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Abstract

This thesis focuses on acquiring wide coverage script knowledge.

Script knowledge constitutes a category of common sense knowledge that de-
lineates the procedural aspects of daily activities, such as taking a train and
going grocery shopping. It is believed to reside in human memory and is gen-
erally assumed by all conversational parties. Conversational utterances often omit
details assumed to be known by listeners, who, in turn, comprehend these concise
expressions based on their shared understanding, with common sense knowledge
forming the basis. Common sense knowledge is indispensable for both the produc-
tion and comprehension of conversation.

As outlined in Chapters 2 and 3, Natural Language Processing (NLP) applications
experience significant enhancements with access to script knowledge. Notably,
various NLP tasks demonstrate substantial performance improvements when script
knowledge is accessible, suggesting that these applications are not fully cognizant
of script knowledge. However, acquiring high-quality script knowledge is costly,
resulting in limited resources that cover only a few scenarios. Consequently, the
practical utility of existing resources is constrained due to insufficient coverage of
script knowledge.

This thesis is dedicated to developing cost-effective methods for acquiring script
knowledge to augment NLP applications and expand the coverage of explicit script
knowledge. Previous resources have been generated through intricate manual
annotation pipelines. In this work, we introduce automated methods to streamline
the annotation process. Specifically, we propose a zero-shot script parser in Chapter
5. By leveraging representation learning, we extract script annotations from existing
resources and employ this knowledge to automatically annotate texts from unknown
scenarios. When applied to parallel descriptions of unknown scenarios, the acquired
script knowledge proves adequate to support NLP applications, such as story
generation (Chapter 6). In Chapter 7, we explore the potential of pretrained
language models as a source of script knowledge.
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Zusammenfassung

Skriptwissen

Als Kategorie des Allgemeinwissens umfasst Skriptwissen grundlegende Sachverhalte
über unsere Welt. Genauer gesagt umfasst das Skriptwissen Fakten über alltägliche
Handlungen wie das Zugfahren. Diese Fakten beinhalten die beteiligten Entitäten
(die Teilnehmer), die Schritte zur erfolgreichen Durchführung der Handlung (die
Ereignisse), die Muster, in denen sich diese Elemente verhalten, usw. Der Begriff
Skriptwissen entstand aus frühen interdisziplinären Forschungen in den Bereichen
Psychologie, künstliche Intelligenz und Linguistik. Ein Skript ist ein Sammlung von
Wissen über eine Situation, mit der man häufig konfrontiert wird, wie zum Beispiel
das Zugfahren; typischerweise finden in solchen Situationen bestimmte Handlungen
sequenziell statt, ’wie in einem Skript’. Skriptwissen ist jedem allgemein bekannt
und es wird angenommen, dass es im menschlichen Gedächtnis gespeichert ist (siehe
Schank and Abelson, 1977).

Skriptwissen ist allgegenwärtig in der Verwendung natürlicher Sprache. Betrachten
wir die Beispielgeschichte in Abbildung 1, in der der Erzähler seine Erfahrung des
Auftankens eines Autos beschreibt. Beim Lesen der Geschichte können wir uns
Gedanken über verschiedene relevante Details machen. Gab es einen Verkäufer an
der Tankstelle? Wie hoch war der Preis nach dem Rabatt, wie viel hat es gekostet?
Hat der Fahrer daran gedacht, dort nicht zu rauchen? Wir sind uns unsicher, was
die Antworten auf diese Fragen sind, aber dennoch sind diese Fragen angemessen,
denn beim Lesen von mein Auto auftanken wird sofort ein Wissenspaket im Kopf
des Lesers aktiviert, das alle Elemente des Auftankens eines Autos enthält: das
Auto, den Fahrer, die Tankstelle, das Erkennen eines niedrigen Tankstands, den
Preis des Benzins, das Personal der Tankstelle, dass Rauchen an einer Tankstelle
gefährlich ist, usw. Diese Informationen sind Allgemeinwissen, welches wir alle
teilen. Genau diese Tatsache ermöglicht es uns, über alltägliche Handlungen zu
sprechen, ohne den gesamten Prozess beschreiben zu müssen.

Skriptwissen ist unverzichtbar für das Verständnis natürlicher Sprache. Betrachten
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Story: Neulich fiel mir auf, dass ich nurnoch wenig Benzin im Tank hatte und
dass ich mein Auto auftanken musste. Ich fuhr so in die Tankstelle ein, dass die
Tanksäule auf meiner Fahrerseite war, da sich hier mein Tankdeckel befindet, und
stellte das Auto ab. Die Tankstelle zu der ich gefahren war benutzt Bonuspunkte,
die ich im Supermarkt bekommen hatte, also gab ich meine Kundennummer
an und bekam 27 Cent pro Gallone erlassen, was super war! Ich zog meine
Bankkarte durch um zu Bezahlen und öffnete den Tankdenkel mit einem Hebel
in meiner Tür und schraubte den Tankdeckel ab. Ich drückte den Griff und
ließ Benzin in den Tank bis es automatisch stoppte, da der Tank voll war. Ich
entfernte vorsichtig den Zapfhahn vom Benzintank, plazierte ihn wieder auf der
Zapfsäule, und schloß den Tankdeckel. Dann startete ich mein Auto um den
Kilometerzähler zurückzusetzen und merkte mir den Stand, so dass ich sehen
konnte wieviele Meilen mein Auto pro Gallone seit der letzten Füllung gemacht hatte.

Frage: Wann wurde der Zapfhahn in den Tank eingeführt?
✓vor dem Befüllen mit Benzin
××× nach dem Befüllen mit Benzin

Figure 1: Ein Beispielfrage für die Bewertung von maschinellem Textverständnis
aus Ostermann et al. (2019) (vom Autor ins Deutsche übersetzt). Die Frage bezieht
sich auf das Auftanken eines Autos, und ihre Beantwortung erfordert Skriptwissen.

wir die Geschichte genauer. Zum Beispiel, drückte der Protagonist den Griff
nachdem er den Tankdeckel abgeschraubt hat. Wir mögen ihm nicht viel Beachtung
schenken, aber es gibt einen definiten Artikel im Satz, der Griff. Aber welcher Griff?
Es wurde zuvor kein Griff erwähnt. Und warum wird der Griff gedrückt? Drücken
ist keine typische Handlung, die normalerweise an einem Griff ausgeführt wird; es ist
üblicher, einen Griff zu halten oder zu greifen. Natürlich hat ein menschlicher Leser
keine Schwierigkeiten bei der Interpretation von dem Griff, denn er kennt sich mit
dem Auftanken eines Autos aus; er weiß, dass der Benzinschlauch mit einem Griff
verbunden ist, der eine Klappe hat, und dass man die Klappe öffnet, indem man
den Griff drückt. Weil er Skriptwissen besitzt. Der Akt des Verstehens geschieht in
der Realität so schnell, dass kaum zu bemerken ist, was hier alles passiert. Jemand,
der jedoch nichts über das Auftanken eines Autos weiß, wird die Situation nicht
verstehen können.

Als direkte Konsequenz müssen Anwendungen, die natürliche Sprache verarbeiten
(NLP-Anwendungen), Kenntnis über Skriptwissen haben. Betrachten wir zum Beis-
piel die Frage in Abbildung 1: Wann hat der Protagonist den Tankrüssel in den Tank
gesteckt? Es erscheint uns trivial. Natürlich sollte der Tankrüssel vor dem Befüllen
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des Tanks und nicht danach im Tank sein, da wir ein Auto betanken. Dennoch
sind Fragen wie diese für modernste Textverständnismodelle schwer zu beantworten
(das beste in dieser Arbeit untersuchte Modell erreicht eine Genauigkeit von 65
Prozent für Fragen, die mit ‘wann’ beginnen, siehe Ostermann et al., 2019). Ein
Hauptgrund dafür ist, dass das Einführen des Zapfhahns in den Tank im Text nicht
explizit erwähnt wird. Somit hat ein Modell ohne Skriptwissen keine Möglichkeit,
die Verbindung zwischen dem, was im Text erwähnt wird, und diesem bestimmten
verborgenen Ereignis herzustellen.

Skriptrepräsentation für NLP

Skriptwissen ist für verschiedene NLP-Anwendungen von Nutzen. Hier sind einige
Beispiele: Die prototypische Beziehung zwischen Skriptereignissen und -teilnehmern
kann Ambiguitäten bei der Korefernzauflösung eindeutig machen (Rahman and
Ng, 2012). Das Vorhersehen zukünftiger Ereignisse hilft dabei, Diskursrelationen
zu bestimmen (siehe z.B. Lee et al., 2020) (Abschnitt 2.4). Als eine Art prozed-
urales Wissen ermöglicht Skriptwissen darüberhinaus Anwendungen Textplanung
durchzuführen, um Geschichtengenerierung zu steuern (siehe z.B. Zhai et al., 2019a)
(Kapitel 3).

NLP-Anwendungen haben jedoch keinen ausreichenden Zugang zu Skriptwissen. Es
gibt verschiedene Ansätze zur Repräsentation von Skriptwissen, die umfangreich
untersucht wurden. Am intuitivsten ist es, das Skiptwissen direkt durch Sequenzen
von Verben kodiert. Da Skriptwissen sich auf Sequenzen von Handlungen bezieht,
kodieren typische Sequenzen von Verben oder Prädikat-Argument-Strukturen eine
gewisse Menge an Skriptwissen. Zum Beispiel könnte ein typischer Restaurantbe-
such durch eine Sequenz wie ankommen(im Restaurant), setzen, bestellen(Essen),
essen(Essen), bezahlen(Rechnung) dargestellt werden.

Dieser Ansatz, der von Chambers and Jurafsky (2008,0) entwickelt wurde, erfasst
die Intuition, dass spezifische Handlungen in Abhängigkeit der vorhergehenden
erwartet werden können. Zum Beispiel findet das Bezahlen tendenziell nach dem
Essen statt, daher könnte essen nach bestellen in einem Restaurant erwartet wer-
den. Wenn jemand zum Flughafen geht und eincheckt, ist es wahrscheinlich, dass
er das Flugzeug besteigt.

Andererseits könnten wir, im Gegensatz zur Darstellung als Abfolge spezifischer
Prädikate, auch von der Textoberfläche abstrahieren und abstrakte Ereignis- (und
Teilnehmer-) Typen entwickeln. Dies ist vorteilhaft, da äquivalente Handlungen
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für Skriptszenarien unterschiedliche Oberflächenrealisierungen aufweisen können.
Man kann zu einem Restaurant fahren, in einem Restaurant ankommen oder ein
Restaurant besuchen. Diese Verbphrasen sind im Allgemeinen nicht äquivalent,
erfüllen jedoch die gleiche Rolle im Vorgang eines Restaurantbesuchs. Autoren wie
Modi et al. (2016); Wanzare et al. (2017) sammeln parallele Beschreibungen von
Skriptszenarien und annotieren die Texte mit Schlüsselelementen des Skriptwissens,
wie Ereignissen und Teilnehmern, um Korpora wie InScript zu erstellen. Obwohl
dies kostspielig ist, ermöglichen uns diese Annotationen ein einfaches Ablesen typis-
cher Ereignissequenzen und die Erstellung von TSGs (Text Structured Graphs); das
Skriptwissen wird explizit gemacht und ist somit für nachfolgende Anwendungen
zugänglich.

Die Ansätze zur Repräsentation von Skriptwissen stehen vor verschiedenen technis-
chen Herausforderungen, angesichts derer der letztere Ansatz besser geeignet ist,
um Skriptwissen darzustellen.

Die erste Herausforderung besteht darin, dass Skriptwissen vom Oberflächentext oft
versteckt ist. Dies liegt daran, dass Skriptwissen von allen Beteiligten in einer Kon-
versation als Allgemeinwissen vorausgesetzt wird. Zum Beispiel sollte jeder, der das
Säuglingsalter überwunden hat, wissen, dass er nach dem Essen in einem Restaurant
bezahlt, ohne dass es ihm gesagt werden muss. Daher enthält eine Sequenz von
Verben in natürlichsprachigen Texten, die effizient und informativ sind, bei Weitem
nicht jedes Ereignis, das stattfindet, wenn ein Szenario instantiiert wird, da die
meisten Ereignisse erwartet werden und weniger informativ sind. Man könnte
sich über ein teures Restaurant beschweren, ohne zu erwähnen, dass man dort
bestellt und gegessen hat. Tatsächlich sind die aus den meisten Texten extrahierten
Prädikatsequenzen kleine Fragmente dessen, was tatsächlich in der physischen Welt
stattgefunden hat. Vollständiges Skriptwissen über das Szenario von Interesse
aus diesen fragmentierten Beschreibungen zu ziehen, ist eine schwierige Aufgabe.
Im Gegensatz dazu sammeln Korpora wie InScript (Modi et al., 2016) mehrere
explizite Beschreibungen jedes Skriptszenarios, für die den Annotatoren spezifische
Anweisungen gegeben werden, um das Szenario im Detail zu erklären. Die Art und
Weise, wie diese Texte gesammelt werden, ermöglicht es, dass viel weniger Inhalte
aus dem Oberflächentext ausgelassen werden; außerdem werden Inhalte, die in der
einen Beschreibung ausgelassen werden, oft in den anderen Beschreibungen explizit
erwähnt, was es den Forschern ermöglicht, manche Ereignisse zu identifizieren, die
zwar stattfinden, aber aus einigen der Beschreibungen ausgelassen werden.

Die zweite Herausforderung liegt in der Spezifität des Szenarios. Unterschied-
liche Szenarien gehen mit unterschiedlichen Mustern in den Ereignissequenzen
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einher. Zum Beispiel wird bezahlen allgemein erwartet, wenn ein Essen vor-
anging; jedoch spielt es eine Rolle, ob wir über das Szenario Restaurantbesuch
oder Abendessen zu Hause sprechen. InScript ist szenariospezifisch, da die Texte
szenarioweise gesammelt werden. Es ist jedoch schwierig, eine solche Spezifikation
aus den aus natürlichen Texten extrahierten Prädikatsequenzen abzuleiten. Um
welche Szenarien es sich handelt, kann man nur aus dem Text ableiten. Dies ist
beispielsweise möglich, indem man das Thema des Textes bestimmt, aber selbst die
Erkennung bereits bekannter Szenarien ist äußerst schwierig. Der aktuelle Stand der
Technik erzielt hier weniger als 50 Punkte im F1-Maß auf Satzebene(siehe Wanzare
et al., 2019).

Die Hauptproblematik des korpusbasierten Ansatzes zur Repräsentation von Skriptwis-
sen liegt in der Abdeckung, d.h. dem Umfang des repräsentierten Skriptwissen. Die
Erstellung von Korpora wie InScript ist teuer. Laut Modi et al. (2016) erfordert
die Annotation neben dem Sammeln der Geschichten einen erheblichen manuellen
Aufwand. Tatsächlich ist für jedes Szenario eine beträchtlicher Expertenaufwand
erforderlich, um die Menge von Ereignissen und Teilnehmern festzulegen, welche
für die vollständige Annotation benutzt werden. Infolgedessen schließt InScript nur
eine Handvoll Szenarien ein. Dies ist das Problem der Abdeckung. Die begrenzte
Abdeckung möglicher Szenarien bedeutet, dass solche Repräsentationen für prakt-
ische Anwendungen nicht ausreichend sind.

Das Ziel dieser Arbeit ist es, die Kosten für die Erfassung von Skriptwissen im
InScript-Stil zu reduzieren, und dessen Abdeckung zu erweitern. Im Wesentlichen
entwickeln wir automatische Methoden, um ähnliche Annotationen wie die in In-
Script, welche bisher manuell annotiert werden mussten, zu erzeugen.

Methode

Der Annotationsvorgang in InScript umfasst zwei Teilaufgaben. Diese bestehen
darin, (1) die Menge der möglichen Ereignisse und Teilnehmer festzulegen und (2)
Wörter zu identifizieren, die solche Annotationen hervorrufen. Um diesen Prozess
zu automatisieren muss die Aufgabe des Skript-Parsings gelöst werden, bei dem
gegeben einer Erzählung Wörter identifiziert werden, die Skript-Ereignisse und
-Teilnehmer hervorrufen.
Skript-Parsing ist spezifisch für ein bestimmtes Szenario. Die Menge der Ereignisse
und Teilnehmer ist für jedes Szenario unterschiedlich. Die Aufgabe des Skript-
Parsings hat verschiedene Varianten, abhängig davon, wie viele Annahmen wir über
das vorliegende Szenario machen. Im Rahmen des überwachten Skript-Parsings
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gehen wir von einer szenariospezifischen Überwachung aus, d. h. die Trainingsdaten
und Testdaten beziehen sich auf dasselbe Szenario. Insbesondere sind uns die
Mengen der möglichen Ereignisse und Teilnehmer bekannt. Die Aufgabe des über-
wachten Skript-Parsing wird als Sequenz-Labeling formuliert, d.h. dass jedes Wort in
einer Sequenz einzeln annotiert wird (Ostermann et al., 2017; Zhai et al., 2021, see ).

Um die Automatisierung von InScript-ähnlichen Annotationen zu ermöglichen
wählen wir einen anderen Rahmen. Vor Allem möchten wir die Abdeckung von
Skriptressourcen ohne umfangreiche manuelle Annotation erweitern, weshalb wir
keine Kenntnis des Test-Szenarios voraussetzen können. Das bedeutet, dass wir
keine Kenntnis über die Mengen der Ereignisse und Teilnehmer haben. Daher
ergibt es keinen Sinn, das Skript-Parsing als Sequenz-Labeling zu formulieren.
Stattdessen haben wir als Testeingabe eine Reihe von parallelen Beschreibungen
des Test-Szenarios. Im Fall der Annotation von InScript handelt es sich dabei um
etwa 100 Geschichten zu einem unbekannten Szenario. Das Skript-Parsing ohne
szenariospezifische Überwachung ist eine Clustering-Aufgabe. Durch das Gruppieren
von kontextualisierten Wörtern, die dasselbe Ereignis oder denselben Teilnehmer
anzeigen, erfassen wir gleichzeitig die Mengen der Ereignisse und Teilnehmer, sowie
die Zuordnung der Wörter zu den von ihnen hervorgerufenen Ereignissen oder
Teilnehmern.
In dieser Arbeit formulieren wir das Skript-Parsing für unbekannte Szenarien als ein
Zero-Shot-Lernproblem. Unsere Überlegung ist, dass ein Skript-Parser, obwohl keine
szenariospezifische Überwachung gegeben ist, dennoch entscheidendes Wissen über
das Skript-Parsing aus Daten lernen kann, die sich auf verschiedene Szenarien bez-
iehen. Wir beobachten, dass verschiedene Aspekte des Skript-Parsings tatsächlich
szenarioneutral sind: Es gilt für jedes Szenario, dass Entitäten innerhalb derselben
Koreferenzkette denselben Teilnehmer hervorrufen sollten; für jedes Szenario folgen
die Ereignisse einer zeitlichen Reihenfolge, die größtenteils sequenziell ist. Wir
suchen nach einem Ansatz, der dieses Wissen von annotierten Szenarien auf ungese-
hene Szenarien überträgt.

Unsere Lösung ist ein Zero-Shot-Skript-Parser, der auf unbekannten Szenarien
angewendet werden kann. Der Parser gibt, gegeben einer Menge von Erzählungen
über ein Szenario, zu dem wir während der Trainingphase keine Informationen
haben, die Mengen der Ereignisse und Teilnehmer aus, während er gleichzeitig
die Wörter identifiziert, die Ereignisse oder Teilnehmer hervorrufen. Zu diesem
Zweck entwickeln wir geeignete Repräsentationen, um den Clustering-Prozess zu
ermöglichen. Die Repräsentation hat zwei Hauptbestandteile. Erstens betrachten
wir allgemeine kontextualisierte Worteinbettungen, die von vortrainierten Modellen
bereitgestellt werden. Unsere Hypothese ist, dass diese Einbettungen Merkmale
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enthalten, die informativ für das Skript-Parsing sind; jedoch kodieren sie auch
weniger relevante Merkmale. Zweitens transformieren wir den ursprünglich allge-
meinen Einbettungsraum in einen spezialisierten Raum für das Skript-Parsing. Wir
lernen diese Transformation basierend auf der im annotierten InScript verfügbaren
Überwachung, welche aus Clustern von Oberflächentexten besteht, die dasselbe
Ereignis oder denselben Teilnehmer hervorrufen. Wir transformieren die allge-
meinen Einbettungen, um deren Konsistenz mit diesen Clustern zu verbessern,
dahingehend, dass diese Cluster im transformierten Embedding-Raum eine höhere
Reinheit aufweisen. Insbesondere sollten Instanzen, die im selben Cluster landen,
eine höhere Ähnlichkeit aufweisen, während Instanzen aus verschiedenen Clustern
eine geringere Ähnlichkeit aufweisen sollten.
Mit Einstellungen ähnlich derer, die bei der Annotation von InScript vorlagen, liegt
die Leistung unseres Zero-Shot-Parsers bei durchschnittlich 70 Punkten im F1-Maß,
was mit einem zuvor veröffentlichten überwachten Parser vergleichbar ist. Diese
Leistung reicht aus, um die Erfassung von Skriptwissen zu ermöglichen. Wir extrah-
ieren Skriptwissen aus MCScript, einem Korpus, dessen Sprache einfach und ähnlich
zu unseren Trainingsdaten ist. Das von uns gewonnene Skriptwissen ist von annehm-
barer Qualität, was die Erstellung von TSGs ermöglicht und NLP-Anwendungen
wie der Geschichtenerzeugung gerecht werden könnte. Auf dem Spinn3r-Korpus,
das aus natürlichsprachigen Texten besteht, liefert der Parser immer noch sinnvolle
Cluster, und wir nehmen an, dass diese durch eine Vergrößerung der Menge an unan-
notierten Daten, die dem Parser zugeführt werden, weiter verbessert werden könnten.

Wir schließen den Hauptteil der Arbeit mit einer Verhaltensanalyse vortrainierter
Sprachmodelle ab, um Licht auf ihr Potenzial als Quelle von Skriptwissen zu werfen.
Unsere Untersuchungen stützen die Ansicht, dass modernste große Sprachmodelle
als kompetente Quelle für Skriptwissen dienen könnten. Mit minimalem Input
kann GPT-3 wesentlichen Elemente des Skriptwissens ausgeben und ein System zur
Erzeugung von Skript-Geschichten ermöglichen, das eine bessere Leistung liefert als
diejenigen, die wir basierend auf explizitem Skriptwissen entwickelt hatten. Diese
Beobachtungen legen nahe, dass es aus Sicht von NLP-Anwendungen effizienter ist,
sich, im Rahmen aller gebotener Vorsichtsmaßnahmen, auf ein großes Sprachmodell
zu verlassen, welches scheinbar Kenntnis über gängiges Wissen besitzt, anstatt
dieses explizit von Grund auf zu sammeln.
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Script Knowledge

This thesis focuses on the concept of script knowledge, which belongs to the category
of commonsense knowledge that encompasses fundamental facts about our world.
Specifically, script knowledge pertains to everyday activities, such as taking a train.
It encompasses various details, including the entities involved (referred to as par-
ticipants), the sequence of steps involved in carrying out the activity (known as
events), and the behavioral patterns exhibited by these elements. The term script
knowledge originated from early interdisciplinary research conducted in the fields
of psychology, artificial intelligence, and linguistics. A script refers to a collection
of knowledge about a commonly encountered situation, such as taking a train,
where specific activities unfold sequentially, resembling a predefined script. Script
knowledge is widely acknowledged and believed to be stored in human memory (see
Schank and Abelson, 1977).

Story: The other day I noticed that I was low on gas and had to fuel up my car . I
pulled into the gas station with the pump on my driver ’s side since that ’s where my
tank fills and turned off the car . The gas station I went to uses points that I earned
at the grocery store so I entered my loyalty number and had 27 cents off a gallon
which was great ! I swiped my debit card to pay and I popped the fuel door with a level
inside my door and unscrewed the gas cap . I squeezed the handle and let the gas
fill the tank until it automatically stopped because it was full . I carefully removed
the nozzle from the fuel tank , replaced it on the pump and screwed the gas cap back
on tightly and closed the fuel door . When I started my car to reset the trip meter
and made note so I could see how many miles my car got per gallon since the last fill .

Question: When did they put the nozzle in their tank?
✓before filling up with gas
××× after filling up with gas

Figure 1.1: An example machine comprehension question from Ostermann et al.
(2019) about fueling up a car. The question requires script knowledge to answer.

Script knowledge is ubiquitous in the applications of natural language. Consider
the example story in Figure 1.1, where the narrator describes his experience of
fueling a car. As we read the story, various relevant details might appear in our
mind. Was there a salesperson at the gas station? What was the price after
the discount, and how much did it cost? Did the driver remember not to smoke
there? We are not sure about the answers to these questions, yet these questions
are appropriate, not surprising, because upon reading fuel up my car, a package
of knowledge is immediately activated in the reader’s mind, which contains all
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elements about fueling a car: the car, the driver, the gas station, noticing a low gas
level, the price of the gas, the staff of the gas station, smoking is dangerous at a
gas station, etc. This information is common knowledge among us. It is this very
fact that allows us to talk about daily activities without describing the whole process.

Script knowledge is indispensable in the comprehension of natural language. Let
us take a closer look at the story. For example, after unscrewed the gas cap, the
protagonist squeezed the handle. It might not catch much of our attention, yet there
is a definite article in the sentence, the handle. But which handle? No handle was
mentioned before this phrase. And why is the handle squeezed? Squeezing is not a
typical action that is generally performed on a handle; it is more common to hold or
grab a handle. Of course, a human reader has no difficulty interpreting the handle
because they know about fueling a car; they know that the gas tube is attached
with a handle that has a switch on it and one opens the switch by squeezing the
handle because they have script knowledge. The comprehension goes so quickly in
reality that it is not easy to notice how much is going on here. However, anyone
who knows nothing about fueling a car will not be able to understand the scenario.
As a direct corollary, NLP applications need to be aware of script knowledge.
Consider the question in Figure 1.1: when did they put the nozzle in their tank?
At first glance, it may seem trivial. Of course, the nozzle should be in the tank
before filling it rather than after, because we are fueling a car. However, questions
like this one pose a challenge for state-of-the-art text comprehension models (the
best model investigated in the paper performs at 65 percent accuracy on questions
starting with ’when’, see Ostermann et al., 2019). One important reason for this is
that the event put the nozzle in the tank is not explicitly mentioned in the surface
text. Consequently, a model without access to script knowledge lacks the means to
establish the connection between the information mentioned in the surface text and
this specific hidden event.

A most intuitive visualization of script knowledge is through the use of Temporal
script graphs (TSG). TSGs organize the events of an activity, known as the scen-
ario, based on their temporal order of occurrence. TSGs provide a well-defined
formalization and are easily accessible for NLP applications. Refer to Figure 1.2 for
an illustrative example.

Script Representation for NLP

Script knowledge is valuable for various NLP applications, and we provide some
examples here. The informative prototypical relationship among script events and
participants aids in resolving ambiguities in coreference resolution (Rahman and Ng,
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Figure 1.2: A temporal script graph of scenario fueling a car. The depiction connects
events according to the temporal order in which they follow. Connections that
could be inferred from transitivity are omitted from the depiction. The temporal
order among the events is mostly sequential but not a total order.

2012). Anticipating upcoming events also assists in determining discourse relations
(see, e.g., Lee et al., 2020) (Section 2.4). Furthermore, as a form of procedural
knowledge, script knowledge enables applications to perform text planning for
guiding story generation (see, e.g., Zhai et al., 2019a) (Chapter 3).

However, accessing script knowledge satisfactorily remains a challenge for NLP
applications. Multiple plausible representations of script knowledge have undergone
extensive investigation. The most intuitive representation involves sequences of
verbs that straightforwardly encode script knowledge. Since script knowledge re-
volves around sequences of actions, typical sequences of verbs or predicate-argument
structures encompass a certain amount of script knowledge. For example, a typical
visit to a restaurant could be represented by a sequence such as arrive(restaurant),
sit, order(food), eat(food), pay(bill).

Pioneered by Chambers and Jurafsky (2008,0), this approach captures the in-
tuition that specific activities can be anticipated based on preceding ones. For
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example, paying tends to occur after dining, and eating might be anticipated after
ordering in a restaurant. If someone goes to the airport and checks in, it is likely
that they will board the flight.

Secondly, as opposed to a sequence of specific predicates, we can also abstract
away from the surface text and develop abstract event (and participant) types.
This is desirable because equivalent actions for script scenarios can have different
surface realizations. One can drive to, arrive at, or visit a restaurant. These
verbal phrases are generally not equivalent but play the same role in the process of
going to a restaurant. Authors like Modi et al. (2016); Wanzare et al. (2017) collect
parallel descriptions of script scenarios and annotate the texts with key elements of
script knowledge, such as events and participants, to establish corpora like InScript.
Although more labor-intensive, these annotations allow us to easily identify typical
event sequences and compile TSGs, making script knowledge explicit and accessible
to downstream applications.

Representing script knowledge poses various technical challenges. Among these
challenges, the latter approach is considered better.

One major challenge regarding script knowledge is that it is often hidden in the
surface text. This is because script knowledge is commonly assumed to be shared by
all participants in a conversation as common knowledge. For instance, it is generally
expected that everyone knows they pay after eating in a restaurant without expli-
citly stating it. Consequently, naturally generated texts, which prioritize efficiency
and informativeness, may exclude a sequence of verbs that encompasses every event
occurring during the instantiation of a scenario, as most events are anticipated and
considered less informative. It is not uncommon for someone to complain about an
expensive restaurant without mentioning that they had ordered and eaten there.
In reality, the predicate sequences extracted from most texts are merely fragments
of the complete set of events that transpired. Acquiring comprehensive script know-
ledge about a particular scenario solely from these fragmentary descriptions proves
to be a challenging task. In contrast, corpora such as InScript (Modi et al., 2016)
compile multiple explicit descriptions for each script scenario, instructing workers
to provide detailed explanations. The methodology employed in collecting these
texts reduces the omission of contents from the surface text. Furthermore, contents
omitted in one description are often explicitly mentioned in other descriptions,
enabling researchers to recover some events that occurred but were excluded from
certain narratives.

The second challenge is the specificity of scenarios. Different scenarios exhibit
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distinct patterns in event sequences. For instance, paying is generally anticipated
following dining; however, it is crucial to differentiate between going to a restaurant
and having dinner at home. InScript is scenario-specific, as it collects texts on a
per-scenario basis. However, determining the scenario solely from sequences of
predicates extracted from naturally generated texts proves to be difficult. One can
only infer from the text which scenarios are being mentioned. This inference is
possible, for example, by tracking the topic, but even detecting known scenarios
has been shown to be challenging, with the state of the art achieving less than 50
points in sentence F1 (see Wanzare et al., 2019).
The primary concern regarding the corpus-based approach to script knowledge rep-
resentation is its coverage. Acquiring corpora like InScript is an expensive endeavor.
As Modi et al. (2016) state, apart from collecting the stories, the annotation process
requires a significant amount of manual effort. Each scenario necessitates expert
input to develop the set of events and participants for comprehensive annotation.
Consequently, InScript was only able to include a limited number of scenarios.
This limitation raises the issue of coverage. The constrained coverage of possible
scenarios implies that it may not be suitable for practical applications.
The objective of this thesis is to reduce the cost of script knowledge acquisition in
the style of InScript and expand its coverage. Essentially, we develop automatic
methods to perform annotations similar to those in InScript, which were previously
conducted manually.

Method

The annotation process of InScript involves two subtasks: (1) specifying the sets
of events and participants, and (2) identifying tokens that evoke any of them.
Automating this process gives rise to the task of script parsing, which, given a
narrative, identifies tokens that evoke script events and participants. For instance,
in the example depicted in Figure 1.3, a script parser labels tokens with the events
(shown in blue) and participants (shown in orange) they evoke for a story about
fixing a flat tire.

Script parsing is specific to the scenario of interest, as the sets of events and parti-
cipants are unique to each scenario. The task of script parsing has different variants
depending on the assumptions made about the scenario of interest. In the context
of supervised script parsing, it is assumed that there is access to scenario-specific su-
pervision, where the training and test data correspond to the same scenario. In this
setting, the sets of events and participants are known. Supervised script parsing is
formulated as a sequence labeling task (see Ostermann et al., 2017; Zhai et al., 2021).
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Figure 1.3: A story of fixing a flat tire from InScript. The annotation mainly
performs two jobs. First, it specifies the set of participants and events; second, it
assigns these labels to each token that evokes any of them. Automating this process
makes the task of script parsing.

However, when automating InScript-style annotations, the settings are different.
Importantly, the objective is to extend the coverage of script resources without
relying heavily on manual annotation, and no prior knowledge of the test scenario
is assumed. Therefore, access to the sets of events and participants is unavailable,
making it inappropriate to formulate script parsing as a sequence labeling task.
Instead, the test input consists of multiple parallel descriptions of the test scenario,
such as approximately 100 stories on an unknown scenario. Script parsing without
scenario-specific supervision becomes a clustering task. By grouping contextualized
tokens that evoke the same event or participant, we simultaneously acquire the
sets of events and participants, as well as the assignments between the tokens and
the events or participants they evoke. Figure 1.4 illustrates script parsing as a
clustering task, where the input includes multiple narratives on the scenario, with
each token potentially evoking an event or a participant, and the output consists of
sets of tokens that evoke the same event or participant.

In this thesis, we approach the task of script parsing on unknown scenarios as a
zero-shot learning problem. Our rationale is that even without scenario-specific
supervision, a script parser can still acquire crucial knowledge about script parsing
from data on different scenarios. We observe that several aspects of script parsing
are inherently scenario-neutral. For example, it holds true for any scenario that
entities within the same coreference chain should evoke the same participant, and
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Figure 1.4: Script parsing without scenario-specific knowledge is a clustering
task. Given parallel descriptions of the scenario of interest, tokens that evoke
the same event or participant need to be identified and naturally form clusters of
contextualized tokens.

Figure 1.5: An illustration of our zero-shot script parser. In the training phase, we
learn a representation that is consistent with the training set; during the inference
phase, we perform clustering according to the representation to produce the clusters
of tokens that evoke the same event or participant.
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events within a scenario typically follow a mostly sequential temporal order. We
aim to develop an approach that transfers this knowledge from annotated scenarios
to unseen scenarios.

Our solution is a zero-shot script parser that operates on unseen scenarios. Given
a set of narratives on a scenario for which we have no prior information during
the training phase, the parser outputs the sets of events and participants, while
identifying the tokens that evoke these events or participants. To achieve this, we
develop appropriate representations to facilitate the clustering process. The rep-
resentation consists of two main components. Firstly, we leverage general-purpose
contextualized word embeddings provided by pre-trained models. Our hypothesis
is that these embeddings contain informative features for script parsing, although
they also encode less relevant features. Secondly, we transform the original general-
purpose embedding space into a specialized space for script parsing. We learn
this transformation using the available supervision from annotated InScript, which
provides clusters of surface text that evoke the same event or participant. The
transformation aims to improve the consistency of the general-purpose embeddings
with these clusters, such that the clusters exhibit higher purity in the transformed
embedding space. Specifically, instances assigned to the same cluster should exhibit
higher similarities, while those from different clusters should not. Figure 1.5 illus-
trates the training and inference behaviors of our zero-shot parser.

Under settings similar to the annotation of InScript, our zero-shot parser achieves an
average F1 score of around 70 points, which is comparable to a previous supervised
parser. This performance is sufficient for acquiring script knowledge. We extract
script knowledge from MCScript, a corpus with simple language that is similar to our
training data. The acquired script knowledge exhibits decent quality, enabling the
compilation of TSGs and accommodating NLP applications such as story generation.
Even on the Spinn3r corpus, which comprises naturally generated texts, the parser
produces meaningful clusters. We believe that the clustering performance could be
further improved by increasing the amount of unannotated data fed into the parser.
In conclusion, we perform a behavioral analysis of pre-trained language models
to shed light on their potential as a source of script knowledge. Our explorations
support the notion that state-of-the-art large language models can serve as competent
sources of script knowledge. With minimal input, GPT-3 is capable of generating
key elements of script knowledge and facilitating a script-story generation system
that outperforms the ones we develop based on explicit script knowledge. These
observations suggest, with appropriate cautions, that relying on a large language
model that exhibits common-sense knowledge-aware behavior is more efficient for
NLP applications than explicitly collecting such knowledge from scratch.
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The Structure of the Thesis

Chapter 2 provides the contextual background for this thesis by discussing prior
research on the representation of script knowledge within the NLP community. This
chapter is divided into three sections: the efforts made by the NLP community in
representing script knowledge, the availability of publicly accessible script-related
resources, and empirical evidence showcasing how the incorporation of script know-
ledge enhances the performance of NLP applications.

Chapter 3 presents our work on script story generation, which involves generating
narratives about script scenarios. We build upon an existing model that gener-
ates plausible narratives. However, the generated narratives tend to be simple in
language and primarily focused on explicitly stating the events they are meant
to depict. Our contribution lies in developing a model that incorporates richer
details in the generated texts, resulting in more informative narratives. This effort
aims to explore the extent to which text generation models can benefit from script
knowledge. The results demonstrate that script knowledge enables the model to
include more intricate details in a plausible manner. Nevertheless, the utility of
this model is still constrained by the limited coverage of the script knowledge it has
access to.

Chapter 4 and Chapter 5 address the task of script parsing, which involves
aligning natural language text with script knowledge by identifying the tokens that
evoke script events and participants. Script parsing serves two critical purposes in
script-related NLP: (1) it enables potential applications to access script knowledge
that is mentioned in the surface text, and (2) it reveals additional patterns connect-
ing script knowledge with surface text. Moreover, it can discover unknown event or
participant classes when multiple descriptions of the same scenario are available.

Chapter 4 focuses on script parsing under supervised settings, where labeled data
are available for all inference scenarios. Script parsing is traditionally formulated as
a sequence-labeling task. Our approach involves a hierarchical modeling of the text.
In addition to a sequence model operating at the token level, we incorporate another
model to capture the sequence of events, which captures the procedural knowledge
associated with the script. Our approach achieves a performance exceeding 80
points in F1 score, outperforming the previous state-of-the-art by almost 20 points.

Chapter 5 tackles the task of script parsing on unseen scenarios, where inference
is performed on scenarios for which we have no access to labeled data. This parser
enables the acquisition of script knowledge from unannotated texts. Although
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scenario-specific labeled data is not available, we believe that annotated corpora
provide valuable insights into script parsing in general. Hence, we formulate the
problem as a zero-shot parsing task, learning from annotated corpora and conduct-
ing inference on unannotated text from scenarios not included in the training data.
Our approach primarily focuses on representation learning, embedding tokens that
potentially evoke events or participants into a representation space optimized using
the knowledge learned from annotated data.

Using the tools developed in Chapter 5, Chapter 6 puts the acquired script
knowledge without scenario-specific annotation into practice. We apply these tools
to two unannotated corpora, namely MCScript and Spinn3r, mimicking the annota-
tion process to acquire script knowledge. In addition to intrinsic evaluations, we
revisit the task of story generation by training the model introduced in Chapter 3
with automatically acquired script knowledge. While the quality of automatically
acquired script knowledge is understandably lower than manually acquired know-
ledge, it proves to be sufficient for the story generation task examined in Chapter 3.

In Chapter 7, we engage in a discussion on the role of explicit script acquisition
in NLP within the era of pre-trained language models. Our explorations suggest
that, at the current stage of research, large language models appear to outperform
explicit script knowledge methods, serving as both a source of script knowledge and
a script-knowledge-aware agent.

List of Contributions and Collaboration

For clarity, we list the contents that we claim as part of the contribution of this thesis
and clarify the participation of my collaborators. Of course, all of the following
benefited from my advisors.

In Chapter 3, a story generation model that generates text with rich details. The
method is presented in Section 3.3.

In Chapter 4, the supervised script parser. This chapter is based on Zhai et al.
(2021) which is coauthored with, in addition to my advisors, Iza Škrjanec, who
collected the data from the reverse translation (see Section 4.3.3) and performed
most optimizations of the model variants that are subject to data augmentation.
In Chapter 5, the zero-shot script parser. One of the probing tasks, sentence
ordering, presented in section 5.5.2 was implemented by Katharina Stein.
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Script acquisition on MCScript and Spinn3r described in Chapter 6. This chapter
includes two small annotated datasets. Firstly, the annotation of the validation
set and the test set of MCScript, which was performed by Katharina Stein after I
developed the schema. Second, a small subset of Spinn3r is annotated for testing
purposes.

In Chapter 7, the study of GPT-3’s behaviors in sections 7.3 and 7.2.

30



Chapter 2

Background

31



32 CHAPTER 2. BACKGROUND

2.1 Script Knowledge

Script knowledge is about how daily activities evolve. These activities are termed
scenarios. A scenario is a situation of interest, such as fueling a car, taking a flight,
obtaining a PhD, seeing a doctor, reviewing a paper, getting married, etc. A scen-
ario could be any daily activity that occurs in a prototypical manner and is assumed
to be common-sense knowledge. Regneri et al. (2011) were first to organize script
knowledge around the concept of scenarios, as opposed to sequences of verbs or
verbal phrases.

The granularity of script scenarios varies. One scenario could contain another, such
as taking a train and buying a train ticket; they could partially overlap, such as
getting a paper accepted and getting a paper rejected; and, of course, they could
also be completely disjoint.

A specific process in which the activity takes place is termed an instantiation
of the scenario. For example, a specific experience of fueling a car at my favorite
gas station instantiates scenario fueling a car. The scenario is an abstraction of its
instantiations; each scenario could be instantiated in different ways. To fuel a car,
one could drop by a random gas station or go to his favorite one, pay with cash or
credit card, etc.

An instantiation of any scenario consists of a sequence of activities. These activ-
ities are steps to accomplish the scenario; they are termed events of the scen-
ario. For example, fueling a car may contain events such as noticing low fuel level,
driving to the gas station, filling the tank, etc.

Events represent conceptual steps of the respective scenario, which abstract away
from the surface texts. Therefore, an event could be evoked by various surface
forms. For example, for event driving to the gas station, one might say i pulled into
the gas station, or I found a gas station nearby, etc. These surface forms could be
considered equivalent in terms of fueling a car. It also means that each event could
see rather different surface realizations that are centered around different predicates.
This is an important factor that makes it difficult to align script knowledge with
surface texts.

Each specific instantiation of a scenario corresponds to an ordered chain of events,
which we term an agenda.

It is also likely that events that actually took place do not get explicitly mentioned
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in the surface text. This is because a speaker or narrator tries to be informative
with his utterances. Therefore, well-anticipated contents tend to be omitted as
they are not informative. For example, when describing a restaurant experience,
many would mention the food, the service or the atmosphere, however, we rarely
hear people mentioning sitting down, as it is well anticipated. Actually, it is so well
anticipated that it even takes some effort to notice that sitting down is missing
from the surface text.

It is not trivial to determine exactly what counts as an event: if going to the train station
counts as a step of taking a train, what about the activities that takes place
over the course of going to the train station, like taking a taxi, taking a bus, or
locating the train station? This concern is valid. Event granularity is a prominent
technical challenge to script-related NLP. It will not escape our attention that many
of these events can themselves be scenarios and consist of multiple steps, each of
which could still be an independent scenario. going to train station itself can be
complicated, which might include check train schedule, packing a luggage, etc.

A participant of a scenario is an entity that is likely to be involved in a typical
instantiation of the scenario. In our example, the car, the driver, the gas station,
and the nozzle are all participants. Similarly to events, participants could be evoked
by different surface forms. These entities are termed participants because they
participate in script events; these participants often take some important semantic
role of the event-evoking verb. A participant might participate in multiple script
events.

There is a special participant, the protagonist. The protagonist participates in most
events, and is often the narrator of a personal experience, such as the driver in
fueling a car, the passenger in taking a train, etc. The events that the protagonist
participates could be sorted according to their temporal order to form a narrative
event chain (see Schank and Abelson, 1977), a chain of events that share the same
subject.

Some events and participants are not anticipated in every single instantiation of the
respective scenario. In a narrative, we frequently encounter activities and entities
that are not part of a prototypical instantiation of the scenario, but happen to be
present in the specific instantiation. For example, one might mention buying a drink
or running into an old friend in an taking a train experience. These events are not
what we always anticipate from taking a train. We term these events irregular
events and the participants irregular participants. Irregular events and parti-
cipants are present in the surface text for specific communication reasons (after
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all, the narrator paid them enough attention to verbalize them), which diversifies
the text itself. Their presence also reflects the fact that each scenario could be
instantiated in different ways and under different circumstances.

2.2 Script Knowledge: Representation and ac-

quisition

The acquisition of script knowledge develops methods that make script knowledge
accessible to NLP applications. The representation of script knowledge is a spe-
cification of the data format that encodes script knowledge. Script knowledge has
seen a variety of plausible representations proposed. Some of these are explicit and
symbolic, where key elements of script knowledge could be directly read out, such
as event chains, or annotated corpora like InScript where the sets of events and
participants are simply spelled out; some others, like vector representations, are
less about making it explicit to humans but more about establishing an agent that
behaves in a script-knowledge-aware manner. In this section, we survey the efforts
of the NLP community to acquire and represent script knowledge.

2.2.1 Temporal Script Graphs

As a type of procedural knowledge, script knowledge could be represented in the
form of temporal script graphs, which link events with the temporal order in which
they may take place. The events associated to each scenario follow some specific
temporal order, which is a trivial fact, as some steps could only be undertaken
after some others. Consider the scenario fueling a car. It is definite that the event
driving to the gas station happens before filling the tank. The temporal order is
tansitive and strictly asymmetric; it is not necessarily a total order, because some
pairs of events could take place in arbitrary order. When fueling a car, we might
pay before fueling the tank, or after. One might also reset the trip meter either
before everything else or after, or whenever he has any time during the process.
It is also possible that some drivers do not care about the trip meter at all. If
we depict events as a directed graph according to their temporal order, we get a
temporal script graph (Wanzare et al., 2017) of the scenario. See Figure 2.1 for
an illustration.

Temporal script graphs could be conveniently acquired from corpora where tokens
that evoke script events receive annotations, since the agendas could be read-off from
these corpora, from which the temporal order could be estimated with count-based
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Figure 2.1: A temporal script graph of scenario fueling a car. Connections that
could be inferred from transitivity are omitted from the depiction. The temporal
order among events is mostly sequential, but not a total order.
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methods.

2.2.2 Scripts as Planning Instances

In their pioneering work, Schank and Abelson (1977) pointed out that script
knowledge could be naturally formulated as instances of the Planning problem.
Planning is a classical NP-complete problem that seeks a sequence of transitions that
shift a system from its initial state to some goal state. One possible formalization
is as follows.

Definition 2.2.1 (Planning). A planning problem is defined as a tuple P =
{P,D, i, t, A} where

P is a set of objects.

D = {dp : p ∈ P} is the domain that specifies all possible world states. The
world model consists of a set P of objects and a set D that collects the possible
states dp for each object p. Therefore, the Cartesian product S =

∏
p∈P dp is

the set of all possible world states.

i ∈ S specifies the initial state.

T ⊂ S specifies the goal states. It could be a singleton or a set of multiple
goal states.

A ⊂ S × S collects possible actions that could change the world state. For
instances corresponding to realistic situations, it is very likely that, for some
specific action, not all objects are relevant (for some intuition, you may pay
for your gas regardless of whether the trip meter has been reset). Therefore,
actions could often be succinctly packed into precondition / effect pairs.

The answer would be a finite sequence of actions, aka a plan, that leads the transition
system from its initial state to some goal state.

To explain how script knowledge could be formalized as an instance, let us consider
an arbitrary scenario, for example, taking a train. Each instantiation corresponds
to a sequence of events that take place in the physical world. Each possible event
could only take place under certain circumstances (e.g. board with a ticket), whereas
all it does is, in general, changing the state of the world. The sequence of events
exhausts when the script is performed, that is, when the passenger arrives at the
destination. We notice immediately that a sequence of actions also fits these descrip-
tions. In addition, each scenario could be instantiated in different ways, resulting
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Figure 2.2: A brief version of baking a cake formulated as an instance of the
planning problem. An event usually refers to a number of actions that have similar
preconditions and effects.

in multiple sequences of events. These sequences are similar in the sense that they
all accomplish the same thing: sending passengers to their destinations with the
railway system. Every instantiation starts from the point when a passenger plans
to travel; every instantiation ends when the passenger is at his destination.

Script knowledge naturally fits the formalization of planning problems. The world
state could be described by specifying the state of all relevant entities, which in-
cludes all participants; each event is a set of actions that take place under similar
circumstances to achieve similar things. We present an example in Figure 2.2.

The planning representation of script knowledge is very insightful. However, it might
not be the most attractive approach for the purpose of informing NLP applications.
The representation abstracts away from surface text and is symbolic and sensitive
to noise (imagine one typo rendering the entire problem unsolvable). On the other
hand, natural language is noisy and tends to omit descriptions of common-sense
knowledge. That would mean aligning such formalization to surface text is highly
nontrivial.

Many symbolic means of script representation could be seen as simplifications of the
underlying planning instances. With the planning representation, we could precisely
determine the temporal order between any pair of events, based on the preconditions
and effects of all events, as it is in principle possible to enumerate all legitimate
plans1. Another example is a sequence of predicate-argument structures, which

1Enumerating all plans in general is not guaranteed to be tractable. However, instantiations of
script scenarios always see prototypical sequences of events, which suggest that script knowledge
probably corresponds to a less complicated fragment of the planning problem.
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exploits sequences such as buy(passenger, ticket) → board(passenger, train) →
arrive(train, station). Once again, these sequences could be inferred from the set
of feasible plans.

2.2.3 Narrative Event Chains

Automatic, large-scale script acquisition dates back to Chambers and Jurafsky
(2008,0). Their work focuses on narrative event chains. A narrative event is defined
as a tuple that includes an event (in most cases, represented by a verb) and its
participants, such as (board, passenger, bus), (sentence, judge), etc. A narrative
event chain is a partially ordered set of narrative events that share a participant.
As an example, all activities of a specific person during a specific period of time
form a narrative event chain.

Chambers and Jurafsky (2008) extracts sequences of events that share a common
participant. These sequences are identified according to coreference information.
With these sequences of events spread over multiple documents, the authors evaluate
the connection between a pair of events with point-wise mutual information in
terms of document-level cooccurrences. That is, an event e is considered to follow
from e′, if the existence of e on an average document significantly improves the
probability of e′ appearing in the same document. The authors propose a generative
model of event sequences, in which, given a partially completed chain, the next
event is selected as the one that has the maximum average PMI to those already
in the chain. See Figures 2.3 and 2.4. The result is evaluated with an event cloze
test, where the model needs to predict a missing event from a piece of text. Cham-
bers and Jurafsky (2008) see substantial improvement over language model baselines.

The approach in Chambers and Jurafsky (2008) has seen multiple refinements. Jans
et al. (2012) used bigram probabilities to construct narrative event chains, which
yields better performance. Pichotta and Mooney (2014) went further to include
multiple arguments for each event but uses a different notion of event chains in
that they no longer constrain the events to share their protagonists. Rudinger et al.
(2015) uses a predicate with its typed dependencies as the representation of events;
in terms of sequence modeling, they used a log-bilinear language model that saw a
noticeable performance improvement.

Narrative events align comfortably with surface text, and could be easily extracted.
No annotations are necessary in the process, which means that such an approach
scales well. Yet, there are important aspects of script knowledge that are not
taken into account. First, these event sequences are not specific to the scenario
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Figure 2.3: The initial segment of a narrative event chain and its possible successive
events. Taken from Chambers and Jurafsky (2009).

Figure 2.4: An illustration of two narrative schema that corresponds to two different
shared participants. Taken from Chambers and Jurafsky (2009).

or the activity that each sequence of events are supposed to accomplish. Instead,
they are mere sequences that are frequent in the corpus. Second, it is difficult
to learn the events that are hidden from surface text, both because these events
are not visible from surface text and because hidden events could be different
given similar surface texts. For example, gototrainstation→ boardtrain could be
part of an event sequence corresponding to taking a train, or one corresponding
to working as a conductor. Different patterns are expected from respective event
sequences. Furthermore, different background scenarios would mean different hidden
events: the passenger probably had made sure that he had a ticket, yet it is not
the case for the conductor. In the next section, we will see that arranging script
knowledge around the respective scenarios offers a neat solution.
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2.2.4 Scenario-specific Script Acquisition

Limitations to event-chain-based approaches gradually becomes evident. As we have
seen in Section 2.2.2 (see also Schank and Abelson (1977)), script knowledge about
a certain activity could be formalized as an instance of planning. One implication
is that these event chains are not mere event chains that appear frequently in
some category of surface text, but sequences of actions that have a purpose. These
chains of events must solve the planning problem and lead the system to a goal
state; in other words, these events are there to perform a certain activity like
baking a cake. Failure to take into account the goal of the event chain could cause
confusion. For example, the first half of the event chains, respectively, corresponding
to taking a flight and picking up a friend from airport, might be very similar. It is
likely that the differences in the first half do not make their way into the surface
text in a noticeable manner, in which case it would not be possible to correctly
anticipate what events are coming next.

In order to take the activity of interest into account while modeling event se-
quences, Regneri et al. (2011) proposed the notion of scenarios (see also Section
1), which refers to the activity that a sequence of events is trying to accomplish.
The introduction of scenarios initiated a line of research that investigates script
knowledge in a scenario-aware manner. Modi et al. (2016); Wanzare et al. (2016)
established corpora for scenario-specific script knowledge; Wanzare et al. (2017)
investigates the temporal order of events within a scenario and compiled them into
temporal script graphs (see Figure2.1). Ostermann et al. (2018a,0) are devoted to
script-knowledge-based question answering.

A most important merit of the scenario-specific approach is allowing us to infer the
events that are hidden from surface text. In naturally generated texts, one rarely,
if ever, describes a scenario in full detail. A human, upon hearing about a script
scenario like taking a train, is capable of retrieving the rest of the scenario from his
knowledge base. Therefore, it would be difficult to extract the entire chain of events
by investigating the verb sequences of natural texts, especially when the scenario is
not specified. Modi et al. (2016); Wanzare et al. (2016) try to address this issue
by collecting explicit representation of script knowledge. More on this in the next
section.
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2.2.5 Neural Script Representation

Script representation also saw the impact of neural network methodologies. Modi
and Titov (2014); Granroth-Wilding and Clark (2016) learn vector representations
of events by training them to correctly predict their temporal order using a linear
ranker. Pichotta and Mooney (2016) use LSTM to model sequences of events in
order to perform an event cloze test. Weber et al. (2018) use a variational autoen-
coder to generate sequences of events. In recognition of the hierarchical nature,
the variational autoencoder is also designed to be hierarchical, which stochastically
decides how the situation unfolds by generating a chain-shaped latent variable.
Weber et al. (2020) model script knowledge and its relation to surface text according
to Judia Pearl’s causality framework(see, e.g., Pearl et al., 2000). The causal graph
includes the event mentions, the text, and the discourse relations. This method
saw a steady improvement over the point-wise mutual information criterion and
the language model criterion.

Neural script representation methods considerably lift the requirement on manual
inputs. As an example, randomly initialized vector representations in Modi and
Titov (2014) could be trained to learn from the temporal order these events appear
in the surface text and make predictions. The whole process does not require feature
engineering. Moreover, neural methods could make use of general-purpose word
embeddings, which, taken out-of-the-shelf, already contain much useful information.
However, these methods do not grant wider coverage of available script resources.
All these methods still require scenario-specific training supervision, which, obvi-
ously, grows in proportion with the number of scenarios we are interested in. This is
exactly what hinders script knowledge representation from reaching a wider coverage.

2.2.6 Script Knowledge from Large Pre-trained Language
Models

Large pre-trained language models, representatively BERT (Kenton and Toutanova,
2019), are trained with large amounts of texts. It is certain that commonsense
knowledge leaves a trace in the distribution of their training data(we might see
bake a cake but rarely bake a train). Therefore, we should be able to acquire script
knowledge from these models. Sakaguchi et al. (2021) formalize script knowledge as
directed acyclic graphs, whose nodes are all the events, and an edge is established
from one event to another if there is a ‘dependency’ between them. Based on this
formalization, they approach two tasks: edge prediction, where they use a two-stage
classifier to determine whether there is an edge between two events and then the
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direction of the edge. The second task is scenario generation, for which they train
a sequence-to-sequence model that takes the scenario name and number of events
as input (for example, taking a train, in 3 steps) and outputs the list of events
and edges. Both tasks are approached from fine-tuning large pre-trained language
models. The performance on the edge prediction task is above 70 points F1 score,
and generates from ROCStories(Mostafazadeh et al., 2016) to DeScript; the scenario
generation task is evaluated with the edit distance between the output graph and
its reference, which is around 5 while the average number of events in the reference
graphs is 5.5.

Madaan et al. (2022) extract script knowledge from large language models trained
for code, under the hypothesis that these models should be better at processing
structured common sense knowledge as its input is structured. They also approach
the two tasks mentioned above and find that the code LM outperforms natural
language LM by a large margin.

Apart from establishing explicit representations for key elements of scripts such
as events and participants, neural script acquisition could go more implicit. That
is, instead of specifying how script knowledge looks like, we could also develop
our models in such a way that it behaves in a script-knowledge-aware manner. In
Chapter 7, we discuss how much state-of-the-art pretrained language models could
offer from this perspective.

2.3 Resources

In this section, we go through some publicly available resources for script knowledge.

2.3.1 DeScript

DeScript is constructed by Wanzare et al. (2016). Instead of narratives, it crowd-
sources event sequence descriptions. Each event sequence description consists of
a sequence of event descriptions, which is a short verbal phrase that specifies the
event. For example, buy a train ticket. Therefore, each event sequence description
corresponds to a specific instantiation of the scenario.

DeScript collects around 100 event sequence descriptions for each of 40 scenarios.
These event sequence descriptions vary in their lengths, granularity, choice of verbs,
etc. See Figure 2.5 for some examples of ESD. For each of those 40 scenarios,
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Figure 2.5: Examples of event sequence descriptions taken from Wanzare et al.
(2016)

Figure 2.6: Examples clusters of event descriptions about baking a cake, taken from
Wanzare et al. (2016). Each set contains verbal phrases that are considered similar
with regard to the scenario. In italics are some hard cases.
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Figure 2.7: The number of events and participant types of each InScript scenario,
taken from Modi et al. (2016). A larger set of events or participants suggest more
complexity within the scenario.

the corresponding event sequence descriptions are aligned with each other to link
event descriptions that are believed to evoke the same event. This is essentially
a clustering process. Wanzare et al. (2016) performed the alignment in a semi-
supervised manner. The seeds consist of two parts: a small number of gold-standard
seeds annotated by experts and extra seeds annotated through crowd-sourcing. The
alignment is partial, i.e. not all event descriptions are required to be aligned with
another. The outcome, after moderate post-processing, is sets of verbal phrases that
are supposed to evoke the same events. To some extent, these are paraphrase sets.
The set of events associated with the scenarios of interest, as well as the potential
temporal order among them, is also acquired in the meanwhile. See Figure 2.6.

2.3.2 InScript

DeScript focuses on short event descriptions. InScript (Modi et al., 2016), in
contrast, collects explicit script narratives and annotates them with elements of
script knowledge, including script events, participants, etc. The establishment of
InScript is a complex process. It comprises the following steps.

1.Scenario selection. InScript collect stories on 10 script scenarios. These
scenarios make a subset of DeScript scenarios and are meant to be of different
complexities and specificities. Figure 2.7 gives the set of all scenarios. In general,
more complicated scenarios and less specific scenarios result in larger sets of events
and participants.
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2.Story collection. InScript aims to collect explicit descriptions of each scenario
of interest. However, script knowledge is a category of commonsense knowledge
which is usually assumed by an author and remains hidden in surface text. The
stories are crowd-sourced accordingly. To make script knowledge more explicit, the
authors, after several pilot experiments, instruct the workers to describe a scenario
in the form of a story as if explaining it to a child. The result is relatively
explicit descriptions of the respective scenarios in simple language2; besides, the
activities in the stories roughly follow their temporal order. InScript contains
around 100 crowd-sourced stories for each of the 10 scenarios. On average, there
are 12 sentences per story, each consisting of 217 words. See Figure 2.9 for more
statistics.

3.Developing Annotation Schema. A most crucial step in the pipeline is
determining the sets of events and participants, which the authors term the template
(see Figure 2.10). The preliminary templates are designed manually by the authors;
later, the authors annotate 5 random stories per scenario to adjust the templates.
The annotation per se also consists of multiple phases, and after the first phase
some of these templates are adjusted again. We remark here that this step incurs a
considerable amount of workload directly on the authors, which scales up with the
number of scenarios. This is one of the main reasons that an InScript style corpus
cannot include a large number of scenarios.

4.Annotation. With the templates developed, the main body of the annotation
could start. Annotations are performed by undergraduate students of computational
linguistics. During the annotation, each verb receives an event label and each NP
head receives a participant label. Finally, all noun phrases receive a coreference
chain annotation, indicating to which referent they refer. It is not hard to notice
that not all NPs evoke a participant that is relevant to the scenario. For example,
one fixing a flat tire story begins with The weather was nice. Apparently, weather is
not relevant to fixing a flat tire. Likewise, some verbs simply refer to the incidents
taking place within the course of the story, but are not indispensable for the scenario.
Therefore, the tag sets also contain labels for irregular events and participants.
Irregular event labels include ‘unrelated (not related to the main activity), non-script
(related but not part of the activity per se), unknown’ and other ; irregular participant
labels include ‘other’, ‘suppvcomp’ (support verb complement), ‘unclear’,and ‘head

2It turns out that a considerable proportion of script events that actually take place are still
omitted from the stories. For example, in taking a flight, few stories mention retrieving the luggage
even if they mention checking in the luggage. But these stories are sufficiently explicit for script
acquisition.
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Figure 2.8: A fragment of InScript as is presented in the original paper. Tokens
that evoke script events or participants receive respective annotations. Referring
expressions along the same coreference chain receive the same color.

of partitive’. About 40% of the events and 20% of the participants are irregular. In
total, the corpus contains 234k tokens, of which 15k received an event label, while
47k received a participant label. See Figure 2.8 for an illustration of the annotations.
On average, there are 7 coreference chains per story with an average length of 6
tokens.

Inter-annotator agreements. 30 stories from 6 scenarios are randomly selected
and annotated by 4 annotators to evaluate inter-annotator agreement, the results
are given in Figure 2.11. Coreference annotations admit high inter-annotator agree-
ment, with 90.5% coreference pairs agreed by at least 3 out of 4 annotators. The
inter-annotator agreement for events and participants is, in comparison, moderate
(the Fleiss’ Kappa is at a moderate 0.64 for event labels and 0.77 for participant
labels). In fact, the identification of event and participant evoking tokens is a more
complicated task than identifying coreference pairs. The moderate inter-annotator
agreements indicate that the task packs considerable difficulty for humans, even
though the annotators are students of computational linguistics. The main effort
of this thesis is to automate this complex InScript annotation process, without
scenario-specific training supervision, to allow script knowledge to be presented in
the form of figure 2.8 with a wide coverage.

2.3.3 MCScript

MCScript is a machine comprehension dataset proposed by Ostermann et al. (2018a)
(Ostermann et al., 2018b, see also). A refined version, named MCScript 2.0, is later
published by Ostermann et al. (2019). The purpose is to evaluate the potential
contribution of script knowledge to text understanding.

MCScript2.0 is based on about 20 InScript-style stories for each of 200 scenarios;
these scenarios are selected to reach a reasonable coverage of daily activities. These
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Figure 2.9: Statistics of InScript taken from the original paper.

are InScript-style stories that are relatively simple in language. In total, MC-
Script2.0 comprises 19,821 questions on 3,487 stories or on average 5.7 questions
per story. These questions are supposed to ask about elements of script knowledge.
The average length of the stories is 164.4 tokens; that of the questions and answers
is 8.2 tokens and 3.4 tokens, respectively.

The questions are crowd-sourced. For each story, the authors take the fourth
sentence as the target sentence. The workers are then instructed to focus on the
target sentence and ask two types of special questions. Firstly, they should ask
about a specific noun phrase in the sentence; these questions are supposed to be
about script participants. Secondly. Workers should ask a temporal question about
a verbal phrase in the target sentence. These questions are supposed to be about
the temporal structure among script events. The target sentence is likely to contain
the answer to the question to collect. When the questions are presented, it will be
hidden from the text, to create a situation where the answer needs to be inferred
according to script knowledge. In another round of crowd-sourcing, the workers are
instructed to identify the quesitons that could be answered by checking the text or
inferring from common sense. These questions are to be kept in the dataset.

The answers are also crowd-sourced. Workers are instructed to provide the correct
answer and a plausible incorrect answer to each question. Each question is given to
5 workers; the final correct answer is decided by a majority vote (answers within
a Levenstein distance of 3 are considered identical); the final incorrect answer is
selected from those provided by the workers via adversarial filtering, where questions
more difficult to a simple classifier are selected through the process. The result is a
challenging dataset for machines, with then state-of-the-art reading comprehension
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Figure 2.10: The template for taking a bath taken from the original paper. The
templates see some adjustments after the manual annotation, to add the items in
boldface.
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Figure 2.11: Interannotator Agreements. Left: events and participants; right:
coreference. The coreference agreement is the percentage of coreferring pairs
annotated by at least 3 annotators out of 4.

model performing at 72 points accuracy.

Script-based NLU is beyond the scope of this thesis. But MCScript is interesting
to us as it provides parallel descriptions of script scenarios with simple language.
We will use these texts to perform automatic script acquisition.

2.4 Script Knowledge for NLP Applications

In this section we briefly go through a number of results where script knowledge
proves useful for NLP applications.

2.4.1 Referent Prediction

Script knowledge offers specifications on how the participants are involved: the
protagonist is a participant in most events; each participant participates in script
events in specific patterns; for example, a cake is put in to the over to bake, and later
taken out. Rahman and Ng (2012) shows that script knowledge is useful against
ambiguities in coreference resolution. The paper investigates complex coreference
resolution cases that coreference resolution heuristics and linguistics constraints like
gender agreement, number agreement, syntactic salience, etc. struggle to deliver
results. Among these complex cases are the instances in the Winograd schema
challenge(Levesque et al., 2012, see Figure 2.13 for an example).

Rahman and Ng (2012) investigate the features extracted from narrative event
chains in a number of tasks. As is shown by their ablation study, including these
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Story: We put our ingredients together to make sure they were at the right
temperature, preheated the oven, and pulled out the proper utensils. We then
prepared the batter using eggs and some other materials we purchased and then
poured them into a pan. After baking the cake in the oven for the time the recipe
told us to, we then double checked to make sure it was done by pushing a knife into
the center. We saw some crumbs sticking to the knife when we pulled it out so we
knew it was ready to eat !

Question: When did they put the pan in the oven and bake it according to the
instructions?
✓after mixing the batter
××× after eating the cake

Question: What did they put in the oven?
✓the cake mix
××× utensils

Figure 2.12: An example Ostermann et al. (2019) which includes two questions
based on a text about baking a cake.

features improves performance of their model by more than 4 percent accuracy.

Modi et al. (2017) explore the potential to improve the prediction of referents with
explicit script knowledge. They construct a referent cloze test from the stories
of InScript and approach the task with a log-linear model. They include two
script-related features: first, participant type fit, which characterizes ‘how well
the participant type of a candidate fits a specific semantic role of the governing
predicate’; secondly, predicate schema, which is about event pairs that tend to
appear consecutively in the text. Including these features increased performance by
more than 10 points of accuracy.

2.4.2 Discourse Classification

Lee et al. (2020) use explicit script knowledge for discourse classification. They
learn representations of events through the construction of narrative graphs. The
narrative graph is a refined version of narrative chains. Lee et al. (2020) extract
events, or predicate-argument structures from a large body of text. Together with
these predicate-argument structures, they also extract relations among them. These
relations are mostly discourse relations between sentences that include predicates-

50



51 CHAPTER 2. BACKGROUND

a. Putin issued Edward Snowden Russian citizenship because he represents
freedom fighters.

b. Putin issued Edward Snowden Russian citizenship because he protects freedom
fighters.

Figure 2.13: A Winograd-style complex coreference resolution instance. The
syntactic trees of this pair of sentences are isomorphic. For this pair of sentences,
the referent of he cannot be determined from shallow linguistic features. Yet
patterns in predicate-argument pairings might help with such cases.

argument structures. With the events and relations among them, they train a graph
convolutional neural network to predict missing edges of the graphs. The training
produces vector representations of events.

The event embeddings are used for implicit discourse sense classification, a shared
task of CoNLL 2016 (Xue et al., 2016). The authors concatenate the event em-
beddings to the ElMo representation of both discourse arguments to feed into a
classifier. Including these embeddings saw a performance improvement of at least 2
points F1 over several competitive systems.

2.4.3 Story Generation

Various works on story generation see traces of script knowledge. Fan et al. (2018,0)
generate stories in a hierarchical way. Given a title, a plausible chain of predicate-
argument structures is generated to sketch the story. Later, the complete story is
generated conditioned on the sketch. Martin et al. (2018) also takes a hierarchical
approach. They treat an event as a sequence containing S, V, O, and potentially a
modifier M. Their system involves several sequence-to-sequence models. An event-to-
event model incrementally generates sequences of events; an event-to-sentence model
generates almost natural language text that contains placeholders for participants
from each event. Zhai et al. (2019b) generates script stories from an agenda, which
is a plausible sequence of InScript events that sketches the story. The agenda itself
is generated according to the temporal script graph of each scenario learned from
the annotations in InScript. All these works take a hierarchical approach, where
an intermediate outline is first generated to sketch the story. Script knowledge is
an important part of the procedural knowledge on which the plausibility of these
sketches are established.
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2.4.4 Summary

Script knowledge benefits a variety of NLP applications. It is used in different forms.
It could be patterns in event sequences or explicit script knowledge like InScript. It
could be encoded in vector representations. Without scenario specification, script
knowledge could be extracted on a large scale. Yet without scenario specification,
the outcome is inevitably ignorant of scenarios and the hidden elements of script
knowledge. The availability of scenario-specific script knowledge, however, limits to
what InScript offers, i.e. 10 daily scenarios. Script knowledge would need to reach
a wider coverage to deliver practical usefulness.
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Script Story Generation
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3.1 Introduction

Automatic story generation is the task of automatically crafting stories with ap-
propriate contents and language. These texts need to be both fluent and coherent.
Figure 3.1 provides some examples of machine-generated stories.

Establishing coherence is the main technical challenge in text generation. The
text needs to comprise fluent language that correctly conveys the communication
purpose, such as reporting a piece of news, quirying for some specific information,
etc. Although modern neural language models can easily produce sensible, random
text pieces, establishing control over the content of these texts is a different task. In
general, the agent needs to master basic linguistic skills to produce cohesive texts;
whereas selecting appropriate content to convey a specific information could mean
bridging surface language and the physical world, which is extremely tough.

In terms of story generation, the coherence of the text is established by appropriately
realizing a specific story line. Traditionally, story generation is performed with
symbolic planning systems. Typically, a symbolic natural language generation
architecture consists of three stages: text planning, sentence planning, and surface
realization (see Figure 3.2). Text planning accounts for the highest level of planning,
including discourse planning (grouping concepts and specifying discourse relations to
arrange them) and content determination (plan sentences to express the concepts).
It basically decides what each sentence should say. Sentence planning and surface
realization would actually generate sentences to fulfill the plan. Sentence planning
sets up the arena for surface realization according to the outcome of text planning.
It decides the coreference relations in the sentence in question, as well as its word
choices. Surface realization directly generates natural language text accordingly.
It could be either a rule-based system, or a probabilistic model (see, e.g., Meehan,
1976; Riedl and Young, 2010; Busemann and Horacek, 1998).

Traditional story generation systems are capable of producing impressive, coherent
stories, these systems rely heavily on manual knowledge engineering to select actions,
characters, etc., properly, therefore generalizing poorly to unseen domains.

Early neural language models, such as those based on LSTM, exhibit impressive
capabilities to generate fluent utterances, which drove the development of neural
text generation systems (see, e.g., Mei et al., 2016; Wen et al., 2015). Yet, these
models struggle to keep track of the generation progress or dialog history, and the
coherence of the generated text deteriorates as the generation continues. The fol-
lowing few years saw the establishment of guided text generation, where generation
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a. A young girl named Sarah lived in a small village at the edge of a dense forest.
She was known for her kindness and her love of animals. One day, while explor-
ing the forest, Sarah stumbled upon a clearing and found a magnificent unicorn.
The unicorn was injured and in need of help, so Sarah offered to take care of it.

She brought the unicorn back to her home and nursed it back to health. In
return, the unicorn granted Sarah three wishes. She wished for the forest to be
protected, for the village to prosper, and for peace to reign throughout the
land. The unicorn’s magic worked, and the village flourished.

Years passed, and Sarah grew old. The unicorn returned to the forest, but
Sarah never forgot the magical bond they shared. She passed down the story
of the unicorn to her children, who in turn passed it down to their children.
And so, the story of the unicorn and the girl who saved it lived on, bringing
hope and joy to all who heard it.

b. Once upon a time, a family decided to take a trip by train. They went to the
train station and saw a big and shiny train waiting for them. The train was
long and colorful, with lots of windows for them to look out of.

The family found their seats and settled in. They were so excited to be on a
train! As they started moving, they could feel the gentle swaying of the train.
They watched as the scenery outside changed, passing by fields, forests, and
even mountains. They saw other trains going by and waved at the people on
those trains.

The train made stops at different stations, and new passengers got on and off.
The family was given a treat, like a snack or a drink, and they enjoyed it as
they continued their journey.

After some time, they arrived at their destination. They got off the train and
felt grateful for their fun and memorable trip. They can’t wait to take the
train again!

Figure 3.1: Automatically generated stories by ChatGPT (https://chat.openai
.com/chat). In particular, b. is a script story on taking a train.
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Figure 3.2: A symbolic pipeline of text generation. Planning and generation go
from higher to lower levels

systems of dialog, story, sports review, etc. include explicit planning components to
keep track of the generation progress and inform the surface realization component.
Generation could be planned with a list of important entities (Kiddon et al., 2016),
a sequence of predicates (Fan et al., 2019), etc.

This chapter is focused on the generation of script stories, i.e. narratives of script
scenarios, like taking a train. These stories are supposed to be about typical ex-
periences of the scenario. Figure 3.1 b. gives an example. Script story generation
is based on corpora like InScript, which contains annotation of script events and
participants.

Earlier work (Zhai et al., 2019a, ; Section 3.2) has developed methods to establish
global coherence in script story generation, such that the generated stories describe
the procedure of performing a script scenario in a plausible manner. For example,
a story on taking a train could be generated based on an agenda like buy ticket→
go to train station → board train → train arrives → exit train. Their model
features the combination of a symbolic component and a neutral component. The
symbolic component learns from the annotations in InScript to produce an agenda,
a sequence of events that sketches a realistic instantiation of the scenario. The
agenda is then fed to the neural component to condition the generation of the
story. The surface realization component verbalizes the agenda in linear order,
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event-by-event. See Figure 3.3 for an illustration.

yesterday i went grocery shopping . i made a list of my list and drove to the grocery
store . when i entered the store , i grabbed a shopping cart and pushed the cart down
to the meat aisle . i got all my items , and crossed items on my list . i went to the
checkout register and paid for my groceries . i put my groceries in my cart and left .

Figure 3.3: An illustration of the model architecture of Zhai et al. (2019a) and
a story it produces. Based on the agenda generated by the planner, its surface
realization module produces two outputs: the prediction of the successive word and
an indicator predicting whether the generation should move to the next event. The
stories it generates are coherent but very short.

Zhai et al. (2019a) Generates coherent stories that describes the process of their
scenarios soundly. Script knowledge was a most crucial ingredient in the process,
as it guarantees the plausibility of the agenda and enables the generation model to
track how much of the agenda has been realized in surface text.

In Section 3.3 we exploit script knowledge for an additional functionality in story
generation, that is, including relevant details in the generated stories. The stories
generated by Zhai et al. (2019a) are coherent but very short and barely contains
interesting contents. We seek to improve the generation system to be more inform-
ative on the specific instantiation of the script scenario. Selecting these contents to
be generated appropriately is not trivial. The model we propose is based on the
observation that story generation could be seen as the joint effort of two components:
one develops the story line, whereas the other provides details about the current
situation without explicitly progressing with the story line. These components are
approached with different model components. See Figure 3.4 for an illustration of
the idea and a story generated by the model.
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i went grocery shopping today . i made a list of things that i needed before i left my
house . i looked at the grocery store immediately , i drove to the grocery store that
is always empty . i parked the car , walked inside and grabbed a shopping cart . i
proceeded down the produce aisle , which happened to be on sale . i went to the back
and chose my favorite peanut butter . i went to the cashier , which was a short line
. i had to wait in line since there were some people ahead of me . i put my items
on the conveyor belt and then she scanned my items . i said hi to the cashier , i
paid my bill , and another man placed all my items in my shopping bags . i made
sure to put the cart away , too . once i had everything i needed , i then picked up
my bags and left the store . on the way out i decided to rent a redbox movie for the

night since the kiosk was right by .

Figure 3.4: An illustration of the architecture of the model that includes rich details
in its generation, and a story it produces. The left column lists the agenda events
and, on the right, the text segments corresponding to each event. The craft of
the story naturally decomposes into an alternating effort between outlining and
detailing . The story packs more content than those generated by Zhai et al.
(2019a) and arranges these contents appropriately.

As Zhai et al. (2019b), our model receives an agenda as the sketch of the story
to generate. The agenda, however, contains irregular items which indicate extra
details are required instead of developing the story line. We train different sequence
to sequence models to develop the story line and to supply additional details.
Script knowledge, which conditions the generation, is the key element for selecting
appropriate contents that are consistent with the scenario and the ongoing story
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generation.

The works presented in this chapter exhibit the usefulness of script knowledge to
the application of story generation. Script knowledge allows the generation systems
to establish global coherence, as well as generating more details locally. Yet, the
limitation of current script resources is also evident from these works, that is, the
coverage of exhisting resources. The models in this chapter train on finely annotated
data, which is available only for a few scenarios. To be of practical usefulness,
its training data need to reach a reasonable coverage of the script scenarios one
encounters in daily life. In the following chapters, we develop methods to acquire
script knowledge automatically from surface text, which makes it affordable to
extend the coverage of script knowledge. In chapter 6, we revisit the task of
script story generation, where we experiment with automatically acquired script
knowledge.

3.2 Script Knowledge in Globally Coherent Story

Generation

Script knowledge packs information about how daily activities are usually carried
out. It specifies the motivations (for fixing a flat tire, for taking a taxi or a train,
etc.), the participants, the locations, the necessary steps, etc. With knowledge of
these aspects, we are able to sketch a narrative of the scenario; we could judge
whether a narrative of a scenario is plausible: did the passenger pay for his train
ride? Did he exit the train after it stops? One possible application is to establish
global coherence in narrative texts about these scenarios. This is realized by Zhai
et al. (2019b), which we introduce in this section.

3.2.1 Method

Overview

Zhai et al. (2019b) is based on InScript, where event annotations are available. The
authors condition surface realization on an agenda, which is a plausible sequence of
events that instantiates a scenario of interest. The agenda could be acquired from
script knowledge, and in the meanwhile, it serves as a sketch of the story to generate.
Their model consists of three modules. Firstly, a symbolic agenda generator
that produces an agenda given a specific scenario (e.g., baking a cake). Second, a
neural surface realization module , which verbalizes the agenda event by event.
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Figure 3.5: The Temporal Script Graphs for the BAKING A CAKE scenario induced
from InScript, taken from (Wanzare et al., 2017). The nodes are the event clusters,
whereas the dashed boxes include some possible utterances that correspond to these
clusters.

It performs two tasks. (1) It behaves like a language model, which predicts the
next word of the story given the current event and the progress of generation. (2)
It determines whether the current event has been completely realized so that the
generation could move to the next event on the agenda. Finally, a story generator
that assembles the whole pipeline as follows. (1) Call the agenda generator to
generate an agenda. (2) Create a seed, a short, plausible story beginning, to initialize
surface realization, e.g., ‘yesterday i went grocery shopping ’ for a grocery shopping
story. (3) Iteratively call the surface realization module to perform a beam search
(see, e.g., Sutskever et al., 2014) and generate a complete story. (4) Post processing.
Remove occasional excessive repetitions in the generated story. More precisely, when
a word or phrase is repeated at least three times, the third repetition is deleted. e.g.,
‘i like the tree very very very much’ becomes ‘i like the tree very very much’. The
generation terminates when the agenda is exhausted and a sentence-terminating
punctuation is generated.

The Agenda Generator

Given a scenario, the agenda generator goes through its temporal script graph and
samples a path through it. For the example given in Figure 3.5, the path would
start out with “choose recipe” and continue with either “get ingredients” or “buy
ingredients”, followed by “add ingredients”, until the end of the graph is reached.
The sampling is based on an event n-gram language model trained on the training set.
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The agenda generator also decides whether each event should be realized. Naturally
generated stories rarely mention all of the events, and this component enables
the model to mimic this behavior: the probability of event realization depends on
the likelihood of the event given its predecessor p(e|e′), which is estimated on the
training data using an event bigram model. To avoid excessive discontinuity in the
realization, the agenda generator is prohibited to skip two consecutive events. The
outcome of this process is an agenda, a plausible sequence of events.

The Surface Realization Module

Their surface realization module is a GRU (Cho et al., 2014) language model,
modified to enable two additional functionalities. (1) We condition the prediction
of the successive word on the generation progress. (2) It determines whether the
current event has been fully verbalized. If so, the surface realization module shifts
its focus one event onward along the agenda and begins to verbalize the next event.
See Figure 3.6 for a conceptual illustration.

Figure 3.6: An illustration of the surface realization module. It produces two
outputs: a distribution over the vocabulary that predicts the successive word and a
boolean-valued variable that indicates whether the generation should move to the
next event.

For the first functionality (see Figure 3.7 for the model architecture), Zhai et al.
(2019b) condition the prediction of the next word on both the previously verbalized
event (the preceding event) and the event that should now be verbalized (the
forthcoming event). Intuitively, the surface realization module will be informed
with something like ‘I have taken a shopping cart, now tell me how to get my
groceries’. The authors train a dense vector representation for each event in the
corpus, which is termed an event vector . Generation is conditioned on event
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vectors ept of the preceding event and eft of the forthcoming event:

dt = Softmax(D[ot; e
p
t ; e

f
t ])

here dt is the output distribution that predicts the successive word; D is a linear
layer; ‘;’ stands for vector concatenation; ot = Wht is the content of the GRU
language model where ht is the GRU cell states and W is another linear layer. To
further relate surface realization with the progress of generation, we concatenate
the event vectors with the embedding of the previous word as input to the GRUs:

ht = GRU([xt−1; e
p
t−1; e

f
t−1])

The word embeddings are initialized with Google’s pre-trained word2vec vectors1

(see, e.g., Mikolov et al., 2013). A binary classifier determines whether the forth-
coming event has been instantiated, i.e., whether the model is ready to move
onward:

at = Softmax(A[ht; e
p
t ; e

f
t ])

here A is a projection matrix; at is a 2-dimensional vector. If a1 > a0, the surface
realization module decides that forthcoming event has been completely narrated
and should move one event onward to continue the generation; otherwise, it sticks
with the current forthcoming event to complete its instantiation.

Figure 3.7: An illustration of the surface realization module. It outputs the
distribution of the next token dt, as well as at, which determines whether to proceed
to the next event.

As there are more tokens than events in the corpus, the aforementioned binary
classification is biased. The ratio between the categories is about 17 : 3. To improve
recall on event-shift decisions, they use a weighted cross-entropy loss on output at:

La(at, a
∗
t ; γ) =

{
−(1− γ) log a0t , a∗t = (1, 0)
−γ · log a1t , a∗t = (0, 1)

1https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
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here a∗t is the ground truth; the weight coefficient γ is a hyperparameter. The final
loss function is

L(at, a
∗
t , dt, d

∗
t ; γ, β) = H(dt, d

∗
t ) + β · La(at, a∗t ; γ)

where H(·, ·) denotes the cross entropy between the parameters; d∗t is the ground
truth distribution of the next word; β is another hyperparameter.

3.2.2 Evaluation

The following generation systems are included in the evaluation.

Human Author
Stories directly taken from InScript. Expected to produce an upper bound of
the evaluation.

Full
The model described in Section 3.2.1.

GRU
A plain GRU language model trained on InScript, intended to be a baseline
that has no specific global coherence control. Its generations are seeded with
scenario-specific beginnings for some relevance. For example, the seed for
Going Grocery Shopping is ‘yesterday i went grocery shopping .’

Neural Checklist Reimplementation of the neural checklist model by Kiddon
et al. (2016), briefly post-processed as described in Section 3.2.1.

Random Event Order
The ablated model without the agenda generator. As a substitution, the
agenda now consists of mere i.i.d. samples of events.

For some intuition, see Table 3.1 for sample generations from these systems.

Evaluation Method

Zhai et al. (2019b) performs a human evaluation through crowd-sourcing, to evaluate
the following aspects of generated stories.

Syntax
The syntactical correctness of sentences.
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GRU
yesterday i went grocery shopping . i did n’t know anything all the items
in my cart , so that it was ready to pick up up . i got my items off , and found
it to the front of the store . i was on narita shopping cart because i had less
than twenty of them . i grabbed my cart and went to the cashier . i paid for
the items , then i gave the cashier my money and my bag , checked my bags
up , and the other items in my hand bag . i am glad i ’m flying for my plane
and go through security .
Neural Checklist
yesterday i wanted to go grocery shopping . when i went to the front of the
store , i went to the grocery store and drove to the front of the store . i went
to the cashier and drove to the front desk .
Random Event Order
yesterday i went grocery shopping . i grabbed a shopping cart and put the
items on the list . i put my items in the cart and drove to the store . i drove to
the grocery store and went to the grocery store . i made a list of all the items
i would need . i put my items on the cart and headed to the store . when i
entered the store , i grabbed a shopping cart and walked inside . i put the cart
away in the cart .
Agenda : evoking→ take shop cart→ put conveyor→ get groceries→ go
grocery→ move section→ make list→ check off→ put conveyor→ leave→
enter→ take shop cart→ enter→ return shop cart→ story ends
Full
yesterday i went grocery shopping . i made a list of my list and drove to the
grocery store . when i entered the store , i grabbed a shopping cart and pushed
the cart down to the meat aisle . i got all my items , and crossed items on
my list . i went to the checkout register and paid for my groceries . i put my
groceries in my cart and left .
Agenda : evoking→make list→go to store→enter→take cart→move along
sections→take grocery→check list→go to checkout→pay→pack grocery→leave→
story ends
Human Author
yesterday i went grocery shopping . i took my grocery list with me , along with
some reusable shopping bags . my grocery list has all the items i want to buy
on it . i selected a shopping cart from in front of the store , and went inside
. i put my reusable bags in the cart . i looked at my list and started in the
produce section . i put different vegetables and fruits into my cart . next i
wheeled my cart to the cereal aisle and took a box of cereal . i went through
the store aisle by aisle and selected my groceries . each aisle is organized by
types of food and non-food items . one aisle has dried pasta , canned tomatoes
, rice , and sauce . i selected a few boxes of pasta and some rice . another
aisle carries plastic wrap , trash bags , and aluminum foil . as i went through
the store , i kept looking at my list to see what i needed next . when i added
each item to my cart , i crossed it off my list . my last stop was the dairy aisle
where i got milk and eggs . when i had all the groceries i wanted , i went to
the cash register ans stood in line . when it was my turn , i put each item on
the conveyor belt and the cashier scanned each one . a bagger put all of the
groceries into my reusable bags . i paid , and then the cashier gave me a receipt
. i loaded the bags of groceries into the trunk of my car and drove home .

Table 3.1: Sample generations by different models on going grocery shopping. The
corresponding seeds are displayed in boldface. Neural Checklist and Full use the
same agenda.
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Agenda Coverage∗∗ Syntax Inclusion Order Relevance
human author 86% 0.86 0.91 0.93 0.83

full 71% 0.75 0.67 0.75 0.88
random event order 50% 0.45 0.46 0.14∗ 0.71
Neural Checklist 20% 0.54 0.34 0.27 0.53

GRU n/a 0.33 0.24 0.11∗ 0.22
∗: difference between the pair is not statistically significant due to paired T-test on

a significant level α = 0.05.
∗∗: answers to the agenda coverage questions yield a Fleiss’ kappa of 0.34.

Table 3.2: Results from human evaluation. The highest scores from the automatic
systems are displayed in bold.

Human Author : event ‘make a shopping list’ in scenario ‘going grocery shopping’
... next , i used the wipes the store provides at the entrance and wipe off the handle
of the shopping cart , and my hands , so i know my hands will stay clean while i
choose my food . then i took out the shopping list i wrote at home and i
started . i always start with heavy things ...
Full Model : event ‘place fertilizer’ in scenario ‘planting a tree’
... yesterday i planted a tree. first , i decided to buy a small apple tree . i got a
shovel and drove to the home . i found a perfect spot in my backyard and dug a
hole . i put the soil in the hole and then watered it . ...

Table 3.3: Examples where the instantiations of agenda items did not get approved
by the evaluators. Up: event instantiation that was not explicit enough; down:
event that was not instantiated due to an error in the output a of the surface
realization module.
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Global Coherence
The global coherence of a story with regard to the given scenario, e.g.
going grocery shopping. We evaluate from three aspects: Inclusion (does
the story cover the most necessary steps about the topic?), Relevance (does
the story stay on-topic and rarely mention anything irrelevant to the topic? ),
and Order (does the story describe the activities relevant to the topic in a
plausible order?)

Agenda Coverage
The correspondence between the generated story and the agenda with which
it was fed. The participants were asked if each of the items of the agenda has
been realized in the story.

Participants receive five questions per story: for Agenda Coverage, participants
were asked to check the items on the agenda that were mentioned in the story they
saw; for the other four aspects, participants were asked to rate on a scale of 1 to 4.
The evaluation experiment was implemented with Lingoturk(Pusse et al., 2016);
the experiments were conducted through Prolific2.

Results

Table 3.2 illustrates the results of human evaluation. The GRU model, a plain
language model without coherence modeling, yields the worst performance on all
metrics. The output wildly changes between topics and is incoherent globally; the
poor coherence probably also negatively affects human judgments on syntactic
correctness. The neural checklist showed better performance than plain GRUs,
but did not include the most necessary steps of the scenario. It seems that the
model cannot correctly track the progress of the generation, which might be a
consequence of the limited amount of training data, because its attention-based
content planning component cannot make use of the order information and has
to learn it from the data, thus having a substantially higher demand on training data.

The Full model was able to significantly outperform all other automatic variants
and received positive scores for all criteria. It reflects well the events on the agenda
and usually includes the most necessary steps of the scripts in a plausible order,
which indicates decent global coherence. It even received a higher relevance score
than Human Author. However, this may result from its often producing shorter
stories than the human originals. Its agenda coverage score is lower than that of
Human Author. Two sources are responsible for these errors: (1) event instantiations

2https://prolific.ac/
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are sometimes not recognized as such by participants because they are not explicit
enough; this is also the reason why the agenda coverage score for the original human
texts is less than 100%. (2) Errors in the event termination judgments of the surface
realization module: when the surface realization module wrongly decided that the
forthcoming event has been instantiated, it would simply skip the event in the
generation.

Random Event Order witnessed a dramatic performance drop compared to Full.
Its order score is not significantly different from that of the GRU baseline. That
means, the agenda generator was capable of performing reliable text planning and
incorporating global coherence. It retained a high relevance score (i.e., it still stays
on topic), as the agendas it uses are still about the respective scenarios.

3.2.3 Summary

In this section, we introduced the story generation model proposed by Zhai et al.
(2019b) which establishes global coherence with script knowledge. The key design is
to sketch the story with an agenda and verbalize the events one by one, conditioned
on the progress. With a finely annotated corpus like InScript, the model learns
the alignment between events and surface text and generates coherent stories with
appropriate contents.

3.3 Script Knowledge in Story Generation with

Rich Details

3.3.1 Motivation

Zhai et al. (2019b) condition text generation on a plausible sequence of events that
accomplishes the scenario of interest. The generated stories correctly describe how
the scenario is instantiated. Yet, they hardly go beyond that and end up boring. As
an example, Figure 3.8 shows a story about grocery shopping. The story is globally
coherent as a narrative of grocery shopping, but it is hard to imagine that anyone
is attracted by it: it hardly provides any further information than what the topic
grocery shopping already indicates.

Stories should be interesting, in addition to being globally coherent. That is to say,
apart from realizing a story line, the text should include more details about the
situation: was it an empty fridge that made it necessary to go grocery shopping or
was I simply bored? Maybe the vegetables were not fresh; maybe I encountered
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yesterday i went grocery shopping . i made a list of my list and drove to the grocery
store . when i entered the store , i grabbed a shopping cart and pushed the cart down
to the meat aisle . i got all my items , and crossed items on my list . i went to the
checkout register and paid for my groceries . i put my groceries in my cart and left .

Figure 3.8: A story about grocery shopping generated by Zhai et al. (2019b), which
is globally coherent but not engaging.

people demonstrating during G7 and had to wait 30 minutes at a cross. Maybe I
met an old friend along the way or lost my purse at the grocery store. It is such a
variety that makes a narrative of going grocery shopping somewhat interesting.

In this section, we propose a story generation system that takes advantage of
script knowledge to include rich details. To this end, we take a step further in the
exploitation of script knowledge, alongside establishing global coherence. Knowing
how a scenario typically instantiates not only allows us to sketch a specific story
in a realistic manner; it also allows us to judge what and when additional details
are appropriate. It is plausible to go grocery shopping or go to the cinema when I
am bored, but it does not make much sense if I decide to fix a flat tire when bored.
Similarly, figuring out that vegetables are fresh is only meaningful before queuing
up to pay at the grocery store. With script knowledge, we would be informed of
the process of the scenario and make such judgements.

We regard the process of story writing as a joint effort of two different components,
suggesting that a story generation system would benefit from modeling them differ-
ently. Components are (1) Outlining , where a story realizes a (usually) linear story
line step by step, thus establishing the global coherence of the text. (2) Detailing ,
where the author gives details about some of the steps in the story line so that
the story becomes informative and interests its reader. A neural story generation
system that conditions the generation on the story line achieves the former, but
may well fail the latter.

We present a model that features two different generation components: (1) an
outliner , which proceeds the main story line to establish global coherence; and
(2) a detailer , which provides relevant details to the story in a locally coherent
manner. The input of the model will still be an agenda. The model generates a
story according to the agenda, segment by segment, each segment realizing one
event in the agenda. An illustration is given in Figure 3.4.
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3.3.2 Data and Pre-processing

The experiments are based on InScript. Recall that our model generates in a
segment-by-segment manner, each of which realizes an event. To this end, we need
to correspond each event to the segment of surface text that realizes it. Therefore, as
a preprocessing step, we automatically dissect the stories in InScript to assign each
event annotation to its corresponding text segment . Our segmentation process
prioritizes assigning each event label a text segment that retains relatively complete
syntactic structure. This means that a complete SVO structure is preferred over a
mere verbal phrase. The segmentation is rule-based and mainly relies on part-of-
speech tags; the process is defined in Figure 3.9.

We use Spacy(Honnibal and Montani, 2017) for the POS tagging. It is trivial to
prove that the heuristics in Figure 3.9 are well defined for our purpose, i.e. the
output sequence of events and sequence of segments are of the same length; the
segments do not overlap and sum up to the entire story. It is an engineering solution;
yet, it yields segments of decent quality. See Table 3.4 for some examples.

3.3.3 Model

Overall, our model takes the sequence-to-sequence format. It has one encoder that
tracks the history of the generation; meanwhile, it has two different decoders that
correspond to the two different components of story crafting: an outliner, which
generates regular segments to instantiate the regular event items on the agenda;
and a detailer, which generates irregular segments to provide details to the story.
The model generates a story segment-by-segment, alternating between the decoders
to address one event at a time. Therefore, the neural part of the model receives
as input (1) the input sequence, i.e., segments s = ⟨s1 . . . si−1⟩ that are already
generated and (2) the agenda a = ⟨e1 . . . en⟩ that consists of n events in total; as
output, it generates the next text segment si that corresponds to the current event
ei, with the respective decoder.

Encoder

We encode the input sequence in an agenda-aware manner. Let l(i) be the length of
the history, that is, the number of tokens in the segments s = ⟨s1 . . . si−1⟩. For the
representation of the input sequence at the i-th step, we expand the embeddings of
its tokens with that of the event it realizes:

emb(i) = (φw(tj);φe(ei))j≤len(si)
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event text segment

evoking yesterday i went grocery shopping .
take bags i took my grocery list with me , along with some reusable

shopping bags .
get groceries my grocery list has all the items i want to buy on it .
take shop cart i selected a shopping cart from in front of the store ,
enter and went inside .
reln i put my reusable bags in the cart .
check list i looked at my list and started in the produce section .
get groceries i put different vegetables and fruits into my cart .
move section next i wheeled my cart to the cereal aisle
get groceries and took a box of cereal .
move section i went through the store aisle by aisle
get groceries and selected my groceries .
unrelev each aisle is organized by types of food and non-food items .
unrelev one aisle has dried pasta , canned tomatoes , rice , and sauce .
get groceries i selected a few boxes of pasta and some rice .
unrelev another aisle carries plastic wrap , trash bags , and aluminum

foil .
move section as i went through the store ,
check list i kept looking at my list to see what i needed next .
get groceries when i added each item to my cart ,
check off i crossed it off my list .
unrelev my last stop was the dairy aisle
get groceries where i got milk and eggs .
unrelev when i had all the groceries i wanted ,
wait i went to the cash register ans stood in line .
unrelev when it was my turn ,
put conveyor i put each item on the conveyor belt
cashier scan/weight and the cashier scanned each one .
pack groceries a bagger put all of the groceries into my reusable bags .
pay i paid ,
get receipt and then the cashier gave me a receipt .
bring vehicle i loaded the bags of groceries into the trunk of my car
leave and drove home .

Table 3.4: The segmentation of a story on going grocery shopping according to the
rules in Figure 3.9.
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Input All event annotations e = e1 · · · en in their original order. Text segments
s1 · · · sn−1 where for all i, si collect tokens from the one that receives annotation
ei to the one before the token that receives ei+1.

Output 1. e′i · · · e′m, a sub-sequence of e.

2. Text segments s′ = s′1 · · · s′m, where for all i ≤ m, s′i realize the event e′i.

Rules We say event label e1 dominants event label e2, noted as e1 >d e2, if

e1 is regular, and e2 is not, or

e1 is RelNScr (relavant non-script event) and e2 is Unrel (unrelated).

For all si,

1. If si includes one punctuation in (’.’, ’?’, ’ !’, ’;’): mark the token as ‘split’.

2. Otherwise, if ei = ei+1 or (ei >d ei+1 and RelNScr >d ei+1), mark si as
‘merge’.

3. Otherwise, if si contains a comma, mark the comma as ‘split’.

4. Otherwise, if the length of si is less than 5, mark si as ‘merge’.

5. Otherwise, if si contains an ‘and’ which receives a ‘CCONJ’ from the POS
tagger, or a ‘but’ which receives a ‘CCONJ’, mark the token as ‘split’.

6. Otherwise, if si contains any token that receives an ‘ADP’, mark it as ‘split’.

7. Otherwise, mark si as ‘merge’.

For all si, if si is marked ‘merge’, mark a >d −minimal element in ei, ei+1 as
‘del’.

Finally, split the entire story before each token marked ‘split’ to acquire s′;
collect the items in e not marked as ‘del’ to acquire e′.

Figure 3.9: The rules that segments each story, assigning one segment to each event
label. When event annotations are too dense, less interesting events are omitted to
create segments with a closer to complete syntactic structure.

Here φw(·) denotes the word embeddings, which we initialize with pre-trained
Glove embeddings (Pennington et al., 2014). φe(·) is the event embeddings; these
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embeddings are initialized randomly. emb(i) is then fed to the encoder:

fififi = Enc(emb(i)) (3.1)

Here Enc(·) is a single layer Bi-LSTM sequence encoder. The output fififi is a
sequence of vectors of the same length as emb(i).

Outliner

The outliner generates the text segment corresponding to the next event ei on the
agenda, if it is regular. Here, we use a Bi-LSTM sequence decoder that is augmented
by dot product attention (Luong et al., 2015) over the encoded sequence fififi. Dec0
denotes the decoder function at a specific time step. During the generation of a
text segment si, at each decoding step t, the outliner produces a distribution of the
next token over the vocabulary:

pt = Dec0(φw(tokent−1); att(dt−1, fififi);φe(ei)) (3.2)

Here, dt−1 is the inner state of the decoder before generating the t-th token of the
current segment. att(·, ·) denotes dot-product attention, i.e.

∀j < |fififi| : αi ← ⟨dt−1, fififij⟩

att(dt−1, fififi)←
∑
j<|fififi|

αjfififij/
∑
j<|fififi|

αj

where |fififi| denotes the length of fififi. Thus att(dt−1, fififi) attentively collects information
from the encoder. tokent−1 is the token generated in the previous time step t− 1;
φe(ei) denotes the embedding of the target event. During the inference phase, the
complete segment will be generated with beam search.

Detailer

If the next event ei is irregular, the detailer generate a text segment for it. Whereas
outliner gets a regular event ei like pick up groceries that is informative of the
content of the next segment, detailer only gets an irregular event type that is the
same for the entire scenario. An irregular event offers little information, and the
generation tends to be generic. This is the main technical challenge of the model;
we tackle this issue with the following efforts.

(1) conditioning. To specify the content of the current segment, we condition the
decoding process on its most important context: the previous regular event e− and
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the successive regular event e+. Thus, in each decoding step t, the distribution of
the next token is given by:

qt = Dec0(φw(tokent−1); att(dt−1, fififi);φe(e−);φe(e+)) (3.3)

Here, Dec0(·) is once again a single layer Bi-LSTM step.

(2) extra regularization. The detailer also adopts the maximum mutual inform-
ation (MMI) objective. It is first used in conjunction with seq2seq models by Li
et al. (2016), to promote the generation of specific, meaningful texts. It moderately
suppresses the generation of generic text. The idea is that instead of maximizing the
likelihood of the data, one could maximize the mutual information I(c, s) between
the context c and the generation s, which promotes the correspondence between
the two. As a result, the generation will be more specific to its context and thus,
we hope, more informative. The entire MMI decoding objective generalizes to:

s∗ = arg max
s

[log(p(s|c))− λ · log(p(s))] (3.4)

which is the maximum likelihood along with a negative language model term, so
it is also termed an anti-LM objective. In practice, equivalently, we follow the
approach proposed by Li et al. (2016): we keep the maximum likelihood training
intact, whereas in the inference phase, we use a pre-trained language model on
InScript to estimate the anti-LM term and add it to the scoring within beam search.
The coefficient λ is set at 0.1.

Overall, the objective function is

L(d) = −
∑

tokt:regular

log pt(tokent)−
∑

tokt:irregular

log qt(tokent) (3.5)

Figure 3.10 gives an illustration of the model architecture.

3.3.4 Inference Behaviors

Agenda generation

In the inference phase, agendas are automatically generated by a bigram language
model estimated on the event sequences taken from the corpus. We include irregular
events in the event-LM so that the generated agendas include irregular events.
Irregular events are less specific of the contents; instead of specifying the content of
the next text segment as a regular event does, an irregular event simply marks the
locations where additional details tent to be added.
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Figure 3.10: An illustration of our model that generates detail-rich stories. The
figure shows the generation of the text segment corresponding to the forthcoming
event ef . The respective decoder is selected based on the regularity of ef .

Segment generation

For better quality, text segments are generated with beam search. The beam size
is set to 5 for outliner. For detailer, the situation is somewhat less trivial. Recall
that we have an anti-LM term that is only taken into consideration in the inference
phase. The anti-LM term contributes to the final scoring of the candidates in the
beam search, in addition to the likelihood term. Two implications follow. First, the
an-LM term must be evaluated during the beam search; therefore, the beam size
cannot be too large for the sake of time complexity. Second, it could well be that
some good candidate items have a moderate likelihood, yet advantageous, anti-LM
term, which means, the number of candidates whose anti-LM term we evaluate
should be large enough to grant a reasonable coverage. In practice, we set its beam
size to 100 after some empirical observations.

3.3.5 Implementation and Optimization

5% of the InScript stories are randomly selected as the validation set. As we use
human evaluation instead of automatic metrics such as the perplexity of the test set,
no test set is necessary. The model is implemented with AllenNLP 0.9.0 (Gardner
et al. (2017)). The hyperparameters were chosen by random hyperparameter search
(Bergstra and Bengio (2012)). The model is optimized with Adam (Kingma and Ba,
2014) at a learning rate of 7.5× 10−4. The dimensions of the encoder and decoder
are both 256. The word embedding size is fixed at 300 as we initialize it with the
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840B version of the pre-trained Glove. A dropout (Srivastava et al. (2014)) at rate
0.69 is applied to all dense connections. Gradient norms are clipped at 2.0. We
use early stopping with a patience of 35 to further regularize the training. Each
training session takes on average 4 hours on a Tesla v100, whereas the generation
speed is on average 8 tokens/second.

3.3.6 Evaluation

Baselines

We evaluate our model against three baselines: (1) the GRU-based model from
Zhai et al. (2019b), as it operates on the same corpus, and also takes an ordered
agenda as input. (2) an ablated version of our model, single decoder, which uses
only one decoder, the outliner, to neutralize the design to treat regular and irregular
contents differently. (3) the human-authored stories from InScript, to upper bound
the performance. For some intuition, Table 3.5 provides a few sample texts.

Human Evaluation

We evaluate the output text using crowd-sourcing. Our evaluation has two purposes.

(1) As our main objective, we evaluate the amount of detail that a story in-
cludes, that is, how informative a story is about a specific experience. This is
captured with an informativeness score.

(2) We want to ensure that the improvement in informativeness does not compromise
the global coherence of the stories. Therefore, we assess whether a story is globally
coherent as a narrative of its scenario, for example, going grocery shopping. This
means that a story should incorporate common sense knowledge of going grocery shopping,
including the necessary steps and their temporal order. This part involves five
questions: syntax evaluates the basic syntax; global coherence evaluates common
sense knowledge about the activity included in the story; coverage evaluates whether
the story realizes each event in the agenda (for a human-authored story, we take
its event annotations as its agenda); relevance evaluates whether the story stays
on-topic; local coherence evaluates the flow of successive sentences, in terms of both
content and fluency. It also evaluates whether the transition between two different
decoders is smooth.

Our intention is to generate stories that contain rich detail and establish global
coherence in the meanwhile. Reflecting on our evaluation, ideally, our model should
achieve a decent coherence score, for example, somewhere on par with Zhai et al.
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Zhai et al. (2019b)
yesterday i went grocery shopping . i made a list of my list and drove to the
grocery store . when i entered the store , i grabbed a shopping cart and pushed
the cart down to the meat aisle . i got all my items , and crossed items on
my list . i went to the checkout register and paid for my groceries . i put my
groceries in my cart and left .
Agenda : evoking→make list→go to store→enter→take cart→move along
sections→take grocery→check list→go to checkout→pay→pack grocery→leave→
story ends
Single Decoder
yesterday , i went grocery shopping . i was very excited so i went grocery
shopping . i went to the store and parked my car . i grabbed a shopping cart so
i went to the produce section . i went to the store so i picked up my list . i got
off my list when i was done , i went to the cashier and paid for my debit card .
i put my bags into my cart and paid for my groceries . then i paid , i thanked
the cashier and headed to the car . i put the cart in the cart and drove home .
Agenda : evoking →irregular go to grocery store→irregular→take a shop-
ping cart→move along the sections→get groceries→check bought items off the
shopping list→irregular→go to checkout→pay→irregular→pack groceries→get
receipt→bring to vehicle→return the shopping cart→leave
Full
i went grocery shopping today . i made a list of things that i needed before i
left my house . i looked at the grocery store immediately , i drove to the grocery
store that is always empty . i parked the car , walked inside and grabbed a
shopping cart . i proceeded down the produce aisle , which happened to be on
sale . i went to the back and chose my favorite peanut butter . i went to the
cashier , which was a short line . i had to wait in line since there were some
people ahead of me . i put my items on the conveyor belt and then she scanned
my items . i said hi to the cashier , i paid my bill , and another man placed all
my items in my shopping bags . i made sure to put the cart away , too . once
i had everything i needed , i then picked up my bags and left the store . on the
way out i decided to rent a redbox movie for the night since the kiosk was right
by .
Agenda : evoking→make a shopping list →go to grocery store→irregular
→take a shopping cart →move along the sections→irregular →get
groceries→ go checkout→wait→cashier scan/weigh items→put stuff on the
conveyor→irregular→pay→get receipt →wait →bring to vehicle→leave→wait
Human Author
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yesterday i went grocery shopping . i took my grocery list with me , along with
some reusable shopping bags . my grocery list has all the items i want to buy
on it . i selected a shopping cart from in front of the store , and went inside . i
put my reusable bags in the cart . i looked at my list and started in the produce
section . i put different vegetables and fruits into my cart . next i wheeled my
cart to the cereal aisle and took a box of cereal . i went through the store aisle
by aisle and selected my groceries . each aisle is organized by types of food and
non-food items . one aisle has dried pasta , canned tomatoes , rice , and sauce
. i selected a few boxes of pasta and some rice . another aisle carries plastic
wrap , trash bags , and aluminum foil . as i went through the store , i kept
looking at my list to see what i needed next . when i added each item to my
cart , i crossed it off my list . my last stop was the dairy aisle where i got milk
and eggs . when i had all the groceries i wanted , i went to the cash register
ans stood in line . when it was my turn , i put each item on the conveyor belt
and the cashier scanned each one . a bagger put all of the groceries into my
reusable bags . i paid , and then the cashier gave me a receipt . i loaded the
bags of groceries into the trunk of my car and drove home .
Agenda : evoking → take bags →get groceries →take a shopping cart →enter
→irregular →check shopping list →get groceries→move along the sections
→get groceries→move along the sections →get groceries→check items off
the list →irregular→get groceries→irregular→wait →irregular→put stuff on
the conveyor→cashier scan/weigh items →pack→pay→get receipt →bring to
vehicle→leave

Table 3.5: Grocery shopping stories generated by different models, together with
respective agendas. The text corresponding to irregular events is italicized. We
could see that the text produced by our model provides much richer details than
the automatic baselines.

(2019b); in addition, a significant improvement in informativeness would validate
our approach.

The evaluation experiment is implemented with LingoTurk (Pusse et al., 2016) and
carried out on Prolific (https://www.prolific.co/). The questions are presen-
ted as slide-bars. We evaluated 4 stories per scenario per system and hired 10
native English speakers to score each story. Participants are paid on average 7
GBP per hour. See Figures 3.11, 3.12 for an illustration of the evaluation experiment.
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Figure 3.11: The instructions for the evaluation experiment. Participants are asked
to confirm that they have read the instructions before proceeding.
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Figure 3.12: A sample page of the evaluation experiment.
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Results

Coverage Syntax Global
Coh.

Local
Coh.

Relevance Informativeness

human author 76%fsz .62fsz .66fsz .68fsz .60fsz .66fsz

full 63%s .43s .49 .42 .59 .51z

single decoder 57% .38 .42 .38 .52 .47z

Zhai et al. (2019b) 66%fs .45s .40 .44s .54 .38
f ,s ,z: improvement over the respective system is statistically significant according

to paired T-test at α = 0.05.

Table 3.6: Results from human evaluation. All metrics are ranged [0, 1].

The results are given in Table 3.6. We see that on almost all metrics, human author
outperformed all other systems by a large margin, fulfilling its role as an upper
bound of performance. For our full model, we see that both conditions are met to
validate its functionality: (1) it outperformed Zhai et al. (2019b) in informativeness
significantly and by a large margin, indicating that the generated stories include
much richer details about specific experiences; (2) it performed on par with Zhai
et al. (2019b) on the first five metrics, which means that the stories it generates
follow their agendas and describe script instances in a plausible manner, establishing
decent global coherence. We also see that full outperformed single decoder in all
metrics, supporting our point that story writing decomposes into outlining and
detailing, and that the model benefits from addressing them differently.

3.3.7 Summary

In this section, we present a story generation system that includes details in the
stories it generates. These stories are script stories that follow the story lines
specified in their agendas. The model determines the content of the details it adds
by tracking the progress of the instantiation of the narration. The effectiveness
of our approach proves that script knowledge benefits the establishment of text
coherence, not only when guiding the generation to follow given story lines but also
in the selection of contents that focuses on specific steps of the given story line.
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4.1 Introduction

4.1.1 Task

Figure 4.1: The task. Given descriptions of fixing a flat tire from InScript, script
parsing identifies events and participants from surface text.

a. The bus drivers turned out to be on strike today. I had to take a taxi to work.

b.

Figure 4.2: Examples. a. scenario detection. Scenarios taking a taxi, taking a bus
and going to work are all evoked in the text. b. A personal story segemented
according to the scenarios each sentence is about.

Aligning surface text and its semantics is a central topic in NLP. Script parsing
identifies the tokens in the surface text that evoke an event or a participant in the
scenario of interest. Figure 4.1 shows the task. Given a story and our scenario
of interest fixing a flat tire, what script parsing does is finding tokens that evoke
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script events or participants, and determining which specific events or participants
they evoke.

A token that potentially evokes an event is termed an event candidate; likewise,
a token that potentially evokes a participant is termed a participant candidate.
Representing an action, an event candidate is usually a verb; a participant candidate,
which represents an entity, is always the head of a noun phrase. These candidates
could be identified according to shallow linguistic features such as syntactic trees.
The non-trivial component of the task is labeling these candidates with the event
or participant they evoke, which is usually formulated as a sequence labeling task.
In the next section, we introduce a linear-CRF-based approach (Ostermann et al.,
2017); in section 4.3, we show how the task could be approached with neural
networks which reaches much higher accuracy.

Script parsing is a complex process. We have a long way to go from a narrative to
tokens that evoke events or participants of a specific scenario. In general, it consists
of multiple subtasks. Consider the example in Figure 4.1. The pipeline includes the
following steps.

1. Scenario detection. We are to identify tokens that suggest key elements
of scenario fixing a flat tire. First of all, we need to determine whether our
scenario of interest is evoked at all in this piece of text. In our example, there
are no direct mentions of fixing a flat tire. However, we could infer from the
actions performed by the protagonist that fixing a flat tire is evoked. Scenario
detection could also be easier if the scenario itself is directly mentioned.
Consider Example a. in Figure 4.2. Clearly, scenario taking children to school
is directly mentioned here.

2. Text Segmentation. For each scenario evoked in our text, text segmentation
decides which parts of the text are devoted to each scenario. These segments
contain the event and participant mentions of its corresponding scenario;
within these segments, we will be looking for the event and participant evoking
tokens. Figure 4.2b. shows how a personal story is segmented according to the
scenarios each sentence is devoted to. It could also be that the text assigned
to each scenario overlaps.

3. Identification of events and participants. Given a scenario and a segment
of text on it, the last step is to find out the tokens that evoke an event or a
participant of that scenario, and determine the specific event or participant
type evoked by them. The sets of events and participants are specific to each
scenario. Conceptually, they should match what is stored in human memory.
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In Figure 4.1, we see that all tokens that evoke an event or a participant are
labeled.

Script parsing bridges script knowledge and surface texts. It grants NLP applic-
ations convenient access to script knowledge. We could learn which scenarios
are mentioned, what participant or event of that scenario is of interest, etc. In
the scope of this thesis, we focus on the last step, that is, identifying event or
participant evoking tokens from a segment of text that is known to be about a
scenario of interest. The current chapter is on supervised script parsing. In su-
pervised settings, we work with the same set of scenarios during the training and
the inference phase. That means, the task is to parse a piece of text with regard
to a known scenario, of which we know the sets of events and participants, and
we have training data to model the patterns in which they are evoked in surface text.

4.1.2 Technical Challenges

Script parsing is a tough task which is challenging even for humans: the inter-
annotator agreement is quite modest, at 0.64 and 0.77 Fleiss’ κ for event and
participant parsing, respectively (Modi et al., 2016). Here, we discuss a few
underlying factors that make the task complicated.

The variety in surface language

Script events are usually evoked by verbs in the surface text. However, the corres-
pondence between events and verbs is not trivial. A script event is an abstraction
of all possible activities that is considered equivalent with regard to a specific
scenario. Although some events tend to be evoked by a typical verbs, it is not
uncommon for an event to see a vast difference among the verbs that possibly evoke
it. For example, in the taking a train scenario, its spend time in the train event
refers to the activities with which the passengers spend the time during the ride.
These activities see various surface realizations, such as reading a book, taking a
nap, having lunch, looking out of the window, etc. These activities are considered
equivalent in this scenario, and thus they correspond to the same event.

The same argument holds for script participants. For example, ingredients in
baking a cake could be evoked by various different words such as flower, butter, the
ingredients, and all I need.
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Granularity

Granularity matters in various occasions. First, the scenarios. Many scenarios could
comprise several smaller scenarios. As an example, we might consider going to work
as a scenario of interest. However, many other scenarios could be contained in the
course of going to work, such as taking a bus, dressing up for work, etc.

Apart from scenarios, the designation of events and participants is also subject to
the granularity issue. For example, in the cooking dinner scenario, we could have
utensils as a participant; it is also reasonable to have plates, knives, etc. Or maybe
only kitchen tools. We may have prepare ingredients, or more fine-grained steps
such as chopping a garlic or marinating a fish. Each different decision would mean
a different way of classifying the evoking words. Determining the set of events and
participants is also a most complex component in the annotation of InScript (see
Modi et al., 2016).

Context

Script parsing is more than a local task. Lower-level semantics do matter, as, for
example, we look for participant evoking words only among the heads of the noun
phrases. Also, when an NP is a dependent of an adjacent verb, the predicted
participant type must be one that participates in the predicted event. On a higher
level, the sequence of event and participant labels produced by a script parser must
suggest a plausible agenda, which makes the whole narrative relevant. Labeling of
one candidate must take into account all other labels. One important factor is the
temporal order among script events; for most scenarios, events occur in prototypical
orders. It could be expected that a piece of narrative text roughly follows temporal
order, at least after adjustments were made based on discourse relations. However,
this is largely dependent on the genre of the text. A user manual would follow the
order in which operations could be made; a personal blog might begin with the
most interesting part of the experience, whereas most others were omitted.

What makes the situation even more complicated is the fact that events and par-
ticipants are frequently omitted from a narrative. One might expect that the
most important elements of the scenario are mentioned, like cake in baking a cake.
Although the instantiation of a scenario already implies multiple events having
occurred in some possible world, we usually find many events hidden from the
text. The same applies to the participants. In our example 4.2 a., presumably, the
passenger paid the taxi driver. Yet, neither paying nor the taxi driver is mentioned
in the text. Humans tend to omit some well-anticipated events even when instructed
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otherwise.

4.2 Script Parsing with Linear CRF

In this section we introduce the state of script parsing before this thesis. Identifica-
tion of script events was previously approached by Ostermann et al. (2017) with a
two-stage method. In the first stage, they identify verbs that evoke a script event;
in the second stage, they label these verbs with their respective event types.

4.2.1 The Identification of Script Relevant Verbs

Not all verbs evoke a script event. When telling a story on a script scenario, the
narrator tends to mention activities that are not related to the scenario per se
but are present in the specific instantiation he describes. These verbs were termed
script-irrelevant verbs; they do not evoke any script event and need to be excluded
from event parsing. Ostermann et al. (2017) identifies script relevant verbs with
a decision tree. It is trained on InScript, while also exploiting information from
DeScript. The features include the following.

Syntactic features. The syntactic features include auxiliaries, number of direct
and indirect objects, and a predefined list of non-action words. With these features,
most light verbs could be excluded. Note that these features are independent of the
scenario.

Script features. The script features include a verb-scenario tf-idf evaluated on
DeScript, which directly models the relevance between verbs and scenarios. The
authors also include a binary feather that indicates whether the verb appears in
any DeScript ESD that belongs to that scenario.

Frame features. The frame features are determined by the frame assigned to
the verb, according to semantic role labeling results1.

The result of the first stage is given in Table 4.1. Here, the baseline Lemma decides
a verb is relevant if, and only if, it appears in the DeScript ESDs of the scenario,

1A frame is a pattern that specific semantic elements are composed to become a single semantic
unit. A frame vaguely corresponds to a verbal sense that admits specific semantic roles. See, e.g.,
Ruppenhofer et al. (2016)
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Model Precision Recall F1

Lemma 36.5 94.9 52.6
Full 62.8 81.7 70.9
w/o Script Features 51.3 87.7 64.5

Table 4.1: Results of script-related verb identification from Ostermann et al. (2017)

which exhibits high recall and low precision. w/o Script Features does not use
the script features, which sees a significant performance drop from Full. This is
anticipated, as some knowledge that script parsing depends on is scenario-specific.
full achieves 70.9 points F1 score, which is sufficient for the next step.

4.2.2 Classifying Event Types

With script relevant verbs identified, the second step is to classify them into event
types. This task is contextualized. Ostermann et al. (2017) formulate it as a
sequence labeling task, which they approach with a linear CRF model. It uses two
categories of features.

Sequential features. These features encode co-occurrence information of event
types in DeScript ESDs.

Meaning representation features. These features encode information from
the embeddings of the key parts of the predicate-argument structure with the verb
of interest at its head. These features are generated by pooling the word vectors
of the verb, its direct nominal dependents, its lemma, and its direct or indirect object.

The model is trained on DeScript and evaluated on InScript. The result is shown
in Table 4.2.

Finally, both stages are assembled as a complete pipeline. The pipeline is evaluated
as a whole in Table 4.3; the complete model achieves a score of 47.8 points F1. The
results are decent, but further improvement is needed before it could offer practical
usefulness.

Ostermann et al. (2017) is the first attempt at script parsing. They insightfully
formulated script parsing as a sequence labeling task over the entire narrative
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Model Precision Recall F1

Lemma 51.6 44.2 47.5
Word2Vec 53.8 48.0 50.7
CRF 62.3 48.5 54.3
CRF w/o Script Features 60.8 47.5 53.1

Table 4.2: Results of event type classification from Ostermann et al. (2017). Here,
lemma is based on word overlap with the event types; Word2Vec is based on cosine
similarities with the event types.

Model Precision Recall F1

Full+Lemma 38.8 47.5 42.6
Full+Word2Vec 39.3 51.1 44.2
Full+CRF 45.8 50.5 47.8

Table 4.3: Results of event type classification from Ostermann et al. (2017)

and delivered promising results. In the next section, we show how script parsing
could be performed accurately with refined sequence modeling and neural network
technologies.
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4.3 Script Parsing with Hierarchical Sequence

Modeling.

In this section, we propose a new script parser that delivers better performance.
Methodologically, our new parser introduces the following ingredients.

Hierarchical sequence modeling. Script parsing is a task for which we need to
consider semantics at different levels. To that end, we use two different sequence
models, one for the sequence of tokens, the other for the sequence of script events
and participants.

Neural network methods. Ostermann et al. (2017) is based on symbolic meth-
ods, with the exception that they incorporated some information from pretrained
word vectors. Here, we approach the whole process with and end-to-end neural
model.

Jointly parsing script events and participants. Script participants were
not addressed by Ostermann et al. (2017). Here, we simultaneously perform event
parsing and participant parsing. Our higher-level sequence model also addresses
both script events and participants. In addition to enabling us to parse script
participants, the extended sequence is also more informative to event parsing.

This section develops previous research from two perspectives. First, the model
performs more accurate event parsing, reaching an average F1 score of 86 points,
improving the previous state-of-the-art by at least 17 points; second, the model
accurately performs participant parsing for the first time, delivering 90 points
average F1.

4.3.1 Data

Our work uses both InScript and DeScript (see Chapter 2 for more details on the
corpora). InScript provides most of our training data; it is also where we evaluate
our models. DeScript is used as auxiliary training data, which alleviates InScript’s
data sparsity issue. Compared to InScript, DeScript is very concise, where regular
events take a much larger proportion: 12,902 (33.5%) event candidates in InScript
evoke a regular event, while the numbers are 4,185 (89.1%) for DeScript.

Given a story, we label the tokens with the event or participant types they evoke, if
any. The annotations of InScript provide the ground-truth labels.
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InScript scenarios vary in their structures. This is reflected in the class sizes of
regular events and regular participants. On average, each scenario has 19.2 regular
event classes and 18.9 regular participant classes. taking a flight has the largest
class sizes for events and participants (29 and 26, respectively), while planting a tree
has the smallest (14 and 15, respectively). These event clusters also have quite
different sizes, which imposed some technical challenge to modeling; see Section
4.3.3.

4.3.2 Model

Overall

We train a scenario-agnostic model that analyzes all InScript scenarios. Conceptu-
ally, our model implicitly contains a scenario detection component, which determines
the scenario the input text is about. Our model consists of two sequence models:
(1) a word sequence model and (2) an event sequence model.

The word sequence model addresses the sequence of tokens in the input. Although
we find multiple aspects of script parsing beyond the sentence level, many features
below the sentence level are indeed relevant when it comes to identifying an event
or a participant. The lemma of a verb, its reflections, its dependents, etc., could
encode vital clues about what event type it could evoke. Similarly, the lemma of a
noun, the verb or preposition that governs it, etc., are also informative about what
type of participant it potentially evokes.

The event sequence model processes the sequence of all event candidates and parti-
cipant candidates, which consists of all the verbs and heads of the noun phrases.
This event sequence, collecting the activities and their participants, offers a higher-
level view of the story line. By modeling this sequence we capture patterns on the
event level, such as typical preceding and successive event, the interaction among
events and participants, as well as global patterns like what events are always
present in the sequence.

Figure 4.3 illustrates the model architecture. The input consists of a story x from
the corpus d and an ordered set of indices I that specifies the positions of the
candidates. It assigns an event / participant label to each of these candidates as
output. The sets of labels are predefined in InScript and specific to each scenario.
The set of candidates consists of all NPs and verbs in the text. We use the InScript
tokens as annotated in it; yet, they could also be extracted with a syntactic parser.
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Technical Design

The word sequence model encodes the entire story as a list of vectors. This could
be approached by contextualized word embeddings. What we use is a pre-trained
XLNet model, xlnet-base-cased (Yang et al., 2019):

x̃ = XLNet(x) (4.1)

Next, to accommodate sequence modeling at the discourse level, we only keep the
representations in x̃ that correspond to the candidates, namely, the NP heads and
the verbs. Their positions in x̃ are specified by the ordered sequence of indices I. We
directly select the vector representation of these tokens and ignore the rest to form
a subsequence of x̃, the event sequence. This operation is termed index select
in the Pytorch library:

c = x̃.index select(I) (4.2)

Now that we have the representation of the sequence of events and participants,
which is a sketch of the story at a higher level, the flow of tensors is ready to be
processed by the event sequence model ψ, which is a bidirectional LSTM:

c̃ = ψθψ(c) (4.3)

Finally, c̃ is fed to a linear classifier γ to produce the output distribution for each
candidate:

p(y|x, I; θψ, θγ) = softmax(γθγ (ψθψ(c))) (4.4)

The model does not distinguish between event types and participant types. This is
intended: including both event items and participant items in the event sequence
results in better informed event sequences, which is important to the event sequence
model. The event candidates are easy to distinguish from the participant candidates,
so no significant learning load is introduced.

We train the model by optimizing data likelihood:

θ∗ = argmax
θψ ,θγ

∑
x,I

log(p(y|x, I; θψ, θγ)) (4.5)

4.3.3 Addressing Data Sparsity

The size of InScript is limited by its high cost. Its size is 234k tokens, which
could barely accommodate the optimization of our model, but also leaves some
consequences. Most importantly, the class distribution is skewed and some classes
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Figure 4.3: The model architecture. Note that index selection is performed before
the Bi-LSTM layer.

are quite small: the largest regular event class has 397 instances (get groceries
in Grocery shopping), while there are 26 classes with less than 10 instances (e.g.,
get receipt in Grocery shopping, scalp massage in taking a bath). These classes
are difficult to learn reliably. In fact, since the proportions of our validation set
and our test set are both 10%, it is not even guaranteed that these classes have an
instance in both the validation set and the test set. Therefore, validation is not
well defined on these classes.

Our efforts to address data sparsity are two-fold. We use DeScript as auxillary
training data; in the meanwhile, we also automatically generate additional training
data via paraphrasing.

Domain Adaptation from DeScript

DeScript consists of parallel event sequence descriptions for each of 40 scenarios. It
does not include participant annotations, however, according to Ostermann et al.
(2017), the knowledge encoded in DeScript is beneficial to event parsing. More im-
portantly, all 10 InScript scenarios are included in DeScript. These facts motivate us
to transfer the knowledge encoded in DeScript to improve script parsing on InScript.

We directly use DeScript as additional training data. To address the domain
difference, we experiment with two domain adaptation methods. Firstly, (1) Data
concatenation, which concatenates DeScript with the original InScript train set.
It is a most straightforward approach, however, it might not be the best idea,
as the domain gap is also noticeable. Descript consists of short telegram-style
event descriptions, most of which are mere verbal phrases, such as preheat your
oven, put the dough in the over and enjoy your cake, whereas InScript consists of
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complete sentences. Moreover, since they are from personal stories, these sentences
could include information that is not as closely related to the scenario as any
DeScript phrase. Therefore, we also experiment with explicit domain modeling
which features (2) Corpus embeddings. We follow Stymne et al. (2018) to train a
vector representation (the corpus embedding) for each corpus to capture corpus-
specific patterns. We concatenate a copy of the corpus representation with the
representation of each candidate. Equivalently we substitute the classification
features (c̃) for the linear classifier γ with

ĉ = ψθψ(c; ηθη(d)) (4.6)

Here η(·) denotes the corpus embeddings.

Data Augmentation via Paraphrasing

We generate additional training data by paraphrasing InScript texts. In particular,
we paraphrase with back-translation (see, e.g., Bojar and Tamchyna, 2011; Sennrich
et al., 2016; Xie et al., 2020). In particular, we use pre-trained translation models to
translate the training data to a different language and translate the translation back
to the original language. The resulting text is similar to the original and could be
considered as its paraphrase, if the translation model delivers decent performance.
If the original annotation could be restored, the backtranslated text could be used
as additional training data. Translation processes generally introduce legitimate
linguistic variations to the original, which improves the generalizability of the model.

We translate the stories into French and back to English with Google Translate.
The choice of French is because the back-translated text admits better quality than
the other options we experimented with.

The annotations in InScript are at the word level, which means that restoring
annotations for the paraphrased text is not trivial, as the translation runs story by
story. We aligned the backtranslated data with original InScript stories in terms of
events and participants to translate the annotations. The alignment relies on string
and position matching, as well as synonyms and similar words to map the event and
participant labels from the originals to the paraphrases. If the labeled source token
or its lemma appears in the same position in the original as in the backtranslated
story, we copy the label. We also consider similar words regardless of the position.
We search for paraphrases using WordNet (Fellbaum, 1998) by considering the
synonyms of the labeled source words. For each labeled source word, we also consider
the 10 closest vectors found in the embedding space of word2vec-google-news-300
pre-trained vectors (Řeh̊uřek and Sojka, 2010) to see if any of these neighboring
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Original: when Irider was ridingride myrider bikebike this past summer ...
French: l’été dernier, je montais mon vélo ...
Paraphrase: when Irider roderide myrider bikebike this summer ...

Figure 4.4: Example. Paraphrase with back-translation to and back from French.
We transfer the original annotations to the paraphrased sentences with rule-based
methods. The restored annotations are marked in the paraphrased sentence.

words appear in the backtranslated story. For the sake of quality, we do not map
all labels from the original to the back-translation, but attempt to trade recall for
precision. As a result, the paraphrase dataset contain 18% fewer event labels and
10% fewer participant labels. The new data was concatenated with the original
InScript to yield a larger dataset which we consider homogeneous. Below is an
example sentence with its translation to French and its back-translation to English,
together with the restored annotations. In this example, the event verb takes a
different tense and surface form in the back-translation, which would, among others,
improve the generalization of the model to different reflections of verbs.

4.3.4 Implementation

For each scenario, 80%, 10%, 10% of the stories are randomly selected and designated
as the training, validation and test sets, respectively. The model is implemented with
AllenNLP 1.0 (Gardner et al., 2017). To regularize the model, dropout (Srivastava
et al., 2014) with a universal rate is applied to all dense layers, in conjunction
with weight decay. We use gradient norm clipping to stabilize the training. The
optimization is performed with adam (Kingma and Ba, 2014) in conjunction with
early-stopping which monitors validation loss, and the hyperparameter tuning
is performed with random hyperparameter search (Bergstra and Bengio, 2012).
Optimization takes on average 3.5 ours on a singe Tesla v100. We performed 20
trial for choosing the hyperparameters, and 5 parallel optimizations in order to
perform the significance test. Table 4.4 gives our choice of hyperparameters.

4.3.5 Evaluation

Ablations and Baselines

We have two external baselines. First, we compare with the SotA model from
Ostermann et al. (2017); secondly, we include fine-tuned XLNet as a baseline, as
it is interesting to see what performance an off-the-shelf, pre-trained large model
delivers. For this baseline, we fine-tune the pre-trained XLNet to perform script
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learning rate 7.3× 10−5

batch size 32
weight decay 0.001
dropout 0.57
gradient clip 3.21
dimensionality 512

Table 4.4: The final choice of hyper-parameters.

parsing. The version of XLNet is xlnet-base-cased, same as what we used to encode
the input tokens. We also include different versions of our model in the evaluation.
Hierarchical is the full hierarchical model, as is described in formulas (1)-(4). For
no index select, we ablate the index selection (thus c = x) to neutralize the event
sequence model. Its event sequence model now takes every token of the story
as input; therefore, the event sequence model still operates at the token level.
The variants concatenate and corpus embedding are the ones that exploit DeScript
with the respective domain adaptation methods. Some models have access to the
paraphrased dataset; these variants are marked with BT.

Results

Script parsing is evaluated with average F1 scores. The results are shown in Table
4.5. Most noticeably, a fine-tuned XLNet already outperforms Ostermann by more
than 10 points of average F1 score. The gap is anticipated, which is yet another
witness of how much performance improvement is delivered by pre-trained language
models. If we look further down the table, we see that our model variants deliver
further substantial improvements over XLNet. All our models outperform Oster-
mann and fine-tuned XLNet by a considerable margin, in both event macro and
micro F1 scores. Furthermore, we perform participant parsing for the first time and
with high accuracy.

On the addition of the event sequence model, hierarchical sees substantial improve-
ments over no index select, which fails to perform sequence modeling at the discourse
level. We also note that hierarchical improved both micro-F1s. Analysis shows
that hierarchical models are generally better at addressing the most frequent yet
problematic class, irregular candidates. These candidates do not participate in the
core event chain, a decision that should be made after taking into account the struc-
ture of the candidate sequences. That is exactly the job of our event sequence model.
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Model Train set Events Participants
Macro-F1 Micro-F1 Macro-F1 Micro-F1

1. Ostermann I 58.1 66.0 n/a n/a
2. fine-tuned XLNet I 62.11 79.31 79.7345 77.2
3. no index select I 63.31 78.31 74.3 87.12

4. hierarchical I 70.1123 83.7123 78.73 89.323

5. concatenate I, D 69.3123 82.5123 79.13 89.923

6. corpus embedding I, D 74.91−5 82.9123 78.63 89.423

7. hierarchicalBT I+BT 75.11−6,8 85.71−6,8 80.31−6 90.31−6,8

8. corpus embeddingBT I+BT , D 74.31−5 83.81−6 80.91−6 89.51−5

1−8: performance improvement over the respective model is significant at α = 0.05
according to the independent T test.

Table 4.5: Results. The best of each column is displayed in boldface. Thanks to
a larger training set, the optimizations of 7. and 8. is quite stable compared to
the rest; thus, their performance differences compared to others are statistically
significant, despite small effect sizes.

We also see that all micro F1 scores are noticeably higher than the respective
macro F1 scores. This difference is due to the data including many small classes
that are, in general, harder to learn. Indeed, we observe positive Pearson correl-
ations between F1 and class sizes(around 0.5, all model variants included, p < 10−10).

Participant parsing yields much higher scores than event parsing. The reason is
straightforward: participant parsing is a relatively less complicated task compared
to event parsing. There are several reasons. First, a large proportion of errors come
from irregular candidates (see also Section 4.3.6). However, irregular participants
(19.6%) are much fewer than irregular events (66.5%), making the former an easier
task in general. Second, many participant candidates refer to the protagonist
(31.0%), whereas the protagonist is almost exclusively evoked with a first-person
pronoun. Thus, it is very easy to identify this class, which takes a large proportion
of the data.

Now, we turn our attention to the domain adaptation methods. First, the comparison
between concatenate and corpur embedding suggests that corpus embedding is the
better way to exploit DeScript. This is anticipated, given the apparent domain gap,
like the difference between the language styles of both corpora. hierarchicalBT sees
a larger improvement over hierarchical as it has paraphrased InScript as additional
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training data, which is larger and a more similar domain than DeScript to InScript.
These improvements over hierarchical are more noticeable in event macro-F1s, which
means that these models are generally better at tagging smaller event classes,
fulfilling our original goal of alleviating the problems caused by the uneven class
sizes. Further addition of DeScript on top of hierarchicalBT (model 8.) does not
deliver further significant improvement, but sees, overall, a modest performance
drop. We suspect that, since the addition of backtranslated data, together with
the original InScript, already creates a larger, relatively homogeneous training set,
the domain difference between DeScript and InScript is beginning to outweigh the
benefit of having DeScript.

4.3.6 Error Analysis

We perform error analysis by manually classifying the validation set errors made by
our best-performing model, hierarchicalBT , case by case. A breakdown is presented
in Table 4.6. Most error cases fall into the following three types. Some of these
result from the inherent features of the task; others suggest directions to further
improve our model.

Noisy Corpus Labels

Firstly, some annotations in the original corpus seem debatable. Although this
might be inevitable for all annotated corpora, given the complexity of script parsing,
these debatable annotations might be more frequent in InScript. In fact, we observe
debatable annotations in a considerable proportion of the instances where our model
errs. For example, in a story about borrowing a book from a library, ... I had to
get a library card ... is a clear match for the event obtain card, as predicted by
our model; but in the corpus it was annotated as irregular, a mistake probably due
to the light verb ‘get’ seemingly irrelevant to the scenario at first glance by the
original annotator.

False Positives of irregular.

A large proportion of errors show a incorrectly predicted irregular. We identified
two main sources of such errors. First, small class sizes. Given the large size of
irregular classes, when the training signal is weaker, the model tends to give the
generic prediction. Second, there are some instances that are particularly difficult
because pragmatic inference is needed to make the right decision. As an example, ...
get materials for the assignment ... corresponds to the event class evoking library,
that is, it evokes the scenario of borrowing a book from a library without explicitly
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referring to any script event specific to that scenario. However, without taking
into account the situational context of the scenario, it cannot be inferred that ‘get
materials for the assignment ’ actually mean ‘borrow a book from a library ’.

Wrong Category.

A small number of events are tagged as participants and vice versa, for example,
some homonyms of verbs and nouns (board or love).

Type Events Participants

Noisy corpus label 23% 26%
False irregular predictions 49% 37%
Wrong category 2% 4%
Others 26% 33%

Table 4.6: A breakdown of the error types.

4.4 Summary

We present the first model that provides high accuracy in both event and participant
parsing. The model adopts a hierarchical design to model both the sequence of
tokens and the sequence of script events and participants. Further exploitation of
domain adaptation and data augmentation methods yields a substantial performance
boost. This work has established methods to accurately parse both script events and
participants, in a supervised learning framework. In the next chapter, we present
our approach to script parsing on unseen scenarios, which is to see itself benefiting
from the insights and utilities made possible by the supervised parser. A script
parser on unseen scenarios potentially lifts the requirement on finely-annotated
data, thus enabling wide-coverage script acquisition.
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Chapter 5

Zero-shot Script Parsing

In chapters 2 and 3 we see how script knowledge benefits NLP applications. How-
ever, script knowledge could only be useful if annotations are available for the
dataset. These annotations are expensive, not only because they are manual, but
also because of the need for a large input on the expert level (see Modi et al., 2016,
; see also Section 2.3).

In this chapter, we automate the human annotation process, which reduces the cost
of script acquisition, potentially alleviating the coverage issue. The solution is a
0-shot script parser, which takes unannotated texts on an unknown scenario as
input and outputs the set of events, the set of participants for that scenario. The
parser also clusters event and participant evoking tokens which indicate whether
they evoke the same event or participant. Equivalently, the event and participant
evoking tokens are now labeled.

The performance of our system is on par with that of a previous supervised model,
which shows its potential as a substitute for manual annotations.
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5.1 Introduction

The Coverage Issue

The acquisition of script knowledge is expensive. Spelling out the prototypical
events and participants of a scenario might not seem difficult at first glance, as
one who understands the task could retrieve it from his memory and spell it out.
However, different people give different answers, and all versions of the scenario
could be constructed into the production of natural language. It is highly nontrivial
to formalize these different descriptions into a dataset which is accessible to machines.

Finding out how script events and participants can be expressed in surface text is
also nontrivial. Each event and participant could be realized in surface language in
various different ways. From the perspective of building a corpus, without further
inductive bias, we would need a sufficient number of parallel text evoking each
event and participant to encode the correspondence between script knowledge and
surface text.

Existing corpora such as InScript and DeScript require heavy manual input. For
DeScript, we need to collect multiple event sequence descriptions for each scenario.
These event sequence descriptions are of different lengths and see quite some vari-
ations. In order to induce event clusters, the authors of DeScript used a multistage
semi-supervised learning method that includes careful seed construction and fea-
ture design. These steps require a considerable amount of manual input from the
researchers themselves (see Figure 5.1; see also Wanzare et al. (2017)).

InScript collects around 100 stories for each of its 10 scenarios, to bridge script
knowledge and surface language. These stories need to be annotated token-by-token
to decide whether an event or a participant is evoked through a multiphase pipeline.
The complex process incurs high demand for manual input. For example, the set
of events and participants need to be established in advance before the actual
annotation could begin. These scenario-specific sets, termed templates, were created
by experts and iterate during the annotation process to address new events or
participants that were not taken into account. Therefore, the need for manual input
at the expert level is positively related to the number of scenarios, which means
that the pipeline is not feasible at large scales.

Existing resources of script knowledge only have very limited coverage due to their
high costs. But script knowledge cannot be of practical usefulness without wider
coverage. In this chapter, we approach the coverage issue by automating the process
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Figure 5.1: Event sequence descriptions of baking a cake from DeScript. These
event sequence descriptions are of different lengths. Inducing event clusters from
these ESDs is a challenging task.

of annotating InScript.

Approach

Automating the annotations of events and participants in InScript presents us
with the task of script parsing. There are different settings for the problem. Most
interestingly, the availability of scenario-specific supervision. If annotated data are
available for the test scenario, we have the task of supervised script parsing. We have
shown in the previous chapter that supervised script parsing could be performed
accurately with a hierarchical sequence model. However, these settings do not hold
in the situation where we wish to expand the coverage of script resources because
for the target scenarios (potentially the test set), we do not have annotated data.
Namely, we need to perform inference on unseen scenarios.

Figure 5.2 provides an illustration of the task. Essentially, it is a clustering task
where we need to decide which candidates evoke the same event or participant.
Meanwhile, the set of clusters corresponds to the set of events or participants.

The picture is slightly different with the availability of InScript. Although InScript
does not include any test scenarios, we believe that it packs knowledge about how
script parsing is performed in general. This makes it a zero-shot learning task.

The key idea of our approach is to learn appropriate contextualized word representa-
tions to accommodate script parsing on an unseen scenario as a clustering task. We
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Figure 5.2: An illustration of the task. Given multiple narratives on an unseen
scenario, we are tasked to produce the set of events, the set of participants and to
label the original text with these tags. Equivalently, the candidates in the original
texts should be clustered according to the event or participant they evoke.

begin with general-purpose word embeddings, which, we believe, encode features
that are informative to script parsing. Such an embedding might also encode
features that are not relevant to script parsing. We train a transformation which
suppresses irrelevant features, whereas promotes informative features to produce
a script parsing specific embedding. This approach is feasible because annotated
corpora like InScript present us with how script parsing is performed. During the
inference phase, the transformed embeddings are then fed into a clustering process
to yield the results. In order to train the transformation, we define a consistency
measure between an embedding and an annotated corpus, to quantify how much
the embedding function fits the annotations. The consistency is a differentiable
function that considers the similarity of the embeddings of candidates that are in
the same cluster according to the annotations and the dissimilarity of embeddings
of candidates from different clusters. We optimize this consistency to acquire better
representations.

Our work is the first known attempt at performing script parsing on unseen scenarios.
The model reaches a micro-F1 score on zero-shot event labeling of up to 68.1 and on
participant labeling of up to 74.4, on par with the supervised model of Ostermann
et al. (2017) that assumes training data for the same scenario. Qualitatively, when
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executed on texts similar to the training data, temporal script graphs of good quality
could be extracted from the output of our parser; these automatically generated
annotations could also accommodate tasks like story generation. We also find in
probing tasks that our model learns to amplify information about sentence ordering
from the pretrained embeddings, while suppressing low-level information about
morphology and syntax, which are less relevant for the script parsing task.

In the next chapter, we apply the parser to unseen scenarios from a few different
corpora and evaluate the quality of the outcoming script knowledge.

5.2 Task

5.2.1 Zero-shot learning

Zero-shot learning is a category of problems in machine learning. Under the zero-
shot learning settings, no supervision is available for the test classes. That means,
during the test time, the classifier receives samples from classes that are not observed
during training and need to predict which classes they belong to. These test classes
are referred to as unseen classes.

Zero-shot learning is proposed by Chang et al. (2008), where it was called dataless
classification, in reference to the fact that no annotated data is needed for the test
classes. The term zero-shot was first seen in Lampert et al. (2009), which refers to
the fact that zero labeled data point is available for each test class, in contrast to
one-shot learning and few-shot learning.

Zero-shot learning is a special case of domain adaptation. It might seem miraculous
that a classifier could learn to predict samples from classes that do not offer any
training signal. However, zero-shot learning is only feasible when the training
data distribution and the test distribution admit sufficient mutual information.
That means, the training data and the test data are similar to each other, from
some certain point of view. For example, we would anticipate learning to identify
mountain names helps learning to identify river names, but it does not offer as
much help as it might do script parsing.

Zero-shot learning is a feasible scenario for various NLP applications. Consider any
task for which a large body of homogeneous texts is available, yet only a small
fragment is annotated. For tasks like event extraction, topic identification, etc., it is
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well conceivable that the unannotated texts include new classes that do not appear
in the annotated part. If a model is trained on the annotated part and performs
inference on the unannotated part, then a zero-shot setting is complete. As another
example, consider a slightly different setting where texts from some low-resource
language are not annotated, whereas those from the high-resource language have
annotations. Now the annotated and unannotated texts are not homogeneous but
still have positive mutual information: they are all, most probably, generated by
homo sapiens that are not completely insane for the purpose of communication;
these texts are all supposed to be consistent with the common sense knowledge
associated with the same physical world. Although they might have different sets of
labels for differences between languages, positive mutual information is still evident.

One common approach to zero-shot learning is through representation learning. In
particular, we learn a latent representation space into which all instances embed.
The representation could be trained with the training data. In classification tasks,
one possibility is to optimize the similarities among training instances that receive
the same label. As a result, over the course of optimization, the knowledge of the
training data is encoded in the embedding function and could be transferred to the
test data. For example, clustering test data in this embedding space might end up
with clusters that admit similar structures as training classes. Zero-shot learning has
been used to tackle data sparsity in various situations, such as machine translation
for low-resource languages (e.g. Pham et al., 2019; Zhang et al., 2020; Johnson
et al., 2017), generation (Duan et al., 2019; Philip et al., 2020), text classification
(see, e.g. Yin et al., 2019) and question answering (e.g. Banerjee and Baral, 2020).

5.2.2 Script Parsing as a Zero-shot Learning Task

Our parser is tasked with predicting event and participant annotations for scenarios
that are not seen during its training. Equivalently, this is a clustering process
of potential event candidates and participant candidates. After the clustering is
completed, the cluster indices will serve as class labels.

The structure of our zero-shot script parser is as follows.

The training is about learning a transformation φ that maps pretrained, contextu-
alized, general-purpose word embeddings into a representation space that is more
suitable for script parsing. More specifically, the embeddings of candidates that
correspond to the same event or participant classes should be more similar than
those that do not. The representation space has two sources of knowledge: the
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general-purpose word embedding and the training data. The former is of interest,
as it is often the case that candidates evoking the same event or participant are
similar in the sense of basic semantics. For example, both Yesterday I went grocery
shopping and Yesterday I went to the grocery store could evoke a go to grocery store
event; all mentions of the protagonist are probably I or me. But this is not always
the case. One could also say I drove to the grocery store, where drove is not
very similar to go; we could also find I had to do grocery shopping, which is a bit
different. The participant groceries could be eggs, vegetables, could be meat, or all
I needed for a picnic. A general-purpose word embedding does not consider these
instances similar. This aspect of the embedding space is learned from the annotated
training data, from which we know which instances belong to the same class, so we
could optimize the transformation accordingly.

In the inference time, the first step is to identify both event candidates and par-
ticipant candidates from the input text. This could be done according to shallow
linguistic features. That is, all verbs are selected as event candidates and NP heads
as participant candidates. The candidates are represented by a single token, but
include its context as well.

Afterwards, we take the representations of all candidates from all input texts in the
target scenario and apply φ to transform these representations to acquire the rep-
resentation we learned during the training phase. Now, we cluster these candidates
into sets of events and participants accordingly. The indices of these sets represent
the event and participant labels of the unseen scenario.

The task is based on InScript, which consists of 10 scenarios. We take the texts
from eight scenarios as the training data, one for validation and one as the test
scenario, which means, the validation scenario and the test scenario are unseen in
the training phase. During inference, the model takes the unannotated stories of
the test scenario as input and labels them with events and participants types.

5.3 Model

In this section we elaborate on the model design. We address its training behaviors
and inference behaviors separately, as they are quite different: training is about
learning a representation according to the training data, whereas inference is mostly
about executing clustering based on the learned representation.
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Figure 5.3: The overall framework. For the training, we learn the transformation
according to the training data in the sense that the classes in the training set
form better clusters in the new representation space. During the inference phase,
we execute agglomerative clustering on the candidates. The regularizors are not
depicted.

In the training phase, we run XLNet (Yang et al., 2019), parameters frozen, on
the input text, to obtain contextualized word embeddings f(c) for each event and
participant candidate c. Later on, we train the transformation φ to minimize the
distances within the same event and participant classes and maximize those between
different ones (Section 5.3.1); the objective function also contains a few regulariza-
tion methods that make use of coreference information, dependency information,
and a more script parsing specific representation instead of raw XLNet.

In the inference phase, given the input texts on the test scenario and specifications of
the event and participant candidates in it (this is acquired during data preprocessing
parameter-free, see Section 4.1), the first step is to identify the candidates that evoke
regular events or participants, to exclude irregular candidates from the clustering
process. Afterwards, we apply the learned representation on these candidates and
perform agglomerative clustering on them. The overall framework is illustrated in
Figure 5.3.

5.3.1 The Objective Function

Now we introduce the training objective with which we learn the transformation φ.
The purpose of our representation learning, in general, is to map instances from the
same class to similar representations; similarly, those not in the same class should
not be too similar. These intuitions are quantified by our consistency objective,
which meansures how much a representation fits the class specifications in the given
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annotated data.

External Consistency

Let C be the set of all event candidates or the set of all participant candidates
in the narratives associated with any scenario, and let π(C) be a partition of C.
The partition defines an equivalent relation according to the training labels: each
element of C consists of all events or participant instances that receive the same
label. The notion could also be used for other equivalent classes of candidates.
For example, belong to the same coreference chain is an equivalent relation over
all participant candidates. We write π(c) for the element of the partition to
which the candidate c belongs. Given a pretrained embedding function f and the
parameterized transformation φθ that we want to learn, we consider the average
distance between instances belonging to different clusters:

dext(π(C); θ) = mean
c, c′ ∈ C :

π(c) ̸= π(c′)

d(φθ(f(c), φθ(f(c′)))

Here f is a pretrained XLNet encoder. There are various options in terms of the
implementation of the transformation φ, for example attaching an additional dense
layer or transformer layer to the output end of the encoder. Empirically, fine-tuning
the last layer of the encoder yields the best performance. Moreover, it also implies
more stable optimization than training a module from scratch.

We would like to push the embeddings of two candidates from different classes apart
if they are too close to each other. We do so by maximizing a relaxed version of
dext, the external consistency of the partition π:

γext(π(C); θ) = mean
c, c′ : π(c) ̸= π(c′),

d(φθ(f(c), φθ(f(c′)))

< σ1dext(π(C); θ)

d(φθ(f(c), φθ(f(c′)))

Here σ1 ∈ (0, 1) is a hard threshold that quantifies too close. Intuitively, for the
purpose of script parsing, it is not wise to further distance a pair of candidates from
different clusters if they are already distant from each other. With the threshold
σ1, candidate pairs from different clusters are prohibited from generating a training
signal if they are sufficiently distant from each other. The external consistency
term captures the intuition that φ should map candidates from different classes to
dissimilar vectors.
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Internal Consistency

Likewise, consider the average distances between the embeddings of candidates
from same classes:

dint(π(C); θ) = mean
c,c′:π(c)=π(c′)

d(φθ(f(c), φθ(f(c′)))

We would like to pull the embeddings of two candidates from the same class towards
each other if they are too far away. In a similar spirit, we maximize internal
consistency of π:

γint(π(C); θ) = 1− mean
c, c′ : π(c) = π(c′),

d(φθ(f(c), φθ(f(c
′)))

> σ2dint(π; θ)

d(φθ(f(c), φθ(f(c
′))) (5.1)

Similarly, the representations of candidates in the same cluster should not collapse
to a single point. To this end, we implement σ2, a hard threshold that draws the
boundary of being too far away, which excludes candidate pairs in the same cluster
from the generation of the training signal if they are already similar to each other.

We obtain an overall consistency measure γ, which we maximize in training; λi is a
hyperparameter that balances the terms.

γ(π(C); θ) = γext(π(C); θ) + λiγint(π(C); θ) (5.2)

this function could be seen as a variant of the triplet loss introduced by (Dong
and Shen, 2018), but relaxed with the thresholds and uses a different distance
metric. Empirically, these measures improve the stability of training and result in a
moderate performance improvement.

The Dis-similarity Measure

We write d(·, ·) for the distance function in the representation space. Empirically,
the following variant of cosine distance works well:

d(v, w) =
√

1− cos(∠(v, w)) (5.3)

Here ∠(v, w) denotes the angle between v and w.

There are multiple possible choices for the distance function. The consideration
behind this choice is a combination of implementation difficulty and performance.
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To perform clustering, we use the implementation in sklearn (Pedregosa et al., 2011).
The library is optimized to evaluate the Euclidean distance. In fact, given the scale
of our problem (around 3k datapoints, each of 768 dimensions), pairwise distance
evaluation easily goes intractable if what we use is noticeably more complicated
than Enclidean distance. However, Euclidean distance per se is not a good choice as
it is unbounded, which renders the training unstable. Most importantly, Euclidean
distance does not deliver good performance after all.

Our design of d is tractable and also delivers good performance. Our distance
function

d(v, w) =
√

1− cos(∠(v, w))

actually equals to
1

2

∥∥∥∥ v

∥v∥2
− w

∥w∥2

∥∥∥∥
2

which means it could be calculated by taking the Euclidean distance between the
unit vectors corresponding to v and u, respectively. Therefore, in practice, the only
operation we need to take apart from taking the Euclidean distance is normalizing
the vectors to their unit vectors, which is cheap. Therefore, our formalization retains
the benefit from the optimization efforts for calculating the Euclidean distance and
executes in an affordable amount of time.

What may raise one more concern is the fact that d is not well defined as a distance
function in Rn, because if two vectors correspond to the same unit vector, their
distance would be zero, which is not positive-definite. In practice, however, this is
never the case, and we could relieve the concern.

5.3.2 Regularization

The training objective as defined in Equation 5.2 could be further regularized to
improve its performance. Here, we introduce these regularization methods. Two of
these add extra terms to the objective, whereas the third uses word embeddings
that are specialized for script parsing.

Coreference

Coreference refers to linguistic phenomena where multiple noun phrases have the
same interpretation, that is, when they refer to the same referent. For example,
every usage of a pronoun refers to the same referent as its antecedent. In a segment
of text, all referring expressions to the same referent appear in linear order to form
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(a) There is a bus stop down the street from my house . If you take it going south , it
leads to the city...

(b) ...Ipassenger fed my coinsmoney into the slot where you put your money...
...Ipassenger boarded the bus and paid for my ride with my changemoney...

(c) ...the bus arrivedbus stops at the bus stop closest to the beach...
...I would need the bus to stopbus stops next to the hospital...

Figure 5.4: Examples from the taking a bus scenario. (a) coreference chain. (b)
instances of event (pay) sharing similar participants. (c) instances of participant
(destination) that have similar event dependents.

a coreference chain.

In computational linguistics, coreference resolution is a well-studied task which finds
out all coreference chains in a text, or equivalently, determines whether any pair of
referring expressions refer to the same referent. It could be performed accurately
with out-of-the-box tools like Spacy (Honnibal and Montani, 2017, see ). Although
there are complex cases like those fitting the Winograd schema, the performance is
usually above 90 points F1 score for corpora consisting of less complex texts, which
is expected from InScript.

From the perspective of script acquisition, an immediate observation is that all
referring expressions in the same coreference chain must evoke the same participant,
be it regular or not. For example, all mentions of a particular bus in scenario
taking a bus (see Figure 5.4 a) evoke the participant bus. Therefore, ideally, these
noun phrases should belong to the same participant cluster and have similar repres-
entations.

We capture this intuition to integrate it into the training objective as follows.
We denote the set of all participant candidates as Cc. Let η(Cc) be the set of all
coreference chains that consists of the participant candidates in Cc. Therefore, η(Cc)
is a partition of Cc. Like π above, η(Cc) also specifies an equivalence relation, in that
two candidates are in the same class if, and only if, they are in the same coreference
chain. Now, if we revisit the notion of consistency we have, we could observe the
analogy between coreference chains and participant classes. Each of them defines a
partition of Cc; we would like our representation for script parsing to consider the
items in the same part similar, which applies to both partitions; similarly, items
in different parts of each partition should have different representations. These
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observations inspire us to formulate a coreference chain consistency measure with
the internal consistency we defined, i.e. as

β(θ) := γint(η(Cc); θ)

In the training phase, we add this term to the objective function as a regularizor.

Event-participant dependencies

The second regularizor is based on dependencies. Events and participants in a script
are closely related: In multiple narratives in the same scenario, if two verbs have
arguments from the same participant class, they tend to describe the same event
(Figure 5.4b); and if two noun phrases are arguments of the same event, they tend to
describe the same participant. As an example, consider taking a bus, where bus is a
participant. Now, there are only a proportion of events, whose evoking verbs could
possibly take the bus as a subject or an object (or whatever other semantic roles).
The bus could arrive at destination, start, could be boarded, but cannot be paid.
It is the ticket that is supposed to be paid for. Thus, the potential event or par-
ticipant classes of a dependent are informative to script parsing (see also Figure 5.4c).

Once again we observe the analogy between what we want to abstract here and
candidates who receive the same event or participant label. We introduce a regu-
larizor with regard to dependency relations as follows. Let cp be the set of event
candidates that have participant p as an argument; we encourage φ to map the
elements of cp to similar representations. Let ξ(Cde ) be the set of all cp, that is, a
partition of event candidates based on dependencies. Analogously, let ξ(Cdp) be the
set of participant candidate sets that depend on the same events. We can formulate
a dependency-based consistency measure as

α(θ) = γint(ξ(Cde ); θ) + γint(ξ(Cdp); θ)

The final training objective, with hyperparameters λc, λd and cluster assignments
π∗(Ce) of event candidates and π∗(Cp) of participant candidates as is specified by
the annotations in InScript, is

θ∗ = argmax
θ

[γ(π∗(Cde ); θ) + λpγ(π∗(Cdp); θ) + λcβ(θ) + λdα(θ)] (5.4)

Specialized word embeddings

Finally, we improve our model by using more specialized word embeddings as input
instead of general-purpose XLNet embeddings. These specialized word embeddings
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come from the training of a supervised script parser, which is going to be the model
we introduced in Chapter 4: as a side product of optimizing the model, we have an
encoder that produces word embeddings that deliver good results for script parsing.
Our hypothesis is that the training of the supervised model should promote features
that are more relevant to script parsing. As a result, the outcoming representation
should be a better starting point than the general-purpose XLNet from which we
train a representation for zero-shot script parsing.

We acquire the specialized word embeddings by retraining the model in Chapter 4
with our current training data. We cannot use the model directly, as the training
data of the supervised parser overlap with the test set of our zero-shot parser.
Therefore, we revisit the supervised parser training process to implement the neces-
sary adjustments and use it as a feature extractor.

The optimization of the feature extractor is different from that of Chapter 4 in
the following ways. First, we designate its training data and validation data by
performing a random split of the current training set, that is, the eight scenarios we
kept for training the zero-shot script parser. Second, the model is trained on regular
events and participants only, as irregular ones are excluded from the training for our
zero-shot parser. We replace the embeddings f in the consistency formulars with
the supervised parser (excluding the final classifier) as the initial representation.
Finally, we use a different set of hyperparameters.

5.3.3 Inference

Whereas the training of our parser is about representation learning, inference is
about clustering candidates according to the representation we acquire during
training. In particular, we firstly identify regular candidates; secondly, we execute
agglomerative clustering on these candidates to produce the event and participant
clusters.

Regular candidate identification

Script parsing is focused on regular candidates, because irregular candidates are not
closely related to the scenario and are not always specific to the scenario. They are
not of interest to script acquisition, as we are after the prototypical manner that
script scenarios evolve, including the set of events, participants, their dispositions
over a narrative, etc. The random incidents or entities that happen to be around
in some instantiations of the scenario are not our target. Technically, irregular
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Input Data points C; threshold ρ ∈ R≥0; cluster dis-similarity function d : P(C)2 → R≥0.

Output A partition π(C) of C.

Steps 1. Initiate the set of clusters π0(C)← {{c} : c ∈ C}.
2. If π0(C) is a singleton, terminate and output π0(C).
3. Get c1, c2 ∈ π0(C) that minimizes d(c1, c2).

4. If d(c1, c2) > ρ, terminate and output π0(C). Otherwise, merge c1, c2: π0(C)←
(π0C − {c1, c2}) ∪ {c1, c2} and go to step 2.

Figure 5.5: The clustering algorithm. Its time complexity is O(n3). We use the out-
of-the-shelf implementation from sklearn (Pedregosa et al., 2011). The threshold ρ
is estimated from the training data.

candidates are an ill-formed class in terms of clustering: irregular candidates make
a diverse group of instances without much semantic similarity to each other; they
usually do not refer to the same action or entity, in contrast to regular events and
participants. That means establishing a representation to group together irregu-
lar candidates would require very different features than that for regular classes.
Including them in the training of the representation space would incur additional
complexity to the problem and deteriorate the performance. Therefore, irregular
candidates are excluded from the training. Note that the exclusion of irregular
candidates is still a part of our pipeline, thus relevant to the evaluation.

To this end, we train a classifier, the regular candidate identifier, to distinguish
regular and irregular candidates, in order to exclude the latter from representation
learning. The classifier is essentially the model for supervised script parsing that
we present in the previous chapter, with the exception that we collapse the output
classes, so the model only distinguishes regular candidates from irregular ones.
The set of output labels now consists of Regular event, Irregular event,
Regular participant and Irregular participant. The training pipeline
mostly stays the same, except that we use a different training split, which is
restricted to the eight scenarios we reserved for training. The hyperparameters were
changed as well. The rest of the optimization is identical to that of the model in
Chapter 4. The performance of the classifier is around 85 points F1 score.
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Clustering

With the irregular candidates excluded, we feed the regular candidates to the trans-
formed representation we learned, to acquire the representations of these candidates.
Now, we have the embeddings φθ∗(f(c)) for each candidate c, and we are ready to
cluster them to obtain the sets of events and participants.

The clustering algorithm that we use is agglomerative clustering, which is a hier-
archical top-up clustering algorithm(see, e.g. Lukasová, 1979). Starting with each
data point considered a singleton cluster, the algorithm iteratively merges the most
similar pair of clusters. It terminates when the stopping criterion is met. There
are two possible stopping criteria, namely, to stop when the number of clusters
decreases to a predefined quantity or when the minimum dissimilarity between the
current clusters goes beyond a predefined threshold, which means that the current
clusters are considered too dis-similar to be merged. The time complexity of the
agglomerative clustering is O(n3), which is tractable given the scale of our data.
See Figure 5.5 for the algorithm.

In our case, the data points are the embedding vectors, thus C ⊆ Rn. For the
stopping criterion, since the number of event and participant clusters is assumed
to be unknown, and they vary among different scenarios, it is not possible to set
a minimum number of clusters as the stopping criterion. Therefore, we use the
dissimilarity threshold stopping criterion. The threshold is estimated from the
training data. More specifically, for each scenario, we take a quantity which allows
the clustering process to come up with exactly the same number of clusters as is
annotated. We then averaged the 8 training scenarios to get the estimation. The
dissimilarity measure could also take multiple forms, such as average Euclidean
distance, minimum Euclidean distance, etc. Empirically, the variance of the union
turns out to be the best measure of dissimilarity.

The Protagonists

We treat the protagonist differently from the other participants during the inference
phase. The protagonist is a special participant present in every scenario, which links
most of the narrative event chains. It also participates in most events belonging
to the scenario. For example, the passenger in taking a train, the customer in
grocery shopping or the rider in fixing a flat tire. In narratives of personal experi-
ences, the protagonist is the most frequent participant in all scenarios; the referring
expressions to the protagonist always forms by far the largest class of participants.
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From the perspective of participant parsing, tokens evoking the protagonist are easy
to detect in narrative texts. Referring expressions to the protagonist always forms
by far the longest coreference chain. Moreover, the vast majority of these referring
expressions are actually first personal pronouns, such as I, me, we, us, our, ours etc.
We have good reasons to believe that a simple, parameter-free rule-based method
could do a satisfying job in identifying protagonist mentions in the text. Therefore,
it is unnecessary to include them in the complex neural pipeline. Instead, what we
do is simply exclude them from the optimization (that is, consider these tokens
unannotated). During the inference phase, we group every item in the longest
coreference chain together as the protagonist cluster. This simple heuristics already
yields more than 98 points of F1 score on the test set, which is sufficiently good. In
fact, most of the errors result from the errors of the coreference resolution tool.

5.3.4 Implementation and Optimization

The model is implemented with AllenNLP 1.2 Gardner et al. (2017). The pretrained
XLNet model we used is xlnet-base-cased (https://github.com/zihangdai/xlnet/).
Training is further regularized with weight decay. The optimization is performed
with adam (Kingma and Ba, 2015) in conjunction with early stopping which
monitors validation loss; the hyperparameter tuning is performed with random
hyperparameter search (Bergstra and Bengio, 2012). Optimization takes on average
5 hours on a single Tesla v100. The implementations of agglomerative clustering
and the Hungarian algorithm (which is necessary for evaluation) are from the scipy
library.

5.4 Evaluation

5.4.1 Metric

The evaluation of our approach is not trivial. What we get as output of the parser
is a number of event clusters and participant clusters of contextualized tokens.
According to the annotation in the test set, we know the annotation these tokens
receive, i.e., what event or participant they actually evoke, or do they evoke any
event or participant at all. For some intuition, Table 5.1 gives a few sample event
clusters and the ground truth, which is the annotation these tokens receive.

Usually, each output cluster would include evoking tokens for multiple events. Most
of the time, there is a clear majority. Therefore, from a certain point of view, this
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Figure 5.6: A set of example output participant clusters, the linear assignment
problem it corresponds to, its solution and the outcoming metrics.
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cluster should correspond to that majority event. It is more complex than it may
sound like, as we occasionally have multiple clusters with the same majority label.
Actually, the result of clustering distinguishes the clusters with mere indices like
cluster1, cluster2 instead of which event it preferably corresponds to; moreover, it
is not guaranteed that the number of clusters is exactly the same as the number
of gold labels. What we wish to understand from the evaluation is how well the
clusters produced by our parser align with the gold clusters. We assume that we
have no knowledge of the inference scenario, including the set of classes. A decent
evaluation metric would need to answer two questions: is the set of event and
that of the participant correct, and whether the parser correctly maps all regular
candidates to the event or participant they evoke.

To answer these questions, the first step is to establish the correspondence between
the output clusters and the ground-truth classes. If we could map the clusters to the
gold classes, we would be able to evaluate the accuracy of each image class as if it
were a classification task. There are several preferences in terms of how the mapping
should be established. As the number of gold classes is unknown, the mapping
needs to be injective. Furthermore, mapping a cluster to a gold class seems desirable
if they overlap a lot. We would like to quantify exactly how desirable a mapping
would be from a global point of view. The most intuitive quantity is the number of
instances that is mapped to its ground-truth label. For example, if we map a cluster
of participant candidates to the participant class bus, we are interested in how
many candidates there do evoke the bus participant. If we consider this number
as the utility of the mapping, we could summarize the utility of each pointwise
mapping as a matrix M s.t.

Mij = count of instances in the i-th cluster that belongs to gold class j

Note we could always add rows or columns that consists of 0s to M to make it
square, thus we assume, without lose of generality,that M is square. Observe
that the total utility of the mapping defined by the main diagonal, which maps
the i-th cluster to gold class i for each index i, is the trace of the matrix. The
optimal mapping we are looking for, corresponds to a permutation of the matrix
that maximizes its trace. Now we recognise the problem as an instance of the linear
assignment problem. See Figure 5.6 for an example evaluation instance and its
corresponding linear assignment problem.

The linear assignment problem is solved by the Hungarian algorithm (see, e.g. Kuhn,
1955) in cubic time, which is tractable given the scale of our problem (the size of
M is less than 40 × 40). The algorithm outputs the optimal assignment, which
maximized the overal instance wise accueacy induced by the assignment. With
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the optimal assignment, we could evaluate an F1 score based on it, which we term
Hungarian F1, and use it as our main evaluation metric. This metric allows us to
compare the results of clustering-based parsers with those of classification-based
parsers. Figure 5.6 gives the solution to our example and the outcoming metrics.

Recall that InScript has 10 scenarios, 8 of which are randomly selected as training
data, one for validation and one to test. We evaluate our model with 10-fold
cross-validation. For the designing purposes of our parser, it is also interesting to
see its performance on different corpora. We address this in Chapter 6.

5.4.2 Baselines

We evaluated several other models for comparison purposes. First, the model XLNet
performs clustering directly according to the bare XLNet embeddings, rather than
the transformed embeddings φθ∗ we learned during the training phase. Word embed-
dings provide a decent basis for evaluating semantic similarities. An improvement
over this baseline would validate our parser as a whole.

In addition to our full model, as specified by equation 5.4 with the specialized
embeddings described in Section 5.3.2, we also present results for a few ablated
versions, including those without the extensions regarding event-participant depend-
encies (dep), coreference (coref ), and specialized embeddings (specialized).

Finally, we include the results of two supervised parsers, the one we presented
in Chapter 4 (supervised) and the one from Ostermann et al. (2017). The gap
between models that had scenario-specific supervision and those that do not is
always interesting. However, it is worth a bit of our attention that these models are
not strictly comparable to ours, as they receive a different data split for training,
validation and test, due to the fundamental differences in their settings.

5.4.3 Results

For each clustering-based method, we report two results: one is acquired with
access to gold regularity, while the other relies on the regular candidate identifier
from Section 5.3.3. All variants use the same number of trials for hyper-parameter
tuning (thus roughly the same computational resources). We also conduct five
parallel experiments to test the models’ robustness against random initializations,
and report the mean and standard deviation.
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ground truth text

turn water on ... I might drain the tub and put in more water ...
sink into water ... I turn off the faucet and sink into bliss ...
sink into water ... Then I slid into the water and enjoyed the relaxing warmth for

twenty or more minutes...
sink into water ... I gingerly lowered myself into the nice warm water and immedi-

ately began to relax...
sink into water ... I eased my way into the tub and let myself sink into the water

...
sink into water ... I slowly sunk the rest of my body , and closed my eyes...
sink into water ... the tub was full and ready . I slipped into the tub and soaked

in the bliss...

washing tools ...then I lather up with either soap or shower gel ...
water ...After I scrub really good and finish singing , I pour water con-

tinuously on my body...
washing tools ...I pour water continuously on my body until all the soap was he

s off...
washing tools ...I cleaned my hair with some shampoo and washed my body with

a wash cloth and rinsed...
washing tools ...shampooed my hair and applied some conditioner then washed

my body...
washing tools ...applied some condition er then washed my body using some

liquid body wash...
washing tools ...After I have washed everything , I rinse the soap from my body

with the water in the tub...
washing tools ...on the corner of the bathtub . I lather ed it up and washed my

arms , my legs...
washing tools ...take a wash cloth and soap or body wash to give yourself a good

scrub down...
washing tools ...You can put the shampoo in your hair...
washing tools ...place your head under the faucet to rinse out the soap . Enjoy

your bath !
washing tools ...washed myself with a wash cloth and soap . Then I leaned my

head against...
washing tools ...stepped into the bath tub . I used soap and a wash cloth to clean

myself...

Table 5.1: Example output clusters. Top: event; bottom: participant. The table
presents a random selection of instances from these clusters as the original output
could contain hundreds of instances.
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model gold regularity task events participants

macro F1 micro F1 macro F1 micro F1

Ostermann17 ✓ supervised 58.1 66.0 n/a n/a
supervised X supervised 75.1 85.7 80.3 90.3
XLNet X zero-shot 40.2 53.2 39.3 60.5
- dep, cor., spc. X zero-shot 46.0±2.8 58.4±2.7 47.5±2.6 75.7±1.8

- dep, cor. X zero-shot 48.6±5.2 62.7±3.7 44.5±3.3 71.8±2.1

- dep X zero-shot 51.0±3.7 66.8±4.3 52.0±3.7 74.8±2.9

Full X zero-shot 53.4±1.8 68.1±2.3 51.7±1.6 74.4±1.4

XLNet ✓ zero-shot 43.1 51.6 43.9 61.0
- dep, cor., spc. ✓ zero-shot 46.1±1.9 55.4±2.2 51.1±2.7 75.3±1.3

- dep, cor. ✓ zero-shot 55.3±2.8 65.8±2.8 52.5±3.1 73.6±2.1

- dep ✓ zero-shot 56.7±3.3 67.4±3.7 53.6±2.9 74.2±2.0

Full ✓ zero-shot 57.6±1.3 68.1±1.3 52.8±1.4 73.7±1.4

Table 5.2: Results. We show the average over ten-fold cross validation and five
training runs when feasible. These quantities are the Hungarian versions of F1
defined in Section 5.4.1. Some models train and inference according to the regularity
annotations in InScript, instead of the predictions of our regular candidate identifier.
Ostermann and supervised use a data split where the models see the test scenario
during training; the other variants use the zero-shot settings. Therefore, the numbers
from Ostermann and supervised are not strictly comparable to that of the ones under
the zero-shot learning settings. They are here for reference only.

The results are shown in Table 5.2. All variants of our model outperform raw
XLNet embeddings by a considerable margin. Our model also performs on par with
Ostermann’s on event parsing, although we do not have access to scenario-specific
supervision whereas Ostermann’s does, and our model additionally performs parti-
cipant parsing.

The model extensions significantly improve the performance of the parsing. Access
to coreference information, as hypothesized, improves participant parsing perform-
ance. Dependency information also grants a performance boost in event parsing.
A closer inspection shows that with dependency information, the parser is better
at grouping together event candidates that contain different verbs, whereas the
arguments of these verbs belong to the same participant class. For example, the
event sink into water in taking a bath could be evoked by slide into water, sink into
water, slip into the tub, lower into the tub, etc. All verbs in these event candidates
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share arguments I and water or tub, which our parser correctly clusters together.
Without dependency information, the parser cannot handle such level of variation
and mostly groups together candidates whose predicate is ‘sink’, the most frequent
verbalization of the event.

In general, we obtain a higher micro-F1 for participants than for events, whereas the
differences between the macro-F1s do not show a pattern as clear. There are two
underlying causes: first, participant parsing per se is a less complex task from the
perspective of micro-averaging, given the large, simple protagonist cluster; second,
the distribution of participant class sizes is more skewed than that of the events, so
the larger classes, for which performance tends to be better, take a higher proportion
in the whole dataset.

The performance of our script parser differs from fold to fold: we get 70.1 micro-F1 for
participant parsing in taking a bath, but only 43.8 on borrowing a book from library.
This is anticipated, as these scenarios could be quite different in the number of
events and participants, and more importantly, the patterns in their event chains.
The choice of validation set might also be a factor, as the performances on different
validation sets generalize differently to their respective test sets.

5.4.4 Error Analysis

As a side product of evaluating Hungarian F1s, we obtain the optimal assignment of
output clusters to gold candidate classes, which equivalently labels each candidate
with an event / participant class. A case is considered an error if this assignment
differs from its original annotation. We manually inspect 30% of the test errors
made by our full model with predicted regularity case by case and categorize them.
We analyze these error types with examples from scenarios taking a train and
Taking a bath.

Granularity

Many events could be divided into multiple subevents, forming a hierarchy of events.
For example, in the taking a bath scenario, we have prepare for bath, undress and
grab a towel. A similar phenomenon is observed for the participants. This fact
manifested itself as various types of errors. For example, the set of event labels
in InScript often consists of events of different granularities, frequently rendering
multiple cluster assignments feasible (e.g. ... I took a clean towel with me ... in
either prepare for bath or grab a towel). As a result, the parser sometimes confuses
one event cluster with another that includes it or groups together different events that
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actually fit together (turn on water and fill tub with water). Granularity accounts
for two-thirds of event errors and one-sixth of the participant errors.

Shared predicate or argument.

Some incorrectly clustered events share the verb or some arguments with another
class, especially when light verbs are involved, making the distinction harder. For
example, in taking a train, a few instances of the get ticket event (e.g., “I took the
ticket from him”) are predicted as conductor checks ticket (e.g., “I gave the ticket
to him”)1.

Number of clusters

As the test scenario is unseen, our parser does not know how many clusters there
should be, but rather terminates the clustering process with a similarity threshold.
Therefore, we often end up having a different number of clusters than the corpus,
which results in larger classes being split into more than one or multiple smaller
classes being merged into one. For example, for taking a train, the model yields 14
event clusters, whereas there are 15 in the corpus. In such cases, the parser has to
compromise, causing damage to its performance. As a result, no predicted cluster
was assigned to the door opens event, which refers to the opening of the train door
before passengers board. Instead, 5 out of its 6 instances end up in the same cluster
that mostly comprises instances of the get on the train event, a fair compromise.

Scenario-specific knowledge

The primary component of hard cases comprises candidates that are only equivalent
when conditioned on the scenario. For example, event spend time in the train
collects activities like purchasing a coffee, taking a nap, looking out of the window,
etc. Our parser can partially address these instances, as it has access to the entire
event chain of the story (so it knows all these events happen between take a seat
and get off the train), but the performance is weaker.

Reasonable Alternatives

Interestingly, the model produces some reasonable clusters, although it does not
agree with the annotation. For example, there is a spend time in the train event,
which collects mainly entertainment during the ride, such as eating, playing games,

1The dependency regularizor moderately magnifies this issue, as with it the parser tend to cluster
candidates that share similar dependents together. But this is outweighed by the performance
gain it provides
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Figure 5.7: A fragment of the temporal script graph for taking a bath inferred
from our parsing result. Each node illustrates 3 random verbalizations from the
cluster. Gold classes are shown on the side. Further edges that could be inferred by
transitivity are omitted. We see that one could first undress or add scent (to the
bath tub) first before sink into water.

etc. A small fraction of this event is about ‘sitting, such as ... i got to relax and
have a compartment with complete silence, where I then took a nap..., and ...I
quietly sat by the window seat and looked at the great scenery outside.... These
candidates are clustered into the get to seat event. We also have a cluster that
includes most instances from get to train station and get to the platform.

5.5 Further analysis

5.5.1 Temporal Script Graphs

Script knowledge could be neatly illustrated with temporal script graphs. Now
we use the result of our zero-shot parser to compile these graphs for the unseen
scenarios (i.e., the test set).
As a type of procedural knowledge, the temporal order among the events is a
most important part of script knowledge. Some events must precede some other
ones, for example, in the taking a bath scenario, one needs to turn water on before
sinking into water. However, the temporal order is not a total order. For example,
we could have undress first or add scent first.

We establish the temporal order as follows: we say event e1 precedes event e2 if and
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only if, in stories where they both occur, the proportion where e1 occurs before e2
is beyond a threshold ζ ∈ (0.5, 1). If neither e1 precedes e2 nor e2 precedes e1, we
decide that they could follow an arbitrary order. Finally, we take the transitive
closure of what we already have.

With the temporal order established, we are ready to compile the temporal script
graphs, which depict the temporal order as a directed acyclic graph and collects
different verbalizations of each event. See Figure 5.7 for an example.

As a means of evaluation, we view the construction of temporal script graphs as a
task of retrieving temporally ordered event pairs and evaluate our results against
those inferred from InScript annotations. What our clustering results yields admits
75 points F1 score.

5.5.2 The Script-specific Embedding Space

We conjectured that the transformation φ is learned to distill the relevant informa-
tion for script parsing out of the general-purpose pretrained XLNet embeddings.
One observation of script parsing is that the task is beyond the sentence level: the
progress of the instantiation of the scenario contains key information for determ-
ining event and participant types. Lower-level features, like part of speech, are
less relevant given that we have already identified the candidates in preprocessing.
Now, we verify these points by comparing the representations we learned with the
original XLNet embeddings.

What we do is probing both embeddings on a series of NLP tasks that focus on
different semantics levels, to see if a shift of focus towards higher level semantics
takes place during the training, as we believe the higher level is more important to
script parsing. Our experiment uses four tasks. (1) POS tagging and (2) named
entity recognition depend mostly on the token itself and its local context. (3) noun
phrase chunking raises the level a bit higher, as it is determined by sentence-level
syntax. (4) Sentence ordering is at the highest level. For this task, the classifier
receives a story as input and needs to determine whether the sentences in the story
appear in the original order or have been randomly shuffled. This decision would
require information across the entire story to be made. (1)-(3) are formulated as
sequence labeling tasks; (4) is a binary classification.

These experiments are conducted on InScript. The data split we use is the same
as that for training the specialized embeddings (random split on the 8 training
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Figure 5.8: The performance on the probing tasks. The specialized representation is
significantly better at sentence ordering, the task at the highest level of semantics,
whereas its performance is weaker on the other tasks. The error bars show one
standard deviation. All differences between these pairs are significant at α = 0.05
according to independent T-test.

scenarios). As for the supervisions, we use POS as is annotated in InScript. For
NER and chunking, the labels are generated with the larger model from Spacy
(Honnibal and Montani, 2017, model en core web trf ).

We train a classifier for each task and each embedding space. All models take
the simplest architecture, that is, the encoder followed by a fully connected layer.
This is customary for probing experiments, as a trainable classifier with limited
capacity guarantees that the behavior of the embeddings plays the primary role in
the performance.

The parameters of the embeddings are all frozen. Hyper parameters are selected by
random search. For each of these probing tasks, both representations use roughly
the same amount of GPU budget.

The results are shown in Figure 5.8. The transformed representation φ(f(c))
incurs performance drops on most tasks, compared to general purpose embeddings
f(c). However, the performance on the sentence ordering task, the only one that
requires information throughout the whole story to be performed, sees a noticeable
improvement. This supports our hypothesis that φ amplifies higher-level features,
which are more important to script parsing than to generic language modeling. In
comparison, lower-level information about morphology and syntax is deemphasized.
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5.6 Summary

In this chapter, we presented a zero-script parser that operates on unseen scenarios.
The key design is to perform representation learning based on the scenarios for
which annotation is available and to transfer the knowledge to unseen scenarios. Its
performance on InScript is on par with that of a previous parser that had access
to scenario-specific annotations. The parser we develop in this chapter allows us
to acquire script knowledge from a number of unannotated narratives on a new
scenario, which is significantly cheaper than manual annotation. In the next chapter,
we apply this tool to different sources of unannotated texts and evaluate the quality
of the script knowledge we are to acquire.
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6.1 Introduction

The purpose of this thesis is to expand the coverage of script knowledge. With
limited resources, that means performing script acquisition at a lower cost than
that of InScript, which requires massive manual annotation.

We have already automated the annotation process in the previous chapter by devel-
oping our zero-shot script parser. The parser takes annotated training data, but it is
able to perform script parsing on texts about completely unknown scenarios, which
fits the needs of script acquisition on these scenarios. The parser was evaluated
in InScript by leaving out the data of a scenario in its entirety as the test set,
which creats an unseen scenario. The parser exhibits good performance in InScript.
However, to evaluate its performance under more realistic script acquisition settings,
we need to evaluate it on different texts.

In this chapter, we evaluate our zero-shot parser on corpora different from where
it is trained. The corpora we use are MCScript and Spinn3r. MCScript is a
question-answering dataset whose background texts are similar to InScript in the
sense that they are stories about various script scenarios and that it consists of a
relatively simple language. Spinn3r is a collection of personal blogs; these texts are
naturally generated and more diverse. Table 6.1 gives some example stories from
these corpora (see Chapter 2 for more details).

Our evaluation is two-fold. Intrinsic evaluation uses the same Hungarian F1 as
defined in the previous chapter. For the extrinsic evaluation, we revisit the down-
stream task of story generation. In particular, we run our parser on MCScript
as an annotation tool, then we train the story generation model as presented in
Chapter 3 with the data annotated by the zero-shot parser. On MCScript, our
parser delivers decent results by finding reasonable event and participant clusters
and accommodating the training of the story generation model. On Spinn3r, the
performance is not sufficient for script acquisition, which might be a combined
consequence of both the amount of scenario-specific data available and the variety
of language. In conclusion, we found the zero-shot parser a functional tool for script
acquisition from MCScript style scenario descriptions. These texts might still need
to be crowd-sourced, but the vast majority of its cost resulting from the complex
annotation process could be lifted.
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InScript
after playing football with my friends , i was all sweaty and dirty , so i decide i should take
a bath . first i made sure there were clean towels available and enough soap and shampoo to
thoroughly clean my skin and hair . i put the plug in the bottom of the bath tub and turned on
the water , being careful to adjust the water to a nice warm , but no too hot , temperature . i
used my finger to determine just the right temperature . after removing my clothes and placing
them in the hamper , i carefully stepped into the tub , being sure to steady myself as i entered .
i gingerly lowered myself into the nice warm water and immediately began to relax . after a
few minutes of rest and relaxation , i got out the soap and thoroughly washed my whole body
, making sure to get all of the dirt and grass stains off that i had accumulated from playing
football . next i washed my hair with shampoo and laid back into the water to really rinse it
out well . i carefully exited the bath tub , making sure to step onto the bath mat so i would n’t
slip on the smooth floor tiles , and got a towel and dried myself off . now my bath was complete
and i felt so nice and clean ! what a great feeling !

MCScript
Mary am has always had her children help her make the picnic food . Now that they are older ,
she supervise s them more than she actually cook s . Molly boil s eggs to stuff , while Pol ly
boil s potatoes for potato salad . none Terri makes a poppy - seed dressing for the fruit salad ,
and a white dressing for the potatoes . When the eggs are done , Molly cool s then in running
water and peel s and stuff s them . Pol ly drain s the potatoes , and peel s them . none Zak
arrange s the vegetables on a platter and covers them . Meanwhile , m ama Mary am packs the
plates , glasses , implement s and linen s in a wick er hamper , and pa pa Scott packs the food
and drinks in a cooler . The family is ready for their picnic .

Spinn3r
Some guy called me early this morning . Let ’ s just say the conversation didn ’ t enlighten him
the least bit , because he woke me up , and I was gro ggy and annoyed . Set my phone to silent
mode the night before , and when he called , it sort of reminded me of my alarm , except more
irritating , because I couldn ’ t hit the s no o ze button and stop it from vibr ating for minutes ,
like what I always do to the alarm . Him : j nt gi b n w v bu j f v b q Could n ’ t really catch
what he was saying Me : Hello ? Damn you , do you know what time it is ? ! I checked the
clock Me : It ’ s in the morning ! Him : an m ku y wi q l Could n ’ t hear what he was mum
bling about * Then it suddenly struck me that I had no clue who he was . O ops . Check ed the
Call er ID thing , but the number was with held . Oops again . Then I hung up the phone , and
went back to sleep . ...

Table 6.1: Sample stories from different corpora. InScript and MCScript consist of
scenario descriptions, while Spinn3r comprises naturally generated personal blogs
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model gold regularity events participants

macro F1 micro F1 macro F1 micro F1

Bare XLNet X 24.1 25.0 17.8 19.5
w/o dep, coref, specialized X 44.2±0.57 51.2±0.83 37.0±1.4 39.0±0.72

w/o dep, coref X 45.7±0.63 50.2±0.63 37.9±1.1 41.9±1.0

w/o dep X 48.2±1.4 53.3±1.3 40.8±1.8 45.4±1.7

Full X 49.6±1.3 55.5±1.6 42.6±1.6 54.0±2.0

Table 6.2: Results on MCScript, averaged from five parallel training runs.

6.2 Script Acquisition on MCSCript

6.2.1 Data

MCScript

MCScript is a question answering dataset that focuses on script knowledge. As
a background of its questions, it has around 20 stories for each of 200 scenarios.
These stories are stylistically similar to those in InScript, as they also consist of
relatively simple language and focus on explaining the scenario in detail (see Chapter
2 for more details). We use these background stories as a starting point for script
acquisition via the zero-shot parser. In particular, we will train the zero-shot parser
on InScript, and perform reference on MCScript to acquire script knowledge.

Annotation

As a question answering dataset, MCScript is not annotated with script events
and participants. For evaluation purposes, we need annotated MCScript stories.
To this end, we select 20 scenarios. We select these scenarios according to the
following guidelines. First, the set of scenarios we select does not overlap with
InScript scenarios, as they are supposed to be unseen during the training of the
parser. Second, each of these scenarios should not be too similar to any other. To
perform the selection, we randomly choose from the set of scenarios, one at a time,
and add it to the set of selected scenarios if it does not violate any of the guidelines.

The annotation process is similar to that of InScript. First, we read a number of
stories and determine the set of events and participants (originally termed templates
by Modi et al. (2016)). Second, following the original paper, we annotate the stories
with these event and participants, and add more labels to the set if it turns out
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Dataset Tokens Stories Events
Irregular
Events

Participants
Irregular

Participants

validation 28271 154 7868 1537 3868 1831
test 28429 154 8113 1458 3784 1540

val + test 59700 308 15981 2995 7652 3371

Table 6.3: Stats of the annotated part of MCScript

that is necessary. We collapse all irregular event or participant classes into one,
that is, either irregular event or irregular participant. To ensure better quality,
several stories that are less suitable are excluded from the annotation. Most of the
exluded stories suggest some misinterpretation of the scenario. The annotation is
performed by two experts. Table 6.3 provides some statistics of the annotated part
of MCScript. Overall, the annotations are similar to those of InScript. But given
the simplified annotation pipeline and that we have less than 20 stories per scenario
as opposed to 100 in InScript, the annotated MCScript should be considered as a
different dataset.

10 of these annotated scenarios are selected as the validation set and the other 10
as the test set.

6.2.2 Experiments

We follow the pipeline in Chapter 5 to train a zero-shot parser, but we made minor
adjustments. Essntially, we use the entirety of InScript as our training data, instead
of eight out of ten scenarios, as we do in Chapter 5. We validate with the MCScript
validation set and test on its test set. This change also applies to training of the
regular candidate identifier and specialized embeddings, when applicable. The
optimization is also rerun with new hyper-parameters.

Results

We apply the same evaluation method as in the previous chapter. XLNet and the
same ablated models (without dependency, coreference, or specialized embeddings)
are included for comparison purposes. The results are given in Table 6.2. Our
parser achieves around 50 point average F1, in contrast to the 70 points when
evaluated on InScript. This is well anticipated, as we have much less data available:
the test scenarios only have around 20 stories each, as opposed to the 100 stories
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for each InScript scenario. More importantly, although similar, InScript and MC-
Script are collected differently and have undergone different annotation processes.
The performance drop is especially noticeable for participant parsing, which was
unexpected. A closer look indicates that participants in MCScript scenarios follow
much more skewed distributions than in InScript: instances from the less frequent
half of the participant classes in MCScript take a proportion of only 8%, whereas
this quantity is 18% for InScript. As a result, there are more classes that only have
a handful of instances than InScript, worsening the already lower-resource setting.

All our model variants still outperform the XLNet baseline by a large margin, with
the full model achieving the best performance, at 49.6/55.5 macro / micro F1 for
events and 42.6/54.0 macro / micro F1 for participants. All model components
contribute to this performance according to the ablation study.

Table 6.4 shows some sample clusters produced by our zero-shot parser for the
going jogging scenario. The event cluster mostly collects candidates annotated
as return. There are a few excpetions. We notice three candidates annotated as
finish run in this cluster. The event finish run refers to the action of stopping
running, as many people would perform other activities before return home, such as
stretching, drinking water, etc. However, if we look closer at these three instances,
we found it reasonable to put them in the cluster of return: these candidates are
head home, drive home and get home. Furthermore, in these three stories, no
activities are described between running and returning home. That is, in these
stories, finishing running and returning home are described with one verb only. For
these stories, an event set that collapses those two events is more suitable. Once
again, this is a granularity issue. The same applies to the second candidate labeled
jog(...i made it back home ), which describes the latter half of jogging until arriving
home in one verb. The participant cluster is a relatively clean correspondence of
the participant company produced by the annotation. The overall quality is good,
given how little data we have and that no scenario-specific annotation was available.

With the clustering results, we could also compile temporal script graphs of MCScript
scenarios. The TSGs are in good shape, in general, yet, with fewer stories, they
could be noisy and indecisive. See Figure 6.1 for an example.

6.3 Wider Coverage Story Generation

In Section 6.2 we apply our zero-shot parser to MCScript and perform an intrinsic
evaluation, by checking Hungarian F1 and analyzing the output clusters. The
purpose of developing the zero-shot parser is to automate the annotation process.
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Figure 6.1: A fragment of the temporal script graph for going jogging inferred from
our parsing result. Cluster indices are replaced with event names according to the
annotation on the test set and the alignment produced by the Hungarian algorithm.
exert oneself sees a granularity issues, as people might stretch in different phases of
jogging for slightly different purposes.

ground
truth

text

go to jog-
ging place

...I stood up next to the girl I had [come] to the park with and said
, “ Ok...

return ...get some water at the water fountain there . Then I [head] back
home , and take a nice cool shower...

return ...have everything I need , because I hate the idea of [coming] back
to the house before I ’ m finished...

return ...That was when I knew it was time to [go] back home . I jo gged
back to...

jog ....I then ran the whole 3 mile loop . I [crossed] the street into my
neighborhood again and ran through my neighborhood...

return ...When we finished jogging , I [returned] home and gave my dog a
treat , then...

return ...out on their morning run . I finish my jog and [head] home where
I take off my shoes , and shower...
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return ...with every step . After about twenty minutes , I [turned] around
to head back home ....

return .... After about twenty minutes , I turned around to [head] back
home ...

finish run ...if I jog only 3 times per week . Then I [drive] home and shower...
go to jog-
ging place

...fill it with water . I get into my car and [drive] to the park...

finish run ...After an hour of jogging I go back to my car and [head] home for
breakfast...

finish run before finishing my jog for the day . When I [get] home , I make
sure to take a shower...

return ...could sustain . none About 15 minutes into my run I [turned]
around and headed home...

return .... none About 15 minutes into my run I turned around and [headed]
home...

jog ...into my run I turned around and headed home . I [made] it back
home in about 15 minutes...

company ...I stood up next to the [girl] I had come to the park with and
said...

company ...“ Ok , I ’ m ready when [you] are . ” ...
company ...I sped up just a little bit to catch up with the [girl] . Down the

path we jo gged ...
company ...but I could n ’ t help but wonder if this [girl] ever going to run

out of breath ...
company ...we started out . I was amazed at how effort less [she] was able to

glide through the air...
company ...with only the slightest hint of sweat gli sten ing off [her] brow ...
company .... Finally , after two hours of keeping up with [her] rhythmic pace

I could n ’ t...
company ... in the glare of the midday light I see [her] face with a crooked

little smirk on it...
irregular ...midday light I see her face with a crooked little smirk on [it] as

she says...
company ...I see her face with a crooked little smirk on it as [she] says , “ All

done with our warm up jog...

Table 6.4: Example output clusters. Top: event; bottom: participant. The
candidates are highlighted with brackets. The table presents all instances from
these clusters.
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Therefore, in this section, we evaluate its performance as an annotator by training
models for a downstream task based on the annotation it provides. The task is
story generation, which we investigate extensively in Chapter 3. More specifically,
we re-run the pipeline in section 3.3 on MCScript, using the output of our zero-shot
parser as the source of script knowledge. We shall see that automatically acquired
script knowledge is already sufficient to accommodate the training of a story gen-
eration model, whose performance approaches that of a model trained on human
annotated corpus.

6.3.1 Data

To train the story generation model presented in section 3.3, we need, for each
scenario of interest, stories annotated with event types. What we assume to have
access to are MCScript stories that do not have annotations. To acquire these event
types, we run the zero-shot parser as trained in the previous section to yield a
partition of the event-evoking tokens, putting together those considered to evoke the
same event. Now, equivalently, we have some annotated data to train the model with.

For the sake of clarity, we borrow the event cluster names from the annotations of
the MCScript test set to substitute the event indices, which are meaningless integers.
Recall that during the evaluation of Hungarian F1, we also acquired an injection
from the partition to the set of events. Thus, for an event where the injection is
defined, we replace the cluster index with the name of the event to which its cluster
maps. As a result, we get InScript-style data on the 10 test scenarios of MCScript,
whereas the annotations are purely automatic. We process the data with the same
segmentation process as is described in Figure 6.5, to establish the correspondence
between the instantiations of events and the segments of the surface text. Figure
6.5 provides some example segments.

6.3.2 Experiments

We now have our data from the MCScript test set appropriately formulated to train
the model in Section 3.3. Note that the test set of MCScript has, on average, 15
stories per scenario, whereas InScript has around 100. The shortage of data has two
consequences for our experiment. First, the model cannot be sufficiently trained.
In fact, it would turn out that the MCScript test set does not offer enough data to
train our story generation model, as a model trained with this amount of data can
barely generate sensible texts. Second, the validation set is also quite small, with
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event text segment

drive I was driving home from work when I noticed I was low on fuel .
run out of gas I was worried about running out of gas , so I stopped at the next

available station .
drive to pump I pulled my car up to the pump , mindful of the side of the car my

gas tank was on .
get out of car I turned off my car and got out .
pay I gave the cashier a twenty dollar bill and told her I wanted twenty

dollars of gas on the pump I was at .
pay She entered it in and I walked back to my car .
open tank lid I got to my car and opened the fuel tank .
pay I took the hose off of the pump and chose my fuel ,
close tank lid then I put the hose into my car .
turn pump off As it got closer to the twenty dollars , it slowed down .
turn pump off I stopped the pump at twenty dollars .

Table 6.5: The segmentation of a story on fueling a car according to the rules in
Figure 3.9.

which the training is not stable.

To address this issue, we decide to expand the training data to include the entirety
of InScript. Furthermore, we include 50% of the MCScript test set in the training
data; the other half is kept as validation data. No test set is necessary, as our
evaluation is performed by assessing the quality of generated stories with human
annotators. Note that now InScript makes up the vast majority of training data
(around 90% in terms of tokens), while the entire validation set comprises stories
from MCScript. Intuitively, the model is supposed to develop an InScript-style
generation behavior; however, it will focus on writing stories in MCScript scenarios,
as no InScript story is included in the validation set.

Note that the zero-shot setting is not compromised. It is true that a story generation
model trained with our settings benefits from the annotations in InScript, but we
are still generating stories on scenarios that had no manual annotation. In fact, it
is assumed that the entire InScript is accessible, as the zero-shot parser per se is
trained on InScript.

The optimization is identical to that in Chapter 3, yet we rerun the random hyper-
parameter search to select a new set of hyper-parameters.
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No script knowledge, cherry-picked
i took a garbage in my room and dumped the garbage inside . i open the lid of
the garbage can and take out the bag . it was a full of misplaced wrapper s on
the garbage . i went to my end of the dump ster , where the garbage man will be
able to take .
Scenario: taking out garbage.
Agenda : N / A
Zero-shot script knowledge
my little cousin asked me to read out a story . he looked through the shelves for
a minute and pulled out a thin book full of colorful pictures . we walked over to
the couch and sat down . i flipped past the title page and turned the book to him
to show him the pictures . she like s to read it with me .
Scenario: reading a story to a child.
Agenda : evoking → let child choose story → turn page → read → child reads
along → put book away
Human annotated script knowledge
Before heading out for a jog, it is important to put on the proper shoes and to
warm up the muscles. Once the muscles are warmed up, it is time to start jogging
at a slow and steady pace. After a few minutes, it is okay to take a break and
walk for a minute or two to catch ones breath. After the break, it is time to start
jogging again and to continue at a steady pace until the end of the workout.
Scenario: going jogging.
Agenda :
story begins→put shoes on →warm up→jog →take break →story ends

Table 6.6: Stories generated by the model in Section 3.3, trained with data that
has different accessibilities to script knowledge.

Source Coverage Syntax Global
Coh.

Local
Coh.

Relevance Informativeness

No S. Knowledge 3% .25 .07 .24 .07 .07
Zero-shot 50% .56 .57 .54 .63 .59
Annotated 63% .43 .49 .42 .59 .51

All differences are statistically significant according to independent T-test at α = 0.05.

Table 6.7: Results from human evaluation. All metrics are ranged [0, 1].
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6.3.3 Evaluation

We evaluate the stories generated in the same way as in Chapter 3, that is, by
crowd-sourcing. Several systems are included in the evaluation.

No-Script-Knowledge. In this version of the model, we do not distinguish between
events. In practice, all event types are replaced with the respective scenario names,
while the model architecture remains intact. In consequence, the correspondence
between script knowledge and surface text is neutralized; therefore, the model has
no access to even automatically annotated script knowledge.

Zero-shot. This is the model whose training supervision comes from our zero-shot
parser.

Annotated. For this one we execute the same pipeline as Zero-shot Script Know-
ledge, but the training supervision is not from our zero-shot parser, but from the
manual annotations in MCScript’s test set.

Table 6.7 gives some examples of generations from these systems. The results of
the human evaluation are given in Table 6.7.

Without script knowledge, the quality of generation is pretty poor. The output
of No Script Knowledge is barely grammatically correct. The fact that it still gets
scenario information allows it to be on topic more often than random. As we include
InScript scenarios in the training data, which are even overwhelming in size (approx.
5 times), the model is not always good at staying on the scenario it is supposed
to describe. Actually, a considerable proportion of the generated texts are not
completely readable. The overall poor quality is reflected in a very low score in all
aspects of evaluation.

Based on the automatically annotated data, Zero-shot Script Knowledge is able to
generate coherent stories on the given scenario. We see a substantial improvement
over the baseline in terms of human evaluation. Its performance is close to that
of Human Annotated Script Knowledge. Yet, a closer inspection shows that not all
credit goes to the quality of generated text: the zero-shot learning is performed
on the scenarios that have less than 20 stories each. Therefore, some less frequent
but valid events might not be evoked regularly enough to result in a cluster. The
situation is different in human annotations, as an annotator also recognizes events
based on his commonsense knowledge. As a result, we obtain smaller sets of events
for Zero-shot Script Knowledge, which makes the generation task in general less
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complicated. All in all, script acquisition from our zero-shot parser proves sufficient
in accommodating the task of story generation.

6.4 Script Acquisition on Spinn3r

In the previous section, we performed script acquisition on MCScript, based on
our zero-shot parser; we show that script knowledge acquired on MCScript via our
zero-shot parser is sufficient to support the downstream task of story generation.
However, the stories in MCScript are crowd-sourced, which still incurs a considerable
amount of cost. In this section, we explore the potentiality of script acquisition on
freely accessible, naturally generated texts with the methods we have developed.

The stories in MCScript differ from those generated naturally mainly from two
perspectives. First, these texts are simple in language, since crowdsource workers
were instructed to tell the story as you would tell a child ; second, all MCScript
stories are devoted to describing the scenario of interest, while this is usually not
true for naturally generated texts, because script knowledge is assumed to be
common knowledge among the authors and the readers. As it would turn out,
script acquisition from naturally generated texts is much more complicated than
from MCScript; our parser seem to exhibit sensible behavior but is insufficient to
substitute human annotators.

6.4.1 Data

Our experiments are conducted on a subset of Spinn3r (see Burton et al., 2009),
which is a collection of around 44 million personal blogs. Gordon and Swanson
(2009) identified 1.5 million from the corpus as personal stories. These are supposed
to be narratives on daily activities; these narratives are supposed to, to some
extent, encode script knowledge (see Figure 6.1 for an example story from Spinn3r).
From the perspective of script acquisition, naturally generated texts present a very
different picture than InScript. As script knowledge is a category of commonsense
knowledge, one would rarely describe it in detail, but would most probably assume
that the readers are already aware of it and focus on the informative parts of the
story. These incomplete descriptions drastically improve the difficulty of acquiring
procedural knowledge.

As our zero-shot parser works on multiple descriptions of specific scenarios of interest,
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Figure 6.2: A Spinn3r story on answering the phone annotated with script events
and participants. As is opposed to InScript stories, this story is about a personal
experience, instead of the general knowledge about what it means to answer a phone.

the first step is to identify scenarios of interest from Spinn3r’s personal stories.
There are existing resources that fit our need. Wanzare et al. (2019) approach
scenario detection on Spinn3r stories. For evaluation purposes, they annotated
around 500 stories with scenario labels. Wanzare et al. (2019) firstly segment the
stories with topic modeling so that each segment is devoted to a single scenario.
The segments are then annotated with scenario labels. Therefore, the starting point
of our approach is established, that is, texts on specific scenarios. Yet, these texts
do not have event nor participant annotations. We take about 10% of these texts
and manually annotate them with event and participant types, to evaluate our
script parser. These texts are about two scenarios that are not included in InScript:
answering the phone and working in the garden. Figure 6.2 gives a sample story
from Spinn3r with its annotations.

6.4.2 Results

We execute exactly the same pipeline as we did on MCScript. That is, we train our
zero-shot parser on InScript, to perform inference on Spinn3r. We also evaluate
its performance with the Hugarian F1 we defined in the previous chapter. The
quantitative results are given in Table 6.8.

Unsurprisingly, we see a considerable performance drop compared to MCScript.
These datasets are close in size. The most important reason for the performance
difference is that Spinn3r texts do not encode script knowledge in a structured
manner, like MCScript. For example, unlike elaborating how one would typically
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model gold regularity events participants

macro F1 micro F1 macro F1 micro F1

XLNet X 29.0 32.2 26.4 29.1
Zero-shot X 31.6 35.7 27.2 35.9

Table 6.8: Results on Spinn3r. Both models inference based on the regularity
predictions by our regular candidate identifier, so XLNet also benefits from it.

answer a phone, the story in Example 6.1 is about a fun experience that is relevant
to answering a phone. Therefore, the text rarely strictly mentions knowledge about
answering the phone, but assumes it. In contrast, InScript stories are completely
devoted to describing the scenario, with a roughly constant flow of information.

We still observe moderate performance improvement over XLNet. That means some
knowledge on script parsing is indeed learned from InScript and transferred to
Spinn3r.

Table 6.4 gives a coupld of cherry-picked clusters produced by our parser. In general,
the parser exhibits promising performance on some of the most obvious clusters,
like the ones shown in Table 6.4. However, it really struggles to come up with
reasonable clusters for the less obvious ones. We believe that with script knowledge
more implicit in text, the model needs much more data from Spinn3r than from
MCScript to deliver a similar performance.
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ground
truth

text

receive call ...day my home phone rang and my husband s cell phone number [came]
up on the caller I . D . But when...

call ...She also had [called] my husband s cell phone before she called me and
he...

call ... as our home number . She has [called] twice since then , the second
time she called I receive...

call ...phone rings last night and my husband s cell phone [shows] up , funny
thing is my husband was sitting right...

phone ...our date was winding down , Justin ’ s cell [phone] rang . The first
thought was ,...

phone ...The other day my home phone rang and my husband s [cell] phone
number came up on the caller I ...

phone ...The other day my home phone rang and my husband s cell [phone]
number came up on the caller I ...

phone ...agency ) . She also had called my husband s [cell] phone before she
called me and he said it came up...

phone ...before she called me and he said it came up on his [caller] I . D . as
our home number ....

call ...twice since then , the second time she called I answered [it] thinking it
was my husband but it was her so I...

caller ...time she called I answered it thinking it was my husband but [it] was
her so I hung up . Then the phone...

phone ...funny thing is my husband was sitting right beside me and his [cell]
phone was off , so we let the voice mail...

phone ...thing is my husband was sitting right beside me and his cell [phone]
was off , so we let the voice mail pick...

call ... So back on the 20 th of May I got a [call] from a scam ming company
trying to give me a ...

Table 6.9: Example output clusters from answering the phone, acquired via zero-
shot script parsing on Spinn3r. Top: event; bottom: participant. The candidates are
highlighted with brackets. Note that there is an event call, as well as a participant
call. The table presents all instances from these clusters. These clusters are casually
cherry-picked.
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Chapter 7

Outlook

In this chapter, we discuss the future of explicit script acquisition.

The most important question is, what role could large pretrained language models
play in the acquisition of script knowledge?

Pretrained language models have continuously exhibited impressive performance
in various NLP tasks. In particular, existing research efforts show that pretrained
language models encode knowledge about our world and that the knowledge could
be extracted (see, e.g. AlKhamissi et al., 2022; Petroni et al., 2019). We have
good reasons to anticipate that script knowledge, which is ubiquitous in language
practices, is also, to some extent, encoded in these models. That opens up two
possibilities. First, we could use them as the source of script knowledge to perform
script acquisition and extract key elements of script knowledge, such as events
and participants. Second, we could try to design script-knowledge-aware NLP
applications based on pretrained language models. Such applications will not access
script knowledge in any explicit format, but behave so that they do not violate script
knowledge. Potentially, this approach could avoid the technical difficulties induced
by explicit script acquisition. For example, granularity will no longer be a ma-
jor concern as we will not have to dictate what the sets of events and participants are.

In this chapter, we take a step towards answering this question: how much script
knowledge is encoded in pretrained language models? In particular, is it abundant
enough to render explicit script acquisition unnecessary?

We start this chapter with an introduction to large pretrained language models
(Section 7.1). Afterwards, we inspect a prominent example of pretrained language
models, GPT-3, from two perspectives. First, we query GPT-3 to acquire key
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elements of script knowledge, including events, participants, etc. We also attempt
to let GPT-3 perform script parsing (Section 7.2). Second, we evaluate it as a
story generation system, to compare with what we developed in Chapter 6 (Section
7.3). As we shall see, our inspections suggest that GPT-3 could deliver impressive
performances. At the current state of research, pretrained language models seem to
offer better performance than explicit script acquisition. These observations are
consistent with recent works of the community.
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7.1 Pretrained Language Models

Large language models play a prominent role in modern NLP. Access to unpreced-
ented amounts of training data and computational resources grants high-quality
general-purpose representations. A product of our era, pretrained language models
deliver strong performances on various tasks, whereas requiring only moderate de-
velopment expenses. These models encode both linguistic knowledge and common
sense knowledge (see, e.g., Bouraoui et al., 2020). From the perspective of this
thesis, the most interesting question is how much script knowledge is encoded in
these models. In this section, we briefly overview some models from the transformer
family and how pretrained language models could be used in zero-shot style learning.

7.1.1 The Transformers

The term transformer originates from Vaswani et al. (2017). The authors proposed
a novel neural network architecture, which they term transformer, to construct a
sequence-to-sequence translation model. The model, which claims attention is all
you need, unconventionally stripped most of the reccurrence features in sequence
models like LSTM(see Hochreiter and Schmidhuber, 1997; Sak et al., 2014). The
model improved both the state of the art of English-to-German and that of English-
to-French by a considerable margin.
A transformer is based almost exclusively on attention mechanisms. A transformer
encoder is a chunk of neural network consisting of multiple transformer layers. Each
transformer layer takes a sequence of vectors as input and converts them into a
sequence of essentially the same length. At the first layer, the input comprises the
embeddings of each word piece. These layers feature the following technical designs.

Multihead attention. Attention is the central mechanism of a transformer model.
Each layer contains multiple attention mechanisms that share the same design. In
each of these ‘heads’, each input is associated with 3 vectors: a dk dimensional
key K, a quiry R of the same size, and a value V . To evaluate attention from one
position to the other, we use the quiry vector of the former to quiry the key vector
of the latter:

Att(Q,K, V ) = softmax(
QKT

√
dk

)V

The attention quantities of all attention heads are concatenated, which, after going
through a residual connection and layer normalization, is fed to a fully connected
layer. The outcome is then fed to the next transformer layer.
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Figure 7.1: Depiction of the original transformer model from Vaswani et al. (2017)

Positional Encoding Multi-head attention as is defined above is ignorant of
word order. To this end, a positional encoding vector is added to each input vector
to leave a trace of its position in the input sequence. The positional encoding for
the token at position p is defined as

P(p, 2i) = sin(p/100002π/d)

P(p, 2i+ 1) = cos(p/100002π/d)

In some later versions of transformers, positional encoding becomes trainable.

The community has seen a considerable number of variants of the original trans-
formers. For example, BERT (Kenton and Toutanova, 2019) trains on a pair of input
sequence and use the masked language model objective to predict each token based
on both its left and right context, to acquire general purpose representations; XLNet
(Yang et al., 2019) introduces sequence level recurrence to remove the limitation of
the input length; RoBERTa (Liu et al., 2020) further refines the training process.

7.1.2 Transfer Learning from Large Language Models

Large language models see an unprecedented concentration of resources in NLP. In
2019, BERT, which has 340M parameters, was trained with a corpus of 3.3 billion

146



147 CHAPTER 7. OUTLOOK

Figure 7.2: The scales of pretrained language models. Taken from https://medium.com/

pytorch/training-a-1-trillion-parameter-model-with-pytorch-fully-sharded-data

-parallel-on-aws-3ac13aa96cff

words (Kenton and Toutanova, 2019); GPT-2 (Radford et al., 2019) was trained
with 40GB text and has 1542M parameters. In 2020, GPT-3 (Brown et al., 2020)
raised the numbers to around 1 trillion works and 175 billion parameters. The
training cost of GPT-3 is estimated to be around 12 million US dollars1. See also
Figure 7.2.

Since these language models have access to such an incredible amount of data and
computational resources, it is reasonable to anticipate that they encode some general
knowledge of linguistics and of our world. In fact, transferring this knowledge has
been a major approach to improving the state of the art in various NLP tasks (see,
e.g., Kenton and Toutanova, 2019; Brown et al., 2020), without requiring much
training supervision. The most straightforward method, as proposed in Kenton and
Toutanova (2019), is to use these models as a feature extractor, to train classifiers
for the task of interest. Another approach is fine-tuning, as proposed by Howard
and Ruder (2018), where a small learning rate is applied to reinstate training to
adapt to a specific task.

1Elliot Turner, at https://twitter.com/eturner303/status/1266264358771757057
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Whereas fine-tuning a pretrained model still requires a certain amount of annot-
ated training data, prompting allows researcher to further cut the requirement on
annotated data; it is even feasible to learn some tasks without annotated data at
all. By promting we feed a language model a (usually carefully designed) piece of
text, aka the prompt, and ask it to continue the text. The continuation, together
with the prompt, is supposed to receive a high probability from the language model.
Which means, the text should be similar to the training data, module the model’s
inductive bias. There are various aspects when it comes to being similar. The
generated text of a language model could be similar to its training data by being
grammatical, by not violating kommonsense knowledge, etc. Yet surprisingly, the
latest language models’ generations exhibit such coherence that it seems that the
language model begins to understand task descriptions. That means we could
directly query these models for answers. We could either directly consider the
language model a solution to our problem of interest, or at least generate quality
auxillary training data from it (see, e.g., Radford et al., 2019; Schick and Schütze,
2021). Here are some examples2.

Prompt: POS tagging.
Input: The FBI searched Donald Trump’s Mar-a-Lago resort in
Florida after it obtained evidence there was probably an effort to
conceal classified documents in defiance of a grand jury subpoena
and despite his lawyers suggesting otherwise, the justice depart-
ment said in a court filing.

>> Output: The/DT FBI/NNP searched/VBD Donald/NNP
Trump’s/NNP Mar-a-Lago/NNP resort/NN in/IN Florid-
a/NNP after/IN it/PRP obtained/VBD evidence/NN there/EX
was/VBD probably/RB an/DT effort/NN to/TO conceal/VB
classified/JJ documents/NNS in/IN defiance/NN of/IN a/DT
grand/JJ jury/NN subpoena/NN and/CC despite/IN his/-
PRP$ lawyers/NNS suggesting/VBG otherwise/RB ,/, the/DT
justice/NNP department/NN said/VBD in/IN a/DT court/NN
filing/NN ./.

2These examples are generated with openAI’s demo, under the default settings: https://

beta.openai.com/playground. This also applies to the stories we evaluate in Section 7.3. Due
to availability issues, some examples in Sections 7.2 and 7.3 are generated with ChatGPT in
https://chat.openai.com/.
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Prompt: NER tagging.
Input: The FBI searched Donald Trump’s Mar-a-Lago resort in
Florida after it obtained evidence there was probably an effort to
conceal classified documents in defiance of a grand jury subpoena
and despite his lawyers suggesting otherwise, the justice depart-
ment said in a court filing.

>> Output: <B-NER>Donald Trump</B-NER>’s Mar-a-Lago re-
sort in <B-LOC> Florida</B-LOC> after it obtained evidence
there was probably an effort to conceal classified documents in
defiance of a grand jury subpoena and despite his lawyers sug-
gesting otherwise, the <B-ORG> justice department</B-ORG>
said in a court filing.

Prompt: Noun phrase chunking.
Input: The FBI searched Donald Trump’s Mar-a-Lago resort in
Florida after it obtained evidence there was probably an effort to
conceal classified documents in defiance of a grand jury subpoena
and despite his lawyers suggesting otherwise, the justice depart-
ment said in a court filing.

>> Nounphrase chunking:
The FBI
Donald Trump’s Mar-a-Lago resort
Florida
evidence an effort to conceal classified documents
defiance
a grand jury subpoena
his lawyers
the justice department
a court filing.

Prompt: Barack Obama was born in

>> Hawaii in 1961, to a white mother and black father.

We could see that GPT-3 responds pretty impressively to several foundational NLP
tasks. It also exhibits some knowledge about the world. In the remainder of this
chapter, we inspect its capacity as a source of script knowledge.
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7.2 GPT-3 as a Source of Script Knowledge

Scenario Description

First, we examine whether GPT-3 could generate accurate descriptions of script
scenarios. That is, if it could generate text that provides a correct description of the
activity, like the texts we see in WikiHow (https://www.wikihow.com/). Being
able to generate such texts would preliminarily show that the model encodes script
knowledge. Since script knowledge is ubiquitous in naturally generated texts, we
anticipate that correct descriptions of script scenarios are frequent on the Internet.
That means they are also frequent in the training data of GPT-3, as a large pro-
portion of the training data is from common crawl. Such texts are easy to learn
by large language models, so GPT-3 should be able to generate decent scenario
descriptions.

(a) Prompt: Describe how to change a light bulb.

>> 1. Turn off the power: Before changing a light bulb, make sure to
turn off the power to the light fixture. You can do this by flipping
the switch off or by turning off the circuit breaker that controls
the light.

2.Let the bulb cool down: If the bulb has been on recently, let it
cool down for a few minutes before attempting to remove it. Hot
bulbs can break easily and can also burn your fingers.

3.Remove the old bulb: If the bulb is in a lamp or a ceiling
fixture, gently twist it counterclockwise until it comes loose from
the socket. If the bulb is in a recessed or track lighting fixture,
you may need to push up on the bulb and turn it counterclockwise
to remove it.

4.Choose the right replacement bulb: Check the wattage and size
of the old bulb to ensure you purchase the correct replacement
bulb.

5.Insert the new bulb: Holding the new bulb by the base, gently
insert it into the socket and turn it clockwise until it feels snug.

6.Turn on the power: Once the new bulb is in place, turn the
power back on to the light fixture by flipping the switch or turning
on the circuit breaker.

7.Test the new bulb: Turn on the light to make sure the new bulb
is working properly.
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(b) Prompt: Describe how to fix a flat tire.

>> Fixing a flat tire is a straightforward process that requires a few
tools and some basic knowledge. Here’s a step-by-step guide on
how to fix a flat tire:

1.Find a safe spot: If you realize that you have a flat tire while
driving, try to find a safe spot to pull over. Avoid busy roads,
sharp turns, and hills.

2.Turn on the hazard lights: Once you have found a safe spot,
turn on the hazard lights to signal to other drivers that your
vehicle is not moving.

3.Gather the tools: You will need a few tools to fix a flat tire,
including a spare tire, a lug wrench, and a jack. These tools are
typically located in the trunk of your car.

4.Loosen the lug nuts: Using the lug wrench, loosen the lug nuts
on the flat tire. Do not remove them yet.

5.Lift the vehicle: Use the jack to lift the vehicle off the ground.
Make sure that the jack is placed on a solid surface and that it is
supporting the weight of the car.

6.Remove the flat tire: Once the vehicle is lifted, remove the lug
nuts and take the flat tire off.

7.Install the spare tire: Place the spare tire onto the wheel hub
and screw on the lug nuts by hand.

8.Tighten the lug nuts: Using the lug wrench, tighten the lug nuts
in a star pattern until they are snug.

9.Lower the vehicle: Slowly lower the vehicle back to the ground
using the jack.

10.Tighten the lug nuts again: Using the lug wrench, tighten the
lug nuts in the same star pattern until they are fully tightened.

11.Check the tire pressure: Once the tire is fixed, use a tire gauge
to check the pressure of the spare tire. The recommended pressure
can be found in your car manual or on the tire itself.
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12.Put away the tools: After the tire is fixed, put away all the
tools and the flat tire in the trunk of your car.

By following these steps, you should be able to fix a flat tire
quickly and safely. However, if you are unsure about any of these
steps or if you do not feel comfortable changing a tire, it is best
to contact a professional.

These are quality responses. Now we take it one step further by asking for script
descriptions under more specific circumstances, to see if the generated descriptions
could fit these specificities. For the sake of simplicity, we query for shorter descrip-
tions.

(a) Prompt: Describe how to take a taxi. (less than 150 words)

>> To take a taxi, first, find a taxi stand or hail a taxi on the street.
Make sure the taxi is available and has a working meter. When
you get in, tell the driver your destination and confirm that they
know where it is. Fasten your seatbelt and sit back as the driver
takes you to your destination. When you arrive, check the meter
to ensure you have been charged the correct fare. If you are paying
with cash, hand the driver the fare and any tip. If paying with
a credit or debit card, wait for the driver to give you the card
machine to complete the transaction. Lastly, don’t forget to take
any belongings with you before exiting the taxi.

(b) Prompt: Describe how to take a taxi with a cell phone. (less than 150
words)

>> To take a taxi with a cell phone, first, download a ride-hailing
app such as Uber, Lyft or Grab. Create an account and link your
preferred payment method. Open the app and set your pickup
location and destination. Confirm the ride details and wait for a
driver to accept your request. Once a driver accepts, you will see
their name, photo, and car details in the app. Track the driver’s
location and estimated time of arrival. When the driver arrives,
confirm their identity and get in the car. The driver will take you
to your destination and the fare will be charged to your linked
payment method. Don’t forget to rate the driver at the end of the
ride.
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(c) Prompt: Describe how to call a taxi for 8 people. (less than 150 words)

>> To call a taxi for 8 people, you can either use a ride-hailing app
that offers larger vehicles or call a taxi company that provides
minivans or SUVs. When calling a taxi company, inform them
that you need a vehicle that can accommodate 8 passengers.
Provide the pickup location, destination, and desired pickup time.
Confirm the cost of the ride and any additional fees. Make sure
to get the driver’s contact information, including their name and
phone number. On the day of the ride, be ready at the pickup
location at the agreed time and wait for the driver to arrive.
Once the driver arrives, confirm their identity, and ensure that
everyone can comfortably fit in the vehicle. Lastly, make sure to
buckle up and enjoy the ride.

(d) Prompt: Describe how to take a taxi when you have two less than four
year old kids with you. (less than 150 words)

>> When taking a taxi with two children under the age of four, it’s
important to ensure their safety and comfort. You may need
to bring your own car seats or booster seats for the children,
depending on the local regulations and the taxi company’s policies.
Call ahead to the taxi company to confirm their policies and
ensure that they have the appropriate vehicle to accommodate
your family. If using a ride-hailing app, look for options that
provide child car seats or booster seats. When you get in the taxi,
buckle up the children securely in their seats before securing your
own seatbelt. If the children become restless or upset during the
ride, try to soothe them and distract them with toys or snacks.
Lastly, make sure to double-check the taxi for any items you may
have brought with you before exiting.
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(e) Prompt: Describe how to call a taxi to send a super drunk buddy home.
(less than 150 words)

>> To take a taxi with a cell phone, first, download a ride-hailing
app such as Uber, Lyft or Grab. Create an account and link your
preferred payment method. Open the app and set your pickup
location and destination. Confirm the ride details and wait for a
driver to accept your request. Once a driver accepts, you will see
their name, photo, and car details in the app. Track the driver’s
location and estimated time of arrival. When the driver arrives,
confirm their identity and get in the car. The driver will take you
to your destination and the fare will be charged to your linked
payment method. Don’t forget to rate the driver at the end of the
ride.

(f) Prompt: Describe how to take a taxi in a country whose language you do
not understand. (less than 150 words)

>> Taking a taxi in a country whose language you do not understand
can be challenging, but it is possible. Here are some tips:

1.Prepare the address: Have the address of your destination
written down or saved on your phone in the local language. You
can also show the address to the taxi driver.

2.Use translation tools: Use translation apps or devices to com-
municate with the taxi driver. You can use apps like Google
Translate or bring a pocket translator with you.

3.Use gestures: Use hand gestures or body language to communic-
ate with the taxi driver. Simple gestures like pointing or nodding
can convey a lot of information.

4.Carry a map: Carry a map of the city with you. This can help
you orient yourself and give you a general sense of where you are
going.

5.Be patient: Remain calm and patient, and try to communicate
as clearly as possible. Most taxi drivers are familiar with tourists
who don’t speak the language, and they will likely be accommod-
ating and helpful.

Overall, taking a taxi in a foreign country may require some
extra effort and patience, but with the right preparation and
communication, it can be a safe and convenient way to get around.
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The model adapts quite well to the different situations in which we need a taxi.
Impressively, it generates appropriate, specific descriptions under these situations
((a)-(f)). The texts specify how to handle children, a drunken buddy, and in a
foreign country. Now, we push even further, to give it some bizzare situations
((g)-(i)).

(g) Prompt: Describe how to take a taxi if you are in the middle of no where
and it is midnight and your phone is dead. (less than 150 words)

>> If you are in the middle of nowhere and it’s midnight with a dead
phone, taking a taxi may seem challenging, but it’s still possible.
Firstly, try to locate the nearest main road or highway and walk
towards it. Once you reach the road, look out for passing cars,
and try to flag down a taxi or a passing vehicle. If there’s no
traffic on the road, wait for a while and keep an eye out for any
approaching cars.

If you’re lucky, you might find a taxi passing by, and you can
wave it down to stop. Once you get into the taxi, inform the
driver of your destination, and if possible, negotiate the fare in
advance. If you don’t have cash, explain your situation to the
driver and request him/her to stop at an ATM along the way.

Remember, it’s essential to stay safe and be cautious when hailing
a taxi from the roadside, especially in the middle of nowhere.
Always trust your instincts and take necessary precautions to
avoid any potential danger.

(h) Prompt: Describe how to take a taxi from Amsterdam to Paris, with two
pandas and a racoon. (less than 150 words)

>> I’m sorry, but it is not possible to take a taxi from Amsterdam to
Paris with two pandas and a raccoon. Taxi services have certain
limitations and restrictions, and transporting wild animals is
not allowed for safety reasons. Moreover, the distance between
Amsterdam and Paris is too long, and it is not feasible to travel
by taxi with animals. It is best to explore other options such as
taking a flight, driving or using public transportation. If you need
to transport animals, it is advisable to contact a specialized pet
transportation service that can ensure the safety and well-being
of the animals during the journey.
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(i) Prompt: Describe how to take a taxi when you have no money. (less than
150 words)

>> If you don’t have any money to take a taxi, there are still some
options available. Firstly, try to negotiate with the driver and
explain your situation. They may be willing to accept a promise
to pay later or allow you to pay via a mobile app. If the driver is
unwilling to accommodate your situation, you could try asking
nearby businesses or individuals for a loan or assistance. Al-
ternatively, you could consider using a ridesharing service that
allows payment via a mobile app. In any case, it’s important to
be respectful and grateful for any assistance you receive. Remem-
ber, it’s never a good idea to try and skip out on paying for a
ride, as this can damage your reputation and could result in legal
consequences.

The responses are appropriate; more importantly, the model recognizes the precon-
ditions under which one could taking a taxi.

These examples suggest that GPT-3 could generate script descriptions in a flexible
manner. We also repeat the experiment with 5 random scenarios from MCScript.
We do not spot any issue in all generations of these scenarios.

Events and Temporal Order

Now we query about script events. We note that this query is nontrivial. Although
GPT-3 exhibits, to a certain level, capabilities of understanding task descriptions,
we do not expect the model to show enough understanding of the term event as we
use in this thesis, because this sense differs from the senses it represents in most
web texts or the original training data of GPT-3. As the most straightforward
alternative, we ask for the steps of the scenarios.
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(a) Prompt: what are the steps of changing a light bulb? (in succinct language)

>> 1.Turn off the power. 2.Let the bulb cool down. 3.Remove any
coverings. 4.Unscrew the old bulb. 5.Dispose of it properly.
6.Insert and screw in the new bulb. 7.Replace any coverings.
8.Turn on the power and test the light.

(b) Prompt: what are the steps of obtaining a phd? (in succinct language)

>> 1.Choose a field of study and research interest. 2.Obtain a bach-
elor’s degree in a related discipline. 3.Apply and gain acceptance
into a doctoral program. 4.Complete coursework and pass quali-
fying exams. 5.Develop a research proposal and get it approved.
6.Conduct original research under the guidance of a supervisor.
7.Write a dissertation presenting your research findings. 8.De-
fend your dissertation in a formal oral examination. 9.Publish
research papers in relevant journals. 10.Obtain approval from
your committee and the institution. 11.Receive your doctoral
degree and graduate.

These lists are correct. Now, we query the temporal order among these events.

(c) Prompt: When changing a light bulb, do we unscrew the old bulb first, or
insert the new bulb first? The answer is

>> to unscrew the old bulb first.

(d) Prompt: When changing a light bulb, do we unscrew the old bulb first, or
turn on the power first? The answer is

>> to unscrew the old bulb first and then to turn on the power.

(e) Prompt: When changing a light bulb, do we unscrew the old bulb first, or
turn off the power first?

>> You should turn off the power before changing the light bulb.

(f) Prompt: when obtaining a phd, do we publish research papers first or
defend the dissertation first? (in one sentence)

>> Typically, in the process of obtaining a Ph.D., research papers
are published before defending the dissertation.

All of these responses are correct. It seems that the simplest way of prompting

157



158 CHAPTER 7. OUTLOOK

could give us a reasonable set of events with a correct temporal order3.

Participants

(a) Prompt: List all entities that could possibly be involved when taking a taxi,
in succinct language.

>> Passenger, driver, taxi company, taxi dispatch center, local trans-
portation authority, payment processing company.

(b) Prompt: List all entities that could possibly be involved when fixing a flat
tire, in succinct language.

>> Vehicle owner, tire manufacturer, tire repair shop, mechanic,
roadside assistance service.

(c) Prompt: List all entities that could possibly be involved when taking a
flight, in succinct language.

>> Passenger, airline company, airport authority, air traffic control,
immigration and customs authorities, baggage handling company,
aircraft manufacturer, maintenance and repair company, security
personnel, ground handling company, air traffic regulatory body.

With (a)-(c) we query the model for script participants. Generations are correct,
but we find some script participants missing, such as tire in fixing a flat tire, taxi
in taking a taxi and aircraft in taking a flight. These are crucial participants that
should not be missed out on. However, missing these participants is probably due
to the limitation of GPT-3 understanding task descriptions, instead of encoding
an insufficient amount of script knowledge. The term Participant has a specific
interpretation in the context of script knowledge, which deviates from its most
common sense. The model does not receive specific training for terminologies, nor
is participant so frequent as a specific terminology that a language model learns it
anyways. Therefore, querying participants will only give us human participants in
the scenarios. Entity is the best replacement we find, but clearly the model tends
to interpret it as humans or organizations.

Note that all our queries are performed unsupervised. However, the model could
be guided by a handful of examples. Again, the purpose of these examples is to

3These verbal phrases are not precisely script events, as the latter are supposed to abstract
away from surface texts. But for the sake of script acquisition, they do allow us to generate
temporal script graphs.
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imporve task description, instead of injecting script knowledge.

(a) Prompt: The participants of going grocery shopping includes: customer,
shop, shopping cart, grocery, shopping list, cashier, money, shop-
ping bag, checkout counter. What are the participants of taking
a taxi? (in succinct language)

>> The participants of taking a taxi include: passenger(s), taxi driver,
taxi company, taxi meter, taxi dispatch, GPS/navigation system,
payment method, taxi cab, and traffic/road conditions.

(b) Prompt: The participants of going grocery shopping includes: customer,
shop, shopping cart, grocery, shopping list, cashier, money, shop-
ping bag, checkout counter. What are the participants of taking
a flight? (in succinct language)

>> The participants of taking a flight include: passenger(s), airline,
aircraft, pilot, flight attendant(s), air traffic control, airport,
luggage, boarding pass, security checkpoint, and immigration/-
customs (for international flights).

(c) Prompt: The participants of going grocery shopping includes: customer,
shop, shopping cart, grocery, shopping list, cashier, money, shop-
ping bag, checkout counter. What are the participants of fixing a
flat tire? (in succinct language)

>> The participants of fixing a flat tire include: vehicle owner/driver,
flat tire, spare tire, jack, lug wrench, tire pressure gauge, and
potentially a roadside assistance service.

The model is now much better at listing script participants that are usually (i.e.
in most web texts) not referred to as an entity. The answers are still less than
satisfactory, but given the learning capacity the model exhibits to capture new
concepts from one single example, it is promising to find a description of detecting
script participants that yields fine performance.

159



160 CHAPTER 7. OUTLOOK

Summary

7.3 GPT-3 as a Script Aware Story Generation

System

In the previous section we query GPT-3 for key elements of script knowledge,
including events, participants, scenario descriptions, and temporal orders and see
impressive performance. In this section, we evaluate GPT-3 on a downstream
task of script knowledge, that is, story generation. We exploit specific prompts to
construct a story generation agent out of querying GPT-3, which takes the scenario
and an agenda as input, and produces script stories corresponding to the agenda. In
Chapter 3 we show that script knowledge allows us to establish the global coherence
of these stories. However, what we do here is completely unsupervised, which means
it is entirely up to GPT-3 to provide script knowledge. We generate stories for the
test scenarios of MCScript and evaluate this story generation system in the same
way as we did in Chapters 3, and compare it to other story generation systems that
have different sources of script knowledge.

Story Generation from Agendas with GPT-3

There are various possible ways to construct a story generation system out of GPT-3.
Our preferences include the following. First, for comparison purposes, it must accept
the same type of input as the story generation systems that we discuss in Chapters
3 and 6. That is, a scenario and an agenda. Second, it should not receive any
supervision, so that GPT-3 acts as the sole source of script knowledge. Third, to
ensure comparability, the generated story should fit what our human evaluation
pipeline is meant for. Specifically, the language should not be too complex, and
the length of the stories should not deviate away from that out of the previous
generation systems and InScript itself.

Empirically, we find that the following pattern works well for our intentions. The
prompt is simple and the generated story is in good correspondence with the
agendas.

160



161 CHAPTER 7. OUTLOOK

Prompt: On changing a light bulb.
Agenda: bulb breaks, climb on ladder, turn light off, screw new
bulb in, light works
story:

>> I was in my kitchen when I noticed that the light had gone out.
I got a ladder and climbed up to change the bulb. I unscrewed
the old bulb and screwed in the new one. The light came on
and everything was back to normal.

Prompt: On reading a story to a child.
Agenda: let child choose story, turn page, read, child reads along,
put book away
story:

>> The mother and child snuggled together on the couch, the mother
with a book in her hand. ”What story would you like me to read
to you tonight?” she asked her child. The child pointed to a
book on the shelf. The mother took it down and handed it to the
child. The child turned to the first page and the mother began
to read. The child followed along, pointing to the words as the
mother read. Occasionally, the child would ask a question about
the story. When the story was finished, the child put the book
away and snuggled up against the mother. ”That was a great
story,” the mother said. ”I”m glad you chose it.”

Agenda Generation

Now we show how to generate script agendas with GPT-3. The agendas as input
to our story generation systems in Chapters 3 and 6 are generated by a language
model of script events estimated with the respective training sets. An important
aspect of these agendas is that they encode script knowledge obtained from the
training set. For the purpose of testing GPT-3 on how much script knowledge it
encodes, we cannot feed these agendas to GPT-3 for story generation. Instead, we
need to acquire such agendas from GPT-3.

161



162 CHAPTER 7. OUTLOOK

Prompt: generate an agenda for answering a phone (in concise phrases)

>> Agenda for Answering a Phone:
1.Ringing - Hear the phone ring and prepare to answer.
2.Greeting - Answer the phone with a friendly and clear greeting.
3.Identify Yourself - State your name or the name of the organ-
ization you represent.
4.Inquire about Caller’s Identity - Politely ask who is calling.
5.Active Listening - Pay attention to the caller’s response and
actively listen.
6.Respond to Caller - Provide a prompt and courteous reply based
on the caller’s needs.
7.Offer Assistance - Ask how you can assist or address the caller’s
concerns.
8.Gather Information - Request necessary details or information
from the caller.
9.Take Notes - Record relevant information during the conversa-
tion.
10.Provide Solutions - Offer appropriate solutions or options to
address the caller’s needs.
11.Confirm Understanding - Ensure that both parties have a clear
understanding of the conversation.
12.Thank the Caller - Express gratitude for the caller’s time and
cooperation.
13.Farewell - End the conversation politely and wish the caller a
good day.
14.Follow-Up Actions - Take note of any follow-up actions re-
quired on your part.
15.Disconnect - Hang up the phone after the conversation con-
cludes.
Remember to adapt the agenda based on the nature of the call
and any specific guidelines or procedures provided by your organ-
ization.

If we directly query GPT-3 for an agenda, it gives fine responses (see above).
However, simply using such agendas as inputs to our querying-GPT-based story
generation system would raise another concern. That is, the stability of human
evaluation. Our plan is to evaluate this story generation system with the human
evaluation schema we develop in Chapter 3, and compare the results to those of
other automatic story generation systems. To this end, stories from different gener-
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ation systems will be mixed up, and a participant will receive random stories from
the pool. The variable we control is the origin of these stories, i.e. the system that
generates it. The entire set of stories is expected to be somewhat homogeneous in
all other aspects: These stories are on the same set of scenarios for each generation
system; they are generated by story generation systems that consume roughly the
same budget of computational resources when applicable; all stories admit simple
language, etc. However, if we use the agendas we get from direct queries like the
example above, we will incur another variable, that is, the set of events. The set of
events for all other story generation systems is that induced by the MCScript an-
notations4, but the set of events included in an agenda produced by GPT-3 could be
quite arbitrary. As the subjects of the evaluation need to decide whether an event is
realized in the stories, the difference in the names of the events matter in the process.

To address this issue, we do the following post-processing for the GPT-3 generated
agendas, to reduce its set of events to that of MCScript. Basically, we query GPT-3
for an agenda, and only keep the items that correspond to some event type that
exists in the annotations of MCScript. This judgement is made by the author. See
below.

Input: Scenario s from the test set of MCScript, and {mi : i ≤ l}, the
set of events corresponding to s in the annotations; sequence of
events A ← ∅.

1. Query GPT-3 with s to generate agenda {ei : i ≤ n}.

2. For i from 1 to n:

if exists j s.t. process ei is contained in mj:

A ← Amj

3. Output A

We are now set to query GPT-3 for script stories to compare with the other story
generation systems. We generate 4 stories per scenario for the evaluation.
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Prompt: generate an agenda for reading a story to a child (in concise
phrases)

>> 1.Introduction and Greeting
2.Select a Suitable Storybook
3.Settle in a Comfortable Reading Space
4.Engage the Child’s Attention with an Opening Question or
Preview
5.Read Aloud, Using Clear and Expressive Voice
6.Pause Occasionally to Ask Questions or Encourage Participa-
tion
7.Use Animated Facial Expressions and Gestures to Enhance the
Story
8.Explain Difficult Words or Concepts as Necessary
9.Encourage Imagination and Visualization
10.Discuss the Story and Its Themes After Reading
11.Relate the Story to Real-Life Experiences, if Applicable
12.Answer the Child’s Questions and Encourage Reflection
13.Express Appreciation for the Child’s Listening and Participa-
tion
14.Conclude with a Farewell and Invitation to Read Again

Post-processed: 1.
2.choose story
3.sit down
4.
5.read
6.child reads along
7.read
8.
9.
10.talk about story
11.talk about story
12.talk about story
13.finish reading
14.finish reading

Figure 7.3: An example agenda from GPT-3 and its post-processed version.
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Source Coverage Syntax Global
Coh.

Local
Coh.

Relevance Informativeness

No S. Knowledge 3% .25 .07 .24 .07 .07
Zero-shot 50% .56 .57 .54 .63 .59
Annotated 63% .43 .49 .42 .59 .51
GPT-3 83% .91 .86 .91 .87 .85

All differences are statistically significant according to independent T-test at α = 0.05.

Table 7.1: Results from human evaluation. All metrics are ranged [0, 1].

Evaluation

Table 7.1 gives the results of the evaluation to compare with the quality of the
stories generated according to various sources of script knowledge. The table is an
extension of Table 6.7 from the previous chapter.

We could see that the performance of GPT-3 is quite impressive. It outperforms all
other systems by a large margin in every metric. The text is fluent and coherent;
the agendas are well-covered. For the task of story generation, using GPT-3 as
the source of script knowledge and the story generation system outperforms the
combination of explicit script knowledge and a specialized script story generation
model.

7.4 Summary

In this chapter, we mainly evaluate large language models, represented by OpenAI’s
GPT-3, as a source of script knowledge. Our evaluation comprises two pespectives.
First, we examine whether GPT-3 could explicitly spell out key elements of script
knowledge (Section 7.2). Without any supervision, GPT-3 could spell out script de-
scriptions of fine quality. Directly querying GPT-3 for script events and participants
is nontrivial as susitable task descriptions need to be developed, because script
events and script participants as terminologies have specific senses. However, our
preliminary inspections suggest that this should be feasible. Second, we leave aside
explicit script knowledge and evaluate GPT-3 as a script-knowledge-aware agent.

4This also holds for the generation system based on script knowledge from zero-shot learning,
on a slightly difference sense. In particular, the event clusters from zero-shot learning do not have
event names, but we correspond the event clusters to the original MCScript events during the
evaluation of Hungarian F1, when we create a mapping from the zero-shot event clusters to the
MCScript events.
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We wrap up GPT-3 as a script story generation system and compare its performance
against the ones we train in Chapter 6, which is based on script knowledge from
different sources. One of these models is trained according to script knowledge
we acquire automatically, from zero-shot learning, whereas the other is trained
from hand-annotated script knowledge. According to human evaluation, GPT-3
outperforms these systems by a large margin, suggesting GPT-3’s high potential as
a script-knowledge-aware agent.

According to our inspections, in the current state of research, it seems very difficult
that NLP applications trained with explicit script knowledge outperform GPT-3.
Not to mention that the latter does not require much supervision. However, we
do not know enough to provide a confident answer whether the existence of large
language models renders the enterprise of explicit script acquisition unnecessary.
There are specific categories of common sense knowledge that large language models
cannot handle smoothly (see Figure 7.4), but we are yet to find a counterexample
for script knowledge.

Our observations are consistent with recent works of the community on acquiring
script knowledge from pretrained language models. Sancheti and Rudinger (2022)
report that event sequence descriptions generated by GPT-2 on a zero shot manner
do not admit fine quality. However, with a few examples and some post-processing,
the quality could be greatly improved. Li et al. (2023) was able to collect script
events and arrange them in a hierarchical manner, indicating which events could be
expanded to multiple events, resulting in a finer granularity.
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(a) Prompt: (1+(2*3))/2+1

>> 5

(b) Prompt: 333*555

>> 183325

(c) Prompt: How many prime numbers there are below 100?

>> 25

How many prime numbers are there below 102?

>> There are 25 prime numbers below 102.

(d) Prompt: Biden sold Alaska to Russia. How many states are there in the
US now?

>> There are 50 states in the US.

Figure 7.4: Examples where common sense knowledge is needed, but GPT-3 fail to
deliver correct responses.
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Conclusion

In this thesis, we develop an approach to acquire explicit script knowledge at a
lower cost.

In Chapter 3, we prove that script knowledge enables story generation systems to
perform better content selection. In particular, a story generation system could
include richer detail in the generated stories in an appropriate manner by referring
to script knowledge of the scenario of interest, as it gives clear evidence about the
progress of the generation.

We propose a high performance script parser in Chapter 4 that could parse script
events and participants simultaneously. In Chapter 5, we develop a zero shot
script parser that could perform script acquisition given script stories on unknwon
scenarios. Its performance is on par with that of a previous supervised parser. The
zero-shot parser automates the human annotation process in the creation of corpora
like InScript, which significantly reduces the cost of script acquisition. In Chapter
6, we evalute the script knowledge we could acquire from the zero-shot parser. On
MCScript, whose texts are similar to that of InScript, the script knowledge we
acquire delivers fine performance in both intrinsic evaluation (in Hungarian F1) and
extrisic evaluation (by accommodating the training of a story generation system).
In summary, it is now possible to perform script acquisition of unseen scenarios
on unannotated, InScript style script stories. That means, the vast majority of
the cost of creating InScript, which comes from munual annotation, could be evaded.

With the development of large pretrained language models, it is reasonable to
anticipate that these models encode script knowledge. We explore in Chapter
7 what this implies for script knowledge acquisition. In terms of explicit script
knowledge, it seems that GPT-3 is able to directly spell out key elements of
script knowledge, such as events and their temporal order. Another possibility is
to construct NLP applications that behave in a script-knowledge-aware manner,
without explicitly stating how each script scenario looks like. We construct a
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story generation system by prompting which outperforms all other story generation
systems we trained on different sources of explicit script knowledge. In conclusion,
in the current state of research, large language models seem to be the better option
when it comes to performance. It remains open whether pretrained language models
are the future of script acquisition. Yuan et al. (2023) collects CoScript, a dataset
that contains specific goals and the stps to achieve that goal. For example, a plan
of making a chocolate cake. The dataset is of fine quality, while the data is collected
by prompting InstructGPT with some post processing.
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