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Abstract: Electrochemical disinfection in dentistry using boron-doped diamond (BDD) electrodes
bears the potential risk of disturbing vital functions. Applying different arrays of BDD electrodes
and an electrotome as reference, it was the goal of this animal study to compare their effects on an
electrocorticogram (ECoG) and electrocardiogram (ECG). Following the trepanation of teeth in rats,
the electrodes and electrotome were applied in a randomized manner while recording ECoG and
ECG. The recordings were classified according to an electrophysiological significance score based
on involvement, extent of disruption and duration. The scores obtained were compared by means
of ANOVA followed by Dunn’s multiple comparisons test (α = 0.05). Voltage type and electrode
design had a significant influence on the detectable electrophysiological effects. The results seen with
BDD electrodes ranged from no detectable electrophysiological effects to a pronounced effect. The
application of the electrotome induced the most pronounced effects. Given that electrotomes are safe
medical devices, despite evoking greater disturbance compared to BDD electrodes, regardless of their
design, electrochemical disinfection may be considered a safe procedure.

Keywords: electrochemical disinfection; interference; vital functions

1. Introduction

Electrochemical disinfection using boron-doped diamond electrodes has been shown
to effectively reduce bacterial loads in both endodontic and peri-implant infections, while
local host tissue reactions seem not to differ from conventional treatment protocols [1,2].
In contrast to being locally effective while not causing harm, the potential risks of electric
currents interfering with body functions have not been investigated yet. Depotphoresis for
endodontic treatment [3], transporting OH-ions and Cu compounds through apical canals
of teeth [4,5] and thereby removing and inactivating organic material [6], seems to be well
comparable from an electrical perspective, but reports on the general risks are not available.

The effects of electrical currents on the human body are governed by the exposure
time, the intensity and frequency of the current and the path of the current in the body [7].
Ranked according to severity, these effects may range from no effect to pain sensation, mus-
cle cramping, reversible respiratory problems and arrhythmia, to ventricular fibrillation,
respiratory arrest and cardiac arrest (Figure 1). Thermal effects such as burns only occur at
high current strengths, which normally already have dangerous effects on the human body.
Consequently, the norm for the electrical safety of medical devices (VDE Norm EN 60601-1,

Appl. Sci. 2024, 14, 1445. https://doi.org/10.3390/app14041445 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14041445
https://doi.org/10.3390/app14041445
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4294-3758
https://orcid.org/0000-0002-0046-3414
https://orcid.org/0000-0002-4238-7421
https://orcid.org/0000-0002-7847-8456
https://orcid.org/0000-0003-1896-4521
https://orcid.org/0000-0002-8748-1024
https://doi.org/10.3390/app14041445
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14041445?type=check_update&version=2


Appl. Sci. 2024, 14, 1445 2 of 11

VDE 0100-751) dictates much lower current limits compared to the consumer or industrial
safety norm VDE 0100-710, 720 and 410. The patient auxiliary current, which is necessary
for the function of a device, is specified in EN 60601 at a maximum of 0.5 mA [8].
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no longer causing muscle cramps due to their longer reaction time; the current is mainly 
determined by the capacity of the body (approx. 150 pF; EN 60601-1, VDE 0100-751 [9]). 
In addition, increasing frequencies lead to the skin effect, i.e., the current is concentrated 
on the surface of a conductor but does not use the entire conductor. Unipolar electrotomes 
(High-frequency (HF) surgery) apply a high-frequency current, which is conducted away 
from the patient via a counter-electrode. These high currents act by heating or vaporizing 

Figure 1. Nomograms showing the influence of a current on the human body. The nomograms are
divided into 4 sections, AC-1 to AC-4 and DC-1 to DC-4, describing body reactions as a result of
the current and exposure time. Section 1: usually indiscernible; Section 2: clearly perceptible up
to muscle cramping; Section 3: muscle cramping, respiratory problems; and Section 4: arrhythmia,
ventricular fibrillation, respiratory arrest, cardiac arrest. (a) Effects of an alternating current (AC).
(b) Effects of a direct current (DC).

An alternating current (AC) mainly acts by nerve irritation with frequencies > 200 Hz
no longer causing muscle cramps due to their longer reaction time; the current is mainly
determined by the capacity of the body (approx. 150 pF; EN 60601-1, VDE 0100-751 [9]). In
addition, increasing frequencies lead to the skin effect, i.e., the current is concentrated on
the surface of a conductor but does not use the entire conductor. Unipolar electrotomes
(High-frequency (HF) surgery) apply a high-frequency current, which is conducted away
from the patient via a counter-electrode. These high currents act by heating or vaporizing
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tissue and fluids, but would cause ventricular fibrillation when passing through the heart
(VDE0100-410, Section 415), which can be avoided by the adequate positioning of the
counter-electrode. Furthermore, AC devices may interfere with monitoring instruments as
a consequence of the electromagnetic field evoked.

A direct current (DC), on the contrary, impairs nerve conduction, particularly in the
case of small currents [7,10]. In addition, a DC always uses the entire body as a conductor
and the current divides itself according to the resistance present in a specific region, with
nerves and blood vessels having a low resistance, while bone, skin and fat tissue have
high resistance [11]. The total internal resistance of the human body is approximately
1 kOhm [7]. As a rule, when the heart is in the path of the current, the current is considered
more dangerous (VDE0100-410).

In order to maximize patient safety, a bipolar configuration avoiding a direct current
path via the patient is preferred. In such a situation, only a small equalizing current can
flow via the patient until the body capacity has adapted to the potential of the electrode.
Since the patient, in most scenarios, is connected to ground potential at a high impedance
(dissipative, 10 × 105 to 10 × 106 Ohm), the current to charge the capacitance is limited to a
few nA.

While the problem of potential electromagnetic interference between dental instru-
ments and patient assist systems has been addressed by several authors [12,13], vastly
contradictive findings are described with an obvious dependence on manufacturer and
type of device [14,15]. Only few reports on non-cardiac devices could be found showing
that an electric pulp tester, apex locator and electrocautery unit did not profoundly damage
cochlear implants, while it was possible to destroy the implant’s circuitry with an elec-
trosurgical unit [16]. Similarly, the probability of damage to spinal cord stimulation by
an apex locator, electric pulp tester or electrocautery unit was found to be negligible [17].
Only one report on the interactions between dental instruments and their surroundings
was found, showing that mobile phones did not interfere with electronic working length
determination [18].

Electrosurgery caused electromagnetic disturbances in an implantable cardioverter
defibrillator [19,20], which hence seems to be contraindicated [21], while piezoelectric den-
tal scalers [22], electronic apex locators and electric pulp testers [19,23,24] did not interfere.
The exposure distance and lead-related parameters of the cardiac implantable electrical
devices [12,13] seem to play an important role and, consequently, Gomez et al. [25] found
electromagnetic interference in electronic apex locators and pacemakers when placed in
close contact. Implanted cardiac pacemakers seem to be comparably robust in not interfer-
ing with numerous electronic dental instruments [26], including electronic apex locators
and electric pulp testers [27]. However, an in vitro study also showed that electronic apex
locators did not interfere with cardiac pacemaker function, while electronic pulp testers
showed varying levels of background noise and the use of diathermy interfered with the
pacing system [28].

It was the goal of this animal study to compare the potential disturbances of an elec-
trocorticogram (ECoG) and electrocardiogram (ECG) caused by the use of an electrotome
and the different arrays of boron-doped diamond electrodes.

2. Materials and Methods
2.1. Animals

This study was approved by the local governmental animal protection committee
(Landesamt für Verbraucherschutz des Saarlandes; permission number: 08/2022) and
conducted in accordance with the Directive 2010/63/EU and the NIH Guidelines for the
Care and Use of Laboratory Animals (NIH Publication #85-23 Rev. 1985). A total of ten
female Sprague-Dawley rats were allocated for this study and accommodated for 1 week
prior to entering the experiment. Eight animals were used for the planned investigations.
Two animals died prematurely due to complications during induction of anesthesia.
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2.2. Surgical Procedure and Instrumentation

General anesthesia was induced by inhalation of isoflurane followed by intraperitoneal
(i.p.) injection of ketamine (80 mg/kg) and xylazine (6 mg/kg), while intraoperative
analgesia was achieved by subcutaneous carprofen (5 mg/kg) injection.

For instrumentation, the animals’ foreheads and backs were shaved. ECG was
recorded as Lead I using stainless steel needle electrodes inserted into both forelegs and
hindlegs. The animals were placed in a sphinx position with the head fixed in a custom-
made stereotactic frame. The head was fixed by ear bars placed in the auditory canals,
mouth bars and nose pieces. The skull was exposed and burr holes were made for the
insertion of four electrocorticographic screw electrodes for bilateral unipolar leads from
the primary somatosensory cortex (reference, nasal bone) [29]. Electrodes were covered
with glass ionomer dental cement (Ketac Cem, 3 M, Seefeld, Germany) in order to fix in
place and insulate electrodes throughout the experiment. The first molars in the maxilla
and—where possible—also in the mandible were then trepanned until bleeding occurred.

2.3. Experimental Protocols

After completion of the instrumentation, the animals were removed from the stereo-
tactic apparatus and placed in the pronation position. A three-minute recording of the
initial conditions was first made from each animal. Subsequently, the opened tooth cavi-
ties were continuously rinsed with physiological saline solution. The various stimulators
((i) a Boron-doped diamond electrode (9 V) consisting of a 50 µm BDD placed inside the
cannula (Figure 2), (ii) a Boron-doped diamond electrode (9 V) consisting of a 50 µm
BDD placed outside the cannula (Figure 3), (iii) a monopolar electrotome electrode, set
at maximum intensity (Coagulation electrode: Sirona “No. 5”, hf surg, Hager & Werken,
Duisburg) and (iv) an electric shortcut electrode consisting of two “Figure 2” electrically
interconnected electrotome coagulation electrodes) were introduced in a random order
into one of the opened cavities for a period of <20 s. The electrode activity of the Boron-
doped diamond electrodes i and ii was verified by a visual verification of intracavitary
gas bubble production. The application of physiological saline solution into opened tooth
cavities did not cause any changes in the recorded electrophysiological parameters. At
the end of the experiment, the animals were sacrificed by an overdose of Pentobarbital
(400–800 mg/kg i.p.).

2.4. Data Acquisition and Analyses

Unipolar ECoG and ECG signals were amplified (4-Channel EEG or ECG Amplifiers,
Biovision, Wehrheim, Germany), filtered (time constant was 0.1 s, cut-off frequency was
1000 Hz), fed into a multi-channel recording device (GJB Datentechnik Bolten & Jannek GbR,
Ilmenau, Germany) and stored after A/D conversion continuously on hard disc at 1000 Hz.
In order to reveal the electrocorticographic activity, the signals derived from head screw
electrodes were bandpass filtered (0.5–45 Hz) and stored. The instantaneous heart rate (HR)
was derived from the reciprocal RR interval time series. Therefore, the individual R-waves,
with the R-wave peak as the trigger point, were sequentially recognized (ATISApro®,
GJB Datentechnik GmbH, Langewiesen, Germany). Accurate R-wave peak detection was
verified by visual inspection. The distance of consecutive R wave peaks was measured by a
precision of 1 ms. The series of R-R intervals (T1, T2, T3 . . . Tn) was stored as a function of
the beat number. This series constitutes the RR interval time series (measured in ms). The
reciprocal of this series represents the instantaneous HR (in beats per minute) and this was
stored simultaneously to the electrocorticographic activity (ECoG, in µV) [30].

The types of stimulation were administered in a predetermined order. The times
at which the stimuli were applied and their effects on ECoG, ECG and heart rate were
recorded and subsequently evaluated semi-quantitatively. Specifically, in each case of
stimulation, immediate reactions in the ECoG recordings, as well as in the ECG curve or
the instantaneous heart rate (e.g., induced arrhythmias), were checked and, if necessary,
the extent and duration of the electrophysiological events were classified (Table 1).
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Figure 2. Schematic illustration of Boron-doped diamond electrode—inside. The anode consisted
of a 50 µm niobium wire coated with 1 µm boron-doped diamond. The cathode consisted of
an endodontic needle (0.3 × 25 mm, transcodent, Sulzer GmbH, Munich, Germany). The anode
and cathode were separated by a thin polymeric layer. (a) CAD schematic overview (FreeCAD,
version 0.18, http://www.freecadweb.org/, accessed on 11 December 2023) of the irrigation needle.
(b) In-depth view of the electrolytically active tip of the BDD electrode type i probe.
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(b) In-depth view of the electrolytically active tip of the BDD electrode type ii probe.
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Table 1. Electrophysiological significance score.

Parameter Indications Score Range

Involvement
ECoG NoCh 1–4
ECG n/y 1/3

Heart rate n/y 1/4

Extent of disruption
not visible 1
<100 µV 2
>100 µV 3

Duration

n/a 1
<1 s 2
1–5 s 3
>5 s 4

Summary score evaluation: harmless, 5–8; minor changes, 9–13; strong effects, 14–18; ECoG, Electrocorticgram,
ECG, Electrocardiogram, NoCh, number of channels; n/y, no/yes; n/a, not applicable.

2.5. Statistics

Values are given as medians as well as the first quartile and third quartile. Com-
parisons between groups were made via one-way analysis of variance on ranks. Post
hoc comparisons were made with the Dunn’s multiple comparisons test. Differences in
frequencies were considered significant at p values < 0.05.

3. Results

The effects of the different electrode-mediated DC or AC applications on intracavitary
rat pulps showed that both the voltage type and the electrode design had a significant
influence on the biological effects.

As shown in Table 2 and Figure 4a,b, the design of the BDD electrodes was crucial for
the intensity of the electrophysiological effects. We found no detectable electrophysiological
effects when using the inside BDD electrode (type i), which proves that this design of a
BDD electrode is safe to use for endodontic electrochemical disinfection in living organisms.
In contrast, the other BDD electrode design tested caused significant to serious effects.
Significant and potentially dangerous effects were observed when using the outside BDD
electrode (type ii) (Figure 4b, Table 2, p < 0.01). Generalized ECoG disorders occurred in
almost all applications when using the type ii BDD electrode. Furthermore, we found short-
term epilepsy-like discharges in the ECoG (Figure 4b). In addition, ECG disturbances and
even brief heartbeat interruptions occurred, so this type of electrode must be considered
potentially dangerous when used in living organisms. The use of the AC-operated electro-
tome (type iii) as a legally approved cutting and coagulation instrument in oral surgery
was used as a reference for documenting the sensitivity of electrophysiological parameter
detection. The use of the electrotome induced the strongest effects on ECoG and ECG
recordings (Figure 4c, Table 2). However, it should be noted that the high-frequency AC
application led to strong electromagnetic interferences, which always overdrive the ECG
and ECG amplifiers during electrotome stimulation. Electric shortcuts (type iv) induced
merely minor ECoG changes (Figure 4d, Table 2).

Table 2. Effect of intracavitary pulp stimulation on ECG and ECoG.

Electrode Type Number of Stimulations Score

BDD electrode—inside (type i) 10 5 (5; 5)
BDD electrode—outside (type ii) 10 16.5 (12; 17) *

Electrotome (type iii) 13 18 (18; 18) *
Electric shortcut electrode (type iv) 11 10 (5; 10)

Values are given as medians as well as the first quartile and third quartile in parenthesis; * p < 0.01, significant
difference to BDD electrode—inside, respectively.
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Figure 4. Electrophysiological effects of intracavitary stimulation by three differently designed
BDD electrodes in comparison with electrotome stimulation and short-circuit effects (representative
examples). Note that (a) the BDD electrodes inside (i) had no visible effects on ECoG and ECG, while
(b) BDD electrodes located outside (ii) had significantly stronger electrophysiological effects and
even led to short-term epilepsy-like discharges in the ECoG (blue arrowheads). (c) The application
of AC electrotome (iii) stimulation resulted in the greatest effects on ECoG and ECG, with transient
overdrive of ECG and ECG amplifiers. (d) Electric shortcuts (iv) induced merely minor ECoG changes.
(ECG, electrocardiogram; HR, heart rate; ECoG, electrocorticogram; orange-colored double arrows
indicate stimulation periods).

4. Discussion

Our own previous work [1,2] on BDD electrodes, as well as the previous work of
Ochiai et al. [31], showed that flexible BDD electrodes may be applied for electrochemical
disinfection in dental root canal treatment. During these proof-of-concept and preliminary
studies, the disinfective effect of BDD-processed electrolytes on microbial contaminations
was proven using different prototypes. This animal study aimed to explore the potential
generalized effects of prototype BDD electrodes intended for electrochemical disinfec-
tion [1,2] during endodontic treatment. Therefore, the focus of this study was not solely put
on the electrophysiological effects, but also on design-dependent solutions for possible dis-
turbances caused by different prototypes. With the final arrangement of the anode/cathode
not yet determined, two different designs were applied. The design of the electrodes did
have an effect on ECoG and ECG, with the anode (BDD-coated Nb wire) positioned inside
the cathode (cannula) showing least interference. As expected, in this configuration, the
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electric current follows the path of least resistance and not affecting host tissues. With
respect to the prototype design presented by Ochiai et al. [31] and our previously presented
designs [1,2] this new generation of prototypes can be determined as suitable for use for
electrochemical endodontic disinfection in living organisms. In contrast, it has been proven
that, when BDD electrodes are used, design-related unshielded contact with body fluids
leads to significant cerebral and cardiac effects (see Table 2, Figure 4b). Therefore, the main
goal of the study was achieved by demonstrating that a design of the BDD electrodes for
endodontic electrochemical disinfection could be developed that did not demonstrably
cause any relevant electrophysiological cardiac or cerebral consequences in the living mam-
malian organism. Additionally, we also suggest that designs with direct contact between
BDD anodes and patient tissue may lead to effects on human patients if DC currents higher
than 20 mA are applied (Figure 1).

The investigations carried out revealed that it is obviously essential to prevent the
spread of direct current to induce electrochemical disinfection as best as possible. Previous
studies have already shown that direct currents in the µA range lead to changes in cortical
polarization in rat brains with drastic consequences for cerebral excitability [32,33]. Direct
current effects on the heart muscle seem rather unlikely because, due to the anatomical
conditions, the heart is hardly in the direct area of influence of potential current flows. In
addition, the expected current intensities are several orders of magnitude smaller than
those that occur in electrical accidents with heart muscle damage. The recorded ECG effects
are most likely caused by electromagnetic interferences when switching on and/or off or
possibly by motion artifacts. Altogether, the applicability of DC-driven electrochemical
disinfection requires a high level of safety in terms of DC shielding. This also applies to
an artificial technical failure with a subsequent electric shortcut. Even if the results listed
here only documented minor electrophysiological effects when using the electric shortcut
electrode, it must be taken into account that the animals examined were under general
anesthesia. The avoidance of pain and affliction in animal experiments is, in addition to
the fundamental ethical, practical and physiological reasons, a basic legal requirement for
the approval of such studies and is required to ensure that animal welfare is indispensable
for good scientific practice [34]. Therefore, we have to state that cerebral excitability,
information processing and metabolic activity are significantly reduced and, therefore,
the susceptibility of the ECoG to electrical disturbances might be less sensitive [35–37].
Of course, the combination of ketamine and xylazine used here for general anesthesia
resulted in a global reduction in cerebral glucose metabolism. However, this reduction
in brain metabolism was relatively smaller in the primary somatosensory cortex, the
region where dental pulp neuronal afferents are primarily processed and one’s own ECoG
recordings are made [38]. Therefore, ECoG susceptibility may be less affected than expected.
Furthermore, the use of this combination anesthesia is widely used in anesthesia for
laboratory animals [39] and offers clear advantages, namely the availability of different
routes of administration, such as intraperitoneal and intramuscular applications, sufficient
surgical anesthesia time and also good pain relief in rats [40].

The maximum effect on recorded electrophysiological parameters was observed with
the electrotome, which was applied in the maximum of possible settings for use in humans.
When assessing the biological effect, it must be taken into account that the mode of opera-
tion of the electrotome for cutting or coagulating biological tissue is fundamentally different
from that of the BDD electrodes for endodontal electrochemical disinfection. As already
mentioned above, the electrochemical process for electrolysis with radical production for
local disinfection is caused by a direct current. This can potentially lead to an electrical cur-
rent flowing through brain and heart, with potentially fatal consequences. In contrast, the
electrotome works with a high-frequency alternating current, which, due to the design used,
does not lead to a transmitted current flow. Serious functional consequences, especially
on the heart, such as fatal cardiac arrhythmias, are prevented by the high frequency used.
The effects of the use of the electrotome recorded in the experiment are most likely caused
by electromagnetic interferences, which always overdrive the ECG and ECG amplifiers
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during electrotome stimulation. Therefore, comparing the recorded effects of the AC-driven
electrotome with those of the DC-driven BDD electrodes is not appropriate.

Given that the electrotome can safely be applied in human patients, it may be inferred
that the BDD electrodes would be safe, too. Electrotomes have been used previously as
a reference system for evaluating a plasma discharge device with respect to local tissue
reaction [41], as well as energy-based surgical devices for thyroid surgery [42].

As already pointed out, AC and DC show different modes of interaction with the
human body. Consequently, the comparison between instruments working on AC vs.
DC may be seen as a limitation of this study. It might have been more relevant to use
the GalvoSurge device (GalvoSurge Dental AG, Widnau, Switzerland), which, however,
would have required adaptation to fit the rat animal model [43]. In the same context, the
electrotome was used for this relative comparison, which is also reflected in the scoring
system established here.

Further limitations include the fact that general anesthesia could not be standardized,
resulting in initial heart rates of <250 bpm up to >350 bpm. Given that multiple applications
were made in each animal, these factors should have only had a minor impact on the
evaluation of the electrophysiological effects of the electrodes examined. A critical aspect
was also the application of saline both during trepanation as well as during electrode
application causing asphyxia. A better approach would have been to intubate the animals
via a tracheostoma, which was not carried out for technical reasons as well as due to
time constraints.
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