
Sequence analysis

PanPA: generation and alignment of panproteome graphs
Fawaz Dabbaghie 1,2,3,�, Sanjay K. Srikakulam 3,4,5, Tobias Marschall 1,2,�,†,
Olga V. Kalinina 3,6,7,�,†

1Institute for Medical Biometry and Bioinformatics, Medical Faculty and University Hospital D€usseldorf, Heinrich Heine University
D€usseldorf, 40225 D€usseldorf, Germany
2Center for Digital Medicine, Heinrich Heine University, 40225 D€usseldorf, Germany
3Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarbr€ucken, Germany
4Graduate School of Computer Science, Saarland University, 66123 Saarbr€ucken, Germany
5Interdisciplinary Graduate School of Natural Product Research, Saarland University, 66123 Saarbr€ucken, Germany
6Drug Bioinformatics, Medical Faculty, Saarland University, 66421 Homburg, Germany
7Center for Bioinformatics, Saarland University, 66123 Saarbr€ucken, Germany
�Corresponding authors. Medical Faculty, Institute for Medical Biometry and Bioinformatics, Heinrich Heine University, Moorenstr. 5, Build. 17.11, 40225
D€usseldorf, Germany. E-mails: fawaz@hhu.de (F.D.) and tobias.marschall@hhu.deolga.k (T.M.); Helmholtz Institute for Pharmaceutical Research Saarland
(HIPS), Helmholtz Center for Infection Research (HZI), Campus E8 1, 66123 Saarbr€ucken, Germany. E-mail: alinina@helmholtz-hzi.de (O.V.K.)
†Equal contribution.
Associate Editor: Aida Ouangraoua

Abstract
Motivation: Compared to eukaryotes, prokaryote genomes are more diverse through different mechanisms, including a higher mutation rate
and horizontal gene transfer. Therefore, using a linear representative reference can cause a reference bias. Graph-based pangenome methods
have been developed to tackle this problem. However, comparisons in DNA space are still challenging due to this high diversity. In contrast,
amino acid sequences have higher similarity due to evolutionary constraints, whereby a single amino acid may be encoded by several synony-
mous codons. Coding regions cover the majority of the genome in prokaryotes. Thus, panproteomes present an attractive alternative leveraging
the higher sequence similarity while not losing much of the genome in non-coding regions.
Results: We present PanPA, a method that takes a set of multiple sequence alignments of protein sequences, indexes them, and builds a
graph for each multiple sequence alignment. In the querying step, it can align DNA or amino acid sequences back to these graphs. We first
showcase that PanPA generates correct alignments on a panproteome from 1350 Escherichia coli. To demonstrate that panproteomes allow
comparisons at longer phylogenetic distances, we compare DNA and protein alignments from 1073 Salmonella enterica assemblies against E.
coli reference genome, pangenome, and panproteome using BWA, GraphAligner, and PanPA, respectively; with PanPA aligning around 22%
more sequences. We also aligned a DNA short-reads whole genome sequencing (WGS) sample from S.enterica against the E.coli reference
with BWA and the panproteome with PanPA, where PanPA was able to find alignment for 68% of the reads compared to 5% with BWA.
Availalability and implementation: PanPA is available at https://github.com/fawaz-dabbaghieh/PanPA.

1 Introduction
Prokaryotes have been living on Earth for billions of years,
during which they continued to evolve rapidly. With the geo-
chemical changes on the planet, bacteria needed to adapt in or-
der to survive these environmental and habitat changes, which
led to their vast genetic diversity (Dunlap 2001). Looking at
stable environments like garden soil, lakes, or coastal seawater
that do not experience extreme environmental changes, we ob-
serve a large diversity of prokaryotic organisms; and it is
expected that not more than 1% of the bacteria in these sam-
ples can be cultivated in the lab (Amann et al. 1995), which
suggests that the true diversity is even larger. It has been esti-
mated that the total number of prokaryotic cells on Earth is
around 4−6� 1030 and their cellular carbon amount is
3:5−5:5� 1014 kg (Whitman et al. 1998).

With the fast development of sequencing technologies,
and, as a consequence, the fast production of large amounts
of sequences, diversity and variability of prokaryotic

genomes has become even more apparent (Perna et al. 2001).
One way to understand new genomes and their diversity is by
comparing their DNA to some well-studied reference
genomes of the same species. Therefore, sequence alignment
has been a cornerstone in bioinformatics for many years: it is
extremely useful for finding homology between genes and
proteins, identifying conserved regions, understanding evolu-
tionary relationships between organisms, and many other im-
portant tasks (Higgins 2001).

In many cases, sequencing reads of a new sample are di-
rectly analyzed by comparing them to a reference genome,
i.e. to one genome representative of the species. However, the
linearity of a reference genome can lead to biases, e.g. if the
query sequence contains a non-reference allele, which leads
to incorrect or missing alignments (Chen et al. 2021). These
effects are more pronounced in highly variable organisms like
bacteria. To describe this genomic variability, the terms
“core” and “accessory” genes were first coined by Tettelin

Received: August 24, 2023; Revised: November 13, 2023; Editorial Decision: November 15, 2023; Accepted: November 23, 2023
The Author(s) 2023. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics Advances, 2023, 00, vbad167
https://doi.org/10.1093/bioadv/vbad167
Advance Access Publication Date: 24 November 2023
Original Article

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad167/7450145 by Europa-Institut U
niversität des Saarlandes user on 01 M

arch 2024

https://orcid.org/0000-0002-6195-1884
https://orcid.org/0000-0002-1752-5060
https://orcid.org/0000-0002-9376-1030
https://orcid.org/0000-0002-9445-477X
https://github.com/fawaz-dabbaghieh/PanPA

et al. (2005), where the “core” genes refer to essential genes
(e.g. housekeeping genes) that are found in all or nearly all
isolates, and the “accessory” genes (sometimes called
“dispensible” genes) refers to the genes that are not present in
every genome or isolate sequenced. The term “pangenome”
was first introduced by Sigaux (2000) describing a database
of tumor genome and transcriptome alterations, as well as
relevant normal cells. In bacteria, pangenome refers to all
core and accessory genes observed in a species.

In recent years, graph representations of pangenomes have
become more widespread, providing a more complete picture
of pangenomes than a simple distinction into core and acces-
sory genes. In graph-based models of pangenomes, one repre-
sents the genomic variability of a population using a graph
data structure where nodes are labeled with sequences and
edges connect nodes representing sequences that are adjacent
to each other in one or more genomes in a population
(Eizenga et al. 2020). One can then use these graph data
structures as a reference instead of using a linear reference to
reduce reference biases (Paten et al. 2017), which entails the
need to align sequences to a graph.

Sequence alignment and pattern matching to a string graph
is not a new problem; it has been described almost three deca-
des ago. Pioneering studies include Manber and Wu (1993),
where pattern matching on hypertext was described and
Akutsu (1993), where an algorithm for exact pattern match-
ing to a hypertext in a tree structure was developed. In 1995,
Park and Kim (1995) described regular pattern matching on
a directed acyclic graph (DAG). Later on, an algorithm that
does pattern matching on “any” hypertext was developed by
Amir et al. (2000), then Navarro (2000) improved both time
complexity and space complexity.

In 2002, these algorithms were adopted for biological data
by Lee et al. (2002), where the Partial-Order Alignment algo-
rithm was used for generating an MSA in a graph representa-
tion, the algorithm allows the alignment of a sequence
against this graph representation. In essence, it is a modified
version of the common sequence alignment with dynamic
programming (DP) algorithms, where all the incoming edges
connecting a certain node in the graph to other nodes are
considered while calculating the cell’s score to find the best
path of the sequence through the graph. In recent years, sev-
eral tools have been introduced to perform sequence-to-
graph alignments with better speeds and accuracy (Ivanov
et al. 2020, Rautiainen and Marschall 2020, Sir�en
et al. 2021).

So far, all tools for pangenomes have mostly been imple-
mented to be used for different samples or strains in a single
species: in bacteria, e.g. for Escherichia coli (Colquhoun et al.
2021), in plants, for Cucumis sativus (Li et al. 2022), and in
humans (Eizenga et al. 2020, Li et al. 2020), including the
work of the Human Pangenome Reference Consortium (Liao
et al. 2023). Due to the high diversity in bacteria, these tools
typically cannot be used for inter-species comparisons at the
DNA level, as the diversity is too high to make meaningful
alignments. This problem is even more exacerbated in highly
diverse and less-studied clades, e.g. Actinomycetes or
Myxobacteria, which are an important source of natural
products that can be used in drug discovery (Gerth et al.
2003). The diversity in these clades is much higher than what
is already described due to limitations in cultivation and in-
lab growth (Mohr 2018).

In these cases, however, one can still trace the sequence
similarity by switching to amino acid alignments, i.e. looking
only into coding regions, as these alignments will have a
higher quality compared to DNA sequence alignments, due
to several reasons. First, amino acid sequences are evolution-
ary more conserved compared to the total genome DNA se-
quence, as proteins have a specific biological function.
Moreover, as the amino acid alphabet is larger, the “signal-
to-noise ratio” is better (Wernersson and Pedersen 2003).
The same amino acid can be encoded by several codons,
hence, a part of mutations in DNA are not visible on the
amino acid level. Second, some of the errors introduced dur-
ing sequencing can cause a frameshift during alignments,
which can be avoided when using amino acids (Sheetlin et al.
2014). Third, in amino acid sequence alignment, we usually
use a substitution matrix instead of just edit distance in DNA
sequence alignment, better capturing biological reality
(Bininda-Emonds 2005). In prokaryotes, the fraction of non-
coding regions in the genome can range from 5% to 50%.
However, for the vast majority, the fraction is <18%
(Rogozin et al. 2002), further motivating a focus on cod-
ing sequences.

Here, we propose a new tool PanPA to conduct pange-
nomic analyses that considers amino acid, or protein sequen-
ces. PanPA allows building DAGs for each individual protein
or protein cluster in order to represent a pangenome.
Computing alignments in amino acid space can give a big ad-
vantage in terms of finding more sequence similarity and be-
ing able to align more phylogenetically distant organisms
against each other while losing relatively little genome infor-
mation. Westbrook et al. (2017) showcased how aligning in
protein space introduces significant improvements in align-
ment accuracy and functional profiling in a metagenome sce-
nario. The idea of having many graphs representing a
pangenome instead of one large graph was presented in
Colquhoun et al. (2021); in their tool Pandora, the authors
define a pangenome as a collection of “local graphs” where
each local graph represents some locations in the genome
that can be pre-defined by the user. PanPA combines the two
ideas of (i) having a pangenome consisting of many smaller
graphs, where each graph represents a protein or a protein
cluster, and (ii) working in amino acid space rather than nu-
cleotide sequences to support pangenomic analyses over
larger evolutionary distances. We call such a collection of
graphs a “panproteome.” We showcase the utility of PanPA
by performing alignments of proteins and raw short reads
from Salmonella enterica assemblies against a E.coli
panproteome.

2 Methods
The idea behind PanPA is that we aim to build a panpro-
teome of a collection of protein sequences or protein clusters.
In this definition of a panproteome, each protein or protein
cluster is represented as a separate graph. Therefore, our
pipeline starts from multiple sequence alignments (MSAs)
provided as input, where each MSA represents one protein or
cluster, and the pipeline goes through three major steps:

1) Building an index from the input MSAs.
2) Constructing a directed graph from each MSA.
3) Aligning query sequences to these constructed graphs

with the help of the index constructed from these MSAs.

2 Dabbaghie et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
aticsadvances/article/3/1/vbad167/7450145 by Europa-Institut U

niversität des Saarlandes user on 01 M
arch 2024

2.1 Building index from MSAs
For each sequence N of length m, we define a substring
s ¼ N½i; j�, where 0 � i � j � m−1, as a substring of N start-
ing at position i and ending at position j with the length of
j−iþ1. A k-mer from a string N is then defined as a substring
of length k. We also define a function minðSÞ that takes the
set S ¼ fs1; s2; . . . ; swg of size w containing w equally
lengthed strings and returns the lexicographically smallest
string in this set; we call this function a “minimizer.”

To construct a “k-mer based index,” for every string N,
the seeds extracted from that string form a set Sseeds compris-
ing every consecutive k-mer from N. Sseeds ¼ fN½0; 0þk−1�;
N½1;1þk−1�; . . . ;N½i; iþk−1�g; 8i 2 f0; . . . ; ðm−kÞg, where
each string N of length m will contain ðm−kþ1Þ k-mers. A
“minimizer-based index” was originally developed by
Schleimer et al. (2003) and was first used in bioinformatics to
reduce storage requirements for sequencing data by Roberts
et al. (2004). In this approach, for each sequence N, instead
of taking the set of all consecutive k-mers as seeds, we take
the set Sseeds that contains the minimizer of every consecutive
window of w k-mers, i.e. we take the smallest seed in a set of
seeds for each consecutive window of seeds. Sseeds ¼

fminðS0;wÞ;minðS1;wÞ; . . . ;minðSi;wÞg; 8i 2 f0; . . . ;

ðm−w−kþ1Þg, where Si;w is a set of w consecutive k-mers
starting at position i in the string N.

In PanPA, both a k-mer-based and a minimizer-based index
are implemented and can be used alternatively. In both cases,
the index stores a key-value map, where the keys are a set of all
k-mers or ðw;kÞ-minimizers extracted from each sequence in
the input MSAs, and the values are ordered lists of MSAs
where that key was found, the ordering of the values is based
on the number of times that key showed up in that certain
MSA. More on the indexing detail is described in Section 3.

2.2 Generating a DAG from a MSA
For this step, we developed a simple algorithm to turn each
MSA into a graph in the “graphical fragment assembly”
(GFA) format, where each original sequence from the MSA is
represented in the GFA file as a path. This algorithm runs in
Oðn�mÞ time, where n is the number of sequences in the
MSA and m is the length of the alignment and has two steps:
(i) generating the graph, and (ii) compacting the graph.

2.2.1 Generating the graph
We define an alphabet A as the amino acid alphabet, and a
matrix M ¼ ðai;jÞ 2 fA [−gm�n, each column in matrix M is
a vector fA [−gn and each row is a vector fA [−gm. In a
nutshell, the algorithm loops through each column vector at
position j where 0 � j � m−1, and for each of these vectors,
it constructs a new node nodejðcÞ for each unique character
c 2 A. Edges are then added between two nodes nodej1ðc1Þ !

nodej2ðc2Þ (where j1 < j2) if and only if the characters c1 and
c2 were consecutive in one of the rows in matrix M after ig-
noring the character f−g.

The algorithm is summarized in Algorithm 1. Consider an
MSA with three sequences (Fig. 1); in this figure, the columns
marked yellow are the “current” column in the loop, and the
column in red is the “previous” column. The algorithm loops
through the columns of the MSA, and at each column, it goes
through each character in that column, if the character is new
then a new node is initialized for this character (Lines 18–22
in Algorithm 1), otherwise, if the character is not new, i.e. a
node was already constructed for that letter at that column,

we assign the character a corresponding node identifier. After
building nodes for a column j, i.e. the “current” column in
the loop, we synchronize with column j−1, i.e. the
“previous” column (if it exists) (Lines 2–10 in Algorithm 1),
where we go through each row i in both columns, and for ev-
ery row i we have three choices: (i) if ci;j; ci;jþ1 2 f−g (e.g. first
two gaps in the second sequence in Fig. 1), then there is noth-
ing to do; (ii) if ci;j; ci;jþ1 2 A, then we need to draw an edge
between nodejðci;jÞ and nodejþ1ðci;jþ1Þ; (iii) if ci;j 2 A and
ci;jþ1 2 f−g then we need to keep the character ci;j “saved”
and continue going through the MSA until we reach a col-
umn jþx where ci;jx 2 A and x > 1, then we can draw an
edge between nodejðci;jÞ and nodejþxðci;jþxÞ. An example of
this final case in Fig. 1 is the second sequence, where Column
5 has a gap but Column 4 has a T; we keep track of this until
we reach the character M in Column 7, where we construct a
node for the character M in Column 7 and draw an edge be-
tween node5ðTÞ and node7ðMÞ. Since we iterate through the
MSA from left to right and draw edges between consecutive
nodes, the resulting graph is directed and acyclic.

2.2.2 Compacting the graph
Linear stretches of nodes can arise while generating a graph
from an MSA. A set of consecutive nodes
fnodej1ðc1Þ; nodej2ðc2Þ; . . . ;nodejnðcnÞg is a linear stretch, if
and only if each node in the set has an in-degree and out-
degree of one, with an exception that the first node
nodej1ðc1Þ can have a higher in-degree and the last node
nodejnðcnÞ can have a higher out-degree. Then, we can

Algorithm 1 Constructing a DAG from MSA

Matrix M fMatrix of dimensions m� ng
Map nodes fA map of node IDs: array of children IDsg
Array previous fEmpty array of length ng
Array current fEmpty array of length ng
Int n fInteger starting with 0g
1: for j 2 f0 . . .mg do

2: for i 2 f0 . . .ng do

3: if ðcurrent½i� � NoneÞ&&ðprevious½i� 6¼ NoneÞ then

4: current½i� previous½i�
5: else if ðcurrent½i� 6¼ NoneÞ&&ðprevious½i� 6¼ NoneÞ then

6: nodes½previous½i��:appendðnodes½current½i��ÞÞ
7: else

8: pass
9: end if

10: end for

11: previous current
12: Array current fEmpty array of length mg
13: Array column M½j� fcharacters in column jg
14: Map seen fempty mapg fcharacter: node IDg
15: for i 2 f0 . . .mg do

16: if column½i� 2 seen then

17: current½i� seen½column½i��
18: else

19: n nþ1
20: nodes½n� ½�
21: current½i� n
22: seen½column½i�� n
23: end if

24: end for

25: end for

PanPA 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad167/7450145 by Europa-Institut U
niversität des Saarlandes user on 01 M

arch 2024

compact these nodes into one node and concatenate their
sequences. For example, in Fig. 1 at the last step of construct-
ing the graph, the stretch of nodes P! T ! P! E can be
compacted into one node.
PanPA’s final output is the compacted version of the graph

in GFA format with each original sequence as a path entry in
the output GFA.

2.3 Aligning query sequences
2.3.1 Amino acid queries
PanPA uses a modified version of the Smith–Waterman algo-
rithm for local alignments (Smith and Waterman 1981)
known as partial-order alignment (Lee et al. 2002). The main
idea of the modification is that instead of looking at the pre-
vious character in the alignment to fill the DP table, we need
to consider all incoming edges of a node. As each graph con-
structed from an MSA is a DAG, the graph can be topologi-
cally sorted generating a list of ordered vertices. The
concatenation of the sequences of the ordered vertices is the
target sequence to align against (Fig. 2).

The DP matrix is defined as H ¼ ðai;jÞ 2 Rðnþ1Þ�ðmþ1Þ,
where m is the size of the query sequence M, and n is the size
of the concatenated sequences N from the ordered vertices.
We add one extra row and column filled with 0 as the initial-
izing row and column. Similar to the Smith–Waterman algo-
rithm, we need to fill cells of the DP table using the
information from previous cells, considering the previous
character. However, as some columns correspond to the first
character of a node in the graph, we need to calculate the
score of that cell based on all possible previous characters fol-
lowing all incoming edges to that node: for calculating the
score of cell i, j, we take the max of all scores calculated con-
sidering all characters from the incoming edges pl, where pl is
the column index pointing to the previous character after fol-
lowing the incoming edge (1). To calculate a single score, we
have three possible choices: a match/mismatch, an insertion,
or a deletion (2).

Hi;j ¼ max
8l:pl2Pin

ðscoreði; j; plÞÞ: (1)

scoreði; j; plÞ ¼ max

Hi−1;plþsubðN½pl−1�;M½i−1�Þ
Hi−1;jþD

Hi;plþD

0

;

8
>><

>>:

(2)

where d is the gap score, and subðc1; c2Þ is a function that
takes two characters and returns the score based on a substi-
tution matrix, e.g. Blosum62 (Henikoff and Henikoff 1992).
Since our graphs are compacted, one node can have several
characters. Therefore, if we are calculating the score for some
Hi;j and the column j does not correspond to the first charac-
ter in the node, we can simply then use (2) with pl being sim-
ply j−1.

3 4

P T

T -

QT

ind ex

seq1

0 1 2 3 4 5 6 7
- M

S

E P T P

S

E Q

A
M

MT- - - - -

QQ TTEM

seq2

seq3

ind ex

seq1

0 1 2 3 4 5 6 7
- M

S

E P T P

S

E Q

AMT- - - - -

QQ TTEM

seq2

seq3

ind ex

seq1

0 1 2 3 4 5 6 7
- M

S

E P T P

S

E Q

AMT- - - - -

QQ TTEM

seq2

seq3

ind ex

seq1

0 1 2 3 4 5 6 7
- M

S

E P T P

S

E Q

AMT- - - - -

QQ TTEM

seq2

seq3

P

T

E

S

M

M

ind ex

seq1

0 1 2 5 6 7
- M

S

E P

S

E Q

AM- - - -

QTEM

seq2

seq3

ind ex

seq1

0 1 2 3 4 5 6 7
- M

S

E P T P

S

E Q

AMT- - - - -

QQ TTEM

seq2

seq3

ind ex

seq1

0 1 2 3 4 5 6 7
- M

S

E P T P

S

E Q

AMT- - - - -

QQ TTEM

seq2

seq3

ind ex

seq1

0 1 2 3 4 5 6 7
- M

S

E P T P

S

E Q

AMT- - - - -

QQ TTEM

seq2

seq3

P

S

T

Q

S

M

M

E

S

M

M

P

T

E

S

M

M

T

Q

P

T

E

S

M

M

P

S

T

Q

P

T

E

S

M

M

E

T

M

P

S

T

Q

P

T

E

S

M

M

E

T

M Q

Figure 1. MSA to GFA: turning an MSA into a graph. The MSA in this example contains three sequences, - MEPTPEQ, - - - T—MA, and MSETQSTQ; and
the step-by-step graph construction is shown on the panels from top to bottom. At every step, the yellow column is the current position and the red
column is the previous one.

Figure 2. Alignment of a sequence to a protein graph. Top: example
protein graph; bottom: the corresponding DP table. The ordered graph
vertices are in the columns, and the query sequence is in the rows.
Arrows between columns correspond to the graph edges. Arrows in the
DP table correspond to potential previous cells in the DP process.

4 Dabbaghie et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
aticsadvances/article/3/1/vbad167/7450145 by Europa-Institut U

niversität des Saarlandes user on 01 M
arch 2024

For tracing back the alignment, we use the same approach
as in the classical Smith–Waterman algorithm, checking
where the score of the cell came from to know which path
our query sequence aligns to. For example, in Fig. 2, the last
column corresponds to the character Q. When tracing back
from it, we see two incoming edges: one leading to the char-
acter E and the other to the character T. The score is then cal-
culated for each previous character and the maximum score
is chosen, which corresponds to E at j ¼ 9. Hence, we con-
tinue the traceback from this cell. On the other hand, for j ¼
9 there are no incoming edges, so we only need to look at
j ¼ 8, and so on.

2.3.2 Frameshift-aware DNA alignment
To align DNA sequences directly to amino acid graphs, while
also accounting for insertion or deletion that could cause fra-
meshifts, we used a method similar to Sheetlin et al. (2014),
which considers frameshift-aware alignments of sequences,
and adapted it to aligning to graphs. In our method, when
filling the DP table, for each nucleotide in the query DNA se-
quence, we assume it is the third codon position nucleotide
and consider it together with the previous two to form a co-
don. Supplementary Table S3 contains an example of a DP
table for the frameshift-aware alignment. When filling a cell,
we always look for the next (potential) amino acid to start
three positions downstream in the DNA sequence and always
make jumps across three rows.

To make this formulation frameshift-aware, we introduce
two new types of diagonal jumps when calculating the score
for a certain cell at ði; jÞ:

1) i−4; j−1 jump, which describes an insertion frameshift,
when the DNA sequence has an extra nucleotide that in-
troduced a frameshift, which moves the current align-
ment to the previous frame;

2) i−2; j−1 jump, which describes a deletion frameshift,
where the DNA sequence has one nucleotide deleted,
which moves the current alignment to the next frame.

For the i−4; j−1 and i−2; j−1 jumps, we introduce a frame-
shift penalty r.

Finally, the score for a cell in the DP table is calculated as:

scoreði; jÞ ¼ max

Hi−3;j−1þsubðtransðN½i−2; i�Þ;M½j−1�Þ
Hi−3;jþD

Hi;j−1þD

Hi−4;j−1þr

Hi−2;j−1þr

0

;

8
>>>>>><

>>>>>>:

(3)

where N is the DNA sequence and M is the amino acid se-
quence, and the function transðÞ takes a codon and returns
the equivalent amino acid, and the function subðÞ takes two
amino acids and returns the substitution score between them.

3 Implementation
PanPA was built using Cython without any extra dependen-
cies, where Cython was used mainly to optimize the core
alignment algorithm. To facilitate the user, each step is imple-
mented as a separate subcommand, which can be

instrumental in finding optimal parameters for a certain data-
set. The subcommands are build index, build gfa,
and “align.”
PanPA’s workflow proceeds in three key steps (Fig. 3). It

starts with MSA files, where each MSA represents one pro-
tein or a protein cluster. This input is accepted by both
build_index and build_gfa modules. The subcommand
align takes a FASTA file with query sequences, the graphs,
and the index file produced from the build_index step.
PanPA then outputs the alignment in Graph Alignment
Format files.

3.1 Indexing
In the indexing step, PanPA goes through each sequence in
each MSA given and extracts the seeds from that sequence,
be it k-mers or minimizers, depending on the user’s choice.
Each seed is a key in a key-value map, and the value is a list
of the MSA identifiers where that seed was found. In our im-
plementation, the value vector is ordered based on the num-
ber of times that seed showed up in an MSA normalized for
the number of sequences in that MSA. Therefore, the user
can choose a cutoff limit on how many MSAs (equivalently,
graphs) one seed can belong to, as some seeds can be promis-
cuous, especially a small value for k is used. Because the vec-
tor of hits is ordered, if the limit is an integer n, only the n
top MSAs will be kept in the index.

For example, if we have three MSAs m1, m2, and m3 con-
taining 10, 7, and 3 sequences respectively, a seed s1 is pre-
sent in m1 two times, in m2 four times, and m3 three times
(with normalized counts being 0.2, 0.57, and 1, respectively),
and the user cutoff is set to two, then in the resulting index,
the seed s1 points to a list ½m3;m2�.

In order to make extracting the minimizers from the con-
secutive windows faster, we used the Sliding Window
Minimum algorithm (Carruthers-Smith 2011), which has a
time complexity OðnÞ, where n is the size of the in-
put sequence.

3.2 Generating graphs
PanPA generates one DAG for each MSA and stores it in the
GFA format. Therefore, when a seed in the index points to
one MSA, we can align the query sequence to the graph that
corresponds to that MSA. Moreover, because the original
sequences in the MSA are encoded as paths with the path line
in GFA, we cannot compact two adjacent nodes connected
by one edge if not the same set of sequences pass through

Figure 3. The general PanPA pipeline and its subcommands (in blue).
Each subcommand can be also run separately or more than once with
different parameters.

PanPA 5

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad167/7450145 by Europa-Institut U
niversität des Saarlandes user on 01 M

arch 2024

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data

both these nodes. For example, consider an MSA with three
sequences MTQT, - - QT, and MT - -. The corresponding
graph has a linear stretch of four vertices (M, T, Q, and T)
with one edge between every two consecutive vertices.
However, if we compact all four vertices into one, we cannot
write a path for Sequences 2 and 3 in the GFA file, because
now they are contained inside this compacted node.
Therefore, we can only compact nodes M and T together and
nodes Q and T together; this way Sequence 3 is contained in
the first node and Sequence 2 in the second (Supplementary
Fig. S3).

3.3 Aligning
Given a query sequence, we count all the seed hits from the
query to the MSAs using the index and generate a list of
MSAs (equivalently, graphs) to align against. This list is
sorted based on the number of hits: e.g. if the query sequence
had five seeds, where four of them pointed to m1, and one
pointed to m3, our list of matches will be ½m1;m3�. The user
can also specify to how many potential MSAs/graphs can one
query be aligned against, or choose to align to all matches. If,
e.g. the limit of matches was set to one, our query sequence
will only be aligned to m1. Moreover, the user can specify a
minimum acceptable alignment identity score, and only the
alignments with scores equal or larger to this minimum
threshold are returned. PanPA also uses a linear gap penalty
and the user can choose one of many substitution matri-
ces available.

4 Results
4.1 Validating PanPA on a panproteome of E.coli
We first wanted to validate that PanPA is able to find correct
alignments. Therefore, we built a panproteome of E.coli and
then realigned all sequences to it. To that end, we first down-
loaded 1351 E.coli assemblies that were marked as
“Complete Genome” from RefSeq (O’Leary et al. 2016). We
extracted every amino acid sequence corresponding to a cod-
ing region from the annotations provided in RefSeq and clus-
tered them using mmseq2 (Hauser et al. 2016) with default
parameters, resulting in 44 204 protein clusters. The distribu-
tion of the number of strains per cluster (Supplementary Fig.
S1) has the characteristic U-like shape, which evidences the
presence of the core genes that are present in nearly all assem-
blies (right part of the plot) and accessory genes that are
mostly unique to one assembly or present in only a few (left
side of the plot). Now that we had similar proteins clustered
together, mafft (Katoh and Standley 2013) was used on
each cluster to produce a corresponding MSA.

We then proceeded with PanPA to produce a DAG in GFA
format from each MSA. We randomly selected 32 289 pro-
tein sequences from our MSAs collection. The random selec-
tion was done by, first, randomly selecting 10% of all the
MSAs representing the protein clusters, then for each MSA
chosen, we randomly selected 5% of sequences in that MSA.
Therefore, we had a ground truth as to where each sequence
comes from and to which graph it should align; and we
expected that PanPA should align each of these sequences to
the correct corresponding graph. We constructed a pipeline
using Snakemake (M€older et al. 2021) to run the indexing
and alignments steps with a combination of several parame-
ters to demonstrate the effect of different parameters on the
correctness of the alignments.

We define a “wrong alignment” here when the highest-
scoring alignment produced by PanPA corresponds to an
alignment against a different graph/MSA than that where the
sequence originated from. For k ¼ 3, we get a relatively high
number of wrongly aligned sequences, unless the index stores
all the seed hits (the value 0 in the figure, with the red marks),
whereas higher k values produce very few wrong alignments
regardless which cutoff was used for the index (Fig. 4).
Moreover, using indexes with small k and w values also
results in higher alignment time as more seeds need to be
extracted, the seeds have more matches, and more look-ups
need to be done to find the top potential graphs to align to.
For example, in this experiment, aligning with k ¼ 3 requires
a maximum of around 20 000 s in CPU time, whereas it
takes a few hundred seconds of CPU time using k ¼ 9 (see
Supplementary Fig. S2 for all combinations of parameters).

From these results, we can recommend that k larger than 3
should be used for alignments against closely related species,
and a cutoff of five on the index can be used without losing
too many alignments. For full sensitivity, we recommend us-
ing a small k and not limiting the index to keep all seed hits.
However, this will result in a longer alignment time.
Supplementary Section S3 contains another experiment for
validating the correctness of PanPA.

4.2 Aligning unseen sequences from E.coli
Using the same panproteome constructed in the previous ex-
periment, we further downloaded 80 E.coli assemblies from
RefSeq that were not used in building the panproteome as
they were not marked as complete assemblies, and extracted
the protein sequences from the corresponding annotation
files. After removing redundant sequences, we were left with
92 196 sequences. We used the same Snakemake pipeline
as in the previous experiment to align these sequences against
the panproteome with the same different parameter combina-
tions. To consider an alignment correct, we require that its
sequence identity is above 90%, however, the average align-
ment score was about 0.998%. We observe again that for
small values of k, the majority of sequences (between 50%
for k ¼ 3 and w ¼ 6 to 99% for k ¼ 3 and w ¼ 1) did not
produce an alignment (Fig. 5). These results emphasize the
conclusion from the previous experiment, that choosing a
very small size for the seeds (e.g. k ¼ 3) and limiting the in-
dex hits size will result in a high number of false positive in-
dex hits that; in turn; will result in alignments with a low
identity that will be filtered out. When the index hits size is
unlimited, PanPA is able to find the correct graphs.
However, an unlimited index will result in a much longer
alignment time as there is a need to align to more sequences.
For example, for k ¼ 3;w ¼ 1, and unlimited index, it takes
PanPA over 80 000 s of CPU time to finish alignments com-
pared to slightly over 1000 s with k ¼ 9 and w ¼ 1
(Supplementary Fig. S3).

4.3 Comparison of PanPA with BWA and
GraphAligner using S.enterica sequences
One of the major advantages of moving to the amino acid
space is the ability to have better alignments between more
distant organisms. To test this, we downloaded 1077 S.enter-
ica annotated assemblies from RefSeq, extracted all coding
regions, and aligned them to the E.coli assemblies and graphs
that we have already. Both E.coli and S.enterica belong to the
same family Enterobacteriaceae, but are from different

6 Dabbaghie et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
aticsadvances/article/3/1/vbad167/7450145 by Europa-Institut U

niversität des Saarlandes user on 01 M
arch 2024

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data

Figure 5. Effect of the different parameters on the number of unaligned sequences when aligning 92 196 unseen E.coli sequences. For small k values,
the majority of sequences were not aligned unless a limit for the index hits size is set (the red marks); if the index hits size is not limited, over 99% of
sequences produce an alignment.

Figure 4. Effect of the different parameters on the fraction of wrongly aligned sequences, where a “wrong alignment” is a sequence being aligned to a
different graph than the one it originated from. Each point is colored with respect to the seed hits limit (the limit of how many hits can each seed point
to), and shapes correspond to the aligned hits limit (the limit of how many graphs can one sequence align to). For small k values, a high number of wrong
alignments is produced, unless the index size is limited. The align seed limit has a relatively small effect on the percentage of wrong alignments.

PanPA 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad167/7450145 by Europa-Institut U
niversität des Saarlandes user on 01 M

arch 2024

genera, and hence are expected to be far apart from each
other evolutionary to make a good test case for our tool
PanPA. In order to compare DNA and protein alignments,
we extracted all DNA sequences of coding regions and their
corresponding amino acid sequences from the S.enterica
annotations, obtaining 4 839 981 sequences, which we
used to align to the E.coli panproteome.

We compared three kinds of alignments here: (i) DNA se-
quence alignments against the E.coli linear reference genome
(strain K-12 substrain MG1655) using BWA (Li and Durbin
2010); (ii) DNA sequence alignments using GraphAligner
(Rautiainen and Marschall 2020) against the E.coli pange-
nome graph from all 1351 assemblies that we constructed
with minigraph (Li et al. 2020); and (iii) amino acid se-
quence alignments using PanPA against the E.coli panpro-
teome constructed in the first experiments. Both BWA and
GraphAligner were run with default parameters, and
PanPA was given an index with k ¼ 5, w ¼ 5, an index limit
of 10, and only aligning each sequence to the top 10 graph
hits. The alignments were then filtered based on alignment
length and alignment identity, and only alignments with a
length of over 50% of the original sequence length and align-
ment identity of at least 50% were kept.

Out of the 4 839 981 sequences, 1 638 936 were
successfully aligned by all three aligners, while 1 694 181
could only be aligned by the graph-based methods
GraphAligner and PanPA. Strikingly, PanPA could align
744 033 unique sequences that were not aligned by any of
the other two aligners (Fig. 6 and Supplementary Table S1).
PanPA alignments have higher identity scores, which is to be
expected as in the amino acid space the sequence identity is
higher for the same two sequences as in the DNA space
(Fig. 7). This confirms the advantages of aligning using the
amino acid alphabet, which PanPA now enables leveraging
for sequence-to-graph alignments. To perform the calcula-
tions, PanPA needed around 17 min to build the index, and
about 5 h to align the sequences, using 2.3 Gb memory (CPU
time 375 515 s), BWA only took around 6 min to run
and needed around 900 Mb of memory (CPU time 6818 s),
and GraphAligner needed around 20 min to run and used

around 700 Mb of memory (CPU time 22 908 s), all of the
tools were run with 20 cores.
PanPA did take more time to perform the alignment com-

pared to the other tools. However, PanPA was able to align
more sequences, and due to the use of a substitution matrix
instead of edit distance in the alignment algorithm, certain al-
gorithmic speeding tricks cannot be used by PanPA. We elab-
orated more on this point in Section 5.

4.4 Aligning S.enterica Illumina short reads to the
E.coli genome, pangenome, and panproteome
PanPA is also able to align DNA sequences to protein graphs
by translating each DNA sequence into six different reading
frames (three forward and three reverse-complement). This
feature can be very helpful for aligning sequencing reads
from organisms that do not have a reference genome of the
same species or a close enough species to align to.

We downloaded one S.enterica Illumina whole genome se-
quencing short-reads sample (SRR22756191) from NCBI
SRA database (Leinonen et al. 2011) containing
1 110 471 sequences, the sample is part of PulseNet USA
surveillance for food-borne diseases. We aligned the sequen-
ces using BWA against the linear reference of E.coli that we
used in the previous experiment and against the E.coli pan-
proteome using PanPA, using the index with k ¼ 5, w ¼ 3,
and no cutoff. In the alignment step, we allowed each se-
quence to align to up to 20 graphs. We filtered the output
retaining alignments with >50% alignment sequence identity
and 50% alignment length. BWA was used with default
parameters. For PanPA, we chose a relatively small k, be-
cause we sought higher sensitivity. To match the DNA
sequences, it needed to be first translated into six different
reading frames and seeds extracted from all frames to find
the hits, which can elevate the false positive rate. However,
increasing the number of allowed graphs only affected the
number of alignments done and the overall run time: align-
ments that did not pass the identity threshold were not
returned. Similar to the experiments above, we advise choos-
ing a smaller seed size with an unlimited index when the user
wants higher sensitivity, e.g. in the case of aligning to a more
distant organism.

Figure 6. Upset plot of the unique alignments of 4 839 981 sequences
from the coding regions of 1074 S.enterica assemblies from RefSeq.
Alignments with BWA and GraphAligner (DNA), and PanPA (amino
acids) against their corresponding E.coli counterparts were constructed
using the parameters in Supplementary Section S2.

Figure 7. Distribution of identity scores between BWA, GraphAligner,
and PanPA from aligning the S.enterica sequences. The pique for PanPA
is shifted to the right, meaning higher sequence identity, as amino acid
sequences align with higher identity compared to nucleotide sequences.

8 Dabbaghie et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
aticsadvances/article/3/1/vbad167/7450145 by Europa-Institut U

niversität des Saarlandes user on 01 M
arch 2024

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data

As expected, using a distant linear reference has a major
disadvantage: around 65% of the reads could not be aligned
with BWA with identity over 50%; and after additional filter-
ing requiring alignment length to be over 50%, only 4.4%
were reported retained (Table 1). On the other hand, PanPA
was able to produce alignments for 72% of the reads with
identity over 50%, and 68% of reads could be aligned over
more than 50% of their length. Three lakh fifty-five thousand
four hundred and sixty-two sequences were not aligned by ei-
ther aligner. In this experiment, PanPA needed about 6 h to
align the DNA sequences using 10 threads (CPU time
169 004 s), and used about 1.8 Gb of memory. BWA only
took 17 s to run with 10 threads (CPU time 162 s).

In conclusion, PanPA required over two orders of magni-
tudes more time compared to bwa. However, looking at the
alignment result difference, PanPA was able to align over an
order of magnitude more sequences with alignment identity
over 50% than bwa.

4.5 Using PanPA to display phenotypic traits: a case
of antimicrobial resistance in E.coli
Certain mutations are associated with bacteria being resistant
or susceptible to antibiotics, and this has been a main focus
of many researchers, as resistance against antibiotics presents
a major threat to public health. We explored the applicability
of our tool PanPA to identify such mutations. To this end,
we used the Pathosystems Resource Integration Center
(Davis et al. 2020) database, which contains assemblies and
annotations for many antibiotic-resistant and susceptible bac-
teria. We downloaded ciprofloxacin-resistant and susceptible
strains from E.coli, which comprised 556 resistant and 1295
susceptible genomes. We extracted two genes, parC and
gyrA, which encode for quinolone, and particularly cipro-
floxacin, targets and can carry resistance-associated muta-
tions in E.coli (Bagel et al. 1999) and translated them to
proteins. For each of these two proteins, we were able to ex-
tract 1236 susceptible and 309 resistant sequences. We ran-
domly split the sequences into two sets, one containing 10%
of the sequences and the other 90% of the sequences. We
mixed the 90% sample of both susceptible and resistant to-
gether, generated an MSA using mafft, and then a graph for
each protein using PanPA().

In this way, we obtained a graph for each protein contain-
ing resistant and susceptible sequences. The variance between
the sequences creates bubbles in the graph. Resistance-
associated mutations [S83L, D87N in GyrA (Webber et al.
2017, Yu et al. 2020, Rakici et al. 2021), S80I in ParC
(Nawaz et al. 2015)] are clearly visible in them (Fig. 8).
Besides these canonical resistance-associated variants, we ob-
served other potential variants that are present predomi-
nantly in resistant strains: alanine, leucine, and valine at
Position 83 and alanine, tyrosine, and asparagine at Position
87 of GyrA, as well as arginine at Position 80 of ParC. We
aligned the 10% sequence set aside to the graphs using
PanPA. Visualizing the corresponding paths (Fig. 8) one can
see that the vast majority of the sequences extracted from

resistant strains are aligned to the nodes that represent var-
iants associated with resistance, and susceptible sequences
aligned to mostly nodes associated with susceptible variants.

4.6 Comparing against HMMER
HMMER is a widely used tool for searching for remote homo-
logs in protein databases (Finn et al. 2011). HMMER has a high
sensitivity, which makes it useful for aligning sequences that
have lower similarity due to their large phylogenetic distance
from the target. HMMER builds a hidden Markov model for
each MSA given, which is then used for aligning a new se-
quence against the profile.

To compare PanPA’s performance with HMMER, we con-
sider each protein cluster as a separate profile. HMMER can be
then used to align new sequences against these profiles and
choose the best hits. More formally, we performed two com-
parative steps between HMMER and PanPA:

1) Building HMM profiles in HMMER, and generating
graphs and an index in PanPA, as both are preprocess-
ing steps before doing alignments;

2) HMMER search step and PanPA’s alignment step, as
HMMER search also produces alignments.

Again, we used the 44 204 protein clusters of the E.coli
sample we have from previous experiments. For PanPA,

Figure 8. Visualization of parts of the protein graphs for (a) GyrA and (b)
ParC using Bandage (Wick et al. 2015). Nodes are colored according to
the number of resistant/susceptible strains that pass through them, with
blue color representing resistance, and with red representing
susceptibility; the color intensity corresponds to the number of strains.
Additional colored lines show the paths of the aligned 10% sequence that
were set aside (45 resistant and 117 susceptible sequences), the color
representing the type, and the thickness representing the number of
sequences taking that path. A thick blue line of resistant sequences took
the blue path passing through the blue nodes, and vice versa, a thick red
line for susceptible sequences took the red path passing through the
red nodes.

Table 1. Number of S.enterica DNA short reads aligned against E.coli’s
linear reference with BWA and against its panproteome using PanPA.

Identity >50% Identity and length >50%

BWA 391 041 (35.2%) 48 937 (4.4%)
PanPA 801 389 (72.2%) 755 009 (68%)

PanPA 9

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad167/7450145 by Europa-Institut U
niversität des Saarlandes user on 01 M

arch 2024

we built a w, k-minimizer index for the clusters with k ¼ 5
and w ¼ 3. This step required 17 min and 50 s, and about
1.4 Gb of memory. For building graphs in GFA format for
each cluster, PanPA needed 6 min and 37 s using 10 threads.
Building HMM profiles from the same alignments with
hmmbuild command of HMMER took 2 h, 46 min, and 18 s
(using one thread) for all 44 204 clusters. As HMMER runs
separately on each MSA, only one thread was used.
However, one can use a bash script of Snakemake, e.g. to
run several MSAs at the same time on different threads.

For aligning, we extracted a random sample of 10 000
protein sequences from the S.enterica sample we used in the
previous experiments, and aligned these sequences to graphs
or HMMs, respectively. PanPA took 20 min and 57 s (CPU
time 959 s) to align all 10 000 sequences back with a mini-
mum alignment identity threshold of 10%. Using 10 threads
brought the time down to 7 min and 25 s. PanPA always
spends about 5 min loading all the graphs into memory be-
fore alignments, which means the more sequence are aligned,
the smaller this overhead relative to the total runtime. PanPA
used 2.2 Gb of memory, and the number of query sequences
does not affect the memory consumption. Therefore, such an
example can easily run on any conventional laptop or desk-
top computer. HMMER took 19 min and 29 s (CPU time
3341 s) to align all 10 000 sequences against the database
of HMM profiles constructed previously with the hmmalign
command using about 1 Gb of memory and 10 cores.
Comparing the results, we found that 9813 query sequences
were aligned to the same target cluster by both tools. One
hundred and eighty-seven query sequences were aligned by
PanPA, but not by HMMER. However, these 187 sequences
had very low alignment sequence identity averaging at 25%,
which could simply point to random hits, as PanPA was set
to report all alignments back even at very low align-
ment identity.

The major reason for PanPA to be faster than HMMER is the
use of the index that guides PanPA on where to align and
thus reduces the search space considerably. HMMER aligns
each profile to each query sequence, which makes the runtime
linear in the number of clusters. PanPA’s ability to run in
multiple threads also reduced the alignment time consider-
ably. For example, in this alignment experiment, the actual
alignment time for PanPA was 15 min and 47 s using one
thread, but only 2 min and 13 s when using 10 threads.

In conclusion, for the preparation step, PanPA needed, in
total, around 24 min to generate the index and the graphs,
HMMER on the other hand needed around 2 h. For the aligning
step, PanPA needed around 7 min (CPU time 117 s) with 10
threads, to align all sequences and HMMER needed around
19 min (CPU time 3341 s) and missed 187 sequences out of
the 10 000 query sequences, and both tools reported similar
results. More details about time and memory requirements
for this experiment are in Supplementary Section S4.

5 Discussion
In this article, we present PanPA, a software tool to build
and index panproteome graphs, and align sequences to them.
In our method, instead of building one big graph that repre-
sents all samples of a population, we build many local
graphs, where each local graph represents one protein or a
group of related proteins.

We demonstrate that PanPA produces correct alignments
when aligning a sample of E.coli protein sequences back to
an E.coli panproteome produced from assemblies from a
public database.

We also show that moving into amino acid space can in-
crease both the number of aligned sequences and the align-
ment identity score when comparing phylogenetically distant
organisms as exemplified by aligning S.enterica proteins
against the panproteome constructed from E.coli assemblies.
PanPA can also capture a much higher number of hits that
would have been otherwise lost when using a distant refer-
ence. We argue that aligning over longer phylogenetic distan-
ces is important, especially when trying to study organisms
that are not well-researched, do not have a standard refer-
ence, and where a particular clade is only scarcely sequenced.
In these cases, one can use a distant organism panproteome
to produce better alignments and comparison, maybe ad-
vancing one step toward annotation using a remote reference.

Additionally, we demonstrate the utility of PanPA for the
discovery of genetic mechanisms of phenotypic traits, such as
antimicrobial drug resistance.

We also show that PanPA’s computational resources are
reasonable, especially in terms of memory consumption. It
can easily be used on any modern laptop or desktop machine
without the need of accessing a high-performance computa-
tional cluster. Moreover, as PanPA can be parallelized, if the
user has access to a computational node with more CPUs,
this can make the alignment much faster. However, PanPA is
still slower than other linear aligners (e.g. BWA) or graph
aligners (e.g. GraphAligner). This stems from the fact that
PanPA builds a complete DP table for the alignments and fills
all the cells, and it uses different substitution matrices for
scoring and not edit distance, which prevents PanPA from
applying tricks like bounded edit distance (Ukkonen 1985) or
the fast bit-vector algorithm for string matching (Myers
1999). The latter algorithm was also extended to graphs
(Rautiainen et al. 2019). Therefore, PanPA’s performance
bottleneck is not the number of graphs in the panproteome,
but how big these graphs are or how sparse their correspond-
ing MSAs are. In Supplementary Section S5, we show that
PanPA can still handle very sparse MSA, albeit slower.
Therefore, PanPA does still perform well on real datasets,
and with its low memory usage, it can run on local machines
or small computational nodes, where more CPUs can be used
to speed up the alignment step.

Acknowledgements
The authors would like to thank Konstantinn Bonnet and
Sebastian Keller for code review and discussions, Amay
Agrawal for helping in obtaining the PATRIC resistant bacte-
ria data and Dr Timofey Prodanov, Dr Arda S€oylev, and Dr
Daniel D€orr for discussions on the alignment algorithm.

Author contributions
F.D., T.M., and O.V.K. conceived the study. F.D. wrote
PanPA, ran experiments, and wrote the manuscript. S.K.S.
contributed to part of the code. T.M. and O.V.K. supervised
the work and edited the manuscript. All authors read and ap-
proved the final version of the manuscript.

10 Dabbaghie et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
aticsadvances/article/3/1/vbad167/7450145 by Europa-Institut U

niversität des Saarlandes user on 01 M
arch 2024

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data
https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data

Supplementary data
Supplementary data are available at Bioinformatics
Advances online.

Conflict of interest
None declared.

Funding
This work was supported, in part, by the MODS project
funded from the programme “Profilbildung 2020” [grant no.
PROFILNRW-2020–107-A], an initiative of the Ministry of
Culture and Science of the State of North Rhine-Westphalia.
O.V.K. acknowledges financial support from the Klaus Faber
Foundation. S.K.S. was partially funded by the UdS-HIPS
TANDEM Interdisciplinary Graduate School for
Drug Research.

Data availability
The source code and list of accession numbers of samples
used is available at https://github.com/fawaz-dabba
ghieh/PanPA.

References
Akutsu T. A Linear Time Pattern Matching Algorithm Between a String

and a Tree, Combinatorial Pattern Matching, Lecture Notes in
Computer Science, Vol. 684, Springer-Verlag, Berlin/Heidelberg,
1993, 1–10.

Amann RI, Ludwig W, Schleifer KH et al. Phylogenetic identification
and in situ detection of individual microbial cells without cultiva-
tion. Microbiol Rev 1995;59:143–69.

Amir A, Lewenstein M, Lewenstein N et al. Pattern matching in hyper-
text. J Algorithms 2000;35:82–99.

Bagel S, H€ullen V, Wiedemann B et al. Impact of gyrA and parC muta-
tions on quinolone resistance, doubling time, and supercoiling de-
gree of Escherichia coli. Antimicrob Agents Chemother 1999;
43:868–75.

Bininda-Emonds ORP. TransAlign: using amino acids to facilitate the mul-
tiple alignment of protein-coding DNA sequences. BMC Bioinformatics
2005;6:156.

Carruthers-Smith K. Sliding Window Minimum Implementations.
2011. https://people.cs.uct.ac.za/~ksmith/articles/sliding_window_
minimum.html (20 March 2022, date last accessed).

Chen N-C, Solomon B, Mun T et al. Reference flow: reducing reference
bias using multiple population genomes. Genome Biol 2021;22:8–17.

Colquhoun RM, Hall MB, Lima L et al. Pandora: nucleotide-resolution
bacterial pan-genomics with reference graphs. Genome Biol 2021;
22:267.

Davis JJ, Wattam AR, Aziz RK et al. The PATRIC bioinformatics re-
source center: expanding data and analysis capabilities. Nucleic Acids
Res. 2020;48:D606–12.

Dunlap PV. Microbial diversity. In: Levin SA (ed.), Encyclopedia of
Biodiversity. 2nd edn. Waltham: Academic Press, 2001, 280–91.

Eizenga JM, Novak AM, Sibbesen JA et al. Pangenome graphs. Annu
Rev Genomics Hum Genet 2020;21:139–62.

Finn RD, Clements J, Eddy SR et al. HMMER web server: interactive
sequence similarity searching. Nucleic Acids Res 2011;39:W29–37.

Gerth K, Pradella S, Perlova O et al. Myxobacteria: proficient producers
of novel natural products with various biological activities–past and
future biotechnological aspects with the focus on the genus
Sorangium. J Biotechnol 2003;106:233–53.

Hauser M, Steinegger M, S€oding J et al. MMseqs software suite for fast
and deep clustering and searching of large protein sequence sets.
Bioinformatics 2016;32:1323–30.

Henikoff S, Henikoff JG. Amino acid substitution matrices from pro-
tein blocks. Proc Natl Acad Sci USA 1992;89:10915–9.

Higgins D. Alignment problem. In: Brenner S, Miller JH (eds),
Encyclopedia of Genetics. New York: Academic Press, 2001, 29–35.

Ivanov P, Bichsel B, Mustafa H et al. AStarix: fast and optimal
sequence-to-Graph alignment. In: Schwartz R (ed.), Research in
Computational Molecular Biology. Cham: Springer Nature
Switzerland AG, 2020, 104–19.

Katoh K, Standley DM. MAFFT multiple sequence alignment software
version 7: improvements in performance and usability. Mol Biol
Evol 2013;30:772–80.

Lee C, Grasso C, Sharlow MF et al. Multiple sequence alignment using
partial order graphs. Bioinformatics 2002;18:452–64.

Leinonen R, Sugawara H, Shumway M et al.; on behalf of the
International Nucleotide Sequence Database Collaboration. The se-
quence read archive. Nucleic Acids Res 2011;39:D19–21.

Li H, Durbin R. Fast and accurate long-read alignment with Burrows-
Wheeler transform. Bioinformatics 2010;26:589–95.

Li H, Feng X, Chu C et al. The design and construction of reference
pangenome graphs with minigraph. Genome Biol 2020;21:265.

Li H, Wang S, Chai S et al. Graph-based pan-genome reveals structural
and sequence variations related to agronomic traits and domestica-
tion in cucumber. Nat Commun 2022;13:682.

Liao W-W, Asri M, Ebler J et al. A draft human pangenome reference.
Nature 2023;617:312–24.

Manber U, Wu S. Approximate String Matching with Arbitrary Costs
for Text and Hypertext, Advances in Structural and Syntactic
Pattern Recognition, Series in Machine Perception and Artificial
Intelligence, Vol. 5, 1993, 22–33.

Mohr KI. Diversity of myxobacteria-we only see the tip of the iceberg.
Microorganisms 2018;6:84.

M€older F, Jablonski KP, Letcher B et al. Sustainable data analysis with
Snakemake. F1000Res 2021;10:33.

Myers G. A fast bit-vector algorithm for approximate string matching
based on dynamic programming. J ACM 1999;46:395–415.

Navarro G. Improved approximate pattern matching on hypertext.
Theor Comput Sci 2000;237:455–63.

Nawaz M, Sung K, Kweon O et al. Characterisation of novel mutations
involved in quinolone resistance in Escherichia coli isolated from
imported shrimp. Int J Antimicrob Agents 2015;45:471–6.

O’Leary NA, Wright MW, Brister JR et al. Reference sequence (refseq)
database at NCBI: current status, taxonomic expansion, and func-
tional annotation. Nucleic Acids Res 2016;44:D733–45.

Park K, Kim DK. String matching in hypertext. In: Galil Z, Ukkonen E
(eds), Combinatorial Pattern Matching, 6th Annual Symposium,
CPM 95, Espoo, Finland, July 5-7, 1995, Proceedings, Lecture
Notes in Computer Science, Vol. 937, Springer, 1995, 318–29.

Paten B, Novak AM, Eizenga JM et al. Genome graphs and the evolu-
tion of genome inference. Genome Res 2017;27:665–76.

Perna NT, Plunkett G, Burland V et al. Genome sequence of enterohae-
morrhagic Escherichia coli O157: h 7. Nature 2001;409:529–33.

Rakici E, Altunisik A, Sahin K et al. Determination and molecular
analysis of antibiotic resistance in Gram-negative enteric bacteria
isolated from Pelophylax sp. in the Eastern Black Sea Region. Acta
Vet Hung 2021;69:223–33.

Rautiainen M, Marschall T. GraphAligner: rapid and versatile
sequence-to-graph alignment. Genome Biol 2020;21:253.

Rautiainen M, M€akinen V, Marschall T et al. Bit-parallel sequence-to-
graph alignment. Bioinformatics 2019;35:3599–607.

Roberts M, Hayes W, Hunt BR et al. Reducing storage requirements
for biological sequence comparison. Bioinformatics 2004;
20:3363–9.

Rogozin IB, Makarova KS, Natale DA et al. Congruent evolution of dif-
ferent classes of non-coding DNA in prokaryotic genomes. Nucleic
Acids Res 2002;30:4264–71.

Schleimer S, Wilkerson DS, Aiken A. Winnowing: local algorithms for
document fingerprinting. In: Proceedings of the 2003 ACM

PanPA 11

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

aticsadvances/article/3/1/vbad167/7450145 by Europa-Institut U
niversität des Saarlandes user on 01 M

arch 2024

https://academic.oup.com/bioinformaticsadvancesarticle-lookup/doi/10.1093/bioadv/vbad167#supplementary-data
https://github.com/fawaz-dabbaghieh/PanPA
https://github.com/fawaz-dabbaghieh/PanPA
https://people.cs.uct.ac.za/~ksmith/articles/sliding_window_minimum.html
https://people.cs.uct.ac.za/~ksmith/articles/sliding_window_minimum.html

SIGMOD International Conference on Management of Data
SIGMOD ’03, 76–85. Association for Computing Machinery, New
York, NY, USA, 2003, 76–85.

Sheetlin SL, Park Y, Frith MC et al. Frameshift alignment: statistics and
post-genomic applications. Bioinformatics 2014;30:3575–82.

Sigaux F. Cancer genome or the development of molecular portraits of
tumors. Bull Acad Natl M�ed 2000;184:1441–7.

Sir�en J, Monlong J, Chang X et al. Pangenomics enables genotyping of
known structural variants in 5202 diverse genomes. Science 2021;
374:abg8871.

Smith TF, Waterman MS. Identification of common molecular subse-
quences. J Mol Biol 1981;147:195–7.

Tettelin H, Masignani V, Cieslewicz MJ et al. Genome analysis of mul-
tiple pathogenic isolates of Streptococcus agalactiae: implications
for the microbial “pan-genome”. Proc Natl Acad Sci USA 2005;
102:13950–5.

Ukkonen E. Algorithms for approximate string matching. Inf Control
1985;64:100–18.

Webber MA, Buckner MMC, Redgrave LS et al. Quinolone-resistant
gyrase mutants demonstrate decreased susceptibility to triclosan.
J Antimicrob Chemother 2017;72:2755–63.

Wernersson R, Pedersen AG. RevTrans: multiple alignment of coding
DNA from aligned amino acid sequences. Nucleic Acids Res 2003;
31:3537–9.

Westbrook A, Ramsdell J, Schuelke T et al. PALADIN: protein align-
ment for functional profiling whole metagenome shotgun data.
Bioinformatics 2017;33:1473–8.

Whitman WB, Coleman DC, Wiebe WJ et al. Prokaryotes: the unseen
majority. Proc Natl Acad Sci USA 1998;95:6578–83.

Wick RR, Schultz MB, Zobel J et al. Bandage: interactive
visualization of de novo genome assemblies. Bioinformatics 2015;
31:3350–2.

Yu X, Zhang D, Song Q et al. Profiles of gyrA mutations and plasmid-
mediated quinolone resistance genes in Shigella isolates with differ-
ent levels of fluoroquinolone susceptibility. Infect Drug Resist 2020;
13:2285–90.

12 Dabbaghie et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
aticsadvances/article/3/1/vbad167/7450145 by Europa-Institut U

niversität des Saarlandes user on 01 M
arch 2024

	Active Content List
	1 Introduction
	2 Methods
	3 Implementation
	4 Results
	5 Discussion
	Acknowledgements
	Author contributions
	Supplementary data
	Conflict of interest
	Funding
	Data availability
	References

