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Abstract

With the growing digitization of many dimensions of human life, including educa-
tion, work, and entertainment, the Internet has become an inevitable utility. Since
the Internet is designed and realized through the cooperation of many different or-
ganizations in a non-centralized manner with a best-effort mindset, it is essential to
measure and monitor different aspects of the Internet including security, performance,
and scalability. The rise of remote work has emphasized the need for measuring se-
curity of the Internet traffic.

In this thesis, we first address the need for monitoring and measuring large-scale Inter-
net traffic to gain useful insights into the security and traffic trends in large Internet
Service Providers (ISPs) and Internet eXchange Points (IXPs)–important building
blocks of today’s Internet–by designing a system called Flowyager for summarizing
and querying network-wide flow data in a near real-time manner. This system en-
ables network operators to spot Distributed Denial of Service (DDoS) attacks in the
captured flow data and drill down specific parts of the flow data to gain more details
about the attacks.

Next, we propose FlowDNS to augment flow data with domain names which gives
us the chance to infer the actual service/domain to which the traffic belongs. This
system lays the foundation for monitoring the services that are being used and gives
network operators the chance to predict their bandwidth demands. The results from
FlowDNS can later be combined with other sources of network data, e.g., routing
data, to help network operators with their peering decisions.

FlowDNS and Flowyager provide means to analyze network traffic and find abnormal
traffic behaviors on the existing packet captures. However, to gain a more compre-
hensive picture of Internet traffic, we need to combine the results from the above-
mentioned systems with active measurement techniques. This gives us the chance to
discover the existence and origin of hidden characteristics of the Internet traffic. For
instance, in a large European ISP, we detect a large amount of Internet traffic using
port number 0 when querying Flowyager. In this thesis, we complement passive mea-
surement results with active measurement techniques to investigate the underlying
causes of such traffic. We find that this traffic is mostly caused by fragmentation,
scanning, and misconfigured devices.

Finally, given the widespread usage of Virtual Private Networks (VPNs) during the
COVID-19 pandemic for remote work, we strive to characterize VPN traffic in the
Internet. We use active measurement techniques to detect VPN servers and analyze
their security aspects. Then, with the help of FlowDNS, we detect VPN traffic on
the Internet to provide insights about the VPN traffic patterns in the Internet.

We publish the code for our systems, active measurements, and our analyses for future
researchers to use. The works covered in this dissertation not only help researchers
and network operators to gain insights about some hidden characteristics of Internet
traffic but also provide the means to look for specific traffic patterns in the network
flow data and investigate its characteristics.
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Zusammenfassung

Mit der zunehmenden Digitalisierung vieler Bereiche des menschlichen Lebens, ein-
schließlich Bildung, Arbeit und Unterhaltung, ist das Internet zu einem unverzicht-
baren Hilfsmittel geworden. Da das Internet durch die Zusammenarbeit vieler ver-
schiedener Organisationen in einer nicht zentralisierten Art und Weise mit einer Best-
Effort-Mentalität entwickelt und realisiert wird, ist es unerlässlich, verschiedene As-
pekte des Internets wie Sicherheit, Leistung und Skalierbarkeit zu messen und zu
überwachen. Die Zunahme des Home Office hat die Notwendigkeit unterstrichen, die
Sicherheit des Internet-Traffics zu messen.

In dieser Arbeit befassen wir uns zunächst mit der Notwendigkeit, den Internet-
Traffic in großem Maßstab zu analysieren und zu messen, um nützliche Einblicke
in die Sicherheits- und Traffic-Trends bei großen Internet Service Providern (ISPs)
und Internet Exchange Points (IXPs) - wichtigen Bausteinen des heutigen Internets
- zu gewinnen. Hierzu entwickeln wir ein System namens Flowyager zur Zusammen-
fassung und Abfrage von netzwerkweiten Datenströmen in nahezu Echtzeit. Dieses
System ermöglicht es Netzbetreibern, DDoS-Angriffe (Distributed Denial of Service)
in den erfassten Datenströmen zu erkennen und bestimmte Teile der Datenströme zu
analysieren, um mehr Details über die Angriffe zu erfahren.

Als Nächstes schlagen wir FlowDNS vor, um Flow Data mit Domänennamen zu
ergänzen. Flow Data bezeichnet hierbei die Informationen über einen Datenstrom,
der sich über einen längeren Zeitraum zwei kommunizierenden Endstellen zuordnen
lässt. Dadurch erhalten wir die Möglichkeit, auf den tatsächlichen Dienst/die Domäne
zu schließen, zu dem/der die Datenströme gehören. Dieses System gibt Netzbetrei-
bern die Möglichkeit, ihren Bandbreitenbedarf vorherzusagen. Die Ergebnisse von
FlowDNS können später mit anderen Quellen von Netzdaten, z.B. Routing-Daten,
kombiniert werden, um Netzbetreibern bei ihren Peering-Entscheidungen zu helfen.

FlowDNS und Flowyager bieten die Möglichkeit, die Netzwerkdatenströme zu ana-
lysieren und abnormale Traffic-Muster anhand der vorhandenen Daten zu erkennen.
Um jedoch ein umfassenderes Bild des Internet-Traffics zu erhalten, müssen wir die
Ergebnisse der oben genannten Systeme mit aktiven Messverfahren kombinieren. Dies
gibt uns die Möglichkeit, die Existenz und den Ursprung verborgener Merkmale des
Internet-Traffics zu entdecken. So stellen wir beispielsweise bei einem großen euro-
päischen ISP fest, dass ein großer Teil des Internet-Traffics über die Portnummer
0 abgewickelt wird. Deshalb ergänzen wir die passiven Messergebnisse mit aktiven
Messverfahren, um die Ursachen für diese Datenströme zu untersuchen. Wir stellen
fest, dass diese Datenströme hauptsächlich durch Fragmentierung, Scannen und falsch
konfigurierte Geräte verursacht werden.

Angesichts der weit verbreiteten Nutzung Virtueller Privater Netzwerke (VPNs) wäh-
rend der Corona-Pandemie für das Home Office untersuchen wir die VPN-Datenströme
im Internet zu charakterisieren. Hierzu verwenden wir aktive Messverfahren, um
VPN-Server aufzuspüren und ihre Sicherheitsaspekte zu analysieren. Anschließend
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ermitteln wir mit hilfe von FlowDNS die VPN-Datenströme im Internet, um Er-
kenntnisse über deren Muster im Internet zu gewinnen.

Wir veröffentlichen den Code für unsere Systeme, die aktiven Messungen und unsere
Analysen, damit zukünftige Forscher sie nutzen können. Die in dieser Dissertation
behandelten Arbeiten helfen nicht nur Forschern und Netzbetreibern, Einblicke in
einige verborgene Merkmale des Internet-Traffics zu gewinnen, sondern bieten auch
die Möglichkeit, nach bestimmten Mustern der Internet-Datenströme zu suchen und
deren Merkmale zu untersuchen.
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1
Introduction

The Internet was initially built to share information between a limited number of
known hosts used for a few applications. It then gradually evolved into its current
form connecting 5 billion users around the globe as of January 2023 [6]. Internet mea-
surement has been in place since the birth of the Internet for debugging purposes,
deployment planning, and future developments, and it still is one of the critical re-
quirements of the Internet. The evolution of the Internet was not led or planned by
a single organization with built-in measurement mechanisms, therefore, measuring
such a distributed system is needed continuously not only to understand how it is
evolving but also to shape its future. Also, Internet failures can still be caused in-
tentionally or by mistake, keeping a specific service or user group from the Internet,
e.g., the Facebook outage in 2021 [7], or the Verizon outage in 2019 [8]. Internet
measurements help reduce these failures and faciliate building counter-measures to
recover from them as soon as possible. Moreover, service providers need to ensure that
their infrastructure and network resources match with the traffic demands requiring
Internet measurements to take place.

Internet measurements assist Internet Service Providers in gaining insights into their
networks, and enabling them to engineer their networks to meet customers’ demands
and make informed peering desicions. For traffic engineering, ISPs need to know
their customers’ traffic characteristics including the traffic volume, the origins or
destinations of their traffic, and the applications or services their customers are using.
In addition, Internet traffic characteristics are of great importance due to security
concerns. In case of a cyber attack to a service provider infrastucture or a customer
network, knowing the characteristics of the attack is crucial not only to measure the
scope of the attack, but also to avoid it in the future.

Another purpose of Internet measurement is to assess compliance with Internet pro-
tocols and standards. Although the Internet has evolved organically and protocols
are designed and deployed on-demand, there are standards enforcing certain rules on
those protocols to enable hosts around the world to communicate. These limitations,
however, are not always respected, either intentionally, or due to misconfigurations.
Not following the standards or commonly expected behaviors can bring network de-
vices or mechanisms into unexpected states and therefore might induce threats to
networks. Therefore, it is important to measure Internet traffic from the standards
compliance perspective as well.

1



Chapter 1 Introduction

However, extracting important characteristics from Internet traffic is challenging,
first, due to the sheer amount of traffic in large networks, and second, due to the
widespread use of encrypted traffic.

Several terabytes of traffic pass service provider networks every day. These service
providers capture and store certain information about the traffic, e.g., the source and
destination address and port number identifying a traffic flow. Storing such a huge
amount of traffic flows as-is is impossible and the analysis needs to be done on an
excerpt of the traffic. Also, to be able to adapt to changes as fast as possible, the
analysis needs to be done as quickly as possible. There are a substantial number of
studies that address the problem of analyzing network traffic captures and answering
queries about the health and load of the system. However, surprisingly, there are
very few studies that enable issuing queries that are a priori unknown. In most of the
studies, network operators need to issue the query and then wait for that query to be
applied to the incoming data, and no new query can be applied to the historic data
which limits the functionality of such a system greatly. Therefore, the first research
question I plan to cover in this dissertation is the following: How can we monitor
the traffic using the existing network flow captures in near real-time with
a priori unknown queries?

Useful information such as the source and destination of the traffic is exposed to the
ISPs, therefore, most ISPs nowadays collect flow information on their interfaces. This
information not only helps them with better planning of their networks but also yields
fault detection benefits in certain scenarios. However, this information is sometimes
not enough on its own to grasp a precise picture of the traffic. Other metrics such
as the corresponding domain name are needed for knowing customers interests and
traffic classification. However, the domain name information is usually encrypted and
therefore, not exposed to the ISP. Therefore, the second research question I am going
to answer is the following: How can we recognize the application (domain
name) a certain traffic flow is using?

Traffic monitoring helps network operators find the volume and direction of the traffic
in their networks. However, it might not reveal certain aspects of the traffic and the
reason behind some abnormalities. For instance, researchers have shown that there is
a non-negligible share of traffic using port number 0 in the Internet [9, 10], although
this port number cannot be used according to the IANA protocol port number registry
[11]. Therefore, the third research question I strive to answer in this dissertation is the
following: Why do we see port 0 in the Internet and how can we characterize
this traffic?

With the COVID-19 outbreak and the increasing need to work remotely, people
are using Virtual Private Networks (VPNs) to securely connect to their companies
networks. Therefore, their traffic is encrypted and the network operators cannot
distinguish this kind of traffic. Therefore, it is important to investigate the following
research question: How can we characterize the encrypted VPN traffic?

Throughout this dissertation, I address these challenges and try to uncover hidden
characteristics of Internet traffic. To accomplish this, I (a) present a system designed

2



1.1 Contributions

for large-scale Internet traffic monitoring to extract, store, and query the most im-
portant traffic characteristics including the originating and destination addresses of
the heavy hitters, (b) present a system designed for large scale correlation of differ-
ent data sources, namely DNS and Netflow, to uncover the services behind Internet
traffic flows, (c) use the aforementioned systems along with active measurements to
uncover an illegitimate category of traffic and its intents, and (d) use the passive
measurement along with active measurements to characterize encrypted traffic flows
and detect VPN traffic.

Note that throughout this dissertation, I use the pronoun we instead of I wherever
the work is done in collaboration with multiple authors.

1.1 Contributions

As the overarching goal of this thesis was to characterize Internet traffic, we made
use of a broad range of Internet traffic datasets, including publicly available datasets,
and Internet traffic from large European ISPs and IXPs. To process such large
datasets, we built systems to be able to query network-related characteristics, and
in some cases, we made use of multiple methodologies to know more about specific
characteristics of Internet traffic.

Traffic monitoring. Many network operations, ranging from attack investigation
and mitigation to traffic management, require answering network-wide flow queries
in seconds. Although flow records are collected at each router, using available traf-
fic capture utilities, querying the resulting datasets from hundreds of routers across
sites and over time, remains a significant challenge due to the sheer traffic volume
and distributed nature of flow records. In this contribution, we investigate how to
improve the response time for a priori unknown network-wide queries. In Chapter 3,
we present Flowyager, a system that is built on top of existing traffic capture utili-
ties. Flowyager generates and analyzes tree data structures, which we call Flowtrees,
which are succinct summaries of the raw flow data available by capture utilities.
Flowtrees are self-adjusted data structures that drastically reduce space and transfer
requirements, by 75% to 95%, compared to raw flow records. Flowyager manages
the storage and transfers of Flowtrees, supports Flowtree operators, and provides a
structured query language for answering flow queries across sites and time periods.
By deploying a Flowyager prototype at both a large Internet Exchange Point and
a Tier-1 Internet Service Provider, we showcase its capabilities for networks with
hundreds of router interfaces. The results show that the query response time can
be reduced by an order of magnitude when compared with alternative data analyt-
ics platforms. Thus, Flowyager enables interactive network-wide queries and offers
unprecedented drill-down capabilities to, e.g., identify DDoS culprits, pinpoint the
involved sites, and determine the length of the attack.

Domain name recognition. Knowing customer’s interests, e.g., which Video-On-
Demand (VoD) or Social Network services they are using, helps telecommunication
companies with better network planning to enhance the performance exactly where

3



Chapter 1 Introduction

the customer’s interests lie, and also offer the customers relevant commercial pack-
ages. However, with the increasing deployment of CDNs by different services, iden-
tification, and attribution of the traffic on network-layer information alone becomes
a challenge: If multiple services are using the same CDN provider, they cannot be
easily distinguished based on IP prefixes alone. Therefore, it is crucial to go beyond
pure network-layer information for traffic attribution.

In Chapter 4, we leverage real-time DNS responses gathered by the clients’ default
DNS resolvers. Having these DNS responses and correlating them with network-layer
headers, we are able to translate CDN-hosted domains to the actual services they
belong to. We design a correlation system for this purpose and deploy it at a large
European ISP. With our system, we can correlate an average of 81.7% of the traffic
with the corresponding services, without any loss on our live data streams. Our
correlation results also show that 0.5% of the daily traffic contains malformatted,
spamming, or phishing domain names. Moreover, ISPs can correlate the results with
their BGP information to find more details about the origin and destination of the
traffic. We plan to publish our correlation software for other researchers or network
operators to use.

Standards compliance: Port 0. Internet services leverage transport protocol port
numbers to specify the source and destination application layer protocols. While using
port 0 is not allowed in most transport protocols, we see a non-negligible share of
traffic using port 0 in the Internet. In Chapter 5, we dissect port 0 traffic to infer
its possible origins and causes using five complementing flow-level and packet-level
datasets. We observe 73 GB of port 0 traffic in one week of IXP traffic, most of which
we identify as an artifact of packet fragmentation. In our packet-level datasets, most
traffic is originated from a small number of hosts and while most of the packets have
no payload, a major fraction of packets containing payload belong to the BitTorrent
protocol. Moreover, we find unique traffic patterns commonly seen in scanning. In
addition to analyzing passive traces, we also conduct an active measurement campaign
to study how different networks react to port 0 traffic. We find an unexpectedly high
response rate for TCP port 0 probes in IPv4, with very low response rates with other
protocol types. Finally, we will be running continuous port 0 measurements and
providing the results to the measurement community.

Characterizing the encrypted traffic. With the increase of remote working dur-
ing and after the COVID-19 pandemic, the use of Virtual Private Networks (VPNs)
around the world has nearly doubled. Therefore, measuring the traffic and security
aspects of the VPN ecosystem is more important now than ever. VPN users rely on
the security of VPN solutions, to protect private and corporate communication. Thus
a good understanding of the security state of VPN servers is crucial. Moreover, prop-
erly detecting and characterizing VPN traffic remains challenging, since some VPN
protocols use the same port number as web traffic and port-based traffic classification
will not help.

In Chapter 6, we aim at detecting and characterizing VPN servers in the wild, which
facilitates detecting the VPN traffic. To this end, we perform Internet-wide ac-
tive measurements to find VPN servers in the wild, and analyze their cryptographic
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certificates, vulnerabilities, locations, and fingerprints. We find 9.8M VPN servers
distributed around the world using OpenVPN, SSTP, PPTP, and IPsec, and analyze
their vulnerability. We find SSTP to be the most vulnerable protocol with more
than 90% of detected servers being vulnerable to TLS downgrade attacks. Out of
all the servers that respond to our VPN probes, 2% also respond to HTTP probes
and therefore are classified as Web servers. Finally, we use our list of VPN servers to
identify VPN traffic in a large European ISP and observe that 2.6% of all traffic is
related to these VPN servers.

1.2 Published Papers

This dissertation is based on multiple published papers in collaboration with many
authors. In this section, I outline the main contributions of the thesis author.

Flowyager: Exploring Network-Wide Flow Capture Data

This work, explained in Chapter 3, is published in IEEE TNSM in collaboration
with other co-authors [4]. The author’s main contributions are (a) a survey of typ-
ical network queries and systems to tackle them. (b) joint design of FlowQL query
language. (c) implementation and evaluation of the FlowQL module. (d) joint data
visualization, plotting, and writing.

Zeroing in on Port 0 Traffic in the Wild

This work, explained in Chapter 5, is published in PAM 2021 proceedings in collabora-
tion with other co-authors [1] and is also presented as a poster [5] at PAM Conference
2020. The author’s main contributions are (a) formulation of the research question,
(b) design and development of the active measurement setup, (c) investigating port
0 behavior both by analyzing passive datasets and active measurement results.

FlowDNS: Correlating Netflow and DNS Streams at Scale

This work, explained in Chapter 4, is submitted in collaboration with other co-authors
in [2]. The author’s main contributions are (a) the design, prototyping, and devel-
opment of the FlowDNS system, (b) the deployment of FlowDNS in two European
ISPs, and (c) evaluation of the proposed system.

Characterizing the VPN Ecosystem in the Wild

This work, explained in Chapter 6, is submitted in collaboration with other co-authors
[3]. The author’s main contributions are (a) formulation of the research question, (b)
performing active measurements for VPN ports that do not require a handshake,
i.e., OpenVPN, and IPsec, (c) detecting and investigating the VPN traffic in a large
European ISP, and (d) comparing the detected VPN traffic volume to the state-of-
the-art methods.
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Chapter 1 Introduction

1.3 Thesis Structure

I structure this dissertation as follows: In Chapter 2, I go through the relevant in-
formation on transport layer ports, DNS concept, basics of VPN, and measurement
methods to prepare a foundation on which the next chapters are built. Chapter 3
highlights the challenges in analyzing the existing flow data with a priori unknown
queries and proposes a lightweight tree structure, called Flowtree to keep the sum-
marized network flow data. Then we introduce a system, called Flowyager using
this data structure together with a query language, namely, FlowQL to address the
existing challenges. We finally compare the proposed system with the existing solu-
tions. In Chapter 4, we propose a system, namely FlowDNS to correlate DNS and
Netflow data in real-time which facilitates domain name recognition. We measure the
resource usage of the system, then we go over some use cases for such a system. In
Chapter 5, we analyze Internet traffic using port number 0 using the aforementioned
systems in addition to active measurements to specify the origins and intents of this
traffic. In Chapter 6, using FlowDNS, Flowyager, and active measurements, we ana-
lyze Internet traffic from an ISP, and try to distinguish between encrypted web traffic
and VPN traffic. Finally, Chapter 7 summarizes the main points and findings of this
dissertation, and discusses the future work.
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2
Background

The Internet has altered the world in many ways, making innumerable applications
possible, from working remotely to communicating with our loved ones from thou-
sands of miles away. The plethora of applications brought about by the Internet has
made it economically and politically important. Therefore, monitoring and measuring
such an important network is vital.

This chapter provides an overview of the essential background information neces-
sary to lay the foundation for the works in the following chapters. First, to give an
overview of how the Internet works, I will introduce the Internet protocols, including
the Domain Name System (DNS), which will be the primary focus of Chapter 4. Next,
I will discuss the Internet structure and how different Internet organizations, such as
ISPs, IXPs, and CDNs interact to provide end-customers with the Internet. Further-
more, I will emphasize the importance of closely investigating traffic flowing through
these organizations. Finally, I will describe the necessity of Internet measurement
and discuss different approaches for conducting such measurements.

2.1 Internet Protocols

The Internet today uses the Internet protocol suite which includes a set of communica-
tion protocols organized in layers. Link layer protocols define the networking methods
in the scope of local network links and transmission of the frames to next-neighbor
hosts. As soon as these frames leave the local network, network layer protocols such
as IP help the packets navigate through the Internet. In the case of Internet Pro-
tocol (IP), IP addresses are added to these packets to help the routers find suitable
routes for the packets. Transport layer protocols provide the communication chan-
nel between the applications in the end hosts. In other words, they help determine
the exact application which is sending/receiving the packet in the end hosts, along
with flow control and connection establishment. The most common transport layer
protocols in the TCP/IP protocol stack. i.e., TCP and UDP, use a set of standard-
ized port numbers to specify the application the packets belong to. The application
layer protocols use the above-mentioned layers to communicate user data with the
other hosts. Among the application layer protocols are HTTP, SSH, and DNS. DNS
associates numerical IP addresses with more human-readable domain names. It uses
a client-server model, with servers being the domain name resolvers. Each domain
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Chapter 2 Background

name has at least one authoritative DNS server that is responsible for resolving the
assignments for that domain name and any sub-domain of that domain.

Consider a scenario in which a client wants to access a web page through HTTP. The
client’s browser knows that HTTP uses port number 80, and it is given the domain
name that needs to be accessed, assume example.de is the domain name.

However, what remains unknown to the client’s browser is the IP address correspond-
ing to the web server serving the desired web page. To acquire the IP address of the
web server given the domain name, DNS is needed. Figure 2.1 shows how DNS
works. In this case, the client’s browser needs to send a DNS query, containing the
domain name example.de to the local DNS resolver residing on the client’s machine
or local network. Then the local resolver takes on the rest of the process. It first
sends the DNS query for domain name example.de to a DNS resolver according to its
configurations.

The DNS resolver configured in the browser receives the DNS query for example.de. If
the resolver finds an IP associated with example.de in its cache, it returns the IP to the
browser. If no IP is found in the cache, the DNS resolver looks for the authoritative
server for .de. If no match is found, it queries the root DNS server for .de to find the
authoritative server for .de. Then, the DNS resolver queries the authoritative server
for .de to find the authoritative DNS server for example.de. Next, the authoritative
server for example.de is queried and the IP associated with example.de is returned
to the client (i.e., the browser). Now the browser can use the returned IP address to
establish the HTTP connection.

It uses the returned IP address as the destination IP address to send the first HTTP
GET request. Then the Web server for example.de sends the landing page back to
the browser.

I used HTTP as an example only for the sake of simplicity, however in today’s In-
ternet, with the increasing number of attacks and eavesdropping on Internet traffic,
encrypting and securing this traffic becomes more and more important. Nowadays,
users not only use HTTPS (HTTP Secure) for their Web traffic to the Web servers
offering HTTPS but also use Virtual Private Networks (VPNs) to secure all their
traffic. VPNs help secure the traffic by encrypting and tunneling them. VPN is also
used to remotely access specific resources located in a company’s infrastructure or
to circumvent censorship. There are many different VPN protocols including SSTP,
PPTP, IPsec, OpenVPN, and Wireguard. All these protocols establish a secure con-
nection using a set of cipher suites between the client and server, then send/receive
the data in encrypted form using the established secure channel. Since VPNs are
commonly used for remote work, many researchers have focused on the VPN traffic
specifically after the COVID-19 pandemic [12, 13].
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2.2 Internet Structure

Figure 2.1: How Domain Name System Works

2.2 Internet Structure

The current Internet is made possible with the interconnection of Internet Service
Providers (ISPs), Internet eXchange Points (IXPs), backbone infrastructure, and
large content providers and Content Delivery Networks (CDNs). Figure 2.2 shows
the topology of the dominant Internet traffic patterns [14]. Most of the modern-day
Internet traffic is exchanged between large content providers, CDNs, and consumer
networks. In this section, we introduce these important Internet organizations.

2.2.1 Internet Service Providers

Internet Service Providers are organizations that provide services for accessing the
Internet. ISPs can be categorized into different categories based on their services
and infrastructure. The ISP 3-tier model categorizes ISPs into three main categories
[15]:

• Tier 1 ISPs. Networks that function as the backbone of the Internet, and
therefore, also called backbone Internet providers. These ISPs usually build,
own, and manage their own infrastructure such as the Trans-Atlantic undersea
cables. Tier 1 ISPs include Deutsche Telekom, British Telekom, AT&T, etc.
They exchange traffic with other Tier 1 ISPs via free peering interconnections,
and usually get paid by Tier 2 ISPs, Tier 3 ISPs, and their own subscribers.

• Tier 2 ISPs. Regional or national providers that pay Tier 1 ISPs to exchange
traffic with them, and also peer with other Tier 2 ISPs to increase their con-
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Chapter 2 Background

nectivity. They get paid by the Tier 3 ISPs to provide them with connectivity
to the Internet, and also by their own subscribers.

• Tier 3 ISPs. Providers that strictly purchase Internet transit from higher-tier
ISPs for accessing the Internet, and are mainly involved in providing Internet
access to end consumers. Therefore, Tier 3 ISPs are also referred to as con-
sumer networks. These ISPs usually also offer local DNS resolvers that can be
configured as the default DNS resolvers by end users.

As explained above, different Tiers of ISPs have different business models. Some
are in direct contact with the end-users and some provide service for other Internet
organizations. In either case, they need to be able to keep a close eye on the amount
of traffic they exchange with other organizations or for end-users. Therefore, it is
necessary for them to monitor their network traffic. We extensively address this in
Chapter 3. Also, we analyze different characteristics of the traffic from ISPs through-
out this thesis, including their DNS data in Chapter 4, the existence of traffic using
port 0 in Chapter 5, and detecting VPN traffic among ISP data in Chapter 6.

2.2.2 Internet Exchange Points

The interconnection, or peering, of ISPs at different levels is the fundamental build-
ing block of the Internet’s structure. Therefore, network exchange facilities came into
existence providing a physical infrastructure and neutral gathering point where ISPs
or other networks can exchange traffic with each other, independent of third parties
[16]. These facilities are called Internet eXchange Points (IXPs) in the modern In-
ternet terminology. Connecting to an IXP helps companies to shorten their path to
the transit and therefore, reduces latency, improves round-trip time, and potentially
reduces costs [17]. In a large European IXP, petabytes of traffic are exchanged every
day, therefore, there is a large amount of data that needs to be processed for security
and monitoring purposes. This challenge has been addressed in Chapter 3. More-
over, IXPs are very important as a vantage point since the traffic comes from many
different sources and is destined to many different destinations. Figure 2.2 shows how
IXPs help the interconnection of the ISPs in different levels.

Therefore, investigating the traffic going through IXPs can be helpful to uncover
hidden characteristics of Internet traffic, an instance of which we study in Chapter 5
with the use of IXP data.

2.2.3 Internet Content Providers

Any website or organization that manages access to a content repository through
the Internet is referred to as Internet Content Provider (ICP) or generally, content
provider. Content providers can be categorized by the type of content, including but
not limited to media, news, forums, and blogs, or by their business models. Some
content providers charge the end-users directly on a regular or on-demand basis, while
others might show them advertisements, or a combination of the two. In either case,
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Figure 2.2: Overview of the Internet structure borrowed from Labovitz et al. [14]

one important task for the ICPs is to deliver their content to the end users via the
Internet, and this can be challenging due to different reasons. They need to make
sure that the content is delivered with the least delay, is reliably accessible, and is
safe against cyber attacks. Therefore, ICPs sometimes use a CDN to take care of a
timely, reliable, and secure content delivery.

2.2.4 Content Delivery Networks

A Content Delivery Network (CDN) consists of a network of servers spread across
multiple locations. These servers collaborate to deliver Internet content fast, reliably,
and safely. Content providers such as video streaming services and news media use
CDNs not only to bring their content closer to their customers and increase their web-
site load times but also to increase content availability and redundancy and website
security. Some content providers use third-party CDNs to deliver their content such
as Twitch, a streaming platform widely used by gamers, and Vimeo, a video-sharing
website, which both currently use a combination of multiple third-party CDNs. In
the meanwhile, some companies implement and use their own CDNs such as Google,
Amazon, and Netflix to deliver their content. As Figure 2.2 suggests, CDNs can di-
rectly connect to IXPs and different tiers of ISPs according to their policies and size.
Most of the large content providers use CDNs for delivering their content, therefore,
traffic coming from CDNs contributes to a large fraction of Internet traffic and is
therefore interesting for network operators to monitor. In Chapter 4, we provide a
system design to be able to categorize the traffic specifically coming from CDNs with
more details. Big CDNs and content providers tend to directly connect to ISPs that
are in different tiers to enhance their performance.
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2.3 Internet Measurement

Almost all the protocols commonly used in the Internet are standardized by the Inter-
net Engineering Task Force (IETF) as Request For Comments (RFC). However, these
documents only specify details and rules on how to implement and use a protocol.
Therefore, there can be different implementations of the same protocol and Internet
measurements are needed to measure their compliance with the standards and to
investigate how the deviation from the standard can effect the Internet. On the other
hand, Internet protocols evolve over time and it is challenging to understand how
the evolution of the Internet protocols and the interplay between differrent Internet
protocols affect users and networks. Internet measurements, i.e., careful investigation
of Internet traffic and Internet protocols from different aspects, enables the research
community and network operators to gain insights into these issues. Network op-
erators also need to know about the traffic being exchanged in their networks for
evaluating the security of their networks, use of the resources, traffic shaping, and
invoicing purposes, which makes network monitoring an essential task.

To be able to extract meaningful information from the above-mentioned perspectives,
one needs to look at the right sources of traffic. Therefore, in our contributions to
uncover traffic characteristics, we use two different sources of data:

(1) active measurement data: we analyze the traffic we generate targeting the whole
Internet address space and extract characteristics of this traffic.

(2) passive measurement data: we analyze the traffic going through major IXPs and
ISPs in Europe to analyze the traffic in its most realistic form. Throughout the thesis,
we frequently use traffic data from a large European IXP and a large European ISP,
and occasionally publicly available traffic datasets, namely MAWI and CAIDA.

Using multiple sources of traffic along with active measurements gives us a relatively
unbiased perspective into the actual characteristics of Internet traffic. In rest of
this section, we explain how we perform active and passive measurement with more
details.

2.3.1 Passive Measurement

Passive measurement is the process of keeping track of network traffic adding any
traffic or affecting the existing one [18]. The advantage of such an approach is that
it measures real traffic although the measurement metrics need to be determined in
advance. In addition, using passive measurement usually requires processing large
volumes of data and therefore, requires specific methods to aggregate network data.
Passive measurement is a common approach used by network operators to gain in-
formation about various characteristics of the network traffic. ISPs and IXPs usually
capture their traffic information, usually sampled, in a pre-determined format, such
as Netflow or IPFIX and analyze them for traffic profiling, intrusion detection, and so
on. The 5-tuple, namely a combination of source IP address, destination IP address,

12



2.3 Internet Measurement

source port, destination port, and protocol are among the frequently gathered flow
information in such flow recordings.

Netflow. NetFlow is a feature originally introduced in Cisco routers to collect IP
network traffic on an interface. The packets entering or exiting one interface are
aggregated into flows by the flow exporter component of the router, then the flows
are received by the flow exporters to be stored and pre-processed, waiting for further
analysis. Netflow version 5 defines a flow as a uni-directional sequence of packets
sharing the following values:

• Ingress interface: the interface ID on which the packet is received.
• Source IP address
• Destination IP address
• IP protocol: IPv4 or IPv6
• Source port for UDP and TCP, or 0 for other protocols
• Destionation port for UDP and TCP, type and code for ICMP, or 0 for other

protocols
• IP Type of Service (ToS)

While Netflow version 5 only allows for exporting specific fields, the most recent
NetFlow version 9 allows for template-based flow definitions introducing more flexi-
bility. Since capturing all the packets are too costly for big networks such as those of
ISPs and IXPs, flow exporters usually sample one out of n packets depending on the
configurations.

IPFIX. Inspired by NetFlow, the IETF community came up with an open standard
format for capturing networks flow information, called IPFIX, which is now widely
used by many different networking vendors apart from Cisco. While IPFIX and
NetFlow are very similar in nature, IPFIX, unlike NetFlow, also allows for variable
length fields.

Throughout this thesis, the author extensively uses passive measurements to charac-
terize Internet traffic and propose systems to facilitate processing the large volume
of passive captures.

2.3.1.1 Ethical Considerations

When conducting passive measurement for the research in this dissertation, we com-
ply with the NDAs and ensure that no personally identifiable information is shared
when analyzing passive flow and packet data. Unlike active measurements, we will
not publish any of the passive measurement data. In the research presented in Chap-
ters Chapter 3, Chapter 4, Chapter 5, and Chapter 6, we process all ISP and IXP
data on their own premises and do not copy, transfer, or store any data outside of
the servers dedicated to NetFlow/IPFIX analysis.
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2.3.2 Active Measurement

Active measurement is measuring the network by sending probe packets to monitor
the statistics regarding these probe packets or the response to them to determine
network characteristics [18]. Active measurement is used when the most up-to-date
information about the behavior a network is needed. It provides great flexibility
about the measurement metrics since usually, no capturing needs to be done ahead
of time. It is possible to generate the desired type of traffic to measure, therefore,
we usually do not have to process a large amount of data compared to the passive
measurement approach. Note that the network traffic measured by this approach is
not the real network traffic, but synthetically generated for specific purposes.

In active measurements, a specific set of packets are generated with the desired head-
ers and payloads, then a set of target hosts are specified to send these packets to. In
order to perform an Internet-wide active measurement, i.e., targeting the maximum
amount of Internet hosts possible, there are two main challenges:

1. Speed and rate limiting. Internet-wide active measurements require scan-
ning a large number of targets relatively fast to be able to provide timely mea-
surements. The measurements also need to be configurable in terms of the
scanning rate. There are multiple open-source tools that provide fast network
scanning and configurability.
• ZMap: provides stateless single packet scanning for the whole IPv4 address

space [19] extended with IPv6 support [20].
• ZGrab: provides stateful scanning most specifically useful when full hand-

shakes are required [21].
• Yarrp: provides stateless network topology discovery, similar to the tradi-

tional traceroute [22].
2. Coverage. Maximizing the number of Internet hosts we plan to target increases

the coverage of the measurement, making the results more comprehensive and
therefore, valuable. To be able to maximize the coverage, it’s practical to dis-
tinguish between IPv4 and IPv6 hosts. The whole IPv4 address space includes
232, i.e., roughly 4.3 billion hosts, which can be targeted automatically using
the above-mentioned tools. However, the IPv6 address space includes 2128 hosts
making it impossible for the scanning tools to target the whole IPv6 address
space.
To overcome this, researchers have put together many different data sources con-
taining active IPv6 addresses, including the IP addresses from different DNS
datasets and RIPE Atlas traceroutes, resulting in an IPv6 hitlist [23]. Through-
out this thesis, I have used this hitlist for all of the IPv6 measurements.

Throughout this thesis, the author uses active measurements with the help of the
above-mentioned tools and mechanisms to analyze the behavior of Internet hosts to
different types of traffic probes.
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2.3.2.1 Ethical Considerations

Prior to carrying out active measurements, we go through an internal multi-party
approval process which follows proposals by Partridge and Allman [24] and Dittrich
et al. [25]. We adhere to scanning best practices [26] by restricting our probing
rate, maintaining a blocklist, and utilizing dedicated servers that provide clear rDNS
names, websites, and contacts for addressing abuse. These best current practices
are followed both in Chapter 5 and Chapter 6. During our active measurements for
Chapter 5, we received one email asking to be blocked, to which we immediately
complied.

2.4 Chapter Summary

This chapter briefly overviewed the basic concepts making the Internet work, includ-
ing the protocols and the modern Internet structure. I also discussed the importance
of Internet measurements, different measurement approaches, and common formats
and tools useful for Internet measurements.
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3
Flowyager: Exploring Network-Wide Flow

Capture Data

In the pursuit of uncovering hidden characteristics of Internet traffic, this chapter
delves into the realm of analyzing network-wide flow data. In Internet organizations
such as ISPs and IXPs, the network operators have to continuously keep track of
the traffic over both long and short time windows. Over long time windows, e.g.,
days or hours, network operators are interested in provisioning network capacity or
making informed peering decisions. Over short time windows, e.g., minutes, network
operators would like to identify and rectify unusual events, e.g. attacks or network
disruptions. To that end, they typically rely on either flow-level or packet-level cap-
tures from routers within their network [27]. For a summary of tasks and how previous
work tackled them see Table 3.1.

In Section 2.3.1, we introduced the 5 features included in flow captures: source (src)
and destination (dst) IP addresses, port numbers, protocol ID–to summarize traffic
information per flow–Packet and byte count [28, 29]. Packet captures gather packet
headers [30–33]. Unfortunately, gathering data for every packet is often too expensive
at high-speed links. Thus, flow-level and packet-level capture tools rely on sampling
packets, e.g., 1 of every 10k packets [34].

Recently, query-driven solutions, e.g., Sonata [35], Stroboscope [36], and Marple [37],
made it possible to compile specific queries into telemetry programs and collect data
from all queried network nodes. These solutions provide exceptional flexibility, but
they require the network operator to know a priori (i) the nature of the network prob-
lem, (ii) the network-related query that has to be compiled into telemetry programs,
(iii) the network node where the telemetry capability is available, and (iv) the node
where the query has to be executed. Unfortunately, in large networks with hundreds
of interfaces, operational issues arise at different parts of the network and the queries
that are required are not known in advance. In many cases, network engineers have
to try different queries to locate the source and type of problem interactively. Thus,
it takes a prohibitively large time to compile such queries into telemetry programs.
Another obstacle toward adopting such solutions is that this requires hardware in-
vestments by the network operator. For example, Marple relies on P4-programmable
software switches that are not yet widely adopted by Internet Exchange Points (IXP)
operators and Internet Service Providers (ISP).
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Chapter 3 Flowyager: Exploring Network-Wide Flow Capture Data

To the best of our knowledge, there is at this point in time no system that offers
answers to a priori unknown network-wide queries in a scalable interactive manner,
even though the necessary raw network data, e.g., via NetFlow or IPFIX is collected
by most operators.

From an operational point of view, fast exploration of large volumes of network
flows over time and across sites is useful to answer a range of operational queries
(see Table 3.1). Yet, network operators need to be able to tackle such tasks in a
unified and systematic way with reliable and scalable tools. Existing data analytics
systems, e.g., Spark [38], are not tailored to analyze network data when it comes
to scalability, interactivity, handling of geo-distributed data, or answering a priori
unknown network-wide queries.

In this chapter, we design, implement and evaluate a system, Flowyager, that is
able to answer a priori unknown network-wide queries with fast response, and, thus,
enables interactive exploration of network data across network sites and over time.
The architecture of our system is built around the following requirements:

(1) Scalability: The system should grow with the network size, the number of data
sources, and the analysis requirements. Hereby, it should enable distributed
deployment and not require all data to be transferred to a central location.

(2) Reuse of existing flow captures: As it takes significant effort to deploy novel net-
work capture utilities, the system should work on top of existing, widely de-
ployed, and supported flow capture capabilities, such as NetFlow, sFlow, IP-
FIX, or libpcap. In high-speed links, these tools typically sample packets [34]
to provide summaries of flow activity.

(3) Support of interactive and ad-hoc queries: To easily explore network data, the
system needs to offer an interface that is flexible and interactive (meaning re-
sponse times in the order of seconds) so as to improve user productivity and
enable drill-down capabilities. Possible queries vary and a system should not
only focus on batch-style known queries but also enable quick ad-hoc explo-
ration of the data, i.e., answer queries that are not known in advance, and
allow for follow-up queries. Answering network-wide queries should not require
custom code or scripting as network operators usually neither have the required
time nor the resources (e.g., storage or computing). The goal is to reduce the
response time of queries from hours or dozens of minutes to seconds and, thus,
enable interactive and drill-down queries.

(4) Support of queries across network sites and over time: Most queries are not just
for some specific time period or network site. Rather, they correlate data span-
ning multiple periods, across network sites, and at different granularities, e.g.,
per site, region, time of day, and event. The system should be able to collect,
index, and store summary data across multiple sites and over time.

Although most networks gather raw flow data, answering network-wide queries is
difficult due to: (a) the distributed nature of data collection (per interface and router)
at different locations, i.e., at multiple border and/or backbone routers, (b) the massive
and ever-increasing size of the flow data (despite sampling) incurring an excessive cost
to store, transfer, and analyze flow data–indeed, it often has to be deleted after some
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Application Related Work

Aggregated flow statistics (range queries
over IP/ports/time/location)

[35, 37, 39–43]

Counting traffic [35, 39, 42–49] [36, 50–56]
Traffic matrix [46, 50]
DDoS diagnosis [35, 44, 46, 50, 54, 57–59]
Super-spreaders Detection [35, 44, 54]
top-K number of flows [45, 55, 56, 60]
Flows above threshold T (Heavy Hitters) [35, 41–45, 52–54, 61, 62]
Heavy Changers Detection [44, 53, 54, 61–63]
Blackhole Detection [46, 64–66]
Port-based / 4/5-tuple queries [35, 39, 44–46, 51–53]

Table 3.1: Typical network queries and systems to tackle them. Currently, no system
addresses all of them.

time to be able to store more recent data, and (c) the international footprint with
the requirement to comply with local legislation which may prohibit the transfer of
raw data.

To achieve the above, we need data structures that generate succinct and space-
efficient summaries, as well as indexing of network flow captures that are light (easy
to transfer), can be analyzed locally, and enable answering interactive a priori un-
known network-wide queries. These data structures should be used to accurately and
quickly answer queries and tackle network management tasks that involve multiple
sites and/or span multiple periods in a user-friendly and unified way.

The contributions of this chapter are:

• We design, deploy and evaluate Flowyager, a system built on top of existing
voluminous network captures, that enables interactive data exploration. We
show that with Flowyager the query response time for network-wide queries
can be reduced from hours or minutes to seconds.

• We propose a lightweight self-adjusting data structure, Flowtree, that inherits
the performance of previously proposed hierarchical heavy hitter structures for
computing flow summaries. Flowtree summarizes elephants as well as mice
flows and supports multiple operators, such as merge, compress, and diff, to
summarize information across multiple sites and time periods.

• We propose an SQL-inspired language, FlowQL, which provides a unified inter-
face to ask arbitrary ad-hoc queries about flow captures, including drill-down
queries.

• We show that when answering a wide range of queries, Flowyager significantly
outperforms the state of the art data analytics systems, namely, ClickHouse,
and Spark.
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• We share our experience of rolling out Flowyager at different operational en-
vironments, namely a large IXP and a tier-1 ISP, and showcase how to tackle
various network management tasks. We make Flowyager and its code available
for non-commercial use [67].

3.1 Related Works

Existing network analytics systems, such as [68, 69], typically transfer the raw traces
to a centralized data warehouse for archiving and processing. However, transferring
the raw traces is increasingly expensive due to the data volume —e.g., Terabytes of
flow data generated in a single day can be out of sync, and all need to be transferred.
Moreover, additional constraints are posed by national regulations when networks
operate at regions under different jurisdictions: for example, transferring data that
includes user identifiers, e.g., IP addresses allocated to EU citizens, without their
consent, violates the EU General Data Protection Regulation (GDPR) [70]. Fines
are steep, namely up to 4% of worldwide turnover or 20 million Euros, whichever is
higher.

Network monitoring systems: Alternative proposals suggest to enable power-
ful custom data collection per query and realize this by combining traffic mirroring
and deterministic packet sampling. These include query-based monitoring such as
Stroboscope [36], network troubleshooting using mirroring [71, 72], analysis of in-
network packet traces [46, 73], as well as monitoring links on-demand as shown by
Gigascope [39], pruning-based solutions such as Cheetah [74] or other SDN-based
monitoring, such as [75] or precision [76]. The main disadvantage of these systems
is that the target flows, sites, and periods of interest need to be known in advance,
which is often not the case in practice.

Streaming network telemetry systems, ranging from more classic approaches such as
A-GAP [56] to the numerous modern solutions, such as Sonata [35], FlowBlaze [77]
or Poseidon [78], build on the same ideas but require programmability from net-
work devices, e.g., P4 switches or FPGA. These systems assume that users can pre-
define what is relevant and optimize the monitoring accordingly, often following a
top-down approach [79]. As a consequence, if, potentially, all flows are of interest,
these systems can degrade to “standard” flow monitoring which for large networks
is challenging. Marple [37] adds flexibility to network-wide monitoring but requires
P4-programmable capabilities that have not been yet widely adopted in wide-area
networks by ISP and IXP operators.

Big data analytics systems: Some operators directly feed their flow captures
into state-of-the-art analytics systems, often based on the map-reduce principle, e.g.,
Spark [38] and Hadoop [80], or column-based databases, e.g., ClickHouse [81]. This
has scalability issues. Thus, recently proposed big data analytic systems–see [82–86]
as well as [87] and references within–suggest to use a distributed setup whereby data
is locally preprocessed, e.g., by aggregation or sampling, and then centrally analyzed.
This reduces the need to transfer the raw data. Note that none of the above focuses
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on network management tasks. Thus, their programming interface follows the map
and reduce paradigm which differs from network operation tasks. Even though such
systems can provide significant speedup for tasks that can be parallelized, not all
network management tasks may benefit. Like Flowyager, such big data analytics
systems are flexible w.r.t. the queries supported. Yet, unlike Flowyager, they typically
are not compatible with existing network monitoring software, do not fully support
principled aggregation (over time, space and flows), do not offer any history, and do
not give any performance (accuracy or runtime) guarantees.

Data summaries–Heavy Hitters: Previous work on computing network sum-
maries has focused on how to efficiently compute heavy hitters (HH) [30, 31, 88, 89]
and hierarchical heavy hitters (HHH) [42, 90, 91] using minimal resources to be able
to compute them on the router itself. These solutions provide an online summary of
the (hierarchical) heavy hitters for a fixed observation window, at one location, and
only on a given subset of the data. In contrast, to answer interactive network manage-
ment queries (see Table 3.1), we need summaries over different subsets of the data,
per site/router and across sites/routers, and at many different time granularities,
from minutes to days — or even months.

Heavy hitters change as data is aggregated: as more data comes in, popularities
increase overall. Consequently, the threshold to be considered a heavy hitter should
be raised. In contrast, some HHH data structures, e.g., [42] use a single manually
defined absolute threshold (e.g., frequency above 1000) to characterize heavy hitters,
resulting in a data structure unable to adapt its definition of heavy hitter as the
underlying data changes. Flowyager builds upon heavy hitter data structures by
adding support for aggregation (over time, location, and flows) and adding flexibility
w.r.t. the supported queries.

Data summaries–Sketches: Another approach for computing network summaries
are sketches, e.g., [53, 92, 93] as well as systems that utilize sketches for network
monitoring and debugging [44, 54, 94–96]. The capabilities of sketches include count-
ing, top-K, HH, as well as HHH. They are highly space-efficient data structures that
support many types of queries. Yet, most do not support range queries, e.g., queries
that involve a range of sites and/or time periods. Moreover, extracting an estimate
from sketches is often not time-efficient. We note that the focus of sketches is similar
to that of HHH, i.e., computing online summaries for a fixed observation window
with minimal resources. Flowyager could be built upon sketches but we decided to
build upon a HHH data structure.

3.2 Flowyager Architecture

To address the challenges outlined earlier in this chapter, we build a scalable dis-
tributed network data analysis architecture, Flowyager. Its input is existing per-
interface network flow captures, either flow summaries–reporting on packet, byte, or
flow counts per 5-tuple (src/dst IP address, src/dst port, protocol)—or packet-level
summaries (e.g., trace sample). We emphasize that we do not propose yet another
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Net.
Mon.

Analyt-
ics HHH Sketch Flowyager

Input: Packets 3 7 7 7 3

Input: Flows 3 7 7 7 3

Distributed Queries 3 7 7 7 3

Online 7 3 7 7 3

Arbitrary Queries 7 3 7 7 3

Query language 7 3 7 7 3

Summarization 3 3 3 3 3

Low Installation Cost 3 7 3 3 3

Low Maintenance Cost 3 7 3 3 3

Adaptivity to Data 3 7 3 3 3

Table 3.2: Comparison of systems w.r.t. functionality offered. 3: full support, 7: no
support

NetFlow. Its output is network reports including packet, byte, or flow counts across
network sites and time periods. Prime users, i.e., network operators, can access the
data via FlowQL, an SQL-inspired query language that returns results in seconds
and, thus, enables interactive ad-hoc queries with drill-down capabilities. For a com-
parison between Flowyager and other approaches, we refer to Table 3.2.

To underline Flowyager’s capabilities for exploring network data, we show in Fig 3.1
and Fig. 3.2 screenshots of Flowyager’s Web interface. The Web interface highlights
that searches are possible across time ranges, site sets, and feature sets. Moreover, it
showcases Flowyager’s drill-down capabilities that are also visually supported.

Flowyager is a modular system that consists of three main components:

1. FlowAGG, which takes existing flow (or packet) captures as input and com-
putes flow summaries, using Flowtrees (see below), which it stores and exports.
Besides, FlowAGG may, if it has enough storage, keep a local copy of the flow
captures themselves.

2. FlowDB, which takes flow summaries as input, stores, and indexes them, while
using them to answer FlowQL queries. It can use FlowAGG internally to com-
pute further flow summaries.

3. FlowQL, which uses the flow summaries kept within FlowDB to answer interac-
tive or batch-style queries including Hierarchical Heavy Hitter/top-K queries,
Above-Thresh queries, or top-K heavy changer queries across time and sites.

To better understand the system architecture, Figure 3.3 gives an overview of the
overall system, while Figure 3.4 presents Flowyager’s processing pipeline. Each router
sends its data to a NetFlow collector 1 , which forwards it to one of potentially
many distributed FlowAGG instances 2 . Each FlowAGG instance computes sum-
maries 3 and then uploads these either to another FlowAGG instance or directly to
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Figure 3.1: Flowyager: Interacting with 1-feature Flowtrees

Figure 3.2: Flowyager: Interacting with 2-feature Flowtrees
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Figure 3.3: Flowyager architecture

FlowDB 4 1. FlowDB then processes the summaries 5 and uses them to answer
user queries 6 .

Flowtree is a data summary of a stream of raw flow data that supports efficient 1-d
HHH extraction and other operators. Flowtrees are the data primitives of Flowyager.
Details on the design and implementation of Flowtree data structure and Flowtree
operators are presented in Section 3.3.

FlowAGG uses a separate plug-in, written in C, for each data source, including
IPFIX, NetFlow, sFlow, and libpcap.

FlowDB is responsible for collecting and storing the Flowtrees. It also provides an
interface that the user of the Flowyager can use to answer network-wide queries based
on the stored Flowtrees, FlowQL, whose design is largely inspired by GSQL [39]
which uses an SQL-like query language. Using GSQL directly does not suffice due
to the unique capabilities of Flowyager. Details on the design and implementation of
FlowDB are presented in Section 3.4.

In total, it took approximately 21k lines of code (LoC) in C and C++ to realize
Flowyager. About 16k LoCs are for FlowDB, 1.5k for FlowAGG, 2.5k for Flowtree
library, and 1k for shared components.

1For simplicity we restrict our discussion to a centralized instance of FlowDB. However, it is possible
to use a hierarchical design similar to what has been proposed for logs of distributed servers [97,
98]
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3.3 Flowtree

Flowtree is the data structure that is used as a data primitive in Flowyager. Before
we dive into the details of Flowtree and its operators, we provide background on
Hierarchical Heavy Hitter (HHH) data structures.

3.3.1 Hierarchical Heavy Hitters

To enable Flowyager we need succinct summaries from flow captures that are light to
transfer, yet, allow for real-time, interactive queries using different flow feature sets.
A flow feature refers to any of the components of a flow’s 5-tuples, namely protocol,
src and dst IP, src and dst port. A feature set includes a subset of the possible 5 flow
features.

We take advantage of the fact that most of the data on the Internet is skewed in
the sense that Zipf’s law [99–101] typically applies. However, flat summaries, i.e.,
histograms, do not suffice. Rather, we need hierarchical heavy hitters (HHH) 2. HHH
utilize attribute hierarchies and identify the most popular elements across a hierarchy.
For IPv4 prefixes, we use the network prefix length as an obvious feature hierarchy.
As such, 10.1.2.0/23 is the parent of 10.1.2.0/24 and 10.1.3.0/24. For ports, we can
use port ranges, e.g., 80/15 is the parent of 80/16 and 81/16. Each feature hierarchy,
by default, uses a mask. An IP a.b.c.d is part of the prefix a.b.c.d|n1 and a.b.c.d|n1
is a more specific prefix and, thus, a child of a.b.c.d|n2 if n1 > n2. The same applies
to ports, whereby, e.g., 0|8 refers to the ports from [0, 63]. It is possible to define
custom hierarchies, e.g., all Web ports, all DNS ports, or all well-known ports.

2The set of HHH for a single hierarchical attribute with popularity counts and a threshold θ corre-
sponds to finding all nodes in the hierarchy such that their HHH count exceeds θ ∗ N , whereby
the HHH count is the sum of all descendant nodes which have no HHH ancestors.

25



Chapter 3 Flowyager: Exploring Network-Wide Flow Capture Data

(10.1.2.0/23,
80/15)

(10.1.2.0/24,
80/16)

(10.1.0.0/21,
80/13)

(10.1.0.0/22,
80/14)

(10.1.3.0/24,
81/16)

(10.1.0.0/23,
82/15)

…

…

…

Figure 3.5: Example: 2-Feature flow hierarchy
Ideally, one would use 5-dimensional hierarchical heavy hitters (5-d HHH), across
all flow features. Unfortunately, this is infeasible due to its computational com-
plexity [90, 102]. Rather, we use 1-d HHH which can be updated in amortized
O(1) time per entry while maintaining the accuracy for HHH and space efficiency of
O(H/εlog(εN)), whereby N is the number of items processed, H is the number of
hierarchy levels, and ε bounds the precision [90, 102].

Contrary to previous work, we do not restrict the 1-d HHH to a single flow feature.
Our first key functionality is that we can generalize 1-d HHH by defining a joined
hierarchy for a given feature set, e.g., a joined hierarchy for both dst IP and dst port,
whereby, the parent of 10.1.2.0/24|80/16, as well as 10.1.3.0/24|81/16 (IP range|port
range) is 10.1.2.0/23|80/15. The parent of 10.1.2.0/23|80/15 is 10.1.0.0/22|80/14 and
its great-grandparent is 10.1.0.0/21|80/13. For visualization of a sample 2-f hierarchy
see Figure 3.5. In effect, we rely on generalized flows: Flows summarize related
packets over time at a specific aggregation level. Possible feature sets include “4-
feature” flows (i.e., (src IP, dst IP, src port, dst port)), “2-feature” flows, e.g., (dst
IP, dst port) (DIDP).

The joined hierarchy can capture the correlation of more than one dimension, e.g., the
correlation between IP activity and port activity. It allows identifying heavy hitters
on sets of features, and thus, investigating more complex use cases. For example, in
an attack, both the target IP and port are important to investigate the type of attack.
In general, any query that involves multiple features can be potentially benefited by
this joined hierarchy.

Our second key functionality is that if the 1-d HHH data structure supports the
operators merge (∪) and compress, we can compute summaries across time and/or
space. In effect, these two operators allow us to add the features time and location.
Given two data structures, A1 for time period t1 (location l1) and A2 for t2 (l2), we
get the joined data structure by A12 = (A1 ∪A2). The compress operator is especially
useful in reducing the memory footprint of the structure. This operator prunes the
tree leaves, and if needed the internal nodes, whose contributions are less than some
configurable thresholds, and summarizes their contribution to their parents.

Other operators are diff, query, drill-down, HHH resp. TOP-k, Above-x The diff
operator is useful to identify changes, the drill-down operator to explore sub-regions.
The HHH and Above-x operators allow us to find popular feature sets. The operators
are used for interactive queries via FlowQL.
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Algorithm 1 Flowtree: Creation/
update
Function: Build_Flowtree (pkts resp. flows)

1: Initialize Flowtree
2: for all pkts/flows do
3: Extract_features(pkt resp. flow).
4: Construct node from features.
5: Add (Flowtree, node, feature set).

Function: Add (Flowtree, node, features)
1: Add_node(Flowtree, node, features).
2: next = next_parent(node).
3: while next != parent(node) or (next ∈ tree). do
4: Add_node(Flowtree, next, NULL) with proba-

bility p.
5: next = next_parent(next).

Function: Add_node(Flowtree, node, features)
1: if node exists then
2: comp_pop[node] += stats(flow/pkt).
3: else
4: Insert node with comp_pop[node] =

stats(flow/pkt).
5: parent(node) = find_parent(Flowtree, node).
6: for child in children(parent(node)) do
7: if child ∈ node then
8: parent(child) = node.

Algorithm 2 Flowtree: Stats and
Compress operator
Function: Stats(Flowtree)

1: Initialize pop to comp_pop for all nodes
2: Node_list = nodes of Flowtree in DFS order
3: for node in Node_list do
4: pop[parent(node)] += pop[node]

Function: Delete(Flowtree, node)
1: parent = find_parent(Flowtree, node).
2: comp_pop[parent] += comp_pop[node].
3: children(parent) += children(node).
4: Free node

Function: Compress(Flowtree,
thresh_comp_pop, thresh_pop)

1: Stats(Flowtree).
2: for each node do
3: if (node is leaf and

comp_pop[node] < thresh_comp_pop) then
4: Delete(Flowtree, node)
5: else if (comp_pop[node] < thresh_comp_pop

and pop[node] < thresh_pop) then
6: Delete(Flowtree, node)

Algorithm 3 Flowtree: Operators
Function: Merge(Flowtree 1, Flowtree 2)

1: Flowtree = Flowtree 1
2: for each node in Flowtree 2 do
3: Add_node(Flowtree 1, node)

Function: Diff(Flowtree 1, Flowtree 2)
1: Flowtree = Merge(Flowtree 1,Flowtree 2)
2: for each node n in Flowtree 2 do
3: comp_pop(n) = abs(comp_pop(n) -

2*comp_pop2(n)).

3.3.2 Flowtree Data Structure

After evaluating different 1-d HHH data structures, including those of Cormode et
al. [90, 102], Basat et al. [42], and Mitzenmacher et al. [91], we decided to augment the
structure by Cormode et al.: this data structure is self-adjusting and its entries can
be easily extracted via enumeration; thus, it provides natively drill-down capabilities.
Flowyager does not intrinsically depend on this data structure; rather, it can be
built on top of any data structure that supports abstract hierarchies and the basic
operators.

Flowtree data structure: Generalized flows form a tree via its hierarchy where
each node corresponds to a flow. An edge exists between any two nodes a, b if a is a
subnode of b in the feature hierarchy, i.e., if a ⊂ b —see Figures 3.7(a) and 3.7(b). We
annotate each node with its popularities, including packet count, flow count, and byte
count for UDP and TCP. The popularity of a node is the sum of its own popularity
and the popularity of the children–see Figure 3.6(c).
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Figure 3.6: Flowtree concept.

However, during the construction of the trees, we only keep the nodes’ “comple-
mentary popularity”, namely the popularity (pop) that is not covered by any of the
children. Thus, it is possible to prune such a tree by pushing the contribution of the
pruned nodes to their parent. This is a key functionality for efficiently updating our
self-adjusting data structure. Flowtree keeps “popular” nodes and prunes “unpopu-
lar” ones by summarizing them at their parent. Flowtree inherits the insertion and
self-adjusting strategy from Cormode et al. but rather than allowing the number of
nodes to grow unlimited, we limit the maximum number of nodes that a tree can
contain by repeatedly pruning (compressing) the tree when necessary. Still, Flowtree
closely matches the excellent performance and accuracy bounds for 1-d HHH in terms
of space efficiency and precision.

3.3.3 Flowtree: Visualizing the Concepts

We start with the visualization of the differences between popularities and comple-
mentary popularities in Figure 3.7. Next, we show the two different feature hierar-
chies, namely a 1-feature hierarchy on IP addresses, and a 4-feature hierarchy on sr-
c/dst IP addresses and src/dst ports with and without popularities, see Figures 3.6(a)
and 3.7.

Initially, a Flowtree has exactly one entry–the root. When adding a node, we add
a new leaf node if necessary and a subset of the nodes on the path to the first
existing parent, (in the worst case the root) and update the statistics of the leaf
node. We call these intermediate nodes as internal nodes. Thus, each node maintains
the complementary popularity (comp_pop), the popularity (pop) that is not covered
by any of the children, see Alg. 1. Popularities are computed from the complementary
popularities by summing the complementary popularities of all nodes in its subtree
including its own. This can be done via a depth first search in O(# nodes) time, see
Alg. 2. This uses two functions for finding parents of a node. parent(node) refers
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Figure 3.7: 4-feature Flowtree.

to the direct parent in the feature hierarchy while find_parent(node) refers to the
parent in the Flowtree.

Updating an existing node corresponds to finding it, which takes time O(1) using an
appropriate hash-map. Adding a new node may take up to O(# hierarchy level) time
(using an appropriate hash-map). Yet, the expected number of new nodes is small if
the distribution of the data is skewed.

To limit Flowtree memory footprint, we periodically or on demand, delete nodes
with low popularity. We first compute the popularities by using the stats function
in Alg. 2 and then prune nodes whose complementary resp. absolute popularity are
below an adjustable threshold. This ensures that at any time the number of nodes
in a Flowtree is proportional to the number of processed flows resp. less than a
predefined maximum. The complementary popularity of a deleted node as well as
its children are pushed to its parent. The overall cost of such a compression step
is O(# nodes). Note that since only nodes with small popularity are deleted, the
complementary popularity of an interior node is a good estimate of the cardinality of
the contributing flow set. Finally, to control the rate of the growth of the tree and
preventing the frequent addition and deletion of internal nodes, we insert the internal
nodes with a probability of p. The default value of p is 0.3.

3.3.4 Flowyager Operators

Query and drill-down: The base operators are query and drill-down. If the fea-
ture f is a node in the Flowtree, the answer is computed from the node statistics.
Otherwise, we find the potential node, q, that corresponds to f and estimate its pop-
ularity based on the popularity of the predecessor of q, p, and its children, C. We
split the children into two subsets: Cf and Co = C − Cf , whereby Cf includes those
that are a subset of f in the hierarchy. Now,

∑
c∈Cf

pop(c) is a lower bound for the
popularity of f and two estimates of f ’s popularity are pop(p) −

∑
c∈Co

pop(c) or
comp_pop(p) +

∑
c∈Cf

pop(c)i.If the feature set does not correspond to a node p, the
query is expanded to a tree-walk starting at the smallest possible parent of p. The
output of the query are then all nodes and their popularities that match the input
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Figure 3.8: Flowtree Operators: Merge and Diff

feature set. For example, src_ip = a.b.0.0|16 and src_port = 80|16 start at node
(a.b.0.0|16,80|8) and outputs only the nodes where src_port is 80 and src_ip is a
subprefix of a.b/16. Drill-down queries retrieve the children of a node. Note that
we can derive estimates for all flows, from mice to elephants: even for low-popularity
nodes, the number of flows remains a good estimate for the number of contributing
flows.

Above-t: Results in a tree-walk and all nodes whose popularity are above the thresh-
old value are returned.

Top-k : To compute the top-k, we identify the Flowtree entry with the largest pop-
ularity, delete its contribution, and then iterate. Hereby, we use a priority queue.

Merge: We merge two Flowtrees by adding the nodes of one to the other. Note that
the update will only be done for the complementary popularities— see Alg. 3 and
Fig. 3.8(a)—, with missing nodes being assigned a popularity of zero. The statistics
have to be recomputed and, to reduce the memory footprint, we compress the joined
tree. If the total absolute contributions of the two trees differ significantly, one should
rescale the complementary popularities of the trees before merging.

Diff and HeavyChanger: Just as one can merge Flowtrees, one can also compute
the difference between two trees. This is a merge operation with subtraction instead
of addition–see Alg. 3 and Fig. 3.8(b). Heavy changers are detected by using Top-k
on diff of the two trees.

Flowtrees maintain counters for various features of the flows. In the current imple-
mentation, we use counters for packet, byte and flow counts. This structure supports
cardinality-based queries but is limited to the elements (features) already in the
tree (nodes). It is possible to maintain additional counters and support additional
cardinality-based queries, e.g., using counters for ports, but at the cost of requiring
additional space. In some cases, this is necessary. For example, such cardinality-based
queries will enable the detection of non-volumetric attacks, e.g., semantic attacks. By
allocating more space and maintaining more counters, it is possible to detect differ-
ent types of attacks, e.g., “slow” DDoS attacks (Slowloris). We plan to explore the
accuracy of cardinality based queries and the effect of allocating more space and
maintaining more counters in Flowtrees as part of our future in future work.
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3.4 FlowDB

FlowDB collects and stores Flowtree summaries computed by FlowAGG in persistent
storage. Each Flowtree has a unique key that is made from its timestamp which
along with its granularity reflects a time interval, the id of the site/location, and its
feature-set. The values are the Flowtrees, which are stored as byte buffers. Figure 3.9
visualizes FlowDB’s architecture.

3.4.1 FlowDB Implementation

Currently, our database of choice is MongoDB [103] because it is lightweight, although
any other key-value datastore can be used. To accelerate query processing, we use
an in-memory index and an in-memory cache. The in-memory index is a collection
of T*-trees that track Flowtrees and enable range queries over different time periods.
The in-memory cache uses a least recently used (LRU) policy to keep recently added
or queried trees in memory. FlowDB is designed with parallelization in mind: it is
capable of receiving multiple streams of Flowtrees from multiple FlowAGG daemons
while answering queries to multiple users at the same time. Parallelization is employed
in performing major tasks such as handling requests from FlowAGG daemons and
remote API calls, storing Flowtrees in persistent storage, and query processing. Upon
receiving a query, the system first checks whether the queried trees are in memory.
In case of cache misses, it retrieves trees from storage.

The system is highly configurable in terms of memory usage, by setting a maximum
number of Flowtrees in memory, cache eviction interval, degree of parallelization,
etc. The maximum number of Flowtrees in memory controls the memory footprint
of FlowDB. To access the database, FlowDB offers both an API with the services
Add Flowtree and Get Flowtree and an interface for FlowQL. FlowAGG and other
components of Flowyager use the Apache Thrift Remote Procedure Call (RPC) frame-
work [104] for communication.

To enable Geo-Distributed Query Execution, the in-memory index keeps track of
whether a Flowtree is stored locally or at a remote FlowDB. Thus, if necessary, all
remote Flowtrees can be fetched via the FlowDB API to answer a FlowQL query. In
our planned geo-distributed query execution, we partition site-IDs and map a site-ID
to a FlowDB instance. Once a FlowDB instance receives a query, it will check whether
the given site-ID is stored locally. If the required Flowtree is not stored locally, it can
issue a request to the target FlowDB instance and retrieve the Flowtree. Once the
Flowtree is retrieved, it will be merged with the Flowtrees that are already present
and the intended query is fulfilled. The evaluation of this feature is beyond the scope
of the current manuscript.
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Figure 3.9: FlowDB overview

3.4.2 FlowQL Query Language

To realize FlowQL, we took inspiration from SQL keywords, yet we developed our
own grammar. We used ANTLR [105] to generate the parser for the grammar. We
offer an interactive command-line shell as well as a graphical user interface using
R shiny [106]–cf. the screenshots from Fig 3.1 and Fig. 3.2. More specifically, with
FlowQL the user chooses their operator via a SELECT clause, one or multiple time
periods via a FROM clause, and the feature set via a WHERE clause.

SELECT: specifies the answer type. Allowed values include ‘pop’ for popularity or
flow/byte/packet count, ‘top-K’ for the top-k most popular flows, ‘HHH-P’ for
the 1-d hierarchical heavy hitters with flow counts above P% of total traffic,
‘hc-K’ for the top-k heavy changers, ‘above-T’ for all flows with popularity
above t, and ‘*’ for all flows satisfying the WHERE clause.

FROM: specifies one or multiple time periods.
WHERE: selects the feature sets and one or multiple conditions. Possible feature

elements are site_id, src_ip, dst_ip, src_port, dst_port, proto. Possible values
are ANY or any region, IP prefix, or port range (using the IP|mask resp. the
port|portmask syntax). Combinations are feasible via (AND, OR, and ()).

Thus, FlowQL queries have the following syntax:
SELECT [pop, top-k, hc-k, above-t, hhh-k, *]

FROM (time YYYY-MM-DD hh:mm to YYYY-MM-DD hh:mm)+

WHERE ([Conditions via AND, OR, ), (, feature = value])+

Using FlowQL, we found that we often wanted to repeat the same query across
multiple time bins or sites. Thus, we added two iterators: answer-bin-x that iterates
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across time bins of size x minutes and site_id=ITR-x|n that iterates across all sites
within a site set, specified with an interval, e.g., [x, x + 2n − 1], or using a pattern.

To be able to drill-down and inspect a specific time-range in more detail, we addi-
tionally provide drill-down queries. In a drill-down query, a particular granularity in
which one desires to inspect the traffic should be specified. For instance, to see the
result of a query in 15-minute time bins, one should specify bin15 in the query.

3.4.3 Query Execution

Upon receiving a FlowQL query, first, the WHERE clause is converted into a Dis-
junctive Normal Form. This results in breaking down the current query into smaller
queries, which we call mini-queries.
Each mini-query is then processed independently. For each mini-query, the corre-
sponding trees are fetched considering the time-range, granularity, and feature sets.
For instance, for a query requiring src_port=X, 1-feature trees, SP in this case, are
fetched. In a non-drill-down query, trees with the highest granularity existing in
FlowDB are fetched. For a drill-down query, trees with the granularity specified in
the query are fetched. If the specified granularity does not exist in FlowDB, multiple
lower-granularity trees are merged using the MERGE operator to build trees with
the specified granularity. Consider the following query which asks for bin-30:

SELECT pop(any,byte,bin30) FROM (time 2018-05-09 00:00 to 2018-05-09 23:59)
WHERE site_id=ANY and src_port=X
This is a drill-down query to zoom into a full-day time-range in half-an-hour bins.
Now assume that there are no 30-min granularity trees in FlowDB for the specified
time-range, but there are 15-minute granularity trees. Then for each time-bin, two
15-minute trees will be merged to build the required granularity.
If the number of trees to be merged is large, the merge operation is performed in
parallel to speed up the merge process. In a heavy changer query, two time-ranges
should be provided and the trees fetched for each of these two time-ranges are diff’ed
using the DIFF operator.
Then, the final trees are processed using different Flowtree operators to fulfill the
query conditions, e.g., src_port=X. If the query is pop, knowing the popularity is as
easy as finding the corresponding node in the tree and returning the popularity value.
If the node is not in the tree, an estimation using the parent’s popularity is returned
as previously described in 3.3.4.
If the query is above-T, ABOVE-T operator with threshold T is used. For the top-K
and hhh-P, the TOP-K operator will be used. In top-K, it should return the top K
flows with any non-zero popularity. In hhh-P, P is the threshold for the fraction of
total contributions.
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Dataset Time range #Inter-
face

Input Size Type Time bin

IXP-2019-09 Sep’19 1–7 ≈ 1,250 ≈ 10TB Flow 15m
ISP-2019-04 Apr’19 1–2 ≈ 1,300 ≈ 25TB Flow 15m

MAWI-2018-05 May’18 9–10 2 ≈ 1TB Packet 1m
Table 3.3: Deployment overview: IXP-2019-09, ISP-2019-04, and MAWI-2018-05

Short Form Meaning
SIDI src IP and dst IP
SPDP src port and dst port
SISP src IP and src port
SIDP src IP and dst port
DISP dst IP and src port
DIDP dst IP and dst port
SI src IP
DI dst IP
SP src port
DP dst port
FULL src IP, dst IP, src port, and dst port

Table 3.4: Overview of the feature sets of Flowtree

3.5 Experimental Deployments

We rolled out and tested Flowyager in three different types of networks, namely a
large European IXP (IXP-2019-09), a tier-1 ISP (ISP-2019-04), and our testbed using
a sample dataset (MAWI-2018-05)—see Table 3.3 for an overview. In this chapter,
we report on experiments on stored data that we use for reproducibility. At two
locations, the IXP and the ISP, we are in the process of moving towards live data
import after extensive testing on site.

Ethical considerations: We are fully aware of the sensitivity of network data
and, therefore, only work with a subset of the packet header information, namely
src IP, dst IP, src port, dst port, protocol, whereby all IPs have been consistently
anonymized per octet (bijective substitution using a hash function), even though this
may negatively affect prefix aggregation. Note that the live operational deployment
of Flowyager will not require such anonymization.

IXP-2019-09 Dataset: This dataset consists of IPFIX flow captures at one of the
largest Internet Exchange Points (IXPs) in the world with more than 800 members
and more than 8 Tbps peak traffic. The IPFIX flow captures are based on random
sampling of 1 out of 10k packets that cross the IXP switching fabric. The anonymized
capture includes information about the IP and transport layer headers, as well as
packet and byte counts. To evaluate the system at real-world scales, we included all
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sites during the first week of September 2019. Each site corresponds to the router
interface of an IXP member connected to the IXP’s switching fabric.

We deployed Flowyager within a virtual machine (VM) on a server at the IXP’s
premises. The VM is assigned 400 GB of memory and 40 threads on a machine with
two Intel-Xeon-gold 6148 CPUs each with 40 threads.

ISP-2019-04 Dataset: This dataset consists of approx. 1,300 NetFlow streams
(one per interface) from a major tier-1 ISP. We receive NetFlow data from 40 routers
located in 30 cities in 4 European countries, as well as the US. The ISP’s internal
systems preprocess the raw NetFlow streams into 26 separate ASCII data streams.
The NetFlow packet sampling is identical across all the routers. We include all data
from Apr. 01, 2019 (00:01:00 UTC) to Apr. 03, 2019 (02:01:00 UTC). We deployed
Flowyager as a Docker container with 94 GB memory and 32 threads on a machine
with two Intel Xeon E5-2650 CPUs.

MAWI-2018-05 Dataset: This dataset consists of packet-level capture collected
at the transit 1 Gbps link of the WIDE academic network to its upstream ISP on
May 9-10, 2018. Each packet capture lasts for 15 mins and contains around 120 M
packets. The anonymized trace is publicly available [107] and we use it to be able
to release sample queries and results. We interpret each direction as a site. For this
dataset, we deployed Flowyager on a testbed machine, with 128 AMD-EPYC 7601
CPUs and 1.5TB memory.

Flowyager setup: In terms of the basic setup for the Flowyager evaluation, we
choose fixed time periods rather than a fixed number of flows. The advantage of
the former is that we can easily summarize across time and that we can even look
at coarser time granularities. The advantage of the latter is a constant number of
entries to summarize. We choose the former rather than the latter as summarizing
and investigating across time are typical network operator tasks. We keep Flowtrees
for every 15 minutes for every site for the IXP-2019-09 and ISP-2019-04 datasets
and 1 minute for the MAWI-2018-05 dataset. We generate 11 different feature trees,
namely all four 1-feature trees, all six 2-feature trees, and a 4-feature tree, see Table
3.4 for the details. By default, we limit each Flowtree to 40k nodes. 1-feature port
Flowtrees are limited to 10k nodes. In addition, we generate aggregated trees for
15 minutes, 1 hour, 1 day, and 1-week time granularities, each with at most 40k
nodes. This results in one tree per site for each time granularity and a single tree for
all sites for each time granularity.

Big data analytics setup: We compare Flowyager’s performance with task-specific
data-parallel Python scripts, as well as installations of a prominent big data analytics
platform, namely Spark [38], and a column-based state of the art database, namely
ClickHouse [81]. Each installation was done on the same VM as Flowyager. Note
that this implies that Spark was not deployed on a physical cluster of machines but
in a multi-threaded environment.
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Figure 3.10: Space usage vs. raw compressed (gzip) input data

3.6 Flowyager Prototype Evaluation

Next, we describe our experience with deploying Flowyager, which we will make
publicly available for non-commercial use. Our evaluation highlights the four main
strengths of Flowyager: reduced storage footprint, low transfer cost, rapid response to
a wide range of queries, and high accuracy. We start the evaluation with Flowyager’s
memory footprint, then we move on to evaluating FlowQL for query response time,
and its CPU and disk I/O footprint.

3.6.1 Flowyager Evaluation

Flowyager space efficiency: For the IXP-2019-09 (ISP-2019-04), we see that com-
pared to the original compressed IPFIX data (original compressed ASCII flow sum-
maries), the single full-feature Flowtree in compressed binary format has a space
saving of 97% resp. 99.5%. With additional feature sets, e.g., all 1-feature Flowtrees
and three 2-feature Flowtrees, we still reach space saving of 92% resp. 97.5%. If we
include all 11 possible feature combinations, the space saving is 89% resp. 96%. Even
if we normalize not by the raw input data but only against the necessary features
for the Flowtrees, the space savings are still excellent, e.g., more than 97% for the
1-feature Flowtree at the ISP-2019-04. For a visualization of the space efficiency
relative to the size of the raw compressed (gzip) input data, see Figure 3.10(a).

While 15-minute time granularity is excellent for answering detailed queries, many
queries involve coarser time granularities. Thus, it can be useful to add time as an-
other feature and add 1-hour as well as 1-day aggregated Flowtrees by merging (and
then compressing) the smaller-time-granularity Flowtrees. Flowyager does so auto-
matically. While this needs some extra memory, it adds less than 40% overhead–see
Figure 3.11— while offering the potential to significantly reduce query response time.
Moreover, should space become an issue, Flowyager may decide to permanently delete
smaller-time aggregates while keeping higher-time aggregation summaries. This is one
of the design features that enable resource management with Flowyager. It is always
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Figure 3.11: Pie Chart: MongoDB footprint.

possible to still keep coarse grain summaries of previous time periods or site sets even
if disk space is running out.

3.6.2 FlowQL Evaluation

Next, we focus on the performance (query response time) of the query capabilities
and the query engine using a set of benchmark queries. In particular, we go back
to the main tasks of a network manager–recall Table 3.1—and pick a benchmark
query for each of the identified tasks–note that the detection of one super-spreader
requires two queries. These chosen queries are shown in Table 3.5, the table which
thus contains queries for every single important network management task tackled
by related work.

To challenge Flowyager, we task it to execute these queries for a full day for all sites in
the IXP-2019-09 dataset. We evaluate three different ways of answering the queries
using Flowtree, namely using FlowQL with Flowtrees and 15-minute, 1-hour, and
1-day aggregation. On the IXP machine, we execute each benchmark 10 times and
measure, just as before, the wall time as reported by the C++ chrono library.

Figure 3.12 shows the resulting FlowQL query response times for each benchmark as
boxplots. Hereby, we distinguish between cold and hot query response times. In the
hot case, relevant Flowtrees may be retrieved from the in-memory cache. In the cold
case, we restart the in-memory cache process for each benchmark. If we use the 1-
day Flowtrees, see Figure 3.12(a), the answers are readily available and the response
arrives in the blink of an eye (less than 1 second). By using the in-memory cache we
speed up query response time by about 10 to 50%. We also check the accuracy of the
results and find that the results are accurate3.

3We exclude Benchmarks 2, 5, and 9 as these benchmarks concern 60 min time-intervals and, thus,
cannot be answered using data at 1-day granularity.
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Table 3.5: Benchmark queries for Flowyager evaluation. Note that these queries cor-
respond to those identified in Table 3.1.

Benchmark Goal Query

1 Aggregated
flow statistics

Computing total traffic
with specific features from
IP/ports/time/location

SELECT pop(PROTO,COUNTMODE[,BIN])
FROM (time YYYY-MM-DD hh:mm to
YYYY-MM-DD hh:mm) WHERE ( site_id = ANY
and dst_ip = IP/mask and dst_port =
port/portmask )

2 Counting
traffic

Computing Traffic volume
between given IP/Port
subnet/addresses, for a
specific site n

SELECT pop(PROTO,COUNTMODE[,BIN])
FROM (time YYYY-MM-DD hh:mm to
YYYY-MM-DD hh:mm) WHERE (site_id = n and
src_ip = IP/mask)

3 Traffic flows Displaying flows belonging
to given subnets / IP
addresses, passing through
a specific site

SELECT *(PROTO,COUNTMODE[,BIN]) FROM
(time YYYY-MM-DD hh:mm to YYYY-MM-DD
hh:mm) WHERE (site_id = n and src_ip =
IP/mask)

4 Traffic matrix Finding popular flows
from a subnet to subnets
for all sites

SELECT above(K,PROTO,COUNTMODE[,BIN])
FROM (time YYYY-MM-DD hh:mm to
YYYY-MM-DD hh:mm) WHERE (site_id = ANY
and src_ip = ANY and dst_ip = ANY)

5 DDoS
diagnosis

Finding the src IPs from
which a dst IP (victim)
has received abnormal
traffic.

SELECT top(K,PROTO,COUNTMODE[,BIN])
FROM (time YYYY-MM-DD hh:mm to
YYYY-MM-DD hh:mm) WHERE site_id = ANY
and dst_ip = [victim_ip]

6 Super-spreader
Detection

Finding hosts that send
packets to more than k
unique dst during a time
interval (requires multiple
queries)

SELECT above(K,PROTO,COUNTMODE[,BIN])
FROM (time YYYY-MM-DD hh:mm to
YYYY-MM-DD hh:mm) where (site_id = ANY
and src_ip = ANY)

SELECT * FROM (time YYYY-MM-DD hh:mm to
YYYY-MM-DD hh:mm) where (site_id = ANY
and dst_ip = [pop_ip])

7 Top-k flows Detect Top K flows in one
or more sites , going to /
coming from a specific
subnet or IP address

SELECT top(K,PROTO,COUNTMODE[,BIN])
FROM (time YYYY-MM-DD hh:mm to
YYYY-MM-DD hh:mm) WHERE site_id = n and
(src_ip = IP/mask or dst_ip = IP/mask)

8 Heavy Hitters Detect all flows with
popularity over threshold
T, in one or more sites,
going to / coming from a
specific subnet or IP
address

SELECT hhh(T,PROTO,COUNTMODE[,BIN])
FROM (time YYYY-MM-DD hh:mm to
YYYY-MM-DD hh:mm) WHERE (site_id = n and
src_ip = IP/mask)

9 Heavy
Changers
Detection

Detect Top K heavily
changed flows in one (or
more) site(s).

SELECT hc(K,PROTO,COUNTMODE[,BIN])
FROM (time YYYY-MM-DD hh:mm to
YYYY-MM-DD hh:mm)(time YYYY-MM-DD
hh:mm to YYYY-MM-DD hh:mm) WHERE
site_id = n

10 Full/4/5 tuple
queries

Counting / Detecting
flows belonging to a
specific
protocol/application

SELECT *(PROTO,COUNTMODE[,BIN]) FROM
(time YYYY-MM-DD hh:mm to YYYY-MM-DD
hh:mm) WHERE site_id = n
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Figure 3.12: IXP-2019-09: Flowyager response times (Table 3.5 benchmarks).
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Figure 3.13: IXP-2019-09: Query response time comparison: Flowyager vs. Click-
House vs. Spark (Table 3.5 benchmarks).

With 1-hour trees, see Figure 3.12(b), the query response times typically increase
by roughly a factor of 7, even though the number of Flowtrees that have to be
processed increases by a factor of 24. This is possible as Flowyager takes advantage
of parallelization. For Benchmark 5 the query response time is the worst as we
have to execute an iterator across all 24 hours. Note, this is no principle limitation
of the design of Flowyager but a limitation of the implementation which does not
yet parallelize the iterators. If we move to 15-minute trees, see Figure 3.12(c), the
query response time increases further up to a factor of eight. This highlights the
efficiency obtained by using higher granularity trees in the design of Flowyager. Note,
all benchmarks are executed using a research prototype rather than a production
system.

Using an appropriate Flowtree granularity, we can answer all except one benchmark
query in less than 5 seconds, underlining that Flowyager is indeed able to answer
apriori unknown queries. This query response time enables interactive exploration of
the data.

3.6.3 Flowyager vs. Possible Alternatives

Finally, we explore how well Flowyager performs compared to other systems. We
picked three alternatives, namely, using (a) task-specific data-parallel Python scripts,
(b) Spark [38]–a state of the art data analytics platform, and (c) ClickHouse [81]–a
state of the art column database. We evaluated all these systems on the same machine
and dataset in IXP as previously described in 3.5.

First, we find that coding a custom python script for each benchmark takes a rea-
sonably experienced programmer at least 2-3 hours for programming and debugging
even if they can build upon a template from another benchmark. After all, it takes
time to validate that the script is indeed doing what it is supposed to do. For some of
the advanced tasks, e.g., the HHH, we did not start from scratch but rather included
existing code. Nevertheless, this again did take additional time. Running the Python
code on a day of data did take a mean of 39 minutes using a parallelization across
24 cores. Using 24 cores enables the script to parallelize the tasks by processing each
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Figure 3.14: CPU and disk I/O usage in Spark experiments

hour of data in a separate process. Across all benchmarks, the Python code needed
a minimum of 19 minutes and a maximum of 54 minutes.

Second, we find that setting up Spark and coding the queries require significant time.
Indeed, it is necessary to first convert the data into a Spark-compatible format to
get any reasonable performance (query response times less than 1 hour). This takes
roughly 15.5 minutes per day of data for the IXP site. The resulting benchmark
query response times are shown in Figure 3.13. Using this preprocessed data as
input, the benchmark queries take a minimum of 20 seconds and up to 800 seconds.
Note that for Benchmark 8 Spark only computes heavy hitters rather than HHH as
implementing HHH on top of Spark is non-trivial. To measure the CPU usage and
disk I/O usage of each Spark benchmark, we used the iostat command sampling every
5 seconds. In Figure 3.14, the x-axis shows the round, i.e., the 5-second period in
which we sample, and y-axis shows the utilization in percentage. CPU utilization
is shown in square points, while the round points show the disk I/O. We observe
that in the majority of the cases, Spark is bound by disk I/O rather than CPU.
This holds for benchmarks 1, 4-10. However, benchmark 2 is a drill-down query and
requires multiple GROUPBY statements. Also, benchmark 3 works with only two
features. Hence, the intermediate results are not too big to require frequent disk
access. Therefore, unlike other benchmarks, benchmark 2 and 3 are limited more by
CPU capacity than disk I/O. Indeed, this figure highlights the significant overhead
of query processing using only the raw data.

Third, we set up an instance of ClickHouse. Here, it is necessary to first load the
data into the database. This takes roughly 45 minutes per day of IXP-2019-09 data.
On the other hand, the resulting benchmark query response times are significantly
smaller than those of Spark, see Figure 3.13. Again, ClickHouse only supports a
limited version of the HHH query for Benchmark 8. Figure 3.13 also includes the
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Chapter 3 Flowyager: Exploring Network-Wide Flow Capture Data

Flowyager benchmark results from Section 3.6.2. Flowyager’s benchmark perfor-
mance supersedes all comparison systems.

3.6.4 Summary and Flowyager Limitations

Overall, Flowyager by far outperforms all three alternatives. Moreover, Flowyager is
adaptive and supports HHH and physically distributed execution. We acknowledge
that creating all Flowtrees does add some overhead–one day does take roughly 4
hours. However, this is a one-time operation, and overhead only matters if we consider
archived data, but the Flowtrees can well be generated as the flow captures arrive.
Moreover, it is easy to do memory management within Flowyager; e.g., rather than
purging older data, we can summarize it.

The limitation of Flowyager is that its answers are only estimates. However, these
are accurate both for elephants and mice flows alike. Hereby, we want to point out
that most network-wide systems anyhow rely on highly sampled flow captures. As
such the fact that we “only” provide estimates does not increase the uncertainties
dramatically. If higher accuracy is necessary, we recommend combining Flowyager
for data exploration with ClickHouse for focused in-depth analysis. Moreover, the
insights from Flowyager can be used to instantiate online non-sampled queries using
streaming network telemetry systems, such as Sonata [35].

3.7 Use-Cases

In this section, we showcase how to use Flowyager for tackling typical network oper-
ator tasks.

Unveiling Application Trends: With Flowyager we can easily infer the 10 most
popular applications within a time period using a top10 query with site_id=ANY
and src_port=ANY:

SELECT top(10,any,byte)
FROM (time 2018-05-09 00:00 to 2018-05-09 23:59)
WHERE site_id=ANY and src_port=ANY

To then see how the popularity of each top 10 port changed over time we use the
query pop-bin60 for each port. Therefore, the query would be:

SELECT pop(any,byte,bin60)
FROM (time 2018-05-09 00:00 to 2018-05-09 23:59)
WHERE site_id=ANY and src_port=X

See Figure 3.15(a) for the results for the MAWI-2018-05 dataset. We use the MAWI-
2018-05 dataset for reproducibility as we will release the sample queries and their
output along with the code. The query takes less than 1.4 seconds. Web and DNS
related ports 80, 443, and 53 dominate. The same is true for the ISP. Still, during
peak, other port numbers are prominent as well, e.g., port 3074. This port is used
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Figure 3.15: MAWI-2018-05: Data exploration

by Xbox LIVE and Games for Windows–Live. The peak traffic time also is the peak
activity time for gaming, at least for residential customers of this Tier-1 ISP.

Traffic matrix: Computing a traffic matrix involves determining all src/dst pairs
with a traffic volume larger than a value X. With Flowyager, one can use the above_t,
for src_i=ANYp and dst_ip=ANY. Therefore, the following query can be used:

SELECT above(X,udp,byte)
FROM (time 2018-05-09 00:00 to 2018-05-09 23:59)
WHERE site_id=ANY and src_ip=ANY and dst_ip=ANY

To highlight this capability we determine the src/dst traffic matrix for the MAWI-
2018-05 data, see Figure 3.15(b). It shows the traffic matrix at different aggregation
levels to detect which pairs of the source (src) and destination (dst) prefixes (at
different granularity levels) are responsible for a large fraction of traffic exchange.
For visualization, we use a two-dimensional heatmap where the x-axis corresponds to
src IPs, the y-axis to dst IPs, and the color to the traffic volume normalized by the
number of IPs within the area, i.e., traffic flowing from a src prefix to a dst prefix.
This query took less than 13 seconds.

Investigating DDoS attacks: Network attacks, and in particular, distributed
denial-of-service (DDoS) attacks are an ongoing nuisance for network operators as
well as network users. A large body of research papers has focused on techniques
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for detecting DDoS attacks, see, e.g., [108–111], including references and citations.
Indeed, the multitude and the impact of DDoS attacks, see, e.g., [112, 113], have
given rise to a variety of different mitigation techniques, see e.g., [114, 115]. Still,
detecting DDoS attacks reliably as well as diagnosing their root causes is critical for
starting countermeasures or taking preventive future actions. Flowyager is an ideal
system for tackling this challenge.

One of the most common signatures of DDoS attacks is a sudden rise in traffic for
src/dst ports that are used within amplification attacks [112, 116–118]. Among such
ports are 0, 123 (NTP), 11211 (memcached), 53 (DNS), and 1900 (SSDP), as dis-
cussed above. Potential DDoS attacks can be found by using the heavy changer query.
It identifies time ranges during which they occurred. We execute these queries for
each hour:

SELECT hc(100,any,byte)
FROM

(time 2019-04-01 00:00 to 2019-04-01 00:59)
(time 2019-04-01 01:00 to 2019-04-01 01:59)

WHERE site_id=ITR and (dst_port=ANY or src_port=ANY)

Per hour this takes less than 0.3 seconds. Among the heavy changers are high volume
ports related to Web traffic, i.e., port 80, 443, as well as other ports where the volume
can easily vary. But, we also find some unusual ports, i.e., 123 (NTP) which are known
to be involved in DDoS attacks. Figure 3.16 shows a DDoS amplification attack in
one of the sites of the ISP. This is a DDoS attack on NTP (port 123). Here, a very
large number of src IPs scattered across multiple networks are involved but only a few
dsts are targeted; namely two, whereby one of them receives more than 95% of the
attack packets. It took us less than 5 minutes of human time and less than 1 minute
computation time to find the attack for port 123, the site, the src of the attacks, and
identify the start and the end of the attack. To illustrate the exploratory power of
Flowyager, we identified the hours where the attack took place, see Figure 3.16(a),
within a second. Then, we drill-down to the 15 minutes granularity to infer the start
and end of the attack, see Figure 3.16(b), with a second query that took two seconds
of execution time:

SELECT pop(any,byte,bin15)
FROM (time 2019-04-01 01:00 to 2019-04-01 01:59)
WHERE site_id=ITR and dst_port=123|16

Note, detecting slowly increasing DDoS attacks needs a different approach. Here, a
diff query to an earlier time period can be used as an indicator.

Towards real-time DDoS Mitigation: Using insights from historical analysis of
DDoS attacks it is possible to use Flowyager also for near-live analysis if we keep
recent Flowtrees at a shorter time granularity, e.g., 1-minute bins: we can then either
use the above queries to monitor ports highly affected by DDoS attacks or we can use
heavy-changer queries to look for ports with unusual activity. If we see such unusual
activity, we can use the drill-down capabilities of Flowyager to check if, e.g., the traffic
is targeted at specific IPs, i.e., only involves a small number of src or dst addresses, or
involves spoofed addresses, i.e., a large number of IP addresses. If yes, Flowyager can
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Figure 3.16: ISP-2019-04: DDoS NTP attack investigation

be used to trigger an alarm which may then blackhole the attack traffic, e.g., using
a system such as Stellar [114] or traffic scrubbing systems [113]. Recall that other
techniques, e.g., telemetry, need to know a-priori the queries they have to execute.
The power of Flowyager is that is can answer arbitrary queries that are not known
in advance and using the already available network flow summaries supported by
router vendors. Thus, Flowyager offers security capabilities that can help to identify
arbitrary security issues. It can also help in generating the appropriate queries to
execute them in real-time when, e.g., telemetry is used.

Lessons Learned: For our use cases neither the initial sampling in the flow cap-
tures nor the Flowyager estimates were detrimental to achieving the goal. However,
we noticed some implementation challenges, e.g., handling flows from routers with
unsynchronized clocks. We decided to use the timestamp when the flow is arriving at
FlowAGG. Note that this may lead to some small amount of misbinning if the router
is distant (in terms of network delay) from the aggregator. However, the impact is
expected to be limited and probably well within the typical uncertainty of flow cap-
tures. Note that our approach even enables us to update Flowtrees of past time bins,
should a significant number of flows arrive delayed.
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Another observation is that one can tune Flowyager according to the needs of the
users. Overall, we find that a query can be answered quickly if the aggregation level
of the available (cached) Flowtrees matches the query granularity in terms of site
sets and/or time granularity. The reason is that this avoids merging Flowtrees on
the fly. Thus, if many queries involve the same subset of interfaces, e.g., per router,
or all long-haul interfaces, it may make sense to store additional Flowtrees, if only
temporarily. For example, keeping a Flowtree for all sites adds little overhead but
speeds up queries significantly.

3.8 Summary

In this chapter, we designed, developed, and evaluated Flowyager, a system that al-
lows exploration of network-wide data and answering ad-hoc a priori unknown queries
within seconds. It achieves this using already existing network flow captures, without
the need for specialized hardware, and without the need to compile specific queries
into telemetry programs that should be known in advance and are slow to update.

Flowyager uses succinct summaries, Flowtrees, of raw flow captures and provides an
SQL-like interface, FlowQL, that is easily usable by network engineers. We showcase
the performance and accuracy of Flowyager in two operational settings: a large IXP
and a tier-1 ISP. Our results show that the query response time can be reduced by an
order of magnitude, and, thus, Flowyager enables interactive network-wide queries
and offers unprecedented drill-down capabilities to identify the culprits, pinpoint the
involved sites, and determine the beginning and end of a network attack.
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4
FlowDNS: Correlating Netflow and DNS

Streams at Scale

In this chapter, we focus on identifying domain names associated with Internet traffic
flows to contribute to the overarching goal of uncovering hidden characteristics of
Internet traffic. ISPs need to know where their traffic is coming from originally
not only to provide their customers with better quality but also to better plan their
network infrastructure and collaborations. As explained in Chapter 2, most of the
service providers gather network-layer statistics of their traffic using different proto-
cols, e.g., Netflow [119] and IPFIX [120] which usually include source and destination
addresses, and traffic volume. Network-layer headers do not contain the domain name
of the services they belong to. To complicate this even more, Over-The-Top (OTT)
services are nowadays adopting multi-CDN approaches [121], making the inference
of the service merely on the IP address nearly impossible. Therefore, either DNS
records or the application layer information are needed. Nowadays, the application
layer information is oftentimes encrypted [122] and therefore, not visible to the service
providers.

DNS is one of the core services to map domain name to the IP address [123, 124],
and can be used to find the original source of the service. There have been several
studies using machine learning techniques for domain name recognition, all of which
use passive DNS records [125–129]. Inspecting the traffic on a large European ISP, we
observe that more than 85% of the traffic is originated by CDNs. These CDNs might
use one domain name for several services in different locations/times and IP addresses
could also be re-used [130]. Therefore, IP address to domain name mappings change
frequently in CDN-hosted domain names [130, 131], and DNS records used for such
correlation should not be outdated. Thus, capturing the DNS records collected from
user requests is the most suitable way of mapping domain name to IP address.

Previous studies use software-defined networking to correlate DNS responses with web
traffic either in an external controller [132] or in the data plane [133, 134]. However,
all these approaches introduce parsing limitations, e.g., domain names length limit,
and also ignore encrypted DNS packets. This work, however, does not enforce any
limitation on the DNS records, and is not affected by DNS encryption. Unlike the
previous studies, we do not aim at direct policy enforcement and therefore, do not
require any modification to the existing network architecture. We instead propose a
system that can run on any machine receiving a flow of DNS records and network
flows.
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Using DNS records from the same source as the traffic gives the domain name recog-
nition more certainty. In the meanwhile, using the same sources of DNS and Netflow
translates to a higher processing load since both sources need to be processed syn-
chronously either in a real-time fashion or offline. In case the processing is to be
done offline, the timestamps need to be taken into account and the two sources of
data, namely Netflow and DNS records, need to be correlated in the window where
the DNS record is still valid, i.e., TTL > 0. Although research has shown that in
some scenarios, longer TTLs can reduce latency [135], our experiments show that 99%
of the record have TTLs of less than two hours. Monitoring TTLs for every single
record while correlating induces higher memory usage and lower correlation rates.
Multi-level caching in DNS resolvers makes this even more complicated [136].

Correlating two live sources of data, each carrying thousands or millions of records
per second, also requiring keeping some of the records for later use, is not trivial.
Doing so with the standard database queries for an hour of data, takes tens of hours,
making this correlation impossible to be done in real-time. Therefore, we propose
FlowDNS, a system to correlate Network-layer headers and DNS records in real-time.
Our work consists of three main contributions:

• We design, build, and deploy a system for real-time DNS-Netflow Correlation
called FlowDNS in a large European ISP. In Section 4.2, we go over the system’s
building blocks, and in Section 4.3, we show that we can correlate 81.7% of the
data.

• Using the correlated data in our deployment of FlowDNS, we identify the traffic
using malformatted, spam and phishing domains in Section 4.4. We observe that
0.5% of the daily traffic volume uses either malformatted or spam/phish domain
names.

• Finally, we formulate our learned lessons in building a real-time DNS-Netflow
Correlation system in Section 4.5.

4.1 Data Overview

We use flow data and DNS traffic from a large European ISP. The flow data is in
Netflow format, and we receive both Netflow and DNS traffic as live streams:

• DNS streams: A set of DNS cache misses gathered from different customer
resolvers. For load-balancing purposes, the data is already divided into 2 different
streams, carrying 75K DNS records per second on average collectively. Each
record in a DNS stream contains:
timestamp,..., [name; rtype; ttl; answer] <0,n>

• Netflow streams: A set of Netflow records captured at the network ingress in-
terfaces. For load-balancing purposes, the data is already divided into 26 different
streams. These streams input 1M Netflow records per second on average. As also
explained in Section 2.3.1, each record in a Netflow stream contains:
..., srcIP, dstIP, ..., timestamp, packet, bytes
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We also deploy our system on a smaller European ISP with one DNS stream carrying
115K DNS records per second and two Netflow streams with 138K Netflow records
per second.

Each of the above-mentioned streams has an internal buffer to be used in case the
reading speed is less than their actual rate. If that buffer overflows, the streams start
to drop data. Throughout this paper, wherever we mention loss on the streams, we
mean that the buffers are overflown and start to drop. Therefore, the goal is to keep
the buffer usage stable to avoid any loss.

Reading from multiple streams requiring shared memory access, and keeping the
DNS records in memory to be quickly accessible makes this correlation challenging in
terms of memory and CPU usage. To overcome these challenges, we leverage different
techniques, details of which are explained in Section 4.2. In accordance with the data
provider agreement, we refrain from reporting the exact values of the traffic, and all
the traffic volume data throughout the paper is normalized.

4.2 Methodology

The goal is to categorize source of the traffic by their service in near real-time, e.g.,
to understand what fraction of the traffic is originated from Netflix, Amazon Prime,
Google, etc. To realize this, we look for the IP address of the Netflow records in the
answer section of the A/AAAA DNS records to find the name it corresponds to. Then
looking at the CNAME records, we search for that name to find the corresponding
CNAME. The results from this correlation are then correlated with BGP information
to find the information such as source/destination ASes for each service. In this
chapter, we only focus on DNS-Netflow correlation since BGP correlation is out of
the scope of this work. We note that the system is not bound to NetFlow data and
can be adapted to use other data formats containing IP addresses and timestamps in
a configuration file.

4.2.1 Overview

To perform the DNS-Netflow correlation, as Figure 4.1 shows, the DNS streams
are received by FillUp workers. Multiple FillUp workers are allocated to each DNS
stream to enable parallel processing of each shard of the DNS stream. These workers
analyze the DNS records and fill up a shared internal storage with the DNS records.
At the same time, the Netflow streams are received by the LookUp workers. These
workers look for the source of the traffic in the shared internal storage. Again,
we assign multiple LookUp workers to each Netflow stream. In our work, we are
interested in analyzing the source of the traffic, hence we use the source IP address.
Nonetheless, destination address or both source and destination addresses can be
used with minor modifications. Then the result of this lookup is written onto the
disk by the Write workers. Each worker has an input and output queue which enables
the communication between workers. It is important to avoid that too many workers
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write to the same queue, as this contention causes a decrease in performance. Since
multiple instances of the LookUp workers will try to simultaneously access a shared
data structure where DNS records are kept, we split the DNS data and distribute them
to different splits to then isolate each split as much as possible. In Section 4.3, we
discuss whether this further splitting is needed. In Section 4.2.2 and Section 4.2.3, we
go through the steps starting from reading the streams, to fill up the internal storage,
and then look up and write.

We cannot strictly apply DNS records TTL and expire them after the TTL has
passed, since there are multiple levels of caching and each might apply a different
tolerance for expiring the records. Moreover, applying the actual TTLs on the DNS
records requires regular iterations over all DNS data to check their TTL expiration.
This degrades the performance dramatically and increases the memory usage. We
tried applying the exact TTLs from the DNS records on our correlation, meaning
we correlate the IP from a DNS record with the source IP from the Netflow record
only if the DNS record’s TTL plus its timestamp is less than the timestamp from the
Netflow record which we consider current timestamp. In other words:

TTLdns + Timestampdns < Timestampnetflow

We also run a regular process to clear-up the expired DNS records, when the above-
mentioned condition did not hold. We run this on the same sources of data, meaning
DNS and Netflow streams at the large European ISP, and observed that the internal
buffers of all the streams start to overload from the very first minutes of running the
above-mentioned system, with the loss rate of over 90% for both Netflow and DNS
streams. We observed that the memory usage reaches up to 45 GB memory usage
after only 1 hour of running the system. Comparing this to the results from FlowDNS
in Figure 4.4(b) which we will explain thoroughly in Section 4.3, we observe that the
memory usage is doubled although only 10% of the data is received at the system
and others are lost. This could be due to the regular clear-up process not being fast
enough to clear-up all the expired TTLs as the hashmaps grow, while at the same
time, the contention to access the shared memory is so high that the performance
degrades dramatically.

On the other hand, we cannot keep the DNS records forever due to memory con-
straints. Therefore, we need to clear up the storage. We observe that 99% of the
A/AAAA and CNAME records have a TTL smaller than 3600 and 7200 seconds,
respectively (Ref. Figure 4.2). Therefore, we clear up the A/AAAA records every
3600 seconds, and CNAME records every 7200 seconds. However, since clearing the
whole storage will remove all the states, we perform buffer rotation before clear-up.
The internal storage where we keep the DNS records is a hashmap with the DNS an-
swer section as key, and the query name as value. For implementing these hashmaps,
we use the concurrent-map module in Go [137], which allows for high-performance
concurrent reads and writes by sharding the map.

We add the DNS records in a primary hashmap, i.e., the active hashmap. After a
certain amount of time has passed, we copy the contents of the active hashmaps into a
secondary storage, i.e., the inactive hashmap, and clear up the active hashmap. In the
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Parameter Name Description

AClearUpInterval Time in seconds after which the IP-NAME hashmap
is cleared.

CClearUpInterval Time in seconds after which the NAME-CNAME
hashmap is cleared.

NUM_SPLIT Number of splits for each IP-NAME hashmap.

Storage Name Description

IP-NAMEActive n Hashmap for DNS records with TTL < AClearUpIn-
terval and label n.

IP-NAMEInactive n Hashmap where the contents of IP-NAMEActive n are
copied to every AClearUpInterval seconds

IP-NAMELong n Hashmap for the new DNS records with TTL >=
AClearUpInterval and label n.

NAME-CNAMEActive Hashmap for the new CNAME responses with TTL <
CClearUpInterval.

NAME-CNAMEInactive Hashmap where the contents of NAME-CNAMEActive
are copied to every CClearUpInterval seconds

NAME-CNAMELong Hashmap for the new CNAME responses with TTL
>= CClearUpInterval.

Table 4.1: Overview of FlowDNS parameters and storage names

next clear-up round, the current contents of the inactive hashmap will be over-written
by the new contents. Active hashmaps are actively updated with the newly arrived
DNS records, while inactive hashmaps are only updated when the active hashmaps are
cleared. A very small fraction of the DNS records has TTLs longer than the clear-up
interval. Therefore, in case a DNS record’s TTL is larger than a certain threshold,
we put it into specific hashmaps which are never cleared or are cleared much less
frequently, namely, long hashmaps. Otherwise, it is stored in the active hashmap.
From now on, we call the active/inactive hashmaps for A/AAAA and CNAME records
IP-NAMEactive/inactive, and NAME-CNAMEactive/inactive respectively. Table 4.1 shows
an overview of the parameters and names of the in-memory storage that we use in
FlowDNS. Note that 0 5 n < NUM_SPLIT .

4.2.2 DNS Processing

This part of FlowDNS takes in DNS streams and fills up an internal shared storage
with the DNS records. These records will then be accessed in the Netflow Process-
ing.

1. DNS Streams are received by separate threads.
2. The DNS records go through a filter to check if they are valid DNS responses.
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Figure 4.1: FlowDNS correlation architecture

3. Valid DNS responses are added to a queue, namely FillUp Queue, to be then
processed each by several FillUp workers. We need this queue to facilitate the syn-
chronous execution of different workers.
4. Each FillUp worker picks a DNS response from the FillUp Queue and if it is an
A/AAAA record, labels it based on the IP address. This label will be used as a
hashmap index later on.
5. The FillUp worker then puts the DNS response in the shared hashmaps. In all
our hashmaps, the key is the answer section, and the value is the query. We leverage
two kinds of hashmaps:
• IP-NAME hashmap: Maps the answer section in an A/AAAA response, i.e.,

the IP address, to the queried domain name. We divide these hashmaps into
several splits. We empirically find that 10 splits are suitable for our scenario.
This can change for any deployment depending on the traffic volume. If, in Step
4, the IP for an A/AAAA response gets the label n, 0 ≤ n < 10, it goes to
IP-NAMEn.

• NAME-CNAME hashmap: Maps the answer section, i.e., the domain name,
to the queried canonical name for CNAME records.

6. The FillUp worker keeps track of the timestamp in each DNS record. IfAClearUpIn-
terval seconds has passed, it copies the contents of IP-NAMEactive to IP-NAMEinactive
and clears the IP-NAMEactive. If CClearUpInterval seconds is passed, it copies the
contents of NAME-CNAMEactive to NAME-CNAMEinactive and clears the NAME-
CNAMEactive.

Algorithm 4 shows an overview of the fillUpWorker thread which which the DNS
records and fills in the hashmap.

To find out the correct number for the clear-up intervals, namely CClearUpInterval
and AClearUpInterval, we investigate the TTLs for the DNS records. We look at
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Figure 4.2: Cumulative distribution of TTLs for DNS records over a day

the DNS records’ TTLs over a day at a large Europoean ISP, and find out that
99% of the A/AAAA and CNAME records have TTL smaller that 3600 and 7200
seconds respectively, shown in Figure 4.2. Therefore, in FlowDNS, we set the clear-up
variables as follows:

CClearUpInterval = 7200
AClearUpInterval = 3600

4.2.3 Netflow Processing

In parallel with the DNS processing, this part of FlowDNS takes in the Netflow
streams, takes the source IP address, and looks for this IP address in the internal
shared storage to find the corresponding domain name. It then writes the results into
the output files.

1. Netflow Streams are received by separate threads.
2. The Netflow records go through a filter to check if they are valid Netflow records.
3. The valid Netflow records are added to the LookUp Queue to be processed each
by several LookUp workers.
4. Each LookUp worker picks a Netflow record from the LookUp Queue and labels
it based on the srcIP field.
5. The LookUp worker looks for the srcIP in the IP-NAMEactive n hashmap, if the
label from Step Item 4 is n. If nothing is found, it looks into the Inactive hashmap,
and next into the long hashmap. If a Name is found, the search continues onto the
next step. Otherwise, the search finishes here for that srcIP (result = NULL).
6. The search will be continued in NAME-CNAMEactive n to find the CNAME for
that Name. If a CName is found, the search continues to the next step. Otherwise,
the search continues in the Inactive and then the long hashmap. If nothing is found,
the search finishes here for that Name (result = Name).
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7. The search in the NAME-CNAME map continues until no further CNAME is
found or a pre-defined loop limit is reached (result = CName). CNAME look-up
can sometimes include multiple consequent look-ups with one CNAME mapping to
another more than once. We studied the CNAME chain length, and as shown in
Figure 4.3, we observed that more than 99% of the DNS records can be mapped with
a chain of 6 look-ups. Therefore, we limit the number of CNAME chain look-ups to
6 in FlowDNS.
If the result is found with more than one look-up in NAME-CNAME maps, we add
it to NAME-CNAMEactive for later use.
8. The result along with the original Netflow is then passed to the Write Queue to
be written in the output file by WriteWorkers.

Algorithm 5 shows an overview of the lookUpWorker thread which reads the netflow
records, looks them up in the Active, Inactive, and Long hashmaps and finds the
results.

We publish the code for FlowDNS [2] for future researchers or network operators.

4.3 Evaluation

In this section, we evaluate the matching accuracy and performance metrics for
FlowDNS implemented in Go. First, we analyze the final version of FlowDNS on
a full week of traffic of a large European ISP. Second, we selectively remove imple-
mentation features from FlowDNS on a one-day traffic capture to understand their
importance by evaluating the effect on matching accuracy, CPU usage, and memory
consumption. We evaluate all the benchmarks on an Ubuntu 18.04.5 LTS machine
with 128 cores and 756 GB RAM. Figure 4.4 shows the CPU and memory usage
of FlowDNS over one week when deployed at a large European ISP. In both plots,
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Algorithm 4 DNS Read and Fill-up Overview
Function fillUpWorker DNSRecord d

n = label(d) if d.rtype is A/AAAA then
if d.ts - lastAClearUpTs >= 3600 then

IpName.Inactive = IpName.Active
IpName.Active = {}
lastAClearUpTs = d.ts

end
if d.ttl <= 3600 then

IpName.Active[n][d.answer] = d.query
else

IpName.Long[n][d.answer] = d.query
end

else
if d.ts - lastCClearUpTs >= 7200 then

NameCname.Inactive = NameCname.Active
NameCname.Active = {}
lastCClearUpTs = d.ts

end
if d.ttl <= 7200 then

NameCname.Active[n][d.answer] = d.query
else

NameCname.Long[n][d.answer] = d.query
end

end

the right axis shows the traffic volume to compare the CPU/memory usage patterns
with the traffic load. For all three metrics–traffic volume, memory usage, and CPU
usage–we can clearly identify diurnal patterns, with daily peaks in the evening pe-
riod, a low time during night hours, and an increase during the day. Note that we
normalize the traffic volume in the right Y-axis. We show CPU usage as percentages,
i.e., every 100% means 1 fully utilized CPU core. The CPU usage is around 2500%
which means roughly 25 CPUs are used. Memory usage also oscillates between 15
GB and 30 GB. In addition to the large European ISP, we also deploy FlowDNS
on a smaller network. On the smaller network, we observe average memory usage
of 6 GB, and CPU usage of around 300%, both following a diurnal pattern. The
ratio of CPU usage and number of flows remains the same in both deployments. The
memory usage, however, is affected by both number of DNS records and number of
parallel threads. This results in lower memory usage in the smaller network. On both
deployments, the results are written to disk by a maximum delay of 45 seconds, and
without any significant loss, i.e., 0.01% loss, on the data stream buffers. The ratio of
correlated traffic to the total traffic, i.e., the correlation rate, is 81.7% on average for
both deployments. We cannot correlate 18.3% of the traffic since (1) the coverage of
our DNS data is only 95%, as discussed later in this section, and (2) not all the traffic
is DNS-related, i.e., not all traffic has the destination IP address obtained through a
DNS query.
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Algorithm 5 Netflow Read and Look-up Overview
Function lookUpWorker NetflowRecord nf

n = label(nf)
Name = deepLookUp(nf.srcIP, IpNameObj[n])
loopCount = 0
if Name != Null then

results = append(results, Name)
Cname = deepLookUp(Name, NameCnameObj[n])
while Cname != Null and loopCount <= 6 do

results = append(results, Cname)
loopCount ++

end
return results

Def deepLookUp NetflowRecord nf, MapObj hm
Name = NULL if nf.srcIP in hm.Active then

Name = hm.Active[nf.srcIP]
else if nf.srcIP in hm.Inactive then

Name = hm.Inactive[nf.srcIP]
else if nf.srcIP in hm.Long then

Name = hm.Long[nf.srcIP]
return Name

Now, we remove the techniques used in the fully featured version of FlowDNS once
at a time, introducing four new benchmarks:

• No Split: The hashmaps are not divided into several splits.
• No Clear-Up: The hashmaps are kept in memory forever.
• No Rotation: The hashmaps are cleared, but no buffer rotation takes place and

no Inactive hashmap exists.
• No Long Hashmaps: The hashmaps are cleared up, and buffer rotation takes place,

but records with large TTLs are also written in the Active hashmaps, instead of
the Long hashmaps.

Figure 4.5 shows CPU and Memory usage for the above benchmarks. As expected,
memory usage for No Clear-Up grows steadily over the day and can easily hit the
memory limit. The mean correlation rate for this benchmark is 82.8%. The No
Rotation benchmark uses much less memory compared to other benchmarks since it
does not keep a copy of the original contents before clear-up. However, the average
correlation rate for this benchmark is 79.5%. The No Long Hashmaps save neither a
significant amount of memory nor CPU, yet, with a correlation rate of 81.1%, reduce
the correlation rate by 0.6% compared to the Main benchmark. Therefore, the Long
Hashmaps help keep those DNS records from being cleared up without much cost.
The No Split neither improves nor degrades the memory usage but decreases the
CPU usage significantly. This could be due to the reduced effort to access separate
hashmaps simultaneously. The average correlation rate is also 81.7%. However, this
should not be interpreted as if sharding the data is not helpful at all. In contrast,
as we have used data sharding already both in our hashmaps, and in our job queues,
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Figure 4.4: CPU and memory usage for Main benchmark over a week

explained in Section 4.2.1. The fact that this feature does not help as much as the
others only shows that no further splitting is needed in our case. The correlation rate,
i.e., the ratio between correlated traffic and total traffic is illustrated in Figure 4.6 for
different benchmark variants. The No Split benchmark excluded from the plot since
it has a complete overlap with the Main benchmark. The top two variants in terms
of correlation rate are Main and NoClearUp. The NoClearUp performs unacceptable
in terms of memory usage. The lowest correlation rate belongs to NoRotation, which
shows the importance of buffer rotation in FlowDNS.

As we have seen with these four benchmarks, all implemented features in FlowDNS,
except for IP-splitting, help increase the correlation rate while keeping the CPU and
memory usage low.

Coverage. FlowDNS receives DNS cache misses gathered from the clients’ default
ISP resolvers. This data is sent from the ISP resolvers to our collectors via TCP.
Therefore, even if the client uses DNS encryption while still using the default ISP
resolver, the results from FlowDNS are not affected. However, if the clients use
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Figure 4.5: CPU and memory usage for different variants over a day

a resolver other than the default ISP resolver, e.g., a public DNS resolver (e.g.,
Cloudflare’s 1.1.1.1, Google Public DNS, or Quad9), the DNS record is not received
and therefore, FlowDNS can not correlate the Netflow traffic for those clients. To
understand the number of DNS records we lose due to clients using public DNS
resolvers, we analyze a sample 1-hour Netflow data and filter DNS and DoT traffic,
i.e., ports 53 and 853. Then, using a public DNS resolvers list [138] and comparing
it with our sample, we observe that 1 out of every 20 DNS packets is sent to a public
DNS resolver. Therefore, the coverage of our DNS data is 95%.

Accuracy. Earlier in Section 4.3, we report that the correlation rate for FlowDNS,
i.e., the number of bytes that could be correlated with any service/domain name
compared to the total traffic volume in bytes, is 81.7% on average. However, this
metric does not show whether the correlated service is the service actually used by
the clients. Since we cannot access the actual domain names used by the clients,
there is no ground truth against which we can compare our results. Nevertheless,
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Figure 4.6: Correlation rate for benchmark variants

we can estimate the accuracy of FlowDNS, by pinpointing the scenarios that could
result in an incorrect service correlation and estimate their impact on the system’s
accuracy.

In FlowDNS, we keep the DNS data in a hashmap with the IP address as the key and
domain names as values. Therefore, by design, observing multiple IP addresses for one
domain name in the DNS data does not affect the accuracy of FlowDNS. However,
observing multiple domain names for one IP address can affect the accuracy. In
case a second domain name is observed with the same IP, i.e., the same key, the
existing (first) domain name is overwritten by the second domain name, which in
turn decreases the accuracy of our system. To confirm this, we design a small-scale
accuracy analysis using generated traffic data. We browse two different websites and
capture the traffic. Then, we extract the DNS packets from the captured traffic
and feed them to FlowDNS as the DNS stream. We then create Netflow records
from all traffic packets and feed them to FlowDNS as the Netflow stream. Finally,
observing the correlated domain names and comparing them to the actual scenario,
we find whether the system has correlated correctly. We consider two scenarios for this
experiment: (1) Two websites with different domain names and different IP addresses.
(2) Two websites with different domain names, using the same IP address. In the first
scenario, we observe that all the traffic is correlated correctly, while in the second
scenario, all the traffic is correlated to the second domain name. In other words, we
had an accuracy of 100% and 50% in the first and second scenarios, respectively.

To estimate the impact of such mislabelling events, we analyze the domain name
distribution per IP address. To this end, we analyze a 300-second sample of DNS
records since as Figure 4.2 shows, more than 70% of the DNS records have TTL
< 300 seconds. Figure 4.7 shows the cumulative distribution of number of domain
names per IP address. We observe that 88% of the DNS records only map to one
domain name in 300 seconds. We also analyze this in a 1-hour sample of DNS data
and observe similar results. Additionally, we analyze the number of IP addresses per
domain name in a 300-second period of DNS records. We observe that 35% of the
domain names map to more than one IP address. We also analyze this in a 1-hour
sample of DNS records and observe similar results. Therefore, we expect our results
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Figure 4.7: Cumulative distribution of number of domain names per IP address

to be accurate for 88% of IP addresses in our flow data. Note that observing multiple
IP addresses per domain name, which is a significantly more probable event compared
to multiple names for one IP address, does not effect the accuracy of FlowDNS.

4.4 Use Cases

FlowDNS helps ISPs to better plan their networks, while providing the opportunity
to analyze the traffic originated by malicious IDN homographs and spam domain
names. There have been several studies on detecting malicious or unwanted domain
names [139–142], detecting IDN homographs [143–145], and also analyzing domain
classification services [146]. However, to the best of our knowledge, there is no work
measuring the traffic going to/originated by these domains. In this section, we illus-
trate three example use cases of FlowDNS, measuring the traffic from malicious or
malformed domain names.

For all the following use cases, we use the correlated traffic for over a day in a large
European ISP, including 39M unique domain names, and analyze the traffic originated
by these domain names.

Network Provisioning and Planning. FlowDNS is already deployed in a large
European ISP and a smaller European ISP. The output from FlowDNS is then cor-
related with BGP data, e.g., source AS, destination AS, hand-over AS, etc., to gain
more knowledge about the path the traffic of a specific service takes. Figure 4.8 shows
the contribution of different source ASes to the traffic volume of streaming services
S1 and S2 over a week at the ISP. As Figure 4.8(a) shows, the traffic corresponding
to the streaming service S1 is originated mostly from only one AS, while the stream-
ing service S2 is originated mainly by two ASes as shown in Figure 4.8(b). Note

60



4.4 Use Cases

(a) Streaming service S1

(b) Streaming service S2

Figure 4.8: Cumulative traffic volume for streaming service S1 and S2 per source AS

that AS numbers in two figures do not represent the same ASes necessarily. In Fig-
ure 4.8 we observe a diurnal pattern with slight differences between the two services.
Knowing the source and intermediate ASes serving a specific service helps ISPs to
negotiate with content providers over using ISP’s resources instead of a third-party
CDN. Also, in case of a broken peering link, it helps find the fallback paths, if they
will be overloaded, and which services are effected.

IDN Homographs. Internationalized Domain Names (IDNs) are domain names
that contain at least one special non-Latin character. Sometimes, malicious parties
abuse non-Latin characters that look similar to Latin characters to deceive users and
lead them to their own domain names [147]. We look at the domain names in our
correlated traffic to see if any traffic goes to IDN homographs.

To detect actual homographs attacks, we capture all the correlated traffic for a day
and filter IDNs. Then, using the Unicode confusable characters list [148], we generate
all the permutations of those IDNs to find out whether any well-known domain name
is generated out of them. Then, we cross-check the generated permutated domain
names with the domain names in our 1-day traffic capture. We do not find any match
between the two, probably because the Unicode character list is not comprehensive
enough and misses some visually confusable mappings. Therefore, we manually check
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all IDNs from the actual traffic, to identify IDN homographs. We specifically find
homographs of google.com, i.e., googlê.com, góogle.de, góogle.de, etc., and a Cyrillic
homograph of apple.com.

The amount of traffic going to these IDN homographs is minimal, i.e., only hundreds
of megabytes are originated by these homographs in a day. This shows that FlowDNS
can be a valuable tool for network operators to identify potentially ongoing phishing
campaigns of their users early on. More precisely, 160 MB coming from a homopgraph
of google.com and 160 MB originated by a homograph of apple.com.

Spam Domains. Using our 1-day traffic capture, we check the correlated domain
names with the Spamhaus DBL (Domain Block List) [149] to see if any spamming,
phishing or otherwise suspicious domains are generating any traffic. To avoid band-
width limitations on Spamhaus DBL, we sample all the domain names once every
hour, giving ca. 1M domain names, out of which 612 are classified as suspicious by
the Spamhaus DBL. These include 512 spam/generic bad reputation domains, 41 bot-
net C&C domains, 34 abused spammed redirector domains, 11 malware domains, and
3 phishing domains. Collectively, these suspicious domain names originate multiple
terabytes of traffic. Figure 4.9 shows a cumulative distribution of traffic volume per
number of domain names for each of the above categories. In other words, it shows
how many domain names contribute to what fraction of the traffic volume. As can
be seen, a significant amount of traffic comes from spam and botnet domains, while
only a limited number of domain names account for a large fraction of the traffic.

Malicious websites usually change their domain names rapidly to avoid being detected.
Therefore, spam detection datasets such as Spamhaus DBL have an expiry date for
their labels, i.e., if checked after the expiry date, they will no longer exist in the
dataset and therefore be labeled as benign. FlowDNS allows for real-time checking
of the domain names with such datasets.

Invalid Domain Names. RFC 1035 stipulates specifications of DNS domain names
[124]. In the following analysis, we focus on three rules to which valid domain names
must adhere:

• The total length of the domain name is 255 bytes or less.
• Each label in the domain name is limited to 63 bytes.
• Each label starts with a letter, ends with a letter or digit, and the interior char-

acters are limited to letters, digits, and hyphens.

The word label refers to each part of the domain name separated by dots, i.e., if the
domain is A.B.C.com, labels are: A,B,C, and com. In our 1-day traffic capture, we
observe that 666k domain names violate at least one of the above-mentioned rules.
Figure 4.9 shows that almost all the traffic comes from a very limited number of
domain names, and the amount of traffic originated by such domain names is quite
significant. Note that the traffic volume is normalized. The most common conflict
with the above-mentioned rules is disallowed interior characters. The most common
disallowed character found in 87% of the malformatted domains is the underscore
character, i.e., ”_”. Finally, we investigate the overlap of invalid domain names
with domains in the spam category and find that only four malformatted domains
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Figure 4.9: Cumulative distribution of the traffic volume per number of domain names

also appear in the spam category. To understand how clients treat these malformed
domains, we investigate whether traffic is being exchanged for these domains. We
observe that 2.7% of the clients which receive traffic from malformed domains, send
traffic back to 23.6% of these malformed domains. This bi-directional traffic accounts
for 1.9% of the packets, mostly related to non-web port numbers, e.g., OpenVPN and
Kerberos. All other packets are originated by malformed domains and receive no
answer.

4.5 Lessons Learned

During the design of FlowDNS, we learned the following lessons:

• When following the CNAME chain, we had to limit the chain length to 6 due
to performance reasons. In our experiments, we observed that less than 1% of
CNAME chains are longer than 6.

• Splitting the data into several shards allows for higher parallelism, while consuming
higher CPU for the same amount of data. Therefore, it is important to keep an
eye on this trade-off.

• Buffer rotation, i.e., copying the data once before clearing it, helps to increase
correlation percentage without substantial CPU or memory usage in the long run.
Therefore, it provides a good trade-off between resource utilization and correlation
percentage.

• Expiring DNS records using their exact TTLs induces an unnecessary contention
over the shared memory making the loss rate reach over 90%. We tried applying
the exact TTLs from the DNS records on our correlation, meaning we correlate
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the IP from a DNS record with the source IP from the Netflow record only if the
DNS record’s TTL plus its timestamp is less than the timestamp from the Netflow
record which we consider current timestamp. In other words:

TTLdns + Timestampdns < Timestampnetflow

We also run a regular process to clear-up the expired DNS records, when the
above-mentioned condition did not hold. We run this on the same sources of data,
meaning DNS and Netflow streams at the large European ISP, and observed that
the internal buffers of all the streams start to overload from the very first minutes
of running the above-mentioned system, with the loss rate of over 90% for both
Netflow and DNS streams. We observed that the memory usage reaches up to 45
GB memory usage after only 1 hour of running the system. Comparing this to
the results from FlowDNS in Figure 4.4(b), we observe that the memory usage is
doubled although only 10% of the data is received at the system and others are
lost. This could be due to the regular clear-up process not being fast enough to
clear-up all the expired TTLs as the hashmaps grow, while at the same time, the
contention to access the shared memory is so high that the performance degrades
dramatically.
Therefore, we learned that using rotating buffers with a common expiry time
instead of the exact value helps in gaining the same correlation rate compared to
keeping the DNS records forever, with no loss and is much more resource-efficient.

We hope that these lessons will prove useful for fellow network application developers
and researchers alike.

4.6 Summary

Inferring the services behind a certain traffic flow is not possible merely by looking
at the IP addresses due to the prevalent deployment of CDNs. In this chapter, we
presented FlowDNS, a system to correlate DNS and Netflow streams in real-time.
We used several techniques such as splitting the data, rotating buffers, and specific
hashmaps to keep track of longer-living DNS records. We evaluated each of these
techniques and confirmed the usefulness of each. Then, using FlowDNS, we analyzed
the domain names with known datasets to detect malicious domains and observed that
a substantial amount of traffic is originated by these domain names. Moreover, we
checked the adherence of those domain names to standardization rules and observed
that 1.7% of all the domain names violate them. We also found that the traffic
originated by such domains accounts for 0.5% of the daily traffic. Finally, we make
FlowDNS available to fellow researchers and network operators.

Now that we discussed the systems to monitor network traffic in Chapter 3 and to
correlate them with DNS information to gain more insights about the actual appli-
cation behind the traffic in this Chapter, we plan to move towards finding hidden
characteristics of the Internet traffic, and investigate the reasons a specific abnormal
Internet traffic exists in Chapter 5.
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Zeroing in on Port 0 Traffic in the Wild

Transport protocols use port numbers to identify different Internet services. There
are different categories of port numbers: Officially registered ports at IANA [11],
unofficially but well-known ports, and dynamic ports, which cannot be registered
and are free to use by anyone. In contrast, there are also some ports which are
reserved and should not be used. One of these reserved port numbers is port 0. It
is reserved in most common transport layer protocols, i.e., TCP [150], UDP [150],
UDP-Lite [151], and SCTP [152]. When providing a port number 0 to the bind()
system call to establish a connection, operating systems generally choose a free port
from the dynamic range [153, 154]. Therefore, one needs to create a raw socket in
order to send port 0 packets.

In Chapter 3, we proposed a system to monitor network traffic to find about traffic
characteristics. Using Flowyager, we uncovered a non-negligible share of traffic us-
ing port number 0. Previous work has also confirmed such a phenomenon both in
darknets and the Internet [5, 10, 155].

In this chapter, we shed light on port 0 traffic in the Internet, by analyzing the
traffic from real networks, rather than darknets as is done in most related work, and
by performing active measurements to survey the real-world reaction of hosts and
routers to port 0 traffic.

To the best of our knowledge, this is the first work which conducts both active
and passive measurements on port 0 in the Internet, to better understand port 0
traffic characteristics and origins. Specifically, this work has the following three main
contributions:

• We leverage a flow-level dataset from a large European IXP to inspect the
origins of port 0 traffic (cf. Section 5.3). We find that out of the top 10 ASes
originating port 0 traffic, the majority does not follow typical diurnal patterns
of common protocols such as TCP/80.

• We inspect four packet-level datasets to discover the actual contents and de-
tailed characteristics of port 0 packets (cf. Section 5.4). We show that the
majority of non-empty packets in UDP are related to BitTorrent. We find that
most TCP packets do not contain any payload and are one-way. However, most
of the two-way TCP streams are scanning artifacts.

• We perform active measurements both in IPv4 and IPv6 to gain a tangible
perspective over port 0 responsive IP addresses (cf. Section 5.5). We find that
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IPv4 traffic using TCP uncovers a substantial number of responsive hosts in a
small number of ASes. We also perform traceroute-style active measurements to
better understand port 0 traffic filtering in wild, and find discrepancies between
IPv4 and IPv6. Finally, we will run periodic port 0 measurements and make
the results available to the research community.

5.1 Related Work

Already in 1983, Reynolds and Postel specified that port number 0 is reserved in
TCP and UDP [150]. Over the course of several years, similar provisions have been
introduced for other transport protocols as well [151, 152]. Traffic sent from or to
port 0 thus violates these specifications. Fittingly, most reports on port 0 traffic are
associated with DDoS attacks [156–158] and malformed packets [159].

Even though there is traffic on port 0 in the Internet, there is little research on its
root causes. Motivated by port 0 traffic spikes observed in November 2013 at the
Internet Storm Center and reports from security researchers at Cisco Systems, Bou-
Harb et al. [155] study port 0 traffic on 30 GB of darknet data. They filter out
any misconfigured traffic and packets with non-conforming TCP flags common in
backscatter traffic [160]. Using fingerprinting techniques [9], they argued that more
than 97% of their identified port 0 traffic was related to probing activities, some
orchestrated by malware.

In 2019, Luchs and Doerr [10] revisit the case of port 0 traffic, by studying data
obtained from a /15 darknet over a period of three years. They find that out of
about 33 000 source IP addresses involved in port 0 traffic, 10% can be attributed
to DDoS attacks, 6% to OS fingerprinting, and less than 1% to scanning activities.
When aggregating by the number of packets instead, scanning traffic dominates with
48% of all port 0 packets.

More recently, Maghsoudlou et al. [5] analyze port 0 traffic for a single passive
measurement source. Similarly to our results, they find that a small number of ASes
are responsible for about half of all port 0 traffic.

In contrast to the related work [5, 10, 155], which all focus their efforts on the
analysis of a single passive data source, in this chapter, we analyze four complementing
passive datasets in addition to conducting an active measurement campaign to better
understand port 0 traffic in the wild.

5.2 Datasets Overview

We leverage two different kinds of passive datasets to study port 0 traffic character-
istics: Flow-level and packet-level data. Throughout the paper, port 0 traffic refers
to the subset of the traffic which has either source port or destination port or both
set to zero. Flow-level data gives us a high-level overview of Internet traffic and
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Dataset IXP-2020-01 MAWI-2006-2020 MAWI-2020-04 Waikato-2011-04 CAIDA-2019-01

Timespan Jan. 25–31, 2020 2006–2020 Apr. 8–9, 2020 Apr.–Nov., 2011 Jan. 17, 2019
Duration 1 week 14 years 2 days 86 Days 2 hours
Format Flows Packets Packets Packets Packets
%IPv4,IPv6 (Port0) 99.8%,0.2% 100%,0% 100%,0% 100%,0% 99.7%,0.3%
%UDP,TCP (Port0) 96.8%,3.2% 22.4%,77.6% 30.2%,69.8% 15.5%,84.5% 43.8%,56.2%
Payload No Yes Yes Yes No
Sampled Packet-based Time-based No No No
# Packets 34.3 × 109 23 × 109 15.9 × 109 27.822 × 109 8.2 × 109

% Port 0 packets 0.25 0.0008 0.0001 0.002 0.0002
# Bytes 25.5 TB 14.6 TB 6.7 TB 16.9 TB 4.3 TB
% Port 0 bytes 0.28 0.00012 0.0002 0.001 0.00002

Table 5.1: Overview of passive port 0 datasets

can be used to analyze the aggregate flow of traffic. In our case, we use one week
of IPFIX flow data from a large European IXP. On the other hand, to be able to
dissect detailed traffic characteristics like fragmentation, header flags, and different
payloads, we need to inspect every single packet. Therefore, we use four different
packet-level datasets, namely a long-term and a short-term MAWI dataset, CAIDA,
and Waikato. Different packet-level datasets are used to cover different geographical
and temporal vantage points.

As shown in Table 5.1, we use the following datasets:

IXP-2020-01 One week of sampled IPFIX data from the end of January 2020 captured
at a large European IXP.

MAWI-2006-2020, MAWI-2020-04 These datasets [107] contain packet traces from
the transit link of the WIDE backbone [161] to the upstream ISP captured at
samplepoint-F. They include partial packet payload. To obtain a more compre-
hensive view, we use two variants of MAWI datasets:

MAWI-2006-2020 This dataset captures 15-minute snapshots each month
from January 2007 to July 2020.

MAWI-2020-04 We also use the most recent MAWI dataset being part
of the Day in the Life of the Internet project [162], which is April 8–9, 2020.

CAIDA-2019-01 This dataset [163] contains anonymized packet traces without pay-
load from CAIDA’s passive monitors. For our analysis we use the most recent
dataset available at the time of writing, which is the one-hour period from
14:00–15:00 UTC recorded on January 17, 2019.

Waikato-2011-04 This dataset [164] contains packet header traces including the first
few bytes of payload and is captured at the border of the University of Waikato
network in New Zealand.

We analyze port 0 traffic seen in passive data in detail in Sections 5.3 and 5.4. In
addition to passive flow and packet data, we also conduct active measurements. More
specifically, we run two types of measurements to analyze responsiveness on port 0
and filtering of port 0 traffic in the Internet:
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Port scan We use ZMap [19, 26] and ZMapv6 [20] to find responsive addresses on
port 0. In IPv4 we conduct Internet-wide measurements, in IPv6 we leverage
an IPv6 hitlist [23, 165, 166].

Traceroute We use Yarrp [22, 167] to traceroute addresses in IPv4 and IPv6 prefixes
in order to analyze port 0 traffic filtering in the Internet.

We present results from our active measurement campaign in Section 5.5. By lever-
aging both passive and active measurements we can analyze different aspects of port
0 traffic in the wild.

5.2.1 Ethical Considerations

We followed best current practices as explained in Section 2.3 for both our passive
and active measurement. Contrary to the active measurements, we will not publish
any passive measurement data.

5.2.2 Reproducible Research

To foster reproducibility in measurement research [168, 169], we make data, source
code, and analysis tools of our active measurements publicly available [170]. Due to
privacy reasons we will not publish data from the passive datasets.

5.2.3 Continuous Port 0 Measurements

To allow further analysis of port 0 responsiveness and filtering over time, we period-
ically run active port 0 measurements. The raw results of these measurements are
publicly available for fellow researchers at:

inet-port0.mpi-inf.mpg.de

5.3 Flow-level Analysis

Analyzing the traffic flowing between different Autonomous Systems is helpful to
detect high-level patterns. To investigate port 0 traffic patterns, we use the IXP-
2020-01 dataset and inspect the ASes originating or being targeted by port 0 traffic.
In one week of IXP flow data, we find 23 000 ASes contributing to port 0 traffic. We
observe that the source AS with highest number of packets in sends port 0 traffic to
4357 distinct destination ASes. Also, the destination AS with highest number of port
0 packets being destined to, is targeted by 1245 distinct source ASes.

We also observe that in 9 out of 10 top source ASes involved in port 0 traffic, port
number 0 is among the top-5 source and destination port numbers along with TCP/80
(HTTP) and TCP/443 (HTTPS). We find that more than 99% of port 0 traffic has
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both source and destination port set to zero. Interestingly, more than 99% of all
TCP traffic contains no TCP flags. This leads us to believe that this is not actual
port 0 traffic and is most likely an artifact of packet fragmentation [171], which is
incorrectly classified as TCP/0 traffic by the flow exporter [172]. We also analyze
the 1% of the TCP traffic with non-zero TCP flags, composed of 867 packets. We
find that 30% of this traffic sets their TCP flags to CWR/URG/ACK, 27% to ACK
only, and 25% to URG/ACK/PSH/SYN. 62% of this traffic has an average packet
size of less than 100 bytes, while 18% has an average packet size of more than 1480
bytes. To investigate more in-depth on how different networks react to port 0 traffic,
we perform active measurements (cf. Section 5.5).

To further investigate origins and causes of port 0 traffic, we analyze the diurnal pat-
terns of traffic originated by the top 10 source ASes and compare them with the more
common Web traffic on TCP/80. Figure 5.2 shows the hourly patterns of port 0 traf-
fic grouped by source AS, compared with the total TCP port 80 traffic as a reference
for regular traffic. Weekends are highlighted with a yellow background. Figure 5.1
shows a heatmap of the Spearman correlation of the diurnal patterns of these ASes
and TCP/80 traffic. We see that while AS2 is the most correlated to TCP/80 traffic,
AS4 and AS7 show highly similar patterns to each other and moderate correlation to
TCP/80 traffic. Moreover, AS3 shows a unique pattern with no correlation to either
other ASes or TCP/80.
AS3 is a cloud computing provider while other ASes are web hosting providers, ISPs,
or telecommunication companies. The unique traffic pattern originated by AS3 im-
plies irregular usage such as scanning or reset attack.

To better understand the causes of port 0 traffic, we analyze average payload sizes
observed in the IXP-2020-01 dataset. For easier comparison with the packet-level
datasets (cf. Section 5.4), we choose to analyze the payload size instead of the average
packet size reported directly in the flow data. We estimate the payload size by
subtracting the IP and TCP/UDP headers without options. As shown in Figure 5.3,
for TCP, we observe that nearly 88% of packets are smaller than 100 bytes, while
in UDP, more than 75% of packets are larger than 100 bytes. Having roughly 20%
full-sized packets in UDP, along with many mid-sized packets, indicates possible
fragmentation. Unfortunately, our IPFIX dataset does not include fragmentation
information for IPv4 flows. It does, however, include information about the IPv6 next
header value. We find no IPv6 flows with the next header value set to fragmentation
(i.e., 44). To investigate further on the exact fragmentation header flag, we inspect the
IPFIX field containing a list of all IPv6 extension headers in a flow. We find, however,
that the content of this IPFIX field does not conform to the IPFIX specifications as
defined by the RFC. This is possibly due to an erroneous early version of the RFC,
which has since been corrected [173]. As IPFIX datasets usually depend heavily
on how their exporter is implemented, researchers who would like to work on them
should be extra cautious to make sure that their data is flawless.

To summarize, multiple indicators lead us to believe that most of port 0 traffic seen
at the IXP is an artifact of packet fragmentation. Nevertheless, we find that the IXP
data gives valuable information on diurnal patterns. By analyzing the correlation
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Figure 5.1: Correlation coefficients between port 80 traffic and the top 10 source ASes
involved in port 0 traffic in the IXP

between diurnal patterns of different ASes and port 80 traffic, we find one AS devi-
ating heavily from the common diurnal patterns. This indicates possible scanning or
other irregular activities which requires a more in-depth analysis which can only be
performed on packet-level data. Therefore, we analyze the four packet-level datasets
in the upcoming section.

5.4 Packet-level Analysis

Although using a flow-level dataset provides us with useful information about the
origin and targets of port 0 traffic, it cannot provide information on what the packets
actually contain. Knowing the packet content, we can infer the cause of port 0 usage
more precisely. To this end, we use the MAWI-2006-2020, MAWI-2020-04, CAIDA-
2019-01, and Waikato-2011-04 datasets. CAIDA-2019-01 contains no payload, while
others provide partial payload data. We begin our packet-level analysis by investi-
gating packet payload sizes, for which we use the packet length field found in UDP
and TCP headers. As Figure 5.3 shows, nearly all packets in MAWI-2020-04, MAWI-
2006-2020 and Waikato-2011-04 have a payload size of less than 100 bytes. In both
the MAWI-2020-04 and the CAIDA-2019-01 dataset, more than 99% of the TCP port
0 traffic does not have any payload, while UDP traffic always contains payload. Note
that Figure 5.3 only shows those TCP packets with payload, i.e., for CAIDA-2019-01
and MAWI-2020-04, it shows less than 1% of all TCP packets. In the CAIDA-2019-01
dataset, while UDP traffic includes payload sizes smaller than 104 bytes in 99% of the
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Figure 5.2: Daily traffic pattern of port 80 and top 10 source ASes for port 0 in
IXP-2020-01 dataset in IPv4
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packets, TCP traffic shows more mid-sized payload sizes. Investigating further into
the CAIDA-2019-01 dataset shows that all packets contain zero as fragment offset
and all the fragmentation flags are set to Don’t Fragment. This suggests that port 0
traffic in the CAIDA-2019-01 dataset is likely not a fragmentation artifact. However,
we find some bogus packets, e.g., with zero header length among these mid-sized TCP
packets.

Similar to our analysis in Section 5.3, we investigate port 0 traffic origins and destina-
tions in our two MAWI datasets. We find that most of the traffic, namely more than
60%, is destined to only 2 ASes, as shown in Figure 5.4. Figure 5.5 shows the cumu-
lative distribution of IP addresses in port 0 traffic in different datasets. We exclude
the MAWI-2006-2020 dataset since aggregating through 14 years would not give us
useful information. We observe that more than 75% of port 0 traffic is originated
by less than 10 IP addresses in CAIDA-2019-01, IXP-2020-01, and MAWI-2020-04.
Also in all the datasets, more than 87% of port 0 traffic is destined to less than 10
IP addresses.

In Figure 5.6, we show the payload distribution classified with libprotoident [174] for
each year in the MAWI-2006-2020 dataset. The red line along with the right Y-axis
show total number of packets throughout different years. The stacked bar plots show
different categories of payloads excluding No Payload and Unknown UDP. We find
that BitTorrent traffic is a constant contributor to port 0 traffic in Waikato-2011-04,
MAWI-2020-04, and in different years in MAWI-2006-2020.

In MAWI-2020-04, we find that 70% of the payloads belong to the BitTorrent UDP
protocol. Additionally, a payload pattern covering 16% of the traffic, probably belong-
ing to a custom application-layer protocol, DNS, OpenVPN, and NTP, contributes to
other payloads in MAWI-2020-04 port 0 traffic in our dataset. In Waikato-2011-04,
BitTorrent-UDP and Skype are among the top payloads.

In MAWI-2020-04, MAWI-2006-2020, and CAIDA-2019-01, Malformed packets con-
tribute less than 2% to port 0 packets, e.g., with wrong checksums, having UDP
length of higher than IP length, etc. However, in Waikato-2011-04, we find that
16.2% of the traffic is malformed. This shows that port 0 traffic can also be caused

TCP UDP
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Figure 5.3: Cumulative distribution of payload size in port 0 traffic. Note that the
X-axis is log-scaled.
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by misconfiguration, programming errors, or people sending malformed traffic on
purpose.

Next, we analyze different TCP flags in packet-level datasets to better understand
possible causes of port 0 traffic. Attackers and scanners usually use specific TCP
control bits in their packets to achieve their goals. For instance, attackers sending
spoofed traffic set the SYN bit to try to initiate TCP connections with their targets,
which in backscatter traffic we see as SYN/ACK, RST, RST/ACK, or ACK packets
[160]. Therefore, we investigate TCP control flags in the datasets. We observe that
most of the TCP flags are only SYNs: More than 66% in MAWI-2020-04, and 92%
in CAIDA-2019-01, which might indicate that most of the TCP port 0 traffic in
these two datasets is caused by scanning. We analyze TCP flags in MAWI-2006-2020
dataset per year, as shown in Figure 5.7. First, we check whether all packets in a TCP
stream are one-way or two-way. We find that a large fraction of the TCP streams
are one-way. This also holds for all other packet-level datasets. Then, we categorize
two-way TCP streams as follows:

• Scan to closed port: Client sends SYN, receives RST or RST/ACK.
• Scan to open port: Client sends SYN, receives SYN/ACK, client then sends

RST or RST/ACK.
• No SYN: No SYN is ever sent. The stream begins with other flags, mostly

SYN/ACKs followed by RSTs from the other side.
• Not scan: None of the above, i.e., client sends SYN but receives no RST.
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Figure 5.4: Traffic between top 10 (source AS, destination AS) pairs involved in port
0 traffic in the MAWI-2020-04 dataset
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Figure 5.5: Cumulative distribution of IP addresses in port 0 traffic. Note that the
X-axis is log-scaled.

We find that a major fraction of two-way TCP streams are scans to closed ports for
most of the years. Among the streams in the Not scan category, we find two long
streams of ACK/PSH followed by multiple ACKs in 2015 or ACK/PSH/FIN in 2019,
respectively. We believe that these streams are related to an ACK/PSH flood attack
[175] considering the relatively high number of packets sent in these streams. Next,
we analyze specific years of the MAWI-2006-2020 dataset with very characteristic
spikes more in-depth. In 2009, we see the largest number of total packets of any
year, with a TCP:UDP ratio of about 2:1. The majority of UDP traffic is originating
with source port UDP/8000 from many different IP addresses within a Chinese ISP
AS which are mostly destined to UDP/0 towards a single IP address belonging to a
Japanese university inside WIDE. For TCP, the majority of traffic is sourced from a
single IP address within a Canadian ISP and destined to many different IP addresses.
Almost all sources are TCP/0 and the destinations are TCP/22 (SSH). As is shown
in Figure 5.7, these are very likely scanning activities.

In 2012 we see the largest number of TCP streams as shown in Figure 5.7. We find
a factor of 54 times more TCP traffic this year than UDP traffic. Almost 80 % of all
TCP/0 traffic is from a single IP address within a hosting company, the destination
addresses and ports are evenly distributed. The TCP flags of all packets are set to
RST/ACK. These indicators lead us to believe that this is backscatter traffic from
attack traffic using spoofed IP addresses [160].

Finally, we investigate the current year 2020, from January to July. During this period
we see 26 times as much TCP traffic compared to UDP. The majority of TCP traffic
originates from a single IP address at a hosting company, which uses TCP/43573 as
a source port. For the IP address in question we find many different reports on abuse
DB websites, which hint at scanning and vulnerability probing.

To summarize, we find that a large fraction of TCP streams in port 0 traffic is one-way.
However, we still see some two-way streams related to scanning activities. Analyzing
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Figure 5.8: Cumulative distribution of responsive IP addresses per AS. Note that the
X-axis is log-scaled.

packet payloads throughout all our datasets, we observe that BitTorrent UDP traffic
is a constant contributor to port 0 traffic.

5.5 Active Measurements

As discussed in the previous sections, we observed a significant number of RST/ACKs
and even some SYN/ACKs which indicate scanning activities. To better understand
how the network reacts to port 0 traffic, we stage an active measurement campaign.
We run two types of measurements: (1) Port scan measurements allow us to analyze
responsiveness of IP addresses to port 0 probes and (2) traceroute measurements
provide information on where port 0 packets are being filtered.

5.5.1 Responsive Addresses

We run four types of port scan measurements, for each possible combination of
IPv4/IPv6 and TCP/UDP. The IPv4 measurements are run on the complete ad-
dress space minus a blocklist, the IPv6 measurements use an IPv6 hitlist [166]. For
the TCP measurements we send regular SYN packets, for UDP we send the most
prominent payload found in our passive packet traces.

For the four protocol combinations, we get vastly differing results. With 2.3 M, the
largest number of addresses responds to our IPv4 TCP port 0 probes. Only 2222
unique addresses respond to IPv4 UDP probes and 120 respond to IPv6 TCP probes.
We find not a single responsive address for IPv6 UDP probes.
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ASN AS Name Count

1 6830 Liberty Global 4822
2 6327 Shaw 3257
3 812 Rogers 2297
4 33915 Vodafone 2152
5 11492 Cable One 1095
6 30036 Mediacom 688
7 12389 Rostelecom 643
8 4134 Chinanet 575
9 3320 Deutsche Telekom 552
10 4766 Korea Telecom 498

Table 5.2: Top 10 ASes of non-reachable target addresses when comparing TCP/0
and TCP/80

When mapping responsive addresses to ASes [176, 177], we find that a small number
of ASes makes up the majority of responses. Figure 5.8 shows the AS distribution
of responses for the different protocols. The top ten ASes make up 72 %, 73 %, and
79 % of all responses for IPv4 TCP, IPv4 UDP, and IPv6 TCP, respectively. When
we look at the overlap of responding addresses in TCP and UDP for IPv4, we find
that 61 % of IPv4 UDP addresses are present in IPv4 TCP results. In IPv4 TCP,
where we see the most responses by far, most of the top 10 ASes belong to ISPs.
This leads us to believe that faulty or misconfigured ISP equipment is to blame for
responses to port 0 probes.

Next, we analyze the initial TTL (iTTL) value [178–180], UDP reply payload, and
combine these with the responding AS. For IPv4 TCP we find that the most common
iTTL values are 64 (57 %), which is the default for Linux and macOS, 255 (36 %),
the default for many Unix devices, and 128 (7 %) the default for Windows. When
combining these iTTL values with the responding AS we find no clear patterns. In
contrast, for IPv4 UDP we find a clear correlation between iTTL, payload, and AS.
The most common response payload (32 %) is sent from six different ASes with an
iTTL value of 32 or 64. The second most common response payload (14 %) is identical
to our request payload, i.e., the probed hosts simply mirror the payload that they
receive. Packets with this payload originate from a single AS (AS7922, Comcast) and
all of them have an iTTL of 255. The third most common payload (8 %) is made up
of 16 zero bytes and originates from AS14745 (Internap Corporation) with an iTTL
of 32.

These findings suggest that only a small number of networks contain misconfigured
devices erroneously responding to port 0 probes.
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5.5.2 Port 0 Traceroutes

To better understand how port 0 traffic is handled inside the network, we conduct
traceroute-style measurements using Yarrp [22]. This allows us to see if port 0 traffic
is treated differently by routers compared to standard TCP/80 or TCP/443 traffic.1
In IPv4, we split the announced address space into 11 M /24 prefixes and send a trace
to a random address within each of these prefixes. In IPv6, the equivalent would be
sending traces to every /48 prefix. This is, however, not feasible due to the vast
address space. Therefore we decide to pick one random address per announced IPv6
prefix, no matter the prefix length. We ensure that random addresses for less specific
prefixes do not fall into more specific prefixes. In total, we send probes to about 88 k
IPv6 prefixes.

5.5.2.1 Reachability

When analyzing the reached target addresses depending on the used port numbers,
we find that in IPv4 there is a significant difference between port 0 and other ports.
91 k of IPv4 port 0 traces reach their target, whereas 118 k traces on TCP/80 and
TCP/443 reach their target IPv4 address, an increase of almost 30 %.

In IPv6, however, almost no targets are reached for either port number, as the like-
lihood of a randomly generated address in a prefix actually being assigned is quite
low. Therefore, we perform additional analyses based on the reachability of the target
BGP-announced prefix.

The general picture in IPv4 does not change drastically when analyzing the reach-
ability of the target prefix: Port 0 probes reach fewer target prefixes compared to
port 80 and port 443 probes, although the difference is reduced to 14.2 % and 9.5 %,
respectively.

When we analyze the reached target prefixes for IPv6, however, we see a slight dif-
ference of 3 %.

As the difference of reachable addresses is most apparent in IPv4, we investigate this
phenomenon in more detail. We identify on a per-target basis the addresses which see
no responses in TCP/0, but do see responses in TCP/80. These non-responsive port
0 addresses are mapped to 4102 distinct ASes, exhibiting a long-tailed distribution.
Next, we check whether we find other addresses in these 4102 ASes to be responsive to
port 0 traceroutes, to exclude the possibility of missing responses due to ICMP rate
limiting. We find responses to port 0 traceroutes for only 15 of these ASes, making up
only 0.4 % of the total 4102 ASes. This underlines the fact that these ASes are indeed
handling port 0 traceroutes differently compared to other ports. Furthermore, as is
shown in Table 5.2, 9 out of the top 10 ASes belong to ISPs, further indicating that
these might be ASes blocking port 0 traffic to their clients[181–183]. In the rest of

1Note that due to the nature of traceroute measurements, missing traceroute responses could stem
either from filtered packets on the forward path, rate-limiting of ICMP packets at the routers, as
well as dropping of ICMP responses on the return path.
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this section, we analyze many additional aspects of traceroute responses, by checking
for differences in the last responsive hop, comparing the number of responsive hops
per trace, evaluating ICMP types and codes.

To summarize, our findings show that packets are handled differently based on the
destination port number. Port 0 is more likely to be filtered on the path as well
as at the target hosts. Interestingly, the phenomenon of fewer responses for TCP/0
seems to be much more common in IPv4 compared to IPv6, which could be due to
inconsistent firewall rules [184].

5.5.2.2 Last Responsive Hops

We analyze the last responsive hop of each trace specifically. More concretely, we are
interested in the distance, i.e., the largest TTL value of traceroutes, where we get an
ICMP response to. This allows us to determine whether TCP/0 traceroutes are e.g.
dropped earlier in the network and therefore are terminated earlier in the Internet.

Therefore, we compare the distribution of the last responsive hop. The left part of
Figure 5.9 shows the distribution of the last responsive hop for IPv4 and IPv6, respec-
tively. The only visible difference we see for IPv4 are the lower whiskers for TCP/0,
stemming from the fact that TCP/80 and TCP/443 has slightly more outliers with
high TTLs when it comes to the last responsive hops. For IPv6 we see that TCP/0
has a median of 13 and TCP/80 as well as TCP/443 have a median last responsive
hop TTL of 14. Since the median is almost identical, this is due to the median only
being able to represent integer values if all elements (namely path lengths) are inte-
gers. TCP/0’s median is therefore “just below” 14 and the others’ median is “just
above” 14. All in all, the box plots show that there is no significant difference when
analyzing last responsive hops depending on the transport port.

5.5.2.3 Number of Responsive Hops

Next, we try to answer the question whether fewer routers on the path send ICMP
messages for port 0 traceroute traffic or not.

In the right part of Figure 5.9 we show the box plot of the number of responsive hops.
Again, we see no evidence of router sending fewer ICMP responses for port 0 traffic.
We see a slight reduction of TCP/443 ICMP responses per trace in IPv4.

5.5.2.4 ICMP Types and Codes

Finally, we evaluate the different ICMP types and codes sent by routers.

Figure 5.10 shows the distribution of type and code combinations for ICMP and
ICMPv6, respectively. As expected, the vast majority are of type “Time to Live
exceeded in Transit” for IPv4 and ‘hop limit exceeded in transit” for IPv6. We see
almost identical distributions for the port 0 and other ports.
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5.6 Summary

In this chapter, we dissected port 0 traffic by analyzing five complementing passive
datasets and by conducting active measurements. We showed that the majority of
port 0 traffic in the wild flows between a small number of source and destination
ASes/IP addresses. Moreover, for some ASes we identified similar diurnal patterns
in port 0 traffic as with regular traffic, along with many TCP packets with no TCP
flags, hinting at a prevalence of fragmented traffic in the IXP dataset. Additionally,
we found that a major fraction of UDP port 0 traffic contains payload, with BitTorrent
being a common contributor. Moreover, we showed that TCP port 0 traffic usually
does not contain any payload and is mostly one-way. Two-way streams were identified
as mostly scanning traffic. Finally, by staging an active measurement campaign, we
showed unusually high response rates to TCP port 0 probes in IPv4, in addition to
uncovering the presence of port 0 packet filtering.

In previous chapters, we investigated Internet traffic monitoring. Throughout this
Chapter, we investigated a minor traffic category in the Internet, namely, the traffic
using port 0 and characterized it. In the next chapter, we broaden our knowledge
regarding a more prevalent form of traffic category, namely the encrypted traffic using
VPN protocols. We try to find the VPN servers in the wild, and then characterize
the Internet traffic going to them in Chapter 6.
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Characterizing the VPN Ecosystem in the Wild

With the increase of remote working during and after the COVID-19 pandemic, the
use of Virtual Private Networks (VPNs) around the world has nearly doubled. There-
fore, measuring the traffic and security aspects of the VPN ecosystem is more im-
portant now than ever. VPN users rely on the security of VPN solutions, to protect
private and corporate communication. Thus a good understanding of the security
state of VPN servers is crucial. Moreover, properly detecting and characterizing VPN
traffic remains challenging, since some VPN protocols use the same port number as
web traffic and port-based traffic classification will not help.

In Chapter 6, we aim at detecting and characterizing VPN servers in the wild, which
facilitates detecting the VPN traffic. To this end, we perform Internet-wide ac-
tive measurements to find VPN servers in the wild, and analyze their cryptographic
certificates, vulnerabilities, locations, and fingerprints. We find 9.8M VPN servers
distributed around the world using OpenVPN, SSTP, PPTP, and IPsec, and analyze
their vulnerability. We find SSTP to be the most vulnerable protocol with more
than 90% of detected servers being vulnerable to TLS downgrade attacks. Out of
all the servers that respond to our VPN probes, 2% also respond to HTTP probes
and therefore are classified as Web servers. Finally, we use our list of VPN servers to
identify VPN traffic in a large European ISP and observe that 2.6% of all traffic is
related to these VPN servers.

Virtual Private Networks (VPNs) provide secure communication mechanisms, in-
cluding encryption and tunneling, enabling users to circumvent censorship, to access
geo-blocked services, or to securely access an organization’s resources remotely.

The COVID-19 pandemic changed Internet traffic dramatically. Studies investigat-
ing the impact of the COVID-19 pandemic on Internet traffic show that streaming
traffic being tripled around the world due to remote work, remote learning, and enter-
tainment services [185–187]. VPN traffic has been no exception to this major traffic
shift. After the COVID-19 pandemic, the VPN traffic observed in a large European
IXP nearly doubled [13]. In a campus network, even a more dramatic increase of
20x has been reported [187], which shows a prominent growth of remote work and
e-learning. Additionally, several articles find that remote work is here to stay [188,
189]. According to recent statistics from SurfShark [190], 31% of all Internet users
use VPNs.
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In order to facilitate network planning and traffic engineering, ISPs have an interest
in understanding the network applications being used by their clients, and how these
applications behave in terms of traffic patterns and volume. Therefore, detecting and
characterizing VPN traffic is an important task for ISPs. Certain VPN protocols use
known port numbers for their operation, e.g., port number 4500 is used for IPsec, and
port number 1723 is used for SSTP. Thus, the traffic using protocols over the known
port numbers can easily be detected as VPN traffic. However, some VPN protocols,
e.g., SSTP, and in some occasions, OpenVPN use port number 443 which is commonly
used for secure web applications. This makes it challenging to distinguish between
web and VPN traffic.

Moreover, VPN users might share sensitive private or corporate data over VPN con-
nections. As the number of cyber attacks has almost doubled after the pandemic
[191], it makes Internet users even more aware of their privacy and the security of
their VPN connections. Therefore, investigating the vulnerabilities of the VPN pro-
tocols helps to highlight existing shortcomings in VPN security.

Previous studies focused on detecting VPN traffic using machine learning [192, 193],
or DNS-based approaches [13, 194]. Some studies have also analyzed the commercial
VPN ecosystem [195, 196]. However, to the best of our knowledge, this is the first
work which conducts active measurements to detect and characterize VPN servers in
the wild.

In this chapter, we aim to detect, characterize, and analyze the deployment of VPN
servers in the Internet using active measurements along with passive VPN traffic
analysis. We also make use of the system proposed in Chapter 4, namely, FlowDNS
to collect more information about the VPN traffic.

Specifically, this work makes the following main contributions:

• VPN server deployment: We perform active measurements to the complete
IPv4 address space and an IPv6 hitlist for 4 different VPN protocols both in
UDP and TCP. We find around 9.8 million IPv4 addresses and 2.2 thousand
IPv6 addresses responsive to our probes.

• VPN security evaluation: We analyze the detected IP addresses in terms of
TLS vulnerabilities, certificates, and geolocation. We observe that the United
States is the most common location among our detected IP addresses. We also
find that more than 90% of SSTP servers are vulnerable to a TLS attack and
nearly 7% of the certificates are expired.

• VPN traffic analysis: We analyze passive traffic traces from a large European
ISP, we find that 2.6% of the traffic uses our list of VPN servers as either source
or destination address. Moreover, we use rDNS data along with DNS records
from a large European ISP to compare our results with previous work looking
into VPN classification [13]. We find that using our methodology, we find 4
times more VPN servers in the wild.

• VPN probing tool: We develop new modules for Zgrab [21] to send cus-
tomized VPN probes. We make these modules publicly available [197] to foster
further research in the VPN ecosystem.
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6.1 Background

VPNs establish cryptographically secured tunnels between different networks and can
be used to connect private networks over the public network. Thus, a proper VPN
connection should be encrypted in order to prevent eavesdropping and tampering of
VPN traffic. The tunneling mechanism of a VPN connection also provides privacy
since the traffic is encapsulated. Therefore, users remotely accessing a private network
appear to be directly connected.

While the exact tunneling process varies depending on the underlying VPN protocol,
it is quite common to categorize VPNs in two different groups:

• Site-to-site VPNs: In this configuration, a VPN is used to connect two or
more networks of geographically distinct sites. This is common for companies
with branches in different locations.

• Remote access VPNs: This kind of VPN connection is mainly used by indi-
vidual end-users in order to connect to a private network.

6.1.1 VPN Usage

The usage of VPNs has evolved over the past three decades. David Crawshaw [198]
gives a very comprehensive overview of how and why VPNs changed over the years.
While in the earlier days of the Internet, they were primarily used by companies to
connect their geographically distinct offices, VPNs nowadays provide a variety of use
cases for individuals as well and are used by millions of end-users around the globe.
Use cases include:

• Privacy preservation: The encrypted VPN tunnels provide end-users the
means to preserve their privacy.

• Censorship circumvention/accessing geo-blocked content: Specific ser-
vices might be censored in some countries or geographically restricted. By
connecting to a VPN server in a different country, it is still possible to access
such content since it would now appear as if the user was located in a different
country.

• Remote access: It is common to use VPNs to remotely access restricted
resources or to connect with an organization’s network. This usage scenario has
gained importance especially during the COVID-19 pandemic among employees
and students alike due to remote working.

Different usage patterns, the general understanding of the functionality of VPNs, and
awareness of potential risks vary between different demographic groups. Dutkowska-
Zuk et al. [199] studied how and why people from different demographic backgrounds
use VPN software primarily comparing the general population with students. They
found that the general population is more likely to rely on free, commercial VPN
solutions to protect their privacy. Students, on the other hand, rather resort to VPN
software for remote access or to circumvent censorship and access geographically
blocked services with an increased use of institutional VPNs. Generally, they found
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VPN protocol Transport protocol Port (D)TLS-based Server detection possible

IPsec/L2TP UDP 500 7 3

OpenVPN UDP & TCP 1194, 443 3 partially
SSTP TCP 443 3 3

PPTP TCP 1723 7 3

AnyConnect UDP & TCP 443 3 7

WireGuard UDP 51820 7 7

Table 6.1: Overview of VPN protocols showing the transport protocol, port, (D)TLS
encryption, and possible detection

that, while most VPN users are concerned about their privacy, they are less concerned
about data collection by VPN companies.

Especially during the COVID-19 pandemic, VPNs increasingly gained significance.
The pandemic and the resulting lockdowns caused many employees and students to
work and study remotely from home. Feldmann et al. [13] analyzed the effect of
the lockdowns on the Internet traffic. Their work included the analysis of how VPN
traffic shifted during the pandemic. They detected a traffic increase of over 200%
for VPN servers identified based on their domain with increased traffic even after
the first lockdowns. These findings highlight the rising significance of VPNs. With
progressing digitalization, VPN traffic can be expected to increase even further.

6.1.2 VPN Protocols

We want to cover as many protocols as possible including some of the most prominent
ones like OpenVPN and IPsec. The functionality of a VPN connection establishment
varies depending on the underlying VPN protocol. Table 6.1 gives an overview of
all the VPN protocols we consider with general information on their underlying pro-
tocols. Among them, especially PPTP, which was the first actual VPN protocol
standardized in 1999 (see RFC 2637 [200]), can be considered rather outdated and it
is not recommended to be used anymore [198, 201].

WireGuard is the most modern protocol at the moment. It is much more simplistic
than, e.g., OpenVPN or IPsec and incorporates state-of-the-art cryptographic prin-
ciples.

6.2 Methodology

In this section, we introduce our methodology for our passive and active measure-
ments. We perform Internet-wide measurements in order to detect VPN servers in
the wild and create hit lists of identified VPN servers. Based on those results, we
conduct follow-up measurements to fingerprint the VPN servers and further analyze
them in terms of security. Finally, we look for the detected IP addresses in the traffic
from a large European ISP to find out the amount of VPN traffic.
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6.2.1 VPN Server Detection

Our measurements to detect VPN servers include the whole IPv4 address range as
well as over 530 million non-aliased IPv6 addresses from the IPv6 Hitlist Service [23,
202]. We send out the connection initiation requests that are used in the connection
establishments of the different VPN protocols. For UDP-based protocols, we use
ZMap [19] (ZMapv6 for IPv6 [20]), a transport-layer network scanner, to directly
send out UDP probes. If the VPN protocol is TCP-based, we first use ZMap to
find targets with the respective open TCP ports using TCP SYN-scans. We then
use Zgrab [21] to send out the actual VPN requests. Zgrab works on the application
layer. It can be used complementary to ZMap for more involved scans. It also allows
us to implement custom modules needed for our VPN requests over TCP and TLS.

We identify an address as a VPN server based on the responses we receive to our
initiation requests. If the parsed response satisfies the format of the expected VPN
response, the target is classified as a VPN server. To completely detect the VPN
ecosystem for a specific server, we might have to take several server configurations
into account and perform multiple measurements for a single protocol accordingly.
Apart from that, for some protocols and configurations, we require knowledge of
cryptographic key material which we do not have since we perform measurements in
the wild. Therefore, we cannot detect the entirety of the VPN ecosystem with our
method. The last column of Table 6.1 summarizes for which protocol we are able to
detect VPN servers. When OpenVPN servers specify the so-called tls-auth directive,
an HMAC signature is required in all control messages. This means that we can
only craft requests without HMACs and hence detect only a subset of all OpenVPN
servers.

As mentioned above, for some protocols, it might also be necessary to consider dif-
ferent configurations. For IPsec, e.g., we suggest seven different cipher suites in the
initiation request. Apart from that, we have to specify a key exchange method in
the OpenVPN requests. Out of the two possible key exchange methods, namely key
method 1 and key method 2, key method 1 is considered insecure and is therefore
deprecated [203]. We therefore specify key method 2 in our initiation requests and
then perform a follow-up scan where we suggest the deprecated key exchange method
to identified OpenVPN servers to investigate how many of them might still support
key method 1.

6.2.2 TLS Analysis

For the TLS-based VPN protocols, which include SSTP and OpenVPN over TCP, we
perform follow-up measurements to further fingerprint the servers and assess them in
terms of security. For that, we collect TLS certificates of the VPN servers to analyze
them for expiry, check for self-signed certificates and investigate how many of them
are snake oil certificates. We characterize a certificate as a snake oil certificate if
the common name (CN) of the subject and issuer are both specified as localhost or
user.local. For the certificates signed by a Certificate Authority (CA), we collect the
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most common issuing organizations. We gather domain names corresponding to the
responsive IP addresses using reverse DNS (rDNS) look-ups, and collect certificates
with and without the Server Name Indication (SNI) extension using these domain
names and compare them against each other. SNI can be used by the client in the
TLS handshake in order to specify a hostname for which a connection should be es-
tablished. This might be necessary in cases where multiple domain names are hosted
on a single address. Finally, we test if the servers are susceptible to the Heartbleed
[204] vulnerability as well as a series of TLS downgrade attacks. The Heartbleed
attack is based on the Heartbeat Extension [205] of the OpenSSL library. In TLS
downgrade attacks, we try to force a server to establish a connection using an out-
dated SSL/TLS version or using insecure cipher suites by suggesting those outdated
primitives in the TLS handshake. Table 6.6 summarizes all the vulnerabilities and
their requirements, i.e., what we have to test for or the version or cipher suite to
which we try to downgrade the TLS connection. For instance, in order to check if
a server is vulnerable to the FREAK attack, we suggest any SSL/TLS version and
only RSA_EXPORT cipher suites in the TLS handshake.

6.2.3 Fingerprinting

We try to infer more information on the VPN servers based on our connection initi-
ation requests as well as from follow-up measurements in order to further categorize
them.

One aspect we examine is the server software deployment. For SSTP and PPTP, we
can extract information on the software vendor directly from the responses to our
initiation requests.

Furthermore, we perform OS detection measurements on a subset of 1000 VPN servers
for each protocol using Nmap [206], a network scanner that can be used for network
discovery among other things. We use Nmap’s fast option and target 100 instead
of 1000 ports to decrease runtime and parse the results for the most common open
ports and OS guesses. With those results, we can learn more about the VPN server
infrastructure and potential other services running on the same servers.

6.2.4 VPN Traffic Analysis

The active measurement in Section 6.2.1 provides us with a list of IP addresses,
namely VPN hitlist, which are responsive to at least one VPN protocol initiation
request. We look for these IP addresses in the DNS records gathered from the DNS
resolvers at a large European ISP during a 1-hour period to learn about the domain
names these IP addresses are associated with. We do not expect to find all the
detected IP addresses in these DNS responses. Therefore, for any remaining IP
address, we use reverse DNS resolution to find the corresponding domain names.

Then, we look for the IP addresses from our VPN hitlist on over a week of network
flow data from the ISP to find out the amount of traffic associated with the VPN
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Figure 6.1: Cumulative distribution of number of ASes (left) and number of countries
(right) corresponding to the responsive IPs

hitlist and compare the results with a port-based VPN traffic detection, and also a
state-of-the-art approach.

6.2.5 Ethical Considerations

As explained in Section 2.3, we best current practices both for active and passive
measurements. We plan to notify the VPN providers about their servers’ vulnerabil-
ities.

6.3 Active Measurements of the VPN Server Ecosystem

In this section, we go through the results from our Internet-wide active measure-
ment using different VPN protocols. We discuss the characteristics of the responsive
servers such as geographical locations, VPN protocols, etc. Then, we analyze their
vulnerabilities and try to fingerprint them based on the gathered information.

6.3.1 Responsive Servers

In total, we find 9,817,450 responsive IPv4 addresses with our probes that we can
identify as VPN servers.

rDNS. We investigate the reverse DNS records corresponding to the responsive IPv4
addresses. We aggregate results on the second-level domain and sort them based on
the number of responsive IPs that they correspond to. We find that all the top 10
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(a) IPv4

AS number AS name VPN servers

4134 ChinaNet 515,830
7922 Comcast 356,327
1221 Telstra 257,821
3320 Deutsche Telekom 242,433
4766 Korea Telecom 228,863
4713 NTT Communications 145,286
7018 AT&T 137,698
4837 China Unicom 133,861
3462 HiNet 119,612
20115 Charter Communications 97,109

(b) IPv6

AS number AS name VPN servers

7922 Comcast 183
63949 Akamai 159
12322 Proxad Free SAS 138
7506 GMO Internet Group 89
9009 M247 Ltd 63
9370 Sakura Internet Inc 58
14061 DigitalOcean 55
2516 KDDI Corporation 54
7684 Sakura Internet Inc 39
680 DFN-Verein 36

Table 6.2: AS numbers, AS names and number of VPN servers belonging to the ASes
for IPv4 and IPv6

domain names belong to telecommunication companies (e.g., Open Computer Net-
work, a large Japanese ISP, and Telstra, an Australian telecommunications company).
Next, we filter all rDNS records which contain vpn in their second-level domain names
in order to detect commercial VPN providers. We find a single domain related to
PacketHub which manages IP addresses for several companies, including NordVPN,
a major commercial VPN provider. This domain name ranks 60th among all rDNS
second level domains.

AS analysis. Figure 6.1 shows the distribution of ASes to which our responsive
IP addresses belong. The responsive IP addresses are originated by 49625 and 334
ASes in total, while top 10 ASes contribute to 22% and 38% of the IP addresses, for
IPv4 and IPv6 respectively, as shown in Figure 6.1. Top 10 ASes for IPv4 responsive
addresses are all telecommunication companies, while out of the top 10 ASes for IPv6
responsive addresses, 8 are telecommunication companies and 2 are academy-related
ASes. Tables 6.1(a) and 6.1(b) further summarize the top 10 AS numbers as well as
the AS names or organizations and the number of VPN servers that are registered
within the respective AS. As can be seen, most top ASes are large ISP networks.

Moreover, we investigate the top ASes for commercial VPN providers. As shown
by Ramesh et al. [196] it is quite common for commercial VPN providers to use
shared infrastructure. 27 providers, including popular companies such as NordVPN,
Norton Secure VPN, or Mozilla VPN, use the same AS, namely AS 9009 operated by
M247 Ltd. This AS is also visible in our measurements and it ranks 14th with 74,894
identified VPN servers (0.76% of all addresses). Furthermore, Ramesh et al. [196]
find that some IP blocks in AS 16509 (Amazon) are shared across Norton Secure
VPN and SurfEasy VPN. AS 16509 lands on rank 20 of our list being shared by
almost 60,000 VPN servers (0.6% of all addresses). Another AS known to be used
by VPN providers is AS 60068—again operated by M247 Ltd.— which is used by
NordVPN and CyberGhost VPN. It ranks on place 178 of our list with 6,898 VPN
servers (0.07% of all addresses). Overall, we find that although the top ASes are
dominated by large ISPs, a considerable number of VPN servers are located in ASes
used by commercial VPN providers.
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Figure 6.2: Geographical distribution of responsive IPv4 addresses per country

VPN protocol Detected servers

IPsec 7,008,298
PPTP 2,424,317
OpenVPN 1,436,667
SSTP 187,214

Table 6.3: Number of detected VPN servers per protocol

Geolocation. We use Geolite Country Database [207] to determine the location of
the responsive IP addresses. Figure 6.2 shows a heatmap of the number of responsive
IPv4 addresses per country. We observe that responsive IP addresses are scattered
all over the world, in total over 241 and 52 countries for IPv4 and IPv6, respectively.
However, 64% and 86% of IP addresses belong to the top 10 countries for IPv4 and
IPv6 respectively. Top 3 countries contributing to IPv4 responsive addresses are the
United States, China, and UK, while top 3 countries for IPv6 are the United States,
Japan, and Germany.

6.3.2 VPN Protocols

We are able to detect servers for IPsec, PPTP, OpenVPN without tls-auth, and
SSTP. Table 6.3 summarizes our findings. Our IPsec UDP probes yield by far the
most responsive VPN servers. It might seem surprising that we find such a large
number of PPTP servers in contrast to OpenVPN and SSTP considering that PPTP
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is far more outdated and OpenVPN is one of the most prominent VPN protocols.
However, we have to keep in mind that we can only detect a subset of the whole
OpenVPN ecosystem since some configurations require knowledge of cryptographic
key material as explained in Section 6.2.1. Apart from that, SSTP can only be used
for remote access connections, whereas PPTP used to be the most widely deployed
VPN protocol. We can assume that a large number of the detected PPTP servers
are quite outdated, yet still running.

Out of the around 1.4 million OpenVPN servers, 1,011,178 were detected over UDP
and 482,956 over TCP. Considering that the TCP version of OpenVPN is generally
rather considered as a fallback option, this disparity is to be expected. Figure 6.3
visualizes the intersection of those two address sets in a Venn diagram. We can see
that the majority of the servers supports only a single transport protocol.

Overlap between protocols. In the next step, we compare the IP address sets for
the four protocols to depict their intersections and to find out how many of the servers
support more than one VPN protocol. Figure 6.4 summarizes those findings in an
upset plot. The horizontal bars on the left visualize the sizes of the four protocol sets.
The vertical bars represent the different intersections and the sets to be considered
are indicated by the black dots below the vertical bars. The first bar on the left,
e.g., represents the number of VPN servers supporting both PPTP and IPsec with
roughly 550,000 servers making up for around 5.7% of the whole detected VPN server
ecosystem. The second bar on the right, on the other hand, represents the number
of servers supporting all four protocols, which is close to zero with only around 2.8
thousand servers.

We can see that the majority of all VPN servers support only one of the four protocols
we consider in this work. Since commercial VPN providers usually offer a variety of
different VPN protocols to choose from, it is possible that a large percentage of
the servers supporting several protocols are commercial. This might be the case
especially for the ones supporting three or four protocols. We investigate the rDNS
records corresponding to the servers supporting all the four protocols, and find that
there are no commercial VPN provider in the top 10 second-level domains. All in
all, we find that commercial VPN providers account for only a fraction of the entire
VPN server ecosystem considering the supported protocols.

Different protocol versions. Some VPN protocols might include different versions
or configurations, like OpenVPN, for instance. We therefore try to trigger VPN
responses from OpenVPN servers suggesting the outdated key exchange method key
method 1. We also try to trigger responses with random HMAC signatures.

We find that only 84 of the roughly 1.4 million servers accept our random signature.
Apart from that, none of the detected servers support the insecure key exchange
method. While most of the servers ignored our requests, we still received around 6,500
responses specifying the default key exchange method key method 2. We can therefore
conclude that key method 1 is truly deprecated in the OpenVPN ecosystem.
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Figure 6.3: Intersection of OpenVPN UDP and TCP servers

6.3.3 Security Analysis

TLS certificate analysis. We collect TLS certificates for the TLS-based VPN
servers which include SSTP and OpenVPN over TCP and consider only unique cer-
tificates. For that, we compare the certificate fingerprints, i.e., the unique identifier
of the certificate, to make sure we do not consider the same certificate more than
once. Some certificates, however, do not include a fingerprint. Therefore, the number
of certificates that we analyze in the end might be higher than the number of unique
certificates. For OpenVPN, we find 129,143 unique certificates with a fingerprint for
312,095 servers. The most frequently occurring certificate is collected over 10,000
times and is issued for www.update.microsoft.com. For SSTP, there are 104,988 fin-
gerprints for 184,047 servers. We detect a certificate issued for *.vpnauction.com 2561
times and one for *.trust.zone 1194 times. These are commercial VPN providers that
seem to use the same certificate for all of their VPN servers. While we are able to
collect certificates for nearly all of the SSTP servers, we only receive TLS certificates
for around 65% of the detected OpenVPN servers. This is most likely caused by
the fact that OpenVPN performs a variation of the standard TLS handshake during
connection establishment. Therefore, some of the servers might not respond when
trying to initiate a regular TLS handshake.

Table 6.4 summarizes the results of the certificate analysis and contains the number
of certificates that we analyzed after filtering out unique certificates and certificates
without fingerprints. We detect a large number of self-issued or self-signed certificates
for both protocols. Out of the self-issued certificates, we characterize only around
4.7% as snake oil certificates for SSTP and close to zero for OpenVPN with around
0.4%. However, 33% of the self-issued SSTP certificates contain softether, an open-
source and multi-protocol VPN software, in the CN fields. 13% specify an IPv4
address in the CN sections. Upon looking at the organization field, we find over
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Figure 6.4: VPN protocol summary: Number of detected VPN servers for each pro-
tocol and the intersection between all protocols

OpenVPN TCP SSTP

Expired 6080 (3.8%) 13,370 (9%)
Self-issued 109,965 (69%) 39,889 (28%)
Self-signed 109,825 (69%) 34,725 (24%)

All certificates 158,705 143,517

Table 6.4: Expired, self-issued, and self-signed TLS certificates for OpenVPN and
SSTP

21,000 different organizations where almost 14,000 specify no organization at all. For
the OpenVPN certificates, we find that around 77% of the self-issued certificates
include the Fireware web CA as CNs specifying WatchGuard as organization. For
the rest, we detect more than 21,000 different organizations.

Looking at the organization fields of the CA-signed certificates, we can learn more
about the signing authorities. Considering SSTP, we filter out 2502 different organi-
zations for almost 100,000 CA-signed certificates. Table 6.4(b) contains the top five
organizations accounting for 87% of all signings. We examine the issuer CNs for the
certificates that do not specify an organization, yet we could not find any meaningful
information with 7,531 different issuers and the most frequently occurring CN being
CA with 159 signings. For OpenVPN, the organizations are a lot more heterogeneous
with 14,548 organizations in total. The top five organizations in Table 6.4(a) account
for only around 50% of all signings.
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(a) OpenVPN

Issuer Certificates

Stormshield 8966
Let’s Encrypt 7463
Sectigo Limited 2610
Digicert Inc. 1897
GoDaddy.com, Inc. 1332

(b) SSTP

Issuer Certificates

DigiCert, Inc. 45,156
Sectigo Limited 12,795
GoDaddy.com, Inc. 10,958
N/S 9139
Let’s Encrypt 7801

Table 6.5: Certificate issuer distribution for OpenVPN and SSTP servers
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(a) OpenVPN server certificates.
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(b) SSTP server certificates.

Figure 6.5: Distribution of expiry time (time between day of expiry and Aug. 15,
2022) for expired certificates
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TLS version Cipher suites Other requirements OpenVPN SSTP

RC4 [208] All RC4 None 32,294 84,892
Heartbleed [204] All All OpenSSL Heartbeat 232 10
Poodle [209] SSL 3.0 All None 7,005 24,917
FREAK [210] All RSA_EXPORT None 31 1
Logjam [211] All DHE/512-bit export None 8 0
DROWN [212] SSLv2 All None 0 0
ROBOT [213] All TLS_RSA None 95,301 174,986
Raccoon [214] TLS ≤ 1.2 TLS_DH None 0 0

Table 6.6: Requirements for TLS vulnerabilities and number of vulnerable servers per
protocol

Since we also detect a quite significant number of expired certificates, we examine the
date of their expiry more thoroughly. Figure 6.5 shows ECDFs for the time that has
passed since the dates of expiry and the 15th of August, 2022. In general, over half of
the SSTP certificates expired over a year ago. For OpenVPN it is even around 70%.
It is possible that those certificates belong to outdated, forgotten VPN servers.

TLS vulnerability analysis. The results of our TLS vulnerability analysis for the
TLS-based VPN protocols can be found in the last two columns of Table 6.6 where we
count the occurrences of susceptible servers. We detect a larger number of vulnerable
servers for RC4, Poodle and ROBOT for both protocols, yet only a few outliers for
the rest. SSTP is much more likely to show signs of vulnerability for all three attacks
with over 90% of the servers being susceptible to ROBOT. This is most likely caused
by the fact that SSTP is based on an outdated version of SSL and highlights why
SSTP is not recommended to be used anymore.

The effect of not using SNI. As we target only IP addresses in our follow-up
TLS measurements without the SNI extension, we want to investigate the effect of
not using SNI. Therefore, we first perform an rDNS resolution for our IP addresses
and find 259,910 domain names for about 480,000 OpenVPN TCP servers and 86,630
domain names for roughly 180,000 SSTP servers. We now collect certificates with
the SNI extension and then re-run the TLS scans without SNI for the respective
addresses for whose domains we could gather certificates.

Table 6.7 shows the results of the comparison of those two types of certificates and
the number of certificates we could collect. Two certificates mismatch when the
fingerprints differ. We then compare different fields and summarize the mismatch
occurrences in the table. If those fields match and the certificate has only been
renewed, we do not count it as a mismatch.

While the results for both protocols are similar, relatively speaking, we find more
mismatches for SSTP. About 3% mismatch for OpenVPN, whereas for SSTP 5.5%
mismatch. To confirm that those mismatches are caused by using SNI in the TLS
handshakes, we perform a second measurement without SNI and compare the certifi-
cates with the other non-SNI results. Without SNI, we find less than half as many
mismatches for SSTP and more than three times fewer mismatches for OpenVPN.
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OpenVPN SSTP

SNI Certificates 84,212 45,405
no SNI Certificates 81,379 45,026
Certificate Mismatches 2491 2515
Authority Key ID Mismatches 2051 1463
Subject Key ID Mismatches 2407 2379
Subject SANs Mismatches 2008 1677
Issuer CN Mismatches 1933 1476
Subject CN Mismatches 2021 1627

Table 6.7: Comparison of Certificates Collected with and without SNI

Considering the overall number of certificates from our large-scale measurements
compared to the ones we collected with SNI and keeping in mind the mismatches
we detected in the two non-SNI measurements, we can conclude that not using SNI
affects less than 1% of the certificates for both protocols and the effect is therefore
negligible.

6.3.4 Fingerprinting

Server Software. For SSTP and PPTP, we can infer the server-side software from
the responses we receive to our initiation requests. For SSTP, we find that around
80% of all detected servers use Microsoft HTTPAPI 2.0. Around 19% use MikroTik-
SSTP and less than 1% use something else or specify nothing at all.

However, the PPTP vendor software is a lot more heterogeneous compared to SSTP.
Table 6.8 shows the different software vendors we detect in the VPN server responses.
While there are four prominent vendors, over 15% of the PPTP servers rely on 183
different types. This can have potential security implications on the PPTP ecosystem.
Assuming there was some kind of new vulnerability, the rollout of a security update to
counter this vulnerability would be significantly slower compared to SSTP with fewer
software vendors. A similar phenomenon where vendor fragmentation leads to slower
update rollout can also be observed in the Android ecosystem. Thomas et al. [215]
showed that almost 60% of all devices ran insecure Android versions in July 2015.
This share declines only slowly after the discovery of a major vulnerability. They
found out that the bottleneck of this issue lies with the manufacturers and results in
87.7% of all devices being exposed to at least 11 critical vulnerabilities. Jones et al.
[216] considered manufacturers between 2015 and 2019 and further showed that the
median latency of a security update is 24 days with an additional latency of 11 days
before an end-user update.

Nmap OS detection and port scans. In our Nmap OS detection measurements,
we first have a look at the most common ports for all four protocols. Figure 6.6 sum-
marizes the most frequently occurring open ports. As expected, the default HTTP(S)
ports 443 and 80 are the most common ports, with the exception of the PPTP servers
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Vendor Percentage

Linux 32.3%
MikroTik 30.6%
Draytek 21.1%
Microsoft 6.9%
Cananian 2.0%
Fortinet PPTP 1.4%
Yamaha Corporation 1.4%
Cisco Systems, Inc. 1.2%

Others (162) 3.2%

Table 6.8: Software vendors for detected PPTP servers

for which the default PPTP port TCP/1723 obviously is the most widely used port.
As Ramesh et al. [196] pointed out, specific open ports do not pose security risks by
themselves, yet, they might still be abused in order to identify and exploit particular
services [217].

For the OS detection, we filter out the first guesses for every target and look at the
most common OSes and version ranges:

• IPsec: We receive 48 unique first guesses for 126 hosts out of 722 responsive
IPsec servers. Out of those, 40 guess the Linux Kernel ranging from version
2.6.32-3.10. In general, Linux is the most common OS with 67 guesses. However,
Microsoft was barely guessed as an OS vendor with only nine guesses.

• PPTP: For 792 responsive hosts, Nmap was able to guess an OS for 216 ad-
dresses with 56 unique guesses. Linux was once again the primary occurrence.
Out of those guesses, 88 specified Linux 2.6.32-3.10, where the majority mewlie
below version 3.2, however. As for IPsec, we have very few results for Mi-
crosoft with only 15 guesses. For the PPTP servers, there were more hardware
guesses compared to the other protocols with 36 guesses specifying some kind
of hardware device.

• OpenVPN: The most frequent guesses are almost exclusively Linux again in
33 unique guesses for 89 out of the 763 responsive hosts. 39 specify Linux
ranging from 3.2-4.11, i.e., the versions are not quite as outdated as for PPTP
and IPsec. We received only a single guess for Microsoft products.

• SSTP: The SSTP scans result in 44 different guesses for 178 out of 948 respon-
sive hosts. This time, we have more results for Microsoft products with a total
of 49 guesses. The most prominent vendor is Linux again, however, with 101
guesses where 53 range from Linux versions 2.6.32-3.10.

6.3.5 IPv6

VPN server detection. Targeting roughly 530 million IPv6 addresses in our
ZMapv6 port scans, we could detect 1,195,510 responsive hosts on port TCP/443
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Figure 6.6: Heatmap of most frequently detected open ports per VPN server

which we target in our follow-up Zgrab scans for SSTP and OpenVPN over TCP. We
could not find any responsive addresses on port TCP/1723, the default PPTP port.
Since port TCP/1723 is used exclusively for PPTP and the protocol is very outdated,
it is not too surprising that there are no IPv6 servers supporting PPTP. Apart from
that, we do not get any responses on the UDP ports 500 (IPsec) and 1194 (OpenVPN
over UDP).

Out of the roughly 1.2 million hits on port TCP/443, we could identify 2070 addresses
as OpenVPN servers and 949 as SSTP servers with a total of 2221 VPN servers
supporting IPv6. While those results seem very low, we have to keep in mind that
the rollout of IPv6 is still very slow in general. IPv6 is also not yet supported by
most commercial VPN providers.

As also observed in IPv4 results in Section 6.3.2, none of the OpenVPN servers
accepted our OpenVPN key method 1 requests with only 11 servers still responding
with the secure key exchange method. Additionally, of the overall IPv6 VPN servers
we detect, around 36% support both protocols, i.e., compared to IPv4, the overlap is
higher.

Investigating the rDNS records corresponding to the responsive IPv6 addresses, we
observe that the top 10 domains belong to hosting providers, cloud providers, and re-
search networks. Similar to the IPv4 results, we do not find a domain name belonging
to a commercial VPN provider among the top 10 domains. By filtering second-level
domains to match *vpn* we find the commercial VPN provider WhiteLabel VPN,
ranking 25th among the top domains.
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Therefore, we infer that most of the VPN servers that support IPv6 are, in fact, not
commercial VPN providers.

TLS certificate analysis. The results of the TLS certificate analysis are similar to
IPv4. We could collect certificates for around 75% of the identified OpenVPN servers
with 816 unique fingerprints. Combined with the certificates that do not contain a
fingerprint, we analyze a total of 1882 certificates. We collected certificates for every
SSTP server resulting in 747 certificates after filtering out 207 unique fingerprints.
Less certificates are expired this time with only 3.3% for OpenVPN and 2.1% for
SSTP. This time, only 29% of the OpenVPN certificates are self-signed. For SSTP,
more certificates are self-signed for the IPv6 servers with over 70% of all certificates.
Out of those, we characterize roughly 2% as snake oil certificates for both protocols.
Furthermore, about two thirds of the self-signed certificates for both protocols were
issued by softether.

When examining the signing organizations for the CA-signed certificates, we find
that around 85% (709 certificates) of the OpenVPN certificates are signed by Let’s
Encrypt with a total of 43 organizations. For SSTP, around 73% are signed by Let’s
Encrypt (153 certificates). Here, we find a total of only 16 organizations.

TLS vulnerability analysis. The results of the TLS vulnerability analysis are very
similar to the IPv4 VPN servers. For both protocols, we are only able to detect
vulnerable servers for the same three prominent attacks as for the IPv4 analysis. Out
of the 2070 OpenVPN servers, 31% are vulnerable to RC4 biases, 6% to Poodle and
74% to Robot. When analyzing the 949 SSTP servers, we find that 67% are vulnerable
to RC4 biases, 13% to the Poodle attack and roughly 98% to ROBOT. While the
results are similar to our large-scale measurements, we can conclude that the VPN
servers supporting IPv6 are much more likely to show any signs of vulnerability with
the vast majority being vulnerable to the ROBOT attack.

The effect of not using SNI. The rDNS measurements for the IPv6 servers resulted
in 410 domain names for SSTP and 813 domain names for OpenVPN over TCP.
Again, we first collect TLS certificates using the SNI extension and then try the same
without SNI and compare the results. We find that only around 3% of the certificates
for both protocols mismatch in terms of fingerprints and important certificate fields
including authority and subject key IDs, subject SANs, and CNs. When comparing
those results by running a second TLS scan without SNI, we find that only around
2.5% of the OpenVPN and less than 1% of the SSTP certificates differ. Considering
the overall number of certificates, the effect of not using SNI is even less significant
compared to IPv4 and is therefore negligible.

VPN server software. Since we could not analyze the PPTP server software
ecosystem this time, we can only compare the results for SSTP. The results are
similar again with 91% of the SSTP servers specifying the Microsoft HTTP API 2.0.
However, the rest did not specify any vendor, i.e., the IPv6 SSTP servers seem to not
use MikroTik-SSTP with Microsoft being the only vendor.

Nmap OS detection and port scans. As for IPv4, we perform Nmap measure-
ments on the detected IPv6 VPN servers including 1000 random OpenVPN TCP
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servers and all 949 SSTP servers. Out of those servers, 874 OpenVPN servers and
852 SSTP servers are responsive.

The most commonly used open port is TCP/443 with 838 occurrences (96%) for
OpenVPN and 852 (97%) for SSTP. Compared to IPv4, the number of open HTTPS
ports is much higher for OpenVPN. Here, we have to keep in mind that we can only
consider OpenVPN servers over TCP. Thus, this disparity is to be expected. The
second most frequently open port for both protocols, in contrast to IPv4, is TCP/22,
the default SSH port. This port occurs 245 times (28%) for OpenVPN and even 391
times (46%) for SSTP. Other common ports for both protocols are ports TCP/8000
for OpenVPN (21%) and TCP/80 accounting for around 17% of the open ports for
both protocols.

We receive more OS guesses for the IPv6 servers compared to IPv4. As was the case
for IPv4, we filter out the first guesses for every target:

• OpenVPN: The measurement results in only four unique guesses for a total
of 481 hosts. 93% specify Linux with 416 guessing Linux 3.X and 33 guessing
version 2.6. Only 19 predictions include a Microsoft OS and only 13 an Apple
product.

• SSTP: For SSTP, there are five unique predictions for 406 addresses. The
majority specifies Linux again with 91%. Out of those, 333 guesses specify
Linux version 3.X and only 36 specify version 2.6. Microsoft OSes are predicted
36 times and only a single guess specifies a macOS.

In contrast to IPv4, Nmap was able to predict an OS for a much larger percentage
of our targets with an OS guess for almost half of the targets. Additionally, the
predictions are a lot more homogeneous. Linux is again the most prominent vendor,
however, the predicted versions are not quite as outdated as for the IPv4 servers.

6.4 Passive VPN Traffic Analysis

It is important for network operators and ISPs to gain insight over the volume and
daily patterns of VPN traffic. In a previous study, Feldmann et al. [13] try to find the
VPN traffic based on the domain names corresponding to the IP addresses observed
in the traffic. For detecting VPN traffic, Feldmann et al. use domain names to infer
whether the IP addresses corresponding to them carry VPN traffic. They exclude
any domain name that starts with www., and does not have *vpn* to the left of the
public suffix. Finally, they consider the remaining domain names as VPN domain
names and count the traffic that relate to these domain names as VPN traffic.

To compare our methodology with the state of the art, we apply the methodology
used by Feldmann et al. [13] on our results. We use DNS responses gathered by DNS
resolvers at a large European ISP, and look for those DNS responses that include
the IP addresses from our VPN hitlist. We find 13% of the IP addresses from the
VPN hitlist in the above-mentioned DNS responses. Therefore, we complement our
DNS data with reverse DNS look-ups for all the remaining IP addresses. To refine

101



Chapter 6 Characterizing the VPN Ecosystem in the Wild

Figure 6.7: Normalized VPN traffic volume for different traffic detection techniques

the reverse DNS results, we exclude any domain names containing any order of the
corresponding IP address bytes or octets in decimal or hexadecimal format. Overall,
we end up with the domain names corresponding to 23.6% of the IP addresses from
the VPN hitlist. Then, we apply the methodology used by Feldmann et al. on the
resulting domain names, i.e., we extract those domain names that contain *vpn* on
the left side of the public suffix [218], while excluding any domain starting with www.
to exclude web servers. We observe that this methodology captures only 4.8% of our
VPN hitlist. Therefore, our approach can detect 4 times more VPN servers compared
to the methodology by Feldmann et al.

Finally, we look at a one-week snapshot of all the network flow traffic from the large
European ISP to find out the amount of traffic that can be attributed to VPN.

To this end, we compare the amount of VPN traffic detected with three methodolo-
gies:

1. VPN Hitlist: the methodology proposed in this disseration, i.e., sending active
probes, including the responsive IP addresses in a hitlist, excluding those IP ad-
dresses that answer to web requests, i.e., HTTP GET requests, then measuring
the traffic volume originated by or destined to these IP addresses.

2. Port-based: this methodology captures the traffic only based on port numbers,
considering traffic with port numbers 500 (IPsec), 4500 (IPsec), 1194 (Open-
VPN), 1701 (L2TP), 1723 (1723) both on UDP and TCP as VPN traffic.

3. Domain-based: the methodology proposed by Feldmann et al, i.e., filtering
domain names based on certain keywords, then measuring the traffic volume
originated or destined to the IP addresses corresponding to these domain names.
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Figure 6.7 shows the traffic volume considered as VPN traffic by each of the above-
mentioned methodologies. The solid black line shows the total amount of VPN traffic
detected by either of the three approaches. The dashed line shows the total traffic
volume in the ISP. The left Y axis shows the VPN traffic volume (including all the
three approaches), and the right Y axis shows the total ISP traffic volume. All the
traffic values are normalized. While normalizing, we keep the ratio between the VPN
traffic and total traffic intact. Therefore, comparing the left and right axis values
shows that the total traffic is roughly 25 times as much as all VPN traffic.

Compared to the Port-based approach, we detect twice as much traffic, and compared
to the Domain-based approach, we detect 8 times as much using the VPN Hitlist.

The mean VPN traffic volume detected by all three approaches is 4.1% of the mean
total ISP traffic over the week, with VPN Hitlist contributing to 2.6%, Port-based
1.3%, and Domain-based 0.3%.

Looking at the overlap between every two approaches, we find that only 2.7% of
all the traffic detected by all three approaches is detected both by VPN Hitlist and
Domain-based. We observe 1.2% overlap between the traffic detected by VPN Hitlist
and Port-based approaches.

We observe a diurnal pattern in the VPN traffic detected by all of the three ap-
proaches. We find that VPN traffic pattern in the weekdays differs from that of
weekends. It peaks at noon in the weekdays, and at night in the weekend, while the
total ISP traffic always follows the same pattern, i.e., peaks at night. It could indicate
the fact that the VPN traffic is mostly work-related through weekdays, while mostly
entertainment-related throughout the weekend. In the domain-based approach the
amount of VPN traffic detected by the Domain-based approach is much less in the
weekends than in the weekdays. This could indicate that the Domain-based approach
detect mostly work-related VPN servers.

We investigate the domain names corresponding to the traffic we detect using our
approach and find that vpn., mail., www., and remote. are among the most common
prefixes left to the public suffix part of the domain names, with vpn. being the
most common prefix. The fact that we observe mail. and www. might be either
re-use of the same domain name for other purposes by the network operators, or a
mislabeling effect from our approach caused by not answering our HTTP Get requests.
Also, looking at the DNS records corresponding to the IP addresses from our hitlist,
using FlowDNS— the system to correlate DNS and Netflow data at scale [2] which
we discussed in Chapter 4—we find that 5 out of 10 top domains are related to
commercial VPN providers and the rest are CDN domains. We observe that the
most common source port/destination port combination is 4500/4500 which belongs
to IPsec, also port number 1194 which is registered for OpenVPN, and at the same
time 1193, which is practically used for VPN [219]. We also observe that 51820/51820
and 1337/1337 which belongs to WireGuard protocol are among the top port number
pairs observed in the traffic detected by our approach. Port 51820 also falls into the
range of ephemeral ports numbers (49152 to 65535) which can be temporarily used
by many applications. However, due to the prominent existence of this port number
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in our results accompanied with port 1337, we infer that we can possibly detect
some WireGuard traffic, although in our active measurement approach we cannot
scan the WireGuard protocol. This might be due to the co-existence of multiple
protocols in one VPN server. This shows that although in our approach we cannot
scan WireGuard protocol, we can still detect some WireGuard traffic which might
be due to the co-existence of multiple protocols on one VPN server. Traffic related
to WireGuard protocol contributes to 8.6% of the detected VPN traffic by our VPN
hitlist, while contributing to only 2% of the traffic detected by the Domain-based
approach.

6.5 Discussion

In this work, we detect VPN servers in the wild by sending Internet-wide active
probes using different VPN protocols. We can distinguish between VPN servers and
Web servers by excluding those servers that respond to a Web request. We compare
the amount of traffic detected by our approach and two other approaches over a week
of traffic from a large European ISP and find out that the approach proposed by this
work detects much more VPN servers compared to the state-of-the-art domain-based
approach. In addition, our approach benefits from detecting VPN servers that do not
use any domain name, and can also detect VPN traffic that is using unusual ports in
case these servers answer VPN probe on the usual VPN port numbers. Also, to be
the best of our knowledge, this is the first work to perform an Internet-wide active
measurement of VPN servers in the wild.

VPN hitlist. We send active probes according to the specification of VPN protocols
including SSTP, PPTP, OpenVPN, and IPsec to the whole IPv4 address space and
to an IPv6 hitlist. We make our list of detected VPN servers, namely the VPN
hitlist, publicly available at vpnecosystem.github.io. This VPN hitlist can be useful
for network operators to find out about the amount and patterns of VPN traffic in
their networks. The VPN hitlist can also be used by fellow researchers to investigate
different behaviors of the VPN servers and VPN traffic, e.g., investigating actual
attacks to these servers.

Security. We also investigate the security of the OpenVPN and SSTP protocols in
terms of different security aspects, including heartbleed attack, TLS certificates secu-
rity, and TLS downgrade attacks. We find that SSTP servers use expired certificates
3x more than OpenVPN servers. We also find that 90% of the SSTP servers are
vulnerable to ROBOT attack. Therefore, we find SSTP to be the most vulnerable
protocol. This striking high percentage of vulnerable servers for some of the protocols
shows, that the VPN server ecosystem is not as secure as some users believe it to
be. Therefore, we hope that our analysis can highlight these security risks with using
each VPN protocol and also helps network operators choose the right VPN protocols
for their networks.

Limitations. Our approach builds upon receiving answers from the servers in
the wild and therefore, has its limitations. If there is a VPN protocol which uses
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a pre-shared key in the first VPN request and does not respond otherwise, we are
unable to detect it. Examples of such VPN protocols are WireGuard and Cisco
AnyConnect. Therefore, we are unable to detect any VPN server which offers only
these two protocols. However, we observe that 8.6% of the detected traffic is related
to WireGuard which might be due to multiple protocols being served by one VPN
server. In addition, certain VPN servers might only work on non-registered port
numbers for better anonymization. Since in our work, we only send probes to the
port numbers registered for the VPN protocols by IANA [220], we cannot detect
VPN servers that work on unusual port numbers. Therefore, our list of detected
VPN servers is limited to those using the supported VPN protocols and working on
their registered port numbers.

Future work. In the future, our work can be complemented by including more
port numbers in the active scans. Results from previous studies on predicting the
services across all ports [221] can be used together with our approach to gain more
coverage. Despite the above-mentioned limitations, our proposed approach detects
much more VPN servers compared to the state-of-the-art domain-based approach,
and also, to the best of our knowledge, is the first work to perform an Internet-wide
active measurement of VPN servers in the wild.

Reproducibility. We make our analysis code and data [222], customized Zgrab
modules [197], and our VPN hitlist publicly available1 for fellow researchers to be
able to reproduce our work and build upon it.

6.6 Related Work

VPN traffic classification is an open research problem, particularly challenging due
to its encrypted nature. There are several studies trying to tackle this problem
using machine learning approaches. Some are able to categorize the traffic into VPN
and non-VPN only [223], and some provide more detailed sub-categories [224–226].
Zou et al. [224] identify encrypted traffic by combining a deep neural network to
extract features of single packets and a recurrent network to analyze features of
the traffic flow based on features of three consecutive packets. Though the model
classifies some traffic incorrectly regarding sub-categories, it could achieve almost
99% accuracy when only considering VPN and non-VPN traffic. Alfayoumi et al.
[226], on the other hand, also consider time-related features and subdivide traffic by
also identifying applications.

All of these works require previously captured unencrypted VPN traffic to train.
Previous studies have also tried to detect VPN traffic using the DNS records corre-
sponding to the IP addresses observed in the traffic [13].

In this chapter, we propose a different approach, i.e., Internet-wide active measure-
ments, to detect VPN servers in the Internet. Internet-wide measurements have been
previously applied for several intents including finding IPv6 responsive addresses [23],

1https://vpnecosystem.github.io/
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responsive IPs to abnormal traffic [227], the usage of DNS over encryption [228], and
so on. However, to the best of our knowledge, this is the first work applying active
measurements to detect VPN servers in the wild and detecting the traffic based on a
VPN hitlist.

Investigating the security of the VPN servers is also an interesting research problem
which is already addressed by several studies. For example, Xue et al. investigate
the possibility and practicality of fingerprinting OpenVPN flows [229]. Tolley et al.
investigate the vulnerability of known VPN servers to spoofed traffic [230]. Craw-
shaw [198] addresses vulnerabilities that come with some of the protocols themselves,
such as outdated cryptographic cipher suites used in PPTP. In his proposal for Wire-
Guard [231], Donenfeld talks about disadvantages in current popular VPN protocols.
VPNalyzer requires a tool to be installed on the user’s device to measure and collect
data on the active VPN connections in terms different security aspects including data
leakage, open ports, and DNSSEC validation [196]. Appelbaum et al. also identified
vulnerabilities of commercial and public online VPN servers [232].

A large body of literature also exists that empirically examines TLS vulnerabilities
including self-signed root CA injection to intercept TLS connection [233, 234], and
improper implementation of the protocol making version downgrade attacks possible
even with new TLS 1.3 [235].

We mainly focus on potential vulnerabilities that come with VPN protocols which
are built on top of SSL/TLS. Thus, we investigate SSL/TLS related features of those
protocols. For some identified OpenVPN servers, we can also make assumptions on
their security based on information we can infer about their server configurations. All
the previous works study the security of known VPN servers, while in this dissertation,
we measure the vulnerability of our detected VPN server in the Internet.

6.7 Summary

In this chapter, we performed the first Internet-wide active measurement on the VPN
server ecosystem for OpenVPN, SSTP, PPTP, and IPsec both in IPv4 and IPv6 to
detect VPN servers in the wild. We detected 9.8 million VPN servers distributed
globally. 10% of the detected VPN servers offered more than one VPN protocol
with very few serving all the four protocols we studied. We also send active Web
probes to the detected VPN servers and observed that 2% were both VPN and Web
servers. Analyzing the TLS-based VPN protocols, i.e., OpenVPN and SSTP, we found
that SSTP was the most vulnerable to a version downgrade attack, and certificates
of OpenVPN servers had the most self-signed and self-issued certificates. We also
tried to fingerprint the detected VPN servers in terms of server software vendors
and operating systems. Finally, using our VPN hitlist, excluding the servers that
were both VPN and Web servers, we observed that VPN traffic constitutes 2.6% of
the total traffic volume in a large European ISP, which is 8x as much as that of a
state-of-the-art domain-based approach, and twice as much as the trivial port-based
approach. We publish our VPN hitlist, our customized ZGrab2 modules for VPN
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scans, and the code to our analysis for future researchers and network operators to
use.
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7
Conclusion

Monitoring Internet traffic is important for the network operators to gain insights
about the traffic going through their networks for troubleshooting and optimizing
their networks. In the meanwhile, it helps Internet users to know more about the
security of the data they exchange on the Internet.

Monitoring Internet traffic characteristics such as volume, intent, and pattern is non-
trivial due to encryption, large volume, and time-criticality. There are also some
important traffic patterns, e.g., VPN traffic or port 0 traffic, that are less studied. The
overarching goal of this thesis, namely, uncovering hidden characteristics of Internet
traffic, refers to using novel methodologies to study the underlying or less apparent
aspects of Internet traffic.

Throughout this thesis, we strived to facilitate Internet traffic monitoring by de-
signing novel systems to perform large-scale network monitoring in real-time. These
systems handle a substantial amount of network flow data and enable real-time anal-
ysis of network flow characteristics. This information when put together with our
Internet-wide active measurement methodologies, help us gain a comprehensive view
of different characteristics of Internet traffic.

7.1 Summary

As explained in Chapter 2, ISPs and IXPs usually capture sample Internet flows
for operational purposes. For conducting the research upon which this dissertation is
founded, we collaborated with a large Tier-1 European ISP and a large European IXP
to process those sample flows and evaluate our systems on their data and premises.

Exploring Network-wide Flow Capture Data. In Chapter 3, we strived to an-
swer our first research question: How can we monitor the traffic using the existing
network flow captures in near real-time with a priori unknown queries? To answer
this question, we built a system called Flowyager to store, process, and query ex-
isting flow traffic captures. Using Flowyager, we generated and analyzed tree data
structures called Flowtrees that were succinct summaries of the 5-tuple raw flow data
available by capture utilities. Using these self-adjusted data structures, we observed
a drastic reduction in space and transfer requirements, by 75% to 95%, compared to
raw flow records. Flowyager manages the storage and transfers of Flowtrees, sup-
ports Flowtree operators, and provides a structured query language, called FlowQL
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for answering flow queries across sites and time periods in near real-time. We then
deployed a Flowyager prototype at a large Internet Exchange Point and a Tier-1 Inter-
net Service Provider to showcase its capabilities for networks with hundreds of router
interfaces. We showed that the query response time can be reduced by an order of
magnitude when compared with alternative data analytics platforms, e.g., ClickHouse
and Spark. We demonstrated that with the help of all the above-mentioned modules,
Flowyager enables interactive network-wide queries and offers unprecedented drill-
down capabilities to, e.g., identify DDoS culprits, pinpoint the involved sites, and
determine the length of the attack.

FlowDNS: Correlating Netflow and DNS Streams at Scale. Knowing flow
characteristics through processing the 5-tuple helps identify DDoS attacks. However,
knowing the purpose or the content of the traffic flows, and more specifically the
service they are originated by, helps network operators to better plan their networks
to enhance the performance exactly where the customer’s interests lie, and also offer
the customers relevant commercial packages. However, with the increasing deploy-
ment of CDNs by different services, identification, and attribution of the traffic on
network-layer information alone becomes a challenge: If multiple services are using
the same CDN provider, they cannot be easily distinguished based on IP prefixes
alone. Therefore, it is crucial to go beyond pure network-layer information for traffic
attribution. For this reason, in Chapter 4, we tried to answer our second research
question: How can we recognize the application (domain name) a certain traffic flow
is using? To answer this question, we leveraged real-time DNS responses gathered
by the clients’ default DNS resolvers. We designed a system to correlate these DNS
responses with network-layer headers to translate CDN-hosted domains to the actual
services to which the traffic belongs. We deployed this system at a large European
ISP and observed that we could correlate an average of 81.7% of the traffic with the
corresponding services, without any loss on our live data streams. Our correlation
results also showed that 0.5% of the daily traffic contained malformatted, spamming,
or phishing domain names. Moreover, to showcase the usage of such results for ISPs,
we correlated the results with BGP information to find more details about the origin
and destination of the traffic. We also published our correlation software for other
researchers or network operators to use.

Zeroing in on Port 0 Traffic in the Wild. Using the system built in Chapter 3, we
found out that there is a large amount of abnormal traffic. Internet services leverage
transport protocol port numbers to specify the source and destination application
layer protocols. While using port 0 is not allowed in most transport protocols, we
observed a non-negligible share of traffic using port 0 in the Internet. Therefore,
Chapter 5 studies the third research question: How can we characterize port 0 traffic?
Why do we see port 0 traffic? We studied port 0 traffic to understand the origins and
causes of such traffic to answer this question. Since Flowyager alone was not enough
to grasp all the different aspects of such traffic, we used five complementing flow-level
and packet-level datasets. We observed 73 GB of port 0 traffic in one week of IXP
traffic, and we identified most of them to be an artifact of packet fragmentation. In
our packet-level datasets, most traffic is originated from a small number of hosts and
while most of the packets have no payload, a major fraction of packets containing
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payload belong to the BitTorrent protocol. Moreover, we found unique traffic patterns
commonly seen in scanning. In addition to analyzing passive traces, we also conducted
an active measurement campaign to study how different networks react to port 0
traffic. We found an unexpectedly high response rate for TCP port 0 probes in IPv4,
with very low response rates with other protocol types. We provided the results to
the measurement community.

Characterizing the VPN Ecosystem. With the increase of remote working dur-
ing and after the COVID-19 pandemic, the use of Virtual Private Networks (VPNs)
around the world has nearly doubled. Therefore, measuring the traffic and security
aspects of the VPN ecosystem is more important now than ever. VPN users rely
on the security of VPN solutions, to protect private and corporate communication.
Thus a good understanding of the security state of VPN servers is crucial. Moreover,
detecting and characterizing VPN traffic remains challenging, since some VPN pro-
tocols use the same port number as web traffic and port-based traffic classification
will not help.

FlowDNS helped us analyze different sources of Internet traffic to infer the service
or domain name to which the traffic belonged. However, relying only on the domain
name to infer whether VPN is used is not enough.

Therefore, the research question motivating the work in Chapter Chapter 6 was the
following: How can we characterize the encrypted VPN traffic? To answer this, we
aimed at detecting and characterizing VPN servers in the wild to facilitate detecting
the VPN traffic. To this end, we performed Internet-wide active measurements to find
VPN servers in the wild, and analyze their cryptographic certificates, vulnerabilities,
locations, and fingerprints. We found 9.8M VPN servers distributed around the
world using OpenVPN, SSTP, PPTP, and IPsec, and analyze their vulnerability. We
observed that SSTP was the most vulnerable protocol with more than 90% of the
detected servers being vulnerable to TLS downgrade attacks. Out of all the servers
that responded to our VPN probes, 2% also responded to HTTP probes and therefore
were classified as Web servers. Finally, we used our list of VPN servers to identify
VPN traffic in a large European ISP and observed that 2.6% of all traffic was related
to these VPN servers.

7.2 Future Work

In this section, we present the future directions for our work. We address the future
directions corresponding to each work in their separate paragraph. By addressing
these future directions, we aim to deepen our understanding of network traffic pat-
terns, and enhance network security.

Exploring Network-wide Flow Capture Data. We proposed a system to monitor
network-wide flow data in Chapter 3 and evaluated its accuracy and performance
with specific parameters. Future work can explore the accuracy and performance
of Flowyager by using different space restrictions and maintaining more counters in
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Flowtrees. Moreover, although Flowyager is designed to be used in distributed mode,
operating on different network nodes, it has not been evaluated in such a setup which
is a possible future work direction. Finally, combining the results from Flowyager
with other sources of data, e.g., DNS data to dig deeper into the desired flows can
uncover more characteristics of Internet traffic.

FlowDNS: Correlating Netflow and DNS Streams at Scale. We introduced
FlowDNS in Chapter 4 and showcased some of its applications. This system can
be used to analyze the change in the behavior of Internet traffic from/to a specific
website when important events occur. In future, further research can be carried out to
analyze the behavior of Twitter traffic before and after Elon Must took over Twitter,
or to analyze the behavior of DisneyPlus traffic during an important live stream. This
is especially useful for websites that do not use their own CDNs and therefore, their
traffic is not recognizable without knowing the domain name to which they belong.
Using FlowDNS, further research can be conducted to cross-check the traffic patterns
with the peering agreements to assess the amount to which peering agreements are
followed in the real world.

Zeroing in on Port 0 Traffic in the Wild. In Chapter 5, we investigated port
0 traffic in the wild and the origins of such traffic. For future research projects,
specifically, those using NetFlow or IPFIX flow data, we highlight the need to be
aware of port 0 flows that are an artifact of packet fragmentation. Also, it is crucial
for network administrators to be aware of port 0 traffic and avoid it to mitigate the
chance of getting attacks on this port number. In this work, we found out that
BitTorrent is a prominent source or destination of port 0 traffic. Future studies can
combine the flow or packet captures with other sources of data such as DNS data
to investigate if specific domain names contribute to a high fraction of port 0 traffic
either as source or destination.

Characterizing the VPN Ecosystem. We introduced our approach to charac-
terize the VPN ecosystem in Chapter 6. Since VPN protocols are meant to provide
anonymity, they may use non-famous port numbers for their operation. In the future,
our work can be complemented by including more port numbers in the active scans.
Results from previous studies on predicting the services across all ports [221] can be
used together with our approach to gain more coverage.

By utilizing the methodologies and systems proposed in this dissertation, future re-
searchers can delve further into Internet traffic characteristics. For example, they
can explore application-specific traffic analysis, traffic volume growth, and uncover
patterns of malicious traffic, such as DDoS attacks and malware propagation.

Throughout this thesis, we conducted studies on streaming Internet traffic and VPN
traffic. However, there is still a wide range of Internet traffic characteristics that need
to be uncovered. Different types of Internet traffic exhibit distinct characteristics and
requirements. These include Internet of Things (IoT) traffic, mobile internet traffic,
satellite Internet traffic, online transactions, and social media traffic. For instance,
online transactions necessitate specific reliability and security considerations that
need to be addressed. Future research can focus on assessing the extent to which
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these considerations are met. From an Internet traffic perspective, there is also a need
to examine the traffic patterns and encryption types utilized by these applications.
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