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ARTICLE INFO ABSTRACT
Keywords: We provide in this paper a comprehensive comparison of various transfer learning strategies and
Digital pathology deep learning architectures for computer-aided classification of adult-type diffuse gliomas. We

Whole slide images
Glioma

Deep learning
Transfer learning

evaluate the generalizability of out-of-domain ImageNet representations for a target domain of
histopathological images, and study the impact of in-domain adaptation using self-supervised
and multi-task learning approaches for pretraining the models using the medium-to-large
scale datasets of histopathological images. A semi-supervised learning approach is furthermore
proposed, where the fine-tuned models are utilized to predict the labels of unannotated regions of
the whole slide images (WSI). The models are subsequently retrained using the ground-truth labels
and weak labels determined in the previous step, providing superior performance in comparison
to standard in-domain transfer learning with balanced accuracy of 96.91% and F1-score 97.07%,
and minimizing the pathologist’s efforts for annotation. Finally, we provide a visualization tool
working at WSI level which generates heatmaps that highlight tumor areas; thus, providing
insights to pathologists concerning the most informative parts of the WSIL.
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1. Introduction

Diffuse gliomas are the most common type of brain tumors in adults with up to 80% of primary malignant central nervous
system (CNS) tumors [1]. The last 5" edition of the World Health Organization (WHO) classification of CNS tumors released in 2021
proposes a refinement of the classification of adult-type diffuse gliomas based on molecular profiles, largely dependent on isocitrate
dehydrogenase 1 or 2 (IDH1/2) mutation status and 1p/19q codeletion status, resulting in 3 primary tumor subtypes: IDH-mutant,
1p/19q codeleted oligodendroglioma; IDH-mutant astrocytoma; and IDH-wildtype glioblastoma [2]. However, the combination of
molecular information and histopathological features extracted from the Whole Slide Images (WSI) remains the gold standard for
diagnosing and grading CNS tumors [3]. Correct classification of diffuse glioma subtypes is of utmost importance, given that treatment
and patient survival largely depend on the tumor subtype, with low-grade gliomas reaching 5-year survival rates up to 80%, and
high-grade gliomas below 5% [4].

Since the diagnosis is based on subjective pathologist assessment, prone to inter- and intra-observer variation, computer-aided
WSI analysis is essential to improve the reproducibility and diagnostic accuracy, and reduce the workload of pathologists [5,6].
Computer-aided image analysis has been recently used for the classification of tumor subtypes [7,8] or grading [9-11] of gliomas, or
for survival prediction [12] from digital histopathological images. Closely related to this task is the prediction of IDH1/2 mutation
status, as an important diagnostic and prognostic biomarker in diffuse gliomas [13]. Other methods propose integrating features
extracted from histopathological images with molecular features [14,15], or combining WSIs with Magnetic Resonance Imaging
(MRI) [16,17].

These approaches dominantly use Convolutional Neural Networks (CNN) for extracting features from WSIs, either trained from
scratch on the histopathological image dataset of interest [10,13,17]; or using the transfer learning techniques with models pretrained
in a domain of natural images [7,15]. Although CNNs are still considered to be state-of-the-art models for image classification, a
change of paradigm can be recently observed towards the use of attention-based architectures and transformer networks in computer
vision, challenging the superiority of CNNs. These can be either hybrid architectures where CNNs are augmented with an attention
mechanism to capture long-range dependencies; thus, alleviating the major limitation of CNNs which only operate locally [18]; or
pure attention-based transformer models (i.e. Vision Transformers (ViT)) [19] which can achieve performance comparable to CNNs
(or even outperform them on some tasks) without using convolutions, but typically require more training data. Recently introduced
Data-efficient image Transformers (DeiT) have shown that with improved data augmentation and regularization strategies, ViTs can
be trained with fewer data without any significant changes in architecture [20].

This trend can be also observed in digital pathology. A breast cancer classification model based on color deconvolution and
transformer architecture is proposed in [21]. ViT for tumor detection in sentinel lymph nodes, diffuse large B-cell lymphoma, breast,
and lung adenocarcinoma show comparable performance to ResNet50 model [22]. Hierarchical pyramid ViT architecture leverages
a hierarchical structure of morphological features at different image resolutions, starting from 16 X 16 images capturing information
at the cell level, 256 x 256 images capturing cell-cell interactions and 4096 X 4096 images representing the cell clusters in tissue
micro-environment [23].

Pretraining the models on datasets of natural images, where large-scale datasets (e.g. ImageNet [24]) are publicly available and
models can be pretrained in a supervised fashion, is common in digital pathology [22]. We refer to this in the remaining text as
the out-of-domain pretraining. However, it was shown that when the source and the target domains are not well matched, which
certainly is the case when ImageNet pretraining is used in a downstream histopathological domain task, transferability reduces [25].
Therefore, efforts were made to use in-domain pretraining using the publicly available annotated datasets of histopathological images,
such as Camelyon16, and then transfer the model parameters to another digital pathology task [26,27]. However, Camelyon16 is a
relatively small dataset, and the main benefit of transfer learning is observed when models are pretrained on large-scale data.

In the absence of large-scale datasets of histopathological images annotated at the pixel or tile level, but with the availability
of WSIs with known patient diagnoses, self-supervised learning approaches are introduced as an alternative [23,28-31]. The idea
is to define a domain-specific pretext task that does not require exhaustive annotations by pathologists, where labels are inherent
in the source data (e.g. magnification prediction, hematoxylin channel prediction [32], or cross-stain prediction [33]). Different
self-supervised approaches have been proposed in digital pathology, including contrastive self-supervised learning (SimCLR) [30],
semantically-relevant contrastive learning (SRCL) [29], or Bootstrap Your Own Latent (BYOL) [28]. Another approach is to use multi-
task pretraining by defining a set of classification tasks for multiple low- and middle-scale histopathological datasets, and training a
model that will minimize loss aggregated over all tasks [31].

In this paper, we provide a comprehensive comparison of various in-domain and out-of-domain transfer learning approaches for
the classification of adult-type diffuse gliomas from WSIs, and highlight their major advantages and disadvantages. Recent attempts
indicate that in-domain transfer learning may outperform out-of-domain pretraining [23,28-31]; however, only limited efforts were
undertaken so far to quantify the benefits of in-domain transfer learning in digital pathology in a systematic way. Existing studies
were mostly focused on the domain of radiology (MRI), measuring the effect of different transfer learning strategies for the object
detection task [34].

To further improve the model performance, we propose a two-step semi-supervised learning approach: the pretrained model from
the previous step is used to predict the pseudo labels of the unannotated tiles in WSIs. The model is subsequently retrained using the
ground-truth tiles labeled by the pathologists, augmented with the pseudo-labeled ones annotated by the model; thus, minimizing
the efforts for annotation by the trained pathologist.

Finally, the model at the output of step 2 of semi-supervised learning is used to aggregate the predictions from the tile level to the
slide level. The predicted classes are overlaid on the WSI as a heatmap, emphasizing and drawing the pathologist’s attention to the
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Fig. 1. Architecture of the proposed computer-aided glioma subtype classification system from histopathological images. (a) In out-of-domain pretraining models are
pretrained on large scale natural image data, whereas for in-domain pretraining collections of multiple public histopathological image datasets are used to pretrain
the models in a self-supervised fashion. (b) Original whole-slide image (WSI) is annotated by a trained pathologist to define the region of interest (ROI) and divide it
into 512x512 pixels tiles. (c) Pretrained model is fine-tuned in a supervised fashion using the annotated in-house glioma dataset and directly used to predict glioma
subtypes. (d) Semi-supervised learning step is added to predict the pseudo labels of the tiles outside of ROI, and rebuild the model using the ground -truth labels and
pseudo labels. (e) The tile level predictions are aggregated at the WSI level as a heatmap to localize the areas with the tumor tissue.

most informative areas in the image corresponding to tumor tissue, normal brain tissue or necrosis. Furthermore, we present a new
dataset for diffuse glioma subtype classification, annotated by experienced pathologists at the tile level, which we use for fine-tuning
and evaluation of models.

2. Material and methods

The block diagram of the proposed computer-aided glioma subtype classification system from histopathological images is shown
in Fig. 1.

2.1. Dataset and study design

The dataset contains 75 H&E stained WSIs of 29 adult-type diffuse glioma cases collected at the National Center of Pathology
(NCP), Luxembourg National Health Laboratory (Laboratoire national de santé - LNS) during the years 2017-2021. WSIs were
acquired with an IntelliSite Ultra Fast digital slide scanner from Philips containing a 20x/0.75 NA Plan Apo objective with an
average slide resolution of 0.25um/pixel.

Neuropathological diagnostics of tumor samples (histology, immunohistochemistry, epigenetic or genetic analysis) was performed
by a board-certified neuropathologist (MM) according to the 5 edition of the WHO classification of CNS tumors [2] and only
pseudonymized, region-annotated digital images were exchanged for bioinformatic processing. Three primary tumor subtypes are
classified into IDH-mutant, 1p/19q codeleted oligodendroglioma; IDH-mutant astrocytoma; and IDH-wildtype glioblastoma.

Tissue Processing, Staining, Imaging and Export: Patient tissues were routinely fixed directly after surgery in 4% neutral
buffered formalin, gradually dehydrated and cleared with an automatic tissue processor, followed by paraffin embedding (formalin-
fixed paraffin embedded - FFPE). FFPE tissue blocks were sectioned with a microtome at 3 um and 7 um thickness, placed on a glass
slide, stained with H&E and scanned with the Philips IntelliSite Ultra Fast scanner. Images were exported as big-tiff images with the
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Table 1
Statistics of the in-house dataset.

Participants

Gender Male Female Total

Number of participants 19 10 29

Age 57.3(18.5)  49.2(13.3) 54.5(17.3)
IDH-mutant, 1p/19q codeleted (odg*) 4 4 8

IDH-mutant (ac**) 4 4 8

IDH-wildtype (gbm***) 11 1 12

Normal brain tissue 0 1 1

CNS WHO grade 2 3 4 NA
IDH-mutant, 1p/19q codeleted (odg*) 4 4 0 0
IDH-mutant (ac**) 2 5 1 0
IDH-wildtype (gbm***) 0 0 12 0
Normal brain tissue 0 0 0 1

*odg: oligodendroglioma; **ac: astrocytoma; ***gbm: glioblastoma

Table 2

Tile level statistics (after image augmentation) of the training and test subsets.
Class Training  Test
IDH-mutant, non-codeleted (astrocytoma) 30040 465
IDH-mutant, 1p/19q codeleted (oligodendroglioma) 27072 431
IDH-wildtype (glioblastoma) 13064 241
Normal brain tissue 56291 2947
Necrosis 3112 90
Total 129579 4174

following settings: scan factor 20 and quality 80 or 100. Region annotation of WSIs was done by a board-certified pathologist (MM)
using the Aperio image scope version 12.3.3 software.

The detailed statistics of the dataset is given in Table 1. The dataset is dominated by male participants (65.5%), which correlates
with findings that gliomas are 50% more prevalent in males than in females [35]. Grade 4 IDH-wildtype glioblastoma, as the most
common malignant primary brain tumor in adults [36], is also the most prevalent in our dataset (41.4%). IDH-mutant astrocytoma
is represented by 27.6% of WSIs, out of which 25% are grade 2, 62.5% are grade 3 and 12.5% are grade 4 CNS tumors. IDH-mutant,
1p/19q co-deleted oligodendroglioma is represented by 27.6% of WSIs, out of which 50% are grade 2, and 50% are grade 3 CNS
tumors. The brain WSIs of a non-cancer patient were used as normal controls.

2.2. Data preprocessing

Given the extremely large resolution of WSIs of typically 100000 x 100000 pixels, they are processed in patches or tiles. Regions
of interest (ROI) were annotated by marking several rectangular areas in the WSIs (Fig. 1b), as different levels for normal brain
tissue (white and gray matter), necrosis, and the respective tumor entity, e.g. IDH-mutant, 1p/19q codeleted oligodendroglioma;
IDH-mutant astrocytoma; and IDH-wildtype glioblastoma. These ROIs are further divided into square 50% overlapping 512 x 512
tiles, each of them associated with a particular class.

Image augmentation is applied to all extracted tiles in the training dataset by flipping and rotating by 90°, 180° and 270°, leading
to 8 augmented views of each tile. No augmentation is applied to test data. Basic statistics of the training and test subsets is provided
in Table 2. Note that the training dataset is highly imbalanced with the normal brain class represented with 18 times more images
than the necrosis class. This has to be taken into account during the model training and evaluation.

2.3. Transfer learning

We investigate state-of-the-art transfer learning strategies for computer-aided glioma subtype classification, including supervised
out-of-domain transfer learning, where models are pretrained on a large collection of natural images; and in-domain transfer learning,
where models are pretrained on medium-to-large-scale publicly available collections of histopathological images (Fig. 1a).

2.3.1. Out-of-domain transfer learning

A variety of CNN-based models (VGG16, VGG19 [37], ResNetl8, ResNet50 [38], InceptionV3 [39], MobileNetV2 [40],
DenseNet121 [41]) pretrained on ImageNet dataset that contains over 1.2 million of natural images was used for out-of-domain
transfer learning. Following the latest trends in image classification, we also experiment with Transformer models, i.e. Vision Trans-
formers (ViT) [19], and Swin transformers [42]. Finally, we use the hybrid CNN-Transformer model, where the input sequence for
ViT is generated from the feature maps of ResNet50 network [19]. The hybrid model can capitalize on the complementary strengths
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Table 3

Deep learning architectures used for out-of-domain transfer learning.
Model Size [MB] Number of parameters  Depth
VGG16 528 138.4M 16
VGG19 548 143.7M 19
ResNet18 45 11.7M 18
ResNet50 97 25.6M 50
InceptionV3 91 23.8M 95
MobileNetV2 14 3.5M 53
DenseNet121 31 8M 121
ViT 330 86.4M 38
Swin-T 108 28.3M 53
ResNet50-ViT 438 114.5M 102

of CNN and transformer architectures, with ResNet50 capturing details within the local image regions, and ViT enhancing the model’s
ability to capture the global contextual information from images.

Two strategies for training the models are applied, i.e. training from scratch, and pretraining followed by fine-tuning. In training
from scratch, a model with randomly initialized weights is trained directly on the target in-house dataset. In fine-tuning, weights and
biases of the pretrained model are used to initialize the network, which is then retrained on the target in-house dataset, meaning
that all network parameters are updated.

Details about the pretrained models, including model size, number of model parameters and topological network depth (number
of layers in a neural network) are shown in Table 3. Note that only the layers with trainable weights are considered for calculating
the network depth.

2.3.2. In-domain transfer learning

Two strategies are investigated for in-domain transfer learning, i.e. self-supervised and multi-task learning.

We employ a contrastive self-supervised learning strategy, as given in [30], where two stochastically augmented versions of
the same tile are created and the model parameters are optimized to maximize the similarity between representations of these
two versions of the tile (positive examples). At the same time, dissimilarity to all other tiles in the batch (negative examples) is
emphasized using the contrastive NT-Xent loss function. ResNet18 was used as the backbone network to extract the features. The
model was pretrained using a collection of 57 histopathological image datasets originating from 22 organs (including The Cancer
Genome Atlas Program (TCGA') and Clinical Proteomic Tumor Analysis Consortium (CPTAC), as well as multiple publicly available
challenge datasets). Different staining methods (H&E, Wright’s stain, Anti CD3, CD8, Jenner-Giemsa, H-DAB, PAS) and various
magnification levels (10X, 20x, 40x, 100x) were used across datasets. For additional information about the datasets, the reader is
referred to [30].

The second self-supervised learning approach named TransPath [28] employs the Bootstrap Your Own Latent (BYOL) strategy,
which does not require negative examples. Two networks with identical architectures, but different weights, i.e. online network
and target network, were pretrained using two augmented views of each tile. A hybrid model with ResNet50 as a local feature
pre-extractor and ViT that learns global features is used as a backbone network. Models were pretrained using a collection of 32529
WSIs and 2.7 million randomly selected tiles originating from TCGA and Pathology Al Platform (PAIP?), covering 25 anatomic sites
and 32 cancer subtypes.

CTransPath [29] uses a contrastive learning approach built on top of MoCo v3 [43], but redefines positive examples in the self-
supervised learning task, i.e. in addition to an augmented view of the input instance, pseudo-positive semantically relevant examples
are selected from a memory bank; thus, increasing the diversity of positives. A hybrid model with a three-layer CNN as a local
feature pre-extractor and Swin Transformer that learns global features is used as a backbone network. The same dataset was used
for pretraining as in [28], but containing all tiles, instead of approximately 100 randomly selected tiles from each WSI, leading to a
largest available dataset so far composed of more than 15 million of tiles.

Another model uses multi-task learning strategy, where the same network architecture is shared across multiple classification tasks
that correspond to multiple histopathological image datasets, and a separate classification head is attached to each task [31]. Once
the per-task categorical cross-entropy loss is calculated for each task, these losses are aggregated, and the network parameters are
optimized to minimize the average total loss. Two CNN architectures are used as a backbone network: ResNet50 and DenseNet121.
Models were pretrained on a collection of 22 histopathological datasets for both binary and multi-class classification tasks containing
882800 images in total. Different staining methods were used across datasets, including H&E, Diff-Quik, May-Grunwald-Giemsa and
Masson’s trichrome staining. For additional information about the datasets the reader is referred to [31].

The pretrained network parameters were further transferred for fine-tuning using the in-house dataset (Fig. 1c). Two fully con-
nected layers are added on top of the backbone network, followed by dropout layers to prevent overfitting. The details about the
models for in-domain transfer learning are provided in Table 4.

1 https://www.cancer.gov/about-nci/organization/ccg/research/structural-genomics/tcga.
2 http://www.wisepaip.org/paip/.
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Table 4
Deep learning architectures used for in-domain transfer learning.
Pretraining Model Size [MB] Parameters  Depth
SimCLR (ResNet18) 45 11.7M 18
Self-supervised BYOL (ResNet50+ViT) 377 98.8M 418
MoCo v3 (CNN+Swin-T) 105 27.5M 223
Multi-task ResNet50 97 25.6M 50
DenseNet121 31 8M 365

2.3.3. Semi-supervised transfer learning

We further propose a semi-supervised learning approach, where the fine-tuned models presented in Section 3.2 are used to predict
the pseudo labels of the unannotated tiles in WSIs (i.e. the ones not belonging to ROIs). The model is subsequently retrained using
the new dataset composed of ground-truth tiles labeled by the pathologists, as well as tiles annotated by the model trained in the
previous step (Fig. 1d).

Since the weak labels are available at the slide level (patient diagnosis), we remove from the new augmented dataset all impossible
labels before retraining (e.g. if the particular tile belongs to a slide with a diagnosis of IDH-wildtype (glioblastoma), possible classes
are glioblastoma, normal brain tissue or necrosis; tiles labeled with other classes are removed). This ensured that the model was
focused on classes that were contextually relevant for the given WSI, potentially improving its ability to discern subtle differences
between relevant categories.

Furthermore, to prevent using the predictions where the model was insecure, we add only the tiles with the predicted class
probability larger or equal 90%. Setting a high confidence threshold increases the overall reliability of the pseudo labels, thus
reducing noise in the training data.

2.4. Performance metrics

For the evaluation of models’ performances, we use balanced accuracy, precision, recall and F1-score. While in binary classifica-
tion balanced accuracy is defined as the arithmetic mean of sensitivity and specificity, for multi-class classification problems it equals
the macro-average of recall scores per class. For precision, recall and F1-score macro averaging is used, which reduces the multi-class
problem to multiple one-vs-all binary predictions, computes the corresponding performance metric per class, and averages the results
over all classes. Macro averaging assumes assigning equal weights to all classes, but class imbalance is handled by weighing the loss
function instead. Note that in this case the balanced accuracy is defined in the same way as recall.

3. Results
3.1. Out-of-domain transfer learning

As a baseline for performance evaluation, we use multiple CNN-based models (VGG16, VGG19, ResNetl8, ResNet50,
DenseNet121, InceptionV3, MobileNetV2), transformer-based models (ViT, Swin-T) as well as a hybrid CNN-transformer model
(ResNet50-ViT) trained from scratch on the in-house dataset. Our aim is to evaluate how much pretraining benefits the perfor-
mance. The models are carefully selected to: 1) test a variety of conceptually different deep learning architectures; and 2) include
architectures that are the same (or comparable) to the ones used in out-of-domain transfer learning.

Before further processing, all images (tiles) are normalized using the in-house dataset statistics, by subtracting the mean and di-
viding by the standard deviation for each channel. Given that dataset is imbalanced, we use categorical cross-entropy loss weighted
by the class weights computed as the inverse class frequency of the labels in the training dataset. For estimating the model perfor-
mance on the test dataset we use the model weights from the best-performing epoch. PyTorch is used to develop and train deep
learning models. Models were trained using the NVIDIA Quadro RTX 6000 GPUs. The results for the baseline deep learning models
trained from scratch are provided in Table 5.

To evaluate the impact of the out-of-domain transfer learning, we use the same network architectures, but this time the models
were pretrained using the ImageNet dataset. To improve the models’ generalization ability to a target dataset containing H&E stained
images, that deviate substantially from ImageNet, we unfreeze all layers, and fine-tune the models with a small learning rate to avoid
overfitting. The results for the baseline deep learning models trained from scratch and using the ImageNet pretrained models are
provided in Table 5.

The results in Table 5 show that models pretrained on ImageNet substantially outperform the models trained from scratch on the
in-house dataset, with the best-performing model being the hybrid ResNet50-ViT with a balanced accuracy of 94.87%, and F1-score
of 95.48%.

3.2. In-domain transfer learning

We use 5 models pretrained on large datasets of histopathological images, either using the self-supervised (SimCLR, BYOL, MoCo
v3) or the multi-task learning strategy, as explained in Section 2.3.2. To provide a fair comparison, models were trained using
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Performance evaluation for glioma subtype classification using out-domain transfer learn-
ing (without pretraining and with the models pretrained with ImageNet).

Pretraining Model Balanced Precision  Recall  F1 score
accuracy

VGG16 85.07 83.29 85.07 82.53
VGG19 85.00 83.75 85.00 84.34
ResNet18 88.22 79.12 88.22 82.38
ResNet50 78.18 79.49 78.18 78.14

No pretraining InceptionV3 79.26 79.78 79.26 79.42
MobileNetV2 84.54 85.20 84.54 84.59
DenseNet121 85.10 85.03 85.10 84.53
ViT 68.25 54.62 68.25 60.09
Swin-T 57.21 60.51 57.21 58.19
ResNet50-ViT 81.02 78.34 81.02 77.22
VGG16 94.81 97.04 94.81 95.72
VGG19 93.94 94.19 93.94 93.75
ResNet18 85.89 89.84 85.89 87.23
ResNet50 92.42 94.65 92.42 93.50

ImageNet InceptionV3 85.70 91.02 85.70 87.25
MobileNetV2 84.70 84.46 84.70 83.45
DenseNet121 88.97 92.46 88.97 90.26
ViT 92.38 93.90 92.38 92.98
Swin-T 86.22 93.82 86.22 89.16
ResNet50-ViT ~ 94.87 96.63 94.87 95.48

Table 6

Performance evaluation for glioma subtype classification using in-domain transfer learning.

Pretraining Model Balanced Precision  Recall  F1 score
accuracy
SimCLR (ResNet18) 91.57 91.25 91.57 90.60
Self-supervised BYOL (ResNet50+ViT) 96.39 95.57 96.39 95.81
MoCo v3 (CNN+Swin-T) 93.45 94.65 93.45 93.45
Multi-task ResNet50 93.15 92.86 93.15 92.54
DenseNet121 94.31 89.66 94.31 91.43

Table 7

Performance evaluation for glioma subtype classification using in-domain transfer learning in

learning scenario.

a semi-supervised

Pretraining Model Balanced Precision  Recall F1 Inference
accuracy score time
SimCLR (ResNet18) 96.55 95.27 96.55 95.62 36s
Self-supervised BYOL (ResNet50+ViT) 96.91 96.22 96.91 96.42 64 s
MoCoV3 (CNN+Swin-T) 96.56 97.03 96.56 96.58 42s
Multi-task ResNet50 96.48 97.94 96.48 97.07 42s
DenseNet121 96.63 93.01 96.63 94.57 45s

exactly the same setup as in out-of-domain transfer learning (see Section 3.1). The obtained results are provided in Table 6, showing
that BYOL self-supervised learning with a hybrid CNN/transformer (ResNet50-ViT) backbone reaches the best performance with the

balanced accuracy of 96.39% and F1 score of 95.81%.

To allow easier comparison of performance against model complexity, we plot balanced accuracy and F1 score sorted according to
the number of parameters in ascending order for out-of-domain transfer learning (Fig. 2a) and in-domain transfer learning (Fig. 2b).

3.3. Semi-supervised in-domain transfer learning

Given the improved performance of the models pretrained in-domain in comparison to out-of-domain transfer learning, we decide
to run a two-step semi-supervised learning approach only for the models pretrained in-domain. The summary of results for the in-
domain semi-supervised learning is provided in Table 7, whereas confusion matrix and per class performance of the best model
(ResNet50 + ViT) are provided in Fig. 3 and Fig. 4, respectively. The performance of the best model reaches balanced accuracy of

96.91% and F1 score of 96.42%.
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Fig. 2. Model performance sorted according to the number of model parameters in ascending order. (a) Out-of-domain transfer learning; (b) In-domain transfer
learning.

Table 8
Size of the training dataset after augmentation with semi-supervised labels.
Type of pretraining Model Dataset size
SimCLR (ResNet18) 284606
Self-supervised learning BYOL (ResNet50+ViT) 416826
MoCo v3 (CNN+Swin-T) 402347
. . ResNet50 377776
Multi-task learning DenseNet121 339046

We also provide the size of the augmented training datasets after the first step of semi-supervised learning in Table 8 for all in-
domain models. Note that the training data size was increased from 2.2 times for SimCLR up to 3.2 times for MoCo v3 in comparison
to size of the ground-truth dataset.

3.4. Quantitative localization of diffuse gliomas in whole slide images

To aggregate the predictions from the tile level to the WSI level, we overlay the predicted confidence scores for each tile on the
WSI as a heatmap, where the red color corresponds to the classes, i.e. 3 diffuse glioma subtypes, normal brain tissue and necrosis, as
shown in Fig. le. The idea is to draw the pathologist’s attention to the most informative areas in the WSI corresponding to the tumor
tissue.
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Fig. 4. Per class performance for the best performing in-domain transfer learning model (semi-supervised ResNet50+ViT).
*ac: IDH-mutant (astrocytoma);
**gbm: IDH-wildtype (glioblastoma);

***odg: IDH-mutant, 1p/19q codeleted (oligodendroglioma).

Fig. 5a shows an example of the correct classification of the IDH-wildtype (glioblastoma) tumor using the hybrid semi-supervised
ResNet50+ViT model, whereas Fig. 5b presents the case when the model is inconclusive between the IDH-mutant, 1p/19q codeleted
(oligodendroglioma) and IDH-mutant (astrocytoma).

We furthermore provide an online tool named DeepHisto freely available to the community (https://bioinfo.lih.lu/deephisto/),
where the best performing model (hybrid semi-supervised ResNet50+ViT model) can be used for localization of diffuse gliomas in
WSIs.

4. Discussion

Out-of-domain transfer learning using the deep neural networks pretrained on ImageNet dataset as “off-the-shelf” feature extrac-
tor has become dominant in digital pathology, successfully applied for prediction of tissue types, molecular features, and clinical
outcomes [44]. Despite the fact that the models are pretrained in an entirely different domain of natural images, it was shown
that models provide satisfactory performance, outperforming the models trained from scratch with limited histopathological image
datasets [45]. Another option is to use a model pretrained on ImageNet for weight initialization, and unfreeze the network layers
for fine-tuning using the smaller histopathological image dataset, which typically leads to improved performance and faster conver-
gence [46,47]. Our results in Table 5 confirm these findings, showing substantial performance improvement for both CNN-based and
transformer models, that goes up to 32% for Swin-T measured by F1-score. Comparing the results to Table 3 one can observe that
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smaller models with fewer parameters, such as MobileNet or DenseNet, benefit less from fine-tuning. We furthermore observe that
transformer-based models (ViT, Swin-T) reach modest performance in comparison to CNN-based models when trained from scratch,
due to the fact that transformers typically require data on a larger scale for pretraining to surpass the lack of inductive biases, such
as locality or translational equivariance, which are embedded in CNNs [19]. However, with ImageNet pretraining their performance
is comparable to CNN-based models.

Further experiments are done with models entirely trained on a large collection of histopathological image datasets (in-domain
transfer learning), either using a semi-supervised approach, or multi-task learning paradigm, as explained in Section 2.3.2. Recent
attempts indicate that in-domain transfer learning outperforms out-of-domain transfer learning when sufficiently enough domain-
relevant data is available for pretraining [28-31]. In order to test this hypothesis in a systematic manner, we use all models pretrained
on large-scale histopathological data that are available up-to-date (to the best of our knowledge), and fine-tune them under identical
conditions on the in-house dataset for the task of prediction of diffuse glioma subtypes. The results presented in Table 6 show
improved performance in comparison to models pretrained on ImageNet (Table 5), but to a lower extent than one would expect,
given the large mismatch between the domains of natural and histopathological images. Even for the models trained using the same
network architectures, there is only a slight improvement of 0.4% in F1-score for the ResNet50-ViT trained with BYOL, around 1%
for the DenseNet121 model (trained with multi-task learning), and around 3% for remaining self-supervised learning models, where
interestingly for the ResNet50 model (trained with multi-task learning) the performance even slightly drops. This suggests that the
learned image features are mostly domain-invariant, requiring only gentle fine-tuning in the target domain with a small learning rate
for a limited number of epochs.

Observing the model performance versus the model complexity in Fig. 2, there is a clear trend of performance improvement with
the increased number of model parameters, but this is not a linear relationship, and depends also on other parameters, such as e.g.
the topological network depth. An example is DenseNet121 with limited number of parameters, but large network depth, resulting
in a solid performance with 30% reduced total inference time in comparison to the best performing model, as reported in Table 7.
Therefore, opting for a reduced model complexity at the expense of a slight performance decrease is reasonable for deployment in
resource-limited conditions.

Analyzing the benefits and challenges related to different in-domain learning strategies, the major advantage of self-supervised
learning is that it leverages large amounts of unlabeled data obtained from multiple publicly available datasets, making the most of
available resources. Features learned through self-supervised pretraining have demonstrated good transferability to a downstream
glioma subtype classification task. On the other hand, self-supervised learning strategies are computationally intensive, which may
pose challenges in resource-limited environments or when dealing with large-scale datasets. However, once the models are pretrained,
fine-tuning does not require extensive computational resources. Multi-task learning allows the model to jointly learn from multiple
related tasks and associated datasets simultaneously, and acts as a form of regularization, preventing overfitting by encouraging
shared feature learning across tasks. However, since it requires labeled data, the datasets used for the multi-task learning were
substantially smaller than the ones used in self-supervised learning approaches, which may explain the lower relative improvement
of multi-task learning than the self-supervised learning, with respect to the out-of domain transfer learning.

Additionally, we want to investigate whether a two-step semi-supervised training, which would augment the initial target dataset
with the weakly labeled tiles learned by the model, can boost the model performance even further. Semi-supervised learning improves
the performance for all investigated models (see Table 7), with improvements ranging from 0.6% for a hybrid ResNet50-ViT model
(pretrained with BYOL), up to 5% for ResNet18 (pretrained with SimCLR).

In order to analyze performance for individual classes we plot in Fig. 3 the confusion matrix of the best performing model
(ResNet50-ViT model), concluding that training with the categorical cross-entropy loss function weighted by the class weights has
solved the imbalanced data issue, with almost perfect classification for all classes (including the minority classes, such as necrosis),
except the IDH-mutant, 1p/19q codeleted (oligodendroglioma) class which is in 16% of cases misclassified as IDH-mutant (astro-
cytoma). However, due to their morphological similarity, this represents a challenge even for trained pathologists, with commonly
confounded diagnoses and large intraobserver variability [48]. Analyzing per class performance in Fig. 4 similar conclusion can be
drawn. Fl-score is almost perfect for all classes, except astrocytoma and oligodendroglioma. Precision for astrocytoma is approxi-
mately 10% lower than for the remaining classes, due to an increased number of false positives (swapping with oligodendroglioma),
whereas recall is 15% decreased for oligodendroglioma due to an increased number of false negatives (swapping with astrocytoma).
Another interesting observation can be made in Fig. 3: if the model would be used as a binary classifier for tumor detection (class
“no tumor” corresponding to normal tissue/necrosis, and “tumor” corresponding to all tumor subtypes), the probability of a false
alarm (detecting cancer in normal tissue) is only 0.33%, whereas the probability of misclassification of cancer is equal to 0.

Finally, we generate a slide-level prediction by overlaying the predicted confidence scores for each tile on the WSI as a heatmap,
as presented in Fig. 5. Fig. 5a shows an example of the correct classification, where most of the tumor tissue is correctly classified
as IDH-wildtype (glioblastoma) using the hybrid semi-supervised ResNet50+ViT model, with only minor incorrectly classified areas
of IDH-mutant (astrocytoma) and IDH-mutant 1p/19q codeleted (oligodendroglioma). Necrotic patterns as a hallmark feature of
glioblastoma are also correctly recognized, which is of particular diagnostic interest since it correlates with tumor aggressiveness
and poor prognosis [49]. However, there are cases where the model is inconclusive and misclassifies areas of IDH-mutant 1p/19q
codeleted (oligodendroglioma) as IDH-mutant (astrocytoma), as a result of their morphological similarity (see Fig. 5b).

While the performance results obtained in this study are very high, confirming the potential of using Al in digital pathology, it
should be noted that the dataset used for model evaluation is relatively small and may suffer from the limited diversity in terms
of number of patients and different scanners being used. Unfortunately, there is a lack of publicly available datasets annotated at
the tile level. On the other hand, more diverse WSIs acquired using different scanners from different sources, may also introduce
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batch effects, where deep learning model tends to learn slide origin, scanner type, or slide preparation (e.g. differences in sample
processing and staining), rather than predicting the outcome of interest [50]. However, the primary objective of this study was not to
maximize the performance, but to provide a rigorous and fair comparison of various transfer learning strategies for glioma subtype
classification from histopathological images. Therefore, limiting potential batch effects might be even preferred in such setup.

5. Conclusion

This paper provides a comprehensive experimental analysis of different transfer learning strategies in digital pathology, including
in-domain transfer learning, where models are pretrained on medium-to-large-scale publicly available collections of histopatholog-
ical images, and out-of-domain transfer learning, where models are pretrained on a large collection of natural images (ImageNet).
Understanding the nuances of why certain strategies are more effective than the other provides valuable insights into the transfer-
ability of features from the pre-trained models. Although in-domain transfer learning provides certain performance improvement, we
found that concerns regarding the generalizability of ImageNet representations for the domain of histopathological images are not
entirely justified, showing that when fine-tuned properly, out-of-domain transfer learning models can mitigate the impact of limited
in-domain data.

The semi-supervised learning approach proposed in this study addresses the constraints posed by limited annotated data, by
extrapolating the models beyond the unannotated regions of interest, thus substantially improving the model performance. This not
only aids the domain expertise in the diagnostic process, but also effectively reduces the annotation workload for pathologists. The
best performing semi-supervised learning model (ResNet50+ViT) achieves balanced accuracy of 96.91% and F1-score of 96.42%.

Finally, we provide a tool for visualization at the WSI level, by generating heatmaps that localize and highlight the tumor areas,
therefore drawing pathologist’s attention to the most informative areas of the WSI. This adds an interpretability layer to the deep
learning models, which is crucial for gaining trust in the model’s outputs, and helps the pathologist to understand which regions of
WSI contribute more significantly to the model’s predictions.

Future work will focus on integrating features extracted from WSIs with molecular profiles extracted from various omics data.
Given that molecular profiling techniques can be expensive and not applicable in resource-limited settings, predicting molecular
profiles from WSIs offers a cost-effective alternative, utilizing the existing pathology infrastructure and imaging equipment. This
approach would allow the extraction of molecular information without the need for additional, often expensive, molecular assays.
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