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Abstract

In our modern life, network communication has become one of the primary mediums for
information transmission, e.g., instant messaging, online shopping, and video conferencing.
In order to protect the security of information transmitted over networks, real-world
applications are often equipped with cryptographic communication protocols. While some
of these protocols are built from small cryptographic primitives and expected to offer strong
security guarantees based on some intuition or informal arguments, their comprehensive
formal analyses are however missing. A natural question arises: whether these protocols
really satisfy their expected security guarantees?

This thesis presents the provable security analysis of five cryptographic primitives
and large-scale communication protocols: (1) one of the most efficient digital signature
implementations Ed25519, (2) the generic authenticated encryption with associated data
scheme, (3) the latest version of passwordless authentication standard FIDO2, (4) the
popular video conferencing library Zoom, and (5) our own proposal of extended secure
messaging protocol eSM. Moreover, this thesis highlights their essential security features
in theory and provides suggestions for their practical deployments. In the end, this thesis
addresses common obstacles to (large-scale) protocol designs and provable security analyses,
provides intuition on the feasibility, and leaves a complete and provable solution as my

future work.



Zusammenfassung

In unserer modernen Welt ist die Kommunikation iiber Netzwerke ein wichitiges Mittel
zur Ubertragung von Informationen. Um die Sicherheit der iiber Netzwerke iibertragenen
Informationen zu gewéahrleisten, werden reale Anwendungen oft mit kryptografischen
Kommunikationsprotokollen ausgestattet. Einige dieser Protokolle werden aus kleinen
kryptografischen Grundelementen entwickelt und sollen aufgrund von informellen Argu-
menten starke Sicherheitsgarantien bieten. Dennoch fehlen umfassende formale Analysen
fiir diese Protokolle. Eine naheliegende Frage lautet: Erfiillen diese Protokolle tatsachlich
ihre Sicherheitsgarantien?

Diese Arbeit prasentiert die nachweisbare Sicherheitsanalyse von fiinf kryptografis-
chen Grundlagen und Kommunikationsprotokollen: (1) eine der effizientesten digitalen
Signaturen Ed25519, (2) das generische Authenticated Encryption with Associated Data
Schema, (3) die neueste Version des kennwortlosen Authentifizierungsstandards FIDO2,
(4) die beliebte Videokonferenzbibliothek Zoom, und (5) unseren eigenen Vorschlag fiir ein
erweitertes sicheres Nachrichtenprotokoll, eSM. Zudem hebt diese Arbeit ihre wesentlichen
Sicherheitsmerkmale in der Theorie hervor und gibt Empfehlungen fir ihre praktische
Implementierung. AbschlieBend behandelt diese Arbeit haufig auftretende Hindernisse bei
grofl Protokolldesigns sowie deren nachweisbare Sicherheitsanalysen, bietet Einblicke in
die Durchfiihrbarkeit und lasst eine vollstandige und nachweisbare Losung als zukiinftige

Arbeit offen.
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Chapter 1

Introduction

In our modern life, network communication has become one of the primary mediums for
information transmission and provides people great convenience, e.g., private messages can
be delivered over messaging apps instantly; video/audio conferencing can be held remotely;
business services can be provided online. However, the sensitive information transmitted
over insecure network channels suffers from the risk of exposure. In order to protect
the security of information transmitted over networks, real-world applications are often
equipped with cryptographic communication protocols. While some of these protocols are
built from small cryptographic primitives and expected to offer strong security guarantees
based on some intuition or informal arguments, their comprehensive formal analyses are
however missing. A natural question arises: do these protocols really satisfy their expected
security guarantees?

This thesis presents five projects during my doctoral studies, within a wide scope of
applied cryptography that can be roughly categorized into (1) the security analysis of
fundamental cryptographic primitives, including one of the most efficient digital signature
implementations Ed25519 and the generic authenticated encryption with associated data
scheme, and (2) the analysis and design of large-scale communication protocols, including
the latest version of passwordless authentication standard FIDOZ2, the popular video

conferencing library Zoom, and our own proposal of extended secure messaging protocol
eSM.

(1) The Security Analysis of Fundamental Cryptographic Primitives. In
the first project in my doctoral studies, we analyze the security of Ed25519, a popular
instantiation of a novel digital signature scheme EdDSA. A standard requirement for a
signature scheme is existential unforgeability (EUF-CMA), alongside other properties of
interest such as strong unforgeability (SUF-CMA) and resilience against key substitution
attacks. While Ed25519 is one of the most efficient signature schemes, and different
instantiations of Ed25519 are widely used in protocols such as SSH, Tor, ZCash, and
WhatsApp/Signal, no detailed proofs have ever been given for it or any of its variants. We

observe that the differences between these instantiations are subtle and that several proofs



of protocol security simply assume the EUF-CMA or SUF-CMA security of Ed25519,
based on some informal arguments. In this project, we provide the first detailed analysis
and security proofs of Ed25519 signature schemes. While the designs of the schemes follow
the well-established Fiat-Shamir paradigm, which should guarantee EUF-CMA security,
we find that the security guarantees provided by different instantiations are diverse, e.g.,
while Ed25519-IETF and -libsodium versions both additionally offer SUF-CMA security,
only Ed25519-libsodium version provides strong message- and key-binding properties. Our
work provides the scientific rationale for choosing among several Ed25519 variants and
understanding their properties, fills a much-needed proof gap in modern protocol proofs
that use these signatures, and supports further standardisation efforts.

In my second project, we analyze the security of Authenticated Encryption (optionally
with Authenticated Data, AEAD for short) that is used in many modern security protocols
such as TLS, WPA2, WireGuard, and Signal. AEADs are usually built from symmet-
ric encryption schemes and additionally provide authentication. While this additional
requirement may seem to be straightforward, it has in fact turned out to be complex:
many different security notions for AEADs are still being proposed, and many recent
protocol-level attacks exploit subtle AEAD behaviours and complicate the edge cases of
AEAD guarantees and assumptions. This further causes the divergent landscape of AEAD
definitions and their mismatch to real-world attack scenarios. To address this, we revisit
several recent cryptographic AEAD definitions, extract collision resistance as a new core
requirement for a generic computational AEAD model, and prove new results about their
relations. Our generic computational AEAD model enables us to develop a family of
symbolic AEAD models that can be used with symbolic protocol analysis tools, e.g., the

Tamarin prover, for further case studies or independent research interests.

(2) The Analysis and Design of Large-scale Communication Protocols. Sup-
ported by the Microsoft identity project research grant “Developing Post-Quantum (PQ)
Secure Identity Services” from Microsoft Security Response Center (MSRC), in my third
project we focus on a two-party synchronous authentication protocol: FIDO2. The FIDO2
protocol is a globally used standard for passwordless authentication, building on an alliance
between major players in the online authentication space. While already widely deployed,
the standard is still under active development. Since version 2.1 of its CTAP sub-protocol,
FIDO2 can potentially be instantiated with PQ secure primitives. We provide the first
formal security analysis of FIDO2 with the CTAP 2.1 and WebAuthn 2 sub-protocols.
Our security models build on work by Barbosa et al. for their analysis of FIDO2 with
CTAP 2.0 and WebAuthn 1, which we extend in several ways. First, we provide a more
fine-grained security model that allows us to prove more relevant protocol properties,
such as guarantees about token binding agreement, the None attestation mode, and user

verification. Second, we prove PQ security for FIDO2 under certain conditions and minor



protocol extensions. Finally, we show that for some threat models, the downgrade resilience
of FIDO2 can be improved, and show how to achieve this with a simple modification.

During the Covid-19 pandemic, video conferencing apps like Zoom enabled multi-party
synchronous communication and facilitated people’s work in home office. So far, video
conferencing apps have hundreds of millions of daily users, making them a high-value
target for surveillance and subversion. While such apps claim to achieve some forms
of End-to-End Encryption (E2EE), they usually assume an incorruptible server that is
able to identify and authenticate all the parties in a meeting. Concretely this means
that, e.g., even when using the “end-to-end encrypted” setting, malicious Zoom servers
could eavesdrop or impersonate in arbitrary groups. In my fourth project, we show how
security against malicious servers can be improved by changing the way in which such
protocols use passwords and integrating a password-authenticated key exchange (PAKE)
protocol. To formally prove that our approach achieves its goals, we formalize a class of
cryptographic protocols suitable for this setting, and define a basic security notion for
them, in which group security can be achieved assuming the server is trusted to correctly
authorize the group members. We prove that Zoom indeed meets this notion. We then
propose a stronger security notion that can provide security against malicious servers, and
propose a transformation that can achieve this notion. We show how we can apply our
transformation to Zoom to provably achieve stronger security against malicious servers,
notably without introducing new security elements.

E2EE is a modern requirement for communication in not only synchronous but also
asynchronous settings. In my fifth project, we explore two-party secure messaging, an
essential topic in the asynchronous communication domain. Recent years have seen many
advances in designing secure messaging protocols, aiming at provably strong security
properties in theory or high efficiency for real-world practical deployment. However,
important trade-off areas of the design space inbetween these elements have not yet been
explored. In this work, we design the first provably secure protocol eSM that at the same
time achieves (i) strong resilience against fine-grained compromise, (ii) temporal privacy,
and (iii) immediate decryption with constant-size overhead, notably, in the PQ setting.
Besides these main design goals, we introduce a novel definition of offline deniability
suitable for our setting, and prove that our protocol meets it, notably when combined

with a PQ offline deniable initial key exchange.



The extended abstracts of these projects appear in the proceedings of IEEE Symposium

on Security and Privacy and Usenix Security Symposium, as follows'.

e Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. " The Provable
Security of Ed25519: Theory and Practice,” 2021 IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, USA, 2021.

e (Cas Cremers, Alexander Dax, Charlie Jacomme, and Mang Zhao. Automated Analysis
of Protocols that use Authenticated Encryption: Analysing the Impact of the Subtle Dif-
ferences between AEADs on Protocol Security. In USENIX Security 2023 (Distinguished

Paper Award winner).

e Nina Bindel, Cas Cremers and Mang Zhao, “FIDO2, CTAP 2.1, and WebAuthn 2:
Provable Security and Post-Quantum Instantiation,” in 2023 2023 IEEE Symposium on
Security and Privacy (SP), San Francisco, CA, US, 2023 .

e Cas Cremers, Eyal Ronen, and Mang Zhao, “Multi-Stage Group Key Distribution
and PAKEs: Securing Zoom Groups against Malicious Servers without New Security
Elements”, in 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA,
US, 2024.

e Cas Cremers and Mang Zhao, “Secure Messaging with Strong Compromise Resilience,
Temporal Privacy, and Immediate Decryption”, in 2024 IEEE Symposium on Security
and Privacy (SP), San Francisco, CA, US, 2024.

The provable security analyses in these projects are conducted in a conventional three-
steps methodology: (1) first formally model the desired security requirements, (2) then
propose novel or recall existing protocols, and (3) finally claim and prove that these
protocols are secure in the threat models. However, such a conventional methodology lacks
of generality and often requires high efforts on the similar or repeated proofs. This thesis
further explains how this observation motivates my invention of a novel and more efficient
methodology for security analyses and design, and leaves a complete and provable solution

as my future work.

Tn the research domain of these works, alphabetic author order is common, and the position of an
author is not indicative of their contribution.



1.1 Overview

Chapter 2 introduces the notations and necessary cryptographic primitives as well as

their associated security definitions.

Chapter 3 presents our formal analysis of three popular implementations of digital
signature Ed25519, figures out the subtle differences between their designs, and clarifies

the huge impacts on the final security guarantees.

Chapter 4 proves various missing or previously conjectured relations for authenticated
encryption with associated data (AEAD) schemes with respect to privacy, integrity, and

collision resistance, completing the picture in this domain.

Chapter 5 formally proves the security of the latest version of passwordless authentication
protocol FIDOZ2, provides instantiations for its post-quantum security, and proposes

improvements against a novel type of downgrade attack.

Chapter 6 develops a solution to improve the security of Zoom-like apps against malicious
servers without introducing new security elements, formally proves our solution, and

illustrates how to efficiently apply it to the Zoom version 4.0 protocol.

Chapter 7 proposes the first provably secure messaging protocol that simultaneously
satisfies (1) immediate decryption with constant-size overhead, (2) temporal privacy,
and (3) resilience against fine-grained compromise. Our proposal additionally achieves
post-quantum security and a novel flavor of offline deniability, becoming a suitable
PQ-secure candidate for Double Ratchet in Signal.

Chapter 8 completes this thesis by a brief summary of contributions and an open

challenges.






Chapter 2

Background

2.1 Notations

We use PPT to denote the Probabilistic Polynomial Time and QPT to denote Quantum
Polynomial Time. In this thesis, all algorithms are executed in PPT. We restrict
the attackers’ complexity Compl to be PPT in Chapter 3, Chapter 4, and Chapter 6.
In Chapter 5 and Chapter 7, we assume all attackers’ complexity to be Compl = QPT,
unless stated otherwise. We write PQ in place of “post-quantum”, meaning that the
attackers have QPT complexity while the target protocols and network transmission have
only PPT complexity.

We assume that each algorithm A has a security parameter A and a public parameter
pp as implicit inputs. We say a function is “negligible” a shorthand for “negligible with
respect to the security parameter”, unless stated otherwise.

We write y < A(z) for running a deterministic algorithm A with input x and assigning
the output to y. We write y <* A(x;7) for a probabilistic algorithm A using randomness r,
which is sometimes omitted when it is irrelevant. Furthermore, A®(x) denotes that A has
access to the oracle O during its execution on input z. For variables z,y, we denote by
y < x, the assignment of value x to y and by s <~ D we denote the sampling of an element
x from the probability distribution D; for simplicity, we denote the uniform sampling
of an element x from a set X by z ¢ X. Security experiments Expry; ™" (A) describe
the run of an Compl attacker A against the security property sec-prop of a cryptographic
scheme II parametrized by an implicit input pp, if the complexity Compl € {PPT,QPT} is
unambiguous from the context. We use €f° to denote the advantage of any Compl attacker
that breaks sec security of Il protocol.

Let (-) and {-} respectively denote an ordered tuple and an unordered set. We use
{0, 1}* to denote the set of all strings with finite length. For any positive integer n, let
[n] denote the set of integers from 1 to n, i.e., [n] = {1,...,n}. We use D to denote a
dictionary that stores values for each index and D[] +— L for the dictionary initialization.
The functionality of symbol | - | is diverse in this thesis: For a set X, |X| denotes the

cardinality of X; For a number z, |z| denotes the absolute value of x; For a string s, |s|



denotes the bit-length of s. To avoid duplicating some longer variable names, we use
some update-based variants of common operators: For a number x, we write x++ as a
shorthand for 2 <— 2 + 1. For a set S and an element z, we write S <= z for § « S U {z},
and S <z for S < S\ {z}.

Let L denote an special reserved symbol that is not included in any set in this paper.
All undefined variables are initialized with L. We write T to denote the empty string,
and write x || y to denote the concatenation of strings = and y. We use _ to denote a
variable that is irrelevant. We use 1 to represent the Boolean value True, and 0 for False.
By [statement], we denote the Boolean evaluation of statement. Within algorithms or
oracles, we write “require C” to denote that C'is a requirement: if the condition C' is
not met, then the algorithm or oracle containing this keyword is exited with output L

and all actions in this invocation are undone.

2.2 Cryptographic Primitives

In this section, we recall the necessary definitions of cryptographic primitives and security
models. Our presentation of some related security definitions follows the style of the
textbook by Katz and Lindell [124] with security defined in the concrete setting which
explicitly specifies the amount of time and resources needed (cf. [124, Sec. 3.1]). For
simplicity, we define other related security notions in a rough setting without specifying
the amount of time and resources needed, but only expect them to be in polynomial with

respect to the implicit security parameter.

2.2.1 Security Assumptions on Cyclic Groups

Definition 1 (sCDH). Let G = (g) denotes a cyclic group of prime order q with generator
g. We say the computational Diffie-Hellman (CDH) problem is eCDH hard if for all PPT
attackers A it holds that

Prlg® < A(G,g,9% ¢") s a,b & Zy) < €5

We say the strong CDH (sCDH) problem is ESCDH hard if for all PPT attackers A the

CDH problem is eé%” = e?GFgDH hard even when A has access to an oracle Oy(-,-) that inputs

Y, Z € G and outputs whether Y* = Z.

2.2.2 Pseudorandom and Hash Functions

Definition 2. Let H: M — O denote a function that maps from a message space M to
an output space O. We say H is e-collision resistant, if for any attacker A it holds that,

AdvEPes (A) = Pr[(my, my) <& A such that my, my € M, my # my, H(my) = H(my)] < ¢



Definition 3. Let F : R — O denote a function that maps a random string r € R to
an output y € O. We say F is e-prg secure if for any variable X that follows uniform

distribution over R and any variable Y that follows uniform distribution over O, we have

AdvP®(D) := |Pr[D(F(X)) =1] = Pr[D(Y) =1]| <e

Definition 4. Let F: K x M — O be a function that maps a key k € KC and a message
m € M to an output y € O. We say F is e-prf secure, if for any attacker A and any
k < K, there exists a truly random function R : M — O, it holds that,

AdvP(A) = |Pr[.AF(k") = 1] — Pr[ARO) = 1| <e
Moreover, we say F is e-swap secure, if the function F defined below is e-prf secure.
F: MxK— O,F(m,k) :=F(k,m)
We say F is e-dual secure, if F is both e-prf and e-swap secure.

Definition 5. Let m > 2. Let F : Ky x ... x IC,, = O be a function that maps m keys
ki € IC; for1 < i <m to an output y € O. We say F is e-mprf-secure if all of the functions
?z(kz, (kl, ey ki—la ki—&—l, ey km)) = F(k‘l, ey km) 18 prf—secure.

The mprf secure function can be easily construction from dual-secure functions. In
this thesis, we only makes use of a mprf-secure KDF for m = 3. Below, we present the

instantiation and prove the security.

Theorem 1. Let Fy : Ki X Ky — Op and Fy : O x K3 — Oy be two functions. If
Fi and Fy both are e-dual-secure, then the function F'(ki, ky, k3) := Fo(F1(ki, k2), k3) is
¢’ -3prf-secure such that ¢ < qe, where q denotes the number of queries by any attacker

against 3prf-security of F'.

Proof. We first show that Fy(ky, (ky, k3)) := F'(ky, ko, k3) = Fo(F1(k1, k»), k3) is prf-secure.
We prove this by game hopping. Let ¢ denote the number of queries that an attacker A
makes. Let Adv; denote the advantage of A in winning game 4.

Game 0. This game is identical to the experiment. And we have that Advg := ¢

Game 1. In this game, whenever A queries (ko, k3), the challenger samples a random
y1 and replaces Fy(ki, (ky, k3)) = Fa(Fi(ky, ko), ks) by Fi(ky, (ka, ks)) = Fays, ks). If the
attacker A can distinguish Game 0 and Game 1, then we can easily construct an attacker
that breaks the prf security of F;. Thus, Advy — Adv; < e.

Game 2. In this game, whenever A queries (ko, k3), the challenger samples a random
y1 and replaces Fy(ky, (k, k3)) = Fa(ys, ks) by Fi(kr, (k2 ks)) = 4o,

If the attacker A can distinguish Game 0 and Game 1, then we can easily construct

an attacker that breaks the prf security of at least one of ¢ F5. Thus, Advy — Adv; < ge.

10



Exprepe:
1 (kl,ml,kg,m2)<i¢4()
2 (Tl,tl) — CPRF(k’l7 ml), (Tg,lfz) — CPRF(k’Q, mg)

3 return [t; = t5]

Figure 2.1: bind experiment for a cPRF function.

Now, in Game 2 the challenger always simulates the random function. Thus, A cannot
distinguish it, and we have that € < (¢ + 1)e.

The analysis for the prf-security of Fa(ky, (ki, k3)) :=F'(ky, k2, k3) = Fo(F1(k1, ko), k3)
and F3(ks, (K1, ko)) := F'(ky, ko, k3) = Fo(F1(ky, k), ks) is similar. O

Definition 6. Let F: K x M — O be a function that maps a key k € IC and a message
m € M to an output y € O. We say F is e-prp secure, if
1. for any k € IC, F is bijective from M to O, this indicates that O = M
2. for any k € KC, F(k,m) can be evaluated in polynomial time for any m € M
3. for any k € K, the inversion F~1(k,y) can be evaluated in polynomial time for anyy € O
4. for any attacker A and any k <= K, there exists a truly random invertible permutation
f: M — O with inversion f~*: O — M, it holds that
AdviP(A) = ‘PI[AF(]C")’FA(’“") = 1] — Pr[AfO/ 0 = 1| <e

We recall a primitive called committing PRF and its simplified binding security, which
was first defined in [27].

Definition 7. Let cPRF : K x M — R X T denote a deterministic function inputs a key
ke K and a message m € M and outputs r € R and t € T. We say cPRF is e-binding
(or e-bind) secure, if the below defined advantage of any attacker A against Exproindc

experiment in  Figure 2.1 is bounded by:

Advepre(A) = Pr[Exprepe(A) = 1] < e

2.2.3 Symmetric Key Encryption

Definition 8. A symmetric key encryption scheme over key space K, message space
M, randomness space R, and ciphertext space CT, is a tuple of algorithms SKE =
(SKE.Enc, SKE.Dec) as defined below.

o Encryption c <~ SKE.Enc(k,m): takes as input a symmetric key k and a message
m and outputs a ciphertext c. We write ¢ <~ SKE.Enc(k, m; rE") if the random coins

rEnc € R is specified.

11



Expr's'\,LDE'CPA (A): Oknc(mg, mq):
1 b<&{0,1} 5 ¢+« SKE.Enc(k,my)

2 K <& SKE.KGen() 6 return c
3 b & A%e()

4 return [b =b’]

Figure 2.2: IND-CPA experiment for a SKE = (SKE.KGen, SKE.Enc, SKE.Dec) scheme.

e Decryption m < SKE.Dec(k, c¢): takes as input a symmetric key k and a ciphertext c

and outputs either a message m or an error symbol L.

We say a SKE is d-correct if for every k <> K and every message m € M, we have
Pr[m # SKE.Dec(k, SKE.Enc(k,m))] <o

In particular, we call a SKE (perfectly) correct if § = 0.

In terms of the security, we first recall the standard indistinguishability under chosen
plaintext attacks (IND-CPA ).

We say a SKE is d-strongly correct if for every k <> K, every message m € M, and

every rE" € R, we have
Pr[m # SKE.Dec(k, SKE.Enc(k, m;rE"))] < 6

Compared to the conventional correctness, the strong correctness requires that the
encrypted message can be correctly recovered for every randomness coins involved during

the encryption. In particular, we call a SKE (perfectly) strongly correct if § = 0.

Definition 9. Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec) be a symmetric key encryption
scheme with symmetric key space KC. We say SKE is e-IND-CPA secure, if the blow defined
advantage of every (potential quantum) attacker A against Exprls'\,'(DE'CPA experiment in
Figure 2.2 is bounded by,

1
AdvIND-CPA(A) .= | Pr[ExpriiCPA(A) = 1] — o<

Then, we recall two notions, the one time IND-CPA (IND-1CPA) security [76] and
indistinguishability under one-time chosen and then random plaintext attack (IND-1$PA)
security [20].

Definition 10. Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec) be a symmetric key encryption
scheme with symmetric key space K. We say SKE is e-IND-1CPA secure, if the blow
defined advantage of every (potential quantum) attacker A against Expr'SNK[é'lcpA experiment

i Figure 2.3 1s bounded by,

1
AdviZ I PA(A) = | Pr[Exprii@tPA(A) = 1] — 5 <e

12



Exprijgg 'PA(A): Exprog PA(A): RAND(]):

1 b< {01} 1 b&{0,1} o mp,m) < {0,1}

2 K ¢ SKE.KGen() 2 K <& SKE.KGen() 10 ¢ ¢ SKE.Enc(K,m})
3 (mg,my) < A() 3 (mg, my) <= A() 11 return (mg, m}, )
& if [mg| # [mi] 4 if [mg| # [m]

5 return 0 5 return 0

6 ¢ < SKE.Enc(K,m}) 6 ¢ < SKE.Enc(K,mf)

7 b & Ae*) 7 b & ARMD (o)

g return [b=1b'] 8 return [b = b’]

Figure 2.3: IND-1CPA and IND-1$PA experiments for a SKE = (SKE.KGen, SKE.Enc, SKE.Dec)
scheme.

Definition 11. Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec) be a symmetric key encryption
scheme with symmetric key space K. We say SKE is e-IND-1$PA secure, if the blow
defined advantage of every (potential quantum) attacker A against Expr'SNKDE'1$PA experiment

i Figure 2.3 is bounded by,

1
AdV!SNKDE-1$PA(A) = Pr[ExprlsNK?{wPA(A) = 1] - § s€

Finally, we recall the indistinguishability under one-time chosen ciphertext attacks
(IND-1CCA) in [12]. In this security notion, the attacker is allowed to query the encryption
oracle Og,. at most once. However, the attacker can have access to the decryption
oracle Opec with arbitrary times. We in particular define the IND-1CCA experiment with
simplified SKE definition, i.e., SKE = (SKE.Enc, SKE.Dec).

We particularly stress that the difference between IND-1CPA and IND-1CCA security.
On the one hand, while the goal of attackers in IND-1CPA experiment is to distinguish two
plaintexts (this is defined in a so-called “left-or-right” manner), the goal of attackers in
IND-1CCA experiment is to distinguish a real ciphertext from a random ciphertext (this is
defined in a so-called “real-or-random” manner). On the other hand, while the attackers
in IND-1CCA experiment have access to the decryption oracle, the ones in IND-1CPA have

none.

Definition 12. Let SKE = (SKE.Enc, SKE.Dec) be a symmetric key encryption scheme
with symmetric key space K and ciphertext space C. We say SKE is e-IND-1CCA secure, if
the blow defined advantage of every (potential quantum) attacker A against Expr'SNKEE'mCA

experiment in Figure 2./ is bounded by,

1
AR 1 (A) = | Pr{Expry 1A (A) = 1] - 1] < o

13



Expriie " “*(A): Oknc(m): Obec(c):

1 b<&{0,1} 1 require ¢* = | 7 fe=c*orb=1

2 k&K 2 ifb=0 8 return L

3 e L 3 c* <~ SKE.Enc(k, m) 9 return SKE.Dec(k, c)
4 b & AOeneObec() 4 else

5 return [b = b’] 5 cr&EC

6 return c

Figure 2.4: IND-1CCA experiment for a SKE = (SKE.Enc, SKE.Dec) scheme.

2.2.4 Authenticated Encryption with Associated Data

Definition 13 ([163]). Let K, N, H, M, CT respectively denote the space of keys,
nonces, headers (aka. header), messages, and ciphertexts. An authenticated encryption
with associated data scheme AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec)' is a tuple of

algorithms where

$

o AEAD.KGen the key generation algorithm outputs a symmetric key k € K, i.e., k <
AEAD.KGen().

e AEAD.Enc the encryption algorithm inputs a key k € K, a nonce n € N, a header
h € H, and a message m and (deterministically) outputs a ciphertext c, i.e., ¢ +

AEAD.Enc(k, n, h, m).

e AEAD.Dec the decryption algorithm inputs a key k € K, a nonce n € N, a header h € H,

and a ciphertext ¢ € CT and deterministically outputs a message m € M U{L}, i.e.,
m <— AEAD.Dec(k,n, h, c).

Each AEAD scheme is assumed to be defined with a length function ¢ such that
|AEAD.Enc(k, n, h, m)| = £(|m]) for all (k,n,h,m) € K x N x H x M.

We say an AEAD scheme is e-correct if for all (n,h,m) € N x H x M and k <
AEAD.KGen() it holds that

Pr[m’ <— AEAD.Dec(k, n, h, AEAD.Enc(k,n,h,m)) : m # m'] <e

In particular, we say AEAD is perfect correct if € = 0.
We say an AEAD scheme is tidy if for each (k,n, h,c¢) € K x N x H x CT it holds that

1 # m < AEAD.Dec(k,n, h,c) = ¢ < AEAD.Enc(k,n,h, m)

Over such schemes, the n, h and ciphertext ¢ need to be sent over the network?, and

the correctness of the scheme requires that the decryption of a ciphertext with the same

I'Note the fact that most popular AEAD constructions generate keys by simply sampling bit strings
from key space uniformly at random. We sometimes also omit the key generation algorithm and simply
write AEAD = (AEAD.Enc, AEAD.Dec), in particular, in Chapter 6.

2We stress that AEAD schemes can be used offline in practice, where nonces and headers both are
hidden from attackers’ view. However, this paper focuses on a more common case where the attackers
might have access to the nonce and headers, e.g., which are transmitted over network.

14



EXDIAEAD Oknc(n, h, m):

1 b<{0,1} 6 require (n,_,_,-) ¢ Loy,

2 Log, 0 7 ifb=0

3 k<& AEAD.KGen() 8 ¢ + AEAD.Enc(k, n,h, m)
4 b & A9 Ooec() 9 else c < {0, 1}4ImD

5 return [b = b'] 10 Low. & (n,h,m,c)

11 return c

Figure 2.5: IND$-CPA experiment for an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) scheme.

ExprﬁEkSPA: Oknc(n, hym):

1 Lo+ 0 6 ¢ <+ AEAD.Enc(k,n,h,m)
>k < AEAD.KGen ;o E e

3 (n,h,c) & A%() s return c

4 require c ¢ L,
5 return [AEAD.Dec(k,n, h,c) # 1]

Figure 2.6: CTI-CPA experiment for an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) scheme.

parameters n, h, k indeed returns the plaintext. We assume that the decryption with
inputs outside the corresponding spaces must output L.

The two core security guarantees are integrity and privacy.
Definition 14 (Privacy [163]). We say an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec)
is e-IND$-CPA secure, if the below defined advantage of any attacker A against ExpriscPA

experiment in  Figure 2.5 is bounded by:
1
AR = | PrExpIfBEN(A) = 1] - | <

Definition 15 (Integrity [163]). We say an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec)
is €-CTI-CPA secure, if the below defined advantage of any attacker A against EprﬁEKBPA

experiment in Figure 2.6 is bounded by:
Advitis™ == PrlExprias  (A) = 1] <

Both for integrity and privacy, we can define two security variants, CTI-CCA and
IND$-CCA, based on whether the attacker also has access to a decryption oracle during
the experiment, see e.g., the definition of the experiment for CTI-CCA in Figure 2.6.

We start with the confidentiality notion IND$-CPA and extend it to IND$-CCA in a
natural way.

Definition 16. We say an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) is e-IND$-CCA
secure, if the below defined advantage of any attacker A against Exprx\g%ccp‘ experiment

i Figure 2.7 is bounded by:

1
AQVADECA = | Pr{BxpiiBb A (A) = 1] - | < e
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ExpriaDCCA. Oknc(n, b, m): Opec(n, h, c):

1 b&{0,1} 6 require (n,_,_,-) ¢ Loy, 13 require (n,h,_,¢) & Log,.
2 Loges Lo, < 0 7 require (n,h,m,_) ¢ Loy, 14 m < AEAD.Dec(k, n, h,c)
3 k<& AEAD.KGen g ifb=0 15 ifm#L

4 b & A%EeObec() 9 ¢+ AEAD.Enc(k,n, h,m) 6 Lo, & (n,h,m,c)

5 return [b=1b'] 10 else ¢ < {0,1}¢0mD 17 return m

11 Log,. & (n, h,m,c)
12 returnc
Figure 2.7: IND$-CCA experiment for an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) scheme.

Note that we assume “nonce-respecting”, which means the encryption oracle cannot be repeatedly
queried with same nonces.

Expr,iEkSCA: Oknc(n, by m):

1 Lo+ 0 6 ¢ <+ AEAD.Enc(k,n,h, m)
2 k<& AEAD.KGen() 7 Lod e

2 (nyhy ) 45 AQEeOpx() 8 return c

4 require c ¢ L, Opec(n, h, ¢):

5 return [AEAD.Dec(k,n,h,c) # 1] 9 return AEAD.Dec(n, h, ¢)

Figure 2.8: CTI-CCA experiment for an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) scheme.
Note that we assume “nonce-respecting”, which means the encryption oracle cannot be repeatedly
queried with same nonces.

Definition 17. We say an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) is ¢-CTI-CCA
secure, if the below defined advantage of any attacker A against ExprSirs™ experiment

mn Figure 2.8 is bounded by:
Advigap = Pr[Exprigap ™ (4) = 1] < e

Other than privacy and integrity, Bellare and Hoang [27] observe that the commitment

is an essential security property for AEAD.

Definition 18. We say an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) is e-CMT-I
secure for 1 € {1,3,4}, if the below defined advantage of any attacker A against EXprseas

experiment in Figure 2.9 is bounded by:
AdviEas = PrExprigag (A) = 1] < e

Definition 19. We say an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) is e-CMTD-I

secure for | € {1,3,4}, if the below defined advantage of any attacker A against Exprsian

experiment in Figure 2.9 is bounded by:

Advigas = Pr{Exprggap ' (A) = 1] < e
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CMTD-I,

EXDraEnD : Expragap

o (ks by ), (ke o, m2) ) < AQ) o (e ks by ), (ke o, B ma) ) 4 AQ)

2 if L € {ki,m, b, ma, ko, na, ho, ma} 2 if L € {ky, nq, b1, my, ko, 1o, ho, mo}

3 return 0 3 return 0

4 if WiCy(k1, ma, b1, my) = WiCy(ka, na, ho, ma) 4 if WiCy(ky1, nq, b1, my) = WiCy(ka, na, ha, mo)
5 return 0 5 return 0

6 ¢ < AEAD.Enc(ky, ni, hy, mq) 6 mj <+ AEAD.Dec(ky, ny, hy, c)

7 ¢o < AEAD.Enc(kq, ng, ha, ma) 7 mb < AEAD.Dec(kz, na, ho, ¢)

8 return [¢; = ¢ g return [m; = mi] and [mg = mi]

l 1 3 4
WiCy(k,n,h,m) | k (k,n,h) (k,n,h,m)

Figure 2.9: CMT-/ and CMTD-[ experiments for an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec)
scheme, where [ € {1, 3,4}.

In the literature, there are a number of other related strong security notions. The key
committing KC security [10] says that different keys but same nonce indicate the different
ciphertexts. The multi-key collision resistance (MKCR) [135] says that no attacker can
forge any nonce-header-ciphertext tuple (n, h, ¢) that can be decrypted to a valid message

under any key from a attacker-chosen key space with certain minimal cardinality.

Definition 20. We say an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) has (q,¢€)-key
commitment (or is (q,€)-KC secure), if the below defined advantage of any attacker A

against ExerEAD,q experiment in Figure 2.10 is bounded by:
AdVKEAD,q = PT[EXPYKEAD,(;(-A) =1]<e
In particular, we say AEAD is e-KC for short, if AEAD is (q,€)-KC secure for any q > 2.

Definition 21. We say an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) with key space
K has (k, €)-multi-key collision resistance (or is (k,€)-MKCR secure) for some parameter
k > 1, if the below defined advantage of any attacker A against E)Xpr,'l/'EKAc,gi,_i experiment

i Figure 2.11 1s bounded by:

AdVAEAD = PI[EXDIAEAD  (A) = 1] < €
In particular, we say AEAD is e-MKCR for short, if AEAD is (k, €)-MKCR secure for k = 2.
Definition 22. An AEAD can be extended to (compactly) commiting AEAD (ccAEAD) if
two additional algorithms are defined. Let VIC denote the space of verification key.

e AEAD.openCommit the open commitment algorithm inputs a key k € K, a nonce n € N,
a header h € H, and a ciphertext ¢ € CT and (deterministically) outputs a verification
key ky € VKU {L}, i.e., ky <~ AEAD.openCommit(k, n, h, c)

17



EXPrKEAD,q:

1 L+ 0, n+<0

2 () + AOenOpec()
foreach (]{31, ni, hl, my, Cl), (kQ, ng, hg, ma, CQ) el
4 if k1 #kyand ny =ng and ¢; = o # L and m; # L and mg # L

5 return 1

w

6 return 0

Oknc(k,n, h, m): Opec(k, n, h, c):

7 ¢ + AEAD.Enc(k, n, h, m) 12 m < AEAD.Dec(k, n, h, c)
g ifn<g 13 ifn<g

9 L+ LU(k,n,h,m,c) 14 L+ LU(k,n,h,m,c)
10 n<n+1 15 n+<n+1

11 return c 16 return m

Figure 2.10: KC experiment for an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) scheme.

MKCR .
EXpragap. -

1 (K*,n* h* ) & A()

2 if |[K*| <k

3 return 0

4 foreach k € IC*

5 if AEAD.Dec(k, n*,h*,c¢*) =L
6 return 0

7 return 1

Figure 2.11: MKCR experiment for an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) scheme.

o AEAD.vrfyCommit the commitment verification algorithm inputs a verification key ky €
VK , a nonce n € N, a header h € H, a message m, and a ciphertext ¢ € CT and (de-
terministically) outputs a boolean value v € {true, false}, i.e., v <— AEAD.vrfyCommit(ky,

n,h,m,c).

In the realm of ccAEAD, there are two important notions: sender binding s-BIND
and receiver binding r-BIND [97]. While the s-BIND property ensures that the attacker
cannot forge any (k, h, ¢) tuple such that the decrypted message can be verified using the
opened verification key. The r-BIND ensures that each ciphertext is bound to the same

nonce-header-message tuple.

Definition 23. We say an ccAEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec, AEAD.openCommit,
AEAD.vrfyCommit) has e-sender binding (or is e-s-BIND secure), if the below defined ad-

vantage of any attacker A against Exprigay experiment in Figure 2.12 is bounded by:

Adveagap = Pr{Expriigan(A) = 1] < ¢
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Definition 24. We say an ccAEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec, AEAD.openCommit,
AEAD.vrfyCommit) has e-receiver binding (or is e-r-BIND secure), if the below defined ad-

vantage of any attacker A against Exprygny experiment in Figure 2.13 is bounded by:

AdvEARAD = PrExpricagan (A) = 1] < e

EXPIEARAD:

1 (k,n,h,c) <& A()

2 m + AEAD.Dec(k, n, h, ¢)

3 ks < AEAD.openCommit(k, n, h, ¢)
4 if m=_1

5 return 0

6 if AEAD.vrfyCommit(ks, n, h, m,c)
7 return 0

g8 return 1

Figure 2.12: s-BIND experiment for an ccAEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec,
AEAD.openCommit, AEAD.vrfyCommit) scheme.

r-BIND .
Exprecagan:

1 (Ca(kflanlvhlaml)a(kfgan27h27m2)) <i-’4()
2 if L e {ki, m, b, ma, ko, na, ho, ma}

3 return 0
4 if (hl, ml) = (hQ, m2)
5 return 0

6 if AEAD.vrfyCommit(ks,, n1, by, my, ¢) and AEAD.vrfyCommit(ky,, ng, ha, ma, c)
7 return 1
8 return 0

Figure 2.13: r-BIND experiment for an ccAEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec,
AEAD.openCommit, AEAD.vrfyCommit) scheme.

From an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec), we can easily extend to an
ccAEAD|AEAD] = (AEAD.KGen, AEAD.Enc, AEAD.Dec, AEAD.openCommit, AEAD.vrfyCommit)
using “traditionally committing encryption” approach [97], such that

AEAD.openCommit(k, n, h,c) =k
AEAD .vrfyCommit(k, n, h, m, ¢) := [m = AEAD.Dec(k, n, h, ¢)]

2.2.5 Digital Signature Schemes

Definition 25 (Digital Signature scheme). A digital signature (DS) scheme DS =
(DS.KGen, DS.Sign, DS.Vrfy) over message space M and randomness space R is a tuple of

algorithms as defined below.
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Key Generation (vk, sk) < DS.KGen(pp): inputs the public parameter pp and outputs

a public verification and private signing key pair (vk, sk).

Signing o <= DS.Sign(sk, m): inputs a signing key sk and a message m € M and outputs
a signature o. We write o <~ DS.Sign(sk, m;r>®€"), if the random coins r°€" € R is

specified.

Verification true/false <— DS.Vrfy(vk, m, o) inputs a verification key vk, a message m,
and a signature o and outputs a boolean value either true true or false. Note that we

sometimes also denote true by 1 and false by 0.

We say a DS is d-correct if for every (vk, sk) <= DS.KGen() and every message m € M,
we have
Prifalse «<— DS.Vrfy(vk, m,DS.Sign(sk, m))] < ¢

In particular, we call a DS (perfectly) correct if § = 0.
We say a DS is §-strongly correct if for every (vk, sk) <~ DS.KGen(), every message
m € M, and every r>®" € R we have

Pr[false < DS.Vrfy(vk, m, DS.Sign(sk, m; ")) < §

Compared to the conventional correctness, the strong correctness requires that the
signed message-signature pair be correctly verified for every randomness coins involved
during the signing. In particular, we call a DS (perfectly) strongly correct if 6 = 0.

The standard notion for security of signature schemes is that of (single-user) ezistential
unforgeability under chosen message attacks. Intuitively, this guarantees that for a fixed
public verification key, an attacker A cannot generate a valid signature on a new message,
for which it has not seen a valid signature before. A stronger definition of security is that
of (single-user) strong unforgeability, which will also play a role later. Here, the attacker
is not restricted to forging signatures on new messages for a fixed public key but may
also generate a signature on a message on which it has seen (other) signatures. Both of
these notions can then be transferred to the multi-user setting, where there is not just a
single public key generated by the challenger but multiple honestly generated keys. The
attacker’s goal is then to (existentially or strongly) forge a signature under any of these

keys.

Definition 26 (EUF-CMA and SUF-CMA security). Let DS = (DS.KGen, DS.Sign, DS.Vrfy)

be a digital signature scheme. Consider the security experiments Exprie <™ and Exprie <™

as defined in Figure 2.1/. We say that a digital signature scheme DS is (t, €, Qs)-EUF-CMA-
secure or existentially unforgeable under chosen message attacks, if for any attacker A

running in time at most t, making at most Qs queries to the signing oracle, the advantage

Adviem MA(A) := Pr[Exprger MA(A) = 1] < ¢
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ExpreD“Sf’cma (A): ExprSD“Sf_cma (A):

1 »CSign — 0 1 »CSign —0
2 (vk, sk) <+ DS.KGen(pp) 2 (vk, sk) <= DS.KGen(pp)
3 (m*, o) <& A% (vk) 3 (m*,0%) <& A% (vk)

4 return [DS.Vrfy(vk,0*, m*) A m* & Lsign] 4 return [DS.Vrfy(vk,o*, m*) A (m*,0) & Lsign |

Osign(m): Osign(m):
5 o <& DS.Sign(sk,m) ﬁDS.Sign(sk,m)
6 [-:Sign — »CSign U {m}

6 £Sign — ['Sign U {(m, 0’)}
7 return o

7 return o

Figure 2.14: EUF-CMA experiment (left) and SUF-CMA experiment (right) of a DS = (DS.KGen,
DS.Sign, DS.Vrfy) scheme with differences highlighted in gray.

Analogously, we say that DS is (t, €, Qgs)-SUF-CMA-secure or strongly unforgeable under

chosen message attacks, if the advantage
AdvdmMA(A) .= Pr[Exprpgm ™M (A) = 1] < e

For simplicity, we sometimes omit the measure on the running time and the total number
of queries, if they are only required to be in polynomial with respect to the implicit security

parameter pp.

Definition 27 (Multi-User MU-EUF-CMA and MU-SUF-CMA security). Let DS = (DS.KGen,

mu-euf-cma

DS.Sign, DS.Vrfy) be a digital signature scheme. Consider the security games Exprpe
and Expres™ema g5 defined in Figure 2.15. We say that a digital signature scheme DS
is (t,e, N, Qs)-MU-EUF-CMA-secure or multi-user existentially unforgeable under chosen
message attacks, if for any PPT attacker A running in time at most t, making at most

Qs queries to the signing oracle, given N public keys, the probability
Pr[Exprpe ™™ (A,N) = 1] <e

Analogously, we say that a signature scheme is (t,e, N, Qg)-MU-SUF-CMA-secure or multi-
user strongly unforgeable under chosen message attacks.

For simplicity, we sometimes omit the measure on the running time and the total
number of queries, if they are only required to be in polynomial with respect to the implicit

security parameter pp.

2.2.6 Key Encapsulation Mechanisms

Definition 28. A key encapsulation mechanism scheme over (secret) decapsulation key
space DK, (public) encapsulation key space EK, randomness space R, symmetric key space
IC, and ciphertext space CT, is a tuple of algorithms KEM = (KEM.KGen, KEM.Encaps,
KEM.Decaps) as defined below.
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Exprie-e-ma( 4 'N'): Osign (1, m):

1 Lsign < 0 6 o <~ DS.Sign( sk; ,m)

2> fori=1,..., N 7 Lsign < Lsign U{(i,m)}
3 (vk;, sk;) <= DS.KGen(pp) s return o

4 (i*,U*,m*)&AOSig"(Ukl,...,UkN)

5 return [DS.Vrfy((vkF ,0*, m*) A (&, m*) & Lsign]

Exprpe-suf-ema 4 N): Osign (i, m):

1 Lsign < 0 6 o <& DS.Sign(sk;,m)

2 fori=1,...,N 7 Lsign (—ESignU{(i,m,g)}
3 (vk;, sk;) <= DS.KGen(pp) g return o

o (1%, 0%, m*) & A% (vky, ..., vky)

5 return [DS.Vrfy(vk}, o*, m*) A (i*, m*,0%) & Lsign]

Figure 2.15: Multi-user MU-EUF-CMA experiment (top) and MU-SUF-CMA experiment (bottom)
of a DS = (DS.KGen, DS.Sign, DS.Vrfy) scheme with differences to the single-user security notions
highlighted in gray for the EUF-CMA case.

o Key Generation (ek, dk) < KEM.KGen(pp): takes as input the public parameter pp
and outputs a public-secret key pair (ek, dk) € EX x DK .

o Encapsulation (c,k) < KEM.Encaps(ek): takes as input a public key ek € EK
and outputs a ciphertext ¢ € CT and a symmetric key k € K. We write (¢, k) <
KEM.Encaps(ek; rE"<) if the random coins rE"2P* € R is specified.

e Decapsulation k < KEM.Decaps(dk, c): takes as input a secret key dk € DK and a

ciphertext ¢ € CT and outputs either a symmetric key k € K or an error symbol L.

We say a KEM = (KEM.KGen, KEM.Encaps, KEM.Decaps) is d-correct if for every
(ek, dk) < KEM.KGen(), we have

Pr[k # KEM.Decaps(dk, ¢) : (¢, k) < KEM.Encaps(ek)] < d.

In particular, we call a KEM (perfectly) correct if § = 0.
We say a KEM is d-strongly correct if for every (ek, dk) < KEM.KGen() and every

rEncaps ¢ R we have
Pr[k # KEM.Decaps(dk, c) : (c, k) < KEM.Encaps(ek; rE"P%)] < §

Compared to the conventional correctness, the strong correctness requires that the
encapsulate keys can be correctly recovered for every randomness coins involved during
the encapsulation. In particular, we call a KEM (perfectly) strongly correct if § = 0.

We define the min-entropy a. of public keys ek and a. of the ciphertext ¢ by

Qe = — log max Prek’ = ek : (ek, dk) < KEM.KGen()]
ek'e

a. = — log max Pr c=c :(c k) <& KEM.Encaps(ek
gc’eCT(ek,dk)&KEM.KGen()[ (e, k) ps(ek)]
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Exprigen " (A): Expriggy " (A): Obecaps(©):

1 b<{0,1} 1 b {0,1} 7 ife=c¢*

2 (ek,dk) <+ KEM.KGen() 2 (ek,dk) <+ KEM.KGen() 8 return L

3 (c*, k}) < KEM.Encaps(ek) 3 (c*, k}) < KEM.Encaps(ek) 9 k' + KEM.Decaps(dk, c)
4 k&K 4 k&K 10 return k'

5 b <& Alek,c, k) 5 b’ <& Ao (e, c*, k)

6 return [b=b’] 6 return [b=b’]

Figure 2.16: IND-CPA and IND-CCA experiments for a KEM = (KEM.KGen, KEM.Encaps,
KEM.Decaps) scheme.

In terms of the security notions, we recall the standard indistinguishability under
chosen plaintext/ciphertext attacks (IND-CPA/IND-CCA). The IND-CPA security prevents
an attacker from distinguishing the encapsulated symmetric key of a challenge ciphertext
from a random one. The IND-CCA security additionally allows the attacker to access a

decapsulation oracle.

Definition 29. Let KEM = (KEM.KGen, KEM.Encaps, KEM.Decaps) be a key encapsulation
mechanism scheme with symmetric key space K. We say KEM 1is e-IND-CPA secure, if
the below defined advantage of every (potential quantum) attacker A against Exprino:cFA

experiment in Figure 2.10 is bounded by,

i i 1
Advii, A (A) = | Pr[Exprioa ™A (A) = 1] — 5 <e€
Definition 30. Let KEM = (KEM.KGen, KEM.Encaps, KEM.Decaps) be a key encapsula-
tion mechanism scheme with symmetric space K. We say KEM 1is e-IND-CCA secure, if
the below defined advantage of every (potential quantum) attacker A against Expriga

experiment in Figure 2.10 is bounded by,

1
Advine CA(A) = Pr[Exprem M (A) = 1] — 5 <e

2.3 The Random Oracle Methodology

This random oracle model was first introduced by Bellare and Rogaway [34] and enabled
security proofs for many efficient schemes that previously had eluded the provable security
paradigm. It does so by representing a hash function in a cryptographic scheme as an
idealized random function (the random oracle). With this idealization in place, an attacker
can only evaluate the hash function H on input z, if it queries this random oracle on x. It
is no longer able to simply evaluate the hash function locally. In particular, this allows

¢

us to “peek” at the attacker’s inputs to the hash function, a property of the model that

is often referred to as extractability. When queried on input z, the random oracle then
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returns uniformly random answers from the range of H for each input. For each new query
a fresh uniformly random output is sampled, but just like for real hash functions, repeated
queries are answered consistently, i.e., the same inputs yield the same outputs. Another
essential property of the random oracle is programmability: if the attacker queries some
input x for the first time, we can set the value H(z) to a specific, freely-chosen output value
y as long as it is correctly distributed and does not collide with previously set outputs.
Note that when our proofs are in the random oracle model for hash function H, the
security notions introduced previously get the extra query parameter (Qy of the maximal

number of queries the attacker makes to the random oracle.
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Chapter 3

Provable Security of Ed25519

This chapter is based on the paper:

Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. ”The Provable Security
of Ed25519: Theory and Practice,” 2021 IEEE Symposium on Security and Privacy (SP),
San Francisco, CA, USA, 2021, pp. 1659-1676. DOI: 10.1109/SP10001.2021.00042.

This paper was joint work with my co-authors Jacqueline Brendel, Cas Cremers, and

Dennis Jackson. All authors actively contributed to the completion of this work.
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3.1 Introduction

The Ed25519 signature scheme was introduced in 2011 by Bernstein, Duif, Lange, Schwabe,
and Yang in the paper “High-speed high-security signatures” [43]. The efficiency of the
scheme has led to a global uptake in modern applications, and it is now used in SSH, Tor,
ZCash, and messaging protocols based on the Signal protocol such as WhatsApp.

For modern digital signature schemes the quintessential property is existential unforge-
ability under chosen message attacks (EUF-CMA) [94]. This property basically requires
that an attacker cannot construct a signature for a message that the key owner did not
sign previously.

A stronger property that can be met by signature schemes, is that of strong unforgeability
under chosen message attacks (SUF-CMA). This property additionally requires that the
attacker cannot construct an alternative signature for a given signed message. A high-profile
example exploiting the absence of this property is the Mt. Gox attack on Bitcoin [129].
In this attack, signatures on transactions were mauled by an adversarial recipient before
being stored on the blockchain. The recipient would then claim that the transaction failed.
The sender would check the blockchain, and would indeed not find their exact signature
(due to mauling), conclude that it apparently failed, and start a new transfer. Yet both
signatures would be valid and the recipient would thus receive the double amount. This
attack would not have been possible with a strongly unforgeable (SUF-CMA) signature
scheme as this notion prohibits malleability.

Additionally, in many practical systems, it is highly desirable that signature schemes
resist key substitution attacks [117, 158]. In such attacks the attacker computes specific
public keys, e.g., based on observed signatures of honest signers, such that these honest
signatures can also be verified under the attacker’s new public keys. This has been shown
to lead to attacks on protocols such as Let’s Encrypt Certificate Issuance and SOAP’s
WS-Security [117].

Surprisingly, full proofs of any of these security properties have never been given for
FEd25519. The original publications [43, 44] focused on efficiency of computation, and do
not contain a precise statement on the security property that is offered by the scheme,
which in the following we will refer to as Ed25519-Original. Because the scheme is said to
be constructed via the Fiat-Shamir transform, it should follow that Ed25519-Original at
least provides EUF-CMA security, but full details were never provided. The papers do
refer to malleability and argue that is not relevant for the standard definitions of signature
scheme security, but their definition of malleability does not agree with the common usage
of the term. It also transpires that, whilst the source code presented alongside the paper
accepts mangled signatures (hence is not SUF-CMA), the additional check included in the

paper’s description but not the source code, is actually sufficient to prove SUF-CMA, as
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DS.KGen(pp): DS.Sign(k, m):

1 k<& {0,1}° 6 h+ H(k)

2 h+ H(k) 7 s 20+ Sr 2]

3 5<—2”+Z?:_01 2¢hli] g8 1< H(h[D],...,h[20—1],m)

4 A<+ sB 9 R+ rB

5 return (A, k) 10 S+ (r+H(R,A m)s) mod L

11 return o = (R, S)
DS.Vrfy(A,o = (R, S), m):
12 Check R,A€e E

13 Variant Specific Checks
14 return Checks succeed A [2¢SB = 2°R + 2°H(R, A, m)A]

Figure 3.1: Generic description of the Ed25519 signature scheme algorithms DS =
(DS.KGen, DS.Sign, DS.Vrfy). Note that the highlighted Line 13 varies depending on the version
of Ed25519 and the appropriate check is listed in Table 3.1.

Ref Scheme Variant Specific Checks ggli_ ?]IIiIFA_ (S%Eflo()) ?1{]1?1)21 7 %I];)%
(Thm. 4) (Thm. 5) (Thm. 8)
[42] Ed25519-Original S € {0,...,2° — 1} v X v X X
[121° Ed25519-IETF S € {0,..,L —1} v v v X X
[119 Ed25519-LibS Se{0,..L-1}A|R|ZLAAI> V v v v v
L

Table 3.1: Ed25519 Schemes. To form each variant, replace the highlighted section in Figure 3.1
with the text presented here. Note that 2° —1 > L (see Table 3.2) so the latter checks are stricter.
EUF-CMA: Existential Unforgeability; SUF-CMA: Strong Unforgeability; S-UEO and M-S-UEO
denote resilience against key substitution attacks; MBS: Message Bound Security, ensuring a
signature verifies a unique message, even for malicious keys.

we will show. This further adds to the confusion around the security properties enjoyed
by Ed25519.

While the original papers came with a full implementation of Ed25519-Original, later
implementations made various modifications. Notably, the Ed25519-IETF version that was
standardized by the Internet Engineering Task Force (IETF) in [121] includes a check
that is claimed to prevent malleability, thereby implicitly suggesting that Ed25519-IETF is
strongly unforgeable (SUF-CMA). Later versions, such as the ones used by LibSodium [119]
and ZCash [108] included additional group element checks. We return to the details of
these differences in Section Section 3.4.1. This leads to the obvious question: which
exact properties are actually provided by the various Ed25519 schemes? This question is
especially timely as Ed25519 is currently proposed for inclusion in the USA’s National
Institute of Standards and Technology (NIST) standard for Digital Signature Schemes [145,
146, 147] and was recently included in the TLS 1.3 standard [161].

Over the last years, several published works reported security proofs of systems that

use Ed25519, but require specific cryptographic security notions from their signature
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Parameter Description Instantiation for Ed25519

q The finite field size ¢ 225 _ 19
n Secret scalars are n + 1-bits 254
b The public key bit-length 20~ > ¢ 256
a, d Curve parameters in Fy —1,-121665/121666
B A generator of the prime order subgroup of F (z,4/5),2 >0
c The log, of curve cofactor c=3
The prime generator order LB = 0 and 2°L = |E| 2252 4 27742...8493
H Secure hash function producing 2b-bit output SHA-512
EC Curve equation in Twisted Edwards form 22 4y =14 da?y?

Table 3.2: Parameters for Ed25519 signatures as described in Figure 3.1.

schemes, such as computational proofs of TLS 1.3’s properties [47, 48, 84, 131]. These
proofs assume that Ed25519-IETF satisfies EUF-CMA, leaving a proof gap. A claimed
computational proof of SSH [37] requires that all supported signature schemes provide SUF-
CMA. However, SSH implementations also allow the use of the malleable Ed25519-Original,
which leads to a counterexample to the security statement. The Signal protocol library
implements yet another variant of the Ed25519 signature scheme. Adding to the confusion,
a recent work [100] claims that the results on Schnorr signatures in prime order groups
implies Ed25519-Original enjoys SUF-CMA and resistance to key substitution attacks. We
will see in Section 3.5.4 that this is not the case.

In this work we remedy these proof gaps, and establish further properties of Ed25519
signature schemes. As we will see, the devil is in the detail: the specific details of Ed25519
(e.g., small subgroup elements, scalar clamping) require subtle tailoring of the proof details,
and lead to mismatches such as the lack of SUF-CMA security for Ed25519-Original despite
its similarities to Fiat-Shamir applied to the Schnorr identification scheme, which ‘should’
imply that SUF-CMA security holds. These subtleties also manifest themselves in the
requirements of various checks. Thus, our work not only fills these highly-needed proof
gaps, but also provides additional insight into the subtle differences between Ed25519
schemes which are summarized in Table 3.1.

Our main contributions are the following.

e We provide the first detailed proof that Ed25519-Original [43] is indeed EUF-CMA secure.
e We provide the first proof that Ed25519-IETF [121] is actually SUF-CMA secure.

e We prove that all Ed25519 schemes are resilient against key substitution attacks, and
that if small subgroup keys are rejected as in LibSodium, a signature uniquely identifies

a message, even for malicious keys.

e In a wider sense, our results retroactively support the standardisation of Ed25519-IETF,

and support the ongoing standardisation by NIST.
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Overview: In Section 3.2 we present related work. Section 3.4 presents Ed25519 signature
schemes and their subtle differences from Schnorr identification schemes. We provide the
security analysis in Section 3.5 and we conclude in Section 3.6. In Section 3.7, we give the

full proofs for all lemmas and theorems in this chapter.

3.2 Related Work

3.2.1 History of EADSA and Ed25519

Ed25519-Original is just one instantiation of the more general EADSA signature scheme,
which was introduced in the same paper [43, 44]. EADSA is itself a variant of the well-
known Schnorr signature scheme [166, 167]. Ed25519 is EADSA instantiated over curve
Edwards25519 [43] and remains by far the most popular instantiation of EADSA, despite
its later extension to support alternative curves [45, 121].

EdDSA instantiations such as Ed25519-Original can sign and verify signatures sub-
stantially faster than almost all other signatures schemes at similar security levels. For
schemes that have comparable speeds, Ed25519-Original further provides considerably
smaller signatures, producing 64-byte signatures and 32-byte public keys. Additionally,
EdDSA is widely considered to provide better resistance to side-channel attacks than
alternative schemes. However, the original papers [43, 44] contain no formal statements
(and consequently, no actual proofs) of its security properties.

By virtue of its outstanding performance with respect to efficiency and bandwidth,
EdDSA was standardised by the IETF between 2015 and 2017 [121]. In 2019, EADSA
was proposed to also be adopted as part of NIST’s Digital Signature Standard (DSS) [145,
146]. In early 2020, the public call for comments was closed [147], but as of writing, no

new version has appeared.

3.2.2 Related Proofs

The Fiat-Shamir paradigm was proposed by Fiat and Shamir [90] as a generic approach to
derive a secure signature scheme from a canonical identification schemes (CID). A vast
body of work followed this seminal result and the aforementioned Schnorr signatures [166,
167], on which EADSA was built, is probably one of the most famous examples of the
transform’s power to build efficient and provably-secure signatures. Here we merely present
some of the many milestones related to Fiat-Shamir that are most relevant for our work.
While the original presentation [90] lacked security proofs, Pointcheval and Stern [156, 157]
closed this gap by providing proofs in the (then) relatively new random oracle model [34].
Abdalla et al. [1] indicated the minimal conditions for the underlying identification scheme
to prove Fiat-Shamir transformed signatures to be EUF-CMA secure. In 2016, Kiltz et al.
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[125, 126] provided a concrete and modular security analysis of Fiat-Shamir signatures in
both the single-user and multi-user setting, closing the tightness gap of the reduction.
The treatment of the multi-user setting is especially interesting as in practical applica-
tions there exist many different public keys for an attacker to attack. In 2002, Galbraith,
Malone-Lee, and Smart [92] considered security of signatures in this multi-user setting.
They showed that if an attacker were to attack N keys at once, its advantage can increase
only at most by a factor of N (this is often referred to as the generic bound). Their second
result claimed that for Schnorr-like signatures one can do even better and achieve a tight
reduction between single-user and multi-user security. Much later, Bernstein [40] exposed a
flaw in this tight proof that to this date could not be resolved. However, Bernstein [40] was
able to show that one can achieve a tight reduction between single-user security of Schnorr
signatures and multi-user security of key-prefized Schnorr signatures. Key prefixing had
been introduced earlier by Menezes and Smart [170] in the context of key-substitution
attacks, where they also (controversially) claimed that it is not necessary to actively miti-
gate key-substitution attacks for Schnorr signatures. In contrast, the designs of Ed25519
signatures [43, 121] nevertheless employ key-prefixing. Kiltz et al. [125] show that if the
underlying canonical identification scheme achieves random self-reducibility in the random
oracle model, then a tight reduction between multi-user and single-user security can be
achieved without key prefixing. In Section 3.5.3, we briefly discuss multi-user security in

light of these results.

3.2.3 Computational Proofs of Systems that Use Ed25519

Because of its performance and conjectured security, EADSA’s Ed25519 instantiation over
Edwards25519 has become one of the most popular digital signature schemes, appearing
in innumerable applications and protocols including TLS 1.3 [161], SSH [143], Tor, ZCash,
and the Signal protocol [151].

Regarding such systems, there exists numerous security proofs which hold only when
the deployed digital signatures satisfy certain conditions. For example, Bhargavan et al.
[47] developed the first machine-checked cryptographic proof for TLS 1.3 draft-18 using
the verification tool CryptoVerif, thereby assuming that Ed25519-IETF meets EUF-CMA.
Similarly, [84] proved the security of session resumption in the TLS 1.3 draft-05 full
handshakes and [131] proved the security of (a slightly modified version of) the ephemeral
Diffie-Hellman handshake of TLS 1.3 with unilateral authentication. Kobeissi, Bhargavan,
and Blanchet [130] analyzed a model of the Signal protocol in CryptoVerif assuming
EUF-CMA security of Signal’s X-Ed25519 scheme. However, none of these schemes have
actually been proven to achieve EUF-CMA security.
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FS.KGen(): FS.Sign(sk, m):
1 (pk, sk) <= CID.KGen() 3 (com,st) <& CID.Py(sk)
2 return (pk, sk) 4 ch ¢ H(com,m), rsp <~ CID.P5(ch,st), o + (com, ch, rsp)

5 return o

FS.Vrfy(pk, m,0):
6 (com,ch,rsp) < o
7 return [ch = H(com, m) A CID.Vy(pk, com, ch, rsp)]

Figure 3.2: Signature scheme FS[CID, H] = (FS.KGen, FS.Sign, FS.Vrfy) resulting from the (tran-
script variant of) Fiat-Shamir applied to the canonical identification protocol CID = (CID.KGen,
CID.P,CID.V).

In 2014, SSH was proven to be secure even when the same signing key is used across
multiple ciphersuites, assuming that the underlying signature is strongly unforgeable [37]'.
However, SSH implementations may use the originally-proposed version Ed25519-Original
(e.g., [149]), which does not satisfy SUF-CMA. This yields a counterexample in their
security model: mauling a signature in an otherwise honest session allows a session-key
reveal on the peer, as the sessions no longer match. Thus, their proof does not apply
as-is to SSH implementations that use Ed25519-Original. [100] claims that the results
on Schnorr signatures in prime order groups imply that Ed25519 enjoys SUF-CMA and

resistance to key substitution attacks, which, as we will see in Section 3.5.4 is not the case.

3.2.4 The Fiat-Shamir Transform

Finally, we review the Fiat-Shamir transform [90] which allows to transform passively-
secure (interactive) identification protocols into (non-interactive) signature schemes which
are secure against active attackers.

We follow the approach by Abdalla et al. [1] when applying the Fiat-Shamir transform,
i.e., we start from a canonical identification protocol that is secure against impersonation
under passive attack and model the hash function as a random oracle (cf. Section 2.3) to
show the existential unforgeability of the resulting signature scheme.

Let CID = (CID.KGen, CID.P,CID.V) be an IMP-PA-secure canonical identification
protocol and let H : {0,1}* — {0,1}" be a cryptographic hash function with out-
put length n modeled as a random oracle. Then the signature scheme FS[CID,H] =
(FS.KGen, FS.Sign, FS.Vrfy) constructed as described in Figure 3.2 is existentially unforge-
able under chosen message attacks.

Note that there are different variants of the Fiat-Shamir transform in terms of how the
signatures are constructed. The transform shown in Figure 3.2 is of the transcript variant
as used, e.g., by Pointcheval and Stern [156], where the signature consists of the entire

conversation of the identification scheme.

IThe full version of the paper [38] explicitly uses the definition for strong unforgeability, even though
both versions use a “euf-cma” shorthand.
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CID.KGen(pp): CID.P4(a): DS.KGen(pp): DS.Vrfy(A,m,o = (ch, S)):
1 aéF, 4 r&Fy 1 aéF, 4 R« g5 A=

2 A g° 5 Reyg" 2 A« yg° 5 ch’ < H(R',m)

3 return (4,a) 6 return (R,a) 3 return (4,a) s rpeturn [ch’ = ch]
CID.Vy: CID.P3(ch,a): DS.Sign(a, m):

7 ch & F, 11 S+ (R+ch-a) modg |13 r&F,

8 return ch 12 return S 14 R<+g"

CID.V5(A, R, ch, S): 15 ch <« H(R,m)

o R « g5 Ach 16 S4 (R+ch-a) modgq

10 return [R' = R] 17 return o < (ch,S)

Figure 3.3: Schnorr signature scheme DS = FS[CID,H] = (DS.KGen, DS.Sign, DS.Vrfy) (right)
resulting from the Fiat-Shamir transform applied to the Schnorr identification protocol CID =
(CID.KGen, CID.P, CID.V) (left).

Example 1 (Schnorr Signatures). Schnorr signatures are a prime example of the way
secure signatures can be constructed via the Fiat-Shamir transform from secure identification
protocols. [166]. They achieve short, efficient signatures that are provably secure in the
random oracle model, assuming the hardness of the discrete logarithm problem in the
underlying group. The underlying Schnorr identification scheme, as well as the resulting
signature scheme when the Fiat-Shamir transform is applied, are depicted in Figure 3.5.
Here, pp = (G, q,g) denote the public parameters of the scheme where G is a cyclic group

of prime order q with generator g.

Schnorr signatures as described in Example 1 are of the challenge variant where
the signature consists only of the challenge and the response, i.e., o < (ch,rsp). This
requires that there exists an algorithm that can reconstruct the commitment com from the
public key, the challenge, and the response. Further signatures that are of the challenge
variant are the original work by Fiat and Shamir, GQ signatures [99] and Okamoto
signatures [148]. An in-depth treatment of these variants, including a third variant, the
commitment variant, can be found in Backendal et al. [16]. As we will later see, Ed25519
signatures are a deterministic variant of Schnorr signatures but in the commitment-variant
of the Fiat-Shamir transform. In order to make Fiat-Shamir signatures as described
in Figure 3.2 deterministic, CID.P; is derandomized by using H(sk, m) as randomness

during commitment generation.

3.3 Additional Preliminaries

Notations: For an integer ¢, we denote by F, the finite field with order ¢. For a bit

string h and an integer i, we let hli] denote the i-th bit of h. Overloading notation, we
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write a for the bitstring encoding of a, where a can be an integer or a curve point. We
later describe the details of these encodings at the start of Section 3.4.
3.3.1 Elliptic Curves

We briefly recap the main theory of elliptic curves. For a more in-depth treatment of
specific concepts and constructions, we refer the interested reader to, e.g., [71, 102]. We
begin by defining elliptic curves over a finite field IF,, which are the most common types of

elliptic curves in cryptography:

Definition 31 (Elliptic curve). Let ¢ > 5 be a prime. An elliptic curve EC defined over
the finite field F, is an equation of the form

v =2 +ar+b (3.1)
with a,b € F, such that 4a® + 27b* # 0.

In elliptic-curve cryptography, the group in question is the set of points on the elliptic

curve EC.

Definition 32 (Points on EC). Let EC(F,) be the set of pairs (z,y) € F, x F, satisfying
the elliptic curve equation. Let O denote a special point, the so-called point at infinity.
Then the set

EC(F,) := {(z,y)|v,y € F, Ay* = 2° + ax + b} U{O}
denotes the points on the elliptic curve EC.

With an adequately defined addition operation “+” EC(F,) forms a group with neutral
element (0,1). The multiplication of a curve point P with an integer n is defined as adding

P n times to itself, i.e.,

nP:\P-'-P_F._i_PJ’

n times

where 0P := O.
For brevity, we often write EC instead of EC(F,) if the underlying field is clear from

context.

Further Definitions The number of points on an elliptic curve EC over F, is called
the order of the curve and is denoted by |[EC(F,)|. We call an element B that generates
a cyclic subgroup the base point and write P € (B) to indicate that P is an element of
the subgroup generated by B. For an element B, we overload notation and write |B| to
denote its order, i.e., the smallest integer n such that nB = O. If B generates a subgroup

of EC(F,), we define the cofactor to be the integer %.
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3.3.1.1 Twisted Edwards Curves and Discrete-Log Problem

There exist several different forms of elliptic curve equations, such as Weierstrafs, Mont-
gomery or Edwards form. Most relevant for this paper are twisted Edwards curves [41]
which are defined over a finite field F, with ¢ > 3 prime with additional parameter a (the

twist) via the curve equation

ECrpy : ax® + y2 =1+ dx2y2,

where a,d € F, with a,d # 0 and a # d.
Addition “+” on Epgq(F,) is defined as follows. Let P = (z1,41),Q = (z2,y2) €
ECrra(F,), then P+ Q = (x3,ys) is defined as

vy — T1Y2 + T2 ’ L= Y1Y2 — AT1T2 _

1+ dziway1ye 1 — dz1 22912
Note that if a is a square in F, and d is non-square in [F, then the addition operation is
complete and (E7gq(F,), +) is a group with neutral element (0,1). The inverse —P of a
point P = (z,y) € Erga(F,) is (—z,y).

The twisted Edwards curve EC underlying the Ed25519 constructions, which we discuss
in more detail in the next section, is birationally equivalent to curve25519 introduced
by Bernstein [39], which is of the Montgomery form and due to its efficient arithmetic
implementation yields very performant constructions. curve25519 is defined over the

finite field F, with ¢ = 22°> — 19 prime via the curve equation
curve25519 : y* = 2° + 4866622% + .

Definition 33 (ECDLP). Let EC be an elliptic curve defined over a finite field F, and
let B € EC(F,) be a point of order n. Let P € (B). Then the elliptic curve discrete-log
problem is to find an integer 0 < k < n such that P = kB. We say that EC is (t, €)-hard
on EC if for any algorithm A running in time at most t the probability of solving ECDLP

15 at most €.

3.3.2 Secure Canonical Identification Protocols

Canonical Identification (CID) protocols allow a so-called prover CID.P that holds a secret
key sk to authenticate to a verifier CID.V who holds the corresponding public key vk.
CID protocols consist of three moves: The prover CID.P sends a commitment com to the
verifier CID.V. The verifier CID.V then samples a random challenge ch and sends it to
CID.P. Finally, CID.P sends a response rsp to CID.V, whose decision is then a deterministic

function of their conversation (com,ch,rsp) and CID.P’s public key. More formally:
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Definition 34 (Canonical identification protocol). A canonical identification (CID) pro-
tocol CID = (CID.KGen, CID.P = (CID.Py, CID.P,), CID.V = (CID.Vy, CID.Vy)) is a triple of

algorithms:

Key Generation CID.KGen takes as input the public parameters pp and outputs a public
key pk and a secret key sk, i.e., (pk, sk) <= CID.KGen(pp).

The prover CID.P = (CID.Py,CID.Py) is a two-stage algorithm that takes as input a
secret key sk. CID.Py takes as input sk and outputs a commitment com as well as some
state st. CID.Py takes as input the challenge ch (sent by the verifier CID.V;) as well as

state st and outputs a response rsp.

The verifier CID.V = (CID.Vy, CID.V,) is a two-stage algorithm that is initialized with
a public key pk. CID.Vy selects a random challenge ch and sends it to the prover.
CID.V, takes as input the public key, the com, ch and rsp and outputs 1 if it accepts the

conversation (com,ch,rsp) for pk or 0 if it rejects.

For all (pk,sk) < CID.KGen(pp), we require that if CID.P(sk) and CID.V(pk) inter-
act honestly within an instance of the protocol, then the wverifier accepts. ILe., for
(com,st) <~ CID.Py(sk), ch < CID.Vy, and rsp < CID.Py(com,ch,st), we have verifier
Pr[1 < CID.Vy(pk, com, ch,rsp)] = 1.

We sometimes denote the interactive run of the identification protocol CID between
the prover and the verifier by CID.P = CID.V or CID.P(sk) = CID.V(pk). We write
Trans [CID.P(sk) = CID.V(pk)] to denote a conversation (com, ch, rsp) resulting from the
interaction between CID.P and CID.V and identify CID.Vy(pk,com,ch, rsp) with the final
decision € {0, 1} of the verifier. If 1 < CID.Vy(pk, com, ch, rsp), we say that (com, ch, rsp)
is an accepting conversation for pk, or simply a valid conversation.

Intuitively, the basic security of identification protocols is defined in terms of the
inability of an attacker A to impersonate the prover towards an honest verifier without
knowledge of the prover’s secret key. This can be in the setting where A only has access
to the public key of the prover (called IMP-KOA for security against impersonation under
key-only attacks), or in the stronger setting, where A can observe honest conversations
between the prover and the verifier (IMP-PA for security against impersonation under

passive attacks):

Definition 35 (IMP-KOA and IMP-PA security). Let CID = (CID.KGen, CID.P, CID.V) be a
canonical identification protocol. Consider the security experiment Expré <O* as defined
on the left in Figure 3.4. We say that CID is (t,€)-secure against impersonation under
key-only attacks, or simply (t, €)-IMP-KOA-secure, if for any PPT attacker A running in
time at most t the probability

Pr[Exprif O (A4) = 1] <.

36



Expreip ' (A): Exprcip " (A):

1 (pk, sk) <= CID.KGen() 1 (pk, sk) < CID.KGen()
2 ch <& CID.V; 2 ch < CID.V;
3 (com,st) < A(pk) 3 (com,st) <& A(pk)

4 rsp <= A(ch,st)

4 rsp <& A Otrans (ch,st)
5 return [CID.Vy(pk, com, ch, rsp)]

5 return [CID.Vy(pk,com,ch,rsp)]

OTrans:
6 return Trans[CID.P(sk) = CID.V(pk)]

Figure 3.4: IMP-KOA and IMP-PA experiments for a CID = (CID.KGen, CID.P, CID.V) scheme
against impersonating attackers A with differences highlighted in gray.

Similarly, consider the experiment Expr%P'PA as defined on the right in Figure 3./.

We say that CID is (t, €, Qr)-secure against impersonation under passive attacks, or simply
(t, e, Qr)-IMP-PA-secure, if for any PPT attacker A running in time at most t and with at

most Qr queries to the oracle Otpans, the probability
Pr[Exprif ™ (A4) = 1] <.

To argue about the security of canonical identification protocols CID, it is useful to talk
about the min-entropy of an identification scheme as well as the notion of honest-verifier
zero-knowledge, or HVZK, for short. The former notion captures the unpredictability of
commitments in the protocol, whereas HVZK formalizes the property that an attacker A
gains no additional knowledge from honest interactions CID.P < CID.V, since A could
generate such conversations on its own.

This is done by showing that there exists an algorithm Sim, that only takes as input the
public key and can output conversations that are indistinguishable from real interactions
CID.P(sk) = CID.V(pk).

Definition 36 (Min-entropy of identification scheme). We say that a canonical identifi-
cation protocol CID = (CID.KGen, CID.P,CID.V) has « bits min-entropy if the probability
over the choice (pk, sk) <~ CID.KGen(pp), that the commitment generated by CID.Py(sk)
1s from a distribution with at least o bits of min-entropy, is at least 1 — 2%. Recall that
a discrete random variable X has « bits of min-entropy, denoted by Hy(X) = «, if
max (Pr[X =z]) =27

Definition 37 (Honest-verifier zero-knowledge). Let CID = (CID.KGen, CID.P, CID.V) be
a canonical identification protocol. We say that CID is eXZ-honest-verifier zero-knowledge,
or eN&-HVZK for short, if there exists a PPT algorithm Sim, called the simulator, such
that for all (pk,sk) < CID.KGen(pp), the outputs of Sim(pk) can only be distinguished

from real conversations CID.P(sk) = CID.V(pk) with probability at most e .
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We recall two important properties of CID protocols. The first one is commitment
recoverable, which means that commitments can be efficiently and publicly computed from
the public key, the challenge, and the response. The second one is (computationally)
unique responses, meaning that for a fixed instance of the protocol and commitments
and challenges, there exists at most one response such that the verifier will accept the

conversation (or a second response is computationally infeasible to find). More formally:

Definition 38 (Commitment-recoverability CR). Let CID = (CID.KGen, CID.P,CID.V) be
a canonical identification protocol. We say that CID is commitment-recoverable, or CR,
for short, if for any (pk, sk) < CID.KGen(pp), ch <= CID.Vy, rsp <& CID.Py(ch,st), there
exists a unique com such that CID.Vy(pk,com, ch,rsp) = 1 and this com can be efficiently

computed given only (pk,ch,rsp).

Definition 39 ((Computationally) unique responses CUR). Let CID = (CID.KGen, CID.P,
CID.V) be a canonical identification protocol. We say that CID has eg|-computationally
unique responses or CUR, if for any (pk, sk) <= CID.KGen(pp), com < CID.P,(sk) and
ch & CID.V, the probability of an attacker being able to output two responses rsp and rsp’
such that CID.Vy(pk, com, ch,rsp) = 1 and CID.Vy(pk,com, ch,rsp’) =1 is at most €3y, If

€dib = 0 we say that CID has unique responses.

3.4 Ed25519 Signatures

In this section we describe how the Ed25519 [43, 121] signature scheme operates in detail,
unravel its relationship with Schnorr signatures and why proofs for Schnorr are not directly
applicable to Ed25519. We also describe several of the proposed variants of Ed25519, which
target stronger security properties than provided by the original formulation.

We define the generic signature scheme Ed25519 in Figure 3.1. Part of the generic
scheme description, highlighted on line 13 in Figure 3.1, is replaced in the variant schemes.
We summarise these variations in Table 3.1 and discuss them further below. The various
parameters common to all variants are listed in Table 3.2. These parameters include those
necessary to define the elliptic curve EC over which the signature scheme operates and the

hash function used.

Encodings Integers mod L are encoded as as b-bit strings in little endian format. Elliptic
curve points (z,y) are encoded as a (b — 1)-bit little-endian encoding of y, followed by a
sign bit which is 1 if and only if x is negative. We note an oft-omitted property of the
encoding scheme: the field element that represents y is encoded as a (b — 1) = 255-bit
string, but the size of the field is ¢ = 2%° — 19, yielding a larger space of encodings than
actual elements. Similarly, the S part of the signature is expected to be a b-bit integer,
but is necessarily reduced mod L prior to use in the signature verification. These details

turn out to have substantial consequences when showing security of the scheme and we
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will highlight this in the respective proofs. In places, the original presentation [43] and
its accompanying source code disagree on the necessary tests, e.g., the range of L. As
the source code is the basis of the most popular Ed25519 implementations, we treat it as

authoritative.

3.4.1 Variants of Ed25519

Recall that we refer to the original, and currently most widely deployed formulation of
Ed25519 as Ed25519-Original. Several alternative specifications have also been published
which largely maintain wire compatibility with Ed25519-Original, but substantially alter
the security properties of the scheme. In particular, variants have been published by the
IETF [121], NIST [70], and the ZCash Foundation [108]. Furthermore, LibSodium [119],
one of the most popular cryptographic libraries, uses a set of additional checks that render
it a de-facto standard.

Another variant is the use of Ristretto encodings [162] for Ed25519. Whilst this appears
promising, the draft RFC [96] is still under active development and we do not analyze it
here.

We note that the Signal Foundation [151] have also proposed a variant with enhanced
resistance to side-channel attacks and fault resistance during signature generation. However,
this variant operates similarly to Ed25519-Original with regards to signature verification

and consequently we do not treat it separately.

3.4.1.1 Pre-Hashing Variants

The IETF-standardised RFC 8032 [121] and the NIST draft standard [70] support a
pre-hashing mode for their variants. This mode allows implementations to sign large
messages whilst only needing to perform a single pass over the message. The signed
message value m is replaced with the pre-hash PH(m), where PH is a hash function. The
IETF specification explicitly recommends against the use of this mode, stressing it is
included only to support legacy signing interfaces. Consequently, we do not discuss it
further.

3.4.1.2 Bounds Checking Variants

Some variants of Ed25519 require an additional check on the received alleged signatures
during verification. In particular, this is enforced by the IETF standard [121] and proposed
in the NIST draft standard [70]. In these variants, implementers are required to reject
signatures whose S parameter is equal to or larger than L, where L is the order of the
prime-order subgroup. Contrastingly, Ed25519-Original implementations merely check
S is a 256-bit integer. We refer to such implementations as Ed25519-IETF. This is

claimed to have a substantial impact and achieve strong unforgeability. We investigate
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this further in Section 3.4 but already note that, contrastingly to Ed25519-IETF variants,
Ed25519-Original implementations simply reduce the received signature element S mod L

during signature verification, thereby immediately ruling out SUF-CMA security.

3.4.1.3 Point and Bound Checking Variants

Some popular implementations of Ed25519, such as LibSodium [119], perform the bounds
check on S values in addition to point validation. Specifically, Ed25519-LibS ensures that
received elements are canonically encoded and have order >L. This check means that
certain R values, which are low order points on the curve, are rejected during verification
as well as low order public keys. Additionally, R values and public keys which have
y-coordinates above ¢ are also rejected to ensure unique encodings. We see the impact of

these decisions in Section 3.5.4.

3.4.2 Differences from Schnorr Signatures

Ed25519 has several notable features which differentiate it from traditional Schnorr signa-
tures. The original Schnorr signature scheme and its underlying identification protocol can
be recalled in Example 1. In particular, private keys in Ed25519 are clamped to a specific
format, signature nonces are chosen deterministically, and signed messages are prefixed
with public keys. As indicated before, these differences impact the security of the overall

signature scheme and our analysis. We next discuss these alterations in more detail.

3.4.2.1 Group Structure

Ed25519’s curve is of order 8L for L a large prime defined in Table 3.2. Contrastingly,
Schnorr signatures are typically constructed over prime order groups and implementations
are assumed to reject the identity element.

Non-prime order groups contain a more complex group structure than prime order
groups. In particular, non-prime order groups entail the presence of additional subgroups,
whose elements lie outside the intended prime order subgroup. Performing group operations
on these elements can lead to surprising results, including confinement under exponentiation,
where they map to a small range of elements and leakage, where performing exponentiation
with a private scalar leaks information about that scalar. The original paper [43] allowed
Ed25519 implementations to optionally include multiplication by the cofactor in the
verification equation. Including the cofactor makes the verification function strictly more
permissive and we assume it is present so that our proofs carry over to the cofactorless
case.

Proofs about systems defined over prime order groups do not necessarily hold if the
system is implemented with non-prime order groups, even when the proof does not explicitly

rely on the prime order structure. For example, proofs typically assume that any group
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element can be written as the exponentiation of a fixed generator, or that exponentiation
of an element is uniformly distributed over the group. In the non-prime order case, neither

assumption is true in general.

3.4.2.2 Group Element Checks

The question of how values should be decoded and parsed is often omitted from academic
papers. Ed25519-Original and Ed25519-1ETF are of particular interest in this regard as it
is explicitly argued that elements do not need to be checked to ensure they belong to the
prime order subgroup. This means any group element, including small order elements, the
identity element and elements of order 8L will be accepted. We discussed variants that
mandate this check in Section 3.4.1.3. The related Diffie-Hellman function X25519 also
omits these checks which has previously led to otherwise avoidable attacks on protocols
employing it [77].

A related issue is whether elements are checked to ensure they lie on the intended curve,
rather than its twist. Whilst X25519 does not reject elements on the twist, Ed25519-Original
explicitly mandates that points are checked to ensure they do belong to EC. This is checked
during the decompression of received points prior to signature verification. We assume
all implementations uphold this requirement as otherwise point addition during signature

verification is not necessarily defined.

3.4.2.3 Private Key Clamping

In part due to the non-prime order nature of the curve and the lack of group element
validation, Ed25519 mandates the use of key clamping which involves the bitwise manipu-
lation of private keys prior to use in signing. The rationale behind this requirement has
been the subject of much debate [57, 142]. The original Ed25519 paper defines private
keys, without discussion, such that a high bit is always set and three low bits are cleared.
All subsequent variations have kept the same requirement. There are two rationales for

clamping:

e Setting the high bit ensures that some deficient point multiplication implementations,
which have variable execution time with respect to the position of the highest set bit in

the scalar, become constant time [110].

e (learing the low bits ensures that the scalar is a multiple of the cofactor. This ensures
that the result of applying the scalar to any group element results in an element in
the prime order subgroup. This avoids key leakage attacks, although these attacks
are not relevant for Ed25519 signature schemes as private keys are never applied to
attacker-provided group elements. However, as implementers may wish to re-use keys in
both X25519 and Ed25519, this choice provides defence in depth.
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As we will see later, the use of clamping complicates our security proofs. This is because
not every element in the prime order subgroup is also a valid public key as produced
by the key generation algorithm. Consequently, when providing reductions which must
manipulate public keys, e.g., blinding them, there is a small chance an invalid public key

is produced and the reduction must abort.

3.4.2.4 Key Prefixing

Unlike traditional Schnorr signatures, Ed25519 uses key prefixing, where the signature
scheme, prior to signing or verification, prepends the public key to the message. This choice
has also been the subject of much debate [40, 111, 112, 125] as to whether it provides a
substantial improvement in security. Much of the discussion has revolved around multi-user
security and whether key prefixing improves security in the presence of an attacker who is
satisfied to break some subset of witnessed multiple keys, rather than one key in particular.
We discuss the multi-user security of Ed25519 in more detail in Section 3.5.3. It transpires
that key prefixing also has benefits when considering lesser-known multi-user security

properties such as message key substitution attacks, as we show in Section 3.5.4.

3.4.2.5 Deterministic Nonce Generation

Signature schemes require the use of a nonce with each signed message. This has historically
been an area prone to subtle implementation mistakes leading to critical real world
vulnerabilities [14]. Ed25519 uses deterministic signing which removes the need for
fresh random numbers during the signing process. This does not lead to any particular
consequences for our security analysis since we model the key derivation function as a

random oracle. However, it is well known not to reduce security [33].

3.5 The Security of Ed25519

We now present our security results for Ed25519-Original and Ed25519-IETF signatures.
As suggested by earlier works that informally discuss the security of these schemes, we use
the Fiat-Shamir approach. However, as elaborated in Section 3.4.2, there exist marked
differences between Schnorr signatures and Ed25519 signatures such that the established
security results for Schnorr do not hold without careful adjustment to the Ed25519 setting.
We close this gap by proving both the existential unforgeability of Ed25519-Original and
show that due to the additional check on the value S, Ed25519-IETF and Ed25519-LibS
achieve strong unforgeability. As is common for signature proofs, we assume idealized
versions of hash functions (random oracles), but do not make any strong assumptions on
the properties of the underlying elliptic curve group. Tighter security bounds may be

possible in the so-called generic group model (cf., e.g., [24, 125]), however we explicitly
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CID.KGen(pp): CID.V;:

1k <i {O7 1}17 12 ch <i {0, 1}2b
> h e Hk) 13 return ch
b—2 b—3 z
s 2 R 2l CID.Pa ch, t):
4 A<« sB 14 S (r+ch-st) modL
5 return (A, k) 15 return S
M CIDVQ(AaEaﬁ? Ch)
6 h <+ H(k) 16 Check R,A€eFE
7 s 20724 Zb 521 p]i] 17 Variant Specific Checks
8 sti—s 12 return [8SB = 8R + 8chA]
o r&{0,1}%
10 R+ rB

11 return (R,st)

Figure 3.5: Canonical identification protocol CID = (CID.KGen, CID.P = (CID.Py,CID.Py),
CID.V = (CID.V{,CID.V3)) underlying Ed25519-Original in Figure 3.1. Note that the high-
lighted Line 17 varies depending on the version of Ed25519 and the appropriate check is listed
in Table 3.1.

want to explore security in a setting where the attacker may take advantage of, e.g.,
encoding details.

We recall that, in the following, EC refers to the twisted Edwards curve underlying
Ed25519 (cf. Table 3.2) and analogously EC(IF,) denotes the set of elements on the curve

which forms a group with point addition, as defined in Section 3.3.1.

3.5.1 Existential Unforgeability of Original Ed25519

We start by showing EUF-CMA security of Ed25519-Original specifically by means of the
Fiat-Shamir transform. We first define an appropriate canonical identification protocol
CID in Figure 3.5 to which the transform can be applied, then show that CID satisfies
the necessary prerequisites in Theorem 2 and Theorem 3 and finally apply the transform
in Theorem 4 to establish existential unforgeability of the resulting signature scheme.
We note that with the additional check in Line 17 of CID in Figure 3.5, the proof of
EUF-CMA security directly carries over to Ed25519-IETF and with the further check
described in Table 3.1 also to Ed25519-LibS.

To get from CID in Figure 3.5 to the Ed25519-Original in Figure 3.1, we apply a variant
of Fiat-Shamir, denoted by FSd ., that captures deterministic signing and key-prefizing.

Deterministic signing is achieved by deterministically deriving the randomness r of
CID.P; in the signing algorithm via r <= H(h[b], ..., h[2b — 1], m), where m is the message
to be signed, and, as before, hli] denotes the i-th bit of h. The de-randomization of signing

by computing the randomness deterministically as some H(sk,m) is common and in our
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case does not impact the security of the resulting signatures, assuming H is at least a
pseudorandom function (cf., e.g., [33]).

Recall that key-prefixing, on the other hand, describes the derivation of the challenge
ch by the prover during signature generation as H(R, A, m) instead of H(R, m), i.e., by
also including the public key into the hash function. It will become clear from the proof
that this additional input to the random oracle H does not impact security, since this

solely relies on R being sufficiently unpredictable in honest signature generations.

3.5.1.1 Security of the underlying identification protocol

We show that the underlying CID is secure against impersonation attacks by passive
attackers (IMP-PA security, cf. Definition 35). We do this in a two-step process by first
showing in Theorem 2 that CID is secure against impersonating attackers that only have
access to the public key (IMP-KOA security). To lift this result to the setting of passive
impersonating attackers, we then only need to be able to simulate queries to the oracle
O1rans, Which can be achieved by the HVZK property of CID. Thus, in Lemma 1 we show
that CID is HVZK and, combined with the IMP-KOA security, we achieve IMP-PA security.

Theorem 2 (CID is IMP-KOA secure). Let CID = (CID.KGen, CID.P, CID.V) be the identi-
fication protocol as defined in Figure 5.5. If ECDLP is (t, e2t”)-hard on EC(F,), then CID
is (', €')-IMP-KOA secure, where

1 1

2
t~2t" and 3 (e’ = Z) < epe’.

Before we prove the theorem below, we want to recall that secret keys in the key
generation of CID are clamped, which in particular means that an element A € EC(Z,) is
not necessarily a valid public key output of DS.KGen. The reduction in the proof accounts
for this and therefore loses a factor of 8. Furthermore, note again that the hardness
of ECDLP on EC(Z,) as used in Ed25519 carries over from the respective hardness on

curve25519 due to their birational equivalence [44].

Proof Sketch. The full proof can be found in the Section 3.7.1. We notice the first marked
difference to proofs of Schnorr signatures. While in the latter, we have a straightforward
reduction to ECDLP using the rewinding technique [157], we now need to account for the
secret key clamping in Ed25519. The clamping causes that an element A € EC(F,) is
not necessarily a valid public key output of DS.KGen and thus cannot be relayed by the
reduction to the IMP-KOA attacker A, resulting in the loss of a factor of 21’7_5 As in the
Schnorr setting, the reduction exploits the property that from two valid conversations
(R*,chy,S,) and (R*, chy, S,) for the public key A with ch; # chy (mod L), we can extract
the value s = 22=52 mod L such that A = sB. The Reset Lemma [32] which is the

Chlfchg

analogue of the Forking Lemma [157] for identification protocols instead of signatures,
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Sim(A):

1 ch <& {0,1}%
2§ {0,1}2
3 S+ 5§ mod L

4 R <+ (SB — chA)
mod L

5 return (R, ch,S)

Figure 3.6: Simulator Sim for CID = (CID.KGen, CID.P = (CID.P4,CID.P3),CID.V = (CID.Vq,
CID.V2)) underlying Ed25519-Original.

ensures that two such conversations can be found with probability at least (¢ — )2, where
¢ is the success probability of .A. We note the hardness of ECDLP on EC(F,) as used in
Ed25519 carries over from the respective hardness on curve25519 due to their birational

equivalence [44, 121]. O

As mentioned before, we now lift this result to show that an attacker cannot impersonate
the prover, even when given access to an oracle Oyans, that outputs valid accepting
conversations Trans [CID.P = CID.V]. This is due to the fact, that the underlying canonical

identification protocol CID is efE-HVZK, i.e., there exists a simulator Sim which takes

as input only the public key vk outputs conversations (com,ch,rsp) which are eZ-
indistinguishable from real conversations CID.P(sk) = CID.V(pk). The simulator Sim(vk)
for CID is defined in Figure 3.6 and exploits the fact that commitments can be recovered

from the public key, the challenge, and the response.

Lemma 1. Let CID = (CID.KGen, CID.P,CID.V) be as defined in Figure 5.5. Then CID is
HVZK with etk =

Theorem 3 (CID is IMP-PA secure). Let CID = (CID.KGen, CID.P,CID.V) be the eliE<-
HVZK and (t,€)-IMP-KOA-secure identification protocol as defined in Figure 3.5. Then
CID is (¥, €, Qr)-IMP-PA-secure with

tx=t and € <e.

3.5.1.2 Applying the Fiat-Shamir transform

Now that we have shown that the identification protocol satisfies the prerequisites for the
Fiat-Shamir transform, we can apply the transform to show that Ed25519 is existentially
unforgeable.

We state the theorem in terms of the most basic version Ed25519-Original. For
Ed25519-IETF and thus Ed25519-LibS the proof below only needs to account for the

difference in the verification algorithm.
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Theorem 4 (Ed25519-Original is EUF-CMA secure). Let CID = (CID.KGen, CID.P, CID.V)
be the (t,e,Qr, (Qu + Qx + Q3))-IMP-PA-secure identification protocol as defined in Fig-
ure 3.5 with H : {0,1}* — {0,1}?* modeled as a programmable random oracle and o
bits min-entropy. Then Ed25519-Original = FS° [CID,H] as defined in Figure 3.1 is

det

(t',€,Qs, (Qy + Qx + Qs))-EUF-CMA secure, where
t~t and € <Qp-(e+QsQu27" 4+ Q27

for Qs = Qr and Qy = Qu + 1, where Q,, and Qg refer to random oracle queries of a

certain format (details in proof.)

3.5.2 Strong Unforgeability of Standardized Ed25519

Our previous results confirm that for a target public key, the attacker is not able to forge
a signature on a message m for which it has not seen valid signatures beforehand. In a
real-world scenario, the security provided by existential unforgeability may be insufficient,
as we have mentioned before, e.g., regarding Bitcoin transaction security or SSH multi-
ciphersuite security. Another commonly named example is that of blocking certain
public-key certificates. This could be achieved by storing the hash of the certificate in a list
and comparing incoming certificates with this list. Here, a certificate can simply be viewed
as a signature over a message, i.e., the contents of the certificate. An attacker wanting
to bypass this blocking mechanism may create a new valid signature on the certificate,
thereby altering its hash value that made the certificate efficiently recognizable by the
filter. This is not prevented by existential unforgeability.

The security notion that bars attackers from forging new signatures on known (message,
signature)-pairs is that of strong unforgeability, or SUF-CMA security, which is closely
related to the concept of malleability. Malleable signatures retain their validity even if they
are slightly changed, for example, by some bits being flipped. Obviously such signature
schemes cannot hope to achieve strong unforgeability.

As mentioned earlier, Ed25519-Original without the check of S € {0,..., L — 1} during
signature verification is not strongly unforgeable as any S’ <— S + m/L with integer m also
satisfies the verification equation.

For Ed25519-IETF and Ed25519-LibS, this is avoided by additionally requiring that the
decoded S already be reduced modulo L, leading to the rejection of values S’ <+ S + mL
during signature verification. The property that results from this additional check on
the CID level is that of (computationally) unique responses of the identification protocol.
Recall that this property guarantees that for a given commitment com and ch in the
interaction CID.P < CID.V, there exists (at most) one response rsp such that (com, ch, rsp)
is an accepting conversation (or a second response is only possible to find with probability

at most €qy).
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For the identification protocol underlying Ed25519-IETF, we in fact even have e, = 0,
i.e., for all (A4,k) < CID.KGen, (R = rB,s) + CID.P;(k;r) and ch < {0,1}?, there
exists only at (most) one valid response S. This confirms the RFC’s argumentation that
“Ed25519 [...] signatures are not malleable due to the verification check that decoded S is
smaller than L” [121]. On an Ed25519-IETF signature level this then means that given a
(message,signature)-pair (m, (R, S)) there exists no second signature (R, S") with S’ # S
as we will show in the next theorem. Furthermore, we will argue that there also cannot
exist a second valid signature (R, S’) with R # R with S’ different or equal to S.

Theorem 5 (Ed25519-IETF is SUF-CMA secure). Let Ed25519-1ETF be the (t, €, Qs, Qn)-
EUF-CMA secure signature scheme derived by applying the Fiat-Shamair transform to

the identification protocol CID given in Figure 3.5 with the check in Line 17. Then
Ed25519-IETF is (', ¢, Q, Q})-SUF-CMA secure with t = t' and € < e.

3.5.3 Multi-User Security

We recall that a flaw in the tight reduction from multi-user security of signatures to
the single-user case in [92] was exposed by Bernstein [40], who then was able to give an
alternative tight reduction from the multi-user security of key-prefized Schnorr to the
single-user security of standard Schnorr. This result was taken as a justification for the
much-debated employed key prefixing in Ed25519 signatures. Shortly after the result by
Bernstein, Kiltz et al. [125] were able to provide a tight reduction in the random oracle
model for general Fiat-Shamir signatures, assuming the property of random self-reducibility
of the underlying identification protocol, further fueling the debate (though at this time
the IETF standardisation of Ed25519-IETF had already been completed). Interestingly,
when trying to apply either of the above results to Ed25519 signatures specifically, several
peculiarities arise. The result by Bernstein [40] is transferable to Ed25519 signatures, but
loses tightness. As explained in [40, Sec. 5.3| this is due to the clamping of secret keys
in Ed25519 which yields an additional failure case in the reduction. The more general
result by Kiltz et al. [125] on the other hand is not applicable at all, although Ed25519 is a
Fiat-Shamir transformed signature scheme. This is precisely due to the key prefixing as this
prohibits the achievement of the necessary random self-reducibility property. Consequently,
only the non-tight bounds in [40, Sec. 5.3] apply to Ed25519.

3.5.4 Key Substitution Attacks

Key Substitution Attacks (KSA) were first introduced by Blake-Wilson and Menezes [52]
and later formalized by Smart and Menezes [170]. Informally, KSA cover the scenario
where an attacker learns one or more (message,signature)-pairs for a given public key, and
wishes to find a different public key and message such that one of the valid signatures

verify under the attacker’s new public key. Maliciously generated public keys fall outside
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the traditional notions for signature security such as existential unforgeability. However,
these attacks have practical consequences in real-world contexts: examples include an
attack on the popular Let’s Encrypt Certificate Issuance protocol that allowed an attacker
to impersonate any website, compromise of confidentiality in the WS-Security Standard,
and attacks on the well known Station to Station protocol [117].

Comparatively few publications have investigated key substitution attacks and how
they apply to different signature schemes. Consequently, many signature schemes are
vulnerable. For example, [170] described a KSA on the Gennaro-Halevi-Rabin signature
scheme [93] and the standard-model secure scheme by Boneh and Boyen [56] also proved
to be vulnerable [54]. While these schemes are more of an academic interest, [52, 54]
also showed that under certain conditions the widely-deployed RSA, DSA, and ECDSA
signatures are insecure against KSA attackers. Menezes and Smart also highlighted the
relevance of key-substitution [170] to the multi-user setting.

In [100], a practical scheme for email authentication is proposed that requires the
underlying signature scheme to be resistant to key substitution attacks. In this paper, it is
stated that Schnorr signatures in prime order groups achieve SUF-CMA and resistance to
key substitution attacks. The paper goes on to claim these results transfer to a variant of
Ed25519 without key prefixing. We have already seen that this is not true in general and
we also point out that it is not correct for their modified form of Ed25519. In particular,
absent key prefixing, an attacker can submit a mangled public key lying outside the
prime order group which is a distinct bitstring from the ‘honest’ signature yet passes the
verification checks. Later in this section we consider Ed25519 with key-prefixing and find
the opposite result, that this attack is provably prevented.

In the following, we investigate the resistance of Ed25519 against various exclusive
ownership definitions from [158] which rule out multiple key substitution attacks. Theo-
rem Theorem 6 shows that Ed25519 achieves this stronger version, cf. Definition 40, where
the attacker is allowed to adaptively query the signing oracle to learn (message,signature)-
pairs of its choice and may choose which signature to attack. Furthermore, we show
in Theorem 7 that Ed25519 has so-called message-bound signatures (cf. Definition 41),
i.e., that there exist no two distinct messages for which the same signature would verify
with respect to a given (potentially maliciously generated) public key. Lastly, Theorem 8
shows that if small order elements are rejected, even malicious strong universal exclusive
ownership guarantees are provided.

Firstly, we find that an attacker cannot substitute an alternative public key to verify

against an honest party’s signature in any of the Ed25519 variants we have discussed.

Definition 40 (Strong Universal Exclusive Ownership). Let DS = (DS.KGen, DS.Sign,
DS.\Vrfy) be a signature scheme. Consider the security experiment ExprsD'SUEO as defined

in Figure 3.7. We say that a signature scheme DS is (t,€,Qg)-S-UEO-secure or achieves
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EXprSD‘SUEO A): Osign(m):

1 (vk, sk) < DS.KGen(pp) 4 o < DS.Sign(sk, m)
2> ((m,0), vk, m') <& A% (vk) 5 Lsign < Lsign U{(m,0)}
3 return [(m, o) € Lsign A vk # vk" A DS.Vrfy(vk', o, m')] 6 return o

Figure 3.7: S-UEO experiment for a DS = (DS.KGen, DS.Sign, DS.Vrfy) scheme.

Exprpg> (A):
1 (vk,o,m,m') & A()
2 return [m # m’ A DS.Vrfy(vk, o, m) A DS.Vriy(vk, o,m’)]

Figure 3.8: MBS experiment for a DS = (DS.KGen, DS.Sign, DS.Vrfy) scheme.

strong universal exclusive ownership if for any PPT attacker A making at most Qs queries

to the signing oracle, the probability
Pr[Exprpe t°(A) = 1] <e.

Theorem 6 (Ed25519-Original achieves S-UEO). Let Ed25519 = (DS.KGen, DS.Sign,
DS.Vrfy) be as defined in Figure 3.1, where H : {0,1}* — {0,1}* is modelled as a
random oracle. Then Ed25519 is (e, Qg, Qu)-S-UEO secure,

2b

2
€§2'QH'[T1'2_%

where Qs and Qu are the mazimum number of queries to Osign and H.

We also find that, even when the signer is dishonest, Ed25519 schemes which reject
public keys and signatures with low order elements, ensure that for a particular public
key, signatures can only verify under a single message. However, if low order elements are
accepted, an attacker can submit a low order element as their public key and any value
for their signature such that SB = R. The resulting signature verifies under any message.

This was pointed out in [43] but deemed unproblematic.

Definition 41 (Message Bound Signatures). Let DS = (DS.KGen, DS.Sign, DS.Vrfy) be a
signature scheme. Consider the security experiment EXpr'l\)/'SBS as defined in Figure 5.8. We
say that a signature scheme DS is e-MBS-secure or achieves message bound signatures if

for any PPT attacker A the probability:

Pr[Exprpe>(A) = 1] <e

Theorem 7 (Ed25519-LibS achieves MBS). Let Ed25519 = (DS.KGen, DS.Sign, DS.Vrfy)
be as defined in Figure 3.1 and the hash function H : {0,1}* — {0,1}?® is a random oracle.

If the small subgroup elements are rejected, then DS is € -MBS-secure with
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ExprlS U0 4).
1 (vk, vk o, m,m’) <& A()

> return [vk # vk’ A DS.Vrfy(vk, o, m) A DS.Vrfy(vk', o,m')]
Figure 3.9: M-S-UEO experiment for a DS = (DS.KGen, DS.Sign, DS.Vrfy) scheme.

2b

ST 2 (@n 2

where Qg is the maximal number of queries to the random oracle.

We now consider a stronger variant of S-UEO where the attacker collaborates or
compromises with the signer, in order to generate a signature valid under two distinct
public keys. Provided small subgroup elements are rejected, this property also holds.
However, there is a straightforward attack if they are accepted where the attacker chooses

its public key to be two distinct low order elements.

Definition 42 (Malicious Strong Universal Exclusive Ownership). Let DS = (DS.KGen,
DS.Sign, DS.Vrfy) be a signature scheme. Consider the security experiment Expr'g/'gs'UEo
as defined in Figure 5.9. We say that a signature scheme DS is €-M-S-UEO-secure or

malicious strong universal exclusive ownership if for any PPT attacker A the probability:
Pr[Exprys "t0(A4) = 1] <.

Theorem 8 (Ed25519-LibS achieves M-S-UEOQ). Let DS = (DS.KGen, DS.Sign, DS.Vrfy) be
as defined in Figure 5.1, with the Ed25519-LibS variant and the hash function H : {0,1}* —
{0,1}?* is a random oracle. Then DS is € -M-S-UEQ-secure with ¢ < % - Qn’.

3.6 Conclusions

We proved that Ed25519 achieves its goal of existential unforgeability (EUF-CMA), as is
assumed by many published works. While Ed25519 seems similar to Fiat-Shamir applied
to the Schnorr identification scheme, the devil is in the detail. We took into account the
non-prime order group, the clamping of private scalars and many other details.

Moreover, we also proved that Ed25519-IETF achieves SUF-CMA. We proved that all
Ed25519 schemes resilient against key substitution attacks, however, we also showed that
rejecting small order elements does yield additional properties, enabling Ed25519-LibS to
achieve an even stronger form of key substitution resilience as well as message bound
security.

Our results, summarized in Table 3.1 on page 28, thereby provide not only theoretical

foundations, but also meaningful insights for choosing among the variants.
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3.7 Full Proofs

Below, we provide details proofs for all lemmas and theorems in this chapter.

3.7.1 Proof for Theorem 2

Proof. Assume there exists an attacker A against the (¢, ¢)-IMP-KOA security of CID.

From this we then construct another attacker B, the reduction, that can solve the (¢, 2¢t")-

ECDLP on EC(F,). Since we assume ECDLP to be hard to break with non-negligible
probability €2tP in any reasonable amount of time ¢, this then leads to a contradiction,
yielding IMP-KOA security. B is constructed as follows: B gets as input the base point
B € EC(F,) of order L, as well as a random point A € (B). Then, B runs A on input A.
We first analyze the probability of the received value A falling into the subset of correctly
distributed public keys to invoke A. Note that the public key A in the identification
protocol is computed as A < sB with an s € {2072, 2072+ 8 ... 2*=1 —8}. We claim that
for any public keys A} = 51 B, Ay = soB with sy, 80 € {2072,207248 ... 20718} A, = A,
if and only if s; = so. Note that for above s1, $9, there must exist iy,is € {0, ..., 205 1}
such that s; = 2°72 4+ 8i; and sy = 2°72 4 8i,. Since L > 2°7° is a prime, it holds that

A=Ay 1B =58
< 81 =89 mod L
=272 48, =22+ 8y, mod L
&4 =1y mod L
S0y =1y
& 2072 4 8ip = 2072 4 8y

< S1 = S2

The above claim indicates that the cardinality of the set of valid public keys equals
20=5. Recall that the point A € (B) is uniformly at random. The probability of A
being a valid public key from A’s view is therefore bounded by ? In particular,
substituting the instantiation of Ed25519 for the corresponding parameters, it holds

2b—5 o 2251 ~ 1 . . . o .
that=— = S5 5293 ~ 3+ Which is obviously non-negligible.

Challenge: At some point A outputs a commitment R* to its challenger. B then chooses
a random challenge ch; <% {0,1}?" and sends ch; to A. Finally, A terminates with output
Sl .

Resetting the attacker: Then, B resets A’s internal state back to the point just after
which it generated RB* and returns a newly sampled challenge value chy < {0,1}?" to A
with chy # chy mod L.
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Finally, again, A will output a response S,. B verifies whether (R*, ch;,S;) and
(R*,chy, S,) both are accepting conversations with ch; # chy (mod L), and aborts

if this condition is not satisfied.

By the so-called Reset Lemma [32], we know that if A can find an S, such that (R*, chy, S;)
is an accepting conversation with probability €, then a reset of A with the same random
tape will output an accepting conversation (R*, chy,S,) for chy # chy (mod L) with

probability at least (¢ — 1)2.

B then outputs s = % mod L.
1—Ch2

Assume that (R*,chy,S;) and (R, chy, S,) are accepting conversations with ch; # chy
(mod L). In particular, it holds that S; € {0,...,L — 1} and 85;B = 8R* + 8ch;A for
i € {1,2}, which implies that

8(S; — S2)B = 8(ch; —chy)A
=4 (Sl — Sz) . (Ch1 — ChQ)ilB =A
Therefore, s = % mod L is the desired solution to the ECDLP instance (B, A).
Regarding the time complexity, it holds that ¢ ~ 2t’, as B rewound A’s internal state
once. Finally, we can deduce that the probability of B successfully extracting the discrete
1

logarithm is at least 2" (¢ — 1)2. O

3.7.2 Proof for Lemma 1

Proof. We must show that the conversations (R, ch, S) <= Sim(A) are distributed identically
to Trans [CID.P(k) = CID.V(A)] in honest executions of CID.

In the following let (com, ch, rsp) be a valid honest execution between the prover and
the verifier. It holds that com is the encoding of an element B in the elliptic curve group
with r <= {0,1}? ch <~ {0,1}%* and rsp is the encoding of an element in {0,..., L — 1} of
the form (r 4+ ch-s) mod L, with s implicitly fixed by the decoding of A = sB.

Clearly, the challenges are distributed identically in both conversations. The (decoded)
simulated responses S < § with § <> {0,1}?* are also distributed identically to real
responses rsp = (r + ch - s) mod L, with r,ch < {0,1}?*. The same holds for the
(decoded) simulated commitments R <— (SB —chA) mod L = (S —ch-s)B mod L and
the real commitments com, since the latter are in the elliptic curve group of the form
com < rB with r < {0,1}?, which is equivalent to r'B with v’ <-r mod L. O

3.7.3 Proof for Theorem 3

Proof. We have shown in Lemma 1 that CID is e4-HVZK with €, = 0. Since Sim(pk) uses
public information only, any resulting conversations could also have been computed by
A itself. A therefore learns nothing from the interaction of CID.P < CID.V via Otans
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(replaced by Sim). Thus, for canonical identification protocols that are HVZK, IMP-PA
security is equivalent to IMP-KOA security and we have ave ¢ < € and ¢t &~ ¢’ plus the

running time of the Sim at most Q7 times. Since t is dominated by t, we simply write
t~t. O

3.7.4 Proof for Theorem 4

Proof. In the following we assume without loss of generality, that the attacker A never
queries the same message twice to the oracle Osign, since Ed25519-Original is deterministic
and thus A does not gain any advantage in doing so.

Assume there exists a (', €, Qg, (Q+Qx+Qs))-attacker A against the unforgeability of
the signature scheme Ed25519-Original. We show that this immediately implies a successful
(t,e,Qr, (Qu + Qx + Qp)) attacker B against the IMP-PA security of the underlying
identification scheme CID. The reduction B receives as input a public key A. B then runs
A on input A as follows.

We note that the relevant random oracle queries of A can take three distinct and
distinguishable forms: the most relevant to the reduction are those of the form (com, A, m),
i.e., a b-bit string followed by the encoding A, and some arbitrary-length bit-string m.
The second distinct case are those queries of length exactly b bits. Any other query can be
interpreted as a query of the form (3, m) with 5 a b-bit string and m some arbitrary-length

bit-string.

Random oracle queries of the form k: Let x be a b-bit string. Let (), be the max-
imum number of queries of the form k that A makes to H. The reduction B simply

forwards these queries to H and returns the answer to A.

Random oracle queries of the form (5,m): Let § be a bit string of length b and let
()p be the number of queries of the form (5, m) that A makes to H. Again, B simply

relays these queries between H and A.

Random oracle queries of the form (com, A, m): Let Q be the (maximal) number
of queries of this form that A makes to the random oracle H. B guesses the query
i€{1,2,...,Qy} for which A will eventually output the signature forgery, resulting in a

loss of a factor Q.
For every of the other Qu = Qp — 1 queries 5 € {1,2,...Q}} with j # i to H, B simply
relays the queries between A and H.

When the attacker A asks the i-th query, say on (com’; A, m’), B forwards com’ as its
commitment to its own challenger. The challenger will then send a challenge ch* <
{0,1}% to B, which B returns as response to A.
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Signing queries: For every of the (Qg signing queries of A, B runs its own Oa,s oOracle
to obtain an accepting conversation (R, ch,S). In order for (R, S) to be a valid signature
on m, B must ensure that ch = H(R, A, m), i.e., the reduction programs the random

oracle on these values to return ch.

Note that for each commitment value R that was output by Om.ns, the probability
that the value H(R, A, m) had been set by a previous query of A to the random oracle
H, and thus that A could detect the inconsistency in the patched random oracle, is
upper bounded by Q,2~%, where « is the min-entropy of the identification scheme. The
distribution of commitments has « bits of min-entropy for o = — log, <(&L_11 : 2_2b>
due to the bias introduced by sampling first a uniformly random 2b-bit string and then

reducing it modulo L.

If this happens, the reduction B aborts, the probability of which is thus upper bounded
by QsQy - 27

Furthermore, note that this also implies that the value R provided by the simulation via
O1rans is with high probability different from the deterministic value R’ with R’ = r'B
that would be generated in the real signing process of the message m with secret key
k belonging to the public key A. However, A is not able to compute the deterministic

commitment value R’ by itself unless it can guess the correct value k to determine
h[b], ...h[2b — 1] of h < H(k) and thus 7/, the probability of which is bounded by @Q.27°.

Note that it does not help A in detecting the simulation to guess the values h[b], ...h[2b—1],
as A has no way of checking that these are the correct values leading to the “real” r’

without also guessing k.

Existential Forgery: At some point A terminates with a forgery output (m*,o* =

(R*,S*)) with R* = com’ and m* = m/. If this is not the case, B aborts with probability
L
0

this is a valid forgery in the EUF-CMA game, it holds that m’ has not been queried to Os;gn.

since it has wrongly guessed the index ¢ for which the forgery will take place. Assuming

In particular this means that the output of H(com’, A, m’) has not been re-programmed
in A’s view by B to a value other than ch*. Furthermore, CID.V5(A, com’,ch*,S*) =1
holds such that when B forwards S* to its own challenger as final output of its game, B

will also be successful.

The running time ¢ of B is that of A plus the time it takes to query the random oracle
H (Qy + Qx + Qp) times, the time it takes to query its challenger, and to query Ovyans
Qr = Qg times. As before, we write ¢ &~ t’ since the running time of the reduction is
dominated by the running time ¢’ of A. If A outputs a forgery with probability €', then B
will be able to impersonate the prover with probability 5—’,H —QsQ} 27 — Q27" O
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3.7.5 Proof for Theorem 5

Proof. We recall that the games of EUF-CMA and SUF-CMA only differ in the winning
condition for the attacker A: EUF-CMA forbids that the attacker has queried the signing
oracle Osig, on the message m* for which it outputs the forgery, whereas SUF-CMA allows
this and only requests that the signature forgery ¢* differs from the signature o that was
output by Osign(m*).

We therefore focus on the case that the attacker A on input an Ed25519-IETF public
key A outputs a valid strong forgery (m*,o* = (R*,S*)) with probability € such that
there exists an entry (m*, o’ = (R, S')) € Lsign of recorded Osig, queries of A, such that
o* # ¢'. Since encodings are deterministic and unique 2, we omit them in the following
discussion. Naturally, there are two ways in which o* = (R*,S*) # o/ = (R, S") for the

same message m*:

Case 1 R* # R': In this case, we can immediately build a reduction B against the
EUF-CMA security of Ed25519-IETF. The reduction B gets as input a public key A
and invokes the SUF-CMA attacker A(A). For any of the maximal @)’y signing queries of
A on message m, B simply uses the strategy of the simulator Sim (cf. Fig. Figure 3.6) to
obtain valid conversations (R, ch,S) and patches the random oracle H to return ch on
input (R, A,m). As before, this programming ensures that the response (R, S) to A is
a valid signature from A’s point of view. The at most @}, random oracle queries of A
are simulated by B relaying queries to the “real” random oracle H on any inputs that
had not been patched by a signature query, the latter are answered consistently with the
patching. Note that to run the simulation of A, B has made no signing query to its own
Osign. Thus, once A outputs its strong forgery (m*,c*), B can immediately output the
same pair as its existential forgery. Note that since R* # R’, H has not been patched by
Bon (R, A, m").

Case 2 S* # S’: This leaves the possibility that R* = R’, but S* # 5, i.e., the strongly
forged signature is of the form (R',S*). We will argue that this also is not possible,
as this contradicts the uniqueness of the underlying identification protocol: For CID it
holds that there is only (at most) one valid response S for all (4, k) <= CID.DS.KGen,
(R = rB,s) «+ CID.Py(k;r) and ch <> {0,1}?. Assume otherwise, i.e., there exist
S = 5’ such that both (R, ch,S) and (R,ch,S") are valid conversations wrt. the public
key A. To pass verification via CID.Vy it must hold that S,S" € {0,...,L — 1} and
furthermore 8SB = 8 R + 8chA and 85'B = 8R + 8chA, or, equivalently, 8SB = 85'B,
contradicting the assumption that S # S’. Since verification of an Ed25519-1ETF signature

2Note that there is a very small probability that there exist two different encodings Ry, Ry such that
they decode to the same element R. This is due to the fact that elements in EC(F,) are encoded as b bit
strings with a (b — 1)-bit encoding for the y coordinate, plus one bit for the sign of z. Thus the entire
valid encoding space for the y coordinate encompasses integers from 0 to 2°~ — 1 = 2255 — 1, whereas F,
contains only the integers from 0 to 22 — 20. Nevertheless, Case 1 in the reduction also captures this.
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(R, S) on message m for public key A is just executing the verifier CID.Vy on input
(A, R,H(R,A,m*),S) it is clear by the same argument that there cannot be a strong
forgery with S* # S’.

To conclude, since the probability of computing non-unique responses in CID is 0 and
the signature scheme does not admit existential forgeries with non-negligible probability,
the probability of an attacker A succeeding against the strong unforgeability is also

negligible. O

3.7.6 Proof for Theorem 6

Proof. Assume there exists an attacker A that can break the (¢, Qg)-S-UEO security of
Ed25519. This means that for an honestly generated key pair (A, k) < DS.KGen, given
the public key A, A can output ((m,o = (R, S)), A’,m’) such that:

1. o < Sign(k,m) for one of the Qg signing queries of A. In particular, we have 8SB =
S8R+ 8H(R, A, m)A.

2. A’ # A, which means that A" # A.
3. Verification DS.Vrfy(A', o, m’) holds, i.e., 8B = 8R + 8H(R, A", m')A’.

Let ch < H(R,A,m) and ch’ « H(R, A’,m'). Observing property 2, properties 1)
and 3) can only hold simultaneously if and only if one of the following (distinct) cases

arises:

Case 1: It holds that SB = R in property 1). Then 4 can simply output a low order
point A’ i.e., with |A’| < L and m’ = m, which causes property 3) to also collapse to
SB = R, irrespective of the value ch’. This can only happen in property 1) if ch = 0
(mod L) or ch = s (mod L) for A = sB. But since H is a random oracle, this happens

only with probability at most 2+ Q - ({27%1 . 2*21’). So in the following we have SB # R.

Case 2 A can guess A’ # A with |A’| > L and m/ such that ch’A’ = chA. But, again,
since H is a random oracle, the probability of this succeeding, accounting for the attacker’s

ability to repeat the process, is bounded by Qp - (2?%1 272,

3.7.7 Proof for Theorem 7

Proof. Let A denote an attacker against (¢')-MBS security of Ed25519. We then give the
concrete upper bound of ¢ in the random oracle model. Assume that A terminates with
(vk = A,0 = (R,S),m,m') and wins the MBS experiment in Fig. 3.8. Then, it holds
that m # m’/, 8SB = 8R + 8H(R, A, m)A, and 8SB = 8R + 8H(R, A, m') A, which further
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implies that 8H(R, A, m)A = 8H(R, A,m')A. Note that A is not a small subgroup element,
it must hold that

H(R,A,m)=H(R,A,m') mod L, m#m' (3.2)

Obviously, we have ¢ < Pr[Eq.(3.2) holds]. Note that the random oracle in the MBS
experiment will evaluate at most (Qy + 2) different inputs, where at most () ones are
queried by A and two are queried by the challenger for final verifications. Moreover,
Eq. (3.2) holds only if there exists two outputs of the random oracle on different inputs

such that the outputs are congruent modulo L, which occurs with probability from above

bounded by [%W 272 (Qu + 2)?. Hence, it holds that ¢ < [Q—?W 277 (Qu +2)% O

3.7.8 Proof for Theorem 8
Proof. 1t follows from the verification equation that:
S8H(R, vk',m') vk’ = 8H(R, vk, m)vk
It then follows that from the rejection of small subgroup elements that:
H(R, vk',m")a’ = H(R, vk,m)a mod L (3.3)
As a is in the range 1, ..., L and thus coprime to L it follows that
H(R, vk’ ,m')a’(a)" = H(R, vk,m) mod L (3.4)

We fix a,m’,d’, then for a particular m, H(R, vk, m) is in the range 0, ...,2% of which
there are at most [22°/L] values such that the equation holds. Consequently a given
guess has probability [22;# of fulfilling the equation. However, the attacker can also vary
m’ and consequently perform a collision attack. Notice that the attacker can make up

to @, queries and consequently the overall probability of success is bounded above by
[2%/L] Q)2 O
220 h
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Chapter 4

Exploration of AEAD Landscape

This chapter is based on the paper:

Cas Cremers, Alexander Dax, Charlie Jacomme, and Mang Zhao. Automated Analysis
of Protocols that use Authenticated Encryption: Analysing the Impact of the Subtle
Differences between AEADs on Protocol Security. In USENIX Security 2023, 2023 Aug 9.

This paper won the “Distinguished Paper Award” in Usenix 2023. I lead the research
on the generalization of AEAD collision resistance and its relations to other security
properties in the computational model in this paper and the substantial contributions in

this chapter are my own.

My co-authors Cas Cremers, Alexander Dax, and Charlie Jacomme principally contributed
to the initial conception of the work, the further exploration in the symbolic model, and

the write up of the connection between computational and symbolic analyses.
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4.1 Introduction

Authenticated Encryption (AE) and Authenticated Encryption with Associated Data
(AEAD) are some of the most commonly used cryptographic building blocks. AEAD prim-
itives are built from symmetric encryption primitives and augmented with authentication
mechanisms. Their applications include the vast majority of encrypted internet data, such
as in TLS, WPA2 from IEEE 802.11 (WiFi), WireGuard, and by messaging apps such
as Signal or WhatsApp. For example, in TLS, TLSCiphertext is constructed from an
AEAD applied to a header and payload: both are authenticated, but only the payload is
encrypted, and the plaintext header includes the content type and the ciphertext length.

Historically, AEAD was formally introduced by Rogaway [163] to entwine privacy and
authenticity for both messages and headers in a single and compact mode. The definition
of AEAD is given in the nonce-based pattern, where the nonce is named after the number
that are supposed to be used only once. The nonce-based AEADs are expected to relax
the security requirements of the randomized or counter-based pattern — ensuring no reuse
of the nonce during the encryption is sufficient for privacy and authenticity. Moreover,
Bellare and Hoang [27] initialized the study on binding keys and other optional inputs to
the ciphertexts.

While AEADs are ubiquitous in modern secure communications, there is no commonly
agreed “strong” security notion that they should satisfy. In fact, the current landscape
of security notions for AEADs is rather divergent and chaotic: there are many proposed
frameworks and security notion variants [4, 10, 11, 23, 27, 31, 55, 67, 82, 97, 98, 135, 163,
168]. For some of these notions, their implication relations are known [23], but many of
them are hard to compare for technical reasons.

To address this, we revisit several recent cryptographic AEAD definitions, extract
the core requirement collision resistance for a generic computational AEAD model, and
illustrate how satisfying collision resistance implies that many existing security notions are
met. Our generic computational AEAD model enables us to develop a family of symbolic
AEAD models that can be used with symbolic protocol analysis tools, e.g., the Tamarin

prover, for further case studies or independent research interests.

Contribution Our main contributions are the following:

e We formally prove some well-known but merely conjectured relations for AEAD between
the fundamental privacy and integrity.

e We formally prove the missing or conjectured relations between existing AEAD security

notions w.r.t. collision resistance, completing the picture in the domain.

Overview We first prove some well-known but merely conjectured relations for AEAD

between the fundamental privacy and integrity in Section 4.2. Then, we define and
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generalize a novel collision resistance notion and show its relationship with other existing
security notions in Section 4.3. We conclude in Section 4.4 and give the full proofs of all

theorems in this chapter in Section 4.5.

4.2 Relations between Privacy and Integrity

The canonical privacy and integrity notions are IND$-CPA and CTI-CPA, which are respec-
tively extended to IND$-CCA and CTI-CCA security, as we introduced in Section 2.2.4.

The relation among them has been explored in [23]. Below, we recall the results.

Theorem 9 ([23]). Let AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) be an authenticated
encryption with associated data. It holds that:

1. [23, Proposition 1]: If AEAD is e-CTI-CPA secure, then AEAD is also e-CTI-CCA secure,

and vice versa.

2. [23, Theorem 6]: If AEAD is enos<-IND$S-CPA secure and e5sP2-CTI-CPA secure, then
AEAD s also €ngsc-IND$-CCA secure such that

ind$-cca ind$-cpa cti-cpa
EAEAD . < 2(€aeaD T €AEAD )

Moreover, we also have some trivial results for the missing relations between the privacy
and authenticity notions. We illustrate the full relations between privacy and integrity

in Figure 4.1.

Theorem 10. Let AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) be an authenticated
encryption with associated data. Then, it holds that:

1. If AEAD is e-IND$-CCA secure, then AEAD is also e-IND$-CPA secure.

2. [23]: If AEAD is e-IND$-CPA secure, then AEAD might not be € -IND$-CCA secure for
any negligible € .

3. If AEAD is e-IND$-CPA secure, then AEAD might not be ¢ -CTI-CPA secure for any
negligible €.

4. If AEAD is e-CTI-CPA secure, then AEAD might not be ¢ -IND$-CPA secure for any
negligible €.

5. If AEAD is e-IND$-CCA secure, then AEAD might not be € -CTI-CPA secure for any
negligible €.

6. If AEAD is e-CTI-CPA secure, then AEAD might not be € -IND$-CCA secure for any
negligible €.
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Figure 4.1: The relations between integrity and privacy for AEAD.

Thm. 10
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4.3 Generalizing AEAD Collision Resistance and Re-
lations

4.3.1 Generalizing AEAD collision resistance

We consider the CMT-4 definition in [27] as a natural definition for full collision resistance.
Roughly speaking, full collision resistance means that each AEAD ciphertext can only
be computed by unique input. Moreover, we define variants of full collision resistance,
denoted by X-CR, where X C (k,n, h, m)" denotes the input portions that are unique for
computing an AEAD ciphertext. In particular, the (k,n, h, m)-CR security is identical to
full-CR security”.

Additional Notation. For any X C (k,n, h, m), we define a class of projection functions
fx: K xN xH x M — dom(X), where dom(X) denotes the domain of X. The function
inputs a tuple (k,n,h, m) and outputs the values that X projects to. For instance,

fe(k,n,h,m) =k and fnnm)(k,n,h,m)=(k,n,h,m).

Definition 43. We say an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) is e-X collision
resistant (or e-X-CR ) for X C (k, n, h,m), if the below defined advantage of any attacker

A against ExprﬁgiRD experiment in Figure 4.2 is bounded by:

AdViECARD(A) = PT[EXPT>A(ECARD(A) = 1] <e

In particular, we say an AEAD is e-full collision resistant (or e-full-CR), if AEAD is

e-(k,n, h, m)-CR secure.

Definition 44. We say an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) has e-X input

bound ciphertext (or e-X-IBC ) for X C (k, n, h, m), if the below defined advantage of any

attacker A against Exprapss experiment in Figure /.3 is bounded by:

Advagas (A) = PrExprigas(A) = 1] < ¢
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X-CR

Expragap:

1

2

3

4

5

6

7

8

(0o, s b, ), (ko ma, B, ma) ) < AQ)

if L e {ki,n1,h1,my, ko, no, ho, ma}
return 0

if fx(k1, ma, b1, my) = fx(ka, n2, ho, mo)
return 0

¢1 < AEAD.Enc(ky, ny, hy, mq)

¢y < AEAD.Enc(ks, ng, ha, mo)

return [e; = 3]

Figure 4.2: X-CR security for an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) scheme. fx is a
projection function maps inputs to the subset indicated by X. In particular, the (k, n,h, m)-CR
security is also named as full-CR security.

X-IBC,
EXpI”AEAD :

1

2

3

4

5

6

7

8

(c, (k1,m, b, ma), (k2, na, he, m2)) & A()

if L e {ki,n1,h1,my, ko, ng, ho, ma}
return 0

if fx(k1, na, ha, ma) = fx(ka, ng, ho, mo)
return 0

mj < AEAD.Dec(ky, ny, hy, ¢)

m} < AEAD.Dec(kz, na, he, ¢)

return [m; = m{]] and [my = mi]

Figure 4.3: X-IBC security for an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) scheme. fx is a
projection function maps inputs to the subset indicated by X.

The above X-CR and X-IBC security notions for X € {k,(k,n,h),(k,n,h,m)} are

respectively identical to the security notions CMT-l and CMTD-[ for | € {1, 3,4} in [27]

(also see Definition 18 and Definition 19). More precisely, we have that

I

k-CR = CMT-1

(k, n, h)-CR = CMT-3
(k,n,h,m)-CR = CMT-4
k-IBC = CMTD-1

(k, n, h)-IBC = CMTD-3
(k,n, h, m)-IBC = CMTD-4

X

Here, we slightly abuse notation and use (-) to denote a set. Thus, by X C (k, n, h, m) we mean that
is a subset of the set (k, n,h, m). For a single element set, we sometimes also omit the parenthesis and

regard it as a single element. For instance, we write £ € X < (k) C X.

2In Theorem 13 we will show that (k, n, h, m)-CR implies all variants, which motivated our choice to

abbreviate (k,n, h, m)-CR to full-CR.
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Other interesting notions are the full robustness FROB and its extension eFROB, which
were first defined for the randomized AEAD. In this paper, we define a generalized FROB
for nonce-based AEAD.

Definition 45. We say an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) has e-X full
robustness (or e-X-FROB ) for X C (k,n,h, m), if the below defined advantage of any

attacker A against Exprﬁ'EFARS) B experiment in Figure /. is bounded by:

Advagan ~ (A) = Pr[Exprygas - (A) = 1] <

X-FROB,
Expraeap :

1 (C, (K1, 1, b)), (k2, n2, hz)) < A()

2 if L € {ki,m, b1, ko, 0o, ho}

3 return 0

4 my < AEAD.Dec(k1, m, b1, ¢)

5 mg < AEAD.Dec(ky, na, ha, ¢)

6 if fx(ki,n1, b1, m1) = fx(ka, n2, ha, mo)
7 return 0

return [m; # L] and [mg # L]

[o0]

Figure 4.4: X-FROB security for an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) scheme. fx is
a projection function maps inputs to the subset indicated by X.

The above (k, n)-FROB for nonce-based AEAD is defined in a similar way as the FROB
definition for the randomized AEAD in [89]. The above (k, n, h, m)-FROB for nonce-based
AEAD is defined in a similar way as the eFROB definition for the randomized AEAD in [97].

4.3.2 Overview of Relationship between Collision Resistance and
Existing Frameworks

It turns out that this notion of collision resistance, while straightforward, is enough to
cover in practice multiple notions of the literature from [10, 27, 89, 97, 135]. Informally,

these notions are:

e tidyness - for a fixed key, is the encryption function the inverse of the decryption one? It

implies that collisions over encryptions or decryptions are equivalent.

e commitment (CMT-l and CMTD-[ for | € {1,3,4} [27]) - can we find collisions either
over the encryption or the decryption, with different parts of the inputs being allowed to
stay fixed based on [7 In order to capture more variants in this property class that are
not included in [27], in this paper we rename CMT-[ to collision resistance (X-CR) and
CMTD-I to input bound ciphertexts (X-IBC), where X C (k, n, h, m) denotes the inputs

that a AEAD scheme commits to.
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full robustness (FROB [89]) and even fuller robustness (eFROB [97]) - is any attacker able
to compute a ciphertext that decrypts correctly under two distinct inputs? This notion
was initially defined for randomized AEADs. In this paper, we extend the robustness
notions FROB and eFROB for randomized AEADs to a unified notion X-FROB for nonce-
based AEADs in Definition 45, where X C (k, n, h, m) denotes the degree of robustness.
Moreover, we prove that X-FROB is equivalent to X-IBC in Theorem 14.

o key committing KC security [10] - is any attacker able to compute a ciphertext that
decrypts correctly under different keys but same nonce? In this paper, we recall the
KC definition in Definition 20 and show that X-FROB with k € X implies KC, while the

reverse does not hold, in Theorem 15.

o multi-key collision resistance (MKCR) [135] - is any attacker able to compute a ciphertext
that decrypts correctly under multiple keys but same nonce and header? The MKCR
is parameterized by the number of distinct keys x > 2. In this paper, we focus on the
simplified case where K = 2. We recall the MKCR definition in Definition 21 and show
that KC implies the simplified MKCR, while the reverse does not hold, in Theorem 16.

e receiver binding (r-BIND) [97] - is any attacker able to compute a ciphertext that can be
verified under the different header and message? This notion was initially defined for a
variant of compactly committing AEAD (ccAEAD), and showed how it can be instantiated
for instance with an Encrypt then Mac construction®. Note that [97] also introduces how
to transform any AEAD to ccAEAD by a “traditionally committing encryption” approach
(ccAEAD[AEAD]). In this paper, we recall the r-BIND definition in Definition 24 and show

its relations with other security notions (in this list) in Theorem 17 and Theorem 18.

We provide an overview for the full relations between the above notions in the theorem
below, which is illustrated in Figure 4.5. We will unfold the formal theorems in Section 4.3.4
and give the detailed proofs in Section 4.5. While some of the relations were conjectured
before ([27]), we are the first to provide the full proofs, as well as provide generalizations

of some notions to enable a comparison.
Theorem 11 (Informal). For any AEAD scheme, we have that
. X-FROB implies X-CR for any X C (k,n,h, m). If AEAD is tidy, the reverse also holds.

See Theorem 12.

. X-FROB /X-CR /X-IBC resp. implies X'-FROB /X’-CR/ X'-IBC for any X' C X C (k, n, h, m).
See Theorem 15.

. X-FROB and X-I1BC are equivalent for any X C (k,n,h, m). See Theorem 1/.

3[97] proposes to use HMAC-SHA256 to instantiate a keyed random oracle, which is technically false
without an additional assumption, as HM AC(k,m) = HMAC(H (k),m) whenever k is bigger than 256
bits.
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Figure 4.5: The relation between collision related properties for AEAD with key space K. The
black arrow — indicates the general implication. The purple dash-dotted arrow ---* indicates
the implication for tidy AEAD. The orange dash-dot-dotted arrow indicates the implication
for ccAEAD[AEAD]. The X in the figure is a subset of (k, n,h,m), i.e., X C (k,n, h, m). The
theorems highlighted with red color are claimed or proven in other papers. The theorems
highlighted with green color are part of our contributions.

4. k-FROB implies KC but not in reverse. See Theorem 15.
5. KC implies MKCR but not in reverse. See Theorem 10.

6. (h, m)-FROB of AEAD implies r-BIND of ccAEAD[AEAD]. r-BIND of ccAEAD[AEAD]
implies X-FROB of AEAD for any X C (h, m). See Theorem 17.

7. Neither KC nor MKCR of AEAD implies r-BIND of ccAEAD[AEAD]. The reverse is same.
See Theorem 18.

Note that Theorem 12 was proven in [27]. Theorem 15 and Theorem 17 were respectively
claimed in [27] and [97] without giving any proofs. Proofs for Theorem 13, Theorem 14,
Theorem 16 and Theorem 18 are part of our contribution. Recall that we have (k, n, h, m)-
CR = full-CR in this figure. This theorem indicates that the full collision resistance implies
all other existing notions in this figure under the tidyness assumption, which is in fact

met by all classical constructions.

4.3.3 Collision attacks on deployed AEADs

In general, any kind of collision between two ciphertexts can lead to a security issue,
and we will advocate that general use AEADs should be fully resistant to collisions.
However, many popular deployed AEADs do not meet the full collision resistance, as
shown in Table 4.1. Below, we recall the known attacks against various kinds of collision

resistances of different AEAD schemes in the literature.

1. r-BIND: [97] shows a generic attack against any EtM construction with unrelated keys
by finding the second key that causes collision by . This attack also applies to real-world
modes using Carter-Wegman MACs, e.g., GCM and ChaCha20-Poly1305. [82] shows a
concrete attack against AES-GCM and OCB by finding the nonce that causes collision
and sketches an faster attack by doing birthday attack on keys. Moreover, at the hand of
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Concrete AEAD Integrity and Privacy Full Collision Resistance

XSalsa20-Poly1305 X [10]
AES-GCM v [115, 139] X [82]
ChaCha20-Poly1305 v [159] X [10]
OCB3 v [49, 132) X [10]
EtM (unrelated keys) v [163] X [97)3
AES-CCM v 91, 120]

AES-EAX v [35, 141]

EtM (related keys) v [163] v [97]
CAU-C4 v [27] v [27]
AES-GCM-SIV v (98, 116] X [10]
CAU-SIV-C4 v [27] v [27]

v : proven in the cited work(s). : we conjecture that this holds, but do not know of a proof.

X : does not hold, with reference or explanation of counterexample.

Table 4.1: AEADs (in)-security guarantees: Integrity and Privacy refers to IND$-CPA and
CTI-CPA. Full Collision Resistance refers to Definition 38.

a corollary of Theorem 1 in [164], [82] claims that this attack also applies to any so-called
rate-1 AEAD, that is, “one blockcipher call per block of message” [82]. This potentially
indicates the vulnerability of AES-GCM-SIV and ChaCha20-Poly1305 and any EtM

constructions.

. KC: [10] extends the known attack in [82] against AES-GCM to new proof-of-concept
attacks against several commonly used AEAD, including AES-GCM, ChaCha20-Poly1305,
AES-GCM-SIV, and OCB3. This attack shows how to create ciphertext collision on two
distinct keys. Then, [10] also shows that their new attacks also make impacts in some

real-world scenarios, such as the binary polyglots setting.

. MKCR: [135] shows a novel partitioning oracle attack that feasibly breaks the MKCR
security with parameter x > 2 of widely used AEAD schemes, including AES-GCM,
AES-GCM-SIV, ChaCha20-Poly1305, and XSalsa20-Poly1305.

. X-CR and X-IBC: [27] finds that all above attacks also break the k-CR and -IBC security
of respective AEAD schemes. Thus, AES-GCM, AES-GCM-SIV, XSalsa20-Poly1305, and
ChaCha20-Poly1305 and OCB are all k-CR insecure, i.e., CMT-1-insecure in [27].

4.3.4 Theorems for Relationships between Collision Resistance
and Existing Frameworks

We first recall the conclusion in [27] that X-IBC implies X-CR. Moreover, these two notions
are equivalent if the AEAD is tidy.

Theorem 12 ([27, Appendix A]). Let AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) be

an authenticated encryption with associated data scheme. Then, it holds that:
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1. If AEAD is e-X-IBC secure, then AEAD is also e-X-CR secure.”
2. If AEAD is e-X-CR secure and tidy, then AEAD is also e-X-IBC secure.”
3. If AEAD is e-(k, n, h, m)-IBC (resp. CR) secure, then AEAD is e-(k,n,h)-IBC (resp. CR)

secure, and vice versa.

4. If AEAD is e-(k,n, h)-IBC (resp. CR) secure, then AEAD is e-k-IBC (resp. CR) secure.

For X-CR, X-IBC, and X-FROB, we can have following trivial conclusion that generalizes
Theorem 12.

Theorem 13. Let AEAD = (AEAD.KGen, AEAD.Enc,AEAD.Dec) be an authenticated
encryption with associated data. If AEAD is e-X-CR (resp. X-IBC or X-FROB), then it is
also e-X'-CR (resp. X'-IBC or X'-FROB) for any X' C X.

Notably, we find that X-FROB and X-IBC are identical.

Theorem 14. Let AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) be an authenticated
encryption with associated data. If AEAD is e-X-FROB secure for X C (k, n, h, m), then

AEAD is also e-X-IBC secure, and vice versa.

Interestingly, [27] has the following observations without giving formal proof. We

hereby provide the proof below.

Theorem 15. Let AEAD = (AEAD.KGen, AEAD.Enc,AEAD.Dec) be an authenticated
encryption with associated data with key space IC. Then, it holds that:

1. If AEAD is e-k-FROB secure, then AEAD is e-KC secure.
2. If AEAD is e-KC secure, then AEAD might not be € -k-FROB secure for any negligible € .

Moreover, we also find that KC security implies MKCR security, while the reverse

direction does not hold.

Theorem 16. Let AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) be an authenticated
encryption with associated data with key space IC. Then, it holds that:
1. If AEAD s €-KC secure, then AEAD is e-MKCR secure.
2. If AEAD is e-MKCR secure, then AEAD might not be € -KC secure for any negligible €.
It is interesting to observe that any ccAEAD[AEAD] is s-BIND secure. Moreover, it
is stated in [97] that the r-BIND security for the randomized “traditionally committing
encryption” AEAD can be implied by eFROB but cannot be implied by the standard FROB

security without including headers. In terms of our syntax, we have similar conclusions.

4We stress that although [27, Appendix A] only proves the theorem for X € {k, (k, n, h), (k,n, h, m)},
the proof for all other X C (k,n, h, m) can be easily given in a similar way.

5Similar to above, the proof for all other X C (k, n, h, m) can be easily given in a similar way as in [27,
Appendix A].
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Theorem 17. Let AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) be an authenticated
encryption with associated data. Let ccAEAD[AEAD] denote the compactly committing
AEAD derived from AEAD using “traditionally committing encryption” approach. Then, it
holds that:

1. ccAEAD[AEAD] is 0-s-BIND secure.
2. If AEAD is e-X-FROB secure for (h, m) C X, then ccAEAD[AEAD] is also e-r-BIND secure.

3. If ccAEAD[AEAD] is e-r-BIND secure, then ccAEAD[AEAD] is also e-X-FROB secure for
X C (h,m).

Moreover, we also observe that neither KC nor MKCR security of AEAD implies the
r-BIND security of ccAEAD[AEAD]. Conversely, the r-BIND security of ccAEAD[AEAD)]
does not imply KC or MKCR security.

Theorem 18. Let AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec) be an authenticated en-
cryption with associated data scheme. Let ccAEAD[AEAD)] denote the compactly committing
AEAD derived from AEAD using “traditionally committing encryption” approach. Then, it
holds that:

1. If AEAD is e-KC secure, then ccAEAD[AEAD] might not be € -r-BIND secure for any
negligible €.

2. If AEAD is e-MKCR secure, then ccAEAD[AEAD]| might not be € -+-BIND secure for any
negligible €.

3. If ccAEAD[AEAD)] is e-r-BIND secure, then ccAEAD[AEAD] might not be €'-KC secure for
any negligible €.

4. If ccAEADJAEAD)] is e-r-BIND secure, then ccAEAD[AEAD] might not be (k,€)-MKCR

secure for any k > 2 and any negligible € .

4.4 Conclusions

We recalled the standard privacy and integrity of AEAD and provided missing proofs for
some widely acknowledged relations between them. In addition, we defined a novel (full)
collision resistance and generalize it with various variants. We proved the relations between
(full) collision resistance and several related notions in the literature, e.g., robustness, key
committing, and receiver binding, completing the picture in this domain. In particular,
our novel full collision resistance implies all these related notions, which makes it to be

the “strongest” security notion in this domain.
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4.5 Full Proofs

4.5.1 Proof of Theorem 10

Proof. We prove each of these statements in turn.

1. Statement 1: This statement can be proven by a trivial reduction. If there exists an
attacker A that breaks IND$-CPA security of AEAD, then we can construct an attacker
B that breaks IND$-CCA security of AEAD by invoking AEAD. B simply invokes A,
forwards all A’s queries to its challenger and returns the responses to A, and finally
outputs A’s decision. We observe that B wins if and only if A wins, which concludes the

proof.
2. Statement 2: See [23, Lemma 2].

3. Statement 3: We prove this statement by counter example. Let AEAD; = (AEAD;.KGen,
AEAD; .Enc, AEAD;.Dec) and AEAD, = (AEAD,.KGen, AEAD,.Enc, AEAD;.Dec) denote
two independent e-IND$-CPA secure authenticated encryption with associated data
schemes with the same message space M. We then construct AEAD" = (AEAD'.KGen,
AEAD’.Enc, AEAD'.Dec) from AEAD; and AEAD, as follows:

e AEAD'.KGen(): runs k; <= AEAD;.KGen() and k, <> AEAD,.KGen() followed by
outputting k' := ky || k.

e AEAD'.Enc(k’,n,h, m): first parses k; || k» < k" and then runs ¢; < AEAD;.Enc(k,
n,h, m) and ¢y <— AEADq.Enc(ky, n, h, m), followed by outputting ¢’ := ¢; || ca.

o AEAD'.Dec(k’,n,h,c'): parses ki || ko < k" and ¢; || ¢o < ¢/, followed by outputting
AEAD.Dec(ky, n, h, c1).

It is straightforward to prove that AEAD’ is 2e-IND$-CPA secure by reduction. If there
exists an attacker A that breaks the IND$-CPA security of AEAD’, then we can construct
an attacker B that breaks the IND$-CPA security of AEAD; or AEAD,.

However, AEAD’ is not CTI-CPA secure. An attacker can queries Ognc(n, h, m) for
any n,h, m for a ciphertext ¢’ = ¢; || ¢ such that ¢; # ¢, followed by outputting
¢ = ¢ || ¢. Tt is easy to see that ¢” ¢ Lo, since ¢’ # ¢” and AEAD'.Dec(k, n, h, ¢") =
AEAD'.Dec(k,n,h,c') = m # L. Thus, this attacker always win the CTI-CPA experiment.

4. Statement 4: We prove this statement by counter example. Let AEAD = (AEAD.KGen,
AEAD.Enc, AEAD.Dec) denote an e-CTI-CPA secure authenticated encryption with associ-
ated data scheme with the message space M. We then construct AEAD" = (AEAD'.KGen,
AEAD'.Enc, AEAD’.Dec) from AEAD as follows:

e AEAD'.KGen(): is identical to k <> AEAD.KGen().
e AEAD'.Enc(k,n,h,m): runs ¢ < AEAD.Enc(k,n,h, m) followed by outputting

d=c| e
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o AEAD'.Dec(k,n, h, c'): first parses ¢; || co <= ¢’ and outputs L if ¢; # ¢p. Otherwise,
outputs AEAD.Dec(k, n, h, c1).

It is straightforward to prove that AEAD’ is e-CTI-CPA secure by reduction. If there
exists an attacker A that breaks the CTI-CPA security of AEAD’, then we can construct
an attacker B that breaks the CTI-CPA security of AEAD.

However, AEAD’ is not IND$-CPA secure since an attacker can easily distinguish any
ciphertext ¢’ = ¢} || ¢, of AEAD’ from a random string of the same length by checking

whether ¢} = 5.

5. Statement 5: We prove this statement by counter example. Let AEAD = (AEAD.KGen,
AEAD.Enc, AEAD.Dec) denote an e-IND$-CCA secure authenticated encryption with as-
sociated data scheme with message space M, nonce space N, and header space H,
and ciphertext space CT. In particular, let 7 € A and h € H denote two arbitrary
strings in the respective domains. We then construct AEAD’ = (AEAD’.KGen, AEAD' .Enc,
AEAD'.Dec) from AEAD as follows:

e AEAD'.KGen(): runs k < AEAD;.KGen() and samples r <~ M followed by out-
putting k' :=k || r.

e AEAD'.Enc(k’,n,h, m): first parses k || r < k" and then outputs c as a string of I(|m/|)
zero bits if ¥ = m, n = 7 and h = h. Otherwise, outputs ¢ < AEAD.Enc(k, n, h, m).

e AEAD'.Dec(k', n, h,c): first parses k || r < K/, followed by outputting r if ¢ is a
string of I(|m|) zero bits, n = 7 and h = h. Otherwise, outputs AEAD.Dec(k, n, h, ¢).

It is straightforward to prove that AEAD' is (e + |ﬁ")—IND$—CCA secure by reduction,
where ¢ denotes the number of queries that A can make in polynomial time. If there
exists an attacker A that breaks the IND$-CCA security of AEAD’, then we can construct
an attacker B that breaks the IND$-CCA security of AEAD.

However, AEAD’ is not CTI-CPA secure since a string of [(|m]|) zero bits is always a
ciphertext, which can be decrypted to a message r € M for any k£ € K, n = n, and
h€h.

6. Statement 6: This statement is implied by Statements 1 and 4.

4.5.2 Proof of Theorem 13

Proof. This theorem can by proven by three trivial reductions. Here, we only give the
trivial reductions for CR security, the reductions for IBC and FROB can be given in a

similar way.
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Let A denotes an attacker that breaks X'-CR security of AEAD. We define an attacker
B that invokes A and outputs same as A. Note that fx is a projection function that
maps inputs to the subset indicated by X. By X' C X, we have that fx/(k,n,h, m) is a
subset of fx(k,n,h, m). This indicates that fx:(ki, ni, hi, m1) # fx(ka, n2, he, me) =—
fx(ki, ny, by, my) # fx(ka, ng, he, my). Thus, B wins X-CR security experiment of AEAD

whenever A wins. O

4.5.3 Proof of Theorem 14

Proof. Suppose that A can break the e-X-IBC security of AEAD. Then we can con-
struct an attacker B that breaks the e-X-FROB security of AEAD. When A outputs

(e Gy, by mn), (ks o ma) ), B simply outputs (e, kv, mn, ba), (kz, ma, o) ). 1F A
wins, then it must hold that

1. L & {ky,m,h,my, ky, no, ha, mo}. In particular, this implies that L & {ki, ny, hy, ko, no, ho },
my # L, and my # L
2' fX(klv ny, hla ml) - fx<k27 no, h27 WLQ)
3. AEAD.Dec(ki, my, hy, ¢) = my. In particular, this implies that AEAD.Dec(ky, ny, by, ¢) # L
4. AEAD.Dec(ky, ng, he, ¢) = my. In particular, this implies that AEAD.Dec(ky, no, he, ¢) # L
This implies that B also wins.
In reverse, suppose that A can break the e-X-FROB security of AEAD. Then we can
construct an attacker B that breaks the e-X-IBC security of AEAD. When A outputs

(c, (ki, 1, hy), (ka, o, h2)), B simply computes my < AEAD.Dec(k;, ny, hy, ¢) and my <
AEAD.Dec(ky, ng, ho, ¢) and outputs

(C7 (kb n, h‘la m1)7 (k27 Ng, h27 mQ)) .
If A wins, then it must hold that

1. L & {ky,ny, hy, ko, mo, ho}

Sx (ke hay,ma) = fx(be, o, ho, my)
my # L

my # L

= W N

This implies that L ¢ {ky, n1, b1, mq, ko, no, ho, me}. Then, B always wins, which concludes
the proof. n
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4.5.4 Proof of Theorem 15

Proof. We prove each of these statements in turn.

1. Statement 1: Suppose that A can break the (g, €)-KC security of AEAD for any g > 2.
Then we can construct an attacker B that breaks the e-k-FROB security of AEAD. B
initializes an empty list £ and simulates experiment ExprﬁEAD’ . to A. When A terminates,

B checks there exist entries (ki, ny, hy, my, ¢1), (ka, ng, ho, ma, ¢a) € L such that

If such entries do not exist, B aborts. Otherwise, B outputs (cl, (k1, n1, ha), (Ko, ma, h2)>.

If A wins, then such entries must exist, which further implies that B wins. The proof is

concluded.

. Statement 2: We prove this statement by giving a counter-example. Let SKE =
(AEAD'.KGen, AEAD’.Enc, AEAD'.Dec) be an one-time pad with spaces K’ = M’ = {0, 1}
for some ¢ > 0. Let cPRF : K’ x H — K’ x T denote a e29c-bind secure function for some
spaces H and 7. We then construct an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec)
with spaces K =N =K' = M’ = {0, 1} from SKE and cPRF as follows:

(a) AEAD.KGen(): is identical to AEAD’.KGen()

(b) AEAD.Enc(k, n,h, m): computes (y,y’) < cPRF(k&mn, h) and ¢’ < AEAD’.Enc(y, m&®
n), followed by outputting ¢ = (¢, /).

(c) AEAD.Dec(k,n,h,c): parses (¢, y') < ¢ and verifies whether (y,y') = cPRF(k @&

n,h) for some y. If the verification fails, then outputs L. Otherwise, outputs
AEAD' .Dec(y, ¢') & n.

We first prove that AEAD is ehcap-KC secure for any ¢ > 2, where ekS\p < ebindc.
Suppose an attacker A that breaks the KC security of AEAD, then we can construct
an attacker B that breaks bind security of the underlying cPRF. B simply invokes A
and honestly simulates the KC experiment to A. If A wins, then there must exist

(]{]1, ny, hl, my, Cl), (kQ, No, hg, mao, Cg) c £ such that

ky # ks

)

)nlznz

(c) a=c# L
) my # L and my # L
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This implies that (k @ ny, hy) # (k2 ® ng, hy). Moreover, for ¢; = (¢}, ;) and c2 = (b, yh),
the condition ¢; = ¢, implies that y; = y5. Then, B can simply checks all elements in
the list £ for such ky, k2, n1, no, 1, y4 and outputs (ky @ ny, v}, kx @ no, y5). After that, B

wins whenever A wins.

We then prove that AEAD is not ¢’-k-FROB for any negligible ¢.. An attacker A can

simply execute following steps:

It is straightforward that for k; # ky, m; = m # L, and my = m; & ny & ny # L for
my < AEAD.Dec(ky, ny, hi, ¢) and my < AEAD.Dec(ky, ng, he, ¢). Thus, A always wins.

]

4.5.5 Proof of Theorem 16

Proof. We prove each of these statements in turn.

1. Statement 1: We prove this statement by reduction. If there exists an attacker A that
breaks the MKCR security of AEAD with probability €, then we can construct an attacker
B that breaks the KC security of AEAD also with probability e. The attacker B simply
invokes 4. When A outputs (K*, n*, h*, ¢*), B picks two arbitrary ki, ky € K* with
ki # ky. Then, B queries Ope. oracle twice, respectively with inputs (k, n*, h*, ¢*) and
(ko, n*, h*, ¢*). If A wins, then it must hold that L # m; = AEAD.Dec(k;, n*, h*, ¢*) and
1 # my = AEAD.Dec(ky, n*, h*, ¢*). Thus, B always wins.

2. Statement 2: We prove this statement by giving a counter-example. Let SKE =
(AEAD'.KGen, AEAD’.Enc, AEAD'.Dec) be an one-time pad with spaces K’ = M’ = {0, 1}
for some ¢ > 0. Let cPRF : K'x N — K’ x T denote a e259--cPRF secure function for some
spaces N and 7. We then construct an AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec)
with spaces K = h from SKE and F as follows:

(a) AEAD.KGen(): is identical to AEAD".KGen()

(b) AEAD.Enc(k,n, h, m): computes (y,y') < cPRF(k&h,n) and ¢’ + AEAD'.Enc(y, m),
followed by outputting ¢ = (¢, /).

(c) AEAD.Dec(k, n,h,c): parses (¢',y') < ¢ and verifies whether (y,y') = cPRF(k @

h,n) for some y. If the verification fails, then outputs L. Otherwise, outputs
AEAD’.Dec(y, ¢').
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We first prove that AEAD is e-MKCR secure, where ¢ = €254 Suppose an attacker A
that breaks the MKCR security of AEAD, we then construct an attacker B that breaks
the bind security of the underlying cPRF. B simply invokes A and honestly simulates the
MKCR experiment for k = 2. The attacker A wins if it can output (K*, n*, h*, ¢*) such
that

(a) [K*| =2, and
(b) AEAD.Dec(k,n*, h*,c*) # L for all k € K*

Then, B simply picks any k # ky from space K*. It must hold that (k @& h*, n*) #
(ke@®h*, n*). The decryption AEAD.Dec(ky, n*, h*, ¢*) # L and AEAD.Dec(ky, n*, h*, c*) #
1 indicates that the verification inside the decryption never fails. This means, for
(y1,91) < cPRF(ky @ h*, n*) and (ya2, yb) < cPRF(ky @ h*, n*) it must hold that v} = v5.
Thus, B always wins if it outputs (k & h*, n*, ky @ h*, n*).

Then, we prove that AEAD is not ¢-KC secure for any non-negligible ¢/. An attacker
A can simply pick arbitrary (ky, ni, by, m) € K x N x H x M and invokes Og,. oracle
with the input (ky, n1, by, m) for a ciphertext ¢;. Then, A invokes Ope. oracle with input
(Ko, no, ha, co) for my such that ky # ky, ks @ hy = ky @ by, mp = no, and ¢ = ¢o. It is

straightforward that m; = my # L and A always wins, which concludes the proof.

4.5.6 Proof of Theorem 17

Proof. We prove each of these statements in turn.

1. Statement 1: For any (k, n, h, ¢) output by A and m < AEAD.Dec(k, n, h, c¢), A can win

only when

(a) m # L, and
(b) m # AEAD.Dec(k, n, h, ¢).

The second condition contracts to the fact that m < AEAD.Dec(k, n,h,c). Thus, A

always loses.

2. Statement 2: We prove this claim by reduction. If there exists an attacker A that
breaks the e-r-BIND security of ccAEAD[AEAD], then we can construct an attacker B
that breaks the €¢-X-FROB security of AEAD for (h, m) C X and ¢ = e. When A outputs
(c, (k1, ma, hay, my), (Ko, mo, he, mg)), A wins if

(a) J‘¢ {k17n17h17m17k27n27h27m2}
(b) (b1, m1) # (ha, my)
(C) mp = AEAD.DGC(kl, np, hl, C)
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(d) me = AEAD.Dec(kQ, Na, hg, C)
This in particular indicates that

(a) L ¢ {ki,m, M, ko, no, ho},
(b) AEAD.Dec(ky, ni, hi, )
(¢) my = AEAD.Dec(ks, ng, he, c)
)
)

my

(d) fx(ki,n1, b, my) # fx(ke, no, ho, me) for any (h, m) C X
(e) my # L and my # L

Thus, B can simply output <c, (k1,m1, ), (K, ma, h2)> and win whenever A wins.

3. Statement 3: We prove this claim by reduction. If there exists an attacker A that
breaks the e-X-FROB security of ccAEAD[AEAD] for X C (h, m), then we can construct
an attacker B that breaks the ¢’-r-BIND security of ccAEAD[AEAD] and ¢ =e. When A
outputs (c, (k1,m1, hy), (kg, na, hg)), A wins if

(a) L & {ki,na, by, ko, m, ho},

(b) for my := AEAD.Dec(ki, n1, hi, ¢) and my := AEAD.Dec(ky, ny, ho, ¢) it holds that
fx(ki,my, by, my) # fx(ke, na, ho, my) for any X C (h, m)

(¢) m # L and my # L

This in particular indicates that

(a) L & {ki,n, ha,mq, ko, no, ha, ma}
(b) (h1,ma) # (ha, ma)

(¢) my = AEAD.Dec(ky, ny, hy, c)
(d) my = AEAD.Dec(ks, ng, he, c)

Thus, B can simply output (c, (k1, m1, hy, my), (ko no, ho, m2)> , where m; := AEAD.Dec(k;,
ny, hi, ¢) and my := AEAD.Dec(ky, ng, ho, ¢), and win whenever A wins.

4.5.7 Proof of Theorem 18

Proof. We prove each of these statements in turn.

1. Statement 1 and 2: We prove these statements by a counter-example AEAD, which is
identical to the one in the proof of Statement 2 in Theorem 15. As shown in Theorem 15,
we know that AEAD is KC secure. By Theorem 16, we know that AEAD is also MKCR
secure. Below, we prove that ccAEAD[AEAD] is not €-r-BIND secure for any negligible €.
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An attacker A can simply pick arbitrary ki, ks € K, ni,ne € N, by, ho € H, my € M such
that ky # ke, no = ny ® ky @ ko, by = hy. Then, A computes ¢ <— AEAD.Enc(ky, ny, hy, my)
and my < AEAD.Dec(ky, ng, he, ¢). It holds that my = my ® ny ® ne. By ki # ko, we
know that my = my @& ny ® ng = my @ ky @ ke # my and therefore (hy, my) # (he, ma).
Finally, A outputs <c, (K1, ma, by, my), (K2, mo, ho, m2)> and always wins.

. Statement 3: We prove this statement by a counter-example ccAEAD[AEAD]. Let SKE =
(AEAD’.KGen, AEAD'.Enc, AEAD'.Dec) denote one-time pad with spaces K' = M’ =
{0,1}" for some t > 0. We then define AEAD = (AEAD.KGen, AEAD.Enc, AEAD.Dec)
with space K = {0,1} and M = {0,1}2 from SKE and a collision-resistant function
F:H x M — T for some space T as follows:

e AEAD.KGen(): identical to k <~ AEAD’.KGen().

e AEAD.Enc(k,n,h,m): runs ¢’ < AEAD".Enc(k, m || m) and ¢ < F(h, m), followed
by outputting ¢ < ¢’ || ¢.

e AEAD'.Dec(k,n,h,c): parses ¢’ || t + ¢ and runs m | m’ + AEAD.Dec(k, ¢’),
followed by outputting L if ¢ # F(h, m) and m otherwise.

We first prove that ccAEAD[AEAD] is r-BIND: Note that an attacker A can break the
r-BIND security of AEAD only when A outputs (hy, my) # (ha, my). By the collision
resistance of the underlying F, we know that F(hy, m;) # F(hy, my) except negligible
probability. This further implies that for any ¢ = ¢’ || ¢, at least one of the conditions
t =F(h, m) and t = F(hg, my) cannot hold except negligible probability. Thus, A can

never win the r-BIND experiment with non-negligible probability.

Below, we prove that ccAEAD[AEAD)] is not ¢’-KC secure for any negligible ¢’. An attacker
A can simply pick arbitrary (ki, ny, hy, my) € K x N x H x M and invoke Og,. oracle
with input (ky, ny, by, my) for a ciphertext c. Then, A sets ky identical to k; except
flipping the final bit, ny = ny, and hy = hy, followed by querying Ope. oracle with input
(Ko, no, he, ¢) for a message my. It is straightforward that my = my; # L and A always

wins.

. Statement 4: We prove this statement by a counter-example ccAEAD[AEAD], which
is identical to the one in above proof of Statement 3. From the above statement, we
know that ccAEAD[AEAD] is r-BIND secure. Below, we prove that ccAEAD[AEAD] is not
¢’-MKCR secure for any x > 2 and any negligible €.

An attacker A can easily pick (k*, n*, h*, m*) € K x N' x H x M and compute c* +
AEAD.Enc(k*, n*, h*, m*). Next, Asets C* = {k : k and k* have the same first half bits}.
Finally, A outputs (IC*, n*, h*, ¢*). We have that for any k£ € IC*, AEAD.Dec(k, n*, h*, ¢*) =
m* # L. Moreover, recall that K = {0,1}* and M = {0,1}z for arbitrary ¢ > 0. For any
Kk > 2, A can always find suitable ¢ > 0 such that |[K*| = 25 > k. Thus, A always wins,
which concludes the proof. O]
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Chapter 5

Provable Security of FIDO2,
CTAP2.1, and WebAuthn 2

This chapter is based on the paper:

Nina Bindel, Cas Cremers and Mang Zhao, “FIDO2, CTAP 2.1, and WebAuthn 2:
Provable Security and Post-Quantum Instantiation,” in 2023 2023 IEEE Symposium
on Security and Privacy (SP), San Francisco, CA, US, 2023 pp. 1471-1490. DOI:
10.1109/SP46215.2023.00039, URL: https://doi.ieeecomputersociety.org/10.1109/
SP46215.2023.00039

This paper was joint work with Nina Bindel and Cas Cremers. All authors actively
contributed to the completion of this work. The contributions in this chapter related
to CTAP, the security proofs for WebAuthn, and the provable security analysis of the
composition of CTAP and WebAuthn are my own. In the case of WebAuthn, the security
model, the discovery of the downgrade attack, and its resolution were the result of

collaborative research efforts.
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5.1 Introduction

One of the largest projects globally to mitigate the problems of weak passwords is the
FIDO protocol by the Fast Identity Online (FIDO) Alliance. The alliance has brought
together over forty key companies in the online authentication space, including Amazon,
Apple, Google, Intel, Microsoft, RSA, VISA, and Yubico, and has brought security devices
to the wider public to improve the security of important logins.

The FIDO2 standard — the latest of the protocols — is built around two sub-protocols
that are critical for enabling security-device supported logins. The first one is WebAuthn,
which is a protocol between web applications, web browsers, and authenticator hardware
tokens. At its core, WebAuthn allows a website (a Relying Party) to perform a passwordless
challenge-response protocol with a token (an Authenticator) — where the browser acts as
an intermediary — and challenges are signed by credential keys generated and stored in the
token. The protocol supports multiple optional modes and features, such as attestation
and user involvement.

The second relevant protocol is CTAP (Client To Authenticator Protocol), which is a
protocol between an authenticator (e.g., a hardware security token) and a client (e.g., a
browser). The goal of the protocol is to bind (and thus to restrict) which clients can use
the authenticator’s API (Application Programming Interface). To enable APT access, the
client asks the user to enter the authenticator’s PIN; this PIN is checked by the token,
and a shared secret is established that represents the binding and is used to authenticate
all subsequent client accesses to the authenticator.

The FIDO2 standard, while already widely deployed, is subject to ongoing development.
Previous versions of these standards have been studied. However, as we will see later, the
main study has made strong assumptions that do no hold for the majority of deployed
systems, such as relying on the attestation' mode to prove core properties. Moreover, the
recently proposed CTAP 2.1 [59] includes a completely new base protocol that has not yet
been analyzed in any framework.

Notably, the most recent version of the FIDO2 standard with CTAP 2.1 and WebAu-
thn 2 [107] appears to be “post-quantum ready”, because it enables a mode of operation
that only uses on symmetric cryptographic primitives, digital signatures, and KEMs (Key
Encapsulation Mechanisms). However, no post-quantum instantiations have been proposed,
nor has the CTAP 2.1 protocol received any analysis. In this work we set out to fill this

gap: analyse the newest version and assess its post-quantum security.

'Tn the context of WebAuthn, “attestation” means identification of device type/manufacturer, and
notably does not imply any check of the software that is being executed.
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Contributions

1. We prove that FIDO2 with WebAuthn 2 and CTAP 2.1 is provably secure against classical
attackers in a fine-grained security and protocol model. Our security models are more
fine-grained or cover other aspects than previous versions such as [21, 103]. For example,
we add important aspects such as algorithm negotiation, required user actions, and token
binding. For CTAP 2.1, our security proofs confirm the stronger containment properties
(reduced “blast radius”) offered by the protocol compared to CTAP 2.0. Our analysis of
WebAuthn 2 also has new implications for WebAuthn 1: we provide the first guarantees
of the most widely used None attestation mode, user verification, user presence, and

token binding.
2. We prove that if FIDO2 with WebAuthn 2 and CTAP 2.1 is instantiated with post-

quantum (PQ) secure KEMs and signatures, then it is secure against quantum attackers
in the same model. We give concrete suggestions for PQ) secure algorithm and negotiation
design choices, including classical-PQ hybrids as suggested by standardization agencies,
such as NIST (National Institute for Standards and Technology) [69].

3. We propose a simple improvement to WebAuthn 2 that improves its resilience to certain
types of downgrade attack. While these can only occur for strong threat models, these
improvements yield stronger classical security against broken cryptographic primitives,

and are even more relevant for their PQ) instantiations.

Overview

We provide a high-level background on FIDO2’s CTAP and WebAuthn protocols, and pre-
vious analysis models, in Section 5.2. Next, we define additional notions and preliminaries
in Section 5.3. Afterwards, we first present the analysis of WebAuthn 2 in Section 5.4,
and then that of CTAP 2.1 in Section 5.5. We prove the security of their composition
in FIDO2 in Section 5.6. We then return to related work in Section 5.7, and describe
limitations and future work in Section 5.8. Finally, we give the full proofs of all theorems

in this chapter in Section 5.9.

5.2 Background

5.2.1 High-level overview of FIDO2

The FIDO2 protocol incorporates the two sub-protocols WebAuthn and CTAP, and
involves four main types of parties: relying parties (e.g., a server, online service, or an
operating system feature), authenticators (e.g., token or security key), clients (e.g., web
browsers or other applications), and users. WebAuthn typically leaves the users implicit

in the description of the authenticator.
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Authenticator T' Client C Server S

Registration:
Myen <& rChall(S,th, UV)
Mrch
(mrcom  Mrer) < rCom(idsg, myeh, th)
(Mycom, t) < Authorize(C', mycom)

Mycom.

if Validate(T, m,com, t,d) # accepted : abort

(Mrsp, rer) & rRsp(T', Mycom) (s, 11rct)

Mirsp
—_—

(res. d) < rVrly(S, mre, misp)

Authentication:
Mach < aChall(S,tb, UV)

Mach
(Macom, Maq) < aCom(idg,mach, th)
(Macoms t') + Authorize(C, Macom)

’
Macom T

if Validate(T", macom, t', d) # accepted : abort

s
TMarsp ¢ aRsp(T', req, Macom)

Marsp (rnarsm nlac\)

—»
(res, d) < aVrfy(S, res, Mact, Marsp)

Figure 5.1: The main message flow of FIDO2 with WebAuthn 2 with attestation type None is
shown in black. The blue flows indicate interaction with the third CTAP 2.1 phase (i.e. after
CTAP 2.1’s setup and binding phases.) The user is left implicit in the flow of the authenticator
token. For registration, the server generates a challenge. This is forwarded through the client
to the token (possibly authorized through CTAP 2.1), which returns a public credential key
and additional data, which is stored by the server. Afterwards, for each authentication, a
similar process occurs, but the token now signs challenge and data with the with the signing key
corresponding to the public credential key that was registered previously.

Initially, the client and authenticator run the setup and binding phase of the CTAP 2.1
protocol. Once this is completed, relying parties can register and authenticate authen-
ticators by running WebAuthn 2 through CTAP 2.1, which we depict in Figure 5.1.
WebAuthn 2 is used in two phases: in the registration phase, an authenticator produces a
fresh credential key pair whose public key is sent to the relying party and stored. Afterwards,
each time the relying party wants to authenticate a user, it performs a challenge-response
protocol with the authenticator who signs the challenge using the credential private key,
which is then verified by the relying party. We next expand the two protocols in more
detail.

5.2.1.1 WebAuthn

The goal of WebAuthn is to enable relying parties to authenticate users through authenti-
cator tokens using a challenge-response protocol. WebAuthn is specified as an API rather
than as a protocol; in practice, a common scenario is that the relying party is an online
service with server backend code and Javascript running in the browser, and the server’s

Javascript then uses the WebAuthn API supported by the browser to communicate with
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the token. The first interaction, when the server communicates with the token, is called
registration phase. In this phase, the server S sends a challenge message (m,q,) to the
token through the client C'. This challenge contains a random nonce, parameters such
as whether user verification (UV) is required, and optionally a value tb that uniquely
identifies the underlying channel (in practice typically identifying a unique Transport
Layer Security (TLS) connection, which can provide channel binding to prevent some
types of man-in-the-middle attacks).

The client C' parses the challenge message and turns it into a command message (Mycom)
and a client message (m,y), and forwards the command message to the token 7. The
token T produces a credential public-private key pair, which is bound to the server S and
enables S to perform verification during the following authentication phase, and outputs a
response message (Mysp). The client then returns this together with the client message to
the server S. The response message specifies the type of “attestation statement” selected
by the token, which enables the server S to perform verification during the registration
phase, and includes the credential public key. WebAuthn 2 supports five attestation types;
these include Basic and None®. Tokens that support type Basic are equipped with an
attestation key pair, which is specific to the token model, but not unique: by design,
the attestation key pair is shared by a batch of tokens®. The None mode provides no
token-specific information and is supported by all tokens.

The authentication phase is executed after the completion of the registration in a
slightly different way. When the client parses the challenge message (m,ch) from the server
S and turns it into a command message (Macom) and a client message (maq ), followed by
sending the command message to the token T'. The token T" produces a response message
(marsp) signed using the credential private key, and bound to the server S. The server S
finally accepts a response message and a client message only when they pass verification

using the corresponding credential public key.

5.2.1.2 CTAP

The CTAP protocol allows the client (e.g., a browser) to communicate with the authen-
ticator. Using only WebAuthn, any application might try to access a token to request
credential keys or responses to challenges. In practice, we would like to limit the client
applications that are allowed to use the token’s API. One of the goals of the CTAP protocol
is to limit this access.

CTAP proceeds in three phases. In the setup phase, a client C" initializes a PIN,
which is collected from the user, into the token 7T". In the binding phase, the client C' (not

necessarily same as C”) and the token 7" exchange a shared binding state, if the client C'

2The remaining three modes are: Self, AttCA, and AnonCA, which are less common and out of scope
of this work.
3The number of tokens in each batch is at least 100,000, cf. [107, Section 14.4.1].
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is able to provide information about the PIN stored on the token T'. The binding state
is expected to uniquely bind the client C' to the token T'. If the client C' fails 3 times
consecutively, the token T' is rebooted and all previously established binding states are
reset. If the client C fails 8 times in total, the token T is blocked. When the above
preparation is done, the client C' authorizes any command message by outputting a tag
t, which is forward to the token T along with the command message itself. The token T
only proceeds upon the positive decision d from the user, e.g., by pressing a button, and
then validates the command message and the tag. In particular, a token only produces a
response message in WebAuthn when its validation process in CTAP succeeds. Note that
the binding state is repeatedly used during a period, the length of which depends on the

concrete CTAP version and the type of token devices, and will be blocked afterwards.

5.2.2 Previous analysis by Barbosa et al. [20, 21]

Barbosa et al. [20, 21] gave the first formal analysis of FIDO2, and in particular the version
with CTAP 2.0 and WebAuthn 1. We recall some important conclusions.

1. WebAutnn: Barbosa et al. formalize WebAuthn 1 as a passwordless authentication
(PIA) protocol. Assuming the uniqueness of each attestation key pair, they then prove that
WebAuthn 1 with attestation type Basic provides secure passwordless authentication.
However, since each attestation key pair is in fact necessarily shared by a large batch
of tokens (often called batch attestation), their main theorem establishes uniqueness
properties of partnering for each batch of tokens that share the same attestation key pair
instead of each single token. Moreover, their analysis has no clear implications for the

None mode.

2. CTAP: Barbosa et al. formalize CTAP 2.0 as a PIN-based access control for authentica-
tors (PACA) protocol. Then, they prove the Unforgeability with trusted binding (UF-t) of
CTAP 2.0. In Section 5.7.1 we show that the difference between CTAP 2.0 and CTAP 2.1

is substantial, which means the previous results cannot simply be translated.

Thus, Barbosa et al. [20] provided the first formal analysis of FIDO2 with CTAP 2.0
and WebAuthn 1, which was ground-breaking in many ways, but as a first attempt also
left open many questions and subtle proof issues. We provide a detailed comparison

between [20] and our work in Section 5.7.2.

5.3 Additional Preliminaries

5.3.1 Additional Security Definitions

We define a new customized notion for SKE: the IND-CPA security with respect to function
H (IND-1CPA-H). Compared to IND-1CPA security, the attacker additionally obtains a
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challenge tag that is produced by applying H to both a symmetric key, which is same as
the one used by the SKE, and the challenge ciphertext.

Definition 46. Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec) be a symmetric key encryption
scheme with symmetric key space K. We say SKE is e-one time IND-CPA secure with
respect to function H (denoted by IND-1CPA-H ) secure, if the blow defined advantage of

every (potential quantum) attacker A against Expr's'\,'(%‘lcpA‘H experiment in Figure 5.2 is
bounded by,
1
Advere ' PAH(A) = | Pr[Exproce " PAH(A) = 1] — 5 <e.

We further extend IND-1$PA security to a new notion IND-1$PA-LPC that additionally
gives the attacker the access to a challenge plaintext checking oracle, which returns whether

the input ciphertext can be decrypted to the challenge plaintext.

Definition 47. Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec) be a symmetric key encryption
scheme with symmetric key space K. We say SKE is e-IND-1$PA-LPC secure, if the
blow defined advantage of every (potential quantum) attacker A against Exprg\"(%wPA'ch

experiment in Figure 5.2 is bounded by,

AdviIRISPALPC Ay — | Pr[ExprifdISPALPC 4y — 1] — 5 <e.
Exproyg A (A): Expriygy BPALPC(4). RAND(]):
i b<{0,1} 1 b {0,1} o mf < {0,1}
> K ¢ SKE.KGen() 2 K <& SKE.KGen() 10 my & {0,1}
5 (mf,m*) <& A() 3 (mg,m7) < A() 11 ¢ & SKE.Enc(K,mj)
o if [mf| # |m3 o if |mg| # |m]] 12 return (mj,m},c)
5 return 0 5 return 0 Lrc(e):
6 ¢* ¢ SKE.Enc(K,m}) | 6 c* < SKE.Enc(K,mf) *° if c=c
S H(K, C*) 7 b & ARAND,LPC(C*) 14 return 0
e b S A1) s return [b=b'] 15 return [mf = SKE.Dec(XK, ¢)]
9 return [b=1b']

Figure 5.2: IND-1CPA-H and IND-1$PA-LPC experiments for a SKE = (SKE.KGen, SKE.Enc,
SKE.Dec) scheme.

5.3.2 CBC Mode and IND-1$PA-LPC Security

The Cipher Block Chaining (CBC) mode is a block cipher mode of operation invented by
Ehrsam et al. in 1976 [87]. The CBC can be divided into two categories: CBC,, whose
initial vector is a string of zero bits, and CBCg, whose initial vector is a random bit string.

We first recall CBC as an instance of symmetric key encryption. Let K := {0, 1}51()
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M :={0,1}2 and O := {0, 1}/2W respectively denote the symmetric key space, message
space, and output space of an invertible function F : I x M — O, where f; and f; denote
arbitrary polynomial functions. Then, both CBCy and CBCg are defined in Figure 5.3.
Here, we simply assume that the input message m of the encryption algorithm always
has the length of a multiple of f3(\). It is straightforward that CBCy is a deterministic

encryption scheme.

SKE.KGen(1?): SKE.Dec(K, ¢):

1 K&K 1 Yo || oo || Yn < ¢ 8.t |ys| = f2(N) Vi € [n]
2 return K 2 fori=1,...,n
SKE.Enc(K,m): 3 @i yio1 ® F YK, )

e

1 || oo || Tn < mosit. |z = fo(X) Vi € [n]
yo & SetlV()

3 fori=1,...,n

4y F(K,yi1 © 7:)

y<yoll-Ilyn

6 returny

IS

m«xy ||| zn

N

5 return m

o

Figure 5.3: CBC mode SKE = (SKE.KGen, SKE.Enc, SKE.Dec) with symmetric key space K :=
{0,1}1™ for arbitrary polynomial function f;. If SKE = CBCy, then SetlV() outputs a string of
zero bits of length fa(A). If SKE = CBCg, then SetlV() outputs a random string of length fao(\).

The IND-1$PA security of the deterministic CBCy was proven by Barbosa et al. [20].
Moreover, the IND-CPA security of the randomized CBCy was proven by Bellare et al. [25].
Below, we prove the IND-1$PA-LPC security of both CBCy and CBCy based on above two

security conclusions.

Theorem 19 (IND-CPA = IND-1$PA). Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec)
denote a symmetric encryption scheme. If SKE 1is EE',SIECPB—IND—CPA secure, then SKE is

ind-1$pa ind-1$pa ind-cpa
oke | -IND-1$PA secure such that egeg + < €ekp ' -

Theorem 20 (IND-13PA — IND-1$PA-LPC). Let SKE = (SKE.KGen, SKE.Enc, SKE.Dec)
denote CBCy or CBCg. If SKE is eisr'E‘E1$pa-lND—1$PA secure and the underlying func-
tion F : {0,131 x {0,1}20) — {0,112 is PP-prp secure, then SKE is emazoPPe.
IND-1$PA-LPC secure such that

ind-1$pa-lpc r — lm X — ind-18pa
ESI2E1$p Ip §2€EP+QLPCQ fZ(/\)“‘QRAND[W})}? fz(A)+€SI2E1$p

where qo denotes the mazimal number of queries to O € {RAND, LPC} oracles and lyax

denotes the mazximal input to the RAND oracle.
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5.4 WebAuthn 2 and Extended Passwordless Authen-
tication Protocols

For our analysis of WebAuthn 2 and its PQ instantiation, we follow the high-level approach
from [20, 21], which proposed the class of PIA protocols that generalizes WebAuthn 1,
and proposed a corresponding security notion. We provide a more fine-grained model of
WebAuthn 2, notably including the default mode None in which no attestation is performed,
as well as the user presence and user verification checks, and a stronger threat model. We
compare the details in our work and [20] in Section 5.7.2 These aspects and their security
cannot be captured in the PIA class without modification. In this section, we therefore
first extend [20]’s formalisation and propose the extended PIA (ePIA) protocol class, and
instantiate WebAuthn 2 as an ePIA protocol. We then introduce our new model to define
secure passwordless authentication (auth) for ePIA protocols and prove that WebAuthn 2
satisfies it. We then show how to instantiate PQ-WebAuthn 2. Our proof of auth implies
PQ security against a QPT attacker if the schemes used in a session are PQ secure. We

return to downgrade attacks in Section 5.4.6.

5.4.1 Extended Passwordless Authentication Protocols (ePIA)

Similar to the PIA model from [20], we define our eztended passwordless authentication

protocol ePlA by two phases, Register and Authenticate:

Register: a two-pass challenge-response protocol run between a token 7', a client C', and
a server S, which is run at most once per tuple (7, .5) (i.e., not for additional clients).
At the end, both T and S hold registration contexts, which are relevant for subsequent

authentications. Register can be decomposed into the following algorithms:

rChall: inputs a server S, a token binding state tb, and a user verification condition UV &

{true, false}, and outputs a challenge message mych, i.e., My <= rChall(S,tb, UV).

rCom: inputs the intended server identity idg, a challenge message m,,, and a token
binding state tb, and outputs a client message m,q and a command message Mcom,
i.e., (Mycom, Mya) < rCom(idg, Myeh, tb).

rRsp: inputs a token 7" and a command message mycom and outputs a response mes-
sage Mmysp and an token-associated registration context rcr, i.e., (Mysp, rer) &
rRsp(T', Mycom)-

rVrfy: inputs a server S, a client message m,, and a response message Mysp, and
outputs a server-associated registration context rcg and a decision bit d € {0, 1} to
indicate whether the registration request was accepted (d = 1) or not (d = 0), i.e.,

(rcs, d) <= rVrfy (S, myer, Miysp)-
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Authenticate: a two-pass challenge-response protocol run between a token T, a client C,
and a server S after a successful run of Register, in which both 7" and S generated their
registration contexts. At the end, S either accepts or rejects the authentication attempt.

Similarly to Register, Authenticate can be decomposed into four algorithms:

aChall: inputs a server S, a token binding state tb, and a user verification condition UV &€

{true, false}, and outputs a challenge message mach, i.€., Mach < aChall(S,tb, UV).

aCom: inputs the intended server identity idg, a challenge message m,q, and a token
binding state tb, and outputs a client message m,q and a command message Macom,
i.e., (Macl, Macom) < aCom(idg, Mach, tb).

aRsp: inputs a token T along with its associated registration context rcy, and a command
message Macom, and outputs a response message marsp and the updated registration

context rcy, i.e., (Marsp, rer) € aRsp(T, rer, Macom)-

aVrfy: inputs a server S along with its associated registration context rcg, a client
message Mac, and a response message My,ysp, and outputs the updated registration
context rcg and a decision bit d € {0,1} indicating whether the authentication
request was accepted by the user (output 1) or not (output 0), i.e., (rcg,d) «

aVrfy(S, rcs, Macl, marsp)-

To model concurrent or sequential sessions of a server S (associated with ID idg) and
sequential sessions of a token T', we use 7 and W% to denote their i-th and j-th instances
respectively, i.e., S = {n%}; and T = {n}.};. Our new abstraction retains the black message

flow from Figure 5.1.

5.4.2 WebAuthn 2 is an ePlA Protocol

We use the following session variables for WebAuthn 2.

mh.ch @ challenge nonce sampled in this session
m.uid : user identifier sampled in this session
7h.tb : token binding state used in this session

7. UV . user verification condition, indicating whether the user should be verified, e.g.,

via PIN or Biometrics

7t UP : user presence condition, indicating whether the presence of the user is sufficient;

constant true value
7. pkCP : list of digital signature schemes accepted by S
W%.suppUV . indicates whether T" supports user verification

Tl .Stexe, T-Stexe € {-L, running, accepted} : execution state of each session
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mi.agCon, W%.agCon : the content that is expected to be agreed with other parties. These
variables are protocol-specific. In WebAuthn 2, both variables include the server identifier,
the hash of the client messages, the UP and UV conditions, and other session-specific
data.

mh.sid, m..sid : session identifiers. Two distinct sessions that have communicated with

each other are expected to own the identical session identifiers.

These variables are protocol-specific. In WebAuthn 2, both variables include the hash of

the server identifier and other session-specific data.

WebAuthn 2 Protocol Intuition. Intuitively, the registration phase starts with the
execution of rChall algorithm, where the server S samples random challenge nonce 7%.ch
and user identifier 7%.uid, initializes the user verification condition 7. UV, and outputs
the challenge message m,cn, which includes the above data as well as the server domain idg
and accepted list 7.pkCP. Additionally, the server also stores the token binding states
mi.tb, which is shared with a client. Receiving m,c,, the client is supposed to verify the
server domain followed by computing the hash value & of the client message m, := (ch, tb).
Compared with m,, the output command message mycom replaces ch with A and add
a constant user presence condition UP := true. Receiving m,com, the token T picks a
suitable signature scheme DS in the list pkCP (if available) and checks whether the user
verification mechanism is supported (if required). After that, 7" samples a public-private
key pair (vk, sk) of DS and a credential identifier cid, followed by initializing the associated
registration context rcylidg] and the agreed content W%.agCon. The session identifier ﬂ%.sid
is set to the hash of the server domain, the credential identifier, and the initial counter
n := 0. The output response message myp, includes the session identifier W%.sid as well
as vk,DS, UP and UV. The server S finally inputs both m,y and m,s, and executes a
number of checks. If all checks pass, S also initializes its associated registration context
rcg[cid] and the agreed content 7%.agCon. The session identifier 7% .sid is identical to 7J..sid.

The authentication phase is very similar. The crucial difference is that the token
outputs a signature, which signs the 7%.agCon-relevant data using the private key sk of
DS. Moreover, the session identifiers of token and servers additionally include the hash of
the client message m,q.

We give the concrete definition of algorithms of WebAuthn 2 with the default attestation

type None in Section 5.4.3.

5.4.3 Detailed Description of WebAuthn 2

In Figure 5.4, the security parameter A = 128. For each server S, the associated identifier
idg is its effective domain. The official supported signature algorithms are RSASSA-—
PKCS1-v1.5 and RSASSA-PSS. Later in Section 5.4.5, we will show that the list of
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Register Authenticate

rChall(z, tb, UV): // 1. Server aChaII(wg,tb UV): // 1. Server

1 wh.ch & {0,1}2*, 7.t  th, 74 UV « UV 35 mh.ch < {0,132, wi.tb < tb, 75. UV + UV
2 whouid <& {0, 1} 36 Mach < (idg, mh.ch, nl. UP, nk.UV)

3 Myen < (idg, wh.ch, wh.uid, 7%.pkCP, 7. U V') 37 T.Stece 4 running

4 ﬂg.stexe < running 38 return myeh

aCom(idg, mach, tb): // 2. Client

5 return myc
" 39 (id,ch, UV) = mach

rCom(ids, mych, th): // 2. Client

6 (id,ch,uid, pkCP, UV') + mych a0 if id # ids: return L

7 if id #idg: return L 41 Maqg < (ch,tb)

8 My + (ch,tb) 42 UP < true, h < H(maq)

9 UP « true, h < H(m,q) 43 Macom < (id, h, UP, UV)

10 Mycom ¢ (id, uid, b, pkCP, UP, UV') 44 return (mMacom; Macl)

11 return (Mycom, M) aRsp(74, rep, Macom): // 3. Token
rRsp(w?,",m,com): // 3. Token 45 (id,h, UP, UV) < Macom

12 (id, uid, h, pkCP, UP, UV) = Mrcom a6 if rer[id] = L: return (L, rer)

13 if at least one algorithm in pkCP is supported a7 if W§'5“PPUV = false and UV = true
14 DS ¢ pkCP[i] with smallest i possible 48 return (L,rcr)

15 else return (L, 1) 49 repfid].n <= repid]n 4+ 1

16 if Tr%suppUV = false and UV = true 50 ad + (H(id), rer(id].n, UP, UV)

17 return (L, 1) 51 o <& rep[id].DS.Sign(rep[id]. sk, (ad, b))

18 (vk, sk) <& DS.KGen(), cid <& {0,1}2*, n + 0 52 Marsp  (repfid].cid, ad o, rerlid].uid)

19 Mirsp = (H(id), n, cid, vk, DS, UP, UV) 53 mh.agCon « (id, h, rerfid].n, [repfid].hep, | UV, UP)

hep « H(pkCP ;
20 [hep  H(pkCP) 54 whsid < (H(id), repfid].cid, b, n)

21 rep(id] « (uid, cid, sk, n, DS, ) s W%'-Stexe « accepted

22 ﬂ%.ag(ﬁon < (id, h, cid, n, pkCP, vk, DS, UV, UP) 56 return (Marsp, rcy)

23 7h.sid < (H(id), cid, n) aVrfy(mg, res, Mad; Marsp): // 4. Server

on 7T§~Stexe + accepted 57 (ch,tb) < maq, (cid, ad, 0, uid) <= Marsp
25 return (Mysp, rer) 58 (h,n, UP,UV) + ad

rVify (s, Mucl, Mursp): // 4. Server 59 if reglcid] = L: return (rcg, 0)

26 (ch, tb)  mya, (hym,cid, vk, DS, UP, UV) <= Mirep

’ ) 60 ‘if hcp # reglcid].hep: reglcid] + L and return (rcs,())‘
27 if h # H(idg) or n # 0 or ch # 7j.ch or tb # 7%.tb or

DS & i, pkCP or UP # true or UV # mi. UV 61 if mgch # ch or 7tb # tb or h # H(ids)

or UP # true or UV # mg. UV or

26 return (1,0) res[cid].DS.Viy(res|cid]. ok, (ad, H(maa)).0) = 0 or
29 |hep + H(mh.pkCP) n < rcgcid].n: return (rcg,0)

62 rcglcidl.n <+ n

63 7h.agCon « (ids, H(maa), n, UV, UP)

64 mh.sid < (h,cid, H(maq),n)

30 regleid] « (w.uid, vk, n, DS,)
31 wh.agCon < (idg, H(mya), cid, n, 7&.pkCP, vk, DS, UV, UP)

32 mh.sid < (H(id), cid, n) :
i 65 T%.Stexe <— accepted
33 T.Stexe < accepted §r>texe p

34 return (rcg,1) 66 return (rcg,1)

Figure 5.4: Instantiation of ePIA = (Register, Authenticate) with WebAuthn 2 (and WebAuthn 2+
that includes boxed operations) with attestation type None, where Register = (rChall, rCom,
rRsp, rVrfy) and Authenticate = (aChall,aCom, aRsp, aVrfy). Recall that A is the implicit security
parameter.

signature schemes can be extended by PQ compatible hybrid signature scheme. The
underlying hash function H is SHA-256. We assume that each token has a unique user
and can be registered at most once per server. The Register = (rChall, rCom, rRsp, rVrfy)

sub-protocol is executed as follows.

e rChall(ry, tb, UV): The server S samples a random challenge nonce 7%.ch and a user
identifier 7%.uid and initializes the token biding state 7%.tb and user verification condition

7t UV. Finally, S sets m%.stee to running and outputs a challenge message, see Line 3.
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e rCom(idg, mych, tb): The client parses m,q, into a server identifier id, a challenge nonce
ch, a user identifier uid, a supported signature list pkCP and a user verification condition
UV. Next, the client aborts if id # idg. Otherwise, the client sets the user presence
condition UP to true and computes the hash h of client message m,, which is defined
in Line 8. Finally, the client outputs the client and command messages m,q and Mcom,

respectively, see Line 10.

° rRsp(ﬂ%, Mycom): The token T first parses mycom into a server identifier id, a user identifier
uid, a hash value h, a signature list pkCP, and the user presence and user verification
conditions UP and UV, respectively. Next, T picks one supported signature scheme DS
in pkCP with the highest preference, i.e., with the smallest index possible. Afterwards, T
checks whether it can support the required user verification condition UV. If either step
fails, the token aborts. Otherwise, T' generates a public-private key pair using the key
generation algorithm of DS, initializes the counter n to 0, samples a random credential
identifier cid, and sets its execution state to accepted. Finally, T" extends the registration
context as in Line 21, and outputs it together with a response message My, as defined
in Line 19. The agreed content includes the server identifier id, the hash value h, the
credential identifier cid, the counter n, the list pkCP, the public key vk, the signature
scheme DS, and the user presence UP and verification UV conditions. The session
identifier is the tuple of the hash of server identifier id, the credential identifier cid, and

the counter n.

° rVrfy(Wg, Mycl, Mresp): The server S parses the client message m,q and the response message
Mrsp and executes a few checks as in Line 27. It outputs abort and decision d = 0 if
any check fails. Otherwise, S sets the execution state to accepted. Finally, S extends
the registration context as in Line 30 and outputs it together with decision d = 1. The

agreed content and the session identifier are defined as the ones in the rRsp algorithm.
Authenticate = (aChall,aCom, aRsp, aVrfy) is defined next.

e aChall(wl, tb, UV): The server S samples a random challenge nonce 7%.ch and initializes
its token binding state 7§.tb and user condition 7. UV. Finally, S sets 7% to running

and outputs a challenge message, see Line 36.

e aCom(idg, mach, tb): The client parses m,q, into an identifier id, a challenge nonce ch,
and user verification condition UV. Next, the client aborts if id # idg. Otherwise, the
client sets the user presence condition UP to true and compute the hash h of the client
message Mm,q, which is defined in Line 41. Finally, the client outputs the client message

Maq and command message Macom, see Line 43.

e aRsp(7}, rcr, Macom): The token T first parses the command message Macom iNtO & server
identifier id, a hash value h, and user presence and user verification conditions UP and

UV. Next, T checks whether the corresponding registration context exists and whether
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it can satisfy the user verification requirement. T aborts if either of the above steps fails.
Then, T increments the counter rcr[id].n by 1 and defines the associated data ad that
includes the hash of id, the counter rcr[id].n, and the conditions UP and UV, followed
by computing a signature o on ad and h using the signing key rcr[id].sk. Finally, T" sets
its execution state to accepted and outputs the response message masp defined in Line 52
along with rcy. The agreed context is defined as the tuple of the server identifier id, the
value h, the counter rcy[id].n, and the user conditions UV and UP. The session identifier
is defined as the tuple of the hash of the server identifier id, the credential identifier

rcr[id].cid, the hash value h, and the counter n.

° aVrfy(wg, rCs, Macl, Marsp): LThe server S parses the client message maq and the response
message Marsp and executes checks as in Line 61 if the corresponding registration context
exists. It aborts and produces decision d = 0 if any check fails. Otherwise, S updates the
counter in the registration context and sets the execution state to accepted and outputs
rcg together with decision d = 1. The agreed context and the session identifier are the

same as in aRsp.

5.4.4 Security Experiment for ePIA

The desired security property is that a server accepts an authentication response if and
only if it was generated by a unique honest partnered token session. We capture it by our

auth security experiment in Figure 5.5.

Threat Model To closely capture the official security statement®, we assume that all
communication channels in the registration phase are authenticated. In contrast, there are
no security assumptions on the communication channels between token, client, and server
in the authentication phase. We assume that the users always provide the user presence
or user verification confirmation when it is required and leave the users implicit in the
security model. We assume the identifier idg of each server S is unique. Unlike [20], we do
not assume tokens to be “tamper-proof”, i.e., the attacker is allowed to corrupt locally

stored registration contexts.

Oracles During the game execution the attacker A can create new servers and tokens
through the oracles NEWS and NEWTPLA. In particular, the attacker can customize the
concrete setting of the created parties, i.e., the supported signature list of the server and
whether the token supports user verification. By invoking the REGISTER oracle, A is able
to eavesdrop on honest registrations between servers and tokens of its choice. Moreover,
via the oracles CHALLENGE, RESPONSE and COMPLETE, A can actively interfere during

authentication. Note that sessions which have accepted or rejected can no longer be

“Under the assumption that a registration ceremony is completed securely, and that the authenticator
maintains confidentiality of the credential private key, subsequent authentication ceremonies using that
public key credential are resistant to man-in-the-middle attacks” [107, Section 13.4.4]
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queried. Furthermore, the attacker A can also query the CORRUPT oracle to reveal a

token’s registration context related to a server.

Session Partnering Partnering identifies token and server sessions that are successfully
communicating with each other as expected, and is encoded through matching session
identifiers. More precisely, we say a server session T4 partners with a token session W% if
and only if 7&.sid = W%.sid # L. We say a server session 7% partners with a token T if it
partners with one of 7T”s sessions. We say a token 7' is the registration partner of a server
S, if the registration context of T" at S has been set, i.e., rcplidg] # L.

Winning Conditions We call a server session a test session if it accepts a response
message. We say that the secure passwordless authentication for an ePIA holds if for all

test sessions 7 none of the following winning conditions holds:

1. the non-_L session identifiers of two token sessions collide.
2. the non-_L session identifiers of two server sessions collide.

3. 7wk does not partner with 7' and CORRUPT(S, T') was not queried (i.e., the registration

context of T" at S has not been revealed), where T" is any registration partner of S.

!/

4. the agreed contents of a pair of partnered server session Wf;/ and token sessions T%/ are
distinct and CORRUPT(S’,T") has not been queried.

Definition 48 (Secure passwordless authentication (auth) for ePIA). Let Compl € {PPT,
QPT}. Let ePIA = (Register, Authenticate) be an extended passwordless authentication
protocol. We say that ePIA provides secure passwordless authentication, or auth for short,

if for all Compl attackers A the advantage

AdVEA(A) = Pr[Expidh(4) = 1]

m winning the game Exprz,‘ém defined in Figure 5.5 is negligible in the implicit security

parameter .
Conversely, we say a Compl attacker A breaks the secure passwordless authentication

of ePIA for some test session 7, if A wins Exprish game via 7.

In the following theorem, we show that WebAuthn 2 satisfies the defined security
property auth. We sketch the proof here and give the full proof in Section 5.9.3.

Theorem 21 (PPT/QPT security of WebAuthn 2). Let Compl € {PPT,QPT}. Let
ePIA = (Register, Authenticate) denote the WebAuthn 2 protocol depicted in Figure 5./.
coll-res

Assume that the underlying function H is eff""**-collision resistant. If there exists a Compl

attacker A that breaks the secure passwordless authentication of ePIA for a test session
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Exprigih (A):

1

2

w

4

Lfrsh — @
win-auth < 0
() ¢ A°()

return win-auth

Win-auth(S, 4):
g if 3(T1,j1), (T2, j2) such that (11, 751) # (T3, j2) and w%.sid = W%.Sid # 1 : return 1
if 3(S1,141), (Se,42) such that (S7,41) # (Se,i2) and 77?1 sid = wg?z.sid # 1 : return 1

9

10

11

12

13

T < regPartner(S)

regPartner(S):
5 if 3T such that rcpfids] # L
6 return T

7 return L

if (S,T) € Lesh and —3j such that 7%.sid = 7/..sid: return 1
if 3(5',4), (1", ;') such that 7%, sid = 7%,.sid # L and (S',T") € Le, and 7%,.agCon #

77, .agCon: return 1

return 0

REGISTER((S, 1), (T, j),tb,UV):

14

15

16

17

18

19

20

21

22

23

if pkCPg = L or suppUV, = L or 7y # L or ﬂ% # 1 or rep[S] # L

return |
7i.pkCP < pkCPg
w%.suppUV <+ suppUV,
Mych < rChall(mly, tb, UV)
(Mrcom, Mral) + rCom(idg, Mych, th)
(Mrsp, rer) <= rRsp(m, Mycom)
(reg, d) <& rVrfy(mh, mrct, Mirsp)
Lesh < Lash U{(S,T)}

return (mrcha Mycly Mycom; mrrsp» d)

CHALLENGE((S,4),tb, UV):

32

33

34

35

36

if pkCPg = L or 7l # L
return |

7. pkCP + pkCPg

Mach — aChall(rh, th, UV)

return mych

COMPLETE((S, 1), Macl, Marsp):

42

43

44

45

46

a7

if 7%, = L or 7m}.Stexe # running
return |
(res, d) < aVrfy(m, res, Macl, Marsp)
ifd=1
win-auth < Win-auth(S, %)

return d

NEwWS(S, pkCP):

24 if pkCPg # L
25 return

26 pkCPg + pkCP

27 return

NEWTPLA(T, suppUV):
28 if suppUV, # L

29 return

30 suppUVp < suppUV

31 return

RESPONSE((T, §), Macom):
37 if suppUV, = L or W% # 1

38 return |

39 Tr%.suppUV <+ suppUV

40 (Marsp, rer) = aRsp(ﬂ'%, rCT, Macom)
41 return Mmasp

CORRUPT(S,T):

ag if rep[S] =L

49 return L

50 »Cfrsh — »Cfrsh \ {(Sv T)}

51 return rcy[S]

Figure 5.5: auth security experiment for extended Passwordless Authentication Protocols ePIA =

(Register, Authenticate), where O

{NEWS, NEWTPLA, CORRUPT, REGISTER, CHALLENGE,

RESPONSE, COMPLETE} and Compl € {PPT,QPT}. We highlight the difference to PIA from [20]
in blue. The variables agCon and sid are instance-specific, see Section 5.4.2.
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7 and the digital signature scheme DS used in 7 is egd ™ -euf-cma secure against Compl

attackers, then it holds that

Adv:gm (-’4) < (QREESTER) 2_)\ + (QCHALQLENGE) 2_>\ + GCHOH_res + 2qREGISTER€eDqu_Cma

where qo denotes the number of A’s queries to O € {REGISTER, CHALLENGE}.

Proof Sketch. Notice that the token session identifiers include credential identifiers, which
are sampled of length > X for different tokens only in the REGISTER queries, and a counter
n, which is incremented in each sessions of the same token. The attacker A cannot win via
winning condition in Line 8 except probability (qRE“’Q‘”“)2*)‘. Note that the server session
identifiers include the hash of server id, which is assumed to be unique for each server. Note
also that the server session identifiers in the authentication phases additionally includes
the hash of the token binding state tb and challenge nonces ch, which are of length > A
and sampled only in the CHALLENGE queries. The attacker A cannot win via winning
condition in Line 9 except with probability (QCHALQLENGE)Q_’\ + ecelres - Finally, observe that
the registration phases are authenticated and that the identifier of each server session
in the authentication phases is set only when the corresponding server session accepts a
signature, which signs the hash of the unique server id, the counter n, the hash of the
client message m,q, UP, and UV. Moreover, there are at most grpcisrer private signing
keys in the experiment. The winning conditions in Line 11 and Line 12 indicate that the
attacker A can forge any signature of DS without corrupting the private signing key of
any token, which happens with probability at most 2e&i<m? for each token and thus in

£
total 2¢Recister€Ds - -

Theorem 21 shows that no polynomial-time attackers against WebAuthn 2 in the auth
experiment can trigger any winning condition, through which the following aspects are
captured. Conditions 1 and 2 capture the uniqueness of each session identifiers. i.e., if two
sessions are partnered with each other, they are each other’s unique partners. Condition 3
encodes the official security statement (see footnote 4). Condition 4 ensures that under
the same assumption, the token and server sessions in the subsequent authentication
ceremonies using that public key credential must agree on the server identifier idg, the
hash value H(ch,tb), the local counter n, and the user presence UP and verification UV
conditions. As a corollary, if the underlying hash function H is collision resistant, then the

token and server sessions also implicitly agree on the token binding state tb.

5.4.5 Post-Quantum Instantiation of WebAuthn 2

To add the ability to authenticate using PQ or hybrid signature schemes with minimal
changes to the WebAuthn 2 protocol, we propose to only extend the supported digital
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signature list pkCP (encoding an “or” choice) and explicitly allowing hybrid schemes (to
encode “and”, e.g., for classical and PQ schemes).

Following the WebAuthn 2 specification, the server has the option to include RSASSA-
PKCS1-v1.5, RSASSA-PSS [123], or/and ECDSA-P256 [165] in pkCP, see Section 5.2 for
an explanation of pkCP. Recall that the auth security of the WebAuthn 2 is proven in the
standard model in Theorem 21. Therefore, the auth security for WebAuthn 2 also holds
against quantum attackers, assuming that €' and e&f-“m2 are sufficiently small against
quantum attackers, i.e., are instantiated with PQ secure algorithms. Instead of accepting
only plain PQ signatures schemes, the server could also select hybrid signature schemes
for pkCP as below.

Let DS; and DS, be signature schemes. We write C[DS;, DSy| = (DS¢.KGen, DS¢.Sign,
DS¢.Vrfy) for the hybrid signature schemes constructed from DS; and DS,°. DS¢.KGen
simply returns the concatenation of the two ingredient public and secret keys. Similarly,
the signature returned by DS¢.Sign is the concatenation of the ingredient signatures over
the same message. DS¢.Vrfy returns 1 if and only if both ingredient signatures are valid.
Otherwise it returns 0. The ingredient schemes could either be instantiated with different
PQ (PQ-PQ hybrid), or with one classical and one PQ signature scheme (classical-PQ
hybrid). Note that many other combiners exists, such as nested approaches that have been
formalized in [51], which are particularly well suited to achieve backwards compatibility
in, e.g., X.509 certificates.

In case of WebAuthn 2, backwards compatibility is important as not all authen-
ticators, e.g., USB tokens, can be updated to support new algorithms via software
updates. To offer backwards compatibility, the server includes classical algorithms in
pkCP as less preferred algorithms and PQ/hybrid schemes with higher preference, e.g.,
pkCP = {DS; = C[DSs, DS3], DS,,DS3} with DS; € {RSASSA-PKCS1-v1.5, RSASSA-
PSS, ECDSA-P256}. Then, the (honest) token would always choose the more preferred
hybrid or PQ algorithms for the PQ security, unless they are not supported.

5.4.6 Stronger Downgrade Protection

Our WebAuthn 2 results in the previous sections assume that the registration phase is
authenticated (as in the standard), which means that the supported schemes list cannot
be modified, and thus basic scheme downgrade attacks are impossible. On the other end
of the spectrum, if an active attacker interferes continuously with all phases, we cannot
detect or prevent downgrades.

However, there is an intermediate threat model, for which WebAuthn 2 could, but
does not, provide downgrade protection. Note that the (ordered) list of the relying party’s

accepted signature algorithms 7%.pkCP is sent in plain from the relying party to the

This description can easily be extended to more than two ingredient schemes.
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authenticator via the client (see Figure 5.4). The credential keys are then generated using
the first algorithm in the received pkCP that is supported by the authenticator, see [107,
Section 6.3.2.7.1]. During rVrfy, the relying party checks that the used signature scheme DS
is in 7.pkCP. Hence, if the communication in the registration phase is not authenticated,
an attacker can easily change the list pkCP during transmission to the authenticator. For
example, during the PQ transition, ideally security is based on classical and PQ algorithms
in a backwards compatible way. While we explain how to achieve backwards compatibility
with authenticators that only support classical algorithms in Section 5.4.5, a quantum
attacker is able to break RSA or ECDSA might change pkCP such that the authenticator
only has the choice between classical algorithms.

Consider an attacker that can forge signatures of one of the accepted and supported
algorithms. Moreover, assume this attacker is able to compromise the browser or control the
network used during registration but not the ones used for authentication, e.g., in an internet
cafe a compromised machine is used for registration but others for authentication. Then
tricking the authenticator to choose the vulnerable algorithm (and create a corresponding
credential key pair) is beneficial because it allows the attacker to forge authentications
later on even if they do not control the network anymore.

If the attacker has permanent control of the machine used for registration and au-
thentication, and can forge signatures of an algorithm that is accepted and supported
by the relying party and the authenticator, respectively, this attack cannot be prevented.
Moreover, it is impossible to prevent the authenticator being tricked into using a less
preferred algorithm without substantial changes to the WebAuthn 2 protocol and the
public-key infrastructure within. However, we suggest changes that enable detecting such
an event with high probability, calling the resulting protocol WebAuthn 27, if at least
one message without interference of the attacker is sent. We depict the changes as boxed
operations in Figure 5.4. Essentially, the idea is to include the hash hcp of the received
list of accepted algorithms pkCP’ during registration, in the authentication response. The
relying party compares H(pkCP) with hcp to detect whether authenticator and relying
party agree on the list of algorithms. To enable the above changes, both the relying
party and the authenticator must store respective lists; we suggest to include them in the
registration context.

If an attacker changed the list pkCP during registration in WebAuthn 2%, the attacker
would need to change the value hep during every authentication response to avoid detection
of the attack. We stress that it would not be sufficient to only reject authentications
when such an attack is detected, since the honest authenticator would then be unable
to communicate with the relying party due to the disagreement on the list pkCP. Even
worse, only those authentication responses in which the attacker successfully switched

the value h¢p would be accepted. Thus, the detection of this downgrade attack should
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Expr@i@ii‘zhn o (A): RCHALLENGE((S,7),tb, UV):

1 (8,4,T,j,tb, UV) & A°() o if pkCPg = L or 75 # L
2 mi,, <= CHALLENGE((S,1),tb, UV) 10 return |
3 (m:com7m;c|) — acom(ldsvm;ch)tb) 11 '/TZS.kaP < kaPS //ordered list of accepted algorithms

12 Mysp < rChall(h, th, UV)

13 return meys,

4 mt, <& RESPONSE((T,7), m.

scom)
arsp acom

5 df & COMPLETE((S,i),mjcl,m;sp)

6 Supp <« list of supported algorithms by T’

7 dpg [(pkCPg N Supp)[1] # rcr[S].DS]

8 return [d?T,S) =1Ad;=1]

RRESPONSE((T, j), Mircom): RCOMPLETE((S, 1), Mrcl, Mrrsp )

14 if suppUV, = L or 7'('%« # 1 1o if PkCPs =lor ”f? =1
Or Tg.Stexe 7 running : return L

15 return |

16 mh.suppUV < suppUVy, 20 (res, d) <& Vrfy (g, mici, miesp)

; 21 return d
17 (Mysps rer) <= rRsp(7, Mycom)

18 return meysp

Figure 5.6: Game Expré&iﬁiﬁfhn ot and oracles RCHALLENGE, RRESPONSE, RCOMPLETE; note

that NEwWS, NEWTPLA, CHALLENGE, RESPONSE, and COMPLETE are given in Figure 5.5.

trigger deregistering the authenticator by the relying party and notifying the user (ideally
out-of-band).

More formally, we say that WebAuthn 2% satisfies our property Algorithm Agreement
(AlgAgree) against Compl € {PPT,QPT} attackers A if the advantage

AdvAERE™ (). py [ExprAlgAgree (A) = 1]

WebAuthn 2+ WebAuthn 27+

AlgAgree
WebAuthn 2+

security parameter A. We view WebAuthn 2% as an instantiation of an ePIA and give the

in winning the game Expr (defined in Figure 5.6) is negligible in the implicit

attacker access to the following oracles: RCHALLENGE, RRESPONSE, and RCOMPLETE

given in Figure 5.6, and NEWS, NEWTPLA, CHALLENGE, RESPONSE, and COMPLETE

given in Figure 5.5.
AlgAgree
WebAuthn

most preferred server’s algorithm that is supported by the token (i.e., it is not the first

The attacker wins the game Expr o+ if the generated key pair is not of the
element in the intersection of the supported and the preferred algorithms, see line 7 in
Figure 5.6), and honestly generated authentications are always accepted by the server (see
line 5 in Figure 5.6). It is important to emphasize that our threat model here is different
than the one for Section 5.4.4. Namely, we assume that the communication channels in
the registration and authentication phase are unauthenticated with one exception. We
assume that there is at least one honest authentication, i.e., during this one authentication
the attacker does not actively interfere with the communication between the three parties.

We can show that WebAuthn 2% satisfies the above property if H is a collision resistant
AlgAgree

hash function. The proof sketch is as follows. Assume the attacker A wins Expry v o0
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(i.e., dzT, 5) = 1 and df = 1). This implies that the attacker is able to successfully register
the token 7" at server S such that the chosen signature algorithm is supported by the
token, accepted by the server, and not the most preferred algorithm in the intersection
of supported and accepted algorithms. Furthermore, it means that line 60 in Figure 5.4
holds, i.e., that the hash value hcp over the received list pkCP’ (computed and sent by the
token) is the same as the hash value rcg[cid].hcp over the original pkCP. This contradicts
the collision-resistance of H, as pkCP # pkCP’.

5.5 CTAP 2.1 and Extended Pin-based Access Con-
trol for Authenticator Protocols

In this section, we first define the extended PIN-based Access Control for Authenticators
(ePACA) protocol following [20] and describe CTAP 2.1 as an ePACA instance. Next,
we present a variant of the strong unforgeability with trust-binding (SUF-t") experiment.
Finally, we extend CTAP 2.1 for PQ compatibility and formally prove the SUF-t’ security

of the extension.

5.5.1 Extended Pin-based Access Control for Authenticator Pro-
tocols

An extended PIN-based Access Control for Authenticators protocol ePACA = (Reboot,
Setup, Bind, Auth, Validate) is an interactive protocol between a client C', an authenticator

token 7', and a user U, specified by the following algorithms:

Reboot(7"): runs at each power-up of the token 7" and initializes the inherent state with a
mandatory user interaction. This algorithm is expected to be invoked to power up T

and initialize the local state before the execution of any other algorithms on 7.

Setup(7, C,U): inputs a token 7', a client C, and a user U and outputs the transcript trans.
During this interactive sub-protocol, U securely transfers the PIN to 7" via C'. Note that
this algorithm is invoked on each token T at most once. We write trans <- Setup(T, C, U).

Bind(7, C,U): During this interactive sub-protocol, the client C' is bound to the token
T under the confirmation of the user U. This sub-protocol is further divided into two

algorithms:

Bind-C(C, U, m): inputs a client C, a user U, and an incoming message m and outputs an
outgoing message m’. During this algorithm, C' processes m under the confirmation
from U. We write m’ < Bind-C(C,U, m).

Bind-T(7',m): inputs a token T" and an incoming message m, and outputs an outgoing

message m’. We write m’ <~ Bind-T (T, m).

99



Auth(C, M): inputs a client C' and a command M, and outputs both the command M
and its authorization tag t. We write (M, t) <> Auth(C, M).

Validate(T', M, t,d): inputs a token T, a command M, an authorization tag ¢, and a user
decision d € {accepted, rejected}, and outputs status € {accepted, rejected} indicating
whether the authorization can be verified or not. We write status <> Validate(T', M, ¢, d).

5.5.2 CTAP 2.1 is an ePACA protocol

CTAP 2.1 [59] is a substantial change from CTAP 2.0 [60] in terms of generalization
and modularity. More concretely, CTAP 2.1 makes use of a generic stateful so-called
Pin/Uv Auth Protocol puvProtocol = (initialize, regenerate, resetpuvToken, getPublicKey,
encapsulate, decapsulate, encrypt, decrypt, authenticate, verify), which can be instantiated
using puvProtocol; and puvProtocol, from the standard that we depict in Section 5.5.4.
Additionally, we here propose a third instantiation puvProtocols that allows for PQ security
in Section 5.5.5. Each puvProtocol has its internal state including a public-private key
pair (pk, sk) and a string pt.

Similar to the treatment in Section 5.4, we use 7} and Wé to denote token 7"s i-th and
client Cs j-th instance respectively. In addition, each T has a token-associated state stp
that is shared by all of T"s instances. Namely, we have T' = {sty} U {n}-}; and C = {r},.
We use ping; to denote U’s unique PIN. In addition, we define the following variables for

tokens T or clients C:

str.version € {2.0,2.1}: denotes the CTAP version.
str.puvProtocol: denotes a stateful Pin/Uv Auth Protocol.

str.puvProtocolList: denotes the list of Pin/Uv Auth Protocol instantiations that 7" sup-

ports.

str.pinHash € {0, 1}* U {_L}: denotes the hash of a user PIN. This variable is expected to
be set during Setup.

str.pinRetries € {0, ..., pinRetriesMax}: denotes the number of remaining tries for clients

to deliver a pinHash, where pinRetriesMax denotes the maximal number of tries.
str.m € {0, ...,3}: denotes the remaining consecutive tries for clients to deliver pinHash.

W%.Stexe,ﬂ'é.stexe € {waiting, bindStart, bindDone, L }: denotes the execution state of a to-

ken/client session.

mh.bs, h.bs € {0,1}* U {1}: denotes the binding state. This variable is expected to be
set during Bind.

mhsid, wl.sid € {0,1}* U {L}: denotes the session identifiers; defined as the full transcript

of the Bind execution.
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Authenticator T Client C' (ping)

info < getlnfo-T'(m}) info

puvProtocol - obtainSharedSecret—C—start(Tr%, info)

puvProtocol
-

pk < obtainSharedSecret-T (., puvProtocol )

pk
—_—

c & obtainSharedSecret—C—end(ﬂg,pk:)
(eps tp) ¢ setPIN-C/(rl., pin;;)
¢, Cp,lp
status < setPIN-T'(wi., puvProtocol, ¢, cp,tp)

info + getInfo-T'(m%:) info
if Trjci,.stexe =1
puvProtocol ¢+ obtainSharedSecret-C-start(Z., info)
) puvProtocol
if T Stee = L -
pk ¢ obtainSharedSecret-T'(m}., puvProtocol )
pk
—_— .. L
if g, .Stege = waiting
c& obtainSharedSecret—C—end(rrg,pk:)
cpr € obtainPinUvAuthToken-C-start(r/,, pin;)
c, Cph
if 7St = waiting ,
cpy <& obtainPinUvAuthToken-T'(w%., puvProtocol. ¢, epp)
Cpt
— P e )
if 7l,.steee = bindStarted )
obtainPinUvAuthToken-C-end(7Z., cpt )

Validate: Authorize:
if ﬂé,stexe = bindDone ]
M.t (M, t) & authorize-C'(,, M)
if mh.stexe = bindDone
status « validate-T'(ri., M, t, d)

Figure 5.7: CTAP 2.1 is an ePACA = (Reboot, Setup, Bind, Auth, Validate) protocol. All algorithms
are formally defined in Section 5.5.3.

ﬂé.selectedpuvProtocol: denotes the puvProtocol instantiation chosen by the client.

mh.k € {0,1}* U{L}: denotes the shared key with a token.

CTAP2.1 Protocol Intuition. Next, we formalize CTAP 2.1 as an ePACA protocol.
Overall CTAP 2.1 includes 12 algorithms®. We depict the communication flow of CTAP 2.1
in Figure 5.7. Intuitively, the Reboot algorithm initializes the underlying puvProtocols and
resets the remaining consecutive tries stp.m to 3.

In the Setup interaction, the token T first outputs its information info, which in-

cludes the supported list sty.puvProtocolList. Next, the client selects and initializes one

6Similar to the treatment in [20], we omit the algorithms for PIN reset and leave it for future work.
The suffix -7" and -C in the names of algorithms indicates the algorithm executor to be either a token or a
client. The suffix -start and -end indicates that this algorithm is the first or the final step in an interactive
execution.
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ﬂé.selectedpuvProtocol from the received list followed by sending its choice back to T'.
Then, the token T returns the public key pk of the chosen sty.puvProtocol. Afterwards,
the client runs the encapsulation of its Wé.selectedpuvProtocol upon pk for a key Wé./{},
which is then used to encrypt and authenticate the PIN pin;; collected from user U, and
forwards all derived ciphertexts and tags to T'. The token T finally decapsulates the key,
followed by verifying the ciphertext, and recovers pin;;. The local sty.pinHash stores the
hash of pin;; and the remaining retries stp.pinRetries is set to pinRetriesMax.

The Bind interaction is identical to Setup until the client derives the key 7r]Cl<: Then, the
client uses Wé«.k’ to encrypt the hash of the user pin pin; and sends the ciphertext to 7'. If
str.pinRetries does not reach 0, the token decapsulates the key and recovers a pinHash. If the
pinHash does not match the hash of the local sty.pinHash, the underlying st7.puvProtocol
re-generates the public key pk. If the remaining consecutive retries meanwhile arrive at 0,
the token is forced to reboot. If the pinHash matches the hash of the local sty.pinHash, the
remaining retries sty.m and str.pinRetries are reset to their maximal values. The pts of all
underlying sty.puvProtocol are re-sampled. The token finally sets the binding state 7/.bs
to the pt of the current sty.puvProtocol, which is then encrypted using the decapsulated
key. The client eventually recovers the pt and sets it to Wé.bs.

After the negotiation for the binding states, the client can invoke Auth algorithm to
authorize command M using its binding state 7.bs. Similarly, the token can invoke the
Validate algorithm to verify the authorized command using Wé.bs.

Below, we give the detailed description of the 12 algorithms in the following Section 5.5.3

and the official instantiations of Pin/Uv Auth Protocol in Section 5.5.4.

5.5.3 Description of CTAP 2.1 Algorithms

authPowerUp-T": inputs a token state sty and resets each underlying Pin/Uv Auth Protocol
puvProtocol. The counter m for the consecutive tries for binding phase is set to its

maximum of 3.

getInfo-T": inputs a token session 7. and outputs its version and the list of the supported
Pin/Uv Auth Protocol. We write info < getInfo-T'(r%.).

obtainSharedSecret-C-start: inputs a client session Wé and token information info =

(version, puvProtocolList) and aborts if version = 2.0. Otherwise, the client session 7,
selects a Pin/Uv Auth Protocol puvProtocol from the list puvProtocollList and initial-
izes it locally. The execution state of Wé is set to waiting. Finally, this algorithm
outputs the selected Pin/Uv Auth Protocol puvProtocol. We write puvProtocol -
obtainSharedSecret-C-start(77;, info).

obtainSharedSecret-T": inputs a token session 7% and a Pin/Uv Auth Protocol puvProtocol
aborts if puvProtocol is not supported by the token T'. Otherwise, this algorithm simply

outputs the public key of the local instance of puvProtocol. During the execution, the
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authPowerUp-T'(str): getnfo-T'(r7):

22 foreach puvProtocol € str.puvProtocollist 60 info < (str.version, sty.puvProtocollList)

23 sty.puvProtocol.initialize() 61 mh.sid « 7wi.sid || info

24 stp.m 3 ‘ 62 return info

obtainSharedSecret-C-start(n7,, info): obtainPinUvAuthToken-C-start(m};, pin):

25 Parse (version, puvProtocolList) + info 63 pinHash « H(pin)

26 if version = 2.0 64 Cpp & 7%.seIectedpuvProtocoI.encrypt(ﬂ%.k7 pinHash)
27 return L 65 T.Stexe < bindStart

28 se.lect puvProtocol < puvProtocolList 66 ml.sid « 7lsid || cpn
J
29 ¢, .selectedpuvProtocol < puvProtocol 67 return c,,

30 wé.selected puvProtocol.initialize() obtainPinUvAuthToken-T (7%, puvProtocol, ¢, ¢,p):

31 Wé-stexe + waiting 68 if puvProtocol ¢ sty.puvProtocolList or str.pinRetries = 0

32 ml.sid + 7l.sid || info || puvProtocol 6o return (L, false)

33 return puvProtocol 70 K < stp.puvProtocol.decapsulate(c)

obtainSharedSecret-T (-, puvProtocol ) : 7 ifK=1

34 if puvProtocol ¢ sty.puvProtocolList 72 return (L, false)

35 return L 73 stp.pinRetries < stp.pinRetries — 1

36 pkq < stp.puvProtocol.getPublicKey () 74 pinHash < sty.puvProtocol.decrypt (K, cpp)

37 ng‘stexe <+ waiting 75 if pinHash # str.pinHash

38 mh.sid < mk.sid || puvProtocol || pkr 76 str.puvProtocol.regenerate()

39 return pkp ) 77 if stp.m=0

obtainSharedSecret-C-end(77,, pk) : 78 authPowerUp-T'(str)

20 (¢, K) ¢ 77, .selectedpuvProtocol.encapsulate(pk) 79 return (L, true)

41 né.k «— K 80 stp.m < 3,stp.pinRetries < pinRetriesMax

42 wé.sid — TFé.Sid || pk | ¢ st foreach puvProtocol’ € sty.puvProtocolList

43 return c 82 st.puvProtocol’.resetpuvToken ()

setPIN—C(7ré7 pin) : 83 mh.bs < mh.puvProtocol.pt

aa  if pin ¢ PIN 84 ¢yt <& sty.puvProtocol.encrypt (K, mk..bs)

45 return L 85 Tk .Stexe < bindDone

46 ¢y & m.selectedpuvProtocol.encrypt (.. k. pin) 86 mh.sid < mh.sid || puvProtocol || ¢ || cpn || cpe || false
47 1, ¢ 7,.selectedpuvProtocol.authenticate (. .k, c,) 87 return (cp,false)

48 return (cp,t,) obtainPinUvAuthToken-C-end (77, cps):

setPIN-T'(,, puvProtocol, ¢, ¢, t,): 88 ﬂé.bs — 7ré.s,electedpuvProtocoI.decrypt(7r'é.1c7 Cpt)

49 if puvProtocol ¢ sty.puvProtocollist or sty.pinHash # L i .
P #str.p r-P 7 89 T.Stexe < bindDone

50 return | i i
90 wh.sid <= 7wl.sid || ¢
51 K < stp.puvProtocol.decapsulate(c)
i ] 91 return

52 if K = L or styp.puvProtocol.verify (K, cp, t,) = false auth-C(n, M):

53 return L 92t <& ml,.selectedpuvProtocol.authenticate (m7,.bs, M)

54 pin < sty.puvProtocol.decrypt(K, c,) o5 return (M, t)
,

55 if pin ¢ PIN validate-T'(7k, M, t, d):

56 return L 94  if sty.puvProtocol.verify (k. .bs, M, ) = true
57 stp.pinHash < H(pin) 95 returnd

58 stp.pinRetries <— pinRetriesMax 96 return rejected

59 return accepted

Figure 5.8: CTAP 2.1 is an ePACA = (Reboot, Setup, Bind, Auth, Validate) protocol. The flow of
ePACA protocol is given in Figure 5.7.

status of the token session is set to waiting. We write pk < obtainSharedSecret-T (7%,
puvProtocol).

obtainSharedSecret-C-end: inputs a client session 7, and a public key pk. During the

execution, the client session produces a shared secret K and a ciphertext ¢, followed by
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storing the secret K locally in 7rjck: This algorithm outputs the ciphertext c. We write
¢ <& obtainSharedSecret-C-end (77, pk).

setPIN-C": inputs a client session Wé and a PIN pin and aborts if pin is not in the PIN
domain PZN . Otherwise, wé encrypts this pin and authenticates the encryption using the
selected Pin/Uv Auth Protocol and the locally stored shared secret 7TJC«/€ This algorithm
outputs the ciphertext ¢ and the authentication tag t. We write (c, t) <*- setPIN-C/(72,, pin).

setPIN-T": inputs a token session 7%, a Pin/Uv Auth Protocol puvProtocol, two ciphertexts
c and ¢,, and an authentication tag ¢,. It aborts if puvProtocol is not supported or the
local pinHash has been set. Then, the token decapsulates ¢ for a shared secret K and
verifies the ciphertext ¢, and tag ¢t using K. If K cannot be correctly decapsulated or
the verification falls, then this algorithm aborts. If a PIN pin can be correctly decrypted,
then the local pinHash 7’.pinHash is set to hash of pin and the local counter pinRetries
is set to the maximum. Otherwise, this algorithm aborts. In the end, this algorithm
outputs a status status € {accepted, rejected} indicating success or failure. © We write

status < setPIN-T'(}., puvProtocol, ¢, ¢,, t,).

obtainPinUvAuthToken-C-start: inputs a client session Wé and a PIN pin. The client
session 7% computes the hash of pin and encrypts it using the selected Pin/Uv Auth
Protocol and the locally stored share secret 7TJC/€ This algorithm outputs the encryption
c. During the execution, the status of the client session is set to bindStart. We write
¢ <& obtainPinUvAuthToken-C-start(7Z,, pin).

obtainPinUvAuthToken-T": inputs a token session 7%, a Pin/Uv Auth Protocol puvProtocol,
and two ciphertexts ¢ and ¢,. It aborts if puvProtocol is not supported by 7" or if the
local counter pinRetries is 0. Otherwise, session 7% decapsulates ¢ for a key K and aborts
if a failure happens during the decapsulation. Then, 7k decrements the counter pinRetries
by 1 and decrypts c,h using K for a hash value pinHash. If pinHash matches the locally
stored str.pinHash, then the counter m and pinRetries is set to their maximum. Otherwise,
the local instance puvProtocol regenerates its key pair. If the counter for the consecutive
retries reaches 0, then the token is rebooted. In all cases, the token resets the pts in all
Pin/Uv Auth Protocol instances. Then, the session 7} sets the pt underlying puvProtocol
as the binding state 7..bs and encrypts it using K for a ciphertext ¢,;. This algorithm
outputs ¢, and a boolean value calledReboot indicating whether authPowerUp-T is invoked
or not. After the successful completion, the status of the token session is set to bindDone.

We write (¢, calledReboot) <% obtainPinUvAuthToken-T (7}, puvProtocol, ¢, ¢,p).

obtainPinUvAuthToken-C-end: inputs a client session Wé and a ciphertext c,;. During the
execution, the client decrypts the binding state Wé.bs from c,; and the status of the client

session is set to bindDone.

“In practice, the user confirmation is required in this step. Here, we simply assume the user confirmation
and omit it in the algorithm.
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initialize; (): getPublicKey, ():

97 regenerate; () 108 return pk

98 resetpuvToken, () encrypt, (K, m):
regenerate, (): 109 ¢ < SKE;.Enc(K,m)
99 (pk, sk) <& ECDH.KG() 110 return c

resetpuv Token, (): decrypt, (K, ¢):
100 pt <& {0,134 111 m < SKE;.Dec(K, c)
encapsulate, (pk'): 112 return m
101 Z «+ XCoordinateOf (sk - pk') authenticate; (K',m):
102 K« Hy(Z) 113t < Ha(K',m)
103 ¢« pk 114 returnt

104 return (¢, K) verify, (K',m,t):
decapsulate; (¢): 115 " Hy(K',m)
105 Z + XCoordinateOf(sk - c) 116 return [t = t']
106 K <« Hy(Z)

107 return K

Figure 5.9: The first instantiation of PIN/UV Auth Protocol puvProtocol;. The operation -
denotes scalar multiplication.

auth-C': inputs a client session ﬂé and a command M. The client session authenticates
M using the selected Pin/Uv Auth Protocol and the local binding state for a tag ¢. This
algorithm then outputs M and an authorized tag t*. We write (M, t) < auth-C(r,, M).

validate-T": inputs a token session 7%, a command M, an authorized tag ¢, and a user
decision d € {accepted, rejected}, and outputs status status = accepted if d = accepted
and M and ¢ can be verified using the binding state m4.bs and the Pin/Uv Auth Protocol,
which is specified by the tag ¢ (See Footnote 8); and rejected otherwise.

5.5.4 Official Instantiations of Pin/Uv Auth Protocol

CTAP 2.1 officially introduces two instantiations of Pin/Uv Auth Protocol puvProtocol, as
in Figure 5.9 and Figure 5.10. The first, puvProtocol,, runs initialize; by simply invoking
regenerate; and resetpuvToken,, which further samples a public-private key pair from
ECDH over curve NIST P-256 and samples a random pt with length p for p € {1,2} and
A = 128 bits. getPublicKey, outputs the internal public key pk. encapsulate; computes
the key exchange using as input ECDH public key and its internal private key and applies
H, = SHA-256 to the x-coordinate of the key exchange result for a shared K, followed by
outputting its internal public key and K. decapsulate, recovers the shared secret K from
ciphertext ¢ using its internal private key sk. encrypt; encrypts a message m using SKE;
and a symmetric key K, where SKE; denotes AES-256-CBC encryption using an all-zero

initial vector IV. decrypt, recovers the message from ciphertext ¢ by using SKE; and key

8In practice, this authorized tag t also includes information that specifies the index of Pin/Uv Auth
Protocol. Here, we omit this.
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initializes(): getPublicKey,():

117  regenerate,() 132 return pk
118 resetpuvToken,() encrypty (K, m):

regenerate,(): 133 Parse (K1, K3) < K s.t. |Kq1| =2A
119 (pk, sk) < ECDH.KG() 134 ¢ < SKEg.Enc(K2,m)

resetpuv Token, (): 135 return c
120 pt <& {0,1}* decrypt, (K, c):

encapsulate, (pk'): 136 Parse (K1, K3) + K s.t. |Kj| =2\
121 Z + XCoordinateOf (sk - pk’) 137 m < SKEy.Dec(K3, ¢)
122 K7 + H3(Z, “CTAP2 HMAC key”) 138 return m
123 Ky + H3(Z, “CTAP2 AES key”) authenticatez (K, m):
120 K+ (Kq, K>) 139 Parse (K7, K}) < K’ s.t. |K1| = 2\
125 ¢4 pk 140 ¢« Hy(Ky,m)
126 return (c, K) t41 returnt

decapsulate,(c): verify, (K',m, 1):
127 Z + XCoordinateOf(sk - ¢) 142 Parse (K7, K3) < K' s.t. [Kq| = 2A
128 K + H3(Z, “CTAP2 HMAC key”) 143t < Hy(K7,m)
120 Ky + H3(Z, “CTAP2 AES key”) 144 return [t =1']

130 K + (K1, K>)

131 return K

Figure 5.10: The second instantiation of PIN/UV Auth Protocol puvProtocol,. The operation -
denotes the scalar-multiplication.

K. authenticate; authenticates a message m using K’ by applying Hs to both, where H,
runs HMAC-SHA-256 and truncates the result to the first 128 bits. verify, outputs true if
t = Hy(K',m), and false otherwise’.

The second instantiation puvProtocol, runs initializes, regenerate,, and getPublicKey,
identical to the ones in puvProtocol,. The resetpuvToken, algorithm outputs a pt with fixed
256 bits length. The algorithm encapsulate, first computes the = coordinate of the ECDH
exchange of input public key and internal private key, denoted by Z, followed by applying
Hs to Z and “CTAP2 HMAC key” for a HMAC key K; and to Z and “CTAP2 AES key”
for a AES key K,. Finally, encapsulate, outputs its internal public key as ciphertext as
well as K7 and K. decapsulate, recovers HMAC key K; and AES key K, from the input
ciphertext c using its internal private key. encrypt, splits the input K into two sub-keys iy
and Ky where K has length of 256 bits. Then, it encrypts a message m using SKE; on key
K5, where SKE; denotes AES-256-CBC encryption using a randomized initial vector IV.
decrypt, recovers the message m from ciphertext ¢ using the key K, where K, discards the
first 256 bits of K. authenticate, applies Hy to key K| and a message m to produce a tag ¢,
where Hy denotes HMAC-SHA-256 and K7 is the first 256 bits of the input K’. verify, on

a key K’, a message m, and a tag t, verifies whether the tag ¢ matches Hy (K}, m), where

9In practice, if K’ = pt, then verify; also outputs fails if pt is not in-use. Note that the usage time of
the pt is out of the scope of this paper. We omit this here and in the following verify, in puvProtocol,.
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initializes(): getPublicKey;():

145 regenerateg() 163 return pk
146 resetpuvToken () resetpuv Token():
regenerates (): 164 pt <& {0,1}
147 (pky, sk1) < ECDH.KG() encapsulate; (pk'):
148 (pky, ska) <~ KEM.KGen() 165 (pk', pky) < pk'
149 pk <+ (pkq, pks) 166 (sky, sko) < sk
150 sk < (sky, sko) 167 7y < XCoordinateOf (sky - pk’)
encrypt (K, m): 168 (2, Z3) < KEM.Encaps(pk})
151 (K1, K3) «+ K st | K| = p/A 160 Z « Hs(Zy, Zs)
152 ¢ = SKEz.Enc(K2,m) 170 Ky « Hg(Z, “CTAP2 HMAC key”)
153 return ¢ 171 Ky ¢ Hg(Z, “CTAP2 AES key”)

decrypts (K, ¢):

154 (Ki1,K3) < K st | K| = p/A
155 m 4 SKEsz.Dec(K3, ¢)

156 return m

authenticates (K’, m):

157 (K1, Kb) «+ K'st. |Kj| = p/'A
158t + H7z (K1, m)

159 return t

172 K «+ (Kl,KQ)
173 ¢+ (pk, c2)

174 return (c, K)
decapsulates(c):
175 Parse (c¢1,c2) + ¢

176 Parse (ski, sko) < sk

177 Z1 < XCoordinateOf (sky - ¢1)
verify, (K" m, 1): 178 Zo + KEM.Decaps(ska, ¢2)

100 (K[, Kp) « K' st [K{| = p'A 7o 2 Hs(2, 22)

ot e Ha(Km) 180 K  Hg(Z, “CTAP2 HMAC key”)
162 return [t = 1] 181 K < Hg(Z, “CTAP2 AES key”)
182 K + (K1, K>)

183 return K

Figure 5.11: The third instantiation of PIN/UV Auth Protocol puvProtocol;. The operation -
denotes the scalar-multiplication.

K7 is the first 256 bits of K.

5.5.5 Our Post-Quantum Instantiation of CTAP 2.1

We propose a third instantiation of the Pin/Uv Auth Protocol in Figure 5.11 that aims
at PQ compatibility in a hybrid manner. Compared to puvProtocol,, the most important
changes made to achieve PQ security are as follows. First, in addition to an ECDH
(over curve NIST P-256) key pair, a key pair of a PQ secure KEM is sampled during
regenerate;. Second, the algorithm encapsulate; executes both the ECDH key exchange and
the encapsulation of the PQ KEM to derive a hybrid ciphertext ¢ and key K = (K, K3).
Finally, the algorithm decapsulate; correspondingly recovers the hybrid key K = (K7, K5)

from the ciphertext c.
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5.5.6 Security Model of ePACA Protocols

Moving forward, we model the security of ePACA protocols as security experiment
Exprgg,{étg. The security goal is to ensure that a token can only accept a command

that has been authorized by a trusted client under user permission.

Trust Model Similarly to [20], we assume ”trust-on-first-use”, which means that the
interactive execution of Setup is authenticated without any active interference of an
eavesdropping attacker. Moreover, we assume no active attacks against clients during
the interactive execution of Bind, while active attacks against tokens are allowed. More
concretely, active attacks against clients are allowed only when the execution state of the
clients turns from waiting to bindStart. However, active attacks against tokens are allowed
even if the execution state of tokens is still waiting. We further assume that each user
holds a unique PIN pin;; that is independently sampled from the domain PZAN ' following
some distribution ® with min-entropy ap. All tokens are assumed to share a common

pinRetriesMax. We assume that each ECDH point is bijective to its x-coordinate.

Experiment-specific Variables Each session 7 is associated with a variable isValid €
{true, false, L.} that denotes whether the session is still accessible (by users or attackers)
or not. Each token session 7% is associated with a variable pinCorr € {true,false} that

indicates whether the setup user PIN of T has been corrupted.

Oracles The oracles in our security experiment (see Figure 5.12) are defined similarly to the
ones in [20]. More concretely, the oracles NEWT and NEWU create new tokens and users,
respectively. In particular, the attacker can customize the token with specific initial data
when querying NEWT. The REBOOT(T) oracle invokes Reboot and marks all previously
established sessions of T" as invalid. The oracle SETUP runs the authenticated interaction of
Setup. The oracle EXECUTE captures that the Bind interaction is partially authenticated
until the client’s execution state is set to bindStart and the remaining interaction of
Bind is not authenticated, as the attacker can deliver messages to token and client by
SEND-BIND-T and SEND-BIND-C oracles respectively. The AUTH and VALIDATE oracles
simulate the Auth and Validate execution of clients and tokens, respectively. Furthermore,
querying CORRUPTUSER and COMPROMISE reveals a user’s PIN and a client’s binding
state, respectively. Notably, whenever Reboot or Bind are completed on a token T', we

mark all of T”s previously established sessions as invalid.

Session Partnering Partnering identifies the sessions of a token T and a client C' that
successfully completed Bind(T, C, U) for some user U. We call a token session 7} partnered

with a client session 7% if and only if 7k.sid = Wé.sid # 1.

0Tn practice, each PIN must have a maximal length of 63 bytes and a minimal length of four code
points (on tokens) or four unicode characters (on client).
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SUF-t/
Exprapaca (A):

Win-SUF-t'(T, i, M, ¢, d):

1 Lapm <0 g if d # accepted: return 1

2 win-SUF-t' - 0 o if 3(C1,1), (Ca,j2) st. (C1,1) # (Co,j2) and 7L Stexe =
3 () & A9 wgz.stexe = bindDone and w}}l.sid = wgz.sid: return 1

4 return win-SUF-t/ 10 if 3(Ty,i1), (Tz, i) st. (Ti,i1) # (Ts,iz) and 77iT11.stexe =
bindPartner(T, 7): W%Z.Stexe = bindDone and wéﬁl.sid = 7r§32.sid: return 1

s if 3(C,j) s.t. mhhsid = wl.sid 1t (C,j) < bindPartner(T,1)

6  return (C,j) 12 if (O, 5, M,t) & Lavru

7 return (L, 1) 13 if (C,j)=(L,1)or wé.compromised = false

14 if 7i..pinCorr = false: return 1
15 return 0

NEwWT (T, initialData): NEwU(U): COMPROMISE(C, j):

t6 if sty # L: return L 22 if piny = L 27 if ., = L or 7l .Stexe # bindDone
17 (version, puvProtocolList) < initialData 23 ping <~ PZN .5  peturn L

18 stp.version <— version 24 return 29 Wé.compromised — true

19 str.puvProtocolList - puvProtocollist CORRUPTUSER(U): ./ Leturn wé.bs
20 Reboot(stT) 256 corry < true
21 return 26 return ping;

REBOOT(T): SEND-BIND-T(T, i, m): SEND-BIND-C(C, j,m):
31 if sty = L s if sty = L or mp = Lss if 7, = L or ml.Stee #
32 return or mp.Stee 7 Waiting or bindStart or Wé.iSVH“d = false
33 foreach i s.t. wh # L m-isValid = false 57 return L
34 W%.iSVa“d <« false e ‘return - 58 return Bind-C(ﬂ%, m)
35 Reboot(str) 46 mp.pinCorr + COMstr user ExecuTe(T,i,C, j,U):
36 return a7 m’ < Bind-T(rp, m) 59 if sty = Lor7h # Lor Wé, #
SETUR(T, i, C, j, U): 48 ¢y || calledReboot «— m/ 1 or piny = L
57 if str = L or 7 # L or 49 if calledReboot = tf/Lle 60 return |
7l # L or ping = L 50  foreach i s.t. wh # L 61 i« sty

38 return L 51 mh.isValid + false 62 trans,mc + L
39 T < st 52 elseif 77.stee = bindDone g3 while 77, steye # bindStart
20 trans ¢ Setup(wh, 7k, pin,) 53 foreach i’ 7 i and T # L 6a mp < Bind-T(rh, me)
a1 7h.isValid, 7l isValid « false 5% m.isValid « false 65 me < Bind-C(nl, U, mr)
42 stp.user <— U 55 return m/ 66 trans < trans || mp || mc
43 return trans 67 return trans

AuTtH(C, j, M): VALIDATE(T, i, M, t, d):
68 if 7% =1 or Wé“Stexe # bindDone 73 if mh = L or mh.stece # bindDone or 74..isValid = false
69 return | 74 return |
70 (M, t) & auth-C(ﬂé’ M) 75 status < validate-T'(7%., M, t,d)
71 Lavrn < Lavm U{(C, 5, M, t)} 76 if status = accepted
72 return (M, 1) 77 win-SUF-t’ < Win-SUF-t'(T, 4, M, t,d)

78 return status

Figure 5.12: Security experiment for extended PIN-based Access Control Authenticators Protocol
for ePACA = (Reboot, Setup, Bind, Auth, Validate), where O = {NEwT, NEwWU, COMPROMISE,
CORRUPTUSER, REBOOT, SETUP, EXECUTE, SEND-BIND-T, SEND-BIND-C, AUTH, VALIDATE}.

We highlight differences to the SUF-t security game from [20] in blue.

109



- L N

Winning Conditions We call a token session test session if it accepts an authorized
command-tag pair under some user decision. An attacker A wins ExprggAFétA/‘ if there exists
a test session 7l that accepts an authorized command (M, t) with user decision d and any

of the following conditions holds:

the user decision d # accepted.
two distinct client sessions that completed Bind have the same session identifiers.
two distinct token sessions that completed Bind have the same session identifiers.

(M,t) was not output by any of 7%’s uncompromised valid partners 7% before the

corruption of the user PIN that was setup on the token T

Definition 49 (SUF-t' security of ePACA). Let Compl € {PPT,QPT}. Let ePACA =
(Reboot, Setup, Bind, Auth, Validate) be an extended PIN-based Access Control for Authen-
ticators protocol. We say that ePACA is strongly unforgeable with trusted binding, or is
SUF-t'-secure for short, if for all Compl attackers A

AdVEACA(A) = Pr[Exprgaca(A) = 1]

m winning the game EXprS,gAFét,; as described in Figure 5.12 is negligible in the implicit

security parameter X.

5.5.7 Security Conclusions for CTAP 2.1

After having defined security for ePACA protocols above, we now present the security
statements for CTAP 2.1. We give the full proofs of our two theorems (against PPT and
QPT attackers) in Section 5.9.4 and Section 5.9.5.

Our first theorem shows the SUF-t’ security of CTAP 2.1 against PPT attackers.

Theorem 22 (PPT security of CTAP 2.1). Let ePACA = (Reboot, Setup, Bind, Auth,
Validate) denote the CTAP 2.1 protocol described in Section 5.5.2. Assume that ePACA
supports puvProtocol, for i € {1,2,3}. If the hash function H is & collision resistant,
H; : {0,1}* — {0,1}% is modeled as independent random oracle for i € {1,...,7}, SKE; is
ecke P2 IND-1CPA-H, and elge. ™" IND-18PA-LPC secure, SKE; is egge " -IND-1CPA
and eisngélfpa"pc-lND—1$PA-LPC secure for i € {2,3}, and the sCDH problem over ECDH
with prime order q is e, hard, then the advantage of any PPT attacker A that breaks
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SUF-t’ security of ePACA is bounded by
Advzg/fét/;(l)\) S(QSETUP + qEXECUTE)ESECC%T'l + 'EIC-|0”-res

+ (qSETUP +2qEXECUTE) (22—min(l1,l3,l5,l6) + 21—q)

+qNEWU2_a© + (qSENDéBIND—T) 2_ min(;u727ﬂ/))\

ind-1cpa-H2 ind-1cpa ind-lcpa
+qseror Max(egye, ) €SKEy 3 ESKEs )

ind-1$pa-lpc ind-1$pa-lpc ind-1$pa-Ipc
+qexecure maX(ESKEl » ESKE, » CSKE;4 )

+qspruppinRetriesMax2™®

— mi /
+QVALIDATE2 min(pX, 22,01’ \l2,l4,l7)

where qo denotes the number of queries to O = {SETUP, EXECUTE, VALIDATE} and ¢;

denotes the number of queries to random oracle H; for i € {1,...,7}.

Proof Sketch. The proof is divided into the following steps: (1) By the random oracle H;
for 7 € {1,3,5,6} and the sCDH assumption on the underlying ECDH, all keys K derived
from the encapsulation of the underlying puvProtocol in the obtainSharedSecret-C-end
algorithm, which is only invoked in the SETUP and EXECUTE oracles, are distinct except
probability (QSETUP + qEXECUTE>€|SECC%T-| + (qSET[JP+2qEXECUTE>22—min(l1,l3,l5716). (2) By the entropy of
the user PIN ag, none of the user PIN sampled in NEWU oracle is predicable except
with probability gnewu2 . (3) By the collision-resistance of H and the entropy of
the Diffie-Hellman public keys 2¢ and of pt values 2™@(:240X " we have the all H(pin),
Diffie-Hellman public keys, pt values, are respectively distinct except probability in total
EIc_|o||-res + (qSETUPBEXECUTE)Ql—q + (qSEND»QB[ND»T)2—mil’l(,u,2,,u,/))\‘ (4) By the IND-1CPA-H, security of
SKE; and the IND-1CPA security of SKE; and SKEj3, the pins encrypted by the underlying
puvProtocol in the setPIN-C' algorithm, which is only invoked in the SETUP oracle, are
indistinguishable from random except probability gsprue max(egge 2, e Eones )
(5) By the IND-13$PA-LPC security of SKE; for i € {1,2,3}, the pinHashs encrypted
by the underlying puvProtocol in the obtainPinUvAuthToken-C-start algorithm, which is
invoked only in the EXECUTE oracle, are indistinguishable from random except probability

ind-1$pa-lpc _ind-1$pa-lpc _ind-1$pa-Ipc
qEXECUTEmaX(GSKEl ) €SKE, » €SKE3 ).

Finally, the attacker A cannot trigger the flip of the win-SUF-t" predicate in Figure 5.12
via condition (i) in Line 8, due to the design of CTAP 2.1, see validate-T" algorithm in
CTAP 2.1. (ii) in Line 9, due to the distinction of Diffie-Hellman public keys, (iii) in
Line 10, due to the distinction of Diffie-Hellman public keys and pts, (iv) in Line 11-14,
since A obtains no information about pins or pts and can only win by randomly guessing
the pin in the SETUP oracle maximal pinRetriesMax times for each token session, or the
pt values or the tags ¢ in the Validate algorithm in the VALIDATE oracle, which happens

- min(puX, 2,1/ Al2,l4,l7)

with probability except gsgruppinRetriesMax2™*® + gvapiare in total,

modeling H; as a random oracle. O]
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The above theorem proves that CTAP 2.1 only accepts messages under the user’s
approval, which is captured by winning condition 1. Winning conditions 2 and 3 capture
the uniqueness of each session identifiers: if two sessions are partnered with each other,
then they are each other’s unique partners. Condition 4 ensures the token only accepts
the authorization from a client that it binds to if (1) the binding phase is trusted, (2) the
binding state (on the client side) is not compromised if available, and (3) the user PIN
that sets up the token is not corrupted.

As is to be expected, the above theorem only holds when the token’s user PINs have
large enough entropy. If a user PIN is predictable, the attacker can perform active attacks
and authorize malicious commands towards the token.

Moving to the security guarantees against quantum attackers, we note that the asym-
metric cryptographic primitives in puvProtocol; and puvProtocol, are simply ECDH, which
is quantum-vulnerable. Therefore, A can trivially win SUF-t’ experiment by selecting the
Pin/Uv Auth Protocol in a test session to be puvProtocol; or puvProtocol,. The theorem

below suggests the security of the test session if puvProtocol; is selected as instantiation.

Theorem 23 (QPT security of CTAP 2.1). Let ePACA = (Reboot, Setup, Bind, Auth,
Validate) denote the CTAP 2.1 protocol described in Section 5.5.2. Assume that the
underlying H is e?'"""*-collision resistant, Hs is e " -swap secure, H; is e,'f—prf secure for
i € {6,7}, SKE; is efge P-IND-1CPA and ez, P "**-IND-1$PA-LPC secure, and that the
KEM in puvProtocoly with public-key entropy au,x and ciphertezt entropy . is enge-
IND-CCA secure. If there exists a QPT attacker A that breaks the SUF-t" security of ePACA

for a test session w that uses puvProtocol;, then we have that

SUF-t/ ind- swap prf
AdVePACA(A) S(QSETUP + QEXECUTE)(Ei,?E,\‘/:fa + €H5 + €H6)

4 (QSETUP + qEXECUTE> ol-ls i €|C-|o”_res i QNEWU270¢®

2
GSEND-BIND-T \ 4—u/\ JEXECUTE —a —a
+ 27H 27k 4 2T
(P (P e e
ind-1lcpa ind-1$pa-Ipc

+QSETUP€SKE3 + 4ExEcUTEESKE,

+gseruppinRetriesMax2™® + (qEXEQCUTE) (27k 4 27 %)

—u'x prf -1
+qVALIDATE<2 A+ €H, +2 7)
where qo denotes the number of queries to O = {SETUP, EXECUTE, VALIDATE}.

Proof Sketch. The proof is similar to the one for Theorem 22 and consists of following
steps: (1) By the IND-CCA security of KEM, the swap security of Hs, and the prf security
of Hg, all keys K derived in from the encapsulation of the underlying puvProtocol in the
obtainSharedSecret-C-end algorithm, which is only invoked in the SETUP and EXECUTE

oracles, are distinct except probability (gsgrup + qEXECUTE)ESECC%'?LI + (gserup + qEXECUTE)(e}Q‘E’Wa +
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HE EE{;) + (erortdeeers) 91716 - (2) By the entropy of the user PIN ap, none of the user
PIN sampled in NEWU oracle is predicable except with probability gngwu2~ . (3) By the
collision-resistance of H and the entropy 27#* of pt values sampled in the SEND-BIND-T
oracle, we have all H(pin) and pt values respectively distinct except probability in total
ecoll-res 1 (qSE””éB‘””'"‘)Q’”IA. (4) By the IND-1CPA security of SKEj, the pins encrypted by the
underlying puvProtocol; in the setPIN-C' algorithm, which is only invoked in the SETUP
oracle, are indistinguishable from random except probability qSETUPeg’E'El;pa. (5) By the
IND-1$PA-LPC security of SKEj, the pinHashs encrypted by the underlying puvProtocols,
in the obtainPinUvAuthToken-C-start algorithm, which is invoked only in the EXECUTE
oracle, are indistinguishable from random except probability qEXECUTEeg’E'Ef;pa"pC.

Finally, the attacker A cannot trigger the flip of the win-SUF-t" predicate in Figure 5.12
via condition (i) in Line 8, due to the design of CTAP 2.1, see validate-T" algorithm in
CTAP 2.1, (ii) in Line 9, since the collision of KEM public keys or ciphertexts with entropy
i Or o happens at most (7%v)(27%¢ 4 27%)  (iii) in Line 10, due to the pairwise
distinct KEM public keys and pts in the tokens’ session identifiers, (iv) in Line 11-14, since
A obtains no information about pins or pts and can only win by randomly guessing the
pin in the SETUP oracle maximal pinRetriesMax times for each token session, or the pt
values or the tags ¢ in the Validate algorithm in the VALIDATE oracle, which happens with
probability except gspruspinRetriesMax2=%® + gyaipae2 > + eﬂ: + 27 in total, assuming

the prf security of the underlying H-. O]

As such, we suggest to add our P(Q instantiation puvProtocol; of CTAP 2.1 to the
specifications. Below, we give the suggestions on concrete candidates for primitives in

puvProtocols.

Instantiation: We suggest to instantiate the underlying KEM with any Round 3 Finalist
nominated by NIST and the SKE3; with AES-512-CBC with randomized initial vector.
The underlying functions H; : {0, 1}* — {0, 1} for i € {5,6,7} can be instantiated with
HMAC-SHA-512. Moreover, we suggest to increase the security parameter from 256 to 512

to against Grover’s attack and to achieve 256-bits security against quantum attackers.

5.6 FIDO2 Composition

In this section, we analyze the security of the composition of WebAuthn 2 and CTAP 2.1. To
provide a more generalized result, we first define the user authentication (ua) security model
for the composition of any ePIA and ePACA protocols, which we refer to as ePIA4+ePACA.
Then, we formally reduce the ua security of ePIA+ePACA to the auth security of the
underlying ePIA (see Section 5.4.4) and the SUF-t" security of the underlying ePACA

protocols (see Section 5.5.6). In this section, we respectively use 7 and 7 to denote the

ePIA and ePACA session, respectively, to distinguish them clearly.
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5.6.1 Security Model of ePIA+ePACA

As before, to define the ua security property, we start with describing the trust model,

oracles, and winning conditions. Trust Model The trust model for ua covers both the

ones for auth and for SUF-t'. Additionally, we assume a server-to-client authenticated
channel, which is in practice guaranteed by a TLS connection. As before, we assume
“trust-on-first-use”, which means, the Setup phase and the initialization of the Bind phase
in ePACA and the Register phase in ePIA are authenticated.

Oracles During the execution of the ua experiment, the attacker A has access to all oracles
defined in the SUF-t" experiment except AUTH and VALIDATE. Furthermore, A is allowed
to query NEWS, NEWTPLA, and CORRUPT from the auth experiment, in addition to the

following oracles:

Register((S,4), (T, j,j'), (C,k),tb, UV, d): This oracle simulates the honest registration
between server S and token T via client C'. This oracle is the same as the one in the
auth experiment except that after the invocation of (m,com, M) <— rCom(idg, Mych, tb),
additionally (mycom,t) < AUTH(C, k, Mycom) and status <— VALIDATE(T, j', Mycom, t, d)
are queried. Moreover, the game aborts if status # accepted. Here, AUTH and VALIDATE

are defined in the SUF-t" experiment.
Challenge((S,1i), (C, k),tb, UV): This oracle simulates the process of the server S gen-

erating a challenge nonce and sending it to the client C' in an authenticated channel.
This oracle is the same as in the auth experiment except that after the invocation of
(Mircom, Mirat) <— rCom(idg, myeh, tb) we additionally query (mycom,t) <= AUTH(C, k, Mycom)
and status <— VALIDATE(T, j', Mycom, t, d), and append tag ¢ to the output.

Response((T, j, j'), Macom, t, d): This oracle simulates the token receiving messages from
a client and producing its response. This oracle is the same as the one defined in the
auth experiment except that we additionally query status <— VALIDATE(T, j', Mycom, t, d),
and abort if status # accepted.

Complete((S,7), Mac, Marsp): This oracle simulates the server verifying the response mes-
sage and the client message. This oracle is the same as in the auth experiment except

that the winning predicate is Win-ua defined in Figure 5.14.

It is important to note that AUTH and VALIDATE (from the SUF-t" experiment) are
embedded in the REGISTER, CHALLENGE, and RESPONSE oracles in Figure 5.13.

Winning Conditions We say user authentication (ua) holds, if all of the following
conditions hold when an ePlA server session 7‘rfg accepts a client message m, and a

response message Marsp'

1. The non-_L session identifiers of the ePIA token (resp., server) sessions do not collide with

each other, see Line 37 - 40 in Figure 5.14.
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EXPYZ;|A+ePACA (A):

1 £fr5h7 ‘CAUTH «— @ //as in auth and SUF-t’ experiments

2 ER,EGISTER? cCIIALLENGEa ER,ESPONSE — (Z)
3 win-ua < false

2 ()< A°()

5 return win-ua

REGISTER((S,4), (T4, 5'), (C, k), tb, UV, d):

6 if pkCPg = L or suppUV, = L or @4 # L or @) # L or rcp[S] # L: return L

7 7h.pkCP < pkCPg, 7.suppUV < suppUV.
& Myen < rChall(7%, th, UV)
9 (Mycom, Mra) <& rCom(ids, Mych, th)
10 (Mycom,t) < AUTH(C, k, Mycom)
11 status < VALIDATE(T, j', Mycom, t, d)
12 if status # accepted: return (mch, Micl, Micom, t, L, L)
13 (Mypsp, rcr) <& rRsp(frgp,mrcom)
14 (reg,d') < Vrfy (T, My, Mirsp)
15 Lgrsh < Lersh U (S, T)
16 Lrpaster < LRecster U {(Sa 1,T, ], j/a C, k, Much, Mircl, Mrcom, L, mrrsp)}
17 return (Mych, Mercl; Mrcoms ty Mrrsp, d')
CHALLENGE((S, ), (C, k), th,UV):
18 if pkCPg = L or 74 # L: return L
1o 7.pkCP + pkCPg
20 Mach <& aChall(7%, th, UV)

21 (macom, mad) — aCom(idS, Mach, tb)

22 (Macom, t)  AUTH(C, k, Macom)

23 Lopavwence — Lonarenee U {(Su i, C, k, Mach, Macl, Macom, t)}
24 return (macha Macly Macom; t)

RESPONSE((T', 7, 7"), Macom, t, d):

25 status <— VALIDATE(T, j', Macom, t, d)

26 if status # accepted: return |

27 if suppUV, = L or 7?% # 1: return |

28 ﬁ%.suppUV <+ suppUV

29 (Marsp, rer) <& aRsp(ﬁ%, rCT, Macom)

30 Lrusponse < Lresponse U {(T 7,7’ Macom, t, d, Marsp) }

31 return mgep
COMPLETE((S, i), Macl, Marsp):

32 if 4 = L or 74.Stexe # running: return L
33 (rcg,d) <% aVrfy (7, rcs, Macl, Marsp)
3¢ if d =1: win-ua < Win-ua(S, )

35 return d

Figure 5.13: ua security experiment for a ePIA+ePACA protocol. The winning condition Win-ua
is defined in Figure 5.14. The AUTH and VALIDATE oracles are defined in Exprgg:{:k’compl
1

5.14.
experiment in Figure 5.12.
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Win-ua(S,4):

36 //The non-_L session identifiers of ePIA token (resp. server) sessions do not collide with each other
. - : : : B e o

37 if E'(Tl,]l), (Tg,jg) s.t. (le,]l) 7é (Tg,jg) and 7TT1 .sid = 7T'T2.Sld 7& L

38 return 1
. . . . . TR R L

30 if 3(S1,11), (S2,i2) s.t. (S1,i1) # (S2,i2) and 7g .sid = 7g .sid # L

40 return 1

41  //In ePIA, the partnered session have the identical agreed content unless the registration context on the token is corrupted
10 if (S, 1), (T, 5') s.t. 7, .sid = 7,.sid # L and (S',T') € Lgsh

and ﬁg,.agCon #+ ﬁ%,,.agCon: return 1
43  //The non-_L session identifiers of ePACA token (resp. client) sessions that completed Bind algorithm don’t collide with each other
a0 if 3(C1, k1), (Ca, k2) s.b. (C1 k1) # (Ca, ko) and g} stexe =

= Wéi.stexe = bindDone and ng.sid = ﬂ'a.sid: return 1

y

a5 if 3(T1,41), (Tr, j5) s-b. (T1,51) # (To, jb) and 77} Stee =

= ﬁ%.stexe = bindDone and W%.Sid = w%.sid: return 1
46  //The ePIA or ePACA sessions used in the registration phase must partner with each other.
47 foreach (S/a z, Tlv Y, yl7 Cla Z, Mirchy Mrcly Miycom Ercom, mrrsp) S ['R,EGISTER
ag if 7Y, .sid # 7%, .sid: return 1
49 (C",2") « bindPartner(T",y")
50 if (C”, 2, Mrcoms treom) & Lavrn and ((C”,z’) — (L, 1)

or ﬁé/,.compromised = false) and wg:,.pinCorr = false: return 1
51  //A response message masp must be output by T that registered with S, unless T’s registration context of S is corrupted
52 T < regPartner(S, 1)
53 if Aj s.t. 7h.sid = 75,.sid
54 if (S,T) € Lfrh: return 1
55 elseif /E(j/a TMacom, ta da marsp) s.t. (Ta jv jla Macom, ty d» marsp) S ACRESP()NSE
56 return 1
57  //Above masp must be output under user approval
58 elseif d # accepted: return 1
59 else

60 //Above masp must be output after above T' validates above message-tag pair (macom, t), which encodes m,, output by session Y

61 (C, k) < bindPartner(T, j')
62 if (C,k, macom,t) & Lavrn

63 if (C,k) = (L, L) or wf.compromised = false

64 if w%ﬁ.pinCorr = false: return 1

65 elseif /H(macm macl) s.t. (Sa ia C7 ka Mach, Macl; Macom) t) € ECHALLENGE
66 return 1

67 return 0

Figure 5.14: The Win-ua in ua security experiment for ePIA+ePACA. The regPartner and
bindPartner predicates are defined in Figure 5.5 and Figure 5.12, respectively.

2. The partnered token and server sessions must have the identical agreed content unless

the registration context on the token is corrupted, see Line 42 in Figure 5.14.

3. The non-_L session identifiers of the ePACA token (resp., client) sessions that completed
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Bind, do not collide with each other, see Line 44 - 45 in Figure 5.14.

. During registration, the ePIA token and server sessions must partner with each other
and the authorized command message and tag must have been output by one of the
non-compromised partners of the ePACA token session without corrupting its setup user,

see Line 47 - 50 in Figure 5.14.

. The token T that has been registered with S, must own an ePIA session 7% that is
partnered with 74 and produce a response message unless T”s registration context of S

is corrupted, see Line 52 - 56 in Figure 5.14.

. The above response message must be produced after an ePACA session 7% validates some
authorized command m,com and tag ¢t with the approval from the user, see Line 58 - 58

in Figure 5.14.

. The above command m,cm and tag t must be authorized by a client ePACA session Wé
that is partnered with ﬂ%l for some challenge message m,, that has been produced by
the ePIA session 7%, unless 7% is compromised or the PIN that sets up token 7 has been

corrupted, see Line 61 - 66 in Figure 5.14.

Definition 50 (ua security for ePIA+ePACA). Let Compl € {PPT,QPT}, ePACA be an
extended PIN-based access control for authenticators protocol, and ePIA be an extended
passwordless authentication protocol. We say that the composition ePIA+ePACA has user

authentication, or is ua-secure for short, if for all Compl attackers A the advantage

AdeIaDIA-',-ePACA(A) = PY[EXPfgglA+ePACA(A) = 1]

in winning the game EXprepia,epaca @5 described in Figure 5.13 is negligible in the implicit

security parameter X.

We can reduce the security of the ePIA4+ePACA protocol to the security of the ePIA and
the ePACA protocol as stated in the next theorem. We give the full proof in Section 5.9.6.

Theorem 24 (PPT/QPT security of the composition). Let Compl € {PPT,QPT}. Let
denote an ePlA protocol and 11 denote an ePACA protocol. If there exists a Compl attacker
A that breaks the ua security of the composition 3 + 11, then there must exist Compl
attackers A, and Ay that respectively break the auth security of ¥ and the SUF-t" security
of Il such that

Adv;]a-i-H,CompI (‘A> < AdV;JL:tChompl (Al) + AdVIS'Il,JCF;;pI(A2)

In particular, the winning condition 1 and 3 capture the uniqueness of each WebAuthn 2
and CTAP 2.1 session identifiers. If two sessions are partnered with each other, then they
are each other’s unique partners. The winning condition 2 ensures that if the credential

private key between the partnered token and server sessions is not corrupted, then both
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sessions must agree on the server identifier idg, the H(ch, tb) hash of the challenge nonce
and the token binding states, the local counter n, and the user presence UP and verification
UV conditions. Furthermore, if the underlying hash function H is collision resistant, the
token and server sessions also implicitly agree on the token binding state tb. Our theorem
proves partnership of WebAuthn 2 sessions in the authenticated registration phase and
the resilience of man-in-the-middle attacks against WebAuthn 2 in the authentication
phase unless the corruption of the registration context on the token, which are captured
by winning conditions 4 and 5. The messages between every partnered token and server
session in WebAuthn 2 must be authorized by the client, which is connected to the server
over an authenticated channel in WebAuthn 2 and bound to the token in CTAP 2.1 unless

the attacker make certain corruptions, which is captured by wining conditions 4, 6, and 7.

5.7 Related Work

The only published in-depth formal analysis of FIDO2 is Barbosa et al. [20], which we
address in-depth. We note that a recently released manuscript [103] also analyzes aspects
of FIDO2, but their work focuses on WebAuthn’s privacy aspects, and introducing the
possibility of revocation, notably in the context of cryptocurrency wallets. Our work is
essentially orthogonal to [103] in terms of focus, and we consider the newer versions of
both sub-protocols.

To provide context for our comparison to [20], we first revisit the largest changes in
CTAP 2.1 compared to CTAP 2.0.

5.7.1 Comparison between CTAP 2.0 and CTAP 2.1

Compared to the expired proposed standard of CTAP 2.0 [60], the latest draft review of

CTAP 2.1 [59] has a number of differences, mainly from the following four aspects:

1. The definition of CTAP 2.0 is directly based on the concrete primitives such as the
Diffie-Hellman key exchange and hash functions, while CTAP 2.1 is based on a so-called
"PIN/UV Auth Protocol” abstract scheme, denoted by puvProtocol for short, which leads
CTAP 2.1 to be PQ ready. Up to date, two instantiations of puvProtocol are officially
announced, where CTAP 2.1 instantiated by the puvProtocol, is close to CTAP 2.0. In
particular, CTAP 2.1 instantiated with our hybrid construction puvProtocol; proposed

in Section 5.5.5 is provably P(Q secure, as proven in Theorem 23.

2. In CTAP 2.0, the binding state that is used for the client’s authorization and the token’s
validation is defined as so-called pinToken, which has the length of multiple of 128 bits
and can be of unlimited length. In CTAP 2.1, the binding state is defined as so-called
pinUvAuthToken, the length of which is however fixed: either 128 or 256 bits.
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3. In CTAP 2.0, the pinToken is sampled during the reboot phase and then repeatedly re-
used until the next invocation of the reboot algorithm. In contrast, the pinUvAuthToken
in CTAP 2.1 is one-time — it is re-sampled after every usage. This difference exerts a
great influence on the security: While CTAP 2.0 only satisfies UF-t security as proven by
Barbosa et al. [20], CTAP 2.1 provably satisfies SUF-t’ security, see Theorem 22.

4. CTAP 2.0 allows tokens and clients to share a pinUvAuthToken only when the users
provide their correct pin, which is called clientPIN method. Instead, CTAP 2.1 additionally
enables users to input their biometric information such as fingerprint if the built-in on-
device user verification is physically supported by the token, which is called built-in
user verification method. Notably, the built-in user verification method is always the
preferred option when it is supported by the token. The biometric information is assumed
to be unique and unpredictable for each user and is input to the token without any
intermediary (therefore, the transmission can be considered to be authenticated). In
our model, built-in user verification can be viewed as the simplified CTAP 2.1 using

clientPIN method without the transmission of the encryption of pinHash.

5.7.2 Comparison with Barbosa et al. [20]

As mentioned before, our work builds on the first formal FIDO2 analysis in [20], and we

compare several aspects.

WebAuthn comparison

1. Different analysis target: The analysis of [20] assumes attestation type Basic such
that “the server is assumed to know the attestation public key that uniquely identifies
the authenticator” [20]. However, the token’s attestation key pair is generated in the
factory and at least 100,000 tokens should share same attestation key pair to ensure
privacy ([18, Section 14.4], [107, Section 14.4.1]). Thus, Barbosa et al.’s analysis indeed
proves the security of a batch of tokens that share the same attestation key pair instead
of a single token. In contrast, we investigate WebAuthn with the default attestation type
None, and our Theorem 21 also applies to WebAuthn with attestation type Basic. In
particular, our analysis focuses on the security of each single token rather than a batch

of tokens.

2. Fine-grained abstraction: Our WebAuthn abstraction is more detailed than [20].
For example, we include the supported signature list pkCP of the server, the optional
UV-support of the token, and the token binding state tb. Our theorem implies that
the server and token ultimately agree on these values, which is crucial for the desired
security. Furthermore, the supported schemes list enables us to to exhibit a downgrade
attack against WebAuthn and specify a security notion “Algorithm Agreement” for the

corresponding protection.
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3. Active interference: The security model of WebAuthn in [20] seems to allow active
interference during the registration. This is true in [20]’s model because it assumes that
each token has a unique attestation key pair and the server knows in advance which
public key to use for signature verification; yet this is not true in practice by design, as
mentioned previously. The official specification [107, Section 13.4.4] clearly acknowledges

the MitM attack on registration, contradicting the implication of [20].

4. Stronger attacker capability: Barbosa et al. assume the tokens to be tamper-proof,
i.e., the attacker is prevented from corrupting the internal state of any token. Our model,
instead, includes a corruption oracle that enables an attacker to reveal the private signing
key, capturing the real world scenario in which some tokens might be stolen and the

private keys compromised.

CTAP comparison

1. Different analysis target: Barbosa et al. analyzed CTAP 2.0 [60], while we investigate
CTAP 2.1 [59]. As explained in Section 5.7.1, these two versions have numerous differences.

Our paper carefully explores the abstraction gaps between CTAP 2.0 and CTAP 2.1.

2. Improved security model: We refine Barbosa et al.’s PACA security model. For
example, the token binding states may be reset in REBOOT or SEND oracle. However,
Barbosa et al. only mark the token sessions invalid in the REBOOT oracle but forgot the
ones in the SEND oracle'!. Furthermore, the PACA definition of invalidity is not suitable
for CTAP 2.1, as the previous binding states of a token are reset after not only reboot
but also the establishment of a new session. In this work, we define a code-based SUF-t’

security, which refines and generalizes SUF-t security in [20].

3. Proof gaps: Although Barbosa et al. proved the security of CTAP 2.0, their proof has
several technical gaps. To address this, we base the SUF-t’ security of CTAP 2.1 on novel

assumptions and provide a detailed proof.

The Composition of WebAuthn and CTAP

1. Different security model: The security of the composition of WebAuthn 2 and
CTAP 2.1 relies on the respective security guarantees. The differences between the syntax
and the security models of both WebAuthn and CTAP compared to [20] propagate into

a different security model for the composition, and we provide a fully detailed proof.

HRecall that [20] defines the invalidity of a session such that ”if a token is rebooted, its binding states
got reset and hence become invalid” [20]
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5.8 Limitation and Future Work

While our work covers many core aspects of CTAP and WebAuthn beyond the state-of-
the-art, it remains an abstraction. Some of our main current limitations include that we
do not yet model some of the new CTAP 2.1 features for enterprise customers, and do not
make formal statements about the unlinkability of credentials or other detailed privacy
statements. We leave the proof methodology for tighter upper bounds in all theorems in

our paper as an open question.

5.9 Full Proofs

5.9.1 Proof of Theorem 19

Proof. The proof is given by a simple reduction. If there exists an attacker A that breaks
IND-1$PA security of SKE, then we can construct another attacker B that breaks IND-CPA

security of SKE as follows:

. B invokes A.
2.

When A outputs (mj, m}), B returns 0 if m$ and m} do not have the same length.

Otherwise, B forwards (m, my) to its Ogac oracles, and returns the response to \A.

. Whenever A queries RAND oracle with input [, B first samples m{, m} <~ {0,1}'. Then, B

sends (mg, m}) to its Ogne oracle and receives response ¢. Finally, B returns (mg, m/, c')

to A.
When A outputs b’, B also outputs b’.

It is straightforward that B perfectly simulates IND-1$PA experiment to A and B wins
if and only if A wins. Thus, we have that

ind-1$pa ind-cpa
€SKE = €SKE

5.9.2 Proof of Theorem 20

Proof. The proof is given by a sequence of games. Let Adv; denote the attacker A’s
advantage in winning Game . It is straightforward that the attacker A can win only by
random guessing if it outputs m{ = mj, which yields the advantage 0. So, in the proof
below, we assume mf # mj. Let i* denote the smallest index such that the i*-th block of
mg does not equal the one of mj.

Game 0. This game is identical to the original IND-1$PA-LPC experiment defined in
Definition 47. Thus, we have that

__ind-18pa-lpc
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Game 1. This game is identical to Game 0 except the following modification:

1. The challenger C samples a random invertible permutation f : {0, 1}723) — {0, 1}/20) in

advance,

2. Whenever C needs to execute the encryption SKE.Enc(K, ) on some messages, C replaces
the underlying computation of F(K,-) by f(-), and F7}(K,-) by f~1(-).

It is straightforward that if A can distinguish Game 0 and Game 1, then there exists an
attacker By that can break the prp security of F. Thus, we have that

Advy — Adv; < P

Game 2. In this game, the challenger aborts and let A immediately win if A can
query LPc with input ¢ such that m§ = SKE.Dec(K, ¢) but ¢ # ¢*. Let n - fo(\) denote
the length of mf for n > 1. We parse mg into n blocks such that m§ = «7 || --- || z}.
Similarly, we parse ¢* =y || --- || y5 and c =yo || - - - || y». Note that the condition ¢ # ¢*.
We use j* to denote the smallest index such that y;- # y7..

We separate the analysis into the following two cases.

If b = 0 In this case, m§ = SKE.Dec(K, ¢) = SKE.Dec(K, ¢*) but ¢ # ¢*. We first claim
that 7* = 0. Suppose that j* > 0, which means yy = y. Note that m§ = SKE.Dec(K, c) =
SKE.Dec( K, ¢*), which implies that

v =y ® W) =y @ ) Vie {1 n}

In particular,

=y ®f )=y e (W)
By yo = y§, we can observe that y; = f(a] ® yo) = f(a] ® y§) = yi. Repeating the steps
above, we can further observe that y; =y for ¢ = 1,2, ..., n step by step. This contradicts
to our condition ¢ # c*.

Now, we focus on the first two blocks of the ciphertext ¢ and ¢*. By the equation
above, mj§j = SKE.Dec(K, ¢) = SKE.Dec(K, ¢*) in particular implies that y; = f(z7 @ yo) =
F(f 1 y}) @ y§ @ yo). Recall that f is a random permutation as defined in Game 1 and
that A has no access to f or f~!. Unless the permutation f has applied to f~(y}) ® gD yo

in the RAND oracle, which happens with probability at most graxp| }2"‘(3;)1242(’\), where
Imax denotes the maximal input of the queries to RAND oracle, the attacker has no
information about y; and can guess y; only by random guessing, which happens at most
2= per query. Note that A can query LPC at most gppo times, by union bound
theorem, we know that the attacker can win by query LPC oracle with probability at most

qLPCQ*fZ()‘) -+ QRAND I_;Zm(a:{)-‘ 2*]02(/\)'

If b =1 In this case, the attacker needs to forge the ciphertext ¢ that can be decrypted
to m§ by himself. In particular, the attacker A needs to forge the (i*-1)-th and i*-th
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blocks of the ciphertext such that y;« = f(yi«.1 @ 7). Unless the permutation has applied

to ym1 @ xf, which happens with probability at most graxo| }f;“(a;ﬂQ*f?()‘), the attacker

receives no information about y;+ and can only randomly guess, which happens with
probability 2™ per query. Note that A can query LPC at most grpo times, by union
bound theorem, we know that the attacker can win by query LPC oracle with probability
at most qrec2 2™ + grann| lmax)12_f2(’\).

fa(A
To sum up, we have that

Adv; — Advs < qree2 2 4 grano | ﬁw 9~ f2(N)

Game 3. This game is identical to Game 2 except the following modification:

l
2

1. Whenever the attacker A queries LPC with some input ¢, the challenger C simply returns

1if ¢ = ¢*, and 0 otherwise.

Recall that we ensure that the attacker A cannot query LPC with any input ¢ such that
m§ = SKE.Dec(K,c) but ¢ # ¢*. So, Game 2 and Game 3 look identical from the
attacker’s view and we have that

Advy = Advs

Game 4. This game is identical to Game 3 except the following modification:

1. Whenever C needs to execute the encryption SKE.Enc(K, -) on some messages, C replaces

the underlying computation of f(-) by F(K,-) , and f~1(-) by F7}(K,-).

It is straightforward that if A can distinguish Game 3 and Game 4, then there exists
an attacker By that can break the prp security of F. Thus, we have that

Advs — Advy < 2P

Final Analysis. In the end, we analyze the attacker A’s advantage in winning Game 4
by reduction. Namely, if A can break Game 4, then we can construct an attacker Bs that
breaks IND-13PA security of SKE = CBC, as follows:

1. Bs invokes A.

2. When A outputs (mf, my), Bs forwards it to its challenger. Later, when Bs receives ¢*

from its challenger, B3 forwards ¢* to A.

3. When A queries RAND(!), B forwards this query to its challenger and the response back
to A.

4. When A queries Lrc(c), Bs returns 1 if ¢ = ¢* and 0 otherwise.

5. When A outputs a bit b’, B; forwards b’ to its challenger.
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It is straightforward that Bs perfectly simulates Game 4 to A and Bs; wins if and only if
A wins. Thus, we have that

ind-18

Combing the statements above, the proof is concluded by

-|2—f2(,\) + Eind—1$pa

ind-1$pa-I _
EsnKE pampe < 2€|grp + qLpc2 220 + qRANDIV SKE

f2(N)

5.9.3 Proof of Theorem 21

Proof. The proof is given by a sequence of games. Let Adv; denotes the advantage of the
Compl attacker A in winning Game 1.

Game 0. This game is identical to the original experiment depicted in Figure 5.5. It
holds that

Advy = Advaih(A)

Game 1. This game is identical to Game 0 except that the game aborts and lets A
immediately win if there exist two credential identifiers that collide with each other. By
this, we ensure that all credential identifiers are distinct. Note that cids are only sampled
in the token’s registration response rRsp algorithm and that the rRsp algorithm is invoked
only when the attacker A queries REGISTER oracle, which happens at most ¢rpqisrer times,
there are maximal (q“HGQ'S"‘”“) pairs of cids. Note also that each cid is independently sampled
from the set {0,1}=*. The collision of cids happens with probability (“=)2=*  Hence,
it holds that

Advy — Adv, < (‘-’RE‘;STER) 9=

Game 2. This game is identical to Game 1 except that the challenger aborts the game
and let A immediately win if there are two challenge nonces ch during the authentication
phases that collide. By this, we ensure that all challenges nonce ch sampled in the
authentication phases are distinct. Note that chs in the authentication phase are only
sampled in the server’s authentication challenge aChall algorithm and that the aChall

algorithm is invoked only when the attacker A queries CHALLENGE oracle, which happens

(‘ICHALLENGE — 1)

2
in the authentication phases. Note also that each ch is independently sampled in the set

{0,1}2*. The collision of such chs happens with probability at most (qCHALQLEN“E)Q_’\. Hence,
it holds that

at most ¢cuarienas times. There are maximal (q(’“ALQLENGE) — dCmaumven pairs of chs

Adv, — Advsy < (QCHALQLENGE) 92
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2.
3.
4.

Game 3. This game is identical to Game 2 except that the game aborts and the
attacker A immediately wins if there exist two hash values H(x;) = H(x2) that collide on
different inputs x; # z5. Note that this is in fact captured by the collision resistance of

the underlying H by definition. Thus, we have that

Adv, — Advg < e

Final Analysis. Now, we analyze the probability that A wins Game 3. Note that
A can win only when if one of the following conditions holds when a server 7% accepts a

response message in the COMPLETE oracle,

it 3(T1, j1), (Ts, jo) such that (11, j1) # (Ts, j2) and W%.Sid = W%.Sid # 1

if 3(S1,41), (S2,12) s.b. (S1,41) # (S2,i2) and 74 sid = 72 sid # L

if (S,T) € Lgsh and Aj such that 7%.sid = W%«.Sid for T' < regPartner(S)

if 3(S',#), (1", ') such that 7% sid = 7, sid # L and (S, T") € Lgen and 77,.agCon #

!
7 .agCon

Let Advsq, Advs s, Advs s, and Advs 4 respectively denote the advantage of A in winning
Game 3 via condition (1), (2), (3), or (4). Thus, we have that

AdV3 S maX(Adv3_1, AdV3.2, AdV3_3, AdV3.4)

*Case (1) Note that the session identifier of the token sessions 73..sid for any (7', j) includes
the credential identifier cid, which is sampled by the token at the registration phase and
then stored in the registration context. Note also that we have ensured that all cids
sampled by tokens are distinct in Game 1. So, no session identifiers can be identical
across the token sessions that uses different registration contexts.

Note that the identifier of a token sessions at the registration phase include the counter
n = 0. Note also that the identifier of a token session at the authentication phase includes
the counter n, which is stored in the registration context and incremented by 1 before the
session identifiers are set. This means, no session identifiers of different token sessions that
makes use of the same registration context collide due to the increment of counter n.

To sum up, we have that

Advs; =0

*Case (2) First, we can observe that the session identifiers of each server session 7 includes
H(ids). Note that we assume the identifier idg of each server S is unique and that we have
ensured no collision of the hash output on different inputs. So, no session identifiers can
be identical across different servers.

Note that the session identifier of a server session at the registration phase does not

include the H(m,q), while the one of a server session at the authentication includes H(ma).
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The session identifiers of server sessions at the registration phase and the authentication
phases can be easily distinguished. Note also that we have ensured that all chs are distinct
in Game 2 and that no collision of the hash output on different inputs exists in Game 3.
This means, no session identifiers of different sessions of the same server can be identical.
To sum up, we have that
Advs, =0

*Case (3) Note that server session 7% accepts the response message only when rcg[cid] # L
for some cid. Note also that rcg[cid] # L is set only in the registration phase and that
all cids are sampled by the tokens followed by sending to the server session over an
authenticated channel. There must be a token 7' that registers with the server S, which
further implies that there must exist a token 7" such that rcp[S] # L. Thus, we have
T = regPartner(S,i) # L.

Then, we compute the probability of the occurrence of Case (3) by reduction. We
construct an attacker B that breaks the euf-cma security of DS, which is invoked in the
COMPLETE oracle, by invoking A. Note that A can query REGISTER oracle at most
(recister times. B first guesses an index y such that the y-th REGISTER query inputs
((S, 7% .regindex), (T, 7),tb, UV) and that the attacker A can finally wins condition (3)
due to Win-auth(S, ). Note that each session can be constructed at most once. So, the

existence of such y-th query is well-defined and unique. It’s obvious that B guesses correctly
1

GREGISTER

Next, B receives a public verification key vk from his challenger and honestly simulates

with probability at least

Game 3 to A except when answering the following queries:

e The y-th query REGISTER((S,14), (T, j),tb, UV): Bs honestly simulates this oracle except
that he directly uses vk, the public verification key from his challenger, in the rRsp
algorithm instead of sampling it by himself. Moreover, B records S := S and T :=T.

e RESPONSE((T', ), Macom), Where macom = (id, h, UV, UP) for id = idg, T = T, and some
h, UV, UP: B honestly simulates this oracle except that he queries his signing oracle on
(ad, h) for the signature o instead of computing it by himself.

e CORRUPT(S,T): If (S,T) # (S,T), B simply returns the rcy[S].sk. Otherwise, B aborts

the simulation.

Recall that the server’s session at the authentication phase is set to accepted only
in the COMPLETE oracle. If B guesses the index y correctly, in order to trigger the
winning condition, then A must query COMPLETE((S ,1), Macl, Marsp) at some point for
some Mae = (ch,tb) and mae = (cid, ad, o, uid). Moreover (S,T) € L indicates that
the attacker A has never queried CORRUPT(S, T'), which further means that the abortion

never happens.
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Then, assume that A can win via the COMPLETE((S’, i), Madl, Marsp) query for some
i, Mac, and Mmyusp. B outputs (m',o’) where m’ = (ad,H(ma.q)) and o' = o. It is
straightforward that B perfectly simulates Game 3 to A if B guesses the index y correctly.

Note that the session identifier of each token at the authentication phase is part of the
Marsp that it produced. The condition Aj such that W%.Sid = W%.Sid indicates that such m,sp
must not be produced by any token sessions. Further, this also implies that the message
m’ = (ad, h) has never been sent to the signing oracle. Moreover, 7%.ste,e = accepted
implies that DS.Vfy(vk, m’,0’) = 1. To sum up, B will always win the euf-cma experiment.

Thus, we have that

euf-cma
Advs 3 < GREcISTEREDS

*Case (4) First, by Case (1) and (2) we know that there are no two distinct token (resp.
server) sessions that have the identical non-L session identifiers. Thus, if there exist
(S7,4"), (T, §') such that 7%, partner with 71'%:,, then they are each other’s unique partner.

Second, we first consider the registration phase. Note that the registration phase is over
an authenticated channel. In each registration query REGISTER((S’,7),(T",5'),tb, UV)
for some tb and UV, Wg, will partner with Wg;, if no abortion happens. Moreover, each
message sent by the server session Wg, will then arrive at the token session 71'%/,, which
trivially indicates that Wg,.agCon = ﬁ%/,.agCon.

Finally, we consider the authentication phase. If Wg,.sid = 1 is set during the authenti-
cation phase, then the session 7rf;, must accepts a response message via the COMPLETE
oracle. By Case (3), we know that Wg, partner with W%«, where T is the registration partner
of S’, except probability at most Advs 3. Recall that wg/ and 7@// are each other’s unique
partner. We have that (T, j) = (17, j') except probability at most Advs s.

Note that ﬂg,.sid = W%:,.Sid # 1 indicates that Wg, and W;:, agree on the hash of the
server identifier H(idg), the credential identifier cid, the hash of the client message H(maq),
and the counter n. Recall that the we ensure that the hash values will not collie on different
input. So, the agreement on the hash of the server identifier H(idg) indicates the agreement
on the server identifier idg. The attacker A can wins via Case (4) only when 7%, and W%/,
do not have agreement on the UP and UV conditions. However, note that UP and UV
are included in the associated data, which is an input of the digital signature verification
algorithm in the aVrfy algorithm. By applying a reduction similar to the one in Case (3),
we know that the attacker can win with probability at most Advs s < qREGISTEReE”Sf'Cma.

To sum up, the attacker A can wins Case (4) with advantage:
Advs.4 < Advs s + Advs < ZQREGISTEReeDqu-cma

Merging the statements above, we have that
Adv; < max(Advs1, Advs2, Advs s, Advss) < 2qrecstenepe
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The proof is concluded by

ACIVIa;ljzh (-’4) < (qRE(;STER) 27 + (qCHALQLENGE) 27 + Eﬁoll-res + QqREGIS'I‘EREeDUSf_Cma

5.9.4 Proof of Theorem 22

Proof. We give the proof by a sequence of games. Each game is simulated between a
challenger C and an attacker A. Let Adv; denote the attacker A’s advantage in winning
game 4. Let (pkq;, skr;) denote the ECDH public key pair owned and used by . Let
(pkc;, skc,;) denote the ECDH public key pair owned and used by Wé.

Game 0. This game is identical to the Exprgxg}f experiment. Hence, it holds that
Advy = Advgrch (A)
Game 1. This game is identical to Game 0 except the following modifications:

1. At the beginning of this game, the challenger C sets up two lists Llpy and Ly,, which

are initialized to (.

2. When the attacker A queries SETUP and EXECUTE oracles such that the challenger C
needs to run encapsulate, (pk’) of a stateful Pin/Uv Auth Protocol puvProtocol, C first
looks up whether there exists a value K such that (pk', puvProtocol, . pk, f() € Llon-

If such value does not exist, C then checks for all (u,v) € Ly, such that u is the
x-coordinate of any ECDH point P whether (pk’)PuvProtecoli-sk — P If any such check
succeeds, the challenger sets K < v and adds (pk', puvProtocol,.pk, K ) into list Llpy-

Otherwise, C simply samples K < {0, 1}" uniformly at random and adds the tuple (pk’,
puvProtocol,.pk, [E’) into list Llpy-

Finally, the challenger replaces the computation of Line 101 and Line 102 in Figure 5.9
by

K+ K

3. When the attacker A queries SETUP and SEND-BIND-T oracles such that the challenger
C needs to run decapsulate, (c) of a stateful Pin/Uv Auth Protocol puvProtocol,, C first
looks up whether there exists a value K such that (puvProtocol,.pk, ¢, K) € Llon-

If such value does not exist, C then checks for all (u,v) € Ly, such that u is the x-
coordinate of any ECDH point P whether cPuvProteceli-sk — P If any such check succeeds,

the challenger sets K < v and adds (puvProtocol,.pk, ¢, K) into list £lpy.

Otherwise, C simply samples K <~ {0, 1}"* uniformly at random and adds (puvProtocol,.pk,
¢, K) into list Llepy.
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Finally, the challenger replaces the computation of Line 105 and Line 106 in Figure 5.9
by
K+« K

4. Whenever the attacker A queries random oracle H; with input v and the random oracle

outputs v, the challenger adds (u,v) into Ly, .

We compute the probability that the attacker A can distinguish Game 0 and Game 1
by 111 hybrid games, where n;; denotes the number of ECDH public keys that underlie
the stateful Pin/Uv Auth Protocol puvProtocol; of any token and are sent to the attacker
A. Let (pkl,.., sk?

token? token

) denote the y-th ECDH key pair that are sampled by the underlying
stateful Pin/Uv Auth Protocol puvProtocol, of any token and are sent to the attacker A
for y € [n1.1]. Recall that the same ECDH key pairs of tokens might be repeatedly used by
different sessions and the attacker knows the public keys of each token’s or client’s session
only by querying SETUP and EXECUTE oracles. Each hybrid game hy.y for y € [ny4] is

simulated as following:

Game hy.0. This game is identical to Game 0 except that at the beginning of this game
the challenger C sets up two lists Llpy and Ly,, which are initialized to (). Whenever
the attacker A queries random oracle H; with input v and the random oracle outputs
v, the challenger adds (u,v) into Ly,. The list Llpy is never used. This is indeed the
modification 1 and 4 in Game 1. Obviously, Game 0 and Game hy.0 are identical from

the attacker’s view, and we have:

AdVO = Athy.g

Game hy.y. This game is identical to Game hy.(y-1) except the following modifications:

1. When A sends any query SETUP or EXECUTE on input (7,4, C, j, U) such that the
underlying Pin/Uv Auth Protocol protocol of session 7% is a puvProtocol; with
(Pkpis skTi) = (Phioren> SFioken)> the challenger has to execute encapsulate, (pkr,).
Instead of invoking encapsulate, (pk;) directly, C first looks up whether there exists
a value K such that (Pkris Pk, K) € Loy
If such value does not exist, C then checks for all (u,v) € Ly, such that u is the
x-coordinate of any ECDH point P whether pksgg‘"‘e" = P. If any such check succeeds,
the challenger sets K < v and adds (pky;, pk¢ ;, K) into list Licpy.

Otherwise, C simply samples K < {0, 1} uniformly at random and adds (Pkr;,
pkc ;. K) into list Llepy.
Finally, the challenger replaces the computation of Line 101 and Line 102 in
Figure 5.9 by

K+ K
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2. When A sends the query SEND-BIND-T on input (7,4, m) such that (pky;, skr;) =
(pk? .., skt

token? token

) and that m = ¢ || ¢, the challenger first checks whether there
exists a value K such that (pkq,, ¢, K) € Llepy.

If such value does not exist, C then checks for all (u,v) € Ln, such that u is the
x-coordinate of any ECDH point P whether ¢ = P. If any such check succeeds, the
challenger sets K < v and adds (k7 c, K) into list Llpy-
Otherwise, C simply samples K <~ {0, 1}"* uniformly at random and adds (Pkp 4 c,
K) into list Llpy-
Finally, the challenger C is supposed to execute decapsulate,(c). Instead of invoking
decapsulate, (¢) directly, C replaces the computation of Line 105 and Line 106 in
Figure 5.9 by

K+ K

Let event E; denote the probability that the attacker A can distinguish Game hy.(y-1)
and Game hy.y. Note that the modifications between every two adjacent hybrid games
are independent. It holds that

Athy.(y—l) — Advhy.y < PI‘[El],\V/y € [nl,l]

Then, we analyze the probability of the occurrence of E; by reduction. Namely, if £
occurs, then we can construct an attacker B; that breaks sCDH assumption over ECDH
by invoking A. On inputs (ECDH, A = ¢, B = ¢°), B, sets the y-th ECDH public key
pki ., among all ECDH public key underlying any puvProtocol, of all tokens to be A = ¢*.

Then, B; simulates Game hy.(y-1) honestly, except the following modifications:

1. When A sends B; the w-th query SETUP or EXECUTE on input (7,i,C,j,U)

Yy
token?

for w > 1 such that pks, is supposed to be pk B first samples r,, < Zg,
where ¢ is the prime order of the the underlying cyclic group of ECDH and sets
pke ;< B-g™ = g" in the obtainSharedSecret-C-end algorithms. Next, when B;
needs to run encapsulate, (pkr;) algorithm in obtainSharedSecret-C-end algorithm,

B, first looks up whether there exists a value K such that (Pkris Pk, K) € Loy

If such value does not exist, for all (u,v) € Ly, such that u is the x-coordinate of
any ECDH point P, B; queries its O, oracle on (pkc ;, P). If any response is true,
the challenger sets K < v and adds (Pk74, Pk, K) into list Llpy-

Otherwise, B; simply samples K < {0, 1}" uniformly at random and adds (k7
pkc ;. K) into list Llepy.

Finally, B; honestly performs the remaining execution except replacing the compu-
tation of Line 101 and Line 102 in Figure 5.9 by

K+« K
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2. When A sends the query SEND-BIND-T on input (7,7, m) such that pkp, = A =
g* and m = ¢ || ¢, By first checks whether there exists a value K such that
(Pkr s c, K) € Lipn
If such value does not exist, for each tuple (u,v) € Ly, such that u is the x-coordinate
of any point P on ECDH, B; queries O, to its challenger on input (¢, P). If any
response from the challenger is true, B; uses the corresponding value v as the hash
H; of x-coordinate of the Diffie-Hellman exchange of pk;.; and ¢ for the subsequent

computation.

If no response from the challenger is true, this means, ¢, is a random ciphertext
that is produced by A without knowing the correct symmetric key K. B; simply
samples K < {0,1}" uniformly at random and adds (k7 c, K) into list Llpy-

Finally, B; simply uses K as the hash H; of x-coordinate of the Diffie-Hellman

exchange of pk;,; and c for the subsequent computation.

3. Finally, A terminates at some point and is expected to distinguish Game hy.(y-1)
from Game hy.y. For all (u,v) € Ly, such that u is the x-coordinate of some ECDH
point P and all r,, sampled above, B; queries O,(B - g™, P) to its challenger. If
any response is true, By returns P - A~ to its challenger. Otherwise, B; outputs a

random cyclic group element on ECDH.

Obviously, By simulates Game hy.(y-1) and Game hy.y to A perfectly. From the attacker
A’s view, the only difference between Game hy.(y-1) and Game hy.y is whether the key
K is computed from the hash H; of the x-coordinate of the real Diffie-Hellman exchange
or sampled uniformly at random. If A can distinguish Game hy.(y-1) from Game hy.y
effectively, A must have queried the x-coordinate of the real Diffie-Hellman exchange of
A and B - g™ to the random oracle H; for some w. This means, 3; can always return
P-A7w = (B.gw)e. A7 = gebtare=are — gab ¢4 jtg challenger. Thus, it holds that

Pr[E] < oy

Furthermore, Game hy.n;; have replaced all shared symmetric key K produced by
honest clients in encapsulate; algorithm with a random key K. Thus, Game hy.n;; is

identical to Game 1 and we have:

Adv; = Advhy,nL1

Combing the statements above, we have that
Advy — Adv; < nyeacomn

For now, we continue to use the term n,; and will reduce it in the subsequent games.
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Game 2. This game is identical Game 1 except that the challenger C aborts the
simulation and let A immediately win if there exists collision between K sampled in
Game 1. Recall that K are sampled at most ni 1 times. Note that the collision happens
between every two keys with probability at most 27/t and that there exists at most ("51)
pairs. We have that

Adv; — Adv, < (";1) 2~
Game 3. This game is identical to Game 2 except the following modifications:

1. At the beginning of this game, the challenger C sets up two lists L2-py and Ly, which

are initialized to 0.

2. When the attacker A queries SETUP and EXECUTE oracles such that the challenger
C needs to run encapsulate,(pk’) of a stateful Pin/Uv Auth Protocol puvProtocol,, C
first looks up whether there exists values K; and K, such that (pk', puvProtocol,. pk,
Ky, Ks) € Lpy-

If such value does not exist, C then checks for all ((u,u'),v) € Ly, such that u is the
x-coordinate of any ECDH point P and v’ € {“CTAP2 HMAC key”, “CTAP2 AES key” }

)

whether (pk’)PuvProtocelz-sk — P Tf any such check succeeds, the challenger queries random
oracle Hs and sets K + Hs(u, “CTAP2 HMAC key”) and K, + Hs(u, “CTAP2 AES key”)
and adds (pk’, puvProtocol,.pk, K, f(g) into list L2py-

Otherwise, C simply samples K, K5 < {0, 1} uniformly at random and adds (pk’,
puvProtocol,.pk, K1, K5) into list £2p,.

Finally, the challenger replaces the computation of Line 121 - 123 in Figure 5.10 by

K1 < K17K2 < f(g

3. When the attacker A queries SETUP and SEND-BIND-T oracles such that the challenger C
needs to run decapsulate,(c) of a stateful Pin/Uv Auth Protocol puvProtocol,, C first looks

up whether there exists values K; and K, such that (puvProtocol,.pk, ¢, K, f(g) S,

If such value does not exist, C then checks for all ((u,u'),v) € Ly, such that u is the
x-coordinate of any ECDH point P and v’ € {“CTAP2 HMAC key”,” CTAP2 AES key” }

)

whether cPuvProtecola-sk — P Tf any such check succeeds, the challenger queries random ora-
cle Hs and sets K < Hg(u, “CTAP2 HMAC key”) and K, < Hs(u,” CTAP2 AES key”)
and adds (pk’, puvProtocol,.pk, K1, Ks) into list L2 ph-

Otherwise, C simply samples K, K, < {0, 1} uniformly at random and adds the tuple
(puvProtocoly.pk, ¢, K1, Ky) € L2py into list £2-py.

Finally, the challenger replaces the computation of Line 127- 129 in Figure 5.10 by
K| + Kl? Ky + f(z
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4. Whenever the attacker A queries random oracle Hs with input u and the random oracle

outputs v, the challenger adds (u,v) into Lp,.

Similar to Game 1, we can compute the probability that the attacker A can distinguish
Game 2 and Game 3 by n;, hybrid games, where n; > denotes the number of ECDH
public keys that underlie the stateful Pin/Uv Auth Protocol puvProtocol, of any token

and are sent to the attacker A. Thus, we can easily have that

sCDH
ACIVQ — AdV3 S N1 ,2€ECDH

Game 4. This game is identical Game 3 except that the challenger C aborts the
simulation and lets A immediately win if there exists collision between K or collision
between f(Q sampled in Game 3. Recall that K 1 and f(g both are sampled at most n 5
times. Note that the collision happens between every two keys with probability at most

27! and that there exists at most ("52) pairs. We have that

Adv; — Adv, < 2 (”;2) 9l — (”;2) 9l tl

Game 5. This game is identical to Game 4 except the following modifications:

1. At the beginning of this game, the challenger C sets up two lists £3-py and Ly, which

are initialized to (.

2. When the attacker A queries SETUP and EXECUTE oracles such that the challenger C
needs to run encapsulate;(pk’) of a stateful Pin/Uv Auth Protocol puvProtocol;, where
pk' = (pk', pky), C first executes (cq, Z3) < KEM.KEM.Encaps(pk}) and looks up whether
there exists a value Z such that (pk}, puvProtocols.pk,, Zy, Z) € L3pp-

If such value does not exist, C then checks for all ((u,u'),v) € Ly, such that u is the
x-coordinate of any ECDH point P and u' = Z, whether (pk})PuvProtocels-ski — P If any
such check succeeds, the challenger sets Z < v and adds (pk', puvProtocoly.pky, Zo, Z)

into list L3-py.

Otherwise, C simply samples Z <~ {0, 1} uniformly at random and adds the tuple (pk/,

puvProtocoly.pky, Z2, Z) into list L3py.

Finally, the challenger replaces the computation of Line 167 - 169 in Figure 5.11 by

7+ 7

3. When the attacker A queries SETUP and SEND-BIND-T oracles such that the challenger
C needs to run decapsulate;(c) of a stateful Pin/Uv Auth Protocol puvProtocol,;, where
¢ = (1, ¢2), C first executes Zy <~ KEM.KEM.Decaps(puvProtocols.sks, ¢2) and looks up
whether there exists a value Z such that (puvProtocol;.pky, c1, Zs, Z) € L3y
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If such value does not exist, C then checks for all ((u,u'),v) € Ly, such that u is the
x-coordinate of any ECDH point P and v/ = Z, whether (c¢;)PuvProtecels-ski — P If any
such check succeeds, the challenger sets Z « v and adds (puvProtocols.pk,, c1, Za, Z)

into list L3-py-

Otherwise, C simply samples Z < {0, 1} uniformly at random and adds (puvProtocol,.pk;,

Finally, the challenger replaces the computation of Line 177 - 179 in Figure 5.11 by

7+ 7

4. Whenever the attacker A queries random oracle Hs with input u and the random oracle

outputs v, the challenger adds (u,v) into Ly, .

Similar to Game 1, we can compute the probability that the attacker A can distinguish
Game 4 and Game 5 by n; 3 hybrid games, where n; 3 denotes the number of ECDH
public keys that underlie the stateful Pin/Uv Auth Protocol puvProtocol; of any token

and are sent to the attacker 4. Thus, we can easily have that

sCDH
AdV4 — AdV5 S N1,3€ECDH

Game 6. This game is identical Game 5 except that the challenger C aborts the
simulation and let A immediately win if there exists collision between Z sampled in
Game 5. Recall that Zs are sampled (either uniformly at random or from the random
oracle) at most n; 3 times. Note that the collision happens between every two keys with

probability at most 27% and that there exist at most (”;3) pairs. We have that

Advs — Advg < (”;3) 9-ls

Game 7. This game is identical Game 6 except that the challenger C aborts the
simulation and let A immediately win if there exists collision between K;s or collision
between Kss derived in encapsulate;. Recall that Kis and Kss both are produced by
Hs(Z, “CTAP2 HMAC key”) in encapsulate, at most 7y 5 times and that Zs are assumed

to be distinct from each other in Game 6. Note that the collision happens between every

ni3

5 ) pairs. We have

two keys with probability at most 27% and that there exists at most (

that
Advg — Adv; < 2 (";3) 9ls — (";3) 9 lot1

Recall that the honest public keys of tokens (resp. the ones of clients) used in the
encapsulate; and decapsulate; for i € {1,2, 3} are sent to attacker A in obtainSharedSecret-T'
(resp. obtainSharedSecret-C-end) algorithm only when answering the SETUP and EXECUTE

oracles. So, we have that n; 1 4+ n12 + 113 < gspror + ¢ExsouTE-
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Merging the statements above, we can state the upper bound as:
Ad Adv- < sCDH N\ 5—py 12\ 51341
Vg — A _(’I’L171 + N2 + n1,3)€ECDH + 2 + 2

2 2
N (n;:ﬂ) (275 +2—16+1)

qs + qe —min
S(qSETUP + qEXECUTE)GSECCDDI—IEI + ( B 9 XECUTE) 22 CRERERD)
Game 8. In this game, the challenger C aborts the game and lets the attacker A
immediately win if there exist two inputs pin and pin’ during C’s execution such that
H(pin) = H(pin’). This violates the collision resistance of H by definition. Since H is

assumed to be e-collision resistant, we have that

Adv; — Advg < e

Game 9. In this game, the challenger C aborts the game and lets the attacker A
immediately win if the challenger honestly samples two identical ECDH public keys of
tokens or of clients and sends them to the attacker. Recall that each sampled ECDH
public keys are sent to the attacker only in SETUP or EXECUTE oracles. And one newly
sampled ECDH keys of tokens and one of clients are sent to the attacker in both SETUP
and EXECUTE queries. In total, there are at most (gsgrup + gExscvrs) ECDH public keys of
tokens and (gsgrur + ¢Exseurs) ECDH public keys of clients. Note that the collision happens
between every two public keys with probability at most 279, where ¢ denote the prime
order of the underlying ECDH group, and that there exist at most ((qSETL’PJFQQEXECUTE)) pairs of
tokens (resp. of clients). We have that

AdVg . AdVg <9 ((qSETUP +2qEXECUTE)) 971 < ((qSETUP +2qEXECUTE)) 217q

Game 10. This game is identical to Game 9 except that the following modifications:

1. The challenger C samples a random pin < ® at the beginning of the game but never
uses it. The challenger aborts and lets A immediately win if pin collides with any user

pin pin;; for any user U.

2. Whenever the attacker A queries oracle SETUP inputting any (7,4, C, j, U), the challenger
replaces pin <— sty.puvProtocol.decrypt(K, ¢,) in the setPIN-T" algorithm by

pin < piny;

3. The challenger aborts the game and lets A immediately win if there exits a collision

between pts used in SEND-BIND-T oracles.
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Note that the Setup phase is assumed to be authenticated. The user U’s pin ping,
which was encrypted by the client, can always be decrypted by the token.

Moreover, note that the attacker can query NEwWU at most gngwy times and each user
pin is sampled from distribution ® with min-entropy ap. The probability that pin collides
with any other user pin ping; is bounded by gngwu27®.

Furthermore, note that the pts are random strings of length u), 2\, 4’ respectively
in puvProtocol,, puvProtocol,, and puvProtocol;. Note also that pts are used only in
SEND-BIND-T oracles. The collision between pts happens with probability at most
(quNnéan.T) 9~ min(p,2,u")A

So, we have that

AdV9 _ Ade S qNEWU27Ct® + (QSEND—QBIND—T> 92— min(p,2,4/)A

Game 11. This games is identical to Game 10 except the following modification:

1. Whenever A queries SETUP(T,7,C, j,U) and the challenger sets the selected Pin/Uv
Auth Protocol of the client session Wé to be Wé.selected puvProtocol = puvProtocol; during
the execution, the challenger replaces ¢, = SKE;.Enc(K, pin;;) in the setPIN-C(7};, pin;)
by ¢, SKE;.Enc(K, pin), where pin was sampled in Game 10.

We prove that Game 10 and Game 11 are indistinguishable from A’s view by ns1
hybrid games, where ny; denotes the number of K sampled in SETUP oracle when the
underlying Pin/Uv Auth Protocol is puvProtocol,. Let KV denotes the y-th K sampled
by the challenger C in SETUP oracle when the underlying Pin/Uv Auth Protocol is
puvProtocol;. The hybrid game hy.y for y € [ng;] is defined below.

Game hy.0. This game is identical to Game 10 and we have that:

AdV10 = Athy.O

Game hy.y. This game is identical to Game hy.(y-1) except the following modifications:

1. When A queries SETUP(T, i, C, j,U) and that will produce the y-th K¥ during the
game, the challenger replaces ¢, = SKE;.Enc(KY, pin;) in the setPIN—C(Wé, pin;;) by
¢, + SKE;.Enc(KY, pin).

Let event Es denote the probability that the attacker A can distinguish Game hy.(y-1)
and Game hy.y. Note that the modifications between every two adjacent hybrid games
are independent. It holds that

Advhy.(y_l) — Advhy,y < Pr[Eg],Vy € [71271]

Then, we analyze the probability of the occurrence of Fy by reduction. Namely, if

E5 occurs, then we can construct an attacker By that breaks IND-1CPA-H; security of
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SKE; by invoking A. B, simulates Game hy.(y-1) honestly, except for the query to
the SETUP(T, i, C, j,U) that will produce the y-th KY during the game. To handle this

query, By executes following step:

1. By sends (ping;, pin) to its challenger and obtains (c,t). Then, B, sets (c,t) as the
output of setPIN-C(r2,, pin;;) algorithm.

Note that we have ensured that all sampled ECDH public keys are distinct in Game 9
and that all sampled Ks in Llpn are distinct in Game 2. It’s easy to observe
that By perfectly simulates Game hy.(y-1) or Game hy.y. Moreover, By simulates
Game hy.(y-1) if (¢,t) = (SKE;.Enc(KY,pin), Hy(KY, ¢)) and Game hy.y if (c,t) =
(SKE;.Enc(K, pin), Hy(KY, ¢)). Thus, By can win IND-1CPA-H, experiment whenever A
can distinguish Game hy.(y-1) and Game hy.y. Thus, we have that

ind-1lcpa-Ha
Pr[Es] < €SKE;

Moreover, Game hy.ny; have replaced all ¢, in the SETUP oracles whenever the client

chooses puvProtocol,. Thus, Game hy.n,; is identical to Game 11 and we have

AdV11 = /A\thy.nQ’1

Note that all hybrid games are independent. Combing the statements above, we have
that

ind-1lcpa-Ha
AdVlD — AdVll S n271€SKE1

Here, we simply keep using the number n, ;, which would be helpful for us to tighten
our security upper bound in the following games.

Game 12. This games is identical to Game 11 except the following modification:

1. When A queries SETUP(T, i, C, j, U), where pin;; is not corrupted, and the challenger sets
the selected Pin/Uv Auth Protocol of the client session ﬂé to be Wé.selected puvProtocol =
puvProtocol, during the execution, the challenger replaces ¢, = SKEQ.Enc(f(Q, ping) in

the S€tP|N—C(7Té, ping) by &, + SKE,.Enc(K>, pin), where pin was sampled in Game 10.

We prove that Game 11 and Game 12 are indistinguishable from A’s view by ns 9
hybrid games, where ny» denotes the number of K, sampled in SETUP oracle when the
underlying Pin/Uv Auth Protocol is puvProtocol,. Let f(;“’ denote the y-th K, sampled
in SETUP oracle when the underlying Pin/Uv Auth Protocol is puvProtocol,. The hybrid
game hy.y for y € [ng] is defined below.

Game hy.0. This game is identical to Game 11 and we have:

AdV11 = Advhy.O
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Game hy.y. This game is identical to Game hy.(y-1) except the following modifications:

1. When A queries SETUP(T, 7, C, j, U) that will make use of the y-th f(g for puvProtocol,

during the game, the challenger replaces ¢, = SKEs.Enc(K3, piny;) in the execution
setPIN-C(7, piny;) by &, < SKE,.Enc(KY, pin).

Let event E3 denote the probability that the attacker A can distinguish Game hy.(y-1)
and Game hy.y. Note that the modifications between every two adjacent games are
independent. It holds that

AdVhy.(y-1) — Advhy ., < Pr[Es],Vy € [ngs]

Then, we analyze the probability of the occurrence of E5 by reduction. Namely, if Fs
occurs, then we can construct an attacker Bs that breaks IND-1CPA security of SKE,
by invoking A. Bz simulates Game hy.(y-1) honestly, except for the query to the
SETUP(T,i,C, j,U) and that will produce the y-th f(g for puvProtocol, during the game.
To handle this query, Bs executes the following steps:

1. Bs sends query(ping, an) to its challenger and obtains ¢. Then, B3 sets ¢ as the first
output of setPIN-C(77,, pin;) algorithm.

Note that we have already ensured that all ECDH public keys are distinct in Game 9
and that all used K, are distinct in Game 4. It’s easy to observe that Bs perfectly
simulates Game hy.(y-1) or Game hy.y. Moreover, B3 simulates Game hy.(y-1) if
¢ = SKEy.Enc(KY, piny;) and Game hy.y if ¢ = SKE;.Enc(KY, pin). Thus, Bs can win
IND-1CPA experiment whenever A can distinguish Game hy.(y-1) and Game hy.y. Thus,

we have that

Pi(E;] < ™

Moreover, Game hy.n, , have replaced all ¢, in the SETUP oracles whenever the client

chooses puvProtocol,. Thus, Game hy.n, 5 is identical to Game 12 and we have

AdVlg = Athy.ng,z

Combing the statements above, we have that
AdVH — AdV12 S n2’2€isnl'(<:l—E12cpa

Here, we simply keep using the number ng 9, which would be helpful for us to tighten
our security upper bound in the following games.

Game 13. This games is identical to Game 12 except the following modification:
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1. When A queries SETUP(T, i, C, j,U) and the challenger sets the selected Pin/Uv Auth
Protocol of the client session Wé to be ﬂé.selectedpuvProtocol = puvProtocol; during
the execution, the challenger replaces ¢, = SKEs.Enc(K3, ping;) in setPIN-C/(7%,, ping;) by
¢, < SKE;.Enc(Ks, pin), where pin was sampled in Game 10.

Let ny 3 denote the number of K5 sampled in SETUP oracle when the underlying Pin/Uv
Auth Protocol is puvProtocol;. Similar to the analysis in Game 12, we can easily have
that

ind-1cpa
AdV12 — AdV13 S n2’3€SKE3

Note that ng 1, ng2, and ng 3 respectively denote the number of symmetric encryp-
tion keys produced by puvProtocol,, puvProtocol,, and puvProtocol; in the SETUP ora-
cle. Moreover, our CTAP 2.1 only supports these three versions. This implies that

Ng1 + Nao + No3 < gsgree. Further, we have that

ind-1cpa-Ha ind-1cpa ind-1cpa
Advig — Adviz < mpr€gce, T M22€ske, T 2.3€sKE,

ind-1cpa-Hs ind-1cpa ind-1cpa
SQSETUPmaX(ESKEl 1 €SKE, 1 €SKE3 )

Game 14. This game is identical to Game 13 except the following modification:

1. Whenever the attacker A queries SEND-BIND-T(T,i,m) oracle, instead of checking
the decrypted pinHash # str.pinHash in the obtainPinUvAuthToken-7" algorithm, the
challenger checks whether pinHash # H(ping,. cer)

Note that str.pinHash = H(ping . .,). Game 13 and Game 14 are indeed identical

and we have that:

AdV13 = AdV14

Game 15. This games is identical to Game 14 except the following modification:

1. When A queries EXECUTE(T,i,C, 7,U) and the challenger sets the selected Pin/Uv
Auth Protocol of the client sessions 7, to be m/,.selectedpuvProtocol = puvProtocol,, the
challenger replaces c,, = SKE;.Enc(K, H(pin;)) in the obtainPinUvAuthToken-C-start(,,
ping) by & < SKE;.Enc(K, H(pin)), where K is the underlying symmetric key produced
by puvProtocol; and that pin was sampled in Game 10.

We prove that Game 14 and Game 15 are indistinguishable by n3; hybrid games,
where n3; denotes the number of K sampled in EXECUTE oracle when the underlying
Pin/Uv Auth Protocol is puvProtocol,. Let KY denotes the y-th K sampled in EXECUTE
oracle when the underlying Pin/Uv Auth Protocol is puvProtocol,. The hybrid game hy.y
for y € [n3 ;] is defined below.
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Game hy.0. This game is identical to Game 14 and we have:

AdV14 = Athy.O

Game hy.y. This game is identical to Game hy.(y-1) except the following modifications:

1. When A queries EXECUTE(T, ¢, C, j, U) that will produce the y-th KV for puvProtocol,,
the challenger replaces c,, = SKE;.Enc(K¥, H(pin;)) in obtainPinUvAuthToken-C-start(r,,
ping) by & <+ SKE;.Enc(KY, pin).

Let event E, denote the probability that the attacker A can distinguish Game hy.(y-1)
and Game hy.y. It holds that

Advhy.(y-1) — Advhy., < Pr[E,]

Then, we analyze the probability of the occurrence of E, by reduction. Namely, if Ey
occurs, then we can construct an attacker B, that breaks IND-1$PA-LPC security of SKE;
by invoking A. B, simulates Game hy.(y-1) honestly, except for the following queries:

1. When A sends EXECUTE(T, 4, C, j, U) that will produce the y-th K for puvProtocol,
in this phase. To handle this query, B, sends (H(ping), H(pin)) to its challenger and
obtains ¢. Then, B, sets ¢ as the output of obtainPinUvAuthToken—C’—start(7%7 ping;)
algorithm. The reaming of this query is answered honestly.

2. When A queries SEND-BIND-T(7, i, m) following the above ExEcuTE(T,1,C, j,U)

query, By separate the cases depending on whether m = pkc ; || Cpn.

(a) If sty.user # U, then B, simply performs as if the decrypted pinHash is unequal
to H(pin
(b) If str.user = U and m = pkq; || Gun, then By queries RAND with input

stT.user) :

pA to its challenger and obtains (pty, pt;, ). Then, By sets (&, false) as the
output of obtainPinUvAuthToken-T (7., puvProtocoly, ¢, ¢,,). Meanwhile, By sets
mh.bs = pt,.

(c) If stp.user = U but m = pke ; || con for cpn # pn, then By queries LPC(cpp) to
its challenger. If the response is false, then B, performs as if the decrypted

pinHash does not match H(pin Otherwise, B, queries RAND with input

stT.user)'
pA to its challenger and obtains (pt,, pt;,&). Then, By sets (&, false) as the
output of obtainPinUvAuthToken-T'(7%., puvProtocoly, ¢, ¢,,). Meanwhile, By sets

mi.bs = pt,.

3. When A afterwards sends SEND-BIND-C(C, j, m) following the above EXECUTE(T,
i,C, j,U) and SEND-BIND-T(T', i, m) queries without abortion, B sets ﬂé.bs = pt,

if m=2¢, and Wé.bs = pt, otherwise.
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It’s easy to observe that B, perfectly simulates Game hy.(y-1) if ¢, = SKE;.Enc(KY, H(ping))
and Game hy.y if c,;, = SKE;.Enc(K¥, H(pin)). Thus, By can win IND-1$PA experiment
whenever A can distinguish Game hy.(y-1) and Game hy.y. Thus, we have

ind-1$pa-lpc
PrEy] < egye,

Moreover, Game hy.n3; have replaced all ¢, in the EXECUTE oracles whenever the

client chooses puvProtocol,. Thus, Game hy.ns; is identical to Game 15 and we have

AdV15 = /A\dvhy.nS’1

Note that we have assumed all K of puvProtocol, are distinct in Game 2 and all above

hybrid games are independent. Combing the statements above, we have that

ind-1$pa-lpc
AdV14 — AdV15 S n371€SKE1

Similar as before, we simply keep using the number n3;, which would be helpful for us
to tighten our security upper bound in the following games.

Game 16. This game is identical to Game 15 except the following modification:

1. When A queries EXECUTE(T, 7, C, 7, U) and the challenger sets the Pin/Uv Auth Protocol
of the client session ﬂé to be ﬂé.selectedpuvProtocoI = puvProtocol,, the challenger
replaces c¢,;, <~ SKE.Enc(K5, H(piny)) in the obtainPinUvAuthToken-C-start(r7,, pin;;) by
Con <& SKE,.Enc(K5, H(pin)), where K is the underlying symmetric key produced by

puvProtocol, and that pin was sampled in Game 10.

Similar to the analysis in Game 15, let n3 9 denotes the number of K, of authenticate,
that are generated in EXECUTE(T,i,C, j,U) oracles. We can easily have the equation

below by a sequence of hybrid games.
Advis — Advyg < n372€isnl't<i;512$pa-lpc

Game 17. This games is identical to Game 16 except the following modification:

1. When A queries EXECUTE(T, 7, C, 7, U) and the challenger sets the Pin/Uv Auth Protocol
of the client session Wé to be Wé.selectedpuvProtocol = puvProtocol;, the challenger
replaces ¢,;, <~ SKEz.Enc(K5, H(piny)) in the obtainPinUvAuthToken-C-start(r7,, pin;) by
Cpn <= SKE3.Enc(Ks, H(pin)), where K is the underlying symmetric key produced by

puvProtocol; and that pin was sampled in Game 10.
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Similar to the analysis in Game 16, let n3 3 denotes the number of K, of authenticates
that are generated in EXECUTE(T,i,C, j,U) oracles. We can easily have the equation

below by a sequence of hybrid games.

ind-1$pa-lpc
AdV16 — AdV17 S n37365KE3

Note that there are only 3 kinds of puvProtocols. We have ng 1 + 132 + 133 < grxecurs-
It holds that

ind-1$pa-lpc ind-13$pa-Ipc ind-13$pa-Ipc
Adviy — Adviz <ngi€gie, + 3,265, + N3,3€5KE,
ind-1$pa-lpc _ind-1$pa-lpc _ind-1$pa-Ipc
<{ExrcuTE maX(ESKEl ) ESKE, ) CSKE; )

Game 18. In this game, the challenger C aborts the game and let A immediately win
if there exists a token session 7% that accepts a malicious ¢,y sent by A via SEND-BIND-T
query without corrupting the pin of the user sty.user. More formally and concretely, the
challenger C aborts the game and let A immediately win if there exists a token session 72,
such that

1. the attacker has queried SEND-BIND-T (7,4, m) such that m = pk || ¢y, is not included
in the output of any query EXECUTE(T, i, C, j,U) for any C, j,U.
2. 7h..pinCorr = false

3. 7 .Stee = bindDone and 7kh.bs # L

In this case, the input message m of SEND-BIND-T is forged by A. Note that all
the transcripts of a token 7" that A eavesdrops are independent of pin;; with pin; # pin
that setups token T'. The
condition “m’.stee = bindDone and 7h.bs # 1”7 indicates that the attacker A must encrypt

and that A is not allowed to corrupt the user pin ping .
H(ping, user). Recall that the pin;; of any honest users U are sampled randomly following
distribution ® with min-entropy ap and that A can try at most pinRetriesMax times

for each token session 7%.. A can guess the pin for each token session 7. correctly

stp.user

with probability at most pinRetriesMax2~*®. Note also that tokens can be set pin only in

SETUP oracles, which happens at most gsgrup times. By union bound, we have that
Advy7; — Advig < gspruppinRetriesMax2™“?

Final Analysis. Now, let’s finally check A can satisfy the winning conditions.
Note that the win-SUF-t" is set to true in the VALIDATE(T, i, M, t,d) query only when
at least one of the following four winning conditions
1. the user decision d # accepted, or
2. two distinct client sessions that completed Bind have the same session identifiers, or

3. two distinct token sessions that completed Bind have the same session identifiers, or
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. (M, t) was not output by any of 7%’s uncompromised valid partners 7% before the setup

user of token T is corrupted

However, we can observe that

. d # accepted: This is always false by definition, see validate-T" algorithm in Figure 5.8.

EI(Cl,jl) (CQ,jQ) such that (C1, j1) # (Cs, j2) and 7%1 Stexe = Wg .Stexe = bindDone and
74, .sid = 75 .sid : Recall that the client sends the randomly sampled puvProtocol,.pk,
which includes ECDH public key, to the tokens in the EXECUTE oracles. Recall also that
we have ensured that all honestly sampled ECDH public keys are distinct and that the
session identifier is defined as the full transcript during the execution of Bind algorithm.
This means, two client sessions can never have the same identifier (not matter whether

they are valid or not). Thus, this condition is always false.

) EI(Tl,il) (Tg,ig) such that (T1,i1) # (1s,12) and W% Stege = 7r§3 .Stexe = bindDone and

7,-sid = 77, .sid: Note that session identifiers of token sessions includes the token’s public
key pk, the chent S encapsulatlon ¢, the encryption of pinHash ¢, and the encryption
of pt ¢, Then, 7/ ..sid = 773 .sid holds only when (pk', c! cph,c D) = (pk?,c ,cph,cpt)
where (pk',c', }Dh, }Dt) is 1ncluded in the ﬂ;ll.SId and (pk?, ¢, 120h’ ]%t) is included in the
mi2 .sid. In particular, (pk',c') = (pk?, ) indicates that c!, and cz;, are encrypted under
the same symmetric key. Moreover, in Game 10 we ensured that there exists no collision
between pts, which further implies that ¢, # c3, if the underlying symmetric encryption

is correct. Thus, this condition is always false.

. for (C', 7") < bindPartner (T, ), all of the following conditions must hold: (a) (C’, j', M,t) ¢
Lavra, (b) ﬂg, =(L,1)or Wg,.compromised = false, (c) mo.pinCorr = false : According
to the condition (2), we know that the attacker A is not allowed to compromise the
binding state of any client (C”, j') such that Wg,.bs = 7i.bs According to the condition
(3)7.pinCorr = false and Game 18, we know that the attacker A cannot execute active
attack against token to obtain the token biding state 74.bs. Thus, the attacker A has no

idea about the 7% bs.

According to the condition (1) (C',j', M,t) ¢ Laywm, we know that (M,t) was never
output by any of the session 7%’s partner. The attacker therefore has to forge the
message-tag pair (M, t). Recall that the tag t is computed by applying random oracles
Ho, Hy, and H; to the corresponding binding state 7%.bs and message M, respectively in
puvProtocol,, puvProtocol,, and puvProtocol;. The attacker can only guess the either the

tag directly or the toke binding state w%.bs. Moreover, recall that:

(a) If the underlying authProtocol is puvProtocol,, then the attacker A can guess 75 .bs
with probability 27#* and tag ¢ with probability 27
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(b) If the underlying authProtocol is puvProtocol,, then the attacker A can guess m&.bs
with probability 272} and tag ¢ with probability 27%.

(c) If the underlying authProtocol is puvProtocols, then the attacker A can guess 7k.bs
with probability 27#* and the tag with probability 2.

Thus, the probability that A finds can forge tag t for any message M in each VALIDATE
query is bounded by

_ _ _ _ 7 _ i ’
maX(2 ,uA) 9 lz’ 2) 2)\’ 2 l4, o~ H )\7 9 l7) -9 min(puA, 2,1/ Al2,l4,l7)

Note that the attacker A can attempts only in VALIDATE oracle, which can be invoked
at most qvaLpare times. By union bound, we have that

— 1 /
Advis < quapmpars2” TREAZE AL L)

Combing all statements above, the proof is concluded by:

SUF-t/ sCDH coll-res
AdVePACA(A) S(QSETUP + qEXECUTE)EECDH + €

+ (QSETUP +2qEXECUTE> (22—min(l1,l3,l5,l6) + 21—Q)

N2 + (qSEND—BIND—T) o= min(u,2,u)A
2

ind-1cpa-H2 ind-1cpa ind-1cpa

+gsprup max(egye, JESKEs |+ €SKEs )
ind-18pa-lpc _ind-1$pa-lpc _ind-1$pa-Ipc

+QExecuTe maX(ESKEl » €SKE, s €SKE; )

+qspruppinRetriesMax2™?

— mi /
+QVALIDATE2 min(pX,2X,u' A\l2,l4,l7)

5.9.5 Proof of Theorem 23

Proof. We give the proof by a sequence of games. Each game is simulated between a
challenger C and an attacker A. Let Adv; denote the attacker A’s advantage in winning

game 1.

Game 0. This game is identical to the Exprg,lDJAF&t,; experiment. Hence, it holds that

Advo = AdvESE (A)
Game 1. This game is identical to Game 0 except that the following modifications:

1. Whenever a client executes puvProtocols.encapsulate; on a token’s public key pk’, the

challenger C executes the following steps:
(a) Parse (pki, pks) < pk’
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(b) Run (cq, Zy) <~ KEM.KEM.Encaps(pks)
(c
(d

(e) Finally, output a ciphertext ¢ = (¢y, ¢q) for some ¢;.

Sample a random Z, in the key space of KEM

)
)
) Replace Z; by Z, for the subsequent execution.

)

2. Whenever a token holding pk” = (pkY, pky) such that pk), = pk} and needs to execute

decapsulate; on ¢’ = (¢, ) such that ¢§ = cq, the challenger executes decapsulate,

honestly except that C directly sets Zy < Zo.

We prove that A cannot distinguishable Game 0 and Game 1 by n hybrid games,
where n denotes the number of encapsulations that was output by all tokens in the SETUP
and EXECUTE oracles. Then, we have that n < gsgrur + Grxecurs- Let (sk¥, pk¥.) denote
the y-th KEM public-private key pair among all tokens. The Game hy.y for y € [n] is

defined as follows:

Game hy.0 . This game is identical to Game 0 and we have that

AdVO = Athy.Q

Game hy.y . This game is identical to Game hy.(y-1) except that the following modifi-

cations:

1. Whenever A queries SETUP and EXECUTE oracles where C needs to returns y-th
KEM public key pk% among all tokens and executes KEM.Encaps(pk?.), the challenger
executes (cg, Z3) < KEM.Encaps(pk’) and samples Z, in the key space of KEM.
Next, C replaces Z» by Z, for the subsequent execution.

2. Whenever C needs to execute KEM.Decaps(sk?., ¢2), it directly uses Zy < Z, for the

subsequent execution instead of computing Zs using KEM.

If A can distinguish Game hy.y from Game hy.(y-1), then we can construct an
attacker By that breaks IND-CCA security of KEM. The IND-CCA experiment executes
(pk, sk) <~ KEM.KGen() and (c¢*, k%) < KEM.Encaps(pk) honestly and samples b < {0, 1}
and k} from the key space K randomly. On input (pk,c*, kf), By runs Game hy.(y-1)

honestly except the following modification:
1. When the algorithm obtainSharedSecret-T" needs to output y-th KEM public key pk¥., B;
uses pkY. <— pk instead of sampling it using KEM.KGen()

2. When B; needs to execute KEM.Encaps(pk¥.) in encapsulate;, B; simply uses (c2, Z2) <

(c*, k) for the subsequent execution.

3. When B; needs to execute Zy <— KEM.Decaps(sk¥., ¢) in decapsulate; algorithm, B; does

not know sk¥. and performs as follows instead:
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o If c = ¢*, then B; simply uses Z; < kj.
o If ¢ # c*, then B, queries its decapsulation oracle Opecaps 00 ¢. When receiving an

answer k, By sets Zy <— k for the remaining computation.

It is straightforward that B; perfectly simulates Game hy.(y-1) if b = 0 and Game hy.y
if b= 1. So, By can win IND-CCA experiment whenever A can distinguish Game hy.(y-1)
and Game hy.y. Thus, it holds that

Advhy.(y-1) — Advpy, < Ve

Moreover, when all the encapsulated keys of KEM are replaced by random keys,

Game hy.n is identical to Game 1. Then, we have that
Advpy ., = Adv;

Note that all hybrid games above are independent, by union bound, we have that

ind-cca ind-cca
Advy — Adv; < nEkEM < <QSETUP + qEXECU’l‘E)EIKEM

Game 2. This game is identical to Game 1 except the following modification:

1. The challenger replaces each function Hs(-, Zg) by a truly random function f; , where

Zss are sampled in Game 1.

We can easily reduce the indistinguishability between Game 1 and Game 2 to the
e‘a’éap—swap security of Hs in n hybrid games, where n denotes the number of Z, in Game 1.

Obviously, it holds that n < gsgrop + GExscurs. Thus, we have that

Adv; — Adv, < (qSETUP + qEXECUTE)6|S-|V\;ap

In particular, for any Z < f2,(Z1), we know that Z is uniformly at random, since Iz,
is a truly random function for any Z, that is sampled by the challenger in Game 1 and
not leaked to the attacker A.

Game 3. This game is identical to Game 2 except the following modification:

1. The challenger replaces each function Hg(Z, ) by a truly random function f5, where Zs

are derived in Game 2.

Similarly to Game 2, we can easily reduce the indistinguishability between Game 2
and Game 3 to the eﬂr(f—prf security of Hg in n hybrid games, where n denotes the number
of Z produced in Game 2. Obviously, we have that n < gsprup + GExpcurs. 1Thus, we have

that

Advy — Advs < (qSETUP + qEXECUTE>€E|:§
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In particular, for any K < fZ(“CTAP2 HMAC key”) and K3 < fZ(“CTAP2 AES key”),
we know that Kis and Kss are uniformly at random, since f/Z is a truly random function
in Game 2 and Zs are not leaked to the attacker A.

Game 4. In this game, the challenger C aborts and lets A immediately win if there
exists collision between Kis or f(QS in Game 3. Note that K, as well as f(g is derived
only in the SETUP and EXECUTE oracles. So, there are at most qsgrup + qExscurs Keys
and (qSETUPJFQQEXE(‘UTE) pairs. The collision of every two keys happens K, with probability 27/,
The same holds for f(g.

Thus, we have that

Advs — Adv, < (QSETUP +2qEXECUTE) ol-ls

Game 5. In this game, the challenger C aborts and lets A immediately win if there
exists two distinct inputs pin, pin’ during C’s execution such that H(pin) = H(pin’). Note
that this abortion indicates the violation of collision resistance of H by definition. Since H

is ec0lres_collision resistant, we have that

Adv, — Advs < efPlres
Game 6. This game is identical to Game 5 except that the following modifications:

1. The challenger C samples a random pin <= ® at the beginning of the game but never
uses it. The challenger aborts and lets A immediately win if pin collides with any user

pin ping; for any user U.

2. Whenever the attacker A queries oracle SETUP inputting any (7,4, C, j, U), the challenger
replaces pin <— sty.puvProtocol.decrypt(K, ¢,) in the setPIN-T" algorithm by

pin < piny;

3. The challenger aborts the game and lets A immediately win if there exits a collision

between pts used in SEND-BIND-T oracles.

The analysis for this game is also identical to the Game 10 in the proof of Theorem 22.
The only difference is that each pt is sampled only in {0, 1}** and there are at most
(qSEND’ZB‘ND’T) pairs of used pts.
So, we have that

Adv5 _ AdVG < QNEwUQ_O@ + (QSEND-2B1ND-T) 2_M/>\

Game 7. This game is identical to Game 6 except the following modification:

1. When A queries SETUP(T', ¢, C, j,U) and the challenger C replaces ¢, <— SKE3.Enc(K, pin;;)
in setPIN-C/(7l,, pin;) by &, < SKEs.Enc(Ky, pin), where Ky is the corresponding random

key derived in Game 3 and pin is sampled in Game 6.
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Similar to the discussion in Game 13 in the proof of Theorem 22, we have that
ind-1cpa
Advg — Adv; < dSerur€sKE,
Game 8. This game is identical to Game 7 except the following modification:

1. When A queries EXECUTE(T', i, C, j, U), the challenger replaces c,), <= SKEz.Enc(K3, H(ping))
in obtainPinUvAuthToken-C-start by ¢&,;, + SKEs.Enc(K5, H(pin)), where K is the corre-

sponding key computed in Game 3 and pin is the one sampled in Game 6.

Similar to the discussion in Game 17 in the proof of Theorem 22, we have that

ind-1$pa-lpc
Adv; — Advg < dExeCUTECSKE,

Game 9. In this game, the challenger C aborts the game and let 4 immediately win if
there exists a token session 7% that accepts a malicious ¢,y sent by A via SEND-BIND-T
query without corrupting the pin of the user sty.user. More formally and concretely, the
challenger C aborts the game and let A immediately win if there exists a token session 7.

such that

1. the attacker has queried SEND-BIND-T(T', 4, m) such that m = pk || ¢, is not included
in the output of any query EXECUTE(T,i,C, j,U) for any C,j,U.

2. w.pinCorr = false

3. Th.Stexe = bindDone and 7l.bs # |

The analysis for this game is identical to the one in Game 18 in the proof of Theorem 22.

Thus, we can easily have that
Advg — Advg < gspruppinRetriesMax2™“®

Final Analysis. Now, let’s finally check A can satisfy the winning conditions.
Note that the win-SUF-t" is set to true in the VALIDATE(T, i, M, t,d) query only when

at least one of the following four winning conditions

—_

. the user decision d # accepted, or
two distinct client sessions that completed Bind have the same session identifiers, or

two distinct token sessions that completed Bind have the same session identifiers, or

Ll

(M, t) was not output by any of 7%’s uncompromised valid partners Wé before the setup

user of token T is corrupted

However, we can observe that
1. d # accepted: This is always false by definition, see validate-T" algorithm in Figure 5.8.
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2. 3(C1, 1), (Cy, j2) such that (Cy, j1) # (Cq, j2) and 7ré31.stexe = Wéi.stexe = bindDone and
T, .sid = w7 .sid: Recall that the client receives the honest token’s public key and
sends the encapsulation to the tokens in the EXECUTE oracles. Note that the KEM
has public key entropy «,; and ciphertext entropy c.. Note also that EXECUTE can be
invoked at most qgxscurs times, which means there are at most (qE“;”“‘E) public key and

encapsulation pair. The attacker can win via this condition with probability at most

(qEXEZGUTE> (2—0épk + 2—046).

3. (T1,141), (T3, iz) such that (11,41) # (1z,i2) and Wf;ﬁl.stexe = 7r§32.stexe = bindDone and
my,.sid = 77 .sid: Recall that the session identifier of token sessions includes the token’s
public key and the client’s encapsulation. W%l.Sid = ﬂ% .sid indicates that 7#1 and 7T§32
agree on the token’s public key and the client’s encapsulation, which further implies
the agreement on the symmetric encryption key of pt. For the correct symmetric key,
this further indicates that the 7T§«11 and 7@32 produces the same pt, which violates the
assumption that there are no collision between the used pts in Game 6. Thus, this

condition is always false.

4. for (C’, j") < bindPartner(T', i), all of the following conditions must hold: (a) (C’, j', M,t) ¢
L v, (b) Wg, =(L,1)or Wg,.compromised = false, (c) m4.pinCorr = false : According
to the condition (2), we know that the attacker A is not allowed to compromise the
binding state of any client (C”, j") such that ﬂg,.bs = 7i.bs According to the condition
(3)7.pinCorr = false and Game 9, we know that the attacker A cannot execute active
attack against token to obtain the token biding state m4.bs. Thus, the attacker A has no

idea about the 7&.bs.

According to the condition (1) (C’,j", M,t) ¢ Laym, we know that (M,t) was never
output by any of the session 74’s partner. The attacker therefore has to forge the
message-tag pair (M, t). Recall that the tag ¢ is computed by applying a function H; to
the corresponding binding state m4.bs and message M. The attacker can only guess the

either the tag directly or the toke binding state m.bs. Moreover, recall that:

(a) The binding state 7%.bs is sampled from {0, 1}*'*. The attacker A can guess 75.bs
with probability 27#,

(b) The tag is computed by t < Hz(7w%.bs, M) for some message M chosen by the
attacker A. Unless the attacker A can guess the token binding state 7%..bs correctly,
it is random from the attacker’s view, which further implies that ¢ indistinguishable
from a random string due to the eﬂr:—prf security of H;. Thus, the attacker can guess

tag t correctly with probability at most 277,

Thus, the probability that A finds can forge tag t for any message M in each VALIDATE
query is bounded by
2*#’)\ + GEI: + 2717
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Note that the attacker A can attempts only in VALIDATE oracle, which can be invoked
at most gvappare times. By union bound, the advantage that the attacker A wins via

condition 4) is bounded by

qVALIDATE(2_'u//\ + GE{: + 2_l7)
To sum up, we have that
Advy < (QE"E;”TE) (2797 4+ 27%) + quapars(27 + et +2777)
Combing all statements above, the proof is concluded by:

AdVIREA(A) < (aseror + dxsovns) (6eme + eP + ebrr)
I (QSETUP +2qEXECUTE

+ <QSEND—2BIND—T) 9—HA <qEXI;CUTE) (20 4 9)

)21—16 + EcHoll—res + QNEWUz_a®

ind-1cpa ind-138pa-Ipc
+qSETUP€SKE3 + 4ExXecUTECSKE,

+QSETUppinRetriesMax2’% + (qEXE;UTE> (2*01;)1@ + 27016)

+qVALIDATE<2_u/)\ + EE{: + 2_l7)

5.9.6 Proof of Theorem 24

Proof. The proof is given by reduction. If A can break the ua security of ¥ + II, then
there must exist attackers A; against auth security of ¥ and Ay against SUF-t’ security of
IT such that either or both can win. Let C; and C; respectively denote the challengers in
auth and SUF-t’" experiments. The attackers A; and A, simulate the ua experiment to A

as follows:

1. Ay and A, initialize lists Lersh, Lavrn, Lrecister, Lonarenes; ald Lresponse t0 0.

2. When A queries REGISTER((S, 1), (T, 7,7), (C,k),tb, UV d), A; first sends the query
REGISTER((S,1%),(T,7),tb, UV) to C; and receives (mich, Micl, Mrcom, Mrsp, d').  Then,
Aj sends its challenger Cy the queries (mycom,t) <= AUTH(C, k, Mycom) and status <
VALIDATE(T, j', Mycom, t, d). Finally, A; and Ay add (5,4, T, 7,7, C, k, Mych, Micl, Mrcoms
t, Myrsp) 1080 Lrparsrer and return (Mych, Mecl; Mrcoms t Mrsp, d').

3. When A queries CHALLENGE((S, 1), (C, k), tb, UV), the attacker A; first queries macom <=
CHALLENGE((S,1),tb, UV) to C; followed by executing (macom, t) <— aCom(idg, mach, th).
Then, As sends its challenger Cy the query (macom,t) < AUTH(C, k, Macom). Finally, A;

and AQ add (S, i, Ca ka Mach, Macl; Macom, t) into 'CCHALLENGE and return (macha Macl, Macom t)
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. When A queries RESPONSE((7, 7, j), Macom, t, d), the attacker A, first queries status <
VALIDATE(T, 7', Macom, t, d) to its challenger Cy and directly returns L if status # accepted.
Then, A; queries Masp, <~ RESPONSE((T, j), Macom) to its challenger C;. Finally, A; and

.y .
Ay add (T,],j s Macom, marsp) into Lresponse and return Marsp-

. When A queries COMPLETE((S, %), Macl, Marsp), the attacker A; forwards this query to
its challenger C; and receives a boolean value d. If d = 1, then A; additionally sets the

winning predicate win-ua to be Win-ua(S,7) and returns d.

. For all other queries from A, A; and A, simply forward them to C; or Cy depending
whether they are defined in auth or SUF-t’ experiment and return the results back to A.

. When A terminates at some point, A; and A, both terminate.

Now, we analyze the winning probability of 4; and Ay when A wins. Note that A can

win by violating one of the following cases:

. The non-_L session identifiers of ePIA token (resp. server) sessions do not collide with

each other, see Line 37 - 40 in Figure 5.14.
In this case, A; also wins by Line 8 - 9 in Figure 5.5.
. The partnered token and server sessions must have the identical agreed content unless
the registration context on the token is corrupted, see Line 42 in Figure 5.14.
In this case, A; also wins by Line 12 in Figure 5.5.

. The non-_L session identifiers of ePACA token (resp. client) sessions that completed Bind

algorithm do not collide with each other, see Line 44 - 45 in Figure 5.14.
In this case, As also wins by Line 9 - 10 in Figure 5.12.

. During the registration interaction, The ePIA token and server sessions must partner
with each other and the authorized command message and tag must have been output
by one of the non-compromised partners of the ePACA token session without corrupting

its setup user, see Line 47 - 50 in Figure 5.14.

In this case, we separately consider the case whether the condition regarding PIA or PACA

: . . 1 ! ! 1
sessions is violated. For each (S » L, T YU, Y C y 23 Mchy Mrcom trcoma mrrsp) € £REGISTER

(a) If 7E.sid # 7Y, .sid, this is impossible since it is orthogonal to the definition of session
partner (and session identifiers). Recall that partnering identifies token and server
sessions that are successfully communicate with each other and is achieved via the

coincidence of the session identifiers, as described in Section 5.4.4.

(b) Otherwise, A, can trivially win by the Line 11 - 14 in Figure 5.12.
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5. The token T that was registered with S, must own an ePIA session 7} that is part-
nered with 7% and produce a response message unless Ts registration context of S is
corrupted,see Line 52 - 56 in Figure 5.14.

In this case, we separately consider whether there exists j such that 7% is partnered with

—1

Tg.

(a) If such j does not exist, then A can win only when (S,T") € Lgsn. This means, A,
can also win auth experiment by Line 8 - 8 in Figure 5.12.

(b) Otherwise, such j exists. This means, the attacker .4; must have queried the oracle
RESPONSE(T', j, Macom) to its challenger C; for some command message macom. Recall
that such query can only be made when A queries RESPONSE((T', 7, 7'), Macom, t, d)
for some (', Macom, t, d). So, the attacker A wins by the condition A(j’, Mmacom,t, d,
Marsp) such that (T, 7, j', Macom, t, d, Marsp) € Lrusponse With probability 0.

6. The above response message must be produced after an ePACA session 7'('%: validates some
authorized command m,com and tag t with the approval from user, see Line 58 - 58
in Figure 5.14.
In this case, the attacker A, can trivially win SUF-t" experiment by Line 8 - 8 in Fig-

ure 5.12.

7. The above command m,cm and tag ¢t must be authorized by a client ePACA session 7r(’“j
that is partnered with ﬂ%/ for some challenge message m,, that was produced by the
ePIA session 7%, unless 7 is compromised or the PIN that sets up token 7 has been

corrupted, see Line 61 - 66 in Figure 5.14.

We separately consider the cases whether m,c,m and tag ¢t are authorized by a client

ePACA session 7% that is partnered with W%/:

(a) If (C, k, Macom, t) & Laurn for (C, k) < bindPartner(T, j'), then Ay can trivially win
the SUF-t" experiment by the Line 11 - 14 in Figure 5.12.

(b) Otherwise (C,k, macom,t) € Lavrn- Note that AUTH oracle is only queried by
As when A queries CHALLENGE or REGISTER oracles and that maeom is the
command message at authentication phase. This means, A must have queried
CHALLENGE((S’,4'), (C, k), tb, UV') for some (S’,7',tb, UV') that outputs macom and
t. Moreover, recall that A has queried RESPONSE((T, 7, j'), Macom,t,d). By the
definition of PIA session identifiers, we have that ﬁ%.sid = ﬁg,.sid. Furthermore,
recall that 77.sid = 7%.sid. It then holds that

7.sid = 7.sid = 7%, sid
Recall that we have ensured that the non-_L session identifiers of PIA token (resp.

server) sessions do not collide with each other in the Condition 1. So, it holds that

(8",7) = (S,14).
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This means, A has queried CHALLENGE((S, 7), (C, k), tb, UV) for some tb and UV
Consequently, there must exist (5,4, C, k, Mach, Macl, Macoms t) € Lonarience Or some

Mach and my. The attacker A wins via this case with probability 0.

To sum up, when every Compl attacker A wins ua experiment against the composition
of the ePIA scheme ¥ and the ePACA scheme II, then the Compl attackers A; or Ay must
be able to win in the auth experiment against the underlying ePIA scheme ¥ or in the
SUF-t’ experiment against the underlying ePACA scheme II, which implies the following

inequality and concludes the proof.

Adv, 11 (A) < AdvE™ (A;) + AdviUTY (A,)
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Chapter 6

Provable Security of Zoom and Full
End-to-End Security

This chapter is based on the paper:

Cas Cremers, Eyal Ronen, and Mang Zhao, “Multi-Stage Group Key Distribution and
PAKEs: Securing Zoom Groups against Malicious Servers without New Security Elements”,
in 2024 IEEE Symposium on Security and Privacy (SP), San Francisco, CA, US, 2024.

This paper was joint work with Cas Cremers and Eyal Ronen. I lead the research on
this paper and the substantial contributions in this chapter are my own. My co-authors

principally contributed to the initial conception of the work and the final write up of the

paper.
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6.1 Introduction

Video conferencing apps such as Zoom are globally used by hundreds of millions of users
on a daily basis [109], and aim to use cryptographic protocols to achieve some forms of
end-to-end encryption. While there have been many recent advancements in highly-secure
messaging protocols such as Signal, their core protocols are typically not suitable for
real-time group applications, such as video conferencing, which have have fundamentally
different requirements involving real-time constraints, robustness, and usability.

In practice, real-time group protocols used in real-world widely deployed applications
such as Zoom incorporate design choices based on real-time requirements that include
assigning a group leader role to some participants, relying on key distribution instead
of key agreement, and using simplified key evolution mechanisms. These design choices
improve features like robustness and usability, and enable real-time communication, at
the cost of lower security guarantees compared to some state-of-the-art secure messaging
protocols.

Nevertheless, many real-time group protocols explicitly claim that they can provide a
form of end-to-end security. For example, in Zoom’s case, the ‘end-to-end security’ option
in the app’s settings is explained as “Encryption key stored on your local device. No
one else can obtain your encryption key, not even Zoom.” However, it was shown that a
malicious Zoom server can eavesdrop or impersonate in groups [113, 114]. The underlying
reason is that in practice, a Zoom server acts as the sole root of trust for the authenticity
of users’ public keys and messages, and implicitly to those that are used to distribute
group-specific public keys, which in turn are used by the leader to distribute the group
key. Thus, if the Zoom server replaces some of these public keys, it can in fact learn your
encryption key.

In this work, we propose a transformation to improve the security of a class of protocols
against malicious servers, without introducing new security elements or even new message
flows. We achieve this by reworking the way in which such protocols use passwords
(known as passcodes in Zoom). In the Zoom protocol, the server inherently needs to know
the group password and uses it to enforce access control for the group. We propose a
modification in which the server no longer knows the password, which is distributed only
to the group members and is used by them directly for access control. These passwords can
be distributed as one would have done currently (e-mail, messaging app, phone, calendar
appointment).

In our new threat model, we can no longer rely on the server providing a priori
secure channels between group members. Instead, we employ password-authenticated key
exchange to prevent offline guessing attacks on the protocol. We then formally prove that
the transformed Zoom protocol achieves a strong form of security even in the presence of

malicious servers.
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At the technical level, we develop syntax and security notions for multi-stage group
key distribution protocols, of which Zoom can be seen as an instance. We show under
which assumptions the Zoom protocol (version 4.0) can be proven secure in our multi-stage
group key distribution model, and how the known attacks fit into this picture. We design a
generic transformation that can turn any protocol in our class into a more secure protocol,
for which we define a stronger security notion. We show that our transformation preserves
the original security property, and provides security against malicious servers. We apply
our transformation to the Zoom protocol, resulting in the ZoomPAKE protocol. We also
show how the ZoomPAKE protocol prevents the attacks possible on the Zoom protocol.

Our main contributions are:

e We develop a solution to improve the security of Zoom-like apps against malicious servers,
without introducing new security elements. The core observation is that Zoom already
uses group-specific passwords, but they are by design known to the server. By leveraging
techniques from password-authenticated key exchange, we can get rid of the reliance on

the server for trusted channels.

e To formally prove the security of our solution, we need to develop substantial machinery.
We propose a formal model and syntax of multi-stage group key distribution protocols,
called mGKD, of which Zoom can be seen as an instance. For such protocols, we develop
a basic security notion Sec-mGKD-pki, which assumes the server did not interfere with
the public keys of a group’s participants, and prove that Zoom meets this notion. We
show how real-world attacks manifest in this basic notion and notably how malicious

zoom servers can manipulate groups.

e We formally prove that our transformation turns a protocol that is Sec-mGKD-pki secure
into one that is also secure in a model that makes no assumptions on the server but only

on the password, which we call Sec-mGKD-pw.

e We show how to efficiently apply our transformation to the Zoom version 4.0 protocol to
obtain the ZoomPAKE protocol, in which the server no longer knows the password, and

groups are protected against malicious servers.

Outline We discuss related work in Section 6.2 and additional preliminaries in Sec-
tion 6.3. In Section 6.4 we present our syntax for multi-stage group key distribution
(mGKD) protocols and three security notions: basic Sec-mGKD-pki security, full end-to-end
Sec-mGKD-pw security, and the combined Sec-mGKD-pw+ security. We show in Section 6.5
that the Zoom library can be modeled as a mGKD protocol and provably satisfies the basic
Sec-mGKD-pki security, and show how impersonation attacks prevent it from satisfying
the stronger Sec-mGKD-pw notion. In Section 6.6, we develop a generic transformation on
any Sec-mGKD-pki secure mGKD protocol to achieve Sec-mGKD-pw and Sec-mGKD-pw-+

security and apply it to Zoom. We compare our work with the the concurrent work
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in Section 6.7 and offer a technical summary in Section 6.8. We provide full proofs of all

theorems in this chapter in Section 6.9.

6.2 Related Work

While there is a lot of adjacent related work that we will mention below, it turns out that
there is surprisingly little directly related work in analysis of real-time group protocols. A
number of surveys [58, 133, 140, 144, 155, 160] examine numerous historical designs for
secure group key establishment in different application scenarios. We identify following

three categories:

e centralized group key management/distribution protocols, where each group has a single

trusted authority for group key generation and distribution.

e (continuous) group key agreement and distributed key management protocols, where

every party in a group contributes to the group key generation and distribution.

e multi-factor key agreement and password-authenticated key exchange protocols, where the
group key generation and distribution relies only on a secret that is used for authorization

to a group.

We review each of these categories below.

6.2.1 Centralized Group Key Management Protocols

A centralized group key management (CGKM) protocol starts every group with a trusted
authority, often referred to as the “Key Distribution Center” (KDC). The KDC is respon-
sible for controlling for the whole group, e.g., member authentication, access control, and
group key generation and distribution.

One of the first CGKM schemes is [104, 105]. In this approach, the KDC creates a
“Group Key Packet” (GKP) for encrypting the communication payload with the help from
the first group participant. The KDC sends the GKP to every party that wants to join the
group and encrypts the new GKP to all group participants using the old one. To achieve
forward secrecy, the KDC has to recreate the group whenever a participant leaves the
group. After that, numerous tree-like CGKM constructions [95, 136, 137, 169, 176, 177]
were proposed to reduce computation cost. In these approaches, all trust resides in the

KDC, which forms a single point of failure for compromise.

6.2.2 (Continuous) Group Key Agreement

Two important canonical group key agreement protocols are [127, 150]. Their constructions
have a binary tree-like hierarchy, where the keying material of each party is a leaf node at

the bottom of the tree and the shared group key is the top node of the tree. Every party
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can compute the key material on the path from its associated leaf node to the top using
Diffie-Hellman Exchange (DHE). However, these designs are inherently synchronous: the
initialization of the tree requires all parties to be online.

In the asynchronous secure messaging context, where participants might be offline
and group keys need to be evolved, this approach does not work without modification.
These drawbacks were lifted by the design in [74], leading to a line of papers in the
continuous GKA (CGKA) domain, including [13, 22, 128] that focus on continuously
evolving (ratcheting) group keys after the group establishment.

In general, ratcheting-like protocols such as CGKAs are impractical for real-time group
applications, as they have to tolerate high amounts of packet loss and still being able to

continue immediately when some packets arrive on time.

6.2.3 Multi-factor Key Agreement and Password-Authenticated
Key Exchange

Multi-factor key agreement protocols often rely on three classes of human authentication
factors: (1) something you know, e.g., passwords, (2) something you have, e.g., secure
devices, and (3) something you are, e.g., biometric date. Among them, the password is
possibly one of the most convenient means for sharing in practice, as it can be easily sent
out-of-band, e.g., via email, in letters, or even in-person.

The human-chosen passwords are often low-entropy rather than uniformly at random.
The Password-Authenticated Key Exchange (PAKE) protocols are designed to allow some
parties to establish a high-entropy session key with authentication based on a low-entropy
shared password without being subject to offline guessing attacks. There are numerous
modern and efficient 2-party PAKE constructions in the literature, such as CPace [7,
101] and SPAKE2 [2, 3, 9]. The are also several known group PAKE protocols [5, 6, 8,
66]. However, the existing group PAKE protocols always require multiple rounds for the
key agreement and is restricted to static groups. Thus, these group PAKE protocols are
impractical for the real-time group applications, where the participants can freely join and

leave the groups.

6.2.4 Existing Security Analysis for Zoom

In [113, 114], the authors describe several specific classes of impersonation attacks on
end-to-end Zoom (version 2.3.1). First, a malicious meeting participant can impersonate
any other participant inside this group, since there is no entity authentication in a group
meeting. Second, the Zoom server can replay some messages and impersonate a legitimate
user for a meeting. Third, if multiple users share a device, the Zoom server colluding with
any user can impersonate any other users on the same device. Moreover, the authors also

present a tampering attack based on potential implementation flaws and a Denial-of-Service
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attack. [113, 114] provide feasible countermeasures for each of above specific attacks.
However, more general impersonation attacks by a malicious server are not considered
in [113, 114].

We notice a recent concurrent work [83] that formally analyzes the security of the
end-to-end Zoom protocol assuming the existence of a trusted PKI. This work captures
various frameworks underlying the Zoom protocol, including joining and leaving a group,
a so-called “heartbeat” liveness mechanism, and change of group leader /host. We give a

more detailed comparison between our work and [83] in Section 6.7.

6.3 Additional Preliminaries

6.3.1 Ir-prf-ODH Assumption

We recall the generic Ir-prf-ODH definition in [64].

Definition 51. Let ECDH denote a cyclic group G with order q over an elliptic curve
EC with a generator g. Let H: G x {0,1}* — {0,1}" denote a function. We define a
generic security notion lr-prf-ODH which is parameterized by |,r € {n,s,m} indicating how
often the attacker is allowed to query a certain “left” resp. “right” oracle (ODH, resp.
ODH, ) where n indicates that no query is allowed, s that a single query is allowed, and m
that multiple (polynomially many) queries are allowed to the respective side. Consider the

following security game Expr:;'cpg,ﬂ?H between a challenger C and a PPT attacker A.

. The challenger C samples u <= Z, and provides G, g, and g* to the attacker A.

Afl=m, A can issue arbitrarily many queries to the following oracle ODH,.

ODH, oracle. On a query of the form (S,x), C first checks if S ¢ G and returns L if

this is the case. Otherwise, it computes y <— H(S", ) and returns y.

. Bventually, A issues a challenge query z*. On this query, C samples v < Z, and a
bit b <~ {0,1} uniformly at random. It then computes y§ = H(g",2*) and samples
yr < {0,1}" wniformly at random. The challenger returns (g%, y5) to A.

. Nezt, A may issue (arbitrarily interleaved) queries to the following oracles ODH,, and

ODH, (depending on | and r).

ODH,, oracle. The attacker A may ask no (I =n), a single (| =), or arbitrarily many
(I = m) queries to this oracle. On a query of the form (S, x), the challenger first
checks if S ¢ G or (S,z) = (¢*,2*) and returns L if this is the case. Otherwise, it
computes y < H(S", x) and returns y.
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ODH, oracle. The attacker A may ask no (r =n), a single (r =s), or arbitrarily many
(r = m) queries to this oracle. On a query of the form (T, x), the challenger first
checks if T ¢ G or (T,z) = (g%, %) and returns L if this is the case. Otherwise, it
computes y < H(T", ) and returns y.

5. At some point, A stops and outputs a guess b’ € {0,1}.

We say that the attacker wins the lr-prf-ODH game if b = b. We say the Ir-prf-ODH
problem is e-hard over ECDH and H, if the advantage of any PPT attacker A that wins

Ir-prf-ODH . .
above Exprecpyyy experiment is bounded by €.

In this chapter, we only need the mn-prf-ODH assumption.

6.3.2 Password-Authenticated Key Exchange

The password-authenticated key exchange (PAKE) protocols allow two parties to establish
a high-entropy key over an insecure channel using a shared low-entropy password. Below,
we first define a weak security (w-PAKE) security model against a PAKE protocol. This
model is weaker than and therefore implied by the security model defined in [2, 3, 7]. Thus,
some modern and widely used PAKE schemes, including CPace [101] or SPAKE2 [9] that

are respectively proven secure in [7] and [2, 3], are provably secure in this w-PAKE model.

Protocol Members. This weak semantic security model only considers the two-party
setting. I.e., the PAKE protocol has only two members: either an initiator init or a
responder resp.

The initiator init indeed captures the behaviors of (all) participants in each group gid
in our mGKD protocol. The responder resp indeed captures the behaviors of the (unique)

leader in each group gid in our mGKD protocol.

Long-Lived Keys / Passwords. The initiator init and the responder resp hold
the same password pw, which is sampled from a distribution D. In many literature, the

password is also called the “long-lived key”.

Protocol Execution. The interaction between an attacker A and the protocol members
occurs only via oracle queries, which model the attacker capabilities in a real attack.
During the execution, the attacker may create several instances of a member. We consider
the concurrent model, i.e., several instances may be active at any given time. Let U™
denote the instance with identifier id of a member U. Let b € {0,1} be a bit chosen

uniformly at random. The attacker A can query following three oracles:

e SENDPAKE (U™, m): This query models an active attack, in which the attacker may
tamper with the message being sent over the public channel. The output of this query is

the message that the member instance U'Y would generate upon receipt of message m.
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e CoMPROMISEPAKE(U): This query models the misuse of session keys by a member.
If a session key is not defined for instance U™ or if a TESTPAKE query was asked to
either U™ or to its partner, then return L. Otherwise, return the session key held by the

instance U9,

e TESTPAKE(U): This query tries to capture the attacker’s ability to tell apart a real
session key from a random one. If no session key for instance U'¢ is defined or U™ is not
fresh (which is defined below), then return the undefined symbol L. Otherwise, return

the session key for instance U if b = 1 or a random key of the same size if b = 0.

Notation. We say an instance U opened if a query COMPROMISEPAKE(U™) has been
made by the attacker. We say an instance U™ is unopened if it is not opened. We say an
instance U'Y tested if a query TESTPAKE(U®) has been made by the attacker. We say
an instance U is untested if it is not tested. We say an instance U™ has accepted if it

goes into an accept mode after receiving the last expected protocol message.

Session Identifiers and Partnering. We define the session identifiers (sid) as the
transcript of the conversation between the initiator and the responder instances before
acceptance.

We say two instances init'd! and resp'®? to be partners if the following conditions are

met:

(a) Both init'¥ and resp'® accept, and

(b) Both init and resp¥? share the same identifiers sid.

Freshness. The notion of freshness is defined to avoid cases in which attacker can trivially
break the security of the scheme. The goal is to only allow the attacker to ask TESTPAKE
queries to fresh oracle instances. More specifically, we say an instance U'¢ is fresh if it has

accepted and if both U and its partner are unopened and untested.

Semantic Security. Consider an execution of the above experiment for an attacker A
against a PAKE protocol II. The attacker A wins the experiment if and only if A guesses
b’ = b, where b is the hidden bit used by the TESTPAKE oracle. The advantage of A

breaking the weak security of II is defined as
1
Adviy " F(A) == | Pr[A wins] — §|

We say that IT is epag p-w-PAKE secure if for any PPT attackers A it always holds
that

w-PAKE w-PAKE
Adviip ™ (A) < erp
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6.4 Multi-stage Group Key Distribution Protocols

In this section, we define our syntax for multi-stage Group Key Distribution mGKD
protocols. Our class of mGKD protocols covers behaviors of a party for using real-time
group services, such as long-term identity information generation, joining groups, group
key rotation, and leaving groups. Then, we propose three security models that capture

distinct security guarantees for real-time group services.

6.4.1 mGKD Definition

mGKD protocols are stateful interactive group communication protocols executed by a set
of parties P. Each party P € P must be uniquely identified by an identifier idp. Each
group is uniquely identified by an identifier gid. In each group, one party performs the
leader role; all other group members perform the participant role. The role of each party
in different groups might be distinct: a party can be leader in one group and participant
in others. In practice, the leader is typically the so-called host that initiated the group.
In this paper, we assume that each group gid is associated with a unique leader and that
the group’s leader stays in the group for its entire duration. While one can in theory
implement changing leaders by starting a new group, we leave the modeling and efficient

implementation of multiple and changing leaders to future work.

Definition 52. A multi-stage group key distribution protocol mGKD = (SignUp, Schedule,

Register, Join, Leave, KeyRotat) consists of the following algorithms:

Sign Up: msignup ¢ SignUp(P) allows a (stateful) party P to initialize a long-term
identity information for signing up. The private portion is locally stored. The public

portion is output as an outgoing Sign-up Message MsignUp-

Group Schedule: m&, < Schedule(P,gid, gs) allows a (stateful) party P to take the
role of the leader for scheduling a group gid using a group secret gs. The output is an
outgoing group schedule message méigch for the server. The group secret gs is expected to

be sent to authorized participants over secure out-of-band channels.

Register: Register = (Register-L, Register-P) consists of two sub-algorithms depending on
the role of the caller:

o m' <& Register-L(P, gid, gs, m) (resp. m’ <~ Register-P(P,gid, gs, m)) allows a (state-
ful) party P to register for a group gid as leader (resp. participant) using a group
secret gs and an incoming message m followed by group initialization. The output

is an outgoing message m’.

Participant Join: Join = (Join-L, Join-P) allows a participant to interact with a leader
for joining a group. This interactive phase consists of two sub-algorithms depending on
the role of the caller:
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o m' <& Join-L(P,idpr,gid, gs, m) (resp. m' < Join-P(P,idp:,gid, gs, m)) allows a
leader P (resp. a participant P) of the group gid to input a group secret gs and
an incoming message m and to output an outgoing message m' for the participant
(resp. the leader) P'.

Member Leave: Leave = (Leave-L, Leave-P) consists of two sub-algorithms depending on
the role of the caller:

e Leave-L(P, gid,idp/) (resp. Leave-P(P,gid,idp/)) allows the leader (resp. a partici-
pant) P of the group gid to react to a party P'’s leaving. If idp = idp/, the leader
(resp. the participant) P leaves the group gid and erases the corresponding state

information.

Key Rotation: KeyRotat = (KeyRotat-L, KeyRotat-P) consists of two sub-algorithms de-
pending on the role of the caller:

® Mkrot ¢ KeyRotat-L(P, gid, m) allows the leader P of the group gid to input an
incoming message m and to locally update the group key. The output is an outgoing
message Mkrot that enables all participants of the same group gid to update group
keys correspondingly.

® Mkrot ¢ KeyRotat-P(P,gid, m) allows a participant P of the group gid to input
an imcoming message m and to locally update the group key. The output is an

(optionally empty) outgoing message MmgRot-

We assume all incoming and outgoing messages of an mGKD protocol are publicly
accessible; we leave this implicit as the concrete mechanisms can differ substantially
between protocols, but could for example be a PKI or a “bulletin board” on the server.
In contrast, the input group secret gs of the Schedule algorithm is expected to be chosen
by the leader and be sent to authorized parties for joining the group over secure out-of-
band channels. Before a party P joins a group gid, P has to register for this group, no
matter whether P has previously joined the group gid and left. The Member Leave phase
enables every party P to react to a participant P’ leaving the group, notably, without any
additional incoming message. This captures the scenario where the server might notify
group members that a participant has left the group without sending any leave request
due to unexpected network disconnection. The KeyRotat algorithm enables every party to
update their group key, the execution frequency of which can be decided in advance, in a
regular schedule and/or when a party joins or leaves the group.

To model concurrent or sequential groups of a party P, let ﬁjd denote party P’s session
with respect to the short-term group gid. In addition, each party P has an associated

long-term state stp that is shared by all of P’s sessions.
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Definition 53. In a mGKD protocol, each party P has the following state variables. The

long-term state variables are initialized during the Sign Up phase:

e stp.id: the associated and unique identifier of the party P. In this paper, we assume it
equal to idp.

e stp.isk: the identity secret key of the party P.

o stp.ipk: the identity public key of the party P.

The short-term per-group state variables are initialized during the Register phase:

° g'd .sk: the group-specific secret key of the party P for joining the group gid.

g'd .pk: the group-specific public key of the party P for joining the group gid.

° g'd .gk: the current group key used by party P, which is supposed to be shared by all

parties in the group gid. This variable is initialized with 1.

° g'd .gkid: the index of the current group key of the party P in the group gid. This variable
1S zmtzalzzed with 0.

° g'd .GP: The set of all parties in the group gid. This variable is initialized with the empty
set ().

° g'd .status € {L,registered, joined}: the status that indicates whether the party P has
zmtmlzzed the state for (but not yet registered for), or registered for (but not yet joined),
or joined the group gid. This variable is 1 by default.

Definition 54 (Correctness). Consider any group gid with an associated leader P, any
sequence of parties { P'};, and a sequence of executions that includes the following (perhaps
not consecutive) algorithms: 1) a Sign Up of the leader P or a participant P* for any 1,
i1) a Group Schedule of the group gid and the leader P, iii) a Register of the leader P
or a participant P' for any i to the group gid, i) a successful Participant Join between
the leader P and a participant P' for any i, v) a Leaving of participant P' for any i
to all other parties in the group gid, vi) a successful Key Rotation for the leader P and

gl

every participant P* in the group gid, i.e., 4 status = joined. Clorrectness requires that

789 gkid = 7Tg|d gkid and 78° gk = 7rg'd gk for any P' with 7Tg|d status = joined at any time.

6.4.2 A Generic Security Model

We next define a generic Sec-mGKD-X security model. By presenting different instantiations
of the freshness conditions that the attacker must obey and of the winning conditions
that the attacker must pursue, we then introduce three distinct concrete models for
X € {pki, pw, pw+} in Section 6.4.3, Section 6.4.4, and Section 6.4.5.

Trust Model. We assume that all parties’ sampled randomness is independent, uniform,

and unpredictable. For simplicity, we assume every leader samples group secret from a
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same distribution D (according to the underlying protocol). We assume that every party
joins every group at most once. We assume that every leader stays in the corresponding
group for the entire duration and leaves only when all other participants have left. This
means, once the leader leaves the corresponding group, this group is immediately marked as
“invalid” and no party is allowed to register for or join this group anymore. We assume that
every party can send register request for every group at most once. Our model assumes a
single shared group key for communication. Thus, impersonation attacks between parties

inside the group is out of scope of this work.

Threat Model. We allow the attacker to have full control over the network and can
eavesdrop, drop, and insert messages during all phases. We allow the attacker to corrupt
the long-term state stp for any participant P to capture the real-world scenarios where
the hardware devices might be stolen. Moreover, we allow attackers to compromise the
short-term per-group state nggid for any participant P after joining any group gid to capture
attacks during the ongoing communications. We also allow attackers to leak arbitrary
group keys (to analyze the impact on the security of previous and future group keys). We
allow attackers to reveal the group secret for any group to capture the real-world scenarios

where the the out-of-band channels might be vulnerable.

Security Experiment. The security experiment is conducted between a challenger C
and an attacker A against a mGKD protocol II. At the beginning of the experiment,
the challenger C samples a random challenge bit b € {0,1}. During the experiment,
C produces two sequences of variables {GP(gid’gkid)}g;d,gkid and { gk%id’gkid)}gid,gkidf. The
variable GP®484) aimg to record the identifier of every party that is expected to know
the gkid-th group key in the group gid from the leader’s view. The challenger C monitors
the states of the leader P of any group gid. Whenever W]gaid.GP changes, C records
GPEdms ghid) (G pleid.ri gkid) Un8?.GP. The variable gk}g‘d’gkid) records the gkid-th group

key derived by any party P in the group gid. Whenever ng.gkid changes for any party P

id, 789 gki ;
and group gid during the experiment, C stores the new group key gk% A ekid) W%d. gk.
The attacker A can interact with C by querying the following oracles, where C responds

according to I1. To simplify the explanation, we partition the oracles into categorizes.

Oracle Category 1: Setup of groups and parties. This category includes a
NEWPARTY oracle that simulates the Sign Up phase of a party, a NEWGROUP that
simulates the Group Schedule phase of a group, and a AUTH oracle that simulates the
group secret transmission from the leader to the authorized participants over out-of-band

channels.

e NEWPARTY(idp): This oracle can be queried at most once on each input. The challenger
C initializes a state stp by setting stp.id < idp. Then, C runs mgignup < SignUp(stp)
and followed by forwarding the sign-up message mggnup to A. The party P is marked as

“created”.

166



e NEWGROUP(idp, gid): This oracle can be invoked at most once for each gid. The input
party P must be marked as “created”. The challenger C samples the secret of the group
gid by gs89 <& D and runs még, < Schedule(P, gid, gs&¢) for an associated outgoing
message mggch. Then, C marks the group gid as “created” and “valid” and marks P as

the leader of the group gid and “authorized”. Finally, C returns mggch to A.

e AUTH(gid, idp): The group gid must be marked as both created and valid and the party P
must be marked as created and have not registered for the group gid, i.e., ng;d.status = 1.

The challenger C marks P as authorized for the group gid.

Oracle Category 2: Register phase. This category includes a REGISTERAUTH oracle,
which simulates that an authorized party registers for a group using honest group secret,
and a REGISTERINJECT oracle, which simulates that an unauthorized (malicious) party

registers for a group with an input using some chosen group secret.

e REGISTERAUTH(idp, gid, m): This oracle can be queried at most once for each tuple
(idp,gid). The group gid must be marked as both created and valid and the party P
must be authorized for the group gid. The challenger C runs Register-L(P, gid, gs&, m) if
P is the leader of the group gid and Register-P(P, gid, gs&9, m) otherwise. In both cases,

C forwards the output message m’ to A.

e REGISTERINJECT(idp, gid, gs, m): This oracle can be queried at most once for each tuple
(idp, gid). The group gid must be marked as both created and valid and the party P
must be unauthorized for the group gid. The challenger C runs Register-P(P, gid, gs, m)

and forwards the output message m' to A.

Oracle Category 3: Participant Join phase. This category includes a SENDJOINAUTH
oracle, which simulates that an authorized party (as either leader or participant) sends
messages to another party (either authorized or unauthorized) during the Participant Join
phase in the group, and a SENDJOININJECT oracle, which simulates that an unauthorized
(malicious) participant sends messages (to the leader) during the Participants Join phase

in the group.
e SENDJOINAUTH(idp,idp, gid, m): The challenger C first checks

— whether gid is marked as created and valid,

whether P is authorized for this group gid,

whether both parties P and P’ have been created and registered for this group,
— whether either P or P’ is the leader of the group gid,

whether the leader of the group, either P or P’, has joined the group, and that the
other party hasn’t joined the group yet.
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If any of the check fails, C directly returns L to A. Otherwise, C runs Join-L(P,idp,
gid, gs&9, m) if P is the leader of the group gid or Join-P(P,idp, gid, gs&9, m) if P is a

participant. Then, the output message m’ of either Join-L or Join-P is returned to A.

e SENDJOININJECT(idp,idp, gid, gs, m): The challenger C first checks

— whether gid is marked as created and valid,
— whether P is unauthorized for the group gid,
— whether P’ is the leader of the group gid,

— whether the participant P has been created and registered for this group gid but
has not joined the group yet, and

— whether the leader P’ has joined the group gid.

If any of the check fails, C directly returns L to A. Otherwise, C runs Join-P(P,idp/, gid,

gs, m) and returns the output message m’ of Join-P to A.

Oracle Category 4: Member Leave phase. This category includes a SENDLEAVE
oracle, which simulates that a party notices another party leaving the group gid, and an

ENDGROUP oracle, which simulates that a leader leaves and ends the group.

e SENDLEAVE(idp, gid,idp/): The challenger C aborts if

— the gid is not marked as both created and valid, or
— the leaving party P’ is the leader of the group gid, or
— the party P has not joined the group.

Otherwise, C runs Leave-L(P, gid, idp/) if P is the leader of the group gid and Leave-P(P, gid, idp/)

otherwise.

e ENDGROUP(gid): The challenger C first checks

— whether the group gid is created and valid, and

— whether the leader P of the group gid is the unique party in his local party list, i.e.,
789 GP = {idp}.

If either check fails, C aborts. Otherwise, C runs Leave-L(P, gid, idp) and marks the group

gid as “invalid”.

Oracle Category 5: Key Rotation phase. This category includes only one oracle

SENDKEYROTAT that simulates the process where a party updates their local group key.
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e SENDKEYROTAT(idp, gid, m): The party P must have joined the group gid. The chal-
lenger C runs KeyRotat-L(P, gid, m) if P is the leader of the group gid and KeyRotat-P(P,
gid, m) otherwise. The output message of either KeyRotat-L or KeyRotat-P is returned to
attacker A.

Oracle Category 6: Secret information leakage. This category includes four
oracles CORRUPT, COMPROMISE, LEAK, and REVEAL, that respectively simulates that
the attacker A knows the long-term state of a party, the short-term per-group of a party

for a group, a group key of a party in a group, and the group secret of a group.

e CORRUPT(idp): The challenger C first checks whether the party P is created. If the
check fails, C simply returns 1. Otherwise, C returns stp to the attacker A and marks
stp as “corrupted”.

e CoMPROMISE(idp, gid): The challenger C checks whether the party P has joined the group

gid, i.e, ﬂlgjid.status = joined. If the check fails, C simply returns L. Otherwise, C returns

. . . ﬂ_gid. .
789 to the attacker A, followed by marking 7%° as “compromised” and gk%ld’ P8 ag
“leaked”.

e LEAK(idp, gid, gkid): The challenger C checks whether gk%id@kid) has been set. If gk%id’gkid) =

kgjgid,gkid)

1, then C simply returns L. Otherwise, C marks g as “leaked” and returns

ngDgid,gkid) to A.

e REVEAL(gid): If the group gid is not created, then the challenger C simply returns L.

Otherwise, C marks gid as “revealed” and returns gs&¢ to A.

Oracle Category 7: Test challenge bit. This category includes only one TEST oracle
that returns either a real group key if the challenge bit b = 0, or a random key if b = 1.

e TEsT(idp, gid, gkid): This oracle can be queried at most once. If the party P is authorized
for the group gid and the party P has produced gkid-th group key, i.e., gk%id’gkid) #* 1,
then the challenger C returns gkﬁf‘d’g"‘d) to A if the challenge bit b = 0, or a random key
from the same space if b = 1. Then, C further marks the party P, the group identifier
gid, and the group key index gkid as “tested”. Otherwise, C immediately returns _L.

Advantage Measures. In the end, the attacker A outputs a bit b’ € {0,1}. Under
two freshness conditions frshpscmeKPX and frshRemeKPX that prevent the attacker A from
trivially winning the experiment for X € {pki, pw, pw+}, we say the attacker A wins the
experiment Sec-mGKD-X against a mGKD protocol II for X € {pki, pw, pw+}, if either of

the following events is triggered:
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1. [Event Exauwm] there exists any group gid with the leader P&4, any party P’ that is
authorized for the group gid, and any group key index gkid, such that gk‘%,id’gkid) # 1 but

gkgjggif,’gkid) # gk\889 yithout violating the freshness condition frsh3smC*PX (id ., gid, gkid).

2. [Event Expry] b = b’ without violating the freshness condition frshyes: ™" P (id b/, gid, gkid),
where P’, gid, and gkid are respectively the tested party, group identifier, and group key

index.

We define Advpe™*PX(A) as the advantage that A can win the Sec-mGKD-X experi-
ment against a mGKD protocol II for X € {pki, pw, pw+}, namely,

AdvpeemeKDX(4) .= max <‘ Pr|[Expriv] — %‘, Pr[EKAuth]> )

Definition 55 (Sec-mGKD-X). We say that a mGKD protocol 11 is Sec-mGKD-X-secure
for X € {pki, pw, pw+}, if the above defined advantage Advie=™KP*(A) is negligible for
any PPT attacker A.

6.4.3 The Sec-mGKD-pki Security Model

Our basic security model Sec-mGKD-pki captures the following security guarantees for an
authorized party in a group assuming the honest distribution of long-term sign-up message
of all parties within this group. Note that this basic model guarantees that only group
members can learn the key, and where group membership is determined by the server. In
reality, and in our model, the server may insert group members that are not authorized by

the leader and do not know the passcode.

1. (Implicit) Group Key Authentication: If a group member accepts a group key, then

the leader must have produced the same group with the same group key index.

2. Group Key Secrecy: If a group member accepts a group key, then an attacker cannot

derive this key, even if it knows other group keys.

3. Perfect Forward Secrecy: An attacker that compromises a party’s long-term keys,

can not learn the group keys of any group the party was previously in.

Definition 56 (Sec-mGKD-pki Freshness Conditions). We say the freshness condition

frshf(e/f;rt'LGKD'pki(idp/, gid, gkid), where gid has a unique leader P89, holds if and only if

id id .
1. the per-group states W]g;gid and 7T§;I,/ are not compromised,

2. the long-term states stpge and stpr are not corrupted before P& and P’ joined the group
gid, and

Pgid

Signup aNd mgi/gnup of P& and P’ are honestly delivered to the

3. the sign-up messages m

other.
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We say the freshness condition frshyes " PPX (id b, gid, gkid) holds if and only if

,gkid)

. the group key gk%id 1s not leaked for all parties P in the group gid with idp €

GP (gid,gkid) ;

. the short-term state ng 1s mot compromised for all parties P in the group gid with
idp € GPE-ED,

. the long-term state stpega of the leader P& in the group gid is not corrupted before all
parties P with idp € GPE9€Y) joined the group gid,

gid,gkid)

. the long-term state stp of all participants P in the group gid with idp € GP! is not

corrupted before P joined the group gid, and

. the sign-up messages mgignup of all parties P withidp € GP®eY) gre honestly distributed

within the group gid.

Conclusion. Our Sec-mGKD-pki security model captures all guarantees listed at the

beginning of this subsection:

. (Implicit) Group Key Authentication: If authentication does not hold, the attacker

A can win via Ekauth-

. Group Key Secrecy: The attacker is allowed to leak arbitrarily many group keys

except for the tested one. If group key secrecy does not hold, A can win via Ekpyiy-

. Perfect Forward Secrecy: The attacker is allowed to corrupt the long-term state of

the tested party. If perfect forward secrecy does not hold, A can win via Fkpy.

6.4.4 The Sec-mGKD-pw Security Model

The basic Sec-mGKD-pki model has two restrictions:

e First, both freshness conditions frshxes™KPPK and frsh2emCKPPK yoqyire the honest
distribution of the sign-up messages. Since the sign-up messages are distributed by
servers or by PKI in practice, this restriction is also known as “trusted PKI” assumption
in the related literature. In the full end-to-end setting, i.e., no trusted PKI or server exists,
a Sec-mGKD-pki secure mGKD protocol might still suffers from machine-in-the-middle
attacks such that the attacker can easily impersonate any participant towards the group
leader and impersonate any group leader towards any participant.

e Second, both freshness conditions frshes ™ PPk and frsh>ecmCKOPH 416w the attacker to

reveal all group secrets but do not prevent unauthorized parties from knowing the group
keys. Thus, this Sec-mGKD-pki model does not capture the security benefit provided by

the group secret transmitted over secure out-of-band channels.
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The goal of the Sec-mGKD-pw security model is to preserve the guarantees achieved
in Sec-mGKD-pki model and to capture the following additional security guarantee, while

getting rid of the “trusted PKI” assumption.

. (Implicit) Group Member Authentication: If any party produces a same group key
as the leader of a group, then this party must be authorized for this group, as long as

the group secret is not revealed.

We replace the “trusted PKI” assumption with the arguably simpler assumption of
a shared “secure (short) group secret”. We assume that (short) group secrets (such as
passwords or pin codes) can be distributed over out-of-band secure channels, e.g., by
email, encrypted messaging application (e.g., Signal), or even in person. In fact, a similar
passcode mechanism has been widely deployed in real life by many service providers such
as Zoom for access control management (see Section 6.5.1). The only difference is that
the current Zoom passcode mechanism hands over passcode and the rule of verifying it to
the (possibly) untrusted server, while in our model the group secret is known only to the

participants.

Definition 57 (Sec-mGKD-pw Freshness Conditions). We say the freshness condition

frshi’fﬂGKD’p‘N(idp/, gid, gkid), where gid has a unique leader P89, holds if and only if

gid

. _
peia and 7%, are not compromised,

. the per-group states m

the long-term states stpgs and stpr are not corrupted before P89 and P’ joined the group

gid, and
the group gid is not revealed.

We say the freshness condition frshie}f;iTGKD'pW(idp/,gid,gkid) holds if and only if

. the group key gk%id’gkid) 1s not leaked for all authorized parties P in the group gid with
idp € GPE-E9,

the short-term state nggid 18 mot compromised for all authorized parties P in the group gid
with idp € GP&dekid)

the long-term state stpga of the leader P&Y in the group gid is not corrupted before all

authorized parties P with idp € GPE48Y) joined the group gid,

. the long-term state stp of all authorized participants P in the group gid with idp €
GPE4Ekd) s not corrupted before P joined the group gid, and

the group gid is not revealed.

Conclusion. Note that Sec-mGKD-pki and Sec-mGKD-pw models share the same oracles

and similar freshness conditions. Thus, it is straightforward that our Sec-mGKD-pw model
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also satisfies all guarantees listed in Section 6.4.3. However, we stress two main distinctions
of the freshness conditions in Sec-mGKD-pw and Sec-mGKD-pki models that make the

security guarantees provided by these two models very different.

. [Full End-to-End Security] Both frsh25 M PPY and frsh>eome*PP allow attackers to

manipulate the transmission of all messages, including the sign-up messages of all parties
in any group, which are forbidden by frshx*cm PPK gy bhoint 3) and frshy o mCKDPK
sub-point 5). Instead, frsh>ec ™ PP sub-point 3) and frshyes ™ PP sub-point 5) require
no leakage of the group secrets. This indicates that our Sec-mGKD-pw security model
captures the full end-to-end security, i.e., against a malicious server. Consequently, this

new Sec-mGKD-pw model solves the first restriction of Sec-mGKD-pki model.

While the frshyes ™K PPX(id ., gid, gkid) condition sub-points 1) - 4) require no group key
leakage, no short-term per-group state compromise, and no long-term state corruption for
all parties P in the group with idp € GP®%4) our new frshyes ™ PP (id ., gid, gkid)
condition has the same requirements in sub-points 1) - 4) but only for the authorized

parties in every group. By this, our Sec-mGKD-pw model captures the following property:

e (Implicit) Group Member Authentication: The attacker can leak arbitrarily
many group keys of any unauthorized party in the tested group. If an unauthorized
party can successfully produce a same group key as a leader, then the attacker can

test this leader, leak the group key of this unauthorized party, and win via the event

Expriv.

6.4.5 The Sec-mGKD-pw+ Security Model

Note that the Sec-mGKD-pki and Sec-mGKD-pw models rely on different assumptions:
trusted PKI and secure group secret. We then define a third Sec-mGKD-pw+ model that
incorporates the above two models. The goal of the Sec-mGKD-pw-+ model is to capture
the security of a mGKD protocol if either the “trusted PKI” or the “secure group secret”

assumption holds.

Definition 58 (Sec-mGKD-pw+ Freshness Conditions). We say the freshness condi-

tion frshyoomK PP (id . gid, gkid) holds if and only if frshyemC PPN (idp, gid, gkid) or
frshpecmC 0P (id 1, gid, gkid) holds.

We say the freshness condition frsh22 ™" PP (id,, gid gkid) holds if and only if

frsheomeKDPR (i, gid, gkid) or frshyesar PP (id p, gid, gkid) holds.
The following corollary is straightforward by definition:

Corollary 1. Let IT denote a mGKD protocol. If 11 is Sec-mGKD-pki and Sec-mGKD-pw

secure, then II is also Sec-mGKD-pw+ secure, and vice versa.
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6.5 Zoom’s Protocol is a mGKD Protocol

The Zoom library allows parties to establish end-to-end group meeting communication. In
this section, we first introduce the Zoom overview [53] (version 4.0) in Section 6.5.1. Then,
we show that Zoom library is Sec-mGKD-pki secure in Section 6.5.2 but not Sec-mGKD-pw

¢

secure in Section 6.5.3

6.5.1 The Zoom End-to-End Connection Overview

For end-to-end encrypted meetings, Zoom only supports connecting from installed clients:
Browser-based connections are not supported. Zoom distinguishes between users and
devices by non-cryptographic user identifiers uid and hardware identifiers hid. We model the
identifier of each party P by a pair of user and hardware identifiers, i.e., idp = (uidp, hidp)
and assume that party identifiers are unique’.

Zoom deploys two infrastructures for transmitting cryptographic primitives: an identity
management system and a multimedia router (MMR). While the identity management
system distributes cryptographic public keys generated by individual clients, the MMR
distributes cryptographic messages between parties in a meeting. The connection between
parties and servers are established on TLS-tunnels over TCP and are encrypted with
AES in GCM mode. In this paper, we assume the existence of Zoom servers but do not
explicitly model them, because our goal is to consider them attacker-controlled. Zoom
allows every party to set up a group meeting. Groups are uniquely identified by their
group identifiers gid. Each group meeting is equipped with a specific “bulletin board”,
where all parties can post (their own) and retrieve (others’) cryptographic messages. The
server is able to control and tamper with the bulletin boards.

Below, we first recall the cryptographic algorithms ZSign and ZBox underlying the
Zoom library in Section 6.5.1.1. Then, we introduce the Zoom end-to-end protocol
in Section 6.5.1.2.

6.5.1.1 Cryptographic Algorithms

The Zoom library makes use of the interface and implementation of two building blocks
in the NaCl [88]-inspired libsodium library [79]: Signing and Authenticated Public-Key
Encryption (aka. Box).

Zoom Signing Algorithm: The construction of the Zoom Signing algorithm ZSign =
(ZSign.KGen, ZSign.Sign, ZSign.Vrfy) is depicted in Figure 6.1.

e The key generation algorithm ZSign.KGen simply generates and outputs a DS key pair.

!The Zoom white-paper [53] states that the user identifiers uid are assigned by servers and the hardware
identifiers hid are randomly sampled. Based on this, we assume that they are unique in practice.
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ZSign.KGen: ZSign.Sign(skzsign, ctxt, m): ZSign.Vrfy(pkzsign, 0, ctxt, m):
1 (Pkzsign, skzsign) < DS.KGen() 5 m/ « Hy(ctxt) || Hi(m) 6 m' + Hy(ctxt) || Hi(m)
2 return (pkzsig,, skzsign) 4 o0 < DS.Sign(skzsign,m’) 7 return DS.Vrfy(pkzsig,, m',0)

5 return o

Figure 6.1: The Zoom-Signing algorithm ZSign. Zoom instantiates H; with SHA256 and DS
with EADSA over Ed25519.

ZBox.KGen(): ZBox.Dec(skBgyy, PkSpoy, Ctxth, , CtXtcipher, Meta, ¢):
1 (pkzgoxs SkzBox) <~ ECDH 10 Parse (¢/,nonce) < ¢
2 return (pkypey, kzBox) 11 K’ skBgq, - pk%Box

s R
ZBox.Enc(skZgoy, PAZBoxs CEXtH, , CtXtcipher, Meta, m): ., o Ha (K", ctxty,)
3 nonce < {0,1}!

13 h <+ Hl(CtXtCipher) || H1(Meta)
14 m <+ AEAD.Dec(K, nonce, h,c’)

15 require m # L

4 K sh3goc Phgoc

5 K« Ho(K', ctxtp,)

6 h < Hi(ctxtcipher) || Hi(Meta)
7 ¢ < AEAD.Enc(K, nonce, h, m)

8 ¢+ (c,nonce)

16 return m

9 return c

Figure 6.2: The Zoom-Box algorithm ZBox. We have that | = 192, and the underlying function
Hi denotes SHA256. The function He denotes HKDF (using an empty salt parameter). ECDH
is performed on Curve25519. “” denotes scalar multiplication. The AEAD is instantiated with
xchacha20poly1305.

e The signing algorithm ZSign.Sign inputs a secret key skzsign, a context ctxt, and a message
m. The ZSign.Sign first computes the hash function H; over respective context ctxt and
message m, followed by concatenating them. Then, the ZSign.Sign computes and outputs

the signature of the concatenation using DS upon the input secret key skzsign.

e The verification ZSign.Vrfy algorithm inputs a public key pkzs;,,, a signature o, a context
ctxt, and a message m. This ZSign.Vrfy algorithm simply computes the concatenation as
in the signing algorithm and outputs the DS verification result DS.Vrfy upon the public

key pkzsign, the signature o, and the concatenation.

Zoom Authenticated Public-Key Encryption (aka. Box) Algorithm: The Zoom
Box algorithm ZBox = (ZBox.KGen, ZBox.Enc, ZBox.Dec) is depicted in Figure 6.2.

e The key generation algorithm ZBox.KGen samples and outputs a Diffie-Hellman key pair

over an elliptic curve ECDH.

e The encryption algorithm ZBox.Enc takes as inputs a sender’s secret key sk3g.., a
receiver’s public key pkSg,,, two contexts ctxty, and Ctxtcipher, @ meta data Meta, and
a message m. It first samples a random nonce of bit length [. Next, it computes the

Diffie-Hellman exchange of sk3g,, and pk3g,,, which is combined with the context ctxty,
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and used as input to the hash function Hy for a key K. Then, it computes the header
h by concatenating H;(ctxtcipher) and Hy(Meta). The output is the nonce nonce and an

AEAD ciphertext produced from the key K, nonce nonce, data h, and message m.

e The decryption algorithm ZBox.Dec takes as input a receiver’s secret key sk?Box, a sender’s
public key pk%BOX, two contexts ctxty, and ctxtcipher, @ meta data Meta, and a ciphertext
c. This algorithm parses the nonce nonce from the ciphertext ¢, computes the key K
and the header h as in the encryption algorithm, and executes the AEAD decryption. If
the AEAD outputs a message m # L, this algorithm simply outputs this m, and aborts

otherwise.

6.5.1.2 The Zoom End-to-End Protocol

The end-to-end secure Zoom library consists of six phases following the mGKD protocol
syntax”, of which we give an overview in Figure 6.3. For domain separation, Zoom uses

hardcoded context strings (ctxty,ctxty,ctxts).

Sign Up SignUp(P): During the Sign Up phase, every party P samples an identity
public-private ZSign key pair and stores them into the long-term state stp. The party P
outputs the identity public key to the server as the sign-up message. This algorithm is

executed only once for each party, i.e., each user on each hardware device.’

Group Schedule Schedule(P,gid, gs): During the Group Schedule phase, the leader P
parses a passcode pc&9 from the input gs. The leader P sends pc&? to not only the server
as the group schedule message méigch for the access control management, but also to the

authorized participants for joining the group over out-of-band channels, e.g., email.

Register Register = (Register-L, Register-P): The Register phase enables every party P to
register for joining the meeting gid. We separate the description for Register-P (P, gid, gs, m),
where the P’ is a participant of the group gid, and for Register-L(P, gid, gs, m), where P
the leader of the group gid.

e Register-P(P’, gid, gs, m): The input message m is given by the server and should be
correctly parsed as a special mUUID string. The mUUID string is a server-generated
per-group-instance random string that the individual parties cannot control. Moreover,
the participant P’ also inputs a group secret ¢gs that can be correctly parsed as a passcode
pc&d. This algorithm first samples a public-private per-group ZBox key pair and stores
them into the state ﬂlggifj. Next, it computes Binding;iiﬁi, which is the concatenation of the

group identifier gid, server-generated random string mUUID, as well as the party P’’s

2The official Zoom white-paper [53] only sketches the re-joining mechanism informally, and does not
specify any mechanism to change leaders. We leave the analysis both functionalities to future work.

3The Zoom library also supports anonymous log-in: people without a Zoom account can also join a
group meeting as a “guest participant” (note that the guest cannot play the role of leader). Before a guest
joins a group, the Sign Up algorithm is always executed. This prevents other parties from tracing them
across meetings by noticing when a long-term key is reused [53].
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Leader P, idp = (uidp, hidp) Participant P’, idp/ = (uidps, hidp/)

SignUp(P): SignUp(P’):
S. — « . - .
{Igpn (kaSign, skzsign) <& ZSign.KGen (pk/ZSigrv s/c'ZSig") & ZSign.KGen
stp.isk < skzsign, stp.ipk < sz&gn stpr.isk 5k/ZS|gn’ stpr.ipk pk’zslgn
> . > .
Mignp = StP-iDk Mgy = Stpr.ipk
Group
Schedule ) g5,
gid, gs (over an out-of-band channel)
Register-L(P, gid, gs, m): Register-P(P’, gid, gs, m):
Parse mUUID « m, Parse (| Parse mUUID « m, Parse (|
(PkzBox: skzBox) ¢* ZBox.KGen (Pkgors SKypoe) <& ZBox.KGen
d
g'd .5k < skzBox, 7Tp -pk < pkzpoy &5k 4= skpoes ”pr -pk kaBox
Register Bmdmggld <« gid || mUUID || uidp || hidp || stp.ipk || Wg'd pk Blndlngg'd <« gid || mUUID || uldp/ | hidps || stpr.ipk || wg‘d
g'd « ZSign.Sign(stp.isk, ctxtlmedmgg'd) g‘d < ZSign.Sign(stp.isk, ctxty, Blndlng )
g'd .status < joined, ﬂ'g'd.GP <idp g‘d .status < registered
W}g',d gk <& {0,1}2°6, =¥ £ glid « 1 [Run first pass of PAKEpp (pw&) for cé,};ig‘d)]
(P.gid) _ ( gid gid -, m(E 89 ﬂg‘d k,0%,),
MReg ( -pk,op ) Server rejects if - Reg = P )
& >
msen 7 P
Join-L(P,idp/, gid, gs, m): Join-P(P’,idp, gid, gs, m):
. P’ gid) P’ gid P,gid d P’ gid .
Parse (mUUID,'mg.‘g"up,mgeeg el [ ,(, o3 )J) —m Parse (mUUID,m‘sg"Up,m&egg' )’an é"’ﬂgl >,nonce|};P ) < m
[Parse ( , pwsd) gs] , pw8d) « gs
- 7 7 - N
[Run second pass of PAKEpp (pw&9) for kéf: &) and cé?ég'd)] [Run PAKEpp (pwe') for ké,}:”g‘d)]
[HOnce{fF: < {0, 1}%r, Store klglflygid)] & « AEADpp. Dec(k(P 9, noncef., (mgignummgg,nu.:)ac%g)]
Parse ipkps < mSlgnUp’ (pk},, Uiﬁ) —m (P o0 [requlre &5 # 1, Store k(P 5“”]
Participant P.gid
ax“]:i::lpan Bmdmg""d « gid || mUUID || uidp: || hidp: || ipkps || pkg'd Parse ipkp 7"S\gnUp’ (plrg‘d g'd) «— m.( g' )
ZSign,Vrfy(ika,,GP,,ctxtl,Blndlngg'd) Blndmg < gid || mUUID || uidp || hidp || ipkp || pkg'd
Meta < gid || mUUID || uidp || uidp ZS|gn.Vrfy(zka,aP ,ctxty, Bmdmgg'd)
cg'd ®. ZBox. Enc(ﬂ'g'd sk, plcp,,ctxtz ctxts, Meta, (73 gid .gk, ﬂg‘d gkid)) Meta < gid || mUUID || uidp || uidp/
[ci',d, — AEADPPAEnC<k(P ’g'd),noncePP,(mSignUp,mgi’gnUp),ch',,)] (gk, gkid) < ZBox.Dec(r*, & sk pkg'd ctxta, ctxts, Meta, cp/)
g'd Gp & idpr, Store pkg'd g'd gk + gk, ngd gkid < gkid, 7rg‘d status < joined, Store pkg',d
idpr, c29
KeyRotat-L(P, gid, m): KeyRotat-P (P, gid, m):
require m =T
i 56 P’ gid i
Wil,d.gk <& {0,1}2°6, Tgld gkid+-+ [ g'd < AEADpp. Dec(k( &) noncef;P,, (mggnup,mgénup),cﬂd,)J
Key . gid S . gid
otation  [oreneh 7 € 707 and i £ 0 (require 7 £ 1]
cﬂi 2. ZBox. Enc(Trg'd sk, pk%d,ctxtz, ctxts, Meta, (ﬂ'%,'d.gk, ﬂ'g'd gkid)) (gk, gkid) <& ZBox. Dec(7rg‘d sk, pkg'd ctxta, ctxts, Meta, (g‘d)
noncePP < {0,1}'ep require 7rg'd gkid < gkid
[r‘% < AEADpp. Enc(lc(P &id ,nonce?P7 (mggnup,mggnup),c%d)] g‘d .gkid < gkid, 71 gk «— gk
m,((‘gogt‘d = {idp, (k,, noncely [}
Member Leave-L(P, gid,idprr): Leave-P(P’,gid,idprr):
Leave if idp/ = idp: g'd «— 1 else 71' dGp & idpr if idpr =idpr: wp, < L

Figure 6.3: Overview of the Zoom protocol and our modified ZoomPAKE protocol. The boxes
of the form denote the additions from our transformation for ZoomPAKE, i.e., which
are not in current Zoom. Note we do require any additional message flows. The boxes of the
form denote the elements that become redundant in our PAKE-based design: thus, for
ZoomPAKE, we can essentially set pc&9 to the empty string, and still obtain the same guarantees,
effectively replacing the old passcode by the new PAKE password. We recall the cryptographic
algorithms ZSign and ZBox from the Zoom library in Section 6.5.1.1.
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identifier idpr = (uid, hid), identity public key stp/ ipk, and per-group public key ngd pk.
Then, it signs the binding information Bmdmg for a signature crj%fj using ZSign.Sign

algorithm, the identity secret key stpr.isk, and a context string ctxt;. The passcode pc&
and the output register message m,(:f: &id) consisting of the per- group public key 7Tg|d pk
and the signature ap,d is sent to the server. The server adds mRe P &) 5 the “bulletin

g

board” of the group gid, if the passcode pc#¢ matches the group schedule message m(g;gch
received from the group leader, and rejects it otherwise. The status ﬂgfj.status of the

participant P’ in the group gid is set to registered.

e Register-L(P, gid, gs, m): If the party P is the leader of the group gid, P runs the same
execution as a participant except for setting the status 7Tg|d status to joined rather than
registered. Moreover, the leader P initializes the group by sampling the first group key

789 gk of bit length 256 and sets the group key index 78°.gkid to 1. The identifier idp is
added into the local party set 75°.GP.

Participants Join Join = (Join-L, Join-P): The Zoom library executes this interactive

sub-protocol between the leader P and a participant P’ only one-pass:

e Join-L(P,idp, gid, gs, m): When the leader P notices the joining request of a new par-
ticipant P’, P retrieves an incoming message m from the server and the group gid’s
“bulletin board” followed by parsing it into: (1) a server-generated randomness mUUID,

(2) the participant P"’s sign-up message mglgnup, and (3) the participant P"’s register

(

Regg'd) Next, the leader P parses the partlclpant P"’s identity public key ipk p/,

message m
per-group public key pk% P,, and per-group signature o%  from the incoming message,
followed by using them to produce the participant’s blndmg information Bmdmg%?. If
the binding information cannot pass the verification ZSign.Vrfy upon the participant’s
identity public key ipk p/, signature apfj, and the context ctxt;, then the leader aborts
and undoes the previous executions. Otherwise, the leader creates a meta data Meta by
concatenating the group identifier gid, server-generated randomness mUUID, the leader’s
user identifier uidp, and the participant’s user identifier uidp,. Finally, the leader P
encrypts the current group key 7r1g3id. gk as well as the index W%d.gkid using the ZBox.Enc
encryption algorithm and the leader P’s per-group secret key ﬂgd.sk, the participant
P"’s per-group public key W]gjifi.pk, and auxiliary information ctxt,, ctxts, and Meta. The
identifier of the participant P’ and the ZBox ciphertext c%ifj are send to P’ via the server.
The leader P stores the identifier idp of the participant P’ into the local party set

g'd .GP and stores the participant’s per-group public key pk%;'fi.

e Join-P(P',idp, gid, gs, m): When a participant P’, who registered for a group gid, receives

an incoming message m that includes (1) a server-generated randomness mUUID, (2) the
(P,gid)

Reg o and

leader P’s sign-up message mglgnup, (3) the leader P’s register message m

(4) the leader’s reply cP, P’ first parses the incoming message, creates the leader’s
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binding information, and verifies it using ZSign.Vrfy algorithm, similar to the leader’s
execution. Then, P’ also generates the meta data Meta and uses it together with its own
per-group secret key ﬂlgjifj.sk, the leader’s per-group public key pk%,id, and the contexts
ctxty and ctxts, to decrypt the ciphertext c%if’. If any error occurs during above steps, then
the participant P" aborts and undoes the previous executions. Otherwise, the participant
P’ stores the decrypted group key as well as the associated index into the per-group
state W]gaifj. gk and ijﬁi.gkid, followed by setting the status ﬂ]g;fi.status to joined. Moreover,

P’ stores the leader P’s per-group public key into the state. *

Key Rotation KeyRotat = (KeyRotat-L, KeyRotat-P): The execution of this algorithm
is distinct according to the caller P’s role: a leader or a participant. We separate the
description for KeyRotat-L(P,gid, m), where P is the leader of the group gid, and for
KeyRotat-P(P’, gid, m), where P’ is a participant of the group gid.

e KeyRotat-L(P, gid, m): The leader P of the group gid executes this algorithm without
any auxiliary incoming input, i.e., m = T. The leader P samples a new group key W]gjid. gk
of bit length 256 and increments the corresponding index ijd.gkid by 1. Similar to the
encryption during the Participant Join phase, the leader encrypts the new group key and
index for each party in its local party set W%d.GP except for himself. The output is a
ciphertext bundle that includes the identifiers of each participant and the customized

ciphertexts.

The server is expected to split the ciphertext bundles and to send each ciphertext to

the specified participant.

e KeyRotat-P(P’, gid, m): The participant P’ of the group gid first parses the incoming
message m from the server to an ZBox ciphertext ct}ggifj. Then, P" decrypts the new group
key gk and index gkid as during the Participant Join phase. If any error occurs in the
above steps or the decrypted group key index is smaller than or equal to the local one,
then the participant P’ aborts and undoes the previous executions. Otherwise, P’ simply

overwrites the local group key as well as the index by the new ones.

Member Leave Leave = (Leave-L,Leave-P): The execution of this algorithm is dis-
tinct according to the caller P’s role: a leader or a participant. We separate the de-
scription for Leave-L(P,gid,idpr), where the P is the leader of the group gid, and for
Leave-P(P’, gid,idp~), where P’ is a participant of the group gid.

4In practice, Zoom has an independent mechanism for leader P to synchronize the party set wfgid.GP
with every participant P’. We omit it here since, this does not impact Zoom security analysis in our
models.
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e Leave-L(P,gid,idpr): If idp = idpr, i.e., the leader P wants to leave the group gid, then
P erases the per-group instance W]gjid. Otherwise, the leader P notices a party P” leaving
the group gid, P simply removes the identifier of the participant idp» from the local party

set 8. GP.

e Leave-P(P' gid,idpr): If idpr = idpr, i.e., the participant P’ wants to leave the group gid,

. id . .
then P’ erases the per-group instance 7%, . Otherwise, P’ performs no action.

Instantiations. Underlying the ZSign and ZBox algorithms, the key derivation function
H; is SHA256 and Hy is HKDF algorithm (using an empty salt parameter). The length [
underlying ZBox algorithm is 192. The elliptic curve ECDH underlying Diffie-Hellman key
exchange is Curve25519. The ZSign algorithm relies DS on EADSA over Ed25519. The
AEAD algorithm is xchacha20poly1305.

6.5.2 Zoom is Sec-mGKD-pki secure

We omit the correctness analysis of the Zoom library. Below, we investigate the provable

security of the Zoom library. The proof of the following theorem is give in Section 6.9.1.

Theorem 25. Let II denote the end-to-end Zoom protocol in Section 6.5.1. Assume the
e°H°1'"res—collisz'0n resistance of the underlying Hy, the e24-<m2-EUF-CMA security of DS, the
el (1 m)-FROB security, endS<ea IND$-CCA security, and e5-522-CTI-CPA security
of the AEAD. Assume the e?éBﬂ}%DH hardness of the mn-prf-ODH problem over ECDH and
function Hy. The advantage of any PPT attacker A that breaks the Sec-mGKD-pki security

of Il is bounded by,

Sec-mGKD-pki coll-res euf-cma cti-cpa (n,m)-frob
AdVH («4) SEHl + QNEwPARTYEDS + CmaxReg INEWGROUP <€AEAD + €AEAD +

(nparty—1) mn-prf-ODH ind$-cca

CoaxReg  (Mparty — 1) (€ECDHH, T EAEAD )
where Cmaxparyy denotes the mazimal number of parties in every group, Cmaxreg denotes the
maximal number of register requests for every group, Nparry < Cmaxparty denotes the number

of parties in the set GPEYED) for tested group identifier gid and group key index gkid,

and qo denote the maximal number of the queries to any oracle O.

Proof Sketch. By the collision resistance of Hy, the DS scheme underlying ZSign algorithm
never signs two identical input. The euf-cma security of DS then ensures that all parties
obtains other parties’ honest sign-up messages in every group. Then, we consider two
cases. If A can win via the event Exauh, then we can easily guess the group identifier
éﬁi with some leader P8¢ and party P that trigger A to win with probability at least
1/ CmaxRegNuwGroup- By mn-prf-ODH security of ECDH and Hy underlying ZBox algorithm,
the key of AEAD between Pgd and P is indistinguishable from random. If A can win via
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the event Exauth, then the attacker must be able to either forge a ciphertext or a nonce of
AEAD, which breaks either the CTI-CPA security of (n, m)-FROB security of AEAD.

If A win via the event Ekp.y, then we can easily guess the group identifier é;a with
some leader P#9 and the identifier of all parties in the set G P4 £ the tested group
key index g/la:l with probability at least 1/ cmaxpartycﬁ?;’;%g1)qNEWgROUP By a sequence of
(Mparty — 1) hybrld games, we know that all keys and ciphertext of AEAD between every
participant in gld and the leader P8¢ should be indistinguishable from random due to the
mn-prf-ODH security of ECDH and Hsy and ind$-cca security of AEAD. Thus, A cannot

win via Expyiy. O

Note that H; = SHA256 provides an expected collision resistance of 128 bits [78]. The
EUF-CMA security of Ed25519 was proven in [61]. The security of xchacha20poly1305 was
discussed in [15]. The maximal number of parties per meeting is cmaxparty = 1000 [53]. The
above theorem shows that the end-to-end Zoom library provably provides Sec-mGKD-pki

security and satisfies all properties listed in Section 6.4.3.

Remark 1. Theorem 25 shows that Zoom achieves Sec-mGKD-pki independent of the

passcode: the passcode is only used implicitly for access control by honest servers.

6.5.3 Zoom is not Sec-mGKD-pw secure

Recall that the Sec-mGKD-pki model has two restrictions in Section 6.4.3. A natural

question arises whether these restrictions apply to the Sec-mGKD-pki secure Zoom library.

Does Zoom Provide Trusted PKI? The PKI is expected to “enable users of an
insecure public network such as the Internet to securely and privately exchange data
through the use of a public and a private cryptographic key pair that is obtained and shared
through a trusted authority” [174, Charpter 1]. As we mentioned in Section 6.5.1, all public
keys of all parties in the Zoom library are uploaded to an infrastructure, called “identity
management system”, that is fully controlled by Zoom. The identity management system
distributes the identity public keys. While Zoom claims the end-to-end security, the goal
of which is to protect the secrecy and integrity of the exchanged content between every two
parties against all third parties including the service providers, assuming Zoom-controlled
PKI trusted is controversial and doubtful. Considering a malicious server, the server can
easily perform the “machine-in-the-middle” attack by forging the sign-up messages and
impersonate any party towards others.

Although there do exist other group meeting providers, such as Cisco WebEx and
Skype, that employ a third-party PKI, such as Microsoft Certificate Authority (CA), we
stress that the reliability of PKI is still imperfect. Eckersley and Burns [86] revealed that

14 CAs had been compromised. Moreover, a number of attacks that successfully break
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several CAs, including DigiNotar, Comodo, GlobalSign, StartSSL, and TurkTrust, have
been publicly noticed [171]. It is prudent to consider the potential PKI compromise.

Does Zoom Provide (Implicit) Group Member Authentication? Unfortunately,
this does not hold for Zoom. Although the end-to-end Zoom library asks every leader to
create every new group together with an associated passcode, the leaders hand over the
power of passcode verification to the untrusted server. By colluding with the untrusted
server, an unauthorized (and malicious) party can join every group without the knowledge
of any passcode. The consequence is that nobody in the group (including the leader)
can distinguish authorized participants from the others, in particular, in the end-to-end

setting.

6.6 A Generic Approach to Sec-mGKD-pw Security:
Password-Protected Transformation

If we could assume that each group gid has a unique high-entropy group secret gs&< only
shared by the leader and authorized participants of the group gid, we could design a
trivial construction that meets the Sec-mGKD-pw security. We can simply use a message
authentication code MAC with the group secret ¢s& as key to sign and verify all outgoing
and incoming messages.

However, in practice we use low-entropy passwords for usability, allowing the passwords
to be shared over various out-of-band channels. For instance, real-world service providers
often support only short passwords’. This restricts the upper bound of the password
entropy and enables attackers to perform dictionary attacks on the password, e.g., by
brute force guessing.

In this section, we introduce a generic Password-Protected (PP) transformation that
provably transforms any Sec-mGKD-pki secure mGKD protocol IT to another Sec-mGKD-pw
secure II" = PP[II, PAKEpp, AEADpp| protocol by using a password-authenticated key
exchange PAKEpp and an authenticated encryption with associated data AEADpp. We
also prove that the PP transformation preserves Sec-mGKD-pki security, i.e., if II is
Sec-mGKD-pki secure, so is IT'. In this sense, 1’ satisfies stronger security Sec-mGKD-pw+,
due to Corollary 1. Finally, we illustrate how to apply our PP transformation to the Zoom
library, and provide efficient instantiations for PAKEpp and AEADpp, without causing

additional message flows.

5For instance, meeting passcodes in Zoom are 1-16 digit numeric lock codes; the default meeting
password in Cisco WebEx has > 11 characters.
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6.6.1 The Generic Transformation

The goal of our PP transformation is to ensure that only the authorized parties that
know the group secret can recover any group key, even if the server is malicious. The
high-level overview of our PP transformation is to (1) let the leader and every participant
run a PAKEpp protocol upon a new password (included in the group secret) to produce
a symmetric key kpp during the Participant Join phase, and (2) use the key kpp and an
AEADpp scheme to encrypt/decrypt the original transcript of the mGKD protocol I during
the Participant Join and Key Rotation phases. Note that every participant has to first
register for a group before joining it. To avoid introducing additional message flows, we
design our PP transformation to shift the first pass of PAKEpp to the participant’s Register

phase. We give the formal definition of our PP transformation below.

Definition 59. Let IT = (SignUp, Schedule, Register, Join, Leave, KeyRotat) denote a multi-
stage group key distribution protocol. Let PAKEpp denote a password-authenticated key
exchange scheme. Let AEADpp denote an authenticated encryption with associated data.
We define the password-protected (PP ) transformation PP[II, PAKEpp, AEADpp| that outputs
IT" = (SignUp’, Schedule’, Register’, Join’, Leave’, KeyRotat') as follows:

Sign Up SignUp'(P): Run még,y, < SignUp(P) and stores mé&g,, locally into the long-
term state stp.

Group Schedule Schedul_e'(P, gid, gs): Parse (gs&°, pwg?) < gs, run m&s ., < Schedule(P,
gid, gslg-['d), and output mggch. The full group secret gs is sent to authorized parties over

out-of-band channels.
Register Register’ = (Register-L', Register-P’): We define the sub-algorithms as follows:
e Register-L'( P, gid, gs, m): Parse (gslg-[id,pwgid) < gs, run m’ < Register-L(P, gid,
gid /
gsy ,m), and output m’.
e Register-P'(P, gid, gs, m): First, parse (gsgnid,pwgid) < gs. Neat, exvecute m' <
Register-P( P, gid, gs%id, m). Then, run the first pass of PAKEpp upon the password

P.gid P,gid
pw (Pg ) (Pg ))‘

&d for a ciphertext cp . Finally, output (m/, cpp

Participant Join Join’ = (Join-L', Join-P’): This phase consists of two steps. In either
step, if any error occurs during this algorithm, the caller P aborts and undoes the
executions. In the first step, the leader and the participant run PAKEpp until PAKEpp
outputs a key kpp.

e Join-L'(P,idps, gid, gs,m) or Join-P'(P,idp:,gid, gs, m): The caller P first parses
(gs%id, pwgid) < gs from the group secret and other necessary information for running
PAKEpp from the input message m. Then, P runs the next pass of PAKEpp on
pw8d. If the key kep is still unavailable, P directly outputs the outgoing message of

PAKEpp. Otherwise, the key kpp is stored into the per-group state W}gpid.
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If the leader and the participant have computed the key kpp before this algorithm invocation

or in the first step in this invocation, they execute the following second step.

e Join-L'(P,idp:,gid, gs,m): The leader P first parses (gs%id,pwgid) +— gs from the
group secret. If the original Join-L algorithm needs any incoming information from
the participant P’, then the leader P extracts an AEADpp ciphertext and an AEADpp
nonce from the input m. Next, the leader P decrypts the AEADpp ciphertext using
the key kpp, the AEADpp nonce, and an header consisting of both parties’ sign-up
messages, and obtains a message my. Then, the leader P extracts other necessary
information my from the input m for running m’ <= Join-L(P,idp, gid, gsgnid, my ||
my). After that, P encrypts m' using the AEADpp key kpp, a random nonce, and an
header consisting of both parties’ sign-up messages. Finally, the leader P outputs
the AEADpp ciphertext and nonce.

e Join-P'(P,idp:, gid, gs, m): The participant P first parses (gs%id,pwgid) «— gs from
the group secret. If the original Join-P algorithm needs any incoming informa-
tion from the leader P', then the participant P extracts an AEADpp ciphertext
and an AEADpp nonce from the input m. Next, the participant P decrypts the
AEADpp ciphertext using the key kpp, the AEADpp nonce, and an header con-
sisting of both parties’ sign-up messages, and obtains a message my. Then, the
participant P extracts other necessary information my from the input m for run-
ning m' < Join-P(P,idp, gid, gs%id, my || mg). After that, P encrypts m’ using the
AEAD¢pp key kpp, a random nonce, and an header consisting of both parties’ sign-up

messages. Finally, the participant P outputs the AEADpp ciphertext and nonce.

Member Leave Leave’ = (Leave-L’, Leave-P’): These algorithms are identical to the orig-
inal Leave = (Leave-L, Leave-P). Note that if a per-group state is erased, then the stored

key kpp must also be erased.

Key Rotation KeyRotat’ = (KeyRotat-L', KeyRotat-P"): We define the sub-algorithms as
follows. If any error occurs during the above execution, then the caller aborts and undoes

the executions in this invocation.

e KeyRotat-L'(P,gid, m): The leader P first runs the original mggro: <= KeyRotat-L(P,
gid, m). Then, the leader P extracts the portion cp in mgrot that is specific to
every participant P in the group gid, followed by encrypting it using the stored
corresponding AEADpp key kpp, a random nonce, and an header consisting of both
parties’ sign-up messages as in the Participant Join phase. Finally, the leader P

outputs the AEADpp ciphertext and nonce for every participant P in the group gid.
e KeyRotat-P'(P, gid, m): The participant P first extracts an AEADpp ciphertezt and

an AEADpp nonce from the input m. Next, P recovers a message my from the
AEAD&pp ciphertext using the stored corresponding AEADpp key kpp, the AEADpp
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nonce, and an header consisting of both parties’ sign-up messages as in the Partici-
pant Join phase. Then, the participant P extracts other necessary information my
from the input m for running mgro <~ KeyRotat-P(P, gid, m; || ms) and outputting

MKRot -

For brevity we omit the correctness analysis. The theorem below shows that our
PP transformation provably turns a Sec-mGKD-pki secure II into a Sec-mGKD-pw secure
IT" = PP[IT, PAKEpp, AEADpp] protocol. We give the theorem’s proof in Section 6.9.2.

Theorem 26. LetII denote a mGKD protocol. Let PAKEpp denote a password-authenticated
key exchange scheme. Let AEADpp denote an authenticated encryption with associated data
scheme. Let II' = PP[II, PAKEpp, AEADpp|. Let D = Dy X D,,, denote the distribution
of the group secrets. Assume the G\ISVAiAElEEprw -w-PAKE security of the underlying PAKEpp,
the effd -d-FROB security, engscc IND$-CCA security, and exgamy,-CTI-CPA security
of AEADpp. If there exists any PPT attacker A that breaks the Sec-mGKD-pw security of
I, then there must exist a PPT attacker B that breaks the Sec-mGKD-pki security of 11

such that
Sec-mGKD-pw w-PAKE d-frob
AdVH/ (.A) <qNewGroup (EPAKEPP,DW + €AEADpp

cti-cpa ind$-cca Sec-mGKD-pki
+ CmaxReg (€AEADS, T EAEADRS) T AdVy (B)

where Cmaxreg denotes the maximal number of register requests for every group and qo

denotes the mazrimal number of queries to any oracle O.

Proof Sketch. We can easily guess the group éia that enables A to win with probability
at least gnpwarour- Due to the w-PAKE security of the PAKEpp scheme with D,,,, we can

/7g,}a

ensure that the keys krF(,I; ) of all authorized participants P’ in the group éﬁ, which

are output by PAKEpp of and will be used for AEADpp, are random. Moreover, the key
kéﬁl’gid) produced by the leader P& of the group élT:I is either same as the one produced
by the corresponding authorized participant P’ or independently random. By Cmaxreg
hybrid games on the CTI-CPA security of AEADpp, all authorized parties P’ in the group
é}a must agree on all AEADpp ciphertexts with the leader pe, By d-frob security of
AEADpp, agreeing ciphertexts indicates that agreeing on the header, i.e., sign-up messages.
Moreover, by the ind$-cca security of AEAD AEADpp, all AEADpp ciphertexts produced by
P for any unauthorized party are indistinguishable from random and therefore leaks no
information about any group keys. Finally, if A win via the event Exauth or Expriv against

IT', then A can also win the same event against II's Sec-mGKD-pki security. n

Below, we further show that our PP transformation preserves the Sec-mGKD-pki security

of the original mGKD protocol II. We give the theorem’s proof in Section 6.9.3.
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Theorem 27. LetII denote a mGKD protocol. Let PAKEpp denote a password-authenticated
key exchange scheme. Let AEADpp denote an authenticated encryption with associated
data. Let 11" = PP[I1, PAKEpp, AEADpp|. If there exists any PPT attacker A that breaks
the Sec-mGKD-pki security of I, then there exists another PPT attacker B that breaks the
Sec-mGKD-pki security of 11 such that

AdVlS_Ie;c—mGKD—pki(A) < Adv%ec—mGKD—pki<B>

Proof Sketch. The proof can be easily given by a reduction. The attacker B can easily
simulates the real Sec-mGKD-pki game against I’ to A by sampling all passwords for all
groups and runs the PP transformation by himself. All information that B needs can be
obtained by querying its challenger. Finally, B forwards the bit output by A and wins

whenever A wins. 0

Combining these two theorems, our PP transformation provably endows a Sec-mGKD-pki
secure mGKD protocol IT with Sec-mGKD-pw security while preserving the original one,

i.e.;, Sec-mGKD-pw+ security due to Corollary 1.

6.6.2 Application to the Zoom Library

Then, we illustrate how to apply our PP transformation to the Zoom library in Section 6.5.1
by using a 2-pass PAKEpp scheme and an AEADpp scheme. We call the transformed version
ZoomPAKE and show the resulting protocol in Figure 6.3, where we use boxes to indicate
the modifications. Note that Zoom achieves Sec-mGKD-pki security without relying on
passcodes, as stated in Remark 1. The passcodes for the server’s access control underlying
Zoom are redundant in the stronger threat model, and can therefore be set to the empty
string without impacting Sec-mGKD-pw security. In the following we assume that the
passcode is set to the empty string, which amounts to replacing the passcode with the
new PAKE password computations.

The Sign Up and Member Leave phases are unchanged.

ZoomPAKE Group Schedule Phase: This algorithm is nearly identical to the original
one except that the leader sends the new password to authorized parties over an out-of-band

channel instead of sending the passcode to the server.

ZoomPAKE Register Phase: Similar to the previous, parties no longer need to send

the passcode to the server. Then, each participant P’ runs the first pass of PAKEpp on the

password pw&¢ for a ciphertext céf;'fid) and outputs both the original outgoing messages
and & -&d)
PP1 -

ZoomPAKE Participant Join Phase: Our PP transformation modifies both leaders’

and participants’ execution.
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From the leader P’s side, P firsts parses an additional PAKEpp ciphertext cE,P &9 from

the input, and uses the group secret as the password pw®?. Next, the leader P runs the
second pass of PAKEpp with necessary input for a key kéﬁl’gd and a ciphertext c,(gp 8id),
Then, P stores k,g;/’g

After that, P executes the original computation. When the ZBox encryption c%i? is derived,
kSE

) and samples a random nonce of length [pp uniformly at random.

? -d !
gid) , the random nonce noncebp, and

the header consisting both parties’ sign-up messages. The PAKEpp ciphertext c,(DP’g'd) and

the leader P further re-encrypts it using the key

the AEADpp ciphertext are output.

From the participant P"’s side, P’ first parses two more components from the input
messages: a PAKEpp ciphertext cﬁ,];:égid) and a nonce nonce,f,;. The participant P’ also uses
the group secret gs as the password pw&9. Note that the original ciphertext c%ifj is not the
one of ZBox anymore but the one of AEADpp Next, P’ runs PAKEpp for a key k(P -gid)

gid)
&Y the nonce nonceby, and

and decrypts the AEADpp ciphertext cP, using the key kPP
the header consisting of the leader P’s and the participant P"’s sign-up messages, for the
original ZBox ciphertext. If any error occurs during this step, the participant P’ simply
aborts. Otherwise, the key kb

remains the same.

' is stored locally. The remaining computation of P’

ZoomPAKE Key Rotation Join Phase: The key rotation phase is very similar to the
original one. The only difference from the leader P’s side is that P has to encrypt the ZBox
ciphertext using AEADpp for every participant P in his local party set, i.e., ids € ng. GP
and idp # id P, using the stored key kpp’g' output by PAKEpp, a independently random
nonce nonceby, the header consisting of the sign-up messages of P and P. The output
is a ciphertext bundle that includes AEADpp ciphertexts rather than the original ZBox
ciphertexts.

When receiving the AEADpp ciphertext, a participant P’ first decrypts it by using the
stored key k("84 for a ZBox ciphertext c%r. Then, P’ simply runs the original KeyRotat-P

algorithm using the new ciphertext &

Instantiation Suggestions. We suggest to instantiate the underlying PAKEpp with
CPace [101] or SPAKE2 [9] for the w-PAKE security, see Section 6.3.2. The AEADpp can be
instantiated with CAU-C4 or CAU-SIV-C4 [28] for the d-FROB security, see Section 2.2.4.

6.7 Comparison with Concurrent Work [83]

The concurrent work [83] and this paper both analyze the security of the end-to-end secure
Zoom library while having different focuses. The analysis in this paper and [83] mainly

has differences from three aspects.

1. Different Protocol Abstraction: [83] abstracts the Zoom library as a novel leader-

based continuous group key agreement with liveness (LL-CGKA) scheme, that takes the
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full “leader-participant-list” mechanism, the “heartbeat” mechanism, and liveness into
account. By this, their analysis additionally captures that all members in a group agree
on a group roster, i.e., a list including the identifiers of all group members. Moreover,

their Zoom protocol considers the change of group leader in Zoom.

However, their Zoom protocol assumes a PKI that “provides to each long-term identity id
their respective private signing key isk”, while our protocol lets every party generate their
own identity key pair, which is closer to the white-paper [53, Section 7.6]. Besides, their
Zoom protocol omits the group secret generation and distribution, which is mentioned
in [53, Section 2, Section 7.11], and therefore does not formally distinguish the roles
“participants”, i.e., the parties that are authorized for a group, from the “insiders”, i.e.,
who develop and maintain Zoom’s server infrastructure and its cloud providers. Our
protocol captures the “group secret” mechanism. Moreover, their Zoom protocol does
not include an independent key rotation phase but embed it into the member leaving
phase. However, the member leaving in Zoom does not always trigger the key rotation,
e.g., within 15 seconds of the previous member leaving [53, Section 7.6.6]. Our protocol

has an independent Key Rotation phase to capture the group key update.

. Different Security Models: The model in [83] and our Sec-mGKD-pki model respec-
tively capture the characteristic features of their LL-CGKA scheme and our mGKD

protocol. Apart from this, there are still following differences:

On the one hand, their model considers the change of group leader and rejoining a group
after leaving. Instead, our model only considers the unique leader of a group and prevent

a party from rejoining a group after leaving.

On the other hand, their model considers a globally trusted PKI that honestly distributes
the identity public keys for all parties in the world. However, our model only assumes the
honest sign-up messages distribution for any target group that will lead the attacker to
win. Moreover, the attacker in their model has to corrupt each party’s long-term private
key and all alive per-group states at the same time. Our model partitions the oracle for
state leakage into two: the corruption oracle that returns the long-term state of a party,
and the compromise oracle that returns a per-group state of a party. By this, our model
captures the fact that the leakage of a party’s per-group state in one group does not

influence the security of another alive group.

. Different Protocol Optimization: [83] improves the security of Zoom library by
importing a new “period” term. The leader in their optimization can opt not to sample
a new group key but simply ask every participant derives the next group key from their

local state. This improves the efficiency while preserving forward secrecy.

Our optimization however has a totally different focus. Our PP transformation aims to
provide the security against “insiders”, i.e., the security for authorized parties holds even
though no trusted PKI exists.
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6.8 Technical Summary

In this paper, we propose a new mGKD protocol that captures the behaviors of the Zoom
library and three associated security models: the basic Sec-mGKD-pki model considers
restricted end-to-end encrypted security assuming the existence of a trusted PKI; the
Sec-mGKD-pw model captures full end-to-end encrypted security without any trusted PKI;
and the Sec-mGKD-pw+ that combines the Sec-mGKD-pki and Sec-mGKD-pw models. We
proved that the Zoom library version 4.0 satisfies the basic Sec-mGKD-pki, but does not
provide end-to-end Sec-mGKD-pw security.

To improve the Sec-mGKD-pki security of any mGKD protocol (including the Zoom
library) to the Sec-mGKD-pw+ security, we propose a novel PP transformation that makes
use of the group secret transmitted over out-of-band channels and cryptographic primitives
PAKE and AEAD. Intuitively, to get the group keys that encrypts the real messages in the
group chat, every participant must first additionally execute PAKE with the group leader
for a shared key. This shared key is peer-wise independent: the group leader knows all
shared keys and the participant only knows the one that it produces. Whenever the leader
needs to rotate and distribute a new group key, the leader must additionally “wrap” the
original ciphertext, i.e., encrypt it using the shared keys and AEAD, and every participant
needs to first unwrap the original ciphertext in order to recover the real group keys. In
particular, the application of our PP transform to the Zoom library is very efficient in

terms of the communication rounds, as it does not cause any additional round trip time.

6.9 Full Proofs

6.9.1 Proof of Theorem 25

Proof. We give the proof of Zoom’s security in Sec-mGKD-pki as a sequence of games. Let

Adv;(A) denote the advantage of an attacker A in winning Game i.

Game 0: This game is identical to the original Sec-mGKD-pki experiment. Thus, we have
that
Advy(A) = Advprm KPR (4)

Game 1: This game is identical to Game 0, except that the challenger C let the attacker
A immediately win if there exists collision on function Hy. That is, there exists two distinct
inputs m; and my such that Hy(my) = Hy(my). By this, we ensure that there exists no
collision on the function H; in the following games. Due to the collision resistance of Hy,

we can easily have that:

Advo(A) < Advy(A) + e

Game 2: This game is identical to the Game 1 except the following modification:
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e The challenger C aborts the game if A can trigger the following event:

Event E: There exists any party P!, any party P?, and any group identifier gid such
that

— the long-term state stp1 is not corrupted before P! and P? both joined the
group gid,

— the sign-up messages, i.e., the identity public keys stpi.ipk = ipkp: of P! is
honestly delivered to P? in the Participant Join phase between P! and P? for
the group gid, and

— P! and P? have disagreement on the binding information Binding; .

By this, we ensure that in the following games, if the sign-up message of a party P! is

delivered to another party P? before the corruption of the long-term state stp: in any

group gid, then P? and P! must agree on the Binding information Binding%‘f.
Obviously, it holds that

AdV1 < AdVQ(A) + PI‘[El]

Below, we analyze the probability that A can trigger £ by reduction. If the attacker A
can trigger the event F, then we construct an attacker B; that breaks the euf-cma security
of the underlying DS scheme. The attacker B receives a public verification key vk™ and
honestly initializes Game 1. Moreover, IB; guesses the index i*of one NEWPARTY query
that will create the party P! in the event E;. Note that there are at most NEWPARTY

queries in the game. B; guesses correctly with probability at least L_ Then, B,

GNEWPARTY

honestly answers A’s queries except the following ones:

e NEWPARTY(idp): If this is the i*-th query, then B; initializes a state stp by setting
stp.id.idp. Then, C sets stp.ipk to vk™ that is given by its challenger. Finally, B,

forwards mgg,, = vk* to A and marks P as “created”.
For other queries to this oracle, B; executes them honestly.

e REGISTERAUTH(idp, gid, m): If the input party P is created via the i*-th query to the
NEWPARTY oracle, then B; honestly executes the checks. If no error occurs, B; honestly
produces its binding information Binding%faKj and send Hy(ctxty) || Hl(Binding%;ﬁ) to its DS
signing oracle. Then, B; receives a signature af;ﬁ and use it as the output of the ZSign

signature. The rest of this query is honestly executed.
For other queries to this oracle, By executes them honestly.

e REGISTERINJECT(idp, gid, gs, m): If the input party P is created via the i*-th query to the

NEWPARTY oracle and gid = éﬁ, then By honestly executes the checks. If no error occurs,
By honestly produces its binding information Binding®® and send H; (ctxt;) || H (Binding&?)

to its DS signing oracle. Then, By receives a signature Ujgjid and use it as the output of

the ZSign signature. The rest of this query is honestly executed.
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For other queries to this oracle, By executes them honestly.

e SENDJOINAUTH(idp,idp/, gid, m): If the input party P’ is created via the i*-th query
to the NEWPARTY oracle, then B; extracts the binding information Binding?j and a
signature o%;. If alga',d is not output by any REGISTERAUTH or REGISTERINJECT ora-
cle for the blndmg information Binding% but the verification DS.Vrfy(vk*, H 1(ctxty) |

H (Blndlngg'd) 0&1) = true passes, then B, immediately returns (H, (ctxt,) || H (Blndlngg'd)

cr]gg'fi) to its challenger and aborts the experiment.

In all other cases inside this query or for other queries to this oracle, B; executes them

honestly.

e SENDJOININJECT(idp,idp/, gid, gs, m): If the input party P is created via the i*-th query
to the NEWPARTY oracle, then B, extracts the binding information Bindinggi and a
signature ag'd. If algg'fj is not output by any REGISTERAUTH or REGISTERINJECT ora-
cle for the binding information Binding®¢ but the verification DS.Vrfy(vk*, H 1(ctxty) ||
H (Bmdmgg'd) 0&%) = true passes, then B, immediately returns (H, (ctxt;) || H (Bmdmgg'd)

JP,) to its challenger and aborts the experiment.

In all other cases inside this query or for other queries to this oracle, B; executes them

honestly.

e CORRUPT(idp): If the input party P is created via the i*-th query to the NEWPARTY

oracle, By aborts. Otherwise, B; honestly executes this oracle.

If the attacker A can trigger the event E; and B; guesses the oracle that creates party
P! correctly, then A must trigger the event E) before querying the CORRUPT that causes
the abortion. Moreover, there must also exist a group identifier gid and a party P? such
that

1. P? receives the honest sign-up message stp1.ipk = ipkp1 of the the party P! in the group
gid,
2. the long-term state stp:1 is not corrupted before P! and P? joined the group gid, and

3. the parties P! and P? have disagreement on P'’s binding information Binding®.

This means, B; can always win in the SENDJOINAUTH or SENDJOININJECT oracle.
Note also that the event “the attacker A can trigger event E,” and the event “B;

guesses correctly” are independent. Thus

eidema > Pr[B; wins|
> Pr[A can trigger event E; and B; guesses correctly]

> Pr[A can trigger event | - Pr[B; guesses correctly]

1
Z PI'[El] .

GNEWPARTY
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The above equation can be rewritten as:

euf-cma

Pr[E1] < gNewPartvEDs
Thus, we have that

Advi (A) < Adva(A) + qrewparryEa <™

Game 3: This game is identical to Game 2 except the at the beginning of the experiment
the challenger C guesses a group identifier gid, whose associated leader is denoted by P&,
that will lead A to win, and lets A immediately lose if the guess is wrong. By this, we

ensure that the attacker A can win only by triggering one of the events as follows:

e [In the case of event Exaun| there exists any party P’ that is authmized for the group
gid and any group key index gkid such that gkgag,idgkid) # 1 but gkg%’gkid) #+ gkgag,id’gkid),

without the violation of the freshness condition frshyocmKPPX (id p, gid, gkid), or

e [In the case of event Fgpyy| A will query TEST oracle with input (idp/, éﬁ, gkid) for some

party identifier P’ and some group key index gkid and correctly guess the challenge bit

b = b/, without violation of the freshness frshieFfHTGKD PRI (i pr éﬁ, gkid).

Note that each group must be created via NEWGROUP oracle. There are at most

gNewGrour groups in the experiment. Thus, the guess is correct with probability at least
1

gNEWGROUP

correctly in Game 3 is independent. We have that

Note that whether A wins in Game 2 and whether the challenger guesses

Adv, (.A) < qNEWGROUPAdV?)(A)

Below, we analyze the advantage that A wins in Game 3 by case distinction, i.e.,
whether A wins by triggering Fxaun in Case 1, the advantage of which is denoted by
Advgl, or by triggering Fkp,, in Case 2, the advantage of which is denoted by Adv§2
Thus, we have that

Advs(A) 1= max (Adv§" (A), AdvE2(A))

Case 1: A wins by triggering event Exaum-

In this case, due to the winning conditions and the freshness requirement, we know that
for the group identifier gid with a leader denoted by P&9, there must exist an authorized
party P’ and a group key index gkid such that:

1. gk gld gkid) 7£ | and gk gld gkid) 7& k gld gkld)
2. neither wlg;fj nor 784 is compromised,
Peid

3. the long-term states stpr and stz are not corrupted before P' and Pgd hoth joined the

group éﬁ, and
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4. the sign-up messages, i.e., the identity public keys stp/.ipk = ipkp, and st g.ipk = ipk

of P and P& both honestly arrive at the other.

peid- peid

By Game 2, it ‘must further hold that P’ and Pe&d agree on each other’s binding
information Bmdlngp, and Bmdmg ~ which include:
e the group identifier gid,
e the server-controlled randomness mUUID,

hid pz5) and (uidpr, hidpr),

both parties’ identifier (uid g,

both parties’ identity keys ipk oz and ipkp,, and

both parties’ per-group public key pkg"i and pkg'd.

gid
Game (C'1.4: This game is identical to Game 3 except the following modification:

e The challenger guesses the index of query to the REGISTERAUTH or REGISTERINJECT
oracle, which creates the per-group state ijifj in the winning event Fxauth, at the beginning

of the experiment and aborts the game if the guess is wrong.

Note that there are at most cmaxreg register queries to the group gTa via the REGISTERAUTH
or REGISTERINJECT oracles in the game. The probability that C guesses correctly is at
. Thus, we have that

least

CmaxR eg

Advgl (A) < CmaxReg'A‘de1 ("4)

Note that the challenger C will know the identifier of the party P’ in the winning event
FExauth at the time of receiving the guessed query to REGISTERAUTH or REGISTERINJECT

oracle. In the following games, we denote the party P’ in the winning event Fxauwn with P.

Game (C'1.5: This game is identical to the Game C'1.4 except the following modifications:

e At the beginning of the experiment, the challenger C samples a random K of bit length
Ih, -

e When the leader P#9 of the the group éEi needs to compute the output K of the Hash
function Hy over a Diffie-Hellman exchange key K’, which is computed by the leader’s

eid o and the party P’s public key pkg'd and a constant ctxty, in

identity private key 7rg'
Line 5 in Figure 6.2 durmg the Participant Join phase and the Key Rotation phase of P,

C replaces K with K.

e When P needs to compute the output K of the Hash function Hy over a Difﬁe Hellman
exchange key K’, which is computed by the party P’s identity private key 7T 4 sk and
the leader P#¢’s public key pkg

the Participant Join phase and the Key Rotation phase with the leader of the group gﬁa,
C replaces K with K.

o> and a constant ctxty, in Line 12 in Figure 6.2 during
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We analyze the gap between Game C'1.4 and Game ('1.5 by reduction to the hardness
of mn-prf-ODH problem over ECDH and Hs. If the attacker A can distinguish Game C'1.4
and Game (1.5, then we can construct another attacker B, that breaks mn-prf-ODH
assumption over ECDH and H,.

The attacker B, receives the ECDH parameters and U = g* for some unknown wu. Next,
By immediately issues a challenger query x* = ctxty, to its challenger and receives a tuple
(V = g¥,y*) for some unknown v. Then B, invokes A and simulates Game C'1.4 honestly,

except for answering the queries to the following oracles.

e REGISTERAUTH(idp, gid, m): If the input party P is the leader of the group é}a, ie.,
P = P&4 and the group identifier gid = gid, then B, does not sample the ZBox key
pair uniformly at random. Instead, B, replaces iji 271 pk with U = ¢g* that is given by

challenger. The rest of this query is executed honestly.

If the input party P is the participant that is guessed in Game C1.4, i.e., P = ﬁ, and
the group identifier gid = gid, then By does not sample the ZBox key pair uniformly at
random. Instead, By replaces ng.pk with V' = ¢” that is given by challenger. The rest

of this query is executed honestly.
For the other queries to this oracle, By executes them honestly.

e REGISTERINJECT(idp, gid, gs, m): If the input party P is the participant that is guessed
in Game C1.4, ie., P = ]5, and the group identifier gid = éfa, then By does not sample
the ZBox key pair uniformly at random. Instead, B replaces ng;a .pk with V = ¢" that is
given by challenger. The rest of this query is executed honestly.

For the other queries to this oracle, By executes them honestly.

e SENDJOINAUTH(idp, idp/, gid, m): If the input party P = P&j, the group identifier
gid = éia, and ZBox public key pk included in the fourth input m equals V' = ¢" that is
given by the challenger, then By does not compute the the Diffie-Hellman exchange in
Line 4 and the computation of Hy in Line 5 in Figure 6.2. Instead, B; replaces the output
of Hy with y* that is given by the challenger. The rest of this query is executed honestly.

If the input party P = Péﬁ, the group identifier gid = gAiEI, and ZBox public key pk
included in the fourth input m does not equal to V' = g" that is given by the challenger,
then By does not compute the the Diffie-Hellman exchange in Line 4 and the computation
of Hy in Line 5 in Figure 6.2. Instead, By queries its ODH, oracle with input (pk, ctxty,)
for a reply vy, followed by replacing the output of Hy with the reply y. The rest of this

query is executed honestly.

If the input party P = ﬁ, the group identifier gid = éﬁ, and ZBox public key pk included
in the third input m equals U = g“ that is given by the challenger, then B, does not

compute the the Diffie-Hellman exchange in Line 11 and the computation of Hy in Line 12
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in Figure 6.2. Instead, By replaces the output of Hy with y* that is given by the challenger.
The rest of this query is executed honestly.

For the other queries to this oracle, By executes them honestly.

e SENDJOININJECT(idp,idp/, gid, gs, m): If the input party P = 15, the group identifier
gid = éﬁ, and ZBox public key pk included in the fifth input m equals U = ¢g* that is
given by the challenger, then By does not compute the the Diffie-Hellman exchange in
Line 11 and the computation of Hy in Line 12 in Figure 6.2. Instead, B replaces the
output of Hy with y* that is given by the challenger. The rest of this query is executed
honestly.

For the other queries to this oracle, By executes them honestly.

e SENDKEYROTAT(idp, gid, m): Note that this oracle requires that the P must have
already joined the group gid. In particular, By must have already computed the output of
Hy for every communication between the leader of the group gid and the participants. In
this oracle, By does not re-compute the Diffie-Hellman exchange and the computation of
Hs. Instead, By simply reuses the corresponding values derived in the SENDJOINAUTH
or SENDJOININJECT oracles.

The rest of this oracle is executed honestly.

e COMPROMISE(idp, gid): If the first input party P = Pgd or P = P and the second input
gid = éﬁ, then By aborts.

The rest of this oracle is executed honestly.

Note that if the attacker A can trigger the winning event Exauwn without violating
the freshness condition, then neither Wif ~, nor ﬂf} is allowed to be compromised due to
the freshness condition frshkaun. This game abortion in the COMPROMISE oracle will not
happen.

If the attacker A is able to distinguish Game C'1.4 and Game C'1.5, then the attacker
By returns to 0 to its challenger if the A thinks this is Game C1.4 and 1 to its challenger
if the A thinks this is Game C'1.5.

Note that By perfectly simulates Game C'1.4 if y* = Hy(¢g", ctxty,) and Game C1.5
if y* is sampled uniformly at random. B; wins whenever 4 can distinguish the games.
Thus, we have that

Adv( (A) < Advg™ (A) + €Dt

Final Analysis for Case 1: Finally, we analyze the advantage that A can win by
triggering Fxautn. This means, there exists any group key index gkid such that

(gid gkid) (gid,gkid) (gid,gkid)
gk # 1 and gkpgia # gk 5 ,
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e P and P&¢ agree on each other’s binding information Bindingfgid and Bindingf}igﬁj in the

Participant Join phase, and

e the per-group states W%d and 7T1gjl gﬁ are not compromised.

From Game (1.5, we know that P and P89 shares the same random key K for

k gld,gkld

computing AEAD. From g # 1, we know that P must receives a AEAD nonce and

ciphertext tuple (nonce, ¢), which is decrypted to (gk%id’gkid), gkid) # (gkfggkid), gkid) for

some gkid. We consider the following four cases:

e Case 1: gk:gjgg’gkid) = 1. In this case, the leader P9 has not generated the gkid-th group
key. This mean, the tuple (nonce, ¢) must be forged by .A. Note that the AEAD header h

is known by A. If A can trigger this case, then we can easily construct an attacker B3
that breaks the CTI-CPA security of the underlying AEAD.

e Case 2: gk(g'd €4 £ | and ¢ is not produced by P8¢, Similar to the above, if A can
trigger this case, then we can easily construct an attacker Bs that breaks the CTI-CPA
security of the underlying AEAD.

o Case 3: gk g'd g4d) 2 | and ¢ is produced by P#9 but the nonce nonce is not produced by

P4 for this gk(g'd’gk'd) Let nonce$ denote the nonce produced by P#9 for this gk(g'd’gk'd)

If A can trigger thls case, we can easily construct an attacker B3 that breaks the customlzed

n, m)-FROB security of AEAD by outputting | c, IN(, nonce, h), l?, nonce&j,h .
(n, m) y y g

e Case 4: gkfégj’gkid) # 1 and (nonce, ¢) is produced by P& for this gkfggkid). This case is

impossible due to the perfect correctness.

Merging the cases analysis above, it holds that
C1 cti-cpa n,m)-frob cti-cpa frob
Advs (A) < max <€AtEAFI)37€(AEAI% ) < AtEApD + ,(AEAI%
We further have that

C1 mn-prf-ODH cti-cpa (n,m)-frob
Adv3" < CrmaxReg(€ECOHH, T €AEAD T €AEAD )

Case 2: A wins by triggering event Fxpyy-
In this case, due to the winning event Expy, and the freshness requirement frshyos m KPPk
it must hold for the guessed the group identifier gid with some leader P& and some group

key index gkid that

e b=1"V

e the group key gk(gid’gkid) is not leaked for all P such that idp € GP(ﬂ@kid),

e the short-term state 7Tgld is not compromised for all P such that idp € GP&degkid),
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paa of the leader P#d is not corrupted before all other participants
P such that idp € GPE%D) and idp £ id

e the long-term state st

pga joined the group gid,

e the long-term state stp of all participants P such that idp € GPEdekd) i ot corrupted
before P joined the group gid, and

gid,gkid)

e the sign-up messages of all parties P such that idp € GP are honestly distributed

inside the group é;a

Game (C2.4: This game is identical the Game 3 except for the following modification:

e At the beginning of the experiment, the challenger C guesses the number 7,4, of parties
in the set GPE% D) where gkid is the tested group key identifier. The challenger C

aborts if the guess is wrong.

Note that there are at most cmaxparty parties in a group simutanously. The probability that

C guesses correctly is bounded by —X—. Thus, it holds that

CmaxParty

Advg2 (.A) < CmaxPalrtyAde(lj2 ('A)

Game (2.5: This game is identical the Game (2.4 except for the following modification:

e At the beginning of the experiment, the challenger C guesses (npaty — 1) indices of the

queries REGISTERAUTH or REGISTERINJECT that create the per-group states ﬂgf for
some parties P’, where 1 < i < (npaty — 1). The challenger aborts if {P'}; are not

participants in the set GP(éE’gkid), where gkid is the tested group key identifier.

Note that there are (npaty — 1) participants in the set GPE9ed) and each per-group state
can be created in at most cmaxreg queries to the REGISTERAUTH or REGISTERINJECT

oracles. Thus, the challenger guesses correctly except for the probability m

maxReg

AdvE?(A) < e AgyC?(A)

maxReg

Note that the challenger C will know the identifier of the participants P € ( pleid.gkid)
in the winning event Expyy at the time of receiving the (npaty — 1) guessed queries to
REGISTERAUTH or REGISTERINJECT oracle. In the following games, we denote the
Nparty Participants in the winning event Expy, with P P(nparty — 1). This means,
Gpledekid) _ {idpi }; U {id g}, where gkid is the tested group key identifier.

Game (C2.6: This game is identical the Game C2.5 except for the following modification:

e At the beginning of the experiment, the challenger C samples (np,ty — 1) random string
K, ..., K(mers=1 of bit length Iy,.
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e When the leader Pg9 of the the group éEI needs to compute the output K of the Hash
function Hy over a leﬁe Hellman exchange key K', which i s computed by the leader’s
identity private key 7r ~-sk and the party P¥s public key pk for any 1 < i < (nparey — 1),
and a constant ctxtH2 in Line 5 in Figure 6.2 during the Participant Join phase and the
Key Rotation phase of 15, C replaces K with K.

e When P for any 1 < i < (npany — 1) needs to compute the output K of the Hash function
H, over a Diffie-Hellman exchange key K’, which is computed by the party P¥s identity

private key 7Tg'd sk and the leader P8’s public key pkg'd and a constant ctxty, in Line 12

gid ?

in Figure 6.2 during the Participant Join phase and the Key Rotation phase with the
leader of the group gid, C replaces K with K.

The gap between Game (2.5 and Game (2.6 can be given by a sequence of hybrid
games.
Hybrid Game 0. This game is identical to Game (2.5. Thus, we have that

Advpy.0(A) = AdvE?(A)

Hybrid Game 7, where 1 < ¢ < (npay — 1). This game is identical to Hybrid Game

(1 — 1) except the following modification

e At the beginning of the experiment, the challenger C samples a random string K' of bit
length Iy, .

e When the leader P& of the the group éEJ needs to compute the output K of the Hash
function Hy over a leﬁe Hellman exchange key K', which is computed by the leader’s
identity private key 7T ~.sk and the party P"’s public key pk:?g?,
Line 5 in Figure 6.2 durmg the Participant Join phase and the Key Rotation phase of ]3,

C replaces K with K.

and a constant ctxty, in

e When P? needs to compute the output K of the Hash function Hy over a Diffie-Hellman
exchange key K', which is computed by the party P?’s identity private key 7Tg|d sk and
the leader Pg9’s public key pkg'd
the Participant Join phase and the Key Rotation phase with the leader of the group éﬁ,
C replaces K with K.

o> and a constant ctxty, in Line 12 in Figure 6.2 during

If the attacker A can distinguish Hybrid Game (i — 1) and Hybrid Game i, then we
can easily construct an attacker B, that breaks the mn-prf-ODH security of the underlying

ECDH and H,, similar to the reduction in Game C'1.5. Thus, we can easily have that
AdVhy.i-1)(A) = Adviyi(A) + efcam
Hybrid Game (np,ty — 1). This game is identical to Game C2.6. Thus, we have that
AdVhy (10— 1) (A) = Advg?(A)

198



To sum up, it holds that

AdvE?(A) < AdVE2(A) + (pary — Degemmimn
Game (C2.7: This game is identical to Game C2.6 except the following modification:

e All ciphertexts between the leader P& and P, for every 1 < i < (npany — 1), are replaced

by random strings of the same length.

The gap between Game (2.6 and Game C2.7 can be given by (npary — 1) hybrid games,
where the i-th hybrid game replaces all ciphertexts between P&9 and P’ in the group éEI
encrypted using K' for every 1 <1i < (nparty — 1). It is easy to know that the gap between
every adjacent hybrid games can be reduced to the IND$-CCA security of the underlying
AEAD. Thus, we have that

Advg(A) < Advr(A) + (Npary — 1)emnse

Now, the attacker A obtains no information about the challenge bit b and can only

1

randomly guess. The probability that A wins is 3,

ie.,
Adv;(A) =0

We further have that

c2 (nparty—1) mn-prf-ODH ind$-cca
Advy” < CmaxParty CraxReg (Tparty — 1)(€ECDH,H2 + €ngap )

Final Analysis. By merging the statements above, the proof is concluded by,

Sec-mGKD-pki coll-res euf-cma cti-cpa (n,m)-frob
Advy (A) <ef " + qNewParty€DS ~+ CmaxReg (NEWGROUP <€AEAD + €aEAD

(Nparty—1) mn-prf-ODH ind$-cca
+ Cneg (Tparty — 1)(€ECDHH, T €AEAD )

where Cmaxparty denotes the maximal number of parties per meeting, [ = 192 denote the
length of random nonce in ZBox algorithm, and go» denote the maximal number of the

queries to any oracle O. ]

6.9.2 Proof of Theorem 26

Proof. The proof is given by a sequence of games. Let Adv;(A) denote the advantage of

an attacker A in winning Game i.

Game 0: This game is identical to the original Sec-mGKD-pw experiment. Thus, we have
that
Advg(A) = Advprr KPPV (A)

Game 1: This game is identical to the Game 0 except the following modification:
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e The challenger C guesses an group identifier éﬁi with some leader P89 that makes A win,

and aborts the game if the guess is wrong. Namely,

1. there exists any party P’ that is authorized for the group gTd and any group key

index gkid, such that gk (gid ghid) £ 1 but k(g'd gkid) £ ¢4 kS (gid #4d)  without violating

the freshness condition frsh32cmeKPP¥(id g|d, gkid).

2. b = b’ without violating the freshness condition frsh22 ™" PP (id gid, gkid), where

P, é}a, and gkid are respectively the tested party, group identifier, and group key

index.

Note that each group must be created via the NEWGROUP and that the NEWGROUP can
be queried at most NEWGROUP times. The challenger guesses correctly with probability
. Thus, we have that

at least

GNEWGROUP

Adv, < qNEWGROUPAdvl (-A)

Note that the freshness conditions frshieAcu:LGKD P¥(id pr, gid, gkid) and frshpesm KPP (g,
gld gkid) both require that the group gld is not revealed. In particular, this means that
if the challenger guesses correctly, then the attacker A cannot query the REVEAL oracle
with input é;a

Game 2: This game is identical to Game 1 except the following modifications:

e Whenever the attacker A sends queries to the SENDJOINAUTH(idp, idp/, gid, m) oracle
for some parties P and P’ and group gid = éEl and the party P is expected to derive a
key kpp of the PAKE, the challenger does the following:

— If there exists no authorized party P” # P in the group éEi such that P and P”
have the same transcript for the PAKE execution, then the challenger samples the
key kpp for the conversation between P and P’ uniformly at random instead of

computing it from PAKEpp.
— If there exists any other authorized party P” # P in the group éa such that P and

P” have the same transcript for the PAKE execution, then P” must have already
sampled the key kpp (for a conversation with some party P"”). In this case, the

challenger replaces the key kpp of P with the one of P”.

We analyze the gap between Game 1 and Game 2 by reduction to the w-PAKE
security of the PAKE scheme PAKEpp. Namely, if the attacker A can distinguish Game 1
and Game 2, then we can construct an attacker B that breaks the w-PAKE security of the
PAKE scheme PAKEpp. The attacker B; simulates Game 1 honestly except for answering

the following oracles:
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e NEWGROUP(idp, gid) if gid = él\(/j By samples gs from the distribution Dy and runs
the méigch Schedule(P g|d gsg'd) of TI rather than Schedule’ of TI' for an associated
outgoing message mGsch Then, B; marks the group gid as “created” and “valid” and

marks P as the leader of the group gid and “authorized”. Finally, B; returns mGSCh to A.

e REGISTERAUTH(idp, gid, m) if gid = gld and idp # id,g: By aborts if this oracle has
been queried on the same tuple (idp, gld), or gld is not marked as created and valid,
or the party P is not authorlzed for the group gld Otherwise, B first simply runs

& Register-P(P, gid, gs&9, m), where ¢s8° is the group secret of protocol II. Then,
81 sends queries SENDPAKE(U (7, éﬁ) €) to its challenger and receives a reply C(Pg'd).

Finally, B; forwards the tuple (m/, c,(f;g'd ) to A.

e SENDJOINAUTH(idp, idp/, gid, m) if gid = élT:I B, first checks

— whether é;a is marked as created and valid,

— whether P is authorized for this group éii,

— whether both parties P and P’ have been created and registered for this group,
— whether either P or P’ is the leader of the group gAia,

— whether the leader of the group, either P or P’, has joined the group, and that the
other party hasn’t joined the group yet.

If any of the check fails, By directly returns L to A. Otherwise, B; behaviors differently
depending on whether the P in the group gid has produced a key kpp of PAKEpp during

the communication with P’.

— If P has not produced the PAKEpp key in the communication with P’ in the group
éﬁ, then B; first extracts a valid input message m; for running PAKEpp from
the input message m. Then, By sends queries SENDPAKE(U(idP@j), my) to its
challenger and receives a reply cpp. Finally, B; checks whether PAKEpp is expected
to output a key. If so, B; further queries TESTPAKE(U(dr ’g%)) to its challenger
and uses the reply kpp as the output key of PAKEpp.

— If the key kpp of PAKEpp is produced, then B; first extracts an input message my
for running Join-L or Join-P algorithm of II (depending whether P is the leader or a
participant of the group gAla) from the input message m. Next, By runs ¢ < Join-L(P,
idp, gid, gs%m, my) if P is the leader of the group gid or ¢ <& Join-P(P,idp, gid, gsgl?,
my) if P is a participant, where gs%Kj is the group secret of the protocol II. Then, B;
encrypts ¢ using AEADpp under the key kpp, a random nonce noncepp, an header

consisting the sign-up messages of both P and P’ for a ciphertext ¢.

Finally, B; returns cpp and ¢’ that are computed from above steps.

e REVEAL(gid) if gid = éEi B, simply aborts the game.
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Note that if A wins, then A cannot violate the freshness condition and therefore never
queries the REVEAL oracle upon éEi Thus, the game abortion never happens. B; perfectly
simulates Game 1 if the challenge bit of the w-PAKE game is 0 and Game 2 if the
challenge bit of the w-PAKE game is 1. If A can distinguish Game 1 and Game 2, then
B can also distinguish the challenge bit of the w-PAKE security game. Thus, we have that

Advi(A) < Advy(A) + Pakts D,
Game 3: This game is identical to Game 2 except the following modifications:
e The challenger C aborts the game if there exists a participant P’ such that

— P’ is authorized for the group éﬁ and successfully completed the PAKEpp execution
when joining the group éﬁ,

— P’ successfully decrypts an AEADpp ciphertext that is not output by peid during
the Participant Join phase or Key Rotation phase, and

— the per-group state of P’ and P#d in the group éEi are not compromised.

Recall that the key kpp of the authorized party P’ for the group ga is sampled random
uniformly at random. If P’ can successfully decrypt an AEADpp ciphertext that is not
output by peid during the Participant Join phase or Key Rotation phase, then this means
A can forge an AEADpp ciphertext for the key kpp of P’ and P#d and further breaks
the CTI-CPA security of the underlying AEADpp scheme. Thus, we can easily construct
another attacker By that breaks the CTI-CPA security of AEADpp by invoking A. Note
that there are at most cmaxreg participants in the group éEi The reduction B, can simply
guesses the index of the register request of P’, which is correct with probability at least

L and honestly simulates Game 2 to A. Note that A cannot query COMPROMISE

CmaxReg

oracle upon (idp/,éﬁ) or (id pg, éEi) By can perfectly simulates Game 2 to A and win

whenever A can make the forgery. Thus, it holds that

Adva(A) < Adv3(A) + CraxRegEAEnsne
Game 4: This game is identical to Game 3 except the following modifications:
e The challenger C aborts the game if there exists a participant P’ such that:

— P’ is authorized for the group gAl(/j and successfully completed the Participant Join
phase in the group gid,

— P’ and P#9 have disagreement on sign-up messages of P’ and P&’, and

— the per-group state of P’ and Pgd in the group é?(/j are not compromised.
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Recall in Game 3 that we ensure that the authorized participant P’ must agree on all
received AEADpp ciphertext with the leader Péﬁ, in particular, during the Participan Join
phase in the group é;a If P’ and P&< have disagreement on sign-up messages of P’ and
Péﬁ, which are the header for encrypting and decrypting the AEADpp ciphertext, then
we can easily construct an B, that breaks the d-frob security of the underlying AEADpp

scheme. Thus, we can easily have that

Advs(A) < Advy(A) + eafib

In particular, this game ensures that for all participant P’ that is authorized for the
group é;a and successfully completed the Participant Join phase in the group é}a, if the
per-group state of P’ and Pgd in the group éEI are not compromised, then the participant
P’ and the leader P9 must agree on the each other’s sign-up messages. In other words,
the sign-up messages mgiup and m&,,, of P4 and P’ must be honestly delivered to the
other.

Below, we analyze the advantage that A wins in Game 4 by case distinction, i.e.,
whether A wins by triggering Exaun in Case 1, the advantage of which is denoted by
Advfl, or by triggering Fkp., in Case 2, the advantage of which is denoted by Advf2
Thus, we have that

Advi(A) = max (AdvE™ (4), Adv{?(A))

Case 1: A wins by triggering event Exaum-

Final Analysis of Case 1. In this case, A wins by triggering event Ekauh. This
means, there exists any party P’ that is authorized for the group gid and any group key
index gkid, such that gk(gid’gkid) % 1 but k(g'd glid) % g k(g'd gkid) , without violating the

freshness condition frshyocmeK®" pW(|dp/7 gid, gkld).

Recall that frshyecmKPP (i, gid, gkid) holds if and only if
1. the per-group states W}gjga and ﬂ%@ are not compromised,
2. the long-term states stz and stp: are not corrupted before Pgd and P! joined the group
gid, and
3. the group éEi is not revealed.

Recall also that the freshness condition frshie/f;ﬂGKD'pki(id o, gid, gkid) holds if and only

if

gld

1. the per-group states 89 and Tp, are not compromised,

peid

2. the long-term states stz and stp: are not corrupted before Pgd and P’ joined the group

éﬁi, and
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3. the sign-up messages mgggiiup and mggnup of Pg4 and P’ are honestly delivered to the
other.

In Game 4, we ensure that the the sign-up messages mg’fg‘iup and mggnup of Pg9 and
P’ are honestly delivered to the other if

1. the party P’ is authorized for the group é;a completed the Participant Join phase in the
group gid,
2. the per-group states Wf)i :E and ngj are not compromised,

Thus, if the freshness condition frsh22™ PP (id gid, gkid) holds, then the freshness
condition frshecmeKPPK (i, gid, gkid) must also hold.

Below, we prove that if A can win via the event Exauh against I, then we can construct
another attacker B3 that breaks the Sec-mGKD-pki security of II via the event Exaun by

invoking A. B3 answers the queries from A as follows:

e NEWPARTY(idp): Bz simply forwards this query to its challenger and the reply to A.

e NEWGROUP(idp, gid): Bs simply forwards this query to its challenger and the reply to

A. Moreover, B; samples a random pw&? from the distribution D,,, for the group gid.
e AUTH(gid,idp): B3 simply forwards this query to its challenger.

e REGISTERAUTH(idp, gid, m): Bs simply forwards this query to its challenger for a reply
c. If P is not the leader of the group gid, then B3 additionally runs the first pass of
PAKEpp upon pw& and returns ¢ together with the outgoing message of PAKEpp to A.

e REGISTERINJECT(idp, gid, gs, m): Bs parses gs into two portions (gsy, pw). Next, Bs
simply forwards the query REGISTERINJECT(idp, gid, gsy;, m) to its challenger for a reply
c. If P is not the leader of the group gid, then Bs additionally runs the first pass of
PAKEpp upon pw and returns ¢ together with the outgoing message of PAKEpp to A.

e SENDJOINAUTH(idp,idp/, gid, m): We consider two cases: For the first case that gid = éia,

we consider the following two steps:

— If the party P of the group gid has not derived the key kpp, then Bs runs the next
pass of PAKEpp upon necessary information from the input message m and the
password pw®9. If the party P of the group gid now is expected to derive the key
kpp of PAKEpp and there is no other party P” in the group é;a that has the same
transcript of PAKEpp as P, then Bj replaces it by a random key of the same length.

If the party P of the group gid now is expected to derive the key kpp of PAKEpp
and there is a party P” in the group gid that has the same transcript of PAKEpp as
P, then Bj replaces the key of P with the one of P”.
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— If the party P of the group gid now has derived the key kpp, then Bj first checks
P agrees on the party P’’s sign-up message mgi,gnup. If not, then B3 simply aborts.
Otherwise, B3 checks whether m should include an AEADpp ciphertext. If so,
Bs decrypts the AEADpp ciphertext using the random key kpp and other neces-
sary information from the input m for a message m;. Then, B3 sends the query
SENDJOINAUTH(idp, idpr, gid, my) to its challenger for a reply my. After that, if my
is not an empty string, then B3 encrypts my using AEADpp upon the random key

kpp, a random nonce, an header consisting the sign-up messages of P and P'.

Finally, Bs forwards all outgoing messages in this algorithm to A.

For the second case that gid # éEl, we consider the following two steps:

— If the party P of the group gid has not derived the key kpp, then Bs runs the next
pass of PAKEpp upon necessary information from the input message m and the
password pw&d.

— If the party P of the group gid now has derived the key kpp, then Bs checks whether
m should include an AEADpp ciphertext. If so, By decrypts the AEADpp ciphertext
using the key kpp and other necessary information from the input m for a message
my. Then, B3 sends the query SENDJOINAUTH(idp, idp/, gid, my) to its challenger
for a reply my. After that, if my is not an empty string, then B3 encrypts my
using AEADpp upon the key kpp, a random nonce, an header consisting the sign-up

messages of P and P’.

Finally, Bs forwards all outgoing messages in this algorithm to .A.

e SENDJOININJECT(idp, idpr, gid, gs, m): Bs parses gs into two portion gs;; and pw. We

consider the following two steps:

— If the party P of the group gid has not derived the key kpp, then Bs runs the next
pass of PAKEpp upon necessary information from the input message m and the
password pw.

— If the party P of the group gid now has derived the key kpp, then Bs checks whether
m should include an AEADpp ciphertext. If so, By decrypts the AEADpp ciphertext
using the key kpp and other necessary information from the input m for a message m; .
Then, B; sends the query SENDJOININJECT(idp, idp/, gid, sy, my) to its challenger
for a reply msy. After that, if my is not an empty string, then B3 encrypts my
using AEADpp upon the key kpp, a random nonce, an header consisting the sign-up

messages included in m.

Finally, Bs forwards all outgoing messages in this algorithm to .A.
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e SENDLEAVE(idp, gid, idp/): B3 simply forwards this query to its challenger. If a per-group

state ™ needs to be erased, then Bjs also erases the corresponding PAKEpp secrets of .

e ENDGROUP(gid): B simply forwards this query to its challenger. If the leader’s per-
group state m needs to be erased, then B3 also erases the corresponding PAKEpp secrets

of 7.

e SENDKEYROTAT(idp, gid, m): We consider two cases:

— If P is the leader in the group gid, then B first queries SENDKEYROTAT(idp, gid, m)
to its challenger for a reply c. Then, B3 extracts the portion ¢y in ¢ that is
specific to every participant P in the group gid, followed by encrypting it using the
corresponding AEADpp key kpp, a random nonce, and an header that is same as the
one in the corresponding Participant Join phase. Finally, B3 outputs the AEADpp
ciphertext and nonce for every participant P in the group gid. If any error occurs
during the above execution, then B3 aborts and undoes the above executions.

— If P is a participant in the group gid, then B3 first extracts an AEADpp ciphertext
and an AEADpp nonce from the input m. Next, B3 recovers a message m; from the
AEADpp ciphertext using the corresponding AEADpp key kpp, the AEADpp nonce,
and an header that is same as the one in the corresponding Participant Join phase.
Then, B3 extracts other necessary information ms, from the input m for querying
SENDKEYROTAT(idp, gid, my || my) returns the reply mggrot to A. If any error

occurs during the above execution, then B3 aborts and undoes the above executions.

e CORRUPT(idp): B3 simply forwards this query to its challenger and the reply to A.

e COMPROMISE(idp, gid): Bs forwards this query to its challenger. If the reply is not
L, then Bj3 forwards the reply together with the key kpp of P in the group gid to A.
Otherwise, Bz simply returns L to A.

e LEAK(idp, gid, gkid): Bz simply forwards this query to its challenger and the reply to .A.

e REVEAL(gid): B; forwards this query to its challenger. Then, B; forwards the reply
together with the password pw&? to A.

e TEST(idp, gid, gkid): Bz simply forwards this query to its challenger and the reply to .A.
Note that B3 perfectly simulates Game 4 to A. If A can trigger the event Exauh against

IT', then Bs can also trigger the event Fxaun against II. Recall that if the freshness condition
frshﬁf;'tTLGKD‘pW(idp/7gid, gkid) holds, then the freshness condition frshﬁfﬁGKD"pki(idp/,gid,

gkid) must also hold. Thus, if A can win the game against II' by triggering the event
Exauth, then B3 can also win the game against II by triggering Ekautn. We have that

Adel(A) < AdVIS_Iec—mGKD—pki(B3)
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Case 2: A wins by triggering event Exp,.

Game (2.5: This game is identical to Game 4 except the following modifications:

e Whenever the challenger needs to let the leader peid compute a AEADpp ciphertext for
a participant P’, where idp/ € Wif ~.GP but P’ is unauthorized for the group éii, the
challenger replaces this AEADpp ciphertext by a random ciphertext of the same length.

Recall in Game 2 that we have the key kpp computed by all authorized parties P
in the group éEi be uniformly at random. This in particular means that all keys kpp
generated by the leader P for all participants P’, which are unauthorized for the group
éﬁi, are random. Note also that the leader must be in the party set id g € (p(Eid.gkid)
for all gkid unless the group ends. Thus for all party P’ and group key index gkid, the
short-term state ﬂ% must not be compromised, if frshf(e,f;iTGKD'pW(id o, gid, gkid) holds.
Then, we analyze the gap between Game 4 and Game (2.5 by n hybrid games, where n
denotes the number of register requests sent by unauthorized party. Obviously, it holds
that n < CmaxReg-

Hybrid Game 0. This game is identical to Game 4. Thus, we have that
Advpy.0(A) = Advi?(A)

Hybrid Game ¢, where 1 < i < n. This game is identical to Hybrid Game (i — 1)

except the following modifications:

e Whenever the challenger needs to sample a random key kpp in a query SENDJOINAUTH(idp,
idp/, gid, m), where P = P& P’ is the unauthorized party that sends the i-th register
request, and gid = gid, the challenger do not sample this key but mark this key as kjp.

e Whenever the challenger needs to compute an AEADpp ciphertext that is encrypted upon
the key kip, the challenger first checks whether a ciphertext has been produced upon the
same input. If such ciphertext exists, then the challenger simply reuses this ciphertext.

If not, then the challenger samples a ciphertext of the same length uniformly at random.

If the attacker A can distinguish Hybrid Game (i — 1) and Hybrid Game i, then we
can easily construct an attacker B, that breaks the IND$-CCA security of the underlying
AEADpp. Thus, we can easily have that

Adviy(i-1)(A) = Adviy.i(A) + eREase
Hybrid Game n. This game is identical to Game C2.5. Thus, we have that
Advpy..(A) = AdvE?(A)

To sum up, it holds that
Adv{?(A) < Advg?(A) + nengase

Cc2 ind$-
< AdV5 (A) + CmaxRegEEEABT:?:
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Final Analysis Of Case 2. Now, we prove that A cannot win by triggering the events

Expriv by reduction. If the attacker A can win against I1’ by triggering Ekpyiv, the we can

construct another attacker Bs that breaks the Sec-mGKD-pki security of II by triggering

the event Fxpq,. The attacker Bs honestly simulates Game C2.5 to A except for the

following modifications:

NEWPARTY(idp): Bs simply forwards this query to its challenger and the reply to A.

NEWGROUP(idp, gid): B; simply forwards this query to its challenger and the reply to

A. Moreover, Bs samples a random pw&? from the distribution D,,, for the group gid.
AuTH(gid, idp): Bs simply forwards this query to its challenger.

REGISTERAUTH(idp, gid, m): Bs simply forwards this query to its challenger for a reply
c. If P is not the leader of the group gid, then Bs additionally runs the first pass of
PAKEpp upon pw®? and returns c together with the outgoing message of PAKEpp to A.

REGISTERINJECT(idp, gid, gs, m): We consider two case:

— Ifgid = gAia, then Bs first sends a query CORRUPT(idp) to its challenger. Afterwards,

Bs honestly runs Register-P’( P, gid, gs, m) by himself.

— If gid # éi:l, then Bs parses gs into two portions (gsy, pw). Next, Bs simply forwards

the query REGISTERINJECT(idp, gid, gsy;, m) to its challenger for a reply c¢. Then
Bs runs the first pass of PAKEpp upon pw and returns ¢ together with the outgoing
message of PAKEpp to A.

e SENDJOINAUTH(idp, idp/, gid, m): We consider two cases: For the first case that gid = éﬁ,

we consider the following two steps:

— If the party P of the group gid has not derived the key kpp, then By runs the next

pass of PAKEpp upon necessary information from the input message m and the
password pw&9. If the party P of the group gid now is expected to derive the key
kpp of PAKEpp and there is no other party P” in the group éEi that has the same
transcript of PAKEpp as P, then Bj replaces it by a random key of the same length.

If the party P of the group gid now is expected to derive the key kpp of PAKEpp
and there is a party P” in the group gAla that has the same transcript of PAKEpp as
P, then Bj replaces the key of P with the one of P”.

If the party P of the group gid now has derived the key kpp, then Bs first checks
whether P’ is authorized for the group gid or not. If P’ is authorized for the
group gid, then Bjs further checks whether P agrees on the party P’’s sign-up
message mgi,gnup. If not, then Bs simply aborts. Otherwise, Bs checks whether
m should include an AEADpp ciphertext. If so, this AEADpp ciphertext must be
encrypted by the party P’ from some message m;. Then, Bs simply sends the query

208



SENDJOINAUTH(idp, idpr, gid, my) to its challenger for a reply my. After that, if my
is not an empty string, then Bs encrypts my using AEADpp upon the random key

kpp, a random nonce, an header consisting the sign-up messages of P and P'.

If P’ is unauthorized for the group gid and this invocation needs to outputs some
AEADpp ciphertext, Bs simply samples the AEADpp ciphertext randomly. If idps
is expected to be added in to the set ﬂfjga.GP, B does not add idps into this set.
Instead, B; marks it as “fake”.

Finally, Bs forwards all outgoing messages in this algorithm to .A.

For the second case that gid # éﬁ:l, we consider the following two steps:

— If the party P of the group gid has not derived the key kpp, then Bs runs the next
pass of PAKEpp upon necessary information from the input message m and the
password pw8&d.

— If the party P of the group gid now has derived the key kpp, then By checks whether
m should include an AEADpp ciphertext. If so, Bs decrypts the AEADpp ciphertext
using the key kpp and other necessary information from the input m for a message
my. Then, Bs sends the query SENDJOINAUTH(idp, idp/, gid, my) to its challenger
for a reply my. After that, if my is not an empty string, then B encrypts my
using AEADpp upon the key kpp, a random nonce, an header consisting the sign-up

messages of P and P’.

Finally, Bs forwards all outgoing messages in this algorithm to A.

e SENDJOININJECT(idp, idpr, gid, gs, m): We consider two cases. For the first case that
gid = gid, Bs simply computes Join-P(P, idp:, gid, gs, m) by himself.

For the second case that gid # é}a, Bs parses gs into two portion gsy; and pw. Then, we

consider the following two steps:

— If the party P of the group gid has not derived the key kpp, then Bs runs the next
pass of PAKEpp upon necessary information from the input message m and the
password pw.

— If the party P of the group gid now has derived the key kpp, then Bs checks whether
m should include an AEADpp ciphertext. If so, By decrypts the AEADpp ciphertext
using the key kpp and other necessary information from the input m for a message m; .
Then, Bs sends the query SENDJOININJECT(idp, idpr, gid, gsy, my1) to its challenger
for a reply my. After that, if my is not an empty string, then Bs encrypts my
using AEADpp upon the key kpp, a random nonce, an header consisting the sign-up

messages included in m.

Finally, Bs forwards all outgoing messages in this algorithm to \A.
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e SENDLEAVE(idp, gid,idp/): We consider two cases: For the first case that gid = gAia, we

further consider the following three sub-cases:

— If idp = id .5 and P’ is unauthorized for the group éEi and marked as “fake”, then

B removes the mark “fake” on P’
— If P is marked as “fake”, then B5 executes Leave-P(P,gid,idp/) by himself.
— For all other queries, B; forwards them to its challenger and the reply to A.

For the second case that gid # éﬁ, Bs simply forwards this query to its challenger. If
a per-group state m needs to be erased, then Bj also erases the corresponding PAKEpp

secrets of .

e ENDGROUP(gid): We consider the following two case: For the first case that gid = 5{17
if there exists no party P’ that is still marked as “fake”, then By forwards this query to

its challenger. Otherwise, Bs aborts.

For the second case that gid # éﬁi, Bs simply forwards this query to its challenger. If
the leader’s per-group state m needs to be erased, then B5 also erases the corresponding
PAKEpp secrets of .

e SENDKEYROTAT(idp, gid, m) We consider two cases: For the first case that gid = éﬁi,

we further consider following three cases:

— If P is the leader in the group gid, then B first queries SENDKEYROTAT(idp, gid, m)
to its challenger for a reply c. Then, B; extracts the portion ¢y in ¢ that is
specific to every participant P in the group gid, followed by encrypting it using the
corresponding AEADpp key kpp, a random nonce, and an header that is same as the
one in the corresponding Participant Join phase. Moreover, for every party P’ that
is marked as “fake”, Bs also samples a random AEADpp ciphertext and a random
nonce. Finally, Bs outputs all above AEADpp ciphertexts and nonces. If any error
occurs during the above execution, then Bs aborts and undoes the above executions.

— If P is an authorized participant in the group gid, then Bj first extracts an
AEADpp ciphertext and an AEADpp nonce from the input m. If this AEADpp
is not produced by the leader for some message m;, then Bs aborts. Other-
wise, B5 extracts other necessary information my from the input m for querying
SENDKEYROTAT(idp, gid, my || my) returns the reply mggrot to A. If any error
occurs during the above execution, then Bs aborts and undoes the above executions.

— If P is an unauthorized participant in the group gid, then Bs executes KeyRotat-P(P,
gid, m) by himself.

For the second case that gid # é}a, we further consider following two sub-cases:
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— If P is the leader in the group gid, then B; first queries SENDKEYROTAT(idp, gid, m)
to its challenger for a reply c. Then, B; extracts the portion ¢ in ¢ that is
specific to every participant P in the group gid, followed by encrypting it using the
corresponding AEADpp key kpp, a random nonce, and an header that is same as the
one in the corresponding Participant Join phase. Finally, B5 outputs the AEADpp
ciphertext and nonce for every participant P in the group gid. If any error occurs

during the above execution, then Bs aborts and undoes the above executions.

— If P is a participant in the group gid, then Bj; first extracts an AEADpp ciphertext
and an AEADpp nonce from the input m. Next, Bs recovers a message m; from the
AEADpp ciphertext using the corresponding AEADpp key kpp, the AEADpp nonce,
and an header that is same as the one in the corresponding Participant Join phase.
Then, Bj extracts other necessary information ms, from the input m for querying
SENDKEYROTAT(idp, gid, m; || my) returns the reply mggrot to A. If any error

occurs during the above execution, then Bs aborts and undoes the above executions.

e CORRUPT(idp): Bs simply forwards this query to its challenger and the reply to .A.

e COMPROMISE(idp, gid): We consider the following two cases. For the first case that

gid = gAiZi, we further consider the following two sub-cases:

— If P is an authorized party for the group gid, then B; forwards this query to its
challenger. If the reply is not L, then Bs forwards the reply together with the key
kpp of P in the group gid to A. Otherwise, B5 simply returns L to A.

— If P is an unauthorized party for the group gid, then B5 must create w;%id by himself.

In this case, Bs simply returns ngaid to A.

For the second case that gid # éﬁ, Bs forwards this query to its challenger. If the reply
is not L, then Bj forwards the reply together with the key kpp of P in the group gid to
A. Otherwise, Bs simply returns L to A.

e LEAK(idp, gid, gkid): We consider the following two cases. For the first case that gid = 5(/1,

we further consider the following two cases:

— If P is an authorized party for the group gid, then B simply forwards this query to
its challenger and the reply to A.
— If P is an unauthorized party for the group gid, then Bs must create gk%id’gkid) by

himself. In this case, Bs simply returns gk%id’gkid) to A.

For the second case that gid # éﬁ, Bs simply forwards this query to its challenger and
the reply to A.

e REVEAL(gid): Bs forwards this query to its challenger. Then, Bs forwards the reply
together with the password pw&? to A.
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e TEST(idp, gid, gkid): Bs simply forwards this query to its challenger and the reply to .A.

Note that By perfectly simulates Game C2.5 to A. Besides, By simulates the behaviors
of all unauthorized parties in the group éEi by himself. Thus, the parties in the group
éﬁ in the Sec-mGKD-pw experiment between Bs and its challenger are identical to the
authorized parties in the group gAla in the Sec-mGKD-pki experiment between A and Bs.

Note in Game 4 that we ensure that the sign-up messages are honestly distributed
between the leader and authorized participants P € GPELED) £ the tested group gf;Ei and
group key index gkid. Thus, for the tested party P’, the tested group éEI, and the tested

group key index gkid, if A can trigger Ekpny without violating the freshness condition

frshposmMCKDPY (i 1, gid, gkid), then B can also trigger Expr, by outputting the same b’ as
A, without violating the freshness condition frsh>=-"*PPXi(id , gid, gkid). It holds that

AdV5C2(A) < Advls_[ec—mGKD—pki(B5)

Final Analysis Of The Full Proof. By merging the statements above, if A can
break the Sec-mGKD-pw security of II', then there exists an attacker B that breaks the
Sec-mGKD-pki security of II, such that

Sec-mGKD-pw w-PAKE d-frob
Advy, (A) <qnewcrour (EPAKEPP,Dpw + €AEADpp

cti-cpa ind$-cca Sec-mGKD-pki
+ CmaxReg (EAEADR, T EAEADRS) T AdVEy (B)

6.9.3 Proof of Theorem 27

Proof. The proof is given by reduction. If there exists any PPT attacker A that breaks the
Sec-mGKD-pki of I, then we construct an attacker B that breaks the Sec-mGKD-pki of II.
The attacker B initializes the Sec-mGKD-pki experiment and answers A’s oracle queries as

follows:
e NEWPARTY(idp): B simply forwards this query to its challenger and then forwards the
reply to A.

e NEWGROUP(idp, gid): B forwards this query to its challenger. Then, B samples a

password pw&? from the distribution D,,, and associate the password with the group gid.
e AUTH(gid,idp): B simply forwards this query to its challenger.

e REGISTERAUTH(idp, gid, m): B forwards this query to its challenger for a reply ¢;. If P
is the leader of the group gid, B simply returns ¢;. Otherwise, B runs the first pass of
PAKEpp upon the password pw&? for a ciphertext c,. Finally, B returns (ci, c;) to A.
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e REGISTERINJECT(idp, gid, gs, m): B first parses gs into two portions gs; and pw. Next,
B sends query REGISTERINJECT(idp, gid, gsy;, m) to its challenger for a reply ¢;. Then,
B runs the first pass of PAKEpp upon the password pw for a ciphertext cy. Finally, B

returns (¢, c2) to A.
e SENDJOINAUTH(idp, idp/, gid, m): We consider two steps.

The first step is executed if the party P has not output the key kpp of the PAKEpp with
P’ in the group gid. B first extracts necessary information from the input m and runs
the next pass of PAKEpp upon pw&9. If the key kpp is available, B remembers this key
for both parties P and P’ in the group gid. Otherwise, B simply outputs the outgoing
message of PAKEpp.

The second step is executed if the party P has already output the key kpp of the PAKEpp
with P’ in the group gid. B first checks whether the input m includes any AEADpp
ciphertext and the AEADpp nonce. If so, B first decrypts it using the key kpp, the
AEADpp nonce, the header consisting both P and P’’s sign-up messages, for a message
my. Otherwise, the message m, is set to empty string T. Then, B sends the query
SENDJOINAUTH(idp, idpr, gid, my) to its challenger for a reply my. Finally, B encrypts
the message my using the key kpp, a random nonce, the header consisting both P and

P"’s sign-up messages, for a ciphertext.

The ciphertexts of AEADpp and optionally the one of PAKEpp (if available) are returned
to A.

e SENDJOININJECT(idp, idpr, gid, gs, m): B first parses gs into two portions gs; and pw.

Then, we consider two steps.

The first step is executed if the party P has not output the key kpp of the PAKEpp with
P’ in the group gid. B first extracts necessary information from the input m and runs
the next pass of PAKEpp upon pw. If the key kpp is available, B remembers this key
for both parties P and P’ in the group gid. Otherwise, B simply outputs the outgoing
message of PAKEpp.

The second step is executed if the party P has already output the key kpp of the
PAKEpp with P’ in the group gid. B first checks whether the input m includes any
AEADpp ciphertext and the AEADpp nonce. If so, B first decrypts it using the key
kpp, the AEADpp nonce, the header consisting both P and P’’s sign-up messages, for a
message my. Otherwise, the message m; is set to empty string T. Then, B sends the
query SENDJOININJECT(idp, idpr, gid, gsy, mq) to its challenger for a reply my. Finally,
B encrypts the message my using the key kpp, a random nonce, the header consisting

both P and P’’s sign-up messages, for a ciphertext.

The ciphertexts of AEADpp and optionally the one of PAKEpp (if available) are returned
to A.
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e SENDLEAVE(idp, gid,idp/): B forwards this query to its challenger. If idp = idp/, then
B also removes the key kpp of the party P generated in the Participant Join phase for
Pjoining the group gid. If P is the leader of the group gid, then B removes the key kpp
of the party P generated in the Participant Join phase for P’ the group gid.

e ENDGROUP(gid): B forwards this query to its challenger. Then B also removes all
remaining keys kpp of the leader of the group gid.

e SENDKEYROTAT(idp, gid, m): If P is the leader of the group gid, then B forwards this
query to its challenger for a reply c. Then, the B extracts the portion cp in ¢ that is
specific to every participant P in the group gid, followed by encrypting it using the stored
corresponding AEADpp key kpp, a random nonce, and an header consisting of the leader
P and the participant P’ sign-up messages as in the Participant Join phase. Finally, B
outputs the AEADpp ciphertext and nonce for every participant P in the group gid. If
any error occurs during the above execution, then the leader P aborts and undoes the

above executions.

Otherwise, P is the participant of the group gid. B first extracts an AEADpp ciphertext
and an AEADpp nonce from the input m. Next, B recovers a message m; from the
AEADpp ciphertext using the stored corresponding AEADpp key kpp, the AEADpp nonce,
and an header consisting of the participant P’s and the leader’s sign-up messages as
in the Participant Join phase. Then, B extracts other necessary information my from
the input m for querying SENDKEYROTAT(P, gid, m; || mz) to its challenger. Finally,
B forwards the reply from the challenger to A. If any error occurs during the above

execution, then the participant P aborts and undoes the above executions.

e CORRUPT(idp): B simply forwards this query to its challenger and then forwards the
reply to A.

e COMPROMISE(idp, gid): B simply forwards this query to its challenger for a state 7.
Then, B forwards 7 together with all keys kpp of party P for the group gid to A.

e LEAK(idp, gid, gkid): B simply forwards this query to its challenger and then forwards
the reply to A.

e REVEAL(gid): B simply forwards this query to its challenger for a group secret gsy.
Then, B forwards the group secret gsy; together with the password pw& to A.

e TEST(idp, gid, gkid): B simply forwards this query to its challenger and then forwards
the reply to A.

It is easy to know that B perfectly simulates Sec-mGKD-pki experiment to .4 and wins
if A wins. The proof is concluded by

Sec-mGKD-pki Sec-mGKD-pki
Adv] ek (A) < Adv, ckp (B)
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Chapter 7

Trade-off Areas in Secure Messaging
Design

This chapter is based on the paper:

Cas Cremers and Mang Zhao, “Secure Messaging with Strong Compromise Resilience,
Temporal Privacy, and Immediate Decryption”, in 2024 IEEE Symposium on Security and
Privacy (SP), San Francisco, CA, US, 2024.

This paper was joint work with my supervisor Cas Cremers. [ lead the research on
this paper and the substantial contributions in this chapter are my own. My co-author

principally contributed to the initial conception of the work and the final write up of the

paper.
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7.1 Introduction

Driven by the global uptake of the Signal protocol, which has been widely deployed in
many messaging applications worldwide by virtue of its high efficiency and strong security
guarantees, there have been many advances in the theory and design of messaging protocols
with desirable efficiency and security properties during the last decade. We highlight three

of these properties.

(i) Immediate Decryption with Constant-Size Overhead: This property, which is
essential for practical messaging apps and was formally studied by Alwen et al. [12], requires
that the recipients can decrypt every message at the time of arrival, irrespective of the arrival
of prior messages. Conventional messaging solutions reuse a static encryption/decryption
key pair during every two-party conversation (aka. session). However, the leakage of the
private decryption keys indicates the loss of privacy of all messages in the past and/or
future. Two basic security properties are formalized for modern messaging protocols:
forward secrecy (FS) and post-compromise security (PCS) [73]. While FS requires the
privacy of past messages prior to the state expose, PCS enables the parties to recover from
state exposure. Common modern messaging solutions obtain strong security guarantees
by making their encryption keys dependent in some way on all previously sent messages.
However, in realistic messaging settings, messages can arrive out-of-order or may be lost
forever. If message n arrives before message n — 1, it cannot be decrypted until message
n — 1 arrives; and if it never arrives, communications become stuck. In theory, this can be
naively solved by appending all previous ciphertexts to the next message sent. In practice,
this naive solution is unusable, as practical applications require constant-size overhead for
messages. The Signal protocol is a pioneering example in the domain of messaging with

relatively strong security and immediate decryption with constant overhead.

(ii) Temporal Privacy: State compromise does not cause loss of privacy of messages
sent prior to a time interval and can be healed after every time interval. Pijnenburg and
Péttering [153] first observe that the immediate decryption restricts FS by definition: an
attacker that intercepts a message and corrupts the receiver in the future can always
compromise this message. To solve this, [153] proposes a time-based BOOM protocol that
expires old keys and updates new keys after a specific time interval. Intuitively, this solves
the restricted FS problem as attackers cannot corrupt the expired keys that have been
erased from the state. However, every party in BOOM obtains the partner’s latest public
key only when receiving the partner’s latest message. If two parties do not frequently
exchange messages, the restricted FS problem remains. A trivial fix is to force every party
to frequently send “empty messages” for key updates. However, due to the key-updatable
framework underlying BOOM, this solution potentially yields linearly growing bandwidth.
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The original Signal protocol satisfies a similar temporal privacy property but only
for new conversations. Conceptually, the Signal protocol defines the initial Fxtended
Triple-Diffie-Hellman (X3DH) asynchronous key exchange [138] and the Double Ratchet
(DR) [152] for the subsequent message exchanges. Note that the X3DH key establishment
uses the combination of public/private keys with different lifetimes, i.e., long-term, medium-
term, and one-time. Even if all previous keys are compromised, the privacy of new
conversations can still be recovered if the honest recipients upload their new medium-term
keys. Conversely, the privacy of all past conversations under a certain medium-term key

holds if that key is not leaked, even if other keys are leaked.

(iii) Resilience against Fine-Grained State Compromise: The compromise of
senders’ and recipients’ state does not cause loss of privacy and authenticity, respectively.
Modern secure messaging protocols like Signal [75] have been fundamentally designed to
be resilient against a weak form of state compromise: The state is healed from compromise
after a back-and-forth interaction, i.e., PCS. However, Alwen et al. [12] notice that such
state compromise resilience of Signal is very coarse rather than “fine-grained”: corruption
of the state of either party in a conversation will cause the loss of both privacy and
authenticity, since the privacy and authenticity of messages depend on a symmetric secret
that is present in both parties’ states. It is however possible to achieve the stronger notion
of resilience against fine-grained compromise by breaking this symmetry: in the literature,
a number of “optimal-secure” protocols [85, 118, 122, 153, 154] provably achieve such

resilience against fine-grained compromise.

Challenges: Perhaps surprisingly, while each of the above properties have been studied
in isolation, there currently exists no provably secure protocol that simultaneously offers
the above three desirable properties.

Alwen et al. [12] generalize DR of Signal to a new SM protocol, based on which another
TR protocol [50] is proposed with slightly stronger security. However, the original Signal,
SM, and TR all satisfy immediate decryption with constant-size overhead but lack the
resilience against fine-grained state compromise. To the best of our knowledge, the BOOM
protocol [153] is the only known protocol that provides the temporal privacy. Moreover,
similar to other “optimal-secure” protocols [85, 118, 122, 154] in the literature, the BOOM
protocol also provides a flavor of very strong security guarantee (we call it “ID-optimal”)
that includes the resilience against fine-grained state compromise. However, all these
optimally secure protocols lack immediate decryption with constant-size overhead. We

summarize the situation for related provably secure protocols in Figure 7.1.

Contributions: Our main contribution is the first provably secure messaging protocol
with immediate decryption and constant-size overhead, temporal privacy, and resilience

against fine-grained state compromise. To this end, we introduce a related new strong
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Protocols with
Immediate Decryption
with Constant-size Overhead

SM [12], TR [50]*

Protocols with
Resilience against
Fine-Grained State
Compromise

Protocols with
Temporal Privacy

“ID-optimal” secure
BOOM [153]

“optimal” [118, 154],
“almost-optimal” []ZQ]Jr
“sub-optimal” [85]

Figure 7.1: Comparison between this work and other existing protocols with provable security
properties w.r.t. (i) immediate decryption with constant-size overhead, (ii) temporal privacy, and
(iii) resilience against fine-grained state compromise. All constructions in the diagram (including
this work) are PQ-compatible except for the ones marked with f,

security notion called Extended-Secure-Messaging (eSM). We show that the eSM notion
covers above strong properties and prove that our protocol meets it, in particular, in the
PQ setting.

Furthermore, to show that our protocol is a suitable PQ-secure candidate for the DR
in Signal, which is provably offline deniable, we extend the offline deniability definition
for SPQR [63] (currently the only provably secure PQ-asynchronous key establishment)
to the multi-stage setting. We prove that the combination of our eSM-secure protocol
and SPQR is offline deniable, making it the first full messaging protocol that is provably
offline deniable in the PQ setting.

Overview: We give background and related work in Section 7.2. We recall related
cryptographic primitives in Section 7.3. We propose our new eSM syntax and security
notion in Section 7.4. We propose our concrete protocol that is provably eSM-secure
in Section 7.5, and show its offline-deniability when combined with SPQR in Section 7.6.
For interested readers, we review related designs ACD19 and TR protocols in Section 7.7
and messaging protocols with various optimal security in Section 7.8. We compare our
eSM security model with SM model in Section 7.9. We compare our eSM construction
with ACD19 and TR protocols in Section 7.10. We provide the full proofs of our theorems

in Section 7.11.
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7.2 Background and Related Work

7.2.1 Instant Messaging Protocols and Immediate Decryption
with Constant-Size Overhead

The Signal protocol provably offers strong security guarantees, such as forward secrecy
and post-compromise security [72, 75|, and offline deniability [175]. Moreover, Signal has
several features that are critical for large-scale real-world deployment, such as message-
loss resilience and immediate decryption. Roughly speaking, message-loss resilience and
immediate decryption enable the receiver to decrypt a legitimate message immediately
after it is received, even when some messages arrive out-of-order or are permanently lost by
the network. Notably, the Signal protocol provides the above properties with constant-size
overhead.

The core Signal protocol consists of two components: the Fxtended Triple-Diffie-
Hellman (X3DH) initial key exchange and the Double Ratchet (DR) for subsequent message
transmissions. Alwen et al. [12] introduce the notion of Secure Messaging (SM), which
is a syntax and associated security notion that generalizes the security of Signal’s DR.
Alwen et al. also provide a concrete construction and prove that it is SM-secure. This
construction is not explicitly named in [12]: in this work, we will refer to it as ACD19.

To the best of our knowledge, in addition to ACD19, the only known provably secure
protocol that provides immediate decryption with constant-size overhead is the Triple
Ratchet (TR) protocol [50]. However, the TR protocol is neither PQ-secure nor resilient
against the fine-grained state compromise. We review the ACD19 and TR in details
in Section 7.7. For the interested readers, we also compare ACD19 and TR with our

protocol in Section 7.10.

7.2.2 Secure Messaging Protocols and Strong Security Guaran-
tees

Alwen et al. [12] observe that the ACD19 protocol lacks resilience against fine-grained
state compromise, because both encryption and decryption of a message in ACD19 uses
the shared state of both parties in a conversation. The corruption of the shared state of
either party immediately compromises the subsequent messages, no matter whether the
corrupted party is the sender or receiver. To reduce the impact of state exposure, the
authors also describe a second security notion for secure messaging, called PKSM, and a
corresponding construction, which we call ACD19-PK. At a very high level, ACD19-PK
extends ACD19 by encrypt-then-signing the output of the original SM protocol using a
public key encryption (PKE) and a digital signature (DS). Intuitively, ACD19-PK reduces
the impact of state compromise, since the attacker can neither recover the output of SM

protocol (and further the real message) from the PKE ciphertext without knowing the
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recipient’s decryption key, nor forge a valid ciphertext without knowing the sender’s signing
key. However, the main focus of [12] are SM and ACD19: for ACD19-PK, neither a formal
security model nor a concrete proof is given; thus, its security is essentially conjectured.

In a parallel line of research, several messaging protocols have been proposed to meet
various strong or even “optimal” security [19, 36, 85, 118, 122, 153, 154]. They follow
different ratcheting frameworks aiming at various flavors of security, notably, all of which
capture resilience against fine-grained compromise. Unfortunately, none of them provides
immediate decryption with constant-size overhead, due to their key-update or state-update
structures.

In particular, [153] observes that a protocol satisfying immediate decryption can only
achieve a weak form of forward secrecy: an attacker that intercepts a message and corrupts
the receiver in the future can always compromise this message. To solve this, [153] proposes
a novel strong security model, which we call “ID-optimal”, and a time-based BOOM
protocol that periodically expires old keys and updates new keys. By this, neither the
receiver nor an attacker who corrupts the receiver’s state can decrypt a message that was
encrypted under an expired key. The efficiency and security can be balanced by picking
a reasonable time interval for key update and expiration. However, we find that the
BOOM protocol has two constraints: On the one hand, every party in BOOM obtains the
partner’s latest public key only at the time of receiving the partner’s latest message. If
the message exchange between two parties are not frequent, then the restricted forward
secrecy problem remains. On the other hand, the BOOM protocol also makes use of a
complicated key-update mechanism and therefore provides immediate decryption with
linearly growing bandwidth.

We review protocols that meet various “optimal” security in Section 7.8.

7.2.3 Offline Deniability and Post-Quantum Security

The property of offline deniability prevents a judge from deciding whether an honest user
has participated in a conversation even when other participants try to frame them. The
formal definition of offline deniability originates from [80] and [175] in the simulation-based
models respectively for the authenticated key exchange (AKE) and full messaging protocols.
These works also prove that several well-known classical AKE constructions, such as MQV,
HMQV, 3DH, and X3DH, and the full Signal protocol are offline deniable.

Constructing PQ secure asynchronous key establishments is surprisingly complicated.
There are a number of key establishment protocols [65, 81, 172, 173] that are potential
candidates for PQ security. However, all of their security proofs rely on either the
random oracle model or novel tailored assumptions, which are still not well-studied in
the PQ setting. Hashimoto et al. [106] propose the first PQ secure key establishment
but unfortunately have to assume that every party can pre-upload inexhaustible one-time

keys for full asynchronicity. A subsequent work by Brendel et al. [63] proposed a new
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PQ asynchronous deniable authenticated key exchange (DAKE) protocol, called SPQR,
and a new game-based offline deniability notion. Brendel et al. prove that SPQR is offline
deniable in the game-based paradigm against quantum (semi-honest) attackers.

To the best of our knowledge, SPQR is the only known PQ secure key establishment
with full asynchronicity. Although it is straightforward that the combination of SPQR
and ACD19 can form a PQ-secure full messaging protocol with promising privacy and
authenticity, it is still an open question which flavors of offline deniability can be provably

obtained for the combined protocols in the PQ setting.

7.3 Additional Preliminaries

We recall the DAKE scheme and its offline deniability notion from [63].

7.3.1 The DAKE scheme

Definition 60. An asynchronous deniable authenticated key exchange (DAKE) protocol ¥
is a tuple of algorithms 3 = (X.1dKGen, 3.PreKGen, 3.EpKGen, 3.Run, ¥.Fake) as defined

below.

e (Long-term) identity key generation (ipk,, ik,) < X.1dKGen(): outputs the identity
public/private key pair of a party u.

e (Medium-term) pre-key generation (prepkird,preki?d) < 3.PreKGen(): outputs the
ind-th public/private key pair of a party u.

e (Ephemeral) key generation (epk k ) < Y.EpKGen(): outputs the ind-th pub-
lic/private key pair of user u

e Session execution (7', m') <> ¥.Run(ik,, ﬁ'fq E;’;ﬁ, /jg;epk 7, m): inputs a party u’s
long-term private key ik,, a list of u’s private pre- keys Lok , lists of long-term and

medium-term public keys for all honest parties Ea,, and Eg,T,EPk, a session state w, and

an incoming message m, and outputs an updated session state ©' and a (possibly empty)
outgoing message m'. To set up the session sending the first message, 3.Run is called

with a distinguished message m = create.

e Fake algorithm (K,T) & X.Fake(ipk,, ik, EW, ind): inputs one party u’s long-term
identity public key ipk,,, the other party v’s long-term identity private key ik,, a list of

v’s private pre-keys Eﬁmk, and an index of party v’s pre-key ind and generates a session

key K and a transcript T' of a protocol interaction between them.

The session state 7 includes following variables (we only recall the ones related to the

offline deniability):
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Exprd;";ip’,m,qS (A): Session-Start(sid, rid, ind):

Dk Aprenk 14 ifb=0
1 Lan, Lo L 0 )
f - 15 Tyid-role <— resp, myd.Stexec <— running
2 for u € [gp
16 Tsid-role <— init, 7gd.Stexec <— running

3 Eﬂrq — 0
4 (ipk,,ik,) < ¥.1dKGen() T
— 18 (mly, m') <& E.Run(iksid,ﬁgzje LLAE LR g, m)

s L2 E Tk, all 2 %all
19 (K, T) & (nly.K, (m,m"))

£prek ﬁzpik Eprepk

17 (mlgsm) <& S.Run(ikng, L5y, LA7, LI 744, (create, ind))

all

6 Lai é (Mu7%u)

20 else
7 forind € fgu] 2 (K, T) & S.Fake(ipkag, fora, £27F ,ind)
8 (Wfd’m'u"d) <= X.PreKGen() 22 return (K,T)
9 L & preky, L0 & prephy”
10 Lai - (prepk,,, prek,,)
11 b {0,1}

12 b/ <i Ao(ﬁa")

13 return [b = b']

Figure 7.2: The offline deniability experiment for an attacker A against a DAKE scheme . The
oracle O := {Session-Start}.

e role € {init, resp}: the role of the party. The initiator init and the responder resp

indicate the message sender and receiver in the DAKE, respectively.

o ste.c € {L,running, accepted, reject}: The status of this session’s execution. The status
is initialized with L and turns to running when the session starts. The status is set to

accept if the DAKE is executed without errors and reject otherwise.

7.3.2 The game-based offline deniability experiment

The game-based offline deniability experiment Exprdzf;L7qM7qs(A) for a DAKE protocol ¥ is
depicted in Figure 7.2, where gp, gm, and ¢s respectively denotes the maximal number
of parties, of (medium-term) pre-keys per party, and of total sessions. At the start of
this experiment, long-term identity and medium-term pre- public/private key pairs are
generated for all ¢gp honest parties and provided to the attacker'. A random challenge bit
b is fixed for the duration of the experiment. The attacker is given repeated access to a
Session-Start oracle which takes as input two party identifiers sid and rid and a pre-key
index ind. If b is 0, then the Session-Start oracle will generate an honest transcript of an
interaction between sid and rid using the ».Run algorithm and each party’s secret keys. If
b is 1, then the Session-Start oracle will generate a simulated transcript of an interaction
between sid and rid using the >.Fake algorithm. At the end of the experiment, the attacker
outputs a guess b’ of b. The experiment outputs 1 if b’ = b and 0 otherwise. The attacker’s
advantage in the deniability game is the absolute value of the difference between % and

the probability the experiment outputs 1.

IThe attacker here can be considered as a judge in reality.
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Definition 61. An asynchronous DAKE protocol 3 is (t, €, gs)-deniable (with respect to
mazximal number of parties gp and pre-keys per party qu ) if for any attacker A with running
time at most t and making at most gs many queries (to its Session-Start oracle), we have
that

3,9p,qm,qs

AdV%eni(-A) — }Pr[EXprdeni (A)=1] - %| <e

where Exprden (A) is defined in Figure 7.2.

%,qp,qM,9s

7.4 Extended Secure Messaging

In this section, we first define our new extended secure messaging (€SM) scheme in Sec-
tion 7.4.1, followed by the expected security properties in Section 7.4.2. Then, we define
an associated strong security model (eSM) in Section 7.4.3. Finally in Section 7.4.4, we
modularize the eSM security into three simplified security models, which can ease our final

security proof.

7.4.1 Syntax

Definition 62. Let ZSS denote the space of the initial shared secrets between two parties.
An extended secure messaging (eSM) scheme consists of sixz algorithms eSM = (IdKGen,
PreKGen, elnit-A, elnit-B, eSend, eRev), where

(ipk, ik) < 1dKGen() outputs an long-term identity public-private key pair,

(prepk, prek) <= PreKGen() outputs a medium-term public-private pre-key pair,

sty < elnit-A(iss) (resp. sty < elnit-B(iss) ) inputs an initial shared secret iss € ZSS

and outputs a session state,

(st',c) < eSend(st, ipk, prepk, m) inputs a state st, a long-term identity public key ipk,
a medium-term public prekey prepk, and a message m, and outputs a new state and a

ciphertext, and

(st',t,i, m) < eRev(st, ik, prek, c) inputs a state st, a long-term identity private key ik,
a medium-term private key prek, and a ciphertext c, and outputs a new state, an epoch

number, a message index, and a message.

Our eSM re-uses two important concepts epoch and message index that originate
in [12].
Epoch. The epoch t is used to describe how many back-and-forth interactions in a
two-party communication channel (aka. session) have been processed. Let t, and g
respectively denote the epoch counters of parties A and B in a session. Both epoch counters
start from 0. If either party P € {A, B} switches the actions, i.e., from sending to receiving

or from receiving to sending messages, then the counter tp is incremented by 1. In this
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paper, we use even epochs (fy,tg = 0,2,4,...) to denote the scenario where B acts as the
sender and A acts as the receiver, and odd epochs in reverse. In each epoch, the sender can
send arbitrarily many messages in a sequence. The difference between the two counters t,

and tg is never greater than 1, i.e., |ty — t5] < 1.

Message Indices. The message index 7 identifies the index of a message in each epoch.
Notably, the epoch number ¢ and message index ¢ output by eRcv indicate the position of
the decrypted message m during the communication. The receiver is expected to recover

the position of each decrypted message even if it is delivered out of order.

. fgce my with (¢,1) = (0,1) B?b_ 0
AT T, with (4,4) = (0,2) B

© mg with (¢,i) = (0,3)
=1 my with (¢,7) = (1,1) =1

Figure 7.3: An example session between Alice and Bob. The session starts with ¢, =t = 0, i.e.,
Bob is the sender. When Bob continuously sends messages, the message index grows from 1 for
my to 3 for m3g. When Alice switches the role from receiver to sender, the epoch increases to
ty =1tg = 1.

7.4.2 Strong Security Properties

The eSM schemes aim at following strong security properties. First, we expect our eSM to

meet well-studied basic properties below:

1. Correctness: The messages exchanged between two parties are recovered in the correct

order, if no attacker manipulates the underlying transmissions.

2. Immediate decryption (ID) and message-loss resilience (MLR): Messages must
be decrypted to the correct position as soon as they arrive; the loss of some messages

does not prevent subsequent interaction.

3. Forward secrecy (FS): All messages that have been sent and received prior to a

session state compromise of either party (or both) remain secure to an attacker.
4. Post-compromise security (PCS): The parties can recover from session state com-
promise (assuming the access to fresh randomness) when the attacker is passive.
Second, our eSM targets the following advanced security against fine-grained compromise.
5. Strong authenticity: The attacker cannot modify the messages in transmission or
inject new ones, unless the sender’s session state is compromised.

6. Strong privacy: If both parties’ states are uncompromised, the attacker obtains
no information about the messages sent. Assuming both parties have access to fresh
randomness, strong privacy also holds unless the receiver’s session state, private identity

key, and corresponding private pre-key all are compromised.
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7. Randomness leakage /failures: While both parties’ session states are uncompromised,
all above security properties (in particular, including strong authenticity and strong
privacy) except PCS hold even if the attacker completely controls the parties’ local

randomness. That is, good randomness is only required for PCS.

Finally, our eSM also pursues two new security properties:

8. State compromise/failures: While the sender’s randomness quality is good and
the receiver’s private identity key or pre-key is not leaked, the privacy of the messages

holds even if both parties’ session states are corrupted.

9. Periodic privacy recovery (PPR): If the attacker is passive (i.e., does not inject
corrupted messages), the message privacy recovers from the compromise of both par-
ties” all private information after a time period (assuming each has access to fresh

randomness).

We stress that the first new property state compromise/failures has a particular impact
for the secure messaging after an insecure key establishment. For instance, consider that
the party B initializes a conversation with A using X3DH in Signal. The leakage of the
sender B’s private identity key and ephemeral randomness in X3DH implies the compromise
of the initial shared secret and further both parties’ session states in DR. If B continuously
sends messages to A without receiving a reply in Signal, all messages in the sequence are
leaked, since the attacker can use A’s session state to decrypt the ciphertexts. An eSM
protocol with the “state compromise/failures” property is able to prevent such attack.

Moreover, the second new property PPR complements the strong privacy. Assuming
the secure randomness, the strong privacy ensures the secrecy of past messages if the
corresponding private pre-keys are not leaked, while PPR ensures the secrecy of future

messages if new pre-key pairs are randomly sampled and honestly delivered to the partner.

Remark 2. The relation between PPR and PCS depends on what we take as the reference
point for PCS. The term “Post Compromise Security” was introduced in 2016 in [73],
which defines both a broader informal security guarantee as well as a specific instantiation.
PPR can be seen as a subclass of the general initial PCS notion from [73].

Owver time, follow-up works have developed more fine-grained notions of PCS, notably
instantiated for specific protocol classes. One such example is [12], whose target protocol
class closely matches ours. Compared to the PCS instantiation in [12], PPR can be regarded
as an orthogonal class of privacy that is related to time (aka. temporal privacy). Although
both the PCS instance from [12] and PPR provide healing after compromise and might look

similar, they differ in the following three aspects.

1. Different Healing Objects: While the PCS instance from [12] heals the session state

(e.g., encryption/decryption keys), and might further impact on other security guarantees
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(e.g. privacy, authenticity, etc.), PPR heals the (strong) privacy, which is a concrete

security guarantee.

. Different Healing Approaches: The PCS instance from [12] holds only when the
session states are healed. Note that (strong) privacy is expected to hold “unless the
receiver’s session state, private identity key, and corresponding private pre-key all are
compromised”. Thus, PPR might hold when some private materials other than session

states are recovered, i.e., is independent of their instance of PCS.

7.4.3 Security Model

The Eztended Secure Messaging (eSM) security game Expr'fiXeSM for an eSM scheme II

with respect to a parameter Aggy is depicted in Figure 7.4.

Notation. Our model considers the communication between two distinct parties A and
B. For a party P € {A,B}, we use —P to denote the partner, i.e., {P,-P} = {A,B}. For an
element x and a set X, we write X & for adding z in X, ie., X fre X+ XU {z}.
Similarly, we write X < z for removing x from X, i.e., X < 2 < X < X \ {z}. For a
set of tuples X and a variable y, we use X (y) to denote the subset of X, where each tuple
x includes y, i.e.,, X(y) = {xr € X |y € x}. We say y € X if there exists a tuple x € X
such that y € z, i.e., y € X & X(y) # 0.

Trust Model: We assume an authenticated channel between each party and the server
for key-update and -fetch and therefore no forgery of the public identity keys and pre-keys.
This is the common treatment in the security analyses in this domain, e.g. [75], the server
is considered to be a bulletin board, where each party can upload their own and fetch other
parties’ honest public keys. For practical deployments, we require that the key-upload
and key-fetch processes between each party and sever use fixed bandwidth and are only
executed periodically. We omit the discussion on the frequency of the pre-keys’ upload
and retrieve’.

We assume that all session-specific data is stored at the same security level in the
state, but the non-session-specific data that can be potentially shared among multiple
sessions (i.e., identity keys and pre-keys) might be stored differently. Thus, corruption
of session-specific state does not imply leakage of the private identity key and pre-key
and vice versa. In fact, as we will show later, an eSM scheme can achieve additional
privacy guarantees if the private identity keys (or pre-keys) can be stored in the secure
environment on the device, such as a Hardware Security Module (HSM).

Moreover, we also require the eSM scheme II to be natural, which is first defined for
SM in [12, Definition 7].

2As an example, we can consider a scenario where every party is only allowed to upload and fetch
public keys at 12am every day.
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Definition 63. We say an eSM scheme is natural, if the following holds:

the receiver state remains unchanged, if the message output by eRev is m = L,
the values (t,1) output by eRev can be efficiently computed from c,

if eRev has already accepted an ciphertext corresponding to the position (t,i), the next

ciphertext corresponding to the same position must be rejected,

. a party always rejects ciphertexts corresponding to an epoch in which the party does not

act as receier, and

if a party P accepts a ciphertext corresponding to an epoch t, then t < tp + 1.

eSM

Ezperiment Variables and Predicates. The security experiment Expri}a , includes

the following global variables:

safeld”, safeld € {true, false}: the boolean values indicating whether the private identity

keys are revealed.

LY, LFY: the lists that record the indices of the pre-keys that are revealed.

L5, L7 the lists that record the indices of the epochs where the session states are

corrupted.

ny, ng: the pre-key counters.

ta, tg: the epoch counters.

1a, %5: the message index counters.

trans: a set that records all ciphertexts, which are honestly encrypted but undelivered

yet, and their related information. See the helper function record for more details.

allTrans: a set that records all honest encrypted ciphertexts (including both the delivered

and undelivered ones), and their related information.

chall: a set that records all challenge ciphertexts, which are honestly encrypted but

undelivered yet, and their related information.

allChall: a set that records all challenge ciphertexts (including both the delivered and

undelivered ones), and their related information.

comp: a set that records all compromised ciphertexts, which are honestly encrypted but
not delivered yet, and their related information. A compromised ciphertext means that
the attacker can trivially forge a new ciphertext at the same position.

win®" win®™ winP™ ¢ {true, false}: the winning predicate that indicates whether the

attacker wins.

b € {0,1}: the challenge bit.
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ExpritA ., (A): Otransmit-a(ind, m, r):

. safeij,safe}gdK, LIV, LIev Lo Lo | 36 require ind < ng

> (ma,mg) < (0,0) 37 (r,flag) < sam-if-nec(r)
5 ()« A9() 38 ep-mgmt(A, flag,ind)

4 require L ¢ {safel™® safeldk 39ttt

3$ . ind .
5 require ny, ng > 1 40 (sty,c) <& eSend(sty, ipky, prepkg, m;r)

6 iss & ISS, (ty,tg), (in, i5) < (0,0) 41 record(A, norm, flag,ind, m, c)

42 return c

Obeliver-a(€):

43 require (B,ind,t,i,m,c) € trans for some

7 sty < elnit-A(iss), stg < elnit-B(iss)

8 trans, chall,comp, allChall, allTrans < ()

9 win®", win®t™ « false ind, ¢,4,m

10 bt {O, 1}, b’ & A9%() as (sty,t',i',m’) < eRev(sty, iky, preki™, )
11 winP™ « [b = b'] a5 if (¢',4',m') # (t,4,m): win®" < true
12 return (win®", win®*", win”™) a6 if (t,i,m) € chall: m' < L
Onewldkey-A(7): _ 47ty < max(ty,t'), delete(t, 7)

13 require safel® = | s return (¢, m')

14 (r,flag) < sam-if-nec(r) Ohnject-a(ind, ¢):

15 (ipky, iky) < |dKGen(r) m, ¢) ¢ trans and ind < ny

16 safel?® « [flag = good] 50 require safe-inj,(tg) and safe-inj,(t,)

17 return ipk, 51 (sta,t’,7',m’) < eRcv(sty, ikA,prekL"d,c)
ORevidKey-A' 52 if m' # Land (B, i) ¢ comp : win®™™ « true
18 safel « false, corruption-update() 53ty ¢ max(ty,t'), delete(t', ')

19 foreach (P,ind,flag,t,i,m,c) € allChall 5, return i, m')

20 require safe-chp(flag, t,ind) Ochallenge-a(ind, mq, mq, 7):

21 foreach (P,t) € trans and —safe-inj_p(t) 55 Trequire ind < 7g

22 comp & trans(P, ¢) 56 (r,flag) < sam-if-nec(r)

25 return ik, 57 ep-mgmt(4, flag,ind)

ONewPreKey-a(T): 58 require safe-chy(flag,t,,ind) and |mg| = |mq|
24 my++ 59 ip++

25 (r,flag) <= sam-if-nec(r) 60 (sta,c) <= eSend(sty, ipky, prepk®, my; )
26 (prepk, preky*) <= PreKGen(r) 61 record(A, chall, flag,ind, my, c)

27 if flag = bad : L1 &= n, 62 returnc

28 return prepk,
ORevPrekey-A(1): 63 L5 & ty, corruption-update()

i < . .
> require =T 64 require (B, ind, flag) ¢ chall or (flag = good and
30 L <, corruption-update() safeidK) or (flag = good and safeprEK(ind))
A = A

31 foreach (P,ind,flag,t,7, m,c) € allChall

55 require safe-chy(flag, ¢, ind) 65 foreach (B,t) € trans and —safe-stp(t)

+
33 foreach (P,t) € trans and —safe-inj_p(t) 66  comp < trans(B, t)

" comp & trans(P, ¢) 67 foreach (A,t,) € trans and —safe-stp(tz)

+
35 return prek} 68 comp < trans(A,ty)

69 return sty

Figure 7.4: The extended secure messaging experiment Exprf{xew for an eSM scheme II with

respect to a parameter Aesm. O1 := {ONewldKey-A» ONewldKey-B> ONewPrekey-A> ONewPrekey- } and
02 denotes all oracles. This figure only depicts the oracles for A (ending with -A). The oracles
for B are defined analogously. We highlight the difference to the SM-security game for a SM
scheme in [12] with blue color. We give more helper functions and safe predicates in Figure 7.5.
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Moreover, the experiment ExpreHSXeSM also includes four predicates as shown in Fig-

ure 7.5.

safe?®(ind): indicating whether ind-th pre-key of party P is leaked. We define it true if

ind is not included in L5.

safe-stp(t): indicating whether the state of party P at epoch t is expected to be safe.
This predicate simplifies the definition of safe-chp and safe-inj, predicates below. We
define it true if none of epochs from ¢ to (t — Aesm + 1) is included in the list £5°".

safe-chp(flag, ¢, ind): indicating whether the privacy of the message sent by P is expected
to hold, under the randomness quality flag € {good, bad}, the sending epoch ¢, and the
receiver —P’s pre-key index ind. We define it to be true if any of the following conditions
hold:

1. both parties’ states are safe at epoch ¢,
2. the partner —P’s state is safe and the randomness quality is flag = good,
3. the partner —P’s identity key is safe and the randomness quality is flag = good, or

4. the partner —P’s ind-th pre-key is safe and the randomness quality is flag = good.

e safe-injy(¢): indicating whether the authenticity at the party P’s epoch t (i.e., P is
expected not to accept a forged ciphertext corresponding to epoch ¢) holds. We define

it to be true if the partner’s state is safe at epoch ¢.

Helper Functions. To simplify the security experiment definition, we use five helper

functions as shown in Figure 7.5.

sam-if-nec(r): If r # L, this function outputs (r, bad) indicating that the randomness is
attacker-controlled. Otherwise, a new random string r is sampled from the space R*

and is output together with a flag good.

record (P, type, flag, ind, m, c): A record rec, which includes the party’s identity P, the
partner’s pre-key index ind, the randomness flag flag, the epoch counter tp, the message
index counter ip, the message m, and the ciphertext c, is added into the transcript sets
trans and allTrans. If the safe-injy(fp) predicate is false, then this record is also added
into the compromise set comp. If ¢ is a challenge ciphertext, indicated by whether

type = chall, the record rec is also added into the challenge sets chall and allChall.

ep-mgmt(P, flag,ind): When the party P enters a new epoch as the sender upon the
partner’s ind-th pre-key, the new epoch number is added to the state corruption list L5
if the safe challenge predicate is false. Then, the epoch counter tp is incremented by 1

and the message index counter 7 is set to 0.

3The randomness space R is not specific and depends on the concrete functions and algorithms. Here,

we use R only for simplicity.
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sam-if-nec(r): record(P, type, flag, ind, m, c):
70 flag < bad 74 rec + (P,ind,flag, tp,ip, m, )

P +
71 ifr=_1 75 allTrans, trans < rec

$
z <R, flag < good 76 if —safe-inj_p(tp): comp & rec

73 t fla
return (r, flag) 77 if type = chall: allChall, chall & rec

ep-mgmt(P, flag, ind): corruption-update():

78 if (P = A and tp even) or (P =B and tp odd) 82 foreach (P,ind,flag,¢,1, m,c) € allTrans
79 if —safe-chp(flag, tp,ind) 83 if —safe-chp(flag, (¢t — 1),ind)

80 L5 A | 84 L5 &

81 tp++, ip <+ 0

delete(t,4):

85 rec < (P,ind, flag, ¢,i, m, ¢) for some P,ind, flag, m, ¢

86 trans, chall,comp < rec

safegreK(ind) & ind ¢ LY

safe-stp(t) < t,(t —1),...,(t — Nesm + 1) & L5

safe-chp(flag,t,ind) < (safe—stp(t) and safe—stﬂp(t)> or (ﬂag = good and safe—stﬂp(t)) or
(flag = good and safefli() or (flag = good and safeﬂr;fK(ind)>

safe-injp(t) < safe-st_p(t)

Figure 7.5: The helping functions in extended secure messaging experiment EXPY?[S,XGSM for an

eSM scheme II with respect to a parameter Aegp. We highlight the difference to the SM-security
game for a SM scheme in [12] with blue color.

e delete(t,i): deletes all records that includes (¢,7) from the sets trans, chall, and comp.

e corruption-update(): checks all records in the allTrans list whether the safe challenge
predicates for the first messages in each epoch (still) hold or not. If it does not hold,
then adds the epoch into the corruption list.

Notably, the helper function corruption-update is invoked in the key-revealing and state-
corruption oracles to capture the impact of the leakage of any secret on the secrecy of the

(past) session states.

Ezxperiment Execution and Oracles. At the beginning of the Expr%S’XeSM security
model, the safe predicates for identity keys, the reveal and corruption lists for pre-keys
and states, and the pre-key counters are initialized. Then, the attacker is given access
to O1 = {ONewidkey-A; ONewldkey-B> ONewPrekey-A; ONewPrekey-8 } Oracles for generating both
parties’ identity keys and at least one pre-keys. A random initial shared secret iss is
sampled from the space ZSS. Then, the session states sty and sty are respectively initialized

by elnit-A and elnit-B of eSM. After initializing the epoch and message index counters, the

corr auth

sets, and the winning predicates win®" and win®"™", a challenge bit b is randomly sampled.
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The attacker is given access to all eighteen oracles and terminates the experiment by
outputting a bit b’ for evaluating the winning predicate win®". Finally, the experiment
outputs all these three winning predicates. In Figure 7.4, we only depict nine oracles with
suffix -A for party A. The oracles for party B are defined analogously.

Oracle Category 1: Identity and pre-keys. The first eight oracles are related to the
generation and the leakage of identity keys and pre-keys.

® Onewldkey-A(T); ONewldkey-8(r): Both oracles can be queried at most once. The input
random string, which is sampled when necessary, is used to produce a public-private
identity key pair by using IldKGen(r). The corresponding safety flags are set according
to whether the input » = L or not. The public key is returned.

® ONewprekey-A(T); ONewprekey-g(r): Similar to the oracles above, a public-private pre-key
pair is generated. The corresponding pre-key index is added into the list L} or L if

the input r # 1. The public key is returned.

® ORevidkey-A; ORevidkey-8: These oracles simulate the reveal of the identity private key
of a party P € {A,B}. The corresponding safe predicate is set to false. Then, the
corruption-update helper function is invoked to update whether the current and past
states are still secure or not. We require that this oracle invocation does not cause
the change of safe challenge predicate for any record in the all-challenge set allChall.
Otherwise, this oracle undoes all actions during this invocation and exits. This step
prevents the attacker from distinguishing the challenge bit by trivially revealing enough

information to decrypt the past challenge ciphertexts.

Then, all records in the transcript set trans, whose safe injection predicate turns to false,
are added into the compromise set comp. This step prevents the attacker from making

a trivial forgery by using the information leaked by the reveal of the identity key.
Finally, the corresponding private identity key is returned.

® ORevprekey-A(7), ORevprekey-8(7): These oracles simulate the reveal of the n-th private
pre-key of a party P. The input n must indicate a valid prekey counter, i.e., n < np, and
is added into the reveal list £5¥. The rest of these oracles are same as above: (1) runs
corruption-update, (2) aborts the oracles if the safe challenge predicates of any record in
the allChall set is violated, and (3) adds all records in the trans set, whose safe injection

predicate is violated, into the set comp.

Finally, the corresponding private pre-key is returned.

Oracle Category 2: State Corruption. The following two oracles allow attackers to

corrupt session states.
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® Ocorrupt-A, Ocorrupt-g: These oracles simulate the corruption of party P’s session states.
First, the current epoch counter is added to the state corruption list £5°, followed
running corruption-update to update whether this corruption impacts the safety of other
session states. Next, we require that either the set chall does not include the record
produced by the partner —P, or such a record exists but (1) the flag in the record is
good and (2) P’s identity key or P’s pre-key corresponding to the pre-key index in the
record is safe. If the requirement is not satisfied, this oracle undoes all actions in this
invocation and exits. This requirement prevents the attacker from distinguishing the
challenge bit by trivially revealing enough information to decrypt the past challenge

ciphertexts.

After that, we add all records rec € trans, which are produced by —P at an unsafe
epoch ¢, into the compromise set comp. We also add all records rec € trans, which are
produced by P at current epoch if the partner’s session at current epoch is not safe.
This requirement prevents the attacker from trivially breaking the strong authenticity

by corrupting the sender’s state and forging the corresponding undelivered messages.

Finally, the session states are returned.

Oracle Category 3: Message Transmission. The final eight oracles simulate the
honest message encryptions and the attacker’s capability of manipulating the message

transmission.

o Otransmit-a(ind, m, 1), Otransmiv-g (ind, m, r): These transmission oracles simulate the real
sending execution. The input index ind must not exceed the partner’s current pre-key
counter. The random string r is sampled when necessary. The epoch information is
updated if entering a new epoch. After incrementing the message index, the eSend
algorithm is executed using the controlled or freshly sampled randomness r to transmit
the message m upon the partner’s identity key and ind-th pre-key. After recording the

transcript, the ciphertext is returned.

¢ Ochallenge-a(ind, mg, my, 1), Ochalienge-8(ind, mg, my,7): These challenge oracles simulate
the sending execution, where the attacker tries to distinguish the encrypted message
mgo or my. These oracles are defined similar to the execution of transmission oracles
with input (ind, myp, r) for the challenge bit b € {0, 1} sampled at the beginning of the
experiment. The only difference is that the safety predicate safe-chp(flag, tp,ind) for
P € {A,B} must hold and that the input messages mg and m; must have the same length.

e Obpeiver-a(ind, ¢), Opeiiver-g(ind, ¢): These delivery oracles simulate the receiving execution
of a ciphertext generated by the honest party. This means, there must exist a record
(P,ind,t,i,m,c) in the transcript set trans. The eRcv is invoked. If the output epoch ',
message index ¢/, and decrypted message m’ does not match the one in the record, the

corr

attacker wins via the predicate win®". If the output is in the challenge set chall, the
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decrypted message m’ is set to L to prevent the attacker from trivially distinguishing the
challenge bit. After updating the epoch counter, the record is deleted from transcript
set, challenge set, and compromise set. This in particular means that the ciphertext c
is considered as a forgery after this delivery. Finally, the output epoch ', the message

index ', and the decrypted message m’ is are returned.

® Ohject-a(ind, ¢), Oinject-g(ind, ¢): These oracles simulate a party P’s receiving execution of
a ciphertext forged by the attacker. The input ind < np specifies a pre-key for running
eRcv and the input ¢ must be not produced by the partner in the transcript set. We
require that eRcv is invoked under the condition that the safety predicates safe-injy(t,)
and safe-injp(tg) both are true. If the decrypted message is not L and the ciphertext at

auth

the same position is not compromised, the attacker wins via the win®"*" predicate. The

rest of this oracle is identical to the delivery oracles.

Definition 64. An eSM scheme 11 is (t, ¢, gep, qm, Desm, €)-€SM secure if the below defined
advantage for all attackers A against the Exprﬁﬁxew experiment in Figure 7./ in time t s
bounded by

Adv‘ferSM (A) := max <Pr[ExprferSM (A) =(1,0,0)],
Pr[Exprf—EXeSM (A) = (0,1,0)],
o 1
| PriExpif, (A4) = (0,0,1)] - 5]) <«

where q, qep, and qu respectively denote the mazimal number of queries A can make, of

epochs, and of each party’s pre-keys in the ExprefixeSM experiment.

Conclusion. Finally, we explain how our eSM security captures all security properties
listed in Section 7.4.2.

e Correctness: No correctness means the encrypted message cannot be recovered correctly

and causes the winning event via Line 45.

e Immediate decryption and message-loss resilience: No immediate decryption or
message-loss resilience means that some messages cannot be recovered to the correct
position from the delivered ciphertext when the attacker invokes the transmission and

delivery oracles in an arbitrary order, which causes the winning event via Line 45.

e Forward secrecy: Note that the attacker can freely access the corruption oracles
if all challenge ciphertexts have been delivered. No FS means that the attacker can

distinguish the challenge bit from the past encrypted messages and wins via Line 11.

e Post-compromise security: Note that the states are not leaked to a passive attacker

after the owner sends a reply in a new epoch (i.e., epochs are not added into the state
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corruption list in Line 80), assuming fresh randomness and the partner’s uncorrupted

state, or identity key or pre-key, see Line 79.

No PCS indicates that a state at an epoch not in the state corruption lists might still

be corrupted, which causes the lose of other security properties.

e Strong authenticity: The attacker can inject a forged ciphertext (Line 49) that does
not correspond to a compromised ciphertext position (Line 52) if sender’s session state is
safe. Recall that a ciphertext is compromised only when the session state of the sender
is unsafe (see Line 21, 33, 65, 68, 76).

No strong authenticity means that the forged ciphertext can be decrypted to a non-_L
message when the sender is not corrupted, and further causes the winning of the attacker

via Line 52.

e Strong privacy: Note that the challenge ciphertexts must be produced without the
violation the safety predicate safe-ch in Line 58, i.e., at least one of the following
combinations are not leaked: (1) both parties’ states, (2) the encryption randomness and
the receiver’s state, (3) the encryption randomness and the receiver’s private identity
key, or (4) the encryption randomness and the receiver’s corresponding private pre-key.
Moreover, our identity key reveal oracles, pre-key reveal oracles, and state corruption
oraclesalso prevent the attacker from knowing all of the above combinations related to

any challenge ciphertext at the same time (see Line 20, 32, 64).

No strong privacy means that the attacker can distinguish the challenge bit even when
at least one of the above four combinations holds, which further causes the winning

event via Line 11.

e Randomness leakage/failures: This is ensured by the fact that all of the above

properties hold if the parties’ session states are uncompromised.

e State compromise/failures: This is ensured by the strong privacy even when both

parties’ state are corrupted, as explained above.

e Periodic privacy recovery (PPR): Note that the pre-keys can be periodically gen-
erated optionally under fresh randomness. The PPR is ensured by the strong privacy
when the sender’s randomness is good and the receiver’s newly freshly sampled pre-key

is safe, as explained above.

Moreover, we can also observe that higher security can be obtained if the device of a
party (assume A) supports a secure environment, such as an HSM. If A’s identity key pair
is generated in a secure environment, the private identity key can be neither manipulated
nor predicted by any attacker. This means that the attacker can only query Onewldkey-a(T)

with input » = L and never query Ogeyidkey-a Oracle in EXpI?EXeSM. Thus, the predicate
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safe}{jK is always true. If the partner B has access to the fresh randomness, then the privacy

of the messages sent from B to A always holds.
We stress that our eSM model is strictly stronger than the SM model [12], even
without taking the usage of identity keys and pre-keys into account. We provide a detailed

comparison in Section 7.9 for interested readers.

7.4.4 Security Model Modularization

The analysis for the security of messaging protocols are often very tedious, since both the
security model and the protocols are usually highly complex. Alwen et al. [12] opt to
first reduce the SM-security into several simplified security notions: correctness, privacy,
and authenticity. Then, they respectively prove the individual simplified security of their
proposal ACD19.

We adopt the similar strategies: we split the eSM-security into several new simplified
security notions and prove the reduction between eSM and the new simplified security
notions.

Correctness: We define our correctness model Exprﬁ?ﬁiM for an eSM scheme II with
respect to a parameter A.gy identical to the model EXPY%S,KSM with the same parameter

Nesm, except for the following modifications:

1. there are no Ochalienge-a a0d Ochalienge-B Oracles

2. the Oinject-a and Ojpject-g are replaced by a reduced injection oracle, which is identical to

the injection oracle except for the following two modifications:

e if the input ciphertext ¢ does not correspond to any position (t',7) € comp, Ojnject-a
and O)pject.s immediately returns (¢',4', L)

e the if-clause in Line 52 and 52 are removed

This simplified correctness experiment is defined similar to the one in [12].
Note that the attacker receives no information about the challenge bit, since the
challenge oracles are removed. The attacker cannot win via the predicate win" except

auth

by randomly guessing. Moreover, the predicate win®™ in the injection oracles is removed.

The win®™ predicate is never set to true. Intuitively, the attacker can win the correctness

corr

game with non-zero advantage only via win®" in the Opgjiver.a and Opeiiver- Oracles.

Definition 65. An eSM scheme 11 is (t,q, gep, qm, Desm, €)-CORR secure if the below
defined advantage for any attacker A in time t is bounded by

Advi RS (A) :=Pr[Expriofs (A) = (1,0,0)] <,

where q, qep, and qu respectively denote the maximal number of queries A can make, the
maximal number of epochs, and the maximal number of pre-keys of each party in the

experiment ExprﬁOARzM .
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Authenticity: We define our authenticity model ExprﬁEJATeHSM for an eSM scheme II with

respect to a parameter A.gy identical to the model Exprfiixew with the same parameter

Aesm, except for the following modifications:

1. there are n0o Ochallenge-A a0d Ochalienge-8 OTracles

corr

2. the winning predicate win®" is never set to true in the Opgjiver-a and Opeliver-B, i-€., the

if-clause in Line 45 is removed.
3. the attacker has to output an epoch t* at the beginning of the experiment

4. the Opject-a and Ojpjectg are replaced by a reduced injection oracle (see above) unless
the input ciphertext ¢ corresponds to the epoch ¢*. (Recall that the position including
the epoch and message index is assumed to be efficiently computable from ¢ for natural

eSM.)

This simplified authenticity experiment is defined differently from the one in [12], as
the attacker has to output only one epoch t*, which indicates the epoch of the forged
ciphertext, without outputting another epoch ¢ as in [12], which indicating the last
corruption event before the t*.

Note that the attacker receives no information about the challenge bit, since the
challenge oracles are removed. The attacker cannot win via the predicate win" except

corr

by randomly guessing. Moreover, the predicate win®" in the deliver oracles is removed.

The win®" predicate is never set to true. Intuitively, the attacker can win the authenticity

game with non-zero advantage only via win®“t"

in the Opject-a and Ojyject.g Oracles for a
forged ciphertext corresponding to the epoch t*; which is claimed by the attacker at the

beginning of the experiment.

Definition 66. An eSM scheme I is (t,q, gep, qm, Desm, €)-AUTH secure if the below
defined advantage for any attacker A in time t is bounded by

Advi ! (A) :=Pr[BExprA (A) = (0,1,0)] <e,

where q, gep, and qu respectively denote the mazimal number of queries A can make, the

maximal number of epochs, and the maximal number of pre-keys of each party in the

experiment Exprﬁuge':M .

Privacy: We define our privacy model Exprrpf'A\iSM for an eSM scheme II with respect to a

parameter Aggy identical to the model Exprﬁs,xesm with the same parameter Aggy, except

for the following modifications:

corr

1. the winning predicate win®" is never set to true in the Opejiver-a and Opejiver-B, i.€., the

if-clause in Line 45 is removed.
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. the Ojpject-a and Ojpject.g are replaced by a reduced injection oracle (see above).
. the attacker has to output an epoch t* at the beginning of the experiment.

. the challenge oracle Ochalienge-a (r€SP. Ochallenge-8) can only be queried if ¢, = t* (resp.
tB - t*)

This simplified privacy experiment is also defined differently from the one in [12], as
the attacker has to output only one epoch, which indicates the epoch of the challenge
query, without outputting another epoch ¢; as in [12], which indicating the last corruption

event before the t*.

corr auth

Note that the predicate win®" in the deliver oracles and the win®™ in the injection

corr auth

oracles are removed. The win®" and win®"™" predicates are never set to true. Intuitively, the
attacker can win the privacy game only via win®" predicate by distinguishing the challenge
bit using the challenge ciphertexts corresponding to the epoch t*, which is claimed by the

attacker at the beginning of the experiment.

Definition 67. An eSM scheme I1 is (t, ¢, @ep, qm, Desm, €)-PRIV secure if the below defined

advantage for any attacker A in time t is bounded by
AdvE'?'A\ZSM (A) ::Pr[ExprEf{'A\ZSM(A) =(0,0,1)] <,

where q, gep, and qu respectively denote the mazimal number of queries A can make, the
maximal number of epochs, and the maximal number of pre-keys of each party in the

experiment ExprER'A\Z -

7.5 Extended Secure Messaging Scheme

In Section 7.5.1 we describe the intuition behind our eSM construction, followed by a
detailed description in Section 7.5.2. In Section 7.5.3, we prove the eSM security of our

eSM construction and provide concrete instantiations.

7.5.1 Intuition behind the eSM Construction

Our eSM construction, depicted in Figure 7.6, uses a key encapsulation mechanism
KEM = (KEM.KGen, KEM.Encaps, KEM.Decaps), a digital signature DS = (DS.KGen,
DS.Sign, DS.Vrfy), a symmetric key encryption SKE = (SKE.Enc, SKE.Dec), and five key
derivation functions KDF; for i € [5].

To send a message, the sender runs the KEM encapsulation algorithm three times: the
encapsulation upon the partner’s latest per-epoch public key, which ensures the privacy
against fine-grained state compromise and PCS; the one upon the partner’s latest public
pre-key, which ensures temporal privacy and the PPR property; and finally the one upon

the partner’s latest public identity key, which ensures even stronger privacy if the device
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supports an HSM for storing private identity keys. The sender also signs the outgoing
ciphertext using DS and his latest per-epoch signing key to ensure the authenticity against
fine-grained state compromise.

Moreover, our eSM construction uses three variants of the NAXOS trick [134], in which
ephemeral randomness is combined with a local secret to strengthen against randomness
compromise or manipulation attack. First, a symmetric root key st.rk together with
ephemeral randomness is used to derive new shared state when sending the first message
in each epoch. This provides strong privacy for new epochs against randomness leakage
and manipulation; Second, the sender’s local NAXOS string st.nzs together with the
ephemeral randomness is used to improve key generation when sending the first message
in each epoch. This provides strong authenticity for the new epoch and strong privacy for
the next epoch against randomness leakage and manipulation; Third, the unidirectional
ratchet keys urk (derived from the shared state) together with the ephemeral randomness
are used to derive the real message keys. This ensures FS while preserving immediate

decryption with constant-size overhead.

7.5.2 The eSM Construction in Detalil

For simplicity, we assume all symmetric keys in our construction (including the root key
rk, the chain key ck, the unidirectional ratchet key urk, and the message key mk) have the
same domain {0,1}*. We assume the key generation randomness spaces of KEM and DS
are also {0,1}*. The underlying DS and SKE are assumed to be deterministic. We first

introduce the state in our construction.

Definition 68. The state in our eSM construction in Figure 7.6 consists of following

variables:

e st.id: the state owner. In this paper, we have sty.id = A and stg.id = B.

e st.t: the local epoch counter. It starts with 0.

;0

e st 1

, st ... the local message index counter of each epoch. They start with 0.

o st.rk € {0,1}*: the (symmetric) root key. This key is initialized from the initial shared
secret and updated only when entering next epoch. The root key is used to initialize the

chain key at the time of update.

o st.ck’ st.ck', ... € {0,1}*: the (symmetric) chain keys at each epoch. These keys are
witialized at the beginning of each epoch and updated when sending messages. The chain

keys are used to deterministically derive the (one-time symmetric) unidirectional ratchet
keys (urk).

e st.nzs € {0,1}*: a local NAXOS random string, which is used to improve the randomness

when generating new KEM and DS key pairs.
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o st.D;: the dictionary that stores the mazimal number (aka. the length) of the transmis-

sitons in the previous epochs.

e st.prtr: the pre-transcript that is produced at the beginning of each epoch and is attached

to the ciphertext whenever sending messages in the same epoch.

o st.D% st Dl  ..: the dictionaries that store the (one-time symmetric) unidirectional
ratchet keys urk for each epoch. The urks are used to derive the (one-time symmetric)

message keys (mk) for real message encryption and decryption using SKE.

o (st.ek® st.dk), (st.ek’,st.dk'),...: the (asymmetric) KEM public key pairs. These key
pairs are used to encapsulate and decapsulate the randomness, which (together with the

unidirectional ratchet key urk) is used to derive the message keys (mk) of SKE.

o (st.sk™, st.wk™), (st.sk” st.vk?), (st.sk', st.ok'),...": the (asymmetric) DS private key

pairs, which are used to sign and verify the (new) pre-transcript output by eSend.

Our eSM construction makes use of two auxiliary functions: eSend-Stop and eRcv-Max
for practical memory management. Here, we only explain the underlying mechanism and

omit their concrete instantiation.

e eRcv-Max(st, [): This algorithm is called in eRcv algorithm when the caller switches its
role from message sender in epoch st.t to message receiver in a new epoch st.t + 1. This
algorithm inputs (the caller’s) state st and a number [ and remembers the value [ together
with the epoch counter t' = st.t — 1 locally. Once [ messages corresponds to the old
epoch ¢’ are received, the state values for receiving messages in epoch t/, i.e., st.i’ st.ckt/,
St.d/{?t/7 st.vkt/7 st.D

s SEDi[t'] are erased, i.e., set to L. Moreover, the number how

many times the chain key st.ck™’ has been forwarded (i.e., how many messages have
been sent) in the epoch st.t is stored, while the chain key st.ck™" itself together with the

encryption key st.ek™? is erased.

e eSend-Stop(st): This algorithm is called in eSend algorithm when the caller switches its
role from the message receiver in epoch st.t to the message sender in a new epoch st.t 4 1.
This algorithm inputs (the caller’s) state st and outputs how many messages are sent
in the epoch st.t — 1, which is locally stored during the previous eRcv-Max invocation,
denoted by I. The signing key st.sk’ is also erased after its signs the next verification key
st.ok' ™ later. We write [ <— eSend-Stop(st).

Following the syntax in Definition 62, our eSM construction consists of following six

algorithms below.

IdKGen(): The identity key generation algorithm samples and outputs a public-private
KEM key pair.

4The superscript of the signing/verification keys indicates the epochs when the DS key pairs are
generated and used until the next key generation two epochs later. Here, we slightly abuse the notation
and have st.sk™' and st.vk™, which are used only to sign/verify the verification key in epoch 1.
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I[dKGen(): PreKGen():
1 (ipk,ik) <+ KEM.KGen() 3 (prepk, prek) <& KEM.KGen()

2 return (ipk, ik) 4 return (prepk, prek)
elnit-A(iss):

(9]

sta.nzs || - || sta.7k || sty.ck’ | KEM || 7 KEM || DS || DS < dss
(L, sty.dk?) <& KEM.KGen(rEM), (sty.ek', ) <& KEM.KGen(rKEM)
(sty.sk™, ) <= DS.KGen(rD®), (_,sty.vk?) < DS.KGen(rD9)

8 sty.id < A, sty.prtr < L, sty.t < 0, sty.i% < 0, sty. D[] < L, st,. DO

urk

[¢]

~

[]+ L

9 return sty
elnit-B(iss):
10 _|| stg.nas || stg.7k || stg.ck” || rKEM || #KEM || 2DS | 4 DS o g
11 (stg.ek?, ) < KEM.KGen(rKEM) (_ stg.dk') <= KEM.KGen(rKEM)
12 (L, stg.0k™) <& DS.KGen(rD%), (stg.sk”, ) < DS.KGen(rD®)
13 stg.id < B, stp.prtr <— L, stg.t < 0, stg.i® < 0, stg.D;[] + L

14 return stg
eSend(st, ipk, prepk, m):

15 (c1, k) <= KEM.Encaps(st.ek™ "), (¢, k) <~ KEM.Encaps(ipk), (cs, k3) <~ KEM.Encaps(prepk)
16 (upd®,upd"") < KDFy(ky, ko, k3)

17 if (st.id = A and st.t even) or (st.id =B and st.t odd)

18 1+ eSend-Stop(st), st.t4++, st.it* < 0, r <& {0,1}*, (st.nzs, rKEM 1-DS) « KDFy(st.nas, )
19 (ek,st.dk*™"t) & KEM . KGen(rKEM), (st.sk**" vk) <= DS.KGen(rP3)

20 prtr? < (I, ¢1, ca, c3, €k, vk), 0 « DS.Sign(st.sk*" 2 prtre")

21 st.prir « (prtr®, o), (st.rk, st.ck™") < KDF3(st.7k, upd®)

22 (st.ck™ ", urk) « KDFy(st.ck™"), mk < KDFs(urk,upd™) , ¢/ < SKE.Enc(mk, m)

23 prtrt" < (st.t,st.itt ¢/ c1, ¢, c3), o' < DS.Sign(st.sk™, prtri")

24 return (st, (st.prtr, prtrt", o'"))

eRev(st, ik, prek, ¢):

25 ((prtr®", o), prtr'", o) < ¢, (I, c1, o, 3, €k, vk) « prtr®, (t,i,c, cy, ch, ch) < prirt’
26 if ¢ <st.t —2: require st.D,[t] # L and i < st.D;[{]

27 require ¢t <st.t + 1 and ((st.id = A and t even) or (st.id =B and ¢ odd))

28 if t =stit 41

29 require DS.Vrfy(st.vk’ ™2, prtr®" 5°")

30 eRev-Max(st,l), st.D;[t — 2] « [, st.t++

31 ki + KEM.Decaps(st.dk™ ", c;), ky < KEM.Decaps(ik, c3), k3 +— KEM.Decaps(prek, c3)
32 (upd™,.) « KDFy(ky, ko, ks), (st.rk,st.ck™") < KDFs(st.rk, upd®)

33 DUIL) e L sttt < 0, stoek™ T ek, stk ok

32 require DS.Vrfy(st.vk", prtr'", o!")

35 k] + KEM.Decaps(st.dk’, c}), kj <~ KEM.Decaps(ik, c}), k5 < KEM.Decaps(prek, c})
56 (L upd™) < KDFy (K, kb, %)

37 while st.it <3

38 (st.ck', urk) < KDF4(st.ck"), D! , [st.i'] < urk, st.i'++

3o urk < D!, [i], D!, ,.[i] + L, require urk # L

u urk

20 mk < KDF5(urk,upd"’), m < SKE.Dec(mk,c)

41 return (st,t,i,m)

Figure 7.6: Our eSM construction. KEM = (KEM.KGen, KEM.Encaps, KEM.Decaps), DS =
(DS.KGen, DS.Sign, DS.Vrfy), and SKE = (SKE.Enc, SKE.Enc) respectively denote a key encapsu-
lation mechanism, a deterministic digital signature and a deterministic authenticated encryption
schemes. The KDF; for ¢ € [5] denote five independent key derivation functions.
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PreKGen(): The pre-key generation algorithm samples and outputs a public-private KEM
key pair.

elnit-A(iss): The A’s extended initialization algorithm inputs an initial shared secret
1ss € ZSS. First, A parses iss into seven components: the initial NAXOS string sty.nzs,
the shared root key st,.7%k, the shared chain key st,.ck”, and four randomness for A’s and B’s
KEM and DS key generation: rKEM pKEM DS DS “Then A respectively runs KEM.KGen
and DS.KGen on the above randomness and stores sty.dk’, sty.ek’, sta.sk™, sty.vk”, which
are respectively generated using rKEM, rKEM 2-DS “and +D5. The other values generated in
the meantime are discarded.

Finally, A sets the identity st,.id to A, the local pre-transcript st,.prtr to L, the epoch

counter sty.t to 0, the message index st,.i° to 0, and initializes the maximal transmission

0
urk?

length dictionary D; and the unidirectional ratchet dictionary D? ., followed by outputting

the state sty.

elnit-B(iss): The B’s extended initialization algorithm inputs an initial shared secret
1ss € ZSS and runs very similar to elnit-A. First, B parses iss into seven components: the
initial NAXOS string st.nas, the shared root key stg.7k, the shared chain key stg.ck’, and
four randomness for A’s and B’s KEM and DS key generation: riKEM pKEM DS 50.DS “Phep,
B respectively runs KEM.KGen and DS.KGen on the above randomness and stores stg. ek,
stg.dk', stg.vk™, sty.sk®, which are respectively generated using rKEM pKEM 0-DS “and DS,
The other values generated in the meantime are discarded. Note that the values stored by
B is the ones discarded by A, and vice versa.

Finally, B sets the identity stg.id to B, the local pre-transcript stg.prtr to L, the epoch
counter stg.t to 0, the message index stg.i to 0, and initializes the maximal transmission
length dictionary D;, followed by outputting the state stzg. Note that no unidirectional

ratchet dictionary DY, is initialized, since B acts as the sender in the epoch 0.

eSend(st, ipk, prepk, m): The sending algorithm inputs the (caller’s) state st, the (caller’s
partner’s) public identity key ipk and pre-key prepk, and a message m.

First, the caller runs the encapsulation algorithm of KEM and obtains three ciphertext-
key tuples (c1, k1), (¢c2, k2), and (cs, k3) respectively using the local key st.ek*, and the
identity key ipk, and the pre-key prepk. Next, the caller applies KDF; to ki, ks, and ks,
for deriving two update values upd® and upd"".

If the caller switches its role from receiver to sender, i.e. the caller st.id is A and the
epoch st,.t is even or the caller is B and the epoch is odd, it first executes the following
so-called asymmetric ratchet (ar) framework: First, the caller runs eSend-Stop(st) for a
value [ that counts the sent messages in the previous epoch, followed by incrementing
the epoch counter st.t by 1 and initializing the message index counter st.i** to 0. Next,
the caller samples a random string r, which together with the local NAXOS string st.nxs
is applied to a key derivation function KDF,, in order to produce a new NAXOS string,
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KEM “which is used to produce a new KEM key pair

D

a KEM key generation randomness r
for receiving messages in the next epoch, and a DS key generation rP°, which is used
to produce a new DS key pair for sending messages in this epoch. The caller stores the
private decapsulation keys and signing keys into the state. Then, the caller signs the
pre-transcript for the ar framework prtr*; including the value [, the ciphertext c;, ¢, and
c3, the newly sampled encapsulation key ek and the verification key vk, using the signing
key produced two epochs earlier st.sk**~2 for a signature 0. The pre-transcript prtr®” and
signature o are stored into the state st.prtr. Finally, the caller forwards the ar framework
by applying a KDF3 to the root key st.rk and the update upd® for deriving new root key
and chain key st.ck™".

Next, the caller executes the so-called unidirectional ratchet (ur) framework, no matter
whether the ar framework is executed in this algorithm invocation or not: First, the caller
forwards the unidirectional ratchet chain by applying a KDF4 to the current chain key
st.ck™" for deriving next chain key and a unidirectional ratchet key urk. Next, the caller
applies a KDF5 to the unidirectional ratchet key urk and the update upd"" for the message
key mk, followed by encrypting the message m by ¢ < SKE.Enc(mk, m). Finally, the
caller signs the pre-transcript prtr'" of the ur framework, including the epoch st.t, the

st* and the ciphertexts ¢/, ¢1, ¢y, and c¢3, for a signature o using the

message index st.:
signing key st.sk**. This algorithm outputs a new state st and a final ciphertext, which is
a tuple of the ar pre-transcript and signature st.prtr = (prtr®, o), the ur pre-transcript

prtr'’, and the signature o"".

eRev(st, ik, prek, c): The receiving algorithm inputs the (caller’s) state st, private identity

key ik and pre-key prek, and a ciphertext ¢, and does the mirror execution of eSend.
First, the caller parses the input ciphertext ¢ into the pre-transcript and signature of

ar framework (prtr®", o), the unidirectional ratchet pre-transcript prtr'", and the signature

o',

Next, the caller further parses the pre-transcript prtr®” into one number [, three
ciphertexts c¢1, ca, and c3, an encapsulation key ek, and a verification key vk, and parses
prtr'" into an epoch counter ¢, a message index counter ¢, and four ciphertexts ¢, ¢}, c,
and ;.

If the parsed epoch counter indicates a past epoch, i.e., t < st.t — 2, the caller checks
whether the maximal transmission length has been set (and not erased) and whether the
parsed message index does not exceed the corresponding maximal transmission length.
Then, the caller checks whether the parsed epoch counter is valid (by checking whether
st.id = A or B if the parsed epoch counter is even or odd) and in a meaningful range (by
checking whether ¢ < st.t +1). If any check is wrong, the eRcv aborts and outputs m = L.

If the parsed epoch counter ¢ is the next epoch, i.e., t = st.t 4+ 1, the caller executes the
asymmetric ratchet framework: The caller first checks whether the signature ¢ is valid
under the verification key st.vk!=? and pre-transcript prtr® and aborts if the check fails.

Next, the caller invokes eRcv-Max(st, [), records the transmission length [, and increments
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the epoch counter. Then, three keys ki, ko, and k3 are respectively decapsulated from ¢y, ¢o,
and c3 using local keys st.dk™*, the private identity key ik, and pre-key prek. After that,
the caller applies KDF; to above keys for update value upd®, which then together with
the root key st.rk is applied to KDF3 for a new root key and chain key st.ck*". Finally,

st.t

.. for storing the unidirectional ratchet keys in this

the caller initializes a dictionary D
epoch, sets the message counter st.i*** to 0, and locally stores the encapsulation key for
the next epoch and verification key for this epoch.

Then, the caller executes the unidirectional ratchet framework, no matter whether
ar is executed in this algorithm invocation or not: First, the caller also checks whether
the signature o' is valid under the verification key st.vk’ and pre-transcript prtr'’. Next,
three keys ki, kj, and kj are respectively decapsulated from ¢, ¢}, and ¢} using local keys
st.dk®"", the private identity key ik, and pre-key prek. Then, the caller applies KDF; to
above three keys for the update value upd"". After that, the caller continuously forwards
the unidirectional ratchet chain, followed by storing the unidirectional ratchet keys into
the dictionary and incrementing the message index by 1, until the local message index
st.i! reaches the parsed message index 7. In the end, the caller reads the unidirectional
ratchet key urk from the dictionary corresponding to the parsed message index, followed
by erasing it from the dictionary. It must hold that urk = L and aborts otherwise. The
caller then derives the message key mk by applying KDF5 to urk and the update upd"",
and finally decrypts the message m from ciphertext ¢’ using mk.

This algorithm outputs a new state st, the parsed epoch ¢t and message index 7, and

the decrypted message m.

7.5.3 Security Conclusion and Concrete Instantiation

Theorem 28. Let I denote our eSM construction in Section 7.5.2. If the underlying KEM

is Okem -strongly correct” and eRgs-secure, DS is dps-strongly correct and €55 -secure,

; ind-lcca o 3prf 6 o dual
SKE s dske-strongly correct and eggg “?-secure, KDFy is e pp -secure’, KDFy is ey,

. £ . . L
secure, KDF3 is egpe, -secure, KDFy is egfe -secure, KDF5 is €xBE, -secure, in time t, then

IT is (t,q, Geps qm, Desm, €)-€SM secure for Nesm = 2, where

€ <(gep + @)ps + 3(Gep + ¢)Oxem + qdske + erﬁsﬁjsf_cma

2 ind- ind-1
+ Gepam(q + L)eem™ + dep(am + 2)gesice ™
2 3prf 2 dual
* GepdMm (q+ 1>€KF|)SF1 + er(erq t Qep + 1>€KUI§F2
2 prf prg
+ Gep(q + D)egpr, + qepd(q + 1)egpr,
dual
+ Gep(QepqMT + GepGm + 20)€DF,
5By strongly correct, we mean that the schemes are conventionally correct for all randomness. See Sec-
tion 2.2.3, Section 2.2.5, and Section 2.2.6.
5By 3prf security, we mean that a function is indistinguishable from a random function w.r.t any of
the three inputs. See Section 2.2.2.
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Instantiation: We give the concrete instantiation for both classical and PQ settings.
The deterministic DS can be instantiated with Ed25519 for classical setting, the formal
analysis was given in [62], and the NIST suggested CRYSTALS-Dilithium for the PQ
security, which is analyzed in [17]. A generic approach to instantiating KEM is to encrypt
random strings using deterministic OW-CCA or merely OW-CPA secure PKE for strong
correctness [26], [46]. The NIST suggested NTRU is also available for IND-CCA security
and strong correctness [68]. The deterministic IND-ICCA secure authenticated encryption
SKE can be instantiated with the Encrypt-then-MAC construction in [30]. The dual or
prg-secure KDF; for ¢ € {2,...,5} can be instantiated with HMAC-SHA256 or HKDF.
The 3prf-secure KDF; can be instantiated with the nested combination of any dual-secure
function, as explained in Section 2.2.2. We suggest to double the security parameter of

the symmetric primitives for PQ security.

7.6 Offline Deniability

As explained in Section 7.2.3, although the combinations of SPQR and ACD19 or our eSM
achieve strong privacy and authenticity in the PQ setting, it is still an open question
what flavors of offline deniability can be achieved by the combined protocols in the PQ
setting. To address this, we extend the game-based offline deniability for asynchronous
DAKE scheme ¥ [63] to its combination with an eSM scheme II.

Our offline deniability experiment is depicted in Figure 7.7. For the notational purpose,

we use ipk, ik, prepk, and prek to denote the public and private keys that are generated
by DAKE construction Y. The keys generated by eSM construction II are notated without
overline. The difference to the original model in [63, Definition 11], also see Definition 61
in Section 7.3, is highlighted with blue color.

In addition to message senders and receivers, the deniability experiment includes three
new roles: accuser, defendant, and judge. For any two-party conversation, we call a
party “accuser”, whose identifier is denoted by aid, if it wants to accuse that its honest
conversation partner has communicated with it. Correspondingly, we call the accused
honest partner “defendant”, whose identifier is denoted by did. The role of the “judge” in
the experiment is performed by the attacker. The goal of the experiment is to ensure that
no attackers (i.e., the real-life judges) can distinguish the real conversation transcripts
between accusers and defendants from the fake ones that are produced by the accusers
alone, given all secrets of all parties.

The experiment initializes a dictionary Dsession, Which records the identity of the parties
in each session, and a session counter n with 0. Next, long-term identity and medium-term
pre- public/private key pairs of ¥ and IT are generated for all honest parties and provided
to the attacker (e.g., the judge). A challenge bit b € {0,1} is randomly sampled.

245



Exprien (A): Session-Start(sid, rid, aid, did, ind):

=,11,qp,qm,9s
1 Daession|’] + L, n+ 0 22 require {aid,did} = {sid, rid} and sid # rid
2 £a||7 E;p?, ﬁZTEPk — 0 23 /flf‘+b+7 Dsession.[:} <—.jsld, I’Id}
3 for u € [gp] 24 if b=0 or aid =si
25 Tyig.role <— resp, Mid.Stexec < running

L LRy
5 l:ﬁv‘ek: — @
6 (ipk,,iky) & S.1dKGen()

26 Tsig-role <— init, 7gq.Stexec ¢ running

/ s - prek  aipk  aprepk .
27 (mhg, m) <& B.Run(ikra, Loy Loy > Loy »Trids (create, ind))

-7 prek  qipk repk
7 (ipk,,, ik, ) < I1.1dKGen() 28 (mggsm') <= BRun(iksia, L34 Lo Loy Tsia, m)
— o $ ’ ’

. ﬁ:ﬂk & (.} 29 (K,T) <& (nl4.K, (m,m'))

o & (oE T 30 else

a % b u 7 -7 T .
° ! N (ipk; i) 31 (K, T) & .Fake(ipkyg, kg, £25°" ,ind)
10 ﬁall — (Zpku7 ikq,) 32 ifb=0
1 forind € fgu] s sthy & ILelnit-B(K), st?, < ILelnit-A(K)
12 (prepk';d, prek';d) & Y.PreKGen() 32 else
13 (prephy, prek;?) < TLPreKGen() a5 st < Fakefi"™ (K, ipkag, ikaig, L, sid, rid, aid, did)
14 Lrrek & prek';d 36 return T
preph 4+ ——ind Session-Execute(sid, rid, i, ind, m):

1 L™ < prepk, 37 require Daession[i] = {sid, rid}
16 Lrrek & Prek;fd 38 ifb=0
17 Lo &= (prepk,, prek,,) 39 (stig, c) <& TL.eSend(stly, ipk,y, prepks, m)
18 L & (prepk,,, prek,,) 40 (Sti’idy ) H.eRcv(stiid, ikyid, prek'r?f, c)
19 b {0,1} 41 else
20 b’ & Ao(ﬁa”) 42 (St?:akev C) & Fakef'lsend(sﬁzakev Z'pk/‘rid7 prepkirri‘éjv m, Sida rid1 'nd)
21 return [b = b'] 43 return c

Figure 7.7: The offline deniability experiment for an attacker A against the combination of a

DAKE scheme XY and an eSM scheme II. The experiment EXPr%ani,qp,qmqs is parameterized the

maximal numbers of parties gp, pre-keys per party gm, and total sessions gs. We highlight the
difference to the offline deniability experiment for DAKE in Definition 61 with blue color.

The attacker (i.e., the judge) is given repeated access to the following two oracles:
The Session-Start oracle initializes a session between a sender sid and a receiver rid and
determines that the party aid € {sid, rid} plays the role of accuser in this session and the
other party did € {sid, rid} plays the role of defendant in this session. This oracle executes
a real session setup and real eSM initialization if b = 0, and some fake algorithms that
simulate the accuser’s view if b = 1. The Session-Execute forwards the interaction in an
existing session one step: this oracle executes eSM algorithm for sending and receiving
one message honestly if b = 0, and some fake algorithms that simulate the accuser’s view
if b = 1. The attacker wins if it can distinguish real conversation transcripts (i.e., b = 0)
from fake transcripts that simulate accusers’ views (i.e., b =1). We say a full messaging
protocol is offline deniable, if there exist fake algorithms that prevent all attackers from
winning the offline deniability experiment in polynomial time. By this, we ensure that if a
protocol is offline deniable, then no judge can decide whether a transcript given by the
accuser is the real transcript of the conversation with the defendant or produced by the

accuser alone.
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Oracle Session-Start(sid, rid, aid, did, ind) : This oracle inputs are a sender identity sid, a
receiver identity rid, an accuser identity aid, a defendant identity did, and a pre-key index
ind. This oracle first checks whether the sender identity and the receiver identity are
distinct and whether either the sender is the accuser and the receiver is the defendant or
another way around. Next, the session counter n is incremented by 1 and the set of the
sender identity sid and the receiver identity rid is set t0 Deession[i]. Then, it simulates the
honest DAKE execution if the challenge bit is 0 or the accuser is the sender. Otherwise, it
runs the fake algorithm X.Fake. In both cases, a key K and a transcript T are derived.
In the end, if the challenge bit is 0, then the oracle honestly runs Il.elnit-A(K) and
IT.elnit-B(K') on the shared key K to produce the state stZ; and st}}y. Otherwise, the oracle
runs a function FakeS"™ (K, ipk gy, ikaid, £§irdek, sid, rid, aid, did) to produce a fake state stp,,..

The transcript T is returned.

Oracle Session-Execute(sid, rid, 7, ind, m): This oracle inputs a sender identity sid, a receiver
identity rid, a session index i, a pre-key index ind, and a message m. This oracle first checks
whether the session between sid and rid has been established by requiring Dgegsion[t] =
{sid, rid}. Next, if the challenge bit is 0, this oracle simulates the honest transmission
of message m. Otherwise, this oracle produces a ciphertext ¢ by running a function
FakeZ*™ on the fake state stt. .., the receiver’s public identity key ipk,q, pre-key prepknd,
the message m, and sender identity sid, the receiver identity rid, and a pre-key index ind.
In both cases, the ciphertext c is returned.

We stress that our offline deniability model is a significant extension to the one for
DAKE in [63]. First, our model also allows the attacker (e.g. the judge) to obtain all
initial private secret of all parties, as in [63].

Second, while the model in [63] prevents an attacker from deciding the challenge bit
b given the (output) shared keys and the transcripts of DAKE key establishments, our
model prevents an attacker from deciding b given the transcripts of full conversations,
which include the one of DAKE and the one of eSM inputting the shared key of DAKE.
This extension follows the idea behind the simulation-based extension [175].

Third, the accuser in the model for DAKE in [63] must play the role of a responder
resp (i.e., the receiver rid during the key establishment) rather than an initiator (i.e., the
sender sid during the key establishment), since the ¥.Fake algorithm is only defined on the
responder’s behalf. The main reason behind is that all transcripts in a DAKE scheme are
produced by the initiator alone. However, the responder producing no output during the
key establishment might produce some transcripts afterwards. To capture this, our model
also allows the accuser to be the initiator init in the whole conversation. In fact, our
Session-Execute simulates the accuser’s view (when b = 1) by running the Faker; algorithm

that simulates the stateful execution of either the initiator or the responder, depending on
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whether aid = sid or rid in the corresponding Session-Start query’.

Definition 69. We say the composition of a DAKE scheme ¥ and an eSM scheme 11 is
(t, €, qp, qu, gs)-deniable, if two functions FakeS™® and FakeSP®™ exist such that the below
defined advantage for any attacker A in time t is bounded by

Adydeni (A) := |Expryen (A) —

<
2, 1L,qp,9M,9s %, 1L,qp,9Mm,9s | €

1
5l =
where gp, qu, and qs respectively denote the maximal number of parties, of pre-key per

deni

party, and total sessions in the Expryyyy o o oo in Figure 7.7.

Theorem 29. Let ¥ denote a DAKE scheme and I1 denote our eSM construction in Sec-
tion 7.5.2. If ¥ is (t, €, q)-deniable (with respect to any qp, qu) in terms of the Definition 61
, then the composition of ¥ and 11 is (t, €, gp, qm, q)-deniable.

Proof Sketch. We define Fakeﬂnit algorithm as running both elnit-A and elnit-B upon the

input K and storing all other inputs. We define Fa keeHSend

algorithm as honest execution of
IT.eSend upon sender sid followed by II.eRcv upon the receiver rid and the ciphertext of
I1.eSend. If the attacker cannot distinguish the real DAKE transcripts and output keys
from the fake ones, then it cannot distinguish the real DAKE and eSM (and therefore the

full) transcripts from the fake ones. We give the full proof in Section 7.11.7. n

7.7 Review of ACD19 and TR protocols

The ACD19 protocol [12, Section 5.1]: The ACD19 protocol is an instance of the
SM scheme and can be further modularized into three building blocks: the Continuous
Key Agreement (CKA), where the sender exchanges its randomness with the partner; the
Forward-Secure Authenticated Encryption with Associated Data (FS-AEAD), where the
sender sends messages to the recipient and updates the shared state in a deterministic man-
ner, which provides forward secrecy and immediate decryption; the PRF-PRNG refreshes
its inherent shared state by using the randomness of provided by CKA and initializes a
new FS-AEAD thread, which provides the post-compromise security.

The ACD19 protocol is managed according to the epoch, which is used to describe
how many interactions in a two-party communication channel have been processed. The
behavior of a party (assume A) for sending messages is different when A enters a new epoch

or not:

1. When a receiver A switches to sender and sends the first message in a new epoch, A first
counts and remembers how many messages have been sent in the last epoch using the

corresponding FS-AEAD thread, which is then erased. Next, A increments the inherent

“In our model, we restrict the behavior of the accuser, who acts as initiator, to be honest during the
key establishment phase, see Line 24. We leave a stronger model without this restriction as future work.
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epoch counter by 1. Then, A invokes the sending algorithm of the CKA component
for exchanging the randomness with the partner B. The output of CKA algorithm in
this epoch is also remembered locally. Afterwards, A refreshes the shared state using
PRF-PRNG and initialize a new FS-AEAD thread for the new epoch.

. Regardless of whether A is sending the first message in a new epoch (after executing
the above step) or sending subsequent messages in the current epoch, A uses the current
FS-AEAD thread for the encrypting real message with header: the number of messages

sent two epoch earlier, the output of CKA in this epoch, the current epoch counter.

The receiving process is defined in the reverse way. When a sender (assume B) receives a
message indicating the next epoch, B switches his role to receiver and enters the next epoch
by incrementing the internal epoch counter. Notably, B parses and locally remembers the
number of messages sent two epochs earlier from the received ciphertext and erases the
FS-AEAD thread once these messages arrived at B.

Moreover, several different instantiations of CKA, FS-AEAD, and PRF-PRNG compo-

nents are also given in [12].

The TR protocol [50, Section 5.1]: The Triple Ratchet (TR) is very close to the

ACD19 construction in [12], except for the following two differences:

1. When a party switches its role from receiver to sender, it does not count and remember
how many messages have been sent in the last epoch. Instead, this step is executed in
the receiving algorithm when a party enters a new epoch and switches its role from

sender to receiver.

2. The underlying CKA component must be instantiated with a customized CKA+ con-
struction, which provides better privacy against randomness leakage but relies on a
non-standard assumption and a random oracle. Note that CKA is a generic building
block, while CKA+ is a concrete instantiation. The other building blocks such as
FS-AEAD and PRF-PRNG can be instantiated with the constructions in [12].

For the interested readers, we also compare ACD19 and TR with our protocol in Sec-
tion 7.10.

7.8 Review on Messaging Protocols with Various Op-
timal Security

The “optimal” protocols by Jager and Stepanovs [118] and by Péttering Rosler [154], the
“sub-optimal” protocol by Durak and Vaudenay [85], and a novel protocol by Pijnenburg
and Pottering [153] (we call “ID-optimal”), all are PQ compatible. The “almost-optimal”
protocol by Jost, Maurer, and Mularczyk [122] only has classically secure instantiation.

Technically, they follow different ratcheting frameworks:
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(1) “optimal” Jager-Stepanovs protocol [118]: In the Jager-Stepanovs protocol,
all cryptographic building blocks except the hash functions, such as PKE and DS, are
asymmetric and updatable. When Alice continuously sends messages to Bob, the next
encryption key is deterministically derived from an encryption key included in the last
reply from Bob and all past transcript since the last reply from Bob. On the one hand,
this protocol enjoys high security guarantee against impersonation due to the asymmetric
state. On the other hand, this protocol has no message-loss resilience, namely, if one
message from Alice to Bob is lost, then Bob cannot decrypt subsequent messages anymore.
In particular, no instantiation with constant bandwidth in the post-quantum setting is

available.

(2) “optimal” Péttering-Rabsler protocol [15/]: In the Pottering-Rosler protocol,
both asymmetric and symmetric primitives, including updatable KEM, DS, MAC are
employed. When Alice sends messages to Bob, she first runs the encapsulations upon
the one or more KEM public keys depending on her behavior. If Alice is sending a reply,
then she needs to run the encapsulation upon all accumulated KEM public keys that are
generated and signed by Bob. Otherwise, she only needs one KEM public key that was
generated by herself when sending the previous message. After that, Alice derives the
symmetric key for message encryption from the symmetric state and the encapsulated keys.
This protocol enjoys state healing when continuously sending messages. Any unpredictable
randomness at some point can heal Alice’s state from corruption when she continuously
sends messages. However, this protocol has no message-loss resilience: If one message is
lost in the transmission, the both parties’ symmetric states that are used for key update
mismatch. This means, all subsequent messages cannot be correctly recovered by the

recipient.

(3) “sub-optimal” Durak-Vaudenay protocol [85]: In contrast to the above two
“optimal” approaches, the Durak-Vaudenay protocol does not employ any key updatable
components and has a substantially better time complexity. When Alice sends messages
to Bob, she samples several fragments of a symmetric key and encrypts them using
signcryption with the accumulated sender keys, where the sender keys are generated
either by herself or by Bob depending on whether Alice is continuously sending messages
or sending a reply. The Durak-Vaudenay protocol is similar to Pottering-Rosler but is
less reliant on the state. Any randomness leakage corrupts the next message. Moreover,
both the message and the receiver key that is used for receiving or sending next message,
are encrypted under the symmetric key. This implies that the protocol does not have
message-loss resilience: If one message is lost in the transmission (from either Alice or

Bob), the communication session is aborted.

(4) “almost-optimal” Jost-Maurer-Mularczyk protocol [122]: The Jost-Maurer-
Mularczyk protocol aims at stronger security than what is achieved by Signal, but slightly
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weaker than optimal security proposed in Jager-Stepanovs’ and Pottering-Rosler’s work,
yet its efficiency is closer to that of Signal. The Jost-Maurer-Mularczyk protocol employs
two customized novel schemes: healable and key-updating encryption (HkuPke) and key-
updating signatures (KuSig). When Alice sends messages to Bob, Alice first samples two
DS key pairs, while the one is used by Alice for sending next continuous message, the
other is used by Bob for sending the reply. Next, Alice updates the key of HkuPke and
encrypts the message as well as the private DS signing key for Bob. Then, Alice signs the
transcript and her next DS verification key twice, by using KuSig and DS. Finally, the
state is updated. Note that the sender has to send the next DS signing and verification
keys to the partner. If one message is lost in the transmission (from either Alice or Bob),
the receiver can neither verify the next message from the partner nor send a valid reply to
the partner — the communication session becomes stuck.

Moreover, Jost-Maurer-Mularczyk’s HkuPke construction uses a customized secretly
key-updatable encryption (SkuPke), the only known instantiation of which relies on the

Diffie-Hellman exchange, for which currently no PQ-secure instantiation is available.

(5) “ID-optimal” Pijnenburg-Pdttering protocol [153]: The Pijnenburg-Péttering
protocol aims to solve the weak forward secrecy caused by the immediate decryption by
definition. In principle, the immediate decryption requires every receiver to be able to
decrypt a ciphertext at the time of arrival. Thus, if an attacker can intercept a message
and corrupt the receiver’s state in the future, the attacker can always recover the plaintext
from the intercepted ciphertext.

To solve this, the Pijnenburg-Poettering protocol employs three updatable mechanisms:
Updatable Signature Schemes (USS), Key-Evolving KEM (KeKEM), and Key-Updatable
KEM (KuKEM). Unlike all above protocols, while keys of the KuKEM and USS schemes
are updated whenever a party switches the role from receiver to sender, the keys of KeKEM
are updated every certain time interval. If a past message does not arrive at the receiver,
the receiver still stores the corresponding decryption keys for the decryption at the time
of message arrival, however, but only within a fixed length of time. After a pre-defined
time interval, the corresponding decryption keys are expired and cleaned from the local
state. By this, the compromise of a party’s state does not cause the message leakage that

is sent long time ago.

In particular, none of these protocols provide immediate decryption with constant-size

overhead.

7.9 Security Model Comparison between our eSM
and SM in [12]

Our eSM model extends the SM model [12], with the following main differences.
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Extended Syntax. Compared to the original SM definition [12], eSM has two additional
algorithms IdKGen and PreKGen: IdKGen outputs the public-private identity key, which
is fixed once generated, and PreKGen outputs pre-key pairs, which are updated regularly
(similar to X3DH). The generated identity and pre-key pairs both are used in the eSend

and eRcv algorithms for sending and receiving messages.

More Ezxpected Security Properties. Our eSM is expected to preserve all basic
properties of the SM schemes in [12], including correctness, immediate decryption, FS, and
PCS. Moreover, our eSM targets the stronger authenticity and privacy than SM in [12].
In particular, the authenticity and privacy in [12] hold only when neither parties’ states
are compromised. Instead, we aim for stronger authenticity and privacy against more
fine-grained state compromise. This potentially indicates that our eSM achieves stronger
randomness leakage/failures property. Finally, our eSM also aims at two new properties:

state compromise/failures and PPR, which are not captured by SM in [12].

Stronger Security Model. Our eSM model is more complicated than the SM model [12]
from many aspects. First, our eSM model needs more variables that are related to the
identity keys and pre-keys, which are excluded in [12], such as safeipﬁj K. Ly, and np, for
P € {A,B}. We also import two new sets allTrans and allChall to simplify the security
analysis of the benefits obtained from using the identity keys and pre-keys. Besides, we
use two lists £§°" and L5 to capture the state corruption of either party instead of using a
single counter. While splitting the single state corruption variable into two helps our model
to capture our strong privacy and strong authentication, using lists but not a counter
additionally simplifies the definition of the safe state predicate.

Second, we define two new safe predicates safel™ and safe-stp, which respectively
capture the safety of the the pre-key and session state. The safe-chp and safe-inj, predicates
were introduced in [12]. However, our eSM model defines them in a different way: Compared
to [12], our safe-chp predicates additionally input a randomness quality, a epoch number,
and a pre-key index. While the safe-chp predicate in [12] equals the condition 1, our new
conditions 2, 3, and 4 respectively capture the strong privacy, state compromise/failures,
and PPR security properties. Moreover, our safe-inj, additionally inputs an epoch number
t.

We stress that our safe requirements are more relaxed and allow to reveal more
information than in [12] (even when removing the usage of identity keys and pre-keys). In
particular, if a safe predicate in the SM security model in [12] is true, then the one in our
eSM model is true, but the reserve direction does not always hold.

Third, our eSM model has one new helper function corruption-update. The other four
helper functions in our eSM model are introduced in [12], but are defined with slight

differences due to our new notations.
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Finally, our eSM model includes 8 new oracles that are not included in SM [12]. The
new oracles are related to the identity keys and pre-keys. Besides, the other 8 oracles
for message transmissions are identical to the one in SM model, except for the notation
differences. The only oracles that have huge differences with the ones in SM model are
state corruption oracles: While our corrupt oracles requires any of three conditions holds:
(1) the chall does not include the record produced by the partner —P, (2) the flag in the
record is good and P’s identity key is safe, and (3) the flag in the record is good and P’s
pre-key corresponding to the pre-key index in the record is safe, the ones in SM model
only require the condition (1). After that, the corruption oracle in our eSM model adds
all records rec € trans, which are produced by —P at an unsafe epoch ¢ (but not all epochs
as in [12]), into the compromise set comp.

Compared to [12], the corruption oracles in our model can be queried under weaker
requirements, providing the attacker with more information. Moreover, our corruption
oracles set fewer records into the compromise set, which enables the attacker to forge

ciphertexts for more epochs.

Conclusion. Even without taking the use of identity keys and pre-keys into account, our

security model is strictly stronger than the one in [12].

7.10 Comparison of our eSM Construction with ACD19
and TR

Although our eSM construction in Section 7.5.2, the ACD19 in [12], and the TR construction
in [50], all satisfy immediate decryption with constant bandwidth consumption, their

designs differ in many details.

Comparison between our eSM construction and ACD19: The ACD19 protocol in
[12, Section 5.1] employs three underlying modules: CKA, FS-AEAD, and PRF-PRNG.
While the CKA employs the asymmetric cryptographic primitives, such as KEM or Diffie-
Hellman exchange, the FS-AEAD and PRF-PRNG only employ symmetric cryptographic
primitives, such as AEAD, PRF, PRG. In particular, the FS-AEAD deterministically derives
the symmetric keys for encrypting messages and decrypting ciphertexts from the state,
which is shared by both parties. Besides, they provide several CKA instantiations and all
of them sample the asymmetric key pairs only using the ephemeral randomness. Moreover,
their construction does not rely on any material outside the session state. Thus, it is
obvious that the leakage of either state will trigger the loss of the privacy and authenticity.

Compared to the ACD19, our eSM construction has the differences mainly from following
three aspects: First, the asymmetric primitives are used in every sending or receiving
execution. In particular, our construction uses the KEM and DS keys across our asymmetric

ratchet (ar) and unidirectional ratchet (ur) frameworks. Although this stops the further
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modularization of our eSM construction, the deployment of the KEM and DS provides
better performance in terms of the strong privacy and strong authenticity, since the leakage
of sender’s (resp. receiver’s) state does not indicate the compromise of the decapsulation
key (resp. signing key) and preserves the privacy (resp. authenticity).

Second, our construction makes use of the identity keys and pre-keys, which also
provide benefits in terms of strong privacy, state compromise/failure, and PPR. If the
corruption of a device’s full state without secure environment is not noticed by the owner
(which is the common real-world scenario), the privacy for subsequent messages from
the partner is lost until the corruption party sends a reply. The use of pre-key provides
mitigation in this scenario as the pre-key is updated every certain period in the back-end
without the active behavior of the corrupted party. Moreover, if the device has a secure
environment such as an HSM, storing identity keys into the HSM provides even stronger
security guarantees, as we explained in Section 7.4.3.

Finally, our construction implicitly uses three kinds of NAXOS-like tricks for strong
privacy. (1) First, the symmetric root key together with ephemeral randomness is used
for deriving new shared state when sending the first message in each epoch, this is same
as in ACD19. (2) Second, the NAXOS string st.nzs (in the sender’s state) together with
the ephemeral randomness is used for improving the key generation when sending the
first message in each epoch. (3) Third, the unidirectional ratchet keys (derived from the
shared state) together with the ephemeral randomness are used to derive the real message
keys. We stress the second and third NAXOS tricks provide additional benefits to our
construction when comparing with ACD19. On the one hand, bad randomness quality of a
party when sending the first message in a new epoch will cause leakage of the private KEM
key in ACD19, but not in our construction. In this case, the corruption of the partner in
the next epoch will cause the loss of privacy in ACD19, but not in our construction, due to
the second NAXOS trick. On the other hand, the message keys are derived from not only
the mere state but also ephemeral randomness. The third NAXOS trick together with
the usage of identity keys and pre-keys provide stronger privacy against state corruption
attacks.

As an aside, we observe that the CKA instantiation based on LWE (Frodo) does not
provide correctness: CKA-correctness requires both parties to always output the same key,
even if the attacker controls the randomness. Since LWE based Frodo includes an error
that needs to be reconciled during the decapsulation, the attacker can always pick bad
randomness to prevent the correct reconciliation. Instead, our construction is provably
correct in the post-quantum setting, if the underlying KEM satisfies strong correctness, as

explained in Section 7.5.3.

Comparison between our eSM construction and TR: The TR construction in [50,
Section 5.1] is very close to the one in ACD19 except for two differences: (1) The FS-Stop

function of the underlying FS-AEAD components is invoked when receiving the first message
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in a new epoch but not sending. (2) The underlying CKA component must be instantiated
with a new customized CKA+ construction based on a Diffie-Hellman exchange. The state
of CKA+ component does not merely rely on the randomness but also on the past state.
This can be seen as a variant of the NAXOS trick.

Compared to the TR construction, our eSM construction mainly differs in four aspects:
First, our construction employs generic KEMs aiming at post-quantum compatibility, while
TR makes use of a concrete Diffie-Hellman exchange, which is vulnerable to quantum
attacks.

Second, while TR and our constructions both use the root key for a NAXOS trick,
the NAXOS trick for improving privacy of the KEM key pairs is different. While TR uses
a tailored CKA-+ construction assuming a non-standard StDH and random oracles, our
construction uses a local NAXOS string st.nzs only assuming the dual security of the
function KDF,, the generic constructions of which based solely on standard assumptions
are given in [29].

Third, TR and our construction both prevent an attacker from corrupting the receiver
in the current epoch and forging a ciphertext corresponding to the previous epoch to
the partner by erasing a party’s state for sending messages once a message from the
partner for the next epoch arrives. Note that this attack is effective against ACD19, as
the attacker can in the current epoch corrupt the FS-AEAD thread corresponding to the
previous epoch and use it to encrypt the forged message. The only difference Due to the
immediate decryption property, the forged ciphertext must be correctly decrypted. The
TR construction prevents this attack by invoking FS-Stop function when receiving the
first message in a new epoch to erase the chain key for sending in the previous epoch. In
contrast, our construction prevents this attack by erasing both the chain key and the KEM
encapsulation key for sending in the old epoch in the eRcv-Max function.

Fourth, the remaining benefits of our construction in comparison to ACD19 also apply to
the comparison with TR, including strong privacy, strong authenticity, PPR, the resilience

to a novel forgery attack.

7.11 Full Proofs
7.11.1 Owur Lemmas
Lemma 2. Let II be an eSM scheme that is

o (t,¢, Gep: qM, Desm, 61°°F)-CORR secure,
o (1,4, Gep, a1, Desm, €n°TH)-AUTH secure, and

o (t,4,Gep, qm, Desm, €7V )-PRIV secure
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Then, it is also (t,q, gep, g, Desm, €)-€SM secure, where

€ < eggm + deplelsm + Eeam )
Lemma 3. Let Il denote our eSM construction in Section 7.5.2. If the underlying
KEM, DS, and SKE are respectively dxem, Ops, Oske-strongly correct® in time t, then II is
(t, 4, Geps M, Desm, €5aR)-CORR secure for Aesm = 2, such that

EESOSR < (gep + q)0ps + 3(gep + q)kem + qdske

Lemma 4. Let 11 denote our eSM construction in Section 7.5.2. If the underlying
. ind- . ind- . 3prf .

KEM is elfdiica-secure, SKE is endt_secure, KDF; is ko, -secure’, KDFy s edKUS'FQ secure,
. £ . . . . .

KDF3 is egpe, -secure, KDFy is egse, -secure, KDFs is egp_-secure, in time t, then II is

(t,4, Gep, QM Desm, eePSR,\'AV)—PRIV secure for Nesm = 2, such that

PRIV ind-cca ind-lcca 3prf
€esM =qMepd€kEM T AMYESKE T+ AMepd€KDF,

f
+ quq€f<l€|F2 + erqepKrDFg + QQE&%Q + (qmGep + 1)q€f<L|]§|F5
Lemma 5. Let II denote our eSM construction in Section 7.5.2. If the underlying DS is

suf-cma ‘o cind-cca o cind-lcca Fo 3prf
eps "2 -secure, KEM s egg™-secure, SKE is gy “?-secure, KDFy is €pg -secure, KDF,

o cdual ‘o oPrf o P8 io dual ; ;
is €xpr, secure, KDFs3 is egpe. -secure, KDFy is e 5 -secure, KDF5 is elfg, -secure, in time

t, then I1 is (t, q, Gep, GMms Desm, €xam T )-AUTH secure for Nesm = 2, such that

AUTH suf-cma ind-cca ind-lcca
€esM  <€Ds T depdMEREM T 2G€skE

3prf £
+ GepqMeRpE, + Gep(Qep + 1)€f<L|I§IF2 + quE&rDFg

dual

+ qeipr, T (Gepm + @) €EKDF,

7.11.2 Proof of Theorem 28

Proof. Our proof is divided into two steps: First, we introduce four lemmas in Section 7.11.1.
Lemma 2 reduces the eSM security to the simplified security notions, the full proof of
which is given in Section 7.11.3. Lemma 3, Lemma 4, and Lemma 5 respectively proves the
simplified correctness, privacy, and authenticity of our eSM construction in Section 7.5.2,
the full proof of which are given in Section 7.11.4, Section 7.11.5, and Section 7.11.6.

Second, the proof is concluded by combining the above four lemmas together. O

8By strongly correct, we mean that the schemes are conventionally correct for all randomness. See Sec-
tion 2.2.3, Section 2.2.5, and Section 2.2.6 for more details.

9By 3prf security, we mean that a function is indistinguishable from a random function with respect to
any of the three inputs. See Section 2.2.2 for mode details.
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7.11.3 Proof of Lemma 2

Proof. The proof is conducted by case distinction. Let A denote an attacker that breaks
Expr‘ﬁS’XeSM security of an eSM scheme Il with respect to the parameter Acsy. Recall that

the advantage of A in winning Expr%%XeSM experiment is defined as:

AQVEPY 4, (A) = max ( PrExprif, (A4) = (1,0,0)]
Pr[Exprit) ., (A) = (0,1,0)],

1
| Pr{Exprifl, (4) = (0,0,1)) - 5])

Below, we respectively measure Pr[Exprii  (A) = (1,0,0)], Pr[Expri) _ (A) = (0,1,0)],
and | Pr[Expri?) _ (A) = (0,0,1)] — 1| in the following Case 1, 2, and 3.

Case 1. We compute the probability Pr[Expr{?X _ (A) = (1,0,0)], i.e., A wins via the
winning predicate win®" by reduction. Namely, if A can win Expr‘fi%e o, €xperiment of the
eSM construction II with a parameter Agsyv, then there exists an attacker B; that breaks
simplified CORR security of the eSM construction II with the same parameter Aggyv. Let
C; denote the challenger in the Exprﬁ?ge':M experiment. At the beginning, the attacker
B, samples a challenge bit b € {0,1} uniformly at random. Then, B; invokes A and
answers the queries from A as follows. Note that all safe predicates in eSM and CORR
experiments are identical, B; can always compute the safe predicates by itself, according

to A’s previous queries.

® Onewldkey-a(7) and Onewidkey-8(r): B1 simply forwards them to C; followed by forwarding

replies from C; to A.

¢ Onewprekey-a(T) and Onewprekey-8(7): B1 simply forwards them to C; followed by forwarding
replies from C; to A.

¢ ORevidkey-A and ORevidkey-B: B1 sets safekdK or safe}adK (according the invoked oracle) to false
and runs corruption-update(). For each record in the allChall set, B; then checks whether
the safe challenge predicate for all of the records holds. If one of them is false, B; undoes
the actions in this query and exists the oracle invocation. In particular, By resets the
safe identity predicate to true. Then, the attacker B; simply forwards the queries to C;

followed by forwarding replies from C; to A.

® ORevprekey-a(ind) and Ogeyprekey-g(ind): By adds the ind into the pre-key reveal list, ac-
cording to the invoked oracle and runs corruption-update(). For each record in the allChall
set, By then checks whether the safe challenge predicate for all of the records holds. If
one of them is false, B; undoes the actions in this query and exists the oracle invocation.
In particular, B; removes the pre-key counter ind from the pre-key reveal list. Then, the
attacker By simply forwards the queries to C; followed by forwarding replies from C; to

A.
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® Ocorrupt-a and Ocorrupt-g: Let P denote the party, whose session state the attacker is trying
to corrupt. B; adds the corresponding epoch counter tp into the session state corruption
list £5° and runs corruption-update(). Next, B; checks whether there exists a record
including (=P, ind, flag) € chall. If such element does not exist, or, such element exists

but either of the following conditions holds,

— flag = good and safel’®

— flag = good and safel™ (ind)

If one of them is false, B; undoes the actions in this query and exists the oracle invocation.
In particular, B; removes the epoch counter tp from the session state corruption list.
Then, the attacker By simply forwards the queries to C; followed by forwarding replies
from C; to A.

¢ Otansmita(ind, m, r) and Oransmies(ind, m, 7): By simply forwards them to C; followed by

forwarding replies from C; to A.

¢ Ochalienge-a(ind, mg, my, 1) and Ochalienge-8(ind, mg, mq,7): We first consider the case for
answering Ochallenge-a(ind, mg, mq, 7). The attacker B; first computes flag = [r = L].
Namely, flag = true if and only if r is L. Then, B; checks whether the predicate
safe-ch,(flag, ¢y, ind) is true, according to A’s previous queries. If the safe predicates is
false, or, the input messages my and m; have the distinct length, B; simply aborts the
oracle. Otherwise, B; queries Otpansmit-a(ind, my, 7) to C; for a ciphertext ¢. Then, B;
adds the record record(A, ind, flag, ¢y, iy, mp, ¢) into its own allChall and chall. Finally, B;

returns ¢ to A.

The step for answering Ochalienge-(ind, Mg, my, 7) is similar to above step except that the

functions and variables related to A are replaced by the ones to B and vice versa.

e Obpeiiver-a(¢) and Opelver-(€): By first checks whether there exists an element (, 4, ¢) € chall
for any ¢ and 4. If such element exists, the attacker B; simply returns (¢,7, L) to A.
Otherwise, B; simply forwards the queries to Cy, followed by forwarding replies from C;

to A. After that, B; removes any element including (¢,4,c) from the challenge set chall.

® Ohject-a(ind, ¢) and Ojyject-g(ind, ¢): By simply forwards them to C; followed by forwarding
replies from C; to A.

Note that if the attacker A wins via the winning predicate win®", the winning predicate
win®® in the Ohnject-a and Ojpject-g 1S never set to true, which implies either m’ = L or
(B,t',i") € comp, where t' and i’ can be efficiently computed from the input ciphertext c.
This means, the reduced injection oracles are identical to the original injection oracles
from A’s view. Moreover, all other oracles are honestly simulated. This means, B; wins if

and only if A wins. Thus, we have that
Pr[Expri)  (A) = (1,0,0)] < Advﬁ?ﬁiM (B)) < ORR
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Furthermore, if A runs in time ¢, so does B;.

Case 2. We compute the probability Pr[EXprferSM(A) = (0,1,0)], i.e., A wins via the
winning predicate win®"™" by reduction.

Namely, if A can win Expr%s:xew experiment of a eSM construction IT with a parameter
Aesm, then there exists an attacker B, that breaks simplified AUTH security of the
eSM construction II with the same parameter Ay. Let Co denote the challenger in
the Exprﬁﬂ:{w experiment. At the beginning, the attacker By samples a challenge bit
b € {0,1} and an epoch t* € [gep| uniformly at random. Next, By sends t* to its challenger
Cy. Then, B, invokes A and answers the queries from A as follows. Note that all safe
predicates in eSM and AUTH experiments are identical, By can always compute the safe

predicates by itself, according to A’s previous queries.

® ONewldkey-A(T) and Onewidkey-8(7): Ba simply forwards them to C, followed by forwarding

replies from Cs to A.

® ONewprekey-A(T) and Onewprekey-g(7): B2 simply forwards them to C, followed by forwarding
replies from Cs to A.

® ORevidkey-A and OReyidkey-B: B2 sets safeifIK or safe}fIK (according the invoked oracle) to false
and runs corruption-update(). For each record in the allChall set, By then checks whether
the safe challenge predicate for all of the records holds. If one of them is false, B, undoes
the actions in this query and exists the oracle invocation. In particular, By resets the
safe identity predicate to true. Then, the attacker By simply forwards the queries to Co

followed by forwarding replies from Cs to A.

® ORevPrekey-a(ind) and Ogeyprekey-8(ind): By adds ind into the pre-key reveal list, according
to the invoked oracle and runs corruption-update(). For each record in the allChall set, B,
then checks whether the safe challenge predicate for all of the records holds. If one of
them is false, B, undoes the actions in this query and exists the oracle invocation. In
particular, Bs removes the pre-key counter ind from the pre-key reveal list. Then, the

attacker By simply forwards the queries to Cs followed by forwarding replies from Cy to

A

® Ocorrupt-a and Ocorrupt-a: Let P denote the party, whose session state the attacker is trying
to corrupt. By adds the corresponding epoch counter ¢p into the session state corruption
list £5°" and runs corruption-update(). Next, By checks whether there exists a record
including (=P, ind, flag) € chall. If such element does not exist, or, such element exists

but either of the following conditions holds,
— flag = good and safe{;dK

— flag = good and safel™ (ind)

259



If one of them is false, By undoes the actions in this query and exists the oracle invocation.
In particular, B, removes the epoch counter ¢p from the session state corruption list.
Then, the attacker By simply forwards the queries to Cy followed by forwarding replies
from Cs to A.

e Otansmita(ind, m, r) and OTansmieg(ind, m, 7): By simply forwards them to C, followed by

forwarding replies from Cs to A.

¢ Ochalienge-a(ind, mg, my, 1) and Ochalienge-g(ind, mg, my,7): We first consider the case for
answering Ochallenge-a(ind, mg, my, 7). The attacker By first computes flag = [r = L].
Namely, flag = true if and only if r is L. Then, By checks whether the predicate
safe-chy(flag, t,,ind) is true, according to A’s previous queries. If the safe predicates is
false, or, the input messages my and m; have the distinct length, By simply aborts the
oracle. Otherwise, By queries Oransmita(ind, my, ) to Co for a ciphertext ¢. Then, By
adds the record record(A, ind, flag, ty, iy, mp, ¢) into its own allChall and chall. Finally, B,

returns c¢ to A.

The step for answering Ochalienge-8(ind, Mg, my, 7) is similar to above step except that the

functions and variables related to A are replaced by the ones to B and vice versa.

e Obpeiiver-a(¢) and Opelver-(€): Bo first checks whether there exists an element (t, 4, ¢) € chall
for any ¢ and 4. If such element exists, the attacker B, simply returns (¢,7, L) to \A.
Otherwise, B, simply forwards the queries to Cs, followed by forwarding replies from Cs

to A. After that, By removes any element including (¢, i, ¢) from the challenge set chall.

® Ohject-a(ind, ¢) and Ojyject-8(ind, ¢): By simply forwards them to C, followed by forwarding
replies from Csy to A.

Note that if the attacker A wins via the winning predicate win®"™, the winning predicate
win®" in the Opeliver-a(c) and Opelver-s(¢) is never set to true. This means, the deliver
oracles in CORR experiment is identical to the original deliver oracles from A’s view. Note

auth 16 never set to false once it has been set to true.

also that the winning predicate win

Assume that attacker By guesses the epoch t* correctly, such that A triggers the flip of
win®"™" by querying Ohject-a(ind, ¢) or Opject-g(ind, ) for a ciphertext ¢ corresponding to
epoch t*, which happens with probability ﬁ. For all previous queries Ojpject-a(ind, ¢) and
Ounject.8(ind, ¢), where ¢ does not correspond to the epoch t*, the flip of win®™™ from false
to true will not be triggered. In this case, our reduced injection oracle correctly simulates
the behavior of the original injection oracles. For all previous queries Ojpject.a(ind, ¢) and
Olnject-g(ind, ct), where ¢ corresponds to the epoch ¢*, our reduced injection oracle simulates
the identical behavior of the original injection oracles.

Note that all other oracles are honestly simulated. The attacker By wins if and only

if A wins and the guess t* is correctly. Note also that the event A wins and the number
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that By guesses are independent. Thus, we have that
Pr[EXprle_IS,XeSM (A) - (17 07 0)] S qepAdvlgl(,)AReF:M S quGIA[UTH

Moreover, if A runs in time ¢, so does Bs.

Case 3. We compute the probability |Pr[ExpreH%XeSM (A) =(0,0,1)] — %], i.e., A wins via

the winning predicate win®™ by hybrid games. Let G, denote the simulation of Game j.

Game 0. This game is identical to the Exprffxew experiment. Thus, we have that

Pr[Go(A) = (0,0,1)] = Pr[Expriph _ (A4) = (0,0,1)]

Game i (1 < j < gep). This game is identical to Game (j — 1) except the following

modifications:

e When the attacker queries Ocpalienge-a(ind, mg, my, r) at epoch j, the challenger first checks
whether ind < ng and |mg| = |m;| and aborts if the condition does not hold. Then, the chal-
lenger samples a random message m of the length |mg| and runs Ochaiienge-a(ind, m, m, 7)

instead of Ochailenge-a (Mo, M1, 7). Finally, the challenger returns the produced ciphertext
cto A.

It is easy to observe that in Game g, all challenge ciphertexts are encrypted indepen-
dent of the challenge bit. Thus, the attacker A can output the bit b’ only by randomly

guessing, which indicates that
1
PI[Ger(A> - (0707 1)] - 5

Let E denote the event that the attacker can distinguish any two adjacent hybrid
games. We have that

| PrG;-1(A) = (0,0,1)] = Pr[G;(A) = (0,0, 1)]| < Pr[E]

Moreover, note that the modifications in every hybrid game j is independent of the
behavior in hybrid game (j — 1). Thus, we have that
| Pr[Go(A) = (0,0, 1)] = Pr[G,, (A) = (0,0, 1)]|
Qep

<| Zpr[Gj—l(A) = (0,0,1)] = Pr[G;(A) = (0,0, 1)]]

Gep

< Z | Pr(G;-1(A) = (0,0,1)] = Pr[G;(A) = (0,0, 1)]]

<gep Pr[E]

Below, we analyze the probability of the occurrence of the event E by reduction.

Namely, if A can distinguish any two adjacent games Game (j — 1) and Game j, then
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there exists an attacker B3 that breaks simplified PRIV security of the eSM construction II
with the same parameter Agsy. Let C3 denote the challenger in the Exprﬁﬂ\iw experiment.
At the beginning, the attacker Bs sends the epoch j to its challenger C3 and samples a bit
b € {0, 1} uniformly at random. Then, Bs invokes A and answers the queries from A as
follows. Note that all safe predicates in Game (7 — 1), Game 7, and PRIV experiments are
identical, B3 can always compute the safe predicates by itself, according to A’s previous

queries.

¢ Onewldkey-A(7) and Onewidkey-8(1): Bs simply forwards them to Cs followed by forwarding

replies from C3 to A.

® ONewprekey-A(T) and Onewprekey-8(7): Bs simply forwards them to Cs followed by forwarding
replies from C3 to A.

® ORevidkey-A and OReyidkey-8: B3 sets safei{jK or safe}adK (according the invoked oracle) to false
and runs corruption-update(). For each record in the allChall set, B3 then checks whether
the safe challenge predicate for all of the records holds. If one of them is false, B3 undoes
the actions in this query and exists the oracle invocation. In particular, Bs resets the
safe identity predicate to true. Then, the attacker B3 simply forwards the queries to Cs

followed by forwarding replies from Cs3 to A.

® ORevprekey-a(ind) and Ogeyprekey-g(ind): Bs adds ind into the pre-key reveal list, according
to the invoked oracle and runs corruption-update(). For each record in the allChall set, Bs
then checks whether the safe challenge predicate for all of the records holds. If one of
them is false, B3 undoes the actions in this query and exists the oracle invocation. In
particular, Bs removes the pre-key counter ind from the pre-key reveal list. Then, the

attacker B3 simply forwards the queries to Cs followed by forwarding replies from Cs to

A.

® Ocorrupt-a and Ocorrupt-g: Let P denote the party, whose session state the attacker is trying
to corrupt. B3 adds the corresponding epoch counter tp into the session state corruption
list £5°" and runs corruption-update(). Next, B3 checks whether there exists a record
including (=P, ind, flag) € chall. If such element does not exist, or, such element exists

but either of the following conditions holds,

— flag = good and safel’®

— flag = good and safel™ (ind)

If one of them is false, B3 undoes the actions in this query and exists the oracle invocation.
In particular, Bs removes the epoch counter tp from the session state corruption list.
Then, the attacker Bz simply forwards the queries to C3 followed by forwarding replies
from C3 to A.
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e Otansmita(ind, m, r) and Ovansmitg(ind, m, 7): Bs simply forwards them to Cs followed by

forwarding replies from Cs to A.

® Ochallenge-a(ind, mg, my, 1) and Ochalienge-g (ind, Mg, my,7): These oracles are answered ac-
cording to one of the following cases. Here, we only explain the behavior for answering
Ochalienge-a for simplicity. The behavior for answering Ocpalienge-8 can be defined analo-

gously.

— [ta < j]: When the attacker A queries Ochalienge-a(ind, mg, my, ) at epoch ¢, < j, the
Bs first computes flag < [r = L]. Next, B3 checks whether safe-chy(flag, ¢y, ind) =
true, ind < ng, and |mg| = |my | and aborts if any condition does not hold. Otherwise,
B3 samples a random message m of the length |mg| and queries Otansmit-a(ind, m, r)
for a ciphertext c. Finally, the B3 adds the record rec = (4, ind, flag, ty, iy, m, ¢) into
both allChall and chall, followed by returning the ciphertext ¢ to A.

— [ta = j]: When the attacker A queries Ochalienge-a(ind, mg, my, ) at epoch t, = j, the
B first computes flag < [r = L]. Next, B3 checks whether safe-chy(flag, ¢,,ind) =
true, ind < ng, and |mg| = |my| and aborts if any condition does not hold. Otherwise,
Bs samples a random message m of the length |mg| and queries Ocpaiienge-a (ind, mg, m, 7)
for a ciphertext c. Finally, the B3 adds the record rec = (A, ind, flag, ty, iy, -, ¢) into
both allChall and chall, followed by returning the ciphertext ¢ to A.

— [ta > j]: When the attacker A queries Ochalienge-a(ind, mg, my, ) at epoch ty > j, the
Bs first computes flag < [r = L]. Next, B3 checks whether safe-chy(flag, ¢y, ind) =
true, ind < ng, and |mg| = |my |, and aborts if any condition does not hold. Otherwise,
B3 queries Oransmit.a(ind, mg, ) for a ciphertext ¢. Finally, the Bs adds the record
rec = (A,ind, flag, t,, 7, mg, ¢) into both allChall and chall, followed by returning the
ciphertext ¢ to A.

¢ Opeiiver-a(c) and Opeliver-g(€): Bs first checks whether there exists an element (¢, 4, ¢) € chall
for any ¢ and 4. If such element exists, the attacker Bs simply returns (¢,7, 1) to \A.
Otherwise, B3 simply forwards the queries to Cs, followed by forwarding replies from Cs

to A. After that, Bs removes any element including (¢, i, c) from the challenge set chall.

¢ Ohject-a(ind, ¢) and Ojgject-8(ind, ¢): Bs simply forwards them to Cs followed by forwarding
replies from Csz to A.

Note that if the attacker A wins via the winning predicate winP™, the winning predicate
win®™ in the Opeiiver-a and Opefiver.s and win® ™ in the Omnject-a and Ojpject- 1s never set to
true. This means, the deliver oracles and injection oracles in PRIV experiment is identical
to the original ones from A’s view.

Note that all other oracles are honestly simulated. If the challenge bit b in the PRIV

experiment is 0, then Bs perfectly simulates Game (j — 1) to A. If the challenge bit b
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in the PRIV experiment is 1, then B3 perfectly simulates Game j to A. This means, the
attacker Bs wins if and only if A can distinguish the adjacent hybrid games Game (5 — 1)

and Game j, which is defined as the occurrence of event E. Thus, we have that
Pr[E] < Advﬁf”&\iw < eePSR,\'AV
Combing the equations above, we have that:

1

Pr{EsprS, (4) = (0.0.1)] - 1|

=|Pr[Go(A) = (0,0, 1)] — Pr[G,, (A)]|
<gep Pr[E] < QePEESRI\I/lV

Moreover, if A runs in time ¢, so does Bs.

Conclusion. The proof is concluded by
Advi™

eSM (

A) =max <Pr[EXpr‘ﬁs’XeSM(A) = (1,0,0)],
Pr[Exprf'—EXSSM (A) =(0,1,0)],
| PrExprf,, (4) = (0,0,1)] - )
< max (EﬁORR’ Gope UTH qepeﬁR'V>

§€1(':[ORR + er(eﬁUTH + 61F_’IRIV)
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1.
2.
3.
4.

7.11.4 Proof of Lemma 3

Proof. The proof is given by a sequence of games. Let Adv; denote the attacker A’s
advantage in winning Game j.

Game 0. This game is identical to the Exprﬁ?ggM. Thus, we have that
Advy = SRR

Game 1. In this game, if the attacker queries Ojpject-a(ind, ¢) and Ojpjece-8(ind, ¢) with ¢
corresponding to position (t*,4*) such that t* < min(¢,, t) — 2, the challenger immediately
returns (t*,7*, 1).

Note that the oracles are defined symmetric for party A and B. Without the loss of
generality, we only explain the case for Oject-a(ind, ¢) and t* is even. The case for Ojpject.8
and t* is odd can be given analogously.

In fact, recall that the eRcv algorithm is executed in Ojnject-a(ind, ¢) oracle only if the

following conditions hold
(B, c) ¢ trans
ind S Ny

safe-inj, (tz) = true and safe-inj,(¢,) = true which are equivalent to safe-stz(tz) = true

and safe-stp(t,) = true
(t*,i*) € comp, where (t*,4*) is the position of the input ciphertext ¢
Recall that (t*,7*) € comp means that a ciphertext at this position has been produced

by a party, which implies that t* < max(t,,tg). Moreover, a ciphertext is added into comp

only when

in the Ocomypt.a Oracle, if safe-st(¢*) = false holds.
in the Ocormypt-g Oracle at epoch ¢ty = t*, which means safe-stg(t*) = false
in the OTansmit.s oracle, if safe-inj, (t*) = safe-stg(t*) = false holds

in the ORevIdKey—/—\7 ORevIdKey—Ba ORevPreKey—/—\7 ORevPreKey—B oracles, if safe'in.jA(t*) = safe'StB<t*>

false

In all of the above cases, we know that safe-stz(t*) = false. Note that the conditions
safe-stg(tg) = false and safe-stz(t,) = false must hold at the same time. This means,
t* < min(t, tg) — 2. Thus, Game 0 and Game 1 are identical from the attacker’s view.
Thus, we have that

Advg = Adv;

In particular, this also means that both parties have already received at least one
message in the epoch t* and have produced the root keys before the Ojpject-a and Ojpject-B
for ciphertexts corresponding t* are queried.

Game 2. This game is identical to Game 1 except the following modification:
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1. Whenever the challenger executes Otransmit-a and OTransmit-g 10 enter a new epoch t*, the
challenger records the root key rk’ < st.rk produced during the oracle. When Opegjiver.a OT
Opeliver- 18 invoked on the first ciphertext that corresponds to the epoch t*, the challenger

replaces the derivation of the root key rk by the recorded 7k

The gap between Game 1 and Game 2 can be analyzed by a sequence of hybrid
games, where each hybrid only replace the root key at one epoch. Note that if the receiver
executes the eRcv algorithm for the first message in a new epoch. The new st.7k is derived
only when the output of DS.Vrfy in Line 29 is true, which happens except probability dps.
Note also that the Opejiver-a and Opeiiver.g Oracles are used to simulate the transmission
of the original data that were produced. The honest KEM ciphertexts are delivered to
the receiver and will be decrypted using the corresponding private keys in Line 31. All of
them are correctly recovered except probability at most 30kxem. If both parties’ local root
keys are identical, which is true due to the previous hybrid game, the root keys of both
parties in this epoch are also identical in this hybrid game. Note that there are at most

gep epochs. Thus, we have that
AdV1 S AdV2 -+ qep(éDs + 36KEM>
Game 3. This game is identical to Game 2 except the following modification:

1. Whenever the challenger executes Otransmit-a and Oransmit-g, the challenger records the
message key mk <+ mk produced during the oracle together with the position. When
Obeliver-a O Opeliver-g 1s invoked on a ciphertext, the challenger searches the mk at the
location of the input ¢, followed by replacing the derivation of the message key mk by

the recorded mk .

This game is similar to Game 2. The only difference is that the challenger runs ¢
hybrid games but not ge,, where ¢ denotes the maximal queries that A can make. Thus,
we can easily have that

Adv, < Advs + ¢(dps + 30kem)

Game 4. This game s identical to Game 3 except the following modification:

1. Whenever the challenger executes Oransmit-a(ind, m, r) and Oansmit-g(ind, m, ), the chal-
lenger records the message m produced during the oracle together with the position.
When Opeliver-a 0 Opeliver-g 1s invoked on a ciphertext, the challenger searches the message
m’ at the location of the input ¢, followed by replacing the recovery of the message m by

the recorded m'.

This game is similar to Game 3. The only difference is that the challenger runs ¢
hybrid games on the scheme SKE which is deterministic and dskg-correct. Similarly, we
can easily have that

Advs < Advy + gdske
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Final Analysis of Game 4: Now, whenever Opgjiver-a 0 Opeliver-g is delivered, the original
messages are always correctly recovered and output with the correct position, which means

the attacker never wins. Thus, we have that
AdV5 =0

The following equation concludes the proof.

GSSOI\/ITR < ep(dps + 30kem) + ¢(dps + 30kem + dske)
= (gep + ¢)9ps + 3(gep + q)xem + gdske
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7.11.5 Proof of Lemma 4

Proof. The proof is given by a sequence of games. Let Adv; denote the attacker A’s
advantage in winning Game j. At the beginning of the experiment, the attacker A outputs
a target epoch t*, such that it only queries challenge oracles in this epoch. Without loss of
generality, we assume t* is odd, i.e., A is the message sender. The case for t* is even can
be given analogously.

Game 0. This game is identical to the Exprﬁ?'ﬁ\iw. Thus, we have that

Advg = e
Game 1. This game is identical to Game 0 except the following modifications:

. At the beginning of the game, in addition to the target epoch t*, the attacker has to

output a target message index 7*.

. The challenge oracle Ocpalienge-a can only be queried for encrypting i*-th message (i.e.,

iy = i* — 1 before the query and iy = i* after the query) in ¢, = t*.

We analyze the gap between Game 0 and Game 1 by hybrid games. Note that A
can query oracles at most ¢ times. There are at most ¢ messages can be encrypted in the

target epoch.
Game 1.0. This game is identical to Game 0. Thus, we have that

AdV1_0 = AdVO

Game 1.5, 1 < j < ¢. This game is identical to Game 1.(j — 1) except the following

modification:

1. If A sends challenge oracle Ochalienge-a(ind, mg, my, 1) for encrypting j-th message.
The challenger first checks whether mg and m; have the same length and aborts if
the condition does not hold. Then, the challenge samples a random message m of
the length mg and runs Ochalienge-a(ind, m, m, 1) instead of Ochalienge-a (ind, mq, my, 7).

Finally, the challenger returns the produced ciphertext ¢ to A.

It is easy to observe that all challenge ciphertexts are encrypted independent of the
challenge bit in Game 1.q. Thus, the attacker can guess the challenge bit only by

randomly guessing in Game 1.¢, which implies that
AdVllq =0

Let E denote the event that the attacker A can distinguish any two adjacent hybrid
games. Note that the modification in every hybrid game j is independent of the behavior

in hybrid game (5 — 1). Thus, we have that

AdVLQ = AdVLQ — AdVl.q S qPI‘[E]
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We compute the probability of the occurrence of the event E by reduction. If A can
distinguish any Game 1.(j — 1) and Game 1.5, then we can construct an attacker B;

that breaks Game 1. The attacker B; is executed as follows:

1. When A outputs an epoch t*, B outputs (¢*, j). Meanwhile, B; samples a random
bit b € {0, 1} uniformly at random.

2. When A queries Ocpalienge-a; B answers according one of the following case:

e [iy < j— 1]: When the attacker queries Ochalienge-a(ind, mg, my, ) when i, <
J — 1, i.e., for encrypting messages before j-th message. B; first computes
flag < [r = L]. Next By checks whether safe-ch,(flag, ¢,,ind), ind < ng, and mq
and my have the same length. If any condition does not hold, By simply aborts.
Otherwise, B; samples a random message m of the length my and queries
OTransmit-a(ind, m, r) for a ciphertext ¢. Finally, B; adds the corresponding
record into both allChall and chall, followed by returning the ciphertext ¢ to A.

e [iy = j—1]: When the attacker queries Ocpalienge-a(ind, mg, my, r) when iy = j—1,
i.e., for encrypting j-th message. B first computes flag « [r = L]. Next B;
checks whether safe-ch,(flag, t,,ind), ind < ng, and my and m; have the same
length. If any condition does not hold, B; simply aborts. Otherwise, B; samples
a random message m of the length my and queries Ocpalienge-a(ind, mg, m, 1) for
a ciphertext c. Finally, By adds the corresponding record into both allChall and
chall, followed by returning the ciphertext ¢ to A.

e [iy > j—1]: When the attacker queries Ocpalienge-a(ind, mg, my, r) when iy > j—1,
i.e., for encrypting messages after j-th message. B; first computes flag < [r =
1]. Next B; checks whether safe-chy(flag,t,,ind), ind < ng, and my and my
have the same length. If either condition does not hold, B; simply aborts.
Otherwise, B; queries Otpansmit.a(ind, mg, ) for a ciphertext c. Finally, B; adds
the corresponding record into both allChall and chall, followed by returning the
ciphertext ¢ to A.

3. To answer all other oracles, B; first checks whether the safe predicate requirements
in individual oracles hold. If so, B; simply forward the queries to challenger and

returns the reply to A. If not, B; simply aborts.

Note that all other oracles are honestly simulated except for Ochaiienge-a. If the challenge
bit b in Game 1 is 0, then B; perfectly simulates Game 1.(j — 1) to A. If the challenge
bit b in Game 1 is 1, then B; perfectly simulates Game 1.5 to A. Thus, if A can
distinguish any adjacent two hybrid games, B; wins Game 1, which implies Pr[E] < Adv,,
and further

Advy = Advy < ¢Pr[E] < gAdv,
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Game 2. Let ind* denote the index of prepky that is used to encrypt i*’s message
in epoch t*. Let flag* denote the random quality in the target challenge oracle. In this
game, A wins immediately, if at the end of experiment safe-stg(t*) = <f|ag* = good and

idK _ * _ preK i gxy | —
= = ; = :
safeg ) (flag good and safef " (ind )) false

Note that before the challenge query, the safe predicate safe-chy(flag,t*,ind*) must
hold, i.e.,

(safe—stA(t*) and safe—stB(t*)) or (flag* = good and safe—stB(t*)> or (flag* = good and
safegdK> or <f|ag* = good and safegreK(ind*)>

This means, at least one of the following conditions must hold at the time of query of

OChaIIenge—A .

1. safe-stp(t*) = true
2. (flag* = good and safeng> = true
3. (flag* = good and safegreK(ind*)> = true

When querying identity keys or pre-keys oracles, the oracle aborts if it will triggers the
safe challenge predicate safe-ch,(flag™, t*,ind*) to false. When querying corruption oracles,
the violation of safe-stz must indicate (flag* = good and safe;dK) or (flag* = good and

K
safef"

(ind*)). Thus, at least one of the above conditions must hold even at the end of
experiment

This means, A cannot gain any additional advantage in winning Game 2, which
implies that

AdVl = AdV2
Below, we analyze the advantage Advs into three cases, whether (flag* = good and

safe;dK) = true or (flag* = good and safegreK(ind*)) = true or safe-stg(¢*) = true holds at

the end of the experiment.

Case 1: (flag* = good and safegdK) = true

In this case, (ﬂag* = good and safegdK> = true holds at the end of the experiment,

thus also holds at the time of challenge oracle Ocpalienge-a query. We use Adv]Cl to denote
A’s advantage in winning Game j in this case. In the remaining of this case analysis, we
focus on the epoch t* and the message index ¢*.

Game C1.3. This game is identical to Game 2 except the following modification:

1. The challenger additionally samples a random key k' € I, where K denote the key space
of the underlying KEM.
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2. (upd™,upd"") <— KDF(ky, ko, k3) in Line 16 in Figure 7.6 is replaced by (upd®, upd"") <«
KDF; (ky, k', k3)
3. ky < KEM.Decaps(ik, cy) in Line 31 in Figure 7.6 is replaced by ky < k'
If A can distinguish Game 2 and Game C1.3, then we can construct an attacker By

that breaks IND-CCA security of underlying KEM. The attacker B, receives a public key

pk, a challenge ciphertext ¢*, and a key £*, and simulates the game as follows:
1. A outputs (t*,7*) at the beginning of the game.

2. When A queries Onewidkey-B(7), checks whether » = L. If r # L, then By returns pk to
A.

3. When A queries Ochalienge-a(ind*, mg, my, r) for encrypting i*’s message in the epoch t*,
By aborts if r # L. Then, By honestly runs Ochalienge-a €xcept replacing (upd®, upd™’)
KDF (k1 ks, k3) in Line 16 in Figure 7.6 by (upd®, upd"") <— KDFy (ky, k*, k3)

4. When A queries Opejiver-g(¢) oracle, where c is output by Ochalienge-a Oracles, By honestly
runs the eRcv algorithm except directly using £* at the place of ky instead of running

decapsulation algorithm.

5. When A queries Ojnject-8(ind, ¢) oracle for a pre-key index ind and a ciphertext ¢, By
forwards ¢ to its decapsulation oracle for a key k, followed by use this key in the place of

the decapsulated &, to run eRcv algorithm.
6. All other oracles are honestly simulated.

Note that if the challenge bit in the IND-CCA security experiment equals 0, then B,
simulates Game 2 to A. If the challenge bit in the IND-CCA security experiment equals 1,
then By simulates Game C1.3 to A. By wins if and only if A can distinguish Game 2
and Game C1.3. Thus, we have that
AdvS? < Adv§™t + epdie
Game C1.4. This game is identical to Game C1.3 except the following modifications:

1. The challenger additionally samples a random update value EBE” € {0,1}*
2. mk < KDF5(urk, upd") in Line 22 and 40 in Figure 7.6 is replaced by mk <— KDF;(urk, J;SH”)
If A can distinguish Game C1.3 and Game C1.4, then we can construct an attacker

B3 that breaks 3prf security of underlying KDF;. Note that the random key £’ is sampled
random in Game C1.3. B3 can easily query ki, k3 to its oracle on the second input,
and use the reply in the place of (upd®,upd"). If the oracle simulates KDF;, then B
simulates Game C1.3 to A. If the oracle simulates a random function, then B3 simulates
Game C1.4. Thus, we have that

Adv§' < AdvE! + e

Game C1.5. This game is identical to Game C1.4 except the following modifications:
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. The challenger additionally samples a random message key mk € {0,1}*

. ¢ < SKE.Enc(mk, m) in Line 22 and 40 in Figure 7.6 is replaced by ¢’ < SKE.Enc(nf”ﬁf, m)

Similar to the game above, if A can distinguish Game C1.4 and Game C1.5, then we
can construct an attacker B4 that breaks swap security of underlying KDF5. Note that the
random update value JBH” is sampled random in Game C1.4. B, can easily query urk
to its oracle and use the reply in the place of mk. If the oracle simulates KDFj5, then By
simulates Game C1.3 to A. If the oracle simulates a random function, then Bs simulates
Game C1.5. Thus, we have that

Advi! < Advg! + egpE < Advs! + eXBE,

Game Final Analysis for Case 1: In the end, we compute A’s advantage in winning
Game C1.5 by reduction. If A can win Game C1.5, then we can construct an attacker
Bs that breaks IND-1CCA security of the underlying SKE. The reduction is simulated as

follows:

. A outputs (¢*,7*) at the beginning of the game.
. B samples a random bit b <% {0,1}.

. When A queries Ochalienge-a (ind*, mg, my, 7) for encrypting i*’s message in the epoch t*, Bs
aborts if r #£ 1L or mg and m; have different length. Next, By samples a random message
m of length |mg|.Then, Bs queries its challenger on (m, mg) and receives a ciphertext ¢*.
After that, Bs honestly runs Ochalienge-a €xcept replacing ¢’ <— SKE.Enc(mk, m) in Line 22
and 40 in Figure 7.6 by ¢ < ¢*.

*

When A queries Opejiver.g(c) oracle such that ¢ includes t*, i*, and ¢*, Bs; honestly

simulates Opeliver-g €xcept for outputting m’ = L.

. When A queries O)pject-8(ind, ¢) oracle for a pre-key index ind and a ciphertext corresponds
to the position (t*,7*), Bs forwards c to its decapsulation oracle for a message m’, followed

by outputting (¢*,*, m’)

. All other oracles are honestly simulated.

Note that if the forgery via Ojnject-g is accepted, then the attacker cannot win via winP™
predicate since a natural eSM scheme does not accept two messages at the same position.
So, Bs perfectly simulate Game C1.5 to A and wins if and only if A wins. Thus, we have
that

C1 ind-1lcca
Advs™ < eske

To sum up, we have that

C1 ind-1lcca dual 3prf ind-cca
Advy " < €ge ™ + €KDE, T €kpF, T EKEM
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Case 2: (flag* = good and safegreK(ind*)) = true

In this case, (flag* = good and safegreK(ind*)) = true holds at the end of the experiment,
thus also holds at the time of challenge oracle Ochalienge-a query. We use Adij2 to denote
A’s advantage in winning Game j in this case. In the remaining of this case analysis, we
focus on the epoch t* and the message index 7*.

Game C2.3 In this game, the challenger guesses the index of the pre-key ind* by
randomly guessing at the beginning of the experiment. If the guess is wrong, the challenger
aborts and let .4 immediately win. Note that there are at most gy in the experiment, the

challenger can guess correctly with probability ﬁ. Thus, we have that
Adv§? < guAdv§?

Game C2.4, C2.5, C2.6. These games are defined similar to Game C1.3, C1.4, C1.5.
The only difference is to apply the modification not to B’s identity key but B’s ind*-th

pre-key. The proof can be easily given in a similar way and we have that
AGVE? < B+ i+ B, + R
To sum up, we have that
AGE? < (B2 + s, + i, + )
Case 3: safe-stg(t*) = true

In this case, safe-stg(t*) = true holds at the end of the experiment, thus also holds
at the time of challenge oracle Ochallenge-a query. We further split this case into two
subcases: when A queries the challenge oracle at Ochajienge-a fOr encrypting ¢*’s message
at epoch t* whether (flag* = good and safe—stB(t*)) holds, see Case 3.1, or, (safe—stA(t*)

and safe—stB(t*)) holds, see Case 3.2.

Case 3.1: (ﬂag* = good and safe-stB(t*))

Game C3.1.3 This game is identical to Game 2 except the following modification:

1. Whenever P € {A,B} is trying to sending the first message in a new epoch t + 1 (i.e.
P = Aif ¢t even and P = B if ¢t odd) and the execution £ & ¢t +1 in Line 80 in the
ep-mgmt helper function in Figure 7.6 is not triggered, then the challenger replaces
r <& {0,1}*, (stp.nas, rKEM 1DS) < KDFy(stp.nzs,r) executed in the following eSend
algorithm in Line 18 in Figure 7.6 by stp.nzs < {0, 1}*, vKEM & 10 1}* DS & {0 1}2

We analyze A’s advantage in winning Game C3.1.3 by hybrid games.
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Game hy.0: This game is identical to Game 2. Thus, we have that

Adv§*! = Advyy o

Game hy.j, (1 < j < gep): This game is identical to game Game hy.(j — 1) except that:

1. When entering epoch j from j — 1, if the execution L5 & J in Line 80 in the
ep-mgmt helper function in Figure 7.6 is not triggered for P = A if j odd and
P = B if j even, then in the following eSend algorithm, the challenger replaces r <>
{0, 1}, (stp.nas, rKEM DS) <« KDFy(stp.nzs, r) executed in Line 18 in Figure 7.6 by
stp.nas <= {0, 1}, rKEM & 10 1} DS & {0 1}

It is obvious that Game hy.g, is identical to Game C3.1.3. Thus, we have that
Adv$?*! = Advpy .,

Let E denote the event that A can distinguish any adjacent hybrid games Game hy.(j —
1) and Game hy.j. Note that the modification in every hybrid game is independent of

the behavior of the previous game. Thus, we have that
Adv§?! — Adv§?! < gep Pr[E]

Below, we compute the probability of the occurrence of event F by case distinction.
Note that the execution L£5° & j in Game hy.j indicates that Game hy.(j —1) is identical
to Game hy.j. Below, we only consider the case for that the execution £5* & J is not
triggered. Note also that L5 & j is not triggered only when safe-chp(flag, j — 1,ind"),
which further implies that one of the following conditions must hold: (1) safe-stp(j — 1) or

(2) flag = good. Then, we consider each of the two cases.

Case safe-stp(j — 1): First, safe-stp(j—1) means (j—1), (j—2) ¢ L. Moreover, (j—1) ¢
L& indicates that (1) the execution £5 <= (j — 2) in Game hy.(j — 2) is not triggered,
and (2) the state corruption on P is not invoked during epoch (j — 1) and (j — 2).
According to hybrid game Game hy.(j — 2), the value stp.nzs sampled uniformly at
random during sending the first message in epoch (j — 2). In other words, stp.nzs is
uniformly at random from the attacker’s view when entering epoch j from (j —1). During
sending the first message in epoch j, r < {0, 1}*, (stp.nzs, r*EM rPS) « KDFy(stp.nas, 1)
is executed in Line 18 in Figure 7.6. By the prf security of KDF,, it is easy to know that
if A can distinguish Game hy.(j — 1) and Game hy.j, then there must exist an attacker
that distinguish the keyed KDF; and a random function. Thus, it holds that

Pr[E] < E%FQ
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Case flag = good: This means, the first message in epoch j—2 is computed using fresh ran-
domness. In particular, this means, 7 < {0,1}*, (stp.nzs, r"EM rPS) < KDFy(stp.nzs, )
is executed in Line 18 in Figure 7.6 uses fresh randomness r. It is easy to know that
stp.nxs after sending the first message in epoch (j — 2) is distinguishable from a random

string, due to the swap-security of KDF,.

Thus, we have that
Pr{E] < 32,

From above two cases, we know that
Pr(E] < max (b, + €08, ) < ki,
To sum up, we have that
Advs ! < gep Pr[E] + Advg™! < Adv§™! + gepeir,

Game C3.1.5, C3.1.6, C3.1.7. Note that safe-stg(t*) means that t*, (t* — 1) ¢ L5
This implies that both following conditions must hold:

1. stp.nzs <= {0, 1}, rKEM & L0 132 DS & 10, 1}* are executed when B was entering
t* — 1.

2. The corruption oracle Ocorrypt- 1s not queried during t* and (¢t* — 1).

Furthermore, the KEM key pair in stz generated in epoch t* — 1 for A to encrypt messages
in t* is not leaked. Applying a similar game hopping to the KEM key pair in the state, as
to the identity key pairs in Game 1.3, 1.4, 1.5, we can easily have that

C3.1 ind-1lcca dual 3prf ind-cca
Advy™" < eske 7 + €kDF; T EKDF, T EKEM

Combing the above statements, we have that
AN < B s, + B, + R+ el
Case 3.2: (safe—stA(t*) and safe—stB(t*)>

Game (C3.2.3 This game is identical to Game 2 except the following modification:

1. Whenever P € {A B} is trying to sending the first message in a new epoch t + 1 (i.e.
P = Aif t even and P = B if ¢ odd) and the execution L & t+41 in Line 80
in the ep-mgmt helper function in Figure 7.6 is not triggered, then the challenger
replaces (st.rk, st.ck™") <~ KDF3(st.rk, upd™) executed in the following eSend algorithm
in Line 21 in Figure 7.6 by stp.7k < {0,1}* and st.ck™*" < {0, 1}*, followed by storing
(t 4 1,stp.rk, st.ck' ™t st.prtr).
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2. if there exist a locally stored tuple (¢, rk, ck, prtr) and the eRcv is invoked to enter-
ing epoch ' with ciphertext including prtr, the challenger replaces (st.7k,st.ck™") «
KDF3(st.rk, upd®) executed in the eRcv algorithm in Line 32 in Figure 7.6 by st.rk < rk,
st.ck™! « ck.

We analyze A’s advantage in winning Game C3.2.3 by hybrid games.

Game hy.0: This game is identical to Game 2. Thus, we have that

Adv§®? = Advyy o

Game hy.j, (1 < j < gep): This game is identical to game Game hy.(j — 1) except that:

1. When P € {A,B} is trying to send the first message in a new epoch j (i.e. P = A
if j odd and P = B if ¢t even) and the execution L5 & j in Line 80 in the
ep-mgmt helper function in Figure 7.6 is not triggered, then the challenger replaces
(st.rk,st.ck’) < KDFs(st.rk, upd®) executed in the following eSend algorithm in
Line 21 in Figure 7.6 by stp.7k <= {0, 1}* and st.ck’ < {0, 1}*, followed by storing
(4, stp.rk, st.ck’, st.prtr).

2. if there exist a locally stored tuple (¢, 7k, ck, prtr) and the eRcv is invoked to entering
epoch ' with ciphertext including prtr, the challenger replaces (st.rk,st.ck’)
KDF3(st.7k, upd®) executed in the eRcv algorithm in Line 32 in Figure 7.6 by
st.rk < rk, st.ck’ < ck.

It is obvious that Game hy.g, is identical to Game C3.1.3. Thus, we have that
Adv§?? = Adviy 4,

Let E denote the event that A can distinguish any adjacent hybrid games Game hy.(j—
1) and Game hy.j. Note that the modification in every hybrid game is independent of

the behavior of the previous game. Thus, we have that
Adv§?? — Adv§?? < gqp Pr[E]

Below, we compute the probability of the occurrence of event E by case distinction.
Note that the execution L£5° & j in Game hy.j indicates that Game hy.(j —1) is identical
to Game hy.j. Below, we only consider the case for that the execution £5* & J is not
triggered. Note also that L5 & J is not triggered only when safe-chp(flag, 5 — 1,ind),

which further implies that one of the following conditions must hold:
1. (safe—stp(j — 1) and safe-st_p(j — 1))

2. (ﬂag = good and safe-st_p(j — 1))
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3. (flag = good and safeiflf)
4. (flag = good and safeﬂrlfK(ind)>
Then, we consider each of the four cases:

Case (safe—stp (7 — 1) and safe-st_p(j — 1)): Recall that safe-stp(j — 1) and safe-st_p(j —
1) means (j — 1), (j — 2) ¢ £5°, £, This indicates that (1) the execution £ ¢~ (j — 1)
in Game hy.(j — 1) is not triggered, and (2) the state corruption on both party is not
invoked during epoch (j —1). (3) the first message that P receives in the epoch (j — 1) is
not forged by the attacker. According to hybrid game Game hy.(j — 1), the value stp.7k
sampled uniformly at random during sending the first message in epoch (j — 1). In other
words, stp.7k is uniformly at random from the attacker’s view when entering epoch j from
( — 1). During sending the first message in epoch j, (st.7k, st.ck’) <— KDF3(st.rk, upd™)
is executed in the eSend algorithm in Line 21 in Figure 7.6. By the prf security of KDF3,
it is easy to know that if A can distinguish Game hy.(j — 1) and Game hy.j, then there
must exist an attacker that distinguish the keyed KDF3 and a random function. Thus, it
holds that

PrlE] < G%Fg

Case (flag = good and safe-st_p(j — 1)) : This case can be analyze in the following
games. Here, we only sketch the idea, since they are very similar to Game C3.1.3,
Game C1.3, Game C1.4, and Game C1.5. First, similar to analysis in Game C3.1.3,
we know that KEM public key stored in st_p and will be used by P in epoch j is sampled
uniformly at random except probability qepedK‘S'Fz. Next, similar to Game C1.3, we
know that the encapsulated key is indistinguishable from a random key except prob-
ability eifdc® due to the IND-CCA security of the underlying KEM. Then, similar to
Game C1.4, we know that the update value upd® is indistinguishable from a random
string in {0, 1}* except probability ef(pg;l due to the 3prf security of the KDF;. Finally,
similar to Game C1.5, the root key st.7k and the chain key st.ck’ are indistinguishable
from random strings except probability eg5e. < ef<“,§'F5 due to the swap-security (and the

dual-security) of the function KDF5. Thus, we have that
Pr[E] S qepedKLball:Q + Ewgi&fa + ef’([ngl + EdKlllDa'I:5
Case (ﬂag = good and safeﬂf): This case can be analyze in the following games. Here,
we only sketch the idea, since they are very similar to Game C1.3, Game C1.4, and
Game C1.5. First, similar to Game C1.3, we know that the encapsulated key is
indistinguishable from a random key except probability €& due to the IND-CCA
security of the underlying KEM. Then, similar to Game C1.4, we know that the update

value upd® is indistinguishable from a random string in {0, 1}* except probability ef(’g';:l
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due to the 3prf security of the KDF;. Finally, similar to Game C1.5, the root key st.rk
and the chain key st.ck’ are indistinguishable from random strings except probability
xor. < €kBr, due to the swap-security (and the dual-security) of the function KDF;.
Thus, we have that

ind-cca 3prf dual
Pr[E] < ekem™ + €KDF, T €KDF;

Case (flag = good and safe-st_p(j — 1)) : This case can be analyze in the following
games. Here, we only sketch the idea, since they are very similar to Game C2.3,
Game C2.4, Game C2.5, and Game C2.6. First, similar to analysis in Game C2.3, the
challenger first guesses the medium-term pre-key that will be used for sending the first
message in epoch 7, which can be guessed correctly with probability at least ﬁ. Next,
similar to Game C2.4, we know that the encapsulated key is indistinguishable from a
random key except probability €i?d,¢ due to the IND-CCA security of the underlying KEM.
Then, similar to Game C2.5, we know that the update value upd® is indistinguishable
from a random string in {0,1}* except probability ef(‘gf,:l due to the 3prf security of
the KDF;. Finally, similar to Game C2.6, the root key st.rk and the chain key st.ck’
are indistinguishable from random strings except probability expf. < effr, due to the

swap-security (and the dual-security) of the function KDFs.

Thus, we have that

ind-cca 3prf dual
Pr[E] < qm(egem + €kpr, T €KDF5)
From above two cases, we know that

prf dual ind-cca 3prf dual
Pr[E] < max <€KDF3>er€KDF2 T €KEm T €kpF, T €KDF5:

ind-cca 3prf dual ind-cca 3prf dual
EKEM - T €KDF, T EKDFs» IM(EKEM ~ + €KDF, T €KDFs)

prf dual ind-cca 3prf dual
< max <€KDF37 Jep€KDF, T €KEM T €KDF, T €KDFs>

ind-cca 3prf dual
av(egem - + €kpr, T EKDFg)

This means, it holds that
C3.2 C3.2 prf dual ind-cca
Advy ™" < Advy ™" + gep max (EKDFga Jep€KDF, T €KEM
3prf dual ind-cca 3prf dual
+ €kprF, T €KDF5» am(ekem  + €kpr, T €KDF5)>

Game (C3.2.4. This game is identical to Game 3.2.3 except the following modification:

1. For running A’s eSend at t*, the execution (st.ck , urk) < KDF,(st.ck") in Line 22 in
Figure 7.6 is replaced by st.ck’” < {0,1}*, wrk <& {0,1}*. After that, the challenger

stored (st.ck’, urk) into a local list.

2. For running B’s eRev at t* the execution (st.ck’ , urk) <= KDFy(st.ck’") in Line 38 is

replaced by the tuple (st.ckt*7 urk) in the local list for the corresponding message index.
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The advantage gap of A in winning Game C3.2.3 and Game C3.2.4 can be computed
by hybrid games. Recall that A can query oracles at most ¢ times, the maximum of the

message index is q.
Game hy.0: This game is identical to Game C3.2.3. Thus, we have that

Adv§®? = Advpyg

Game hy.j, (1 < j < g): This game is identical to game Game hy.(j — 1) except that:

1. For running A’s j-th eSend at t*, the execution (st.ck’ , urk) < KDF,(st.ck’") in
Line 22 in Figure 7.6 is replaced by st.ck” <& {0, 1}, urk < {0,1}*. After that,

the challenger stored (st.ck’ , urk) into a local list.

2. For running B’s eRcv on a ciphertext corresponds to the position (¢*, j), the execution
(st.ck’”, urk) < KDF(st.ck") in Line 38 is replaced by the tuple (st.ck’, urk) in the

local list for the corresponding message index j.

It is obvious that Game hy.q is identical to Game C3.2.4. So, we have that Advfg'2 =
Advpy .. The gap between every two adjacent hybrid games can be reduced to the prg
security of KDF,. Namely, if the attacker can distinguish Game hy.(j —1) from Game hy.j,
then there must exist an attacker can distinguish the real KDF4 and a random number

generator. Thus, we can easily have that
Cs. cs.
Adv§?? < Advi™? + qelge,

Game (C3.2.5. This game is identical to Game C3.2.4 except the following modifica-

tions:

1. The challenger additionally samples a random message key mk € {0,1}* for the position
(t*, i)

2. ¢ + SKE.Enc(mk, m) in Line 22 and 40 in Figure 7.6 is replaced by ¢’ < SKE.Enc(Trﬁc, m)

Note that the unidirectional ratchet key urk is sampled random in Game C3.2.4.

Similar to the game Game C1.5, if A can distinguish Game C3.2.4 and Game C3.2.5,

then we can construct an attacker that breaks prf security (and therefore the dual security)
of underlying KDF5. Thus, we have that

C3.2 c32 | pif €32 | _dual
Advy”" < Advy ™ + egpr. < Advy ™7 + ekpr,

Game Final Analysis for Case C3.2:

Similar to the final analysis for Game C1, if the attacker A can distinguish the
challenge bit in Game C3.2.5, then there exists an attacker that breaks IND-1CCA security
of the underlying SKE. Thus, we can easily have that

C3.2 ind-1cca
Advs ™" < esie
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To sum up, we have that

C3.2 prf dual ind-cca 3prf
Advy ™" < gep max <€KDF3> Jep€KDF, T €KEM ~ T €KDF,
dual ind-cca 3prf dual prg dual ind-1cca
+ €kDFs> M (EKEM T+ €KDF, T 6KDF5)> + 4€kpr, T €KDFs T €sKE

Combining all statements above, the proof is concluded by

Q)

PRIV < gmax(AdvS?, AdvS?, AdvS?! Adv$™2)

ind-1cca dual 3prf ind-cca
< gmax | €skg  t+ €KDF, T €KDF, T EKEM >

ind-1cca dual 3prf ind-cca
qm(€ske ““ + €KDF; T EKpF, T EKEM )5
ind-1cca dual 3prf ind-cca dual
€SKE T €KDFs T €kDF, T €KEM T Jep€KDF,>

prf dual ind-cca 3prf dual ind-cca 3prf dual
Jep IAX <€KDF37 Qep€KDF, + EKEM - + €KDF, + EKDFs» IM(EKEM  + €KDF, T €KDF;)

prg dual ind-1cca
+ G€kpr, T €KDF5s T €sKE

ind-lcca prf dual ind-cca 3prf dual
< q| ameske “° + Gep(€kpr, t Qep€DF,) T qMTep(EKEM ™ T €KDE, T EKDF5)

prg dual
+ q€kpF, T €KDF;
ind-cca ind-1cca 3prf
< AMGep€kEM T AMYESKE + AMYepq€KpF,

u rf r u
+ G dERDE, + Gep€Ror, + T ekBe, + (aMTep + 1)qeiBE,
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7.11.6 Proof of Lemma 5

Proof. The proof is given by a sequence of games. Let Adv; denote the attacker A’s
advantage in winning Game ¢. At the beginning of the experiment, the attacker A outputs
a target epoch t*, such that it only queries the injection oracles inputting ciphertexts
corresponding to in this epoch. Without loss of generality, we assume t* is even, i.e., A
is the message receiver. The case for t* is even can be given analogously. Note also that
the attacker A can immediately win when it successfully triggers the winning predicate
win®"™ turning form false to true. So, we only consider the case that A successfully forges
a ciphertext only once.

Game 0. This game is identical to the Exprﬁl’JATgM. Thus, we have that
Advg = e

Game 1. This game is identical to Game 0 except the following modifications:

. If the attacker queries Ojpject-a(ind, ¢) with ¢ corresponding epoch t* and a message index

i* such that t* < t, — 2 and (B, t*,i*) ¢ trans, the challenger immediately aborts the

oracle and outputs (t*, 4, L).

Note that a record is not included in the transcript set for the previous epochs, only

when

. this record is delivered

. no sender has produced any message in the previous epoch t* with message index i*

The first case can be easily excluded, since a natural eSM scheme never accepts two
messages at the same position. For the second case, note that B produces messages only
with continuous message indices. B didn’t produce the message with message index *
means that i* exceeds the maximal message length that B has produced in the epoch t*.
Since in eSM A has received all maximal message length in all previous epochs (see Line 30
in Figure 7.6) and will aborts the eRcv execution if 7 exceeds the maximal message length
in the corresponding epoch (see Line 26 in Figure 7.6). This game is identical to Game 0

from A’s view. Thus, we have that
AdVl = AdVU

Note that the attacker can win only when it queries Ojpject-a(ind, ¢) such that all of the

following conditions hold

. ¢ corresponds to epoch t*
(B, c) ¢ trans

ind S (N
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4. safe-inj,(ty) = safe-stg(t)) and safe-inj,(t) = safe-stp(ts)
5. m' # L
6. (B,t*,i*) ¢ comp

where (sty, 3%, m’) < eRev(sty, iky, prepki®, c)

In particular, (B, t*,i*) ¢ comp but (B,t*,7*) € trans means that

1. safe-stg(t*) = true holds at the time of B sending message corresponding to the position
(t*,4%), and

2. if safe-stg(t*) = false, Ocorrupt-a cannot be queried
3. If Ocorrupt-a is queried at epoch t*, then Ocoprupt-8 cannot be queried.

4. Ocompt-s can be queried only after the ciphertext corresponding to (¢*,7*) has been

honestly generated.

5. After the leakage of identity keys or pre-keys, safe-stg(t*) = false

So, at most one of Ocorrypt-a and Ocorrupt-g at epoch t*, but not both.

We separate the analysis for t* > ¢, — 1, see Case 1, or t* < t, — 2, see Case 2.

Case 1. t* >ty — 1

In this case, the attacker queries Ojpject-a(ind, ) for some pre-key index ind and ciphertext
¢ under the condition that safe-stg(tz) = true. This means, tp, (tg — 1) ¢ L.

Game C1.2 This game is identical to Game 1 except the following modification:

1. Until epoch ¢*, whenever P € {A,B} is trying to sending the first message in a new epoch
t+1 (ie. P=Aift even and P = B if £ odd) and the execution £ <~ ¢ +1 in Line 80 in
the ep-mgmt helper function in Figure 7.6 is not triggered, then the challenger replaces
r <= {0,1}*, (stp.nas, rKEM 1DS) < KDFy(stp.nzs,r) executed in the following eSend
algorithm in Line 18 in Figure 7.6 by stp.nzs < {0, 1}*, vKEM & {0 1}* DS & {0 1}X

We analyze A’s advantage in winning Game C1.2 by hybrid games.
Game hy.0: This game is identical to Game 1. Thus, we have that

Adv§{ ! = Advyy o

Game hy.j, (1 < j < gep): This game is identical to game Game hy.(j — 1) except that:

1. When entering epoch j from j — 1, if the execution L5 & J in Line 80 in the
ep-mgmt helper function in Figure 7.6 is not triggered for P = A if j odd and
P = B if j even, then in the following eSend algorithm, the challenger replaces r <-
{0,1}*, (stp.nas, rKEM ¢DS) « KDFy(stp.nas, r) executed in Line 18 in Figure 7.6 by
stp.nas <= {0, 1}, rKEM & L0 132 DS & L0 1}
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It is obvious that Game hy.g, is identical to Game C1.2. Thus, we have that
AdvS" = Adviy.q.,

Let E denote the event that A can distinguish any adjacent hybrid games Game hy.(j —
1) and Game hy.j. Note that the modification in every hybrid game is independent of

the behavior of the previous game. Thus, we have that
AdvS! — AdvS! < gep Pr[E]

Below, we compute the probability of the occurrence of event F by case distinction.
Note that the execution L£5° & j in Game hy.j indicates that Game hy.(j —1) is identical
to Game hy.j. Below, we only consider the case for that the execution L5 & j is not
triggered. Note also that £5° & j is not triggered only when safe-chp(flag, 7 — 1, ind) for
some pre-key index ind, which further implies that one of the following conditions must

hold: (1) safe-stp(j — 1) or (2) flag = good. Then, we consider each of the two cases.

Case safe-stp(j — 1): First, safe-stp(j—1) means (j—1), (j—2) ¢ L5*". Moreover, (j—1) ¢
£ indicates that (1) the execution £5 <~ (j — 2) in Game hy.(j — 2) is not triggered,
and (2) the state corruption on P is not invoked during epoch (j — 1) and (j — 2).
According to hybrid game Game hy.(j — 2), the value stp.nzs sampled uniformly at
random during sending the first message in epoch (7 — 2). In other words, stp.nzs is
uniformly at random from the attacker’s view when entering epoch j from (j —1). During
sending the first message in epoch j, r < {0, 1}*, (stp.nzs, 7¥EM rPS) « KDFy(stp.nas, 1)
is executed in Line 18 in Figure 7.6. By the prf security of KDF,, it is easy to know that
if A can distinguish Game hy.(j — 1) and Game hy.j, then there must exist an attacker
that distinguish the keyed KDFy and a random function. Thus, it holds that

Pr[E] < 5%5

Case flag = good: This means, the first message in epoch j—2 is computed using fresh ran-
domness. In particular, this means, 7 < {0,1}*, (stp.nzs, r"EM rPS) < KDFy(stp.nzs, )
is executed in Line 18 in Figure 7.6 uses fresh randomness r. It is easy to know that
stp.nxs after sending the first message in epoch (j — 2) is distinguishable from a random

string, due to the swap-security of KDF,.

Thus, we have that
Pr[E] < 5pf,

From above two cases, we know that

prf swap dual
Pr[E] < max <€KDF2 + EKDFQ) < €KDF,
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To sum up, we have that

AdVS! < gep Pr[E] + AdvS" < AdvS" + gepedisl

Final Analysis for Case C1.
Note that £, — 1 < t* and that t* even. Then, there are following seven cases:

taiseven: ty, = tg = t*

tA is odd: t*:tA—]_, tB:tA—]_

tA is odd: t* = tA — 1, tB = tA

tA is odd: t*:tA—l, tB:tA+1

tA is odd: t*:tA+1, tB:tA—l

tA is odd: t* = tA —+ 1, tB = tA
. tA is odd: t*:tA+1, tB:tA+1
In all of above seven cases, t* and tp are not two epochs apart. Moreover, by safe-stz(t,)
amd safe-stp(tz), we know that the A has to forge at least one signature against a pair of
uncorrupted and freshly generated key pair, due to Game C1.2. To make a successful
injection query, A has to either keep the pre-transcript and forge a signature for the

pre-transcript or forge a signature for a new pre-transcript, which violates the SUF-CMA

security of the underlying DS scheme. Thus, we can have that
Advg' < epgem
To sum up, we have that
A < ™+ el
Case 2. t* <t, —2

In this case, A aims to forge a ciphertext in a past epoch. By Game 1, we know that
(t*,i*) € trans, where i* denotes the message index corresponding to the forged ciphertext.

Game C2.2 This game is identical to Game 1 except the following modification:

. The challenger directly outputs (t*,4, L) for answering any Ojnject-a(ind, c) if safe-stg(t*) =

true, where (t*,1) is the position of c.

Note that safe-stg(t*) = true holds at the time of B sending message corresponding to
the position (t*,7*) for some ¢*. This means, safe-stz(t*) = true when B was switch from
receiver to sender when entering epoch t*. Similar to the analysis in Game C1.2, we
know that the signing keys are randomly sampled except probability at most qepef(‘S"F2. If

safe-stg(t*) = true at the time of any Ojpject-a query, the signing key has not been corrupted.
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Similar to the final analysis of Game C1.2, if A can forge a ciphertext, then we can
construct another attacker that invokes A to break the SUF-CMA security of DS. Thus,

we have that

C2 C2 suf-cma dual
Advy™ < Advy™ + €ps ™ + Gep€kDF,

In the games below, we assume that safe-stg(t*) = false when A queries Ojpject-a. Recall
that Ocormpt.s can be queried only after the ciphertext corresponding to (¢*,7*) has been
honestly generated. This also means that the unidirectional ratchet key urk for encrypting
and decrypting the ciphertext corresponding position (¢*,7*) has been removed from the
state stg. Moreover, if Oconrupt-g is queried, then Ocoprupt-a cannot be queried.

Game C2.3 This game is identical to Game C2.2 except the following modification:

1. Until epoch t*. Whenever P € {A B} is trying to sending the first message in a new
epoch t +1 (i.e. P = A if t even and P = B if ¢ odd) and the execution £& ¢~ ¢ + 1 in
Line 80 in the ep-mgmt helper function in Figure 7.6 is not triggered, then the challenger
replaces (st.rk, st.ck™") <= KDF3(st.rk, upd™) executed in the following eSend algorithm
in Line 21 in Figure 7.6 by stp.7k <& {0,1}* and st.ck™" <* {0, 1}*, followed by storing
(t +1,stp.7k, st.ck' ™, st.prtr).

2. if there exist a locally stored tuple (', rk, ck,prtr) and the eRcv is invoked to enter-
ing epoch t' with ciphertext including prtr, the challenger replaces (st.rk, st.ck™") <«

KDF;(st.7k, upd®) executed in the eRcv algorithm in Line 32 in Figure 7.6 by st.rk < 7k,
st.ck™t «— ck.

The analysis of this game is identical to Game C3.2.3 in Section 7.11.5. We can easily
know that

Cc2 C2 prf dual ind-cca
Advy® <Advy” + gep max <€KDF37 Jep€KDF, t EKEM

3prf dual ind-cca 3prf dual
+ €kprF, T €KDF5» AM (ekem + €koF, T GKDF5)>

Game (C2.4 This game is identical to Game C2.3 except the following modification

until Ocorrupt-g is invoked:

1. For running A’s eSend at t*, the execution (st.ck’ , urk) < KDF4(st.ck’") in Line 22 in
Figure 7.6 is replaced by st.ck’” < {0,1}*, urk <= {0,1}*. After that, the challenger

stored (st.ck’", urk) into a local list.

2. For running B’s eRev at t* the execution (st.ck’ , urk) < KDF4(st.ck’") in Line 38 is

replaced by the tuple (st.ckt*7 urk) in the local list for the corresponding message index.
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The advantage gap of A in winning Game C3.2.3 and Game C3.2.4 can be computed
by hybrid games and reduced to the prg security of KDF,. Note that A can query at most
q, we can easily have that

Advg? < Adv§” + geRSe,

Game (C2.5. In this game, the challenger guesses the message index i* that A4 wants
to attack. Note that A can query at most ¢ times oracles. The challenger guesses correctly

with probability at least é. Thus, we have that
Adv{? < gAdvS?
Game C2.6. This game is identical to Game C2.5 except the following modifications:

1. The challenger additionally samples a random message key mk € {0,1}* for the position
(t*, @)

2. If the pre-key index ind equals the one for producing ciphertext at position (¢*,7*) and the
KEM ciphertext are same as produced before, the challenger replaces ¢ «+— SKE.Enc(mk, m)
in Line 22 and 40 in Figure 7.6 by ¢ « SKE.Enc(nfv,vk, m). Otherwise, the challenger
samples another random key ﬂ/:L/k/ € {0, 1}* for decrypting ciphertext at location (t*,i*).

Note that the unidirectional ratchet key urk is sampled random in Game C2.4. If
A can distinguish Game C2.5 and Game C2.6, then we can construct an attacker that
breaks prf security (and therefore the dual security) of underlying KDFs5. Thus, we have
that
AdvE? < Advg? + efle. < Advg® + ekBE.

Game C2.7. This game is identical to Game C2.6 except the following modifications:

1. If A queries Ojpject-a(ind, ¢) such that

(a) ¢ corresponds to the position (t*,:*)
(b) ind does not equal the one for producing the ciphertext at position (¢*,4*) or the
KEM ciphertexts included in ¢ do not equal the ones in the original ciphertext at

position (t*,7*)
then the challenger simply returns (¢*,7*, 1)

The gap between Game C2.6 and Game C2.7 can be reduced to the IND-1CCA security
of SKE. The reduction simulates Game C2.6 honestly except for the Ojpject-a(ind, ¢) that
is described above. In this case, the reduction forwards the symmetric key ciphertext
to its decryption oracle for a reply m'. Then, the reduction returns (t*,7*, m’) to A. If

the challenge bit is 0, then the reduction simulates Game C2.6 honestly, otherwise, it
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simulates Game C2.7. Thus, if A can distinguish Game C2.6 and Game C2.7, then the

reduction can easily distinguish the challenge bit. Thus, we have that
Adv§? < AdvE? + el
Game (C2.8. This game is identical to Game C2.7 except the following modifications:
1. If A queries Ojject-a(ind, ¢) such that

(a) ¢ corresponds to the position (¢*,7*)
(b) ind equals the one for producing the ciphertext at position (t*,7*) and the KEM

ciphertexts included in ¢ equal the ones in the original ciphertext at position (¢*,:*)
then the challenger simply returns (t*,¢*, 1)

The gap between Game C2.7 and Game C2.8 can be reduced to the IND-1CCA security
of SKE. The reduction simulates Game C2.7 honestly except for the Otransmirg(ind, m, r)
and Ojnject-a(ind, ¢) that is described above.

For the Otransmit.s(ind, m, ) query, the reduction forwards m to its encryption oracle
for a ciphertext ¢’. The rest of this oracle is honestly simulated.

For the Ojpject.a(ind, ¢) query, the reduction forwards symmetric key ciphertext in the ¢
to its decryption oracle for a reply m’. Then, the reduction returns (¢*,i*, m’) to A.

If the challenge bit is 0, then the reduction simulates Game C2.7 honestly, otherwise,
it simulates Game C2.8. Thus, if A can distinguish Game C2.7 and Game C2.8, then

the reduction can easily distinguish the challenge bit. Thus, we have that

C2 C2 ind-1cca
AdvE? < AdvG? + end:

Final Analysis for Case C2:
Note that no matter what kind of Ojpject-a(ind, ¢) query A asks, where ¢ corresponds to
the position (t*,7*) , the challenger always returns (¢*,7*, 1) immediately, according to

Game C2.7 and Game C2.8. Thus, A can never win and we have that
Adv§? =0
To sum up, we have that

C?2 suf-cma dual prg dual ind-1cca
Adv® < eps ™™ + Gep€DF, T €kDF, T 1(EKDF, T 2€sKE )
prf dual ind-cca 3prf dual
+ ep Max (EKDF3’ Jep€KDF, T €KEM T €KDF, T €KDF5>

ind-cca 3prf dual
am(EKEM - T €KDF, +€KDF5))

suf-cma prg dual ind-1cca
< eps 0+ q(ekpr, T EKDF; T 2€5KkE )

rf dual ind- 3prf dual
+ ep (e, + (dop + L)eBF, + (R85 + 5%, + <251,
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The following equation concludes the proof.
AT < max(Adv§!, Adv§?)

suf-cma dual suf-cma prg dual ind-lcca
< max | €55 ™ + Gep€DF, €Ds -+ A(€kprE, + kDR T 2€5kE )

f ind- 3prf
+ (€, + (ten+ D), + ara( 5™ + 25, + ek

suf-cma prg dual ind-1cca
< ebs ™ + q(expE, T €kDF; T 2€5KE )
prf dual ind-cca 3prf dual
t Gep <€KDF3 + (Gep + 1)ekDF, + aMm(eKEM -~ + €KDF, T €KDF)
suf-cma ind-cca ind-1cca 3prf
< eps -+ Gepdmekem -+ 2G€skE T T depdMEKDF,

f
+ Gep(Gep + 1)EKBE, + Gep€inr, + 6RDE, T (dep@M + QKD
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7.11.7 Proof of Theorem 29

Proof. The proof is given by reduction. Namely, if there exists an attacker A that breaks
the offline deniability for the composition of a DAKE scheme ¥ and our eSM construction
IT in Section 7.5.2, then we can always construct an attacker B that breaks the offline
deniability of ¥ in terms of Definition 61, also see [63, Definition 11].

We first define the function Fakef™* and the function Fake$®™ for our eSM construction

IT.

o FakeS" (K, ipk gy, ikaia, L25°, sid, rid, aid, did): this algorithm inputs a key K € iss, iden-
tity public keys ipk, and ipkg, a list of private pre-keys Eﬁgek, the sender identity sid, the
receiver identity rid, the accuser identity aid, and the defendant identity did, followed by

executing the following steps:

1. sty <& ILelnit-A(K)

2. stg <& Ielnit-B(K)

3. Strake < ((stA, rid), (stB,sid)>
4.

return ste,e

o FakeZ*™ (strae, ipk, prepk, m, sid, rid, ind): this algorithm inputs a fake state stre, an
public identity key ipk, a public pre-key prepk, a message m, a sender identity sid, a

receiver identity rid, and a pre-key index ind, followed by executing the following steps:

1. Parse <(stA,idA),(stB,idB)> < StFake
2. if idy = sid, then

(a) (sta,c) < I1.eSend(sty, ipk, prepk, m)

(b) copy all symmetric values in session state st, to session state stp

(c) If sty.t is incremented in the above II.eSend invocation, then extract the new
verification key vk and new encryption key ek from ¢, followed by set vk and

ek into stg
(d) Strake < ((StA, idA), (StB, |dB))
3. else

(a) (stg,c) < I1.eSend(stg, ipk, prepk, m)

(b) copy all symmetric values in session state stz to session state sty

(c) If stg.t is incremented in the above II.eSend invocation, then extract the new
verification key vk and new encryption key ek from ¢, followed by set vk and

ek into st,

(d) Strake < ((sta,idy), (sts, idg))
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At the beginning of the experiment, the attacker B inputs a list £, that includes all
public-private key pairs of ¥ from its challenger. Next, B honestly samples the random

identity key and pre-key pairs of Il and sets them into the respective lists as in the

deni
3, IL,qp,qm,9s

also initializes a empty dictionary Deession and a counter n to 0. Then, B sends the list £,
to A.

When A queries Session-Start(sid, rid, aid, did, ind), B first checks whether {sid, rid} =
{aid, did} and sid # rid holds. It either condition does not hold, B simply aborts the oracle.
Next, B increments the counter n, followed by adding {sid, rid} into the dictionary Dsession|12]-
Then, B checks whether aid = sid. If the conditions holds, then B simply honestly runs ¥ on
the corresponding input and finally derives a key K € iss and a transcript T'. Otherwise, B

Expr In particular, all public-private key pairs are added into the list L,,. B

queries its challenge oracle with the input (sid, rid, ind) for the key K and the transcript 7'
After that, B runs the above defined function Fakef"* (K, ipk yq, ikaig, L0, sid, rid, aid, did)
for a fake state stg,,.. Finally, B returns the transcript to A.

When A queries Session-Execute(sid, rid, 7, ind, m), B simply simulates Session-Execute
as if the bit b = 1.

At the end of the experiment, when A outputs a bit b’, B then forwards it to its
challenger.

Note that our Fake%Init algorithm perfectly simulates the process of running Il.elnit-A
and Il.elnit-B. Moreover, we consider two cases for the queries to the Session-Execute

oracle:

1. If the sender identity sid in the Session-Execute oracle query is idy. Note that when a
party receives a message from the partner in our eSM construction II, it only passively
updates the symmetric state, and optionally update the verification key and encryption
key from the partner. In this case, our Fa ke%se"d algorithm perfectly simulates the case
that id, sends messages to ids.

2. If the sender identity sid in the Session-Execute oracle query is idg. In this case, similar

eSend
11

to the analysis above, our Fake algorithm also perfectly simulates the case that idg

sends messages to id,.

To sum up, in both cases B perfectly simulates Expr%‘f”ni,qmq%qs to A. Thus, B wins if
and only if A wins. Obviously, the number of sessions at least as many as the number
of challenge oracles that B queries. And A and B runs in the approximately same time,

which concludes the proof. O
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Chapter 8

Conclusions

This thesis sets out to provide the missing provable security analysis of five real-world
protocols, discloses the potential vulnerabilities, and propose their feasible mitigation.

These protocols are:

. one of the most efficient digital signature implementations Ed25519,

. the generic authenticated encryption with associated data (AEAD) schemes,
. the latest version of passwordless authentication standard FIDOZ2,

. the popular video conferencing library Zoom, and

. our own proposal of extended secure messaging protocol eSM.

Each of these protocols has various characteristics and can be categorized into several
representative research domains, based on different classification criteria. I summarize
some characteristics of these five protocols in Table 8.1. Moreover, our security analysis
covers not only the heart of information security “CIA” (Confidentiality, Integrity, and
Availability) but also several state-of-the-art security properties that surface and have
become relevant only recently in our modern life. I summarize the security properties that
this thesis investigated for these five protocols in Table 8.2. T expect this thesis to be able
to motivate and impact further research in a wider scope of cryptography.

In this chapter, I conclude this thesis by a brief summary of contributions in Section 8.1

and some open challenges in Section 8.2.

8.1 Contributions

A brief summary of our contributions follows:

e In Chapter 3:

1. We provide the first detailed proof that Ed25519-Original [43] is indeed EUF-CMA

secure.
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Interactivity | Synchronicity | Symmetry | Use Case
Chapter 3: Ed25519 | non-interactive - asymmetric -
Chapter 4: AEAD non-interactive - symmetric -
Chapter 5: FIDO2 interactive synchronous - two-party
Chapter 6: Zoom interactive synchronous - group
Chapter 7: eSM interactive asynchronous - two-party
Table 8.1: Summary of characteristics of five protocols in this thesis. We use “-” to denote that

a characteristic is irrelevant for a protocol.

Security Properties

integrity, resilience against key substitution attacks

privacy, integrity, collision resistance, input-bound ciphertext,
full robustness, key committing, multi-key collision resistance,
receiver binding

user authentication, resilience against downgrade attacks,
post-quantum security

(implicit) group key authentication, group key secrecy, perfect
forward secrecy, (implicit) group member authentication, (full)
end-to-end security

resilience against fine-grained state compromise, immediate
decryption, temporal privacy, correctness, forward secrecy,
post-compromise security, strong authenticity, strong privacy,
randomness leakage/failures, state compromise/failures, periodic
privacy recovery, offline deniability, post-quantum security

Chapter 3: Ed25519

Chapter 4: AEAD

Chapter 5: FIDO2

Chapter 6: Zoom

Chapter 7: eSM

Table 8.2: Summary of security properties of five protocols in this thesis.

2. We provide the first proof that Ed25519-IETF [121] is actually SUF-CMA secure.
3. We prove that all Ed25519 schemes are resilient against key substitution attacks,

and that if small subgroup keys are rejected as in LibSodium, a signature uniquely

identifies a message, even for malicious keys.

4. In a wider sense, our results retroactively support the standardisation of Ed25519-1ETF,

and support the ongoing standardisation by NIST.
e In Chapter 4:

1. We formally prove some well-known but merely conjectured relations for AEAD

between the fundamental privacy and integrity.

2. We formally prove the missing or conjectured relations between existing AEAD

security notions w.r.t. collision resistance, completing the picture in the domain.
e In Chapter 5:

1. We prove that FIDO2 with WebAuthn 2 and CTAP 2.1 is provably secure against

classical attackers in a fine-grained security and protocol model. Our security models

293



are more fine-grained or cover other aspects than previous versions such as [21, 103].
For example, we add important aspects such as algorithm negotiation, required user
actions, and token binding. For CTAP 2.1, our security proofs confirm the stronger
containment properties (reduced “blast radius”) offered by the protocol compared to
CTAP 2.0. Our analysis of WebAuthn 2 also has new implications for WebAuthn 1:
we provide the first guarantees of the most widely used None attestation mode, user

verification, user presence, and token binding.

2. We prove that if FIDO2 with WebAuthn 2 and CTAP 2.1 is instantiated with
post-quantum (PQ) secure KEMs and signatures, then it is secure against quantum
attackers in the same model. We give concrete suggestions for PQ secure algorithm
and negotiation design choices, including classical-PQ hybrids as suggested by
standardization agencies, such as NIST (National Institute for Standards and
Technology) [69].

3. We propose a simple improvement to WebAuthn 2 that improves its resilience
to certain types of downgrade attack. While these can only occur for strong
threat models, these improvements yield stronger classical security against broken

cryptographic primitives, and are even more relevant for their PQ instantiations.
e In Chapter 6:

1. We develop a solution to improve the security of Zoom-like apps against malicious
servers, without introducing new security elements. The core observation is that
Zoom already uses group-specific passwords, but they are by design known to the
server. By leveraging techniques from password-authenticated key exchange, we can

get rid of the reliance on the server for trusted channels.

2. To formally prove the security of our solution, we need to develop substantial
machinery. We propose a formal model and syntax of multi-stage group key
distribution protocols, called mGKD, of which Zoom can be seen as an instance. For
such protocols, we develop a basic security notion Sec-mGKD-pki, which assumes
the server did not interfere with the public keys of a group’s participants, and prove
that Zoom meets this notion. We show how real-world attacks manifest in this basic

notion and notably how malicious zoom servers can manipulate groups.

3. We formally prove that our transformation turns a protocol that is Sec-mGKD-pki
secure into one that is also secure in a model that makes no assumptions on the

server but only on the password, which we call Sec-mGKD-pw.

4. We show how to efficiently apply our transformation to the Zoom version 4.0
protocol to obtain the ZoomPAKE protocol, in which the server no longer knows

the password, and groups are protected against malicious servers.

e In Chapter 7:
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1. Our main contribution is the first provably secure messaging protocol with immediate
decryption and constant-size overhead, temporal privacy, and resilience against fine-
grained state compromise. To this end, we introduce a related new strong security
notion called Extended-Secure-Messaging (eSM). We show that the eSM notion
covers above strong properties and prove that our protocol meets it, in particular,
in the PQ setting.

2. Furthermore, to show that our protocol is a suitable PQ-secure candidate for the
DR in Signal, which is provably offline deniable, we extend the offline deniability
definition for SPQR [63] (currently the only provably secure PQ-asynchronous key
establishment) to the multi-stage setting. We prove that the combination of our
eSM-secure protocol and SPQR is offline deniable, making it the first full messaging
protocol that is provably offline deniable in the PQ setting.

8.2 Open Challenges

Below, I will introduce the open challenges that I am interested in and the ultimate

implications of their resolutions.

Open Questions. During my doctoral research, I observed that the conventional research
approach to proposing a new cryptographically secure protocol design is often given in the
following two steps: (1) first formally model the desired security requirements, and (2)
then prove that there are met in some threat model either by an existing protocol or a

novel proposal. However, such a conventional approach has many shortcomings:

e First, we define concrete threat models for a class of protocols that following the same
syntax. This threat model is expected to capture some target attackers’ capabilities and

desired security guarantees.

e Second, we introduce concrete protocols, which either exist in the literature, underlie

some real-world applications, or are designed by ourselves.

e Third, we claim that these protocols are secure in the defined threat models, followed by

formally proving our claims.

1. The existing protocol designs often lack generality: their constructions and
instantiations are concrete and fixed. In real life, any currently state-of-the-art protocol
might become out-of-date, since some attackers with stronger capability might appear in
the future. For example, CTAP 2.0 underlying FIDO2 concretely deploys Diffie-Hellman
key exchange, the security of which is broken against quantum attackers. To improve
the security against quantum attackers in the future, the FIDO alliance has to propose a

new FIDO2 with CTAP 2.1 and we propose its PQ-secure generic hybrid instantiation.
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2. The existing threat models often lack generality: some of them claim to capture
the same security goals but indeed interpret them independently to different extents. This
complicates the comparison between different threat models and prevents developers from
quickly figuring out the most suitable candidates for the desired security requirements.
For example, there are a number of secure messaging designs in the literature, all aiming
at strong privacy and authenticity, e.g., “optimal”, “almost-optimal”, “sub-optimal”,
and “ID-optimal” security, the differences between which are however very subtle and
vague. This potentially leads their comparisons with our eSM proposal, which aims at

the balance between strong security and efficiency, to be even more complicated.

3. The existing security analyses often lack generality: they are merely subject to a
given protocol and threat model and do not allow for even slight modifications in the
design. This causes an unnecessarily high workload for the analysis of different but similar
threat models, in particular for large-scale communication protocols, which always require
extremely high effort on the proof due to the cumbersome methodology in complicated
threat models. On the one hand, this makes the proofs too obscure to be verified even
by experts. On the other hand, this triggers the urgent deployment of some modern
protocol designs without comprehensive and timely analysis. For example, although a
lot of adjacent related work to real-time group protocols exists in the literature, their
analyses cannot directly apply to Zoom. We are able to formally analyze the security
of Zoom, disclose the loss of full E2EE security, and propose mitigation only in the

post-Covid-19 era.

The above observations motivate my invention of a novel and more efficient methodology
for security analyses and protocol designs. My future plan will focus on the following open

questions:
1. [Generic Protocol Designs| How to generically recombine different cryptographic
building blocks into full-fledged proposals in a (possibly) intertwined manner?

2. [Generic Security Analyses] How to inherit the security of the composed proposal

from the security of the underlying building blocks?

3. [Generic Threat Models] How to easily compare the security of different re-combinations?

Implications. The resolution of the open questions has the following implications:

1. Simplified designs and reduced workload. Developers can freely choose and combine
the desired building blocks according to their needs (e.g., bandwidth or storage limits),
as well as understand the final guarantees. Meanwhile, only the security analysis of each

(generic) building block, rather than the full protocols, is necessary.
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2. Interchangeability. It suffices to swap one concrete instantiation (of a generic building
block) with another to obtain security against attackers with stronger capability, e.g.,

post-quantum security.

3. Generality. The security of all generic building blocks and their instantiations can be

repeatedly used in the security analysis of different messaging protocols.
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