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Abstract

Self-sensing techniques allow position estimation on electromagnetic actuators by means
of electrical quantities, which can be used in sensorless applications or use-cases requiring
redundancy. In standstill and low speed conditions, an estimation through the inductance
is required, which is challenging due to electrical noise issues and an ambiguity that
is present inside this parameter. In this work, a position self-sensing strategy for
electromagnetic actuators is proposed that is based on current ripples that are inherently
caused inside PWM-operated switching electronics. First, the work models these current
ripples under the consideration of iron losses. Then, a position self-sensing strategy is
proposed, which involves an analog integration approach. This decreases computational
effort while increasing the signal-to-noise-ratio. Further considerations are made for
compensating the hysteretic behavior that is visible in electromagnetic actuators. To
overcome the ambiguity, a parameter that represents iron losses is estimated and allows
for a unique solution of the position estimation problem. Experimental results prove
the robustness and accuracy of the approach on industrial electromagnetic actuators for
the usage of end-position and linear position detection. Finally, an experiment involving
sensorless position control proves the bandwidth and robustness of the technique in case
the estimation is used as position feedback.
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Kurzzusammenfassung

Sogenannte Self-Sensing-Techniken erlauben das Bestimmen der Ankerlage von elektro-
magnetischen Aktoren über das Messen rein elektrischer Größen. Dies macht sie besonders
attraktiv für den sensorlosen Betrieb oder Anwendungen mit Redundanzanforderungen.
Bei Stillstand und niedrigen Geschwindigkeiten ist eine Ermittlung über die Induktivität
zwingend erforderlich. Jedoch weist diese Größe Mehrdeutigkeiten auf und ist sensibel
gegenüber Messrauschen. In dieser Arbeit wird eine Self-Sensing-Technik vorgeschlagen,
die auf Stromwelligkeiten basiert, welche inhärent durch die PWM-Ansteuerung vorhan-
den sind. Hierzu wird zunächst ein mathematisches Modell von Stromwelligkeiten unter
der Berücksichtigung von Eisenverlusten formuliert. Der Ansatz zur Positionsermittlung
basiert auf einer analogen Integration, wodurch Rechenaufwand eingespart werden kann,
während das Signal-Rausch-Verhältnis verbessert wird. Weitere Erweiterungen dienen
der Kompensation hysteretischen Verhaltens. Das Problem der Mehrdeutigkeiten wird
adressiert, indem ein weiterer Parameter, welcher die Eisenverluste im Aktor zusammen-
fasst, herangezogen wird. Experimentelle Ergebnisse an industriellen elektromagnetischen
Aktoren zeigen die Robustheit und Genauigkeit des Ansatzes mit Hinblick auf eine End-
lagenerkennung und einer linearen Positionsschätzung. Abschließend wird experimentell
im Rahmen einer sensorlosen Regelung die Dynamik und die Robustheit der Technik
gezeigt.
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1 Introduction

1.1 Motivation

Electromagnetic actuation has been of interest since the discovery of electromagnetism
in the early 1800s. A first prototype of an actuating electromagnet has been invented
and developed by the british physician William Sturgeon in the year 1825 [1]. His first
device was capable of lifting a mass of 9 pound by generating a force of 40 N. From
that time on, the development of electromagnets mainly focused on increasing size and
force such as the concept developed by the US-american physicist Henry in 1831 with
3400 N [2, pp. 3ff.]. With the modeling of electromagnetism conducted by Maxwell
in its well-known equations, it was possible to calculate magnetic fields and resulting
forces, leading to a more detailed design procedure. In particular, the german physicist
Julius Dub investigated the influence of geometry properties on the force-displacement-
behavior. Nevertheless, it was the german physicist Wilhelm Binder, in 1940, who was
able to manipulate the force-displacement-characteristic for industrial applications. A
good overview of the historical events involving in the development of electromagnets is
covered in [2].

From that time on, electromagnets have been widely applied in the industrial, automo-
tive and domestic sector. Due to their simple design, they are considered a robust and
cheap actuation principle that can be produced in high volumes [2]. They can be used for
generating rotational or linear motion. Since the underlying physical principle is based
on the reluctance force, these electromagnetic actuators can produce only attractive
forces, thus requiring a counteracting force in terms of a spring or a second electromag-
net. Consequently, one or two stable positions can be achieved. A major advantage of
electromagnets lies in their capability of generating forces without further mechanical
transformations, thus they are considered a direct thrust actuator. This has evolved to a
wide field of so-called special magnets that are only designed for their application case,
thus offering unique force-displacement-characteristics with high geometrical integration
into the system. [2]. Compared to other actuation principles, electromagnets generate
large strokes with high forces [3, p. 47]. Due to the discussed properties and advantages of
electromagnets, wide range of applications are opened. In particular, such actuators are
included in hydraulic and pneumatic valves for stationary as well as mobile applications,
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1 Introduction

switching relays, electromagnetic clutches and brakes. Other application scenarios include
linear position actuators as well as active magnetic bearings [2, 3].

From the 1950s on, development of semiconductor devices enabled a further improve-
ment of the overall actuator characteristics. With the help of discrete electronic circuits,
it was possible to reduce actuation times, optimize current consumption in rest position
and provide current as well as position control. Further inventions involved compensation
of nonlinear characteristic and hysteresis effects [2]. Nevertheless, most actuators are still
driven in an open loop manner with fixed supply voltage due to the actuator robustness
and the cost sensitivity. Nominal voltage, number of coil windings and generated force
are usually dimensioned in such a way that a suitable current, and consequently force, is
generated at any position even under self-heating. In such a way, actuation is possible
even under external loads and disturbances. The reduced system costs, especially due to
lack of electronics and sensors, often overcome the ineffectiveness of this driving approach.

In the last years, the ongoing success of microprocessors allowed to integrate the
above-mentioned functionalities in software algorithms rather than discrete electronics,
thus reducing the system costs and allowing the implementation of such approaches
on low-cost actuators. Despite their almost 200 years of development, linear actuation
systems based on electromagnets experience of a further increase in functionality such
as sophisticated control and monitoring applications [4–8], as well as soft-landing and
further redundant information generation, which increases significantly functional safety
[9, 10]. These important trends are further driven by digitalization strategies such as
Industry 4.0, that requires Predictive Maintenance and Condition Monitoring concepts,
and by further energy-saving demands, either forced by governmental restrictions or
required by applications that are battery-driven.

Since it cannot be guaranteed that the position of the actuator is hold under external
disturbance forces when reducing driving currents, the information on the actual actuator
position is required for the implementation of those strategies. Classically, this position
information is retrieved by mechanical sensors such as encoders, LVDTs (linear variable
differential transformers) or, in the case of switching actuators, with mechanical end-
position switches. Nevertheless, applying such sensory increases system cost, complexity
and size significantly. Moreover, the coupling of an additional sensor with its wiring
is cumbersome in use cases where the actuator is exposed to harsh environments such
as hydraulic valves. Hence, most sensor-based solutions are placed in high-quality-
applications due to cost reasons. Sensor costs are crucial in the cost-sensitive sector of
electromagnets, thus representing a major challenge for implementing more sophisticated
monitoring and control approaches, that result into further functional safety and reduced
energy consumption. The issue of mechanical sensors has been addressed by exploiting
the so-called self-sensing techniques.
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1.2 State-of-the-art

In literature, both terms sensorless and self-sensing are used for actuators with the
capability of position estimation. Technically, the term self-sensing seems appropriate
since the actuator mechanical quantities are estimated through the knowledge of the
actuator electrical quantities such as voltage and current. Thus, position and forces can
be self-sensed by the actuator with its electrical subsystem. The term sensorless leads to
confusion since anyways electrical sensors are required [11]. Since most works refer to
sensorless, this term is also used in the following state-of-the-art.

Originally, the field of sensorless techniques was developed for rotating machinery such
as synchronous and asynchronous machines [12–14]. While first approaches are based
on the observation of the back-induced voltage during movement, more sophisticated
approaches are based on the estimation of the actuator inductance that allows for
an operation at standstill and low-speed. A particular groundbreaking research was
conducted by Schroedl with his INFORM (INdirect Flux detection by On-line Reactance
Measurement) technique in the late 1980s [15–17], where test pulses are injected into the
machine. Further research works applied rotating [18] and alternating injection [19] as
well as arbitrary injection injection schemas [20, 21].

From that time on, also sensorless techniques for electromagnetic actuators were
subject for research investigations, starting from the middle 1990s. Similarly for electrical
machines, these techniques can be classified based on the exploited physical effects, as
illustrated by Figure 1.1. Generally, they can be separated into techniques using the
estimation of the back-induced electromotive force (back-EMF), the identification of the
inductance and the determination of eddy current losses inside actuators.

Estimation based on the back-EMF A large amount of works exploits the back-EMF
induced during motion of the actuator rod. In such a dynamic case, the flux inside the
actuator is changing. In the measured current, the derivative of the flux is visible and
can be processed. A simple current peak detection was used in [22]. Other approaches
integrate numerically this information in an open-loop manner in order to estimate
the actual flux inside the actuator [4–6]. In order to overcome integrator drifting, also
closed-loop integration [23] or a compensation of the drift [24] can be considered. More
sophisticated works make usage of state observation, such as Luenberger observers [25],
Kalman observers [26] and sliding mode observers [27–32]. The estimation based on
the back-EMF cannot work at standstill and low speeds due to the lack of a voltage
that can be measured with a good signal-to-noise ratio. While this is still sufficient for
fast-switching actuators, actuators that are used for positioning require an estimation
procedure that is capable of identifying the actuator position at the entire speed range.
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Figure 1.1: State of the art of self-sensing techniques for electromagnetic actuators.
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Thus, techniques relying on observers that are based on the back-EMF are not further
discussed in this work.

Estimation based on the inductance A physical quantity that can be estimated even in
standstill condition is the inductance of the actuator. In particular, a persistent excitation
[33] must be applied on the actuator to cause a measurable current change that allows
for the estimation of the inductance. Similarly to rotating machines, injection-based
approaches were developed in the works [8, 9, 32, 34–39] for solenoid actuators and
in [40] for magnetic bearings. Demodulating the measured current response leads to
a precise identification of the so-called incremental inductance, that is apparent under
oscillating excitation. Nevertheless, injecting an additional signal into the actuator leads
to several disadvantages. The choice of frequency of the injected harmonic signal leads to
acoustic noise, force ripples and vibration as well as additional power losses. Furthermore,
the maximum applicable driving voltage is reduced and the estimation bandwidth is
considerably lower than the bandwidth of the injected harmonic signal.

Due to the mentioned disadvantages, this approach will not be followed here. Instead,
techniques are discussed that rely on current ripples in those actuators. Classically,
controlled electromagnetic actuators are driven by switching power electronics that are
operated with a pulse-width-modulated (PWM) voltage. Such a PWM voltage represents
an injection that is inherently present inside the actuator system. This voltage causes a
continuous charging and decharging of the inductance which results into current ripples.
The slope of the current ripple depends on the inductance, thus it can be exploited for
the estimation of the incremental inductance. Such a step voltage also has the advantage
of exciting the coil with several harmonics compared to a classical sinusoidal injection
approach. Moreover, the PWM frequency is considerably higher than the speed of the
plunger, thus an estimation with high bandwidth can be achieved. In the field of current
ripple-based techniques, there exist different approaches for processing the current ripple:

1. The derivative-based approach

2. The oversampling-based approach

3. The preprocessing-based approach

Derivative-based works process the slope of the current ripple by applying two con-
secutive measurements and performing a numerical derivative [41–47]. By performing
a derivative of the second order, also resistive voltage drops and the back-EMF during
movement can be compensated. Due to the numerical derivative, the estimate usually
exhibits a poor signal-to-noise ratio since current measurements are characterized by a
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low signal quality, especially in the case small currents are sensed with shunt amplifiers.
Moreover, the switching of the power transistors distorts the measurement. Thus, strong
filtering needs to be applied which leads to bandwidth reduction. In particular, the works
[42, 45] amplify the current slope by applying sample-and-hold units and operational
amplifiers for increasing the signal-to-noise ratio. Nevertheless, by applying a derivative,
a linear shape of the current ripple is assumed that does not account for resistive effects
and eddy-currents, which decreases identification performance.

Overcoming the demerits of the derivative-based approaches, oversampling approaches
were invented that perform an oversampled analog-digital (AD) conversion of the current
ripple within a PWM period [37, 48–53]. In such works, the sampling frequency of
the AD converter is considerably higher than the PWM frequency, for instance the
work [51] acquires 10000 samples per each PWM period. Based on the obtained data
vector, such approaches perform a curve fitting method or a regression algorithm such
as LMS algorithms in order to estimate the incremental inductance. By doing so, the
exponential shape of the current ripple can be considered during the estimation process.
Nonetheless, all of the above-mentioned works neglect the influence of the eddy currents.
Performing an oversampled current measurement leads to significant increase in signal-
to-noise ratio, thus no further processing of the inductance and position estimate is
required. Nevertheless, this advantage comes with a considerable demerit of an increased
sampling and computational effort, mostly leading to the usage of high-bandwidth ADCs,
high performance microcontrollers with digital signal processors (DSP) or even Field-
Programmable Gate Arrays (FPGAs). Such electronic components increase the cost
significantly which is undesired in the cost-sensitive field of electromagnetic actuation.

The last category of techniques tries to minimize the computational effort by outsourcing
the necessary preprocessing operations in analog electronics rather than software methods.
Thus, a good trade-off between computational resources and obtained signal-to-noise ratio
(SNR) can be obtained. Indeed, when considering PWM frequencies that are relatively
high, this approach can decrease the computational burden of microprocessors. An analog
preprocessing stage was presented in [54, 55], that consists of a high-pass, a rectifier
and a low-pass filter. Despite its performance in estimation, this approach limits the
dynamics of the estimation and of the control algorithm due to the restrictions applied
by the filters. An hysteresis amplifier presented in [45] allows for a robust identification
of the inductance during driving. Nevertheless, it requires the usage of a linear power
electronics instead of a switching power electronics, with remarkable decrease in energy
efficiency, which is undesirable in the present days. The preprocessing-based techniques
have proven to provide a good SNR with decreased computational resources. Because
of the ongoing performance rise in microprocessors and FPGAs, they particularly lost
interest in research. Thus, oversampling approaches seemed more adequate to implement

6



1.2 State-of-the-art

on such platforms. Nevertheless, especially in low-cost segments the usage of high-power
microcontrollers and AD converters is still unwanted nowadays, leaving this research field
empty for several years.

From the state-of-the-art it is visible that, for applications with standstill and low
speed actuation, such as positioning applications, the incremental inductance seems the
best candidate for displacement identification. Nevertheless, the incremental inductance
shows a non-monotonous characteristic over the position [2], especially when the actuator
operates in magnetic saturation. Thus, position estimation strategies relying on this
information suffer from ambiguities [32, 39, 45, 56, 57]. This issue is addressed by using
look-up tables with a prior knowledge of the moving direction of the actuator [45]. While
this resembles a simple solution, it can lose its tracking during high speed operation and
always needs an initialization procedure.

Estimation based on eddy currents Another physical effect that allows position iden-
tification are eddy current losses inside the plunger. The works [45, 56, 57] exhibit
this physical quantity through a lumped parameter model of the magnetic circuit. In
particular, iron losses are modeled as a resistor connected in parallel to the main induc-
tance, which represents leakage. All works show that this parameter has a monotonous
behavior over the entire position range and shows a remarkable sensitivity on the position.
Nevertheless, all works concede that this parameter suffers from large measurement
variance and poor signal-to-noise ratio, thus the work [45] avoids the evaluation of this
parameter. On the other side, the works [56, 57] estimate the parallel resistance by
applying a model reference adaptive system (MRAS) and verify the applicability of this
physical parameter. In order to increase the SNR, information from the incremental
inductance is merged with the information obtained by the parallel resistance by applying
binary decision making between the operation points.

Beside the above-mentioned estimation approaches based on incremental inductance
and eddy currents, there exist also techniques that fall into both categories. In particular,
frequency-dependent impedance spectrums are analyzed in the works [35, 36, 45]. Thus,
such approaches identify the inductance and eddy current behavior at the same time.
The amplitude of the impedance changes according to the actuator position and can be
therefore exploited for position estimation. Because of the demand of having different
scan frequencies, those techniques resemble the injection-based approaches.

Further research works have concentrated on the modeling and compensation of the
hysteretic behavior of the obtained signals. The work [58] applies a generalized Preisach
model of hysteresis to the self-sensing technique. Moreover, the work [59] applies the
approach by Preisach for observing the magnetic flux in the air gap and the core. Self-
sensing based on the eddy current resistor is discussed in [60], where a Pseudo-inverse
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Preisach model is successfully applied to compensate for hysteresis phenomena. In [9],
a modified Prandtl-Ishlinskii model is used for hysteresis compensation of self-sensed
proportional solenoids. Despite research goals that concentrate on modeling of magnetic
materials in order to compensate undesired behavior, new works [61, 62] focus on the
design of actuators for self-sensing. By applying different design methodologies and by
using laminated materials, hysteresis phenomena can be dampened while the sensitivity
of the inductance can be increased.

By summarizing the state-of-the-art, techniques and algorithms can be separated into
five consecutive steps: underlying physical effect, measurement quantity, measurement
elaboration, identification algorithm and the used model. Those five steps are common
for all techniques, such as shown in Figure 1.2. In particular, the underlying physical
effect depends on the flux respectively its derivative (equals back-EMF), the incremental
inductance or the eddy currents. For position self-sensing, only electrical quantities such
as voltage and current are measured. In case an injection approach is used or the PWM-
caused current ripple is processed, the high frequency components of the current needs
to be measured additionally. Those electrical quantities can be either directly measured
or analogically processed (e.g. differentiation or integration) before being sampled by
an ADC either by using dedicated measurement times within one PWM period or by
using oversampling. Digital processing, e.g. filtering, differentiation or integration, can
be applied as well. The dedicated physical parameters can be either directly calculated,
observed or obtained using regression algorithms and MRAS approaches. In a further
step, they can be either modeled physically by means of magnetic equivalent circuits
or phenomenologically by means of Look-up-Tables (LUT) or interpolators based on
polynomials and artificial neural networks (ANN). The resulting model can either be
directly an (pseudo-)inverse model or can be inverted for position estimation. The
modeling accuracy can be increased by considering hysteresis compensation or by applying
a supervising observer, that takes the mechanical system into consideration.

1.3 Focus and scientific scope of this thesis

The state-of the-art has shown that a large amount of works focuses on techniques
based on back-induced voltages for high-speed actuators with limited capability for low
speeds. Instead, this thesis focuses on actuators for low-speed applications including
standstill, which is typical for positioning applications. The state-of-the-art reveals that
the identification through the incremental inductance promises the best results. Since
the demerits of injection approaches are unwanted, techniques are preferred from the
field of PWM-caused current ripples. Thus, this research work focuses on such kind of
position self sensing. Its contributions are:
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Figure 1.2: Overview on the consecutive steps necessary for implementing self-sensing
strategies.

1. Modeling and analysis of current ripples: The successful modeling of current ripples
influences the performance of the following self-sensing algorithms significantly.
Basic models for current ripples without the influence of eddy currents can be
derived easily by solving the first order differential equation of a RL circuit. The
work [45] models also the eddy currents by means of a parallel resistor and provides
a closed equation of the current ripple under PWM operation. Nevertheless, it
neglects the transients that occur at PWM switching instants. Such transients lead
to cusps visible in the current ripple, as reported by [40] and modeled by means of
equivalent circuits and numerical simulation in [63, 64]. When not being considered,
theses cusps alter the position estimation [40] and usually are avoided completely
during measurement instants [51]. Nevertheless, they contain important information
about the eddy currents and can be exploited for self-sensing. In literature, there
is no analytical model of these cusps. This work models the current ripples under
consideration of iron losses such as hysteresis and eddy current losses and provides a
closed analytical equation considering the current cusps. This is done by providing
a thorough analysis of the magnetic equivalent circuit of the actuator, that leads
to the well known topology of series resistance, main inductance and parallel
resistance. During the derivation, particular focus is laid on the complexity of the
model in order to model all important effects while maintaining a computational
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1 Introduction

lightweight model. Furthermore, cases are shown where the negligence and linear
approximation of the current ripple is appropriate. Results of this analysis are
published in the works [65, 66].

2. Computational lightweight self-sensing: State-of-the-art works in the field of current
ripple-based identification are mainly based on numerical derivatives or on over-
sampling. While in the first case the SNR is low, in the second case the SNR can
be significantly improved with increased sampling and measurement effort, that is
undesired in low-cost actuation. Methods based on analog preprocessing are under-
represented and were of low scientific research interest because most works assume
performant microcontroller units that are not available in the low cost sector. In
this work, the Integrator-Based Direct Inductance Measurement (IDIM) technique
is presented that is based on analog preprocessing by means of a resettable analog
integrator. First works covering the position estimation and sensorless position
control on an electromagnetic actuator were published in [67, 68] and patented in
[69]. Further improvements concerning the estimation bandwidth and accuracy
followed in the publication [70], where a sensorless controlled levitator verified the
performance of the approach. Further works considered the effects of parasitic
capacitances [65] as well as eddy currents on the estimation [66]. This work presents
different ways of identifying the inductance by means of the IDIM technique for
different use cases such as highly dynamic operation of switching as well as linear
actuators or static operation for end-position detection. The obtained methods are
compared in terms of measurement and computational effort as well as bandwidth
and SNR. A sensitivity analysis for measurement errors in the sensors and the
analog circuit such as gain and offset errors is conducted additionally. Finally, an
experimental study is shown where common oversampling approaches with different
number of samples are compared experimentally to the IDIM technique in terms of
computational effort and SNR.

3. Solution to ambiguities: As shown above, the incremental inductance shows a non-
monotonic behavior over the position range that leads to ambiguities in the position
estimate. Works exploit information from the eddy current resistor as further
input parameter to solve this ambiguity by applying look-up-tables and binary
decision making. Such binary decision has reduced accuracy and can fail when noise
triggers the rule. Compared to state-of-the-art works that use observers or MRAS
approaches, this work introduces an estimator based on the eddy-current resistor
that is computationally lightweight and only needs 3 measurements per PWM period.
The estimator is derived thoroughly and a sensitivity analysis for measurement
errors is conducted. Instead of a binary rule data fusion, an artificial neural network
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with a lightweight structure is used for information merging. Results show the
accuracy of the proposed approach. The approach for solving the ambiguities in
the position estimation is published in the work [66].

4. Hysteresis compensation: For accurate modeling and self-sensing of electromagnetic
actuators, the hysteretic nature of the ferromagnetic material has to be taken into
consideration. Despite its importance, the state-of-the-art shows few works address-
ing this topic. In this work, a Modified Prandtl-Ishlinskii model is used for the
identification and compensation of the hysteretic behavior of the incremental induc-
tance. Since the incremental inductance shows a butterfly hysteretic characteristic,
that cannot be modeled by classical hysteresis models, a transformation is shown
that provides a link to the classical B-H-curve. During derivation of the approach,
special attention is paid on the computational lightness of the approach in order
to support the main aspect of the IDIM technique. Experimental results on an
electromagnetic actuator are shown with and without hysteresis compensation and
are discussed in terms of computational effort as well as accuracy. The presented
approach is published in [71].

The work is structured as follows. First, a small introduction into ferromagnetism
and loss principles in ferromagnetic materials is given in Chapter 2. Then, a thorough
mathematical analysis is conducted with the help of magnetic and electrical equivalent
circuits. Chapter 2 ends with the analysis and discussion of the response of such a system
to a PWM voltage. Chapter 3 introduces and analyzes the self-sensing approaches such
as the IDIM technique and the eddy current based estimation and presents different ways
of modeling the position-dependency of the obtained physical parameters. Chapter 4
explains in detail the analog circuit that is necessary for the implementation of the
IDIM technique and describes the test-bench used for the experiments. Experiments
for three use cases are shown, including: the end position detection for a switching
actuator with monotonous characteristic, the linear position detection on a switching
actuator with hysteresis compensation and the end-position detection on a switching
actuator with non-monotonous behavior. Additionally, a comparison is conducted with a
common oversampling strategy in terms of SNR and computational effort under variation
of the number of samples. Chapter 5 provides a further outlook for sensorless control
applications. In particular, a sensorless controlled levitator is shown and experimentally
verified. Finally, conclusions are drawn and an outlook for future work is given in
Chapter 6.
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2 Modeling of electromagnetic actuators
under PWM-excitation

This chapter provides a mathematical model of electromagnetic actuators that is needed
for the common understanding of this thesis. Beside a basic model, a short introduction
into the nonlinear hysteretic behavior of ferromagnetic materials is given as well as
the main losses inside such actuators during dynamic operation such as iron losses.
The understanding of these physicals effects allows for a modeling of the electrical and
magnetic behavior of the actuator under PWM operation. The model uses equivalent
circuits in the magnetic and electrical domain that allow analyzing the actuator with
the well-known circuit theory [72]. Based on this analysis, a general model of PWM-
caused current ripples inside electromagnetic actuators is derived that is able to serve
as a physical and mathematical background for the self-sensing techniques explained in
Chapter 3.

2.1 Mathematical model of electromagnetic actuators

A generic electromagnetic actuator is composed of a current-driven coil, a plunger made
of ferromagnetic material and a ferromagnetic back-iron serving as magnetic flux guide,
as shown in Figure 2.1. Between the movable plunger and its end-stop, an air gap with
variable length 𝑥 is present. For sake of simplicity, in this section, losses will be neglected
and the permeability of the ferromagnetic materials is treated linearly with a relative
permeability 𝜇𝑟 → ∞.

In general, electromagnetic actuators serve as energy converter between electrical and
mechanical energy. The energy conversion takes place by exploiting magnetic energy
as supporting energy type [2]. Magnetic energy can be easily stored in inductors with
ferromagnetic cores. Nevertheless, the conversion between these energies undergoes losses
that results into energy that is dissipated as heat. Due to its large time constant, the
heat as well as its transfer through the thermal subsystem will not be considered in this
analysis. Figure 2.2 summarizes the electrical and mechanical subsystem in a schematic.
Only the simplified model will be considered here, where the magnetic domain behaves
linearly and without any losses. Therefore, its influences can be neglected for calculating
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back-iron

plunger

x

Fm

coil

Figure 2.1: Cross-section of a general-purpose solenoid actuator, adopted from [71].

the mechanical response to an electrical excitation. This simplification allows for a simple
analytical calculation of the actuator force. Nevertheless, for the analysis of the actuator
response under PWM operation, the nonlinearity as well as the occurring losses of the
electromagnetic materials need to be considered, as later will be done in Section 2.2.

𝑢(𝑡)

𝑖𝑠 (𝑡) 𝑅𝑠

𝜓(𝑥, 𝑖𝑠)

𝐹𝑚(𝑥, 𝑖𝑠)

𝑐 𝑑 𝑚

Figure 2.2: Electrical and mechanical subsystem of an electromagnetic actuator, adopted
from [2].

By analyzing Figure 2.2, the mathematical model of the electrical and mechanical
subsystems can be obtained [2] as:

𝑢(𝑡) = 𝑅𝑠 · 𝑖𝑠 (𝑡) +
𝜕𝜓(𝑥, 𝑖𝑠)

𝜕𝑡
, (2.1)

𝑚 · 𝜕
2𝑥(𝑡)
𝜕𝑡2

= 𝐹𝑚(𝑥, 𝑖𝑠) − 𝑐 · 𝑥(𝑡) − 𝑑 · 𝜕𝑥(𝑡)
𝜕𝑡

, (2.2)

with 𝑅𝑠 being the series resistance of the coil, Ψ being the flux linkage as well as 𝑢 and
𝑖𝑠 being the applied voltage and current, respectively. The parameters of the mechanical
system are the mass 𝑚, the spring stiffness 𝑐 as well as the viscous damping coefficient 𝑑.
The magnetic energy stored in the actuator can be calculated as:
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2.2 Properties of magnetic materials

𝑊𝑚𝑎𝑔 =

∫ 𝑖𝑠

0
𝜓(𝑥, 𝑖𝑠)𝑑𝑖𝑠 . (2.3)

Assuming no conversion losses, the force 𝐹𝑚(𝑥, 𝑖𝑠) of the electromagnetic actuator can
be calculated from the magnetic energy by means of the principle of virtual work as [2]:

𝐹𝑚(𝑥, 𝑖𝑠) = −
𝜕𝑊𝑚𝑎𝑔

𝜕𝑥
= − 𝜕

𝜕𝑥

∫ 𝑖𝑠

0
𝜓(𝑥, 𝑖𝑠)𝑑𝑖𝑠 . (2.4)

The force is always directed in such a way that the air gap and therefore the magnetic
energy present in the air gap is minimized. This phenomenon is known as Maxwell stress
along surfaces between different permeabilities and under the name of reluctance force
[73, p. 58]. In particular, neglecting losses and assuming a linear magnetic material, the
force yields to:

𝐹𝑚(𝑥, 𝑖𝑠) = − 𝜕

𝜕𝑥

(
1
2𝐿𝑠 (𝑥) · 𝑖2𝑠

)
= −1

2
𝜕𝐿𝑠 (𝑥)
𝜕𝑥

· 𝑖2𝑠 , (2.5)

where 𝐿 denotes the static inductance, which will be explained in detail in Section 2.2.
This well-known quadratic current law reflects the fact that the reluctance force that
is generated is independent on the current sign and, consequently, the force is always
attracting. That is the reason why an external force is needed for pulling the plunger
back to its original position. The opposed forces can be provided by gravity, springs or by
an additional actuator in the protagonist-antagonist-principle. The term 𝜕𝐿𝑠 (𝑥 )

𝜕𝑥
can be

adopted based on the design choices and, thus, several force-displacement-characteristics
can be achieved. In literature, hyperbolic curves are considered for switching actuators
with or without a decreased force before the end stop as well as flattened or partially
linear curves for proportional actuators [2]. A deeper insight into the force generation
mechanism as well as constructive adaptations can be found in the literature [2, 73, 74].

2.2 Properties of magnetic materials

In the previous section, the magnetic characteristic of the ferromagnetic materials has
been considered purely linear and with infinite magnetic permeability for the sake of
simple analytical calculations. Nevertheless, for an accurate modeling of electromagnetic
actuators, the nonlinear and hysteretic behavior of these materials has to be considered.
For a basic understanding, a short review about the basics of magnetism will be provided
here before specifying the quantities that are used for modeling. For a more detailed
introduction into the topic, reference is made to [2, 75–77].

In general, the electrons of an atom have an orbital moment and a spin moment.
Due to their electrical charge and their movement, they generate magnetic moments,
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2 Modeling of electromagnetic actuators under PWM-excitation

in particular an orbital magnetic moment and a spin magnetic moment [75]. In some
materials, both moments compensate each other, leading to a total moment being null.
Such materials are considered as diamagnetic [2]. In other materials, these moments
superimpose, leading to an increased magnetic moment. If an external field is applied, this
field rotates the atomic moment in the direction of the external field. Such materials are
considered as paramagnetic [2]. In elements such as iron, nickel and cobalt as well as some
alloys, there is a direct interference between the atomic moments of different atoms due
to the existing crystal lattice. In such materials, there is a spontaneous magnetization
without any external field. The material itself is separated into domains which are
completely magnetized until saturation. These domains are called Weiss domains [75].
In case of a complete superposition, the material is considered as ferromagnetic, while
in case of a partially superposition they are considered as ferrimagnetic [2]. Materials
with completely opposing atomic moments are called antiferromagnetic [2]. Based on the
material law with a magnetic permeability 𝜇, which links the magnetic field strength H
and the magnetic flux density B

𝐵 = 𝜇𝐻 = 𝜇0𝜇𝑟𝐻, (2.6)

a relative magnetic permeability 𝜇𝑟 can be defined. The permeability in air is denoted
as 𝜇0 and amounts to 4𝜋 · 10−7 𝑉𝑠

𝐴𝑚
. Different materials are characterized by their value of

𝜇𝑟 [75]:

• diamagnetic 𝜇𝑟 < 1

• para- and antiferromagnetic 𝜇𝑟 > 1

• ferro- and ferrimagnetic 𝜇𝑟 ≫ 1.

In engineering, only ferri- and ferromagnetic materials are relevant [2]. In particular,
for solenoid actuators and electrical machines, only ferromagnetic materials are usually
considered due to their high saturation densities, and consequently, high forces [75].

In ferromagnetic materials, the magnetization process is highly nonlinear and hysteretic.
It follows different magnetization stages, that are shown in Figure 2.3. First, the material
consists of countless Weiss domains, whose magnetic moments are statistically distributed.
The sum of all moments amounts to zero (Initial state). Between the domains there exists
the so-called Bloch walls, where the magnetization reverses. Such a Bloch wall is only
100-1000 atoms thick [2]. Beside the walls, there exists also crystallographic defects in the
material [75], which mainly depend on the material quality and the manufacturing process
[75]. When an external field is applied, the Weiss domains are expanding in the field
direction, thus the Bloch walls are moving (state 1). This process is still reversible [75].
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2.2 Properties of magnetic materials

When a Bloch wall hits a defect, the Bloch wall is blocked because it needs more energy
to jump over the defect. When the field is further increased, the Bloch wall has enough
energy to jump over the defects (Barkhausen jump), which leads to a further increase of
the Weiss domains (state 2) [75]. The wall movement at this state is irreversible and
leads to the existence of magnetic hysteresis. At a final state, the atomic dipoles are
rotating into the field direction until the material is fully in saturation (state 3) [75].
This rotation is reversible. The magnetization effects are temperature-dependent and
usually disappear when a certain Curie-temperature 𝑇𝐶 is exceeded [75].

B

H

Initial state

State 1

State 2

State 3

Figure 2.3: Magnetization process in ferromagnetic materials, adopted from [2, p. 41].

The so-called B-H-curve visualizes the hysteretic nonlinear dependence of the magnetic
flux density 𝐵 over the magnetic field strength 𝐻 and is shown in Figure 2.4 for common
ferromagnetic materials. Due to the nonlinear hysteretic behavior, the magnetic perme-
ability is dependent on the actual working point (𝐻0, 𝐵0) on the B-H-curve and is subject
to several definitions. For instance, the static permeability used for DC calculations, can
be formulated by the slope of the secant line between the origin and the actual working
point [2, p. 26]:

𝜇𝑠 =
𝐵0
𝐻0

. (2.7)

Electromagnetic actuators are normally driven by switching voltages such as PWM
voltages, leading to the induction of current ripples. Those currents ripples partially
charge and discharge the inductor. This driving scheme excites the magnetic material at
the small signal range. Therefore, the behavior of the B-H-curve and its characteristic
needs to be regarded in this small signal range. Operating in the small signal range,
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B

H

µd

µΔ

(H0, B0)

µs

Figure 2.4: B-H characteristic of a softmagnetic material with minor loops and definition
of different permeabilites, adopted from [77, p. 4].

under an applied bias field, leads to the creation of minor loops, whose mean permeability
during one minor loop is described by the incremental permeability [77]

𝜇Δ =
𝐵Δ

𝐻Δ

| (𝐻0,𝐵0 ) . (2.8)

For a infinitesimal small excitation, the reversible inductance can be obtained:

𝜇𝑟𝑒𝑣 =
𝐵Δ

𝐻Δ

| (𝐻0,𝐵0 ) for 𝐵Δ → 0 and 𝐻Δ → 0. (2.9)

On the other hand, there exists the so-called differential permeability, which results in
the definition of the differential reluctance and inductance. The differential permeability
can be defined by the tangent of the B-H-curve in the actual working point on the major
loop [2, p. 26]:

𝜇𝑑 =
𝜕𝐵

𝜕𝐻
| (𝐻0,𝐵0 ) . (2.10)

Note that in an anhysteretic material, where no loops occur, the incremental, reversible
and differential inductance resemble each other. Since in this chapter the current ripples
generated by a PWM voltage are considered in hysteretic materials, the incremental
inductance will be considered in the following sections.

Magnetic flux paths with sources and materials of different permeability can be easily
visualized and analyzed by means of the circuit theory. This is possible due to the analogy
between the electrical domain and the magnetic domain [72]. In particular, the magnetic
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2.2 Properties of magnetic materials

flux 𝜙 is driven by the magneto-motive force (MMF), which is calculated in the scalar
case as 𝜃 =

∮
𝐻𝑑𝑙. In a current-driven coil with a certain number of windings 𝑁, the

so-called flux linkage can be obtained as [2, p. 18]:

𝜓 = 𝑁𝜙, (2.11)

and the MMF can be simplified to

𝜃 = 𝑁 · 𝑖𝑠 . (2.12)

As described by the Hopkinson law, a magnetic flux flowing through a piece of magnetic
material leads to a magnetic voltage drop 𝑣 =

∫ 𝑙2
𝑙1

𝐻𝑑𝑙 between two coordinates 𝑙1 and 𝑙2:

𝑣 = R · 𝜙. (2.13)

The so-called magnetic reluctance resembles a resistive component in the flux path
and can be modeled as [2, p. 23]:

R =
𝑙𝑒 𝑓 𝑓

𝜇𝐴𝑒 𝑓 𝑓

, (2.14)

with 𝑙𝑒 𝑓 𝑓 and 𝐴𝑒 𝑓 𝑓 describing the effective geometry of the piece of magnetic material
with a certain relative magnetic permeability 𝜇𝑟 . Thus, the static reluctance in the
working point (𝐻0, 𝐵0) yields to:

R𝑠 =
𝑙𝑒 𝑓 𝑓

𝜇𝑠𝐴𝑒 𝑓 𝑓

, (2.15)

and the static inductance that is used for energy and force calculations as:

𝐿𝑠 =
𝜓

𝑖𝑠
=

𝑁2

R𝑠

. (2.16)

For the small signal excitation resulting into minor loops, the so-called incremental
reluctance can be obtained as:

RΔ =
𝑙𝑒 𝑓 𝑓

𝜇Δ𝐴𝑒 𝑓 𝑓

, (2.17)

and consequently the incremental inductance as:

𝐿Δ =
Δ𝜓Δ

Δ𝑖𝑠
=

𝑁2

RΔ

, (2.18)

where 𝜓Δ denotes the magnetic flux amplitude inside the minor loop. Thus it is possible
to obtain the characteristic of the incremental inductance over the current, as depicted
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in Figure 2.5. In contrast to the classical hysteretic phenomena of the B-H-curve, the
incremental inductance shows a so-called butterfly hysteresis [77, p. 541].

is

LΔ

Figure 2.5: Behaviour of the incremental inductance, adopted from [77].

The mathematical representation of the incremental reluctance resembles the linearized
behavior of the reluctance around its actual working point (𝐻0, 𝐵0), therefore it can
be considered as a small signal reluctance. This approach of linearizing non-linear
components is commonly known from electrical circuit theory and, therefore, reluctance
networks can be treated by applying linear network analysis tools [72].

The Maxwell equations link the B-H characteristic of the ferromagnetic material with
the 𝜓 − 𝑖 characteristic of the electromagnetic actuator by geometrical quantities. Thus,
in the scalar case, it can be obtained:

𝜓 = 𝑁 · 𝜙 = 𝑁 ·
∫
𝐴

𝐵𝑑𝐴, (2.19)

𝑖𝑠 =
1
𝑁
𝐻𝑙𝑒 𝑓 𝑓 . (2.20)

Another common approach is the usage of the magnetic voltage 𝑣 and the magnetic flux
𝜙 in analogy to the electrical quantities voltage and current. This allows for an intuitive
modeling of magnetic circuit by means of classical electrical circuit theory. Consequently,
the B-H-curve can also be presented in the form of an 𝜙 − 𝑣 characteristic:
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𝜙 =
1
𝑁

· 𝜓 =

∫
𝐴

𝐵𝑑𝐴, (2.21)

𝑣 = 𝑁 · 𝑖𝑠 . (2.22)

2.3 Losses inside magnetic materials

As explained in Section 2.1, not only the nonlinear hysteretic behavior of the ferromagnetic
material increases the complexity of the actuator model, but also the presence of energy
losses during operation. Moreover, beside decreasing the efficiency during operation, such
losses also influence the self-sensing capability of the actuator since the loss phenomena
overlap with the desired signals. As discussed later, it can be seen that losses inherently
influence the shape of the current ripple under PWM operation, thus altering the
information that is required for a position estimate with high accuracy, sensitivity and
repeatability. Since this chapter deals with the electromagnetical subsystem of the
actuator, only losses occurring in this part of the system will be discussed, while, for
instance, mechanical losses due to friction are not considered here.

Losses in the electromagnetic part can be divided into static and dynamic losses. In
the case of static losses, the thermal loss in the coil due to Joule effect [78, p. 33] is the
most significant contribution. During modeling, this resistive loss is represented by the
serial resistance 𝑅𝑠 of the coils. Moreover, leakage fluxes due to parasitic air gaps are
also present and reduce the available magnetic flux that link with the plunger and the
air gap. Dynamic losses inside magnetic materials are summarized under the name iron
losses and generally consist of [78, p. 461]:

• Eddy current losses

• Hysteresis losses

• Residual losses

Eddy current losses occur when a varying magnetic field passes an electrically con-
ducting material. Due to electromagnetic induction, a voltage is induced in the material
that generates electrical currents. Those currents generate a magnetic field that overlap
with the original field. Due to energy considerations, that are formulated in the Lenz
rule, the generated field is opposed to the original field, leading to losses during dynamic
operation [78, p. 462]. Instead, hysteresis losses are caused by the hysteretic nature of
magnetic materials. Due to its presence, there exists a difference in the amount of energy
that is needed to polarize and depolarize magnetic materials. This difference in energy
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is dissipated as heat during dynamic operation [78, p. 462]. While hysteresis and eddy
current losses predominate the dynamic losses in ferromagnetic materials, a small amount
of losses can be considered as residual losses that are caused by microscopic physical
effects [78, p. 462]. Its amount will be neglected here, since they only occur at lower flux
densities and in materials with low electrical conductivity, where eddy currents can be
neglected [79].

Due to the loss separation principle, those losses that usually are strictly physically
linked to each other, can be modeled and analyzed separately [80, p. 12]. In literature,
many works focus on different modeling approaches for different applications. While the
discussion would clearly expand the scope of the thesis, only two common approaches are
mentioned: the frequency-based power calculation approach and the differential equation
approach. The interested reader is directed to the fundamental book on ferromagnetism
[77] and magnetic hysteresis [80] for further details. The first widely-applied approach
analyzes the amount of losses under a purely sinusoidal excitation and therefore yields to
the calculation of power losses in dependence of the used frequency [78, p. 461]. One of
the most adopted models is the Steinmetz law: 𝑃 = 𝜂 · 𝐵1.6 · 𝑓 + 𝑒 · 𝐵2 · 𝑓 2 [77, p. 782],
that empirically models the power losses 𝑃 as a function of the frequency 𝑓 by means
of the coefficients 𝜂 and 𝑒. While this approach is sufficient for power loss analysis in
applications with fixed frequencies (e.g. net applications with 50 Hz), it is inappropriate
in the discussed case of dynamic modeling where transients occur due to the usage of
PWM voltages. Thus, approaches based on differential equations are used that are able
to analyze dynamic behavior. The differential equations stem directly from the Maxwell
equations. In fact, all dynamic losses have in common that they can be considered
proportional to the change of the magnetic flux density 𝑑𝐵

𝑑𝑡
[81]. Being transformed to

the Laplace domain, those equations allow a linear analysis of the involved losses. In
particular, the loss elements can be interpreted as components in magnetic equivalent
circuits [82] that can be analyzed by tools known from circuit theory [72].

Eddy current losses

Eddy currents occur when the magnetic flux flowing through electrically conducting
material is varying over time. Most magnetic materials usually exhibit a certain electrical
conductivity 𝜎𝑒𝑙 beside their magnetic properties. This is especially the case in electro-
magnetic actuators when steel alloys are used and, due to cost reasons, a lamination of
the steel is avoided. In the case of the discussed actuators, the back-iron and especially
the plunger realized as solid metal core, is affected. In general, the induced voltage 𝑢𝑖𝑛𝑑

yields to:
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𝑢𝑖𝑛𝑑 (𝑡) = −𝜕𝜓(𝑡)
𝜕𝑡

, (2.23)

while the resulting eddy current 𝑖𝑒𝑑 amounts to:

𝑖𝑒 (𝑡) =
𝑢𝑖𝑛𝑑

𝑅𝑒

= −
𝜎𝑒𝑙𝐴𝑒 𝑓 𝑓

𝑙𝑒 𝑓 𝑓

𝜕𝜓(𝑡)
𝜕𝑡

, (2.24)

with 𝐴𝑒 𝑓 𝑓 and 𝑙𝑒 𝑓 𝑓 being the effective area and length of the body where the eddy
currents occur. The eddy current itself generates a magnetic field that is opposed to the
original field, thus reducing the total magnetic voltage 𝑣𝑡𝑜𝑡 :

𝑣𝑒𝑑 (𝑡) = 𝑁 · 𝑖𝑒𝑑 (𝑡), (2.25)

𝑣𝑡𝑜𝑡 (𝑡) = 𝑣𝑜𝑟𝑖𝑔 (𝑡) + 𝑣𝑒𝑑 (𝑡)

= R𝜙(𝑡) −
𝜎𝑒𝑙𝑁

2𝐴𝑒 𝑓 𝑓

𝑙𝑒 𝑓 𝑓

𝜕𝜙(𝑡)
𝜕𝑡

. (2.26)

Since we analyze the fluxes within the material, only one winding exists [2, p. 168],
and consequently we can set 𝑁 = 1. As shown by [2, p. 169], the term in front of 𝜕𝜙 (𝑡 )

𝜕𝑡

can be seen as magnetic inductance in the magnetic path:

L𝑒 =
𝜎𝑒𝑙𝐴𝑒 𝑓 𝑓

𝑙𝑒 𝑓 𝑓
, (2.27)

The definition of magnetic inductance resembles the definition of the electrical con-
ductance of the piece of magnetic material. There is an analogy between electrical
and magnetic inductances: while the electrical inductance delays the rise of current in
response to an electrical voltage step, the magnetic inductance delays the rise of flux
when a magnetic voltage step is applied. This resembles the physical effect of eddy
currents, as Equation 2.26 indicates a first-order system in the magnetic domain.

For a voluminous piece of material exhibiting eddy currents, such as the plunger, the
skin effect needs to be taken into account. In particular, this effect causes a delay in the
generation of eddy currents between the inner layer and the outer layer of the piece of
magnetic material. Since the inner parts are affected by the sum of the original field and
the fields that are generated by the eddy currents in the outer layers, the magnetic flux
slowly propagates itself into the inner part of the body. According to the work of [72],
the propagation of eddy currents in a voluminous body can be modeled by a cascade of
magnetic low-pass filters consisting of magnetic reluctances and magnetic inductances,
as shown in Figure 2.6. By increasing the number of low-pass filters 𝑛𝑐 in the cascade,
the model accuracy can be increased.
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2 Modeling of electromagnetic actuators under PWM-excitation

R𝑒1 R𝑒2 R𝑒𝑛𝑐

L𝑒𝑛𝑐L𝑒2L𝑒1

Figure 2.6: Magnetic equivalent circuit of a voluminous piece of magnetic material,
where eddy currents are induced, adopted from [2, p. 169].

Hysteresis losses

As mentioned in Section 2.2, magnetic materials exhibit a hysteretic behavior, that not
only introduces a nonlinearity with memory in static operation, but also leads to losses
during dynamic operation. In particular, the magnetic energy that is needed for polarizing
the material, and therefore charging the inductance, is different than the energy that
is needed for decharging [78, pp. 457ff.]. This difference in energy is dissipated as heat
and is referred to as hysteretic loss [78, p. 461]. While such losses occur mainly during
travel on the major B-H-curve, the driving of the actuator by a PWM voltage excites
minor loops of the B-H-curve at every PWM instant, leading to continuous hysteretic
losses. For a correct analysis of the current ripple under PWM operation, the effect of
such hysteretic losses inside a minor loop is studied. Similarly to the eddy current losses,
most approaches for analyzing hysteretic losses are based on a frequency-based energy
model [78, p. 461], which does not sufficiently represent the case of transients caused by
PWM voltages and their resulting current ripples [82]. Therefore, for elaborating the
eddy current losses in such cases, the dynamic hysteresis model from Chua [83] based on
differential equations is considered. In general, the Chua model describes a hysteretic
system as

𝑑𝑦(𝑡)
𝑑𝑡

= 𝑔[𝑥(𝑡) − 𝑓 (𝑦(𝑡))], (2.28)

with a generic hysteresis between the system input 𝑥(𝑡) and the system output 𝑦(𝑡). The
function 𝑔() is called dissipation function while the function 𝑓 () is referred to as restoring
function [83], which already indicates the energy considerations behind this model. Both
functions are monotonic and differentiable functions, which need to be identified based
on the given hysteresis [83]. In the case of the discussed magnetic hysteresis, the input
can be considered as flux density 𝐵 while the output can be considered as magnetic field
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2.3 Losses inside magnetic materials

strength 𝐻. As seen in Equation 2.22, 𝐵 and 𝐻 can be replaced by the magnetic voltage
𝑣 and the magnetic flux 𝜙 respectively, yielding to:

𝑑𝜙(𝑡)
𝑑𝑡

= 𝑔[𝑣(𝑡) − 𝑓 (𝜙(𝑡))] . (2.29)

In particular, the studied hysteresis losses occur in a minor loop with a relatively small
amplitude that is caused by the current ripple. It therefore can be considered to take
place in the small signal range. Thus, Equation 2.29 with its functions 𝑔() and 𝑓 () can
be linearized around the working point with the quantities 𝜙0,

𝑑𝜙

𝑑𝑡
|𝜙0 , 𝑣0 [84, p. 111] on

the hysteresis curve under the assumption of differentiability of the functions 𝑔() and
𝑓 (). An implicit function ℎ can be defined for the given system:

ℎ

(
𝜙(𝑡), 𝑑𝜙(𝑡)

𝑑𝑡
, 𝑣(𝑡)

)
=

𝑑𝜙(𝑡)
𝑑𝑡

− 𝑔(𝑣(𝑡) − 𝑓 (𝜙(𝑡))) = 0. (2.30)

A small deviation can be defined around the working point as:

Δ𝜙(𝑡) = 𝜙(𝑡) − 𝜙0, (2.31)

Δ
𝑑𝜙(𝑡)
𝑑𝑡

=
𝑑𝜙(𝑡)
𝑑𝑡

− 𝑑𝜙

𝑑𝑡
|𝜙0 , (2.32)

Δ𝑣(𝑡) = 𝑣(𝑡) − 𝑣0. (2.33)

This function can be linearized around the working point by applying the Taylor series
and truncated at the second order:

ℎ(
(
𝜙(𝑡), 𝑑𝜙(𝑡)

𝑑𝑡
, 𝑣(𝑡)

)
= ℎ

(
𝜙0 + Δ𝜙(𝑡), 𝑑𝜙

𝑑𝑡
|𝜙0 + Δ

𝑑𝜙(𝑡)
𝑑𝑡

, 𝑣0 + Δ𝑣(𝑡)
)

≈ ℎ

(
𝜙0,

𝑑𝜙

𝑑𝑡
|𝜙0 , 𝑣0

)
+ 𝛿ℎ

𝛿𝜙
(𝜙0)Δ𝜙 + 𝛿ℎ

𝛿
𝑑𝜙(𝑡)
𝑑𝑡

(
𝑑𝜙

𝑑𝑡
|𝜙0

)
Δ
𝑑𝜙(𝑡)
𝑑𝑡

+ 𝛿ℎ

𝛿𝑣
(𝑣0)Δ𝑣.

(2.34)

By inserting the state variables and by calculating the partial derivatives, it can be
obtained:

ℎ

(
𝜙(𝑡), 𝑑𝜙(𝑡)

𝑑𝑡
, 𝑣(𝑡)

)
≈ ℎ

(
𝜙0,

𝑑𝜙

𝑑𝑡
|𝜙0 , 𝑣0

)
+Δ

(
𝑑𝜙

𝑑𝑡

)
−𝛿𝑔

𝛿𝑣
(𝑣0− 𝑓 (𝜙0))Δ𝑣+

𝛿𝑔

𝛿 𝑓

𝛿 𝑓

𝛿𝜙
(𝜙0)Δ𝜙. (2.35)

Because the function ℎ() is implicit, all terms containing ℎ() can be set to zero and
the linearized system can be obtained:
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2 Modeling of electromagnetic actuators under PWM-excitation

𝑑𝜙(𝑡)
𝑑𝑡

=
𝜕𝑔

𝜕𝑣
(𝑣0 − 𝑓 (𝜙0))︸               ︷︷               ︸

𝛽0

𝑣(𝑡) − 𝜕𝑔

𝜕 𝑓

𝜕 𝑓

𝜕𝜙
(𝜙0)︸        ︷︷        ︸

𝛽1

𝜙(𝑡). (2.36)

The linearized state variables are denoted with a tilde. This linearized system with
the working-point-dependent parameters 𝛽0 and 𝛽1 can be described as:

𝛽0𝑣(𝑡) =
𝜕𝜙

𝜕𝑡
+ 𝛽1𝜙(𝑡). (2.37)

and the resulting magnetic voltage drop can be divided into:

𝑣(𝑡) = 1
𝛽0︸︷︷︸
=Lℎ

𝜕𝜙

𝜕𝑡
+ 𝛽1

𝛽0︸︷︷︸
=Rℎ

𝜙(𝑡), (2.38)

consisting of an inductive part and a resistive part. Thus, similarly to eddy current
losses, hysteretic losses can be represented by a series connection of a reluctance with a
magnetic inductance, such as shown in Figure 2.7. They also cause a delay behavior on
the magnetic flux.

𝜙(𝑡) Rℎ Lℎ

𝑣(𝑡)

Figure 2.7: Magnetic equivalent circuit of a piece of magnetic material exhibiting
hysteretic losses.

2.4 Magnetic equivalent circuit for electromagnetic actuators

With the discussed material characteristics as well as losses in the previous sections, it is
possible to expand the simple electromechanical model from Section 2.1. In this section,
the magnetic subsystem of the electromagnetic actuator will be derived by means of a
magnetic equivalent circuit. A basis for this equivalent circuit is Figure 2.1 that shows
the basic construction that is common to all reluctance-based electromagnetic actuators.
The magnetic flux path inside a solenoid actuator can be modeled as depicted in Fig.
2.8 [51]. Back-iron and plunger are made of a soft-magnetic material with a specific
B-H-characteristic and also exhibit eddy currents and hysteresis losses. It is convenient
here to summarize reluctances and magnetic inductances into magnetic impedances that
are denoted with Z. Thus, there exists a magnetic impedance Z𝑏 for the back-iron and

26



2.4 Magnetic equivalent circuit for electromagnetic actuators

an impedance Z𝑝 for the plunger. Since not all the flux lines close over the air gap, a
reluctance R𝑙 considers all the leakage fluxes inside the actuator which do not lead to a
generated force. The air gap is represented by a position-dependent reluctance which
can be calculated as [2, p. 77]:

R𝑥 (𝑥) =
𝑥

𝜇0𝐴𝑒 𝑓 𝑓

. (2.39)

𝑣(𝑡)

𝜙(𝑡) Z𝑏 R𝑥 (𝑥)

R𝑙 Z𝑝 (𝑥)

Figure 2.8: Magnetic equivalent circuit of a solenoid actuator, adopted from [51].

With the help of Section 2.2, the generic magnetic impedances Z𝑏 and Z𝑝 are modeled
by considering the approximated loss models. The nonlinear characteristic of the back-
iron material is presented by the incremental reluctance RΔ𝑏 in the actual working point
of the actuator. Usually, the back-iron itself has a small thickness or is made up of
laminated iron sheets. Thus, eddy currents occur, but are not so significant that the
skin effect needs to be taken into account [72, pp. 72ff.]. Therefore, the effect can be
considered by a single magnetic inductance called L𝑒𝑏. Similarly, the hysteresis loss can
be modeled by a magnetic reluctance Rℎ𝑏 and magnetic inductance Lℎ𝑏. This leads to
the total impedance of:

Z𝑏 = RΔ𝑏 + 𝑠L𝑒𝑏 + Rℎ𝑏 + 𝑠Lℎ𝑏 . (2.40)

Similarly, the plunger exhibits the characteristic of the incremental permeability,
which is here summarized into the magnetic reluctance RΔ𝑝. The plunger represents a
voluminous piece of soft-magnetic material, where eddy currents are affected by the skin
effect. In order to model the impedance Z𝑝, the magnetic cascade model shown in Fig.
2.6 is used and represented as a total impedance Z𝑒𝑝:

Z𝑝 = RΔ𝑝 + Z𝑒𝑝 + Rℎ𝑝 + 𝑠Lℎ𝑝 . (2.41)

In particular, the air gap reluctance as well as the magnetic components of the plunger
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2 Modeling of electromagnetic actuators under PWM-excitation

exhibit a position-dependency. Usually, back-iron and plunger are made of soft-magnetic
materials with a high permeability (𝜇𝑟 >> 1) and, therefore, only a negligible amount of
flux lines short-circuits the air gap. Thus, the leakage reluctance can be neglected during
the following calculations:

R𝑙 → ∞. (2.42)

Because of the negligence of the leakage flux, all circuit components appear in a
serial connection and can be summarized. As visible in Fig. 2.9, magnetic reluctances
and magnetic inductances are summarized and named generically for sake of simplicity.
Since the reluctance R0 includes the position dependent air gap reluctance, it is also
dependent on the position. Thus, all components are position-dependent and can be
used for self-sensing.

𝑣0(𝑡)

𝜙0(𝑡) R0(𝑥)

𝜙1(𝑡)

R1(𝑥)𝑣1(𝑡)

𝜙2(𝑡)

R2(𝑥)𝑣2(𝑡)

𝜙𝑛𝑐 (𝑡)

R𝑛𝑐 (𝑥)𝑣𝑛𝑐 (𝑡)

L𝑛𝑐L2(𝑥)L1(𝑥)

Figure 2.9: Simplified magnetic equivalent circuit of a solenoid actuator.

In order to facilitate the mathematical analysis of the obtained circuit, the Laplace
transformation is applied with the Laplace value called 𝑠. This method is used in classical
circuit theory and analysis. In the following calculations, all initial conditions are set
to zero. All transformed quantities are denoted with capital letters and in dependence
of s. For sake of brevity, the position dependence is not shown in these equations. In
particular, the total flux Φ0(𝑠) can be calculated by the Kirchhoff law as:

Φ0(𝑠) =
𝑛𝑐∑︁
𝑗=1

Φ 𝑗 (𝑠), (2.43)

where the index 𝑗 stands for the actual flux branch in Figure 2.9. By applying the
Hopkinson law, the magnetic voltage can be expressed as:

𝑉0(𝑠) = R0Φ0(𝑠) + 𝑠L1Φ0(𝑠) + R1Φ1(𝑠). (2.44)
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2.5 Electrical equivalent circuit for electromagnetic actuators

For sake of simplicity, the externally given magnetic voltage is denoted as 𝑉0(𝑠). The
voltage over each i-th low-pass element can be expressed as:

𝑉𝑖 (𝑠) = Φ𝑖 (𝑠)R𝑖 = 𝑉𝑖−1(𝑠) − 𝑠L𝑖

𝑛𝑐∑︁
𝑗=𝑖

Φ 𝑗 (𝑠). (2.45)

This yields to the calculation of the magnetic flux per each branch as:

Φ𝑖 (𝑠) =
𝑉𝑖−1(𝑠) − 𝑠L𝑖

∑𝑛𝑐
𝑗=𝑖

Φ 𝑗 (𝑠)
R𝑖

. (2.46)

Thus, the flux per each branch can be calculated in a recursive way as:

Φ𝑖 (𝑠) =


𝑉0(𝑠) − R1Φ1(𝑠)

R0 + 𝑠L1
𝑓 𝑜𝑟 𝑖 = 0

𝑉𝑖−1(𝑠) − 𝑠L𝑖

∑𝑛𝑐
𝑗=𝑖

Φ 𝑗 (𝑠)
R𝑖

𝑓 𝑜𝑟 1 ≤ 𝑖 ≤ 𝑛𝑐

. (2.47)

The obtained model allows analyzing the response of the magnetic subsystem in all of
its flux branches when an input in form of a magnetic voltage is applied. In particular,
transients can be modeled, that allows to study the influence of PWM on the magnetic
subsystem and, consequently, on the electrical current.

2.5 Electrical equivalent circuit for electromagnetic actuators

In the previous section, the magnetic equivalent circuit was modeled with the magnetic
voltage as input and the magnetic flux as output. Nevertheless, the magnetic field
strength respectively the magnetic voltage is created by means of a coil with a certain
number of windings 𝑁. The coil serves as an electromagnetic transducer that links the
magnetic quantities to the electrical ones. In particular, the interconnection happens
through the electromotive force (EMF) 𝑑𝜙 (𝑡 )

𝑑𝑡
on the electrical side and the magnetomotive

force (MMF) 𝑣(𝑡) = 𝑁𝑖𝑠 on the magnetic side. By considering the number of windings 𝑁,
the flux linkage can be derived:

Ψ0(𝑠) = 𝑁 · Φ0(𝑠), (2.48)

while the relation between coil current and magnetic voltage can be written as:

𝑉0(𝑠) = 𝑁 · 𝐼𝑠 (𝑠). (2.49)

Thus, a transfer function can be defined that describes the dynamic behavior between
coil current and flux linkage:
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2 Modeling of electromagnetic actuators under PWM-excitation

Ψ0(𝑠)
𝐼𝑠 (𝑠)

=
Γ(𝑠)
Υ(𝑠) , (2.50)

consisting of a generic polynomial in 𝑠 named Γ(𝑠) for the nominator and Υ(𝑠) for the
denominator. With this transfer function it is possible to transform electrical quantities
into magnetical ones and vice verse.

The electrical circuit is depicted in Figure 2.10 and consists of the series resistance
𝑅𝑠, that accounts for copper resistance, a parasitic capacitance 𝐶𝑝, that models capaci-
tive coupling between the windings, and the EMF source. The influence of the series
resistance is considerable due to a high number of windings that are usually used in
such electromagnetic actuators. By increasing the number of windings, the generated
field strength, and consequently flux and force, can be maximized while the current
is maintained low. Moreover, connection resistances as well as resistances in the used
switches of the power electronics can be summed into this series resistance. Thus, its
amount cannot be neglected during the analysis of current ripples. On the other hand,
the parasitic capacitance that represents capacitance coupling between winding, housing
and ground has smaller influence since its amount is relatively small compared to the
inductive and resistive behavior, which predominate. Works concede that the influence is
significant only at frequencies and switching rates in the MHz-range [85]. Thus, most
works neglect the effect of parasitic capacitances [45, 74, 85] in the case of the discussed
electromagnetic actuators at low frequencies for sake of model simplicity. Nonetheless, in
case strong capacitive behavior is present, its behavior needs to be considered since it
introduces oscillations in the current ripples. The interested reader is therefore guided to
the work [65], that analyses the influence of the capacitance in case of an underdamped,
critically damped and overdamped response of the current ripple.

𝑢(𝑡)

𝑖𝑠 (𝑡) 𝑅𝑠

𝐶𝑝
𝑑𝜓0(𝑡)
𝑑𝑡

𝑣0(𝑡)

𝜙0(𝑡) R0(𝑥)

L1(𝑥)

Figure 2.10: Electromagnetic equivalent circuit of a solenoid actuator. The magnetic
components connected in series are summarized together.
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2.5 Electrical equivalent circuit for electromagnetic actuators

With the capacitance being neglected (𝐶𝑝 → 0), the electrical system with an input
voltage 𝑢(𝑡) can be expressed using the Kirchhoff rules as:

𝑢(𝑡) = 𝑅𝑠 · 𝑖𝑠 (𝑡) +
𝑑Ψ0(𝑡)
𝑑𝑡

, (2.51)

and can be transformed into the Laplace domain under the negligence of the initial
condition as follows:

𝑈 (𝑠) = 𝑅𝑠 𝐼𝑠 (𝑠) + 𝑠Ψ0(𝑠) = 𝑅𝑠 𝐼𝑠 (𝑠) + 𝑠
Γ(𝑠)
Υ(𝑠) 𝐼𝑠 (𝑠), (2.52)

thus yielding the electrical transfer function:

𝐼𝑠 (𝑠)
𝑈 (𝑠) =

Υ(𝑠)
𝑅𝑠Υ(𝑠) + 𝑠Γ(𝑠) =

Ξ(𝑠)
Λ(𝑠) , (2.53)

with generic polynomials in 𝑠 denoted by Ξ(𝑠) for the nominator and Λ(𝑠) for the
denominator. By using Equation 2.47, the flux distribution inside a solenoid actuator can
be calculated considering a certain complexity 𝑛𝑐 of the model representing the amount
and nature of iron losses inside the actuator. In case solid ferromagnetic materials with
high electrical conductivity are used, the more the skin effect needs to be considered,
the higher 𝑛𝑐 must be chosen for modeling the behavior with high accuracy. From the
equation it can be observed that the calculation of the flux inside a particular branch
requires the knowledge of the flux inside the other branches. According to Equation
2.47, the flux in the i-th branch relies on the sum of all fluxes in the branches before.
Thus, per each branch that gets added to the model, a zero is added into the transfer
function. By evaluating Equation 2.47 in a recursive manner, the transfer functions per
each branch can be formulated. Starting from the initial branch 𝑖 = 0, it can be obtained:

Ψ0(𝑠)
𝑉0(𝑠)

=
1

R0 + 𝑠L1
− R1
R0 + 𝑠L1

Ψ1(𝑠)
𝑉0(𝑠)

, (2.54)

and for a generic branch 𝑖𝜖 [1, 𝑛𝑐], the calculation yields to:

Ψ𝑖 (𝑠)
𝑉𝑖−1(𝑠)

=
1
R𝑖

− 𝑠L𝑖

R𝑖

∑𝑛𝑐
𝑗=𝑖

Ψ 𝑗 (𝑠)
𝑉𝑖−1(𝑠)

. (2.55)

Consequently for 𝑖 = 𝑛𝑐, it is observed that

Ψ𝑛𝑐 (𝑠)
𝑉𝑛𝑐−1(𝑠)

=
1

R𝑛𝑐 + 𝑠L𝑛𝑐

. (2.56)

While analytical and numerical evaluation of the obtained model can be cumbersome,
it can be used for analyzing the model order based on the chosen model complexity 𝑛𝑐.
It can be seen that due to Equation 2.55, a zero gets added to the transfer function per
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2 Modeling of electromagnetic actuators under PWM-excitation

each model complexity 𝑛𝑐 starting from 2. Because of the part R1
R0+𝑠L1

Ψ1 (𝑠)
𝑉0 (𝑠) , a pole is

added to the transfer function per each model complexity 𝑛𝑐. An initial pole is inherently
available due to the term 1

R0+𝑠L1
. This leads to the following statement concerning the

polynomials when the order 𝑛𝑐 is increased:

Ψ0(𝑠)
𝐼𝑠 (𝑠)

=
Γ(𝑠)
Υ(𝑠) with 𝑑𝑒𝑔(Γ(𝑠)) = 𝑛𝑐 − 1 and 𝑑𝑒𝑔(Υ(𝑠)) = 𝑛𝑐, (2.57)

resulting into a strictly proper transfer function, where the degree of the nominator is
smaller than the denominator. While this statement only concerns the magnetic circuit,
the electrical transfer function can be similarly analyzed by merging the transfer functions
from Equation 2.55 and Equation 2.53. In this case, the degrees of the nominator and
denominator of the the electrical transfer function adjust as follows:

𝐼𝑠 (𝑠)
𝑈 (𝑠) =

Ξ(𝑠)
Λ(𝑠) =

Υ(𝑠)
𝑅𝑠 (𝑠)Υ(𝑠) + 𝑠Γ(𝑠) with 𝑑𝑒𝑔(Ξ(𝑠)) = 𝑛𝑐 and 𝑑𝑒𝑔(Λ(𝑠)) = 𝑛𝑐 .

(2.58)
Therefore, transferring the magnetic transfer function into the electrical domain results

into the addition of one further zero, making the electrical transfer function proper,
since nominator and denominator equal in their degrees. This behavior of an additional
zero inherently leads to a conclusion on the dynamic behavior of the electromagnetic
system: from the eddy current model presented in Figure 2.6, it can be seen that a
cascade of magnetic RL-circuits models the skin effects that leads to a delayed flux rise
in case the magnetic field strength is changed. In this case, the RL-circuits serve as
low-pass filters for the magnetic flux. When transformed to the electrical domain by
using Equation 2.58, those magnetic low-pass elements are transformed into electrical
high-pass filters. This can be also verified by the physical nature of the eddy currents:
since they delay the rise of the magnetic flux in response to an instant rise of the exciting
magnetic field, they also delay the rise of the inductance that is apparent in the electrical
circuit. Thus, the electrical currents rises faster in the circuit due to the absence of an
high inductance value. When the eddy currents fade out, the flux is able to rise to its
static value, thus increasing the inductance and limiting the current rise in the electrical
circuit. The effect is shown for a simulation case by Figure 2.11. In the simulation, a
voltage step of 24V is applied to a coil with series resistance of 100 Ω and the following
parameters: R0 = 50𝐻−1,R1 = 1𝐻−1,R2 = 10𝐻−1,L1 = 0.001Ω−1 and L2 = 0.01Ω−1.
Similar phenomena were reported in [86].

As mentioned before, the analytical and numerical evaluation of this equation can be
cumbersome and expensive in terms of calculation effort when the model complexity
𝑛𝑐 is increased dramatically. While this can still be feasible for simulation of the flux
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Figure 2.11: Effect of the eddy currents on the current and magnetic flux when a voltage
step is applied. Simulation shown for a model order of 𝑛𝑐 = 2. Last plot
shows the static inductance that is apparent on the electrical circuit.
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distribution as well as simulation of the obtained current ripple, an online evaluation
becomes impractical. Since the obtained model should also be the basis for the real-time
self-sensing strategies that are presented in Section 3, a computationally lightweight
implementation of the model on computational units with limited power is desired. Thus,
it is highly preferred to approximate the model by decreasing 𝑛𝑐. In the following, the
model is evaluated for the cases of 𝑛𝑐 = 0...2, along with the physical meaning behind
this simplifications and comparison of accuracy.

Model order of 0 In case the model order accounts to zero, all magnetic inductances
disappear. In such a case, no iron losses like eddy currents and hysteretic losses are
considered. Setting 𝑛𝑐 to zero, therefore, yields to the direct relationship between current
and flux linkage:

𝑉0(𝑠) = R0Φ0(𝑠), (2.59)

being inserted into the electrical transfer function:

𝐼𝑠 (𝑠)
𝑈 (𝑠) =

𝑁2

𝑅𝑠 + 𝑠R0
, (2.60)

a classical first-order low-pass behavior is obtained. It resembles a series connection of
the resistance 𝑅𝑠 and the incremental inductance 𝐿Δ = 𝑁2

R0
.

Model order of 1 In the case of a model order equal to one (𝑛𝑐 = 1), the magnetic
transfer function can be formulated as:

𝑉 (𝑠) = R0Φ0(𝑠) + R1Φ0(𝑠) + 𝑠L1Φ0(𝑠). (2.61)

In such a model, the iron losses involving eddy currents and hysteretic losses are
modeled, but not to such an extent that the skin effect is considered. This model order
can be sufficient e.g. when laminated stator and plunger parts are used and the electrical
conductivity of the used materials is small. By considering the number of windings 𝑁,
the transfer function in the magnetic domain can be achieved:

Ψ0(𝑠)
𝐼𝑠 (𝑠)

=
𝑁2

R0 + R1 + 𝑠L1
=

Γ(𝑠)
Υ(𝑠) , (2.62)

with deg(Γ(𝑠)) = 0 and deg(Υ(𝑠)) = 1. The resulting transfer function contains one pole
and no zeros. Consequently, the model contains one pole and one zero when transferred
to the electrical domain.
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2.5 Electrical equivalent circuit for electromagnetic actuators

Model order of 2 When considering a model order of 𝑛𝑐 = 2, also a skin effect with 2
layers is taken into consideration. Again, Equation 2.47 can be evaluated and algebraically
manipulated to the transfer function:

Ψ0(𝑠)
𝐼𝑠 (𝑠)

=
𝑁2(R1 + R2 + 𝑠L2)

R1R2 + 𝑠R1L2 + (R0 + 𝑠L1) (R1 + R2 + 𝑠L2)
=

Γ(𝑠)
Υ(𝑠) , (2.63)

with deg(Γ(𝑠)) = 1 and deg(Υ(𝑠)) = 2. By inserting this magnetic transfer function
with Equation 2.53 in the electrical system, again a zero is added to the transfer function.

Choice of an appropriate model order Based on the previous paragraphs, it can be seen
that the model order strictly defines to which amount iron losses are considered. From
the state-of-the-art it is well-known that iron losses, in particular eddy currents, have a
significant impact on self-sensing through back-EMF and inductance. Furthermore, they
can even be exploited for self-sensing in case the other quantities do not allow unique
estimation results. Thus, in favor of the approaches mentioned in Chapter 3, the model
order 0 will be avoided due its negligence of the loss effects. Higher model orders starting
from 3, do not seem adequate in terms of computational effort and ease of implementation.
Finally, the model orders 1 and 2 seem preferable for the purpose of real-time estimation,
depending on whether the skin effect can be considered or neglected.

Figure 2.12 shows the measurement of the current ripple in an electromagnetic actuator
with significant eddy current behavior. The plunger is made of solid steel and is especially
designed for high eddy currents in order to dampen the field generation and consequently
the force generation when a voltage is applied. This allows softer starting and softer
landing of the plunger. The actuator as well as the measurement set-up will be described
thoroughly in Section 4.3, while only the results are shown here. Models of the order 0, 1
and 2 are fitted on the measured current ripple. It can be seen that the model of order 0
achieves the worst performance with 83 % of fit performance. Moreover, this model is
not able to follow the immediate cusps at the switching instants due to the lack of a zero.
The models with higher orders archive with 87 % and 90% better fit performances and
are able to model the cusp of the current. Nevertheless, the model of the second order
shows undesirable overshoots. Because of its acceptable accuracy, reduced computation
effort and modeling of the cusps, the model with order one will be used in the following.
In fact, the work [63] uses a reduced eddy current model without skin effect and achieved
similar estimation of the cusps at the switching instants. It has to be denoted that the
model with an order of one achieves good approximation of the cusps due to the presence
of a zero, but it is a strong simplification compared to its physical nature. In this model,
the cusp is modeled as an immediate jump in the current. This is physically not feasible,
since the current can only rise with a finite slope. In practice, there still exists a slight
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2 Modeling of electromagnetic actuators under PWM-excitation

skin effect, that adds delay to the flux and current rise, smoothing the jump. Thus,
increasing the number of 𝑛𝑐 will adopt the model to its physical background. For the
purpose of identifying the eddy current losses, that can be exploited for self-sensing, the
model is sufficient.
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model with 2 zeros and 2 poles: 89.9 %
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Figure 2.12: Current ripple inside an electromagnetic actuator and model of the current
ripple when different model orders are applied, adopted from [66].

With a model order of 1, it is possible to continue with the modeling of the electrical
equivalent circuit of the actuator. In particular, all reluctances in the model can be
summarized into one reluctance denoted as RΣ:

RΣ = R0 + R1. (2.64)

The corresponding simplified electromagnetic circuit is shown in Figure 2.13.
Considering the assumptions made, the electrical transfer function can be simplified to

𝐼𝑠 (𝑠)
𝑈 (𝑠) =

RΣ + 𝑠L1
𝑅𝑠 (RΣ + 𝑠L1) + 𝑠𝑁2 . (2.65)

The calculations conducted above were made in the Laplace domain in order to apply
classical circuit theory. Nonetheless, the parameters of the magnetic reluctance RΣ

and the magnetic inductance L1 are position dependent and change over time in the
application. Thus, the partial derivatives of these quantities need to be considered
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2.5 Electrical equivalent circuit for electromagnetic actuators

𝑢(𝑡)

𝑅𝑠

𝑑𝜓0(𝑡)
𝑑𝑡

𝑣0(𝑡)

𝜙0(𝑡) RΣ (𝑥)

L1(𝑥)

Figure 2.13: Simplified electromagnetic equivalent circuit of a solenoid actuator.

since they induce voltages inside the actuator during movement. Thus, the following
calculations will take place in the time domain. The electromagnetic circuit can be
described as follows in the time domain:

𝑢(𝑡) = 𝑅𝑠𝑖𝑠 (𝑡) +
𝜕𝜓0(𝑡)
𝜕𝑡

, (2.66)

𝑖𝑠 (𝑡) =
1
𝑁2

(
RΣ (𝑥)𝜓0(𝑡) + L1(𝑥)

𝜕𝜓0(𝑡)
𝜕𝑡

)
. (2.67)

In particular, Equation 2.66 can be rearranged to:

𝜓0(𝑡) =
∫

(𝑢(𝑡) − 𝑅𝑠𝑖𝑠 (𝑡)) 𝑑𝑡. (2.68)

By algebraic manipulation of Equations 2.67 and 2.68, the following equation can be
achieved:

𝑖𝑠 (𝑡) =
RΣ (𝑥)
𝑁2

(∫
(𝑢(𝑡) − 𝑅𝑠𝑖𝑠 (𝑡)) 𝑑𝑡

)
+ L1(𝑥)

𝑁2 (𝑢(𝑡) − 𝑅𝑠𝑖𝑠 (𝑡)) . (2.69)

In particular, it can be seen that the term 𝑁2

RΣ (𝑥 ) resembles the definition of the
incremental inductance 𝐿Δ(𝑥) made in Equation 2.17. Similarly, the term 𝑁2

L1 (𝑥 ) has
the unit Ω and therefore represents an electrical resistance, which from now on will be
called parallel resistance 𝑅𝑝 (𝑥). This resistor represents the sum of the losses of eddy
currents and hysteretic losses. Hence, modeling losses by means of parallel resistors is a
well-known approach in actuator modeling [45, 57, 72], in which the resistor is mostly
identified empirically. With the model provided in Sections 2.3 and 2.4 it is possible to
derive the resistance based on its physical effects and geometry, and adapt it accordingly
to the used loss effects.

Thus, the terms of 𝐿Δ and 𝑅𝑝 can be inserted and the equation can be rearranged to:
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2 Modeling of electromagnetic actuators under PWM-excitation

𝐿Δ(𝑥)𝑖𝑠 (𝑡) =
∫

(𝑢(𝑡) − 𝑅𝑠𝑖𝑠 (𝑡)) 𝑑𝑡 +
𝐿Δ(𝑥)
𝑅𝑝 (𝑥)

(𝑢(𝑡) − 𝑅𝑠𝑖𝑠 (𝑡)) . (2.70)

Performing a differentiation on both sides under the consideration of the time-
dependency of the parameters yields to:

𝜕𝐿Δ(𝑥)
𝜕𝑥

𝜕𝑥

𝜕𝑡
𝑖𝑠 (𝑡) + 𝐿Δ(𝑥)

𝜕𝑖𝑠 (𝑡)
𝜕𝑡

= 𝑢(𝑡) − 𝑅𝑠𝑖𝑠 (𝑡) +
𝜕

𝜕𝑥

(
𝐿Δ(𝑥)
𝑅𝑝 (𝑥)

)
𝜕𝑥

𝜕𝑡
(𝑢(𝑡) − 𝑅𝑠𝑖𝑠 (𝑡))

+ 𝐿Δ(𝑥)
𝑅𝑝 (𝑥)

(
𝜕𝑢(𝑡)
𝜕𝑡

− 𝑅𝑠

𝜕𝑖𝑠 (𝑡)
𝜕𝑡

)
.

(2.71)

Rearranging this equation into the form of a differential equation with input 𝑢(𝑡) and
output 𝑖𝑠 (𝑡) leads to:

(
1 + 𝜕

𝜕𝑥

(
𝐿Δ(𝑥)
𝑅𝑝 (𝑥)

)
𝜕𝑥

𝜕𝑡

)
𝑢(𝑡) + 𝐿Δ(𝑥)

𝑅𝑝 (𝑥)
𝜕𝑢(𝑡)
𝜕𝑡

=

(
𝑅𝑠 +

𝜕𝐿Δ(𝑥)
𝜕𝑥

𝜕𝑥

𝜕𝑡
+ 𝑅𝑠

𝜕

𝜕𝑥

(
𝐿Δ(𝑥)
𝑅𝑝 (𝑥)

)
𝜕𝑥

𝜕𝑡

)
𝑖𝑠 (𝑡)

+ 𝐿Δ(𝑥)
(
1 + 𝑅𝑠

𝑅𝑝 (𝑥)

)
𝜕𝑖𝑠 (𝑡)
𝜕𝑡

,

(2.72)

that is an inhomogeneous differential equation of the first order. Furthermore, a
direct feed-through of the first derivative of the input is present. In order to simplify
mathematical treatment, the following assumption is made:

1 >>
𝜕

𝜕𝑥

(
𝐿Δ(𝑥)
𝑅𝑝 (𝑥)

)
𝜕𝑥

𝜕𝑡
, (2.73)

which allows to set the leading coefficient on the input to one. The assumption usually
holds due to the fact that in the discussed electromagnetic actuators 𝐿Δ is usually in the
range of 1𝑒−3𝐻 to 1𝐻 while 𝑅𝑝 is characterized by values higher than 100 Ω. Even in
the case of fast switching actuators where 𝜕𝑥

𝜕𝑡
is high, the incremental inductance 𝐿Δ is

usually designed small for a fast current dynamic. Nevertheless, in case of actuators with
high inductance and low parallel resistance (equals high iron losses) are used, it has to
be verified individually if this assumption still holds. This can be verified by applying
the self-sensing technique that later are being discussed in Chapter 3, under quasi-static
conditions, where 𝜕𝑥

𝜕𝑡
is null.

Applying the discussed simplification yields:

𝑢(𝑡) + 𝐿Δ(𝑥)
𝑅𝑝 (𝑥)

𝜕𝑢(𝑡)
𝜕𝑡

= 𝑅Σ𝑖𝑠 (𝑡) + 𝐿Δ(𝑥)
(
1 + 𝑅𝑠

𝑅𝑝 (𝑥)

)
𝜕𝑖𝑠 (𝑡)
𝜕𝑡

, (2.74)
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𝑢(𝑡)

𝑅Σ (𝑥)

𝐿Δ(𝑥) 𝑅𝑝 (𝑥)

Figure 2.14: Electrical equivalent circuit of a solenoid actuator considering iron losses.

with the total resistance denoted as 𝑅Σ being:

𝑅Σ (𝑥) = 𝑅𝑠 +
𝜕𝐿Δ(𝑥)
𝜕𝑥

𝜕𝑥

𝜕𝑡
+ 𝑅𝑠

𝜕

𝜕𝑥

(
𝐿Δ(𝑥)
𝑅𝑝 (𝑥)

)
𝜕𝑥

𝜕𝑡
. (2.75)

This resistor involves not only the copper resistance but also the back-induced voltage
due to geometry change by a moving plunger and the back-induced voltage caused by
the change of the flux that is generated by the eddy current during movement of the
plunger. Since all induced voltages depend on the actual current 𝑖𝑠 (𝑡) in the coil, as it is
the case for all reluctance-based electromagnetic actuators, a representation as resistive
component is possible. The obtained differential Equation 2.74 resembles the model
of the electrical equivalent circuit depicted in 2.14 involving a series connection of the
resistor 𝑅Σ with the parallel connection of the inductance 𝐿Δ and the parallel resistor
𝑅𝑝. The shown circuit resembles the differential equation for the case 𝑅Σ = 𝑅𝑠.

2.6 Model of PWM-induced current ripples

Finally, the current ripple inside electromagnetic actuators under PWM voltage operation
can be analyzed using the electromagnetic model obtained in the previous section. Before
solving the differential Equation 2.74, the switching electronics used for PWM operation
as well as the PWM voltage needs to be specified. This work focuses on the driving of an
actuator with the so-called bipolar PWM, where positive as well as negative voltages can
be applied to the phase terminals. Compared to other approaches, such as the unipolar
driving with half-bridge or with a low-side-switch with freewheeling diode, the bipolar
approach allows the inversion of the applied voltage and, thus, higher current dynamics
during control scenarios. The following derivation will only focus on the bipolar approach
due to its universality. Nonetheless, equations for other driving strategies can be easily
obtained in a similar manner.
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𝑈𝐷𝐶

𝑆1

𝑆2

𝑆3

𝑆4

𝑅Σ

𝐿Δ

𝑅𝑝

Figure 2.15: Schematic of a H-Bridge driving an electromagnetic actuator.

A common power stage that is able to operate electromagnetic actuators in a bipolar
manner is the H-bridge shown in Figure 2.15. It consists of four switches that are
connected to the load, in this case the derived electrical equivalent circuit depicted in
Figure 2.14. The switches S1 and S4 as well as the switches S2 and S3 operate in a
complementary manner in order to avoid a short circuit between the bus voltage 𝑈𝐷𝐶 and
ground. Those switches can be realized as Bipolar Junction Transistors, Insulated Gate
Bipolar Transistors or, as usually preferred in applications with high switching frequencies
and low power, as Metaloxide Semiconductor Field Effect Transistors (MOSFET) [87].

By operating the H-bridge with a PWM input, the voltage at the phase terminals can
be defined as:

𝑢𝑝𝑤𝑚(𝑡) =

𝑈𝐷𝐶 for 0 ≤ 𝑡 ≤ 𝛼 · 𝑡𝑝𝑤𝑚

−𝑈𝐷𝐶 for 𝛼 · 𝑡𝑝𝑤𝑚 ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

, (2.76)

with 𝑈𝐷𝐶 being the bus voltage of the H-bridge, 𝛼 being the duty cycle in the interval
[0, 1] of the PWM and 𝑡𝑝𝑤𝑚 being the chosen PWM period, as depicted in Figure 2.16.
The driving of an inductive load directly leads to the presence of a current ripple. Usually
it is desired to reduce the ripple in order to reduce the force ripple generated in the
actuator, the acoustic noise as well as the power losses. A common approach is to
dimension the PWM frequency significantly higher then the mechanical time constant
in order to reduce force ripple and vibrations and higher than 20 𝑘𝐻𝑧 in order to shift
the generated acoustic noise outside the audible spectrum. Nevertheless, increasing the
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switching frequency also increases the switching losses in the transistors.

uPWM

t

UDC

-UDC

αtPWM

tPWM

(1-α)tPWM

Figure 2.16: Exemplary PWM voltage showing the PWM period and the duty cycle,
adopted from [68].

For a successful implementation of the self-sensing strategies in Chapter 3, an accurate
analytical solution of the differential Equation 2.74 with respect to the PWM input
voltage given in Equation 2.76 needs to be calculated. First, the homogeneous solution
of the differential equation is calculated, leading to

𝑖𝑠 (𝑡) = 𝑖0 · 𝑒−
𝑡

𝜏𝑒𝑙 , (2.77)

with 𝜏𝑒𝑙 being the time constant of the electrical system and 𝑖0 being the initial current
in the coil. For sake of simplicity, the inhomogeneous solution is calculated first for a
simple model that does not involve iron losses. This is achieved by putting 𝑅𝑝 → ∞.
Afterwards, the inhomogeneous solution for the case with iron losses is discussed with
particular focus on the cusps that occur during the switching instants of the voltage.

Solution with iron losses neglected (𝑅𝑝 → ∞) When the iron losses are neglected, a
simple RL circuit is obtained that exhibits a low-pass behavior for the current. In this
case, the electrical time constant 𝜏𝑒𝑙 yields to:

𝜏𝑒𝑙 =
𝐿Δ

𝑅Σ

, (2.78)

and the inhomogeneous solution can be calculated by using the concept of variation of
constants. For sake of simplicity, only the solution is provided as:
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𝑖𝑠 (𝑡) =


1
𝑅Σ

(
𝑈𝐷𝐶 + (𝑅Σ · 𝑖0 −𝑈𝐷𝐶) · 𝑒−

𝑅Σ
𝐿Δ

𝑡

)
for 0 ≤ 𝑡 ≤ 𝛼𝑡𝑝𝑤𝑚

1
𝑅Σ

(
−𝑈𝐷𝐶 +

(
𝑅Σ · 𝑖𝑠 (𝛼𝑡𝑝𝑤𝑚) +𝑈𝐷𝐶

)
· 𝑒−

𝑅Σ
𝐿Δ
(𝑡−𝛼𝑡𝑝𝑤𝑚)

)
for 𝛼𝑡𝑝𝑤𝑚 ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

,

(2.79)
with

𝑖𝑠 (𝛼𝑡𝑝𝑤𝑚) =
1
𝑅Σ

(
𝑈𝐷𝐶 + (𝑅Σ · 𝑖0 −𝑈𝐷𝐶) · 𝑒−

𝑅Σ
𝐿Δ

𝛼𝑡𝑝𝑤𝑚

)
. (2.80)

It is visible that the equation has different cases depending on whether the positive or
negative voltage is applied. In case of the positive part (0 ≤ 𝑡 ≤ 𝛼𝑡𝑝𝑤𝑚), the current rises
until its saturation limit or until the end of the duty cycle when the negative voltage
pulse is applied (𝛼𝑡𝑝𝑤𝑚 ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚). Under its excitation, the current decreases until its
saturation limit or until the next PWM period begins. For better distinction between the
fundamental current 𝑖0 and the components of the current ripple, it can be algebraically
manipulated to:

𝑖𝑠 (𝑡) =


𝑖0 +

(
𝑈𝐷𝐶

𝑅Σ
− 𝑖0

) (
1 − 𝑒

− 𝑅Σ ·𝑡
𝐿Δ

)
for 0 ≤ 𝑡 ≤ 𝛼𝑡𝑝𝑤𝑚

𝑖𝑠
(
𝛼𝑡𝑝𝑤𝑚

)
+

(
−𝑈𝐷𝐶

𝑅Σ
− 𝑖𝑠 (𝛼 · 𝑡𝑝𝑤𝑚)

) (
1 − 𝑒

− 𝑅Σ (𝑡−𝛼𝑡𝑝𝑤𝑚 )
𝐿Δ

)
for 𝛼𝑡𝑝𝑤𝑚 ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

.

(2.81)
In particular, the maximum amplitude of the ripple and its shape can be analyzed:

𝑖𝑠 (𝑡) = 𝑖0︸︷︷︸
fundamental

+
(
𝑈𝐷𝐶

𝑅Σ

− 𝑖0

)
︸         ︷︷         ︸

amplitude

(
1 − 𝑒

− 𝑅Σ ·𝑡
𝐿Δ

)
︸         ︷︷         ︸

shape︸                           ︷︷                           ︸
ripple

, (2.82)

where the parts are highlighted for the rising part of the current ripple. In the same
manner, the parts can be separated for the falling part of the current ripple:

𝑖𝑠 (𝑡) = 𝑖𝑠 (𝛼𝑡𝑝𝑤𝑚)︸      ︷︷      ︸
fundamental

+
(
−𝑈𝐷𝐶

𝑅Σ

− 𝑖𝑠 (𝛼𝑡𝑝𝑤𝑚)
)

︸                       ︷︷                       ︸
amplitude

©­­«1 − 𝑒
−
𝑅Σ · 𝑡
𝐿Δ

ª®®¬︸            ︷︷            ︸
shape︸                                            ︷︷                                            ︸

ripple

. (2.83)

The amplitude of the current ripple is limited by its physical saturation limit defined
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by the maximum applicable voltage that is either 𝑈𝐷𝐶 or −𝑈𝐷𝐶 , the total resistance
𝑅Σ and the actual fundamental current. The shape of the current ripple is exponential.
In cases where the inductance behavior is more significant than the resistive behavior
(𝐿Δ ≫ 𝑅Σ), the current ripple can be considered almost linear. Figure 2.17 shows the
current ripple in case of a RL load when a PWM voltage is applied.
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Figure 2.17: Simulated current ripple for an inductive load (𝐿Δ = 20 𝑚𝐻) with series
resistance (𝑅Σ = 10 Ω). The applied PWM voltage has an amplitude of
𝑈𝐷𝐶 = 12 𝑉 and a frequency of 𝑓𝑃𝑊𝑀 = 1 𝑘𝐻𝑧.

Solution with iron losses considered When iron losses are considered, the parallel
resistance exhibits a finite value, therefore the full Equation 2.74 must be considered,
along with the derivative of the input voltage. The PWM input given by Equation 2.76
is a non-continuous function, which is indeed not differentiable. Consequently, another
representation of the PWM input voltage needs to be considered. While smoothed jumps
or ramps with a certain rise time can be easily considered for numerical solution of the
differential equation, another approach is required for the analytical solution that is
preferred in this work. Thus, the Heaviside step function Θ(𝑡) is considered [84, p. 175]:

Θ(𝑡) =


0 for 𝑡 < 0

1 for 𝑡 ≥ 1
. (2.84)

43



2 Modeling of electromagnetic actuators under PWM-excitation

Its derivative yields to the Dirac impulse 𝛿(𝑡):

𝛿(𝑡) = 𝑑Θ(𝑡)
𝑑𝑡

=


∞ for 𝑡 = 0

0 else
, (2.85)

that allows an analytical solution of the differential equation with respects to its input
voltage. Contrary to Equation 2.76, the PWM voltage can now be defined as:

𝑢(𝑡) = −𝑈𝐷𝐶 + 2𝑈𝐷𝐶Θ(𝑡), (2.86)

for the rising edge and in an analog way to

𝑢(𝑡) = 𝑈𝐷𝐶 − 2𝑈𝐷𝐶Θ(𝑡 − 𝛼 · 𝑡𝑝𝑤𝑚), (2.87)

for the falling edge. Finally, the PWM voltage for both positive and negative voltage
pulses can be obtained as

𝑢𝑝𝑤𝑚(𝑡) = −𝑈𝐷𝐶 + 2𝑈𝐷𝐶Θ(𝑡) − 2𝑈𝐷𝐶Θ(𝑡 − 𝛼 · 𝑡𝑝𝑤𝑚). (2.88)

Finally, the homogeneous solution of Equation 2.74 with respect to the input voltage
Equation 2.88 can be calculated to:

𝑖𝑠 (𝑡) =


𝑒
− 𝑡

𝜏𝑒𝑙

(
𝑖0 + 𝑈𝐷𝐶

𝑅Σ
− ℎ𝑖

)
− 𝑈𝐷𝐶

𝑅Σ
for 𝑡 → 0−

𝑒
− 𝑡

𝜏𝑒𝑙

(
𝑖0 + 𝑈𝐷𝐶

𝑅Σ
− ℎ𝑖

)
− 𝑈𝐷𝐶

𝑅Σ
+ 2𝑈𝐷𝐶

𝑅Σ

(
1 − 𝑒

− 𝑡
𝜏𝑒𝑙

)
+ ℎ𝑖𝑒

− 𝑡
𝜏𝑒𝑙 for 0+ ≤ 𝑡 ≤ 𝑡−∗

𝑒
− 𝑡−𝑡∗

𝜏𝑒𝑙

(
𝑖𝑠 (𝑡−∗ ) −

𝑈𝐷𝐶

𝑅Σ

)
+ 𝑈𝐷𝐶

𝑅Σ
− 2𝑈𝐷𝐶

𝑅Σ

(
1 − 𝑒

− 𝑡−𝑡∗
𝜏𝑒𝑙

)
− ℎ𝑖𝑒

− 𝑡−𝑡∗
𝜏𝑒𝑙 for 𝑡+∗ ≤ 𝑡 ≤ 𝑡−𝑝𝑤𝑚

,

(2.89)
with 𝑡∗ and ℎ𝑖 being

𝑡∗ = 𝛼 · 𝑡𝑝𝑤𝑚, (2.90)

ℎ𝑖 =
2𝑈𝐷𝐶

𝑅Σ + 𝑅𝑝

. (2.91)

In the considered case, the electrical time constant changed to

𝜏𝑒𝑙 =
𝐿Δ

(
𝑅𝑝 + 𝑅Σ

)
𝑅𝑝𝑅Σ

, (2.92)

where also the iron losses are taken into account. Due to the term 𝜕𝑢(𝑡 )
𝜕𝑡

, instantaneous
cusps occur at the voltage switching instants. Because of this, the solution now considers
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2.6 Model of PWM-induced current ripples

three cases: the time before the first switching instant (𝑡 < 0−), the time between positive
and negative switching instants (0+ ≤ 𝑡 ≤ 𝑡−∗ ) and the time between the negative switching
instant and the switching instant of the following PWM period (𝑡+∗ ≤ 𝑡 ≤ 𝑡−𝑝𝑤𝑚). The
indices + and − indicate if the particular switching instant is approached from the left
(−) or the right side (+). It has to be denoted that the first case is only a theoretical case
since it resembles zero from the left but not before. Similarly to the case without iron
losses, the equation can be rearranged for better comprehension:

𝑖𝑠 (𝑡) =


𝑖0 +

(
−𝑈𝐷𝐶

𝑅Σ
− 𝑖0

) (
1 − 𝑒

− 𝑡
𝜏𝑒𝑙

)
− ℎ𝑖𝑒

− 𝑡
𝜏𝑒𝑙 for 𝑡 → 0−

𝑖0 +
(
𝑈𝐷𝐶

𝑅Σ
− 𝑖0

) (
1 − 𝑒

− 𝑡
𝜏𝑒𝑙

)
for 0+ ≤ 𝑡 ≤ 𝑡−∗

𝑖𝑠 (𝑡−∗ ) +
(
−𝑈𝐷𝐶

𝑅Σ
− 𝑖𝑠 (𝑡−∗ )

) (
1 − 𝑒

− 𝑡−𝑡∗
𝜏𝑒𝑙

)
− ℎ𝑖𝑒

− 𝑡−𝑡∗
𝜏𝑒𝑙 for 𝑡+∗ ≤ 𝑡 ≤ 𝑡−𝑝𝑤𝑚

. (2.93)

In this case, the current ripple is splitted into three parts:

𝑖𝑠 (𝑡) = 𝑖𝑠 (𝑡−∗ )︸︷︷︸
fundamental

+
(
−𝑈𝐷𝐶

𝑅Σ

− 𝑖𝑠 (𝑡∗)
)

︸                ︷︷                ︸
amplitude

(
1 − 𝑒

− 𝑡
𝜏𝑒𝑙

)
︸        ︷︷        ︸

shape︸                                 ︷︷                                 ︸
ripple

− 2𝑈𝐷𝐶

𝑅Σ + 𝑅𝑝︸    ︷︷    ︸
height

𝑒
− 𝑡

𝜏𝑒𝑙︸︷︷︸
decay︸             ︷︷             ︸

cusp

, (2.94)

shown for the time instant 𝑡+∗ ≤ 𝑡 ≤ 𝑡−𝑝𝑤𝑚. For sake of brevity, the separated terms for
the other cases are not shown here. Generally, it can be seen that the current ripple
resembles the current ripple without iron losses. The fundamental part stays the same
since it is related to the static current that is not affected by dynamic iron losses. The
ripple itself exhibits the same amplitude with and without iron losses, but a different
electrical time constant that is now smaller than the one without iron losses. In particular,
for very small iron losses, which results into a high parallel resistance, the same time
constant is achieved as in the case without iron losses. Finally, a third term is added to
the current ripple expressions. In particular, the term reflects the cusps that occur during
the switching instants. The cusps exhibit a height that is dependent on the parallel
resistance 𝑅𝑝 and the maximum applicable voltage. There is still an exponential term
that models the decay of the cusps over time. With this term, the decay of iron losses is
considered when the transients ran out. It has to be highlighted that this model applies
simplifications for the analytical solution and for reduced calculation effort. In reality,
the current cannot rise with an infinite rise time. The skin effect as well as the parasitic
inductances prevent this, as it was presented in Chapter 2.5 for higher model complexities
𝑛𝑐. Nevertheless, as it can be seen during the experimental results, that current ripples
on physical electromagnetic actuators can be successfully approximated by this model,
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2 Modeling of electromagnetic actuators under PWM-excitation

since their cusps rise with a finite, but significantly large, slew rate. Figure 2.18 shows
simulation results of the current ripple for an inductor in several configurations. The
behavior is exponentially-shaped and resembles a charging and discharging behavior.
With iron losses, remarkable cusps occur and the electrical time constant changes.
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Figure 2.18: Simulated current ripple for an inductive load (𝐿Δ = 10 mH) with and
without series resistance (𝑅Σ = 100 Ω) and parallel resistance (𝑅𝑝 =
300 Ω). The applied PWM voltage has an amplitude of 𝑈𝐷𝐶 = 12 V and
a frequency of 𝑓𝑃𝑊𝑀 = 1 𝑘𝐻𝑧.

The height of the current ripple cusp can be calculated for the switch from negative to
positive voltage (𝑡 = 0):

ℎ+𝑖 = 𝑖𝑠 (0+) − 𝑖𝑠 (0−) = 2𝑈𝐷𝐶

𝑅Σ + 𝑅𝑝

, (2.95)

and for the switch from positive to negative voltage (𝑡 = 𝑡∗):

ℎ−𝑖 = 𝑖𝑠 (𝑡+∗ ) − 𝑖𝑠 (𝑡−∗ ) = − 2𝑈𝐷𝐶

𝑅Σ + 𝑅𝑝

. (2.96)
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3 Position self-sensing techniques based on
PWM-induced current ripples

A general model of current ripples inside electromagnetic actuators involving iron losses
has been derived and analyzed in the previous chapter. As seen, the parameters of
the incremental inductance 𝐿Δ and the iron loss resistor 𝑅𝑝 show a dependency on the
actuator position 𝑥, which can be exploited for position self-sensing. From the analysis
of the state-of-the-art, it is visible that different approaches for the identification of
those parameters can be applied. In this thesis, the approach of analog preprocessing
is followed that aims for high SNR while maintaining the computational effort on the
microprocessor low.

The overall actuation system consists of the electromagnetic actuator (EMA), that is
depicted in Figure 3.1, which is under operation and needs to be monitored or controlled.
This actuator is driven by a power amplifier, which is a MOSFET-based H-bridge
configuration as shown in Chapter 2.5. The electrical quantities are being sensed and
brought to the analog preprocessing stage (denoted as IDIM circuit), which is going to
be described later in this chapter, and an analog-digital converter (ADC). The quantized
and discretized values of the ADC are sent to the microcontroller unit, that performs
the identification of the physical parameters that are necessary for self-sensing. The
position estimation is obtained by a mathematical model with additional hysteresis
compensation and can be used for monitoring, control or functional safety purposes.
The microcontroller itself also generates the PWM signal for the power amplifier. In
applications with increased need for redundancy, also a position sensor can be present.
The different domains of the electrical signals, namely the digital domain (yellow), the
analog domain (green) and the power domain (red) are highlighted in the figure to stress
the fact that an analog circuitry can perform some signal processing steps that can unload
the ADC and the microprocessor unit.

In the following subchapters, different self-sensing algorithms for different application
scenarios are presented, derived and analyzed. First, the focus is laid on the incremental
inductance since it promises the best results for position estimation on non-ambiguous
actuators. Therefore, the analog circuitry of the IDIM technique is shown and discussed.
In particular, Chapter 3.1 shows the general derivation and description of the IDIM
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3 Position self-sensing techniques based on PWM-induced current ripples
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Figure 3.1: Schematic of the overall actuation system, consisting of the EMA, a power
amplifier, the self-sensing circuit and a microcontroller unit. The digital
domain (yellow) performs only the necessary calculations, while the analog
domain (green) carries out most of the signal processing. The power domain
is highlighted as red.

technique involving also a discussion of conditions for identifiability and a sensitivity
analysis of measurement errors in the sensors and the analog circuity. Furthermore, an
identification approach is shown for the series resistance 𝑅Σ that allows compensating
of unwanted resistive behaviors and allows identifying the actuator temperature that
can compensate for temperature-dependent parameters and temperature drifting. While
Chapter 3.1 shows the IDIM technique in its full extent, simplification can be applied for
applications involving actuators with reduced dynamics or negligible iron losses. Such
simplification accounts for switching actuators in a quasi-static manner, whose end-
position needs to be detected. In such cases, the measurement and modeling effort can be
significantly reduced compared to the full IDIM formulation. This reduces the costs of the
electronics in such application scenarios, which are especially cost-sensitive. Similar to
Chapter 3.1, the simplified IDIM technique is shown and derived and a sensitivity analysis
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concerning measurement errors is conducted. Chapter 3.3 discusses the estimation based
on the eddy current through the parallel resistance 𝑅𝑝, which is especially important
in applications where the incremental inductance is not monotonous. Then, Chapter
3.4 compares the different self-sensing techniques in terms of the number of necessary
measurements, the number of calculations, the simplifications that were made during the
derivation, the sensitivity towards errors, the SNR and possible applications scenarios.
All shown self-sensing approaches are based on the identification of the incremental
inductance 𝐿Δ and the parallel resistor 𝑅𝑝. An appropriate model, either of physical
or phenomenological nature, needs to be derived that assumes a position dependency
and a current dependency of both parameters due to saturation and hysteretic effects:
𝐿Δ = 𝑓 (𝑖, 𝑥), 𝑅𝑝 = 𝑓 (𝑥). By inverting the model, the estimated position can be achieved:
𝑥𝑒𝑠𝑡 = 𝑓 −1(𝐿Δ, 𝑅𝑝, 𝑖). Chapter 3.5 presents such classes of models and selects the ones
with the best accuracy and the lowest computational effort. Finally, Chapter 3.6 shows
an approach for compensating unwanted hysteretic behavior in the position estimate for
further increase of the accuracy.

The basic circuitry for analog prepossessing, which is necessary for the IDIM technology
is illustrated in Figure 3.2. It consist of two stages: an offset elimination stage (O.E.),
that is necessary for the removal of the fundamental driving current and an analog
integrator circuit with external reset that integrates the current ripple within one PWM
period. Removing the fundamental driving current is necessary in order to separate the
current ripple from the fundamental current, that is usually several orders higher then
the current ripple. As visible from Equation 2.93, only the current ripple contains the
information that is necessary in the self-sensing algorithms. Removing the offset ensures
that only the relevant information is integrated and the integrator does not suffer from
drifting. In the following, the offset removed current is referred to as 𝑖𝑠 (𝑡), the reset signal
as 𝑟 (𝑡) and the integral output as 𝑄(𝑡), since the integral of a current quantity refers
physically to a charge. The offset elimination stage as well as the reset signal can change
according to the used IDIM technique and are further explained in the subchapters.

Offset removal
∫𝑖𝑠 (𝑡) 𝑖̄𝑠 (𝑡) 𝑄(𝑡)

𝑟 (𝑡)

Figure 3.2: General IDIM measurement chain consisting of an offset-removing stage
and a resettable integrator.

Before deriving the techniques, basic measurement quantities are defined. In this thesis,
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3 Position self-sensing techniques based on PWM-induced current ripples

only shunt-based current sensors in series with the phase are considered. Results for
shunt-based sensors, where the shunt is placed at the low-side FET or the DC link, as
well as other sensor principles, such as Hall-based or magnetic resistance-based sensors
can be derived similarly from the presented results. Shunt-based sensors provide a voltage
that is linearly dependent on the voltage over the shunt resistor:

𝑢𝑚𝑒𝑎𝑠 = 𝐺 · 𝑢𝑠ℎ𝑢𝑛𝑡 + 𝑢𝑜 𝑓 𝑓 , (3.1)

with 𝑢𝑜 𝑓 𝑓 being an offset voltage that allows for bidirectional sensing and 𝐺 being the
gain. The voltage drop over the shunt resistor is proportional to the current:

𝑢𝑠ℎ𝑢𝑛𝑡 = 𝑅𝑠ℎ𝑢𝑛𝑡 · 𝑖𝑠, (3.2)

where 𝑅𝑠ℎ𝑢𝑛𝑡 denotes the shunt resistance. The measured output voltage of the sensor
is then the input of the IDIM circuit shown in Figure 3.2. For sake of simplicity and
easier mathematical handling, all components of the measurement chain are neglected so
that: 𝐺 = 1, 𝑅𝑠ℎ𝑢𝑛𝑡 = 1 Ω, 𝑢𝑜 𝑓 𝑓 = 0 𝑉 , which yields to 𝑢𝑚𝑒𝑎𝑠 = 𝑖𝑠. The DC link voltage
𝑈𝐷𝐶 is usually measured by means of voltage dividers. For sake of brevity, a divider
ratio equal to one is chosen so that the DC link voltage is directly available.

An analog integrator can be configured as indicated in Figure 3.3. By means of the
integration resistor 𝑅𝑖𝑛𝑡 and the integrator capacitance 𝐶𝑖𝑛𝑡 , the input voltage can be
amplified. When the noise on the signal is Gaussian white noise with zero mean value,
the integrator is able to amplify the signal while rejecting noise. In order to avoid a
saturation of the integrator, a reset is necessary to bring the integrator state to zero at
defined instants. This can be achieved by using a reset switch. In particular, such a reset
switch is able to completely decharge the capacitor when it is closed, thus the integrator
value can be reset to zero.

−

+

𝑅𝑖𝑛𝑡

𝑢𝑚𝑒𝑎𝑠 (𝑡)

𝐶𝑖𝑛𝑡

𝑟 (𝑡)

𝑢𝑜𝑢𝑡 (𝑡)

Figure 3.3: Single-ended analog inverting integrator with reset capability, adopted from
[88, p. A-31].
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3.1 Self-Sensing based on the incremental inductance for dynamic cases

The integrator circuit can be mathematically described as:

𝑢𝑜𝑢𝑡 (𝑡) = − 1
𝑅𝑖𝑛𝑡𝐶𝑖𝑛𝑡

∫
𝑟 (𝑡 )≠1

𝑢𝑚𝑒𝑎𝑠 (𝑡)𝑑𝑡 − 𝑢𝐶 (0). (3.3)

In case the reset signal amounts to 1, the integrator is resetted and its current value
is forced to zero. In case the reset signal equals zero, the integration starts. By forcing
𝑟 (𝑡) = 1 at the beginning of each integration window, the initial condition on the capacitor
voltage 𝑢𝐶 is always kept to zero. For sake of brevity and better mathematical handling,
also here the gain is set to one by setting 𝑅𝑖𝑛𝑡 = 1Ω and 𝐶𝑖𝑛𝑡 = 1𝐹 so that the integral
can be defined as:

𝑄(𝑡) =
∫
𝑟 (𝑡 )≠1

𝑖𝑠 (𝑡)𝑑𝑡. (3.4)

3.1 Self-Sensing based on the incremental inductance for
dynamic cases

In the previous section, the circuitry for the IDIM technique was briefly presented. In
this section, the IDIM technique in its complete formulation is derived and discussed.
Such formulation allows applying the technique onto actuators with high current dynamic
and iron losses. Moreover, the identification of the series resistance is possible, that can
be used for compensation of resistive behavior as well as an estimation of the actuator
temperature. In this general formulation of the IDIM technique, the offset-eliminating
stage is realized by means of a sample-and-hold (SH) circuitry followed by a subtraction
stage, that removes the sampled value from the actual value. By applying such a
subtraction, the fundamental current in the measurement is eliminated, thus only the
current ripple can be processed. Figure 3.4 shows the schematic of the circuitry. The SH
stage is also triggered by the reset signal that is given to the integrator. In this derivation,
a perfect SH stage is assumed for better mathematical treatment. Nevertheless, the
technical realization of an appropriate SH stage is a challenging task since the droop of
the stage due to parasitic conductance must be minimized, especially when large hold
times are considered. The technical realization of such a stage is explained briefly in
Chapter 4.1.

The reset signal is chosen in such a way that the PWM switching instants are not
being integrated:
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3 Position self-sensing techniques based on PWM-induced current ripples

𝑆 − 𝐻

∫𝑖𝑠 (𝑡) +

−

𝑖̄𝑠 (𝑡) 𝑄(𝑡)

𝑟 (𝑡)

Figure 3.4: IDIM measurement chain with sample-and-hold unit based offset removal,
adopted from [71].

𝑟 (𝑡) =


0 for 𝑡+𝑠 ≤ 𝑡 ≤ 𝑡+𝑒

0 for 𝑡−𝑠 ≤ 𝑡 ≤ 𝑡−𝑒

1 else

, (3.5)

The time instants 𝑡+𝑠 and 𝑡+𝑒 refer to the start (s) and end (e) of the integration window
when a positive PWM voltage pulse is applied and the time instants 𝑡−𝑠 and 𝑡−𝑒 to the
integration window borders when a negative PWM voltage pulse is applied. They can be
defined as:

𝑡+𝑠 = 𝑡𝑟 , (3.6)

𝑡+𝑒 = 𝛼𝑡𝑝𝑤𝑚 − 𝑡𝑟 , (3.7)

𝑡−𝑠 = 𝛼𝑡𝑝𝑤𝑚 + 𝑡𝑟 , (3.8)

𝑡−𝑒 = 𝑡𝑝𝑤𝑚 − 𝑡𝑟 , (3.9)

with a suitable waiting time 𝑡𝑟 . When 𝑟 (𝑡) is equal to zero, the SH stage hold its last
value and the integration is performed until 𝑟 (𝑡) equals one. In this time instant, the
integrator is reset and the input signal is not considered. Figure 3.5 illustrates the chosen
time intervals of the reset signal within one PWM period. In particular, the waiting time
𝑡𝑟 is a design choice and must be large enough in order to ensure a proper decharging of
the integration capacitance and small enough that a large integration interval is covered.
Furthermore, the time 𝑡𝑟 should cover possible glitches in the current due to inverter
switching effects, e.g. dead-time insertion as well as ringing, and effects of the limited
slew rate of current shunt amplifiers in these regions. In addition, the time 𝑡𝑟 should cover
the current ripple cusps and their exponential decay due to eddy currents. By setting
𝑟 (𝑡) to 1 in these time instants, the integrator is in reset and the current information,
involving the glitches and eddy current effects, are not taken into consideration during
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3.1 Self-Sensing based on the incremental inductance for dynamic cases

evaluation of the integral. Similar avoidance of possible glitches is also conducted in the
oversampling approaches [51, 53].

The current differences

Δ𝑖+ = 𝑖𝑠 (𝑡+𝑒 ) − 𝑖𝑠 (𝑡+𝑠 ), (3.10)

Δ𝑖− = 𝑖𝑠 (𝑡−𝑒 ) − 𝑖𝑠 (𝑡−𝑠 ), (3.11)

and the time differences

Δ𝑡+ = 𝑡+𝑒 − 𝑡+𝑠 , (3.12)

Δ𝑡− = 𝑡−𝑒 − 𝑡−𝑠 , (3.13)

are defined.

3.1.1 Derivation of the estimation equations

By applying the reset signal provided by Equation 3.5, the integral equation can be
defined as:

𝑄(𝑡) =
∫
𝑟 (𝑡 )≠1

𝑖𝑠 (𝑡)𝑑𝑡 =
∫
𝑟 (𝑡 )≠1

(𝑖𝑠 (𝑡) − 𝑖𝑠 (𝑡𝑥)) 𝑑𝑡, (3.14)

where 𝑡𝑥 equals the time when the sampling has happened at the start of the integration
window. Thus, 𝑡𝑥 equals 𝑡+𝑠 in case the equation is evaluated for the positive voltage
pulse and 𝑡𝑥 equals 𝑡−𝑠 in case of the negative voltage pulse. The offset-removed current
𝑖𝑠 (𝑡) is now replaced by the output of the subtraction stage. Inserting the differential
Equation 2.74 of the electrical equivalent circuit into the integral form yields to:

𝑄(𝑡) =
∫
𝑟 (𝑡 )≠1

1
𝑅Σ

[
𝑢(𝑡) + 𝐿Δ

𝑅𝑝

𝜕𝑢(𝑡)
𝜕𝑡

− 𝐿Δ

(
1 + 𝑅Σ

𝑅𝑝

)
𝜕𝑖𝑠 (𝑡)
𝜕𝑡

]
− 𝑖𝑠 (𝑡𝑥)𝑑𝑡. (3.15)

It has to be remarked that 𝐿Δ and 𝑅𝑝 are parameters that are position-, current- and
temperature-dependent. In the following derivation, these parameters are assumed to be
constant over one PWM period in order to simplify the mathematical treatment. This
assumption holds for high PWM frequencies, where the PWM time period is considerably
smaller than the time constant of the mechanical and thermal subsystem: 𝑡𝑝𝑤𝑚 ≪ 𝜏𝑚, 𝜏𝑡ℎ.
Thus, the dependency of the parameters on the position, temperature and current is
not shown in the following calculations. Evaluating the integral equation for a positive
voltage pulse yields to:
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Figure 3.5: Integral signal 𝑄(𝑡) and reset signal 𝑟 (𝑡) when being applied to an offset-
removed current ripple 𝑖̄𝑠 of an electromagnetic actuator along with the
critical time instants.
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𝑄(𝑡+𝑒 ) −𝑄(𝑡+𝑠 ) =
𝑈𝐷𝐶

𝑅Σ

(
𝑡+𝑒 − 𝑡+𝑠

)
+ 𝐿Δ

𝑅Σ𝑅𝑝

(
𝑢(𝑡+𝑒 ) − 𝑢(𝑡+𝑠 )

)
− 𝐿Δ

𝑅Σ

(
1 + 𝑅Σ

𝑅𝑝

) ( (
𝑖𝑠 (𝑡+𝑒 ) − 𝑖𝑠 (𝑡+𝑠 )

) )
− 𝑖𝑠 (𝑡+𝑠 )

(
𝑡+𝑒 − 𝑡+𝑠

)
.

(3.16)

The expression from the integral can be simplified by considering that the integrator
is reset at the begin of every PWM period: 𝑄(𝑡+𝑠 ) = 0 and by using a fixed DC voltage
during one pulse 𝑢(𝑡+𝑒 ) = 𝑢(𝑡+𝑠 ) = 𝑈𝐷𝐶 . Furthermore, the assumption 𝑅Σ ≪ 𝑅𝑝 can be
applied since electromagnetic actuators are designed for minimal copper losses, which
yields to a small value of 𝑅Σ and small iron losses, which results into a high value of 𝑅𝑝.
Considering these assumptions, the integral can be solved:

𝑄(𝑡+𝑒 ) ≈
𝑈𝐷𝐶

𝑅Σ

Δ𝑡+ − 𝐿Δ

𝑅Σ

Δ𝑖+ − 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+. (3.17)

Analogously, the integral can be evaluated for the negative voltage pulse:

𝑄(𝑡−𝑒 ) −𝑄(𝑡−𝑠 ) =
−𝑈𝐷𝐶

𝑅Σ

(
𝑡−𝑒 − 𝑡−𝑠

)
+ 𝐿Δ

𝑅Σ𝑅𝑝

(
𝑢(𝑡−𝑒 ) − 𝑢(𝑡−𝑠 )

)
− 𝐿Δ

𝑅Σ

(
1 + 𝑅Σ

𝑅𝑝

) (
𝑖𝑠 (𝑡−𝑒 ) − 𝑖𝑠 (𝑡−𝑠 )

)
− 𝑖𝑠 (𝑡−𝑠 )

(
𝑡−𝑒 − 𝑡−𝑠

)
,

(3.18)

and with the considerations 𝑄(𝑡−𝑠 ) = 0 and 𝑢(𝑡−𝑒 ) = 𝑢(𝑡−𝑠 ) = −𝑈𝐷𝐶 , it can be solved to:

𝑄(𝑡−𝑒 ) ≈
−𝑈𝐷𝐶

𝑅Σ

Δ𝑡− − 𝐿Δ

𝑅Σ

Δ𝑖− − 𝑖𝑠 (𝑡−𝑠 )Δ𝑡− . (3.19)

The equations of the integral for the positive and negative voltage pulses can be brought
into a matricial form[

𝑈𝐷𝐶Δ𝑡
+

−𝑈𝐷𝐶Δ𝑡
−

]
≈

[
𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+ Δ𝑖+

𝑄(𝑡−𝑒 ) + 𝑖𝑠 (𝑡−𝑠 )Δ𝑡− Δ𝑖−

]
︸                             ︷︷                             ︸

A

[
𝑅Σ

𝐿Δ

]
, (3.20)

where the parameter vector containing 𝑅Σ and 𝐿Δ can be obtained by inverting the
matrix 𝐴 that contains the measurements:[

𝑅Σ

𝐿Δ

]
≈ A−1

[
𝑈𝐷𝐶Δ𝑡

+

−𝑈𝐷𝐶Δ𝑡
−

]
. (3.21)

If A is invertible, then its inverse can be calculated as
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A−1 =
1
|A|

[
Δ𝑖− −Δ𝑖+

−𝑄(𝑡−𝑒 ) − 𝑖𝑠 (𝑡−𝑠 )Δ𝑡− 𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+

]
, (3.22)

with

|A| = det (A) =
(
𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+

)
Δ𝑖− −

(
𝑄(𝑡−𝑒 ) + 𝑖𝑠 (𝑡−𝑠 )Δ𝑡−

)
Δ𝑖+, (3.23)

being its non-zero determinant. Thus, the parameters can be estimated by the
estimation equations:

𝑅Σ ≈ 𝑈𝐷𝐶

|A|
(
Δ𝑖−Δ𝑡+ + Δ𝑖+Δ𝑡−

)
, (3.24)

and

𝐿Δ ≈ −𝑈𝐷𝐶

|A|
( (
𝑄(𝑡−𝑒 ) + 𝑖𝑠 (𝑡−𝑠 )Δ𝑡−

)
Δ𝑡+ +

(
𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+

)
Δ𝑡−

)
. (3.25)

Due to the combined identification, the series resistance can be actively compensated in
the estimation of the incremental inductance. This not only compensates for the resistive
behavior that results into an exponential-shaped current ripple, but also for back-induced
voltages during the movement of the actuator and a possible change of the resistance
due to self-heating. From the estimation equations, it can be also seen that the IDIM
technique requires in total seven measurements per PWM period: one measurement
of the DC link voltage, four measurements of the current at the time instants 𝑡+𝑠 , 𝑡

+
𝑒 , 𝑡

−
𝑠

and 𝑡−𝑒 as well as two measurements of the integral at the time instants 𝑡+𝑒 and 𝑡−𝑒 . The
estimation itself can be computed relatively fast, since it is the solution of a 2x2 linear
system. Nevertheless, there is still noise present inside the estimate due to the usage of
current differences, which resemble current derivatives.

In case the determinant amounts to zero, or only the positive or negative voltage pulse
can be evaluated, the incremental inductance can be still estimated under knowledge of
the series resistance 𝑅Σ using Equations 3.17 and 3.19 as

𝐿Δ ≈
𝑈𝐷𝐶Δ𝑡

+ − 𝑅Σ

(
𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+

)
Δ𝑖+

, (3.26)

for the positive voltage pulse and

𝐿Δ ≈
−𝑈𝐷𝐶Δ𝑡

− − 𝑅Σ

(
𝑄(𝑡−𝑒 ) + 𝑖𝑠 (𝑡−𝑠 )Δ𝑡−

)
Δ𝑖−

, (3.27)

for the negative voltage pulse. More about the conditions for identifiablity and the
resulting need for a pre-knowledge of the series resistance 𝑅Σ is given in the following
section.
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3.1.2 Conditions for the estimation based on the incremental inductance

In the following section, conditions will be derived for the determinant |𝐴|, in which
an identification of one or both parameters is not possible. Such operating points, in
which the conditions are fulfilled, should be avoided, or further knowledge is required for
determination in those working points. For sake of brevity, the currents 𝑖+𝑠 = 𝑖𝑠 (𝑡+𝑠 ) and
𝑖−𝑠 = 𝑖𝑠 (𝑡−𝑠 ) are defined so that the determinant can be rewritten as

|A| =
(
𝑄(𝑡+𝑒 ) + 𝑖+𝑠Δ𝑡

+) Δ𝑖− −
(
𝑄(𝑡−𝑒 ) + 𝑖−𝑠 Δ𝑡

− ) Δ𝑖+. (3.28)

A condition for invertibility is that the determinant is nonzero so that the matrix has
full rank:

|A| ≠ 0. (3.29)

By inserting the equation of the determinant, it can be rewritten

|A| =
(
𝑄(𝑡+𝑒 ) + 𝑖+𝑠Δ𝑡

+) Δ𝑖− −
(
𝑄(𝑡−𝑒 ) + 𝑖−𝑠 Δ𝑡

− ) Δ𝑖+ ≠ 0, (3.30)

and

(
𝑄(𝑡+𝑒 ) + 𝑖+𝑠Δ𝑡

+)
Δ𝑡+

Δ𝑡+Δ𝑖− −
(
𝑄(𝑡−𝑒 ) + 𝑖−𝑠 Δ𝑡

− )
Δ𝑡−

Δ𝑡−Δ𝑖+ ≠ 0. (3.31)

The mean value of the current during the positive voltage pulse is defined as

𝑖+𝑚𝑒𝑎𝑛 =
1
Δ𝑡+

∫ 𝑡+𝑒

𝑡+𝑠

𝑖𝑠 (𝑡)𝑑𝑡 =
𝑄(𝑡+𝑒 ) + 𝑖+𝑠Δ𝑡

+

Δ𝑡+
, (3.32)

and analogously the mean value of the current during the negative voltage pulse as

𝑖−𝑚𝑒𝑎𝑛 =
1

Δ𝑡−

∫ 𝑡−𝑒

𝑡−𝑠

𝑖𝑠 (𝑡)𝑑𝑡 =
𝑄(𝑡−𝑒 ) + 𝑖−𝑠 Δ𝑡

−

Δ𝑡−
. (3.33)

Thus, the inequivalence 3.31 can be rewritten as:

𝑖+𝑚𝑒𝑎𝑛Δ𝑡
+Δ𝑖− − 𝑖−𝑚𝑒𝑎𝑛Δ𝑡

−Δ𝑖+ ≠ 0. (3.34)

The evaluation of the Equation 3.31 can become cumbersome due to the consideration
of all possible working points. Thus, it will be evaluated for different cases:

Static case In the static case, the mean current remains constant over time. Conse-
quently, the mean current remains the same for both voltage pulses

57
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𝑖𝑚𝑒𝑎𝑛 = 𝑖+𝑚𝑒𝑎𝑛 = 𝑖−𝑚𝑒𝑎𝑛, (3.35)

and, hence, the current difference in the current ripple remains the same since the
mean current stays constant :

Δ𝑖 = Δ𝑖+ = Δ𝑖− . (3.36)

Consequently, the determinant can be simplified to

|A| = 𝑖+𝑚𝑒𝑎𝑛Δ𝑡
+Δ𝑖− − 𝑖−𝑚𝑒𝑎𝑛Δ𝑡

−Δ𝑖+ ≠ 0, (3.37)

which results into the condition for identifiability in the static case:

⇒ 𝑖𝑚𝑒𝑎𝑛Δ𝑖
(
Δ𝑡+ − Δ𝑡−

)
≠ 0. (3.38)

In practice, the left term can become zero in the following scenarios:

1. 𝑖𝑚𝑒𝑎𝑛 = 0: the fundamental mean current is zero in the actuator, which is true for
𝛼 = 0.5 in the static case. Since no mean current is flowing, there exists also no
mean voltage drop over the series resistance 𝑅Σ. Thus, 𝑅Σ cannot be identified. In
such a case, 𝑅Σ has to be given manually in order to estimate 𝐿Δ.

2. Δ𝑖 = 0: there exists no current ripple at all, since the current does not change within
one PWM pulse. This can either happen because of a purely resistive load without
any inductive behavior or due to the absence of a PWM voltage. For instance,
a PWM voltage does not exist for duty cycles of zero or one (𝛼 = 0 and 𝛼 = 1).
In such a case, no persistent excitation is present and the identification of both
parameters is not feasible unless a duty cycle in the possible range is applied. In
such circumstances the duty cycle needs to be forced.

3. Δ𝑡+ = Δ𝑡−: this case resembles the case of 𝑖𝑚𝑒𝑎𝑛 = 0, since in static condition the
case resembles a duty cycle of 𝛼 = 0.5, which leads to no mean current. Similarly
to the case above, 𝑅Σ needs to be given manually when the identification of 𝐿Δ is
desired.

Dynamic case While in the static case, the evaluation of the in-equivalence given in
Equation 3.31 is simple, for the dynamic case only 𝛼 = 0 and 𝛼 = 1 and Δ𝑖+ = Δ𝑖− = 0
are known conditions where the identification fails. In those cases, no current ripple is
present since the PWM is absent. Due to a lack of excitation, the identification of both
parameters is not possible.
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Similarly to the static case, in the situation where 𝑖+𝑚𝑒𝑎𝑛 = 𝑖−𝑚𝑒𝑎𝑛 = 0 , 𝐿Δ can only be
identified, when the value of 𝑅Σ is known. In this case, the voltage drop over the series
resistance amounts to zero, thus its determination fails. In contrast to the static case,
this condition can be also triggered for a duty cycle 𝛼 ≠ 0.5 since the current changes
according to the dynamics of the system.

For all other cases, it has to be determined in an online way if the determinant equals
to zero. Since the approach is implemented on microprocessors with limited numerical
representation, it has to be checked if |A| is below a certain threshold, that depends on
the size of the variables, the quantization performed by the AD converter and the desired
accuracy.

With the help of the conditions derived above, it can be evaluated if a precise determi-
nation of both parameters is possible. In working points where no PWM is present, the
duty cycle needs to be changed for a short time to a value that allows to have voltage
pulses with sufficient lengths. This procedure resembles an injection-based method,
since voltage pulses have to be inserted externally. Only with such a procedure, the
determination of one or both parameters is possible in such working points. In other
situations, the incremental inductance can still be identified by the pre-knowledge of 𝑅Σ.
The identification of this parameter is the main topic in the following section.

3.1.3 Determination of the series resistance

As seen before, in case the mean current 𝑖𝑚𝑒𝑎𝑛 → 0 as well as in case of a duty cycle
𝛼 = 0.5 for static applications, the incremental inductance 𝐿Δ can still be identified under
the knowledge of 𝑅Σ. Under such circumstances, the resistance 𝑅Σ can be approximated
as

𝑅Σ = 𝑅𝑠 +
𝜕𝐿Δ(𝑥)
𝜕𝑥

𝜕𝑥

𝜕𝑡
+ 𝑅𝑠

𝜕

𝜕𝑥

(
𝐿Δ(𝑥)
𝑅𝑝 (𝑥)

)
𝜕𝑥

𝜕𝑡
≈ 𝑅𝑠, (3.39)

since, in the considered static cases, the velocity of the actuator can be assumed close
to zero 𝜕𝑥

𝜕𝑡
≈ 0.

Thus, the copper resistance 𝑅𝑠 can be used directly and a predetermined value can
be stored in memory. In case a condition for non-identifiability is being triggered, the
stored value can be used as value for 𝑅Σ and the identification of 𝐿Δ is still possible.
Nevertheless, the value of 𝑅𝑠 is strongly temperature-dependent and causes considerable
temperature drifting in the position self-sensing, especially if temperature is neglected
[53]. This is problematic since electromagnetic actuators are usually driven close to their
thermal limits and experience considerable self-heating. Under such use cases, the series
resistance 𝑅Σ needs to be frequently calculated by using Equation 3.24, additionally
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by inserting forced test PWM pulses, and stored and updated continuously in memory.
Since the estimate of 𝑅Σ has poor SNR especially for small currents, the application of a
low-pass filter is desired in order to decrease the noise. The time constant of such a filter
𝜏 𝑓 has to be dimensioned bigger than the mechanical time constant 𝜏𝑚, but smaller than
the thermal time constant 𝜏𝑡ℎ [51]. Doing so allows to reject components coming from
back-induced voltages while remaining a fast tracking of temperature changes.

An alternative to the straight-forward identification is the determination of the series
resistance by means of a dedicated least mean squares (LMS) algorithm or by its
recursive version, the recursive least squares (RLS) algorithm, that is better suited for
online estimation. By applying a forgetting factor, the RLS algorithm is able to track
temperature changes while forgetting past values which are not updated anymore or
are wrong due to unsuitable operation points. Resistance and, therefore, temperature
estimation by means of LMS/RLS algorithms is a well known approach in literature and,
thus, reference is made to those works [89, 90].

3.1.4 Sensitivity analysis of measurement errors

In practical applications, sensors and electronic circuits experience tolerances and non-
idealities that have an influence on the estimated inductance and resistance, and con-
sequently, to the estimated position. Compared to self-sensing techniques for rotating
electrical machines, where the rotor angle gets estimated by evaluating the phase shift
of inductance or back-EMF values rather than their absolute amplitude, which makes
them inherently robust against measurement uncertainties, this is not applicable to
electromagnetic actuators. Position estimation in electromagnetic actuators requires
the precise knowledge of the flux, the incremental inductance or the parallel resistance
in their absolute value. Thus, it is of interest to analyze the sensitivity of the derived
algorithm towards measurement uncertainties. Four types of measurement errors will be
analyzed and discussed:

1. Gain errors in the measurement of current and voltage

2. Offset errors in the measurement of current and voltage

3. Gain errors in the IDIM circuit

4. Offset errors in the IDIM circuit

Gain errors in the measurements

The measurement quantities of voltage and current are now influenced by a gain error:
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𝑢(𝑡) = 𝐺𝑢𝑢(𝑡), (3.40)

𝑖̃𝑠 (𝑡) = 𝐺𝑖𝑖𝑠 (𝑡), (3.41)

where 𝑢(𝑡) and 𝑖̃𝑠 (𝑡) denote the measurements with a gain error of 𝐺𝑢 and 𝐺𝑖 for voltage
and current, respectively. In the estimation Equations 3.24 and 3.25, the measurements
influenced by the error can be inserted instead of their original ideal values. Thus, the
following linear system is obtained now:

[
𝑈𝐷𝐶Δ𝑡

+

−𝑈𝐷𝐶Δ𝑡
−

]
≈

[
𝑄(𝑡+𝑒 ) + 𝑖̃𝑠 (𝑡+𝑠 )Δ𝑡+ 𝑖̃𝑠 (𝑡+𝑒 ) − 𝑖̃𝑠 (𝑡+𝑠 )
𝑄(𝑡−𝑒 ) + 𝑖̃𝑠 (𝑡−𝑠 )Δ𝑡− 𝑖̃𝑠 (𝑡−𝑒 ) − 𝑖̃𝑠 (𝑡−𝑠 )

]
︸                                            ︷︷                                            ︸

Ã

[
𝑅Σ

𝐿̃Δ

]
, (3.42)

with the parameters 𝑅Σ and 𝐿̃Δ, that are now influenced by the measurement gain
error. Due to the linearity of integrator, 𝑄 exhibits the same gain error:

𝑄 = 𝐺𝑖𝑄. (3.43)

The determinant of Ã exhibits the same gain error:

|Ã| =
(
𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+

) (
𝑖𝑠 (𝑡−𝑒 ) − 𝑖𝑠 (𝑡−𝑠 )

)
−

(
𝑄(𝑡−𝑒 ) + 𝑖𝑠 (𝑡−𝑠 )Δ𝑡−

) (
𝑖𝑠 (𝑡+𝑒 ) − 𝑖𝑠 (𝑡+𝑠 )

)
= 𝐺2

𝑖 · |A|, (3.44)

and, thus, the determination equations change to

𝑅Σ ≈ 𝑈𝐷𝐶

|Ã|
( (
𝑖̃𝑠 (𝑡−𝑒 ) − 𝑖̃𝑠 (𝑡−𝑠 )

)
Δ𝑡+ +

(
𝑖̃𝑠 (𝑡+𝑒 ) − 𝑖̃𝑠 (𝑡+𝑠 )

)
Δ𝑡−

)
=
𝐺𝑢𝑈𝐷𝐶

|A|𝐺2
𝑖

𝐺𝑖

(
Δ𝑖−Δ𝑡+ + Δ𝑖+Δ𝑡−

)
=
𝐺𝑢

𝐺𝑖

𝑅Σ, (3.45)

and
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𝐿̃Δ ≈ −𝑈𝐷𝐶

|Ã|
( (
𝑄(𝑡−𝑒 ) + 𝑖̃𝑠 (𝑡−𝑠 )Δ𝑡−

)
Δ𝑡+ +

(
𝑄(𝑡+𝑒 ) + 𝑖̃𝑠 (𝑡+𝑠 )Δ𝑡+

)
Δ𝑡−

)
= −𝐺𝑢𝑈𝐷𝐶

|A|𝐺2
𝑖

𝐺𝑖

( (
𝑄(𝑡−𝑒 ) + 𝑖𝑠 (𝑡−𝑠 )Δ𝑡−

)
Δ𝑡+ +

(
𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+

)
Δ𝑡−

)
=
𝐺𝑢

𝐺𝑖

𝐿Δ. (3.46)

It can be seen that a gain error in the measurements of current and voltage lead to
a gain error in the estimate of the incremental inductance and series resistance. The
gain error in the estimate is proportional to the voltage measurement gain error and
inverse proportional to the current measurement gain error. Thus, the accuracy of the
estimate can be directly increased by increasing the precision of the measurement , e.g.
by providing shunt resistors and voltage dividers with tight tolerances and providing a
dedicated calibration routine.

Offset errors in the measurements

Now, an offset error is introduced into the measurements of current and voltages:

𝑢 (𝑡) = 𝑢(𝑡) + 𝑢𝑜 (𝑡), (3.47)

𝑖̃𝑠 (𝑡) = 𝑖𝑠 (𝑡) + 𝑖𝑜 (𝑡), (3.48)

with 𝑢𝑜 (𝑡) and 𝑖𝑜 (𝑡) being the offset error in the voltage and current measurement,
respectively. Due to the offset removal in the analog electronics, the integral 𝑄(𝑡) does
not exhibit an offset error:

𝑄(𝑡) = 𝑄(𝑡). (3.49)

By inserting the error-influenced quantities into the estimation Equations 3.24 and
3.25, one obtains:[

𝑈𝐷𝐶Δ𝑡
+

−𝑈𝐷𝐶Δ𝑡
−

]
≈

[
𝑄(𝑡+𝑒 ) + 𝑖̃𝑠 (𝑡+𝑠 )Δ𝑡+ 𝑖̃𝑠 (𝑡+𝑒 ) − 𝑖̃𝑠 (𝑡+𝑠 )
𝑄(𝑡−𝑒 ) + 𝑖̃𝑠 (𝑡−𝑠 )Δ𝑡− 𝑖̃𝑠 (𝑡−𝑒 ) − 𝑖̃𝑠 (𝑡−𝑠 )

]
︸                                            ︷︷                                            ︸

Ã

[
𝑅Σ

𝐿̃Δ

]
, (3.50)

and the determinant of the matrix leads to:
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3.1 Self-Sensing based on the incremental inductance for dynamic cases

|Ã| =
(
𝑄(𝑡+𝑒 ) + 𝑖̃𝑠 (𝑡+𝑠 )Δ𝑡+

) (
𝑖̃𝑠 (𝑡−𝑒 ) − 𝑖̃𝑠 (𝑡−𝑠 )

)
−

(
𝑄(𝑡−𝑒 ) + 𝑖̃𝑠 (𝑡−𝑠 )Δ𝑡−

) (
𝑖̃𝑠 (𝑡+𝑒 ) − 𝑖̃𝑠 (𝑡+𝑠 )

)
=

(
𝑄(𝑡+𝑒 ) +

(
𝑖𝑠 (𝑡+𝑠 ) + 𝑖𝑜

)
Δ𝑡+

)
Δ𝑖− −

(
𝑄(𝑡−𝑒 ) +

(
𝑖𝑠 (𝑡−𝑠 ) + 𝑖𝑜

)
Δ𝑡−

)
Δ𝑖+

= |A| + 𝑖0
(
Δ𝑡+Δ𝑖− − Δ𝑡−Δ𝑖+

)︸                      ︷︷                      ︸
𝐴𝑜

. (3.51)

The parameters can be determined by using:

𝑅Σ ≈ 𝑈𝐷𝐶

|Ã|
( (
𝑖̃𝑠 (𝑡−𝑒 ) − 𝑖̃𝑠 (𝑡−𝑠 )

)
Δ𝑡+ +

(
𝑖̃𝑠 (𝑡+𝑒 ) − 𝑖̃𝑠 (𝑡+𝑠 )

)
Δ𝑡−

)
=
𝑈𝐷𝐶 + 𝑢𝑜

|A| + 𝐴𝑜

(
Δ𝑖−Δ𝑡+ + Δ𝑖+Δ𝑡−

)
=

1 + 𝑢𝑜
𝑈𝐷𝐶

1 + 𝐴𝑜

|A |
𝑅Σ, (3.52)

and

𝐿̃Δ ≈ −𝑈𝐷𝐶

|Ã|
( (
𝑄(𝑡−𝑒 ) + 𝑖̃𝑠 (𝑡−𝑠 )Δ𝑡−

)
Δ𝑡+ +

(
𝑄(𝑡+𝑒 ) + 𝑖̃𝑠 (𝑡+𝑠 )Δ𝑡+

)
Δ𝑡−

)
= −𝑈𝐷𝐶 + 𝑢𝑜

|A| + 𝐴𝑜

( (
𝑄(𝑡−𝑒 ) + 𝑖𝑠 (𝑡−𝑠 )Δ𝑡−

)
Δ𝑡+ +

(
𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+

)
Δ𝑡− + 2𝑖𝑜Δ𝑡−Δ𝑡+

)
=

1 + 𝑢𝑜
𝑈𝐷𝐶

1 + 𝐴𝑜

|A |

(
𝐿Δ − 2𝑈𝐷𝐶

|A| 𝑖𝑜Δ𝑡
−Δ𝑡+

)
=

1 + 𝑢𝑜
𝑈𝐷𝐶

1 + 𝐴𝑜

|A |
𝐿Δ − 2𝑈𝐷𝐶 + 𝑢0

|A| + 𝐴𝑜

𝑖𝑜Δ𝑡
−Δ𝑡+. (3.53)

It is visible that the estimation of the series resistance exhibits only a gain error,
that depends on the value of the offset errors. Nevertheless, the incremental inductance
exhibits a gain error and a strong offset error. This makes the implementation of a
calibration routine and the application of components with low offset necessary.

Gain error in the integrator circuit

In this section, a gain error in the integrator circuit is considered:

𝑄(𝑡) = 𝐺𝑅𝐶𝑄(𝑡) = (1 + Δ𝐺𝑅𝐶)𝑄(𝑡), (3.54)

with 𝐺𝑅𝐶 being the gain error in the integrator stage. For easier mathematical
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3 Position self-sensing techniques based on PWM-induced current ripples

treatment, the term Δ𝐺𝑅𝐶 is placed there, that allows separating the error-influenced
from the error-free quantities. In the estimation process, the linear system of equations
changes to: [

𝑈𝐷𝐶Δ𝑡
+

−𝑈𝐷𝐶Δ𝑡
−

]
≈

[
𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+ Δ𝑖+

𝑄(𝑡−𝑒 ) + 𝑖𝑠 (𝑡−𝑠 )Δ𝑡− Δ𝑖−

]
︸                             ︷︷                             ︸

Ã

[
𝑅Σ

𝐿̃Δ

]
, (3.55)

while the calculation of the determinant leads to:

|Ã| =
(
𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+

)
(Δ𝑖−) −

(
𝑄(𝑡−𝑒 ) + 𝑖𝑠 (𝑡−𝑠 )Δ𝑡−

) (
Δ𝑖+

)
= |A| + Δ𝐺𝑅𝐶

(
𝑄(𝑡+𝑒 )Δ𝑖− −𝑄(𝑡−𝑒 )Δ𝑖+

)
. (3.56)

The estimation of the parameter is now affected by the gain error:

𝑅Σ ≈ 𝑈𝐷𝐶

|Ã|
(
(Δ𝑖−) Δ𝑡+ +

(
Δ𝑖+

)
Δ𝑡−

)
=

1
1 + Δ𝐺𝑅𝐶 (𝑄 (𝑡+𝑒 )Δ𝑖−−𝑄 (𝑡−𝑒 )Δ𝑖+ )

|A |

𝑅Σ, (3.57)

𝐿̃Δ ≈ −𝑈𝐷𝐶

|Ã|
( (
𝑄(𝑡−𝑒 ) + 𝑖𝑠 (𝑡−𝑠 )Δ𝑡−

)
Δ𝑡+ +

(
𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+

)
Δ𝑡−

)
=

1
1 + Δ𝐺𝑅𝐶 (𝑄 (𝑡+𝑒 )Δ𝑖−−𝑄 (𝑡−𝑒 )Δ𝑖+ )

|A |

𝐿Δ

− 𝑈𝐷𝐶

|A| + Δ𝐺𝑅𝐶 (𝑄(𝑡+𝑒 )Δ𝑖− −𝑄(𝑡−𝑒 )Δ𝑖+)
Δ𝐺𝑅𝐶

(
𝑄(𝑡−𝑒 )Δ𝑡+ +𝑄(𝑡+𝑒 )Δ𝑡−

)
. (3.58)

As calculated above, a gain error in the integrator circuit leads to a gain error of the
series resistance. Nevertheless, this gain error is not constant, but depends on the actual
value of the integrator and the current differences Δ𝑖+ and Δ𝑖−, making compensation
complicated. The same applies to the estimation of the incremental inductance, that
additionally exhibits an offset error, which is also not constant. Thus, a gain error in the
integrator represents a major challenge in the design process and needs to be carefully
considered. As described in Chapter 4, realizing the circuit in Switched Capacitor (SC)
technology reduces drastically the tolerances of the integration gain.

Offset error in the integrator circuit

Finally, an offset error in the integration stage is being considered by:
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3.2 Simplified Self-sensing based on the incremental inductance for static cases

𝑄(𝑡) = 𝑄(𝑡) +𝑄𝑜, (3.59)

where 𝑄𝑜 is a constant offset. In this case, the determinant yields:

|Ã| =
(
𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+

)
Δ𝑖− −

(
𝑄(𝑡−𝑒 ) + 𝑖𝑠 (𝑡−𝑠 )Δ𝑡−

)
Δ𝑖+

= |A| +𝑄𝑜

(
Δ𝑖− − Δ𝑖+

)
. (3.60)

Inserting the determinant into the estimation equations, one can see the influence of
the error:

𝑅Σ ≈ 𝑈𝐷𝐶

|Ã|
(
Δ𝑖−Δ𝑡+ + Δ𝑖+Δ𝑡−

)
=

1
1 + 𝑄𝑜 (Δ𝑖−−Δ𝑖+ )

|A |
𝑅Σ, (3.61)

𝐿̃Δ ≈ −𝑈𝐷𝐶

|Ã|
( (
𝑄(𝑡−𝑒 ) + 𝑖𝑠 (𝑡−𝑠 )Δ𝑡−

)
Δ𝑡+ +

(
𝑄(𝑡+𝑒 ) + 𝑖𝑠 (𝑡+𝑠 )Δ𝑡+

)
Δ𝑡−

)
=

1
1 + 𝑄𝑜 (Δ𝑖−−Δ𝑖+ )

|A |
𝐿Δ − 𝑈𝐷𝐶

|A| +𝑄𝑜 (Δ𝑖− − Δ𝑖+)𝑄𝑜

(
Δ𝑡+ + Δ𝑡−

)
. (3.62)

In this case, also a gain error appears in the estimate of the series resistance, that
depends on the value of the actual current differences. When the actuator is driven in
static conditions, this gain error vanishes. The same applies to the gain error of the
incremental inductance. An additional offset error is present inside the incremental
inductance, that scales with the actual current differences and the time instant.

3.2 Simplified Self-sensing based on the incremental inductance
for static cases

In Section 3.1, the IDIM technique in its full formulation has been derived, analyzed
and discussed thoroughly. The technique can cover dynamic as well as static use cases.
But not in every application an estimation of the actuator position is needed with
high dynamics. Actuators used for positioning applications or actuators with switching
behavior and dedicated end positions are not always driven with the full current dynamic.
In fact, mostly the position information is required after the actuator has performed its
movement, so that the current is almost quasi-static. These conditions allow to make
further assumptions on the actuator dynamics and on the shape of the current ripple, so

65



3 Position self-sensing techniques based on PWM-induced current ripples

that an IDIM technique with less measurement and calculation effort can be formulated
for such application scenarios.

In quasi-static conditions, the influence of the eddy currents can be neglected since the
current inside the actuator does not change. Only the eddy currents that are generated
by the PWM switching are present and occur at the beginning of each voltage pulse. For
the following calculations, the eddy currents are therefore neglected by setting 𝑅𝑝 → ∞.
Additionally, for quasi-static applications, the fundamental mean current does not change
quickly. Consequently, the current differences are assumed to be equal: Δ𝑖+ = Δ𝑖−, which
allows assumptions on the current ripple. In such a case, the rising and the falling slope
of the current ripple are the same and, therefore, the integration can take place over the
complete PWM period (resembling a dual slope integration). Thus, the reset signal can
be modified in such a way that only one pulse at the beginning of the PWM period is
required:

𝑟 (𝑡) =


1 for 0 ≤ 𝑡 ≤ 𝑡𝑟

0 else
, (3.63)

where the waiting time can be chosen in such a way that it is small enough for the
integration capacitance to be reset: 𝑡𝑟 → 0. For the simplified version of the IDIM
technique, also the resistance effect is neglected, that is responsible for the current ripple
being exponentially shaped. Thus, the exponential function of the current ripple of
Equation 2.81 can be approximated by a Taylor series where terms above the first order
are truncated:

𝑒
− 𝑅Σ

𝐿Δ
𝑡 ≈ 1 − 𝑅Σ

𝐿Δ

𝑡. (3.64)

Inserting this approximation into the expression of the current ripple from Equation 2.81,
yields.

𝑖𝑠 (𝑡) ≈


𝑖0 +

(
𝑈𝐷𝐶

𝑅Σ
− 𝑖0

) 𝑅Σ

𝐿Δ

𝑡 for 0 ≤ 𝑡 ≤ 𝑡∗

𝑖𝑠 (𝑡∗) +
(
−𝑈𝐷𝐶

𝑅Σ
− 𝑖𝑠 (𝑡∗)

) 𝑅Σ

𝐿Δ

(𝑡 − 𝑡∗) for 𝑡∗ ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

, (3.65)

with

𝑖𝑠 (𝑡∗) = 𝑖0 +
(
𝑈𝐷𝐶

𝑅Σ

− 𝑖0

)
𝑅Σ

𝐿Δ

𝑡∗. (3.66)

The impact of the approximation can be seen in Figure 3.6, where a simulation case is
shown. The original current ripple according to Equation 2.81 is shown in comparison to
the current ripple that is approximated by a Taylor series of the first and second order.
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3.2 Simplified Self-sensing based on the incremental inductance for static cases

It is visible that the slope of the ripple, which mainly contains the information about the
incremental inductance, is almost the same for the middle parts per each voltage pulse of
the current ripple.
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Figure 3.6: Current ripple approximation and resulting approximation errors. Simulated
for 𝑅Σ = 10 Ω, 𝐿Δ = 10 mH, 𝑓𝑃𝑊𝑀 = 1 kHz and 𝑈𝐷𝐶 = 12 V.

The next section covers the derivation of the IDIM technique with these assumptions,
that will be referred to as Simplified IDIM technique. Two possible realizations of this
approach are shown, which depend on the use case: the first realization utilizes the
same circuitry as described by Figure 3.4 consisting of an SH-stage, a subtraction stage
and an integrator. Thus, this realization makes usage of the same electronics but uses
simplified calculations. Nevertheless, the SH-stage is complicated to be implemented in
practice and can exhibit aliasing effects when its sampling is triggered on a noisy current
measurement. For this reason, another realization method is presented that avoids a
SH-stage and uses a high-pass filter for the removal of the fundamental current. Both
techniques are introduced, derived and discussed in detail.
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3 Position self-sensing techniques based on PWM-induced current ripples

3.2.1 Derivation of the estimation equations

Scenario 1: Sample-and-Hold based offset-elimination

In this scenario, the same IDIM circuitry as shown before in Figure 3.4 is used, consisting
of a sample-and-hold stage, a subtraction stage and the resettable integrator circuit.
Figure 3.7 shows the curves of the sensed current, the offset-free current, the reset
trigger and the resulting integral along with its measurement time instants. In this
scenario, only one reset pulse at the beginning of the PWM period is necessary and only
one measurement at the end of the PWM period is required for the estimation of the
incremental inductance.

In the following, the estimation equation for the incremental inductance is derived.
Applying the offset-removing stage allows to eliminate the fundamental current from
Equation 2.81:

𝑖̄𝑠 (𝑡) ≈

(
𝑈𝐷𝐶

𝑅Σ
− 𝑖0

)
𝑅Σ

𝐿Δ
𝑡 for 0 ≤ 𝑡 ≤ 𝑡∗

(𝑖𝑠 (𝑡∗) − 𝑖0) +
(
−𝑈𝐷𝐶

𝑅Σ
− 𝑖𝑠 (𝑡∗)

)
𝑅Σ

𝐿Δ
(𝑡 − 𝑡∗) for 𝑡∗ ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

. (3.67)

where 𝑖̄𝑠 (𝑡) denotes the current ripple without its fundamental component. Replacing
the current 𝑖𝑠 (𝑡∗) yields:

𝑖̄𝑠 (𝑡) ≈

(
𝑈𝐷𝐶

𝑅Σ
− 𝑖0

)
𝑅Σ

𝐿Δ
𝑡 for 0 ≤ 𝑡 ≤ 𝑡∗(

𝑈𝐷𝐶

𝑅Σ
− 𝑖0

)
𝑅Σ

𝐿Δ
𝑡∗ +

(
−𝑈𝐷𝐶

𝑅Σ
− 𝑖𝑠 (𝑡∗)

)
𝑅Σ

𝐿Δ
(𝑡 − 𝑡∗) for 𝑡∗ ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

. (3.68)

This equation can be simplified using conditions of quasi-static operation. The PWM
is able to set a mean driving voltage 𝑢𝑚𝑒𝑎𝑛 by adjusting the duty cycle 𝛼. The effective
driving voltage can be calculated by applying the mean value to the PWM voltage:

𝑢𝑚𝑒𝑎𝑛 =
1

𝑡𝑝𝑤𝑚

∫ 𝑡𝑝𝑤𝑚

0
𝑢(𝑡)𝑑𝑡 = 2𝑈𝐷𝐶 (𝛼 − 0.5) , (3.69)

such that a direct relationship between voltage and duty cycle 𝛼 can be obtained. For
quasi-static conditions, the mean current in the actuator follows the mean voltage and
can be approximated as:

𝑖𝑚𝑒𝑎𝑛 ≈ 𝑢𝑚𝑒𝑎𝑛

𝑅Σ

=
2𝑈𝐷𝐶 (𝛼 − 0.5)

𝑅Σ

. (3.70)

This approximation holds for static currents or for currents with dynamics that are
considerably slower than the electrical time constant 𝜏𝑒𝑙 of the electromagnetic actuator.
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3.2 Simplified Self-sensing based on the incremental inductance for static cases

Figure 3.7: Integral signal 𝑄(𝑡) and reset signal 𝑟 (𝑡) applied on the offset removed
current ripple 𝑖̄𝑠 of an electromagnetic actuator for the simplified IDIM
technique along with critical time instants.
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3 Position self-sensing techniques based on PWM-induced current ripples

In such a case, a proportional relationship between mean current and duty cycle is
obtained. Furthermore, it can be assumed that the current ripple has a low amplitude
compared to the mean current, so that the current at the beginning and at the middle of
the PWM period can be approximated by the mean value of the current:

𝑖𝑚𝑒𝑎𝑛 ≈ 𝑖0 ≈ 𝑖𝑠 (𝑡∗). (3.71)

Such approximation holds since the PWM frequency is chosen in such a way that the
current ripple is minimized in order to decrease the generation of acoustic noise, force
ripples and energy losses. By applying all the assumptions made, the expression of the
offset-free current ripple can be simplified as:

𝑖̄𝑠 (𝑡) ≈

(
𝑈𝐷𝐶

𝑅Σ
− 2𝑈𝐷𝐶 (𝛼−0.5)

𝑅Σ

)
𝑅Σ

𝐿Δ
𝑡 for 0 ≤ 𝑡 ≤ 𝑡∗(

𝑈𝐷𝐶

𝑅Σ
− 2𝑈𝐷𝐶 (𝛼−0.5)

𝑅Σ

)
𝑅Σ

𝐿Δ
𝑡∗ +

(
−𝑈𝐷𝐶

𝑅Σ
− 2𝑈𝐷𝐶 (𝛼−0.5)

𝑅Σ

)
𝑅Σ

𝐿Δ
(𝑡 − 𝑡∗) for 𝑡∗ ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

=


2𝑈𝐷𝐶

𝐿Δ
(1 − 𝛼) 𝑡 for 0 ≤ 𝑡 ≤ 𝑡∗

2𝑈𝐷𝐶

𝐿Δ
(1 − 𝛼) 𝑡∗ − 2𝑈𝐷𝐶

𝐿Δ
𝛼 (𝑡 − 𝑡∗) for 𝑡∗ ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

. (3.72)

By having a simplified expression of the current ripple, the integral and its dependency
on the incremental inductance can now be calculated. The integral over the offset-free
linearized current ripple can be splitted into two parts representing the positive and
negative voltage pulses:

𝑄(𝑡𝑝𝑤𝑚) =
∫ 𝑡𝑝𝑤𝑚

0
𝑖̄𝑠 (𝑡)𝑑𝑡

=

∫ 𝑡∗

0
𝑖̄𝑠 (𝑡)𝑑𝑡 +

∫ 𝑡𝑝𝑤𝑚

𝑡∗

𝑖̄𝑠 (𝑡)𝑑𝑡, (3.73)

which can be treated separately. The calculation for the rising part leads to:

∫ 𝑡∗

0
𝑖̄𝑠 (𝑡)𝑑𝑡 =

∫ 𝑡∗

0

2𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼) 𝑡𝑑𝑡

=
2𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼)
[
1
2 𝑡

2
] 𝑡∗

0

=
𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼) 𝑡2∗ , (3.74)

and for the falling part to:
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∫ 𝑡𝑝𝑤𝑚

𝑡∗

𝑖̄𝑠 (𝑡)𝑑𝑡 =
∫ 𝑡𝑝𝑤𝑚

𝑡∗

(
2𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼) 𝑡∗ −
2𝑈𝐷𝐶

𝐿Δ

𝛼 (𝑡 − 𝑡∗)
)
𝑑𝑡

=
2𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼) 𝑡∗ [𝑡]
𝑡𝑝𝑤𝑚

𝑡∗ − 2𝑈𝐷𝐶

𝐿Δ

𝛼

[
1
2 (𝑡 − 𝑡∗)2

] 𝑡𝑝𝑤𝑚

𝑡∗

=
2𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼) 𝑡∗
(
𝑡𝑝𝑤𝑚 − 𝑡∗

)
− 𝑈𝐷𝐶

𝐿Δ

𝛼
(
𝑡𝑝𝑤𝑚 − 𝑡∗

)2

=
2𝑈𝐷𝐶

𝐿Δ

𝑡2∗ (1 − 𝛼)2 − 𝑈𝐷𝐶

𝐿Δ

𝑡2∗ (1 − 𝛼)2

=
𝑈𝐷𝐶

𝐿Δ

𝑡2∗ (1 − 𝛼)2 . (3.75)

Finally, the complete integral can be expressed as

𝑄(𝑡𝑝𝑤𝑚) =
∫ 𝑡∗

0
𝑖̄𝑠 (𝑡)𝑑𝑡 +

∫ 𝑡𝑝𝑤𝑚

𝑡∗

𝑖̄𝑠 (𝑡)𝑑𝑡

=
𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼) 𝑡2∗ +
𝑈𝐷𝐶

𝐿Δ

𝑡2∗ (1 − 𝛼)2

=
𝑈𝐷𝐶

𝐿Δ

𝑡2𝑝𝑤𝑚𝛼 (1 − 𝛼) . (3.76)

Algebraic manipulation leads to the estimation equation for the incremental inductance:

𝐿Δ ≈ 𝑈𝐷𝐶

𝑄(𝑡−𝑒 )
𝑡2𝑝𝑤𝑚 · 𝛼 · (1 − 𝛼) . (3.77)

For the simplified IDIM methods, only one voltage measurement and one integral
measurement per PWM period are necessary, which results into a decreased measurement
effort. Moreover, the estimation process requires less mathematical operations than in
the case of the complete IDIM technique and avoids the usage of current differences that
decrease the SNR.

Scenario 2: High-pass filter based offset-elimination

The second realization form of the simplified IDIM technique relies on a different analog
circuitry that is easier to implement. The circuit depicted in Figure 3.8 consists of a
high-pass (HP) filter, a full bridge active rectifier (FAR) and the resettable integrator
circuit. The high-pass filter allows to remove the fundamental current component without
the usage of a dedicated sample-and-hold stage. Thus, it is easier to implement and shows
no droop effects due to a leakage of the sampling capacitance. Nevertheless, the choice of
a proper cut-off frequency is important since a good trade-off must be made between the
elimination of the DC component and possible bandwidth reduction in the movement
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of the actuator. In the following, the time constant of the high-pass filter 𝜏𝐻𝑃 = 1
𝑓𝐻𝑃

is
placed far away from the mechanical time constant, but still below the PWM time period
(𝜏𝑚 ≪ 𝜏𝐻𝑃 ≪ 𝑡𝑝𝑤𝑚). Since the high-pass filter completely removes the mean value from
the current ripple, the integration would lead to a zero value. Consequently, the current
ripple needs to be rectified so that a non-zero integration takes place. In the circuit, a
full bridge active rectifier is used for this purpose, similarly to the work [54]. Then, the
resettable integrator circuit can integrate the filtered and rectified signal. Compared to
the application scenario above, this realization needs a modified analog circuit than the
original IDIM technique, but this circuit is easier to implement due to the absence of a
sampling stage. Furthermore, the avoidance of sampling significantly increases the SNR
of this solution since noise cannot be sampled, and, consequently, no aliasing effects can
occur.

HP FAR
∫𝑖𝑠 (𝑡) 𝑖̄𝑠 (𝑡) 𝑄(𝑡)

𝑟 (𝑡)

Figure 3.8: IDIM measurement chain consisting of a high-pass filter- and rectifier-based
offset removal stage.

In the following, the estimation procedure for this approach is derived. First, the
linearized current ripple from Equation 3.65 is considered. The mean value of the current
ripple can be calculated as:

𝑖0𝑠 =
𝑄(𝑡𝑝𝑤𝑚)
𝑡𝑝𝑤𝑚

=
𝑈𝐷𝐶

𝐿Δ

𝛼 (1 − 𝛼) 𝑡𝑝𝑤𝑚, (3.78)

where 𝑖0𝑠 denotes the mean value of the current ripple (without its fundamental
component). The mean value of the current ripple itself represents the half of its
amplitude under the assumption of a purely linear current ripple:

𝑖0𝑠 =
𝑖̄𝑠 (𝑡∗)

2 . (3.79)

Starting from the linearized expression 3.65, applying the high frequency filter eliminates
all dc components. Consequently, 𝑖0 and 𝑖0𝑠 are removed from the high-pass filtered current
𝑖𝐻𝑃:
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𝑖𝐻𝑃 (𝑡) = 𝑖̄𝑠 (𝑡) − 𝑖0 − 𝑖0𝑠

≈

(
𝑈𝐷𝐶

𝑅Σ
− 𝑖0

)
𝑅Σ

𝐿Δ
𝑡 − 𝑖0𝑠 for 0 ≤ 𝑡 ≤ 𝑡∗(

𝑈𝐷𝐶

𝑅Σ
− 𝑖0

)
𝑅Σ

𝐿Δ
𝑡∗ +

(
−𝑈𝐷𝐶

𝑅Σ
− 𝑖𝑠 (𝑡∗)

)
𝑅Σ

𝐿Δ
(𝑡 − 𝑡∗) − 𝑖0𝑠 for 𝑡∗ ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

. (3.80)

Applying the simplifications from Equations 3.70 and 3.71 and inserting the mean
value of the current ripple leads to:

𝑖𝐻𝑃 (𝑡) ≈


2𝑈𝐷𝐶

𝐿Δ
(1 − 𝛼) 𝑡 − 𝑈𝐷𝐶

𝐿Δ
𝛼 (1 − 𝛼) 𝑡𝑝𝑤𝑚 for 0 ≤ 𝑡 ≤ 𝑡∗

𝑈𝐷𝐶

𝐿Δ
(1 − 𝛼) 𝑡∗ − 2𝑈𝐷𝐶

𝐿Δ
𝛼 (𝑡 − 𝑡∗) for 𝑡∗ ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

, (3.81)

which can be further simplified to

𝑖𝐻𝑃 (𝑡) ≈
𝑈𝐷𝐶

𝐿Δ


2 (1 − 𝛼) 𝑡 − 𝛼 (1 − 𝛼) 𝑡𝑝𝑤𝑚 for 0 ≤ 𝑡 ≤ 𝑡∗

(1 − 𝛼) 𝑡∗ − 2𝛼 (𝑡 − 𝑡∗) for 𝑡∗ ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

. (3.82)

In a further step, the high-pass filtered current gets rectified by the full active rectifier:

𝑖̄𝑠 (𝑡) = 𝑖𝐹𝐴𝑅 (𝑡) = |𝑖𝐻𝑃 (𝑡) |, (3.83)

where 𝑖𝐹𝐴𝑅 denotes the rectified current ripple. A rectification leads to a signal,
where all negative components are mirrored along the x-axis. Thus, in order to describe
mathematically the signal, not only two cases (namely the positive and negative voltage
pulses), but four cases are necessary. The condition for those cases can by determined
by calculating the crossing points of the signal with the x-axis. Considering the first
expression for the positive voltage pulse:

2 (1 − 𝛼) 𝑡 − 𝛼 (1 − 𝛼) 𝑡𝑝𝑤𝑚
!
= 0, (3.84)

leads to the first crossing point 𝑡1 = 1
2 𝑡∗. Evaluating the equation for the negative

voltage pulse:

(1 − 𝛼) 𝑡∗ − 2𝛼 (𝑡 − 𝑡∗)
!
= 0, (3.85)

leads to the second crossing point 𝑡2 = 1
2 (𝛼 + 1) 𝑡𝑝𝑤𝑚. Thus, the rectifier output can

be mathematically expressed as:
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𝑖̄𝑠 (𝑡) ≈
𝑈𝐷𝐶

𝐿Δ



|2 (1 − 𝛼) 𝑡 − 𝛼 (1 − 𝛼) 𝑡𝑝𝑤𝑚 | for 0 ≤ 𝑡 ≤ 1
2 𝑡∗

2 (1 − 𝛼) 𝑡 − 𝛼 (1 − 𝛼) 𝑡𝑝𝑤𝑚 for 1
2 𝑡∗ ≤ 𝑡 ≤ 𝑡∗

(1 − 𝛼) 𝑡∗ − 2𝛼 (𝑡 − 𝑡∗) for 𝑡∗ ≤ 𝑡 ≤ 1
2 (𝛼 + 1) 𝑡𝑝𝑤𝑚

| (1 − 𝛼) 𝑡∗ − 2𝛼 (𝑡 − 𝑡∗) | for 1
2 (𝛼 + 1) 𝑡𝑝𝑤𝑚 ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

≈ 𝑈𝐷𝐶

𝐿Δ



−2 (1 − 𝛼) 𝑡 + 𝛼 (1 − 𝛼) 𝑡𝑝𝑤𝑚 for 0 ≤ 𝑡 ≤ 1
2 𝑡∗

2 (1 − 𝛼) 𝑡 − 𝛼 (1 − 𝛼) 𝑡𝑝𝑤𝑚 for 1
2 𝑡∗ ≤ 𝑡 ≤ 𝑡∗

(1 − 𝛼) 𝑡∗ − 2𝛼 (𝑡 − 𝑡∗) for 𝑡∗ ≤ 𝑡 ≤ 1
2 (𝛼 + 1) 𝑡𝑝𝑤𝑚

− (1 − 𝛼) 𝑡∗ + 2𝛼 (𝑡 − 𝑡∗) for 1
2 (𝛼 + 1) 𝑡𝑝𝑤𝑚 ≤ 𝑡 ≤ 𝑡𝑝𝑤𝑚

. (3.86)

The output of the rectifier serves as input for the integrator stage, which is calculated
with respect to the four cases of Equation 3.86:

𝑄(𝑡𝑝𝑤𝑚) =
∫ 𝑡𝑝𝑤𝑚

0
𝑖̄𝑠 (𝑡)𝑑𝑡

=

∫ 1
2 𝑡∗

0
𝑖̄𝑠 (𝑡)𝑑𝑡 +

∫ 𝑡∗

1
2 𝑡∗

𝑖̄𝑠 (𝑡)𝑑𝑡 +
∫ 1

2 (𝛼+1)𝑡𝑝𝑤𝑚

𝑡∗

𝑖̄𝑠 (𝑡)𝑑𝑡 +
∫ 𝑡𝑝𝑤𝑚

1
2 (𝛼+1)𝑡𝑝𝑤𝑚

𝑖̄𝑠 (𝑡)𝑑𝑡. (3.87)

The calculation of the individual integrals leads to the following expressions. For sake
of brevity intermediate steps have been hidden:

∫ 1
2 𝑡∗

0
𝑖̄𝑠 (𝑡)𝑑𝑡 =

𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼)
∫ 1

2 𝑡∗

0
(−2𝑡 + 𝑡∗) 𝑑𝑡

=
𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼)
[
−𝑡2 + 𝑡∗𝑡

] 1
2 𝑡∗
0

=
𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼)
(
−1

4𝛼
2𝑡2𝑝𝑤𝑚 + 1

2𝛼
2𝑡2𝑝𝑤𝑚

)
=

1
4
𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼) 𝛼2𝑡2𝑝𝑤𝑚, (3.88)
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∫ 𝑡∗

1
2 𝑡∗

𝑖̄𝑠 (𝑡)𝑑𝑡 =
𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼)
∫ 1

2 𝑡∗

0
(2𝑡 − 𝑡∗) 𝑑𝑡

=
𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼)
[
𝑡2 − 𝑡∗𝑡

] 𝑡∗
1
2 𝑡∗

=
𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼)
(
𝛼2𝑡2𝑝𝑤𝑚 − 𝛼2𝑡2𝑝𝑤𝑚 − 1

4𝛼
2𝑡2𝑝𝑤𝑚 + 1

2𝛼
2𝑡2𝑝𝑤𝑚

)
=

1
4
𝑈𝐷𝐶

𝐿Δ

(1 − 𝛼) 𝛼2𝑡2𝑝𝑤𝑚, (3.89)

∫ 1
2 (𝛼+1)𝑡𝑝𝑤𝑚

𝑡∗

𝑖̄𝑠 (𝑡)𝑑𝑡 =
𝑈𝐷𝐶

𝐿Δ

𝛼

∫ 1
2 (𝛼+1)𝑡𝑝𝑤𝑚

𝑡∗

((1 − 𝛼)𝑡𝑝𝑤𝑚 − 2(𝑡 − 𝑡∗))𝑑𝑡

=
𝑈𝐷𝐶

𝐿Δ

𝛼
[
(1 − 𝛼)𝑡𝑝𝑤𝑚𝑡 − (𝑡 − 𝑡∗)2] 1

2 (𝛼+1)𝑡𝑝𝑤𝑚

𝑡∗

=
𝑈𝐷𝐶

𝐿Δ

𝛼((1 − 𝛼)𝑡𝑝𝑤𝑚

1
2 (𝛼 + 1)𝑡𝑝𝑤𝑚 − (1

2 (𝛼 + 1)𝑡𝑝𝑤𝑚 − 𝑡∗)2

− (1 − 𝛼)𝑡𝑝𝑤𝑚𝑡∗)

=
𝑈𝐷𝐶

𝐿Δ

𝛼(1
2 (1 − 𝛼) (𝛼 + 1)𝑡2𝑝𝑤𝑚 − (1

2 (1 − 𝛼)𝑡𝑝𝑤𝑚)2 − 𝛼(1 − 𝛼)𝑡2𝑝𝑤𝑚)

=
𝑈𝐷𝐶

𝐿Δ

𝛼(1 − 𝛼)𝑡2𝑝𝑤𝑚(
1
2 (𝛼 + 1) − 1

4 (1 − 𝛼) − 𝛼), (3.90)

and

∫ 𝑡𝑝𝑤𝑚

1
2 (𝛼+1)𝑡𝑝𝑤𝑚

𝑖̄𝑠 (𝑡)𝑑𝑡 =
𝑈𝐷𝐶

𝐿Δ

𝛼

∫ 𝑡𝑝𝑤𝑚

1
2 (𝛼+1)𝑡𝑝𝑤𝑚

(−(1 − 𝛼)𝑡𝑝𝑤𝑚 + 2(𝑡 − 𝑡∗))𝑑𝑡

=
𝑈𝐷𝐶

𝐿Δ

𝛼
[
−(1 − 𝛼)𝑡𝑝𝑤𝑚𝑡 + (𝑡 − 𝑡∗)2] 𝑡𝑝𝑤𝑚

1
2 (𝛼+1)𝑡𝑝𝑤𝑚

=
𝑈𝐷𝐶

𝐿Δ

𝛼(−(1 − 𝛼)𝑡𝑝𝑤𝑚𝑡𝑝𝑤𝑚 + (𝑡𝑝𝑤𝑚 − 𝑡∗)2 + (1 − 𝛼)𝑡𝑝𝑤𝑚

1
2 (𝛼 + 1)𝑡𝑝𝑤𝑚

− (1
2 (𝛼 + 1)𝑡𝑝𝑤𝑚 − 𝑡∗))

=
𝑈𝐷𝐶

𝐿Δ

𝛼(−(1 − 𝛼)𝑡2𝑝𝑤𝑚 + (𝑡𝑝𝑤𝑚 − 𝑡∗)2 + (1 − 𝛼)𝑡𝑝𝑤𝑚

1
2 (𝛼 + 1)𝑡𝑝𝑤𝑚

− (1
2 (1 − 𝛼)𝑡𝑝𝑤𝑚)2)

=
𝑈𝐷𝐶

𝐿Δ

𝛼(1 − 𝛼)𝑡2𝑝𝑤𝑚(−1 + (1 − 𝛼) + 1
2 (𝛼 + 1) − ( 1

4 (1 − 𝛼))). (3.91)
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Summing all partial integrals into one complete integral yields:

𝑄(𝑡𝑝𝑤𝑚) =
∫ 1

2 𝑡∗

0
𝑖̄𝑠 (𝑡)𝑑𝑡 +

∫ 𝑡∗

1
2 𝑡∗

𝑖̄𝑠 (𝑡)𝑑𝑡 +
∫ 1

2 (𝛼+1)𝑡𝑝𝑤𝑚

𝑡∗

𝑖̄𝑠 (𝑡)𝑑𝑡 +
∫ 𝑡𝑝𝑤𝑚

1
2 (𝛼+1)𝑡𝑝𝑤𝑚

𝑖̄𝑠 (𝑡)𝑑𝑡

=
𝑈𝐷𝐶

𝐿Δ

𝛼(1 − 𝛼)𝑡2𝑝𝑤𝑚

·
(
1
4𝛼 + 1

4𝛼 + 1
2 (𝛼 + 1) − 1

4 (1 − 𝛼) − 𝛼 − 1 + (1 − 𝛼) + 1
2 (𝛼 + 1) − 1

4 (1 − 𝛼)
)

=
𝑈𝐷𝐶

𝐿Δ

𝛼(1 − 𝛼)𝑡2𝑝𝑤𝑚 · 1
2 . (3.92)

Thus, the expression of the integral can be obtained:

𝑄(𝑡𝑝𝑤𝑚) =
1
2 · 𝑈𝐷𝐶

𝐿Δ

· 𝛼 · (1 − 𝛼) · 𝑡2𝑝𝑤𝑚. (3.93)

Finally, the incremental inductance can be identified by:

𝐿Δ ≈ 1
2

𝑈𝐷𝐶

𝑄(𝑡𝑝𝑤𝑚)
𝑡2𝑝𝑤𝑚 · 𝛼 · (1 − 𝛼) . (3.94)

Compared to the realization scenario 1 described by Equation 3.77, only a factor
of 1

2 is added to the estimation equation of the incremental inductance. Thus, this
approach benefits of the same advantages of scenario 1, namely reduced measurement
and calculation effort. Due to the usage of a high-pass filter instead of a sample-hold
stage, the implementation effort is reduced and the SNR is increased, while its cut-off
frequency further reduces the bandwidth of the estimation process.

3.2.2 Sensitivity analysis of the measurement errors

Similarly to Section 3.1.4, the simplified IDIM approach will be analyzed towards possible
measurement errors in the sensors and in the integrator circuit. In the following, the
definition of the gain and offset errors from Section 3.1.4 is used.

Gain errors in the measurements

In case of voltage and current gain errors, the estimation of the incremental inductance
from Equation 3.77 changes to:
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𝐿̃Δ ≈ 𝑈𝐷𝐶

𝑄(𝑡−𝑒 )
𝑡2𝑝𝑤𝑚 · 𝛼 · (1 − 𝛼)

=
𝐺𝑢

𝐺𝑖

𝑈𝐷𝐶

𝑄(𝑡−𝑒 )
𝑡2𝑝𝑤𝑚 · 𝛼 · (1 − 𝛼)

=
𝐺𝑢

𝐺𝑖

𝐿Δ, (3.95)

where the estimate experiences a gain error that is proportional to the voltage gain
error and inverse proportional to the current gain error.

Offset errors in the measurements

In the case of offset errors, the integral is not influenced since the offset-elimination
stage (either realized by the sample-and-hold stage or by the high-pass filter) removes all
offsets:

𝐿̃Δ ≈ 𝑈𝐷𝐶

𝑄(𝑡−𝑒 )
𝑡2𝑝𝑤𝑚 · 𝛼 · (1 − 𝛼)

=
𝑈𝐷𝐶 + 𝑢𝑜

𝑄(𝑡−𝑒 )
𝑡2𝑝𝑤𝑚 · 𝛼 · (1 − 𝛼)

= 𝐿Δ + 𝑢𝑜

𝑄(𝑡−𝑒 )
𝑡2𝑝𝑤𝑚𝛼(1 − 𝛼). (3.96)

Consequently, the estimation process is only affected by the voltage offset error, that
leads to an offset error that changes with the duty cycle.

Gain error in the integrator circuit

A gain error in the integrator circuit leads to a gain error in the estimate

𝐿̃Δ ≈ 𝑈𝐷𝐶

𝑄(𝑡−𝑒 )
𝑡2𝑝𝑤𝑚 · 𝛼 · (1 − 𝛼)

=
𝑈𝐷𝐶

𝐺𝑅𝐶𝑄(𝑡−𝑒 )
𝑡2𝑝𝑤𝑚 · 𝛼 · (1 − 𝛼)

=
1

𝐺𝑅𝐶

𝐿Δ, (3.97)

that is inversely proportional to the gain error of the integration stage.
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Offset error in the integrator circuit

An offset error in the integration stage changes the estimate of the incremental inductance:

𝐿̃Δ ≈ 𝑈𝐷𝐶

𝑄(𝑡−𝑒 )
𝑡2𝑝𝑤𝑚 · 𝛼 · (1 − 𝛼)

=
𝑈𝐷𝐶

𝑄(𝑡−𝑒 ) +𝑄𝑜

𝑡2𝑝𝑤𝑚 · 𝛼 · (1 − 𝛼)

= 𝑓 (𝐿Δ, 𝑄𝑜), (3.98)

in such a way, that the value of 𝐿Δ is influenced in a nonlinear way. Thus, an offset
error in the integration stage must be minimized or actively compensated by calibration.

3.3 Self-sensing based on the eddy currents

As seen within the state-of-the-art in Chapter 1.2, the incremental inductance is the
desired parameter that is used for self-sensing the position of electromagnetic actuators.
Nevertheless, in actuators which are strongly driven in magnetic saturation, the incre-
mental inductance is not monotonous, thus, a bijective function for a unique position
estimation cannot be found. This ambiguity in the position estimation can be solved
by using prior knowledge about the actuator position and movement direction, but this
approach always needs an initialization procedure with known position. Another parame-
ter that can be used for position estimation is the parallel resistor 𝑅𝑝 that represents
iron losses inside the actuator. This parameter shows a monotonous behavior over the
complete position range, thus it can be used as additional information for solving the
ambiguity that is present inside the incremental inductance.

3.3.1 Derivation of the estimation equations

As previously discussed in Chapter 2.5, the eddy current model that is used in this work
is of the first order, thus discontinuities are present inside the current ripple at the PWM
switching instants. Due to the skin effect, these cusps are smoothed in reality since
currents always have a finite slew rate. Nevertheless, the model described in Chapter
2.3 is able to approximate the height of the current cusp with good accuracy and, thus,
higher model orders can be avoided with the merit of decreased calculation effort.

Recalling Equations 2.95 and 2.96, the height of the cusp can be easily put into relation
to the parallel resistance, thus the estimation equations can be easily derived. The one
for the switching instant from negative to positive voltage as:
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𝑅𝑝 =
2𝑈𝐷𝐶

ℎ+
𝑖

− 𝑅Σ, (3.99)

and the one from the transition from positive to negative voltage as:

𝑅𝑝 =
−2𝑈𝐷𝐶

ℎ−
𝑖

− 𝑅Σ . (3.100)

With these equations, the parallel resistance can be calculated with few mathematical
operations. Nevertheless, the value of 𝑅Σ needs to be known in order to compensate for
changes during self-heating as well as induced components during movement. Moreover,
the practical implementation of this approach suffers from the fact that the height of the
current cusps ℎ+

𝑖
and ℎ−

𝑖
cannot be measured directly, since they happen theoretically at

the same time instant. Therefore, the measurement time instants must be set closely
enough to the discontinuity, as shown in Figure 3.9.

𝑡𝑚1
+

𝑡

𝑡𝑚2
+ 𝑡𝑚1

− 𝑡𝑚2
−

ℎ𝑖
+

ℎ𝑖
−

𝑖𝑠

Figure 3.9: Estimation of the parallel resistance by measuring the height of the current
cusps, adopted from [66].

Those time instants can be expressed as

𝑡+𝑚1 = −𝑡𝛿 , (3.101)

𝑡+𝑚2 = 𝑡𝛿 , (3.102)

𝑡−𝑚1 = 𝑡∗ − 𝑡𝛿 , (3.103)

𝑡−𝑚2 = 𝑡∗ + 𝑡𝛿 , (3.104)

with a time delay 𝑡𝛿, which is relatively small. The choice of 𝑡𝛿 is a trade-off between
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SNR and accuracy. At the PWM switching instant, not only the cusps are existent,
but also nonlinear effects of the power stage such as ringing and dead-time insertion.
Moreover, the current sensor might have bandwidth and slew rate limitation at this time
instant and, due to the negligence of the skin effect, not all eddy currents are already
generated in all the layers. This motivates the need for increasing 𝑡𝛿 in order to avoid a
distorted measurement and wait for the eddy currents to rise. Nevertheless, the longer
𝑡𝛿 , the more time passes, where the current ripple rises due to its inductive behavior and,
consequently, the height of the cusp is measured incorrectly. Especially for large 𝑡𝛿, the
influence of the current rise due to the incremental inductance is significant, so that the
identification of 𝑅𝑝 overlaps with the identification of 𝐿Δ. In such a case, the identified
value of 𝑅𝑝 also shows a non-monotonous behavior due to the increased estimation error
which involves the incremental inductance. Due to its importance, the influence of the
measurement time delay is derived and discussed in the next section and a possible
method for compensation is shown.

3.3.2 Influence of the measurement time delay

In the following, the measured heights of the current cusps in presence of measurement
delays are compared to the ideal height of the current cusps and the resulting identification
error is defined. For the rising edge, the measured height yields:

ℎ̂+𝑖 = 𝑖𝑠 (𝑡𝛿) − 𝑖𝑠 (−𝑡𝛿)

= 𝑖0 +
(
𝑈𝐷𝐶

𝑅Σ

− 𝑖0

) (
1 − 𝑒

− 𝑡𝛿
𝜏𝑒𝑙

)
− 𝑖0 −

(
−𝑈𝐷𝐶

𝑅Σ

− 𝑖0

) (
1 − 𝑒

𝑡𝛿
𝜏𝑒𝑙

)
+ 2 𝑈𝐷𝐶

𝑅Σ + 𝑅𝑝

𝑒
𝑡𝛿
𝜏𝑒𝑙

≈ 2𝑈𝐷𝐶

𝑅Σ + 𝑅𝑝

𝑒
𝑡𝛿
𝜏𝑒𝑙

≈ 2𝑈𝐷𝐶

𝑅Σ + 𝑅𝑝

(
1 + 𝑡𝛿

𝜏𝑒𝑙

)
= ℎ+𝑖 +

2𝑈𝐷𝐶

𝑅Σ + 𝑅𝑝

· 𝑡𝛿
𝜏𝑒𝑙︸           ︷︷           ︸

𝑒+
𝑖

, (3.105)

where simplifications where made by applying the Taylor approximation and by
assuming a symmetric shape of the current ripple. Thus, the estimate of 𝑅𝑝 can be
obtained by taking into consideration the measurement error:
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𝑅𝑝 =
2𝑈𝐷𝐶

ℎ+
𝑖

− 𝑅Σ

=
2𝑈𝐷𝐶

ℎ̂+
𝑖
− 𝑒+

𝑖

− 𝑅Σ . (3.106)

The error can be summarized under the consideration of 𝑅Σ ≪ 𝑅𝑝 as:

𝑒+𝑖 =
2𝑈𝐷𝐶

𝑅Σ + 𝑅𝑝

𝑡𝛿

𝜏𝑒𝑙
=

2𝑈𝐷𝐶

𝑅Σ + 𝑅𝑝

𝑡𝛿𝑅𝑝𝑅Σ

𝐿Δ

(
𝑅𝑝 + 𝑅Σ

) ≈ 2𝑈𝐷𝐶 𝑡𝛿𝑅Σ

𝑅𝑝𝐿Δ

. (3.107)

For the falling edge, the same calculation leads to:

𝑅𝑝 =
−2𝑈𝐷𝐶

ℎ−
𝑖

− 𝑅Σ

=
−2𝑈𝐷𝐶

ℎ̂−
𝑖
− 𝑒−

𝑖

− 𝑅Σ . (3.108)

Consequently, the error, under simplification of 𝑅Σ ≪ 𝑅𝑝, amounts to:

𝑒−𝑖 =
−2𝑈𝐷𝐶

𝑅Σ + 𝑅𝑝

𝑡𝛿

𝜏𝑒𝑙
=

−2𝑈𝐷𝐶

𝑅Σ + 𝑅𝑝

𝑡𝛿𝑅𝑝𝑅Σ

𝐿Δ

(
𝑅𝑝 + 𝑅Σ

) ≈ −2𝑈𝐷𝐶 𝑡𝛿𝑅Σ

𝑅𝑝𝐿Δ

. (3.109)

The exact knowledge of 𝐿Δ and 𝑅𝑝 allows the calculation of an error-free estimation:

𝑅𝑝 =
2𝑈𝐷𝐶

ℎ+
𝑖

=
2𝑈𝐷𝐶

ℎ̂+
𝑖
− 𝑒+

𝑖

≈ 2𝑈𝐷𝐶

ℎ̂+
𝑖
− 2𝑈𝐷𝐶 𝑡𝛿𝑅Σ

𝑅𝑝𝐿Δ

=
2𝑈𝐷𝐶𝐿Δ𝑅𝑝

ℎ+
𝑖
𝑅𝑝𝐿Δ + 2𝑈𝐷𝐶 𝑡𝛿𝑅Σ

, (3.110)

which can be solved under the negligence of the solution 𝑅𝑝 = 0 to

𝑅𝑝 ≈ 2𝑈𝐷𝐶𝐿Δ − 2𝑈𝐷𝐶 𝑡𝛿𝑅Σ

ℎ̂+
𝑖
𝐿Δ

. (3.111)

For the falling edge, the compensated estimation can be derived in a similar manner
as:

𝑅𝑝 ≈ −2𝑈𝐷𝐶𝐿Δ − 2𝑈𝐷𝐶 𝑡𝛿𝑅Σ

ℎ̂−
𝑖
𝐿Δ

. (3.112)

During the compensation, attention has to be paid on the identified values of 𝑅Σ and
𝐿Δ, which are results of other estimation processes. An error in the estimation of those
parameters can lead to a propagation of error, which leads to failure of the compensation.
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3.3.3 Sensitivity analysis of measurement errors

Similarly to the techniques described before, also a sensitivity analysis on measurement
errors is conducted for the parallel resistor estimator. The same voltage and current
gain and offset errors are considered as in Section 3.1.4. In this sensitivity analysis,
only the estimator is considered that does not make usage of the compensation of the
measurement time delay. When considering the compensation, the identified values of
𝑅Σ and 𝐿Δ need to be known, which are on their own sensitive to measurement error.

Gain errors in the measurements

In the case of gain errors in the voltage and current measurement, the following equation
can be obtained

𝑅𝑝 ≈ 2𝑈𝐷𝐶

ℎ̃+
𝑖

− 𝑅Σ

=
2𝑈𝐷𝐶𝐺𝑢

ℎ+
𝑖
𝐺𝑖

− 𝐺𝑢

𝐺𝑖

𝑅Σ

=
𝐺𝑢

𝐺𝑖

𝑅𝑝, (3.113)

when the sensitivity analysis of the series resistance 𝑅Σ from Equation 3.24 is inserted.
A similar result can be obtained for the estimation of 𝑅𝑝 using the falling edge.

Offset errors in the measurements

Since ℎ+
𝑖

is based on a current difference, an offset in the current measurement has no
effect:

𝑅𝑝 ≈ 2𝑈𝐷𝐶

ℎ+
𝑖

− 𝑅Σ

=
2𝑈𝐷𝐶 + 2𝑢𝑜

ℎ+
𝑖

−
(
1 +

1 + 𝑢𝑜
𝑈𝐷𝐶

1 + 𝐴𝑜

|A |

)
𝑅Σ

= 𝑅𝑝 +
2𝑢𝑜
ℎ+
𝑖

+
(
1 + 𝑢𝑜

𝑈𝐷𝐶

1 + 𝐴𝑜

|A |

)
𝑅Σ . (3.114)

Thus, only a dependence on an offset in the voltage measurement and remaining errors
coming from the sensitivity of the series resistance are present in the estimate. A similar
result is achieved for the estimation via the falling edge.
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3.4 Implementation comparison of the different approaches

In the following, the different IDIM techniques will be compared in terms of imple-
mentation effort and use cases. In particular, the number of measurements needed
and the number of mathematical operations will be compared in order to evaluate the
computational effort of the techniques under observation. Moreover, the simplifications
that were made during the derivation and analysis of the techniques are compared, thus
giving hints for certain applications scenarios. Based on the error analysis that was made
in Sections 3.1 and 3.2, the influence of measurement errors will be compared. This is
especially important for practical implementation since the position estimation relies on
absolute values of the incremental inductance and, therefore, errors in the measurement of
the IDIM technique have a significant effect on the overall position estimation. Also, the
SNR is compared in a qualitative manner. The results of this comparison are summarized
in Table 3.1.

Measurement effort For the implementation of the IDIM technique shown in Section
3.1, in total 7 measurements need to be obtained, one for the DC link voltage, four
for the measurement of the phase current at dedicated time instants and two for the
measurement of the integral at dedicated time instants. Especially the triggering of
the measurements of the current and the integral is cumbersome to implement since
four (respectively two) synchronized measurements within one PWM period have to be
triggered. This especially increases the implementation effort on the side of the ADC.
For the simplified IDIM techniques derived in Section 3.2, only one DC link voltage
measurement and one measurement of the integral at a dedicated time instant need to
be performed, which can be easily implemented using standard ADCs. The eddy current
estimator relies on a measurement of the DC link voltage as well as two samples of the
phase current, that have a tight timing. While the DC link voltage is not problematic
to measure, the two consecutive measurements of the current need to be obtained at
dedicated time instants which are very close together, thus a high speed ADC or two
parallel low-speed ADCs have to be used in order to gather these information.

Number of mathematical operations The IDIM technique in its full implementation
requires the most mathematical operations, namely 17 additions, 13 multiplications
and 2 divisions in case the series resistance is estimated as well as 5 additions, 3
multiplications and 1 division in case the series resistance is not estimated. The simplified
IDIM approaches, on the other hand, only require 1 addition, 5 multiplications and one
division. Usually additions and multiplications are the cheapest mathematical operations
in microprocessors, while divisions tend to occupy several instructions, such as e.g. in
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the widely used Cortex ARM microcontrollers [91]. Thus, the simplified IDIM techniques
allow an estimation that is computationally lightweight compared to the IDIM technique
in its full derivation. The eddy current resistor estimator only relies on 1 addition,
multiplication and division, exhibiting the smallest computational effort.

Applied simplifications Concerning the simplifications that were made during the
derivation process and that further limit the range of possible applications, the IDIM
technique in its full derivation shows the least restrictions. There is the simplification
that the PWM period must be considerably smaller then the mechanical time constant
and consequently, that the parameters of interest do not change during the time of one
PWM pulse. This restriction applies to all techniques that are based on the evaluation of
the current ripple [51] and, thus, represents no major limitation. This is also due to the
fact that usually the PWM frequency is the highest frequency in the actuator system and
all other frequencies, such as sampling frequency of position and current controllers, are
considered smaller than this frequency. Another simplification that is applied is that the
series resistance is considerably smaller then the parallel resistor, which usually holds for
the most cases since the actuators are designed in such a way that losses are minimized.
Thus, low series resistances and low iron losses (and consequently high parallel resistance)
have to be considered. Also, the actuators shown in the experimental chapter exhibit
those characteristics and their parallel resistance is usually one or two decades higher than
the series resistance. Being the technique with the least simplifications, the full IDIM
technique represents a technique that is suitable to most use cases. The simplified IDIM
technique in its implementation with the SH stage (SIDIM a) adds other constraints
onto the estimation process. In the derivation process, the parallel resistance and the
series resistance were neglected, thus restricting the technique onto actuators with low
losses and nearly inductive behavior. Thus, the technique cannot be applied in use cases
with high current dynamics, since in these conditions the losses become relevant. In the
according derivation, this low current dynamic was represented by the approximation
𝜏𝑖 ≈ 𝜏𝑚, restricting the time constant of the current to the mechanical time constant. In
the IDIM technique with a high-pass filter and rectifier-based offset removal (SIDIM b),
another constraint is set by applying a high-pass filter with a certain cut-off frequency
that band-limits the current signal. The eddy current resistor estimator, instead, applies
the same limits to the PWM frequency and the series resistance as the full IDIM technique
does, but additionally requires the time difference between consecutive measurements
being relatively small. In case this cannot be guaranteed, the error compensation shown
in Equation 3.111 needs to be performed.
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Dynamic range Based on the approximations that were made, the dynamic work range
of the techniques is limited. The IDIM technique has its full dynamic working range,
while "full" actually refers to the PWM frequency being the only limiting frequency.
Instead, the simplified IDIM techniques are restricted by the current dynamic with its
time constant 𝜏𝑖 (variant a) and by the high-pass cut-off frequency (variant b). The eddy
current resistor estimator is not limited to a certain frequency.

Influence of measurement errors The measurement error sensitivity analysis reveals
that all techniques suffer from an error propagation within the technique. While in the
standard IDIM technique, gain and offset errors in the measurements and the integrator
circuit lead to combined gain and offset errors in the inductance estimate, which can be
easily compensated e.g. by a two point calibration, the simplified IDIM techniques tend to
show gain errors for gain error-affected measurements and offset errors for offset-affected
measurements. A nonlinear dependence on an offset error occurs when the integrator
circuit is affected by an offset, making calibration cumbersome. Thus, focus has to be
laid on a robust implementation of the circuit with tight tolerances (see Chapter 4).

Signal-to-noise ratio Compared to the other implementations, the IDIM technique
in its full implementation suffers from a qualitatively bad SNR, since the estimation
relies on current differences, a mathematical operation that usually increases the noise.
Moreover, an appropriate anti-aliasing filter needs to be installed in front of the SH stage
if noise should not be sampled and amplified by the integrator. An increase in SNR has
the simplified IDIM technique (SIDIM a) with a SH stage-based offset removal, since it
does not elaborate current differences but only one dedicated integral measurement. Also
here the SH stage may be affected by aliasing, which needs to be prevented. The best
SNR performance is obtained using the simplified IDIM variant b, which substitutes the
SH-stage based offset removal by applying a high-pass filter and a rectifier. The obtained
estimate does not rely on dedicated current triggering and does not make usage of current
differences, thus the full capability of the integrator circuit can be used. Finally, the
eddy current resistor estimator shows the weakest performance in SNR since it relies on
current measurements within an extremely short time period, that are relatively small
and further influenced by the transients that occur during the voltage switching. A
proper filtering is definitely necessary in this type of estimator.

Application use-cases Summarizing the above made qualifications of the techniques,
possible estimation use cases can be derived. The IDIM technique in its full extent
requires the most measurements and the most mathematical operations while placing the
least assumptions. Thus, this technique allows to evaluate the inductance with the highest
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possible bandwidth in the field, but with reduced SNR. Therefore, the technique is suited
for applications requiring high bandwidth such as fast switching values or linear positioning
actuators. Due to their nature, such actuation systems inherently require high-speed
ADCs and computationally fast microcontrollers for control and driving purposes and
the additional measurement and calculation effort can be compromised. The simplified
IDIM techniques, instead, require less measurements and less mathematical operations,
with the demerit of reduced bandwidth. Thus, such techniques can be implemented
onto low-cost actuation systems, e.g. switching valves or switching actuators, where
only the position in rest needs to be evaluated for security purposes. In particular, in
those application fields, no or only small microcontrollers are embedded into the device,
thus requesting strict constraints on calculations and measurements that the simplified
IDIM techniques can offer. Instead, the eddy current estimator only serves as additional
measurement. In general, the estimation through the eddy current resistor lacks accuracy
and SNR and makes applicability of this approach compared to the inductance-based
approach undesirable. Only when the inductance-based estimation lacks uniqueness,
such as in the case of certain actuators that show non-bijective behavior, the estimation
through the eddy current resistance gathers additional knowledge that allows to resolve
the arising ambiguities.
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3 Position self-sensing techniques based on PWM-induced current ripples

3.5 Position estimation based on model

Based on Sections 3.1 - 3.3, physical parameters can be identified that show a particular
position and current dependency:

𝐿Δ = 𝑓 (𝑥, 𝑖), (3.115)

𝑅𝑝 = 𝑓 (𝑥, 𝑖). (3.116)

In order to reconstruct position information out of these parameters, a suitable model
needs to be identified and inverted. The inversion of the incremental inductance 𝐿Δ is only
possible in case the function 𝑓 (𝑥, 𝑖) is bijective over the entire current and position range,
otherwise the parallel resistance, that is well-known to be bijective, needs to be considered.
For modeling the position and current dependency, two common approaches can be
followed, namely the physical and the phenomenological approach. While the physical
approach tries to identify the model parameters in a way that directly links to physical
relations, the phenomenological approach simply tries to fit a certain input-behavior
to a certain output-behavior in a mathematical manner. Physical approaches tend to
allow a high interpretability while phenomenological approaches are characterized by
high accuracy [92].

Physical modeling approaches As shown in Figure 2.8, a magnetic circuit can be
modeled that contains the major contributions of the back-iron, the plunger and the
air gap in the flux path. This equivalent circuit can now be redrawn based on the
assumptions that were made in Chapter 2, namely the negligence of the leakage flux
(R𝑙 → ∞) and the assumption of a model complexity equal to one (𝑛𝑐 = 1), that allows
to model the magnetic impedances of the back-iron and plunger as a series connection of
a magnetic reluctance and magnetic inductance:

Z𝑏 = R𝑏 + 𝑠L𝑏, (3.117)

Z𝑝 = R𝑝 + 𝑠L𝑝 . (3.118)

The resulting magnetic equivalent circuit is depicted in Figure 3.10.
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3.5 Position estimation based on model

𝑣(𝑡)

𝜙(𝑡) L𝑏 R𝑏 R𝑥 (𝑥)

R𝑝

L𝑝 (𝑥)

Figure 3.10: Simplified magnetic equivalent circuit used for physical modeling of the
position dependence, consisting of magnetic reluctances and inductances
of the back-iron, the plunger and the air gap.

The elements of that circuit can be modeled physically by means of the definition of
the magnetic inductance

L𝑏 = 𝜎𝑒𝑙,𝑏

𝐴𝑏

𝑙𝑏
, (3.119)

L𝑝 (𝑥) = 𝜎𝑒𝑙, 𝑝

𝐴𝑝

𝑙𝑝 + 𝑥
, (3.120)

with 𝜎𝑒𝑙,𝑏 and 𝜎𝑒𝑙, 𝑝 being the conductivity of the back-iron material and of the plunger,
respectively, and 𝐴𝑏, 𝐴𝑝, 𝑙𝑏 and 𝑙𝑝 being the geometrical quantities of the back-iron
and the plunger. The electrical conductivity is strongly temperature-dependent and the
effect of temperature on this estimation parameters need to be considered during the
estimation process. The magnetic reluctances can be modeled by their definition as:

R𝑏 =
𝑙𝑏

𝜇Δ𝑏𝐴𝑏

, (3.121)

R𝑝 (𝑥) =
𝑙𝑝 + 𝑥

𝜇Δ𝑝𝐴𝑝

, (3.122)

with 𝜇Δ𝑏 and 𝜇Δ𝑝 being the incremental permeabilities of the back-iron and the plunger.
Consequently, the air gap can be calculated as:
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3 Position self-sensing techniques based on PWM-induced current ripples

R𝑥 (𝑥) =
𝑥

𝜇0𝐴𝑥

, (3.123)

with 𝐴𝑥 being the effective cross-section of the air gap. The parameters 𝐿Δ and 𝑅𝑝 are
physically linked to those magnetic reluctances and inductances by means of Equation
2.69 as:

𝑅𝑝 =
𝑁2

L𝑏 + L𝑝 (𝑥)
, (3.124)

𝐿Δ =
𝑁2

R𝑥 (𝑥) + R𝑝 (𝑥) + R𝑏

, (3.125)

which allows for a physical modeling of the position dependence. Thus a model for the
parallel resistance can be obtained as

𝑅𝑝 (𝑥) =
𝑁2

𝜎𝑒𝑙,𝑏
𝐴𝑏

𝑙𝑏
+ 𝜎𝑒𝑙, 𝑝

𝐴𝑝

𝑙𝑝+𝑥

. (3.126)

In the case of the incremental inductance 𝐿Δ, the modeling can get cumbersome because
of the magnetic permeability. In particular, the magnetic permeability underlies saturation
and hysteretic effects that cause current dependency with memory. Furthermore, the
parameters of the magnetic permeability are slightly temperature-dependent. Most
materials show a significant saturation over the current, thus a function 𝜇(𝑖) needs to be
considered for modeling:

𝐿Δ(𝑥, 𝑖) =
𝑁2

𝑥
𝜇0𝐴𝑥

+ 𝑙𝑝+𝑥
𝜇Δ𝑝 (𝑖)𝐴𝑥

+ 𝑙𝑏
𝜇Δ𝑏 (𝑖)𝐴𝑏

. (3.127)

There exist various approaches in literature for modeling the saturation curve by
means of e.g. hyperbolic arctangent or hyperbolic cosine functions [92]. For more precise
modeling, also the hysteretic nature of the material needs to be considered. Treating
materials with hysteresis is covered thoroughly in Section 3.6. On the other hand, when
materials with strong permeability (𝜇Δ → ∞) are used, the current dependency can be
neglected, allowing a simplified identification and modeling procedure:

𝐿Δ(𝑥) =
𝑁2𝐴𝑥𝜇0

𝑥
. (3.128)

The modeling by means of physical approaches consequently allows a white-box/grey-
box identification approach where the parameters to be identified rely on physical
quantities such as length, cross sections and electrical and magnetic properties. While

90



3.5 Position estimation based on model

this approach allows good interpretation capability, the accuracy can be reduced e.g. due
to model uncertainties and unmodeled physical effects such as parasitic flux paths.

Phenomenological modeling approaches Phenomenological approaches allow a mod-
eling with high accuracy and medium calculation and identification effort by means of
mathematical interpolators. Based on an offline-identified training data-set, the models
can be tuned and fitted until a certain accuracy is achieved.

First works [42, 44] in the field made usage of look-up tables with linear interpolation.
While being easy to implement, such approaches usually lead to considerable memory
usage when high accuracy is desired. Thus, works such as [93] apply polynomial curve
fitting on the parameters in order to extract the position information:

𝑓 (𝑥, 𝑖) = Σ
𝑛𝑥

𝑘=0Σ
𝑛𝑖
𝑙=0𝐶𝑘𝑙 · 𝑥𝑘 · 𝑖𝑙, (3.129)

where 𝑛𝑥 and 𝑛𝑖 are the model orders for the position and current dependency. Weight-
ing of the different polynomials is obtained by the coefficients 𝐶𝑘𝑙. Instead of obtaining a
model of the parameter and then inverting it for position estimation, a pseudo-inverse
model can be directly fitted:

𝑥 = Σ
𝑛𝑝

𝑘=0Σ
𝑛𝑖
𝑙=0𝐶𝑘𝑙 · 𝑝𝑘 · 𝑖𝑙, (3.130)

where 𝑝 is a parameter that is either the incremental inductance or the parallel
resistance and 𝑛𝑝 is a model order for that particular parameter.

In the more recent years, sophisticated works such as [94] apply artificial neural
networks (ANN) such as multilayer perceptrons (MLPs) in order to model the actuator
characteristic and use it for position estimation. MLPs have proven to provide good inter-
and extrapolation capability with high accuracy [95]. For instance, Figure 3.11 shows
a MLP for position estimation based on the incremental inductance. The input layer
processes the inputs in form of the incremental inductance, the parallel resistance and
the actual current. The output layer provides the estimate of the actuator position. The
layer between is called hidden layer and combines the information of the layers before by
means of a linear combination of its inputs based on certain weights Θ and an activation
function. For the hidden neurons, usually a sigmoid or arctangent function is used while
the output layer is based on linear functions as activation functions [95, 96].

During the training process of MLPs, particular focus has to be laid on the training
data in order to avoid overfitting. That can be achieved by dividing the identification
data into a training, validation and testing set. While this as well as the training methods
would clearly expand the scope of this thesis, the interested reader is guided to [95].
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𝐿Δ

𝑅𝑝

𝑖

𝑥𝑒𝑠𝑡

Input layer Hidden layer Output layer

Figure 3.11: Structure of a MLP neural network used for position estimation. Each
neuron of each layer is connected to the neurons in the next layer with a
certain weight factor.

3.6 Compensation of hysteretic phenomena

In Section 3.5, physical and phenomenological models were presented that allow using
the identified incremental inductance for position estimation. Those models are capable
to model the properties of magnetic materials such as eddy currents and saturation
effects. Nevertheless, such materials also exhibit magnetic hysteresis, that adds a
memory-dependent characteristic onto the nonlinear characteristic that is usually covered
successfully by those models. Mathematically, hysteresis brings a memory element into
the model, that can be described as:

𝜇Δ = 𝑓 (𝑖, 𝜇Δ0), (3.131)

where 𝜇Δ0 is the incremental permeability at the initial time. Based on Equation 3.127,
this hysteretic dependency can be added onto the model:

𝐿Δ(𝑥, 𝑖, 𝐿Δ0) =
𝑁2

𝑥
𝜇0𝐴𝑥

+ 𝑙𝑝+𝑥
𝜇Δ𝑝 (𝑖,𝜇Δ𝑝0 )𝐴𝑥

+ 𝑙𝑏
𝜇Δ𝑏 (𝑖,𝜇Δ𝑏0 )𝐴𝑏

. (3.132)

In literature, various models for the identification and compensation of hysteretic
phenomena exist, either based on physical or phenomenological considerations. The work
[97] gives a through overview over model classes and well-known models. Nevertheless, for
compensation of the hysteresis in the incremental inductance, first the coupling between
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3.6 Compensation of hysteretic phenomena

the air gap reluctance and the back-iron and plunger reluctance, that is present in the
equation, needs to be solved. Only then a hysteresis model can be applied.

Separation principle Decoupling between the air gap and the plunger as well as back-
iron reluctance can be obtained by applying a separation principle [59]. Doing so allows
to decouple the position dependency of 𝐿Δ from the current dependency of 𝐿Δ that causes
hysteresis. The necessary assumption for this is that the air gap is considerably smaller
than the length of the plunger: 𝑥 ≪ 𝑙𝑝. In most actuators this consideration is fulfilled
since the air gap is minimized for the highest force. By applying this simplification, the
equation can be obtained to:

𝐿Δ(𝑥, 𝑖, 𝐿Δ0) =
𝑁2

𝑥
𝜇0𝐴𝑥

+ 𝑙𝑝
𝜇Δ𝑝 (𝑖,𝜇Δ𝑝0 )𝐴𝑥

+ 𝑙𝑏
𝜇Δ𝑏 (𝑖,𝜇Δ𝑏0 )𝐴𝑏

, (3.133)

whose components can be summarized as:

𝐿Δ(𝑥, 𝑖, 𝐿Δ0) =
𝑁2

R𝑥 (𝑥) + RΔ𝐹𝑒 (𝑖,RΔ𝐹𝑒0)
, (3.134)

with RΔ𝐹𝑒 being the hysteretic iron reluctance summarizing all reluctances in the
actuator that exhibit a magnetic hysteresis, namely the back-iron and the plunger. This
magnetic circuit that stems from the equation with separation is depicted in Figure 3.12.

𝑁 · 𝑖𝑠

ΨΔ
R𝑥 (𝑥)

RΔ𝐹𝑒

Figure 3.12: Reduced magnetic circuit for self-sensing with hysteresis compensation,
adopted from [71].

Thus, the total magnetic reluctance that is present in the actuator is the sum of the
air gap and iron reluctance:

RΔ𝑡𝑜𝑡 = R𝑥 + RΔ𝐹𝑒, (3.135)

while the air gap reluctance is represented by a function (either based on physical or
phenomenological considerations) that is zero when the air gap is closed:
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R𝑥 = 𝑓 (𝑥) 𝑤𝑖𝑡ℎ R𝑥 (𝑥 = 0) = 0. (3.136)

Thus, it can be concluded that the total reluctance resembles the iron reluctance in
case the air gap equals zero:

RΔ𝑡𝑜𝑡 (𝑖, 𝑥 = 0) = RΔ𝐹𝑒 . (3.137)

The following compensation strategy is based on the comparison between the total
reluctance under closed air gap RΔ𝑡𝑜𝑡 (𝑖, 𝑥 = 0), that can be modeled and estimated by
means of an online model of the iron core reluctance R̂Δ𝐹𝑒 (𝑖, 𝑥 = 0), and the actual total
reluctance at a particular air gap RΔ𝑡𝑜𝑡 (𝑖) that is obtained by measurement. The difference
between these quantities is dependent on the air gap reluctance and consequently on
the position. This difference can be evaluated for position estimation by inverting the
function 𝑓 (𝑥).

Considering Equation 3.136, a simple identification of the iron reluctance is possible
when the actuator position is blocked to a zero air gap, since no position dependency is
present. With this identification, a hysteresis model can be tuned that allows to estimate
the value of the iron core reluctance:

R̂Δ𝐹𝑒 (𝑖, 𝑥 = 0) ≈ 𝑖

𝜓Δ(𝑖, 𝑥 = 0)

=
𝑖

𝑀 (𝑖) , (3.138)

where 𝑀 indicates the trained hysteresis model. It estimates the incremental flux
𝜓Δ that describes the flux that is present inside a PWM-caused minor loop on the BH-
curve. In the next paragraph this parameter will be further described and an estimation
procedure will be given. On the other side, the total reluctance during operation at
varying air gap can be calculated as

RΔ𝑡𝑜𝑡 (𝑖, 𝑥) =
𝑖

𝜓Δ

. (3.139)

Knowing both the estimated iron core reluctance and the total reluctance, the air gap
reluctance can be calculated:

R̂𝑥 (𝑥) = RΔ𝑡𝑜𝑡 − R̂Δ𝐹𝑒, (3.140)

and inverted for position information extraction. The algorithm in total can be
consequently described as:
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3.6 Compensation of hysteretic phenomena

𝑥𝑒𝑠𝑡 = 𝑓 −1(R̂𝑥)

= 𝑓 −1
(
RΔ𝑡𝑜𝑡 − R̂Δ𝐹𝑒 (𝑖, 𝑥 = 0)

)
= 𝑓 −1

(
𝑖

𝜓Δ

− 𝑖

𝑀 (𝑖, 𝑥 = 0)

)
. (3.141)

The function 𝑓 () then allows the estimation of the position by exploiting the position
dependency of the air gap reluctance. The function must be strictly monotonous in order
to be invertible. Theoretically, only a position dependency is present, but practically,
due to unmodeled parasitic flux paths and uncertainties in the hysteresis model, also a
current dependency is present. Thus, in order to increase the accuracy of the position
estimator, a function of the form 𝑓 (𝑥, 𝑖) is recommended that takes into consideration
the dependency on both position and current.

Hysteresis model In the previous paragraph, an estimation approach for the air gap
reluctance was shown that allows decoupling the hysteretic core reluctance from the air
gap and thus allows compensating for hysteretic phenomena. For calculating the iron
core reluctance, the incremental flux 𝜓Δ needs to be known, that represents the flux
inside a minor loop, as depicted in Figure 2.4. A suitable hysteresis model then estimates
this quantity under the assumption that the air gap is vanished. Such type of hysteresis
model will be used here for the identification and estimation of the incremental flux and
the incremental reluctance of the core.

In practice, two challenges have to be faced: first, the incremental flux 𝜓Δ is not
directly available as an estimate. The techniques discussed in Sections 3.1 and 3.2 directly
estimate the incremental inductance 𝐿Δ of the actuator. This parameter is directly
obtainable out of the current ripple of the actuator by means of the IDIM technique.
Secondly, the incremental inductance shows a butterfly hysteresis, as visible in Figure 2.5.
Such a butterfly hysteresis cannot be modeled by means of a standard hysteresis model,
independently of the model nature, because they try to identify classical B-H-curves like
characteristics. Thus, the butterfly hysteresis behavior of the incremental inductance
first needs to be transformed into a classical BH-curve hysteretic characteristic. This
procedure will be carried out by means of an integration approach, that directly delivers
the incremental flux as output, whose hysteresis is of a BH-nature.

In the following, only the fundamental current will be considered that represents the
operation point (𝐻0, 𝐵0) respectively (𝑖, 𝜓0) on the hysteresis curve. Under consideration
of Equation 2.18, an integral can be defined that allows estimating the incremental flux
under knowledge of the incremental inductance, that is obtained by the IDIM technique:
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𝜓Δ =

∫
𝐿ΔΔ𝑖. (3.142)

Continuously evaluating the integral allows to estimate the incremental flux during
operation of the actuator. The incremental flux has a purely BH-curve like hysteretic
behavior and allows the adaptation of standard physical and phenomenological hysteresis
models onto this problem. Nevertheless, this approach has several issues related to the
implementation. These are:

• Initialization: in order to successfully track the actual magnetic working point, the
integral of Equation 3.142 needs to be correctly initialized. Since magnetic materials
exhibit remanence effects, first the actuator needs to be fully demagnetized, so that
the actuator material is in its origin point and the virgin curve is followed once a
current is applied. Demagnetization can be achieved by applying a demagnetization
signals that first drives the actuator into full magnetic saturation and then applies
a sine signal with decreasing amplitude until the origin point is reached. Such
an initialization procedure is anyways needed for the underlying hysteresis model
𝑀 (𝑖).

• Numerical implementation of the integral: Equation 3.142 represents a time-
continuous integral that needs to be implemented on a time-discrete system. Con-
sequently, a numerical integration method needs to be implemented. As a good
trade-off between accuracy and computational effort, the trapezoidal rule is consid-
ered [98]:

𝜓Δ 𝑗+1 = 𝜓Δ 𝑗 +
𝑖 𝑗+1 − 𝑖 𝑗

2
(
𝐿Δ 𝑗+1 + 𝐿Δ 𝑗

)
, (3.143)

where 𝑗 stands for the actual sample of the current and the incremental inductance.

• Integrator drifting: a practical implementation of an integrator suffers from con-
tinuous drifting due to small measurements errors as well as numerical precision
limitation. Since those errors sum up continuously, drifting and consequently satu-
ration of the integrator is a major problem for the estimation algorithm. In order to
prevent this issue, the integrator needs to be corrected and actively compensated at
well known points on the BH- respectively the 𝜓-i-curve. Because of the ambiguities
that arise from hysteresis, this has to be done at unique working points, such as
the saturation that occurs at maximum positive and negative currents. Applying
the drift compensation at those two saturation points inherently limits the drifting.
Further increase in accuracy can be achieved by forcing the integral value to a fixed
value at the origin, where the concrete operation point is known when the moving
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direction is known. Thus, under consideration of the saturation points and the
origin, the drift can be compensated at every quarter cycle of the major BH-curve.

By applying the integration approach, an estimate of the incremental flux can be
obtained that serves as training data and output of the hysteresis model. For the presented
work, the Modified Prandtl-Ishlinskii (MPI) model is used due to good accuracy and
its low computational effort. The model itself is easy to identify and to optimize
since it is based on a quadratic problem [99]. Furthermore, the model can be inverted
algebraically, a property that separates this technique from other existing models that
only allow numerical inversion [99]. The MPI model consists of simple operators that are
superimposed. Figure 3.13a shows the play operator that is used to model memory while
Figure 3.13b shows the superposition operator that allows to model nonlinearities. In
those figures, the operators are shown with a generic input 𝑥 and a generic output 𝑦.

x

y

(a) Play operator with moving directions,
adopted from [71, 99].

x

y
rs = 0

rs > 0

rs < 0

(b) Superposition operator, adopted from
[71, 99].

Figure 3.13: Characteristics of the Play and Superposition operators, that model sys-
tems with memory and nonlinearities, respectively.

The play operator can be mathematically described by:

𝐻 (𝑥, 𝑦, 𝑟𝐻) = 𝑚𝑎𝑥 (𝑥 − 𝑟𝐻 , 𝑚𝑖𝑛 (𝑥 + 𝑟𝐻 , 𝑦)) , (3.144)

with 𝑟𝐻 being the threshold that describes the width of the hysteresis [99]. The
superposition operator, instead, can be modeled by

𝑆(𝑥(𝑡), 𝑟𝑆) =


𝑚𝑎𝑥 (𝑥(𝑡) − 𝑟𝑆 , 0) for 𝑟𝑆 > 0

𝑥(𝑡) for 𝑟𝑆 = 0

𝑚𝑖𝑛 (𝑥(𝑡) − 𝑟𝑆 , 0) for 𝑟𝑆 < 0

, (3.145)

with 𝑟𝑆 being a threshold that describes the width of the one-sided dead-zone [99]. By
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linear superposition of several operators and weighting with certain factors, a hysteresis
in the form of a BH-curve can be modeled successfully [99]. Such a model based on
superposition is formulated as [100]:

𝑀 [𝑖] (𝑡) = ws
𝑇Srs

[
wh

𝑇HrH [𝑖, zH0]
]
(𝑡), (3.146)

with wH and wS being the weight vectors of the play and superposition operators as
well as HrH and SrS being the vector containing the play and superposition operators.
The vector zH0 contains the initial values of the model. This model can be algebraically
inverted:

𝑀−1 [𝜓Δ] (𝑡) = wH
′𝑇HrH

[
wS

′TSrs

[
𝜓Δ, z

′

H0

] ]
(𝑡), (3.147)

where the inverted weights are denoted with ’. More about the model, its identification
and its inversion is given in the work [99]. Within the previous paragraphs, a hysteresis
compensation approach was shown. Figure 3.14 shows the complete algorithm in detail.
First, the current of the actuator is measured. This quantity serves as input for the
MPI model 𝑀 (𝑖), that provides an estimate of the incremental flux that is used for
the calculation of the core reluctance. In parallel, the IDIM technique estimates the
incremental inductance, that together with the measured current, is integrated in order
to obtain an estimate of the incremental flux that is used to estimate the total magnetic
reluctance. The difference between core reluctance and total reluctance yields the air
gap reluctance that can be inverted for position estimation.

𝑀 (𝑖)

∫
𝐿Δ𝑑𝑖

𝑓 −1(R̂𝑥)

×
÷

÷
×

−
+

R̂Δ𝐹𝑒

RΔ𝑡𝑜𝑡

𝑖𝑠 𝜓Δ

𝐿Δ 𝜓Δ

R̂𝑥 𝑥𝑒𝑠𝑡

Figure 3.14: Used hysteresis compensation, adopted from [71].
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4 Experimental results

In this section, experimental results of the shown self-sensing algorithms will be presented
and compared to high precision measurement devices. Before showing the experiments, a
short description of the implementation details of the integrator circuit is shown due to
its importance on the self-sensing approach. Then, a short overview on the experimental
test-setup is given. Afterwards, the IDIM techniques are compared in terms of SNR to a
standard oversampling technique in order to prove the computational lightweightness of
the approach while maintaining an acceptable SNR. Finally, position estimation results
are shown on a switching actuator, on an actuator with hysteresis compensation and on
a switching actuator with non-monotonous characteristic.

4.1 Implementation of the integrator circuit

As shown in Chapter 3, the integrator circuit is the main part of the presented self-
sensing techniques. Thus, implementation limitations and issues in that circuit can have
a significant impact on the performance of the self-sensing algorithm. Therefore, the
implementation of the integrator circuit will be shown in detail in this section.

As shown in Figure 3.3, the integrator resembles an inverting integrator stage realized
with an operational amplifier. Since the integrator is inverting, a negative supply rail
is needed in order to cover the complete signal range [88]. Providing a negative supply
rail is usually linked with increased component effort and, consequently, higher costs. A
suitable solution to this is the usage of fully differential operational amplifiers that are
single-voltage-supplied and provide a common mode voltage for the signal [101]. Such
operational amplifiers are additionally more robust against noise and consequently are
better suited for applications requiring high resolution and accuracy [101]. Figure 4.1
shows the implementation of an inverting integrator in fully differential analog technology.
In particular, two feedback paths are present and the components in those parts must be
equal: 𝐶1 = 𝐶2 = 𝐶𝑖𝑛𝑡 and 𝑅1 = 𝑅2 = 𝑅𝑖𝑛𝑡 . Thus, the output voltage can be described as:

𝑢𝑜𝑢𝑡 (𝑡) = − 1
𝑅𝑖𝑛𝑡𝐶𝑖𝑛𝑡

∫
𝑟 (𝑡 )≠1

𝑢𝑖𝑛 (𝑡)𝑑𝑡. (4.1)

In this case, the voltage 𝑢𝑜𝑢𝑡 is measured differentially and can have a negative value
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since both differential signals are based on a positive bias voltage. In Chapter 3, an error
analysis was shown that revealed the sensitivity of the method towards gain errors. In
particular, tolerances in the passive components, namely the integration resistor and
capacitance, can lead to such errors during self-sensing. Thus, it is desirable to decrease
the tolerances in those components, consequently leading to higher costs. A solution
to this is offered by the so-called Switched Capacitor technology (SC) that is used in
integrated analog circuits in order to decrease cost while decreasing tolerances [102, 103].

−

+
−

+
𝑅𝑖𝑛𝑡

𝑢−
𝑖𝑛
(𝑡)

𝑅𝑖𝑛𝑡

𝑢+
𝑖𝑛
(𝑡)

𝐶𝑖𝑛𝑡

𝑟 (𝑡)

𝐶𝑖𝑛𝑡

𝑟 (𝑡)

𝑢+𝑜𝑢𝑡 (𝑡)

𝑢−𝑜𝑢𝑡 (𝑡)

Figure 4.1: Fully differential analog integrator with reset capability, adopted from [104].

The SC technology is based on an observation from James Maxwell that a capacitor
that is switched at sufficiently high frequency behaves like a resistive component [102].
This can be used in a technological manner because in MOS (Metaloxide Semiconductor)
processes, capacitances can be easily realized. When the switching frequency of the
capacitor is considered significantly higher then the bandwidth of the signal: 𝑓𝑐 ≫ 𝑓𝑠𝑖𝑔,
it can be assumed that the current flowing through the capacitor is almost constant and
the switched capacitor behaves like a resistor [103]:

𝑅𝑒𝑞 =
𝑇𝑐

𝐶𝑅

, (4.2)

with 𝑅𝑒𝑞 being the equivalent resistor, 𝑇𝑐 = 1
𝑓𝑐

being the time interval of switching and
𝐶𝑅 being the switched capacitor. Thus, resistances in analog circuitries can be replaced
by capacitances. This has several merits compared to the classical implementation: First,
capacitors can be simply realized with high tolerances in MOS processes [103]. Secondly,
the ratio of capacitances is producible with tolerances less than 0.1%, because those
capacitor arrays can be physically matched [103]. And finally, since resistances with
large values can be avoided, also large time constants in integrators and filters can be
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4.1 Implementation of the integrator circuit

realized, which is especially useful for the implementation of the IDIM technique [103].
The implementation of an inverting fully-differential integrator circuit in SC technology
is shown in Figure 4.2. The resistors are replaced by switched capacitors with two
complementary clocks Φ1 and Φ2, that are non-overlapping and switched at a frequency
𝑓𝑐. During phase Φ1, the voltage at the input is sampled on the capacitor while in phase
Φ2, the charge on 𝐶𝑅1 is transferred to 𝐶1, where it is summed upon the already existing
charge, which resembles an integration [103]. The equation of the integrator circuit in
SC technology yields to [103]:

𝑢𝑜𝑢𝑡 = 𝑓𝐶
𝐶𝑅1
𝐶1

Σ𝑟 (𝑡 )≠1𝑢𝑖𝑛 (𝑡)Δ𝑡, (4.3)

with 𝑓𝐶
𝐶𝑅1
𝐶1

being the integration constant that is now based on a ratio of capacitors.
The time of each integration step is denoted as Δ𝑡. Another positive side-effect is that
the reset switches, that are needed for the reset of the integrator circuit, are already
available in SC technology.

−

+
−

+

Φ2Φ1

𝑢−
𝑖𝑛
(𝑡)

𝐶𝑅1

Φ2Φ1

𝑢+
𝑖𝑛
(𝑡)

𝐶𝑅2

𝐶1

𝑟 (𝑡)

𝐶2

𝑟 (𝑡)

𝑢+𝑜𝑢𝑡 (𝑡)

𝑢−𝑜𝑢𝑡 (𝑡)

Figure 4.2: Fully differential analog integrator with reset capability realized in SC
technology, adopted from [104].

A platform that was used during the experimental tests was based on rapid prototyping
of those SC circuits by means of a Field Programmable Analog Array (FPAA) that allows
to fully configure certain circuit typologies by means of programming. In particular, the
FPAA AN231 from the company Anadigm was used [105]. This FPAA features seven
freely programmable analog cells consisting of operational amplifiers, comparators and
programmable capacitor arrays [105]. The software library contains standard operational
amplifier circuits with programmable gains and cut-off frequencies and, consequently,
allows to implement the IDIM technique in all of its implementations.
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Because the FPAA is merely a rapid prototyping solution with limited bandwidth,
a fully integrated circuit covering the resettable integrator circuit was designed and
realized in cooperation with the Institute for Microelectronic Circuits and Systems (IMS)
in Duisburg, Germany. The resulting application-specified integrated circuit (ASIC) is
shown in Figure 4.3. For more information, the interested reader is guided to [104]. The
ASIC contains the circuitries that are necessary for the IDIM technique in its full and
simplified variants. The gains and cut-off frequency can be tuned through programmable
capacitor arrays [104]. With its dimensions of 2.5x4 𝑚𝑚2, its operating voltage of 3.3 𝑉

and a switching frequency of 𝑓𝑐 =213 𝑀𝐻𝑧 [104], the ASIC is well suited for the usage of
in integrated electronics.

Figure 4.3: ASIC implementing the SC integrator for the IDIM technique.

4.2 Test-bench used for experiments

Figure 4.4 shows the used test-bench in a schematic way while Figure 4.7 shows the
actual realization of the test-bench that is used for experimental identification and
measurements. It consists of a high-precision positioning table that serves as counter-
actuator for the solenoid under test, the solenoid itself, a Printed Circuit Board (PCB)
as well as a measurement computer. The positioning table is the model M403.DG from
Physic Instruments [106] and allows the precise control of the position of the rod within
a range of 100 𝑚𝑚 with a minimum step size of 200 𝑛𝑚. It also involves a high precision
magnetic incremental encoder with 200 𝑛𝑚 resolution that serves as reference for the
measurements. The positioning table is current- and position controlled and holds its
actual position until a blocking force of 50 𝑁 is reached [106]. Thus, it can block the
actuator plunger at a desired reference position even when a force-generating current onto
the actuator is applied. The PCB has been developed at the Laboratory of Actuation
Technology (LAT) and it contains three half-bridges operating at 24 𝑉 with currents up
to 10 𝐴. In this use case, two half-bridges are connected to a full H-Bridge. The current
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4.3 Comparison of the techniques in terms of noise

is measured by means of the current shunt amplifier AD8418 from Analog Device [107],
that has a gain of 20 and a bandwidth of 250 𝑘𝐻𝑧 [107]. The shunt is placed in series
with the actuator, so that a direct measurement of 𝑖𝑠 is possible. The PCB additionally
contains the microcontroller unit STM32H743 from STMicroelectronics, that is a 32 bit
microprocessor with 16-bit AD converters and double precision FPU (floating point unit).
The microcontroller is overdimensioned in comparison to usual industrial set-ups in order
to allow the measurement and evaluation of all techniques and quantities. The PCB also
involves a swappable pinheader that allows to mount the FPAA or ASIC circuitry for
the implementation of the IDIM techniques. Finally, a USB connection to a computer
allows the transmission of all measurement data. In all set-ups, a current controller was
tuned accordingly with the modulus optimum criteria in order to supply the actuator
with a fixed current even under varying supply voltages, inducted voltages or increasing
resistance due to self-heating.

Positioning device Solenoid
PCB PC

Ref. position

Meas. position

Coupling H-bridge terminals

Figure 4.4: Schematic of the used experimental test-bench.

4.3 Comparison of the techniques in terms of noise

As discussed in the state-of-the-art, some techniques make usage of oversampling (OS)
in order to estimate the actual actuator inductance. While this significantly increases
the SNR, a certain amount of computational power needs to be available. The IDIM
technique aims at avoiding oversampling while preserving the SNR. Thus, a comparison
in terms of noise power is useful to understand the potential of the techniques as well as at
which number of samples the IDIM technique outperforms the oversampling approaches.
In general, oversampling approaches take a certain number of samples per each voltage
and current signal at dedicated time instants, so that the vectors
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t =
[
𝑡+𝑠 ...𝑡

+
𝑒 𝑡

−
𝑠 ...𝑡

−
𝑒

]
, (4.4)

u =
[
𝑢(𝑡+𝑠 )𝑢(𝑡+𝑒 )...𝑢(𝑡−𝑠 )...𝑢(𝑡−𝑒 )

]
, (4.5)

i =
[
𝑖𝑠 (𝑡+𝑠 )...𝑖𝑠 (𝑡+𝑒 )𝑖𝑠 (𝑡−𝑠 )...𝑖𝑠 (𝑡−𝑒 )

]
, (4.6)

are available in order to perform regression algorithms and curve fitting methods.
It is important to wait a certain time 𝑡𝑟 after the transients in order to ensure that
no nonlinear inverter effects, glitches in the measurements and decaying eddy currents
are sampled that otherwise would lead to a biased identification of the inductance [51,
53]. For sake of brevity, those techniques will not be discussed in detail here. For the
experiments, the technique from the work [53] is used, that evaluates the data set by
means of a LMS algorithm in order to estimate the series resistance and the inductance.
In particular, the work used 1600 samples per PWM period at a PWM frequency of
500 Hz in order to perform the estimation.

In the next paragraph, the IDIM technique will be compared to the estimation via
those techniques in terms of noise power, that allows for a statement about the SNR of
those techniques. Due to the absence of an ’exact’ inductance value, the deviation is
calculated based on the mean value of the identified inductance 𝐿̄Δ:

𝑛( 𝑗) = 𝐿Δ( 𝑗) − 𝐿̄Δ, (4.7)

where 𝑛( 𝑗) stands for the noise of the actual value. The noise power is defined as [108]:

𝑃𝑛 =
1
𝐿
Σ𝐿

𝑗=1𝑛( 𝑗)2, (4.8)

where 𝐿 is the length of the data vector. It can be seen that the noise power resembles
the definition of the signal variance 𝜎2. The noise power is preferred since its actual value
is independent on the amplitude of the signal, unlike the definition of the signal-to-noise
ratio, which is cumbersome to evaluate when the amplitude of the signal varies or is close
to zero.

Figures 4.5 as well as 4.6 show the estimated incremental inductance for two working
points of the actuator MSM GTC-A 40, which is described in detail in Section 4.4. In
order to simplify the evaluation of the noise power, two working points of the actuator
have been chosen that are the extreme working points. Figure 4.5 shows the actuator
when it is opened, meaning that the air gap is maximum (𝑥 = 8 mm) and when it is
without driving current (𝑖𝑑 = 0 𝐴). In such a working point, the inductance shows no
saturation and consequently has a large value. Figure 4.6 shows a working point in
which the actuator is closed, meaning that the air gap is minimal (𝑥 = 0 mm) and the
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4.3 Comparison of the techniques in terms of noise

Technique Pn in dB (opened) Pn in dB (closed)
IDIM -55.0 -57.1
SIDIM -74.8 -72.3
OS 50 -44.4 -53.6
OS 100 -48.6 -57.2
OS 250 -51.2 -59.2
OS 500 -54.3 -61.8
OS 1000 -56.1 -62.7

Table 4.1: Comparison of the noise power 𝑃𝑛 for different techniques with different
number of samples when the actuator is opened and without driving current
and when the actuator is closed and driven with its nominal current.

actuator is driven with its nominal current (𝑖𝑑 = 0.35 A). In particular, the inductance is
driven deeply into saturation at this working point, thus leading to a minimal inductance
value. The estimated inductance is obtained by the IDIM technique, the simplified IDIM
technique and the previously shown oversampling approach with different number of
samples ranging from 50 to 1000 samples per PWM period at a PWM frequency of
500 Hz. Oversampling techniques with different number of samples are not shown, since
in the case of less than 50 samples per PWM period, the algorithm fails to converge and
for values larger than 1000 samples, the computational power of the microcontroller is
exceeded. For both working points, the noise power values have been obtained using
Equation 4.8 for all the mentioned techniques. The values of the different noise powers
are summarized in Table 4.1 for the opened actuator and for the closed actuator.

For the working point with zero mean current and opened plunger position, the
simplified IDIM technique achieves the best performance with −74.8 dB, followed by the
OS approach with 1000 samples. Then, the IDIM technique in its full definition follows in
the ranking with −55 dB, leaving the OS approaches with less than 1000 samples behind.
The worst performance is achieved by the OS approach with 50 samples per PWM period
with a noise power of −44.4 dB. In the experiments, all techniques show identification
biases. The OS approaches especially suffer from biases in case the decaying eddy current
cusps are taken into the consideration. Maximizing the waiting time 𝑡𝑟 decreases the
biases significantly, leading to the same mean value of all OS approaches. Instead, the
IDIM techniques show a larger biases, that results from the limitations that have been
made during derivation of those technique, especially in the case of the SIDIM technique.
For conclusion, it can be said, that for the particular working point, the IDIM technique
outperforms the OS approaches with less than 500 samples, while the SIDIM technique
outperforms all approaches.
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Figure 4.5: Estimated inductance value when the actuator is opened and without
driving current. The value is shown for different estimation techniques and
different number of samples.
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Figure 4.6: Estimated inductance value when the actuator is closed and driven with
its nominal driving current. The value is shown for different estimation
techniques and different number of samples.
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The same considerations have been also conducted for the operating point involving
the nominal current of the actuator, which leads to the movement of the plunger into
the closed position. Also there, the SIDIM technique shows the best performance with
−72.3 dB, followed by the OS approaches with 1000, 500 and 250 samples per PWM
period. The IDIM technique in its full definition and the OS approach with 100 samples
nearly shows the same noise power with −57.1 dB and −57.2 dB, respectively. At the last
position is the OS approach with 50 samples per PWM period. Also here the approaches
show identification biases like in the experiment with the opened working point. It can
be said that in this experiment, the SIDIM technique outperforms all approaches while
the IDIM technique shows the performance of an OS approach with 100 samples.

It can be concluded, that the SIDIM technique provides the best result for both
extreme working points, showing a noise power that is smaller than the OS approach
with 1000 samples per PWM period. The IDIM technique shows comparable results with
an OS 100 approach for the current-driven actuator while being slightly more noise-free
than an OS 500 approach for the opened actuator. The difference in the estimation
performance for opened and closed actuator mainly lies in the resulting current ripple.
While an opened actuator is not affected by saturation and consequently has an higher
inductance, the closed actuator is driven in its magnetic saturation leading to a strong
decrease in inductance. As shown by Equation 2.93, the current ripple is dependent
on the inverse of the inductance, and consequently, a smaller inductance causes bigger
current ripples, which can be more easily sensed. Finally, it can be said, that especially
the SIDIM technique is able to outperform OS approaches, while the IDIM technique
also shows good results for higher inductances.

4.4 Position estimation on switching actuators

In the following, experimental results on position estimation algorithms for electromag-
netic actuators will be shown. In particular, three cases will be discussed thoroughly.
First, the end position detection on an industrial solenoid actuator from Magnet-Schultz-
Memmingen by means of the IDIM and SIDIM techniques. In this case, only two working
points will be evaluated: when the actuator is without driving current and when the
actuator is driven with its nominal current. In such switching actuators, the information
if the actuator has opened or closed in the right way is important, and in case complete
closure/opening is not fulfilled, the rest position is of interest. The second case involves
the same switching actuator, but instead of having two dedicated working points, a
linear operation of the actuator is studied. In this case, the hysteretic behavior of the
actuator has to be fully compensated for precise position estimation. In particular, the
complete current range is studied and the self-sensed inductance is compensated with
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the previously presented hysteresis model. The last case involves an industrial switching
solenoid from Red Magnetics that exhibits a remarkable ambiguity in position estimation
due to its strong magnetic saturation behavior. In this case, the eddy current estimator
is experimentally verified and a position fusion algorithm by means of a Multilayer
Perceptron neural network is proposed and verified. For all experiments, a characteristic
of the actuator is identified and analyzed before applying the above mentioned self-sensing
algorithms.

4.4.1 End position detection with self-sensing

In this experiment, the industrial switching actuator GTC-A-40 from Magnet Schultz
Memmingen [109] is used, as depicted in Figure 4.7. Its full characteristics in terms of
actuator parameters and IDIM settings are shown in Table 4.2. The shown experimental
results have been previously published by the author in [65]. Figure 4.8 shows the current
ripple of that actuator when a PWM with a frequency of 500 Hz is applied. Furthermore,
the reset signal 𝑟 (𝑡) is measured for the IDIM and SIDIM techniques. The reset signal is
chosen in such a way that the cusps and measurement glitches in the current ripple are
avoided. The last plot shows the measurement of the output of the integrator circuit
𝑄(𝑡) that is obtained by the IDIM techniques.

Electronics

Positioning Table Actuator

Figure 4.7: Actuator GTC-A-40 from Magnet-Schultz-Memmingen used for position
detection experiments with and without hysteresis compensation [65].
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Parameter Value
DC link voltage 24 𝑉

Nominal power 12.9 𝑊

Nominal resistance 𝑅𝑠 44.6 Ω

Nominal stroke 8 𝑚𝑚

Max. force 34.8 𝑁

PWM frequency 500 𝐻𝑧

Reset time 𝑡𝑟 50 𝜇𝑠

Integration gain 0.015 1/𝜇𝑠

Table 4.2: Parameters and nominal values of the used MSM GTC-A-40 actuator with
settings of the IDIM technique used in the end position experiments with
and without hysteresis compensation, adopted from [65].

In order to apply self-sensing approaches, first the characteristic of the inductance has
to be fully studied. This has been obtained by using the above mentioned test-bench that
allows to apply driving currents while the actuator plunger is fixed at a certain position.
While modifying the actuator current and position in a dedicated measurement campaign,
the characteristic of the incremental inductance can be obtained. Figure 4.9 shows the
identified characteristic over the entire position and current range. In particular, the
position was varied between 0 mm and 8 mm with a step size of 500 um while the current
was varied between 0 A and 0.35 A with a step size of 50 mA. In order to increase
visibility, the inductance was averaged over 200 values and in the three-dimensional
plot, the hysteresis was removed by averaging the inductance value for the forward and
backward directions. More in detail, the mapping is almost bijective for the entire working
range except for small currents. In fact, for small currents, the knee of the B-H-curve
is being operated, a section where the incremental inductance looses its monotonicity.
In Figures 4.10a and 4.10b, the three-dimensional characteristic is cut for minimum,
middle and maximum current and position values. The incremental inductance shows a
remarkable hysteresis in the position dependency as well as the current dependency. For
higher currents, this hysteresis gets smaller and vanishes nearly for the nominal current.
This is especially visible in the current dependency measurement.

Nonetheless, the curves for minimum and maximum currents show a slight hysteresis
and a nearly monotonous behavior over the position and those conditions are the usual
working currents for an actuator in switching applications. Thus, only the red and black
curve in Figure 4.10a are used for self-sensing the position in an end position detection
scenario. The prefiltered identification curves are used as input for fitting a 4𝑡ℎ order
polynomial, one for zero current operation and one for nominal current operation.

The prefiltering has been only applied for the training data of the polynomial, while in
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Figure 4.8: Measured signals of the analog circuitry that has been applied for the IDIM
technique. From top to bottom: a) Current ripple in the actuator, b)
Reset signal 𝑟 (𝑡) for the IDIM technique, c) Reset signal 𝑟 (𝑡) for the SIDIM
technique and d) Resulting output 𝑄(𝑡) of the integrator circuit [65].

the self-sensing experiment, unfiltered values for current and incremental inductance are
used. Figure 4.11 illustrates an estimation of the actuator position when the actuator
is without driving current and Figure 4.12 shows the estimate when the actuator is
operated with nominal current. In particular, the estimated positions of the IDIM and
the SIDIM techniques are compared with the measured position by the high-precision
encoder from the test-bench. During the experiment, the plunger of the actuator has
been moved with the linear position table in a quasi static manner in the forward and
backward directions over the entire position range. For both operating currents, the
IDIM and SIDIM techniques are able to track the position. As expected, the SIDIM
technique shows less noise than the IDIM technique. In the case of the actuator without
driving current, the IDIM and the SIDIM techniques track the position with a mean error
of 0.13 mm and a mean error of -0.02 mm, respectively. The maximum error amounts to
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Figure 4.9: Characteristic of the incremental inductance of the MSM actuator over
the entire position and current range. The blue curve is the interpolated
behavior while the dots represent the measured working points [65].
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Figure 4.10: Characteristic of the incremental inductance of the MSM actuator for
dedicated positions and currents.
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2.11 mm in the IDIM case and to 1.28 mm in the SIDIM case. In the case of the actuator
driven with nominal current, the estimates show a non-ideal following of the position
due to the presence of ambiguities and magnetic hysteresis, which where not taken into
consideration for this experiment and affect the estimation significantly. In particular,
it can be seen that the estimate shows a different value for the forward and backward
directions, which is caused by magnetic hysteresis. Nonetheless, the estimate for small
positions is still good, which allows for a precise determination of the plunger position in
case the actuator is nearly closed. The IDIM and SIDIM techniques exhibit a mean error
of 0.98 mm and 0.79 mm, respectively, and a maximum error of 4.7 mm and 5.3 mm,
which are mainly due to the unmodeled hysteresis effects.

To conclude, it can be said that the IDIM and SIDIM techniques are capable of
identifying the actuator position in an end position detection scenario with good accuracy
for the case with zero mean current and for small and middle positions in the case of
nominal current. In case high currents and large positions are being used, the estimate is
affected by hysteretic behavior that needs to be modeled. Thus, in the following section,
a hysteresis compensation is evaluated for the shown switching actuator that allows for a
quasi linear operation of the solenoid.
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Figure 4.11: Self-sensed plunger position by means of the IDIM and SIDIM techniques
compared to the measured position in case the actuator is driven with
zero current and moved in a quasi static manner.
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Figure 4.12: Self-sensed plunger position by means of the IDIM and SIDIM techniques
compared to the measured position in case the actuator is driven with its
nominal current and moved in a quasi static manner.
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4.4.2 Position self-sensing with hysteresis compensation

In the following, the MSM actuator is used in a linear operation manner, so that the
current can have more than two working points. The shown experimental results have
been previously published by the author in [71]. Figure 4.13 shows the characteristic
of the incremental inductance over current and position similar to Figure 4.9, but with
highlighted hysteretic behavior. In particular, for increasing position (namely increasing
air gap), the hysteretic curves get thinner. Instead for the maximum position, the
hysteretic behavior nearly vanishes since for such large strokes, the ferromagnetic plunger
is almost removed from the coil. For an air gap of 0 mm, the maximum width of the
hysteresis is obtained since the core is fully inserted into the actuator. Figure 4.14 shows
that hysterestic behavior of the incremental inductance at minimum air gap (𝑥 = 0 mm)
for both positive and negative currents. The butterfly hysteresis from Figure 2.5 is
obtained, with a slight asymmetric curve for positive and negative currents. This non-
ideal behavior can be explained by the anisotropy of the material. It is observable for
different materials, especially when being exposed to various fabrication processes that
cause a preferred magnetization direction in the material [77].

Figure 4.13: Characteristic of the incremental inductance over the entire position and
current ranges with hysteresis [71].

The obtained incremental inductance from Figure 4.14 is the basis for the hysteresis
model that is used for compensation of the electromagnetic hysteresis. First, the in-
cremental inductance is numerically integrated over the current by means of Equation
3.142 to obtain the incremental flux. Figure 4.15 shows the obtained incremental flux
over the current together with the identified hysteresis model. First, the experimentally
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Figure 4.14: Incremental inductance for zero air gap (𝑥 = 0 mm) showing a butterfly
hysteresis [71].

obtained incremental flux shows a BH-curve like hysteresis over the entire current range.
Thus, it can be modeled by means of standard hysteresis models such as the MPI model
that has been chosen. Figure 4.15 shows such MPI model, that has been trained on
the experimentally obtained incremental flux. In particular, the MPI involves 6 play-
operators and 10 superposition operators, which have been chosen as a good trade-off
between accuracy and required computational resources. The trained model achieves a
good accuracy with a maximum relative error of 1.6 % and thus it can be used for the
hysteresis compensation algorithm. In the next experiments, only positive currents are
considered since reluctance actuators are usually operated with unipolar voltage.

Figure 4.15: Experimentally obtained incremental flux together with the incremental
flux estimated by the trained MPI model [71].
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Based on the incremental flux and the actual actuator current, the total magnetic
reluctance RΔ𝑡𝑜𝑡 can be obtained for different positions and currents. Figure 4.16 shows
the obtained characteristic for the forward and backward directions of the current for
different fixed positions. It can be seen that the characteristic is strongly hysteretic and
position-dependent. Hysteretic behavior and position dependency overlap each other,
so that a position estimation is significantly degraded due to the hysteresis, making
an unique position determination cumbersome. As expected, the total reluctance is
increasing with increasing air gap.

In the following, the trained model from Figure 4.15 is used as estimator for the iron
core reluctance R̂Δ𝐹𝑒 and the characteristic from Figure 4.16 is used for RΔ𝑡𝑜𝑡 . Based on
Equation 3.140, an estimate of the air gap reluctance R̂𝑥 can be analytically calculated,
that is shown in Figure 4.17.
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Figure 4.16: Characteristics of the total reluctance over the current for different fixed
positions, adopted from [71].

Compared to Figure 4.16, this characteristic has less hysteretic behavior. Nevertheless,
hysteretic effects are still visible which are mainly caused by modeling errors in the
MPI model. Also, the air gap reluctance shows a little current dependency, although it
should be theoretically current independent. This is also caused by modeling errors in
the MPI model and unmodeled flux paths, such as leakage flux and parasitic air gaps in
the magnetic circuit. Such inaccuracies also lead to a negative value of the reluctance
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Figure 4.17: Characteristics of the air gap reluctance over the current for different fixed
positions. The ellipse highlights ambiguous working points that are not
considered during the self-sensing experiment, adopted from [71].

at 0 mm, which is physically not feasible. Increasing the modeling effort both in the
magnetic equivalent circuit and the MPI model can address this issue. Nevertheless, the
amount of hysteresis has been clearly reduced, so that in the position range from 5 mm
to 8 mm, an unique position determination is possible since the curves do not overlap
anymore. For smaller positions, the non-hysteretic curves still overlap. This is due to
ambiguities in the characteristic of the incremental inductance of the actuator shown
in Figure 4.9 and a low sensitivity of the inductance on the position in those working
points. The ellipse in Figure 4.17 highlights these working points that do not allow for
an unique estimation of the actuator position. In the following, these working points will
not be considered, since for their compensation also the eddy current resistance 𝑅𝑝 needs
to be considered. While this is a favorable solution in actuators with little hysteretic
behavior, a compensation of hysteretic effects involving both incremental inductance and
eddy current resistance is a challenging task and an object for further research works.

By removing the ambiguous working points from the characteristic, the remaining
mapping is completely strictly monotonous and can be exhibited for position estimation.
The characteristic of the air gap reluctance R𝑥 is modeled by means of a polynomial
model with a model of the 3𝑟𝑑 order for the reluctance and a model of the 3𝑟𝑑order for
the current. As previously stated, the current dependency is mainly caused by unmodeled
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effects and, although physically not present, can be compensated by involving the current
dependency into the polynomial. By doing so, an inverted function 𝑓 −1(R𝑥 , 𝑖) is obtained
that can be used for position estimation.

In the following experiment, the plunger of the actuator was moved in a quasi-static
manner over the entire position range. While being moved, the current was varied from
zero to its nominal value in forward and backward directions. The position controlled
table ensures the position of the plunger stays fixed even under generated reluctance
forces. In particular, the current loops have a finer step size around the origin in order to
prove the capability of the model to track the initial curve of the actuator. Ambiguous
working points have been operated but are left out of the validation since the resulting
error would falsify the evaluation of the error metrics. Figure 4.18 shows the experiment
in detail. At the top figure, the position of the actuator measured by the high precision
encoder is compared to the estimated position in case the hysteresis is not compensated
(𝑥𝑒𝑠𝑡) and in case the hysteresis is compensated (𝑥𝑒𝑠𝑡 ,𝑐). The middle figure shows the
current loops that have been applied. The current loops are unipolar with finer step size
around the origin. The figure at the bottom shows the resulting relative error between
the uncompensated (𝜖𝑒𝑠𝑡) and compensated (𝜖𝑒𝑠𝑡 ,𝑐) position self-sensing. It can be seen
that the compensated algorithm tracks the position in a better way while, especially for
small positions, the uncompensated estimator shows large deviations. In particular, the
uncompensated estimator shows a maximum relative error of 49.3 % over all considered
working points, while its compensated counterpart achieves a better performance with
9.0 % maximum relative error over the entire working space. For an air gap close to zero,
the improvement gets relevant since the iron core has the most contributions to the total
reluctance. It is clearly visible that, for the current peak values, the estimation error
becomes the biggest in the case of the uncompensated estimator. For a larger air gap,
the algorithms nearly show the same performance since the total reluctance is mainly
composed of the air gap reluctance.

To conclude, it can be observed, that the presented hysteresis compensation allows to
decrease the error in position estimation from 49.3 % to 9.0 %. Nevertheless, this is still
a large, although often acceptable, error considering that the actuator at those working
points exhibits low sensitivity and ambiguities.
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Figure 4.18: Validation of the proposed hysteresis-compensated self-sensing algorithm.
Top: Comparison of the measured position to the estimated position
obtained by the uncompensated and compensated algorithms. Middle:
Driving current during the experiment. Bottom: Relative error between
measured position and estimated position obtained by the uncompensated
and compensated algorithms, adopted from [71].

4.4.3 End position detection on ambiguous actuator

In this section, the self-sensing algorithm in an end position detection scenario is studied
in case the actuator exhibits a non-monotonous behavior of the incremental inductance.
The actuator under test is the ITS-LZ 1949 from Red Magnetics [110], which is depicted
in Figure 4.19 and its full specifications as well as settings for the IDIM technique are
given in Table 4.3. The presented results have been previously published by the author in
[66]. Figure 4.20 shows the measurement of the analog signals that are being evaluated.
First, the current ripple is shown when the actuator is excited with a PWM with a
frequency of 1000 Hz. In this actuator, the current cusps are clearly visible and they
provide nearly the biggest contribution onto the current ripple itself. This is due to the
fact that the actuator plunger is made of a solid piece of ferromagnetic material and the
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Parameter Value
DC link voltage 24 𝑉

Nominal power 7 𝑊

Nominal resistance 𝑅𝑠 23 Ω

Nominal Stroke 10 𝑚𝑚

Max. force 6 𝑁

PWM frequency 1000 𝐻𝑧

Reset time 𝑡𝑟 50 𝜇𝑠

Integration gain 0.015 1/𝜇𝑠
Meas. time 𝑡+

𝑚1 -12 𝜇𝑠

Meas. time 𝑡+
𝑚2 20 𝜇𝑠

Table 4.3: Parameters and nominal values of the ITS-LZ 1949 actuator from Red
Magnetic used during end position detection experiments involving position
ambiguities, adopted from [66].

actuator itself designed in such a way that the eddy currents are maximized in order to
dampen the movement of the actuator. Along with the measured current ripple, also the
trigger 𝑟 (𝑡) and the resulting output signal 𝑄(𝑡) of the integrator circuit are shown in
case the full IDIM technique is applied.

Electronics

  SolenoidPositioning Table

Positioning Table Controller

Figure 4.19: Actuator ITS-LZ 1949 from Red Magnetics used for end position detection
experiments involving position ambiguities [66].

Similarly to the estimation scenarios before, a characterization campaign was conducted
to obtain the measurements of the incremental inductance and the parallel resistance
over the entire current and position range. In particular, the current was varied between
0 A and 0.4 A with a step size of 50 mA and the position between 0 mm and 10 mm
with a step size of 500 um. The estimated values of the incremental inductance and the
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Figure 4.20: Measured signals of the analog circuitry that has been applied for the
IDIM technique. From top to bottom: a) Current ripple in the actuator,
b) Reset signal 𝑟 (𝑡) for the IDIM technique and c) Resulting output 𝑄(𝑡)
of the integrator circuit [66].

parallel resistance were averaged over 1000 samples in order to allow a better graphical
representation and, at the same time, for better tuning of the neural network. Figures
4.21a and 4.21b show the identified characteristics of the incremental inductance and the
parallel resistance. In particular, Figures 4.22a and 4.22b show the dependency of the
parameters on the plunger position at fixed currents. This representation is especially
important for the purpose of end position detection.

The inductance characteristic shown in Figure 4.22a reveals a hyperbolic dependency
of the incremental inductance on the position. Moreover, there is a significant current
dependency. Especially for small positions, the inductance drastically decreases with
increasing current due to the saturation of the plunger material. With increasing position,
the saturation vanishes and the inductance increases again, until a maximum is reached
and the inductance decreases again due to the removal of the plunger. The arising
extreme point from this is current-dependent and moves along the x-axis for higher
currents. Due to the presence of these extreme points, the inductance suffers from a
non-monotonicity, which leads to an ambiguity in case only this parameter is exhibited
for position estimation. Beside these extrema, the incremental inductance shows a slight
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(a) Incremental inductance. (b) Parallel resistance.

Figure 4.21: Characteristic of incremental inductance and parallel resistance of the Red
Magnetic actuator over the entire position and current ranges. The blue
curve is the interpolated behavior while the dots represent the measured
working points.
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(a) Incremental inductance, adopted from [66].
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Figure 4.22: Characteristic of the incremental inductance and parallel resistance over
the entire position range for fixed currents.
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hysteretic behavior, due to the ferromagnetic material and due to mechanical hysteresis.
Because of its small contribution to the characteristic, the effect of hysteresis is going to
be neglected in the following experiments.

Instead, the parallel resistance characteristic, shown in Figure 4.22b, is almost linearly
dependent on the position for the shown currents. The starting value and the slope of
these curves increase with increasing current. Nevertheless, the estimate of the parallel
resistance is strongly affected by a high measurement variance, as it is described also in
the work [45]. Together with hysteretic components in the estimate due to ferromagnetic
hysteresis and mechanical hysteresis, a linear interpolation is necessary. By applying this
interpolation, the parallel resistance shows a monotonous behavior over the entire actuator
working range and, thus, a position estimate is possible without any ambiguities. During
the experiment, a significant dependence of the parallel resistance on the temperature was
visible. In particular, the magnetic inductance and, consequently, the parallel resistance
is strongly temperature dependent due to the term of the electrical conductivity as shown
in Equation 3.120. In this experiment, the actuator was supplied with its maximum
current to heat up completely and then the measurement campaign was conducted in
a relatively short time in order to obtain a quasi isothermal result. In practice, the
resistance estimator proposed in Section 3.1.3 needs to be implemented in order to
estimate the copper resistance and consequently the coil temperature during self-heating
that occurs in normal operation. This is a subject for further investigations.

In this experiment, a sensorless end position detection is going to be validated. Thus,
only the characteristic for a driving current of 𝑖𝑑 = 0 A and a nominal driving current of
𝑖𝑑 =0.4 A are relevant for this application scenario. For the case of zero driving current,
a position estimator relying only on the incremental inductance can be used, since its
curve is strictly monotonic, and consequently, an unique position estimation is possible.
In this case, the curves for the forward and backward directions are averaged into a
hysteresis-free curve and fitted by a polynomial model of the second order. In the case of
the actuator driven with nominal current, the characteristic is ambiguous and a globally
invertible function does not exist. In particular, the extreme point occurs at approx.
2.5 mm, while before and after the characteristic is monotonous. Thus, the parallel
resistance 𝑅𝑝 needs to be considered. This is done by means of a data fusion algorithm
based on a neural network.

Data fusion algorithm Taking into consideration merits and demerits of the identifi-
cation procedures for incremental inductance and eddy current resistor, merging of the
information is desirable. In particular, the parallel resistance can deliver a rough estimate,
in what monotonic area the position estimate lays, while the inductance information can
deliver a precise estimate. Thus, it is possible to combine advantages of both approaches,
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namely precision and uniqueness. Works from literature mainly apply a binary decision
making algorithm based on the identified value of 𝑅𝑝 [56]. Nevertheless, this approach
can fail when e.g. the noise resulting from the estimation of 𝑅𝑝 triggers the decision
making rule. Instead, in this experiment, an MLP is used for data fusion. During
training, the MLP can adapt its weights in such a way that more attention is given to
the incremental inductance and less attention to the parallel resistance, that is only used
around the extremum point as supporting information. Thus, a MLP with two inputs 𝐿Δ

and 𝑅𝑝 is created. Behind the input layer, there is a hidden layer with 15 neurons based
on a sigmoidal activation function. The output layer that estimates the position is based
on one neuron with a linear activation function. The weights of the MLP are trained
based on the Bayesian Regularization back-propagation algorithm and by dividing the
measurement data into training, validation and test sets. Also, in this fitting approach,
the hysteresis is canceled by calculating the average of the forward and backward curves.
Given the relatively small size of the neural network, the estimation algorithm is still
computationally lightweight in combination with the IDIM technique.

Figure 4.23 summarizes the algorithm in detail: a current controller based on the
modulus optimum criteria ensures a stable control of the actuator current. The electro-
magnetic actuator from Red Magnetics is operated by a H-bridge with current sensor.
This current sensor is used for the estimation of the incremental inductance by means of
the IDIM technique and of the parallel resistance by means of the estimator shown in
Section 3.3. Both estimates are filtered by a low-pass filter. Since the estimate of the
parallel resistance is very noisy, a cut-off frequency of 20 Hz is chosen. Although the
incremental inductance does not need further filtering, the same filter is used to avoid
phase shifts between the estimates, that would lead to an identification bias. Then, the
above mentioned MLP is applied for position estimation.

The end-position detection experiment is conducted by exposing the actuator either
to zero current or to nominal current and moving the plunger by means of the linear
positioning table in a quasi-static manner over the entire position range. The position
measured by the high-precision encoder serves as reference. Also here the experiment was
conducted in a short time to overcome the effect of self-heating. Figure 4.24 and Figure
4.25 show the estimated position compared to the reference sensor and the relative error
for the zero and nominal current conditions. In the case of zero current, the polynomial
approach is able to track the position with a relative error less than 2.7 % referred to the
nominal stroke of 10 mm of the actuator. The estimation algorithm is consequently able
to reconstruct the position in a quantitative and qualitative manner.

In the case of nominal current, the algorithm based on the data fusion MLP is also able
to reconstruct the position without any ambiguities with a maximum relative error of
approximately 8 %. Especially the critical position at 2.5 mm is reconstructed although,
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Figure 4.23: Schematic of the data fusion algorithm based on a MLP relying on induc-
tance and resistance estimation, adopted from [66].

at this position, the relative error is at its maximum. In this particular working point
(visible around the time intervals [1 s 3 s] and [15 s 17 s] ), the estimate is especially
affected by a low SNR. Due to a vanishing sensitivity of 𝐿Δ at this position, the position
estimator only relies on the value of 𝑅𝑝. Thus, the low SNR of 𝑅𝑝 leads consequently
to a low SNR of the estimated position. Nevertheless, the estimator shows errors of
around 2% at the minimum and maximum stroke, showing that the presented approach
can reconstruct the position over a large position range. Nonetheless, there is still a
slight influence of hysteresis, which is visible in different estimated positions for forward
and backward directions: in the time interval [4 s 8 s], there is a negative error of
-3 % while for the same reference position in backwards direction at the time interval
[10 s 14 s], a positive error of 5 % is obtained. This deviation can be explained by the
hysteretic dependency of both parameters that was neglected during the experiment.
Future works can involve the hysteresis compensation explained in Section 4.4 together
with the parallel resistance in order to overcome these limitations. In conclusion, it can
be observed that, by applying the above mentioned data fusion neural network, the
ambiguities are solved and an unique position estimation with less than 8 % relative
error is possible on actuators that are affected by non-monotonicity.
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Figure 4.24: Position estimation when the actuator is at zero mean current. Top:
Estimated compared to measured position. Bottom: Relative error [66].
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Figure 4.25: Position estimation when the actuator is at nominal mean current. Top:
Estimated compared to measured position. Bottom: Relative error [66].
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5 Sensorless control of an active magnetic
levitator

In the following, the self-sensing algorithm shown in Chapter 3.1 will be applied on an
electromagnetic levitator to prove that the discussed technique is able to estimate the
position in a reliable manner also in closed-loop systems with sensorless position feedback.
Electromagnetic levitators (EML) are popular systems used for the validation of sensorless
techniques due to their inherent instability and their non-linear system dynamics. Thus,
they require high demands concerning quality of the position feedback, control bandwidth
and stability, and hence, serve as a good benchmark system. In particular, the works [34,
51, 53, 111] use such kind of EMLs in order to prove the robustness and stability of their
self-sensing approaches. In the following, the IDIM technique will be evaluated on such
an EML device with particular focus on stability, robustness and computational lightness.
In particular, a similar test-bench compared to [51] is used, where a single coil is able
to levitate a hollow steel ball. Ferrite core and hollow ball are dimensioned according
to [51] in order to have a comparable validation test-bench. Similarly to this work, the
ferrite core PM 87/70 from TDK [112] is used. The identified parameters of the actuator
as well as the used IDIM settings are summarized in Table 5.1. Figure 5.1 shows the
realized experimental test-bench consisting of a coil with ferrite core, a hollow steel ball
with a diameter of 40 mm, the electronics that is based on the PCB shown in Chapter 4,
and a high-precision laser sensor with 10 𝜇𝑚 accuracy used for comparison. With the
presented experimental test-bench, self-sensing experiments are carried out, which are
explained and discussed in the following. The presented results have been previously
published in the work [70].

System dynamics Figure 5.2 shows the physical working principle of an electromagnetic
levitator. A current in the coil generates a magnetic flux which flows through the air gap
and the ferromagnetic object. In this case, the object resembles a ferromagnetic steel
ball and is called flotor. As explained in Chapter 2.1, the system tries to minimize its
energy by decreasing the air gap, thus generating a force that pulls the flotor towards the
coil. The counteracting force is solely the gravity force and the initial force of the flotor.
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5 Sensorless control of an active magnetic levitator

Figure 5.1: Electromagnetic levitator set-up including coil, flotor and electronics involv-
ing the sensorless control algorithm and laser sensor for comparison [70]
(©2019 IEEE).

Parameter Value
DC link voltage 24 𝑉

Nominal resistance 𝑅𝑠 2.4 Ω

Nominal stroke 10 𝑚𝑚

Electromagnetic constant 𝐶 3.3 ·10−5𝑁𝑚2/𝐴2

Position 𝑥0 3 𝑚𝑚

Mass of the flotor 𝑚 80 𝑔

PWM frequency 1000 𝐻𝑧

Controller sampling frequency 1000 𝐻𝑧

Reset time 𝑡𝑟 3.1 𝜇𝑠

Integration gain 0.008 1/𝜇𝑠

Table 5.1: Parameters of the electromagnetic levitator used during the experiments
involving sensorless control, adopted from [70].
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The system dynamics can be written as:

𝑚 · ¥𝑥 = 𝑚 · 𝑔 − 𝐹𝑚(𝑥, 𝑖), (5.1)

with 𝑚 being the mass of the flotor, 𝑔 being the gravity constant equal to 9.81 𝑚

𝑠2 ,
𝑥 being the air gap and 𝐹𝑚 being the reluctance force. In this model, air friction is
neglected due to its minimal contribution to the overall forces. The magnetic force is
solely attracting and can be represented by the well-known quadratic dependency on the
current and inverse quadratic dependency on the air gap, as given in the work [34]:

𝐹𝑚(𝑥, 𝑖) = 𝐶 · 𝑖2

(𝑥 − 𝑥0)2 , (5.2)

with an additional term 𝑥0, that represents a residual air gap. Such an introduction
of 𝑥0 allows to simplify the control of the system due to the absence of an infinite force
at zero air gap. The parameter 𝐶 is called electromagnetic constant and models the
relationship between current, position and force. From the model it can be observed, that
the system is inherently nonlinear and unstable. Thus, a control algorithm considering
the nonlinear dynamics of the system needs to be applied.

𝑖𝑠

E
𝑚

𝐹𝑚

𝐹𝑔

𝑥

Figure 5.2: Physical working principle of electromagnetic levitation. Reluctance force
𝐹𝑚 counteracts the gravity force 𝐹𝑔.

Characterization of the EML actuator Similarly to the discussed actuators in Chapter
4, a characterization campaign is carried out in order to obtain a complete mapping of
the incremental inductance over current and position. This allows identifying a model
that is later used for self-sensing. Contrary to the previously discussed actuators, the
EML actuator is inherently unstable, making a systematic characterization of all the
working points cumbersome. Thus, only working points for dedicated conditions are
recorded, e.g. for vanishing air gap and infinite air gap. Middle positions are obtained
by clamping the ball to the mechanical framework of the test-bench. Figure 5.3 shows
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the identified characteristic over the entire current and position range. In particular, the
figure shows the already identified mapping that was obtained by fitting a polynomial
with a order of 3 for current and position. Figure 5.4 shows the current dependency for
the discussed positions of vanishing air gap and infinite air gap. In this case, the air
gap not only consists of a magnetic but also a mechanical air gap due to the mechanical
framework of the set-up. Thus, for a position of 𝑥 = 7 mm, the flotor already touches the
mechanical body of the coil, while there is still a magnetic air gap.

Figure 5.3: Characteristic of the incremental inductance of the EML actuator over the
entire position and current ranges. The characteristic is interpolated based
on measured data points, adopted from [70].

When the air gap is infinite, the incremental inductance is linearly dependent on
the driving current. It increases about 3 % over the entire current range. This slight
increase in inductance can be explained by the ongoing magnetization process in the
ferrite core material, where 𝜇Δ increases for increasing current. When the flotor touches
the coil (𝑥 = 7 mm), the effect of the ferromagnetic flotor is visible. The incremental
inductance increases by 23 % and exhibits a hysteretic behavior. Furthermore, the
incremental inductance saturates at higher currents. Because of the hysteretic effects as
well as saturation effects, the mapping is not bijective anymore starting from currents
above 2.5 A. When excluding these currents from the EML actuator working range, the
hysteresis effects can be neglected and a monotonous mapping is obtained. Consequently,
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Figure 5.4: Characteristic of the incremental inductance of the EML actuator over the
entire current range for two given positions: the flotor is near the coil (blue)
and the flotor is in infinite distance from the coil (red), adopted from [70].

the above mentioned polynomial of the third order for current and position dependency
can be applied, that allows for a unique position estimation in the current range up to
2.5 A.

Control strategy The EML application resembles an electro-magnetic-mechanical sys-
tem with non-linear characteristic. For controlling such a system, a control strategy has
been designed that is summarized in Figure 5.5. A cascaded control approach is chosen
with an outer position control loop and an inner current control loop. The underlying
electrical system is controlled by a dedicated current controller with an reference current
as input and the driving voltage as output. In particular, the current controller is a
PI controller whose gains are tuned based on the modulus optimum criteria [11] with
the given electrical parameters of the coil. The driving voltage is then generated by a
PWM-operated H-Bridge. The position controller is based on a Super-Twisted Sliding
Mode Controller (STSMC). The STSMC takes the reference position and the actual
position and calculates the magnetic force that is needed for stabilizing the position
of the flotor. The magnetic force is non-linearly dependent on position and current.
Consequently, it represents a static nonlinearity and can be inverted for the given working
conditions. Thus, the characteristic can be linearized by applying output linearization
by means of the inverted model. The position feedback is closed with the self-sensed
position obtained by the IDIM technique and the inverted polynomial model based on
the current and the estimated incremental inductance.

The position controller is chosen to be a STSMC due to the high robustness of such
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Figure 5.5: Overall schematic of the closed loop control scheme, including the inductance
estimation by means of the IDIM technique, the inductance model, the
STSMC position controller, current controller and H-Bridge, adopted from
[70].

type of controllers towards model uncertainties, external disturbances and parameter
uncertainties. This is especially helpful for the given EML actuator since there will be
modeling errors due to the neglected hysteretic behavior and parameter variations due to
a temperature rise. While a thorough analysis and description of such controllers would
clearly expand the scope of the thesis, only basic relationships are given here for general
comprehension. The interested reader is guided to a fundamental book [113] for further
derivations and theoretical background. Sliding Mode Controllers (SMC) of the first
order achieve a high robustness to uncertainties and disturbances due to a discontinuous
control term based on the signum function:

𝑠𝑖𝑔𝑛(𝜎) =


1 for 𝜎 > 0

0 for 𝜎 = 0

−1 for 𝜎 < 0

, (5.3)

with 𝜎 being the sliding variable that represents the error in the system. Applying
such a signum function in the control law allows eliminating bounded uncertainties
and disturbances in the theoretical case of infinite bandwidth. Nevertheless, in discrete
systems, the usage of such a function inherently introduces a high-frequency content in
the control action, the so-called chattering, that is usually undesired. The problem of
chattering has been addressed by higher order SMCs, where the signum function is placed
on derivatives of the control action instead on the control action itself. A particular
version of a second order SMC is the STSMC, which strongly decreases chattering [113].
In the reference tracking problem, the error between reference and actual position can be
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formulated as

𝜖 = 𝑥 − 𝑥𝑟𝑒 𝑓 , (5.4)

and based on the error, a suitable sliding variable can be chosen:

𝜎 = ¤𝜖 + 𝜆𝜖, (5.5)

with 𝜆 being a gain parameter. Based on the chosen sliding variable, the control law
of the STSMC can be applied [113]

𝐹𝑚 = 𝜆 · 𝑠𝑖𝑔𝑛(𝜎) ·
√︁
|𝜎 | + 𝜔, (5.6)

¤𝜔 = 𝑏 · 𝑠𝑖𝑔𝑛(𝜎), (5.7)

with 𝑏 being a tunable factor and 𝜔 being a helping variable. It can be seen that
in this case the signum function only acts on ¤𝜔, and consequently, the chattering can
be reduced by the integration of that variable. The control law is able to drive 𝜎 → 0
and thus 𝑥 → 𝑥𝑟𝑒 𝑓 by applying a certain magnetic force 𝐹𝑚 [113]. Convergence to the
reference position is guaranteed even when an external disturbance Φ(𝑥, ¤𝑥, 𝑡) is present,
whose derivative is bounded ¤Φ(𝑥, ¤𝑥, 𝑡) < 𝐿. In this case, 𝐿 represents a Lipschitz constant
and can be used for tuning of the parameters 𝜆 and 𝑏 [113]. For further theoretical
background and proof of convergence reference is given to [113].

Experimental results In the following, the performance of the discussed sensorless
control approach is verified on the experimental set-up. In particular, the SMC parameters
have been chosen to 𝜆 = 20 and 𝑏 = 8 as a good trade-off between reference tracking
and remaining chattering. Then, stepwise and sinusoidal reference positions are given to
the controller to validate the reference tracking of the controller. The position feedback
is closed with the self-sensed position, while the sensor only serves as comparison
measurement.

Figure 5.6 shows the performance of the controller for the stepwise and sinusoidal
references. At the top figure, the measured, estimated and reference position are shown
and compared. The middle plot indicates the driving current that is applied. The
bottom plot shows the deviation between measured and estimated position. In the
case of the stepwise reference, the controller is able to stabilize the flotor in the given
positions and is able to track the reference position with a maximum error of 1.5 mm.
The transitions between the reference steps are followed in a stable way with small
settling time. The position error consists of a high-frequency component and a static
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component. The high-frequency component is based on the high-frequency content in
the driving current which is caused by the remaining chattering. Because of this, small
errors in the position estimation are introduced which are fed back into the system, thus
causing more chattering. The static error is mainly caused by the modeling errors in
the incremental inductance. As stated previously, hysteretic effects have been neglected
in the phenomenological modeling of the incremental inductance. Thus, it can be seen
that, especially for small air gaps, where the contribution of the hysteretic flotor is more
present, the error increases. For larger positions, the error minimizes. In the case of the
sinusoidal reference, the same observations can be made. The flotor is able to levitate in
a stable way and follows the reference in a clear way with minimal phase shift. Also here,
the error consists of two contributions: a static one and a high-frequency one, which are
caused by the above mentioned problems.

In the complete experiment, it is visible that the self-sensing based control has a
significant merit compared to the sensor-based control. While the laser sensor only
measures a small spot on the surface of the flotor, the self-sensing technique is able to
sense "the volume" of the flotor. Thus, small deviations in the y- or z-directions have less
influence on the position information in the self-sensing case than in the sensor-based case.
Consequently, higher stability and robustness can be achieved by this kind of control.

Figure 5.6: Position controller with sinusoidal (left) and step (right) references. Top:
Reference position compared to measured and estimated position, Middle:
Applied driving current, Bottom: Position error between estimation and
measurement, adopted from [70].
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6.1 Summary and discussion

Electromagnetic actuators such as solenoids are well established since around 200 years.
Their simple and robust construction has the merit of high forces and large strokes but
the demerit of a nonlinear force characteristic involving hysteresis. Thus, sophisticated
control methods including position sensors are required. In high quality applications, the
sensor is usually embedded into the actuator system. Instead, in the low-cost segment
or in environments, where sensor wiring is cumbersome, sensors are avoided and the
actuators are driven in an open loop manner with reduced efficiency and performance.
Self-sensing, which is based on the estimation of mechanical quantities through electrical
measurements, seems therefore desirable. Such self-sensing relies on three physical
principles, namely the magnetic flux, the inductance and the iron losses. The first one is
only able to operate at middle to high speeds while the latter ones allow an estimation
in standstill and low-speed conditions.

This work focuses on the position estimation at low speeds and standstill since the
actuators under observation are mainly used for position applications. Compared to
well-known injection-based approaches, this work uses the current ripple that is inherently
induced by PWM-switching electronics. After a basic introduction into the working
principle of those actuators and the properties of softmagnetic materials, an electrical
equivalent circuit for those actuators is developed under the consideration of iron losses.
Based on this, a self-sensing strategy is proposed with the main focus laying on the
reduction of computation and measurement effort. Since the estimation through the
incremental inductance shows ambiguities at higher currents, an additional estimation
strategy based on iron losses is considered. Through a data fusion by means of an ANN,
a unique position estimation can be obtained. Another point concerns the hysteresis
that affects the position estimation significantly. In order to compensate for hysteretic
phenomena, an approach involving a core separation principle is presented. Experimental
results on industrial actuators prove the accuracy and robustness of the presented
techniques. In the last chapter, a sensorless control of an electromagnetic levitator is
shown that proves the robustness of the technique in case the estimated position is used
as feedback signal.
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In the following, the main contributions of the work are being highlighted and discussed.

Modeling and analysis of current ripples
For a successful implementation of position self-sensing techniques, the modeling of the
underlying physical effects is crucial. This work starts from the properties of softmagnetic
materials. A physical model describes the position dependency of these properties by
means of magnetic equivalent circuits. In particular, the magnetic characteristic of the
back-iron, plunger and the air gap is studied under the consideration of eddy currents,
and, for larger material sizes, the skin effect. Based on the magnetic equivalent circuit, an
electrical equivalent circuit is derived that transforms the magnetic effects into electrical
components such as resistance, inductance and back-EMF voltage, that can be analyzed
based on well-known circuit theory. In particular, the circuit is simplified to a combination
of series resistance, series inductance and parallel resistance when a PWM voltage is
applied. In case of neglected iron losses, the classical current response of a first order
system to a step voltage is obtained. In case iron losses are considered, cusps in the current
are visible and an additional term representing the decay of eddy currents is visible. The
height of such a cusp is dependent on the parallel resistance, and, consequently, on the
position. Such an analytical model of the current ripple under PWM excitation is a
contribution to the state-of-the-art, where only numerical models existed. It serves as a
basis for the self-sensing strategies that are being proposed. Experimental results prove
that the model achieves a fit performance of 87% while keeping the computational effort
low.

Computational lightweight self-sensing
Based on the obtained analytical model of current ripples, a self-sensing strategy is
proposed that estimates the actuator position by exploiting the position dependency
of the incremental inductance and the parallel resistance. Using the current ripple is
a minimally invasive approach, since no further injection is required and the PWM
excitation is inherently available in the system. In particular, the IDIM technique for
the estimation of the incremental inductance is presented, that processes the current
ripple by means of an analog integrator circuit with reset. This allows, on one hand, a
robust identification of the inductance since current derivatives are avoided, and, on the
other hand, a reduction of the computation and measurement effort since oversampling
is avoided. Thus, the technique can be implemented in cost-critical applications. Beside
the IDIM technique in its full derivation, a simplified IDIM technique is presented in
case less estimation bandwidth is required. This SIDIM technique relies on a simplified
current ripple model, where iron losses are neglected and a linear slope of the current
ripple is assumed. Therefore, the SIDIM technique is suited for quasi-static position
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estimation and requires less measurement samples and calculations than the IDIM
technique. Moreover, the SNR is increased due to the absence of current differences in
the estimation process. Experiments on a switching actuator are conducted that show the
signal quality of the IDIM and SIDIM techniques compared to a well-known oversampling
technique. It can be seen that the SIDIM technique is able to outperform the IDIM
technique and oversampling approaches with up to 1000 samples per PWM period in
terms of noise power while the IDIM technique outperforms oversampling approaches with
up to 100 samples per PWM period. Following these results, an experiment validated the
position detection in case of a switching actuator. In particular, the (S)IDIM technique
is able to identify the actuator position in a precise way for the undriven actuator, while,
for the actuator under nominal current, an error occurs due to working points showing
ambiguities and hysteretic behavior. It has to be denoted, that in those experiments, no
low-pass filtering was applied, in order to observe the estimation noise, and the estimation
variance can be drastically decreased by implementing such type of filter.

An additional experiment involving an electromagnetic levitator proves the robustness
of the technique in case a position control loop is closed with the estimated position as
feedback. In the presented case of a sinusoidal and stepwise reference, the control loop
maintained stable and was able to stabilize the flotor in case of a large air gap (𝑥 =
12 𝑚𝑚).

Furthermore, an error analysis was conducted that shows the sensitivity of the technique
towards measurement and electronic component variations. It has been identified that a
gain and an offset error are critical errors that affect the estimation accuracy significantly.
In order to address this issue, while keeping the component costs low, an ASIC was
designed that embeds the integrator circuit by means of the Switched Capacitor technology.
By applying this type of technology, the integrator stage exhibits tight tolerances and
can be parameterized during operation.

Solution to ambiguities
The incremental inductance can show non-monotonicities at higher currents in certain
actuators, that leads to the presence of ambiguities. State-of-the-art works use the
parallel resistance as further estimation input to solve these ambiguities. In this work,
the parallel resistance is estimated by means of a computationally lightweight method,
that requires only 3 measurements per PWM period. Thus, it serves as a good extension
to the IDIM technique in terms of implementation effort. Instead of binary rules and/or
look-up-tables, that are being used in the state-of-the-art, this work applies a lightweight
MLP for the data fusion of the incremental inductance and parallel resistance. This leads
to a higher accuracy and a higher SNR since the estimates of the incremental inductance
and parallel resistance are weighted based on their information content. The experiments
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on an industrial actuator prove that the combined estimator is able to track the position
with less than 2.5% of error.

Hysteresis compensation
For the case of actuators exhibiting significant hysteretic behavior, a hysteresis com-
pensation based on a separation principle is presented. In particular, the B-H curve
hysteresis is modeled by the well known Modified Prandtl-Ishlinskii (MPI) model, which
is a phenomenological model with inherent algebraic invertability and reduced calculation
effort. The separation principle allows to isolate the hysteretic behavior of the iron
core from the non-hysteretic behavior of the air gap, and, consequently allows to reduce
the position and current dependent hysteresis into a hysteresis, which is only current
dependent. Nevertheless, the incremental inductance shows a butterfly hysteresis that
cannot be modeled by standard hysteresis models. Consequently, this work introduces
a transformation approach that allows to link the butterfly hysteresis with the B-H
curve hysteresis. In experimental validation, the hysteresis compensator is applied to an
industrial switching actuator. By using the hysteresis model that has been pre-identified,
and by excluding working points with poor position sensitivity, the hysteresis compensator
is able to reduce the position error from 49.3% to 9%.

6.2 Outlook

During the experiments, certain effects and limitations have been discovered that can
serve as a starting point for future research activities:

Temperature effects
Electromagnetic actuators are usually driven close to their thermal limits. Thus, a
significant temperature range can be covered due to self-heating or because of environ-
mental influences. As seen during the experiments, the parallel resistance exhibits a
strong influence on the temperature due to the temperature dependency of the electrical
conductivity. Furthermore, the incremental inductance is slightly temperature-dependent.
As already discussed, an estimation of the copper resistance, e.g. by evaluation of the
series resistance or by identification through LMS/RLS approaches, can serve as basis for
temperature estimation and compensation. While this solution seems theoretically simple,
further modeling and validation effort has to be undertaken. In particular, different
ambient temperatures have to be simulated, e.g. by means of a climate chamber.

Extending the hysteresis model
As seen within the self-sensing experiments with hysteresis compensation, further re-
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search steps have to be taken in order to extent the hysteresis compensator for industrial
applications. First, the experiment was conducted in a quasi-static manner. While this
still serves as a good application scenario for low-speed actuators, the model needs to
be extended for dynamical operation. In particular, the hysteresis needs to be tracked
reliably during dynamic operation, and the frequency dependency of the hysteresis needs
to be modeled. Due to increasing iron losses, the width of the hysteresis increases with
increasing frequency, making an extension for dynamic operation necessary. Another
point concerns the modeling effort in the magnetic circuit. In this work, leakage paths
and parasitic air gaps have been neglected, resulting into modeling errors. In order to
improve the estimation performance, such components in the magnetic path should be
considered. Furthermore, it has been observed that the compensated characteristic of
the actuator still shows ambiguities, making a combination of an inductance-based and
parallel resistance-based estimator involving hysteresis compensation necessary.

Beside unmodeled physical effects, further works can be built on top of the already
existing technique:

Combination with state observers
Similarly to self-sensing approaches in the field of electrical machines, a combination of
the IDIM technique with a state observer seems desirable. Such a supervising observer
could track the superimposed mechanical system, allowing for a robust estimation of the
position. Furthermore, also the magnetic force and external load forces could be tracked.

Application on multi-phase actuators
With the discussed merits of the IDIM technique, an extension of the technique to
multi-phase actuators such as (a)synchronous machines as well as stepper motors, seems
plausible.
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List of symbols

General

𝑥, 𝑋 Quantities
x Vectors
X Matrices

Accents

˜ Error-affected quantities
¯ Offset-removed quantities
ˆ Estimated quantities

Subscripts, can be combined

Δ incremental
Σ, 𝑡𝑜𝑡 summarized
0 initial condition
𝑏 back-iron
𝑒 eddy currents
ℎ hysteresis losses
𝑝 plunger
𝑠 series
𝑥 air gap

Superscripts

+ Referred to the positive PWM voltage pulse, positive signal
− Referred to the negative PWM voltage pulse, negative signal

141



List of symbols

Quantities

𝛼 Duty cycle
𝛿 Dirac function
Δ𝑖+,Δ𝑖− Current differences within PWM period
Δ𝑡+,Δ𝑡− Time differences within PWM period
𝜂 Coefficient of the Steinmetz law
Γ Magnetic transfer function nominator polynomial
Λ Electrical transfer function denominator polynomial
𝜆 SMC parameter
𝜇 Magnetic permeability
𝜇0 Magnetic permeability in air
𝜇𝑑 Differential relative magnetic permeability
𝜇𝑟 Relative magnetic permeability
𝜇𝑟𝑒𝑣 Reversible relative magnetic permeability
𝜇𝑠 Static relative magnetic permeability
𝜔 Helping variable for SMC
𝜎𝑒𝑙 Electrical conductivity
𝜎 Sliding Variable
𝜎2 Variance
𝜙 Magnetic flux
Φ External disturbance
Φ1,Φ2 Clocks for SC technology
𝜓 Magnetic flux linkage
𝜏𝑒𝑙 Time constant of the electrical subsystem
𝜏𝐻𝑃 High-pass filter time constant
𝜏𝑖 Time constant the current (controller) dynamics
𝜏𝑚 Time constant of the mechanical subsystem
𝜏𝑡ℎ Time constant of the thermal subsystem
𝜃 Magneto-Motive Force
Θ Heaviside step function
Θ𝑥,𝑦 Weighting gains for the neurons in the MLP
Υ Magnetic transfer function denominator polynomial
Ξ Electrical transfer function nominator polynomial
𝐴 Matrix with integral measurements
𝐴𝑒 𝑓 𝑓 Effective cross section of a piece of magnetic material
𝐵 Magnetic flux density
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𝑏 SMC parameter
𝑏𝑖 Bias for the neurons in the MLP
𝑐 Spring constant
𝐶 Electromagnetic constant
𝐶0 Unit SC capacitor
𝐶,𝐶1, 𝐶2, 𝐶𝑖𝑛𝑡 Integration capacitances
𝐶𝑘𝑙 Coefficients of the polynomial fitting
𝐶𝑝 Parallel capacitance
𝐶𝑅 SC resistor capacitance
𝑑 Damping coefficient
𝑒 Coefficient of the Steinmetz law
𝑒+
𝑖
, 𝑒−

𝑖
Errors in the estimated current cusp height

𝑓𝐶 SC frequency
𝑓𝐻𝑃 Cut-off frequency of the high-pass filter
𝐹𝑚 Magnetic force
𝑓𝑝𝑤𝑚 PWM frequency
𝑔 Gravity constant
𝐺 Measurement Gain
𝐺𝑖 Gain error in current measurement
𝐺𝑅𝐶 ,Δ𝐺𝑅𝐶 Gain error in the integrator
𝐺𝑢 Gain error in voltage measurement
𝐻 Magnetic Field Strength
ℎ𝑖 Height of the current cusp
H𝑟𝐻 Vector of play operator with thresholds 𝑟𝑆

𝑖 Electrical current
𝑖𝑑 Driving current
𝑖𝐹𝐴𝑅 High-pass filtered and rectified current
𝑖𝐻𝑃 High-pass filtered current
𝑖+𝑚𝑒𝑎𝑛, 𝑖

−
𝑚𝑒𝑎𝑛, 𝑖𝑚𝑒𝑎𝑛 Mean value of current during PWM period

𝑖𝑜 Offset error current
𝑖𝑟𝑒 𝑓 Current reference
𝑖0𝑠 Mean value of the current ripple
𝐿 Inductance
𝐿 Lipschitz constant
L Magnetic inductance
𝑙𝑒 𝑓 𝑓 Effective length of a piece of magnetic material
𝐿𝑠 Static inductance
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List of symbols

𝑚 Mass
𝑀 Hysteresis model
𝑛 Noise
𝑁 Number of windings
𝑛𝑐 Model order used for the eddy current model
𝑛𝑖 Model order of the polynomial for the current
𝑛𝑝 Model order of the polynomial for the self-sensing parameter
𝑛𝑥 Model order of the polynomial for the position
𝑃𝑛 Noise power
𝑄 Integral value of the IDIM technique
𝑄𝑜 Offset error in the integrator
𝑟 Reset signal
R Magnetic reluctance
RΔ𝐹𝑒 Iron core reluctance
𝑅𝑒𝑞 Equal resistance
𝑅𝑖𝑛𝑡 Integration resistance
R𝑙 Magnetic reluctance representing leakage fluxes
𝑅𝑝 Parallel resistance representing iron losses
R∫ Magnetic static reluctance
𝑅𝑠ℎ𝑢𝑛𝑡 Shunt resistance
𝑠 Laplace value
S𝑟𝑠 Vector of superposition operators with thresholds 𝑟𝑆

𝑇𝐶 SC time period
𝑡𝛿 Time delay for eddy current measurement
𝑡+
𝑚1, 𝑡

+
𝑚2, 𝑡

−
𝑚1, 𝑡

−
𝑚2 Time instants for eddy current measurement

𝑡𝑝𝑤𝑚 PWM time period
𝑡𝑟 Waiting time
𝑡+𝑠 , 𝑡

+
𝑒 , 𝑡

−
𝑠 , 𝑡

−
𝑒 Time instants within PWM period

𝑢 Electrical voltage
𝑢𝐶 Capacitor voltage
𝑈𝐷𝐶 DC link voltage
𝑢𝑑𝑟 Electrical driving voltage (from controller)
𝑢𝑖𝑛𝑑 Induced Voltage
𝑢𝑚𝑒𝑎𝑠 Measured voltage
𝑢𝑚𝑒𝑎𝑛 Mean voltage
𝑢𝑠ℎ𝑢𝑛𝑡 Shunt voltage
𝑢𝑜 Offset-error voltage
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𝑢𝑜 𝑓 𝑓 Offset voltage
𝑢𝑜𝑢𝑡 Output voltage
𝑣 Magnetic voltage
𝑊𝑚𝑎𝑔 Magnetic energy
w𝑠,w

′
𝑠 Weights and inverse weights of the superposition operator

w𝑍 ,w
′
𝐻

Weights and inverse weights of the play operator
𝑥 Position, air gap size
𝑥0 Position offset
𝑥𝑒𝑠𝑡 Estimated position
𝑥𝑚𝑒𝑎𝑠 Measured position
𝑥𝑟𝑒 𝑓 Position reference
Z Magnetic impedance
z𝐻0, z

′
𝐻0 Initial and inverse initial conditions of the play operator
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