to the winning event EKPriv and the freshness requirement frshSec-mGKD-pki
KPriv ,

it must hold for the guessed the group identifier g̃id with some leader P g̃id and some group

key index gkid that

• b = b′,

• the group key gk
(g̃id,gkid)
P is not leaked for all P such that idP ∈ GP (g̃id,gkid),

• the short-term state πg̃id
P is not compromised for all P such that idP ∈ GP (g̃id,gkid),
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• the long-term state st
P g̃id of the leader P g̃id is not corrupted before all other participants

P such that idP ∈ GP (g̃id,gkid) and idP ̸= id
P g̃id joined the group g̃id,

• the long-term state stP of all participants P such that idP ∈ GP (g̃id,gkid) is not corrupted

before P joined the group g̃id, and

• the sign-up messages of all parties P such that idP ∈ GP (g̃id,gkid) are honestly distributed

inside the group g̃id.

Game C2.4: This game is identical the Game 3 except for the following modification:

• At the beginning of the experiment, the challenger C guesses the number nparty of parties

in the set GP (g̃id,gkid), where gkid is the tested group key identifier. The challenger C
aborts if the guess is wrong.

Note that there are at most cmaxParty parties in a group simutanously. The probability that

C guesses correctly is bounded by 1
cmaxParty

. Thus, it holds that

AdvC2
3 (A) ≤ cmaxPartyAdv

C2
4 (A)

Game C2.5: This game is identical the Game C2.4 except for the following modification:

• At the beginning of the experiment, the challenger C guesses (nparty − 1) indices of the

queries RegisterAuth or RegisterInject that create the per-group states πg̃id
P i for

some parties P i, where 1 ≤ i ≤ (nparty − 1). The challenger aborts if {P i}i are not

participants in the set GP (g̃id,gkid), where gkid is the tested group key identifier.

Note that there are (nparty − 1) participants in the set GP (g̃id,gkid) and each per-group state

can be created in at most cmaxReg queries to the RegisterAuth or RegisterInject

oracles. Thus, the challenger guesses correctly except for the probability 1

c
(nparty−1)

maxReg

.

AdvC2
4 (A) ≤ c

(nparty−1)
maxReg AdvC2

5 (A)

Note that the challenger C will know the identifier of the participants P ∈ GP (g̃id,gkid)

in the winning event EKPriv at the time of receiving the (nparty − 1) guessed queries to

RegisterAuth or RegisterInject oracle. In the following games, we denote the

nparty participants in the winning event EKPriv with P 1, ..., P (nparty − 1). This means,

GP (g̃id,gkid) = {idP i}i ∪ {idP g̃id}, where gkid is the tested group key identifier.

Game C2.6: This game is identical the Game C2.5 except for the following modification:

• At the beginning of the experiment, the challenger C samples (nparty − 1) random string

K̃1, ..., K̃(nparty−1) of bit length lH2 .
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• When the leader P g̃id of the the group g̃id needs to compute the output K of the Hash

function H2 over a Diffie-Hellman exchange key K ′, which is computed by the leader’s

identity private key πg̃id

P g̃id
.sk and the party P i’s public key pk g̃id

P i for any 1 ≤ i ≤ (nparty−1),

and a constant ctxtH2 in Line 5 in Figure 6.2 during the Participant Join phase and the

Key Rotation phase of P̃ , C replaces K with K̃i.

• When P i for any 1 ≤ i ≤ (nparty−1) needs to compute the output K of the Hash function

H2 over a Diffie-Hellman exchange key K ′, which is computed by the party P i’s identity

private key πg̃id
P i .sk and the leader P g̃id’s public key pk g̃id

P g̃id
, and a constant ctxtH2 in Line 12

in Figure 6.2 during the Participant Join phase and the Key Rotation phase with the

leader of the group g̃id, C replaces K with K̃i.

The gap between Game C2.5 and Game C2.6 can be given by a sequence of hybrid

games.

Hybrid Game 0. This game is identical to Game C2.5. Thus, we have that

Advhy.0(A) = AdvC2
5 (A)

Hybrid Game i, where 1 ≤ i ≤ (nparty− 1). This game is identical to Hybrid Game

(i− 1) except the following modification

• At the beginning of the experiment, the challenger C samples a random string K̃i of bit

length lH2 .

• When the leader P g̃id of the the group g̃id needs to compute the output K of the Hash

function H2 over a Diffie-Hellman exchange key K ′, which is computed by the leader’s

identity private key πg̃id

P g̃id
.sk and the party P i’s public key pk g̃id

P i , and a constant ctxtH2 in

Line 5 in Figure 6.2 during the Participant Join phase and the Key Rotation phase of P̃ ,

C replaces K with K̃i.

• When P i needs to compute the output K of the Hash function H2 over a Diffie-Hellman

exchange key K ′, which is computed by the party P i’s identity private key πg̃id
P i .sk and

the leader P g̃id’s public key pk g̃id

P g̃id
, and a constant ctxtH2 in Line 12 in Figure 6.2 during

the Participant Join phase and the Key Rotation phase with the leader of the group g̃id,

C replaces K with K̃i.

If the attacker A can distinguish Hybrid Game (i− 1) and Hybrid Game i, then we

can easily construct an attacker B4 that breaks the mn-prf-ODH security of the underlying

ECDH and H2, similar to the reduction in Game C1.5. Thus, we can easily have that

Advhy.(i−1)(A) = Advhy.i(A) + ϵmn-prf-ODH
ECDH,H2

Hybrid Game (nparty− 1). This game is identical to Game C2.6. Thus, we have that

Advhy.(nparty−1)(A) = AdvC2
6 (A)
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To sum up, it holds that

AdvC2
5 (A) ≤ AdvC2

6 (A) + (nparty − 1)ϵmn-prf-ODH
ECDH,H2

Game C2.7: This game is identical to Game C2.6 except the following modification:

• All ciphertexts between the leader P g̃id and P i, for every 1 ≤ i ≤ (nparty−1), are replaced

by random strings of the same length.

The gap between Game C2.6 and Game C2.7 can be given by (nparty − 1) hybrid games,

where the i-th hybrid game replaces all ciphertexts between P gid and P i in the group g̃id

encrypted using K̃i for every 1 ≤ i ≤ (nparty − 1). It is easy to know that the gap between

every adjacent hybrid games can be reduced to the IND$-CCA security of the underlying

AEAD. Thus, we have that

Adv6(A) ≤ Adv7(A) + (nparty − 1)ϵind$-ccaAEAD

Now, the attacker A obtains no information about the challenge bit b and can only

randomly guess. The probability that A wins is 1
2
, i.e.,

Adv7(A) = 0

We further have that

AdvC2
3 ≤ cmaxPartyc

(nparty−1)
maxReg (nparty − 1)(ϵmn-prf-ODH

ECDH,H2
+ ϵind$-ccaAEAD )

Final Analysis. By merging the statements above, the proof is concluded by,

AdvSec-mGKD-pki
Π (A) ≤ϵcoll-resH1

+ qNewPartyϵ
euf-cma
DS + cmaxRegqNewGroup

(
ϵcti-cpaAEAD + ϵ

(n,m)-frob
AEAD

+ c
(nparty−1)
maxReg (nparty − 1)(ϵmn-prf-ODH

ECDH,H2
+ ϵind$-ccaAEAD )

)
where cmaxParty denotes the maximal number of parties per meeting, l = 192 denote the

length of random nonce in ZBox algorithm, and qO denote the maximal number of the

queries to any oracle O.

6.9.2 Proof of Theorem 26

Proof. The proof is given by a sequence of games. Let Advi(A) denote the advantage of

an attacker A in winning Game i.

Game 0: This game is identical to the original Sec-mGKD-pw experiment. Thus, we have

that

Adv0(A) = AdvSec-mGKD-pw
Π′ (A)

Game 1: This game is identical to the Game 0 except the following modification:
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• The challenger C guesses an group identifier g̃id with some leader P g̃id that makes A win,

and aborts the game if the guess is wrong. Namely,

1. there exists any party P ′ that is authorized for the group g̃id and any group key

index gkid, such that gk
(g̃id,gkid)
P ′ ̸= ⊥ but gk

(g̃id,gkid)

P g̃id
≠ gk

(g̃id,gkid)
P ′ , without violating

the freshness condition frshSec-mGKD-pw
KAuth (idP ′ , g̃id, gkid).

2. b = b′ without violating the freshness condition frshSec-mGKD-pw
KPriv (idP ′ , g̃id, gkid), where

P ′, g̃id, and gkid are respectively the tested party, group identifier, and group key

index.

Note that each group must be created via the NewGroup and that the NewGroup can

be queried at most NewGroup times. The challenger guesses correctly with probability

at least 1
qNewGroup

. Thus, we have that

Adv0 ≤ qNewGroupAdv1(A)

Note that the freshness conditions frshSec-mGKD-pw
KAuth (idP ′ , g̃id, gkid) and frshSec-mGKD-pw

KPriv (idP ′ ,

g̃id, gkid) both require that the group g̃id is not revealed. In particular, this means that

if the challenger guesses correctly, then the attacker A cannot query the Reveal oracle

with input g̃id.

Game 2: This game is identical to Game 1 except the following modifications:

• Whenever the attacker A sends queries to the SendJoinAuth(idP , idP ′ , gid,m) oracle

for some parties P and P ′ and group gid = g̃id and the party P is expected to derive a

key kPP of the PAKE, the challenger does the following:

– If there exists no authorized party P ′′ ̸= P in the group g̃id such that P and P ′′

have the same transcript for the PAKE execution, then the challenger samples the

key kPP for the conversation between P and P ′ uniformly at random instead of

computing it from PAKEPP.

– If there exists any other authorized party P ′′ ̸= P in the group g̃id such that P and

P ′′ have the same transcript for the PAKE execution, then P ′′ must have already

sampled the key kPP (for a conversation with some party P ′′′). In this case, the

challenger replaces the key kPP of P with the one of P ′′.

We analyze the gap between Game 1 and Game 2 by reduction to the w-PAKE

security of the PAKE scheme PAKEPP. Namely, if the attacker A can distinguish Game 1

and Game 2, then we can construct an attacker B that breaks the w-PAKE security of the

PAKE scheme PAKEPP. The attacker B1 simulates Game 1 honestly except for answering

the following oracles:
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• NewGroup(idP , gid) if gid = g̃id: B1 samples gsΠ from the distribution DΠ and runs

the mg̃id
GSch

$←− Schedule(P, g̃id, gs g̃idΠ ) of Π rather than Schedule′ of Π′ for an associated

outgoing message mg̃id
GSch. Then, B1 marks the group gid as “created” and “valid” and

marks P as the leader of the group gid and “authorized”. Finally, B1 returns mgid
GSch to A.

• RegisterAuth(idP , gid,m) if gid = g̃id and idP ̸= id
P g̃id : B1 aborts if this oracle has

been queried on the same tuple (idP , g̃id), or g̃id is not marked as created and valid,

or the party P is not authorized for the group g̃id. Otherwise, B1 first simply runs

m ′ $←− Register-P(P, gid, gs g̃idΠ ,m), where gs g̃idΠ is the group secret of protocol Π. Then,

B1 sends queries SendPAKE(U (idP ,g̃id), ϵ) to its challenger and receives a reply c
(P,g̃id)
PP .

Finally, B1 forwards the tuple (m ′, c
(P,g̃id)
PP ) to A.

• SendJoinAuth(idP , idP ′ , gid,m) if gid = g̃id: B1 first checks

– whether g̃id is marked as created and valid,

– whether P is authorized for this group g̃id,

– whether both parties P and P ′ have been created and registered for this group,

– whether either P or P ′ is the leader of the group g̃id,

– whether the leader of the group, either P or P ′, has joined the group, and that the

other party hasn’t joined the group yet.

If any of the check fails, B1 directly returns ⊥ to A. Otherwise, B1 behaviors differently

depending on whether the P in the group gid has produced a key kPP of PAKEPP during

the communication with P ′.

– If P has not produced the PAKEPP key in the communication with P ′ in the group

g̃id, then B1 first extracts a valid input message m1 for running PAKEPP from

the input message m. Then, B1 sends queries SendPAKE(U (idP ,g̃id),m1) to its

challenger and receives a reply cPP. Finally, B1 checks whether PAKEPP is expected

to output a key. If so, B1 further queries TestPAKE(U (idP ,g̃id)) to its challenger

and uses the reply kPP as the output key of PAKEPP.

– If the key kPP of PAKEPP is produced, then B1 first extracts an input message m2

for running Join-L or Join-P algorithm of Π (depending whether P is the leader or a

participant of the group g̃id) from the input message m. Next, B1 runs c $←− Join-L(P,

idP ′ , g̃id, gs g̃idΠ ,m2) if P is the leader of the group g̃id or c $←− Join-P(P, idP ′ , g̃id, gs g̃idΠ ,

m2) if P is a participant, where gs g̃idΠ is the group secret of the protocol Π. Then, B1
encrypts c using AEADPP under the key kPP, a random nonce noncePP, an header

consisting the sign-up messages of both P and P ′ for a ciphertext c′.

Finally, B1 returns cPP and c′ that are computed from above steps.

• Reveal(gid) if gid = g̃id: B1 simply aborts the game.
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Note that if A wins, then A cannot violate the freshness condition and therefore never

queries the Reveal oracle upon g̃id. Thus, the game abortion never happens. B1 perfectly
simulates Game 1 if the challenge bit of the w-PAKE game is 0 and Game 2 if the

challenge bit of the w-PAKE game is 1. If A can distinguish Game 1 and Game 2, then

B can also distinguish the challenge bit of the w-PAKE security game. Thus, we have that

Adv1(A) ≤ Adv2(A) + ϵw-PAKEPAKEPP,Dpw

Game 3: This game is identical to Game 2 except the following modifications:

• The challenger C aborts the game if there exists a participant P ′ such that

– P ′ is authorized for the group g̃id and successfully completed the PAKEPP execution

when joining the group g̃id,

– P ′ successfully decrypts an AEADPP ciphertext that is not output by P g̃id during

the Participant Join phase or Key Rotation phase, and

– the per-group state of P ′ and P g̃id in the group g̃id are not compromised.

Recall that the key kPP of the authorized party P ′ for the group g̃id is sampled random

uniformly at random. If P ′ can successfully decrypt an AEADPP ciphertext that is not

output by P g̃id during the Participant Join phase or Key Rotation phase, then this means

A can forge an AEADPP ciphertext for the key kPP of P ′ and P g̃id and further breaks

the CTI-CPA security of the underlying AEADPP scheme. Thus, we can easily construct

another attacker B2 that breaks the CTI-CPA security of AEADPP by invoking A. Note

that there are at most cmaxReg participants in the group g̃id. The reduction B2 can simply

guesses the index of the register request of P ′, which is correct with probability at least
1

cmaxReg
, and honestly simulates Game 2 to A. Note that A cannot query Compromise

oracle upon (idP ′ , g̃id) or (id
P g̃id , g̃id). B2 can perfectly simulates Game 2 to A and win

whenever A can make the forgery. Thus, it holds that

Adv2(A) ≤ Adv3(A) + cmaxRegϵ
cti-cpa
AEADPP

Game 4: This game is identical to Game 3 except the following modifications:

• The challenger C aborts the game if there exists a participant P ′ such that:

– P ′ is authorized for the group g̃id and successfully completed the Participant Join

phase in the group g̃id,

– P ′ and P g̃id have disagreement on sign-up messages of P ′ and P g̃id, and

– the per-group state of P ′ and P g̃id in the group g̃id are not compromised.
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Recall in Game 3 that we ensure that the authorized participant P ′ must agree on all

received AEADPP ciphertext with the leader P g̃id, in particular, during the Participan Join

phase in the group g̃id. If P ′ and P g̃id have disagreement on sign-up messages of P ′ and

P g̃id, which are the header for encrypting and decrypting the AEADPP ciphertext, then

we can easily construct an B2 that breaks the d -frob security of the underlying AEADPP

scheme. Thus, we can easily have that

Adv3(A) ≤ Adv4(A) + ϵd-frobAEADPP

In particular, this game ensures that for all participant P ′ that is authorized for the

group g̃id and successfully completed the Participant Join phase in the group g̃id, if the

per-group state of P ′ and P g̃id in the group g̃id are not compromised, then the participant

P ′ and the leader P g̃id must agree on the each other’s sign-up messages. In other words,

the sign-up messages mP g̃id

SignUp and mP ′

SignUp of P g̃id and P ′ must be honestly delivered to the

other.

Below, we analyze the advantage that A wins in Game 4 by case distinction, i.e.,

whether A wins by triggering EKAuth in Case 1, the advantage of which is denoted by

AdvC1
4 , or by triggering EKPriv in Case 2, the advantage of which is denoted by AdvC2

4 .

Thus, we have that

Adv4(A) := max
(
AdvC1

4 (A),AdvC2
4 (A)

)
Case 1: A wins by triggering event EKAuth.

Final Analysis of Case 1. In this case, A wins by triggering event EKAuth. This

means,there exists any party P ′ that is authorized for the group g̃id and any group key

index gkid, such that gk
(g̃id,gkid)
P ′ ̸= ⊥ but gk

(g̃id,gkid)

P g̃id
≠ gk

(g̃id,gkid)
P ′ , without violating the

freshness condition frshSec-mGKD-pw
KAuth (idP ′ , g̃id, gkid).

Recall that frshSec-mGKD-pw
KAuth (idP ′ , g̃id, gkid) holds if and only if

1. the per-group states πg̃id

P g̃id
and πg̃id

P ′ are not compromised,

2. the long-term states st
P g̃id and stP ′ are not corrupted before P g̃id and P ′ joined the group

g̃id, and

3. the group g̃id is not revealed.

Recall also that the freshness condition frshSec-mGKD-pki
KAuth (idP ′ , g̃id, gkid) holds if and only

if

1. the per-group states πg̃id

P g̃id
and πg̃id

P ′ are not compromised,

2. the long-term states st
P g̃id and stP ′ are not corrupted before P g̃id and P ′ joined the group

g̃id, and
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3. the sign-up messages mP g̃id

SignUp and mP ′

SignUp of P g̃id and P ′ are honestly delivered to the

other.

In Game 4, we ensure that the the sign-up messages mP g̃id

SignUp and mP ′

SignUp of P g̃id and

P ′ are honestly delivered to the other if

1. the party P ′ is authorized for the group g̃id completed the Participant Join phase in the

group g̃id,

2. the per-group states πg̃id

P g̃id
and πg̃id

P ′ are not compromised,

Thus, if the freshness condition frshSec-mGKD-pw
KAuth (idP ′ , g̃id, gkid) holds, then the freshness

condition frshSec-mGKD-pki
KAuth (idP ′ , g̃id, gkid) must also hold.

Below, we prove that if A can win via the event EKAuth against Π
′, then we can construct

another attacker B3 that breaks the Sec-mGKD-pki security of Π via the event EKAuth by

invoking A. B3 answers the queries from A as follows:

• NewParty(idP ): B3 simply forwards this query to its challenger and the reply to A.

• NewGroup(idP , gid): B3 simply forwards this query to its challenger and the reply to

A. Moreover, B3 samples a random pw gid from the distribution Dpw for the group gid.

• Auth(gid, idP ): B3 simply forwards this query to its challenger.

• RegisterAuth(idP , gid,m): B3 simply forwards this query to its challenger for a reply

c. If P is not the leader of the group gid, then B3 additionally runs the first pass of

PAKEPP upon pw gid and returns c together with the outgoing message of PAKEPP to A.

• RegisterInject(idP , gid, gs ,m): B3 parses gs into two portions (gsΠ, pw). Next, B3
simply forwards the query RegisterInject(idP , gid, gsΠ,m) to its challenger for a reply

c. If P is not the leader of the group gid, then B3 additionally runs the first pass of

PAKEPP upon pw and returns c together with the outgoing message of PAKEPP to A.

• SendJoinAuth(idP , idP ′ , gid,m): We consider two cases: For the first case that gid = g̃id,

we consider the following two steps:

– If the party P of the group gid has not derived the key kPP, then B3 runs the next

pass of PAKEPP upon necessary information from the input message m and the

password pw gid. If the party P of the group gid now is expected to derive the key

kPP of PAKEPP and there is no other party P ′′ in the group g̃id that has the same

transcript of PAKEPP as P , then B3 replaces it by a random key of the same length.

If the party P of the group gid now is expected to derive the key kPP of PAKEPP

and there is a party P ′′ in the group g̃id that has the same transcript of PAKEPP as

P , then B3 replaces the key of P with the one of P ′′.
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– If the party P of the group gid now has derived the key kPP, then B3 first checks

P agrees on the party P ′’s sign-up message mP ′

SignUp. If not, then B3 simply aborts.

Otherwise, B3 checks whether m should include an AEADPP ciphertext. If so,

B3 decrypts the AEADPP ciphertext using the random key kPP and other neces-

sary information from the input m for a message m1. Then, B3 sends the query

SendJoinAuth(idP , idP ′ , gid,m1) to its challenger for a reply m2. After that, if m2

is not an empty string, then B3 encrypts m2 using AEADPP upon the random key

kPP, a random nonce, an header consisting the sign-up messages of P and P ′.

Finally, B3 forwards all outgoing messages in this algorithm to A.

For the second case that gid ̸= g̃id, we consider the following two steps:

– If the party P of the group gid has not derived the key kPP, then B3 runs the next

pass of PAKEPP upon necessary information from the input message m and the

password pw gid.

– If the party P of the group gid now has derived the key kPP, then B3 checks whether
m should include an AEADPP ciphertext. If so, B3 decrypts the AEADPP ciphertext

using the key kPP and other necessary information from the input m for a message

m1. Then, B3 sends the query SendJoinAuth(idP , idP ′ , gid,m1) to its challenger

for a reply m2. After that, if m2 is not an empty string, then B3 encrypts m2

using AEADPP upon the key kPP, a random nonce, an header consisting the sign-up

messages of P and P ′.

Finally, B3 forwards all outgoing messages in this algorithm to A.

• SendJoinInject(idP , idP ′ , gid, gs ,m): B3 parses gs into two portion gsΠ and pw . We

consider the following two steps:

– If the party P of the group gid has not derived the key kPP, then B3 runs the next

pass of PAKEPP upon necessary information from the input message m and the

password pw .

– If the party P of the group gid now has derived the key kPP, then B3 checks whether
m should include an AEADPP ciphertext. If so, B3 decrypts the AEADPP ciphertext

using the key kPP and other necessary information from the input m for a message m1.

Then, B3 sends the query SendJoinInject(idP , idP ′ , gid, gsΠ,m1) to its challenger

for a reply m2. After that, if m2 is not an empty string, then B3 encrypts m2

using AEADPP upon the key kPP, a random nonce, an header consisting the sign-up

messages included in m.

Finally, B3 forwards all outgoing messages in this algorithm to A.
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• SendLeave(idP , gid, idP ′): B3 simply forwards this query to its challenger. If a per-group

state π needs to be erased, then B3 also erases the corresponding PAKEPP secrets of π.

• EndGroup(gid): B3 simply forwards this query to its challenger. If the leader’s per-

group state π needs to be erased, then B3 also erases the corresponding PAKEPP secrets

of π.

• SendKeyRotat(idP , gid,m): We consider two cases:

– If P is the leader in the group gid, then B3 first queries SendKeyRotat(idP , gid,m)

to its challenger for a reply c. Then, B3 extracts the portion cP in c that is

specific to every participant P in the group gid, followed by encrypting it using the

corresponding AEADPP key kPP, a random nonce, and an header that is same as the

one in the corresponding Participant Join phase. Finally, B3 outputs the AEADPP

ciphertext and nonce for every participant P in the group gid. If any error occurs

during the above execution, then B3 aborts and undoes the above executions.

– If P is a participant in the group gid, then B3 first extracts an AEADPP ciphertext

and an AEADPP nonce from the input m. Next, B3 recovers a message m1 from the

AEADPP ciphertext using the corresponding AEADPP key kPP, the AEADPP nonce,

and an header that is same as the one in the corresponding Participant Join phase.

Then, B3 extracts other necessary information m2 from the input m for querying

SendKeyRotat(idP , gid,m1 ∥ m2) returns the reply mKRot to A. If any error

occurs during the above execution, then B3 aborts and undoes the above executions.

• Corrupt(idP ): B3 simply forwards this query to its challenger and the reply to A.

• Compromise(idP , gid): B3 forwards this query to its challenger. If the reply is not

⊥, then B3 forwards the reply together with the key kPP of P in the group gid to A.
Otherwise, B3 simply returns ⊥ to A.

• Leak(idP , gid, gkid): B3 simply forwards this query to its challenger and the reply to A.

• Reveal(gid): B3 forwards this query to its challenger. Then, B3 forwards the reply

together with the password pw gid to A.

• Test(idP , gid, gkid): B3 simply forwards this query to its challenger and the reply to A.

Note that B3 perfectly simulates Game 4 to A. If A can trigger the event EKAuth against

Π′, then B3 can also trigger the event EKAuth against Π. Recall that if the freshness condition

frshSec-mGKD-pw
KAuth (idP ′ , g̃id, gkid) holds, then the freshness condition frshSec-mGKD-pki

KAuth (idP ′ , g̃id,

gkid) must also hold. Thus, if A can win the game against Π′ by triggering the event

EKAuth, then B3 can also win the game against Π by triggering EKAuth. We have that

AdvC1
4 (A) ≤ AdvSec-mGKD-pki

Π (B3)
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Case 2: A wins by triggering event EKPriv.

Game C2.5: This game is identical to Game 4 except the following modifications:

• Whenever the challenger needs to let the leader P g̃id compute a AEADPP ciphertext for

a participant P ′, where idP ′ ∈ πg̃id

P g̃id
.GP but P ′ is unauthorized for the group g̃id, the

challenger replaces this AEADPP ciphertext by a random ciphertext of the same length.

Recall in Game 2 that we have the key kPP computed by all authorized parties P

in the group g̃id be uniformly at random. This in particular means that all keys kPP

generated by the leader P g̃id for all participants P ′, which are unauthorized for the group

g̃id, are random. Note also that the leader must be in the party set id
P g̃id ∈ GP (g̃id,gkid)

for all gkid unless the group ends. Thus for all party P ′ and group key index gkid, the

short-term state πg̃id

P g̃id
must not be compromised, if frshSec-mGKD-pw

KPriv (idP ′ , g̃id, gkid) holds.

Then, we analyze the gap between Game 4 and Game C2.5 by n hybrid games, where n

denotes the number of register requests sent by unauthorized party. Obviously, it holds

that n ≤ cmaxReg.

Hybrid Game 0. This game is identical to Game 4. Thus, we have that

Advhy.0(A) = AdvC2
4 (A)

Hybrid Game i, where 1 ≤ i ≤ n. This game is identical to Hybrid Game (i− 1)

except the following modifications:

• Whenever the challenger needs to sample a random key kPP in a query SendJoinAuth(idP ,

idP ′ , gid,m), where P = P g̃id, P ′ is the unauthorized party that sends the i-th register

request, and gid = g̃id, the challenger do not sample this key but mark this key as k i
PP.

• Whenever the challenger needs to compute an AEADPP ciphertext that is encrypted upon

the key k i
PP, the challenger first checks whether a ciphertext has been produced upon the

same input. If such ciphertext exists, then the challenger simply reuses this ciphertext.

If not, then the challenger samples a ciphertext of the same length uniformly at random.

If the attacker A can distinguish Hybrid Game (i− 1) and Hybrid Game i, then we

can easily construct an attacker B4 that breaks the IND$-CCA security of the underlying

AEADPP. Thus, we can easily have that

Advhy.(i−1)(A) = Advhy.i(A) + ϵind$-ccaAEADPP

Hybrid Game n. This game is identical to Game C2.5. Thus, we have that

Advhy.n(A) = AdvC2
5 (A)

To sum up, it holds that

AdvC2
4 (A) ≤ AdvC2

5 (A) + nϵind$-ccaAEADPP

≤ AdvC2
5 (A) + cmaxRegϵ

ind$-cca
AEADPP
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Final Analysis Of Case 2. Now, we prove that A cannot win by triggering the events

EKPriv by reduction. If the attacker A can win against Π′ by triggering EKPriv, the we can

construct another attacker B5 that breaks the Sec-mGKD-pki security of Π by triggering

the event EKPriv. The attacker B5 honestly simulates Game C2.5 to A except for the

following modifications:

• NewParty(idP ): B5 simply forwards this query to its challenger and the reply to A.

• NewGroup(idP , gid): B5 simply forwards this query to its challenger and the reply to

A. Moreover, B5 samples a random pw gid from the distribution Dpw for the group gid.

• Auth(gid, idP ): B5 simply forwards this query to its challenger.

• RegisterAuth(idP , gid,m): B5 simply forwards this query to its challenger for a reply

c. If P is not the leader of the group gid, then B5 additionally runs the first pass of

PAKEPP upon pw gid and returns c together with the outgoing message of PAKEPP to A.

• RegisterInject(idP , gid, gs ,m): We consider two case:

– If gid = g̃id, then B5 first sends a query Corrupt(idP ) to its challenger. Afterwards,

B5 honestly runs Register-P′(P, gid, gs ,m) by himself.

– If gid ̸= g̃id, then B5 parses gs into two portions (gsΠ, pw). Next, B5 simply forwards

the query RegisterInject(idP , gid, gsΠ,m) to its challenger for a reply c. Then

B5 runs the first pass of PAKEPP upon pw and returns c together with the outgoing

message of PAKEPP to A.

• SendJoinAuth(idP , idP ′ , gid,m): We consider two cases: For the first case that gid = g̃id,

we consider the following two steps:

– If the party P of the group gid has not derived the key kPP, then B5 runs the next

pass of PAKEPP upon necessary information from the input message m and the

password pw gid. If the party P of the group gid now is expected to derive the key

kPP of PAKEPP and there is no other party P ′′ in the group g̃id that has the same

transcript of PAKEPP as P , then B5 replaces it by a random key of the same length.

If the party P of the group gid now is expected to derive the key kPP of PAKEPP

and there is a party P ′′ in the group g̃id that has the same transcript of PAKEPP as

P , then B5 replaces the key of P with the one of P ′′.

– If the party P of the group gid now has derived the key kPP, then B5 first checks

whether P ′ is authorized for the group gid or not. If P ′ is authorized for the

group gid, then B5 further checks whether P agrees on the party P ′’s sign-up

message mP ′

SignUp. If not, then B5 simply aborts. Otherwise, B5 checks whether

m should include an AEADPP ciphertext. If so, this AEADPP ciphertext must be

encrypted by the party P ′ from some message m1. Then, B5 simply sends the query
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SendJoinAuth(idP , idP ′ , gid,m1) to its challenger for a reply m2. After that, if m2

is not an empty string, then B5 encrypts m2 using AEADPP upon the random key

kPP, a random nonce, an header consisting the sign-up messages of P and P ′.

If P ′ is unauthorized for the group gid and this invocation needs to outputs some

AEADPP ciphertext, B5 simply samples the AEADPP ciphertext randomly. If idP ′

is expected to be added in to the set πg̃id

P g̃id
.GP , B5 does not add idP ′ into this set.

Instead, B5 marks it as “fake”.

Finally, B5 forwards all outgoing messages in this algorithm to A.

For the second case that gid ̸= g̃id, we consider the following two steps:

– If the party P of the group gid has not derived the key kPP, then B5 runs the next

pass of PAKEPP upon necessary information from the input message m and the

password pw gid.

– If the party P of the group gid now has derived the key kPP, then B5 checks whether
m should include an AEADPP ciphertext. If so, B5 decrypts the AEADPP ciphertext

using the key kPP and other necessary information from the input m for a message

m1. Then, B5 sends the query SendJoinAuth(idP , idP ′ , gid,m1) to its challenger

for a reply m2. After that, if m2 is not an empty string, then B5 encrypts m2

using AEADPP upon the key kPP, a random nonce, an header consisting the sign-up

messages of P and P ′.

Finally, B5 forwards all outgoing messages in this algorithm to A.

• SendJoinInject(idP , idP ′ , gid, gs ,m): We consider two cases. For the first case that

gid = g̃id, B5 simply computes Join-P(P, idP ′ , gid, gs ,m) by himself.

For the second case that gid ̸= g̃id, B5 parses gs into two portion gsΠ and pw . Then, we

consider the following two steps:

– If the party P of the group gid has not derived the key kPP, then B5 runs the next

pass of PAKEPP upon necessary information from the input message m and the

password pw .

– If the party P of the group gid now has derived the key kPP, then B5 checks whether
m should include an AEADPP ciphertext. If so, B5 decrypts the AEADPP ciphertext

using the key kPP and other necessary information from the input m for a message m1.

Then, B5 sends the query SendJoinInject(idP , idP ′ , gid, gsΠ,m1) to its challenger

for a reply m2. After that, if m2 is not an empty string, then B5 encrypts m2

using AEADPP upon the key kPP, a random nonce, an header consisting the sign-up

messages included in m.

Finally, B5 forwards all outgoing messages in this algorithm to A.
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• SendLeave(idP , gid, idP ′): We consider two cases: For the first case that gid = g̃id, we

further consider the following three sub-cases:

– If idP = id
P g̃id and P ′ is unauthorized for the group g̃id and marked as “fake”, then

B removes the mark “fake” on P ′.

– If P is marked as “fake”, then B5 executes Leave-P(P, gid, idP ′) by himself.

– For all other queries, B5 forwards them to its challenger and the reply to A.

For the second case that gid ̸= g̃id, B5 simply forwards this query to its challenger. If

a per-group state π needs to be erased, then B5 also erases the corresponding PAKEPP

secrets of π.

• EndGroup(gid): We consider the following two case: For the first case that gid = g̃id,

if there exists no party P ′ that is still marked as “fake”, then B5 forwards this query to

its challenger. Otherwise, B5 aborts.

For the second case that gid ̸= g̃id, B5 simply forwards this query to its challenger. If

the leader’s per-group state π needs to be erased, then B5 also erases the corresponding

PAKEPP secrets of π.

• SendKeyRotat(idP , gid,m) We consider two cases: For the first case that gid = g̃id,

we further consider following three cases:

– If P is the leader in the group gid, then B5 first queries SendKeyRotat(idP , gid,m)

to its challenger for a reply c. Then, B5 extracts the portion cP in c that is

specific to every participant P in the group gid, followed by encrypting it using the

corresponding AEADPP key kPP, a random nonce, and an header that is same as the

one in the corresponding Participant Join phase. Moreover, for every party P ′ that

is marked as “fake”, B5 also samples a random AEADPP ciphertext and a random

nonce. Finally, B5 outputs all above AEADPP ciphertexts and nonces. If any error

occurs during the above execution, then B5 aborts and undoes the above executions.

– If P is an authorized participant in the group gid, then B5 first extracts an

AEADPP ciphertext and an AEADPP nonce from the input m. If this AEADPP

is not produced by the leader for some message m1, then B5 aborts. Other-

wise, B5 extracts other necessary information m2 from the input m for querying

SendKeyRotat(idP , gid,m1 ∥ m2) returns the reply mKRot to A. If any error

occurs during the above execution, then B5 aborts and undoes the above executions.

– If P is an unauthorized participant in the group gid, then B5 executes KeyRotat-P(P,
gid,m) by himself.

For the second case that gid ̸= g̃id, we further consider following two sub-cases:
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– If P is the leader in the group gid, then B5 first queries SendKeyRotat(idP , gid,m)

to its challenger for a reply c. Then, B5 extracts the portion cP in c that is

specific to every participant P in the group gid, followed by encrypting it using the

corresponding AEADPP key kPP, a random nonce, and an header that is same as the

one in the corresponding Participant Join phase. Finally, B5 outputs the AEADPP

ciphertext and nonce for every participant P in the group gid. If any error occurs

during the above execution, then B5 aborts and undoes the above executions.

– If P is a participant in the group gid, then B5 first extracts an AEADPP ciphertext

and an AEADPP nonce from the input m. Next, B5 recovers a message m1 from the

AEADPP ciphertext using the corresponding AEADPP key kPP, the AEADPP nonce,

and an header that is same as the one in the corresponding Participant Join phase.

Then, B5 extracts other necessary information m2 from the input m for querying

SendKeyRotat(idP , gid,m1 ∥ m2) returns the reply mKRot to A. If any error

occurs during the above execution, then B5 aborts and undoes the above executions.

• Corrupt(idP ): B5 simply forwards this query to its challenger and the reply to A.

• Compromise(idP , gid): We consider the following two cases. For the first case that

gid = g̃id, we further consider the following two sub-cases:

– If P is an authorized party for the group gid, then B5 forwards this query to its

challenger. If the reply is not ⊥, then B5 forwards the reply together with the key

kPP of P in the group gid to A. Otherwise, B5 simply returns ⊥ to A.

– If P is an unauthorized party for the group gid, then B5 must create πgid
P by himself.

In this case, B5 simply returns πgid
P to A.

For the second case that gid ̸= g̃id, B5 forwards this query to its challenger. If the reply

is not ⊥, then B5 forwards the reply together with the key kPP of P in the group gid to

A. Otherwise, B5 simply returns ⊥ to A.

• Leak(idP , gid, gkid): We consider the following two cases. For the first case that gid = g̃id,

we further consider the following two cases:

– If P is an authorized party for the group gid, then B5 simply forwards this query to

its challenger and the reply to A.

– If P is an unauthorized party for the group gid, then B5 must create gk
(gid,gkid)
P by

himself. In this case, B5 simply returns gk
(gid,gkid)
P to A.

For the second case that gid ̸= g̃id, B5 simply forwards this query to its challenger and

the reply to A.

• Reveal(gid): B5 forwards this query to its challenger. Then, B5 forwards the reply

together with the password pw gid to A.
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• Test(idP , gid, gkid): B5 simply forwards this query to its challenger and the reply to A.

Note that B5 perfectly simulates Game C2.5 to A. Besides, B5 simulates the behaviors

of all unauthorized parties in the group g̃id by himself. Thus, the parties in the group

g̃id in the Sec-mGKD-pw experiment between B5 and its challenger are identical to the

authorized parties in the group g̃id in the Sec-mGKD-pki experiment between A and B5.
Note in Game 4 that we ensure that the sign-up messages are honestly distributed

between the leader and authorized participants P ∈ GP (g̃id,gkid) for the tested group g̃id and

group key index gkid. Thus, for the tested party P ′, the tested group g̃id, and the tested

group key index gkid, if A can trigger EKPriv without violating the freshness condition

frshSec-mGKD-pw
KPriv (idP ′ , gid, gkid), then B can also trigger EKPriv by outputting the same b′ as

A, without violating the freshness condition frshSec-mGKD-pki
KPriv (idP ′ , gid, gkid). It holds that

AdvC2
5 (A) ≤ AdvSec-mGKD-pki

Π (B5)

Final Analysis Of The Full Proof. By merging the statements above, if A can

break the Sec-mGKD-pw security of Π′, then there exists an attacker B that breaks the

Sec-mGKD-pki security of Π, such that

AdvSec-mGKD-pw
Π′ (A) ≤qNewGroup

(
ϵw-PAKEPAKEPP,Dpw

+ ϵd-frobAEADPP

+ cmaxReg(ϵ
cti-cpa
AEADPP

+ ϵind$-ccaAEADPP
) + AdvSec-mGKD-pki

Π (B)
)

6.9.3 Proof of Theorem 27

Proof. The proof is given by reduction. If there exists any PPT attacker A that breaks the

Sec-mGKD-pki of Π′, then we construct an attacker B that breaks the Sec-mGKD-pki of Π.

The attacker B initializes the Sec-mGKD-pki experiment and answers A’s oracle queries as

follows:

• NewParty(idP ): B simply forwards this query to its challenger and then forwards the

reply to A.

• NewGroup(idP , gid): B forwards this query to its challenger. Then, B samples a

password pw gid from the distribution Dpw and associate the password with the group gid.

• Auth(gid, idP ): B simply forwards this query to its challenger.

• RegisterAuth(idP , gid,m): B forwards this query to its challenger for a reply c1. If P

is the leader of the group gid, B simply returns c1. Otherwise, B runs the first pass of

PAKEPP upon the password pw gid for a ciphertext c2. Finally, B returns (c1, c2) to A.

212



• RegisterInject(idP , gid, gs ,m): B first parses gs into two portions gsΠ and pw . Next,

B sends query RegisterInject(idP , gid, gsΠ,m) to its challenger for a reply c1. Then,

B runs the first pass of PAKEPP upon the password pw for a ciphertext c2. Finally, B
returns (c1, c2) to A.

• SendJoinAuth(idP , idP ′ , gid,m): We consider two steps.

The first step is executed if the party P has not output the key kPP of the PAKEPP with

P ′ in the group gid. B first extracts necessary information from the input m and runs

the next pass of PAKEPP upon pw gid. If the key kPP is available, B remembers this key

for both parties P and P ′ in the group gid. Otherwise, B simply outputs the outgoing

message of PAKEPP.

The second step is executed if the party P has already output the key kPP of the PAKEPP

with P ′ in the group gid. B first checks whether the input m includes any AEADPP

ciphertext and the AEADPP nonce. If so, B first decrypts it using the key kPP, the

AEADPP nonce, the header consisting both P and P ′’s sign-up messages, for a message

m1. Otherwise, the message m1 is set to empty string ⊤. Then, B sends the query

SendJoinAuth(idP , idP ′ , gid,m1) to its challenger for a reply m2. Finally, B encrypts

the message m2 using the key kPP, a random nonce, the header consisting both P and

P ′’s sign-up messages, for a ciphertext.

The ciphertexts of AEADPP and optionally the one of PAKEPP (if available) are returned

to A.

• SendJoinInject(idP , idP ′ , gid, gs ,m): B first parses gs into two portions gsΠ and pw .

Then, we consider two steps.

The first step is executed if the party P has not output the key kPP of the PAKEPP with

P ′ in the group gid. B first extracts necessary information from the input m and runs

the next pass of PAKEPP upon pw . If the key kPP is available, B remembers this key

for both parties P and P ′ in the group gid. Otherwise, B simply outputs the outgoing

message of PAKEPP.

The second step is executed if the party P has already output the key kPP of the

PAKEPP with P ′ in the group gid. B first checks whether the input m includes any

AEADPP ciphertext and the AEADPP nonce. If so, B first decrypts it using the key

kPP, the AEADPP nonce, the header consisting both P and P ′’s sign-up messages, for a

message m1. Otherwise, the message m1 is set to empty string ⊤. Then, B sends the

query SendJoinInject(idP , idP ′ , gid, gsΠ,m1) to its challenger for a reply m2. Finally,

B encrypts the message m2 using the key kPP, a random nonce, the header consisting

both P and P ′’s sign-up messages, for a ciphertext.

The ciphertexts of AEADPP and optionally the one of PAKEPP (if available) are returned

to A.
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• SendLeave(idP , gid, idP ′): B forwards this query to its challenger. If idP = idP ′ , then

B also removes the key kPP of the party P generated in the Participant Join phase for

P joining the group gid. If P is the leader of the group gid, then B removes the key kPP

of the party P generated in the Participant Join phase for P ′ the group gid.

• EndGroup(gid): B forwards this query to its challenger. Then B also removes all

remaining keys kPP of the leader of the group gid.

• SendKeyRotat(idP , gid,m): If P is the leader of the group gid, then B forwards this

query to its challenger for a reply c. Then, the B extracts the portion cP in c that is

specific to every participant P in the group gid, followed by encrypting it using the stored

corresponding AEADPP key kPP, a random nonce, and an header consisting of the leader

P and the participant P ’ sign-up messages as in the Participant Join phase. Finally, B
outputs the AEADPP ciphertext and nonce for every participant P in the group gid. If

any error occurs during the above execution, then the leader P aborts and undoes the

above executions.

Otherwise, P is the participant of the group gid. B first extracts an AEADPP ciphertext

and an AEADPP nonce from the input m. Next, B recovers a message m1 from the

AEADPP ciphertext using the stored corresponding AEADPP key kPP, the AEADPP nonce,

and an header consisting of the participant P ’s and the leader’s sign-up messages as

in the Participant Join phase. Then, B extracts other necessary information m2 from

the input m for querying SendKeyRotat(P, gid,m1 ∥ m2) to its challenger. Finally,

B forwards the reply from the challenger to A. If any error occurs during the above

execution, then the participant P aborts and undoes the above executions.

• Corrupt(idP ): B simply forwards this query to its challenger and then forwards the

reply to A.

• Compromise(idP , gid): B simply forwards this query to its challenger for a state π.

Then, B forwards π together with all keys kPP of party P for the group gid to A.

• Leak(idP , gid, gkid): B simply forwards this query to its challenger and then forwards

the reply to A.

• Reveal(gid): B simply forwards this query to its challenger for a group secret gsΠ.

Then, B forwards the group secret gsΠ together with the password pw gid to A.

• Test(idP , gid, gkid): B simply forwards this query to its challenger and then forwards

the reply to A.

It is easy to know that B perfectly simulates Sec-mGKD-pki experiment to A and wins

if A wins. The proof is concluded by

AdvSec-mGKD-pki
mGKD′ (A) ≤ AdvSec-mGKD-pki

mGKD (B)
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Chapter 7

Trade-off Areas in Secure Messaging
Design

This chapter is based on the paper:

Cas Cremers and Mang Zhao, “Secure Messaging with Strong Compromise Resilience,

Temporal Privacy, and Immediate Decryption”, in 2024 IEEE Symposium on Security and

Privacy (SP), San Francisco, CA, US, 2024.

This paper was joint work with my supervisor Cas Cremers. I lead the research on

this paper and the substantial contributions in this chapter are my own. My co-author

principally contributed to the initial conception of the work and the final write up of the

paper.
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7.1 Introduction

Driven by the global uptake of the Signal protocol, which has been widely deployed in

many messaging applications worldwide by virtue of its high efficiency and strong security

guarantees, there have been many advances in the theory and design of messaging protocols

with desirable efficiency and security properties during the last decade. We highlight three

of these properties.

(i) Immediate Decryption with Constant-Size Overhead: This property, which is

essential for practical messaging apps and was formally studied by Alwen et al. [12], requires

that the recipients can decrypt every message at the time of arrival, irrespective of the arrival

of prior messages. Conventional messaging solutions reuse a static encryption/decryption

key pair during every two-party conversation (aka. session). However, the leakage of the

private decryption keys indicates the loss of privacy of all messages in the past and/or

future. Two basic security properties are formalized for modern messaging protocols:

forward secrecy (FS) and post-compromise security (PCS) [73]. While FS requires the

privacy of past messages prior to the state expose, PCS enables the parties to recover from

state exposure. Common modern messaging solutions obtain strong security guarantees

by making their encryption keys dependent in some way on all previously sent messages.

However, in realistic messaging settings, messages can arrive out-of-order or may be lost

forever. If message n arrives before message n− 1, it cannot be decrypted until message

n− 1 arrives; and if it never arrives, communications become stuck. In theory, this can be

naively solved by appending all previous ciphertexts to the next message sent. In practice,

this naive solution is unusable, as practical applications require constant-size overhead for

messages. The Signal protocol is a pioneering example in the domain of messaging with

relatively strong security and immediate decryption with constant overhead.

(ii) Temporal Privacy: State compromise does not cause loss of privacy of messages

sent prior to a time interval and can be healed after every time interval. Pijnenburg and

Pöttering [153] first observe that the immediate decryption restricts FS by definition: an

attacker that intercepts a message and corrupts the receiver in the future can always

compromise this message. To solve this, [153] proposes a time-based BOOM protocol that

expires old keys and updates new keys after a specific time interval. Intuitively, this solves

the restricted FS problem as attackers cannot corrupt the expired keys that have been

erased from the state. However, every party in BOOM obtains the partner’s latest public

key only when receiving the partner’s latest message. If two parties do not frequently

exchange messages, the restricted FS problem remains. A trivial fix is to force every party

to frequently send “empty messages” for key updates. However, due to the key-updatable

framework underlying BOOM, this solution potentially yields linearly growing bandwidth.
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The original Signal protocol satisfies a similar temporal privacy property but only

for new conversations. Conceptually, the Signal protocol defines the initial Extended

Triple-Diffie-Hellman (X3DH) asynchronous key exchange [138] and the Double Ratchet

(DR) [152] for the subsequent message exchanges. Note that the X3DH key establishment

uses the combination of public/private keys with different lifetimes, i.e., long-term, medium-

term, and one-time. Even if all previous keys are compromised, the privacy of new

conversations can still be recovered if the honest recipients upload their new medium-term

keys. Conversely, the privacy of all past conversations under a certain medium-term key

holds if that key is not leaked, even if other keys are leaked.

(iii) Resilience against Fine-Grained State Compromise: The compromise of

senders’ and recipients’ state does not cause loss of privacy and authenticity, respectively.

Modern secure messaging protocols like Signal [75] have been fundamentally designed to

be resilient against a weak form of state compromise: The state is healed from compromise

after a back-and-forth interaction, i.e., PCS. However, Alwen et al. [12] notice that such

state compromise resilience of Signal is very coarse rather than “fine-grained”: corruption

of the state of either party in a conversation will cause the loss of both privacy and

authenticity, since the privacy and authenticity of messages depend on a symmetric secret

that is present in both parties’ states. It is however possible to achieve the stronger notion

of resilience against fine-grained compromise by breaking this symmetry: in the literature,

a number of “optimal-secure” protocols [85, 118, 122, 153, 154] provably achieve such

resilience against fine-grained compromise.

Challenges: Perhaps surprisingly, while each of the above properties have been studied

in isolation, there currently exists no provably secure protocol that simultaneously offers

the above three desirable properties.

Alwen et al. [12] generalize DR of Signal to a new SM protocol, based on which another

TR protocol [50] is proposed with slightly stronger security. However, the original Signal,

SM, and TR all satisfy immediate decryption with constant-size overhead but lack the

resilience against fine-grained state compromise. To the best of our knowledge, the BOOM

protocol [153] is the only known protocol that provides the temporal privacy. Moreover,

similar to other “optimal-secure” protocols [85, 118, 122, 154] in the literature, the BOOM

protocol also provides a flavor of very strong security guarantee (we call it “ID-optimal”)

that includes the resilience against fine-grained state compromise. However, all these

optimally secure protocols lack immediate decryption with constant-size overhead. We

summarize the situation for related provably secure protocols in Figure 7.1.

Contributions: Our main contribution is the first provably secure messaging protocol

with immediate decryption and constant-size overhead, temporal privacy, and resilience

against fine-grained state compromise. To this end, we introduce a related new strong
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Protocols with
Temporal Privacy

Protocols with
Resilience against
Fine-Grained State

Compromise

Protocols with
Immediate Decryption

with Constant-size Overhead

SM [12], TR [50]†

This work

“ID-optimal” secure
BOOM [153]

“optimal” [118, 154],

“almost-optimal” [122]†,
“sub-optimal” [85]

Figure 7.1: Comparison between this work and other existing protocols with provable security
properties w.r.t. (i) immediate decryption with constant-size overhead, (ii) temporal privacy, and
(iii) resilience against fine-grained state compromise. All constructions in the diagram (including
this work) are PQ-compatible except for the ones marked with †.

security notion called Extended-Secure-Messaging (eSM). We show that the eSM notion

covers above strong properties and prove that our protocol meets it, in particular, in the

PQ setting.

Furthermore, to show that our protocol is a suitable PQ-secure candidate for the DR

in Signal, which is provably offline deniable, we extend the offline deniability definition

for SPQR [63] (currently the only provably secure PQ-asynchronous key establishment)

to the multi-stage setting. We prove that the combination of our eSM-secure protocol

and SPQR is offline deniable, making it the first full messaging protocol that is provably

offline deniable in the PQ setting.

Overview: We give background and related work in Section 7.2. We recall related

cryptographic primitives in Section 7.3. We propose our new eSM syntax and security

notion in Section 7.4. We propose our concrete protocol that is provably eSM-secure

in Section 7.5, and show its offline-deniability when combined with SPQR in Section 7.6.

For interested readers, we review related designs ACD19 and TR protocols in Section 7.7

and messaging protocols with various optimal security in Section 7.8. We compare our

eSM security model with SM model in Section 7.9. We compare our eSM construction

with ACD19 and TR protocols in Section 7.10. We provide the full proofs of our theorems

in Section 7.11.
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7.2 Background and Related Work

7.2.1 Instant Messaging Protocols and Immediate Decryption
with Constant-Size Overhead

The Signal protocol provably offers strong security guarantees, such as forward secrecy

and post-compromise security [72, 75], and offline deniability [175]. Moreover, Signal has

several features that are critical for large-scale real-world deployment, such as message-

loss resilience and immediate decryption. Roughly speaking, message-loss resilience and

immediate decryption enable the receiver to decrypt a legitimate message immediately

after it is received, even when some messages arrive out-of-order or are permanently lost by

the network. Notably, the Signal protocol provides the above properties with constant-size

overhead.

The core Signal protocol consists of two components: the Extended Triple-Diffie-

Hellman (X3DH) initial key exchange and the Double Ratchet (DR) for subsequent message

transmissions. Alwen et al. [12] introduce the notion of Secure Messaging (SM), which

is a syntax and associated security notion that generalizes the security of Signal’s DR.

Alwen et al. also provide a concrete construction and prove that it is SM-secure. This

construction is not explicitly named in [12]: in this work, we will refer to it as ACD19.

To the best of our knowledge, in addition to ACD19, the only known provably secure

protocol that provides immediate decryption with constant-size overhead is the Triple

Ratchet (TR) protocol [50]. However, the TR protocol is neither PQ-secure nor resilient

against the fine-grained state compromise. We review the ACD19 and TR in details

in Section 7.7. For the interested readers, we also compare ACD19 and TR with our

protocol in Section 7.10.

7.2.2 Secure Messaging Protocols and Strong Security Guaran-
tees

Alwen et al. [12] observe that the ACD19 protocol lacks resilience against fine-grained

state compromise, because both encryption and decryption of a message in ACD19 uses

the shared state of both parties in a conversation. The corruption of the shared state of

either party immediately compromises the subsequent messages, no matter whether the

corrupted party is the sender or receiver. To reduce the impact of state exposure, the

authors also describe a second security notion for secure messaging, called PKSM, and a

corresponding construction, which we call ACD19-PK. At a very high level, ACD19-PK

extends ACD19 by encrypt-then-signing the output of the original SM protocol using a

public key encryption (PKE) and a digital signature (DS). Intuitively, ACD19-PK reduces

the impact of state compromise, since the attacker can neither recover the output of SM

protocol (and further the real message) from the PKE ciphertext without knowing the
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recipient’s decryption key, nor forge a valid ciphertext without knowing the sender’s signing

key. However, the main focus of [12] are SM and ACD19: for ACD19-PK, neither a formal

security model nor a concrete proof is given; thus, its security is essentially conjectured.

In a parallel line of research, several messaging protocols have been proposed to meet

various strong or even “optimal” security [19, 36, 85, 118, 122, 153, 154]. They follow

different ratcheting frameworks aiming at various flavors of security, notably, all of which

capture resilience against fine-grained compromise. Unfortunately, none of them provides

immediate decryption with constant-size overhead, due to their key-update or state-update

structures.

In particular, [153] observes that a protocol satisfying immediate decryption can only

achieve a weak form of forward secrecy: an attacker that intercepts a message and corrupts

the receiver in the future can always compromise this message. To solve this, [153] proposes

a novel strong security model, which we call “ID-optimal”, and a time-based BOOM

protocol that periodically expires old keys and updates new keys. By this, neither the

receiver nor an attacker who corrupts the receiver’s state can decrypt a message that was

encrypted under an expired key. The efficiency and security can be balanced by picking

a reasonable time interval for key update and expiration. However, we find that the

BOOM protocol has two constraints: On the one hand, every party in BOOM obtains the

partner’s latest public key only at the time of receiving the partner’s latest message. If

the message exchange between two parties are not frequent, then the restricted forward

secrecy problem remains. On the other hand, the BOOM protocol also makes use of a

complicated key-update mechanism and therefore provides immediate decryption with

linearly growing bandwidth.

We review protocols that meet various “optimal” security in Section 7.8.

7.2.3 Offline Deniability and Post-Quantum Security

The property of offline deniability prevents a judge from deciding whether an honest user

has participated in a conversation even when other participants try to frame them. The

formal definition of offline deniability originates from [80] and [175] in the simulation-based

models respectively for the authenticated key exchange (AKE) and full messaging protocols.

These works also prove that several well-known classical AKE constructions, such as MQV,

HMQV, 3DH, and X3DH, and the full Signal protocol are offline deniable.

Constructing PQ secure asynchronous key establishments is surprisingly complicated.

There are a number of key establishment protocols [65, 81, 172, 173] that are potential

candidates for PQ security. However, all of their security proofs rely on either the

random oracle model or novel tailored assumptions, which are still not well-studied in

the PQ setting. Hashimoto et al. [106] propose the first PQ secure key establishment

but unfortunately have to assume that every party can pre-upload inexhaustible one-time

keys for full asynchronicity. A subsequent work by Brendel et al. [63] proposed a new
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PQ asynchronous deniable authenticated key exchange (DAKE) protocol, called SPQR,

and a new game-based offline deniability notion. Brendel et al. prove that SPQR is offline

deniable in the game-based paradigm against quantum (semi-honest) attackers.

To the best of our knowledge, SPQR is the only known PQ secure key establishment

with full asynchronicity. Although it is straightforward that the combination of SPQR

and ACD19 can form a PQ-secure full messaging protocol with promising privacy and

authenticity, it is still an open question which flavors of offline deniability can be provably

obtained for the combined protocols in the PQ setting.

7.3 Additional Preliminaries

We recall the DAKE scheme and its offline deniability notion from [63].

7.3.1 The DAKE scheme

Definition 60. An asynchronous deniable authenticated key exchange (DAKE) protocol Σ

is a tuple of algorithms Σ = (Σ.IdKGen,Σ.PreKGen,Σ.EpKGen,Σ.Run,Σ.Fake) as defined

below.

• (Long-term) identity key generation (ipku, iku)
$←− Σ.IdKGen(): outputs the identity

public/private key pair of a party u.

• (Medium-term) pre-key generation (prepk
ind

u , prek
ind

u ) $←− Σ.PreKGen(): outputs the

ind-th public/private key pair of a party u.

• (Ephemeral) key generation (epk
ind

u , ek
ind

u ) $←− Σ.EpKGen(): outputs the ind-th pub-

lic/private key pair of user u

• Session execution (π′,m ′) $←− Σ.Run(iku,Lprek
u ,Lipk

all ,L
prepk
all , π,m): inputs a party u’s

long-term private key iku, a list of u’s private pre-keys Lprek
u , lists of long-term and

medium-term public keys for all honest parties Lipk
all and Lprepk

all , a session state π, and

an incoming message m, and outputs an updated session state π′ and a (possibly empty)

outgoing message m ′. To set up the session sending the first message, Σ.Run is called

with a distinguished message m = create.

• Fake algorithm (K,T ) $←− Σ.Fake(ipku, ik v,Lprek
v , ind): inputs one party u’s long-term

identity public key ipku, the other party v’s long-term identity private key ik v, a list of

v’s private pre-keys Lprek
v , and an index of party v’s pre-key ind and generates a session

key K and a transcript T of a protocol interaction between them.

The session state π includes following variables (we only recall the ones related to the

offline deniability):
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ExprdeniΣ,qP,qM,qS
(A):

1 Lall,Lipk
all ,L

prepk
all ← ∅

2 for u ∈ [qP]

3 Lprek
u ← ∅

4 (ipku, iku)
$←− Σ.IdKGen()

5 Lipk
all

+← ipku

6 Lall
+← (ipku, iku)

7 for ind ∈ [qM]

8 (prepk
ind

u , prek
ind

u ) $←− Σ.PreKGen()

9 Lprek
u

+← prek
ind

u , Lprepk
all

+← prepk
ind

u

10 Lall
+← (prepku, preku)

11 b $←− {0, 1}
12 b′ $←− AO(Lall)

13 return Jb = b′K

Session-Start(sid, rid, ind):

14 if b = 0

15 πrid.role← resp, πrid.stexec ← running

16 πsid.role← init, πsid.stexec ← running

17 (π′
rid,m) $←− Σ.Run(ik rid,Lprek

rid ,Lipk
all ,L

prepk
all , πrid, (create, ind))

18 (π′
sid,m

′) $←− Σ.Run(ik sid,Lprek
sid ,Lipk

all ,L
prepk
all , πsid,m)

19 (K,T ) $←− (π′
sid.K, (m,m ′))

20 else

21 (K,T ) $←− Σ.Fake(ipk sid, ik rid,Lprek
rid , ind)

22 return (K,T )

Figure 7.2: The offline deniability experiment for an attacker A against a DAKE scheme Σ. The
oracle O := {Session-Start}.

• role ∈ {init, resp}: the role of the party. The initiator init and the responder resp

indicate the message sender and receiver in the DAKE, respectively.

• stexec ∈ {⊥, running, accepted, reject}: The status of this session’s execution. The status

is initialized with ⊥ and turns to running when the session starts. The status is set to

accept if the DAKE is executed without errors and reject otherwise.

7.3.2 The game-based offline deniability experiment

The game-based offline deniability experiment ExprdeniΣ,qP,qM,qS
(A) for a DAKE protocol Σ is

depicted in Figure 7.2, where qP, qM, and qS respectively denotes the maximal number

of parties, of (medium-term) pre-keys per party, and of total sessions. At the start of

this experiment, long-term identity and medium-term pre- public/private key pairs are

generated for all qP honest parties and provided to the attacker1. A random challenge bit

b is fixed for the duration of the experiment. The attacker is given repeated access to a

Session-Start oracle which takes as input two party identifiers sid and rid and a pre-key

index ind. If b is 0, then the Session-Start oracle will generate an honest transcript of an

interaction between sid and rid using the Σ.Run algorithm and each party’s secret keys. If

b is 1, then the Session-Start oracle will generate a simulated transcript of an interaction

between sid and rid using the Σ.Fake algorithm. At the end of the experiment, the attacker

outputs a guess b′ of b. The experiment outputs 1 if b′ = b and 0 otherwise. The attacker’s

advantage in the deniability game is the absolute value of the difference between 1
2
and

the probability the experiment outputs 1.

1The attacker here can be considered as a judge in reality.
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Definition 61. An asynchronous DAKE protocol Σ is (t, ϵ, qS)-deniable (with respect to

maximal number of parties qP and pre-keys per party qM) if for any attacker A with running

time at most t and making at most qS many queries (to its Session-Start oracle), we have

that

AdvdeniΣ (A) :=
∣∣Pr[ExprdeniΣ,qP,qM,qS

(A) = 1]− 1

2

∣∣ ≤ ϵ

where ExprdeniΣ,qP,qM,qS
(A) is defined in Figure 7.2.

7.4 Extended Secure Messaging

In this section, we first define our new extended secure messaging (eSM) scheme in Sec-

tion 7.4.1, followed by the expected security properties in Section 7.4.2. Then, we define

an associated strong security model (eSM) in Section 7.4.3. Finally in Section 7.4.4, we

modularize the eSM security into three simplified security models, which can ease our final

security proof.

7.4.1 Syntax

Definition 62. Let ISS denote the space of the initial shared secrets between two parties.

An extended secure messaging (eSM) scheme consists of six algorithms eSM = (IdKGen,

PreKGen, eInit-A, eInit-B, eSend, eRcv), where

• (ipk , ik) $←− IdKGen() outputs an long-term identity public-private key pair,

• (prepk , prek) $←− PreKGen() outputs a medium-term public-private pre-key pair,

• stA ← eInit-A(iss) (resp. stB ← eInit-B(iss)) inputs an initial shared secret iss ∈ ISS
and outputs a session state,

• (st′, c) $←− eSend(st, ipk , prepk ,m) inputs a state st, a long-term identity public key ipk,

a medium-term public prekey prepk, and a message m, and outputs a new state and a

ciphertext, and

• (st′, t, i,m)← eRcv(st, ik , prek , c) inputs a state st, a long-term identity private key ik ,

a medium-term private key prek, and a ciphertext c, and outputs a new state, an epoch

number, a message index, and a message.

Our eSM re-uses two important concepts epoch and message index that originate

in [12].

Epoch. The epoch t is used to describe how many back-and-forth interactions in a

two-party communication channel (aka. session) have been processed. Let tA and tB

respectively denote the epoch counters of parties A and B in a session. Both epoch counters

start from 0. If either party P ∈ {A, B} switches the actions, i.e., from sending to receiving

or from receiving to sending messages, then the counter tP is incremented by 1. In this
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paper, we use even epochs (tA, tB = 0, 2, 4, ...) to denote the scenario where B acts as the

sender and A acts as the receiver, and odd epochs in reverse. In each epoch, the sender can

send arbitrarily many messages in a sequence. The difference between the two counters tA

and tB is never greater than 1, i.e., |tA − tB| ≤ 1.

Message Indices. The message index i identifies the index of a message in each epoch.

Notably, the epoch number t and message index i output by eRcv indicate the position of

the decrypted message m during the communication. The receiver is expected to recover

the position of each decrypted message even if it is delivered out of order.

Alice Bob
tA = 0 tB = 0

m1 with (t, i) = (0, 1)

m2 with (t, i) = (0, 2)

m3 with (t, i) = (0, 3)

m4 with (t, i) = (1, 1)
tA = 1 tB = 1

Figure 7.3: An example session between Alice and Bob. The session starts with tA = tB = 0, i.e.,
Bob is the sender. When Bob continuously sends messages, the message index grows from 1 for
m1 to 3 for m3. When Alice switches the role from receiver to sender, the epoch increases to
tA = tB = 1.

7.4.2 Strong Security Properties

The eSM schemes aim at following strong security properties. First, we expect our eSM to

meet well-studied basic properties below:

1. Correctness: The messages exchanged between two parties are recovered in the correct

order, if no attacker manipulates the underlying transmissions.

2. Immediate decryption (ID) and message-loss resilience (MLR): Messages must

be decrypted to the correct position as soon as they arrive; the loss of some messages

does not prevent subsequent interaction.

3. Forward secrecy (FS): All messages that have been sent and received prior to a

session state compromise of either party (or both) remain secure to an attacker.

4. Post-compromise security (PCS): The parties can recover from session state com-

promise (assuming the access to fresh randomness) when the attacker is passive.

Second, our eSM targets the following advanced security against fine-grained compromise.

5. Strong authenticity: The attacker cannot modify the messages in transmission or

inject new ones, unless the sender’s session state is compromised.

6. Strong privacy: If both parties’ states are uncompromised, the attacker obtains

no information about the messages sent. Assuming both parties have access to fresh

randomness, strong privacy also holds unless the receiver’s session state, private identity

key, and corresponding private pre-key all are compromised.
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7. Randomness leakage/failures: While both parties’ session states are uncompromised,

all above security properties (in particular, including strong authenticity and strong

privacy) except PCS hold even if the attacker completely controls the parties’ local

randomness. That is, good randomness is only required for PCS.

Finally, our eSM also pursues two new security properties:

8. State compromise/failures: While the sender’s randomness quality is good and

the receiver’s private identity key or pre-key is not leaked, the privacy of the messages

holds even if both parties’ session states are corrupted.

9. Periodic privacy recovery (PPR): If the attacker is passive (i.e., does not inject

corrupted messages), the message privacy recovers from the compromise of both par-

ties’ all private information after a time period (assuming each has access to fresh

randomness).

We stress that the first new property state compromise/failures has a particular impact

for the secure messaging after an insecure key establishment. For instance, consider that

the party B initializes a conversation with A using X3DH in Signal. The leakage of the

sender B’s private identity key and ephemeral randomness in X3DH implies the compromise

of the initial shared secret and further both parties’ session states in DR. If B continuously

sends messages to A without receiving a reply in Signal, all messages in the sequence are

leaked, since the attacker can use A’s session state to decrypt the ciphertexts. An eSM

protocol with the “state compromise/failures” property is able to prevent such attack.

Moreover, the second new property PPR complements the strong privacy. Assuming

the secure randomness, the strong privacy ensures the secrecy of past messages if the

corresponding private pre-keys are not leaked, while PPR ensures the secrecy of future

messages if new pre-key pairs are randomly sampled and honestly delivered to the partner.

Remark 2. The relation between PPR and PCS depends on what we take as the reference

point for PCS. The term “Post Compromise Security” was introduced in 2016 in [73],

which defines both a broader informal security guarantee as well as a specific instantiation.

PPR can be seen as a subclass of the general initial PCS notion from [73].

Over time, follow-up works have developed more fine-grained notions of PCS, notably

instantiated for specific protocol classes. One such example is [12], whose target protocol

class closely matches ours. Compared to the PCS instantiation in [12], PPR can be regarded

as an orthogonal class of privacy that is related to time (aka. temporal privacy). Although

both the PCS instance from [12] and PPR provide healing after compromise and might look

similar, they differ in the following three aspects.

1. Different Healing Objects: While the PCS instance from [12] heals the session state

(e.g., encryption/decryption keys), and might further impact on other security guarantees
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(e.g. privacy, authenticity, etc.), PPR heals the (strong) privacy, which is a concrete

security guarantee.

2. Different Healing Approaches: The PCS instance from [12] holds only when the

session states are healed. Note that (strong) privacy is expected to hold “unless the

receiver’s session state, private identity key, and corresponding private pre-key all are

compromised”. Thus, PPR might hold when some private materials other than session

states are recovered, i.e., is independent of their instance of PCS.

7.4.3 Security Model

The Extended Secure Messaging (eSM) security game ExpreSMΠ,△eSM
for an eSM scheme Π

with respect to a parameter △eSM is depicted in Figure 7.4.

Notation. Our model considers the communication between two distinct parties A and

B. For a party P ∈ {A, B}, we use ¬P to denote the partner, i.e., {P,¬P} = {A, B}. For an
element x and a set X, we write X

+← x for adding x in X, i.e., X
+← x⇔ X ← X ∪ {x}.

Similarly, we write X
−← x for removing x from X, i.e., X

−← x⇔ X ← X \ {x}. For a
set of tuples X and a variable y, we use X(y) to denote the subset of X, where each tuple

x includes y, i.e., X(y) = {x ∈ X | y ∈ x}. We say y ∈ X if there exists a tuple x ∈ X

such that y ∈ x, i.e., y ∈ X ⇔ X(y) ̸= ∅.

Trust Model: We assume an authenticated channel between each party and the server

for key-update and -fetch and therefore no forgery of the public identity keys and pre-keys.

This is the common treatment in the security analyses in this domain, e.g. [75], the server

is considered to be a bulletin board, where each party can upload their own and fetch other

parties’ honest public keys. For practical deployments, we require that the key-upload

and key-fetch processes between each party and sever use fixed bandwidth and are only

executed periodically. We omit the discussion on the frequency of the pre-keys’ upload

and retrieve2.

We assume that all session-specific data is stored at the same security level in the

state, but the non-session-specific data that can be potentially shared among multiple

sessions (i.e., identity keys and pre-keys) might be stored differently. Thus, corruption

of session-specific state does not imply leakage of the private identity key and pre-key

and vice versa. In fact, as we will show later, an eSM scheme can achieve additional

privacy guarantees if the private identity keys (or pre-keys) can be stored in the secure

environment on the device, such as a Hardware Security Module (HSM).

Moreover, we also require the eSM scheme Π to be natural, which is first defined for

SM in [12, Definition 7].

2As an example, we can consider a scenario where every party is only allowed to upload and fetch
public keys at 12am every day.

227



Definition 63. We say an eSM scheme is natural, if the following holds:

1. the receiver state remains unchanged, if the message output by eRcv is m = ⊥,

2. the values (t, i) output by eRcv can be efficiently computed from c,

3. if eRcv has already accepted an ciphertext corresponding to the position (t, i), the next

ciphertext corresponding to the same position must be rejected,

4. a party always rejects ciphertexts corresponding to an epoch in which the party does not

act as receiver, and

5. if a party P accepts a ciphertext corresponding to an epoch t, then t ≤ tP + 1.

Experiment Variables and Predicates. The security experiment ExpreSMΠ,△eSM
includes

the following global variables:

• safeidKA , safeidKB ∈ {true, false}: the boolean values indicating whether the private identity

keys are revealed.

• Lrev
A ,Lrev

B : the lists that record the indices of the pre-keys that are revealed.

• Lcor
A ,Lcor

B : the lists that record the indices of the epochs where the session states are

corrupted.

• nA, nB: the pre-key counters.

• tA, tB: the epoch counters.

• iA, iB: the message index counters.

• trans: a set that records all ciphertexts, which are honestly encrypted but undelivered

yet, and their related information. See the helper function record for more details.

• allTrans: a set that records all honest encrypted ciphertexts (including both the delivered

and undelivered ones), and their related information.

• chall: a set that records all challenge ciphertexts, which are honestly encrypted but

undelivered yet, and their related information.

• allChall: a set that records all challenge ciphertexts (including both the delivered and

undelivered ones), and their related information.

• comp: a set that records all compromised ciphertexts, which are honestly encrypted but

not delivered yet, and their related information. A compromised ciphertext means that

the attacker can trivially forge a new ciphertext at the same position.

• wincorr, winauth, winpriv ∈ {true, false}: the winning predicate that indicates whether the

attacker wins.

• b ∈ {0, 1}: the challenge bit.
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ExpreSMΠ,△eSM
(A):

1 safeidKA , safeidKB ,Lrev
A ,Lrev

B ,Lcor
A ,Lcor

B ← ⊥
2 (nA,nB)← (0, 0)

3 ()← AO1()

4 require ⊥ /∈ {safeidKA , safeidKB }
5 require nA,nB ≥ 1

6 iss $←− ISS, (tA, tB), (iA, iB)← (0, 0)

7 stA ← eInit-A(iss), stB ← eInit-B(iss)

8 trans, chall, comp, allChall, allTrans← ∅
9 wincorr,winauth ← false

10 b $←− {0, 1}, b′ $←− AO2()

11 winpriv ← Jb = b′K
12 return (wincorr,winauth,winpriv)

ONewIdKey-A(r):

13 require safeidKA = ⊥
14 (r, flag) $←− sam-if-nec(r)

15 (ipkA, ikA)
$←− IdKGen(r)

16 safeidKA ← Jflag = goodK
17 return ipkA
ORevIdKey-A:

18 safeidKA ← false, corruption-update()

19 foreach (P, ind, flag, t, i,m, c) ∈ allChall

20 require safe-chP(flag, t, ind)

21 foreach (P, t) ∈ trans and ¬safe-inj¬P(t)

22 comp
+← trans(P, t)

23 return ikA
ONewPreKey-A(r):

24 nA++

25 (r, flag) $←− sam-if-nec(r)

26 (prepknA

A , preknA

A ) $←− PreKGen(r)

27 if flag = bad : Lrev
A

+← nA

28 return prepkA
ORevPreKey-A(n):

29 require n ≤ nA

30 Lrev
A

+← n, corruption-update()

31 foreach (P, ind, flag, t, i,m, c) ∈ allChall

32 require safe-chP(flag, t, ind)

33 foreach (P, t) ∈ trans and ¬safe-inj¬P(t)

34 comp
+← trans(P, t)

35 return prekn
A

OTransmit-A(ind,m, r):

36 require ind ≤ nB

37 (r, flag) $←− sam-if-nec(r)

38 ep-mgmt(A, flag, ind)

39 iA++

40 (stA, c)
$←− eSend(stA, ipkB, prepk

ind
B ,m; r)

41 record(A, norm, flag, ind,m, c)

42 return c

ODeliver-A(c):

43 require (B, ind, t, i,m, c) ∈ trans for some
ind, t, i,m

44 (stA, t
′, i′,m′)← eRcv(stA, ikA, prek

ind
A , c)

45 if (t′, i′,m′) ̸= (t, i,m): wincorr ← true

46 if (t, i,m) ∈ chall: m′ ← ⊥
47 tA ← max(tA, t

′), delete(t, i)

48 return (t′, i′,m′)

OInject-A(ind, c):

49 require (B, c) /∈ trans and ind ≤ nA

50 require safe-injA(tB) and safe-injA(tA)

51 (stA, t
′, i′,m′)← eRcv(stA, ikA, prek

ind
A , c)

52 if m′ ≠ ⊥ and (B, t′, i′) /∈ comp : winauth ← true

53 tA ← max(tA, t
′), delete(t′, i′)

54 return (t′, i′,m′)

OChallenge-A(ind,m0,m1, r):

55 require ind ≤ nB

56 (r, flag) $←− sam-if-nec(r)

57 ep-mgmt(A, flag, ind)

58 require safe-chA(flag, tA, ind) and |m0| = |m1|
59 iA++

60 (stA, c)
$←− eSend(stA, ipkB, prepk

ind
B ,mb; r)

61 record(A, chall, flag, ind,mb, c)

62 return c

OCorrupt-A:

63 Lcor
A

+← tA, corruption-update()

64 require (B, ind, flag) /∈ chall or
(
flag = good and

safeidKA

)
or
(
flag = good and safepreKA (ind)

)
65 foreach (B, t) ∈ trans and ¬safe-stB(t)

66 comp
+← trans(B, t)

67 foreach (A, tA) ∈ trans and ¬safe-stB(tB)

68 comp
+← trans(A, tA)

69 return stA

Figure 7.4: The extended secure messaging experiment ExpreSMΠ,△eSM
for an eSM scheme Π with

respect to a parameter △eSM. O1 := {ONewIdKey-A,ONewIdKey-B,ONewPreKey-A,ONewPreKey-B} and
O2 denotes all oracles. This figure only depicts the oracles for A (ending with -A). The oracles
for B are defined analogously. We highlight the difference to the SM-security game for a SM
scheme in [12] with blue color. We give more helper functions and safe predicates in Figure 7.5.
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Moreover, the experiment ExpreSMΠ,△eSM
also includes four predicates as shown in Fig-

ure 7.5.

• safepreKP (ind): indicating whether ind-th pre-key of party P is leaked. We define it true if

ind is not included in Lrev
P .

• safe-stP(t): indicating whether the state of party P at epoch t is expected to be safe.

This predicate simplifies the definition of safe-chP and safe-injP predicates below. We

define it true if none of epochs from t to (t −△eSM + 1) is included in the list Lcor
P .

• safe-chP(flag, t, ind): indicating whether the privacy of the message sent by P is expected

to hold, under the randomness quality flag ∈ {good, bad}, the sending epoch t, and the

receiver ¬P’s pre-key index ind. We define it to be true if any of the following conditions

hold:

1. both parties’ states are safe at epoch t,

2. the partner ¬P’s state is safe and the randomness quality is flag = good,

3. the partner ¬P’s identity key is safe and the randomness quality is flag = good, or

4. the partner ¬P’s ind-th pre-key is safe and the randomness quality is flag = good.

• safe-injP(t): indicating whether the authenticity at the party P’s epoch t (i.e., P is

expected not to accept a forged ciphertext corresponding to epoch t) holds. We define

it to be true if the partner’s state is safe at epoch t.

Helper Functions. To simplify the security experiment definition, we use five helper

functions as shown in Figure 7.5.

• sam-if-nec(r): If r ̸= ⊥, this function outputs (r, bad) indicating that the randomness is

attacker-controlled. Otherwise, a new random string r is sampled from the space R3

and is output together with a flag good.

• record(P, type, flag, ind,m, c): A record rec, which includes the party’s identity P, the

partner’s pre-key index ind, the randomness flag flag, the epoch counter tP, the message

index counter iP, the message m, and the ciphertext c, is added into the transcript sets

trans and allTrans. If the safe-injP(tP) predicate is false, then this record is also added

into the compromise set comp. If c is a challenge ciphertext, indicated by whether

type = chall, the record rec is also added into the challenge sets chall and allChall.

• ep-mgmt(P, flag, ind): When the party P enters a new epoch as the sender upon the

partner’s ind-th pre-key, the new epoch number is added to the state corruption list Lcor
P

if the safe challenge predicate is false. Then, the epoch counter tP is incremented by 1

and the message index counter i is set to 0.

3The randomness space R is not specific and depends on the concrete functions and algorithms. Here,
we use R only for simplicity.
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sam-if-nec(r):

70 flag← bad

71 if r = ⊥
72 r $←− R, flag← good

73 return (r, flag)

record(P, type, flag, ind,m, c):

74 rec← (P, ind, flag, tP, iP,m, c)

75 allTrans, trans
+← rec

76 if ¬safe-inj¬P(tP): comp
+← rec

77 if type = chall: allChall, chall
+← rec

ep-mgmt(P, flag, ind):

78 if (P = A and tP even) or (P = B and tP odd)

79 if ¬safe-chP(flag, tP, ind)

80 Lcor
P

+← tP + 1

81 tP++, iP ← 0

corruption-update():

82 foreach (P, ind, flag, t, 1,m, c) ∈ allTrans

83 if ¬safe-chP(flag, (t − 1), ind)

84 Lcor
P

+← t

delete(t, i):

85 rec← (P, ind, flag, t, i,m, c) for some P, ind, flag,m, c

86 trans, chall, comp
−← rec

safepreKP (ind)⇔ ind /∈ LrevP

safe-stP(t)⇔ t, (t − 1), ..., (t −△eSM + 1) /∈ LcorP

safe-chP(flag, t, ind) ⇔
(
safe-stP(t) and safe-st¬P(t)

)
or
(
flag = good and safe-st¬P(t)

)
or(

flag = good and safeidK¬P

)
or
(
flag = good and safepreK¬P (ind)

)
safe-injP(t)⇔ safe-st¬P(t)

Figure 7.5: The helping functions in extended secure messaging experiment ExpreSMΠ,△eSM
for an

eSM scheme Π with respect to a parameter △eSM. We highlight the difference to the SM-security
game for a SM scheme in [12] with blue color.

• delete(t, i): deletes all records that includes (t, i) from the sets trans, chall, and comp.

• corruption-update(): checks all records in the allTrans list whether the safe challenge

predicates for the first messages in each epoch (still) hold or not. If it does not hold,

then adds the epoch into the corruption list.

Notably, the helper function corruption-update is invoked in the key-revealing and state-

corruption oracles to capture the impact of the leakage of any secret on the secrecy of the

(past) session states.

Experiment Execution and Oracles. At the beginning of the ExpreSMΠ,△eSM
security

model, the safe predicates for identity keys, the reveal and corruption lists for pre-keys

and states, and the pre-key counters are initialized. Then, the attacker is given access

to O1 := {ONewIdKey-A,ONewIdKey-B,ONewPreKey-A,ONewPreKey-B} oracles for generating both

parties’ identity keys and at least one pre-keys. A random initial shared secret iss is

sampled from the space ISS. Then, the session states stA and stB are respectively initialized

by eInit-A and eInit-B of eSM. After initializing the epoch and message index counters, the

sets, and the winning predicates wincorr and winauth, a challenge bit b is randomly sampled.
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The attacker is given access to all eighteen oracles and terminates the experiment by

outputting a bit b′ for evaluating the winning predicate winpriv. Finally, the experiment

outputs all these three winning predicates. In Figure 7.4, we only depict nine oracles with

suffix -A for party A. The oracles for party B are defined analogously.

Oracle Category 1: Identity and pre-keys. The first eight oracles are related to the

generation and the leakage of identity keys and pre-keys.

• ONewIdKey-A(r), ONewIdKey-B(r): Both oracles can be queried at most once. The input

random string, which is sampled when necessary, is used to produce a public-private

identity key pair by using IdKGen(r). The corresponding safety flags are set according

to whether the input r = ⊥ or not. The public key is returned.

• ONewPreKey-A(r), ONewPreKey-B(r): Similar to the oracles above, a public-private pre-key

pair is generated. The corresponding pre-key index is added into the list Lrev
A or Lrev

B if

the input r ̸= ⊥. The public key is returned.

• ORevIdKey-A, ORevIdKey-B: These oracles simulate the reveal of the identity private key

of a party P ∈ {A, B}. The corresponding safe predicate is set to false. Then, the

corruption-update helper function is invoked to update whether the current and past

states are still secure or not. We require that this oracle invocation does not cause

the change of safe challenge predicate for any record in the all-challenge set allChall.

Otherwise, this oracle undoes all actions during this invocation and exits. This step

prevents the attacker from distinguishing the challenge bit by trivially revealing enough

information to decrypt the past challenge ciphertexts.

Then, all records in the transcript set trans, whose safe injection predicate turns to false,

are added into the compromise set comp. This step prevents the attacker from making

a trivial forgery by using the information leaked by the reveal of the identity key.

Finally, the corresponding private identity key is returned.

• ORevPreKey-A(n), ORevPreKey-B(n): These oracles simulate the reveal of the n-th private

pre-key of a party P. The input n must indicate a valid prekey counter, i.e., n ≤ nP, and

is added into the reveal list Lrev
P . The rest of these oracles are same as above: (1) runs

corruption-update, (2) aborts the oracles if the safe challenge predicates of any record in

the allChall set is violated, and (3) adds all records in the trans set, whose safe injection

predicate is violated, into the set comp.

Finally, the corresponding private pre-key is returned.

Oracle Category 2: State Corruption. The following two oracles allow attackers to

corrupt session states.
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• OCorrupt-A, OCorrupt-B: These oracles simulate the corruption of party P’s session states.

First, the current epoch counter is added to the state corruption list Lcor
P , followed

running corruption-update to update whether this corruption impacts the safety of other

session states. Next, we require that either the set chall does not include the record

produced by the partner ¬P, or such a record exists but (1) the flag in the record is

good and (2) P’s identity key or P’s pre-key corresponding to the pre-key index in the

record is safe. If the requirement is not satisfied, this oracle undoes all actions in this

invocation and exits. This requirement prevents the attacker from distinguishing the

challenge bit by trivially revealing enough information to decrypt the past challenge

ciphertexts.

After that, we add all records rec ∈ trans, which are produced by ¬P at an unsafe

epoch t, into the compromise set comp. We also add all records rec ∈ trans, which are

produced by P at current epoch if the partner’s session at current epoch is not safe.

This requirement prevents the attacker from trivially breaking the strong authenticity

by corrupting the sender’s state and forging the corresponding undelivered messages.

Finally, the session states are returned.

Oracle Category 3: Message Transmission. The final eight oracles simulate the

honest message encryptions and the attacker’s capability of manipulating the message

transmission.

• OTransmit-A(ind,m, r), OTransmit-B(ind,m, r): These transmission oracles simulate the real

sending execution. The input index ind must not exceed the partner’s current pre-key

counter. The random string r is sampled when necessary. The epoch information is

updated if entering a new epoch. After incrementing the message index, the eSend

algorithm is executed using the controlled or freshly sampled randomness r to transmit

the message m upon the partner’s identity key and ind-th pre-key. After recording the

transcript, the ciphertext is returned.

• OChallenge-A(ind,m0,m1, r), OChallenge-B(ind,m0,m1, r): These challenge oracles simulate

the sending execution, where the attacker tries to distinguish the encrypted message

m0 or m1. These oracles are defined similar to the execution of transmission oracles

with input (ind,mb, r) for the challenge bit b ∈ {0, 1} sampled at the beginning of the

experiment. The only difference is that the safety predicate safe-chP(flag, tP, ind) for

P ∈ {A, B} must hold and that the input messages m0 and m1 must have the same length.

• ODeliver-A(ind, c), ODeliver-B(ind, c): These delivery oracles simulate the receiving execution

of a ciphertext generated by the honest party. This means, there must exist a record

(P, ind, t, i,m, c) in the transcript set trans. The eRcv is invoked. If the output epoch t′,

message index i′, and decrypted message m ′ does not match the one in the record, the

attacker wins via the predicate wincorr. If the output is in the challenge set chall, the
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decrypted message m ′ is set to ⊥ to prevent the attacker from trivially distinguishing the

challenge bit. After updating the epoch counter, the record is deleted from transcript

set, challenge set, and compromise set. This in particular means that the ciphertext c

is considered as a forgery after this delivery. Finally, the output epoch t′, the message

index i′, and the decrypted message m ′ is are returned.

• OInject-A(ind, c), OInject-B(ind, c): These oracles simulate a party P’s receiving execution of

a ciphertext forged by the attacker. The input ind ≤ nP specifies a pre-key for running

eRcv and the input c must be not produced by the partner in the transcript set. We

require that eRcv is invoked under the condition that the safety predicates safe-injP(tA)

and safe-injP(tB) both are true. If the decrypted message is not ⊥ and the ciphertext at

the same position is not compromised, the attacker wins via the winauth predicate. The

rest of this oracle is identical to the delivery oracles.

Definition 64. An eSM scheme Π is (t, q, qep, qM,△eSM, ϵ)-eSM secure if the below defined

advantage for all attackers A against the ExpreSMΠ,△eSM
experiment in Figure 7.4 in time t is

bounded by

AdveSMΠ,△eSM
(A) := max

(
Pr[ExpreSMΠ,△eSM

(A) = (1, 0, 0)],

Pr[ExpreSMΠ,△eSM
(A) = (0, 1, 0)],

|Pr[ExpreSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|
)
≤ ϵ,

where q, qep, and qM respectively denote the maximal number of queries A can make, of

epochs, and of each party’s pre-keys in the ExpreSMΠ,△eSM
experiment.

Conclusion. Finally, we explain how our eSM security captures all security properties

listed in Section 7.4.2.

• Correctness: No correctness means the encrypted message cannot be recovered correctly

and causes the winning event via Line 45.

• Immediate decryption and message-loss resilience: No immediate decryption or

message-loss resilience means that some messages cannot be recovered to the correct

position from the delivered ciphertext when the attacker invokes the transmission and

delivery oracles in an arbitrary order, which causes the winning event via Line 45.

• Forward secrecy: Note that the attacker can freely access the corruption oracles

if all challenge ciphertexts have been delivered. No FS means that the attacker can

distinguish the challenge bit from the past encrypted messages and wins via Line 11.

• Post-compromise security: Note that the states are not leaked to a passive attacker

after the owner sends a reply in a new epoch (i.e., epochs are not added into the state
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corruption list in Line 80), assuming fresh randomness and the partner’s uncorrupted

state, or identity key or pre-key, see Line 79.

No PCS indicates that a state at an epoch not in the state corruption lists might still

be corrupted, which causes the lose of other security properties.

• Strong authenticity: The attacker can inject a forged ciphertext (Line 49) that does

not correspond to a compromised ciphertext position (Line 52) if sender’s session state is

safe. Recall that a ciphertext is compromised only when the session state of the sender

is unsafe (see Line 21, 33, 65, 68, 76).

No strong authenticity means that the forged ciphertext can be decrypted to a non-⊥
message when the sender is not corrupted, and further causes the winning of the attacker

via Line 52.

• Strong privacy: Note that the challenge ciphertexts must be produced without the

violation the safety predicate safe-ch in Line 58, i.e., at least one of the following

combinations are not leaked: (1) both parties’ states, (2) the encryption randomness and

the receiver’s state, (3) the encryption randomness and the receiver’s private identity

key, or (4) the encryption randomness and the receiver’s corresponding private pre-key.

Moreover, our identity key reveal oracles, pre-key reveal oracles, and state corruption

oraclesalso prevent the attacker from knowing all of the above combinations related to

any challenge ciphertext at the same time (see Line 20, 32, 64).

No strong privacy means that the attacker can distinguish the challenge bit even when

at least one of the above four combinations holds, which further causes the winning

event via Line 11.

• Randomness leakage/failures: This is ensured by the fact that all of the above

properties hold if the parties’ session states are uncompromised.

• State compromise/failures: This is ensured by the strong privacy even when both

parties’ state are corrupted, as explained above.

• Periodic privacy recovery (PPR): Note that the pre-keys can be periodically gen-

erated optionally under fresh randomness. The PPR is ensured by the strong privacy

when the sender’s randomness is good and the receiver’s newly freshly sampled pre-key

is safe, as explained above.

Moreover, we can also observe that higher security can be obtained if the device of a

party (assume A) supports a secure environment, such as an HSM. If A’s identity key pair

is generated in a secure environment, the private identity key can be neither manipulated

nor predicted by any attacker. This means that the attacker can only query ONewIdKey-A(r)

with input r = ⊥ and never query ORevIdKey-A oracle in ExpreSMΠ,△eSM
. Thus, the predicate
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safeidKA is always true. If the partner B has access to the fresh randomness, then the privacy

of the messages sent from B to A always holds.

We stress that our eSM model is strictly stronger than the SM model [12], even

without taking the usage of identity keys and pre-keys into account. We provide a detailed

comparison in Section 7.9 for interested readers.

7.4.4 Security Model Modularization

The analysis for the security of messaging protocols are often very tedious, since both the

security model and the protocols are usually highly complex. Alwen et al. [12] opt to

first reduce the SM-security into several simplified security notions: correctness, privacy,

and authenticity. Then, they respectively prove the individual simplified security of their

proposal ACD19.

We adopt the similar strategies: we split the eSM-security into several new simplified

security notions and prove the reduction between eSM and the new simplified security

notions.

Correctness: We define our correctness model ExprCORR
Π,△eSM

for an eSM scheme Π with

respect to a parameter △eSM identical to the model ExpreSMΠ,△eSM
with the same parameter

△eSM, except for the following modifications:

1. there are no OChallenge-A and OChallenge-B oracles

2. the OInject-A and OInject-B are replaced by a reduced injection oracle, which is identical to

the injection oracle except for the following two modifications:

• if the input ciphertext c does not correspond to any position (t′, i′) ∈ comp, OInject-A

and OInject-B immediately returns (t′, i′,⊥)
• the if-clause in Line 52 and 52 are removed

This simplified correctness experiment is defined similar to the one in [12].

Note that the attacker receives no information about the challenge bit, since the

challenge oracles are removed. The attacker cannot win via the predicate winpriv except

by randomly guessing. Moreover, the predicate winauth in the injection oracles is removed.

The winauth predicate is never set to true. Intuitively, the attacker can win the correctness

game with non-zero advantage only via wincorr in the ODeliver-A and ODeliver-B oracles.

Definition 65. An eSM scheme Π is (t, q, qep, qM,△eSM, ϵ)-CORR secure if the below

defined advantage for any attacker A in time t is bounded by

AdvCORR
Π,△eSM

(A) :=Pr[ExprCORR
Π,△eSM

(A) = (1, 0, 0)] ≤ ϵ,

where q, qep, and qM respectively denote the maximal number of queries A can make, the

maximal number of epochs, and the maximal number of pre-keys of each party in the

experiment ExprCORR
Π,△eSM

.
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Authenticity: We define our authenticity model ExprAUTHΠ,△eSM
for an eSM scheme Π with

respect to a parameter △eSM identical to the model ExpreSMΠ,△eSM
with the same parameter

△eSM, except for the following modifications:

1. there are no OChallenge-A and OChallenge-B oracles

2. the winning predicate wincorr is never set to true in the ODeliver-A and ODeliver-B, i.e., the

if-clause in Line 45 is removed.

3. the attacker has to output an epoch t⋆ at the beginning of the experiment

4. the OInject-A and OInject-B are replaced by a reduced injection oracle (see above) unless

the input ciphertext c corresponds to the epoch t⋆. (Recall that the position including

the epoch and message index is assumed to be efficiently computable from c for natural

eSM.)

This simplified authenticity experiment is defined differently from the one in [12], as

the attacker has to output only one epoch t⋆, which indicates the epoch of the forged

ciphertext, without outputting another epoch t⋆L as in [12], which indicating the last

corruption event before the t⋆.

Note that the attacker receives no information about the challenge bit, since the

challenge oracles are removed. The attacker cannot win via the predicate winpriv except

by randomly guessing. Moreover, the predicate wincorr in the deliver oracles is removed.

The wincorr predicate is never set to true. Intuitively, the attacker can win the authenticity

game with non-zero advantage only via winauth in the OInject-A and OInject-B oracles for a

forged ciphertext corresponding to the epoch t⋆, which is claimed by the attacker at the

beginning of the experiment.

Definition 66. An eSM scheme Π is (t, q, qep, qM,△eSM, ϵ)-AUTH secure if the below

defined advantage for any attacker A in time t is bounded by

AdvAUTHΠ,△eSM
(A) :=Pr[ExprAUTHΠ,△eSM

(A) = (0, 1, 0)] ≤ ϵ,

where q, qep, and qM respectively denote the maximal number of queries A can make, the

maximal number of epochs, and the maximal number of pre-keys of each party in the

experiment ExprAUTHΠ,△eSM
.

Privacy: We define our privacy model ExprPRIVΠ,△eSM
for an eSM scheme Π with respect to a

parameter △eSM identical to the model ExpreSMΠ,△eSM
with the same parameter △eSM, except

for the following modifications:

1. the winning predicate wincorr is never set to true in the ODeliver-A and ODeliver-B, i.e., the

if-clause in Line 45 is removed.
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2. the OInject-A and OInject-B are replaced by a reduced injection oracle (see above).

3. the attacker has to output an epoch t⋆ at the beginning of the experiment.

4. the challenge oracle OChallenge-A (resp. OChallenge-B) can only be queried if tA = t⋆ (resp.

tB = t⋆)

This simplified privacy experiment is also defined differently from the one in [12], as

the attacker has to output only one epoch, which indicates the epoch of the challenge

query, without outputting another epoch t⋆L as in [12], which indicating the last corruption

event before the t⋆.

Note that the predicate wincorr in the deliver oracles and the winauth in the injection

oracles are removed. The wincorr and winauth predicates are never set to true. Intuitively, the

attacker can win the privacy game only via winpriv predicate by distinguishing the challenge

bit using the challenge ciphertexts corresponding to the epoch t⋆, which is claimed by the

attacker at the beginning of the experiment.

Definition 67. An eSM scheme Π is (t, q, qep, qM,△eSM, ϵ)-PRIV secure if the below defined

advantage for any attacker A in time t is bounded by

AdvPRIVΠ,△eSM
(A) :=Pr[ExprPRIVΠ,△eSM

(A) = (0, 0, 1)] ≤ ϵ,

where q, qep, and qM respectively denote the maximal number of queries A can make, the

maximal number of epochs, and the maximal number of pre-keys of each party in the

experiment ExprPRIVΠ,△eSM
.

7.5 Extended Secure Messaging Scheme

In Section 7.5.1 we describe the intuition behind our eSM construction, followed by a

detailed description in Section 7.5.2. In Section 7.5.3, we prove the eSM security of our

eSM construction and provide concrete instantiations.

7.5.1 Intuition behind the eSM Construction

Our eSM construction, depicted in Figure 7.6, uses a key encapsulation mechanism

KEM = (KEM.KGen,KEM.Encaps,KEM.Decaps), a digital signature DS = (DS.KGen,

DS.Sign,DS.Vrfy), a symmetric key encryption SKE = (SKE.Enc, SKE.Dec), and five key

derivation functions KDFi for i ∈ [5].

To send a message, the sender runs the KEM encapsulation algorithm three times: the

encapsulation upon the partner’s latest per-epoch public key, which ensures the privacy

against fine-grained state compromise and PCS; the one upon the partner’s latest public

pre-key, which ensures temporal privacy and the PPR property; and finally the one upon

the partner’s latest public identity key, which ensures even stronger privacy if the device
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supports an HSM for storing private identity keys. The sender also signs the outgoing

ciphertext using DS and his latest per-epoch signing key to ensure the authenticity against

fine-grained state compromise.

Moreover, our eSM construction uses three variants of the NAXOS trick [134], in which

ephemeral randomness is combined with a local secret to strengthen against randomness

compromise or manipulation attack. First, a symmetric root key st.rk together with

ephemeral randomness is used to derive new shared state when sending the first message

in each epoch. This provides strong privacy for new epochs against randomness leakage

and manipulation; Second, the sender’s local NAXOS string st.nxs together with the

ephemeral randomness is used to improve key generation when sending the first message

in each epoch. This provides strong authenticity for the new epoch and strong privacy for

the next epoch against randomness leakage and manipulation; Third, the unidirectional

ratchet keys urk (derived from the shared state) together with the ephemeral randomness

are used to derive the real message keys. This ensures FS while preserving immediate

decryption with constant-size overhead.

7.5.2 The eSM Construction in Detail

For simplicity, we assume all symmetric keys in our construction (including the root key

rk, the chain key ck, the unidirectional ratchet key urk, and the message key mk) have the

same domain {0, 1}λ. We assume the key generation randomness spaces of KEM and DS

are also {0, 1}λ. The underlying DS and SKE are assumed to be deterministic. We first

introduce the state in our construction.

Definition 68. The state in our eSM construction in Figure 7.6 consists of following

variables:

• st.id: the state owner. In this paper, we have stA.id = A and stB.id = B.

• st.t: the local epoch counter. It starts with 0.

• st.i0, st.i1, ...: the local message index counter of each epoch. They start with 0.

• st.rk ∈ {0, 1}λ: the (symmetric) root key. This key is initialized from the initial shared

secret and updated only when entering next epoch. The root key is used to initialize the

chain key at the time of update.

• st.ck0, st.ck1, ... ∈ {0, 1}λ: the (symmetric) chain keys at each epoch. These keys are

initialized at the beginning of each epoch and updated when sending messages. The chain

keys are used to deterministically derive the (one-time symmetric) unidirectional ratchet

keys (urk).

• st.nxs ∈ {0, 1}λ: a local NAXOS random string, which is used to improve the randomness

when generating new KEM and DS key pairs.
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• st.Dl : the dictionary that stores the maximal number (aka. the length) of the transmis-

sions in the previous epochs.

• st.prtr: the pre-transcript that is produced at the beginning of each epoch and is attached

to the ciphertext whenever sending messages in the same epoch.

• st.D0
urk , st.D1

urk , ...: the dictionaries that store the (one-time symmetric) unidirectional

ratchet keys urk for each epoch. The urks are used to derive the (one-time symmetric)

message keys (mk) for real message encryption and decryption using SKE.

• (st.ek 0, st.dk 0), (st.ek 1, st.dk 1), ...: the (asymmetric) KEM public key pairs. These key

pairs are used to encapsulate and decapsulate the randomness, which (together with the

unidirectional ratchet key urk) is used to derive the message keys (mk) of SKE.

• (st.sk -1, st.vk -1), (st.sk 0, st.vk 0), (st.sk 1, st.vk 1), ...4: the (asymmetric) DS private key

pairs, which are used to sign and verify the (new) pre-transcript output by eSend.

Our eSM construction makes use of two auxiliary functions: eSend-Stop and eRcv-Max

for practical memory management. Here, we only explain the underlying mechanism and

omit their concrete instantiation.

• eRcv-Max(st, l): This algorithm is called in eRcv algorithm when the caller switches its

role from message sender in epoch st.t to message receiver in a new epoch st.t + 1. This

algorithm inputs (the caller’s) state st and a number l and remembers the value l together

with the epoch counter t′ = st.t − 1 locally. Once l messages corresponds to the old

epoch t′ are received, the state values for receiving messages in epoch t′, i.e., st.it
′
, st.ckt

′
,

st.dk t′ , st.vk t′ , st.Dt′

urk , st.Dl [t
′] are erased, i.e., set to ⊥. Moreover, the number how

many times the chain key st.ckst.t has been forwarded (i.e., how many messages have

been sent) in the epoch st.t is stored, while the chain key st.ckst.t itself together with the

encryption key st.ek st.t is erased.

• eSend-Stop(st): This algorithm is called in eSend algorithm when the caller switches its

role from the message receiver in epoch st.t to the message sender in a new epoch st.t+1.

This algorithm inputs (the caller’s) state st and outputs how many messages are sent

in the epoch st.t − 1, which is locally stored during the previous eRcv-Max invocation,

denoted by l. The signing key st.sk t is also erased after its signs the next verification key

st.vk t+2 later. We write l← eSend-Stop(st).

Following the syntax in Definition 62, our eSM construction consists of following six

algorithms below.

IdKGen(): The identity key generation algorithm samples and outputs a public-private

KEM key pair.

4The superscript of the signing/verification keys indicates the epochs when the DS key pairs are
generated and used until the next key generation two epochs later. Here, we slightly abuse the notation
and have st.sk -1 and st.vk -1, which are used only to sign/verify the verification key in epoch 1.
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IdKGen():

1 (ipk , ik) $←− KEM.KGen()

2 return (ipk , ik)

PreKGen():

3 (prepk , prek) $←− KEM.KGen()

4 return (prepk , prek)
eInit-A(iss):

5 stA.nxs ∥ ∥ stA.rk ∥ stA.ck0 ∥ rKEMA ∥ rKEMB ∥ rDS
A ∥ rDS

B ← iss

6 ( , stA.dk
0) $←− KEM.KGen(rKEMA ), (stA.ek

1, ) $←− KEM.KGen(rKEMB )

7 (stA.sk
-1, ) $←− DS.KGen(rDS

A ), ( , stA.vk
0) $←− DS.KGen(rDS

B )

8 stA.id ← A, stA.prtr← ⊥, stA.t ← 0, stA.i
0 ← 0, stA.Dl [·]← ⊥, stA.D0

urk [·]← ⊥
9 return stA
eInit-B(iss):

10 ∥ stB.nxs ∥ stB.rk ∥ stB.ck0 ∥ rKEMA ∥ rKEMB ∥ rDS
A ∥ rDS

B ← iss

11 (stB.ek
0, ) $←− KEM.KGen(rKEMA ), ( , stB.dk

1) $←− KEM.KGen(rKEMB )

12 ( , stB.vk
-1) $←− DS.KGen(rDS

A ), (stB.sk
0, ) $←− DS.KGen(rDS

B )

13 stB.id ← B, stB.prtr← ⊥, stB.t ← 0, stB.i
0 ← 0, stB.Dl [·]← ⊥

14 return stB
eSend(st, ipk , prepk ,m):

15 (c1, k1)
$←− KEM.Encaps(st.ek st.t), (c2, k2)

$←− KEM.Encaps(ipk), (c3, k3)
$←− KEM.Encaps(prepk)

16 (updar, updur)← KDF1(k1, k2, k3)

17 if (st.id = A and st.t even) or (st.id = B and st.t odd)

18 l← eSend-Stop(st), st.t++, st.ist.t ← 0, r $←− {0, 1}λ, (st.nxs, rKEM, rDS)← KDF2(st.nxs, r)

19 (ek , st.dk st.t+1) $←− KEM.KGen(rKEM), (st.sk st.t , vk ) $←− DS.KGen(rDS)

20 prtrar ← (l, c1, c2, c3, ek , vk ), σ
ar ← DS.Sign(st.sk st.t−2, prtrar)

21 st.prtr← (prtrar, σar), (st.rk, st.ckst.t)← KDF3(st.rk, upd
ar)

22 (st.ckst.t , urk)← KDF4(st.ck
st.t), mk ← KDF5(urk, upd

ur) , c′ ← SKE.Enc(mk,m)

23 prtrur ← (st.t, st.ist.t , c′, c1, c2, c3), σ
ur ← DS.Sign(st.sk st.t , prtrur)

24 return (st, (st.prtr, prtrur, σur))
eRcv(st, ik , prek , c):

25 ((prtrar, σar), prtrur, σur)← c, (l, c1, c2, c3, ek , vk )← prtrar, (t, i, c′, c′1, c
′
2, c

′
3)← prtrur

26 if t ≤ st.t− 2: require st.Dl [t] ̸= ⊥ and i ≤ st.Dl [t]

27 require t ≤ st.t + 1 and
(
(st.id = A and t even) or (st.id = B and t odd)

)
28 if t = st.t + 1

29 require DS.Vrfy(st.vk t−2, prtrar, σar)

30 eRcv-Max(st, l), st.Dl [t− 2]← l, st.t++

31 k1 ← KEM.Decaps(st.dk st.t , c1), k2 ← KEM.Decaps(ik , c2), k3 ← KEM.Decaps(prek , c3)

32 (updar, )← KDF1(k1, k2, k3), (st.rk, st.ck
st.t)← KDF3(st.rk, upd

ar)

33 Dst.t
urk [·]← ⊥, st.ist.t ← 0, st.ek st.t+1 ← ek , st.vk st.t ← vk

34 require DS.Vrfy(st.vk t , prtrur, σur)

35 k ′
1 ← KEM.Decaps(st.dk t , c′1), k

′
2 ← KEM.Decaps(ik , c′2), k

′
3 ← KEM.Decaps(prek , c′3)

36 ( , updur)← KDF1(k
′
1, k

′
2, k

′
3)

37 while st.it ≤ i

38 (st.ckt , urk)← KDF4(st.ck
t), Dt

urk [st.i
t ]← urk, st.it++

39 urk ← Dt
urk [i], D

t
urk [i]← ⊥, require urk ̸= ⊥

40 mk ← KDF5(urk, upd
ur), m ← SKE.Dec(mk, c′)

41 return (st, t, i,m)

Figure 7.6: Our eSM construction. KEM = (KEM.KGen,KEM.Encaps,KEM.Decaps), DS =
(DS.KGen,DS.Sign,DS.Vrfy), and SKE = (SKE.Enc, SKE.Enc) respectively denote a key encapsu-
lation mechanism, a deterministic digital signature and a deterministic authenticated encryption
schemes. The KDFi for i ∈ [5] denote five independent key derivation functions.
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PreKGen(): The pre-key generation algorithm samples and outputs a public-private KEM

key pair.

eInit-A(iss): The A’s extended initialization algorithm inputs an initial shared secret

iss ∈ ISS. First, A parses iss into seven components: the initial NAXOS string stA.nxs,

the shared root key stA.rk, the shared chain key stA.ck
0, and four randomness for A’s and B’s

KEM and DS key generation: rKEMA , rKEMB , rDS
A , rDS

B . Then, A respectively runs KEM.KGen

and DS.KGen on the above randomness and stores stA.dk
0, stA.ek

1, stA.sk
-1, stA.vk

0, which

are respectively generated using rKEMA , rKEMB , rDS
A , and rDS

B . The other values generated in

the meantime are discarded.

Finally, A sets the identity stA.id to A, the local pre-transcript stA.prtr to ⊥, the epoch

counter stA.t to 0, the message index stA.i
0 to 0, and initializes the maximal transmission

length dictionary Dl and the unidirectional ratchet dictionary D0
urk , followed by outputting

the state stA.

eInit-B(iss): The B’s extended initialization algorithm inputs an initial shared secret

iss ∈ ISS and runs very similar to eInit-A. First, B parses iss into seven components: the

initial NAXOS string stB.nxs , the shared root key stB.rk, the shared chain key stB.ck
0, and

four randomness for A’s and B’s KEM and DS key generation: rKEMA , rKEMB , rDS
A , rDS

B . Then,

B respectively runs KEM.KGen and DS.KGen on the above randomness and stores stB.ek
0,

stB.dk
1, stB.vk

-1, stA.sk
0, which are respectively generated using rKEMA , rKEMB , rDS

A , and rDS
B .

The other values generated in the meantime are discarded. Note that the values stored by

B is the ones discarded by A, and vice versa.

Finally, B sets the identity stB.id to B, the local pre-transcript stB.prtr to ⊥, the epoch

counter stB.t to 0, the message index stB.i
0 to 0, and initializes the maximal transmission

length dictionary Dl , followed by outputting the state stB. Note that no unidirectional

ratchet dictionary D0
urk is initialized, since B acts as the sender in the epoch 0.

eSend(st, ipk , prepk ,m): The sending algorithm inputs the (caller’s) state st, the (caller’s

partner’s) public identity key ipk and pre-key prepk , and a message m.

First, the caller runs the encapsulation algorithm of KEM and obtains three ciphertext-

key tuples (c1, k1), (c2, k2), and (c3, k3) respectively using the local key st.ek st.t , and the

identity key ipk , and the pre-key prepk . Next, the caller applies KDF1 to k1, k2, and k3,

for deriving two update values updar and updur.

If the caller switches its role from receiver to sender, i.e. the caller st.id is A and the

epoch stA.t is even or the caller is B and the epoch is odd, it first executes the following

so-called asymmetric ratchet (ar) framework: First, the caller runs eSend-Stop(st) for a

value l that counts the sent messages in the previous epoch, followed by incrementing

the epoch counter st.t by 1 and initializing the message index counter st.ist.t to 0. Next,

the caller samples a random string r, which together with the local NAXOS string st.nxs

is applied to a key derivation function KDF2, in order to produce a new NAXOS string,
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a KEM key generation randomness rKEM, which is used to produce a new KEM key pair

for receiving messages in the next epoch, and a DS key generation rDS, which is used

to produce a new DS key pair for sending messages in this epoch. The caller stores the

private decapsulation keys and signing keys into the state. Then, the caller signs the

pre-transcript for the ar framework prtrar, including the value l, the ciphertext c1, c2, and

c3, the newly sampled encapsulation key ek and the verification key vk , using the signing

key produced two epochs earlier st.sk st.t−2 for a signature σar. The pre-transcript prtrar and

signature σar are stored into the state st.prtr. Finally, the caller forwards the ar framework

by applying a KDF3 to the root key st.rk and the update updar for deriving new root key

and chain key st.ckst.t .

Next, the caller executes the so-called unidirectional ratchet (ur) framework, no matter

whether the ar framework is executed in this algorithm invocation or not: First, the caller

forwards the unidirectional ratchet chain by applying a KDF4 to the current chain key

st.ckst.t for deriving next chain key and a unidirectional ratchet key urk. Next, the caller

applies a KDF5 to the unidirectional ratchet key urk and the update updur for the message

key mk, followed by encrypting the message m by c′ ← SKE.Enc(mk,m). Finally, the

caller signs the pre-transcript prtrur of the ur framework, including the epoch st.t, the

message index st.ist.t , and the ciphertexts c′, c1, c2, and c3, for a signature σur using the

signing key st.sk st.t . This algorithm outputs a new state st and a final ciphertext, which is

a tuple of the ar pre-transcript and signature st.prtr = (prtrar, σar), the ur pre-transcript

prtrur, and the signature σur.

eRcv(st, ik , prek , c): The receiving algorithm inputs the (caller’s) state st, private identity

key ik and pre-key prek , and a ciphertext c, and does the mirror execution of eSend.

First, the caller parses the input ciphertext c into the pre-transcript and signature of

ar framework (prtrar, σar), the unidirectional ratchet pre-transcript prtrur, and the signature

σur. Next, the caller further parses the pre-transcript prtrar into one number l, three

ciphertexts c1, c2, and c3, an encapsulation key ek, and a verification key vk, and parses

prtrur into an epoch counter t, a message index counter i, and four ciphertexts c′, c′1, c
′
2,

and c′3.

If the parsed epoch counter indicates a past epoch, i.e., t ≤ st.t − 2, the caller checks

whether the maximal transmission length has been set (and not erased) and whether the

parsed message index does not exceed the corresponding maximal transmission length.

Then, the caller checks whether the parsed epoch counter is valid (by checking whether

st.id = A or B if the parsed epoch counter is even or odd) and in a meaningful range (by

checking whether t ≤ st.t+1). If any check is wrong, the eRcv aborts and outputs m = ⊥.
If the parsed epoch counter t is the next epoch, i.e., t = st.t+1, the caller executes the

asymmetric ratchet framework: The caller first checks whether the signature σar is valid

under the verification key st.vkt−2 and pre-transcript prtrar and aborts if the check fails.

Next, the caller invokes eRcv-Max(st, l), records the transmission length l, and increments
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the epoch counter. Then, three keys k1, k2, and k3 are respectively decapsulated from c1, c2,

and c3 using local keys st.dk st.t , the private identity key ik , and pre-key prek . After that,

the caller applies KDF1 to above keys for update value updar, which then together with

the root key st.rk is applied to KDF3 for a new root key and chain key st.ckst.t . Finally,

the caller initializes a dictionary Dst.t
urk for storing the unidirectional ratchet keys in this

epoch, sets the message counter st.ist.t to 0, and locally stores the encapsulation key for

the next epoch and verification key for this epoch.

Then, the caller executes the unidirectional ratchet framework, no matter whether

ar is executed in this algorithm invocation or not: First, the caller also checks whether

the signature σur is valid under the verification key st.vkt and pre-transcript prtrur. Next,

three keys k ′1, k
′
2, and k ′3 are respectively decapsulated from c′1, c

′
2, and c′3 using local keys

st.dk st.t , the private identity key ik , and pre-key prek . Then, the caller applies KDF1 to

above three keys for the update value updur. After that, the caller continuously forwards

the unidirectional ratchet chain, followed by storing the unidirectional ratchet keys into

the dictionary and incrementing the message index by 1, until the local message index

st.it reaches the parsed message index i. In the end, the caller reads the unidirectional

ratchet key urk from the dictionary corresponding to the parsed message index, followed

by erasing it from the dictionary. It must hold that urk = ⊥ and aborts otherwise. The

caller then derives the message key mk by applying KDF5 to urk and the update updur,

and finally decrypts the message m from ciphertext c′ using mk.

This algorithm outputs a new state st, the parsed epoch t and message index i, and

the decrypted message m.

7.5.3 Security Conclusion and Concrete Instantiation

Theorem 28. Let Π denote our eSM construction in Section 7.5.2. If the underlying KEM

is δKEM-strongly correct5 and ϵind-ccaKEM -secure, DS is δDS-strongly correct and ϵsuf-cma
DS -secure,

SKE is δSKE-strongly correct and ϵind-1ccaSKE -secure, KDF1 is ϵ3prfKDF1
-secure6, KDF2 is ϵdualKDF2

secure, KDF3 is ϵprfKDF3
-secure, KDF4 is ϵprgKDF4

-secure, KDF5 is ϵdualKDF5
-secure, in time t, then

Π is (t, q, qep, qM,△eSM, ϵ)-eSM secure for △eSM = 2, where

ϵ ≤(qep + q)δDS + 3(qep + q)δKEM + qδSKE + qepϵ
suf-cma
DS

+ q2epqM(q + 1)ϵind-ccaKEM + qep(qM + 2)qϵind-1ccaSKE

+ q2epqM(q + 1)ϵ3prfKDF1
+ q2ep(qepq + qep + 1)ϵdualKDF2

+ q2ep(q + 1)ϵprfKDF3
+ qepq(q + 1)ϵprgKDF4

+ qep(qepqMq + qepqM + 2q)ϵdualKDF5

5By strongly correct, we mean that the schemes are conventionally correct for all randomness. See Sec-
tion 2.2.3, Section 2.2.5, and Section 2.2.6.

6By 3prf security, we mean that a function is indistinguishable from a random function w.r.t any of
the three inputs. See Section 2.2.2.
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Instantiation: We give the concrete instantiation for both classical and PQ settings.

The deterministic DS can be instantiated with Ed25519 for classical setting, the formal

analysis was given in [62], and the NIST suggested CRYSTALS-Dilithium for the PQ

security, which is analyzed in [17]. A generic approach to instantiating KEM is to encrypt

random strings using deterministic OW-CCA or merely OW-CPA secure PKE for strong

correctness [26], [46]. The NIST suggested NTRU is also available for IND-CCA security

and strong correctness [68]. The deterministic IND-1CCA secure authenticated encryption

SKE can be instantiated with the Encrypt-then-MAC construction in [30]. The dual or

prg-secure KDFi for i ∈ {2, ..., 5} can be instantiated with HMAC-SHA256 or HKDF.

The 3prf-secure KDF1 can be instantiated with the nested combination of any dual-secure

function, as explained in Section 2.2.2. We suggest to double the security parameter of

the symmetric primitives for PQ security.

7.6 Offline Deniability

As explained in Section 7.2.3, although the combinations of SPQR and ACD19 or our eSM

achieve strong privacy and authenticity in the PQ setting, it is still an open question

what flavors of offline deniability can be achieved by the combined protocols in the PQ

setting. To address this, we extend the game-based offline deniability for asynchronous

DAKE scheme Σ [63] to its combination with an eSM scheme Π.

Our offline deniability experiment is depicted in Figure 7.7. For the notational purpose,

we use ipk , ik , prepk , and prek to denote the public and private keys that are generated

by DAKE construction Σ. The keys generated by eSM construction Π are notated without

overline. The difference to the original model in [63, Definition 11], also see Definition 61

in Section 7.3, is highlighted with blue color.

In addition to message senders and receivers, the deniability experiment includes three

new roles: accuser, defendant, and judge. For any two-party conversation, we call a

party “accuser”, whose identifier is denoted by aid, if it wants to accuse that its honest

conversation partner has communicated with it. Correspondingly, we call the accused

honest partner “defendant”, whose identifier is denoted by did. The role of the “judge” in

the experiment is performed by the attacker. The goal of the experiment is to ensure that

no attackers (i.e., the real-life judges) can distinguish the real conversation transcripts

between accusers and defendants from the fake ones that are produced by the accusers

alone, given all secrets of all parties.

The experiment initializes a dictionary Dsession, which records the identity of the parties

in each session, and a session counter n with 0. Next, long-term identity and medium-term

pre- public/private key pairs of Σ and Π are generated for all honest parties and provided

to the attacker (e.g., the judge). A challenge bit b ∈ {0, 1} is randomly sampled.
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ExprdeniΣ,Π,qP,qM,qS
(A):

1 Dsession[·]← ⊥, n← 0

2 Lall,Lipk
all ,L

prepk
all ← ∅

3 for u ∈ [qP]

4 Lprek
u ← ∅

5 Lprek
u ← ∅

6 (ipku, iku)
$←− Σ.IdKGen()

7 (ipku, iku)
$←− Π.IdKGen()

8 Lipk
all

+← {ipku}

9 Lall
+← (ipku, iku)

10 Lall
+← (ipku, iku)

11 for ind ∈ [qM]

12 (prepk
ind

u , prek
ind

u ) $←− Σ.PreKGen()

13 (prepk ind
u , prek ind

u ) $←− Π.PreKGen()

14 Lprek
u

+← prek
ind

u

15 Lprepk
all

+← prepk
ind

u

16 Lprek
u

+← prek ind
u

17 Lall
+← (prepku, preku)

18 Lall
+← (prepku, preku)

19 b $←− {0, 1}
20 b′ $←− AO(Lall)

21 return Jb = b′K

Session-Start(sid, rid, aid, did, ind):

22 require {aid, did} = {sid, rid} and sid ̸= rid

23 n++, Dsession[n]← {sid, rid}
24 if b = 0 or aid = sid

25 πrid.role← resp, πrid.stexec ← running

26 πsid.role← init, πsid.stexec ← running

27 (π′
rid,m) $←− Σ.Run(ik rid,Lprek

rid ,Lipk
all ,L

prepk
all , πrid, (create, ind))

28 (π′
sid,m

′) $←− Σ.Run(ik sid,Lprek
sid ,Lipk

all ,L
prepk
all , πsid,m)

29 (K,T ) $←− (π′
sid.K, (m,m ′))

30 else

31 (K,T ) $←− Σ.Fake(ipk sid, ik rid,Lprek
rid , ind)

32 if b = 0

33 stnsid
$←− Π.eInit-B(K), stnrid

$←− Π.eInit-A(K)

34 else

35 stnFake
$←− FakeeInitΠ (K, ipkdid, ik aid,Lprek

aid , sid, rid, aid, did)

36 return T

Session-Execute(sid, rid, i, ind,m):

37 require Dsession[i] = {sid, rid}
38 if b = 0

39 (stisid, c)
$←− Π.eSend(stisid, ipk rid, prepk

ind
rid ,m)

40 (stirid, , , )← Π.eRcv(stirid, ik rid, prek
ind
rid , c)

41 else

42 (stiFake, c)
$←− FakeeSendΠ (stiFake, ipk rid, prepk

ind
rid ,m, sid, rid, ind)

43 return c

Figure 7.7: The offline deniability experiment for an attacker A against the combination of a
DAKE scheme Σ and an eSM scheme Π. The experiment ExprdeniΣ,Π,qP,qM,qS

is parameterized the
maximal numbers of parties qP, pre-keys per party qM, and total sessions qS. We highlight the
difference to the offline deniability experiment for DAKE in Definition 61 with blue color.

The attacker (i.e., the judge) is given repeated access to the following two oracles:

The Session-Start oracle initializes a session between a sender sid and a receiver rid and

determines that the party aid ∈ {sid, rid} plays the role of accuser in this session and the

other party did ∈ {sid, rid} plays the role of defendant in this session. This oracle executes

a real session setup and real eSM initialization if b = 0, and some fake algorithms that

simulate the accuser’s view if b = 1. The Session-Execute forwards the interaction in an

existing session one step: this oracle executes eSM algorithm for sending and receiving

one message honestly if b = 0, and some fake algorithms that simulate the accuser’s view

if b = 1. The attacker wins if it can distinguish real conversation transcripts (i.e., b = 0)

from fake transcripts that simulate accusers’ views (i.e., b = 1). We say a full messaging

protocol is offline deniable, if there exist fake algorithms that prevent all attackers from

winning the offline deniability experiment in polynomial time. By this, we ensure that if a

protocol is offline deniable, then no judge can decide whether a transcript given by the

accuser is the real transcript of the conversation with the defendant or produced by the

accuser alone.
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Oracle Session-Start(sid, rid, aid, did, ind): This oracle inputs are a sender identity sid, a

receiver identity rid, an accuser identity aid, a defendant identity did, and a pre-key index

ind. This oracle first checks whether the sender identity and the receiver identity are

distinct and whether either the sender is the accuser and the receiver is the defendant or

another way around. Next, the session counter n is incremented by 1 and the set of the

sender identity sid and the receiver identity rid is set to Dsession[i]. Then, it simulates the

honest DAKE execution if the challenge bit is 0 or the accuser is the sender. Otherwise, it

runs the fake algorithm Σ.Fake. In both cases, a key K and a transcript T are derived.

In the end, if the challenge bit is 0, then the oracle honestly runs Π.eInit-A(K) and

Π.eInit-B(K) on the shared key K to produce the state stnsid and stnrid. Otherwise, the oracle

runs a function FakeeInitΠ (K, ipkdid, ik aid,Lprek
aid , sid, rid, aid, did) to produce a fake state stnFake.

The transcript T is returned.

Oracle Session-Execute(sid, rid, i, ind,m): This oracle inputs a sender identity sid, a receiver

identity rid, a session index i, a pre-key index ind, and a message m. This oracle first checks

whether the session between sid and rid has been established by requiring Dsession[i] =

{sid, rid}. Next, if the challenge bit is 0, this oracle simulates the honest transmission

of message m. Otherwise, this oracle produces a ciphertext c by running a function

FakeeSendΠ on the fake state stiFake, the receiver’s public identity key ipk rid, pre-key prepk ind
rid ,

the message m, and sender identity sid, the receiver identity rid, and a pre-key index ind.

In both cases, the ciphertext c is returned.

We stress that our offline deniability model is a significant extension to the one for

DAKE in [63]. First, our model also allows the attacker (e.g. the judge) to obtain all

initial private secret of all parties, as in [63].

Second, while the model in [63] prevents an attacker from deciding the challenge bit

b given the (output) shared keys and the transcripts of DAKE key establishments, our

model prevents an attacker from deciding b given the transcripts of full conversations,

which include the one of DAKE and the one of eSM inputting the shared key of DAKE.

This extension follows the idea behind the simulation-based extension [175].

Third, the accuser in the model for DAKE in [63] must play the role of a responder

resp (i.e., the receiver rid during the key establishment) rather than an initiator (i.e., the

sender sid during the key establishment), since the Σ.Fake algorithm is only defined on the

responder’s behalf. The main reason behind is that all transcripts in a DAKE scheme are

produced by the initiator alone. However, the responder producing no output during the

key establishment might produce some transcripts afterwards. To capture this, our model

also allows the accuser to be the initiator init in the whole conversation. In fact, our

Session-Execute simulates the accuser’s view (when b = 1) by running the FakeΠ algorithm

that simulates the stateful execution of either the initiator or the responder, depending on
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whether aid = sid or rid in the corresponding Session-Start query7.

Definition 69. We say the composition of a DAKE scheme Σ and an eSM scheme Π is

(t, ϵ, qP, qM, qS)-deniable, if two functions FakeeInitΠ and FakeeSendΠ exist such that the below

defined advantage for any attacker A in time t is bounded by

AdvdeniΣ,Π,qP,qM,qS
(A) := |ExprdeniΣ,Π,qP,qM,qS

(A)− 1

2
| ≤ ϵ

where qP, qM, and qS respectively denote the maximal number of parties, of pre-key per

party, and total sessions in the ExprdeniΣ,Π,qP,qM,qS
in Figure 7.7.

Theorem 29. Let Σ denote a DAKE scheme and Π denote our eSM construction in Sec-

tion 7.5.2. If Σ is (t, ϵ, q)-deniable (with respect to any qP, qM) in terms of the Definition 61

, then the composition of Σ and Π is (t, ϵ, qP, qM, q)-deniable.

Proof Sketch. We define FakeeInitΠ algorithm as running both eInit-A and eInit-B upon the

input K and storing all other inputs. We define FakeeSendΠ algorithm as honest execution of

Π.eSend upon sender sid followed by Π.eRcv upon the receiver rid and the ciphertext of

Π.eSend. If the attacker cannot distinguish the real DAKE transcripts and output keys

from the fake ones, then it cannot distinguish the real DAKE and eSM (and therefore the

full) transcripts from the fake ones. We give the full proof in Section 7.11.7.

7.7 Review of ACD19 and TR protocols

The ACD19 protocol [12, Section 5.1]: The ACD19 protocol is an instance of the

SM scheme and can be further modularized into three building blocks: the Continuous

Key Agreement (CKA), where the sender exchanges its randomness with the partner; the

Forward-Secure Authenticated Encryption with Associated Data (FS-AEAD), where the

sender sends messages to the recipient and updates the shared state in a deterministic man-

ner, which provides forward secrecy and immediate decryption; the PRF-PRNG refreshes

its inherent shared state by using the randomness of provided by CKA and initializes a

new FS-AEAD thread, which provides the post-compromise security.

The ACD19 protocol is managed according to the epoch, which is used to describe

how many interactions in a two-party communication channel have been processed. The

behavior of a party (assume A) for sending messages is different when A enters a new epoch

or not:

1. When a receiver A switches to sender and sends the first message in a new epoch, A first

counts and remembers how many messages have been sent in the last epoch using the

corresponding FS-AEAD thread, which is then erased. Next, A increments the inherent

7In our model, we restrict the behavior of the accuser, who acts as initiator, to be honest during the
key establishment phase, see Line 24. We leave a stronger model without this restriction as future work.
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epoch counter by 1. Then, A invokes the sending algorithm of the CKA component

for exchanging the randomness with the partner B. The output of CKA algorithm in

this epoch is also remembered locally. Afterwards, A refreshes the shared state using

PRF-PRNG and initialize a new FS-AEAD thread for the new epoch.

2. Regardless of whether A is sending the first message in a new epoch (after executing

the above step) or sending subsequent messages in the current epoch, A uses the current

FS-AEAD thread for the encrypting real message with header: the number of messages

sent two epoch earlier, the output of CKA in this epoch, the current epoch counter.

The receiving process is defined in the reverse way. When a sender (assume B) receives a

message indicating the next epoch, B switches his role to receiver and enters the next epoch

by incrementing the internal epoch counter. Notably, B parses and locally remembers the

number of messages sent two epochs earlier from the received ciphertext and erases the

FS-AEAD thread once these messages arrived at B.

Moreover, several different instantiations of CKA, FS-AEAD, and PRF-PRNG compo-

nents are also given in [12].

The TR protocol [50, Section 5.1]: The Triple Ratchet (TR) is very close to the

ACD19 construction in [12], except for the following two differences:

1. When a party switches its role from receiver to sender, it does not count and remember

how many messages have been sent in the last epoch. Instead, this step is executed in

the receiving algorithm when a party enters a new epoch and switches its role from

sender to receiver.

2. The underlying CKA component must be instantiated with a customized CKA+ con-

struction, which provides better privacy against randomness leakage but relies on a

non-standard assumption and a random oracle. Note that CKA is a generic building

block, while CKA+ is a concrete instantiation. The other building blocks such as

FS-AEAD and PRF-PRNG can be instantiated with the constructions in [12].

For the interested readers, we also compare ACD19 and TR with our protocol in Sec-

tion 7.10.

7.8 Review on Messaging Protocols with Various Op-

timal Security

The “optimal” protocols by Jäger and Stepanovs [118] and by Pöttering Rösler [154], the

“sub-optimal” protocol by Durak and Vaudenay [85], and a novel protocol by Pijnenburg

and Pöttering [153] (we call “ID-optimal”), all are PQ compatible. The “almost-optimal”

protocol by Jost, Maurer, and Mularczyk [122] only has classically secure instantiation.

Technically, they follow different ratcheting frameworks:
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(1) “optimal” Jäger-Stepanovs protocol [118]: In the Jäger-Stepanovs protocol,

all cryptographic building blocks except the hash functions, such as PKE and DS, are

asymmetric and updatable. When Alice continuously sends messages to Bob, the next

encryption key is deterministically derived from an encryption key included in the last

reply from Bob and all past transcript since the last reply from Bob. On the one hand,

this protocol enjoys high security guarantee against impersonation due to the asymmetric

state. On the other hand, this protocol has no message-loss resilience, namely, if one

message from Alice to Bob is lost, then Bob cannot decrypt subsequent messages anymore.

In particular, no instantiation with constant bandwidth in the post-quantum setting is

available.

(2) “optimal” Pöttering-Rösler protocol [154] : In the Pöttering-Rösler protocol,

both asymmetric and symmetric primitives, including updatable KEM, DS, MAC are

employed. When Alice sends messages to Bob, she first runs the encapsulations upon

the one or more KEM public keys depending on her behavior. If Alice is sending a reply,

then she needs to run the encapsulation upon all accumulated KEM public keys that are

generated and signed by Bob. Otherwise, she only needs one KEM public key that was

generated by herself when sending the previous message. After that, Alice derives the

symmetric key for message encryption from the symmetric state and the encapsulated keys.

This protocol enjoys state healing when continuously sending messages. Any unpredictable

randomness at some point can heal Alice’s state from corruption when she continuously

sends messages. However, this protocol has no message-loss resilience: If one message is

lost in the transmission, the both parties’ symmetric states that are used for key update

mismatch. This means, all subsequent messages cannot be correctly recovered by the

recipient.

(3) “sub-optimal” Durak-Vaudenay protocol [85] : In contrast to the above two

“optimal” approaches, the Durak-Vaudenay protocol does not employ any key updatable

components and has a substantially better time complexity. When Alice sends messages

to Bob, she samples several fragments of a symmetric key and encrypts them using

signcryption with the accumulated sender keys, where the sender keys are generated

either by herself or by Bob depending on whether Alice is continuously sending messages

or sending a reply. The Durak-Vaudenay protocol is similar to Pöttering-Rösler but is

less reliant on the state. Any randomness leakage corrupts the next message. Moreover,

both the message and the receiver key that is used for receiving or sending next message,

are encrypted under the symmetric key. This implies that the protocol does not have

message-loss resilience: If one message is lost in the transmission (from either Alice or

Bob), the communication session is aborted.

(4) “almost-optimal” Jost-Maurer-Mularczyk protocol [122] : The Jost-Maurer-

Mularczyk protocol aims at stronger security than what is achieved by Signal, but slightly
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weaker than optimal security proposed in Jäger-Stepanovs’ and Pöttering-Rösler’s work,

yet its efficiency is closer to that of Signal. The Jost-Maurer-Mularczyk protocol employs

two customized novel schemes: healable and key-updating encryption (HkuPke) and key-

updating signatures (KuSig). When Alice sends messages to Bob, Alice first samples two

DS key pairs, while the one is used by Alice for sending next continuous message, the

other is used by Bob for sending the reply. Next, Alice updates the key of HkuPke and

encrypts the message as well as the private DS signing key for Bob. Then, Alice signs the

transcript and her next DS verification key twice, by using KuSig and DS. Finally, the

state is updated. Note that the sender has to send the next DS signing and verification

keys to the partner. If one message is lost in the transmission (from either Alice or Bob),

the receiver can neither verify the next message from the partner nor send a valid reply to

the partner – the communication session becomes stuck.

Moreover, Jost-Maurer-Mularczyk’s HkuPke construction uses a customized secretly

key-updatable encryption (SkuPke), the only known instantiation of which relies on the

Diffie-Hellman exchange, for which currently no PQ-secure instantiation is available.

(5) “ID-optimal” Pijnenburg-Pöttering protocol [153] : The Pijnenburg-Pöttering

protocol aims to solve the weak forward secrecy caused by the immediate decryption by

definition. In principle, the immediate decryption requires every receiver to be able to

decrypt a ciphertext at the time of arrival. Thus, if an attacker can intercept a message

and corrupt the receiver’s state in the future, the attacker can always recover the plaintext

from the intercepted ciphertext.

To solve this, the Pijnenburg-Poettering protocol employs three updatable mechanisms:

Updatable Signature Schemes (USS), Key-Evolving KEM (KeKEM), and Key-Updatable

KEM (KuKEM). Unlike all above protocols, while keys of the KuKEM and USS schemes

are updated whenever a party switches the role from receiver to sender, the keys of KeKEM

are updated every certain time interval. If a past message does not arrive at the receiver,

the receiver still stores the corresponding decryption keys for the decryption at the time

of message arrival, however, but only within a fixed length of time. After a pre-defined

time interval, the corresponding decryption keys are expired and cleaned from the local

state. By this, the compromise of a party’s state does not cause the message leakage that

is sent long time ago.

In particular, none of these protocols provide immediate decryption with constant-size

overhead.

7.9 Security Model Comparison between our eSM

and SM in [12]

Our eSM model extends the SM model [12], with the following main differences.
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Extended Syntax. Compared to the original SM definition [12], eSM has two additional

algorithms IdKGen and PreKGen: IdKGen outputs the public-private identity key, which

is fixed once generated, and PreKGen outputs pre-key pairs, which are updated regularly

(similar to X3DH). The generated identity and pre-key pairs both are used in the eSend

and eRcv algorithms for sending and receiving messages.

More Expected Security Properties. Our eSM is expected to preserve all basic

properties of the SM schemes in [12], including correctness, immediate decryption, FS, and

PCS. Moreover, our eSM targets the stronger authenticity and privacy than SM in [12].

In particular, the authenticity and privacy in [12] hold only when neither parties’ states

are compromised. Instead, we aim for stronger authenticity and privacy against more

fine-grained state compromise. This potentially indicates that our eSM achieves stronger

randomness leakage/failures property. Finally, our eSM also aims at two new properties:

state compromise/failures and PPR, which are not captured by SM in [12].

Stronger Security Model. Our eSM model is more complicated than the SM model [12]

from many aspects. First, our eSM model needs more variables that are related to the

identity keys and pre-keys, which are excluded in [12], such as safeidKP , Lrev
P , and nP, for

P ∈ {A, B}. We also import two new sets allTrans and allChall to simplify the security

analysis of the benefits obtained from using the identity keys and pre-keys. Besides, we

use two lists Lcor
A and Lcor

B to capture the state corruption of either party instead of using a

single counter. While splitting the single state corruption variable into two helps our model

to capture our strong privacy and strong authentication, using lists but not a counter

additionally simplifies the definition of the safe state predicate.

Second, we define two new safe predicates safepreKP and safe-stP, which respectively

capture the safety of the the pre-key and session state. The safe-chP and safe-injP predicates

were introduced in [12]. However, our eSMmodel defines them in a different way: Compared

to [12], our safe-chP predicates additionally input a randomness quality, a epoch number,

and a pre-key index. While the safe-chP predicate in [12] equals the condition 1, our new

conditions 2, 3, and 4 respectively capture the strong privacy, state compromise/failures,

and PPR security properties. Moreover, our safe-injP additionally inputs an epoch number

t.

We stress that our safe requirements are more relaxed and allow to reveal more

information than in [12] (even when removing the usage of identity keys and pre-keys). In

particular, if a safe predicate in the SM security model in [12] is true, then the one in our

eSM model is true, but the reserve direction does not always hold.

Third, our eSM model has one new helper function corruption-update. The other four

helper functions in our eSM model are introduced in [12], but are defined with slight

differences due to our new notations.
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Finally, our eSM model includes 8 new oracles that are not included in SM [12]. The

new oracles are related to the identity keys and pre-keys. Besides, the other 8 oracles

for message transmissions are identical to the one in SM model, except for the notation

differences. The only oracles that have huge differences with the ones in SM model are

state corruption oracles: While our corrupt oracles requires any of three conditions holds:

(1) the chall does not include the record produced by the partner ¬P, (2) the flag in the

record is good and P’s identity key is safe, and (3) the flag in the record is good and P’s

pre-key corresponding to the pre-key index in the record is safe, the ones in SM model

only require the condition (1). After that, the corruption oracle in our eSM model adds

all records rec ∈ trans, which are produced by ¬P at an unsafe epoch t (but not all epochs

as in [12]), into the compromise set comp.

Compared to [12], the corruption oracles in our model can be queried under weaker

requirements, providing the attacker with more information. Moreover, our corruption

oracles set fewer records into the compromise set, which enables the attacker to forge

ciphertexts for more epochs.

Conclusion. Even without taking the use of identity keys and pre-keys into account, our

security model is strictly stronger than the one in [12].

7.10 Comparison of our eSM Construction with ACD19

and TR

Although our eSM construction in Section 7.5.2, the ACD19 in [12], and the TR construction

in [50], all satisfy immediate decryption with constant bandwidth consumption, their

designs differ in many details.

Comparison between our eSM construction and ACD19: The ACD19 protocol in

[12, Section 5.1] employs three underlying modules: CKA, FS-AEAD, and PRF-PRNG.

While the CKA employs the asymmetric cryptographic primitives, such as KEM or Diffie-

Hellman exchange, the FS-AEAD and PRF-PRNG only employ symmetric cryptographic

primitives, such as AEAD, PRF, PRG. In particular, the FS-AEAD deterministically derives

the symmetric keys for encrypting messages and decrypting ciphertexts from the state,

which is shared by both parties. Besides, they provide several CKA instantiations and all

of them sample the asymmetric key pairs only using the ephemeral randomness. Moreover,

their construction does not rely on any material outside the session state. Thus, it is

obvious that the leakage of either state will trigger the loss of the privacy and authenticity.

Compared to the ACD19, our eSM construction has the differences mainly from following

three aspects: First, the asymmetric primitives are used in every sending or receiving

execution. In particular, our construction uses the KEM and DS keys across our asymmetric

ratchet (ar) and unidirectional ratchet (ur) frameworks. Although this stops the further
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modularization of our eSM construction, the deployment of the KEM and DS provides

better performance in terms of the strong privacy and strong authenticity, since the leakage

of sender’s (resp. receiver’s) state does not indicate the compromise of the decapsulation

key (resp. signing key) and preserves the privacy (resp. authenticity).

Second, our construction makes use of the identity keys and pre-keys, which also

provide benefits in terms of strong privacy, state compromise/failure, and PPR. If the

corruption of a device’s full state without secure environment is not noticed by the owner

(which is the common real-world scenario), the privacy for subsequent messages from

the partner is lost until the corruption party sends a reply. The use of pre-key provides

mitigation in this scenario as the pre-key is updated every certain period in the back-end

without the active behavior of the corrupted party. Moreover, if the device has a secure

environment such as an HSM, storing identity keys into the HSM provides even stronger

security guarantees, as we explained in Section 7.4.3.

Finally, our construction implicitly uses three kinds of NAXOS-like tricks for strong

privacy. (1) First, the symmetric root key together with ephemeral randomness is used

for deriving new shared state when sending the first message in each epoch, this is same

as in ACD19. (2) Second, the NAXOS string st.nxs (in the sender’s state) together with

the ephemeral randomness is used for improving the key generation when sending the

first message in each epoch. (3) Third, the unidirectional ratchet keys (derived from the

shared state) together with the ephemeral randomness are used to derive the real message

keys. We stress the second and third NAXOS tricks provide additional benefits to our

construction when comparing with ACD19. On the one hand, bad randomness quality of a

party when sending the first message in a new epoch will cause leakage of the private KEM

key in ACD19, but not in our construction. In this case, the corruption of the partner in

the next epoch will cause the loss of privacy in ACD19, but not in our construction, due to

the second NAXOS trick. On the other hand, the message keys are derived from not only

the mere state but also ephemeral randomness. The third NAXOS trick together with

the usage of identity keys and pre-keys provide stronger privacy against state corruption

attacks.

As an aside, we observe that the CKA instantiation based on LWE (Frodo) does not

provide correctness: CKA-correctness requires both parties to always output the same key,

even if the attacker controls the randomness. Since LWE based Frodo includes an error

that needs to be reconciled during the decapsulation, the attacker can always pick bad

randomness to prevent the correct reconciliation. Instead, our construction is provably

correct in the post-quantum setting, if the underlying KEM satisfies strong correctness, as

explained in Section 7.5.3.

Comparison between our eSM construction and TR: The TR construction in [50,

Section 5.1] is very close to the one in ACD19 except for two differences: (1) The FS-Stop

function of the underlying FS-AEAD components is invoked when receiving the first message
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in a new epoch but not sending. (2) The underlying CKA component must be instantiated

with a new customized CKA+ construction based on a Diffie-Hellman exchange. The state

of CKA+ component does not merely rely on the randomness but also on the past state.

This can be seen as a variant of the NAXOS trick.

Compared to the TR construction, our eSM construction mainly differs in four aspects:

First, our construction employs generic KEMs aiming at post-quantum compatibility, while

TR makes use of a concrete Diffie-Hellman exchange, which is vulnerable to quantum

attacks.

Second, while TR and our constructions both use the root key for a NAXOS trick,

the NAXOS trick for improving privacy of the KEM key pairs is different. While TR uses

a tailored CKA+ construction assuming a non-standard StDH and random oracles, our

construction uses a local NAXOS string st.nxs only assuming the dual security of the

function KDF2, the generic constructions of which based solely on standard assumptions

are given in [29].

Third, TR and our construction both prevent an attacker from corrupting the receiver

in the current epoch and forging a ciphertext corresponding to the previous epoch to

the partner by erasing a party’s state for sending messages once a message from the

partner for the next epoch arrives. Note that this attack is effective against ACD19, as

the attacker can in the current epoch corrupt the FS-AEAD thread corresponding to the

previous epoch and use it to encrypt the forged message. The only difference Due to the

immediate decryption property, the forged ciphertext must be correctly decrypted. The

TR construction prevents this attack by invoking FS-Stop function when receiving the

first message in a new epoch to erase the chain key for sending in the previous epoch. In

contrast, our construction prevents this attack by erasing both the chain key and the KEM

encapsulation key for sending in the old epoch in the eRcv-Max function.

Fourth, the remaining benefits of our construction in comparison to ACD19 also apply to

the comparison with TR, including strong privacy, strong authenticity, PPR, the resilience

to a novel forgery attack.

7.11 Full Proofs

7.11.1 Our Lemmas

Lemma 2. Let Π be an eSM scheme that is

• (t, q, qep, qM,△eSM, ϵ
CORR
Π )-CORR secure,

• (t, q, qep, qM,△eSM, ϵ
AUTH
Π )-AUTH secure, and

• (t, q, qep, qM,△eSM, ϵ
PRIV
Π )-PRIV secure
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Then, it is also (t, q, qep, qM,△eSM, ϵ)-eSM secure, where

ϵ ≤ ϵCORR
eSM + qep(ϵ

AUTH
eSM + ϵPRIVeSM )

Lemma 3. Let Π denote our eSM construction in Section 7.5.2. If the underlying

KEM, DS, and SKE are respectively δKEM, δDS, δSKE-strongly correct8 in time t, then Π is

(t, q, qep, qM,△eSM, ϵ
CORR
eSM )-CORR secure for △eSM = 2, such that

ϵCORR
eSM ≤ (qep + q)δDS + 3(qep + q)δKEM + qδSKE

Lemma 4. Let Π denote our eSM construction in Section 7.5.2. If the underlying

KEM is ϵind-ccaKEM -secure, SKE is ϵind-1ccaSKE -secure, KDF1 is ϵ3prfKDF1
-secure9, KDF2 is ϵdualKDF2

secure,

KDF3 is ϵprfKDF3
-secure, KDF4 is ϵprgKDF4

-secure, KDF5 is ϵdualKDF5
-secure, in time t, then Π is

(t, q, qep, qM,△eSM, ϵ
PRIV
eSM )-PRIV secure for △eSM = 2, such that

ϵPRIVeSM ≤qMqepqϵind-ccaKEM + qMqϵ
ind-1cca
SKE + qMqepqϵ

3prf
KDF1

+ q2epqϵ
dual
KDF2

+ qepqϵ
prf
KDF3

+ q2ϵprgKDF4
+ (qMqep + 1)qϵdualKDF5

Lemma 5. Let Π denote our eSM construction in Section 7.5.2. If the underlying DS is

ϵsuf-cma
DS -secure, KEM is ϵind-ccaKEM -secure, SKE is ϵind-1ccaSKE -secure, KDF1 is ϵ3prfKDF1

-secure, KDF2

is ϵdualKDF2
secure, KDF3 is ϵprfKDF3

-secure, KDF4 is ϵprgKDF4
-secure, KDF5 is ϵdualKDF5

-secure, in time

t, then Π is (t, q, qep, qM,△eSM, ϵ
AUTH
eSM )-AUTH secure for △eSM = 2, such that

ϵAUTHeSM ≤ϵsuf-cma
DS + qepqMϵ

ind-cca
KEM + 2qϵind-1ccaSKE

+ qepqMϵ
3prf
KDF1

+ qep(qep + 1)ϵdualKDF2
+ qepϵ

prf
KDF3

+ qϵprgKDF4
+ (qepqM + q)ϵdualKDF5

7.11.2 Proof of Theorem 28

Proof. Our proof is divided into two steps: First, we introduce four lemmas in Section 7.11.1.

Lemma 2 reduces the eSM security to the simplified security notions, the full proof of

which is given in Section 7.11.3. Lemma 3, Lemma 4, and Lemma 5 respectively proves the

simplified correctness, privacy, and authenticity of our eSM construction in Section 7.5.2,

the full proof of which are given in Section 7.11.4, Section 7.11.5, and Section 7.11.6.

Second, the proof is concluded by combining the above four lemmas together.

8By strongly correct, we mean that the schemes are conventionally correct for all randomness. See Sec-
tion 2.2.3, Section 2.2.5, and Section 2.2.6 for more details.

9By 3prf security, we mean that a function is indistinguishable from a random function with respect to
any of the three inputs. See Section 2.2.2 for mode details.
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7.11.3 Proof of Lemma 2

Proof. The proof is conducted by case distinction. Let A denote an attacker that breaks

ExpreSMΠ,△eSM
security of an eSM scheme Π with respect to the parameter △eSM. Recall that

the advantage of A in winning ExpreSMΠ,△eSM
experiment is defined as:

AdveSMΠ,△eSM
(A) =max

(
Pr[ExpreSMΠ,△eSM

(A) = (1, 0, 0)],

Pr[ExpreSMΠ,△eSM
(A) = (0, 1, 0)],

|Pr[ExpreSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|
)

Below, we respectively measure Pr[ExpreSMΠ,△eSM
(A) = (1, 0, 0)], Pr[ExpreSMΠ,△eSM

(A) = (0, 1, 0)],

and |Pr[ExpreSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
| in the following Case 1, 2, and 3.

Case 1. We compute the probability Pr[ExpreSMΠ,△eSM
(A) = (1, 0, 0)], i.e., A wins via the

winning predicate wincorr by reduction. Namely, if A can win ExpreSMΠ,△eSM
experiment of the

eSM construction Π with a parameter △eSM, then there exists an attacker B1 that breaks

simplified CORR security of the eSM construction Π with the same parameter △eSM. Let

C1 denote the challenger in the ExprCORR
Π,△eSM

experiment. At the beginning, the attacker

B1 samples a challenge bit b ∈ {0, 1} uniformly at random. Then, B1 invokes A and

answers the queries from A as follows. Note that all safe predicates in eSM and CORR

experiments are identical, B1 can always compute the safe predicates by itself, according

to A’s previous queries.

• ONewIdKey-A(r) and ONewIdKey-B(r): B1 simply forwards them to C1 followed by forwarding

replies from C1 to A.

• ONewPreKey-A(r) and ONewPreKey-B(r): B1 simply forwards them to C1 followed by forwarding

replies from C1 to A.

• ORevIdKey-A and ORevIdKey-B: B1 sets safeidKA or safeidKB (according the invoked oracle) to false

and runs corruption-update(). For each record in the allChall set, B1 then checks whether

the safe challenge predicate for all of the records holds. If one of them is false, B1 undoes

the actions in this query and exists the oracle invocation. In particular, B1 resets the

safe identity predicate to true. Then, the attacker B1 simply forwards the queries to C1
followed by forwarding replies from C1 to A.

• ORevPreKey-A(ind) and ORevPreKey-B(ind): B1 adds the ind into the pre-key reveal list, ac-

cording to the invoked oracle and runs corruption-update(). For each record in the allChall

set, B1 then checks whether the safe challenge predicate for all of the records holds. If

one of them is false, B1 undoes the actions in this query and exists the oracle invocation.

In particular, B1 removes the pre-key counter ind from the pre-key reveal list. Then, the

attacker B1 simply forwards the queries to C1 followed by forwarding replies from C1 to

A.
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• OCorrupt-A and OCorrupt-B: Let P denote the party, whose session state the attacker is trying

to corrupt. B1 adds the corresponding epoch counter tP into the session state corruption

list Lcor
P and runs corruption-update(). Next, B1 checks whether there exists a record

including (¬P, ind, flag) ∈ chall. If such element does not exist, or, such element exists

but either of the following conditions holds,

– flag = good and safeidKP

– flag = good and safepreKP (ind)

If one of them is false, B1 undoes the actions in this query and exists the oracle invocation.

In particular, B1 removes the epoch counter tP from the session state corruption list.

Then, the attacker B1 simply forwards the queries to C1 followed by forwarding replies

from C1 to A.

• OTransmit-A(ind,m, r) and OTransmit-B(ind,m, r): B1 simply forwards them to C1 followed by

forwarding replies from C1 to A.

• OChallenge-A(ind,m0,m1, r) and OChallenge-B(ind,m0,m1, r): We first consider the case for

answering OChallenge-A(ind,m0,m1, r). The attacker B1 first computes flag = Jr = ⊥K.
Namely, flag = true if and only if r is ⊥. Then, B1 checks whether the predicate

safe-chA(flag, tA, ind) is true, according to A’s previous queries. If the safe predicates is

false, or, the input messages m0 and m1 have the distinct length, B1 simply aborts the

oracle. Otherwise, B1 queries OTransmit-A(ind,mb, r) to C1 for a ciphertext c. Then, B1
adds the record record(A, ind, flag, tA, iA,mb, c) into its own allChall and chall. Finally, B1
returns c to A.

The step for answering OChallenge-B(ind,m0,m1, r) is similar to above step except that the

functions and variables related to A are replaced by the ones to B and vice versa.

• ODeliver-A(c) andODeliver-B(c): B1 first checks whether there exists an element (t, i, c) ∈ chall

for any t and i. If such element exists, the attacker B1 simply returns (t, i,⊥) to A.
Otherwise, B1 simply forwards the queries to C1, followed by forwarding replies from C1
to A. After that, B1 removes any element including (t, i, c) from the challenge set chall.

• OInject-A(ind, c) and OInject-B(ind, c): B1 simply forwards them to C1 followed by forwarding

replies from C1 to A.

Note that if the attacker A wins via the winning predicate wincorr, the winning predicate

winauth in the OInject-A and OInject-B is never set to true, which implies either m ′ = ⊥ or

(B, t′, i′) ∈ comp, where t′ and i′ can be efficiently computed from the input ciphertext c.

This means, the reduced injection oracles are identical to the original injection oracles

from A’s view. Moreover, all other oracles are honestly simulated. This means, B1 wins if

and only if A wins. Thus, we have that

Pr[ExpreSMΠ,△eSM
(A) = (1, 0, 0)] ≤ AdvCORR

Π,△eSM
(B1) ≤ ϵCORR

Π
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Furthermore, if A runs in time t, so does B1.

Case 2. We compute the probability Pr[ExpreSMΠ,△eSM
(A) = (0, 1, 0)], i.e., A wins via the

winning predicate winauth by reduction.

Namely, if A can win ExpreSMΠ,△eSM
experiment of a eSM construction Π with a parameter

△eSM, then there exists an attacker B2 that breaks simplified AUTH security of the

eSM construction Π with the same parameter △eSM. Let C2 denote the challenger in

the ExprAUTHΠ,△eSM
experiment. At the beginning, the attacker B2 samples a challenge bit

b ∈ {0, 1} and an epoch t⋆ ∈ [qep] uniformly at random. Next, B2 sends t⋆ to its challenger

C2. Then, B2 invokes A and answers the queries from A as follows. Note that all safe

predicates in eSM and AUTH experiments are identical, B2 can always compute the safe

predicates by itself, according to A’s previous queries.

• ONewIdKey-A(r) and ONewIdKey-B(r): B2 simply forwards them to C2 followed by forwarding

replies from C2 to A.

• ONewPreKey-A(r) and ONewPreKey-B(r): B2 simply forwards them to C2 followed by forwarding

replies from C2 to A.

• ORevIdKey-A and ORevIdKey-B: B2 sets safeidKA or safeidKB (according the invoked oracle) to false

and runs corruption-update(). For each record in the allChall set, B2 then checks whether

the safe challenge predicate for all of the records holds. If one of them is false, B2 undoes

the actions in this query and exists the oracle invocation. In particular, B2 resets the

safe identity predicate to true. Then, the attacker B2 simply forwards the queries to C2
followed by forwarding replies from C2 to A.

• ORevPreKey-A(ind) and ORevPreKey-B(ind): B2 adds ind into the pre-key reveal list, according

to the invoked oracle and runs corruption-update(). For each record in the allChall set, B2
then checks whether the safe challenge predicate for all of the records holds. If one of

them is false, B2 undoes the actions in this query and exists the oracle invocation. In

particular, B2 removes the pre-key counter ind from the pre-key reveal list. Then, the

attacker B2 simply forwards the queries to C2 followed by forwarding replies from C2 to

A.

• OCorrupt-A and OCorrupt-B: Let P denote the party, whose session state the attacker is trying

to corrupt. B2 adds the corresponding epoch counter tP into the session state corruption

list Lcor
P and runs corruption-update(). Next, B2 checks whether there exists a record

including (¬P, ind, flag) ∈ chall. If such element does not exist, or, such element exists

but either of the following conditions holds,

– flag = good and safeidKP

– flag = good and safepreKP (ind)
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If one of them is false, B2 undoes the actions in this query and exists the oracle invocation.

In particular, B2 removes the epoch counter tP from the session state corruption list.

Then, the attacker B2 simply forwards the queries to C2 followed by forwarding replies

from C2 to A.

• OTransmit-A(ind,m, r) and OTransmit-B(ind,m, r): B2 simply forwards them to C2 followed by

forwarding replies from C2 to A.

• OChallenge-A(ind,m0,m1, r) and OChallenge-B(ind,m0,m1, r): We first consider the case for

answering OChallenge-A(ind,m0,m1, r). The attacker B2 first computes flag = Jr = ⊥K.
Namely, flag = true if and only if r is ⊥. Then, B2 checks whether the predicate

safe-chA(flag, tA, ind) is true, according to A’s previous queries. If the safe predicates is

false, or, the input messages m0 and m1 have the distinct length, B2 simply aborts the

oracle. Otherwise, B2 queries OTransmit-A(ind,mb, r) to C2 for a ciphertext c. Then, B2
adds the record record(A, ind, flag, tA, iA,mb, c) into its own allChall and chall. Finally, B2
returns c to A.

The step for answering OChallenge-B(ind,m0,m1, r) is similar to above step except that the

functions and variables related to A are replaced by the ones to B and vice versa.

• ODeliver-A(c) andODeliver-B(c): B2 first checks whether there exists an element (t, i, c) ∈ chall

for any t and i. If such element exists, the attacker B2 simply returns (t, i,⊥) to A.
Otherwise, B2 simply forwards the queries to C2, followed by forwarding replies from C2
to A. After that, B2 removes any element including (t, i, c) from the challenge set chall.

• OInject-A(ind, c) and OInject-B(ind, c): B2 simply forwards them to C2 followed by forwarding

replies from C2 to A.

Note that if the attacker A wins via the winning predicate winauth, the winning predicate

wincorr in the ODeliver-A(c) and ODeliver-B(c) is never set to true. This means, the deliver

oracles in CORR experiment is identical to the original deliver oracles from A’s view. Note
also that the winning predicate winauth is never set to false once it has been set to true.

Assume that attacker B2 guesses the epoch t⋆ correctly, such that A triggers the flip of

winauth by querying OInject-A(ind, c) or OInject-B(ind, c) for a ciphertext c corresponding to

epoch t⋆, which happens with probability 1
qep
. For all previous queries OInject-A(ind, c) and

OInject-B(ind, c), where c does not correspond to the epoch t⋆, the flip of winauth from false

to true will not be triggered. In this case, our reduced injection oracle correctly simulates

the behavior of the original injection oracles. For all previous queries OInject-A(ind, c) and

OInject-B(ind, ct), where c corresponds to the epoch t⋆, our reduced injection oracle simulates

the identical behavior of the original injection oracles.

Note that all other oracles are honestly simulated. The attacker B2 wins if and only

if A wins and the guess t⋆ is correctly. Note also that the event A wins and the number
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that B2 guesses are independent. Thus, we have that

Pr[ExpreSMΠ,△eSM
(A) = (1, 0, 0)] ≤ qepAdv

CORR
Π,△eSM

≤ qepϵ
AUTH
Π

Moreover, if A runs in time t, so does B2.

Case 3. We compute the probability |Pr[ExpreSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|, i.e., A wins via

the winning predicate winpriv by hybrid games. Let Gj denote the simulation of Game j.

Game 0. This game is identical to the ExpreSMΠ,△eSM
experiment. Thus, we have that

Pr[G0(A) = (0, 0, 1)] = Pr[ExpreSMΠ,△eSM
(A) = (0, 0, 1)]

Game i (1 ≤ j ≤ qep). This game is identical to Game (j − 1) except the following

modifications:

• When the attacker queries OChallenge-A(ind,m0,m1, r) at epoch j, the challenger first checks

whether ind ≤ nB and |m0| = |m1| and aborts if the condition does not hold. Then, the chal-

lenger samples a random message m̄ of the length |m0| and runs OChallenge-A(ind, m̄, m̄, r)

instead of OChallenge-A(m0,m1, r). Finally, the challenger returns the produced ciphertext

c to A.

It is easy to observe that in Game qep all challenge ciphertexts are encrypted indepen-

dent of the challenge bit. Thus, the attacker A can output the bit b′ only by randomly

guessing, which indicates that

Pr[Gqep(A) = (0, 0, 1)] =
1

2

Let E denote the event that the attacker can distinguish any two adjacent hybrid

games. We have that

|Pr[Gj−1(A) = (0, 0, 1)]− Pr[Gj(A) = (0, 0, 1)]| ≤ Pr[E]

Moreover, note that the modifications in every hybrid game j is independent of the

behavior in hybrid game (j − 1). Thus, we have that

|Pr[G0(A) = (0, 0, 1)]− Pr[Gqep(A) = (0, 0, 1)]|

≤|
qep∑
j=1

Pr[Gj−1(A) = (0, 0, 1)]− Pr[Gj(A) = (0, 0, 1)]|

≤
qep∑
j=1

|Pr[Gj−1(A) = (0, 0, 1)]− Pr[Gj(A) = (0, 0, 1)]|

≤qep Pr[E]

Below, we analyze the probability of the occurrence of the event E by reduction.

Namely, if A can distinguish any two adjacent games Game (j − 1) and Game j, then
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there exists an attacker B3 that breaks simplified PRIV security of the eSM construction Π

with the same parameter △eSM. Let C3 denote the challenger in the ExprPRIVΠ,△eSM
experiment.

At the beginning, the attacker B3 sends the epoch j to its challenger C3 and samples a bit

b̄ ∈ {0, 1} uniformly at random. Then, B3 invokes A and answers the queries from A as

follows. Note that all safe predicates in Game (j−1), Game j, and PRIV experiments are

identical, B3 can always compute the safe predicates by itself, according to A’s previous
queries.

• ONewIdKey-A(r) and ONewIdKey-B(r): B3 simply forwards them to C3 followed by forwarding

replies from C3 to A.

• ONewPreKey-A(r) and ONewPreKey-B(r): B3 simply forwards them to C3 followed by forwarding

replies from C3 to A.

• ORevIdKey-A and ORevIdKey-B: B3 sets safeidKA or safeidKB (according the invoked oracle) to false

and runs corruption-update(). For each record in the allChall set, B3 then checks whether

the safe challenge predicate for all of the records holds. If one of them is false, B3 undoes

the actions in this query and exists the oracle invocation. In particular, B3 resets the

safe identity predicate to true. Then, the attacker B3 simply forwards the queries to C3
followed by forwarding replies from C3 to A.

• ORevPreKey-A(ind) and ORevPreKey-B(ind): B3 adds ind into the pre-key reveal list, according

to the invoked oracle and runs corruption-update(). For each record in the allChall set, B3
then checks whether the safe challenge predicate for all of the records holds. If one of

them is false, B3 undoes the actions in this query and exists the oracle invocation. In

particular, B3 removes the pre-key counter ind from the pre-key reveal list. Then, the

attacker B3 simply forwards the queries to C3 followed by forwarding replies from C3 to

A.

• OCorrupt-A and OCorrupt-B: Let P denote the party, whose session state the attacker is trying

to corrupt. B3 adds the corresponding epoch counter tP into the session state corruption

list Lcor
P and runs corruption-update(). Next, B3 checks whether there exists a record

including (¬P, ind, flag) ∈ chall. If such element does not exist, or, such element exists

but either of the following conditions holds,

– flag = good and safeidKP

– flag = good and safepreKP (ind)

If one of them is false, B3 undoes the actions in this query and exists the oracle invocation.

In particular, B3 removes the epoch counter tP from the session state corruption list.

Then, the attacker B3 simply forwards the queries to C3 followed by forwarding replies

from C3 to A.
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• OTransmit-A(ind,m, r) and OTransmit-B(ind,m, r): B3 simply forwards them to C3 followed by

forwarding replies from C3 to A.

• OChallenge-A(ind,m0,m1, r) and OChallenge-B(ind,m0,m1, r): These oracles are answered ac-

cording to one of the following cases. Here, we only explain the behavior for answering

OChallenge-A for simplicity. The behavior for answering OChallenge-B can be defined analo-

gously.

– [tA < j]: When the attacker A queries OChallenge-A(ind,m0,m1, r) at epoch tA < j, the

B3 first computes flag← Jr = ⊥K. Next, B3 checks whether safe-chA(flag, tA, ind) =

true, ind ≤ nB, and |m0| = |m1| and aborts if any condition does not hold. Otherwise,

B3 samples a random message m̄ of the length |m0| and queries OTransmit-A(ind, m̄, r)

for a ciphertext c. Finally, the B3 adds the record rec = (A, ind, flag, tA, iA, m̄, c) into

both allChall and chall, followed by returning the ciphertext c to A.

– [tA = j]: When the attacker A queries OChallenge-A(ind,m0,m1, r) at epoch tA = j, the

B3 first computes flag← Jr = ⊥K. Next, B3 checks whether safe-chA(flag, tA, ind) =

true, ind ≤ nB, and |m0| = |m1| and aborts if any condition does not hold. Otherwise,

B3 samples a random message m̄ of the length |m0| and queriesOChallenge-A(ind,mb̄, m̄, r)

for a ciphertext c. Finally, the B3 adds the record rec = (A, ind, flag, tA, iA, , c) into

both allChall and chall, followed by returning the ciphertext c to A.

– [tA > j]: When the attacker A queries OChallenge-A(ind,m0,m1, r) at epoch tA > j, the

B3 first computes flag← Jr = ⊥K. Next, B3 checks whether safe-chA(flag, tA, ind) =

true, ind ≤ nB, and |m0| = |m1|, and aborts if any condition does not hold. Otherwise,

B3 queries OTransmit-A(ind,mb̄, r) for a ciphertext c. Finally, the B3 adds the record

rec = (A, ind, flag, tA, iA,mb̄, c) into both allChall and chall, followed by returning the

ciphertext c to A.

• ODeliver-A(c) andODeliver-B(c): B3 first checks whether there exists an element (t, i, c) ∈ chall

for any t and i. If such element exists, the attacker B3 simply returns (t, i,⊥) to A.
Otherwise, B3 simply forwards the queries to C3, followed by forwarding replies from C3
to A. After that, B3 removes any element including (t, i, c) from the challenge set chall.

• OInject-A(ind, c) and OInject-B(ind, c): B3 simply forwards them to C3 followed by forwarding

replies from C3 to A.

Note that if the attacker A wins via the winning predicate winpriv, the winning predicate

wincorr in the ODeliver-A and ODeliver-B and winauth in the OInject-A and OInject-B is never set to

true. This means, the deliver oracles and injection oracles in PRIV experiment is identical

to the original ones from A’s view.
Note that all other oracles are honestly simulated. If the challenge bit b in the PRIV

experiment is 0, then B3 perfectly simulates Game (j − 1) to A. If the challenge bit b
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in the PRIV experiment is 1, then B3 perfectly simulates Game j to A. This means, the

attacker B3 wins if and only if A can distinguish the adjacent hybrid games Game (j − 1)

and Game j, which is defined as the occurrence of event E. Thus, we have that

Pr[E] ≤ AdvPRIVΠ,△eSM
≤ ϵPRIVeSM

Combing the equations above, we have that:

|Pr[ExpreSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|

=|Pr[G0(A) = (0, 0, 1)]− Pr[Gqep(A)]|

≤qep Pr[E] ≤ qepϵ
PRIV
eSM

Moreover, if A runs in time t, so does B2.

Conclusion. The proof is concluded by

AdveSMΠ,△eSM
(A) =max

(
Pr[ExpreSMΠ,△eSM

(A) = (1, 0, 0)],

Pr[ExpreSMΠ,△eSM
(A) = (0, 1, 0)],

|Pr[ExpreSMΠ,△eSM
(A) = (0, 0, 1)]− 1

2
|
)

≤max
(
ϵCORR
Π , qepϵ

AUTH
Π , qepϵ

PRIV
Π

)
≤ϵCORR

Π + qep(ϵ
AUTH
Π + ϵPRIVΠ )
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7.11.4 Proof of Lemma 3

Proof. The proof is given by a sequence of games. Let Advj denote the attacker A’s
advantage in winning Game j.

Game 0. This game is identical to the ExprCORR
Π,△eSM

. Thus, we have that

Adv0 = ϵCORR
eSM

Game 1. In this game, if the attacker queries OInject-A(ind, c) and OInject-B(ind, c) with c

corresponding to position (t⋆, i⋆) such that t⋆ ≤ min(tA, tB)− 2, the challenger immediately

returns (t⋆, i⋆,⊥).
Note that the oracles are defined symmetric for party A and B. Without the loss of

generality, we only explain the case for OInject-A(ind, c) and t⋆ is even. The case for OInject-B

and t⋆ is odd can be given analogously.

In fact, recall that the eRcv algorithm is executed in OInject-A(ind, c) oracle only if the

following conditions hold

1. (B, c) /∈ trans

2. ind ≤ nA

3. safe-injA(tB) = true and safe-injA(tA) = true which are equivalent to safe-stB(tB) = true

and safe-stB(tA) = true

4. (t⋆, i⋆) ∈ comp, where (t⋆, i⋆) is the position of the input ciphertext c

Recall that (t⋆, i⋆) ∈ comp means that a ciphertext at this position has been produced

by a party, which implies that t⋆ ≤ max(tA, tB). Moreover, a ciphertext is added into comp

only when

1. in the OCorrupt-A oracle, if safe-st(t⋆) = false holds.

2. in the OCorrupt-B oracle at epoch tB = t⋆, which means safe-stB(t
⋆) = false

3. in the OTransmit-B oracle, if safe-injA(t
⋆) = safe-stB(t

⋆) = false holds

4. in theORevIdKey-A, ORevIdKey-B, ORevPreKey-A, ORevPreKey-B oracles, if safe-injA(t
⋆) = safe-stB(t

⋆) =

false

In all of the above cases, we know that safe-stB(t
⋆) = false. Note that the conditions

safe-stB(tB) = false and safe-stB(tA) = false must hold at the same time. This means,

t⋆ ≤ min(tA, tB)− 2. Thus, Game 0 and Game 1 are identical from the attacker’s view.

Thus, we have that

Adv0 = Adv1

In particular, this also means that both parties have already received at least one

message in the epoch t⋆ and have produced the root keys before the OInject-A and OInject-B

for ciphertexts corresponding t⋆ are queried.

Game 2. This game is identical to Game 1 except the following modification:
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1. Whenever the challenger executes OTransmit-A and OTransmit-B to enter a new epoch t⋆, the

challenger records the root key rk′ ← st.rk produced during the oracle. When ODeliver-A or

ODeliver-B is invoked on the first ciphertext that corresponds to the epoch t⋆, the challenger

replaces the derivation of the root key rk by the recorded rk′.

The gap between Game 1 and Game 2 can be analyzed by a sequence of hybrid

games, where each hybrid only replace the root key at one epoch. Note that if the receiver

executes the eRcv algorithm for the first message in a new epoch. The new st.rk is derived

only when the output of DS.Vrfy in Line 29 is true, which happens except probability δDS .

Note also that the ODeliver-A and ODeliver-B oracles are used to simulate the transmission

of the original data that were produced. The honest KEM ciphertexts are delivered to

the receiver and will be decrypted using the corresponding private keys in Line 31. All of

them are correctly recovered except probability at most 3δKEM . If both parties’ local root

keys are identical, which is true due to the previous hybrid game, the root keys of both

parties in this epoch are also identical in this hybrid game. Note that there are at most

qep epochs. Thus, we have that

Adv1 ≤ Adv2 + qep(δDS + 3δKEM)

Game 3. This game is identical to Game 2 except the following modification:

1. Whenever the challenger executes OTransmit-A and OTransmit-B, the challenger records the

message key mk
′ ← mk produced during the oracle together with the position. When

ODeliver-A or ODeliver-B is invoked on a ciphertext, the challenger searches the mk at the

location of the input c, followed by replacing the derivation of the message key mk by

the recorded mk
′
.

This game is similar to Game 2. The only difference is that the challenger runs q

hybrid games but not qep, where q denotes the maximal queries that A can make. Thus,

we can easily have that

Adv2 ≤ Adv3 + q(δDS + 3δKEM)

Game 4. This game s identical to Game 3 except the following modification:

1. Whenever the challenger executes OTransmit-A(ind,m, r) and OTransmit-B(ind,m, r), the chal-

lenger records the message m produced during the oracle together with the position.

When ODeliver-A or ODeliver-B is invoked on a ciphertext, the challenger searches the message

m ′ at the location of the input c, followed by replacing the recovery of the message m by

the recorded m ′.

This game is similar to Game 3. The only difference is that the challenger runs q

hybrid games on the scheme SKE which is deterministic and δSKE-correct. Similarly, we

can easily have that

Adv3 ≤ Adv4 + qδSKE
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Final Analysis of Game 4: Now, whenever ODeliver-A or ODeliver-B is delivered, the original

messages are always correctly recovered and output with the correct position, which means

the attacker never wins. Thus, we have that

Adv5 = 0

The following equation concludes the proof.

ϵCORR
eSM ≤ qep(δDS + 3δKEM) + q(δDS + 3δKEM + δSKE)

= (qep + q)δDS + 3(qep + q)δKEM + qδSKE
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7.11.5 Proof of Lemma 4

Proof. The proof is given by a sequence of games. Let Advj denote the attacker A’s
advantage in winning Game j. At the beginning of the experiment, the attacker A outputs

a target epoch t⋆, such that it only queries challenge oracles in this epoch. Without loss of

generality, we assume t⋆ is odd, i.e., A is the message sender. The case for t⋆ is even can

be given analogously.

Game 0. This game is identical to the ExprPRIVΠ,△eSM
. Thus, we have that

Adv0 = ϵPRIVeSM

Game 1. This game is identical to Game 0 except the following modifications:

1. At the beginning of the game, in addition to the target epoch t⋆, the attacker has to

output a target message index i⋆.

2. The challenge oracle OChallenge-A can only be queried for encrypting i⋆-th message (i.e.,

iA = i⋆ − 1 before the query and iA = i⋆ after the query) in tA = t⋆.

We analyze the gap between Game 0 and Game 1 by hybrid games. Note that A
can query oracles at most q times. There are at most q messages can be encrypted in the

target epoch.

Game 1.0. This game is identical to Game 0. Thus, we have that

Adv1.0 = Adv0

Game 1.j, 1 ≤ j ≤ q. This game is identical to Game 1.(j − 1) except the following

modification:

1. If A sends challenge oracle OChallenge-A(ind,m0,m1, r) for encrypting j-th message.

The challenger first checks whether m0 and m1 have the same length and aborts if

the condition does not hold. Then, the challenge samples a random message m̄ of

the length m0 and runs OChallenge-A(ind, m̄, m̄, r) instead of OChallenge-A(ind,m0,m1, r).

Finally, the challenger returns the produced ciphertext c to A.

It is easy to observe that all challenge ciphertexts are encrypted independent of the

challenge bit in Game 1.q. Thus, the attacker can guess the challenge bit only by

randomly guessing in Game 1.q, which implies that

Adv1.q = 0

Let E denote the event that the attacker A can distinguish any two adjacent hybrid

games. Note that the modification in every hybrid game j is independent of the behavior

in hybrid game (j − 1). Thus, we have that

Adv1.0 = Adv1.0 − Adv1.q ≤ q Pr[E]
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We compute the probability of the occurrence of the event E by reduction. If A can

distinguish any Game 1.(j − 1) and Game 1.j, then we can construct an attacker B1
that breaks Game 1. The attacker B1 is executed as follows:

1. When A outputs an epoch t⋆, B outputs (t⋆, j). Meanwhile, B1 samples a random

bit b̄ ∈ {0, 1} uniformly at random.

2. When A queries OChallenge-A, B answers according one of the following case:

• [iA < j − 1]: When the attacker queries OChallenge-A(ind,m0,m1, r) when iA <

j − 1, i.e., for encrypting messages before j-th message. B1 first computes

flag← Jr = ⊥K. Next B1 checks whether safe-chA(flag, tA, ind), ind ≤ nB, and m0

and m1 have the same length. If any condition does not hold, B1 simply aborts.

Otherwise, B1 samples a random message m̄ of the length m0 and queries

OTransmit-A(ind, m̄, r) for a ciphertext c. Finally, B1 adds the corresponding

record into both allChall and chall, followed by returning the ciphertext c to A.
• [iA = j−1]: When the attacker queries OChallenge-A(ind,m0,m1, r) when iA = j−1,
i.e., for encrypting j-th message. B1 first computes flag ← Jr = ⊥K. Next B1
checks whether safe-chA(flag, tA, ind), ind ≤ nB, and m0 and m1 have the same

length. If any condition does not hold, B1 simply aborts. Otherwise, B1 samples

a random message m̄ of the length m0 and queries OChallenge-A(ind,mb̄, m̄, r) for

a ciphertext c. Finally, B1 adds the corresponding record into both allChall and

chall, followed by returning the ciphertext c to A.
• [iA > j−1]: When the attacker queries OChallenge-A(ind,m0,m1, r) when iA > j−1,
i.e., for encrypting messages after j-th message. B1 first computes flag← Jr =

⊥K. Next B1 checks whether safe-chA(flag, tA, ind), ind ≤ nB, and m0 and m1

have the same length. If either condition does not hold, B1 simply aborts.

Otherwise, B1 queries OTransmit-A(ind,mb̄, r) for a ciphertext c. Finally, B1 adds

the corresponding record into both allChall and chall, followed by returning the

ciphertext c to A.

3. To answer all other oracles, B1 first checks whether the safe predicate requirements

in individual oracles hold. If so, B1 simply forward the queries to challenger and

returns the reply to A. If not, B1 simply aborts.

Note that all other oracles are honestly simulated except for OChallenge-A. If the challenge

bit b in Game 1 is 0, then B1 perfectly simulates Game 1.(j − 1) to A. If the challenge

bit b in Game 1 is 1, then B1 perfectly simulates Game 1.j to A. Thus, if A can

distinguish any adjacent two hybrid games, B1 wins Game 1, which implies Pr[E] ≤ Adv1,

and further

Adv0 = Adv1.0 ≤ q Pr[E] ≤ qAdv1
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Game 2. Let ind⋆ denote the index of prepk B that is used to encrypt i⋆’s message

in epoch t⋆. Let flag⋆ denote the random quality in the target challenge oracle. In this

game, A wins immediately, if at the end of experiment safe-stB(t
⋆) =

(
flag⋆ = good and

safeidKB

)
=
(
flag⋆ = good and safepreKB (ind⋆)

)
= false.

Note that before the challenge query, the safe predicate safe-chA(flag, t
⋆, ind⋆) must

hold, i.e.,(
safe-stA(t

⋆) and safe-stB(t
⋆)
)
or
(
flag⋆ = good and safe-stB(t

⋆)
)
or
(
flag⋆ = good and

safeidKB

)
or
(
flag⋆ = good and safepreKB (ind⋆)

)
This means, at least one of the following conditions must hold at the time of query of

OChallenge-A.

1. safe-stB(t
⋆) = true

2.
(
flag⋆ = good and safeidKB

)
= true

3.
(
flag⋆ = good and safepreKB (ind⋆)

)
= true

When querying identity keys or pre-keys oracles, the oracle aborts if it will triggers the

safe challenge predicate safe-chA(flag
⋆, t⋆, ind⋆) to false. When querying corruption oracles,

the violation of safe-stB must indicate
(
flag⋆ = good and safeidKB

)
or
(
flag⋆ = good and

safepreKB (ind⋆)
)
. Thus, at least one of the above conditions must hold even at the end of

experiment

This means, A cannot gain any additional advantage in winning Game 2, which

implies that

Adv1 = Adv2

Below, we analyze the advantage Adv2 into three cases, whether
(
flag⋆ = good and

safeidKB

)
= true or

(
flag⋆ = good and safepreKB (ind⋆)

)
= true or safe-stB(t

⋆) = true holds at

the end of the experiment.

Case 1:
(
flag⋆ = good and safeidKB

)
= true

In this case,
(
flag⋆ = good and safeidKB

)
= true holds at the end of the experiment,

thus also holds at the time of challenge oracle OChallenge-A query. We use AdvC1
j to denote

A’s advantage in winning Game j in this case. In the remaining of this case analysis, we

focus on the epoch t⋆ and the message index i⋆.

Game C1.3. This game is identical to Game 2 except the following modification:

1. The challenger additionally samples a random key k ′ ∈ K, where K denote the key space

of the underlying KEM.
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2. (updar, updur)← KDF1(k1, k2, k3) in Line 16 in Figure 7.6 is replaced by (updar, updur)←
KDF1(k1, k

′, k3)

3. k2 ← KEM.Decaps(ik , c2) in Line 31 in Figure 7.6 is replaced by k2 ← k ′

If A can distinguish Game 2 and Game C1.3, then we can construct an attacker B2
that breaks IND-CCA security of underlying KEM. The attacker B2 receives a public key

pk , a challenge ciphertext c⋆, and a key k ⋆, and simulates the game as follows:

1. A outputs (t⋆, i⋆) at the beginning of the game.

2. When A queries ONewIdKey-B(r), checks whether r = ⊥. If r ̸= ⊥, then B2 returns pk to

A.

3. When A queries OChallenge-A(ind
⋆,m0,m1, r) for encrypting i⋆’s message in the epoch t⋆,

B2 aborts if r ̸= ⊥. Then, B2 honestly runs OChallenge-A except replacing (updar, updur)←
KDF1(k1, k2, k3) in Line 16 in Figure 7.6 by (updar, updur)← KDF1(k1, k

⋆, k3)

4. When A queries ODeliver-B(c) oracle, where c is output by OChallenge-A oracles, B2 honestly

runs the eRcv algorithm except directly using k ⋆ at the place of k2 instead of running

decapsulation algorithm.

5. When A queries OInject-B(ind, c) oracle for a pre-key index ind and a ciphertext c, B2
forwards c to its decapsulation oracle for a key k , followed by use this key in the place of

the decapsulated k2 to run eRcv algorithm.

6. All other oracles are honestly simulated.

Note that if the challenge bit in the IND-CCA security experiment equals 0, then B2
simulates Game 2 to A. If the challenge bit in the IND-CCA security experiment equals 1,

then B2 simulates Game C1.3 to A. B2 wins if and only if A can distinguish Game 2

and Game C1.3. Thus, we have that

AdvC1
2 ≤ AdvC1

3 + ϵind-ccaKEM

Game C1.4. This game is identical to Game C1.3 except the following modifications:

1. The challenger additionally samples a random update value ũpd
ur
∈ {0, 1}λ

2. mk ← KDF5(urk, upd
ur) in Line 22 and 40 in Figure 7.6 is replaced bymk ← KDF5(urk, ũpd

ur
)

If A can distinguish Game C1.3 and Game C1.4, then we can construct an attacker

B3 that breaks 3prf security of underlying KDF1. Note that the random key k ′ is sampled

random in Game C1.3. B3 can easily query k1, k3 to its oracle on the second input,

and use the reply in the place of (updar, updur). If the oracle simulates KDF1, then B3
simulates Game C1.3 to A. If the oracle simulates a random function, then B3 simulates

Game C1.4. Thus, we have that

AdvC1
3 ≤ AdvC1

4 + ϵ3prfKDF1

Game C1.5. This game is identical to Game C1.4 except the following modifications:
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1. The challenger additionally samples a random message key m̃k ∈ {0, 1}λ

2. c′ ← SKE.Enc(mk,m) in Line 22 and 40 in Figure 7.6 is replaced by c′ ← SKE.Enc(m̃k ,m)

Similar to the game above, if A can distinguish Game C1.4 and Game C1.5, then we

can construct an attacker B4 that breaks swap security of underlying KDF5. Note that the

random update value ũpd
ur
is sampled random in Game C1.4. B4 can easily query urk

to its oracle and use the reply in the place of mk. If the oracle simulates KDF5, then B4
simulates Game C1.3 to A. If the oracle simulates a random function, then B3 simulates

Game C1.5. Thus, we have that

AdvC1
4 ≤ AdvC1

5 + ϵswapKDF5
≤ AdvC1

5 + ϵdualKDF5

Game Final Analysis for Case 1: In the end, we compute A’s advantage in winning

Game C1.5 by reduction. If A can win Game C1.5, then we can construct an attacker

B5 that breaks IND-1CCA security of the underlying SKE. The reduction is simulated as

follows:

1. A outputs (t⋆, i⋆) at the beginning of the game.

2. B samples a random bit b̄ $←− {0, 1}.

3. When A queries OChallenge-A(ind
⋆,m0,m1, r) for encrypting i⋆’s message in the epoch t⋆, B5

aborts if r ̸= ⊥ or m0 and m1 have different length. Next, B5 samples a random message

m̄ of length |m0|.Then, B5 queries its challenger on (m̄,mb̄) and receives a ciphertext c⋆.

After that, B5 honestly runs OChallenge-A except replacing c′ ← SKE.Enc(mk,m) in Line 22

and 40 in Figure 7.6 by c′ ← c⋆.

4. When A queries ODeliver-B(c) oracle such that c includes t⋆, i⋆, and c⋆, B5 honestly

simulates ODeliver-B except for outputting m ′ = ⊥.

5. When A queries OInject-B(ind, c) oracle for a pre-key index ind and a ciphertext corresponds

to the position (t⋆, i⋆), B5 forwards c to its decapsulation oracle for a message m ′, followed

by outputting (t⋆, i⋆,m ′)

6. All other oracles are honestly simulated.

Note that if the forgery via OInject-B is accepted, then the attacker cannot win via winpriv

predicate since a natural eSM scheme does not accept two messages at the same position.

So, B5 perfectly simulate Game C1.5 to A and wins if and only if A wins. Thus, we have

that

AdvC1
5 ≤ ϵind-1ccaSKE

To sum up, we have that

AdvC1
2 ≤ ϵind-1ccaSKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵind-ccaKEM
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Case 2:
(
flag⋆ = good and safepreKB (ind⋆)

)
= true

In this case,
(
flag⋆ = good and safepreKB (ind⋆)

)
= true holds at the end of the experiment,

thus also holds at the time of challenge oracle OChallenge-A query. We use AdvC2
j to denote

A’s advantage in winning Game j in this case. In the remaining of this case analysis, we

focus on the epoch t⋆ and the message index i⋆.

Game C2.3 In this game, the challenger guesses the index of the pre-key ind⋆ by

randomly guessing at the beginning of the experiment. If the guess is wrong, the challenger

aborts and let A immediately win. Note that there are at most qM in the experiment, the

challenger can guess correctly with probability 1
qM
. Thus, we have that

AdvC2
2 ≤ qMAdv

C2
3

Game C2.4, C2.5, C2.6. These games are defined similar to Game C1.3, C1.4, C1.5.

The only difference is to apply the modification not to B’s identity key but B’s ind⋆-th

pre-key. The proof can be easily given in a similar way and we have that

AdvC2
3 ≤ ϵind-1ccaSKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵind-ccaKEM

To sum up, we have that

AdvC2
2 ≤ qM(ϵ

ind-1cca
SKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵind-ccaKEM )

Case 3: safe-stB(t
⋆) = true

In this case, safe-stB(t
⋆) = true holds at the end of the experiment, thus also holds

at the time of challenge oracle OChallenge-A query. We further split this case into two

subcases: when A queries the challenge oracle at OChallenge-A for encrypting i⋆’s message

at epoch t⋆ whether
(
flag⋆ = good and safe-stB(t

⋆)
)
holds, see Case 3.1, or,

(
safe-stA(t

⋆)

and safe-stB(t
⋆)
)
holds, see Case 3.2.

Case 3.1:
(
flag⋆ = good and safe-stB(t

⋆)
)

Game C3.1.3 This game is identical to Game 2 except the following modification:

1. Whenever P ∈ {A, B} is trying to sending the first message in a new epoch t + 1 (i.e.

P = A if t even and P = B if t odd) and the execution Lcor
P

+← t + 1 in Line 80 in the

ep-mgmt helper function in Figure 7.6 is not triggered, then the challenger replaces

r $←− {0, 1}λ, (stP.nxs , rKEM, rDS) ← KDF2(stP.nxs , r) executed in the following eSend

algorithm in Line 18 in Figure 7.6 by stP.nxs
$←− {0, 1}λ, rKEM $←− {0, 1}λ, rDS $←− {0, 1}λ.

We analyze A’s advantage in winning Game C3.1.3 by hybrid games.
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Game hy.0: This game is identical to Game 2. Thus, we have that

AdvC3.1
2 = Advhy.0

Game hy.j, (1 ≤ j ≤ qep): This game is identical to game Game hy.(j − 1) except that:

1. When entering epoch j from j − 1, if the execution Lcor
P

+← j in Line 80 in the

ep-mgmt helper function in Figure 7.6 is not triggered for P = A if j odd and

P = B if j even, then in the following eSend algorithm, the challenger replaces r $←−
{0, 1}λ, (stP.nxs , rKEM, rDS)← KDF2(stP.nxs , r) executed in Line 18 in Figure 7.6 by

stP.nxs
$←− {0, 1}λ, rKEM $←− {0, 1}λ, rDS $←− {0, 1}λ.

It is obvious that Game hy.qep is identical to Game C3.1.3. Thus, we have that

AdvC3.1
3 = Advhy.qep

Let E denote the event that A can distinguish any adjacent hybrid gamesGame hy.(j−
1) and Game hy.j. Note that the modification in every hybrid game is independent of

the behavior of the previous game. Thus, we have that

AdvC3.1
2 − AdvC3.1

3 ≤ qep Pr[E]

Below, we compute the probability of the occurrence of event E by case distinction.

Note that the execution Lcor
P

+← j in Game hy.j indicates that Game hy.(j−1) is identical

to Game hy.j. Below, we only consider the case for that the execution Lcor
P

+← j is not

triggered. Note also that Lcor
P

+← j is not triggered only when safe-chP(flag, j − 1, ind⋆),

which further implies that one of the following conditions must hold: (1) safe-stP(j − 1) or

(2) flag = good. Then, we consider each of the two cases.

Case safe-stP(j − 1): First, safe-stP(j−1) means (j−1), (j−2) /∈ Lcor
P . Moreover, (j−1) /∈

Lcor
P indicates that (1) the execution Lcor

P

+← (j − 2) in Game hy.(j − 2) is not triggered,

and (2) the state corruption on P is not invoked during epoch (j − 1) and (j − 2).

According to hybrid game Game hy.(j − 2), the value stP.nxs sampled uniformly at

random during sending the first message in epoch (j − 2). In other words, stP.nxs is

uniformly at random from the attacker’s view when entering epoch j from (j−1). During

sending the first message in epoch j, r $←− {0, 1}λ, (stP.nxs , rKEM, rDS)← KDF2(stP.nxs , r)

is executed in Line 18 in Figure 7.6. By the prf security of KDF2, it is easy to know that

if A can distinguish Game hy.(j − 1) and Game hy.j, then there must exist an attacker

that distinguish the keyed KDF2 and a random function. Thus, it holds that

Pr[E] ≤ ϵprfKDF2
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Case flag = good: This means, the first message in epoch j−2 is computed using fresh ran-

domness. In particular, this means, r $←− {0, 1}λ, (stP.nxs , rKEM, rDS)← KDF2(stP.nxs , r)

is executed in Line 18 in Figure 7.6 uses fresh randomness r. It is easy to know that

stP.nxs after sending the first message in epoch (j − 2) is distinguishable from a random

string, due to the swap-security of KDF2.

Thus, we have that

Pr[E] ≤ ϵswapKDF2

From above two cases, we know that

Pr[E] ≤ max
(
ϵprfKDF2

+ ϵswapKDF2

)
≤ ϵdualKDF2

To sum up, we have that

AdvC3.1
2 ≤ qep Pr[E] + AdvC3.1

3 ≤ AdvC3.1
3 + qepϵ

dual
KDF2

Game C3.1.5, C3.1.6, C3.1.7. Note that safe-stB(t
⋆) means that t⋆, (t⋆ − 1) /∈ Lcor

B .

This implies that both following conditions must hold:

1. stP.nxs
$←− {0, 1}λ, rKEM $←− {0, 1}λ, rDS $←− {0, 1}λ are executed when B was entering

t⋆ − 1.

2. The corruption oracle OCorrupt-B is not queried during t⋆ and (t⋆ − 1).

Furthermore, the KEM key pair in stB generated in epoch t⋆ − 1 for A to encrypt messages

in t⋆ is not leaked. Applying a similar game hopping to the KEM key pair in the state, as

to the identity key pairs in Game 1.3, 1.4, 1.5, we can easily have that

AdvC3.1
3 ≤ ϵind-1ccaSKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵind-ccaKEM

Combing the above statements, we have that

AdvC3.1
2 ≤ ϵind-1ccaSKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵind-ccaKEM + qepϵ

dual
KDF2

Case 3.2:
(
safe-stA(t

⋆) and safe-stB(t
⋆)
)

Game C3.2.3 This game is identical to Game 2 except the following modification:

1. Whenever P ∈ {A, B} is trying to sending the first message in a new epoch t + 1 (i.e.

P = A if t even and P = B if t odd) and the execution Lcor
P

+← t + 1 in Line 80

in the ep-mgmt helper function in Figure 7.6 is not triggered, then the challenger

replaces (st.rk, st.ckst.t)← KDF3(st.rk, upd
ar) executed in the following eSend algorithm

in Line 21 in Figure 7.6 by stP.rk
$←− {0, 1}λ and st.ckst.t $←− {0, 1}λ, followed by storing

(t + 1, stP.rk, st.ck
t+1, st.prtr).
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2. if there exist a locally stored tuple (t′, rk, ck, prtr) and the eRcv is invoked to enter-

ing epoch t′ with ciphertext including prtr, the challenger replaces (st.rk, st.ckst.t) ←
KDF3(st.rk, upd

ar) executed in the eRcv algorithm in Line 32 in Figure 7.6 by st.rk ← rk,

st.ckst.t ← ck.

We analyze A’s advantage in winning Game C3.2.3 by hybrid games.

Game hy.0: This game is identical to Game 2. Thus, we have that

AdvC3.2
2 = Advhy.0

Game hy.j, (1 ≤ j ≤ qep): This game is identical to game Game hy.(j − 1) except that:

1. When P ∈ {A, B} is trying to send the first message in a new epoch j (i.e. P = A

if j odd and P = B if t even) and the execution Lcor
P

+← j in Line 80 in the

ep-mgmt helper function in Figure 7.6 is not triggered, then the challenger replaces

(st.rk, st.ckj) ← KDF3(st.rk, upd
ar) executed in the following eSend algorithm in

Line 21 in Figure 7.6 by stP.rk
$←− {0, 1}λ and st.ckj $←− {0, 1}λ, followed by storing

(j, stP.rk, st.ck
j, st.prtr).

2. if there exist a locally stored tuple (t′, rk, ck, prtr) and the eRcv is invoked to entering

epoch t′ with ciphertext including prtr, the challenger replaces (st.rk, st.ckj) ←
KDF3(st.rk, upd

ar) executed in the eRcv algorithm in Line 32 in Figure 7.6 by

st.rk ← rk, st.ckj ← ck.

It is obvious that Game hy.qep is identical to Game C3.1.3. Thus, we have that

AdvC3.2
3 = Advhy.qep

Let E denote the event that A can distinguish any adjacent hybrid gamesGame hy.(j−
1) and Game hy.j. Note that the modification in every hybrid game is independent of

the behavior of the previous game. Thus, we have that

AdvC3.2
2 − AdvC3.2

3 ≤ qep Pr[E]

Below, we compute the probability of the occurrence of event E by case distinction.

Note that the execution Lcor
P

+← j in Game hy.j indicates that Game hy.(j−1) is identical

to Game hy.j. Below, we only consider the case for that the execution Lcor
P

+← j is not

triggered. Note also that Lcor
P

+← j is not triggered only when safe-chP(flag, j − 1, ind),

which further implies that one of the following conditions must hold:

1.
(
safe-stP(j − 1) and safe-st¬P(j − 1)

)
2.
(
flag = good and safe-st¬P(j − 1)

)
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3.
(
flag = good and safeidK¬P

)
4.
(
flag = good and safepreK¬P (ind)

)
Then, we consider each of the four cases:

Case
(
safe-stP(j − 1) and safe-st¬P(j − 1)

)
: Recall that safe-stP(j−1) and safe-st¬P(j−

1) means (j − 1), (j − 2) /∈ Lcor
A ,Lcor

B . This indicates that (1) the execution Lcor
P

+← (j − 1)

in Game hy.(j − 1) is not triggered, and (2) the state corruption on both party is not

invoked during epoch (j − 1). (3) the first message that P receives in the epoch (j − 1) is

not forged by the attacker. According to hybrid game Game hy.(j − 1), the value stP.rk

sampled uniformly at random during sending the first message in epoch (j − 1). In other

words, stP.rk is uniformly at random from the attacker’s view when entering epoch j from

(j − 1). During sending the first message in epoch j, (st.rk, st.ckj)← KDF3(st.rk, upd
ar)

is executed in the eSend algorithm in Line 21 in Figure 7.6. By the prf security of KDF3,

it is easy to know that if A can distinguish Game hy.(j − 1) and Game hy.j, then there

must exist an attacker that distinguish the keyed KDF3 and a random function. Thus, it

holds that

Pr[E] ≤ ϵprfKDF3

Case
(
flag = good and safe-st¬P(j − 1)

)
: This case can be analyze in the following

games. Here, we only sketch the idea, since they are very similar to Game C3.1.3,

Game C1.3, Game C1.4, and Game C1.5. First, similar to analysis in Game C3.1.3,

we know that KEM public key stored in st¬P and will be used by P in epoch j is sampled

uniformly at random except probability qepϵ
dual
KDF2

. Next, similar to Game C1.3, we

know that the encapsulated key is indistinguishable from a random key except prob-

ability ϵind-ccaKEM due to the IND-CCA security of the underlying KEM. Then, similar to

Game C1.4, we know that the update value updar is indistinguishable from a random

string in {0, 1}λ except probability ϵ3prfKDF1
due to the 3prf security of the KDF1. Finally,

similar to Game C1.5, the root key st.rk and the chain key st.ckj are indistinguishable

from random strings except probability ϵswapKDF5
≤ ϵdualKDF5

due to the swap-security (and the

dual-security) of the function KDF5. Thus, we have that

Pr[E] ≤ qepϵ
dual
KDF2

+ ϵind-ccaKEM + ϵ3prfKDF1
+ ϵdualKDF5

Case
(
flag = good and safeidK¬P

)
: This case can be analyze in the following games. Here,

we only sketch the idea, since they are very similar to Game C1.3, Game C1.4, and

Game C1.5. First, similar to Game C1.3, we know that the encapsulated key is

indistinguishable from a random key except probability ϵind-ccaKEM due to the IND-CCA

security of the underlying KEM. Then, similar to Game C1.4, we know that the update

value updar is indistinguishable from a random string in {0, 1}λ except probability ϵ3prfKDF1
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due to the 3prf security of the KDF1. Finally, similar to Game C1.5, the root key st.rk

and the chain key st.ckj are indistinguishable from random strings except probability

ϵswapKDF5
≤ ϵdualKDF5

due to the swap-security (and the dual-security) of the function KDF5.

Thus, we have that

Pr[E] ≤ ϵind-ccaKEM + ϵ3prfKDF1
+ ϵdualKDF5

Case
(
flag = good and safe-st¬P(j − 1)

)
: This case can be analyze in the following

games. Here, we only sketch the idea, since they are very similar to Game C2.3,

Game C2.4, Game C2.5, and Game C2.6. First, similar to analysis in Game C2.3, the

challenger first guesses the medium-term pre-key that will be used for sending the first

message in epoch j, which can be guessed correctly with probability at least 1
qM
. Next,

similar to Game C2.4, we know that the encapsulated key is indistinguishable from a

random key except probability ϵind-ccaKEM due to the IND-CCA security of the underlying KEM.

Then, similar to Game C2.5, we know that the update value updar is indistinguishable

from a random string in {0, 1}λ except probability ϵ3prfKDF1
due to the 3prf security of

the KDF1. Finally, similar to Game C2.6, the root key st.rk and the chain key st.ckj

are indistinguishable from random strings except probability ϵswapKDF5
≤ ϵdualKDF5

due to the

swap-security (and the dual-security) of the function KDF5.

Thus, we have that

Pr[E] ≤ qM(ϵ
ind-cca
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)

From above two cases, we know that

Pr[E] ≤ max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵind-ccaKEM + ϵ3prfKDF1
+ ϵdualKDF5

,

ϵind-ccaKEM + ϵ3prfKDF1
+ ϵdualKDF5

, qM(ϵ
ind-cca
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

≤ max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵind-ccaKEM + ϵ3prfKDF1
+ ϵdualKDF5

,

qM(ϵ
ind-cca
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

This means, it holds that

AdvC3.2
2 ≤ AdvC3.2

3 + qep max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵind-ccaKEM

+ ϵ3prfKDF1
+ ϵdualKDF5

, qM(ϵ
ind-cca
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

Game C3.2.4. This game is identical to Game 3.2.3 except the following modification:

1. For running A’s eSend at t⋆, the execution (st.ckt
⋆

, urk) ← KDF4(st.ck
t⋆) in Line 22 in

Figure 7.6 is replaced by st.ckt
⋆ $←− {0, 1}λ, urk $←− {0, 1}λ. After that, the challenger

stored (st.ckt
⋆

, urk) into a local list.

2. For running B’s eRcv at t⋆ the execution (st.ckt
⋆

, urk) ← KDF4(st.ck
t⋆) in Line 38 is

replaced by the tuple (st.ckt
⋆

, urk) in the local list for the corresponding message index.
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The advantage gap of A in winning Game C3.2.3 and Game C3.2.4 can be computed

by hybrid games. Recall that A can query oracles at most q times, the maximum of the

message index is q.

Game hy.0: This game is identical to Game C3.2.3. Thus, we have that

AdvC3.2
3 = Advhy.0

Game hy.j, (1 ≤ j ≤ q): This game is identical to game Game hy.(j − 1) except that:

1. For running A’s j-th eSend at t⋆, the execution (st.ckt
⋆

, urk) ← KDF4(st.ck
t⋆) in

Line 22 in Figure 7.6 is replaced by st.ckt
⋆ $←− {0, 1}λ, urk $←− {0, 1}λ. After that,

the challenger stored (st.ckt
⋆

, urk) into a local list.

2. For running B’s eRcv on a ciphertext corresponds to the position (t⋆, j), the execution

(st.ckt
⋆

, urk)← KDF4(st.ck
t⋆) in Line 38 is replaced by the tuple (st.ckt

⋆

, urk) in the

local list for the corresponding message index j.

It is obvious that Game hy.q is identical to Game C3.2.4. So, we have that AdvC3.2
4 =

Advhy.q. The gap between every two adjacent hybrid games can be reduced to the prg

security of KDF4. Namely, if the attacker can distinguish Game hy.(j−1) from Game hy.j,

then there must exist an attacker can distinguish the real KDF4 and a random number

generator. Thus, we can easily have that

AdvC3.2
3 ≤ AdvC3.2

4 + qϵprgKDF4

Game C3.2.5. This game is identical to Game C3.2.4 except the following modifica-

tions:

1. The challenger additionally samples a random message key m̃k ∈ {0, 1}λ for the position

(t⋆, i⋆)

2. c′ ← SKE.Enc(mk,m) in Line 22 and 40 in Figure 7.6 is replaced by c′ ← SKE.Enc(m̃k ,m)

Note that the unidirectional ratchet key urk is sampled random in Game C3.2.4.

Similar to the game Game C1.5, if A can distinguish Game C3.2.4 and Game C3.2.5,

then we can construct an attacker that breaks prf security (and therefore the dual security)

of underlying KDF5. Thus, we have that

AdvC3.2
4 ≤ AdvC3.2

5 + ϵprfKDF5
≤ AdvC3.2

5 + ϵdualKDF5

Game Final Analysis for Case C3.2:

Similar to the final analysis for Game C1, if the attacker A can distinguish the

challenge bit in Game C3.2.5, then there exists an attacker that breaks IND-1CCA security

of the underlying SKE. Thus, we can easily have that

AdvC3.2
5 ≤ ϵind-1ccaSKE
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To sum up, we have that

AdvC3.2
2 ≤ qep max

(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵind-ccaKEM + ϵ3prfKDF1

+ ϵdualKDF5
, qM(ϵ

ind-cca
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)
+ qϵprgKDF4

+ ϵdualKDF5
+ ϵind-1ccaSKE

Combining all statements above, the proof is concluded by

ϵPRIVeSM ≤ qmax(AdvC1
2 ,AdvC2

2 ,AdvC3.1
2 ,AdvC3.2

2 )

≤ qmax

(
ϵind-1ccaSKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵind-ccaKEM ,

qM(ϵ
ind-1cca
SKE + ϵdualKDF5

+ ϵ3prfKDF1
+ ϵind-ccaKEM ),

ϵind-1ccaSKE + ϵdualKDF5
+ ϵ3prfKDF1

+ ϵind-ccaKEM + qepϵ
dual
KDF2

,

qep max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵind-ccaKEM + ϵ3prfKDF1
+ ϵdualKDF5

, qM(ϵ
ind-cca
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

+ qϵprgKDF4
+ ϵdualKDF5

+ ϵind-1ccaSKE

)

≤ q

(
qMϵ

ind-1cca
SKE + qep(ϵ

prf
KDF3

+ qepϵ
dual
KDF2

) + qMqep(ϵ
ind-cca
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)

+ qϵprgKDF4
+ ϵdualKDF5

)
≤ qMqepqϵ

ind-cca
KEM + qMqϵ

ind-1cca
SKE + qMqepqϵ

3prf
KDF1

+ q2epqϵ
dual
KDF2

+ qepqϵ
prf
KDF3

+ q2ϵprgKDF4
+ (qMqep + 1)qϵdualKDF5
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7.11.6 Proof of Lemma 5

Proof. The proof is given by a sequence of games. Let Advi denote the attacker A’s
advantage in winning Game i. At the beginning of the experiment, the attacker A outputs

a target epoch t⋆, such that it only queries the injection oracles inputting ciphertexts

corresponding to in this epoch. Without loss of generality, we assume t⋆ is even, i.e., A

is the message receiver. The case for t⋆ is even can be given analogously. Note also that

the attacker A can immediately win when it successfully triggers the winning predicate

winauth turning form false to true. So, we only consider the case that A successfully forges

a ciphertext only once.

Game 0. This game is identical to the ExprAUTHΠ,△eSM
. Thus, we have that

Adv0 = ϵAUTHeSM

Game 1. This game is identical to Game 0 except the following modifications:

1. If the attacker queries OInject-A(ind, c) with c corresponding epoch t⋆ and a message index

i⋆ such that t⋆ ≤ tA − 2 and (B, t⋆, i⋆) /∈ trans, the challenger immediately aborts the

oracle and outputs (t⋆, i,⊥).

Note that a record is not included in the transcript set for the previous epochs, only

when

1. this record is delivered

2. no sender has produced any message in the previous epoch t⋆ with message index i⋆

The first case can be easily excluded, since a natural eSM scheme never accepts two

messages at the same position. For the second case, note that B produces messages only

with continuous message indices. B didn’t produce the message with message index i⋆

means that i⋆ exceeds the maximal message length that B has produced in the epoch t⋆.

Since in eSM A has received all maximal message length in all previous epochs (see Line 30

in Figure 7.6) and will aborts the eRcv execution if i exceeds the maximal message length

in the corresponding epoch (see Line 26 in Figure 7.6). This game is identical to Game 0

from A’s view. Thus, we have that

Adv1 = Adv0

Note that the attacker can win only when it queries OInject-A(ind, c) such that all of the

following conditions hold

1. c corresponds to epoch t⋆

2. (B, c) /∈ trans

3. ind ≤ nA
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4. safe-injA(tA) = safe-stB(tA) and safe-injA(tB) = safe-stB(tB)

5. m ′ ̸= ⊥

6. (B, t⋆, i⋆) /∈ comp

where (stA, t
⋆, i⋆,m ′)← eRcv(stA, ik A, prepk

ind
A , c)

In particular, (B, t⋆, i⋆) /∈ comp but (B, t⋆, i⋆) ∈ trans means that

1. safe-stB(t
⋆) = true holds at the time of B sending message corresponding to the position

(t⋆, i⋆), and

2. if safe-stB(t
⋆) = false, OCorrupt-A cannot be queried

3. If OCorrupt-A is queried at epoch t⋆, then OCorrupt-B cannot be queried.

4. OCorrupt-B can be queried only after the ciphertext corresponding to (t⋆, i⋆) has been

honestly generated.

5. After the leakage of identity keys or pre-keys, safe-stB(t
⋆) = false

So, at most one of OCorrupt-A and OCorrupt-B at epoch t⋆, but not both.

We separate the analysis for t⋆ ≥ tA − 1, see Case 1, or t⋆ ≤ tA − 2, see Case 2.

Case 1. t⋆ ≥ tA − 1

In this case, the attacker queriesOInject-A(ind, c) for some pre-key index ind and ciphertext

c under the condition that safe-stB(tB) = true. This means, tB, (tB − 1) /∈ Lcor
B .

Game C1.2 This game is identical to Game 1 except the following modification:

1. Until epoch t⋆, whenever P ∈ {A, B} is trying to sending the first message in a new epoch

t+1 (i.e. P = A if t even and P = B if t odd) and the execution Lcor
P

+← t+1 in Line 80 in

the ep-mgmt helper function in Figure 7.6 is not triggered, then the challenger replaces

r $←− {0, 1}λ, (stP.nxs , rKEM, rDS) ← KDF2(stP.nxs , r) executed in the following eSend

algorithm in Line 18 in Figure 7.6 by stP.nxs
$←− {0, 1}λ, rKEM $←− {0, 1}λ, rDS $←− {0, 1}λ.

We analyze A’s advantage in winning Game C1.2 by hybrid games.

Game hy.0: This game is identical to Game 1. Thus, we have that

AdvC1.1
1 = Advhy.0

Game hy.j, (1 ≤ j ≤ qep): This game is identical to game Game hy.(j − 1) except that:

1. When entering epoch j from j − 1, if the execution Lcor
P

+← j in Line 80 in the

ep-mgmt helper function in Figure 7.6 is not triggered for P = A if j odd and

P = B if j even, then in the following eSend algorithm, the challenger replaces r $←−
{0, 1}λ, (stP.nxs , rKEM, rDS)← KDF2(stP.nxs , r) executed in Line 18 in Figure 7.6 by

stP.nxs
$←− {0, 1}λ, rKEM $←− {0, 1}λ, rDS $←− {0, 1}λ.
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It is obvious that Game hy.qep is identical to Game C1.2. Thus, we have that

AdvC1
2 = Advhy.qep

Let E denote the event that A can distinguish any adjacent hybrid gamesGame hy.(j−
1) and Game hy.j. Note that the modification in every hybrid game is independent of

the behavior of the previous game. Thus, we have that

AdvC1
1 − AdvC1

2 ≤ qep Pr[E]

Below, we compute the probability of the occurrence of event E by case distinction.

Note that the execution Lcor
P

+← j in Game hy.j indicates that Game hy.(j−1) is identical

to Game hy.j. Below, we only consider the case for that the execution Lcor
P

+← j is not

triggered. Note also that Lcor
P

+← j is not triggered only when safe-chP(flag, j − 1, ind) for

some pre-key index ind, which further implies that one of the following conditions must

hold: (1) safe-stP(j − 1) or (2) flag = good. Then, we consider each of the two cases.

Case safe-stP(j − 1): First, safe-stP(j−1) means (j−1), (j−2) /∈ Lcor
P . Moreover, (j−1) /∈

Lcor
P indicates that (1) the execution Lcor

P

+← (j − 2) in Game hy.(j − 2) is not triggered,

and (2) the state corruption on P is not invoked during epoch (j − 1) and (j − 2).

According to hybrid game Game hy.(j − 2), the value stP.nxs sampled uniformly at

random during sending the first message in epoch (j − 2). In other words, stP.nxs is

uniformly at random from the attacker’s view when entering epoch j from (j−1). During

sending the first message in epoch j, r $←− {0, 1}λ, (stP.nxs , rKEM, rDS)← KDF2(stP.nxs , r)

is executed in Line 18 in Figure 7.6. By the prf security of KDF2, it is easy to know that

if A can distinguish Game hy.(j − 1) and Game hy.j, then there must exist an attacker

that distinguish the keyed KDF2 and a random function. Thus, it holds that

Pr[E] ≤ ϵprfKDF2

Case flag = good: This means, the first message in epoch j−2 is computed using fresh ran-

domness. In particular, this means, r $←− {0, 1}λ, (stP.nxs , rKEM, rDS)← KDF2(stP.nxs , r)

is executed in Line 18 in Figure 7.6 uses fresh randomness r. It is easy to know that

stP.nxs after sending the first message in epoch (j − 2) is distinguishable from a random

string, due to the swap-security of KDF2.

Thus, we have that

Pr[E] ≤ ϵswapKDF2

From above two cases, we know that

Pr[E] ≤ max
(
ϵprfKDF2

+ ϵswapKDF2

)
≤ ϵdualKDF2
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To sum up, we have that

AdvC1
1 ≤ qep Pr[E] + AdvC1

2 ≤ AdvC1
2 + qepϵ

dual
KDF2

Final Analysis for Case C1.

Note that tA − 1 ≤ t⋆ and that t⋆ even. Then, there are following seven cases:

1. tA is even: tA = tB = t⋆

2. tA is odd: t⋆ = tA − 1, tB = tA − 1

3. tA is odd: t⋆ = tA − 1, tB = tA

4. tA is odd: t⋆ = tA − 1, tB = tA + 1

5. tA is odd: t⋆ = tA + 1, tB = tA − 1

6. tA is odd: t⋆ = tA + 1, tB = tA

7. tA is odd: t⋆ = tA + 1, tB = tA + 1

In all of above seven cases, t⋆ and tB are not two epochs apart. Moreover, by safe-stB(tA)

amd safe-stB(tB), we know that the A has to forge at least one signature against a pair of

uncorrupted and freshly generated key pair, due to Game C1.2. To make a successful

injection query, A has to either keep the pre-transcript and forge a signature for the

pre-transcript or forge a signature for a new pre-transcript, which violates the SUF-CMA

security of the underlying DS scheme. Thus, we can have that

AdvC1
2 ≤ ϵsuf-cma

DS

To sum up, we have that

AdvC1
1 ≤ ϵsuf-cma

DS + qepϵ
dual
KDF2

Case 2. t⋆ ≤ tA − 2

In this case, A aims to forge a ciphertext in a past epoch. By Game 1, we know that

(t⋆, i⋆) ∈ trans, where i⋆ denotes the message index corresponding to the forged ciphertext.

Game C2.2 This game is identical to Game 1 except the following modification:

1. The challenger directly outputs (t⋆, i,⊥) for answering any OInject-A(ind, c) if safe-stB(t
⋆) =

true, where (t⋆, i) is the position of c.

Note that safe-stB(t
⋆) = true holds at the time of B sending message corresponding to

the position (t⋆, i⋆) for some i⋆. This means, safe-stB(t
⋆) = true when B was switch from

receiver to sender when entering epoch t⋆. Similar to the analysis in Game C1.2, we

know that the signing keys are randomly sampled except probability at most qepϵ
dual
KDF2

. If

safe-stB(t
⋆) = true at the time of any OInject-A query, the signing key has not been corrupted.

284



Similar to the final analysis of Game C1.2, if A can forge a ciphertext, then we can

construct another attacker that invokes A to break the SUF-CMA security of DS. Thus,

we have that

AdvC2
1 ≤ AdvC2

2 + ϵsuf-cma
DS + qepϵ

dual
KDF2

In the games below, we assume that safe-stB(t
⋆) = false when A queries OInject-A. Recall

that OCorrupt-B can be queried only after the ciphertext corresponding to (t⋆, i⋆) has been

honestly generated. This also means that the unidirectional ratchet key urk for encrypting

and decrypting the ciphertext corresponding position (t⋆, i⋆) has been removed from the

state stB. Moreover, if OCorrupt-B is queried, then OCorrupt-A cannot be queried.

Game C2.3 This game is identical to Game C2.2 except the following modification:

1. Until epoch t⋆. Whenever P ∈ {A, B} is trying to sending the first message in a new

epoch t + 1 (i.e. P = A if t even and P = B if t odd) and the execution Lcor
P

+← t+ 1 in

Line 80 in the ep-mgmt helper function in Figure 7.6 is not triggered, then the challenger

replaces (st.rk, st.ckst.t)← KDF3(st.rk, upd
ar) executed in the following eSend algorithm

in Line 21 in Figure 7.6 by stP.rk
$←− {0, 1}λ and st.ckst.t $←− {0, 1}λ, followed by storing

(t + 1, stP.rk, st.ck
t+1, st.prtr).

2. if there exist a locally stored tuple (t′, rk, ck, prtr) and the eRcv is invoked to enter-

ing epoch t′ with ciphertext including prtr, the challenger replaces (st.rk, st.ckst.t) ←
KDF3(st.rk, upd

ar) executed in the eRcv algorithm in Line 32 in Figure 7.6 by st.rk ← rk,

st.ckst.t ← ck.

The analysis of this game is identical to Game C3.2.3 in Section 7.11.5. We can easily

know that

AdvC2
2 ≤AdvC2

3 + qep max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵind-ccaKEM

+ ϵ3prfKDF1
+ ϵdualKDF5

, qM(ϵ
ind-cca
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

Game C2.4 This game is identical to Game C2.3 except the following modification

until OCorrupt-B is invoked:

1. For running A’s eSend at t⋆, the execution (st.ckt
⋆

, urk) ← KDF4(st.ck
t⋆) in Line 22 in

Figure 7.6 is replaced by st.ckt
⋆ $←− {0, 1}λ, urk $←− {0, 1}λ. After that, the challenger

stored (st.ckt
⋆

, urk) into a local list.

2. For running B’s eRcv at t⋆ the execution (st.ckt
⋆

, urk) ← KDF4(st.ck
t⋆) in Line 38 is

replaced by the tuple (st.ckt
⋆

, urk) in the local list for the corresponding message index.
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The advantage gap of A in winning Game C3.2.3 and Game C3.2.4 can be computed

by hybrid games and reduced to the prg security of KDF4. Note that A can query at most

q, we can easily have that

AdvC2
3 ≤ AdvC2

4 + qϵprgKDF4

Game C2.5. In this game, the challenger guesses the message index i⋆ that A wants

to attack. Note that A can query at most q times oracles. The challenger guesses correctly

with probability at least 1
q
. Thus, we have that

AdvC2
4 ≤ qAdvC2

5

Game C2.6. This game is identical to Game C2.5 except the following modifications:

1. The challenger additionally samples a random message key m̃k ∈ {0, 1}λ for the position

(t⋆, i⋆)

2. If the pre-key index ind equals the one for producing ciphertext at position (t⋆, i⋆) and the

KEM ciphertext are same as produced before, the challenger replaces c′ ← SKE.Enc(mk,m)

in Line 22 and 40 in Figure 7.6 by c′ ← SKE.Enc(m̃k ,m). Otherwise, the challenger

samples another random key m̃k
′

∈ {0, 1}λ for decrypting ciphertext at location (t⋆, i⋆).

Note that the unidirectional ratchet key urk is sampled random in Game C2.4. If

A can distinguish Game C2.5 and Game C2.6, then we can construct an attacker that

breaks prf security (and therefore the dual security) of underlying KDF5. Thus, we have

that

AdvC2
5 ≤ AdvC2

6 + ϵprfKDF5
≤ AdvC2

6 + ϵdualKDF5

Game C2.7. This game is identical to Game C2.6 except the following modifications:

1. If A queries OInject-A(ind, c) such that

(a) c corresponds to the position (t⋆, i⋆)

(b) ind does not equal the one for producing the ciphertext at position (t⋆, i⋆) or the

KEM ciphertexts included in c do not equal the ones in the original ciphertext at

position (t⋆, i⋆)

then the challenger simply returns (t⋆, i⋆,⊥)

The gap between Game C2.6 and Game C2.7 can be reduced to the IND-1CCA security

of SKE. The reduction simulates Game C2.6 honestly except for the OInject-A(ind, c) that

is described above. In this case, the reduction forwards the symmetric key ciphertext

to its decryption oracle for a reply m ′. Then, the reduction returns (t⋆, i⋆,m ′) to A. If

the challenge bit is 0, then the reduction simulates Game C2.6 honestly, otherwise, it
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simulates Game C2.7. Thus, if A can distinguish Game C2.6 and Game C2.7, then the

reduction can easily distinguish the challenge bit. Thus, we have that

AdvC2
6 ≤ AdvC2

7 + ϵind-1ccaSKE

Game C2.8. This game is identical to Game C2.7 except the following modifications:

1. If A queries OInject-A(ind, c) such that

(a) c corresponds to the position (t⋆, i⋆)

(b) ind equals the one for producing the ciphertext at position (t⋆, i⋆) and the KEM

ciphertexts included in c equal the ones in the original ciphertext at position (t⋆, i⋆)

then the challenger simply returns (t⋆, i⋆,⊥)

The gap between Game C2.7 and Game C2.8 can be reduced to the IND-1CCA security

of SKE. The reduction simulates Game C2.7 honestly except for the OTransmit-B(ind,m, r)

and OInject-A(ind, c) that is described above.

For the OTransmit-B(ind,m, r) query, the reduction forwards m to its encryption oracle

for a ciphertext c′. The rest of this oracle is honestly simulated.

For the OInject-A(ind, c) query, the reduction forwards symmetric key ciphertext in the c

to its decryption oracle for a reply m ′. Then, the reduction returns (t⋆, i⋆,m ′) to A.
If the challenge bit is 0, then the reduction simulates Game C2.7 honestly, otherwise,

it simulates Game C2.8. Thus, if A can distinguish Game C2.7 and Game C2.8, then

the reduction can easily distinguish the challenge bit. Thus, we have that

AdvC2
7 ≤ AdvC2

8 + ϵind-1ccaSKE

Final Analysis for Case C2:

Note that no matter what kind of OInject-A(ind, c) query A asks, where c corresponds to

the position (t⋆, i⋆) , the challenger always returns (t⋆, i⋆,⊥) immediately, according to

Game C2.7 and Game C2.8. Thus, A can never win and we have that

AdvC2
8 = 0

To sum up, we have that

AdvC2
1 ≤ ϵsuf-cma

DS + qepϵ
dual
KDF2

+ qϵprgKDF4
+ q(ϵdualKDF5

+ 2ϵind-1ccaSKE )

+ qep max
(
ϵprfKDF3

, qepϵ
dual
KDF2

+ ϵind-ccaKEM + ϵ3prfKDF1
+ ϵdualKDF5

,

qM(ϵ
ind-cca
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

≤ ϵsuf-cma
DS + q(ϵprgKDF4

+ ϵdualKDF5
+ 2ϵind-1ccaSKE )

+ qep

(
ϵprfKDF3

+ (qep + 1)ϵdualKDF2
+ qM(ϵ

ind-cca
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)
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The following equation concludes the proof.

ϵAUTHeSM ≤ max(AdvC1
1 ,AdvC2

1 )

≤ max

(
ϵsuf-cma
DS + qepϵ

dual
KDF2

, ϵsuf-cma
DS + q(ϵprgKDF4

+ ϵdualKDF5
+ 2ϵind-1ccaSKE )

+ qep

(
ϵprfKDF3

+ (qep + 1)ϵdualKDF2
+ qM(ϵ

ind-cca
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
))

≤ ϵsuf-cma
DS + q(ϵprgKDF4

+ ϵdualKDF5
+ 2ϵind-1ccaSKE )

+ qep

(
ϵprfKDF3

+ (qep + 1)ϵdualKDF2
+ qM(ϵ

ind-cca
KEM + ϵ3prfKDF1

+ ϵdualKDF5
)
)

≤ ϵsuf-cma
DS + qepqMϵ

ind-cca
KEM + 2qϵind-1ccaSKE + qepqMϵ

3prf
KDF1

+ qep(qep + 1)ϵdualKDF2
+ qepϵ

prf
KDF3

+ qϵprgKDF4
+ (qepqM + q)ϵdualKDF5
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7.11.7 Proof of Theorem 29

Proof. The proof is given by reduction. Namely, if there exists an attacker A that breaks

the offline deniability for the composition of a DAKE scheme Σ and our eSM construction

Π in Section 7.5.2, then we can always construct an attacker B that breaks the offline

deniability of Σ in terms of Definition 61, also see [63, Definition 11].

We first define the function FakeeInitΠ and the function FakeeSendΠ for our eSM construction

Π.

• FakeeInitΠ (K, ipkdid, ik aid,Lprek
aid , sid, rid, aid, did): this algorithm inputs a key K ∈ iss , iden-

tity public keys ipk A and ipk B, a list of private pre-keys Lprek
rid , the sender identity sid, the

receiver identity rid, the accuser identity aid, and the defendant identity did, followed by

executing the following steps:

1. stA
$←− Π.eInit-A(K)

2. stB
$←− Π.eInit-B(K)

3. stFake ←
(
(stA, rid), (stB, sid)

)
4. return stFake

• FakeeSendΠ (stFake, ipk , prepk ,m, sid, rid, ind): this algorithm inputs a fake state stFake, an

public identity key ipk , a public pre-key prepk , a message m, a sender identity sid, a

receiver identity rid, and a pre-key index ind, followed by executing the following steps:

1. Parse
(
(stA, idA), (stB, idB)

)
← stFake

2. if idA = sid, then

(a) (stA, c)
$←− Π.eSend(stA, ipk , prepk ,m)

(b) copy all symmetric values in session state stA to session state stB

(c) If stA.t is incremented in the above Π.eSend invocation, then extract the new

verification key vk and new encryption key ek from c, followed by set vk and

ek into stB

(d) stFake ← ((stA, idA), (stB, idB))

3. else

(a) (stB, c)
$←− Π.eSend(stB, ipk , prepk ,m)

(b) copy all symmetric values in session state stB to session state stA

(c) If stB.t is incremented in the above Π.eSend invocation, then extract the new

verification key vk and new encryption key ek from c, followed by set vk and

ek into stA

(d) stFake ← ((stA, idA), (stB, idB))
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At the beginning of the experiment, the attacker B inputs a list Lall that includes all

public-private key pairs of Σ from its challenger. Next, B honestly samples the random

identity key and pre-key pairs of Π and sets them into the respective lists as in the

ExprdeniΣ,Π,qP,qM,qS
. In particular, all public-private key pairs are added into the list Lall. B

also initializes a empty dictionary Dsession and a counter n to 0. Then, B sends the list Lall

to A.
When A queries Session-Start(sid, rid, aid, did, ind), B first checks whether {sid, rid} =

{aid, did} and sid ̸= rid holds. It either condition does not hold, B simply aborts the oracle.

Next, B increments the counter n, followed by adding {sid, rid} into the dictionary Dsession[n].

Then, B checks whether aid = sid. If the conditions holds, then B simply honestly runs Σ on

the corresponding input and finally derives a key K ∈ iss and a transcript T . Otherwise, B
queries its challenge oracle with the input (sid, rid, ind) for the key K and the transcript T .

After that, B runs the above defined function FakeeInitΠ (K, ipkdid, ik aid,Lprek
aid , sid, rid, aid, did)

for a fake state stnFake. Finally, B returns the transcript to A.
When A queries Session-Execute(sid, rid, i, ind,m), B simply simulates Session-Execute

as if the bit b = 1.

At the end of the experiment, when A outputs a bit b′, B then forwards it to its

challenger.

Note that our FakeeInitΠ algorithm perfectly simulates the process of running Π.eInit-A

and Π.eInit-B. Moreover, we consider two cases for the queries to the Session-Execute

oracle:

1. If the sender identity sid in the Session-Execute oracle query is idA. Note that when a

party receives a message from the partner in our eSM construction Π, it only passively

updates the symmetric state, and optionally update the verification key and encryption

key from the partner. In this case, our FakeeSendΠ algorithm perfectly simulates the case

that idA sends messages to idB.

2. If the sender identity sid in the Session-Execute oracle query is idB. In this case, similar

to the analysis above, our FakeeSendΠ algorithm also perfectly simulates the case that idB

sends messages to idA.

To sum up, in both cases B perfectly simulates ExprdeniΣ,Π,qP,qM,qS
to A. Thus, B wins if

and only if A wins. Obviously, the number of sessions at least as many as the number

of challenge oracles that B queries. And A and B runs in the approximately same time,

which concludes the proof.
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Chapter 8

Conclusions

This thesis sets out to provide the missing provable security analysis of five real-world

protocols, discloses the potential vulnerabilities, and propose their feasible mitigation.

These protocols are:

1. one of the most efficient digital signature implementations Ed25519,

2. the generic authenticated encryption with associated data (AEAD) schemes,

3. the latest version of passwordless authentication standard FIDO2,

4. the popular video conferencing library Zoom, and

5. our own proposal of extended secure messaging protocol eSM.

Each of these protocols has various characteristics and can be categorized into several

representative research domains, based on different classification criteria. I summarize

some characteristics of these five protocols in Table 8.1. Moreover, our security analysis

covers not only the heart of information security “CIA” (Confidentiality, Integrity, and

Availability) but also several state-of-the-art security properties that surface and have

become relevant only recently in our modern life. I summarize the security properties that

this thesis investigated for these five protocols in Table 8.2. I expect this thesis to be able

to motivate and impact further research in a wider scope of cryptography.

In this chapter, I conclude this thesis by a brief summary of contributions in Section 8.1

and some open challenges in Section 8.2.

8.1 Contributions

A brief summary of our contributions follows:

• In Chapter 3:

1. We provide the first detailed proof that Ed25519-Original [43] is indeed EUF-CMA

secure.
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Interactivity Synchronicity Symmetry Use Case
Chapter 3: Ed25519 non-interactive - asymmetric -
Chapter 4: AEAD non-interactive - symmetric -
Chapter 5: FIDO2 interactive synchronous - two-party
Chapter 6: Zoom interactive synchronous - group
Chapter 7: eSM interactive asynchronous - two-party

Table 8.1: Summary of characteristics of five protocols in this thesis. We use “-” to denote that
a characteristic is irrelevant for a protocol.

Security Properties
Chapter 3: Ed25519 integrity, resilience against key substitution attacks

Chapter 4: AEAD
privacy, integrity, collision resistance, input-bound ciphertext,
full robustness, key committing, multi-key collision resistance,
receiver binding

Chapter 5: FIDO2
user authentication, resilience against downgrade attacks,
post-quantum security

Chapter 6: Zoom
(implicit) group key authentication, group key secrecy, perfect
forward secrecy, (implicit) group member authentication, (full)
end-to-end security

Chapter 7: eSM

resilience against fine-grained state compromise, immediate
decryption, temporal privacy, correctness, forward secrecy,
post-compromise security, strong authenticity, strong privacy,
randomness leakage/failures, state compromise/failures, periodic
privacy recovery, offline deniability, post-quantum security

Table 8.2: Summary of security properties of five protocols in this thesis.

2. We provide the first proof that Ed25519-IETF [121] is actually SUF-CMA secure.

3. We prove that all Ed25519 schemes are resilient against key substitution attacks,

and that if small subgroup keys are rejected as in LibSodium, a signature uniquely

identifies a message, even for malicious keys.

4. In a wider sense, our results retroactively support the standardisation of Ed25519-IETF,

and support the ongoing standardisation by NIST.

• In Chapter 4:

1. We formally prove some well-known but merely conjectured relations for AEAD

between the fundamental privacy and integrity.

2. We formally prove the missing or conjectured relations between existing AEAD

security notions w.r.t. collision resistance, completing the picture in the domain.

• In Chapter 5:

1. We prove that FIDO2 with WebAuthn 2 and CTAP 2.1 is provably secure against

classical attackers in a fine-grained security and protocol model. Our security models
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are more fine-grained or cover other aspects than previous versions such as [21, 103].

For example, we add important aspects such as algorithm negotiation, required user

actions, and token binding. For CTAP 2.1, our security proofs confirm the stronger

containment properties (reduced “blast radius”) offered by the protocol compared to

CTAP 2.0. Our analysis of WebAuthn 2 also has new implications for WebAuthn 1:

we provide the first guarantees of the most widely used None attestation mode, user

verification, user presence, and token binding.

2. We prove that if FIDO2 with WebAuthn 2 and CTAP 2.1 is instantiated with

post-quantum (PQ) secure KEMs and signatures, then it is secure against quantum

attackers in the same model. We give concrete suggestions for PQ secure algorithm

and negotiation design choices, including classical-PQ hybrids as suggested by

standardization agencies, such as NIST (National Institute for Standards and

Technology) [69].

3. We propose a simple improvement to WebAuthn 2 that improves its resilience

to certain types of downgrade attack. While these can only occur for strong

threat models, these improvements yield stronger classical security against broken

cryptographic primitives, and are even more relevant for their PQ instantiations.

• In Chapter 6:

1. We develop a solution to improve the security of Zoom-like apps against malicious

servers, without introducing new security elements. The core observation is that

Zoom already uses group-specific passwords, but they are by design known to the

server. By leveraging techniques from password-authenticated key exchange, we can

get rid of the reliance on the server for trusted channels.

2. To formally prove the security of our solution, we need to develop substantial

machinery. We propose a formal model and syntax of multi-stage group key

distribution protocols, called mGKD, of which Zoom can be seen as an instance. For

such protocols, we develop a basic security notion Sec-mGKD-pki, which assumes

the server did not interfere with the public keys of a group’s participants, and prove

that Zoom meets this notion. We show how real-world attacks manifest in this basic

notion and notably how malicious zoom servers can manipulate groups.

3. We formally prove that our transformation turns a protocol that is Sec-mGKD-pki

secure into one that is also secure in a model that makes no assumptions on the

server but only on the password, which we call Sec-mGKD-pw.

4. We show how to efficiently apply our transformation to the Zoom version 4.0

protocol to obtain the ZoomPAKE protocol, in which the server no longer knows

the password, and groups are protected against malicious servers.

• In Chapter 7:
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1. Our main contribution is the first provably secure messaging protocol with immediate

decryption and constant-size overhead, temporal privacy, and resilience against fine-

grained state compromise. To this end, we introduce a related new strong security

notion called Extended-Secure-Messaging (eSM). We show that the eSM notion

covers above strong properties and prove that our protocol meets it, in particular,

in the PQ setting.

2. Furthermore, to show that our protocol is a suitable PQ-secure candidate for the

DR in Signal, which is provably offline deniable, we extend the offline deniability

definition for SPQR [63] (currently the only provably secure PQ-asynchronous key

establishment) to the multi-stage setting. We prove that the combination of our

eSM-secure protocol and SPQR is offline deniable, making it the first full messaging

protocol that is provably offline deniable in the PQ setting.

8.2 Open Challenges

Below, I will introduce the open challenges that I am interested in and the ultimate

implications of their resolutions.

Open Questions. During my doctoral research, I observed that the conventional research

approach to proposing a new cryptographically secure protocol design is often given in the

following two steps: (1) first formally model the desired security requirements, and (2)

then prove that there are met in some threat model either by an existing protocol or a

novel proposal. However, such a conventional approach has many shortcomings:

• First, we define concrete threat models for a class of protocols that following the same

syntax. This threat model is expected to capture some target attackers’ capabilities and

desired security guarantees.

• Second, we introduce concrete protocols, which either exist in the literature, underlie

some real-world applications, or are designed by ourselves.

• Third, we claim that these protocols are secure in the defined threat models, followed by

formally proving our claims.

1. The existing protocol designs often lack generality: their constructions and

instantiations are concrete and fixed. In real life, any currently state-of-the-art protocol

might become out-of-date, since some attackers with stronger capability might appear in

the future. For example, CTAP 2.0 underlying FIDO2 concretely deploys Diffie-Hellman

key exchange, the security of which is broken against quantum attackers. To improve

the security against quantum attackers in the future, the FIDO alliance has to propose a

new FIDO2 with CTAP 2.1 and we propose its PQ-secure generic hybrid instantiation.
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2. The existing threat models often lack generality: some of them claim to capture

the same security goals but indeed interpret them independently to different extents. This

complicates the comparison between different threat models and prevents developers from

quickly figuring out the most suitable candidates for the desired security requirements.

For example, there are a number of secure messaging designs in the literature, all aiming

at strong privacy and authenticity, e.g., “optimal”, “almost-optimal”, “sub-optimal”,

and “ID-optimal” security, the differences between which are however very subtle and

vague. This potentially leads their comparisons with our eSM proposal, which aims at

the balance between strong security and efficiency, to be even more complicated.

3. The existing security analyses often lack generality: they are merely subject to a

given protocol and threat model and do not allow for even slight modifications in the

design. This causes an unnecessarily high workload for the analysis of different but similar

threat models, in particular for large-scale communication protocols, which always require

extremely high effort on the proof due to the cumbersome methodology in complicated

threat models. On the one hand, this makes the proofs too obscure to be verified even

by experts. On the other hand, this triggers the urgent deployment of some modern

protocol designs without comprehensive and timely analysis. For example, although a

lot of adjacent related work to real-time group protocols exists in the literature, their

analyses cannot directly apply to Zoom. We are able to formally analyze the security

of Zoom, disclose the loss of full E2EE security, and propose mitigation only in the

post-Covid-19 era.

The above observations motivate my invention of a novel and more efficient methodology

for security analyses and protocol designs. My future plan will focus on the following open

questions:

1. [Generic Protocol Designs] How to generically recombine different cryptographic

building blocks into full-fledged proposals in a (possibly) intertwined manner?

2. [Generic Security Analyses] How to inherit the security of the composed proposal

from the security of the underlying building blocks?

3. [Generic Threat Models] How to easily compare the security of different re-combinations?

Implications. The resolution of the open questions has the following implications:

1. Simplified designs and reduced workload. Developers can freely choose and combine

the desired building blocks according to their needs (e.g., bandwidth or storage limits),

as well as understand the final guarantees. Meanwhile, only the security analysis of each

(generic) building block, rather than the full protocols, is necessary.
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2. Interchangeability. It suffices to swap one concrete instantiation (of a generic building

block) with another to obtain security against attackers with stronger capability, e.g.,

post-quantum security.

3. Generality. The security of all generic building blocks and their instantiations can be

repeatedly used in the security analysis of different messaging protocols.
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gor Seiler, and Damien Stehlé. CRYSTALS-Dilithium Algorithm Specifications and Support-
ing Documentation (Version 3.1). https://pq-crystals.org/dilithium/data/dilithium-
specification-round3-20210208.pdf.

[18] Dirk Balfanz, Alexei Czeskis, Jeff Hodges, J.C. Jones, Michael B. Jones, Akshay Kumar, Angelo
Liao, Rolf Lindemann, Emil Lundberg, Vijay Bharadwaj, Arnar Birgisson, Hubert Le Van Gong,
Christiaan Brand, Langley Adam, Giridhar Mandyam, Mike West, and Jeffrey Yasskin. Web
authentication: An API for accessing public key credentials level 1 – W3C recommendation.
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/. March 2019.

[19] Fatih Balli, Paul Rösler, and Serge Vaudenay. “Determining the core primitive for optimally
secure ratcheting”. In: International Conference on the Theory and Application of Cryptology and
Information Security. Springer. 2020.

[20] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. Provable Security
Analysis of FIDO2. Cryptology ePrint Archive, Paper 2020/756. https://eprint.iacr.org/
2020/756, accessed on 18.08.2022. 2020.

[21] Manuel Barbosa, Alexandra Boldyreva, Shan Chen, and Bogdan Warinschi. “Provable security
analysis of FIDO2”. In: Advances in Cryptology–CRYPTO 2021: 41st Annual International
Cryptology Conference, CRYPTO 2021, Virtual Event, August 16–20, 2021, Proceedings, Part III
41. Springer. 2021.

[22] R. Barnes, B. Beurdouche, R. Robert, J. Millican, E. Omara, and K. Cohn-Gordon. The Messaging
Layer Security (MLS) Protocol. https://datatracker.ietf.org/doc/html/draft-ietf-mls-
protocol-20.

[23] Guy Barwell, Daniel Page, and Martijn Stam. “Rogue Decryption Failures: Reconciling AE
Robustness Notions”. In: Proceedings of the 15th IMA International Conference on Cryptography
and Coding. 2015.

[24] Mihir Bellare and Wei Dai. The Multi-Base Discrete Logarithm Problem: Non-Rewinding Proofs
and Improved Reduction Tightness for Identification and Signatures. Cryptology ePrint Archive,
Report 2020/416. https://eprint.iacr.org/2020/416. 2020.

[25] Mihir Bellare, Anand Desai, Eron Jokipii, and Phillip Rogaway. “A concrete security treatment
of symmetric encryption”. In: Proceedings 38th Annual Symposium on Foundations of Computer
Science. IEEE. 1997.

[26] Mihir Bellare, Marc Fischlin, Adam O’Neill, and Thomas Ristenpart. “Deterministic encryption:
Definitional equivalences and constructions without random oracles”. In: Annual International
Cryptology Conference. Springer. 2008.

[27] Mihir Bellare and Viet Tung Hoang. Efficient Schemes for Committing Authenticated Encryption.
Cryptology ePrint Archive, Report 2022/268. https://ia.cr/2022/268. 2022.

[28] Mihir Bellare and Viet Tung Hoang. “Efficient schemes for committing authenticated encryption”.
In: Advances in Cryptology–EUROCRYPT 2022: 41st Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Trondheim, Norway, May 30–June 3, 2022,
Proceedings, Part II. Springer. 2022.

[29] Mihir Bellare and Anna Lysyanskaya. Symmetric and Dual PRFs from Standard Assumptions:
A Generic Validation of an HMAC Assumption. Cryptology ePrint Archive, Report 2015/1198.
https://ia.cr/2015/1198. 2015.

[30] Mihir Bellare and Chanathip Namprempre. “Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm”. In: International Conference on the Theory
and Application of Cryptology and Information Security. Springer. 2000.

299

https://datatracker.ietf.org/doc/draft-irtf-cfrg-xchacha/03/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-xchacha/03/
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://pq-crystals.org/dilithium/data/dilithium-specification-round3-20210208.pdf
https://www.w3.org/TR/2019/REC-webauthn-1-20190304/
https://eprint.iacr.org/2020/756
https://eprint.iacr.org/2020/756
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-20
https://datatracker.ietf.org/doc/html/draft-ietf-mls-protocol-20
https://eprint.iacr.org/2020/416
https://ia.cr/2022/268
https://ia.cr/2015/1198


[31] Mihir Bellare, Ruth Ng, and Björn Tackmann. Nonces are Noticed: AEAD Revisited. Cryptology
ePrint Archive, Report 2019/624. https://ia.cr/2019/624. 2019.

[32] Mihir Bellare and Adriana Palacio. “GQ and Schnorr Identification Schemes: Proofs of Security
against Impersonation under Active and Concurrent Attacks”. In: Advances in Cryptology —
CRYPTO 2002. Springer, 2002.

[33] Mihir Bellare, Bertram Poettering, and Douglas Stebila. “From Identification to Signatures, Tightly:
A Framework and Generic Transforms”. In: Advances in Cryptology – ASIACRYPT 2016. Springer,
2016.

[34] Mihir Bellare and Phillip Rogaway. “Random Oracles Are Practical: A Paradigm for Designing
Efficient Protocols”. In: Proceedings of the 1st ACM Conference on Computer and Communications
Security. CCS ’93. Fairfax, Virginia, USA: ACM, 1993.

[35] Mihir Bellare, Phillip Rogaway, and David Wagner. “The EAX mode of operation”. In: International
Workshop on Fast Software Encryption. 2004.

[36] Mihir Bellare, Asha Camper Singh, Joseph Jaeger, Maya Nyayapati, and Igors Stepanovs. “Ratch-
eted encryption and key exchange: The security of messaging”. In: Annual International Cryptology
Conference. Springer. 2017.

[37] Florian Bergsma, Benjamin Dowling, Florian Kohlar, Jörg Schwenk, and Douglas Stebila. “Multi-
ciphersuite security of the Secure Shell (SSH) protocol”. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. 2014.

[38] Florian Bergsma, Benjamin Dowling, Florian Kohlar, Jörg Schwenk, and Douglas Stebila. Multi-
ciphersuite security of the Secure Shell (SSH) protocol. Cryptology ePrint Archive, Report 2013/813.
https://eprint.iacr.org/2013/813. 2013.

[39] Daniel J. Bernstein. “Curve25519: New Diffie-Hellman Speed Records”. In: Public Key Cryptography
- PKC 2006. Springer, 2006.

[40] Daniel J. Bernstein. “Multi-user Schnorr security, revisited”. In: IACR Cryptology ePrint Archive
2015 (2015).

[41] Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters. “Twisted
Edwards Curves”. In: Progress in Cryptology – AFRICACRYPT 2008. Springer, 2008.

[42] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. Ed25519: high-speed
high-security signatures. https://ed25519.cr.yp.to/, (Accessed March 09, 2020).

[43] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. “High-Speed
High-Security Signatures”. In: CHES. Vol. 6917. Lecture Notes in Computer Science. Springer,
2011.

[44] Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. “High-speed
high-security signatures”. In: J. Cryptographic Engineering 2.2 (2012).

[45] Daniel J Bernstein, Simon Josefsson, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. “EdDSA for
more curves”. In: Cryptology ePrint Archive (2015).

[46] Daniel J. Bernstein and Edoardo Persichetti. Towards KEM Unification. Cryptology ePrint Archive,
Paper 2018/526. https://eprint.iacr.org/2018/526.

[47] Karthikeyan Bhargavan, Bruno Blanchet, and Nadim Kobeissi. “Verified models and reference
implementations for the TLS 1.3 standard candidate”. In: 2017 IEEE Symposium on Security and
Privacy (SP). IEEE. 2017.

[48] Karthikeyan Bhargavan, Christina Brzuska, Cédric Fournet, Matthew Green, Markulf Kohlweiss,
and Santiago Zanella-Béguelin. “Downgrade resilience in key-exchange protocols”. In: 2016 IEEE
Symposium on Security and Privacy (SP). IEEE. 2016.

[49] Ritam Bhaumik and Mridul Nandi. “Improved security for OCB3”. In: International Conference
on the Theory and Application of Cryptology and Information Security. 2017.

[50] Alexander Bienstock, Jaiden Fairoze, Sanjam Garg, Pratyay Mukherjee, and Srinivasan Raghu-
raman. A More Complete Analysis of the Signal Double Ratchet Algorithm. Cryptology ePrint
Archive, Paper 2022/355. https://eprint.iacr.org/2022/355.

300

https://ia.cr/2019/624
https://eprint.iacr.org/2013/813
https://ed25519.cr.yp.to/
https://eprint.iacr.org/2018/526
https://eprint.iacr.org/2022/355


[51] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila. “Transitioning to a quantum-
resistant public key infrastructure”. In: Post-Quantum Cryptography: 8th International Workshop,
PQCrypto 2017, Utrecht, The Netherlands, June 26-28, 2017, Proceedings 8. Springer. 2017.

[52] Simon Blake-Wilson and Alfred Menezes. “Unknown Key-Share Attacks on the Station-to-Station
(STS) Protocol”. In: Public Key Cryptography. Springer, 1999.

[53] Josh Blum, Simon Booth, Brian Chen, Oded Gal, Maxwell Krohn, Julia Len, Karan Lyons, Antonio
Marcedone, Mike Maxim, Merry Ember Mou, Armin Namavari, Jack O’Connor, Surya Rien, Miles
Steele, Matthew Green, Lea Kissner, and Alex Stamos. Zoom end-to-end encryption whitepaper.
https://github.com/zoom/zoom-e2e-whitepaper Version 4.0 (Released on 18.11.2022).
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of the CCM Encryption Mode and of a Slight Variant”. In: International Conference on Applied
Cryptography and Network Security. 2008.

[92] S. Galbraith, J. Malone-Lee, and N.P. Smart. “Public key signatures in the multi-user setting”. In:
Information Processing Letters 83.5 (2002).

[93] Rosario Gennaro, Shai Halevi, and Tal Rabin. “Secure Hash-and-Sign Signatures Without the
Random Oracle”. In: Advances in Cryptology — EUROCRYPT ’99. Springer, 1999.

[94] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. “A digital signature scheme secure against
adaptive chosen-message attacks”. In: SIAM Journal on Computing 17.2 (1988).

[95] Justin Goshi and Richard E Ladner. “Algorithms for dynamic multicast key distribution trees”. In:
Proceedings of the twenty-second annual symposium on Principles of distributed computing. 2003.

[96] Jack Grigg, George Tankersley, Henry de Valence, Isis Lovecruft, and Filippo Valsorda. The
Ristretto255 Group. https://tools.ietf.org/html/draft-irtf-cfrg-ristretto255-00
(Accessed May 29th, 2020).

[97] Paul Grubbs, Jiahui Lu, and Thomas Ristenpart. Message Franking via Committing Authenticated
Encryption. Cryptology ePrint Archive, Report 2017/664. https://ia.cr/2017/664. 2017.

[98] Shay Gueron and Yehuda Lindell. “GCM-SIV: full nonce misuse-resistant authenticated encryption
at under one cycle per byte”. In: ACM Conference on Computer and Communications Security
(CCS). 2015.

[99] Louis C. Guillou and Jean-Jacques Quisquater. “A Practical Zero-Knowledge Protocol Fitted to
Security Microprocessor Minimizing Both Transmission and Memory”. In: Advances in Cryptology
— EUROCRYPT ’88. Springer, 1988.

[100] Felix Günther and Bertram Poettering. “Linkable Message Tagging: Solving the Key Distribution
Problem of Signature Schemes”. In: Information Security and Privacy. Springer, 2015.
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